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Abstract

In poor and socially deprived areas, economic, social and health data are typically under-

reported. As a consequence, inference using the observed counts for the event of interest

will be biased and risks will be underestimated. To overcome this problem, Bailey et al.

(2005) propose to consider data from suspected areas as censored information and develop

a spatial Bayesian approach for the so-called Censored Poisson model (CPM). However,

the CPM assumes that all censored areas are precisely known a priori, which is not a

simple task in many practical situations. To account for potential underreporting in an

infant mortality dataset, we propose an extension on the CPM by jointly modeling the

data generating and the data reporting processes. We assume that observed counts have

a Poisson distribution and the underreporting probabilities are associated to an appro-

priate logistic model. By doing that, we introduce the Random Censoring Poisson model

(RCPM) in which the censoring mechanism is treated as random instead of requiring

a previous specification of the censored (underreported) areas. Informative priors on

the data reporting process are considered. We also propose a MCMC sampling scheme

based on the data augmentation technique. By artificially augmenting the data through

latent variables, we facilitate the posterior sampling process. To evaluate the proposed

model, we run a simulation study in which such a model is compared with the CPM

using different fixed censoring criteria. Also, we apply the proposed model to map the

early neonatal mortality rates in Minas Gerais State, Brazil, where data quality is truly

poor in many regions.

Keywords: underreporting, infant mortality, Censored Poisson model, data augmenta-

tion.
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Resumo

Em áreas pobres e socialmente mais desfavorecidas, dados econômicos, sociais e de saúde

são tipicamente subnotificados. Consequentemente, inferência utilizando as contagens

observadas para o evento de interesse será tendenciosa e os riscos inerentes serão subes-

timados. Para contornar este problema, Bailey et al. (2005) propõem considerar os

dados provenientes de áreas suspeitas como informações censuradas e desenvolvem uma

abordagem Bayesiana espacial para o chamado modelo Poisson Censurado (MPC). Este

modelo assume que todas as áreas censuradas são precisamente conhecidas a priori, o que

não é uma tarefa simples em muitas situações práticas. Então, para levar em conta uma

potencial subnotificação em um conjunto de dados de mortalidade infantil, nós propo-

mos o modelo Poisson Censurado Aleatoriamente (MPCA) como uma extensão do MPC

através da modelagem conjunta dos processos de geração e de reportação/registro dos

dados em vez de requerer uma pré-especificação das áreas censuradas. Assume-se que as

contagens observadas têm uma distribuição Poisson e as probabilidades de subnotificação

são associados a um modelo loǵıstico apropriado. Distribuições a priori informativas são

consideradas para o processo de reportação dos dados. Propomos também um esquema

de amostragem MCMC baseado na técnica de aumento de dados. Aumentando artificial-

mente os dados através de variáveis latentes, nós facilitamos o processo de amostragem a

posteriori. Para avaliar o modelo proposto, apresentamos um estudo de simulação em que

tal modelo é comparado com o MPC usando diferentes critérios de censura fixos. Por fim,

o modelo proposto é aplicado no mapeamento do risco relativo de mortalidade neonatal

precoce no Estado de Minas Gerais, Brasil, onde a qualidade dos dados é verdadeiramente

precária em muitas regiões.

Palavras-chave: subnotificação, mortalidade infantil, modelo Poisson Censurado, au-

mento de dados.
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Chapter 1

Introduction

Studies related to geographical distribution of disease or mortality incidence and its

relationship with potential risk factors have been a rich field for the development of new

statistical methods and models. The mapping of the relative risks inherent to this events

in small geographical areas is commonly called disease mapping and it plays an important

role, for instance, in suggesting etiological hypotheses as well as to guide epidemiological

control and government intervention. In recent years, powerful and flexible statistical

tools have been proposed for disease mapping. A general overview in this topic can be

found in Besag (1974), Breslow and Day (1987) and Lawson et al. (1999), to cite a few.

Many epidemiological studies focus on early deaths rates because they are indicators

of the population health condition. Among them, the infant mortality rate is consid-

ered of major interest. The mortality rates commonly have their level associated with

socioeconomic factors that determine the living conditions and the performance of health

services, such as the access and the quality of medical care. To assess the magnitude of

the infant mortality rate it is common to use the early neonatal mortality (ENM) rate.

The ENM is understood as the infant deaths that occur in the first seven days of life and

it is obtained by dividing the number of children that died in the first seven days of life

by the total of live births in the period of interest.

In recent decades, the early neonatal mortality has risen its participation in the Brazil-

ian infant mortality (Schramm and Szwarcwald, 2000a). Social and economic inequality

are the main factors to explain the increase in the death risk of newborns, since these

inequalities are usually associated with maternal health problems and difficulties in ac-

cessing neonatal care.

For appropriately planning interventions in the ENM rate, the Brazilian health au-

thorities must receive correct information about infant deaths and live births. In Brazil,

data related to mortality are continuously collected since 1976 through the Sistema de

1



Informações sobre Mortalidade (SIM) and data related to live births are collected by the

Sistema de Informações sobre Nascidos Vivos (SINASC) since 1990, both systems were

implemented by the Brazilian Ministry of Health. Due to the data continued collection

by the SIM and SINASC, these systems are the best available data sources for monitoring

infant mortality in Brazilian municipalities.

However, even with the advances achieved in recent years with relation to data collec-

tion systems, in developing countries, such as Brazil, several information are not correctly

recorded as they should be. In fact, Schramm and Szwarcwald (2000b), MS-Brasil (2004),

Machado et al. (2006), Campos et al. (2007), Frias et al. (2008), Lima et al. (2009) and

Guimarães et al. (2013) indicate that information on infant mortality and live births

are not correctly recorded in the Brazilian SIM and SINASC systems, mainly in socially

deprived areas where the educational level is also precarious. Therefore, the underreport-

ing problem may be present in several statistical analysis, especially when one is using

Brazilian public health data.

The dataset that motivated this work corresponds to the number of live births and

early infant deaths that took place in public hospitals of the 853 municipalities of Minas

Gerais State (MG) between 1999 and 2001. Note that, given the serious problems related

to underreporting of deaths and births in the SIM and SINASC, we consider data avail-

able at the Sistema de Informações Hospitalares (SIH) of the Brazilian Sistema Único

de Saúde (SUS) because Schramm and Szwarcwald (2000b) and Campos et al. (2007)

indicate that SIH provides more reliable information than SIM and SINASC.

According to Campos et al. (2007) and references therein, in MG the early neonatal

mortality rate is very high compared to those observed in the other States of Brazilian

Southeast and South regions, mainly in more socially deprived areas in the North of MG.

Although most of the ENM occurs in hospitals, in MG hospitals are heterogeneously

distributed around the State, making the access to health care in socially deprived areas

quite difficult. Also because of this, data on ENM are usually underreported and the

quality of information produced in the State is quite poor. In fact, MG is the only state

in the Brazilian Southeast region where the official infant mortality rates are estimated

by the Instituto Brasileiro de Geografia e Estat́ıstica (IBGE) using indirect methods

(MS-Brasil (2004) and Ortiz (2000)).

Figure 1.1 presents a first study involving our dataset of interest. The 853 munici-

palities of Minas Gerais State are grouped into 75 regions in order to avoid regions with

very small or zero counts, which leads to unstable estimates for the mortality rates as

discussed in Assunção et al. (1998).

Figure 1.1 (left) displays the maximum likelihood estimates for the relative risk (RR)

2



of ENM in Minas Gerais State obtained by fitting the standard Poisson model (see Section

2.1). The results indicate that northern regions of MG experience the lowest ENM rates,

which are close to those observed for highly developed countries. This estimates are

inconsistent with the expected by epidemiologists for those regions, because North and

Northeast of MG are poorly developed regions and they present the worst social indicators

in the State, as can be seen in Figure 1.1 (right) that displays the Human Development

Index (HDI) in 2000 for the n = 75 regions of MG.

The standard Poisson model does not account for the spatial correlation among neigh-

bouring areas. Considering such type of correlation is a strategy commonly used to

smooth and to overcome inconsistencies in the mortality rates estimation. Araújo and

Loschi (2013) mapped the relative risks of ENM in Minas Gerais State using a Bayesian

approach for the Spatial Poisson model that includes covariates and spatially structured

random effects (see Section 2.1.1). The posterior means for the RR obtained under such

a model are displayed in Figure 1.1 (middle).

Despite this more sophisticated model considers the spatial correlation between neigh-

boring areas, it does not overcome the underestimation of the relative risk in the poorest

regions in North and Northeast of MG, since the estimates in these regions remained

below than the expected and similar to those seen in highly developed countries. It is

noticeable from Figure 1.1 that the maximum likelihood (left)and the Bayesian (middle)

estimates for the ENM in MG are quite similar. Such results raise some doubts regarding

the quality of early infanty mortality and live births data collected from the SIH, as had

already been observed with relation to data from SIM and SINASC.

[0,0.5)
[0.5,1)
[1,1.5)
[1.5,2.5)
[2.5,5.5]

[0,0.5)
[0.5,1)
[1,1.5)
[1.5,2.5)
[2.5,5.5]

[0.42,0.516)
[0.516,0.59)
[0.59,0.61)
[0.61,0.63)
[0.63,0.7]

Figure 1.1: RR’s estimates of ENM in MG using the SMR (left) and the posterior mean
under the SPM in Araújo and Loschi (2013) (middle); and the Human Development
Index in MG (right) [Source: IBGE 2000].
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In fact, a possible explanation for those inconsistencies in the ENM’s relative risk

estimation for the northern regions of MG is the occurrence of underreporting on the

SIH’s data, as discussed in Campos et al. (2007). As pointed out by those authors,

the underreporting of live births and early infant deaths discloses the socioeconomic,

geographical and cultural inequalities as well as the marginalization of population groups

in MG. Consequently, official statistics for the State do not measure the death risk of

newborns in all its magnitude, making difficult an adequate epidemiological analysis.

In addition to Campos et al. (2007), Andrade et al. (2006) also indicate a possible

relationship between socioeconomic status and quality of mortality information when

analyzing data from Paraná State, concluding that in areas facing socioeconomic prob-

lems the occurrence of underreporting is quite plausible. Also analyzing Brazilian public

health data, Bailey et al. (2005) discuss about underreporting in leprosy incidence in

Olinda city, Pernambuco State.

The important point is that, if underreporting occurs and it is not accounted for, in-

ference using the observed counts will be biased and, consequently, the inherent relative

risks will be underestimated. Whatever the source, underreporting will invalidate the

assumptions of the standard Poisson model which is conventionally used in count data

problems. Therefore, when using data with suspected underreporting, it is quite impor-

tant to use models that account for it. Though information about unreported events

is missing, underreporting is different from the usual concept of missing data. In usual

missing data problems, information that data are missing is available and hence can be

incorporated in the analysis, whereas for an unreported event no information at all is

generated.

To overcome the underreporting problem in their leprosy incidence dataset, Bailey

et al. (2005) propose to consider data with suspected underreporting as censored infor-

mation and use a Censored Poisson model (CPM) that takes into account the spatial

association among neighboring areas. The big challenge in considering the CPM is the

prior definition of all censored (underreported) areas that is needed in its construction.

Usually, information about the censored areas are obtained indirectly and ad-hoc proce-

dures are considered to determine them. For their particular application, Bailey et al.

(2005) use a social deprivation indicator as a criterion for considering data from certain

regions as unreliable data (underreported data).

However, to account for potential underreporting, it would be more appropriate the

specification of a joint model for the data generating and the data reporting processes.

In this context, with an application to workers absenteeism data from the German Socio-

Economic Panel, Winkelmann (1996) derives a modified latent Poisson regression model
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that allows for underreporting in the counts. It is assumed that the true (but unobserved)

absent counts are generated by a Poisson process and the reporting/non-reporting is

independent for each event. As far as we know, that is the only approach proposed in

the Literature for jointly model the data generating and the data reporting processes in

the context of underreported count data.

Dvorzak and Wagner (2015) extend the model from Winkelmann (1996) by incorpo-

rating both cluster analysis and Bayesian variable selection to estimate risk of cervical

cancer death using underreported data. In their extension of Winkelmann (1996)’s model,

the intensity of the Poisson process and the reporting probability are both related to a

set of potential covariates through the specification of regression models. Identification

of the proposed model requires additional information, which can be provided either

by additional data on the reporting process (validation data), parameter restrictions or

informative prior on parameters, e.g., provided by experts.

