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Abstract

This work addresses the problem of single robot coverage and exploration of an envi-
ronment with the aim of finding a specific previously known object. As limited time is a
constraint of interest we cannot search for an infinite number of points. Thus, we propose
to find good points (also called search points) to place the robot sensors in order to ac-
quire information from the environment and find the desired object. Given the interesting
properties of the Generalized Voronoi Diagram (GVD), we define the search points along
this roadmap. We redefine the problem of finding these search points as a multi-objective
optimization one. NSGA-II is used as optimizer and ELECTRE I is applied as a decision
making tool. We also solve a Chinese Postman Problem to optimize the path followed by
the robot in order to visit the computed search points.
To identify the desired object in environment, we used a fast and robust object recognition
application which is called Speeded Up Robust Features (SURF) algorithm. Simulations
on Stage with implementation in ROS are also presented. The proposed approach tested
on an real robot in a real world situation that indicates the applicability of our method.
Lastly, statistical analysis shows a comparison between the solution found by our method
and two others.
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1 Introduction

Exploration is an important task in different applications of robotics such as surveil-

lance, cleaning, map building, coverage and search and rescue operation. Exploring a

given area with robots requires the specification of paths that cover the whole environ-

ment. This type of problem is well known as Coverage Path Planning. In Coverage Path

Planning the robot must traverse all points of the area while avoiding collisions (Galceran

and Carreras, 2013). The requirements of a coverage path planning algorithm are:

• All points of the environment must have been seen by the robot sensors by the end

of the task.

• The region must be covered by the sensors without overlapping.

• The robot must avoid collisions with the obstacles.

• The operation must be consecutive and sequential with no repetition of the path.

However, it is not always possible to satisfy all these requirements in complex environments

because of limitations such as time, sensor range and energy consumption. Therefore,

sometimes a priority should be considered. In this work, we address the problem of

exploring an indoor environment with the aim of finding a previously known object with

a robot equipped with sensors in limited time. However, we assume the robot may not be

powerful enough to guarantee that the whole environment can be accurately inspected by

the sensors in the given time as the robot moves. Thus, in our approach we define some

stationary points, called search points (SPs), from which the robot carefully analyze the

sensor readings to find the object. The goal of the robot is to visit as many search points

as possible (given the limited time) to maximize the chance of finding the object. By the

expression “visiting a search point”, we mean: stay at the point and accurately acquire

measurements from the sensors, rotating and moving the sensors if necessary, with the

aim of finding the object.

We consider that the desired object is placed in a cluttered environment. Thus, the robot
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should traverse safe paths to avoid collisions with obstacles. In this work we use the

Generalized Voronoi Diagram (GVD) as a roadmap, so that the motion of the robot is

constrained to this structure. Since the GVD maximizes the distance from obstacles, this

roadmap allows for collision avoidance. Thus, we propose to distribute the SPs over the

GVD, constraining the motion to a safe path as desired. The distribution of these points

will be defined by the solution of a multi-objective optimization problem.

In order to evaluate the objective functions to be designed in this work, we considered a

circular footprint sensor model. This model assumes that inside a circle centered at the

robot position with radius r, the object can be seen. In fact, we use a combination of

Laser Range Finder and Kinect for navigation and Kinect sensor for object recognition.

Clearly, a Kinect is not a sensor with circular footprint. However, we associate robot and

sensor motion so that the abstract sensor model can be emulated. This means that at

every SP the robot will rotate in place and move the Kinect so that the object can be

found if it is located inside the defined circular footprint (see Figure 1.1).

(a) Top view of the robot circular footprint. (b) Side view of the area covered by a

Kinect sensor.

Figure 1.1: A robot with its footprint and equipped sensor.

1.1 Motivation

For the searching purpose, when limited time is a constraint of interest, we cannot

search for an infinite number of points. Therefore, having a strategy which leads the robot

to explore the whole area within a specific time limit, can be very useful. For this reason,

we propose a technique to find good points to place the robot sensors in order to acquire

information from the environment and find the desired object. This technique guides the

robot to search just at some stationary points instead of searching at all possible config-

urations in the map.

This work can be suitable for different applications such as RoboCup@Home, specially
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when time limitation is one of the important criteria. In RoboCup@Home competition,

tests are classified in two parts: predefined procedures and open demonstrations (Stückler

et al., 2014). The robot must carry out the tasks within a limited amount of time in the

predefined tests and teams present their abilities in open demonstrations. Our proposed

method is applicable in this example to minimize the overall exploration time.

1.2 Objectives

Since obstacle avoidance is an important requirement, the first objective of this work

is to consider safety in exploration. As in home environment, we are interested in indoor

cluttered environments. We use the GVD of the map as a roadmap to guarantee safety.

The second objective is the reduction of the overall exploration time. In fact, the main

goal of this work is to find a pre-specified object in limited time.

It is also objective of this work to simulate the proposed technique and compare it with

other techniques statistically.

We also implement the proposed strategy in a real robot to show the performance and

applicability of our approach.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows: in the next section, a

literature review of robot exploration is discussed.

In Section 3, the proposed solution is introduced. Topics included are Generalized Voronoi

Diagram, GVD induced graph, multi-objective optimization, chinese postman problem

and Speeded Up Robust Features algorithm. The experimental result (Section 4) includes

computing the GVD, multi-objective solution in MATLAB, simulation on Stage with

ROS, object recognition with SURF and test results on a real robot.

In Section 5, experimental statistical analysis comparing our proposed method with other

methods is presented. There is also detailed information of the method for determining

appropriate sample sizes and hypothesis tests. The graphical data analysis is emphasized.

Finally, conclusion and future work are drawn in Section 6.
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2 Literature Review

In this work, searching and exploring an area to find a specific object is defined as an

optimization problem. Our goal is to find the object as fast as possible. In the literature,

many approaches have been proposed to solve the exploration problem with different pur-

poses such as to minimize exploration time and traveled distance, build maps (Amigoni,

2008), (Gonzales-banos and Latombe, 2002), (Amigoni and Gallo, 2005), find object or

search and rescue, (DasGupta, 2004), (Marjovi et al., 2010), (Amanatiadis et al., 2013),

(Grady et al., 2012), (Davoodi et al., 2013), etc.

In (DasGupta, 2004), the authors investigate the problem of searching for a hidden target

in a bounded region assuming the knowledge of a-priori probability density function. They

consider an autonomous agent that is only able to use limited local sensory information.

Their goal is to find a path that maximizes the probability of finding the object, given

constraint on the time or fuel spent by the searcher. Their solution relies on partitioning

the environment into a finite collection of regions on which they define a discrete search

problem. However, in general, their solution is not optimal.

Authors in (Grady et al., 2012) studied the problem of multi-objective mission planning

for car-like robots. They consider two objectives: a primary objective (moving from point

A to point B) and secondary objective (collecting information about a target T found

while executing the primary objective). In fact, when a target is discovered, the robot

replans a new trajectory to visit the target along its way to the goal region. Furthermore,

they take into account the differential constraints on the robot’s motion and obstacles.

In (Amanatiadis et al., 2013), a method which is appropriate for real-time search and

rescue application was proposed. The authors addressed a twofold challenge of realistic

robotic exploration operations that is the ability to efficiently handle multiple temporal

goals while satisfying the mission constraints. This paper describes a system that focuses

on two different objectives, which are essential for the navigation of mobile robots in unex-

plored hazardous environments: (i) the development of an accurate 3D reconstruction and

registration algorithm suitable to produce dense 3D maps and precise estimations of the

robot ’s motion and (ii) the integration of a path planning algorithm within the resulted
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3D map in order to produce a collision free trajectory. In their approach, they model the

environment constraints with cost functions and use the cognitive-based adaptive opti-

mization algorithm to meet time critical objectives during the trajectory calculation.

Some researchers tried to solve the exploration problem with the objective of building

maps of unknown environments. A good experimental comparison between different

strategies is detailed in (Amigoni, 2008). A common approach for this type of search

problem is an iterative solution in which the question “where should the robot go next or

where is the Next-Best View (NBV)?” is answered every time step. In (Gonzales-banos

and Latombe, 2002), the authors tried to find the Next Best View by incorporating two

main features: safe navigation and avoidance of overlap between each new local model in

the current map. They also proposed the concept of safe regions: the largest region, which

is free of obstacle. Therefore, the candidate for Next Best View is generated across the

edge of the explored regions, in which the robot is guaranteed to move without collision

risks. This real-time method is built for unknown environments and the result can be

considered as a solution of the well-known SLAM (simultaneous localization and map-

ping) problem. This work is similar to our work in terms of safe navigation and finding

points for searching with minimum overlap. In our work, we use a traditional Generalized

Voronoi Diagram (GVD) as a roadmap to guarantee safe motion for the robot. The GVD

is created offline in the context of path planning considering a known environment. Our

proposed approach tries to find points called search points, SPs, located at the GVD.

