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RESUMO

Nesse trabalho uma comparação das três famı́lias de volatilidade Autoregressive Conditional

Heteroskedasticity (ARCH), Stochastic Volatility (SV) e Non-Gaussian State Space Models (NGSSM)

é feita de acordo com três diferentes métricas: ajuste, previsão e Value-at-Risk (VaR). Procedi-

mentos de inferência sobre a distribuição Skew Generalized Error são detalhados. Os respectivos

critérios de avaliação usados para cada métrica são o Critério de Informação de Akaike, Erro

Quadrático Médio das previsões um passo à frente e Cobertura Incondicional do VaR um passo à

frente. A amostra utilizada é composta por séries de retornos diários (Ibovespa, Hang Seng Index,

Merval Index e S&PTSX Index) de Janeiro de 2000 até Janeiro de 2016 ou 4000 observações, das

quais 3000 são utilizadas para estimação e 1000 são reservadas para previsão e avaliação do VaR.

As estimativas obtidas servem de base para a condução de um experimento de simulação envol-

vendo 1000 replicações de séries com o mesmo número de observações para estimação e previsão

dos dados de retorno.

Resultados das simulações indicam que o modelo SV apresenta consistentemente o melhor de-

sempenho quanto ao ajuste e previsão, ficando atrás apenas do APARCH na avaliação do VaR um

passo à frente. Conclusões para o EGARCH e o NGSSM são mistas: quanto ao ajuste, o APARCH

fica em segundo, o NGSSM em terceiro e o EGARCH em último; quanto à previsão, o EGARCH

fica em segundo, o APARCH em terceiro e o NGSSM em último; quanto ao VaR, o APARCH fica

em primeiro, o EGARCH em terceiro e o NGSSM em último. O tempo de CPU gasto na estimação

de cada modelo também é reportado e comparado: tomando o NGSSM como base, a estimação

do modelo SV demora 82 vezes mais, enquanto a estimação do APARCH demora 4 vezes mais e o

EGARCH 2 vezes mais.

Palavras-chave: Heterocedasticidade Condicional, Modelos de Espaços de Estados Não-Gaussianos,

Distribuição Skew Generalized Error, Distribuição Asymmetric Exponential Power



ABSTRACT

In this work a comparison of three families of volatility models, namely the Autoregressive

Conditional Heteroskedasticity (ARCH), Stochastic Volatility (SV) and Non-Gaussian State Space

Models (NGSSM) is made according to three different metrics: goodness of fit, forecasting and

assessing Value-at-Risk (VaR). Inference procedures under the flexible Skew Generalized Error

family of distributions is detailed. Respective evaluation criteria used for these metrics are the

Akaike Information Criterion, Mean Squared Error of one-step-ahead forecasts and Unconditional

Coverage of one-step-ahead VaR. The data used are daily asset return series (Ibovespa, Hang Seng

Index, Merval Index and S&PTSX Index) from Jan-2000 to Jan-2016, or roughly 4000 observations,

from which 3000 are used for estimation and 1000 are reserved for forecasting and VaR evaluation.

Parameter estimates serve as basis to conduct a simulation experiment which consists of 1000

replications of series with the same number of observations for estimation and forecasting as the

return data.

Simulation results indicate that the Stochastic Volatility model consistently outperforms com-

peting specifications in goodness of fit and forecasting, and ranks second (right after the APARCH)

in assessing the out-of-sample VaR. Conclusions for the EGARCH and NGSSM are mixed: in good-

ness of fit performance, the APARCH ranks second, the NGSSM ranks third and the EGARCH

ranks last; in forecasting performance, the EGARCH is second, the APARCH third and the NGSSM

last; in VaR assessment, the APARCH ranks first, the EGARCH third and the NGSSM last. CPU

time spent on the estimation of each model is also reported and compared: taking the NGSSM as

the benchmark, estimation of the SV model takes about 82 times as long, while APARCH estima-

tion takes about 4 times and EGARCH estimation about 2 times.

Keywords: Conditional Heteroskedasticity, Non-Gaussian State Space Models, Skew Generalized

Error Distribution, Asymmetric Exponential Power Distribution
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1. INTRODUCTION

Volatility plays a key role in Finance, representing the risk of an asset. It is therefore the

basis for risk management, portfolio optimization, assessing the Value-at-Risk, and the pricing of

options, futures and derivatives. Volatility is also important in Economics, where risk-averse agents

will require premia for more volatile operations, and where it can also be used as a measure of how

agents’ decisions and preferences change over time, or even to assess the non-constant variability

of economic variables such as output, money supply and inflation.

Performing statistical inference for the volatility is an issue that has received special attention.

Since volatility is non-observable, estimating it requires a specific set of techniques. Engle (1982)

proposed a conditioning argument that solves the problem for deterministic volatility dynamics.

Specifically, in his Autoregressive Conditional Heteroskedasticity (ARCH) model, volatility is a

function of past squared values of the original time series. Therefore, by conditioning on the

immediate past information set, volatility is effectively an observable quantity. Later, Bollerslev

(1986) proposed the Generalized ARCH (GARCH) model, in which the volatility is also allowed

to depend on its own past, analogously to an Autoregressive Moving Average (ARMA) model.

However, the GARCH specification is limited; according to Carnero et al. (2004), GARCH models

require additional distribution assumptions and parameter values that make the model close to

nonstationary in order to reproduce the behavior in daily series of financial returns.

An alternative to ARCH-type models is the Stochastic Volatility (SV) family of models, of which

the first was proposed by Taylor (1982) as a first-order stochastic autoregressive process for the

volatility. SV models offer a natural economic interpretation of volatility and are easier to connect

with continuous-time diffusion models, which are often used in financial theory to represent the

behaviour of financial returns. They are also found to be more flexible than ARCH-type models;

Carnero et al. (2004) show that the basic SV model is more appropriate than the GARCH model

in reproducing main empirical properties of daily returns. Another advantage is that statistical

properties of SV models are simpler to derive when compared to models from the ARCH family,

using elementary properties of stochastic processes.

However, the Stochastic Volatility family has a serious drawback: estimation techniques for its

models are much more complicated than for ARCH models, even for the canonical autoregressive

model with Gaussian innovations of Taylor (1982). There is a whole body of literature dedicated

to the estimation of SV models, which is reviewed extensively in the paper by Broto and Ruiz

(2004) and in the book by Bauwens et al. (2012).

An interesting alternative to both SV and ARCH-type models is the Non-Gaussian State Space

Models (NGSSM) family proposed by Gamerman et al. (2013). The NGSSM in the volatility

context is essentially a local scale model (a multiplicative local level model) where the dynamic

level has a Beta evolution. This evolution may seem restrictive at first, but it allows for exact

likelihood inference, filtering and smoothing; furthermore, observations are allowed to follow a

whole plethora of distributions as long as they can be written in a specific form. Examples of

distributions nested within the NGSSM family include the Normal, Laplace, Rayleigh, Poisson,

Weibull and Generalized Gamma, as well as the heavy-tailed distributions included in the extension

by Pinho et al. (2016), such as the Frechet, Levy, Log-gamma, Log-normal and Skew-Generalized

Error Distribution (Skew-GED).

Since it is a state space model, the NGSSM allows the volatility to have its own stochastic

process, as in the SV family. Furthermore, likelihood inference for these models is straightforward,



2

since the marginal likelihood of hyperparameters is available in closed form. Therefore, the NGSSM

family seems to capture advantages of both SV and ARCH models: it allows for flexible speci-

fications, but it is also computationally simple. Furthermore, when compared to the traditional

lognormal SV model by Taylor (1982) and the GARCH model by Bollerslev (1986), both of which

have 3 parameters, the corresponding Gaussian NGSSM only has 1 parameter to be estimated.

However, due to the fact that the NGSSM family is relatively recent, there have been few

comparison studies between these three families. The works of Pinho and Santos (2013) and Pinho

et al. (2016) suggest that the NGSSM family performs better than the ARCH and even than

the SV model for the series taken into account. In detail, Pinho and Santos (2013) compare the

fit of NGSSM (assuming various distributions) and the Asymmetric Power ARCH (APARCH)

model of Ding et al. (1993) for series of daily returns of financial indexes. Their conclusion is that

NGSSM outperforms APARCH when goodness-of-fit is evaluated using both Akaike and Bayesian

Information Criteria (AIC and BIC, respectively) and loglikelihood values.

The work of Pinho et al. (2016) proceeds further comparing fit and forecasting performance of

NGSSM, GARCH, Exponential GARCH (EGARCH) [Nelson (1991)] and log-t Stochastic Volatility

also for series of daily returns of financial indexes. They conclude that the NGSSM outperforms

the GARCH, EGARCH and log-t SV in fit by means of the AIC, BIC and loglikelihood and also

in forecasting by means of the Square Root of Mean Squared Error (SQRMSE), calculated for 5

pseudo-out-of-sample one-step ahead forecasts.

Most of the literature on volatility models consists of new proposals along with a limited com-

parison between the new model and a few already established others. Examples include Chan and

Gray (2006), which introduce the AR-GARCH-EVT model and compares it with parametric and

nonparametric VaR approaches in a forecasting and conditional/unconditional coverage context

using electricity return data; Omori et al. (2007), which extend the MCMC-based estimation ap-

proach proposed by Kim et al. (1998) to allow for a leverage effect and compares it to competing

SV specifications on the basis of the marginal likelihood using japanese stock return data and De-

schamps (2011), which introduces a new version of the local scale model of Shephard (1994a) and

compares it with t-GARCH and lognormal SV models by means of Bayes factors using exchange

rate and stock return data.

However, some papers that exclusively concern themselves with comparing models from dif-

ferent families can also be found. In a forecasting context, examples include Hansen and Lunde

(2005), which compare a variety of ARCH-type models by means of tests for Superior Predic-

tive Ability and Reality Check for data snooping using daily exchange rate and intraday stock

return data and Iltuzer and Tas (2013), which compare naive volatility estimation approaches with

ARCH-type and SV models on the basis of Superior Predictive Ability, Reality Check and Model

Confidence Set in different forecast horizons using stock return data.

In a Value-at-Risk context, examples include So and Yu (2006), which compare ARCH-type

models by assessing VaR estimation accuracy at various confidence levels on long and short posi-

tions using stock return and exchange rate data and Angelidis et al. (2004), which also compare

ARCH-type models for stock return data, but assessing one-step-ahead VaR forecasts.

Finally, in the goodness of fit context, examples include Nakajima (2012), which compares SV

and ARCH models by means of the marginal likelihood using daily individual securities, stock

return and exchange rate data and Silva et al. (2015), which compares ARCH models on the basis

of the Akaike Information Criterion using daily stock return data.

A thorough review of the current state of the literature on volatility model comparison does
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not suggest a clear prevalence of any family of models, even if the interest is limited to one specific

criterion. This work is expected to fill in this suggested gap in the literature, providing relevant

empirical results and an extensive simulation experiment specifically designed for the comparison

of the most utilized volatility models in practice so far. Another important point of interest to the

applied use of these models is a comparison of computational time, especially in financial markets,

where the number of assets in a portfolio tend to be very large.

The objectives of this work are summarized below, in no particular order.

1. Provide an accessible reference for the properties and inference techniques for the families of

models presented here, specifically when a skewed and leptokurtic distribution (such as the

Skew-GED) is assumed for the error terms.

