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Abstract

In recent years, multi-robot systems have played an increasing role in many real
world applications thanks to its flexibility, robustness, and reduced cost when com-
pared to single-robot solutions. One of the important challenges in this field is to
efficiently distribute and coordinate a team of robots over the environment, so that de-
sired tasks can be properly performed by this team. In this work we extend previous
methods on multi-robot deployment in order to improve safety, convergence, applica-
bility and computational time. In the first extension, we propose a new strategy based
on the locational optimization framework. Our approach models the optimal deploy-
ment problem as a constrained optimization problem with inequality and equality
constraints. In order to consider the generation of safe paths during the deployment
or in future excursions through the environment, this optimization model is built by
incorporating: the classical Generalized Voronoi Diagram (GVD); and a new metric
to compute distance in the environment. GVD is commonly used as a safe roadmap
in the context of path planning, and the new metric induces a new Voronoi parti-
tion of the environment. Furthermore, inspired by the classical Dijkstra algorithm, we
present a novel efficient distributed algorithm to compute solutions in complicated en-
vironments. A new distributed multi-robot deployment algorithm is proposed as the
second extension. By relying on the novel strategy of continuous movement in a dis-
crete approximation of the environment, the convergence of the algorithm is proven.
Furthermore, as our third extension, we present a new implementation of the pro-
posed deployment algorithm. When the number of robots is large or the region corre-
sponding to each robot is large, the computational time of the locational optimization
framework might be high. Thus, a new algorithm is proposed, which is able to run
in parallel setup. CUDA is used as a platform for running the proposed algorithm.
In our fourth extension, we propose a new discrete deployment strategy which prop-
erly works on a topological framework. This framework represents environments as
a topological map, which transforms the original two or three-dimensional problem
into a one-dimensional, simplified problem, thus reducing the computational cost of
the solution. It also makes the new deployment model suitable for the environments
that can be represented by a topological map, such as block-shape cities or corridor
based buildings i.e. departments in universities, hospitals, governmental offices, etc.
It is important to mention that this combination of our discrete deployment with the

xi



xii

topological framework is appropriate for the scenarios, where the map is large and the
response must be fast. All the extensions are validated in simulations or actual robots
experiments.
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Chapter 1

Introduction

A set of autonomous sensors, which is a networked system that can communicate

and use sensing data gathered mutually by each spatially distributed sensor node, is

known as a Wireless Sensor Network (WSN) (Suzuki and Kawabata, 2008). Moreover,

according to (Bullo et al., 2009), a system composed of a group of robots that sense

their own positions, exchange messages following a communication topology, process

information, and control their motion is called a robotic network. One can find several

applications for this type of system such as surveillance, sensing coverage, environ-

ment monitoring, search and rescue, etc. In a multi-robot system, agents might co-

operate to accomplish a single task much more efficiently than a single-robot system.

Also, in the case of a complex task, usually a group of robots can reach the result much

faster. Furthermore, when robots are able to sense the environment independently,

after fusing the captured data the effect of a failure in some data from any individ-

ual will not have a big impact due to the probability of having redundant information

provided by other agents.

There are two common types of strategies to coordinate a group of robots. First,

when a leading robot or central computer collects the state information of all the other

robots, the tasks and the environment to determine the appropriate motion of each

individual robot, this is called centralized strategy. In this case, the difficulty is in

adapting to the dynamic environment and to accommodate a large number of robots.

The second strategy is called distributed or decentralized in which each robot can com-

pute its own decision according to its states, its local environment and its interactions

with nearby robots and other entities. One benefit of this distributed system is the

possibility of reduction of the complexity of the involved algorithms such as in the

case of path planning. Moreover, the system may be robust to single-robot failure. Fig.



2 1 Introduction

1.1 indicates the communication of robots in both strategies.

(a) A centralized robotic system.
All robots are contacting the server
robot.

(b) A decentralized robotic system.
Robots are contacting some neighbor
robots in the network.

Figure 1.1: Comparison of centralized and decentralized system.

In some applications of robotic networks, an important question to be answered is:

where should each robot be placed in the environment? In the present work we show

distributed solutions to this problem which is referred as the deployment problem

by Bullo et al. (2009).

In this topic, the solution is distributed in the sense that each agent depends only on

information from a small set of other agents, called neighbors, to compute its actions.

Besides, this set of neighbors is dynamic since it might change as the system evolves.

As pointed by Cortes et al. (2004), this allows for scalability and robustness.

1.1 Motivation and Contributions

Due to the vast number of applications of multi-robot systems and particularly

the usage of autonomous deployment strategies, in this thesis we investigate different

aspects of this research topic.

We are interested in finding optimal deployment configurations for a group of

robots. A configuration can be considered as optimal if it is a minimizer of a func-

tional encoding the quality of the deployment. The quality of deployment is usually

related to the time of response of the network after an event that needs servicing hap-

pens in the environment. This time is a function of the distance of the agents from the
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event and the agent capabilities (speed, sensor field of view, etc). In order to minimize

the distance between agents and events, our approach applies the idea of partitioning

the environment into subregions which are then assigned to specific agents. Therefore,

each agent is responsible for attending the events in its corresponding subregion.

Figure 1.2: In this example three firefighter cars must be located over the map in such
a way that in case of fire in their dedicated region, they respond in minimum time.

An example in Fig. 1.2 considers an application of determining the best station

for rescue cars in a city such that they reach the intended area in minimum time. In

locational problems, we usually have the objective of finding the best positions to place

entities such as: cars, robots or any kind of facility. Given the importance of multi-

robot deployment problem and also the fact that it is a new research topic, several

researchers are currently interested in developing new efficient strategies which are

amenable to real world implementation. In this thesis we tried to address shortages

found in previous methods and also extend some works in the literature.

Contribution

In this work, our contributions are divided into 3 main parts which are listed below:

• First, we extend the previous works on multi-robot deployment by considering

safety in robots motion. In the new technique GVD is employed as a roadmap,

so that robots are forced to keep moving over the GVD. To apply this constraint

in robots path planning, we develop a new metric, which computes the shortest

path between two points over the GVD. This extension generates safe routes for
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the robots during deployment. Moreover, in order to compute next actions of the

robots, we developed a new efficient algorithm. Simulation results validates the

applicability of the proposed method.

• A new method for deploying a team of robots by considering a continuous move-

ment of robots in a discrete representation of the environment is proposed. This

work defines a new strategy to choose the next action, such that the cost func-

tion never increases. It makes possible to address the problem of convergence

of previously proposed methods such as (Bhattacharya et al., 2013c). We also

propose a new efficient parallel implementation of our algorithms. In particular,

CUDA based discrete implementation is applied to speed up the graph search

algorithm. Simulation and real robot experiments testify the performance of this

extension in Chapter 5.

• While the cited deployment techniques focused on environments with two or

three dimensions represented by geometric maps, we derived a discrete setup for

deployment on a one-dimensional topological map. The topological map repre-

sents the robot’s workspace as a graph, in our case a direct graph. The idea of

this topological map on how to move a single robot in this space is developed

by Araujo et al. (2015), where a robot uses human-like commands to move in

structured environments. In fact, humans do not need to have a precise met-

ric localization to reach a destination. A simple sequence of directions such as

"turn right", "turn left", and "go straight" may be enough for a person to reach its

destination in an urban environments or office building. This methodology uses

graph search strategies to generate such sequences of commands and deploy the

robot team in the environment. The main advantage of topological representa-

tion is to eliminate the need for precise localization of the robots. According to

these advantages, our new multi-robot deployment setup upon this framework

can be considered as a milestone in the literature of deployment. In such a way,

we do not need a specific metric for the computation (as for the humans, metric

localization is also not necessary). Given a robot that is able to move without the

need of localization (by following walls or driveways, for example), high speed
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motion and fast response can be achievable. Arguably, this method is suitable

for emergency responses like chasing an evader or responding to accidents. It is

important to remark that this topological based framework does not need a com-

plete and precise map as input. Thus our method will work in scenarios in which

the input map is partially known or just an image (without metric information)

is available.

Our simulation results compare our proposed method with the global solution

obtained by solving the p-median problem on the same input map. We also exe-

cuted the algorithm on a team of real robots.

1.2 Document Organization

The document is organized as follows: in the next chapter, we explain some defi-

nitions and tools that will be used in the rest of the document; In Chapter 3, a review

of related papers in continuous and discrete deployment is presented; The proposed

decentralized multi-robot safe deployment is discussed in Chapter 4. In Chapter 5,

our proposed deployment algorithm with convergence proof and new implementation

will be presented;

Chapter 6 is dedicated to deploying robots in topological maps. This chapter also

contains: discrete topological map representation, optimal deployment in this repre-

sentation, the proof of convergence and implementation results; Chapter 7 concludes

this text with a summary, list of limitations, and future directions to be pursued. We

also show the list of publications derived during the development of this work in this

chapter.





Chapter 2

Background

In this chapter we present some of the tools that will be useful in the techniques

proposed in this work.

2.1 Graph (Dijkstra Algorithm)

Searching in a graph to find a path between two locations is one of the useful oper-

ations in a routing problem. In this section, we define the Single Source Shortest Path

(SSSP) problem and review the Dijkstra algorithm (Dijkstra, 1959) as its solution.

LetG = {V ,E ,C} be a weighted graph, where V is the set of nodes/vertices, E is the set

of edges and finally C is the set of non-negative weights of edges between nodes. The

SSSP problem is the one of finding the path between a source vertex s and a destination

vertex t which has minimum total weight. An efficient algorithm to solve this problem

is the so-called Dijkstra algorithm. This algorithm receives the graph G and the source

vertex s as inputs and returns the distance map, d, and array pre which contains the

pointers to the "next-hop" nodes in the shortest routes to the source (s). Algorithm 1

shows the original Dijkstra algorithm.

In this algorithm, vertices are classified into two main categories: visited nodes and

unvisited nodes. Thus, in each iteration, the closest node (q) from the unvisited nodes,

in the priority queue (Q), is removed and added to the visited part. In this way, q’s

neighbors are investigated to see whether the new path from q is closer to them or

not. Such that in lines 13 and 14 the distance map d and array pre will be updated

to the new values (this is also called “relaxation”). The evolution of this process is

usually associated to a wavefront propagating from the source node. The complexity
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Algorithm 1: Dijkstra algorithm.
Input: G, s
Output: d, pre

1 d(s)← 0 // Distance from source to source
2 foreach v ∈ V do // Initialization of distance
3 if v , s then
4 d(v)←∞
5 pre(v)← undef ined // Previous node in optimal path from source

6 Q← v // Add all v in the list Q

7 while ( Q , ∅ ) do
8 q← argmin

q′∈Q
d(q′) // return vertex in Q with minimum distance to source

9 Q←Q \ q // Remove q from Q
10 foreach w ∈ NG(q) do // For each graph neighbor node of q
11 d′← d(w) + C(w,q)
12 if d′ < d(q) then // Relaxation
13 d(q)← d′ // Update the cost of neighbor nodes of q
14 pre(q)← w // by considering new cost from source to q

of a naive implementation is O(|V |2), where |V | is the number of nodes, but other im-

plementations using a fibonachi heap (Cormen et al., 2001), have a much better result

O(|E|+ |V | log |V |), where |E| is the number of edges.

2.2 Generalized Voronoi Diagram (GVD)

Consider the set of obstacles QO = {QO1, · · · ,QOn} defined in a planar configuration

space. This set induces a structure called Generalized Voronoi Diagram (GVD). A set

of points in the free configuration space (Qf ree) is defined as the Voronoi region (Vi) of

the obstacle QOi , if these points are closer to QOi than to all the other sites, where a

site is the same as an obstacle in this case (Choset et al., 2005).

Vi = {q ∈ Qf ree| d(q,QOi) ≤ d(q,QOj),∀j , i} , (2.1)

where d(q,QOi) is the minimum distance between QOi and q. The two-equidistant

surjective surface, Li,j is the set of points equidistant to two obstacles QOi and QOj
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with distinct gradient vectors:

Li,j = {q ∈ Q|d(q,QOi) = d(q,QOj) and ∇d(q,QOi) , ∇d(q,QOj),j , i}. (2.2)

The points in Li,j (that are part of the GVD) are those in which QOi and QOj are

the closest obstacles. Therefore we can define the set:

Vi,j = {q ∈ Li,j | ∀h, d(q,QOi) ≤ d(q,QOh)}. (2.3)

This last definition allows us to formally define the GVD:

GVD =
⋃
i

⋃
j

Vi,j . (2.4)

In Fig. 2.1 an example of definition given by Eq. (2.4) is shown.

d(q, 𝒬𝒪4)

q

𝒬𝒪4

𝒬𝒪3

𝒬𝒪2

𝒬𝒪1

ℒ3,4

𝑉3,4

d(q, 𝒬𝒪2)

𝒒start

𝒒goal
𝒒goal
′

𝒒start
′

Figure 2.1: Example of GVD (green line).QO1, QO2, QO3 and QO4 are the obstacles or
sites. q is an equidistant point between sites QO2 and QO4 that belongs to the GVD.
The line L3,4 is a bisector between sitesQO3 andQO4. V3,4 is the part of line L3,4 which
is a portion of the GVD.

An interesting feature of the GVD is that it can be used as a roadmap for path

planning. This means that it is always possible to plan a path from a point qstart ∈ Qf ree
to a point qgoal ∈ Qf ree, if a solution exists, in such a way that the robot moves first to

some point q′start ∈ GVD, moves along the GVD to some point q′goal ∈ GVD in the

sequence, and finally reaches the goal by moving from q′goal to qgoal (Choset et al.,
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2005) (see Fig. 2.1). Given the fact that the GVD is formed by points equidistant from

the closest obstacles, in general it provides a safe route for the motion. Therefore, if

several excursions in the environment are demanded from robots and a map of this

environment is given, it is worth computing the GVD and then use it as a roadmap for

such excursions. Given a GVD, planning a path is a matter of running a simple graph

search. In the present work we use GVDs to incorporate safety in a multi-robot motion

and simplify the workspace.

2.3 Voronoi Tessellation

In this section, to explain Voronoi tessellation we use the same definitions in the

context of GVD (Section 2.2). In the free configuration space (Qf ree) of an environment,

Voronoi tessellation is defined as regions associated to a set of points. If we consider

to P = {p1, . . . ,pM} be the sites or points distributed over Qf ree, instead of obstacles in

GVD, where pi ∈ Qf ree indicates the position of point i, the set V = {V1, · · · ,VM} is the

corresponding Voronoi tessellation given by:

Vi = {q ∈ Qf ree| d(q,pi) ≤ d(q,pj),∀j , i}, (2.5)

where, d is the distance function, so that if we consider d as Euclidean distance it can

be written: d(q,pi) = ||q−pi ||. Moreover, the boundary between two Voronoi regions Vi

and Vj is:

Lij = {q ∈ Qf ree| d(q,pi) = d(q,pj), j , i}. (2.6)

If we denote the boundary of a Voronoi region Vi by ∂Vi , a neighbor site of pi can

be defined as:

Ri = {pj ∈ P | ∂Vi ∩∂Vj , ∅, i , j}. (2.7)

An example of environment with four sites and their corresponding Voronoi cells

(regions) are depicted in Fig. 2.2. A convex environment is partitioned to four Voronoi
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cells which are associated to each point pi (based on Euclidean distance). Also the

boundaries between regions are shown by lines. It should be noticed that in a Voronoi

tessellation we have:
M⋃
i=1
Vi =Qf ree, and also I(Vi)

⋂
I(Vj) = ∅, ∀i , j, where I(Vi) returns

the interior of Voronoi region i.

Figure 2.2: A set of sites (pi) with corresponding Voronoi regions(Vi).

2.4 Locational Optimization Based Deployment

In this section we present the general problem of deployment considering the loca-

tional optimization framework proposed by Cortes et al. (2004), which is the basis to

our work.

2.4.1 Problem Definition

Consider a team of M robots has to be distributed on a bounded environment Ω ∈

R
2. The configuration of robots is defined by P = {p1, . . . ,pM}, where pi ∈ Ω. In this

setup, robots must cover the whole environment, so that each of them is responsible to

a Voronoi cell Vi , where V = {V1, · · · ,VM}, and
M⋃
i=1
Vi = Ω. The quality of this deployment

can be measured by following equation:
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H(P ,V ) =
M∑
i=1

H(pi ,Vi), (2.8)

and,

H(pi ,Vi) =
∫
Vi

d(q,pi)
2φ(q)dq, (2.9)

where d denotes the distance function between the robots and points. Different met-

rics can be used to compute the distance in an environment. For instance, in Fig 2.3

a comparison between Euclidean and geodesic distance in a non-convex environment

is shown. While Euclidean distance between p and q is shorter and suitable for con-

vex environment, geodesic distance is more realistic in a non-convex scenario (dashed

line), in the sense of considering obstacles.

𝓠𝓞

𝒒

𝒑

Figure 2.3: Euclidean and geodesic (dashed line) distance in a non-convex environ-
ment.

In Eq. (2.9), for each point q ∈ Ω, the function φ(q) denotes the importance of

the point. We call this function φ : Ω→ R
+, a distribution density function. In other

words, φ shows the priority of servicing events in the environment by robots, hence

the regions with higher priority have higher weights. In Fig. 2.4, an example of Gaus-

sian function, as a density function, in a planar environment is shown, in which the

center of environment (corresponding to the center of function) needs more priority to

be covered by robots. Throughout our text we assume that robots have access to the in-

formation of density function before starting the deployment process. However, when

the robots do not know this function, it can be learned online by techniques developed

in (Schwager et al., 2009) based on sensor data.

Given the above explanation, in general in locational based multi-robot deploy-
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Figure 2.4: Example of density function in a 2D environment. The center of Gaussian
function is placed at the point qc = [0.5,0.5]T and its support (spread of the blob in x
and y) is equal to ‖q−qc‖ < 0.3.

ment, a team of robots cover an area to optimize the cost function (H), which directly

depends on the distance between robots and points. Therefore, the better is the dis-

tribution of robots over the environment, the lower is the value of H. In this way, our

deployment problem is translated to a minimization problem.

According to the work by Cortes et al. (2004), if we consider a convex environment

with Euclidean distance function d, it is easy to show that if robots are located on

centroid of Voronoi partitions, the minimum value ofH function will be obtained. The

centroid can be defined by:

p∗i =

∫
Vi

qφ(q)dq∫
Vi
φ(q)dq

. (2.10)

Therefore, to minimize the function in Eq. (2.8), robots must be driven to the cen-

troid of their Voronoi tessellation. In such a way, the result partitions are known as

Centroidal Voronoi Tessellation (CVT). Lloyd’s algorithm is a well-known iterative and

discrete approach for CVT which is proposed by Lloyd (1982). By having an environ-

ment with some points as sites, in each iteration of this algorithm the Voronoi parti-

tions and their centroids are computed, later the points will be moved to the centroids.
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(b) Final centroidal seeds.

Figure 2.5: Example of CVT with 10 points as sites or seeds.