Although in (Gonzales-banos and Latombe, 2002), they also aim to guarantee that NBV

is found in a safe region, sometimes the points are too close to an obstacle. As one can

see in the Figure 2.1, the third NBV is selected in a region free of obstacles but it is too

close to the wall.

Figure 2.1: NBV computation (Gonzales-banos and Latombe, 2002).
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By using the GVD we can guarantee maximization of distance from closest obstacles.

In (Amigoni and Gallo, 2005), a multi-objective exploration strategy for mobile robots

has been proposed. This method determines the next best observation position consid-

ering three features: the traveling cost, the information gain, and the precision of the

localization of the robots. The best observation position is selected by using the concept

of distance from ideal solution.

Another common exploration strategy is the so-called frontier based exploration, which

was proposed by Yamauchi in (Yamauchi, 1997). Frontiers are defined as the regions on

the boundary between the open space and unexplored space (see Figure 2.2). This ex-

ploration strategy directs the robot to keep moving towards the nearest unvisited frontier

to extend the prior map. Several researchers have tried to improve this method, such

as (Dornhege and Kleiner, 2013) and (Juliá et al., 2010). For instance, (Dornhege and

Kleiner, 2013) further develop this approach to search for an object in unknown 3D spaces.

The proposed method detects frontiers and voids (unexplored volumes) in 3D space to

compute next best viewpoints.

Figure 2.2: Frontier based search and exploration (Marjovi et al., 2010).

Most of the reviewed works can be classified as frontier-based methods. In fact, this ex-

ploration method is a good strategy to explore unknown environments. The main idea

behind the frontier-based exploration is to gain new information about the environment

to create a map of the unknown environment.

Other works in the literature used topological maps (Maohai et al., 2013) or roadmaps,

such as (Oriolo et al., 2004), (El-Hussieny et al., 2013), (Freda and Oriolo, 2005), (Franchi

et al., 2007) that used a Sensor-based Random Tree (SRT) technique to explore an area.

The SRT method is a randomized strategy used to explore unknown environments with

mobile robots equipped with range finders. The SRT is a data structure that represents

a roadmap of the explored area with an associated safe region. This safe region is built
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based on sensor readings (Oriolo et al., 2004). Nodes of this tree are robot configurations

or visited explored locations and the Local Safe Region (LSR) found out from that lo-

cation, while an arc between two nodes represents a collision-free path between the two

associated configurations. The SRT is incrementally built by random selection of robot

configurations inside the LSR. At first, current configuration qcurr and LSR are added to

the tree. Then, the direction of movement is determined by generation of a random angle

θrand along distance r. This distance is computed based on LSR, qcurr and θrand. Accord-

ing to this random direction θrand and distance r, a random candidate configuration qcand

will be picked out inside LSR.

In contrast to the mentioned works, in our problem the map is known and all the com-

putation is done off-line. Furthermore, the purpose of exploration is to find an object in

an indoor environment. The important requirements in indoor environment exploration

are safety and also time limitation to explore the entire map. In fact, we aim to find

optimal and safe routes for the robot considering perfectly known environments and a

multi-objective framework.
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3 Methodology

As it was mentioned before, coverage and exploration of an environment for searching

purpose is one of the most important tasks in mobile robotics. This chapter further

explains our strategy. In section 3.1, the overall proposed methodology is explained.

In the next section (section 3.2), we show about an efficient and robust algorithm for

computing safe paths for a mobile robot. This section also presents the proposed method

to construct the GVD. Graph representation of the GVD is discussed in section 3.3. The

multi-objective solution is introduced to find the good locations for the search points

in section 3.4. In section 3.5, we describe a routing strategy to define in which order

the search points will be visited. Finally, the SURF algorithm is presented as an object

recognition algorithm in section 3.6.

3.1 Proposed Method

We assume we have a robot with some sensors installed on it and the two-dimensional

map A of the static environment. As mentioned before the objective is to find a pre

specified object in the environment with the given sensors in minimum limited time. We

assume sensors with limited sensing range r.

We propose the transformation of the original problem into the one of navigating through

some stationary search points (SPs) located at the GVD of the given map. A limited

number of search points is important due to the time limitation and the choice of points

at the GVD is interesting since this maximizes the covered area by the sensors, as the

GVD points maximize the distance from obstacles and consequently minimizes occlusion.

Furthermore, GVD provides safe routes for the robot.

The SPs are not placed at the GVD randomly. We solve a multi-objective problem to

find the best or near best location of these points. After this step, we compute the route

to be tracked by the robot by solving a Chinese Postman Problem (CPP). Since the SPs

are placed at the edges of the GVD, by visiting every edge, we can guarantee that all the
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SPs will be visited. Whenever the robot reaches a SP , the robot stops moving according

to the planned route and perform a careful search for the object in the area.

In general, the whole exploration algorithm can be described by the following algorithm:

Algorithm 1: Exploration Algorithm

Input: map, p //map is the input map, p is the initial configuration of the robot.

1 GVDmap← Create GV D(map) // Read the input map and compute its

corresponding GVD.

2 G← Create Graph(GVDmap) // Create the corresponding graph G from GVD.

3 SPs← Find SP (GVDmap,G) // Run NSGA II and ELECTRE I to find the

best SPs.

4 Q← CPP (G, p); // Solve the Chinese Postman Problem.

5 while (Q 6= ∅)do

6 T ← Pop(Q); // Pick a single edge from Q (Q← Q− T ).

7 while (!End Of Edge()) do

8 Move(); // Move along the edge in T and update p.

9 if (Robot reaches a SP and the SP has not been visited) then

10 Execute Search // Execute a precise searching with SURF algorithm

on the current SP.

11 if (Object Is Found()) then

12 Exit(); // The algorithm is finished.

13 Return Failure; // Object was not found.

The inputs of the algorithm are a map and the initial robot configuration. After

computing the corresponding GVD of the input map, the graph G is constructed by

defining the GVD meet points and end points as the graph nodes and the GVD edges as

the graph edges. Next, NSGA II and ELECTRE I are applied to find the set of search

points. In line 4 the function CPP () solves the chinese postman problem by using the

algorithm proposed in (Pearson and Bryant, 2004) and as a result a route Q is designed.

This solution could be improved by using a solution of a Traveling Salesman Problem

(TSP) to obtain directly the optimal sequence of search points to be visited. However,

due to the exploration time limitation we intend to use a time efficient route planner which

works even for the case where the number of SPs is large. Thus, we propose to solve the

CPP instead of a TSP since this can be done in polynomial time using Edmonds’matching

algorithm (Edmonds and Johnson, 1973).

In the loop starting in line 5, the robot moves from edge to edge, searching for the object
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at every SP, until the object is found or the list of edges is empty. It should be clear that

in line 8 the function Move() enforces the robot to move constrained to the GVD edges to

guarantee safety. In line 9, when the robot reaches an unvisited SP, it executes a careful

search by rotating in place and moving its sensors accordingly. It should be noted that the

input graph may not be Eulerian, which means that in the CPP route there might be an

edge that is visited more than once. Hence in order to avoid repeating precise searching

on a SP, we check if the SP has been explored before or not.

3.2 Generalized Voronoi Diagram

The Generalized Voronoi diagram (GVD) is one of the most famous roadmaps for

navigation. One of the main advantages of this roadmap is safety that can be applicable

in exploration of cluttered environments. Indeed in this kind of environment collision

avoidance can be vital when the robot must move through the map to find the object.

The definition of GVD is given in the next lines.

Let the set A defines the free configuration space as defined in (Choset, 2005). The

Voronoi diagram is a structure that induces a partition of A dividing this map into zones,

called Voronoi regions. Each region has a corresponding point inside which is called seed

or site. The set of these points will be given by X = {x1, x2, ..., xn}. The formal definition

of Voronoi region is:

Ri = {p ∈ A|d(xi, p) ≤ d(xj, p),∀i 6= j} (3.1)

where d(xi, p) is the distance between p and xi which is the region site.

The ordinary definition of Voronoi region can be extended by considering the seeds to

be sets instead of single points. More specifically, we consider the sets induced by the

obstacles. The GVD is defined as the set of points where the distance to two closest

obstacles is the same (Choset, 2005).

The so-called two equidistant face is given by:

Tij = {p ∈ SSij|d(p,QOi) ≤ d(p,QOh), ∀h}, (3.2)

where d(p,QOi) represents the distance between the point p and the closest point of the

obstacle QOi and SSij is defined by:

SSij = {p ∈ A|d(p,QOi) = d(p,QOj) and ∇d(p,QOi) 6= ∇d(p,QOj)}. (3.3)



11

Now, the definition of the GVD can be given:

GVD =
⋃
i

⋃
j

Tij. (3.4)

An example of a simple map with its corresponding GVD (green lines) is shown in Figure

3.1.

d(q, 𝒬𝒪4)

q

𝒬𝒪2

d(q, 𝒬𝒪2)

𝒬𝒪3

𝒬𝒪1

𝑞𝑠𝑡𝑎𝑟𝑡

𝑞𝑔𝑜𝑎𝑙

𝑞𝑠𝑡𝑎𝑟𝑡
′

𝑞𝑔𝑜𝑎𝑙
′

Figure 3.1: An input image, corresponding GVD which is formed by green lines. The

black shapes show the obstacles (O) and the remaining space is free space (Qfree).