2. Determine a family of models as being the most adequate for each metric: goodness of fit,

forecasting and Value-at-Risk.

3. Draw conclusions about which features/stylized facts influence model performance the most,

overall and for each criteria.

4. Establish a trade-off between accuracy and computational efficiency between models.

The next section details the relevant volatility families and their respective inference procedures,

as well as important stylized facts of financial data and respective model evaluation criteria.

2. VOLATILITY MODELS

Consider a stochastic process {Xt}∞t=0 with conditional mean E(Xt|Ψt−1), in which E denotes

the expectation operator and Ψt = (X0, x1, . . . , xt)
′ is the information set of Xt, with X0 denoting

previously available information about the process and xt denoting a realization of Xt. Volatility

models are commonly written as a product of two independent stochastic processes, such as

xt − E(Xt|Ψt−1) = yt = σtεt, εt ∼ (0, 1), (1)

σt = σ(Ft−1)

for t = 1, . . . , n, where yt is a realization of {Yt}∞t=0 and εt is a white noise. The volatility σt > 0

can be represented by any measurable positive function of the sigma-algebra generated by Ψt−1,

denoted by Ft−1. This set includes not only past values of Xt but also those of Yt and past

volatility values.

The volatility σt rescales the conditional distribution of yt for each time t while allowing for

an underlying constant scale E[σt] = σ∗, which is assumed finite and constant over time. That is,

the law of yt obeys V[yt|ψt] = σ2
t and V[yt] = σ2

∗, where V denotes the variance operator, ψt =

(Y0, y1, . . . , yt)
′ denotes the information set of Yt and Y0 denotes previously available information.

Under these assumptions, a non-constant conditional variance is consistent with first and second-

order stationarity of Yt as is a non-constant conditional mean. Note that although yt|ψt−1 is

serially uncorrelated, it is not serially independent since its variance is a function of the past; this

is an important point and plays a crucial role in the identification of volatility models.

If a time series exhibits non-constant conditional variance, it is said to be conditionally het-

eroskedastic. This type of heteroskedasticity induces unconditional but not necessarily conditional

leptokurtosis. For example, if we assume εt has a mesokurtic distribution (such as the Gaussian),
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the conditional kurtosis equals 3, but the unconditional kurtosis is K[yt] =
3E[σ4

t ]

(E[σ2
t ])2

which is greater

than or equal to 3 by Jensen’s inequality. In essence, this means that if volatility is time-varying,

the unconditional distribution of yt will have higher probability for outliers, even if the distribution

of εt does not.

When the error term is also leptokurtic, the unconditional tails of yt will be even thicker. This

behavior is relevant in practice, since volatility models are usually employed in data exhibiting

not only leptorkutic but also skewed behavior [see. Lambert and Laurent (2002)]. In this case,

the assumption of normality might be too restrictive; it can be relaxed by instead assuming that

the error term follows a Skew Generalized Error Distribution (or Asymmetric Power Exponential

Distribution). Reparameterized to have zero mean and unit variance, the density function of a

Skew-GED variate is

f(x) =
ν

τΓ(1/ν)

κ

1 + κ2
exp

{
−
[(

κ(x− π)+

τ

)ν
+

(
(x− π)−

τκ

)ν]}
, x ∈ R,

where ν > 0 is a shape/tail thickness parameter, κ > 0 is an asymmetry parameter, τ =[
Γ(3/ν)
Γ(1/ν)

1+κ6

κ2(1+κ2) −
Γ2(2/ν)
Γ2(1/ν)

(1−κ2)2

κ2

]−1/2

> 0 is a scale parameter, π = −τ
(

1
κ − κ

)
∈ R is a loca-

tion parameter, x+ = xI{x ≥ 0} and x− = −xI{x ≤ 0}, with I{x ∈ A} denoting the indicator

function of x in set A.

We denote a normalized Skew-GED random variable by X ∼ SGED(κ, ν). This distribution

includes several others such as the Gaussian and Laplace - as well as their skewed versions - as

special cases; see Table 1 for details. The parameterization of the Skew-GED used here is due

Ayebo and Kozubowski (2003).

If εt ∼ SGED(κ, ν), applying the Jacobian transformation to εt = yt/σt gives the density of yt,

1

σt
f

(
yt
σt

)
=

1

σt

ν

τΓ(1/ν)

κ

1 + κ2
exp

{
− 1

σνt

[(
κ(yt − π)+

τ

)ν
+

(
(yt − π)−

τκ

)ν]}
, yt ∈ R. (2)

Now, in order to simplify notation, define Yt and St to be the row vectors of realizations and

volatilities up to time t, i.e. Yt = (Y0, y1, . . . , yt)
′ and St = (σ1, . . . , σt)

′. The joint loglikelihood of

(Yn, Sn) of a sample of size n is

logL(ϕ|Yn, Sn) =

n∑
t=1

{
− log σt + log

ν

τΓ(1/ν)

κ

1 + κ2
− 1

σνt

[(
κ(yt − π)+

τ

)ν
+

(
(yt − π)−

τκ

)ν]}
,

(3)

where ϕ is a p× 1 vector of parameters which includes κ, ν and hyperparameters of the volatility.

Since performing an inverse probability transformation on a Skew-GED variate is not possible,

generating draws from this distribution might seem difficult. However, Ayebo and Kozubowski

(2003) exploit the relationship between the Skew-GED and the Gamma distribution to derive a

simple pseudorandom number generator algorithm, stated in Algorithm 1 for convenience.

Although the probability density function of a Skew-GED variate is available in analytical form,

its distribution and quantile functions are not; they depend respectively on the incomplete Gamma

function and its inverse, both of which must be evaluated numerically. A simple solution to this

problem is to use Algorithm 1 to draw samples from the Skew-GED distribution and then calculate

its empirical distribution function and quantiles. A simulation size of 10000 draws seems to be

enough for most practical applications.
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Algorithm 1 Skew-GED random number generator.

1: draw G ∼ Gamma(1/ν, 1)
2: draw U ∼ Uniform(0, 1)

3: if U < κ2

1+κ2 then

4: set I = 1
κ

5: else
6: set I = −κ
7: end if
8: return X = π + τIG1/ν ∼ SGED(κ, ν)

Table 1. Special cases of the skew-GED distribution.

Distribution ν κ Kurtosis Skewness

skew-GED any any any skewed

GED any = 1 any symmetric

skew-Normal = 2 any mesokurtic skewed

Normal = 2 = 1 mesokurtic symmetric

skew-Laplace = 1 any leptokurtic skewed

Laplace = 1 = 1 leptokurtic symmetric

Uniform →∞ any platykurtic symmetric

A vast body of research on volatility concerns financial time series, specially daily asset return

data. It might be therefore relevant to study their behavior beforehand when considering models for

the volatility. Stylized facts found in financial data usually serve as a starting point for proposing

model extensions. The pioneer work of Mandelbrot (1963) is perhaps the most important example;

he noted that large (small) returns are followed by large (small) returns, giving rise to temporal

clusters in their variability. He named this behavior ”volatility clustering”, and it essentially refers

to the fact that there is an autoregressive dependence in the volatility, which is a fundamental

property of volatility models. Another observation made by the same author is that the distribution

of returns are usually leptokurtic, being more propense to outliers than a Gaussian distribution.

Other important stylized facts about financial returns are the leverage effect and long memory

in the volatility. The leverage effect was first discovered by Black (1976), which found that volatility

responds asymmetrically to negative and positive returns of the same magnitude. This finding is in

accordance with the financial theory that a decrease in the price of an asset leads to an increase in

its debt/equity ratio (financial leverage) and therefore in its volatility (financial risk), in addition

to the increase in the risk that occurs due to the (absolute) variation of returns. The presence of

long memory dependence in the volatility was first noted by Ding et al. (1993), which found that

the daily absolute returns (a common proxy for the volatility) of the S&P500 presented positive

autocorrelations of lag up to and above the order of 2500 and proceeded to propose a model in

order to capture this and a myriad other stylized facts.

2.1. Model Evaluation Criteria

The most straightforward way to compare the goodness of fit between volatility models is to

use the joint loglikelihood function (3). However, this is not adequate since model complexity

varies between specifications; rather, an information criterion, which is a loss function of both the
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likelihood and the number of estimated parameters should be used. The one adopted in this work

is the Akaike information criterion (AIC), due Akaike (1974).

The AIC expresses the information lost - measured by the Kullback-Leibler divergence - when

approximating the true data generating process by an estimated model. Therefore, minimizing

AIC is equivalent to obtaining the best fit. Scaled for sample size, its expression is

AIC(p) = − 2

n

(
logL(ϕ|Yn, Sn)− p

)
,

where n is the sample size, L(ϕ|Yn, Sn) is the joint likelihood in (3) and p is the number of model

parameters.

Evaluating the goodness of fit of a model is referred to as in-sample evaluation, reflecting the

fact that only available information in the moment of estimation is used. However, when there is an

interest in predicting future values, out-of-sample evaluation techniques should be used; they are

also named ”pseudo-out-of-sample” in order to reflect the fact that some observations are treated

as unknown for model estimation but are subsequently used for evaluation.

The out-of-sample comparisons in this work are done in two separate contexts: forecasting

volatility and Value-at-Risk. Forecasts in general are obtained as a minimization of a loss func-

tion, which penalizes deviations from the true value. A common loss function is the quadratic,

expressed as L[σt(h)] = E{[σt(h)−σt+h]2|ψt} where σt(h) is the h-step ahead forecast. It is a well-

known result [Hamilton (1994)] that L[σt(h)] is minimal at σ̃t(h) = E(σt+h|ψt), the conditional

expectation of σt+h over the information set ψt and henceforth denoted by σt+h|t.

Forecasts of an estimated model are obtained by straightforward substitution of the popula-

tional parameter vector ϕ by its estimate ϕ̂ in the forecast equation σt+h|t; the estimated forecast

is denoted by σ̂t+h|t. The quadratic loss function above can then be used to compare the over-

all forecasting performance across models; its sample counterpart, known as mean squared error

(MSE), is expressed by

MSE(k) =
1

k

n+k∑
t=n

(σ̂t+h|t − σ̌t)2

where k is the number of performed forecasts, n is the sample size used for estimation and σ̌t is

the true volatility. Usually in practice the true volatility is not available, and must be replaced

by a proxy; the absolute demeaned returns is fairly adequate for this purpose, as it has the same

unconditional expectation as the volatility.

The Value-at-Risk (VaR) is a very useful tool in risk management. It is defined as the loss

corresponding to the α%th percentile of the distribution of returns over the next N days. In other

words, it measures the loss over the next N days that is exceeded only α% of the time. The N -day

h-step-ahead out-of-sample VaR is expressed as

VaRt+h|t(N,α) = −
√
Nσ̂t+h|tSGEDα(κ, ν),

where SGEDα(κ, ν) denotes the α% quantile of the Skew-GED distribution. As stated before, it is

a good idea to calculate this quantile by taking the empirical quantile of a pseudorandom sample

drawn using Algorithm 1. Mathematically, the predicted VaR is essentially the α% quantile of the

distribution of returns, scaled by the forecasted volatility and the square root of the number of

days. Since the VaR expresses a positive loss, the negative of this quantile is used.

