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Abstract

Consensus refers to achieving an agreement on a variable of interest on all the agents
in a multiagent system by sharing and/or acquiring information within other agents.
Its applications are given in the field of multiagent systems that work cooperatively by
sharing information in a networked manner. Many problems such as formation control,
flocking, and platoon, can be addressed using consensus-based approaches. Additionally,
as communication and processing rely on processes subject to time-delays, the analysis
of the delays is of major importance for networked applications, as it may cause great
impact in the system’s response, avoiding or enabling consensus and consequently the
execution of the task. The starting point of the methodology is the translation of the
consensus problem into a stability problem, thus analyzed with the vast theory for linear
systems. The impacts of delays in communication and input delays are presented to
show the importance of analyzing the delays in intervals considering lower and upper
bounds for time-varying delays. Thereby, results considering the analysis of consensus
with the considered bounds are presented by means of sufficient conditions described
by linear matrix inequalities (LMIs), using Lyapunov-Krasovskii theory. Failures in the
communication links, changes in the agents arrangement, or obstructions on sensing are
described by switching topologies, modeled as Markov jump linear systems, with uncertain
transition rates. In order to increase the delay margins or improve convergence rate of
the system, a method for the design of the coupling strengths is presented, also by means
of LMIs. Finally, single-order consensus is applied in real-world problems in cooperative
robotics, based on the extension of consensus on dual quaternions, which describe the
pose of rigid-bodies adequately. Through all the text, examples are presented to show the
performance of the methods with application-oriented problems.

Keywords: Consensus, time-delay, Lyapunov-Krasovskii, multiagent systems, LMI,
Markov Jump linear systems, switching topology, coupling strengths, cooperative robotics,
pose, dual quaternions.
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Resumo

Consenso se refere a atingir um acordo em uma determinada variável de interesse em
todos os agentes de um sistema multiagente por meio da troca/aquisição de informações
com os demais agentes. Suas aplicações são dadas no campo de sistemas multiagentes que
operam de forma cooperativa por meio da troca de informações em rede. Vários problemas
como controle de formação, enxame, rebanho e comboio, podem ser tratados utilizando-
se abordagens de consenso. Além disso, dado que a comunicação e o processamento da
informação dependem de processos sujeitos a atrasos no tempo, a análise destes é de
grande importância para aplicações em rede, dado que podem causar grande impacto
na resposta do sistema, evitando ou permitindo atingir consenso e consequentemente a
execução da tarefa. O ponto de partida da metodologia utilizada é a tradução do problema
de consenso em problema de estabilidade, sendo então analisado com a ampla teoria de
sistemas lineares. O impacto dos atrasos de comunicação ou entrada são apresentados para
mostrar a importância de analisar o atraso considerando intervalos com limites inferiores
e superiores para atrasos variantes no tempo. Com isto, resultados considerando a análise
de consenso com os limites impostos são apresentados por meio de condições suficientes
descritas por desigualdades matriciais lineares (LMIs), usando a teoria de Lyapunov-
Krasovskii. Falhas nos enlaces de comunicação, mudanças no arranjo dos agentes ou
obstruções nos sensores são descritas pelo chaveamento da topologia de rede, modelado
como um sistema linear sujeito a saltos markovianos com taxas de transição incertas. De
modo a aumentar as margens de atraso ou melhorar a taxa de convergência do sistema,
é apresentado um método para o projeto dos ganhos de acoplamento nos enlaces entre
os agentes, também baseado em LMIs. Finalmente, o problema de consenso em agentes
de primeira ordem é aplicado em problemas reais de robótica cooperativa, baseando-se
na extensão de consenso utilizando quatérnios duais, que descrevem a pose de corpos
rígidos adequadamente. Ao longo do texto são apresentados exemplos para mostrar o
desempenho dos métodos com problemas centrados em aplicações.

Palavras-chave: Consenso, atraso no tempo, Lyapunov-Krasovskii, sistemas multi-
agentes, LMI, saltos markovianos, topologia chaveada, ganhos de acoplamento, robótica
cooperativa, pose, quatérnios duais.
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Chapter 1

Introduction

There is a growing interest in systems composed of multiple agents that work coopera-
tively by sharing information in a networked manner. This growth is mainly given due to
the recent advances in communication systems, with the ease to enable digitally controlled
devices to work connected in a network. In addition to the reduction in size and cost of
electromechanical devices and the boost in computational power, networked systems have
become an increasingly recurrent scenario. This kind of systems is referred to as multi-
agent system, i.e. a system composed of several distributed parts, sharing information
and working cooperatively in order to accomplish a common objective (Tanenbaum and
Van Steen, 2007). In fact, one of the most important attributes of an intelligent system
is the ability to communicate. Communicating and sharing information allows an agent
to distribute/cooperate in tasks. The distribution of tasks makes the multiagent system
robust to failures and endows intelligent group behavior. In addition, it mainly allows the
execution of tasks that a single agent would not be able to accomplish, e.g. the trans-
portation of heavy duty loads. Some cutting-edge applications of multiagent systems can
be highlighted in topics like Internet of Things (Greengard, 2015), Cloud Computing (Ru-
parelia, 2016), and Cloud Robotics, referred to as one of the 10 breakthrough technologies
for the year 2016 (Schaffer, 2016).

One of the ongoing topics covered by the theory of multiagent systems is called con-
sensus. The meaning of consensus problem is to make all the agents in a multiagent
system achieve an agreement on a variable of interest, assuming that each agent is able
to share and/or acquire information within a subset of other agents, called neighbors.
Applications of consensus are found in many practical fields, such as traffic jams in com-
munication networks (Li et al., 2011b), formation of autonomous mobile agents (Ren,
2007), page ranking (Ishii and Tempo, 2014), robotics (Hatanaka et al., 2015), etc. Many
other results are summarized by Cao et al. (2013). Next section covers an overview and
part of the history of this topic.

1
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1.1 History

Consensus problem has its origins in statistics, in the decades of 1960 and 1970. At that
time, the main concern was with the problem of social learning process, and some methods
were presented to describe how a group of individuals reach an agreement about a common
goal. This problem was discussed by many authors, among those it can be referred the
works of Eisenberg and Gale (1959), Stone (1961), Norvig (1967), and Winkler (1968).
The work of DeGroot (1974) can be highlighted, it once described a group of individuals
acting together as a team, in which each individual had its own subjective probability
distribution regarding the opinion about some given parameter. The author described a
model on how the team achieves a common subjective probability distribution through the
exchange of information and the combination of the individuals’ beliefs by weighting and
averaging the opinions, deprived of taking any new information from the environment.

Later on, with the advent of coordinated multiagent systems, one of the major prob-
lems was the one of establishing distributed control laws based on the information ex-
changed between the agents, such that an agreement could be achieved on a common
value of a given variable of interest. Seminal results emerged in physics (Vicsek et al.,
1995) and distributed algorithms (Lynch, 1996), borrowing the main ideas of consensus
originated in the field of statistics regarding the exchange of information between the
agents.

The work of Vicsek et al. (1995) described the self-ordered motion of a system com-
posed of multiple particles. At each time step, each particle assumed the average direction
of neighboring particles in a given distance radius, introducing in multiagent systems the
concept of neighborhood and the interaction with neighbors only. This inspiration came
from parallel advances in the field of biology and computer graphics, in the biological de-
scription of the function of fish schools (Partridge, 1982), and from the behavioral models
of flocks, herds and schools for computer graphic simulations in the work by Reynolds
(1987).

At the end of the 90’s, the problem of flight formation arose as one of the enabling
technologies for the 21st century. The purpose was to extend the control of a single
spacecraft to the control of a group of it, flying in a particular designated arrangement.
Some authors like the ones by Wang et al. (1999), Mesbahi and Hadaegh (1999), and
Mesbahi and Hadaegh (2001) considered the leader-following model, and the latter can
be emphasized by the usage of the graph interpretation of the problem and also the
derivation of control laws based on Linear Matrix Inequalities (LMIs).

The problem of formation control was being addressed at the same time in the field
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of robotics. Research was focused on the extension of motion planning algorithms to
the control of multiple robots in a distributed manner, as pointed by Wang and Beni
(1988) and Sugihara and Suzuki (1990). The purpose was to enable a group of robots
to cooperate in order to accomplish a global task under the government of a protocol
(a distributed algorithm), executed individually by each robot. These simple protocols
borrowed ideas from Cellular Automata (Neumann and Burks, 1966), in which global
complex tasks can be accomplished with the cooperation between many agents with the
execution of simple individual rules. Some of the results refer to the formation of circular
patterns (Tanaka, 1992), and, further, to more general geometric patterns (Suzuki and
Yamashita, 1999).

Within all the theoretical advances, it was noted that the control architecture of a
multiagent system is strongly affected by the corresponding sensing and communication
topology (Mesbahi and Hadaegh, 2001; Mesbahi, 2002). At that point, Fax and Mur-
ray (2002) and Jadbabaie et al. (2003) applied the algebraic theory of graphs to write
the relationship between neighboring agents as presented in the work of Vicsek et al.
(1995). Henceforth, the network topology could be described algebraically, inheriting
terms from graph theory like: directed, when the information flow can be unidirectional;
or undirected, when the flow is bidirectional. This algebraic approach assisted on better
understanding the impacts of the topology and model the multiagent dynamics, and many
other results emerged, such as the ones by Olfati-Saber and Murray (2003), Olfati-Saber
and Murray (2004), Ren and Beard (2005), etc. The present work makes use of this
algebraic approach.

1.1.1 Consensus in Robotics

Some recent works have considered the problem of consensus in robotic networks composed
of multiple mobile manipulators, in which the objective might be to achieve a common
configuration on the joints in order to execute some tasks, like grasping or carrying an
object. The work by Cheng et al. (2008) considered the uncertainties in the model of the
manipulators and showed an adaptive consensus protocol to reach consensus on the joints.
Hou et al. (2009) considered also the presence of external disturbances. In the work of Ge
and Dongya (2014) the problem of consensus is treated using robust control techniques.
Most of these works have dealt with Euler-Lagrange models, and some have also considered
a model description that uses quaternions to represent orientation (Aldana et al., 2015).
Additionally, the application of dual quaternions is of great interest since complex systems
can be easily modeled with dual quaternions using a whole-body approach (Adorno, 2011).

An interesting use of consensus-based algorithms in robotics is for solving decentralized
formation control problems as in the work by Schwager et al. (2011). In fact, several tasks
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Figure 1.1: Block diagram for the consensus protocol.

may benefit from solutions of formation control, such as cooperative load transportation
to move flexible payloads (Bai and Wen, 2010). Besides, rigid formation problems have
also been considered by Mou et al. (2014) and Sun et al. (2015).

Next section presents and describes the application of consensus protocol with an
introductory example.