Let qstart be a start configuration and qgoal be a target configuration. Let also Qfree be

the free configuration space. As any roadmap (RM), the GVD has three main properties

as follows (Choset, 2005):

• Accessibility: there exists a path between any qstart ∈ Qfree and some q′start ∈ RM .

• Departability: there exists a path from some point on the RM,q′goal ∈ RM , to

qgoal ∈ Qfree .

• Connectivity: there exists a path in RM between q′start and q′goal .

The GVD can be used as a safe route (since it maximizes distance between obstacles) to

connect any two configurations in the free space. This can be done easily by enforcing the

robot to move from an initial configuration qstart to a point in the GVD, q′start, finding a

route to the point q′goal also in the GVD and finally guiding the robot from q′goal to the

target qgoal (see Figure 3.1).
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3.2.1 GVD Construction

There are several techniques to compute a GVD. For example, in a discrete grid,

Brushfire (Choset, 2005) and wavefront (Zelinsky et al., 1993) are two useful methods.

In this work, the environment map (2D) is considered as an image, therefore in order to

create the GVD on this image, a morphological approach is used. Morphological operators

include a set of operators such as Dilation, Thinning, Skeletonization, Erosion and so on

(Gonzalez and Woods, 2001). Usually the combination of these operators are used to give

different outputs. But before creating the GVD, it is necessary to compute free configu-

ration space (Qfree), where the robot can move freely without colliding with obstacles.

The common solution for computing the free configuration space is to construct the con-

figuration space obstacle, QO. This is done by growing the obstacles by the size of the

robot. As an example Figure 3.2(left) shows a two-dimensional workspace, Q, includes

an obstacle, O. Also the result of growing a polygonal obstacle by the size of a circular

robot is depicted in this figure (middle and right). After computing QO, Qfree is given by:

Qfree=Q\(
⋃
iQOi).

It should be mentioned that circular robot in the workspace is equivalent to a point robot

in the configuration space.

X 

Y 

𝒪 

X 

Y 

𝒪 

X 

Y 

𝒬𝑂 

𝒬𝑓𝑟𝑒𝑒 𝒬 

Figure 3.2: Result of the growth of a polygonal obstacle by the size of a circular robot.

Since the map is represented as an image, in our work in order to compute (Qfree), we

use dilation operator to grow obstacles with size of the robot. In dilation, the structuring

element has a vital role in the result. The robot shape is considered as the structuring

element to compute the free configuration space (Qfree). In this work a circular robot is

defined (see Figure 3.3).
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Figure 3.3: Disk shape robot.

Before representing more example of the dilation operator on an input map with

circular structure element, a definition of the dilation operator is explained as following:

Suppose A is a binary image and B is the structural element. Dilation of A by B is

defined as:

A⊕B = {x| ˆ(B)x ∩ A 6= ∅}. (3.5)

The basic effect of the dilation operator on a binary image is to gradually enlarge the

boundaries of regions, which is applicable to compute QO.

As it can be seen in figure 3.4, in the “original” image, the black regions show obstacles.

The image “complement” or negative is computed to be used as the input of dilation

operation. In the “configuration space obstacle” image, the white region represents the

configuration space obstacle (QO) where robot collides with obstacle. By complementing

this image the final result of “free configuration space” is achieved, where the robot can

freely move in the map, without having collision with obstacles.

Original Complement

Configuration space obstacle Free configuration space

Figure 3.4: An example of input map and its corresponding Qfree
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Afterward, skeletonization operator is used to construct the GVD from Qfree. The

informal definition of a skeleton is a line representation of an image that is one pixel

thick, through the “middle” of the image, and preserves the topology of the image. Figure

3.5 shows the skeletons for the polygonal image. As can be seen, different size of disk is

used to create circular structuring element, therefore the result of skeleton are different

respectively. More information about this operator can be find in (Gonzalez and Woods,

2001).

Figure 3.5: The white lines represent skeleton of the image.

Given the above explanation, skeletonization operator is applied to find the skeletal

of the map which is demonstrated to be the GVD (Garrido et al., 2011). The Pseudo

code of making the GVD is shown below:

Algorithm 2: GVD maker

Input: M , R // where M is input map and R contains robot shape and size

Output: GVD

1 M2 = Complement Image(M)

2 M3 = Dilate image(M2,R);

3 M4 = Complement Image(M3)

4 GVD = Image Skeleton(M4)

Figure 3.6 shows the results obtained from skeletonization techniques of the given

map. In this figure, the junction of obstacles and the shaded area represent configuration

space obstacle. Moreover, the skeleton of the input map or the GVD is depicted in figure

3.6 (b) with green color.
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(a) Input map (b) GVD demonstration

Figure 3.6: The green lines are the skeleton of the map (GVD).

3.3 GVD Induced Graph

A graph G = {V,E,C} is induced from the GVD by considering Meet Points (where

more than 2 GVD curves meet each other) or End Points (where curves terminates) as

graph nodes and curves as graph edges. The set of vertices (nodes) is given by V , the

set of edges by E ⊆ V × V , and a cost function is denoted by C : E → R. The cost

represents the distance between two vertices.

In Figure 3.7 the corresponding graph of the map in Figure 3.6 is illustrated.
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Figure 3.7: A graph with 12 nodes and 14 edges.
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3.4 Multi-Objective Optimization

A multi-objective optimization problem involves multiple objective functions subject

to a set of constraints. Such a problem can be described in mathematical terms as follows:

min(f1(x), f2(x), ....fm(x))

s.t, x ∈ S
(3.6)

where x ∈ Rn is a vector of variables, fi (·) : Rn 7→ R are scalar functions, m > 1 is the

number of objectives, and S represents the set of feasible solutions, which is defined by

the satisfaction of the problem constraints:

S = {x ∈ Rn : hj(x) = 0, gk(x) ≥ 0}

In contrast to the single objective problem, the scalar concept of “optimality” does not

apply directly in the multi-objective setting. In fact, instead of a scalar value solution,

there exists a set of so-called Pareto optimal solutions. Decision making methods are

needed to select one of the solutions in the Pareto set.

Different interactive and evolutionary based algorithms have been proposed to solve multi-

objective problems (Branke et al., 2008). An interesting multi-objective evolutionary al-

gorithm (MOEAs) is the Non Dominated Sorting Genetic Algorithm II (NSGA-II) (Deb

and Pratap, 2002). As its name is evident, this algorithm has two parts: the first part

is related to the use of non-domination rules and the second part is related to sorting a

genetic population according to different preferred levels.

Domination will happen if a solution is better than the other in at least one objective and

equals in other objectives. Mathematically,

f(s1) ≺ f(s2),

where f() is a vector function f = [f1, f2, ..., fn]Tand s1, s2 ∈ S, which is the parameter

space. In this case: fi(s1) ≤ fi(s2) ,∀i and fj(s1) < fj(s2) for at least one index j.

If the solutions do not dominate each other, we say that they are non-dominated or in-

comparable.

NSGA has an important advantage which is the fact that it typically generates sets of

solutions, allowing the computation of an approximation of the entire Pareto front. The
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disadvantages are the high computational complexity of non-dominated sorting and the

lack of elitism.

NSGA-II is an improved version of NSGA and in this version, the disadvantages of NSGA

is improved. Therefore, we used NSGA-II in this work.

3.4.1 Multi-objective Problem

As previously mentioned, in the present work, a robot must search for a specific object

on the map. The main problem here is that we assume we cannot wait for the complete

search of the given environment. Therefore, our solution is to compute a finite number

of good view points in the environment and then move the robot through these points in

order to find the desired object. We define the multi-objective problem to define where

the SPs should be placed. We consider the following objectives:

1. First objective: maximum covered area from the SPs.

As a first objective, we try to maximize the area of the map viewed by the sensors.

As a result, since the object can be anywhere in the free environment, the probability

of finding the object is maximized in this objective. We assume the robot is equipped

with sensors and is able to move so that the sensor footprint can be modeled by a

circle centered at the robot position with radius r (see Figure 1.1).

(a) In contrast to SPi, in SPj

the robot has a maximum visi-

ble range.

(b) SPs i, j, k have less over-

lap (Higher F2 value) than SPs

l,m, n.

Figure 3.8: A representation of objective functions on the map.

We want to find SPs in places where the robot’s sensor has large visible range. The
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visible range is determined by the area viewed by the sensor after subtracting the

portion occupied and occluded by obstacles (see Figure. 3.8 (a)). The first objective

is given by:

F1 =
n∑
i=1

A(SPi), (3.7)

where n is the number of SPs and SPi ∈ GVD. A(SPi) is the covered area from

SPi i.e, it is the visible range. This objective function must be maximized.

