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Resumo

O Modelo Exponencial por Partes (MEP) é um modelo bastante utilizado,

principalmente em análise de sobrevivência. Ao utilizar esse modelo, uma partição do

eixo do tempo em um número finito de intervalos é estabelecida e, em seguida, uma

taxa de falha constante é considerada para cada um dos intervalos. Portanto, o MEP

aproxima uma função cont́ınua, a saber a taxa de falha, através de seguimentos de reta.

Por essa razão, o MEP é um modelo bastante flex́ıvel e, embora este seja um modelo

paramétrico, é frequentemente considerado como não paramétrico. O presente trabalho

propõe uma abordagem bayesiana dinâmica que permite a obtenção de uma distribuição

suavizada exata para os parâmetros representando a taxa de falha. Além disso a partição

do eixo do tempo (e, consequentemente, o número de intervalos) será considerada como

uma quantidade desconhecida a ser estimada. Toda a abordagem proposta será utilizada

para modelar a fração de cura em uma população, o que ocorre quando uma parte dos

indiv́ıduos em um estudo é considerada curada e, portanto, nunca experimentará o evento

de interesse. Para que seja posśıvel uma comparação, o caso com grade fixa também

será considerado. Por fim, será mostrada uma aplicação a fim de ilustrar os conceitos

apresentados.

Palavras-chaves: análise de sobrevivência, modelo de riscos proporcionais, abordagem

dinâmica, modelo de fração de cura, modelo exponencial por partes.



Abstract

The Piecewise Exponential Model (PEM) is a very utilized model, mainly in

survival analysis. When using this model, one considers a partition of the time axis into

a finite number of intervals and, after that, a constant failure rate is considered to each

interval. Therefore the PEM approximates a continuous function, the failure rate, through

line segments. For this reason, the PEM is a very flexible model and, although it is a

parametric model, it is often considered as non parametric one. The present work proposes

a Bayesian dynamic approach that allows one to obtain the exact smoothed distribution

for the parameters representing the failure rate. Moreover, the partition of the time grid

(and, consequently, the number of intervals), will be considered as an unknown quantity to

be estimated. This entire approach will be used to model the cure fraction in a population,

which occurs when a part of the individuals in a study is considered cured and, therefore,

will never experience the event of interest. For comparison purposes, the fixed time grid

will also be considered. Lastly, in order to illustrate this approach, an application will be

shown.

Keywords: survival analysis, proportional hazards models, dynamic approach, cure frac-

tion model, piecewise exponential model.



Agradecimentos

Começo meus agradecimentos com a frase “Yeah, I’m a lucky man, to count on

both hands the ones I love. Some folks they’ve got one, yeah, others, they’ve got none.”.

Ela me lembra do quanto devemos ser gratos sermos por quem somos, por quem nos cerca
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À minha amiga de tanto tempo Isabella por estar sempre perto de mim, mesmo
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1 Introduction

Survival analysis is an area of statistics utilized when the intent is to study

the time until the occurrence of an event of interest. Several studies involving survival

analysis are concentrated in the medical area, but there are also important applications

on engineering, economy, quality control, among others.

Survival data have intrinsic characteristics such as asymmetry and incomplete

observations, called censure. Therefore, specific methods are required. One of the impor-

tant quantities related to this area is the hazard function, or failure rate. This function

provides the risk that the event of interest has to happen and it brings along with it a

challenge: when modeling parametrically, the most utilized models impose a particular

form, or few particular forms, for this function. For example, by choosing the Weibull or

Gamma model it is possible to obtain an increasing, a decreasing or a constant hazard

function. Other distributions, such as the Birnbaum-Saunders (Birnbaum and Saunders,

1969) and the Generalized Weibull are richer in form, however, the challenge still remains.

It arises when the chosen model and the shapes that it carries are not the most suitable

one to fit the data, thus this function would not be well represented.

A fine alternative to model survival data is the Piecewise Exponential Model

(PEM). Basically, to define this model one has to partition the time axis into b intervals

and to assume a constant failure rate in each interval. By using this model one is approxi-

mating the failure rate by line segments. For this reason, the hazard function of the PEM

does not have a pre-determinated form, providing great flexibility in the survival data

modeling. Based on this characteristic, the PEM is often regarded as a nonparametric

model, although in fact, it is a parametric one.

Thereby, this model has been standing out in the literature in the recent years

and numerous extensions have been proposed. Those extensions concern some important

features of the model, such as: how to partition the time axis and, consequently, the

number of intervals; how to estimate the hazard function; the inclusion of covariates

(which may be time dependent or not); cure fraction models and so on.
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The number of intervals must be chosen with caution: if it is too large there

will be few data in each interval, leading to poor and/or unstable estimates; on the other

hand, if it is too small, the true shape of the hazard function may not be achieved. A good

number must balance the quantity of data in each interval, providing a good estimation for

both hazard and survival functions (Demarqui, 2010). Alternatively, one can estimate the

partition of the time axis and, consequently, the number of intervals. In most works found

in the literature the time grid is chosen arbitrarily, fixing the number of intervals. Some

of these works are: Gamerman (1991), Gamerman (1994), Ibrahim et al. (2001a), Yin and

Ibrahim (2005), de Castro et al. (2009) and de Castro et al. (2015). However, there are

also those who estimate it: Arjas and Gasbarra (1994), McKeague and Tighiouart (2000),

Kim et al. (2007) and Demarqui (2010) estimate it through different approaches. Kim

et al., for example, make use of Reversible Jump while on Demarqui’s work, the Product

Partition Model (PPM) is used.

The estimation of the hazard function can be done by using different approa-

ches within the Bayesian context: one can assume that the components of this function

are independent; a dynamic model can be used, that is, it is possible to carry information

along the intervals; historical data can also be used to construct the prior distribution

(see Ibrahim et al. (2001b)).

Yin and Ibrahim (2005), for example, consider the components of the hazard

function as independent a priori. Gamerman (1991) and Gamerman (1994) considers a

dynamic approach to estimate the hazard function, which relates each component of the

hazard function through an evolution equation. The difference between these two works

relies on the evolution equation: in the first work, the author includes time-dependent

covariates, making the hazard function to be a function that depends only on the (time

dependent) coefficients and covariates; in the second one, however, there are no covaria-

tes, thus the hazard function of an interval depends only on the hazard function of the

previous one. de Castro et al. (2009) also considers the components of the hazard func-

tion as dependent. In Demarqui (2010) there is a comparison of different types of prior

distributions for the hazard function: independent Gamma prior, Jeffrey’s prior, prior

within the dynamic approach and structural prior. In all works that used the dynamic

model, an online and an approximated smoothed distribution were obtained.

Cure fraction models were developed to adapt the cases of long-term survivors,

that is, those cases in which there are individuals who will never experience the event of



1 Introduction 12

interest. By using such models it is possible to obtain information about the factors that

influence the cured individuals as well as those factors related to the non-cured ones,

separately; and also the probability of cure. Those information are very important to

patients who suffer from cancer, for example.

There are two approaches concerning the cure fraction: the Mixture and the

Promotion Time models. First, Boag (1949) and Berkson and Gage (1952) proposed the

mixture cure rate model. In a brief way, this approach splits the population into two sub-

populations: one is composed by the cured individuals and the other, by the non-cured

ones. The Promotion Time Model, in turn, was introduced in 1996, by Yakovlev and

Tsodikov based on a attractive biological motivation. Chen et al. (1999) extended this

model for the Bayesian context. Ibrahim et al. (2001b) show an approach that allows the

link between these two models.

There are several extensions and applications involving cure rate models: in

Ibrahim et al. (2001a) the authors introduce a parameter to control the right tail of the

survival curve, in a way that it becomes possible to control the degree of parametricity in

the beginning, in the middle and, most importantly at the end of the survival distribution.

Banerjee and Carlin (2004) use cure fraction model in the context of spatial analysis

applied to a smoking cessation study. Yin and Ibrahim (2005) propose a cure fraction

model that allows one to obtain zero and non zero cure fraction estimates, that is, there

is no need to assume a cure fraction, the proposed model engages both cases. In Basu

and Tiwari (2010) there is an extension involving competing risks and an interesting

application involving breast cancer patients. In turn, Cucchetti et al. (2015) applied cure

fraction model to study patients that suffered from colorectal liver metastases.

Nevertheless, in most works found in the literature (Kim et al. (2007), de Cas-

tro et al. (2009), Demarqui et al. (2014) and others) the information from the covariates

is used only to explain the cure fraction. It would be interesting to observe how these

covariates influence the non-cured individuals as well.

In this present work, the PEM will be used to model the data along with the

dynamic approach, in a way that an exact smoothed distribution will be obtained for the

hazard function, unlike the other works aforementioned. Regarding the time grid both

cases will be considered: fixed and random (via PPM). Moreover, long term survivors will
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be considered and the information from covariates will be used to explain both cured and

non-cured individuals.

This work is organized as follows. Chapter 2 explicits the basic theory in

which this work is based on. The concepts showed in this Chapter will be essential for

understanding this work. In Chapter 3 the Piecewise Exponential model is explored and

discussed. In turn, in Chapter 4 two applications are presented with the aim to illustrate

the concepts presented. At last, Chapter 5 concerns the conclusions obtained as well as

the future works.

1.1 Purposes

The aim of this study is to consider the Piecewise Exponential Model in the

Bayesian dynamic approach. In the present work the parameters representing the hazard

function will be correlated so that the information of the previous interval can be used to

estimated the actual one. By doing this, a quantity to control the passage of information

is introduced. This quantity is called discount factor and it will be estimated, differently

from most works in the literature. The evolution equation used in this work allows the

achievement of an exact smoothed distribution, this is also commonly obtained in an

estimated way.

The time grid of the PEM will be estimated via Product Partition Model and

the results obtained will be compared to the fixed time grid case. In turn, the whole

modeling procedure obtained will be used to study cure fraction models. These studies

are standing out in the literature, since new and more effective treatments are emerging.

The ultimate purpose is to infer about the pros and cons of the proposed

model, discovering which are the cases that this model is more appropriate.
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2 Basic Concepts in Survival Analysis

In this chapter, basic concepts and properties used in survival analysis will be

introduced and discussed. These concepts will be essential for understanding this present

work.

Survival analysis can be used when the interest is to study the time until the

occurrence of a certain event. Let T be the non negative random variable representing the

observed time. This time may be a failure time or a censured time. A failure time occurs

when the event is fully observed, whereas a censored time takes place when the time to

event is, for some reason, not fully observed due to, for instance, by the end of the study,

the lost of follow-up, death of the patient for some other reason than that particular one

of interest, among others (Colosimo and Giolo, 2006; Carvalho et al., 2011). Another

typical characteristic found in survival data is asymmetry, which makes impracticable the

usage of common methods, generally involving the Normal distribution.

There are three types of censoring, namely: left censoring, right censoring and

interval censoring. Left censoring occurs when the event of interest has happened before

the time to event is observed, for example, in a study where the event is the first time the

individual has smoked a cigarette, the individual may not remember when it was, but it

is known for sure that, if it happened, it happened before the interview; right censoring

occurs when the actual time to event is known to be greater than the observed time; in

turn, interval censoring occurs when it is known that the time to event has occurred in

a interval, for example, when the study considers seropositive patients and the interest is

to evaluate when the progression to AIDS will happen, it will be known that this time

will be between two exams, but the exact time will be unknown.

The most frequent case in practice is the right censoring scheme, which will

be explored in this work along with a non-informative mechanism, that is, the censorship

mechanism is not related to the time to event. A deeper explanation about types of

censoring can be found in Lawless (2002). Therefore, the observed time in this case is the

minimum between the time to failure and the time to censorship.
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An indicator variable, δi, will be used to represent whether the i − th time is

a failure or a censured time, that is:

δi =

 1, if the failure occurred for the i− th individual ,

0, if the i− th individual is right censored.

Therefore, for each individual the information will be the pair (ti, δi), where i

represents the i − th individual. If there is information from covariates, the information

will be represented by (ti, δi,xi), where xi is the covariates vector associated to the i− th

individual.

Let T be a continuous non-negative random variable whose probability density

function (p.d.f.) is f(t). The survival function is defined as:

S(t) = P (T > t) = 1− F (t), t > 0 . (2.1)

This function has the following well-known properties:

1. S(0) = 1;

2. lim
t→∞

S(t) = 0;

3. S(t) is a decreasing function in t.

The first property means that at time 0, all the individuals have not suffered

the event of interest (for example, if the event is death from breast cancer, all individuals

have not died from this disease); the second property means that as t→∞, all individuals

will eventually suffer the event of interest.

The hazard function is defined as the instantaneous rate of failure at time t.

Its expression is given by:

h(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)

∆t
, t > 0 . (2.2)

Another important function is the cumulative hazard function, which is given

by

H(t) =

∫ t

0

h(u)du, t > 0 . (2.3)

These functions satisfy the following relationships:
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S(t) = exp

(
−
∫ t

0

h(u)du

)
,

f(t) = − d

dt
S(t) ,

h(t) =
d

dt
log(S(t)).

