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A B S T R A C T

This Thesis deals with theoretical aspects of atmospheric propagation
of correlation beams. The correlation beam is prepared in the process
of low gain spontaneous parametric down-conversion in the two pho-
ton regime within the thin crystal approximation with the correlated
direct detection scheme. The joint detection probability amplitude
has a beam-like behavior of spatial correlations in two-photon states,
hence the name. The correlation beam is the most practical tool in
various quantum communication protocols, thus, studying its prop-
agation in the atmosphere is of practical and fundamental interest
opening a possibility of performing a global quantum communica-
tion. Moreover, one can prepare two-qudit states to implement a
communication with large alphabets. To this end, we analytically cal-
culated the atmospheric two-photon joint detection probability when
the pump represents a coherent Hermite- or Laguerre Gaussian mode
of any order as well as a partially coherent beam from a Gaussian-
Schell model source. As an important side result, we showed that the
joint probability for the latter case is a convex combination of the for-
mer ones. Our results show that the expressions for fourth-order cor-
relation functions are similar to those of intensities of classical beams:
a manifestation of the concept of the correlation beam. Additionally,
we showed that with the strength of the turbulence the amount of the
HG00 mode is appreciable even in moderate turbulence, meaning that
the cross-talk between modes increases with turbulence degrading
the dimensionality of the alphabet based on higher-order Gaussian
modes.

To quantify the crosstalk between different modes, which is in-
evitable when propagating in the atmosphere, we made a mode anal-
ysis of the correlation beam. An operational procedure to imple-
ment projective measurements on two-photon multimode states is
also given. Because of the mathematical difficulty, we considered
only the zeroth order Gaussian pump.

We calculated the probability of single photodetections and com-
pared with the two-photon joint detection probability. The former
probability degrades rapidly after short distances of propagation, whereas
the latter one is considerable even after five or more kilometers of
propagation. The analytical approach used in this Thesis enables one
to deal with the subject more deeply.

Finally, we set up two approached to solve certain problems. One
of them concerns the correction of the corrupted two-photon wave
phase using Zernike polynomials. The other – the inference of atmo-
spheric parameters by measuring the correlation beam. Certainly, the

1



parameters that can be inferred only with fourth order statistics, e.g.,
the scintillation index, the intensity correlation width, are easier to
infer using a correlation beam, which is a fourth-order phenomenon.
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1
I N T R O D U C T I O N

The study of the effects of turbulent or random media on the prop-
agation of non-classical light has gained a considerable interest due
to the possibility of implementing quantum optical communication
links with entangled photons [1, 2].

In order to avoid absorption effects in long–distance quantum op-
tical communications, one needs to exploit satellite–based free-space
distribution of single photons or entangled photon pairs. In this
scheme, photonic quantum states are first sent through the atmo-
sphere, then reflected from one satellite to another, and finally sent
back to a ground station. Since the effective thickness of the atmo-
sphere is of the order of 5 − 10 km (i.e., the whole aerosphere is
equivalent to 5− 10 km ground atmosphere) and photon losses and
decoherence are negligible in outer space, one can achieve global free-
space quantum communication as long as the quantum states survive
after penetrating the atmosphere.

Transmission through free space can be used as a channel for high
- dimensional quantum communication if an orthogonal propagating
mode set is used as a d-level system (qudit). In this context, electro-
magnetic beams carrying orbital angular momentum open an oppor-
tunity for communication with large alphabets [3]. Unfortunately, un-
like polarization, transverse mode profiles can be severely distorted
by turbulence. Transmission through turbulence could thus be re-
garded as a decohering channel for the transverse spatial degrees of
freedom [4, 5]. Several theoretical studies have been devoted to the
investigation of turbulence effects on the propagation of electromag-
netic beams carrying orbital angular momentum [6–9]. An experi-
ment in which orbital angular momentum states in free space prop-
agation were used as a multiplexing resource for classical communi-
cation was performed with radio waves (at a wavelength λ = 12.5
cm) at a 442 m propagation distance [10]. In the optical domain, free-
space classical communication using orbital angular momentum has
been demonstrated in Ref. [11]. Quantum key distribution through
free space should also be considered, since it is possible to distill se-
cure final keys even in the presence of some noise in the quantum
channel [12]. The transport of orbital-angular-momentum entangle-
ment through a turbulent atmosphere has been studied experimen-
tally using a turbulence chamber [13]. Alignment-free quantum key
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distribution through free space for a distance of 210 m exploiting or-
bital angular momentum in combination with polarization to encode
the quantum bits has been demonstrated [14]. A recent experiment
demonstrating a distribution of quantum entanglement encoded in
orbital angular momentum over a turbulent intra-city link of 3 kilo-
meters has been done [15].

The effects of the atmospheric turbulence can be simulated in the
laboratory by artificially inducing random phase fluctuations in op-
tical beams. This become possible due to Keskin et al. [16] who
designed a turbulence generator. They showed experimentally that
it can emulate basically any turbulence strength. Most theoretical
and experimental studies [17–20] of the effects of atmospheric tur-
bulence on the modal entanglement of photon pairs are based on
the single phase screen approach, which uses a single phase screen
to model the turbulent atmosphere [21]. The random phase func-
tion of such a phase screen represents the phase modulation caused
by the turbulence under weak scintillation conditions. An alterna-
tive approach valid in all scintillation conditions, the multiple phase
screen approach, was recently used to derive first-order differential
equations that enable the study of turbulence-induced decoherence
of transverse spatial mode entanglement of photon pairs [7, 22]. Ac-
cording to [7], the parameter dependence in the atmospheric decoher-
ence process is more complex than what is found in the single phase
screen approach [6].

An appreciable research activity on other related topics has been
observed, including: communication [23–28], entanglement in orbital
angular momentum [20, 29]; negative correlations [30–32]; two-photon
speckle [33–36]; spatial correlations [37, 38, 41]; ghost imaging [40, 42–
44]; interference, anti-bunching and symmetry properties [45, 46],
and high-dimensional quantum cryptography [47].

To the best of our knowledge, no analytical study considering
the propagation of pairs of entangled photons (two-photon beams)
through a turbulent atmosphere is available. In this Thesis we study
the optical turbulence effects on a transverse-mode entangled two-
photon beam generated by the parametric down-conversion process
in a nonlinear χ(2) crystal [48]. As a result, we calculate the atmospheric
fourth-order correlation function (the so called two-photon speckle)
in the cases when the χ(2) crystal is pumped by any coherent Her-
mite or Laguerre-Gauss beam or by a partially coherent beam. In
the former case, the higher-order correlation beams can be used for
quantum communication tasks with large alphabets if the quantum
correlations maintain after propagating through atmosphere. The
later case is particularly interesting because the beams produced by
partially coherent sources spread less in the random medium than
coherent beams [49–51].
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The Thesis is organized as follows: a short review of SPDC pro-
cess and correlation beams is presented as well as the highlights of the
main aspects of the theory of optical turbulence in Ch.2. The develop-
ment of the study of correlation beams in the atmosphere is presented
in Ch.3. There we consider the cases when the source (pumping the
χ(2) crystal) of the correlation beams is coherent Hermite-Gauss as
well as partially coherent beam. These results are published in our
paper [138]. As is known, the twin photons generated from the spon-
taneous parametric down-conversion process are entangled in trans-
verse Hermite-Gaussian modes and the mode indices of the pump
and the down-converted photons obey selection rules. In Ch.4 we cal-
culated the joint probability of detecting the down-converted photons
in different modes and analyzed the modal properties of correlation
beams after propagating through atmosphere. Some open problems
are discussed in Chapters 6 and 7. Finally, in the appendices we give
information on HG and LG beams, on generation of LG beams and
provide some derivations of the results that are discussed in Chapters
3 and 4.
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Part I

B A C K G R O U N D T H E O R I E S



2
B A C K G R O U N D T H E O R I E S

2.1 spontaneous parametric down-conversion process

According to the classical description of three-wave mixing within
a nonlinear crystal, for spontaneous parametric down conversion, no
non-zero field except for the pump field appears in the solution of the
equations [52, ch. 7]. And yet, experience shows that new waves do
indeed appear. The phenomenon is called spontaneous parametric
down-conversion (SPDC) or parametric fluorescence. The process of
spontaneous parametric down-conversion has been observed for the
first time by Burnham and Weinberg [53]. This process emerges as am-
plification of the vacuum fluctuations associated with the non commutation
of the field operators [55–57], and is analogous to spontaneous emission by
an excited atom. Like the latter, it can only be handled by a purely quan-
tum theoretical approach. It can be understood as splitting of the pump
photon into two lower energy photons, called signal and idler, when
passing through a nonlinear and non centrosymmetric medium. The
downconverted photons sometimes are called twins because they are
”born” together. Energy and momentum conservation laws of the
form

ωp = ωs + ωi , (1)

kp = ks + ki (2)

are only met when the phase matching condition is satisfied. Here
ωj and kj, j = p, s, i are the frequencies and wave-vectors of the pump,
signal and idler photons, respectively.

The condition (2) does not need to be rigorously fulfilled. For
one thing, in a crystal of finite thickness L, it actually has the form
∆k ≤ π/L, with ∆k = kp − ks − ki, and for another, the mixing process
has a non-zero amplitude even if the condition is not satisfied. It thus
has a quite different status to the relation ωp = ωs + ωi, which holds
exactly when monochromatic beams are used. (The situation is quite
different with ultra-short pulses, where the frequency dispersion is
high.)
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The down-converted beams usually do not propagate in the same
direction; instead, they emerge from the non-linear birefringent medium
at some small angle determined by the phase matching conditions (1),
(2). In a uniaxial crystal, there are two ways of satisfying the phase
matching condition, known as type I and type II. In type I phase
matching, a pump photon polarized in the ordinary (extraordinary)
o(e) direction creates two extraordinarily(ordinarily) e(o) polarized
photons, whereas in type-II, the down-converted photons have or-
thogonal polarizations. Because of birefringence different polarized
photons “see” different refractive indices.

The theoretical treatment is based on perturbative expansion in
the interaction picture [58]. The quantum state of the two down-
converted photons is non-separable, meaning that it cannot be writ-
ten as a product of two one-photon states. Thus the two-photon, or
biphoton state must be regarded as a single entity, which results in
a plethora of interesting quantum phenomena. This non-separability
arises from the various constraints and conservation laws present in
the SPDC process.

Under certain approximations the post selected two photon state
generated in the SPDC process is given by [48]

|ψSPDC〉 = ∑
σs ,σi

∫
dωs

∫
dωi

∫
dqs

∫
dqiΦσs ,σi (qs , qi , ωs , ωi)|qs , ωs , σs〉|qi , ωi , σi〉, (3)

where |qj , ωj , σj〉, j = s, i is a one-photon state in the mode defined by
the transverse component qj of the wave vector, by the frequency ωj

and by the polarization σj. Φσs ,σi (qs , qi , ωs , ωi) represents the joint proba-
bility amplitude of signal and idler photons. It strongly depends on
the phase matching conditions and the birefringence of the nonlin-
ear crystal. phase matching Φ is a symmetric function For rigorous
treatment of spatial correlations in parametric down-conversion and
applications see [48] and the references therein.

2.1.1 The Correlation Beam.

In general, quantities involving both operators and state vectors take
the same form in either the Schrödinger or the Heisenberg repre-
sentation. For example, the single photodetection probability in the
Schrödinger representation is given by

P1(R, t) ∝ s〈ψ(t)|E(−)(R) · E(+)(R)|ψ(t)〉. (4)

In the Heisenberg picture, this becomes,

P1(R, t) ∝ s〈ψ|E(−)(R, t) · E(+)(R, t)|ψ〉 (5)

14



where s ≤ 1 represents the sensitivity of the detector. E(+)(R, t) and
E(−)(R, t) are so called positive and negative frequency parts of the
field operator, which, in travelling plane wave basis takes the form

E(R, t) = ∑
`

ie`

√
h̄ω`

2ε0L3

(
a`ei(k` ·R−ω`t) − a†

` e−i(k` ·R−ω`t)
)

≡ E(+)(R, t) + E(−)(R, t),

(6)

where E(+) and E(−) are the positive and negative frequency compo-
nents of the field operator and they are hermitian conjugates of each
other. To a certain extent the non-Hermitian operators E(+) and E(−)

play the role of configuration space annihilation and creation opera-
tors at the space-time point (R,t). They correspond very closely to the
analytic signals used in the classical treatment. The real field is often
difficult to measure in the optical domain and beyond. Most obser-
vations in optics are based on the absorption of light, either through
the use of a photodetector, or a photographic plate or even the eye.
It is therefore not surprising that the annihilation operator E(+)(R, t),
rather than the real field E(R, t) operator, plays the dominant role in
the description of quantum optical experiments.

When one considers joint photodetection rates, the Heisenberg
picture is more general because it allows one to express the rate of
joint detections at two different times t1 and t2 as follows:

P2(R1, t1, R2, t2) ∝ s1s2〈ψ|E(−)(R1, t1)E(−)(R2, t2)E(+)(R2, t2)E(+)(R1, t1)|ψ〉 (7)

The fields appearing in this expression are written in time- and nor-
mally ordered fashion.

There exist correspondences between the fourth order correlation
for the parametric down-conversion field and the second-order cor-
relation for the pump beam as shown in P. L. Saldanha’s Master’s
dissertation [59]. In the degenerate parametric down-conversion pro-
cess, Saldanha has shown theoretically and experimentally, that the
two-photon detection probability amplitude A(R1, R2) (or, equivalently,
the fourth-order correlation amplitude) behaves as a Huygens-Fresnel
integral for the electromagnetic field of the pump propagating from
the point S at the crystal (z = 0) plane to the point r at the detectors’
plane,

A(R1, R2) ∝ eikpz
∫

dSEp(S)e
ikp
2z (r−S)2

. (8)

Here, Ep is the transverse (x, y) profile of the pump beam field, kp is
the wavenumber of the pump beam, ks = ki = kp/2, r = (r1 + r2)/2 and
S = (s1 + s2)/2. In other words,

A(R1, R2) ∝ Ep

( r1 + r2
2

, z
)

. (9)

We use a notation where three dimensional position vector R is repre-
sented as a set composed of two dimensional transverse vector r and
the z distance from the origin

R = (r, z). (10)
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Thus we see that the fourth-order correlation amplitude for the field
generated by spontaneous parametric down-conversion process re-
sembles a field propagation integral, hence the expression “correlation

beam”. This effect is a consequence of the transfer of angular spectrum
of pump to the downconverted field [60].

2.2 optical turbulence

2.2.1 Overview

In fluid mechanics the Reynolds number is used to help predict simi-
lar flow patterns in different fluid(gas) flow situations. The Reynolds
number is defined as the ratio of momentum forces to viscous forces
and quantifies the relative importance of these two types of forces
for given flow conditions. A turbulent flow occurs at high Reynolds
numbers and is dominated by inertial forces, which tend to produce
chaotic eddies, vortices and other flow instabilities. Turbulent air
motion represents a set of vortices, or eddies, of various scale sizes,
extending from a large scale size L0 called the outer scale of turbulence
to a small scale size l0 called the inner scale of turbulence. Under the
influence of inertial forces, large eddies break up into smaller ones,
forming a continuous cascade of scale sizes between L0 and l0 known
as the inertial range. Scale sizes smaller than the inner scale belong to
the dissipation range. In the simplest case, when an optical wave propa-
gates through turbulence, the diffraction and scattering effects occur
on these eddies of different size (those by molecules or aerosols are
neglected). A propagating beam will deflect encountering an eddy
that is larger than the beams transverse size, and will expand - en-
countering an eddy smaller than its size, giving rise to intensity and
phase fluctuations, respectively, in the observation plane.

Turbulence is a nonlinear process as is described by the Navier-
Stokes equation. Because of mathematical difficulties in solving these
equations, Kolmogorov [61] developed a statistical theory of turbu-
lence that relies on dimensional analysis and additional simplifica-
tions and approximations. Thus, turbulence theory as we know it
today is not derived from first principles.

In the optical turbulence the most important process in optical wave
propagation is the index-of-refraction fluctuations. The theoretical frame-
work of optical turbulence is based on the classical theory of tur-
bulence concerning velocity fluctuations. Fluctuations in the index
of refraction are related to corresponding temperature and pressure
fluctuations. In particular, for optical and IR wavelengths, the index
of refraction for the atmosphere can be written according to [62]

n(R) ' 1 + 7.9× 10−5 P(R)
T(R)

, (11)

16



where P is the pressure in millibars, and T is the temperature in
Kelvin. Because pressure fluctuations are usually negligible, we see
that index-of-refraction fluctuations associated with the visible and
near-IR region of the spectrum are due primarily to random tempera-
ture fluctuations (humidity fluctuations only contribute in the far-IR
region). Changes in the optical signal due to absorption or scattering
by molecules or aerosols are not considered.

Since the refractive index fluctuations are very small, it is expected
that the electric field will propagate very much like a field in free
space except for small perturbations or fluctuations about the free
space value. A quantitative model for optical scintillation (irradiance
fluctuations) requires a model for the turbulence. There are a number
of such models [21, 64–67, 71] depending on whether one includes the
effects of the inner scale and the outer scale. The simplest model is
the Kolmogorov model, which is valid in the inertial range between
the inner and outer scales.

By using dimensional analysis, Kolmogorov showed that the struc-
ture function of the index of refraction Dn(R1, R2) = 〈[n(R1) − n(R2)]2〉
obeys a 2/3 power law in the inertial range, the same as obtained
for temperature and longitudinal velocity fluctuations. The angu-
lar brackets denote an ensemble average. The corresponding inertial
range behavior of the three-dimensional power spectrum of index-of-
refraction fluctuations is described by a −11/3 power law, viz., the
Kolmogorov spectrum

Φ(κ) = 0.033C2
nκ−11/3, 1/L0 � κ � 1/l0, (12)

where C2
n is called the structure constant of the index of refraction (in

units of m−2/3). It determines the strength of turbulence, with values
ranging from 10−17m−2/3 for weak turbulence, to about 10−13m−2/3 for
strong turbulence. The Kolmogorov spectrum is the most commonly
used spectrum in theoretical analyses but it is appropriate only over
wave numbers within the inertial range. To account for the behavior
of the power spectrum outside the inertial range, various spectral
models have been proposed. These models include the Tatarskii spectrum

[63]:

Φ(κ) = 0.033C2
nκ−11/3 exp

(
− κ2

κ2
m

)
, κ � 1/L0; κm = 5.92/l0, (13)

the (modified) von Kármán spectrum [68]:

Φ(κ) = 0.033C2
nκ−11/3 exp(−κ2/κ2

m)
(κ2 + 1/L2

0)11/6
, 0 ≤ κ < ∞; κm = 5.92/l0, (14)

and the modified atmospheric spectrum [69]:

Φ(κ) = 0.033C2
nκ−11/3

[
1 + 1.802(κ/κl)− 0.254(κ/κl)

7/6
]

×
exp(−κ2/κ2

l )(
κ2 + 1/L2

0
)11/6

, 0 ≤ κ < ∞; κl = 3.3/l0.
(15)

17



These latter models are not based on rigorous calculations outside the
inertial range, but more on mathematical convenience and tractability.

2.2.2 Theory for Propagation Through Random Media.

Maxwell’s equations for the vector amplitude E(R) of a propagating
sinusoidal electromagnetic wave is given by [155]

∇2E(R) + k2n2(R)E + 2∇[E · ∇ ln n(R)] = 0, (16)

where R = (x, y, z), k = 2π/λ is the wavenumber, λ is the wavelength,
n(R) is the index of refraction. The time variations of the index of re-
fraction are usually suppressed, meaning that the wave maintains a
single frequency as it propagates. The last term in (16) which contains
the interaction terms between the orthogonal components of the field
is the one that gives rise to (de)polarization effects. It is shown to
be negligible in the atmosphere [70] so that it can be dropped. This
means that the equation (16) may be decomposed into three scalar
equations for each component of the field. In most approaches, the
starting point for describing the propagation of a monochromatic op-
tical/IR wave through a turbulent medium with random index of
refraction n(R) is the stochastic reduced (Helmholtz) wave equation

∇2U + k2n2(R)U = 0, (17)

where U = U(R) is the transverse scalar component of the electric field.
Basically all approaches to optical/IR propagation through a random
media rely on a simple set of fundamental assumptions:

(i) depolarization effects can be neglected
(ii) backscattering of the wave can be neglected
(iii) the wave equation may be approximated by the parabolic
(paraxial) equation
(iν) the refractive index is delta correlated in the direction of
propagation.