1.2 Consensus Protocol

In the literature, the distributed control law devised to drive the agent states to consensus
is commonly denominated as consensus protocol. The protocol provides the agent’s control
input and is usually based on the difference between the agent’s own state and the states
of its neighbors. Figure 1.1 illustrates the application of the consensus protocol by an
arbitrary agent 𝑖 in a multiagent system. The neighboring agents of 𝑖 are represented by
the set 𝑁𝑖, such that 𝑗, . . . , 𝑘 ∈ 𝑁𝑖. The agent’s local state is represented by 𝑥𝑖(𝑡) ∈ R
and the state of a neighboring agent 𝑗 or 𝑘 is represented by 𝑥𝑗(𝑡) ∈ R or 𝑥𝑘(𝑡) ∈ R,
respectively. The protocol is any function taking into account the agent’s local state and
all the states of its neighbors 𝑓𝑖 = (𝑥𝑖, 𝑥𝑗, . . . , 𝑥𝑘), 𝑗, . . . , 𝑘 ∈ 𝑁𝑖, and is executed locally
by each agent. The protocol returns the control input 𝑢𝑖(𝑡) ∈ R for an agent 𝑖. The most
prevailing consensus protocol in the literature is the linear consensus protocol introduced
by Olfati-Saber and Murray (2003), given by

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)), (1.1)

where 𝑎𝑖𝑗 is the gain related to the information from agent 𝑗 to agent 𝑖, for all 𝑗 ∈ 𝑁𝑖.

Consider, as an example, a group of individuals discussing the height of a building they
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want to build, as shown in Figure 1.2. The blue individual (agent 1) wants a building with
a height of 26m, the pink individual (agent 2) wants a height of 20m, and the green one
(agent 3) suggests 12m. Therefore, the initial conditions of this problem are 𝑥1(0) = 26,
𝑥2(0) = 20, and 𝑥3(0) = 12. The next step is to define the network topology and the gains
𝑎𝑖𝑗 related to the communication links. If the individuals can only talk to the immediate
neighbors the information flow can be defined as in Figure 1.2, where agent 2 can listen
to both agents 1 and 2, with 𝑎21 = 𝑎23 = 1, and the others can only listen to agent 2,
𝑎12 = 1 and 𝑎32 = 1. With this information, protocol (1.1) can be applied, and one can
consider that the assumption that each individual opinion varies continuously according
to

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡). (1.2)

1 2 3
a21 = 1

a12 = 1

a23 = 1

a32 = 1

x1(0) = 26 x2(0) = 20 x3(0) = 12

Figure 1.2: Individuals consensus problem.

With these parameters defined, a simulation is carried out to show the evolution of the
individuals’ opinions as consensus is reached, presented in Figure 1.3. The representation
of the agents’ states along time presented in Figure 1.3 will be widely used in this text
to show whether consensus is achieved or not. From this figure the final value and the
time spent to achieve consensus can be assessed. For this example, the individuals reach
a consensus that the height of the building to be constructed is the consensus value as
time goes to infinity lim𝑡→∞ 𝑥𝑖(𝑡) ≈ 19.3m.
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t
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Figure 1.3: Individuals’ opinions reaching consensus.
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Figure 1.4: Block diagram for the consensus protocol with communication delays.

More recently, the topic of consensus has been considered to deal with a variety of
scenarios. Major concerns have been in the consideration of real issues arising from the
application of communication networks, specifically time-delays and switching topologies.
An overview with the implications of delays is presented in the next section.

1.3 Time-delay in Consensus Protocol

In practice, time-delays are always present in the agents’ interactions. This is mainly given
due to computational and physical limitations in information processing, transmission
channels, time-response of actuators, etc. The presence of delays has a great impact on
consensus problems as it can make the system oscillate or diverge about the variable of
interest (Lin et al., 2009). Based on this fact, many works have dealt with consensus
problems subject to different forms of time-delays.

The class of delays given by the time spent by an agent 𝑖 to acquire information from
an agent 𝑗 —or the time spent to carry information from the 𝑗-th agent to the 𝑖-th agent—
which can arise naturally due to physical characteristics of communication channels or
sensing, is called communication delay. This delay can be represented by 𝜏𝑖𝑗(𝑡), and
essentially indicates how old is the information that agent 𝑖 has from agent 𝑗, at the
instant of time 𝑡 when agent 𝑖 is locally running the consensus protocol. The occurrence
of communication delays is illustrated in Figure 1.4, where the consensus protocol has
access to the local agent’s state 𝑥𝑖(𝑡) instantly, but the states of the neighboring agents
𝑗 to 𝑘 are delayed by 𝜏𝑖𝑗(𝑡) and 𝜏𝑖𝑘(𝑡), i.e 𝑥𝑗(𝑡 − 𝜏𝑖𝑗(𝑡)) and 𝑥𝑘(𝑡 − 𝜏𝑖𝑘(𝑡)), respectively.
Additionally, communication delays can exist and be different for each neighboring agent,
as the agents 𝑗 and 𝑘 can be subject to different delays 𝜏𝑖𝑗(𝑡) ̸= 𝜏𝑖𝑘(𝑡).

Results from Moreau (2004) showed that a multiagent system composed of individuals
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with a single integrator dynamics as in (1.2) is able to achieve consensus regardless of
communication delays, as long as the information from one of the agents can reach all
the other agents. This network constraint will be presented later as the existence of a
directed spanning tree in the graph that describes the communication topology. Consensus
is achieved by applying the linear consensus protocol introduced by Olfati-Saber and
Murray (2003), by writing (1.1) with the communication delays 𝜏𝑖𝑗(𝑡) as

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏𝑖𝑗(𝑡))). (1.3)

To illustrate the effects of communication delays in agents whose dynamics are de-
scribed by (1.2) subject to protocol (1.3), the same parameters and initial conditions for
the example in the previous section are considered in a simulation, with the addition of a
very large communication delay 𝜏𝑖𝑗 = 𝜏 = 10s, ∀𝑗 ∈ 𝑁𝑖. The state trajectories are shown
in Figure 1.5, showing the tendency of the agents to achieve consensus. As expected from
Moreau (2004), the communication time-delay did not prevent the agents to achieve con-
sensus, but did affect convergence time when compared to Figure 1.3. Some results will
be presented in the next chapters showing that communication delays can indeed prevent
consensus achievement for more complex dynamics.

x
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Figure 1.5: Consensus with very large communication delay.

Another common type of time-delay is the one in the control inputs, given by the
time-response of actuators and information processing. This is called input delay and is
represented by 𝜏𝑖(𝑡). It is locally present in agent 𝑖 and affects the action of the controller,
representing how much time it takes for the control action to be executed. The occurrence
of input delays is illustrated in Figure 1.6, where the protocol has access to all the states
instantaneously, but its action is delayed by 𝜏𝑖(𝑡). This effect acts at instant of time 𝑡,
for agent 𝑖, as if all the states where delayed by 𝜏𝑖(𝑡), with 𝑥𝑖(𝑡− 𝜏𝑖(𝑡)) and 𝑥𝑗(𝑡− 𝜏𝑖(𝑡)).
The input delays can also exist and be different for each agent, such that each 𝑖-th agent
is subject to a different delay 𝜏𝑖(𝑡).

Considering the input delays 𝜏𝑖(𝑡) into (1.1), the effect of the consensus protocol in
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Figure 1.6: Block diagram for the consensus protocol with input delays.

Figure 1.6 is given by

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗(𝑥𝑖(𝑡− 𝜏𝑖(𝑡))− 𝑥𝑗(𝑡− 𝜏𝑖(𝑡))). (1.4)

The analysis of multiagent systems with delayed consensus protocols as (1.3) and (1.4)
are held in order to find the delay margins that allow consensus. Accordingly, consensus
with time-delays has been treated under many perspectives and many results can be found
in the works by Olfati-Saber and Murray (2003), Olfati-Saber and Murray (2004), Moreau
(2005), Ren and Beard (2005), Lin et al. (2008), Bliman and Ferrari-Trecate (2008), and
Sakurama and Nakano (2015), for example.

For the same previous example, considering all the agents with the same delay 𝜏𝑖 = 𝜏 ,
the maximum input delay 𝜏max that would allow consensus according to Olfati-Saber
and Murray (2004) is 𝜏max = 0.5236. Figure 1.7 shows a simulation with an input delay
𝜏 = 0.55, greater than the margin 𝜏max, to verify and show that consensus is not achieved.
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Figure 1.7: Input delay higher than upper margin preventing consensus.

Since Moreau (2004) showed that communication delays do not prevent consensus
for single integrator dynamics, most of the results in the literature deal only with input
delays. Some of these considerations are summarized next.
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Considering the consensus protocol with input delays, Lin et al. (2008) obtained a
sufficient condition for directed networks including also external disturbances and model
uncertainties. Bliman and Ferrari-Trecate (2008) extended the work of Olfati-Saber and
Murray (2003) for time-delays to the cases with time-varying topologies, showing ana-
lytical necessary and/or sufficient conditions to reach consensus. Kecai et al. (2011) and
Zhang et al. (2011) studied differentiable and nonuniform time-varying delays, where the
delays can be time-varying satisfying 0 ≤ 𝜏𝑖𝑗(𝑡) ≤ 𝜏max

𝑖𝑗 and also be different for each com-
munication link. Some authors, like Sun and Wang (2009) and Xi et al. (2013), considered
the possibility of nonuniform and also non-differentiable time-varying delays, such that
the variation of the delay is unknown. These results were limited to agents with single
integrator dynamics

Results considering time delay and second-order integrator dynamics can be found in
the work of Pan et al. (2014), which shows necessary conditions for constant and uniform
time delays for undirected networks. For directed networks, Yu et al. (2010) shows some
sufficient results.

To contextualize and highlight the different classes of multiagent systems that will be
addressed in the text, next section covers some examples of multiagent systems with first-
order dynamical systems with an example in formation control, second-order dynamics
with an example in flocking, and high-order dynamics applied to the control of vehicles
in a platoon.

1.4 First-order Dynamics

First-order dynamics agents are referred to agents with a single integrator, with the
consensus protocol acting directly on the agent’s “velocity”. The dynamics of this kind of
agent is given by (1.2) and repeated here for convenience:

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡). (1.5)

This agent dynamics can be considered in the kinematic control of multiple wheeled
or aerial vehicles, with the state 𝑥𝑖 given as a position in the space and controlled directly
by velocity 𝑣𝑖, where �̇�𝑖 = 𝑣𝑖, with 𝑣𝑖 = 𝑢𝑖. Note that in this case each axis in the
tridimensional space is considered to be independent to each other, such that an omni-
directional agent can act separately in each variable.
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Figure 1.8: Agents placement in the two-dimensional plane.
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Figure 1.9: Desired agents’ formation.

