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The ability to reduce everything to simple fundamental laws does not imply the ability to

start from those laws and reconstruct the universe.

Philip Warren Anderson



Resumo

Neste trabalho empregamos diferentes métodos de estrutura eletrônica para o estudo

de propriedades emergentes em materiais, em espećıfico, para se investigar o magnetismo

d0 em materiais de carbono e transições metal-isolante em óxidos de metais de transição.

Na primeira parte da tese estudamos (i) a estabilidade energética relativa, propriedades

magnéticas e eletrônicas de nitretos de carbono com estrutura hexagonal; em seguida

investigamos (ii) as propriedades estruturais, energéticas, eletrônicas e magnéticas de

cristais de politetrafluoretileno (Teflon) com vacâncias de flúor e impurezas de oxigênio.

Na segunda parte investigamos (iii) as transições metal-isolante nos dióxidos de vanádio

e nióbio, concentrando-se nos mecanismos f́ısicos responsáveis pela formação do gap de

energia nas fases de baixa temperatura.

Em (i) obtivemos um conjunto de estruturas de nitreto de carbono de baixa energia

de estrutura hexagonal com diferentes concentrações de nitrogênio. Nesse contexto, iden-

tificamos que a estabilidade relativa dessas estruturas está associada ao ganho de energia

devido à dopagem eletrônica induzida pelas impurezas de nitrogênio. Adicionalmente,

propomos novas estruturas semicondutoras e ferromagnéticas de nitreto de carbono.

Em (ii) encontramos que vacâncias de flúor e impurezas de oxigênio no bulk de

Teflon dão origem a estruturas sem a quebra da cadeia polimérica. Nesse contexto,

obtivemos que impurezas de oxigênio dão origem a configurações mais estáveis energeti-

camente do que as com vacâncias de flúor. Adicionalmente, encontramos que a formação

de estruturas policonjugadas nas cadeias poliméricas é mais estável do que a presença

das mesmas isoladas nas cadeias. Encontramos também que vacâncias de flúor e im-

purezas de oxigênio podem dar origem a momentos magnéticos locais. Porém, não foi

observado nenhum tipo de ordenamento ferromagnético devido ao acoplamento entre os

mesmos. Esses resultados, por sua vez, sugerem que as configurações investigadas em

nosso trabalho não podem dar origem ao ferromagnetismo observado em fitas de Teflon

com defeitos estruturais.

Por fim, em (iii) propusemos um novo mecanismo para a abertura do gap nas fases

de baixa temperatura do VO2 e NbO2. Identificamos que a f́ısica de Mott é essencial

para a descrição de todas as fases do VO2 devido ao fato de que os elétrons nesse

material estão próximos a uma transição de Mott. Em relação às fases M1 e M2 do

VO2, observamos que a instabilidade de Mott-Hubbard é “aprisionada” devido a dime-

rização dos átomos ou surgimento de um ordenamento antiferromagnético. Encontramos

também que as correlações eletrônicas não locais favorecem a abertura do gap nas fases de

baixa temperatura. Instabilidades de Hubbard só foram encontradas para os átomos de

vanádio não dimerizados da fase M2 paramagnética.Em relação ao NbO2, encontramos

que as correlações eletrônicas não locais são menos importantes do que no VO2, embora

as mesmas desempenham um papel relevante na abertura do gap de sua fase de baixa

temperatura.





Abstract

In this thesis we employed electronic structure methods to investigate emergent prop-

erties of different materials, namely d0 magnetism in carbon based materials and metal

insulator transitions in transition-metal oxides. In the first part, we investigated (i) the

morphology, relative energetic stability, electronic, and magnetic properties of graphene-

like carbon nitride structures and (ii) the structural, energetics, electronic, and magnetic

properties of polytetrafluoroethylene (Teflon) crystals with fluorine vacancies and oxy-

gen impurities. In the second part we studied (iii) the metal-insulator transition in

vanadium and niobium dioxides, with focus on the physical mechanism responsible for

the gap formation in their low-temperature phases.

In (i) we obtained a set of low-energy graphene-like structures with distinct nitrogen

concentrations. In particular, we identified that their relative stability is associated with

the energy cost due to the charge doping induced by the nitrogen impurities. In addition,

new semiconducting and ferromagnetic carbon nitride structures were proposed.

In (ii) we obtained that both fluorine vacancies and oxygen impurities in bulk Teflon

lead to structural configurations without the breaking of the carbon backbone. Oxy-

gen impurities were found to be energetically more stable than fluorine vacancies. In

addition, the formation of polyconjugated structures in the polymer chain was found

to be energetically favorable. The local magnetic moments associated with the point

defects do not give rise to any ferromagnetic ordering, which rules out the investigated

configurations as the origin of ferromagnetism in defective Teflon tapes.

Finally, in (iii) we proposed a new mechanism for the gap opening in the low-

temperature phases of VO2 and NbO2. We identified that Mott physics is central for the

proper description of all phases of VO2 since its electrons are in the near vicinity of the

Mott transition. In the M1 phase and in the antiferromagnetically ordered M2 phase,

we found that the Mott-Hubbard instability is arrested due to V-atoms dimerization

and antiferromagnetic ordering, respectively. In especial, we obtained that nonlocal

electronic correlations support the gap opening in the low-temperature phases. Hubbard

instabilities were found only in the case of undimerized V-atoms of the paramagnetic

M2 phase. In respect to NbO2, we found that electronic correlations are less important,

though they do play a role in the gap opening of its low-temperature phase.
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Introduction

Since the 20th century the technological development has been driven by important

achievements in condensed matter physics and materials science. In particular, the

discovery, controlled production, and better understanding of the properties of semicon-

ductors and magnetic materials have supplied the basic ingredients to electronic and

magnetic devices used in information processing and storage [1]. Figure 1 illustrates the

usage of each chemical element in this information technology.

Figure 1: Chemical elements used in microelectronic and magnetic devices. Figure
taken from Ref. [1].

At the heart of the fundamental understanding of the properties of solids lies the

quantum mechanical description of many interacting electrons and nuclei. Historically,

it has been a tendency of theory to reduce this complex many-body problem to a prob-

lem of many independent particles. For instance, the lattice specific heat of monoatomic

solids can be understood by a simple model of many independent phonons with distinct

frequencies [2]. Likewise, the electrical conductivity of metals, semiconductors, and in-

sulators can be understood with a model of energy bands of independent electrons in a

periodic structure, as in a crystal [3]. However, there are many other emergent phenom-

ena [4], such as magnetic ordering, superconductivity, and metal-insulator transitions,
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Introduction 2

which cannot be properly addressed without considering the interactions between elec-

trons.

Nowadays, most theoretical studies of materials properties are carried out by means

of computational modeling and simulation. In fact, modern density-functional the-

ory (DFT) calculations have allowed the microscopic understanding and prediction of

their properties, and even the computational design of new materials with the de-

sired properties [5]. In particular, such methods, within the standard approaches for

the electron-electron interaction, have successfully described the electronic structure

of systems known as weakly correlated materials, e.g. simple metals, organic and in-

organic semiconductors, and carbon-based nanostructures, such as carbon nanotubes

and graphene. By weakly correlated material we mean systems in which the valence

electrons give rise to broad energy bands, thus having large values of kinetic energy.

These electrons behave like delocalized particles over the entire solid, being thus highly

itinerant.

It is well known that the different sorts of magnetic ordering observed in nature

are the result of electron-electron interaction in a solid. Over the decades, such emer-

gent phenomena have mainly been observed in magnetic materials containing transition

metal atoms or rare earth elements, that is, in materials with d or f electrons. More

recently, though, spontaneous magnetic ordering has been experimentally observed in

weakly correlated materials which do not have d or f electrons in their composition.

Since then, this type of magnetism has been called d0 or sp magnetism [6]. For example,

magnetic properties have been reported in carbon based materials such as organic crys-

tals, nanographites, and fullerene-based compounds [7]. In this thesis, we investigate this

property in graphitic carbon nitride structures and thin films of polytetrafluoroethylene

(PTFE), known as Teflon.

Graphitic carbon nitrides have in general graphene-like layers with C3N4 stoichiom-

etry and in-plane structures based on s-triazine or tri-s-triazine subunits. From a tech-

nological perspective, numerous experimental works have indicated that these materials

are promissing metal-free photocatalysts for the light-driven water splitting, active layers

for field effect transistors, and photoluminescent material for biomedical applications.

Despite these great potentials, previous theoretical works have also proposed that these

materials can present ferromagnetic properties induced by changes in its stoichiometry
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and structure. In particular, the possibility of tuning the properties of graphitic carbon

nitride by controling its structure and composition has motived the synthesis of graphitic

structures with distinct stoichiometries and morphology. Motivated by the interest in

new graphitic carbon nitride structures, we performed simulated annealing and DFT cal-

culations aiming at the prediction of new graphene-like carbon nitride structures with

distinct stoichiometries. We also investigated their energetic, electronic, and magnetic

properties.

Polytetrafluoroethylene, usually known as Teflon, is a polymer with molecular chains

composed by tetracoordinated carbons with fluorine atoms of molecular formula -(CF2)n

-. Due to its chemical and physical properties this material is extensively used in coating

of surfaces and in fabrication of biomechanical implants, for instance. This material is

also insulating and diamagnetic. However, experimental evidences of ferromagnetism in

polytetrafluoroethylene samples were reported recently. Through mechanical stretching,

cutting, and heat treatment the authors fabricated defective Teflon tapes with signatures

of intrinsic room-temperature ferromagnetism. This ferromagnetism was then suggested

to has its origin in the coupling between local magnetic moments of carbon dangling

bonds, which were created by the experimental procedures mentioned above. In ad-

dition, experiments on gamma-ray irradiation of PTFE induced color and fluorescent

properties in this material. As pointed out by Khatipov et al. [8] these properties may

be explained by considering the formation of polyconjugated structures in the polymer

chains. Motivated by these experiments, we performed DFT calculations to investigate

the electronic properties of defective Teflon crystals, and on the possibility of inducing

magnetic ordering by point defects, such as fluorine vacancies and oxygen impurities.

On the other hand, DFT calculations have failed in the description of systems known

as strongly correlated materials. In these systems, the interaction energy between elec-

trons has the same magnitude of their kinetic energy, leading to a tendency towards

localization [9]. This localization is the physical mechanism responsible for the insu-

lating nature of materials known as Mott insulators. In addition, systems in which

electrons are close to this localization undergo metal-to-insulator transitions under ex-

ternal perturbation. Such metal-insulator transitions (MITs) can be driven by pressure,

temperature, or even chemical doping. Theoretically, a successful description of this

transition has been achieved through the solution of the Hubbard model, by employing



Introduction 4

the dynamical mean field theory (DMFT) [10]. However, the neglect of materials spe-

cific information hinders quantitative comparison between theoretical calculations and

experiments. In order to overcome this issue, a combination of DFT and DMFT meth-

ods has been proposed and successfully applied to the study of the electronic structure

of many strongly correlated materials [11, 12]. In this thesis, we present our theoretical

investigation on the metal-insulator transition of vanadium and niobium dioxide, namely

VO2 and NbO2.

Vanadium dioxide undergoes a metal-insulator transition at 340 K while in the case

of niobium dioxide it happens at around 1081 K. In both systems, the MITs are ac-

compained by structural distortions from high-temperature rutile structures, where the

transition-metal atoms are equally spaced along the rutile c axis, to low-temperature

distorted structures. Fundamentally, the complex interplay between electronic correla-

tions and structural distortions have attracted great attention. In the case of VO2, since

the establishing of the Peierls [13] and Mott pictures [14, 15] on the MIT of VO2, nu-

merous investigations have attempted to disclose the driving force behind this transition

and to understand the insulating nature of the low-temperature phases. In respect to

NbO2, the role of electron-electron correlations in its electronic properties was in general

neglected. In our investigation, we employed DFT+DMFT calculations to address the

physical mechanism responsible for the gap formation in the low-temperature insulating

phases of these transition-metal oxides, as well as the role of electronic correlations on

the electronic structure of their high-temperature metallic phases.

The thesis is organized as it follows:

� Chapter 1 is devoted to the theoretical methodology employed in our investiga-

tions. We focused on a general formalism from which we can derive the DFT,

DMFT, and DFT+DMFT approaches to the many interacting electron problem;

� In Chapter 2 we present our results on the graphitic carbon nitride structures, with

focus on the low-energy graphene-like structures, and their associated electronic

and magnetic properties;

� In Chapter 3 we present our ab initio calculations of point defects in PTFE and

our investigation on the possibility of magnetic ordering in this material, having

point defects as the source of unpaired electrons;
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� In Chapter 4 we present a brief review of experimental and theoretical works in

literature on metal-insulator transitions in VO2 and NbO2;

� and finally in Chapter 5 we present our investigation on the metal-insulator tran-

sitions in VO2 and NbO2 by employing DFT+DMFT calculations.

At the end of this thesis we present our general conclusions and perspectives for

future works.



Chapter 1

Methodology

In this chapter we present the theoretical methods used in the investigations performed

in this thesis. We start by introducing the effective action formalism which allows us

to obtain an unified description of different electronic structure approaches. Within

this theoretical framework we first present a density based method, namely the density

functional theory (DFT). Additional approaches related to its standard implementation

are also discussed. Next we turn to the Baym-Kadanoff theory which paves the way for

a Green’s function based method, namely the dynamical mean field theory (DMFT).

Finally we present the DFT+DMFT theory which has enjoyed great success in the

realistic modeling of strongly correlated materials. Throughout this chapter we use

atomic Rydberg units, in which ~ = 1, me = 1/2, and e2 = 2.

1.1 Effective Action Formalism

From a microscopic viewpoint the solid state of matter can be regarded as a system of

many interacting electrons and nuclei, as illustrated in figure 1.1. In particular, it is well

known that the electrical properties of solids are determined by their electrons.

6
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Figure 1.1: Microscopically a solid can be viewed as a system of many interacting
electrons and nuclei, as illustrated in the zoom, in which the red spheres are the electrons
with their intrinsic spin (arrows) and the blue points represent the periodic arrangement
of atoms in the crystal. One can study this piece of a solid by measuring its responses
to external perturbations, e.g. electromagnetic radiation (illustrated by the the curved

arrows).

The quantum mechanical description of these many interacting electrons rests upon

the impractical solution of the electronic Hamiltonian

H =
∑
σ

∫
drψ†σ(r)

[
−∇2 + Vext(r)

]
ψσ(r)

+
1

2

∑
σσ′

∫
drdr′ψ†σ(r)ψ†σ′(r

′)V (r− r′)ψσ′(r
′)ψσ(r), (1.1)

where Vext(r) =
∑

I vext(RI−r) is the periodic atomic potential (RI denotes the atomic

positions), V (r− r′) is the electron-electron interaction potential, and ψ†σ(r), ψσ(r) are

the field operators. It is noteworthy that we treat the ions as if they are static due

to their much larger mass than the mass of electrons. This approximation is called

Born-Oppenheimer approximation.

Alternatively, one can study this many-body system by its responses to external

perturbations, as illustrated by the curved arrows in figure 1.1. In principle, one can

investigate many of its properties by measuring how its free energy changes due to

external perturbations, that is, measuring its derivatives [16]. We begin by writing the

partition function, related to the free-energy, as a path integral [17]

Z = e−F =

∫
D[ψ†ψ]e−S , (1.2)

where ψ† and ψ are the Grassman variables [17, 18] (see appendix A), F is the free

energy, and S is the action determined by the Hamiltonian 1.1.

Let us now select an observable quantity of interest A which will be coupled to
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the source field J . This results in a modified action1 S
′

= S + JA, with the resulting

partition function given by

Z[J ] = e−F [J ] =

∫
D[ψ†ψ]e−(S+JA), (1.3)

showing that, in this case, the free energy becomes a functional of J . It is important to

mention that changes in J give us the correlation functions, e.g. the Green’s function,

of our system.

In order to eliminate the J-dependence of the free energy, we perform a Legendre

transform in favor of our observable A,

Γ = F [J ]− pJ, (1.4)

where

p =
δF [J ]

δJ
= A, (1.5)

by using equation 1.3. Therefore, we obtain a new functional of the observable A written

as

Γ[A] = F [J [A]]−AJ [A]. (1.6)

This functional Γ[A], called effective action functional,2 allows us to study the response

of our many-body system by means of changes in A.

When we set the source field J = 0, the observable A turns into the physical ob-

servable Ar. In this case J [Ar] = 0, allowing us to obtain the physical free energy of our

system by evaluating the effective action functional at Ar [19], that is

Fr = Γ[Ar]. (1.7)

Further, if we take the variational derivative of Γ[A] with respect to A we obtain

δΓ

δA
=
δF

δJ

δJ

δA
− J −AδJ

δA
= −J. (1.8)

Since J [Ar] = 0, we get δΓ
δA

∣∣∣
A=Ar

= 0, which means that Γ[A] is extremized at the

physical observable Ar, or, in other words, in the absence of external source fields.

1It is noteworthy that JA denotes Tr(JA) =
∫
dxJ(x)A(x) [11].

2The effective action Γ[A] is an analog of the Gibbs free energy.
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We now extend our formalism carrying out an expansion of Γ[A] to some order in a

parameter λ [11], which yields

Γ[A] = Γ0[A] + λ1Γ1[A] + . . . , (1.9)

J [A] = J0[A] + λ1J1[A] + . . . , (1.10)

in which the index 0 in the equations above is associated to a reference system described

by S0 + AJ0, which, in turn, gives the correct value of A. J0[A] in this equation is a

functional called constrained field, which will be used in our derivation. This functional

plays the role of an additional term which needs to be added to the reference action S0 in

order to obtain A from the reference system [11]. Also, when the observable is properly

chosen the other observables of our many-body system can be obtained perturbatively

from their values in this reference system. By using the effective action of the reference

system Γ0, which is given by

Γ0[A] = F0[J0]−AJ0, (1.11)

we can split Γ[A] as follows

Γ[A] = Γ0[A] + ∆Γ[A]. (1.12)

As a result, the effective action functional now becomes a functional of A and J0

Γ[A, J0] = F0[J0]−AJ0 + ∆Γ[A]. (1.13)

The variational derivatives of this functional with respect to A and J0 lead to the

following 3 (
δΓ[A, J0]

δA

)
J0

= −J0 +
δ∆Γ[A]

δA
, (1.14)

and (
δΓ[A, J0]

δJ0

)
A

=
δF0[J0]

δJ0
−A. (1.15)

As demonstrated previously the functional Γ is extremized at Ar. Therefore, from

equation 1.14 we obtain

J0[Ar] =
δ∆Γ[A]

δA

∣∣∣
Ar
. (1.16)

3In our notation ( δf(a,b,...)
δb

)a denotes the derivative of f with respect to b, with a as a constant; while
δf(a,b,...)

δb
|ar denotes the derivative of f with respect to b applying ar.
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In addition, from the Legendre transform used to obtain equation 1.11 we know that

A = δF0[J0]
δJ0

. Therefore, from equation 1.15 we obtain that Γ is also stationary in J0.

Equation 1.16 and the definition of J0[A] determine exactly the constrained field of the

problem. It is important to mention that the observable A and the reference system

determine the structure of the theoretical approach used.

In the following we apply this formalism to derive the main equations of density

functional theory (DFT) (section 1.2), Baym-Kadanoff functional (section 1.3), dynam-

ical mean field theory (DMFT) (section 1.4), and the combination DFT+DMFT (sec-

tion 1.5).

1.2 Density Functional Theory

Density Functional Theory (DFT) is in principle an exact theory of many-body systems.

In fact, it provides an alternative solution of the electronic Hamiltonian 1.1 focusing on

the electron density of the interacting electron system. To date electronic structure

methods based on DFT have been successfully applied in the understanding and pre-

dictions of the ground-state properties of many materials known as weakly-correlated

materials, such as conventional metals, insulators, and semiconductors. Such accom-

plishment encouraged the usage of DFT-based computational simulations as a guide to

design materials with desired properties [20].

Fundamentally DFT is based upon the assumption that any ground-state property

of a system of many interacting electrons is a functional of the ground-state electron

density. This leads to an enormous simplification when solving the electronic Hamil-

tonian. Indeed, instead of solving a problem of 3N variables to obtain the many-body

wave function Ψ(r1, r2, . . . , rN ), one can solve a problem of three variables to obtain

the ground-state electron density. This assumption is established on two fundamental

theorems known as Hohenberg-Kohn theorems [21], which are presented below.
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1.2.1 Hohenberg-Kohn Theorems

Theorem 1.2.1. For any system of interacting electrons the ground-state electron den-

sity ρo(r) uniquely determines the external potential Vext(r), that is,

Vext(r) = Vext[ρo](r). (1.17)

Since the Hamiltonian is uniquely determined by the external potential Vext(r), it

follows that the many-body wave function of the system is also determined if we know the

ground-state electron density. Hence, one can state that ρo contains all the information

about the system of interacting electrons, as the many-body wave function. From this

the many-body wave function can be viewed as a functional of ρo, Ψ[ρo]. We emphasize

that this theorem gives to the density ρo the status of a key quantity from which the

physical properties of the many-body system can be obtained.

Theorem 1.2.2. There exists an universal functional for the energy E[ρ] which can be

defined for any external potential Vext. The energy functional E[ρ] is minimum for the

exact ground-state electron density ρo(r).

The proofs of these theorems are presented in appendix B. Overall, this reformulation

of the many-body problem proposed by Hohenberg and Kohn introduces the concept

of functionals of the electron density, which are unknown in principle. Although the

first work by Hohenberg and Kohn establishes the fundamental theorems of a theory

of density functionals, the forms of these functionals were unknown until the work by

Kohn and Sham [22], where they presented further approximations for the functionals

and the so-called Kohn-Sham equations.

1.2.2 Kohn-Sham equations

In this section we derive the Kohn-Sham formulation of DFT starting from the effective

action formalism. For this purpose we consider the observable A as being the electron

density ρ(r) of an interacting electron system under an external potential Vext(r). By

using the interacting Green’s function one can express the electron density as a sum over
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Matsubara frequencies4 ω as it follows

ρ(r) = T
∑
iω

G(r, r, iω)eiω0+ , (1.18)

where T is the temperature and G(r, r, iω) is the interacting Green’s function on the

imaginary frequency axis.

To construct the DFT effective action we couple the electron density to a source

field J such that the action becomes a functional

S′[J ] = S +

∫
dxJ(x)ψ†(x)ψ(x), (1.19)

where x = (r, τ) is the space-imaginary time coordinate. To obtain this equation we used

the density operator written in terms of the field operators, that is, ρ̂(x) = ψ†(x)ψ(x).

Then the DFT effective action is obtained by a Legendre transform in favor of the

electron density

Γ[ρ] = F [J ]−
∫
dxJ(x)ρ(x), (1.20)

where

ρ(x) =
δF [J ]

δJ
(1.21)

is the electron density in the presence of J . In the following we restrict ourselves to time

independent source field and electron density.

Likewise in the Kohn-Sham formulation of DFT, we introduce a reference system of

noninteracting electrons moving in an effective potential denoted by VKS , which results

from the external potential Vext due to the ions and from an effective potential due to

the remaining electron-electron interactions, described by Vaux,

VKS(r) = Vext(r) + Vaux(r). (1.22)

With this potential, the electron density of the interacting system is obtained as the elec-

tron density of the reference system. This mapping, denoted by Kohn-Sham ansatz [23],

4At finite temperature, the single-particle Green’s function is derived in the imaginary time formal-
ism, resulting in G(τ), whose Fourier transform corresponds to G(iωn), where ωn are the Matsubara
frequencies. For fermions these frequencies are given by ωn = (2n+ 1)πT , where T is the temperature.
In this chapter we omitted the subindex n associated with ωn.
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is illustrated in figure 1.2. Accordingly, the DFT constrained field is the auxiliary po-

tential J0 ≡ Vaux[ρ] (see appendix C).

Interacting electronic system Reference electronic system

Figure 1.2: Ilustration of the mapping of the interacting electronic system into a
reference system of noninteracting electrons under an effective potential VKS .

Hence the Hamiltonian of the reference system reads

H = −∇2 + Vext(r) + Vaux(r). (1.23)

We also write the noninteracting Green’s function

G−1
0 (r, r′, iω) = δ(r− r′)[iω + µ+∇2 − Vext(r)], (1.24)

and the full Green’s function as it follows

G−1(r, r′, iω) =δ(r− r′)[iω + µ+∇2 − Vext(r)− Vaux(r)]

=G−1
0 (r, r′, iω)− Vaux(r)δ(r− r′). (1.25)

Notice that G determines the electron density ρ(r) of the interacting electronic system,

as can be seen from equation 1.18.

Using the Green’s function of the reference system, we then write the DFT effective

action as a functional of ρ and Vaux,5

ΓDFT [ρ, Vaux] = F0[Vaux]−
∫
ρ(r)Vaux(r)dr + ∆Γ[ρ]

= −T
∑
iω

Tr ln(iω + µ+∇2 − Vext(r)− Vaux(r))−
∫
ρ(r)Vaux(r)dr + ∆Γ[ρ]. (1.26)

In addition, the interaction energy functional ∆Γ[ρ], which corresponds to what has been

left out from the effective action of the reference system, can be written in terms of the

5The Free energy functional can be written in terms of the Green’s function as F [Vaux] =
−Tr ln[G−1

0 − Vaux] [11].
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Hartree and the resulting exchange-correlation energy functional at finite temperature,

∆Γ[ρ] = ΦH [ρ] + Φxc[ρ], (1.27)

with ΦH [ρ](r) =
∫ ρ(r)ρ(r′)
|r−r′| drdr

′. At zero temperature Φxc becomes the standard ex-

change correlation functional energy of DFT, which can be written as Φxc[ρ] = Tc[ρ] +

Φx[ρ] + Φc[ρ], where Φx[ρ] and Φc[ρ] are the exchange and correlation energy function-

als, respectively. It is noteworthy that in this case the functional Tc[ρ] corresponds to

the amount of the kinetic energy due to correlations between the interacting electrons.

That is, one can decompose the kinetic-energy functional T [ρ] of interacting electrons

as T [ρ] = Ts[ρ] + Tc[ρ], where Ts[ρ] is the kinetic-energy functional of noninteracting

particles [24]. Therefore, the DFT effective action reads

ΓDFT [ρ, Vaux] = −T
∑
iω

Tr ln(iω + µ+∇2 − Vext(r)− Vaux(r))−
∫
ρ(r)Vaux(r)dr

+

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + Φxc[ρ]. (1.28)

As we pointed out before, this functional must be stationary at the physical electron

density ρr, which yields

δΓ

δρ

∣∣∣∣
ρr

= −Vaux(r)[ρr] + 2

∫
ρr(r)

|r− r′|
dr +

δΦxc[ρ]

δρ

∣∣∣∣
ρr

= 0, (1.29)

resulting into

Vaux(r)[ρr] = VH [ρr](r) + Vxc[ρr](r), (1.30)

where

VH [ρr](r) = 2

∫
ρr(r)

|r− r′|
dr (1.31)

is the Hartree potential.

The form of the exchange-correlation potential Vxc[ρr] is not known exactly, making

further approximations needed to practical calculations. Approximations for this term,

at zero temperature, will be discussed in subsection 1.6.1. One can see that Vaux(r) =

VH(r)+Vxc(r) is the term which must be added to the Hamiltonian H0 = −∇2 +Vext(r)

to reproduce the exact electron density of the interacting system.
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Once we know VKS [ρ], in practice, it is convenient to write the single-particle eigen-

value equation for the reference system as it follows

(−∇2 + VKS [ρ](r))ψkj(r) = εkjψkj(r), (1.32)

where ψkj(r) are the Kohn-Sham states with j band index. Thus, it follows that at zero-

temperature the electron density can be written in terms of these Kohn-Sham states,

ρ(r) =
∑
kj

ψ∗kj(r)ψkj(r), (1.33)

in which the sum goes over the occupied Kohn-Sham states. Equations 1.32 and 1.33,

known as Kohn-Sham equations of DFT, are solved self-consistently since VKS is a func-

tional of the density, which in turn depends on the Kohn-Sham states as in equation 1.33.

In figure 1.3 we illustrate a generic self-consistent cycle employed in DFT calculations.

no

yes

physical quantities

Figure 1.3: Schematic representation of the self-consistent cycle of DFT.

1.3 Baym-Kadanoff Functional

We now turn to a Green’s function based method in which we derive the Baym-Kadanoff

functional. Green’s function based methods have the advantage, in comparison with



Methodology 16

DFT,6 that the excitation spectra of the system of many interacting electrons can be

obtained from the poles of the one-particle Green’s function [11]. In this section we

derive the Baym-Kadanoff functional, which is constructed within the effective action

framework (discussed in section 1.1) by choosing the observable A as the one-particle

Green’s function.

We define the one-electron Green’s function by

G(x, x′) = −〈Tτψ(x)ψ†(x′)〉, (1.34)

where x = (r, τ), Tτ is the time-ordering operator, and ψ(x), ψ†(x) are the field opera-

tors. By adding a source field J(x, x′) to the action we obtain

S
′
[J ] = S +

∫
dxdx′J(x, x′)ψ†(x)ψ(x′), (1.35)

with the corresponding free energy,

e−F [J ] =

∫
D[ψ†ψ]e−S

′[J ]. (1.36)

The Baym-Kadanoff functional is then obtained by the Legendre transform in favor of

G(x, x′), as it follows

ΓBK [G] = F [J ]− Tr(JG), (1.37)

where the Green’s function in the presence of the source field is given by

G(x, x′) =
δF

δJ(x′, x)
. (1.38)

Further, one can split ΓBK [G] into the effective action Γ0[G], associated with a

noninteracting Hamiltonian, and the so-called Luttinger-Ward functional [11],

ΓBK [G] = Γ0[G] + ΦLW [G], (1.39)

with the effective action Γ0[G] given by

Γ0[G] = F0[J0]− Tr(J0G). (1.40)

6The Kohn-Sham eigenvalues are not the true excitation spectra of a system of many interacting
electrons [23].
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As the free energy associated with the noninteracting Hamiltonian is given by [17]

F0[J0] = −Tr ln(J0 −G−1
0 ), (1.41)

we obtain from equation 1.38

J0[G] = G−1
0 −G

−1. (1.42)

Then the Baym-Kadanoff functional is rewritten as

ΓBK [G] = Tr lnG− Tr((G−1
0 −G

−1)G) + ΦLW [G]. (1.43)

As we know, this functional is extremized at the physical Green’s functional Gr,

δΓBK [G]

δG

∣∣∣∣
Gr

= G−1
r −G−1

0 +
δΦLW

δG

∣∣∣∣
Gr

= 0, (1.44)

where Gr is the physical interacting Green’s function. Using equation 1.42 we obtain

the constrained field in terms of the Luttinger-Ward functional,

Σr[Gr] ≡ J0[Gr] =
δΦLW

δG

∣∣∣∣
Gr

. (1.45)

Similarly as it has been done for DFT (see equation 1.25 and remember that in that

case J0 = Vaux), we find that if Σr is added to the noninteracting Green’s function of

the reference system, the resulting Green’s function becomes

G−1
r (r, r′, iω) = G−1

0 (r, r′, iω)− Σr(r, r
′, iω), (1.46)

with G0 given by

G−1
0 (r, r′, iω) = δ(r− r′)[iω + µ+∇2 − Vext(r)]. (1.47)

Equation 1.46 is known as the Dyson equation, which is usually written as a geometric

expansion of the one-particle Green’s function in terms of G0 and Σr(r, r
′, iω), called

the self-energy [17].
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Moreover, one can write down the Baym-Kadanoff functional in terms of G and Σ

as it follows

ΓBK [G,Σ] = −Tr ln(G−1
0 − Σ)− Tr(ΣG) + ΦLW [G]. (1.48)

Evaluating its variational derivatives with respect to G and Σ we obtain

(δΓBK
δG

)
Σ

= −Σr +
δΦLW

δG

∣∣∣∣
Gr

= 0, (1.49)

(δΓBK
δΣ

)
G

= (G−1
0 − Σ)−1 −G = 0, (1.50)

which, when evaluated at physical Gr and Σr, lead to the equations 1.45 and 1.44.

In the next section we will obtain a functional of the local Green’s function, instead

that of the full Green’s function, as considered in the Baym-Kadanoff theory. The

introduction of a functional method based on the local Green’s function is motivated by

the assumption that this is a good quantity to describe the energetics and the excitation

spectrum of strongly correlated materials [11].

1.4 Dynamical Mean Field Theory

To obtain the DMFT effective functional, we now focus on the local Green’s function

Gloc rather than on the full Green’s function presented in the Baym-Kadanoff theory. To

construct its effective action functional, we begin by considering an interacting system

with Hamiltonian written using a general tight-binding basis set,

H =
∑
αβ

∑
RR′

h
(0)
αRβR′(c

†
αRcβR′ + cαRc

†
βR′)

+
1

2

∑
αβγδ

∑
RR′R′′R′′′

V RR′R′′R′′′
αβγδ c†αRc

†
βR′cδR′′′cγR′′ , (1.51)

where α, β, γ, and δ correspond to angular momentum index lm, whereas R, R′, R′′,

and R′′′ are the unit cell index (for more details about the basis set see appendix D).

Notice that this Hamiltonian is a full interacting Hamiltonian containing different sorts

of interactions denoted by V RR′R′′R′′′
αβγδ . Simple-model Hamiltonians can be derived from

equation 1.51, e.g. assuming short-range Coulomb interactions one gets the so-called

Hubbard model.
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Let us now add a local source field Jloc,Rαβ(τ, τ ′) to the action describing the Hamil-

tonian 1.51, resulting into the modified action

S′[Jloc,Rαβ ] = S +
∑
Rαβ

∫
dτdτ ′Jloc,Rαβ(τ, τ ′)c†Rα(τ)cRβ(τ ′), (1.52)

with corresponding free energy,

e−F [Jloc,Rαβ ] =

∫
dc†dce−S−

∑
Rαβ

∫
dτdτ ′Jloc,Rαβ(τ,τ ′)c†Rα(τ)cRβ(τ ′). (1.53)

For simplicity, in the following we omit the Rαβ index of Jloc. The DMFT effective

action functional is thus obtained through a Legendre transform in favor of Gloc,

ΓDMFT [Gloc] = F [Jloc]− Tr(JlocGloc), (1.54)

where

Gloc,αβ(τ, τ ′) =
δF [Jloc]

δJloc,Rβα(τ ′, τ)
= −〈Tτ cRα(τ)c†Rβ(τ ′)〉. (1.55)

We now introduce a reference system of noninteracting electrons described by the

simplified Hamiltonian

H0 =
∑
αβ

∑
RR′

h
(0)
αRβR′(c

†
αRcβR′ + cαRc

†
βR′), (1.56)

with electronic bands described by ĥ(0)(k), which is the Fourier transform of h
(0)
αRβR′ .