Assumptions (i) and (ii) are valid because the wavelength λ for op-
tical/IR radiation is much smaller than the smallest scale of turbu-
lence (i.e., the inner scale l0), the maximum scattering angle is roughly
λ/l0 ∼ 10−4 rad, also that the fluctuations in the refractive index about
its mean value are very small [70]. The assumption (iii) is based on the
notion that the propagation distance along the z axis is much greater
than the transverse spreading of the wave. Under assumption (iν), the
refractive index is expressed as

n(R) = n0 + n1(R), (18)

where n0 = 〈n(R)〉 ∼= 1, 〈n1(R)〉 = 0, and that the covariance function −
delta correlated in the direction of propagation along the positive z-
axis can be expressed as (R = (r, z))

〈n1(R1)n1(R2)〉 ∼= δ(z1 − z2)An(r1 − r2). (19)
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Eq. (19) is often referred to as the Markov approximation. In writing it, it
is assumed that the covariance is statistically homogeneous so it is a
function of only the difference R1 − R2, where Rj = (rj , zj), j = 1, 2, and
An(r1 − r2) is the corresponding two-dimensional covariance function.
We further recognize that if n1(R) is statistically homogeneous in three
dimensions, it is also statistically homogeneous in two dimensions.

2.2.3 Weak and strong fluctuation conditions.

In optical wave propagation through turbulence the researchers tra-
ditionally classified the problems into weak and strong fluctuation
regimes. In the study of plane waves or spherical waves that have
propagated over a path of length L, it is customary to distinguish
between these cases by values of the Rytov variance defined as

σ2
R = 1.23C2

nk7/6L11/6. (20)

Weak fluctuations are associated with σ2
R � 1, and then the Rytov vari-

ance physically represents the irradiance fluctuations associated with
an unbounded plane wave. Moderate fluctuation conditions are charac-
terized by σ2

R ∼ 1, strong fluctuations are associated with σ2
R � 1, and the

so-called saturation regime is defined by the condition σ2
R → ∞. For a

Gaussian-beam wave, weak fluctuation regimes correspond to the set
of conditions σ2

R < 1, σ2
RΛ5/6 < 1, where Λ = 2L/kW2 is the output

beam parameter (see Sec. 2.2.8) and W is the beam radius at the re-
ceiver in the vacuum. If either of these conditions fails to exist, the
fluctuations are classified as moderate to strong.

2.2.4 Born approximation.

Writing the square of the index of refraction term as

n2(R) = [n0 + n1(R)]2 ∼= 1 + 2n1(R), |n1(R)|� 1 (21)

and assuming the possibility to express the optical field at z = L as a
sum of terms of the form

U(R) = U0(R) + U1(R) + U2(R) + ..., (22)

U0(R) denotes the unperturbed (unscattered) portion of the field in the
absence of turbulence and the remaining terms represent first-order
scattering, second-order scattering, etc., caused by random inhomo-
geneities. It is assumed that |U2(r, L)|� |U1(r, L)|� |U0(r, L)|. Eq. (17)
reduces to the system of equations after equating the terms of the
same order

∇2U0 + k2U0 = 0,

∇2U1 + k2U1 = −2k2n1(R)U0(R),

∇2U2 + k2U2 = −2k2n1(R)U1(R),

· · ·

(23)
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and so on for higher-order perturbations. Eq. (22) is known as Born
approximation. The solutions of set (23) are

Um(r, L) =
k2

2π

∫ L

0
dz
∫∫ ∞

−∞
d2s exp

[
ik(L− z) +

ik|s− r|2
2(L− z)

]
Um−1(s, z)

n1(s, z)
L− z

m = 1, 2, 3, ...

(24)

Unlike the first-order perturbation, one can see that 〈Um(r, L)〉 6= 0, m >

1.

2.2.5 Rytov approximation.

Historically, the first approach to solving Eq. (17) was based on the
method of Green’s function, reducing it to an integral equation [67]. More
tractable solutions, however, can be obtained by the geometrical optics

method, the Born approximation and the Rytov approximation (also known as the
method of smooth perturbations in the Russian literature) [71]. The geomet-
rical optics method is simple in that it ignores diffraction effects, but
is generally limited to propagation paths in which L � l2

0/λ, where
l0 is the inner scale of turbulence. Diffraction effects, important in
the analysis of irradiance fluctuations sensitive to small scale sizes
on the order of the Fresnel zone

√
λL, are taken into account in both

the Born and Rytov approximations, but the Born approximation was
found to be restricted to extremely weak scattering conditions. The
first method to give good agreement with scintillation data in the
weak fluctuation regime was the Rytov approximation, which is the
standard method used today under these conditions.

In the Rytov method, the solution of Eq.(17) is assumed to take
the form

U(R) ≡ U(r, L) = U0(r, L) exp[ψ1(r, L) + ψ2(r, L) + · · ·], (25)

where U0(r, L) is the unperturbed field and ψ1(r, L) and ψ2(r, L) repre-
sent first-order and second-order perturbations, respectively. These
perturbations are directly related to the normalized Born approxima-
tions according to

ψ1(r, L) =
U1(r, L)
U0(r, L)

≡ Φ1(r, L),

ψ2(r, L) =
U2(r, L)
U0(r, L)

− 1
2

[
U1(r, L)
U0(r, L)

]2
≡ Φ2(r, L)− 1

2
Φ2

1(r, L), (26)

where Φm(r, L) ≡ Um(r, L)/U0(r, L), m = 1, 2, 3, ... are called normalized Born
perturbations.

Although direct use of the Born approximation to the optical wave
propagation problem is not generally applicable, it is interesting that
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the Born approximation can play such a central role in the Rytov
method. In particular, the three integrals

E1(r, r) = E1(0, 0) ≡ 〈ψ2(r, L)〉 +
1
2
〈ψ2

1(r, L)〉

= −2π2k2
∫ L

0
dz
∫ ∞

0
dκκΦn(κ, z),

(27)

E2(r1, r2) ≡ 〈ψ1(r1, L)ψ∗1 (r2, L)〉 = 4π2k2
∫ L

0
dz
∫ ∞

0
dκκΦn(κ, z)

× J0(κ|γr1 − γ∗r2|) exp
[
− iκ2

2k
(γ− γ∗)(L− z)

]
,

(28)

E3(r1, r2) ≡ 〈ψ1(r1, L)ψ1(r2, L)〉 = −4π2k2
∫ L

0
dz
∫ ∞

0
dκκΦn(κ, z)

× J0(γκ|r1 − r2|) exp
[
− iκ2γ

k
(L− z)

] (29)

that define second-order statistics for both the Born and Rytov ap-
proximations are used to describe the fundamental statistical behav-
ior (means, covariances, etc.) of an optical wave propagating in a
random medium. Here

γ ≡ 1− (Θ + iΛ)(1− z/L), 0 ≤ z ≤ L,

with Θ and Λ output beam parameters to be defined in Sec. 2.2.8.
For horizontal propagation paths the refractive-index structure pa-

rameter C2
n can be treated as constant so that one can set Φ(κ, z) = Φ(κ)

in various expressions.

2.2.6 Strong fluctuation theory.

For more general turbulence conditions, other methods must be em-
ployed like the parabolic equation method [72, 80] extended Huygens-
Fresnel principle [78, 79], or Feynman path integral method [76, 81].
Strong fluctuation conditions were reviewed by Strohbehn [70] and by
Yura [77] and shown that, up to second-order moments of the field,
these methods are equivalent to each other under appropriate restric-
tions. Only asymptotic results have been obtained thus far by any of
these methods for the fourth-order field moment [73–76]. We will use
the extended Huygens-Fresnel principle to calculate the fourth-order
correlation function for the correlation beams in the SPDC process in
the next chapters.

The condition λ� l plays the most important role in strong fluctu-
ation theory, where l is the size of inhomogeneities of the medium. As
a consequence, the interaction with a single inhomogeneity results in
predominantly forward scattering, and the scattered radiation is con-
centrated in a narrow angular range around the original direction of
propagation. Under these circumstances random interference occurs
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between the scattered waves, leading to drastic intensity changes in
the plane of observation. The area where the intensity fluctuations
reach their maximum (where a concentration of random caustics oc-
cur) is the region of random focusing, so called because the focusing
effect of the large-scale inhomogeneities appears here in the strongest
form. With increasing path length or the strength of inhomogeneities
the phase fluctuations within the first Fresnel zone become substan-
tial, and the individual components of the wave front arrive out of
phase and add up incoherently. Therefore, the focusing is weakened,
the fluctuations slowly begin to decrease, saturating at a given level.
In general terms, this gives a qualitative picture of strong fluctuations.

The function n1(R) (see Eq.(18)) describes a random field, obeying
〈n1〉 = 0. The random field n1(R) is fully determined if all statistical
moments of the form 〈n1(R1) · · · n1(Rn)〉 are given. For simplicity it is
assumed that the n1(R) is a Gaussian random field. In this case it is
sufficient to know the mean value (〈n1〉 = 0) and the correlation func-
tion B(R, R

′
) = 〈n1(R)n1(R

′
)〉, since all higher moments can be expressed

in terms of B. In a turbulent medium, for very large Reynolds num-
bers, n1(R) is a statistically locally isotropic homogeneous field [83, 84].
For such a field, it is customary to use, instead of the correlation func-
tion B, the structure function D(R′) = 〈(n1(R + R′)− n1(R))2〉.

2.2.7 Extended Huygens-Fresnel principle.

One approach to solving Eq. (17) by a different method was devel-
oped in the United States by Lutomirski and Yura [78] and in the
former Soviet Union by Feizulin and Kravtsov [79]. In the extended

Huygens-Fresnel principle, the field that propagates from the source located
in the plane z = 0 to the observation point r = (x, y) at the plane z = L is
determined via the expression

U(r, L) =
keikL

2πiL

∫ ∫ ∞

−∞
d2s U0(s, 0) exp

[
ik|s− r|2

2L
+ ψ(r, s)

]
, (30)

where ψ(r, s) is the random part of the complex phase of a spherical
wave propagating in the turbulent medium from the point (s, 0) to
the point (r, L). We recognize Eq. (30) as an extended version of the
Huygens-Fresnel formula, hence its name. Now it reads: the field at
the point (r, z) in the atmosphere is a superposition of spherical waves
originated at the source plane z = 0, (s, 0) with amplitudes U0(s, 0) while
during the propagation suffered phase and amplitude distortions rep-
resented by stochastic complex function ψ(r, s) that depends on points
of source and observation planes.

It has been shown that the extended Huygens-Fresnel principle is
applicable through first-order and second-order field moments under
weak or strong fluctuation conditions of atmospheric turbulence. In
fact, it has been established that, up to second-order field moments,
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the parabolic equation method [80] and the extended Huygens-Fresnel prin-
ciple yield the same results. We will use this latter method to de-
velop results for fourth-order moments under general atmospheric
conditions. For the fourth-order moment of the field, however, it has
not been demonstrated that Eq. (30) is equivalent to the parabolic
equation method or that Eq. (30) is applicable except under weak
fluctuation conditions.

The Rytov approximation is the most widely used method, but is
limited to regimes of weak irradiance fluctuations. When the prop-
agation channel involves moderate-to-strong irradiance fluctuations,
the parabolic equation method and extended Huygens-Fresnel prin-
ciple have generally been the most successful. Yet, the mathematical
complications associated with both of these methods precludes the
complete analysis for moderate levels of irradiance fluctuations that
is often required in many applications.

If the random medium is statistically homogeneous and isotropic, the sta-
tistical quantities are now given by [21, 82]

E1(0, 0; 0, 0) ≡ E1(0) = 〈ψ2(r, s)〉 +
1
2
〈ψ2

1(r, s)〉 = −2π2k2L
∫ ∞

0
dκκΦn(κ), (31)

E2(r1, r2; s1, s2) = 〈ψ1(r1, s1)ψ∗1 (r2, s2)〉

= 4π2k2L
∫ 1

0

∫ ∞

0
κΦn(κ)J0(κ|(1− ξ)p + ξQ|)dκdξ,

(32)

E3(r1, r2; s1, s2) = 〈ψ1(r1, s1)ψ1(r2, s2)〉

= −4π2k2L
∫ 1

0

∫ ∞

0
κΦn(κ)J0(κ|(1− ξ)p + ξQ|)

× exp
[
− iLκ2

k
ξ(1− ξ)

]
dκdξ ,

(33)

where Q = s1 − s2 and p = r1 − r2 are input and output plane variables,
respectively.

In the next chapters we will extensively use these important func-
tions to calculate second and fourth order correlation functions for
the SPDC light propagating through turbulent (random) medium.
Assuming the random part of the index-of-refraction is Gaussian ran-
dom field, for which 〈exp(ψ)〉 = exp

[
〈ψ〉 + 1

2
(
〈ψ2〉 − 〈ψ〉2

)]
holds, Eqs. (31)–

(33) will help us to calculate important statistical averages like

〈exp[ψ(r, s)]〉 = exp[E1(0)], (34)
〈exp[ψ(r1, s2) + ψ∗(r2, s2)]〉 = exp[2E1(0) + E2(r1, r2; s1, s2)], (35)

〈exp[ψ(r1, s2) + ψ∗(r2, s2) + ψ(r3, s3) + ψ∗(r4, s4)]〉 =

= exp
[

4E1(0) + E2(r1, r2; s1, s2) + E2(r1, r4; s1, s4)

+ E2(r3, r2; s3, s2) + E2(r3, r4; s3, s4) + E3(r1, r3; s1, s3) + E∗3 (r2, r4; s2, s4)
]

.

(36)
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2.2.8 Input and Output Plane Beam Parameters.

Sometimes it is useful to express equations in terms of input and output

plane beam parameters. The input beam parameters are defined as

Θ0 = 1− z
F0

, Λ0 =
2z

kW2
0

. (37)

and the output beam parameters as

Θ = 1 +
z
F

=
Θ0

Θ2
0 + Λ2

0
, Λ =

2z
kW2 =

Λ0

Θ2
0 + Λ2

0
, Θ = 1−Θ, (38)

where W0, F0 and W, F are the spot radius and the phase front radius of
curvature of the TEM00 beam at the input and output planes, respec-
tively. k = 2π/λ is the wave number at the transmitter (z = 0).

These new parameters are somewhat non-intuitive, although they
have interesting geometrical representation on the complex planes
(Λo , Θ0) and (Λ, Θ) from which one can identify different characteristics
of a convergent, collimated and divergent beam. For more informa-
tion about the input-output beam parameters see [21]. They also
facilitate the description of Gaussian-beam waves in the presence of
optical turbulence.

The type of beam is designated the following way:
• collimated beam: Θ0 = 1,
• convergent beam: Θ0 < 1,
• divergent beam: Θ0 > 1.
Another important feature of these parameters is the possibility of
describing, as limiting cases, a plane wave (Θ = 1, Λ = 0) and a spherical
wave (Θ = 0, Λ = 0).

2.2.9 Wave structure functions. Scintillation index.

For future use, we need some expressions for wave structure func-
tions (WSF) as well as for scintillation index for a spherical wave. Def-
initions:
the spherical WSF

Dsp(Q) = 8π2k2z
∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ) [1− J0(κξQ)] . (39)

It is the real part of the complex degree of coherence.
The two-point spherical WSF

Dsp(p, Q) = 8π2k2z
∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ) [1− J0(κ|(1− ξ)p + ξQ|)] , (40)

and the scintillation index of spherical wave

σ2
sp(z) = 8π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)

[
1− cos

(
zκ2

k
ξ(1− ξ)

)]
. (41)
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It is the intensity variance scaled by the square of the mean intensity.
For the von Kármán spectrum (14), Eq. (39) is found to be, [21,

ch.6]

Dsp(Q) =

{
1.093C2

nk2zl−1/3
0 Q2, z� zi ,

1.093C2
nk2zQ5/3, z� zi ,

which is valid for κ0 = 0 or L0 = ∞. The quantity zi ∼
(

C2
nk2l5/3

0

)−1
rep-

resents the propagation distance at which the transverse coherence
radius of the optical wave is on the order of the inner scale l0. In most
practical situations the propagation path length satisfies z � zi. For
this reason, to proceed analytically, a commonly accepted approxima-
tion is

1.093C2
nk2zQ5/3 ∼=

1.78σ2
R

Λ0W2
0

Q2 =
1.58σ2

R,p

Λ0,pW2
0

Q2, (42)

where, in the last part of Eq.(42) we expressed the Rytov variance
(see Eq.(20)) and input beam parameter Λ0 in terms of pump wave
number kp. We will use the last expression for Dsp, viz.

Dsp(Q) ∼=
1.58σ2

R,p

Λ0,pW2
0

Q2. (43)

The two-point spherical WSF can be evaluated to be [21, ch.7]

Dsp(p, Q) =
2

3ρ2
pl

(
p2 + Q2 + p ·Q

)
, (44)

where ρpl = (1.45C2
nk2z)−3/5 = (0.36C2

nk2
pz)−3/5 (z� zi) is called a plane wave

coherence radius.
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3

C O R R E L AT I O N B E A M S I N T H E T U R B U L E N T AT M O S P H E R E

3.1 coherent correlation beams in the turbulent atmosphere

3.1.1 Overview

The area of quantum optical communication [1] with entangled pho-
tons [2] is rich in experimental implementations. Therefore, studying
the effects of turbulent or random medium on non-classical light has
gained a considerable interest. There have been investigations in ar-
eas such communication [23], conservation of orbital angular momen-
tum [6, 7, 20, 29, 85], noise transport and negative correlations [30];
two-photon speckle [33, 36]; spatial correlations [37, 38, 41]; ghost
imaging [39, 42–44]; interference and anti-bunching and symmetry
properties [45, 46].

To our knowledge, there is no analytical result involving turbu-
lent medium in both, signal and idler arm. In this Thesis we investi-
gate the problem analytically in a more general context. As a result,
we calculate the atmospheric fourth-order correlation function (or, the
two-photon speckle, which is proportional to two-photon joint detec-
tion probability, therefore, a measurable quantity) in the cases when
the χ(2) crystal is pumped either by any coherent Hermite/Laguerre-
Gaussian beam (Secs.3.1.6, 3.1.7) or by a partially coherent beam
(Sec.3.2). The latter case is particularly interesting because the beams
produced by partially coherent sources spread less in the random
medium than coherent beams [49–51, 138].

3.1.2 The Biphoton

Though the two-photon probability amplitude or, so called the Bipho-
ton, is not a coherence function, it does obey the Wolf equations [86],
and therefore exhibits propagation and diffraction phenomena anal-
ogous to those of the second-order coherence function, including the
van Cittert–Zernike theorem [58, 87, 88].

A duality accompanied with mathematical similarity between the
two-photon probability amplitude and the second-order coherence
function for the incoherent source has been highlighted before [89].
The smaller the size of an incoherent source, the more separable is the
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coherence function and the more coherent is the field, and therefore
the higher the visibility of ordinary interference fringes. In contrast,
the narrower the size of a two-photon source (the pump at the thin
crystal), the more separable is the wave function and the less entan-
gled is the state, and therefore the lower the visibility of two-photon
interference fringes.