1.4.1 Consensus-based Formation

One of the most prevailing applications on multi-vehicle systems is the formation problem.
The purpose is that the agents collectively maintain a prescribed geometry, considering
decentralized control and prior knowledge of the desired formation shape. The desired
shape can be either set by a centralized reference or programmed on each agent. Fi-
nally, the system is able to achieve formation anywhere in the space, depending on the
negotiation among the team members.

To illustrate this problem in a consensus-based approach, consider holonomic vehicles
able to move in a two-dimensional space. The state of each agent is described by the
coordinates (𝑥𝑖, 𝑦𝑖), ∀𝑖, with respect to the 𝑋 and 𝑌 axis, according to Figure 1.8.

Next, the desired agents’ positions are drawn in an arbitrary position in the space
respecting the desired relative positions. Figure 1.9 shows the desired agents’ formation
represented by the blue dots, and coordinates (𝑥*𝑖 , 𝑦

*
𝑖 ), ∀𝑖.
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Figure 1.10: Distance 𝛿𝑖 to the formation position.
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Figure 1.11: Consensus on the distance – formation.

The consensus-based approach to keep formation is that all the agents must achieve
consensus on the displacement between the reference of the desired formation and the
actual position. The displacement vector 𝛿𝑖 ∈ R2,∀𝑖, in Figure 1.10, represents this error,
with

𝛿𝑖 =

[︃
𝑥𝑖 − 𝑥*𝑖
𝑦𝑖 − 𝑦*𝑖

]︃
. (1.6)

Following the results presented by Ren (2007), formation is achieved when the agents
achieve consensus on 𝛿𝑖. Figure 1.11 shows the case when the agents have achieved the
squared desired formation in a different part of the two-dimensional plane, showing equal
displacement vectors 𝛿𝑖.

Thus, the consensus protocol to achieve formation is 𝑢𝑖 ∈ R2,

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗(𝛿𝑖(𝑡)− 𝛿𝑗(𝑡)), (1.7)

which can be separated in 𝑋 and 𝑌 parts, considering the two parts of equation (1.6)
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Figure 1.12: Network topology represented as a graph.

given by 𝛿𝑥,𝑖 = 𝑥𝑖(𝑡)− 𝑥*𝑖 and 𝛿𝑦,𝑖 = 𝑦𝑖(𝑡)− 𝑦*𝑖 , yielding

𝑢𝑥,𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗
(︀
(𝑥𝑖(𝑡)− 𝑥*𝑖 )⏟  ⏞  

𝛿𝑥,𝑖

− (𝑥𝑗(𝑡)− 𝑥*𝑗)⏟  ⏞  
𝛿𝑥,𝑗

)︀
, (1.8)

𝑢𝑦,𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗
(︀
(𝑦𝑖(𝑡)− 𝑦*𝑖 )⏟  ⏞  

𝛿𝑦,𝑖

− (𝑦𝑗(𝑡)− 𝑦*𝑗 )⏟  ⏞  
𝛿𝑦,𝑗

)︀
, (1.9)

such that the agents are controlled by inputs which are velocities given by

𝑣𝑥(𝑡) = 𝑢𝑥,𝑖(𝑡), (1.10)

𝑣𝑦(𝑡) = 𝑢𝑦,𝑖(𝑡), (1.11)

where 𝑣𝑥(𝑡) and 𝑣𝑦(𝑡) are the velocities on 𝑋 and 𝑌 axis, respectively, and are indepen-
dently set.

A simulation is carried out to illustrate the formation problem. Considering the state
of each agent given by

𝑞𝑖(𝑡) =

[︃
𝛿𝑥,𝑖(𝑡)

𝛿𝑦,𝑖(𝑡)

]︃
, (1.12)

with initial conditions considered 𝑞1(0) = [−1 0.5]𝑇 , 𝑞2(0) = [2 0]𝑇 , 𝑞3(0) = [−0.5 1]𝑇 ,
and 𝑞4(0) = [−1 1]𝑇 , and given that the desired formation is a square given by (𝑥*1, 𝑦

*
1) =

(0, 0), (𝑥*2, 𝑦
*
2) = (1, 0), (𝑥*3, 𝑦

*
3) = (0, 1), and (𝑥*4, 𝑦

*
4) = (1, 1). The communication net-

work is such that agent 1 receives information from agent 2 (𝑎12 = 1), agent 2 receives
information from agent 4 (𝑎24 = 1), agent 4 receives information from agent 3 (𝑎43 = 1),
and agent 3 receives information from agent 1 (𝑎31 = 1). The network topology describing
this information flow can be graphically represented by the graph in Figure 1.12.

The state trajectories are shown in Figure 1.13. Figure 1.13a shows the convergence
for the state variable 𝛿𝑥,𝑖(𝑡) and Figure 1.13b for 𝛿𝑦,𝑖(𝑡), both converging approximately
at 𝑡 = 5𝑠. Additionally, the trajectories of the agents in the two-dimensional plane 𝑋𝑌
are illustrated in Figure 1.14. The initial state 𝑞𝑖(0) is represented at the initial position
(𝑥𝑖, 𝑦𝑖) of each agent, and trajectories are represented as continuous lines reaching the
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(a) State trajectories for 𝛿𝑥,𝑖(𝑡) for all agents.
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(b) State trajectories for 𝛿𝑦,𝑖(𝑡) for all agents.

Figure 1.13: State trajectories for first-order agents formation.
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Figure 1.14: Simulated state trajectories for single-order agents achieving formation.

approximately stationary state 𝑞𝑖(5) at time 𝑡 = 5𝑠, with circles representing the position
(𝑥𝑖, 𝑦𝑖) at time-steps of 0.02𝑠. The dashed lines represent the final displacements between
the agents and the reference positions (𝑥*1, 𝑦

*
1) = (0, 0), (𝑥*2, 𝑦

*
2) = (1, 0), (𝑥*3, 𝑦

*
3) = (0, 1),

and (𝑥*4, 𝑦
*
4) = (1, 1), which are represented by asterisks.
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1.5 Second-order Dynamics

Some agents are assumed to obey a second-order model to describe its dynamics. This
model is suitable for mechanical systems controlled through acceleration (force or torque).
For example, thrust-propelled vehicles (Wang, 2016), or more generally agents that can
be feedback linearized as double integrators, as it will be presented next.

A second-order integrator agent is given by the state variables 𝑥𝑖 ∈ R and �̇�𝑖 ∈ R,
which can represent, for example, position and velocity, respectively. The dynamics is
given such that

�̈�𝑖(𝑡) = 𝑢𝑖(𝑡), (1.13)

where the control input represents an “acceleration”.

An example from Ren and Atkins (2007) is presented to illustrate the description of
a non-holonomic mobile robot with second-order dynamics. The equations of motion are
given by

�̇�𝑖 = 𝑣𝑖 cos(𝜃𝑖), (1.14)

�̇�𝑖 = 𝑣𝑖 sin(𝜃𝑖), (1.15)

𝜃𝑖 = 𝜔𝑖, (1.16)

𝑚𝑖𝑣𝑖 = 𝐹𝑖, (1.17)

𝐽𝑖�̇�𝑖 = 𝑇𝑖, (1.18)

where (𝑥𝑖, 𝑦𝑖) is the position of the robot center, 𝜃𝑖 is the orientation, 𝑣𝑖 is the linear
velocity, 𝜔𝑖 is the angular velocity, 𝑚𝑖 is the mass, 𝐽𝑖 is the moment of inertia, 𝐹𝑖 is the
force, and 𝑇𝑖 is the torque applied to the robot. An illustration for this agent is given in
Figure 1.15a.

Next, to avoid the issue introduced by the non-holonomic constraints, a point (𝑥ℎ𝑖, 𝑦ℎ𝑖)

at a distance 𝑑𝑖 off the wheel axis as in Figure 1.15b is considered in order to define the
outputs: [︃

𝑥ℎ𝑖

𝑦ℎ𝑖

]︃
=

[︃
𝑥𝑖

𝑦𝑖

]︃
+ 𝑑𝑖

[︃
cos(𝜃𝑖)

sin(𝜃𝑖)

]︃
. (1.19)

Let[︃
𝐹𝑖

𝑇𝑖

]︃
=

[︃
1
𝑚𝑖

cos(𝜃𝑖) − 𝑑𝑖
𝐽𝑖

sin(𝜃𝑖)
1
𝑚𝑖

sin(𝜃𝑖)
𝑑𝑖
𝐽𝑖

cos(𝜃𝑖)

]︃−1 [︃
𝑢𝑥𝑖 + 𝑣𝑖𝜔𝑖 sin(𝜃𝑖) + 𝑑𝑖𝜔

2
𝑖 cos(𝜃𝑖)

𝑢𝑦𝑖 − 𝑣𝑖𝜔𝑖 cos(𝜃𝑖) + 𝑑𝑖𝜔
2
𝑖 sin(𝜃𝑖)

]︃
, (1.20)

where 𝑢𝑥𝑖 and 𝑢𝑦𝑖 are the acceleration inputs, related to the velocities 𝑣𝑥𝑖 and 𝑣𝑦𝑖, of
𝑥ℎ𝑖 and 𝑦ℎ𝑖, respectively, as in Figure 1.15b. Thus, the following sets of equations are
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(b) Mobile robot with a reference point off wheel axis for linearization.

Figure 1.15: Linearization of second-order agent.

obtained:

�̇�ℎ𝑖 = 𝑣𝑥𝑖, (1.21)

�̇�𝑥𝑖 = 𝑢𝑥𝑖, (1.22)

�̇�ℎ𝑖 = 𝑣𝑦𝑖, (1.23)

�̇�𝑦𝑖 = 𝑢𝑦𝑖. (1.24)

Finally, the pairs of equations (1.21)–(1.22) and (1.23)–(1.24) are in the form of (1.13),
and thus the system can be analyzed as second-order integrator agents and consensus-
based results can be applied.

A second-order consensus protocol that can lead the system in (1.13) to consensus is
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proposed by Ren and Atkins (2007) and can be written as

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝛼2(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)) + 𝛼1(�̇�𝑖(𝑡)− �̇�𝑗(𝑡))) , (1.25)

where 𝛼1 and 𝛼2 are the gains in the consensus protocol related to each state variable.

