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‘In that case, my dear Adeimantus,’ I  said, ‘we must certainly not give up, even if the 

investigation turns up to be rather lengthy.’  (376d)* 

‘I certainly don’t know yet; we must let our destination be decided by the winds of the 

discussion.’  (394d)* 

Plato, Republic 

 

 

 

 

 

 

 

 

 

 

 

*The two quotes are taken from the Oxford World‟s Classics edition. Translated by Robin Waterfield. 

Oxford University Press, 2008. 



 

 

 

 

 

 

 

 

 

 

 

 

To my father, my mother and my brother (Head). 
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Abstract 

 

This thesis is primarily concerned with the extension of nodal meshfree methods 

to the solution of electromagnetic wave scattering problems in three dimensions. These 

problems involve vector field quantities, which are usually constrained by a divergence-

free condition. The rather innocent addition of such a constraint on the divergence 

makes the analysis via nodal basis functions particularly challenging. In order to deal 

with it, we must add a Lagrange multiplier to the discretized weak forms. We are thus 

led to a mixed formulation which involves two quantities: The electric field and the 

Lagrange multiplier (also called pseudopressure). Next we investigate the conditions 

under which the aforementioned mixed formulation is well-posed; at this point the so-

called inf-sup conditions play a fundamental role. After delving deeply on the theorems 

which comprise the framework of mixed formulations, one observes that the nodal 

approach we propose is backed by a firm mathematical theory. Finally, our meshfree 

formulation is put to the test by solving several problems pertaining to the subject of 

wave scattering. 
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Resumo 

 

A presente tese versa sobre a extensão dos métodos sem malha ditos „nodais‟ a 

problemas de espalhamento eletromagnético em três dimensões. Tais problemas 

envolvem quantidades vetoriais, sobre as quais geralmente é imposta uma condição de 

divergente nulo. A simples adição de uma restrição como essa ao divergente torna 

particularmente difícil a análise via funções de forma nodais. Para lidar com ela de uma 

maneira adequada, precisamos adicionar um multiplicador de Lagrange à versão 

discretizada das formas fracas resultantes do problema. Desta forma, somos levados a 

uma formulação mista que envolve duas quantidades: O campo elétrico e o 

multiplicador de Lagrange (também chamado de pseudopressão). Em seguida, 

investigamos as condições sob as quais a formulação mista é bem-posta; aqui as 

chamadas condições inf-sup desempenham um papel fundamental. Após uma profunda 

exploração dos teoremas que dão estrutura às formulações mistas, observa-se que a 

abordagem nodal proposta é de fato sustentada por uma firme base matemática. 

Finalmente, a formulação meshfree desenvolvida é testada na solução de vários 

problemas relativos ao espalhamento eletromagnético. 
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Preface 

 

This work presents a nodal meshfree procedure for solving problems in which 

the field quantities involved are vectors, i.e., quantities which are characterized by a 

magnitude and a direction in space, as opposed to scalars, which are devoid of any 

sense of direction attached to their meaning. I had the opportunity to deal with meshfree 

methods and scalar quantities in different circumstances in the past during my Master‟s 

work. Thanks to the relative success I obtained, it was decided that the natural path to 

follow would be the extension of the meshfree approach to scenarios involving vector 

field quantities, particularly those arising in the analysis of time-harmonic 

electromagnetic wave propagation and scattering. 

The first ideas concerning the application of meshfree techniques to the 

Maxwell-Helmholtz equation are sketched in the text for the Qualifying Exam I 

presented to the UFMG Graduate Program in Electrical Engineering in September 2012. 

(By Maxwell-Helmholtz equation I mean the vector wave equation involving a double 

curl on   which one gets from both Faraday‟s and Ampère‟s laws written in the 

frequency domain). It was duly approved by the examining committee, who encouraged 

me to bring the work to a successful completion. One of the characteristics of this 

preliminary work is that the discretization process should rely solely on nodal basis 

functions (as opposed to the vector edge and face elements which are standard practice 

in the finite element literature). The reasons for such a choice is that the underlying 

meshfree method is a particle method, i.e., it is based on particles or nodes spread 

throughout the computational domain of interest (denoted as  ). In doing so, we keep 

the geometrical structure at a minimum: Just a set of nodes (ordinary points). Edges, 

faces and tetrahedra should be completely absent. This of course does not preclude the 

development of different meshfree methods based on objects other than nodes; it only 

reflects my choice, which is to comply with a minimal geometrical structure. 

When certain scalar functions are ascribed to each node in the domain  , one 

gets (under the right conditions) a linear space   , spanned by the set of these functions 

(i.e., formed by all linear combinations of these functions). These scalar functions are 

the nodal basis functions mentioned in the previous paragraph, and will be described 

later in the text. 

For vectors in the Euclidean space    (such as  ), the notions of magnitude and 

direction can be joined together in order to describe an Euclidean vector at a point 

       as an ordered  -tuple of real (or complex) numbers, also called its 

components, as   ,      -
 , where     (two dimensions) or     (three 

dimensions). In a nodal approach, each component of the discretized vector field 

   [  
     

 ]
 
 is taken from   , i.e.,   

           , or equivalently, 

          . 
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The description of what is meant here by a nodal meshfree approach would by 

now be complete if the governing differential equation were not constrained by some 

condition on the divergence of the field in question. For the scattered electric field in 

free-space (a situation with which we will be most concerned here), such a condition 

reads as      . This immediately poses the question: How can we make sure that 

the discretized field also satisfies this constraint, i.e., how can we guarantee that 

      ? Moreover, in what sense shall this condition be satisfied? In a pointwise or 

in a weak sense? The simplicity of the geometrical structure prevents us from 

embedding the divergence-free condition into the basis functions (as it happens for 

some vector finite elements). 

Roughly speaking, the discretized problem we are trying to solve is formed by 

two equations: The Maxwell-Helmholtz equation (a vector equation in   variables, 

namely   
     

 ) and the constraint on the divergence. When written componentwise, 

the first equation produces a system of   differential equations in   variables, whereas 

the second produces another equation in   variables. We are thus left with a total of 

(   ) equations in   variables. The problem becomes again balanced if we introduce 

a scalar Lagrange multiplier, or pseudopressure   , into the system of equations. Now 

there are (   ) equations in (   ) variables. 

The effect of introducing another quantity    is that we get a coupled system of 

equations, in such a way that we must seek for a solution pair (     ), instead of just 

solving for    only. The first impression is that the problem becomes more complicated 

than it should, but all clouds are dissipated when one observes that it fits the structure of 

a mixed formulation, i.e., one which seeks to find approximate solutions for two (or 

more) quantities simultaneously. 

I was presented to the concept of mixed formulations and mixed finite elements 

during the year of 2013, a period I spent at the Massachusetts Institute of Technology 

(M.I.T.) Department of Mechanical Engineering conducting the doctoral research as a 

Visiting Ph.D. student. The fact that our initial development in terms of    and    fits 

the structure of mixed formulations turns out to be a remarkable event, because the 

theory supporting these formulations has already been given a rigorous mathematical 

treatment.  

The theory of mixed formulations was developed (independently) by I. Babuska 

and F. Brezzi in the 1970‟s, and since then, it has provided a basis to assess the well-

posedness of finite element discretizations for a number of problems in many branches 

of computational mechanics. By fitting our meshfree procedure to the structure provided 

by the general theory of mixed formulations, all the theorems and results necessary for 

guaranteeing the solvability of our problems are automatically inherited. In doing so, 

two goals can be reached at once: We not only discover a way to solve (constrained) 

vector problems through a nodal meshfree method, but we are also provided a means to 

assess the well-posedness of such problems. All the theoretical development will be 

presented in the text, of course. 
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Actually, the theory of mixed formulations relies on deep results from 

Functional Analysis, namely the Banach Open Mapping and Closed Range theorems, 

where they are used to study the well-posedness of abstract operator equations. When 

they are „specialized‟ to the bilinear forms arising in the mixed formulations, they 

assume the form of inf-sup conditions involving such forms. The role these inf-sup 

conditions play in the analysis of the discretized forms from the scattering problem will 

be discussed in detail. 

Since the idea of approximating a vector field   by nodal scalar basis functions 

together with a (scalar) Lagrange multiplier   is not usual in finite element analyses of 

electromagnetic problems, I resorted to a model in which such approximation proved to 

be successful: It is the finite element analysis of the steady-state incompressible Navier-

Stokes equations from fluid dynamics. There, one usually turns to nodal basis functions 

in order to discretize the velocity field  , whereas the pressure   automatically plays the 

role of a Lagrange multiplier in order to enforce the incompressibility condition 

     .  

There are many similarities between the mixed formulations for the Maxwell-

Helmholtz equations and for the Navier-Stokes equations, or, stated in a better way, I 

tried to make the formulation of the Maxwell-Helmholtz system to resemble that of the 

Navier-Stokes system as much as possible. The result may be viewed as some kind of 

„hydrodynamical formulation‟ for scattering problems. As odd as it may appear at first, 

it worked pretty well, as attested by the examples, and it seems that this formulation 

finally provided a satisfactory answer to the problem of how to address vector problems 

in electromagnetism through meshfree methods. 

Due to the nature of the subject explored in this thesis, i.e., the analysis of the 

well-posedness of discretized mixed formulations – a large portion of the text is devoted 

to it – the inclusion of many mathematical statements is unavoidable. The very nature of 

the problem I proposed myself to solve asks for it. At some points I was obliged to 

include proofs and derivations in the text. Nevertheless, it should be clear that this is an 

engineering thesis, not a standard mathematics monograph. Therefore I strived to find a 

balance between mathematical rigor and engineering pragmatism. I hope I succeeded in 

this task. 

 

Survey of the chapters 

The thesis is organized in six chapters, as follows: 

Chapter 1 – Introduction 

A brief account of some meshfree methods developed so far. Maxwell‟s equations and 

scattering by conducting objects. Inclusion of the pseudopressure into the system of 

equations. The Navier-Stokes system from fluid dynamics. Tensor algebra. 
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Chapter 2 – Variational formulations 

The Navier-Stokes and Maxwell-Helmholtz systems in weak form. The theoretical basis 

that will ultimately support the well-posedness of abstract problems is introduced. 

Numerous ideas from Functional Analysis. 

Chapter 3 – Mixed formulations 

The functional analytic results from the previous chapter are specialized to the function 

spaces from the Navier-Stokes and Maxwell-Helmholtz systems. Well-posedness of the 

mixed formulations associated to these systems. More ideas from Functional Analysis. 

Chapter 4 – The discretization process 

Analysis of the mixed formulations in finite-dimensional subspaces. The global linear 

system of algebraic equations. The meshfree method we develop is presented in detail. 

The discretized weak forms from the scattering problem are embedded into the structure 

developed in Chapter 3. 

Chapter 5 – Experimental studies 

The well-posedness of the discretized problems is assessed through numerical inf-sup 

tests. Numerical integration of the weak forms. Solution of the boundary value 

problems from electromagnetic wave scattering. Preconditioning for saddle-point 

problems. Far-fields and calculation of the radar cross section (RCS). 

Chapter 6 – Conclusions 

Concluding remarks and future works. 
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Resumo estendido 

 

Introdução 

Os métodos sem malha (meshfree ou meshless) têm sido aplicados a problemas 

provenientes do eletromagnetismo computacional com relativo sucesso. Trabalhos 

como [Maréchal, 1998], [Parreira et al., 2006], [Manzin and Bottauscio, 2008], [Yu and 

Chen, 2010], [Nicomedes et al., 2012], [Lima and Mesquita, 2013], entre outros, 

mostraram como as técnicas meshless podem ser consideradas como uma alternativa ao 

tradicional método de elementos finitos (FEM) na solução de problemas em 

eletromagnetismo. 

Entretanto, o grande desafio posto aos métodos sem malha é a sua aplicação a 

problemas envolvendo grandezas vetoriais em três dimensões. Essa classe de problemas 

geralmente é resultante de modelos que representam situações de grande interesse 

prático em vários domínios da engenharia elétrica. 

Provavelmente um dos primeiros trabalhos a tentar aplicar um método sem 

malha a problemas vetoriais em três dimensões é [Yu and Chen, 2009]. Os resultados 

são interessantes, mas esse trabalho desvia dos nossos interesses em pelo menos dois 

pontos: Primeiro, ele necessita de diagramas de Voronoi em algum ponto do processo, o 

que os torna „não totalmente sem malha‟. Segundo, o método proposto é baseado em 

colocação, o que o torna muito parecido com o método de diferenças finitas (FDTD). 

Estamos a procurar um método que seja baseado em formulações variacionais, como o 

tradicional FEM. Em síntese, queremos um „FEM sem malha‟. O próximo candidato a 

tentar resolver problemas vetoriais em três dimensões é [Lu and Shanker, 2007]. O 

método proposto por eles é baseado numa formulação variacional, e os autores 

apresentam uma maneira de construir funções de forma vetoriais, similar aos elementos 

de aresta do FEM. O método foi aplicado a problemas simples, mas os resultados são 

bons. Entretanto, o procedimento é aplicável apenas a geometrias retangulares, e além 

disso há um problema com o fato de que essas funções de forma vetoriais não são 

linearmente independentes. 

O método sem malha que temos em mente também precisa se adaptar a 

problemas com geometrias curvas, e deve ser testado em situações um pouco mais 

realísticas. Decidimos então concentrar nossa atenção no espalhamento de ondas 

eletromagnéticas por objetos condutores perfeitos (PEC). Além de ser uma área de 

interesse prático, somos automaticamente levados a problemas vetoriais em três 

dimensões. Se pudermos conceber um método sem malha baseado em formulação 

variacional e que funcione corretamente nesse cenário, então nosso objetivo terá sido 

alcançado. 
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Felizmente, conseguimos desenvolver tal método. O método proposto e a ser estudado 

nesse trabalho é inteiramente nodal, i.e., não depende de funções de forma vetoriais. 

Para desenvolvê-lo, tivemos que nos afastar um pouco do eletromagnetismo e explorar a 

hidrodinâmica (mecânica dos fluidos). Tomamos como inspiração métodos destinados à 

solução da famosa equação de Navier-Stokes e, após várias modificações, construímos 

uma adaptação apta a ser utilizada em nossos problemas de espalhamento 

eletromagnético. 

A característica fundamental do nosso método é que ele depende de duas variáveis 

simultaneamente: o campo elétrico e a pseudopressão, que é apenas um artifício que 

deve ser empregado de modo a forçar a condição do divergente nulo. Chegamos assim a 

um exemplo de formulação mista (ou híbrida), que, como é sabido, depende de algumas 

sutilezas no que diz respeito à solvabilidade dos problemas. 

Uma delas é a condição inf-sup (ou Babuska-Brezzi), que especifica condições que os 

espaços de aproximação para o campo elétrico e a pseudopressão devem satisfazer de 

modo que o problema seja bem-posto. 

O método apresentado neste trabalho funciona bem quando aplicado aos 

problemas de espalhamento os quais originalmente tínhamos em mente, o que 

representa um avanço. Entretanto, o maior empecilho é que ele é baseado numa 

matemática não muito simples. O problema de Navier-Stokes tem uma teoria 

matemática sólida e bem desenvolvida, que foi parcialmente aproveitada na análise do 

problema de espalhamento. Dizemos parcialmente, e não totalmente, porque esses dois 

problemas são similares, mas não idênticos. Alguns pontos tiveram de ser modificados 

de modo a acomodar as diferenças. O mais evidente deles é a incorporação da 

Alternativa de Fredholm, uma vez que a forma sesquilinear proveniente da equação de 

Helmholtz não é coerciva.  

Os desenvolvimentos teóricos formam a base dos Capítulos 2 e 3, e todo o ferramental 

matemático é introduzido na medida em que se faz necessário. Dedicamos um certo 

esforço em identificar a ordem correta na qual os argumentos devem ser apresentados, 

de maneira a tornar o desenvolvimento mais lógico e coerente. 

No restante desse resumo, vamos citar os principais pontos de cada capítulo, lembrando 

que a sua compreensão depende da leitura do texto da tese, onde tivemos um grande 

cuidado em explicar detalhadamente tudo o que está ocorrendo. 

O problema a ser resolvido 

Após uma cadeia de raciocínio que se origina com as equações de Maxwell, 

pode-se mostrar que o problema de espalhamento eletromagnético pode ser modelado, 

de uma maneira preliminar, pelo sistema de equações: 
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         (    )                      

       
                                                                     (     ) 

                                                                                            (     ) 

 ̂       ̂                                        (     ) 

 ̂                                                                                       (     ) 

onde    é o campo elétrico espalhado,   é a pseudopressão,      é o campo elétrico 

incidente (conhecido) e   é a região na qual o problema deve ser resolvido. A fronteira 

     é composta de duas partes: A superfície dos „espalhadores‟, ou seja, dos objetos 

metálicos   , e a fronteira exterior   . 

É interessante comparar (0.1.a) – (0.1.d) com o sistema de Navier-Stokes para meios 

homogêneos: 

         (   )                                                                        

      (   )                                                    (     ) 

                                                                                        (     ) 

                                                                                            (     ) 

em que   é a velocidade do fluido,   é a viscosidade cinemática (uma constante),   é a 

pressão,   representa a ação de forças em atuação no fluido, e   especifica o vetor de 

velocidades na fronteira da região  . 

Os dois sistemas acima são muito semelhantes, principalmente porque ambos possuem 

a restrição de divergente nulo. Cabe a pergunta: Poderiam procedimentos empregados 

na solução de (0.2.a) – (0.2.c) ser adaptados e em seguida empregados na solução de 

(0.1.a) – (0.1.d)?  

No Capítulo 1, decidimos incluir a dedução do sistema (0.2.a) – (0.2.c) a partir de 

primeiros princípios como uma maneira de iniciar a discussão sobre a álgebra de 

tensores, que será necessária nas explorações matemáticas do sistema de espalhamento 

(0.1.a) – (0.1.d), particularmente no que diz respeito à incorporação da PML (perfectly 

matched layer) e também ao espaço de funções que construímos para a aproximação 

meshfree do campo espalhado   . 

Camada absorvente: PML 

 O sistema (0.1.a) – (0.1.d) precisa ser modificado de modo a simular ondas que 

se propagam somente no sentido de se afastar do objeto espalhador. Quando somente 

um único objeto é considerado, o sistema se torna 
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         (    )                      

   ̿        
                                                          (     ) 

                                                                                            (     ) 

 ̂       ̂                                                                     (     ) 

 ̂                                                                                       (     ) 

onde o tensor PML é descrito por 

 ̿     ̂   ̂     ̂   ̂     ̂   ̂                                 (     ) 

A versão do tensor  ̿ empregada aqui foi originalmente desenvolvida para problemas de 

propagação de ondas acústicas em mecânica [Bermúdez et al., 2007], e não uma das 

versões tradicionalmente aplicadas em problemas de eletromagnetismo, como a PML 

anisotrópica [Sacks et al., 1995]. Uma das razões é que a PML „acústica‟ é mais 

adequada para formulações baseadas no Laplaciano, enquanto a PML anisotrópica é 

muito bem empregada em formulações baseadas no rotacional duplo (ou curl-curl). 

Entretanto, antes de aplicar a PML acústica a problemas de espalhamento 

eletromagnético, precisamos realizar alguns ajustes, descritos na Seção 3.3.6.6. 

Formulação variacional: Formas fracas 

 O campo elétrico é primeiramente decomposto como 

                                                              (     ) 

em que    é a função de lifting relativa às condições de contorno (0.3.c) e (0.3.d). A 

Seção 2.2.3.5 traz uma discussão considerável acerca da função de lifting. A função    é 

tal que suas componentes tangenciais são nulas em toda a fronteira do domínio  , i.e., 

 ̂       em    e   . Uma vez que a função de lifting    é conhecida,    se torna a 

verdadeira incógnita do problema, juntamente com a pseudopressão  . Observações nos 

levam a concluir que o espaço de funções no qual    deve ser procurado é   ( ), 

definido como 

  ( )  *    ( )     ̂       +                                  (     ) 

O espaço de funções para   é simplesmente   ( ). Desta forma, a formulação 

variacional para o sistema (0.3.a) – (0.3.d) é 

         (    )    ( )    ( )         

∫ ( ̿     )     

 

 ∫   
 

 

      ∫       
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 ∫ ( ̿     )     

 

 ∫   
 

 

                ( )            (     ) 

 ∫      
 

   ∫      
 

             ( )                                                             (     ) 

 O sistema (0.4.c) – (0.4.d) é uma instância do que se chama de formulação mista 

ou híbrida. Em termos abstratos (i.e., em termos de espaços de funções cuja natureza 

não é especificada, mas que assume formas diferentes de acordo com cada problema), 

ela é escrita como 

         (   )                      

 (   )   (   )  〈    〉                                             (     ) 

 (   )                     〈    〉                                                            

onde   e   são dois espaços de Hilbert, e    e    são elementos dos duais    e   .  

O sistema (0.4.e) serve como modelo para diversos problemas em mecânica, entre eles 

problemas em hidrodinâmica governados pela equação de Navier-Stokes [Girault and 

Raviart, 1986]. A teoria que especifica as condições sob as quais a solução de (0.4.e) 

existe, é única e limitada (i.e., finita), foi desenvolvida independentemente por I. 

Babuska e F. Brezzi [Ern and Guermond, 2004]. Entre essas condições, a chamada 

condição inf-sup ou condição de Babuska-Brezzi, [Brezzi and Fortin, 1991] desempenha 

um papel fundamental. Ela é expressa como: 

                              
    * +

   
    * +

  (   ) 

‖ ‖ ‖ ‖ 
                      (     ) 

 Uma das idéias deste trabalho é procurar uma formulação para o problema de 

espalhamento que possa ser „embutida‟ no framework (0.4.e). Mas esse é o caso do 

sistema (0.4.c) – (0.4.d), como pode ser observado. Ao se fazer essa „especialização‟, a 

condição inf-sup a ser satisfeita se torna: 

                              
    ( ) * +

   
    ( ) * +

| ∫      
 

|

‖ ‖  ( ) ‖ ‖  ( )
           (     ) 

A condição (0.4.g) é estudada com profundidade na Seção 3.3.6.5. 

Formulação variacional: Espaços de dimensão finita 

 Ao se considerar a aproximação numérica das grandezas    e  , introduzimos 

subespaços de   ( ) e   ( ) de dimensão finita, i.e., gerados a partir de combinações 

lineares de um número finito de funções de base. Esses subespaços são representados 

por   
 ( ) e   ( ).  
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Agora não mais estamos interessados em encontrar soluções      ( ) e     ( ); a 

nossa atenção se volta para as soluções „discretizadas‟   
    

 ( ) e      ( ). O 

problema em subespaços de dimensão finita se torna 

         (  
    )    

 ( )    ( )         

∫ ( ̿     
 )     

 

 

 ∫   
 

 

  
    

  ∫        
 

 

  

 ∫ ( ̿     
 
)     

 

 

 ∫   
 

 

  
 
   

             
 ( )            (     ) 

 ∫   
    

 

  
  ∫   

    
 

  
 
            ( )                                                           (     ) 

O problema (0.5.a) – (0.5.b) também se encaixa no framework (0.4.e). Desta 

forma, esse sistema de equações só será bem-posto se a seguinte condição inf-sup for 

satisfeita: 

   
                            

    
 ( ) * +

   
     

 ( ) * +

| ∫         
|

‖  ‖  ( ) ‖  ‖  ( )
   

     (     ) 

A dificuldade é que mesmo que a condição (0.4.g) valha para os espaços de dimensão 

infinita   ( ) e   ( ), isso não implica que a condição (0.5.c) valha para quaisquer 

subespaços   
 ( )    ( ) e   ( )    ( ). 

Esta talvez seja a principal questão a que o presente trabalho busca responder: Como 

construir subespaços de dimensão finita   
 ( ) e   ( ), a partir de uma abordagem 

meshfree puramente nodal, de modo que (0.5.c) seja satisfeita? 

Subespaços meshfree 

 Os espaços   
 ( ) e   ( ) são construídos a partir dos nós espalhados pelo 

domínio computacional  . 

Precisamos de dois subespaços: Um dedicado à aproximação das três componentes 

escalares do vetor campo elétrico   
 , e outro à aproximação da pseudopressão   . Esses 

dois espaços devem ter características diferentes; ao se variar essas características, 

obtemos diferentes pares de espaços   
 ( ) e   ( ). Alguns satisfazem (0.5.c), e 

outros não. Aqueles que porventura não satisfaçam (0.5.c) devem ser sumariamente 

excluídos. 

Uma maneira bastante flexível de se obter subespaços meshfree consiste em associar um 

patch (uma região cúbica) a cada nó, e em seguida definir um conjunto de funções de 

base nesse patch. Combinações lineares dessas funções dão origem a um espaço 
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localmente definido no patch. Isso deve ser feito para todos os nós espalhados pelo 

domínio, e em seguida, o conjunto de espaços locais é „conectado‟ por uma família de 

funções que tem o atributo da partição da unidade (PU), como por exemplo as funções 

de Shepard. 

Espaços com características distintas são construídos na medida em que diferentes 

funções de base são consideradas em cada espaço local. Todo o raciocínio que leva à 

construção dos espaços meshfree é amplamente discutido na Seção 4.3. 

Desenvolvemos um procedimento bastante interessante para a construção de espaços 

meshfree destinados à aproximação do campo elétrico   
  em geometrias curvas. A 

técnica é baseada no conceito que resolvemos chamar de „direções elementais‟, que na 

verdade é uma base ortonormal local para    associada a cada um dos nós, cujos 

vetores variam de acordo com as direções normais e tangencias associadas ao nó em 

questão. As derivadas são obtidas com o auxílio de produtos tensoriais. 

Estudos experimentais 

 Uma vez que tenhamos consolidado o domínio sobre o processo de construção 

de espaços meshfree que satisfaçam (0.5.c), podemos aplicá-los seguramente à solução 

do problema de espalhamento (0.5.a) – (0.5.b).  

No Capítulo 5, resolvemos vários problemas de espalhamento em duas e três 

dimensões. Além disso, apresentamos uma discussão acerca do precondicionador que 

deve ser aplicado juntamente com um método iterativo durante a solução do sistema 

linear global. 

A experimentação termina com um pós-processamento: Estudamos as seções de radar 

(RCS – Radar Cross Section) relativas a certos objetos PEC e estabelecemos uma 

comparação com resultados provenientes da óptica física. 

Conclusões 

 De maneira geral, pode-se dizer que a tese consiste em duas partes: A obtenção 

de um método meshfree para a solução de problemas de espalhamento eletromagnético 

e a análise matemática do mesmo. 

Acreditamos que o trabalho serviu para consolidar a linha de pesquisa à qual temos nos 

dedicado há algum tempo: As técnicas sem malha realmente podem ser empregadas na 

solução de problemas de interesse prático em engenharia elétrica (pelo menos no que 

diz respeito a problemas de espalhamento e alta frequência). 

Obviamente, não estamos a dizer que o trabalho está concluído; pelo contrário, a 

presente tese abre muitos tópicos para pesquisa futura. Esperamos considerá-los em 

breve. 



 

xv 
 

Contents 

 

Preface iii 

Resumo estendido viii 

Contents xv 

Chapter 1 – Introduction 1 

1.1 Historical information 1 

1.2 A brief account on Maxwell‟s equations 4 

1.3 Wave scattering by PEC objects 7 

1.3.1 Scattering boundary value problems 7 

1.3.2 The vector Laplacian is more suitable than the double curl 11 

1.4 The pseudopressure 12 

1.4.1 Scattering and radiation problems are similar 12 

1.4.2 The Lagrange multiplier 13 

1.4.3 The equations from fluid mechanics 14 

1.4.4 Incompressibility 21 

Chapter 2 – Variational Formulations 24 

2.1 The Navier-Stokes system in weak form 24 

2.1.1 Weak derivatives 24 

2.1.2 Function spaces:   ( )and   ( ) 29 

2.1.3 Function spaces:   ( )  and   ( )  31 

2.1.4 Function spaces: Density and trace theory 33 

2.1.5 Navier-Stokes: Weak forms and weak solutions 37 

2.1.5.1 The problem in classical form 39 

2.1.5.2 Testing functions 39 

2.1.5.3 Relaxing the requirements 39 

2.1.5.4 Lifting on the boundary data 43 

2.1.5.5 The G map 44 

2.1.5.6 Enlarging the space of testing functions 47 

2.1.5.7 Weak solutions 49 

2.2 The scattering system in weak form 50 

2.2.1 Scattering equations 50 



 

xvi 
 

2.2.2 PML I: Incorporating the PML 50 

2.2.3 The scattering system: Weak forms and weak solutions 51 

2.2.3.1 The problem in classical form 52 

2.2.3.2 Testing functions 53 

2.2.3.3 Relaxing the requirements 55 

2.2.3.4 Interlude 1: The space  (      ) 58 

2.2.3.5 Lifting on the boundary data 62 

2.2.3.6 The G map 64 

2.2.3.7 Enlarging the space of testing functions 67 

2.2.3.8 Weak solutions 70 

Chapter 3 – Mixed Formulations 71 

3.1 Mixed formulations in abstract form 71 

3.1.1 Mixed variational formulations 71 

3.1.2 Well-posedness 72 

3.2 Mixed formulation for the Navier-Stokes system 74 

3.2.1 Continuity and coercivity must be checked 74 

3.2.2 The inf-sup condition must be checked 77 

3.3 Mixed formulation for the scattering system 84 

3.3.1 Determining the structure of the problem 84 

3.3.2 Well-posedness 86 

3.3.3 The Fredholm Alternative 87 

3.3.4 Embeddings 88 

3.3.5 Well-posedness of non-coercive problems 90 

3.3.6 Back to the scattering system 93 

3.3.6.1 Functionals I 93 

3.3.6.2 Functionals II 99 

3.3.6.3 Theorem 3.9, Hypotheses (i) and (ii) 100 

3.3.6.4 Theorem 3.9, Hypotheses (iii), (iv), (viii) and (ix) 101 

3.3.6.5 Theorem 3.9, Hypothesis (vi) 104 

3.3.6.6 PML II: The PML tensor 106 

3.3.6.7 Theorem 3.9, Hypothesis (vii) 111 

3.3.6.8 Theorem 3.9, Hypothesis (v) 113 

3.3.7 Concluding remarks 117 

Chapter 4 – The discretization process 118 



 

xvii 
 

4.1 The problem in finite-dimensional subspaces 118 

4.1.1 The key theorem: Specialization to the scattering system 118 

4.1.1.1 Hypothesis (i) 122 

4.1.1.2 Hypothesis (ii) 123 

4.1.1.3 Hypotheses (iii) and (viii) 123 

4.1.1.4 Hypothesis (ix) 123 

4.1.1.5 Hypothesis (iv) 124 

4.1.1.6 Hypothesis (v) 124 

4.1.1.7 Hypothesis (vi) 125 

4.1.1.8 Hypothesis (vii) 126 

4.1.1.9 Concluding remarks 127 

4.2 The linear system 127 

4.2.1 The matrix system: Preliminary form 127 

4.2.2 The matrix system: Uniqueness of the solution 130 

4.2.3 The matrix system: The inf-sup condition 133 

4.3 Meshfree subspaces 135 

4.3.1 Nodes and patches 135 

4.3.2 Geometrical considerations 141 

4.3.3 The spaces   
 ( )and   ( ) 145 

4.3.4 Numbering schemes and the assembly process 150 

4.3.5 Final comments 159 

Chapter 5 – Experimental Studies 160 

5.1 Numerical integration 160 

5.1.1 Basic integrals 160 

5.1.2 Acceleration technique 161 

5.1.3 Numerical quadrature 167 

5.2 The inf-sup stability test 169 

5.3 Preconditioning 176 

5.4 Case studies 177 

5.4.1 Free-space: Error 177 

5.4.2 Scattering of a     plane wave by a circular cylinder 178 

5.4.3 Scattering of a     plane wave by a conducting strip 182 

5.4.4 The spherical cavity 186 

5.4.5 Scattering by PEC plates 195 



 

xviii 
 

5.4.6 Radar cross sections 199 

5.4.6.1 Three dimensions 201 

5.4.6.2 Two dimensions 207 

5.4.6.3 Physical Optics 211 

Chapter 6 – Conclusions 215 

6.1 Concluding remarks 215 

6.2 Future work 216 

6.2.1 The tangential trace operator 216 

6.2.2 Complex eigenvalues 217 

6.2.3 Preconditioning 217 

Appendix 1 – Theorem 3.8 219 

Appendix 2 – Theorem 3.9 232 

Appendix 3 – List of Symbols 242 

Bibliography 246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Chapter 1 

Introduction 

 

In this chapter, we first present some historical information on the development 

of meshfree methods. The account is by no means extensive, and we concentrate on 

those works from computational mechanics and computational electromagnetism which 

in some way influenced the development of this thesis. 

After the historical survey we present a brief discussion about the Maxwell‟s equations, 

followed by the general description of electromagnetic wave scattering problems. 

We proceed by introducing the Lagrange multiplier and the role it shall play in 

connection with the enforcement of the divergence-free constraint. Also, we present a 

concise discussion about the Navier-Stokes equations, with a focus on the mathematical 

form of the problem (i.e., with no regard to the physics these equations describe). 

Finally, we assemble both the wave scattering and the Navier-Stokes problems into 

systems of partial differential equations and point out the similarities and differences 

between them. 

1.1 Historical information 

By „meshfree‟ or „meshless‟ one actually refers to a family of methods aimed at 

the numerical solution of differential equations. They were (and have been) developed 

for a variety of purposes, and may become very different from each other. Nevertheless, 

they must all share a basic characteristic: In order to be termed „meshfree‟, a method 

should not employ any kind of mesh or grid, as opposed to the finite element (FEM) and 

finite difference methods.  

The motivation behind the development of meshfree methods is basically an 

answer to the difficulties in handling a mesh, particularly in what concerns the 

automatic mesh generation in three dimensions and also in remeshing procedures, i.e., 

in problems whose geometry changes with time (and also in adaptive refinement) [Li 

and Liu, 2007]. 

Meshfree methods began to be consistently considered as a choice in the early 

1990‟s. Since then, the methods continue to evolve and significant improvements have 

been made [Liu, 2010]. 
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Among the first meshfree methods to be introduced is the Smoothed Particle 

Hydrodynamics (SPH) [Gingold and Monaghan, 1977], [Liu and Liu, 2003]. It is a 

particle method based on collocation [Liu and Liu, 2010]; in order to do so, it relies on 

certain smooth approximations to the Dirac delta function (the Dirac functional). It has 

been applied successfully to problems in a number of areas, such as mechanics [Zhang 

and Batra, 2009] and swarm robotics [Pimenta et al., 2013]. 

Another collocation method is that based on Radial Point Interpolation (RPIM) 

basis functions [Yu and Chen, 2009]. In general, collocation methods deal with a 

particular differential equation in strong form; they are simpler to implement, but may 

suffer from instabilities. Moreover, sometimes they resort to Voronoi decompositions, 

which makes them not fully meshfree [Yu and Chen, 2010].  

A different category of meshfee methods is that based on weak forms, i.e., these 

methods are employed in conjunction with some variational expression associated with 

the differential equation in question. The Element Free Galerkin (EFG) reached a 

prominent position among these [Belytschko et al., 1994], [Maréchal, 1998], [Cingoski 

et al., 1998], [Parreira et al., 2006], [Bottauscio et al., 2006], [Manzin and Bottauscio, 

2008]. Despite the fact EFG has found a relative acceptance among some authors, it is 

not regarded as a full meshfree method, since background cells are required for the 

numerical integration of the weak forms. 

A method which also deserves attention is the Meshless Local Petrov-Galerkin 

(MLPG) method. It remedies the issue of background cells from EFG by introducing 

certain local domains, in which the numerical integrations are performed. MLPG has a 

number of variants, and has also found a relatively wide acceptance among the authors 

[Atluri and Shen, 2002], [Li et al., 2003], [Dehgan and Mirzaei, 2008], [Soares Jr., 

2009], [Vavourakis, 2009], [Soares et al., 2014]. 

The MLPG method constitutes the basis of our previous works [Nicomedes et al., 

2011], [Nicomedes et al., 2012], [Nicomedes et al.
2
, 2012]. 

The MLPG worked pretty well in all these examples, but it also suffers from some 

drawbacks. When it is used together with the Moving Least Squares (MLS) basis 

functions, it performs poorly when imposing essential boundary conditions. Moreover, 

the MLS basis functions require relatively large influence domains. The reason is that 

the basis function associated with a given node requires the participation of neighboring 

nodes in order to be calculated. These neighboring nodes must also be disposed „nicely‟, 

in order to avoid singular local matrices [Liu, 2010]. 

In order to accommodate better the structure required for dealing with vector 

problems, we decided to change the underlying meshfree method. We now turn our 

attention to the Method of Finite Spheres (MFS) [De and Bathe, 2000]. The basis 

functions from MFS have smaller influence domains (they can be made as small as 

possible, insofar as the union of all influence domains forms a covering for the 

computational domain  ). Through a little change in the way the boundary conditions 
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are treated in [De and Bathe, 2000], essential conditions can be imposed easily, thanks 

to a trick to make the basis functions satisfy the Kronecker delta property. The MFS 

shows a good performance when applied to problems in mechanics [De and Bathe, 

2001], [De and Bathe
2
, 2001], [De et al., 2003], [Ham et al., 2014]. 

The MFS shares some characteristics with the generalized finite element 

methods (GFEM) based on a partition of unity [Melenk and Babuska, 1996], [Babuska 

and Melenk, 1997], [Strouboulis et al., 2001]. The GFEM covers the computational 

domain with overlapping patches, and allows for the inclusion of different sets of basis 

functions defined on each patch. The advantage is that, in order to attain better 

approximation properties, information about the unknown solution may be included via 

proper selection of basis functions on a given patch (for example, when solving a wave 

problem, one could include sines and cosines in the set of basis functions). These ideas 

have been shown to work in scalar problems from electromagnetism [Proekt and 

Tsukerman, 2002].  

The works in electromagnetism which deal with meshfree methods based on 

weak forms listed thus far are all concerned with scalar problems. As far as our 

knowledge goes, Lu and Shanker‟s work [Lu and Shanker, 2007] is the only one to try 

to address vector problems in electromagnetism (in variational form) through a 

meshfree procedure. They employ the aforementioned generalized finite element 

method, and define certain vector basis functions on the patches. Despite the fact their 

method is shown to work only for relatively simple problems, the results obtained are 

very promising.  

However, there are drawbacks in Lu and Shanker‟s work. First, the method they 

propose has not been tested on problems with curvilinear geometries. Second, the vector 

basis functions defined on the patches are not interpolative, and these patches do not 

conform to the global boundary. As a consequence, the imposition of essential boundary 

conditions becomes nontrivial, and the authors apply Nitsche‟s method in order to 

impose the essential boundary conditions. Nitsche‟s method works by adding an extra 

term to the weak forms [Embar et al., 2010]. This extra term depends on some stability 

parameters, and the overall performance of the method depends on the correct choice 

for these parameters. Of course, this is very unattractive. Third, the vector basis 

functions defined on a given patch are not orthogonal to each other, and may even be 

linearly dependent, which leads to serious issues with the condition number of the 

global matrix. In order to overcome this, the basis functions must be redefined through 

some kind of orthogonalization procedure. Apparently a singular value decomposition 

(SVD) must be performed for each patch in the problem in order to get the new 

(orthogonal) vector basis functions. This unfortunately increases the total computational 

cost of the method. 

In this thesis, we present a work which provides an answer to the problem of 

how to solve three dimensional vector electromagnetic problems through a meshfree 

procedure. The method we propose can be naturally applied to curvilinear geometries, 
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and the imposition of essential boundary conditions is very easy, similar to the way they 

are imposed in the standard FEM. Since we rely on nodal basis functions only, the 

problem of linearly dependent vector basis functions is naturally absent.  

Our meshfree method is also based on a formalism similar to that of GFEM, but 

it is employed for a different purpose. Whereas in the GFEM one includes certain terms 

as basis functions in order to get better approximation properties, we on the other hand 

add different basis functions for the components of the electric field    and the 

Lagrange multiplier    in order to get global approximation spaces with distinct 

characteristics. Since the theory underlying the mixed formulations determines that 

these spaces should be compatible in some sense, we arrive at a question: What terms 

are to be included as basis functions in the local spaces for    and    in order for the 

global spaces to be compatible?  

Questions such as this one will occupy us for a while. But they will all be 

addressed in due time, as we progress in our work and as the concepts necessary for 

their proper understanding are gradually introduced. By now, let us begin our journey 

from the very principle: The Maxwell‟s equations. 

1.2 A brief account on Maxwell’s equations 

The dynamics of the electromagnetic fields is governed by the Maxwell‟s 

equations (in SI units): 

   (   )   
 

  
 (   )                                                  (   ) 

   (   )   (   )  
 

  
 (   )                                  (   ) 

   (   )   (   )                                                             (   ) 

   (   )                                                                           (   ) 

where   is the electric field intensity (volts/meter),   is the magnetic field intensity 

(amperes/meter),   is the electric flux density (coulombs/square meter),   is the 

magnetic flux density (webers/square meter),   is the total electric current density 

(amperes/square meter) and   is the electric charge density (coulombs/cubic meter). All 

the quantities depend on the position      and on the time    . 

In the course of this thesis, we shall be interested in fields in homogeneous 

regions, particularly in the free-space. Under these conditions, equations (1.1) – (1.4) 

may be written as 

   (   )       

 

  
 (   )                                                       (   ) 
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   (   )   (  (   )    (   ))      
 

  
 (   )              (   ) 

   (   )  
 (   )

    
                                                                             (   ) 

   (   )                                                                                          (   ) 

thanks to the constitutive relations which hold in homogeneous media 

 (   )       (   )                                                          (   ) 

 (   )       (   )                                                     (    ) 

and to the separation of the total current density  (   ) into a source current density 

  (   ) (given) and an induced current density   (   ). The multiplicative constants 

appearing in (1.5) – (1.10) are the relative electric permittivity    (dimensionless), the 

relative magnetic permeability    (dimensionless) and the electric conductivity   

(siemens/meter). The free-space electric permittivity is                

farads/meter and the free-space magnetic permeability is            henrys/meter. 

In the examples we are going to study, there will be perfect electric conductors (PEC), 

which are characterized by an infinite value for the conductivity  . Since no field can 

exist inside such a material, these PEC materials essentially define the limits of the 

computational domain (in the sense that the boundaries are usually PEC surfaces). 

Therefore the term corresponding to the induced current   (   ) will be neglected from 

now on, i.e.,     at all points from the domain  . 

The meshfree method we intend to develop is dependent on a single field, the 

electric field  . In order to eliminate   from the system (1.5) – (1.8), we apply the    

operator to (1.5) and substitute (1.6) in the resulting expression, in order to get a system 

in   only: 

     (   )          
  

   
 (   )       

 

  
  (   )             (    ) 

   (   )  
 (   )

    
                                                                                      (    ) 

Equations (1.11) and (1.12) form a system of partial differential equations on the 

unknown  . The system must be complemented by specific conditions   must satisfy at 

the boundary of the domain. Assuming the system (1.11) – (1.12) is to be solved in a 

domain     , let      denote its surface boundary. If such a surface is an 

interface PEC/free-space (or other homogeneous material), then the boundary 

conditions for   are 

          ̂( )   (   )                                             (    ) 
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which means that, for any point   on the boundary  , the outward-pointing unit normal 

vector  ̂ at   and the electric field vector   at   are collinear, or in other words,   has 

no tangential component along the surface  . If   should ever be different from zero on 

the boundary, then it is limited to being parallel to the normal direction at any point on 

the boundary. 

Throughout this work, the analysis will be restricted to electromagnetic fields 

whose temporal dependency is characterized by a sinusoidal behavior. They oscillate 

with a frequency   (in Hertz), which means that the fields come back to their original 

configuration every     ⁄  seconds. Under these conditions, the functions describing 

the fields are separable, i.e., they can be written as a product of two terms, the first of 

which depends on the spatial coordinates   only, whereas the second depends on   only. 

The term governing the temporal dependency is given by     , where       is the 

angular frequency (radians/second) and   √  . The quantities  ,    and   in (1.11) 

– (1.12) therefore reads as: 

 (   )    { ( )    }                                             (    ) 

  (   )    {  ( ) 
   }                                            (    ) 

 (   )    { ( )    }                                             (    ) 

If we substitute (1.14) – (1.16) in (1.11) – (1.12) and manipulate the real part   *   + and 

time-derivative  *   +   ⁄  operators, we get a new set of equations, whose form is the 

same as that from (1.11) – (1.12), and in which the quantities  ,    and   are replaced 

by  ,    and  , respectively, whereas the time-derivative is replaced by the product   . 

The new set of equations is said to be in the frequency domain, and is written as 

     ( )             ( )           ( )                       (    ) 

   ( )  
 ( )

    
                                                                                         (    ) 

The boundary condition in (1.13) becomes 

          ̂( )   ( )                                             (    ) 

The system (1.17) – (1.19) is now complete, in the sense that the data necessary for its 

solution (the sources    and  , and the boundary conditions) are specified. However, the 

sources    and   are not independent from each other. If we apply the    operator to 

(1.6), we get (as       ): 

      (   )      
 

  
   (   )                                   (    ) 

(We assumed that    ). Applying (1.14) and (1.15), the equivalent expression for 

(1.20) in the frequency domain becomes  
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      ( )           ( )                                     (    ) 

Substituting (1.18) into (1.21) we get the relationship between the sources    and  : 

    ( )     ( )                                                (    ) 

In this way,   can be eliminated from (1.18), which becomes 

   ( )  
 

     
    ( )                                           (    ) 

The system of differential equations to be solved can be summarized as 

      ( )           

     ( )    
      ( )           ( )                         (      ) 

   ( )  
 

     
    ( )                                                              (      ) 

 ̂( )   ( )                                                                                    (      ) 

after a further modification in the first equation in which     √     is the free-space 

wavenumber (radians/meter), also defined as         , where    is the free-space 

wavelength (meters). 

1.3 Wave scattering by PEC objects 

1.3.1 Scattering boundary value problems 

The main category of problems we will be concerned with in this thesis is that 

related to the scattering of waves by perfect conductors. Even though the method we are 

going to develop is still applicable to problems in which the current source is different 

from zero (radiation problems), we decided to concentrate on problems in which 

  ( )   . These are the scattering problems [Peterson et al., 1998], [Balanis, 1989], 

[van Bladel, 2007]. 

In this class of problems, the excitation is not provided by current sources, but 

by a preexistent field, called the incident field and represented as     ( ). The incident 

field is generally known, i.e., it is a function of the position     that must be defined 

prior to the solution of the problem. 

In a general scattering problem, conducting objects of arbitrary geometry, called 

the scatterers, are immersed in free-space, as in Fig.1. Let each scatterer occupy a 

volume    (rigorously speaking, a subset from   ), whose boundary is denoted by   . In 

exterior problems, such as the scattering problems described here, one is generally 

interested in the behavior of fields at very large distances from the scatterers.  
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Fig.1. The outer surface    must lie relatively close to the scatterers, which are characterized by regions 

   within   . These „subregions‟ are not part of the problem, and we are then left with „holes‟. 

Consequently, the normal vector at the surface of the scatterers points inwards. The gray layer close to    

is filled by a fictitious absorbing material (the PML). 

However, it is not feasible to carry out the discretization process over these distances, so 

we must set a limit to the problem by placing an imaginary outer surface    

encompassing all the scatterers. The surface    must be closed. By „encompassing all 

the scatterers‟ we mean that  ̅     for any scatterer  , where the closure  ̅  is given 

by  ̅       , and    is nothing else than the interior of   . 

In order to set up the problem, we must first define the domain   over which it is 

posed. Since the fields inside the PEC scatterers are zero, the volumes they occupy shall 

be excluded from  . So we can define the domain   as 

     ⋃ ̅ 

 

                                                        (    ) 

i.e.,   consists of the set difference between    and the union of all  ̅ . It means that if 

   , then     , but    ̅ , for any  . The boundary of   then becomes 

                                                            (    ) 

i.e.,   consists of the union of the boundaries of all scatterers   , together with the outer 

surface   . According to Fig.1, the domain   has holes left by the scatterers   , as they 

have been „carved out‟ from the total volume   . In other words,   is not simply 

connected [Munkres, 2000], [Searcóid, 2007], [Crossley, 2005]. 

 Next, the boundary conditions concerning the electric field   at   must be 

specified. Since all boundaries    are conductor surfaces, the conditions are just those 

from (1.19): 

           ̂ ( )   ( )                                       (    ) 
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where  ̂ ( ) is the outward-pointing unit vector normal to the boundary    at  . Now 

one may ask: What are the boundary conditions to be imposed at the outer surface   ? 

We claim that they are the same as those in (1.27), i.e., we set 

           ̂ ( )   ( )                                        (    ) 

where  ̂ ( ) is the normal vector at the outer surface.  

Condition (1.28) may appear as a rather odd choice, since it is clearly a 

condition to be satisfied by the electric field at PEC boundaries, not in the free space, as 

it happens for the outer surface    (which is just an imaginary surface in the free space 

encompassing all scatterers). The reason behind the choice of (1.28) is that in order to 

simulate outward-propagating scattered fields, a layer of reflectionless absorbing 

material (of a certain thickness) will be placed along   . When the scattered fields 

penetrate this layer, hopefully they will be damped, so that their amplitude just before 

reaching the outer surface    will become negligible. This is the principle behind the 

Perfectly Matched Layer (PML) approach to scattered waves [Sacks et al., 1995]. Since 

  is essentially zero at   , there is no harm in choosing the boundary conditions there to 

be (1.28), which means that the PML is backed by a PEC surface, as it is generally done 

in the literature [Sacks et al., 1995]. (Actually, there is another deeper reason why we 

choose PEC conditions for   . It is related to the stability of the meshfree method we 

will develop, and it will become clearer in Chapter 3). Of course, when such PML layer 

is introduced, we are no longer dealing with homogeneous media. However, the 

discussion about the PML will be postponed to a more convenient time, in Chapter 3. 

 Since the conditions to be satisfied by the electric field at the boundaries of the 

scatterers and at the outer boundary are the same, as attested by (1.27) – (1.28), we can 

write: 

          ̂( )   ( )                                                   (    ) 

where   is now given by (1.26). 

 As we said at the beginning of this section, in the problems we are going to 

investigate,      for all points   in  . So our system of differential equations (1.24) 

becomes  

      ( )           

     ( )    
      ( )                                           (      ) 

   ( )                                                                                  (      ) 

 ̂( )   ( )                                                                          (      ) 

which in principle looks awkward because it has homogeneous data (neither sources nor 

boundary conditions are able to „excite‟ the problem). 
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However, there is a way out if we write the total electric field   in  ̅      as 

    ̅      ( )      ( )    ( )                                     (    )  

where      is the incident field and    is the scattered field. The incident field is known 

in  ̅, and is, in a way, the field that would exist in   if all scatterers were absent, i.e., if 

all the volume encircled by    consisted of a homogeneous medium. The incident field 

is just an ordinary field produced by sources located outside  ̅ and therefore satisfies 

the system of equations 

        ( )    
      

   ( )             ̅                  (      ) 

      ( )              ̅                                                             (      ) 

When the sources of the incident field are located in a region far outside  , it is 

generally the case that      assumes the form of plane waves [Balanis, 1989]. After the 

substitution of (1.31) – (1.32) in (1.30), we arrive at the system 

      ( )    
      

 ( )                                           (      ) 

    ( )                                                                                   (      ) 

 ̂( )    ( )    ̂( )      ( )                                           (      ) 

From (1.33), we discover that    is the true unknown, and that the problem is „excited‟ 

by the boundary conditions. But one must be careful at this point. The boundary 

conditions in (1.33) imply that 

            ̂ ( )    ( )    ̂ ( )      ( )                       (    ) 

and that 

            ̂ ( )    ( )    ̂ ( )      ( )                       (    ) 

However, according to the PML approach, the scattered field is zero at the global 

boundary   , i.e., by the time it reaches   , it will be damped to negligible values. So 

condition (1.35) must be modified to 

            ̂ ( )    ( )                                          (    ) 

(Despite the fact we „know‟ that      at   , we do not impose it. We must rather 

impose  ̂      . In the first of these conditions, all components of    satisfy a 

Dirichlet boundary condition, whereas in the second, just the tangential components 

satisfy such a condition. These two conditions give rise to different discrete spaces, 

which by their turn play different roles in the stability of mixed formulations. Chapter 3 

brings further discussion on this topic.) 

 The boundary value problem to be solved changes from (1.30) into 
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       ( )           

      ( )    
      

 ( )                                                           (      ) 

    ( )                                                                                                   (      ) 

 ̂ ( )    ( )    ̂ ( )      ( )                         (      ) 

 ̂ ( )    ( )                                                                                        (      ) 

in which the excitation is provided by the „matching‟ of the tangential components of 

the fields at the surfaces of all PEC scatterers. 

1.3.2 The vector Laplacian is more suitable than the double curl 

 The first two equations from (1.37), i.e., the equations 

      ( )    
      

 ( )                             (      ) 

    ( )                                                                      (      ) 

may be called, by obvious reasons, the double curl approach to the vector wave 

equation. If we recall the vector identity  

     ( )      ( )     ( )                             (    ) 

where   is any vector function (i.e., a function          ) which meets the 

required differentiability criteria, then the two equations in (1.38) imply that 

    ( )    
      

 ( )                                         (    ) 

also called the vector Helmholtz equation (as it employs the vector Laplacian instead of 

the double curl). It should be emphasized that (1.38.a) and (1.38.b) imply (1.40), as we 

have just shown, but the converse is not true, i.e., (1.40) alone does not imply the two 

equations in (1.38). On the other hand, the system 

    ( )    
      

 ( )                                      (      ) 

    ( )                                                                   (      ) 

is equivalent to (1.38.a) – (1.38.b) [Harrington, 2001].  

In this thesis, we stick to (1.41) not only because it is simpler than (1.38), but 

because it is also less prone to instabilities. It has been shown [Lynch and Paulsen, 

1991] that the double curl approach is flawed in the sense that it produces spurious 

solutions. The authors in [Lynch and Paulsen, 1991] apply a dispersion analysis to the 

double curl and to the vector Laplacian operators, and show that the cross-derivative 

terms in the double curl (such as       ⁄ ) are the root cause of numerical parasites. 