A simple method to evaluate out-of-sample Value-at-Risk is the unconditional VaR coverage,
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which is based on Christoffersen (1998). First consider the following indicator function, also known

as hit function,

Ht+h|t(N,α) =

{
1, yt+h ≤ −VaRt+h|t(N,α)

0, yt+h > −VaRt+h|t(N,α)

defined for t = n, . . . , n+ k. If the predicted VaR is correct, it is expected that P[Ht+h|t(N,α) =

1] = α. Therefore, the quantity

UC(k) = |α− α̂|,

where α̂ = 1
k

∑n+k
t=n Ht+h|t(N,α) is the estimated probability that the loss exceeds the predicted

VaR, can be used to assess peformance between competing models. Although the sign of the

difference (α−α̂) is usually ignored, it has a financial interpretation: if the unconditional coverage is

positive (negative), the VaR is said to be conservative (risky), since the loss is being underestimated

(overestimated).

In the remainder of this section, we present the three volatility families used in this work.

2.2. Autoregressive Conditional Heteroskedasticity

Introduced in Engle (1982), the Autoregressive Conditional Heteroskedasticity (ARCH) is a

model for the square of the volatility, which is a function of past squared returns. The main

assumption made in the ARCH family is that by conditioning on the information set ψt−1, volatility

at time t is an observable volatility. This essentially means that, once the past of a time series is

known, its next-period volatility is deterministic. ARCH-type models are also commonly referred

to as conditional volatility models.

The canonical model in the ARCH family is the Generalized ARCH (GARCH) proposed in

Bollerslev (1986), which is an extension of the original ARCH model to allow for the squared volatil-

ity to also depend on its past values. While the original ARCH model allows for an autoregressive

representation in the squared returns, the GARCH allows for an autoregressive moving-average

representation.

Two specifications for the volatility in the ARCH family are considered here: the Asymmetric

Power ARCH (APARCH) of Ding et al. (1993) and Exponential Generalized ARCH (EGARCH)

of Nelson (1991). The APARCH nests at least 9 other popular ARCH models (see Table 2) and

the EGARCH is closely related to the Stochastic Volatility model of the next subsection. Since

most of the literature on ARCH models consider only one-period (Markovian) dependence on the

volatility, that is the case which is presented here.

The APARCH is defined as

yt = σtεt = (σδt )
1/δεt, εt ∼ SGED(κ, ν)

σδt = ω + α(|yt−1| − γyt−1)δ + βσδt−1, (4)

for t = 1, . . . , n, where ω > 0 is a constant, α ≥ 0 is an autoregressive parameter, −1 < γ < 1 is a

leverage effect parameter, β ≥ 0 is a moving average parameter and δ ≥ 0 is a power transformation

parameter. These parameter constraints are necessary only to ensure that σδt is positive.

In regard to stylized facts, the APARCH is capable of not only reproducing volatility clustering

and leptokurticity, but also the leverage effect and even a limited form of long memory. To see
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how the parameter γ captures leverage, let β = 0 and δ = 2. Then,

σδt =

{
ω + α(1− γ)2y2

t−1, yt−1 ≥ 0,

ω + α(1 + γ)2y2
t−1, yt−1 ≤ 0.

Therefore, if γ > 0, negative returns increase the volatility more than positive returns of the same

magnitude, which is precisely what the definition of leverage requires.

A last stylized fact captured by the APARCH is long memory in the volatility. Although

the precise definition of long memory within volatility models is given in Baillie et al. (1996) as

an analogue of Autoregressive Fractionally Integrated Moving Average (ARFIMA) models, Ding

et al. (1993) adopt the long memory definition of a slower/hyperbolic decay of autocorrelations,

and show that the APARCH is capable of reproducing that behavior for certain values of δ. This

parameter allows for greater flexibility within the volatility specification compared to competing

ARCH models, since it relaxes the usual assumption that volatility must be expressed either as a

conditional standard deviation (δ = 1) or variance (δ = 2).

One-step-ahead predictions under the APARCH model are given by

σδt+1|t = ω + α(|yt| − γyt)δ + βσδt . (5)

The EGARCH is defined as

yt = σtεt = exp(0.50 log σ2
t )εt, εt ∼ SGED(κ, ν)

log σ2
t = ω + θεt−1 + γ(|εt−1| − E|εt−1|) + β log σ2

t−1, (6)

for t = 1, . . . , n, where ω is a constant, θ is a leverage effect parameter, γ is a magnitude change

parameter, β is a moving average parameter and E|εt| = 1
Γ(1/ν)

κ
1+κ2

[
τΓ(2/α)(1+κ4)

κ2 + πΓ(1/α)(1−κ2)
κ

]
is the expectation of the absolute value of εt under the Skew-GED distribution.

The logarithmic transformation in the EGARCH ensures that the volatility σt is always positive,

and therefore there are no positivity constraints on the parameters. However, in order for the model

to properly reproduce the volatility clustering property, it is required that −γ < θ < γ and β ≥ 0.

Under these conditions, large (small) innovations will increase (decrease) volatility, as the definition

of clustering requires.

Regarding other stylized facts, the EGARCH is capable of capturing the leverage effect through

the parameter θ. If β = 0 and γ = 0, log σ2
t = ω + θεt−1. That is, for θ < 0, log σ2

t is larger

(smaller) than its mean if εt−1 (and thefore yt−1) is negative (positive). The behavior captured by

the parameter γ is also noteworthy: provided that γ > 0, innovations larger (smaller) than their

expectation increase (decrease) volatility.

One-step-ahead forecasts under the EGARCH model are given by

log σ2
t+1|t = ω + θεt + γ(|εt| − E|εt|) + β log σ2

t . (7)

Estimation of ARCH-type models by maximum likelihood is rather straightforward, and pro-

ceeds as follows: given a sample Yn = (Y0, y1, . . . , yn)′, set quantities at t = 0 at their unconditional

expectations and write the volatility recursively for t = 1, . . . , n using (4) for the APARCH and

(6) for the EGARCH. An explicit expression for the joint loglikelihood in (3) as a function of the

parameter vector ϕ is then obtained, and it can be maximized using a numerical optimization
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Table 2. Special cases of the APARCH model.

Model δ γ(1) β(L) Author

APARCH any any any Ding et al. (1993)
NARCH any = 0 = 0 Higgins and Bera (1992)
AGARCH = 2 any any Meitz and Saikkonen (2011)
GJR-GARCH = 2 any any Glosten et al. (1993)
GARCH = 2 = 0 any Bollerslev (1986)
ARCH = 2 = 0 = 0 Engle (1982)
TGARCH = 1 any any Zakoian (1994)
TARCH = 1 any = 0 Rabemananjara and Zakoian (1993)
Taylor/Schwert = 1 = 0 any Taylor (1986), Schwert (1990)
log-ARCH → 0 = 0 = 0 Geweke (1986), Pantula (1986)

algorithm such as the one proposed independently by Broyden (1970), Goldfarb (1970), Fletcher

(1970) and Shanno (1970), henceforth denoted as BFGS. For the APARCH ϕ = (ω, α, β, γ, δ, κ, ν)′

and for the EGARCH ϕ = (ω, θ, γ, β, κ, ν)′.

Due to the practice of setting unobservable quantities at t = 0 at their unconditional expecta-

tions, some authors refer to the likelihood maximization procedure described above as conditional

(or approximate) maximum likelihood estimation. Having such a simple inference procedure is a

major comparative advantage of ARCH models, and what makes them so relevant in practice.

2.3. Stochastic Volatility

In the Stochastic Volatility (SV) family, volatility is driven by its own stochastic process.

Models in this family have often been used in mathematical Finance to reproduce the behavior of

prices in the stock market. Although the model exact origins are somewhat uncertain, the first

discrete-time version of the SV was proposed by Taylor (1982). In this canonical version, the log-

squared volatility follows a first-order autoregressive process with Gaussian innovations; therefore,

it is usually referred to as the lognormal SV model. A slight generalization of this model allowing

for returns to be Skew-GED distributed can be defined as

yt = σtεt = exp(ht/2)εt, εt ∼ SGED(κ, ν)

ht+1 = µ+ φht + σηηt, ηt ∼ Normal(0, 1), (8)

for t = 1, . . . , n, where ht = log(σ2
t ) is the log-squared volatility, εt and ηt are serially and mutually

independent, µ is a constant, φ is an autoregressive parameter and ση ≥ 0 is a scale parameter.

The model is initialized with h0 = 0, i.e. h1 ∼ Normal(µ, σ2
η).

As in the EGARCH, the logarithmic transformation ensures that the volatility is always positive

for any parameter values. Furthermore, when ση = 0, the SV model is equivalent to the EGARCH

with φ = β and θ = γ = 0. Since it is essentially an AR(1) model for the log-squared volatility,

properties of the SV are straightforward to derive.

The basic SV model presented in (8) is able to reproduce volatility clustering and leptokurticity,

but not long memory or the leverage effect. The leverage effect extension of the lognormal SV was

first proposed by Harvey and Shephard (1996), and consists of allowing the previous observation

disturbance εt−1 and the current state disturbance ηt to be correlated, by assuming that their

joint distribution is multivariate normal with non-diagonal covariance matrix. The long memory
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version of the lognormal SV was proposed independently by Harvey (1998) and Breidt et al. (1998),

which instead of an AR(1) considered an ARFIMA(1, d, 0) process for the volatility. However,

both generalizations require that observations be normally distributed; extending these models

for Skew-GED distributed returns is out of the scope of this work and therefore they will not be

considered here.

Statistical inference for Stochastic Volatility models is considerably more complex than it is for

ARCH models. There have been a myriad techniques proposed to estimate the canon lognormal

SV; see the excellent reviews on the subject by Broto and Ruiz (2004) and more recently by

Bauwens et al. (2012). The main problem in estimating SV models is that volatility is a function

not only of its past but also of the stochastic process ηt. Therefore, even after conditioning on past

information, volatility is still an unobservable quantity. In order to illustrate that point further,

consider the marginal likelihood of Yn,

L(ϕ|Yn) = f(Yn|ϕ) =

∫
S

f(Yn, Hn|ϕ)dHn =

∫
S

f(Yn|Hn, ϕ)f(Hn|ϕ)dHn, (9)

where Hn = (h1, . . . , hn)′ is the joint vector of log-squared volatilities and S = (0,∞)n is its

corresponding support.

While the expression for f(Yn|Hn, ϕ) is straightforward, the marginal distribution f(Hn|ϕ)

is not available in analytical form. Approximating this distribution - and therefore the joint

likelihood - is the main estimation problem in the Stochastic Volatility family. An interesting

solution is the importance sampling technique for non-Gaussian and nonlinear state space models

proposed independently by Durbin and Koopman (1997) and Shephard and Pitt (1997) and which

has been considerably improved upon in the textbook treatment given by Durbin and Koopman

(2012). It is sometimes referred to as Monte Carlo Maximum Likelihood Estimation.

Although the ideas of importance sampling are relatively simple, the estimation process is

considerably more complex. First, consider the following linear Gaussian model,

xt = ht + εt, εt ∼ Normal(0, At),

ht+1 = µ+ φht + σηηt, ηt ∼ Normal(0, 1), (10)

for t = 1, . . . , n. The model is initialized with h0 = 0, i.e. h1 ∼ Normal(µ, σ2
η). Denote by g the

densities associated with this linear state space model, and notice that the state equation in (10)

is the same as that of the Stochastic Volatility model (8), implying that f(Hn) = g(Hn).