Also, note that:

f(t) =
d

dt
F (t) =

d

dt
[1− S(t)] = − d

dt
S(t) = − d

dt
exp

(
−
∫ t

0

h(u)du

)
= −

[
exp

(
−
∫ t

0

h(u)du

)
(−h(t))

]
= S(t)h(t) . (2.4)

That is, f(t) = S(t)h(t) and then h(t) =
f(t)

S(t)
.

2.1 Proportional Hazards Model

One may think of including covariates into the model. In this case, a very

important model is the proportional hazards (PH) model. This model was proposed by

Cox (1972) and it includes the information from covariates through the hazard function,

in the following way:

h(t|x) = h0(t) exp (xβ) , (2.5)

where h0(t) is the baseline hazard function, x is the covariates vector and β is the vector

of regression coefficients.

This model has the property of proportional hazards, that is, the hazard ratio

of two individuals does not depend on time. This property can be seen through Equation

(2.6), where x1 and x2 are the covariates vector of two different individuals.

h(t|x1)

h(t|x2)
=
h0(t) exp (x1β)

h0(t) exp (x2β)
=

exp (x1β)

exp (x2β)
. (2.6)

The baseline hazard can be modeled non-parametrically, as first proposed by

Cox (1972), or parametrically. On the first case, the partial likelihood method is adopted

as the likelihood function and used to estimate the coefficients (see more in Carvalho et al.

(2011) and Klein and Moeschberger (2003)). On the other one, the likelihood function is

constructed in the following manner: in the case of right censoring and a non-informative
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mechanism, it is given by the p.d.f. for those individuals whose time to event is completely

observed and the survival function for those whose time to event is (right) censored. That

is:

L(Φ;D) =
n∏
i=1

f(ti|Φ)δi(S(ti|Φ))1−δi =
n∏
i=1

h(ti|Φ)δiS(ti|Φ), (2.7)

where Φ is the vector of parameters to be estimated which includes the vector of coeffici-

ents. D represents the data available, in this case D = (ti, δi,xi), i = 1, 2, . . . , n; n is the

number of individuals and, lastly, ti represents the time to event of the i− th individual.

2.2 Cure Fraction Models

Over the past decades, with the advance of medicine, patients’ survival is being

improved and it implies directly on the probability of survival, usually raising it. For this

reason, a considerable part of patients is being cured. It is important to highlight that

the concept of “cure” is not strictly medical; in fact, if an individual is considered cured

it means that the event will never happen to this specific individual. This characteristic

violates the second property of the survival function, that is, the survival function does

not go to 0 as t → ∞, it goes to the proportion of healed individuals, which will be

represented by π ∈ [0, 1].

Cure fraction models were developed to adapt these situations. In the literature

there are several articles that analyze data with a cure fraction, such as Farewell (1982),

Farewell (1986), Ibrahim et al. (2001a), Kim et al. (2007) and others.

The challenge, at this point, is to separate the truly cured individuals from

those who have not suffered the event yet, due to the duration of the follow-up, for

example. According to Yu et al. (2004), the efficiency of the estimate of the cure rate

depends, among other factors, on the follow-up time. Cases in which the follow-up time

is relatively greater than the median of the survival time for the uncured individuals are

the cases in which the cure rate presents better estimates. This is due to the confusion

between the truly cured individuals with those who just have not suffered the event of

interest yet (but they would, if the follow-up time was long enough).

Figure 2.1 allows a visualization of the discussion presented. In that figure,

there is the Kaplan Meier estimate of the survival function based on the E1673 dataset,
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described in Ibrahim et al. (2001b), in which the event of interest is death from melanoma.

The dotted red line represents the median survival time for the non-cured individuals.

Note that the follow-up time is considerably larger than the median survival time.

Figure 2.1: Comparison of the follow-up time and the median survival time for the uncured

individuals.

Moreover, Lambert (2007) points out that when using cure fraction models

one is assuming that there is a cure, nevertheless it may not be medically correct. For

example, studies in which the interest is to evaluate the time to death from a certain type

of cancer but it is only recorded if the individuals had died or not, the cause of death

in unknown; in this case one would be assuming that exits cure from death, which is

senseless.

Therefore, to introduce this model, consider a non-negative function f ∗(t) such

that

∫ ∞
0

f ∗(t)dt = 1 − π ≤ 1 and, given that, the adapted survival function, called

improper survival function will be (Rodrigues et al., 2008):

Spop(t) = π +

∫ ∞
t

f ∗(u)du (2.8)

This function will have the following properties:

1. If π = 0, then Spop(t) = S(t),
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2. Spop(0) = 1;

3. Spop(t) is a decreasing function in t;

4. limt→∞ Spop(t) = π.

The first property refers to the case when there’s no cure fraction, thus the

analysis will be the same as the one presented before; therefore, S(t) is a genuine survival

function. The meaning of the second and third properties is analogue to the proper

survival function and, the fourth one means that when t→∞, the survival function goes

to the proportion of the cured individuals.

The most important cure fraction models found in the literature are the mix-

ture and the promotion time models. These models carries advantages and disadvantages:

the mixture model is quite logical and the promotion time model has an interesting bi-

ological motivation that enriches the interpretation in a study. However, as pointed out

by Rodrigues et al. (2008), the mixture model allows only one causing factor of the event

of interest whereas the promotion time model allows more than one. Besides that, the

assumption of proportional hazards may no longer be preserved, mainly for the mixture

model (Ibrahim et al., 2001b; Rodrigues et al., 2009). According to Ibrahim et al. (2001b),

this assumption is no longer attained for the mixture model when the probability of cure

is modeled through a binomial regression.

Mixture Model

The mixture model was proposed by Boag (1949) and Berkson and Gage (1952)

and it is given by:

Spop(t) = π + (1− π)S(t). (2.9)

The idea of this model is to include the individuals through two components:

one representing the cured individuals and the other representing the non-cured ones

along with its survival. In this way π represents the proportion of cured individuals and,

consequently, 1− π represents the non cured ones; S(t) is the usual (and proper) survival

function for the non-cured individuals, that is, S(t) =

∫ ∞
t

f ∗(u)

1− π
du.
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Consequently, the populational hazard function and the “p.d.f.” will be given

by:

fpop(t) = − d

dt
Spop(t) = (1− π)f(t), (2.10)

hpop(t) =
fpop(t)

Spop(t)
. (2.11)

Note that Equation (2.10) is not a proper p.d.f. indeed, because

∫ ∞
0

fpop(t) =

(1− π)

∫ ∞
0

f(t) = 1− π ≤ 1.

So, substituting Spop(t) and fpop(t) in Equation (2.7), the likelihood function

for n individuals will be given by:

L(Φ,ψ;D) =
n∏
i=1

[(1− πi)f(ti|Φ)]δi [πi + (1− πi)S(ti|Φ)]1−δi

=
n∏
i=1

[(1− πi)S(ti|Φ)h(ti|Φ)]δi [πi + (1− πi)S(ti|Φ)]1−δi , (2.12)

where Φ is the vector including the parameters that indexes f and the coefficients of

the non-cured individuals. In turn, πi = g(ziψ) for some link function g(.), this link

function may be the logit, for example. The covariates associated to the cure fraction can

be different from the ones used to model the non-cured individuals. Therefore to model

the cure fraction, let zi represent the vector of covariates of the i − th individual and,

consequently, ψ is the coefficients’ vector, including the intercept. Moreover, in this case,

D = (ti, δi,xi, zi), for i = 1, 2, . . . , n.

It is noteworthy, in the Bayesian context, that the prior distribution for ψ, the

vector of coefficients associated to the cure fraction, must be chosen carefully as improper

priors may not lead to a proper posterior distributions (Ibrahim et al., 2001b). Moreover,

few issues involving this model were found both in the literature and practice, such as

convergence problems when using large variance for the cure fraction coefficients prior

(Banerjee and Carlin, 2004) and identifiability problems (Klein et al., 2014).

A deep study regarding the identifiability of cure fraction models was presented

by Li et al. (2001). These authors proved that the mixture model is identifiable in the

case of the present study: that case where the model of the non-cured fraction is fully

parametric. Nevertheless, they also state that this specific case represents a case of “near

non-identifiability”, such characteristic shows itself in the form of numerical issues and/or

flat likelihood. Works such as Yu et al. (2004), also related difficulties when using this
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model. Taylor (1995) and Peng (2003) describe solutions to this problem: in a very brief

explanation these authors force the improper survival function to become a proper one.

Another discussion to justify the issues attached to the usage of the mixture

model can be found in Klein et al. (2014). They point out the possible confusion obtained

when using the same covariates to model the cure fraction and the non-cured individuals.

Therefore, taking these points into account, the focus will rely only on the

promotion time model.

Promotion Time Model

The promotion time model was developed by Yakovlev and Tsodikov (1996)

and its Bayesian version was proposed by Chen et al. (1999). This model has an interesting

and appealing biological motivation: consider a scenario in which an individual that

underwent a treatment due to a certain type of cancer. After this procedure there may

remain some cancer cells that may become active again and develop a new tumor, in other

words, the individual may relapse. Starting from this scenario, consider N as the number

of competent cells, that is, those cells that can become a tumor, and Zl, l = 1, 2, . . . , N the

time until the l-th competent cell will become active, this time is also called the promotion

time. One characteristic of this model is that the number of competent cells is a latent

random variable and, given this, Zl, l = 1, 2, . . . are considered to be independent and

identically distributed (i. i. d.), with a cumulative distribution function F (t), which does

not depend on N . This distribution can be the Exponential or the Weibull, for example;

in this present work it will be the Piecewise Exponential distribution.

The time to relapse is the time until the first competent cell becomes active,

that is, T = min {Zl, 0 ≤ l ≤ N}, with P (Z0 = ∞) = 1. In this way, if there is no

competent cell, the subject is considered cured and therefore, the time until a competent

cell becomes active is, certainly, infinite.

It is worth mentioning that the biological motivation does not exclude cases

in which the event of interest is any other than relapse. According to Ibrahim et al.

(2001b), this model can be used to every situation in which it is considered to exist a

cure fraction and there exist N competing risks. Competing risks are referred to cases in

which it is known that the individuals are exposed to several outcomes but only one, the
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first one to happen, is observed; for example, in a study where the interest is to evaluate

the death from breast cancer but there are numerous cases of death from other causes,

these two outcomes will be “competing” to each other until one of them occur (see more

about competing risks in Carvalho et al. (2011) and Klein and Moeschberger (2003)).

For this model, the improper survival function is given by:

Spop(t) = P (no competent cell is active until time t)

= P (N = 0) + P ([Z1 > t, Z2 > t, . . . , ZN > t] ∩ [N ≥ 1])

= P (N = 0) + P (Z1 > t, Z2 > t, . . . , ZN > t|N ≥ 1)P (N ≥ 1)

= P (N = 0) +
∞∑
n=1

P (N = n)(S(t))n, (2.13)

where S(t) is the proper survival function.

This improper survival function is the probability that no competent cell is

active until time t because, if this happens it means that the individual has not relapsed

or, in other words, the individual survived the relapse. This probability can be divided

into two groups, one representing the cured (N = 0) individuals and the other, the non-

cured ones (N ≥ 1). In the first case, there is no competent cell that may become active,

thus it is given by the probability that N = 0; on the other case it will be given by the

probability of each of the N , N ≥ 1, cells has not become active until time t.

As is it usually done (Chen et al., 1999; Sinha et al., 2003; Lambert and Thomp-

son, 2007), in this work the latent random variable N will follow a Poisson distribution

with mean θ. By doing so, it is possible to obtain that:

Spop(t) = exp {−θ}+
∞∑
k=1

S(t)k
θk exp {−θ}

k!

= exp {−θF (t)}, (2.14)

where S(t) is the genuine survival function. Also, note that Spop(∞) = exp {−θ} ∈ (0, 1).

Other distributions can be assumed for the number of competing cells. de Cas-

tro et al. (2009), for example, assumes that N follows a Negative Binomial distri-

bution, while Barreto-Souza (2015) considers that this random variable belongs to a

mixed Poisson class of distributions, which includes the Negative Binomial and the

Poisson − Inverse Gaussian distributions as a particular cases and also takes into ac-

count overdispersion.
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The improper p.d.f. and hazard function can be easily obtained by using the

relationships between these and the survival function:

fpop(t) = θf(t) exp {−θF (t)}, (2.15)

hpop(t) = θf(t). (2.16)

Other interesting and useful quantities are the survival, hazard and probability

density functions for the non-cured individuals. They are given by:

SNC(t) = P (T > t|N ≥ 1) =
exp {−θF (t)} − exp {−θ}

1− exp {−θ}
, (2.17)

fNC(t) =

(
exp {−θF (t)}
1− exp {−θ}

)
θf(t), (2.18)

hNC(t) =

(
exp {−θF (t)}

exp {−θF (t)} − exp−{θ}

)
hpop(t). (2.19)

Note that SNC(t) is a proper survival function because SNC(0) = 1 and

SNC(∞) = 0; consequently fNC(t) and hNC(t) are also proper. From these functions

it is possible to obtain an expression that links the mixture and the promotion time mo-

dels. Thus, from one model it is possible to reach the other (more details in Ibrahim et al.