Since the GVD is the set of points that maximizes the distance from obstacles it is

interesting to note that by constraining the feasible set to this one dimensional set,

this not only reduces the dimension of the search space, but also helps in the visible

range maximization and provides safety in the robot motion.

2. Second objective: good distribution of search points.

Overlapping is also another problem to be avoided when defining the positions of the

SPs in order to provide efficiency in the search. Thus, we require that the distance

between SPs be maximized. In order to deal with this problem, we define the second

objective as follows:

F2 =
n−1∑
i=1

n∑
j=i+1

‖ SPi − SPj ‖ . (3.8)

In the equation above, F2 is the sum of Euclidean distances between all pairs

of SPs. Likewise the first objective, our second objective function (F2) must be

maximized. According to the definition of good distribution, SPs i,j,k are better

distributed than l,m,n in Figure 3.8.(b). In fact, the second objective aims to pro-

vide a more uniform distribution of points over the map which is useful to avoid

sensor footprint overlaps.

3.4.2 Multi-objective Solution

As mentioned before, NSGA-II applies the principles of non-dominated sorting to

direct the population toward the Pareto-optimal regions. The entire process to achieve

the Pareto-front is shown in the flowchart of Figure 3.9.
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Termination 

criteria?

Initial random population

Non-domination sort

Non-domination sort

Yes

End

Genetic operation

Selection

No

Figure 3.9: Flowchart of NSGA II algorithm.

In the following, we show some details.

a)Representation

Each chromosome contains a set of SPs, and each gene refers to a position on the GVD,

pi ∈ GVD. The table below illustrates the chromosome representation.

p1 p2 ... pn F1 F2

Table 3.1: Chromosome representation.

In Table 3.1, F1 and F2 are the values of the objective functions and n is the maximum

number of points in the chromosome.

b) Initialization

In the first step, an initial population is created randomly. Indeed, the first population is

a set of SPs that is sampled randomly over the GVD. Figure 3.10 presents an example of

initialization.
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Figure 3.10: Red points represent random SPs.

c)Evaluation and non-dominated sorting

Each chromosome is evaluated by computing its objective functions. Then, non-dominated

sort ranks chromosomes based on their objectives. In addition the crowding distance is

computed. The crowding distance is relative to the closeness of each individual to its

neighbor (Deb and Pratap, 2002).

d) Operators

Genetic operators are usually applied to generate children. Genetic algorithm includes

two basic operators: Crossover and Mutation.

In this work, we used two point crossover, in order to create new children from inheriting

and merging the properties of two parents. This is illustrated in Figure 3.11.

Paretnt 1

Paretnt 2

Children2

Children1

Figure 3.11: Two point crossover.

An example of two point crossover operator is depicted in Figure 3.12, where two

random parents are selected and after applying the crossover two new children are created.

In this example we also show how better are the new children since the uncovered area is

minimized.
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(a) Two random parents.

(b) Two created children after operating crossover.

Figure 3.12: An example of crossover. Uncovered area has changed (decreased) in the

new generation.

Different versions of mutation operator have been proposed for different situations.

Here, in order to have a good exploration through the map, one gene is selected randomly

and it is replaced by a new random point SP. This operator guarantees the variety of new

generation.

e) Selection

Before selection, the parent population and children concatenate together and they are

sorted based on the non-dominated sort algorithm. After ranking, just the N chromosomes

are selected as elitism for the next generation. Then, if the output population satisfies the

stopping criteria, then the final population can be reported. If none of these conditions

are verified, a new iteration starts.
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3.4.3 ELECTRE I

Choosing one solution over the set of solutions is also a challenge in MOEAs. In

order to solve this challenge, decision making techniques are usually applied. ELECTRE

I is the multi-criteria decision making method applied to choose the best solution in our

work (Shanian and Savadogo, 2006). The Elimination and Choice Translating Reality

(ELECTRE) method was first introduced in (Shanian and Savadogo, 2006). It is one of

the most extensively used outranking methods reflecting the decision makers preferences

in many fields. The ELECTRE I approach was then developed by a number of variants

(Bojković et al., 2010).

This method is used to rank a set of alternatives and also to analyze the data of a deci-

sion matrix (Shanian and Savadogo, 2006). This method is based on comparisons pairs

of all alternatives, which has lead to the make a partial ordering of options according

to preference of decision maker.The method to form the final rankings uses two matri-

ces:concordance matrix and discordance matrix.

In concordance matrix, values calculated for each pair of criteria that inform the extent

to which one alternative is at least as good as the other;

In discordance matrix, values calculated for each pair of criteria that inform the extent

to which one alternative is worse than the other.

At the end, we define the relationship between the alternatives. We create a ranking

based on the difference amount of alternatives that exceeds alternative, and those that

exceed it. Ranks the difference from the highest to the lowest.

3.5 Chinese Postman Problem

As previously mentioned, in our solution the robot must visit the search points to find

the desired object. Therefore, it should be clear the necessity of efficiently solving this

routing problem. In this work, we are going to use an algorithm that solve the so-called

Chinese Postman Problem.

Meigu Guan(or Kwan Mei-Ko), was a Chinese mathematician who proposed the Chinese

postman problem(CPP) (Eiselt et al., 1995). Guan was interested in finding out how a

postman could cover assigned segments at least once with minimum walking distance.

Considering a graph G, in the Chinese postman problem, the main objective is to find the

shortest tour such that each edge is traversed at least once. If the graph has an Eulerian

cycle (a closed path that visits every edge once), that route is an optimal solution.
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In the case of an undirected connected graph, a necessary and sufficient condition for an

Euler cycle to exist is that the graph contains no node of odd degree. Such a graph is

called Eulerian graph (Pearson and Bryant, 2004). Given an Eulerian graph, it is possible

to find an Euler cycle in linear time by using the Hierholzer’s algorithm (Fleischner, 1991).

In the general case of non Eulerian graph, optimal routes for the Chinese Postman Problem

can be found with complexity O(N3), where N is the number of nodes. The algorithm in

this case consists of finding the nodes of odd degree, finding a minimum length pairwise

matching of the odd-degree nodes, adding to the graph the new edges of the shortest

paths between the two nodes in each of the pairs given by the minimum length pairwise

matching, and finally finding the Euler tour in the modified graph which is now Eulerian

(Larson and Odoni, 1981).

A common way to formulate the CPP is to seek a least-cost augmentation of G into G′
such that all nodes of G′ have an even degree. Consider xij as the number of repeat of

(vi, vj) required to add to G and let T ⊆ V be the set of odd nodes of V and define δ(i)

as the set of edges incident to vi. The formulation is as follow (Eiselt et al., 1995):

Minimize
∑

(vi,vj)∈A

cijxij, (3.9)

subject to ∑
(vi,vj)∈δ(i)

xij ≡

1 (mod 2) if vi ∈ T

0 (mod 2) if vi ∈ V \ T
(3.10)

xij ∈ 0, 1((vi, vj) ∈ A) (3.11)

Algorithm 3 represents the sequence of functions to find the final route:
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Algorithm 3: Chinese postman algorithm (Pearson and Bryant, 2004)

Input: G // G is the graph

Output: Q //shortest closed route

1 Find and list all odd vertices in G.

2 Find and list all possible pairings of odd vertices (from step 1).

3 Find an edge for each pairing that connect the vertices with the minimum weight.

4 Find the pairings such that the sum of the weights is minimized.

5 On the input graph G add the edges that have been found in step 4. // The

length of an optimal chinese postman route is the sum of all the edges added to

the total found in step 4.

6 A route Q corresponding to this minimum weight can be found with Fleury ’s

algorithm.

After building the new graph, the Fleury ’s algorithm (Flurt, 1883) may find an

Eulerian cycle which is the optimal solution for the CPP.

Fleury ’s algorithm is a method which, if followed, is guaranteed to produce an Eulerian

tour in a connected graph with no vertices of odd degree. In a connected graph, a

bridge is defined as an edge which, if picked up, a disconnected graph is generated. (See

Algorithm4)

Algorithm 4: Fleury’s Algorithm for finding an Eulerian tour (Wilson and

Watkins, 1990)

Input: G // where G is an Eulerian graph.

Output: //current trail is an Eulerian trail.

1 Select an arbitrary vertex vi of G ;

set current vertex={vi} ; current trail ={}.
2 cnt=1 // cnt is counter for edge number(edgenum).

3 while (cnt ≤ edgenum) do

4 Choose any edge (vi, vj) incident at vi of current vertex which is not

bridge unless there is no alternative.

5 Add (vi, vj) to the current trail ;

cnt = cnt+ 1;

set the current vertex = {vj};
6 Remove (vi, vj) from the graph; Remove any isolated vertices.

After Initialization, while loop repeats until all edges have been deleted from G. The

final current trail is an Eulerian trail in G.

As an example in Figure 3.13, suppose a robot is initialized on node 1, by applying CPP
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on this graph , a possible result can be as follows:
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(a) A graph with 4 nodes.
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f

(b) Adding two virtual edges to two

odd nodes.