Finally they conclude that the vector Laplacian (or Helmholtz) operator is free of 
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parasites when discretized with conventional scalar elements, provided that the 

boundary conditions are divergence-free. As the meshfree formalism is also based on 

scalar basis functions, and as the incident field      which occurs in the boundary 

conditions (1.37) is also divergence-free [it is produced by sources located far away 

from the computational domain  , so the incident field is divergence-free not only in 

the interior of  , but at all PEC boundaries    as well, according to (1.32.b)], we are 

justified in making such a choice. 

So the system of equations changes once again from (1.37) into 

       ( )           

    ( )    
      

 ( )                                                                 (      ) 

    ( )                                                                                               (      ) 

 ̂ ( )    ( )    ̂ ( )      ( )                     (      ) 

 ̂ ( )    ( )                                                                                    (      ) 

1.4 The pseudopressure 

1.4.1 Scattering and radiation problems are similar 

Despite the fact this thesis is primarily concerned with scattering problems, it is 

worth noting that scattering problems and radiation problems have a similar structure. In 

the former, one is interested in the scattered field   , which is a disturbed field caused 

by the interaction of the incident field      with the conducting objects that happen to 

be in the domain  . In the latter, one is interested in the total field  , produced by a 

current source    in a region  , which may also contain conducting objects.  

From now on we shall concentrate on the free-space, so we make        . 

Also, we shall drop the dependence on position   from the quantities involved in the 

equations. The scattering problem (1.42) is summarized in Chart 1.1 below. 

Chart 1.1: The scattering problem 

                        

       
                                                                         (      ) 

                                                                                        (      ) 

 ̂       ̂                                    (      ) 

 ̂                                                                                   (      ) 
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The steps required in going from (1.24) to (1.37) merely reflect the fact that the 

boundary value problem associated with scattering problems (1.37) and with radiation 

problems (1.24) have the same mathematical form. If we replace the double curl in 

(1.24) by the vector Laplacian [via (1.39)], and consider        , we get the system 

                       

      
       ( ̿  

   

  
 )                                          (      ) 

    
 

   
                                                                         (      ) 

 ̂                                                       (      ) 

 ̂                                                                                    (      ) 

which describes a radiation problem. In (1.44.a),  ̿ is the identity tensor, a mathematical 

object that maps a vector to itself [Hanson and Yakovlev, 2002]. 

 Problems (1.43) and (1.44) are pretty similar to one another. They are both based 

on the vector Helmholtz equation, and are both governed by some type of Dirichlet 

boundary conditions. Differences lie in the fact that (1.43) is driven by a non-

homogeneous Dirichlet condition at the PEC surfaces   , whereas (1.44) is driven by a 

source term   . In what regards the meshfree analysis of these problems, the same 

spaces can be used in the discretization processes related to (1.43) and to (1.44). We 

concentrate in (1.43) because scattering phenomena often give rise to more interesting 

problems than radiation phenomena. Radiation problems such as (1.44) (in which the 

unknown is the total field  , and not the scattered field   ), will be addressed only once 

in this work; they will be briefly considered in connection with eigenvalue problems in 

Chapter 5. All subsequent developments from this point on shall be related to problem 

(1.43). 

1.4.2 The Lagrange multiplier 

In order to enforce the divergence-free condition in (1.43.b), we add the gradient 

of a scalar potential  , or a Lagrange multiplier, to (1.43.a), motivated by some 

formulations concerning discontinuous Galerkin methods [Nguyen et al., 2011], 

[Perugia et al., 2002], [Houston et al., 2005]. The new system is in Chart 1.2. 

Chart 1.2: The modified scattering problem 

     (    )                 

       
                                                                     (      ) 

                                                                                            (      ) 
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 ̂       ̂                                        (      ) 

 ̂                                                                                       (      ) 

The Lagrange multiplier  , also called pseudopressure, is included as a means to 

provide another unknown to the system in order to accommodate the requirement 

regarding the divergence-free condition.  

This condition becomes problematic at the numerical level when the basis functions 

used in the discretization process are not solenoidal. Since our meshfree method is 

based on scalar basis functions, there is no way for them to be solenoidal. If one tries to 

solve (1.43) numerically by some method based on scalar basis functions, one discovers 

that the system has more equations than unknowns, i.e., three unknowns corresponding 

to the three components of    and four equations: Three provided by (1.43.a) and one 

by the divergence-free condition (1.43.b). 

The inclusion of an extra unknown   in (1.45.a) makes the system balanced again: 

There are now four equations and four unknowns. The pseudopressure   is a kind of 

„glue‟ which links the vector Helmholtz equation and the divergence-free condition 

together in a coupled system of differential equations.  

The problem (1.45) seems to be well-structured, but a careful observation 

reveals that the boundary conditions to be satisfied by   are missing. In order to 

discover these conditions, we need to turn our attention to the weak formulation of the 

Navier-Stokes problem. But before doing it, a quick introduction to the equations of 

hydrodynamics will be provided. 

1.4.3 The equations from fluid mechanics 

 In this subsection, we provide a concise presentation of the equations from fluid 

dynamics, whose solution process will ultimately lead us to a model for the solution of 

the electromagnetic problem (1.45). A straightforward derivation of these equations 

from first principles can be found in [Gross and Reusken, 2011] and [Gerbeau et al., 

2006]. The authors in [Boyer and Fabrie, 2012], on the other hand, are particularly 

rigorous in such a task. 

The purpose of this subsection (and the next) is twofold. First, this is a thesis in 

electrical engineering, aimed at solving a problem from electromagnetism through a 

method which has its roots in the solution of problems from hydrodynamics. Therefore 

we felt that a minimal familiarity with the equations from fluid dynamics is necessary 

for our progress. Second, the derivation of these equations makes extensive references 

to tensor products, which will appear later in the weak forms for the scattering problem 

(1.45) and in the meshfree spaces we propose for approximating vector fields by scalar 

basis functions. So this is the right point for introducing them. 
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 The complete derivation of the Navier-Stokes system involves balance 

equations, namely the conservation of mass and energy, linear momentum and angular 

momentum principles, and some thermodynamical considerations [Boyer and Fabrie, 

2012]. The flow equations are usually written in Eulerian coordinates, which are just 

the coordinates of the fixed reference frame in which the experiment takes place [Boyer 

and Fabrie, 2012]. The approach consists in considering each point     and in writing 

the balance equations at  . 

The conservation of mass provides us: 

  

  
   (  )                                                        (    ) 

where the function   is the density of the fluid at the point   and time   (SI units: 

kilograms/cubic meter), and   is the velocity vector at (   ) (SI units: meters/second). 

In other words, at point   and time  , the velocity of the fluid is given by the vector  . 

The density   is a scalar function (   )      , whereas the velocity   is a vector 

function (   )      ,     (two dimensions) or     (three dimensions). The 

reason why the density   cannot vanish is that, if it did, it would violate the continuous 

medium assumption [Boyer and Fabrie, 2012]. 

The conservation of linear momentum together with the Cauchy stress tensor 

theorem gives: 

 (  )

  
   (     )     ̿                                          (    ) 

where  ̿ is the Cauchy stress tensor. Cauchy‟s stress  ̿ is a tensor-valued function; it 

means that at any time   and at any point     there is a tensor  ̿(   ). This tensor by 

its turn is a function which maps vectors to vectors:  ̿(   ) „receives‟ any unit vector   

and „returns‟ another vector, represented by  ̿(   )   . In (1.47),    is the body force 

density at (   ) (SI units: newtons/cubic meter), which means that the total body force 

experienced by the fluid is the volume integral of   . The term   alone represents the 

mass density of forces (SI units: meters/second squared). The symbol „ ‟ is the tensor 

product operator [Abraham et al., 1988], [Irgens, 2008]. The conservation principles of 

angular momentum and linear momentum together with the Cauchy stress tensor 

theorem imply that  ̿ is a symmetric tensor [Boyer and Fabrie, 2012]. 

 For fluids in motion, Cauchy‟s stress tensor  ̿ may be written as 

 ̿   ̿    ̿                                                          (    ) 

where  ̿ is a new tensor, called the viscous stress tensor,   is the hydrostatic pressure of 

the fluid and  ̿ is the identity tensor. (The components of the tensors in (1.48) are 

quantities measured in newtons/square meter.) Another tensor which plays an important 

role is the strain rate tensor  ̿, defined as: 
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 ̿( )  
 

 
(   (  ) )                                             (    ) 

Chart 1.3 below brings some information on the gradient of vector fields expressed in 

(1.49). 

Chart 1.3: The gradient operator 

The term    in (1.49) may lead to some confusion, because the gradient operator   is 

applied to a vector   instead of a scalar. What is happening here is some kind of 

„operator overloading‟, as the gradient operator may also be applied to a vector. When   

is applied to a scalar, the result is a vector. For example, for some scalar function  , we 

know that in Cartesian coordinates, 

   (
 

  
 ̂  

 

  
 ̂  

 

  
 ̂)   (

  

  
 ̂  

  

  
 ̂  

  

  
 ̂)      ̂      ̂      ̂      (    ) 

where  ̂,  ̂ and  ̂ are unit vectors along the  ,   and   directions, respectively. (A partial 

derivative with respect to   is denoted by a comma in the subscript before the  , as in 

   . The same is true for   and  ). On the other hand, when   is applied to a vector, the 

result is a tensor.  We write    as 

    (   ̂     ̂     ̂)       ̂       ̂       ̂            (    ) 

expansion of which reveals that 

   (     ̂       ̂       ̂)   ̂                                       (    ) 

(     ̂       ̂       ̂)   ̂                                                     

(     ̂       ̂       ̂)   ̂                                                        

and consequently that 

        ̂   ̂       ̂   ̂       ̂   ̂                          (    ) 

     ̂   ̂       ̂   ̂       ̂   ̂                                        

     ̂   ̂       ̂   ̂       ̂   ̂                                            

This is what is meant by the gradient of a vector. The objects  ̂   ̂,  ̂   ̂,    ̂   ̂ 

are called dyads. The transpose of a dyad is defined as 

( ̂   ̂)   ̂   ̂  

and so on for the other dyads. The transpose of    is denoted by (  ) . In this way, 

the information regarding dyads and their transpose gives a meaning to the strain rate 

tensor  ̿( ) in (1.49). More detailed accounts on tensor algebra can be found in [Irgens, 

2008]. 
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The strain rate tensor  ̿( ) is also important in connection with Newtonian 

fluids. A fluid is said to be Newtonian if it satisfies (experimentally) the three properties 

listed in the chart below (which brings the mathematical equivalent of these properties 

[Boyer and Fabrie, 2012]). 

Chart 1.4: Mathematical properties of Newtonian fluids 

Property I:  ̿ depends only on  ̿( ). 

Due to the conservation of angular momentum principle, the Cauchy stress tensor  ̿ is 

symmetric [Boyer and Fabrie, 2012], i.e.,  

 ̿    ̿                                                               (    ) 

The transpose of expression (1.48) is 

 ̿    ̿    ̿                                                         (    ) 

From (1.54) and from the obvious fact that  ̿    ̿, (1.55) becomes 

 ̿   ̿    ̿                                                            (    ) 

A comparison between (1.48) and (1.56) allows us to conclude that  ̿   ̿, i.e., that 

the viscous stress tensor  ̿ is symmetric. The transpose of expression (1.49) is 

. ̿( )/
 

 
 

 
((  )  ((  ) ) )  

 

 
((  )    )   ̿( )                (    ) 

since ((  ) )    . The strain rate tensor  ̿( ) is therefore also symmetric.  

Let the set of all symmetric tensors be denoted by   (of course, we are referring to 

second-order tensors in three dimensions). Then,  ̿( )    and  ̿   . Property I 

actually means that  ̿ is determined from  ̿( ) by an operator      , i.e.,  ̿  

 . ̿( )/. 

Property II: The dependence of  ̿ on  ̿( ) is given by a linear operator. 

This property says that the operator   which relates  ̿ to  ̿( ) is linear. According to 

the definition of linear operators [Kreyszig, 1989], [Rynne and Youngson, 2007], it 

means that for any two elements    and    in  , and for any two real numbers    and 

  , it is true that 

 (         )     (  )     (  )                                   (    ) 

Property III: The relation between  ̿ and  ̿( ) is isotropic. 

This property is linked to the invariance of some fluid properties when the orthonormal 

frame is changed. Mathematically, it means this: Let   be an arbitrary orthogonal 
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matrix (i.e., a real     matrix for which      , the identity matrix). Next represent 

  as a tensor, i.e., from the matrix 

  [

         

         

         

]                                                       (    ) 

we construct the associated tensor: 

 ̿      ̂   ̂      ̂   ̂      ̂   ̂                         (    ) 

(The coordinate directions are represented either as       or as         , and the 

occasion usually dictates which of the two forms is chosen. Notwithstanding the choice 

of any representation, they are equivalent to each other:   is associated with „1‟,   with 

„2‟ and   with „3‟.) 

At this point we need to define the dot product between tensors. Let  ̿      be a 

tensor formed by the vectors   and   (via the tensor product). Likewise, let  ̿      

be formed by the vectors   and  . The dot product between  ̿ and  ̿ is defined here as 

 ̿   ̿  (   )  (   )          (   )                (    ) 

i.e.,  ̿   ̿ is another tensor formed by the tensor     multiplied by the scalar    . 

Under these circumstances, the product between two matrices becomes replaced by the 

dot product between the associated tensors. 

Consider now an arbitrary symmetric tensor    . The operator   is called isotropic if 

it is true that [Boyer and Fabrie, 2012]: 

 . ̿  (   ̿)/   ̿  ( ( )   ̿)                                       (    ) 

where  ̿ is the arbitrary tensor from (1.60) and (1.59). 

 In Newtonian fluids, the relation between the viscous stress tensor  ̿ and the 

strain rate tensor  ̿( ) – which must satisfy the three required properties from Chart 1.4 

– is given by [Gerbeau et al., 2006], [Boyer and Fabrie, 2012]: 

 ̿     ̿( )   (   ) ̿                                             (    ) 

where   and   are real coefficients. At first sight, it seems that (1.63) violates the first 

property a Newtonian fluid must satisfy ( ̿ depends on    , so it no longer depends on 

 ̿( ) only). This difficulty is apparent because of the identity 

  . ̿( )/                                                         (    ) 

where   (   ) denotes the trace of a tensor. The trace of a matrix is defined as the sum of 

the entries from its main diagonal. In order to carry this definition to tensors, we need 
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the definition of the double dot product between tensors. Let again  ̿      and 

 ̿      be tensors formed by the vectors       and   (via the appropriate tensor 

products). The double dot product between  ̿ and  ̿ is defined as 

 ̿   ̿  (   )  (   )  (   )(   )                          (    ) 

i.e.,  ̿   ̿ is a scalar formed by the product of the ordinary dot products between vectors 

    and    . If we represent the Cartesian basis (i.e., the set of basis unit vectors) 

* ̂   ̂  ̂+ as * ̂   ̂   ̂ +, i.e., if we make the identification 

 ̂   ̂  

 ̂   ̂                                                              (    ) 

 ̂   ̂  

then the trace of an arbitrary tensor  ̿ may be defined as 

  ( ̿)  ∑ ̿  ( ̂   ̂ )

 

   

                                           (    ) 

After the notion of the double dot product has been introduced, (1.64) follows from 

(1.49), (1.53), (1.66) and (1.67). The relation in (1.63) can be written in terms of  ̿( ) 

alone as 

 ̿     ̿( )      . ̿( )/  ̿                                        (    ) 

The trace is a linear mapping; the operator   from (1.58) assumes the form 

 ( )          ( ) ̿                                               (    ) 

from which the linear dependence on   becomes evident. Expressions (1.48) and (1.63) 

allows the Cauchy stress tensor to be written as 

 ̿     ̿( )  (       ) ̿                                        (    ) 

The two real numbers   and   are called the Lamé coefficients [Gerbeau et al., 2006]. 

After an extensive discussion involving arguments from thermodynamics (associated 

with the fact that the viscous stresses are dissipative) and an analysis of the evolution 

equation for the entropy, one concludes that the coefficients   and   must be such that  

[Boyer and Fabrie, 2012]: 

                                                                     (      ) 

                                                             (      ) 

The coefficient   is termed the dynamic viscosity of the flow, whereas the quantity 

(  ⁄ )    is the bulk viscosity of the flow (SI units: newtons-second/square meter).  
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According to the kinetic theory of the monatomic gas [Gerbeau et al., 2006], the 

relation 

   
 

 
                                                               (    ) 

holds true for most fluids in practice. This is also termed the Stokes’ assumption [Boyer 

and Fabrie, 2012], which means that the bulk viscosity can be neglected. The expression 

for the viscous stress tensor  ̿ in (1.63) can therefore be simplified to 

 ̿    ( ̿( )  
 

 
(   ) ̿)                                            (    ) 

Thanks to (1.64), one discovers that   ( ̿)   , since   ( ̿)   . Moreover, from 

(1.48) and (1.73) the Cauchy stress tensor  ̿ assumes its final form as 

 ̿    ( ̿( )  
 

 
(   ) ̿)    ̿                                       (    ) 

We are now prepared to go back to the conservation of linear momentum 

principle (1.47). It can be shown [Boyer and Fabrie, 2012] that the following identities 

involving the divergence of tensors hold true: 

  . ̿( )/  
 

 
(        )                                    (      ) 

  .(   ) ̿/                                                          (      ) 

  (  ̿)                                                                         (      ) 

The equations of fluid dynamics relevant to us reduce to the principles of 

conservation of mass (1.46) and conservation of linear momentum (1.47), which 

assumes a new form after considering (1.74) and (1.75.a) – (1.75.c). The result is 

summarized in Chart 1.5 below.  

Chart 1.5: Equations of isothermal fluid dynamics 

Conservation of mass: 

  

  
   (  )                                                            (    ) 

Conservation of linear momentum: 

 (  )

  
   (     )       

 

 
                              (    ) 

The system of equations formed by (1.77) and (1.78) together with an extra 

equation of state which relates the thermodynamical variables (usually the pressure   
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and the density  ), is called the Navier-Stokes system for isothermal Newtonian fluids 

[Glowinski et al., 2003]. We remark that the dynamical viscosity   is a function of the 

temperature and the pressure. When the temperature is not constant, another differential 

equation must be considered in addition to (1.77) and (1.78), namely, the equation for 

the evolution of total energy [Boyer and Fabrie, 2012]. The aforementioned extra 

equation of state will also involve the temperature, and the whole system, also called the 

Navier-Stokes-Fourier system [Zeytounian, 2012], becomes more complicated. In 

applications for which changes in temperature are irrelevant (hence the name 

isothermal), (1.77) and (1.78) together with an equation of state relating   and   are 

sufficient to adequately describe the flow of Newtonian fluids. 

1.4.4 Incompressibility 

 We say that a flow is incompressible if it satisfies one of the three equivalent 

characteristics listed below: 

1. Given an arbitrary fluid element, its volume remains constant as the time evolves. 

2. The velocity field   is divergence-free, i.e., for any     and for any  , it is true that 

                                                                     (    ) 

3. The density   is constant along the trajectories associated with  . 

 For incompressible models, the pressure is no longer related to the other 

thermodynamical variables. The extra equation of state becomes unnecessary, as the 

pressure has become an independent variable [Boyer and Fabrie, 2012]. The pressure 

gradient in (1.78) plays the role of a Lagrange multiplier related to the divergence-free 

constraint (1.79) [Boyer and Fabrie, 2012]. The Navier-Stokes system for isothermal 

and incompressible Newtonian fluids reads, after substituting (1.79) in (1.78): 

 (  )

  
   (     )   ( )                              (      ) 

  

  
   (  )                                                                             (      ) 

                                                                                                (      ) 

where in (1.80.a) the dependence of   on   is made explicit. 

 In the sequel, the following identity will be useful [Gerbeau et al., 2006]: 

  (     )     (  )   (   )                                 (    ) 

Moreover, there is one last simplification to be made: The fluid shall be homogeneous, 

i.e., the density   shall be constant. As a consequence, the dynamic viscosity   will also 

be constant. Expression (1.81) then becomes 
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  (     )          (   )    (   )                       (    ) 

thanks to (1.80.c). The equation for the conservation of mass (1.80.b) reduces to     

 , identical to (1.80.c). In other words, homogeneity implies incompressibility 

[Glowinski et al., 2003]. The Navier-Stokes system for isothermal, incompressible and 

homogeneous Newtonian fluids, called simply the incompressible Navier-Stokes system 

is summarized in Chart 1.6. 

Chart 1.6: Incompressible Navier-Stokes equations 

 (
  

  
 (   ) )                                       (      ) 

                                                                                       (      ) 

 The solution process of the system (1.83) via mixed finite elements will provide 

the basis for the meshfree method developed in this thesis. Since we are not directly 

interested in the solution of (1.83), we can simplify it further. We can neglect the time 

derivative and divide the first equation by the density  , thus arriving at the steady state 

incompressible system: 

 
 

 
    (   )   (

 

 
)                                         (      ) 

                                                                                    (      ) 

In (1.84), the dynamic viscosity   divided by the density   is called the kinematic 

viscosity  . Moreover, since   is constant, once one determines the quotient   ⁄  at a 

point, the real pressure   can be retrieved. From now on, we commit an abuse of 

notation by referring to the real pressure divided by the density (i.e., to   ⁄ ) simply as 

„pressure‟  . The equations (1.84) become 

      (   )                                              (      ) 

                                                                                 (      ) 

The system (1.85) gives the dynamics of the velocity field   at a given point. If 

we are interested in studying the flow on a region  , in addition to requiring (1.85) to be 

valid at all points    , we also need suitable conditions prescribed on the boundary 

    . We shall consider only one kind of boundary condition, that in which   is 

known at all points from  : 

                                                                        (    ) 

i.e., we shall consider Dirichlet conditions for the velocity field   (  is a known 

function). Other types of boundary conditions for the steady state Navier-Stokes system 

are discussed in [Quarteroni, 2009], [Quarteroni and Valli, 1994], [Glowinski et al., 

2003]. 
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 When we put (1.85) and (1.86) together we get the final form of the Navier-

Stokes system, stated in Chart 1.7 below. 

Chart 1.7: Steady-state Incompressible Navier-Stokes equations 

    (   )           

      (   )                                           (      ) 

                                                                             (      ) 

                                                                                 (      ) 

 The equations for the scattering problem from Chart 1.2 are rewritten in the 

Chart 1.8 below for convenience: 

Chart 1.8: The modified scattering problem 

     (    )                 

       
                                                                     (      ) 

                                                                                            (      ) 

 ̂       ̂                                                          (      ) 

 ̂                                                                                       (      ) 

A comparison between Charts 1.7 and 1.8 reveals that the scattering and the 

Navier-Stokes problems have a similar structure. So the idea of applying solution 

processes aimed at solving (1.87) to the solution of (1.88) is not meaningless. The 

motivation is that (1.87) can be solved by nodal finite elements, which (at least in 

principle) suggests that (1.88) also can. But we must go a step further: We solve (1.88) 

also by nodal finite elements, but we must take the mesh away. The result is that (1.88) 

shall be solved by a nodal meshfree method. 

Of course, there are differences between (1.87) and (1.88). In (1.87.a), the 

pressure   is a real meaningful quantity, whereas   in (1.88.a) is just a mathematical 

artifact used to enforce the divergence-free condition. (A careful observation reveals 

that in both systems the boundary conditions for   are missing.) In (1.87.c), all 

components of the velocity field   are known at the boundary, whereas in (1.88.c) – 

(1.88.d) just the tangential components of the scattered electric field    are prescribed. 

There are other differences that will gradually be revealed as the process unfolds, 

particularly in what concerns the variational formulations of the aforementioned 

problems, which are the subject of the next chapter. 
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Chapter 2 

Variational formulations 

 

This chapter has two sections. The variational formulation of the steady-state 

incompressible Navier-Stokes system is discussed in the first section. 

In the second, an analogous development is made in what concerns the wave scattering 

system. 

The mathematical ideas necessary for assessing the variational formulations are spread 

throughout the text, and are introduced as they become necessary. 

2.1 The Navier-Stokes system in weak form 

2.1.1 Weak derivatives 

 In order to proceed with the variational formulations, we need some terminology 

first. 

 Let   be a domain in   , i.e., an open and connected subset of   . In this thesis, 

we shall be concerned with bounded domains only. We say that   is bounded if it can 

be placed within a ball of finite radius, i.e., if there is a point       and a positive 

number   such that    (    ). If    ,  (    ) is just a circle of radius   

centered at   , whereas if    ,  (    ) is a sphere of radius   centered at   . The 

definition of connectedness is more intricate [Searcóid, 2007], but for our purposes it 

suffices to say that a connected set cannot be represented as the union of two or more 

disjoint, nonempty, and open subsets. 

 In the subsequent development, the notion of compact subsets in    is needed. 

Although the true definition of compactness is also intricate [Searcóid, 2007], we will 

not need to work with the notion of compactness directly. We only need to know when 

a given subset of    is compact. A subset      is compact if and only if   is closed 

and bounded [Searcóid, 2007], [Kreyszig, 1989]. 

A subset      is called closed if it contains all its limit points. We say that      is 

a limit point of   if we can find a sequence of points in   which converge to  . An 

arbitrary limit point   need not be in  ; if all of them happen to be in  , then   is closed. 

The set formed by the union of   and all its limit points is called the closure of  , and 

represented as  ̅. 
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A point    ̅ is said to be on the boundary of   if it does not belong to the interior of  , 

i.e., if every neighborhood of   contains at least one point in   and at least one point not 

in  . The boundary of   is represented by   . 

Let   be a subset from our domain  . We say that   is compactly contained in   

if two requirements are met: First, the closure  ̅ is contained in  . Second, the closure  ̅ 

is compact. This is sometimes represented as     . (Informally, it means that no 

point from either   or from its boundary    touch the boundary    of  .) 

The space   
 ( ) comprises all infinitely differentiable functions       

whose support is compactly contained in  . The support of   is defined as: 

    ( )  *       ( )   +̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                          (   ) 

So if     
 ( ) then     ( )    . 

Until the end of this subsection, we shall assume that    , i.e., the results will 

be stated in three dimensions. The same ideas apply when      The space   ( ) 

comprises all functions from   into   that admit first order classical derivatives, i.e., if 

    ( ), then     ⁄      ⁄  and     ⁄  are continuous at all points    .  

Let   be an arbitrary     vector whose components are elements of   ( ). 

We write it as     ( ) . Let also     
 ( ) be an arbitrary test function. Take the 

identity 

  (  )                                                      (   ) 

and integrate over  . After the Divergence Theorem and observing that   is zero at   , 

(because     ( )    ) we conclude that 

∫          ∫        
 

 
 

                                    (   ) 

Since   is arbitrary, we can allow it to assume any form. Consider an arbitrary function 

    ( ). In the first choice, make   ,     - . In the second, make   ,     - , 

and in the third, make   ,     - . When considering these three particular choices, 

(2.3) allows us to conclude that 

∫
  

  
      ∫  

  

  
                                         (     )

  

 

∫
  

  
      ∫  

  

  
                                         (     )

  

 

∫
  

  
       ∫  

  

  
  

 

 
 

                                    (     ) 
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Observation 2.1: From now on, whenever an integral is written in this thesis, the 

volume element    will be omitted from the volume integrals. Analogously, the surface 

element    will be omitted from all surface (boundary) integrals. This allows the 

expressions to be written in a cleaner way, particularly when long integrands are 

considered. So 

∫                      ∫         
  

                                        (   )
 

 

will be written as 

∫                    ∫        
  

                                              (   )
 

 

Identification of whether a given integral is either a volume or a boundary integral may 

be done by observing the proper symbol which indicates the region where the 

integration is performed. 

The expressions in (2.4) make perfect sense. Since     ( ), the first 

derivatives in the right side of (2.4) are continuous, and these integrals are therefore 

well-defined, i.e., they assume finite values. There is no risk of any of them going to 

infinite. 

 We now ask if expressions (2.4) may still be meaningful if   is no longer in 

  ( ). Particularly, we are interested in the validity of (2.4) when   belongs to another 

space in which the first derivatives are not well-defined. In order to proceed, we need 

the notion of    spaces. 

The Lebesgue space   ( ) is defined as: 

  ( )  {                                     ‖ ‖  ( )   }        (   ) 

The proper clarification of the term „Lebesgue measurable functions‟ needs introduction 

of a technical machinery which falls outside the scope of this thesis [Tao, 2011], 

[Cheney, 2001], [Rynne and Youngson, 2007]. It suffices for us to know that by 

restricting our attention to measurable functions we will not be dealing with functions 

which are „nonconventional‟ in a sense. So we must concentrate on the second 

requirement in (2.7), which means 

‖ ‖  ( )  (∫        
 

)

 
 

                                           (   ) 

where      . (The Lebesgue spaces are traditionally spelled as   , and the same is 

done here. No confusion should be made between the index   in (2.8) and the pressure 

or the pseudopressure   presented in Chapter 1). 
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Another space that will be mentioned is the space of all locally summable functions, 

defined as 

    
 ( )  *                   ( )+                             (   ) 

i.e., we say that       
 ( ) if, for any subset   compactly contained in  , it is true that 

  restricted to   is summable. According to the terminology from [Evans, 2010], a 

function is called integrable if it has an integral (which may assume infinite values). 

When the integral is finite, the function is called summable. 

 In order to relax the requirement that     ( ) in (2.4), we begin by noticing 

that, since the arbitrary test function   and its derivatives are different from zero only at 

the support     ( ), we rewrite (2.4) as 

∫
  

  
      ∫  

  

  
                            (      )

    ( )    ( )

 

∫
  

  
      ∫  

  

  
                            (      )

    ( )    ( )

 

∫
  

  
      ∫  

  

  
                             (      )

    ( )    ( )

 

Since all derivatives of   are continuous, we see that the integrals from the left side in 

(2.10) will still be meaningful if       
 ( ), according to the definition (2.9). When 

we assume that       
 ( ), then it is true that 

    (    ( ))                                               (    ) 

as     ( )    . Different test functions from   
 ( ) have different supports, but 

they are all compactly contained in  . Hence the requirement for   to be summable on 

all such subsets, i.e.,       
 ( ). 

In the left side of (2.10),   is no longer required to be continuous; it only needs 

to be summable on all subsets compactly contained in   (subsets   such that no point 

from either   or from its boundary    touch   ). But what about the right side of 

(2.10)? The problem is that, since we „replaced‟   ( ) by     
 ( ),   may not be 

differentiable at all points from  . The space     
 ( ) admits discontinuous functions, 

which may risk the integrability of the right side of (2.10). 

At this point it comes the definition of weak derivatives. Suppose that for any 

arbitrary test function   we are able to find functions       and    in     
 ( ) such that 

∫
  

  
      ∫                                         (      )
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∫
  

  
      ∫                                         (      )

  

 

∫
  

  
      ∫                                          (      )

  

 

When that is the case, we say that       and    are the weak derivatives of  . 

These functions do not need to be continuous. All that is required from them is 

that they are locally summable. It may happen that   belongs to     
 ( ), and at the 

same time be so badly discontinuous that no functions       and    can be found so 

that the right side of (2.12) makes sense. When this is the case, we say that   does not 

possess weak derivatives. So now we can define weak derivatives. 

 

Definition: Weak derivatives – Let         and    be elements of     
 ( ). If for all 

    
 ( ) it is true that 

∫
  

  
      ∫                                              (      )

  

 

∫
  

  
      ∫                                               (      )

  

 

∫
  

  
      ∫                                               (      )

  

 

we say that   ,    and    are the weak partial derivatives of   with respect to  ,   and 

 , respectively. 

 The weak derivatives and the classical (pointwise) derivatives are distinct 

objects. There may be circumstances in which they coincide, e.g. if     ( ) [Salsa, 

2008]. In order to make this distinction apparent, the weak derivatives are sometimes 

written differently, as 

                                                                      (    ) 

which represents the weak partial derivatives of   with respect to      and  , 

respectively. 

The advantage of employing weak derivatives is twofold. First, they extend the 

notion of derivatives to functions which are not continuous. In a sense, classical 

derivatives may be represented as operators from   ( ) into   ( ). [Actually, from 

  ( ) into     ( ),    . But since   ( )    ( ) and     ( )    ( ) for 

all    , we concentrate on the supersets   ( ) and   ( )]. On the other hand, weak 

derivatives may be represented as operators from     
 ( ) into     

 ( ). Since in general 

  ( )      
 ( ), there are functions in     

 ( ) which do not possess classical 
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derivatives, but do possess weak derivatives. Second, weak derivatives allow a 

reduction in the order of the derivatives appearing in the differential equations. For 

example, in the variational formulations, instead of dealing with classical second-order 

derivatives of    in (1.88) and   in (1.87), we can deal with first-order weak derivatives 

of the same quantities. 

The notion of weak derivatives is central to the finite element method, and 

consequently to meshfree methods as well. More details can be found in [Salsa, 2008], 

[Evans, 2010], [Brezis, 2010]. 

2.1.2 Function spaces:   ( ) and   ( ) 

 Before proceeding to the Navier-Stokes system in weak form, we need some 

more notions, like that concerning a particular Sobolev space, which will appear over 

and again in the course of this work. 

Definition: The space   ( ) – The Sobolev space     ( ) is defined as 

    ( )  {      
 ( )       ( )               ( )            }         (    ) 

The space     ( ) is often written as   ( ). 

If a function   belongs to   ( ), then   itself and all its weak partial derivatives 

(of course, they must exist) are square integrable, i.e., 

‖ ‖  ( )                ‖   ‖
  ( )

                                (    ) 

according to (2.8). 

If the domain   is bounded (has a finite measure), and if          , then 

it is true that    ( )     ( ) [Salsa, 2008]. So we can conclude that   ( )    ( ). 

Moreover, if      , then   ( )      
 ( ) [Salsa, 2008], which implies that 

  ( )      
 ( ). The spaces referred to so far are related as 

  ( )    ( )      
 ( )                                               (    ) 

Since all functions from   ( ) are also in   ( ), then   ( )    ( ). 

 The space   ( ) is a Hilbert space [Brezis, 2010], [Cheney, 2001] when 

endowed with the inner product: 

(    ) 

(   )  ( )  ∫    ∫ (                       )            ( )      
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From now on, we shall commit an abuse of notation and represent the weak first 

derivatives as components of a gradient vector, i.e., as long as the weak derivatives of   

exist, they can be represented as 

   ,             -                                              (    ) 

Whenever we write a gradient such as   , the context will make it clear whether we 

will be referring to a vector of weak derivatives as in (2.19) or to a vector of classical 

derivatives. The inner product in (2.18) then becomes 

(   )  ( )  ∫    ∫                  ( )
 

 
 

             (    ) 

As it happens in Hilbert spaces, the inner product in (2.18) induces a norm ‖   ‖  ( ), 

given by 

‖ ‖  ( )  √(   )  ( )  (∫     

 

 ∫      

 

)

 
 

           ( )       (    ) 

In   ( ) we can also define a seminorm        ( ), expressed as 

     ( )  (∫      

 

)

 
 

           ( )                               (    ) 

The space   ( ), of which   ( ) is a subspace, is also a Hilbert space when endowed 

with the inner product [Brezis, 2010]: 

(   )  ( )  ∫   
 

             ( )                                (    ) 

The norm induced by the inner product in   ( ) is just the expression (2.8) evaluated 

when    , i.e., 

‖ ‖  ( )  √(   )  ( )  (∫     

 

)

 
 

           ( )                  (    ) 

From (2.18), (2.21), and (2.23), we observe that 

(    ) 

‖ ‖  ( )
  ‖ ‖  ( )

  ‖   ‖  ( )
  ‖   ‖  ( )

  ‖   ‖  ( )
           ( )  

since    ,     and     are in   ( ), according to (2.15).  
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2.1.3 Function spaces:   ( )  and   ( )  

 When dealing with vectors whose components are elements of   ( ) or   ( ), 

it is useful to review the notion of norm extended to product spaces.  

 An abstract normed space consists of a linear space   together with a norm 

‖   ‖  defined on elements of   [Kreyszig, 1989], [Conway, 1994]. Let such a normed 

space be represented as the pair *  ‖   ‖ +. Suppose we are given     normed spaces 

*  ‖   ‖ +, *  ‖   ‖ + and *  ‖   ‖ +. We can define a new linear space       

formed by the Cartesian product of the three linear spaces       in the following way:  

                        ,     -                        (    ) 

The question is: How does the norm on       relate to the norm on the individual 

spaces      ? In other words, can the norm ‖   ‖      be written as a function of the 

norms on the individual spaces ‖   ‖ , ‖   ‖  and ‖   ‖ ? The answer is yes, and 

generally there is more than one way to accomplish that [Searcóid, 2007]. For our 

purposes, it will be suitable to set 

‖   ‖      (‖   ‖ 
  ‖   ‖ 

  ‖   ‖ 
 )

 
                                    (    ) 

i.e., for arbitrary elements    ,     and     that happen to be the „components‟ 

of the object ,     - , the norm in       is given by 

‖,     - ‖      (‖ ‖ 
  ‖ ‖ 

  ‖ ‖ 
 )

 
                           (    ) 

The conclusion thus far is: given     arbitrary normed spaces *  ‖   ‖ +, *  ‖   ‖ + 

and *  ‖   ‖ +, we can form a new normed space whose associated linear space is 

formed by  -dimensional column vectors whose components are elements of the 

individual linear spaces      , and whose associated norm is given by (2.28). 

 When we consider         ( ) and ‖   ‖  ‖   ‖  ‖   ‖  

‖   ‖  ( ), we get the normed space   ( )  formed by triples: 

  ( )  *,     -        ( )     ( )     ( )+                (    ) 

The space   ( )  is a Hilbert space when equipped with the inner product 

(,        -
  ,        -

 )  ( )  ∫               
 

            (      ) 

valid for all vectors ,        -
  and ,        -

  in   ( ) . The inner product (2.30.a) 

induces a norm: 

(      ) 
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‖,     - ‖  ( )  √(,     -  ,     - )  ( )  (∫               

 

)

 
 

  

that coincides with (2.27). So the norm induced by the inner product is a valid norm 

when we see   ( )  as the Cartesian product of   spaces. 

Analogously, we can define the space   ( ) : 

  ( )  *,     -        ( )     ( )     ( )+            (    ) 

which is a Hilbert space when endowed with the inner product 

(    ) 

(,        -
  ,        -

 )  ( )  (     )  ( )  (     )  ( )  (     )  ( )     

 ∫      
 

                                   

The norm in   ( )  becomes 

‖,     - ‖  ( )  √(,     -  ,     - )  ( )                              (    ) 

 (∫     

 

                            )

 
 

  

whereas the seminorm is given by 

 ,     -    ( )  (∫                  

 

)

 
 

                       (    ) 

 In favor of a more compact notation, let us represent the elements of either 

  ( )  or   ( )  as vectors, i.e., let us make   ,     - , and so on. Then the inner 

product in   ( )  (2.30.a) becomes 

(   )  ( )  ∫    
 

             ( )                           (    ) 

and the norm (2.30.b) simplifies to 

‖ ‖  ( )  √(   )  ( )   (∫    
 

)

 
 

           ( )              (    ) 

The inner product in   ( )  (2.32) becomes 
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(   )  ( )  ∫          
 

         ( )               (    ) 

if we recall the notion of double dot product from (1.65). The norm (2.33) and the 

seminorm (2.34) simplify to 

‖ ‖  ( )  √(   )  ( )  (∫          
 

)

 
 

           ( )          (    ) 

and 

     ( )  (∫      
 

)

 
 

           ( )                           (    ) 

respectively. 

 In (2.26) – (2.39), the development has been carried out for the three-

dimensional case      Similar results hold for the two-dimensional case    .  

 We end this section by noticing some important relations, summarized in Chart 

2.1 below. 

Chart 2.1: Function spaces and norms 

From (2.21), (2.22) and (2.24): 

‖ ‖  ( )
  ‖ ‖  ( )

       ( )
               ( )                    (    ) 

From (2.40), (2.22) and (2.36): 

‖ ‖  ( )
  ‖ ‖  ( )

  ‖  ‖  ( ) 
              ( )                    (    ) 

From (2.36), (2.38) and (2.39): 

‖ ‖
  ( ) 
  ‖ ‖

  ( ) 
     

  ( ) 
             ( )                   (    ) 

2.1.4 Function spaces: Density and trace theory 

 In order to establish the weak forms associated with the Navier-Stokes system 

(1.87), the notion of density will prove to be very useful. 

 Let it be an abstract normed space *  ‖   ‖ +. Suppose   is a subset of  , i.e., 

   . We say that   is dense in   if its closure is equal to   [Kreyszig, 1989], 

[Conway, 1994], [Rynne and Youngson, 2007], i.e., if 

 ̅                                                                    (    ) 
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By this, we mean that the union of   and all its limit points is equal to  . We can clarify 

further the notion of limit point: We say that      is a limit point of   if, for every 

ball centered at   , no matter how small, there is at least one point     such that   is 

distinct from   . This can be expressed symbolically as 

           (    )                                             (    ) 

If we make   successively smaller, e.g.,     ⁄ ,    , we get the more useful 

equivalent result:      is a limit point of the subset   if there is a sequence 

          of elements from   such that    converges to   . Symbolically,  

 *  +   
                                                           (    ) 

A sequence in   is just a map from the natural numbers into the subset  , i.e, a map 

     . In (2.45), the *  +   
  represents the range of the map  , which evidently is a 

subset of  . 

 The idea of density roughly represents this: Given an arbitrary point    from   

which is not necessarily in  , it can nonetheless be „approximated‟ by a sequence of 

elements which are in  . The most interesting case happens when    is not an element 

from  . The density hypothesis says that, despite the fact    is not in  , there are other 

elements from   that are infinitely close to   . But how is this „closeness‟ actually 

measured? It is measured by the norm of the superspace  , i.e., by ‖   ‖ . The ball in 

(2.44) means 

 (    )  *      ‖     ‖   +                                   (    ) 

so that convergence in (2.45) is indeed the convergence in the ‖   ‖  norm, i.e.,  

                  ‖      ‖                               (    ) 

In order to make clear that the convergence is in the ‖   ‖  norm, (2.43) is often written 

as 

  ̅                                                                     (    ) 

 The notion of density has been introduced in a rather abstract way; in order for it 

to be useful, it should be specialized to some of the spaces introduced thus far.  

The space   
 ( ) together with all its limit points regarding the ‖   ‖  ( ) norm 

in (2.8) is the space   ( ) itself, when       [Salsa, 2008], [Brezis, 2010]. When 

   , we may write 

  
 ( ) ̅̅ ̅̅ ̅̅ ̅̅ ̅  ( )    ( )                                                   (    ) 

where convergence is measured in the ‖   ‖  ( ) norm from (2.24). 
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The space   
 ( ) together with all its limit points regarding the ‖   ‖  ( ) norm 

in (2.21) is also very special. It is a subspace of   ( ) [Salsa, 2008], [Brezis, 2010] and 

it is denoted by   
 ( ). It will occur frequently in the course of this work. Formally, 

  
 ( )    

 ( ) ̅̅ ̅̅ ̅̅ ̅̅ ̅  ( )                                                  (    ) 

The space   
 ( ) is defined by (2.50), whose meaning is: Given an arbitrary   

  
 ( ), there is a sequence of elements from   

 ( ) which converges to   in the 

‖   ‖  ( ) norm. Specializing (2.45),  

 *  +   
    

 ( )                                                     (    ) 

 The support of any function   in   
 ( ) is compactly contained in  , i.e., 

    ( )    . So   is zero at the boundary     , i.e.,      . This characteristic 

is somehow inherited by the functions in   
 ( ), i.e., any function   in   

 ( ) is 

„somehow‟ zero at  . It is said that it has zero trace on  . (It is not quite correct to say 

that   assumes the value zero at all points from  . The reason is that elements from the 

Lebesgue spaces are not defined pointwise. Proper explanation of this fact requires 

ideas from measure theory that are outside the scope of this work. [Tao, 2011]) 

 In order to clarify the idea of trace, some more notions are required. Spaces 

whose elements are functions which admit continuous derivatives up to order   are 

represented by   ( ): 

  ( )  *                                                +            (    ) 

The space   ( ) from the beginning of Section 2.1.1 is just (2.52) specialized to the 

case    . Let us concentrate on the case when     and     , i.e., the whole 

space. The space   (  ) comprises those functions which admit continuous 

derivatives of all orders at all points from   . If     (  ), then   is well-defined 

and admits continuous derivatives at all points from   , particularly at those which lie 

inside the domain   and at those on the boundary      as well. Form now the space 

which consists of the restrictions to  ̅ of functions in   (  ), i.e., the space 

  ( ̅)  *   ̅           ̅        (  )+                            (    ) 

There is a very important theorem, which summarizes the notion of trace [Evans, 2010], 

[Salsa, 2008], [Boffi et al., 2013], [Boyer and Fabrie, 2012], [Leoni, 2009], [Girault and 

Raviart, 1986], [Galdi, 2011]. 

Theorem 2.1: The Trace Theorem – Let   be a bounded and Lipschitz domain in   . 

Then there exists a linear operator (the trace operator)     
 ( )    ( ) such that: 

1. If     ( ̅), then        . 

2. There is a constant     such that ‖   ‖  ( )   ‖ ‖  ( )  for all     ( ). 
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The notion of Lipschitz domain is rather technical [Galdi, 2011], but it suffices to say 

here that ordinary domains such as squares, rectangles, triangles, circles, cubes and 

spheres are Lipschitz. Moreover, the constant   in the theorem above depends on the 

domain   and on the dimension  , sometimes being represented as  (   ) [Salsa, 

2008]. Of course, it is independent of  . 

Theorem (2.1) concerns the existence of an operator that ascribes functions from 

  ( ) – functions which are defined at the boundary   – to functions from   ( ). 

When the function   is in   ( ̅), which is obviously a subspace of   ( ), it is well-

behaved enough to be associated with its restriction to the boundary    . When a 

function   is in   ( ) but not in   ( ̅), it is associated to the function    . This 

function     is not defined pointwise (due to the technicalities from measure theory 

[Tao, 2011]), but on the other hand its norm in   ( ) is related to the norm of the 

original function   in   ( ). 

The trace operator    is not surjective, i.e., there are functions from   ( ) which 

are not in the range of   . It is proved that the range of    is surjective on the space 

   ⁄ ( ), a Sobolev space of fractional order, and whose characterization is not trivial 

[Leoni, 2009]. In order to find out if a given function defined on the boundary   is a 

trace from another function in   ( ), the following result from [Boffi et al., 2013] is 

useful: 

  ( )    ( 
 ( ))    ( )                                            (    ) 

where   ( 
 ( ))     ⁄ ( ) is the range (or image) of   . Expression (2.54) says that 

if a function   defined on the boundary is in   ( ), then it is guaranteed to be in the 

range of the trace operator, i.e,     ( 
 ( )), which implies that there is a   in   ( ) 

such that      . 

 As the notion of trace has been clarified, one may ask about those functions   

from   ( ) which have zero trace on  , i.e., functions such that ‖   ‖  ( )   . It can 

be proved [Boyer and Fabrie, 2012] that these functions form a space, which is 

precisely the space   
 ( ) defined in (2.50): 

         
 ( )                                                      (    ) 

i.e., the kernel (or null space) of the trace operator is precisely the space   
 ( ). 

 The results introduced so far concerning density and traces can be extended to 

the product spaces   ( ) .  

  
 ( )    

 ( )    
 ( )    

 ( )    ( )                    (      ) 

  
 ( )    

 ( )    
 ( )    

 ( )                              (      ) 

  
 ( )     

 ( )  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ( )                                            (      ) 
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Expression (2.56.c) says that a function   from   
 ( )  can be approximated by a 

sequence in   
 ( )  which converges in the ‖   ‖  ( )  norm (2.33) to  . Moreover, the 

product version of the space in (2.52) becomes: 

  ( ̅)    ( ̅)    ( ̅)    ( ̅)                                   (    ) 

If we define the multidimensional trace operator   
    ( )     ⁄ ( )  as 

  
     

 [        ]
 
 [              ]

 
                          (    ) 

then the trace theorem applied to each of the components of   allows us to conclude 

that 

    ( ̅)    
                                           (      ) 

  (   )            ( )    ‖  
  ‖

  ( ) 
  ‖ ‖  ( )            (      ) 

where the „ ‟ arrow is the implication connective (if… then). The norm ‖   ‖  ( )  is 

the same as that from (2.31) or (2.36). Also,  

      
    

 ( )                                                       (    ) 

The reasoning (2.56) – (2.58) applies also to the bidimensional case    . 

2.1.5 Navier-Stokes: Weak forms and weak solutions 

 It is now time to return to the Navier-Stokes system (1.87), rewritten below for 

convenience: 

     (   )           

      (   )                                           (      ) 

                                                                              (      ) 

                                                                                  (      ) 

We call (   ) a classical solution if all derivatives appearing in (2.61) are defined 

pointwise. The „classical‟ velocity field   belongs to the space   ( ) , in which   ( ) 

has been defined in (2.52). In a classical solution, generally it is required that   be well-

behaved close to the boundary   ; one then adds the requirement that   must also 

belong to the space  ( ̅) , where  

 ( ̅)  *   ( )                            +                     (    ) 

Thus if    ( ̅) then   can be continuously extended to the boundary   , i.e., when 

going from the interior to the boundary   , one experiences no discontinuity. So 

    ( )   ( ̅) . In the same way, the „classical‟ pressure   belongs to   ( )  
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 ( ̅). Finally, the „classical picture‟ is completed by requiring the excitation   to be in 

 ( )  and the boundary condition   to be in  ( ) . We can rewrite problem (2.61) as 

     (   )    ( )   ( ̅)    ( )   ( ̅)           

      (   )                                             (      ) 

                                                                                (      ) 

                                                                                    (      ) 

In problem (2.63), all derivatives are the classical (pointwise) derivatives. 

 In order to devise a strategy to solve (2.63), one must first show that the problem 

is well-posed, i.e., that the solution to (2.63) exists, is unique and depends continuously 

on the data   and  . However, such a task may prove to be very difficult, if not 

impossible. Moreover, there may be situations of physical interest in which the data   

and   are not continuous. The question is that requiring everything to be continuous is a 

fairly restrictive hypothesis, and the solution to our problem may not exist. 

 A reasonable idea is to „relax‟ the requirements on the solution we are seeking. 

Hopefully, since we have somehow widened the search space of our solution, it may 

become easier to find out if the problem in this new setting is well-posed. Roughly 

speaking, this new „relaxed solution‟ is the weak solution to our problem. It usually 

happens that the enlarged search space has a richer structure, the exploration of which is 

greatly enhanced by the tools and inequalities available from functional analysis. In this 

way it becomes easier to establish the well-posedness in the new setting. 

 After the existence of the weak solution has been established, one may begin to 

inquire about its smoothness. At this point one tries to show that the weak solution is 

more regular than expected. For example, one initially shows that a weak solution exists 

in   ( ); thereafter he may be able to show that this solution happens to be in the more 

regular space   ( ), and so on. In general, given a weak solution     ( ), one may 

try to solve the problem: 

         *        ( )+                                     (      ) 

A solution   that happens to be in   ( ) for     is usually termed a strong solution. 

If the solution is found to be regular enough, then one may study if it qualifies as a 

classical solution. Such questions are addressed by the regularity theory, which is a very 

advanced branch in the study of partial differential equations and is outside the scope of 

this work. The book by [Evans, 2010] brings more discussions about the concept of 

weak solutions and the problem of regularity. 

 In this thesis, we shall be concerned with the weak solutions only. As will 

become clearer later, the finite element method (and consequently our meshfree 

method) seeks for approximations of the weak solutions. We devised a neat way to 

present the process of going from the classical form (2.63.a) – (2.63.c) to the weak 
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form, which explores all the notions introduced so far. It will be applied to the Navier-

Stokes system first and to the scattering system later. 

2.1.5.1 The problem in classical form 

The problem should be stated in its classical form, as in (2.63). Write the 

residuals of (2.63.a) and (2.63.b), as below. 

     (   )    ( )   ( ̅)    ( )   ( ̅)           

      (   )                                               (      ) 

                                                                                       (      ) 

                                                                                           (      ) 

2.1.5.2 Testing functions 

 The first equation (2.64.a) is multiplied by an arbitrary testing function   

  
 ( )  and (2.64.b) by another arbitrary testing function     

 ( ). The result is 

integrated over the domain  . After application of successive vector identities, one 

arrives at the expressions 

     (   )    ( )   ( ̅)    ( )   ( ̅)           

∫        ∫ ,(   ) -
  

   ∫      
 

  

∫   
 

  ∮ (
  

  
   ̂)  

 

              
 ( )             (      ) 

∫     
 

              
 ( )                                                                                      (      ) 

                                                                                                                                    (      ) 

Since      , as all components are elements from   
 ( ) (a space whose functions 

are compactly contained in  ), the surface integral in (2.65.a) is disregarded. 

2.1.5.3 Relaxing the requirements 

Let us write   ,        - . The first integral in (2.65.a) is a sum like 

∫  (
   

  

   

  
 

   

  

   

  
   

   

  

   

  
)

 

                                 (    ) 
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Since all terms involving the test functions in (2.66) are compactly supported, the 

integral in (2.66) still makes sense if we require that      ⁄         ⁄  are in 

    
 ( ). This is equivalent to saying that all weak partial derivatives of   must exist. 

However, requiring only that all components of   and its weak derivatives are in 

    
 ( ) adds too much freedom to the „relaxed‟ solution. For reasons that will become 

apparent as we progress, it is better to restrict it a little bit and require that all 

components of   and its weak derivatives are in   ( )      
 ( ). In other words, the 

initial space   ( ) is too restrictive, and     
 ( ) is too permissive. The intermediary 

space   ( ) looks as a promising choice. 

 Requiring that all components of   and its weak derivatives are in   ( ) is the 

same as requiring that     ( ) . 

 The second integral in (2.65.a) is a sum like 

∫ (  

   

  
     

   

  
       

   

  
  )

 

                           (    ) 

In order to verify if (2.67) is summable, let us evaluate how its individual terms behave. 

There is a result which will prove to be very useful. It will be stated in the form of a 

theorem, whose proof is in [Brezis, 2010]. 

Theorem 2.2: The Hölder inequality – Let     ( ) and     ( ) with       

and   ⁄    ⁄   . Then      ( ) and 

‖  ‖  ( )  ∫     
 

 ‖ ‖  ( )‖ ‖  ( )                            (    ) 

Let us concentrate on the first term from (2.67). Since      ( ) and 

     ⁄    ( ), then        ⁄    ( ) due to the Hölder inequality for    . 