Now, using the fact that f(Hn,Yn)
g(Hn,Yn) = f(Yn|Hn)f(Hn)

g(Yn|Hn)g(Hn) = f(Yn|Hn)
g(Yn|Hn) , rewrite the joint likelihood in

(9) as

L(ϕ|Yn) =

∫
S

f(Hn, Yn)dHn = g(Yn)

∫
S

f(Hn, Yn)

g(Hn, Yn)
g(Hn|Yn)dHn = Lg(ϕ|Yn)Eg

[
f(Yn|Hn)

g(Yn|Hn)

]
,

(11)

where g(Hn|Yn) is the smoothed Gaussian density, Lg(ϕ|Yn) = g(Yn) is the marginal Gaussian

likelihood and Eg denotes expectation with respect to g(Hn|Yn). The dependence of f and g on ϕ

was supressed to simplify notation.

Expression (11) was first proposed by Durbin and Koopman (1997) and essentially defines the

joint non-Gaussian likelihood (9) as an adjustment to a simple Gaussian density. This adjusment

term is readily estimable by importance sampling by taking g(Hn|Yn) as the importance density.

As will be made clear in what follows, drawing from this distribution is relatively straightforward,
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and therefore expression (11) is easily manageable.

In order to completely determine g(Hn|Yn) one must first appropriately specify xt and At for

t = 1, . . . , n. Examination of the non-Gaussian likelihood (11) suggests that g(Yn|Hn) should be

as close as possible to f(Yn|Hn) in a neighborhood of their mode. Durbin and Koopman (1997)

suggest using a Laplace approximation of the log-ratio of these densities to determine xt, At and the

mode vector of log-squared volatilites Hn, denoted by Ĥn. Conditional independence of (Hn, Yn)

under both Gaussian and non-Gaussian densities implies that f(Yn|Hn)
g(Yn|Hn) =

∏n
t=1

f(yt|ht)
g(yt|ht)

; therefore,

the log-ratio between these two densities is given by

l(Hn) =

n∑
t=1

[log f(yt|ht)− log g(yt|ht)] ,

where the dependence of l on Yn was dropped since it is assumed to be fixed when determining

the mode.

It follows that xt and At are obtained as the solutions of ∂l(ht)/∂ht = 0 and ∂2l(ht)/∂h
2
t = 0

at ht = ĥt, for t = 1, . . . , n. That is,

At =
4

ν2
exp

(
νĥt
2

)[(
κ(yt − π)+

τ

)ν
+

(
(yt − π)−

κτ

)ν]−1

and xt = ĥt −
1

2
At +

2

ν
. (12)

However, the expressions obtained for xt and At are still functions of the unknown mode ĥt.

Therefore, a Newton-Raphson procedure must be employed to iteratively solve for this mode.

Exploiting the linear and Gaussian structure of g(Hn|Yn) allows the use of the Kalman filter

and smoother to calculate the next guess of the iterative procedure; this is computationally more

efficient than using the Newton-Raphson algorithm directly. Note that this is only possible due to

equality between mean and mode under the Normal distribution.

Denote by at|t−1 = E[ht|Yt−1] and Pt|t−1 = V[ht|Yt−1] the filtered estimate of ht and its

respective variance, by at|t = E[ht|Yt] and Pt|t = V[ht|Yt] the updated estimate of ht and its

respective variance and by at|n = E[ht|Yn] and Pt|n = V[ht|Yn] the smoothed estimate of ht and

its respective variance. The Kalman filter and smoother for the linear state space model (10) is

given in Algorithm 2.

Algorithm 2 Kalman filter and smoother for the linear state space model (10).

1: initalize a0|0 = µ and P0|0 = 107

2: for t = 1, . . . , n do
3: calculate at|t−1 = φat−1|t−1 + µ and Pt|t−1 = φ2Pt−1|t−1 + σ2

η

4: calculate Ft = Pt|t−1 + At, at|t = at|t−1 + Pt|t−1F
−1
t (xt − at|t−1) and Pt|t = Pt|t−1 −

Pt|t−1F
−1
t Pt|t−1

5: end for
6: for t = n− 1, . . . , 1 do
7: calculate P ∗t = φPt|tPt+1|t, at|n = at|t + P ∗t (at+1|n − φat|t) and Pt|n = Pt|t + P ∗t|t(Pt+1|n −
Pt+1|t)P

∗
t|t.

8: end for
9: return at|t, Pt|t, at|n, Pt|n, t = 1, . . . , n

To complete the iterative process to obtain the mode, the initialization conditions must be

specified. Note that the observation equation in the Stochastic Volatility model (8) implies that

E[y2
t ] = E[ht], since E[ε2t ] = 1. Therefore, taking ht ≈ log y2

t and substituting it for ĥt in (12)
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yields the initial values for xt and At. The entire process of obtaining the mode is summarized in

Algorithm 3.

Algorithm 3 Iterative process to approximate the mode of f(Hn|Yn).

1: initialize At = 4
ν2 exp

(
ν log y2t

2

) [(
κ(yt−π)+

τ

)ν
+
(

(yt−π)−

κτ

)ν]−1

and xt = log y2
t − 1

2At + 2
ν

2: compute a first guess h̃t = at|n, t = 1, . . . , n using Algorithm 2
3: repeat
4: compute the next guess h̃+

t = at|n, t = 1, . . . , n using Algorithm 2

5: calculate xt and At by taking h̃+
t = ĥt in (12)

6: until convergence
7: return Ĥn = (ĥ1, . . . , ĥn)′

Convergence to the mode is usually attained with 10 iterations or less. After obtaining the

mode, the importance density g(Hn|Yn) is completely determined and it is possible to draw from

it using the simulation procedure of Shephard (1994b), summarized in Algorithm 4. It should be

clear that the mode and random draws obtained from the importance density are conditional on

ϕ = (µ, φ, ση, κ, ν)′ known; the situation where ϕ is estimated is considered below.

Algorithm 4 Simulation procedure for drawing from g(Hn|Yn).

1: compute at|t, at|t−1, Ptt|t− 1 and Pt|t, t = 1, . . . , n using steps 1-5 of Algorithm 2.
2: draw hn|Yn ∼ Normal(an|n, Pn|n).
3: for t = n− 1, . . . , 1 do

4: draw ht|ht+1 ∼ Normal

{
at|t +

φPt|t(ht+1−at+1|t)

Pt+1|t
, Pt|t −

φ2P 2
t|t

Pt+1|t

}
5: end for
6: return Hn = (h1, . . . , hn)′

When simulating from g(Hn|Yn), computational efficiency can be increased by employing an-

tithetic variables. As Durbin and Koopman (2012) defines, an antithetic variable is a function

of a random drawn of Hn which is equiprobable with Hn and which increases the efficiency of

the estimation when included in the drawing process. The first antithetic variable used here is

Ȟn = 2Ĥn −Hn; since Hn is Gaussian with mean Ĥn, it is straightforward to verify that Ȟn has

the same distribution as Hn. Whenever this antithetic variable is used, the simulation sample is

said to be balanced for location.

The second antithetic variable used here was developed by Durbin and Koopman (1997). Let

Un be the vector of the n Normal(0, 1) variables used in the simulation procedure to generate Hn

and let c = U ′nUn; then c ∼ χ2
n, where χ2

n denotes a chi-squared distribution with n degrees of

freedom. For a given value of c let q = P(χ2
n < c) = F (c) be the distribution function of c and

ć = F−1(1−q) be the quantile function of c; moreover, note that c and ć have the same distribution.

Noting that c and (Hn−Ĥn)/
√
c are independently distributed, two additional antithetic variables

can be constructed: H́n = Ĥn +
√

ć
c (Hn − Ĥn) and H̀n = Ĥn +

√
ć
c (Ȟn − Ĥn). When these two

antithetics are used, the simulation sample is said to be balanced for scale. By using both types

of antithetic variables a set of four equiprobable values of Hn are obtained for each run of the

simulation procedure, yielding a simulation sample which is balanced for both location and scale.

The primary objective of importance sampling here is to estimate the unknown parameter

vector ϕ. In order to accomplish that, it is first necessary to estimate the joint likelihood (11) by

simulation and maximize it numerically with respect to ϕ. The estimate of the logarithm of (11)
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is

log L̂(ϕ|Yn) = logLg(ϕ|Yn) + log w̄ +
S2
w

2Nw̄2
, (13)

whereN is the number of simulations and w̄ = (1/N)
∑N
i=1 wi, with wi = w(H

(i)
n , Yn) = f(H

(i)
n , Yn)/g(H

(i)
n , Yn)

denoting the importance weights and H
(i)
n = (h

(i)
1 , . . . , h

(i)
n )′ denoting the vector of log-squared

volatilities generated for i = 1, . . . , N . The last term is a necessary bias correction when tak-

ing the logarithm of the likelihood, since E[log w̄] 6= logEg[wi] and its numerator is given by

S2
w = 1

N−1

∑N
i=1(wi − w̄)2; see Durbin and Koopman (1997) for a detailed proof.

The Gaussian loglikelihood logLg(ϕ|Yn) can be evaluated by the Kalman filter using the predic-

itve error decomposition. That is, after obtaining at|t and Ft from steps 1-5 of Algorithm 2,

compute

logLg(ϕ|Yn) = −1

2

n∑
t=1

[
log 2π + logFt +

(xt − at)2

Ft

]
. (14)

The only quantity remaining to be determined for the estimation process are the impor-

tance weights wi. Since f(yt|h(i)
t ) is given in (2) by taking σt = exp(h

(i)
t /2) and g(yt|h(i)

t ) =

Normal(h
(i)
t , At),

wi = exp

{
− 1

2

n∑
t=1

[
h

(i)
t +

2

exp(νh
(i)
t /2)

[(
κ(yt − π)+

τ

)ν
+

(
(yt − π)−

κτ

)ν]

− 2 log

[
ν

τΓ(1/ν)

κ

1 + κ2

]
− log 2π − logAt −

(
xt − h(i)

t√
At

)2 ]}
. (15)

After drawing N samples of Hn and calculating the loglikelihood estimate (13) it is possible

to maximize it with respect to ϕ using an iterative maximization process such as the BFGS.

Each iteration of the procedure is started with an initial guess of ϕ given by first maximizing the

approximate joint loglikelihood

log L̂(ϕ|Yn) ≈ logLg(ϕ|Yn) + logw(Ĥn), (16)

where w(Ĥn) = f(Ĥn, Yn)/g(Ĥn, Yn).

The entire estimation procedure of the Stochastic Volatility model (8) using importance sam-

pling can be summarized in Algorithm 5

Algorithm 5 Importance sampling estimation of ϕ.

1: initialize with a guess ϕ̃
2: repeat
3: compute Ĥn = (ĥ1, . . . , ĥn)′ using Algorithm 3 conditional on ϕ̃.
4: compute an intermediate guess ϕ̌ by maximizing the approximate loglikelihood (16) using

the BFGS numerical procedure conditional on ϕ̃

5: sample H
(i)
n , i = 1, . . . , N using Algorithm 4 and calculate the antithetic variables Ȟn, H́n

and H̀n conditional on ϕ̌
6: evaluate the Gaussian loglikelihood in (13) using steps 1-5 of Algorithm 2 conditional on ϕ̌
7: compute importance weights wi, i = 1, . . . , N using (15) conditional on ϕ̌
8: estimate the joint loglikelihood (13) and compute a new guess ϕ̃ using the BFGS algorithm

conditional on ϕ̌
9: until convergence to ϕ̂ = arg max

ϕ∈Φ
L(ϕ|Yn)

10: return ϕ̂
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For numerical stability of the optimization process, Durbin and Koopman (2012) suggest using

the same random numbers to generate the states from the importance density in step 5 of Algorithm

5 for each value of ϕ. This will ensure that the loglikelihood is a smooth function of the parameters.