This process will stop when the current sites (points) corresponding to the centroids

of the next iteration. An example of this method is shown in Fig. 2.5. In this thesis,

the most part of our works is based on the continuous version of this algorithm which

is proposed by Cortes et al. (2004). In their work, the kinematic model of a robot is

defined as:

ṗi = ui , (2.11)

where ui is the robot control input. Also in a continuous setup, the following control

law guarantees that the system converges to a CVT:

ui = −k(pi −p∗i ) , (2.12)

where k is a positive weight. According to Eqs. (2.8) and (2.9), finally, the gradient-

descent control law that leads the robots to CVT, in Euclidean distance (d) and f (x) =

x2 , can be computed as (Cortes et al., 2004):

∂H
∂pi

= 2
∫
Vi

φ(q)(pi −p∗i )dq. (2.13)

It is important to notice that H is a non-convex function, which implies that the

system will in general converge to a CVT that corresponds to a local minimum.
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2.4.2 p-Median Problem

The locational optimization problem in Section 2.4.1 was defined in a continuous

setup, but if we discretize the input map into cells and represent it as a graph, then the

deployment problem can be considered as a p-median problem. In p-median problem

the main objective is to find location of p facilities (or medians) relative to a set of users

or customers, in which the sum of the shortest demanded distance from customers

to facilities is minimized. The p-median problem was initially proposed by Hakimi

(1964). This problem is classified as NP-hard, therefore many heuristic and meta-

heuristic methods have been proposed to solve it (Mladenovic et al., 2007; Rolland

et al., 1996). The mathematical model of this problem can be defined as follows.

Consider a set of possible locations for facilities S = {1,. . . ,M}, and a set of customers

Y = {1,. . . ,N }. d is a distance function, in which d(i,j) indicates the shortest distance

from customer i to facility j (i ∈ Y and j ∈ J , where J is a subset of S). Thus, the

objective is to minimize the given function:

F =
∑
i∈Y

min
j∈J

d(i,j), (2.14)

where J ⊆ S and |J | = p. An example of this problem with 7 customers and 2 facilities

is shown in Fig. 2.6.

𝑝1
𝑝2

Figure 2.6: A solution of p-median problem with 2 facilities and 7 customers.

According to the above explanation, in this thesis, to validate the efficiency of our

proposed deployment algorithm in a discrete setup (in Chapter 6), we compared with
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the optimum result achieved by solving its corresponding p-median problem. Such

that, in p-median problem, N points (vertices or customers) are assigned to M robots

(facilities).

2.5 GPU (Graphics Processing Unit) and Compute Uni-

fied Device Architecture (CUDA)

GPGPU (General Purpose Computing on Graphics Processing Unit) has become a

hot topic nowadays in several fields that demand high performance hardware. This is

a method of using the GPU (Graphics Processing Unit) to perform computations for

tasks other than graphics, such as astrophysical modeling, signal/image processing,

electromagnetic field computation, etc. The great advantage of this strategy is the

parallel nature of graphics processing.

Compute Unified Device Architecture (CUDA) was developed by NVIDIA as a par-

allel computing solution which covers both parallel software and hardware architec-

ture. It can execute thousands of threads at the same time, thus CPU sees a CUDA

device as a multi-core co-processor.

2.5.1 Software Model:

The execution in CUDA is based on threads. Hence programmers must define

the number of threads for their usage. A group of threads creates a block. Inside a

block, threads can cooperate together by efficiently sharing data through some fast

shared memory and synchronizing their execution to coordinate memory accesses.

Each thread is identified by its thread ID, which is the thread number within the block.

A block can be defined as a 2 or 3 dimension array to simplify complex addressing.

For example, in the case of 2-D block with size (Sx,Sy), the thread ID of a thread with

index (x,y) is x+ y ∗ Sx.

The maximum number of threads within a block is limited, but blocks with the

same size and dimension can be joined into a grid (See Fig. 2.7). A grid can be com-

piled once with all its threads, so that the maximum number of threads which can be
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Figure 2.7: Threads in memory (NVIDIA, 2007).

launched at the same time is very large. However, it must be noticed that threads in

different thread blocks from the same grid cannot communicate and synchronize with

each other.

As illustrated in Fig. 2.8, the software architecture is composed of several layers.

Developers use the CUDA API (Application Programming Interface) in their applica-

tions and also CUDA runtime and CUDA driver to run and launch their application

on GPU.

CUDA as a programming interface provides the ability to contact and use GPU for

users familiar with programming language. In fact, CUDA runtime library contains

functions to control and access host (GPU) and guest (CPU) space.

Kernels

An important step in CUDA programming is defining a C function, which is called

kernel. In contrast to regular C function, when a kernel is launched, it will be executed
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Figure 2.8: Compute Unified Device Architecture Software Stack (NVIDIA, 2007).

N times in parallel byN different CUDA threads. The user can define a kernel by writ-

ing the keyword __global__ at the beginning of the function declaration. Furthermore,

when calling it, the number of blocks and threads, which will be used in the GPU, is

set between " < < <· · ·> > > " after the name of the function. A simple program for

adding two vectors is defined in the code below (Sanders and Kandrot, 2010). In the

first code, the function for summing two vectors in CPU and storing the result into

vector C is shown. Inside the code, a loop is applied to repeat the sum operator N

times, where N is the size of the input vectors.

1 void VecAdd( int *a, int *b, int *c )

2 {

3 for (i=0; i < N; i++)

4 {

5 c[i] = a[i] + b[i];

6 }

7 }

In the case of CUDA, the same function, for adding two vectors, will be defined as

the following code (Sanders and Kandrot, 2010):

1 void VecAdd( int *a, int *b, int *c )

2 {

3 int tid = threadIdx.x;
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4 if (tid < N)

5 c[tid] = a[tid] + b[tid];

6 }

Differently from the function which was defined in CPU, here there is no loop.

This means the line inside the function runs N times in N threads in a parallel way.

Each thread that executes the kernel is given a unique thread ID that is accessible

within the kernel through the built-in threadIdx variable. The Code below shows how

the number of threads and other input parameters are passed (Sanders and Kandrot,

2010):

1 #include <iostream>

2 #define N 10

3 int main( void )

4 {

5 int a[N], b[N], c[N]; //Input array from CPU

6 int *dev_a, *dev_b, *dev_c; // variables for GPU

7 Initit(a,b,c);//Initialize a,b and c

8 // allocate the memory on the GPU

9 cudaMalloc( (void**)&dev_a, N * sizeof(int) ) ;

10 cudaMalloc( (void**)&dev_b, N * sizeof(int) ) ;

11 cudaMalloc( (void**)&dev_c, N * sizeof(int) ) ;

12 // fill the arrays ’a’ and ’b’ on the CPU

13 cudaMemcpy( dev_a, a, N* sizeof(int), cudaMemcpyHostToDevice);

14 cudaMemcpy( dev_b, b, N* sizeof(int), cudaMemcpyHostToDevice);

15 VecAdd<<<1,N>>>(dev_a, dev_b, dev_c);

16 cudaMemcpy( c, dev_c, N* sizeof(int), cudaMemcpyDeviceToHost );

17 for (int i=0; i<N; i++)

18 printf("\%d+\%d=\%d \n",a[i],b[i],c[i]);

19 cudaFree(dev_a);

20 cudaFree(dev_b);

21 cudaFree(dev_c);

22 return 0;

23 }

The number of threads is directly related to the problem which is defined by the

developer. Here in our example, 1 block is used and also the number of threads in a
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block is equal to the size of the input vector or N = 10. On current GPUs, a thread

block may contain up to 1024 threads.

It can be seen in the code that before using the variables in GPU they should be

allocated by cudaMalloc(). This function behaves very similarly to the standard C call

malloc(), but it tells the CUDA runtime to allocate the memory in the device. An-

other useful function is cudaMemcpy, similarly to the standard C function memcpy.

This function copies data from host to guest and the other way around (Sanders and

Kandrot, 2010).

Figure 2.9: CUDA Hardware Model, (NVIDIA, 2007).
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2.5.2 Hardware Model:

CUDA has two main taxonomies: the GPU is called the device and the CPU is called

the host. It also consists of a set of multiprocessors (See Fig. 2.9). Each multiprocessor

has access to the four following memory types (NVIDIA, 2011):

• shared memory, which is common to all the n processors,

• A set of 32-bit registers per processor,

• A read-only Constant cache that is shared between all processors,

• A read-only T exture cache that is also shared by all processors.

The two last types of cache memory speed up reading from constant and texture

memory space. The device memory is accessible from all multiprocessors, hence they

can communicate to each other via this memory.

Atomic operators:

In multi-threading applications, a common problem which must be avoided is race

condition. It happens when two or more threads want to operate on the same shared

memory concurrently. Atomic operations are often used to prevent race conditions. An

atomic operation is capable of reading, modifying, and writing a value back to memory

without the interference of any other threads, which guarantees that a race condition

would not occur. Atomic operations in CUDA generally work for both shared memory

and global memory. For example:

int atomicAdd(int* address, int val);

This atomicAdd function can be called within a kernel. When a thread executes this

operation, a memory address is read, has the value of "val" added to it, and the result

is written back to memory. There are other operators for the main mathematical and

logical operations.
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2.5.3 New CUDA Hardware Model

Because of the complexity of managing these different kinds of memories, NVIDIA

proposed a new version of CUDA (NVIDIA, 2014). In CUDA 6, they introduced

unif orm memory to have a shared data between CPU and GPU. Therefore, this mem-

ory can be accessed by using a single pointer. Fig. 2.10 illustrates this new architecture.

Figure 2.10: New architecture in CUDA 6, NVIDIA (2014).

In Chapter 5, we are going to show a version of the proposed distributed algorithm

compatible with CUDA.



Chapter 3

Related Work

3.1 Multi-Robot Deployment

Multi-robot deployment problems have attracted attention of several groups due

to the great applicability of robotic networks. A major category in multi-robot de-

ployment control schemes is the one based on artificial potential fields or force fields:

Parker (2002) developed a distributed algorithm to coordinate a group of robots to

monitor multiple moving targets. This strategy was based on the use of attractive and

repulsive force fields. Reif and Wang (1999) proposed artificial force laws between

pairs of robots or robot groups to control Very Large Scale Robotic (VLSR) systems.

Since the force laws may reflect the "social relations" among robots, this method was

named Social Potential Field. Similarly, Howard et al. (2002) presented a potential field

based method in which the final force for each robot is achieved by summing both

the repulsive forces from obstacles and the repulsive forces from other robots. The

objective in this case is to maximize the environment coverage. Poduri and Sukhatme

(2004); Popa et al. (2004); Ji and Egerstedt (2007) also used potential field based con-

trollers for coverage, formation control and preservation the connectivity of agents in

an ad hoc network.

Another important category is the one built upon the Locational Optimization Frame-

work (Okabe et al., 1992). This was initially proposed by Cortes et al. (2004). The

authors in (Cortes et al., 2004) present a distributed and asynchronous approach for

optimally deploying a uniform robotic network in a domain based on a framework for

optimized quantization derived by Lloyd (1982). Each agent (robot) follows a control

law, which is a gradient descent algorithm that minimizes the functional encoding the

quality of the deployment. Furthermore, this control law depends only on the infor-
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Table 3.1: Different classes of deployment approach.

Methodology NC1 NE2 Con3 Het4 GB5 CP6 Dec7

Cortes et al. (2004) - - X - - X X
Pimenta et al. (2008) X X X X - X X
Schwager et al. (2009) - - X - - X X
Breitenmoser (2010) X X X - - X X
Stergiopoulos and Tzes (2011) - - X X - - X
Schwager et al. (2011) X - X - - X X
Mahboubi and Sharifi (2012) - - X - - - X
Durham and Carli (2012) X X - X X X X
Yun and Rus (2013) X X - - X X X
Bhattacharya et al. (2013b) X X X - X X X
Sharifi et al. (2014) - - X - - X X
Sharifi et al. (2015), Pierson et al.
(2015)

- - X X - X X

1 NC: Non-Convex 2 NE: non-Euclidean 3 Con: Continuous
4 Het: Heterogeneous 5 GB: Grid-Based 6 CP: Convergence-Proof
7 Dec: Decentralized

mation about the position of the robot and of its immediate neighbors. Neighbors are

defined to be those robots that are located in neighboring Voronoi cells. Besides, these

control laws are computed without the requirement of global synchronization. As we

explained in Section 2.4, the functional also use a distribution density function which

weighs points or areas in the environment that are more important than others. Thus,

it is possible to specify areas where a higher density of agents is required. This is im-

portant if events happen in the environment with different probabilities in different

points. Furthermore, this technique is adaptive due to its ability to address changing

environments, tasks, and network topology.

Coverage in the sense of (Cortes et al., 2004) is illustrated in Fig. 3.1. In this fig-

ure four robots are deployed in a convex environment. The density function used is

uniform, so all points of the environment have identical priority. At the beginning,

the environment is divided in four Voronoi regions, one for each robot. The technique

proposed in Cortes et al. (2004) generates velocity vectors for each robot so that they

continuously move towards the centroids of their respective Voronoi regions, which, as

a consequence, change the region itself, as show in Fig. 3.1. As the time evolves, it can
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be proved that the multi-robot system converges to a configuration where the environ-

ment is equally distributed among the robots or, in the case of non-uniform density

functions, is distributed according to this function. It is important to notice that, even

in convex workspaces, real world implementations of this methodology require global

and precise metric localization for the robots and non-linear control strategies to fol-

low the velocity vectors.

(a) Time 1. (b) Time 4. (c) Final.

Figure 3.1: Deployment of 4 robots in a convex environment using the approach pro-
posed by Cortes et al. (2004). In (a) and (b) the “*" sign indicates the center of the
Voronoi regions, which represent the current goal position for each robot. Voronoi
regions are highlighted with different colors.

Different extensions of the framework devised by Cortes et al. (2004) have been

proposed in the literature. Table 3.1 lists some of the articles with their properties:

convex or non-convex, Euclidean or non-Euclidean, continuous or discrete, hetero-

geneous or homogeneous teams, grid-based or geometric, with convergence-proof or

without, and decentralized or centralized. In this work we focus on two main schemes:

continuous and discrete. Hence, in the following we are going to review the literature

of both schemes separately.

3.1.1 Multi-Robot Deployment in Continuous Space

After the initial work by Cortes et al. (2004), which can only be applied to con-

vex and static environments, Pimenta et al. (2008) applied geodesic distance for de-

ploying a team of heterogeneous robots in non-convex environments. The problem

of considering time-varying distribution density functions was studied by Pimenta
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et al. (2010) to solve a task of simultaneous coverage and intruders tracking. For a

similar problem, Schwager et al. (2009) developed an adaptive controller, such that

robots learn the distribution of sensory information (density function) during the de-

ployment. Another approach for deploying multiple robot in non-convex environment

was presented by Breitenmoser (2010). In order to avoid collision with obstacles, the

authors combined the deployment control law with a local planner (Tangent Bug).

Most of the previously cited works can be classified as Voronoi-based coverage

strategies since they use the centroid of the current Voronoi region in their controller.

However, there are other papers that provide alternative partitioning techniques. Ster-

giopoulos and Tzes (2011) propose a method for area-coverage in the case where the

sensors are heterogeneously range-varied. In this method, differently from what we

call CVT (Centroidal Voronoi Tessellation (Cortes et al., 2004)), as a standard method

for tessellation, they performed a different space-partitioning scheme, which was pro-

posed previously by Tzes and Stergiopoulos (2010). In this work, they developed a

coverage-oriented modified Voronoi, based on different sensing areas from the set of

heterogeneous nodes (agents) and preserved the convexity of the Voronoi regions. In

their simulation result, they claim that the proposed method, in the case of heteroge-

neous networks, can increase the total sensed area in the same time as the standard

tessellation method.

Multi-robot deployment with the use of multiplicative weighted Voronoi (MW-

Voronoi) diagram in an obstacle free environment is discussed by Mahboubi and Shar-

ifi (2012). In this work, the authors consider different weights for each robot in the

process of constructing the Voronoi tessellation. Moreover, in the presence of obsta-

cles, the tessellation is done by applying a visibility-aware multiplicatively weighted

Voronoi (VMW-Voronoi) diagram. Therefore, it is possible to have an uncovered re-

gion, where it is not only invisible from the robots viewpoint, but also will not be

considered in the Voronoi tessellation.

A deployment strategy for multi-agent system that considered communication de-

lay and sensors effectiveness variation is presented by Sharifi et al. (2014). In this work

a new partitioning technique is developed in order to address variation in sensors be-
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havior, which is called Guaranteed Multiplicative Weighted (GMW) Voronoi. Agents

with different types of dynamics are taken into account by the same authors in (Sharifi

et al., 2015). They used MV-Voronoi partitioning approach to find the corresponding

region for each robot based on their dynamics.

Caicedo-Nunez and Zefran (2008a) and Caicedo-Nunez and Zefran (2008b) con-

sidered non-convex environments by constructing a diffeomorphism to convex regions

with isolated obstacles in its interior, in which regular Voronoi coverage can be applied.

As they mentioned besides significant computational challenges, the generated solu-

tion may differ from the corresponding optimal coverage solution in the original space.

They addressed these shortages in the work by Caicedo-Nunez and Zefran (2008a) by

characterizing a set of stationary points for the Lloydś algorithm in general regions.

The DisCoverage 1 algorithm in a convex environment for multi-robot exploration,

based on the work of Cortes et al. (2004), is proposed by Haumann et al. (2010). More-

over, an extension of this algorithm for non-convex environments in the specific con-

text of exploration, by including the idea of using geodesic distance as the work of

Pimenta et al. (2008), is done by Haumann et al. (2011). This method transforms non-

convex environments into star-shaped domains and use these new domains to apply

the DisCoverage algorithm.

Ny and Pappas (2013) consider three related classes of problems: coverage control,

spatial partitioning, and dynamic vehicle routing. They proposed an adaptive algo-

rithm which was based on stochastic gradient algorithms that optimize utility func-

tions in the absence of a priori knowledge of event location distribution.

The present work further extends the works by Pimenta et al. (2008) and Bhat-

tacharya et al. (2013c). In the first part of our work, we incorporate safety as a param-

eter into the deployment problem. By merging different Voronoi diagrams, includ-

ing the well known Generalized Voronoi Diagram (GVD) (Choset et al., 2005) and by

considering a constrained optimization problem in the context of the Locational Op-

timization Framework, we generate safe routes for the robots during deployment and

also after deployment when servicing a given point of the environment. We propose

1 In (Haumann et al., 2010), using Voronoi partition-based coverage algorithm in multi-robot explo-
ration is called DisCoverage.
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a new Voronoi Diagram which is built according to a new metric that takes into ac-

count shortest paths that traverse the GVD. Moreover, in order to consider real world

environments, we devise a new efficient algorithm to compute the next actions of the

robots in the same spirit of the one proposed by Bhattacharya et al. (2013c).

In the second part, we will develop a new algorithm to address the problem of

convergence of previously proposed methods such as (Bhattacharya et al., 2013c) and

(Bhattacharya et al., 2013b). This work defines a new strategy to choose the next action,

such that the cost function never increases.

We also contribute in the proposition of new efficient implementation methods of

our algorithms. We propose a GPU (Graphics Processing Unit) based implementation.

3.1.2 Multi-Robot Deployment in Discrete Space

While our contributions are mostly based on the continuous setup of Pimenta et al.

(2008) and Bhattacharya et al. (2013c), in the implementation part we applied a dis-

crete scheme, graph representation, to present the map and robots motion. Thus we

will briefly survey some of the discrete techniques in the literature of multi-robot de-

ployment. For a chronological order and characteristic of each method presented,

please refer to Table 3.1.

