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Ao meus pais, Maria José e Antônio, pelo incentivo e apoio incondicional de sempre.

Ao Pedro, pela compreensão, carinho e paciência.
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Resumo

Métodos Bayesianos aplicados a séries temporais começaram a se destacar quando a

classe de modelos lineares dinâmicos (MLD’s) foi definida. A necessidade de trabalhar

com séries temporais não Gaussianas atraiu muito interesse ao longo dos anos. A classe

de modelos lineares generalizados dinâmicos (MLGD’s) é uma extensão atrativa do MLD

para observações na famı́lia exponencial e, ao mesmo tempo, corresponde a uma extensão

do modelo linear generalizado, permitindo que os parâmetros variem no tempo. Recor-

rentemente, essas séries temporais podem ser afetadas por eventos externos que mudam

a estrutura da série, resultando em problemas de ponto de mudança. O modelo partição

produto (MPP) aparece como uma alternativa atrativa para identificar múltiplos pontos

de mudança. Neste trabalho, propusemos estender a classe de modelos lineares general-

izados dinâmicos utilizando o modelo partição produto para acomodar séries temporais

na famı́lia exponencial com problemas de ponto de mudança. Nesse contexto, o MPP

promove uma estrutura de agrupamento para os dados, e a inferência tradicional do

MLGD é feita, mas ao invés de ser feita para cada observação, a inferência é feita por

blocos de observações, implicando que observações no mesmo bloco terão um parâmetro

de estado comum. A nova classe proposta é uma classe ainda mais ampla, uma vez que

garante a flexibilidade do MLGD conjuntamente com a habilidade de detectar pontos de

mudança através da metodologia do MPP. Nesse trabalho, analisamos bancos de dados

reais objetivando ilustrar a aplicabilidade do modelo proposto.

Palavras-chave: Modelos dinâmicos, Modelo partição produto, Pontos de mudança, Famı́lia

exponencial.
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Abstract

Bayesian methods applied to time series have begun receiving highlighted when the

class of dynamic linear models (DLM’s) was defined. The need of working with non-

normal time series have attracted a lot of interest during the years. The class of dynamic

generalized linear models (DGLM’s) is an atrractive extension of the DLM for observa-

tions in the exponential family and, in turn, corresponds to an extension of generalized

linear model allowing the parameters to be time-varying. Recurrently, these time series

may be affect by external events that can change the structure of the series, resulting in

a change point problem. The product partition model (PPM) appears as an attractive

alternative to identify multiple change points. In this work, we proposed to extend the

class of dynamic generalized linear models by using the product partition model in order

to accommodate time series in the exponential family within the change point problem.

In this fashion, the PPM provides a blocking structure for the data, and the traditional

inference of the DGLM is performed, but instead of making inference for each observa-

tion, the inference takes place by blocks of observations, implying that observations in

the same block will have a common state parameter. The new class proposed is a wider

class, since it guarantees all the flexibility of the DGLM along with the ability to detect

change point problems through the PPM framework. In this work, we analyzed real data

aiming to illustrate the usefulness of the proposed model.

Keywords: Dynamic models, Product partition model, Change points, Exponential fam-

ily.
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Chapter 1

Introduction

A time series is a set of observations ordered in time wherein the observation’s ordination

implies in a correlation structure of the data which, in general, can not be neglected. We

can enumerate many different fields where this type of data may occur such as economy,

with weekly data related to stock exchange and interest rates, monthly sales and prices

indexes, climatology, when observing daily temperature, monthly rainfall, tides records

and an extensive list of areas as agriculture, business, geophysics, engineering, quality

control and others, as cited by Shumway and Stoffer (2006). These series can be non-

stationary and have non-observable components such as seasonality, cycle and trend.

Besides, its state space may be continuous or discrete, allowing the series to assume

either continuous or discrete distributions.

There is an extensive literature of time series analysis focused on developing appro-

priate models. A very popular class of models is the autoregressive integrated moving

average (ARIMA), proposed by Box and Jenkins (1970). Bayesian methods applied to

time series have begun receiving highlighted after the work of Harrison and Stevens

(1976), where the class of dynamic linear models (DLM’s) was defined. According to

West et al. (1985) the fundamental idea of the DLM is that at any time t, the process

under study is viewed in terms of a meaningful parameter θ, whose values are allowed

to change as time passes. Although dealing only with Gaussian time series, Pole et al.

(1994) emphasizes that the DLM class is very large and flexible indeed.

The need of working with non-normal and non-linear time series have attracted a lot

of interest during the years and, consequently, extensions of the DLM were proposed.

West (1981) proposed a robust sequential approximated Bayesian estimation which pro-

vided a procedure applicable to symmetric and uni-modal errors distributions. Meinhold

and Singpurwalla (1989) provided a robustification of the Kalman-Filter. The solution

proposed by Carlin et al. (1992) is a Monte Carlo approach by using the Gibbs sam-
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pling algorithm. These extensions were still restrictive in the sense that the distributions

allowed were still related to the normal distribution.

Durbin and Koopman (2000) provided a treatment in both classical and Bayesian

framework, by using importance sampling simulation and antithetic variables for the

analysis of non-normal time series by using state-space models. In an alternative to escape

from the Gaussian assumption Gamerman et al. (2013) introduced a wider class on non-

Gaussian distributions, which retains analytical availability of the marginal likelihood

function, and provided both Bayesian and classical approaches for the state-space models

considering that class.

An attractive extension of the DLM, which shall be considered in this work, was

defined by West et al. (1985), the class of dynamic generalized linear models (DGLM’s),

which is based on the theory of generalized linear models (GLM’s), proposed by Nelder

and Wedderburn (1972). Thus, the DGLM is an extension of DLM for observations in

the exponential family and, in turn, corresponds to an extension of GLM allowing the

parameters to be time-varying.

The DGLM class is rather broad since it treats any time series which distribution is

a member of the exponential family without the stationary assumption, property which

receives an special attention since it is usually an important characteristic for both mode-

ling and forecasting, and others non-observable components may be include in the model

through a system component.

According to Santos et al. (2010) time series may be affect by external events, called

interventions, which effects on a given response variable are discussed by Box and Tiao

(1975). These interventions can change the structure of the series, resulting in a change

point problem. The change point problem has been intensively studied, since the subject

found application in many different areas, implying in a really voluminous literature.

Usually, during the inference, its necessary to detect or estimate these change points.

Perron (2005) provides a recent review of the methodological issues for models involving

structural breaks. Among the several tools available in the literature to treat struc-

tural breaks, the product partition model (PPM) appears as an attractive alternative to

identify multiple change points.

The PPM was first defined for general partitions by Hartigan (1990), which allowed

the data to weight the partitions likely to hold and assumed that observations in different

components of random partitions of the data are independent given the partition. In a

more specific work Barry and Hartigan (1992) defined the PPM in terms of a partition

of a set of observations into contiguous subsequences (or blocks), wherein the partition

has a prior product distribution, and given the partition, the parameters in different

2



blocks have independent prior distributions. Barry and Hartigan (1993) developed the

PPM to identify multiple change points in normally distributed data, then proposed an

approach to estimate change points and parameters through a Gibbs sampling scheme and

provided a comparison with other approaches already used in the literature. Loschi and

Cruz (2002) proposed a competitive and easy-to-implement modification of the Gibbs

sampling scheme (Barry and Hartigan, 1993) for the estimation of normal means and

variances.

Important extensions of the PPM began to appear in different areas. Loschi et al.

(2005) used the PPM to estimate the mean and the volatility for time series data with

structural changes that include both jumps and heteroskedasticity. Demarqui et al.

(2012) applied the PPM in survival analysis to estimate the time grid in piecewise expo-

nential model considering a class of correlated Gamma prior distributions for the failure

rates, obtained via the dynamic generalized modeling. Muller et al. (2011) proposed the

PPM in the presence of covariates which are included by a a new factor in the cohesion

function. Monteiro et al. (2011) provided an extension of the PPM by assuming that

observations within the same block have their distributions indexed by different parame-

ters. In that approach, it was used a Gibbs distribution as a prior specification for the

canonical parameter, implying that the parameters of the observations in the same block

were also correlated. Ferreira et al. (2014) studied the identification of multiple change

points using the PPM and including dependence between blocks through the prior dis-

tribution of the parameters. The reversible jump Markov chain Monte Carlo (MCMC)

algorithm was used in that work to sample from the posterior distributions.

Fearnhead (2006) provided an approach related to work on product partition model

and demonstrate how to perform direct simulation from the posterior distribution of a

class of multiple changepoint models where the number of change points is unknown.

This approach is useful even when the independence assumptions do not hold.

In this work, we propose to extend the class of dynamic generalized linear models by

using the product partition model in order to accommodate time series in the exponential

family within the change point problem. In this fashion, the PPM provides a blocking

structure for the data, and the traditional inference of the DGLM is performed, but

instead of making inference for each observation, the inference takes place by blocks of

observations.

The inference of the proposed class will imply that observations in the same block

will have a common state parameter. Although having a common state parameter, the

observations in the same block are not independent and identically distributed, as in

the usual PPM, since each distribution parameter depends on a set of covariates, that

3



determines the hyperparameters of the prior distribution for the canonical parameter.

Besides, the dynamic modeling implies that parameters in different blocks are correlated

due to the evolution system.

The main advantage of working with the DGLM class is that it provides a closed

expression for the one-step ahead forecast and, consequently, for the marginal likelihood.

Besides, the evolution covariance matrix may be specified by the aid of the discount factor,

and its estimation is no longer required. If the DGLM is specified via MCMC or particle

filtering instead of using the linear Bayes approach and the aid of the discount factor,

the marginal likelihood would have to be estimated numerically, and the computational

time, which is already high due to the partition estimation, would be even higher.