(2001b)).

The likelihood function based on a sample of n individuals with all the infor-

mation, that is, the observable and non-observable data, is given by:

L(Φ,ψ;D) =

(
n∏
i=1

(S(ti|Φ))Ni−δi(Nif(ti|Φ))δi

)
n∏
i=1

θNii exp {−θi}
Ni!

=

(
n∏
i=1

(S(ti|Φ))Ni(Nih(ti|Φ))δi

)
n∏
i=1

θNii exp {−θi}
Ni!

, (2.20)

where Φ is the vector of the parameters that indexes the p.d.f., which may include a

vector of coefficients. Furthermore, analogously to the mixture model, the probability of

cure can be modeled through covariates. In this case, a link function will be used, for

example: θi = exp {ziψ}. Again, the covariates used to explain the cure fraction can be

different than the ones used to model the non-cure individuals, therefore, the entire data

is composed by D = (ti, δi,xi, zi, Ni), i = 1, 2, . . . , n, where xi represents the covariates

vector used to model the i − th non-cured individual and zi represents cure probability

for the same i− th individual.

As stated before, the probability of cure is given by the probability that the in-

dividual has no competent cell: P (N = 0) = exp {−θ} = exp {− exp {zψ}} ≡ lim
t→∞

Spop(t).

Note that, as θ → 0, P (N = 0)→ 1 and as θ →∞, P (N = 0)→ 0.
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It is also possible to obtain a closed expression for the likelihood function based

only on the observed data, Dobs = (ti, δi,xi, zi), i = 1, 2, . . . , n. In this case, it is necessary

to sum out the latent variable N:

L(Φ,ψ;Dobs) =
∑
N

L(Φ,ψ;D) =
n∏
i=1

(θif(ti|Φ))δi exp {−θi(1− S(ti|Φ))} (2.21)

=
n∏
i=1

(θih(ti|Φ)S(ti|Φ))δi exp {−θi(1− S(ti|Φ))}.

Lastly, in counterpart to the mixture model, the prior distribution of the coef-

ficients for the cured fraction may be proper or improper; by using the Promotion Time

model with Ni ∼ Poisson(θi), for i = 1, 2, . . . , n, it is guaranteed that the posterior distri-

bution will be proper (Ibrahim et al., 2001b). Besides that, according to Rodrigues et al.

(2009), it is also guaranteed that the condition of proportional hazards is preserved if the

distribution of the number of competent cells (N) is the Poisson distribution.
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3 The Piecewise Exponential Model

In this chapter, the Piecewise Exponential model (PEM) will be introduced.

The aim is to discuss about this model’s properties and particularities, showing the advan-

tages and the challenges that come along with it, motivating its usage and understanding.

It will also be shown how to include covariates and incorporate the cure fraction.

The PEM was proposed by Kalbfleisch and Prentice (1973) and it has been

very explored in the literature, mainly focusing on survival analysis.

In order to specify the PEM one has to, at first, consider a partition of the

time axis. Thus, to divide the time axis in b intervals, let τ = {s0, s1, . . . , sb} represent

the cuts of the intervals, where 0 = s0 < s1 < · · · < sb < ∞. In that way the intervals

will be I1 = (s0, s1], I2 = (s1, s2], . . . , Ib = (sb−1, sb]. After that, a constant failure rate,

λj, for j = 1, 2, . . . , b is assumed to each interval. So the hazard function is:

h(t) = λj, for t ∈ Ij, j = 1, 2, . . . , b. (3.1)

By using such model, one is approximating the hazard function, a continuous

function, by line segments; therefore, this function does not have a predetermined shape

and, in counterpart of the usual models such as Exponential, Weibull and Log-Normal,

no shape must be imposed. This characteristic provides great flexibility for modeling the

hazard function and for this reason, the PEM is often considered as a non-parametric

model, although in fact, it is a parametric one.

Let T be a non-negative random variable representing the time to event. To

introduce the cumulative hazard, consider tj, j = 1, 2, . . . , b as:

tj =


sj−1, if t < sj−1 ,

t, if t ∈ (sj−1, sj] ,

sj, if t > sj .

(3.2)

For a better comprehension of the usefulness of the quantity tj, consider a

individual whose time to event is represented by Figure 3.1.

Assume that the time grid was divided in four intervals: I1 = (0, s1], I2 =

(s1, s2], I3 = (s2, s3] and I4 = (s3, s4]; suppose also that an individual has suffered the
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Figure 3.1: Ilustration of the quantity tj.

event or the censorship at time t, that is, between s2 and s3. The hazard function (λ1, λ2,

λ3 and λ4) is the straight line segments and j represents the j − th interval. This time to

event is greater than the upper limit of the first interval (s1), that is t > s1, and therefore

t1 = s1 and this whole interval will be taken in consideration. The same is true for the

second interval, therefore t2 = s2. In turn, the time to event is lower than the upper limit

of the third interval (s3), this means that t ∈ (s2, s3], then t3 = t so that only a part of

it will be considered. Lastly, the time to event is lower than the lower limit of the fourth

interval, so t4 = s3 and the fourth interval will not be taken in consideration.

Given this, the cumulative hazard function can be defined as:

H(t|λ) =
b∑

j=1

λj(tj − sj−1) , (3.3)

where λ = (λ1, λ2, . . . , λb) is the vector of failure rates.

One may visualize this hazard as the area of each interval. In the case of the

Figure 3.1, it follows that

H(t|λ) =
4∑
j=1

λj(tj − sj−1) = λ1(t1 − s0) + λ2(t2 − s1) + λ3(t3 − s2) + λ4(t4 − s3)

= λ1(s1 − s0) + λ2(s2 − s1) + λ3(t− s2) + λ4(s3 − s3)

= λ1(s1 − s0) + λ2(s2 − s1) + λ3(t− s2) .
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Using the relationship between the cumulative hazard function and the survival

function, as well as the relationship between the survival function and the probability

distribution function, described on page 16, it follows that:

S(t|λ) = exp

{
−

b∑
j=1

λj(tj − sj−1)

}
(3.4)

and

f(t|λ) = λj exp

{
−

b∑
j=1

λj(tj − sj−1)

}
, t ∈ Ij , λj > 0, j = 1, 2, . . . , b. (3.5)

An important discussion is about the number of intervals. This number can

be fixed, as seen in Gamerman (1994), Yin and Ibrahim (2005), de Castro et al. (2009),

among others. Nevertheless stipulating the number of intervals is a difficult task. If

this number is too large, there will be few data in each interval, therefore it can result

in poor and/or unstable estimates; on the other hand, if this number is too small, the

hazard function may not be well approximated. Thus, the number of intervals should be

carefully chosen, balancing the quantity of data in each interval so that it is possible to

provide a good estimation for the hazard function and for the survival function as well.

One way to solve this issue would be to estimate the time grid τ , that is, to consider the

partition of the time axis and, consequently the number of intervals itself, as an unknown

quantity to be estimated. In this work, in the same way as others (Kim et al., 2007;

Demarqui, 2010) both cases will be considered. One restriction that may be done is to

establish the maximum number of intervals as the number of distinct observed failures so

that is guaranteed to exist at least one failure at each interval (Gamerman, 1994).

In order to write the likelihood function one must include the information

from all the n individuals, like Equation (2.7), as well as all the b intervals. The likelihood

function is given by:

L(λ;D) =
b∏

j=1

n∏
i=1

λ
δij
j exp {−λj(tij − sj−1)}

=
b∏

j=1

λ
∑n
i=1 δij

j exp

{
−λj

n∑
i=1

(tij − sj−1)

}

=
b∏

j=1

λ
ηj
j exp {−λjξj}, (3.6)

where D = {tij, δij, i = 1, 2 . . . , n, j = 1, 2 . . . , b} represents all the data available. In turn

tij is the time of the i − th individual on the j − th interval, δij is an indicator variable:
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δij = 1 if the i− th individual has failed in the j − th interval and δij = 0 otherwise. The

quantity ηj represents the number of failures, while ξj is the total time under test, both

associated with the j − th interval.

It is important to notice that estimation by intervals using information only

on a specific interval may lead to poor estimates due to few data (Gamerman, 1994) and,

in order to solve this issue, the λ’s will be correlated in a way that the information of the

actual interval contains the information of the previous one, that is, a dynamic approach

will be used.

On the mentioned approach there are some important distributions, namely:

the prior, the online and the smoothed distributions. The online distribution, as it is often

called, is the posterior distribution for each interval’s failure rate, that is, the distribution

of the hazard rate of the j − th interval based on all the information until that specific

interval, this information will be represented by Dj and the posterior distribution of λj

will be denoted by λj|Dj. In turn, the smoothed distribution is that one that takes into

account all the available information, it will represented by λj|D. These distributions will

be explained ahead.

Note that the the likelihood function (Equation (3.6)), as a function of λ, cor-

responds to a product of kernels of Gamma distributions with respect to each component

of λ. It means that, if is a Gamma prior distribution is considered for the components of

the failure rate, conjugacy is obtained. This fact will be essential in this work, both for

the parameters’ estimation as to the computational aspects, especially when the time grid

is estimated. Therefore the Gamma distribution will be chosen as the prior distribution

of each failure rate λj, j = 1, . . . , b. Another advantage of eliciting this specific prior is

that the Gamma distribution is very flexible and it can assume a quite reasonable number

of shapes.

Following the dynamic approach proposed by Gamerman (1994), denote the

prior information available at the beginning of the study by D0. Then, the prior distribu-

tion of λ1, that is, λ1|D0 is Gamma(α0, γ0), where α0 and γ0 are known values. Uniting

the prior information with the likelihood information, it is possible to obtain the poste-

rior distribution of λ1, that is, λ1|D1. So, the posterior distribution for the failure rate

associated with the first interval is given by:
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p(λ1|D1) ∝ L(λ;D)p(λ1|D0)

∝ λη1+α0−1
1 exp {−λ1 [γ0 + ξ1]}. (3.7)

That is, the posterior distribution of λ1 is Gamma(α1, γ1), where α1 = α0 +η1,

γ1 = γ0 + ξ1, and η1 =
n∑
i=1

δi1, ξ1 =
n∑
i=1

(ti1 − s0). As aforementioned, the quantity η1

represents the total number of failures at the first interval and ξ1 represents the total time

under test at the first interval.

For the second interval there is the initial information, D0, and the information

from the first interval, this information will be represented by D1. Then the prior distri-

bution of failure rate associated to the second interval is (λ2|D1, φ) ∼ Gamma(φα1, φγ1),

where α1 and γ1 are the parameters of form and scale of the posterior distribution of

λ1 and φ is the discount factor. The discount factor is a number such that, 0 < φ ≤ 1

and its role is to control the information that is passed successively through the intervals.

Consequently, (λj|Dj−1, φ) ∼ Gamma(φαj−1, φγj−1) for j = 2, . . . , b.

Similarly, the posterior distribution for λj, j = 2, . . . , b, is given by:

p(λj|Dj, φ) ∝ L(λ;D)p(λj|φ,Dj−1)

∝ λ
ηj+φαj−1−1
j exp {−λj [φγj−1 + ξj]}. (3.8)

Therefore, (λj|Dj, φ) ∼ Gamma(αj, γj), where αj = ηj + φαj−1, γj = φγj−1 +

ξj, and ηj =
n∑
i=1

δij, ξj =
n∑
i=1

(tij − sj−1) for j = 2, . . . , b. Likewise the first interval, the

quantity ηj represents the total number of failures at the j− th interval and ξj represents

the total time under test at the j − th interval.

Note that (λ1|D0) ≡ (λ1|D0, φ), it means that the distribution of the inital

state (the first interval) does not depend on φ, once this quantity begin to be necessary

to control the passage from the first interval to the second interval.