Two other functions of interest to estimate using importance sampling are the smoothed states

at|n = E(ht|Yn) and their respective variances Pt|n = V(ht|Yn), for t = 1, . . . , n. A simple

manipulation of conditional densities similar to that done in (11) yields their respective expressions,

at|n =
Eg[htw(ht, Yn)]

Eg[w(ht, Yn)]
and Pt|n =

Eg[h
2
tw(ht, Yn)]

Eg[w(ht, Yn)]
− a2

t|n. (17)

Conditional on ϕ̂, their respective estimates are given by

ât|n =

N∑
i=1

w̃
(i)
t h

(i)
t and P̂t|n =

N∑
i=1

w̃
(i)
t h

(i)2
t − â2

t|n, (18)

for t = 1, . . . , n, where w̃
(i)
t = w(h

(i)
t , Yn)/

∑N
i=1 w(H

(i)
n , Yn) are the normalized importance weights.

One-step-ahead forecasts under the SV model are given by

ht+1|t = µ+ φht. (19)

2.4. Non-Gaussian State Space Models

The last and most recent family of models considered here is the Non-Gaussian State Space

Models (NGSSM) family proposed in Gamerman et al. (2013) and extended in Pinho et al. (2016) to

include heavy-tailed distributions. In the volatility context, the NGSSM is essentially a dynamic

scale model with Beta innovations, allowing for a variety of distributions for the observations,

including most members of the exponential family. It is defined as

yt = σtεt = λ
−1/ν
t εt, εt ∼ SGED(κ, ν)

λt+1 = w−1
t+1λtςt+1, ςt+1|Yt ∼ Beta (wat, (1− wt+1)at) , (20)

for t = 1, . . . , n, where λt = σ−νt > 0 is the dynamic level, 0 < w ≤ 1 is an autoregressive

parameter, at is defined in (22) and wt = exp{Ψ(wat−1) − Ψ(at−1)} with Ψ(·) denoting the

digamma function. The model is initialized with λ0|Y0 ∼ Gamma(a0, b0) where a0 and b0 are

positive arbitrary constants.

Since the Non-Gaussian State Space Models are relatively recent in the literature, the only

known extension proposed so far in this family is the heavy-tailed distribution and scale modelling

generalization proposed by Pinho et al. (2016). Therefore, although it has a very flexible form, in

terms of stylized facts the basic NGSSM model (20) can only reproduce volatility clustering and

leptokurticity.

The role of the parameter w is similar to that of a discount factor: only 100wt% of the in-

formation (in terms of precision) is retained from one period to another. To see this, note that

V(λt|Yt−1) = w−1
t V(λt−1|Yt−1). Note also that E(λt|Yt−1) = E(λt−1|Yt−1); that is, the conditional

mean of the dynamic level does not change over time.

Another interesting fact about the NGSSM is that the multiplicative evolution equation can

be rewritten as a logarithmic random walk with Beta-scaled innovations. That is, after applying
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the logarithm on both sides of the evolution equation in (20), it becomes

log(λt) = log(λt−1) + ς∗t ,

where ς∗t = log(ςt/wt) ∈ R. This equation is very similar to that of a local level model, therefore

reinforcing the idea that the NGSSM has by definition a nonstationary variance (though it has a

stationary mean).

Analogous to the SV model, in the NGSSM volatility is also driven by its own stochastic

process. However, in terms of inference the latter has several advantages over the former. Part 3 of

Theorem 1 in Gamerman et al. (2013) states that under the NGSSM it is possible to analytically

integrate out the volatilities in (9), thus allowing for exact likelihood inference. This procedure

yields a marginal loglikelihood which depends only on ϕ and Yn, given by

logL(ϕ|Yn) =

n∑
t=1

{
log Γ(1/ν + at|t−1) + log

[
ν

τΓ(1/ν)

κ

1 + κ2

]
+ at|t−1 log bt|t−1 − log Γ(at|t−1)

− (1/ν + at|t−1) log

[(
κ(yt − π)+

τ

)ν
+

(
(yt − π)−

κτ

)
ν + bt|t−1

]}
, (21)

where

at|t−1 = wat−1, bt|t−1 = wtbt−1, (22)

at = at|t−1 + 1/ν, bt = bt|t−1 +

[(
κ(yt − π)+

τ

)ν
+

(
(yt − π)−

κτ

)ν]
.

Estimation of ϕ = (w, κ, ν)′ proceeds by straightforward maximization of the loglikelihood in

(21) using the BFGS algorithm. After estimating ϕ, it is possible to use the results from Theorem

2 and Parts 1 and 2 of Theorem 1 in Gamerman et al. (2013) to obtain exact filtered and smoothed

estimates of the joint vector Ln = (λ1, . . . , λn)′. The filtering procedure is given in Algorithm 6

and the smoothing procedure is given in Algorithm 7.

Algorithm 6 Non-Gaussian State Space Model filter.

1: initalize a0 = 100 and b0 = 100
2: for t = 1, . . . , n do
3: calculate at|t−1 = wat−1 and bt|t−1 = wtbt−1

4: calculate at = at|t−1 + 1/ν and bt = bt|t−1 +
[(

κ(yt−π)+

τ

)ν
+
(

(yt−π)−

κτ

)ν]
5: draw λt|Yt, ϕ ∼ Gamma(at, bt)
6: end for
7: return Ln = (λ1, . . . , λn)′

Algorithm 7 Non-Gaussian State Space Model smoother.

1: compute λt, at and bt, t = 1, . . . , n using Algoritm
2: draw λn|Yn, ϕ ∼ Gamma(an, bn)
3: for t = n− 1, . . . , 1 do
4: draw λt|t+1 = λt − wtλt+1|λt+1, Yt, ϕ ∼ Gamma((1− wt)at, bt).
5: calculate λt = λt|t+1 + wtλt+1

6: end for
7: return Ln = (λ1, . . . , λn)′
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The one-step-ahead predictive distribution of the dynamic level is given by

λt+1|Yt, ϕ ∼ Gamma(at+1|t, bt+1|t), (23)

where at+1|t = wtat and bt+1|t = wtbt. Forecasts are calculated by taking a summary measure of

this distribution; its expectation is given by

λ̂t+1|t =
at+1|t

bt+1|t
. (24)

3. APPLICATION

In this section an application concerning a sample of 4 daily asset return series, from Jan-2000

to Jan-2016 is made to illustrate the volatility models and evaluation criteria presented so far. The

assets are:

1. Ibovespa (BOVESPA): an index composed by a theoretical portfolio with the stocks that

accounted for 80% of the volume traded in the last 12 months and that were traded at

least on 80% of the trading days in the BM&F Bovespa Stock Exchange. In average the

components of Ibovespa represent 70% of all the stock value traded.

2. Hang Seng Index (HANGSENG): a freefloat-adjusted market capitalization-weighted stock

market index in Hong Kong. It is used to record and monitor daily changes of the largest

companies on the Hong Kong stock market and is the main indicator of the overall mar-

ket performance in Hong Kong. Its 50 constituent companies represent about 58% of the

capitalisation of the Hong Kong Stock Exchange.

3. Merval Index (MERVAL): a price-weighted index, calculated as the market value of a portfolio

of stocks selected using the 80% volume and 80% trading days criteria in the last semester

in the Buenos Aires Stock Exchange.

4. S&P/TSX Composite Index (SPTSX): an index of the stock (equity) prices of the largest

companies on the Toronto Stock Exchange as measured by market capitalization. The listed

companies in this index account for about 70% of market capitalization for all Canadian-

based companies listed.

Taking pt to represent the price of the asset (index value) at time t, daily return series are

calculated as yt = 100× [log(pt)− log(pt−1)] minus its mean. Of the 4000 collected observations,

k = 1000 - or about 4 years, from 2012 to 2016 - are reserved for forecasting evaluation, while the

remaining n = 3000 - or about the remaining 12 years, from 2000 to 2012 - are used for model

estimation and loglikelihood evaluation.

Table 3 presents summary statistics and autocorrelation tests for the return data. Some obser-

vations are in order:

· The ”Portmanteau” statistic reported on the table refers to the nonparametric test proposed

in Francq and Zakoian (2000) to test for joint absence of autocorrelation. The test is robust

to higher moment dependency in the data, such as conditional heteroskedasticity. The null

hypothesis is that the autocorrelations from orders 1 through m are jointly equal zero. Here

m ≈ log(n) = 8, as recommended in Tsay (2010) to maximize the power of the test.
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Table 3. Summary statistics for the logreturns series.

Series BOVESPA HANGSENG MERVAL SPTSX

Mean 0.0216 -0.0002 -0.0242 0.0026
Variance 3.7584 2.7477 4.6981 1.5055
Skewness -0.1086 -0.0602 -0.1295 -0.6643
Kurtosis 6.6278 10.3158 7.9756 11.9047
Maximum 13.6509 13.4028 16.0407 9.3632
Minimum -12.1217 -13.5860 -13.0274 -9.7949
Jarque-Bera 1650.9800 6691.9100 3102.8900 10132.2000
Portmanteau 8.4943 2.9338 10.4455 11.6315
Box-Pierce 1318.8600 1570.4400 1247.1500 2089.6200

Chi-squared(2) 5% quantile: 5.9915
Chi-squared(8) 5% quantile: 15.5073

· The ”Box-Pierce” statistic refers to the conventional Box-Pierce test, but applied to the

square of the series. As proved in Francq and Zakoian (2010), it is equivalent to the LM

statistic to test for conditional heteroskedasticity. The null hypothesis is that the autocor-

relations of the squares from orders 1 through m are jointly equal zero. As in the previous

test, m ≈ log(n) = 8.

· Results from the first portmanteau test indicate that at the 5% level there is no information

in the conditional mean, whereas the second portmanteau test indicate that there is in fact

temporal information in the conditional variance, for all series. This is ideal for an application

of volatility models, since it is only necessary to model the conditional variance.

· The Jarque-Bera statistic follows a Chi-Squared(2) distribution, of which the 5% quantile

is also present in the table. The null hypothesis for this is test is that data comes from a

Normal distribution, and it essentially compares deviations of skewness and kurtosis from

the Gaussian (which are respectively 0 and 3) with that of the data. The hypothesis of

gaussianity is rejected for all 4 series.

· In addition to non-gaussianity, the presence of significant negative skewness and excess kur-

tosis exhibited in these data are also stylized facts of financial series, as discussed in section

2 of this work.

In accordance to these points, Figure 1 illustrates the time series, standardized density, auto-

correlation function1 (ACF) and ACF of squares for all 4 asset returns. The ACF plots include a

nonparametric significance band, used in the portmanteau test and the ACF squared plots include

the standard Bartlett significance bands, used in the Box-Pierce test.

Parameter estimates and respective confidence intervals for all 4 volatility models presented

are contained in Table 4, and their respective CPU time spent2 are presented in Table 5. Some

interesting points to note are:

· In the APARCH, EGARCH and NGSSM models, the asymmetry parameter κ is always

greater than 1 and the tail thickness parameter ν is always between 1 and 2. The corre-

sponding distribution in this case is skewed to the right and is between a skew-Laplace and

a skew-Normal in terms of tail thickness.
1The maximum lag chosen to display the ACF is m ≈ min(10× log 10(n), n− 1) = 35.
2Computations were performed in a Core i7 Series 3 CPU.
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Table 4. Estimated parameters and confidence intervals (in brackets) for the logreturn data.