The noninteracting Green’s function associated with this reference system is given by

G−1
0 = (iω + µ)Î − ĥ(0)(k), (1.57)

where Î is the unitary matrix. Similarly as for the Baym-Kadanoff case, the effective

action for this noninteracting system reads

Γ0[Gloc] = F0[J0,loc]− Tr(J0,locGloc), (1.58)

with

F0[J0,loc] = −Tr ln(J0,loc −G−1
0,loc), (1.59)
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yielding

J0,loc[Gloc] = G−1
0,loc −G

−1
loc . (1.60)

Therefore, the DMFT effective action functional is given by

ΓDMFT [Gloc] = Γ0[Gloc] + ΦDMFT [Gloc]

= −Tr ln(J0,loc −G−1
0 )− Tr(J0,locGloc) + ΦDMFT [Gloc], (1.61)

where ΦDMFT [Gloc] is the local counterpart of the Lutting-Ward functional. In addi-

tion, from equations 1.60 and 1.57 we write the local Green’s function in terms of the

constrained field

Gloc,αβ(iω) =
∑
k

[(iω + µ)Î − ĥ0(k)− J0,loc(iω)]−1
αβ . (1.62)

Further, we can rewrite the DMFT functional considering that Gloc and J0,loc are

independent variables,

ΓDMFT [Gloc, J0,loc] = −
∑
k

Tr ln[(iω + µ)Î − ĥ0(k)− J0,loc(iω)]

− Tr(J0,locGloc) + ΦDMFT [Gloc]. (1.63)

This effective functional is stationary at the physical local Green’s function Grloc, which

yields

Σr
loc ≡ J0,loc[Gloc] =

δΦDMFT [Gloc]

δGloc

∣∣∣∣
Grloc

. (1.64)

Thus we find that the constrained field is the local self-energy, which can be obtained

from ΦDMFT [Gloc]. We notice that (see equation 1.62) Σr
loc plays the role of a frequency-

dependent potential that has to be added to the noninteracting Hamiltonian to obtain

the physical local Green’s function Grloc.

One can also derive the DMFT effective action functional starting from the atomic

limit, in which the auxiliary system turns into an atom embedded in a medium. In

this case, the interacting Hamiltonian can be written as H = H0 + H1, where H0 =
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∑
RHat[R] with

Hat[R] =
∑
αβ

h
(0)
αRβR(c†αRcβR + cαRc

†
βR)

+
1

2

∑
αβγδ

V RRRR
αβγδ c†αRc

†
βRcδRcγR, (1.65)

and H1 is the interaction term [11]. Hat[R] gives rise to the following action

Sat =

∫
dτ
∑
αβ

c†αR(τ)(∂τ − µ)cβR(τ) +

∫
dτHat(τ). (1.66)

By adding a source field ∆αβ(τ, τ ′) to this action, we obtain

S′ = Sat +
∑
αβ

∫
dτdτ ′∆αβ(τ, τ ′)c†αR(τ)cβR(τ). (1.67)

∆αβ(τ, τ ′) gives the hybridization function of the atom located in R with an effective

medium. It is important to mention that this atom embedded in an effective medium

constitutes a quantum impurity problem, which is an auxiliary problem that has to be

solved within DMFT. Thus DMFT can be viewed as a treatment where a lattice problem

is mapped into a single-impurity problem embedded in a self-consistent bath.

The free energy of this atom yields

e−Fat[∆] =

∫
dc†dce−Sat−

∑
αβ

∫
dτdτ ′∆αβ(τ,τ ′)c†α(τ)cβ(τ ′). (1.68)

The resulting free energy of the set of atoms is then given by

e−F [∆] =

∫
dc†dce−

∑
R Sat−

∑
Rαβ

∫
dτdτ ′∆αβ(τ,τ ′)c†αR(τ)cβR′ (τ

′). (1.69)

Kotliar and Savrasov [25] showed that this free energy leads to the DMFT effective

functional in terms of local Green’s function, self-energy and hybridization function,

which is given by

ΓDMFT [Gloc[∆],Σ[∆]] =F [∆]− Tr lnGloc −
∑
k

Tr ln[(iω + µ)Î − ĥ(0)(k)− Σloc]

−
∑
iω

(Σloc − iω − µ+ Eimp + ∆)Gloc, (1.70)



Methodology 22

where Eimp is the atom level. Since this functional is extremized at the local physical

Green’s function (denoted by superscript r) we obtain

δΓDMFT

δGloc

∣∣∣∣
Grloc

= −Gr−1
loc − Σr

loc + iω + µ− Eimp −∆ = 0, (1.71)

where the hybridization function becomes

∆(iω) = iω + µ− Eimp − Σr
loc(iω)−Gr−1

loc (iω). (1.72)

Using equations 1.62 and 1.71 we obtain the so-called DMFT self-consistent equation

Grloc,αβ =
∑
k

[(iω + µ)Î − ĥ(0)(k)− Σr
loc]
−1
αβ = (iω + µ− Eimp −∆− Σr

loc)
−1
αβ , (1.73)

where, as written in equation 1.64, Σr
loc is obtained from ΦDMFT . The equation 1.73

reveals the condition of the Green’s function of the quantum impurity problem to be

equivalent to the local Green’s function of the lattice problem. It is worth mentioning

that these equations are solved using a self-consistent cycle, which will be discussed in

the next section in the context of DFT+DMFT theory.

1.5 DFT+DMFT theory

Over decades most of theoretical efforts to explain the physics of strongly correlated

electron systems were done using simple model Hamiltonians, such as the Hubbard, pe-

riodic and impurity Anderson models [12]. Among the many important achievements

one can mention the progress made in our physical understanding of the metal-insulator

transitions driven by electronic correlations and unusual transport propeties of corre-

lated metallic phases. These achievements have shed some light in the metal-insulator

transition observed in numerous transition metal oxides, e.g. V2O3, and in unsual trans-

port properties of organic Mott systems, e.g. k − (BETD − TTF )2Cu[N(CN)2]Cl. It

is worth mentioning that these important accomplishments were made possible mainly

due to the advent of DMFT.

DFT in the local density and generalized gradient approximations fails in the descrip-

tion of the physical properties of strongly correlated materials, such as several vanadium
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and copper oxides and solid lanthanides and actinides, e.g. α-Ce and δ-Pu. For many

years this led to an absence of material specific information in the theoretical investi-

gations of strongly correlated materials, which in turn enabled qualitative comparisons

between theoretical and experimental findings for this class of systems. To overcome

this issue, Anisimov et al. [26] proposed a new method by combining DFT with DMFT

for the calculation of the electronic structure of strongly correlated materials. In this

method a LDA hamiltonian, written on a tight-binding basis set, is supplemented with

Coulomb interaction for d and f electrons. To solve this interacting model DMFT is

employed, taking into account many-body effects beyond a Hartree-Fock approximation.

Notice that the Hartree-Fock approximation corresponds to the LDA+U method pre-

viously proposed by Anisimov and co-workers [27] for the description of magnetically

ordered phases of 3d-transition metal monoxides. It is worth mentioning that this ap-

proach fails to describe strongly correlated materials in the paramagnetic phase and

without orbital ordering [11].

In the following subsections we briefly introduce the basis set and the projection-

embedding method within the DFT+DMFT implementation [28] used in the present

work. Next we return to the derivation of the effective action of the DFT+DMFT

method.

1.5.1 Full-potential implementation: basis set and local quantities

As can be noticed in the previous section about DMFT, the definition of local quan-

tities such as the local Green’s function and self-energy depends on the definition of

the basis set. In DFT+DMFT treatment a similar issue takes place when one has to

separate the Hilbert subspace of correlated electronic states, which are treated within

DMFT, from the Hilbert subspace of weakly correlated electronic states treated with

DFT. In particular, it is well known that the subspace of weakly correlated electronic

states comprises electrons of s and p bands, which are well described with DFT, while

the correlated subspace comprises the electronic states associated with d and f bands.

In this respect, previous implementations have used Wannier orbitals, tight-binding lin-

earized Muffin thin orbitals (LMTO), nonorthogonal LMTO’s, and maximally localized

Wannier orbitals to span the electronic states of the correlated subspace. However, all
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of them suffer from several limitations, such as the computation of electronic charge

self-consistently.

The DFT+DMFT method used in our studies is implemented within a full-potential

method, in which the space is separated in muffin-tin (MT) spheres, centered at atomic

positions, and the remaining interstitial region. For the DFT basis set (see subsec-

tion 1.6.3), inside the MT spheres the Kohn-Sham states are spanned in a linear com-

bination of radial functions uτκl (rτ ) times spherical harmonics Ylm(r̂), while in the in-

terstitial region a plane wave expansion is used. Here the τ index denotes the atomic

positions Rτ in such a way that a vector with the origin at Rτ is given by rτ = r−Rτ .

The κ index denotes the κ-order derivative of uτl (rτ ) with respect to rτ , i.e. κ = 0

corresponds to uτl (rτ , El), κ = 1 to u̇τ (rτ , El), etc. (El corresponds to the lineariza-

tion energies presented in subsection 1.6.3). This MT basis set, by its turn, provides

a suitable choice for the DFT+DMFT calculation. In particular, in the full-potential

DFT+DMFT implementation used, the correlated electronic states are spanned in a

local basis set of atomic-like heavy orbitals, e.g. d and f orbitals, defined as

〈r|τκL〉 = uτκl (rτ )YL(r̂), (1.74)

where in this case uτκl is the radial solution of the Schrödinger equation, τ is the index

associated with the atom containing the correlated orbitals (“correlated atom”), and

YL are the complex spherical harmonics with index L. Hence, the local correlated

orbitals are considered as being the “heads” of a (L)APW+lo basis set (see section 1.6.3).

The precise definition of L depends on the crystal field and atomic spin-orbit coupling

presented in the system, so that L can denote angular momentum index lm, cubic

harmonics (dxz, dxy, dyz, dx2−y2 , dz2 for d subshell) or relativistic harmonics jmj .

Let us now introduce the full Green’s function in real space G(r, r′) from which one

wants to extract the local Green’s function denoted as G(r, r′). This procedure is done

using a projector operator P (rr′, τLL′) which acts on G(r, r′) in such a way that the

local Green’s function in orbital space is given by [28]

GτLL′ =

∫
drdr′P (rr′, τLL′)G(r, r′). (1.75)

It is important to mention that this integral is performed inside the MT sphere of size
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S around the correlated atom. We emphasize that this “atomic-like” Green’s function

is one of the local quantities in our formalism.

The inverse procedure, denoted as embedding, is done by using the same projector.

For instance one can embed the local self-energy as follows

Σ(r, r′) =
∑

τLL′∈H
P (r′r, τL′L)Στ

LL′ . (1.76)

H in the equation above denotes the Hilbert subspace of the correlated orbitals. Notice

also that the projector operators obey

∫
drdr′P (rr′, τL1L2)P (r′r, τ ′L3L4) = δL1L4δL2L3δττ ′ . (1.77)

By applying the embedding operator onto the local Green’s function in orbital space

we obtain the local Green’s function in real space as follows

G(r, r′) =
∑

τLL′∈H
P (r′r, τL′L)GτLL′ . (1.78)

Hence, from equation 1.75 we obtain the local Green’s function in real space,

G(r, r′) =
∑

τLL′∈H
P (r′r, τL′L)

∫
dr1dr2P (r1r2, τLL

′)G(r1, r2), (1.79)

which will be used in the following derivation of the DFT+DMFT effective action func-

tional.

Several different forms for this projection to the correlated orbital subspace have

been proposed. In real space, the two simplest forms are given by [28]

P 0(rr′, τLL′) = YL(r̂τ )δ(r − r′)Y ∗L′(r̂
′
τ ), (1.80)

P 1(rr′, τLL′) = YL(r̂τ )u0
l (rτ )u0

l′(rτ )Y ∗L′(r̂
′
τ ). (1.81)

Using the Kohn-Sham basis set, the latter projector can be rewritten as

P 1
k(ij, τLL′) =

∑
κκ′

AτκLi (k)Aτκ′∗L′j (k)〈uτκl |u0
l 〉〈u0

l′ |uτκ
′

l′ 〉, (1.82)
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where AτκLi (k) =
∑

KAτκk+K,L(k)Ck
iK. The coefficients Ak+K,L and Ck

iK are the co-

effiecients of the expansion in the LAPW basis set. As pointed out by Haule et al. [28]

these two forms of projection lead to non causal DMFT equations and incorrect spec-

tral weights. Thus, the same authors proposed an alternative projector, denoted as P 2,

similar to P 1 but with renormalization factor depending on the bands within an energy

window around the Fermi level. Using the Kohn-Sham states ψki(r) and the coefficients

AτκLi (k), the projector P 2 is written as [28]

P 2(rr′, τLL′) =
∑
ijkκκ′

ψki(r)AτκLi (k)〈uτκl |uτ0
l 〉〈uτ0

l′ |uτκ
′

l′ 〉Aτκ
′∗

L′j (k)ψ∗kj(r
′)

×

√√√√( ∑
κ1κ2
Aτκ1Li A

τκ2∗
Li 〈u

τκ1
l |u

τκ2
l 〉∑

κ1κ2
Aτκ1Li A

τκ2∗
Li 〈u

τκ1
l |uτ0

l 〉〈uτ0
l |u

τκ2
l 〉

)( ∑
κ1κ2
Aτκ1∗L′j A

τκ2
L′j 〈u

τκ1
l′ |u

τκ2
l′ 〉∑

κ1κ2
Aτκ1∗L′j A

τκ2
L′j 〈u

τκ1
l′ |uτ0

l′ 〉〈uτ0
l′ |u

τκ2
l′ 〉

)
.

(1.83)

This projector is the one used in our calculations.

1.5.2 Effective action of DFT+DMFT

We now turn to the derivation of the effective action of DFT+DMFT method. In this

respect, we construct a functional of ρ(r) and the correlated local Green’s function

G(r, r′). We couple these two observables to the source fields l(r) and JaLL′ , respectively,

leading to the modified action

S′[l, JaLL′ ] = S +
∑

aLL′∈H

∫
dτdτ ′JaLL′(τ, τ

′)c†aL(τ)caL′(τ
′) +

∫
l(r)ρ(r)dr. (1.84)

Here the index a corresponds to the index of the atomic positions in the solid, that is

an atom indicated by a is centered at ra = r −Ra. The effective action is constructed

performing a Legendre transform in favor of ρ(r) and G(r, r′) as it follows

ΓDFT+DMFT [G, ρ] = F [l, JaLL′ ]− Tr(lρ(r))− Tr(GJ)

= Γ0[G, ρ] + Φ[G, ρ]. (1.85)

Noticed from previous sections that ρ(r) = δF
δl(r) and G = δF

δJa
LL′ (τ

′,τ) . We introduce now

a reference system of electrons moving in an effective dynamic potential, with effective
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action given by

Γ0[G, ρ] = −Tr ln(G−1)− Tr(Vauxρ)− Tr(Σ
′G), (1.86)

where Vaux(r) = VH(r) + Vxc(r) and Σ
′

= Σ − EDC . Σ is the self-energy associated

with the correlated orbitals and EDC , the so-called double counting-correction term,

which is included to avoid the double-counting of interaction energy already considered

in DFT. Moreover, the interacting functional Φ[G, ρ] is written in terms of the Hartree

ΦH [ρ] and exchange-correlation Φxc[ρ] functionals, which are functionals of the density,

and the Luttinger-Ward ΦDMFT [G] functional of DMFT and double-counting ΦDC [G]

functional, which in turn, are functionals of G [28],

Φ[G, ρ] = ΦH [ρ] + Φxc[ρ] + ΦDMFT [G]− ΦDC [G]. (1.87)

Therefore, the DFT+DMFT effective action is given by

ΓDFT+DMFT [G, ρ] = −Tr ln(G−1)− Tr(Vauxρ)− Tr(Σ
′G) + ΦH [ρ] + Φxc[ρ]

+ ΦDMFT [G]− ΦDC [G]. (1.88)

The full Green’s function, by its turn, can be written in terms of the Kohn-Sham

potential, which is equal to Vext + Vaux according to equation 1.22, and the shifted

self-energy as follows

G−1(rr′, iω) = [iω + µ+∇2 − Vext(r)− Vaux(r)]δ(r− r′)− Σ
′
(rr′, iω), (1.89)

where

Σ
′
(rr′, iω) =

∑
aLL′∈H

P (r′r, aL′L)(Σ− EDC)aLL′ . (1.90)

It is important to mention that, differently from the density obtained in DFT method,

the electron density in this case is obtained in the presence of the Kohn-Sham effective

potential and a frequency-dependent self-energy, taking into account the many-body

effects associated with the correlated orbitals. From equation 1.89 the electron density

can be written as

ρ(r) = T
∑
iω

〈r|(iω+µ+∇2−VKS(r)−
∑

aLL′∈H
P (r′r, aL′L)(Σ−EDC)aLL′ |r〉eiω0+ , (1.91)
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where we remind that VKS(r) = Vext(r) + Vaux(r).

Finally, the DFT+DMFT effective action in terms of the density and the local

Green’s function is given by

ΓDFT+DMFT [G, ρ] =

− Tr ln

(
[iω + µ+∇2 − Vext(r)− Vaux(r)]δ(r− r′)−

∑
aLL′∈H

P (r′r, aL′L)(Σ− EDC)aLL′

)

− Tr(Vauxρ)− Tr(Σ
′G) + ΦH [ρ] + Φxc[ρ] + ΦDMFT [G]− ΦDC [G]. (1.92)

Since the functional 1.92 is extremized at the physical electronic density ρr and local

Green’s function Gr, we obtain

Vaux[ρr](r) =
δΦH

δρ

∣∣∣∣
ρr

+
δΦxc

δρ

∣∣∣∣
ρr

= VH [ρr](r) + Vxc[ρr](r), (1.93)

and

Σ
′

= Σr − EDC,r =
δΦDMFT

δG

∣∣∣∣
Gr
− δΦDC

δG

∣∣∣∣
Gr
. (1.94)

Thus, the potential VH [ρr](r) + Vxc[ρr](r) and the self-energy δΦDMFT
δG

∣∣∣∣
Gr
− δΦDC

δG

∣∣∣
Gr

are

potentials which have to be added to the reference system to obtain the physical ρr and

Gr of the interacting electron system.

Similarly to DMFT one can derive an effective action starting from the atomic

limit [11, 25]. In this respect, one obtain that the local Green’s function in orbital space

can be written as

GaLL′ = [(iω − Eaimp − Σa −∆a)−1]LL′ , (1.95)

where Eaimp are the impurity energy levels and ∆a the hybridization function correspond-

ing to the correlated atom at ra. From equations 1.75, 1.89 and 1.95 we then obtain the
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DFT+DMFT self-consistency condition

∫
drdr′P (rr′, aLL′)

{
[iω + µ+∇2 − VKS(r)]δ(r− r′)

−
∑

L1L2∈H
P (r′r, aL1L2)(Σ− EDC)aL2L1

}−1

= [(iω − Eaimp − Σa −∆a)−1]LL′ . (1.96)

Using the projectors written in Kohn-Sham basis-set this self-consistency condition turns

into

∑
kij

Pk(ij, aLL′)[(iω + µ− εk − Σ(ω)− EDC)−1]ji

=
[ 1

iω − Eaimp − Σa(ω)−∆a(ω)

]
LL′

. (1.97)

The DFT+DMFT equations are solved self-consistently, as illustrated in figure 1.4.

In this figure we numbered the mainly steps in our calculations:

1. we start from a converged electron density obtained from a previous DFT calcu-

lation;

2. using the electron density the Kohn-Sham potential is evaluated;

3. by solving the Kohn-Sham equation one obtains εki and ψki;

4. a new density ρ(r), in presence of a self-energy and Kohn-Sham potential, is then

obtained. The steps (2)-(4) compose the DFT loop (shown in figure 1.4 in indigo),

which can be performed more than once to obtain a better converged electron

density; we emphasize that this loop is performed using a fixed-self-energy in

which the electron density is obtained in the presence of the Kohn-Sham potential

and the self-energy (see equation 1.91);

5. in this step: (i) by using εki we evaluate the local Green’s function GaLL′ ; (ii) from

EDC , projectors, and εki we obtain the impurity levels (Eimp)LL′ ; (iii) we evalulate

the hybridization function ∆a
LL′ ;

6. using the hybridization function, impurity levels and the Coulomb interaction Û

(see section 1.5.3), the quantum impurity problem is solved, from which we obtain
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the new local Green’s function and self-energy. The steps (5) − (6) compose the

DMFT loop (shown in figure 1.4 in orange), which can be performed more than

once to obtain a better converged impurity Green’s function and self-energy;

7. a new density is obtained, but now using the new local Green’s function and self-

energy (see equation 1.91).

The steps (1) to (7), denoted as charge loop, are then repeated to obtain the charge

density ρ(r), Green’s function GLL′(r), chemical potential µ,7 impurity levels (Eimp)LL′ ,

and self-energies ΣLL′ self-consistently.

D
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ch
arge lo

o
p

D
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o

p

solution of the single-impurity problem

input:

output:

Figure 1.4: Schematic representation of the self-consistent cycle in DFT+DMFT
calculations. We emphasize that in steps (4) and (7) the electron density is obtained

in the presence of the Kohn-Sham potential and the self-energy (see equation 1.91).

7The steps concerning the calculation of µ can be found in Ref. [28].
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1.5.3 Coulomb interaction U and double-counting correction

The Coulomb interactions between electrons in d or f bands lead to very important

effects upon the electronic structure of strongly correlated materials. Due to screening

effects, the local Coulomb interaction energy U is drastically reduced when going from

free atomic to crystal electronic states. In fact, in the free atom U ≈ 20 (30) eV for

electrons in d shells [29] ([30]), while it takes average values between 5 and 10 eV in d

bands of solids [11].

Experimentally, the effective energy8 Ueff can be obtained combining x-ray pho-

toemision spectroscopy (XPS) and bremsstrahlung isochromat spectroscopy (BIS) mea-

surements, supplemented with theoretical calculations for a cluster model [32, 33]. For

instance, Lang et al. [34] found values of Ueff ranging from 5.0 to 11.5 eV for the elements

between Ce and Tm, which contain f electrons. Theoretically, different approaches have

been proposed to calculate the Coulomb interactions from first-principles. We can cite

first-principles self-consistent GW method [35] and constrained RPA (cRPA) within full-

potential DFT [36] as examples of such methods employed to obtain and investigate the

dynamical behavior of U .

If one assumes that the Coulomb interaction Û has the same form in the solid as in

the atom, one can parametrize it by using Slater integrals [28] (see Appendix E) as it

follows

Û =
∑

La,...,Ld,q,σσ′

2l∑
k=0

4πF k{l}

2k + 1
< YLa |Ykq|YLc >< YLb |Y

∗
kq|YLd >

f †Laσf
†
Lbσ′

fLdσ′fLcσ, (1.98)

where F k{l} are the Slater integrals, YLa , Ykq, and YLc are spherical harmonics, and

f †Lσ(fLσ) is the creation (annihilation) operator of one electron in orbital L (here L

denotes a general angular momentum index) with spin σ. The q index runs from −k to

k. In particular, using the Slater integrals for k = 0, 2, and 4 one can define the local

Coulomb interaction energy U and the Hund’s coupling J [12, 37] for d orbitals (l = 2)

as

U = F 0, J =
(F 2 + F 4)

14
. (1.99)

8The effective energy Ueff is given by U − J/2 in some cases [31].
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It is known that these Slater integrals are reduced when the correlated orbitals are

embedeed in the solid. As previously shown by Kutepov et al. [35] the U = F 0 of

electrons in the d states of iron is strongly screened in a solid compound in comparison

with the respective value in the atom. As shown in figure 1.5 (orange line), U goes from

≈ 20 eV in the high-frequency region (atomic limit) to less than 6 eV when ω = 0,

resulting into a reduction of more than 30%. In addition, the F 2 and F 4 Slater integrals

are less screened and weakly dependent on the energy.

In our calculations we consider a Coulomb interaction of the form of equation 1.98

with screened Slater integrals.

Figure 1.5: Screening of the on-site Coulomb interaction energy U of electrons in the
d states of iron in a superconducting compound, calculated by means of first-principles
self-consistent GW method. Figure taken from Ref. [35]. In (a) and (b) the Slater
integrals (F 0,F 2, and F 4) are shown in a linear and logarithmic scale, respectively. For

more details see Ref. [35].

We now turn to the double-counting correction term EDC . The aim of this term is

to subtract the electron-electron interactions of the correlated electronic states approx-

imately taken into account within LDA or GGA, that is, to avoid the double-counting

of electronic correlations. The first approximation for the EDC term was introduced

within the LDA+U method [38], where the double-counting functional is given by

ΦDC [n] =
U

2
n(n− 1)− J

2
[n↑(n↑ − 1) + n↓(n↓ − 1)], (1.100)

where n is the number of electrons in the correlated shell. Assuming that n↑ = n/2 we

obtain

EDC =
∂ΦDC

∂n
= U

(
n− 1

2

)
− J

2
(n− 1), (1.101)
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which is known as the fully localized limit double-counting (FLL-DC). In this case, n is

computed self-consistently throughout the charge density loop. Assuming that n does

not change too much, one obtains the fixed double-counting (fixed-DC) [28] term as

given by

EDC = U
(
n0 − 1

2

)
− J

2
(n0 − 1), (1.102)

where n0 is the correlated nominal occupancy. It is worth mentioning that an exact

double-counting term was recently proposed by Haule [39], which in turn shows a good

agreement with the fixed-DC term in DFT+DMFT calculations for metal-transition

oxides and other systems with f electrons. In our calculations we used the fixed double-

counting of equation 1.102.

1.5.4 Impurity Solver: Continuous time quantum Monte Carlo

In DMFT calculations different methods have been used to solve the effective quantum

impurity problem. For example, exact diagonalization, iterative perturbation theory,

numerical renormalization group, and quantum monte Carlo methods have been em-

ployed as impurity solvers from which the local Green’s function and self-energy are

computed [10, 12].

Among these methods, the Hirsch-Fye quantum Monte Carlo (HF-QMC) was often

been used as an impurity solver in DFT+DMFT calculations [11]. However, besides

the fact that HF-QMC calculations can be very time-consuming, disadvantages such

as systematic errors associated with time discretization and not realistic description of

multiplet structure motivate distinct Monte Carlo algorithms. In this respect, the con-

tinuous time quantum Monte Carlo (CTQMC) method was introduced [40, 41]. In this

method, the effective impurity partition function and the Green’s function are sampled

using Monte Carlo techniques (see appendix F). Since there is no time discretization,

inherent shortcommings presented in HF-QMC are eliminated. Since CTQMC can be

much faster for most of applications in DFT+DMFT calculations [41], during the years,

its usage in DFT+DMFT calculations as an impurity solver has increased. This method

is the one used to solve the effective quantum impurity problem in our DFT+DMFT

calculations.



Methodology 34

1.6 DFT: further approximations

In this section we present the further approximations considered in practice in DFT cal-

culations. We first present the local density and generalized gradient approximations for

the exchange-correlation energy functionals. Next, the pseudopotential approximation

and the different basis set employed in the studies of part I of this thesis are introduced

. Finally, we present the full-potential method within the (L)APW+lo basis set used in

our DFT+DMFT calculations, which are presented in part II.

1.6.1 Exchange-correlation functionals

1.6.1.1 Local Density Approximation

Besides the Kohn-Sham mapping proposed in their work in 1965 [22], the authors also

proposed an approximation for the exchange-correlation functional Vxc[ρ](r). This ap-

proximation, denoted as Local Density Approximation (LDA), is based on the assump-

tion that electrons in solids can be considered, under a certain limit, to form a homoge-

neous gas of electrons.

In a previous work by Thomas and Fermi [42] it was found that the kinetic energy

per volume of a noninteracting gas of electrons (constant density) is given by

thomos (ρ) =
3

5
(3π2)

2
3 ρ

5
3 . (1.103)

Based on this finding, Kohn and Sham proposed that for an inhomogeneous system the

kinetic energy per volume can be approximated by

ts(r) ≈ thomos (ρ) =
3

5
(3π2)

2
3 (ρ(r))

5
3 . (1.104)

Thus the kinetic energy turns into a functional of the density,

TLDAs [ρ] =

∫
drthomos [ρ(r)] =

3

5
(3π2)

2
3

∫
dr(ρ(r))

5
3 . (1.105)
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The exchange energy per volume of an uniform electron gas is written as [24, 42]

εhomox (ρ) = −3

2

( 3

π

) 1
3
ρ

4
3 , (1.106)

which gives rise to an exchange energy functional given by

ELDAx [ρ] = −3

2

( 3

π

) 1
3

∫
dr(ρ(r))

4
3 . (1.107)

For the correlation energy per volume (εc), there is not any explicit equation. To obtain

it Ceperley and Alder performed quantum Monte Carlo calculations to parametrize

εc for an uniform electron gas [43]. Further, Perdew and Zunger [44, 45] proposed a

parametrization for this energy in the following form

εPZc [ρ] =

 A ln rs +B + Crs ln rs +Drs, rs ≤ 1

γ
1+β1

√
rs+β2rs

, rs > 1,
(1.108)

where rs =
(

3
4πρ

)1/3
. The values of the coefficientes can be found in Refs. [44, 45].

Therefore, the exchange-correlation functional within LDA is given by

ELDAxc [ρ] =

∫
drεhomoxc

∣∣∣
ρ→ρ(r)

=

∫
drεhomoxc (ρ(r)), (1.109)

with εhomoxc = εhomox + εhomoc . Hence, the LDA exchange-correlation potential is obtained

Vxc[ρ](r) =
∂εhomoxc (ρ)

∂ρ

∣∣∣
ρ→ρ(r)

. (1.110)

We stress that if the electronic density ρ(r) is strongly nonuniform, i.e. not slowly

varying in space, the LDA is not a good approximation. This motivated an additional

improvement in which the density variation is included in the functional by the density

gradient, giving rise to the generalized gradient approximation. Over decades, the LDA

has proved to be a good starting point for the description of many weakly-correlated

materials, however with serious shortcomings concerning the strongly correlated mate-

rials.
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1.6.1.2 Generalized Gradient Approximation

The Generalized Gradient Approximation (GGA) takes into account the inhomogeneous

nature of the density by explicit inclusion of the density gradient into the functionals.

By considering the Thomas-Fermi model one can approximate the kinetic energy of

the non-interacting electronic system by considering the lowest order of the gradient

corretion [24], which is added to take into account approximately the inhomogeneity of

the electron density [42]

Ts[ρ] ≈ TLDAs [ρ] +
1

4

∫
dr
|∇ρ(r)|2

ρ(r)
, (1.111)

and the exchange energy as

EGGAx [ρ] ≈ ELDAx [ρ]− 10

216π(3π2)
1
3

∫
dr
|∇ρ(r)|2

(ρ(r))
4
3

. (1.112)

Similarly to the case of LDA the correlation function is parametrized from additional

numerical calculations. To date the most used parametrization in physics is the one

proposed by Perdew, Burker and Ernzerhof (PBE) [46]. Within this parametrization

the correlation energy is given by

EGGAc [ρ] =

∫
drρ(r)[εc(rs, ζ) +H(rs, ζ, t)], (1.113)

with the functions εc(rs, ζ) and H(rs, ζ, t) defined in Ref. [46]. In this equation the

relative spin polarization is ζ =
ρ↑−ρ↓
ρ (ρ = ρ↑ + ρ↓), the dimensionless density gradient

is t = |∇ρ|
2ksρφ

, the spin scaling factor is φ(ζ) = [(1+ζ)2/3+(1−ζ)2/3]
2 , the Thomas-Fermi

screening wave number is ks =
√

4kF
π , the Fermi wave number is kF = ( ρ

3π2 )1/3, and

the Seitz radius is rs = (4πρ
3 )1/3. Thus one can notice that within GGA, both exchange

and correlation energy depends on the electron density and its gradient. Therefore, the

GGA exchange-correlation functional is written in terms of the electron density and its

gradient as in the general form

EGGAxc [ρ] =

∫
drfGGA(ρ(r),∇ρ(r)), (1.114)

with fGGA(ρ(r),∇ρ(r)) being parametrized as described above.
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1.6.2 Pseudopotential Approximation, PW and LCAO basis set

To solve the Kohn-Sham equation (equation 1.32) in practice, one needs to take into ac-

count the effects of the residual potential arising from the ions and core electrons on the

Kohn-Sham eigenstates. To this purpose we introduce the pseudopotential approxima-

tion. The central idea behind the pseudopotentials is that chemical bonds in molecules

and solids are mainly ruled by the valence electrons of each atom. In fact, it is well

known that most of physical properties of solids depends on the valence electrons other

than the electrons of inner shells, which are usually denoted by core electrons. In this

respect, the pseudopotential approximation is an approximation to the potential felt by

the valence electrons within a solid or molecule. By employing the pseudopotential ap-

proximation, DFT calculations are further simplified because only the valence electrons

are taken into account.

The pseudopotential is constructed in such a way that beyond a cutoff radius it turns

into the real potential felt by the valence electrons. Likewise, the pseudowavefunction is

constructed to be equal to the atomic wavefunction beyond the same cuttof radius. In

figure 1.6 we illustrate the pseudopotential and pseudowavefunction together with the

real potential and atomic wavefunction.

Figure 1.6: Illustration of the pseudowavefunction (pseudopotential) together with
the real atomic wavefunction (potential). Figure taken from Ref. [47].

There exist basically two types of pseudopotentials, namely, the empirical and the
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ab initio pseudopotentials. The empirical pseudopotentials are constructed from exper-

imental results, e.g. band gap and ionization potential, which are used to fit the pseu-

dopotential. On the other hand, the ab initio pseudopotentials are constructed in such

a way that they provide the solution for the Schrödinger or Dirac equation for the atom.

Among the ab initio pseudopotentials, the most used are the norm-conserving [48, 49]

and ultrasoft ones [50].

To generate the ab initio pseudopotential an all-electron DFT calculation for the

atom is performed. For atoms with closed shell configuration the radial solution9 is

obtained by solving the following equation [23]

[
− d2

dr2
+
l(l + 1)

r2
+ VKS

]
φnl(r) = εnlφnl(r), (1.115)

where the electron density is given by

ρ(r) =
∑
nl

(2l + 1)r−2|φnl(r)|2. (1.116)

To ensure transferibility the norm-conserving pseudopotentials are required to fulfill

some conditions [23], such as the following:

� the pseudowavefunction should not have radial nodes, being thus a soft pseu-

dowavefunction;

� beyond the cutoff radius rc the pseudowavefunction should be equal to the real

wavefunction;

� the charge obtained from the pseudowavefunction (inside r < rc) should be equal

to the charge obtained from the wavefunction;

� the eigenvalues associated with the valence, from a chosen atomic configuration,

should agree if they are obtained from an all-electron or pseudopotential calcula-

tion.

In the context of pseudopotential based DFT calculations, different types of basis set

have been used to expand the Kohn-Sham states. The plane-wave (PW) expansion of

9We emphasize that in the spherically symmetric case the atomic wavefunction is written as ψnl(r) =
r−1φnl(r)Yln(θ, φ) [23].
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Kohn-Sham states, for a periodic system, is performed by applying the Bloch theorem,

which states that in a solid the wavefunctions can be written as product of a periodic

function times a plane-wave part [47]

φi(r) = eik·rfi(r) (1.117)

one can span fi(r) using a plane-wave basis set as it follows

fi(r) =
∑
K

ci,Ke
iK·r. (1.118)

Therefore, each Kohn-Sham state is spanned as a sum of plane waves

φi(r) =
∑
K

ci,k+Ke
i(k+K)·r. (1.119)

This summation can be truncated by using an energy cutoff Ec, in such a way that only

plane waves with kinetic energy smaller than Ec compose the basis set [47], that is

|k + K|2 < Ec. (1.120)

Hence, the PW basis set depends only on a simple parameter Ec, which limits the size

of the basis set.