In this work, we introduce a different approach for jointly model the data generating

and the data reporting processes in the context of underreported data. We do that by

extending the CPM presented in Bailey et al. (2005). Basically, we introduce on the CPM

a random mechanism to specify the censored (underreported) areas, instead of using a

fixed vector to previously indicate those censored ones. Therefore, as opposed to what is

found in Bailey et al. (2005), we can now estimate the probability of the information in

each area being censored at the same time that the relative risk for the event of interest

is being estimated. We call the proposed model by Random Censoring Poisson model

(RCPM). Therefore, the RCPM arises as an alternative model to that one proposed in

Dvorzak and Wagner (2015) to handle underreported count data.

We develop an algorithm to sample from the posterior distribution that relies on the

data augmentation strategy (Tanner and Wong (1987) and Chib (1992)), which simplify

substantially the posterior sampling process. We run a Monte Carlo simulation study for

comparing the RCPM that is been proposed with the CPM from Bailey et al. (2005), in

which the censored areas must be previously specified. We consider different scenarios for

generating the datasets in such a simulation study. Moreover, we consider the proposed

model to analyze the ENM’s data in Minas Gerais State. Results are compared with those

ones obtained by using the CPM under three different fixed censoring criteria proposed

in Oliveira and Loschi (2013).

This work is organized as follows. In Chapter 2, we review the standard and Spa-

tial Poisson models that are widely considered for disease mapping and we present the

Censored Poisson model proposed in Bailey et al. (2005), including some studies with sim-

ulated data. In Chapter 3, we propose the Random Censoring Poisson model (RCPM).
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Simulation studies on that model are performed and results are compared with those

ones provided by the CPM. An application of the proposed model to the ENM data from

MG are presented in Chapter 4. Chapter 5 closes this work by presenting the main con-

clusions and some discussions about the results. We also present some topics for future

research on extending the proposed model.
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Chapter 2

Background and Theoretical

Framework

The goal of this chapter is to introduce the basic elements needed to understand the

problem we have at hand, a solution already presented in the Literature and the solution

proposed in Chapter 3. Firstly, some methods widely used in the context of disease

mapping will be discussed, including the Spatial Poisson model (Besag et al., 1991). We

then present the Censored Poisson model (CPM) proposed in the Literature to model

underreported count data. Some simulation studies involving the CPM will be performed

in order to better understand its advantages and disadvantages.

We start highlighting that the use of maps to display the geographical variability of

the relative risk (RR) inherent to certain events as disease or mortality is quite popular

nowadays. The statistical problem of searching for efficient models to appropriately map-

ping those quantities has received considerable attention recently, particularly because

this kind of maps can help us to detect areas where the event is especially prevalent and

also for detecting previously unknown risk factors. The risk may reflect actual deaths

due to a disease (mortality) or, if it is not fatal, the number of people who suffer from

a disease (morbidity) for the population at risk in a certain period of time. Hence, for

doing such analysis, basic data must include information about the population at risk

and the number of cases in each area.

The term disease mapping is concerned with the estimation of the true underlying

distribution of disease or mortality rates for a given event, disclosing the spatial patterns

among the associated rates. In general, the goal is to map the spatially smoothed rates

for each area by borrowing information from neighbouring areas. Most of the existing

methods for disease mapping are more suitable for detecting gradual regional changes

rather than detecting abrupt changes associated with clustering. This text review some

7



methods related to the former. Readers interested in clustering analysis in the disease

mapping context may see, for instance, Besag et al. (1991), Holmes et al. (1999),Knorr-

Held and Best (2001), Denison and Holmes (2001), Hegarty and Barry (2008) and Teixeira

et al. (2015).

The type of data more commonly encountered in disease mapping is the count by area

or areal data, since in most cases the event exact locations are unknown due to medical

confidentiality, for instance. Throughout this work only areal data will be considered.

To establish notation, along this work Yi and Ei will denote, respectively, the observed

and the expected number of cases in area i = 1, ..., n. The Yi is a random variable that

assumes the value yi after observation. The quantity Ei is fixed and a known function of

the number ni of individuals at risk in area i given by

Ei = ni


∑
i

yi∑
i

ni

 = nir,

where r =
∑

i yi [
∑

i ni]
−1 denotes the overall disease (mortality) rate in the whole region.

This chapter is organized as follows. In Section 2.1 we present the standard and the

Spatial Poisson models. In Section 2.2 the Censored Poisson model (CPM) is discussed

and presented as an alternative approach to handle underreported count data. Section

2.3 presents some simulation studies involving the CPM.

2.1 Poisson Model

To assess the status of an area with respect to the incidence of an event, it is convenient

to firstly obtain the expected incidence given the population at risk in the area and then

compare it with the observed incidence. This approach has been traditionally used in the

analysis of counts within areas or sub-regions. The ratio of observed to expected counts

in each area is called Standardized Mortality/Morbidity Ratio (SMR) and it is given by

SMRi =
yi
Ei
, (2.1)

for i = 1, ..., n. The ratio in expression (2.1) gives a naive estimator of the relative risk

(RR) in area i (Breslow and Day, 1987).

Maps built using the SMR are often a starting point in disease mapping. However,

many events of interest are uncommon or rare and sometimes area i is relatively small.

In both cases, the SMR tends to present high variability with extreme values tending to
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occur in areas with the small populations. Therefore, SMR can be useless for mapping

the desired relative risks. Mapping based on that quantity can also fail when dealing

with underreported data, since the regions of greatest potential interest are usually small

and often associated with the less reliable data. Actually, the SMR is not an appropriate

choice in a great number of situations.

Alternatively, to estimate the relative risks we can assume that the observed count

of cases Yi in each area i has a Poisson distribution with mean µi = Eiθi, where θi

denotes the true relative risk associated to this area. In that case, if Y = (Y1, ..., Yn) are

independent, given θ = (θ1, ..., θn), so that

Yi|θi
ind∼ Poisson(Eiθi); (2.2)

and, if θi is taken as a fixed effect associated to area i, then the maximum likelihood

estimator for θi is the SMRi given in expression (2.1). Consequently, this approach is

not a good choice for mapping rare events data. Despite this, some inference results

considering parameter θi as a fixed effect under the standard Poisson model presented in

(2.2) can be found in Breslow and Day (1987); such as classical confidence intervals and

hypothesis tests. In Section 2.1.1, we briefly discuss about an efficient strategy to better

estimate the relative risks θ that consists in considering the spatial correlation among

the neighbouring areas.

2.1.1 Spatial Poisson Model

As previously discussed, the main goal in disease mapping is to research for methods

capable to produce more reliable maps of the underlying geographical variation in disease

or mortality risks. According to Bailey (2001), a good method must be capable to reduce

the excess of local variability as well as to correct the variations produced by risk factors

or population differences such as age, sex and so on.

To deal with this issue, some smoothing of the realtive risks is incorporated into the

standard Poisson model in (2.2) by taking θi as a random effect (or a function of random

effects). This strategy allows for overdispersion in the standard Poisson model caused,

for instance, by unobserved covariates or confounding factors (Mollié (1995) and Clayton

and Bernardinelli (1996)).

Random effects can be directly associated to regions or covariates. A simple general

specification of random effect models for count data was suggested by Besag et al. (1991)

and the most simple or natural way to handle these models is to adopt a Bayesian

framework. In the Bayesian context, a random effect model is called Bayesian hierarchical
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model (BHM), where a prior distribution is assigned to each θi (e.g., see Breslow and

Day (1987)).

Therefore, in Bayesian disease mapping, a BHM combines two types of information:

the one provided by the observed counts in each region, usually summarized by the

Poisson likelihood π(Y |θ), and the prior information about the relative risk behavior

in the overall map, summarized by its prior distribution π(θ). Therefore, π(θ) should

reflect the prior knowledge about the variation in relative risk over the map Bernardinelli

et al. (1995).

As in model (2.2), assume that the counts Y in the n different areas are independent

given θ, so that

Yi|θi
ind∼ Poisson(Eiθi).

The Spatial Poisson model suggested by Besag et al. (1991) considers the relative risk

θi as a function of random effects to allow for overdispersion produced by unobserved

covariates or confounding factors as well as to reflect the explicit spatial dependence

among Y . It is assumed that

log µi = logEi + log θi = logEi + υi + si, (2.3)

where υi and si are, respectively, a non-spatially structured and a spatially structured

random effect. The quantity υi accounts for a dependence among the counts Y induced

by unmeasured covariates or confounding factors. Typically, υi does not account for

an explicit spatial dependence among the counts which may arise, for instance, through

lesser variability of rates on neighbouring densely populated urban areas as opposed to

sparsely populated rural areas or through an infectious etiology of the disease. Thus, the

spatially structured random effect si is introduced into the model to describe such spatial

association. Details on this model can be found, e.g., in Besag et al. (1991), Mollié (1995)

and Clayton and Bernardinelli (1996).

The typical prior assumption for υi is the Normal distribution N(µυ, σ
2
υ), with the

hyperpriors being a Normal distribution for the hyperparameter µυ and a Gamma dis-

tribution for the precision hyperparameter τ 2υ = 1/σ2
υ. The prior specification for s =

(s1, ..., sn) must disclose the spatial dependence among the areas. Usually, it is assigned

a Conditional Autoregressive model (CAR) as prior distribution for s, in which the mean

value for the marginal distribution of si is a weighted average of the neighboring random

effects and the variance σ2
s controls the strength of this local spatial dependence. A vague

Gamma distribution is commonly assumed for the precision hyperparameter τ 2s = 1/σ2
s .

A formal definition of the CAR model and a detailed explanation on this topic can be

10



found, for instance, in Besag and Kooperberg (1995) and Banerjee et al. (2004).

The basic Bayesian hierarchical model in (2.3) can be extended by including k covari-

ates, (xi1, ..., xik), related to suspected risk factors and so that

log µi = log Ei +
k∑
j=1

βjxij + υi + si, (2.4)

where µi, Ei, υi and si are defined as before. The parameter βj is a fixed effect associated

to the j-th covariate, j = 1, ..., k, and reflects the influence of this covariate on the

log relative risk given by log θi =
∑k

j=1 βjxij + υi + si. A constant term β0 can also be

considered, so that log θi = β0+
∑k

j=1 βjxij +υi+si. Usually it is assumed that the fixed

effects β = (β0, β1, ..., βk) are independent and identically distributed (iid) according to

a non-informative (vague) prior distribution, e.g., a zero centered multivariate Normal

distribution having a diagonal covariance matrix with large variances. MCMC methods

are used to sample from the joint posterior distribution π(β0,β, s|Y ). Further details and

variations on this basic modeling framework may be found in many published examples

of ecological and epidemiological studies (e.g. see Lawson et al. (1999) and references

therein).

2.2 Censored Poisson Model

The Censored Poisson model (CPM) was firstly proposed by Terza (1985). Despite being

mainly considered for modeling count data that exhibit either over or under-dispersion

(Cameron and Trivedi, 1998) it has also been considered for modeling censored data as

discussed in Famoye and Wang (2004), where a generalization of the CPM is developed

to handle general types of censoring. By simplicity and for our purpose, we only consider

right censored data.

As in the previous models, let Yi be the count for the event of interest occurred in

area i, i = 1, ..., n, and assume that

Yi|µi
ind∼ Poisson(µi).

The assumption that all Yi are completely observed is unrealistic in many count data

applications. Rather, it is possible that the reported number of events yi constitutes only

a fraction of all events and, thefore, data are underreported.

To built the CPM, consider that some observable variables Yi are not completely

observed and thus they are considered as being censored. If no censoring occurs for the
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i-th observation yi, the complete information is considered, that is, Yi = yi. However, if

a censoring occurs for the i-th observation, the true number of cases associated to this

observation is considered at least equal to the observed value, i.e., Yi ≥ yi. Denote by γi

the censoring indicator variable such that

γi =

{
1, if information at area i is censored,

0, otherwise.

In Famoye and Wang (2004)’s approach, the censoring vector γ = (γ1, ..., γn) must be

known and fixed a priori.

Assuming independence between the counts Yi, given γi and µi, for i = 1, ..., n; and

also assuming that the censoring mechanism is independent of the number of events in

each area, Famoye and Wang (2004) built the likelihood function that characterizes the

CPM as being

L(µ;y,γ) =
n∏
i=1

{[
fYi|µi(yi)

]1−γi [1− FYi|µi(yi − 1)
]γi}

=
n∏
i=1

{(
eµiµyii
yi!