The discount factor can be stipulated like Gamerman (1994) and Demarqui

(2010) or it can be estimated. In this work it will be estimated. The disadvantage of

stipulating φ is the requirement of a sensibility study to guarantee a good choice for

it; while the estimation of this quantity provides point and interval estimates. It is

noteworthy that when φ is close to 1, more information is passed through the successive
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intervals; if φ is equal to 1, all information is passed. On the other hand, when φ is

close to 0, less information is passed. Moreover, by using a discount factor in this way,

the expectation of λj is maintained and its variance is inflated (Gamerman, 1994). This

characteristic is demonstrated for a general interval j by the following equations:

E(λj|Dj−1, φ) =
φαj−1

φγj−1

=
αj−1

γj−1

= E(λj−1|Dj−1) (3.9)

and

V ar(λj|Dj−1, φ) =
φαj−1

(φγj−1)2
=

αj−1

φ(γj−1)2
=

1

φ
V ar(λj−1|Dj−1). (3.10)

The following step by step will give a better explanation of dynamic scheme

proposed by Gamerman (1994) of the prior and posterior distribution of λ:

1. Establish the prior distribution for the failure rate associated to the first interval by

choosing the values for α0 and γ0, that is, fully specify λ1|D0 ∼ Gamma(α0, γ0);

2. Update the prior information with the information from the likelihood, that is,

obtain the posterior distribution for the failure rate associated to the first interval,

λ1|D1 ∼ Gamma(α1, γ1);

3. The prior distribution for λ2, that is, the failure rate associated to the second interval

will be the posterior distribution for λ1 weighted by the discount factor: (λ2|D1, φ) ∼

Gamma(φα1, φγ1);

4. Obtain the posterior distribution of λ2;

5. For the j− th interval, the prior distribution for λj will be the posterior distribution

of λj−1 weighted by the discount factor: (λj|Dj−1, φ) ∼ Gamma(φαj−1, φγj−1);

6. Obtain the posterior distribution for the failure rate associated to the j−th interval;

7. Steps 5 and 6 will be repeated until the posterior distribution of failure rate associ-

ated to the the last interval (λb|Db) is obtained.

An important point of the dynamic approach is the smoothing process, that

is, the distribution of λ based on all available information. Gamerman (1994) correlates

the components of λ in the log scale, in the following way: log(λj) = log(λj−1) + wj,

where wj is some random disturbance with zero mean and variance Wj. This author
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justifies this form of evolution by arguing that it reduces skewness and avoids negative

values for λ. By using this specific form of correlation the author obtains an approximated

smoothed distribution by making use of linear Bayesian methods (see more in West and

Harrison (1997)). This methodology was developed in the context of standard dynamic

linear models and requires the first and second order moments, however it only provides

estimates for these moments.

Gamerman (1991) and Demarqui (2010) also obtain an approximated smo-

othed distribution. Other works, such as Kim et al. (2007) and de Castro et al. (2009)

also correlated the components of λ in the log scale, but using a different structure to

correlate the vector λ.

Another way to correlate the components of λ is by following the approach

proposed by Gamerman et al. (2013). This approach was originally developed in time

series context although it can be applied to every context that fits the four assumptions

described in their article, which includes the PEM as highlighted by the authors themsel-

ves. One of the assumptions of the mentioned work is that the evolution equation is of the

form: λj+1 = φ−1λjςj+1, where ςj+1|Dj, φ ∼ Beta(φαj, (1 − φ)αj), Dj is the information

until the j − th interval and φ is the discount factor. For comparison purposes, one may

look at this evolution as log(λj+1) = log(λj) + ς∗j+1, where ς∗j+1 = log

(
ςj+1

φ

)
.

This last evolution equation introduced will be the one used in the present

work. The great advantage in doing so is that, differently from what is mostly found in

the literature, exact quantities can be obtained, like the smoothed distribution that will

be explained ahead.

The smoothing process is based on the following proposition:

Proposition 3.0.1. The joint distribution of (λ|φ,Db) has density given by

p(λ|φ,Db) = p(λb|φ,Db)
b−1∏
j=1

p(λj|λj+1, φ,Db)p(φ|Db),

where the distribution of (λj|λj+1, φ,Db) can be obtained via

λj − φλj+1|λj+1, φ,Db ∼ Gamma((1− φ)αj, γj), j = 1, 2, . . . , b. (3.11)

So, to obtain a value of the smoothed distribution based on Proposition 3.0.1,

one has to follow the algorithm given below:
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1. Set j = b and sample p(λb|φ,Db) using Proposition 3.0.1;

2. Set j = j − 1 and sample p(λj|λj+1, φ,Db) using Equation (3.11);

3. If j > 1, go back to step 2; otherwise, the sample of (λ1, . . . , λb|φ,Db) is complete.

The idea then, is to obtain a value of λj in a non direct way, through the

distribution of (λj −φλj+1|λj+1, φ,Db), for j = 1, . . . , b− 1, once the distribution of λb|Db

is already known.

At first, consider a scenario with no covariates and a fixed time grid. In this

case, one may wish to estimate λ and φ. A Bayesian analysis will be performed, so consider

the prior distributions that were already described and φ ∼ Beta(θ1, θ2). Therefore the

joint posterior distribution of (λ, φ) is

p(λ, φ|D) ∝ L(λ;D)p(λ|φ)p(φ). (3.12)

The likelihood function is defined by the Equation (3.6) and the prior distri-

butions were described above. Therefore, p(λ, φ|D) is fully specified. Its calculation is

given in the Appendix.

If one wishes to obtain the marginal posterior distribution of φ, that is, φ|D,

one has to, simply, integrate the joint posterior distribution (Equation (3.12)) with respect

to λ. This calculation as well as the calculation of the full conditional distribution of λ

are also in the Appendix.

3.1 Random Time Grid

It was previously discussed that the time grid of the PEM can be fixed or

estimated. Furthermore, the time grid and the number of intervals have an important

role in the modeling procedure. Ibrahim et al. (2001b), for example, states that in the

cure rate models context, the number of intervals affects the estimation of the cure rate.

This statement accentuates even further the importance of a good choice for the grid.

The fixed time grid may be based on previous experience or it can also be

chosen as the number of the distinct failure times Gamerman (1994), for example. Ne-

vertheless, the number of distinct failures may be too large for the number intervals, and
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moreover, some of these intervals may be similar to one another, so it would be reasonable

to think about grouping them. It can also be seen as allowing the data to indicate which

grid is the best one to fit the data.

In this present work the time grid will be estimated via the clustering structure

of the Product Partition Model (PPM). The PPM was proposed by Hartigan (1990) and

Barry and Hartigan (1992) extended to the case of change point problems. By using this

approach it is possible to obtain important information such as the most likely grid a

posteriori, for example.

The basic idea is to establish a grid with the maximum number of intervals

admitted a priori, say m′, and, from that, to evaluate the possibility of grouping them.

The original grid in this master thesis, also called the finest grid, will have its endpoints as

different failure times and it will be set in the following way: after choosing the maximum

number of intervals, the number of distinct failures will be equally divided into the m′

intervals and the remain ones, if there are some, will be set at the last intervals (from back

to front). The purpose of proceeding in such manner is that, generally, at the end of the

study there are fewer individuals at risk, then this would be a practical way of allowing

more information in the last intervals. For example, in a data set in which there are 23

distinct failures and the maximum number of intervals considered a priori is m′ = 9; in

this case there will be 2 distinct failures for the first four intervals and 3 distinct failures

for the five remaining ones.

In order to estimate the time grid, consider τ ′ = {0, y′1, . . . , y′m} as the finest

grid admitted a priori, where y′1, . . . , y
′
m are distinct observed failure times representing

the endpoints of the intervals. The vector τ ′ induces a set of intervals, in this case,

I1 = (0, y′1], I2 = (y′1, y
′
2], . . . , Im′ = (y′m−1, y

′
m]. Also, denote by I = {1, . . . ,m′} the

set of indexes associated to the initial intervals I1, . . . , Im′ and let ρ = {i0, i1, . . . , ib},

0 = i0 < i1 < · · · < ib = m′ be the random partition of I, which divides the m′ initial

intervals into b new intervals.

The new intervals will be formed by grouping the original ones. This will be

in the form:

I(ρ)j = ∪ijr=ij−1+1Ir, j = 1, 2, . . . , b. (3.13)

The index (ρ) indicates the set of intervals induced by the new partition. By

opening expression (3.13) it is possible to see that:



3.1 Random Time Grid 34

I(ρ)1 = ∪i1r=i0+1Ir = Ii0+1 ∪ · · · ∪ Ii1 = (0; y′i1 ];

I(ρ)2 = ∪i2r=i1+1Ir = Ii1+1 ∪ · · · ∪ Ii2 = (y′i1 ; y
′
i2

];

...

I(ρ)b = ∪ibr=ib−1+1Ir = Iib−1+1 ∪ · · · ∪ Iib = (y′ib−1
; y′ib ].

Note that the elements of the set ρ are the indexes of failure times of the new

intervals. Moreover, given the random partition ρ, it is assumed that:

h(t) = λr ≡ λ(ρ)j , (3.14)

it means that each of the failure rates associated to the intervals that were united are

equal in distribution. The scheme in the Figure 3.2 illustrates the step-by-step that is

performed to estimate the time grid, aiming at providing a better understanding.

τ
′
= {0, y′1, y′2, y′3, y′4, y′5}

↓

I1 = (0, y′1]︸ ︷︷ ︸
λ1

; I2 = (y′1, y
′
2]︸ ︷︷ ︸

λ2

; I3 = (y′2, y
′
3]︸ ︷︷ ︸

λ3

; I4 = (y′3, y
′
4]︸ ︷︷ ︸

λ4

; I5 = (y′4, y
′
5]︸ ︷︷ ︸

λ5

↓

I = {0, 1, 2, 3, 4, 5} → ρ = {i0 = 0, i1 = 1, i2 = 3, i3 = 5}

↓

I(ρ)1 = (0, y′1]︸ ︷︷ ︸
λ(ρ)1

; I(ρ)2 = (y′1, y
′
3]︸ ︷︷ ︸

λ(ρ)2

; I(ρ)3 = (y′3, y
′
5]︸ ︷︷ ︸

λ(ρ)3

Figure 3.2: Illustration of the intervals’ grouping scheme.

In the case of the mentioned figure there were initially five intervals: I1, I2, I3,

I4 and I5, with {y′1, y′2, y′3, y′4, y′5} as endpoints. Therefore, I = {0, 1, 2, 3, 4, 5} and, initially,

h(t) = λj, t ∈ Ij. After that, a random partition of I was chosen: ρ = {i0, i1, i2, i3} =

{0, 1, 3, 5}. This random partition induces the following new set of intervals:

I(ρ)1 = ∪i1r=i0+1Ir = ∪1
r=1Ir = I1 = (0, y′1]; (3.15)

I(ρ)2 = ∪i2r=i1+1Ir = ∪3
r=2Ir = I2 ∪ I3 = (y′1, y

′
3];

I(ρ)3 = ∪i3r=i2+1Ir = ∪5
r=4Ir = I4 ∪ I5 = (y′3, y

′
5].
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Thus, given the random partition, h(t) = λ(ρ)j , t ∈ I(ρ)j and, in this case, λ2 and λ3 are

considered to be equal in distribution as well as λ4 and λ5.

According to Barry and Hartigan (1992), the PPM is based on the following

assumptions:

i) The prior distribution of ρ has the product form:

p(ρ = {i0, i1, . . . , ib}) = K−1c(I(ρ)1)c(I(ρ)2) . . . c(I(ρ)b), (3.16)

where K−1 =
∑

C c(I(ρ)1)c(I(ρ)2) . . . c(I(ρ)b) is the normalizing constant and C is the

set of all possible partitions of the time grid into b intervals. In turn, c(.) is the

prior cohesion, which is a quantity representing the degree of similarity between the

intervals that are being grouped;

ii) Conditional on the partition ρ, the model is conditionally independent and thus,

have the product form:

p(λ(ρ)|ρ = {i0, i1, . . . , ib}) =
b∏

j=1

p(λ(ρ)j |ρ). (3.17)

If there is no information available about the similarity among the intervals,

one can simply assume that a priori the cohesion is equal to 1 for every single one of

them. That is, to use the discrete Uniform prior.

In the case of the simplest model, with no covariates and no cure fraction,

and considering the prior distribution for ρ mentioned above, the posterior distribution

of (ρ|φ,D) is given by:

p(ρ|φ,D) =

∫
λ(ρ)

p(λ(ρ), ρ|φ,D)dλ(ρ) ∝
∫
λ(ρ)

L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)p(ρ)dλ(ρ)

∝
∫
λ(ρ)

L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)dλ(ρ)

∝ (γ0)α0

Γ(α0)

Γ(α0 + η1)

(γ0 + ξ1)α0+η1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(φαj−1 + ηj)

(φγj−1 + ξj)(φαj−1+ηj)

∝ (γ0)α0

Γ(α0)

Γ(α1)

(γ1)α1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(αj)

(γj)αj
. (3.18)

Note that the expression (3.18) can only be obtained due to the conjugacy of

λ, otherwise it would be necessary to use numerical methods to calculate the integral.
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The algorithm to estimate the time grid that will be used in this present work

is the one proposed by Loschi and Cruz (2005). Following their method, consider the

random variable U representing the similarity between the intervals:

Uj =

 1, if λj = λj+1;

0, if λj 6= λj+1

(3.19)

for j = 1, 2, . . . , b− 1. That is, Uj = 1 if the j − th and the (j+1)-th intervals are similar

and therefore it is fair to group them; and Uj = 0 otherwise.