According to (2.17),   ( )      
 ( ), so we see that        ⁄      

 ( ). Finally, 

since     (  )    , it can be concluded that the first term in (2.67) is summable. 

The same analysis can be extended to all the remaining terms from (2.67), and the 

conclusion is the same: They are also summable. Therefore, the whole expression (2.67) 

is summable, i.e., the integral is finite. 

In the third integral from (2.65.a),          ⁄       ⁄       ⁄ . 

Since   ,    and    are compactly contained in  , the same is also true for their partial 

derivatives. It follows that     (   )    . So the third term in (2.65.a) makes sense 

if       
 ( ). But we have already concluded that   ( )      

 ( ) is a better choice, 

so we demand that     ( ). 

According to what is said at the end of Section 2.5.1.2, the surface integral is 

disregarded, so the only instance in which   appears in the problem is in the third 

integral from (2.65.a). One can observe that   is determined up to a constant. In order 

so see this, suppose (   ) is a solution to (2.65). Will (     ),    , also be a 



 

41 
 

solution to (2.65)? When we replace   by     in (2.65), the whole expression (2.65.a) 

remains the same, except for the extra term 

∫      
 

                                                              (    ) 

When the Divergence theorem is applied to (2.69), one gets 

∫      
 

  ∫       ∮    ̂
  

                                      (    ) 

since     
 ( )  is zero at the boundary  .  

 So if   is a solution to the problem, then     will be also. So the solution space 

for   seems to be   ( ) divided into equivalence classes (subsets) in such a way that 

the elements of a class are precisely those functions   which differ from each other by a 

constant. In order to make the solution   unique, one usually proceeds by choosing a 

single representative from each class. The representative element of each class is chosen 

as that one which has zero average over  . By restricting   to be the zero average 

representative of each class, the right space for searching   is [Boyer and Fabrie, 2012], 

[Galdi, 2011], [Girault and Raviart, 1986], [Ern and Guermond, 2004], [Glowinski et 

al., 2003]: 

  
 ( )  ,    ( )   ∫    

 

-                                          (    ) 

The fourth integral from (2.65.a) is a sum like 

∫    
 

 

    
     

                                                (    ) 

where the excitation vector   has been represented as [        ]
 
. As   ,    and    are 

compactly supported in  , the integral in (2.72) still makes sense if all components of   

are in     
 ( ). Again, we simply demand that     ( ) . 

 In order to evaluate the integral in (2.65.b), we need to inquire about the 

divergence    . We have already required that     ( ) , which implies that the 

weak derivatives of all components of   are in   ( ). Particularly,         ( )⁄ , 

        ( )⁄  and         ( )⁄ . Since     ( )    , (2.65.b) makes sense if 

we show that         
 ( ). Another very useful result is the following inequality, 

whose proof can be found in [Brezis, 2010]. 

Theorem 2.3: The Minkowski inequality in    spaces – Assume      , 

    ( ) and     ( ). Then 

‖   ‖  ( )  ‖ ‖  ( )  ‖ ‖  ( )                                (    ) 
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Applying (2.73) to      ⁄  and      ⁄ , we get that  

‖
   

  
 

   

  
‖
  ( )

 ‖
   

  
‖
  ( )

 ‖
   

  
‖
  ( )

                        (    ) 

and we conclude that      ⁄       ⁄  is in   ( ), since         ( )⁄  and 

        ( )⁄ . Next, we apply (2.73) again to      ⁄       ⁄  and      ⁄ . We 

get 

‖(
   

  
 

   

  
)  

   

  
‖
  ( )

 ‖
   

  
 

   

  
‖
  ( )

 ‖
   

  
‖
  ( )

           (    ) 

and conclude that the left side of (2.75), which nothing else than    , is in   ( ). 

Consequently, by (2.17),         
 ( ). 

 The only term left to analyze is the boundary condition (2.65.c). Initially, we 

demanded that      ( ) . However, since now we require that     ( ) , there 

is no sense in asking   to be equal to   pointwise at  . We must relax it a little and 

require that   be equal to   in the sense of the traces, i.e., we require that 

  
                                                                  (    ) 

So the new requirement for   is that it should be in the range of the trace operator   
 , 

i.e., we must require that      ⁄ ( ) . 

 We have now analyzed (2.65) term by term, and concluded that it is safe to relax 

the requirements in order to enlarge the search space. The conclusions are summarized 

in the table below. 

TABLE 2.1 – REQUIREMENTS ON THE QUANTITIES IN THE NAVIER-STOKES SYSTEM 

Quantity Classical solution ‘Relaxed’ solution 

    ( )   ( ̅)    ( )  

    ( )   ( ̅)   
 ( ) 

   ( )    ( )  

   ( )     ⁄ ( )  

The „relaxed‟ problem thus becomes: 

     (   )    ( )    
 ( )           

(      ) 

∫        ∫ ,(   ) -
  

   ∫      
 

 ∫   
 

         
 ( )  
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∫     
 

              
 ( )                                                                                      (      ) 

  
                                                                                                                                   (      ) 

All derivatives which appear in system (2.77) are weak derivatives. 

2.1.5.4 Lifting on the boundary data  

The trace operator   
    ( )     ⁄ ( )  is surjective, but not injective; 

according to (2.60), its kernel is the whole space   
 ( ) , and therefore different from 

zero.  

From (2.77.c), we learn that   is in the range of   
 . Since this operator is not 

injective, there is more than one function from   ( )  associated to  . In order to see 

this, let     
 ( )  be arbitrary. The trace operator is linear, so   

 (   )    
   

  
     

    . So the trace of     is equal to trace of  , but obviously     is 

different from  , since   can be anything in   
 ( ) . 

So there must be another function    in   ( ) , different from  , such that 

  
    is also  . Let us take this particular    and set 

                                                                   (    ) 

Applying the trace operator to both sides of (2.78), one readily concludes that   
    

 . 

 The function    is called the lifting on the original Dirichlet boundary condition 

  
    . The idea is that it is a somehow known function: Once we are given the 

boundary condition  , we can find a particular function in   ( )  such that its trace is 

 , because the trace operator is surjective. For example, let    be the simplest function 

in   ( )  we can imagine such that   
     . Despite the fact that finding such an 

   here at the continuous level is not a straightforward task, it turns out to be very easy 

at the finite element level. More discussions on the lifting procedure can be found in 

[Girault and Raviart, 1986], [Boyer and Fabrie, 2012], [Quarteroni, 2009], [Ern and 

Guermond, 2004]. 

 After    has been determined, when we insert it in (2.78), it becomes clear that 

   is the true unknown. Substituting (2.78) in (2.77), we get a new problem: 

     (    )    ( )    
 ( )           

∫         ∫         
 

∫ ,(    )  -   
  

 ∫ ,(    )  -
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∫ ,(    )  -
 

   ∫ ,(    )  -   
 

 ∫      
 

 ∫   
 

     

          
 ( )            (      ) 

∫     
 

   ∫     
 

               
 ( )                                                        (      ) 

  
                                                                                                                                  (      ) 

 The advantage of the lifting is that we no longer have to worry about non-

homogeneous Dirichlet boundary conditions: They enter the problem through suitable 

integrals involving a known quantity, namely,   . In the new problem (2.79), 

homogeneous Dirichlet boundary conditions are to be imposed, since   
     , 

according to (2.79.c). But this amounts to saying that      
 ( ) , so we may rewrite 

(2.79) as 

     (    )    
 ( )    

 ( )           

∫         ∫         
 

∫ ,(    )  -   
  

 ∫ ,(    )  -
 

    

∫ ,(    )  -
 

   ∫ ,(    )  -   
 

 ∫      
 

 ∫   
 

     

          
 ( )            (      ) 

∫     
 

   ∫     
 

               
 ( )                                                        (      ) 

The homogeneous Dirichlet boundary conditions have been embedded in the search 

space for   , which now becomes   
 ( ) . 

2.1.5.5 The G map 

 Expressions (2.80.a) and (2.80.b) can be summed together into a single 

expression as 

     (    )    
 ( )    

 ( )           

∫         ∫         
 

∫ ,(    )  -   
  

 ∫ ,(    )  -
 

    

∫ ,(    )  -
 

   ∫ ,(    )  -   
 

 ∫      
 

 ∫   
 

  ∫     
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∫     
 

              
 ( )         

 ( )                                                           (    ) 

Let us introduce the map 

    ( )    ( )    ( )    ( )                             (    ) 

defined by 

 (           )  ∫          ∫          
 

∫ ,(    )  -    
  

  

∫ ,(    )  -
 

    ∫ ,(    )  -
 

    ∫ ,(    )  -    
 

 ∫        
 

  

∫   
 

   ∫      
 

   ∫      
 

                                                                             (    ) 

where    and   are given functions (already known from the previous subsections). 

Since   
 ( )  and   

 ( )  are subsets of   ( ) , and   
 ( ) and   

 ( ) are subsets of 

  ( ), problem (2.81) can be recast as: 

     (    )    
 ( )    

 ( )           

 (        )            
 ( )         

 ( )                     (    ) 

According to this definition, the map   is linear in the last two arguments. In order to 

determine if   is also bounded with respect to the last two arguments, we need some 

results. The following two inequalities hold [Quarteroni, 2009]: 

|∫       
 

|        ( )      ( )           ( )                (      ) 

|∫      
 

|  ‖ ‖  ( )     ( )        ( )       ( )              (      ) 

where        ( )  is the seminorm from (2.39). Relation (2.42) allows the seminorms in 

(2.85) to be replaced by norms, i.e.,  

|∫       
 

|   ‖ ‖  ( ) ‖ ‖  ( )           ( )            (      ) 

|∫      
 

|  ‖ ‖  ( )‖ ‖  ( )        ( )       ( )          (      ) 

Boundedness of the nonlinear term is provided by the following theorem (stated as a 

lemma and proved in [Girault and Raviart, 1986]): 
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Theorem 2.4: Boundedness of the nonlinear term – For    , the form  

∫ ,(    )  -    
 

                                                   (    ) 

is continuous on   ( ) , i.e., there is a positive constant   such that for all   ,    and 

   in   ( ) , 

|∫ ,(    )  -    
 

|         ( ) ‖  ‖  ( ) ‖  ‖  ( )            (    ) 

Since in our case     or    , theorem 2.4 holds true. Moreover, thanks to (2.42), 

the seminorm in (2.88) can be replaced by a norm, i.e., for all   ,    and    in 

  ( ) , 

|∫ ,(    )  -    
 

|   ‖  ‖  ( ) ‖  ‖  ( ) ‖  ‖  ( )              (    ) 

The last result we need is an extension of the Hölder inequality (2.68) to   ( ) . 

We recall the Cauchy-Schwarz inequality in   , which states that, for two vectors   and 

  in   ,  

      (   )
 
 (   )

 
                                              (    ) 

Let   and   be arbitrary elements from   ( ) . We may write 

|∫    
 

|  ∫       ∫ (   )
 
 (   )

 
 

 

 
 

                        (    ) 

If we make   (   )  ⁄  and   (   )  ⁄  in (2.68) with    , we get 

∫ (   )
 
 (   )

 
 

 

 (∫    
 

)

 
 

(∫    
 

)

 
 

 ‖ ‖  ( ) ‖ ‖  ( )       (    ) 

From (2.91) and (2.92), 

|∫    
 

|  ‖ ‖  ( ) ‖ ‖  ( )             ( )                     (    ) 

Consequently, if we assume further that     ( )    ( ) , then ‖ ‖  ( )  

‖ ‖  ( ) , due to (2.42). Finally,  

|∫    
 

|  ‖ ‖  ( ) ‖ ‖  ( )           ( )       ( )              (    ) 
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We are now at a position to evaluate if   is bounded with respect to the last two 

arguments, or, equivalently, if   depends continuously on its last two arguments. We 

explore the fact that the absolute value of a sum of terms is smaller than or equal to the 

sum of the absolute value of each term, and then apply (2.86.a), (2.86.b), (2.89) and 

(2.94) whenever it is necessary. Then,  

  (           )  ([ ‖  ‖  ( )   ‖  ‖  ( )   ‖  ‖  ( ) 
   

  ‖  ‖  ( ) ‖ 
 ‖  ( )   ‖  ‖

  ( ) 
  ‖  ‖  ( )  ‖ ‖  ( ) )‖  ‖  ( )      

(‖  ‖  ( )  ‖  ‖  ( ) )‖  ‖  ( )                                                                         (    ) 

In this way it becomes clear to us that   is bounded with respect to    and   . 

2.1.5.6 Enlarging the space of testing functions 

 According to (2.84), the solution (    ) to our problem can be given a new 

meaning: When we insert    and   as the first two arguments, the   map assumes the 

value zero as the third argument varies over   
 ( )  and the fourth varies over   

 ( ).  

 But one may ask: What happens if the third and fourth arguments vary over 

spaces larger than   
 ( )  and   

 ( ), respectively? The question is that such spaces 

are too regular, and their elements are not that easy to obtain. In practice, it would be 

good if the third and fourth arguments could vary over other spaces     
 ( )  and 

    
 ( ), while at the same time keeping the   map equal to zero. If we are 

successful in showing that such spaces   and   exist, then the solution to our problem 

is still (    ), but it now allows less regular candidates as testing functions. 

 We claim that such spaces   and   exist: They are     
 ( )  and   

  
 ( ). In order to show this, let (    ) be the solution to problem (2.84). We need to 

prove that  

 (        )            
 ( )            

 ( )                        (    ) 

Proof: Let     
 ( )  and     

 ( )    ( ) be arbitrary. According to the density 

results from (2.56.c) and (2.49), respectively,  

 *  +   
    

 ( )          ‖     ‖  ( )                           (      ) 

 *  +   
    

 ( )       ‖    ‖  ( )                               (      ) 

Since all elements from the sequence *  +   
  are in   

 ( ) , and all elements from the 

sequence *  +   
  are in   

 ( ), we can employ them as testing functions in (2.84). The 

  map is zero, so we write 

           (          )                                         (    ) 
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The map     ( )    ( )    ( )    ( )    is linear in the last two 

arguments, so we write: 

 (        )   (          )   (              )               (    ) 

where (2.99) holds for all    . Of course,  

  (        )   (          )    (              )           (     ) 

But since   is bounded with respect to the two last arguments, from (2.95) we get: 

  (              )  ([ ‖  ‖  ( )   ‖  ‖  ( )   ‖  ‖
  ( ) 
   

  ‖  ‖  ( ) ‖ 
 ‖  ( )   ‖  ‖

  ( ) 
  ‖ ‖  ( )  ‖ ‖  ( ) )‖    ‖  ( )    

(‖  ‖  ( )  ‖  ‖  ( ) )‖    ‖  ( )                                                                   (     ) 

We have already verified that      
 ( ) ,      ( ) ,     

 ( ) and  

    ( ) . So all the norms within parentheses in (2.101) are finite; for the sake of 

clarity, let us rewrite (2.101) as 

  (              )    ‖    ‖  ( )    ‖    ‖  ( )         (     ) 

where the constants    and    are finite and depend on   ,   ,   and  . 

We now let    . The right side of (2.102) goes to zero, thanks to (2.97). Naturally,  

  (              )                                          (     ) 

From (2.100) and (2.103),  

  (        )   (          )                                   (     ) 

But  (          )    for all  , according to (2.98). Expression (2.104) therefore is 

true only if  (        )   . So we are allowed to conclude that  

 (        )                                                      (     ) 

Since   and   are arbitrary, we are able to see that indeed 

 (        )            
 ( )            

 ( )                     (     ) 

as we have set ourselves to prove in (2.96). 

  

The   map is zero when we consider the enlarged spaces   
 ( )  and   

 ( ); 

problem (2.84) then assumes a new form: 
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     (    )    
 ( )    

 ( )           

 (        )            
 ( )         

 ( )                     (     ) 

When we consider the definition of the   map in (2.83), we get 

     (    )    
 ( )    

 ( )           

∫         ∫         
 

∫ ,(    )  -   
  

 ∫ ,(    )  -
 

    

∫ ,(    )  -
 

   ∫ ,(    )  -   
 

 ∫      
 

 ∫   
 

  ∫     
 

    

∫     
 

              
 ( )         

 ( )                                                             (     ) 

By first making     and   arbitrary, and by making     and   arbitrary, we are 

able to recover the Navier-Stokes system (2.80): 

     (    )    
 ( )    

 ( )           

∫         ∫         
 

∫ ,(    )  -   
  

 ∫ ,(    )  -
 

    

∫ ,(    )  -
 

   ∫ ,(    )  -   
 

 ∫      
 

 ∫   
 

     

          
 ( )            (       ) 

∫     
 

   ∫     
 

               
 ( )                                                         (       ) 

but now with the testing functions in the enlarged spaces   
 ( )  and   

 ( ). 

2.1.5.7 Weak solutions 

 The system (2.109) is said to be in weak form, due to the fact that „relaxed‟ 

assumptions have been made for the derivatives and function spaces. After getting 

(    ) from (2.109), one adds the known lifting function    to    and then gets the 

solution        , in the spirit of (2.78). The final solution (   ) thus obtained is 

said to be the weak solution associated with the original problem (2.61). Said in another 

way, (2.109) is the variational formulation of problem (2.61). 

 The work regarding the variational formulation of the Navier-Stokes system is 

by now essentially done. We have covered all the details from the process, and more 

importantly, we have managed to put all information concerning the procedure together 

in a single place. The idea of the   map we introduced here happened to be particularly 
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useful in clarifying how the extension of testing functions to less regular spaces is 

actually carried out. 

 We must now go through the same process again in order to study the scattering 

system, whose solution is the main topic of this thesis. Fortunately, since all the 

machinery has already been introduced, the progress will be swift. 

2.2 The scattering system in weak form 

2.2.1 Scattering equations 

 We begin by rewriting below the equations (1.88) which describe the scattering 

problem: 

     (    )                 

       
                                                                (       ) 

                                                                                       (       ) 

 ̂       ̂                                           (       ) 

 ̂                                                                                  (       ) 

 In the course of this thesis, we shall be concerned with the scattering of 

electromagnetic waves by a single object only, i.e., we shall focus on the surroundings 

of a single scatterer. So there is only one PEC surface, denoted by   . After this 

simplifying assumption, problem (2.110) becomes: 

     (    )                 

       
                                                               (       ) 

                                                                                      (       ) 

 ̂       ̂                                                               (       ) 

 ̂                                                                                 (       ) 

Let us proceed to derive the variational form associated with (2.111). 

2.2.2 PML I: Incorporating the PML 

 The system in form (2.111) actually models an „irradiating surface‟    which 

acts as a source for scattered waves that are simply reflected back by the PEC surface at 

  . In order to correctly model outward propagating waves, these waves „irradiated‟ by 

the surface    must be attenuated in such a way that they become essentially zero by the 
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time they reach the PEC surface   . The idea of the PML (discussed in Section 1.3) is to 

place a layer of an artificial absorbing reflectionless material covering some distance 

from the exterior PEC surface   . Therefore some material parameter must enter the 

system (2.111). 

 The PML type to be employed in this work requires the domain   to be a 

rectangular parallelepiped surrounding the three-dimensional scatterer (or a rectangle 

surrounding a two-dimensional scatterer). It is a rectangular PML. In other words,    

must be the surface of a box (or the contour of a rectangle). A given scatterer is 

characterized by a hole within the domain, and of course, it can have any shape. In what 

regards the mathematical aspect, incorporation of the PML introduces certain functions 

which act on the higher derivatives of the electrical field    in (2.111). The vector 

Laplacian      in (2.111.a) must be replaced by 

   ̿                                                                 (     ) 

where  ̿ is a tensor whose components assume the form 

 ̿     ̂   ̂     ̂   ̂     ̂   ̂                                 (     ) 

and   is the nabla operator (vector). The components   ,    and    assume complex 

values, and will be presented later in Section 3.3.6.6. Incorporation of the PML 

modifies the system (2.111) into 

     (    )                 

   ̿        
                                                          (       ) 

                                                                                           (       ) 

 ̂       ̂                                                                    (       ) 

 ̂                                                                                      (       ) 

2.2.3 The scattering system: Weak forms and weak solutions  

 Before we begin investigating the function spaces pertinent to the scattering 

problem, it should be noticed that, since the components of the tensor  ̿ and the incident 

field      assume complex values, our solution    is going to be complex. So the 

function spaces describing the quantities should also allow complex-valued functions. 

In what regards the spaces introduced so far, it suffices to consider their complex 

versions, e.g., in (2.7) where one reads: 

  ( )  {                                     ‖ ‖  ( )   }        (     ) 

one must now read: 
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  ( )  {                                     ‖ ‖  ( )   }        (     ) 

and so on for the other spaces. In what regards inner products, as in (2.23), where one 

reads 

(   )  ( )  ∫   
 

             ( )                                (     ) 

one must now read 

(   )  ( )  ∫    

 

             ( )                                (     ) 

where    is the complex conjugate of  . In the course of the text, we shall occasionally 

indicate particular situations in which complex values must be taken into account.  

2.2.3.1 The problem in classical form 

The classical electrical field    belongs to   ( )   ( ̅) , i.e., the second 

derivatives of each component are continuous throughout the domain  , and there 

should be no jumps when going from the interior of   to the boundary         

  . The pseudopressure   is treated as in the Navier-Stokes system (2.63), i.e., we 

assume that     ( )   ( ̅). In what regards the boundary conditions at the scatterer 

surface   , we demand that the tangential components of the incident field be 

continuous, i.e., that   ̂        (  )
 . So the classical problem is written as 

     (    )    ( )   ( ̅)    ( )   ( ̅)                 

   ̿        
                                                     (       ) 

                                                                                      (       ) 

 ̂       ̂                                                                (       ) 

 ̂                                                                                  (       ) 

In order for (2.119.a) to be differentiable in the classical sense (pointwise), some 

requirements on the PML tensor are needed. Since the divergence operator acts on 

 ̿     , the resulting terms from this expression should be at least in   ( ). If  ̿      

is expanded in terms of the components of   , it becomes a sum of terms like 

(     
   ⁄ ) ̂   ̂  (     

   ⁄ ) ̂   ̂  (     
   ⁄ ) ̂   ̂   . So each term as 

     
   ⁄  should be in   ( ). Because   

    ( ), then    
   ⁄    ( ). One 

learns that the individual term      
   ⁄  is in   ( ) if    is also in   ( ). The same 

analysis is extended to the other terms of the expansion, and one discovers that in order 

for all classical derivatives in (2.119.a) to be meaningful, one must require that the 

components of the PML tensor be in   ( ). 
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2.2.3.2 Testing functions 

 Let us recall the space   ( ̅)  from (2.57) and introduce the subspace 

  ( )  *    ( ̅)     ̂       +                                (     ) 

The space   ( ) comprises all functions from   ( ̅)  whose tangential components 

vanish (pointwise) at all points from the boundary        . 

 Since there are no sources in (2.119), there is no need to form the residuals. The 

first equation (2.119.a) is multiplied by an arbitrary testing function      ( ), and 

(2.119.b) by another testing function      
 ( ). After integration over the domain   

and application of vector and tensor identities, we get 

     (    )    ( )   ( ̅)    ( )   ( ̅)                 

∫ ( ̿     )     

 

 ∫   
 

 

      ∫       

 

  

 ∮ .( ̿     )   ̂    ̂/  
 

                ( )            (       ) 

∫      
 

                
 ( )                                                                              (       ) 

 ̂       ̂                                                                                                     (       ) 

 ̂                                                                                                                       (       ) 

 By now, we are not concerned with the specific form assumed by the 

components of the PML tensor  ̿. More information about them will be introduced 

gradually, as dictated by necessity. At this point, it suffices to know two points. The 

first states that 

 ̿   ̿                                                             (     ) 

where      is the region occupied by the PML, which is nothing more than a layer of  

thickness     , usually small, measured from the outer surface   . Consequently, 

(2.122) holds in the bulk of the domain  , and particularly at the PEC scatterer surface 

   . The second will be stated in the form of a conjecture. 

 

Conjecture 2.1: Nullity of    at the outer surface    – All components of the 

scattered electric field    and its derivatives are zero at   . 

 Conjecture (2.1) above means that, if the PML works as it should, all 

components of    are attenuated in such a way that they are zero by the time they reach 

the outer surface   . The amplitude of    goes to zero, and    essentially disappears 
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(together with all its derivatives, of course) before reaching   . We have no formal 

proof for this hypothesis, hence it is stated in the form of a conjecture. Nevertheless, it 

is very reasonable and has been verified over and again in the experiments. 

 It can be observed that, since the functions from   ( ) do not have all their 

components equal to zero at the boundaries    and   , the boundary integral in (2.121.a) 

does not automatically vanish as it happened for the Navier-Stokes system (2.65.a). 

Moreover, the pseudopressure   is devoid of a physical meaning here; in our 

formulation, it is just a Lagrange multiplier used to enforce the divergence-free 

condition. The model also does not state any boundary condition that   must satisfy. 

Therefore we just discard the boundary integral in which   figures, i.e., we make: 

∮ .( ̿     )   ̂    ̂/  
 

                ( )                       (     ) 

In order to study the consequences of (2.123), we first break it into two boundary 

integrals over    and   . So for all      ( ), 

∫ .( ̿     )   ̂    ̂ /    

  

 ∫ .( ̿     )   ̂    ̂ /    

  

          (     ) 

According to (2.120), if      ( ), then  ̂        , which means that  ̂  

     
   and  ̂       

  , i.e., it has no tangential components along    and along 

  . Let us form the subspace of   ( ) whose elements have all components equal to 

zero at   , i.e., let 

  
 ( )  {    ( )       

  }                                (     ) 

Due to Conjecture 2.1,       at   , so the first integral in (2.124) implies that 

∫   ̂           
  

      
 ( )                                       (     ) 

Analogously, let us form the subspace of   ( ) whose elements have all components 

equal to zero at   : 

  
 ( )  {    ( )       

  }                                   (     ) 

According to (2.122), the second integral in (2.124) implies that 

∫ (
   

  
   ̂ )            

  

      
 ( )                              (     ) 

The consequences of discarding the boundary integral in (2.121.a) are: The 

pseudopressure   is in a certain sense equal to zero along the outer boundary    

[according to (2.126)], and also in a certain sense related to the normal derivatives of    
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along the scatterer surface    [according to (2.128)]. But the values assumed by   at the 

boundaries are immaterial to our analysis, and so we are safe to ignore the boundary 

integral in (2.121.a). 

The problem (2.121) is therefore rewritten as 

     (    )    ( )   ( ̅)    ( )   ( ̅)                 

∫ ( ̿     )     

 

 ∫   
 

 

      ∫       

 

              ( )       (       ) 

∫      
 

                
 ( )                                                                              (       ) 

 ̂       ̂                                                                                                     (       ) 

 ̂                                                                                                                       (       ) 

The system (2.129) and the Navier-Stokes system (2.65) (after the removal of the 

boundary integral) show a remarkable symmetry involving the divergence terms in the 

first and second equations. This symmetry plays a key role in the mixed formulation, 

which will be the topic of Chapter 3. But now, let us concentrate on relaxing the 

function spaces associated with problem (2.129). 

2.2.3.3 Relaxing the requirements 

Let us write    [  
    

    
 ]

 
. The first integral in (2.129.a), when expanded, 

is a sum like 

∫   

   
 

  

   
 

  
   

   
 

  

   
 

  
   

 

   
 

  

   
 

  
  

∫   

   
 

  

   
 

  
   

   
 

  

   
 

  
   

 

   
 

  

   
 

  
  

∫   

   
 

  

   
 

  
   

   
 

  

   
 

  
   

 

   
 

  

   
 

  
                          (     ) 

The components of    are not compactly supported – they are in   ( ̅), not in   
 ( ) 

– but they are still very smooth. In order to verify if (2.130) remains finite when the 

function space for    is modified, let us remember the basic triangle inequality for 

complex numbers 

                                                                (     ) 

which may be extended to a sum of terms as 
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|∑  

 

   

|  ∑    

 

   

                                                   (     ) 

According to (2.132), expression (2.130) is finite if the absolute value of each term is 

also finite. So let us concentrate on the first term from (2.130). It is true that  

|∫   

   
 

  

   
 

   

|  ∫ |  

   
 

  

   
 

  
|

 

                                 (       ) 

 ∫ |  

   
 

  
| |
   

 

  
|

 

                              (       ) 

    
   ̅

 |
   

 

  
|∫ |  

   
 

  
|

 

                    (       ) 

Since   
    ( ̅), then    

      ( ̅)⁄  also. It means that    
   ⁄  is continuous 

and well defined up to the boundary, and therefore assumes a finite maximum value at 

some point     ̅ [which justifies (2.133.c)]. From (2.133.c), we can conclude that the 

first term in (2.130) remains finite if  

∫ |  

   
 

  
|

 

                                                     (     ) 

which is the same as saying that  

  

   
 

  
   ( )                                                     (     ) 

If we demand that      ( ) and    
   ⁄    ( ), then the Hölder inequality (2.68) 

tells us that 

∫ |  

   
 

  
|

 

 ‖  

   
 

  
‖
  ( )

 ‖  ‖  ( ) ‖
   

 

  
‖
  ( )

             (     ) 

Since   ( ) is „nicer‟ than   ( ), and since moreover   ( )    ( ) according to 

(2.17), we demand that    
   ⁄    ( ). Applying the same analysis to the other terms 

in (2.130), we conclude that the first integral in (2.129.a) remains bounded if the first 

derivatives of all components of    are in   ( ) and the components of the PML tensor 

  ,    and    are in   ( ). These derivatives are no longer classical (pointwise) 

derivatives, but weak derivatives. 

 The second integral in (2.129.a) is a sum like 

∫   
 

 

  
    

   
    

   
                                                (     ) 
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(The squared wavenumber   
  has been removed from (2.137), as it is a constant term 

and has no bearing in the analysis.) Applying (2.132) to (2.137) and concentrating on 

the first term, it can be seen that 

|∫   
   

 

 

|  ∫    
   

  
 

                                            (       ) 

    
   ̅

    
  ∫    

  
 

                                (       ) 

The justification for (2.138.b) comes from the fact that   
    ( ̅), and therefore 

assumes a finite maximum value at some point in  ̅. So if we demand that   
    ( ), 

then the first term in (2.137) is finite. When the same analysis is extended to the other 

terms, we conclude that the second integral in (2.129.a) is bounded if all components of 

   are in   ( ). But for our purposes the space   ( ) is better to work with than   ( ), 

and then we demand that      ( ) . 

Demanding that all components of    and all their derivatives be in   ( ) is the same 

as demanding that      ( ) . 

 It is not difficult to see that the divergence from the third integral in (2.129.a), 

which is a term like         
   ⁄     

   ⁄     
   ⁄ , is in   ( ̅) and therefore 

assumes a maximum at some point in  ̅. So 

|∫       

 

|  ∫         
 

                                            (       ) 

    
   ̅

       ∫     
 

                               (       ) 

which allows us to conclude that if     ( ), then the third integral in (2.129.a) is 

bounded. As usual, we just require that     ( )    ( ). 

In addition to not have to deal with boundary integrals, (2.123) brings one more 

advantage. Expressions (2.126) and (2.128), which are a consequence of (2.123), 

somehow „fix‟ the values assumed by   at the boundary. So   is no longer determined 

up to a constant as in the Navier-Stokes system. By this, we mean that if (    ) is a 

solution to (2.129), then (      ) is not a solution for    . In order to see it, we 

just replace   by     in (2.129). The combination of all terms but one amounts to zero 

due to the fact that (    ) is a solution. The only remaining term is 

∫       

 

  ∫      

 

                                          (       ) 

  ∮     ̂
 

                                           (       ) 
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which is guaranteed to be zero only if    , as the arbitrary testing function    belongs 

to   ( ) in (2.120), a function space whose elements may possess nonzero normal 

components. Consequently, the space chosen for   is simply   ( ), and not   
 ( ) as in 

(2.71). 

 The only integral left to analyze is (2.129.b). Since      ( ) , 

   
        

   ⁄⁄  and    
   ⁄  are in   ( ). Due to (2.75) – just a consequence of 

Minkowski‟s inequality (2.73) – the divergence      is also in   ( ). In order for 

(2.129.b) to make sense,      should be in     
 ( ), as the arbitrary test function 

     
 ( ) is compactly contained in  . But it is of course true that          

 ( ), 

since   ( )      
 ( ) according to (2.17). 

 The analysis concerning the relaxed requirements on the function spaces needs 

to be completed by the study of the boundary conditions (2.129.c) and (2.129.d). 

However, in order to proceed, we need some more definitions that are peculiar to the 

electromagnetic problem. They will be explored next. 

2.2.3.4 Interlude 1: The space  (      ) 

 In the sequel, the space  (      ) will play an important role. It is defined as 

[Girault and Raviart, 1986], [Boyer and Fabrie, 2012], [Boffi et al., 2013]: 

 (      )  *    ( )          ( ) +                   (     ) 

The norm in this space is given by 

‖ ‖ (      )  (‖ ‖  ( ) 
  ‖   ‖  ( ) 

 )
 
                      (     ) 

It is not difficult to verify that 

  ( )   (      )                                              (     ) 

Proof: Let     ( )  be arbitrary. It is obvious that     ( ) , since   ( )  

  ( ) . The curl of   is given by the traditional result: 

    (
   
  

 
   

  
)  ̂  (

   
  

 
   
  

)  ̂  (
   

  
 

   
  

)  ̂               (     ) 

 From (2.31),   

‖   ‖  ( ) 
  ‖

   
  

 
   

  
‖
  ( )

 

 ‖
   
  

 
   
  

‖
  ( )

 

 ‖
   

  
 

   
  

‖
  ( )

 

   (     ) 

The Minkowski inequality (2.73) tells us that 

‖
   
  

 
   

  
‖
  ( )

 ‖
   
  

‖
  ( )

 ‖
   

  
‖
  ( )

                      (     ) 
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and likewise for the other two terms in (2.145). Consequently, 

‖
   
  

 
   

  
‖
  ( )

 

 (‖
   
  

‖
  ( )

 ‖
   

  
‖
  ( )

)

 

                    (     ) 

Since     ( ) , the derivatives of all components are in   ( ), in particular                            

     ⁄  and      ⁄ . So the right side from (2.147) remains finite. The same conclusion 

is reached in what concerns the other two terms in (2.145). The final result is that     

is square summable, i.e., that       ( ) . 

We have just showed that     ( )  and       ( ) . By (2.141),   

 (      ). Since   is arbitrary, we have just concluded that      ( )     

 (      ), or, equivalently, that   ( )   (      ). 

  

 The space  (      ) plays an important role in the functional analytic 

treatment of Maxwell‟s equations [Boffi et al., 2013], [Monk, 2003]. It serves as the 

theoretical basis for the so called edge elements, which occupy a prominent position in 

the finite element analysis of vector problems in electromagnetism [Ern and Guermond, 

2004], [Bossavit, 1997]. The functional analytic treatment of the Navier-Stokes 

problem, on the other hand, is largely based on the   ( )  space [Girault and Raviart, 

1986]. The space   ( )  is amenable to discretization via nodal elements, and hence, 

via the nodal basis functions from the traditional meshfree methods. In this work, we 

consider a vector problem in electromagnetism and, instead of providing a formulation 

based on  (      ), we provide another one based on   ( ) . In doing so, we are in 

a sense treating the electromagnetic wave scattering problem as a hydrodynamic 

problem. 

 An important subspace of  (      ), denoted by   (      ), is defined via 

density as [Boyer and Fabrie, 2012], [Monk, 2003]: 

  (      )    
 ( )  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (      )                                      (     ) 

i.e.,   (      ) is the closure of   
 ( )  in the norm (2.142). Another very useful 

density result will be stated as a theorem, whose proof can be found in [Boyer and 

Fabrie, 2012], [Girault and Raviart, 1986], [Monk, 2003]: 

Theorem 2.5: The space  (      ) – Suppose   is a bounded and Lipschitz domain 

in   . Then it is true that 

  ( ̅)  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (      )   (      )                                       (     ) 

where   ( ̅) is defined in (2.53). 

 The space  (      ) is also endowed with the notion of traces. 

Notwithstanding the fact that traces in  (      ) are still an object of research [Boffi 
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et al., 2013], there are some basic notions concerning them that will be useful to us. 

They will be stated as a theorem here, and there are proofs in [Monk, 2003] and [Boyer 

and Fabrie, 2012]: 

Theorem 2.6: Tangential traces – Let   be a bounded and Lipschitz domain in 

  .Then there exists a linear operator     (      )      ⁄ ( )  such that: 

1. If     ( ̅) , then      ̂     . 

2. There is a constant     such that ‖   ‖
    ⁄ ( )   ‖ ‖ (      ) for all   

 (      ). 

Some clarification is in order. The space    ⁄ ( ) is the range of the trace 

operator   , discussed in (2.54). This space has its dual     ⁄ ( ), which is the space of 

all functionals on    ⁄ ( ) (i.e., bounded linear operators which act on the elements of 

   ⁄ ( ) and return a real or complex a number). The original space    ⁄ ( ) is a 

Hilbert space [Boffi et al., 2013]. 

The interpretation of Theorem 2.6 is as follows: If     ( ̅) , it is well-

behaved enough so that     is just the tangential component  ̂    at the boundary  . 

On the other hand, when the only information we possess about   is that it is in 

 (      ) – be it in   ( ̅)  or not – one deduces the existence of a functional     

whose norm is related to the norm of   via the second conclusion from Theorem 2.6. 

The quantity     is some kind of „tangential component‟ of  ; hence the name 

tangential trace. 

At this point, one may ask: What are the functions from  (      ) which have 

zero tangential trace, i.e., what are those   in  (      ) for which      ? The 

answer is given by [Monk, 2003], [Girault and Raviart, 1986], and [Boyer and Fabrie, 

2012]: 

         (      )                                               (     ) 

i.e., the kernel of    is exactly the space   (      ) [defined via density in (2.148)]. 

 The trace operator    is not surjective onto     ⁄ ( ) , i.e., there are elements in 

    ⁄ ( )  which are not traces of elements from  (      ). Symbolically, it means 

that 

  ( (      ))   ( )      ⁄ ( )                                (     ) 

i.e., that the range of the trace operator    is a subspace of     ⁄ ( ) , denoted by  ( ). 

A proper characterization of  ( ) falls outside the scope of this thesis, but the following 

results will be useful for us later. For Lipschitz domains, the space  ( ) is given by 

[Monk, 2003]: 

 ( )  {    
   ⁄ ( )            ⁄ ( )}                           (     ) 
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where     is the surface divergence, defined for any    (      ) as 

   ( ̂   )    ̂  (   )            ⁄ ( )                        (     ) 

The space   
   ⁄ ( ) is defined as 

  
   ⁄ ( )  {      ⁄ ( )       ̂                }                (     ) 

where „a.e.‟ means „almost everywhere‟, and is a technicality from measure theory 

[Tao, 2011]. More details about  ( ) can be found in [Monk, 2003] and [Boffi et al., 

2013]. 

 We are now at a position to state the new „relaxed‟ requirements on the non-

homogeneous boundary conditions (2.129.c) and (2.129.d). In the analysis of the 

classical solution at Subsection 2.2.3.1, we had originally demanded that   ̂       

 (  )
 . We concluded from Subsection 2.2.3.2 that the scattered electric field    should 

now be in   ( ) ; which implies that     (      ), by (2.143). In this new setting, 

 ̂     is no longer defined pointwise at  . So we must therefore resort to the notion of 

tangential traces from Theorem 2.6 and demand that  

   
  ,

          

  ̂               
                                          (     ) 

By this, we require that (2.155) should define a functional which is in the range of the 

operator   , or equivalently, that (2.155) be an element from  ( ).  

 The system (2.129) has been analyzed term by term, and we relaxed the 

requirements in order to enlarge the search space of solutions. The conclusions are 

summarized in Table 2.2 below. 

TABLE 2.2 – REQUIREMENTS ON THE QUANTITIES IN THE SCATTERING SYSTEM 

Quantity Classical solution ‘Relaxed’ solution 

     ( )   ( ̅)    ( )  

    ( )   ( ̅)   ( ) 

           ( )   ( ) 

The relaxed problem becomes: 

     (    )    ( )    ( )                 

∫ ( ̿     )     

 

 ∫   
 

 

      ∫       

 

              ( )       (       ) 
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∫      
 

                
 ( )                                                                              (       ) 

   
  ,

          

  ̂                
                                                                                        (       ) 

Of course, all derivatives in (2.156) are meaningful if they are understood in the weak 

sense (i.e., they are weak derivatives). 

2.2.3.5 Lifting on the boundary data 

 We now assume that   ̂       is such that the boundary function 

  ,
          

  ̂                
                                               (     ) 

defines a functional which belongs to  ( ). (Rigorously speaking, a functional and a 

function are different objects. In this context, the function  , when seen in isolation, is 

just a function. It may be discontinuous. On the other hand, when it operates on testing 

functions from    ⁄ ( ) , it defines a functional).  

Since    is surjective on  ( ), there are elements from  (      ) whose 

tangential trace is exactly the   from (2.157), among which it figures our solution   . 

Let us pick up a particular element   , different from   . Such an element exists. 

Indeed, if    
   , then   ( 

   )     
    for all     (      ), because    

is linear and because   (      ) is the nullspace of   , according to (2.150). We may 

choose, for example, the    that looks „easier‟ to construct. (Here at the continuous 

level it suffices to know that such a particular    exists. On the other hand, at the 

numerical level, this particular    can be found in a remarkably easy way.) After it has 

been chosen, the function    is termed the lifting on the Dirichlet boundary condition 

(2.157). 

 However, there is a problem lurking behind our choice for   . The tangential 

trace theorem says that if    ( ), then we can find a particular     (      ) 

such that    
   . But we are working on   ( ) , which is a subspace of 

 (      ), according to (2.143). Our nodal meshfree formulation is based on   ( ) , 

and we are looking for solutions    that are in   ( ) . The problem becomes evident 

when one makes the question: What if this    belongs to  (      ), but not to 

  ( ) ? In other words, the problem is that the trace theorem says that    is in 

 (      ), and does not guarantee that    is in the more regular subspace   ( )  

 (      ). 

We must find a remedy for this situation. Once we know our functional   

 ( ), there are only two cases. 
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Case 1: We can find a lifting    in   ( )   (      ). In this case, nothing needs 

to be done. We have already found a function which is in   ( )  and whose trace is  , 

namely,   .  

Case 2: We cannot find a lifting    in   ( ) . So    is in  (      ), but not in 

  ( ) . In this case, we may recall the density result (2.149) and conclude that  

 *  +   
    ( ̅)          ‖      ‖ (      )                      (     ) 

i.e., there is a sequence of elements in   ( ̅)  which converges to    in the 

 (      ) norm. According to the first conclusion from Theorem 2.6, for all    , 

     is just  ̂      , and this quantity defines a functional in  ( ). Since of course 

    (      ), which is a linear space, the second conclusion from Theorem 2.6 

allows us to write 

          ‖  ( 
    )‖    ⁄ ( )   ‖     ‖ (      )           (     ) 

The trace operator is also linear, so (2.159) is modified into 

          ‖   
      ‖    ⁄ ( )   ‖     ‖ (      )          (     ) 

As    , (2.158) says that the right side of (2.160) approaches zero. So we conclude 

that 

   
   

‖      ‖    ⁄ ( )                                               (     ) 

Expression (2.161) means that, given any number    , no matter how small, one can 

find an element    such that ‖      ‖    ⁄ ( )   . Given that ‖  ‖    ⁄ ( )  is a 

norm, it obviously satisfies the norm axioms [Conway, 1994], [Kreyszig, 1989], [Rynne 

and Youngson, 2007], one of which states that if the norm of an element is zero, then 

this element is zero. (The specific form assumed by the aforementioned norm does not 

interest us at this moment.) Since the norm of the difference        tends to zero, so 

the difference itself tends to zero, i.e.,      gets in a sense arbitrarily close to  .  

Now pick up an     extravagantly small. There is an      ( ̅)  such that 

‖      ‖    ⁄ ( )   . It is not difficult to see that   ( ̅)    ( ) , as the 

elements from   ( ̅)  and their derivatives are all continuous and well-behaved up to 

the boundary, and therefore square summable over  . So we have managed to find an 

element from   ( )  whose trace is infinitely close to  , namely,   . 

 

To summarize: When Case 1 happens, we can find an element from   ( )  

whose trace is exactly  , and when Case 2 happens, we can find an element from 

  ( )  whose trace is arbitrarily close to  .  

This point is a delicate feature in the theory we are constructing, and we assume 

situations in which Case 1 always happens. In our future research, we will look for 
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restrictions on the domain   and on the admissible functions   such that we can find a 

lifting    which is guaranteed to be in   ( ) . 

Despite the fact that just being able to find an element    whose trace is very 

close to   does not seem a very relevant issue at the numerical level (where we can 

simply make an approximation and assume that       , which could at most 

produce a small error), at the continuous level there may be consequences which are 

more difficult to assess. So from now on, we shall deal with Case 1 only. 

 We write the scattered electric field as 

                                                               (     ) 

When applying    to both sides of (2.162), we get that    
     

     
 . Since 

   
     

   , we conclude that    
   . Moreover, since    and    are in 

  ( ) , then    is in   ( )  also. Let us introduce the space: 

  ( )  *    ( )         +                                   (     ) 

which is just a more formal way of representing the space  

*    ( )    ( ̂   )                             +                (     ) 

It is clear that      ( ). We substitute (2.162) in (2.156) and write a new problem in 

which    is the new unknown: 

     (    )    ( )    ( )                 

∫ ( ̿     )     

 

 ∫ ( ̿     )     

 

 ∫   
 

 

      ∫   
 

 

                      

∫       

 

             ( )            (       ) 

∫      
 

   ∫      
 

               
 ( )                                                   (       ) 

The nonhomogeneous Dirichlet boundary condition   in (2.157) has been embedded 

into a suitable lifting function   , so that now the new unknown    must be sought in 

the space (2.163), whose elements have zero tangential components along the boundary 

 . 

2.2.3.6 The G map 

 Expressions (2.165.a) and (2.165.b) can be summed together, which allows us to 

rewrite the problem as: 
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     (    )    ( )    ( )                 

∫ ( ̿     )     

 

 ∫ ( ̿     )     

 

 ∫   
 

 

      ∫   
 

 

                      

∫       

 

 ∫      
 

   ∫      
 

             ( )        
 ( )   (     ) 

We introduce the map 

    ( )    ( )    ( )    ( )                            (     ) 

defined by 

 (           )  ∫ ( ̿     )     
 

 

 ∫ ( ̿     )     
 

 

 ∫   
 

 

     
  

 ∫   
 

 

     
  ∫        

 

 

 ∫   
    

 

   ∫   
    

 

                                 (     ) 

where      ( )  is known from the previous section. Since   ( ) and   ( ) are 

subsets of   ( ) , and   
 ( ) is a subset of   ( ), problem (2.166) can be reset as 

     (    )    ( )    ( )                 

 (        )            ( )        
 ( )                          (     ) 

According to (2.168), the   map is linear in    and   . We must now investigate if   is 

also continuous with respect to the two last arguments. Let us concentrate on the first 

two terms from (2.168), which share the same form 

∫ ( ̿    )     

 

                                                     (     ) 

where   and   are elements from   ( ) . When expanded, (2.170) reveals its form as 

∫   

   
  

   
 

  
   

   
  

   
 

  
   

 

   
  

   
 

  
  

∫   

   

  

   
 

  
   

   

  

   
 

  
   

 

   

  

   
 

  
  

∫   

   
  

   
 

  
   

   
  

   
 

  
   

 

   
  

   
 

  
                           (     ) 

From (2.132), we learn that 

|∫ ( ̿    )     

 

|  |∫   

   
  

   
 

   

|  |∫   

   
  

   
 

   

|         (       ) 
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 ∫ |  

   
  

   
 

  
|

 

 ∫ |  

   
  

   
 

  
|

 

        (       ) 

Since   and   are in   ( ) ,      ⁄  and    
   ⁄  are in   ( ). (And likewise for the 

other terms). Consequently, the product of these quantities is in   ( ), due to the 

Hölder inequality (2.68) for    , i.e., 

‖
   
  

   
 

  
‖
  ( )

 ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

                           (     ) 

Since      ( ), we apply the Hölder inequality again and verify that 

∫ |  

   
  

   
 

  
|

 

 ‖  ‖  ( ) ‖
   
  

   
 

  
‖
  ( )

                       (     ) 

Expressions (2.173) and (2.174) together say that 

∫ |  

   
  

   
 

  
|

 

 ‖  ‖  ( ) ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

             (       ) 

   ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

                           (       ) 

where 

       {‖  ‖  ( )   ‖  ‖  ( )
   ‖  ‖  ( )}                    (     ) 

Similar conclusions are valid for all the other terms from (2.171). Inequality (2.172) is 

modified into 

|∫ ( ̿    )     

 

|                                                                                                        (     ) 

  (‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

 ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

 ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

  

‖
   

  
‖
  ( )

‖
   

 

  
‖
  ( )

 ‖
   

  
‖
  ( )

‖
   

 

  
‖
  ( )

 ‖
   

  
‖
  ( )

‖
   

 

  
‖
  ( )

         

‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

 ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

 ‖
   
  

‖
  ( )

‖
   

 

  
‖
  ( )

)           

If the define the norm in the complex   ( ) space (2.118) as in (2.24), then the complex 

conjugate may be removed from all components of   in (2.177). According to (2.34), it 

is true that 
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     ( ) 
  ‖   ‖  ( ) 

  ‖   ‖  ( ) 

 
 ‖   ‖  ( ) 

                  (       ) 

‖
   
  

‖
  ( )

 

 ‖
   
  

‖
  ( )

 

 ‖
   
  

‖
  ( )

 

  

‖
   

  
‖
  ( )

 

 ‖
   

  
‖
  ( )

 

 ‖
   

  
‖
  ( )

 

  

‖
   
  

‖
  ( )

 

 ‖
   
  

‖
  ( )

 

 ‖
   
  

‖
  ( )

 

       

whereas a similar result holds for    
  ( ) 
 . Introduce now two     vectors given by 

  *‖
   
  

‖
  ( )

 ‖
   
  

‖
  ( )

 ‖
   
  

‖
  ( )

   ‖
   
  

‖
  ( )

 ‖
   
  

‖
  ( )

+

 

       (       ) 

  *‖
   

  
‖
  ( )

 ‖
   

  
‖
  ( )

 ‖
   

  
‖
  ( )

   ‖
   

  
‖
  ( )

 ‖
   

  
‖
  ( )

+

 

   (       ) 

In this way, (2.177) can we rewritten as 

|∫ ( ̿    )     

 

|                                         (       ) 

The Cauchy-Schwarz inequality for vectors tell us that       (   )  ⁄ (   )  ⁄ . 

Also, from (2.178.a) and (2.178.b) we can see that 

     ( ) 
                                                    (       ) 

Analogously, it is true that 

   
  ( ) 
                                                    (       ) 

Back to (2.179.a), 

|∫ ( ̿    )     

 

|                 (   )  ⁄ (   )  ⁄        (       ) 

Inserting (2.179.b) and (2.179.c) in (2.179.d) allows us to conclude that 

|∫ ( ̿    )     

 

|         ( )      ( )           ( )            (     ) 

which is related to (2.85.a). By (2.42), the seminorms in (2.180) can be replaced by 

norms, and thus we get the final result we need: 
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|∫ ( ̿    )     

 

|    ‖ ‖  ( ) ‖ ‖  ( )           ( )            (     ) 

 We can now inquire about the continuity of (2.168) in what regards its last two 

arguments. The inequalities (2.86.b), (2.94) and (2.181) when applied to (2.168) reveals 

that 

  (           )  (  ‖  ‖  ( )    ‖  ‖  ( )    
 ‖  ‖  ( )            (     ) 

  
 ‖  ‖  ( )  ‖  ‖  ( ))‖  ‖  ( )  (‖  ‖  ( )  ‖  ‖  ( ) )‖  ‖  ( ) 

The continuity of the   map with respect to    and    is now evident. 

2.2.3.7 Enlarging the space of testing functions 

 Our problem (2.165) can be given a new interpretation in terms of the   map as 

in (2.169). This expression says that, if we insert the solution (    ) in the first two 

arguments, the map   assumes the value 0 whenever we consider arbitrary elements 

from   ( ) and   
 ( ) as the last two arguments, respectively. Suppose we happen 

find other spaces     ( ) and     
 ( ) such that  (        )    for all 

    and for all    . Since the (2.169) is just the traditional problem (2.166) 

written in a different form, it means that functions from these new spaces   and   

qualify as testing functions as well. 

Elements of   ( ) may be particularly difficult to build, so we are better off if 

we find another „enlarged‟ space   which contains   ( ) as a subspace and also allows 

less regular functions [which may be easier to construct than the infinitely differentiable 

elements from   ( )]. The same reasoning applies to   
 ( ). 

Fortunately, such spaces exist: They are     ( ) and     ( ). In order to 

proceed with the demonstration that such spaces qualify as testing spaces, we need the 

following density result which is stated in [Monk, 2003] (with a different notation, 

though): 

  ( ) ̅̅ ̅̅ ̅̅ ̅̅ ̅  ( )    ( )                                             (     ) 

i.e.,   ( ) is dense in   ( ) with respect to the ‖  ‖  ( )  norm (2.38). 

Let (    ) be the solution to problem (2.169). We need to prove that  

 (        )            ( )            ( )                          (     ) 

Proof: Let     ( ) and     ( ) be arbitrary. According to the density results from 

(2.183) and (2.49), respectively, 

 *  +   
    ( )         ‖     ‖  ( )                           (       ) 
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 *  +   
    

 ( )       ‖    ‖  ( )                              (       ) 

Since all elements from the sequence *  +   
  are in   ( ), and all elements from the 

sequence *  +   
  are in   

 ( ), we can employ them as testing functions in (2.169). 

Consequently, 

           (          )                                         (     ) 

The map   is linear in the last two arguments, so we write: 

 (        )   (          )   (              )               (     ) 

where (2.187) holds for all    . Of course,  

  (        )   (          )    (              )           (     ) 

But since   is bounded with respect to the two last arguments, from (2.182) we get: 

  (              )  (  ‖  ‖  ( )    ‖  ‖  ( )    
 ‖  ‖  ( )             

  
 ‖  ‖  ( )  ‖ ‖  ( ))‖    ‖  ( )                         

(‖  ‖  ( )  ‖  ‖  ( ) )‖    ‖  ( )             (     ) 

We have already assumed that      ( )    ( ) ,      ( )  and     ( ). 