)1−γi
(∑
y≥yi

eµiµyi
y!

)γi}
. (2.5)

where fYi|µi and FYi|µi denote, respectively, the probability function (pf) and cumulative

probability function (cpf) of a random variable with distribution Poisson(µi).

Bailey et al. (2005) propose to consider the CPM to handle underreported leprosy

data from Olinda city, Pernambuco State, Brazil. Basically, the underreported counts are

treated as censures considered to be lower bounds to the real (but unobserved) counts.

In such approach, the censoring indicator vector γ = (γ1, ..., γn) is fixed a priori, that is,

we must precisely know all the areas whose counts are underreported. However, censored

observations are not obviously identified as in Survival Analysis studies. In a general

context, several criteria may be available to partitioning the observations as censored or

non-censored. In their particular application, Bailey et al. (2005) make such a partition

of the areas using values of a social deprivation indicator, based on the fact that the

observations considered most unreliable are those from the poorer areas. The occurrence

rate of leprosy is taken as being

log µi = log Ei + β0 + βxi + υi + si,

where Ei denotes the expected number of leprosy cases in each area, xi is the mean
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centered proportion of the population at risk in the i-th area with monthly income below

one minimum legal wage and, respectively, si and υi are the spatially and non-spatially

structured random effects in each census tract.

For posterior inference the MCMC methodology is considered. For the non-spatially

structured random effects, υi, are assumed independent Normal distributions with zero

mean and variance σ2
υ. The joint prior distribution for the spatially structured random

effects, s = (s1, ..., sn), is taken as a Gaussian intrinsic CAR model, where the mean value

for si|sj, for all j 6= i, is a weighted average of the neighbouring random effects and the

variance, σ2
s , controls the strength of this local spatial dependence. The neighbourhoods

are defined by simple binary adjacency weights, that is, trough a proximity matrix W ,

in which the entries ωij = 1 if area i shares a common boundary with area j and ωij = 0

otherwise. An improper flat Uniform prior distribution is assigned for the intercept β0

and a flat Gamma hyperprior distribution is assumed for the precisions τ = 1/σ2
θ and

φ = 1/σ2
υ. For parameters β it is used a vague zero mean Normal distribution.

Bailey et al. (2005) concluded that CPM provided reasonable estimates for the leprosy

rates in Olinda. However, it is not trivial how to define the censored areas in real problems

like that discussed in Bailey et al. (2005). An ideal model should also infer about the

censored areas. For that purpose, in Chapter 3 we introduce a Poisson model that allows

us to make inference about the censored areas at the same time that we infer about

the inherent relative risks. Before doing that, we will perform some simulation studies

involving the CPM in order to better evaluate the quality of its estimates. Such studies

for the CPM in the context of underreported data is not presented in Bailey et al. (2005)

neither in other papers. The details and results for the simulation studies are presented

in Section 2.3.

2.3 Simulation Studies on the Censored Poisson Model

In this section we will present several studies considering artificial data generated in

different scenarios. The goal is to investigate the quality of the estimates provided by the

Censored Poisson model (CPM) presented in Section 2.2. Specifically, we will evaluate

the effect of the data censoring level, i.e., effect of the proportion of information that is

censored (underreported) in certain areas; the effect of the proportion of censored areas

in the hole map when including spatial random effects in the relative risk modelling

and, at last, the effect of clustering the areas. In some scenarios, we also evaluate the

effect of the prior distribution assigned to the relative risks. We consider the n = 75

regions of the Minas Gerais State map. Computational programs to obtain the estimates
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were implemented in R 3.1.3 (www.r-project.org) and OpenBUGS (www.openbugs.net)

languages. In all case, we run the MCMC for 85000 iterations, discarding the first

20000 draws as a burn-in period and considering a lag 13 to avoid correlation. Thus,

we consider a sample of size 5000 for making posterior inference. Also, in all figures

presented throughout this section the symbols + and ◦ will represent the censored and

non-censored areas, respectively.

2.3.1 Simulation 1: The Data Censoring Level Effect

Our interest here is to investigate the behavior of the relative risk estimates for different

censoring levels in the observed counts under the CPM. Assume that the event count y∗i

in area i = 1, ..., 75 is generated from a Poisson distribution such that

Y ∗i |µi
ind∼ Poisson(µi),

where µi is so that

µi =


70, i = 1, ..., 25

30, i = 26, ..., 50·
10, i = 51, ..., 75,

and denote by µT this true values of µ used to generate the data.

We assume 21 censored areas according to the following censoring indicator vector

γi =

{
1, i = 1, ..., 7 and i = 26, ..., 32 and i = 51, ..., 57

0, otherwise.
(2.6)

Let δ be the censoring level desired, i.e., the proportion of the generated value y∗i

that will be correctly reported in each censored area. In this case, (1 − δ) × 100% of

the information will be missed (underreported) if the area is a censored one. Thus, the

counts yi in censored areas are built by multiplying the generate value y∗i by δ. Since the

count must belong to the set of positive integer numbers, Z+, in all censored area the

observation yi is taken as the smallest integer greater or equal than the value obtained

from the multiplication y∗i × δ, that is,

yi =

{
dy∗i × δe , if γi = 1

y∗i , if γi = 0.

For example, if δ = 0.8 and y∗ = 100 for a censored area, the reported value for this

area will be y = 80. We assume δ = 0.9, 0.8, 0.7 and 0.4. Thus, we have four simulated
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scenarios.

For modeling the simulated datasets, we fit the Censored Poisson model given by

Yi|γi, µi
ind∼ CP (µi)

µi
ind∼ Gamma(α, φ),

where by notation CP (µi) we mean that observation Yi has a Poisson distribution with

rate µi and, given µi and γi, the contribution of this observation for the likelihood function

corresponds to the i-th term of the function in (2.5).

The censored areas are pre-fixed as required in Bailey et al. (2005) and assumed to

be those areas indicated in (2.6). We assume two different prior specifications for µi. For

results presented in Figure 2.1 we choose a Gamma(α, φ) so that a priori E[µi] = µTi

and V ar[µi] = 100, whereas in Figure 2.2 we choose α and φ such that E[µi] = 40.0 and

V ar[µi] = 100, for i = 1, ..., 75. By doing this, despite of the large variance, we have one

case in which the prior distribution represents well the generated data (E[µi] = µTi , for

all i) and another case in which the prior distribution has the same shape for all regions

(E[µi] = 40.0, for all i).

Figures 2.1 and 2.2 compare the posterior means of µ obtained for each censoring

level. The estimates of µ in non-censored areas (◦) are not influenced by the censoring

level being quite close in all cases. It is also noticeable that better estimates are achieved

in non-censored areas when the prior distribution is centered on µT (Figure 2.1) than

when the prior distribution is centered on an arbitrary value for all areas (Figure 2.2). In

censored regions (+), the estimates of µ are more similar when the associated censoring

levels in the data are closer. From Figure 2.1, we noticed that the posterior means in

censored areas tends to overestimate the true relative risk, mainly in datasets in which a

lower censoring level is assumed. Figure 2.2 discloses that the posterior mean in censored

areas tends to approximate of the prior mean. We also noted that the influence of prior

information depends on the censoring level: as the censoring level increases, the influence

of the prior mean also increases.

Those results bring evidences about the importance of choosing an adequate prior

distribution for µ, mainly in censored regions. Since the prior information is truly im-

portant for posterior inference, in practice, information provided by experts on the area

of interest it is of great importance. Moreover, non-informative prior must be avoided,

unless we really do not have any prior information.
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Figure 2.1: Comparing the posterior means of µ for different censoring levels δ assuming
prior mean E[µi] = µTi and prior variance V ar[µi] = 100.
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Figure 2.2: Comparing the posterior means of µ for different censoring levels δ assuming
prior mean E[µi] = 40.0 and prior variance V ar[µi] = 100.
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2.3.2 Simulation 2: The Proportion of Censored Areas Effect

In this section we consider five censoring criteria that induces different proportions of

censored areas in the data. We fit three different Censored Poisson models such that, in

Case 1, the relative risk (RR) is considered to be a spatially structured random effect,

in Case 2, the RR is considered to be a spatially non-structured random effect and, in

Case 3, the RR is a function of spatially and non-spatially structured random effects.

Therefore, at the same time, we are evaluating the effect of the number of censored areas

and the effect of including or not including a spatial random effect for modeling the

relative risks θ.

Considering the known latitudes (denoted by Lat) inherent to the n = 75 regions of

MG map, data are generated assuming an increasing relative risk from the South to the

North, so that θi = exp{a + bLati}, for i = 1, ...75. To determine the values of a and b,

we fixed that the region with the smallest latitude has θ = 0.3 and the region with the

greatest latitude has θ = 3.0 and solve the following equation system{
exp{a+ bmin(Lati)} = 0.3

exp{a+ bmax(Lati)} = 3.0,
(2.7)

which provides a = 5.71 and b = 0.31.

Assuming we have access to the expected number of cases in area i = 1, ..., 75, denoted

Ei, the count in each area is generated from a Poisson distribution such that

Y ∗i |θi
ind∼ Poisson(Eiθi). (2.8)

Five fixed censoring criteria are considered. They differ from each other due to the

proportion of censored areas. We consider a scenario without censored areas (Criterion

1), the Criterion 2 that consider almost 50% of the areas as being censored and the three

censoring criteria proposed by Oliveira and Loschi (2013) (denoted by Criterion 3, 4 and

5). These censoring criteria are summarized below with their respective proportion of

censored areas given in parentheses.

Criterion 1 : no area is censored (0%)

Criterion 2 : γi = 1 for i = 1, ..., 7, 16, ..., 22, 31, ..., 37, 46, ..., 52, 61, ..., 67 (47%)

Criterion 3 : γi = 1 if HDIi ≤ HDI15% (16%)

Criterion 4 : γi = 1 if AIi ≤ 20.0 (23%)

Criterion 5 : γi = 1 if FIi ≤ FI50% and IdCi ≤ IdC50% (36%),
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where HDIi represents the Human Development Index in 2000 for the regions of MG,

AIi is the Adequacy Index proposed by França et al. (2006) which measures the quality

of mortality information in MG, FIi denotes the proportion of Functional Illiteracy in

each region of the State, IdCi is the proportion of Infant Deaths with Ill-defined Cause

in these regions and Xα% denotes the α-th percentile of the quantity X.

In this study we only consider the censoring level δ = 0.7, that is, the counts yi

in censored areas are given by dy∗i × 0.7e, where y∗i is the value generated from (2.8).

To model the simulated datasets we fit the Censored Poisson model as described in the

following Cases 1, 2 and 3. In all cases. The censoring indicator vectors used to generate

the data are considered in the modeling, that is, the correct censoring criteria used to

generate the datasets are considered in the fitted models.

Case 1: Spatially Structured Random Effect Model

The CPM considered here assumes that θi = exp{si}, where si represents a spatially

structured random effect, such that

Yi|γi, µi
ind∼ CP (µi)

µi = Ei exp{si}

s|W, ξ ∼ CAR(W, ξ),

where W and ξ are, respectively, the proximity matrix inherent to the map and the

hyperparameters associated to the CAR model (Banerjee et al., 2004).

Figure 2.3 shows the comparison between the posterior means of θ and its true values

for each censoring criteria. The estimates in non-censored areas (◦) tend to be quite

close to their true values, for all criteria considered in the model construction. Thus, the

proportion of censored neighbouring areas does not affect the estimates in areas where

data have good quality. In censored regions (+), the posterior mean tends to overestimate

the relative risk presenting some extreme values in a few regions. The estimates tend to

have the same behavior independent of the proportion of censored areas. The extreme

values generally occur in censored areas in which the most neighbouring areas are also

censored.
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Figure 2.3: Comparison between the posterior mean of θ and its true value in Case 1.