Light in a two-photon pure quantum state is described in a Hilbert
space with a continuum of spatiotemporal, also transverse, modes
occupied by a total of exactly two photons. It is a superposition of
multimode states, each of which has the two photons occupying a dif-
ferent pair of modes, with all other modes empty. Two-photon light is
generated, for example, by a low gain spontaneous parametric down-
conversion process in a second-order nonlinear optical crystal. Phase
matching conditions dictate that the state be entangled spectrally, spa-
tially and in transverse modes.

3.1.3 Two-Photon Speckle

Replacing the simple optical system by a random medium and as-
suming that the coincidence rate P2 is measured as a function of the
positions R1 and R2 of the two detectors at times t1 and t2, one ar-
rives at the concept of the two-photon speckle pattern P2(x1, x2), where
xi = (Ri , ti) [36]. It is important to realize that P2 corresponds to a single
realization of the random medium. It is therefore a random quantity
and fluctuates from one realization of disorder to another. To obtain
a deterministic quantity, one must average P2 over an ensemble of
realizations of the random medium.

The two-photon speckle is given by the square magnitude of the
two-photon wave function:

P2(x1, x2) = |A(x1, x2)|2= |〈0, 0|Ê(+)
2 (x2)Ê(+)

1 (x1)|ψ〉|2, (45)

where x1 = (r1, z1, t1) and x2 = (r2, z2, t2). Ê(+)
1 (x1) and Ê(+)

2 (x2) are +z propagat-
ing, scalar, quasi-monochromatic, paraxial, positive-frequency field
operators [1] at x1, x2. They are expressed in terms of the annihila-
tion operators âs(x) and âi(x) at the source plane (the crystal) and the
amplitude-response functions of the signal and idler systems [89]:

Ê(+)
1 (x1) =

∫
drhs(r1, r)âs(r, t1 − z1/c), (46)

Ê(+)
2 (x2) =

∫
drhi(r2, r)âi(r, t2 − z2/c), (47)

with amplitude-response functions for signal and idler systems:

hj(rj , r) =
kjeik jzj

i2πzj
exp

{
ikj

2zj
|rj − r|2+ψ(j)(rj , r; kj)

}
, j = s, i. (48)
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Finally, |ψ〉 is the two-photon SPDC state vector in the thin crystal
approximation

|ψ〉 =
∫∫

drdr′Ep

(
r + r′

2

)
δ(r− r′)â†

s (r)â†
i (r′)|0, 0〉

=
∫

drEp(r)|1r, 1r〉,
(49)

which is maximally entangled in the configuration space variables
and |1r〉 = 1

(2π)2

∫
dkeik·r|1k〉, |1k〉 being the single photon Fock state of

mode k.
Pictorially, the system is presented in Figure 1 below, where, for

completeness, we added an amplitude-response system for the pump
as well. The remote coincidence identification of the two remote lo-

Figure 1: Schematic diagram of the system considered. NLC represents a
nonlinear crystal, hp, hs and hi represent the amplitude response functions
for the pump beam (p) and for the down-converted photons (s, i). D1 and
D2 represent the detectors and P2 represents the fourth order correlation
function, a measurable quantity which is proportional to the two-photon
joint detection probability.

cations without dedicated coincidence hardware is settled using the
time correlation of the photon pairs [90].

When substituting Eqs.(46)–(49) into Eq.(45), the joint detection
probability density function takes the following form:

P2(x1, x2) =
kski

4π2z1z2

∫∫
dr′dr′′Ep(r′ , t1 − z1/c)E∗p(r′′ , t2 − z2/c)

× exp
{

iks

2zs

[
|r1 − r′|2−|r1 − r′′|2

]
+

iki
2zi

[
|r2 − r′|2−|r2 − r′′|2

]}
× exp

[
ψ(r′ , r1; ks) + ψ∗(r′′ , r1; ks) + ψ(r′ , r2; ki) + ψ∗(r′′ , r2; ki)

]
.

(50)

To proceed further one must account for statistical average over an
ensemble of realizations of turbulent medium

P2(x1, x2) =
k2

4π2z2

∫∫
dr′dr′′Ep(r′ , t1 − z1/c)E∗p(r′′ , t2 − z2/c)

× exp
{

ik
2z

[
|r1 − r′|2−|r1 − r′′|2+|r2 − r′|2−|r2 − r′′|2

]}
×
〈
exp

[
ψ(r′ , r1) + ψ∗(r′′ , r1) + ψ(r′ , r2) + ψ∗(r′′ , r2)

]〉
,

(51)

where we assumed the degenerate case, k ≡ ks = ki = kp/2, and chose
the detection plane at z ≡ z1 = z2.
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With the help of Eq.(36), the last exponential in Eq.(51) takes the
form

〈exp [...]〉 = exp
[
4E1(0) + 2E2(0, 0; r′ , r′′) + E2(r1, r2; r′ , r′′)

]
× exp

[
E2(r2, r1; r′ , r′′) + 2ReE3(r1, r2; 0, 0)

]
,

(52)

where the functions E1, E2, E3 are defined in (31)-(33). Using Tatarskii
spectrum (13) we evaluated the integral in Eq.(59) (for details, see the
Appendix B). Now Eq.(51) amounts to

P2(x1, x2) =
k2

4π2z2

∫∫
dr′dr′′Ep(r′)E∗p(r′′)

× exp
{

ik
2z

[
|r1 − r′|2−|r1 − r′′|2+|r2 − r′|2−|r2 − r′′|2

]}
× exp

[
−1

2
[
Dsp(p, Q) + Dsp(−p, Q)

]
+ Dsp(p)− Dsp(Q)− 0.043π2C2

nz3 p−7/3
]

.

(53)

Finally, using Eqs.(43) and (44) we arrive at

P2(x1, x2) =
k2

4π2z2 exp

[(
1.58σ2

R,p

Λ0,pW2
0
− 2

3ρ2
pl

)
p2 − 0.043π2C2

nz3 p−7/3

]

×
∫∫

dSdQEp(S + Q/2)E∗p(S−Q/2)

× exp
{

ikp

z
(S ·Q− r ·Q)

}
exp

[
−
(

1.58σ2
R,p

Λ0,pW2
0

+
2

3ρ2
pl

)
Q2

]
.

(54)

In Eq.(54) we used (43), (44) and made the following change of vari-
ables

Q = r′ − r′′ , S =
1
2
(
r′ + r′′

)
, Q = |Q|, S = |S|, (55)

for the source plane, and

p = r1 − r2, r =
1
2
(r1 + r2) , p = |p|, r = |r|, (56)

for the observation plane. Using these, we also simplified the expres-
sion in the first exponential in Eq.(53), viz.

ikp

z
(S ·Q− r ·Q) =

ik
2z

[
|r1 − r′|2−|r1 − r′′|2+|r2 − r′|2−|r2 − r′′|2

]
,

which is easily checked. Note that we are in the degenerate regime
kp = 2k.

3.1.4 Two Photon Absorber.

First, let us calculate the two-photon speckle for the case x1 = x2. Ex-
perimentally, it can be measured using, e.g., a two-photon absorber
[58].
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We have

P2(x, x) =
k2

4π2z2

∫∫
dr′dr′′Ep(r′ , t− z/c)E∗p(r′′ , t− z/c)

× exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]}
× exp

[
4E1(0) + 4E2(0, 0; r′ , r′′) + 2ReE3(0)

]
.

(57)

From now on we are going to omit the time dependence of the
fields. Adding and subtracting 4E1(0) in the above exponent, we rec-
ognize

2ReE3(0)− 4E1(0) = σ2
sp(z),

the scintillation index for a spherical wave, and

4E2(0, 0; r′ , r′′) + 8E1(0) = −2Dsp(|r′ − r′′|, z),

the spherical wave structure function. They are defined in the previ-
ous chapter (see Eqs.(39),(155)). For different models of turbulence
power spectrum Φ(κ), they are given in the Appendix III of Ref. [21]
expressed in turbulence parameters.

With these quantities, P2(x, x) takes the form

P2(x, x) =
k2eσ2

sp(z)

4π2z2

∫∫
dr′dr′′Ep(r′)E∗p(r′′)

× exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]
− 2Dsp(|r′ − r′′|)

}
.

(58)

Going back to the more general case we recognize in Eq.(52)

4E1(0) + E2(r1, r2; r′ , r′′) + E2(r2, r1; r′ , r′′) = −1
2
[
Dsp(p, Q) + Dsp(−p, Q)

]
,

and

2E2(0; r′ , r′′) + 2ReE3(r1, r2; 0)

= 8π2k2z
∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)

[
J0(κξQ)− J0(κξ p) cos

(
zκ2

k
ξ(1− ξ)

)]
= Dsp(p)− Dsp(Q) + 4π2z3

∫ 1

0
dξ
∫ ∞

0
dκκ5Φ(κ)J0(κξ p)ξ2(1− ξ)2.

(59)

In the last line of Eq.(59), to have an analytical expression, we used
geometrical optics approximation, viz. zκ2/k � 1, to replace cos α by
1 − α2/2 ([21], Ch.9). In geometrical optics approximation one ne-
glects diffraction effects, it is generally limited to propagation paths
in which L � l2

0/λ, where l0 is the inner scale of turbulence. The geo-
metrical optics method produces similar results as diffraction theories
because phase fluctuations are most sensitive to large scale sizes. This
method is extensively used in astronomical applications.
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3.1.5 Two-Photon versus One-Photon Speckle. Quantum versus Classical
Correlations. Comparison.

In vacuum, P2 factorizes for two independent photons: P2(x1, x2) =

P1(x1)P1(x2), where P1(xi) is the probability to detect a photon at a posi-
tion ri at a time ti, i = 1, 2. It describes the one-photon speckle pattern
and is proportional to the intensity of light at xi. As mentioned al-
ready, in the atmosphere, the ensemble averaged P2 does not factorize.
Note that even for two independent photons, P2(x1, x2) 6= P1(x1)P1(x2) does
not factorize into a product of P1’s (in contrast to the non-averaged P2)
because P1(xi) can have nontrivial (classical) correlations in both space
and time [129]. Therefore, the ensemble-averaged two-photon speckle
P2(x1, x2) combines properties due to the quantum nature of the inci-
dent light and those arising from the classical correlations between
photons at two different positions (or times). Let us compare the two
photon speckle with the one-photon speckle which is obtained in sin-
gle photocounts (second order effect). The single-photon probability
density is given by [130]

P1(x1) =
∫

dr|Ep(r, t1 − r/c)|2|h1(r1, r)|2, (60)

where x1 = (r1, z1, t1) is the detector’s coordinate r1 at time t1, and

h1(r1, r) = − ik
2πz

eikz exp
[

ik
2z
|r1 − r|2+ψ(r1, r; k)

]
, (61)

is the impulse-response function with ψ(r1, r; k) being the Rytov’s (com-
plex) random function representing the amplitude and phase fluctua-
tions of the field due to the random (turbulent) medium. Considering
it in (60) one arrives at

P1(x1) =
(

k
2πz

)2 ∫
dr|Ep(r, t1 − r/c)|2exp [ψ(r1, r; k) + ψ∗(r1, r; k)] . (62)

Expanding ψ, as always, up to the second order, ψ1 + ψ2, ψ2 � ψ1, and
making an ensemble average of the exponent we obtain

〈exp [ψ(r1, r; k) + ψ∗(r1, r; k)]〉 = exp
[
2σ2

r1
− T

]
, (63)

where σ2
r1

describes the atmospherically induced change in the mean
intensity profile in the transverse direction, and T describes the change
in the on-axis mean intensity at the receiver plane caused by turbu-
lence [21, Ch. 6]. The one-photon speckle now looks like

P1(r1) =
(

k
2πz

)2
exp

[
2σ2

r1
− T

] ∫
dr|Ep(r)|2

=
(

k
2πz

)2
exp

[
2σ2

r1
− T

]
exp

[
− 2r2

W2
p

]
.

(64)

The term exp
[
2σ2

r1
− T

]
represents the turbulence induced spread of

the one-photon field. Same expression holds for P1(r2). They are
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proportional to the pump intensity at the crystal (z = 0), addition-
ally affected by the turbulence parameters represented by σ2

r and T.
We see that their product is different from the expression for P2(r1, r2),
Eq.(54), moreover, the marginal probability of Eq.(54) is not the same
as Eq.(64).

In the attempt to separate quantum effects from classical ones, the
authors of Ref. [36] found out that properties of two-photon speckle
are conditioned by the following phenomena: the indistinguishability
of photons, the quantum nature of the incident light, the classical cor-
relations between photons, induced by the fact that they propagate
through the same random medium. These phenomena determine
the overall behavior of P2(x1, x2) whatever the state of the incident
light. As a result, the P2 calculated for two-photon entangled and
non-entangled states, as well as for the coherent state look very sim-
ilar, with, however, one notable exception. Entanglement allows to
modify the symmetry of the state with respect to the exchange of the
two photons [46, 132].

Consider the two-particle state,

|ψ〉 =
∫∫

dxdy f (x, y)|x〉|y〉, (65)

Where |x〉 = |1〉x indicates a single particle in mode x, and |y〉 = |1〉y
indicates a particle in a distinct mode y. When these particles are
interfered, the paths are rendered partially distinguishable if f (x, y) is
not symmetric under exchange of its arguments, because auxiliary
measurements of the properties x and y may reveal ”which path”
information. On the other hand, the state

|ψ〉S =
∫∫

dxdy[ f (x, y) + eiu f (y, x)]|x〉|y〉, (66)

obtained by coherently superposing two states of the form Eq. (65)
contains no such distinguishing information [132].

3.1.6 Pumping the Crystal with Coherent Hermite-Gaussian Beams of any
Order.

Next, we calculate the two-photon speckles (58) and (54) for the case
when pump Ep(r) is chosen as one of the Hermite-Gaussian modes,

UHG
mn (rx , ry , 0) = Bm,n Hm

(√
2

W0
rx

)
Hn

(√
2

W0
ry

)
exp

(
− r2

W2
0

)
, (67)

where Bm,n = [W0
√

π2m+n−1m! n!]−1 is the normalization constant, Hk(ρ)

is the Hermite polynomial and W0 is the pump’s beam radius at the
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crystal. Changing the variables with the help of Eq.(55), Eq. (58) takes
the following form

P2(x, x) = |Bm,n|2
k2eσ2

sp(z)

4π2z2

∫∫
dSdQHm

[√
2

W0

(
Sx +

Qx

2

)]
Hm

[√
2

W0

(
Sx −

Qx

2

)]

× Hn

[√
2

W0

(
Sy +

Qy

2

)]
Hn

[√
2

W0

(
Sy −

Qy

2

)]

× exp

[
− 2

W2
0

(
S2

x + S2
y

)]
exp

[
− 1

2W2
0

(
Q2

x + Q2
y

)]

× exp
[

ikp

z
(
SxQx + SyQy

)]
exp

[
−

ikp

z
(
rxQx + ryQy

)]
× exp

[
−

3.16σ2
R,p

Λ0,pW2
0

(
Q2

x + Q2
y

)]
,

(68)

where σ2
sp is the scintillation index for a spherical wave (155). In the

Appendix C we evaluated this integral analytically. The result is

P2(x, x) =
e

σ2
sp(z)− 2r2

W2
LT

2πW2
LT

m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(W/WLT)

2k+2l

2k+lk! l!
H2k

[ √
2

WLT
rx

]
H2l

[ √
2

WLT
ry

]
,

(69)
where W represents the spot size of the pump beam on the observa-
tion plane in the absence of turbulence. We also made the following
definition:

WLT ≡W
√

1 + 6.32σ2
R,pΛ

Note that, as one would expect, in no turbulence limit, σ2
sp(z) → 0,

WLT →W, and Eq.(69) reduces to

P2(x, x) = |Bm,n|2
W2

0
W2 H2

m

[√
2

W
rx

]
H2

n

[√
2

W
ry

]
exp

[
− 2r2

W2

]
, (70)

where we used the identity [128]

H2
m(x) = 2m(m! )2

m

∑
k=0

H2k(x)
2k(k! )2(m− k)!

. (71)

We have found a similar result for Eq.(54):

P2(x1, x2) =
1

2πW2
LT1

exp

[(
1.58σ2

R,p

ΛpW2 −
2

3ρ2
pl

)
p2 − 0.043π2C2

nz3 p−7/3

]
e
− 2r2

W2
LT1

×
m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(W/WLT1)

2k+2l

2k+lk! l!
H2k

[
rx2 + rx1√

2WLT1

]
H2l

[ ry1 + ry2√
2WLT1

]
,

(72)

where

WLT1 = W

√√√√1 + 6.32σ2
R,pΛ +

4Λ2W2

3ρ2
pl

.

34



Eq.(72), too, reduces to a similar expression for the vacuum limit

P2(x1, x2) = |Bm,n|2
W2

0
W2 H2

m

[√
2

W

( rx2 + rx1
2

)]
H2

n

[√
2

W

( ry1 + ry2

2

)]
exp

[
− 2r2

W2

]
,

(73)
with r = |r1 + r2|/2. The results (69), (72) show that for an Hermite-
Gaussian pump the joint detection probability of down-converted
photons is a weighted convex sum of lower, even order Hermite-
Gaussian modes, all of them having scaled Hermite functions and
the same long term averaged Gaussian part exp[−2r2/W2

LT].
It is interesting to analyse the m = 1, n = 0 case. In that case, Eq.(69)

takes the form

P(10)
2 (x, x) =

eσ2
sp(z)

2πW2
LT

exp

[
− 2r2

W2
LT

]
1

∑
k=0

(W/WLT)2k

2k H2k

[ √
2

WLT
rx

]

=
eσ2

sp(z)

2πW2
LT

exp

[
− 2r2

W2
LT

](
1 +

W2

2W2
LT

H2

[ √
2

WLT
rx

])

=
eσ2

sp(z)

2πW2
LT

exp

[
− 2r2

W2
LT

](
1 +

W2

2W2
LT

[
4

2r2
x

W2
LT
− 2

])

=
eσ2

sp(z)

2πW2
LT

exp

[
− 2r2

W2
LT

](
1 +

4W2

W4
LT

r2
x −

W2

W2
LT

)
,

(74)

where we have used identities H0(x) = 1 and H2(x) = 4x2 − 2.
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Figure 2: The normalized two-photon speckle (TPS) for the HG10 pump case
under turbulence conditions: strong (dashed), strong-to-moderate (dashed-
dotted), moderate (dotted) and no turbulence (solid). The normalization is
made by dividing Eq. (74) by its maximum value (1/πW2e) in the absence
of turbulence. For simplicity, we took σ2

sp(z) = 0.4σ2
R for the Kolmogorov

spectrum.

We plotted the normalized version of Eq.(74) as a function of rx

and ry = 0 corresponding to the cases: vacuum, moderate turbulence,
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moderate-to-strong and strong turbulence for a propagation distance
of z = 5km. The normalization is made by dividing Eq.(74) by its
maximum value (1/πW2e) in the absence of turbulence. The result is:

PN(10)
2 (x, x) =

eW2

2W2
LT

exp

[
− 2r2

W2
LT

](
1 +

4W2

W4
LT

r2
x −

W2

W2
LT

)
, (75)

The plot resembles the result [21, ch.17] for HG10 laser beam intensity.
This is again a manifestation of the beam-like behavior of spatial cor-
relations in two-photon states generated by spontaneous parametric
down-conversion. We see that the coincident counts reduce signifi-
cantly in the strong turbulence regime. Another important conclu-
sion can be drawn from this result: the amount of the HG00 mode
is appreciable even in moderate turbulence, meaning that cross-talk
between modes increases with turbulence, degrading the dimension-
ality of the alphabet based on higher-order Gaussian modes. The
dimensionality degradation of Laguerre-Gauss modes due to turbu-
lence has been experimentally demonstrated in Ref. [13].