Series BOVESPA HANGSENG MERVAL SPTSX

APARCH

ω 0.058622 0.018694 0.13529 0.01639
[0.0342;0.1006] [0.012;0.0291] [0.0705;0.2595] [0.0113;0.0237]

α 0.062633 0.065541 0.088835 0.051107
[0.0432;0.0907] [0.0511;0.0841] [0.0619;0.1275] [0.0318;0.0822]

β 0.91762 0.93508 0.86968 0.93338
[0.893;0.9429] [0.9203;0.9501] [0.8335;0.9075] [0.9152;0.9519]

γ 0.58883 0.50395 0.19022 0.8101
[0.2832;0.7859] [0.2984;0.6648] [0.0798;0.2961] [-0.1653;0.9844]

δ 1.3852 1.17 2.2051 1.3754
[0.9518;2.0161] [0.8287;1.6518] [1.5833;3.0711] [1.0295;1.8377]

κ 1.0559 1.0465 1.0556 1.1154
[1.0165;1.0968] [1.0093;1.0851] [1.0143;1.0986] [1.0756;1.1567]

ν 1.7018 1.4687 1.2887 1.5771
[1.581;1.8319] [1.359;1.5873] [1.2047;1.3786] [1.4663;1.6962]

EGARCH

ω 0.091424 0.055073 0.079945 0.047208
[0.0635;0.1193] [0.0389;0.0713] [0.052;0.1079] [0.032;0.0624]

β 0.97593 0.98731 0.9719 0.98538
[0.9612;0.9851] [0.9803;0.9918] [0.9549;0.9826] [0.9785;0.9901]

θ -0.077507 -0.06125 -0.051785 -0.080142
[-0.1007;-0.0543] [-0.0813;-0.0412] [-0.0747;-0.0288] [-0.1016;-0.0587]

γ 0.12986 0.12707 0.19286 0.11266
[0.0947;0.1651] [0.0985;0.1556] [0.1479;0.2379] [0.0822;0.1431]

κ 1.0556 1.0467 1.0535 1.1128
[1.0162;1.0965] [1.01;1.0848] [1.0184;1.0898] [1.073;1.1541]

ν 1.6912 1.4615 1.2631 1.5637
[1.5716;1.82] [1.3527;1.5789] [1.1823;1.3495] [1.4536;1.6821]

NGSSM

w 0.94114 0.95087 0.92875 0.94284
[0.928;0.952] [0.9394;0.9603] [0.9138;0.9413] [0.9294;0.9539]

κ 1.0316 1.0404 1.0429 1.115
[0.9927;1.072] [1.0055;1.0766] [1.0026;1.0848] [1.0767;1.1546]

ν 1.8205 1.4842 1.4745 1.7125
[1.6724;1.9816] [1.3702;1.6077] [1.3596;1.5992] [1.5747;1.8625]

SV

µ 0.019837 0.0040052 0.038969 -0.0024313
[0.0078;0.0318] [-0.0009;0.0089] [0.0203;0.0576] [-0.0075;0.0026]

φ 0.98102 0.99159 0.96472 0.98868
[0.9705;0.9916] [0.9861;0.9971] [0.9492;0.9803] [0.9818;0.9956]

ση 0.1263 0.11061 0.23097 0.13582
[0.096;0.1566] [0.0874;0.1338] [0.1847;0.2773] [0.1061;0.1655]



19

BOVESPA 

0 1000 2000 3000

-10

0

10
BOVESPA HANGSENG 

0 1000 2000 3000

-10

0

10
HANGSENG MERVAL 

0 1000 2000 3000

-10

0

10

20
MERVAL SPTSX 

0 1000 2000 3000

0

10
SPTSX 

BOVESPA 

-5 0 5

0.2

0.4
BOVESPA HANGSENG 

-5 0 5

0.25

0.50
HANGSENG MERVAL 

-5 0 5

0.25

0.50
MERVAL SPTSX 

-5 0 5

0.25

0.50
SPTSX 

ACF-BOVESPA 

0 20 40

0.0

ACF-BOVESPA ACF-HANGSENG 

0 20 40

-0.1

0.0

0.1 ACF-HANGSENG ACF-MERVAL 

0 20 40
-0.1

0.0

0.1 ACF-MERVAL ACF-SPTSX 

0 20 40

-0.1

0.0

0.1
ACF-SPTSX 

ACF-BOVESPA^2 

0 20 40

0.2

0.4
ACF-BOVESPA^2 ACF-HANGSENG^2 

0 20 40

0.2

0.4
ACF-HANGSENG^2 ACF-MERVAL^2 

0 20 40

0.2

0.4
ACF-MERVAL^2 ACF-SPTSX^2 

0 20 40

0.2

0.4
ACF-SPTSX^2 

Figure 1. Time series, standardized densities, ACF and ACF-squared of logreturn data.

Table 5. CPU time spent (in seconds) in the estimation of each model.

Series BOVESPA HANGSENG MERVAL SPTSX

APARCH 3.094 2.797 3.235 3.453
EGARCH 1.829 1.703 1.687 1.438
NGSSM 0.859 0.828 0.86 0.953
SV 71.082 73.129 66.05 67.206
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· In the SV model the hypotheses κ = 1 and ν = 2 could not be rejected at the 5% level,

for all 4 series. Although the lack of skewness in the unconditional distribution of returns

is somewhat surprising, unconditional mesokurtosis is actually expected in a SV model. As

discussed earlier, the work of Carnero et al. (2004) argues that in comparison to ARCH-type

models the lognormal SV can reproduce a much wider range of behavior (especially excess

unconditional leptokurtosis) without the inclusion of additional parameters. Since when

κ = 1 and ν = 2 the skew-GED distribution reduces to the Gaussian, the re-estimated SV

model under these assumptions actually corresponds to the lognormal SV. Computational

efficiency gains to relaxing the skew-GED assumption are substantial, reducing CPU time

by a factor greater than 5.

· There is a vast difference between computational time amongst models: estimating the

NGSSM takes the least amount of time, and it is followed in this sense by the EGARCH,

the APARCH and the SV. Although the absolute difference in seconds might not appear

large, the relative difference is striking. For example, for the BOVESPA series, the SV model

takes roughly 83 times as long as the NGSSM model, the APARCH takes about 4 times and

the EGARCH about 2 times. Relative computational efficiency is especially important when

the number of series considered increases exponentially, as is the case in a large portfolio

management.

· All models display a strong persistence in the volatility; this is measured in the APARCH

by α + β, in the EGARCH by β, in the NGSSM by w and in the SV by φ. This is also a

stylized fact of financial series and it is to be expected. However, it is worth noticing that the

hypothesis of stationarity (tested by veryfing that the value 1 is contained in the confidence

intervals for these parameters) can not be rejected at 5% for any of these models - except

the NGSSM, which is nonstationary by construction - for any of the series.

· The leverage effect is significant in the EGARCH for all 4 series, and in APARCH for all

but the SPTSX. The estimated coefficients also have the expected sign: positive γ in the

APARCH and negative θ in the EGARCH.

After estimating model parameters, smoothed volatility estimates can also be obtained for each

model. They are contained in Figure 2 for each model and series, along with the corresponding

proxy for the true volatility (absolute value of logreturns). Another quantity of interest is the

one-step-ahead forecast of the volatility, which is calculated recursively for the k = 1000 reserved

observations for all models and series, and shown in Figure 3 along with the absolute returns for

these observations. When calculating the forecasts, it is assumed that the sample size n = 3000

used for estimation is enough to ensure that estimated parameters remain relatively constant over

time, so that the models do not need to be reestimated after each new observation is included in

the sample. The smoothed and one-step-ahead volatility forecasts seem to closely reproduce the

observed behavior patterns in the data.

Although the above information is useful to illustrate and understand the behavior of volatility

and financial series in general, it contributes little to the issue of model comparison. The adequate

statistical tools for that end are the evaluation criteria introduced in section 2.1. Table 6 contains

the computed criteria for all estimated models so far.

The logic of comparison here is to first rank the models according to how they perform according

to each individual criterion, and then if possible stablish an overall rank. The criteria are:
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Figure 2. Smoothed volatility estimates and absolute returns.
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Figure 3. One-step ahead volatility forecasts and absolute returns.
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Table 6. Evaluation criteria (to be minimized) for the estimated models.

Series BOVESPA HANGSENG MERVAL SPTSX

AIC(p)

APARCH 3.9511 3.4220 4.0433 2.7342
EGARCH 4.0107 3.4509 4.0609 2.7694
NGSSM 4.0139 3.4327 4.0222 2.7644
SV 3.8578 3.3439 3.8855 2.6494

MSE(k)

APARCH 0.9717 0.6059 2.2828 0.2736
EGARCH 0.9887 0.6115 2.3003 0.2731
NGSSM 0.8854 0.5933 2.3722 0.2520
SV 0.7985 0.5256 1.8387 0.2199

UC(k)

APARCH 0.0170 0.0030 0.0040 0.0060
EGARCH 0.0190 0.0040 0.0020 0.0120
NGSSM 0.0080 0.0120 0.0000 0.0170
SV 0.0080 0.0000 0.0010 0.0070

1. Akaike Information Criteria - measures the overall goodness-of-fit of a model as a mea-

sure of the expected information lost when approximating the true DGP with an estimated

model, and its calculation involves the maximized loglikelihood and a penalization for model

complexity (represented by the number of estimated parameters). It indicates that the SV

outperforms all other models for all series, that the APARCH outperforms the NGSSM in

3 out of 4 cases (with MERVAL being the exception), and that the EGARCH is always

outperformed by competing specifications (although there is a draw between EGARCH and

NGSSM).

2. Minimum Squared Error - measures forecasting accuracy for one-step-ahead forecasts. The

proxy used as the true volatility to calculate the MSE was the absolute returns from the

reserved observation set, which is of size k = 1000. Also, it is assumed that the sample size

used of 3000 is enough to ensure that the estimated parameters remain relatively constant

over time, so that the models do not need to be reestimated after each new observation is

included in the sample. The comparison of MSE values suggests that the SV model also

outperforms all other competing specifications in forecasting accuracy, being followed by

the NGSSM which outperforms the APARCH 3 out of 4 times (again with MERVAL being

the exception), by the APARCH which outperforms the EGARCH 3 out of 4 times (with

SPTSX being the exception, although these rankings are remarkably close). The NGSSM

also outperforms the EGARCH 3 out of 4 times, with MERVAL being again the exception.

3. Unconditional Value-at-Risk Coverage - an important and widely used measure of financial

risk of an asset. The VaR is computed at the level of 5% and involves one-day-ahead op-

erations. A number of k = 1000 observations are used for the estimation and evaluation of

pseudo-out-of-sample VaR, and the reported values represent absolute deviations from the

α = 5% quantile. Evidence for this criterion is mixed: the SV outperforms all other models

at best 2 out of 4 times (3 out of 4 compared to the NGSSM and the EGARCH but 4 out of

4 compared to the APARCH), as well as the EGARCH and the NGSSM, with the APARCH
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coming last. If each model is compared individually, the SV model comes out as the favorite,

followed by a tie between the EGARCH and the NGSSM, and finally by the APARCH.