Case 2: Spatially non-Structured Random Effect Model

Assume now that in the CPM we model the relative risk in each area as being θi =

exp{υi}, where υi represents a spatially non-structured random effect, so that

Yi|γi, µi
ind∼ CP (µi)

µi = Ei exp{υi}

υi
iid∼ Normal(0.0, 2.0),

Figure 2.4 compares the posterior mean of θ with its true value for each censoring

criteria. As in Case 1, the estimates in non-censored areas (◦) are quite close to their

true values for all criteria. In all censored areas (+) the relative risk is overestimated by

the posterior mean, except for one specific area under Criterion 4. However, the model

considered here seems to provide better estimates for the θ than that model considered in
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Case 1 - we notice that, in general, the overestimation is lesser than that observed in Case

1 in relation to the extreme estimates for the relative risks. This apparent superiority

of the model with a non-spatial random effect (Case 2) in relation to the model with a

spatial random effect (Case 1) is an unexpected result, because the data were generated

assuming an increasing relative risk from the South to the North, which establishes a kind

of spatial structure in the map. However, we must consider that the spatial structure

assumed in Case 1 takes into account the information in neighbouring areas to estimate

the risk in each area, which seems to affect the estimates, mainly in censored areas in

which the most neighbouring areas are also censored - in general, a greater overestimation

(extreme values) is noted for such areas.
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Figure 2.4: Comparison between the posterior mean of θ and its true value in Case 2.
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Case 3: Spatially Structured and non-Structured Random Effects Model

In this last case, the CPM fitted to analyze the datasets considers that θi = exp{υi+si},
where υi and si represents the spatially non-structured and structured random effect,

respectively, and now

Yi|γi, µi
ind∼ CP (µi)

µi = Ei exp{υi + si}

υi
iid∼ Normal(0.0, 2.0)

s|W, ξ ∼ CAR(W, ξ).

Figure 2.5 shows the comparison between the posterior mean of θ and its true value

for each censoring criteria. The posterior estimates of RR are quite similar to those

obtained in Case 2, showing that the spatially structured random affect does not play an

important role in the relative risks estimation for the generated scenarios.
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Figure 2.5: Comparison between the posterior mean of θ and its true value in Case 3.
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2.3.3 Simulation 3: The Clusterization Effect

In this section we evaluate the behavior of the relative risk estimates considering the

existence of clusters in the n = 75 regions of MG map. Those clusters induce a par-

tition of the map, denoted by ρ. Assume the existence of five independent clusters

Cj, j = 1, ..., 5, such that ρ = {C1 = (1, ..., 15), C2 = (16, ..., 30), C3 = (31, ..., 45), C4 =

(46, ..., 60), C5 = (61, ..., 75)}. Also assume that such a partition induces the existence of

θρ = (θC1 , θC2 , θC3 , θC4 , θC5) such that the counts Yi in areas belonging to a given cluster Cj
are independent with θi

d
= θk for all (i, k) ∈ Cj. That is, the counts Yi in areas belonging

to cluster Cj are independent and identically distributed.

As before, assume that the expected number of cases in area i, Ei, is available. Thus,

the count y∗i in each area is generated from a Poisson distribution given by

Y ∗i |θi
ind∼ Poisson(Eiθi),

where

θi =



7.4 for all i ∈ C1
2.7 for all i ∈ C2
1.0 for all i ∈ C3
0.6 for all i ∈ C4
0.4 for all i ∈ C5

Denote the true value of θi used to generate the data by θTi . We only consider the

censoring level δ = 0.7, which means that the counts yi in censored areas are given by

dy∗i × 0.7e (see Section 2.3.1). The censoring mechanism used to generate the datasets is

fixed and corresponds to the five censoring criteria presented in Section 2.3.2.

To analyze the simulated datasets, we fit the following model

Yi|γi, θi
ind∼ CP (Eiθi)

θi
ind∼ Gamma(αi, φi),

The study is divided into four schemes. The difference among the schemes is due to

the Gamma prior distribution assumed to model the uncertainty about the relative risks

θ as well as by the fact we are or not informing the correct partition ρ to the model. In

all schemes, the correct censoring criteria used to generate the datasets are informed to

the model. These four schemes and the associated results are presented in the following.
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Scheme 1: Using Informative Priors and Informing the Correct Partition

In this first scheme, to built the prior distribution of θi we choose αi and φi so that a

priori E[θi] = θTi and V ar[θi] = 100 for all i. Moreover, the exact partition ρ = {C1 =

(1, ..., 15), C2 = (16, ..., 30), C3 = (31, ..., 45), C4 = (46, ..., 60), C5 = (61, ..., 75)} is reported

to the model.

Comparisons between the posterior mean of relative risks θ and their true values for

each censoring criteria are shown in Figure 2.6. In all criteria, for both non-censored (◦)
and censored (+) areas, the estimates are exactly equal to their true values or quite close

to them. Such a result indicates that we can obtain optimal posterior estimates for the

relative risks θ if we provide a good prior information for it as well as a good information

about the partition structure inherent to the map.
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Figure 2.6: Comparing the posterior mean of the θ and its true value in Scheme 1.
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Scheme 2: Using Informative Priors and not-Informing the Correct Partition

As in Scheme 1, here we built the prior distribution of θi choosing αi and φi so that a

priori E[θi] = θTi and V ar[θi] = 100 for all i. However, instead of reporting the correct

partition to the model, we report ρ = {C1 = (1), C2 = (2), C3 = (3), ..., C75 = (75)}, i.e.,

the model will estimate the parameters θi by treating each area as a single cluster.

The posterior mean of the relative risks θ are compared to their true values in Figure

2.7 for each censoring criteria. In general, for both non-censored (◦) and censored (+)

areas, the posterior estimates are close to their true values although not so close as seen

in Scheme 1. Anyway, we have some evidence that, if we provide a good prior information

for all θi, the relative risks will be well estimated even when the correct partition of the

map is not identified.
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Figure 2.7: Comparing the posterior mean of the θ and its true value in Scheme 2.
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Scheme 3: Using non-Informative Priors and Informing the Correct Partition

To built the prior distribution of θi in this scheme, we choose αi and φi so that a priori

E[θi] = 5.0 and V ar[θi] = 100 for all i. Moreover, assume that the correct partition

ρ = {C1 = (1, ..., 15), C2 = (16, ..., 30), C3 = (31, ..., 45), C4 = (46, ..., 60), C5 = (61, ..., 75)}
is reported to the model.

Figure 2.8 displays the comparison between the posterior mean of θ and its true

value for each censoring criteria. Except under Criterion 4, for both non-censored (◦)
and censored (+) areas, in most areas the estimates are equal to the true values or quite

close to them, as observed in Scheme 1.
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Figure 2.8: Comparing the posterior mean of the θand its true value in Scheme 3.

Specifically under Criterion 4, all areas belonging to cluster C1 are censored. The true

relative risk for the areas belonging to cluster C1 is 7.39, but their posterior mean tends

to 5.0, which is the prior mean. All other clusters have at least one non-censored area
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under Criterion 4 and the posterior mean for the RR in areas belonging to these clusters

remaining quite close to its true value, as observed in all other censoring criteria.

Therefore, there is an evidence that the prior distribution has a strong influence on the

posterior estimates of the relative risk in clusters where 100% of the areas are censored,

even if the partition inherent to the map is correctly identified. The influence of the prior

choice is minimized if the cluster contains at least one non-censored area and the correct

partition is reported to the model.

Scheme 4: Using non-Informative Priors and not-Informing the Correct Par-

tition

In this last Scheme, we perform a simulation study in which αi and φi are chosen so that

a priori E[θi] = 5.0 and V ar[θi] = 100 for all i and, at the same time, we report to the

model that ρ = {C1 = (1), C2 = (2), C3 = (3), ..., C75 = (75)}, i.e., the model will estimate

θ by treating each area as a single cluster. Thus, we do not provide to the model a good

prior information for the relative risks neither the correct partition inherent to the map.

Results are shown in Figure 2.9 for each censoring criteria. The estimates in non-

censored areas (◦) are close to their true values, as observed in Scheme 2. However,

in censored areas (+) the posterior estimates for the risks are dominated by the prior

distribution tending to the prior mean.

Since the censored areas are treated as single clusters, there is no surprise in that

conclusion because the prior information tends to be dominant on the posterior inference

if few data information is available. We, therefore, have some evidence that, if we do not

have a good prior information about the relative risks neither a good information about

the partition structure inherent to the map, the relative risks θ will tend to not be well

estimated, mainly in censored areas.
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Figure 2.9: Comparing the posterior mean of the θ and its true value in Scheme 4.

2.3.4 Conclusions on the Simulation Studies

In summary, considering the simulation studies in which artificial data were fitted by

using different specifications of the Censored Poisson model (CPM) proposed in Bailey

et al. (2005), we conclude that choosing an adequate prior distribution for the relative

risks is truly important for obtaining good posterior inference, mainly in censored re-

gions. In this sense, information provided by experts on the area of interest it is of great

importance and non-informative prior must be avoided, unless we really do not have any

prior information. We also noted that the influence of the prior distribution chosen for

the relative risks is greater in datasets with greater censoring levels.

For datasets generated in Simulation 2, we notice that the spatially structured ran-
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dom effect does not play an important role in the estimation of the relative risks when

compared with a spatially non-structured random affect, independently of the proportion

of censored areas.

In general, if there exist a clustering of areas in the map, optimal posterior estimates

for the risks are achieved if a good prior information is provided for them and the correct

information about the partition structure inherent to the map is informed to the model.

If we provide a good prior information for the relative risks, they are well estimated

even when the correct partition of the map is not identified. There is an evidence that

the prior distribution has a strong influence on the posterior estimates in clusters where

100% of the areas are censored, even if the partition inherent to the map is correctly

identified. The influence of the prior choice is minimized if the clusters contain at least

one non-censored area and the correct partition is reported to the model. At last, we

notice that, if we do not have a good prior information about the relative risks neither

a good information about the partition structure inherent to the map, the relative risks

will tend to not be well estimated, mainly in censored areas.

The CPM used in these simulation studies requires the pre-establishment of the cen-

sored areas, but it is not trivial how to precisely define these areas in problems involving

real data, i.e., data that are not simulated. Therefore, to account for potential underre-

porting in real data problems, it would be more appropriate the specification of a joint

model for the data generating and the data reporting processes. Next chapter, we intro-

duce an extension of the Censored Poisson model by treating the censoring mechanism

as random.
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Chapter 3

Random Censoring Poisson model

In poor and socially deprived areas, economic, social and health data are typically un-

derreported. As a consequence, inference using the observed counts will be biased and

the risks will be underestimated. As mentioned before (Section 2.2), to overcome this

problem, Bailey et al. (2005) proposes to consider data from the suspected areas as

censored information and develop a Bayesian spatial approach for the called Censored

Poisson model (CPM) in Famoye and Wang (2004). A limitation of the CPM is that

the censored areas must be precisely known a priori, which is not a simple task in many

practical situations. Therefore, to account for potential underreporting, it would be more

appropriated to jointly model the behavior of the observed data and the data reporting

process.

This chapter presents the main contributions of this work. We propose an extension

on the CPM by introducing a random censoring mechanism on it, as opposed to requiring

a prior specification of the censored areas. We call the proposed model by Random Cen-

soring Poisson model (RCPM). In such a model, the relative risks and the probabilities

of underreporting are both estimated. Basically, we introduce a latent random variable

in the modeling for such a purpose, which receives the same status of a parameter in

the Bayesian approach that is being considered. That is, we introduce a CPM in which

the censoring mechanism is treated as random. The joint distribution of all quantities

involved in the proposed model as well as their full conditional distributions are provided

in this chapter. To efficiently sample from the posterior, we also introduce a posterior

sampling scheme which relies on the data augmentation technique.

This chapter is organized as follows. In Section 3.1 we provide the details on the

theoretical specification of the proposed model. In Section 3.2 we discuss about the

MCMC scheme needed to perform posterior inference on the proposed model. Section 3.3

presents the data augmentation technique proposed to facilitate the posterior sampling
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process. Performance of the proposed model is illustrated considering simulated scenarios

in Section 3.4 as well as the ENM dataset in Chapter 4.

3.1 Model Specification

Suppose a map formed by n regions. Assume that Yi is the count for the event of interest

in region i, which occurs with rate µi for i = 1, ..., n, so that

Yi|µi
ind∼ Poisson(µi). (3.1)

As in Famoye and Wang (2004), we assume that some observable variables Yi are not

completely observed and thus they are considered as being censored. For our purpose,

let γi be a latent random variable given by

γi =

{
1, if area i is censored,

0, otherwise,
(3.2)

and assume that the probability of the region i be a censored one (underreported) is

P (γi = 1) = pi, pi ∈ (0, 1).