In contrast, instead of using PW as a basis set one can use a linear combination of

atomic orbitals (LCAO) [51]. This LCAO basis set leads to an expansion of the following

form

φi(r) =
∑
µ

ciµ(k)ψµ(r), (1.121)

where ψµ(r) is a linear combination of atomic-like functions, which by its turn obeys the

Bloch theorem [52]

ψµ(r) = N−
1
2

∑
R

eik·Rχµ(r−R), (1.122)

where R denotes the atom positions and N the number of unit cells in the solid. The

functions χµ(r) represent atomic orbital functions χ(r) = R(r)Ylm(θ, ϕ) (lm angular

momentum index; θ and φ are polar and azimuth angles, respectively), which have an

angular dependence described by the spherical harmonics Ylm(θ, ϕ), whereas R(r) can

be Slater-type atomic functions or Gaussian functions [53]. There exist two main types
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of localized atomic orbitals basis set, namely, the Gaussian and the numerical atomic

orbitals (NAO’s).

The basis set of numerical atomic orbitals is characterized by its size, range and

radial form. The size is related to the number of orbitals per atom in the basis set. In

particular, there exist single-ζ, double-ζ, and triple-ζ basis set, including or not polarized

orbitals [23]. Including polarized orbitals, by means of additional radial functions per

angular momentum, one has the polarized single-ζ (SZP), double-ζ (DZP), and triple-ζ

(TZP) basis set [23, 51]. The range is characterized by a cutoff radius which controls the

overlap between orbitals of different atoms. In this respect, Artacho et al. [54] proposed a

method in which the cutoff radius is defined by only one parameter, denoted by energy-

shift. This energy-shift gives the energy gain of each orbital due to the confinement

imposed by the cutoff radius [55]. This confinement is imposed in practice by using a

potential of the following form [54]

V (r) = Vo
e
− rc−ri
r−ri

rc − r
, (1.123)

where rc is the cutoff radius and ri an intern radius in the core region.

1.6.3 Full-potential method: (L)APW+lo basis set

Despite the enourmous success of pseudopotential based DFT calculations to study the

physical properties of numerous sp materials, the disregarding of the nodal behavior

of valence electron wavefunctions and the absence of core-electrons have important ef-

fects on the physical properties of a variety of materials. For example, important errors

arise into the application of pseudopotentials to investigate the structural properties of

materials containing alkali, alkali-earth metals, and transition metals in their composi-

tions [56]. Thus, full-potential methods are introduced as more precise alternatives to

the pseudopotential approximation.

In this subsection we introduce the full-potential (L)APW+lo method [57]. Within

this method the space is divided into two regions: the non-overlapping atomic spheres

(Muffin-tin spheres), which are centered on each atomic site, and the remaining inter-

stitial region, as shown in figure 1.7.
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Figure 1.7: Illustration of the non-overlapping atomic spheres (S) and remaining
interstitial region (I) which are used in the (L)APW+lo method.

Inside the atomic spheres the potential is expanded in terms of spherical harmonics

YLM (r̂), whereas in the interstitial region it is expanded in a plane-wave form [58],

V (r) =


∑

LM VLM (r)YLM (r̂), inside S,∑
K VKe

iK·r, in I,

where K is the reciprocal lattice vector, r = rr̂, and L,M are the angular momentum

index. Furthermore, the Kohn-Sham states can be spanned in different ways according

to the region. In the linearized augmented plane wave (LAPW) method the basis set

functions inside the atomic spheres are linear combination of radial functions times

spherical harmonics, while in the interstitial region a plane wave expansion is used [57,

58],

φ(r) =

 1√
Ω
ei(K+k)·r, in I,∑

lm[Alm,kul(r, El) +Blm,ku̇l(r, El)]Ylm(r̂), in S,

where Ω is the cell volume, k is the wave vector inside the first Brillouin zone, lm the

angular momentum index, and ul the solution of the radial Schrödinger equation at the

energy El, [
− d2

dr2
+
l(l + 1)

r2
+ V (r)− El

]
rul(r, El) = 0, (1.124)

while u̇l is the solution of the following equation

[
− d2

dr2
+
l(l + 1)

r2
+ V (r)− El

]
ru̇l(r, El) = rul(r, El). (1.125)

In LAPW method the parameter El corresponds to the center of the corresponding

energy band with l-like character [58].
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In addition, Madsen et al. [59] showed that for localized orbitals, e.g. 3d orbitals,

an augmented plane wave (APW) basis set supplemented with local orbitals (lo) leads

to identical results as LAPW but with a smaller basis set. The APW+lo basis set is

expressed as it follows [58]

φ(r) =

 1√
Ω
ei(K+k)·r, in I,∑

lm[Alm,kul(r, El)]Ylm(r̂), in S,

whereas the local orbitals are defined by

φlolm = [Almul(r, El) +Blmu̇l(r, El)]Ylm(r̂), (1.126)

for the atomic spheric region (in S). It is worth mentioning that the coefficients Alm

and Blm used in the definition of the local orbitals are not the same as the ones used in

LAPW (APW), since the former do not depend on k. Notice also that the same energy

El is used for the both APW and local orbitals.
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Chapter 2

Graphitic Carbon Nitrides

In this chapter we present our ab initio investigation on the structural, electronic and

magnetic properties of graphene-like carbon nitride structures. After a general introduc-

tion about carbon nitride materials, we present two sections containing our results. In

section 2.2 we present our investigation on the prediction of new graphene-like carbon ni-

tride structures, wherein we employed a combination of model and ab initio calculations.

From this work we found several structures with formation energies similar to those of

existing tri-s-triazine and s-triazine g-C3N4 nanoporous structures. In particular, we

obtained that the stability of carbon nitride planar structures are associated with the

charge doping induced by the nitrogens. Afterwards, in section 2.3 we investigate the

magnetic properties of this set of carbon nitride structures. Surprisingly, we found that

3/4 of the low-energy structures present energetically favorable magnetic phases, and

that more than 3/10 are ferromagnetic, which suggests that d0 magnetism is an usual

feature in this class of materials. We also find that several structures are half-metals

and one structure is half-zero-gap semiconductor.

The investigations presented in this chapter were published in the following articles:

W. H. Brito, J. da Silva-Araújo, and H. Chacham, The Journal of Physical Chemistry

C, 119, 19743 (2015); and W. H. Brito, J. da Silva-Araújo, and H. Chacham, Physical

Chemistry Chemical Physics , 17, 31995 (2015).
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2.1 Introduction

Nitrogen is a chemical element which can give rise not only to simple molecules but also

to binary compounds with silicon, germanium, and carbon. Historically, the interest on

solid compounds produced by combining nitrogen and carbon, i.e. carbon nitrides, was

initially motivated by the theoretical findings of Liu and Cohen [60]. Based on ab initio

calculations, these authors found that a hypothetical phase of carbon nitride, denoted

as β-C3N4, would be hard as diamond. This stimulated the search for new carbon

nitride phases, from which α-C3N4 [61], pseudocubic-C3N4 [62], and cubic-C3N4 [63]

were proposed. In figure 2.1 we illustrate the crystal structures of these carbon nitride

phases. Besides their hardness, their chemical [64], electronic, and optical properties are

also of interest. For instance, it was pointed out that β-C3N4 would have a wide band

gap of about 6 eV, which in turn suggests that this phase would be used as a transparent

hard material [65, 66].

Figure 2.1: Dense structural phases of carbon nitride: β-C3N4, α-C3N4, pseudocubic-
C3N4, and cubic-C3N4. Empty (full) circles represent nitrogen (carbon) atoms. The

structures were taken from Ref. [67].

To date, the direct synthesis of such structures remains an issue, as the samples

obtained provide insufficient evidences concerning their crystallization in the structures

previously mentioned [68, 69]. In the case of β-C3N4, the synthesis of small crystal-

lites embedded in amorphous thin films have been reported in numerous experimental

works [70–73]. However, the obtained crystallites are in general nitrogen-poor [67], lead-

ing to inconclusive results about the formation of β-C3N4 within the samples.
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Besides these dense carbon nitride structures, graphitic phases formed by graphene-

like sheets with sp2 hybridized carbon and nitrogen atoms were also considered. In

the late 1980’s there were some experimental works on the synthesis of graphitic carbon

nitrides. In their reports the synthesis of graphitic samples with small content of nitrogen

(C5N) was achieved through high-temperature methods [74, 75]. Moreover, motivated

by the fact that graphite can be used as a precursor for the high-pressure synthesis

of diamond, a graphitic phase of carbon nitride with C3N4 composition (g-C3N4) was

considered as a possible precursor to distinct dense structures such as β-C3N4 and cubic-

C3N4. The synthesis of g-C3N4 was first reported by Kouvetakis et al. [76], where the

authors obtained carbon nitride thin films with the desired stoichiometry by thermal

decomposition of triazine-based precursors. We mention that g-C3N4 was theoretically

proposed almost simultaneously with its synthesis [76] by Liu and Wentzcovitch using

DFT calculations [62]. These DFT calculations also pointed out that the graphitic

phase is more stable in comparison with the previous dense structures, while further

calculations [63] predicted that the transition pressure from g-C3N4 to cubic-C3N4 is

approximately 12 GPa.

Structurally, the graphitic phases have sheets stacked along the c axis, with graphene-

like layers with in-plane void regions (nanopores) and similar linked subunits. In relation

to the stacking of the sheets in g-C3N4, it was found that the ABAB . . . order is the most

energetically favorable ordering and is the one which gives the best fit with experimental

results [63, 77]. In relation to the linked subunits, the two most common subunits which

have been reported experimentally are the aromatics denoted as s-triazine and tri-s-

triazine [78], which are illustrated in figures 2.2(a) and (b), respectively. Since these

subunits are contained in the triazine-based precursors, the final graphitic structures

present a C3N4 composition, which motivates the common terminology g-C3N4 to de-

note graphitic carbon nitrides. It is noteworthy that the use of distinct precursors and

alternative experimental methods allow for the synthesis of graphitic carbon nitrides

with different subunits, stoichiometries and then in-plane structures, as illustrated in

figures 2.2(c) and (d) [79, 80]. Nowadays, these graphitic carbon nitrides have been

synthesized by polycondensation of organic monomers (containing the subunits) under

high temperature [76, 81–83]. However, low-temperature methods have been employed

by experimentalists as a cost-effective alternative [79, 84].

The nitrogen atoms adopt distinct configurations in the graphene-like layers. For
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Figure 2.2: (a) s-triazine and (b) tri-s-triazine based g-C3N4. Some experimental
works have obtained graphene-like structures with other subunits as shown in (c) g-
C4N3 (Ref. [80]) and (d) g-CN (Ref. [79]). The aromatic subunits are those inside

circles in red. The structures were taken from Ref. [78–80].

instance, in the structures shown in figure 2.2 there are graphitic and pyridinic nitrogens.

In addition, due to the possibility of formation of pentagons in some structures contain-

ing nitrogens, the presence of pyrrolic sites should be also taken into account. These

distinct configurations are shown schematically in figure 2.3. In this respect, numer-

ous experimental and theoretical investigations have shown that these different nitrogen

types can be used to tailor the properties of nitrogen-doped graphene [85–88]. For in-

stance, graphitic nitrogens are electron donor impurities [89] and act as catalytic active

centers for the redox reactions involving [VO]2+/[VO2]+ [90]; pyridinic nitrogens are

electron acceptors [89] and are able to increase the onset potential for oxygen reduction

reactions [91]. These findings suggest that the properties of graphitic carbon nitrides

may be tuned by controling the amount of nitrogen sites in the graphene-like structures.

For example, it was recently reported that a high amount of pyridinic nitrogens can

enhance the lithium storage capacity [92] of graphitic carbon nitride.

From a technological perspective graphitic carbon nitrides have been considered

to be promising materials for practical applications in many cases. Numerous experi-

mental works have indicated that these materials are promissing metal-free photocat-

alysts [93–96] for light-driven water splitting for hydrogen generation [97], which is of

great interest in the context of renewable energy. Further, the possibility of tunning its
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pyridinic

graphitic

pyrrolic

Figure 2.3: Scheme showing the various nitrogen sites, i.e., graphitic, pyridinic, and
pyrrolic nitrogens. Carbon and nitrogen atoms are represented by white and black

spheres, respectively.

band gap by controling the structure and composition motivated its use in electronic

devices. For example, Mahmood et al. [98] fabricated field effect transistors (FETs) us-

ing graphitic carbon nitride as the active layer. Graphitic carbon nitride has also been

considered in biomedical applications. As shown by Zhang et al. [99], ultrathin carbon

nitride nanosheets have pH-dependent optical properties, with high photoluminescence

response under UV-light, which make this material a nontoxic promissing candidate for

bioimaging applications.

2.2 g-C3N4 and others: prediciting new carbon nitride

structures

To date, most of experimental and theoretical works on graphitic carbon nitride have

focused on graphene-like layers with C3N4 stoichiometry, which have more pyridinic

than graphitic nitrogens. By means of total energy calculations, Kroke et al. [100]

investigated the energetic stability of several graphitic phases with C3N4 stoichiometry.

Their findings indicate that the graphitic structure based on tri-s-triazines (figure 2.2(b))

is more stable than the structure based on s-triazines (figure 2.2(a)). Further, Wang et

al. [93] found that the distance between the layers in these g-C3N4 based on tri-s-triazines

is about 0.326 nm and that these materials are semiconductors with band gap of 2.7 eV.

It is worth mentioning that more recently Zhao et al. [101] reported the fabrication of

single-layers with the same stoichiometry.

On the other hand, new graphitic structures with distinct stoichiometries have been

proposed. Guo et al. [79] proposed a new structure based upon six-membered triazine

rings with CN stoichiometry, in which there are no graphitic nitrogens (figure 2.2(c)).
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In addition, Kroke et al. [100] proposed several possible graphitic structures with alter-

nating arrangements and distinct subunits (for instance see figure 2.4).

Figure 2.4: Tri-s-triazine and s-triazine based graphitic carbon nitride structures
proposed by Kroke et al. [100]. The structures were taken from Ref. [100].

Motivated by the interest in new graphitic carbon nitride structures, we have car-

ried out simulated annealing and ab initio calculations aiming at the prediction of new

graphene-like carbon nitride structures with distinct stoichiometries. In the next sec-

tion we describe the simulated annealing procedure which was used to obtain a set of

low-energy carbon nitride structures.

2.2.1 Simulated Annealing

In our search for new carbon nitride structures we proposed structures with a honey-

comb lattice, where each lattice site can be a carbon atom (C), a nitrogen atom (N), or

a vacant site (v). These structures are denoted by the general formula CxNyvz, where

x, y, and z define the number of carbon atoms, nitrogen atoms, and vacancies, respec-

tively, in unit cells of eighteen sites (3 × 3). In our investigation we considered twenty

eight distinct (x, y, z) stoichiometries starting from a random configuration of sites with

stoichiometry (x, y, z), we obtained a low-energy structure through the Monte Carlo

simulated annealing procedure.

Our Monte Carlo simulated annealing procedure is based on the optimization method

proposed by Kirpatrick et al. [102] and the Metropolis algorithm [103]. Different from the

usual Monte Carlo Metropolis algorithm, in the simulated annealing the temperature is

reduced linearly throughout the calculation, as a function of the number of Monte Carlo

steps [104]. In particular, on the nth step, the temperature is given by Tn = Ti
(nMC−n)
nMC

,
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where nMC is the total number of Monte Carlo steps and Ti is the ficticious initial

temperature. The main steps in the simulated annealing calculations are listed below

(see also figure 2.5):

1. an initial configuration with randomly distributed C, N, and v sites with stoi-

chiometry (x, y, z) is generated;

2. the total energy of the initial configuration is obtained;

3. by means of a perturbation in the crystal structure (atom-type exchange) a new

configuration is generated;

4. the total energy of the new configuration is evaluated;

5. Metropolis criterion: if the total energy of the new configuration is smaller than

the previous configuration, this new configuration is accepted; if not, a random

number r ∈ (0, 1) is generated. If r < e−β(Enew−Eold) the new configuration is

accepted. Finally, if none of these conditions take place the new configuration is

rejected and the previous configuration is maintained;

6. the temperature is reduced and the calculation returns to step 2;

After nMC steps the low-energy configuration is obtained.

Initial configuration
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Metropolis criterion
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Figure 2.5: Fluxogram showing the steps performed in the simulated annealing cal-
culations. The numbers indicate the steps enumarated in the text.
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In our calculations we used a ficticious initial temperature of 9×104 K and approxi-

mately 105 atom-type exchanges between both first- and second-neighbors. Hence, from

the annealing procedure, we obtained approximately 105 configurations for each distinct

(x, y, z) stoichiometry, from which we selected the ones with the lowest energy by ap-

plying the Metropolis criterion. It is noteworthy that this criterion changes during the

annealing since the temperature is reduced as a function of the number of Monte Carlo

steps. The total energy of each configuration is evaluated by means of a bond-counting

model that is described in the following section. DFT total energy calculations could be

used in this step, however this would be an extremely time-consuming process.

2.2.2 Bond-counting model

For many decades, the thermodynamic properties of binary allows, e.g. the stability

and phase diagram, have been addressed using the classical Ising model [105, 106]. For

instance, by combining ab initio total energy calculations and the Ising model, Ferreira et

al. investigated the stability of some semiconductor alloys such as GaSb1−xAsx [107].

In this respect, our carbon nitride structures CxNyvz can also be viewed as a ternary

alloy, with three types of “atoms”, namely carbon, nitrogen and vacancy.

Within the context of a classical Ising model, we can write the total energy of a

general CxNyvz structure by considering a term which accounts for the nearest-neighbor

interaction energy between our three types of “atoms”

E0 =
∑
α,β

nα,βεα,β. (2.1)

In this equation the α and β index denote the carbon and nitrogen atoms with distinct

coordination, that is, carbon and nitrogens with one (C1, N1), two (C2, N2), and three

(C3, N3) neighboring atoms. The nα,β and εα,β denote the number and bond energy of

each α−β bond-type in the structure. For example, nC3C3 and εC3C3 denote the number

of bonds between carbons with three neighboring atoms and the bond energy of each

C3 − C3 bond, respectively. We mention that bond-counting models with an energy

functional of similar form as equation 2.1 have been successfully applied to graphene-

type B-C-N structures [104, 108]. In the case of CxNyvz structures, we included the

effects introduced by the charge doping, induced by the different types of nitrogens, by



Graphitic Carbon Nitride 52

adding the term ∆E,

E =
∑
α,β

nα,βεα,β + ∆E. (2.2)

Concerning the charge doping, it is well known that graphitic nitrogens are electron

donors whereas pyridinic are electron-acceptors in graphene. Considering the fact that

the tri-s-triazine based g-C3N4 is a fully compensated semiconductor, and is the most

stable and synthesized structure [64, 109], we consider that ∆E must be zero for this

structure. Hence, we postulate that the nitrogen-induced charge density is given by

σ = c
(|2nC3N3 − nC3N2|)∑

α,β nαβ
, (2.3)

where c is a constant.

Further we assume that ∆E results from the occupation (non occupation) of the

conduction (valence) graphene band states induced by the nitrogens (the derivation

of ∆E is presented in appendix G). As the electronic density of states in graphene is

proportional to |E|, we obtain

∆E = k
(|2nC3N3 − nC3N2|)3/2

(
∑

α,β nαβ)1/2
, (2.4)

where k is a constant. We mention that in our calculations we employed ab initio

parametrized values of each bond energy in the structures. This parametrization is

briefly described in appendix G.

Furthermore, the bond-counting method also allows us to analytically obtain the

behavior of the formation energy of graphitic substitutional N impurities in a CxNy

structure as a function of the nitrogen relative concentration cN = y/(x + y). To this

purpose, we define the structure formation energy as

Ef = E − xµC − yµN , (2.5)

where E is the total energy of the (x + y)-atom cell, and µC and µN are the chemical

potentials for carbon and nitrogen atoms. Based on the equations 2.2 and 2.5, in the

case of structures with graphitic N impurities that are not nearest neighbors, we obtain
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that the formation energy per nitrogen atom is given by

Ef
nN

= A+Bc
1/2
N , (2.6)

where A = 3εC3N3− 3
2εC3C3−µN and B = 12k. In the case of structures with pyridinic

N impurities, we obtain that A = 2εC3N2 − 81
17εC3C3 − µN and B =

√
17
3 k (for the

derivation of these formation energies see appendix G). Therefore, the bond-counting

method predicts that the impurity formation energy increases linearly with
√
cN .

In figure 2.6 we show the formation energies per nitrogen atoms, Ef/nN , of CxNy

structures that contain graphene sites (C3) and either substitutional graphitic N sites

(N3) or pyridinic sites (N2) as a function of
√
cN =

√
y/(x+ y). The formation energies

are calculated with equation 2.5, wherein we considered the graphene sheet and the α-

N2 phase to obtain the carbon (µC = −154.866 eV) and nitrogen (µN = −270.256 eV)

atomic chemical potentials, respectively. Both sets of ab initio results, i.e. for either N3

or N2 sites, depict a law of the type
Ef
nN

= A+Bc
1/2
N , as predicted by equation 2.6.
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Figure 2.6: Formation energies per nitrogen atom of CxNy structures that contain
C3 graphene sites and either substitutional graphitic N sites (black dots) or pyridinic

sites (red dots), as a function of
√
cN =

√
y/(x+ y).

In additon, we show in figure 2.7 the DFT Fermi energies (obtained with respect to

pristine graphene) of the same set of structures, with either N2 or N3 impurity sites, as

a function of
√
cN =

√
y/(x+ y). Angle-resolved photoemission spectroscopy (ARPES)

measurements of nitrogen-doped graphene [110] are plotted for comparison.

We first observe a good agreement between our calculated Fermi energies and the
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Figure 2.7: Fermi energies (relative to that of pristine graphene) of CxNy structures
that contain C3 graphene sites and either substitutional graphitic N sites (black dots) or
pyridinic sites (red dots), as a function of

√
cN =

√
y/(x+ y). ARPES measurements

of nitrogen-doped graphene samples [110] are plotted in green diamonds.

experimental results obtained by means of ARPES measurements. Interestingly, a be-

havior of the type EF = A+BcN
1/2 is observed for both impurity types, with a positive

value of B for graphitic N impurities and a negative value for pyridinic impurities. This

is consistent with the donor nature of the former and the acceptor nature of the lat-

ter. These results indicate that structures presenting both graphitic and pyridinic types

of nitrogen sites might have reduced formation energies due to donor-acceptor charge

compensation. This will be investigated in the following.

2.2.3 New graphene-like carbon nitride structures: energetic and elec-

tronic properties

We now turn to the search of a set of low-energy structures using the Monte Carlo

simulated annealing procedure. In our investigation, the range of each index (x, y, z)

was fixed as 6 ≤ x ≤ 12, 3 ≤ y ≤ 10, and 0 ≤ z ≤ 6. Starting from the C9N9v0 structure,

by adding vacancies in such a way that z ≤ 6, we obtain a set of twenty eight different

structures.

The geometries of the low-energy structures obtained through Monte Carlo calcu-

lations, in which the bond-counting model was employed, were further optimized by

means of ab initio total energy calculations (the technical details concerning our calcu-

lations are described in appendix H.1). For clarity we organized the structures in six

groups, where each structure in a group has the same number of vacancies per unit cell.
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In figure 2.8(a)-(d) we show the equilibrium geometries of CxNyv1 low-energy struc-

tures and the C9N9v0 equilibrium geometry. The last was included in order to test our

methodology. In figure 2.9(a)-(f), 2.10(a)-(g), 2.11(a)-(e), 2.12(a)-(c), and 2.13(a)-(c) we

present the equilibrium geometries of CxNyv2, CxNyv3, CxNyv4, CxNyv5, and CxNyv6

structures, respectively.

Figure 2.8: Equilibrium geometries, shown in (2×2) unit cells, of (a) C9N9v0 and the
CxNyv1 structures: (b) C8N9v1, (c) C9N8v1, and (d) C10N7v1. Carbon and nitrogen

atoms are represented by white and black spheres, respectively.

Figure 2.9: Equilibrium geometries, shown in (2×2) unit cells, of CxNyv2 structures:
(a) C6N10v2, (b) C7N9v2, (c) C8N8v2, (d) C9N7v2, (e) C10N6v2, and (f) C11N5v2.
Carbon and nitrogen atoms are represented by white and black spheres, respectively.

The systems with formula C9N9v0 and C6N8v4 were used to verify the adequacy of

our methodology. In this context, for the system C9N9v0 we obtained a planar structure

formed by an ideal alloying between carbon and nitrogen atoms, without C-C or N-N

bonds (see figure 2.8(a)). This is in agreement with the stability trend reported in a

previous theoretical work [111], since the C-N bonds are energetically more favorable

than the highly energetic N-N bonds. For the system C6N8v4 our Monte Carlo + DFT
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Figure 2.10: Equilibrium geometries, shown in (2×2) unit cells, of CxNyv3 structures:
(a) C6N9v3, (b) C7N8v3, (c) C8N7v3, (d) C9N6v3, (e) C10N5v3, (f) C11N4v3, and (g)
C12N3v3. Carbon and nitrogen atoms are represented by white and black spheres,

respectively.

Figure 2.11: Equilibrium geometries, shown in (2×2) unit cells, of CxNyv4 structures:
(a) C6N8v4, (b) C7N7v4, (c) C8N6v4, (d) C9N5v4, and (e) C10N4v4. Carbon and

nitrogen atoms are represented by white and black spheres, respectively.

methodology resulted in a planar structure based on connected tri-s-triazine units (see

figure 2.11(a)), which is in accordance with previous theoretical results [100] and with the

experimentally observed structure [93, 112]. For the latter, we obtained bond lenghts

of 1.34 Å, between the carbon and pyridinic nitrogens, and 1.47 Å, between carbon and



Graphitic Carbon Nitride 57

Figure 2.12: Equilibrium geometries, shown in (2×2) unit cells, of CxNyv5 structures:
(a) C6N7v5, (b) C7N6v5, and (c) C8N5v5. Carbon and nitrogen atoms are represented

by white and black spheres, respectively.

Figure 2.13: Equilibrium geometries, shown in (2×2) unit cells, of CxNyv6 structures:
(a) C6N6v6, (b) C7N5v6, and (c) C8N4v6. Carbon and nitrogen atoms are represented

by white and black spheres, respectively.

graphitic nitrogens connecting the subunits, in good agreement with previous theoretical

calculations [113].

We next investigate the effects of the chemical composition on the morphology of

the low-energy structures. Our equilibrium geometries indicate that, depending upon

the relative concentration of atoms and vacancies, periodic structures with different

nanopores should be formed. The smallest nanopore in our structures is based on a single

vacancy surrounded by three pyridinic nitrogens. This type of nanopore is observed in

all the equilibrium geometries of CxNyv1 structures, C6N10v2, C7N9v2, C8N8v2, C9N7v2,

and C6N9v3. It is worth noticing that the same type of nanopore is found in the g-

C3N4 structure based on condensed s-triazines [79]. The second type of nanopore is

based on a double vacancy surrounded by four pyridinic nitrogens, as can be seen in

the equilibrium geometries of C10N6v2 and C11N5v2 (see figure 2.9(e) and (f)). Other

nanopore structures are the result of the coalescence of vacancies and the distinct number

of defective carbon sites occupied or not by pyridinic nitrogens, see figure 2.10 and
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figure 2.11 for example. Due to that, there are several structures with carbon dangling

bonds, as seen in figure 2.10, figure 2.11, figure 2.12, and figure 2.13. Furthermore,

due to the interplay between the chemical composition and structural relaxations, there

are distorted equilibrium geometries with pyrrolic nitrogens and nitrogens that have a

coordination number equal to one (see figure 2.12). Also, we can infer that in some cases

the concentration of nitrogen can rule the segregation of vacancies. In particular, one

should note that replacing a carbon by a nitrogen in the C10N6v2 structure gives rise

to a structure with chemical composition C9N7v2, but with N-N bonds. This suggests

that, depending upon the relative concentration of nitrogen and vacancy, the systems

might show an energetic preference for structures with high number of smaller pores

instead of structures with low number of larger pores. Finally, it is worth mentioning

that the atoms in the C8N8v2 and C8N6v4 structures experience a maximum out of plane

distortion of 0.38 and 0.11 Å, respectively, while all the other structures remain planar.

For the purpose of investigating the relative energetic stability of these structures,

we calculate the formation energy per unit area, which we define as

Ω =
E[CxNyvz]− xµC − yµN

A
, (2.7)

where E[CxNyvz] is the total energy of the CxNyvz structure obtained from the ab initio

calculation, µγ (γ = C, N) the atomic chemical potentials, and A the CxNyvz supercell

area. Table 2.1 presents our calculated formation energies and figure 2.14 shows our

ternary diagram based upon these energies.
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Figure 2.14: Formation energies per unit area (meV/Å2) of CxNyvz structures. α
and β lines in this figure correspond to CxNyvz structures with x = y and y = z,

respectively.
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Table 2.1: Calculated formation energies per unit area, in meV/Å2, of CxNyvz struc-
tures.

x y z Ω x y z Ω

9 9 0 238.9

z = 1 z = 2
8 9 1 136.7 6 10 2 163.1
9 8 1 111.0 7 9 2 82.8
10 7 1 88.7 8 8 2 71.6

9 7 2 90.6
10 6 2 59.1
11 5 2 61.8

z = 3 z = 4
6 9 3 175.1 6 8 4 50.0
7 8 3 112.6 7 7 4 68.6
8 7 3 55.0 8 6 4 93.0
9 6 3 58.5 9 5 4 137.2
10 5 3 75.5 10 4 4 186.6
11 4 3 115.6
12 3 3 154.7

z = 5 z = 6
6 7 5 170.1 6 6 6 53.0
7 6 5 129.3 7 5 6 116.1
8 5 5 85.6 8 4 6 159.4

Comparing the formation energies, we find that porous structures are more ener-

getically stable, with a minimum energy difference of 52.3 meV/Å2, than the struc-

ture without vacancies, i.e. C9N9v0. These results suggest that, for graphitic carbon

nitrides with chemical composition within the range we considered, the formation of

graphene-like layers with periodic arrays of nanopores is an energetic favorable process.

Additionally, we find that C6N8v4 (Ω = 50.0 meV/Å2) and C6N6v6 (Ω = 53.0 meV/Å2)

are the most stable structures within the set of structures investigated in this work.

The C6N8v4 structure is the tri-s-triazine based g-C3N4, which has been experimentally

synthesized [93, 112]. Meanwhile, the C6N6v6 is the same structure synthesized and

suggested in Ref. [79]. We also find that s-triazine (not shown) is 19 meV/Å2 energeti-

cally less stable than the tri-s-triazine based g-C3N4. Interestingly, the porous structures

with z < 4 give rise to a specific region in our ternary diagram (region I) corresponding

to energetically favorable structures. Among these structures the C8N7v3 is the most

energetically stable, with formation energy difference of 5 meV/Å2 relative to C6N8v4.
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Overall, for structures with x = y (α line in figure 2.14), we note an energetic stabiliza-

tion of structures upon increasing the number of vacancies per unit cell. In particular,

the C8N8v2, C7N7v4, and C6N6v6 structures are 167.3, 170.3, and 186 meV/Å2 more

stable than C9N9v0, respectively. Considering now structures with y = z (line β) the

increase of carbon concentration makes the systems energetically less stable, which is re-

lated to the presence of carbon dangling bonds. For instance, the C10N4v4 structure has

two vacancies per unit cell and is 133.6 meV/Å2 energetically less stable than C6N6v6.

Figure 2.15: Density (Å−2) of graphitic and pyridinic nitrogens of CxNyvz structures.

In figure 2.15 we present ternary diagrams showing the density of graphitic and

pyridinic nitrogens of CxNyvz structures. From these diagrams we note that in general

the low-energy structures have more pyridinic than graphitic nitrogens. This tendency

can be observed in these diagrams inspecting points in region I and points associated with

C6N8v4 and C6N6v6 structures. With the purpose of investigating the relation between

the energetic stability of these structures and the relative density of different types of

nitrogens, we present in figure 2.16(a) the formation energies as a function of the relative

concentration of graphitic and pyridinic nitrogens. In the figure, we selected structures

with z ≤ 4 and that do not contain carbon dangling bonds nor highly energetic N-N

bonds. In the figure we observe that, for the structures that only present single-vacancy

nanopores, that the formation energy presents a minimum at ρg/ρp = 0.33, associated

with C8N8v2. In addition, one should note the same feature for the structures with

z = 4 and 3 as presented in the inset of figure 2.16(a), with minima at 0.33 and 0.40

respectively. This gives an estimate for the range of nitrogen relative concentration in

which one obtains stable carbon nitride structures.

Furthermore, as discussed previously, the non linear term in equation 2.2 takes

into account the energy cost due to the charge density induced by the nitrogen sites.
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Figure 2.16: Formation energy per unit area (meV/Å2) as a function of (a)
relative concentration of graphitic and pyridinic nitrogens ρg/ρp and (b) σ =
(|2nC3N3−nC3N2|)3/2

(
∑
α,β nαβ)

1/2 . In (a) the points correspond to structures with z ≤ 4, includ-

ing C6N8v4 structure and those that do not contain carbon dangling bonds nor highly
energetic N-N bonds, as shown in the inset. The black dots correspond to structures

that only present single-vacancy nanopores. Lines are guides to the eye.

This term was built such that it vanishes for tri-s-triazine C6N8v4 based structure,

which has the lowest formation energy and is a fully compensated semiconductor. As

a result, this additional energy depends on |2nC3N3 − nC3N2|, as written explicitly in

equation 2.4. Focusing on the same group of structures considered in figure 2.16(a), we

show in figure 2.16(b) the formation energy, given by equation 2.4, as a function of σ. In

this case we observe a linear correlation between the formation energy and σ (specially for

those structures with σ > 7). These findings suggest that one of the physical mechanisms

that determines the relative energetic stability of several structures is the energy cost

associated with additional charge density induced by nitrogens. Figure 2.16(b) suggests

that the minimization of such energy cost, that is, the best charge compensation between

donors and acceptors, occurs near the C3N4 stoichiometry. Counting rules have been

suggested to favor such stoichiometry [60].

Numerous experimental results have pointed out the presence of pyrrolic nitrogens

in nitrogen-doped graphene [88, 114, 115]. In order to include pyrrolic nitrogens in our

structures we replaced pairs of pyridinic nitrogens by pentagons with pyrrolic nitro-

gens. These local structural transformations were applied to the following structures:

C10N6v2, C11N5v2, C9N6v3, C8N7v3, C10N5v3, C11N4v3, C6N6v6, and C7N5v6. The cal-

culated equilibrium geometries are shown in figure 2.17(a)-(h), while table 2.2 gives the

calculated formation energies.

In figure 2.17, we observe that pyrrolic nitrogens give rise to new types of nanopores

and distorted hexagons. Moreover, the calculated formation energies suggest that the
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Figure 2.17: Equilibrium geometries, shown in (2 × 2) unit cells, of structures with
pyrrolic nitrogens: (a) C12N5v1, (b) C13N4v1, (c) C11N5v2, (d) C10N6v2, (e) C12N4v2,
(f) C9N5v4, (g) C10N4v4, and (h) C11N3v4. Carbon and nitrogen atoms are represented

by white and black circles, respectively.