1.5.1 Consensus-based Flocking

A framework similar to the one applied in formation control problem can be used in order
to describe flocking for second-order integrator dynamics. In flocking, the objective is that
the agents keep a relative distance between each other, and achieve same orientation. It
means keeping formation and achieving consensus in the velocity. The first part —keeping
formation— can be handled by defining the displacement to a predefined desired formation
(𝑥*ℎ𝑖, 𝑦

*
ℎ𝑖) for each agent. Thus, analogously to (1.6), the error displacement is defined as

𝛿ℎ𝑖 =

[︃
𝛿𝑥,ℎ𝑖

𝛿𝑦,ℎ𝑖

]︃
=

[︃
𝑥ℎ𝑖 − 𝑥*ℎ𝑖
𝑦ℎ𝑖 − 𝑦*ℎ𝑖

]︃
. (1.26)

Taking the time-derivative of 𝛿𝑥,ℎ𝑖 and 𝛿𝑦,ℎ𝑖, it is easy to see that �̇�𝑥,ℎ𝑖(𝑡) = �̇�ℎ𝑖(𝑡) =

𝑣𝑥𝑖(𝑡) and �̇�𝑦,ℎ𝑖(𝑡) = �̇�ℎ𝑖(𝑡) = 𝑣𝑦𝑖(𝑡), as 𝑥*ℎ𝑖 and 𝑦*ℎ𝑖 are constants. Therefore, the dynamics
of each agent can be described as in (1.21)–(1.24). The pair of equations (1.21)–(1.22) is
decoupled from the pair (1.23)–(1.24), such that each pair can be independently analyzed
analogously to (1.13).

Thus, the protocol (1.25) that can drive the agents to consensus is applied as

𝑢𝑥𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝛼2(𝛿𝑥,ℎ𝑖(𝑡)− 𝛿𝑥,ℎ𝑗(𝑡)) + 𝛼1(𝑣𝑥,𝑖(𝑡)− 𝑣𝑥,𝑗(𝑡))) , (1.27)

𝑢𝑦𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝛼2(𝛿𝑦,ℎ𝑖(𝑡)− 𝛿𝑦,ℎ𝑗(𝑡)) + 𝛼1(𝑣𝑦,𝑖(𝑡)− 𝑣𝑦,𝑗(𝑡))) . (1.28)

A simulation is carried out to illustrate this problem, considering 𝛼1 = 𝛼2 = 1, the
state of each agent given by

𝑞𝑖(𝑡) =

⎡⎢⎢⎢⎢⎣
𝛿𝑥,ℎ𝑖(𝑡)

𝑣𝑥𝑖(𝑡)

𝛿𝑦,ℎ𝑖(𝑡)

𝑣𝑦𝑖(𝑡)

⎤⎥⎥⎥⎥⎦ , (1.29)

with initial conditions 𝑞1(0) = [−1 0.5 2 0]𝑇 , 𝑞2(0) = [2 0 1 0.5]𝑇 , and 𝑞3(0) = [0

−0.5 − 1 0.5]𝑇 , and given that the desired formation is a triangle given by (𝑥*ℎ1, 𝑦
*
ℎ1) =

(0, 0), (𝑥*ℎ2, 𝑦
*
ℎ2) = (1/2, 0), and (𝑥*ℎ3, 𝑦

*
ℎ3) = (1/4,

√
2/4). It is considered that all the
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Figure 1.16: Initial states 𝑞𝑖(0) and trajectories in the plane 𝑋𝑌 .

agents can communicate with each other, i.e. can send to and receive information from
all the other agents, representing a fully connected communication network.

The trajectories of the agents in the two-dimensional plane 𝑋𝑌 is illustrated in Fig-
ure 1.16 for a running time of 6𝑠. The initial state 𝑞𝑖(0) is represented at the initial
position (𝑥ℎ𝑖, 𝑦ℎ𝑖) of each agent. At each time interval of 0.25𝑠, a snapshot is represented
with the circle representing the position (𝑥ℎ𝑖, 𝑦ℎ𝑖), and an arrow indicating the velocity
(𝑣𝑥𝑖, 𝑣𝑦𝑖). At time 𝑡 = 6𝑠 the agents are represented by 𝑞𝑖(6) already performing flocking
behavior.

Finally, the state trajectories for this example are shown in Figure 1.17. Figure 1.17a
shows that the velocity 𝑣𝑦𝑖(𝑡) achieves consensus around 𝑡 = 4𝑠. Additionally, the state
variable 𝛿𝑦,ℎ𝑖(𝑡) in Figure 1.17b also achieves consensus while still varying as a ramp,
since it is integrating 𝑣𝑦𝑖(𝑡). The velocity 𝑣𝑥𝑖(𝑡) in Figure 1.17c is also shown to achieve
consensus at the same time. Note that 𝛿𝑥,ℎ𝑖(𝑡) in Figure 1.17d achieves consensus, but,
differently from 𝛿𝑦,ℎ𝑖(𝑡), has ramp slope close to zero, since 𝑣𝑥𝑖(𝑡) converges to a value
close to zero.

1.6 High-order Dynamics

Many agents can be described as high-order integrator dynamics, which is comprised
by any input-state linearizable system, e.g. speed control (Xia et al., 2012), and power
generators (Rigatos et al., 2014).

An example is presented for the longitudinal dynamics of a ground vehicle, including
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(a) State trajectories for 𝑣𝑦𝑖(𝑡) for all agents.
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(b) State trajectories for 𝛿𝑦,ℎ𝑖(𝑡) for all agents.

v x
i(
t)

t

−1

−0.5

0

0

0.5

1 2 3 4 5 6

(c) State trajectories for 𝑣𝑥𝑖(𝑡) for all agents.
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(d) State trajectories for 𝛿𝑥,ℎ𝑖(𝑡) for all agents.

Figure 1.17: State trajectories for second-order agents.
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engine, drive line, brake system, aerodynamics drag, tire friction, rolling resistance, and
gravitational force, with the following assumptions extracted from Zheng et al. (2016)
(Swaroop et al., 1994; Xiao and Gao, 2011; Li et al., 2011a, 2013):

∙ The tire longitudinal slip is negligible, and the powertrain dynamics are lumped into
a first-order inertial transfer function;

∙ The vehicle body is considered to be rigid and symmetric;

∙ The influence of pitch and yaw motions is neglected;

∙ The driving and braking torques are controllable inputs.

With these considerations, the following simplified but still nonlinear longitudinal
dynamics of a vehicle 𝑖 can be obtained (Zheng et al., 2016):

�̇�𝑖(𝑡) = 𝑣𝑖(𝑡) (1.30)

�̇�𝑖(𝑡) =
1

𝑚𝑖

(︂
𝜂𝑖
𝑇𝑖(𝑡)

𝑅𝑖

− 𝐶𝑖𝑣
2
𝑖 −𝑚𝑖𝑔𝑓

)︂
(1.31)

𝜄𝑖�̇�𝑖(𝑡) + 𝑇𝑖(𝑡) = 𝑇𝑖,𝑑𝑒𝑠(𝑡), (1.32)

where 𝑠𝑖(𝑡), 𝑣𝑖(𝑡) denote the position and velocity, 𝑚𝑖 is the vehicle mass, 𝐶𝑖 is the lumped
aerodynamic drag coefficient, 𝑔 is the acceleration due to gravity, 𝑓 is the coefficient of
rolling resistance, 𝑇𝑖(𝑡) denotes the actual driving/braking torque, 𝑇𝑖,𝑑𝑒𝑠(𝑡) is the desired
driving/braking torque, 𝜄𝑖 is the inertial delay of vehicle longitudinal dynamics, 𝑅𝑖 denotes
the tire radius, and 𝜂𝑖 is the mechanical efficiency of driveline.

Zheng et al. (2016) use the output position to linearize the nonlinear model by making

𝑇𝑖,𝑑𝑒𝑠(𝑡) =
1

𝜂𝑖
(𝐶𝑖𝑣𝑖(2𝜄𝑖�̇�𝑖 + 𝑣𝑖) +𝑚𝑖𝑔𝑓 +𝑚𝑖𝑢𝑖)𝑅𝑖, (1.33)

where 𝑢𝑖 is the new input signal after linearization, such that the linear model for the
vehicle longitudinal dynamics

𝜂𝑖�̇�𝑖(𝑡) + 𝑎𝑖(𝑡) = 𝑢𝑖(𝑡), (1.34)

where �̇�𝑖(𝑡) = 𝑣𝑖(𝑡) denotes the acceleration. Finally, the third-order state space model
can be written as (Xiao and Gao, 2011; Zheng et al., 2016)⎡⎢⎣�̇�𝑖(𝑡)�̇�𝑖(𝑡)

�̇�𝑖(𝑡)

⎤⎥⎦ =

⎡⎢⎣0 1 0

0 0 1

0 0 −1
𝜄𝑖

⎤⎥⎦
⎡⎢⎣𝑠𝑖(𝑡)𝑣𝑖(𝑡)

𝑎𝑖(𝑡)

⎤⎥⎦+

⎡⎢⎣0

0
1
𝜄𝑖

⎤⎥⎦𝑢𝑖(𝑡). (1.35)

With this model at hand, the platoon problem is presented as an application of con-
sensus.
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1.6.1 Consensus-based Platooning

The objective in a platoon problem is to make all vehicles move at the same speed while
maintaining a desired inter-vehicle spacing policy. The platoon problem has a long history
and has recently attracted extensive research interests. Some overviews can be seen in
the works by Tsugawa (2002), Li et al. (2015), and Jia et al. (2016).

A platoon can be viewed as a group of agents, i.e. vehicles, and the problem may
be described similarly to the consensus-based formation problem, to achieve consensus
on three variables: the distance from the current position to a pre-defined position; the
speed; and the acceleration. The following state variables are thus defined⎡⎢⎣𝑠𝑖(𝑡)𝑣𝑖(𝑡)

𝑎𝑖(𝑡)

⎤⎥⎦ =

⎡⎢⎣𝑠𝑖(𝑡)− 𝑠
*
𝑖

𝑣𝑖(𝑡)

𝑎𝑖(𝑡)

⎤⎥⎦ , (1.36)

with 𝑠*𝑖 defined similarly to 𝑥*𝑖 in Equation (1.6) for the formation problem. Hence, the
vehicles can achieve platoon with a distance policy 𝛿𝑖𝑗 as shown in Figure 1.18 which can
be defined from 𝑠*𝑖 and 𝑠*𝑗 as

𝛿𝑖𝑗 = 𝑠*𝑖 − 𝑠*𝑗 . (1.37)

Figure 1.18 shows an example where each vehicle can measure the distance only to
the vehicle in front of itself with 𝑎𝑖𝑗 describing these neighboring vehicles.

a43 = 1 a32 = 1 a21 = 1

δ43 = 20m δ32 = 20m δ21 = 20m

Figure 1.18: Platooning problem.