Assuming independence between the counts Yi, given γi and µi, for i = 1, ..., n; and

also assuming that the censoring mechanism is independent of the number of events in

each area, the likelihood function associated to observed counts y = (y1, ..., yn) is

L(µ;Y ,γ) =
n∏
i=1

{[
fYi|µi(yi)

]1−γi [1− FYi|µi(yi − 1)
]γi}

=
n∏
i=1

{(
eµiµyii
yi!

)1−γi
(∑
y≥yi

eµiµyi
y!

)γi}
. (3.3)

where fYi|µi and FYi|µi denote, respectively, the probability function (pf) and cumulative

probability function (cpf) of a random variable with distribution Poisson(µi).

Suppose that for each area is available a set of covariates X i = (Xi1, ..., Xik) re-

lated to, for instance, the socioeconomic/educational level or access to health services,

which provide information on suspect regions of underreporting. Such covariates might

be used to appropriately model the uncertainty about the underreporting probabilities

p = (p1, ..., pn). A priori, it is expected that regions with the worst social deprivation

indicators have pi close to 1.0 whereas regions with the best ones have pi close to 0.0.

To describe such a behavior, an appropriate scaling/ordering can be chosen for each
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Xj, j = 1, ..., k, such that the underreporting probability pi can be modeled using a

logit regression model given by

log

(
pi

1− pi

)
= logit(pi) = λ0 + βX i, (3.4)

where β = (β1, ..., βk) and the prior distributions of each βj, j = 1, ..., k must put positive

probability mass in the appropriate part of the real axis R (positive or negative part)

depending on the ordering of the associated covariate Xj. If the highest values for the

social deprivation indicator Xj are associated to the worst regions, then βj must have

domain on the positive real numbers, R+. Similarly, if the highest values for the social

deprivation indicator Xj are associated to the best regions, then βj must have domain

on the negative real numbers, R−. By doing that, we ensure the desired relationship

between p and Xj, which should disclose that the highest values for the underreporting

probabilities are associated to the regions with the worst social deprivation indicators.

In this context, we propose the following Bayesian hierarchical model

Yi|γi, µi
ind∼ CP (µi)

log µi = log Ei + log θi

θi
ind∼ πθi

γi|pi
ind∼ Ber(pi)

logit(pi) = λ0 + βX i

λ0 ∼ πλ0

β ∼ πβ,

where θi represents the true relative risk associated to area i and Ei denotes the expected

number of cases in such area. As before, by notation CP (µi) we mean that observation

Yi has a Poisson distribution with rate µi and, given µi and γi, the contribution of this

observation for the likelihood function corresponds to the i-th term of the function in

(3.3).

Obviously, several structures can be chosen for modeling the relative risks θi. For

example, in a simple context an appropriate Gamma prior distribution can be assigned

for each θi. In other case, random effects may be introduced in the modeling of µi to

account for extra-Poisson variations, so that

log µi = logEi + υi + si,
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where υi is a non-spatially structured random effect which usually account for the depen-

dence among the counts Y induced by unmeasured covariates and si represents a spa-

tially structured random effect which account for an explicit spatial dependence among

the counts Y . Details on this modeling strategy were discussed in Section 2.1.1.

Also, the relative risk θi may be modeled including a suitable linear combination of

available covariates W = (W1, ...,Wl) related to suspected risk factors measured in each

area i, so that

log µi = logEi +
l∑

j=1

ωjW ij + υi + si.

From the modeling point of view, both sets of covariates X and W might be equal,

overlapping or one might be a subset of the other (Dvorzak and Wagner, 2015). However,

when all available variables are included as regressors in both parts of the model (in the

Poisson and logit parts), model identification may require additional information and it

must be investigated.

The joint distribution of the complete model is given by

π(Y ,γ,θ, λ0,β) = L(µ,γ;Y )π(γ|λ0,β)π(θ)π(λ0)π(β)

=
n∏
i=1

{[
gi(λ0,β)

(
1− FYi|µi(yi − 1)

)]γi (3.5)

×
[
(1− gi(λ0,β)) fYi|µi(yi)

]1−γi πθi} πλ0πβ,

where fYi|µi and FYi|µi are as defined in 3.3 and gi(λ0,β) = pi = (1+exp{−(λ0+βX i)})−1.

3.2 Posterior Sampling Scheme

A convenient MCMC sampling scheme must be implemented for posterior inference.

Such scheme corresponds to the Gibbs Sampler, which is based on the full conditional

distribution (fcd) of all parameters and latent random variables involved in the proposed

model. To establish notation, let V be a vector with m components and denote by

V −i the vector V without the i-th component, that is, V −i = (V1, ..., Vi−1, Vi+1, ..., Vm).

Define ψ = (θ, λ0,β). Assuming the joint distribution in (3.5), we obtain the fcd of all

quantities involved in the proposed model.

For i = 1, ..., n, the full conditional distribution of θi is given by

π(θi|Y ,γ,ψ−θi) ∝
[
fYi|µi(yi)

]1−γi [1− FYi|µi(yi − 1)
]γi πθi .
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Therefore, if a Gamma(αi, φi) prior distribution is assigned to the relative risk θi, its fcd

assumes the following different expressions depending if area i is censored or non-censored

π(θi|Y ,Z,γ,ψ−θi) ∝

{
Gamma

(
yi + αi,

φi
Eiφi+1

)
, if γi = 0,

Gamma (αi, φi)×
[
1− FYi|µi(yi − 1)

]
, if γi = 1.

(3.6)

For the i-th component of the latent censoring vector γ the fcd has closed form and

it is given by

π(γi|Y ,γ−i,ψ) ∝ L(Yi|θi, γi)π(γi|λ0,β) (3.7)

∝
{
gi(λ0,β)

[
1− FYi|µi(yi − 1)

]}γi {[1− gi(λ0,β)] fYi|µi(yi)
}1−γi

therefore, γi|Y ,γ−i,ψ ∼ Ber
(

Ai

Ai+Bi

)
, where Ai = gi(λ0,β)

[
1− FYi|µi(yi − 1)

]
and

Bi = [1− gi(λ0,β)] fYi|µi(yi).

The full conditional distribution for β is given by

π(β|Y ,γ,ψ−β) ∝
n∏
i=1

π(γi|λ0,β)πβ, (3.8)

and the fcd of the parameter λ0 it is similar to (3.8), replacing πβ for πλ0 .

Note from (3.5) that the joint distribution of the proposed model involves a cumulative

probability function for the censored (underreported) areas and this makes it difficult

the posterior sampling process of θ and γ. Particularly, for the posterior sampling of

θ one Metropolis-Hastings step will be needed. However, a worse problem arises in

the posterior sampling process of γ. Note that the fcd of γi in (3.7) involves a direct

comparison between the terms Ai and Bi. The fact is that term Ai is always much higher

than the term Bi, providing a ratio Ai

Ai+Bi
with value always next to 1.0 and, thereby,

we generate more censored areas than we should. That problem happens because the

term Ai involves a cumulative probability function, whereas the term Bi involves the

probability in a single point.

In order to overcome that issue, we consider the data augmentation technique pre-

sented in Section 3.3. Basically, to simplify the structure of the likelihood function

and the posterior inference, the observed data in censored areas are replaced for aug-

mented values, which are generated from an appropriated truncated distribution. As an

advantage, this data augmentation step provides a complete joint distribution for the

augmented model that do not involves a cumulative probability function and, therefore,

the posterior sampling is facilitated.
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3.3 Data Augmentation for Posterior Sampling

The basic idea of the data augmentation technique proposed by Tanner and Wong (1987)

is simple. According to those authors, suppose the observed data Y is augmented by

the latent quantity Z. If Y and Z are both known, then the problem is straightforward

to analyze, i.e., the augmented posterior distribution π(φ|Y ,Z) can be calculated in a

simplest form. However, the posterior distribution of interest is π(φ|Y ), which may be

difficult to calculate directly. If, however, we can generate multiple values of Z from the

predictive distribution π(Z|Y ) (that is, multiple imputations of Z), then π(φ|Y ) can be

approximately obtained as the average of π(φ|Y ,Z) over the imputed Z’s. Nevertheless,

π(Z|Y ) depends, in turn, on π(φ|Y ). Hence, if π(φ|Y ) was known, it could be used to

calculate π(Z|Y ). That mutual dependence between π(φ|Y ) and π(Z|Y ) leads to an

iterative algorithm to calculate the desired posterior distribution π(φ|Y ). In practice, to

implement the algorithm, we must be able to sample from two distributions: π(φ|Y ,Z)

and π(Z|Y , φ).

Chib (1992) combines the data augmentation idea (Tanner and Wong, 1987) and the

Gibbs sampler (Gelfand and Smith, 1990) to built an elegant solution for the censored

data problem in the context of the well-known Tobit model, in which the censures are

fixed. The essential idea is simple and we now extend it for our underreported data

problem, in which the censoring mechanism is treat as random.

Consider that a sample Y = (y1, ..., yn) of size n is available in which nc observations

are censored (underreported) and no = (n− cc) observations are non-censored (correctly

observed). Denote by yc and yo the set of censored and non-censored observations,

respectively. Suppose that along with the censored observations, yc, we have available

the corresponding latent data Z, which it is a vector of dimension nc × 1. Although Z

it is not observed, a method that is based on simulating Z is available.

Let C denote the set of indexes of the censored observations. Following the approach

of Chib (1992), we assume that, given (Y ,γ,ψ), Z is a collection of independent random

variables such that, for all i ∈ C, zi has a Truncated Poisson distribution with rate µi

and support [yi, yi + 1, yi + 2, ...) , whose probability function is given by

π(Zi = zi|Y ,ψ, γi = 1) =
fZi|µi(zi)

1− FZi|µi(yi − 1)
, zi = yi, yi + 1, ..., (3.9)

where fZi|µi and FZi|µi are, respectively, the probability function and cumulative proba-

bility function of a random variable Zi with distribution Poisson with rate is µi.
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Therefore, we now have a vector of augmented data Y z = (yz1, ..., y
z
n), which corre-

sponds to the original collection of data Y with yci replaced by zi, for all i ∈ C, that

is

yzi |γi =

{
yi, if γi = 0,

zi, if γi = 1,
(3.10)

where zi ≥ yi is generated from (3.9). Consequently, L(Y ,Z|ψ,γ) = L(yo,yc,Z|ψ,γ) =

L(yo,Z|ψ,γ) = L(Y z|ψ,γ), i.e., the data-augmented likelihood do not depends on a

cumulative probability function.

The most important point is that the conditional probability function of the latent

data π(zi|Y ,ψ, γi) is available in a tractable form and the data-augmented posterior

distribution π(ψ,γ|Y ,Z) has a more simple form than π(ψ,γ|Y ). Both π(zi|Y ,ψ, γi)
and π(ψ,γ|Y ,Z) are the inputs for the Gibbs Sampler algorithm and enable us to

recursively simulate the desired posterior distribution of ψ and γ, π(ψ,γ|Y ). Chib

(1992) proves that, when the data augmentation technique is used, the posterior inference

for parameters of interest remains the same as in the initial model.

The complete joint distribution under the data-augmented model is given by

π(Y ,Z,γ,θ, λ0,β) = L(Y |θ,γ)π(Z|Y ,θ,γ)π(γ|λ0,β)π(θ)π(λ0)π(β)

=
n∏
i=1

{[
1− FYi|µi(yi − 1)

]γi [fYi|µi(yi)]1−γi [ fZi|µi(zi)

1− FZi|µi(yi − 1)

]γi
× [gi(λ0,β)]γi [1− gi(λ0,β)]1−γi πθi

}
πλ0πβ

=
n∏
i=1

{[
gi(λ0,β)fZi|µi(zi)

]γi [(1− gi(λ0,β)) fYi|µi(yi)
]1−γi πθi}

× πλ0πβ, (3.11)

where fYi|µi , fZi|µi , µi and gi(λ0,β) are as defined previously in (3.5). Note that the joint

distribution in (3.11) does not depend on a cumulative probability function.

Posterior inference depends on the full conditional distribution (fcd) of θ, Z, γ, λ0

and β. In the following, we provide the fcd for all these quantities. The posterior fcd of

Z, π(Z|Y ,ψ,γ), is already given in (3.9) with ψ = (θ, λ0,β).