The new class proposed, which we shall refer here to as the dynamic generalized linear

model via product partition model (DGLM via PPM) is a wider class, since it guarantees

all the flexibility of the DGLM along with the ability to detect change point problems

through the PPM framework.

This work is organized as follows. In Chapter 2 we present the definition of the uni-

parametric exponential family of distributions and some important properties related to

this family, and we briefly describe the generalized linear model theory. The dynamic

models are introduced in Chapter 3, by first defining the dynamic linear model and its

inference, then defining the dynamic generalized linear model and its inference. In Chap-

ter 4 the product partition model introduced by Barry and Hartigan (1992) is reviewed,

as well as a Gibbs sampling scheme used to obtain inferences about the partition. We

extend the use of the product partition model in the class of dynamic generalized linear

models in Chapter 5, by proposing the dynamic generalized linear model via product

partition model. At last, in Chapter 6 we illustrate the usefulness of the proposed model

by using two real time series data series, and comparing the inference with the traditional

DGLM inference.
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Chapter 2

Generalized Linear Models

The relationship between a response variable and a set of independent explanatory va-

riables has been traditionally described by the classic linear model, defined as follows

Yt = F ′tθ + vt, (2.1)

where Yt, t = 1, ..., n, is the response variable, F ′t is a 1×p vector of explanatory variables,

θ is a p× 1 vector of unknown parameters and vt is an error term.

The errors vt are assumed to be independent and identically distributed as the Gaus-

sian distribution, such that

vt
iid∼ N [0, V ]. (2.2)

As a consequence, the response variable is distributed such as the Gaussian distribu-

tion

Yt|θ ∼ N [F ′tθ, V ]. (2.3)

Despite being a very popular model, it finds some restriction when its assumptions

are not satisfied. This may happen, for example, when it is not convenient to assume

normality for the response variable, this being binary, as in the binomial distribution,

being a count, as in the Poisson distribution, or being asymmetric, as in the gamma

distribution. Some kind of transformation on the response variable may be done in order

to solve the violation of normality assumption, but it will not be effective in most cases

for many different reasons, specially, due to the data nature.

Some of the distributions used in statistics may be united in a family of parametric

distributions, known as exponential family of distributions. This class of distributions
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holds some important properties in statistical analysis and enabled the development of

the so-called generalized linear models.

2.1 Exponential Family of Distributions

Suppose that the probability density function of a random variable Y (if Y is continuous)

or the probability function (if Y is discrete) can be written in the form

P (Y |η, V ) = exp{V −1[Y η − a(η)]}b(Y, V ), (2.4)

where η is the canonical parameter, V > 0 is a dispersion parameter, and a(.) e b(.) are

known functions. Besides, φ = V −1 is called the precision parameter. Then Y is said

to belong to the uniparametric exponential family of distributions.

The function a(.) is assumed twice differentiable in η. Then, it can be shown that

µ = E[Y |η, V ] =
da(η)

dη
= ȧ(η),

and

Var[Y |η, V ] = ä(η)/φ.

In the following examples it is presented two distributions in the uniparametric ex-

ponential family.

Example 2.1 The Poisson model

Consider Y being distributed as the Poisson with mean µ, hence the pf is

p(Y |µ) =
eµµY

Y !

=
1

Y !
exp{Y lnµ− µ}, µ > 0, Y = 0, 1, ....

Note that, this distribution is a special case of the exponential family of distributions,

where V −1 = 1, b(Y, V ) = 1
Y !

, η = lnµ and a(η) = eη.

Example 2.2 The Gaussian model

Let Y be distributed as the Gaussian distribution with mean µ and variance V , hence the

pdf is

6



f(Y |µ, V ) =
1√

2πV
exp

{
−(Y − µ)2

2V

}

=
1√

2πV
exp

{
−Y

2

2V

}
exp

{
V −1

(
Y µ− µ2

2

)}
, −∞ < Y, µ <∞, V > 0.

Therefore, this is a special case of the exponential family of distributions with V −1 = φ,

b(Y, V ) = 1√
2πV

exp
{
−Y 2

2V

}
, η = µ and a(η) = η2

2
.

Some of the most popular distributions such as the Binomial, Poisson, negative Bino-

mial, in the discrete case, and the Gaussian, Gamma, Beta, in the continuous case, that

belongs to exponential family are presented in Table 2.1, with the canonical parameter η,

precision parameter V −1, and the functions a(.) and b(., ) being identified (see McCullagh

and Nelder (1989) for details).

Distribution V −1 η a(η) b(Y, V )

Poisson: P(µ) 1 lnµ eη 1
Y !

Binomial: B(m,µ) 1
m

ln
(

µ
1−µ

)
ln(1 + eη)

(
m
µ

)

Negative Binomial: NB(π,m) 1 ln(1− π) −m ln(1− eη)
(
Y +m− 1
m− 1

)
Normal: N(µ, V ) V µ η2

2
1√

2πV
exp

(
−Y 2

2V

)
Gamma: G(α, β) 1 −β −α ln β Y α−1

Γ(α)

Beta: B(λ) 1 −λ − ln(−η) 1/Y

Table 2.1: Some distributions in the uniparametric exponential family
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The exponential family of distributions holds some important properties in statistical

analysis. Particularly, in the Bayesian framework, the conjugate analysis property. Using

this proper facilitates the analysis in the sense that the prior and the posterior distribu-

tions belongs to the same class of distributions, and the updating involves only changes

in the hyperparameters. This implies that required distributions can be analytically

calculated as shown below.

Assuming that Y is a random variable member of the exponential family, the prior

density from the conjugate family has the form

p(η|r, s) = c(r, s) exp[rη − sa(η)], (2.5)

where η is the canonical parameter and a(.) is a known function, both obtained from

(2.4), r and s are known quantities, and c(r, s) is a normalizing constant that can be

found by

c(r, s) =
(∫

exp{rη − sa(η)} dη
)−1

. (2.6)

Once the prior distribution has been established, the predictive distribution may be

calculated as follows

p(Y ∗|Y ) =
c(r, s)b(Y ∗, V )

c(r + φY, s+ φ)
, (2.7)

where b(.) is a known function obtained from (2.4) and φ = V −1.

Moreover the posterior distribution can be obtained by

p(η|Y ) = c(r + φY, s+ φ) exp[(r + φY )η − (s+ φ)a(η)]. (2.8)

Example 2.3 The Poisson Model

In the Poisson model, the conjugate prior for η = lnµ is given by

p(η|r, s) = c(r, s) exp{rη − seη},

where the normalizing constant is

c(r, s) =
(∫

exp{rη − seη} dη
)−1

=
sr

Γ(r)
.

That is, η ∼ Log-Gamma(r, s).
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2.2 The Generalized Linear Models

Nelder and Wedderburn (1972) proposed an attractive extension of the linear regression

models, the class of Generalized Linear Models (GLMs), this being a form to explain

the relationship between a response variable, now, relaxed the normality assumption,

called the random component, and the linear predictor, through a link function. The

components of the GLM are detailed as follows.

• The random component of the model is the response variable, Y , whose distribution

must be a member of the exponential family in (2.4), relaxing the assumption of

normality in the regression linear model, and including others popular distributions

such as the Poisson, binomial, gamma, among others. That way we can model

response variables in the form of proportions, counts or rates, and others.

• The linear predictor is the linear function of the explanatory variables, being similar

to the structure of the linear model, that is

λt = F ′tθ. (2.9)

• The link function is a continuous, monotonic and differentiable function, denoted by

g(.), responsible to link the mean of the random component to the linear predictor:

λt = g(µt). (2.10)

The choice of the link function is arbitrary. There are many commonly used de-

pending on the data, as enumerated by McCullagh and Nelder (1989).

Note that we are not modeling the mean µt as before, but a function of it.

Example 2.4 The Poisson model

Suppose a generalized linear model in which the random component Y has a Poisson

distribution. The Poisson distribution appears, frequently, associated to count data, and

plays an important role in data analysis. One of the most important cases of GLM is

defined as follow

log(µt) = λt = F ′tθ

This models is known as the log-linear model and has a large application in contingency

table data.

9



Although the generalized linear model represents a large advance in the statistics

modeling field, it finds some restriction in dealing with response variables that are time

dependent, as in the case of time series data, since the assumption of independence can

not be relaxed in this class of models.
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Chapter 3

Dynamic Linear Models

The linear models discussed in Chapter 2 are static models, in the sense that parameters

values are fixed across all experiment, and assume that the ordination of data is irrelevant.

According to Pole et al. (1994) the order property is crucial when dealing with time series

data and, besides that, time itself involves circumstantial changes that alter the structure

of the series, bringing the need to work with dynamic models. The dynamic models are

formulated such that changes during time are allowed in the parameters. The main

idea is to build a linear model considering the parameters are now time-varying and

stochastically related through an evolution equation.

3.1 The Normal Dynamic Linear Model

The normal dynamic linear model, refer only as DLM, is one of the most popular subclass

of dynamic linear models given its large applicability when dealing with real data. Its

analytical structure is presented as follows.

For time t defines:

• F t is a known p-dimensional vector, being the design vector of the values of inde-

pendent variables (possibly time-varying);

• θt is the state, or system p-dimensional column vector;

• vt is the observational error, having zero mean and a known variance Vt;

• Gt is the known evolution, system, transfer or state matrix (p× p);

• wt is the evolution, or system error, having zero mean and a (p×p) known evolution

variance matrix W t.
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The formal definition of the normal DLM is given as follows.

Definition 3.1 The general univariate dynamic linear models is written as:

Observation equation: Yt = F ′tθt + vt, vt ∼ N [0, Vt],

Evolution equation: θt = Gtθt−1 + wt, wt ∼ N [0,W t],

Initial information: θ0|D0 ∼ N [m0,C0],

for some prior moments m0 and C0. The observational and evolution errors are

assumed to be internally and mutually independent.