The idea then, is to compare the intervals, two by two, through the predictive

distribution, to verify the similarity between them. If they are similar, they are united into

one interval; if they are different, they remain the same (they remain being two different

intervals). To generate a sample of U , consider the quantity Rj, for j = 1, 2, . . . , b− 1:

Rj =
p(Uj = 1|U1 = u1, . . . , Uj−1 = uj−1, Uj+1 = uj+1, . . . , Ub−1 = ub−1, D)

p(Uj = 0|U1 = u1, . . . , Uj−1 = uj−1, Uj+1 = uj+1, . . . , Ub−1 = ub−1, D)

=
p(D|ρ1)

p(D|ρ0)
, (3.20)

where ρ0 and ρ1 represent different partitions, according to Uj = 0 and Uj = 1, respecti-

vely. D represents the data available.

The proposed combination of the intervals will be accepted or not according

to the following condition:

Uj =

 1, if Rj ≥
1− u
u

;

0, otherwise.

where j = 1, 2, . . . , b−1 and u is a value from the Uniform(0, 1) distribution. In the case

represented by Figure 3.2, U = (U1, U2, U3, U4) = (0, 1, 0, 1).

Once the procedure of estimating the time grid is settled, it is possible to go

forward with the estimation of the remaining parameters.

It is important to highlight that the posterior distribution of λr, r = 1, 2, . . . ,m′

will be the following mixture:

p(λr|D) =
∑

ij−1<r≤ij

p(λ(ρ)j |D, ρ)R(I(ρ)j |D), (3.21)

where, R(I(ρ)j |D) is the posterior relevance, that is, the probability that the j − th new

interval appears in the partition induced by ρ. In turn, p(λ(ρ)j |D, ρ) is the full conditional

distribution of the failure rates associated to the intervals to be grouped.
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Including Covariates into the Model

In a study where there is not only the response variable but also some ex-

planatory variables, it is interesting to include this information into the model for its

importance to describe the response.

Assume that there are k explanatory variables (or covariates) available. Such

covariates are included into the model in a multiplicative way through the hazard function,

that is, h(t) = λ(ρ)j exp {xiβ} for t ∈ I(ρ)j , where β is the coefficients vector and xi is the

vector of covariates of the i− th individual. Note that the baseline hazard is h0(t) = λ(ρ)j ,

for t ∈ I(ρ)j .

In this case, the likelihood is given by

L(β,λ(ρ), ρ;D) =
b∏

j=1

n∏
i=1

(λ(ρ)j exp {xiβ})δij exp {−λ(ρ)j exp {xiβ}(tij − sj−1)} (3.22)

= exp

{
n∑
i=1

b∑
j=1

δijxiβ

}
b∏

j=1

λ
∑n
i=1 δij

(ρ)j
exp

{
−λ(ρ)j

n∑
i=1

[exp {xiβ}(tij − sj−1)]

}
.

The aim here is to estimate, β, λ(ρ), φ and ρ. It will be assumed that a priori

the vector of coefficients β does not dependent neither on λ(ρ) nor on φ or ρ. Based on

this, it is possible to calculate some important distributions, such as the joint posterior

distribution, the full conditional distributions and others.

The posterior distribution of (β,λ(ρ), φ, ρ) is given by

p(β,λ(ρ), φ, ρ|D) ∝ L(β,λ(ρ), ρ;D)p(β)p(λ(ρ)|β, φ, ρ)p(φ)p(ρ). (3.23)

The likelihood function as well as the prior distributions of (λ(ρ)|β, φ, ρ) and of

φ were already specified. The prior distribution for ρ, in turn, will be the Bayes-Laplace

prior and the vector β will be considered independent a priori, with a Normal(0, σ2
l )

distribution, for l = 1, . . . , k.
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The parameters of interest, that is, β, λ(ρ), φ and ρ will be estimated according

to the following expressions:

p(β|λ(ρ), φ, ρ,D) ∝ L(β,λ(ρ), ρ;D)p(β), (3.24)

p(λ(ρ)|β, φ, ρ,D) ∝ L(β,λ(ρ), ρ;D)p(λ(ρ)|β, φ, ρ), (3.25)

p(φ|β, ρ,D) ∝
∫
λ(ρ)

L(β,λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)dλ(ρ), (3.26)

p(ρ|β, φ,D) ∝
∫
λ(ρ)

L(β,λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(ρ)dλ(ρ). (3.27)

The expressions associated with these distributions are presented in the Appen-

dix. It is noteworthy that the conjugacy for λ(ρ)j is maintained, that is, λ(ρ)j |(β, φ, ρ,D)

still follows a Gamma distribution (see Equation (A.11)). The full conditional distribu-

tion of λ(ρ)j is Gamma(α0 + η1, γ0 + ξ1) for j = 1 and Gamma(φαj−1 + ηj, φγj−1 + ξj)

for j = 2, . . . , b. But at this point, differently from the case with no covariates, ξj =
n∑
i=1

exp {xiβ}(tij − sj−1), for j = 1, 2, . . . , b and this quantity no longer represents the

total time under test. Nevertheless, even when covariates are included into the model it

is still possible to calculate the integral involving the distribution of (ρ|β, φ,D).

Incorporating the Cure Fraction

Studies in which it is plausible to assume that a proportion of subjects will

never experience the event of interest, are those which cure fraction models can be applied

to. A way of verifying the coherence or necessity of using such method is by verifying

if there is a plateau on the Kaplan-Meier estimator, or, in other words, if the estimate

becomes constant, in a value greater than zero, at a certain point of the time and remains

in that way until the end of the follow-up.

The cure fraction will be incorporated into the model by using the Promotion

Time Model and by considering the PEM to describe the promotion times. In this case,

substituting Equations 3.4 and 3.5 in Equation 2.20, the likelihood function based on all

the information is given by:
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L(β,λ(ρ),ψ, ρ;D) =

(
b∏

j=1

n∏
i=1

exp {λ(ρ)jNi exp {xiβ}(tij − sj−1)}(Niλ(ρ)j exp {xiβ})δij
)

n∏
i=1

θNii exp {−θi}
Ni!

=

(
b∏

j=1

λ
∑n
i=1 δij

(ρ)j
exp

{
−λ(ρ)j

n∑
i=1

Ni exp {xiβ}(tij − sj−1)

})
(

n∏
i=1

θNii exp {−θi}
Ni!

N
∑b
j=1 δij

i exp

{
b∑

j=1

δijxiβ

})
, (3.28)

where θi = exp {ziψ}.

In turn, the likelihood function based only on the observed information is:

L(β,λ(ρ),ψ, ρ;Dobs) =
∑
N

L(β,λ(ρ),ψ, ρ;D)

=

(
b∏

j=1

λ
∑n
i=1 δij

(ρ)j

)
n∏
i=1

θ
∑b
j=1 δij

i exp

{
b∑

j=1

δijxiβ

}

exp

{
−

b∑
j=1

δijλ(ρ)j exp {xiβ}(tij − sj−1)

}
(3.29)

exp

{
−θi

(
1− exp

{
−

b∑
j=1

λ(ρ)j exp {xiβ}(tij − sj−1)

})}
.

Therefore, the parameters to be estimated are: β, λ(ρ), φ, ψ and ρ. Mo-

reover, once N is a latent variable, it is necessary to generate the number of the com-

petent cells for the n individuals. It can be demonstrated (Ibrahim et al., 2001b) that

(Ni|β, λ(ρ)j ,ψ, Dobs) ∼ Poisson(S(ti|β,λ(ρ)) exp {ziψ}) + δi, where δi is the indicator of

censorship, for i = 1, 2, . . . , n.

The posterior distribution of (β,λ(ρ), φ,ψ, ρ) is given by:

p(β,λ(ρ), φ,ψ, ρ|D) ∝ L(β,λ(ρ),ψ, ρ;D)p(β)p(λ(ρ)|β, φ, ρ)p(φ)p(ψ)p(ρ) (3.30)

The likelihood function based on all the information will be used to estimate

λ(ρ), φ, ψ and ρ. In turn, for the vector β the likelihood function based only on the

observed information will be used. The intention of doing in such way is to improve the
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convergence of the parameters by eliminating the uncertainty arising from N . So, the

parameters of interest will be estimated according to the following:

p(β|λ(ρ), φ,ψ, ρ,Dobs) ∝ L(β,λ(ρ),ψ, ρ;Dobs)p(β), (3.31)

p(λ(ρ)|β, φ,ψ, ρ,D) ∝ L(β,λ(ρ),ψ, ρ;D)p(λ(ρ)|β, φ, ρ), (3.32)

p(φ|β,ψ, ρ,D) ∝
∫
λ(ρ)

L(β,λ(ρ),ψ, ρ;D)p(λ(ρ)|β, φ, ρ)p(φ)dλ(ρ), (3.33)

p(ψ|β,λ(ρ), φ, ρ,D) ∝ L(β,λ(ρ),ψ, ρ;Dobs)p(ψ), (3.34)

p(ρ|β, φ,ψ, D) ∝
∫
λ(ρ)

L(β,λ(ρ),ψ, ρ;D)p(λ(ρ)|β, φ, ρ)p(ρ)dλ(ρ). (3.35)

The expressions related to these distributions can be found on the Appendix.

Note once more that, even when considering a cure fraction, the conjugacy is maintained:

λ(ρ)1 ∼ Gamma(α0+η1, γ0+ξ1) and λ(ρ)j ∼ Gamma(φαj−1+ηj, φγj−1+ξj) for j = 2, . . . , b

but, at this point, ξj =
n∑
i=1

Ni exp {xiβ}(tij − sj−1). Thus the the integral related to the

distribution of (ρ|β, φ,ψ, D) still can be solved.
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4 Applications

In order to evaluate the progress of this work, some applications were made. In

total there are two applications: the first one illustrates the case of the simple model and

the second one, the inclusion of the cure fraction. In both applications the estimates were

obtained by using the fixed and the random time grid, so it could be possible to compare

the pros and cons of each approach. It is noteworthy that regardless of the methodology

applied to the time grid, the discount factor was considered unknown and thus, it was

estimated.

The computational methods used in this work were the Gibbs Sampler and

the Adaptive Rejection Sampler (ARS) (Gilks and Wild, 1992). The ARS method is used

to generate values from a distribution when its expression does not have a closed form.

To use the ARS, the functions of interest, for example, the kernel of the full conditional

distributions, must be log-concave. By definition, if a function f(x) is log-concave, this

means that f ′(x) decreases monotonically with increasing x, in its domain. If the function

is not log-concave, the Adaptive Rejection Metropolis Sampling within Gibbs Sampling

(ARMS) (Gilks et al., 1995) can be used. More information about these methods can be

found in Gamerman and Lopes (2006).

All analyzes were performed by using the R software, version 3.1.2 (R Core

Team, 2014). The package required to use the command “ars” was the “dlm” package

(Petris, 2010). An important argument of this command is the domain of the function.

It is well-known that the domain of the coefficients (β and ψ), is (−∞,∞); however, to

facilitate the computational aspects related to generating values of the full conditional

distributions of the coefficients, the logit transformation was applied. That is, βtrans =
exp {β}

1 + exp {β}
and ψtrans =

exp {ψ}
1 + exp {ψ}

, in this way, the domain of the transformation is

(0, 1) and can be used in the R function.

The comparison of the models was based on the LPML (Logarithm of the

Pseudo-Marginal Likelihood) and the WAIC (Watanabe-Akaike or Widely Applicable In-

form) (Watanabe, 2010; Vehtari and Gelman, 2014) criteria. More information about
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these methods can be found on the Appendix (page 60). However, following these quan-

tities, the higher they are the better is the model.

4.1 Brain Cancer Data

On the first application there was no covariates. In this case, the data utilized

proceeds from a brain cancer study obtained from SEER (Surveillance, Epidemiology, and

End Results Program) database (http://seer.cancer.gov/seerstat/). This data set

is composed by the time, in months, to death from brain cancer of 231 individuals. From

the total patients, 58.01% deceased.

At first, the failure rate along with the discount factor were estimated with a

fixed time grid, and after that, the number of intervals was considered to be unknown and

the all the parameters were estimated again.

The burn-in considered was 50000, a lag of 100 and 1000 posterior values were

obtained, resulting in a total of 150000 iterations. The prior distributions were vague:

(λ(ρ)1|D0) ∼ Gamma(0.001, 0.001) and φ ∼ Beta(1, 1). In the case of fixed number of

intervals, this number was established as 10, 20 and 32, this last value is the number of

distinct observed failures. On the other hand, in the case of a random time grid, the

same values were considered for the maximum number of intervals. Thus, the estimated

number of intervals may vary from 1 to 10, or 1 to 20, or 1 to 32, on the last case.

Figure 4.1 shows the failures rate estimates for the fixed and random time grid,

varying the (maximum) number of intervals. The estimates were based on the posterior

medians. Note that the estimates based on the random time grid are smoother than those

based on the fixed grid.