For i = 1, ..., n, the full conditional distribution of θi is given by

π(θi|Y ,Z,γ,ψ−θi) ∝
[
fZi|µi(zi)

]γi [fYi|µi(yi)]1−γi πθi .
Therefore, in this case if a Gamma(αi, φi) prior distribution is assigned to the relative
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risk θi, its fcd has closed form even in censored areas, so that

π(θi|Y ,Z,γ,ψ−θi) ∝

 Gamma
(
yi + αi,

φi
Eiφi+1

)
, if γi = 0,

Gamma
(
zi + αi,

φi
Eiφi+1

)
, if γi = 1.

(3.12)

For the i-th component of the latent vector γ, under the data-augmented model the

fcd becomes

π(γi|Y ,Z,γ−i,ψ) ∝
[
fZi|µi(zi)

]γi [fYi|µi(yi)]1−γi π(γi|λ0,β) (3.13)

∝
[
gi(λ0,β)fZi|µi(zi)

]γi {[1− gi(λ0,β)] fYi|µi(yi)
}1−γi ,

and, therefore, γi|Y ,Z,γ−i,ψ ∼ Ber
(

A∗
i

A∗
i+B

∗
i

)
, where A∗i = gi(λ0,β)fZi|µi(zi) and B∗i =

[1− gi(λ0,β)] fYi|µi(yi). Note that now the ratio
A∗

i

A∗
i+B

∗
i

does not involves a cumulative

probability function as in (3.7). Because of this, a more efficient scheme is obtained to

sampling from the posterior distribution of the censoring indicator parameter.

The full conditional distributions for parameters β and λ0 under the data-augmented

model remains the same ones presented in Section 3.2.

A subsequent sampling strategy that can be considered is to use a Gibbs Sampler al-

gorithm to sequentially sample from the full conditional distributions given in (3.8), (3.9),

(3.12) and (3.13) and, then, obtaining an approximate sample of the desired posterior

distribution π(ψ,γ|Y ).

However, we note that convergence it is not achieved if γ, Z, λ0 and β are sampled

individually because of the strong dependence between them, especially the dependence

between γ and β. Therefore, it is needed to jointly sample those quantities. For such

a purpose, we need to specify the joint full conditional distribution of (γ, Z, λ0, β),

which is given by

π(γ,Z, λ0,β|Y ,θ) ∝
n∏
i=1

{[
fZi|µi(zi)

]γi [fYi|µi(yi)]1−γi π(γi|λ0,β)
}
πλ0πβ, (3.14)

and a Metropolis-Hastings (M-H) step is thus needed to sample from (3.14).

Given the data augmentation strategy presented in this section, we suggest the fol-

lowing MCMC scheme for posterior sampling:

1. Sample (γ,Z, λ0,β) from π(γ,Z, λ0,β|Y ,θ) in (3.14) using a M-H step;

2. Sample θi from π(θi|Y ,Z,γ,ψ−θi) in (3.12), for all i = 1, ..., n.

Next section presents a simulation study involving the proposed Random Censoring
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Poisson model and considering the data augmentation strategy presented here. A Monte

Carlo study is performed in order to compare the estimates provided by the RCPM with

the ones obtained using the CPM, in which the censoring mechanism must be previously

determined.

3.4 Simulation Study

This section present a simulation study that enables us to evaluate the performance of

the model proposed in Section 3.1. The goal is to compare the estimates for the relative

risks provided by the proposed RCPM and three different specifications for the CPM

from Bailey et al. (2005). The study is based on the n = 75 regions that comprise the

map of Minas Gerais State (MG), which is the region considered in the early neonatal

mortality mapping presented in Chapter 4.

We consider four different scenarios to generate the datasets. In all scenarios we

assume that the expected number of cases Ei is known, for i = 1, ..., 75. In order to per-

form a Monte Carlo study, for each scenario we consider R = 100 datasets (replications)

generated from the associated Poisson distribution and, to introduce underreporting in

the data, we consider the censoring level δ = 0.7 (see Section 2.3.1).

Each dataset is analyzed considering the RCPM and the CPM with three different

specifications. To obtain the posterior estimates, for each dataset we use the MCMC

method running a chain of 85000 iterations and discarding the first 20000 iterations

as the burn-in period. To avoid a strong correlation among the generated samples, we

consider a lag of length 13 obtaining a sample of size 5000 in all cases. The computational

programs to obtain the estimates are implemented in R 3.1.3 language.

The different scenarios used for generating the datasets, the models considered to fit

all these datasets and the evaluation metrics used to compared such models are presented

in the following.

3.4.1 Data Generation

The four scenarios considered to generate the datasets used in this simulation study are

presented in this section.

1. Scenario I: Similarly to what is considered in Section 2.3.2, in this first scenario

we assume an increasing relative risk from the South to the North of Minas Gerais

State, i.e., we assume that the risk increases as the latitude increases. Consider the

latitudes inherent to the n = 75 regions of the map, denoted by Lat. Denote by θi
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the relative risk in area i, for i = 1, ..., 75, such that

θi = exp{5.71 + 0.31Lati}. (3.15)

By doing this, we assume that the region with the smallest latitude has θ = 0.3

and the region with the greatest latitude has θ = 3.0.

Each dataset is generated from a Poisson distribution, so that

Y ∗i |θi
ind∼ Poisson(Eiθi), (3.16)

and censoring is introduced in such datasets considering the following criterion

proposed in Oliveira and Loschi (2013)

γi =

{
1, if AIi ≤ 20.0,

0, otherwise,
(3.17)

where AI is the Adequacy Index proposed by França et al. (2006). The AI measures

the quality of mortality information in each region of Minas Gerais State. The

criterion in (3.17) defines 23% of the regions as being censored.

2. Scenario II: This second scenario differs from Scenario I due to the criterion cho-

sen for censoring the generated data. Here, we consider another censoring criteria

proposed in Oliveira and Loschi (2013) so that

γi =

{
1, if HDIi ≤ HDI15%,

0, otherwise.
(3.18)

where HDI represents the Human Development Index for the regions of MG map

in 2000 and HDI15% denotes the 15-th percentile of the quantity HDI. Assuming

this criterion, 16% of the areas are censored.

3. Scenario III: In this case, we also assume that the relative risks θ increase as the

latitude increases but, instead of using the expression in (3.15), we now consider

that regions having similar latitudes will receive the same relative risk. Denote by

Latα% the α-th percentile of the latitudes inherent to the n = 75 regions of the map.

Assume there exist five groups of regions in the map, denoted by G = (G1, ...,G5),
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so that

θi =



0.3 for all i ∈ G1 = {i : Lati ≤ Lat13%},
0.6 for all i ∈ G2 = {i : Lat13% < Lati ≤ Lat33%},
1.0 for all i ∈ G3 = {i : Lat33% < Lati ≤ Lat67%},
2.0 for all i ∈ G4 = {i : Lat67% < Lati ≤ Lat87%},
3.0 for all i ∈ G5 = {i : Lati > Lat87%}.

By doing this, we are considering that the group of regions with the smallest lat-

itudes have RR = 0.3 and the group of regions with the greatest latitudes have

RR = 3.0.

Using that values for the relative risks θ, datasets are generated assuming that the

count in area i = 1, ..., 75 has a Poisson distribution as given in (3.16) and the

criterion in (3.17) is considered for censoring the generated data.

4. Scenario IV: Datasets in this last scenario differ from those ones in Scenario III

due to the censoring criterion considered to introduce underreporting. Here, we

consider the censoring criterion defined in (3.18) instead of that one presented in

(3.17).

3.4.2 Data Modelling

To analyze the datasets generated as discussed in Section 3.4.1, we consider the four

different models that are presented in the following.

1. Model I: Corresponds to the proposed Random Censoring Poisson model (Section

3.1) such that

Yi|γi, θi
ind∼ CP (Eiθi)

θi|αθi , φθi
ind∼ Gamma(αθi , φθi)

γi|pi
ind∼ Ber(pi)

logit(pi) = λ0 − βAIi (3.19)

λ0 ∼ LN(−0.873, 0.6)

β ∼ LN(−2.994, 0.6),

where θi represents the relative risk associated to area i, Ei and AI denote, respec-

tively, the expected number of cases and the Adequacy Index (França et al., 2006)

in area i and LN is the notation for the log-Normal distribution. The hyperparam-
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eters αθi and φθi are chosen so that, a priori, V ar[θi] = 1.0 and E[θi] = θTi , where

θTi is the true relative risk used for generating the datasets and i = 1, ..., 75.

As discussed in Section 3.1, the prior distributions for the hyperparameters λ0

and β must be appropriately chosen depending on the covariate used in the logit

function for modeling the underreporting probabilities. In our case, the Adequacy

Index proposed in França et al. (2006) is used as such covariate.

As said before, the AI measures the quality of infant mortality information in each

region of Minas Gerais state and it has its values ranging from -83.84 to 100.0. The

highest values for the AI are associated with the best regions: the greater the AI,

the better the information on infant mortality. It is expected that highest values

for the underreporting probabilities p are associated to the regions with the poorest

quality on infant mortality information.

To ensure such a behavior for p, we include the AI term in a negative way in the logit

function given in (3.4) and, at the same time, we specify that β ∈ R+, where R+

represents the set of positive real numbers. We assigned a LN(−2.993, 0.6) prior

distribution for the hyperparameter β so that E[β] = 0.06 and V ar[β] = 0.002.

For the hyperparameter λ0 we choose a LN(−0.873, 0.6) prior distribution with

E[λ0] = 0.5 and V ar[λ0] = 0.11.

Actually, the hyperparameter λ0 may have domain in the set real numbers, , but

we choose such log-Normal prior distribution for this term in order to ensure the

prior desired relationship between the underreporting probabilities p and the Ade-

quacy Index. The choice of those prior expected values and prior variances for the

hyperparameters λ0 and β ensures that the underreporting probability p for the

eight regions with the worst quality on infant mortality information varies around

a mean value greater than 0.87 and, at the same time, p varies around a mean value

smaller than 0.01 for the regions with the ten best values of AI.

The use of informative prior distributions on the data reporting process is needed

to obtain posterior inference consistent with the problem we have at hands and,

moreover, the assignment of such informative prior distributions in the context of

epidemiological studies is encouraged in Bernardinelli et al. (1995). Figure 3.1 show

the densities of the prior distributions for λ0 and β and also the prior relationship

between AI and the underreporting probabilities p based on the prior mean of λ0

and β.
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Figure 3.1: Densities of the prior distributions for λ0 (left) and β (middle); and AI versus
logit(pi) = E[λ0]− E[β]AIi (right).

2. Model II: Corresponds to the Censored Poisson model (Bailey et al., 2005) pre-

sented in Section 2.2 such that

Yi|γi, θi
ind∼ CP (Eiθi)

θi|αθi , φθi
ind∼ Gamma(αθi , φθi),

where θi and Ei represent, respectively, the relative risk and the expected number

of cases in area i and here γi is a known censoring indicator. As in Model I,

the hyperparameters αθi and φθi are chosen so that, a priori, V ar[θi] = 1.0 and

E[θi] = θTi , where θTi is the true relative risk used for generating the datasets and

i = 1, ..., 75.

By using such a model, we must previously specify the censored areas. In this case,

we consider γ = (γ1, ..., γ75) as being the true censoring vector used for generating

the data. By doing this, we are providing to the model a 100% correct information

about the true censoring inherent to the generated data, that is, the estimation

using Model II will be extremely favored.

3. Model III: In this case, we also consider the CPM described in Model II, but

instead of providing a completely correct information about censures in the gen-

erated data, we correctly report to the model almost 50% of the true censoring

indicator vector γ = (γ1, ..., γ75) used to generate these datasets.

4. Model IV: Also here, the CPM described in Model II is used for modeling

the datasets, but in this case we report to the model a censoring indicator vector

γ = (γ1, ..., γ75) completely different of that one used in the data generation.
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3.4.3 Evaluation Metrics

We use some metrics to evaluate quality of the posterior estimates for the true relative

risks θ. Denote by θ̂ij a posterior estimate of the relative risk in area i for the j-th dataset

(replication), where i = 1, ..., n and j = 1, ..., R. In our study, n = 75 and R = 100. The

evaluation metrics considered here are the traditional ones: Mean Squared Error (MSE),

Mean Squared Percentage Error (MSPE), Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE) and Bias, where

MSEi =
1

nR

n∑
i=1

R∑
j=1

(
θ̂ij − θi

)2
,

MSPEi =
1

nR

n∑
i=1

R∑
j=1

(
θ̂ij − θi
θi

)2

,

MAEi =
1

nR

n∑
i=1

R∑
j=1

∣∣∣θi − θ̂ij∣∣∣ ,
MAPEi =

1

nR

n∑
i=1

R∑
j=1

∣∣∣∣∣θi − θ̂iθi

∣∣∣∣∣ ,
Biasi =

1

n

n∑
i=1

[(
1

R

R∑
j=1

θ̂ij

)
− θi

]
.