Yun and Rus (2013) describes a decentralized algorithm for locational optimization

on graphs. The technique creates an undirected graph from the map and computes

a Voronoi tessellation on the graph. Finally, based on the optimization framework,

robots move to the desired nodes.

Some works also inspired by the locational optimization framework considered the

discretization of the environment by grid cells to facilitate computation in complex

environments. Durham and Carli (2012) considers a discrete partitioning and cover-

age optimization algorithm for robots with short-range communication. In this case

a discrete setup was presented, in which a discrete deployment functional is defined.

The authors proved that their algorithm converges to a subset of the set of centroidal

Voronoi Tessellations (CVT) in discrete formulation, named pairwise-optimal parti-
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tion. Gossip communication2 was used to allow information exchange among the

agents. In the work by Bhattacharya et al. (2013c), the environment was also dis-

cretized to allow the numerical computation of the environment partition (geodesic

Voronoi diagram), but in that case the context was the one of generating an approxi-

mation to the continuous setup. In the same spirit of approximating the continuous

setup, Bhattacharya et al. (2013b) discretized the environment and used a graph-based

approach inspired by Dijkstra algorithm (Dijkstra, 1959) to directly compute the pro-

posed control law in an efficient manner in general Riemannian manifolds with bound-

aries.

Among all previous approaches surveyed, the most similar to the one presented in

this work is Yun and Rus (2013). The authors computed the Voronoi partitions upon

an undirected graph that topologically encodes the environment. However, the au-

thors still use the original 2D metric map to control the robots, what, similarly to all

other previous strategies, makes the method dependent on precise localization. The

approach proposed in the present work improves on that point since all steps of the

method execute on the topological map. This highly simplifies the actual robot imple-

mentation, as will be shown in Chapter 6.

3.2 GPU Based Graph Search and CVT

Graph is one of the most useful approaches in representing topology of a system in

different fields. Finding the shortest path between nodes in a graph is a fundamental

problem. The problem is called Single Source Shortest Path (SSSP) when the distance

between one node (vertex) to all the other nodes is considered in a weighted graph.

The most popular sequential algorithm for solving this problem is Dijkstra (Dijkstra,

1959) which can run on non-negative edge weight graphs. The simplest version of the

Dijkstra algorithm uses an array structure to maintain the graph, thus the complexity

of it isO(|V |2), where |V | indicates the number of nodes in the graph. Different versions

of the data structure have been proposed in order to speed up the algorithm. By using

2A short-range communication with asynchronous and unreliable communication between nearby
robots
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Fibonacci heap (Cormen et al., 2001) its running time is bounded by O(|V | log |V |+ |E|),

where |E| is the number of edges. Meyer and Sanders (2013) introduced ∆Step which

ordered nodes by using bucket representation with size ∆, and each bucket may be

processed in parallel. They also did a review in detail of another formulation of par-

allel SSSP. Madduri et al. (2007) do an efficient implementation of this algorithm for

multi-thread parallel computer (Cray MTA-2). By improving hardware for parallel

processing, General Purpose Graphical Processing Unit (GPGPU) has become a pop-

ular topic being a solution not only in Graphics, but also in different applications in

different areas. It has high power of parallel processing with lots of threads and low

price. Moreover, it was introduced a SDK, which makes programming easy for devel-

opers. CUDA was one of the most famous parallel purpose hardware (graphic card) in-

troduced by NVIDIA (we explained the architecture in Section 2.5). Some researchers

have been working on SSSP in order to implement it on CUDA. Harish and Narayanan

(2007) used compact adjacency list to represent the graph and presented a fast imple-

mentation of graph search algorithms such as breadth-first search, SSSP and All-Pairs

Shortest Path (APSP) in CUDA. Martin et al. (2009) proposed several solutions for SSSP

based on Dijkstra. They compared Dijkstra algorithm implemented on CUDA with ad-

jacency list and CPU, based on Fibonacci structure on different random graphs. Also,

they claim that their algorithm overcomes the problem in (Harish and Narayanan,

2007) for not using the atomic function.

APSP (All Pairs Shortest Path) is another challenge in graph search, in which paths

between all pairs must be found. In general, parallel algorithms for solving this prob-

lem can be classified in two categories: methods that run SSSP iteratively and methods

based on Floyd-Warshall algorithm (Floyd, 1962). An example of the first category is

the work of Harish and Narayanan (2007). Usually, this type of approach requires re-

dundant computation and also large memory space. A good literature review of APSP

is discussed in (Katz and Kider, 2008). Moreover, Katz and Kider (2008) adapted the

original Floyd-Warshall algorithm to become a hierarchically parallel method. They

run the proposed method on large graphs on a single GPU with multiple processors

and multiple GPUs. The most interesting approach found so far has been proposed
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by Okuyama et al. (2012). In that work, Okuyama et al. provide a parallel APSP al-

gorithm based on the techniques proposed by Harish and Narayanan (2007) for SSSP

problem. They defined N tasks, where N is the number of sources (vertex), and tried

to speedup the computation by sharing the graph data between different tasks with

shared memory. The present thesis proposes a modified version of SSSP based on

(Harish and Narayanan, 2007). Differently from Okuyama’s work, which uses N times

more memory space to provide dedicated arrays to each of the N problems, our algo-

rithm uses an array with the same size of Harish’s work. The other difference is that

instead of havingN sources for computing the cost, we haveM sources, whereM is the

number of robots. Thus the new method is designed for Multi-Source (robot) Shortest

Path (MSSP) problem. And finally, besides computing shortest paths from sources to

all nodes in the graph, we compute the Voronoi region associated to each robot. A

Voronoi diagram (VD) is a fundamental geometrical structure which has been used in

different applications such as: Motion planning (Sud et al., 2008), Collision detection

(Sud et al., 2006), shape modeling (Alliez et al., 2008) and so on. In the following a

brief review of previous works that compute VD in parallel is presented.

Hoff et al. (1999) developed an algorithm which could run on interpolation-based

polygon rasterization hardware to compute discrete approximation of 2D and 3D

Voronoi diagram. The necessary computation of Voronoi diagram has been reduced

to finding a 3D polygonal mesh approximation to the distance function of a Voronoi

site over a planar 2D rectangular grid of point samples (the space was uniformly sam-

pled by points), where the distance function for a site gives, for any point, the distance

to that site. As reported by Rong and Tan (2007), they worked on a jump flooding al-

gorithm (JFA) for computing Voronoi Diagram in discrete 2D space. However, because

of jumping behavior, it cannot be used when the connectivity of the neighbor nodes

is needed in the computation. Rong et al. (2011) reviewed the literature of parallel

Voronoi computation and CVT and implemented different methods in 2D by applying

CUDA and tried to compare their speed. A popular method for constructing Voronoi

diagrams is the sweep line algorithm (Fortune, 1987), but in spite of its simplicity and

popularity, there is no effective technique to parallelize it. In a recent paper, Xin et al.
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(2013) aimed to tackle this challenge by proposing a new algorithm, called untrans-

formed sweepcircle, for computing a 2D Voronoi diagram. They showed that the new

technique is more flexible and general than sweep line algorithm due to its parallel na-

ture. This algorithm sweeps the circle by increasing its radius across the plane. At any

time during the sweeping process, each site inside the sweep circle defines an ellipse

composed of points equidistant from that point and from the sweep circle. The union

of all ellipses forms the Voronoi diagram.

In contrast to the reports found in the literature, our algorithm presented in this

work is able to work in non-convex environments. Furthermore, other approaches

cannot be applied in our graph based representation because of the need of connec-

tivity. Later, we will show how our proposed method merges graph searching and VD

computation.



Chapter 4

Robot safe deployment

4.1 Introduction

As mentioned before, safety can be an important property in multi-robot deploy-

ment. This chapter further extends the works of Pimenta et al. (2008) and Bhat-

tacharya et al. (2013c) to include this property in the problem. This is done by mod-

eling the safe deployment as a constrained optimization problem. In this case, the

robots are enforced to move along the environmental GVD as this is a roadmap com-

monly used to allow safe motion in path planning literature. Next section presents the

proposed safe deployment modeling.

4.2 Safe Deployment

In this section we propose the modeling of the safe deployment problem by means

of an optimization problem. Consider the bounded free configuration space Qf ree ⊂

R
2. Let P = {p1, . . . ,pM} be the configuration of M robots with indexes R = {r1, · · · ,rM},

where pi ⊂ Qf ree. The problem to be solved is the one of finding distributed robotic

actions, in the sense that only robots in the neighborhood of robot i will be taken into

account, which leads the system to a local solution of the minimization problem given
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by:

min
p
H(P ,GGVD) (4.1)

s.t.
yi1(pi) ≤ 0 , . . . ,yim(pi) ≤ 0

h(pi) = 0.

where, yim(pi) and h(pi) indicate to: the inequality constraint (for collision avoidance);

and quality constrain (to keep robot moving on the GVD) respectively. The next sub-

sections will explain the meaning of the terms used in the defined problem and from

this explanation it should be clear how safety is then incorporated in the locational

optimization framework.

4.2.1 New Metric

The Geodesic distance is a metric which is more realistic than Euclidean distance

in non-convex environments, as explained in Subsection 2.4.1. This distance is used in

the deployment functional presented by Pimenta et al. (2008) as the general function

d, as defined in Chapter 2. In this case, the induced Voronoi Tessellation is the so-

called geodesic Voronoi Tessellation. Now, we propose a further extension on this

metric which will be called Geodesic Distance Based on GVD. This distance function

corresponds to the length of the shortest path from two points when using a GVD as a

roadmap. In Fig. 4.1, this shortest path between two points in Qf ree is shown.

In general, we can divide this path into three parts: a path from the initial point

to GVD (P ath Init_T o_GVD), a path from a point on GVD to another point on GVD

(P ath GVD_T o_GVD), and a path from GVD to the goal point (P ath GVD_T o_Goal). The

Geodesic Distance Based on GVD is then defined as:

d(pi ,pj) = W1. ||pi −Πi(GVD)||+W2. g(Πi(GVD),Πj(GVD)) (4.2)

+ W1. ||pj −Πj(GVD)|| ,



4.2 Safe Deployment 35

q3 

𝒬𝒪𝑖 

𝒑𝑖 

𝒑𝑗 

𝒙𝑖  

𝒙𝑗  

𝐺𝑉𝐷 

Figure 4.1: Blue dashed line is the portions of path: P ath Init_T o_GVD and
P ath GVD_T o_Goal . Green dash line belongs to GVD, P ath GVD_T o_GVD .

where g(xi ,xj) gives the shortest distance between two points xi and xj on the GVD, if

the motion is constrained to remain on the GVD, Πi(GVD) represents the projection

of the point pi onto the GVD which corresponds to the closest point on the GVD to pi ,

and W1 and W2 are the weights of each part of the path. For example, by assigning

a large value to W1 the cost of P ath Init_T o_GVD or P ath GVD_T o_Goal can be increased.

These weights help to adjust the cost of two portions of the path so that it is worth first

moving to the GVD as soon as possible and perform most of the motion traversing it.

Fig. 4.2 shows the difference between geodesic distance and our new metric. The cost

between source point pi and points on/close to GVD is lower than the cost of path to

other points.

As safety regarding the existing obstacles is related to the distance the robot keeps

from them and the GVD provides a roadmap which keeps equidistance from the clos-

est obstacles, we can say that this metric can introduce safety in the deployment so-

lution. In the minimization problem defined in Eq. (4.1) the cost function is defined

according to the new metric, d:

H(P ,GGVD) =
M∑
i=1

∫
GGVDi

d(q,pi)
2φ(q)dq , (4.3)

where GGVD will be defined as the Voronoi tessellation induced by the new metric
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and W1 >> W2. For the sake of clarity, Fig. 4.3 contains the result of computing
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(a) Proposed geodesic distance based
on GVD. pi is the origin where all
paths must start from it. Closest re-
gion to the origin showed by blue
color.
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(b) Geodesic distance. The wavefront
from the origin is shown by different
color.

Figure 4.2: Difference between geodesic and new metric.

two different Voronoi tessellations (based on new metric and geodesic distance) on the

same input map with five robots at the same positions.

Now, we can also describe the equality constraint h(pi) = 0 in Eq. (4.1). This

function is defined as the difference between the distance functions d(pi ,QOi) and

d(pi ,QOj) in which QOi and QOj are the closest obstacles to robot i. Thus, this means

the robots must be deployed along the GVD.

4.2.2 Collision Avoidance Between Robots

Since the focus of this part of the work is on safety, besides the static obstacles

we should also take into account the possible collisions between robots. A practical

problem of the unconstrained minimization executed by the pure gradient-descent

law by Cortes et al. (2004) is that actual robots are not point-robots. Thus, we propose

to use here the same strategy presented by Pimenta et al. (2008). Basically, in this work

the results for point robots are extended to robots that can be modeled as circular disks,
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(a) GGVD tessellation based on new
metric (Geodesic Distance Based on
GVD).
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(b) Voronoi tessellation based on
geodesic distance.

Figure 4.3: Difference between geodesic and new metric Voronoi tessellation. Five
robots are placed on arbitrary places.

each one with radius ai = aj , ∀i,j. In the following lines we will revisit the concepts

defined by Pimenta et al. (2008). Consider the ordinary Voronoi diagram induced

by the Euclidean distance considering the robot positions as sites. Let FVi be the free

Voronoi region defined by the set of points:

FVi = {q ∈ Vi | ‖q−q∂Vi‖ ≥ ai ,∀q∂Vi } , (4.4)

where ‖ · ‖ is the Euclidean norm and q∂Vi is a point at the boundary of the ordinary

Voronoi region induced by the Euclidean metric, ∂Vi . In this case, the boundaries of

the free Voronoi regions, ∂FVi , are hyperplanes parallel to the hyperplanes that define

the boundaries of Vi , located at a distance ai from ∂Vi . These hyperplanes (yik = 0)

will define the linear constraints, used in the problem in Eq. (4.1). It should be clear

that if all the robots have the same value of radius then safety is guaranteed as long as

they remain inside their own free Voronoi region, i.e., yik ≤ 0. In Fig. 4.4, free Voronoi

region FVi , where inequality constraint is satisfied, is highlighted. Robot i also satisfies

the equality constraint by lying on the GVD.
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Figure 4.4: Highlighted region (FVi ) satisfies inequality constraint yi(pi) ≤ 0, moreover
in this region blue bold line satisfies equality constraint h(pi) = 0.

4.3 Proposed Solution

In order to solve the safe deployment problem in an efficient manner we first

present a discrete approximation of the continuous setup shown in the last section

and then propose an algorithm to solve the discrete problem. The discrete setup and

the proposed algorithm builds upon the work by Bhattacharya et al. (2013c), which

presents a modified Dijkstra algorithm able to compute simultaneously, at each iter-

ation, the geodesic Voronoi diagram and the robot next actions in the case of deploy-

ment on Riemannian manifolds 1 with boundaries.

4.3.1 Discrete Approximation

Consider the uniform square tiling of the 2-dimensional Euclidean configuration

space. The graph G = {V ,E ,C} is induced from the uniform square tiling of the con-

figuration space by considering an 8-connectivity neighborhood. Fig. 4.5 illustrates a

graph obtained from an uniform square tiling of the free configuration space. The set

of vertices (nodes) is given by V , the set of edges by E ⊆ V × V , and a cost function is

denoted by C : V → R
+. It is important to mention that a node of the graph is placed

in grid cells located inside Qf ree. Moreover, the cost of each edge is computed based

1A Riemannian manifold is a smooth manifold equipped with a Riemannian metric.
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Figure 4.5: Discretization and graph representation.

on the defined new metric (Eq. (4.6)) as will be clarified later. We will also use the no-

tation pi to denote the node that contains the position of robot i, pi , and the operator

P(s) to return the position of the center of the grid cell s. Therefore, P(pi) returns the

center of the cell that contains robot i. Furthermore, we will use NG(pi) as the set of

graph neighbor nodes: NG(pi) = {q ∈ V
∣∣∣ [pi ,q] ∈ E}. Given a discrete grid based map,

different techniques for computing the GVD have been proposed such as the Brushfire

algorithm (Choset et al., 2005). In this work, we have considered a different approach

which requires the input map be given as an image. The GVD is then computed by ap-

plying a skeleton operator (Santiago et al., 2011). One of the main advantages of this

method is the high precision of the GVD. We compute the GVD before discretizing the

environment into cells, allowing the GVD to be independent from the discretization

resolution. The GVD is embedded in our graph by labeling the set of grid cells that

contain a piece of the GVD as the approximate GVD, VGVD. Now, we can define the

edge cost function:

C(i,j) =


W2 · c(i,j), if i , j ∈ VGVD

W1 · c(i,j), otherwise ,
(4.5)

where c(i,j) is given by the Euclidean distance between the centers of the cells i and j.

Since it is our objective to deploy and also move the robots along the GVD we will use

W1 >>W2. For instance, we will considerW1 = c andW2 = 1, where c is a fixed large
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number. See an example in Fig. 4.6, where c = 1000.
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Figure 4.6: New Graph representation with 8-connectivity. The nodes g, h, and i are
in the set VGVD.

The shortest path between two vertices s and q corresponds to the sequence of

nodes (consequently edges), {s,v1,v2, . . . ,vm,p}, connecting this pair such that the sum

of the edge costs is minimum. We will define this minimum cost sum as d∗(P(s),P(q)):

d∗(P(s),P(q)) = C(s,v1) + C(v1,v2) + . . .+ C(vm,q), (4.6)

This allows us to define the discrete version of the deployment functional:

H∗ =
M∑
i=1

∑
q∈GGVD∗i

d∗(P(q),P(pi))
2φ(P(q))w̄ , (4.7)

where GGVD∗i corresponds to the set of grid cells so that d∗(P(q),P(pi)) is less than

d∗(P(q),P(pj)), ∀j , i, and w̄ is a constant related to the integral element of area. φ(P(q))

indicates the value of density function on the specific point q (projection of q on grid

map). It should be noticed that we assume all the robots have access to this information

initially. Assuming that the robots are located at the center of the grid cells, i.e. P(pi) =

pi , we can compute the gradient of H∗:

∂H∗

∂pi
=

∑
q∈GGVD∗i

2zpi ,qd
∗(P(q),P(pi))φ(P(q))w̄ , (4.8)

where zpi ,q is the unit vector with direction given by the first edge of the shortest path

between pi and q, i.e. the direction of P(pi) − P(v1), and magnitude given by W2 if
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pi , v1 ∈ VGVD orW1 otherwise. Based on last equation we propose a gradient descent

approach in the next subsection.

Algorithm 2: Distributed main algorithm running in robot i.
Input: G,VGVD,φ,pi
//G is the graph, VGVD is the approximate generalized Voronoi diagram, φ is
the density function, pi ∈ V is robot i initial location (graph node).
Output: pi , o
//pi is robot i final location and o : V → {1,2, . . . ,n} is the discrete tessellation map
GGVD∗ as computed by robot i.

1 while (Termination criteria is not met) do
2 Broadcast position pi //Robot i sends its position to other robots.

{pj} ← Receive_P osition_and_Neighborhood() //Receive locational
information of neighbor robots, Ri ⊆ R, j ∈ Ri

3 RiVGVD ← {pj} ∩ VGVD // Set of neighbor robots that are already on the
VGVD.

4 if pi < VGVD then //check if the robot is not on the VGVD.
Set the current direction of motion as the one towards the closest cell in
VGVD which is not occupied by another robot)

else
Call Modif ied_Dijkstra(G,VGVD,φ,pi ,RiVGVD) //Compute both the next
action (cell) p′i and the GGVD∗ as seen by robot i.
Set the current direction of motion to reach p′i

5 if (There is no active inequality constraint) OR (There is an active inequality
constraint AND current direction of motion is not obstructed by another robot
then //collision avoidance constraint.