3.1.7 Pumping the crystal with Coherent Laguerre-Gaussian Beams of any
Order.

In calculating the two-photon speckle we have used Hermite-Gauss
functions to represent the transverse profile of the pump. We have
done so due to relatively simpler manipulations that Hermite-Gauss
functions permit, which lacks when dealing with Laguerre-Gauss
functions. The normalized Laguerre-Gaussian modes in polar coordi-
nates are given by [91]

ULG
pl (r, θ, z) =

√
2p!

π(|l|+p)!
1

W(z)

( √
2r

W(z)

)|l|
L|l|p

(
2r2

W2(z)

)
eilθ

× exp[i(2p + |l|+1)φ(z)] exp
(

ikz− r2

W2(z)
+ i

kr2

2F(z)

)
,

(76)

where the various parameters are defined in the Appendix A.
Instead of using Eq.(76) in (51), one can use the fact that HG and

LG modes are converted one into another by a basis change [92]

|LGl.p〉 =
∞

∑
m=0

∞

∑
n=0
|HGm,n〉〈HGm,n|LGl.p〉, (77)

and
|HGl.p〉 =

∞

∑
l=−∞

∞

∑
p=0
|LGl,p〉〈LGl,p|HGm,n〉, (78)

where

〈HGm,n|LGl.p〉 = 〈LGl,p|HGm,n〉∗ =

 imb
(

N+l
2 , N−l

2 , m
)

, 2p + |l|= m + n,

0, 2p + |l|6= m + n,
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and the coefficients b(m, n, k) are defined as

b(m, n, k) =

√
(m + n− k)! k!

2m+nm! n!
1
k!

dn

dtn [(1− t)m(1 + t)n]t=0 , (79)

so that
ULG

mn (x, y, z) =
N

∑
k=0

ikb(m, n, k)UHG
N−k,k(x, y, z), (80)

with N = m + n = 2p + |l|, called the mode order. The indices l and p

of the LG mode resulting from mode conversion of a HG mode are
related to the indices n and m of the original HG mode through the
equations

l(m, n) = m− n, p(m, n) = min(m, n),

and the inverse relation

m(N, l) =
N + l

2
, n(N, l) =

N − l
2

.

Using the relation (80) one immediately has a solution for the two-
photon speckle for a Laguerre-Gaussian pump of any order.

3.1.8 Coordinates Inversion

Let us make a transverse coordinates inversion in the signal, say, pho-
ton, r

′
2 → −r

′
2. Also choose the detectors at r1 = −r2 ≡ r. The experi-

mental implementation of this has been made in Ref. [37]. Then the
Biphoton at the observation plane, in the thin crystal approximation,
takes the following form

Ainv(r,−r) =
(

k
2πz

)2 ∫∫
dr
′
1dr

′
2Ep

(
r
′
1 − r

′
2

2

)
δ(r

′
1 + r

′
2)

× exp
[

ik
2z

(
|r− r

′
1|2+|r + r

′
2|2
)]

exp
[
ψs(r

′
1, r) + ψi(r

′
2,−r)

]
=
(

k
2πz

)2 ∫
dr
′
Ep(r

′
) exp

[
ik
z
|r− r

′ |2
]

exp
[
ψs(r

′
, r) + ψi(−r

′
,−r)

]
.

(81)

We see from Eq.(81) that the total perturbation is now symmetric with
respect to the z axis; that is to say, the antisymmetric part of ψ is
canceled out. In particular, the wavefront tilt (ik/2L)(r′ − r) · d, where d

is a random displacement, vanishes.
The two-photon speckle takes the form

Pinv
2 (r,−r) =

(
k

2πz

)2 ∫∫
dr
′
dr
′′
Ep(r

′
)E∗p(r

′′
) exp

[
ik
z

(
|r− r

′ |2−|r− r
′′ |2
)]

×
〈

exp
[
ψ(r

′
, r) + ψ∗(r

′′
, r) + ψ(−r

′
,−r) + ψ∗(−r

′′
,−r)

]〉
.

(82)

With the help of Eq.(36) we find the ensemble average to be

〈exp [...]〉 = exp
[
4E1(0) + E2(0, 0; r′ , r′′) + E2(r,−r; r′ ,−r′′) + E2(−r, r;−r′ , r′′)

]
× exp

[
E2(−r,−r;−r′ ,−r′′) + E3(r,−r; r

′
,−r

′
) + E3(r,−r; r

′′
,−r

′′
)
]

.
(83)
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By grouping the second term with the fifth, the third with the fourth
and using Eqs.(31)–(33), one can show that Eq.(83) results in

〈exp [...]〉 =− 8π2k2z
∫ ∞

0
dκκΦ(κ) +

(
8π2k2z

∫ ∞

0
dκκΦ(κ)− 8π2k2z

∫ ∞

0
dκκΦ(κ)

)
+ 8π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)

[
J0(κξ|r− r

′ |)
]

+ 8π2k2z
∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)

[
J0(κ|(1− ξ)(2r) + ξ(r

′
+ r

′′
)|
]

− 4π2k2z
∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)

[
J0(κ|(1− ξ)(2r) + ξ(2r

′
)|
]

exp
[
−i

zκ2

k
ξ(1− ξ)

]
− 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)

[
J0(κ|(1− ξ)(2r) + ξ(2r

′′
)|
]

exp
[

i
zκ2

k
ξ(1− ξ)

]
.

(84)

In terms of wave structure functions (39) and (40), this has the form

〈exp [...]〉 = −Dsp(|r′ − r
′′ |) + Dsp(2r, r

′
+ r

′′
)− 1

2

[
Dsp(2r, 2r

′
) + Dsp(2r, 2r

′′
)
]

. (85)

In passing from Eq.(84) to Eq.(85) we again made the geometrical
optics approximation [21, ch.8], zκ2/k � 1, to replace the exponential
functions in the fourth and fifth lines of Eq.(84) by one. The two-
photon speckle, in the changed variables (55) now becomes

Pinv
2 (r,−r) =

(
k

2πz

)2 ∫∫
dSdQEp

(
S +

Q
2

)
E∗p

(
S− Q

2

)
exp

[
2ik
z

(S ·Q− r ·Q)

]
× exp

{
−Dsp(Q) + Dsp(2r, 2S)− 1

2
[
Dsp(2r, 2S + Q) + Dsp(2r, 2S−Q)

]}
,

(86)

which, using the approximated expressions (43) and (44), takes the
form

Pinv
2 (r,−r) =

(
k

2πz

)2 ∫∫
dSdQEp

(
S +

Q
2

)
E∗p

(
S− Q

2

)
× exp

[
2ik
z

(S ·Q− r ·Q)

]
exp

[
−
(

2
3ρ2

pl
+

0.79σ2
R,p

Λ0,pW2
0

)
Q2

]
.

(87)

We see that this expression has a simpler form than Eq.(54), the latter
having an exponential degrading modulation in front. This is so not
only because of the symmetric observation points, but also because of
the coordinate inversion we made in one of the signal or idler fields
at the source plane. This explains the raise of coincidences observed
in [37].

3.2 partially coherent correlation beams in the turbulent atmo-

sphere

3.2.1 Cross-Spectral Density and its Coherent-Mode Representation.

Because of the spreading of a light travelling in the atmosphere the
detection becomes a difficult task when propagation distance is in-
creased. One would need larger telescopes to detect the incoming
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signal. Although partially coherent beams spread more than coher-
ent beams when propagating in vacuum, it is the opposite when they
propagate in the atmosphere, in a relative manner. After some prop-
agation distance, coherent beams start spreading faster than partially
coherent ones. In this sense, partially coherent beams are more re-
sistant to the atmosphere [49–51]. Particularly, it has been shown
that the angular spread of partially coherent Hermite-cosh-Gaussian
beams is less when the spatial correlation length ρ0, the waist width
W0, the beam parameter (associated with the cosh part) Ω0 are smaller
and when the beam order m, n is larger [94]. This implies that the
partial coherence of the pump field can be used as a parameter to
prepare states that are optimal for a given quantum-information pro-
tocol and a given strength of turbulence. Therefore, using partially
coherent sources to pump a χ(2) crystal to produce correlation beams
becomes a natural task, for the pump field amplitude shows up in the SPDC
state (49). A review article on generation of various partially coher-
ent beams and their propagation properties in turbulent atmosphere
is given by Cai [101].

Partially coherent sources have been used before in SPDC process
without– [102, 103] and with the presence of turbulent meduim [41–
44].

The partially coherent sources are characterized by the cross-spectral
density function defined by [58]

〈U(r1, ω)U∗(r2, ω′)〉 = W(0)(r1, r2, ω)δ(ω−ω′), (88)

where angular brackets represent ensemble average over different re-
alizations of the field and δ is the Dirac delta function.

The cross-spectral density functions satisfy Wolf equations for
propagation of correlations in free space and for a large class of statis-
tically stationary sources they have a coherent mode representation
[58, 86]

W(0)(r1, r2, ω) = ∑
n

αn(ω)ϕ∗n(r1, ω)ϕn(r2, ω). (89)

Here, ϕn(r, ω) and αn(ω) are the eigenfunctions (eigenmodes) and eigen-
values of the (Fredholm) integral equation∫

source
W(0)(r1, r2, ω)ϕn(r1, ω)d2r1 = ϕn(r2, ω), n = {n1, n2}. (90)

As a set of mode functions one usually takes an orthonormal one:∫
source

ϕ∗m(r, ω)ϕn(r, ω)d2r = δm,n (91)

and αn(ω) ≥ 0, ∀n.

A model for partially coherent source is the Gaussian-Schell-model
(GSM). They are characterized by a cross-spectral density function of
the form [50, 58]

W(0)(r1, r2, ω) =
√

S(0)(r1, ω)S(0)(r2, ω)µ(0)(r1, r2, ω), (92)
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where

S(0)(r, ω) = M exp
[
− |r|

2

2σ2
s

]
, µ(0)(r1, r2, ω) = exp

[
−|r1 − r2|2

2σ2
µ

]
(93)

are the spectral density and the spectral degree of coherence of the
source, respectively. M is a positive constant, σs and σµ are the ef-
fective widths of spectral density and spectral degree of coherence,
respectively.

The authors of Ref.[51] prove a theorem according to which the
spreading of a beam generated by a GSM source is independent of
the coherence properties of the source, after it has travelled over a
sufficiently long distance through a turbulent atmosphere. It means
that there is no need to use high quality lasers for pointing, track-
ing and guiding through the atmosphere over long enough distances.
A poor quality laser or a ”mosaic” of independent lasers would do
just as well. In order that such sources (GSM) generate a beam, the
condition

1/(2σ2
s ) + 2/σ2

µ � k2

must be satisfied [58].
Another model of sources is the so called Collett-Wolf model [104–

106]. These sources can produce fields as directional as a laser beam
fields (in the quasi-homogeneity hypothesis), although the sources
are nearly incoherent. Experimental realizations of Collett-Wolf sources
are described in Refs. [107, 108].

The cross-spectral density function of a planar, rectangular GSM
sources may have coherent-mode representation of the following form
[50]

W(0)(r1, r2, ω) = ∑
m

∑
n

βm,n(ω)φ(0)∗
m (r1, ω)φ(0)

n (r2, ω), (94)

where
βm,n(ω) = M

( π

a + b + c

)( b
a + b + c

)m+n
, (95)

with a = 1/4σ2
s , b = 1/2σ2

µ , c =
√

a2 + 2ab, and the coherent modes φ(0)(r, ω)

are given by

φ(0)(r, ω) = Bm,nHm

[√
2

W0
rx

]
Hn

[√
2

W0
ry

]
exp

[
−

r2
x + r2

y

W2
0

]
. (96)

Hm(ρ) are the Hermite polynomials and

Bm,n =
[
W0
√

π2m+n−1m! n!
]−1

, W0 = 1/
√

c.

3.2.2 Two-Photon Speckle: Partially Coherent Pump.

When the χ(2) crystal is pumped by a partially coherent beam, one
must consider the ensemble averaged quantity 〈EpE∗p〉 over different
realizations of fields in the expression for the two-photon speckle (50)
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which is the cross-spectral density function W(c)(r1, r2). The superscript
(c) means that the cross-spectral density is considered at the surface
of the χ(2) crystal.

The joint detection probability density function (53) now takes the
following form

P2(x1, x2) =
k2

4π2z2

∫∫
dr′dr′′W(c)(r′ , r′′) exp

{
ik
2z

[
|r1 − r′|2−|r1 − r′′|2+|r2 − r′|2−|r2 − r′′|2

]}
× exp

[
−1

2
[
Dsp(p, Q) + Dsp(−p, Q)

]
+ Dsp(p)− Dsp(Q)− 0.043π2C2

nz3 p−7/3
]

,

(97)

where we have dropped the ω dependence.
For the case x1 = x2, Eq.(58) now takes the following form

P2(x, x) =
k2e−σ2

sp(z)

4π2z2

∫∫
dr′dr′′W(c)(r′ , r′′)

× exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]
− 2Dsp(|r′ − r′′|)

}
.

(98)

We now use the GSM model for the cross-spectral density function
W(c) of the two photon source Eqs.(92) and (93) in Eq.(98)

P2(x, x) =
k2e−σ2

sp(z)

4π2z2

∫∫
dSdQW(c)(S + Q/2, S−Q/2) exp

{
ikp

z
[S ·Q− r ·Q]− 2Dsp(Q)

}
=

Mk2e−σ2
sp(z)

4π2z2

∫∫
dSdQ exp

[
− S2

2σ2
s
− Q2

2σ2
∆

]
exp

{
ikp

z
[S ·Q− r ·Q]− 2Dsp(Q)

}
(99)

where we made a change of variables (55), and defined

1/σ2
∆ = 1/4σ2

s + 1/σ2
µ .

Integration in S variable is readily performed by using Fourier trans-
form

int in dS : 2σ2
s exp

(
−

σ2
s k2

p

2π2z2 Q2

)
,

and, similarly, the integration in Q variable

∫
dQ exp

[
−
(

1
2σ2

∆
+

σ2
s k2

p

2π2z2 +
1.58σ2

R,p

Λ0,pW2
0

)
Q2

]
exp

(
−2πiQ · r/λpz

)
=

2z2

σ2
s k2

p∆2(z)
exp

{
− r2

2σ2
s ∆2(z)

}
,

(100)

where we used Eq.(43) for Dsp and defined

∆2(z) = 1 +
1

(kpσsσ∆)2 z2 +
2z2

σ2
s k2

p
·

1.58σ2
R,p

Λ0,pW2
0

= 1 +
1

(kpσs)2

(
1

4σ2
s

+
1

σ2
µ

)
z2 +

1.58C2
nk1/6

p

σ2
s

z13/6.

(101)
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Finally, for the two-photon absorber we have

P2(x, x) =
Me−σ2

sp(z)

∆2(z)
exp

{
− r2

2σ2
s ∆2(z)

}
. (102)

Note that with Eq.(102) we recover the result in Ref.[50] for a partially
coherent beam intensity. Our result is for fourth order correlations:
a manifestation of the concept of correlation beam. Eq.(101) depicts
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Figure 3: Normalized two-photon speckle profile for the case when the χ(2)

crystal is pumped by (a) a fully coherent (σµ → ∞) Gaussian beam and (b)
a partially coherent (σµ = 2mm) Gaussian beam, both under the conditions
kp = 10−7m−1, C2

n = 10−13.6m−2/3, l0 = 0.01m, σs = 5mm. The detectors
are at the same space-time points x1 = x2.

the spread of a partially coherent beam in the atmosphere when the
approximation z � zi is satisfied. Remember, that zi represents the
propagation distance at which the transverse coherence radius of op-
tical wave is of the order of the inner scale l0. For the other limit,
z� zi, Eq.(101) takes the following form

∆2(z) = 1 +
1

(kpσs)2

(
1

4σ2
s

+
1

σ2
µ

)
z2 +

0.55C2
nl−1/3

0
σ2

s
z3. (103)

The first two terms represent the vacuum induced spreading, the
third term – the turbulence induced spreading. As we see from
Eqs.(101) and (103), turbulence effects become dominant for long
propagation distances. For a fully coherent Gaussian beam (σµ = ∞),
∆2(z) is larger, and Eq.(102) is appreciably changed in comparison with
the beam propagating in free space. In Fig.3, we plotted the normal-
ized version of (102) for both, partially and fully coherent Gaussian
pump beam cases. The normalization is made by dividing it by the
on-axis probability P2(r = 0, z)|C2

n=0,σµ=0= M/(1 + (πz/2kpσ2
s )2):

PN
2 (x, x) =

1 + (πz/2kpσ2
s )2

∆2(z)
exp

{
− r2

2σ2
s ∆2(z)

}
. (104)
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As the figures show, the two-photon speckle for the partially coher-
ent pump beam case is nearly the same as in vacuum, whereas that
of the the fully coherent Gaussian pump beam case is appreciably
changed in comparison with the propagation in vacuum. This result
is consistent with that of Ref. [50] for the intensity distribution of a
fully coherent beam and a beam generated by a GSM source.

3.2.3 Two-Photon Speckle in Coherent-Mode Representation.

Using Eqs.(94) and (96), the two-photon speckle (98) takes the form

P(p−coh)
2 (r, r) =

k2e−σ2
sp(z)

4π2z2 ∑
m

∑
n

βm,n|Bm,n|2
∫∫

dr′dr′′Hm

[√
2

W0
r
′
x

]
Hm

[√
2

W0
r
′′
x

]

× Hn

[√
2

W0
r
′
y

]
Hn

[√
2

W0
r
′′
y

]
exp

[
−

r
′2
x + r

′′2
x + r

′2
y + r

′′2
y

W2
0

]

× exp
{

ik
z

[
|r− r′|2−|r− r′′|2

]
− 2Dsp(|r′ − r′′|)

}
.

(105)

We notice that the integral in (105) is exactly the one in Eq.(68) if one
makes the change of variables (55), so that we can write in general

P(p−coh)
2 (x, x) =

∞

∑
m=0

∞

∑
n=0

βm,n|Bm,n|2P(coh)
2 (x, x), (106)

which is an incoherent sum of probabilities of type (69) with βm,n

given in Eq.(95).
As a perspective, one can consider the problem for different pump

beam models, e.g. cosh-Gaussian, Hermite-cosh-Gaussian beams [94],
Bessel and Bessel-Gaussian beams, etc. which have interesting prop-
erties and may be applied in communication schemes. As for the
partially coherent case one can also consider the phase screen model [95]
instead of the Gaussian-Schell model we considered here.

An important potential application of these results is the deter-
mination of the turbulence parameters: the strength of turbulence σR

or C2
n, the inner l0 and outer L0 scales, etc. by measuring the signal

and idler photons in coincidence. We discuss this aspect in the last
chapter of this Thesis.

The question whether the correlation beams are advantageous in
comparison with a laser beams is still open. The extended Huygens-
Fresnel principle that we extensively used for correlation beams can
be applied in two-photon imaging systems, together with ABCD ray
matrix formalism and Zernike polynomials [98], to calculate the first
few turbulence induced aberrations such as piston, tilt, focus, astig-
matism, coma and so forth. These aspects are discussed in the last
chapters of this Thesis.

43



4

M O D E A N A LY S I S O F H I G H E R O R D E R T R A N S V E R S E - M O D E

C O R R E L AT I O N B E A M S I N T U R B U L E N T AT M O S P H E R E

4.1 introduction

The fact that the down-converted photons are entangled in transverse
modes [109] justifies the question of finding the probability of de-
tecting a signal photon in some transverse mode and an idler pho-
ton in another transverse mode after propagating through turbulent
medium and check whether they are still correlated in modes. If that
is the case, there opens a possibility of quantum communication with
large alphabets. By writing the state of down-converted photons in
the transverse mode basis and equip with mode detection scheme one
could reach long distance, larger alphabet quantum communication.