Figure 3.13: Postman problem example.

Q = {a, e, f, f, b, c, d, g, c},
where, Q includes a sequence of edges that indicates the Eulerian cycle.

3.6 Speeded Up Robust Features Algorithm

Object recognition is also an important problem in robotics. Hence applications of

mobile robots require not only the ability to move around in the environment and avoid

obstacles, but also the ability to detect and recognize objects and interact with them.

Most object recognizer/detector methods are based on two terms: training images and

query images. Training images are the images which the detector uses to learn information.

Query images are the images from which the detector, after learning, is supposed to detect

object(s). In this work, we want to use a robust object recognition method to be invariant

in terms of scale and rotation. It means when the object in query image is at a different

size or angle from the training images, the method can still recognize the object.

The Speeded Up Robust Features, in short (SURF) is a robust object recognition method

that is a scale- and rotation invariant detector and descriptor (Bay et al., 2008). The SURF

algorithm is mainly divided into three phases (Huijuan and Qiong, 2011): interest point

detection, interest point descriptor and interest point matching. The main motivation of

this work to select SURF is its fast interest point detection , its distinctive interest point

description, and its speeded-up descriptor matching. SURF algorithm is also invariant

to common image transformations such as: image rotation, scale changes, illumination

change, small change in viewpoint (Adel et al., 2014). Next, we will explain the three
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phases of SURF algorithm.

• Interest point detection: In this phase SURF algorithm finds points which are

in a special position in image such as corners, blob or spot and T-junction. The

most valuable feature of interest point detection is repeatability which represents the

reliability of detector in terms of finding same physical interest points in different

viewpoints. In order to detect the interest points in image, the algorithm uses

Hessian matrix approximation because of its good performance in accuracy (Bay

et al., 2008).

Suppose x=(x, y) is a point in image I, the Hessian matrix H(σ, x) in x at scale σ

is defined as follows:

H(σ, x)=

Lxx(σ, x) Lxy(σ, x)

Lxy(σ, x) Lyy(σ, x)

,

where Lxx(σ, x) is the convolution of the Gaussian second order derivative with the

image I in point x, and similarly for Lxy(σ, x) and Lyy(σ, x).

• Interest point descriptor: This phase is divided in two steps: The first step

consists in determining the orientation of interest points. Then in second step,

descriptor uses Haar wavelets in a suitably oriented square region around the interest

points to find intensity gradients in the X and Y directions. As the square region

is divided into 16 squares for this, and each such sub-square yields 4 features, the

SURF descriptor for every interest point is 64 dimensional.

• Interest point matching: SURF algorithm uses K nearest neighbor (KNN) search

for matching. A KNN is based on distance between a query descriptor and all of

the training descriptors, and returns the K pairs with lowest distance.
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4 Simulation and Experimental
Results

In this section, first we show the two maps considered for our tests and also the corre-

sponding GVD. Second we show the multi-objective solution to find the SPs. Simulation

on ROS stage is presented in section 4.3. Next, we show how SURF algorithm could rec-

ognize the object in different tests. Finally, an experiment with a real robot is presented

to validate the method.

4.1 Computing the GVD

As explained before, in order to create the GVD on input image, we used morpholog-

ical operators such as dilation, skeletonization. We consider two different maps, a simple

one and a more complex map (see Figure 4.1). As it can be seen, the corresponding GVD

of the two maps are depicted with green lines. The simple map is illustrated in Figure

4.1.(a) and its size is : 530× 640 units. The complex map is shown in Figure 4.1.(b) and

its size is 926× 1194 units.
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(a) A simple map. (b) A complex map.

Figure 4.1: Two scenarios with their corresponding GVD.

4.2 Multi-Objective Solution in MATLAB

Our solutions were found using MATLAB on a computer with 4 GB RAM and CPU

Core i 7.

In our simulation, we set the population size or chromosome number to 30. The dimension

of each chromosome for simple map and complex map are respectively 16 and 60. It is

significant to mention that the dimension of chromosomes or the number of SPs is related

to the maximum sensor range. In other words, when this range (r) is small, the number

of SPs should be large to cover the map. We defined a robot equipped with a laser sensor

with maximum range equal to 10 meters (r = 10).

In each generation, 50% of the population is selected as elitism. The crossover probability,

Pc, is a noticeable parameter in this test and it is set to 70% (mutation ratio or Pm is

equal to 30%). Pm is high because the only way of generating new points along the GVD.

And also the maximum number of iterations is equal to 50. In order to use ELECTRE I,

we must assign weights to the objective functions. In this experiment we considered that

the two objectives are equally important and due to this we assigned equal weights 0.5.
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4.2.1 Simulation Results:

This section presents one of the initial populations, which is generated randomly in a

simple map. In Figure 4.2.(a) , the SPs were not well distributed and there are overlaps.

Figure 4.2.(b) shows that a big area could not be covered by the robot. Hence, if the

object is placed in this big area, the robot can not find it.

(a) Initial population. (b) Uncovered area from initial popula-

tion is highlighted in gray color.

Figure 4.2: Initial population, its covered and uncovered region.

After running the NSGA-II on the simple map, a non-dominated set is obtained. In

order to select one of the solutions, ELECTRE I is applied as our decision making tool.

The non-dominated set and selected solution by using this technique are presented in

Figure 4.3.(a). Because of the overlaps between solutions, just six solutions (out of 15

solutions) are visible in this figure. Since the algorithm selects SPs among the set of

GVD points, these overlaps happen due to the similarity and limitation of selection in

each iteration. In other word, the algorithm converges on these set of solutions. Accord-

ingly, Figure 4.3.(b). shows the distribution of the SPs of this selected solution, which

has minimum overlap and are well distributed as desired.
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(a) Red square is selected as a Pareto optimal

point by ELECTRE I.

(b) Final population with min-

imum uncovered area

Figure 4.3: Result of multi-objective optimization for the simple map.

Figure 4.4.(a) presents the cost of objective functions F1 and F2 with respect to iter-

ation number. At each iteration, the values of objective functions for the best solution are

selected. This best solution is selected based on ELECTRE I. Figure 4.4.(b) also shows

the mean values of objective functions in each iteration. Both plot indicate the progress

of the algorithm in minimizing the objectives during iterations.
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(a) The values of objective functions for best solution

with respect to iteration number.
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(b) The mean values of objective functions with re-

spect to iteration number.

Figure 4.4: The value of objective functions in iterations.

The corresponding results for the complex map are shown in Figs. 4.5, 4.6 and 4.7.
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(a) Initial population. (b) Uncovered area from initial popula-

tion is highlighted in gray color.

Figure 4.5: Initial population, its covered and uncovered region.
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(a) Red square is selected as a Pareto optimal

point by ELECTRE I.

(b) Final population with minimum un-

covered area

Figure 4.6: Result of multi-objective optimization for the complex map.
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Figure 4.7: The value of objective functions in iterations.

4.3 Simulation on ROS/Stage

The Robot Operating System (ROS) (Quigley et al., 2009) is a framework to help in

the development of robotic software. It consists of tools, libraries, and conventions that

aim to simplify the task of creating complex and robust robot behavior. Stage ROS is a

useful package which allows for 2D robotic simulation. In order to verify the proposed

exploration strategy, we tested it first on Stage ROS. This is an important step before

implementing in the real robot to verify if the code is running as expected. In section 4.5

we show experiments with a real robot.

We defined a robot equipped with a laser sensor with maximum range equal to 10 meters

(r = 10). The robot starts exploration in a random position in the map and move

according to the route found by CPP in order to visit the SPs computed by the NSGA II

with the help of ELECTRE I. At each SP the robot captures data from the laser scanner

to detect the object.

In Figure 4.8, the initial configuration and the final configuration when finally the object

was detected are shown.
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(a) Initial configuration (b) Object is found.

Figure 4.8: Snapshots of the exploration. Red points show the SPs on the GVD, yellow

points show the points which have been explored so far by the robot.

4.4 Object Recognition with SURF

In this part, several image matching experiments are presented to evaluate the method

in our work. The test object used in the experiments is a card. We chose a set of images of

the specified object as the training sample which are shown in Figure 4.9, and the whole

as the test samples. Then the object from different positions should be recognized.
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

(i) Frame 9 (j) Frame 10 (k) Frame 11 (l) Frame 12

Figure 4.9: Training image set.

The screenshots below (see Figure 4.10) are the results of the tests that we performed

using SURF. As it can be seen, there are three windows in the screenshot. The one on the

left-up is the image representing the object of interest, that is, the object that we want

the robot to find. The window on the center is an actual picture of the lab where the

object of interest is present. In other words, the first window can be seen as a training

image, where as the second window can be seen as what the robot sees. In addition, the

third window shows that the object could match with which one of the training images

set.
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(a) (b)

(c) (d)

Figure 4.10: The matched results of the SURF method.