All these this metrics reflect the error on estimating the parameter of interest. Thus, the

closest these metrics are to zero, the better the model.

3.4.4 Results

The datasets generated for each scenario presented in Section 3.4.1 are modeled using

the models described in Section 3.4.2. Results for the evaluation metrics obtained for

each combination of scenario and model are shown in Table 3.1.

We note from Table 3.1 that Model II had the best performance in all scenarios,

that is, it produces less biased estimates with the smallest variance in all cases. Such

a result it is not a surprise since Model II receives a 100% correct information about

the true censoring in the data and it is highly favored by this. On other hands, Model

IV receives a completely wrong information about the true censoring of the data and it

provides the greatest errors on the estimation in all scenarios.

When Adequacy Index is considered as a criterion for censoring the data (23% of the

regions are censored), Scenarios I and III, we note that Models I and III present
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similar behavior with evaluation metrics very close to each other, with a little smaller

values for these metrics tending to occurs for Model III. Therefore, for a dataset with

23% of censored areas, we have evidences that the Random Censoring Poisson model

(RCPM), Model I, provides as good estimates as the Censored Poisson model (CPM),

Model III, in which almost 50% of truly the censored areas are correctly identified.

When considering Scenarios II and IV, in which the Human Development Index is

considered for censoring the data (16% of the regions are censored), we note that RCPM,

Model I, provides a smaller bias than CPM in which almost 50% of the true censored

regions are correctly informed, Model III .

In relation to the structure of the relative risks θ in the map, we note that, in general,

the models provide worst estimates when the risk assumes an structure of clustering,

Scenarios III and IV, if compared with the metrics obtained for scenarios without a

clustering structure, Scenarios I and II.

Scenario Model MSE MRSE MAE MAPE Bias

I

I 0.040 0.032 0.129 0.137 -0.049
II 0.008 0.020 0.059 0.094 0.001
III 0.039 0.031 0.112 0.130 -0.049
IV 0.077 0.055 0.175 0.171 -0.101

II

I 0.043 0.032 0.127 0.135 -0.026
II 0.009 0.022 0.065 0.100 0.001
III 0.047 0.031 0.124 0.131 -0.049
IV 0.061 0.037 0.151 0.148 -0.068

III

I 0.077 0.029 0.152 0.128 -0.063
II 0.010 0.017 0.067 0.082 0.003
III 0.071 0.028 0.144 0.118 -0.062
IV 0.132 0.038 0.222 0.149 -0.134

IV

I 0.072 0.028 0.164 0.124 -0.063
II 0.013 0.018 0.076 0.089 0.001
III 0.081 0.028 0.158 0.121 -0.069
IV 0.111 0.033 0.199 0.138 -0.101

Table 3.1: Evaluation metrics for the Monte Carlo study.

Figure 3.2 present the box-plots for the relative risk estimates obtained under Models

I-IV for the R = 100 datasets generate in Scenario I. The truly censored areas in

Scenario I are the seventeen first regions that appear in the horizontal axis. In Model

II, all of them are correctly identified as censored. In Model III, the seven first and the

17 − th region are correctly identified as being censored and, in order to maintain the

proportion of censured areas in the dataset, regions 41-49 are wrongly identified as being
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censored. For Model IV, no region is correctly identified as censored but regions 21-26,

38-47 and 75 are wrongly identified as being censored ones.

We note that Models II, III and IV provide optimal estimates for the relative risk

in truly censored regions that are correctly identified as being censored. In this areas,

the box-plots are centered around the true RR and they have a very small amplitude,

i.e., there is a small variability in the estimation around the true relative risks.

However, if a truly censored area is identified as being a non-censored one, its RR

tends to be badly estimated and with a greater variability. In general, for the truly non-

censored areas, the models are comparable providing very similar estimates for the RR,

even if one of these areas is wrongly identified as being a censored one - except for region

75 in Model IV. Box-plots for the posterior estimates of the relative risks in Scenarios

II-IV exhibit a similar behavior to those presented in Figure 3.2 and will be omitted.

The posterior estimates of the underreporting probabilities p when considering Model

I in Scenario I are presented in Figure 3.3, jointly with the prior expected probabilities

(solid line). The posterior estimates are obtained using the plug-in method (red dotted

line) and considering the posterior proportion of samples where the censoring indicator

variable γi = 1 (black dotted line), for i = 1, ..., 75. In the plug-in method, we substi-

tute λ0 and β in the logit function for their posterior means. In general, we obtain a

posterior estimate for p that it is close to its prior expected mean, with high deviations

for the regions having the greatest values for the Adequacy Index (horizontal axis). The

posterior estimate for p using the plug-in method is closer to its prior expectation than

the estimate using the posterior proportion of γi = 1 for i = 1, ..., 75.

Figure 3.4 presents the box-plots for the posterior proportions of γi = 1 in Scenario

I, i = 1, ..., 75. There is a small variability in the estimation and some extreme values

can be noted in almost regions that have a positive AI.
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Figure 3.2: Box-plots for the posterior means of θ in Scenario I using Model I, II, III
and IV from the top to the bottom, respectively.

45



●

●
●

●
●

●●●
●●

●●●●●
●●●●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

−50 0 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AI

−50 0 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

●
●

●●●

●●
●●●●●

●●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

−50 0 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.3: Prior expected mean for the underreporting probabilities p (solid line) and
their posterior estimates in Scenario I using Model I: plug-in method (red dotted line)
and posterior proportion of γi = 1, i = 1, ..., 75 (black dotted line).

●● ●●●

●● ●●●

●

●

● ●
●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
● ●

●●

●

●

●

●●●●

●

●●
●

●

●

●●

●

●

●●
●

●

●

●●●

●

●●

●

●
●
●

●

●
●●

●

●●
●

●

●

●

●

●
●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●
●

●

●●
● ●

●

●
●●

●

●●
●

●

●
●●

●

●
●

●

●●

●

●

●●
●●

●●

●

●● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●● ●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●
● ●

●

●●●

●
●●

●

●●
●●

● ●

●

●

●

●
●●

●

●

●

●●

● ●

●

●●●

●

●●

●

●

●

●
●●

●

● ●

●

●●

●

●

●

●●

● ●●

●●

●●
●
●●

● ●

●

●● ●

●

●
●

●● ●●

●

●

●

●●●

●

●● ●

●

●
●●●● ●

●
●

●●
●
●

●● ●●

●

●

●●

●●
●●

●

●
●
●

●

●

●
●
●

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Region

p̂

Figure 3.4: Box-plots for the posterior proportions of γi = 1, i = 1, ..., 75 in Scenario I
using Model I.
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3.4.5 Conclusions on the Simulation Study

In summary, we conclude that, independently of the scenario considered to generate the

data, Model II produces less biased posterior estimates for the relative risks, which is an

expected result since this model is extremely favored for receiving a completely correct

information about the true censoring inherent to the data. In turn, Model IV receives

no information about the true censoring used to generate the data and, as expected, this

model produces the worst posterior estimates for the relative risks θ in all scenarios.

For the datasets in which the proportion of censored areas is 23%, Scenarios I and

III, Models I and II present a quite similar performance in the estimation of θ because,

according Table 3.1, such models produces bias and error metrics that are quite close in

all cases.

When the proportion of censored data is 16%, the proposed RCPM (Model I) tends

to provide less biased estimates for the RR than the CPM that receives an almost 50%

correct information about the true censoring vectors used to generate the data (Model

III).

In relation to the three different specifications of the CPM considered in Scenario I

(Models II, III and IV), we notice from Figure 3.2 that the variability of the posterior

estimate for θi in a truly censored area increases significantly if this area is identified as

being a non-censored one. On other side, there is no significant difference in the estimate

for θi in truly non-censored areas that are reported to the model as being censored ones.

The underreporting probabilities p are estimated with a very small variability accord-

ing to the box-plots in Figure 3.4 and, in general, the posterior estimates of p are quite

close to its prior expected estimates (Figure 3.3).

In next chapter, we analyze the ENM data from Minas Gerais State using the proposed

model.
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Chapter 4

Case Study: Mapping the ENM rate

in Minas Gerais State

In this chapter we will map the relative risk of early neonatal mortality (ENM) in Minas

Gerais State (MG), Brazil. The ENM is understood as the infant deaths that occurs in

the first seven day of life in the period of interest. Our dataset corresponds to the number

of early neonatal deaths that took place in public hospitals of the 853 municipalities of

MG from 1999 to 2001. The 853 municipalities are grouped into n = 75 regions in order

to avoid regions with very small or zero counts, which leads to unstable estimates for the

mortality rates (Assunção et al., 1998).

As discussed in Chapter 1, in some regions the information about ENM in Minas

Gerais State are not correctly recorded in the Hospital Information System (SIH) and

the occurrence of underreporting in this dataset is quite likely.

To estimate the relative risks associated to the ENM in MG, we consider the Random

Censoring Poisson model (RCPM) proposed in Chapter 3 and also the Censored Poisson

model (CPM) proposed by Bailey et al. (2005). Both models account for suspect un-

derreporting in the data. Three different fixed censoring criteria are considered for the

CPM and the results are compared with that one provided by the RCPM, in which the

censoring mechanism is treated as random. Section 4.1 presents some details about the

models considered for fitting the ENM data and in Section 4.2 results and conclusions

are provided.

4.1 Data Modelling

The Censored Poisson model (Bailey et al., 2005) treats data with suspected underre-

porting as censored information and the observed counts in suspect areas are considered
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to be lower bounds to the real number of cases. In the case study presented in this

chapter, we consider the following specification for the CPM

Yi|γi, θi
ind∼ CP (Eiθi)

θi|αθi , φθi
ind∼ Gamma(αθi , φθi),

where θi and Ei represent, respectively, the relative risk and the expected number of cases

in area i, i = 1, ..., 75. For remembering, by notation CP (µi) we mean that observation

Yi has a Poisson distribution with rate µi and, given µi and γi, the contribution of this

observation for the likelihood function corresponds to the i-th term of (3.3).

As discussed in Section 2.2, the CPM is dependent on the previous identification

of all censored areas - the censoring indicator vector γ = (γ1, ..., γ75) must be known a

priori. However, censored observations are not obviously identified in practical problems.

Based on the socioeconomic level, educational variables and access to health services,

Oliveira and Loschi (2013) proposed three different fixed criteria to previously determine

the censored regions in their application to ENM data in Minas Gerais State and these

criteria are considered here. In addition to those criteria given in (3.17) and (3.18), we

also consider the criterion defined as

γi =

{
1, if FIi ≤ FI50% and IdCi ≤ IdC50%,

0, otherwise,
(4.1)

where FI and IdC denote the proportions of Functional Illiteracy and Infant Deaths with

Ill-defined Cause, respectively, and Xα% denotes the α-th percentile of the quantity X.

The Random Censoring Poisson model proposed in Chapter 3 will be also considered

for mapping the ENM in MG. In this novel approach, a random censoring mechanism is

incorporated into the CPM as opposed to requiring a prior specification of the censored

areas. We consider the specification of the RCPM given in (3.19), that is,

Yi|γi, θi
ind∼ CP (Eiθi)

θi|αθi , φθi
ind∼ Gamma(αθi , φθi)

γi|pi
ind∼ Ber(pi)

logit(pi) = λ0 − βAIi
λ0 ∼ LN(−0.873, 0.6)

β ∼ LN(−2.994, 0.6),
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where θi and Ei are defined as in the previous CPM model. The quantity AI denote

the Adequacy Index (França et al., 2006) that it is been considered for modeling the

underreporting probabilities p = (p1, ..., p75).

A discussion about the choice of those log-Normal prior distributions for parameters

λ0 and β are presented in Section 3.4.2. Basically, that choice ensures the desired prior

relationship between the AI and the underreporting probabilities p. Figure 3.1 show the

densities of the prior distributions for λ0 and β and also the prior relationship between

AI and p based on the prior mean of λ0 and β.