The conventional (zero-order) Gaussian mode can be viewed as
an LG (HG) mode with l, p = 0 (m, n = 0), which can be detected with
the help of single-mode optical fibers used as mode filters. All other
modes (l 6= 0) have a more complex spatial distribution, and therefore
cannot be coupled into single-mode fibers. In order to detect higher-
order modes, computer-generated holograms are used to transform
them to zero-order Gaussian modes [110] that are further coupled to
single-mode fibers for detection. The computer-generated holograms
can be also used to project superposition states of LG modes to a par-
ticular state defined by the hologram, which is necessary to verify
entanglement [3, 111]. As the hologram and a single mode fiber con-
figuration is also sensitive to radial field distributions of source and
detectors (related to the mode number p), there has been works on
measurement of only the spiral spectrum of entangled two-photon
states, e.g. [116] . These are the main reasons why the outcomes of
previous works could not be directly compared with predictions of
the well-known SPDC wave function. Full spatial entanglement has
been accessed experimentally with practicable radial detection modes
with negligible cross correlations [112, 113]. The expected perfectly
correlated pure state from SPDC has the form

|ψ〉 =
∞

∑
p=0

∞

∑
l=−∞

ap,l |LGl
p〉s|LG−l

p 〉i . (107)
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In contrast to the azimuthal modes, the radial modes do not necessar-
ily represent Schmidt modes [122], but there has been found nonzero
quantum correlations of detected modes with different p [112]. Con-
sidering only the azimuthal dependence, the nature of the OAM cor-
relations can thus be expressed in the entangled state [114, 115]

|ψ〉 = ∑
l

√
Pl |l〉s|lp − l〉i , (108)

where lp is the pump’s orbital angular momentum quantum number,
Pl is the probability of finding a signal photon with orbital angular
momentum l and an idler photon with lp − l. It is important to stress
once again that this decomposition refers to the whole generated state.
The distribution of Pl, which is called the OAM spectrum of the two-
photon field, is the quantity to be measured [116].

4.2 projective measurements .

For experimental verification of the transverse-mode correlations one
must make projective measurements on the prepared states. We fol-
low Ref.[117] for operational implementation of projective measure-
ments in this section. In quantum mechanics, a projective measure-
ment is a process where a projection operator, often composed of a
single basis element which can be represented as P = |Φn〉〈Φn|, oper-
ates on some input state. The result of this projection on an input
state |ψ〉 is given by P|ψ〉 = |Φn〉〈Φn|ψ〉. When the input state is a photon
state, at the moment the detector clicks, the measurement destroys
the photon so that one can express the projection simply in terms of
the inner product 〈Φn|ψ〉. The measured quantity would be propor-
tional to |〈Φn|ψ〉|2. In other words, the implementation of a projective
measurement in an optical system is in one to one correspondence
with implementing an inner product. Although, the sources and the
detectors of classical and quantum optical systems in general are dif-
ferent, the optical system between them will perform the same task
in both cases. Different experimental setups accurately performing
optical projective measurements are reported in [117].

Some applications of projective measurements are quantum state
tomography [118–120], which is used to determine the density matrix
of a quantum state, and measurements of mode spectra of output
quantum states [121–123].

The inner product between two functions in two dimensions is

〈 f , g〉 =
∫
D

f (r)g∗(r)d2r, (109)

where f (r) and g(r) are two-dimensional normalized, complex-valued
functions, r is the two-dimensional transverse position vector, ∗ de-
notes the complex conjugation, and D is the domain where f and g

are defined. Experimentally, this inner product can be implemented
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Figure 4: Diagrams of systems that perform projective measurements. On
the left, the 2-f system performes a projective measurement by coupling (the
central part of) the Fourier transform of f (x)g∗(x) into the single–mode fiber.
On the right, the 4-f system does it by imaging the product f (x)g∗(x) onto
the end of the single–mode fiber.

by doing an optical Fourier transform: passing a modulated optical
field through a 2-f system and measuring the light at the center of
the back focal Fourier plane: that will make the exponent in the in-
tegral vanish. Another method is to image the light onto the single
mode fiber. The overlap integral gives the coupling coefficient. With
the aid of 4-f system one images the product f (r)g∗(r) onto the single
mode fiber, using an appropriate demagnification, Fig.4 [117]. The
resulting overlap integral is

α = N
∫

f (r)g∗(r)G(r; w)d2r, (110)

where G(r; w) =
√

2/πw2 exp(−|r|2/w2) is the normalized mode of the sin-
gle mode fiber, w being the size of the mode and N is the normaliza-
tion constant. The expression (110) would be an inner product if one
can eliminate the function G(r; w) by, say, absorbing it into g∗(r).

In quantum information protocols one usually realizes optical
implementation of entangled photon pairs produced via parametric
down-conversion process. Then the projective measurement is made
on the pair of photons in coincidence. In this case one uses the same
imaging technique in both, the signal and the idler systems: modu-
lating the signal and idler fields with a spatial light modulator (SLM)
and coupling into single mode fiber. Now, for the collinear PDC, the
projective measurement is given by a three-way overlap

α =
∫

M(r)M∗1 (r)M∗2 (r)d2r, (111)

where M(r) is the mode profile of the pump beam in the crystal plane,
and M1(r) and M2(r) are the two modes on the crystal plane used for the
projective measurement in the signal and idler beams, respectively.
Together with the Gaussian modes from two single mode fibers the
actual integral becomes

α =
∫

M(r)M∗1 (r)M∗2 (r)G2(r; w)d2r. (112)
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The Gaussian modes in (112) can be absorbed into the pump profile,
which will modify the pump’s mode size as follows:

1
W2

p
→ 1

W2
p

+
2

w2 . (113)

4.3 the joint detection probability of transverse-mode correla-

tion beams

Instead of the Laguerre-Gaussian modes basis, mathematically it is
easier to deal with the Hermite-Gaussian modes. Then, since the HG
modes form a complete basis, we can expand the two-photon state as

|ψmn〉 =
∞

∑
j,k,u,t=0

Cmn
jkut|HGjk〉s|HGut〉i (114)

where |ψ〉 is the state prepared in SPDC process and

Cmn
jkut = s〈HGjk|i〈HGut|ψ〉. (115)

The expression for the joint detection probability, which is the squared
modulus of Cmn

jkut, for signal and idler photons each in some transverse
mode (e.g. HGmn, LGl

p) propagating in vacuum has been calculated
before [109, 125, 126]. To account for the atmospheric effects on the
state we follow Ref.[124] for the joint probability

P(M1, M2) = |〈ψ1, ψ2|ψ〉|2 ∝
∣∣∣∣∫ dx1

∫
dx2 M∗1 (x1)M∗2 (x2)Ep

(x1 + x2
2

)
V(x1 − x2)

∣∣∣∣2 ,

(116)

and the probability for finding a photon in signal or idler mode

P(M1,2) = |〈ψ1,2|ψ〉|2 ∝
∫

dx1

∫
dx2

∫
dx′2 M1,2(x′2)M∗1,2(x2)

× E∗p

(
x1 + x′2

2

)
Ep

(x1 + x2
2

)
V∗(x1 − x′2)V(x1 − x2),

(117)

where
|ψ〉 ∝

∫∫
dx1dx2Ep

(x1 + x2
2

)
V(x1 − x2)â†

1(x1)â†
2(x2)|0〉 (118)

is the two-photon state generated by SPDC [60] and

|ψ1,2〉 =
∫

dx1,2 M1,2 (x1,2) â†
1,2(x1,2)|0〉. (119)

is a one-photon state of the signal or idler associated with detecting
it the mode M1,2. It is important to note that we are considering the
frequency degenerate SPDC state, that is, ωs = ωi = ωp/2. In Eq. (116)
M∗1 (x1) and M∗2 (x2) represent the phase holograms, say, to be coupled
with detection system.

The expressions (116) and (117) are independent of the detectors’
positions. This is because the fields whose modal expansion is made
up of arbitrary weighted (HG) modes is shape-invariant [106]. In the
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presence of turbulence, the shape-invariant property will no longer
hold.

Then the two photon wavefunction Ep ((x1 + x2)/2))V(x1 − x2) can be
taken in the far field zone to calculate the above probabilities taking
the effects of turbulence into account. To calculate (116) and (117), we
write the two-photon wavefunction Ep ((x1 + x2)/2))V(x1− x2) in the form
[37]

1
λ2z2

∫
dr′
∫

dr′′Ep

(
r′ + r′′

2

)
δ(r′ − r′′) exp

[
ik
2z

[
|x1 − r′|2+|x2 − r′′|2

]]
× exp[ψ(x1, r′) + ψ(x2, r′′)],

(120)

where ψ(x, r) is a random function representing phase and amplitude
distortions of signal and idler fields. With the help of (197) the prob-
ability (116) takes the form

P(M1, M2) = C0

∫
dx1

∫
dx′1

∫
dx2

∫
dx′2

∫
dr′
∫

dr′′

×M∗1 (x1)M1(x′1)M∗2 (x2)M2(x′2)Ep(r′)E∗p(r′′)

× exp
[

ik
2z

(
|x1 − r′|2−|x′1 − r′′|2+|x2 − r′|2−|x′2 − r′′|2

)]
×
〈
exp

[
ψ(x1, r′) + ψ∗(x′1, r′′) + ψ(x2, r′) + ψ∗(x′2, r′′)

]〉
,

(121)

where C0 = 1/(λ4z4). The integration for a Gaussian pump and Hermite-
Gaussian mode functions is provided in the Appendix B. The result
is

P(HGmsns , HGmini ) = Π(ms , mi)Π(ns , ni), (122)

where

Π(µ, ν) =
1

λ2z2
√

πB1µ! ν! 2µ+ν

µ

∑
k1=0

ν

∑
l1=0

µ

∑
k3=0

ν

∑
l3=0

F (µ, ν, k1, l1)F ∗(µ, ν, k3, l3)

×K (µ + ν− k1 − l1, µ + ν− k3 − l3),

(123)

with

F (µ, ν, k, l) =
(

µ

k

)(
ν

l

)
2µ+νik+lσ(k, l) Γ

(
k + l + 1

2

)(√
2

W

)µ+ν−k−l

×
√

1− ζ
(√

ζ
)k+l

2F1

(
−k,−l;

1− k− l
2

;
1

2ζ

)
,

(124)
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and

K (µ, ν) =
1
4

(
1√
2

)µ+ν µ

∑
p=0

ν

∑
q=0

(
µ

p

)(
ν

q

)
(−1)ν−q

(
1√
C1

)2+p+q ( 1√
C2

)µ+ν−p−q

×
{

σ(0, p + q)σ(0, µ + ν− p− q)

√
C1
C2

Γ
(

1 + p + q
2

)
× Γ

(
1 + µ + ν− p− q

2

)
2F1

(
1 + p + q

2
;

1 + µ + ν− p− q
2

,
1
2

; C4

)
−

iσ(1, p + q)σ(1, µ + ν− p− q)(4C1C2 + C2
3)

C2C3(1 + p + q)(1 + µ + ν− p− q)
Γ
(

2 + p + q
2

)
× Γ

(
2 + µ + ν− p− q

2

)
2F1

(
2 + p + q

2
;

2 + µ + ν− p− q
2

,−1
2

; C4

)
+

iσ(1, p + q)σ(1, µ + ν− p− q)[4C1C2 + C2
3(4 + µ + ν)]

C2C3(1 + p + q)(1 + µ + ν− p− q)
Γ
(

2 + p + q
2

)
× Γ

(
2 + µ + ν− p− q

2

)
2F1

(
2 + p + q

2
;

2 + µ + ν− p− q
2

,
1
2

; C4

)}
.

(125)

For the definitions of the other quantities in the last equations see in
the Appendix B.

We see from Eq.(122) that the joint two-mode detection probabil-
ity for signal and idler photons is a product of functions that mix
the indices of signal and idler which means that entanglement is pre-
served. It should be noticed that since the two-photon wavefunc-
tion in Eq. (197) is written in the paraxial approximation and, there-
fore, not properly normalizable, ∑ms ∑ns ∑mi ∑ni

P(HGmsns , HGmini ) does
not converge to 1.

One can arrange the values of Eq.(122) in a matrix. Below we con-
structed the matrix for the vacuum case.



0.3131 0 0 0.0399 0 0.0399 0 0 0 0

0 0.0769 0 0 0 0 0.0294 0 0.0098 0

0 0 0.0769 0 0 0 0 0.0098 0 0.0294

0.0398 0 0 0.0434 0 0.0051 0 0 0 0

0 0 0 0 0.0189 0 0 0 0 0

0.0398 0 0 0.0051 0 0.0434 0 0 0 0

0 0.0294 0 0 0 0 0.0302 0 0.0037 0

0 0 0.0098 0 0 0 0 0.0107 0 0.0037

0 0.0098 0 0 0 0 0.0037 0 0.0107 0

0 0 0.0294 0 0 0 0 0.0037 0 0.0302


The elements of the matrix have double indices ij = msns , mini corre-
sponding to mode numbers of signal and idler ranging as mknk =

{00,01,10,02,11,20,03,12,21,30}, k = s, i. We note that the matrix elements
satisfy conditions obtained in [109, 126]

parity(ms + mi) = parity(mp), ms + mi ≥ mp , (126)
parity(ns + ni) = parity(np), ns + ni ≥ np . (127)

The matrix for a weak turbulence σ2
R = 0.02 regime, z = 5km propaga-

tion distance, the Fresnel ratio λ = 0.8µm and pump’s spot size at the
crystal W0 = 10cm has the form
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0.2262 0.0157 0.0157 0.0379 0.0011 0.0379 0.0077 0.0026 0.0026 0.0077

0.0157 0.0439 0.0011 0.0009 0.0030 0.0026 0.0204 0.0001 0.0073 0.0005

0.0157 0.0011 0.0439 0.0026 0.0030 0.0009 0.0005 0.0073 0.0001 0.0204

0.0379 0.0009 0.0026 0.0275 0.0001 0.0063 0.0005 0.0019 0.0001 0.0013

0.0011 0.0030 0.0030 0.0001 0.0085 0.0001 0.0014 0.0002 0.0002 0.0014

0.0379 0.0026 0.0009 0.0063 0.0001 0.0275 0.0013 0.0001 0.0019 0.0005

0.0077 0.0204 0.0005 0.0005 0.0014 0.0013 0.0191 0.0001 0.0034 0.0003

0.0026 0.0001 0.0073 0.0019 0.0002 0.0001 0.0001 0.0053 3× 10−6 0.0034

0.0026 0.0073 0.0001 0.0001 0.0002 0.0019 0.0034 3× 10−6 0.0053 0.0001

0.0077 0.0005 0.0204 0.0013 0.0014 0.0005 0.0003 0.0034 0.0001 0.0191


We see that all elements are different from zero: the atmosphere
causes crosstalk between different modes. The variation of the first
two matrix elements with the strength of turbulence is shown in Fig.5.
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Figure 5: The behaviour of the two-mode joint probabilities P(00, 00) ans
P(00, 01) as turbulence strength increased. Because of the crosstalk be-
tween modes caused by atmosphere, the forbidden probabilities imposed by
the selection-rules (126) increase. Accordingly, the allowed probabilities de-
crease to conserve the total probability.

Figure 6: The probabilities in the first lines of the matrices above are com-
pared. On the left the comparison is made for σ2

R = 0, 01 turbulence strength
while on the right σ2

R = 0, 1.

For the first line of the matrix we compared with the vacuum case
the behavior of the probabilities for two different turbulence condi-
tions σ2

R = 0.01, σ2
R = 0.1 and same propagation distance, the Fresnel

ratio and pump’s spot size at the crystal as above, see Fig.6. One can
see that the crosstalk between modes is not uniform: photons tend
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to stay in some modes, e.g. {00,02} and {00,20}, conversely, crosstalk
to some modes, e.g. {00,01}, {00,10} is more preferred than to others,
e.g. {00,12} and {00,21}. Thus, in making quantum communication
with Hermite-Gaussian alphabet, one has a definite choice of modes
that can increase the fidelity of communication. One should also note
that this is true for quite weak turbulence conditions as one can see
from the right subfigure in Fig.6.
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Part III

O P E N P R O B L E M S F O R F U T U R E
C O N S I D E R AT I O N S



5

A N A LY S I S O F T H E S P D C WAV E P H A S E C O R R U P T E D B Y

T U R B U L E N C E

5.1 overview.

The usual representation of optical elements by simple mathematical
functions as “filter” functions in linear adaptive optics is for ideal,
the so called Gaussian case. The manufactured optical elements or
systems are not perfect causing wavefronts distortions when pass-
ing through such elements. If the optical elements have circular
pupils the function representing the wavefront is usually expanded
in Zernike polynomials to describe, and eventually to eliminate such
distortions, Zernike polynomials are a set of orthogonal polynomials
over a disc of unit radius and play an important role in the theory
of diffraction and aberrations, beam optics, optometry, adaptive op-
tics, etc. One of the principal uses of the Zernike polynomials is
to represent fixed aberrations in an optical systems in the form of a
generalized Fourier series in Zernike polynomials. The lower-order
Zernike polynomials are then referred to by such names as piston, tilt,
focus, astigmatism, coma, and so forth. They are also useful in adaptive
optics systems designed for atmospheric turbulence decomposition [96, 97].
The approach was first used in the description of fixed aberrations
where the phase was expanded using the lower-order Zernike poly-
nomials [98].

5.2 zernike polynomials and filter functions

The Zernike polynomials represent a set of functions of two variables
that are orthogonal over a circle with unit radius [99]. They are de-
fined as

Zi(κ)

Zi,even(r, θ) = Zi,even[m, n]

Zi,odd(r, θ) = Zi,odd[m, n]

 =
√

n + 1


R0

n(r)(m = 0)

Rm
n (r)
√

2 cos(mφ)

Rm
n (r)
√

2 sin(mφ)

,

where

Rm
n (r) =

(n−|m|)/2

∑
k=0

(−1)k(n− k)!( n+m
2 − k

)
!
( n−m

2 − k
)

!
rn−2k

k!
.
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Lowest-order Zernike polynomials referred to as piston (Z1[0, 0]), tilt
(Z2[1, 1], Z3[1, 1]), (de)focus (Z4[0, 2]), astigmatism (Z5[2, 2], Z6[2, 2]), coma,
etc. are used to study aberrations of imaging systems. In the adaptive
optics systems, the use of aperture filter functions are of particular
interest in theoretical analysis of lower-order aberrations like piston
and tilt. The aperture filter functions for an aperture of unit radius are
defined by two-dimensional Fourier transform of the Zernike polyno-
mials, scaled by the area of the aperture

Gi(κ, φ) =
1
π

∫ 1

0

∫ 2π

0
eirκ cos(θ−φ)Zi(r, θ)rdθdr. (128)

To account for an aperture of diameter D, one can make a change
of variable r = 2ρ/D or, alternatively, replace κ with κD/2. These filter
functions are complex functions. In practice, it is often the absolute
value squared of these expressions is needed, called simply the filter
functions. Thus, the filter functions F(κ) = |G(κ)|2 are defined by [21,
Ch. 14.5.3]

Fi(κ)

Fi,even(κ, φ)

Fi,odd(κ, φ)

 = (n + 1)
[

2Jn+1(κ)
κ

]2


1(m = 0)

2 cos2(mφ)

2 sin2(mφ)

Then various quantities are calculated removing the corresponding
aberrations from their definitions, i.e., a term 1− Fi is included in the
integrals that include the power spectrum Φ(κ).

5.3 abcd matrix formulation

When optical elements such as aperture stops and lenses exist at var-
ious locations along the propagation path, the method of ABCD ray
matrices can be used to characterize these elements, including the
free-space propagation between elements [145]. By cascading the ma-
trices in sequence, the entire optical path between the input and out-
put planes can be represented by a single 2 × 2 matrix. The use of
these ray matrices, which is based on the paraxial approximation,
valid when the separation distance between optical elements is large
compared with the transverse extent of the beam, greatly simplifies
the treatment of propagation through several such optical elements.
A configuration in which between the input and output plane there
is a receiving lens is represented by a ray matrix(

A B

C D

)
=

(
1 L2

0 1

)(
1 0

iαG 1

)(
1 L1

0 1

)

where L1 is the distance between the input plane and the collecting
lens, and L2 is the distance between the collecting lens and the de-
tector. αG is a parameter describing the lens. For a Gaussian lens,
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αG = 2/(kW2
G) + i/FG, where FG is the real focal lenght and WG is the effec-

tive transmission radius. An important property of all ray matrices
is that AD− BC = 1, which is valid as long as input and output planes
are in the same medium.