6 Move according to the current direction of motion
else

7 Stop

4.3.2 Distributed Algorithm

In the last subsection we presented a discrete approximation (Eq. (4.7)) of the de-

ployment functional defined in Eq. (4.3). In order to minimize this discrete version

of the functional we propose to use the distributed gradient in Eq. (4.8) to determine

the next action of a given robot. The gradient is distributed in the sense that only the

information provided by neighbor robots is necessary.

The problem defined in Eq. (4.1) has some constraints, which means that our so-
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lution should also take these constraints into account to define the next action. The

collision avoidance inequalities are implemented by first verifying if any of these con-

straints are active, i.e., yik = 0 for some k. If this is the case, it means there are at least

two robots in the imminence of a collision, thus the involved robots will be allowed to

move only if the desired direction of motion is orthogonal or has a negative projection

onto the segment joining the two robot centers.
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GVD path

Figure 4.7: Robot is placed in the center of blue cell (m), yellow squares belong to
VGVD, thus the set {k,l,n} corresponds to the neighbors of the robot and also part of
the VGVD.

In Algorithm 2, we assume that robots have communication with their neighbor

robots in order to send and receive the locational information. Since our technique

is based on a discretized grid graph representation, neighbor robots (R ⊆ R) can be

defined by:

Ri = {j ∈ R | ∃[xy] ∈ E ,x ∈ Vi ,y ∈ Vj ,i , j}

The equality constraint which enforces the robots to be deployed along the GVD

is imposed in our solution by means of two steps. As can be seen in Algorithm 2, if a

robot is not in a cell that is part of the VGVD the next action for this robot is to move

towards the closest cell in VGVD which is not occupied by any other robot at that time.

This can be considered as the first step of the proposed approach. The second step is

activated when the robot enters a cell which is part of the VGVD. Now, the next action

of this robot is a motion along a straight line from the current grid cell to a neighbor

cell which is also part of the VGVD.
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The next cell is computed based on the gradient descent direction given by the neg-

ative of the expression in Eq. (4.8). In fact, we determine the next cell as the neighbor

one (according to the 8-connectivity) which is also part of the VGVD so that the pro-

jection between the computed gradient descent direction and the direction determined

by the segment joining the center of this neighbor cell and the center of the current cell

is maximized (See Fig. 4.7).

As proposed by Bhattacharya et al. (2013c), we present Algorithm 3, that computes

the gradient descent direction and the Voronoi tessellation, GGVD∗, simultaneously

in every time-step by means of a wavefront propagation procedure similarly to the

process in Dijkstra’s algorithm (Dijkstra, 1959). The wavefront in a given iteration

represents the set of points equidistant to the start node also called source. In our case

we consider wavefronts emanating from multiple sources (given by the locations of the

robots). (See Fig. 4.8(a)) As the wavefronts propagate two operations are executed: (i)

graph vertices in the wavefronts are associated to robots (sources) at shortest distance

(according to the proposed metric) giving rise to the Voronoi regions; and (ii) terms

of the summation in Eq. (4.8) associated to vertices in the wavefronts are added to

a variable responsible to store the gradient descent direction. The places where the

wavefronts collide determine the Voronoi boundaries. Given the asynchronous nature

of the distributed implementation different robots might be in different steps at a given

moment. This is not an issue since it can be easily accommodated in our approach.
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Algorithm 3: Modified Dijkstra

Input: G,VGVD,φ,pi ,RiVGVD //G is the graph, VGVD is the approximate
generalized Voronoi diagram, φ is the density function, pi ∈ V is the
current location of robot i (graph node), and RiVGVD is the locations of
neighbor robots that lie on the VGVD.

Output: p′i , o // p′i is the next cell for robot i and o : VG→ {1,2, . . . ,n} is the
discrete tessellation map GGVD∗ as computed by robot i.

1 Initiate d∗: d∗(v)←∞, for all v ∈ V // New metric distance.
2 Initiate o: o(v)←−1, ∀v ∈ V // Voronoi tessellation.
3 Initiate η: η(v)←∅, ∀v ∈ V // robot graph vertex neighbor. η : V → V
4 Ii ← 0 // The gradient descent of the discrete functional.
5 foreach i ∈ pi ∪RiVGVD do
6 d∗(pi)← 0
7 o(pi)← i
8 foreach q ∈ NG(pi) do // For each graph vertex neighbor of pi
9 η(q)← q

10 Q←V // Set of unvisited nodes.
11 while (Q , ∅) do
12 q← argmin

q′∈Q
d∗(q′) // Maintained by a heap data-structure.

13 Q←Q \ q // Remove q from Q
14 k← o(q)
15 s← η(q) // The direction of one component of the gradient related to q.
16 if (s != ∅) AND (k == pi) then // Equivalently, q is not a vertex occupied by a

robot and q ∈ GGVD∗i .
17 Ii ← Ii +φ(q)× d∗(q) · (P(s)−P(pi))

18 foreach w ∈ NG(q) do // For each graph node neighbor of q
19 d′← d∗(q) + C(q,w) //relaxation.
20 if d′ < d∗(w) then // If the new path to w from q is shorter than
21 d∗(w)← d′ // the previous value (d∗(w)),
22 o(w)← k // update the cost value and the owner to the new one.
23 if (s != ∅) then
24 η(w) = s

25 p′i ← argmax
u∈NG(pi )∩VGVD

(P(u)−P(pi ))
‖P(u)−P(pi )‖

· Ii // Choose next action as the cell in VGVD best

aligned with the gradient descent direction.
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(a) Example of discrete Voronoi tes-
sellation with 5 robots.
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(b) Robots r2, r4 and r5 are in step 1
and robots r1 and r3 are in step 2.

Figure 4.8: Discrete Voronoi tessellation and robots movement in safe deployment
strategy.

Reaching the VGVD is the only objective of the robots which are out of the VGVD.

Thus, these robots execute step 1 until the objective is reached while the others will

execute step 2 without considering the ones in step 1 in the computation of their next

actions. The actions in steps 1 and 2 will be executed as long as the desired motion

does not conflict with the allowed motion directions, due to the active inequality con-

straints. A snapshot of robots movements in a given time is presented in Fig. 4.8(b).

The ideas previously discussed are organized in the form of the Algorithms 2 and 3.

We consider these are the algorithms running in every robot individually.

Termination :

The commands in the while loop of Algorithm 2 are executed until termination cri-

teria are met. We consider two criteria: (i) maximum number of iterations is reached;

and (ii) a measure of convergence is less than a pre-specified threshold. This measure

of convergence could be, for example, the variation in the positions of robots over the

most recent m time-steps.
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Complexity :

It is clear that the bottleneck of our iterative algorithm is the function described

in Algorithm 3. Since this function runs exactly in the same format of the Dijkstra

algorithm, the graph vertices have a constant degree, and a heap is maintained as a

priority queue to store the unvisited nodes, the running time is given by O(|V | log(|V |))

(where |V | is the number of vertices in the graph).

4.4 Results

In this section we illustrate our approach by simulating the deployment of robots

in two different environments. Videos are available at:

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/.

4.4.1 Simple Map

A simple room with some obstacles is the environment of our first experiment. The

size of the input map is 3.79× 2.91 meters, represented by an image with 728 × 582

pixels. By using a discretization resolution equal to 10 pixels, we have a grid map with

72 × 58 cells. One criterion to choose discretization rate is the size of the robot (which

is 10 pixel here). The map and the density function are shown in Fig. 4.9. In this

experiment five robots are considered. Fig. 4.10 shows the system evolution.

By observing robots’ movements during deployment, it is evident at the beginning

that two robots have a large Voronoi region. After some iterations the decrease/in-

crease of size of large/small Voronoi regions contribute to minimize the cost function.

In iteration 65 the system converges (see Fig. 4.11).

In order to show how the density function affects the final deployment we repeat

the simulation with a different density function in Fig. 4.12(a). The result of this

simulation with the same parameters is shown in Fig. 4.12.

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/


4.4 Results 47

(a) 3D view, holes are obstacles. (b) Top view.

Figure 4.9: Input map and density function. Color scheme denotes the density of
regions, in which dark red is the center of the density function.
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(c) Iteration 40. (d) Iteration 65.

Figure 4.10: Snapshots when running the proposed algorithm for five robots.
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Figure 4.11: H∗ function for the first example.
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(a) Density function. (b) Final deployment. (c) Deployment function.

Figure 4.12: Simulation result with a different density function.

4.4.2 Office-like Environment

In the second experiment, the method was tested on a more complicated map with

size 40.0×60.0 meters and grid graph size of 80×120 (Fig. 4.13). Initially, some of the

robots are on the GVD and others are not. We set the center of the density function

at the center of the map according to the top view shown in Fig. 4.14. Because of the

large input map, we consider three groups of two robots. They start their movement

from three different parts of the map. Fig. 4.15(a) outlines the initial positions in

which robots 2, 4, 5 and 6 are on the GVD, whereas robots 1 and 3 are not. Fig. 4.15(f)

shows the final positions. Fig. 4.16 shows robot trajectories and the evolution of the

deployment functional, which is minimized as desired.

Figure 4.13: Office-like map with GVD (green lines) in free configuration space.
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(b) 3D representation

Figure 4.14: Density function has higher value at the center of the map.
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(b) Iteration 10.
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(c) Iteration 20.
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(d) Iteration 30.
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(e) Iteration 40.
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(f) Iteration 50.

Figure 4.15: Snapshots of running the algorithm by 6 robots in 3 groups.
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(a) H∗ function converged after 50 iterations. (b) Robot trajectories in the office-like environ-
ment.

Figure 4.16: Result of running the algorithm on office-like map.

4.5 Conclusion

We addressed the problem of deriving optimal distributed control laws to deploy

robotic networks in complex environments safely. The deployment problem is trans-

lated to a constrained optimization problem so that a deployment functional defined

with the use of a new distance function must be minimized while satisfying constraints

of two types: (i) inequality constraints for inter-robot collision avoidance, and (ii) an

equality constraint to enforce the robots to be deployed at the generalized Voronoi dia-

gram of the environment for maximizing distance from static obstacles. It is also inter-

esting to mention that the proposed framework can also be used with other roadmaps

different from the GVD. We presented a distributed algorithm which allows for effi-

cient computation of a discrete solution for the discrete approximation of the prob-

lem. Distributed in this case means that each robot needs only the information pro-

vided by its neighbors. It is known that a discrete approximation implies in certain

deviation from the real solution. However, as long as a reasonable discretization res-

olution is used, the loss of accuracy is compensated by the gain in computational ef-

ficiency. The proposed algorithm is based on wavefront propagation as in the Dijk-

stra Algorithm. The running time complexity of the proposed algorithm is given by
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O(|V | log(|V |)), where |V | is the number of discretization cells. The main limitation of

the proposed strategy stems from the fact that neighbor robots are the ones that share

Voronoi boundaries in the tessellation, independently of distance. If the necessary in-

formation between neighbors is exchanged by direct communication between robots,

performance might degrade if such robots are too far one from another. Moreover, we

did not prove the convergence of the proposed safe deployment, which is addressed in

the next chapter.
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Chapter 5

New Multi-Robot Deployment

Algorithm

5.1 Introduction

As we mentioned before, one of the challenges in multi-robot deployment is to

prove convergence of the deployment algorithm. In this chapter, we are going to show

a new algorithm which is possible to prove its convergence based on the locational op-

timization framework (defined in Section 2.4). For the sake of simplicity we are just

going to show the algorithm in a scenario in which we are not considering the safety

as in the last chapter. However, it is easy also to use the result of the last chapter as

long as we include the same constraints used in that chapter also in this problem. To

guarantee the convergence, the new technique is defined in a continuous setup, even

though the representation of the environment is approximated in a discrete form. In

our continuous setup, robots follow the gradient vector of deployment function which

leads them to converge to a local minimum. Besides convergence proof, a new parallel

implementation of the algorithm is also presented which is much faster than previ-

ous ones. Further, actual robot experiments shows the applicability of the proposed

algorithm in real applications.

5.2 Proposed Method

Similar to Chapter 4, in order to solve the deployment problem in an efficient man-

ner we first present a discrete approximation of the environment, and then present the
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new algorithm. The discrete setup and the proposed algorithm is built upon the work

of Bhattacharya et al. (2013c) which presents a modified Dijkstra algorithm. This algo-

rithm is able to compute the geodesic Voronoi diagram and the next robot action at the

same time in each iteration. A key limitation of some of the algorithms in the literature

is the lack of convergence proof. Thus, we aim to propose an algorithm with guaran-

teed convergence. In this chapter, we show our algorithm, its proof, and a discrete

parallel implementation on CUDA.

5.2.1 Discrete Approximation and Graph Representation

Although same notations of Chapter 4 are considered in this part, for the conve-

nience of the reader, we have collected in Table 5.1 some of the key symbols.

Symbol Notation
pi indicates the dynamic node (location of robot i) in the graph pi ∈ G
pi shows the position vector of node pi in the environment, pi ∈Ω

P(s) gives the exact position of node s ∈ G in the environment (center of cell)
NG(s) an operator that returns graph neighbor nodes of node s

Table 5.1: Notations that will be used in this chapter.

In a bounded environment Ω ⊆R
2, consider again the uniform square tiling of the

2-dimensional configuration space explained in Subsection 4.3.1. We have M robots

with index set R = {r1, · · · ,rM}, and position P = {p1, · · · ,pM}, where pi ∈Ω indicates the

position of ri . The graph G = {V ,E ,C} is built by considering the uniform square tiling

of the configuration space with 8-connectivity neighborhood. However, different from

similar methods in the literature, the graph G consists of two node sets: static node Vs;

and dynamic nodes Vd , thus V = Vs ∪Vd . Similarly, the set of edge and cost are defined

as: E = Es ∪Ed , and C = Cs ∪Cd . These dynamic nodes are associated to the robots, such

that by moving the robots over the environment, the sets Vd , Ed and Cd of the graph

must be updated. All the other nodes (Vs) that represent the environment are static. An

example of this new graph representation is shown in Fig. 5.1 (a), where the position

and graph neighbor nodes of a robot is depicted in Fig. 5.1 (b). It should be mentioned

that in the discretization process cells that are partially occupied by obstacles are not



5.2 Proposed Method 55

considered as free cells.

𝑞

𝑝𝑖
𝑠𝑖

(a) Discretization and grid graph representation.
The path between robot position pi and q is high-
lighted.

𝑝𝑖
𝑠𝑖

(b) Robot with its
9 graph neighbor
nodes.

Figure 5.1: Discrete approximation of the environment.

In general, as we mentioned graph G contains a set of vertices (nodes) given by V

(that consists of static and dynamic nodes), the set of edges by E ⊆ V × V , and weights

of the edges C : V → R
+. The weight of each edge is assigned based on the Euclidean

distance between two neighbor nodes.

While in this chapter the notation pi ∈ Vd will be used to denote the dynamic node,

which is associated to robot i, the real position of robot i in the environment is posed

by pi . The operator P(si) is used to return the position of the center of a grid cell,

where si denotes to the corresponding node in that cell. As an example in Fig 5.1, a

dynamic node pi has the node si , corresponding to the center of the cell where robot

i is located, and also 8 other static neighbor nodes of si as its own neighbor nodes.

The shortest path between robot dynamic node pi and another node of the graph, q, is

defined based on a sequence of nodes (consequently edges), connecting this pair such

that the sum of the edge costs is minimized (Fig. 5.1(a)). In this figure, the minimum
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cost (geodesic distance) is given by d(pi ,q,G) :

d(pi ,q,G) = C(pi ,si) + C(si ,v1) + . . .+ C(vm,q), (5.1)

where v1,vm ∈ Vs, are the static nodes in the graph.

Figure 5.2: In free configuration space, red point is the robot, its neighbors are directed
by red vectors. Blue dash line is the correction of geodesic distance. Checker board
pattern illustrates cells with obstacle.

In our new technique due to having a dynamic node which does not follow grid

based structure, a modification step is needed when the robot is very close to an obsta-

cle. Thus the edges of the dynamic node might pass through the obstacle. This situa-

tion is presented in Fig. 5.2, where the blue dash line is the modification of the invalid

edge. Since in our graph the information of nodes and weights of edges is stored, in

this modification we change the weight of the corresponding edge by considering a

detour around the obstacle.

Before presenting our cost function, we make an assumption about the input envi-

ronment:

Assumption A. After discretization, there should not be two diagonal neighbor cells

included in an obstacle, while the other two common adjacent neighbors are free. This

can be achieved by not having very thin obstacles (like a line), or the size of the robots

must be larger than a cell. Fig. 5.3 shows some of the valid and invalid situations.

In Fig. 5.3 (left-up) clearly the robot cannot move through the obstacle (from cell

with star to the cell with plus sign). Thus, this assumption facilitates the avoidance of
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Figure 5.3: First row shows invalid obstacle shape and second row shows valid situa-
tion. Checker board pattern illustrates cells with obstacle.

considering the star cell as a neighbor of plus sign cell during graph construction.

5.2.2 Deployment Function

The deployment functional considered in this chapter is given by:

H(P ,V ) =
M∑
i=1

∑
q∈Vi

d(q,pi ,G)2φ(q), (5.2)

where q is a node in robot i’s Voronoi region Vi , φ(q) denotes the density of point q

(explained in Subsection 2.4.1), and d(q,pi ,G) is a function that indicates the shortest

distance between q and pi in G (Eq. (5.1)). It should be noticed that according to

our new dynamic graph representation and the continuous distance function d(), the

deployment function (Eq. (5.2)) is a continuous function, for a fixed edge set. In this

case for robot i we have:

Hi(pi ,Vi) =
∑
q∈Vi

d(q,pi ,G)2φ(q). (5.3)

Now, we can compute the gradient of Hi as following:

∂H(P ,V )
∂pi

=
∑
q∈Vi

2zpi ,qd(q,pi ,G)φ(q) , (5.4)
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where zpi ,q is the unit vector with direction given by the first edge of the shortest path

between pi and q, i.e. the direction of pi −P(v1), where v1 ∈ Vs is a static node.

As we mentioned, Vi denotes the Voronoi region corresponding to robot i. To com-

pute the Voronoi region the same technique of Chapter 4 is applied, so that Dijkstra

algorithm is executed on the graph G to find the shortest path from the robots posi-

tions to all other nodes in the graph. But differently in the new technique the Voronoi

region might change when the robot moves even inside a single cell. Fig. 5.4 contains

an example of computing Voronoi regions for two robots before and after their move-

ment. In this figure, the Voronoi regions achieved by our technique is different, and

also a better approximation of continuous Voronoi tessellation (defined in Section 2.3).

In other words, the technique based on discrete distance function of static nodes (sim-

ilar to Chapter 5.4) will yield equal Voronoi regions for both cases in Fig. 5.4, although

robots’ positions have changed.

𝑝𝑖

𝑝𝑗

(a) Voronoi region of pi consists of 3
cells.

𝑝𝑖

𝑝𝑗

(b) Robot i has 5 cells as its Voronoi
region.

Figure 5.4: An example of computing Voronoi region in our new dynamic graph rep-
resentation, when robot moves in the same cell.