West and Harrison (1997) suggest a Bayesian analysis for DLM, established through

the mechanism presented in Theorem 3.1 and emphasizes that the central characteristic

of this model is that at any time, existing information about the system is represented

and sufficiently summarized by the posterior distribution for the current state vector.

Theorem 3.1 In the univariate DLM, one-step forecast and posterior distributions are

given, for each t, as follows:

1. Posterior at t− 1:

(θt−1|Dt−1) ∼ N[mt−1,Ct−1].

where mt−1 and Ct−1 are the posterior moments at time t− 1.

2. Prior at t:

(θt|Dt−1) ∼ N[at, Rt],

where

at = Gtmt−1 and Rt = GtCt−1G
′
t +W t

3. One-step forecast:

(Yt|Dt−1) ∼ N[ft, qt],

where

ft = F ′tat and qt = F ′tRtF t + Vt.

4. Posterior at t:

(θt|Dt) ∼ N[mt,Ct],
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with

mt = at + Atet and Ct = Rt − AtqtA′t,

where

At = RtF tq
−1
t and et = Yt − ft.

The resulting algorithm of Theorem 3.1 is known as Kalman filter (Migon et al. (2005))

and its proof is obtained by induction using the multivariate normal distribution theory

(see West and Harrison (1997)).

There is, commonly, a great interest in looking back in time and make inference about

past state vectors, that is, a interest in the retrospective marginal distribution (θt−k|Dt).

This distribution is called the k-step filtered distribution for the state vector at time t,

and may be derived using the Bayes Theorem as presented by West and Harrison (1997)

in Theorem 3.2.

Theorem 3.2 In the univariate DLM, for all t, define

Bt = CtG
′
t+1R

−1
t+1.

For all k, (1 ≤ k < t), the filtered marginal distributions are

(θt−k|Dt) ∼ N[at(−k),Rt(−k)],

where

at(−k) = mt−k + Bt−k[at(−k + 1)− at−k+1]

and

Rt(−k) = Ct−k + Bt−k[Rt(−k + 1)−Rt−k+1]B′t−k,

with starting values

at(0) = mt and Rt(0) = Ct,

and,

at−k(1) = at−k+1 and Rt−k(1) = Rt−k+1.

The performance of the DLM inference depends heavily of the specification of the evo-

lution variance Wt. An alternative is the discount factor as an aid for choosing Wt. By

definition, we have that

Var(θt|Dt−1) = Var(Gt θt−1 + wt|Dt−1)
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= G′tCt−1Gt +Wt.

From that, we may observe that Wt is a fixed proportion of Ct−1, that is, the addition

of the error wt leads to an incrementation of the uncertain of Ct−1. Then, it is natural

to think about a value δ, 0 < δ ≤ 1, known as discount factor, so we can rewrite the

following variance as

Var(θt|Dt−1) =
1

δ
Var(θt−1|Dt−1),

so that, the specification of Wt with the aid of the discount factor will be given by

Wt = G′tCt−1Gt(1− δ)/δ.

The discount factor may be interpreted as the amount of information which is allowed

to pass from time t− 1 to time t. As closer to 1 is its value, more information is allowed

to pass.

3.1.1 Linear Bayes’ Optimality

Section 3.1 presented in Theorem 3.1 the dynamic linear model updating which is pro-

vided by using the multivariate normal distribution theory as a consequence of the nor-

mality assumption for the observational and evolution errors. West and Harrison (1997)

pointed out that the updating for mt and Ct may also be derived using approaches that

do not invoke the normality assumption due to strong optimality properties that are

derived when the distributions are only specified in terms of means and variance.

Replacing the normality assumption of the observational and evolutions error by the

first and second-order moment the DLM equations become

Yt = F ′tθt + vt, vt ∼ [0, Vt],

θt = Gtθt−1 + wt, wt ∼ [0,W t],

θ0|D0 ∼ [m0,C0].

Suppose that the joint distribution of θt and Yt is partially specified in terms of the

mean and the variance matrix, that is,

 θt

Yt

 ∼
 at

f t

 ,

 Rt AtQt

QtA
′
t Qt

 (3.1)

In the remaining section we describe the decision theoretically based linear Bayes’
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estimation procedure in the the DLM framework. According to West and Harrison (1997)

the idea of this procedure is to model a function of the parameter θt and the observation

Yt, φ(θt, Yt), independent of Yt, thus observed the value Yt = y, the posterior distribution

of the function φ(θt, y) is identical to the prior distribution φ(θt, Yt).

Let dt be any estimate of θ, and the accuracy in estimation is measured by a loss

function given by

L(θt,dt) = (θt − dt)′(θt − dt) = tr(θt − dt)(θt − dt)′.

where tr(A) denotes the trace of matrix A.

Hence, the estimate dt = mt = mt(Yt) is optimal with respect to the loss function if

the function r(dt) = E[L(θt,dt)|Yt] is minimized as function of dt when dt = mt.

Definition 3.2 A linear Bayes’ estimation (LBE) of θ is a linear form

d(Yt) = ht +H tYt,

for some n×1 vector ht and n×p matrix H t, that is optimal in the sense of minimizing

the overall risk

r(dt) = trace E[(θt − dt)(θt − dt)′].

According to West and Harrison (1997) the above definition provide as main result

the following theorem.

Theorem 3.3 In the above framework, the unique LBE of is

mt = at +At(Yt − f t.)

The associated risk matrix is given by

Ct = Rt −AtQtA
′
t,

and is the value of E[(θt −mt)(θt −mt)
′], so that the minimum risk is simply r(mt) =

trace(Ct).

3.2 The Dynamic Generalized Linear Model

Despite being a very useful and popular model in time series analysis, the dynamic linear

model finds some restriction when it is not reasonable to suppose that the time series Yt
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is normally distributed. West et al. (1985) proposed a more general model, in the class of

dynamic models, the dynamic generalized linear model (DGLM). This new subclass is a

generalization of the DLM, in the sense that any distribution which have the form of the

uniparametric exponential family form presented in Chapter 2.1 is accept to model the

time series in study. There is a reasonable gain in this new model, given that relaxed the

normality assumption, the model is able to work with asymmetric distributions such as

the exponential and gamma, or even discrete distributions such as the Poisson, binomial.

Besides, the DGLM is a generalization of the GLM, but now, allowing the parameters to

be time varying.

Suppose that the time series Yt is generated from a distribution member of the uni-

parametric exponential family, that is

P (Yt|ηt, Vt) = exp{V −1
t [Ytηt − a(ηt)]}b(Yt, Vt), (3.2)

where ηt is the canonical parameter, V −1
t > 0 is a precision parameter, and a(.) e b(.) are

known functions.

The idea of generalized linear modeling is to use a non-linear function g(.), known as

link function, which maps µt = E[Yt|ηt, Vt] to a linear predictor λt.

We have the formal definition of DGLM presented bellow.

Definition 3.3 The dynamic generalized linear model (DGLM) for the time series Yt,

t = 1, ..., n, is defined by the following components:

Observational model:

p(Yt|ηt) e g(ηt) = λt = F ′t θt;

Evolution equation:

θt = Gt θt−1 + wt , wt ∼ [0,W t]; (3.3)

where,

• θt is an p-dimensional state vector at time t;

• F t is a known p-dimensional regression vector;

• Gt is a known p× p evolution matrix;

• wt is an p-vector of evolution errors, where wt ∼ [0,W t];
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• λt = F ′t θt is a linear function of the state vector parameters;

• g(ηt) is a known, continuous and monotonic function mapping ηt to the real line.

As the DLM is a particular case of the DGLM, we can motivate the components of

the DGLM analysis by, first, providing a reformulation of the Theorem 3.1 used in the

DLM analysis.

Notice, at first, that the observational component of the DLM is given by

(Yt|ηt) ∼ N [µt, Vt],

µt = ηt = λt = F ′tθt.

The model specification will be completed by the posterior distribution at t − 1, as

usual, that is

(θt−1|Dt−1) ∼ N[mt−1,Ct−1].

Using the evolution equation in (3.3), the prior distribution at t is obtained

(θt|Dt−1) ∼ N[at,Rt],

where

at = Gtmt−1 and Rt = GtCt−1G
′
t +W t.

That way, we can proceed our analysis, in an alternative form, through the steps

presented bellow.

Step 1: Joint prior distribution for µt and θt

Notice that λt = µt, that is, µt is a function of the vector θt. So, under the prior

distribution for θt defined previously, the joint prior distribution for µt and θt is

given by  µt

θt

∣∣∣
Dt−1

 ∼ N

 ft

at

 ,

 qt F ′tRt

RtF t Rt

 (3.4)

where

ft = F ′tat and qt = F ′tRtF t.

Step 2: One-step ahead forecasting
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The only relevant information to predict Yt is totally summarized by the marginal

prior (µt|Dt−1) given that the distribution of Yt depends of θt only through the

quantity µt. Hence, the one-step ahead forecasting distribution is written as

p(Yt|Dt−1) =
∫
p(Yt|µt)p(µt|Dt−1)dµt. (3.5)

So, it may be verify that (Yt|Dt−1) is normally distributed as

(Yt|Dt−1) ∼ N[ft, Qt], where Qt = qt + Vt. (3.6)

Step 3: Updating for µt

Observed Yt, the posterior distribution for µt is given by

(µt|Dt) ∼ N[f ∗t , q
∗
t ], (3.7)

where,

f ∗t = ft + (qt/Qt)(Yt − ft) e q∗t = qt − q2
t /Qt,

since,

p(µt|Dt) ∝ p(µt|Dt−1)p(Yt|µt). (3.8)

Step 4: Conditional structure for (θt|µt, Dt−1)

The main purpose is always calculate the posterior distribution of θt. That may

be done from the joint posterior distribution of µt and θt. That is

p(µt,θt|Dt) ∝ p(θt|µt,Dt−1) p(µt|Dt). (3.9)

Wherein,

(θt|µt,Dt−1) ∼ N[at +RtF t(µt − ft)/qt, Rt −RtF tF
′
tRt/qt].