Table 2.2: Calculated formation energies per unit area, in meV/Å2, of CxNyvz struc-
tures which have pyrrolic nitrogens.

x y z Ω x y z Ω

z = 1 z = 2
12 5 1 105.0 11 5 2 98.1
13 4 1 97.5 10 6 2 81.2

12 4 2 117.0

z = 4
9 5 4 126.9
10 4 4 169.0
11 3 4 229.6

presence of pyrrolic nitrogens can lead to energetic stabilization of some structures.

Indeed, the C10N4v4 and C9N5v4 structures with pyrrolic nitrogens are 17.6 and 10

meV/Å2 energetically more stable than the equivalent structures in figure 2.11(e) and

(d), respectively. In the case of C10N4v4 structure, this stabilization is attributed to the

reduction of carbon dangling bonds. However, pyrrolic nitrogens increase the formation

energy of C11N5v2 and C10N6v2 structures in about 36 and 22 meV/Å2, respectively.

This can be attributed to the increase of the stress induced by the pentagons in these
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structures, which leads to distorted carbon hexagons as can be seen in figure 2.17(g).

Therefore, we infer that, for structures with low concentration of nitrogen and large

nanopores, the formation of pentagons with pyrrolic nitrogens is an energetically favor-

able process, since it reduces the number of carbon dangling bonds. In contrast, the

formation of pentagons with pyrrolic nitrogens in structures with smaller nanopores is

energetically unfavorable due to the increase in the stress of the structure.

Next, we investigate the electronic properties of the low-energy structures. The

Fermi energy values of these structures, calculated as the electronic chemical potential

of the Fermi-Dirac distribution for the neutral systems at an electronic temperature of

0.001 Ry, give rise to the diagram shown in figure 2.18(a).
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Figure 2.18: (a) Fermi energies (eV) of CxNyvz structures. (b) Fermi energy as a
function of the relative concentration ρg/ρp of structures with z ≤ 4 which have no

carbon dangling bonds or N-N bonds.

Comparing the diagrams in figure 2.15 and figure 2.18(a), we notice that structures

that have more pyridinic than graphitic nitrogens tend to have smaller values of Fermi

energies, giving rise to a singular region, in the vicinity of the β line, that simultaneously

presents low EF values and high pyridinic concentrations. One should note an opposite

trend for those structures with more graphitic nitrogens, with the bottom of α line in

figures 2.15 and 2.18 presenting simultaneously high graphitic nitrogen concentrations

and high EF values. These findings can be understood from the fact that graphitic

nitrogens are electron donors, while the pyridinics are acceptors. Thus, the Fermi energy

reduces upon the increase of pyridinic nitrogens. In addition, we present in figure 2.18(b)

the Fermi energy of the structures with z ≤ 4, which have no carbon dangling bonds or

N-N bonds. These results reveal that the Fermi energy can be tuned within an energy

range of 2.65 eV depending upon the relative concentration ρg/ρp. This finding suggests

that graphitic carbon nitrides can be bipolar compounds. Focusing on the structures
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among the group with ρg < ρp we notice the Fermi energy increases almost linearly with

the relative concentration of nitrogens.

Since several of the obtained structures present carbon dangling bonds, we next

investigate the possible existence of local magnetic moments due to spin polarization in

the ground state of each structure. Based on our total energy calculations, we find that

a set of twenty two structures present spin-polarized ground states with local magnetic

moments. These structures are represented by triangles in the ternary diagram shown in

figure 2.19. The remaining structures, represented by circles, do not have spin-polarized

ground states. These findings are in agreement with previous theoretical calculations,

which predicted that carbon dangling bonds induce electron spin polarization in the

vicinity of defective sites in graphene [116].

v

C N

Figure 2.19: Spin polarization of graphene-like carbon nitride (CxNyvz) structures.
Structures with spin-polarized ground states are represented by full triangles while the

structures with no spin polarization are represented by empty circles.
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Figure 2.20: Energy gap (eV) of the CxNyvz structures.

Finally, we calculated the DFT (GGA) band gaps Eg of the structures, which give

rise to the diagram shown in figure 2.20. As can be noticed in the diagram most of

the structures are metallic (with zero band gap). Although DFT calculations within

the GGA or LDA approximation often underestimate the band gap of semiconductors,

we observe the presence of semiconductor structures near the center of the triangle and
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along the α line, with the largest Eg values occurring in the vicinity of the center of

the triangle. This trend correlates with the increase of the nanopore size. We obtained

semiconductor structures with GGA band gaps of 0.99 eV (C8N8v2), 0.34 eV (C7N8v3),

0.27 eV (C9N6v3), 0.11 eV (C7N7v4), 0.18 eV (C8N6v4) , 0.22 eV (C6N7v5), 1.08 eV

(C7N6v5), and 1.69 eV (C7N5v6); while the most stable structures C6N8v4 and C6N6v6

have band gaps of 1.18 and 1.62 eV, respectively. As pointed out by Xu et al. [113], the

LDA band gap of graphitic C3N4 represents only 33 % of the experimental band gap,

while the calculated GW band gap is in good agreement (2.88 eV) with the experimental

findings. Based on this finding, there are several possible new structures, among the

semicondutors listed above, that may absorb in the visible light region and might be

photocatalyst candidates in the process of water-splitting.

2.2.4 Summary

In summary, we have performed Monte Carlo and ab initio calculations to propose

and investigate the morphology, relative energetic stability, and electronic properties

of graphitic carbon nitride structures. Within our set of low-energy structures, we

obtained graphene-like layers with periodically distinct nanopores and different amounts

of graphitic and pyridinic nitrogens. Our results indicate that the increase of nitrogen

concentration leads to the coalescence of vacancies and therefore the increase in the size of

nanopores. The calculated formation energies correlate with the relative concentration

of pyridinic and graphitic nitrogens, with highest pyridinic concentrations leading to

lower formation energies. The results for formation energies also indicate the existence

of an energy cost associated with the doping due to the nitrogen impurities. We also

examined the energetic stability of several systems with pyrrolic nitrogens. In this case,

we find that the formation of pentagons with pyrrolic nitrogens increases the energetic

stability of graphitic carbon nitrides with large nanopores and carbon dangling bonds,

while it reduces the energetic stability of structures with small nanopores due to the

increase in the stress induced by the pentagons. Our calculated Fermi energies correlate

with the relative concentration of graphitic and pyridinic nitrogens. We observed that

it is possible to tune the Fermi energies within an energy range of 2.65 eV by controling

the relative concentration of nitrogens. Finally, based upon the calculated DFT (GGA)

band gaps, we obtained a group of semiconductor structures that we estimate to be

alternatives as photocatalyst candidates in the water splitting driven by visible light.
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2.3 Magnetic properties of graphitic carbon nitride struc-

tures

Since the last decades magnetic properties have been observed in many materials in

which there is no transition metal or rare earth element, that is, no d or f elec-

trons [7]. For instance, numerous previous works have reported magnetic properties in

two-dimensional carbon based materials such as graphene-based fragments, nanoribbons,

and defective sheets [117], in carbon nanotubes [118], and, more recently, in graphitic

carbon nitrides [80, 119]. From a fundamental viewpoint this d0 magnetism has at-

tracted great attention due to the interest in disclosing the physical mechanisms from

which these properties emerge.

Moreover, carbon-based materials have also attracted enormous interest for appli-

cations in spintronic devices [120, 121]. For instance, the high electronic mobility and

weak spin-orbit coupling of graphene [122, 123] make it a promising spin channel ma-

terial. In fact, graphene spin valve devices have been fabricated, exhibiting room tem-

perature nanosecond spin lifetimes and diffusion lengths of micrometers [124, 125]. In

addition, another class of two-dimensional materials known as transition-metal dichalco-

genides [126] has shown useful properties for applications in spintronics. In particular,

MoS2 monolayers exhibit direct band gap and larger spin-orbit coupling than graphene,

which in turn leads to larger spin-orbit scattering lenghts [126, 127]. Despite of these spin

channel candidates, carbon-based half-metals such as graphitic carbon nitrides [128, 129]

have been proposed as an alternative to usual ferromagnet electrodes towards metal-free

spintronics.

Despite the great potential of g-C3N4 as a photocatalyst [93, 96], previous theoretical

works have also proposed alternatives to induce magnetic ordering in these materials.

For instance, hydrogen chemisorption [130, 131], carbon doping [80, 128], periodic large

pores [132, 133], and fractal morphology [129] may give rise to magnetic carbon nitride

structures. From the experimental side, the synthesis of the theoretically predicted

ferromagnetic g-C4N3 (see figure 2.2(c)) [80] and the experimental observation of room

temperature ferromagnetism in g-C3N4 nanosheets have been recently reported [119].

In the present section, we investigate, by means of ab initio calculations, the magnetic
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properties of the graphene-like carbon nitride structures presented in the previous section

(for more details about the calculations see section H.2).

For each structure we addressed the energetic stability of the nonmagnetic, antiferro-

magnetic (AFM) and ferromagnetic (FM) phases. The magnetically ordered configura-

tions were simulated starting with a spin-polarized calculation considering a predefined

spin density. For those structures with stable magnetic state, we calculate the energetic

stabilization driven by the formation of a magnetically ordered state, which is given by

εs = Em − Enm, (2.8)

where Em and Enm correspond to the total energies of the magnetic and nonmagnetic

phases, respectively. The structures with energetically favorable magnetic phases (εs <

0) are represented by triangles in the ternary diagram shown in figure 2.21. In the

same diagram we represent the nonmagnetic structures by circles (εs > 0). Moreover,

these energies suggest a set of twenty two energetically favorable magnetic carbon nitride

structures.

v

C N

Figure 2.21: Magnetic phase ternary diagram of graphene-like carbon nitride
(CxNyvz) structures. Antiferromagnetic and ferromagnetic phases are represented by
empty and full triangles, respectively. Nonmagnetic structures are represented by empty

circles.

To investigate the energetic stability of these magnetic phases, we further calculate

the energy difference between the FM and AFM configurations, for each structure, as

given by

εo = Eafm − Efm, (2.9)

where Eafm and Efm are the total energies of the same structure, considering AFM

and FM configurations, respectively. Interestingly, based upon the calculated values of
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εo, we find a set of twelve structures with an energetically favorable AFM phase (εo <

0): C7N9v2, C8N8v2, C11N5v2, C12N3v3, C9N6v3, C6N8v4, C8N6v4, C6N7v5, C7N6v5,

C6N6v6, C7N5v6, and C8N4v6. These structures are represented by empty triangles in

the ternary diagram shown in figure 2.21. In addition, we find a set of nine structures

with an energetically favorable FM phase (εo > 0): C8N9v1, C9N8v1, C9N7v2, C6N9v3,

C10N5v3, C11N4v3, C7N7v4, C9N5v4, and C10N4v4, which are represented as full triangles

in the same diagram. It is important to mention that the C7N7v4 structure obtained

through our simulated annealing procedure corresponds to the same structure previously

investigated in Refs. [134, 135]. Table 2.3 presents the calculated εs and εo values for

the FM structures, including the g-C4N3 (carbon doped g-C3N4) proposed by Du et

al. [128].

Table 2.3: Magnetic moment per supercell (m) and calculated energies (εs and ε0),
in meV, for structures which have energetically favorable ferromagnetic phase (εo > 0).

m is given in µB units.

x y z y/x m εs ε0
8 9 1 1.13 2.35 -165.9 65.9
9 8 1 0.89 2.61 -121.2 4.2
9 7 2 0.78 4.00 -320.3 145.6
6 9 3 1.50 12.00 -1370.1 600.2
10 5 3 0.50 4.00 -233.2 61.1
11 4 3 0.36 4.00 -1069.3 136.7
7 7 4 1.00 4.00 -376.4 84.8
9 5 4 0.56 8.00 -494.5 –
10 4 4 0.40 9.98 -1467.3 248.9

g-C4N3 0.75 4.00 -413.1 326.9

From table 2.3 we observe that the g-C4N3 is found to be ferromagnetic with mag-

netic moment (m) equal to 1 µB per formula unit, in good agreement with the results

of Du et al. [128]. For the C7N7v4, we find m to be 1 µB per formula unit and that

the ferromagnetic state is 84.8 meV more stable than the antiferromagnetic, in good

agreement with previous results [134].

Figure 2.22 shows a plot of the magnetic moment per atom (m/(x+y)) of the ferro-

magnetic structures as a function of the N/C ratio (y/x). Two features can be observed

in this figure. First, most of the m/(x + y) values are in the vicinity of 0.05 µB/atom,

suggestive of a common order of magnitude for the magnetization of C-N layers. Sec-

ond, if we disregard the structure C6N9v3, the m/(x + y) values show an overall trend

of decreasing magnetic moments per atom upon increasing the relative concentration
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of nitrogen. We mention that a similar trend was recently observed experimentally in

nitrogen-doped graphene domains [136].

Among our newly found ferromagnetic structures, C6N9v3 and C10N4v4 structures

present larger energetic stabilization, as seen in table 2.3, due to the formation of mag-

netically ordered states. In particular, we find that the ferromagnetic state of the former

is 273 meV more stable than the ferromagnetic configuration of g-C4N3, and that this

structure presents a magnetic moment of 3 µB per formula unit. The ferromagnetic

state of C10N4v4 structure is found to be 78 meV less stable than the ferromagnetic

state of g-C4N3, while the remaining structures present less stable ferromagnetic states.

These findings indicate the possibility of a carbon nitride structure with a more stable

ferromagnetic phase and high Currie temperatures as the ferromagnetic phase of g-C4N3.
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Figure 2.22: Magnetic moments per atom (m/(x+ y)) as a function of relative con-
centration of nitrogen (y/x) of the graphene-like carbon nitride (CxNyvz) structures

which have energetically favorable FM phase (εo > 0).

The calculated equilibrium geometries and spin densities of the ferromagnetic struc-

tures (excluding the C9N8v1 structure) are shown in figure 2.23. It is important to

mention that the C9N8v1 structure will not be considered in the following investigation

due to its very small value of εo = 4.2 meV. From the spin density shown in figure 2.23(a)

we observe the magnetic moments of g-C4N3 come mainly from the in-plane px and py

orbitals of pyridinic nitrogens, also in good agreement with the findings of Ref. [128].

Similar to g-C4N3, the magnetic moments of C9N7v2, C6N9v3, C10N5v3, and C7N7v4

originate mainly from the px and py orbitals, as can be seen in figures 2.23(c), (d), (e)

and (g), respectively. In contrast, as shown in figure 2.23(b), in the structure C8N9v1 the

magnetic moments originate mainly from pz orbitals associated with graphitic carbon

and nitrogen atoms in the “bulk” part of the structure. In figures 2.23 (f), (h), and (i) we
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Figure 2.23: Equilibrium geometries (shown in 2 × 2 unit cells) and spin densities
(∆ρ = ρup − ρdown) of (a) g-C4N3, (b) C8N9v1, (c) C9N7v2, (d) C6N9v3, (e) C10N5v3,
(f) C11N4v3, (g) C7N7v4, (h) C9N5v4, and (i) C10N4v4. Carbon and nitrogen atoms
are represented by white and blue spheres. Isosurfaces, in yellow (∆ρ > 0) and cyan
(∆ρ < 0), correspond to spin densities of (a) 0.02, (b) 0.002, (c)(f) 0.004, (d)(e)(g)

0.01, and (h)(i) 0.009 e/bohr3.

notice a different feature. Indeed, the carbon dangling bonds in C11N4v3, C9N5v4, and

C10N4v4 structures give rise to local magnetic moments due to the unpaired electron.

In order to investigate the physical mechanism responsible for the instability of

the nonmagnetic phases, we performed band structure calculations for the nonmagnetic

states of those ferromagnetic structures. We find that the nonmagnetic state of C8N9v1,

C7N7v4, and C9N5v4 structures present peaked density of states at around the Fermi

level, as can be seen in figure 2.24. The high density of states at around EF reveals

a Stoner-like instability of the nonmagnetic phase of these structures. In particular, in

C8N9v1 we observe that this instability is related with states which are mostly due to

graphitic carbon atoms. Meanwhile, in C7N7v4 these states are mostly due to pyridinic

nitrogens. For C9N5v4 structure, we observe that the defective carbon atoms contribute

more to these states than the pyridinic nitrogens. Similarly, such high density of states

was found for the other structures, although the density of states is not peaked at around

the Fermi level in these cases. Overall, these findings are in accordance with the spin

density features presented in figure 2.23.



Graphitic Carbon Nitride 71

−2

−1

0

1

2

0 50 10 155 010 15 10 20

0 10 200.5 0.51 11.5

Γ M K ΓΓΓ M KM ΓK Γ

E
n

e
rg

y
 (

e
V

)

DOS (arb. units) DOS (arb. units)

PDOS (arb. units) PDOS (arb. units)

(a) (b) (c)

C

DOS (arb. units)

N

N’

PDOS (arb. units)

C

N

C

N

Figure 2.24: Calculated band structures: total (blue lines) and projected density of
states of the nonmagnetic phase of (a) C8N9v1, (b) C7N7v4, and (c) C9N5v4 structures.
In the latter the states were projected on the carbon (red lines) and nitrogen atoms

(green lines) marked in figure 2.23.

Finally, we investigate the effects of the magnetic ordering on the electronic proper-

ties of those structures. Here, we performed band structure calculations for the ferromag-

netic states. A main feature in the band structures of C8N9v1 (shown in figure 2.25),

C11N4v3, C9N5v4, and C10N4v4 structures, are the electronic levels with spin broken

symmetry. For the C8N9v1 structure we obtained semi-ocuppied levels, which accounts

for the metallic nature of this system, while for the other structures we find band gaps

of 0.25, 0.05, and 0.09 eV, respectively.
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Figure 2.25: Calculated band structures of the (a) nonmagnetic and (b) ferromagnetic
phases of C8N9v1. In the latter solid (dashed) lines represent the spin-up (spin-down)

components.

On the other hand, as shown in figure 2.26, the calculated band structures of C9N7v2,

C6N9v3, and C10N5v3 present a different feature. Interestingly, these band structures
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Figure 2.26: Calculated band structures of the ferromagnetic phases of (a) C9N7v2,
(b) C6N9v3, and (c) C10N5v3. Solid (dashed) lines represent the spin-up (spin-down)

components. (d) Energy band diagrams for a half-zero-gap semiconductor.

reveal that for the spin-up component (solid lines) there are band gaps of 0.24, 0.78,

and 1.14 eV for C9N7v2, C6N9v3, and C10N5v3 respectively. Further, for the C9N7v2

and C6N9v3 structures, one should notice that there is no band gap for the spin-down

component (dashed lines), with a considerable density of states at the Fermi level, such

as in a half-metal. Such a similar feature was also found by Du et al. [128] for the

g-C4N3. Surprisingly, we find that the spin-down component of the ferromagnetic state

of C10N5v3 presents an unusual feature. In fact, for this spin component we observe

a graphene-like dispersion relation at around the Fermi level, as shown in the diagram

presented in figure 2.26(d). In particular, we find two Dirac-like points along the Γ−M

and Γ −K directions in the Brillouin zone, as can be seen in figure 2.26(c). Thus, our

results indicate that this system can be considered as a half-zero-gap semiconductor.

2.3.1 Summary

In summary, by means of ab initio calculations we have investigated the magnetic prop-

erties of graphene-like carbon nitride structures. Among the set of structures considered,

our results suggest there are twelve of them with energetically favorable antiferromag-

netic phase and nine with ferromagnetic phase. Notably, within the energetically favor-

able ferromagnetic structures, we find that C10N4v4 and C6N9v3 may have high Currie

temperatures as the previous magnetic carbon nitride structures. Our band structure

calculations for the nonmagnetic phase of several structures indicate that these states
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present Stoner-like instabilities. Finally, we obtained that the majority of these fer-

romagnetic structures remain metallic, where in special several ones may give rise to

free-metal magnetic half-metals or even a half-zero-gap semiconductor.



Chapter 3

Point defects in Teflon crystals

In this chapter we present our ab initio investigation on the effects of point defects

on the electronic structure of Teflon crystals. We first introduce some of recent ex-

perimental observations on defect-induced unsual properties in host materials, such as

room-temperature ferromagentism in Teflon tapes and fluorescence properties in irradi-

ated Teflon films. In section 3.2 we present our ab initio calculations on the energetic,

electronic, and magnetic properties of Teflon crystals with fluorine and oxygen defects.

From our calculations we obtained that oxygen substitutional impurities are energeti-

cally more stable than fluorine vacancies, and that both defects leads to the appearance

of local magnetic moments in the crystals. In addition, upon increasing of the fluo-

rine vacancy concentration, we find that the formation of polyconjugated structures in

polymer chains, which may be the color centers in irradiated PTFE, is an energetically

favorable process. However, our results do not support any ferromagnetic coupling be-

tween the local moments for the defective configurations considered in our work. This

supports our proposal that the observed ferromagnetic ordering reported by Ma and

co-workers [137] does not originate from the defective configurations addressed in this

work.

3.1 Introduction

Point and extended defects are common ingredients in the atomic structure of synthetic

and naturally occurring materials. Among these defects one can mention vacancies,

74
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substitutional, and interstitial impurity atoms, which are types of point defects, and

stacking faults, dislocations, and grain boundaries, which are extended defects [52].1

In the last several years certain types of impurities have been used to improve some

of the physical properties of materials, such as the mechanical properties of metallic

alloys [138] and electronic properties of semiconducting materials [1]. In contrast, struc-

tural defects have been claimed to be responsible for the detrimental of some of their

properties, negatively impacting their technological applications. However, recent works

have shown that defects can be beneficial to materials in order to improve some of

their properties and expand their functionalities. As reviewed by Krasheninnikov and

Banhart [139], the structural properties of nanostructured materials can be tailored by

electron and ion-beam-induced defects. On the theoretical side, computational simula-

tions have made valuable contributions to defect engineering of materials. For example,

by means of first-principles calculations, recent theoretical works have shown the possi-

bility of tuning the electronic properties of topological insulators through the control of

stacking faults [140, 141].

Structural defects have also been used to induce magnetic ordering in different types

of nonmagnetic materials. Vacancies in galium and boron nitride [142], vacancies and

hydrogen impurities in graphene [116], and edges in SnO2 [143] are examples of theo-

retical proposals to induce magnetic ordering in these materials. In agreement with the

theoretical predictions, numerous experimental studies have observed magnetic order-

ing in defective samples of nonmagnetic materials. For instance, magnetic ordering has

been observed in defective BN samples [144], in He irradiated GaN [145], in neutron and

proton irradiated SiC single crystals (6H- and 4H-SiC structural phases) [146, 147], in

defective InN films grown on Al2O3 [148], in proton irradiated graphite samples [149],

and in defective graphene [150]. In figure 3.1 we reproduce the experimental magneti-

zation loops reported in Refs. [144, 145, 147, 150]. It is noteworthy that in almost all

the other curves shown in figure 3.1 the magnetization hystheresis were observed, which

are signatures of defect-induced ferromagnetic ordering.

Also of interest are the carbon-based magnets, which have been considered as promiss-

ing candidates to biomedical and information storage applications. However, for pratical

applications their Curie temperature should be improved to obtain room-temperature

1By extended defect we mean structural defects which extend over several nanometers in the crys-
talline structure.
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Figure 3.1: Magnetization loops of defective nonmagnetic materials: (a) He irradiated
GaN [145], (b) defective BN [144], (c) proton irradiated 4H-SiC [147], and (d) defective

graphene [150].

ferromagnets. In this respect, in a recent experimental work by Ma et al. [137], the

authors reported on defect-induced room-temperature ferromagnetism in Teflon tapes.

Polytetrafluoroethylene (PTFE), usually known as Teflon,2 is a polymer with molecular

chains composed by tetracoordinated carbons with fluorine atoms of molecular formula

-(CF2)n-,3 as illustrated in figure 3.2. Due to its chemical and physical properties,

this material is used extensively in coating of surfaces, in fabrication of biomechanical

implants and bullet-resistant vests.

The molecular chains of PTFE can give rise to disordered or crystalline solids. Due to

the variety of molecular chain conformation and arrangement of these chains in the crys-

tal cell, several distinct crystalline phases have been observed [151, 152]. As the energy

difference between distinct conformations are small, the coexistance of segments with

different conformations may be present within a crystalline film [153]. Crystalline films

of PTFE are also insulating and diamagnetic. However, as suggested by Ma et al. [137],

mechanically induced defects in PTFE can give rise to spontaneous magnetization in

2Teflon is the brand name of PTFE-based products by The Chermous company, which was a spin-off
from DuPont Corporation, where the PTFE compound was discovered.

3n denotes the degree of polymerization.
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Figure 3.2: Illustration of the crystal, formula, and molecular fragment of the PTFE,
usually known as Teflon.

the samples. In particular, the authors applied mechanical stretching, cutting, and heat

treatment on Teflon tapes in order to create structural defects. As shown in figure 3.3,

the stretching procedure performed in the experiment (illustrated in panel 3.3(a)) leads

to the appearance of ferromagnetic ordering in the Teflon tapes, wherein the magneti-

zation increases with the strain, as shown in panel 3.3(b). In figure 3.3(c), the obtained

saturation magnetization of each segment indicates that higher values are achieved in

more stretched parts of the tape. Figure 3.3(d) shows the magnetization hystheresis

observed in both pure Ar and air atmospheres. These findings support the authors pro-

posal of defect-induced ferromagnetism, where the local magnetic moments are claimed

to have origin in carbon dangling bonds.

This type of d0 magnetism has attracted great attention of the scientific commu-

nity. On one hand, skeptical researchers have argued that magnetic contaminants, e.g.

Fe, Co, Ni, etc., are the responsible for originating the magnetic ordering in defective

samples of nonmagnetic materials. However, as reported by Ma and co-workers, X-ray

photoelectron spectroscopy (XPS) measurements rule out the possibility of any contam-

ination by magnetic impurities in Teflon tapes. In spite of the theoretical proposal of

ferromagnetism induced by carbon dangling bonds, the role played by other types of

point defects was not investigated.

Defective PTFE films have also shown valuable mechanical and optical properties.

In especial, electron beam irradiation of PTFE films leads to an improvement of their

mechanical resistance to gamma-ray radiation [154]. Gamma-ray radiation, by its turn,
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Figure 3.3: (a) Illustration of the stretching experimental procedure from which de-
fective Teflon tapes were obtained. (b) Magnetization loops as a function of strain,
obtained by mechanical stretching. (c) Saturation magnetization in different segments
of a stretched tape. (d) Magnetization loops of Teflon tapes after annealing in pure Ar

and air. Figures taken from Ref. [137].

gives rise to defective PTFE colorful4 films with fluorescent properties in the visible

spectral region [8]. Since then, numerous works have attempted to identify the physi-

cal origin of these unusual optical properties. In the work by Khatipov et al. [8], the

authors pointed out the formation of polyconjugated structures (with π-bonds), (-CF2-

(CF=CF)n-CF2-), due to abstraction of fluorine atoms, as the physical mechanism re-

sponsible for the fluorescent properties of defective PTFE films. These findings were fur-

ther supported by semiempirical calculations, which in turn suggested that the coloration

of defective PTFE films have the origin in polyconjugated structures with n = 2 − 6

and fragments contanining terminal CFO (carbon-fluorine-oxygen) groups [155]. In this

respect, more recent studies reported on experimental evidences of the formation of poly-

conjugated structures with n = 4− 7, and on suppression of fluorescence with increase

of the amount of oxygen in vacuum chamber atmosphere [156, 157].

Motivated by the above experimental results, in this work, we performed ab initio

calculations to investigate the effects of point defects on the electronic structure of

PTFE crystals. In the following sections we present our results on the pristine PTFE

4Pristine PTFE films have a milky color.
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crystals and on the energetic, electronic, and magnetic properties of fluorine vacancies

and oxygen impurities in molecular crystals of PTFE.

3.2 Results and Discussions

3.2.1 PTFE structural models

Initially we address the structural and energetic properties of two structural phases of

PTFE. Technical details concerning our DFT calculations are described in appendix H.3.

In figure 3.4 we present the equilibrium geometries obtained from our calculations. As

can be seen, in both phases the molecular chains are packed in a hexagonal arrangement.

In the structural phase shown in figures 3.4(a)-(b), denoted by 2I , the molecular chains

have planar conformation, whereas in the phase shown in figures 3.4(c)-(d), namely 157,

the chains present helical conformation, which can be expressed as 15 units per 7 turns

around the molecular axis. A similar nomenclature is adopted in Ref. [153].

Figure 3.4: Equilibrium geometries of the two distinct structural phases of PTFE
considered in our work. (a) Front and (b) side view of 2I phase. (c) Front and (d) side
view of 157 phase. Carbon and fluorine atoms are represented by orange and yellow

spheres, respectively.

In the 2I phase we obtain an average spacing between molecular chains of 5.47 Å,

while in the 157 phase we find 5.56 Å, which are in good agreement with the value of 5.66
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Å obtained by Ma et al. [137] through X-ray diffraction measurements (XRD). For the

2I and 157 phases we obtain bond lenghts of 1.59 and 1.58 Å between the carbon atoms,

respectively. Fluorine-carbon bond lenghts of 1.37 Å are obtained for both phases, which

is in good agreement with the theoretical findings of Ref. [158].

For the purpose of investigating the relative energetic stability of both structural

phases of PTFE, we calculated the formation energy per atom, which we define as

Ωβ =
Eβ − nCµC − nFµF

nC + nF
, (3.1)

where Eβ is the total energy of the β phase (β = 2I or 157), nC (nF ) is the number

of carbon (fluorine) atoms in the structure, and µC (µF ) is the atomic chemical poten-

tial of carbon (fluorine) obtained from graphene (F2 molecule) total energy. From our

calculations we obtain that ∆Ω = Ω2I − Ω157 = 7.3 meV/atom, which indicates that

the 157 is energetically more stable, suggesting that helical conformation of molecular

chains increase the stability of the structure.

3.2.2 VF and OF defects in PTFE

We now turn to the inclusion of point defects in our structures, namely, fluorine vacan-

cies (VF ) and oxygen substitutional impurities (OF ). We considered oxygen impurities

due to its usual presence in chemical groups used in polymer synthesis as well as in poly-

meric films. For instance, it has been reported that oxygen substitutional impurities, de-

noted by keto-defects, is a common impurity found in poly(p-phenylene vinylene)(PPV)

films [159]. In our investigations we only considered two distinct concentrations, i.e.

one and two point defects per supercell. As we shall see these two distinct defects give

rise to stable configurations without the breaking of the carbon backbone of PTFE.

Figure 3.5 depicted our calculated equilibrium geometries with fluorine vacancies and

oxygen impurities in 2I and 157 crystals.

From our equilibrium geometries we notice that the C-C bond lengths decrease by

around 0.1 Å near the fluorine vacancies, in both 2I and 157 phases. The F-C bond

length also decreases in the presence of the vacancy fluorine, by 0.03 Å. The angles

between carbons, which were 114.45◦ in 2I and 113.42◦ in 157, turn into 121.69◦ in 2I

and 121.32◦ in 157. This increase of ≈ 7◦ and 8◦ indicates the change of hybridization
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Figure 3.5: Equilibrium geometries of 2I and 157 PTFE phases with fluorine va-
cancies [panels (a) and (b)] and oxygen substitutional impurities [panels (c) and (d)].
Carbon, fluorine, and oxygen atoms are represented by orange, yellow, and red spheres,

respectively.

of the defective carbon site, from sp3 to sp2, in the presence of fluorine vacancies. By

considering that oxygen impurities substitute fluorine atoms, we obtain the equilibrium

geometries shown in figures 3.5(c) and (d). In this case, the C-C bond lengths increase

by 0.09 Å, while the angle between carbons of the backbone chain decreases by around

7◦ in both 2I and 157 phases, in contrast to the effect induced by the fluorine vacancies.

Furthermore, we increase the defect concentration by considering two defects per

supercell. We propose different configurations as shown schematically in figure 3.6.

x

x

2x xx

x

x

(a)

(d)(b)

(c)

Figure 3.6: Scheme showing the distinct configurations considered in case of two point
defects per supercell. In (a) the defects are located in the same site, in (b) nearest-
neighbor sites, in (c) next-nearest-neighbor sites, and in (d) in distinct molecular chains.
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The effects of the increase in the concentration of fluorine vacancies on the equilib-

rium geometries are shown in figure 3.7. We denote each configuration in this figure

by: (a) 2I -2VF , (b) 2I -2VFN, (c) 2I -2VFNN, (d) 2I -2VFC, (e) 157-2VF , (f) 157-2VFN,

(g) 157-2VFNN, and (h) 157-2VFC.

Figure 3.7: Equilibrium geometries of PTFE structures with two fluorine vacancies
per supercell. From (a)-(d) and (e)-(h) we show the equilibrium geometries of 2I and
157 phases with fluorine vacancies in configurations shown schematically in figure 3.6.
Configurations are denoted by (a) 2I -2VF , (b) 2I -2VFN, (c) 2I -2VFNN, (d) 2I -2VFC,
(e) 157-2VF , (f) 157-2VFN, (g) 157-2VFNN, and (h) 157-2VFC. Carbon and fluorine

atoms are represented by orange and yellow spheres, respectively.

These findings suggest that under increase of fluorine vacancies the molecular chains

do not break apart, and do not undergo any dramatic structural reconstruction. In

particular, for fluorine vacancies in the nearest-neighbor sites, figures 3.7(b) and (f), we

observe that neighboring carbon atoms adopt sp2 hybridization. We further considered

similar configurations for the oxygen impurities. However, several of these configurations
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induce the rupture of the carbon backbone. In figure 3.8 we present the stable equilib-

rium geometries with two oxygen impurities per supercell. We denote these equilibrium

geometries by: (a) 2I -2OFNN, (b) 2I -2OFC, and (c) 157-2OFC.

Figure 3.8: Equilibrium geometries of PTFE structures with two oxygen substitu-
tional impurities per supercell. In (a) and (b) we show the equilibrium geometries of
2I with oxygen impurities in configurations shown schematically in figure 3.6(c) and
(d). Configuration in (a) is denoted by 2I -2OFNN whereas that in (b) by 2I -2OFC.
In (c) the equilibrium geometry of 157 with oxygen impurities denoted by 157-2OFC.
Carbon, fluorine, and oxygen atoms are represented by orange, yellow, and red spheres,

respectively.

Let us now investigate the relative energetic stability of the point defects considered

above. With this purpose, we calculated the formation energy of each configuration as

follows [160]

Ωf [Xq] = Etot[X
q]− Etot[bulk]−

∑
i

niµi + q[Ef + Ev + ∆V ], (3.2)

where Etot[X
q] is the total energy obtained from our DFT calculations with a defect

X = (VF , OF ) in the supercell, Etot[bulk] the total energy of pristine PTFE, ni the

number of atoms of the same atomic specie i that have been added (ni > 0) or removed

(ni < 0) from the supercell, and µi the corresponding atomic chemical potentials. We

remind that the chemical potential of carbon was obtained from the total energy of

graphene whereas that of the fluorine from the total energy of F2 molecule. Likewise,

the chemical potential of oxygen is obtained from the total energy of O2 molecule.5 EF

5For instance the chemical potential of oxygen is given by µO = Etotal[O2]/2, where Etotal[O2] is the
total energy of a O2 molecule.
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is the Fermi level, q the charge state of the defect, Ev the valence-band maximum in the

PTFE bulk, and ∆V a correction term to align the reference potential.