In fact, the main objective of this chapter is to find robots configurations which

minimize the deployment function in Eq. (5.2). Next section shows robots node neigh-

bors in different conditions.

5.2.3 Robot Node Neighbors

As we explained in Subsection 5.2.1, as robots (or dynamic nodes Vd) move over

the environment, their neighbor nodes might change. Thus, we define a function
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GetCell(pi) which returns the node corresponding to the center of the current cell

(si), where the robot lies inside. Also as an operator, NG(si) is responsible to maintain

the neighbor nodes of si . In Fig. 5.5, an example illustrates the cells si corresponding

to robot pi (GetCell(pi) = si), and its 8 neighbor nodes, NG(si) =N si
G , where N si

G is the

variable containing neighbor nodes of si .

Type equation here.

𝑠𝑖
𝑝𝑖

Figure 5.5: The node si indicates the cell where robot i is placed. It has 8 neighbor
nodes obtained byNG(si) =N si

G .

𝑝𝑖

𝑠𝑖

(a) Current neighbor nodes (green
dash edges) is switched to the candi-
date nodes (blue dash edges) for the
robot i located on cell si .

𝑝𝑖

𝑠𝑖

(b) Robot keeps connecting to the
current neighbor nodes.

Figure 5.6: Two different neighbor nodes set in the proposed technique.

Obviously, the neighbor nodes of the robots might change when they enter into new

cells. In our proposed algorithm robots can have two different set of neighbor nodes

when they move: current (NGcurr ) or candidate (NGcand ) set. These two situations are

depicted in Fig. 5.6, where in (a) robot i (with its dynamic node pi) enters into a new

cell (si) and switches its neighbor nodes from current (green edges) to candidate (blue

edges). In other words, after the switch the current neighbor nodes will change, and its



60 5 New Multi-Robot Deployment Algorithm

new neighborhood will be given by the one that were candidate before the switch. Thus

in this case, the current neighbors of robot in Fig. 5.6 (a) will beNGcurr =NG(si)∪ si . In

contrast, as the second case in Fig. 5.6 (b) robot i does not switch its neighbor nodes

and keeps the current neighbors even after entering into cell si . Robot i decides to

switch or keeps its current neighbor set, if this switching makes the value of the cost

function Hi decreases. This condition is due to the main intention of the proposed

approach which is to decrease the cost function, and is explained in the next section in

detail.

5.2.4 Distributed Algorithm

In comparison to the work of Bhattacharya et al. (2013c), in the proposed algo-

rithm, instead of using static nodes and approximating positions of the robots, we of-

fered a continuous movement by considering dynamic nodes. We also apply a gradient

descent approach–based on locational optimization framework introduced by Cortes

et al. (2004)–to move the robots in the direction of minimizing the cost function.

Since the system is distributed, robots do not know about the position of other

robots, except for their neighbor robots. In fact we assume that a robot has communica-

tion with its Voronoi neighbor robots, hence it can compute its Voronoi region based on

its neighbor robots locations (we will not discuss about the network architecture here).

Neighbor robots of robot i are defined as: Ri = {j ∈ R | ∃[xy] ∈ E ,x ∈ Vi ,y ∈ Vj ,i , j}

(Ri ⊆ R). Since the environment is discretized, the boundary between two Voronoi re-

gions are those cells (nodes) which are neighbors of the nodes of other Voronoi regions.

For the boundary nodes of two Voronoi regions Vi and Vj , if d(q,pi) = d(q,pj), these

nodes will be assigned to robot i with minimum index, in which ri = Min(ri ,rj). After

constructing the Voronoi region of robot i, Vi , gradient, and cost function of its current

position, the robot follows the direction of the gradient descent vector. At the same

time, it checks whether the value of cost function may decrease if the graph neighbor-

hood changes. Such that, if the candidate neighbor nodes yield a smaller cost, robot

exchanges the current neighbor nodes to the candidate one. This technique leads the

algorithm to always decrease the H function. This property will also be used to prove
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Algorithm 4: Main function in the new deployment algorithm for robot i
Input: G,φ,pi , // where G is the graph, φ is the density function, and pi is robot

current node position.
1 si ← GetCell(pi) // Return the node corresponding to the cell in which robot i is

inside
2 N pi

Gcurr ←NG(si)∪ si // Initial robot’s first 9 current neighbor nodes
3 while (T rue) do
4 ({pj},{N

pj
G })← Receive_P osition_Neighbor() ∀j ∈ Ri // Receive information

from neighbor robots (Ri)
5 G← Compute_graph(N pi

Gcurr ∪ {N
pj
G },pi ∪ {pj}) // Compute the graph G based

on location of neighbor robots and nodes

6 (∇Hi ,oi)←MSSP (G,pi ,{pj},N
pi
Gcurr ,{N

pj
G })// Compute gradient vector ∇Hi and

tessellation oi .
7 Hi ←

∑
q∈oi d(q,pi ,G)2φ(q) // Compute the cost function of the current

position
8 si ← GetCell(pi)
9 N pi

Gcand
←NG(si)∪ si // Update candidate neighbor nodes

10 G′← Compute_graph(N pi
Gcand

∪ {N
pj
G },pi ∪ {pj}) // Create graph G′

11 H∗i ←
∑
q∈oi d(q,pi ,G′)2φ(q) // Compute the cost function of the new graph

12 if (H∗i <Hi) then //Switching the neighbors
13 N pi

Gcurr ←N
pi
Gcand

14 G← Compute_graph(N pi
Gcurr ∪ {N

pj
G },pi ∪ {pj}) // Create graph G

15 (∇Hi ,oi)←MSSP (G,pi ,{pj},N
pi
Gcurr ,{N

pj
G })// Compute ∇Hi and oi based on

updated neighbor nodes.

16 ṗi ← k.f easible_projection(−∇Hi) // Find a feasible projection of gradient
vector

the convergence of our algorithm.

The algorithm that runs on robot i is shown in Algorithm 4. In general the whole

process in this algorithm can be divided in two main parts: computing the graph and

cost function H based on robot’s current neighbor nodes; and the same computation

for the candidate neighbor nodes. Before the loop in line 2, robot’s current neighbor

nodes (N pi
Gcurr ) is initialized. Later, after receiving the locational information of robot’s

neighbor robots, it computes the graph G and cost valueHi in lines 5 and 7. Lines 8 to

11 are for computing the graph G′ and cost H∗ for the candidate neighbor nodes. Be-

sides the difference of these two sets of computations based on the neighbor nodes, the
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same Voronoi tessellation is used for both. Multiple Source Shortest Path algorithm

(MSSP) is applied to compute both Voronoi tessellation (oi) and the gradient vector

(∇Hi) of ri . It is important to note that both outputs of the function MSSP () are com-

puted at the same single run of Dijkstra exploration on the graph; this is explained

in Algorithm 5. The function “Compute_Graph()” plays a vital role due to creation of

the graph based on the motion of the robot and its neighbors. In this way, it considers

edges and weights of the dynamic nodes based on its current position and neighbor

nodes in graph G.

−𝛻ℋ

Figure 5.7: Green point is the robot, its neighbors are directed by red vectors. Black
dash line is the half plane which defines the valid region for projection. Dark blue
vector shows the projected −∇H. Checker board pattern illustrates cells with obstacle.

To guarantee that robot motion always decreases the H function, we finally check

if H∗i is less than the last Hi (in line 12), and exchange the current neighbor nodes to

the candidate one if the condition is accomplished (line 13).

Before robot i moves based on the gradient vector, in line 15 the new Voronoi par-

tition and gradient vector is computed based on the updated neighbor nodes. Finally,

in line 16, the feasibility of the gradient vector are checked. If the computed gradi-

ent direction guides the robot to move into a cell which is occupied by an obstacle, a

modification in the direction must be imposed to avoid collision. We project the vec-

tor −∇H onto the closest valid vector which connects the robot to its graph neighbor

(See Fig. 5.7). It should be mentioned that this vector is called valid only if it has

non-negative projection onto −∇H. This constraint guarantees that the cost function

will not be increased. If non-point robots are considered then we just need to incorpo-
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rate also the same linear constraints we had in Chapter 4. When two robots are about

to collide we must consider only the motion directions which are orthogonal to the

two robots. As before, this should be a direction with non-negative projection onto

−∇H. If this is not possible the robot will stop. In general, we assume that function

“f easible_projection()” finds a valid direction to be followed, i.e., directions that avoid

collision and also decrease the cost function. Remember that variable pi always indi-

cates the corresponding dynamic node of robot i, which is located on exactly the real

position of robot pi . So it is always changed based on the robot movement. However

the velocity vector ṗi will be applied on the robot and makes the robot to move in the

direction of the gradient descent vector.

In order to implement MSSP, a technique similar to the one proposed by Bhat-

tacharya et al. (2013a) and applied in the previous section is used. In their implemen-

tation, the key idea was to make a basic modification to Dijkstra algorithm that enables

them to create a geodesic Voronoi tessellation. Furthermore, for speeding up a priority

queue is applied. The complete algorithm ofMSSP is shown in Algorithm 5. Next, we

present the convergence proof.

Proof of Convergence

At first, we show some lemmas and definitions.

Lemma 5.1. By considering the deployment function H from Eq. (5.2), we redefine H

on an arbitrary partition W which is not Voronoi tessellation (Subsection 2.3) as:

H(P ,W ) =
M∑
i=1

Hi(pi ,Wi), (5.5)

and for a component i we have:

Hi(pi ,Wi) =
∑
q∈Wi

d(pi ,q,G)φ(q).
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The following inequality is valid:

H(P ,V ) ≤H(P ,W ).

Proof. In order to prove this lemma, we refer to the Proposition 3.1 in (Du et al., 1999).

According to the definition ofH(P ,V ) in Eq. (5.2) andH(P ,W ) in Eq. (5.5), if we apply

our new distance function from Eq. (5.1) in the definition of Voronoi tessellation (Eq.

(2.5)), we can write:

d(pi ,q)φ(q) ≤ d(pj ,q)φ(q),

where q ∈ Vi (Vi is a Voronoi partition), and q ∈Wj is the same point, whereWj is a non

Voronoi partition, which leads us to have:

H(P ,V ) =
M∑
i=1

∑
q∈Vi

d(pi ,q)φ(q) ≤
M∑
i=1

∑
q∈Wi

d(pi ,q)φ(q),

And finally:

H(P ,V ) ≤H(P ,W ).

�

Definition 5.1. In the continuous multi-robot system described in this chapter, let

S(G,P ) be our state pair where G is the graph and P is:

P =



p1
x

p1
y
...

pMx

pMy


,

where pix is the x component of robot i position.
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Algorithm 5: MSSP ()

Input: G,pi ,{pj},N
pi
G ,{N

pj
G } // G is the updated graph, pi denotes the dynamic

node of robot i, and {pj} contains the node position of neighbor robots.

N pi
G ,{N

pj
G } are the corresponding graph neighbor nodes.

Output: ∇Hi and o // ∇Hi is the gradient vector, and o is the discrete Voronoi
tessellation.

1 Initiate C: C(v)←∞, for all v ∈ V // Geodesic distance map.
2 Initiate o: o(v)←−1, ∀v ∈ V // Tessellation.
3 Initiate η: η(v)←∅, ∀v ∈ V // robot graph neighbor nodes. η : V → V
4 ∇Hi ← 0 // The gradient vector of the discrete functional.
5 foreach k ∈ pi ∪ {pj} do
6 C(pk)← 0
7 o(pk)← k

8 foreach q ∈ N pk
G do // For each graph vertex neighbor of pk.

9 η(q)← q

10 Q←Vs // Set of unvisited static nodes.
11 while (Q , ∅) do
12 q← argmin

q′∈Q
C(q′) // Maintained by a heap data-structure.

13 Q←Q \ q // Remove q from Q
14 k← o(q)
15 s← η(q) // The direction of one component of the gradient related to q.
16 if (s != ∅) then // Equivalently, q is not a vertex occupied by a robot.
17 ∇Hi ←∇Hi +φ(q)×C(q) · (pi −P(s)) // pi is the position vector.

18 foreach w ∈ N q
G do // For each graph vertex neighbor of q

19 C′← C(q) + C(q,w) //relaxation.
20 if C′ < C(w) then
21 C(w)← C′

22 o(w)← k
23 if (s != ∅) then
24 η(w) = s
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Theorem 5.1. Given a multi-robot system as described in this section with robots run-

ning Algorithm 4, the state pair S (defined in Definition 5.1) will converge to a local

minimum of the cost function H (Eq. (5.2)).

Proof. According to Algorithm 4 the value ofH changes due to three reasons: i) motion

given by a gradient descent controller; ii) switch of the graph edges associated with the

dynamic nodes which represent the robots; iii) computation of a new Voronoi tessel-

lation. Thus, based on Lemma 5.1 and lines 12-15 of the algorithm we can state that

H is a decreasing function. Furthermore, H is lower bounded (H > 0) and piecewise

continuous, as for a fixed graph G (fixed edge set for the dynamic nodes) the function

is continuous, and it might have discontinuity when the graph edges switch.

As H(t) is decreasing and lower bounded, we can conclude that H converges to a

valueHmin as t→∞. SinceH is continuous in pi when G is fixed and G changes only if

the switch causes a decrease in the value ofH (H∗i ≤Hi in Algorithm 4), then there will

exist a finite time T so that G remains constant ∀t > T . If this was not true we would

conclude that H would not converge which would be a contradiction. Therefore, after

T , our algorithm behaves exactly as a traditional gradient descent algorithm which

allows us to conclude that the multi-robot system will converge to a local minimum of

H.

�

Computational Complexity

In Algorithm 4, the major burden of our computation is on MSSP () function. Sim-

ilar to the complexity of Dijkstra algorithm implemented on priority queue, the com-

plexity of our method is given by O(|V | log |V |). Furthermore, we have some additional

computation for computing Hi (and updating the graph), in which we can consider a

linear complexity orO(|V |). By considering these two parts we haveO(|V | log |V |)+O(|V |),

which can be considered as O(|V | log |V |), in general.

In order to improve the computational time of our method, we implement this it in

a parallel way on CUDA hardware. In the next section our proposed implementation

is explained.
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5.3 Discrete Implementation on GPU

Since the function MSSP() is the bottleneck of the proposed approach, we decided

to implement it in an efficient manner. This section explains how to implement it in a

GPU. The main objective of parallel implementation is to increase speed.

5.3.1 GPU Based Multi-Source Dijkstra

𝑆 = 𝑣4, 𝑣9 𝑆 = 𝑣4 𝑆 = 𝑣9

Thread pool Thread pool 

1   2   3  4   5   6   7   8   9 1   2   3  4   5   6   7   8   9 1   2   3  4   5   6   7   8   9

Figure 5.8: Left: thread pool of proposed method with 2 sources. Right: thread pool
of method proposed in Okuyama et al. (2012) with 2 sources.

In this work a modified version of the parallel Single Source Shortest Path (SSSP)

Dijkstra’s algorithm is proposed. The new parallel method is designed for Multi Source

(robot) Shortest Path (MSSP) problem in undirected graphs and is able to run on

CUDA. In general, this algorithm performs three important tasks: finding shortest

distance map from the sources to all points on the map, computing the control inte-

gral to obtain the gradient vector (Eq. (5.4)), and also label cells of the map to show

the corresponding Voronoi tessellation (oi) of each robot.

We have reviewed the literature of SSSP and APSP in Chapter 3, Section 3.2, and

have discussed why none of them can be used directly in our problem. Our modi-

fied algorithm is based on SSSP which was proposed firstly by Harish and Narayanan
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(2007). Differently, in our application, there are more than one source (robot), thus

the naive method can run SSSP algorithm M times, where M is the number of sources.

The main disadvantage of this method is the high complexity that is M ×O(N log(N ))

(N is number of nodes).

In comparison to this simple method, our proposed algorithm runs SSSP once with

the same complexity and memory space of the original parallel SSSP algorithm by Har-

ish and Narayanan (2007). In the recent work, a new implementation of APSP (All Pair

Shortest Path) by Okuyama et al. (2012), which is based on (Harish and Narayanan,

2007), on directed graph, is proposed. The major drawback of this approach is the

memory space and the number of threads, N · |V |, whereN is the number of SSSP prob-

lems that have to be solved. Therefore, their kernel cannot deal with larger graphs as

compared to the original kernel even though it has an advantage over the parallel im-

plemented Floyd-Warshall algorithm by Venkataraman and Mukhopadhyaya (2003).

The output of this algorithm is the distance to each node from nodes 1, · · · ,N . There-

fore, the size of output distance array will be N ×N . This makes a difference, in com-

parison to our application, because here a single distance map with size N is needed

to show which source has the minimum distance to discrete cells (nodes in graph).

Another straightforward solution to our problem can be the method of Okuyama et al.

(2012). However, instead of running N sources, we set M sources (robots). Also, after

running the algorithm we need one extra operation to merge all distance maps to-

gether to make a unique map, which is the desired output in our application. But it

still needs M · |V | threads and memory space. To overcome this problem, in our new

method, the size of memory and the number of threads which we need to compute

the distance map is the same as SSSP illustrated in the original work of Harish and

Narayanan (2007), |V | (See Fig. 5.8). In Fig. 5.8, nodes 4 and 9 are the sources. As

shown, the new method needs much less memory and threads than previous method.

The graph G = {V ,E ,C} is represented by means of a compact adjacency list which

is very useful in the parallel algorithm. In Fig. 5.9(a), we show a good example of a

simple graph with the corresponding structure. Each entry in the vertex array V shows

the starting index of its adjacency list in the edge array E.
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(a) A simple graph with its compact adjacency list. (b) The pattern of the
neighbors.

Figure 5.9: Compact adjacency list and the pattern.

Based on our grid graph representation, we modified this compact adjacency list in

a well structured way. The map is discretized into cells, thus for each node inside the

cell there are at most eight neighbor nodes. It is remarkable to mention that, to have a

uniform structure we consider 8 cells for all nodes ( even nodes with less than 8 neigh-

bors). We define a pattern which represents the order of neighbors when they convert

to the adjacency compact list (See Fig. 5.9(b)). Indeed, we redefined the structure to

be applicable in multi-source problem. It should be mentioned that, in the case of a

cell where the robot is placed in it, we will have 9 vertex neighbors for this dynamic

node (robot). However, our new parallel implementation gives an advantage of having

a fixed graph when running the algorithm. Hence, we always have 8 neighbors for

each node in the graph and adjacency list. In the next subsection we will show how

the new algorithm carries this benefit.

Fig. 5.10 shows an example related to our representation. Nodes 1,2 and 4 belong

to an obstacle, but due to the uniform array, those nodes are considered with weight

’-1’ on their connected edges to other nodes (3,5,6,7,8). In other words, the length of

the weight array will be 8 ×|V |, where V is the number of nodes or cells in the map.
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Figure 5.10: Customized compact adjacency list. The red edges have -1 as weights

Suppose there is a discretized map with N (rows × cols) cells and M robots. There-

fore, graph G = {V ,E ,C} has three components, V of size N , E being the edges between

nodes and C being the cost between nodes with the size of |E|. After constructing the

required arrays, in order to visit all nodes in our grid graph, Dijkstra algorithm and

wavefront technique are used by starting from robots’ initial positions. In the next

section we will show how the parallel algorithm is implemented.