For the Gamma prior distribution of the relative risk θi under both CPM and RCPM

models, the hyperparameters αθi and φθi are chosen so that, a priori, V ar[θi] = 3.0, for

i = 1, ..., 75, and

E[θi] =


5.0, if i = 1, ..., 8 (AIi ≤ 0.0),

3.0, if i = 9, ..., 17 (0.0 < AIi ≤ 20.0),

1.5, if i = 18, ..., 34 (20.0 < AIi ≤ 56.0),

1.0, if i = 34, ..., 75 (AIi > 56.0).

The choice of those values for the prior expectation of the relative risks θ are based

on information provided by experts in the study of the ENM and it represents their

knowledge about the ENM’s relative risk behavior over the n = 75 regions of Minas

Gerais State. The use of informative prior distributions for the relative risks based on

information provided by experts in the area of interest in the context of epidemiological

studies is discussed and encouraged in Bernardinelli et al. (1995), for instance.

Therefore, in summary, we are considering four different models for estimating the

ENM’s relative risk in MG, which are summarized in Table 4.1.

Table 4.1: Summary of the models used in the ENM mapping
Model Label Model Specification

RCPM RCPM as specified in (3.19)
CPM1 CPM using the criterion in (3.17)
CPM2 CPM using the criterion in (3.18)
CPM3 CPM using the criterion in (4.1)

For all models in Table 4.1 we run the MCMC for 155000 iterations, discarding the

first 50000 draws as a burn-in period and considering a lag 21 to avoid correlation. Thus,

in all case we consider a sample of size 5000 for making posterior inference.
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4.2 Results

Figure 4.1 displays the relative risk estimates considering the posterior medians under the

models CPM1 (row 1), CPM2 (row 2) and CPM3 (row 3). In this Figure, the columns

present the censored regions (left) and the posterior medians of the relative risk of ENM

(right).

By comparing the maps in Figure 4.1 with those ones shown in Figure 1.1, we no-

tice that the RR estimates in non-censored regions remains essentially the same, but

when underreporting is considered, Figure 4.1, the most regions in North and Northeast

of MG start to present a high estimate for the risks, as it is expected by the epidemi-

ologists. Therefore, independently on adopted censoring criterion, the CPM seems to

provide better estimates for the ENM1s relative risk in those regions of MG with suspect

underreporting if compared with the maximum likelihood estimates under the traditional

Poisson model, which corresponds to the standardized mortality ratio (SMR) presented

in (2.1).

However, the modeling using the CPM seems to be highly affected by the pre-

established censoring criterion, because the estimate for the RR is always dramatically

increased if a region is censored by any criterion whereas its estimate for the RR is quite

similar to its SMR if this region is not censored. As an example, we can highlight what

occurs with the region having the highest latitude in the State, i.e., the region further

North in MG map. That region is censored under CPM1 and CPM2 but it is not censored

under CPM3. Under models CPM1 and CPM2, its RR is estimated between 2.5 and 5.5

while it is estimated between 0.0 and 0.5 under the model CPM3. Moreover, compar-

ing the results obtained using different censoring criteria is quite complicated, because

the censoring mechanism used by the CPM establishes which regions are censored with

probability 1.0; and it is neither a simple task to determine which criterion is more likely

than the others.

In order to overcome that problem of choosing a specific censoring criterion and,

therefore, deciding with probability 1.0 which are the censored regions, we propose in

Chapter 3 the Random Censoring Poisson model (RCPM) in which the censoring mech-

anism is incorporated into the modeling. Figure 4.2 displays the relative risk estimates

considering the posterior medians under RCPM (right) and the posterior estimates of the

underreporting probabilities p based on the posterior proportion of γi = 1, i = 1, ..., 75

(left).
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Figure 4.1: Mapping the relative risk of ENM in MG using CPM1 (row 1), CPM2 (row
2) and CPM3 (row 3). In each row: censored regions (left) and posterior medians of the
relative risks (right).
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Figure 4.2: Posterior mean for the underreporting probabilities (left) and posterior me-
dians for the relative risk of ENM in MG using RCPM (right).

By comparing the maps in Figure 4.2 with those in Figure 1.1, we notice that the

RR estimates in regions having an underreporting probability smaller than 0.75 remains

essentially the same. However, for the regions having an underreporting probability

greater than 0.75, those regions mainly concentrated in the Northeast of MG, the relative

risk estimate is considerably increased and, therefore, it gets closer to what is expected

by the epidemiologists.

Comparing Figures 4.1 and 4.2 we note that in regions where the posterior estimate

for the underreporting probability is low (smaller than 0.45), estimates provided by the

proposed RCPM is quite similar to that obtained using the CPM in all cases. It is also

noticeable that RCPM and CPM2 produced more similar maps for the relative risk of

ENM in the State. However, the left map in Figure 4.2 points out that regions with the

highest underreporting probabilities are concentrated in the Northeast of MG, which is

more similar to the map of censored areas in CPM3.

Moreover, regarding to Figure 4.2, it can be noted that only two regions present a

posterior median for the RR greater than 2.5 (in the Northeast of MG). A total of 8

regions (approximately 11%) present an estimate for the probability of being censored

greater than 0.75 and 6 regions (approximately 8%) have this estimate between 0.75 and

0.45, whereas 31 regions (approximately 41%) present an estimate for the underreporting

probability lower than 0.10.
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Figure 4.3 show the posterior means of the ENM’s relative risk in MG (middle) and

the lower (left) and upper (right) limits of the 95% Highest Posterior Density interval

(HPD) under all models given in Table 4.1.

In general, the posterior means of the relative risks θ are quite close to its posterior

median shown in Figures 4.1 and 4.2. Based on the HPD for models CPM1 (row 2), CPM2

(row 3) and CPM3 (row 4), we note there is more uncertainty about the RR in censored

regions, since the HPD associated to these areas disclose high posterior variance. The

same is observed in regions having the highest posterior estimates for the underreporting

probability in the RCPM (row 1). In non-censored regions for models CPM1, CPM2

and CPM3 or in regions where estimate the posterior estimate for the underreporting

probability is smaller than 0.75, the HPD discloses there is a small variability in the

estimation of the ENM relative risk.
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Figure 4.3: Mapping the relative risk of ENM in MG using RCPM (row 1), CPM1 (row
2), CPM2 (row 3) and CPM3 (row 4): the lower limit of the 95% HPD (column 1), the
posterior mean (column 2) and the upper limit of the 95% HPD (column 3).

55



Chapter 5

Concluding Remarks

In this work, we were concerned with estimating and mapping the relative risk associated

to a given event when available data is underreported. Particularly, we approach the

problem of underreporting in the counts of early neonatal mortality (ENM) registered in

public hospitals of Minas Gerais State, Brazil, between 1999 and 2001.

The ENM is a serious public health problem. Thus, the precise mapping of its relative

risk is an important tool to define adequate health policies to reduce it. A big challenge

for statisticians is to propose models capable to provide good estimates of the associated

risks in the presence of underreported data. Assuming the information from suspect

areas as censored information, Bailey et al. (2005) consider the Censored Poisson model

(CPM) proposed in Famoye and Wang (2004) for handling that kind of data.

As a limitation, the CPM assumes that all censored regions are precisely known a

priori, which is not a simple task in many practical situations. Then, we propose in

this work the Random Censoring Poisson model (RCPM) as an alternative for jointly

estimate the relative risk and the underreporting probability in each region of the map,

instead of using a fixed vector to indicate the censured ones. Proposing the RCPM was

our main contribution.

The simulation studies involving the CPM (Section 2.3) was another contribution

of this work because this kind of study for the CPM in the context of underreported

data is not presented in Bailey et al. (2005) neither in other papers. We obtained some

interesting results from that studies and they are summarized in Section 2.3.4.

Also, in Section 3.4 some simulated data were considered to compare the estimates for

the relative risks provided by the proposed RCPM and the CPM with different specifica-

tions. In summary, we conclude that quality of the estimates provided by CPM depends

on the proportion of correct information about the true censoring mechanism used to gen-

erate the data that is supplied to the model. RCPM and CPM provide similar estimates
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depending on the number of censored regions in the generated data and the proportion

of such regions that is correctly informed to the CPM. Under RCPM, the underreporting

probabilities p were estimated with a very small variability and, in general, the posterior

estimates of p are quite close to its prior expected mean. Summarized conclusions are

provided in Section 3.4.5.

The relative risk of ENM in Minas Gerais State was estimated in Chapter 4 using both

RCPM and CPM. For the CPM we considered three different fixed censoring criteria.

Independently on adopted censoring criterion, the CPM seems to provide better esti-

mates in regions with suspect underreporting if compared with the maximum likelihood

estimates under the standard Poisson model (Section 2.1). However, the estimation using

the CPM seems to be highly affected by the pre-established censoring criterion, because

the estimate for the risk is always dramatically increased when a region is censored.

Regarding to the estimates provided by the RCPM, in regions having a posterior esti-

mate for the underreporting probability greater than 0.75 the RR’s estimate is increased

if compared with the maximum likelihood estimates under the standard Poisson model.

In non-censored regions under CPM or in regions where the posterior estimate for

the underreporting probability is low (smaller than 0.45) under RCPM, the 95% Highest

Posterior Density interval discloses there is a small variability in the estimation of the

ENM’s relative risk.

From all studies presented in this work, we notice that estimates using CPM are highly

affected by the pre-establishment of a censoring criterion and the choice of a specific

criterion as well as the comparison between the estimates provided by different criteria is

quite complicated. Therefore, seems to be more appropriate to model the underreporting

probabilities using the proposed RCPM than guaranteeing with probability 1.0 which are

the censored regions.

The censoring mechanism used in the proposed model (Chapter 3) can be easily ap-

plied in other case studies. For our particular problem involving the ENM data in Minas

Gerais State, several other specifications for the logit function in (3.4) can be thought.

For example, the underreporting probabilities can be modeled using other quantities be-

sides the Adequacy Index in a way to give higher underreporting probabilities for the

regions in the North of MG than those probabilities that was obtained in this application.

By doing this, we may achieve higher estimates for the relative risk in the North of the

State, as expected for this region of MG by the experts in mortality. Also, a sensibility

analysis involving other choices for the prior distributions assigned to all parameters of

the RCPM must be done.

Extensions to more general specifications of the proposed model , e.g., including spa-
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tial random effects in the linear predictor of the relative risks or considering a clustering

structure between the regions in the map, are some ideas for future research. Moreover,

the RCPM presented in this work can be easily extended to model count data subject to

overreporting or even more general misclassification.

Although we focused on the early neonatal mortality data in Minas Gerais State,

Brazil; underreporting is not an exclusive problem of this dataset. Actually, even with

the advances achieved in recent years with relation to data collection systems, the un-

derreporting of infant mortality and disease incidence has been high in the most of

the underdeveloped and developing countries, such as Afghanistan (Viswanathan et al.,

2010), China (Merli (1998) and Xu et al. (2014)) and several other countries in African,

Asia and Latin America and the Caribbean according to the World Health Organization

(WHO, 2006). Although on a smaller scale, underreporting of mortality and disease cases

is also present in more developed countries such as Japan (Campbell et al., 2011), United

States of America (Gould et al., 2002) and and Norway (Alfonso et al., 2015).

Finally, we want to emphasize that the study of methods and models to appropriately

handle underreported mortality and health data is quite important due to the context

involved since, if underreporting occurs and it is not accounted for, inference using the

observed counts will be biased and risks will be underestimated and, consequently, ap-

propriate control and intervention policies would be affected. Therefore, the problem

addressed in this work has great relevance, mainly in the practical sense.
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17(5):1083–1098.

Bailey, T. C., Carvalho, M., Lapa, T., Souza, W., and Brewer, M. (2005). Modeling of

under-detection of cases in disease surveillance. Annals of Epidemiology, 15(5):335–343.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis

for Spatial Data. Chapman & Hall/CRC.

Bernardinelli, L., Clayton, D., and Montomoli, C. (1995). Bayesian estimates of disease

maps: How important are priors? Statistics in Medicine, 14:2411–2431.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with

discussion). Journal of Royal Statistical Society, Series B, 36(2):192–236.

Besag, J. and Kooperberg, C. (1995). On conditional and intrinsic autoregressions.

Biometrika, 4(82):733–746.

59
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Pública, 16(4):1031–1040. a.

Schramm, J. M. A. and Szwarcwald, C. L. (2000b). Sistema hospitalar como fonte de

informações para estimar a mortalidade neonatal e a natimortalidade. Revista de Saúde
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