Further, we also calculated the total and absolute magnetization for each configura-

tion. These quantities are defined as

MT =

∫
(ρ↑ − ρ↓)d3r, (3.3)

MA =

∫
|ρ↑ − ρ↓|d3r, (3.4)

where ρ is the charge density.6 Our obtained formation energies and the total and

absolute magnetization are listed in table 3.1.

Table 3.1: Calculated formation energies per point defectX (X = VF , OF ) of defective
2I and 157 phases of PTFE. The corresponding total (MT ) and absolute magnetization

(MA) are also listed. In these calculations we considered q = 0.

Config. Ωf [X0] (eV/X) MT (µB/X) MA (µB/X)

2I -VF 3.64 1.00 1.09
2I -OF 2.18 1.00 1.11
2I -2VF 4.05 -1.00 1.04

2I -2VFN 2.56 0 0
2I -2VFNN 3.64 0 0.91
2I -2VFC 3.66 0 1.09

2I -2OFNN 1.80 0 0
2I -2OFC 2.16 0 1.10

157-VF 3.74 1.00 1.10
157-OF 2.23 1.00 1.10
157-2VF 4.14 1.00 1.03

157-2VFN 2.69 0 0
157-2VFNN 3.80 0 0.93
157-2VFC 3.74 0 1.09
157-2OFC 2.23 0 1.11

Comparing the formation energies, we observe that oxygen impurities are energet-

ically more stable than fluorine vacancies. In particular, for the 2I phase we observe

that configuration 2I -OF is 1.46 eV more stable per defect than configuration 2I -VF .

Likewise, in 157 phase, the configuration 157-OF is 1.51 eV per defect more stable than

configuration 157-VF . These findings reveal an energetic preference for oxygen substi-

tutional impurities in PTFE crystals. Further, we find that fluorine vacancies present

6For ferromagnetic materials MT = MA whereas for antiferromagnetic materials MT = 0 and MA is
twice the magnetization of each atom.
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an energetic preference to be located at neighboring sites, such as in configuration 2I -

2VFN shown in figure 3.7(b), which is 1.08 eV/VF energetically more stable than the

2I structure with only one fluorine vacancy. This finding indicates that the forma-

tion of polyconjugated structures (with π-bonds) in molecular chains is an energetically

favorable process, in agreement with the experimental reports on γ-irradiated PTFE

films [8, 156, 157]. The same feature is observed for oxygen impurities, wherein the con-

figuration 2I -OFNN is 0.38 eV/OF energetically more stable than configuration 2I -OF ,

which corresponds to the 2I structure with only one oxygen substitutional impurity.

As expected, the fluorine vacancies as well as oxygen impurities in distinct molecular

chains present similar formation energies per defect as those of isolated defects in just

one chain. It is noteworthy that the energetically most stable configuration, namely 2I -

OFNN, is characterized by oxygen impurities on next-nearest-neighbor sites mimicking

an adsorbed O2 molecule, in which O-O bond length is 0.49 Å longer than in a free O2

molecule. Overall, the molecular chain conformation in 157 phase has minor effects on

the energetic properties of configurations listed in table 3.1.

From the calculated magnetizations we observe that both fluorine vacancies and

oxygen impurities are sources of local moments, with 1.0 µB per defect, signaling one

unpaired electron per defect. Upon increasing the number of defects in the supercell, the

total magnetization is supressed in some configurations such as 2I -2VF (157-2VF )N and

2I -OF (157-2VF )NN. For some configurations, e.g. 157-2VFNN and 2I -2VFNN, our cal-

culated magnetization suggests antiferromagnetic coupling between the local moments.

We mention that for configurations 2I -2VFC, 2I -OFC, 157-2VFC, and 157-2OFC, our

results do not suggest any ferromagnetic coupling between defects in different molecular

chains. Due to the similarity between our findings for the 2I and 157 phases, from this

point forward, we restrict our investigation to the defective 2I phase.

As expressed in equation 3.2, the formation energy of the point defects also depends

on the Fermi level of the host material (PTFE bulk). In this respect, we also calculated

the formation energy of 2I -VF and 2I -OF configurations as a function of the Fermi

level. In particular, we considered the following charge states: q = −1 (one additional

electron), q = +1 (removal of one electron), and q = 0 as previously considered. In

figures 3.9(a)-(b) we show the calculated formation energies of 2I -VF and 2I -OF defects

as a function of the Fermi level. In addition, we evaluated the transition levels which
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are determined by the formation energy difference, as follows

ε(q/q′) =
Ωf (Xq, EF = 0)− Ωf (Xq′ , EF = 0)

q′ − q
, (3.5)

where Ωf (Xq, EF = 0) is the formation energy of defect X in the charge state q, as

defined in equation 3.2, for the Fermi level on the top of the valence band, EF = 0 [161].

Our results for the 2I -VF configuration show that the fluorine vacancy with q = +1

charge state is more stable if the Fermi level is located between 0 and 0.02 eV within the

energy gap. Above the transition level ε(+/0) = 0.02 eV, the defect with q = 0 becomes

the most stable configuration. The next transition level obtained is at ε(0/−) = 4.08 eV,

above which the VF with q = −1 becomes more stable. For the 2I -OF configuration, we

find that impurity with charge state q = +1 is the most stable when the Fermi level is

between the valence band maximum (EF = 0) and the first transition level ε(+/0) = 0.11

eV. Above this value, the impurity with q = 0 becomes more stable, until the Fermi level

approaches the value of ε(0/−) = 2.48 eV, above which the q = −1 state turns into the

energetically favorable configuration. An energy band diagram of bulk PTFE is shown

in figure 3.9(c), in which the obtained transition levels are depicted. We mention that

we used the 2I phase DFT(GGA) band gap of 4.86 eV as the upper limit of EF .

Figure 3.9: Formation energies of configurations (a) 2I -VF and (b) 2I -OF , as a
function of 2I PTFE Fermi level. (c) Energy band diagram and transition levels of
corresponding configurations. In (c) VB and CB denote the valence and conduction

bands, respectively.

To investigate the magnetic stability of defective 2I configurations, we calculated

the energetic stabilization due to the appearance of magnetic moments, defined by

εs = Em − Enm, (3.6)
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where Em is the total energy of the most stable magnetic ground state and Enm the total

energy of the corresponding nonmagnetic configuration. We also calculated the energy

difference between the FM and AFM configurations for those configurations with stable

magnetic phases. Our results are shown in table 3.2.

Table 3.2: Calculated magnetic stabilization energies per point defect X (X =
VF , OF ) of defective 2I phase of PTFE. The corresponding energy differences between
antiferromagnetic (AF) and ferromagnetic (FM) configurations are also listed. In these

calculations we considered q = 0.

Config. εs (meV/X) EAF − EFM (meV)

2I -2VF -186.5 same carbon
2I -2VFN -2.6 nonmagnetic

2I -2VFNN -123.6 -304.1
2I -2VFC -526.1 -1.2

2I -2OFNN -2.1 nonmagnetic
2I -2OFC -241.65 0

These results indicate that some of the investigated configurations are stabilized

by the formation of local magnetic moments, with maximum energy gain of about -

526.1 meV per defect. Except for configuration 2I -2VFNN, for the configurations with

MA 6= 0, the unpaired electrons do not couple as can be noticed from our calculated

EAF−EFM . In contrast, configuration 2I -2VFNN (see figure 3.7(c)) has an energetically

favorable antiferromagnetic coupling between unpaired electrons of -304.1 meV. There-

fore, our calculations indicate that defect-induced local magnetic moments in PTFE are

energetically favorable, however with no effective ferromagnetic coupling between them.

These findings suggest that the defective configurations addressed in this section do not

induce any long-range ferromagnetic ordering in PTFE films, but instead give rise to a

paramagnetic response under application of an external magnetic field. Once the Fermi

level of the host material can be shifted due to charge doping, we further calculated

the total magnetization of 2I -VF and 2I -OF configurations for the distinct charge states

previously considered. The obtained values are listed in table 3.3.

Moreover, the obtained values of total magnetization indicate that upon charge dop-

ing the local magnetic moments of VF and OF defects can be suppressed. In special,

we find that once EF approaches the conduction band, the impurities with charge state

q = −1 become more stable, and their local magnetic moment are suppressed by the ad-

ditional charge doping. This result suggests that the paramagnetic response of defective

PTFE films is controled by physical charge doping.
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Table 3.3: Calculated total magnetization of configurations 2I -VF and 2I -OF with
distinct charge states, namely q = −1, 0, and +1. Magnetizations are given in units of

µB/X, where X = VF or OF .

Config. q MT

+1 0.75
2I -VF 0 1.00

-1 0

+1 0.50
2I -OF 0 1.00

-1 0

From our calculated band structures, presented in figure 3.10, we observe that fluo-

rine vacancies and oxygen impurities give rise to dispersionless defective levels (v1 and

c1) with broken spin degeneracy. In addition, for fluorine vacancies in the nearest-

neighbor sites (configuration 2I -2VFN), we observe defective levels near the band edges

of pristine PTFE. Since this configuration can be viewed as the minimum polyconju-

gated structure (with π-bonds) within the polymer chain, our results suggest that upon

increasing the conjugation of the polyconjugated structure, defective bands will appear

within the PTFE band gap. This finding, by its turn, is in agreement with previous

works [8, 155] which claimed that the color of irradiated PTFE films may be explained

by the formation of polyconjugated structures in the polymer chains.

Figure 3.10: Calculated band structures of pristine 2I phase, 2I -VF , 2I -OF , and
2I -2VFN configurations. Solid (dashed) lines represent the spin-up (spin-down) com-

ponents.

As can be seen in the projected density of states shown in figure 3.11, these disper-

sionless levels originate mainly from the 2p electronic states of defective carbon and oxy-

gen impurity in 2I -VF and 2I -OF configurations, respectively. In addition, we calculated
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Figure 3.11: Calculated total (black) and projected density of states (red). In 2I -
VF configuration the projection is on the defective carbon and in the case of 2I -OF

configuration it is on the oxygen impurity.

the local density of states, considering an energy window which includes only the disper-

sionless electronic states. The corresponding isosurfaces are shown in figures 3.12(a)-(b).

These isosurfaces are in agreement with our projected density of states, from which we

obtain that the defect electronic states come mainly from 2p levels of defective carbon

and the oxygen impurity. Residual contribution of fluorine atoms near the defective site

can be observed for both defects. The localized character is also emphasized.

3.2.3 Magnetic ordering from defects in distintic chains

Since fluorine vacancies and oxygen impurities give rise to local magnetic moments, we

next investigate whether defects in distinct molecular chains can be the source of any

magnetic ordering. With this purpose we focused on configuration 2I -2VFC shown in

figure 3.7(d). From our calculations we find that local moments in this configuration do

not couple, as indicated by the negligible energy difference between the ferromagnetic

and antiferromangetic configuration, EAF − EFM = 0. By considering that this energy

difference can be a function of the relative distance between the molecular chains, we

performed additional calculations for relative distances of 5.04, 4.84, 4.53, and 3.82 Å (in

our calculations presented in the previous section this distance was 5.61 Å). However, our

findings do not indicate any difference between the energy of FM and AF configurations,

signaling the absence of magnetic coupling.
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Figure 3.12: Isosurfaces (0.01 electrons/bohr3) obtained from the local density of
states considering only the dispersionless electronic states in (a) 2I -VF and (b) 2I -OF .
Carbon, fluorine, and oxygen atoms are represented by grey, orange, and red spheres,

respectively.

As previously mentioned, in Ref. [137] the authors argued that local moments origi-

nated from carbon dangling bonds, on distinct molecular chains, would be responsible for

the long range magnetic ordering observed in the stretched Teflon tapes. Based on this

assumption, the authors proposed a theoretical model formed by polymeric segments

packed along the same direction, from which a ferromagnetic coupling was suggested

based on first-principles calculations. In order to investigate the ferromagnetic coupling

between carbon dangling bonds proposed by Ma and co-workes, we adopt the structural

models reported in Ref. [137], which are illustrated in figure 3.13. Notice that each

molecular PTFE segment has a carbon dangling bond, which, according to the authors

are the source of local magnetic moments.

At first we calculated the energy difference EAF − EFM for the distances of 4.8

Å in 1D and 4.95 Å in 2D models, as performed in Ref. [137]. In this case, we find

EAF − EFM = −0.8 meV for the 1D model and -1.14 meV for the 2D case, which

rules out any ferromagnetic ordering, in contrast to what was proposed by the authors.

In particular, they found 59 meV for the 1D model and 82 meV for the 2D one. In
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Figure 3.13: 1D and 2D structural models of PTFE segments considered by Ma et
al. [137] to investigate the magnetic coupling between carbon dangling bonds. The up
and down arrows represent the local magnetic moments associated with each carbon
dangling bond. In particular, an antiferromagnetic configuration is depicted. Carbon

and fluorine atoms are represented by orange and yellow spheres, respectively.

addition, our results indicate an energetic preference for an antiferromagnetic ordering,

which is also in contrast with the findings reported in Ref. [137].

3.3 Summary

In summary, our calculations indicate that oxygen substitutional impurities are en-

ergetically more favorable than fluorine vacancies in PTFE films. In addition, upon

increasing of the fluorine vacancy concentration, we find that the formation of polycon-

jugated structures in polymer chains is an energetically favorable process. In particular,

our calculations are in agreement with previous works which suggested that these poly-

conjugated structures may be responsible for the color and fluorescent properties of

irradiated PTFE films. We also find that fluorine vacancies and oxygen impurities can

give rise to local magnetic moments without the breaking of the polymer carbon back-

bone. However, the corresponding local magnetic moments can be suppressed by charge

doping. Importantly, we do not observe any ferromagnetic coupling among the configu-

rations considered. This indicates that the observed ferromagnetic ordering reported by

Ma and co-workers [137] does not originate from the defective configurations addressed

in this work. Finally, we mention that, even for the structural models proposed by the
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authors, our calculations do not suggest any ferromagnetic coupling between the PTFE

fragments.
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Chapter 4

Metal-Insulator transitions in

VO2 and NbO2: a brief review

In this chapter we present a brief introduction to emergent phenomena in transition-

metal oxides, focusing on metal-insulator transitions. Experiments and theoretical pro-

posals on the metal-insulator transitions in vanadium and niobium dioxides, namely

VO2 and NbO2, are reviewed. In particular, we present the results of previous works

which attempted to disclose the driving force of these MITs and the physical mechanisms

responsible for the gap formation in the low-temperature phases of both materials.

4.1 Introduction

Transition-metal oxides (TMOs) constitute a vast class of materials which exhibits a

wide range of structural, electronic, and magnetic properties. Structurally, these ma-

terials can crystallize into a variety of structures, whose names are taken from the

corresponding oxide minerals, as illustrated in figure 4.1. Meanwhile, in addition to the

s and p electrons, the presence of transition-metal d electrons gives rise to a rich variety

of electronic and magnetic properties. For instance, there exist oxides with metallic

(e.g. ReO3), insulating (e.g. BaTiO3), semiconducting (e.g. TiO2), ferromagnetic (e.g.

CrO2), antiferromagnetic (e.g. Cr2O3), and paramagnetic (e.g. MoO2) properties [162].

Different from conventional metals and semiconductors, the macroscopic physical

properties of TMOs emerge due to the interplay or competition of various mechanisms

94
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rutile rock-salt "halite"

fluorite
corundum

perovskite spinel

Figure 4.1: Common crystalline structures of transition-metal oxides: (a) rock-salt
(MO), (b) rutile (MO2), (c) fluorite (MO2), (d) corundum (M2O3), (e) perovskite
(AMO3), and (f) spinel (AM2O4). “A” denotes cationic elements, “M” transition-
metals, and “O” oxygens. The photos illustrate the respective minerals from which the

structure names were given.

with similar energy scales. In particular, strong electron-electron interactions, lattice-

electron, electron-spin, and spin-orbit couplings lead to competing phases with enhanced

sensitivity to small external perturbations such as temperature, pressure, and applied

fields [163]. For example, in systems wherein the interaction energy between electrons

dominates their kinetic energy, the electrons localize giving rise to an insulating phase,

denoted as Mott insulator (for an introduction about Mott insulators see appendix I).

Interestingly, the variety of interactions leads to additional exotic physical properties

in TMOs. Transitions to states with vanishing electrical resistivity, i.e. superconduct-

ing states, are observed in some copper and iron-based oxides when these materials

are cooled down below their respective critical temperatures (see figure 4.2(a)).1 It

is noteworthy that the highest known critical temperatures achieved by cuprates and

iron-based superconductors are 164 K [164] and 56.3 K [165], respectively.2 For com-

parison, the highest critical temperature reported in the literature is of 203 K, obtained

1The critical temperature is defined as the temperature below which the material turns into a super-
conductor.

2Cuprates are commonly denoted as high-Tc superconductors due to the fact that some of these
materials possess critical temperatures above the temperature of liquid nitrogen, 77 K.
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for H3S superconductors under pressure [166]. We mention that superconductivity in

these compounds is one of the major problems in condensed matter physics. Another

type of abrupt change of transport properties is observed in manganites, in which a

dramatic change in the electrical resistivity is induced by an external magnetic field (see

figure 4.2(b)) [167]. Orbital ordering [168] (see figure 4.2(c)) and multiferroicity [169]

have also been observed in manganites. Finally, we mention the abrupt transitions be-

tween insulating and metallic phases in numerous transition metal oxides, which we

explore in more detail below.

Figure 4.2: Examples of emergent phenomena in transition-metal oxides. (a) Electri-
cal resistivity of iron-based superconductors as a function of temperature [170], (b) elec-
trical resistivity as a function of external magnetic field of manganite thin films [171],

and (c) illustration of orbital ordering in layers of LaMnO3.

Historically, metal-insulator transitions (MITs) in transition-metal oxides were first

reported by Foëx et al. in a couple of works in the late forties [172] and early fifties [173],

in which the authors addressed the temperature dependence of the resistivity of Ti2O3

and V2O3 samples. Few years later, in the Bell laboratories, Morin observed similar

MITs in polycristalline samples of Ti2O3, V2O3 [174], and single crystals of the same

oxides, including VO and VO2 [175]. As shown in figure 4.3(a), Morin observed abrupt

changes of conductivity over several orders of magnitude, with hysteresis about the

transition temperatures, in single crystals of Ti2O3, V2O3, VO, and VO2.

From a technological perspective, these abrupt changes of conductivity within a

short range of few kelvins, accompained by the ultrafast switching between metallic and

insulating phases, have motived the realization of novel devices, denoted as phase tran-

sition electronic devices. In particular, one can mention electronic switches, field effect

transistors, optical detectors, memristors [176, 177], and solid-state sensors as devices

in which TMOs presenting metal-insulator transitions are promissing candidates [178].
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On the other hand, the physical mechanisms responsible for the MITs in these oxides

have attracted great attention of condensed matter physicists [179].

In this chapter we discuss the MIT in vanadium and niobium dioxides which are

rutile-based d1 systems. In particular, the MIT in VO2 has been under debate for many

years mainly due to the complex interplay between lattice distortions and electronic

correlations. In respect to NbO2, its MIT has been less investigated due to reasons

which will be commented on the following.

4.2 Metal-insulator transitions in VO2 and NbO2

4.3 Experiments and first theoretical models

Vanadium dioxide undergoes a MIT at a temperature of 340 K [175] while in the case

of niobium dioxide it happens at around 1081 K [180–182], as can be seen in the mea-

surements of their conductivity as a function of temperature shown in figure 4.3.

Figure 4.3: Conductivity of (a) VO2 and (b) NbO2 as a function of reciprocal temper-
ature obtained by Morin [175] and Jannick et al. [180], respectively. In the graphics the
transition temperatures of VO2 (340 K) and NbO2 (1081 K) are indicated by dotted

lines.

In both systems, the MIT is accompained by structural distortions from a high-

temperature rutile structure (R) [183, 184], where the transition-metal atoms are equally

spaced along the rutile c axis (see figures 4.4(a) and 4.5(a)), to low-temperature distorted

structures. In the case of VO2, under ambient pressure, the vanadium atoms dimerize

and tilt with respect to the rutile c axis, giving rise to the M1 phase [185] illustrated in
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figure 4.4(b). In addition, previous experimental works have shown a distinct monoclinic

phase, denoted as M2, which can be stabilized at ambient conditions by stress along the

[001]R axis or by doping with 3+ ions, such as Cr3+, Al3+, Fe3+, or Ga3+ [186, 187].

As can be seen in figure 4.4(c), in this phase half of vanadium atoms dimerize, without

tilting, whereas the other half experiences a zigzag-like distortion along the c axis. In

the case of NbO2, the low-temperature structure is a body-centered tetragonal (bct)

structure [184] (see figure 4.5(b)) which presents similar structural distortions as the M1

phase of VO2.

Figure 4.4: Crystal structures of (a) rutile (R) (space group P42/mnm), (b) mono-
clinic M1 (space group P21/c), and (c) monoclinic M2 (space group C2/m) phases of
VO2. Vanadium atoms are represented by the black spheres while the oxygens by the

orange ones.

In the rutile structures, the vanadium or niobium atoms are located inside oxygen

distorted edge-sharing octahedra. In particular, these octahedra are trigonal distorted,

which in turn gives rise to a crystal field responsible to the splitting of the t2g manifold

into an a1g state and an eπg douplet, viz., t2g = a1g ⊕ eπg , as illustrated in figure 4.6(a).

Employing the local coordinate system shown in figure 4.6(b) [188], we observe that

the a1g level corresponds to the dx2−y2 , which mediates the σ-type d − d overlap along

the rutile c axis. Further, the eπg douplet corresponds to the dxz and dyz, where the
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Figure 4.5: Crystal structures of (a) rutile (R) (space group P42/mnm) and (b) body-
centered tetragonal (bct) (space group I41/a) phases of NbO2. Niobium atoms are

represented by the black spheres while the oxygens by the orange ones.

former mediates the π-type overlap along the rutile c axis while the latter mediates a

smaller σ-type overlap along the a axis, as depicted in figure 4.6(b). Since the dz2 and

dxy orbitals point toward the oxygen ions these states (eσg manifold) are higher in energy

than the previous levels.

Based on the d1 configuration of each transition-metal ion and the structural dis-

tortions concerning the transition-metal atoms, the first theoretical description of the

MIT in VO2 (R→ M1) pointed out a structurally-driven MIT. According to Goode-

nough [189], the covalent-type cation-cation bond formation in the M1 phase would

support a phase transition with the appearance of a band gap at low temperatures. In

fact, in a band-like picture, the same author showed [13] that in the rutile phase both

a1g and eπg states give rise to semi-occupied states accounting for the metallic character

(figure 4.7). Further, as a result of structural distortions in M1 phase, the a1g band splits

into an occupied bonding and empty antibonding subbands. In addition, the tilting of

the vanadium atoms, commonly denoted as antiferroelectric displacement,3 leads to an

3This distortion is characterized by the displacement of vanadium atoms perpendicular to the rutile
c axis, in such a way that two first-neighbors are displaced in opposite directions.



Metal-Insulator transitions in VO2 and NbO2 100

Figure 4.6: (a) Splitting of d-subshell in rutiles due to the crystal field, wherein the
t2g manifold on an octahedral symmetry field is further splitted due to the octahedral
distortion (trigonal), resulting into t2g = a1g ⊕ eπg . The distortion on the oxygen
octahedral can be noticed by examining the transition metal-oxygen bond lenghts. In
R VO2 (NbO2), one can notice that the distance between the vanadium (niobium) and
the apical oxygen is 1.93 (2.00) Å, while the distance between the vanadium (niobium)
and the basal oxygens is 1.92 (2.08) Å. This shows that the octahedron in R VO2 (NbO2)
is elongated (compressed). In (b) the local coordinate system introduced by Eyert [188]

is shown with the d orbitals. The structures were taken from Ref. [188].

upshift of the eπg subband with respect to the occupied a1g subband, resulting in the gap

formation between these two subbands (figure 4.7), suggesting thus that VO2 undergoes

a Peierls-type transition. Hence, in Goodenough’s picture the M1 phase of VO2 is a

Peierls insulator (for an introduction about a Peierls insulator see appendix I).

However, the experimental findings on the M2 phase reported by Pouget and co-

workers established the importance of electronic correlations in the electronic structure

of VO2 [190, 191]. By means of nuclear magnetic and electron spin resonance (NMR

and ESR) measurements they observed the existence of two types of vanadium sites in

the M2 phase: one type related to the dimerized vanadium atoms and the other to the

vanadium undimerized atoms. In particular, they found that d electrons are localized in

the vanadium sites of the undimerized chain, which in turn implies that these electrons

may be on the localized side of a Mott transition [190, 191]. In particular, Pouget et al.

interpreted the obtained magnetic susceptibility of M2 phase by considering local mo-

ments on the vanadium sites of the undimerized chain (coupled antiferromagnetically),

using a set of independent spin-1/2 Heisenberg chains [190]. These findings motived
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Figure 4.7: Energy bands of R and M1 phases of VO2 as proposed by Goode-
nough [13]. Within a band picture, Goodenough proposed that the band gap (Egap)
between the a1g and eπg subbands appears in M1 phase due to the vanadium dimer-
ization (∆1) and antiferroelectric displacement (∆2). Differently, in Mott’s picture the

splitting ∆1 is caused by Coulomb repulsion between electrons in the a1g subband.

Zylbersztejn and Mott [14] to investigate the role played by electronic correlations on

the gap formation of the insulating phases of VO2. In contrast to the Peierls mechanism

proposed by Goodenough, Zylbersztejn and Mott pointed out that the lattice distor-

tions in VO2 can only create a small gap, if any, between the a1g and eπg subbands. In

particular, they argued that the antiferroelectric displacement induces the upshift of the

eπg subband, which, in combination with the dimerization, gives rise to an a1g subband

completely filled. According to them, it is a result of the Coulomb repulsion between

electrons in the a1g subband that this subband splits in bonding and antibonding sub-

bands, leading to the gap formation. Therefore, in Mott’s picture the role played by

the distortions is to provide empty (completely filled) eπg (a1g) subbands, but not to

determine the energy band gap.

Since the establishement of the Peierls and Mott pictures on the MIT in VO2,

numerous investigations have attempted to disclose the driving force behind the MIT

in VO2, and to understand the insulating nature of the low-temperature phases of this

material. Experimentally, phonon-mediated instabilities of rutile phase have supported

a structurally-driven MIT. By means of inelastic X-ray scattering (IXS) measurements,

Budai et al. [192] obtained the phonon dispersion of R phase of VO2, which shows

acoustic phonon softening along Γ − R − A −M in the respective Brillouin zone (see

figures 4.8(a) and (b)). We mention that these findings are in agreement with the

previously reported softening of transverse modes near the R point in rutile phase,
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as observed experimentally by Terauchi and Cohen [193] and theoretically predicted

by Gervais and Kress [194]. These soft modes in the R phase of VO2 indicate the

rutile instability under cooling, towards a structural phase transition. In particular, the

phonon eigenvectors of the lowest-frequency mode near the R point correspond to the

structural distortions presented in the M1 phase [194], as illustrated in figure 4.8(c).

Figure 4.8: (a) Phonon dispersion of R phase of VO2. Diamond points represent
the experimental obtained data while the continuous lines are ab initio anharmonic
lattice dynamics at distinct temperatures [192]. (b) Brillouin zone of R structure, with
high-symmetry directions (red lines). Figures in (a) and (b) were taken from Ref. [192].

(c) Phonon eigenvectors at the R point of rutile VO2 [194].

Other experiments on the rutile phase of VO2 indicate signatures of strong elec-

tronic correlations effects on its electronic properties. In the work by Pouget and co-

workers [195], by doping VO2 with niobium atoms (V1−xNbxO2), the authors found

that the rutile structure turns into an insulating state for a concentration x ≥ 0.15.

Since the niobium atoms have a bigger covalent radius than vanadium atoms, the dop-

ing induces a lattice expansion, which suggests that under lattice expansion the R phase

undergoes a Mott-Hubbard transition (see appendix I). More recently, it was also re-

ported that VO2 thin films doped with tungsten (V1−xWxO2) present metal-insulator

transitions, without vanadium dimerization for x ≥ 0.11, with characteristics of a Mott-

Anderson transition [196]. In addition, from XPS experiments on VO2/TiO2(001) thin

films, Okazaki et al. [197] obtained a quasi-particle weight of about Z ≈ 1/3 = 0.33

for the rutile phase. It is noteworthy that this quasi-particle weight can be interpreted

as the inverse of the effective mass enhancement due to electron-electron interactions.
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As described in the Landau Fermi liquid theory, the excitations of an interacting elec-

tron system can be mapped onto the excitations of a noninteracting electron system;

where these excitations can be thought as quasiparticles with enhanced (renormalized)

effective mass m∗ [17]. This mass renormalization is associated with the quasi-particle

weight as m∗/mband ∼ 1/Z (see equation J.11), where mband is the bare band mass of

noninteracting Bloch electrons.4

X-ray spectroscopy and photoemission measurements have provided valuable infor-

mation about the changes of the t2g subbands through the metal-insulator transition in

VO2. For instance, x-ray absorption measurements obtained by Haverkort et al. [198],

showed that the R→ M1 transition is accompained by a strong orbital polarization in

favor of the a1g subband. In particular, they found that the t2g occupation goes from an

almost isotropic occupation concerning the a1g and eπg subbands in R phase, to an almost

completely occupied a1g subband in M1 phase. These findings pointed out a feature of

a Peierls-like transition (system becomes more one dimensional), though the observed

strong orbital polarization is only possible in the presence of strong correlations. Fur-

thermore, the x-ray absorption spectra obtained by Koethe et al. [199] indicates that

the bottom of the conduction band of M1 phase is mainly composed by eπg states. They

observed that when the MIT takes place, the peak with a1g symmetry (at around 530

eV) vanishes in the R phase, as indicated by the down arrow in figure 4.9(b). This is in

agreement with the proposed a1g subband splitting in the M1 phase. With respect to

the semi-occupied states in R phase, the experimental data indicates a more isotropic

situation wherein both a1g and eπg subbands contribute to the electronic states around

the Fermi level. The photoemission spectra by its turn shows an occupied V-3d peak

at around 0.8 eV below the Fermi level for the M1 phase, and a shoulder at -1.3 eV for

the R phase, as can be seen in figure 4.9(a). As we will mention in the next section,

the latter is not captured in DFT calculations, which may signal the presence of strong

correlations in the R phase of VO2.

More recently, the fabrication of VO2 nanostructures has allowed the precise control

of the stress applied to the samples. In the experiment performed by Park et al. [200],

the authors studied the MIT in single crystal VO2 nanobeams by using uniaxial stress.

Interestingly, they found that a triple point of R, M1, and M2 structural phases is at the

4For noninteracting systems the quasiparticle weigth is equal to unity, while in a strongly correlated
system, as in a Mott insulator, Z goes to zero.
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Figure 4.9: (a) Photoemission and (b) x-ray spectroscopy spectra of R and M1 phases
of VO2 obtained by Koethe et al. [199].

transition temperature associated with the metal-insulator transition (see figure 4.10),

suggesting that domains with distinct structural phases should coexist near the MIT.

In fact, as shown by Qazilbash et al. [201] insulating and metallic phases coexist in the

vicinity of the metal-insulator transition in VO2 films, as can be seen in the images of

near-field scattering amplitude measurements shown in figure 4.11. In these images the

metallic regions are shown in light blue, green, and red colors whereas the insulating

regions in dark blue colors. Other experiments on VO2 nanorods [202] revealed a mixed

phase of M2 and R strucutres with antiferromagnetic properties, which indicate an

antiferromagnetic ordering between unpaired vanadium atoms.

With the purpose of decoupling the relation between the structural phase transition

and the MIT in VO2, a recent experimental work has induced this transition by the ap-

plication of femtosecond laser pulses on insulating VO2 films. As reported by Wegkamp

et al. [203], the gap of the insulating phase collapses upon photoexcitation on ultrafast

time scales, giving rise to a monoclinic metallic phase. In particular, the authors pointed

out that the photoexcitation gives rise to hot carriers, which have an associated tem-

perature much higher than the lattice temperature. As a consequence, the lattice does

not contribute to the fast response of VO2 to ultrashort pulses. We mention that more

recently numerous experimental works have reported on the existence of monoclinic-like

metallic phases of VO2 [204–207].

The metal-insulator transition in NbO2 has not received so much attention. As

mentioned by Seta and Naito [208] this MIT has been experimentally less studied in

comparison to the MIT in VO2, in part due to the higher temperature needed to induce
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Figure 4.10: Phase diagram of VO2 illustrating the solid state structural triple point
near the MIT, as reported by Park et al. [200].

Figure 4.11: Images of near-field scattering amplitude measurements reported by
Qazilbash et al. [201] of VO2 films in the vicinity of the MIT. The metallic regions are
shown in light blue, green, and red colors whereas the insulating regions in dark blue

colors.
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the transition in NbO2. Since the early works on the MIT in NbO2, it was suggested that

it is a structurally-driven transition and is of second-order in contrast to the first-order

MIT in VO2 [208, 209]. As we will discuss in the following, DFT calculations support

a structurally-driven MIT in NbO2. In respect to the instability of the rutile phase

of NbO2, the experimental observation of soft mode phonons remains inconclusive. In

particular, Shapiro et al. investigated the phase structure transition in single crystals of

NbO2, by means of neutron scattering. From their findings they suggested the existence

of soft phonon mode at the P point, with wavevector qp = (1/4, 1/4, 1/2) [210]. How-

ever a few years later, Pynn and co-workers [211] reported inelastic neutron scattering

measurements on NbO2 with no clear evidence of soft phonon modes in the rutile phase.

Finally, we mention that a recent theoretical work [212] emphasizes a structurally-driven

MIT in NbO2 due to soft modes at the P point of the rutile Brillouin zone, which in

turn supports that the bct phase of NbO2 is a Peierls-type insulator.

In the experimental literature the precise value of the energy gap of the bct phase

remains inconclusive. In particular, previous experimental works have reported a wide

range of values, ranging from 0.5 eV to 1.20 eV [182, 213]. In the work by Posadas et

al. [214], the authors obtained a band gap of at least 1.0 eV through x-ray photoelectron

spectroscopy and inverse photoelectron spectroscopy measurements for NbO2 films on

various oxide substrates. From ellipsometric measurements for NbO2 films on (111)-

oriented LSAT5 single crystal, O’Hara and co-workers [215] found an indirect gap of 0.7

eV. As we shall see in chapter 5 this latter value is in good agreement with our obtained

gap.

4.4 First principles investigations

DFT calculations have been employed to investigate the electronic structure of VO2 and

NbO2. With respect to the rutile phase, DFT calculations, based on LDA or GGA, were

able to describe the metallic nature of this phase [188, 216–219]. In figure 4.12(a), we

show the DFT (LDA) band structure of rutile VO2 obtained by Eyert [188], in which the

bands between -7.6 and -2.2 eV are mainly due to O−2p states, those from -0.6 to 2.0 eV

are mainly due to t2g states, and those from 2.0 to 5.5 eV correspond to eg states. For

the rutile NbO2 the same author obtained the same group of bands [219], wherein the

5(LaAlO3)0.3(Sr2AlTaO6)0.7.
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bands between -9 and -3 eV are mainly due to O−2p states and those from -1 to 3 eV are

mainly due to t2g states. From the a1g-character6 bands shown in figure 4.12(b) one can

see that the a1g (dx2−y2) subband in R VO2 is a little bit downshifted in relation to the

remaining eπg douplet (dxz,dyz) due to the small distortion on the oxygen octahedrons.