5.3.2 Parallel MSSP algorithm

We use CUDA based Dijkstra Single Source Shortest Path (SSSP) algorithm, as the

basis of MSSP Algorithm 6 shows the pseudo-code. In comparison to Algorithm 5, in

the parallel version first we initialized the corresponding value of the node that robot

i is placed in its cells (lines 7-10). Also in lines 12 to 16 the mask array (Ma), Cost

array Co, tessellation map (oi) and the first vector of gradient (η) are set. In the loop

in line 17 to 20, kernel 1 and 2 refer to the functions that will return the gradient and

tessellation, and will be running in the device memory in a parallel way.
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Algorithm 6: MSSP_CUDA
Input: G,φ,pi ,{pj} // G is the updated graph, φ is density function, pi denotes

the position of robot i, and {pj} contains the position of neighbor robots.
Output: I and o.

1 Initiate Ma :Ma(v)← false, ∀v ∈ V // mask array
2 Initiate Co : Co(v)←∞, ∀v ∈ V , // Cost array
3 Initiate Uc :Uc(v)←∞, ∀v ∈ V , // Updating Cost array
4 Initiate o : o(v)←−1, ∀v ∈ V , // Owner of the nodes, equal to the corresponding

tessellation
5 Initiate η : η←−1, ∀v ∈ V , // The direction of the gradient vector
6 foreach pk ∈ pi ∪ {pj} do
7 sk← GetCell(pk) // GetCell() returns the graph node index where robot is

placed in it
8 Ma(sk)← true
9 Co(sk)← Cost(pk ,sk)// Returns Euclidean distance between two inputs

10 o(sk)← k
// The node belongs to the region of robot k

11 Ik← 0 // The control integral
12 foreach q ∈ NG(sk) do // For each neighbor of sk
13 Ma(q)← true
14 Co(q)← Cost(pk ,q)
15 o(q)← k
16 η(q)← q

17 while Ma , ∅ do //Until no more unexplored node remains
18 foreach ∀v ∈ V in parallel do
19 KERNEL1(G,Ma,Co,Uc,η,φ,o)
20 KERNEL2(Ma,Co,Uc)

In general, the algorithm starts checking the nodes of the current positions of the

robots and their neighbor nodes in lines 6 to 16, and continue exploring the graph by

propagating to other nodes in parallel (lines 17 to 20). In this algorithm, the mentioned

new variables are defined as following:

• Co as the cost of the distance (cost map) between robots and all nodes in graph

with size N .

• Uc is a temporary memory for cost updating.

• Ma is a mask of size N for controlling wavefront that starts from robots’ position

and propagates to other cells.
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For a better understanding of the usage of Mask array, Ma, Fig. 5.11 shows a

robot which is placed inside cell number 7. As it can be seen, it has 9 neighbors

({0,1,2,6,7,8,12,13,14}). To avoid changing our graph representation which has a fixed

size 8×N ( 8 neighbors for each node), Mask array (Ma) is used. This array is initialized

with "1" in its elements corresponding to 9 neighbor nodes of the robot. Therefore, the

dynamic node with all its neighbors can be represented in our fixed graph. Besides

that, the cost of the first 9 neighbors is computed too. Based on this initialization,

for the purpose of launching MSSP function in CUDA, we just need the adjacency list

which was calculated in the discretization step. Kernel 1 and kernel 2 are called in a

loop by using these input parameters.

Cell# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Mask(Ma) 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

Cost(Co) 1.3 0.74 0.75 ∞ ∞ -1 1.17 0.22 0.75 ∞ ∞ -1 1.64 1.16 1.37 ∞ ∞ ∞

0 21 3 4

6 87 9 10

12 1413 15 16 17

Figure 5.11: Red point is robot with 9 vertex neighbors. Correspondingly, in mask
(Ma) 9 elements are set to 1 with their costs.

The termination condition is met when there is no more element in the mask array

(Ma) with value ’1’, to continue the propagation.

As mentioned in Section 2.5, kernels will be launched in GPU with all codes inside

in parallel way. In this implementation, the number of threads which is needed for

each launching, is equal to the number of ’1’ elements in mask array. In Algorithm 7,

it is shown how the parallel multi-source shortest path is implemented.

In line 2, the logical command "if " allows those tids to continue, if their corre-

sponding value in Mask array is equal to ’1’. For example, at first call, just tids with

index of the neighbor nodes of the robot will be passed to the remaining part of the
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Algorithm 7: KERNEL1 (G,Ma,Co,Uc,η,φ,o)

1 tid← getT hreadID;
2 if (Ma(tid)) then
3 foreach nid ∈ N tid

G do // For each neighbor of tid
4 if (nid ! = o(tid) and nid ! = −1) then
5 if (Uc(nid) > Co(tid) + CG(nid)) then //Atomic operator
6 Uc(nid)← Co(tid) + CG(nid);
7 o(nid)← o(tid);
8 if (η(nid) , −1) then // Modifiying I, if the node is being visited

for the second time
9 Io(nid)− = Ino(nid) ;

10 η(nid)← η(tid);
11 Ino(nid) =Uc(nid) ∗φ(nid) ∗ (Pos(o(nid))−P(η(nid))) ;

12 Io(nid)+ = Ino(nid) ;

Ma(tid)← f alse;

code. Line 4 plays a crucial role to avoid considering the visited nodes which were

ancestor of tid, and also neighbor nodes that occupied by obstacle; these node have

nid = −1.

One of the challenges in parallel programming is to avoid interference. It occurs

when read/write operators are applied on a shared memory concurrently by more than

one thread. Such a case can happen in our implementation when two nodes reach to

the same node at the same time (See Fig. 5.12). In this figure, nodes 8 and 10 read

the cost(Co) of node 9 (in line 5 of kernel1), at the same time. The value at memory

location corresponding to node 9 is ∞. If threads from node 8 (t8) and 10 (t10) both

want to check and change the value at this location at the same time, each thread will

first have to read the value. Depending on when the reading occur, it is possible that

both t8 and t10 will read a value of ∞. After checking in line 5, that is established

for both threads, t8 writes the new cost value "1.1" (See distance map in 5.12), then

t10 writes its own cost value "1.5" into the memory location, which is not correct. The

value,∞, should have been updated to "1.1" (by t8), but instead, the value was updated

by t10.

As explained in Section 2.5.2, this kind of problem can be solved by using atomic
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functions. Fortunately, in this version of CUDA that we used, atomic operators are

already implemented. Thus, in line 5 an atomic add operator is used in order to avoid

interference by assigning exclusive rights to one thread at a time.

Besides the situation which has been explained, another case can happen when two

threads reach the same node in different moments. To distinguish this condition, in

line 8, we check the value of variable η(nid) if it is not equal to -1 (initialized value),

which means that the node nid has been visited beforehand. Furthermore, by passing

if operator in line 5, we already know that the new path (from current node tid to nid)

is smaller than old value in Uc(nid). It means the old longer path and owner of node

nid must be replaced by the new one. Also, we have to modify Integral I by subtraction

from old integral value, Ino(nid). This is done in line 9. Since the algorithm is based on

node indexes (instead of position vector), in line 11 to compute the gradient vector,

Pos(o(nid)) is applied to access the position vector of the robot. o(nid) indicates to the

dynamic node (robot) where the node nid belongs to its Voronoi region.

And finally in lines 11 and 12 the integral of node nid is added to Io(nid), by using

cost, Uc, density value, φ and first unit vector of node nid.

0 21 3 4

6 87 9 10

12 1413 15 16 17

5

11

18 2019 21 22 23

3 9 15

[7,8] 1.5 1.1 1.5

[17,10] 2.1 1.7 2.1

Distance Map

Figure 5.12: Red and blue points are robots, conflict can happen in orange pattern
cells.

After execution of the first kernel, a second kernel (Algorithm 8) updates the cost

value of elements in Co. By comparing toUc, those elements in Cowhich have a bigger

value than Uc, will be replaced by equivalent elements from Uc. Also, the mask array

will be updated based on this comparison too (line 4).

Fig. 5.13 (a-d) shows the wavefront computed by the proposed method. It can be
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Algorithm 8: KERNEL2 (Ma,Co,Uc)

1 tid← getT hreadID
2 if (Co(tid) > Uc(tid)) then
3 Co(tid)←Uc(tid) //Update Co by Uc
4 Ma(tid)← true //to keep evolving the wavefront

5 Uc(tid)← Co(tid)

seen that the number of threads inside kernel increases during the construction of the

Voronoi region.

(a) 1st iteration. (b) 2nd iteration.

(c) 4th iteration. (d) Final result.

Figure 5.13: Running parallel wavefront algorithm. Robots are circles.
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5.3.3 CPU VS GPU

In order to validate the speed of running Dijkstra algorithm in the new implemen-

tation on CUDA, we compare the results of CPU and GPU. In the case of CPU, we used

one of the best libraries, which is called Boost C++ Library (Sutter and Alexandrescu,

1998). It has already SSSP Dijkstra algorithm implemented inside. To have a fair result

in all of the simulation, we report the mean of 50 times running the algorithm on the

same computer.

In first simulation we used a benchmark, USA Road graph 1, the (undirected) road

networks of the 50 US States and the district of Columbia, with around 24 million

nodes and 29 million edges. The distance between cities are the weight on each edge.

Method Time (sec)
CPU 6.49
GPU(CUDA) 49.83

Table 5.2: Result of first test.

We got an unexpected result in this implementation (See Table 5.2), as Boost li-

brary was much faster than CUDA. Based on this implementation we understand that

the vertex degree of the graph has an effective influence on running SSSP on CUDA.

Indeed, when the nodes have degree of 2 or 3 like in this graph, in kernel launching,

in each iteration the number of threads for each node is 2 or 3. This case is similar to

a sequential running, thus to use the ability of parallelism of CUDA, the input graph

must have much more edges than nodes. In the first test the ratio between number of

edges and nodes is 1.2. Therefore, in our second test an undirected graph with 5 nodes

and 20 edges and 6 nodes and 22 edges, (with ratio 4 and 3.6 consequently) are used.

Table 5.3 illustrates that GPU’s execution time is half of the time that should be spent

for CPU.

If the ratio is more than 2, CUDA can run faster than CPU. By increasing this ratio

the difference of running time between CPU and GPU will increase too. According

to our working space, in the last experiment we convert a map to a grid graph with

1ftp://ftp.cc.gatech.edu/pub/people/bader/CSE6140/USA-road-d.USA.gr.gz
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Method Time (sec) G1 Time (sec) G2
CPU 0.0021 0.0043
GPU(CUDA) 0.0012 0.00198

Table 5.3: Result of second test on two graphs with 5 (G1) and 6 (G2) nodes.

2,400 nodes and 11,035 edges (with the ratio 4.59). The result in Table 5.4 validates

our above explanation.

Method Time (sec)
CPU 0.354
GPU(CUDA) 0.022

Table 5.4: Result of running Dijkstra algorithm on grid graph.

Although in Table 5.4 similar to GPU, the running time by CPU is less than a sec-

ond, but if we consider a large map with many robots then the difference between the

running times will be substantial.

5.4 Implementation Result

To demonstrate the performance of our distributed algorithm, we conducted two

experiments using a simple real size map with 4 robots and a large office-like map with

6 robots. All simulations were run on a laptop with processor Intel (R) Core (TM) i7-

3520M 2.90 GHz with 6 GB RAM. Moreover, the GPU was NVIDIA Geforce GT 640 M

LE with CUDA 5.5 SDK in C++ programming language. By using the same hardware

and software configuration we did some experiments on real robots.

5.4.1 Simple Map

In the first simulation a map with size of 6.4 × 5.3 meters is used. By applying a

discretization factor of 11 cm the map is divided into 58 × 48 cells. It means our graph

representation has N=2784 nodes. As we mentioned in Subsection 5.3.1, each node

is connected to its 8 neighbors, hence in our representation the number of demanded
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memory cell is 22272 (8N ). The maximum number of threads which is used in each

iteration in the CUDA kernel can be equal to N , 2784.

The input map is depicted in Fig. 5.14. The center of density function is defined

at down-left (x0 = 4.1, y0 = 1.8) and it was used a Gaussian function with standard

deviation (1.5,2) for the x and y axis.

Figure 5.14: Input descretized map.

Consider Fig. 5.15, which plots the progress of the deployment during one trial

run. Fig. 5.15(a) is the initial configuration of robots and 5.15(c) is the final location of

the robots which is concluded by meeting the termination criteria. Furthermore, the

final regions show that the map is well distributed between two robots.

Fig. 5.16(a) outlines the trajectory of robots from start to end configuration. From

this figure, it can be seen that robots’ movement is oriented to the center of the density

function. After 85 iterations the algorithm reaches the final solution. Fig. 5.16(b)

presents the decreasing of cost function during the deployment process.

The video of this simulation is available at http://www.cpdee.ufmg.br//~coro/

movies/RezaThesis/.

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/
http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/
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5.4.2 Office-like Environment

In the second simulation, a more complicated map is considered. The real size of

the office-like map is 40 × 60 meters (Fig 5.17(a)). The discretization factor is 80 cm,

hence in our grid representation there are 50 × 75 cells and N=3750 nodes, corre-

spondingly. Fig. 5.17(b) shows the density function. Its parameters are defined as

follows: x0 = 55.6, y0 = 37 and σ2 = 20.

We divide 6 robots into 3 groups with 2 robots in each one. Such case is depicted

in the following figure. In Fig. 5.18 (a-c) the initial location and the result of running

our algorithm is shown. We obtain the final configuration after 180 iterations.

The path of the movement from start to end points are presented in Fig. 5.19(a).

As it can be seen in Fig. 5.19(b), the cost function has decreased during deployment as

expected.
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(a) Iteration 0 (b) Iteration 50

(c) Iteration 97

Figure 5.15: Snapshot of a simulation run.
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(a) Final trajectory of robots.
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(b) Cost function Converged after 97 iter-
ations.

Figure 5.16: Final trajectory of two robots and the evolution of cost function over the
time.

(a) Input decentralized map.
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(b) The center of the function is top-right.

Figure 5.17: Input map and corresponding density function.
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(a) Iteration 0 (b) Iteration 90

(c) Iteration 185

Figure 5.18: Iterations of running the new deployment method.

(a) The traversed path between start and end
points.
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(b) Cost function Converged after 180
iterations.

Figure 5.19: Final trajectory of 6 robots and the evolution of cost function over the
time.
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5.4.3 Real Robot Experiment

To evaluate the behavior of our algorithm in real world, we have applied it on real

robots in the presence of external noise such as localization and communication errors.

In these experiments a group of E-pucks2 is used. Each E-puck is a differential drive

platform equipped with camera, blue-tooth communication, and IR sensor (See Fig.

5.20(a)). The localization of the robots was provided by a global tracking system. This

system is composed of an overhead camera and tracking patterns fixed at the top of the

robots. At software level, for tracking robots’ position and sending velocity commands

to the robots we used the Robot Operation System (ROS) (Quigley et al., 2009).

(a) E-puck robot is equipped with a
camera, blue-tooth communication,
IR sensor, etc.

x

y

𝜃

𝑑

𝑝

(b) A circular robot.

Figure 5.20: E-puck robot and robot model.

As previously mentioned, each robot is a differential drive platform which means

that it is subjected to a non holonomic non-slip constraint. Moreover, by means of

ROS it is possible to send linear (v) and angular (ω) velocity commands to this robot.

However, the controller based on Eq. (5.4) is only suitable for holonomic fully actuated

robots in which it is possible to directly define the robot velocity. To address this

issue we use the same strategy presented in (Pimenta et al., 2013). First, we apply the

gradient vector in Eq. (5.4) to generate a corresponding velocity vector, [ẋi ẏi]T , where

ẋi and ẏi are the desired velocity coordinates with respect to a global frame. Second,

2http://www.e-puck.org/
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we use this vector as an input in a static feedback linearization scheme (Desai et al.,

1998). The robot command is then given by :


v

w

 =


cos(θ) sin(θ)

−sin(θ)
d

cos(θ)
d



ẋi

ẏi

 , (5.6)

where θ is the robot orientation with respect to the global frame and d is a parameter to

be tuned related to the position of a reference point p. This reference point is indeed

the point that is used as the robot position and d corresponds to the offset from the

wheels axle (See Fig. 5.20(b)).

In our experiments, 5 robots started at 2 corners of the map (See Fig. 5.21). We

have run the algorithm on a laptop equipped with CUDA processor. The map size is:

1.6 × 1.3 meter, discretized in a grid of 30 × 38 cells, with a Gaussian density function,

illustrated in Fig. 5.22. Moreover (a,b) shows some snapshots of the tessellation for

one trial run. And (d) depicts the perfectly descending evolution ofH. We can observe

from the figures that the agents converge to an optimal deployment that is biased

towards the peak of the density function. The video of this experiment is available at

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/.

Figure 5.21: Robots are placed at initial configuration. Top view photo is taken by the
camera located at height 1.5 meter from the robots.

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/


5.4 Implementation Result 85

(a) t= 0 (b) t= 38

(c) Robot trajectories.
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(d) Cost function Converged after 38 iterations.

Figure 5.22: Snapshots of tessellation during experiment. The center of density func-
tion is the up right in the map (center of circles).
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5.5 Conclusion

In this chapter, we presented a new multi-robot deployment algorithm.

The new algorithm controls the movement of robots in such a way that the cost

function is never increased. By relying on this property, we ensured convergence of

the proposed method. A discrete representation of the map and also a graph search

algorithm were used based on the method by Bhattacharya et al. (2013c). The main

difference is that our scheme used dynamic nodes to represent the robots in the graph

instead of approximating their positions based on the center of the grid cell where they

are located. Thus in this new mixed continuous and discrete scheme convergence can

be achieved.

We also presented a new implementation using the parallel technology of GPU,

CUDA. In this implementation, the well defined technique of representation based on

the compact adjacency list was used. We propose a new multi-source parallel graph

search algorithm (MSSP) based on SSSP introduced by Harish and Narayanan (2007),

which is fast and also needs the same memory size and thread number of the origi-

nal work. Moreover, different from other methods, both distance, control integral and

Voronoi tessellation map are computed at the same time in our parallel implementa-

tion. Simulations on different maps and actual experiments illustrate the efficiency of

the algorithm.



Chapter 6

Deployment in Topological Map

6.1 Introduction

In this chapter we propose an efficient deployment strategy to optimally distribute

a team of robots in environments that can be represented by topological maps. Among

the several applications for our solution are sensing and coverage of large corridor-

based buildings, such as hospitals and schools, and the optimal placement of service

vehicles in the streets of a big city.

As we mentioned, our new multi-robot deployment setup works based on the frame-

work developed for a single robot by Araujo et al. (2015). In that paper, the authors

used graph based topological maps to model the robot’s workspace. Independently

of the dimension of the original workspace, this strategy transforms the problem into

a one dimensional problem, which highly increases the computational efficiency of

the method, thus allowing for the deployment of large teams of robots in very large

workspaces. Since we derived our deployment model according to this framework, we

first review some of the main aspects of the framework. However, more detail can be

found in (Araujo et al., 2015). After this review we then present our contribution for

multi-robot deployment.