Since evidence from the criteria values is somewhat mixed, specially in the out-of-sample VaR

assessment, a more robust procedure to compare estimated models is desirable. With that in mind,

the next section contains a simulation experiment drawing from the estimates in this section; the

logic is that the increased number of replications will minimize the error attributed to randomness

and produce a more consistent ranking amongst model performances.

4. SIMULATION EXPERIMENT

The simulations are performed by taking previous estimated parameter sets as the true pa-

rameter sets. Since there are 4 different sets and 4 volatility specifications - APARCH, EGARCH,

NGSSM and SV - there are thus a total 16 Data Generating Processes (DGPs) to take into account.

Each DGP is replicated M = 1000 times, and each series has a size of n = 3000 observations, plus

k = 1000 reserved for forecasting. In all simulations a burn-in of 7000 observations is used in the

drawing process to alleviate dependence from initial values. The specific parameter values used for

simulation are restated for convenience in Table 7.

Table 7. Simulation experiment parameter sets.

Set A B C D

APARCH

ω 0.0586 0.0187 0.1353 0.0164
α 0.0626 0.0655 0.0888 0.0511
β 0.9176 0.9351 0.8697 0.9334
γ 0.5888 0.5040 0.1902 0.8101
δ 1.3852 1.1700 2.2051 1.3754
κ 1.0559 1.0465 1.0556 1.1154
ν 1.7018 1.4687 1.2887 1.5771

EGARCH

ω 0.0914 0.0551 0.0799 0.0472
β 0.9759 0.9873 0.9719 0.9854
θ -0.0775 -0.0613 -0.0518 -0.0801
γ 0.1299 0.1271 0.1929 0.1127
κ 1.0556 1.0467 1.0535 1.1128
ν 1.6912 1.4615 1.2631 1.5637

NGSSM

w 0.9411 0.9509 0.9288 0.9428
κ 1.0316 1.0404 1.0429 1.1150
ν 1.8205 1.4842 1.4745 1.7125

SV

µ 0.0198 0.0040 0.0390 -0.0024
φ 0.9810 0.9916 0.9647 0.9887
ση 0.1263 0.1106 0.2310 0.1358

In order to ensure that experiment results do not arise from bias in the estimation, it is necessary

to assess the accuracy of the maximum likelihood estimators used. To that end, an interesting
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quantity is the percentage bias, defined as

Bias(%) = 100× ϕ̂− ϕ
|ϕ|

,

where ϕ̂ is the estimated parameter vector and ϕ is the true parameter vector. The advantage

of using the percentage bias is that it by definition describes a density, allowing any descriptive

measure such as the mean or the median to be calculated from it.

Table 8. Percentage bias under parameter set A: mean, median and SD.

Mean Median SD

APARCH

ω -21.7940 -27.7360 9.9769
α -10.4080 -22.7710 8.3136
β -4.0045 -0.6268 3.1595
γ -1.1203 -0.2002 2.4897
δ 2.9287 0.9933 5.2934
κ 12.3450 10.9170 11.1300
ν 25.2890 23.4410 14.1440

EGARCH

ω -12.7130 -6.5440 9.7709
β -7.8141 -0.4723 9.5222
θ -2.5709 0.4339 4.1677
γ 1.3404 4.0327 5.4771
κ 5.9813 29.1850 8.5568
ν 12.5610 31.0220 11.4630

NGSSM

w -6.5933 -4.6899 2.1003
κ -1.1592 -0.2937 0.7310
ν 10.6340 6.4233 5.3036

SV

µ -66.8240 -0.3598 91.1320
φ 1.0016 0.3747 5.5772
ση 45.0100 153.4000 59.7100

Since conclusions about the estimation bias are the same for all parameter sets, only the results

for the first set is presented here. It should be clear that it only makes sense to access accuracy

under the same DGP with which it was simulated from; therefore, when assessing bias, only the

respective DGP of a model is taken into account for each estimated model.

Figure 4 contains the percentage bias ordinate corresponding to each estimated parameter in

each model for all 1000 replications; their respective mean, median and standard deviation are

contained in Table 8. According to maximum likelihood estimation assumptions, the percentage

bias should have an asymptotical Normal distribution with zero mean and unit variance. Al-

though most estimated parameters do seem to satisfy that criteria, the ones directly unrelated to

the autoregressive dependence of the volatility present statistically significant means and fatter

distribution tails; they are the constants ω in the APARCH and EGARCH and µ in the SV and

the tail thickness parameter ν on the APARCH, EGARCH and the NGSSM. Despite this fact, the
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overall accuracy of the maximum likelihood estimators employed here seem satisfying.

Since one of the objectives of this work is to asses the relative computational time benchmarks

across different volatility families, Table 9 present the CPU time spent on the estimation of each

model under each parameter set and DGP. Note that the median relative CPU time spent is

roughly the same as that reported in Table 5 in the application; the SV takes close to 82 times as

much CPU time as the NGSSM, while the APARCH takes about 4 times and the EGARCH about

2 times.

The order in which the simulation experiment results are presented is similar to the previous

section: first an overall comparison of each evaluation criteria (AIC, MSE and Unconditional VaR

Coverage) is present, followed by a respective detailed comparison.

Table 9. CPU time (in seconds) spent on the estimation of each set of models.

Set A B C D

APARCH DGP

APARCH 2906.84 2751.09 2970.50 3627.05
EGARCH 1522.04 1374.91 1379.86 1270.06
NGSSM 706.71 693.95 679.24 710.06
SV 86450.80 85942.00 82806.00 88259.10

EGARCH DGP

APARCH 2727.31 2720.58 2574.38 3219.69
EGARCH 1558.80 1409.14 1411.75 1290.26
NGSSM 690.47 701.00 667.94 691.28
SV 97481.80 88060.00 86418.70 82344.50

NGSSM DGP

APARCH 2652.29 2648.63 2627.06 2565.79
EGARCH 1612.64 1456.83 1408.21 1296.18
NGSSM 697.87 703.28 670.93 711.07
SV 85190.10 88053.10 82887.20 87330.60

SV DGP

APARCH 2640.45 2640.40 2585.16 2553.98
EGARCH 1618.54 1445.77 1409.31 1292.39
NGSSM 699.28 699.25 666.11 690.40
SV 100416.00 85679.00 83310.30 81029.50

Starting with goodness of fit, Table 10 contains the percentage of times a single model out-

performs all others; that is, the percentage of times an estimated model’s AIC is smaller or equal

than its competing specifications’. In this overall comparison, the SV consistently outperforms

the APARCH, EGARCH and NGSSM - its AIC was smaller in 100% samples of all 16 DGPs.

Although this result might seem somewhat surprising, since it is expected that a model will out-

perform all others under the simulation of its own DGP, it illustrates the range of behavior that can

be reproduced by the Stochastic Volatility model albeit it having a small number of parameters.

The overall comparison, although illustrative, lacks in depth and contains no information about

relative rankings between the other families of models. Therefore, Table 13 provides a separate

and detailed comparison of the goodness of fit of each model: each cell represents the percentage

of times the AIC of a model was smaller or equal than its direct competing model. For example,

the first row and second column contains the percentage of times that the APARCH model’s AIC
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Figure 4. Standardized estimated parameter densities under parameter set A.

was smaller than or equal the EGARCH’s under the APARCH DGP and the first parameter set.

Since this measure of performance also includes equality between criteria values, diagonals of each

block-matrix of comparisons are always equal to 100%.

In the detailed comparison of AIC values the SV outperforms all other models 100% of times,

under each DGP and parameter set. The APARCH consistenly outperforms the NGSSM (although

not as often as the SV) and the EGARCH, and the NGSSM often outperforms the EGARCH. It

can therefore be concluded that an appropriate ranking reflecting goodness of fit between models

is, in descending order: SV, APARCH, NGSSM and EGARCH.

Next are the forecast comparisons, based on the Mean Squared Error. Table 11 is the analogue

of Table 10 and Table 14 is the analogue of Table 13; respectively, they contain the overall and

detailed comparison of MSE values calculated for each DGP and parameter set of the simulation

experiment. As in the application made in the previous section, the overall comparison points to

the SV as the best forecasting model, outperforming the others 100% of times under all DGPs and

parameter sets.

The detailed comparison also points out the SV as the best forecastig model 100% of times,

with the EGARCH coming second by outperforming both the APARCH and the NGSSM. The

difference in relative performance between the APARCH and the NGSSM is narrow: in average,

the APARCH outperforms the NGSSM only 52.87% of times. It is interesting to note, however,

that the performance gap between the EGARCH and the NGSSM is not so large as the gap

between the EGARCH and the APARCH. As expected, the relative performance of a model is

significantly better under its respective DGP. The ranking suggested by the forecasting criterion

is, in descending order: SV, EGARCH, APARCH and NGSSM.

The final comparison contained here concerns the out-of-sample Value-at-Risk, of which the
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Table 10. Overall number of times (%) of AIC minimization.

Set A B C D

APARCH DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

EGARCH DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

NGSSM DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

SV DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

unconditional coverage of 1-day one-step-ahead VaR forecast is taken as evaluation criteria. As

before, an overall comparison is presented in Table 12 and a detailed comparison is presented in

Table 15. Unlike the results based on AIC and MSE, however, the overall comparison is much

more heterogeneous; the average percentage of times a model outperforms all others in all DGPs

and parameter sets is 54.31% for the APARCH, 39.69% for the SV, 5.38% for the EGARCH and

0.63% for the NGSSM.

In line with these results, the detailed comparison in Table 15 is also fairly heterogeneous: there

is a stark difference between performances under the various parameter sets. Although models

still perform significantly better under their own DGP, the APARCH consistently outperforms

the EGARCH and the NGSSM, but not the SV; the latter is outperformed by the former only

58.50% of times. The Stochastic Volatility model also consistently outperforms the EGARCH and

the NGSSM, and the NGSSM is often outperformed by all others. The suggested ranking is, in

descending order: APARCH, SV, EGARCH and NGSSM.

The next section contains a brief discussion of results from both the present and previous section

and concludes this work.

5. CONCLUSION

In this work a comparison of three families of volatility models, namely the Autoregressive

Conditional Heteroskedasticity (ARCH), Stochastic Volatility (SV) and Non-Gaussian State Space

Models (NGSSM) was made according to three different metrics: goodness of fit, forecasting and

assessing Value-at-Risk (VaR). The models’ inference procedures under the flexible Skew Gener-
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Table 11. Overall MSE comparison: number of times (in %) a single model outperformed all others in a
DGP.

Set A B C D

APARCH DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

EGARCH DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

NGSSM DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

SV DGP

APARCH 0.00 0.00 0.00 0.00
EGARCH 0.00 0.00 0.00 0.00
NGSSM 0.00 0.00 0.00 0.00
SV 100.00 100.00 100.00 100.00

alized Error family of distributions were detailed. Respective evaluation criteria used for these

metrics were the Akaike Information Criterion, Mean Squared Error of one-step-ahead forecasts

and Unconditional Coverage of 1-day one-step-ahead forecast VaR. The data used were daily as-

set return series (Ibovespa, Hang Seng Index, Merval Index and S&PTSX Index) from Jan-2000

to Jan-2016, or roughly 4000 observations, from which 3000 were used for estimation and 1000

were reserved for forecasting and VaR evaluation. Parameter estimates served as basis to conduct

a simulation experiment which consisted of 1000 replications of series with size 3000 plus 1000

observations reserved for forecasting.