The difference between the electronic dispersion of the a1g subband along the Γ − Z

(parallel to the rutile c axis) and along the Z −X (perpendicular to the rutile c axis)

emphasizes the overlap between the dx2−y2 orbitals along the rutile c axis. By comparing

these results with photemission spectra obtained by Koethe et al. [199] (red continuous

line in figure 4.9(b)), one notices a good agreement with the position of the O−2p band;

however the shoulder located at -1.3 eV is not captured in the total density of states

(figure 4.12(c)). In addition, the DFT t2g bandwidth is overestimated in comparison

with experimental results.

Figure 4.12: (a) DFT (LDA) band structure of rutile VO2 and (b) corresponding
a1g-character bands obtained by Eyert [188]. (c) Total density of states corresponding

to the band structure shown in (a).

In contrast to the theoretical findings for the rutile phase, similar calculations fail to

describe the insulating nature of the monoclinic phases of VO2. In part these findings

suggest that the associated structural distortions cannot give rise to band gaps in the M1

6The contribution of dx2−y2 orbital of V atom for each band is given by the height of the bars.
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and M2 phases [188, 217]. From the DFT (LDA) calculations performed by Eyert [188],

it was shown that the dimerization of vanadium atoms leads to strong effects on the

a1g subband. Due to dimerization the a1g subband splits, giving rise to an occupied

(empty) bonding (antibonding) a1g subband, as shown in figure 4.13(a) and (b). More

recent DFT calculations attempted to take into account the electronic correlation effects

beyond LDA/GGA approximation by employing hybrid functionals, such as the Heyd-

Scuseria-Ernzerhof (HSE) and modified Becke-Johnson exchange and LDA correlation

(mBJLDA). As reported by Eyert [218] DFT calculations within HSE functionals were

able to take into account the insulating nature of both monoclic phases of VO2. However,

as pointed out by Grau-Crespo et al. [220] these calculations predicted wrong magnetic

ground states for the phases of VO2. In the work by Zhu et al. [221] the authors properly

described the gap and the magnetic ground states by employing mBJLDA functionals,

though the incoherent bands observed in photoemission measurements are not described

within this band picture.

Figure 4.13: DFT (LDA) a1g-character band structures of (a) M1 and (b) M2 phases
of VO2 obtained by Eyert [188]. In (c) the Brillouin zone of monoclinic is shown.

GW and quantum Monte Carlo calculations (QMC) were also performed to investi-

gate the M1 and R phases of VO2. GW calculations were reported to describe the insu-

lating nature of the M1 phase, with gap of 0.6 eV in good agreement with experiments,

and the metallic nature of the R phase [222, 223]. However, as observed by Sakuma

et al. [223], the R phase was found less correlated than in experiment (Z ≈ 0.5 while

Zexp ≈ 0.33), with no satellite structure below the Fermi level, in contrast to photoemis-

sion spectra shown in figure 4.9. The authors pointed out that this disagreement is due

to the absence of important electronic correlations neglected in their GW calculations.

Diffusion QMC calculations also described the R→M1 metal-insulator transition [224].
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However, for both R and M1 phases it was predicted antiferromagnetic configurations

in disagreement with experiments.

DFT calculations have also been applied to the bct phase of NbO2. As shown

in figure 4.14(a), the band structure obtained by Eyert [219] takes into account the

insulating nature of this phase, with a band gap of 0.1 eV. As in the M1 phase of VO2,

the dimerization of niobium atoms leads to the splitting of the a1g subband, giving

rise to an occupied (empty) bonding (antibonding) a1g subband, as can be noticed

from the a1g-character band structure presented in figure 4.14(a). Therefore, DFT

calculations describe the MIT in NbO2, supporting a Peierls-type MIT, as expected

from the Goodenough picture. However, we stress that the DFT (LDA) band gap

is underestimated in comparison with experimental findings. By means of ultraviolet

photoelectron spectroscopy (UPS), Weibin et al. [225] reported an energy gap of 0.70

eV while Posadas et al. [214] found that the band gap of NbO2 thin films on STO(111)

is at least 1.0 eV. Recent ellipsometric measurements reported by O‘Hara et al. [215]

indicate an indirect gap of 0.7 eV.

Figure 4.14: (a) DFT (LDA) a1g-character band structure of bct phase of NbO2

obtained by Eyert [219]. (b) Brillouin zone of the bct structure.

4.5 DFT+DMFT investigations

More recent calculations have employed dynamical mean field theory to describe several

aspects of the physics of VO2, but some discrepancies between different implementations

remain. In the work by Biermann et al. [226] the authors applied the so-called down-

folding procedure to obtain a multiband Hubbard Hamiltonian for VO2 of the following
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form [227]

H = HLDA +
1

2

∑
imm′σ

Umm′nimσnim′−σ +
1

2

∑
im(6=m′)σ

(Umm′ − Jmm′)nimσnim′σ, (4.1)

where nimσ = a†imσaimσ (a†imσ creates an electron with spin σ in a localized orbital m

at site i) and HLDA is the DFT part containing the material specific informations. By

choosing a set of isolated correlated bands (correlated subspace), e.g. t2g bands, one

can obtain Wannier functions, which in turn can be used as the basis set of HLDA. The

screened on-site Coulomb interaction is parametrized as Umm = U , Umm′ = U − 2J ,

with Jmm′(6=m) = J . The Hamiltonian in equation 4.1 is then solved by cluster-DMFT.7

As depicted in figure 4.15, the authors obtained a R metallic phase, with renormalized

t2g bands (Z ≈ 0.66), and an insulating M1 phase with gap of 0.6 eV in agreement with

experimental findings [199].

Figure 4.15: Density of states obtained by Biermann et al. for the (a) R and (b) M1

phases of VO2. DFT (LDA) and DFT+DMFT results are shown in dashed and solid
lines, respectively. Figures taken from Ref. [226].

Furthermore, the authors found that electronic intersite correlations, within the

vanadium dimers, renormalize down the a1g bonding-antibonding splitting in comparison

with DFT calculations. The corresponding a1g bonding and antibonding peaks are

marked by arrows in the density of states shown in figure 4.15(b). In their proposed

mechanism for the gap opening, this renormalization combined with the upshift of the eπg

states give rise to a gap between a1g and eπg subbands. As can be noticed in figure 4.15(b)

the bottom of the conduction band is composed by eπg and the a1g antibonding states.

7In the cluster extension of DMFT the lattice problem is mapped into a cluster of sites embedded in
an effective medium instead of a single-site.
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Thus, according to the results obtained by Biermann and co-workers, the M1 phase of

VO2 can be viewed as a renormalized Peierls insulator.

In contrast, by means of ab initio linear scaling DFT+cluster-DMFT calculations,

Weber et al. [228] suggested a distinct mechanism for the gap opening in the M1 phase.

From their calculations, the M1 phase was found to be insulating with gap of ∼ 0.6

eV (see figure 4.16(a)) in agreement with the experimental value. In addition, the

authors noticed the presence of a pole at the Fermi level in the imaginary part of the

self-energy of M1 phase (marked by an arrow in figure 4.16(b)) characteristic of a Mott

insulator.8 This finding suggested that the gap formation of the M1 phase is mainly

due to an orbital-selective Mott instability concerning the a1g electronic states. Looking

at the occupancy of the 3d shell, they obtained at around two electrons per vanadium,

resulting in four electrons per vanadium dimer, suggesting that the M1 phase is not a

renormalized Peierls insulator [228].

Figure 4.16: Density of states obtained by Weber et al. for (a) the M1 phase of
VO2 and (b) the corresponding imaginary part of the self-energy. Figures taken from

Ref. [228].

4.6 Final comments

In spite of the significant advances presented in the previous section, important funda-

mental challenges remain. As shown in figure 4.10 the close proximity of the M1, M2,

8As shown by Brinkman and Rice [229] the metal-insulator transition in the one-band Hubbard
model is associated with the divergence of the effective mass renormalization as the system approaches
the insulating phase. The corresponding insulating phase is characterized by the divergence of the
imaginary part of the self-energy (pole) at the Fermi level (Mott instability) on the Matsubara frequency
axis. We mention that the divergence Z → 0, when the insulating phase is approached from the metallic
side, was further supported by DMFT calculations [10].
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and R phase in the phase diagram [187, 200] calls for an unified framework in which

these phases can be simultaneously described. Another fundamental question is whether

the MIT transitions take place if we fix the structure and change only the temperature.

We stress that it has not been possible to properly address the gap formation in the

low-temperature phases of VO2 as well as the physical mechanism behind the MIT in this

material within an approach based on an effective model from which the oxygen degrees

of freedom are eliminated and which contains only V-3d electrons electrons (Hubbard

model presented in equation 4.1). Indeed, earlier DFT+DMFT works on the Hubbard

model [226, 230, 231] showed that for a given set of Hubbard U and J parameters, the gap

in the M1 insulating phase is too robust, while the mass renormalization in the R phase

is too small. For example, the insulating M1 phase obtained by Biermann et al. [226]

is gapped even at very high temperatures (T = 770 K), and the quasiparticle weight

in the rutile phase is too large compared to experiment, viz. Biermann and co-workers

obtained Z ≈ 0.6 while Okazaki et al. [197] Z ≈ 0.33. Both of these effects result

from placing this material too far from the Mott transition boundary. Consequently,

the M2 phase was not described before with this approach, as half of V-atoms would

not undergo Mott-Hubbard transition. In addition, the self-consistent evaluation of the

charge-density in the DFT+DMFT implementation, not considered in Ref. [226], is of

great importance to the appropriate description of the mechanism responsible for the

gap opening in the monoclinic phases of VO2. In this respect, we mention that the

full charge self-consistency has been shown to be of crucial importance for the correct

description of the metal-insulator transition in V2O3 [232]. Finally, we mention that our

approach overcomes these problems as we explore in the next chapter.



Chapter 5

Metal-Insulator transitions in

VO2 and NbO2: towards an

unified description

In this chapter we present our theoretical investigation on the electronic structure of

rutile (metallic) and insulating phases of VO2 and NbO2 employing DFT+DMFT cal-

culations. In the following, we present our results in two sections: in section 5.1 we dis-

cuss our DFT calculations and in section 5.2 our DFT+DMFT calculations. Within our

DFT+DMFT approach, we successfully describe the electronic structure of the metallic

and insulating phases of both oxides. We show that Mott physics plays an essential role

in all phases of VO2, in particular the resulting transition from rutile to dimerized M1

phase is adiabatically connected to Peierls-like transition, but is better characterized as

the Mott transition in the presence of strong intersite exchange. For the NbO2, we find

that nonlocal dynamic correlations also play a role in the gap formation of the insulating

phase (bct), by a similar physical mechanism as that for the M1 phase of VO2. Although

the nonlocal dynamic correlations in bct phase play a less important role for the gap

opening than in M1 and M2 phases of VO2, it indicates that the bct phase of NbO2 is

not a pure Peierls-type insulator, as it was recently proposed.

The investigations on VO2 presented in this chapter are under consideration for pub-

lication in Physical Review Letters. The preprint entitled “Metal-insulator Transition

113
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in VO2: a DFT+DMFT perspective” by W. H. Brito, M. C. O. Aguiar, K. Haule and

G. Kotliar is on arXiv:1509.02968.

5.1 DFT calculations

In this section we first present the DFT (GGA) electronic structure of the rutile phases.

Next, we address the electronic structure of the insulating phases of both oxides. In

appendix H.4 we detail the computational methodology employed in our DFT calcula-

tions.

5.1.1 Rutiles

As mentioned before the rutile is the high-temperature structure of both VO2 and NbO2.

To investigate the electronic properties of the rutile phase of both oxides we used the

experimental structural parameters from Refs. [183, 184], where a = 4.5546 (4.8483) Å,

c = 2.8514 (3.0315) Å, x = 0.3001 (0.2924) for VO2 (NbO2). In figure 4.4(4.5)(a) the unit

cell of rutile VO2 (NbO2) is illustrated. Structurally, the octahedron distortions in both

structures can be compared by calculating the mean octahedral quadratic elongation

which is defined as [233]

〈λ〉 =
6∑
i=1

1

6

( li
l0

)2
, (5.1)

where l0 is the center-to-vertex distance for an octahedron whose volume is equal to that

of the strained or distorted octahedron with bond lengths li. For our rutile structures,

we obtained 〈λV O2〉 = 1.0035 and 〈λNbO2〉 = 1.0019, which indicates that octahedra in

VO2 is just a little bit more distorted than in NbO2. As can be seen in our calculated

density of states, shown in figures 5.1 and 5.2, this difference in the octahedron distortion

enhances the lifting of degeneracy of the t2g states in NbO2.

From the total and projected density of states we also observe that both systems

have semi-occupied levels and three different groups of bands. The densities of states

reveal that the sixfold t2g band (3 doubly denegerate levels) is formed by the dx2−y2

(a1g), dxz and dyz (eπg ) bands. Further we find that the oxygen bands of VO2 lie mainly

between -8 and -1.7 eV below the Fermi level, and the eσg bands formed by the dxy and

dxy are at around 3.6 eV above the Fermi level. For the NbO2 the oxygen bands lie
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Figure 5.1: DFT (GGA) total (grey) and projected density of states of R phase of
VO2. The projections to dx2−y2 , dxz, dyz, dxy, and dz2 states are shown in black, blue,
indigo, orange, and red, respectively. The projection to the O-2p states is shown in the

bottom panel.
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Figure 5.2: DFT (GGA) total (grey) and projected density of states of R phase of
NbO2. The projections to dx2−y2 , dxz, dyz, dxy, and dz2 states are shown in black,
blue, indigo, orange, and red, respectively. The projection to the O-2p states is shown

in the bottom panel.

mainly between -9 and -3 eV below the Fermi level and the eσg bands are located at

around 4.6 above the Fermi level.

From the band structures shown in figure 5.3, we obtain that the t2g bandwidth of

VO2 is WV O2 = 2.80 eV, in good agreement with calculations reported in Ref. [188],

where the author found 2.60 eV. In relation to NbO2 we find that the same band has

a width of WNbO2 = 4.35 eV, approximately 1 eV less than the bandwidth found in

calculations of Ref. [234]. These findings lead to a ratio of
WNbO2
WV O2

= 1.55, which can be
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Figure 5.3: DFT (GGA) band structures of rutile phase of (a) VO2 and (b) NbO2. In
(c) we present the high-symmetry points in the first Brillouin zone of rutile structure.

attributed to the more localized character of the 3d orbitals of V atoms in comparison

to the 4d orbitals of Nb. In addition, we obtain a p− d energy gap1 of 1.12 eV in VO2

and 1.97 eV in NbO2, where the later is 2 eV less than the value found in Ref. [234].

Finally we notice that there is a small overlap between the t2g and eσg bands of VO2, a

fact related to the octahedron distortion. In the same context, our results do not show

any energy gap between the t2g and eσg bands of NbO2, in disagreement with previous

theoretical results [219, 234].

5.1.2 M1 and M2 phases of VO2

In our DFT calculations on the monoclinic phases of VO2 we used the experimental

lattice structures from Refs. [185, 235]. In particular, for the M1 (M2) phase the struc-

tural parameters are a = 5.7527 (9.0664), b = 4.5378 (5.7970), c = 5.3825 (4.5255) Å,

and β = 122.646 (91.88)°. In our notation for the M2 phase, a vanadium atom of the

dimerized vanadium chain is denoted by V1, whereas a vanadium atom of the zigzag

chain is denoted by V2.

1Energy difference between the maximum of the O-2p band and the minimum of the t2g subband.
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Motivated by the experimental findings [190, 202] concerning the antiferromagnetic

ordering in the M2 phase of VO2, we considered in our DFT calculations an antiferro-

magnetic configuration for the vanadium atoms within each chain. From our calculations

we find that the magnetic moments per vanadium atom in the dimerized chain (V1) is

negligible, that is, 0.05 µB/V , whereas in the zigzaig chain each vanadium atom (V2)

is found to has 0.7 µB. These findings are in agreement with the results reported by

Eyert [188], where the author found 0.46 µB/V for the atoms within the zigzag chain,

with negligibly small magnetic moments for the others.

In figures 5.4(a) and (b) we present the obtained band structures of M1 and M2

phases, respectively. At first, we observe that our DFT (GGA) calculations predict

metallic monoclinic phases in total disagreement with the experimental results. For the

M1 phase the experimental results indicate the presence of an energy band gap of about

0.6 eV [199]. It is noteworthy that previous DFT calculations [188, 218], within LDA

or GGA, reported the same disagreement with experiment. In comparison with the

previous DFT calculations, we observe a good agreement; however in our results for the

M1 phase the bands around the Fermi level present a distinct dispersion along Γ − A,

A−E, and Γ−B directions. Likewise, we observe a different dispersion for the M2 band

structure along the E − Z direction.
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Figure 5.4: DFT (GGA) band structures of (a) M1 and (b) M2 phases of VO2. In (c)
we present the high-symmetry points in the first Brillouin zone of monoclinic structure.
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From the M1 density of states, shown in figure 5.5, we observe a strong effect on

the a1g subband due to the V4+-V4+ dimerization. In particular, the a1g subband splits

into a bonding, at around −0.12 eV, and an antibonding subband, at around 1.45 eV.

It leads to an energy gap of 1.54 eV between these subbands, in good agreement with

Ref. [188], where the author found 1.7 eV. The eπg (dxz,dyz) subband roughly upshits

with respect to the R phase, while the eσg manifold remains located ≈ 3.60 eV above the

Fermi level. The O-2p bands lie between -7.64 and -1.53 eV below the Fermi level.
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Figure 5.5: DFT (GGA) total and projected density of states of M1 phase of VO2.
The projections to dx2−y2 , dxz, dyz, dxy, and dz2 states are shown in black, blue, indigo,

orange, and red, respectively.

With respect to the M2 phase, the density of states, shown in figure 5.6 present the

same groups of states as observed in the M1 phase; however in this case the two types of

vanadium chains give rise to distinct contribution for the t2g manifold. The density of

states of a vanadium atom of the dimerized chain (V1) shows a strong effect on the a1g

subband due to the dimerization, as observed in the M1 phase. In particular, we notice

that the a1g subband splits into a bonding, at around −0.12 eV, and an antibonding

branch, at around 1.76 eV. It leads to a split of 1.88 eV, 0.34 eV greater than in the M1

phase. This can be understood by the fact that the distance between vanadium atoms

in the dimer in the M2 phase is 0.08 Å smaller than in the M1 phase.

On the other hand, the density of states of an atom of the zigzag chain (V2) shows

a half-filled a1g subband located at −0.21 eV and empty eπg subbands above the Fermi

level. Thus, we notice that the magnetic moments originate mainly from the dx2−y2

states of the vanadium atoms of the zigzag chain. Finally, the eσg manifold is at 3.6 eV
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above the Fermi level, while the oxygen band lies between -7.69 and -1.48 eV below the

Fermi level.
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Figure 5.6: DFT (GGA) total and projected density of states of M2 phase when
antiferromagnetic order is allowed. In (b) we show the projection to the O−2p states.
In (c) and (d) the projected density of states of an vanadium atom of the dimerized
chain (V1) and of the zigzag chain (V2) are presented, respectively. The projections to
dx2−y2 , dxz, dyz, dxy, and dz2 states are shown in black, blue, indigo, orange, and red,

respectively. In (e) the M2 structure with the V1 and V2 atoms is illustrated.

5.1.3 bct phase of NbO2

Finally, we address the electronic structure of the body-centered tetragonal phase of

NbO2. As in the M1 phase of VO2, in the bct phase the transition metal atoms dimerize

and tilt with respect to the rutile c axis. As can be seen in our calculated band structure

shown in figure 5.7, the structural distortion leads to the opening of a band gap of 0.24

eV, 0.14 eV greater than found by Eyert [219]. We mention that our obtained energy

gap is underestimated in comparison with experimental findings, as is the previous DFT

band gap reported by Eyert [219]. We remind that previous experimental works reported

a minimum gap of 0.7 eV [215].

As similarly observed in the monoclinic phases of VO2, the structural distortions

have dramatic effects on the electronic states of bct phase. The calculated projected

density of states, shown in figure 5.8, presents a a1g splitting of 3.50 eV, as a result of
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Figure 5.7: (a) DFT (GGA) band structure of bct phase of NbO2. In (b) we present
the high-symmetry points in the first Brillouin zone of the structure.

Nb4+-Nb4+ dimerization. In addition, the eπg subband is upshifted to around 5.9 eV,

while the eσg manifold does not shift in comparison with rutile phase. Therefore, as a

result of structural distortions there is a gap opening between the a1g bonding subband

and the eπg subband. We emphasize that this finding advocates in favor of a Peierls-type

MIT in NbO2, as proposed by Eyert [219]. Finally, we mention that the O-2p bands is

a little bit upshifted in comparison with those in rutile, lying between -8 and -2.4 eV for

this system.
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panel in red.
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5.1.4 Summary of DFT calculations

In summary our DFT(GGA) calculations take into account only the metallic nature of

the rutile structures. It is noteworthy that for the rutile phase of VO2 our calculated

density of states does not capture the features observed in the photoemission spectra

reported by Koethe et al. [199], such as the shoulder located at -1.3 eV and the reduced

t2g bandwidth. Further, we find that structural distortions alone cannot give rise to an

energy gap in the monoclinic phases of VO2. This suggests that electronic correlations

indeed play a role in the gap formation of VO2. In respect to the NbO2, DFT describes

the MIT, although it underestimates the energy gap for the low-temperature bct phase

in comparison with experiments.

5.2 MITs in VO2 and NbO2: a DFT+DMFT perspective

We now turn to the electronic structure of the high- and low-temperature phases of VO2

and NbO2 within a fully self-consistent combination of density functional theory and

embedded real space dynamical mean field theory calculations. It is worth mentioning

that previous DFT+DMFT works which used the downfolding procedure [226, 228]

are less precise in comparison with our embedding DMFT technique. In particular,

the Dyson equation in their method is solved for a Hubbard-like model, while in our

method the Dyson equation is solved with all valence states of VO2 and NbO2 included

(there is no construction of any low-energy model). Also in our method the O-2p states

(ligand states) are considered and the charge-density is obtained self-consistently. As we

mentioned in section 4.6 the full charge self-consistency has been shown to be of crucial

importance for the correct description of the metal-insulator transition in V2O3 [232].

For the V-atoms in rutile and of the zigzag chain in the M2 phase we applied the single-

site DMFT to treat their corresponding t2g states. As mentioned in Refs. [226, 230], the

inclusion of nonlocal correlations for the description of the rutile phase did not lead to

important effects, indicating that the rutile is well described within single-site DMFT.
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5.2.1 Rutile phases

We first investigate the R phase of both oxides within our realistic DFT+DMFT cal-

culations. In figure 5.9 we show the calculated DFT+DMFT-based total, t2g and eσg

projected density of states of the rutile phase of both oxides, at temperatures close to

their respective MITs.
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Figure 5.9: DFT+DMFT-based total (black dashed line) and projected density of
states of R phases of (a) VO2 and (b) NbO2, at T = 390 K and T = 1132 K, respectively.
The projections to a1g, e

π
g (1), eπg (2), and eσg states are shown in blue, red, green, and

brown lines, respectively.

In comparison with our DFT-based density of states (see figures 5.1 and 5.2), we

notice that the t2g states are renormalized (“compressed”) due to dynamic correlations,

with stronger renormalization in VO2. This renormalization can be explained by looking

at the corresponding self-energies, which are depicted in figure 5.10.

As can be noticed on the right panel of figure 5.10, the imaginary part of the self-

energies corresponding to the a1g, e
π
g (1), and eπg (2) states vanishes at the Fermi level

(ω = 0). This allows us to discuss the t2g renormalization within an effective band

picture (correlated band structure) in the low-energy regime, in which the one-particle

excitations are given by (see appendix J)

ωk = εk + <Σ(ωk)− µ, (5.2)

for each band. In this equation, µ is the chemical potential, εk is the DFT band disper-

sion, and <Σ(ωk) is the real part of the self-energy. The real part of the self-energies
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Figure 5.10: a1g (black), eπg (1) (cyan), and eπg (2) (orange) self-energies, on real fre-
quency axis, of rutile phase of VO2 and NbO2.

shown in figure 5.10 can be expanded to first order as it follows

<Σ(ωk) = <Σ(0) +
∂<Σ(ω)

∂ω

∣∣∣
ω=0

ωk. (5.3)

Therefore, we obtain that

ωk = εk + <Σ(0) +
∂<Σ(ω)

∂ω

∣∣∣
ω=0

ωk − µ

ωk

(
1− ∂<Σ(ω)

∂ω

∣∣∣
ω=0

)
= εk + <Σ(0)− µ

ωk = Z(<Σ(0)− µ) + Zεk, (5.4)

with Z defined by

Z =
1(

1− ∂<Σ(ω)
∂ω

∣∣∣
ω=0

) . (5.5)

We mention that this Z is the quasiparticle weight mentioned in section 4.3 of the

previous chapter. The first term in equation 5.4 can be interpreted as an energy shift;

whereas the second term can be interpreted as a renormalized (“compressed”) band,

since Z < 1 as can be noticed from the slope of the real part of the self-energies shown

in figure 5.10. Therefore, the energy band εk is renormalized due to the correlation

effects described by the self-energy.
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In addition, these correlations also lead to the emergence of incoherent excitations

(Hubbard bands) in the spectra of both oxides. For VO2 a lower Hubbard band (LHB)

is find at -1.09 eV, in agreement with photoemission measurements [199] and DMFT

calculations for the Hubbard model [226]. The upper Hubbard band (UHB), by its turn,

is observed at around 2.54 eV. For NbO2 the LHB is found around -1.9 eV whereas the

UHB is around 3 eV. We emphasize that the imaginary part of the self-energy becomes

very enhanced in the energy near the incoherent peaks, signaling its incoherent character.

We remind that in the case of R phase of NbO2 there is not any experimental spectra

reported which should be used for comparison with our findings. Overall, the LHBs

come mainly from a1g states while the UHBs come mainly from eπg states. Although

the correlation effects are more pronounced in spectral properties of VO2, our findings

suggest that the electronic dynamic correlations in NbO2 are still important.

To investigate the strength of correlations in both oxides we evaluated the quasipar-

ticle weight Zα for each dynamical orbital α = {a1g, e
π
g (1), eπg (2)}. Here Σα denotes the

orbital-resolved self-energy. We remind that Z is the inverse of the bare band mass en-

hacement due to electronic correlations described by the self-energy Σ. In particular, Z

is equal to unity for a noninteracting system while it goes to zero in a strongly correlated

system. Our calculated quasiparticle weights for both oxides are listed in table 5.1.

Table 5.1: Quasiparticle weights (Z’s) for each dynamical orbital α =
{a1g, eπg (1), eπg (2)} of rutile phases of VO2 and NbO2.

VO2 NbO2

Za1g 0.28 0.32
Zeπg (1) 0.33 0.55

Zeπg (2) 0.40 0.61

Zavg 0.34 0.49

The obtained values of Z for each t2g state indicate that the metallic phase of VO2

is indeed more correlated (has smaller Z) than that of NbO2. However, we stress that

the Z values obtained for NbO2 confirm that correlations are also important in this

system. In particular, we observe that the a1g subband is the most correlated, followed

by the eπg (1) and eπg (2) subbands. The smaller values of Z obtained for VO2 reveal

that electrons in this system are closer to the Mott transition than electrons in NbO2,

which is in accordance with the more delocalized nature of 4d orbitals of niobium in

comparison with the 3d ones of vanadium atoms.
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5.2.2 M1 phase

We next present the electronic structure of the M1 phase. As observed in previous

DFT+DMFT calculations on VO2 [226, 236], the appropriate description of singlet pairs

within DMFT calculations is essential to take into account the gap opening in the M1

phase. Theoretically, this can be achieved by considering an extension of single-site

DMFT, denoted as cluster-DMFT . Within this method the cluster degrees of freedom

are treated exactly [237, 238], which in turn incorporates shortrange nonlocal correla-

tions in our DMFT treatment. Within the V-dimer, treated as cluster in our DMFT

calculations, it is useful to adopt the symmetric and antisymmetric combination of or-

bitals as performed in Ref. [231].2 Hence, we have t2g “molecular” states associated with

the dimer. The associated self-energies are denoted as the bonding Σb,α and antibonding

Σab,α components, where α = {a1g, e
π
g (1), eπg (2)}.

In figure 5.11(a) the total, t2g, and eσg projected DOS are shown. In additon, we

show in figure 5.11(b) the associated spectral function3 which is defined in equation J.7 of

appendix J. We mention that these calculations were performed at temperature of 332 K.

At first, we notice the opening of a gap of 0.55 eV, between the a1g and eπg subband, which

is in good agreement with experimental and previous theoretical findings [199, 226, 228].

It is worth mentioning that in Ref. [226] the authours found a small contribution of

the a1g antibonding state to the bottom of the conduction band. As expected, upon

dimerization and antiferroelectric distortion, the a1g subband splits in bonding (solid

blue) and antibonding (dashed blue) states, while the eπg subband upshifts in comparison

with the R phase.

The a1g bonding orbital has a coherent peak at around -0.30 eV, while the antibond-

ing orbital has two incoherent peaks reminiscent of LHB and UHB located at -1.5 eV and

2.58 eV, respectively. The coherent peak and the satellite below it were also observed in

previous theoretical [226, 231] and experimental [199] works. However, in our case there

is not a weak coherent peak associated with the antibonding state in the bottom of the

conduction band, as in Ref. [226]. The bonding-antibonding splitting (relative to the

DFT and DFT + single-site DMFT calculations (not shown)) increases upon inclusion

of intersite dynamic correlations within the dimer, in contrast to the result of Ref. [226].

2This basis also leads to a maximally diagonal hybridization matrix which reduces the sign error
concerning the impurity solver.

3The density of states ρ(ω) can be obtained from the spectral function A(k, ω) as ρ(ω) =
∑

kA(k, ω).
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Figure 5.11: (a) DFT+DMFT-based total (black dashed line) and projected density
of states of M1 phase of VO2. The projections to a1g, e

π
g (1), eπg (2), and eσg states are

shown in blue, red, green, and brown lines, respectively. In particular, the solid (dashed)
blue line corresponds to the projection on the bonding (antibonding) a1g “molecular”
state. (b) Spectral function with the projected density of states around the Fermi

energy. In both panels the temperature is 332 K.

We next investigate how nonlocal dynamic correlations contribute to the opening of

a gap between a1g and eπg subbands in the M1 phase. The inset in figure 5.12 shows the

bonding and antibonding components of the imaginary part of the self-energy associated

with the a1g and eπg (1) dimer electronic states.

We notice that once the dimerization is present in our calculation, the Mott instabil-

ity is arrested, hence there is no pole in the imaginary part of the self-energy associated

with the a1g or eπg states. This excludes an orbital-selective Mott-Hubbard mechanism as

the source of the gap of the M1 phase, as proposed in Ref. [228]. Our results bear strong

resemblance with the Mott transition of the Hubbard model in cluster-DMFT [239],

where the local singlet state of the cluster dominates the low energy properties of the

model. The energy gain to form the strong bonding state on the cluster is here not just

due to increased hopping between the two V-atoms, but it is primarily due to the gain

of the exchange energy, which is stronger than kinetic energy, as the latter is strongly

reduced due to proximity to the Mott transition.
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Now we define the local and intersite self-energies, which are related to the self-

energies in the dimer basis as

Σlocal =
1

2
(Σb + Σab), (5.6)

and

Σin(tersite) =
1

2
(Σb − Σab). (5.7)

For more details see appendix K. In figure 5.12 (main panel) we also show the real part

of the intersite components of self-energies associated with the same electronic states as

those in the inset. We observe that the component of eπg (1) is negligible, but, notably,

one can see that ReΣin
a1g−a1g depends strongly on the frequency in the low-energy part.

This indicates the presence of strong intersite electronic correlations within the vanadium

dimers, which in turn lower the a1g bonding state. As a result, the bonding-antibonding

splitting increases and a gap between the a1g and eπg appears. We emphasize that in

the work by Biermann et al.[226] this splitting was found to decrease upon inclusion of

nonlocal correlations.

Since the imaginary part of self-energies associated with the bonding and antibond-

ing states vanishes at the Fermi level (see figure 5.12), we can discuss the bonding-

antibonding splitting within an effective band structure picture, in which the effects of

electronic correlations are taken into account expanding the self-energies to first order.
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In this case the bonding and antibonding bands are reshaped by the quantities

Zb =

(
1− ∂<Σb

∂ω

∣∣∣∣∣
ω=0

)−1

, (5.8)

and

Zab =

(
1− ∂<Σab

∂ω

∣∣∣∣∣
ω=0

)−1

. (5.9)

We emphasize that these quantities are not usual quasiparticle weights [240], although

their definition are proper once there is no pole in the imaginary part of self-energies.

As a result, we obtain the energies of renormalized bands as given by

Eb = Zb(εb + <Σb(ω = 0)), (5.10)

Eab = Zab(εab + <Σab(ω = 0)), (5.11)

where εb and εab are the energies of noninteracting bonding and antibonding bands,

respectively.

Therefore, the bonding-antibonding splitting energy, ∆ = Eab − Eb, can be written

as

∆ =Zab(εab + <Σab(0))− Zb(εb + <Σb(0))

=
(Zab − Zb)

2
(εab + <Σab(0) + εb + <Σb(0))

+
(Zab + Zb)

2
(εab + <Σab(0)− εb −<Σb(0)). (5.12)

Taking the bonding and antibonding self-energies in terms of Σ11 and Σ12 (see

appendix I) we obtain

Zb =
(1− ∂<Σ11

∂ω |ω=0) + (∂<Σ12
∂ω |ω=0)

(1− ∂<Σ11
∂ω |ω=0)2 − (∂<Σ12

∂ω |ω=0)2
, (5.13)

Zab =
(1− ∂<Σ11

∂ω |ω=0)− (∂<Σ12
∂ω |ω=0)

(1− ∂<Σ11
∂ω |ω=0)2 − (∂<Σ12

∂ω |ω=0)2
. (5.14)

Notice that since Zab, Zb, and (1 − ∂<Σ11
∂ω |ω=0) are positive, it is the sign of ∂<Σ12

∂ω |ω=0

that determines which orbital is more correlated.
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Finally, on the basis of equations (5.13) and (5.14) the bonding-antibonding splitting

energy is then given by

∆ =
(1− ∂<Σ11

∂ω |ω=0)

(1− ∂<Σ11
∂ω |ω=0)2 − (∂<Σ12

∂ω |ω=0)2

× (εab − εb − 2<Σ12(0))

−
(∂<Σ12

∂ω |ω=0)

(1− ∂<Σ11
∂ω |ω=0)2 − (∂<Σ12

∂ω |ω=0)2

× (εab + εb + 2<Σ11(0)). (5.15)

The first term in the equation above is just the “local” Zlocal multiplied by the bare

splitting, enhanced by the intersite self-energy, while the second term arises from the

asymmetry of the local crystal field levels corrected by local self-energy, and would vanish

in the particle-hole symmetric limit.

Since according to figure 5.12 there exist strong intersite electronic correlations in

the system, thus one can consider that these nonlocal correlations give rise to an effective

a1g − a1g frequency dependent hopping ta1g−a1g +ReΣin
a1g−a1g(iω), which properly takes

into account the a1g bonding-antibonding splitting. A similar observation was previously

proposed for the low-temperature phase of Ti2O3 [241], but a strong intersite Coulomb

interaction was required for opening the gap.