Regarding the discount factor, consider the Figure 4.2. Note that, as the

number of intervals increases, φ also increases. The explanation for this is: as the number

of intervals increases, the less is the information that remains in each interval, it means

that the more is the information that will have to be carried along the intervals. Besides

that, note that the discount factor for the fixed time grid is higher than that of the random

time grid. Such difference occurs because when the time grid is being fixed the discount

factor will try to adapt the passage of information for that unique grid; on the other hand,

when the time grid is estimated, the data are informing which grid is the best one to fit

http://seer.cancer.gov/seerstat/
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(a) 10 intervals. (b) 20 intervals.

(c) 32 intervals.

Figure 4.1: Comparison of the failure rate estimate varying the number of intervals.

the model, thus if the best grid was obtained it is reasonable to think that the information

is set on the most suitable interval, and, therefore, less information will be necessary to

be passed through the intervals. Moreover, in this case, the estimated number of intervals

will always be lower or equal to the fixed number of intervals, therefore the estimated

discount factor in the random time grid scenario will always be lower or equal to the

estimated discount factor obtained by fixing the time grid.

Table 4.1 shows the LPML and WAIC results for comparing the models pre-

sented; the higher these measures are, the better. The values in bold represent the best
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Figure 4.2: Boxplot of the posterior discount factor sample for fixed and random time

grid varying the (maximum) number of intervals.

model for each approach (random and fixed grid), according to each comparison criteria.

Thus, according to the LPML criteria, the case with fixed time grid with 20 intervals is

the best model and, immediately after, follows the case with random time grid with the

maximum number of intervals established as 20. On the other hand, by analyzing the

WAIC one would conclude the contrary: to estimate the number of intervals (considering

m′ = 20) is better than to fix it at 20 intervals. These results can also be observed through

Figure 4.3.

Following both criteria of goodness of fit, there may be a doubt among fixed

or random time grid. However, it is worth highlighting important points to consider,

such as the information about the number of intervals and the most probable grid. These

information can only be obtained by considering the number of intervals as an unknown

quantity to be estimated. Therefore the final model will be the one with random time

grid and m′ = 20.

Table 4.2 shows descriptive statistics of the number of intervals for the three

cases considered (m′ = 10, 20 and 32) and Figure 4.4 illustrates the posterior distribution

of the number of intervals. Note that, for the case in which m′ = 10, the maximum value
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Table 4.1: Comparison of fixed time grid x random time grid according to different (ma-

ximum) number of intervals.

Fixed time grid

Number of intervals LPML WAIC

10 -576.8872 -4144.1555

20 -576.1691 -4130.9230

32 -576.8023 -4133.0540

Random time grid

Maximum number of intervals LPML WAIC

10 -577.1669 -4134.3280

20 -576.2522 -4120.3278

32 -577.1141 -4131.4528

(a) LPML. (b) WAIC.

Figure 4.3: Model comparison measures for the fixed time grid x random time grid accor-

ding to different (maximum) number of intervals.

estimated was 10, which may indicate the necessity for more intervals. On the other hand,

when m′ = 32 the mode value was 16 and the third quartile was 19, which may reinforce

that the grid with 20 intervals is a good choice.
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Table 4.2: Summary of the number of intervals.

m′ Minimum 1º Quartile Median Mean Mode 3º Quartile Maximum

10 3 6 6 6.493 6 7 10

20 5 9 11 10.84 10 12 17

32 8 15 17 16.73 16 19 26

(a) 10 intervals. (b) 20 intervals.

(c) 32 intervals.

Figure 4.4: Histograms of the number of intervals varying the maximum number of inter-

vals.

Based on the results of the chosen model, there were five grids with the higher

probability, they are: τ1 = {0, 3, 5, 6, 10, 12, 17, 21, 23, 27, 53}, τ2 = {0, 4, 10, 12, 15, 21, 23, 27, 44},
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τ3 = {0, 2, 3, 4, 5, 12, 15, 21, 23, 53}, τ4 = {0, 3, 6, 12, 21, 23, 53} and τ5 = {0, 3, 4, 12, 19, 23, 27, 34},

each one of them with probability 0.002 of being sampled. Although this value may seem

small, note that the number of possible grids is 2m
′−1 = 219.

From the posterior sample of the chosen model, it is possible to infer that a

good number for the intervals is the modal value 10. Besides that, the probability that

the number of intervals is between 7 and 14 is 95%, which emphasizes how unnecessary it

is to establish this number as 32 intervals, for example. Moreover, the posterior median

for the discount factor is 0.2300 and its HPD interval is [0.0716; 0.4343].

In turn, in Figure 4.5 it is possible to compare the estimated survival function.

The black line represents the estimate from the Kaplan-Meier estimator and the red line

shows the estimated based on the posterior medians obtained by the proposed approach.

Note that the estimates are very similar.

Figure 4.5: Estimated survival function.

Demarqui (2010) obtained considerably similar results when analyzing this

data set. In the mentioned work, the best model was also that one with based on the

dynamic approach with random time grid and m′ = 20. The discount factor in Demarqui’s

work was fixed, which required a sensibility analysis. Within the fixed values, the best

model was the one with φ = 0.25 which is really close to the value estimated in the present

work (0.23).
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4.2 Melanoma Data

The second application is based on the E1673 clinical trial conduced by Eastern

Cooperative Oncology Group (ECOG), with 650 patients who had melanoma. These data

were taken from Ibrahim et al. (2001b). The response variable is the time until death (in

years) from the disease and the covariates are: age (in years), sex (0 - male; 1 - female)

and performance status (0 - fully active; 1 - other).

The median age was approximately 49 years; 42.31% of the patients were

female and 86.31% patients were fully active. After nearly twenty years of follow-up,

60.46% had suffered the event of interest.

According to Li et al. (2001) the usage of cure fraction models requires a long

time of follow-up and also a large number of censorship, which is the case of the E1673

study. In addition, the plateau can be observed in Figure 2.1, note that at the end of

follow-up, the estimated survival function remains constant at approximately 0.4.

The aim in this application is to verify which covariates are influencing the

cure probability as well as which ones are affecting the non-cured individuals. Moreover,

to evaluate the difference between fixed and random time grid, varying the number of

intervals and verifying how it affects quantities of interest, such as the hazard function

and the cure probability.

In this case there will be two vectors of regression coefficients. The first

one will be attached to the failures, in the following way h(ti) = h0(ti) exp {xiβ} =

λ(ρ)j exp {xi1β1 + xi2β2 + xi3β3} = λ(ρ)j exp {ageiβ1 + sexiβ2 + PSiβ3}, for i = 1, 2, . . . , n

and ti ∈ I(ρ)j . The second one, in turn, will be representing the cure fraction, that is, θi =

exp {ziψ} = exp {zi1ψ1 + zi2ψ2 + zi3ψ3 + zi4ψ4} = exp {ψ1 + ageiψ2 + sexiψ3 + PSiψ4},

where i = 1, 2, . . . , n and ψ1 represents the intercept.

Similarly to the first application, the burn-in considered was 50000, a lag of

100 and 900 posterior values were obtained, resulting in 140000 iterations. The prior

distributions were also vague: (λ(ρ)1|D0) ∼ Gamma(0.001, 0.001), φ ∼ Beta(1, 1), βl ∼

Normal(0, 1000), for l = 1, 2, 3 and ψk ∼ Normal(0, 1000), for k = 1, 2, 3, 4. Besides

that, the covariate age was standardized in order to improve convergence procedures.

The possible maximum number of intervals, that is, the number of distinct

observed failures was 361 but, as demonstrated by the previous application, this number
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may be a too large number to be considered. In this line of thought, the grid was fixed

in 10, 20, 30 and 40 intervals. These same values were used for the maximum number of

intervals (m′).

In Figure 4.6 it is possible to observe the estimated baseline hazard function,

based on the posterior medians. Note that as the maximum number of intervals increases

the estimates become dissonant, comparing to the fixed time grid.

Table 4.3 shows the LPML and WAIC measures for the goodness of fit, the

values in bold represent the best model for each approach (random and fixed grid), fol-

lowing the adopted measures of goodness of fit. According to LPML values, the best grid

is the grid in the random framework with m′ = 20 and right after that comes the time grid

fixed at 20 intervals. According to the WAIC measure though, the conclusion is different:

the best model is that one with random time grid with the maximum number of intervals

established at 30; and considering only fixed time grids, it would be best to fix it at 10

intervals. This can also be seen in Figure 4.7.

Table 4.3: LPML and WAIC results.

Fixed time grid

Number of intervals LPML WAIC

10 -1341.2429 -2822.4199

20 -1333.8083 -2824.2849

30 -1352.4812 -2869.8333

40 -1391.1048 -2957.5321

Random time grid

Maximum number of intervals LPML WAIC

10 -1341.2722 -2835.1465

20 -1331.0072 -2819.8805

30 -1334.0243 -2813.8030

40 -1338.7437 -2814.0841

In the works of Demarqui (2010) and Kim et al. (2007) these data were also

analyzed using the Promotion Time Model and the PEM for the promotion times. Both

works used the LPML criteria and got to the conclusion that it is best to estimate the time
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(a) 10 intervals. (b) 20 intervals.

(c) 30 intervals. (d) 40 intervals.

Figure 4.6: Comparison of the failure rate estimates using fixed and random time grid

and also varying the (maximum) number of intervals.
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(a) LPML. (b) WAIC.

Figure 4.7: Model comparison measures for the fixed time grid x random time grid accor-

ding to different (maximum) number of intervals.

grid. However, the results obtained by Demarqui (2010) indicates that the best model is

that one with m′ = 20, and the mode value obtained was 10; while the approach used by

Kim et al. (2007) (which does not establish a maximum number of intervals) results in a

modal value equal to 30.

Nevertheless as it is shown in Table 4.4, it was noted that as the number of

maximum number of intervals increases, the estimate of ψ1, the intercept to model the

cure fraction, become more unstable and dissonant comparing to the others, affecting

directly the probability of cure. In Figure 4.8 there is the probability of cure regardless of

the significance of the parameters. Note how different are the estimates obtained by the

random time grid with m′ = 30 and m′ = 40 from the others.

Table 4.4: Estimates of the intercept (ψ1) for the case with random time grid varying the

maximum number of intervals.

m′ Median Mean Standard Deviation HPD 95%

10 0.2846 0.4678 0.5108 [-0.0412; 1.7096]

20 0.3287 0.6592 0.6759 [-0.0098; 2.2392]

30 0.6868 0.9738 0.8005 [0.0552; 2.5060]

40 1.3125 1.2083 0.8788 [0.0858; 2.5614]
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Figure 4.8: Comparison of the probability of cure estimated varying the number of inter-

vals.

Taking in consideration the points of view expressed above and the similarity

between this present work and Demarqui’s, the chosen final model will be the one with a

random time grid and m′ = 20.

Table 4.5 shows estimates for the number of intervals, for m′ = 10, 20, 30 and

40. Figure 4.9 illustrates the histogram of the posterior values for the number of intervals

in each specific case. Consider the estimates obtained by choosing m′ = 30, the third

quartile is 18, which is lower than 20, this may be another indicative to choose m′ = 20

as the final model.

Table 4.5: Summary of the number of intervals.

m′ Minimum 1º Quartile Median Mean Mode 3º Quartile Maximum

10 4 5 6 6.252 6 7 10

20 6 10 11 11.28 11 12 17

30 8 14 16 16.22 16 18 25

40 7 18.75 21 21.09 21 24 33

In the same way as the first application, as the number of intervals increases,

the discount factor also increases due to the diminishing of data in each interval. This
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(a) 10 intervals. (b) 20 intervals.

(c) 30 intervals. (d) 40 intervals.

Figure 4.9: Histogram of the number of intervals varying the maximum number of inter-

vals.
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can be seen in Figure 4.10. It also occurs that the discount factor for the fixed time grid

is higher than for the random time grid.

Figure 4.10: Comparison of the discount factor estimates varying the number of intervals.

Table 4.6 contains the Bayes estimates as well as the 95% HPD intervals for

each coefficient (for the non-cured individuals and the cure probability) for the chosen

model (random time grid with m′ = 20). Regarding the non-cured individuals, note that

the HPD intervals for all the coefficients contain the value 0, it means that the covariates

associated with these coefficients does not explain the time until death from melanoma.

In turn, to evaluate the cure probability, the most appropriate covariates are age and sex.

Considering that covariate age was standardized and the behavior of the ex-

pression representing the probability of cure, exp {− exp {.}}, on the domain (−∞;∞),

the age values that are above the mean (positive values) decrease the probability of cure

and, on the contrary, the age values below the mean (negative values), increase this pro-

bability. Thus one may have the intuitive conclusion that the older the individual is, the

lower is her/his probability of cure. This can be seen in Figure 4.11a.

In turn, the signal of the coefficient related to the covariate sex is negative.

This means that the probability of cure will increase for the category represented by 1,

which is composed by female individuals. Consequently this probability is lower for the

male individuals. This can be seen by Figure 4.11b. This result is also very intuitive
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Table 4.6: Estimates of the coefficients associated to the non-cured individuals and the

cure fraction.