Hence, our posterior distribution of interest may be obtained as

p(θt|Dt) =
∫
p(θt|µt,Dt−1) p(µt|Dt)dµt. (3.10)
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Step 5: Updating for θt

Since all the components of equation (3.10) are normally distributed, so is the

posterior distribution p(θt|Dt), and it can be completely characterized by its mean

and the variance matrix. The mean is given by

mt = E[θt|Dt] = E[E{θt|µt,Dt−1}|Dt],

so,

mt = at +RtF t(f
∗
t − ft)/qt. (3.11)

The variance matrix can be expressed through

Ct = V [θt|Dt] = V [E{θt|µt,Dt−1}|Dt] + E[V {θt|µt,Dt−1}|Dt],

hence,

Ct = Rt −RtF tF
′
tRt(1− q∗t /qt)/qt. (3.12)

3.2.1 DGLM updating

Dropping the normality assumption, West et al. (1985) proposed an approximate me-

chanism to the DGLM analysis based on the steps developed in the DLM reformulated

analysis. One crucial difference here is that the required distributions are specified only

in terms of their moments. Then, initially, the model specification is completed by the

posterior moments at t− 1, that is

(θt−1|Dt−1) ∼ [mt−1,Ct−1].

Through the evolution equation in (3.3), the prior distribution at t is

(θt|Dt−1) ∼ [at,Rt],

where

at = Gtmt−1 and Rt = GtCt−1G
′
t +W t.

With these, the previously steps may be rewritten as described below.
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Step 1: Joint prior distribution for λt and θt

Notice that λt is a function of the vector θt. So, under the prior distribution for θt

defined previously, the joint prior distribution for λt and θt is partially specified in

terms of moments λt

θt

∣∣∣
Dt−1

 ∼
 ft

at

 ,

 qt F ′tRt

RtF t Rt

 , (3.13)

where

ft = F ′tat and qt = F ′tRtF t.

Step 2: One-step ahead forecast

The only relevant information to predict Yt is totally summarized by the marginal

prior (ηt|Dt−1) given that the distribution of Yt depends of θt only through the

quantity ηt. Hence, the one-step ahead forecasting distribution is written as

p(Yt|Dt−1) =
∫

p(Yt|ηt)p(ηt|Dt−1)dηt. (3.14)

Assuming the conjugate form for the prior distribution of ηt we have

p(ηt|Dt−1) = c(rt, st) exp[rtηt − sta(ηt)]. (3.15)

A consistent choice have to be done for the defining parameters rt and st, since

λt = g(ηt), the following equations must be satisfied

E[g(ηt)|Dt−1] = ft and V ar[g(ηt)|Dt−1] = qt. (3.16)

Hence, the one-step ahead forecast distribution is given by

p(Yt|Dt−1) =
c(rt, st)b(Yt, Vt)

c(rt + φtYt, st + φt)
. (3.17)
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Step 3: Updating for ηt

The posterior distribution for ηt is given by

p(ηt|Dt) = c(rt + φtYt, st + φt) exp[(rt + φtYt)ηt − (st + φt)a(ηt)]. (3.18)

By analogy we have

E[g(ηt)|Dt] = f ∗t and V ar[g(ηt)|Dt] = q∗t . (3.19)

Step 4a: Conditional structure for (θt|λt,Dt−1)

As in the DLM the main purpose is to obtain posterior information from θt. That

may be done trough the following joint distribution

p(λt,θt|Dt) ∝ p(θt|λt,Dt−1) p(λt|Dt), (3.20)

given that the posterior distribution will be obtained by

p(θt|Dt) =
∫
p(θt|λt,Dt−1) p(λt|Dt)dλt. (3.21)

Step 4b: Linear Bayes’ estimation of moments of (θt|λt,Dt−1)

Within the class of linear functions of λt, and subject only to the prior information

given in Equation (3.13), the linear Bayes estimate for the moments of (θt|λt,Dt−1)

is given by

Ê[θt|λt,Dt−1] = at +RtF t(λt − ft)/qt, (3.22)

and

V̂ar[θt|λt,Dt−1] = Rt −RtF tF
′
tRt/qt. (3.23)

Step 5: Updating for θt

Analogously to the DLM we express the posterior moments. The posterior mean
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can be written as

mt = E[θt|Dt] = E[E{θt|λt,Dt−1}|Dt],

so,

mt = at +RtF t(f
∗
t − ft)/qt. (3.24)

The posterior variance matrix can be expressed as

Ct = V [θt|Dt] = V [E{θt|λt,Dt−1}|Dt] + E[V {θt|λt,Dt−1}|Dt],

so,

Ct = Rt −RtF tF
′
tRt(1− q∗t /qt)/qt. (3.25)

That way,

(θt|Dt) ∼ [mt,Ct] (3.26)

As in the DLM, we can use Theorem 3.2, replacing the Gaussian distribution by just

the required moments needed, to obtain the k-step filtered moments for the state vector

at time t. The specification of the evolution variance Wt may be done, analogously to

the DLM, by using the discount factor.

Example 3.1 The Poisson model

Suppose Yt ∼ Poisson(µt) a time series associated to counts. Given µt > 0, Yt|µt has a

probability function member of the exponential family. Assuming the conjugate prior for

µt, we have

(µt|Dt−1) ∼ Gama(rt, st),

that is ηt ∼ Log-gamma(rt, st), where ηt = lnµt.

From the DGLM definition it is given that

g(ηt) = λt = F ′tθt,

hence, assuming g(ηt) = ηt implies that

E(g(ηt)|Dt−1) = E(lnµt|Dt−1) = ft,

Var(g(ηt)|Dt−1) = Var(lnµt|Dt−1) = qt.
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It can be shown that

E(lnµt) = ψ(rt)− ln(st),

Var(lnµt) = ψ1(rt),

where ψ is the digamma function and ψ1 is the trigamma function, that can be approxi-

mated by the following functions

ψ(x) ≈ ln(x) +
1

2x
and ψ1(x) ≈ 1

x

(
1− 1

2x

)
.

For larger values of x we can use the following approximations:

ψ(x) ≈ ln(x) and ψ1(x) ≈ x−1.

That way,

ft = ψ(rt)− ln(st) ≈ ln(rt)− ln(st),

qt = ψ1(rt) ≈
1

rt
.

Therefore,

st =
exp(−ft)

qt
,

rt =
1

qt
.

Analogously ,

E(ηt|Dt) = f ∗t ≈ ln
(
rt + Yt
st + 1

)
,

Var(ηt|Dt) = q∗t ≈
1

rt + Yt
,

where rt+Yt and st+1 are also denoted as r∗t and s∗t , respectively, and are the parameters

of the posterior distribution µt, that is, µt ∼ Gamma(r∗t , s
∗
t ).

Calculated the approximate values of rt, st, f
∗
t and q∗t , the moments of θt|Dt can

be obtained as Equations (3.11) and (3.12), as well as the one-step ahead forecast as

Equation (3.17).

In Table 3.1 we present the approximate values of rt, st, f
∗
t e q∗t , for some distributions

in the uni-parametric exponential family, considering the identity link function. That

way, for those distributions, we are able to proceed the DGLM updating through the five

steps presented above, finding the moments of θt|Dt as Equations (3.11) and (3.12), and
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making forecasts as Equation (3.17).

Distribution rt st f ∗t q∗t

Poisson(µt)
1
qt

exp(−ft)
qt

ln
(
rt+Yt
st+1

)
1

rt+Yt

Bin.(mt, µt)
1+exp(ft)

qt

1+exp(−ft)
qt

ln
(

rt+Yt
st+mt−Yt

)
1

rt+Yt
+ 1

st+mt−Yt

Neg. Bin.(πt,mt)
1−exp(−ft)

qt

1−2 exp(ft)+exp(2ft)
exp(ft)qt

ln
(

st+Yt
st+Yt+rt+mt

)
1

st+Yt
− 1

st+Yt+rt+mt

Normal(µt, Vt) ft qt
stYt+rtV
V+st

stV
V+st

Gamma(αt, βt)
−ft
qt

f2t
qt

−rt
st+Yt

rt
(st+Yt)2

Pareto(λt)
exp(−ft)

qt

1−qt
qt

ln
(
st+ln(Yt)+1

rt+1

)
2st+2 ln(Yt)+1
2(st+ln(Yt)+1)

Table 3.1: Approximate values of rt, st, f
∗
t e q∗t for some distributions in the uniparametric

exponential family

The dynamic linear models can be represented graphically as shown in Figure 3.1,

that is, Yt, t = 1, ..., n, a random component is related to a parameter θt, and these

parameters being stochastically related. Specifically, in the dynamic generalized linear

model the random component is random variables which distribution is a member of the

uniparametric exponential family, and it is related to the parameter θt through a link

function.

Figure 3.1: Graphical representation of the dynamic linear model.
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Chapter 4

Product Partition Model

Once time series data is in study, it is reasonable to think about change point problem,

result of some intervention that can change the structure of the series and provide a

clustering structure. An attractive tool to work with this kind of problem was proposed

by Hartigan (1990), known as the product partition model (PPM), which allowed the

data to weight the partitions likely to hold, and assumed that observations in different

components of random partitions of the data are independent given the partition. The

work of Barry and Hartigan (1992) consider an approach were the PPM was defined in

terms of a partition of a set of observations into contiguous blocks, wherein the partition

has a prior product distribution, and given the partition, the parameters in different

blocks have independent prior distributions, and is describe as follows.