5.2.2.1 Metallization due to hot carriers

More recently, numerous experimental studies have reported the existence of monoclinic-

like metallic phases of VO2 [203–207]. This transition was also induced by the application

of femtosecond laser pulses on VO2 films. As pointed out by Wegkamp et al. [203], the

photoexcitation gives rise to hot carriers, which have an associated temperature much

higher than the lattice temperature. Motivated by this fact, we performed calculations

considering a much higher temperature, i.e. T = 900 K, for electrons in the M1 phase.

In figure 5.13(a) and (b) we show the calculated spectral function and the projected

DOS of M1 at 332 K (same results as those presented in figure 5.11(b)) and 900 K,

respectively. From the spectral function at 900 K, one can see the closing of the gap

suggesting that the collapse of the gap in photoexcited samples can be triggered by hot

carriers. In particular, we observe that a1g and eπg (1) subbands shift towards the Fermi
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Figure 5.13: Spectral function and projected density of states of M1 phase at (a) 332
and (b) 900 K (b). The projections to a1g, e

π
g (1), and eπg (2) dimer states are shown in

blue, red, and green lines, respectively. The solid (dashed) blue line corresponds to the
projection to the bonding (antibonding) a1g dimer state.

level, the latter shifting more than the a1g subband. Also, there is a reduction in the

intensity of the peak associated with the LHB at T = 900 K, and the appearance of a

peak at 0.55 eV associated with the a1g antibonding state.

To understand why the gap vanishes at 900 K, we examine the temperature depen-

dence of the self-energies. In figure 5.14 we present the real part of intersite Σin
a1g−a1g ,

on the imaginary axis, for these two temperatures. In addition, in the inset we show

the antibonding component of ReΣab,a1g and the bonding component of ReΣb,eπg (1), on

the real frequency axis. Here, we observe that ReΣin
a1g−a1g , in the low-energy part, and

ReΣab,a1g are strongly suppressed with increasing temperature. Therefore at 900 K

the renormalization of the a1g subband decreases significantly in comparison to that at

332 K. Thus, this subband is shifted towards the Fermi level. In relation to the eπg (1)

subband, we note an enhancement of the ReΣb,eπg (1) from -0.46 eV to 0.77 eV, leading

to an downshift of this subband.
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5.2.3 M2 phase

We now turn to the M2 phase of VO2. In our calculations we considered a paramagnetic

and antiferromagnetic state concerning the zigzag V-atoms. Our calculated spectral

function and projected density of states of the M2 phase, using the same values of U

and J employed for the other phases, are shown in figure 5.15.

From our calculated spectral functions we observe that in both states the M2 phase

presents a gap. In particular, we obtain gaps of 0.55 and 0.61 eV for the antiferromag-

netic and paramagnetic states, respectively. This indicates that the antiferromagnetic

ordering related to the d electrons in the zigzag-like chains plays a minor role in the

gap formation of this phase. In both situations the gap opens between the a1g and eπg

subband, although the a1g states from the zigzag chains provide a small contribution to

the bottom of the conduction band (see central and right panels of figure 5.15). The a1g

bonding subband presents a coherent peak at -0.34 eV (-0.31 eV) whereas the antibond-

ing subband is centered at 2.5 eV (2.5 eV) for the paramagnetic (antiferromagnetic)

state. The resulting bonding-antibonding splitting energy in this case is then ≈ 1 eV

larger than the splitting energy obtained in our DFT calculations.

We also observe an increasing of the incoherence of the occupied levels close to the

Fermi level going from the antiferromagnetic to the paramagnetic state, which indicates

that antiferromagnetic ordering suppresses the electronic correlations. In fact, in the
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Figure 5.15: DFT+DMFT spectral function and projected density of states of M2

phase at 332 K, considering (a) antiferromagnetic and (b) paramagnetic states. The
projections to t2g states associated with dimerized and zigzag-like chains of V-atoms
are shown in the central and right panels, respectively. In respect to the dimerized
atoms, projections to a1g, e

π
g (1), and eπg (2) “molecular” states are shown in blue, red,

and green, respectively. For the zigzag V-atoms, we use the same colors to indicate
each t2g state, where in particular the contributions of the up and down(dn) spins are

shown in solid and dashed lines, respectively.

valence histograms shown in figure 5.16, we observe that the antiferromagnetic ordering

suppresses the spin fluctuations of the zigzag V-atoms, while it does not affect the

probabilities of states associated with the dimerized atoms. The histogram also shows

that the singlet state associated with the dimerized atoms has the highest probability,

followed by states with N = 3 (N is total number of electrons in atomic d state), which

indicates that charge fluctuations are more important than spin fluctuations in this case.

Further, the a1g states of zigzag atoms downshift and become less dispersive in the

paramagnetic phase, similarly to a Hubbard subband. The a1g states of dimerized V-

atoms, by their turn, become broader but do not shift. Hence, the low-energy excitations

in the paramagnetic phase are dominated by the a1g states of the dimerized V-atoms,

in contrast to the antiferromagnetic phase wherein both vanadium chains contribute to

the top of the valence band.

To investigate the effects of electronic correlations in the M2 phase we show in

figure 5.17(a) the imaginary part of self-energies related to the dimerized and zigzag



Metal-Insulator transitions in VO2 and NbO2 133

0 050 10100 20150 30200 40
V atomic states

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0.5
PM
AFM

N=1

N = 1
N=2

N = 2

N=3

N=4

N = 3

S  = 0
z

P
ro

b
ab

il
it

y

dimerized

S  = −1/2
z

S  = 1/2
z

unpaired

V−dimer states

Figure 5.16: Valence histogram of vanadium dimer and atomic d states of dimerized
and zigzag (unpaired) atoms, respectively.

V-atoms. In the paramagnetic phase, we notice that the t2g states associated with

the dimerized atoms do not present any pole in the imaginary part of self-energy, as

similarly found in M1 phase. In the antiferromagnetic phase, we find that even the

t2g states associated with the zigzag atoms do not present a Mott instability. In fact,

the singularity of the self-energy is arrested once the antiferromagnetic ordered state is

stabilized. Interestingly, as can be seen in figure 5.17(b), the real part of a1g self-energy

has a strong frequency dependence around the Fermi level, which indicates that the a1g

subband is renormalized by this component. On the other hand, in the paramagnetic

phase (see figure 5.17(a)), the imaginary part of self-energy associated with a1g states

of zigzag V-atoms acquires a pole. As a result, the a1g subband is splitted by a Mott

instability, indicating that this subband undergoes an orbital-selective Mott-Hubbard

transition. These findings suggest that the M2 phase is best characterized as a Mott

insulator.

5.2.4 bct phase

Finally we address the bct phase of NbO2, presenting a comparison with the monoclinic

phases of VO2. In figure 5.18 we show our calculated projected DOS and spectral

function of bct phase at 1000 K.

From the calculated spectral function we obtain an indirect gap of 0.73 eV, which

is 0.49 eV higher than our DFT(GGA) band gap and is in good agreement with recent

ellipsometric measurements reported by O’Hara et al. [215] (0.7 eV). It is worth men-

tioning, though, that our gap is underestimated in comparison with the gap of at least
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1.0 eV obtained by Posadas et al. [214] through x-ray photoelectron spectroscopic mea-

surements of NbO2 films. Further, the weak LHB associated with the a1g antibonding

state in M1 phase of VO2 is not seen in bct phase of NbO2. The a1g bonding subbands
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present coherent peaks at around -0.30 and -0.70 eV in M1 and bct phases, respectively.

The respective antibonding subbands, by their turn, are centered around 2.58 and 3.54

eV. This indicates that the bonding-antibonding splitting energy increases 1.34 eV in

M1 phase and 0.74 eV in bct phase, in comparison with our DFT calculations.

Next we present in figure 5.19 the imaginary part of the self-energies associated with

the a1g dimer electronic states, for both M1 (black) and bct (red) phases.
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Figure 5.19: Imaginary part, on real frequency axis, of bonding (dashed lines) and
antibonding (solid lines) self-energies associated with the a1g dimer electronic states of

M1 phase of VO2 (black) and bct phase of NbO2 (red).

From these self-energies we notice a similar feature in both systems. The absence

of poles in the imaginary part of the self-energies indicates that in M1 phase as well

as in the bct phase, once the dimerization occurs, the Mott instability is arrested. In

particular, we notice that the peaks at -2.58 eV (bct) and -1.0 eV (M1) associated with

the a1g antibonding states indicate that the electrons in M1 phase are closer to a Mott

transition than the ones in bct phase, suggesting that the structural distortions are more

important in the gap opening of bct phase than in that of the M1 phase.

5.2.5 Nonlocal dynamic correlations in M1, M2, and bct phases

As observed in the previous sections, the inclusion of nonlocal dynamic correlations

increases the a1g bonding-antibonding splitting energy in the low-temperature phases

of VO2 and NbO2. As already discussed in section 5.2.2, within the transition metal

dimers, treated as a cluster in our DMFT calculations, it is useful to look at the self-

energies in the site representation, where we have the local self-energy, Σlocal = Σ11, and

the intersite self-energy, Σin = Σ12. In order to compare the effects of nonlocal dynamic
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correlations in M1, M2, and bct phases, we show in figure 5.20 the real part of intersite

a1g − a1g and eπg (1)− eπg (1) self-energies of each insulating phase.
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Figure 5.20: Real part of intersite self-energies, on imaginary frequency axis, of a1g−
a1g (solid lines) and eπg (1) − eπg (1) (dashed lines) states of M1 (indigo), M2 (AFM)
(orange) and bct (green) phases. For the monoclinic phases we considered T = 332 K

and for the bct T = 1000 K.

First, we notice that the frequency dependence of the intersite self-energies associated

with eπg (1) states is negligible for all the insulating phases. In contrast, the intersite self-

energies associated with a1g states strongly depend on the frequency in the low-energy

part. This indicates the presence of strong intersite correlations within the transition

metal dimers. In particular, the intersite component is almost the same in the M1 and

M2 phases of VO2, with minor difference in the iω → 0 limit, with |Σin
a1g−a1g(0)| slightly

larger in M1 phase. Interestingly, the intersite a1g self-energy in bct phase is frequency

dependent as well, but with smaller intensity than in the insulating phases of VO2, as

noticeable when looking at the iω → 0 limit. As discussed in section 5.2.2, within an

effective band picture, the Σ12(ω = 0) is responsible for the enhacement of the bare

a1g bonding-antibonding splitting as can be noticed from the term εab − εb − 2<Σ12(0).

These findings indicate a smaller enhacement of the bonding-antibonding splitting, due

to nonlocal correlations, in bct phase of NbO2 than in the monoclinic phases of VO2,

which in turn is in agreement with the obtained bonding-antibonding splitting energies

of ∆bct = 0.74 eV and ∆M1 = 1.34 eV from our DFT+DMFT calculations. There-

fore, our results suggest that the presence of strong nonlocal correlations within the

transition-metal dimers leads to opening of a gap in all low-temperature phases of both

oxides. However, these electronic correlations are more effective in the gap opening of

the monoclinic phases of VO2 than in the bct phase of NbO2.
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5.3 Summary

Concerning the MIT in VO2 we present a comprehensive picture and an unified descrip-

tion of all the phases of VO2 with the same values of the (U ,J) parameters, including the

mysterious M2 phase which has not been considered previously in DMFT treatments.

Mott physics is central for the proper description of all the phases, even though the Mott

instability is arrested in the M1 phase. We remind that the importance of Mott physics

in all the phases of VO2 was stressed early on in the comment of Pouget and Rice [15].

This physics now emerges from a quantitative first principles method.

Our theory leads to a different physical picture than that discussed previously for the

gap opening in monoclinic phases of VO2, and the possibility of the collapse of the M1

insulating state by temperature. Our results indicate the presence of significant intersite

correlations within the vanadium dimers, which in turn lower the a1g subband in relation

to the eπg . In particular, we notice that nonlocal dynamic correlations enhance the a1g

bonding-antibonding splitting, in contrast to what was reported by Biermann et al. [226].

The electrons in all phases of VO2 are in the near vicinity of the Mott transition, but

the pole in the self-energy, signaling the local moment formation, occurs only in the

paramagnetic M2 phase for undimerized V-atoms and its a1g orbital. In the M1 phase

and in the antiferro-ordered M2 phase, the singularity of the self-energy is arrested as the

ordered states are adiabatically connected to Peierls and Slater insulators, respectively.

The adiabatic connection between the weakly and the corresponding strongly interacting

states makes the Mott mechanism hard to distinguish from alternative scenarios; never-

theless, collapsing a large insulating gap with raising electronic temperature is possible

only in the Mott state in the presence of strong superexchange, as was found for example

in the cluster-DMFT study of the 2D Hubbard model [242]. Hence, according to our

results the M1 phase is best characterized as the Mott phase in the presence of strong

intersite superexchange4 within the V-dimers, while the undimerized V-atoms in the M2

phase undergo canonical Mott transition associated with local moment formation in the

presence of weak superexchange. We mention that other consequence of Mott physics is

the gap collapse of by sole increase of the electronic temperature.

4Strong antiferromagnetic interaction between spins of transition-metal elements.
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With respect to the insulating phase of NbO2, we find that nonlocal dynamic corre-

lations play a role in the gap formation of the bct phase by a similar physical mechanism

as that seen in the M1 phase of VO2. In particular, the nonlocal dynamic correlations

in bct phase is less important for the gap opening than in M1 and M2 phases of VO2.

It indicates that the bct phase of NbO2 is not a purely Peierls-type insulator, as it was

recently proposed.



Conclusions

In this thesis by means of DFT and DFT+DMFT calculations we studied: (i) the

structure, relative energetic stability, electronic and magnetic properties of graphene-

like carbon nitride structures; (ii) the structural, energetics, electronic, and magnetic

properties of polytetrafluoroethylene (Teflon) crystals with fluorine vacancies and oxygen

substitutional impurities; and (iii) the metal-insulator transitions in VO2 and NbO2,

focusing on the physical mechanisms responsible for the gap formation in their low-

temperature structural phases. In the following we summarize our mainly findings.

(i) Graphitic carbon nitrides: From our simulated annealing calculations, we found a

set of twenty eight structures with periodically distinct nanopores and different amounts

of graphitic and pyridinic nitrogens. Our energetic analysis indicate that the energetic

stability correlates with the relative concentration of pyridinic and graphitic nitrogens,

with highest pyridinic concentrations leading to more stable structures. In particular,

we found that the relative energetic stability, in some cases, is ruled by the energy cost

associated with the doping due to the nitrogen impurities. In addition, the formation of

pentagons with pyrrolic nitrogens was found to be energetically favorable in structures

with large nanopores and carbon dangling bonds. The Fermi level of our set of struc-

tures was found to be controled, within an energy range of 2.65 eV, by variation of the

relative concentration of graphitic and pyridinic nitrogens, which in turn indicates that

carbon nitride materials are bipolar compounds. We also obtained that the band gap of

some structures correlates with the increase of the nanopores. In particular, we obtained

semiconductor structures with band gaps ranging from 0.11 eV to 1.69 eV. Based on

these results, we suggested that, among the semiconducting structures, there are several

possible new structures that may absorb in the visible light region and might be photo-

catalyst candidates in the process of light-driven water-splitting. Also of interest are our

results on the magnetic properties of the set of carbon nitride structures. Interestingly,
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we obtained twelve structures with energetically favorable antiferromagnetic phase and

nine with ferromagnetic properties. We concluded that this d0 ferromagnetism is driven

by Stoner-like instabilities of their corresponding nonmagnetic phases. Future perspec-

tives of this work are the adsorption of transition-metal and hydrogen atoms as well

as the inclusion of point defects on the graphene-like layers of carbon nitrides; and the

electromechanical response of our carbon nitride structures upon charge doping. We

mention that some of these perspectives are motivated by recent experiments reported

on Refs. [243–245].

(ii) Defects in polytetrafluoroethylene: In this work we showed that fluorine vacan-

cies and oxygen impurities in PTFE crystals lead to stable configurations without the

breaking of the carbon backbone. From our energetic investigation we found that oxygen

impurities are energetically more stable than fluorine vacancies and that by increasing

the defects concentration we obtain more stable structures. Additional calculations also

revealed that both point defects give rise to dispersionless levels and local magnetic mo-

ments. These dispersionless levels may give rise to defective bands which may explain

the color and fluorescent properties of defective PTFE films. The magnetic moments,

by their turn, were found to be suppressed under charge doping. From our total energy

calculations, we did not find any defective structure with ferromagnetic coupling be-

tween the local moments, which rules out our investigated configurations as the source

of the intrinsic ferromagnetism recently observed in experiments.

(iii) MIT in VO2 and NbO2: In this investigation we presented a comprehensive

picture and a proper description of the electronic structure of all the phases of VO2 and

NbO2 within our DFT+DMFT approximation. From our investigation we found that

Mott physics is central for the proper description of all phases of VO2, even though

the Mott instability is arrested in the M1 phase. Our theory suggested a new physical

picture for the gap opening in the low-temperature phases of VO2, and the collapse of

this gap by increasing of temperature. In particular, in contrast with the previously

proposed mechanisms in the literature, we find that nonlocal intersite correlations sup-

port the gap opening of the distorted low-temperature structures. For the VO2, we find

that electrons in all phases are in the near vicinity of the Mott transition, with the pres-

ence of orbital selective Mott- Hubbard instabilities in the case of undimerized V-atoms

of the paramagnetic M2 phase. In the M1 phase and in the antiferromagnetically or-

dered M2 phase, we found that this Mott-Hubbard instability is arrested as the ordered
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states are adiabatically connected to Peierls and Slater insulators, respectively. This

adiabatic connection between the weakly and the strongly interacting states makes the

Mott mechanism hard to distinguish from alternative scenarios; nevertheless, collapsing

a large insulating gap with raising electronic temperature, as we see in our results, is

possible only in the Mott state in the presence of strong superexchange within the V-

dimers. In respect to NbO2, we showed that its low-temperature phase is not a purely

Peierls-type insulator, due to the role played by nonlocal intersite correlations, as sim-

ilarly found in M1 phase of VO2. We conclude by mentioning that the importance of

nonlocal dynamic correlations for the gap opening of the bct phase of NbO2 is smaller

than in the case of the monoclinic phases of VO2.

Overall, we investigated from a first principles perspective, different materials which

exhibit emergent properties due to electron-electron interactions. By using different

many-body approaches, we addressed their electronic structure as well as the correspond-

ing mechanisms responsible for their physical properties. In my opinion, the theoretical

methods used in this thesis, combined with the increasing of computational power over

the years, encourage future applications of computational simulations to understand

emergent phenonema in complex materials and to design new materials with new func-

tionalities and desired properties. These subjects, by their turn, will stimulate very

active research in condensed matter physics and materials science in the near future.



Appendix A

Path integral for the partition

function

In this appendix we present a short derivation of the partition function of an interacting

electron system using path integrals. A more detailed derivation of this equation can be

found in Refs. [17, 18].

We start by considering a system of interacting electrons, described by the Hamilto-

nian H, at temperature T = 1/β. By definition the quantum partition function of this

system is given by [246]

Z = Tr e−βH =
∑
n

〈n|e−βH |n〉, (A.1)

where |n〉 are Fock-space states.

Before rewriting the above equation in an integral form, we introduce the fermionic

quantum states denoted as coherent states. Basically, these coherent states are the

eigenstates of the annihilation operator ai, ai|ψ〉 = ψi|ψ〉, with conjugate given by

〈ψ|a†i = 〈ψ|ψ†i , where a†i is the creator operator. Here the index i denotes the number

of the state in the Fock-space {|n〉},1 while the quantities ψi, ψ
†
i are the Grassman

variables. In particular, these Grassman variables form a characteristic algebra with

anticommuting properties due to the anticommutativity of the operators a†i and ai. We

1|n1, n2, . . . , ni, . . .〉 = . . . (a†i )
ni . . . (a†2)n2(a†1)n1 |0〉, where |0〉 is the vaccum state and n = 0, 1.
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stress that these variables lead to different sorts of algebric operations, in comparison

with ordinary numbers.2

By definition the coherent states for fermions are given by

|ψ〉 = e−
∑
i ψia

†
i |0〉, (A.2)

〈ψ| = 〈0|e−
∑
i aiψ

†
i . (A.3)

Importantly, these states obey the following completeness relation [18]

∫
d[ψ†ψ]e−

∑
i ψ
†
iψi |ψ〉〈ψ| = 1, (A.4)

where d[ψ†ψ] =
∏N
i=1 dψ

†
i dψi. As we shall see, N is the number of segments used to divide

the time interval [0, β) (number of time slices). From this relation one can rewrite the

partition function, equation A.1, as it follows

Z =

∫
d[ψ†ψ]e−

∑
i ψ
†
iψi〈−ψ|e−βH |ψ〉. (A.5)

By partitioning the exponential in the equation above in N steps, we obtain that

Z =

∫
d[ψ†ψ]e−

∑
i ψ
†
iψi〈−ψ|(e−∆τH)N |ψ〉, (A.6)

where ∆τ = β/N .

We now consider that H has the general tight-binding form

H =
∑
ij

hija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jakal, (A.7)

where hij and Vijkl are the one- and two-body operator matrices [18]. Hence, we obtain

that

e−∆τH = 1 + ∆τ
∑
ij

hija
†
iaj + ∆τ

∑
ijkl

Vijkla
†
ia
†
jakal +O(∆τ2). (A.8)

2For example, (ψ†i )
2 = (ψi)

2 = 0 [17].
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Inserting the completeness relation N times between each product of e−∆τH terms

in equation A.6, one obtains

Z =

∫ N∏
n=0

d[ψn†i ψ
n
i ]e−∆τ

∑N−1
n=0 [(∆τ)−1(ψn†i −ψ

n+1†
i )ψni +H(ψn+1†

i ,ψni )], (A.9)

where

H(ψn+1†
i , ψni ) =

∑
ij

hijψ
n+1†
i ψnj +

∑
ijkl

Vijklψ
n+1†
i ψn+1†

j ψnkψ
n
l . (A.10)

By taking the limit N → ∞ (∆τ → 0, continuum limit), the partition function turns

into

Z =

∫
D[ψ†ψ]e−S , (A.11)

with action given by

S =

∫ β

0
dτ [ψ†

∂

∂τ
ψ +H(ψ†, ψ)], (A.12)

where D[ψ†ψ] = limN→∞
∏N
n=1 d(ψn†i ψ

n
i ) and ∂

∂τψ
† ≡ lim∆τ→0

(ψn+1†
i −ψn†i )

∆τ .



Appendix B

Proofs of Hohenberg-Kohn

Theorems

Proof of Theorem 1.2.1. Let us suppose two distinct external potentials v(r) and v′(r)

which give rise to different Hamiltonians H and H ′, respectively. Their respective ground

state wavefunctions are denoted by Ψ and Ψ′. Considering that both potentials are

determined by the same ground state electron density ρo, it follows that

E = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉, (B.1)

E′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H ′|Ψ〉. (B.2)

One can rewrite these two equations by expressing the Hamiltonian as a sum of the

potential energies,

E = 〈Ψ|T̂ + Û + V̂ |Ψ〉 < 〈Ψ′|T̂ + Û + V̂ |Ψ′〉, (B.3)

E′ = 〈Ψ′|T̂ + Û + V̂ ′|Ψ′〉 < 〈Ψ|T̂ + Û + V̂ ′|Ψ〉, (B.4)

with T̂ being the kinetic-energy operator, Û the electron-electron potential energy op-

erator, V̂ (V̂ ′) the external potential energy operator. This external potential is given

by

V̂ =

N∑
i=1

v(ri). (B.5)
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Using the many-body wavefunction and the external potential energy, the potential

expectation value reads

〈Ψ|V̂ |Ψ〉 =

N∑
i=1

〈Ψ|v(ri)|Ψ〉 (B.6)

=
N∑
i=1

∫
dr1 . . .

∫
drNΨ∗(r1, . . . , rN )v(ri)Ψ(r1, . . . , rN ).

Since v(ri) =
∫
drδ(r− ri)v(r), one obtain

〈Ψ|V̂ |Ψ〉 =
N∑
i=1

∫
dr1 . . .

∫
drN

∫
drδ(r− ri)v(r)Ψ∗(r1, . . . , rN )Ψ(r1, . . . , rN ) (B.7)

=
N∑
i=1

∫
dr

∫
dr1 . . .

∫
driδ(r− ri)v(r) . . .

∫
drNΨ∗Ψ.

Further, the electron density is written as

ρ(r) = 〈Ψ|
N∑
i=1

δ(r− ri)|Ψ〉, (B.8)

which leads to

〈Ψ|V̂ |Ψ〉 =

∫
ρ(r)v(r)dr. (B.9)

On the other hand, one can rewrite the equation B.1 as the following

〈Ψ|H|Ψ〉 < 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|V̂ − V̂ ′|Ψ′〉. (B.10)

Thus from equation B.9 one obtain

〈Ψ′|V̂ − V̂ ′|Ψ′〉 =

∫
ρ(r)[v(r)− v′(r)]dr. (B.11)

Likewise, from equation B.2 we have

〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 (B.12)

= 〈Ψ|H|Ψ〉+ 〈Ψ|V̂ ′ − V̂ |Ψ〉,
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where

〈Ψ|V̂ ′ − V̂ |Ψ〉 =

∫
[v′(r)− v(r)]ρ(r)dr. (B.13)

Hence equations B.1 and B.2 turn into

E < E′ +

∫
[v(r)− v′(r)]ρ(r)dr, (B.14)

E′ < E +

∫
[v′(r)− v(r)]ρ(r)dr. (B.15)

By summing up equations B.14 and B.15 one obtain the following contradiction

E + E′ < E′ + E. (B.16)

Therefore if the electron density ρo is unique then there cannot be two different

external potentials. Accordingly since the Hamiltonian is fully determined by ρo the

ground-state many-body wavefunctions are fully determined as well.

Proof of Theorem 1.2.2. From the first theorem one knows that the total energy of the

many-body system reads

E = E[ρ] = 〈Ψ[ρ]|T̂ + Û + V̂ |Ψ[ρ]〉, (B.17)

Moreoever one can split the energy functional as it follows

E[ρ] = 〈Ψ[ρ]|T̂ + Û |Ψ[ρ]〉+ 〈Ψ[ρ]|V̂ |Ψ[ρ]〉

= F [ρ] + 〈Ψ[ρ]|V̂ |Ψ[ρ]〉, (B.18)

where F [ρ] is an universal functional for any system of N interacting electrons. Then

for the ground-state we obtain

E[ρo] = F [ρo] + 〈Ψ[ρo]|V̂ |Ψ[ρo]〉. (B.19)
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On the other hand, it is well known that the total energy of the ground-state is smaller

than that of any electronic state with many-body wave function Ψ,

E[Ψo] < E[Ψ],

〈Ψo|T̂ + Û |Ψo〉+ 〈Ψo|V̂ |Ψo〉 < 〈Ψ|T̂ + Û |Ψ〉+ 〈Ψ|V̂ |Ψ〉. (B.20)

Since the electronic density ρo(ρ) defines uniquely Ψo(Ψ), from equation B.20 we obtain

F [ρo] + 〈Ψ[ρo]|V̂ |Ψ[ρo]〉 < F [ρ] + 〈Ψ[ρ]|V̂ |Ψ[ρ]〉,

E[ρo] < E[ρ]. (B.21)

Therefore, the energy functional E[ρ] is minimized for the exact ground-state elec-

tron density ρo(r).



Appendix C

Constrained field in DFT

Let us consider a system of noninteracting electrons under an external potential Vext(r)

described by the following model Hamiltonian

H0 =
∑
ij

c†i tijcj , (C.1)

where c†i (cj) creates (annihilates) an electron on the site i (j). The hopping amplitute is

given by tij = 〈χ(r−Ri)|−∇2 +Vext(r)|χ(r−Rj)〉, where χ(r−Rj) is a nonorthogonal

orbital centered at Rj . The action associated with this noninteracting Hamiltonian

reads [18]

S0 =

∫ β

0
dτ

[∑
i

c†i (τ)(∂τ − µ)ci(τ) +H0[c†i , ci]

]
. (C.2)

We now turn to the action of this noninteracting system coupled to the constrained

field J0(x) in similar way as in DFT (see equation 1.19)

S′ = S0 +

∫
dxJ0(x)ψ†(x)ψ(x). (C.3)

By expressing the field operators in terms of the particle operators,

ψ†(x) =
∑
i

χ∗(r−Ri)c
†
i (τ), (C.4)

ψ(x) =
∑
i

χ(r−Ri)ci(τ), (C.5)

149



Appendix C. Constrained field in DFT 150

we obtain

S′ = S0 +

∫
dx

(∑
i

χ∗(r−Ri)c
†
i (τ)

)
J0(x)

(∑
j

χ(r−Rj)cj(τ)

)
. (C.6)

Considering that J0 does not depend on τ and using equation C.2, it results

S′ = S0 +

∫
dτ
∑
ij

c†i (τ)

(∫
drχ∗(r−Ri)J0(r)χ(r−Rj)

)
cj(τ)

= S0 +

∫
dτ
∑
ij

c†i (τ)〈χ(r−Ri)|J0(r)|χ(r−Rj)〉cj(τ) (C.7)

=

∫ β

0
dτ
∑
i

c†i (τ)(∂τ − µ)ci(τ)

+

∫ β

0
dτ
∑
ij

c†i (τ)〈χ(r−Ri)| − ∇2 + Vext(r) + J0(r)|χ(r−Rj)〉cj(τ) (C.8)

=

∫ β

0
dτ
∑
i

c†i (τ)(∂τ − µ)ci(τ) +

∫ β

0
dτ
∑
ij

t
′
ijc
†
i (τ)cj(τ), (C.9)

where the new hopping amplitute is given by t
′
ij = 〈χ(r−Ri)|−∇2+Vext(r)+J0(r)|χ(r−

Rj)〉. Therefore, we see that J0(r) plays the role of an additional one-particle potential

acting on the system of noninteracting electrons.



Appendix D

Nonorthogonal orbitals and Basis

set

In this appendix we introduce a real space basis set used in our derivation of DMFT

effective action [11] presented in section 1.4. We start by focusing on a basis set defined

by nonorthogonal orbitals χξ(r), in which ξ is a general index. Since these orbitals are

nonorthogonal the overlap matrix yields

Oξ,ξ′ =
〈
χξ|χξ′

〉
. (D.1)

The field operators on this basis becomes [11]

ψ(x) =
∑
ξ

cξ(τ)χξ(r), (D.2)

ψ†(x) =
∑
ξ

c†ξ(τ)χ∗ξ(r), (D.3)

where τ is the imaginary time and c†ξ (cξ) the creation (annihilation) operators. Many

quantities such as the Green’s function, self-energy, source fields, etc. are represented as

A(r, r′, τ) =
∑
ξξ′

χξ(r)Aξξ′(τ)χξ′(r
′), (D.4)

with coefficients Aξξ′ on imaginary time or frequency axis.
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Taking the ξ index as a combination of angular moment index lm and unit cell index

R, one can rewrite the nonorthogonal orbitals such as χα(r −R). Within this general

tight-binding basis set, the α index takes into account the angular moment lm, in case

of one atom per unit cell, and R takes into account the unit cell index [11, 52]. In

situations with more than one atom per unit cell, an additional index i is added such

as χα(r− ti −R), where ti denotes the position of the aditional atoms within the unit

cell [52]. Hence, within this basis set, the atomic levels and generalized hopping matrix

of a noninteracting tight-binding Hamiltonian H = −∇2 + Vext are given by

hαβ =
〈
χα| − ∇2 + Vext|χβ

〉
, (D.5)

hαRβR′ =
〈
χα(r−R)| − ∇2 + Vext|χβ(r−R′)

〉
, (D.6)

respectively.



Appendix E

Parametrization of Coulomb

interactions

Let us consider a system of interacting electrons where the electron-electron potential

depends on 1/|r − r′|. We assume now that these electrons occupy atomic-like orbital

levels denoted by |L〉 (L denotes a general angular momentum index lm), in such a way

that the Coulomb interaction is given by [18]

Û =
∑

LaLbLcLdσσ′

ULaLbLcLdf
†
Laσ

f †Lbσ′fLdσ′fLcσ, (E.1)

where ULaLbLcLd are the Coulomb interaction matrix elements and f †Lσ(fLσ) creates

(annihilates) one electron in orbital L with spin σ. These Coulomb matrix elements can

be written in terms of Slater integrals F k{l} and complex spherical harmonics YL [247, 248],

ULaLbLcLd =

2l∑
k=0

k∑
q=−k

4π

2k + 1
F k{l}〈YLa |Ykq|YLc〉〈YLb |Y

∗
kq|YLd〉. (E.2)

The Slater integrals F k{l} are given by [12]

F k{l} = 2

∫ ∞
0

drr2[φl(r)]
2

∫ ∞
0

dr′(r′)2[φl(r
′)]2

rk<

rk+1
>

, (E.3)

where φl(r) are the radial wavefunctions of l orbitals, and r< = r, r> = r′ if r′ > r and

vice versa. The integral of the product of three spherical harmonics 〈YLa |Ykq|YLc〉 is
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given by [12]

〈YLa |Ykq|YLc〉 =

∫
dr̂YLa(r̂)Y ∗kq(r̂)YLc(r̂). (E.4)

Hence, from equations E.1 and E.2 one obtain the Coulomb interaction Û presented in

equation 1.98. In addition, within this formalism one can obtain the on-site Coulomb

interaction U and the Hund’s coupling J in terms of the Slater integrals as it follows [12,

37]

U = F 0, (E.5)

J =


(F 2+F 4)

14 , for d orbitals,

(286F 2+195F 4+250F 6)
6435 , for f orbitals.



Appendix F

Continuous time quantum Monte

Carlo

F.1 Introduction to Monte Carlo Method

The Monte Carlo1 method can be viewed as a statistical approach to compute com-

plex integrals, or solve different sorts of numerical problems, using random positions

(samples) with a carefully chosen distribution over a space of configurations [249]. This

method has a vast application in physics, ranging from the evaluation of the thermody-

namic properties of materials or effective models, as well as alternative methods to solve

quantum many-body problems [249]. In this section we give a brief introduction on the

the basic ingredients of the Monte Carlo method, which will be used in our derivation

of the CTQMC method presented in the next section.

Let us first consider a physical system for which we want to calculate the expectation

value of a physical observable A, which is given by

〈A〉 =
1

Z

∫
C
dxA(x)p(x). (F.1)

In the equation above Z is the partition function, x the configuration in phase space C,

and p(x) the probability weight of configuration x. Instead of evaluating the integral

1Its name is in allusion to a district of the Principality of Monaco wherein a cassino is located.
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above, one can aproximate the expectation value of A by

〈A〉MC =
1

M

M∑
i=1

A(xi). (F.2)

In other words, one can approximate 〈A〉 by the average of it over the set of configurations

{x1, x2, . . . , xi, xM} of the phase space.