Non-cured individuals

Median Mean Standard Deviation HPD 95%

Age -0.1477 -0.1463 0.1208 [-0.3913; 0.0674]

Sex (female) -0.0123 -0.0154 0.1663 [-0.3296; 0.3042]

PS (other) 0.2575 0.2677 0.2763 [-0.2298; 0.8126]

Cure fraction

Median Mean Standard Deviation HPD 95%

Intercept 0.3287 0.6592 0.6759 [-0.0098; 2.2392]

Age 0.2116 0.2109 0.0531 [0.0945; 0.3018]

Sex (female) -0.3851 -0.3858 0.1079 [-0.5838; -0.1610]

PS (other) 0.2523 0.2496 0.1521 [-0.0207; 0.5658]

(a) Age (years). (b) Sex.

Figure 4.11: Comparison of the probability of cure separated by the covariates age and

sex.

when one considers that women generally take better care of the skin and go to the

dermatologist more frequently than men, which may lead the discovery of cancer at an

early stage.
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Another interesting information that can be obtained by estimating the time

grid is the most probable grid. According to the chosen model it is

τ = {0, 0.4763860, 0.6680356, 0.7939767, 1.5331964, 3.3237509, 4.8815880, 5.6290212, 11.0773443}

with probability equal to 0.0033. This grid is made by 8 intervals. Furthermore the pro-

bability that the number of intervals is between 8 and 14 is 0.95. Other estimates related

to the number of intervals can be seen in Table 4.5. Note that the modal value is 11,

which reinforces the choice of the random time grid with m′ = 20. In turn, Figure 4.9

shows the histogram of the posterior distribution of the number of intervals. Moreover,

the median value for the discount factor is 0.1172 and its HPD interval is given by [0.0286;

0.2694].

Lastly, Figure 4.12a shows the estimated population (and improper) survival

function (Spop) separated by sex while Figure 4.12b shows the survival function for the

non-cured individuals (SNC), also separated by sex. Note that, differently from Spop, the

survival function for the non-cured individuals is tending to 0, as the time increases; and

Spop stabilizes at a value greater than 0.

(a) Populational. (b) Non-cured individuals.

Figure 4.12: Estimated survival functions.

Demarqui et al. (2014) and Kim et al. (2007) analyzed this data set modeling

only the cure fraction. In both works, the estimates of the cure fraction coefficients were

based on the posterior means and, except by the intercept (ψ1), the estimates were quite

similar to those obtained by the proposed approach. The intercept obtained by Kim

et al. (2007) was considerably lower (0.14 for random time grid and other specifications
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and 0.136 for fixed time grid and different specifications). The estimates regarding the

number of intervals were only similar when comparing to Demarqui et al.’s work, the

median value is the exact same, 11, and the mean was 11.103, while on the proposed work

was 11.28. Another comparable result is the hazard function which also resulted similarly

to the work of Demarqui et al..
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5 Conclusions and Future Works

In this master thesis the Piecewise Exponential Model (PEM) was used in

the Bayesian context. The parameters of this model, that is, the vector of failure rate

was estimated under a dynamic approach, considering a different form of correlate the

components of the failure rate. This form enables the achievement of an exact smoothed

distribution for these parameters in a simple manner. In the works found in the literature,

this distribution is obtained in a approximated way. Therefore, this is a great advantage

of the proposed work. Moreover, the time grid of the PEM was estimated via Product

Partition Model (PPM) and this whole structure was applied to cure fraction models.

Another advantage of this work is the estimation of the discount factor, which

eliminates the necessity of a sensibility study and also allows a complete inference about

this quantity. Furthermore, it was observed that the discount factor has the capacity to

adapt very well: it gets higher when more information is necessary and lower when there

is a good amount of information in the intervals to estimate the parameters (λ).

Turning attention to the time grid, the case in which the criteria of goodness

of fit indicated for the fixed time grid, the case of a random grid was immediately after.

Thus, one might think that it would be better to lose by not choosing the best model

(according to the measures) and, at the same time, to gain by considering the information

that can only be obtained when estimating the time grid. Moreover, it was noted that

to consider the number of intervals as the number of distinct observed failures is often

unnecessary.

Nevertheless, it was observed, in the cure fraction model context, that, as the

maximum number of intervals increases, the estimates of the failure rate become dissonant

and the intercept of the cure fraction becomes somewhat unstable. This characteristic

did not occur neither when the cure rate was estimated under the fixed time grid, nor in

the case of the simple model. It may be related to identifiability issues and it should be

investigated.

A possible solution for this issue would be to include covariates only on the

cure fraction and to verify the behavior of the model, although it is more interesting and
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more complete to include this information in both cases. Or, at least, to model the cure

probability and the non-cured individuals using different covariates. Informative priors

can also be used to model the intercept, once it is possible to obtain prior information

from the literature.

It is noteworthy that, although the results obtained in this work are according

to the literature, all the conclusions exposed were based on results obtained by applying

the proposed model to a real data set, therefore to confirm these results it would be

necessary to consider a simulation study. This will be a future work.

A sensibility analysis for the values of the prior distribution of the failure

rate associated to the first interval (α0 and γ0) would be necessary to verify how far

the final estimates are affected by these values; or if this influence is “absorbed” by the

smoothed distribution, mainly by obtaining the exact one. A sensibility study would also

be interesting for the time grid, both for fixed and random cases. This would be necessary

because, even when the grid in being estimated, the number of possible grids is far too

large, hence, this type of study would be useful to investigate if the initial grid (that

is, that grid formed by the maximum number of intervals admitted a priori) affects the

results obtained.

An idea to be possibly developed in order to extend the proposed approach,

is to consider a function of the discount factor depending on the range of each interval.

This idea is motivated by the fact that it would be important to consider the difference

between the intervals and their particularities or, in other words, for some intervals more

information would be necessary to obtain a good estimation than others. Another moti-

vation is related to the number of events and individuals at risk at the end of follow-up: a

better estimation may be obtained if more information was passed through the intervals at

this part. So, maybe a unique number would not be enough to capture these differences,

mainly on the last intervals.

Another interesting extension to the proposed approach, would be to consider

the case of multivariate data.

Lastly, the Mixture Model could be reviewed and a solution to the identifia-

bility issue involving this model could be proposed. For example, to consider informative

priors for the intercept, likewise the Promotion Time Model.
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A Appendix

In this Chapter there is two sections. The first one is briefly explaining the

model comparison methods LPML and WAIC. The second one, in turn, presents the

calculations necessary to generate values of the parameters of interest. The idea was to

show how these parameters are related to one another and to expose the final expressions.

Comparison Measures

The LPML measure is based on the Conditional Predictive Ordinate (CPO)

(Ibrahim et al., 2001b), which, in turn, is a quantity that measures how a specific obser-

vation influences the model. For a specific i− th observation, the CPO statistic is given

by:

CPOi = f(ti|D(−i)
obs ) =

∫
Φ

f(ti|Φ, D(−i)
obs )p(Φ|D(−i)

obs )dΦ, (A.1)

where D
(−i)
obs is the observed data excluding the i − th observation, Φ is a general vector

of parameters to be estimated.

Once it is not possible to calculate expression A.1 analytically, an approxima-

tion is given by:

ĈPOi = S

{
S∑
s=1

[f(ti|Φl, Dobs)]
−1

}−1

,

where s = 1, 2, . . . , S represents the index of the posterior sample. Finally, the LPML

measure can be obtained via:

LPML =
n∑
i=1

log (CPOi) (A.2)

The WAIC criteria can be seen as a substitute to the DIC criteria. This

measure is an approximation to the following quantity:

elpd = expected log pointwise predictive density for a new dataset =
n∑
i=1

Efi [log (p(t̃|Dobs))],

where t̃ represents a new observation and Dobs is the observed data.
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The mentioned approximation is based on the posterior sample and it is given

by:

êlpdwaic = l̂pd− p̂waic, (A.3)

where

l̂pd = computed log pointwise predictive density =
n∑
i=1

log

(
1

S

S∑
s=1

f(ti|Φs)

)
,

likewise the notation to the LPML criteria, s = 1, 2, . . . , S is the index associated to the

posterior sample, S is the size of the posterior sample and Φ is the vector of estimated

parameters.

In turn p̂waic is the estimated the effective number of parameters. It is also

estimated using the posterior sample, in the following way:

p̂waic =
n∑
i=1

V S
s=1(log (f(ti|Φs))), (A.4)

where V S
s=1as =

1

S − 1

S∑
s=1

(as − ā)2 is the sample variance.

Calculations

Basic Model

Considering a random time grid with b intervals, a random sample with size n,

no covariates and the following prior distributions λ1|D0 ∼ Gamma(α0, γ0), (λj|φ,Dj−1) ∼

Gamma(φαj−1, φγj−1), for j in 2, . . . , b and φ ∼ Beta(θ1, θ2).

The joint posterior distribution of (λ(ρ), φ, ρ) is given by:

p(λ(ρ), φ, ρ|D) ∝ L(λ(ρ), φ, ρ;D)p(λ(ρ), φ, ρ) ∝ L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)p(ρ)

∝

[
b∏

j=1

n∏
i=1

λ
δij
j exp {−λj(tij − sj−1)}

]
γα0

0

Γ(α0)
λα0−1

1 exp {−λ1γ0}

(φγ1)φα1

Γ(φα1)
λφα1−1

2 exp {−λ2φγ1} . . .
(φγb−1)φαb−1

Γ(φαb−1)
λ
φαb−1−1
b exp {−λbφγb−1}

φθ1−1(1− φ)θ2−1 (A.5)
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The full conditional distribution of λ(ρ) is:

p(λ(ρ)|φ, ρ,D) ∝ L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)

∝

[
b∏

j=1

n∏
i=1

λ
δij
(ρ)j

exp
{
−λ(ρ)j(tij − sj−1)

}] γα0
0

Γ(α0)
λα0−1

(ρ)1
exp

{
−λ(ρ)1γ0

}
(φγ1)φα1

Γ(φα1)
λφα1−1

(ρ)2
exp

{
−λ(ρ)2φγ1

}
. . .

(φγb−1)φαb−1

Γ(φαb−1)
λ
φαb−1−1

(ρ)b
exp

{
−λ(ρ)bφγb−1

}
Replacing

n∑
i=1

δij by ηj and
n∑
i=1

(tij − sj−1) by ξj:

∝ λη1+α0−1
(ρ)1

exp{−λ(ρ)1(γ0 + ξ1)}λη2+φα1−1
(ρ)2

exp{−λ(ρ)2(φγ1 + ξ2)} . . .

λ
ηb+φαb−1−1

(ρ)b
exp{−λ(ρ)b(φγb−1 + ξb)} (A.6)

That is, (λ(ρ)1|φ, ρ,D) ∼ Gamma(η1+α0, γ0+ξ1) and (λ(ρ)j |φ, ρ,D) ∼ Gamma(ηj+

φαj−1, φγj−1 + ξj) for j = 2, . . . , b.

The distribution of (φ|ρ,D) is given by:

p(φ|ρ,D) =

∫
λ(ρ)

p(λ(ρ), φ|ρ,D)dλ(ρ) ∝
∫
λ(ρ)

L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)dλ(ρ)

∝

[∫
λ(ρ)b

. . .

∫
λ(ρ)2

∫
λ(ρ)1

λ
∑n
i=1 δi1+α0−1

(ρ)1
exp

{
−λ(ρ)1

(
γ0 +

n∑
i=1

(ti1 − s0)

)}

λ
∑n
i=1 δi2+φα1−1

(ρ)2
exp

{
−λ(ρ)2

(
φγ1 +

n∑
i=1

(ti2 − s1)

)}
. . .

λ
∑n
i=1 δib+φαb−1−1

(ρ)b
exp

{
−λ(ρ)b

(
φγb−1 +

n∑
i=1

(tib − sb−1)

)}]

φθ1−1(1− φ)θ2−1

(
(φγ1)φα1

Γ(φα1)
. . .

(φγb−1)φαb−1

Γ(φαb−1)

)
dλ(ρ)1dλ(ρ)2 . . . dλ(ρ)b

∝ φθ1−1(1− φ)θ2−1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(ηj + φαj−1)

(φγj−1 + ξj)ηj+φαj−1
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The distribution of (ρ|φ,D) is:

p(ρ|φ,D) =

∫
λ(ρ)

p(λ(ρ), ρ|φ,D)dλ(ρ) ∝
∫
λ(ρ)

L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)p(ρ)dλ(ρ)

∝
∫
λ(ρ)

L(λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)dλ(ρ)

∝ (γ0)α0

Γ(α0)

Γ(α0 + η1)

(γ0 + ξ1)α0+η1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(φαj−1 + ηj)

(φγj−1 + ξj)(φαj−1+ηj)

∝ (γ0)α0

Γ(α0)

Γ(α1)

(γ1)α1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(αj)

(γj)αj
(A.8)
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Including Covariates

In order to include covariates into the model, consider k explanatory vari-

ables. The prior distributions for the coefficients associated to the covariates will be

Normal(0, σl), l = 1, 2, . . . , k. Given this it was possible to obtain the following expressi-

ons.