A consensus protocol that can drive the agents to consensus is

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝛼3(𝑠𝑖(𝑡)− 𝑠𝑗(𝑡)) + 𝛼2(𝑣𝑖(𝑡)− 𝑣𝑗(𝑡)) + 𝛼1(𝑎𝑖(𝑡)− 𝑎𝑗(𝑡))) , (1.38)

which replacing 𝑠𝑖(𝑡) from (1.36) yields

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗
(︀
𝛼3(𝑠𝑖(𝑡)− 𝑠𝑗(𝑡)− (𝑠*𝑖 − 𝑠*𝑗)) + 𝛼2(𝑣𝑖(𝑡)− 𝑣𝑗(𝑡)) + 𝛼1(𝑎𝑖(𝑡)− 𝑎𝑗(𝑡))

)︀
,

(1.39)

with 𝛿𝑖𝑗 from (1.37), the consensus protocol can be written equivalently as

𝑢𝑖(𝑡) = −
∑︁
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝛼3(𝑠𝑖(𝑡)− 𝑠𝑗(𝑡)− 𝛿𝑖𝑗) + 𝛼2(𝑣𝑖(𝑡)− 𝑣𝑗(𝑡)) + 𝛼1(𝑎𝑖(𝑡)− 𝑎𝑗(𝑡))) , (1.40)
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and 𝑠𝑖(𝑡) − 𝑠𝑗(𝑡) can be assessed by a sensor located in front of vehicle 𝑖 to measure the
distance to vehicle 𝑗.

The group of vehicles represented in Figure 1.18 is simulated in order to show the state
evolution as the agents achieve platoon formation. The agents are indexed as follows, the
rightmost red vehicle is agent 1, the green is agent 2, the blue one is agent 3, and finally
agent 4 refers to the leftmost yellow car. The desired distance between each pair of cars
is 𝛿43 = 𝛿32 = 𝛿21 = 20m.

Note that the red vehicle receives no information from any other agent and therefore
is considered the leader. Its velocity thus remains constant, as the control input from the
consensus protocol is zero. Additionally, all the agents are expected to achieve consensus
on the velocity and acceleration defined by the leader.

The initial conditions are considered as follows: 𝑠1(0) = 200m, 𝑠2(0) = 150m, 𝑠3(0) =

90m, and 𝑠4(0) = 20m are the initial positions in relation to an inertial reference; all the
initial velocities are considered to be 𝑣1(0) = 𝑣2(0) = 𝑣3(0) = 𝑣4(0) = 10m/𝑠; and all
the accelerations are considered initially null, i.e 𝑎1(0) = 𝑎2(0) = 𝑎3(0) = 𝑎4(0) = 0m/𝑠2.
For the spacing distances defined as 𝛿43 = 𝛿32 = 𝛿21 = 20m, it can be defined the desired
formation-like parameters as 𝑠*1 = 60m, 𝑠*2 = 40m, 𝑠*3 = 20m, and 𝑠*4 = 0m.

A simulation is carried-out to show that the analysis of the vehicle dynamics (1.35)
with the consensus protocol (1.38) can be applied to guarantee platoon considering gains
𝛼1 = 1, 𝛼2 = 2, and 𝛼3 = 1 as designed by Zheng et al. (2016). Figure 1.19 shows the
evolution of the space distance between two adjacent cars. The simulation carried out
shows that the vehicles manage to achieve the desired distance of 20m between the cars.
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Figure 1.19: Spacing between the vehicles for 𝑖 = 1, 2, 3.

Additionally, the state variables in (1.36) are shown in Figure 1.20 as the agents achieve
consensus, converging to the blue line related to agent 1, red front car in Figure 1.18. All
the states reach consensus, with the lim𝑡→∞ 𝑎𝑖(𝑡) = 0 in Figure 1.20c, lim𝑡→∞ 𝑣𝑖(𝑡) = 10
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(a) State trajectories for 𝑠𝑖(𝑡) = 𝑠𝑖(𝑡)− 𝑠*𝑖 for all agents.
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(b) State trajectories for 𝑣𝑖(𝑡) for all agents.
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(c) State trajectories for 𝑎𝑖(𝑡) for all agents.

Figure 1.20: State trajectories for vehicles longitudinal dynamics.

and constant in Figure 1.20b, and 𝑠𝑖(𝑡) varying as a ramp with slope given by the velocity
in Figure 1.20a.

1.7 Overview of this Thesis and Contributions

The examples presented for formation control, flocking, and platoon, show some of the
many classes of problems and dynamics of agents that can be addressed using consensus-
based approaches. In fact, consensus can be applied in many problems in distributed
control or multiagent systems. Additionally, as communication and signal processing
relay on processes that can introduce delays, its analysis in multiagent systems is of
major importance for networked application, as the delays can cause degradation of the
system dynamics (Figure 1.5) and lead to instability (Figure 1.7), preventing consensus
and consequently the execution of the task that is under analysis. Therefore, in the
remaining of this text the results for consensus will be presented considering time-delays.
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In Chapter 2, it is presented a transformation that allows consensus problems with
communication and input delays to be analyzed as stability problems. Additional lemmas
used throughout this thesis are also presented in that chapter.

An analysis of the impacts of delays in communication or input-delays will be presented
in Chapter 3 showing that for different values of constant time-delays, the introduction of
the delays can either prevent or enable consensus. It shows the importance of analyzing
delays in different intervals of variation. The presented results are exact, i.e. necessary
and sufficient. Part of these results were published by Savino et al. (2015) and are also
applied here to communication delays.

Next, results considering the analysis of consensus with the considered bounds of time-
varying delays is presented in Chapter 4. The presented results are sufficient but less
conservative than others in the literature. This chapter generalizes the results published
by Savino et al. (2013), Savino et al. (2014b), Savino et al. (2014a), and Savino et al.
(2016b), and extends the results to the application in communication delays.

Analysis of switching topologies, which can be due to failures in the communication
channels causing the drop of communication links, is presented in Chapter 5. This is
a reprint of the result published by Savino et al. (2016a), which also generalizes dos
Santos Junior et al. (2014) and dos Santos Junior et al. (2015). The result is also applied
to communication delays.

The design of the coupling strengths between the agents related to the weights 𝑎𝑖𝑗
assigned to the communication links is presented in Chapter 6. These results are presented
by Savino et al. (2016c), a book chapter to be published on the series of Advances in Delays
and Dynamics, edited by Springer.

An analysis of single-order consensus applied to rigid bodies with an application in
cooperative robotics is shown in Chapter 7. It summarizes the results obtained during
the exchange program at the Interactive Robotics Groups in the Massachusetts Institute
of Technology. These results follow the lines of the work published by Brito et al. (2015).

Finally, the text ends with the conclusions.

The contributions of this Thesis are summarized next:

∙ An alternative way to write the Laplacian matrix of a graph in Lemma 2.2 which
simplifies the design of the coupling strengths by showing all the weights in a diag-
onal matrix 𝒲 .
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∙ An extension of the tree-type transformation of consensus into a stability problem
for high-order dynamics in Section 2.2, which gives the disagreement systems (2.49)
for communication delays and (2.72) for input delays.

∙ The analysis of consensus on intervals of time-delays for agents described by chain
of integrators in Theorem 3.1 for communication and Theorem 3.2 for input de-
lays. It is also shown that a multiagent system with agents given by single-order
integrator can achieve consensus independent of the communication delay (Corol-
lary 3.1), as expected from previous results in the literature. The system can also
be independent of the communication delay for second-order integrator dynamics if
the gains in the consensus protocol are properly adjusted (Corollary 3.2), and for
higher-order the delays can either improve or degrade the systems behavior accord-
ing to the interval of time-delay, according to Theorem 3.1. Likewise, the effects
of input-delays always degrade the systems performance for first- and second-order
integrators, showing an upper bound for the delay margins in Corollaries 3.3 and
3.4, respectively. For higher-orders, like the communication delays, input delays can
also improve or degrade performance according to its interval (Theorem 3.2). This
analysis shows that the impact of time-delays, either allowing or preventing consen-
sus, depends on the interval on which the time-delay belongs. Thus, consensus with
time-delays have to be analyzed on intervals, which is the assumption made for the
domain of the time-delays in the next results.

∙ An LMI method for the analysis of consensus with time-delays is presented for both
communication and input delays in Theorem 4.1. The delays are assumed to belong
to an interval described by a lower and upper bound in order to analyze the delays
on intervals. The result also presents a guaranteed exponential convergence rate for
consensus and is related to the time needed to approach consensus. The proposed
method is shown to perform better than related results in the literature.

∙ An extension of the analysis method to deal with switching topologies is presented
and a sufficient condition to show consensus is given in Theorem 5.1. The switching
behavior is described as a Markov Chain with uncertain parameters, which can
describe uncertainties in the model of the transition rates, and also consider time-
delays given on intervals.

∙ The design of the coupling strengths is done with LMI methods in order to increase
performance according to a convergence rate in Theorem 6.1, for fixed topologies.
It can also be applied to allow greater margins of time-delays, as presented for
switching topologies in Theorem 6.2.

∙ A result for rigid-body pose consensus is presented to the application of dual quater-
nions to describe the pose. New mappings between the derivative of the logarithm
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of a quaternion, or a dual quaternion, and the derivative of the quaternion itself, or
dual quaternion, are given in Theorems 7.1 and 7.2, respectively. Then, a direct ex-
tension for consensus in dual quaternions is show in Theorem 7.3, and the extension
to consensus on the pose is given in Theorem 7.4 and to consensus-based formation
is given in Theorem 7.5. The results are applied to practical examples using mobile
manipulators.



Chapter 2

Background for Analyzing Consensus
as Stability

This chapter presents how to transform a consensus problem into a stability one, which
is necessary for the development of the results to be presented in the following chapters.
The representation of the network topology with graphs is followed by the description of
the dynamics of multiagent systems with communication delays, input delays, and free of
delay as a special case. The chapter is finished with some important lemmas.

2.1 Algebraic Graph Theory

The information flow of a multiagent system is modeled using the algebraic theory of
graphs as first proposed by Fax and Murray (2002) and Jadbabaie et al. (2003). An ex-
ample of this representation has been introduced in the previous chapter (see Figure 1.2).
A more detailed example is presented here in Figure 2.1a, where an undirected graph
is used to model the interactions of four agents. An undirected graph refers to commu-
nication networks with two-way communication links, i.e. if node 1 is able to receive
information from node 2, then node 2 also receives information from node 1, and the
same is valid for all the other nodes in Figure 2.1a. Additionally, in undirected networks,
the coupling strengths 𝑎𝑖𝑗, equivalent to the weights associated to each neighbor 𝑗 of an
agent 𝑖, obey 𝑎𝑖𝑗 = 𝑎𝑗𝑖.

An undirected network is a special case of a directed network, presented in Figure 2.1b.
In a directed network, it is not necessary for two agents sharing a link to have bidirectional
communication. As seen in Figure 2.1b, node 2 receives information from node 3, but the
opposite is not true. The same happens for the links between nodes 3 and 4, and nodes
4 and 2. The two-way communication link as in undirected networks is still possible, as
shown for nodes 1 and 2, but, it is not necessary that the two coupling strengths to be

26
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(a) Undirect graph.
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(b) Directed graph.

Figure 2.1: Example of graphs.

equal, e.g. 𝑎21 = 1 and 𝑎12 = 2.