To have a better sampling of 〈A〉 one can generate a set of configurations, denoted as

a Markov chain, employing Markov processes obeying certain conditions. The Markov

processes are characterized by a transition matrix with elements Wxy that specify the

probability to go from state x to state y by application of one Markov process [250]. In

addition, in order to satisfy ergodicity and the detailed balance condition, these matrix

elements should obey the following condition

Wxy

Wyx
=
p(y)

p(x)
. (F.3)

The well known Metropolis algorithm [103] satisfies this detailed balance condition, in

which the transition matrix is written as

Wxy = W prop
xy W acc

xy , (F.4)

with

W acc
xy = min

[
1,
p(y)W prop

yx

p(x)W prop
xy

]
. (F.5)

In these equations W prop
xy denotes the probability that an update from a configuration x

to a new configuration y is proposed, whereas W acc
xy denotes the probability of acceptance

of the respective update. Hence, starting from a random set of configurations over phase

space C, one can obtain a stationary distribution of configurations (Markov chain) by

applying the Metropolis algorithm. This Markov chain, by its turn, allow us to obtain

a better sampling of 〈A〉.

If we assume that the probability weight of each configuration x is a Boltzmann

weight p(x) = e−βE(x), one can obtain an acceptance transition matrix given by

W acc
xy = min[1, e−β(Ey−Ex)]. (F.6)
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From this equation, if the energy of the new configuration y is smaller than the energy

of the previous configuration x, Ey−Ex < 0, W acc
xy = 1. Otherwise, W acc

xy = e−β(Ey−Ex).

We mention that this procedure can be used as a basic algorithm to obtain energetic

favorable configurations of a physical system by evulating the total energy of each con-

figuration obtained during the Markov processes. Further, the concepts introduced here

can be also used to study the Monte Carlo treatment of effective quantum impurity prob-

lems, as presented in the next section. For more details about Monte Carlo methods

please see Refs. [249, 250].

F.2 Continuous time quantum Monte Carlo

In this section we derive the main equations of the continuous time quantum Monte

Carlo (CTQMC) method [40, 41] within the hybridization expansion representation,

which is used as an impurity solver in our calculations.

We start with the Hamiltonian of the quantum impurity model, that is, the single-

orbital Anderson model

H =
∑
σ

εdd
†
σdσ + Und↑nd↓ +

∑
pσ

εpc
†
pσcpσ +

∑
pσ

(Vdpd
†
σcpσ + V ∗dpc

†
pσdσ), (F.7)

where d†σ (dσ) creates (annihilates) an electron with spin σ on the impurity, c†pσ (cpσ)

creates (annihilates) a conduction electron with wave vector p and spin σ, εd is the

impurity energy level, εp is the energy of conduction electrons, U is the on-site Coulomb

interaction energy between impurity-electrons, ndσ = d†σdσ is the number operator of the

impurity-electrons, and Vdp is the hybridization between the impurity and conduction

electrons.

For this model the partition function is given by

Z =

∫
D[d†d]D[c†pcp]e

−S

=Zbath

∫
D[d†d]e−Sa−

∫ β
0 dτ

∫ β
0 dτ ′

∑
σ d
†
σ(τ)∆(τ−τ ′)dσ(τ ′) (F.8)

=ZbathZimp (F.9)
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where the bath partition function reads

Zbath = det[(iω + µ− εp)−1] (F.10)

and the atomic action is defined by

Sa =

∫ β

0
dτ
[∑

σ

d†σ(τ)
( ∂
∂τ
− µ

)
dσ(τ) +

∑
σ

εdd
†
σ(τ)dσ(τ) + Ud†↑(τ)d↑(τ)d†↓(τ)d↓(τ)

]
,

(F.11)

where τ is the imaginary time and ω the Matsubara frequencies.2 The hybridization

function ∆(τ − τ ′) by its turn is given by

∆(τ − τ ′) =
1

β

∑
ω

(∑
p

V ∗dpVdp

iω + µ− εp

)
eiω(τ−τ ′). (F.12)

We now expand the partition function in orders of the hybridization function, re-

sulting into [18]

Zimp =

∫
D[d†d]e−Sa

∞∑
k=0

1

k!

[∑
σ

∫ β

0
dτ

∫ β

0
dτ ′dσ(τ ′)d†σ(τ)∆(τ − τ ′)

]k
=

∫
D[d†d]e−Sa

∞∑
k=0

1

k!

∑
σ1...σk

∫ β

0
dτ1 . . .

∫ β

0
dτk

∫ β

0
dτ ′1 . . .

∫ β

0
dτ ′k

× dσ1(τ ′1)d†σ1(τ1)∆(τ1 − τ ′1)dσ2(τ ′2)d†σ2(τ2)∆(τ2 − τ ′2) . . .

. . . dσk(τ ′k)d
†
σk

(τk)∆(τk − τ ′k). (F.13)

Using the functional average of a time-ordering operator Tτ [18], we can rewrite the

integral over the impurity degrees of freedom as it follows

∫
D[d†d]dσ1(τ ′1)d†σ1(τ1) . . . dσk(τ ′k)d

†
σk

(τk) = Za〈Tτdσ1(τ ′1)d†σ1(τ1) . . . dσk(τ ′k)d
†
σk

(τk)〉a,

(F.14)

where

Za =

∫
D[d†d]e−Sa . (F.15)

2In our notation in this appendix we omitted the subindex n of ω, but we emphasize that ω = ωn =
(2n+ 1)πT .
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In equation F.14 the 〈. . .〉a denotes the functional average of (. . .) weighted by Sa. Hence,

the resulting impurity partition function is given by

Zimp = Za

∞∑
k=0

∑
σ1...σk

1

k!

∫ β

0
dτ1 . . .

∫ β

0
dτk

∫ β

0
dτ ′1 . . .

∫ β

0
dτ ′k

× 〈Tτdσ1(τ ′1)d†σ1(τ1) . . . dσk(τ ′k)d
†
σk

(τk)〉a∆(τ1 − τ ′1) . . .∆(τk − τ ′k). (F.16)

Notice that this partition function, as expressed in equation F.16, is a diagrammatic

expansion of individual configurations x = (k, (σ1, . . . , σk), (τ1, τ
′
1, . . . , τk, τ

′
k)), where k

denotes the diagram order [250]. For each configuration x in configuration space, the

associated probability weight is given by [250]

p(x) = Za〈Tτdσ1(τ ′1)d†σ1(τ1) . . . dσk(τ ′k)d
†
σk

(τk)〉a∆(τ1 − τ ′1) . . .∆(τk − τ ′k)
k∏
i=1

dτi

k∏
i=1

dτ ′i .

(F.17)

The mainly purpose of CTQMC is to evaluate the partition function of equation F.16

using Monte Carlo techniques. However, the configuration weights denoted by p(x)

would admit negative values for fermions.3 In order to overcome this issue, it was

suggested to group ∆ functions of the same order k into determinants [40]. Thus, the

partition function is rewritten as it follows

Zimp = Za

∞∑
k=0

∑
σ1...σk

1

k!

∫ β

0
dτ1 . . .

∫ β

0
dτk

∫ β

0
dτ ′1 . . .

∫ β

0
dτ ′k

× 〈Tτdσ1(τ ′1)d†σ1(τ1) . . . dσk(τ ′k)d
†
σk

(τk)〉a

× 1

k!
Det


∆(τ1 − τ ′1) · · · ∆(τ1 − τ ′k)

...
. . .

...

∆(τk − τ ′1) · · · ∆(τk − τ ′k)

 . (F.18a)

Considering the more general case of a multi-orbital atom with index α (this index

can correspond to spin and orbital), the partition function turns into

Z = Zbath

∫
D[d†d]e−Sa−

∫ β
0 dτ

∫ β
0 dτ ′

∑
αα′ d

†
α(τ)∆αα′ (τ−τ ′)dα′ (τ ′), (F.19)

3This issue is usually known as the negative sign problem [250].
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where the resulting impurity partition function is written as

Zimp = Za

∞∑
k=0

∑
α1...αk

∑
α′1...α

′
k

1

k!

∫ β

0
dτ1 . . .

∫ β

0
dτk

∫ β

0
dτ ′1 . . .

∫ β

0
dτ ′k

× 〈Tτdα′1(τ ′1)d†α1
(τ1) . . . dα′k(τ ′k)d

†
αk

(τk)〉a

× 1

k!
Det


∆α1α′1

(τ1 − τ ′1) ∆α1α′2
(τ1 − τ ′2) · · · ∆α1α′k

(τ1 − τ ′k)
...

...
. . .

...

∆αkα
′
1
(τk − τ ′1) ∆αkα

′
2
(τk − τ ′2) · · · ∆αkα

′
k
(τk − τ ′k)

 . (F.20a)

In the following we will denote the hybridization matrix by M−1, with elements M−1
ij =

∆αiα′j
(τi − τ ′j).

The Monte Carlo sampling of the partition function written above is performed by

means of a stationary distribution of configurations xi obtained from Markov processes

(see section F.1). Hence, a Markov chain is obtained {x1, x2, . . . , xMC} (MC corresponds

to the number of configurations in the Markov chain), where each configuration xi =

(ki, (α1, α
′
1, . . . , αki , α

′
ki

), (τ1, τ
′
1, . . . , τki , τ

′
ki)) has a weight given by

p(xi) = Za
1

(ki!)2
〈Tτdα′1(τ ′1)d†α1

(τ1) . . . dα′ki
(τ ′ki)d

†
αki

(τki)〉aDetM
−1

ki∏
i=1

dτi

ki∏
i=1

dτ ′i .

(F.21)

In diagramatic sampling the configurations are generated by insertion and removal

of pairs of creation and annihilation operators (d†αnew(τnew), dα′new(τ ′new)), at random

times τnew and τ ′new chosen uniformly between 0 and β [41]. These operators affect

the impurity occupancy giving rise to “kinks” in the imaginary-time evolution of the

impurity states. One can illustrate the imaginary-time evolution of the impurity using

diagrams as shown in figure F.1, in which we make explicit the kinks. It is worth

mentioning that additional improvements in sampling time can be achieved by other

steps such as time displacements of operators d†, d [41].

Hence, throughout the Markov process new configurations with distinct order k are

obtained. In particular, if one starts with terms at order k, after an insertion or removal

of a pair of kinks one obtains terms of order k + 1 or k − 1. Furthermore, within the

Monte Carlo sampling the stationary distribution of configurations are obtained once the

ergodicity and detailed balance condition are satisfied [250]. To fulfill these conditions

the Metropolis algorithm is used, from which the probabilities to insert and remove a
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kink
impurity states

Figure F.1: Segment diagram showing the imaginary-time evolution of the impurity
states. The two lines correpond to electrons of spin up and down, as represented by
the up and down arrows. The areas in orange correspond to doubly occupied impurity
states. The diagram on top is motivated by a similar diagram shown in Ref. [250]. The
lower diagram presents the corresponding imaginary-time evolution of the impurity

states in which the kinks are evident.

pair of kinks at random times τnew and τ ′new (α = 1, . . . , Nb) are given by [41]

Padd = min
[( βNb

k + 1

)2Znew
Zold

Dnew
Dold

, 1
]
, (F.22)

and

Premove = min
[( k

βNb

)2Znew
Zold

Dnew
Dold

, 1
]
, (F.23)

respectively. Znew and Zold correspond to the local part of the weights of the old and

new sampled configurations, which in case of insertion are given by

Znew = 〈Tτdα′new(τnew)d†αnew(τnew)dα′1(τ ′1)d†α1
(τ1) . . . dα′k(τ ′k)d

†
αk

(τk)〉a, (F.24)

Zold = 〈Tτdα′1(τ ′1)d†α1
(τ1) . . . dα′k(τ ′k)d

†
αk

(τk)〉a. (F.25)

The termsDnew andDold are the new and old determinants of the hybridization matrices.
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The local part of the partition function Z can be rewritten using the eigenstates

(eigenvalues) of the atomic Hamiltonian |m〉 (Em) as it follows [41]

Z =
∑
{m}

[e−Em1τ
′
1(Fα1)m1m2e

−Em2 (τ2−τ ′1)(F †α2)m2m3 . . .

× (Fαn−1)mn−1mne
−Emn (τ ′n−1−τn)(F †αn)mnm1e

−Em1 (β−τn)], (F.26)

where (F †αi)nm = 〈n|d†αi |m〉 and (Fαi)nm = 〈n|dαi |m〉. A serious issue that appears

in these calculations is the huge matrices involved due to the high number of atomic

states, e.g. 210 (214) states for d (f) shell. To reduce the calculations needed to evaluate

Z, superstates are introduced leading to block-diagonal matrices. These superstates are

related to the atomic states and symmetries of the system, in such a way that a general

impurity superstate is defined as |N,Sz; γ >, where N is the total number of electrons in

the superstate, Sz the corresponding z component of the total spin, and γ the remaining

quantum numbers. For more details about superstates see Ref. [41].

Finally, to sample the local Green’s function the time set {τ}, {τ ′} and the inverse

of the hybridization matrix are used [12, 41]

Gloc(iω; {τ}, {τ ′}) = − 1

β

∑
i,j

eiωτiMij({τ}, {τ ′})e−iωτj , (F.27)

where the hybridization matrix is given by

M−1 =


∆α(τα1 − τ

′α
1 ) ∆α(τα1 − τ

′α
2 ) · · ·

...
. . .

...

∆α(ταkα − τ
′α
1 ) · · · ∆α(ταkα − τ

′α
kα

)

 . (F.28a)

For more details about the local Green’s function sampling see Ref. [41].
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Bond-counting model

G.1 Non-linear term in the bond-counting model

In this section we derive the expression for the additional term ∆E included in equa-

tion 2.2 of our bond-counting model. As previously mentioned, this term is included to

take into account the effects introduced by the charge doping, induced by the different

types of nitrogens, in the total energy of the CxNyvz structures. In particular, we pos-

tulate that this term is zero for the tri-s-triazine based g-C3N4, which is the most stable

and experimentally synthesized structure [64, 109].

We start with the nitrogen-induced charge density, which we postulate as given by

σ = c
(|2nC3N3 − nC3N2|)∑

α,β nαβ
, (G.1)

where c is a constant and the term |2nC3N3 − nC3N2| is introduced to ensure that

the tri-s-triazine based g-C3N4 is a fully compensated semiconductor. Next, we make

the assumption that the additional energy ∆E can be obtained from nitrogen-doped

graphene structures, namely CxNy, which we assume to have graphene-like density of

states around the Fermi level, as shown in figure G.1.

We further assume that the density of states around the Fermi level is g(E) = c′|E|,

where c′ is a constant. From this density of states we can write the nitrogen-induced
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Figure G.1: Illustration of the graphene-like density of states (shown in gray) in the
absence of dopants (EF = 0) and our approximated density of states (shown in dotted

lines).

charge density as it follows

σ =

∫ EF

0
g(E)dE =

∫ EF

0
c′|E|dE = c′

E2
F

2
. (G.2)

It is worthy mentioning that the nitrogen dopants shift the previous Fermi level (ass-

sumed at zero) to the new Fermi level, which we denote by EF . Thus, the energy

contribution to the total energy due to the occupation (nonoccupation) of the conduc-

tion (valence) band states yields

∆E =

∫ EF

0
Eg(E)dE = c′

E3
F

3
=

2
3
2

3

1√
c′
σ

3
2 , (G.3)

where we used equation G.2. Since c′ is proportional to (
∑

α,β nαβ)−2, using equation G.1

we finally obtain

∆E = k
(|2nC3N3 − nC3N2|)3/2

(
∑

α,β nαβ)1/2
, (G.4)

where k is a constant. This ∆E is the non-linear term in the bond-couting model.

G.2 Parametrization of the bond-counting model

The total energy of the bond-counting model (see equation 2.2) depends on the bond

energies of each α − β bond-type and the parameter k. To apply this total energy

equation to our CxNyvz structures, we obtained these parameters from ab initio total

energy calculations for the structures shown in figure G.2.

In particular, the εC3C3 bond energy is obtained by considering the pristine graphene.

The ab initio total energies of C6N8v4, C8N9v1, and C9N9v0 and equation 2.2 were used

to calculate εC3N2, εC3N3, and k. Similarly, from the C7N8v3, C7N9v2, C9N8v1, and
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Figure G.2: Equilibrium geometries of the CxNyvz structures (shown in (2×2) unit
cells) used to parametrize the bond-counting model, namely C6N8v4, C7N8v3, C7N9v2,
C8N9v1, C9N8v1, C9N9v0, and C126N2v0. C and N atoms are represented by silver and

blue spheres, respectively.

C126N2v0 we then obtain εC2N3, εC3N1, εC3C2, and εN3N3, respectively. In table G.1 we

list the bond energies and the value of k parametrized from our calculations.

Table G.1: First-neighbor bond energies (in eV) and k parametrized from ab initio
calculations.

εC3C3 -103.245
εC3N3 -141.670
εC3N2 -186.585
εC2N3 -166.611
εC3N1 -320.573
εN3N3 -178.100
εC3C2 -128.161
k 0.128

G.3 Formation energies within the bond-counting model

In this section we present the derivation of the formation energy per nitrogen atom of the

graphitic and pyridinic N impurities. We start with the graphitic N impurities, where

we write the formation energy using equations 2.2 and 2.5 as it follows

Ef = nC3C3εC3C3 + nC3N3εC3N3 + k
(2nC3N3)3/2

√
nC3N3 + nC3C3

− xµC − yµN . (G.5)
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Since µC = 3εC3C3
2

1, nC3N3 = 3nN = y and cN = y/(x+ y) we obtain

Ef
nN

= 3εC3N3 − µN +
[nC3C3(1− cN )

cNx
− 3

2

x(1− cN )

cNx

]
εC3C3

+
63/2k

√
cNx√

3cNx+ nC3C3(1− cN )
. (G.6)

We now turn to the C17N1 structure which has one graphitic N impurity. As shown in

figure G.3(a), this structure has nC3C3 = 24 (solid and dashed black lines) and nC3N3 = 3

(solid red lines). Hence, we obtain

Ef
nN

= 3εC3N3 − µN −
3

2
εC3C3 + 12k

√
cN , (G.7)

which is equal to equation 2.6 with A = 3εC3N3 − 3
2εC3C3 − µN and B = 12k.

For the pyridinic N impurities we apply the same procedure. From equations 2.2

and 2.5 we obtain

Ef = nC3C3εC3C3 + nC3N2εC3N2 −
3x

2
εC3C3 − yµN +

kn
3/2
C3N2√

nC3C3 + nC3N2
. (G.8)

Considering now the C14N3v1 structure (figure G.3(b)), which has one vacancy sur-

rounded by pyridinic nitrogens, we obtain that nC3C3 = 18 (solid and dashed black

lines) and nC3N2 = 6 (solid red lines). As a result, we find that for pyridinic N impuri-

ties
Ef
nN

= 2εC3N2 − µN −
81

17
εC3C3 +

√
17

3
k
√
cN , (G.9)

which is similar to equation 2.6 with A = 2εC3N2 − µN − 81
17εC3C3 and B =

√
17
3 k.

1Within the bond-counting model the total energy of graphene (2 atoms in the unit cell) is E =
3εC3C3, while the carbon chemical potential is given by µC = E

2
in this case.
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Figure G.3: (a) C17N1 and (b) C14N3v1 structures showing the C3 − C3 (solid and
dashed black lines), C3−N3, and C3−N2 (red solid lines) bond-types. The numbers
in parenthesis are counting index numbers of each type of bond in both structures. In
(a) nC3C3 = 18 + 1

2 × 12 = 24 and nC3N3 = 3 whereas in (b) nC3C3 = 12 + 1
2 × 12 = 18

and nC3N2 = 6. Nitrogen atoms are represented by blue circles.



Appendix H

Ab initio calculations: technical

details

In this appendix we present the technical details of each ab initio calculation performed

in our investigations discussed in chapters 2, 3 and concerning the DFT part of calcula-

tions presented in chapter 5.

H.1 New graphene-like carbon nitride structures: ener-

getic and electronic properties

In this investigation we performed ab initio calculations using the density functional

theory (DFT) [21] within Perdew-Burke-Ernzerhof generalized gradient approximation

(PBE-GGA) [46] as implemented in SIESTA code [51, 251, 252]. In particular, we

used the spin-polarized formalism in the Fermi energy and band gap calculations. The

Kohn-Sham wave functions [22] were expanded in a linear combination of numerical

pseudoatomic orbitals using a double-ζ plus polarization (DZP) basis set, with an energy

shift of 0.01 Ry [54]. Also, we have employed norm-conserving pseudopotentials [49] to

describe the electron-ion interaction and 8 (36) special k-points in geometry (band gap)

calculations to the Brillouin zone sampling [253]. All the atomic positions were fully

relaxed by using the conjugated gradient scheme within a force convergence criterion of

0.02 eV/Å. All the systems were described by using periodic supercells and a vacuum

space of 30 Å between the layers to avoid periodic image interactions.
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H.2 Magnetic properties of graphitic carbon nitride struc-

tures

In this work we employed a similar methodology as that used in the section about the

new graphene-like carbon nitride structures. However, the magnetic properties were

investigated using a set of 36 special k-points and 2 × 2 supercells to avoid spurious

effects on the magnetic properties. In addition, we investigate the stability of the fer-

romagnetic structures by means of first-principles molecular dynamics, by annealing

the structures from 300 K to 273 K. For the distorted structures, further optimization

using a conjugated gradient scheme was done. The finite temperature simulations of

structures C8N9v1, C9N8v1, C9N7v2, C6N9v3, C6N9v3, C10N5v3, and C7N7v4 only lead

to out-of-plane atomic motions without any in-plane reconstruction, which resulted in

structures with higher total energy than the ones previously considered. Therefore, our

calculations indicate that the obtained structures are stable, and that finite tempera-

ture does not lead to any detectable effect on the net spin, the structures remaining

magnetic. In contrast, for the C6N10v2 structure the finite temperature simulations lead

to a rupture of a N-N chemical bond, giving rise to in-plane reconstructions. For this

new structure, we performed further relaxation using the conjugated gradient scheme,

obtaining a more stable structure than the one previously obtained by us. For this new

structure we obtained a nonmagnetic phase as the most stable one.

H.3 Point defects in Teflon crystals

Our DFT calculations were performed within PWscf code, which is part of Quan-

tum Espresso package [254]. Within these calculations, the Kohn-Sham eigenstates

are spanned in a plane-wave basis set, with an energy cutoff of 48 Ry. The structural

optimizations were performed by using van der Waals functionals [255, 256] to treat

the electron-electron interactions. The structures were relaxed until the residual forces

become smaller than 0.025 eV/Å in each atom, with the usage of 2 k special points.

To study the electronic and magnetic properties we employed the GGA functional as

parametrized by Perdew-Burke-Ernzerhof [46]. To describe the electron-ion interaction
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we used ultrasoft pseudopotentials [257], where we employed 24 k-points in our calcula-

tions.

H.4 Metal-Insulator transitions in VO2 and NbO2

We performed fully all-electron self-consistent DFT+DMFT calculations, with imple-

mentation described in Ref. [28]. We included dynamic correlations within single-site

and cluster-DMFT approaches, for the R and monoclinic phases, respectively. Within

our calculations, we obtain the electronic charge density, chemical potential, impurity

levels, self-energy (Σ), and Green’s function self-consistently. The all-electron DFT cal-

culations were performed within Perdew-Burke-Ernzerhof generalized gradient approxi-

mation (PBE-GGA) [46], as implemented in Wien2K code [58]. The quantum impurity

problem was solved by means of Continuous time quantum Monte Carlo (CTQMC)

(see appendix F) calculations [41], at fixed distinct temperatures for R and monoclinic

phases. To compute the self-energy on the real frequency axis we performed analytic

continuation using the maximum entropy method as described in Ref. [28]. Throughout

our calculations we employed the Coulomb interaction U = 6.0 eV and Hund’s coupling

J = 1.0 eV. We have also used the local axis system proposed by Eyert [188], wherein

the dx2−y2 orbitals mediate the σ-type d − d overlap along the rutile c axis, while the

remaining t2g orbitals, i. e. dxz and dyz, mediate the π-type d − d overlap. In our no-

tation, the former is denoted as a1g and the latter as the doubly degenerated eπg states.

In particular, in our investigation {eπg (1), eπg (2)} denotes the {dxz, dyz} and {dyz, dxz}

orbitals in R and M1 phase, respectively. Finally, in our calculations only the t2g states

were considered in the impurity model, while the remaining eσg states were treated within

DFT (GGA).



Appendix I

Peierls, Slater, and

Mott-Hubbard insulators

In this appendix we introduce the different types of insulators discussed in chapters 4

and 5 of this thesis. We start by the Peierls and Slater insulators, which are band-type

insulators, and then we present the so-called Mott-Hubbard insulator which appears due

to strong electron-electron interactions.

Peierls and Slater insulators.– Let us suppose we have an one-dimensional system

of equidistant atoms with a distance a. In addition, we consider that each atom has one

single electron, i.e. they are monovalent atoms. Within a tight-binding approximation,

the energy band of this system is given by

ε(k) = −2t cos(ka), (I.1)

where t is the hopping amplitude between neighbouring atoms. For this system the

Brillouin zone boundaries are ±π
a , the Fermi wavevector is kF = ± π

2a and we have a

partly filled band (see figure I.1(a)), characteristic of an one-dimensional conductor.

We now suppose that the atoms dimerize in pairs in such a way that the lattice

periodicity becomes 2a, as illustrated in figure I.1(b). Due to this new periodicity, the

Brillouin zone boundaries become ± π
2a which coincide with the Fermi wavevector. In this

case, it can be shown [2, 258] that the periodic lattice potential leads to a gap opening

at the Brillouin zone boundaries as shown in figure I.1(d). Therefore, as a result of
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dimerization AFM ordering

Figure I.1: (a) Energy band of an one-dimensional conductor, (b) pairing of monova-
lent atoms, (c) antiferromagnetic ordering of monovalent atoms, and (d) energy bands

of a one-dimensional insulator. Figures (a), (b), and (c) were taken from Ref. [258].

the chain dimerization, the one-dimensional system of monovalent atoms turns into an

one-dimensional insulator (Peierls insulator). Rudolf Peierls was the first to point out

that the electronic energy gain due to the dimerization of the one-dimensional chain

exceeds the associated increase of elastic energy [259]. This indicates that an equally

spaced lattice of monovalent atoms is unstable with respect to dimerization (Peierls

instability), that is, its dimerization (Peierls transition) is an energetically favourable

process. For more details see Ref. [258].

We now suppose that instead of the lattice dimerization our one-dimensional system

develops a magnetic ordering with antiparallel spins, as shown in figure I.1(c). As dis-

cussed by Slater in 1951 [260] this antiferromagentic ordering leads to a spin-dependent

lattice potential of period 2a, which accounts for the direct and exchange interactions

between electrons, in addition to the Weiss molecular field interaction [261]. This new

periodicity leads to a system with Brillouin zone boundaries at ± π
2a , which coincide with

the Fermi wavevector. As discussed above, this lattice potential leads to the appearance

of a band gap at the Brillouin zone boundaries, as shown in figure I.1(d). Therefore,
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the estabilishment of an antiferromagentic ordering leads to an insulating antiferromag-

netic system (Slater insulator). We mention that both Peierls and Slater transitions

are the result of instabilities of the Fermi liquid, in which there is perfect Fermi sur-

face nesting [258]1. It is also important to emphasize that the Peierls transition occurs

due to electron-lattice interactions while the Slater transition due to electron-electron

interactions.

Mott-Hubbard insulator.– The transitions discussed above, and schematically shown

in figure I.1, are examples of metal-insulator transitions in weakly-correlated systems.

On the other hand, strong electronic correlations can also give rise to insulating phases.

Let us suppose a system described by the following Hamiltonian (Hubbard model)

H = −t
∑
ij,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (I.2)

where t is the hopping amplitude between neighbouring sites while U is the on-site

electron-electron Coulomb interaction. c†iσ (ciσ) creates (annihilates) an electron with

spin σ in the site i and niσ is the corresponding occupation number. In addition, we

consider that in our system there is one electron per site (half-filled band). The first

term in equation I.2 describes the kinetic energy of the electrons whereas the second

term the interaction energy between them.

In the weakly correlated regime, in which t � U , the electrons are highly itinerant

and act like Bloch electrons with energy dispersion ε(k) = −2t(coskx + cosky + coskz)

for a three-dimensional cubic lattice with lattice parameter a = 1. In this case, the band

is half-filled accounting for a metallic system. However, once the interaction between

electrons exceeds their kinetic energy, i.e U � t, the electrons localize in their own sites

in order to minimize the Coulomb repulsion between them. As a result, the system

becomes an insulator, the so-called Mott-Hubbard insulator. The energy gap (charge

gap) in this system, considering t 6= 0, is then given by U − W , where W is half of

the Hubbard bandwidth. We mention that metal-insulator transitions associated with

the metallic and Mott insulating phases can be triggered by changes in t
U . In figure I.2

we illustrate the Mott-Hubbard transition and the band diagrams corresponding to a

Mott-Hubbard insulator.

1The Fermi surface nesting is associated with the existence of wavevectors which connect parallel
regions of the Fermi surface.
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Mott-Hubbard

transition
Metal

Mott-Hubbard

insulator

Figure I.2: Representation of the energy bands in a Mott-Hubbard transition within
DMFT. In the left and center we show partly filled bands of a metallic system. In the
right we present the band diagrams of a Mott-Hubbard insulator showing the lower

Hubbard band (LHB) and the upper Hubbard band (UHB).



Appendix J

Effective band structure and

Spectral Function

In this appendix we introduce the concepts of the an effective band structure and the

spectral function used in chapter 5.

J.1 Effective band structure

The excitation spectrum of a solid is of great value to investigate its electronic structure

and the electronic correlations between its electrons. In this respect, the excitation

energies of numerous weakly correlated solids have been interpreted by using the Kohn-

Sham eigenvalues, which in turn are not true excitation energies of the system [23]. In

fact, the excitation energies of an interacting Fermi liquid can be obtained from the

poles of the corresponding Green’s function [17].

Let us suppose a Green’s function of the following form

Gloc(ω) =
∑
k

1

ω + µ−Hk − Σ(ω)
, (J.1)

where µ is the chemical potential, Hk is the noninteracting Hamiltonian, and Σ(ω) is

the energy dependent self-energy.1 Taking the limit =Σ ≈ 0 (Fermi liquid behavior),

1The k dependence of the self-energy was neglected.

175



Appendix J. Effective band structure and Spectral Function 176

the k-resolved excitation energies are given by [240]

det(ωk + µ−Hk −<Σ(ωk)) = 0. (J.2)

In one-band case this equation reduces to

ωk + µ− εk −<Σ(ωk) = 0, (J.3)

which is not an eigenvalue problem since <Σ depends on ωk.

As shown by Tomczak and Biermann [240], different approaches can be used to

obtain the excitation energies ωk, by solving equations J.2 or J.3. For instance, one can

linearize the <Σ(ωk) to first order

<Σ(ωk) = <Σ(0) +
∂<Σ(ω)

∂ω

∣∣∣
ω=0

ωk. (J.4)

As a result, equation J.3 becomes

ωk + Z(µ− εk −<Σ(0)) = 0, (J.5)

where we used Z =
(

1 − ∂<Σ(ω)
∂ω

∣∣∣
ω=0

)−1
. Likewise, the renormalized band structure

(correlated band structure) is then given by

det(ωk + Z[µ−Hk −<Σ(0)]) = 0. (J.6)

J.2 Spectral Function

The spectral function of a solid is of great value since it can be compaired to ARPES

measurements [262, 263]. It is defined as

A(k, ω) = − 1

π
=G(k, ω), (J.7)

where G(k, ω) is the one-electron Green’s function.

Let us first consider a noninteracting system, for which G(k, ω) = 1/(ω − εk ± iη).

The spectral function is then composed by delta functions, A(k, ω) = δ(ω− εk), at each
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band energy εk. If we now assume an interacting system, we can express the one-electron

Green’s function in terms of the self-energy Σ(k, ω) as follows

G(k, ω) =
1

ω − εk − Σ(k, ω)
. (J.8)

Therefore, for an interacting system the spectral function is given by

A(k, ω) = − 1

π

=Σ(k, ω)

[ω − εk −<Σ(k, ω)]2 + [=Σ(k, ω)]2
. (J.9)

If we consider that the excitations of the interacting system are described by renor-

malized quasiparticles, one can show that the spectral function turns into [262]

A(k, ω) = Zk
Γk

(ω − εqk)2 + Γ2
k

, (J.10)

in the proximity to the Fermi surface. The quasiparticle weight in equation J.10 is given

by Zk =
(

1− ∂<Σ(k,ω)
∂ω

∣∣
ω=εqk

)−1
, Γk = Zk|=Σ(k, εqk)|, and the renormalized quasiparticle

energy is εqk = Zk(εk − <Σ(k, εqk)). The finite lifetime of excitations can be defined by

τk = 1/Γk. It is worthy mentioning that the many-body effective mass (m∗) is given

by [264]

m∗ =
mband

Zk

(
1 + mband

kF

∂<Σ(k,εqk)

∂k

∣∣∣
k=kF

) , (J.11)

where mband is the bare band mass of noninteracting Bloch electrons.

By comparing the spectral function J.10 with that of a noninteracting system (A(k, ω)

= δ(ω − εk)) we observe that electron-electron interactions have important effects on

the spectral function. In particular, one can notice that sharp excitations represented

by delta functions turn into Lorentzians centered at εqk with width given by 2Γk (see

figure J.1). Therefore, the electronic correlations lead to a renormalization of the bare

band energy as well as a broadening of excitations due to finite lifetime effects.

Finally, we mention that besides the coherent form of the spectral function expressed

in equation J.10, there are also contributions which come from the part without poles of

the full Green’s function. By taking to account this incoherent part the spectral function

turns into A(k, ω) = Zk
Γk

(ω−εqk)2+Γ2
k

+ Aincoh.. We emphasize that this incoherent part

does not depend on k and in strongly correlated systems is associated with the presence
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of Hubbard bands in the spectrum. In figure J.1 we schematically illustrate the spectral

functions of a noninteracting and of an interacting system.

Figure J.1: Scheme showing the spectral function of noninteracting and interacting
systems. Adapted from Ref. [263].



Appendix K

Local and intersite self-energies

Within our approach the cluster self-energy is diagonal in the momentum basis, with

(diagonal) elements given by ΣK=0 and ΣK=π, due to the neglect of intercluster self-

energies. The cluster self-energy in the site representation contains, on the other hand,

the local and intersite self-energies in the following form

Σc =

Σ11 Σ12

Σ21 Σ22

 .

Using the cluster symmetry one can notice that Σ11 = Σ22 and Σ12 = Σ21, where

the former is the local self-energy and the latter the intersite self-energy. By means of a

Fourier transform one can obtain the self-energy in the momentum basis from the local

and intersite self-energies [238],

ΣK =
1

Nc

∑
i,j

Σije
iK(Ri−Rj), (K.1)

where Nc is the number of sites within the cluster, K is the cluster momentum, and Ri,j

denote the sites within the cluster. In our cluster we have R = 0, 1 and K = 0, π. Thus,

one obtain that

ΣK=0 = Σ11 + Σ12, (K.2)

and

ΣK=π = Σ11 − Σ12. (K.3)
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Based on the molecular scenario with bonding and antibonding orbitals, we change

the names of ΣK=0 and ΣK=π to bonding (Σb) and antibonding (Σab) self-energies,

respectively. Therefore, the two previous equations lead to the following linear relations:

Σ11 =
1

2
(Σb + Σab), (K.4)

Σ12 =
1

2
(Σb − Σab), (K.5)

which are used in our investigation.
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