5.4 generalized and extended huygens-fresnel principle

Because we adopted the Huygens-Fresnel formalism for field prop-
agation throughout this Thesis, now, with the ABCD ray matrix for-
malism it takes the following form [145]

U0(r, L) = − ik
2πB

exp(ikL)
∫∫ ∞

∞
d2sU0(s, 0) exp

[
ik
2B

(As2 − 2s · r + Dr2)
]

, (129)

which is the so called generalized Huygens Fresnel integral. Note that
when A = D = 1 and B = L, Eq.(129) reduces to the standard form
of the Huygens-Fresnel integral. When fluctuating random medium
is present only between the input plane and the receiving lens the
quantities (31)-(33) that take care of the field’s all statistical moments
take the following form [82]

E1(0, 0; 0, 0) = −2π2k2L
∫ ∞

0
dκκΦ(κ), (130)

E2(r1 , r2; s1 , s2) = 4π2k2
∫ L

0
dz
∫ ∞

0
dκκΦ(κ) exp

[
− iκ2βi

k

]
× J0

[
κ

∣∣∣∣Re
(

B0L1

B

)
p + Re

(
BL1 L

B

)
Q + 2iIm

(
B0L1

B

)
r + 2iIm

(
BL1 L

B

)
S
∣∣∣∣],

(131)

E3(r1, r2; s1, s2) = −4π2k2
∫ L

0
dz
∫ ∞

0
dκκΦ(κ) exp

[
iκ2β

k

]
J0

[
κ

∣∣∣∣B0L1

B
p +

BL1 L
B

Q
∣∣∣∣] ,

(132)

where B0L1 , BL1 L and B ≡ B0L are the B−matrix elements for propa-
gation through the system from 0 to L1, from L1 to L and from 0 to L,
respectively. L = L1 + L2, β ≡ B0L1 BL1 L/B, βi = Im[β], and

p = r1 − r2, Q = s1 − s2,

2r = r1 + r2, 2S = s1 + s2.
(133)

A desired aberration free quantities are calculated with the help
of Eq.(130)–(132) making replacement of the power spectrum

Φ(κ)→ Φ(κ)

[
1−∑

i
Fi(κ)

]
, (134)

where Fi(κ) were introduced in the end of Section 5.2.
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Now, generalizing the two photon wavefunction for ABCD matrix
formalism and extended Huygens-Fresnel principle, one can write

A(r1, r2) ∝
∫

ds1

∫
ds2Ep

( s1 + s2
2

)
V(s2 − s2) exp {ψ(r1, s1; k1) + ψ(r2, s2; k2)}

× exp
{

ik1
2B1

(A1s2
1 − 2s1 · r1 + D1r2

1)
}

exp
{

ik2
2B2

(A2s2
2 − 2s2 · r2 + D2r2

2)
}

,

(135)

where A1,2 B1,2 D1,2 are the ray-matrix elements for the signal and idler
systems and k1,2 - the wavenumbers of signal and idler. For the thin
crystal approximation V(s1 − s2) can be taken as δ(s1 − s2), then (135)
takes the following form

A(r1 , r2) ∝
∫

dsEp (s) exp
{

ik1

2B1
(A1s2 − 2s · r1 + D1r2

1) +
ik2

2B2
(A2s2 − 2s · r2 + D2r2

2)
}

× exp {ψ(r1 , s; k1) + ψ(r2, s; k2)} ,

(136)

and for a particular case of r1 = r2 = r, when the detectors are posi-
tioned in the same point, (136) becomes

A(r, r) ∝
∫

dsEp (s) exp
{

ik1

2B1
(A1s2 − 2s · r1 + D1r2

1) +
ik2

2B2
(A2s2 − 2s · r2 + D2r2

2)
}

× exp {ψ(r, s; k1) + ψ(r, s; k2)} .

(137)

To simplify further we assume that the optical elements for the signal
and idler are the same and positioned at the same distances from the
detectors, also we consider the degenerate case, i.e. k1 = k2 = k = kp/2

where kp is the pump’s wavenumber, then

A(r, r) ∝
∫

dsEp (s) exp
{

ik
B

[
As2 − 2s · r + Dr2

]}
exp {2ψ(r, s; k)} . (138)

The joint detection probability density function which represents the
two-photon speckle is given by the modulus square of the two-photon
wavefunction:

P2(r, r) ∝
∫

ds′
∫

ds′′Ep
(
s′
)

E∗p
(
s′′
) 〈

exp
{

ψ(r, s′; kp) + ψ∗(r, s′′; kp)
}〉

× exp
{

ik
B

[
A(s′2 − s′′2)− 2(s′ − s′′) · r + D(r′2 − r′′2)

]}
,

(139)

where in the passage from (138) to (139) we used the fact that kp = 2k

and 2ψ(r, s; k) = ψ(r, s; kp), neglecting dispersion. The ensemble average is
given by [21, Ch.7]

〈
exp

{
ψ(r, s′) + ψ∗(r, s′′)

}〉
= exp[2E1(0, 0; 0, 0) + E2(r, r; s′ , s′′)] (140)

Thus, the main quantity of interest in this section is the modulus
square of Eq.(135) a special case of which is Eq.(139). Care must be
taken to make the replacement (134) when calculating the ensemble
averages to get the desired aberration free expressions.
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6
O N M E A S U R I N G T U R B U L E N C E PA R A M E T E R S W I T H C O R R E L AT I O N

B E A M S

6.1 overview.

This section is aimed to address the the inverse task as opposed to
the rest of the Thesis, i.e. to deduce atmospheric parameters by de-
tecting correlation beams. Fourth-order statistical quantities like the
irradiance covariance function and the scintillation index (defined
in Eqs.(147), (148)) are important quantities for determining atmo-
spheric parameters. Knowledge of the scintillation index is crucial
for determining system performance in a communication system. In
particular, beam wander may be an important factor for scintillation,
depending on whether or not the beam is tracked (i.e., whether beam
wander is removed), and whether it is collimated or focused. From
the covariance function one can deduce quantities like irradiance cor-

relation width ρc associated with irradiance fluctuations, and the temporal

spectrum of irradiance or power spectral density which is the Fourier transform of
the temporal covariance function. The latter is a temporal statisti-
cal quantity for which the Taylor frozen turbulence hypothesis is applied that
permits converting spatial statistics into temporal statistics by knowl-
edge of the average wind speed transverse to the direction of obser-
vation. The scintillation index describes irradiance fluctuations at a
single point in the receiver plane, while the covariance function of
irradiance describes how the irradiance fluctuations at one point in
the beam are correlated with those at another point. The covariance
function is statistically inhomogeneous in that it depends on the lo-
cation of the two points r1 and r2 within the beam. When r1 = r2 = r,
the covariance function reduces to the scintillation index. That is, the
covariance function is a more general statistic that includes the scin-
tillation index as a special case.

Several methods based on different types of measurements to de-
termine the strength of turbulence (the Rytov variance, or, equivalntly,
the structure constatnt) by means of optical measurements have been
developed before: the scintillation index, which is the irradiance vari-
ance scaled by the square of the mean irradiance (measurable quan-
tity), then the Rytov variance is deduced from the scintillation index.
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Other methods to measure turbulence parameters are balloon-borne
methods (not practical), SCIDAR, SLODAR techniques etc. [134–137].

The Rytov variance or the structure constant can be deduced from
fourth order measurements (by detecting two photons at the same
point in space). Better measurements can be obtained using two-
photon fields having quantum properties (e.g. SPDS field) compared
with classical fields second order measurements since two-photon
fields can have advantage concerning the shot noise limit. This is
because the fourth order correlation function for the SPDC field is
proportional to modulus square of the two-photon probability ampli-
tude (see Eq.(45)) while, for example, that of the thermal light has
a dominating additional term, a product of second order correlation
functions [89], which is interpreted as shot noise and which was the
main difficulty in the Hanbury-Brown-Twiss experiment. Mathemat-
ically what was said is

Γth
4 (r1, r1; r2 , r2) = Γ2(r1 , r1)Γ2(r2 , r2) + |Γ2(r1 , r2)|2 , (141)

ΓSPDC
4 (r1 , r1; r2 , r2) = |A(r1 , r2)|2 . (142)

Although A(r1 , r2) is not the same as Γ2(r1, r2) in (141), the authors of
Ref.[89] showed a very close similarity between the two.

6.2 approach

By considering specializations of the fourth-order field moment they
can lead to the scintillation index, covariance function of irradiance,
and the temporal spectrum of irradiance fluctuations. The general
fourth-order cross-coherence function for a beam wave that has prop-
agated a distance z is defined by the ensemble average

Γ4(r1, r2 , r3, r4, z) = 〈U(r1, z)U∗(r2, z)U(r3, z)U∗(r4, z)〉, (143)

where U(r, z) is the transverse profile of the electromagnetic field. In
the Rytov theory, which is valid in the weak turbulence regime, the
field is expressed as

U(r, z) = U0(r, z) exp[ψ(r, z)], (144)

where ψ is a complex phase perturbation due to turbulence that takes
the form

ψ(r, z) = ψ1(r, z) + ψ2(r, z) + ..., (145)

with ψ1 and ψ2 being the first-order and second-order perturbations,
respectively. With (144), Eq.(143) takes the form

Γ4(r1, r2 , r3 , r4, z) = U0(r1 , z)U∗0 (r2 , z)U0(r3, z)U∗0 (r4, z)

× 〈exp[ψ(r1 , z) + ψ∗(r2, z) + ψ(r3 , z) + ψ∗(r4, z)]〉.
(146)
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The ensemble averages in (146) are usually computed using the power
spectrum of index-of-refraction fluctuations. Depending on the prob-
lem type one can use different models of power spectra: Kolmogorov,
Tatarskii, von Kármán, etc. [21]. In strong turbulence regime one
must adopt one of the aproaches: the extended Huygens-Fresnel prin-
ciple, the parabolic equation method or the asymptotic theory or the
extended Rytov theory [21].

The covariance function of irradiance is defined by the normalized
quantity

BI (r1, r2 , z) =
Γ4(r1 , r1 , r2, r2 , z)− Γ2(r1, r1 , z)Γ2(r2, r2 , z)

Γ2(r1 , r1, z)Γ2(r2, r2 , z)
, (147)

where Γ2 is the mutual coherence function for the optical field U(r, z).
For the cace r1 = r2 = r (147) reduces to the scintillation index

σ2
I =

Γ4(r, r, r, r, z)
[Γ2(r, r, z)]2 − 1 =

〈I2(r, z)〉
〈I(r, z)〉2 − 1. (148)

6.3 zero inner scale model

When the inner and outer scale effects can be ignored one can use the
effective power spectrum (defined below) with f (κl0) = g(κL0) = 1. For a
special case when the inner scale of turbulent eddies is zero and the
outer scale is infinite the scintillation index is given by [21, Ch. 9.4.1,
9.5.1]

σ2
I,pl(z) = exp

[
0.49σ2

R

(1 + 1.11σ
12/5
R )7/6

+
0.51σ2

R

(1 + 0.69σ
12/5
R )5/6

]
− 1, (149)

for a plane wave, and

σ2
I,sp(z) = exp

[
0.2σ2

R

(1 + 0.19σ
12/5
R )7/6

+
0.2σ2

R

(1 + 0.23σ
12/5
R )5/6

]
− 1, (150)

for a spherical wave. Both expressions are valid under all fluctuation
regimes (0 ≤ σ2

R < ∞).
Now we are going to calculate the scintillation index and the co-

variance function for the two photon field from spontaneous para-
metric down-conversion in paraxial regime. The functions Γ2(r, r, z),
Γ4(r, r, r, r, z) and Γ4(r1, r1 , r2, r2 , z) have been calculated using the extended
Huygens-Fresnel principle [138]. They are given by Eqs.(64), (72) and
(69)

Γ2(r, r, z) =
(

k
2πz

)2

exp
[
2σ2

r − T
] ∫

dr′|Ep(r′)|2

=
(

k
2πz

)2

exp
[
2σ2

r − T
]
× Ip|z=0

≈
(

k
2πz

)2 W2
lt

W2 exp

[
− 2r2

W2
lt

]
,

(151)

Γ4(r, r, r, r, z) =
eσ2

I,sp(z)

2πW2
LT

exp

[
− 2r2

W2
LT

]
m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(W/WLT)

2k+2l

2k+lk! l!
H2k

[ √
2

WLT
rx

]
H2l

[ √
2

WLT
ry

]
,

(152)
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and

Γ4(r1,r1 , r2 , r2, z) =
e−2r2/W2

LT1

2πW2
LT1

exp

[(
1.58σ2

R,p

ΛpW2 −
2

3ρ2
pl

)
p2 − 0.043π2C2

nz3 p−7/3

]

×
m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(W/WLT1)

2k+2l

2k+lk! l!
H2k

[ √
2

WLT1

( rx2 + rx1

2

)]
H2l

[ √
2

WLT1

(
ry1 + ry2

2

)]
,

(153)

where

Wlt ≡Wp
√

1 + T = Wp

√
1 + 1.33σ2

RΛ5/6 ,

WLT ≡W
√

1 + 6.32σ2
R,pΛ,

WLT1 ≡W
√

1 + 6.32σ2
R,pΛ + 4Λ2W2/(3ρ2

pl).

(154)

In the three Eqs. above Ep is the pump’s field profile at the nonlin-
ear crystal, kp is the pump’s wavenumber, Dsp is the wave structure
function, ρpl = (1.45C2

nk2z)−3/5 is the coherence radius for the plane wave,
σ2

R,p = 1.23C2
nk7/6

p z11/6 is the Rytov variance for the pump, σ2
r describes the

atmospherically induced change in the mean intensity profile in the
transverse direction, and T describes the change in the on-axis mean
intensity at the receiver plane caused by turbulence, Λ0,p = 2z/(kpW2

0 ) is
the pump’s input beam parameter, 2S = r′ + r′′, Q = r′ − r′′, 2r = r1 + r2, and
p = |r1 − r2|. For the case of Eq.(152) it readily follows

σ2
I,sp = 1.83788 + 2 ln[WLT] + ln[Γ00

4 (r, r, r, r, z)] +
2r2

W2
LT

,

= 1.83788 + 2 ln[W] + ln[Γ00
4 (r, r, r, r, z)]

+ ln[1 + 6.32σ2
R,pΛ] +

2r2

W2(1 + 6.32σ2
R,pΛ)

,

WLT = W
√

1 + 6.32σ2
R,pΛ,

(155)

where Γ00
4 (r, r, r, r, z) stands for the case when the pump is a TEM00 mode.

Considering the definition (148), Eq.(155) connects the measurable
quantities Γ00

4 (r, r, r, r, z) and Γ2(r, r, z) with the strength of turbulence σ2
R,p

ln[1 + 6.32σ2
R,pΛ] +

2r2

W2(1 + 6.32σ2
R,pΛ)

= ln[1.84W2] + ln[Γ00
4 (r, r, r, r, z)]

−
Γ00

4 (r, r, r, r, z)
[Γ2(r, r, z)]2 + 1.

(156)

When the detectors are on the optical axis (r = 0), one deduces from
(156) that

σ2
R,p =

1.84W2Γ00
4 (0, 0, 0, 0, z) exp

[
1− Γ00

4 (0, 0, 0, 0, z)/[Γ2(0, 0, z)]2]− 1
6.32Λ

. (157)

Thus, by measuring single and coincident counts one can deduce the
Rytov variance which is a measure of the strength of turbulence.
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6.4 inner and outer scale effects

The presence of a finite inner scale generally has a strong effect on
the scintillation index, particularly under weak-to-moderate irradi-
ance fluctuations. For example, a finite inner scale based on the mod-
ified atmospheric spectrum leads to a corresponding bump in the
scintillation index for certain values of the nondimensional parame-
ter Ql = 10.89L/kl2

0 as compared with the traditional Tatarskii spectrum.
Inner scale plays a significant role in the scintillation index under
weak fluctuations, but outer scale effects are insignificant for infinite
plane waves and spherical waves in this regime.

6.4.1 Inner Scale Effects: Strong Fluctuation Regime

Scintillation theory that is valid from weak fluctuations through strong
fluctuations, including deep saturation regime are reported in [139–
143]. Experimental data reveal that the scintillation index σ2

I increases
initially within the regime of weak irradiance fluctuations with in-
creasing values of the Rytov variance σ2

R = 1.23C2
nk7/6z11/6, where C2

n is the
refractive index structure constant. It then increases beyond unity
and reaches its maximum value in the so-called focusing regime (pos-
sibly becoming as large as 5 or 6). With increasing path length, or
increasing C2

n, the focusing effect is weakened by the loss of spatial
coherence and the scintillation index gradually decreases toward a
value of unity as the Rytov variance increases without bound.

The conventional Rytov approximation is limited to weak fluctua-
tion conditions in describing optical scintillation because it does not
account for the role of the decreasing transverse spatial coherence ra-
dius of the propagating wave. A model for irradiance fluctuations
that is applicable in moderate-to-strong fluctuation regimes is a mod-
ification of the Rytov method called the extended Rytov theory [21].
Another model that is valid for both the weak and strong fluctuation
regimes is the so called asymptotic theory [72–76].

6.4.2 Inner and Outer Scale Effects

To take inner and outer scale effects into account, a specific power
spectrum model is used, from which one can deduce large-scale and
small-scale scintillation. The power spectrum mentioned above is the
so called effective atmospheric spectrum

Φe(κ) = Φ(κ)G(κ, l0, L0) = 0.033C2
nκ−11/3G(κ, l0, L0), (158)

where l0 is the inner scale, L0 is the outer scale, and G(κ, l0 , L0) is an
amplitude spatial filter. The role of G(κ, l0, L0) is to eliminate the ineffective
scale sizes on scintillation under strong fluctuation conditions. It only
permits low-pass (κ < κX) and high-pass (κ > κY) frequencies at a given
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propagation distance z. For horizontal paths C2
n is essentially constant,

the spatial filter is given by [21]

G(κ, l0 , L0) = f (κl0)g(κL0) exp

(
− κ2

κ2
X

)
+

κ11/3

(κ2 + κ2
Y)11/6

, (159)

where κX is a large-scale (or refractive) spatial frequency cutoff, κY

is a small-scale (or diffractive) spatial spatial frequency cutoff, f (κl0)

and g(κL0) are factors that describe inner and outer scale modifications
of the basic Kolmogorov power law, respectively. f (κl0) and g(κL0) are
assumed to have following forms

f (κl0) = exp
(
−κ2/κ2

l

) [
1 + 1.802(κ/κl)− 0.254(κ/κl)

7/6
]

, (160)

g(κL0) = 1− exp
(
−κ2/κ2

0

)
, (161)

where
κl = 3.3/l0 , κ0 = 8π/L0 .

∴

To this point we have sketched a possible approach to solve the cur-
rent problem. Thereof, it remains as an open problem to be consid-
ered in the future.
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A
H G A N D L G B E A M S

a.1 overview.

In this Appendix we want to briefly examine other beam shapes that
may have important propagation characteristics for certain applica-
tions. For our applications it is sufficient to use the scalar theory
and the paraxial approximation. The basic beam characteristics at the
transmitter (z = 0) are its wave number k = 2π/λ (where λ is wavelength),
spot size radius W0 and phase front radius of curvature F0.