Consider an observed time series Y = (Y1, ..., Yn), that is, a sequence of observations

at consecutive points in time, wherein, conditionally on θ1, ..., θn, has marginal densities

p1(Y1|θ1), ..., pn(Yn|θn).

Let T = {1, ..., n} be the index set of the observed time series Y and ρ = {t0, t1, ..., tb}
a random partition of the set T ∪{0}, with 0 = t0 < t1 < ... < tb = n. Let B be a random

variable which represents the number of blocks in ρ. Then, the partition ρ divides the time

series Y into B = b contiguous blocks denoted by Y (j)
ρ = (Ytj−1+1, ..., Ytj)

′, j = 1, ..., b.

Let θk = θ(j)
ρ for tj−1 +1 ≤ k ≤ tj be the parameters vector conditionally on the partition

ρ = {t0, t1, ..., tb}.
Consider c(j)

ρ the prior cohesion associated with block Y (j)
ρ , which represents the degree

of similarity among the observations Y (j)
ρ . In the time series context, as pointed out by

Loschi and Cruz (2002), the cohesion may be interpreted as the transition probabilities

in the Markov chain defined by the endpoints of the blocks in ρ.

Following Loschi and Cruz (2002) we say that the random quantity (Y1, ..., Yn; ρ)

follows a PPM, that is, (Y1, ..., Yn; ρ) ∼ PPM if
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1. The prior distribution of ρ = {t0, t1, ..., tb} is

p(ρ = {t0, t1, ..., tb}) =

b∏
j=1

c(j)
ρ

∑
C

b∏
j=1

c
(j)
ρ

, (4.1)

where C is the set of all possible partitions of the set T into b contiguous blocks

with endpoints t1, ..., tb satisfying the condition 0 = t0 < t1 < ... < tb = n, for all

b ∈ T ;

2. Given the partition ρ = {t0, t1, ..., tb}, the sequence Y1, ..., Yn has joint density given

by

p(Y |ρ = {t0, t1, ..., tb}) =
b∏

j=1

p(Y (j)
ρ ), (4.2)

where

p(Y (j)
ρ ) =

∫
p(Y (j)

ρ |θ(j)
ρ )p(θ(j)

ρ )dθ(j)
ρ , (4.3)

is the density of the random vector, with p(θ(j)
ρ ) being the block prior density for

θ(j)
ρ .

The graphical representation of the PPM is presented in Figure 4.1, that is, a random

component (Y1, ..., Ytn) that given θ1, ..., θtn are conditionally independent, and given the

partition the parameters θ(1)
ρ , ..., θ(b)

ρ are independent. Loschi and Cruz (2002) emphasizes

that the formulation of the product partition model allows the parameters to be time

varying, and then it is a kind of dynamic model.

The prior distribution for B, that is, the number of blocks in the partition is given

by

p(B = b) ∝
∑
C1

b∏
j=1

c[ij−1ij ], b ∈ T,

where C1 is the set of all partitions of T in b contiguous blocks with endpoint t1, ..., tb

satisfying the condition 0 = t0 < t1 < ... < tb = n.

Barry and Hartigan (1992) showed that the posterior distribution of ρ and B have

the same form of the prior distribution, using the posterior cohesion for the j-th block

presented below

c∗(j)ρ = c(j)
ρ p(Y (j)

ρ ). (4.4)
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Figure 4.1: Graphical representation of the product partition model.

It was also showed that the posterior distributions of θk, k = 1, ..., n is given by

p(θk|Y ) =
∑

tj−1≤k≤tj
r∗(j)ρ p(θ(j)

ρ |Y (j)
ρ ), (4.5)

and the posterior expectation, or product estimate, of θk is given by

E(θk|Y ) =
∑

tj−1≤k≤tj
r∗(j)ρ E(θ(j)

ρ |Y (j)
ρ ), (4.6)

where r∗(j)ρ is the posterior relevance for the block j, which given by

r∗(j)ρ = P ([tj−1tj] ∈ ρ|Y ).

According to Hartigan (1990), for any probability model over partitions, the relevance

probability is defined to be the probability that the block Y (j)
ρ , j = 1, ..., b, is a component

of the random partition ρ.

Although the product estimate in Equation (4.6) can be analytically calculated, it

demands high computational efforts. Therefore, aiming to simplify the implementation

of the method discussed previously, Barry and Hartigan (1993) suggested the use of an

auxiliary random quantity Ui, in a Gibbs sampling scheme, given by

Ui =

 1 if θi = θi+1,

0 if θi 6= θi+1,
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which reflects whether or not a change point occurs at time i, for i = 1, ..., n− 1. Once

the vector U = (U1, ..., Un−1) is considered, the partition ρ is completely specified.

The Gibbs sampling is started with an initial value of U, that is, (U0
1 , ..., U

0
n−1) and

then generating each vector (U s
1 , ..., U

s
n−1), s ≥ 1. The r-th element of step s is generated

from the following conditional distribution

Ur|U s
1 , ..., U

s
r−1, U

s−1
r+1 , ..., U

s−1
n−1;Y ,

r = 1, ..., n− 1.

Consider the ratio presented bellow

Rr =
P (Ur = 1|As;Y )

P (Ur = 0|Ars;Y )
,

r = 1, ..., n − 1, where Ars = {U s
1 = u1, ..., U

s
r−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1}.

Therefore, is sufficient to generate the samples of U considering the ratio above and the

following criterion of choosing the values U s
i , i = 1, ..., n− 1

U s
r =

 1 if Rr ≥
1− u
u

,

0 otherwise,

where r = 1, ..., n− 1 and u ∼ U [0, 1].

Following Barry and Hartigan (1993), a procedure to obtain the product estimates of

θk can be described as follows. For each partition (U s
1 , ..., U

s
n−1), s ≥ 1, consider θ̂ks the

estimates per block. The product estimates of θk, are approximated by

θ̂k =

M∑
s=1

θ̂ks

M
,

where M is the net size of the generated sample.
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Chapter 5

Dynamic Generalized Linear Model

via Product Partition Model

The dynamic generalized linear model, defined in Section 3.2, can be extended to allow for

random partitions of the observed time series by using the product partition model, in or-

der to accommodate time series in the uni-parametric exponential family of distributions

with experiences changes point through time. The new class, which we shall refer here as

dynamic generalized linear model via product partition model (DGLM via PPM), can be

represented graphically as Figure 5.1. The PPM conditional independence of (Y1, ..., Ytn)

given θ1, ..., θtn is conserved, but given the partition ρ the parameters θ(1)
ρ , ...,θ(b)

ρ will be

dependent. The formulation of the proposed model is given as follows.

Figure 5.1: Graphical representation of the DGLM via PPM.
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Consider Y = (Y1, ..., Yn) an observed time series that has marginal distributions

p1(Y1|η1, V1), ..., pn(Yn|ηn, Vn), member of the uni-parametric exponential family, and

assume that V1, ..., Vn is dropped from the list of conditioning arguments as it is assumed

to be known.

Let T = (1, ..., n) be the index set. Consider ρ = {t0, t1, ..., tb}, 0 = t0 < t1 <

... < tb = n a random partition of the set T ∪ {0}, which divides Y1, ..., Yn into B = b

contiguous blocks, with B being a random variable representing the number of blocks.

Each block is denoted by Y (j)
ρ = (Ytj−1+1, ..., Ytj)

′ ≡ (Yj1, ..., Yjnj)
′, j = 1, ..., b, where nj

is the number of elements in the block Y (j)
ρ . Notice that Yjk denotes the k-th element of

the block Y (j)
ρ .

Assume the following distribution of ρ = {t0, t1, ..., tb}

p(ρ = {t0, t1, ..., tb}) =

b∏
j=1

c(j)
ρ

∑
C

b∏
j=1

c
(j)
ρ

, (5.1)

where c(j)
ρ denotes the prior cohesion associated with the block Y (j)

ρ and C is the set of all

possible partitions of the set T into b contiguous blocks with endpoints t1, ..., tb satisfying

the condition 0 = t0 < t1 < ... < tb = n, for all b ∈ T .

The prior distribution for B, that is, the number of blocks in the partition is given

by

p(B = b) ∝
∑
C1

b∏
j=1

c[ij−1ij ], b ∈ T,

where C1 is the set of all partitions of T in b contiguous blocks with endpoint t1, ..., tb

satisfying the condition 0 = t0 < t1 < ... < tb = n.

Suppose that a set of independent explanatory variables, denoted by F jk, k =

1, ..., nj, j = 1, ..., b, where F jk is p-dimensional vector, known as design vector, is ob-

served for Yjk. Following West et al. (1985) it assumed that Yjk is related to F jk through

an observational model given by

g(ηjk) = λjk = F ′jkθ
(j)
ρ , (5.2)

where g(ηjk) is a known, continuous and monotonic function mapping ηjk to the real line.

Given ρ, θρ = (θ(1)
ρ ,θ(2)

ρ , ...,θ(b)
ρ ), where θ(j)

ρ is the state vector associated with the

block Y (j)
ρ . In the dynamic modeling, the model specification is completed with the prior

moments for θρ = (θ(1)
ρ ,θ(2)

ρ , ...,θ(b)
ρ ). For the canonical parameter, ηjk, it is assumed the
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conjugate prior distribution, denoted by ηjk ∼ CF(rjk, sjk), given by

p(ηjk) = c(rjk, sjk) exp{rjkηjk − sjka(ηjk)}, (5.3)

where CF denotes the conjugate family and the hyperparameters rjk and sjk are defining

quantities obtained from the moments of g(ηjk) = F ′jkθ
(j)
ρ , and c(rjk, sjk) is a normalizing

constant.