4.5 Real Robot Results

The proposed method has been tested in a realistic scenario using the Pioneer plat-

form1 shown in Figure 4.11. The name of this service robot is Maria and it is equipped

with all the necessary sensors for navigation and object recognition such as laser scanner

and Kinect.

1http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
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Kinect 

Laptop

Laser Scanner

Robot Platform

Figure 4.11: The structure of Maria and its sensors.

In our experiment, mapping and localization was provided by ROS packages. In order

to control the robot ’s linear and angular velocities v and w, respectively, so that the robot

moves along the edges of the GVD, we used a static feedback linearization scheme (Desai

et al., 1998). A real map of part of a building floor is considered for this experiment (see

Figure 4.12.(a)). The size of this environment is 79.89×4.04 meters. A predefined object

is placed in the map and the robot must find this object in minimum time. The initial

configuration for the robot and also the position of the object are shown in Figure 4.12(a).

The task of object recognition was done by using the local feature detection named Speed

Up Robust Features (SURF) which is robust to rotation, scaling and affine transformation

(Bay et al., 2008).
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(a) Input map, red square: robot initial configuration, green

circle: position of the object.
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(b) Corresponding graph.

(c) Corresponding GVD and SPs.

Figure 4.12: Input map, GVD and search points.

After constructing the GVD and the graph, we used NSGA II and ELECTRE I to

find good locations for SPs. In Figures 4.12.(b) and (c), the graph and the distribution

of SPs over the GVD are depicted, respectively.

Figure 4.13 shows the sequence of SPs visited by the robot. The object has been found

when the robot visits the 10th SP (see Figure 4.13 (d)).
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(a) Robot at 1th SP. (b) Robot at 5th SP.

(c) Robot at 8th SP. (d) Robot at 10th SP.

Figure 4.13: The sequence of visiting SPs.

Figure 4.14 represents the GVD and the trajectory executed by the robot according to

the Chinese Postman Problem solution. The robot stopped exploration when the object

was found. A video of this experiment can be found in https://youtu.be/TC3TJDoX2C4/.

Figure 4.14: Blue thicker line is the GVD and red line is the robot trajectory.

https://youtu.be/TC3TJDoX2C4/
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5 Statistical Analysis and
Comparison of Strategies

In the case of large maps in which a large number of search points is required, the use

of our proposed automatic approach to distribute these points is clear when compared to

a normal distribution of points since the latter is unfeasible in such a scenario. However,

in order to verify if the method is comparable or even better than an intuitive distribution

of points done by a human specialist, we present in this chapter a comparison between

the automatic proposed distribution and the manual distribution in the case of the small

maps previously shown.

In fact, this chapter focuses on the comparison of our proposed method with two other

methods based on hypothesis testing. Before comparison of strategies, we give an example

to describe some basic statistical concepts.

Consider our exploration problem described in the introduction. Suppose that we are

interested in the time to find the object as a random variable that can be described by

a probability distribution. Suppose that our interest focuses on the mean time to find

the object (a parameter of this distribution). Specifically, we are interested in deciding

whether or not the mean time to find is 50 time units. We may express this formally as:H0 : µ1 = 50

H1 : µ1 6= 50
(5.1)

The statement H0 : µ1 = 50 time units in above equation is called the null hypothesis.

This is a claim that is initially assumed to be true. The statement H1 : µ1 6= 50 time

units is called the alternative hypothesis and it is a statement that contradicts the null

hypothesis. Testing the hypothesis involves taking a random sample, computing a test

statistic from the sample data, and then using the test statistic to make a decision about

the null hypothesis. It is important to remember that hypotheses are always statements

about the population or distribution under study, not statements about the sample.

Consider that a sample of n specimens is tested and that the sample mean time to find
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x̄ is observed. The sample mean is an estimate of the true population mean µ. Suppose

that if 48.5 ≤ x̄ ≤ 51.5, we will not reject the null hypothesis H0 : µ1 = 50, and if

either x̄ < 48.5 or x̄ > 51.5, we will reject the null hypothesis in favor of the alternative

hypothesis H1 : µ1 6= 50. This is illustrated in Figure 5.1.

µ=50 µ=51.5 µ=48.5 

α/2 α/2 

Acceptance region Critical region Critical region 

Fail to reject H0 

Reject H0 Reject H0 

Figure 5.1: Decision criteria for testing H0 : µ1 = 50 versus H1 : µ1 6= 50.

The acceptance region is a region where all values of x̄ are in the interval 48.5 ≤ x̄ ≤
51.5 and we will fail to reject the null hypothesis; The values of x̄ that are less than 48.5

and greater than 51.5 constitute the critical region for the test. We reject H0 if the test

statistic falls in the critical region and fail to reject H0 otherwise.

This decision procedure for testing null hypothesis can lead to two wrong conclusions

(Campelo, 2014): type I error and type II error.

Type I error is rejection of the null hypothesis H0 when it is true.

The probability of occurrence of type I error is called significance level (α):

α = P (type I error) = P (reject H0|H0 is true) (5.2)

The selected value of α defines the critical threshold for the rejection of H0. In our ex-

ample (see Figure 5.1), a type I error will occur when either x̄ < 48.5 or x̄ > 51.5 when

the true mean time to find the object really is µ1 = 50 time units. This probability

100(1− α)% is also usually known as confidence level. The interval contains only values

of µ that are not rejected by the level-α test. For example, if this were a 95% confidence

interval, in the long run only 5% of the intervals would fail to contain µ.
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Failing to reject the null hypothesis when it is false is defined as a type II error. The

probability of occurrence of a type II error in any test of hypotheses is generally repre-

sented by β:

β = P (type II error) = P (fail to rejectH0|H0 is false) (5.3)

The quantity (1−β) is known as power of the test, and quantifies its sensitivity to effects

that violate the null hypothesis.

5.1 Comparison of First and Second Strategies in

Robot Exploration Experiment with Simple Map

To compare two strategies statistically, we divided the necessary tasks in four steps as

follows: problem description, experimental design, analysis of experiment, and discussion

and conclusion.

5.1.1 Problem Description

In this part, we compare the average time to find (TTF) the object of our strategy

(S1) with another strategy(S2) which will be explained below. More specifically, we are

interested in knowing whether mean TTF measured by each strategy differs by more than

10 time units as minimally interesting difference.

In this section strategy (S1) refers to our proposed method where the robot moves along

the GVD and execute the search at the SPs. In this strategy all SPs are found by NSGA

II. On the other hand, in second strategy(S2), robot explores the created GVD of input

map and stops at specific points namely SPs to find the object similary to S1. However

there is a constraint in S2 such that every graph edge of GVD has at least one SP placed

on it.

In this experiments, the input map is the simple one in Figure 3.6(b) In order to have

available information, experiments are performed to generate initial data for the two

strategies. It means that the two different strategies (S1, S2) are run to save elapsed time

for finding the object. For this reason, the object positions is changed 20 times for each

strategy.

The result is considered relevant when it can generate effects greater than the minimally

interesting difference(δ) of 10 time units. The other desired characteristics for the exper-

iment are:
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• Significance level(α): 0.1

• Power level(1− β): 0.8

The selected value of significance level defines the critical threshold for the rejection of

H0 and the power level of the test quantifies its sensitivity to effects that violate the null

hypothesis.

5.1.2 Experimental Design

In this subsection, we divided the design of experiment in three parts as follows:

first, we illustrated how to construct statistical hypothesis testing . In the next part we

describe the results of an experiment with a linear statistical model. Lastly we determine

the sample size required for hypothesis testing.

5.1.2.1 Statistical Hypothesis

The experimental design is primarily defined by the establishment of the null and

alternative hypotheses, H0 and H1 respectively. Consider robot exploration experiment

introduced earlier, we may think that the mean of TTF in S1 is equal to mean of TTF

in S2. This may be stated formally as equation below:H0 : µ1 = µ2

H1 : µ1 6= µ2

(5.4)

where µ1 is the mean of TTF in S1 and µ2 is the mean of TTF in S2. The null hypothesis

is that the mean of TTF in S1 (µ1) is equal to mean of TTF in S2 (µ2) and alternate is

that µ1 is different from µ2.

5.1.2.2 Representation of Observations

The null hypothesis H0 represents that there are no differences between means. In

contrast, alternative hypothesis H1 states clearly that µ1 and µ2 are different. We charac-

terize the results of an experiment with a model. A linear statistical model that describes
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the data from our experiment is (Montgomery and Runger, 2013):

yij = µi + εij

i = 1, 2

j = 1, .., ni

(5.5)

where yij is the jth observation of ith strategy; µi is the mean of each strategy; And εij

stands for the residual associated with ith strategy at the jth observation.

5.1.2.3 Choice of Sample Size

An important part of any experimental design is determining appropriate sample

sizes (Montgomery, 2012); We need to determine how many observations are enough in

order to draw conclusions about a population using a sample from that population. That

is deciding the number of replicates to run. Choice of sample size depends on some

parameters such as: minimally interesting effect (δ) or true difference between means ,

standard deviation(sd), significance level(α) and power of test.