Although some interesting conclusions can be drawn from the application, some of its evi-

dence regarding model performance were somewhat mixed, creating the demand for the simulation

experiment. Important results from the simulation experiment are:

· Estimates of parameters which are not directly related to the autoregressive dependence of

the volatility, specifically model constants and the tail thickness parameter of the Skew-GED

are substantially more biased than the rest. This is probably a reflection of the distant

relationship these parameters have to the data, which makes their identification difficult.

· Relative CPU time spent on model estimation is fairly stable between the application the

simulation experiment. Taking the NGSSM as benchmark, SV, APARCH and EGARCH

estimation are slower by a respective factor of about 82, 4 and 2.

· The suggested rankings according to goodness of fit, forecasting and VaR assesment perfor-

mance are, in descending order:
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Table 12. Overall Unconditional VaR Coverage comparison: number of times (in %) a single model
outperformed all others in a DGP.

Set A B C D

APARCH DGP

APARCH 34.00 52.00 71.00 47.00
EGARCH 4.00 7.00 17.00 10.00
NGSSM 0.00 0.00 0.00 1.00
SV 62.00 41.00 12.00 42.00

EGARCH DGP

APARCH 34.00 49.00 74.00 50.00
EGARCH 6.00 2.00 4.00 9.00
NGSSM 0.00 0.00 1.00 2.00
SV 60.00 49.00 21.00 39.00

NGSSM DGP

APARCH 53.00 49.00 72.00 55.00
EGARCH 2.00 4.00 2.00 11.00
NGSSM 1.00 0.00 0.00 1.00
SV 44.00 47.00 26.00 33.00

SV DGP

APARCH 45.00 49.00 73.00 62.00
EGARCH 2.00 2.00 3.00 1.00
NGSSM 3.00 1.00 0.00 0.00
SV 50.00 48.00 24.00 37.00

– AIC: SV, APARCH, NGSSM, EGARCH.

– MSE: SV, EGARCH, APARCH, NGSSM.

– UC: APARCH, SV, EGARCH, NGSSM.

It is convenient to restate here the objectives of this work, in order to ascertain whether or not

they were successfully attained. They are:

1. Provide an accessible reference for the properties and inference techniques for the families of

models presented here, specifically when a skewed and leptokurtic distribution (such as the

Skew-GED) is assumed for the error terms.

2. Determine a family of models as being the most adequate for each metric: goodness of fit,

forecasting and Value-at-Risk.

3. Draw conclusions about which features/stylized facts influence model performance the most,

overall and for each criteria.

4. Establish a trade-off between accuracy and computational efficiency between models.

The second section of this work is dedicated entirely to objective 1, while sections 3 and 4 are

dedicated to objective 2, although they also seem to fulfill the requirements for objectives 3 and

4; the empirical results and simulation experiment not only ascertain a ranking according to the

evaluation criteria used but in doing so illustrate the relative importance of captured stylized facts

and computational efficiency.
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For example, the relative rankings indicate that for obtaining a good fit and accurate forecasts

the extra flexibility introduced by an additional source of error in the SV model might be more

important than the functional form flexibility of the APARCH or even the leverage effect captured

by both EGARCH and APARCH models. The relative rankings also indicate that the most CPU

time-consuming model (Stochastic Volatility) has an overall best performance in goodness of fit

and forecasting and is ranked second in VaR assesment; however, there is no consistent difference

between the fastest models APARCH, EGARCH and NGSSM. Since relative CPU time consumed

between the latter group is not nearly as striking between the SV and alternatives, this serves as

illustration that although a large increase in model complexity (as measured by CPU time spent)

leads to an improvement in accuracy, a small increase does not seem to have any effect.

This conclusion would not be complete if the limitations of the results obtained here were not

acknowledged: a comparison based only on criteria values does not allow one to perform statistical

inference in the sense of precising whether the difference between two criteria values is significant

or not. There should be no confusion between these two goals; the methodology used here provides

the answer to how one should rank models across different criteria, and not to how significant is

the difference between these criteria.
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Table 13. Detailed AIC comparison: number of times (in %) the model in a row outperformed the
corresponding model in a column.

Set A B

APARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 100.00 0.00 100.00 100.00 66.00 0.00
EGARCH 0.00 100.00 16.00 0.00 0.00 100.00 0.00 0.00
NGSSM 0.00 84.00 100.00 0.00 34.00 100.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

EGARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 100.00 0.00 100.00 100.00 63.00 0.00
EGARCH 0.00 100.00 4.00 0.00 0.00 100.00 0.00 0.00
NGSSM 0.00 96.00 100.00 0.00 37.00 100.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NGSSM DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 100.00 0.00 100.00 100.00 100.00 0.00
EGARCH 0.00 100.00 1.00 0.00 0.00 100.00 1.00 0.00
NGSSM 0.00 99.00 100.00 0.00 0.00 99.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SV DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 100.00 0.00 100.00 100.00 100.00 0.00
EGARCH 0.00 100.00 1.00 0.00 0.00 100.00 0.00 0.00
NGSSM 0.00 99.00 100.00 0.00 0.00 100.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Set C D

APARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 8.00 0.00 100.00 100.00 95.00 0.00
EGARCH 0.00 100.00 1.00 0.00 0.00 100.00 0.00 0.00
NGSSM 92.00 99.00 100.00 0.00 5.00 100.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

EGARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 1.00 0.00 100.00 100.00 90.00 0.00
EGARCH 0.00 100.00 0.00 0.00 0.00 100.00 2.00 0.00
NGSSM 99.00 100.00 100.00 0.00 10.00 98.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NGSSM DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 92.00 0.00 100.00 100.00 99.00 0.00
EGARCH 0.00 100.00 4.00 0.00 0.00 100.00 4.00 0.00
NGSSM 8.00 96.00 100.00 0.00 1.00 96.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SV DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 100.00 79.00 0.00 100.00 100.00 99.00 0.00
EGARCH 0.00 100.00 2.00 0.00 0.00 100.00 0.00 0.00
NGSSM 21.00 98.00 100.00 0.00 1.00 100.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 14. Detailed MSE comparison: number of times (in %) the model in a row outperformed the
corresponding model in a column.

Set A B

APARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 43.00 79.00 0.00 100.00 45.00 69.00 0.00
EGARCH 57.00 100.00 77.00 0.00 55.00 100.00 66.00 0.00
NGSSM 21.00 23.00 100.00 0.00 31.00 34.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

EGARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 27.00 70.00 0.00 100.00 36.00 68.00 0.00
EGARCH 73.00 100.00 72.00 0.00 64.00 100.00 68.00 0.00
NGSSM 30.00 28.00 100.00 0.00 32.00 32.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NGSSM DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 35.00 44.00 0.00 100.00 24.00 37.00 0.00
EGARCH 65.00 100.00 49.00 0.00 76.00 100.00 57.00 0.00
NGSSM 56.00 51.00 100.00 0.00 63.00 43.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SV DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 38.00 48.00 0.00 100.00 32.00 30.00 0.00
EGARCH 62.00 100.00 56.00 0.00 68.00 100.00 40.00 0.00
NGSSM 52.00 44.00 100.00 0.00 70.00 60.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Set C D

APARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 45.00 48.00 0.00 100.00 44.00 72.00 0.00
EGARCH 55.00 100.00 54.00 0.00 56.00 100.00 69.00 0.00
NGSSM 52.00 46.00 100.00 0.00 28.00 31.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

EGARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 26.00 64.00 0.00 100.00 23.00 70.00 0.00
EGARCH 74.00 100.00 66.00 0.00 77.00 100.00 73.00 0.00
NGSSM 36.00 34.00 100.00 0.00 30.00 27.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NGSSM DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 13.00 47.00 0.00 100.00 27.00 33.00 0.00
EGARCH 87.00 100.00 65.00 0.00 73.00 100.00 56.00 0.00
NGSSM 53.00 35.00 100.00 0.00 67.00 44.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SV DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 17.00 41.00 0.00 100.00 30.00 26.00 0.00
EGARCH 83.00 100.00 54.00 0.00 70.00 100.00 39.00 0.00
NGSSM 59.00 46.00 100.00 0.00 74.00 61.00 100.00 0.00
SV 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 15. Detailed Unconditional VaR Coverage comparison: number of times (in %) the model in a row
outperformed the corresponding model in a column.

Set A B

APARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 87.00 97.00 37.00 100.00 91.00 98.00 58.00
EGARCH 21.00 100.00 90.00 18.00 21.00 100.00 83.00 39.00
NGSSM 5.00 16.00 100.00 0.00 3.00 18.00 100.00 1.00
SV 71.00 83.00 100.00 100.00 49.00 67.00 99.00 100.00

EGARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 87.00 98.00 36.00 100.00 95.00 96.00 51.00
EGARCH 18.00 100.00 94.00 22.00 9.00 100.00 84.00 28.00
NGSSM 2.00 8.00 100.00 1.00 5.00 19.00 100.00 6.00
SV 71.00 84.00 100.00 100.00 56.00 78.00 95.00 100.00

NGSSM DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 92.00 97.00 54.00 100.00 91.00 98.00 51.00
EGARCH 11.00 100.00 84.00 29.00 21.00 100.00 89.00 29.00
NGSSM 4.00 18.00 100.00 3.00 4.00 14.00 100.00 3.00
SV 52.00 76.00 97.00 100.00 57.00 80.00 99.00 100.00

SV DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 98.00 95.00 47.00 100.00 98.00 99.00 51.00
EGARCH 9.00 100.00 85.00 14.00 9.00 100.00 87.00 26.00
NGSSM 6.00 18.00 100.00 6.00 1.00 18.00 100.00 1.00
SV 58.00 89.00 96.00 100.00 55.00 79.00 100.00 100.00

Set C D

APARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 80.00 99.00 85.00 100.00 83.00 95.00 53.00
EGARCH 30.00 100.00 96.00 71.00 28.00 100.00 86.00 39.00
NGSSM 1.00 6.00 100.00 9.00 10.00 17.00 100.00 7.00
SV 18.00 32.00 96.00 100.00 54.00 64.00 94.00 100.00

EGARCH DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 93.00 97.00 78.00 100.00 85.00 94.00 59.00
EGARCH 18.00 100.00 94.00 64.00 29.00 100.00 91.00 44.00
NGSSM 3.00 8.00 100.00 10.00 10.00 11.00 100.00 2.00
SV 24.00 39.00 92.00 100.00 51.00 66.00 98.00 100.00

NGSSM DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 97.00 100.00 74.00 100.00 84.00 98.00 63.00
EGARCH 13.00 100.00 98.00 51.00 24.00 100.00 91.00 52.00
NGSSM 0.00 2.00 100.00 0.00 3.00 10.00 100.00 8.00
SV 28.00 55.00 100.00 100.00 45.00 54.00 96.00 100.00

SV DGP

APARCH EGARCH NGSSM SV APARCH EGARCH NGSSM SV
APARCH 100.00 95.00 100.00 76.00 100.00 96.00 99.00 63.00
EGARCH 7.00 100.00 96.00 48.00 8.00 100.00 96.00 27.00
NGSSM 0.00 6.00 100.00 2.00 1.00 12.00 100.00 1.00
SV 30.00 55.00 98.00 100.00 44.00 79.00 99.00 100.00