Therefore, conditionally on ρ = {t0, t1, ..., tb} the observations have the following joint

density

p(Y |ρ = {t0, t1, ..., tb}) =
b∏

j=1

p(Y (j)
ρ ), (5.4)

where

p(Y (j)
ρ ) =

nj∏
k=1

∫
p(Yjk|ηjk)p(ηjk)dηjk

=
nj∏
k=1

c(rjk, sjk)b(Yjk, Vjk)
∫

exp{V −1
jk [Yjkηjk − a(ηjk)]} exp{rjkηjk − sjka(ηjk)} dηjk

=
nj∏
k=1

c(rjk, sjk)b(Yjk, Vjk)

c(rjk + φjkYjk, sjk + φjk)
,

is the predictive distribution of the observations in the Y (j)
ρ block, known as data fac-

tor. For all distributions member of the exponential family c(.) and c(.) are determined

functions, thus the predictive function can also be determined in all cases.

The posterior distribution of ρ = {t0, t1, ..., tb} is given by

p(ρ = {t0, t1, ..., tb}|Y ) =

b∏
j=1

c∗(j)ρ

∑
C

b∏
j=1

c
∗(j)
ρ

,

where c∗(j)ρ = c(j)
ρ p(Y (j)

ρ ) is the posterior cohesion.

The posterior distribution of B have the same form of the prior distribution, using

the posterior cohesion for the j-th block.

Hence, the condition to apply the product partition model (see Loschi and Cruz

(2002), for details) is satisfied since according to Barry and Hartigan (1992) any joint

distribution on observations and partitions that satisfies the product condition for parti-

tions and the independence condition for observations given the partition will be called
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product partition model.

Assume that the state parameters from different blocks are related through the evo-

lution equation:

θ(j)
ρ = Gjθ

(j−1)
ρ +wj, (5.5)

where Gj is a known evolution matrix of θ(j)
ρ and wj is an evolution error associated to

the block Y (j)
ρ having mean vector equal to zero and covariance matrix equal to W j.

The prior for the state vector, that is, θ(j)
ρ , will be specified as usual in dynamic

modeling. Let D(j)
ρ be the data information available up to the block j. The model

specification is completed by the following posterior distribution

(θ(j−1)
ρ |D(j−1)

ρ ) ∼ (mj−1,Cj−1).

Then, using the evolution equation in (5.5), the prior distribution for θ(j)
ρ obtained is

(θ(j)
ρ |D(j−1)

ρ ) ∼ (aj,Rj),

where

aj = Gjmj−1 and Rj = GjCj−1G
′
j +W j.

Denote by D(j−1;k−1)
ρ the set of all information available until the block j− 1 and the

proceed information up to the element k−1. Assume the following joint prior distribution

for λjk and θ(j)
ρ λjk

θ(j)
ρ

∣∣∣
D(j−1;k−1)

ρ

 ∼
 fjk

ajk

 ,

 qjk F ′kRjk

RjkF k Rjk

 (5.6)

where fjk = F ′kajk and qjk = F ′kRjkF k.

The one-step ahead forecast distribution is given by

p(Yjk|D(j−1;k−1)
ρ ) =

c(rjk, sjk)b(Yjk, Vjk)

c(rjk + φjkYjk, sjk + φjk)
(5.7)

The posterior distribution for ηjk is given by

p(ηjk|Dj−1;k) = c(rjk+φjkYjk, sjk+φjk) exp[(rjk+φjkYjk)ηjk − (sjk+φjk)a(ηjk)]. (5.8)

Matching the moments of the linear predictor and the canonical parameter we obtain

that

E[g(ηjk)|Dj−1;k] = f ∗jk and V ar[g(ηjk)|Dj−1;k] = q∗jk. (5.9)
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Hence, we are able to update the state parameter as it is usually done in DGLM frame-

work. That is, (θ(j)
ρ |D(j−1;k−1)

ρ ) ∼ (ajk,Rjk) is updated into (θ(j)
ρ |D(j−1;k)

ρ ) ∼ (mjk,Cjk),

where

mjk = ajk +RjkF jk(f
∗
jk − fjk)/qjk, (5.10)

and

Cjk = Rjk −RjkF jkF
′
jkRjk(1− q∗jk/qjk)/qjk. (5.11)

At the start of each block Y j
ρ the updating is performed by taking aj1 = aj, Rj1 = Rj and

Dj−1;0
ρ = Dj−1. Within each block it is assumed that there is no parametric evolution,

and we take aj;k+1 = mjk and Rj;k+1 = Cjk until the data information of all elements of

the block is processed. Then, mj;nj = mj, cj,nj = Cj and Dj;nj
ρ = D(j)

ρ and perform the

parametric evolution. This cycle is repeated until D(b)
ρ = D is processed.

Example 5.1 The Poisson model

Assume a time series Yjk, k = 1, ..., nj, j = 1, ..., b, such that Yjk|µjk ∼ Poisson(µjk).

From Table 2.1 it is known the canonical parameter and the function b(.), that is,

ηjk = lnµjk and b(Yjk, V ) =
1

Yjk!
.

The conjugate prior for ηjk = lnµjk is described in Example 2.3 as follows.

p(ηjk|rjk, sjk) = c(rjk, sjk) exp{rjkηjk − sjkeηjk},

with normalizing constant

c(rjk, sjk) =
(∫

exp{rjkηjk − sjkeηjk} dηjk
)−1

=
srtt

Γ(rt)
,

where, from Table 3.1, it is know that,

sjk =
exp(−fjk)

qjk
and rjk =

1

qjk
.

That way, the predictive distribution of the observations in the Y (j)
ρ block may be

derived, that is
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p(Y (j)
ρ ) =

nj∏
k=1

c(rjk, sjk)b(Yjk, Vjk)

c(rjk + φjkYjk, sjk + φjk)

=
s
rjk
jk Γ(rjk + Yjk)

(sjk + 1)rjk+YjkΓ(rjk)Yjk!

=

 rjk + Yjk − 1

Yjk

( sjk
sjk + 1

)rjk ( 1

sjk + 1

)Yjk
.

From Table 3.1 we also have the following approximate values of

f ∗jk = ln

(
rjk + Yjk
sjk + 1

)
and q∗jk =

1

rjk + Yjk

Assuming a discrete uniform prior distribution for ρ, that is c(j)
ρ = 1 ∀j, the Gibbs

sampling scheme described in Chapter 4 may be executed in order to obtain some inference

about the partition. Then, given the partition, and computed the approximate values of

rjk, sjk, f
∗
jk and q∗jk, the DGLM inference about the state vector as Equations (5.10) and

(5.11), and future observations as Equation (5.7) may be proceed.

In Tables 2.1 and 3.1 we presented the values of the functions c(.) and b(.), and the

approximate values of rjk, sjk, f
∗
jk and q∗jk, for some distributions in the uni-parametric

exponential family. Then, for these distributions we are able to provide the DGLM via

PPM inference as in Example 5.1.

5.1 Model comparison

In Bayesian context, the Bayes Factor (BF) and the Posterior Model Probability (PMP)

(Kass and Raftery, 1995, see) are popular measures for model comparison and selection.

We briefly describe how the BF and the PMP can be computed in the DGLM via PPM

framework.

Comparing Mi, i = 1, ...,M and 2 < M < ∞, models procedure consists, usually, of

computing the PMP for each model, and the criterion of selection is based on the model

with highest PMP. The posterior probability of a model Mi given the data Y is given by

Bayes theorem

p(Mi|Y ) =
p(Y |M)p(Mi)

M∑
i=1

p(Y |Mi)p(Mi)
,
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where p(Mi) is the prior probability associated to model Mi, satisfying
∑M
i=1 p(Mi) = 1

and p(Y |M) is the corresponding marginal distribution of Y .

Let Mρ and M0 be the DGLM via PPM and the DGLM, respectively. When the model

selection consists in the choice between two models we may assess the Bayes factor, given

by

BF (Mρ,M0) =
p(Y |Mρ)

p(Y |M0)
=

∑
ρ

∫
p(ηρ|Y , ρ,Mρ)p(Y , ηρ, ρ,Mρ)p(ρ|Y )dηρ∫

p(η0|Y ,M0)p(Y , η0,M0)dη0

.

Notice that the marginal distribution p(Y |Mρ) is obtained by firstly computing the

marginal distribution of Y conditioning on the partitions, and then averaging over all

the partitions. The marginal distribution p(Y |M0) is obtained straightforwardly.

Kass and Raftery (1995) emphasizes that the Bayes Factor is a summary of the

evidence provided by the data in favor of one model, as opposed to another, and presented

a suggested scale to interpret it, showed in Table 5.1.

BF (Mρ,M0) Evidence against M0

1 to 3.2 Not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong
> 100 Decisive

Table 5.1: Bayes factor interpretation scale.
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Chapter 6

Application

In this chapter we present an analysis of two real time series data sets, already discussed

in the literature, aiming to illustrate the usefulness of the proposed model, DGLM via

PPM, and compare its inference to the DGLM inference. For both cases we provide a

sensitivity analysis for different choices of the discount factor δ.

The Gibbs sampling scheme suggested by Barry and Hartigan (1993), and described

in Chapter 4, was used to obtain some inference about the partition. Single chains of

size 45,000 were considered. Posterior samples of size 4,000 were obtained after consid-

ering a burn-in period of 5,000 iterations and a lag of 10 to eliminate correlations. We

assumed that the prior cohesion c(j)
ρ = 1, j = 1, ..., b, implying in a discrete uniform prior

distribution for ρ = {t0, t1, ..., tb}.
Prior elicitation for the state parameter θ is given by (θ(1)

ρ |D(0)
ρ ) ∼ [0, 100Ip]. We

set the evolution matrix Gj = Ip, j = 1, ..., b, assuming then a random walk for the

parametric evolution. The specification of the evolution covariance matrices Wj was

made according to the discount factor strategy. In this case p = 1, due to the absence of

explanatory variables in both data sets. The computational procedures were implemented

in R Core Team (2013).