By studying the lowest-order Gaussian-beam wave, it is easy to
deduce results for the plane wave and spherical wave limits by simply
specifying certain values of the Gaussian-beam parameters. However,
there are other types of beams that are used in some applications, but
their properties in atmospheric turbulence are not well known. These
other beams include higher-order Hermite and Laguerre Gaussian
beams, super Gaussian beams, flattened Gaussian profiles, and Bessel
beams. Here we wish to examine higher-order Hermite and Laguerre
Gaussian beam shapes .

a.2 higher-order gaussian beams .

In certain applications it may be advantageous to use other beams
such as higher-order Gaussian beams, among other shapes. Some
investigators have discussed the general propagation characteristics
of these higher-order Gaussian beams in free space [144], [145].

hermite-gaussian beams . The higher-order Hermite-Gaussian
modes TEMmn of a collimated beam at the exit aperture z = 0 of a laser
are described by

Umn(x, y, 0) = Hm

(√
2x

Wx,0

)
Hn

(√
2y

Wy,0

)
exp

(
− x2

W2
x,0
− y2

W2
y,0

)
(162)

where m, n = 0, 1, 2, ..., the TEM00 spot size along the x and y axes at the
transmitter is given by Wx,0 and Wy,0, respectively, and Hn(x) is the nth
Hermite polynomial. However, the higher-order modes always form
a pattern of spots or the intensity rather than a single spot as exhib-
ited by the TEM00 mode. Note also that the intensity pattern of any
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given TEMnm mode changes size but not shape as it propagates for-
ward in z − a given TEMnm mode looks exactly the same, except for
scaling, at every point along the z axis.

To find the field of a Hermite-Gaussian beam at distance z from
the transmitter is to use the Huygens-Fresnel integral which yields

Umn(x, y, z) =
exp(ikz)√
px(z)py(z)

Hm

(√
2x

Wx

)
Hn

(√
2y

Wy

)
exp[iφm(z)− iφn(z)]

× exp

(
− x2

W2
x
− y2

W2
y
− i

kx2

2Fx
− i

ky2

2Fy

)
, m, n = 0, 1, 2, ...

(163)

where Wx,y and Fx,y are the spot size and phase front radius of curvature
of the lowest-order Gaussian-beam wave in x and y directions, and
ps(z) = 1− z/F0s + 2iz/(kW2

0s). However, because higher-order beams always
form a pattern of spots, rather than a single spot of light, we need
a new definition of spot size of these higher-order modes. The spot
size of the pth mode is defined by [147]

σ2
s,p(z) =

4
∫ ∫ −∞

∞ s2 Im,n(x, y, z)dxdy∫ ∫ −∞
∞ Im,n(x, y, z)dxdy

(164)

where s represents either x or y and p denotes either m or n. The
irradiance of the Hermite-Gaussian beam is given by

Imn(x, y, z) =
Wx,0Wy,0

WxWy
H2

m

(√
2x

Wx

)
H2

n

(√
2y

Wy

)
exp

(
− x2

W2
x
− y2

W2
y

)

m, n = 0, 1, 2, ...

(165)

By substituting (55) into (54), we find that the ”effective spot size” is
given by the rectangular domain σx,m(z),×σy,n(z), where

σx,m(z) =
√

2m + 1Wx(z), m = 0, 1, 2, ...

σy,n(z) =
√

2n + 1Wy(z), n = 0, 1, 2, ...
(166)

laguerre-gaussian beams . By assuming cylindrical symme-
try, higher-order modes of a collimated beam at the exit aperture
(z = 0) of a laser can be described in cylindrical coordinates (r, θ, z) by

ULG
pl (r, θ, 0) = C(l, p)

(√
2r

W0

)|l|
exp(ilθ) exp

(
− r2

W2
0

)
L|l|l

(
2r2

W2
0

)
, (167)

where C(l, p) =
√

2p!
π(|l|+p)! is the normalization factor, r is the modulus of

a vector in the transverse plane at angle θ, W0 is the radius of the
TEM00 mode beam, L|l|p (x) is the associated Laguerre polynomial, and l and m are
the radial and angular mode numbers. The field described by (60) is
called a Laguerre-Gaussian beam. By using the Huygens-Fresnel integral, it
can be shown that the field of the Laguerre-Gaussian beam at distance
z from the transmitter is given by

ULG
pl (r, θ, z) =

√
2p!

π(|l|+p)!
W0

W(z)

( √
2r

W(z)

)|l|
L|l|p

(
2r2

W2(z)

)
eilθ

× exp[i(2p + |l|+1)φ(z)] exp
(

ikz− r2

W2(z)
+ i

kr2

2F(z)

)
l, p = 0, 1, 2, ...

(168)
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where W and F denote the spot size and phase front radius of curva-
ture for a TEM00 beam. When l 6= 0, because of their azimuthal depen-
dence eilθ, they have a helicoidal wavefront around the z-axis. This
implies that these modes carry an orbital angular momentum propor-
tional to the integer l.

The irradiance is

I(r, θ, z) =
2p!

π(|l|+p)!
W2

0
W2

(
2r2

W2

)l [
L|l|p

(
2r2

W2

)]2

exp
(
− 2r2

W2

)
(169)

The spot pattern for Laguerre-Gaussian functions consists of multiple
rings. Similar to the Hermite-Gaussian case, the spot size associated
with a Laguerre-Gaussian beam can be defined by

σl,p(z) =
√

2p + |l|+1W(z); p, l = 0, 1, 2, ... (170)

The significance of this definition for spot size and that in (166) is
that the spot size so defined contains all the irradiance maxima of the
various polynomials.

a.3 generation of lg beams with q-plates

An electromagnetic field can have a definite orbital angular momen-
tum (OAM) in the paraxial approximation when one uses Laguerre-
Gauss modes to decompose the orbital angular momentum operator
[52]. The orbital angular momentum is defined by the phase structure
of the complex electric field [146, 148]. OAM is associated with the
possibility of having a helical shape of the beam wavefront [149] and
may take any of the infinite values m = 0,±1,±2, .... It must be empha-
sized that this angular momentum, although labelled orbital, is still
an ”internal” kind of angular momentum according to the standard
mechanical definition, i.e. its value is fully independent of the choice
of the origin.

To generate and manipulate orbital angular momentum, tools
have been developed, including pitchfork holograms [150], spiral phase
plates [151, 152], Dove prisms eventually inserted in interferometers,
[153] and cylindrical lens mode converters [91]. These devices and
techniques have limitations in terms of efficiency, modulation speed,
working wavelength, alignment, and constraints imposed on the in-
put and output beams.

Another optical device for OAM manipulation has been intro-
duced by [93, 154]. It is called a ”q-plate”, made from a birefringent
liquid crystal plate having an azimuthal distribution of the local opti-
cal axis in the transverse plane.

Consider a planar liquid crystal cell having a thickness and ma-
terial birefringence chosen so as to induce a homogeneous phase re-
tardation of δ = π (corresponding to half-wave), at the working wave-
length λ, for light propagation perpendicular to the cell plane walls (z
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axis). Also consider a specific pattern geometry, given by the follow-
ing law:

α(r, φ) = α0 + qφ, (171)

where α and φ are constants. This equation implies a presence of a
topological defect in the medium localized at the cell center, i.e., at
r = 0. A topological defect occurs where different regions, here r = 0

and r > 0 regions, come into contact with each other. It is formed
because of symmetry breakdown at the center. If q is an integer or
a semi-integer there will be no discontinuity line in the cell. Liquid-
crystal cells having the above specified geometry are referred as q-
plates (QP).

Suppose we have an input circularly polarized plane wave, de-
scribed by the Jones electric-field vector [155, 156]

Ein(x, y) = E0

 1

±i

 , (172)

where the + is for the left-circular case and − for the right-circular
one. The Jones matrix M describing the cell action on the field at each
transverse position x, y is the following:

M(x, y) =

 cos2α(x, y) sin2α(x, y)

cos2α(x, y) −sin2α(x, y)

 . (173)

By the action of the cell into the following field (up to an overall
phase):

Eout(x, y) = M(x, y)Ein(x, y) = E0e±2iα(x,y)

 1

∓i

 . (174)

We see that the output wave is polarized with the opposite handed-
ness. This is expected, as any half-wave plate inverts the handedness
of circular polarization and the output field wavefront has acquired
a nonuniform phase retardation ±2α(x, y). For the particular choice (65)

for α(x, y), (68) takes the form

Eout(x, y) = E0e±2iqφ±2iα0

 1

∓i

 . (175)

This output field corresponds to a helical mode with helicity number

m = ±2q. (176)

In other words the output wavefront is helical and the sign of the
helicity is controlled by the input polarization handedness. The he-
licity magnitude |m| is instead fixed by the LC cell geometry, via
its characteristic integer or semi-integer parameter q. The q = 1 ge-
ometry presents a particular property: it is rotationally symmetric
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around the coordinate origin. Thus, a left circularly polarized (+h̄

spin angular momentum) incident wave having no orbital angular
momentum will emerge from the q-plate as right circularly polarized
(−h̄ spin angular momentum) having helical wavefront with m = 2q.
The total angular momentum is therefore (2q − 1)h̄ and the variation
∆Jz = (2q− 1)h̄− h̄ = 2(q− 1)h̄ must be exchanged with the medium, i.e. with
the q-plate.

The case q = 1 leads to a special result: the photon after the q-
plate does not change its total angular momentum, and therefore no
torque is generated on the medium. However, the spin and orbital
angular momenta of the photon are both varied in the q-plate: the
spin switches sign, passing from +h̄ to −h̄, while the orbital angular
momentum passes from zero to 2h̄. The two variations exactly cancel
each other. This phenomenon in which angular momentum of light
changes its nature, exploiting the interaction with the medium but
remaining entirely within the optical field, was called ”spin-to-orbital
angular momentum conversion” [93].

For the case δ 6= π the q-plate transformation is the following (in
ket notation):

|ψ〉in = |±1, m〉 −→ |ψ〉out = cos
δ

2
|±1, m〉 + isin

δ

2
e±2iα0 |∓1, m± 2q〉. (177)

The final state is the superposition of a ”unmodified” photon and
a ”converted” photon states. In both states of the superposition the
overall photon angular momentum is conserved, although the angu-
lar momentum conversion in the photon occurs only with a finite
probability, given by sin2δ/2.

One can also use an equivalent description of QP in terms of effec-
tive Hamiltonian. One writes the bosonic operator aσ,l, where σ stands
for the polarization (left- or right-circular) and l for the orbital angular
momentum. Then for integer values of 2q the effective Hamiltonian
has the form

H = ∑
(

cLl a†
Ll aRl+2q + cRl a†

Rl aLl−2q + H.C.
)

, 2q = integer. (178)

The coefficients c can be fixed from the Jones matrix (173). This Hamil-
tonian is especially useful in studying the transformation of nonclas-
sical fields by systems having spin-orbit coupling.
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B
S O M E D E R I VAT I O N S

b.1 evaluation of the integral in (59):

I = 4π2z3
∫ 1

0
dξ
∫ ∞

0
dκκ5Φ(κ)J0(κξ p)ξ2(1− ξ)2. (179)

Using Tatarskii spectrum (13)

Φ(κ) = 0.033C2
nκ−11/3 exp

(
− κ2

κ2
m

)
, (180)

we have
∫ ∞

0
κ4/3 exp

[
− κ2

κ2
m

]
J0(κξ p)dκ = 0.033C2

n
Γ(7/6)κ7/3

2 1F1

(
7
6

; 1;− ξ2 p2κ2
m

4

)
, (181)

where we used the integral 14 of [21, Appendix II]. 1F1(a; c;−z) is the
Confluent Hypergeometric Function.

Now, using the asymptotic form of the Hypergeometric Function
for the case Re(z)� 1, viz.,

1F1(a; c;−z) ∼ Γ(c)
Γ(c− a)

z−a , Re(z)� 1,

we can simplify (181) further:

∫ ∞

0
κ4/3 exp

[
− κ2

κ2
m

]
J0(κξ p)dκ ≈ 0.033C2

n
Γ(7/6)

2Γ(1− 7/6)

(
ξ2 p2

4

)−7/6

≈ −0.016C2
nξ−7/3 p−7/3 .

(182)

This approximation is valid since ξ2 p2κ2
m/4� 1 for the following reasons:

ξ is a variable that changes between 0 and 1, p is the distance between
the detectors, so it can be chosen appropriately and finally and most
importantly, κm ≡ 5.29/l0 � 1 for the inner scale l0 is a small quantity.

Finally, Eq.(179) takes the form

I = −0.046π2z3C2
n p−7/3

∫ 1

0
ξ−1/3(1− ξ)2dξ = −0.043π2z3C2

n p−7/3 . (183)
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b.2 evaluation of the integral (68):

P2(x, x) =
k2e−σ2

sp(z)

4π2z2

∫∫
dSdQHm

[√
2

W0

(
Sx +

Qx

2

)]
Hm

[√
2

W0

(
Sx −

Qx

2

)]

× Hn

[√
2

W0

(
Sy +

Qy

2

)]
Hn

[√
2

W0

(
Sy −

Qy

2

)]

× exp

[
− 2

W2
0

(
S2

x + S2
y

)]
exp

[
− 1

2W2
0

(
Q2

x + Q2
y

)]

× exp
[

ikp

z
(
SxQx + SyQy

)]
exp

[
−

ikp

z
(
rxQx + ryQy

)]
× exp

[
−

3.16σ2
R,p

Λ0,pW2
0

(
Q2

x + Q2
y

)]
.

(184)

All the integrals’ limits are ±∞ unless stated otherwise.

integration in Sx and Sy variables . Separating the Sx inte-
gral and calling it Ix we have

Ix =
∫

dSx Hm

[√
2

W0

(
Sx +

Qx

2

)]
Hm

[√
2

W0

(
Sx −

Qx

2

)]
exp

[
−
(

2
W2

0
S2

x −
ikpQx

z
Sx

)]
. (185)

The expression in the exponent can be written as

2
W2

0
S2

x −
ikpQx

z
Sx =

(√
2

W0
Sx −

ikpW0

2
√

2z
Qx

)2

+
k2

pQ2
xW2

0

8z2 .

We define ξ =
√

2
W0

Sx −
ikpW0
2
√

2z
Qx so that dSx = W0√

2
dξ and

√
2

W0

(
Sx ±

Qx

2

)
= ξ +

Qx√
2W0

(
i
kpW2

0
2z
± 1

)
.

Now Ix looks like

Ix =
W0√

2
exp

[
− 1

2

(
kpQxW0

2z

)2
] ∫

dξHm [ξ + η] Hm [ξ + ζ] e−ξ2
, (186)

where we also defined η = Qx√
2W0

(
i kpW2

0
2z + 1

)
and ζ = Qx√

2W0

(
i kpW2

0
2z − 1

)
. Using

[127, formula 7.377], viz.,∫
dξHm [ξ + η] Hn [ξ + ζ] e−ξ2

= 2n√πm! ζn−m Ln−m
m (−2ηζ), [m ≤ n],

where Lα
m are the generalized Laguerre polynomials, L0

m ≡ Lm , one
arrives at

Ix =
W0√

2
exp

[
− 1

2

(
kpQxW0

2z

)2
]

2m√πm! Lm

[(
1

W2
0

+
(

kpW0

2z

)2
)

Q2
x

]
. (187)

Similar steps bring us to the expression for Iy, viz.,

Iy =
W0√

2
exp

[
− 1

2

(
kpQyW0

2z

)2
]

2n√πn! Ln

[(
1

W2
0

+
(

kpW0

2z

)2
)

Q2
y

]
. (188)

Now (184) has the form (note that the coefficients exactly cancel B2
m,n)

P2(x, x) =
k2e−σ2

sp(z)

4π2z2

∫∫
dQxdQy Lm(αQ2

x)Ln(αQ2
y) exp[−β(Q2

x + Q2
y)]

× exp
[
−

ikp

z
(rxQx + ryQy)

]
,

(189)
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where we defined

α ≡ 1
W2

0
+
(

kpW0

2z

)2

,

β ≡
3.16σ2

R,p

Λ0,pW2
0

+
1

2W2
0

+
1
2

(
kpW0

2z

)2

=
3.16σ2

R,p

Λ0,pW2
0

+
α

2
.

integration in Qx and Qy variables . The integral in Qx ,
which we call Jx , is the following

Jx =
∫

dQx Lm [αQ2
x ] exp

[
−
(

βQ2
x +

i k p rx

z
Qx

)]

= exp

[
− 1

β

(
k p rx

2z

)2
] ∫

dQx Lm [αQ2
x ] exp

− (√βQx +
i k p rx

2
√

βz

)2
 .

(190)

Changing the variables

ξ ≡
√

βQx , η ≡ −
i k p rx

2
√

βz

we have

Jx =
1√

β
exp

[
− 1

β

(
k p rx

2z

)2
] ∫

dξ Lm

(
α

β
ξ 2
)

e−(ξ−η )2
. (191)

Now we use the series representation of the Laguerre polynomial
[128]

Lm (x ) =
m

∑
k=0

(
m
k

)
(−1)k

k !
x k ,

to write the above integral as

Jx =
1√

β
exp

[
− 1

β

(
k p rx

2z

)2
]

m

∑
k=0

(
m
k

)
(−1)k

k !

(
α

β

)k ∫
dξ e−(ξ−η )2

ξ 2k . (192)

Using formula 3.462 − 4 of Ref. [127],
∫

dxe−(x−y)2
xn = (2 i)−n√π Hn ( iy) ,

we arrive at

Jx =
1√

β
exp

[
− 1

β

(
k p rx

2z

)2
]

m

∑
k=0

(
m
k

)
(−1)k

k ! (2 i)2k

(
α

β

)k
H2k

[
k p rx

2
√

βz

]
. (193)

Integration in Qy brings us to a similar expression,

Jy =
1√

β
exp

[
− 1

β

(
k p rx

2z

)2
]

n

∑
l=0

(
n
l

)
(−1) l

l ! (2 i)2 l

(
α

β

) l
H2 l

[
k p rx

2
√

βz

]
. (194)

Finally, Eq.(189) takes the following form

P2(x, x) =
k2e−σ2

sp (z)

4πz2β
exp

[
− 1

β

(
kpr
2z

)2
]

m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(α/β)k+l

k! l! 22k+2l H2k

[
kprx

2
√

βz

]
H2l

[
kprx

2
√

βz

]
. (195)

One can write this expression in terms of output pump-beam pa-
rameters. To do so, notice that

W = W0

√
1 + Λ2

0,p = W0Λ0,p

√
1 +

1
Λ2

0,p
=

2z
kpW0

√
1 +

1
Λ2

0,p
,

70



where we used Eqs.(37) and (38) with Θ0 = 1 for a collimated beam,

α =
1

W2
0

(
1 +

1
Λ2

0

)
=

W2k2
p

4z2 , β =
3.16σ2

R,p

Λ0,pW2
0

+
α

2
=

3.16σ2
R,p

ΛpW2 +
W2k2

p

8z2 ,

kp

2
√

βz
=

kp

2z

√
3.16σ2

R,p
ΛpW2 +

W2k2
p

8z2

=

√
2

W
√

1 +
3.16σ2

R,p
ΛpW2

8z2

k2
pW2

≡
√

2
WLT

,

where
WLT ≡W

√
1 + 6.32σ2

R,pΛ,

and
β

α
=

1
2

(
1 + 6, 32σ2

R,pΛ
)

=
W2

LT
2W2

With these formulas, Eq.(195) takes the form

P2(x, x) =
e−σ2

sp(z)

2πW2
LT

exp

[
− 2r2

W2
LT

]
m

∑
k=0

n

∑
l=0

(
m
k

)(
n
l

)
(W/WLT)

2k+2l

2k+lk! l!
H2k

[ √
2

WLT
rx

]
H2l

[ √
2

WLT
ry

]
.

(196)

b.3 evaluation of the integral (116) for a gaussian pump and hermite-gaussian

mode functions .