This text makes use of directed graphs, which can also represent undirected graphs.
Additionally, directed graphs can also model leader-following multiagent systems. This is
the case if 𝑎12 = 0 in Figure 2.1b, which implies that agent 1 receives no information from
any other agent. An example of a leader following system was presented for platooning
in Figure 1.18.

A simple directed graph is denoted by 𝒢(𝒱 , ℰ ,𝒜), where 𝒱 represents the set of 𝑚
vertices (or nodes) ordered and labeled as 𝑣1, ..., 𝑣𝑚 ∈ 𝒱 , ℰ represents the set of directed
edges connecting the nodes and dictating the direction of the information flow, given by
𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗), where the first element 𝑣𝑖 is the parent node (tail) and the second element
𝑣𝑗 is the child node (head). No multiple edges or graph loops are allowed. The Adjacency
Matrix 𝒜 = [𝑎𝑖𝑗] associated with graph 𝒢 assigns a real non-negative value to each edge
𝑒𝑖𝑗, according to

𝑎𝑖𝑗

{︃
= 0, if 𝑖 = 𝑗 or @ 𝑒𝑗𝑖,
> 0, if and only if ∃ 𝑒𝑗𝑖.

(2.1)

Additionally, it is defined the Degree Matrix 𝒟 = [𝑑𝑖𝑖], a diagonal matrix with elements
𝑑𝑖𝑖 =

∑︀𝑚
𝑗=1 𝑎𝑖𝑗. Given the definitions of the Adjacency and Degree matrices, it follows the

definition of the Laplacian Matrix:

𝐿 = 𝒟 −𝒜, (2.2)

which is equivalent to 𝐿 = [𝑙𝑖𝑗] with 𝑙𝑖𝑖 = 𝑑𝑖𝑖 =
∑︀𝑚

𝑗=1 𝑎𝑖𝑗 and 𝑙𝑖𝑗 = −𝑎𝑖𝑗, for 𝑖 ̸= 𝑗. An
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(d) Subgraph 𝒢𝑎,4.

Figure 2.2: Example of subgraphs on nodes/agents.

important property of the Laplacian matrix is the following:

𝐿1𝑚 = 0𝑚. (2.3)

Subgraphs on nodes/agents

A subgraph of 𝒢 is a graph with a subset of vertices from 𝒱 and a subset of edges from
ℰ . A subgraph on node —or agent— 𝑖, 𝒢𝑎,𝑖 of 𝒢, is defined as the graph with vertices
𝒱𝑎,𝑖 = 𝒱 but only the edges 𝑒𝑗𝑖 ∈ ℰ having 𝑖 as the child node. For illustration, the
subgraphs on nodes originated from the graph in Figure 2.1b are shown in Figure 2.2.
These subgraphs have great importance in the study of input delays.
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Directed spanning trees

A directed tree (Bullo et al., 2009) is a type of directed graph in which there is a node
called root without parent nodes, i.e. there is no edge pointing towards it. Besides, all the
other nodes in the directed tree have exactly one parent. Also, there is a path, a directed
sequence of edges, connecting the root to any other node in the tree. Another interesting
property is the absence of cycles. A directed graph 𝒢 is said to have a directed spanning
tree 𝒢𝑠𝑝𝑎𝑛 if from the removal of some of the edges in 𝒢 a directed tree with the same
set of vertices of 𝒢 can be formed. This graph is called a spanning tree 𝒢𝑠𝑝𝑎𝑛 and is a
subgraph of 𝒢. Besides, 𝒢 can have several spanning trees.

A graph 𝒢 is said to be weakly connected if 𝒢 has at least one spanning tree. Let
𝒢𝑠𝑝𝑎𝑛,𝑖 represent a directed spanning tree with 𝑣𝑖 as the root node. Then, 𝒢 is called
strongly connected if a 𝒢𝑠𝑝𝑎𝑛,𝑖 can be formed for all 𝑣𝑖 ∈ 𝒱 .

Several examples of directed spanning trees that can be formed from 𝒢 in Figure 2.1b
are shown in Figure 2.3, where the gray dashed lines represent the removed edges in order
to form each directed spanning tree. Furthermore, from this example it can be noticed
that 𝒢 in Figure 2.1b is a strongly connected graph, since there is a directed spanning
trees 𝒢𝑠𝑝𝑎𝑛,𝑖 for each 𝑣𝑖, as shown in Figures 2.3a, 2.3b, 2.3c, and 2.3d for the nodes 𝑣1,
𝑣2, 𝑣3, and 𝑣4, respectively.

Next lemma regarding the Laplacian of directed spanning trees plays an important
role in the analysis of consensus of multi-agent systems:

Lemma 2.1 (Ren and Beard (2008) [Cor. 2.5]) Given a directed graph 𝒢 with Laplacian
Matrix 𝐿, 𝐿 has at least one zero eigenvalue with an associated eigenvector 1𝑚, and all
the nonzero eigenvalues are in the open right half plane. Furthermore, 𝐿 has exactly one
zero eigenvalue if and only if the 𝒢 has a directed spanning tree.

2.1.1 Ordered Index for the Edges

In order to simplify the subscript notation, a new ordered index 𝑘 is assumed to label each
edge, replacing the pair (𝑖, 𝑗) for a single 𝑘, such that 𝑒𝑖𝑗(𝑡) = 𝑒𝑘(𝑡). Letting 𝑟 represent
the total number of directed edges in the Graph 𝒢 or equivalently the number of elements
in ℰ , it follows that 𝑘 = 1, . . . , 𝑟. The assignment of index 𝑘 is outlined in Algorithm
2.1 with some other additional variables ℎ𝑘 and ℎ̄𝑘 which will be used next to write the
Laplacian matrix in an alternative form.

To illustrate the result of Algorithm 2.1, consider its application on the graph presented
in Figure 2.1b, the result for the new indices in edges 𝑒𝑘 is presented in Figure 2.4.
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(a) Directed spanning tree 𝒢𝑠𝑝𝑎𝑛,1.
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(b) Directed spanning tree 𝒢𝑠𝑝𝑎𝑛,2.
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(c) Directed spanning tree 𝒢𝑠𝑝𝑎𝑛,3.
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(d) Directed spanning tree 𝒢𝑠𝑝𝑎𝑛,4.

Figure 2.3: Example of directed spanning trees 𝒢𝑠𝑝𝑎𝑛.

Algorithm 2.1: New indices 𝑘
Initialize: 𝑘 ← 0;
for 𝑖 = 1, 2, . . . ,𝑚 do

for 𝑗 = 1, 2, . . . ,𝑚 do
if ∃𝑒𝑗𝑖 ∈ ℰ then

𝑘 ← 𝑘 + 1;
𝑎𝑘 ← 𝑎𝑖𝑗;
𝑒𝑘 ← 𝑒𝑗𝑖;
ℎ𝑘 ← zero column-vector of size 𝑚;
ℎ̄𝑘 ← zero column-vector of size 𝑚;
ℎ𝑘 𝑖-th entry ← 1; ℎ𝑘 𝑗-th entry ← −1;
ℎ̄𝑘 𝑖-th entry ← 1;
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Figure 2.4: New indices 𝑘 for the edges in a graph.

Subgraphs on edges

For each edge 𝑒𝑘 on the graph with the new indices 𝑘 as in Figure 2.4, it can be defined
the subgraph on edge 𝑘, 𝒢𝑒,𝑘. A subgraph 𝒢𝑒,𝑘 of 𝒢 has the same set of vertices 𝒱𝑒,𝑘 = 𝒱
but exactly one edge 𝑒𝑘 in set of edges ℰ𝑒,𝑘 ⊂ ℰ , with 𝑒𝑘 = 𝑒𝑗𝑖 from Algorithm 2.1. Since
𝑟 is the number of edges in ℰ , a graph 𝒢 has 𝑟 subgraphs 𝒢𝑒,𝑘. For illustration purpose,
the five subgraphs originated from the graph in Figure 2.4 are shown in Figure 2.5.

2.1.2 Alternative Representation of the Laplacian Matrix

From Algorithm 2.1, the Laplacian Matrix 𝐿 associated with graph 𝒢 is defined in an
alternative form, inspired by Godsil and Royle (2003), where the weights 𝑎𝑖𝑗 of the edges
in ℰ can be conveniently displayed in the diagonal of a Weight Matrix 𝑊 . This matrix
plays an important role in the design methods, later discussed in this work.

Consider the index of each directed edge 𝑒𝑖𝑗 ∈ ℰ rewritten according to Algorithm 2.1,
such that the edges are ordered as 𝑒𝑘 = 𝑒𝑗𝑖, with associated weights 𝑎𝑘, and vectors ℎ𝑘
and ℎ̄𝑘. Also 𝑘 = 1, . . . , 𝑟 where 𝑟 is the number of edges in the Graph 𝒢. Thus, the
Incidence Matrix of a directed graph 𝒢 is defined as

𝐻 = [ℎ1 . . . ℎ𝑟], (2.4)

and the associated Heading Matrix is defined as

�̄� = [ℎ̄1 . . . ℎ̄𝑟], (2.5)

both matrices of dimension 𝑚× 𝑟. Additionally, writing the ordered coupling strengths
𝑎𝑘 = 𝑎𝑖𝑗 according to Algorithm 2.1 in the ascending order of 𝑘 in the diagonal of a
matrix, it is defined the Weight Matrix 𝒲 ∈ R𝑟×𝑟.

Finally, the Laplacian Matrix can be alternatively written according to the following
Lemma.

Lemma 2.2 From Algorithm 2.1, let 𝐻 be the 𝑚 × 𝑟 Incidence Matrix as in (2.4), �̄�
be the 𝑚× 𝑟 associated Heading Matrix as in (2.5), and 𝒲 be the 𝑟 × 𝑟 diagonal Weight
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(d) Subgraph 𝒢𝑒,4.

1 2

3

4

e24

(e) Subgraph 𝒢𝑒,5.

Figure 2.5: Example of subgraphs on edges.
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Matrix associated with a directed graph 𝒢. Thus, the Laplacian Matrix 𝐿 of 𝒢 can be
written as

𝐿 = �̄�𝒲𝐻𝑇 . (2.6)

Proof Equation (2.6) can be expanded as

�̄�𝒲𝐻𝑇 =
𝑟∑︁

𝑘=1

𝑎𝑘ℎ̄𝑘ℎ
𝑇
𝑘 .

Since, from Algorithm 2.1, ℎ̄𝑘 is a column-vector of size 𝑚 with some 𝑖-th entry equal 1

and 0 elsewhere, where 𝑖 is associated with the head 𝑣𝑖 of the edge 𝑒𝑘 = 𝑒𝑗𝑖, the product
𝑎𝑘ℎ̄𝑘ℎ

𝑇
𝑘 gives an 𝑚 ×𝑚 matrix with ℎ𝑇𝑘 weighted by 𝑎𝑘 in the 𝑖-th row and 0 elsewhere.