So all the norms within parentheses in (2.189) are finite; for the sake of clarity, let us 

rewrite it as 

  (              )    ‖    ‖  ( )    ‖    ‖  ( )         (     ) 

where the constants    and    are finite and depend on   ,    and  . 

By letting    , we conclude from (2.185) that 

  (              )                                       (     ) 

From (2.188) and (2.191), 

  (        )   (          )                                       (     ) 

But  (          )    for all  , according to (2.186). Expression (2.192) therefore is 

true only if  (        )   . So we are allowed to conclude that: 

 (        )                                                     (     ) 

Since   and   are arbitrary, we are able to see that indeed 

 (        )            ( )            ( )                         (     ) 
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The   map is zero when we consider the enlarged spaces   ( ) and   ( ); 

problem (2.169) then assumes a new form: 

     (    )    ( )    ( )                 

 (        )            ( )            ( )                       (     ) 

When we consider the definition of the   map in (2.168), we get 

     (    )    ( )    ( )                 

∫ ( ̿     )     

 

 ∫ ( ̿     )     

 

 ∫   
 

 

      ∫   
 

 

                      

∫       

 

 ∫      
 

   ∫      
 

             ( )        ( )         (     ) 

When we first make     and   arbitrary, and then make     and   arbitrary, we are 

able to recover the scattering system (2.165) 

     (    )    ( )    ( )                 

∫ ( ̿     )     

 

 ∫ ( ̿     )     

 

 ∫   
 

 

      ∫   
 

 

                         

∫       

 

             ( )            (       ) 

∫      
 

   ∫      
 

               ( )                                                      (       ) 

but now with the testing functions in the enlarged spaces   ( ) and   ( ). 

2.2.3.8 Weak solutions 

The system (2.197) is essentially the scattering problem in weak form. After we 

get (    ) from (2.197), we add the known particular lifting function to    and finally 

get the scattered field         , according to (2.162). The pair (    ) thus 

obtained is the weak solution associated with the original problem (2.114). Or, 

equivalently, (2.197) is the variational formulation of problem (2.114). 

We have now finished the study of the variational formulation associated with 

the scattering problem. The right spaces for    and   have been identified; by „right‟ we 

mean that they both agree with the theoretical development and are amenable to a 

discretization via nodal elements. In the next chapter, we will introduce the concept of 

mixed formulations and show that the scattering system (2.197) is indeed an example of 

such.  
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Chapter 3 

Mixed formulations 

 

In this chapter, we will introduce the notion of mixed formulation, on which 

rests the concept of mixed finite elements.  

In the first section, the idea of mixed formulations will be presented in the abstract 

setting, i.e., in terms of bilinear forms acting on abstract spaces (whose nature is left 

unspecified).  

The second section specializes the notion to the case of the stationary incompressible 

Navier-Stokes system. These results are traditional, and have been explored in the 

literature for a while. It is presented here as a means for clarifying what is going on, and 

at the same time it is the departure point for the analysis of our scattering system. 

In the third chapter, we specialize the notion of mixed formulation to the scattering 

system. The problem at this point can be summarized as follows. The well-posedness of 

the mixed formulations depends, among other things, on a property of the bilinear forms 

called coercivity. But it is known that the bilinear forms associated with time-harmonic 

wave problems (and hence the scattering problem) are not coercive. In this scenario, 

well-posedness is proved through another way, called the Fredholm Alternative. This 

alternative has been used to assess the well-posedness of wave problems „in isolation‟, 

i.e., when there is only one unknown involved (for example, in the propagation of scalar 

waves). But our scattering system depends on two unknowns: the electric field and the 

pseudopressure. Our work in this chapter is to find a way to embed the Fredholm 

Alternative within the traditional framework of mixed formulations. 

3.1 Mixed formulations in abstract form 

3.1.1 Mixed variational formulations 

 Let   and   be two Hilbert spaces. We say that   is a sesquilinear form if   is a 

map 

                                                                  (   ) 

which obeys the two properties below: 

 (           )     (    )     (    )                          (     ) 
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 (           )    
  (    )    

  (    )                         (     ) 

for any  ,   ,    in  , any  ,   ,    in   and any   ,   ,   ,    in  . The field   is 

either   or  . (Of course, the complex conjugation in (3.2.b) makes sense only if   

 .) A sesquilinear form   is bounded or continuous if there is a positive constant   such 

that 

  (   )   ‖ ‖ ‖ ‖                                                (   ) 

where ‖   ‖  and ‖   ‖  are the norms in the spaces   and  , respectively.  

 Suppose         and         are two given continuous 

sesquilinear forms. Moreover, let    be an element from the dual space    i.e.,    is a 

bounded and linear functional acting on the elements from  . This is represented as 

     . In the same way, let      . We say a problem is cast in a mixed variational 

formulation (simply mixed formulation, or mixed form) if it assumes the form: 

     (   )                      

 (   )   (   )  〈    〉                                            (   ) 

 (   )                     〈    〉                                                       

In (3.4) above, 〈    〉     is the duality pairing between the functional    and the 

particular element  , i.e., it is just the action of    on   [sometimes represented as 

  ( )]. The same applies to 〈    〉    . 

3.1.2 Well-posedness 

 After we get the variational expression for our problem and discover that it fits 

the mixed form (3.4), the next step is to inquire if this form leads to a well-posed 

problem, i.e., a problem whose solution exists, is unique and depends continuously on 

the data (or is bounded in some sense).  

 The theory which investigates the conditions under which the system (3.4) is 

well-posed was developed independently by I. Babuska and F. Brezzi, and achieved 

tremendous success over the years. At the most abstract level, it is a rephrasing of 

Banach‟s Closed Range and Open Mapping Theorems [Brezis, 2010], which are used as 

tools to investigate operator equations in functional analysis. History has it that Necas 

[Necas, 1962] developed a theoretical work in which these theorems were recast in 

terms of inf-sup conditions, and that Babuska and Brezzi did further work concerning 

these inf-sup conditions in connection with finite element methods. Information about 

this theory can be found in the classical book [Brezzi and Fortin, 1991], and also in 

[Boffi et al., 2013], [Roberts and Thomas, 1991], [Ern and Guermond, 2004], 

[Quarteroni and Valli, 1994], [Brezzi and Bathe, 1990], [Chapelle and Bathe, 2011]. 
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 In this work, we will just state the final result, as the formal proof is quite 

intricate. 

Theorem 3.1: Well-posedness of mixed formulations – Let   and   be two Hilbert 

spaces, and let         and         be two continuous sesquilinear 

forms, i.e., there are positive constants    and    such that 

  (   )    ‖ ‖ ‖ ‖                                                  (     ) 

  (   )    ‖ ‖ ‖ ‖                                           (     ) 

Moreover, let    be the kernel of the sesquilinear form   i.e.,  

         *       (   )            +                     (     ) 

Suppose the sesquilinear form   is coercive on   , i.e., there is a positive constant    

such that 

  (   )    ‖ ‖ 
                                                    (     ) 

and that the sesquilinear form   satisfies the inf-sup condition, which says that there 

exists a constant      such that 

    
    * +

   
    * +

  (   ) 

‖ ‖ ‖ ‖ 
                                          (     ) 

when    , or 

    
    * +

   
    * +

 (   )

‖ ‖ ‖ ‖ 
                                          (     ) 

when    . Then, for each       and      , there is a unique solution to the 

problem 

     (   )                        

 (   )   (   )  〈    〉                                            (     ) 

 (   )                     〈    〉                                                            

Moreover, the following estimate holds: 

‖ ‖  ‖ ‖   (           )(‖ 
 ‖   ‖  ‖  )                  (     ) 

 i.e., the solution depends continuously on the data. 

 This result is central to our work. In order to show that a mixed formulation in a 

pair of Hilbert spaces is well-posed, one needs to verify the four hypotheses (3.5.a), 

(3.5.b), (3.5.d) and (3.5.e) [or (3.5.f)]. Given that the sesquilinear forms are usually 

continuous, one actually needs to concentrate on verifying (3.5.d) and (3.5.e) [or 
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(3.5.f)]. The conditions (3.5.e) and (3.5.f) are particularly important, since they establish 

some kind of compatibility criterion between the two Hilbert spaces under 

consideration. They are also called the Babuska-Brezzi conditions, due to the fathers of 

the theory. In (3.5.h),   is a constant whose values depend on the other constants 

appearing in hypotheses (3.5.a), (3.5.b), (3.5.d) and (3.5.e). Of course,   does not 

depend on either   or  . 

3.2 Mixed formulation for the Navier-Stokes system 

3.2.1 Continuity and coercivity must be checked 

 When the Navier-Stokes system (2.109) is rewritten so as to transfer all 

information about the excitation source   and the lifting function    to the right side, it 

assumes the form: 

     (    )    
 ( )    

 ( )                                         (   ) 

∫         ∫ ,(    )  -   
  

 ∫ ,(    )  -
 

   ∫ ,(    )  -
 

   

 ∫      
 

 ∫   
 

  ∫        
 

 ∫ ,(    )  -   
 

           
 ( )             

 ∫     
 

   ∫     
 

             
 ( )                                                                                 

The Navier-Stokes system is clearly nonlinear, due to the convective term. 

Rigorously speaking, the best way to account for the nonlinearity is to insert a trilinear 

form   in (3.5.g), instead of a bilinear form [careful observation reveals that there are 

three „slots‟ in each of the second, third and fourth integrals from (3.6)].  

Since in the Navier-Stokes system the quantities are real, sesquilinear forms 

automatically become bilinear forms. In other words, for the Navier-Stokes system, 

   . 

 So let it be the trilinear form  (          )   ( )    ( )    ( )    be 

defined as 

 (      )  ∫        ∫ ,(    ) -   
  

                            (   ) 

∫ ,(   )  -
 

   ∫ ,(    ) -
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In (3.7), the unknown    is fixed in the first slot from the second integral, so there are 

only two „free‟ slots in each integral, precisely those occupied by   and  . One 

observes that (3.6) assumes the form (3.5.f), if we make the following identifications: 

  
 ( )                            (     ) 

   ( )                           (     ) 

  
 ( )                             (     ) 

  
 ( )                            (     ) 

*   +  (∫       
 

 ∫ ,(    ) -    
 

 

∫ ,(   )  -
 

   ∫ ,(    ) -
 

  )   (          )          (     ) 

*   +  ( ∫      
 

)   (      )                 (     ) 

(∫   ( )
 

 ∫       ( )
 

 ∫ ,(    )  -  ( )
 

)                            (     ) 

(∫ ( )   
 

  )                            (     ) 

In (3.8.b), the dual space of   
 ( ) is traditionally represented as    ( ), instead of 

  
 ( ) . Since   

 ( ) is a Hilbert space, its dual is   
 ( ) itself. (Hilbert spaces and their 

duals may be identified with each other, via Riesz‟s representation theorem [Conway, 

1994], [Kreyszig, 1989], [Rynne and Youngson, 2007].) In (3.8.e), *   + means 

„consider *   + as unknowns to be inserted as the arguments for  (          )‟, whereas 

in (3.8.f) *   + means „consider *   + as unknowns to be inserted as the arguments for 

 (      )‟. In (3.8.g) and (3.8.h), the empty parentheses are to be filled with elements from 

  
 ( )  and   

 ( ), respectively. 

 According to the identification (3.8), problem (3.6) can be rewritten as 

     (    )    
 ( )    

 ( )                    

 (       )   (   )  〈    〉   ( )    
 ( )          

 ( )                     (   ) 

 (    )                           〈    〉  
 ( )    

 ( )              
 ( )                                  

In order to apply Theorem 3.1 to (3.9), some observations are in order. We 

notice that a slight modification had to be done in order to make the identification (3.8) 

fit the model from Theorem 3.1, namely, that a trilinear form   should be used instead 
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of a bilinear form  . In a sense, this reflects the power of Theorem 3.1: It is advisable to 

always try to reduce a system to the form (3.5.f), in order to enjoy the conclusions it 

provides. 

If the trilinear form   with its first argument fixed as    has the same properties 

as those of a bilinear form, i.e., if it satisfies (3.5.a) and (3.5.d), then it is shown that the 

conclusions of Theorem 3.1 are automatically transferred to the system (3.9) [Girault 

and Raviart, 1986]. 

However, since we will not be concerned with the solution of the Navier-Stokes 

system in this work, (its presentation being just a means to guide our reasoning in what 

concerns the scattering system), we will no longer dwell on these details. 

 According to [Girault and Raviart, 1986], the forms   from (3.8.e) and   from 

(3.8.f) are continuous. Moreover, still according to [Girault and Raviart, 1986], the 

following relation holds:  

 (      )  ∫       
 

 ∫ ,(    ) -   
 

                      (    ) 

∫ ,(   )  -
 

   ∫ ,(    ) -
 

                              

       ( ) 
                                                                       

where  

  *    
 ( )         +                                             (    ) 

and   is a positive constant. In (3.11), equality is understood in the    sense, i.e.,  

  ,    
 ( )    ∫     

 

           
 ( )-                          (    ) 

But   is precisely the kernel of the bilinear form   in (3.5.c) after the identification 

(3.8), i.e.,  

      ,    
 ( )    ∫     

 

           
 ( )-                         (    ) 

From (3.10) and (3.13),  

 (      )        ( ) 
                                              (    ) 

In order to show that the seminorm in the right of (3.14) can be replaced by a norm, we 

need the following result, stated as a theorem [Quarteroni and Valli, 1994], [Ern and 

Guermond, 2004], [Salsa, 2008]: 
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Theorem 3.2: Poincaré inequality – Let   be a bounded and connected open set of 

  , together with its boundary     . Suppose that     is a Lipschitz-continuous 

subset of non-zero measure. Then there is a constant      such that 

‖ ‖  ( )
    ‖  ‖  ( ) 

             
 ( )                           (      ) 

where   
 ( ) is the space 

  
 ( )  *    ( )                                +               (      ) 

When   corresponds to the whole boundary  , it means that    
 ( )    

 ( ). 

But according to (3.15.b),   
 ( )  *    ( )                                +, 

which is exactly the traditional space   
 ( ) from (2.55). 

 Let now     
 ( ) . If we apply (3.15.a) to all components of  , we get that  

‖ ‖  ( ) 
         ( ) 

                                                 (    ) 

Inequality (3.16) implies that      ( ) 
  ‖ ‖  ( ) 

  (    )     ( ) 
 , whose left 

side is precisely ‖ ‖  ( ) 
 , according to (2.42). So we get 

     ( ) 
  

 

(    )
‖ ‖  ( ) 

                                           (    ) 

From (3.14) and (3.17) we conclude that 

 (      )  
 

(    )
‖ ‖  ( ) 

                                       (    ) 

i.e., the form  (          ) is coercive in the kernel of  , and therefore satisfies 

requirement (3.5.d). 

 The last step to be shown in order for all requirements from Theorem 3.1 to be 

satisfied is the inf-sup condition (3.5.e). 

3.2.2 The inf-sup condition must be checked 

 Let us get back to the sesquilinear/bilinear forms in abstract Hilbert spaces   

and  . Suppose we are given a continuous sesquilinear form        . Its action 

is such that 

 (     )                                                            (    ) 

If we fix the first argument   , then the map 

 (       )                                                            (    ) 
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defines a functional on  . It can be proved [Chapelle and Bathe, 2011] that (3.20) 

defines a bounded and linear functional on  , an hence, an element from the dual space 

  . Since this functional depends on the fixed choice for   , it is represented as 

      . We therefore write 

 (     )   〈      〉                                                  (    ) 

The operator   in (3.21) is sometimes referred to as „induced by the sesquilinear form 

 ‟. So   maps elements from   (e.g.   ) into elements from    [e.g.      (       )], 

i.e., 

                                                                     (    ) 

Again, it can be shown that the operator   is linear is bounded in the operator norm 

[Chapelle and Bathe, 2011]. 

 Similar conclusions are reached concerning a form   which operates on two 

distinct spaces. Suppose we are given a continuous sesquilinear form        . So 

 (   )                                                            (    ) 

If we fix the element    , then the map 

 (     )                                                              (    ) 

defines an element from the dual space   , which is represented as      . The 

operator   is also „induced by the sesquilinear form  ‟: 

 (   )   〈    〉                                                     (    ) 

This operator   maps elements from   into elements from   , i.e., 

                                                                    (    ) 

Moreover,   is bounded in the operator norm. 

 In (3.24), we could have fixed     instead. The map 

 (     )                                                             (    ) 

then defines an element from   , which is represented as      . The operator    

maps elements from   into   , i.e.,  

                                                                 (    ) 

and its operation is characterized by 

 (   )   〈     〉                                            (    ) 
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The operators   and    are adjoints, and are induced by the same sesquilinear form  , 

as (3.25) and (3.29) reveals. 

 The problem in mixed form (3.4), which is repeated below for convenience, 

     (   )                      

 (   )   (   )  〈    〉                                            (    ) 

 (   )                     〈    〉                                                          

can be recast in terms of operators if (3.21), (3.25) and (3.29) are employed. We begin 

by rewriting (3.30) as 

     (   )                      

〈    〉     〈     〉     〈    〉                                  (    ) 

〈    〉                                   〈    〉                                                

In the first equation from (3.31), the duality pairing 〈      〉     is obviously equal to 

〈     〉    . Since all duality pairings are linear, the system (3.31) can be written as 

     (   )                      

                                                                   (    ) 

                                                                                          

The system (3.32) is an operator equation, i.e., the equations represent relations valid 

within the dual spaces    (the first) and    (the second). Since elements from dual 

spaces are characterized by their actions on the elements from the original spaces, by 

„testing‟ the functionals from system (3.32) on arbitrary functions from   and  , one 

recovers system (3.31). 

 The goal of this section is to show that the inf-sup condition (3.5.e) holds for the 

bilinear form   from (3.8). But we need first a very important result concerning the inf-

sup conditions, stated as a theorem [Girault and Raviart, 1986], [Quarteroni and Valli, 

1994], [Gerbeau et al., 2006], [Boffi et al., 2013]: 

Theorem 3.3: On the inf-sup condition – Suppose   and   are Hilbert spaces. Let 

        be a continuous sesquilinear form. Then assertions (i), (ii), and (iii) 

below are equivalent to each other 

(i) When    , it holds the inf-sup condition, i.e., there is a positive constant    such 

that 

    
    * +

   
    * +

  (   ) 

‖ ‖ ‖ ‖ 
                                           (      ) 

which may also be written in its equivalent form as 
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            * +                   (   )    ‖ ‖ ‖ ‖          (      ) 

Analogously, when    , it holds the inf-sup condition, i.e., there is a positive 

constant    such that 

    
    * +

   
    * +

 (   )

‖ ‖ ‖ ‖ 
                                           (      ) 

which may also be written as 

            * +                  (   )    ‖ ‖ ‖ ‖          (      ) 

(ii) The operator         is injective and has a closed range. 

(iii) The operator        is surjective. 

Moreover, if (3.33.a) or (3.33.c) holds, then it can be shown that 

(iv)  

   
    * +

〈     〉    

‖ ‖ 
   ‖ ‖                                       (      ) 

(v) 

   
    * +

〈    〉    

‖ ‖ 
   ‖ ‖          (  )                       (      ) 

where the Hilbert space   is decomposed as      (  )  . 

 

In (3.33),   * + is the space   with the zero element removed, and likewise for   * +. 

The subspace    is just the kernel of the sesquilinear form  , defined in (3.5.c). 

 In order to show that (3.33a) [or (3.33.c)] holds, which may be very difficult, 

trying to prove one of the equivalent assertions (ii) or (iii) is a good strategy.  

 In what regards the Navier-Stokes system (for which    ), the identification 

(3.8) reveals that the bilinear form   is characterized by 

 (   )   ∫      
 

                                               (    ) 

for which the underlying spaces   and   are   
 ( )  and   

 ( ), respectively. If we 

take an arbitrary     
 ( )  and write, as in (3.25),  

 (   )  〈    〉  
 ( )    

 ( )   ∫      
 

         
 ( )                 (    ) 
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we see that        , as the integral is a representation of the duality pairing 

between   
 ( ) an its dual. In the specific case of the Navier-Stokes system the operator 

  is the negative of the divergence operator, i.e.,      . So        from (3.26) 

becomes  

       
 ( )    

 ( )                                                  (    ) 

At this point it would be remarkable if one could just show that     is 

surjective. If one succeeded in showing it, by Theorem 3.3 it is implied that the inf-sup 

condition (3.33.c) also holds. Before we proceed to verifying if such a proof exists or 

not, we need to clarify some points concerning the space   
 ( ). 

Observation 3.1: The space   
 ( ) – Originally, for bounded domains in   , the space 

  
 ( ) is defined as   ( )  ⁄ , i.e., the spaces of classes of functions of   ( ) which 

differ (a.e.) by a constant. (Rigorously speaking, an element of   
 ( ) is a subset, not a 

single function). Let   ( ) be divided into non-overlapping subsets, called classes. 

Each class (a subset) is formed by all elements from   ( ) which differ from each other 

by a constant. For example, if     ( ) belongs to a class, then all other elements of 

the type    ,    , belong to the same class. 

When equipped with the inner product 

(   )  
 ( )  ∫ (     )(     ) 

 

                              (      ) 

where the average (or mean) of any     ( ) is  

    
 

   
∫  
 

                                                      (      ) 

it can be proved that   
 ( ) is a Hilbert space [Boyer and Fabrie, 2012]. Moreover, it 

can also be shown that   
 ( ) is isomorphic to the closed subspace of   ( ) whose 

functions have zero average. This means that, instead of working with subsets of 

functions (classes), we can work with individual functions by choosing a specific 

representative of each subset. This representative happens to be precisely those whose 

average is zero. So in a sense,   
 ( ) can be identified with the subspace 

,    ( )   
 

   
∫    
 

-                                        (      ) 

already introduced in (2.71). By restricting attention only to those elements whose 

average is zero, the expression for the inner product in (3.37.a) becomes similar to the 

expression for the standard inner product in   ( ).  
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Since under these circumstances   
 ( ) is a Hilbert space by itself, it can be identified 

with its dual, i.e.,   
 ( )    

 ( ) . More discussion about the structure of the   
 ( ) 

space can be found in [Boyer and Fabrie, 2012]. 

 With this new information, (3.36) is modified into 

       
 ( )    

 ( )                                                (    ) 

 The main result of this section is: The divergence operator (3.37) is surjective. 

The result comes from a powerful theorem, due to Bogovskii [Bogovskii, 1980], [Boyer 

and Fabrie, 2012], [Galdi, 2011]. 

Theorem 3.4: Surjectivity of the divergence operator – Let   be a connected, 

bounded and Lipschitz domain of   . Then there exists a continuous linear operator   

from   
 ( ) into   

 ( )  such that, for all     
 ( ), the function    ( ) satisfies 

                                                                  (    ) 

In order to show that Theorem 3.4 implies the surjectivity of the divergence, let 

us first state what it is meant by surjectivity. The operator     in (3.37) is surjective if 

we can show that 

     
 ( )        

 ( )                                          (    ) 

Indeed, by letting     
 ( ) be arbitrary, it is obviously true that its negative –   

also belongs to   
 ( ). According to Theorem (3.4), there is an element    (  ) 

from   
 ( )  such that       . Of course, this last equation is equivalent to 

      . We have just showed that, for any   in   
 ( ), we are able to find a   in 

  
 ( )  such that       , which is nothing else than (3.39). Therefore,     is 

surjective. 

The surjectivity of     being proved, according to Theorem 3.3, the following 

inf-sup condition holds: 

    
    

 ( )
   

    
 ( ) 

 ∫      
 

‖ ‖  
 ( ) ‖ ‖  

 ( )
                                 (    ) 

When dealing with real function spaces, as it is generally the case regarding the Navier-

Stokes, expression (3.40) assumes the equivalent form 

    
    

 ( )
   

    
 ( ) 

∫      
 

‖ ‖  
 ( ) ‖ ‖  

 ( )
                                 (    ) 

 In order to see it, suppose (3.40) is true. According to Theorem 3.3, it is 

equivalent to 

     
 ( )        

 ( )  * +           ∫      
 

   ‖ ‖  
 ( ) ‖ ‖  

 ( )     (    ) 
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Let     
 ( ) be arbitrary. Then there is a      

 ( )  * + such that 

 ∫       
 

   ‖  ‖  
 ( ) ‖ ‖  

 ( )                                   (    ) 

Introduce the element       . Of course,      
 ( )  * +. Since       , 

substitute this into (3.43) in order to get 

∫       
 

   ‖  ‖  
 ( ) ‖ ‖  

 ( )                                   (    ) 

For our choice of  , we have just deduced the existence of an element   from   
 ( )  

* +, namely,   , such that  

∫      
 

   ‖ ‖  
 ( ) ‖ ‖  

 ( )                                   (    ) 

In other words, for our particular choice of  , we showed that 

     
 ( )  * +          ∫      

 

   ‖ ‖  
 ( ) ‖ ‖  

 ( )             (    ) 

Since this     
 ( ) was arbitrary, we conclude that 

     
 ( )        

 ( )  * +          ∫      
 

   ‖ ‖  
 ( ) ‖ ‖  

 ( )      (    ) 

which, according to Theorem 3.3, is equivalent to (3.41). In order to prove the converse, 

by a similar reasoning, we begin with (3.41) and show that (3.40) holds. 

When specializing the system (3.4) to the Navier-Stokes setting via the 

identification (3.8), one is able to show that all requirements from Theorem 3.1 are 

satisfied. In this way, it follows that the (weak) solution to the stationary incompressible 

Navier-Stokes system exists, is unique and depends continuously on the data. 

 Now that the long path connecting the original differential equations to the well-

posedness of their variational formulations has been established, we will no longer 

make any reference to the Navier-Stokes system in the course of this thesis. It was a 

kind of „preparatory journey‟, and it is time to devote all our attention to the scattering 

system. We are on our own now. But thanks to the acquired expertise, we do not expect 

great difficulties. 
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3.3 Mixed formulation for the scattering system 

3.3.1 Determining the structure of the problem 

 When the scattering system (2.197) is rewritten in such a way that all known 

information from the lifting function    is moved to the right side, it takes the form: 

     (    )    ( )    ( )           

∫ ( ̿     )     

 

 ∫   
 

 

      ∫       

 

  

 ∫ ( ̿     )     

 

 ∫   
 

 

                ( )            (      ) 

 ∫      
 

   ∫      
 

             ( )                                                             (      ) 

The scattering system is linear, and     i.e., the forms are going to assume 

complex values. If we make the identification: 

  ( )                            (      ) 

  ( )                           (      ) 

  ( )                             (      ) 

  ( )                            (      ) 

*   +  (∫ ( ̿    )     

 

 ∫   
 

 

    )   (      )                 (      ) 

*   +  ( ∫       
 

)   (      )                 (      ) 

( ∫ ( ̿     )   ( ) 

 

 ∫   
 

 

   ( ) )                            (      ) 

(∫ ( )    
 

  )                            (      ) 

 The basic space for the electric field is   ( ), defined in (2.163). It is a 

subspace of   ( ) , and when equipped with the inner product of the parental space 

  ( ) , it becomes a Hilbert space on its own. We show this in Chart 3.1 below. 
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Chart 3.1 –   ( ) is a Hilbert space. 

In order to see it, we need first to show that   ( ) is closed in the ‖   ‖  ( )  norm 

(which happens to be the norm induced by the inner product). Showing that   ( ) is 

closed amounts to showing that it contains all its limit points. 

So let     ( )  be an arbitrary limit point of   ( ). [We need to prove that   

  ( ).] It follows that 

 *  +   
    ( )       ‖     ‖  ( )                                   (    ) 

Since   and all elements from   ( ) are in   ( ) , they are also in  (      ), as 

  ( )   (      ), from (2.143). We apply Theorem 2.6 to the difference      : 

          ‖  (    )‖    ⁄ ( )   ‖    ‖ (      )                    (    ) 

The tangential trace    is linear, so   (    )          . Expression (3.51) 

becomes 

          ‖        ‖    ⁄ ( )   ‖    ‖ (      )                    (    ) 

For any sequence of vectors *  +   
  in   ( ) , if ‖  ‖  ( )   , then 

‖  ‖ (      )   . In order to see why,  ‖  ‖  ( )    means that all Cartesian 

components of    go to zero in the   -norm, and also that all derivatives of all 

Cartesian components also go to zero in the   -norm. In this way, since the components 

of       are combinations of the derivatives of the components of   , then ‖  

  ‖  ( )  goes to zero as well. 

Since *     +   
  is a sequence in   ( ) , and due to (3.50), we can pass to the limit 

in (3.52) and get 

‖        ‖    ⁄ ( )                                            (    ) 

But for all    in   ( ),       , due to the very definition of this space. Then, 

‖   ‖    ⁄ ( )                                                    (    ) 

which is meaningful only if ‖   ‖    ⁄ ( )   . By the norm axioms, we conclude that 

     . 

So     ( )  and      . Consequently,     ( ). Since   was an arbitrary limit 

point, it can be concluded that   ( ) is closed. 

There is a theorem which lists the circumstances under which a subspace of a Hilbert 

space is a Hilbert space by itself [Kreyszig, 1989], [Conway, 1994]: 



 

86 
 

Theorem 3.5: Subspaces of Hilbert spaces – Let   be a Hilbert space and     be 

a subspace of it, i.e., the inner product on   is just the inner product on   restricted to 

elements from  . Then   is complete (and hence Hilbert) if and only if   is closed. 

Since   ( )  is a Hilbert space and   ( ) is a closed subspace of it, Theorem 3.5 

allows us to conclude that   ( ) is a Hilbert space by itself. 

In (3.49.e), *   + means „consider *   + as unknowns to be inserted as the 

arguments for  (      )‟, whereas in (3.49.f) *   + means „consider *   + as unknowns to 

be inserted as the arguments for  (      )‟. In (3.49.g) and (3.49.h), the empty parentheses 

are to be filled with elements from   ( ) and   ( ), respectively. 

According to the identification (3.49), problem (3.48) can be rewritten as 

     (    )    ( )    ( )           

 (    )   (   )  〈    〉  ( )    ( )         ( )                    (    ) 

 (    )                     〈    〉  ( )    ( )          ( )                                  

Problem (3.55) fits the framework of Theorem 3.1. In order to show that (3.55) is well-

posed, all one needs to do is to verify the four hypotheses (3.5.a), (3.5.b), (3.5.e) and 

(3.5.f). However, straight from the beginning, there is a serious issue with the 

sesquilinear form  : 

 (   )  ∫ ( ̿    )     

 

 ∫   
 

 

               ( )              (    ) 

The sesquilinear form (3.56) and variants thereof result from standard variational 

formulations associated with the Helmholtz equation, which is one of the pillars in the 

study of time-harmonic waves. The question is that sesquilinear forms associated with 

the Helmholtz equation are known to be not coercive, i.e., they do not satisfy a 

condition such as (3.5.d) [Ihlenburg, 1998], [Moiola and Spence, 2014]. This poses a 

difficulty when assessing the well-posedness of the weak formulations in which they 

occur. In the next section, the well-posedness of the scattering system (3.55) will be 

studied in a different way. 

3.3.2 Well-posedness 

 When the sesquilinear form under examination is not coercive, one can resort to 

other methods to show that the variational problem is well-posed. The Fredholm 

Alternative is generally employed in the study of the variational formulation resulting 

from the Helmholtz equation [Evans, 2010], [Salsa, 2008], [Ihlenburg, 1998]. 

The application of the Fredholm Alternative to the study of the well-posedness 

of differential equations is generally presented for problems in a single variable. We, on 
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the other hand, are interested in problems described by two variables, namely, the 

scattered electric field and the Lagrange multiplier (pseudopressure). 

What we are going to do is to find a way to merge the Fredholm Alternative and 

the theory of mixed formulations in order to get a result similar to Theorem 3.1, able to 

take non-coercive forms into account. The next sections are, in a sense, the most 

important of this thesis, since they will provide the theoretical basis for the meshfree 

method to be presented later. 

3.3.3 The Fredholm Alternative 

 In order to state the Fredholm Alternative, we need some more notions. 

 A sequence of elements *  +   
  in a normed space   is bounded if there is a 

positive real number   such that the norm of all elements of the sequence is smaller 

than or equal to  , i.e.,  

       ‖  ‖                                                     (    ) 

 Among the notions of compactness, the one that suits best our purposes is the 

sequential compactness [Searcóid, 2007], [Conway, 1994], [Kreyszig, 1989]. In relation 

to operators, a compact operator can be characterized as follows. Suppose   and   are 

normed spaces, and       is a bounded linear operator. We say that   is compact if 

and only if for any bounded sequence *  +   
  in  , the image sequence *  +   

  

*   +   
  in   admits a convergent subsequence. 

 The space of all bounded linear operators between normed spaces   and   is 

usually represented as  (   ), whereas the space of all compact operators between   

and   is represented as  (   ). It can be proved that  (   ) is a closed linear 

subspace of  (   ) [Brezis, 2010]. 

 In what regards compact operators, the following result holds true (it is generally 

not stated as a theorem, but we will call it so here) [Conway, 1994], [Brezis, 2010]: 

Theorem 3.5: Composition of operators – Let  ,   and   be three Banach spaces. 

Suppose that operators   and   are such that either 

(i)    (   ) and    (   ) or 

(ii)    (   ) and    (   ) is the case. Then  

     (   )                                                         (    ) 

 We can now state the Fredholm Alternative, in the form of a theorem [Brezis, 

2010]. 
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Theorem 3.6: The Fredholm Alternative – Let   be a normed vector space, and let 

   (   ). Then, 

(i)    (    ) is finite dimensional. 

(ii)  (    ) is closed. Moreover,  (    )  (   (     ))
 

. 

(iii)    (    )  *  +   (    )   . 

(iv)        (    )         (     ). 

 

In the statement of Theorem 3.6 above,     denotes the kernel, or null space of 

an operator, and    is the identity operator on the space  , i.e.,    maps elements of   to 

themselves:             . Also, „ ‟ means the range or image of an operator, and  

   is the adjoint operator. (In the course of our work, the notion of adjoint operator will 

not be necessary, so we will not state the definition here. Standard books on functional 

analysis discuss it exhaustively.) Finally,    is the zero element of the space   (in order 

to distinguish it from the real number 0), and „   ‟ means „dimension‟. 

Theorem 3.6 is stated in very abstract terms, i.e., it expresses relations between 

kernels and ranges of operators in spaces whose nature is left unspecified. In this thesis, 

we are concerned with sesquilinear forms „acting‟ on function spaces, so more 

specialization is required. Before we move on, we need more definitions. 

3.3.4 Embeddings 

 Let   and   be two Hilbert spaces. We say that   is continuously embedded in 

 , represented as    , if two requirements are met. First, there is an injective and 

structure preserving map  

                                                                   (    ) 

For our purposes, this map will be either the inclusion map (the case when    , and 

     is just the identity map) or the Riesz map (the case when     , and       is the 

map which identifies an element from a Hilbert space with a functional in its dual space, 

according to the Riesz‟s representation theorem). The second requirement is that the 

map      is continuous, i.e.,  

‖    ( )‖    ‖ ‖                                                 (    ) 

where    is a positive constant independent of  . When the linear structure is preserved 

(as is the case in our applications), (3.59) and (3.60) allows us to conclude that 

      (   )                                                           (    ) 
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In the spaces   and  , the norms are usually different, so   measured by the norm of   

is not generally equal to     ( ) measured by the norm of  . These measurements are 

related via (3.60), though. 

 When establishing the existence and uniqueness of solutions to variational 

problems, the following result will be useful [Böhmer, 2010], [Salsa, 2008]. 

Theorem 3.7: Embeddings – Let   and   be two Hilbert spaces, and suppose that 

   . If we define an operator   by 

〈 ( )  〉     (      ( ))                                           (    ) 

then  

   (    )                                                          (    ) 

Proof: Fix an arbitrary    . Then 

|〈 ( )  〉    |  |(      ( )) |  
‖ ‖ ‖    ( )‖                  (      ) 

according to the Cauchy-Schwarz inequality in the Hilbert space  . From (3.60), we see 

that 

|〈 ( )  〉    |    ‖ ‖ ‖ ‖                                       (      ) 

and it becomes evident that 

‖ ( )‖      
    * +

|〈 ( )  〉    |

‖ ‖ 
   ‖ ‖                      (      ) 

and so  ( ) is a bounded linear functional on  , i.e.,  ( )    . Since     was 

arbitrary, we get that 

‖ ( )‖     ‖ ‖                                            (      ) 

which implies that 

‖ ‖ (    )     
    * +

‖ ( )‖  

‖ ‖ 
                               (      ) 

Since    is finite,   is a bounded linear operator, i.e.,    (    ). 
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3.3.5 Well-posedness of non-coercive problems 

 Based on the material we have gathered so far, we can now state and prove a 

result concerning the well-posedness of problems in which the sesquilinear form   is 

not coercive. 

Theorem 3.8: Non-coercive problems – Suppose the following hypotheses are true: 

(i)   and   are two Hilbert spaces satisfying the requirements of Theorem 3.7, i.e., 

   . 

(ii) The map      is compact, i.e.,       (   ). 

(iii)  (      )       is a continuous sesquilinear form. 

(iv) The sesquilinear form from item (iii) satisfies the property: There exist constants 

    and      such that 

  * (   )+    ‖    ( )‖ 
   ‖ ‖ 

                               (    ) 

It can be concluded that if the solution to the homogeneous (zero-data) problem 

                              

 (   )                                                                 (    ) 

is the zero element     , then it is true that: 

(a) The solution to the general problem 

                           

 (   )  〈   〉                                                         (    ) 

exists and is unique for every functional     .  

(b) The solution   from (a) depends continuously on the data, i.e., there exists a positive 

constant     such that 

‖    ( )‖     ‖ ‖                                                  (    ) 

 In (3.65),   *   + means „the real part of‟. Theorem 3.8 says that uniqueness (the 

kernel of the form   is the zero element) implies existence. This theorem is so important 

for the development of our work that we shall prove it. There is a sketch of the proof in 

[Evans, 2010], restricted to the case when     
 ( ) and     ( ). We, on the other 

hand, develop a complete proof in the abstract setting, always emphasizing the operators 

which appear in the course of the development. We provide all details required by our 

standards, and the consequence is a rather long process, over ten pages long. The proof, 

which depends on Theorems 3.5, 3.6 and 3.7, has been moved to Appendix 1 in order to 

keep the continuity of the text. 
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 We will now state the main theorem of this thesis, which deals with mixed 

formulations in which the sesquilinear form   is not coercive. In a sense, we shall merge 

Theorems 3.1 and 3.8 together. The challenge is to substitute the coercivity hypothesis 

(3.5.d) by condition (3.65) at the right place. This needs to be done in order to 

accommodate the Fredholm Alternative. In a sense, Theorem 3.9 is a mixture between 

the Fredholm Alternative and the Babuska-Brezzi theory of mixed formulations. 

Theorem 3.9: Well-posedness of mixed formulations, non-coercive case – Let   and 

  be two Hilbert spaces, and let         and         be two continuous 

sesquilinear forms, i.e., there are positive constants    and    such that: 

(i)   is continuous, i.e.,  

  (   )    ‖ ‖ ‖ ‖                                           (      ) 

(ii)   is continuous, i.e.,  

  (   )    ‖ ‖ ‖ ‖                                           (      ) 

Let    be the kernel of the sesquilinear form   i.e.,  

         *       (   )            +                        (      ) 

Consider a third Hilbert space   such that    and   satisfy the requirements of 

Theorem 3.7, i.e., 

(iii)    is continuously embedded into  , i.e.,     . 

Moreover, it holds that: 

(iv) The map       is compact, i.e.,        (    ). 

(v) The sesquilinear form   satisfies the following property on the kernel   : There 

exist constants     and      such that 

  * (   )+    ‖     ( )‖ 
   ‖ ‖ 

                                (      ) 

(vi) The sesquilinear form   satisfies the inf-sup condition, i.e., there is a positive 

constant      such that 

    
    * +

   
    * +

  (   ) 

‖ ‖ ‖ ‖ 
                                          (      ) 

(vii) The solution to the homogeneous (zero-data) problem at the kernel    

                    

 (   )                                                     (      ) 

is the zero element    . Furthermore, let us assume that: 



 

92 
 

(viii) The original space   is also continuously embedded  , i.e.,    . 

(ix) The spaces   and    are subspaces of  , i.e.,     and      (which implies 

that      and       are inclusion maps). 

Then it can be concluded that for each       and      , there is a unique solution 

to the mixed problem 

     (   )                        

 (   )   (   )  〈    〉                                            (      ) 

 (   )                    〈    〉                                                               

It also follows that the solution   depends continuously on the data    and    in the   

norm, i.e., there are positive constants    and    such that 

‖ ‖    ‖ 
 ‖     ‖ 

 ‖                                    (      ) 

 

Note: The embedding map in expression (3.69.d) can make things look more 

complicated than they really are, and some explanation is required. To begin with, the 

element   belongs to   , which is a subspace of the original Hilbert space  , 

according to (3.69.c). In this way, as an element of   (because     ), it is 

originally measured in the ‖   ‖   norm, i.e., its ‘original size’ is ‖ ‖ .  

The embedding       takes this   and maps it to the element      ( ), which belongs 

to the Hilbert space  , different from the original Hilbert space  . The ‘size’ of the 

element      ( ) is therefore given by the norm in  , i.e., by ‖     ( )‖ . In 

principle, ‖ ‖  and ‖     ( )‖  are different.  

In this work, it will be the case that     , according to hypothesis (ix). The 

implication is that the element   will be mapped to itself, i.e.,      ( )   . In the end, 

we will get two ways of assessing the ‘size’ of  : ‖ ‖  and ‖ ‖ .  

However, when we want to measure the size of   in the norm of  , as in (3.69.d), we 

will keep the embedding map and indicate this as ‖     ( )‖  instead of ‖ ‖ . So 

this is the role of embeddings (at least in this work): To provide more than one measure 

for the size of an element. 

  

In order to prove this theorem, we need some additional results from functional 

analysis. The first concept is that of annihilator, also called polar set [Brezis, 2010], 

[Quarteroni and Valli, 1994]. Let   be a Banach space, and let   be a subspace of  , 

i.e.,    . The annihilator of   is the set 

   {        〈   〉              }                          (      ) 
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i.e., if a functional       is such that its action on all elements from the subspace   is 

zero, then   belongs to the annihilator of  . The next result we need is the Banach 

Closed Range Theorem. However, we do not need all its conclusions, so we will state 

just the two which will be useful to us. The proof and the other conclusions can be 

found in [Brezis, 2010]. 

Theorem 3.10: Banach Closed Range Theorem (incomplete) – Let   and   be two 

Banach spaces, and suppose that   is a bounded and linear operator between   and  , 

i.e.,     (   ). Then 

 ( )  (      )                                               (      ) 

 (  )  (     )                                                 (      ) 

Expression (3.70.b) says that the range of operator   is equal to the annihilator of the 

kernel of the adjoint   . Conversely, (3.70.c) means that the range of the adjoint 

operator    is equal to the annihilator of the kernel of  . 

 Since the proof of Theorem 3.9 also occupies a number of pages, it has been 

moved to Appendix 2. 

3.3.6 Back to the scattering system 

 The challenge now is to show that our electromagnetic problem (3.48), together 

with the identification (3.49), does indeed satisfy all requirements from Theorem 3.9. If 

we are successful in this task, our object of interest, the electric field   , will exist, be 

unique, and will depend continuously on the data. We will begin by investigating the 

data, i.e., the functionals from (3.69.g). 

3.3.6.1 Functionals I 

 The true scattered electric field is given by (     ), 

                                                               (      ) 

where    is the lifting function on the boundary conditions (2.157), 

  ,
          

  ̂                 
                                          (      ) 

We must now ask if the boundary conditions (3.71.b) originate a lifting function    

such that, after it is substituted into the right side of (3.48), it gives rise to functionals 

acting on elements from   ( ) and   ( ). As we discussed in Section 2.2.3.5, if   

defines a functional which is in  ( ) (the range of the tangential trace operator   ), then 

the lifting    is in  (      ). Then we discussed two cases. In Case 1,    is smooth 

enough to be in the subspace   ( )   (      ), which is what interests us. In Case  
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Fig. 3.1. In the scattering problems we are going to investigate,    is a rectangular contour (or a cubic 

surface, in 3D). The function    defined in (3.71.f) decays linearly to zero inside the layer of width  . 

Outside the layer, it assumes the value 1. The partial derivatives are discontinuous across the four 

diagonal lines. The scatterer, represented by the dotted curve, must lie outside the  -layer. 

2,    is in  (      ) but not in   ( ) . However, by a density argument, we showed 

that in this case    can be approximated by elements from   ( ) . 

 Anyhow, we need to show that the   from (3.71.b) is in  ( ). If we succeed, 

than we know for sure that there is an    in  (      ) such that    
   . 

Thereafter, we investigate solutions to the problem 

          ( )            

   
                                                           (      ) 

i.e., if there is an    smooth enough to be qualified as an element from   ( ) , a 

subspace from  (      ). In this thesis, we shall not investigate problem (3.71.c). We 

assume that the solution to (3.71.c) exists, i.e., we make a conjecture. 

Conjecture 3.1: Lifting in   ( )  – Consider the non-homogeneous boundary 

conditions 

  ,
          

  ̂                 
                                          (      ) 

If    ( ), then we can find an      ( )  such that    
   . 

 The space  ( ) is characterized in (2.152). Let us consider a function     ̅    

defined by 

  ( )  {

                  (    )   

 (    )

 
     (    )    

                                 (      ) 

where  (    ) is the distance from the point   to the outer boundary    and    . In 
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order to illustrate the meaning of (3.71.e), let us consider a two-dimensional domain  . 

The function    is such that it is 1 for those points   whose distance to    is larger than 

 . If the distance is smaller than  , than    decays linearly to zero. In other words, there 

is a layer of width  ; outside this layer,    is equal to 1. Inside the layer,    decays 

linearly to zero. The width of the layer must be chosen in such a way that the scatterer is 

located completely outside the layer (i.e., for all points   in the scatterer surface   , 

 (    )   . The function    is illustrated in Fig. 3.1. 

 The function    is continuous in  ̅, and therefore      ( ). The derivatives 

     ⁄  and      ⁄ , on the other hand, experience discontinuities along the diagonals 

(Fig. 3.1). But it is not difficult to see that the derivatives are square summable. 

According to Fig. 3.1, if    is the surface of a box defined by         and    

    , then  (    ) assumes the form 

 (    )     *(    ) (    ) (    ) (    )+               (      ) 

where   ,   -  is an arbitrary point in  ̅. From (3.71.f), we see that, within the layer,  

the derivative of  (    ) with respect to   is either    or   . In the same way, the 

derivative with respect to   is either    or   . Back to (3.71.e), we conclude that, if 

 (    )   , then      ⁄  and      ⁄  are zero. If  (    )   ,       ⁄   and 

      ⁄   are equal to   ⁄ . (Except at the diagonals (points of discontinuity), which 

constitute a set of measure zero.) Then      ⁄  and      ⁄  are also in   ( ).  

The same reasoning applies to three dimensions in what regards the derivative      ⁄ . 

Before we proceed, we need two results which give us conditions under which 

vector fields in   define functionals at the boundary  . The proof can be found in [Ern 

and Guermond, 2004]. 

Theorem 3.11: ‘Divergence’ functionals – Let   be a bounded open set, and let 

     . Suppose     ( )  is a vector field such that       ( ). Then  

   ̂   
 
 
 
  
( )                                                 (      ) 

Theorem 3.12: ‘Curl’ functionals – Let   be a bounded open set, and let      . 

Suppose     ( )  is a vector field such that       ( ) . Then 

   ̂   
 
 
 
  
( )                                                (      ) 

 Let us consider an incident field        ( )  such that          ( )  and 

         ( ). Since      ( ), we take the component   
    and discover that 

∫ |    
   |

 
 ∫      |  

   |
 

  

 ∫ |  
   |

 

 

                   (      ) 
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as        from (3.71.e) and   
      ( ). We conclude that     

      ( ). The 

same steps are applied to the other components and we discover that 

         ( )                                                 (      ) 

The curl of        is given by 

                                                  (      ) 

Let us focus on the  -component of          and discover that 

‖(        )
 
‖

  ( )
 ‖(        )

 
 (        )

 
‖

  ( )
                       (      ) 

 ‖(        )
 
‖

  ( )
 ‖(        )

 
‖

  ( )
       (      ) 

 ‖
   

  
  

    
   

  
  

   ‖
  ( )

 ‖(        )
 
‖

  ( )
   (      ) 

 ‖
   

  
  

   ‖
  ( )

 ‖
   

  
  

   ‖
  ( )

 ‖(        )
 
‖

  ( )
    (      ) 

where the Minkowski inequality (2.73) has been used in (3.71.m) and (3.71.o). Let us 

now concentrate on the first term from (3.71.o): 

‖
   

  
  

   ‖
  ( )

 (∫ |
   

  
  

   |

 

 

)

 
 

                       (      ) 

 (∫ |
   

  
|

 

 

|  
   |

 
)

 
 

                  (      ) 

 (∫ |
   

  
|

 

  

|  
   |

 
)

 
 

                   (      ) 

where    is the portion of the domain   in which      ⁄  is different from zero. As we 

have seen, if the distance of a point to    is larger than  , then      ⁄  is zero. Also, in 

  , it is true that       ⁄     ⁄ . From (3.71.r) we get 

(∫ |
   

  
|

 

  

|  
   |

 
)

 
 

 (∫ |
 

 
|
 

  

|  
   |

 
)

 
 

                                        (      ) 

 
 

 
(∫ |  

   |
 

  

)

 
 

                                              (      ) 
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(∫ |  

   |
 

 

)

 
 

 
 

 
‖  

   ‖
  ( )

        (      ) 

since   
      ( ). We conclude that the first term in (3.71.o) is finite. The same 

analysis applied to the second term in (3.71.o) reveals that it is also finite. It is true that 

(        )
 
   (      )

 
, and also that (      )

 
   ( ). We apply the 

same reasoning as that from (3.71.i) and discover that (        )
 
   ( ). In this 

way, all terms from (3.71.o) are finite, which implies that the  -component of   

(      ) is in   ( ). If we repeat this argument to the   and  -components, we finally 

find that 

           ( )                                           (      ) 

From (3.71.j) and (3.71.v), we make          and     in Theorem 3.12 and 

discover that 

(      )   ̂    
 
 
  ( )                                      (      ) 

Since the Sobolev spaces      are usually represented as    when    , expression 

above is equivalent to 

(      )   ̂      ⁄ ( )                                     (      ) 

which of course implies that 

  ̂             ⁄ ( )                                     (      ) 

Now that we know that   ̂         defines a functional, we may ask: How does it 

operate on elements from    ⁄ ( ) ? The usual duality pairing between elements from 

    ⁄ ( ) and    ⁄ ( ) is just a boundary integral [Boffi et al., 2013]. If        ⁄ ( ) 

and      ⁄ ( ), then  

〈    〉    ⁄ ( )    ⁄ ( )  ∫    
 

                            (      ) 

Now let     ( )  be arbitrary. According to the trace operator   
  in (2.58),   

   

   ⁄ ( ) . The action of   ̂         on elements from    ⁄ ( )  is given by 

〈  ̂           
  〉    ⁄ ( )     ⁄ ( )  ∫ (  ̂        )                                (      )

 

 

 ∫ (  ̂        )   
  

 ∫ (  ̂        )   
  

    (      ) 

Since according to (3.71.e)    is 0 at    and 1 at   , we see that 
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〈  ̂           
  〉    ⁄ ( )     ⁄ ( )  ∫ (  ̂      )    

  

    (      ) 

which is precisely what one would expect in what regards the action of the function    

in (3.71.b) on other functions defined at the boundary   . In a sense, the functional from 

(3.71.y) together with its operation (3.72.c) is a more elegant description than just 

saying “the functional   from (3.71.b)”. 

 Now that we have a proper description of a functional induced by the boundary 

condition  , we must ask if this functional is in the range of the tangential trace operator 

  , i.e., if it is an element from  ( ). In order to give an affirmative answer, we need to 

show that our functional satisfies the requirements from (2.152). The strategy to follow 

is: First, to show that our functional is in the space defined in (2.154). Second, to show 

with the help of (2.153) that the surface divergence of our functional is in     ⁄ ( ). 

It is true that 

(  ̂        )   ̂                                             (      ) 

on all points of   (excluding sets of measure zero), since the vector   ̂         is by 

definition orthogonal to the normal vector  ̂. Then,   ̂           
   ⁄ ( ), defined 

in (2.154). 

 From (3.71.v), we know that            ( ) . Of course, since the 

divergence of a curl is zero,   (        )      ( ). Therefore, we consider 

Theorem 3.11 with            and     and conclude that 

(        )   ̂      ⁄ ( )                                    (      ) 

which is no different than 

 ̂  (        )      ⁄ ( )                                   (      ) 

Consider now identity (2.153) with           [which belongs to  (      ) due to 

(3.71.j) and (3.71.v)] and find that  

   (  ̂        )   ̂  (        )                       (      ) 

From (3.72.f) and (3.72.g), we learn that the surface divergence of our functional 

  ̂         is indeed in     ⁄ ( ). From (2.152), we are finally able to conclude that 

  ̂          ( )                                               (      ) 

According to (3.71.e)    is 0 at    and 1 at   , so (3.72.h) above is the same as saying 

that 

   ( )                                                           (      ) 
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where   has been defined in (3.71.b). Since   is in the range of the trace operator   , 

there are functions   in  (      ) such that      . There is an infinite number of 

such functions, as    is not injective [its kernel is given by (2.150)]. We may ask: 

Among these functions in  (      ) whose trace is  , can we find one which is in 

  ( ) ? We have not explored the conditions which ultimately assure us that such a 

function exists. Hence we just conjecture its existence (Conjecture 3.1). So we assume 

that such a function exists in   ( ) , and call it   . 