To perform statistical tests, there is a high level programming language for data analysis

and graphics which is called “R”. This language includes various functions in statistics

area,mathematics, graphics and etc that is used as statistical computing tools (Crawley,

2012).

We used a powerful command in R implementation which can be used to compute sample

size considering target power. The command is known as power.t.test(...). To compute

the required sample size, we need to have the necessary parameters which are mentioned

above and also know about type of t.test which is two.sample and type of alternative that

is two.sided.

Since the variance is not known and it is essential for computing sample size, it will be

estimated from the data. As we are assuming σ2
1 ≈ σ2

2, we can use the pooled variance S2
p

(Montgomery, 2012):

S2
p = (sd12 + sd22)/2 (5.6)

where sd1 and sd2 are the standard deviation of two sample data (S1,S2). As a result,

Sp equals to 36.

A number of 160 observations for each group was achieved as a sample size based on the

desired characteristics, see Table 5.1 .
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Two-sample t test power calculation

n = 160.9326

delta = 10

sd = 36

sig.level = 0.1

power = 0.8

alternative = two.sided

Table 5.1: Choice of sample size.

In addition, we consider that two sample sizes are equal (n1 = n2 = n)

5.1.3 Analysis of Experiment

This subsection focused on the test of statistical hypothesis including interpreting

visual data displays with box plot, computing a test statistic for the two sample data and

making a decision about the null hypothesis.

5.1.3.1 Test of Statistical Hypothesis

To describe several important features of a data set from an experiment, box plot

can be used as a graphical method to assist us. Hence, box plot depicts significant

characteristics of data such as median, spread or variability, departure from symmetry,

and identification of unusual observations or outliers (Montgomery and Runger, 2013). A

box plot displays the minimum and maximum of data, first and third quartiles, and the

median or second quartile on a rectangular box. The box extends from the first quartile

to third quartile, and a band inside the box shows the median. Lines extend from end

of the box to minimum and maximum. The lower line extends from first quartile to

smallest data point and the upper line extends from third quartile to largest data point.

Any data not included between the lines is called outlier. The outlier is plotted with a

circle or star(see Figure 5.2).
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Third quartile 

Second quartile 

First quartile 

Smallest data point 

Largest data point 

Outlier 

Outlier 

Figure 5.2: Description of a box plot.

Figure 5.3 shows the box plots for two sample data of TTF in robot exploration

experiment based on S1 and S2. Each box plot presents a sample of 160 observations

(this number of observations is calculated as sample size in previous subsection). The

lines connect paired samples, that is, the samples taken by each strategy for the same

object placement. The variability in the sample data from all two strategies seems very

similar. The result is an indication that the median of data (which generally will be close

to the mean) in S1 is smaller than that one in S2.

Figure 5.3: Comparative box plots of TTF in S1 and S2.

There is a built-in function in R which is called t-test. Computationally, we perform

the Two Sample t-test as a smart solution for comparison of two means:
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> t.test(Elapsed.time ∼ Strategy, alternative = ”two.sided”,mu = 0, var.equal =

TRUE, conf.level = 0.9)

Tables 5.2 shows the result of applying the Two Sample t-test for comparison between S1

and S2.

Two Sample t-test

data: Elaps.time by Strategy

t = -0.249, df = 318, p-value = 0.805

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-7.348978 5.434591

sample estimates:

mean in group S1 mean in group S2

35.32043 36.27762

Table 5.2: Two Sample t-test for comparing means of S1 and S2.

P -value is the lowest significance level that would lead to the rejection of H0 for

the available data (Montgomery, 2012); In this experiment, because the p-value is big

(> 0.1), the null hypothesis H0 would not be rejected. The evidence supports that the

mean time elapsed with S2 equals the one in S1.
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picture/CI_S1&S2_simple.pdf

Figure 5.4: Difference between means(µ1, µ2) at a confidence of 90%.

Since the confidence intervals with a confidence of 90% include zero, the results

presented in Figure 5.4 confirm that S1 provides results equal to S2.

5.1.4 Discussion

The performed statistical analysis has showed that the two strategies are statistically

equivalent; the null hypothesis H0 was not refuted.

It is recommended further investigation concerning current methods on an alternative

map such as a complex map. Hence, more experiments will be needed to verify whether

the means of TTF data for two strategies (S1, S2) are equal or not.

In conclusion there are statistical evidences that support there are no significant diver-

gences between the two strategies;

5.2 Comparison of First and Third Strategies in

Robot Exploration Experiment with Simple Map

As it was mentioned before, this section includes four steps as: problem description,

experimental design, analysis of experiment and discussion and conclusion.
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5.2.1 Problem Description

The first method (S1) was presented previously and now we explain about the third

strategy.

In the third strategy (S3), robot moves on created GVD of input map to explore the

whole map. To search for the desired object, it stops at SPs. However there is a big

difference between this strategy and S1. In S3, SPs are defined manually by an expert.

In the experiments the input map is the simple one, see Figure 3.6.(b). To have available

information, experiments are performed to generate initial data based on two strategies.

The result is considered relevant when it can generate effects greater than the minimally

interesting effect of 10 time units. The other desired characteristics for the experiment are:

• Significance level(α): 0.1

• Power level(1− β): 0.8

5.2.2 Experimental Design

This subsection is divided in three parts as follows: statistical hypothesis, representa-

tion of observation and choice of sample size.

5.2.2.1 Statistical Hypothesis

We are interested in testing mean of TTF problem. The experimental design is

primarily defined by the establishment of the null and alternative hypotheses, H0 and H1

respectively. The appropriate hypotheses are:

H0 : µ1 = µ3

H1 : µ1 6= µ3

(5.7)

The null hypothesis H0 is defined as: mean of TTF in S1 is equal to mean of TTF in S3;

This represents the case where there are no differences between two strategies in terms

of mean of elased time. Furthermore, the alternative hypothesis is expressed as: mean of

first strategy (µ1) is different with respect the mean of third one (µ3). This claim shows

that differences between (µ1) and (µ3) is greater than the minimally interesting effect.
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5.2.2.2 Representation of Observations

The data model can be described by the linear statistical model as:

yij = µi + εij

i=1,3

j=1,..,ni

(5.8)

where yij is the jth observation from ith strategy. µi is the mean of ith strategy and εij is

the residual associated with ith strategy at the jth observation.

5.2.2.3 Choice of Sample Size

The experiment is consisted by selecting appropriate sample sizes; To determine how

many replicates is enough in each of two samples, we applied power.t.test(...) with power

= 0.8 when minimally interesting effect= 10,the significance level and standard deviation

are 0.1 and 38 respectively. It is necessary to mention that the standard deviation is

computed based on equation(5.6).

Table 5.3 shows that we need 180 replicates in each sample (360 replicates in all) to

achieve a power of 0.8.

Two-sample t test power calculation

n = 179.2325

delta = 10

sd = 38

sig.level = 0.1

power = 0.8

alternative = one.sided

Table 5.3: Choice of sample size.

5.2.3 Analysis of Experiment

5.2.3.1 Test of Statistical Hypothesis

After running the designed experiment, it is a good idea to examine experimental

data graphically. Consider Figure 5.5, which contains box plots for the TTF data of two
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strategies S1, S3. The light gray lines connect paired observations, that is, the observa-

tions taken by each strategy for the same target object placement. As follows from the

comparative box plots shown below, there is small differences between medians of the two

strategies. The variability of data set in S3 is larger than S1.

Figure 5.5: Comparative box plots of TTF in S1,S3.

The null hypothesis of equal means can be tested by the function t-test with

equal variance for two samples. > t.test(Elapsed.time ∼ Strategy, alternative =

”two.sided”,mu = 0, var.equal = TRUE, conf.level = 0.9)

The overall measurement results using t-test are summarized in Table 5.8.

Two Sample t-test

data: Elaps.time by Strategy

t = -1.8529, df = 358, p-value = 0.06471

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-14.2419845 -0.8289044

sample estimates:

mean in group S1 mean in group S3

34.87606 42.41150

Table 5.4: Two Sample t-test for comparing means of S1 and S3.

From the p-value 0.06471, the result is rejection of the null hypothesis H0. Note that
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the p-value is smaller than significance level.

The result obtained shows that the intervals does not contain zero. Therefore, we can

conclude that the null hypothesis can be rejected at 90% confidence level. In addition,

the difference between µ1 − µ3 is negative so we can say that µ1 is less than µ3.

picture/CI_S1&S3_simple.pdf

Figure 5.6: Difference between means(µ1, µ3) at a confidence of 90%.

5.2.4 Discussion

The results obtained have indicated that the two strategies (S1, S3) are not statisti-

cally equivalent; the null hypothesis was refuted.

It is recommended to use an alternative map such as a complex map. Therefore, further

test of the issue is still required.

Summing up the results, it can be concluded that there are difference between the means

of the two strategies (S1, S3); There are statistical evidences that support this statement.
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5.3 Comparison of First and Second Strategies in

Robot Exploration Experiment with Complex

Map

In this section, our purpose is to compare S1 and S2 using a complex map. The

following steps for this purpose are: problem description, experimental design, analysis of

experiment and discussion and conclusion.