This is the Laplacian Matrix of a subgraph on edge 𝒢𝑒,𝑘 containing only edge 𝑒𝑘, i.e.
𝑎𝑘ℎ̄𝑘ℎ

𝑇
𝑘 = 𝐿𝑘, thus

𝑟∑︁
𝑘=1

𝑎𝑘ℎ̄𝑘ℎ
𝑇
𝑘 =

𝑟∑︁
𝑘=1

𝐿𝑘 = 𝐿.

This completes the proof. �

The following remarks summarize some additional results:

Remark 2.1 As noted in the proof of Lemma 2.2, Algorithm 2.1 simplifies writing the
Laplacians 𝐿𝑘 related to the subgraphs 𝒢𝑒,𝑘 of each edge 𝑒𝑘, with

𝐿𝑘 = 𝑎𝑘ℎ̄𝑘ℎ
𝑇
𝑘 .

Remark 2.2 The weights 𝑎𝑘 = 𝑎𝑖𝑗 are given in the main diagonal of 𝑊 , i.e.

𝑊 = diag{𝑎1, 𝑎2, . . . , 𝑎𝑟}.

2.2 Consensus Problem Formulation

In this section, the consensus problem is defined for agents with linear dynamics. Single-
order dynamics and high-order integrator dynamics are special cases of this one. Next,
the transformation of consensus problem into a stability one is presented for systems with
communication delay, systems with input delays, and finally for systems without delays,
which is a special case of the previous two.

First, the definition of consensus is formalized:
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Definition 2.1 A multi-agent system composed of 𝑚 agents with state variables 𝑥𝑖(𝑡) ∈
R𝑛, where 𝑖 ∈ {1, . . . ,𝑚} is the agent index, asymptotically reaches consensus if, for all
𝑖 ̸= 𝑗,

lim
𝑡→∞

(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)) = 0 (2.7)

hold for any initial state condition.

The conditions presented in the next chapters for the analysis of consensus rely on Defi-
nition 2.1.

In order to obtain a compact representation of the multi-agent system, a unique stacked
state vector is given to comprise all the agent states 𝑥𝑖(𝑡) as

𝑥(𝑡) =

⎡⎢⎢⎢⎢⎣
𝑥1(𝑡)

𝑥2(𝑡)
...

𝑥𝑚(𝑡)

⎤⎥⎥⎥⎥⎦ . (2.8)

2.2.1 Tree-type Transformation

Consensus can be translated into a stability problem by means of a transformation denom-
inated as tree-type transformation by Sun and Wang (2009). This is done by introducing
new variables 𝑧𝑖(𝑡) representing the disagreement on the state variables, given by

𝑧𝑖(𝑡) = 𝑥1(𝑡)− 𝑥𝑖+1(𝑡), (2.9)

for 𝑖 = 1, 2, . . . ,𝑚−1. The disagreement variables can be stacked in a vector 𝑧(𝑡) similarly
to 𝑥(𝑡) by doing

𝑧(𝑡) =

⎡⎢⎢⎢⎢⎣
𝑧1(𝑡)

𝑧2(𝑡)
...

𝑧𝑚−1(𝑡)

⎤⎥⎥⎥⎥⎦ , (2.10)

or equivalently
𝑧(𝑡) = (𝑈 ⊗ 𝐼𝑛)𝑥(𝑡), (2.11)

where
𝑈 = [1𝑚−1 −𝐼𝑚−1], (2.12)

which represents the tree-type transformation, with inverse transformation given by

𝑥(𝑡) = 1𝑚 ⊗ 𝑥1(𝑡) + (𝑊 ⊗ 𝐼𝑛)𝑧(𝑡), (2.13)
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where

𝑊 =

[︃
0𝑇
𝑚−1

−𝐼𝑚−1

]︃
. (2.14)

Then, the following proposition establishes the relation between consensus and the
stability analysis of the transformed system:

Proposition 2.1 The multi-agent system with stacked state variables 𝑥(𝑡) in (2.8) is in
consensus if and only if the stacked disagreement vector 𝑧(𝑡) in (2.10) is null.

Proof It is clear from (2.9) that if the agents reach consensus then 𝑧(𝑡) is null. Now,
consider that 𝑧(𝑡) reaches the origin, thus, from (2.13)

𝑥(𝑡) = 1𝑚 ⊗ 𝑥1(𝑡) +
���

���
��:0

(𝑊 ⊗ 𝐼𝑛)𝑧(𝑡)), (2.15)

such that all the agents reach the same state of 𝑥1(𝑡), which means consensus, completing
the proof. �

The above proposition essentially establishes that consensus can be assessed by study-
ing stability of the transformed system 𝑧(𝑡). Thus, with Proposition 2.1, Definition 2.1 is
translated into:

Corollary 2.1 A multi-agent system composed of 𝑚 agents with state variables 𝑥𝑖(𝑡) ∈
R𝑛, where 𝑖 ∈ {1, . . . ,𝑚} is the agent index, asymptotically reaches consensus according
to Definition 2.1 if and only if the stacked disagreement vector asymptotically reaches the
origin, i.e

lim
𝑡→∞

𝑧(𝑡) = 0 (2.16)

holds for any initial state conditions.

Next sections describe the transformation of multi-agent systems with communication
delays, input delays, and free of delays.

2.2.2 Consensus Problem with Communication Delay

A multiagent system is modeled by a graph 𝒢 where each node represents an agent, and
the edges represent communication channels. Consider a system with 𝑚 agents with linear
dynamics:

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝑡), 𝑖 = 1, 2, . . . ,𝑚, (2.17)
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where 𝑥𝑖 ∈ R𝑛 are the state variables of the 𝑖-th agent, with 𝑛 ∈ N determining the
order of the agent dynamics, 𝑢𝑖 ∈ R𝑝 is the control input of the 𝑖-th agent, for 𝑝 ∈ N
representing the order of the input, 𝐴 ∈ R𝑛×𝑛, and 𝐵 ∈ R𝑛×𝑝.

The analysis is based on the following consensus protocol with communication delays

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏𝑖𝑗(𝑡))

)︀
, (2.18)

where 𝐾 ∈ R𝑝×𝑛 is a constant Gain Matrix and 𝜏𝑖𝑗(𝑡) is the time-varying communication
delay from agent 𝑗 to agent 𝑖. The topology of 𝒢 is taken into account through 𝑎𝑖𝑗 ∈ 𝒜,
e.g. 𝑎𝑖𝑗 = 0 if node 𝑖 gets no information from 𝑗. The control input 𝑢𝑖(𝑡) is based on the
information from neighbors of agent 𝑖 since 𝑎𝑖𝑗 = 0 if 𝑖 and 𝑗 are not neighbors. Initial
conditions for the agents’ states are denoted by:

𝑥𝑖(𝜄) = 𝜑𝑖(𝜄), ∀𝜄 ∈ [−𝜏max, 0], (2.19)

where the functions 𝜑𝑖 are arbitrary and correspond to the sets of initial conditions con-
sidered over the interval [−𝜏max, 0], where 𝜏max correspond to the maximum time-delay
value. In addition 𝜏𝑖𝑗(𝑡) ∈ [𝜏min, 𝜏max].

A compact representation of the multi-agent system is given by

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴)𝑥(𝑡) + (𝐼𝑚 ⊗𝐵)𝑢(𝑡), (2.20)

where 𝑥(𝑡) is a stacked state vector as in (2.8) and 𝑢(𝑡) is a stacked input vector given by

𝑢(𝑡) =

⎡⎢⎢⎢⎢⎣
𝑢1(𝑡)

𝑢2(𝑡)
...

𝑢𝑚(𝑡)

⎤⎥⎥⎥⎥⎦ =
𝑚∑︁
𝑖=1

�̄�𝑖(𝑡) =

⎡⎢⎢⎢⎢⎣
𝑢1(𝑡)

0𝑛

...
0𝑛

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

�̄�1(𝑡)

+

⎡⎢⎢⎢⎢⎣
0𝑛

𝑢2(𝑡)
...

0𝑛

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

�̄�2(𝑡)

+ . . .+

⎡⎢⎢⎢⎢⎣
0𝑛

0𝑛

...
𝑢𝑚(𝑡)

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

�̄�𝑚(𝑡)

, (2.21)

with �̄�𝑖(𝑡) ∈ R𝑚𝑛 the input vector for the 𝑖-th agent only, arranged in the form �̄�𝑖(𝑡) =

𝜗𝑖 ⊗ 𝑢𝑖(𝑡), with 𝜗𝑖 an 𝑚-dimensional column vector with the 𝑖-th entry being one and
zeros elsewhere. Thus, 𝑢(𝑡) can be given as

𝑢(𝑡) =
𝑚∑︁
𝑖=1

𝜗𝑖 ⊗ 𝑢𝑖(𝑡), (2.22)

and replacing the consensus protocol (2.18), gives

𝑢(𝑡) = −
𝑚∑︁
𝑖=1

𝜗𝑖 ⊗
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏𝑖𝑗(𝑡))

)︀
, (2.23)

=

(︃
𝑚∑︁
𝑖=1

𝜗𝑖 ⊗𝐾
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗(𝑡− 𝜏𝑖𝑗(𝑡))
)︃
−
(︃

𝑚∑︁
𝑖=1

𝜗𝑖 ⊗𝐾
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖(𝑡).

)︃
(2.24)



CHAPTER 2. BACKGROUND FOR ANALYZING CONSENSUS AS STABILITY 37

It can be shown after some computation that
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗(𝑡− 𝜏𝑖𝑗(𝑡)) =
𝑟∑︁

𝑘=1

(𝜗𝑇
𝑖 𝒜𝑒,𝑘 ⊗ 𝐼𝑛)𝑥(𝑡− 𝜏𝑘(𝑡)), (2.25)

and
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖(𝑡) = 𝑑𝑖𝑖𝑥𝑖(𝑡) = (𝜗𝑇
𝑖 𝒟 ⊗ 𝐼𝑛)𝑥(𝑡), (2.26)

where 𝒜𝑒,𝑘 is the Adjacency Matrix of the subgraph 𝒢𝑒,𝑘, containing edge 𝑒𝑗𝑖 = 𝑒𝑘 with
corresponding delay 𝜏𝑖𝑗(𝑡) = 𝜏𝑘(𝑡) according to Algorithm 2.1, and 𝒟 is the Degree Matrix
of the network graph 𝒢.