3.3.6.2 Functionals II 

 In the right side of (3.48.a), we define a functional    according to identification 

(3.49) whose action on testing functions from   ( ) is given by 

  ( )   ∫ ( ̿     )     

 

 ∫   
 

 

                ( )             (      ) 

It is clearly (anti-)linear; but now we may ask: Is it bounded in order to qualify as an 

element from   ( ) ? From (2.181) and (2.94) [adapted to the complex setting], 

repeated below, 

|∫ ( ̿    )     

 

|    ‖ ‖  ( ) ‖ ‖  ( )           ( )            (      ) 

|∫     

 

|  ‖ ‖  ( ) ‖ ‖  ( )           ( )       ( )              (      ) 

we observe that 

|∫ ( ̿     )     

 

|    ‖  ‖  ( ) ‖ ‖  ( )         ( )            (      ) 

|∫   
      

 

|    
 ‖  ‖  ( ) ‖ ‖  ( )            ( )              (      ) 

Since   ( )    ( ) , (3.72.m) and (3.72.n) imply that 

|∫ ( ̿     )     

 

|    ‖  ‖  ( ) ‖ ‖  ( )         ( )             (      ) 

|∫   
      

 

|    
 ‖  ‖  ( ) ‖ ‖  ( )            ( )             (      ) 

From (      ) and with the help of the triangle inequality, we learn that  

   ( )  |∫ ( ̿     )     

 

|  |∫   
 

 

     |          ( )            (      ) 
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When we consider (3.72.o) and (3.72.p), it is not difficult to see that 

   ( )  (     
 )‖  ‖  ( ) ‖ ‖  ( )            ( )             (      ) 

and hence that 

     ( )                                                     (      ) 

 We now concentrate on the right side of (3.48.b), and define a functional    

whose action on testing functions from   ( ) is given by 

  ( )  ∫      
 

             ( )                                (      ) 

It is (anti-)linear, and it remains to verify if it is bounded. From (2.86.b) [adapted to the 

complex setting] we observe that 

|∫        

 

|  ‖ ‖  ( )‖ 
 ‖  ( )            ( )               (      ) 

Expressions (3.72.t) and (3.72.u) reveal us that 

   ( )  |∫        

 

|  ‖ ‖  ( )‖ 
 ‖  ( )           ( )               (      ) 

from which it is not difficult to see that    is bounded. Therefore,  

     ( )    ( )                                           (      ) 

since   ( ) can be identified with its dual. 

Now we are going to study the hypotheses from Theorem 3.9, and show that the 

scattering system (3.48) satisfies each one of them. The order in which they will be 

addressed is such that the easier ones will be considered first. 

3.3.6.3 Theorem 3.9, Hypotheses (i) and (ii) 

 The original spaces   ( ) and   ( ) are Hilbert spaces. [This question is 

addressed in Chart 3.1, regarding   ( ), and in [Brezis, 2010], in what concerns 

  ( )]. According to the identification (3.49),  

 (   )  ∫ ( ̿    )     

 

 ∫   
 

 

                ( )          (      ) 

We observe that 

  (   )  |∫ ( ̿    )     

 

|  |∫   
 

 

    |            ( )       (      ) 



 

101 
 

thanks to the triangle inequality. From (2.181) and (2.94), and from the fact that 

  ( )    ( )    ( ) , 

  (   )  (  ‖ ‖  ( )    
 ‖ ‖  ( ) )‖ ‖  ( )             ( )     (      ) 

Moreover, since ‖ ‖  ( )  ‖ ‖  ( )  – as given by (2.142) – we arrive at 

  (   )  (     
 )‖ ‖  ( ) ‖ ‖  ( )             ( )          (      ) 

which, according to (3.3), allows to conclude that the sesquilinear form   is bounded (or 

continuous), and that         
 . 

 The sesquilinear form   is given by 

 (   )   ∫         
 

          ( )       ( )                  (      ) 

From (2.86.b), 

  (   )  ‖ ‖  ( )‖ ‖  ( )             ( )       ( )         (      ) 

as   ( )    ( ) . Again, (3.3) shows that the sesquilinear form   is bounded (or 

continuous), and that     . 

3.3.6.4 Theorem 3.9, Hypotheses (iii), (iv), (viii) and (ix) 

 We need the following fact from the theory of Sobolev spaces [Leoni, 2009], 

[Brezis, 2010], [Salsa, 2008]: 

Theorem 3.13: Compact Embeddings – Let   be a bounded and Lipschitz domain in 

  . Then, 

(a) If    , then   ( )    ( ) for       (   )⁄ . Moreover, if     

  (   )⁄ , the embedding of   ( ) in   ( ) is compact. 

(b) If    , then   ( )    ( ) for      , with compact embedding. 

 We are interested in the case    . So from Theorem 3.13 we are able to 

conclude that in either 2 or 3 dimensions, it is true that 

  ( )    ( )                                                 (      ) 

in which the embedding map    ( )   ( ) is compact. From the discussion in Section 

3.3.4, (3.74.a) means that there is a positive constant    such that 

‖   ( )   ( )( )‖  ( )
   ‖ ‖  ( )          ( )             (      ) 

Moreover, in the notation from Section 3.3.3,  
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   ( )   ( )   (  ( )   ( ))                              (      ) 

 Let     ( )  be arbitrary. (The same analysis applies for the two-

dimensional case, so we will stick to the more general three-dimensional case here.) 

Since each of its components is in   ( ), they are continuously embedded in   ( ), 

i.e.,  

‖   ( )   ( )(  )‖  ( )
   ‖  ‖  ( )                      (      ) 

‖   ( )   ( )(  )‖  ( )
   ‖  ‖  ( )

                       (      ) 

‖   ( )   ( )(  )‖  ( )
   ‖  ‖  ( )                       (      ) 

If we consider expressions (3.74.d) – (3.74.f) squared, and also the definition of the 

  ( )  norm in (2.34), we get 

‖   ( )   ( )(  )‖  ( )

 
 ‖   ( )   ( )(  )‖  ( )

 
  

‖   ( )   ( )(  )‖  ( )

 
   

 ‖ ‖
  ( ) 
                     (      ) 

If we define the „multidimensional‟ embedding map    ( )    ( )  as 

   ( )    ( ) ( )  [

   ( )   ( )(  )

   ( )   ( )(  )

   ( )   ( )(  )

]                         (      ) 

then (3.74.g) becomes 

‖   ( )    ( ) ( )‖
  ( ) 

 
   

 ‖ ‖
  ( ) 
                         (      ) 

Consequently, the embedding defined in (3.74.h) is continuous.  

In order to find out if it also compact, we consider an arbitrary bounded sequence 

*  +   
  in   ( ) , i.e., there is a positive constant   such that ‖  ‖  ( )    for all 

 .  

This sequence defines three individual sequences in   ( ), namely, the sequences 

*  
 +   

 , {  
 
}
   

 
 and *  

 +   
  formed by the  ,  , and   components of *  +   

 . Since 

[with the help of (2.33)] it is true that for all  , 

‖  ‖  ( ) 
  ‖  

 ‖
  ( )
  ‖  

 
‖
  ( )

 
 ‖  

 ‖
  ( )
                  (      ) 

then *  
 +   

   , {  
 
}
   

 
  , and *  

 +   
   , i.e., the three individual 

sequences are bounded. 
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As *  
 +   

  is bounded, {   ( )   ( )(  
 )}

   

 
 admits a convergent subsequence in 

  ( ), i.e., 

   ( )   ( ) .   

 /                                               (      ) 

Of course, since {  
 
}
   

 
 is bounded, then {   

 
}
   

 

 is also bounded. Therefore, 

{   ( )   ( ) .   

 
/}

   

 

 admits a convergent subsequence in   ( ), i.e.,  

   ( )   ( ) .    

 
/                                              (      ) 

By the same argument, since *  
 +   

  is bounded, then {    

 }
   

 

 is also bounded. Then, 

{   ( )   ( ) .    

 /}
   

 

 admits a convergent subsequence in   ( ), i.e., 

   ( )   ( ) (     

 )                                           (      ) 

Since subsequences of convergent sequences converge to the same limit, from (3.74.k) 

and (3.74.l) we see that 

   ( )   ( ) (     

 )                                           (      ) 

   ( )   ( ) (     

 
)                                            (      ) 

If we take into account the embedding defined in (3.74.h), 

   ( )    ( ) (     
)  

[
 
 
 
 
    ( )   ( ) (     

 )

   ( )   ( ) (     

 
)

   ( )   ( ) (     

 )
]
 
 
 
 
 

 [

  

  

  

]                  (      ) 

The lesson is that, from an arbitrary bounded sequence *  +   
  in   ( ) , its image 

{   ( )    ( ) (  )}   

 
 admits a convergent subsequence in   ( ) . Therefore, the 

embedding from   ( )  into   ( )  is compact. 

The meaning of (3.74.i) is just 

‖   ( )    ( ) ( )‖
  ( ) 

   ‖ ‖  ( )            ( )             (      ) 

We now claim that the auxiliary Hilbert space   from Theorem 3.9 is   ( ) , i.e., we 

make 
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    ( )                                                      (      ) 

Since   ( )    ( ) , then (3.74.q) remains valid for all     ( ). Then,  

  ( )    ( )                                                 (      ) 

and hypothesis (viii) is checked. 

We already know that the kernel    is a subspace of  , according to (3.69.c). Since 

  ( ) has been identified with the original Hilbert space   in (3.49.a),    is a 

subspace of   ( ). When we specialize (3.74.q) to functions in    we conclude that 

     ( )                                                   (      ) 

and hypothesis (iii) is checked. 

The following chain of inclusions is valid: 

     ( )    ( )    ( )                               (      ) 

From (3.74.u), we observe that hypothesis (ix) is checked. Therefore,    ( )    ( ) , 

   ( )   ( ) , and       ( )  are all identity maps. Particularly,  

      ( ) ( )                                              (      ) 

In order to show that       ( )  is compact, we take an arbitrary bounded sequence 

*  +   
  in   . Since      ( ) , the same reasoning from (3.74.j) – (3.74.q) can be 

applied to *  +   
 . The result is that the image of this sequence under       ( )  admits 

a convergent subsequence in   ( ) . In this way,       ( )  is compact. Thus, 

hypothesis (iv) has been checked. 

3.3.6.5 Theorem 3.9, Hypothesis (vi) 

 We need to show that 

    
    ( ) * +

   
    ( ) * +

| ∫      
 

|

‖ ‖  ( ) ‖ ‖  ( )
                        (      ) 

In other words, we need to show that the operator     is surjective from   ( ) onto 

  ( ). The argument we developed to show that (3.75.a) is indeed the case is vital for 

our progress. As such, it will be presented as a theorem. 

Theorem 3.14: Surjectivity of     – Let the requirements of Theorem 3.4 be satisfied. 

Then,  

     ( )        ( )                                         (      ) 

Proof: Let     ( ) be arbitrary, and make 
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∫  
 

                                               (      ) 

It is clear that      
 ( ), discussed in (3.37.c). According to (3.39), there is a    

  
 ( )  such that 

                                                             (      ) 

Now let  

  
 

   
∫  
 

                                                   (      ) 

We are looking for a function      ( )  such that 

 ̂                                                           (      ) 

                                                            (      ) 

Expression (3.75.f) means that    has no tangential components at the boundary  . In 

order to find this   , we claim that    is the gradient of some function  , i.e., we make  

                                                            (      ) 

From (3.75.g) and (3.75.h), we see that                . We also claim that 

  satisfies homogeneous Dirichlet boundary conditions at  . Next, we seek for the 

solution of the problem 

,
     

     
                                                      (      ) 

which is just an ordinary Poisson equation, whose weak solution is smooth enough to 

guarantee that      ( ) , according to Theorem 3 in Chapter 6 from [Evans, 2010]. 

Since   is constant at the boundary  , it defines a level curve there. Therefore,    is 

normal to  , i.e.,      ̂, where   is a scalar function of the points located on  . 

We learn that  ̂        ̂    ̂    , which validates the choice of    for   , 

according to requirement (3.75.f). 

We now form the vector  

                                                           (      ) 

It is clear that  

                                              (      ) 

according to (3.75.d) and (3.75.g). But from (3.75.c) and (3.75.e), we get that      

 . Consequently, (3.75.k) implies that 
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                                                             (      ) 

Since      ( )  and      
 ( ) , then     ( ) . Moreover,  

 ̂       ̂        ̂                                 (      ) 

because all components of    are zero at   and because of (3.75.f). As     ( )  and 

 ̂       , then     ( ). 

So we have been able to show that, given an arbitrary     ( ), there is a     ( ) 

such that       . In other words,     is surjective from   ( ) onto   ( ). 

  

A more or less „physical‟ interpretation of Theorem 3.14 goes like this: Suppose   is a 

hollow metallic cavity, and let   be a square-summable charge density within  . Then, 

there is a field   such that       . 

 If we write the action of the sesquilinear form   on arbitrary elements   

  ( ) and     ( ), we get, after the identification (3.49): 

 (   )  〈    〉  
 ( )    

 ( )   ∫       
 

                       (      ) 

i.e., we are able to see that        . So the operator   induced by the sesquilinear 

form   is indeed the negative of the divergence operator, i.e.,      . Since     is 

surjective, then   is surjective. Theorem 3.3 says that   being surjective is equivalent to 

the fact that there is a      such that 

    
    * +

   
    * +

  (   ) 

‖ ‖ ‖ ‖ 
                                         (      ) 

When we make the identification (3.49), we conclude that for the scattering problem it 

is true that 

    
    ( ) * +

   
    ( ) * +

| ∫      
 

|

‖ ‖  ( ) ‖ ‖  ( )
                          (      ) 

which is nothing else that (3.75.a). Therefore, hypothesis (vi) has been checked. 

 The two remaining conditions (v) and (vii) are more difficult to check. They 

depend on the explicit form of the PML tensor  ̿. 

3.3.6.6 PML II: The PML tensor 

 Thus far, the only information we have concerning the PML tensor is that it has 

the form 
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 ̿     ̂   ̂     ̂   ̂     ̂   ̂                               (      ) 

presented in (2.113). Moreover, from the discussion in Section 2.2.3.3, in order for the 

weak solutions to make sense, we discovered that the components of  ̿ must be 

elements of   ( ). For our purposes, it means that there are positive constants   ,    

and    such that 

   ( )                                                       (      ) 

|  ( )|                                                       (      ) 

   ( )                                                       (      ) 

In this way,    in (2.176) can be taken as  

       {          }                                        (      ) 

The components of the PML tensor are complex quantities, so we write them as 

  ( )    ( )     ( )                                         (      ) 

  ( )    ( )     ( )                                         (      ) 

  ( )    ( )     ( )                                          (      ) 

In this representation,   ,   ,    and   ,   ,    are all real functions of the position 

   . 

We now make two extra requirements: There is a positive constant     such 

that  

                                                               (      ) 

Moreover, the imaginary part of the components should be nonnegative, i.e., 

                                                               (      ) 

 After we have set up the requirements for the PML, we ask: Is there a 

rectangular PML obeying the form (3.76.a) which satisfy the conditions (3.76.b) – 

(3.76.d), (3.76.i) and (3.76.j)? 

 In a sense, yes. We consider a PML originally developed for scalar waves 

[Bermúdez et al., 2004], [Bermúdez et al., 2007], [Bermúdez et al., 2010] and which 

has been successfully applied to the FEM analysis of mechanical waves [Ham and 

Bathe, 2012]. If we make some adjustments, we discover that the resulting PML can be 

applied to our electromagnetic scattering problem, while at the same time satisfying all 

the above requirements. 

 First of all, suppose the outer boundary    is the surface of a rectangular region 
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defined by        ,         and        . Our computational domain   

consists of this box with the volume occupied by the PEC scatterer removed. The 

removal of the scatterer introduces an interior surface   , which is obviously the surface 

of the PEC object. 

 The PML is just a layer of width     , which we assume is the same for the 

three directions. The value of      must be chosen in such a way that the surface of the 

PEC scatterer lies entirely outside the PML layer. Next, given a point   ,     -  in 

the domain  , it defines three distances to the  ,  , and   walls comprising the outer 

boundary   . They are given by 

      *(    ) (    )+                                   (      ) 

      *(    ) (    )+                                     (      ) 

      *(    ) (    )+                                   (      ) 

From the distances above, we calculate three auxiliary quantities as 

   {
   

 

    
              

               

                                     (      ) 

   {
   

 

    
              

               

                                     (      ) 

   {
   

 

    
              

                

                                     (      ) 

where    is the free-space wavenumber. The components of the PML tensor are then 

calculated as 

   
 

   
                                                         (      ) 

   
 

  
 
                                                         (      ) 

   
 

   
                                                         (      ) 

Let us concentrate on the expression for    within the PML, i.e., when        . 

When worked out, we see that 
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(a) 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. (a) A sample of the computational domain  , showing the PML layer in gray. The distances AB 

and BC are the same, and equal to the PML width     . (b) The real part of the component    of the 

PML tensor along the path ABC. The point A corresponds to    , B to     and C to    . (c) The 

imaginary part. Figures (b) and (c) illustrate the unperturbed component, described by (3.76.q). Notice 

how the real part of    becomes negative for small   (i.e., close to the boundary   ). 

   
(    )

 ,(    )
   -

,(    )   -   (    ) 
  

 (    )
 

,(    )   -   (    ) 
        (      ) 

From the expression above, it can be observed that the imaginary part within the PML is 

always positive, i.e.,     . Furthermore, since outside the PML (when        ) 

(b) 
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the factor    is equal to 1, the imaginary part of    is zero there. Then, it is true that for 

all points in the domain  ,     . In this way, (3.76.j) is satisfied. 

 There is an issue with the real part of   . Expression (3.76.t) reveals that it 

becomes negative when       , i.e., for distances       ⁄ . However, this distance 

   ⁄  is very close to the outer boundary   . When the fields reach this distance, they 

will already be very well attenuated, so that their amplitudes will be, for any practical 

purposes, essentially zero. The behavior of the real and imaginary parts of    is 

illustrated in Fig. 3.2. 

As the real part of    becomes negative for some points at the interior of the PML, 

(3.76.i) cannot be satisfied. 

 However, there is a way out. Since this limit distance    ⁄  is very close   , the 

fields will be essentially zero by the time they come this close to the outer boundary. So 

we argue that there will be no significant trouble if    is perturbed in such a way that its 

real part does not become negative for very small distances. 

The idea goes as follows: We consider a „threshold‟ distance  

    
 

 
(
 

  
)                                                  (      ) 

The distance     is slightly larger than    ⁄ . But, as it can verified from Fig. 3.2, the 

real part of    is positive there. Then we perturb    according to the rule: If    is larger 

than    , then the original    in (3.76.q) is kept. If    is smaller than    , then    is 

just the value of    calculated at    . In other words, we consider the perturbed version 

of    as 

  (  )  

{
 

 
 

  (  ) 
                 

 

  (   ) 
               

                            (      ) 

where   (  ) means “the    from (3.76.n) evaluated for   ”, and   (   ) means “the    

from (3.76.n) evaluated for    ”. The perturbed version (3.76.v) is illustrated in Fig. 3.3.  

Figure 3.3 reveals that the real part of the perturbed    never reaches zero. Therefore, it 

satisfies (3.76.i). Moreover, the imaginary part of the perturbed    is always larger than 

or equal to zero, and so it satisfies (3.76.j). And finally, it is obvious from Fig. 3.3 that 

both real and imaginary parts of    are bounded, and so (3.76.b) holds true. 

When this reasoning is applied to    and   , we arrive at the same conclusions. 

And in this way, we can answer affirmatively to the question concerning the existence 

of a rectangular PML which obeys the form (3.76.a) and which satisfy the conditions 

(3.76.b) – (3.76.d), (3.76.i) and (3.76.j). 
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(a) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. The perturbed PML component in (3.76.v) along the path ABC in Fig. 3.2.a. It is shown together 

with the unperturbed component, so that a comparison can be made. (a) Real part. (b) Imaginary part. 

3.3.6.7 Theorem 3.9, Hypothesis (vii) 

 In order to check the hypothesis (vii) in Theorem 3.9, we need to show that the 

solution to the homogeneous problem 

                    

 (   )                                                     (      ) 

is the zero element. After the identification (3.49), (3.77.a) becomes 

                    

 (   )  ∫ ( ̿    )     

 

 ∫   
 

 

                            (      ) 

where      ( )    ( ) . 

Suppose that   is a nonzero solution to (3.77.b). Then it is true that 
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∫ ( ̿    )     

 

   
 ∫     

 

                                   (      ) 

i.e.,   is one of the solutions to the eigenproblem 

                     

∫ ( ̿     )     

 

  ∫      

 

                                 (      ) 

If we denote by   the set of all eigenvalues associated to (3.77.d), then we learn that, if 

(3.77.b) has a nonzero solution, then   
    and   is one of the eigenfunctions 

associated to (3.77.d). 

We have showed that, if    , then   
   . Conversely, we can conclude that  

      
                                                              (      ) 

In other words, if   
  is not an eigenvalue, then the solution   to the homogeneous 

problem (3.77.b) is the zero element  . 

 So in order to satisfy hypothesis (vii) in Theorem 3.9, we must make sure that   
  

is not one of the eigenvalues associated with the problem stated in the kernel   . If we 

want the solution of the Helmholtz equation (and variants thereof) to exist and be 

unique, then we must stay away from the eigenvalues. Or said in another way, the 

solution to the Helmholtz equation exists, provided the wavenumber we are interested in 

is such that   
  is not an eigenvalue. This kind of result is common in the literature 

[Evans, 2010], [Ihlenburg, 1998]. (This issue plagues the well-posedness of the 

Helmholtz equation in all scenarios; it is not restricted to the situation described in this 

thesis.) 

 The conclusion is that we cannot choose any value for   . We may ask: Does it 

imply a loss of freedom when working with the Helmholtz equation? How can we find 

out if   
  is an eigenvalue or not, without having to solve an eigenproblem first?  

 The fact that the problem (3.77.b) incorporates a PML tensor with complex 

entries may provide a plausible answer. Suppose we want to solve the eigenproblem 

(3.77.d). Let   be one of the eigenvalues, together with its associated eigenfunction   . 

Since the testing functions are taken from   , and we know that      , then we 

make      and get 

∫ ( ̿     )     
 

 

  ∫     
 

 

                                 (      ) 

The first integral in (3.77.f) can be expanded according to (2.171). If we represent    as 

   [  
    

 
   

 ]
 
, (3.77.f) becomes: 
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∫   |
   

 

  
|

 

   |
   

 

  
|

 

   
 

|
   

 

  
|

 

                        (      ) 

∫   |
   

 

  
|

 

   |
   

 

  
|

 

   
 

|
   

 

  
|

 

   

∫   |
   

 

  
|
 

   |
   

 

  
|
 

   
 

|
   

 

  
|
 

  ∫     
 

 

                     

When inspecting (3.77.g), one observes that the left side will probably be complex, 

because the squared derivatives (within bars) are all positive, and also because of 

(3.76.j), which says that the imaginary parts of   ,    and    are positive. On the other 

hand, the integral 

∫     
 

 

                                                       (      ) 

is a positive real number. So the left side of (3.77.f) may be complex, whereas the 

integral at the right side in (3.77.f) is a real number. The only way to avoid a 

contradiction is to allow the eigenvalue   to be a complex number. 

We concluded that, if    , then   * +   . Conversely, we can conclude that if 

  * +    (i.e.,   is a real number), then     (i.e.,   is not an eigenvalue). Since 

waves in the free-space are described by real wavenumbers, for any choice we make for 

  ,   
  will always be a real number, and therefore, will not be an eigenvalue. 

 In a sense, we showed that there is a high probability that for any choice of   , 

the solution to (3.77.b) will be the zero element. We say it is probable because in order 

to make an assertion, we need to investigate the influence of the complex PML tensor 

on the spectral properties of problem (3.77.b), i.e., we need a formal proof that all 

eigenvalues of (3.77.d) are complex. Even though it constitutes a very interesting 

problem, it falls outside the scope of this thesis. However, if we assume from the start 

that   
  is not an eigenvalue, than hypothesis (vii) in Theorem 3.9 is satisfied. 

3.3.6.8 Theorem 3.9, Hypothesis (v) 

 The only hypothesis to be verified is (v). After the identification (3.49), it 

concerns the existence of constants     and      such that 

  * (   )+    ‖      ( ) ( )‖
  ( ) 

 
  ‖ ‖ 

                        (      ) 

From (3.74.u) it is true that      ( ) , and we concluded that       ( )  is just the 

identity map, i.e.,       ( ) ( )   . In this way (3.78.a) becomes 

  * (   )+    ‖ ‖
  ( ) 
   ‖ ‖

  ( ) 
                              (      ) 
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because since     ( ) [according to the identification (3.49)], and as   ( )  

  ( )  , the norm ‖   ‖  is just the norm ‖   ‖  ( ) . 

We need to find constants     and      such that (3.78.b) is true. (In other words, 

proving (3.78.b) is our goal.) 

 After the substitution of both   and   by an arbitrary     ( ), the 

sesquilinear form  (   ) in (3.73.b) becomes 

 (   )  ∫ ( ̿    )     

 

 ∫   
 

 

             ( )             (      ) 

We can rewrite (3.78.c) as 

 (   )    
 ∫     

 

 ∫ ( ̿    )     

 

          ( )           (      ) 

When we consider only the real part of (3.78.d), we get 

  * (   )+    
 ∫     

 

   ,∫ ( ̿    )     

 

-          ( )     (      ) 

because the second integral in (3.78.d) is a real number. When we expand the integral in 

the right side of (3.78.d) as in (3.77.g), its real part 

  ,∫   |
   

  
|
 

   |
   

  
|
 

   
 

|
   

  
|
 

                          (      ) 

∫   |
   

  
|

 

   |
   

  
|

 

   
 

|
   

  
|

 

   

∫   |
   

  
|
 

   |
   

  
|
 

   
 

|
   

  
|
 

-      

is indeed equal to  

∫   |
   

  
|
 

   |
   

  
|
 

   
 

|
   

  
|
 

                          (      ) 

∫   |
   

  
|

 

   |
   

  
|

 

   
 

|
   

  
|

 

   

∫   |
   

  
|
 

   |
   

  
|
 

   
 

|
   

  
|
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because all quantities between the bars are real numbers. The quantities   ,    and    

are the real parts of the PML tensor components   ,    and   , respectively. Since all 

terms in (3.78.g) are positive, from (3.76.i) we conclude that 

  ,∫ ( ̿    )     

 

-   ∫       

 

                          (      ) 

From (3.78.e), (3.78.h), (2.36) and (2.39), we get 

  * (   )+    
 ‖ ‖

  ( ) 
      

  ( ) 
           ( )             (      ) 

Expression (3.78.i) resembles our goal (3.78.b). The difference is that the seminorm 

figures at the right of (3.78.i), whereas in the right side of (3.78.b) there is a norm. 

 In order to replace the seminorm      ( )  in (3.78.i) by the norm ‖ ‖  ( ) , 

we need the Poincaré inequality from Theorem 3.2. 

 According to (2.164), the space   ( ) in which the electric field is sought is  

  ( )  *    ( )         +                                   (      ) 

which means that ( ̂   )    . In other words, the tangential components of the 

elements from   ( ) are zero at the boundary  , which is formed by the outer boundary 

   and by the scatterer surface   . Therefore it is true that 

( ̂   )   
             ( )                                    (      ) 

Moreover, an arbitrary element   from of   ( ) is described by its three Cartesian 

components as   [        ]
 
. 

As stated earlier in section 3.3.6.6, the outer boundary    is the surface of a 

rectangular box defined by        ,         and        . Given an 

arbitrary     ( ), let us concentrate first on its component   . Since the tangential 

components of   are zero on   , it implies that    is zero over the set 

  *                        +                        (      ) 

*                        +                                         

*                        +                                          

*                        +                                            

The set   in (3.78.l) is just the four faces from    which are parallel to the  -axis. It is 

clear that   has a positive measure (i.e., its area is different from zero). Therefore, we 

can say that      ( ) and that    vanishes on a non-zero measure subset   of the 

boundary  . According to the terminology of Theorem 3.2, these are just the 
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requirements for    to be an element of   
 ( ). From the same theorem, we conclude 

that 

‖  ‖  ( )
    ‖   ‖  ( ) 

                                     (      ) 

The same reasoning can be extended to the other components    and   . (Of course, by 

considering different subsets   of   ). We get similar conclusions: 

‖  ‖  ( )

 
   ‖   ‖  ( ) 

 
                                     (      ) 

‖  ‖  ( )
    ‖   ‖  ( ) 

                                      (      ) 

When we sum the last three inequalities, we arrive at 

(      ) 

‖  ‖  ( )
  ‖  ‖  ( )

 
 ‖  ‖  ( )

    .‖   ‖  ( ) 
  ‖   ‖  ( ) 

 
 ‖   ‖  ( ) 

 / 

From (2.31), the left side in (3.78.p) is nothing else than ‖ ‖
  ( ) 
 . And from (2.34), it 

is evident that the right side in (3.78.p) is      
  ( ) 
 . Therefore,  

‖ ‖
  ( ) 
       

  ( )  
                                       (      ) 

If we add    
  ( )  
  to both sides in (3.78.q), and then consider (2.42), we see that  

‖ ‖
  ( ) 
  ‖ ‖

  ( ) 
     

  ( )  
  (    )   

  ( )  
          (      ) 

which readily implies that 

   
  ( )  
  

 

(    )
‖ ‖

  ( ) 
                                 (      ) 

 It is now time to get back to (3.78.i); the information provided by (3.78.s) allows 

us to rewrite it as 

  * (   )+    
 ‖ ‖

  ( ) 
  

 

(    )
‖ ‖

  ( ) 
            ( )       (      ) 

The inequality (3.78.t) is of great importance. It means that we have managed to show 

that the sesquilinear form   obeys some kind of „weak‟ coercivity in the whole space 

  ( ), not just on the kernel   . Since      ( ), (3.78.t) implies that 

  * (   )+    
 ‖ ‖

  ( ) 
  

 

(    )
‖ ‖

  ( ) 
                     (      ) 

which is just our goal with    identified with   
  (which is obviously larger than or 

equal to zero) and with   identified with  (    )⁄  [which is larger than zero, due to 
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(3.76.i)]. Since we know that       ( ) ( )    according to (3.74.v), then it follows 

that 

  * (   )+    
 ‖     ( )‖

  ( ) 
  

 

(    )
‖ ‖

  ( ) 
                   (      ) 

In this way, hypothesis (v) has been checked. 

3.3.7 Concluding remarks 

 In this section, we provided a theoretical foundation for the well-posedness of 

the scattering system (3.48). The result is codified into a key theorem (Theorem 3.9), 

which somehow merges the traditional Babuska-Brezzi theory of mixed formulations 

and the Fredholm Alternative for non-coercive forms. In order for the theorem to be 

valid, a total of nine hypotheses need to be satisfied. Fortunately, we have managed to 

show that each one of them holds true when specialized to the function spaces of our 

problem.   

 In what regards the theoretical aspects of this thesis, we are done. Once the 

theory has been established, the transition to the discrete setting will be very smooth. 
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Chapter 4 

The discretization process 

 

This chapter essentially deals with the discretization process of the scattering 

system (3.48).   

In the first section, we study the extension of Theorem 3.9 to finite-dimensional 

subspaces. The analysis will be applied to the „specialized‟ setting of the scattering 

system. 

After all hypotheses are considered, in the second section we shall explore further the 

notion of finite-dimensional subspaces, which will reveal to us the form assumed by the 

final linear system.   

The third section is concerned with the question: How to construct suitable finite-

dimensional subspaces for the Hilbert spaces   ( ) and   ( )? At this point we 

present the meshfree spaces that will be used in the discretization process. 

4.1 The problem in finite-dimensional subspaces 

4.1.1 The key theorem: Specialization to the scattering system 

 In the development of the final form of the scattering system (3.48), we learned 

in (2.156) that the scattered field    and the pseudopressure   belong to   ( )  and 

  ( ), respectively. Before we look for their discretized counterparts, we now introduce 

the finite-dimensional subspaces 

  ( )    ( )                                                    (     ) 

  ( )    ( )                                                      (     ) 

(The meaning of the superscript   will become clear later.) Moreover, according to the 

standard finite element literature, it is common to include   either as a superscript or a 

subscript in the representation of the elements from the finite-dimensional subspaces. 

This is a kind of signature which makes it easier to identify the element as belonging to 

a subspace.  

 Because the finite-dimensional subspaces in (4.1) ultimately come from the 

discretization process, there is no harm in calling them „discretized spaces‟, and 

elements from   ( ) and   ( ) as „discretized electric fields‟ and „discretized 

pseudopressures‟, respectively. 
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 In (2.162), the original scattered electric field      ( )  is split in two parts 

                                                               (     ) 

where      ( ) and the lifting function      ( )  obeys the boundary conditions 

   
  ,

          

  ̂                
                                               (     ) 

The splitting of    as in (4.1.c) paved the way for the formulation of the scattering 

problem (3.48) in terms of   . After    is found, one just needs to add the known lifting 

   to it and the total scattered electric field    is recovered. 

 When working at the discretized level, the original scattering system (3.48) will 

be specialized to finite-dimensional subspaces. In doing so, we will get a discretized 

version of   , represented by   
 . This   

  belongs to a finite-dimensional subspace of 

  ( ) – namely, a space formed by elements in   ( ) whose tangential trace is zero, 

[to be introduced later in (4.3)].The question is that after we find this finite-dimensional 

  
 , if we add the infinite-dimensional lifting function    to it as in (4.1.c), it may 

happen that   
     will not be an element from the finite-dimensional subspace 

  ( ). In order to rule out this possibility, we shall consider not   , but a finite-

dimensional approximation to it in   ( ), denoted by   
 

. In this way,  

    
 
 ,

          

  ̂                
                                               (     ) 

i.e., the trace will be approximately equal to that of the continuous lifting function in 

(4.1.d). Consequently, now we can make sure that   
    

 
 will be an element of the 

finite-dimensional subspace   ( ). This is nothing else than the discretized scattered 

field 

  
    

    
 
                                                          (   ) 

 The advantage is that   
 ,   

  and   
 

 will ultimately belong to the same space   ( ). 

 We can now introduce a discretized version of   ( ), defined as 

  
 ( )  *     ( )         +                                    (   ) 

It can be seen that   
    

 ( ).  

There is a result in functional analysis which says that finite-dimensional 

subspaces are always closed [Kreyszig, 1989]. Since   ( ) is a finite-dimensional 

subspace of   ( ) , it is closed. As it will become clear later, the space   
 ( ) from 

(4.3) is also finite-dimensional (i.e., it is spanned by a set of basis functions). Therefore, 

  
 ( ) is closed. When equipped with the inner product of the „parental‟ space   ( ) , 

it becomes a Hilbert space, due to Theorem 3.5. By the same reasoning,   ( ) in 
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(4.1.b) is a finite-dimensional subspace of   ( ); when endowed with the inner product 

of   ( ), it also becomes a Hilbert space. 

After we find a suitable a lifting function   
 

 in (4.2), the discretized counterpart 

of problem (3.48) becomes: 

     (  
    )    

 ( )    ( )           

∫ ( ̿     
 )     

 

 

 ∫   
 

 

  
    

  ∫        
 

 

  

 ∫ ( ̿     
 
)     

 

 

 ∫   
 

 

  
 
   

             
 ( )            (     ) 

 ∫   
    

 

  
  ∫   

    
 

  
 
            ( )                                                           (     ) 

We can now make a new identification: 

  
 ( )                            (     ) 

  
 ( )                           (     ) 

  ( )                             (     ) 

  ( )                            (     ) 

*     +  (∫ ( ̿     )     
 

 

 ∫   
 

 

     
 )   (      )                 (     ) 

*     +  ( ∫   
      

 

)   (      )                 (     ) 

( ∫ ( ̿     
 
)   ( ) 

 

 ∫   
 

 

  
 
 ( ) )                            (     ) 

(∫ ( )    
 

  
 
)                            (     ) 

 The identification above is clear enough. Since   
 
   ( ), it is ultimately an 

element of   ( ) . Applying a reasoning similar to that in Section 3.3.6.2, it is not 

difficult to see that the integrals at the right side of (4.4.a) define a functional    on 

elements of   ( ) . As   
 ( ) is also a subspace of   ( ) , when the action of this 

functional is restricted to elements from   
 ( ), it defines a functional on   

 ( ), i.e., 

     
 ( ) . In the same way, the integral at the right side of (4.4.b) defines an 

functional      ( ) . 
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 We can now state an extension of Theorem 3.9 which is concerned with the 

well-posedness of the system (4.4). 

Theorem 4.1: Well-posedness of the scattering system, finite-dimensional case – Let 

it be the finite-dimensional complex-valued Hilbert spaces   
 ( ) and   ( ). Suppose 

there are two positive constants   
  and   

  such that: 

(i)   is continuous, i.e.,  

|∫ ( ̿     )     
 

 

 ∫   
 

 

     
 |    

 ‖  ‖  ( ) ‖  ‖  ( )       

         
 ( )         (     ) 

(ii)   is continuous, i.e.,  

| ∫   
    

 

  |    
 ‖  ‖  ( ) ‖  ‖  ( )           

 ( )        ( )        (     ) 

Let   
  be the kernel of the sesquilinear form   i.e.,  

  
        ,     

 ( )    ∫   
    

 

              ( ) -            (     ) 

Consider a third Hilbert space   such that   
  and   satisfy the requirements of 

Theorem 3.7, i.e., 

(iii)   
  is continuously embedded into  , i.e.,   

   . 

Moreover, it holds that: 

(iv) The map    
    is compact, i.e.,    

     (  
   ). 

(v) The sesquilinear form   satisfies the following property on the kernel   
 : There 

exist constants      and   
    such that 

  * (     )+    
 ‖   

   (  )‖
 

 

   ‖  ‖ 
              

             (     ) 

(vi) The sesquilinear form   satisfies the inf-sup condition, i.e., there is a positive 

constant   
    such that 

    
    

 ( ) * +
   

     
 ( ) * +

| ∫         
|

‖  ‖  ( ) ‖  ‖  ( )
   

                          (     ) 

(vii) The solution to the homogeneous (zero-data) problem at the kernel   
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 (     )             
                                          (     ) 

is the zero element     . Furthermore, lets us assume that: 

(viii) The original space   
 ( ) is also continuously embedded  , i.e.,   

 ( )   . 

(ix) The spaces   
 ( ) and   

  are subspaces of  , i.e.,   
 ( )    and   

    

(which implies that    
 ( )   and    

    are inclusion maps). 

Then it can be concluded that for each      
 ( )  and      ( ) , there is a unique 

solution to the mixed problem 

     (  
    )    

 ( )    ( )                   

 (  
    )   (     )  〈     〉  

 ( )    
 ( )           

 ( )                (     ) 

 (  
    )                         〈     〉  ( )    ( )           ( )                                

It also follows that the solution   
  depends continuously on the data    and    in the   

norm, i.e., there are positive constants    and    such that 

‖  
 ‖

 
   ‖ 

 ‖  
 ( )    ‖ 

 ‖  ( )                                   (     ) 

In (4.6.a), (4.6.b), (4.6.d) and (4.6.e), the superscript   has been introduced in the 

constants in order to indicate that these constants may depend on the specific subspaces 

  
 ( ) and   ( ) under consideration. 

 What we are going to do next is to verify if all the nine hypotheses of Theorem 

4.1 hold true. The results we got in Sections 3.3.6.2 – 3.3.6.8 for will help us 

considerably. 

4.1.1.1 Hypothesis (i) 

 From (3.72.k) and (3.72.l), it is not difficult to see that 

(     ) 

|∫ ( ̿    )     

 

 ∫   
 

 

    |  (  ‖ ‖  ( )    
 ‖ ‖  ( ) )‖ ‖  ( )    

for any       ( ) . Since ‖ ‖  ( )  ‖ ‖  ( )  by (2.42), we conclude that for 

any       ( ) ,  

|∫ ( ̿    )     

 

 ∫   
 

 

    |  (     
 )‖ ‖  ( ) ‖ ‖  ( )       (     ) 
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Since   
 ( )    ( )    ( ) , the elements in (4.7.b) can be restricted to those in 

  
 ( ). As a consequence, we get (4.6.a) in which the constant   

  is independent of   

and is given by      
 . Hypothesis (i) has been checked. 

4.1.1.2 Hypothesis (ii) 

 The inequality (2.86.b), gives us that 

|∫   
     

 

|  ‖ ‖  ( )‖ ‖  ( )        ( )       ( )          (   ) 

As   
 ( )    ( )  and   ( )    ( ), (4.8) can be restricted to these spaces. The 

result is (4.6.b), in which   
   . Hypothesis (ii) has been checked. 

4.1.1.3 Hypotheses (iii) and (viii) 

 As in (3.74.r), we make  

    ( )                                                      (     ) 

From (3.74.q),   ( )    ( ) . Since   
    

 ( )    ( )    ( ) , then we 

may conclude that 

  
 ( )    ( )                                               (     ) 

  
    ( )                                                     (     ) 

From the two expressions above, we get that hypotheses (iii) and (viii) have been 

checked.  

4.1.1.4 Hypothesis (ix) 

 The following chain of inclusions is valid: 

  
    

 ( )    ( )    ( )    ( )                   (      ) 

from which it becomes evident that   
 ( )    and   

   . In this way, 

   
 ( )   ( ) , and    

    ( )  are identity maps, and thus hypothesis (ix) has been 

checked. Since these are identity maps, it means that 

   
    ( ) ( )            

                                       (      ) 

   
 ( )   ( ) ( )            

 ( )                                 (      ) 

Despite the fact that elements from   
  and   

 ( ) are also elements of   ( ) , they are 

measured differently. When seen as elements of   
  and   

 ( ), they are measured in 
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the ‖   ‖  ( )  norm. On the other hand, after the action of the embedding map, they are 

seen as elements of   ( ) , and therefore measured in the ‖   ‖  ( )  norm. 

4.1.1.5 Hypothesis (iv) 

 According to Section 4.1.1.3, there is an embedding map    
    ( ) . We need to 

show that it is compact. In order to do so, let *  
 +   

    
  be an arbitrary bounded 

sequence in   
 . Since   

    ( ) , it also constitutes a bounded sequence in 

  ( ) . As we concluded in Section 3.3.6.4, the embedding of   ( )  into   ( )  is 

compact. Then the image {   ( )    ( ) (  
 )}

   

 
 admits a convergent subsequence in 

  ( ) . But all elements of the sequence are in   
 . From (4.9.c), it follows that 

{   
    ( ) (  

 )}
   

 

 admits a convergent subsequence in   ( ) . Therefore, 

   
    ( )  is compact, and in this way the hypothesis (iv) has been checked. 

4.1.1.6 Hypothesis (v) 

 Let      
 ( ) be arbitrary. According to the definition (4.3),      ( ) and 

      . But   ( )    ( ) , according to (4.1.a). But if an element of   ( )  is 

such that its tangential trace is zero, then it belongs to   ( ), according to (2.163). 

Consequently,      ( ). Since    was arbitrary, we are allowed to conclude that 

  
 ( )    ( )                                                   (      ) 

From (4.10.a) and (3.78.t), get 

  * (     )+    
 ‖  ‖  ( ) 

  
 

(    )
‖  ‖  ( ) 

             
 ( )       (      ) 

 It may noticed that, notwithstanding the fact that (4.11.a) is a truth, the space 

  
 ( ) is not introduced directly as a subspace of   ( ) (although it is). It is introduced 

as a subspace of   ( ) in (4.3). The reason is that, as it will become clearer later, after 

  ( ) is constructed from a set of basis functions, the construction of   
 ( ) follows in 

a remarkably easy way. 

Since   
    

 ( ), (4.11.b) can be restricted to those elements in   
 , which 

allows one to conclude that 

  * (     )+    
 ‖  ‖  ( ) 

  
 

(    )
‖  ‖  ( ) 

             
        (      ) 

Given that    
    ( )  is the identity map,    

    ( ) (  )     for any      
 ( ), 

according to (4.10.b). This implies that 
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‖   
    ( ) (  )‖

  ( ) 
 ‖  ‖  ( )                           (      ) 

This allows us to rewrite (4.11.c) as 

(      ) 

  * (     )+    
 ‖   

    ( ) (  )‖
  ( ) 

 

 
 

(    )
‖  ‖  ( ) 

             
        

which is nothing else than (4.6.d). And so, hypothesis (v) has been checked. The 

constants   
  and    in (4.6.d) are such that   

    
  and     (    )⁄ , i.e., they 

are the same as those occurring in the infinite-dimensional case (and therefore are 

independent of  ). 

4.1.1.7 Hypothesis (vi) 

 According to (3.33.b) in Theorem 3.3, the inf-sup condition in (4.6.e) is 

equivalent to the fact that there is a positive constant   
    such that 

(      ) 

      ( )        
 ( ) * +        | ∫        

 

|    
 ‖  ‖  ( ) ‖  ‖  ( ) 

In the same way, the inf-sup condition in (3.75.p), which we proved to be true, is 

equivalent the fact that there is a positive      such that 

     ( )       ( ) * +        | ∫      
 

|    ‖ ‖  ( ) ‖ ‖  ( )   (      ) 

One may ask: Is it true that (4.12.b) implies (4.12.a)? The answer is negative. The 

question is that the inf-sup condition at the finite-dimensional level (4.12.a) does not 

inherit its validity from its infinite-dimensional counterpart (4.12.b). There is a very 

subtle argument to show it.  

Assume that (4.12.b) is true (which it is, indeed). Now let      ( ) be arbitrary. 

According to (4.1.b),   ( )    ( ), so      ( ). From (4.12.b), it follows that 

     ( ) * +       | ∫       
 

|    ‖ ‖  ( ) ‖  ‖  ( )          (      ) 

Expression (4.12.c) says that there in an element in   ( ) * + such that the integral 

inequality at the right is satisfied. However, in order to prove (4.12.a), we need to show 

that, given      ( ), there must exist an element in   
 ( ) * + such that the 

inequality is satisfied, i.e., we need to show that 
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 ( ) * +       | ∫        

 

|    
 ‖  ‖  ( ) ‖  ‖  ( )       (      ) 

The point is that the   from (4.12.c) may not be in the finite-dimensional subspace 

  
 ( ), as required. Expression (4.12.c) acknowledges the existence of an element in 

the larger space   ( ). But we need to be sure that this element belongs to the subspace 

  
 ( ). This subtle difference is indicated by the boxes in expressions (4.12.c) and 

(4.12.d).  

 In this way, hypothesis (vi) has not been satisfied. In a sense, there is no general 

proof that (4.12.a) holds true for any pair of finite-dimensional subspaces   
 ( ) and 

  ( ).  

The same situation happens when one considers the discretized version of the 

Navier-Stokes problem. The inf-sup condition at the infinite-dimensional level (3.40) is 

known to be true. However, at the discretized level, there is no proof that it holds for 

any pair of finite-dimensional subspaces of   
 ( )  and   

 ( ). When these finite-

dimensional subspaces are finite-element spaces (i.e., relying on a mesh), there are 

certain pairs for which researchers were able to prove that they satisfy the inf-sup 

condition. There is a list of such pairs in [Girault and Raviart, 1986], [Brezzi and Fortin, 

1991], [Glowinski et al., 2003]. This is a very delicate issue; one cannot choose 

whatever pair he wants, because a pair which does not satisfy the inf-sup condition may 

lead to an ill-posed problem, which is prone to instabilities. But does it mean that one is 

doomed to use only those pairs already catalogued in the literature?  

Fortunately, no. There is a test to assess if a given pair satisfies the discrete inf-

sup condition. In this way, one could develop a pair of finite-element spaces, and then 

apply the test. If they pass the test, then they lead to a well-posed problem. This test is 

carried out at the numerical (i.e., matrix) level, and was developed by K. J. Bathe in 

[Bathe, 2001], [Brezzi and Bathe, 1990]. It will be explained in due time. 

It is true that the spaces involved in the Navier-Stokes and in the scattering 

problem are different. So those pairs from the literature do not apply, as they have been 

developed for the Navier-Stokes system. Moreover, we are planning to construct 

meshfree finite-dimensional spaces. Of course, to prove that a given pair of finite-

dimensional spaces   
 ( ) and   ( ) spanned by meshfree basis functions satisfies 

(4.12.a) is out of question. The only alternative is to resort to the aforementioned test.  

4.1.1.8 Hypothesis (vii) 

 Similar conclusions from Section 3.3.6.7 are also valid here. As long as the 

wavenumber   
  is not one of the eigenvalues of the (discretized) problem 
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∫ ( ̿     
 )     

 

 

  ∫   
    

 

 

          
                   (      ) 

the solution of the homogeneous (zero-data) problem  

          
            

 (     )  ∫ ( ̿     )     
 

 

 ∫   
 

 

     
             

          (      ) 

is the zero element, i.e.,     . 

 However, as it was discussed in Section 3.3.6.7, there is a high probability that 

the eigenvalues associated to problem (4.13.a) are complex. In this way, any real   
  

will not be an eigenvalue. So we can say that hypothesis (vii) has been checked. 

4.1.1.9 Concluding remarks 

 The well-posedness of problem (4.4) is thus shown to depend only on the inf-sup 

condition. All other hypotheses hold true, except the sixth. In the next section, we 

expect to offer a solution to this issue. 

4.2 The linear system 

4.2.1 The matrix system: Preliminary form 

 Let us consider the discretized problem in (4.6.g) 

     (  
    )    

 ( )    ( )                   

 (  
    )   (     )  〈     〉  

 ( )    
 ( )           

 ( )              (      ) 

 (  
    )                         〈     〉  ( )    ( )           ( )                                

Suppose that the space   
 ( ) is spanned by a total of   basis functions: 

  
 ( )      {          }                                      (      ) 

and suppose also that   ( ) is spanned by a total of   basis functions: 

  ( )      *          +                                        (      ) 

Of course, these basis functions are functions of the position    . But instead of 

writing   ( ), we write just   , for the sake of a cleaner notation. Under these 

circumstances, it is true that 
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 ( )                                                         (      ) 

     ( )                                                         (      ) 

The quantities   
 ,   ,    and    in (4.14.a) admit expansions of the type 

  
  ∑   ̂ 

 

   

                                                            (      ) 

   ∑   ̂ 

 

   

                                                            (      ) 

   ∑   ̂ 

 

   

                                                             (      ) 

   ∑   ̂ 

 

   

                                                              (      ) 

where the  ̂  are the scalar coefficients associated with the basis function    in a given 

expansion for   
 , and so on for the others. These coefficients are also referred to as 

degrees of freedom (DoF‟s), and particularly for the scattering system, they are complex 

numbers. 

It is useful to put all DoF‟s together in a vector, as follows: 

[ ̂   ̂     ̂ ]
 
    ̅                                                         (      ) 

[ ̂   ̂     ̂ ]
 
    ̅                                                        (      ) 

, ̂   ̂     ̂ -     ̅                                                         (      ) 

, ̂   ̂     ̂ -
     ̅                                                       (      ) 

The vectors in (4.14.j) and (4.14.k) are elements of   , whereas those in (4.14.l) and 

(4.14.m) are in   . 

 When (4.14.f) – (4.14.i) are substituted into the system (4.14.a), after some 

manipulation, one arrives at the algebraic system: 

     ( ̅  ̅)                         

 ̅  ̅ ̅   ̅  ̅  ̅   ̅  ̅       ̅                                        (      ) 

 ̅  ̅ ̅                     ̅  ̅       ̅                                                         

where “   ” means the conjugate transpose. The first equation in (4.14.n) is rewritten as 
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 ̅ ( ̅ ̅   ̅  ̅   ̅)          ̅                                         (      ) 

which implies that  ̅ ̅   ̅  ̅   ̅ must be orthogonal to all elements from   . The only 

possibility is that  ̅ ̅   ̅  ̅   ̅    (the zero vector in   ), or equivalently, that 

 ̅ ̅   ̅  ̅   ̅. The same analysis must be applied to the second equation in (4.14.n), 

and the conclusion is that  ̅ ̅   ̅. We thus arrive at a linear system: 

     ( ̅  ̅)                         

 ̅ ̅   ̅  ̅   ̅                                                      (      ) 

 ̅ ̅                ̅                                                                       

The matrices  ̅ and  ̅, and the vectors  ̅ and  ̅ in (4.14.n) are described by their 

coefficients: 

, ̅-    (     )                                                     (      ) 

, ̅-    (     )                                                      (      ) 

[ ̅]
 
 〈     〉  

 ( )    
 ( )                                      (      ) 

, ̅-  〈     〉  ( )    ( )                                       (      ) 

The equations in (4.14.p) can be assembled together into a matrix system as 

     ( ̅  ̅)                         

*
 ̅  ̅ 

 ̅  
+ *

 ̅

 ̅
+  *

 ̅

 ̅
+                                                  (      ) 

After the identification (4.5), the matrix coefficients in (4.14.q) – (4.14.t) can be 

expressed in terms of basis functions from (4.14.b) and (4.14.c) as 

 (     )  ∫ ( ̿     )     
 

 ∫   
 

 

                                  (      ) 

 (     )   ∫      
 

                                                                         (      ) 

〈     〉  
 ( )    

 ( )   ∫ ( ̿     
 
)     

 

 ∫   
 

 

  
 
            (      ) 

〈     〉  ( )    ( )  ∫      
 

  
 
                                                           (      ) 
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Some observations are in order. The basis functions in (4.14.b) and (4.14.c) are 

real functions, i.e., they have no imaginary part. If any of the quantities in (4.14.f) – 

(4.14.i) are complex, this is due solely to the coefficients (DoF‟s) being complex. 

The coefficients of the matrix  ̅ are complex, because the PML tensor  ̿ enters their 

calculation, as revealed by (4.14.v). In what regards the matrix  ̅, its entries are real, 

according to (4.14.w). Consequently,  ̅   ̅ . Since  ̅  ( ̅ ) , then  ̅   ̅ . In this 

way the system (4.14.u) assumes the standard form 

     ( ̅  ̅)                         

*
 ̅  ̅ 

 ̅  
+ *

 ̅

 ̅
+  *

 ̅

 ̅
+                                                  (      ) 

4.2.2 The matrix system: Uniqueness of the solution 

 In this subsection we shall investigate the solvability of problem (4.14.z). The 

analysis will be brief, as much has already been done in the study of Theorem 4.1. The 

intention is to show how some of the hypotheses actually become „manifest‟ down here 

at the matrix level. 