The joint posterior distribution of (β,λ(ρ), φ, ρ) is:

p(β,λ(ρ), φ, ρ|D) ∝ L(β,λ(ρ), φ, ρ;D)p(β,λ(ρ), φ, ρ)

∝ L(β,λ(ρ), φ, ρ;D)p(β)p(λ(ρ)|φ, ρ)p(φ)p(ρ)

∝

[
b∏

j=1

n∏
i=1

(λ(ρ)j exp {xiβ})δij exp {−λ(ρ)j exp {xiβ}(tij − sj−1)}

]
1√

2πσ2
1

exp

{
− 1

2σ2
1

β2
1

}
. . .

1√
2πσ2

k

exp

{
− 1

2σ2
k

β2
k

}
γα0

0

Γ(α0)
λα0−1

(ρ)1
exp

{
−λ(ρ)1γ0

}(φγ1)φα1

Γ(φα1)
λφα1−1

(ρ)2
exp

{
−λ(ρ)2φγ1

}
. . .

(φγb−1)φαb−1

Γ(φαb−1)
λ
φαb−1−1

(ρ)b
exp

{
−λ(ρ)bφγb−1

}
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
φθ1−1(1− φ)θ2−1 (A.9)

The full conditional distribution of βl, for l = 1, . . . , k:

p(βl|β(−l),λ(ρ), φ, ρ,D) ∝ L(β,λ(ρ), φ, ρ;D)p(βl)

∝

[
b∏

j=1

n∏
i=1

(λ(ρ)j exp {xiβ})δij exp {−λ(ρ)j exp {xiβ}(tij − sj−1)}

]
1√

2πσ2
1

exp

{
− 1

2σ2
1

β2
1

}
(A.10)

∝

[
n∏
i=1

exp

{
b∑

j=1

δijxiβl

}

exp

{
exp {xiβ}

[
−

b∑
j=1

λ(ρ)j(tij − sj−1)

]}]
exp

{
− 1

2σ2
l

β2
l

}
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The full conditional distribution of λ(ρ) is:

p(λ(ρ)|β, φ, ρ,D) ∝ L(β,λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)

∝ exp

{
n∑
i=1

b∑
j=1

δij(xiβ)

}
b∏

j=1

λ
∑n
i=1

(ρ)j
exp

{
−λ(ρ)j

n∑
i=1

exp {xiβ}(tij−sj−1
)

}
γa00

Γ(a0)
λa0−1

(ρ)1
exp

{
−λ(ρ)1γ0

}(φγ1)φα1

Γ(φα1)
λφα1−1

(ρ)2
exp

{
−λ(ρ)2φγ1

}
. . .

(φγb−1)φαb−1

Γ(φαb−1)
λ
φαb−1−1

(ρ)b
exp

{
−λ(ρ)bφγb−1

}
∝ λη1+α0−1

(ρ)1
exp

{
−λ(ρ)1

[
γ0 +

n∑
i=1

exp {xiβ}(ti1 − s0)

]}

λη2+φα1−1
(ρ)2

exp

{
−λ(ρ)2

[
φγ1 +

n∑
i=1

exp {xiβ}(ti2 − s1)

]}
. . .

λ
ηb+φαb−1−1

(ρ)b
exp

{
−λ(ρ)b

[
φγb−1 +

n∑
i=1

exp {xiβ}(tib − sb−1)

]}
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Thereby, (λ(ρ)1|β, φ,D) ∼ Gamma(η1 + α0; γ0 + ξ1) and (λ(ρ)j |β, φ,D) ∼

Gamma(ηj +φαj−1;φγj−1 + ξj), where ηj =
n∑
i=1

δij and ξj =
n∑
i=1

exp {xiβ}(tij − sj−1), for

j = 2, . . . , b.

The full conditional distribution of φ:

p(φ|β,ρ,D) ∝
∫
λ(ρ)

p(λ(ρ), φ|β, ρ,D)dλ(ρ) ∝
∫
λ(ρ)

L(β,λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)dλ(ρ)

∝

[∫
λ(ρ)b

. . .

∫
λ(ρ)2

∫
λ(ρ)1

λη1+α0−1
(ρ)1

exp

{
−λ(ρ)1

(
γ0 +

n∑
i=1

exp {xiβ}(ti1 − s0)

)}

λη2+φα1−1
(ρ)2

exp

{
−λ(ρ)2

(
φγ1 +

n∑
i=1

exp {xiβ}(ti2 − s1)

)}
. . .

λ
ηb+φαb−1−1

(ρ)b
exp

{
−λ(ρ)b

(
φγb−1 +

n∑
i=1

exp {xiβ}(tib − sb−1)

)}
dλ(ρ)1dλ(ρ)2 . . . dλ(ρ)b

]

φθ1−1(1− φ)θ2−1

(
(φγ1)φα1

Γ(φα1)
. . .

(φγb−1)φαb−1

Γ(φαb−1)

)
∝ φθ1−1(1− φ)θ2−1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(ηj + φαj−1)

(φγj−1 + ξj)ηj+φαj−1

∝ φθ1−1(1− φ)θ2−1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(αj)

(γj)αj
(A.12)

where ξj, for j = 1, 2, . . . , b is defined immediately above.



A Appendix 65

The distribution of (ρ|β, φ,D) is:

p(ρ|β, φ,D) ∝
∫
λ(ρ)

p(λ(ρ), ρ|β, φ,D)dλ(ρ) ∝
∫
λ(ρ)

L(β,λ(ρ), φ, ρ;D)p(λ(ρ)|φ, ρ)p(ρ)dλ(ρ)

∝

[∫
λ(ρ)b

. . .

∫
λ(ρ)2

∫
λ(ρ)1

λη1+α0−1
(ρ)1

exp

{
−λ(ρ)1

(
γ0 +

n∑
i=1

exp {xiβ}(ti1 − s0)

)}

λη2+φα1−1
(ρ)2

exp

{
−λ(ρ)2

(
φγ1 +

n∑
i=1

exp {xiβ}(ti2 − s1)

)}
. . .

λ
ηb+φαb−1−1

(ρ)b
exp

{
−λ(ρ)b

(
φγb−1 +

n∑
i=1

exp {xiβ}(tib − sb−1)

)}]

∝ (γ0)α0

Γ(α0)

Γ(α1)

(γ1)α1

b∏
j=2

(φγj−1)φαj−1

Γ(φαj−1)

Γ(αj)

(γj)αj
(A.13)

Cure Fraction Model

In the case of cure fraction in the population modeled by the promotion time

model and considering the prior distribution for ψ, as Normal(0, σ2
q ), for q = k+1, . . . ,m,

where k is the number of covariates used to model the non-cured individuals and m is

the number of covariates used to model the cured fraction, it is possible to obtain the

following distributions:

The joint posterior distribution of (β,λ(ρ), φ,ψ, ρ) is given by:

p(β,λ(ρ), φ,ψ, ρ|D) ∝ L(β,λ(ρ),ψ, ρ;D)p(β)p(λ(ρ)|φ, ρ)p(φ)p(ψ)p(ρ)

∝

(
b∏

j=1

λ
∑n
i=1 δij

(ρ)j
exp

{
−λ(ρ)j

n∑
i=1

Ni exp {xiβ}(tij − sj−1)

})
(

n∏
i=1

exp{Niziψ} exp {− exp {ziψ}}
Ni!

N
∑b
j=1 δij

i exp

{
b∑

j=1

δijxiβ

})
(

1√
2πσ2

1

exp

{
− 1

2σ2
1

β2
1

}
. . .

1√
2πσ2

k

exp

{
− 1

2σ2
k

β2
k

})
(

γα0
0

Γ(α0)
λα0−1

(ρ)1
exp

{
−λ(ρ)1γ0

}(φγ1)φα1

Γ(φα1)
λφα1−1

(ρ)2
exp

{
−λ(ρ)2φγ1

}
. . .

(φγb−1)φαb−1

Γ(φαb−1)
λ
φαb−1−1

(ρ)b
exp

{
−λ(ρ)bφγb−1

})
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
φθ1−1(1− φ)θ2−1 (A.14) 1√
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− 1

2σ2
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ψ2
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. . .
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2πσ2

k+m

exp

{
− 1

2σ2
k+m

ψ2
m

}
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The full conditional distribution for βl, l = 1, 2, . . . , k is:

p(βl|β(−l),λ(ρ), φ, ψ, ρ,Dobs) ∝ L(β,λ(ρ),ψ, ρ;Dobs)p(βl)

∝

(
b∏

j=1

λ
∑n
i=1 δij

(ρ)j

)
n∏
i=1

exp

{
b∑

j=1

δijziψ

}
exp

{
b∑

j=1

δijxiβ

}

exp

{
−

b∑
j=1

δijλ(ρ)j exp {xiβ}(tij − sj−1)

}
exp {− exp {ziψ} (1−

exp

{
−

b∑
j=1

λ(ρ)j exp {xiβ}(tij − sj−1)

})}
1√

2πσ2
l

exp

{
−1

2σ2
l

β2
l

}

∝
n∏
i=1

[
exp

{
xilβl

b∑
j=1

δij

}

exp

{
exp {xiβ}

(
−

b∑
j=1

λ(ρ)jδij(tij − sj−1)

)}]
(A.15)

exp

{
exp {ziψ}

b∑
j=1

exp
{
−λ(ρ)j exp {xiβ}(tij − sj−1)

}}

Then, the full conditional distribution of λ(ρ) is given by:

p(λ(ρ)|β, φ,ψ, ρ,D) ∝ L(β,λ(ρ),ψ, ρ;D)p(λ(ρ)|φ, ρ)

∝

(
b∏

j=1

λ
∑n
i=1 δij

(ρ)j
exp

{
−λ(ρ)j

n∑
i=1

Ni exp {xiβ}(tij − sj−1)

})
(

n∏
i=1

exp{Niziψ} exp {− exp {ziψ}}
Ni!

N
∑b
j=1 δij

i exp

{
b∑

j=1

δijxiβ

})
γα0

0

Γ(α0)
λα0−1

(ρ)1
exp

{
−λ(ρ)1γ0

}(φγ1)φα1

Γ(φα1)
λφα1−1

(ρ)2
exp

{
−λ(ρ)2φγ1

}
. . .

(φγb−1)φαb−1

Γ(φαb−1)
λ
φαb−1−1

(ρ)b
exp

{
−λ(ρ)bφγb−1

}
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∝ λ
α0+

∑n
i=1 δi1−1

(ρ)1
exp

{
−λ(ρ)1

[
γ0 +

n∑
i=1

Ni exp {xiβ} (ti1 − s0)

]}

λ
φα1+

∑n
i=1 δi2−1

(ρ)2
exp

{
−λ(ρ)2

[
φγ1 +
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i=1

Ni exp {xiβ} (ti2 − s1)
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...

λ
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i=1 δib−1

(ρ)b
exp

{
−λ(ρ)b

[
φγb−1 +

n∑
i=1

Ni exp {xiβ} (tib − sb−1)
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Thus, (λ(ρ)1|β, φ,ψ, ρ,D) ∼ Gamma(α0+η1, γ0+ξ1) and (λ(ρ)j |β, φ,ψ, ρ,D) ∼

Gamma(φαj−1+ηj, φγj−1+ξj), for j = 2, . . . , b, where ηj =
n∑
i=1

δij and ξj =
n∑
i=1

Ni exp {xiβ} (tij−

sj−1);

The full conditional distribution of φ is:

p(φ|β, ψ, ρ,D) =

∫
λ(ρ)

p(λ(ρ), φ|β,ψ, ρ,D)dλ(ρ)

∝
∫
λ(ρ)

L(β,λ(ρ),ψ, ρ;D)p(λ(ρ)|φ, ρ)p(φ)dλ(ρ)

∝

[∫
λ(ρ)b

. . .

∫
λ(ρ)2

∫
λ(ρ)1
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exp
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. . .
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(ρ)b
exp

{
−λ(ρ)b

(
φγb−1 +
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i=1
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(
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Γ(αj)
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Where ξj, for j = 1, 2, . . . , b is different from the case with no cure fraction. It

is defined immediately above.

The full conditional distribution of ψl, for l = k + 1, . . . ,m is:

p(ψl|β,λ(ρ), φ, ρ,D) ∝ L(β,λ(ρ),ψ, ρ;D)p(ψl)

∝

(
b∏
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λ
∑n
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n∑
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}
(A.18)



A Appendix 68

The distribution of (ρ|β, φ,ψ, D) is:

p(ρ|β, φ,ψ, D) =

∫
λ(ρ)

p(λ(ρ), ρ|β, φ,ψ, D)dλ(ρ)

∝
∫
λ(ρ)

L(β,λ(ρ),ψ, ρ;D)p(λ(ρ)|φ, ρ)p(ρ)dλ(ρ)
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