Due to the use of a topological map, in their proposed approach, the robots may be

controlled using a sequence of human like commands, such as “turn right”, “turn left”

and “move straight”. Also, no global metric localization is required. This approach

is designed to be applied in large environments, usually non-convex workspaces, that

are suitable for topological mapping. These include metropolitan regions composed

of streets and intersections, pipelines and energy distribution systems with several

connections and bifurcations, and large buildings with intersecting corridors.
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Since in many applications of real world the robotic group cannot be controlled

by a centralized system, our method is fully distributed in a way each robot needs

to communicate only with its neighbors. Deriving our method upon the mentioned

framework tackles the problem of applying multi-robot deployment on very large en-

vironments, which was a challenge for cited works in the literature. Also, the proposed

strategy is provably correct in the sense that it is guaranteed that the robot positions

converge to the optimal locations in the topological map. As a drawback, it is im-

portant to mention that, these topological locations do not necessarily correspond to

optimal positions in the real workspace, which makes the quality of the deployment

dependent on the map discretization.

The rest of the chapter is divided as it follows: problem statement is in Section 6.2;

Section 6.3 is dedicated to present the proposed methodology, including the discretiza-

tion technique, the topological map model, the methodology itself and the convergence

proofs; Simulations and actual robot experiments are in Section 6.4; Finally, in Sec-

tion 6.5 we conclude the work and present some ideas for future research.

6.2 Problem Statement

Given an environment and a team of mobile robots we want to distribute this team

in the environment in such a way that events of interest over the environment can be

efficiently handled by the robots. We assume that the environment is partially known

and may be roughly represented by a non-proportional drawing, a sketch without met-

ric information or even a photo (an example is shown in Fig. 6.1). Also, we consider

very limited robots in terms of the sensors they carry for localization. While finding

the best location for each robot is important, representing the environment in an ef-

ficient way plays a vital role to increase the performance of the deployment. Thus,

in a block-shape environment, Ω ⊂ R
n composed of corridors or driveways connected

through intersections of incoming corridors or driveways (see Fig. 6.1). Assume a team

of M mobile robots equipped with very simple sensors and reactive controllers so that

they are only able to identify intersections, to move along corridors or driveways, and
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Figure 6.1: A sketched map of a building containing rooms (hatched polygons) corri-
dors and intersections, where robots can move (white spaces). Our methodology can
make use of simple, non-scaled drawing like this to deploy the robots over the envi-
ronment.

to perform turning motions. Furthermore, a discrete data structure G encodes the

environment without the use of any type of metric information so that this limited

group of robots can use it to navigate. Thus, the objective of this chapter is to present

a solution for the multi-robot deployment problems in the explained framework.

Problem 6.1 (Optimal distribution of robots).

Consider the team ofM mobile robots as described above with access to the data struc-

tureG provided by (Araujo et al., 2015) (explained in Section 6.3.1). Consider also that

the robots have knowledge of a density function φ : Ω→ R
+ that defines the relative

importance of locations defined in the environment. Regions with higher values of

density function are more likely to have events of interest in its interior. Provide a

deployment strategy with guaranteed convergence which is able to optimally distribute the

team without the need of metric information and precise sensors for localization.

In the next section we present a solution to the stated problem.

6.3 Methodology

In this section, we show the map representation framework proposed in the work

by Araujo et al. (2015), and present a new distributed deployment algorithm along

with a proof of convergence that solves Problem 6.1.
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6.3.1 Topological Map Representation

In the framework of the cited paper, to represent the environment as a topologi-

cal, one dimensional map without using metric information, a Graph data structure

is used. Thus, topological representation of an elementary representation (i.e. sketch,

drawing, or photo) of a bounded environment Ω can be defined as a mapping Ω→ G,

that converts the environment into a graph space. In particular, this section focus on

block shaped environments, such as the floors of an office building or neighborhoods

of city.

A directed graph G(V ,E ,C,I ) is defined by a set of nodes V , connected by edges E

with specific costs C, and robot commands I . In this way, an edge e ∈ E denotes the

link between two nodes (from x to y), e = [xy] (x,y ∈ V ) and, c(e) ∈ C indicates the cost

of a robot motion given by I(e) ∈ I between x and y. Furthermore,NG(x) indicates the

set of the neighbor nodes of x: NG(x) = {y ∈ V
∣∣∣ [xy] ∈ E}.

To construct the graph G, differently from previous methods (Yun and Rus (2013),

Durham and Carli (2012)) that discretized the environment into grid cells, our frame-

work makes a specific region, for example, a corridor or street, to be a cell. Since it does

not consider a precise metric, the size of those cells are not necessarily equal, although

we assume in this work that the cells are about the same size. Fig. 6.2(a) illustrates the

division of the sketched map of Fig.6.1 in several cells.

To map real world problems where the direction of movements in some regions are

constrained, such as one-way and two-way streets in big cities, a direction of move-

ment is associated to each cell of the map. Regions that allow two-way movements are

subdivided into two new regions. Each of these regions is then associated to a node in

V . Fig. 6.2(b) shows an example of this process. In this case, all regions of the graph are

bi-directional. Therefore, each region has been separated into two regions, thus gen-

erating two nodes in the graph. The corresponding graph for this example is shown

in Fig. 6.3. Notice that the edges of this graph represent possible movements among

the nodes. If a robot can move from a node to another, we assume that these nodes are

neighbors and add a correspondent edge to E.

In a block shape symmetric map represented by a graph G, a cost between two
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(a) Map discretization. Each region between two
intersections is considered to be a cell.

(b) Depending on the allowed direction of move-
ment, each original cell may be divided into two
other cells. The arrows indicate the allowed mo-
tion in each region.

Figure 6.2: Discretization and definition of directions on the sketch map of Fig. 6.1.

neighbor nodes c(x,y) ∈ C, x,y ∈ V and a command I(x,y) ∈ I are assigned to the edge

connecting x and y ([xy]). This means that, to go from node x to y, a robot must execute

a command I(x,y) that will result in a cost c(x,y), where c : V ×V →R
+.

Below are some properties assumed for c:

• c(x,x) = 0,

• c(x,y) ≥ 0,

• c(x,y) ≤ c(x,z) + c(z,y),

• The graph might be asymmetric, i.e., c(x,y) , c(y,x).

Given this, “Path”, “Commands” and cost “d” between two arbitrary nodes (x and z)

are described respectively as:

P ath(x,z) = {x, · · · ,y, · · · ,z}, x,y,z ∈ V
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Commands(x,z) = {I(x,p), · · · ,I(y,q), · · · ,I(w,z)} x,p,y,q,w,z ∈ V

d(x,z) = c(x,p) + · · ·+ c(y,q) + · · ·+ c(w,z)

Figure 6.3: The corresponding graph of the map in Fig. 6.2 and two possible paths
from node 1 to 5 with different color.

(a) A path between nodes 1 and 5.

(b) An alternative path between the same
nodes.

Figure 6.4: Moving from a node to another one in our new representation scheme. And
computing the distance between nodes.

The command set is induced based on real world vehicle or

human motions. An example of human-like command set is

{T urn_lef , T urn_right, Go_Straight, T urn_Back}, with costs c(x,y) ∈ {4,4,2,8}.

In this example, the cost of making a turn to right or left is higher that the cost

of going straight, which is realistic for several robots. Moreover, the command
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Figure 6.5: Density function indicated that the middle corridor with values 10, 11, 13
and 15 has higher priority to be serviced. The density value of each node correspond-
ing to a corridor is written inside the node.

“turn_back” costs the maximum value for a robot. Function d(x,z) is then a cost

function that denotes the sum of the costs over the path from node x to y.

As an example, in Fig. 6.3 at least two paths between the left uppermost region

(node 1) and the right uppermost region (node 5) exist. As highlighted in this figure

using blue and green, these paths are: {1, 3, 5} and {1, 24, 17, 15, 5}. Fig. 6.4 presents

the corresponding values of commands and costs for the two paths shown in Fig. 6.3.

By relying on this weighting technique, the path with the smallest cost between two

nodes can be found using the Dijkstra algorithm.

As in a standard deployment problem, a density function may be defined over the

topological map. Assuming a continuous density function over the original environ-

ment, this maybe done by assigning a higher number to the node associated with the

center of the density function, and decreasing this value as we get far from this node (in

terms of number of nodes). This function can be also defined based on the frequency

of events of interest for each region or a global probability function. Since the density

function states the priority of a region (node) to be serviced, regions with lower events

of interest will receive a lower number. If we consider the map in Fig. 6.2 as an office,

and the number of users (or applicants) as the density function, Fig. 6.5 indicates a

function where the middle corridor has more priority. In practical applications, we

can assume that an automatic system monitors the traffic of users in order to obtain

the density function. In this way, the values in the nodes denote the density of users in
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the corridors (see Fig. 6.5).

Next section will show our decentralized solution for deploying robots in the envi-

ronment using graph G and the density function defined over it.

6.3.2 Multi-Robot Deployment

Now, we show our solution to Problem 6.1. As previously stated, we assume a team

of M mobile robots, R = {r1, · · · ,rM}, with access to the graph G and full knowledge of

the density function φ : V → R
+. The graph node in which robot i is currently located

is given by pi ∈ V , and P = {p1, · · · ,pM}.

Our strategy is based on the partition of the graph in such a way that, after the

deployment, each robot will be responsible to respond only to the events that happen

at the graph nodes assigned to that robot. Before showing our algorithm we first need

to define the specific graph partitioning used in this chapter:

Definition 6.1 (Voronoi subgraph). The Voronoi subgraph gi in G is given by:

gi = {x ∈ V | d(pi ,x) < d(pj ,x), ∀i , j}, (6.1)

where, d(x,y) is a function d : V × V → R
+ that denotes the cost of the shortest path

between nodes x and y. If d(pi ,x) = d(pj ,x), the node x is assigned to the robot with

smaller index number as in Yun and Rus (2013).

The set of Voronoi subgraphs defines a Voronoi partitioning of the graph G. In the

partition every node will be assigned to a robot. Also the union of all subgraphs is

equal to V and the intersection between two different subgraphs is empty.

Our approach builds upon the work in Yun and Rus (2013) in which the problem

of optimally deploying the team of robots on a graph is treated as a locational opti-

mization problem. As in Yun and Rus (2013), we reformulate our general deployment

problem as the one of minimizing the cost function:

H(P ,G) =
M∑
i=1

Hi(pi ,gi) , (6.2)
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where,

Hi(pi ,gi) =
∑
q∈gi

d(pi ,q)φ(q). (6.3)

The discrete formulation given above is exactly the same formulation of the well

known p-median problem (Reese, 2006), which is a NP-hard problem with several pre-

viously proposed centralized solutions. In this work we present a distributed solution

which is used for multi-robot deployment in the same spirit of Yun and Rus (2013).

The main idea of our solution is to generate successive iterations in which the robots

are relocated to different nodes in such a wayH decreases until reaching convergence.

In fact, this iterations consists in choosing a special node inside the robot subgraph

and then move the robot to this node.

Our solution is presented in the form of a distributed control algorithm in Algo-

rithm 9, similar to what is shown as Algorithm 1 in (Yun and Rus, 2013). In fact, our

contribution is the proposition of a more efficient algorithm (Algorithm 10) to find the

next best node, where the robot should be relocated. Thus, our Algorithm 10 is used in

the place of Algorithm 2 defined in (Yun and Rus, 2013) for multi-robot deployment.

Algorithm 9: Distributed controller for robot i (similar to Yun and Rus (2013)).
Input: G,pi ,p∗i = pi // where G is the graph, pi is the robot location, and p∗i is the

next best node
1 State: Compute
{p∗j} ← Receive_Locations() // Receive locational information of neighbor

robots, j ∈ Ri (the current next best node of neighbor robots)
2 gi ← Compute_V oronoi(G,p∗i ,{p

∗
j}) // Compute Voronoi subgraph.

3 p∗i ← Find_next_best_node(gi ,p∗i ) // Call Algorithm 10.
if (pi , p∗i ) then

4 State←Moving // Switch to Moving State.

5 State: Moving
6 Move_T o(p∗i ) // Explained in Section 6.3.4.

if (pi = p∗i ) then
7 State← Compute // Switch to Compute State.

In Algorithm 9, the robot is always in one of the two states; Compute: to compute

the next best node (p∗i ); and Moving: to move to the node p∗i . Before computing the next

node, robot i must receive the current information from other robots called neighbors.
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A set of neighbors is defined by Ri = {j ∈ R | ∃[xy] ∈ E ,x ∈ gi ,y ∈ gj ,i , j}, which means

robot j is a neighbor of robot i if they have vertices that are neighbors in graph G;

it should be noticed that, in contrast to the continuous setup, here we do not have a

common boundary between two Voroni regions. Instead, the vertices on the boundary

of Voronoi region i are the neighbors of the corresponding vertices in Voronoi region

j. We assume that robot i and its neighbor robots can communicate to each other

whenever they need to exchange information. Most works based on the locational op-

timization framework rely on the same assumption. The information shared between

the robots is the next best location and not the current location of the robots.

In Compute state, after obtaining {p∗j} (next neighbor robots location), and comput-

ing the corresponding Voronoi subgraph (gi), the next best node (p∗i ) is found by calling

Algorithm 10. The state will be switched to Moving if the new best node differs from

the current one. Robot i moves toward p∗i and reaches this node in finite time (assum-

ing absence of failure in the low level controller of the robot), and changes the state to

Compute again. Note that according to Algorithm 9, function Find_next_best_node()

is only called when pi = p∗i .

In Algorithm 10, the next best node is selected based on the possibility of decreas-

ing H by decreasing the component of this function related to robot i, Hi . The next

node is chosen to be the direct graph neighbor node which allows for the maximum

decreasing of H considering the current Voronoi subgraph as the partition associated

to robot i.

An example of computingHi for node 15 and its neighbors 4 and 5 is shown in Fig.

6.6. It should be noticed from the figure that for computing Hi for nodes 4 and 5, the

same Voronoi subgraph that was applied to compute Hi for node 15, is used.

Next section presents the proof of convergence for the proposed algorithm along

with its computational complexity analysis and comparison.
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Algorithm 10: Function Find_next_best_node().
Input: gi ,p′i // gi is the Voronoi subgraph of robot i and p′i corresponds to the

current best node.
Output: p∗i ; // The next best node.

1 Hi ←
∑
q∈gi

d(p′i ,q)φ(q)// Compute the cost function of the current position of

robot i.
2 foreach a ∈ NG(p′i) do

Ha←
∑
q∈gi

d(a,q)φ(q) //Compute Ha value for all the neighbor nodes of p′i .

3 pmini ← argmin
k∈{NG(p′i )}

Hk // Find the minimum Hk among the neighbor graph nodes

4 if Hk <Hi then // If the minimum cost function of the neighbor nodes is less
than the robot current Hi

5 p∗i ← pmini // Set the neighbor node (with minimum cost) as the next best
node.

else
6 p∗i ← p′i // Otherwise the current node is the best node (there is no better

node out of neighbor nodes)

7 Return p∗i

6.3.3 Analysis

The proposed algorithm works upon the following assumptions:

i) The graph (G) that represents the input map is given to all the robots in the begin-

ning of the task.

ii) Robots have access to the next best node of their neighbors. Whenever a robot

needs to compute its next best node, the latest updated information of neighbor robots

is available by means of communications.

Given these assumptions, we can now prove the convergence of the proposed multi-

robot system.

System Convergence

We start by presenting some lemmas and definitions.

Lemma 6.1. Let H(P ,GW ) =
∑M
i=1Hi(pi ,wi), where Hi(pi ,wi) =

∑
q∈wi d(pi ,q)φ(q), wi is

an arbitrary partition of G which is different from the Voronoi partition defined in
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Figure 6.6: Robot is placed on node 15. Based on Algorithm 10, H will be computed
for nodes 15, 4 and 5, over the same Voronoi subgraph (nodes with brown color).

(6.1), and φ : V 7→R
+. The following inequality holds:

H(P ,G) ≤H(P ,GW ),

whereH(P ,G) is computed according to Eq. (6.2) using a Voronoi partition of the nodes

of G.

Proof. The proof follows the same arguments used in the proof of Proposition 3.1 in

(Du et al., 1999). According to Eqs. (6.2) and (6.3) we have that:

H(P ,G) =
M∑
i=1

∑
q∈gi

d(pi ,q)φ(q),

and

H(P ,GW ) =
M∑
i=1

∑
q∈wi

d(pi ,q)φ(q).

According to Definition 6.1 we have that d(pi ,q)φ(q) ≤ d(pj ,q)φ(q) if q is in the Voronoi

subgraph of i, gi . Thus, as wi is not the associated Voronoi subgraph the inequality

holds:

H(P ,G) =
M∑
i=1

∑
q∈gi

d(pi ,q)φ(q) ≤
M∑
i=1

∑
q∈wi

d(pi ,q)φ(q),

Thus:

H(P ,G) ≤H(P ,GW ).
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�

Before presenting the second lemma, we will define a decreasing lower bounded

sequence.

Definition 6.2 (Decreasing lower bounded sequence). A sequence {xn} is called

decreasing and lower bounded, if:

i) xi ≤ xi−1 ∀i ≥ 1

ii) ∃B0 ∈R such that ∀n xn ≥ B0

Lemma 6.2. Every decreasing lower bounded sequence {xn} converges to the greatest

lower bound of the set {xn : n ∈N}.

Proof. This is a well known result in real analysis. �

Definition 6.3. Let S be the set of state vectors of the multi-robot system described in

Subsection 6.3.2 with robots executing algorithm 9 and 10, where state vector S is a

vector of the next best nodes:

S =


p∗1
...

p∗M

 .
Definition 6.4. A state vector S∗ is called a local minimum state of the H function in

Eq. (6.2) if :

H(S,G) =
M∑
i=1

Hi(p∗i ,gi) ≤H(S ′,G), ∀S ′,

where, S ′ is any state vector which differs from S in only one of its entries j, where the

current next best node is replaced by a node which is a neighbor of p∗j . The computa-

tion of H(S ′,G) is performed using the same Voronoi subgraph defined for H(S,G) as

the associated graph partition.

Theorem 6.1. Given a multi-robot system as described in Subsection 6.3.2 with robots

executing algorithms 9 and 10, its associated state vector converges to a local minimum

state ofH in (6.2) in finite time if the following assumptions are verified: (i) the robots
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have access to the graph G; and (ii) the robots have access to the next best nodes of

their neighbors whenever they need.

Proof. The value of H can only change due to two reasons: 1) the computation of a

new Voronoi tessellation (line 3 in Algorithm 9); and 2) the computation of a next best

value (line 4 in Algorithm 10).

If the assumptions are verified then, according to Lemma 6.1, the computation of

the new Voronoi tessellation cannot increase the value of H. Also by inspection of

Algorithm 10 we can say that if there exist a state vector S ′ obtained by the replace-

ment of the entry associated with the current p∗i with a graph neighbor of p∗i such that

H(S ′,G) < H(S,G), where S is the current state vector, then the system will evolve to

a new state vector in finite time and this new state vector is so that H will decrease.

Moreover, if such a vector S ′ does not exist then the system does not change the state

vector.

Given these facts and also the fact that H ≥ 0, we can guarantee that H evolves

according to a decreasing lower bounded sequence {Ht}. Thus, according to Lemma

6.2,H converges to the greatest lower bounded of the set {Ht : t ∈N}. Since the number

of state vectors in S is finite, this convergence happens in finite time.