Before we proceed, we need two observations regarding the kernel of the 

sesquilinear form  . First, given arbitrary elements         
 ( ) and      ( ) 

together with their expansions in basis functions according to (4.14.f) – (4.14.m), it is 

true that 

 (     )   ̅  ̅ ̅                                                    (      ) 

If we remember the definition of the kernel (null-space) of the form   in (4.6.c), 

      *     
 ( )    (     )             ( ) +                 (      ) 

then it is not difficult to conclude that 

          ̅        ̅                                         (      ) 

In other words, if    is in      , then the vector of DoF‟s corresponding to the 

expansion of    is in      ̅. 

Second, let  ̅ be a vector of DoF‟s such that  ̅       ̅       ̅  (as the entries are 

real). This means that  ̅  ̅   , i.e., the zero vector in   . It also is not difficult to see 

that 

 ̅       ̅                                                  (      ) 

where the operator    is defined in (3.28). 
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 We now ask under which conditions the solution to the system (4.14.z) is 

unique. This amounts to showing that the solution to the homogeneous problem 

     ( ̅  ̅)                         

*
 ̅  ̅ 

 ̅  
+ *

 ̅

 ̅
+  *

 

 
+                                                  (      ) 

is ( ̅  ̅)  (   ). 

The second equation tells us that  ̅ ̅   , which implies that  ̅       ̅. The first 

equation is 

 ̅ ̅   ̅  ̅                                                         (      ) 

In order to get any information regarding  ̅ in (4.15.f), the matrix  ̅ must be invertible 

on the kernel of  ̅. Then we get 

 ̅    ̅   ̅  ̅                                                     (      ) 

From (4.15.g) and the second equation in (4.15.e), we arrive at 

 ̅ ̅   ̅  ̅                                                      (      ) 

To make sure that ( ̅  ̅)  (   ), we need two conditions: 

1.      ̅  * +;                                                                                                                (      ) 

 . The matrix  ̅ is invertible on      ̅.                                                                         (      ) 

The reasoning goes as follows. It can be seen that if      ̅  * +, then 

     ̅ ̅   ̅  * +. Consequently, the linear mapping described by the matrix 

 ̅ ̅   ̅  in (4.15.h) is one-to-one. From this, one concludes that  ̅   . If  ̅   , then 

 ̅  ̅   ; from (4.15.g) we get  ̅    ̅     , since  ̅   exists. In this way, ( ̅  ̅)  

(   ).  

 But now we may ask: How can we guarantee that conditions 1 and 2 hold true? 

The answer: They are consequences of hypotheses (vi) and (vii) in Theorem 4.1. To see 

why, let us restate the hypothesis (vii), which says that 

     (     )                                                      (      ) 

When we consider the expansions of    and    together with (4.15.c), we arrive at the 

equivalent condition expressed in algebraic terms: 

     ̅  ̅ ̅         ̅        ̅                 ̅                            (      ) 

Condition above really means 

     ̅ ̅              ̅                 ̅                                (      ) 
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In other words, it says: Take any element  ̅ from      ̅. If  ̅ ̅   , then  ̅   . But 

this is nothing else than saying that  ̅ is injective in      ̅, i.e., there is an inverse  ̅   

well-defined on      ̅. In this way condition 2 in (4.15.j) has been established.  

 We can make the notion of “ ̅ being invertible on      ̅” more understandable. 

The original matrix  ̅ belongs to     , which means that it maps vectors from    into 

vectors of   . Since      ̅    , then         ̅           . Let us find an 

orthonormal basis for      ̅. Then take     vectors from    and complete the basis 

(through a Gram-Schmidt procedure, for example). We now have a new basis for   . In 

this new basis every element of      ̅ is such that its last     coefficients are all 

zero. When we represent the matrix  ̅ in this new basis, it assumes the form 

 ̅    *
      

      

+                                                    (      ) 

where the indices   and   are such that       and (   )     . By 

invertibility on the kernel what is really meant is that the submatrix     is invertible. 

The question is that to ask for invertibility in the whole space    may be too much. If  ̅ 

is invertible on the whole space   , good. If not, then requiring just the invertibility on 

the kernel is fine. For more on this subject, see [Brezzi and Bathe, 1990]. 

 The hypothesis (vi) is just the inf-sup condition (4.15.e). According to the 

statement (ii) in Theorem 3.3, we know that it is equivalent to the fact that    is 

injective, i.e., that 

       {   ( )}                                                (      ) 

where    ( ) is the zero element from the space   ( ). So       ( ) is the only 

element from       ; with the help of (4.15.d), we can conclude that  ̅    is the only 

element from      ̅ , i.e., 

     ̅  * +                                                      (      ) 

which is precisely the condition 1 in (4.15.i). 

 The lesson learned so far is that the validity of hypotheses (vi) and (vii) in 

Theorem 4.1 entail conditions (4.15.i) and (4.15.j), which in their turn imply that the 

solutions to the final linear system (4.14.z) is unique. It is interesting to track down this 

chain of influences. First, hypotheses are made at the very abstract level in Theorem 3.9. 

Second, the abstract spaces and sesquilinear forms from Theorem 3.9 are specialized to 

the spaces and forms occurring in the scattering problem, as illustrated in Section 3.3.6. 

Third, these spaces and forms are specialized further to finite-dimensional subspaces in 

Theorem 4.1. Fourth, these hypotheses are shown to ultimately influence the solvability 

of the final linear system (4.14.z). 



 

133 
 

 Hypothesis (vii) holds true, according to Section 4.1.1.8, but we have not been 

able to show that hypothesis (vi) does also, as discussed in Section 4.1.1.7. As we could 

conclude from this subsection, its validity is fundamental. The state of affairs is such 

that everything depends on the inf-sup condition (4.6.e). We shall examine it more 

closely now. 

4.2.3 The matrix system: The inf-sup condition 

 Let it be the inf-sup condition (4.6.e), restated below for convenience: 

    
    

 ( ) * +
   

     
 ( ) * +

| ∫         
|

‖  ‖  ( ) ‖  ‖  ( )
   

                      (      ) 

The spaces in (4.16.a) are complex spaces, i.e.,   
 ( ) and   ( ) admit elements 

which have both real and complex parts. According to statement (iii) in Theorem 3.3, 

the inf-sup condition above is equivalent to the fact that the operator        
 ( )  

  ( )  is surjective. Since   ( ) is a subset of   ( ), and since   ( ) is identified 

with its dual, there is no harm in identifying   ( ) with its dual.  

One must then show that the operator        
 ( )    ( ) is surjective. In doing so, 

one does not need to show surjectivity for the complex versions of   
 ( ) and   ( ). 

Just the real version needs to be taken into account. The reason is as follows. Suppose 

that     is surjective from the (real)   
 ( ) onto the (real)   ( ). 

Consider an arbitrary    belonging to the (complex)   ( ). It means that    can be 

written as      
     

 , in which both   
  and   

  are elements from the (real)   ( ). 

From the surjectivity between the real spaces, it follows that there are elements   
    

   

in (real)   
 ( ) such that      

    
  and      

    
 . If we make      

     
 , 

then it is true that         . So from an arbitrary    in the (complex)   ( ), we 

were able to find a    in the (complex)   
 ( ) such that         . In other words, 

we are able to conclude that     is surjective from the (complex)   
 ( ) onto the 

(complex)   ( ). Once we have shown the surjecivity, the inf-sup condition (4.16.a) 

follows from the Theorem 3.3. Thus far the reasoning is:  

Surjectivity between real spaces   Surjectivity between complex spaces   inf-sup 

condition in complex spaces. 

However, how can we prove surjectivity between real spaces? We may resort again to 

Theorem 3.3: It is equivalent to the inf-sup condition in real spaces. So the whole 

argument becomes: 

Inf-sup condition in real spaces   Surjectivity between real spaces   Surjectivity 

between complex spaces   inf-sup condition in complex spaces. 

So in order to show that (4.16.a) is true, all we need to do is to prove its real counterpart 
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    ( ) * +

   
  
    

 ( ) * +

 ∫   
      

 
 

‖  
 ‖  ( ) ‖  

 ‖  ( )
   

                      (      ) 

The spaces   
 ( ) and   ( ) in (4.16.b) now admit only real elements. Since these 

spaces are Hilbert spaces, the norms are induced by the inner products as in 

‖  
 ‖

  ( ) 
  (  

    
 )  ( )                                         (      ) 

‖  
 ‖

  ( )
  (  

    
 )  ( )                                          (      ) 

If   
  and   

  are expanded as in (4.14.g) and (4.14.i), respectively: 

  
  ∑   ̂ 

 

   

                                                    (      ) 

  
  ∑   ̂ 

 

   

                                                     (      ) 

then (4.16.c) and (4.16.d) may be written as 

‖  
 ‖

  ( ) 
   ̅  ̅  ̅                                              (      ) 

‖  
 ‖

  ( )
   ̅  ̅  ̅                                               (      ) 

The coefficients of the matrices  ̅  and  ̅  are given by 

, ̅ -   (     )  ( ) 
                                     (      ) 

[ ̅ ]   (     )  ( )
                                          (      ) 

Since according to (4.14.w)  

 ∫   
      

 

 

  (  
    

 )   ̅  ̅ ̅                           (      ) 

the inf-sup condition (4.16.b) becomes: There should be a   
    such that 

    
 ̅    * +

   
 ̅    * +

 ̅  ̅ ̅

( ̅  ̅  ̅)  ⁄ ( ̅  ̅  ̅)
  ⁄

   
                      (      ) 

It can be proved through a formidable algebra [Brezzi and Fortin, 1991], [Bathe, 1996] 

that 

    
 ̅    * +

   
 ̅    * +

 ̅  ̅ ̅

( ̅  ̅  ̅)  ⁄ ( ̅  ̅  ̅)
  ⁄

                    (      ) 
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where      is the smallest eigenvalue associated with the problem 

 ̅ ̅ 
   ̅  ̅    

  ̅  ̅                                             (      ) 

 In essence, this is the numerical evaluation of the inf-sup condition we 

mentioned in Section 4.1.1.7. Given a pair of finite-dimensional subspaces   
 ( ) and 

  ( ), from their real basis functions in (4.14.b) and (4.14.c), we construct the real 

matrices  ̅,  ̅  and  ̅ . Thereafter, we look for the smallest eigenvalue      of the 

generalized eigenvalue problem (4.16.n). The quantity in the left side of (4.16.b) is 

given precisely by this value. Then we must verify: If       , then the pair   
 ( ) 

  ( ) satisfies the inf-sup condition (4.16.b), and their associate inf-sup constant is 

therefore   
      . On the other hand, if       , the pair   

 ( )   ( ) does not 

satisfy the inf-sup condition. 

Furthermore, if   
 ( )   ( ) satisfies the inf-sup condition for real spaces in (4.16.b), 

then it follows from the argument presented earlier that it also satisfies the inf-sup 

condition for the complex spaces in (4.16.a), which is nothing else than the hypothesis 

(vi) in Theorem 4.1. 

 So the hypothesis (vi) in Theorem 4.1 is not actually proved; it is verified at the 

numerical level. Of course, different choices for   
 ( )   ( ) lead to different inf-sup 

constants   
 ; hence the superscript  , to indicate that it depends on the specific finite-

dimensional subspaces considered. The numerical test allows a certain freedom in the 

construction of   
 ( ) and   ( ). Indeed, before solving the scattering problem, we 

can construct different pairs and test if they satisfy the inf-sup condition. This test turns 

out to be the ideal one to deal with meshfree methods. As one knows, the subspaces 

there are spanned by basis functions generated by clouds of nodes distributed (at least in 

principle) throughout the domain in a more or less disordered way.  

4.3 Meshfree subspaces 

4.3.1 Nodes and patches 

 It is now time to specify the spaces   
 ( ) and   ( ) further. In the sequel, we 

will look for subspaces generated by meshfree basis functions. The formulation we 

develop thus leads to a „meshfree method‟, if by method we mean the way the 

subspaces are constructed. Interestingly enough, the discussion thus far has not made 

any reference to something being qualified as „meshfree‟. The whole formulation, 

theorems, hypotheses and even the final form of the matrix system do not depend on 

  
 ( ) and   ( ) being meshfree or not. What does depend is the specific form 

assumed by these finite-dimensional subspaces and their ability to provide an 

approximate solution to the scattering problem. 



 

136 
 

 As stated in Chapter 1, the „method‟ to be used in this work is basically the 

method of finite spheres (MFS) [De and Bathe, 2000], with some modifications here 

and there. We begin by describing our computational domain  . In principle, it is the 

same as the domain in which the system of differential equations is stated; even when 

curved boundaries are considered, it is not approximated by flat faces of 

triangles/tetrahedra as it happens in FEM. In this way   is just an open and connected 

subset of   , where     or    . 

After the domain has been defined, one spreads nodes over   and also on its boundary 

    . Nodes are simple points; sometimes they are referred to as particles. They are 

spread freely over  ; by freely one means that there is no fixed rules their distribution 

should follow. (Saying that random distributions are allowed is a little bit nonsensical, 

but there is nothing wrong with quasi-random distributions.) 

These nodes must be numbered, or labeled. They are usually ordered according 

to the natural numbers, so we talk of node 1, node 2, and so on. The index of a node is 

nothing more than the natural number to which it is associated. The number of nodes 

shall be finite; so in a sense there will be a total of   of them. Each node is described by 

its Cartesian coordinates; for example, a node with index   is located at position 

   ,        -
       . 

 To each node   we associate an open set   , also called a patch. In this work, 

each patch is a square (   ) or a cube (   ). The node and the patch are arranged 

in such a way that the node is located at the center of the patch. In these circumstances, 

the patch    is just the subset of    given by 

   *                                                         (      ) 

                                                                    

             +                                                      

The number    is a measure of the size of the patch   . According to (4.17.a), the side 

of    is given by    . The patches can overlap with each other (if nodes   and   are close 

enough, probably        ). Also, some portions of    may even be outside the 

computational domain   (as it happens for the nodes located at the boundary  , for 

example). 

 But there are requirements these patches must satisfy. They must form a 

covering for  ̅. In other words, 

 ̅  ⋃  

 

   

                                                        (      ) 
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Expression above means that, any point   in  ̅ (i.e., either in the interior   or at the 

boundary  ) must belong to at least one patch   . In other words, the patches cover the 

domain   and its boundary   in such a way that no holes are left behind. 

 Each patch    presents itself as a nice environment to define certain functions, 

i.e., we can construct functions which are defined only in the interior of the patch   . So 

lets us represent these local functions as 

                                                         (      ) 

i.e., these local functions (hence the “   ”) are real-valued and defined only within   . In 

a patch    there are    local functions, labeled as     ,     , and so on. They must be 

linearly independent, but are not required to be orthogonal to each other in any sense. 

 We can now introduce a local space   , spanned by the    ‟s as 

       {                 
}                                   (      ) 

So each patch has its corresponding local space. In this way, there will be a total of   

local spaces. 

 As it stands, these local spaces are „loose‟ in the sense that they do not, at first 

sight, incorporate information concerning the underlying nodal distribution. In other 

words, it is not clear how the distribution of neighbor nodes influences the local 

functions defined on a patch. 

In fact, it does not. The functions in (4.17.c) are entirely local, and generally do 

not incorporate information regarding the neighboring nodes. All the local spaces must 

be „glued together‟ in order to form a coherent structure which takes both the local 

spaces and the nodal distribution into account. 

 This „gluing‟ is provided by the partition of unity (PU), which is defined below 

[De and Bathe, 2000]: 

Chart 4.1: Partition of unity (PU) 

Let   be a bounded domain in   . Consider a family of open subsets *  +   
  which 

forms a covering for  , i.e., they are such that 

 ̅  ⋃  

 

   

                                                      (      ) 

Then there exists a system of functions *  +   
    

 (  ),     which satisfy the 

two properties below: 

∑  ( )            ̅

 

   

                                         (      ) 
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    (  )   ̅                                              (      ) 

This system of functions *  +   
  is called the partition of unity subordinate to *  +   

 . 

We may take the family of open sets *  +   
  as the collection of all cubic patches we 

defined over  , according to (4.17.a). The definition above claims the existence of a 

certain set of functions in   
 (  ), a space defined by 

  
 (  )  *    ( )       ( )     +                          (      ) 

where   ( ) is given in (2.52) and the notion of support is introduced in (2.1). In a 

sense, every function    is  -times continuously differentiable, and its support is a 

closed subset of   . The exact value of   depends on the way the PU is generated; the 

definition above only acknowledges the existence of a system of continuous functions 

which satisfy (4.17.f) and (4.17.g). 

It is likely that each point   in the domain   is within more than one patch. Property 

(4.17.f) says that the sum of the functions    calculated at   is always 1. Since    

  
 (  ), its support is a closed subset of   . But property (4.17.g) refines this 

knowledge: It says that the support of    is compactly contained in the patch   , i.e., it 

is a closed subset entirely contained within    (but it can touch the boundary  , though, 

as it happens for nodes located on or very close to it). 

 The method of finite spheres is based on a family of non-polynomial PU 

functions. Let   be a quartic spline weight (or window) function [Duarte and Oden, 

1996]: 

 ( )  ,
                      

                                       
                             (      ) 

Then a partition of unity can be constructed by tensor-product Shepard functions as 

  
 ( )  

 (
      

  
) (

      
  

) (
      

  
)

∑  (
|    |

  
) (

|    |
  

) (
|    |

  
) 

   

               (      ) 

An example of a typical Shepard PU function is illustrated in Fig. 4.1. 

It can be seen that the system *  
 +   

  thus obtained satisfies (4.17.f) and (4.17.g). The 

function   in (4.17.i) belongs to   (,   -), and so each triple product in (4.17.j) 

belongs to   ( ). Consequently, both the numerator and the denominator in (4.17.j) 

belong to   ( ). The denominator never blows up, as the weight function   attains a 

maximum value of 1. In this way, the derivative of   
 ( ) is also continuous, and 

therefore we conclude that   
  is (at least) in   ( ). 
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Fig. 4.1. A typical Shepard PU function   
  over a two-dimensional square patch. According to (4.18.c) in 

Chart 4.2,   
  attains the value 1 at the node location. 

The Shepard PU functions   
  are compactly supported, as its support is contained 

within  ̅ . Moreover, they have zero-order consistency, i.e., they can reproduce constant 

functions exactly (hence the superscript 0). Higher-order consistency is provided by the 

functions in the local spaces (4.17.d), as will be explained in the next pages. 

 It is now time to „glue‟ the local spaces (4.17.d) and the PU together. The result 

is a global approximation space, constructed as follows. For each local space    in 

(4.17.d), we form its „weighted‟ version as 

  
        {  

        
          

      
}                       (      ) 

i.e., the local functions defined in the patch    are multiplied by its corresponding 

Shepard PU function   
 . Of course, the support of the functions in   

   is the same as 

the support of   
  (i.e., the functions in the local space become „confined within the 

patch through multiplication by a function which „exists‟ only on the patch). 

If we consider two weighted local spaces   
    and   

   , it is not difficult to see that 

they are linearly independent, since their elements are functions defined in different 

regions    and   . The global approximation space is just the sum of these weighted 

subspaces: 

    
      

        
                                     (      ) 

If    , then it is represented by the double sum 

  ∑ ∑   
     

  

   

 

   

 ̂                                           (      ) 

where   runs through all nodes and   runs through all local functions of the local space 

   [whose dimension is   , according to (4.17.c)]. The scalars  ̂   are the DoF‟s in the 

expansion. So the true shape or basis functions of our method is 
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                                                           (      ) 

formed by the Shepard PU function   
  multiplied by the local function     . So we may 

rewrite (4.17.m) as 

 ( )  ∑ ∑    ( )

  

   

 

   

 ̂                                         (      ) 

which gives the right expansion at a point  . 

There is an important result concerning the meshfree spaces   in (4.17.l): They 

span a subset of   ( ) [De and Bathe, 2001].  

Proposition 4.1: On the global meshfree spaces   – Suppose that a polynomial basis 

(of order  ) is included in every local space   , i.e.,         . Then the global 

space   defined as in (4.17.l), i.e., as 

    
      

        
                                     (      ) 

is a subspace of   ( ). In other words, 

    ( )                                                      (      ) 

 In what regards the derivatives of the basis functions in (4.17.n), there is nothing 

new (provided only differentiable functions are included in the local basis). The 

ordinary chain rule works fine: 

 

  
    

 

  
(  

     )  
   

 

  
       

 
     

  
                      (      ) 

The same reasoning is extended to the derivatives with respect to   and  . 

The meshfree basis functions     have nice properties. First, they are compactly 

supported, which means that a discretization process based on them leads to sparse 

linear systems. Second, they do not depend on matrix inversions as the Moving Least 

Squares does [Liu, 2010]. Third, since they do not depend on the distribution of 

neighbor nodes as the MLS (the PU shape functions are influenced by neighboring 

nodes, but they do not depend on them in order to be well-defined), the patches can be 

made as small as possible, just enough to satisfy the covering criterion (4.17.b). This is 

true regardless of what one decides to include in the local spaces, and is in stark contrast 

to the MLS, where if one decides to include higher-order terms in the process, then the 

„influence domains‟ must be made larger in order to encompass a larger number of 

neighboring nodes. Fourth, they satisfy the reproducibility/consistency properties 

below, stated as a theorem [Melenk and Babuska, 1996]: 
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Fig. 4.2. In two dimensions, the set of square patches must form a covering for the computational domain 

  and its boundary  . According to consideration 1 in Chart 4.2, there is only one node per patch. The 

patches can be made as small as possible, just enough to not leave any hole behind. The extension to 3D 

is straightforward; we just need to substitute squares for cubes. 

Theorem 4.2: Reproducibility/Compatibility – If any function  ( ) is included in the 

local bases, it is possible to exactly reproduce it. Moreover, if         , then 

    . 

In Theorem 4.2,    is the space spanned by all polynomials of degree less than or equal 

to  . The last statement says that if    is a subspace of all local spaces   , then it is 

also a subspace of the global space  . In other words, if we include, for example, the 

terms *     + in every local space   , then the global space   will be able to reproduce 

exactly any function which is a linear combination of *     +, namely, it will reproduce 

exactly any linear function defined on  . 

4.3.2 Geometrical considerations 

 The properties of the basis functions     are good, but we can make them even 

better. In this work, we propose three considerations. 

Chart 4.2: On the improvement of the basis functions     

1. The size of the square/cubic patch    is such that 

                      ̅                                           (      ) 

Expression (4.18.a) says that the only patch in which node   is contained is the patch    

itself. Equivalently, there is only one node per patch. This is illustrated in Fig. 4.2. 
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Since the patches can be made as small as one desires [but always keeping (4.17.b) in 

mind], one can decrease the sizes of the other patches    so that their boundaries     

become very close to node   , but do not need to actually touch   . 

We know that the partition of unity (4.17.f) holds for any point in  ̅. Particularly, it 

holds in the location of node   at   : 

∑  
 (  )    

 

   

                                                (      ) 

For each node   (4.17.g) says that     (  
 )   ̅ , i.e., that the support of the PU 

function   
  is contained in the patch   (in other words, the PU function   

  only „exists‟ 

within the patch  ). But according to (4.18.a), if    , then     ̅ . Since     (  
 )  

 ̅ , it is also true that if    , then        (  
 ). But if    is not in the support of   

 , 

then   
 (  )   . We are thus able to conclude that the sum in (4.18.b) reduces to a 

single term: that for which    . Then, 

  
 (  )                                                       (      ) 

Expression above says that for any  , the PU function   
  evaluated at    is equal to 1, 

or that 

  
 (  )                                                       (      ) 

where     is the Kronecker delta. 

2. For any node   located at the interior of the domain   (i.e., not at the global boundary 

 ), the patch    is such that it does not intercept  . Symbolically, 

                                                               (      ) 

In this way, any function, in the course of the meshfree discretization process, has its 

behavior at the boundary   governed by the boundary nodes only. 

3. If the node   is located at a portion of the global boundary   in which Dirichlet 

boundary conditions are prescribed, then     ( )    is the only term to be included in 

the local basis. In other words, 

                              * +                              (      ) 

 The considerations above have a positive influence when handling Dirichlet 

boundary conditions. Suppose we are trying to find a meshfree approximation to the 

solution of a problem in which Dirichlet boundary conditions have been prescribed, as 

in 

    
                                                            (      ) 
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where   is a scalar unknown (for example, a component of some vector field  ) and   

is a known function (the essential condition). Let   be a node in the Dirichlet boundary, 

i.e.,      . Since      , then 

 (  )   (  )                                                   (      ) 

If we expand   at    in terms of basis functions as in (4.17.o), we get 

 (  )  ∑ ∑    (  )

  

   

 

   

 ̂                                         (      ) 

According to (4.18.a), the only patch to which the nodal point    belongs is   , and so 

the outer sum in (4.18.i) has a single term, namely,  . Then, 

 (  )  ∑    (  )

  

   

 ̂                                          (      ) 

If we take (4.17.n) into account, 

 (  )  ∑   
 (  )    (  )

  

   

 ̂                                  (      ) 

But   
 (  )   , according to (4.18.c), and (4.18.f) tells us that     ( )    is the only 

term in the local basis for   . Therefore, 

 (  )   ̂                                                       (      ) 

i.e., the DoF  ̂   is the function   evaluated at   . When we combine (4.18.l) and 

(4.18.h), we find that 

                        ̂    (  )                               (      ) 

To summarize: A node at the Dirichlet boundary has a single term in its local basis, and 

consequently a single DoF in the meshfree expansion. It turns out that this DoF is 

precisely the value of the known function   evaluated at the node location. 

 The conclusion we arrived at (4.18.m) has striking consequences in the 

construction of the lifting function associated with Dirichlet boundary conditions. 

Suppose we want to solve a scalar problem 

                     

 (     )   (  )                                              (      ) 

     
                                                          (      ) 
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where   is some scalar unknown and   is some differential operator in weak form. The 

solution is to be sought in the set   of admissible functions. Elements of    satisfy 

(4.18.o), whereas     
   for any testing function     . The philosophy of the 

lifting procedure is to write the solution   as 

     
    

 
                                                  (      ) 

where   
     and   

 
 is any function satisfying   

 
   

  . Therefore it makes sense 

to take   
 

 as the easiest function to construct. In the discrete level, this easiest function 

can be constructed according to the following recipe outlined in the Chart 4.3. 

Chart 4.3: The lifting function   
 

 

Let it be the   nodes spread throughout the domain   and on its boundary  . Suppose 

also that there is a portion    of the boundary in which the Dirichlet condition (4.18.o) 

holds. We can construct a numerical lifting function   
 

 as follows: 

1. The function   
 

 admits the traditional meshfree expansion 

  
 ( )  ∑ ∑    ( )

  

   

 

   

 ̂                                 (      ) 

2. The DoF‟s  ̂   are determined according to the rule: 

2.a. If   is an interior node, i.e., if     , then  ̂    . 

2.b. If   lies at the boundary   but not at the Dirichlet boundary   , i.e., if      , then 

 ̂    . 

2.c. If   lies at the Dirichlet boundary   , i.e., if      , then  ̂    (  ). (Remember 

that according to the consideration 3 in Chart 4.2, nodes at the Dirichlet boundary have 

a single DoF. 

After the lifting function   
 

 is found, substitution of (4.18.p) in (4.18.n) produces a new 

problem  

       
               

 (  
    )   (  )   (  

 
   )                                   (      ) 

where both the solution and testing functions belong to same space    (whose elements 

satisfy homogeneous Dirichlet boundary conditions). 

 The procedure of finding a lifting function thus becomes a very easy task to do 

at a numerical level, thanks to the considerations we have made at Chart 4.2.  
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It turns out that the procedure for finding lifting functions for vector quantities    is 

equally easy. We just need to apply the procedure just outlined to each of the scalar 

components of   . 

4.3.3 The spaces   
 ( ) and   ( ) 

 According to (4.14.b) and (4.14.c), the spaces   
 ( ) and   ( ) are 

  
 ( )      *          +                                       (      ) 

  ( )      *          +                                        (      ) 

A problem of paramount importance to us is this: With our meshfree basis functions, we 

are able to produce meshfree spaces   given by (4.17.l). How can we construct the 

meshfree spaces   
 ( ) and   ( ) above out from the spaces   in (4.17.l)? The answer 

is easy for the space   ( ), but is not clear for   
 ( ).  

 We can make the discussion a little bit more precise and introduce some 

distinctions. We would like to point out that in the course of developing the meshfree 

space   ( ), we want to emphasize the fact that the local basis functions reflect the 

choice of functions concerning the pseudopressure  . So the local spaces will be 

represented by 

  
      {    

      
         

 }                                   (      ) 

where    denotes the number of basis functions which span the local space   
 
 in 

(4.19.c). The superscript „ ‟ reflects the fact that the local basis functions are related to 

the pseudopressure  . In this way, the global approximation space becomes 

     
   

    
   

      
   

                               (      ) 

This space is a subspace of   ( ), according to (4.17.q). Since   ( ) is a subspace of 

  ( ), it follows that      ( ), as required by (4.1.b). Therefore it is valid to choose  

  ( )                                                          (      ) 

If     ( ), then it admits the meshfree expansion 

 ( )  ∑ ∑    
 ( )

  

   

 

   

 ̂                                          (      ) 

where 

   
 ( )    

 ( )    
 ( )                                          (      ) 
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 Now we have two representations for   ( ): (4.19.b) and (4.19.f). According to 

(4.19.b), a function   in   ( ) has the expansion 

  ∑   ̂ 

 

   

                                                   (      ) 

where the  ̂ ‟s are the DoF‟s. When we compare (4.18.q) and (4.18.s), we discover that 

the basis functions    for   ( ) are just the (double-indexed)    
 

. If we write them in 

order, we are able to see that 

      
                                                         (      ) 

      
 

 

      
 

 

  

   
     

 
 

         
 

 

and so on. 

So if      
    ,      

            
    , then the dimension   of the 

global space   ( ) is 

     ( )                                         (      ) 

 The situation is more complicated for the space   
 ( ). Let us denote by   

  the 

local space whose basis functions are related to a scalar component of the electric field: 

  
      {    

      
         

 }                                   (      ) 

So when it comes to a component of the electric field, each patch   has    functions, 

which span the local space   
 . The global approximation space then becomes 

     
   

    
   

      
   

                               (      ) 

The dimension of    is given by 

                                                  (      ) 

According to (4.17.q), it is true that 

     ( )                                                    (      ) 

We would like to say once more that we use superscripts because the terms 

included in the local spaces for the pseudopressure will be different from those included 
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in the local spaces for the components of the electric field. This distinction is 

summarized in the tables below. 

TABLE 4.1 – LOCAL BASES AND LOCAL SPACES 

 
Pseudopressure   Scalar component of the electric field 

Local space   
 
   

  

Dimension       

Terms     
      

         

 
     

      
         

  

 

TABLE 4.2 – GLOBAL SPACES 

 Pseudopressure   Scalar component of the electric field 

Global space   
   

      
   

 
   

   
      

   
  

Dimension                       

In other words, for a given patch  , the functions     
         

 
 will be different from the 

    
         

 . 

 Now that the meshfree space for   ( ) has been defined in (4.19.e), we must 

turn to the construction of   
 ( ). The problem is not easy. One could begin by trying 

to find a basis for   ( ) in (4.1.a) as follows. Let the     and   components be 

elements from    in (4.19.l). This amounts to making 

  ( )                                                        (      ) 

Thereafter one could make the DoF‟s associated with the tangential components equal 

to zero. In this way, we get a suitable meshfree space for   
 ( ), introduced in (4.3) and 

rewritten below: 

  
 ( )  *     ( )         +                                   (      ) 

For example, suppose that   is a cube. In the upper face, the outward normal direction 

is  . For every node located on this face, we make the DoF‟s of the   and   components 

equal to zero. So every element of the resulting space has zero tangential components 

on this face. The same applies to the other faces of the cube. 

 The problem is that this approach is limited to domains with „rectangular‟ 

boundaries, i.e., boundaries which are described by flat faces. Let us say we are 

interested in solving a problem in a spherical domain. In the spherical surface, the 

tangential vectors are not described by one of the Cartesian directions only. So we 



 

148 
 

cannot get fields which have no tangential components by just making the DoF‟s 

associated with either   or   or   equal to zero. 

 We want a way to get spaces of vectors having no tangential components in any 

geometry, because the PEC surface of the scatterer can have an arbitrary shape. We 

found a solution to this problem. The „discovery‟ of a meshfree representation of 

(4.19.p) is one of the most important achievements of this work. It will be described 

next. 

 As we said in Section 4.3.1, we begin by spreading   nodes over the domain   

and also on its boundary  . Each node is associated to a cubic patch, whose construction 

is detailed in (4.17.a). On each of these patches, we defined local spaces   
  as in 

(4.19.k), which are „glued together‟ via the PU functions in order to produce the global 

space    (4.19.l). This procedure is able to find a meshfree space for a scalar quantity, 

which can be a component of the scattered electric field. One may ask: Which 

component? The  -component? Or the  -component? The  -component, maybe? The 

answer is: None of these. The electric field will not be expanded in terms of the 

Cartesian components. 

 Let us add more structure. To each node  , we will associate three directions, 

called the elemental directions. They are just unit vectors in   , and will be represented 

by  ̂ ,  ̂  and  ̂ . We require them to be mutually orthogonal, i.e.: 

 ̂   ̂   ̂   ̂   ̂   ̂                                         (      ) 

 ̂   ̂   ̂   ̂   ̂   ̂                                         (      ) 

The elemental directions are determined as follows: If a node   is an interior node, then 

they are just the Cartesian directions  ̂,  ̂ and  ̂. If, on the other hand, the node   is a 

boundary node, then they are the normal and tangential directions at   . In other words, 

                      {

 ̂   ̂

 ̂   ̂

 ̂   ̂

                                          (      ) 

                      {

 ̂   ̂(  )

 ̂   ̂ (  )

 ̂   ̂ (  )

                                  (      ) 

For a node location    at the boundary  , the normal  ̂ at this point should be available, 

since we (of course) know about the geometry we are studying. The tangential vectors 

 ̂  and  ̂  in (4.19.t) are any two unit orthogonal vectors such that 

 ̂   ̂   ̂                                                        (      ) 
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 ̂   ̂                                                            (      ) 

 After the set of elemental directions has been determined for all nodes, an 

element     ( ) is expanded as 

 ( )  ∑ ∑    
 ( )

  

   

 

   

( ̂   ̂   ̂   ̂   ̂   ̂ )                    (      ) 

The coefficients (or DoF‟s)  ̂  , in a sense, give the amplitude of the field   in the  ̂  

direction. The same goes on for  ̂   and  ̂  , which give the amplitude in the  ̂  and  ̂  

directions, respectively. 

 Now it becomes easier to construct a space whose elements have zero tangential 

components. Since for each node   which happens to be in the boundary   the tangential 

directions are (locally) given by  ̂  and  ̂ , it suffices to make the coefficients  ̂     

and  ̂     in (4.19.w). In this way, the resulting field   will have components only 

along the normal direction, (locally) given by the  ̂ . In this way, the space   
 ( ) is 

easily determined from   ( ). 

In the interior of  , the elemental directions are the ordinary Cartesian directions. But 

since the interior patches do not intersect the global boundary (due to consideration 2 in 

Chart 4.2), they have no influence on the normal/tangential components of the resulting 

field. 

If one desires to retrieve the  -component of the electric field   in (4.19.w), it suffices 

to take the dot product between   and  ̂: 

  ( )   ( )   ̂  ∑ ∑    
 ( )

  

   

 

   

( ̂   ̂   ̂   ̂   ̂   ̂   ̂   ̂   ̂)     (      ) 

The meshfree basis functions    
  are obviously given by 

   
 ( )    

 ( )    
 ( )                                            (      ) 

where the terms in the local basis     
  come from (4.19.k). One observes that there are 

two representations for elements in   
 ( ): (4.19.a) and (4.19.w). The basis functions 

   in (4.19.a) are just the (double-indexed)    
 . However, the ordering depends on 

how one decides to construct the numbering scheme (i.e., on how to put the DoF‟s in 

order, and consequently on how to attribute a row in the global matrix to each DoF). 

This topic will be discussed later. 

 In what regards the derivatives of the elements in   ( ) [and also in   
 ( )], we 

can apply the gradient operator to (4.19.w); with the help of the tensor product operator 

  we get: 
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   ∑ ∑     
 

  

   

 

   

 ( ̂   ̂   ̂   ̂   ̂   ̂ )                                           (      ) 

 ∑ ∑(    
   ̂ ) ̂   (    

   ̂ ) ̂   

  

   

 

   

(    
   ̂ ) ̂      (      ) 

where the dependence of   and    
  on the position     has been dropped, for the 

sake of clarity. (According to the rules of tensor algebra, the gradient of a vector is a 

tensor [Irgens, 2008]) The gradient     
  is calculated in the usual way: 

    
  

    
 

  
 ̂  

    
 

  
 ̂  

    
 

  
 ̂                                   (      ) 

4.3.4 Numbering schemes and the assembly process 

 In this work, the numbering scheme is organized in the following way. First, all 

local spaces   
  in (4.19.k) have the same dimension, i.e., we make 

                                                          (      ) 

Consequently, the global space    in (4.19.m) has dimension  

                                                         (      ) 

Second, all the local spaces   
 
 in (4.19.c) have the same dimension, i.e., we make 

                                                         (      ) 

from which it follows that the global space    in (4.19.d) has dimension 

                                                         (      ) 

Third, the     DoF‟s associated with the  ̂ ‟s, the     DoF‟s associated with the  ̂ ‟s, 

the     DoF‟s associated with the  ̂ ‟s, and the     DoF‟s associated with the 

pseudopressure   are arranged in order. In this way, the     in (4.19.w) gets mapped to 

the global index 

 ( ̂  )  (   )                                           (      ) 

in the global matrix. The     in (4.19.w) gets mapped to the row 

 ( ̂  )      (   )                                  (      ) 

In the same way, the     in (4.19.w) gets mapped to the row 

 ( ̂  )       (   )                                (      ) 
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Finally, the  ̂   in (4.19.f) gets mapped to the row 

 ( ̂  )       (   )                                (      ) 

The total number of unknowns in the problem thus becomes: 

          (      )                              (      ) 

However, the DoF‟s corresponding to the tangential components of the fields must be 

zero. This is easily fixed by just identifying the boundary nodes, going to the global 

matrix and making the DoF‟s corresponding to the tangential components (which will 

be two of the elemental directions) equal to zero. In the end, the total number of DoF‟s 

is smaller than that in (4.21.i). 

 We will now take a closer look on the specific form assumed by the terms in 

(4.14.v) – (4.14.y). The scattering system, stated in (4.4.a) – (4.4.b), and whose solution 

we are interested in, is rewritten below for convenience: 

     (  
    )    

 ( )    ( )           

∫ ( ̿     
 )     

 

 

 ∫   
 

 

  
    

  ∫        
 

 

  

 ∫ ( ̿     
 
)     

 

 

 ∫   
 

 

  
 
   

             
 ( )            (      ) 

 ∫   
    

 

  
  ∫   

    
 

  
 
            ( )                                                        (      ) 

Since the lifting   
 

 can be easily determined from the procedure outlined in Section 

4.3.2, we concentrate on the unknowns   
  and   . They are expanded as 

  
  ∑∑    

 

  

   

 

   

( ̂   ̂   ̂   ̂   ̂   ̂ )                    (      ) 

   ∑ ∑   
 

  

   

 

   

 ̂                                           (      ) 

The equations (4.21.j) and (4.21.k) hold true for any testing function in   
 ( ) and 

  ( ), respectively. These testing functions are expanded likewise as 

   ∑ ∑    
 

  

   

 

   

( ̂   ̂   ̂   ̂   ̂   ̂ )                (      ) 
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   ∑∑   
 

  

   

 

   

 ̂                                             (      ) 

The gradient vectors are provided by (4.20.b), i.e., 

   
  ∑∑(    

   ̂ ) ̂   (    
   ̂ ) ̂   

  

   

 

   

(    
   ̂ ) ̂     (      ) 

    ∑ ∑(    
   ̂ ) ̂   (    

   ̂ ) ̂   

  

   

 

   

(    
   ̂ ) ̂      (      ) 

When we substitute (4.21.l) and (4.21.m) in (4.21.j) and (4.21.k), we get: 

∑∑ (∫ ( ̿  .(    
   ̂ ) ̂   (    

   ̂ ) ̂   (    
   ̂ ) ̂  /)     

 

 

)

  

   

 

   

 

 ∑∑(∫   
 

 

.   
 ( ̂   ̂   ̂   ̂   ̂   ̂ )/    

 )

  

   

 

   

  

 ∑ ∑(∫    
      

 

 

)  ̂  

  

   

 

   

  

 ∫ ( ̿     
 
)     

 

 

 ∫   
 

 

  
 
   

                
 ( )                                     (      ) 

 ∑∑.∫   
    

 

.   
 ( ̂   ̂   ̂   ̂   ̂   ̂ )//

  

   

 

   

  

∫   
    

 

  
 
            ( )                                                                                          (      ) 

The testing function    in (4.21.q) is arbitrary. From the representation for    in 

(4.21.n), the components relative to the elemental directions  ̂ ,  ̂ , and  ̂  are linearly 

independent. It means that (4.21.q) can be broken down into three expressions, each of 

them having the same form. In the first, the  ̂   are arbitrary, whereas  ̂    ̂    . 

In the second, the  ̂   are arbitrary, whereas  ̂    ̂    . And in the third, the  ̂   

are arbitrary, whereas  ̂    ̂    . In each case, these scalar coefficients will appear 

at both sides of the equation, so in the end their effect will be immaterial. These cases 

will now be examined carefully. After we are done, the equation (4.21.r) shall also be 

examined. 
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Case 1:  ̂        ̂         ̂     

Let us concentrate on a single testing function defined by its double index   and  . The 

   in (4.21.n) and its derivative in (4.21.q) become 

   (   
  ̂ ) ̂                                                   (      ) 

    (    
   ̂ ) ̂                                         (      ) 

When we substitute (4.22.a) and (4.22.b) in (4.21.q), we expect to arrive at an equation 

like 

∑∑     
  ̂        

  ̂        
  ̂  

  

   

 

   

 ∑ ∑     
  ̂  

  

   

 

   

    
      (      ) 

The terms      
 ,      

 ,      
 , and      

 
 will be mapped to the global matrix 

according to the Table 4.3 below. 

TABLE 4.3 – MAPPING TO THE GLOBAL MATRIX 

Term Row Column 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
 

  ( ̂  )  ( ̂  ) 

The index functions are given by (4.21.e) – (4.21.h). The term    
  will be mapped to 

the position  ( ̂  ) in the right-side global vector. 

We know from (2.113) that the PML tensor has the form 

 ̿     ̂   ̂     ̂   ̂     ̂   ̂                               (      ) 

In this way, we can apply the definition of scalar product between two tensors in (1.61) 

and find out that the very first term in the first integral in (4.21.q) can be worked out as 

 ̿  (    
   ̂ )                                             

 ̿      
   ̂                                             

(   ̂   ̂     ̂   ̂     ̂   ̂)      
   ̂                                             

.   ̂( ̂      
 )     ̂( ̂      

 )     ̂( ̂      
 )/   ̂                                             
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 ̂   ̂    

    
 

  
 ̂   ̂    

    
 

  
 ̂   ̂                               (      ) 

Moreover, from (4.22.e) and (4.22.b), one finds out with the help of the double dot 

product defined in (1.65) that 

(      ) 

. ̿  (    
   ̂ )/     

                

(  

    
 

  
 ̂   ̂    

    
 

  
 ̂   ̂    

    
 

  
 ̂   ̂ )   ((    

   ̂ ) ̂  
 )   

(  

    
 

  
( ̂      

 )( ̂   ̂ )    

    
 

  
( ̂      

 )( ̂   ̂ )                       

  

    
 

  
( ̂      

 )( ̂   ̂ ))  ̂  
                

(  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
) ( ̂   ̂ ) ̂  

                   

After we substitute (4.22.f) back into (4.21.q), and apply the same reasoning to the other 

integrals, we discover that the first three terms in Table 4.3 are given by: 

(      ) 

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

The fourth term can be found with the help of the identity 

         ̿                                                  (      ) 

where  ̿ is the identity tensor given by  

 ̿   ̂   ̂   ̂   ̂   ̂  ̂                                       (      ) 

and   is an arbitrary vector. In this way, from (4.22.b), (4.22.h) and (4.22.i), the 

pertinent terms in (4.21.q) can be developed as: 
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∫    
      

 

 

                     (      ) 

∫    
  

 

   
    ̿                                        

∫    
  

 

((    
   ̂ ) ̂  )

 
  ( ̂   ̂   ̂   ̂   ̂   ̂)                                        

∫    
  

 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂))  ̂  

                                            

which allows us to conclude that 

     
   ∫    

  
 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂))     (      ) 

The term    
  in (4.22.c) is found with the help of (4.22.a) and (4.22.b), which are 

substituted in the right side of (4.21.q). Before we state its final form, we need to take a 

look at how the lifting function   
 

 is found. According to (4.1.e), the lifting   
 

 must be 

such that 

    
 
 ,

          

  ̂                
                                               (      ) 

Since we took that   
 
   ( ), it admits an expansion like (4.19.w): 

  
 
 ∑∑   

 

  

   

 

   

( ̂   ̂   ̂   ̂   ̂   ̂ )                      (      ) 

   
 
 ∑ ∑(    

   ̂ ) ̂   (    
   ̂ ) ̂   

  

   

 

   

(    
   ̂ ) ̂     (      ) 

The coefficients  ̂  ,  ̂   and  ̂   can be easily determined, thanks to the procedure 

outlined in Chart 4.3 extended to vector functions. It will be explained in detail below. 

1. We consider all   nodes from the problem, i.e.,      . 

2. If   is an interior node, i.e., if     , then  ̂    ̂    ̂    . 

3. Because the role of   
 

 is to essentially capture the behavior of the tangential 

components of the scattered field, we can take its normal component to be zero. The 

normal component of the scattered field will be captured by the   
  in (4.2). Moreover, 

according to the definition of elemental directions in (4.19.t), the components in the 

normal direction are controlled by the  ̂  . So we make  ̂               
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4. If      , the tangential directions at the node location will be given precisely by  ̂  

and  ̂ .  Then we can make  

 ̂   (  ̂      )   ̂                                            (      ) 

 ̂   (  ̂      )   ̂                                             (      ) 

(According to the consideration 3 in Chart 4.2, nodes at the Dirichlet boundaries have a 

single DoF.) 

5. If      , the tangential directions at the node location will be given precisely by  ̂  

and  ̂ .  Then we can make  

 ̂                                                              (      ) 

 ̂                                                              (      ) 

As evidenced by the five steps above, the only DoF‟s able to „excite‟ the problem are 

those associated with the tangential directions along the scatterer surface   . Now that 

we know all the coefficients in the expansion (4.22.m),   
 

 can be easily determined. 

 When we substitute (4.22.m), (4.22.n), (4.22.a) and (4.22.b) in the right side of 

(4.21.q), we find that 

   
   ∫ ( ̿     

 
)  (    

   ̂ )
 

 ∫   
 

 

  
 
 (   

  ̂ )               (      ) 

We believe that the explanation is sufficiently clear, so we will not work out the double 

dot products between tensors. The steps are very similar to those in (4.22.e) – (4.22.f). 

 Case 2:  ̂        ̂         ̂     

The    in (4.21.n) and its derivative in (4.21.q) now become 

   (   
  ̂ ) ̂                                                 (      ) 

    (    
   ̂ ) ̂                                     (      ) 

When we substitute (4.23.a) and (4.23.b) in (4.21.q), we expect to arrive at an equation 

like 

∑∑      
  ̂        

  ̂        
  ̂  

  

   

 

   

 ∑ ∑     
  ̂  

  

   

 

   

    
        (      ) 

The terms      
 ,      

 ,      
 , and      

 
 will be mapped to the global matrix 

according to the Table 4.4 below. 
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TABLE 4.4 – MAPPING TO THE GLOBAL MATRIX 

Term Row Column 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
 

  ( ̂  )  ( ̂  ) 

The index functions are given by (4.21.e) – (4.21.h). The term    
  will be mapped to 

the position  ( ̂  ) in the right-side global vector. These terms are given by 

(      ) 

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
   ∫    

  
 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)) 

   
   ∫ ( ̿     

 
)  (    

   ̂ )
 

 ∫   
 

 

  
 
 (   

  ̂ )      

Case 3:  ̂        ̂         ̂     

The same all over again. The    in (4.21.n) and its derivative in (4.21.q) now become 

   (   
  ̂ ) ̂                                                   (      ) 

    (    
   ̂ ) ̂                                       (      ) 

When we substitute (4.24.a) and (4.24.b) in (4.21.q), we expect to arrive at an equation 

like 

∑∑     
  ̂        

  ̂        
  ̂  

  

   

 

   

 ∑ ∑     
  ̂  

  

   

 

   

    
       (      ) 
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The terms      
 ,      

 ,      
 , and      

 
 will be mapped to the global matrix 

according to the Table 4.5 below. 

TABLE 4.5 – MAPPING TO THE GLOBAL MATRIX 

Term Row Column 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
 

  ( ̂  )  ( ̂  ) 

The index functions are given by (4.21.e) – (4.21.h). The term    
  will be mapped to 

the position  ( ̂  ) in the right-side global vector. These terms are given by 

(      ) 

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
  ∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
)    

    
    

 )
 

 ̂   ̂  

     
   ∫    

  
 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)) 

   
   ∫ ( ̿     

 
)  (    

   ̂ )
 

 ∫   
 

 

  
 
 (   

  ̂ )     

 We need now to take care of (4.21.r), repeated below for convenience: 

 ∑∑.∫   
    

 

.   
 ( ̂   ̂   ̂   ̂   ̂   ̂ )//

  

   

 

   

  

∫   
    

 

  
 
            ( )                                                                                         (      ) 

Let us concentrate on a single testing function defined by its double index   and   in 

(4.21.o), i.e., we make 
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  ̂                                                        (      ) 

where  ̂     is arbitrary. After the substitution of (4.25.b) into (4.25.a), we hope to 

arrive at an equation like 

∑∑     
  ̂        

  ̂        
  ̂  

  

   

 

   

    
                         (      ) 

The terms      
 ,      

 ,      
 , and      

 
 will be mapped to the global matrix 

according to the Table 4.6 below. 

TABLE 4.6 – MAPPING TO THE GLOBAL MATRIX 

Term Row Column 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

     
   ( ̂  )  ( ̂  ) 

The index functions are given by (4.21.e) – (4.21.h). The term    
 

 will be mapped to the 

position  ( ̂  ) in the right-side global vector. With the help of (4.22.h) and (4.22.i), and 

the rules of tensor algebra we have been employing thus far, we arrive at the specific 

forms for these terms: 

     
   ∫    

  
 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂))   (      ) 

     
   ∫    

  
 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂))                      

     
   ∫    

  
 

(
    

 

  
( ̂   ̂)  

    
 

  
( ̂   ̂)  

    
 

  
( ̂   ̂))                      

   
  ∫    

    
 

  
 

 

4.3.5 Final comments 

 In what regards the assembly process, the work is essentially done. From 

(4.22.g), (4.22.k), (4.22.s), (4.23.d), (4.24.d) and (4.25.d), we can construct our linear 

system (4.14.z). In the next chapter, we will be concerned with some features in the 

solution of this linear system, and also with the application of our meshfree method to 

problems arising in electromagnetic wave scattering. 
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Chapter 5 

Experimental studies 

 

The objective of this chapter is to assess some features concerning the numerical 

implementation of the method described in the last chapter. 

In the first section, we shall take a look at the numerical integration of the terms which 

will ultimately figure as the entries in the global matrix. Since the numerical integration 

is a delicate issue in the meshfree methods, we present a recipe to „alleviate‟ its cost. 

The second section deals with the inf-sup condition and the problem of identifying 

compatible pairs of spaces.  

The third section is very brief, and discusses the preconditioning techniques we 

employed to solve the global linear system. 

Finally, the fourth section brings lots of examples of our meshfree method in the 

solution of wave scattering problems. We show that it works pretty well in two and 

three-dimensional cases. 

5.1 Numerical integration 

5.1.1 Basic integrals 

 After we get the final form of the entries in the matrix and in the vector which 

will form the global linear system in (4.22.g), (4.22.k), (4.22.s), (4.23.d), (4.24.d) and 

(4.25.d), we can begin to make assumptions in order to simplify the process of actually 

computing them. 

 The most patent of these assumptions regards the components of the PML 

tensor. In terms like      
  in (4.22.g), whenever we get integrands involving the PML 

tensor, as 

∫ ((  

    
 

  

    
 

  
   

    
 

  

    
 

  
   

    
 

  

    
 

  
))

 

                  (   ) 

we assume that they do not vary within the patch. In other words, instead of considering 

  ( ), where   varies over the patch    corresponding to the testing function    
 , we 

shall consider    calculated at the nodal location    (which happens to be at the center 

of   ). The same is also valid for    and   . In this way, the integral in (5.1) becomes: 
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∫ ((  (  )
    

 

  

    
 

  
   (  )

    
 

  

    
 

  
   (  )

    
 

  

    
 

  
))

 

       (   ) 

In this approximation, the components of the PML tensor become constants within   . 

But we argue that this approximation gets better and better as the size of the patches 

becomes smaller. 

 After this approximation, an interesting feature can be observed. If we represent 

testing functions by the indices   and   (regardless of their being a field component or 

pseudopressure testing function), and expansion functions by   and   (also regardless of 

their being a field component or a pseudopressure expansion function), it can be noticed 

that all the integrals boil down to certain basic integrals involving the product between 

a pair of functions. These basic integrals are in the Table 5.1 below. 

TABLE 5.1 – BASIC INTEGRALS 

∫    
 

 

   
  

∫
    

 

  

    
 

   

      ∫
    

 

  

    
 

   

     ∫
    

 

  

    
 

   

 

∫    
     

 

   

      ∫    
     

 

   

     ∫    
     

 

   

 

∫    
     

 

   

      ∫    
     

 

   

     ∫    
     

 

   

 

A proper inspection of the entries in in (4.22.g), (4.22.k), (4.22.s), (4.23.d), (4.24.d) and 

(4.25.d) reveals that they can be reduced to combinations of the basic integrals in Table 

5.1. Therefore, any integration process must focus on the evaluation of the integrals 

above. 