6.1 APCI Data

The Ample Price to Consumer Index, APCI, is measured monthly by the IBGE, Brazilian

Institute of Geography and Statistics, and it is considered the official inflation index of

Brazil. The APCI reflects the cost of living of families with incomes 1-40 minimum wages,

residents of the metropolitan area of Sao Paulo, Rio de Janeiro, Belo Horizonte, Porto

Alegre, Curitiba, Salvador, Recife, Fortaleza and Belem, besides of Distrito Federal and

the city of Goiania. The data collection covers prices of sectors of trade, service providers,
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households and utilities. When the APCI rises, means that these items will suffer a price

adjustment up, that is inflation. When the APCI decreases, it does not mean that

these items will have a price decrease, but that the prices rose less then the previous

period. Only when the APCI is negative, we have a price decrease, that is deflation. The

government utilizes it to check if the established inflation goal is being fulfilled.

In this work we used the APCI series measured monthly in Belo Horizonte area,

from the period of July, 1997 to June, 2008, resulting in 132 observations, which was

previously analyzed in the work of Santos et al. (2010), presented in Figure 6.1. It can be

observed an intervention around October, 2002, which occurred due to the concerns in

the economy after the election of President Lula. We assumed that the series is Gaussian

distributed.
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Figure 6.1: APCI series.

In Figure 6.2 we present the posterior model probability conditionally on the models

considered, for 0.05 ≤ δ ≤ 0.95, that is, 19 values of discount factors. The analysis of the

PMPs, conditionally on the models, provides a comparison of the effect of the discount

factor on the model fitting. As we can observe in the DGLM case, the discount factor

equals to 0.95 has the highest posterior probability, noting that for the other values of

discount factor the posterior probabilities are really close to zero. A similar behavior

is observed for the DGLM via PPM, with the discount factor equals to 0.95 having the
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highest posterior probability, except that in this case δ = 0.9 have a higher probability

than the other values at left.

Table 6.1 provides the Bayes factor for the DGLM via PPM over the DGLM for

the discount factors considered. We can observe the superiority of the DGLM via PPM

over the DGLM, which is classified, for the discount factors values smaller or equals to

0.90 as decisive, and for the discount factor equals to 0.95 as substantial, following the

interpretation scale presented in Table 5.1. This superiority is confirmed in Figure 6.3

when analyzing the posterior model probability for the DGLM and the DGLM via PPM.

We observe that for δ ≤ 0.8, the PMP of both models are close to zero. For δ > 0.8

the models are more probables with the DGLM via PPM having bigger probabilities

compared to the DGLM. The model with highest PMP is the DGLM via PPM with

discount factor equal to 0.95.
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Figure 6.2: Posterior model probability for DGLM (left) and for DGLM via PPM(right)
with the APCI data.
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δ Bayes Factor δ Bayes Factor δ Bayes Factor
0.05 3.48e+166 0.40 8.45e+36 0.75 5.86e+07
0.10 6.57e+122 0.45 3.74e+30 0.80 3.96e+05
0.15 6.71e+96 0.50 1.85e+25 0.85 5.45e+03
0.20 2.82e+78 0.55 4.25e+20 0.90 1.32e+02
0.25 3.76e+65 0.60 4.37e+16 0.95 6.11e+00
0.30 8.10e+53 0.65 1.86e+13
0.35 7.54e+44 0.70 2.17e+10

Table 6.1: Bayes Factor for different choices of δ with APCI data.
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Figure 6.3: Posterior model probabilities for DGLM via PPM (solid circle) and for DGLM
(asterisk symbol) with the APCI data.

We concentrate our analysis, from now on, on making inferences for the DGLM and

the DGLM via PPM based on the results for δ = 0.95, since it was the discount factor

value with highest posterior model probability for both models.

The estimated posterior mean of the state parameter is presented in Figure 6.4, for

both models considered. For this discount factor considered we detected that the most

probable number of blocks is B = 31, with probability 0.114, and the estimated 95%

HPD intervals for B is [24, 38]. From the formulation of the proposed model we expect

the behavior of the estimated values as a consequence of the posterior partition, since we
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have a common state parameter for observations in the same block. Hence, in this case,

we expect a smoother behavior of the estimated posterior mean as, indeed, observed.

Furthermore, in Figure 6.4 we observe that the estimated values of the DGLM via PPM

follows well the estimated values of the DGLM.

The forecast of the APCI series considering δ = 0.95, and its relative forecast error

is showed in Figure 6.5. The forecasting was obtained by the mean of the estimated

forecasts obtained for each partition generated. The over smoothed behavior of the

forecast was expected due to the choice of discount close to one. This choice means

that a high amount of information is being allowed to pass from time t − 1 to time t,

and implies that the evolution error is close to zero. This behavior of the parametric

evolution implies that we have smoother forecasts. Nevertheless, this does not indicate

a bad adjustment. Indeed, we have evidences of a good adjustment when looking the

relative forecast errors.
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Figure 6.4: Posterior mean of the state parameter of the DGLM via PPM (solid line)
and DGLM (dashed line), for δ = 0.95.

Some summary measures related to the posterior distribution of the number of blocks

are given in Figure 6.6 aiming to evaluate the convergence of the DGLM via PPM. We

also performed the Geweke diagnostic, and conclude no problems related to the model

convergence.
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Figure 6.5: Forecast of the APCI series for the DGLM (pointed line) and DGLM via
PPM (dashed line), and the relative forecast error for δ = 0.95 (right).
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Figure 6.6: Posterior distribution of the number of intervals associated with the DGLM
via PPM for δ = 0.95.
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One advantage of the proposed model is that we are able to make inferences about

the partition as well the number of blocks. In Figure 6.7 we plotted the most probable

number of blocks for both discount factors considered in order to investigate the behavior

of the number of blocks in the partitions according to the choice discount factor. We

observe that the number of blocks has a crescent behavior as the discount factor increase.
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Figure 6.7: Most probable number of blocks for the discount factors considered with the
APCI series

Aiming to investigate more about the partitions provided, we displayed in Figure 6.8

the change point probability in the DGLM via PPM, with δ = 0.95. As it is well known,

from the series, was expected that the model gives more probability to the observations

around October, 2002 be a change point, due to the some economic changes related to

the election of the President Lula. But, we observed that the model with this discount

factor was given probability around 0.5 for all observations to be a change point. This

behavior was not expected and it is not satisfactory from the inferential point of view.

In order to investigate the impact of the discount factor on the change point probabil-

ity we plotted in Figure 6.21 those probabilities for some others discount factors values.

For δ ≤ 0.50 we observed a higher probability around October, 2002, indicating that

the expected change point was clearly detected. We also noted that these models had a

higher, but not so clearly as before, change point probability around the beginning of the
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Figure 6.8: Change point probability for δ = 0.95.

year of 1999, when the Brazilian Central Bank changed the exchange rate regime. When

δ = 0.70 this behavior, that indicates well the expected change point, begins dissipating

, and the change points probabilities start to oscillate around 0.5. We still can observe,

however, a peak around October, 2002. For δ = 0.80 and δ = 0.9 we can not detect

anymore which observations could be a change point with higher probability, as well as

in the case of δ = 0.95. Hence, the results suggest that the discount factor has a great

impact on the inference about the partition. A detailed studied with simulated data

would be necessary to corroborate this conclusion.
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(a) Change point probability for δ = 0.10.
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(b) Change point probability for δ = 0.30.
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(c) Change point probability for δ = 0.50.
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(d) Change point probability for δ = 0.70.
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(e) Change point probability for δ = 0.80.
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(f) Change point probability for δ = 0.90.

Figure 6.9: Change point probability for different values of discount factors with the
APCI data.
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6.2 Coal Mining Data

The coal mining data is composed by the number of fatal accidents in the period from 1851

to 1962, wherein the yearly count provides 112 observations, in coal mines of England

and Wales, presented in Figure 6.10. This series is well known in the literature and was

studied in the works of Worsley (1986); Gamerman (1992); Santos et al. (2010). It can be

observed an intervention around the year of 1886, which changed the level of the series.

We assumed that the series follows a Poisson distribution.
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Figure 6.10: Coal mining series.

We considered 19 values of discount factors, 0.05 ≤ δ ≤ 0.95, for the DGLM and for

the DGLM via PPM, resulting in 38 models evaluated. In Figure 6.11 is displayed the

posterior model probabilities, conditionally on the model, which provides a sensitivity

analysis allowing to compare the effect of the discount factor on the model fitting. We

observe, in the DGLM case, that just the discount factors equals to 0.80 and 0.85 had

posterior model probability significantly higher than zero. In the opposite, the DGLM

via PPM case had a higher PMP when the discount factor was equals to 0.15, while for

the other values the PMPs were really close to zero.

In Table 6.2 is displayed the Bayes factor for the DGLM via PPM over the DGLM,

for these discount factors considered. We noted that for δ ≤ 0.75 the evidences against

45



the DGLM are decisive, following Table 5.1. For δ = 0.8 does not worth more than a bare

mention the evidences against the DGLM, while for δ ≥ 0.85 there is no evidence against

the DGLM. Analyzing Figure 6.12, that is, the posterior model probabilities associated

with all 38 fitted models, we notice that the model with highest posterior probability is

the DGLM via PPM with discount factor equals to 0.05. For δ = 0.1 the DGLM via

PPM stands out the DGLM. For the other discount factor considered the probabilities

are not expressive, being considerably close to zero.
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Figure 6.11: Posterior model probability for DGLM (left) and for DGLM via PPM(right)
with the Coal mining data.