5.3.1 Problem Description

According to the results shown in sections 5.1 the second strategy(S2)is not different

from strategy (S1) in terms of average time to find the object. Thus, we decide to consider

a complicated map containing more obstacles in which comparison of S1 with S2 should

be done, see Figure 4.1.(b). Again, we test for differences in means considering significance

level (α) = 0.1, power (1−β)= 0.8. The result is considered relevant when it can generate

effects greater than the minimally interesting effect of 40 time units.

5.3.2 Experimental Design

5.3.2.1 Statistical Hypothesis

The null and alternative hypotheses could be expressed as equation 5.4.

5.3.2.2 Representation of Observations

The statistical model for the data are defined such as equation 5.5.

5.3.2.3 Choice of Sample Size

The sample size of 22 observations for each group was achieved based on desired

characteristics, see Table 5.5 .
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Two-sample t test power calculation

n = 21.60658

delta = 40

sd = 52

sig.level = 0.1

power = 0.8

alternative = two.sided

Table 5.5: Choice of sample size.

5.3.3 Analysis of Experiment

5.3.3.1 Test of Statistical Hypothesis

Figure 5.7 presents the box plot. The result is an indication that the median of TTF

data in S1 is significantly smaller than that one in S2 and also there is relevant difference

between two strategies. The variability of data set in S2 seems bigger than in S1.

Figure 5.7: Comparative box plots of TTF in S1,S2.

The results of applying the Two Sample t-test to this experiment are as follows:
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Two Sample t-test

data: Elaps.time by Strategy

t =-4.0228, df = 42, p-value = 0.0002346

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-85.83351 -35.22040

sample estimates:

mean in group S1 mean in group S2

37.62036 98.14732

Table 5.6: Two Sample t-test for comparing means of S1 and S2.

In this experiment, because the p-value is significantly less (< 0.1), the null hypothesis

H0 would be rejected. The evidence supports that S2 elapses mean level of time is bigger

than in S1.

As it can be seen in figure 5.8, since the interval does not contain zero then the null

hypothesis can be rejected. whereas the difference between µ1 − µ2 is negative, we can

claim that mean of TTF in S1 is less than S2.

picture/CI_S1&S2_Complex.pdf

Figure 5.8: Difference between means(µ1, µ2) at a confidence of 90%.
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5.3.4 Discussion

The performed statistical analysis has showed that the two strategies are not

statistically equivalent; the null hypothesis H0 was refuted.

In conclusion there are statistical evidences that support there are significant divergences

between the two strategies;

5.4 Comparison of First and Third Strategies in

Robot Exploration Experiment with Complex

Map

We compared the strategies S1 and S3 statistically in four steps as follows: problem

description, experimental design, analysis of experiment and discussion and conclusion.

5.4.1 Problem Description

In this experiments, the input map is the complex one, see Figure 4.1.(b). The desired

characteristics for the experiment are:

• Significance level(α): 0.1

• Power level(1− β): 0.8

• minimally interesting effect(δ): 40 time units.

5.4.2 Experimental Design

5.4.2.1 Statistical Hypothesis

The null and alternative hypotheses are specified such as equation 5.7.

5.4.2.2 Representation of Observations

The data model can be described by the linear statistical model as equation 5.8:
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5.4.2.3 Choice of Sample Size

Table5.7 shows that we need 23 replicates in each sample (46 replicates in all) to

achieve a power of 0.8.

Two-sample t test power calculation

n = 23.24253

delta = 40

sd = 54

sig.level = 0.1

power = 0.8

alternative = two.sided

Table 5.7: Choice of sample size.

5.4.3 Analysis of Experiment

5.4.3.1 Test of Statistical Hypothesis

Consider Figure 5.9,which contains box plots for the TTF data of two strategies

S1, S3. It is clear from the map that there is a large variability in the times to target,

which is expected, given the random placement of the target points. Moreover, the light

gray lines connecting the paired observations suggest that even for the same placement

the times can exhibit a large variation between the two strategies. Larger differences

are observed for the complex map, while there is a more apparent effect of the proposed

approach in contrast with the manual placement of SPs in the simple one.
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Figure 5.9: Comparative box plots of TTF in S1,S3.

The overall measurement results using t-test are summarized in Table 5.8.

Two Sample t-test

data: Elaps.time by Strategy

t = -2.5853, df = 44, p-value = 0.01312

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

-71.73803 -15.22205

sample estimates:

mean in group S1 mean in group S3

53.93452 97.49994

Table 5.8: Two Sample t-test for comparing means of S1 and S3.

From the p-value 0.01312, the result is to reject the null hypothesis H0 of equal sam-

ple means. Note that the p-value is less than significance level and the difference between

means (µ2 − µ1) is greater than minimally interesting effect(δ).

As it can be seen from table 5.10, the interval does not contain zero then the null hypoth-

esis of no difference between means of S1 and S3 can be rejected at confidence of 90%.

Since the difference between µ1 − µ3 is negative, we can say that µ1 is smaller than µ3.
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picture/CI_S1&S3_Complex.pdf

Figure 5.10: Difference between means(µ1, µ3) at a confidence of 90%.

5.4.4 Discussion

The results obtained from t-test have indicated that the two strategies (S1, S3) are

not statistically equivalent; the null hypothesis was refuted.

Summing up the results, it can be concluded that there are difference between means of

two strategies (S1, S3); There are statistical evidences that support this statement.

5.5 Conclusion

From the results of the experiments, we found that our method is comparable and even

better than other two methods in terms of mean time of finding object. The advantage

of the proposed approach is highlighted when it is applied on a large complex map. As

shown in the results our method could distribute SPs better than an expert human, and

accordingly minimized the elapsed time.
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6 Conclusion and Future Work

This work has proposed a new strategy for robotic exploration with the aim of find-

ing a specific object in a given static environment. We take into account some of the

challenges such as time limitation and range of robot’s sensors. In order to address these

problems, we present a technique which guides the robot to search just at some station-

ary points instead of searching at all possible configurations of the map. These points are

called search points (SPs). SPs are placed on a safe route defined by the GVD.

In this work, the placement of these SPs is provided by the solution of an optimization

problem with two objective functions: maximum covered area and distribution of SPs on

the map. NSGA-II is used as a tool to find the Pareto-front and ELECTRE I is used as

a decision maker to choose a solution.

The problem of routing the robot to search the object at the computed search points is

modeled as a Chinese Postman Problem so that it can be efficiently solved even in the

case of large number of search points. For object recognition task, SURF algorithm is

used because of its powerful attributes, including scale invariance, translation invariance,

illumination invariance and rotation invariance.

Experimental results are in good agreement with simulation and theory. A real robot

experiment is also presented to show that the proposed method can be used in real ap-

plications. In the statistical section, we have compared different strategies to show the

efficiency of our method. Statistical results show that the proposed method is comparable

with two mentioned methods and provide smaller average of the elapsed time in finding

the pre specified object.

In conclusion, this work can be suitable for different applications, especially when time

limitation is one of the important criteria.

The most obvious limitation of our work is that we need to have the map of the environ-

ment and the exploration can not be done in unknown environment.

Another limitation is that the proposed method can work in the static environment, but it

is possible to extend this work to be applicable in the dynamic environment by updating

the road map periodically. Moreover, some important aspects, including the effects of
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uncertainty and the extension to outdoor environments, have not been fully considered in

this work and deserve more attention.

As in single robot exploration, the goal is to minimize the overall time exploration, using

a multi-robot solution helps to achieve this goal easier. Indeed, there are several advan-

tages in multi-robot systems over single robot such as speed, accuracy and fault-tolerant.

Therefore, this work can be extended to use cooperation of a multi-robot system instead

of a single robot in future work.
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élémentaires, 2nd ser. (in French), pages 257–261.

Franchi, A., Oriole, G., Reda, L., and Vendittelli, M. (2007). A Decentralized Strategy for

Cooperative Robot Exploration. In Proc. of First International Conference on Robot

Communication and Coordination (ROBOCOMM), (April):1–8.

Freda, L. and Oriolo, G. (2005). Frontier-based probabilistic strategies for sensor-based

exploration. In Proc. of IEEE International Conference on Robotics and Automation

(ICRA), 2005(April):3881–3887.

Galceran, E. and Carreras, M. (2013). A survey on coverage path planning for robotics.

Robotics and Autonomous Systems, 61(12):1258–1276.



63

Garrido, S., Moreno, L., Blanco, D., and Jurewicz, P. (2011). Path planning for mobile

robot navigation using voronoi diagram and fast marching. International Journal of

Robotics and Automation (IJRA), 2(1):42–64.

Gonzales-banos, H. H. and Latombe, J.-c. (2002). Navigation Strategies for Exploring

Indoor Environments. International Journal of Robotics Research, 21(1):829—-ÂŰ848.
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