5.1.2 Acceleration technique 

 Because the Shepard PU functions in (4.17.j) are non-polynomial, it is likely that 

the numerical integration based on Gaussian quadrature will require many points in 

order to attain a precise result. This is a delicate feature which plagues some meshfree 

methods, and the design of efficient integration rules constitutes one of the frontiers in 

research [De and Bathe, 2001], [Babuska et al., 2009], [Ham et al., 2014]. 

 However, if the situation is such that the nodal distribution is uniform and all 

patches are the same size, then the cost of the numerical integrations can be drastically 
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reduced, provided we add some restrictions on the form assumed by the elements of the 

local spaces   
 
 in (4.19.c) and   

  in (4.19.k). This set of restrictions is characterized in 

Chart 5.1 below. 

Chart 5.1 – Elements in the local spaces 

The local spaces are  

  
      {    

      
         

 }                                    (     ) 

  
      {    

      
         

 }                                    (     ) 

according to (4.19.c), (4.19.k), (4.21.a) and (4.21.c). We assume that any function 

    
 ( ) is of the form  

    
 ( )    (              )                          (     ) 

i.e., these functions depend on the difference between the point   ,     -  (at which 

the function is calculated) and the nodal point    ,        -
 . The functions    are 

the same for all patches  . 

It is true that the Shepard PU function   
 ( ) in (4.17.j) also has this same form, i.e., it 

depends on the difference between   and   . Consequently, the meshfree basis functions 

   
 ( ) defined by  

   
 ( )    

 ( )    
 ( )                                                  (     ) 

as in (4.19.y) will depend just on the difference between   and   . The same 

conclusions hold for the pseudopressure spaces, i.e., if we assume that 

    
 ( )    (              )                             (     ) 

where the    are the same for all patches  , then the meshfree basis functions 

   
 ( )    

 ( )    
 ( ) will also depend just on the difference between   and   . 

 Suppose a two-dimensional uniform nodal distribution as in Fig.5.1. (The 

reasoning can be automatically and effortlessly transferred to the three dimensions. But 

the procedure to be introduced in the next lines is easier to present in two dimensions.) 

Let all the patches (associated with the nodes) be of the same size, and assume the local 

spaces have the form stated in Chart 5.1. 

Consider the nodes  ,  ,   and   in Fig. 5.1. For any   and  , it is not difficult 

to conclude that 

∫    
 

 

   
  ∫    

 

 

   
                                              (     ) 
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Fig. 5.1. A regular nodal distribution in two dimensions. All patches are the same size. The relative 

distances between nodes   and   and between   and   are the same. 

because the relative position of nodes   and   is the same as that of nodes   and  . The 

same holds true for the other basic integrals in Table 5.1. 

 The consequence is that for any two pairs of nodes, if the relative positions of 

the nodes in each pair are the same, then the basic integrals evaluated for each pair will 

be the same. In other words: Let it be the pair formed by the nodes   and   and let it be 

another pair formed by the nodes   and  . If the relative position of nodes   and   and 

the relative position of nodes   and   are the same, then it follows that the basic 

integrals evaluated for the pair   and   will be the same as those evaluated for the pair   

and  . 

The conclusion is that in a regular arrangement of nodes, the basic integrals need to be 

calculated only once. 

For example, suppose we are considering the interaction between nodes   and   in Fig. 

5.1. By this we mean that we calculate all the basic integrals in Table 5.1. Later, when 

calculating the interaction between nodes   and  , these integrals do not need to be 

calculated again: Their values are available from the calculations regarding   and  . 

So the idea goes as follows:  

First: Take a node   in the middle of a regular nodal arrangement.  

Second: Determine all neighboring nodes which interact with  .  

Third: Evaluate the interaction (basic integrals) between node   and each neighbor from 

the last step.  

Fourth: Store this numerical information in suitable data structures.  
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Fig. 5.2. The eight patches (in red) which are able to intersect a given patch (in black) in a given regular 

arrangement of nodes. Of course, the patch intersects itself, so in the end, for each patch  , there are 9 

patches which intersect it. As   runs from 1 to 8, we get the eight figures above. Alternatively, one can 

say that each node   has 8 neighbors able to influence it (in addition to node   itself). 

Fifth: Run through all the other nodes in the domain. For each node, determine all 

neighboring nodes able to interact with it.  

Six: The interaction between this new node and its neighbors has already been 

calculated in the third step.  

 In this way, the only action that needs to be performed is a careful identification 

between nodes and its neighbors, and the subsequent mapping of the entries to the 

global matrix. When the regular arrangement of nodes is such that the size of the square 

patch is such that    is just the horizontal distance between two adjacent nodes as in Fig. 

5.1, then each node   is influenced by itself and by the eight surrounding nodes, as in 

Fig. 5.2. 

We shall not delve deeply into this subject, as the idea is sufficiently 

understandable, and also because the majority of work is done at the implementation 

level. So each one has a more or less clear idea on how to implement this „reuse 

approach‟ according to the way he/she wants to develop his/her code. 

 But this „reuse approach‟ can be employed in a (theoretically) infinite and 

regular nodal distribution. Actually, the nodal distributions are finite, which means that 

symmetry will be broken at the boundary nodes, i.e., these nodes do not have all the 

neighbor nodes that the nodes in the bulk of the domain have. Moreover, there will be 

situations in which the nodal distribution will not be regular (for example, when a 

scatterer with a complicated shape is considered). 

 The idea is to divide the nodal distribution into two parts: A regular part and a 

non-regular part. So if a total of   nodes is employed, then 

                                                              (     ) 



 

166 
 

where    is the number of nodes in the regular part of the distribution and     the 

number of nodes in the non-regular part. We must now establish a criterion that allows 

us to say if a given node   belongs to the regular or to the non-regular part. 

 In the class of problems we are interested in, the outer boundary    will be a 

rectangle (remember, the explanation refers to the two-dimensional case). The nodal 

distribution can be set up in four steps as follows: 

First: Begin by spreading nodes in a regular fashion throughout the rectangular region 

whose outer boundary is   , as in a grid.  

Second: Adjust the size of the square patches so that for each patch  ,    is just the 

horizontal distance between two adjacent nodes. 

Third: Remove those nodes in the interior of the rectangular region that fall within the 

PEC scatterer.   

Fourth: Spread nodes along the boundary of the PEC scatterer, i.e., along   . 

Fifth: Recalculate the size of the patches. They should not intersect   , according to 

consideration 2 in Chart 4.2. 

 The third, fourth and fifth steps make the distribution „locally‟ non-regular on 

and around the PEC surface   . After the nodal distribution has been set up, we must 

loop through all nodes in order to find out if it falls within the regular or within the non-

regular part. The criterion we established is in the form of an algorithm. 

1. Take a node at    ,     -
 ,      . 

2. Consider the set of points which surround   , i.e., consider the eight points 

   ,           - 

   ,        - 

   ,           - 

   ,        - 

   ,        - 

   ,           - 

   ,        - 

   ,           - 

3. Is there a node at each one of the eight points from Step 2? If no, then node   belongs 

to the non-regular part of the nodal distribution. If yes, go to the next step. 
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4. Consider the patches associated with all the eight nodes located in    –   . Are they 

the same size? If no, then node   belongs to the non-regular part of the nodal 

distribution. If yes, then node   belongs to the regular part. 

 The nodes which comprise the regular part of the nodal distribution can be 

treated in the same way as the nodes from the (theoretically) infinite regular nodal 

distribution discussed earlier. It means that we can take any one of them and calculate 

its interaction (i.e., the basic integrals) with all the eight neighbors. When considering 

any other node in the regular part, the interactions need not be calculated again: They 

are available from the previous calculation. The only work is to map the entries to the 

global matrix. 

 On the other hand, if a node   is in the non-regular part, the sizes of its 

associated patch and those of its neighbors will be different. In this case, the basic 

integrals must be calculated in the traditional way, i.e., there is no reuse procedure. 

 The extension of these ideas to three dimensions is straightforward. The 

difference is that there will be 26 nodes surrounding a given node   , instead of just 

eight.  

If the geometry of the computational domain   is conducive to a large number 

of nodes being able to be included in a regular distribution, then the gain in setting up 

the global matrix is enormous, particularly in three dimensions, where the numerical 

integrations are very expensive. Fortunately, this is the case, as for the category of 

problems in which we are interested, the domain is basically a parallelepiped with a 

hole within (the PEC scatterer). The nodal distribution will be regular in the bulk of the 

domain, and becomes non-regular only in the vicinity of the scatterer. A very attractive 

scenario, indeed. 

5.1.3 Numerical quadrature 

 When it comes to the actual numerical integration of terms in Table 5.1, we 

employ the traditional Gaussian quadrature. The process will be illustrated for the first 

of them only; the reasoning can of course be extended to the others. 

 We want to compute the value of the integral 

  ∫    
 

 

   
                                                         (     ) 

Since according to (4.17.g) the support of the test function    
  is contained in the patch 

  , the integral above becomes 

  ∫    
 

  

   
                                                         (     ) 
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In two dimensions, the patch    is a square. Instead of applying the Gaussian quadrature 

to    (and therefore employ many integration points), we find it better to divide the 

square    into smaller squares, and then apply the Gaussian quadrature to each of these 

small squares (but this time with less integration points). In our experiments, we found 

that dividing    into     squares yields results with a good precision. In this way, the 

patch    is expressed as 

   ⋃  

  

   

                                                         (     ) 

i.e., as the union of the smaller squares   . Of course, if    , then        , i.e., 

the smaller squares do not intersect with each other (except at their boundaries). The 

integral in (5.5.b) becomes 

  ∑∫    
 

  

   
 

  

   

                                                  (     ) 

We can now apply a simple 2-point quadrature rule in the   and  -directions of each of 

the integrals in (5.5.d). If we represent    as a Cartesian product of intervals: 

   ,     -  ,     -                                               (     ) 

then these „subintegrals‟ can be computed as 

∫    
 

  

   
                                                                                            (     ) 

 
(     )

 

(     )

 
∑∑        

 

 

   

(     )

 

   

   
 (     )  

where the weights are given by     ,      and the coordinates    and    are given 

by 

   
(     )

 
   

(     )

 
                                        (     ) 

   
(     )

 
   

(     )

 
                                         (     ) 

The parameters    and    are given by 

    √  ⁄                                                      (     ) 

   √  ⁄   
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 In three dimensions, the patch    is a cube, which is divided into       little 

cubes. Therefore, 

   ⋃  

   

   

                                                        (     ) 

and consequently 

  ∫    
 

  

   
  ∑∫    

 

  

   
  

   

   

                                 (     ) 

Each little cube can be represented as a Cartesian product of intervals: 

   ,     -  ,     -  ,     -                                   (     ) 

which allows the „subintegrals‟ to be written as 

∫    
 

  

   
                                                       (     ) 

 
(     )

 

(     )

 

(     )

 
∑∑∑      

 

   

 

   

 

   

   
 (        )   

 (        )       

The weights are the same as those from the two-dimensional case, and the coordinates 

   and    are exactly those from (5.5.g) and (5.5.h). The coordinate    is given by 

   
(     )

 
   

(     )

 
                                        (     ) 

The parameters    are those from (5.5.i). 

5.2 The inf-sup stability test 

 When setting up the nodal distribution, during the first step outlined in Section 

5.1.2 (which says that we begin with a regular distribution over the 

rectangle/parallelepiped whose surface is   ), we can retrieve the value of the distance 

between two adjacent nodes and call it  . This   is sometimes called the discretization 

length, and intuitively, it gets smaller as more and more nodes are considered. This is 

the meaning of   referred to at the beginning of Section 4.1.1. 

In this way, each nodal distribution has its associated discretization length  , and at the 

same time it serves as a basis for the finite-dimensional subspaces   
 ( ) and   ( ). 

So we can, in a sense, „identify‟ a value of   and a pair of spaces   
 ( ) and   ( ). 

This is the reason for the superscript   in both of them. 
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 According to the discussion in Section 4.3.2, the pair of finite-dimensional 

spaces   
 ( ) and   ( ) must obey the inf-sup condition  

   
                         

    
 ( ) * +

   
     

 ( ) * +

| ∫         
|

‖  ‖  ( ) ‖  ‖  ( )
   

        (     ) 

The inf-sup condition   
  depends on   (i.e., on the finite-dimensional subspaces   

 ( ) 

and   ( ). The role of the inf-sup condition (5.6.a) was studied in Section 4.2.2: it is 

ultimately responsible for the uniqueness of the solution to the global linear system. But 

uniqueness of the numerical solution is related to the fact the global matrix is invertible. 

The question is that if the inf-sup is not obeyed, invertibility of the global matrix is put 

at risk. Since   
    implies that the discretized problem is not solvable, we must guard 

ourselves against this situation.  

 Suppose we constructed a pair of discrete spaces   
 ( ) and   ( ). If they pass 

the inf-sup condition, i.e., if we find a   
    such that (5.6.a) is satisfied, then it is 

fine, and the solution to the problem can be found. But suppose now that we want a 

more precise solution, and we construct a refined pair of spaces   
  
( ) and    

( ), 

based on a discretization such that     . This new pair must be tested again to verify 

if they pass the inf-sup test, i.e., if we can find another   
  

   satisfying (5.6.a). Let us 

say that this new pair of spaces again passes the inf-sup test, which allows us to find a 

more precise solution. Suppose now that we want an even more precise solution, so we 

construct another refined pair of spaces   
   

( ) and     
( ), based on a discretization 

such that       . We must apply the test again and verify if we can find a   
   

   

which satisfies (5.6.a). 

It is instructive to observe the behavior of these inf-sup constants as the   gets smaller, 

i.e., as the discretizations get more and more refined. Of course, they should always stay 

away from zero. Even if they do not assume the value zero, very small values for this 

constant may indicate that the global matrix is „getting close to a singular matrix‟, and it 

is likely that numerical problems will occur. (Moreover, the estimate (4.6.h) in Theorem 

4.1 says that the norm of the solution depends on a constant    multiplying the norm of 

the functional   , which, according to the identification (4.5.h), is related to the lifting 

function   
 

 whose form we studied in (4.22.l) – (4.22.r). But the estimate (A2.62) in 

Appendix A.2 reveals that this constant    is inversely proportional to the inf-sup 

constant. So if the inf-sup constant approaches zero as   gets smaller, it may happen 

that the solution becomes unbounded.) 

The idea to inspect the values of the inf-sup constant as the discretization length 

  gets smaller is called the inf-sup test and it is due to K. J. Bathe [Bathe, 2001], [De 

and Bathe
2
, 2001]. 

It is said that a family of pairs of finite-dimensional subspaces of   ( ) and  ( ) pass 

the test if the stability criterion is satisfied: 



 

171 
 

                       
   

  
                                         (     ) 

i.e., there should exist a positive constant   , independent of  , such that the inf-sup 

constants   
  of all finite-dimensional subspaces   

 ( ) and   ( ) converge to this   . 

In practice, it takes a sequence of pairs of subspaces   
 ( ) and   ( ) such that    , 

finding their associated inf-sup values   
 , and then observing what happens to this 

sequence of values. If they approach zero, then these spaces fail the test. Ideally, they 

should converge to a positive value. 

 When constructing our meshfree subspaces for   ( ) and  ( ), we consider 

different choices for the local spaces   
 
 and   

  in (5.3.b) and (5.3.a), respectively. 

These local spaces will originate global spaces   
 ( ) and   ( ) with different 

characteristics, and we must find out if they pass the inf-sup test (5.6.b). In this way, we 

can identify which pair of meshfree spaces form compatible pairs, in the sense that they 

not only satisfy the inf-sup condition, but that they continue to satisfy it as the 

discretization length gets smaller. 

 Some observations are in order. Does it mean that, given a problem stated in any 

computational domain  , one needs to find the inf-sup values associated with a family 

of discretizations set up in  ? Ideally, yes. But in order to find the inf-sup values, one 

needs to solve an eigenvalue problem, as in (4.16.n). However, solving these 

eigenproblems may be a very expensive task, particularly when the number of DoF‟s 

involved in the problem becomes larger as    . What is generally done is to apply the 

inf-sup test to simple domains  , [De and Bathe
2
, 2001], and extend the conclusions to 

larger/more complicated domains. (Much in the same way as in the experimental study 

of convergence rates of a given meshfree/finite element space: One usually chooses a 

simple domain, find the convergence rates and then extends the conclusion to other 

domains.) 

 In this work, the terms in the local basis are monomials. For two-dimensional 

problems, we inspect meshfree spaces whose local bases are given by 

       * +                                                      (     ) 

       *       +                                                (     ) 

       *          
         

 +                                   (     ) 

where       and 

   
    

  
                                                        (     ) 

   
    

  
                                                        (     ) 
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(a) 

(b) 

(c) 

(d) 
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(e) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3. Results for the inf-sup stability test in 2 dimensions. (a) The pair     ⁄  passes the test, as the 

inf-sup values are, for all practical purposes, constant (observe how the  -coordinates are almost 

constant). (b) The inf-sup values for the     ⁄  pair steadily decrease with  , and therefore fail the test. 

(c) The inf-sup values for the     ⁄  pair also decrease with  , but not in a steady way. But even so, they 

fail to converge to a positive value, and therefore do not pass the test. (d) The     ⁄  pair also passes the 

test, as the inf-sup values are almost constant (i.e., they stabilize at a positive value). (e) The same 

conclusion hold for the     ⁄  pair: It also passes the test. (f) The values for the     ⁄  pair decrease with 

 , and therefore fail the test. (g) When the results are plotted on the same graph, it becomes evident which 

pairs pass and which fail the test. 

 

(f) 

(g) 
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In other words, the local spaces   
  and   

 
 in (5.3.b) and (5.3.a) will be chosen among 

(5.6.c) – (5.6.e). These local spaces have the same form for all patches. For example we 

can take   
    ,      , and   

    ,      . This choice will produce 

global spaces    and   , that by their turn will be used in the construction of   ( ) 

and   
 ( ), according to (4.19.e), (4.19.o) and (4.19.p). After we get these finite-

dimensional subspaces, the inf-sup stability test described earlier must be applied, in 

order to find out if they form a compatible pair. 

 We have tested a number of combinations of these local spaces and applied the 

inf-sup stability test. The domain   is the square ,   -  ,   -. If we choose    for the 

  
  and    for the   

 
, this combination will be referred to as     ⁄ . The same applies 

to the other choices. The result is in Fig. 5.3. 

The analysis of Fig. 5.3 reveals that the pairs     ⁄ ,     ⁄  and     ⁄  pass the test, 

since they converge to a value away from zero as the discretization   decreases. On the 

other hand, the pairs     ⁄ ,     ⁄  and     ⁄  do not pass the test. The reason is that 

the associated inf-sup values steadily decrease with  , thus violating (5.6.b). The space 

    ⁄  is peculiar: In addition to the decreasing inf-sup values, we get zero eigenvalues 

when solving the eigenproblem (4.16.n), which indicate the presence of spurious modes. 

 In three dimensions, we inspect meshfree spaces whose local bases are given by 

       * +                                                     (     ) 

       *          +                                              (     ) 

where    and    are as in (5.6.f) and (5.6.g), respectively, and  

   
    

  
                                                         (     ) 

The procedure is analogous to that in the two-dimensional case, but the domain   is 

now the cube ,   -  ,   -  ,   -, and the inf-sup stability test is applied to certain 

choices for the local spaces. The result is in Fig. 5.4. 

According to Fig. 5.4, the pair     ⁄  is the only one which passes the test. The pairs 

    ⁄  and     ⁄  fail the test, as the inf-sup values also decrease with  . As it happens 

in the two-dimensional case, there are zero eigenvalues associated with the pair     ⁄ .  

 Now that we have identified which choices for the local spaces yield compatible 

pairs, i.e., pairs which satisfy the discrete inf-sup condition, they can be safely 

employed in the construction of our meshfree spaces   
 ( ) and   ( ). We can now 

move on and apply them to the solution of the scattering problems. Before we proceed, 

some clarification regarding the solution of the global linear system is in order. 
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(a) 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. Results for the inf-sup stability test in 3 dimensions. (a) The inf-sup values for the     ⁄  are 

slightly increasing, and converge to a positive value (observe how the  -coordinates are almost constant). 

(b) The inf-sup values for the pair     ⁄  steadily decrease with  , and therefore fail the test. (c) The 

values regarding the     ⁄  pair exhibit an erratic behavior, and fail to converge to some value. It cannot 

satisfy (5.6.b). 

 

 

(b) 
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5.3 Preconditioning 

 According to (4.14.z), we are led to a (sparse) global linear system of the form 

     ( ̅  ̅)                         

*
 ̅  ̅ 

 ̅  
+ *

 ̅

 ̅
+  *

 ̅

 ̅
+                                                  (     ) 

When considering more refined discretizations, it is likely that the total number of 

DoF‟s will be considerably large, particularly in three-dimensional problems. By this 

we mean that, in three-dimensions, the total number of DoF‟s will, in all probability, be 

larger than        . In this way, trying to solve the system (5.7.a) by a direct method 

will not be a feasible option. 

The system in (5.7.a) will be solved by an iterative method. We found that the 

generalized minimum residual (GMRES) method suits our purposes [van der Vorst, 

2009], [Saad, 2003]. However, as it is known, iterative methods for the solution of a 

given linear system may suffer from slow convergence, or even fail to converge at all. 

In other words, the iterative method needs preconditioning. 

  The system (5.7.a) can be written in the familiar form as 

                                                                (     ) 

where   is the associated sparse matrix,   is the vector of unknowns and   is a known 

vector. The GMRES algorithm, when applied directly to (5.7.b), may not work 

properly. The preconditioning is just a matrix   which operates as 

                                                              (     ) 

The solution of both linear systems (5.7.b) and (5.7.c) are the same. However, the 

GMRES (or any other iterative algorithm) should work better in (5.7.c) than in (5.7.b). 

In loose terms, the matrix      has „nicer‟ properties than the matrix  , which allows 

the performance of the GMRES to improve significantly. 

 Trying to find suitable preconditioning matrices   is a very complicated 

problem, and it constitutes an area of research by its own [Saad, 2003]. It should satisfy 

some criteria, one of them is that the process of getting   should be more or less 

inexpensive.  

 The matrix in (5.7.a) has a saddle-point structure [Boffi et al., 2013]. There is a 

class of preconditioners for saddle-point problems, documented in the literature [Benzi 

and Golub, 2004], [Benzi and Wathen, 2008], [Quarteroni, 2009]. Our choice for the 

preconditioning matrix   is 
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  *
 ̅  

  ̅ ̅   ̅ 
+                                                  (     ) 

The matrix  ̅ in (5.7.d) is a diagonal matrix, whose entries are those in the diagonal of 

 ̅, i.e., 

, ̅-   ,
, ̅-          

                
                                                 (     ) 

The inverse matrix  ̅   is therefore very easy to compute: 

, ̅  -   ,
 , ̅-  ⁄         

                     
                                         (     ) 

In a sense, the computation of the preconditioning matrix   in (5.7.d) is not 

complicated, and we found that it works fine in conjunction with the GMRES.  

It should be mentioned that actual research of finding the single most suitable 

preconditioning matrix   is beyond the scope of this thesis. Nevertheless, it constitutes 

an excellent proposal for a future work. 

5.4 Case studies 

 In all examples to follow, both in two and three dimensions, we shall always 

employ the pair     ⁄ . The reason is that the pairs described by higher order terms 

produce more DoF‟s. The pair     ⁄  is the „simplest‟ of those pairs which pass the inf-

sup test, and it is worthwhile to dedicate some attention to evaluate its performance 

when applied to different problems. 

5.4.1 Free-space: Error 

 In order to retrieve the discretization error, we consider a cubic region (   )  

(   )  (   ) (in meters). We want to solve the problem 

     (   )           

      
                                                        (     ) 

                                                                             (     ) 

         ̂                                                                   (     ) 

This problem represents a cubic region in free-space, in which a plane wave propagates. 

It does not represent a scattering problem, but it is useful as a means to extract 

convergence rates, since the analytical solution to this problem is just 
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Fig. 5.5. The relative error in the free-space problem as a function of the discretization length  . 

 ( )         ̂                                                 (     ) 

The reason is that there are neither sources nor scatterers to disturb the field. The 

variational formulation of this problem resembles that of the Navier-Stokes system. We 

can apply the trace operator   
  from (2.58), since all components of the electric field 

are prescribed at the boundary (and not just the tangential components, as it happens for 

the scattering problems). 

The sole purpose of this example is to measure the relative error resulting from the 

meshfree approximation, i.e., we evaluate 

 ( )  
‖    ‖  ( ) 

‖ ‖  ( ) 
                                                (     ) 

where   is that from (5.8.d). Of course, the relative error   is a function of the 

discretization length  . So we evaluate (5.8.e) for different pairs of spaces (for the 

components of the electric field and for the pseudopressure). The result is in Fig. 5.5. 

Figure 5.5 reveals that the relative error decreases as   gets smaller. A linear regression 

applied to the curve in Fig. 5.5 reveals that the relation between   and   is 

approximately given by the form (where   is a positive constant): 

 ( )                                                                (     ) 

5.4.2 Scattering of a     plane wave by a circular cylinder 

 The problem concerning the scattered field by a PEC circular cylinder has an 

analytical solution, given in terms of series of Hankel functions [Balanis, 1989]. Let it 

be a square region   (        )  (        ) (in meters). In this region we make 

make a circular hole whose radius is     ⁄ . This corresponds to the cross section of a 

PEC circular cylinder of the same radius. 
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(a) (b) 

(c) 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. (a) The computational domain, comprising the circular scatterer (the cylinder cross section) and 

the PML. (b) The elemental directions associated with each node. For the interior nodes, they are just the 

Cartesian directions  ̂ and  ̂. For the scatterer nodes, they happen to be the normal and tangential 

directions at the location of each node. (c) In this portion of the domain, we can see the nodes in the 

regular part of the distribution (represented by red circles) and the nodes in the non-regular part (blue 

triangles). The nodes in the regular part are in the bulk of the domain, whereas the nodes in the non-

regular part happen to be on and around the boundaries. 

We choose a wavenumber       , which implies that the radius of the cylinder is 

such that      . (   is just the free-space wavelength.) 

The width of the PML is chosen to be         ⁄ , or        . The incident field 

     is given by 

    ( )          ̂         ̅                                           (     ) 
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(a) (b) 

(c) 

 

 

Fig. 5.7. The first two figures illustrate the  -component of the scattered electric field, in volts/meter. The 

region of the domain within the PML layer is not considered. (a) Numerical solution (real part). (b) 

Analytical solution (real part). (c) The numerical diveregence. (d) The numerical divergence, calculated 

within the sqare in Fig. 5.7.c. 

(in volts/meter) which allows the lifting function   
 

 to be easily calculated according to 

the procedure outlined in the Section 4.3.4. 

Figure 5.6.a shows the whole computational domain, and Fig. 5.6.b shows a portion of 

the domain with some nodes and their corresponding elemental directions. Figure 5.6.c 

shows a portion of the nodal distribution, and illustrates which nodes fall within the 

regular and non-regular portions according to the discussion from Section 5.1.2. 

The problem is discretized with 9192 nodes, originating a total of 61656 DoF‟s. The 

final linear system can be solved by a direct method. The results are in Fig. 5.7, which  

(d) 
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Fig. 5.7. (Cont.) (e) The relative error between the numerical and analytical solutions as a function of the 

discretization length  . 

shows that the meshfree and the analytical solutions are in good agreement with each 

other. The divergence is imposed as zero in the weak sense, according to 2.156.b. 

Consequently, it means that the divergence is not zero pointwise (as revealed by Fig. 

5.7.d), but that the integral of      multiplied by any test function    from   ( ) is 

zero. 

We can measure the error between the numerical and analytical solutions in the portion 

of the computational domain   excluding the PML region (which we can denote by 

    ). If we express this subset of   as       , then we evaluate 

 ( )  
‖    ‖  (      )

 

‖ ‖  (      ) 
                                                (     ) 

where ‖   ‖  (      )
  indicates that the integrations are carried out at       .  

The result is in Fig. 5.7.e. A linear regression shows that the relation between   and   is 

approximately: 

 ( )                                                                 (     ) 
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Fig. 5.8. Left: The PEC strip extends to infinity along the  -direction. Right: In the    plane, we can set 

up the standard polar system of coordinates. In this way, the incidence and observation angles    and    

are measured as indicated in the figure. 

5.4.3 Scattering of a     plane wave by a conducting strip 

 The problem concerning the scattering of a     polarized plane wave by a 

conducting strip is examined next. The geometry of the problem is illustrated in Fig. 

5.8. 

The computational domain is a square region   (          )  (        ) (in 

meters), in which we make a „hole‟ of zero thickness and width   equal to    . This 

„hole‟ is indeed the cross-section of the strip, and occupies the interval        , 

   . 

The wavenumber is       ; in this way,      . We choose the width of the PML 

layer to be         , which implies that         . 

The incident field is a     polarized plane; the associated magnetic field      has a  -

component given by 

    ( )     
       ̂          ̅                                       (      ) 

in which    is the amplitude of the incident field (in amperes/meter). The position 

vector   and the wavevector   are expressed as 

  ,   -                                                                 (      ) 

     ̂     [     ]
 
                                         (      ) 

where  ̂  [     ]
 
 is a unit vector pointing in the direction towards which the plane 

wave propagates. According to Fig. 5.8, it is given by 

 ̂  *
      

      

+                                                    (      ) 

which allow us to ultimately rewrite (5.10.a) as 
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(a) (b) 

(c) (d) 

 

 

 

 

(e) 
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Fig. 5.9. The real part of scattered electric field   , in volts/meter. (a) The  -component. (b) The  -

component. The next two figures deal with the real part of the total field          . (c) The  -

component. Observe how it is zero along the strip, in accordance with the boundary condition governing 

the tangential component of   at the surface of a PEC (i.e.,  ̂     ). (d) The  -component. The last 

two figures also illustrate the shadow region behind the strip (a region not illuminated by the incident 

wave). Figures (e),  (f), (g) and (h) bring a comparison between the meshfree and the MoM solutions. 

(f) 

(g) 

(h) 
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    ( )     
   (             )  ̂                              (      ) 

We are interested in the incident electric field, which can be recovered from (5.10.e) via 

Ampère‟s law in free-space: 

            
                                                (      ) 

The result is 

    ( )      (       ̂        ̂) 
   (             )         ̅       (      ) 

where    √    ⁄      ohms is the vacuum impedance. 

In this geometry, the PEC surface    is just the interval        ,    . The angle 

of incidence    is 

       ⁄                                                    (      ) 

and     . Our discretization takes 10201 nodes, which yields 68917 DoF‟s. The  

resulting linear system is solved by a direct method, and the results are in Fig. 5.9. 

 In order to find out if the results are accurate or not, we compare the meshfree 

solutions with those provided by the method of moments (MoM).  The current density 

on the surface of the strip is calculated via the two-dimensional electric field integral 

equation (EFIE), which is discretized with 250 piecewise constant basis functions and 

250 Dirac delta weighting functions (point matching). After the current is found, the 

scattered field near the strip can be calculated by suitable radiation integrals [Balanis, 

1989]. 

The meshfree and MoM solutions are compared along two lines in the near-field region. 

The first is a horizontal line defined by 

                                                        (      ) 

Some results are in Fig. 5.9.e (real part of   
 ) and in Fig. 5.9.f (imaginary part of   

 ). 

The second line is vertical, and defined by 

                                                    (      ) 

Figures 5.9.g and 5.9.h bring the real and imaginary parts of   
 , respectively. From the 

comparison between the meshfree and MoM solutions, it is clear that both methods 

provide similar results to the strip problem. 
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5.4.4 The spherical cavity 

 We now turn to three-dimensional problems. Let it be a spherical domain  , 

limited by a PEC surface  . The radius of the sphere is simply    . Our goal is to find 

the eigenvalues and eigenfunctions associated with the original problem 

     (    
 )           

        
                                                  (      ) 

                                                                           (      ) 

 ̂                                                                          (      ) 

According to the reasoning from Chapter 1, this problem becomes 

     (      
 )                

      
                                                           (      ) 

                                                                                (      ) 

 ̂                                                                           (      ) 

i.e., the double curl has been substituted by the vector Laplacian and the pseudopressure 

  has been included in order to couple equations (5.11.d) and (5.11.e). When it comes to 

the finite-dimensional subspaces, the right choices for    and    are   
 ( ) and   ( ), 

respectively.  

These finite-dimensional subspaces are the same as those from the scattering problem; 

the objective of this example is to verify if the modeling of three-dimensional curved 

geometries via the elemental directions yield accurate results. In weak form, the system 

(5.12) becomes 

     (        
 )    

 ( )    ( )               

∫         
 

 

 ∫   
 

 

     
  ∫        

 

 

              
 ( )       (      ) 

 ∫   
    

 

                ( )                                                                       (      ) 

The system above is an eigenvalue problem in mixed form, since it seeks to approximate 

two unknowns at once,    and   . The associated eigenvalues are the   
 . In order to 

put (5.13) into a standard form, it can be rewritten as 
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     (        
 )    

 ( )    ( )               

∫         
 

 

 ∫        
 

 

   
 ∫      

 

 

            
 ( )              (      ) 

 ∫   
    

 

                ( )                                                                       (      ) 

The theory behind eigenvalue problems in mixed form is beyond the scope of this thesis 

[Boffi, 2010], [Boffi et al., 2013]. The only detail that is relevant to us here is that the 

system (5.14) is well-posed if it obeys the same the inf-sup condition as that in (5.6.a). 

Since the pair of spaces   
 ( ) and   ( ) constructed out of the     ⁄  pair passes the 

test, we are justified in making this choice.  

Another important observation is that, as the complex-valued components of the PML 

tensor are absent in (5.14), the eigenfunctions    are going to be real. In this way, after 

the discretization process (which is carefully studied in Section 4.3), we get a linear 

system of the form: 

     ( ̅  ̅)                         

*
 ̅  ̅ 

 ̅  
+ *

 ̅

 ̅
+  *

 

 
+                                                  (      ) 

From the form assumed by the entries in the submatrix  ̅ in (4.22.g), (4.23.d) and 

(4.24.d), it can be observed that it is constituted by two parts, 

 ̅   ̅    
  ̅                                                    (      ) 

where  ̅  and  ̅  are sometimes referred to as the stiffness and mass matrices, 

respectively. Since   
  is an eigenvalue (and therefore unknown), the system (5.15.a) 

should be rewritten as 

     ( ̅  ̅   
 )                     

*
 ̅  ̅ 

 ̅  
+ *

 ̅

 ̅
+    

 *
 ̅  

  
+ *

 ̅

 ̅
+                                 (      ) 

which is nothing else than a generalized eigenvalue problem. After the vector of 

coefficients  ̅ has been determined, the corresponding eigenfunctions    are found 

through (4.14.f), which, after it has been worked out, becomes (4.21.l). 

Figure 5.10 shows some nodes in a portion of the spherical global boundary  , together 

with the elemental directions. The first eigenfunctions agree with the corresponding 

analytical solutions, as will be illustrated by Figs. 5.11, 5.12, 5.13, 5.14 and 5.15. These 

analytical solutions are expressed in spherical coordinates as triple products involving a 

certain class of spherical Bessel functions, also known as Schelkunoff functions (which  
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(a) 

(b) 

 

 

 

 

 

 

 

Fig. 5.10. (a) Nodes along the spherical surface, together with the elemental directions. (b) A zoom is 

applied to a portion of the surface in order to clarify the idea. 

govern the dependence on the radius  ), Legendre polynomials (which govern the 

dependence on the polar angle  ), and trigonometric terms (which govern the 

dependence on the azimuthal angle  ) [Balanis, 1989]. 

Each eigenvalue is determined by two indices:   and   (related to the  -th zero of the 

Schelkunoff function of order   for the     modes, and to the  -th zero of the 

derivative of the Schelkunoff function of order   for the     modes).  

There are many modes associated to the same eigenvalue, known as the degenerate 

modes. Given an eigenvalue identified by   and  , the degenerate modes can be 

identified as follows: First, they are ascribed an index   such that            . 

Second, if    , then the mode displays either even symmetry or odd symmetry. The 

mode is said to be even if the dependence on the azimuthal angle   is described by 

cosines (i.e., by terms such as      ). It is said to be odd if the dependence is 

described by sines (i.e., by terms such as      ). 
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Fig. 5.11. The     mode *       +. 
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Fig. 5.12. The     mode *       +. 
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Fig. 5.13. The     mode *         +. 
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Fig. 5.14. The     mode *          +. 



 

193 
 

In this way, a given mode is uniquely identified through a proper selection of 4 indices: 

 ,  ,  , and its symmetry (even/odd). 

As stated earlier, our objective here is to find out if the meshfree spaces based on 

the elemental directions provide accurate solutions when applied to three-dimensional 

curvilinear geometries.  

According to [Balanis, 1989] and [Harrington, 2001], if the eigenvalues are arranged in 

increasing order, the first two eigenvalues are associated with     modes, whereas the 

third is related to     modes. Since we are not interested in the higher-order modes, we 

concentrate just on the     modes associated with the first two eigenvalues. 

Let the four mode identifiers be assembled in a 4-tuple, as 

*       +                                                           (      ) 

where   means „symmetry‟. We study four modes; they are: *       +, *       +, 

*         +, *          +. The field components are converted from the spherical to 

the Cartesian system, and the comparison between the numerical and analytical 

solutions is shown in Figs. 5.11, 5.12, 5.13 and 5.14, respectively. A total of 9273 nodes 

has been used in the discretization process, which leads to 104029 DoF‟s. 

 The Figs. 5.11, 5.12, 5.13 and 5.14 display the field components on the surface 

of the sphere. It is true that the numerical and analytical solutions also agree at the 

interior volume of the sphere. In Fig. 5.15, we again consider the mode *       +, but 

now we display the solution along the    plane (i.e., we take the sphere and cut it open 

at the plane    ). At this plane, the mode *       + has no  -component. So the 

computed   and   components are compared with their analytical counterparts. 

When we compare the numerical and analytical solutions in Fig. 5.11, 5.12, 5.13, 5.14 

and 5.15, it becomes evident that our meshfree spaces   
 ( ) based on elemental 

directions perform well when dealing with curved geometries. This is evidenced by Fig. 

5.16, which measures the relative error between the numerical and analytical solutions 

corresponding to the first     mode *       + (that of Fig. 5.11): 

 *       +( )  

‖ *       +    
*       +

‖
  ( ) 

‖ *       +‖  ( ) 
                                     (      ) 

A linear regression applied to the curve in Fig. 5.16 shows that the relation between 

 *       + and   is approximately given by (where   is a positive constant): 

 *       +( )                                                                (      ) 
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(a) (c)  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15. The 𝑇𝑀𝑟  mode *       +. 

Numerical solution. (a) 𝑦-component. 

(b) 𝑧-component. Analytical solution: 

(c) 𝑦-component. (d) 𝑧-component. 

The vector field is illustrated in (e). 



 

195 
 

 

Fig. 5.16. The relative error for the     mode *       + as a function of the discretization length  . 

5.4.5 Scattering by PEC plates 

 The great objective of this thesis is to develop a meshfree method able to 

calculate scattered fields by PEC targets in three dimensions. This area of study has a 

wide range of applications, particularly in the military (for example, in determining the 

radar cross sections of flying objects) [Kwon et al., 2001]. However, realistic targets 

such as missiles and airplanes require a very precise description, which usually leads to 

problems with a huge number of DoF‟s. In these cases, it is likely that the resulting 

problem is solvable only with the help of a supercomputer. 

At any rate, solving these large problems is not our goal. We are concerned here with 

providing a totally meshfree solution method able to deal with this category of problem; 

our purpose will be fulfilled if we show that we can solve „smaller‟ problems in this 

same category. If the method proves successful, subsequent research can concentrate on 

the extension of the technique to larger problems. 

 We shall now study the three-dimensional scattering of plane waves by 

rectangular PEC plates. We think that this example is challenging enough to serve as a 

test to find out if the overall method we have been devising (which comprises the mixed 

formulation, the „acoustic‟ PML, the reuse approach in the integration of the weak 

forms, the elemental directions and the preconditioning matrix) is able to solve this kind 

of problem. The geometry is illustrated in Fig. 5.17; the domain   is a box described by 

the intervals (in meters): 

                                                           (      ) 

           

     ̅        ̅  
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Fig. 5.17. We can set up the standard spherical system of coordinates. In this way, any direction can be 

identified by a pair of angles (   ). The incident field      has the direction determined by      (as 

indicated in the figure) and by         ⁄  (i.e., along the dashed red line). In what regards the 

dimensions, the plate is     (  in meters). 

The PEC surface    is just a zero-thickness square placed at the center of the domain: 

    ̅       ̅                                                 (      ) 

    ̅       ̅ 

                                                                             

In (5.16.a),     ̅            ⁄ , and in (5.16.b),    ̅           ⁄ . The free-

space wavenumber is given by       , which implies that the width   of the plate is 

such that      . 

The width of the PML layer is         ⁄ , or            . 

In what regards the incident field, it is a plane wave whose wavevector is 

     ̂     [        ]
 
                                         (      ) 

where  ̂  [        ]
 
 is a unit vector pointing in the direction towards which the 

plane wave propagates. According to Fig. 5.13,  

 ̂    ̂                                                            (      ) 

i.e.,  ̂ is just the negative of the unit radial vector. It is known that the conversion from 

spherical to Cartesian coordinates is given by 

[

  

  

  

]  [

                          

                         

            

] [

  

  

  

]                (      ) 
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According to (5.16.d),      ,     , and     . In this way, the Cartesian 

components of  ̂ become 

[

  

  

  

]  [

           

           

      

]                                          (      ) 

The three Cartesian components of  ̂ are completely determined by the pair of angles 

(     ). 

In the sequel, we will consider two polarizations for the incident plane wave: The     

polarization, whose incident magnetic field is given by 

    ( )     
       ̂          ̅                             (      ) 

and the     polarization, whose incident electric field is 

    ( )     
       ̂          ̅                              (      ) 

The position vector   ,     -  and Ampère‟s law in free-space (5.10.f) allows us to 

determine the electric field associated to      in (5.16.g): 

    ( )      (       ̂             ̂) 
                ̅        (      ) 

So if we want to study the scattering of a     wave, the incident field is given by 

(5.16.i). On the other hand, if the scattering of a     wave is needed, then the incident 

field is that in (5.16.h). 

The results for the     and     polarizations are in Figs. 5.18 and 5.19, respectively, 

where the Cartesian components of the scattered field are plotted on a surface 

surrounding the plate. The fields on this surface will later „induce‟ equivalent currents, 

which by their turn will determine the far-field behavior. This will be duly explained in 

Section 5.4.6. The parameters of our simulations are in Table 5.2 below. 

TABLE 5.2 –SIMULATION FACTS 

Parameters         

     ⁄    ⁄  

      ⁄     ⁄  

Field amplitude           

Number of nodes               

Number of DoF‟s                 

GMRES iterations          

Relative residual                    
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(a) 

(b) 

 

(c) 

(c) 

Fig. 5.18. Results for the scattering of a     wave: The real part of the Cartesian components of the 

scattered electric field (in volts/meter) on a surface in free-space surrounding the scatterer (i.e., the PEC 

plate). (a) The  -component. (b) The  -component. (c) The  -component. 
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As it happened for the strip problem in Section 5.4.3, the plate problems also do not 

have analytical solutions. In order to discover if these results are meaningful or not, we 

need the notion of radar cross section, to be introduced next. 

5.4.6 Radar cross sections 

 The true meaning of radar cross sections (RCS) is discussed in [Balanis, 1989]. 

For our purposes, we need only the mathematical definition. In three dimensions, given 

the observation angles (     ) in spherical coordinates, the radar cross-section is 

defined by 

   (     )     
    

    
 

   (        ) 
 

     (        )  
                          (      ) 

where    is the observation radius   . (As     , it is expected that    will somehow be 

cancelled at the right side of (5.17.a), so that     will ultimately depend just on the 

angles    and   .)  

In two dimensions, the radar cross section is sometimes termed the scattering width 

(SW) [Balanis, 1989], [Peterson et al., 1998]. Given the observation angle    in polar 

coordinates, it is defined by 

   (  )     
    

    

   (     ) 
 

     (     )  
                                (      ) 

The observation radius    is also expected to be cancelled at the right side of (5.17.b). 

The unit of the RCS is just the unit for the area. It implies that in SI it is 

measured in square meters   . It is usual to calculate the normalized radar cross 

section 

   
 (     )  

   (     )

  
                                           (      ) 

i.e., the RCS (5.17.a) is divided by the free-space wavelength squared. In this way,    
  

is dimensionless, which allows the magnitude of this quantity to be expressed in 

decibels: 

   
 (     )           (   

 (     ))                            (      ) 

Analogously, the unit of the SW is just the unit for the length, which happens to be the 

meter in the SI. It is also usual to calculate the normalized scattering width 

   
 (  )  

   (  )

  
                                               (      ) 

which is a dimensionless quantity. When expressed in decibels, it becomes 
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(a) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.19. Results for the scattering of a     wave: The real part of the Cartesian components of the 

scattered electric field (in volts/meter) on a surface in free-space surrounding the scatterer (i.e., the PEC 

plate). (a) The  -component. (b) The  -component. (c) The  -component. 
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 (  )           (   

 (  ))                                (      ) 

 The procedure for calculating either the RCS or the SW is extensively discussed 

in the literature. It relies basically on two results from electromagnetic theory: The 

surface equivalence principle and the far-field approximation [Peterson et al., 1998], 

[Balanis, 1989]. We shall briefly outline the main steps. 

5.4.6.1 Three dimensions 

 We first place an imaginary closed surface   surrounding the PEC scatterer. (  is 

sometimes termed the Huygens surface.) By this we mean that the scatterer surface    is 

contained in the volume encircled by  . In this work,   is a box whose „size‟ is larger 

than    and smaller than   . 

After we solve the scattering problem via our meshfree method, the scattered electric 

field   
  can be found at any point from the surface  . From the derivatives of   

 , the 

components of the scattered magnetic field   
  can be calculated via Faraday‟s law in 

free-space: 

    
         

                                               (      ) 

The surface equivalence principle says that the scattered field at a point away from the 

scatterer can be determined by „equivalent currents‟ defined over a closed surface 

around the scatterer, such as  . In a version of this principle called Love‟s surface  

equivalence principle [Balanis, 1989], we consider the fields to be zero within the 

volume encircled by  . The standard boundary conditions tell us that there are 

equivalent currents flowing over  , given by 

     ̂    
                                                   (      ) 

      ̂    
                                                 (      ) 

where     is the electric current density and     is the magnetic current density. 

 Let an observation point       be represented by its spherical coordinates 

(        ). Analogously, let any „source point‟      also be represented by it 

spherical coordinates (        ). The currents in (5.18.b) and (5.18.c) give rise to the 

magnetic and electric vector potentials   and  : 

 (  )  
  

  
∮    (  )

      

  

                                   (      ) 

 (  )  
  
  

∮    (  )
      

  

                                  (      ) 
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where          . If the observation point    is very far from the surface   , then the 

far-field approximation can be employed. It says that, provided that      , or more 

specifically, that [Balanis, 1989] 

   
   

  
                                                         (      ) 

where   is the diameter of the scatterer, then the following approximation is valid: 

 

 
 

 

  
                                                              (      ) 

            (         )                                    (      ) 

The quantity   is the angle between the vectors    and   . In what regards the RCS, it is 

obvious that (5.18.f) holds, since      according to (5.17.a). So we are entitled to 

employ (5.18.g) and (5.18.h) in (5.18.d) and (5.18.f). We get: 

 (  )  
  

  

       

  
∮    (  )  

    
     

 

                       (      ) 

 (  )  
  
  

       

  
∮    (  )  

    
     

 

                     (      ) 

The scattered fields produced by the vector potentials   and   are given by 

      (  
 

  
     )  

 

  
                           (      ) 

      (  
 

  
     )  

 

  
                            (      ) 

It should be noticed that the scattered field    in (5.18.k) is not the finite-dimensional 

scattered electric field   
 . The field    will be determined at positions very far from the 

scatterer, whereas   
  exists only near the scatterer. The near-field   

  „produces‟ the 

equivalent currents in (5.18.b) and (5.18.c), which by their turn produce the field   . In 

a sense,    is related to   
 . This procedure is necessary because the nodal cloud cannot 

be extended to far distances (otherwise the total number of DoF‟s in the problem would 

blow up).  

When the operator     is applied to   and   in (5.18.k) and (5.18.l), one discovers that 

it gives rise to higher-order terms proportional to    
 ⁄ ,    

 ⁄ , etc., and therefore can be 

neglected as far as far-field calculations are concerned. So the second term from (5.18.k) 

and (5.18.l) is discarded: 

        
 

  
                                           (      ) 
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                                            (      ) 

There are some observations [Balanis, 1989] that can make the reasoning easier. 

First: The electric field    is produced by a contribution from   and a contribution 

from  : 

                                                            (      ) 

                                                               (      ) 

    
 

  
                                                  (      ) 

In the same way, the magnetic field    is made up from two contributions: 

                                                           (      ) 

   
 

  
                                                       (      ) 

                                                                (      ) 

Second: The radiated fields   ,   ,    and    have no radial components. In 

particular, (5.18.p) becomes: 

(  )                                                              (      ) 

(  )                                                       (      ) 

(  )                                                      (      ) 

and (5.18.t) becomes: 

(  )                                                              (      ) 

(  )                                                       (      ) 

(  )                                                       (      ) 

The (     ) in the last six expressions actually refer to the observation point 

(        ). 

Third: The fields (     ) and (     ) are     , which means that 

       ̂                                                 (      ) 

 ̂  
  

‖  ‖
                                                           (      ) 
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The advantage of (5.19.d) over (5.18.q) is that the curl does not need to be calculated. 

From (5.19.a) – (5.19.c) and (5.19.d) we get 

(  )                                                                      (      ) 

(  )                                                            (      ) 

(  )                                                               (      ) 

The combination of (5.18.u) – (5.18.w) and (5.19.f) – (5.19.h) allows us to write the 

components of    in (5.18.o) as 

(  )                                                                    (      ) 

(  )     (       )                                   (      ) 

(  )     (       )                                   (      ) 

 We can now get back to (5.18.i) and (5.18.j). If we introduce the terms 

 (  )  ∮    (  )  
    

     

 

                              (      ) 

 (  )  ∮    (  )  
    

     

 

                             (      ) 

then the radiation integrals in (5.18.i) and (5.18.j) become 

 (  )  
  

  

       

  
 (  )                                   (      ) 

 (  )  
  
  

       

  
 (  )                                   (      ) 

 We can combine (5.19.j), (5.19.k), (5.20.c) and (5.10.d) in order to discover that 

(  )   
    

      

    
(       )                           (      ) 

(  )   
    

      

    
(       )                           (      ) 

Inspection of (5.20.e) and (5.20.f) reveals that we need to calculate the  - and  -

spherical components of   and  . [Remember, they refer to the observation point 

(        )]. However, the equivalent currents     and     are expressed in Cartesian 

coordinates. So we need a conversion between these two coordinate systems. If we 

represent     [        ]
 
 and     [        ]

 
, then the corresponding spherical 

components can be found through 
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[

  

  

  

]  [

                         

                          

            

] [

  

  

  

]                (      ) 

[

  

  

  

]  [

                         

                          

            

] [

  

  

  

]                (      ) 

With the help of (5.20.g) and (5.20.h), the components of the vectors in (5.20.a) and 

(5.20.b) become 

   ∮ (                                 )  
    

     

 

         (      ) 

   ∮ (                                 )  
    

     

 

   (      ) 

   ∮ (                )  
    

     

 

                                                  (      ) 

   ∮ (                )  
    

     

 

                                               (      ) 

The phase factor     
      also deserves attention. Because   is the angle between 

the vectors    and   , the definition of dot product between two vectors gives us 

      ‖  ‖‖ 
 ‖                                            (      ) 

Since ‖  ‖     and ‖  ‖    , we get 

        ̂                                                    (      ) 

where  ̂  has been defined at (5.19.e). In Cartesian coordinates, any source point      

can be represented by 

        ̂      ̂      ̂                                            (      ) 

Moreover, as the spherical-to-Cartesian conversion is given by  

[

( ̂ ) 

( ̂ ) 

( ̂ ) 

]  [

                          

                         

            

] [

( ̂ ) 

( ̂ ) 

( ̂ ) 

]                (      ) 

and as obviously ( ̂ )   , ( ̂ )    and ( ̂ )   ,  

 ̂             ̂             ̂        ̂                     (      ) 
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In this way, from (5.20.n), (5.20.o) and (5.20.q), 

      
          ( 

                                )                (      ) 

 Now that we are able to calculate (5.20.i) – (5.20.l), the  - and  -spherical 

components of the scattered electric field in (5.20.e) and (5.20.f) can be determined. The 

square of the modulus of these complex-valued quantities is 

 (  )  
  

  
 

(    ) 
|       |

 
                                   (      ) 

|(  ) |
 
 

  
 

(    ) 
|       |

 
                                    (      ) 

Because    has no radial component,  

   (        ) 
  

  
 

(    ) 
.|       |

 
 |       |

 
/           (      ) 

The incident fields in (5.16.h) and (5.16.i) are plane waves, whose amplitude does not 

depend on the radial distance   . Actually, the squared amplitude of these plane waves is 

constant throughout the space   : 

|    (        )|
 
                                               (      ) 

where 

      
                                                                                  (      ) 

        
 (  (     )

 (     )
 )                                (      ) 

With the information provided by (5.21.c) and (5.21.d), the RCS in (5.17.a) becomes 

   (     )     
    

    
 

  
 

(    )   
.|       |

 
 |       |

 
/       (      ) 

The   
  term gets cancelled. Furthermore, none of the integrals in (5.20.i) – (5.20.l) 

depends on the distance   . In this way, the right side of (5.21.g) does not depend on   , 

and we are safe to pass to the limit. Finally, we get the expression for the RCS: 

   (     )  
  
 

    
.|       |

 
 |       |

 
/                     (      ) 

The procedure for calculating the RCS can be summarized in the Chart 5.2 below. 

Chart 5.2 – Calculating the RCS 

Step 1. Set up an imaginary closed surface   around the scatterer. 
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Step 2. Calculate the equivalent currents     and     on  , according to (5.18.b) and 

(5.18.c). 

Step 3. Choose an observation point (at infinity) characterized by the angles (     ). 

Step 4. Calculate the phase term (5.20.r). 

Step 5. Evaluate the integrals   ,   ,    and    in (5.20.i) – (5.20.l). 

Step 6. Calculate the RCS in (5.21.h). 