δ Bayes Factor δ Bayes Factor δ Bayes Factor
0.05 6.82e+163 0.40 6.40e+23 0.75 1.25e+02
0.10 3.59e+109 0.45 6.05e+18 0.80 3.01e+00
0.15 2.21e+80 0.50 5.73e+14 0.85 1.13e-01
0.20 2.93e+61 0.55 2.17e+11 0.90 7.34e-03
0.25 1.29e+48 0.60 2.96e+08 0.95 3.69e-04
0.30 7.82e+37 0.65 1.06e+06
0.35 8.61e+29 0.70 8.28e+03

Table 6.2: Bayes Factor for different choices of δ with coal mining data.

In the remaining chapter we focus the analysis for the DGLM and DGLM via PPM

adjusted considering δ = 0.05, since this value of discount factors corresponds to the

DGLM via PPM with highest posterior model probability, and for δ = 0.85, once for

the DGLM, this is the value with highest posterior model probability. Note that for this

46



●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Discount Factor

P
ro

ba
bi

lit
y

Figure 6.12: Posterior model probabilities for DGLM via PPM (solid circle) and for
DGLM (asterisk symbol) with the Coal mining data.

application, we consider two different values of discount factor because we did not have

an agreement of one best value for both models. We emphasize, however, that the model

with highest PMP was the DGLM via PPM with δ = 0.05.

The estimated posterior mean of the state parameter is presented in Figure 6.13 for

both models and discount factors considered. Since in the DGLM via PPM formulation

we have a common state parameter for observations in the same block, we expect the

behavior of the estimated values of the state parameter as a consequence of the posterior

partition. For δ = 0.05 we have that the most probable number of blocks is B = 7 with

probability 0.232 and the estimated 95% HPD interval for B is [3, 10]. For δ = 0.85 the

most probable number of blocks is B = 34 with probability 0.14 and the estimated 95%

HPD interval for B is [27, 40]. That way, for δ = 0.05, we have a clustering structure

with a smaller number of blocks than for δ = 0.85. This reflects on the behavior of the

estimated values of the state parameter, as we observe in Figure 6.13, that is, for δ = 0.05

we have bigger blocks with a common parameter. This also impacts in the fact that, for

δ = 0.85, the DGLM via PPM estimation is closer to DGLM estimation.
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Figure 6.13: Posterior mean of the state parameter of the DGLM via PPM (solid line)
and DGLM (dashed line), for δ = 0.05 (left), and for δ = 0.85 (right).

The forecast of the coal mining series considering δ = 0.05, and its relative forecast

errors is showed in Figure 6.14. The forecasting was obtained by the mean of the esti-

mated forecasts obtained for each partition generated. Both models, DGLM and DGLM

via PPM, seems to forecast well the series, noting that, as a consequence of the formula-

tion of the product partition model, the DGLM via PPM estimated values are smoother

than the DGLM ones. When a smaller discount factor is select a small amount of infor-

mation is allowed to pass from time t − 1 to time t, so we have higher evolution errors.

This justifies the fact of the DGLM values do not be over smoothed. When looking the

relative forecast error for both models we note that they oscillate around zero, indicating

a good adjustment. For δ = 0.85, the forecast of the coal mining series is displayed in

Figure 6.15. In this case, the estimated values of the DGLM and the DGLM via PPM

have a smoother behavior, as a consequence of the discount factor choice, that is, a higher

amount of information is allowed to pass from time t−1 to time t, then we have evolution

errors close to zero. For this discount factor we also have that the DGLM via PPM esti-

mated values follows better the DGLM ones. The relative forecast error for both models

also oscillate around zero, but now we have fewer discrepant values, indicating a good

adjustment.

We displayed in Figure 6.16 the forecast of the coal mining series considering the

DGLM and varying the discount factor, aiming to observe the impact of the discount

factor on the forecasting. The same variation is displayed in Figure 6.17, now considering
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the DGLM via PPM. We note for the DGLM that the increase on the discount factor

turns the forecasts smoother. The impact of the discount factor in the DGLM has already

been discussed in the literature (West and Harrison, 1997, see). In the DGLM via PPM,

would be necessary studies with simulated data, so we can say with more certainty what

would be the impact of the choice of the discount factor on the forecasting.
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Figure 6.14: Forecast of the coal mining series for the DGLM (pointed line) and DGLM
via PPM (dashed line), and the relative forecast error for δ = 0.05 (right).

In Figure 6.19, we present some summary measures related to the posterior distribu-

tion of the number of blocks in order to check the convergence in the DGLM via PPM,

and we did not detect any problems related to the convergence. The Geweke diagnostic

was also evaluated aiming to confirm this convergence.
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Figure 6.15: Forecast of the coal mining series for the DGLM (pointed line) and DGLM
via PPM (dashed line), and the relative forecast error for δ = 0.85 (right).
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Figure 6.16: Forecast of the coal mining series with the DGLM for δ = 0.05 (dashed line)
and for δ = 0.85 (pointed line), and its relative forecast error (right).
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Figure 6.17: Forecast of the coal mining series with the DGLM via PPM for δ = 0.05
(dashed line) and for δ = 0.85 (pointed line), and its relative forecast error (right).
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Figure 6.18: Most probable number of blocks for the discount factor considered with the
Coal Mining series
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We explore the behavior of the most probable number of blocks according to the

choice of the discount factor in Figure 6.18 by plotting the this most probable number

of block for both discount factor consider. We note that as higher is the value of the

discount factor, higher is the most probable number of blocks in the partition.

The change point probability for both discount factors considered in the DGLM via

PPM is displayed in Figure 6.20, in order to investigate more about the partitions pro-

vided. We observe that the model, for δ = 0.05 gives more change point probability

for some observations, but having a confusing behavior and not given more probability

where it was expected, around the year of 1886. The high variability of the data could be

a confounding factor in this case. In the case for δ = 0.85 we observe a peak of highest

probabilities around the year of 1886, as expected. Another peak around the year of 1950

is also detected, that in fact, may be noted when looking the coal mining series.

From Figure 6.20 we already verified that the discount factor seems to have some

impact in the change point probability, as a consequence of its impact in the posterior

partition. In order to investigated the behavior of this impact we plotted in Figure 6.21

the change point probability for some different discount factors. We note that the same

confused behavior of the change point probability, already mentioned when δ = 0.05, is

observed for δ ≤ 0.50. In these cases, we can not affirm, for sure, which observation could

be a change point. From δ ≥ 0.70 we begin to observe a more stable behavior, with a

major peak of probabilities around the year of 1886, and a smaller peak around the year

of 1950.
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Figure 6.19: Posterior distribution of the number of intervals associated with the DGLM
via PPM for δ = 0.05 (left) and δ = 0.85 (right).
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Figure 6.20: Change point probability for δ = 0.05 (left) and δ = 0.85 (right).
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(a) Change point probability for δ = 0.10.
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(b) Change point probability for δ = 0.30.
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(c) Change point probability for δ = 0.50.
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(d) Change point probability for δ = 0.70.
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(e) Change point probability for δ = 0.80.
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(f) Change point probability for δ = 0.90.

Figure 6.21: Change point probability for different values of discount factors with the
coal mining data.
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Chapter 7

Final Remarks

The class of dynamic generalized linear model is an attractive extension of the dynamic

linear model, since it accommodates time series whose distribution is a member of the uni-

parametric exponential family. In this work we extended this class by using the product

partition model, aiming to accommodate time series in the exponential family with change

point problems. The greatest attractive expected in our model is the inference about the

partition, allowing us to construct blocks of observations, identify change points and

evaluate the probability of the observation be a change point.

In order to investigate the usefulness of the proposed model we analyzed two real data

sets, that have already been discussed in the literature: the APCI time series and the

coal mining time series. The APCI series, which we assumed to be Gaussian distributed,

has an expected intervention, in the year of 2002, due to the election of the President

Lula, and the coal mining series is distributed as the Poisson, has an expect intervention

around the year of 1856. We performed a sensitivity analysis aiming to evaluate the

impact of the discount factor on the model fitting in our applications. Was detected in

the Gaussian and the Poisson cases a superiority of the DGLM via PPM over the PPM,

and that the discount factor had a great impact on the inference about the partition.

In this work we assumed that the prior cohesion of the partition is a discrete uniform.

We intend to provide a sensitivity analysis for the choice of the prior cohesion in order

to evaluate its impact in the partitions provided in the DGLM via PPM class.

The computational coast of the proposed class was expensive. Then, we wish to pro-

vide a R package with the already implemented methodology, using the C++ language,

in order to improve the computational time. The development of this package will allow

us to provide a study with simulated data in order to corroborate the results obtained

in the analysis with real time series data.

We expect in future works to propose variations and extensions of the already defined
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DGLM via PPM. These new versions would keep the inferential gain already reached

and provide more flexibility. We briefly describe these proposals as follows.

We may be interested in add a correlation structure within the parameters in the

same block. So, we intend to define an alternative approach by passing the evolution

equation after the proceed information of each observation and providing a parametric

evolution within the block. We intend to provide a non-linear version of the DGLM

via PPM using the first order Taylor series approximations for inference, and providing

the clustering structure for the observations via the product partition model aiming to

obtain the same inferential gain of the DGLM via PPM added to some flexibility. We also

intend to provide a similar work of the DGLM via PPM, considering the non-Gaussian

family of state-space models (NGSSM) aiming to obtain a competitive class of models.

Besides, the NGSSM is class of models of scale for volatility data, making possible to

treat change point problems in the volatility. We may be interested in this when the time

series presents change points or jumps also in the volatility, not only in the mean. This

would implies in an arduous work in the DGLM framework, but not with the NGSSM.
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