To calculate (116) and (117), we write the two-photon wavefunction
in the form [37]

Ep

( x1 + x2

2

)
V(x1 − x2) =

1
λ2z2

∫
dr′
∫

dr′′Ep

(
r′ + r′′

2

)
δ(r′ − r′′)

× exp
[

ik
2z

[
|x1 − r′|2+|x2 − r′′|2

]]
exp[ψ(x1 , r′) + ψ(x2 , r′′)],

(197)

where ψ(x, r) is a random function representing phase and amplitude
distortions of signal and idler fields. With the help of (197) the prob-
ability (116) takes the form

P(M1, M2) = C0

∫
dx1

∫
dx′1

∫
dx2

∫
dx′2

∫
dr′
∫

dr′′

×M∗1 (x1)M1(x′1)M∗2 (x2)M2(x′2)Ep(r′)E∗p(r′′)

× exp
[

ik
2z

(
|x1 − r′|2−|x′1 − r′′|2+|x2 − r′|2−|x′2 − r′′|2

)]
×
〈
exp

[
ψ(x1 , r′) + ψ∗(x′1, r′′) + ψ(x2, r′) + ψ∗(x′2 , r′′)

]〉
,

(198)

where C0 = 1/(λ4z4). The ensemble averaging, again, can be made using
the theory developed in [21, Ch.7]

〈exp [...]〉 = exp
[

4E1(0)+E2(x1, x′1; r′ , r′′) + E2(x1 , x′2; r′ , r′′) + E2(x2 , x′1; r′ , r′′)

+E2(x2, x′2; r′ , r′′) + E3(x1 , x2; 0, 0) + E∗3 (x′1 , x′2; 0, 0)
]

.
(199)
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Using the definitions of the functions in (199) from [21, Ch.7], one can
write

[...] =− 8π2k2z
∫ ∞

0
κΦ(κ)dκ +

(
8π2k2z

∫ ∞

0
κΦ(κ)dκ − 8π2k2z

∫ ∞

0
κΦ(κ)dκ

)
+ 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)J0

[
κ|(1− ξ)(x1 − x′1) + ξ(r′ − r′′)|

]
+ 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)J0

[
κ|(1− ξ)(x1 − x′2) + ξ(r′ − r′′)|

]
+ 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)J0

[
κ|(1− ξ)(x2 − x′1) + ξ(r′ − r′′)|

]
+ 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)J0

[
κ|(1− ξ)(x2 − x′2) + ξ(r′ − r′′)|

]
− 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)J0 [κ(1− ξ)|(x1 − x2)|] exp

[
−i

zκ2

k
ξ(1− ξ)

]
− 4π2k2z

∫ 1

0
dξ
∫ ∞

0
dκκΦ(κ)J0

[
κ(1− ξ)|(x′1 − x′2)|

]
exp

[
i
zκ2

k
ξ(1− ξ)

]
.

(200)

One can identify the sum of the first term in the first line and the
terms in the second and third lines with two-point wave structure
function’s definition [21]

− 1
2
[
Dsp(x1 − x′1 , r′ − r′′) + Dsp(x1 − x′2 , r′ − r′′)

]
,

the sum of the third term in the first line and the terms in the fourth
and fifth lines with

− 1
2
[
Dsp(x2 − x′1 , r′ − r′′) + Dsp(x2 − x′2 , r′ − r′′)

]
.

Now we make the geometrical optics approximation (zκ2/k � 1) to re-
place the exponential functions in the sixth and seventh lines of (200)
with one. With that, the two approximated terms and the remaining
second term in the first line of Eq.(200) one can identify the wave
structure functions for a spherical wave

1
2
[
Dsp(|x′1 − x′2|) + Dsp(|x1 − x2|)

]
.

With this (200) takes a simpler form

[...] =− 1
2
[
Dsp(x1 − x′1, r′ − r′′) + Dsp(x1 − x′2, r′ − r′′)

]
− 1

2
[
Dsp(x2 − x′1, r′ − r′′) + Dsp(x2 − x′2, r′ − r′′)

]
+

1
2
[
Dsp(|x′1 − x′2|) + Dsp(|x1 − x2|)

]
.

(201)

Finally, using the expressions for wave structure functions evaluated
in the quadratic approximation [21] we have

[...] =− 1
3ρ2

pl

[
|x1 − x′1|2+|r′ − r′′|2+(x1 − x′1) · (r′ − r′′)

]
− 1

3ρ2
pl

[
|x1 − x′2|2+|r′ − r′′|2+(x1 − x′2) · (r′ − r′′)

]
− 1

3ρ2
pl

[
|x2 − x′1|2+|r′ − r′′|2+(x2 − x′1) · (r′ − r′′)

]
− 1

3ρ2
pl

[
|x2 − x′2|2+|r′ − r′′|2+(x2 − x′2) · (r′ − r′′)

]
+

1
3ρ2

pl

[
|x′1 − x′2|2+|x1 − x2|2

]
,

(202)
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where ρpl = (1.46C2
nk2z)−3/5 is the plane-wave coherence radius.

Let us make a change of variables

Q = r′ − r′′ , 2S = r′ + r′′ (203)

for the source plane, and

p = x1 − x2, p′ = x′1 − x′2, 2X = x1 + x2 , 2X′ = x′1 + x′2 (204)

for the observation plane. Then, (202) can be expressed in the form

− 4
3ρ2

pl

[
Q2 + |X− X′|2+Q · (X− X′)

]
. (205)

It is more convenient to express this result in terms of the Rytov vari-
ance σ2

R = 1.23C2
nk7/6z11/6, that is,

4
3ρ2

pl
= 1.63(σ2

R)6/5 k
z
≡ γ

k
z

. (206)

The exponent in the second line of Eq. (198) can also be expressed in
the new variables, viz.

exp
{

ik
2z

[
4S ·Q− 4S · (X− X′)− 2Q · (X + X′) + 2(X2 − X′2) +

1
2

(p2 − p′2)
]}

. (207)

Putting this all together, (198) takes the following form

P(M1 , M2) = C0

∫
dX
∫

dX′
∫

dp
∫

dp′
∫

dQ
∫

dS M∗1
(

X +
p
2

)
M1

(
X′ +

p′

2

)
×M∗2

(
X− p

2

)
M2

(
X′ − p′

2

)
Ep

(
S +

Q
2

)
E∗p

(
S− Q

2

)
× exp

{
ik
z

[
2S ·Q− 2S · (X− X′)−Q · (X + X′) + (X2 − X′2) +

1
4

(p2 − p′2)
]}

× exp
{
− γk

z

[
Q2 + |X− X′ |2+Q · (X− X′)

]}
.

(208)

All the integrals’ limits are ±∞ unless stated otherwise.

integrating the S variable with a gaussian pump field.

IS ≡
∫

dSEp

(
S +

Q
2

)
E∗p

(
S − Q

2

)
exp

{
2 i k
z
[
S ·Q − S · (X − X′ )

]}
. (209)

Considering a normalized Gaussian pump field without diffraction

Ep (r) =

√
2

πW 2
0 p

exp

(
− r2

W 2
0 p

)
, (210)

Eq.(209) evaluates to

IS = exp

[
− Q2

2W 2
0 p
−

k2 W 2
0 p

2z2 |Q − (X − X′ ) |2
]

. (211)
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integrating the Q variable . After combining Eqs.(208) – (211),
the integral in Q is

IQ ≡
∫

dQ exp
[
−B1 Q2 + (B2X − B∗2 X′ ) ·Q

]
, (212)

where

B1 =
k
z

(
Λ0

2
+

1
2Λ0

+ γ

)
,

B2 =
k
z

(
1

Λ0
− γ − i

)
,

Λ0 =
2z

kW 2
0

, with W0 =
√

2W0 p ,

(213)

which evaluates to

IQ = CQ exp
[

1
4B1

(
B2

2 X2 + B∗2
2 X ′2 − 2 |B2 |2X · X′

)]
. (214)

where CQ = π/B1 . After combining the two results of integrations, we
get

P( M1 , M2 ) = C0 CQ

∫
dX

∫
dX′

∫
dp
∫

dp′M∗
1

(
X +

p
2

)
M1

(
X′ +

p′

2

)
× M∗

2

(
X − p

2

)
M2

(
X′ − p′

2

)
exp

[
i k
4z

( p2 − p ′2 )
]

× exp

[(
B2

2
4B1

− B3

)
X2 +

(
B∗2

2
4B1

− B∗3

)
X ′2

]

× exp
[(
− |B2 |2

2B1
+ B4

)
X · X′

]
,

(215)

where

B3 =
k
z

(
1

2Λ0
+ γ − i

)
,

B4 =
k
z

(
1

Λ0
+ 2γ

)
.

Next, we introduce the normalized mode functions M j (X) as Hermite-
Gaussians:

M j (X) = U H G
m j n j

(Xx , Xy , 0) = Bm j n j Hm j

(√
2

W
Xx

)
Hn j

(√
2

W
Xy

)
exp

(
− X2

W 2

)
, (216)

where Hn (ρ) are Hermite polynomials, Bm ,n = 1/
(

W
√

π2m+n−1 m ! n !
)
, and

W = W0

√
1 + Λ2

0 . Notice that we have chosen W0 =
√

2 W0 p so that we
consider HG modes with the same Fresnel ratio Λ of the SPDC pump
beam.

P(HGmsns , HGmi ni ) = C0CQCM

∫
dXx

∫
dXy

∫
dX′x

∫
dX′y

∫
dpx

∫
dpy

∫
dp′x

∫
dp′y

× Hms

[√
2

W

(
Xx +

px

2

)]
Hmi

[√
2

W

(
Xx −

px

2

)]
exp

[
−A1 p2

x

]
× Hns

[√
2

W

(
Xy +

py

2

)]
Hni

[√
2

W

(
Xy −

py

2

)]
exp

[
−A1 p2

y

]
× Hms

[√
2

W

(
X′x +

p′x
2

)]
Hmi

[√
2

W

(
X′x −

p′x
2

)]
exp

[
−A∗21 p′2x

]
× Hns

[√
2

W

(
X′y +

p′y
2

)]
Hni

[√
2

W

(
X′y −

p′y
2

)]
exp

[
−A∗21 p′2y

]
× exp

[
−A2X2

]
exp

[
−A∗2 X′2

]
exp

[
A3Xx X′x

]
exp

[
A3XyX′y

]
,

(217)
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where
CM =

4
π2W4ms! mi! ns! ni! 2ms+mi+ns+ni

, (218)

A1 =
k

4z
(Λ− i), (219)

A2 = − B2
2

4B1
+ B3 +

k
z

Λ, (220)

A3 = − |B2|2
2B1

+ B4 , (221)

Λ =
Λ0

1 + Λ2
0

. (222)

All the integrals in (215) are separable in x and y. The X or X′ types
look alike, also the p and p′ ones. One can start by integrating the px

variable,

Ipx =
∫

dpx Hms

[√
2

W

(
Xx +

px

2

)]
Hmi

[√
2

W

(
Xx −

px

2

)]
exp

[
−A1 p2

x

]
. (223)

Using the Taylor expansion of Hermite polynomials and Formula
7.374-5 of Ref. [127], viz.,

Hn(x + y) =
n

∑
k=0

(
n
k

)
Hk(x)(2y)n−k (224)

and ∫
dxHk(x)Hl(x) exp[−2α2x2] = 2

k+l−1
2 α−k−l−1(1− 2α2)

k+l
2

× Γ
(

k + l + 1
2

)
2F1

(
−k,−l;

1− k− l
2

;
α2

2α2 − 1

)
,

Re(α2) > 0, α2 6= 1/2, k + l = even,

(225)

the integral (223) evaluates to

Ipx =
W√

2

ms

∑
k1=0

mi

∑
l1=0

F (ms , mi , k1 , l1)Xms+mi−k1−l1
x , (226)

with

F (µ, ν, k, l) =
(

µ

k

)(
ν

l

)
2µ+νik+lσ(k, l) Γ

(
k + l + 1

2

)(√
2

W

)µ+ν−k−l

×
√

1− ζ
(√

ζ
)k+l

2F1

(
−k,−l;

1− k− l
2

;
1

2ζ

)
,

(227)

where ζ = 1/(1 + iΛ), σ(k, l) = [(−1)k + (−1)l]/2 and 2F1(a, b; c; z) is the hypergeo-
metric function. The integrations in py, p′x and p′y are straightforward.
They are

Ipy =
W√

2

ns

∑
k2=0

ni

∑
l2=0

F (ns , ni , k2, l2)Xns+ni−k2−l2
y , (228)

Ip′x =
W√

2

ms

∑
k3=0

mi

∑
l3=0

F ∗(ms , mi , k3, l3)X′ms+mi−k3−l3
x , (229)
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Ip′y =
W√

2

ns

∑
k4=0

ni

∑
l4=0

F ∗(ns , ni , k4 , l4)X′ns+ni−k4−l4
y . (230)

Now we integrate the Xj and X′j (j = x, y) variables, which are all in the
form

K (µ, ν) =
∫

dx
∫

dx′ xµx
′ν exp(−A2x2 − A∗2 x

′2 + A3xx′), (231)

which evaluates to

K (µ, ν) =
1
4

(
1√
2

)µ+ν µ

∑
p=0

ν

∑
q=0

(
µ

p

)(
ν

q

)
(−1)ν−q

(
1√
C1

)2+p+q ( 1√
C2

)µ+ν−p−q

×
{

σ(0, p + q)σ(0, µ + ν− p− q)

√
C1

C2
Γ
(

1 + p + q
2

)

× Γ
(

1 + µ + ν− p− q
2

)
2F1

(
1 + p + q

2
;

1 + µ + ν− p− q
2

,
1
2

; C4

)
−

iσ(1, p + q)σ(1, µ + ν− p− q)(4C1C2 + C2
3 )

C2C3(1 + p + q)(1 + µ + ν− p− q)
Γ
(

2 + p + q
2

)
× Γ

(
2 + µ + ν− p− q

2

)
2F1

(
2 + p + q

2
;

2 + µ + ν− p− q
2

,− 1
2

; C4

)
+

iσ(1, p + q)σ(1, µ + ν− p− q)[4C1C2 + C2
3 (4 + µ + ν)]

C2C3(1 + p + q)(1 + µ + ν− p− q)
Γ
(

2 + p + q
2

)
× Γ

(
2 + µ + ν− p− q

2

)
2F1

(
2 + p + q+

2
;

2 + µ + ν− p− q
2

,
1
2

; C4

)}
,

(232)

where

C1 = ReA2 −
A3

2
(233)

C2 = ReA2 +
A3

2
(234)

C3 = ImA2 (235)

C4 = −
C2

3
4C1C2

. (236)

So, the four integrals in the Xj and X′j (j = x, y) variables are
∫

dXx

∫
dXy

∫
dX′x

∫
dX′y ... = K (ms + mi − k1 − l1 , ms + mi − k3 − l3)

×K (ns + ni − k2 − l2 , ns + ni − k4 − l4).
(237)

Then, we finally arrive at

P(HGmsns , HGmini ) = Π(ms , mi)Π(ns , ni), (238)

where

Π(µ, ν) =

(√
2

W0

)µ+ν
1

µ! ν!

µ

∑
k1=0

ν

∑
l1=0

µ

∑
k3=0

ν

∑
l3=0

F (µ, ν, k1 , l1)F ∗(µ, ν, k3, l3)

×K (µ + ν− k1 − l1 , µ + ν− k3 − l3),

(239)

It should be noticed that since the two-photon wavefunction in Eq. (197)
is written in the paraxial approximation and, therefore, not properly
normalizable, ∑ms ∑ns ∑mi ∑ni

P(HGmsns , HGmini ) does not converge to 1.
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A N O U T L O O K O F T H E T H E S I S

This Thesis is a continuation of the work done in the Prof. Dr. C.
H. Monken’s group in Physics Department of Federal University of
Minas Gerais. In the last decade there have been written Theses and
Dissertations exploring various features of the field from the sponta-
neous parametric down-conversion (SPDC) source in the two photon
regime. Particularly, in 2004, Stephen Walborn defended his PhD
Thesis “The Brothers Q: Multimode Entangled Photons with Para-
metric Down Conversion”, in a theoretical and experimental study of
the quantum properties of multimode entangled photons created by
spontaneous parametric down-conversion. In his MSc Dissertation
“Associação de um Feixe de Correlação ao Campo Gerado pela Con-
versão Paramétrica Descendente” Pablo Lima Saldanha arrived to the
concept of the Correlation Beam by showing that for SPDC field the fourth
order correlation function is directly related to second order correla-
tion function of the pump beam that generates the SPDC field in a
nonlinear crystal, thus, having a beam-like behaviour. He also veri-
fied it experimentally. In 2014, Marcelo Vı́tor da Cunha Pereira in his
PhD Thesis “Propagação de feixes ópticos de correlação em atmosféra
turbulenta” investigated numerically the atmospheric propagation of
the Correlation Beam. He also made in-lab experiments by setting up
a turbulence chamber which emulates real atmospheric conditions.
In 2015, Luı́sa Amorim Perez Filpi in her PhD Thesis “Cancelamento
de aberrações ópticas utilizando feixes de correlao” studied the aber-
ration effects of the Correlation Beam.

In this Thesis I investigated analytically the atmospheric propaga-
tion features of higher order Correlation Beams, as well as tubulence ef-
fects on multimode properties of the quantum state of SPDC. Higher
order Correlation Beams are those produced when higher order Her-
mite or Laguerre-Gaussian laser modes pump the crystal. As the
twin photons produced by SPDC process are entangled in transverse
spatial modes, one can use these modes as a basis (alphabet) to ex-
pand the SPDC state. These modes can be used to encode more infor-
mation, also have more secure quantum communication. Thus, for
global quantum communication purposes, as well as for fundamen-
tal (large-scale) tests of quantum mechanics, it is of great importance
studying atmospheric effects on the (higher order) Correlation Beams.

With intrductions to the theories of SPDC, the Correlation Beam
and optical turbulence I put ground for the development of atmo-
spheric propagation of the Correlation Beam. In many calculations
the Extended Huygens-Fresnel Principle is used which is valid for
both, weak and strong turbulence conditions. The two-photon joint
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probability density function which is proportional to the measurable
fourth order correlation function is calculated for Hermite-Gaussian
as well as partially coherent Gaussian-Schell model pump cases. Be-
cause of mathematical difficulty, a direct calculation for Laguerre-
Gaussian modes has not been done but owing to transformation prop-
erties between Hermite- and Laguerre-Gaussian modes it is possible
to generalize the results for Laguerre-Gaussian pump. The partially
coherent pump case is particularly important because it has been
shown that partially coherent beams are less affected by turbulence
than coherent beams in a sense that their relative spreading due to
atmosphere is less than that of coherent case. An important property
has been revealed between the two cases: the joint detection probabil-
ity density function for the partially coherent pump case is expressed
as a convex sum of those of coherent probability density. These re-
sults are reported in Optics Express 24, 2318 (2016).

Then, expressing the SPDC state as an entangled state in Hermite-
Gaussian modes, a mode analysis is made. Again, for mathematical
convenience only a conventional Gaussian pump is considered. Here,
the two-mode joint detection probability function is calculated. While
there are restrictions on both the parity and mode order of downcon-
verted photons in the vacuum case, it no longer holds when turbu-
lence effects are added. The crosstalk between modes that takes place
when propagating through the atmosphere is quantified in terms of
probabilities of those modes that were forbidden to be populated.
Some information on Hermite- and Laguerre-Gaussian modes as well
as mathematical derivations of the main results are provided in the
Appendices.

Finally, approaches for solving two problems is given. One con-
cerns the correction of SPDC wave phase corrupted by turbulence.
The ABCD ray matrix formalism and Zernike polynomials are needed
to fulfill the task. The method is provided in the Thesis leaving open
the calculations of considered quantities. The second problem has an
inverse purpose as opposed to the rest of the Thesis: the inference of
atmospheric parameters from measurements of the Correlation Beam.
The procedure is given and a partial result is produced.
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