Step 7. Choose another observation point (     ) and go back to Step 4. 

5.4.6.2 Two dimensions 

 The process for getting the scattering width SW in (5.17.b) is derived from that 

of the RCS. We must refer back to the geometry in Fig. 5.8. Since the strip extends to 

infinity along the  -direction, out three-dimensional imaginary surface   is not closed. It 

is set up as follows. Let us place an imaginary closed curve   around the strip cross-

section in the    plane. Then we make 

    (     )                                               (      ) 

The expressions for the wave potentials in (5.18.d) and (5.18.e) give the values of   and 

  at observation points      . In cylindrical coordinates, the observation point    can 

be represented as ,        -
 , and as ,        -

  in Cartesian coordinates. 

Analogously, a source point      has the cylindrical and Cartesian representation as 

,        -  and ,        - , respectively. We can write 

          √(     )  (     )  (     )              (      ) 

 √         (     )                                       (      ) 

where  

       ̂      ̂                                                              (      ) 

       ̂      ̂                                                              (      ) 

The potentials   and   become 

 (  )  
  

  
∮    (  )

     √         (     ) 

√         (     ) 
  

 

                 (      ) 

 (  )  
  
  

∮    (  )
     √         (     ) 

√         (     )  

                 (      ) 
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Since the geometry of this problem is invariant along  , the equivalent currents     and 

    do not depend on  , i.e.,    (  )     ( 
 ) and    (  )     ( 

 ). Moreover, 

the differential element    is equal to      , where    a differential length along the 

curve  . Then, 

 (  )  
  

  
∮    ( 

 )
 

(∫
     √         (     ) 

√         (     ) 
   

  

  

)          (      ) 

 (  )  
  
  

∮    ( 
 )

 

(∫
     √         (     ) 

√         (     ) 
   

  

  

)         (      ) 

It is known that [Balanis, 1989]: 

∫
     √         (     ) 

√         (     ) 
         

( )(         )
  

  

           (      ) 

where   
( )(   ) is the Hankel function of the second type. In this way, 

 (  )   
   

 
∮    ( 

 )
 

  
( )(         )                      (      ) 

 (  )   
   
 

∮    ( 
 )

 

  
( )(         )                      (      ) 

For very large arguments, it is known that the Hankel functions satisfy [Balanis, 1989]: 

  
( )( )  √

 

  
   .  

  
 

 
 
 
/                                    (      ) 

Since     ⁄  √ , when we take     in (5.22.m), we get 

 (  )    √
 

    
∮    ( 

 )
 

     |     |

√       
                    (      ) 

 (  )    √
 

    
∮    ( 

 )
 

     |     |

√       
                   (      ) 

When the observation point is very far from the scatterer, i.e., when    is large, it holds 

the approximation 

 

       
 

 

  
                                                               (      ) 

     |     |       (        (     ))                           (      ) 
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Substitution of (5.22.p) and (5.22.q) into (5.22.n) and (5.22.o) leads us to 

 (  )    √
 

    

       

√  

∮    ( 
 )

 

       (     )               (      ) 

 (  )    √
 

    

       

√  

∮    ( 
 )

 

       (     )             (      ) 

Now it can be verified that no term in the right side of the integrals above depend on the 

   coordinate. We can rewrite (5.22.r) and (5.22.s) as 

 (  )    √
 

    

       

√  

 (  )                                 (      ) 

 (  )    √
 

    

       

√  

 (  )                                 (      ) 

where  

 (  )  ∮    ( 
 )

 

       (     )                              (      ) 

 (  )  ∮    ( 
 )

 

       (     )                           (      ) 

The equivalent currents     and     depend on the source points     . These 

currents in principle have three components, according to (5.18.c) and (5.18.d). Their 

conversion into spherical coordinates is given by (5.20.g) and (5.20.h). This allows us to 

calculate   ,   ,   , and   : 

   ∮ (                                 ) 
      (     )

 

           (      ) 

   ∮ (                                 ) 
      (     )

 

    (      ) 

   ∮ (                ) 
      (     )

 

                                                   (      ) 

   ∮ (                ) 
      (     )

 

                                              (      ) 

In what regards the spherical components of the scattered electric field, the same 

expressions as those of (5.19.j) and (5.19.k) apply here: 
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(  )     (       )                                          (      ) 

(  )     (       )                                          (      ) 

With the help of (5.22.t) and (5.22.u), the two expressions above become 

(  )         √
 

    

       

√  

(       )                     (      ) 

(  )         √
 

    

       

√  

(       )                     (      ) 

Since    has no radial component, and because no quantity depends on the    

coordinate, 

   (  ) 
  

  

  

 

  
.|       |

 
 |       |

 
/               (      ) 

According to (5.10.g), the square of the modulus of the incident field      is simply 

|    (  )|
 
       

                                                (      ) 

From the definition of scattering width SW in (5.17.b), and (5.23.i), (5.23.j),  

   (  )     
    

    

  

  

 

  

 

       
.|       |

 
 |       |

 
/     (      ) 

The distance    gets cancelled in the right side, which allows us to pass to the limit as 

    . Since no term in the right side of (5.23.k) depends on   , the SW depends just 

on the observation angle   . We finally get 

   (  )  
  

        
.|       |

 
 |       |

 
/               (      ) 

The procedure for calculating the SW can be summarized in the Chart 5.3 below. 

Chart 5.3 – Calculating the SW 

Step 1. Set up an imaginary closed curve   around the scatterer. 

Step 2. Calculate the equivalent currents     and     on  , according to (5.18.b) and 

(5.18.c). 

Step 3. Choose an observation point (at infinity) characterized by the angle   . 

Step 4. Evaluate the integrals   ,   ,    and    in (5.23.a) – (5.23.d). 

Step 5. Calculate the SW in (5.23.l). 
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Step 6. Choose another observation point   .and go back to Step 3. 

5.4.6.3 Physical Optics 

 In order to find out if the solutions to the scattering problems in Sections 5.4.3 

and 5.4.5 are reliable, we need to compare the results with some standard. These 

problems lack analytical solutions, and so we need another standard to compare with. 

In this work, we are going to compare the results provided by our meshfree method with 

those from the physical optics approximation (PO).  

The problem regarding the scattering of waves by PEC obstacles is of much 

practical concern, and there are alternate methods by which they can be formulated. The 

physical optics is one of them.  

When trying to find the scattered fields, one needs the current distributions on the 

surface of the PEC obstacle. If the current is known, then the vector potentials, and 

consequently the scattered fields, can be found via radiation integrals such as (5.18.d). 

However, if the obstacle is not an infinite and flat PEC surface, then the current density 

is generally unknown. For more general geometries, and when the only available 

information besides the geometry of the target is the incident field, one can find suitable 

approximations for the current densities. Once these are found, the scattered fields are 

calculated through (5.18.d). 

In the physical optics approximation, given the geometry of the conductor (with the 

normal  ̂ defined almost everywhere on its surface) and the incident field (         ), 

the current density at the surface of the PEC obstacle is taken as 

      ̂            (    ) 

The approximation provided by (5.24) is meaningful, provided the scatterer is 

electrically large.  

In what regards the physical optics approximation, this is all we need to know in this 

work. More details and an extensive explanation can be found in [Balanis, 1989]. 

 For the problems discussed in this chapter (the scattering of plane waves by 

conducting strips and plates), the physical optics approximation provides closed results 

for the radar cross sections. In a sense, the RCS calculated by PO and those resulting 

from the „full theory‟ agree with each other near the specular direction. (By specular 

direction it is meant the direction along which the incident wave is reflected by the 

conducting surface.) The predictions of the PO become less accurate away from the 

specular directions. One of the reasons is that, since the PO employs the approximation 

(5.24), which is valid only when the flat conductor is infinite, when in reality it is not, 

the PO fails to take the edge diffraction effects into account. But the results from the PO 
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are accurate near the specular directions, and as such provide a standard against which 

we can compare the results of our meshfree calculations. 

Although the predictions of the PO do not match exactly those from the „full theory‟ as 

described above, they can nonetheless be used as standards against which results 

provided by another numerical method can be compared [Heldring et al., 2002]. 

 The results concerning the PO approximations for the geometries in the 

problems that interest us are taken from [Balanis, 1989] and are summarized in Table 

5.3 below. 

TABLE 5.3 – PHYSICAL OPTICS APPROXIMATION 

Problem PO Expression 

 

 

Scattering of a 

    plane wave 

by a PEC strip 

(Section 5.4.3) 

 

 

   (  )  
    

  
(     

    

 
)
 

                    (      ) 

 

  
   

 
(           )                           (      ) 

 

 

 

 

 

Scattering of a 

    plane wave 

by a PEC plate 

(Section 5.4.5) 

 

 

   (     )    (
  

  
)

 

 (
    

 
)
 

(
    

 
)
 

         (      ) 

 

        (   
      

          )                 (      ) 
 

  
   

 
                                         (      ) 

 

  
   

 
(                )                     (      ) 

 

 

 

 

 

 

Scattering of a 

    plane wave 

by a PEC plate 

(Section 5.4.5) 

 

 

   (     )    (
  

  
)

 

 (
    

 
)
 

(
    

 
)
 

         (      ) 

 

           
                                  (      ) 

 

  
   

 
                                          (      ) 

 

 

  
   

 
(                )                     (      ) 
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(a) 

(b) 

 The RCS (and the SW) for each case has been calculated twice: First, we 

calculated the near-fields through our meshfree methods and from them we obtained the 

RCS (and the SW) via the procedure outlined in Charts 5.2 and 5.3. Second, the PO 

approximation to the RCS (and the SW) has been calculated from the expressions in 

Table 5.3. The results are in Fig. 5.20. 

 

 

 

 

 

 



 

214 
 

(c) 

 

 

Fig. 5.20. Radar cross sections. (a) The normalized scattering width (SW) in decibels, according to 

(5.17.f) for the bi-dimensional strip problem. The observation angle    is like that indicated in Fig. 5.8.b. 

(b) The normalized radar cross section (RCS) in decibels, according to (5.17.d) for the three-dimensional 

scattering of a     wave by a PEC plate. (c) Normalized RCS in decibels for the scattering of a     

wave by a PEC plate. In the last two figures, the RCS is calculated in two regions, and the results are 

separated from each other by a blue line at the center of the graph. In region 1 (at the right of the blue 

line),        and         . In region 2 (at the left),         and         .   

The results provided by the „full theory‟ and the PO approximation agree with 

each other in the vicinity of the specular directions. When we consider directions away 

from the specular directions, there is still some concordance between the curves, 

particularly in what concerns the relative positions of the maxima and minima. The 

overall behavior of the two curves, in a sense, corresponds to what has been predicted 

earlier. 
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Chapter 6 

Conclusions 

 

6.1 Concluding remarks 

 We have finally arrived at the end of this thesis. Our primary objective was to 

find a nodal meshfree method aimed at solving vector problems in electromagnetism 

subject to the divergence-free constraint. The method of finite spheres, which relies on 

the partition of unity paradigm, provided a solid basis for the construction of our 

method. 

As the work evolved, we felt that the task would be more mathematically demanding 

than we initially thought. We had to choose carefully which function spaces would be 

used and the right formulation to be employed. But that is not all: After the formulation 

had been established, it was necessary to show that it is consistent, or, as it is said, that 

it is well-posed. At precisely this point we realized that, if we were to actually provide a 

good formulation, it should be justified. And to justify it, we had to resort to concepts 

available only at a somehow higher mathematical level. 

In a sense, we had to construct a „theory‟ to justify our formulation. Fortunately, it was 

not necessary to begin from the scratch: We took the theory already developed for the 

Navier-Stokes system and adapted it to the wave scattering system, which is what 

ultimately interests us here. 

Now that the work is complete, it can be observed that the theoretical aspects fit our 

meshfree method, and vice-versa. This is not coincidence: It was planned to be so. 

Moreover, the forms assumed by the theory and by the method were not conceived at 

once. We began with an aspect of the theory, and found that it needed some adjusts to 

fit the numerical method. In the same way, some aspects of the method had to be 

modified in order to accommodate the theoretical requirements. It took some time to 

figure out all the adjustments that had to be made so that the theory and the method 

could match each other. 

The examples show that the method works well when applied to problems concerning 

the electromagnetic wave scattering by conducting objects in three-dimensions. The 

application of our method to the scattering by metallic plates can be viewed as a 

template: Any problem in this category can be solved by exactly the same way 

described in the thesis. Of course, more complicated targets will demand more 

computational power. But even more important is the fact that we have found a way to 

do it, i.e., we have now a recipe about how to solve such problems.  
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So that is it. When we trace a line going from our earlier works to the point 

where we are now, we are able to conclude that a formidable progress has been made. 

Much has been learned along the way, and we are grateful for all the knowledge 

gathered during these Ph.D. years. 

6.2 Future work 

 Of course, there are some points raised during the development of this thesis that 

have not been addressed. We identified at least three of them, which are worth 

considering in future works. 

6.2.1 The tangential trace operator 

 According to Section 2.1.4, there is a trace operator 

  
    ( )     ⁄ ( )                                                  (   ) 

which is used in connection with the non-homogeneous Dirichlet boundary conditions 

in the Navier-Stokes system. It says that, when we know all the three components of the 

velocity field   at the boundary  , i.e., when we know that     at  , if   is an 

element of    ⁄ ( ) , then one can find a function      ( )  such that   
     . 

Since the velocity field   and    are in   ( ) , we can form the decomposition (2.78), 

                                                                   (   ) 

thus allowing the problem to be formulated in terms of   , which obeys homogeneous 

Dirichlet conditions on all its components (i.e., all components of    are zero at  ). 

 Analogously, in Section 2.2.3.4, there is a trace operator 

    (      )   ( )                                               (   ) 

which is used in connection with the non-homogeneous Dirichlet boundary conditions 

in the traditional formulation for the scattering system. When we know the tangential 

component of the scattered electric field    at  , i.e., when we know that  ̂       at 

 , if   is an element of  ( ), then we can find a function     (      ) such that 

   
   . Since both    and    are in  (      ), we can form the decomposition 

                                                                 (   ) 

thus allowing the problem to be formulated in terms of   , which is such that    
  

 ̂       at  . 

 Both trace operators from (6.1) and (6.3) are backed by well-established 

theories. But as discussed in Section 2.2.3.4, what we really want is a characterization 

of the „inverse‟ of the tangential trace operator 
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 ( )   ( )                                                     (   ) 

The operator in (6.5) operates in the same way as the operator in (6.3). Since   ( )  

 (      ), it is just a restriction of the operator in (6.3) to those functions from the 

subspace   ( ) . We are interested in the opposite question: Given an element   from 

 ( ), can we find an element in the more regular space   ( )  whose image under    

is  ? According to the reasoning from Section 2.2.3.4, it is not unreasonable to expect 

that. Moreover, as it was shown, for any    ( ) we can find a function in   ( )  

whose tangential trace is arbitrarily close to  .  

This does not satisfy us: We want a formal proof concerning the existence of the trace 

operator in (6.5). Maybe such trace operator exists from   ( )  into a subspace of 

 ( ). But which subspace? Moreover, maybe there are classes of domains   for which 

the operator in (6.5) is well-defined. But which classes?  

In order to find an answer to these questions, we need to delve deeper into the theory of 

traces in Sobolev spaces. 

6.2.2 Complex eigenvalues 

 In Section 3.3.6.7, we argued that the eigenproblem in (3.77.d) 

                     

∫ ( ̿     )     

 

  ∫      

 

                                     (   ) 

is likely to admit complex eigenvalues  , due to the complex-valued components of the 

PML tensor  ̿ at the left side of (6.6). We want a formal proof of this fact. If we find it, 

then it follows that the free-space wavenumber   
  will never be an eigenvalue of (6.6), 

since it is a real number.  

We believe that the answer will ultimately be provided by some argument from spectral 

theory. 

6.2.3 Preconditioning 

 In section 5.3, we presented some discussion about the role of preconditioning 

matrices in the solution of large linear systems. We managed to find a cheap 

preconditioner, the matrix   given by (5.7.d): 

  *
 ̅  

  ̅ ̅   ̅ 
+                                                    (   ) 

The experimental results from Section 5.4 show that the GMRES together with the 

preconditioner in (6.7) was able to converge and deliver the right results in a reasonable 

number of iterations. One may ask: Is there another preconditioner that, when employed 
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in conjunction with the GMRES, is able to provide the correct answer but in a 

significantly smaller number of iterations? Suppose such a preconditioner exists. Is it as 

easy to construct as that in (6.7)? 

Insight into these questions can be gained if more investigations are made in what 

concerns the use of preconditioners in the solution of sparse linear systems. 
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Appendix 1 

Theorem 3.8 

 

Theorem 3.8 concerns the well-posedness of non-coercive problems. It is 

restated below for convenience. 

Theorem 3.8: Non-coercive problems – Suppose the following hypotheses are true: 

(i)   and   are two Hilbert spaces satisfying the requirements of Theorem 3.7, i.e., 

   . 

(ii) The map      is compact, i.e.,       (   ). 

(iii)  (      )       is a continuous sesquilinear form. 

(iv) The sesquilinear form from item (iii) satisfies the property: There exist constants 

    and      such that 

  * (   )+    ‖    ( )‖ 
   ‖ ‖ 

                               (    ) 

It can be concluded that if the solution to the homogeneous (zero-data) problem 

                              

 (   )                                                                 (    ) 

is the zero element     , then it is true that: 

(a) The solution to the general problem 

                           

 (   )  〈   〉                                                         (    ) 

exists and is unique for every functional     .  

(b) The solution   from (a) depends continuously on the data, i.e., there exists a positive 

constant     such that 

‖    ( )‖     ‖ ‖                                                  (    ) 

 

Proof: The first part is devoted to proving existence and uniqueness of the solution. The 

second part deals with the boundedness (continuity) of the solution. 
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Part I: Existence and Uniqueness 

Let it be the original problem (3.64): 

                           

 (   )  〈   〉                                                        (    ) 

Of course, we can add the same quantity to both sides in (    ) and get the equivalent 

problem: 

                                                                     (    ) 

 (   )    (    ( )     ( ))  〈   〉       (    ( )     ( ))           

Since   and   are in  , they are transferred to   via     , and an inner product of their 

images in   is formed and added to both sides in (    ). Applying Theorem 3.7 in the 

inner product at the right side in (    ) [by making       ( )] we get 

                                                                    (    ) 

 (   )    (    ( )     ( ))  〈   〉       〈      ( )  〉           

Moreover, according to Theorem 3.7, the operator   in (    ) is an element from 

 (    ), i.e.,  

   (    )                                                          (    ) 

Hypothesis (ii) says that       (   ). This hypothesis together with (    ) above 

and Theorem 3.5 imply that 

              (    )                                       (    ) 

i.e., the map       is compact. So (    ), it gets simplified to 

                                                               (    ) 

 (   )    (    ( )     ( ))  〈   〉       〈     ( )  〉           

and consequently to 

                                                               (    ) 

 (   )    (    ( )     ( ))  〈         ( )  〉           

In the left side of (    ), if we fix  , the map  

 (     )    (    ( )     (   ))         (    ) 
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is linear and continuous. Linearity is obvious. In order to see that it is continuous, the 

triangle inequality says that for any    , 

| (   )    (    ( )     ( )) |  
  (   )  |  (    ( )     ( )) |     (    ) 

   ‖ ‖ ‖ ‖    ‖    ( )‖ ‖    ( )‖    (     ) 

   ‖ ‖ ‖ ‖      
 ‖ ‖ ‖ ‖                        (     ) 

 (  ‖ ‖      
 ‖ ‖ )‖ ‖                             (     ) 

In (     ), the definition of continuous sesquilinear forms (3.3) have been used, and 

also the Cauchy-Schwarz inequality regarding the inner product in  . In (     ),    is 

just the embedding constant from (3.60). Inequality (     ) allows us to conclude that 

| (   )    (    ( )     ( )) |

‖ ‖ 
   ‖ ‖      

 ‖ ‖            * +  (     ) 

and consequently that 

   
    * +

| (   )    (    ( )     ( )) |

‖ ‖ 
 (       

 )‖ ‖        (     ) 

But the left side in (3.66.n) is just the definition of the norm in   . Then, 

‖ (     )    (    ( )     (   )) ‖  
 (       

 )‖ ‖          (     ) 

and continuity has been proved. Let us call the map (    ) by   , since   has been 

fixed. Then,      , defined as: 

〈    〉      (   )    (    ( )     ( ))                     (     ) 

Expression (     ) then means that 

‖  ‖   (       
 )‖ ‖                                     (     ) 

We now investigate how    depends on  , which had been fixed. In a sense, there is an 

operator   which maps     to      . From (     ), it is clearly linear in  , i.e.,  

 (         )                     
                         (     ) 

where    and    are arbitrary complex numbers. The operator   is also bounded, as 

‖ ‖ (    )     
    * +

‖  ‖  

‖ ‖ 
        

                         (     ) 

with the help of (     ). Since   is bounded and linear, then    (    ). 
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Employing (     ), problem (    ) assumes the form 

                   

〈    〉     〈         ( )  〉                                  (     ) 

In operator form, (     ) becomes 

                   

            ( )                                              (     ) 

In order to solve (     ), the operator    (    ) must admit an inverse, i.e.,   must 

be one-to-one. We claim that   is one-to-one. To show that   is one-to-one is the same 

as to show that 

      *  +                                                     (     ) 

i.e., that the kernel of   is just the zero element from  . So let us analyze the kernel 

      *                  +                                (     ) 

Suppose        . Then        in    and consequently, with the help of (     ), 

〈    〉      (   )    (    ( )     ( ))  〈     〉                (     ) 

Since    , take     in (     ). One finds that 

 (   )    (    ( )     ( ))
 

                            (     ) 

Expression (     ) means that both real and imaginary parts of the left side are equal to 

zero. It is given that    is a positive real number; moreover, (    ( )     ( )) is also 

a positive real number, since it is the inner product between the same quantities. So the 

real part of the left side in (     ) becomes 

  * (   )+    ‖    ( )‖ 
                                  (     ) 

But if we take the hypothesis (iv) from Theorem 3.8 into consideration, we form the 

expression 

 ‖ ‖ 
    * (   )+    ‖    ( )‖ 

                        (     ) 

which implies that  ‖ ‖ 
    and consequently ‖ ‖ 

   , since   is a positive real 

number and the norm squared can never be smaller than zero. Of course, ‖ ‖ 
    

implies that ‖ ‖   , and from this we conclude that     , by one of the norm 

axioms. We have just proved that, if        , then     , which is the same as 

saying that       *  +. So (     ) has been established as a truth, and consequently, 

the inverse operator     exists. 
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We may inquire more about the inverse operator    . We may ask: Is it linear and 

continuous (bounded)? In other words, is it true that      (    )? Yes, it is true. To 

see that it is linear, we recall (     ) and notice that, given an arbitrary functional 

     , the action of the inverse operator is characterized by 

             (   )    (    ( )     ( ))  〈    〉                  (     ) 

So let us consider a functional   
    . Then consider the problem of finding a    such 

that 

 (    )    (    (  )     ( ))  〈  
   〉                            (     ) 

which according to (     ) is equivalent to         
 . Multiply (     ) by an 

arbitrary      and get 

 (      )    (    (    )     ( ))  〈    
   〉                     (     ) 

since the sesquilinear form, the inner product, the embedding map and the duality 

pairing are all linear. According to (     ), this is equivalent to             
 . Take 

now another functional functional   
     and find a solution    to the problem 

 (    )    (    (  )     ( ))  〈  
   〉                           (     ) 

which is equivalent to         
 . Multiply (     ) by an arbitrary      and get 

 (      )    (    (    )     ( ))  〈    
   〉                     (     ) 

which is equivalent to             
 . We now sum (     ) and (     ) and arrive 

at 

 (           )    (    (         )     ( ))                                                   

〈    
      

   〉                     (     ) 

which is equivalent to              (    
      

 ). But         
  and 

        
 , so we finally get that 

   (    
      

 )     
    

     
    

                           (     ) 

Linearity of     has been established. In order to find out if     is continuous, we refer 

back to (     ) and begin by observing that 

| (   )    (    ( )     ( )) |  |〈    〉    |                    (     ) 

By making    , it becomes 

  (   )    ‖    ( )‖ 
   |〈    〉    |                         (     ) 
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Since    is an element from   , it is bounded, i.e., ‖  ‖   is finite, and moreover, 

|〈    〉    |  ‖  ‖  ‖ ‖                                       (     ) 

Also, the real part of a complex number is smaller than or equal to its modulus, so we 

get 

  * (   )+    ‖    ( )‖ 
    (   )    ‖    ( )‖ 

           (     ) 

From (     ), (     ) and (     ) we conclude that 

  * (   )+    ‖    ( )‖ 
  ‖  ‖  ‖ ‖                    (     ) 

Hypothesis (iv) from Theorem 3.8 then reveals that 

 ‖ ‖ 
  ‖  ‖  ‖ ‖                                           (     ) 

or  

‖ ‖  
 

 
‖  ‖                                                 (     ) 

According to (     ),        , and    is an arbitrary element from   . So it is true 

that 

‖     ‖  
 

 
‖  ‖                                            (     ) 

which allows us to conclude that 

‖   ‖ (    )     
      * +

‖     ‖ 

‖  ‖  
 

 

 
                       (     ) 

as    . In this way, the continuity of     has been established. Since     is linear and 

continuous,      (    ). 

We now apply     to (     ) and get the equivalent problem 

                   

          
        ( )                                     (     ) 

Problem (     ) can be rewritten as 

                   

(      
        )                                          (     ) 

Since        (    ), from (    ) and      (    ), then            (   ), 

according to Theorem 3.5.  
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We are at a position to apply Theorem 3.6. When applied to the compact operator 

   
        , it says that 

   (      
        )  *  +   (      

        )           (     ) 

We are particularly interested in the implication  , which says that 

       (      
        )  *  +           (      

        )        (     )  

Expression above means that if the operator       
         is injective (one-to-

one), then its range is the whole of  , i.e., the aforementioned operator is also 

surjective. Therefore injectivity implies surjectivity, or in other words, uniqueness 

implies existence. Let us characterize    (      
        ). From the definition of 

kernel: 

   (      
        )  *      (      

        )   +                         (     ) 

 *           
           +                             (     ) 

 *           
         +                                     (     ) 

Operating with    (    ) on both sides of (     ), 

 *                          +                               (     ) 

 {      〈    〉       〈        〉          } (     ) 

From the definition of 〈    〉     in (     ), from Theorem 3.7 [by making   

    ( )], and from       in (    ) we arrive at 

 {       (   )    (    ( )     ( ))          (     ) 

  (    ( )     ( ))       }                                              

Finally, 

 *       (   )         +                                    (     ) 

Let us now characterize  (      
        ) in (     ). When we say that  (   

   
        )   , it means that 

            (      
        )                                  (     ) 

                 
                                          (     ) 

Operating with    (    ) on both sides of (     ), 

                                                         (     ) 

            〈    〉     〈        〉     〈    〉                   (     ) 
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From the definition of 〈    〉     in (     ), from Theorem 3.7 [by making   

    ( )], and from       in (    ) we arrive at 

              (   )  〈    〉                                 (     ) 

Let      be arbitrary. Then       . If we make        in (     ), we see that 

        (   )  〈         〉                                    (     ) 

Since       is just the identity operator on    and      is arbitrary, we get 

               (   )  〈   〉                                 (     ) 

This is the conclusion we get from the fact that  (      
        )   . 

The main result we proved was (     ). We have shown that the kernel which appears 

at the left side from (     ) is given by (     ), whereas the conclusion  (   

   
        )    implies (     ). Graphically,  

 

   (      
        )⏟                 *  +   (      

        )   ⏟                

  

*       (   )         + (     )

        (     ) 

 

Saying that *       (   )         + is equal to *  + is just to state that the 

solution to the homogeneous (zero-data) problem 

                            

 (   )                                                             (     ) 

is the zero element     . And (     ) is equivalent to saying that the solution to the 

general problem   

                           

 (   )  〈   〉                                                      (     ) 

exists for every functional     . 

Therefore, if we prove that the solution to the homogeneous problem (     ) is    

(which is the same as proving the uniqueness of an eventual solution), it automatically 

follows that the solution to the general problem (     ) does indeed exist for any 

„source‟  . Again, injectivity implies surjectivity. If we prove injectivity, then we get 

injectivity plus surjectivity, which is a very positive scenario. 
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And thus, conclusion (a) from Theorem 3.8 is proved.  

Part II: Boundedness (Continuity) 

We now suppose that the solution to the homogeneous problem (3.63) is the zero 

element     , so that we know that the solution to the general problem (3.64) exists 

and is unique for any     . 

The claim that such a solution depends continuously on the data      means that 

               ‖    ( )‖     ‖ ‖                       (     ) 

where   is the solution to  

                   

 (   )  〈   〉                                                   (     ) 

In (     ),     is a positive constant independent of  . Suppose (     ) is not true. 

Then the negation of (     ) is 

               ‖    ( )‖     ‖ ‖                       (     ) 

It means that for any choice of a positive    , there is a corresponding      such that 

‖    ( )‖     ‖ ‖  , where   is the solution to (     ). Now take successively 

               , i.e., we consider each natural number as a choice for    . We 

deduce the existence of a sequence of functionals *  +   
     such that for each   , 

‖    (  )‖   ‖  ‖                                          (     ) 

where    is the solution to 

                                  

 (    )  〈    〉                                                        (     ) 

So we have got first a sequence of functionals *  +   
    , which produces a 

sequence *  +   
   , which finally produces another sequence  *    (  )+   

   , 

whose elements are related to the elements of the original sequence of functionals 

through (     ). 

If any member    is multiplied by a scalar  , then    is also multiplied by  , since 

(     ) is a linear problem. As the embedding map      is also linear,     (   ) 

becomes      (  ). 

For each    , we multiply    by the inverse of ‖    (  )‖ , i.e., we form a new 

sequence of functionals *  +   
    , where 

   
 

‖    (  )‖ 
                                             (     ) 
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The sequence of functionals *  +   
  obviously produces a new sequence *  +   

   , 

where    is the solution to 

                             

 (    )  〈    〉                                                     (     ) 

Of course,    is just    divided by ‖    (  )‖ . This sequence *  +   
  finally 

produces a sequence *    (  )+   
   , for which 

    (  )      (
  

‖    (  )‖ 
)  

 

‖    (  )‖ 
    (  )          (     ) 

Then, for each  , 

‖    (  )‖  
 

‖    (  )‖ 

‖    (  )‖  
 

‖    (  )‖ 
 ‖  ‖       (     ) 

where the inequality came from (     ). Expression above gets simplified to 

‖    (  )‖    
 

‖    (  )‖ 
 ‖  ‖                           (     ) 

But  

 

‖    (  )‖ 

‖  ‖   ‖
 

‖    (  )‖ 
‖
  

 ‖  ‖                  (     ) 

which allows (     ) to become 

‖    (  )‖     ‖  ‖                                   (     ) 

The great conclusion thus far amounts to this: We have got a new sequence of 

functionals *  +   
    , which produces a sequence *  +   

    through (     ). 

Moreover, this sequence in   produces a sequence *    (  )+   
    such that each 

of its terms has unit norm, according to (     ). 

Expression (     ) reveals a striking fact: 

‖  ‖   
 

 
                                                 (     ) 

which implies that 

   
   

‖  ‖                                                   (     ) 

Now we claim that the sequence *  +   
    is bounded. We have, for each    : 

 (    )  〈    〉                                              (     ) 

When we add the same quantity to both sides, it becomes: 
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(     ) 

 (    )    (    (  )     ( ))  〈    〉       (    (  )     ( ))        

Now make      and take the absolute value of each side: 

  (     )    ‖    (  )‖ 
   |〈     〉       ‖    (  )‖ 

 |        (     ) 

Since the real part of a complex number is smaller than or equal to its modulus, we get 

  * (     )+    ‖    (  )‖ 
  |〈     〉       ‖    (  )‖ 

 |     (     ) 

Hypothesis (iv) in Theorem 3.8 allows us to write 

 ‖  ‖ 
  |〈     〉       ‖    (  )‖ 

 |  ‖  ‖  ‖  ‖            (     ) 

where the triangle inequality and the fact that ‖    (  )‖    in (     ) have been 

used. We get 

 ‖  ‖ 
  ‖  ‖  ‖  ‖                                         (     ) 

which is rewritten as 

 ‖  ‖ 
  ‖  ‖  ‖  ‖                                      (     ) 

which is a standard quadratic inequality, whose solution is 

‖  ‖   √‖  ‖  
      

  
 ‖  ‖  

‖  ‖   √‖  ‖  
      

  
    (     ) 

(Remember that it is always true that ‖  ‖   .) By concentrating on the right side of 

(     ) and observing that ‖  ‖  
       (‖  ‖    √   )

 
, we get 

‖  ‖  
‖  ‖   √   

 
                                         (     ) 

Since all    are in   , they are bounded linear functionals, and therefore are finite. 

Moreover, according to (     ), the sequence *‖  ‖  +   
     is convergent. It is a 

known fact that convergent sequences are bounded [Kreyszig, 1989], so there is a 

constant   such that ‖  ‖    , for any   [according to the definition (3.57)]. We 

can go further and see that this constant is 1, from (     ). So 

‖  ‖  
  √   

 
                                              (     ) 

which is the same as saying that the sequence *  +   
  is bounded. 



 

230 
 

In order to proceed, we need two theorems concerning compact operators in Hilbert 

spaces [Salsa, 2008]. For the notion of weak convergence, see [Brezis, 2010]. 

Theorem A1.1: Convergent subsequences – Let   be a Hilbert space. If a sequence 

*  +   
    is bounded, then *  +   

  admits a subsequence {   
}
   

 

 *  +   
  

which converges weakly to an element     , i.e.,  

   
                                                            (     ) 

A nice property of compact operators is that they convert weakly convergent sequences 

into strongly convergent sequences. This is stated in the next theorem. 

Theorem A1.2: From weak to strong – Suppose    and    are two Hilbert spaces, 

and let    (     ). Let *  +   
  be an arbitrary sequence in   . Then 

   (     )  ((           )           (             ))    (     ) 

Applying Theorem A1.1 to the bounded sequence *  +   
  in   allows us to conclude 

that there is a subsequence {   
}
   

 

 *  +   
  such that 

   
                                                            (     ) 

Hypothesis (ii) from Theorem 3.8 gives us that the embedding map      is compact, 

i.e.,       (   ). Theorem A1.2 therefore says that 

       
      

                                              (     ) 

The question is that, as we let     (and consequently     ), problem (     ) 

becomes 

        
             

 .   
  /  〈   

  〉                                              (     ) 

Since the sesquilinear form   is continuous, for any    , it induces a functional 

       whose action on    
 is given by 

 .   
  /   〈   

    〉                                           (     ) 

which allows us to write (     ) as 

        
              

〈   
    〉     〈   

  〉                                           (     ) 

Since    
   , according to (     ), and    converges (strongly) to    , problem 

above becomes 
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〈      〉                                                             (     ) 

Or, from (     ),  

                                  

 (    )                                                              (     ) 

But we supposed from the outset that the solution to the homogeneous problem (3.63) is 

  , so we conclude that      . 

From (     ) we get that 

       
      

                                               (     ) 

i.e., the subsequence {       
}
   

 

 converges to   . 

On the other hand, (     ) says that 

‖    (  )‖                                                        (     ) 

i.e., all elements from the sequence *    (  )+   
  have unit norm. Therefore, all 

elements from the subsequence {       
}
   

 

 also have unit norm.  

We say that        
    in   if ‖       

   ‖
 

  , which implies that 

‖       
‖

 
  . But from (     ), that does not happen, so the subsequence 

{       
}
   

 

 does not converge to zero. We have just arrived at a contradiction, so 

(     ) is false, and consequently, (     ) is true. 

The solution   to (     ) does depend continuously on the data, with respect to the 

norm in the Hilbert space  . 
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Appendix 2 

Theorem 3.9 

 

In the mixed formulation resulting from our electromagnetic wave scattering 

problem, the sesquilinear form   is not coercive, contrary to what happens in a large 

number of problems from mechanics. If we are to propose a meshfree method based on 

this formulation, we are compelled to show first that it is indeed well-posed. We 

therefore construct an adaptation of the theory of mixed formulations in which the 

Fredholm Alternative is taken into account. The result is stated in the theorem below. 

Theorem 3.9: Well-posedness of mixed formulations, non-coercive case – Let   and 

  be two Hilbert spaces, and let         and         be two continuous 

sesquilinear forms, i.e., there are positive constants    and    such that: 

(i)   is continuous, i.e.,  

  (   )    ‖ ‖ ‖ ‖                                           (      ) 

(ii)   is continuous, i.e.,  

  (   )    ‖ ‖ ‖ ‖                                           (      ) 

Let    be the kernel of the sesquilinear form   i.e.,  

         *       (   )            +                        (      ) 

Consider a third Hilbert space   such that    and   satisfy the requirements of 

Theorem 3.7, i.e., 

(iii)    is continuously embedded into  , i.e.,     . 

Moreover, it holds that: 

(iv) The map       is compact, i.e.,        (    ). 

(v) The sesquilinear form   satisfies the following property on the kernel   : There 

exist constants     and      such that 

  * (   )+    ‖     ( )‖ 
   ‖ ‖ 

                                (      ) 

(vi) The sesquilinear form   satisfies the inf-sup condition, i.e., there is a positive 

constant      such that 

    
    * +

   
    * +

  (   ) 

‖ ‖ ‖ ‖ 
                                          (      ) 
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(vii) The solution to the homogeneous (zero-data) problem at the kernel    

                    

 (   )                                                     (      ) 

is the zero element    . Furthermore, let us assume that: 

(viii) The original space   is also continuously embedded  , i.e.,    . 

(ix) The spaces   and    are subspaces of  , i.e.,     and      (which implies 

that      and       are inclusion maps). 

Then it can be concluded that for each       and      , there is a unique solution 

to the mixed problem 

     (   )                        

 (   )   (   )  〈    〉                                            (      ) 

 (   )                    〈    〉                                                               

It also follows that the solution   depends continuously on the data    and    in the   

norm, i.e., there are positive constants    and    such that 

‖ ‖    ‖ 
 ‖     ‖ 

 ‖                                    (      ) 

 

Proof: Consider problem (3.69.g), for which the sesquilinear forms   and   obey 

requirements (i) and (ii), respectively, and let       and       be arbitrary 

functionals. 

Part I – Existence 

The inf-sup condition from requirement (vi) holds; and we know from conclusion (iii) 

in Theorem 3.3 that such a condition is equivalent to the fact that operator        is 

surjective. If we write (3.69.g) in the operator form (3.32), then we see that      . 

But since the operator   is surjective, there exists an element    from   such that 

      .  

We also know from conclusion (v) in Theorem 3.3 that the inf-sup condition (3.69.e) is 

equivalent to 

   
    * +

〈    〉    

‖ ‖ 
   ‖ ‖          (  )                         (    ) 

In the most general case, the functional    can be any element from   . (We assume 

that it is different from zero; otherwise, we can jump to (    ) and make      there.) 

Since       , it means that 
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 (    )  〈    〉                                                        (    ) 

and consequently            , defined in (3.69.c). The Hilbert space   can be 

decomposed as      (  ) , because    is a null-space and null-spaces are 

closed [Kreyszig]. Since      , then    (  ) . We now make      in (    ) 

and observe that 

   
    * +

〈    〉    

‖ ‖ 
    

    * +

〈     〉    

‖ ‖ 
   ‖  ‖ 

                    (    ) 

The leftmost supremum in (    ) is just the norm of the functional   , so we conclude 

that 

‖  ‖ 
 

 

  

‖  ‖                                                  (    ) 

  We now write the original solution   as 

                                                                  (    ) 

When we substitute (    ) into the original system (3.69.g), we find that    is the true 

unknown: 

     (    )                        

 (    )   (   )  〈    〉      (    )                               (    ) 

 (    )                                                                                                         

Since the sesquilinear form   is continuous, it is not difficult to see that  (     ) 

defines a bounded and linear functional on  , i.e.,  (     )    . We may write this 

as 

 (    )   〈     〉                                             (    ) 

Consequently,        and (    ) assumes the form 

     (    )                        

 (    )   (   )  〈        〉                                   (    ) 

 (    )                                                                                                 

From the second equation in (    ), we learn that      . Since     , the first 

equation in (    ) is of course valid when the test functions are taken from   . In other 

words, we can restrict the problem (    ) to    and get 

                             

 (    )   (   )  〈        〉                                    (    ) 
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Since           , according to (3.69.c),  (   )    for any    . But    , 

and then our problem becomes 

                             

 (    )  〈        〉                                           (     ) 

There is just a small technicality: Since     , then it is obvious that    (  ) , 

i.e., bounded linear functionals acting on the whole space  , when restricted in their 

action to the subspace   , also define functionals on   . So there is no harm in writing 

(     ) in a slightly modified form: 

                             

 (    )  〈        〉(  )
 
                                       (     ) 

where  

〈        〉(  )
 
    〈        〉                             (     ) 

This is the point at which hypotheses (iii), (iv) and (v) from our Theorem 3.9 play their 

role in the solvability of problem (     ). We assumed in hypothesis (vii) that the 

solution to the homogeneous (zero-data) problem 

                      

 (   )                                                         (     ) 

is the zero element       . Then it follows, via Theorem 3.8, that the solution    to 

(     ) exists and is unique. Moreover, it holds the estimate 

‖     ( 
 )‖     ‖ 

     ‖(  )
                               (     ) 

i.e., the element    measured in the norm of the Hilbert space   depends on the 

functionals    and    . Moreover,  

‖      ‖(  )
     

     * +

〈        〉(  )
 
   

‖ ‖  
                  (     ) 

    
     * +

〈        〉    

‖ ‖ 
                        (     ) 

    
    * +

〈        〉    

‖ ‖ 
                          (     ) 

 ‖      ‖                                                 (     ) 
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The move from (     ) to (     ) is justified by (     ) and the due to the fact that 

‖   ‖   ‖   ‖ , since     . Since the supremum over a subspace is smaller than or 

equal to the supremum over the whole space, (     ) follows from (     ). Finally, 

(     ) is just the ordinary definition of the norm of a functional on  . The estimate in 

(     ) is modified into 

‖     ( 
 )‖     ‖ 

     ‖                                   (     ) 

We now get back to (     ); with the help of (    ) and (    ), it becomes 

 (   )  〈    〉                                                (     ) 

(Notice that we no longer use the phrase „Find       such that’ because the 

existence of both    and    have already been established.) Thanks to the continuity of 

the sesquilinear form  , it is not difficult to see that  (    )     defines a linear and 

bounded functional on   , i.e.,  (    )     (  ) . Make 

 (       )             (  )                                      (     ) 

i.e., 

 (   )  〈    〉     〈    〉                                   (     ) 

Since according to (     ) the action of this functional is zero on all elements from   , 

it follows that  

     
                                                          (     ) 

i.e., this functional belongs to the annihilator of   . From (3.69.c), we get that  

         *       (   )            +                    (     ) 

 {      〈    〉               }             (     ) 

 {            }                                           (     ) 

                                                                          (     ) 

Since         , from (     ) we learn that  

   (     )                                                 (     ) 

We know from (3.26) that       . The space   is a Hilbert space, and therefore a 

Banach space. Since   is a Hilbert space, its dual    is also a Hilbert space [Kreyszig, 

1989]. Consequently    is a Banach space. Moreover, due to the continuity of the 

sesquilinear form  , it is not difficult to see that    (    ). 

We may then apply Theorem 3.10 to the operator   and conclude that 
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 (  )  (     )                                               (     ) 

From (     ) and (     ), we observe that 

    (  )                                                      (     ) 

Also, from (3.28) we learn that         is a linear transformation (as   is a 

sesquilinear form). It is known that the range of linear transformations is a linear space 

in itself [Kreyszig, 1989]. So if (     ) is true, than 

     (  )                                                      (     ) 

The meaning of (     ) is twofold. First, the functional    (  )  in (     ) is also 

in    . Since     , then    (  ) . We initially took    to be in (  ) , and 

discovered that it actually belongs to the subspace   . So we have refined our 

knowledge about   . Second, there exists an element     such that  

                                                             (     ) 

Expression (     ), when worked out with the help of (     ), reveals that 

 (       )                                                     (     ) 

or 

 (   )  〈     〉     〈    〉                                (     ) 

Finally, (     ) implies that 

 (   )   (   )  〈    〉                                    (     ) 

which is nothing else than the first equation from the original system (3.69.g). 

Expression above says that the solution (   ) to our problem exists. This follows from 

(     ), which establishes the existence for  , and from the existence of    and   . 

According to (    ), if    and    exist, then obviously         also exists. 

Part II: Uniqueness 

Now that we know the solution (   ) exists, we need to show that it is unique. We say 

that (   )       is the solution to the original problem (3.69.g) if  

 (   )   (   )  〈    〉                                            (     ) 

 (   )                     〈    〉                                                             

Suppose (     )       is another solution to problem (3.69.g). Then 

 (    )   (    )  〈    〉                                         (     ) 

 (    )                      〈    〉                                                          
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If we subtract the first equation in (     ) from the first in (     ) (and likewise for 

the second equations), we get 

 (      )   (      )                                        (     ) 

 (      )                                                                                     

From the second equation in (     ), we observe that              . Since 

    , it follows that 

 (      )   (      )                                        (     ) 

But since      in (     ), then  (      )   . Consequently,  

 (      )                                                      (     ) 

Expression (     ) is just the homogeneous problem at the kernel; according to 

hypothesis (vii), its solution is zero. We conclude that             and then, 

                                                               (     ) 

Since        , the first equation in (     ) gives 

 (      )                                                  (     ) 

which is the same as 

〈    (    )〉                                              (     ) 

according to the definition of the operator    in (3.29). Expression (     ) implies that 

  (    )                                                   (     ) 

where     is the zero functional (the zero element) from the dual space   . It is 

assumed in hypothesis (vi) that the inf-sup condition (3.69.e) holds true. According to 

conclusion (ii) from Theorem 3.3, the inf-sup condition is equivalent to the fact that    

is injective (i.e.,    is one-to-one), which means that        {  }. But (     ) says 

that (    )        . Consequently,        , or 

                                                              (     ) 

We have just showed that, if (     ) is any eventual solution to the original problem 

(    ), then it is equal to (   ), whose existence has been proved in Part I. Therefore, 

the solution (   ) is unique. 

Part III: Boundedness 

According to (    ),        . The estimates on these two parts are 
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‖  ‖ 
 

 

  

‖  ‖                                                   (     ) 

proven in (    ), and  

‖     ( 
 )‖     ‖ 

     ‖                                  (     ) 

established in (     ). We can work (     ) out and observe that 

‖     ( 
 )‖     ‖ 

     ‖                                  (     ) 

    .‖  ‖   ‖   ‖  /                (     ) 

    .‖  ‖     ‖  ‖ 
/                 (     ) 

    (‖  ‖   
  

  

‖  ‖  )               (     ) 

In (     ) the triangle inequality has been employed. The move from (     ) to 

(     ) is justified by the fact that the operator   is induced by the continuous 

sesquilinear form  , according to (    ). From this point to (     ), it suffices to 

consider (     ). 

The Fredholm Alternative gives us estimates concerning the third „auxiliary‟ Hilbert 

space  . We have got a funny fact in which   , the portion of the solution which lies at 

the kernel   , is measured in the norm of  , whereas    is measured in the norm of  . 

If we assume further that the original Hilbert space   is also embedded in  , i.e., if 

    [hypothesis (viii)], then there is a continuous map         , i.e.,  

‖    ( )‖    
 ‖ ‖                                               (     ) 

where   
  is a constant independent of  . In principle, the constants from the 

embeddings     and      may be different from each other. From (     ) and 

(     ), in which we make     , we get 

‖    (  )‖ 
 

  
 

  

‖  ‖                                          (     ) 

If     and     , which implies that      and       are inclusion maps 

[hypothesis (ix)], then  

    (  )                                                       (     ) 

     ( 
 )                                                      (     ) 

Estimates (     ) and (     ) therefore simplify to 
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‖  ‖     (‖  ‖   
  

  

‖  ‖  )                    (     ) 

‖  ‖ 
 

  
 

  

‖  ‖                                                      (     ) 

Since it is true that    , we can form the chain of results: 

‖    ( )‖  ‖ ‖                                                                       (     ) 

 ‖     ‖ 
                                                          (     ) 

 ‖  ‖  ‖  ‖ 
                                                  (     ) 

    ‖ 
 ‖   

(        
 )

  

‖  ‖                 (     ) 

The equality in (     ) is justified by the fact that      is an inclusion map. In 

(     ), the usual triangle inequality has been employed. At last, (     ) follows from 

(     ) and (     ). Therefore our estimate on the solution   is given by 

‖ ‖     ‖ 
 ‖   

(        
 )

  

‖  ‖                       (     ) 

In order to find an estimate for  , we recall that the inf-sup condition (3.69.e) – which is 

assumed to hold – is equivalent to 

   
    * +

〈     〉    

‖ ‖ 
   ‖ ‖                                     (     ) 

according to conclusion (iv) in Theorem 3.3. We take     in (     ) and the 

definition of the norm of a functional to conclude that 

  ‖ ‖  ‖   ‖                                              (     ) 

From (     ), we see that 

 (   )  〈     〉     〈    〉                               (     ) 

from which it follows that for any    , 

|〈     〉    |  |〈    〉      (   )|                             (     ) 

 |〈    〉    |    (   )                           (     ) 

 (‖  ‖     ‖ ‖ )‖ ‖                       (     ) 

Consequently,  
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|〈     〉    |

‖ ‖ 
 ‖  ‖     ‖ ‖           * +                  (     ) 

Moreover,  

‖   ‖      
    * +

|〈     〉    |

‖ ‖ 
 ‖  ‖     ‖ ‖               (     ) 

From (     ) and (     ), we conclude that 

‖ ‖  
‖  ‖     ‖ ‖ 

  
                                          (     ) 

  

Unfortunately, we are not able to provide an estimate for   based on the data ‖  ‖   

and ‖  ‖   only, as it is done for   in (     ). The question is that (     ) depends on 

  measured in the norm of  , whereas in (     )   is measured in the norm of  . 

This little issue is due to the fact that the Fredholm Alternative provides estimates for 

the norm of the solution with respect to the auxiliary Hilbert space  , and not with 

respect to the original space  . 
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Appendix 3 

List of Symbols 

 

This is a non-exhaustive list concerning the symbols standing for some of the 

mathematical objects which appear in this work. Each entry is described by three fields: 

First: The symbol of the object. Second: A brief description of it. Third: The first page 

in which the symbol appears. 

 (   ) Time-dependent magnetic flux density 4 

  ( ) Space of  -times continuously differentiable functions 35 

  
 ( ) 

Space of compactly supported and infinitely differentiable 

functions 
25 

  ( ̅) 
Space of  -times uniformly and continuously differentiable 

functions 
35 

 (   ) Time-dependent electric flux density 4 

 ̿ Strain rate tensor 15 

  ( ) A subspace of   ( ̅)  53 

 ( ) Time-harmonic electric field 6 

  ( ) Time-harmonic scattered electric field 10 

    ( ) Time-harmonic incident electric field 10 

 (   ) Time-dependent electric field  4 

  ( ) Finite-dimensional subspace of   ( )  118 

  
 ( ) A subspace of   ( ) 119 

 (   ) Time-dependent magnetic field 4 

  ( ) Sobolev space     ( ) 29 

  
 ( ) A subspace of   ( ) 35 

  ( )  „Three-dimensional‟   ( ) space 32 

   ⁄ ( ) Range of the trace operator    36 

    ⁄ ( ) Dual space of    ⁄ ( ) 60 

 (      ) A particular Sobolev space 58 

  (      ) Subspace of  (      ) 59 

 ̿ Identity tensor 13 
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 (   ) Time-dependent electric current density 4 

 ̿ Viscous stress tensor 15 

  ( ) Time-harmonic source current density 6 

  (   ) Time-dependent source current density 5 

    Kernel, or null space of an operator 36 

 (   ) Space of compact operators 87 

 (   ) Space of bounded and linear operators 87 

  ( ) Lebesgue space, index   26 

    
 ( ) Space of locally summable functions 27 

  ( )  „Three-dimensional‟   ( ) space  31 

  
 ( ) Zero-average   ( ) space 41 

  ( ) Finite-dimensional subspace of   ( ) 118 

   Local space associated with patch   (unspecified) 137 

  
  Local space associated with patch   (electric field) 147 

  
 
 Local space associated with patch   (pseudopressure) 147 

  ( ) A subspace of   ( )  64 

 ( ) Range of the tangential trace operator    60 

 (   ) Time-dependent electric charge density  4 

   Trace of a tensor 18 

 ̂ ,  ̂ ,  ̂  Elemental directions associated with node   148 

  Frequency 6 

  Mass density of forces 15 

  Non-homogeneous Dirichlet boundary condition 37 

   
 ( ) Two-index basis function for the electric field 149 

   
 ( ) Two-index basis function for the pseudopressure 145 

   Free-space wavenumber 7 

      -th function in the local basis for the patch   137 

 ̂ Outward-pointing unit normal vector 5 

  Pseudopressure (Lagrange multiplier) 13 

     Support of a function 25 
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  Velocity field 15 

  Boundary of the computational domain   5 

   Outer boundary of the computational domain 8 

   Boundary of the PEC scatterer 8 

  ,   ,    Components of the PML tensor  ̿ 51 

 ̿ PML tensor 51 

  Computational domain 5 

   A patch associated with node   136 

   The interior of    8 

 ̅ Closure of the computational domain   10 

   Free-space electric permittivity 5 

   Relative electric permittivity 5 

   Trace operator 35 

  
  „Multidimensional‟ trace operator 37 

   Tangential trace operator 60 

  
 ( ) PU function associated with patch   138 

   Vacuum impedance 185 

  Lamé coefficient 19 

   Free-space wavelength 7 

  Lamé coefficient, dynamic viscosity  19 

   Free-space magnetic permeability 4 

  Kinematic vscosity 22 

  Angular frequency 6 

   Relative magnetic permeability 4 

 ( ) Time-harmonic electric charge density 6 

  Mass density 15 

  Electric conductivity 5 

 ̿ Cauchy stress tensor 15 

   Boundary of the computational domain   5 

   The curl operator 4 
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   The divergence operator 4 

   The Laplacian operator  11 

  Tensor product operator 15 
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