When H reaches convergence, the state vector will have converged to a local mini-

mum state as given by Definition 6.4, since this vector does not change when no feasi-

ble S ′ capable of decreasing the value of H can be found. �

Computational Complexity

We consider the bottleneck of our algorithm computing the Voronoi tessellation and

the cost function Hi in each time step. Considering our weighted directed graph, sim-

ilarly to (Bhattacharya et al., 2013a), since the algorithm is base on Dijkstra, the com-

plexity of this computation is O(|V | log |V |) when an efficient data structure such as a

heap is used, where |V | is the number of nodes in the graph. In fact, all the computa-

tions are done over the single run of Dijkstra algorithm.

To compute the complexity of the algorithm precisely, we may consider its two main

parts. In the first part, the cost function (also the Vornoi tessellation) is computed
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for robot located on pi (line 1 in Algorithm 10). The second part denotes the time

related to the computation of the Hi for the graph neighbor nodes of pi (line 2 in

Algorithm 10). As we mentioned, the complexity of computing Hi is O(|V | log |V |).

Since in our discrete setup the maximum number of neighbor nodes is 4, |NG(pi)| ≤ 4,

the complexity for all the neighbor nodes is 4·O(|V | log |V |). However we can consider it

asO(|V | log |V |). It should be mentioned that to compute theHi for neighbor nodes, the

Voronoi tessellation that was computed for pi is used. Thus, the Voronoi tessellation is

computed only once in each step.

Thus, we can write that the total complexity of our algorithm is O(|V | log |V |).

Comparison

We compare our proposed method with the most similar works in the literature,

(Durham and Carli, 2012) and (Yun and Rus, 2013). In the sense of time complexity the

first and second algorithm need O(|V |3) and O(|V |2) respectively. While the technique

proposed by Yun and Rus (2013) looks for the best next node for robot i among the

nodes in its entire assigned Voronoi subgraph gi (computing Eq. (6.2) for many nodes),

in (Durham and Carli, 2012) robots move according to a random destination in their

dedicated subgraph after meet other robots and find the generalized centroids based

on pairwise partitioning rule. In addition, the former and latter techniques need a time

to compute the shortest path from the robot’s current position to: the next best node;

or the random sample point in the corresponding subgraph respectively. This can be

done by BFS (Breast-First Search) algorithm with O(|V |) or Dijkstra algorithm with

complexity O(|V | log |V |). In contrast, we compute the value of H in the robot’s next

possible movement to neighbor nodes to see whether it is worth or not. Hence robots

are able to move to one of their neighbor nodes in each iteration. This modification

which is applicable in any kind of graph representation, decreases substantially the

complexity, and also makes the algorithm provable in the sense of convergence.

Another shortage of these works implies that they demand a network with high

data transferring capacity which is not necessary in our method. Whereas Durham
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and Carli (2012)’s work performs in short-range “gossip1” communication networks,

robots i and j need O(|Vi | + |Vj |) (where Vi is Voronoi partition of robot i), for com-

munication bandwidth. This happens when they meet each other to compute their

pairwise Voronoi partitions. Also, in Yun and Rus (2013)’s two-hop communication

is needed, the information of neighbor robots and neighbors’ neighbor is needed to

be transferred over the communication network. Although we assumed to establish a

reliable network communication between neighbor robots, we do not need high band-

width network, since just neighbor robots exchange their locational information (a

single node number).

And finally, in contrast to these works, our proposed method works without having

the need of a precise metric and map for “next best point computation”.

6.3.4 Robot Control

In this section we review the work done by Araujo et al. (2015) for controlling a

robot in a topological map. In fact we used the same technique to control the move-

ment of a team of robots in our deployment problem.

The solution for the multi-robot deployment problem shown in the previous sec-

tion gives, for each robot at each time interval, the node of graph G where the robot

must go after living the current node. Based on the way G was defined, remember

that each node represents a portion of the environment, which could be a corridor or

a street block, for example. Also, to each edge of the graph, there was associated a

command for the robot, whose cost of execution was used in our algorithm to help de-

ciding the best path. Therefore, assuming that the robot is currently at node x ∈ V and

the next node computed by the algorithm is y ∈ V , a controller needs to be designed so

the robot follow edge [xy] by executing command I(x,y). As mentioned before, the set

of commands used in this work contain “human-like" instructions which are executed

when the robot leaves the current node. If a robot is in an indoor environment, for ex-

ample, a command will be executed when an intersection of corridors is found. Thus,

1A short-range communication with asynchronous and unreliable communication between nearby
robots
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two controllers are necessary: one to drive the robots inside the node and another to

follow command associated to the edge.

For the first controller, remember that the workspaces considered in this chapter

are defined by regions similar to corridors or street blocks. These regions are usually

defined by constrained areas surrounded by some sort of structure, for example, walls

in a building, or the sidewalks on the streets. These structures will be a constant

reference for the robot inside a node and can be used to aid its guidance and control.

In this work, similar to the technique applied in (Araujo et al., 2015), we use such

structures to define a vector field to guide the robot. Without loss of generality and

to facilitate the explanation of our vector field generation method, we will call the

structure that delimits the node region by wall in the rest of the section.

To compute the vector field, we create a reference frame on the closest point from

the robot to the wall on its right side, as shown in Fig. 6.7. In this frame, the X axis is

tangent to the wall, pointing in the forward direction, and the Y axis is orthogonal to

it, pointing to the left wall. It is assumed that the robot is always in coordinate X = 0,

so the frame moves with the robot.

Right
Side

Left
Side

X

Y

Figure 6.7: Geometry involved in the vector field generation and robot control. From
the reference frame, distance d0 is the expected distance while d is the current distance
of the robot. θ indicates the robot’s relative orientation and l, the distance from the
center of the robot to its control point.

To make the robot move along the corridor by keeping itself parallel to the corri-

dor’s right wall at a distance d0 from it, a planar velocity vector field u = [uX,uY]T is

created. While the field component along the corridor, uX, have a constant value, the
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component along Y -axis, uY, is proportional to the error between the robot current

distance to the wall, d, and the desired distance d0. The vector is then normalized and

scaled to the desired velocity of the robot.

To avoid possible obstacles in the corridor, such as people and other robots, vector

field u can be summed with a repulsion vector field designed to avoid obstacles. Al-

though this approach seems to be simple, it can easily create local minima in the field,

which would stop the robot. Since the authors believe that the definition of obstacle

avoidance vector fields and the solution to the problems related to it are out of the

scope of this study, the reader is refereed to the works by Lam et al. (2011), which

presents a vector field that allows the robot to present human-friendly behaviors in

the presence of people and work of Araujo et al. (2015), which adds an obstacle/peo-

ple avoidance solution to our vector field.

To track the vector field with a nonholonomic robot, we transform each vector into

the inputs of the robot using a static feedback linearization controller (d’Andréa Novel

et al., 1995). Assuming that the robot inputs are linear velocity v and angular velocity

ω we have (similart to Eq. 5.6):

vω
 =

 cos(θ) sin(θ)

−sin(θ)/l cos(θ)/l


uX

uY

 (6.4)

where l is the distance from the center of the robot to its control point and θ is the

angle between the robot and the reference frame, as shown in Fig. 6.7.

This previous controller drives the robot inside the nodes of the topological map

until it finds itself in an intersection, which represents a node change. Because of the

block-shaped regions of the map, it is possible to perceive that the robot is approxi-

mating an intersection by detecting that the structures of the corridor are shaping up

to the opening of an intersection. If the robot is using a laser to follow the wall, for

example, it is possible to detect that the segment that represents the wall in the laser

scan is decreasing in length. When an intersection is detected, the robot must fol-

low the command associated to the edge that connects the current node with the next

one computed by the planner. Since the number of possible instructions is small, one
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simple controller can be developed for each instruction. For example, a “Turn Left”

instruction would lead to the activation of a proportional controller that would turn

the robot by 90 degrees to the left, so it can move forward and enter the region of the

new node, after the intersection. Once the controller finishes its task, the corridor fol-

lower, vector field based controller is switched back to move the robot inside the new

node.

6.4 Implementation Results

In this section, the efficiency of the proposed method is investigated in both sim-

ulated and real robots experiments. Before showing the result, we explained the de-

veloped distributed architecture. The high-level system is shown in Fig. 6.8, where

Control, Deployment and Interface modules are our three main entities. While the con-

trol module captures data and interacts with the environment, deployment module

compute the next best node by relying on data received from the control module. To

keep robots communication, the interface module send/receive pose information to

robot i to/from other robots through a wireless connection. The deployment module

receives and sends the best node information from/to the interface module periodi-

cally. Thus α1 and α2 are sampling rate for receiving and sending information from/to

other robots. Also ∆t refers to the time difference: ∆t = |ti+1 − ti |, t > 0.

In our implementations, we used C++ programming, ROS and Matlab for the dif-

ferent modules. According to Fig. 6.8, the Deployment module is implemented in

Matlab, Interface and Control modules are developed in ROS. We used ROS toolbox in

Matlab to exchange information between them.

6.4.1 Simulation Results

For the simulation we selected a real outdoor map of a neighborhood in New York

City from Google Maps (See Fig. 6.9). In this map, streets and blocks have a symmetric

shape, which is important for metropolitan cities in order to facilitate distributing

services and urban management i.e. transportation, pipeline, electricity and so on.
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Figure 6.8: The high-level system of robot i, and the relation between three main mod-
ules in a high-level description.

Furthermore, this block-shape property gives us the ability to run our deployment

algorithm without the need of precise localization. Thus, regardless the scale of the

input map, first of all we find a topological representation of the map by extracting

the streets as in Fig. 6.9 (b). This is done by applying morphological operators in

image processing i.e. thresholding, erosion and dilation.

(a) Sattelite view. (b) Extracted streets with directions.

Figure 6.9: The map of a neighborhood in New York (grabbed from Google map).

Since the direction of the streets is available in Google Maps, a directed graph G

can be constructed based on this map (the method was explained in Section 6.3.1). The

command set I and its corresponding cost C used in this simulation is shown in Table
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Figure 6.10: The density function defined in this scenario. The center of this function
is defined at (387,152) where node 114 is placed.

Table 6.1: Set of commands and costs in the simulation.

Command# Type Cost

1 Turn_Left 1.5
2 Turn_Right 1.5
3 Straight 1
4 Turn_Back 2

6.1. We defined the center of density function on the node 114, such that Fig. 6.10

represents the density function on this map.

After constructing graph G, we distribute 6 robots randomly over the environment.

Robots are equipped with laser sensor to move through the streets by following the

curbs. After applying Algorithm 9, robots’ final locations, corresponding assigned

regions and traversed paths are depicted in Fig. 6.11 (a) with different color. The

video of this simulation is available in the following link, http://www.cpdee.ufmg.

br//~coro/movies/RezaThesis/.

Table 6.2: Comparison of H in different methods.

Methodology Cost(e+ 5) Time

Global Solution 1.12686 more than one hour
Proposed algorithm 1.18786 0.6797 sec

In order to investigate the performance of our on-line method, we performed an

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/
http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/
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(a) Voronoi regions and the traversed trajectory
by 6 robots.

(b) Global solution.

Figure 6.11: Partitioning obtained by the proposed method and solving the MILP
model of the p-median problem
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Figure 6.12: Result of simulating the proposed method 100 times on New York sce-
nario. Each column contains mean (red line), max and min of the deployment function
cost.

off-line p-median solution (Daskin and Maass, 2015) which is applicable for similar

purpose on graphs. In this problem, by considering a graph with N ×M nodes, the

objective is to assign M facilities to N customers. One of the methods to solve this

NP-hard problem is the Mixed Integer Linear Programming (MILP) which yields the

global optimum solution (Sennea et al., 2005).

In this simulation, robots start their movement from the same initial locations that

were used in the proposed method. After applying a solver on the MILP model which

takes hours for the graph with |V | = 347 we find a result which is shown in Fig. 6.11 (b).

Moreover, the value of the H function and computation time of proposed technique

and MILP methods are shown in Table 6.2.

In our algorithm, function H decreases over time. The result of 100 trial runs of
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the proposed method on the New York map scenario is illustrated in Fig. 6.12. In each

trial the robots are distributed randomly at initial positions, and after executing about

15 iterations, they converged about the final positions. It is important to remark that

in order to move in such a big map, in our method only few human-like commands

are enough to get from a point (or street) to another.

6.4.2 Real Robot Experiments

After validating the performance of the proposed method through simulations, we

performed a real world experiment to verify its applicability in real world scenario.

Thus, three robots were chosen to cooperate in a distributed setup. Two of the robots

are based on the Pioneer P3-AT 2 mobile base. They are non-holonomic robots with

four wheels, used in conjunction with a laser range sensor and odometric sensors. The

first Pioneer, which we will call Robot 1, has indoors wheels and a SICK LMS100 laser3

range sensor, while the second robot, to be called Robot 2, has outdoor wheels and a

SICK LMS291 laser range sensor. The third robot, Robot 3, is a small iRobot Create

mobile base 4. It has also odometric sensors and a Hokuyo URG 5 laser range sensor.

The experiments were executed in the second floor of the School of Engineering

building at the Federal University of Minas Gerais 6. It is a symmetrical building, and

is composed of many corridors and intersections (See Fig 6.13 (a)). To build the cor-

responding graph, the corridors were represented as nodes of the graph, one node for

each direction of movement, while edges model the intersections. Each edge received

a label with the direction to which the robot had to turn to reach the new corridor in

the intersection.

2http:www.mobilerobots.comResearchRobotsP3AT.aspx
3http:www.sick.com
4http:store.irobot.com
5https:www.hokuyo-aut.jp
6http://www.ufmg.br/
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(a) Map is captured from
Google map.

(b) Representing the input map as a
graph.

Figure 6.13: The map used in real robot experiment.

(a) Initial position with corre-
sponding Voronoi subgraph with
different color

(b) Final Deployment

Figure 6.14: Deployment of 3 robots in a real scenario.

Fig. 6.13 (b) shows the topological map of the environment, with 24 nodes. The

corridor at the middle (nodes 4, 5, 6 and 7) is defined as the center of the density

function, so the robots are expected to move toward this corridor.

The initial nodes, and the final deployment locations are depicted in Fig. 6.14.

Robots 1, 2, and 3 started from nodes 1 to 3 (see Fig. 6.14 (a)), and ended on nodes 21,

13 and 17 (see Fig. 6.14 (b)), respectively. In the Entire execution each robot runs a

single command (See Table 6.3). The complete video of this experiment can be found

in http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/.

As we mentioned, the experiment was implemented in a decentralized fashion, so

that each robot moves and decides individually. During robots motion, they compute

their next best node, Whenever they detect a corner or intersection.

http://www.cpdee.ufmg.br//~coro/movies/RezaThesis/
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Table 6.3: Commands applied on robots in the real experiment.

Robot# command

1 Turn_Left
2 Turn_Right
3 Turn_Left

6.5 Conclusion

In this work we proposed a distributed multi-robot deployment method based on

a topological representation of the environment. A practical technique was applied

in order to simplify a multi-dimensional map into a single dimension one. This tech-

nique can be used with very large maps, decreasing the dimension and computation

cost relatively. Once the topological model of the input map is obtained, robots use

a wall following control to move, hence no precise localization is needed. This is

done by using a natural scheme of navigation, such that robots move to a location

by following a sequence of human like commands. We derived our strategy upon the

topological framework proposed by Araujo et al. (2015). In comparison with different

techniques found in the literature, our method has a good performance in real appli-

cations because of the low computation, no need of precise localization, and no need of

high bandwidth communication. These remarkable properties make our method fast

enough to be executed in real world scenarios. In comparison to two similar discrete

deployment methods found in the literature (Yun and Rus (2013), Durham and Carli

(2012)), the proposed approach declines the computational complexity, and requires

lower-bandwidth network to exchange locational information (next best node) with

neighbor robots, which is usually a challenge in real experiments. As future work,

we would like to perform real experiments in multi-floor maps, combining aerial and

ground based robots in the same mission. Notice that even in this complex situation

the problem can be considered as a 1D problem.





Chapter 7

Conclusion and Future Directions

While in the present work we deal with coordination and cooperation of multi-

robot systems, the focus of the study was the deployment problem. In multi-robot de-

ployment, finding a set of positions for a group of robots is the objective, such that

the total time for responding to "events of interest" inside robots dedicated region is

minimized. By investigating the literature, we tried to improve this task in different

aspects.

In Chapter 4, we added safety to the original deployment setup. We used the safe

roadmap, GVD, and proposed a new metric which forced the robots to move through

the GVD. Based on the new metric on GVD we ensure that robots just move on the

GVD curves during the deployment, thus safety of the robots motion is guaranteed.

Simulation results validated the efficiency of the proposed method. As this method

discretizes the environment into cells, in the case of large cells, it will degrade accu-

racy of robots motion. Also the proposed strategy suffered with the lack of conver-

gence proof, which is addressed in Chapter 5. In this work we were not interested to

deal with communication and networking issue, we assumed to have an appropriate

network, which guarantees stable connection during the execution of the algorithms.

However, it is possible to extend this work in order to consider connectivity mainte-

nance of robots by applying the different techniques proposed by Popa et al. (2004);

Reich et al. (2012a); Sreenath et al. (2006); Reich et al. (2012b).

Chapter 5 presents a new algorithm to address the convergence problem in the

previous method. Robots move in the direction of the gradient descent vector which

guarantees decreasing the cost function. By relying on this property, and also the new

technique of assessing robots neighbor nodes in the graph in terms of cost function,
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we are able to prove the convergence of the algorithm. Although the environment is

discretized (similar to the last method), in this new technique robots move in a con-

tinuous manner, thus a more accurate movement, instead of an estimation on center

of the cells, is obtained. In order to speedup the execution of the algorithm, in a new

implementation based on CUDA, algorithm is run in a parallel way. However, because

of tilling the environment it is still expensive in terms of complexity for very large

environments.

To address the problem of high computational complexity for large environments

in the latest algorithm, in Chapter 6 we extend the discrete setup of deployment

problem considering a topological map-based framework (proposed by Araujo et al.

(2015)). This framework simplifies the 2-dimensional space to 1D graph space, thus

the computational cost declines significantly. In a simulation result we showed that

the new deployment strategy resulted a very close result to the global optimum found

by a centralized solution. Moreover, this method eliminates the need of accurate local-

ization for the robots motion. Hence, the proposed method is applicable for systems

that need fast response. In comparison to time complexity achieved by the most simi-

lar works in the literature (Durham and Carli, 2012) and (Yun and Rus, 2013), which

were O(|V |3) and O(|V |2) respectively, our method declines to O(|V | log |V |), where V is

the number of nodes in the graph. Furthermore in the spirit of communication be-

tween robots, while in both cited works a considerable amount of data was transferred

over the communication network; in (Durham and Carli, 2012) the whole Voronoi par-

titions between two robots, and in (Yun and Rus, 2013), the information of two-hop

communication, in our proposed algorithm robots just exchange the information of

the next best node ( an integer number). Although the proposed approach is suitable

for block-shaped environments, the topological framework was defined in a general

form and covers wide range of environments.

In general, in systems where more than one objective is important, we need to set

a trade off between the objectives. As shown in this study, the trade off between com-

plexity and cost, or speed and accuracy is considered in different scenarios.
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Future Directions

• Proposing an algorithm that is able to solve the deployment problem on large

environments with reasonable computational complexity.

• Applying the deployment algorithm in unknown environments together with

SLAM (Simultaneously Localization And Mapping); as robots move they create

the map.

• Implementing the topological map deployment algorithm for multi floor block

shape building by adding new commands.

• Considering limitations in network communication in deployment problem.
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