Replacing (2.26) and (2.25) into (2.24) yields

𝑢(𝑡) =

(︃
𝑚∑︁
𝑖=1

𝜗𝑖 ⊗𝐾
𝑟∑︁

𝑘=1

(𝜗𝑇
𝑖 𝒜𝑒,𝑘 ⊗ 𝐼𝑛)𝑥(𝑡− 𝜏𝑘(𝑡))

)︃
⏟  ⏞  

𝑇𝐼

−
(︃

𝑚∑︁
𝑖=1

𝜗𝑖 ⊗𝐾(𝜗𝑇
𝑖 𝒟 ⊗ 𝐼𝑛)𝑥(𝑡)

)︃
⏟  ⏞  

𝑇𝐼𝐼

.

(2.27)

With some properties of the Kronecker product as associativity and the mixed-product
(𝐴⊗𝐵)(𝐶⊗𝐷) = (𝐴𝐶)⊗(𝐵𝐷), for 𝐴, 𝐵, 𝐶 and 𝐷 matrices with appropriate dimensions,
and considering 𝑥(𝑡 − 𝜏𝑘(𝑡)) similarly to (2.22) as 𝑥(𝑡 − 𝜏𝑘(𝑡)) =

∑︀𝑚
𝑖=1 𝜗𝑖 ⊗ 𝑥𝑖(𝑡 − 𝜏𝑘(𝑡)),

the first term 𝑇𝐼 on the right side of (2.27) can be written as

𝑇𝐼 =
𝑚∑︁
𝑖=1

𝜗𝑖 ⊗ (1⊗𝐾)
𝑟∑︁

𝑘=1

(𝜗𝑇
𝑖 ⊗ 𝐼𝑛)(𝒜𝑒,𝑘 ⊗ 𝐼𝑛)

𝑚∑︁
𝑙=1

(𝜗𝑙 ⊗ 𝑥𝑙(𝑡− 𝜏𝑘(𝑡))), (2.28)

=
𝑚∑︁
𝑖=1

𝑟∑︁
𝑘=1

𝑚∑︁
𝑙=1

(𝜗𝑖1)⊗ 𝜗𝑇
𝑖 𝒜𝑒,𝑘𝜗𝑙 ⊗𝐾𝑥𝑙(𝑡− 𝜏𝑘(𝑡)), (2.29)

=
𝑚∑︁
𝑖=1

𝑟∑︁
𝑘=1

𝑚∑︁
𝑙=1

(𝜗𝑖 ⊗ 𝜗𝑇
𝑖 )(𝒜𝑒,𝑘𝜗𝑙)⊗𝐾𝑥𝑙(𝑡− 𝜏𝑘(𝑡)). (2.30)

Noticing that
𝑚∑︁
𝑖=1

(𝜗𝑖 ⊗ 𝜗𝑇
𝑖 ) = 𝐼𝑚, (2.31)

yields

𝑇𝐼 =
𝑟∑︁

𝑘=1

𝑚∑︁
𝑙=1

𝒜𝑒,𝑘𝜗𝑙 ⊗𝐾𝑥𝑙(𝑡− 𝜏𝑘(𝑡)), (2.32)

=
𝑟∑︁

𝑘=1

(𝒜𝑒,𝑘 ⊗𝐾)
𝑚∑︁
𝑙=1

(𝜗𝑙 ⊗ 𝑥𝑙(𝑡− 𝜏𝑘(𝑡))), (2.33)

=
𝑟∑︁

𝑘=1

(𝒜𝑒,𝑘 ⊗𝐾)𝑥(𝑡− 𝜏𝑘(𝑡)). (2.34)
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Similarly, the second term 𝑇𝐼𝐼 on the right side of (2.27), analogously considering
𝑥(𝑡) =

∑︀𝑚
𝑖=1 𝜗𝑖 ⊗ 𝑥𝑖(𝑡), can be written as

𝑇𝐼𝐼 =
𝑚∑︁
𝑖=1

𝑚∑︁
𝑙=1

𝜗𝑖 ⊗ (1⊗𝐾)(𝜗𝑇
𝑖 𝒟 ⊗ 𝐼𝑛)(𝜗𝑙 ⊗ 𝑥𝑙(𝑡)), (2.35)

=
𝑚∑︁
𝑖=1

𝑚∑︁
𝑙=1

(𝜗𝑖1)⊗ 𝜗𝑇
𝑖 𝒟𝜗𝑙 ⊗𝐾𝑥𝑙(𝑡), (2.36)

=
𝑚∑︁
𝑖=1

𝑚∑︁
𝑙=1

(𝜗𝑖 ⊗ 𝜗𝑇
𝑖 )(𝒟𝜗𝑙)⊗𝐾𝑥𝑙(𝑡), (2.37)

=
𝑚∑︁
𝑙=1

𝒟𝜗𝑙 ⊗𝐾𝑥𝑙(𝑡), (2.38)

= (𝒟 ⊗𝐾)
𝑚∑︁
𝑙=1

(𝜗𝑙 ⊗ 𝑥𝑙(𝑡)), (2.39)

= (𝒟 ⊗𝐾)𝑥(𝑡). (2.40)

Replacing (2.34) and (2.40) into (2.27), yields the stacked control input of the multi-
agent system

𝑢(𝑡) =
𝑟∑︁

𝑘=1

(𝒜𝑒,𝑘 ⊗𝐾)𝑥(𝑡− 𝜏𝑘(𝑡))− (𝒟 ⊗𝐾)𝑥(𝑡). (2.41)

Replacing (2.41) into (2.20), the closed-loop dynamics is given by

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴)𝑥(𝑡) + (𝐼𝑚 ⊗𝐵)

(︃
𝑟∑︁

𝑘=1

(𝒜𝑒,𝑘 ⊗𝐾)𝑥(𝑡− 𝜏𝑘(𝑡))− (𝒟 ⊗𝐾)𝑥(𝑡)

)︃
, (2.42)

= (𝐼𝑚 ⊗ 𝐴)𝑥(𝑡)− (𝐼𝑚 ⊗𝐵)(𝒟 ⊗𝐾)𝑥(𝑡) +
𝑟∑︁

𝑘=1

(𝐼𝑚 ⊗𝐵)(𝒜𝑒,𝑘 ⊗𝐾)𝑥(𝑡− 𝜏𝑘(𝑡)),

(2.43)

= ((𝐼𝑚 ⊗ 𝐴)− (𝒟 ⊗𝐵𝐾))𝑥(𝑡) +
𝑟∑︁

𝑘=1

(𝒜𝑒,𝑘 ⊗𝐵𝐾)𝑥(𝑡− 𝜏𝑘(𝑡)). (2.44)

From the definition of the Laplacian Matrix in (2.2), 𝒜𝑒,𝑘 = 𝒟𝑒,𝑘 − 𝐿𝑒,𝑘 is replaced
into (2.44) to rewrite the closed-loop dynamics as

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴−𝒟 ⊗𝐵𝐾)𝑥(𝑡) +
𝑟∑︁

𝑘=1

(𝒟𝑒,𝑘 ⊗𝐵𝐾 − 𝐿𝑒,𝑘 ⊗𝐵𝐾)𝑥(𝑡− 𝜏𝑘(𝑡)). (2.45)
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Transformed System

The analysis of the transformed system 𝑧(𝑡) is done by taking the time-derivative of
equation (2.11) and considering the system dynamics in (2.45), yielding

�̇�(𝑡) = (𝑈 ⊗ 𝐼𝑛)

(︃
(𝐼𝑚 ⊗ 𝐴−𝒟 ⊗𝐵𝐾)𝑥(𝑡) +

𝑟∑︁
𝑘=1

(𝒟𝑒,𝑘 ⊗𝐵𝐾 − 𝐿𝑒,𝑘 ⊗𝐵𝐾)𝑥(𝑡− 𝜏𝑘(𝑡))

)︃
.

(2.46)

Replacing 𝑥(𝑡) from (2.13) into the previous equation (2.46):

�̇�(𝑡) =(𝑈 ⊗ 𝐼𝑛) (𝐼𝑚 ⊗ 𝐴) (1𝑚 ⊗ 𝑥1(𝑡))− (𝑈 ⊗ 𝐼𝑛) (𝒟 ⊗𝐵𝐾) (1𝑚 ⊗ 𝑥1(𝑡))
+ (𝑈 ⊗ 𝐼𝑛) (𝐼𝑚 ⊗ 𝐴) (𝑊 ⊗ 𝐼𝑛)𝑧(𝑡)− (𝑈 ⊗ 𝐼𝑛) (𝒟 ⊗𝐵𝐾) (𝑊 ⊗ 𝐼𝑛)𝑧(𝑡)

+
𝑟∑︁

𝑘=1

(𝑈 ⊗ 𝐼𝑛) (𝒟𝑒,𝑘 ⊗𝐵𝐾)
(︀
1𝑚 ⊗ 𝑥1(𝑡− 𝜏𝑘(𝑡))

)︀
−

𝑟∑︁
𝑘=1

(𝑈 ⊗ 𝐼𝑛) (𝐿𝑒,𝑘 ⊗𝐵𝐾)
(︀
1𝑚 ⊗ 𝑥1(𝑡− 𝜏𝑘(𝑡))

)︀
+

𝑟∑︁
𝑘=1

(𝑈 ⊗ 𝐼𝑛) (𝒟𝑒,𝑘 ⊗𝐵𝐾) (𝑊 ⊗ 𝐼𝑛)𝑧(𝑡− 𝜏𝑘(𝑡))

−
𝑟∑︁

𝑘=1

(𝑈 ⊗ 𝐼𝑛) (𝐿𝑒,𝑘 ⊗𝐵𝐾) (𝑊 ⊗ 𝐼𝑛)𝑧(𝑡− 𝜏𝑘(𝑡)),

=𝑈1𝑚 ⊗ 𝐼𝑛𝐴𝑥1(𝑡)− 𝑈𝒟1𝑚 ⊗𝐵𝐾𝑥1(𝑡) + (𝑈𝑊 ⊗ 𝐴)𝑧(𝑡)− (𝑈𝒟𝑊 ⊗𝐵𝐾)𝑧(𝑡)

+
𝑟∑︁

𝑘=1

𝑈𝒟𝑒,𝑘1𝑚 ⊗ 𝐼𝑛𝐵𝐾𝑥1(𝑡− 𝜏𝑘(𝑡))−
𝑟∑︁

𝑘=1

(𝑈𝐿𝑒,𝑘1𝑚 ⊗ 𝐼𝑛𝐵𝐾𝑥1(𝑡− 𝜏𝑘(𝑡)))

+
𝑟∑︁

𝑘=1

(𝑈𝒟𝑒,𝑘𝑊 ⊗𝐵𝐾)𝑧(𝑡− 𝜏𝑘(𝑡))−
𝑚∑︁
𝑘=1

(𝑈𝐿𝑒,𝑘𝑊 ⊗𝐵𝐾)𝑧(𝑡− 𝜏𝑘(𝑡)). (2.47)

The following assumptions are considered to allow the summation of 𝒟𝑒,𝑘 to become an
identity matrix such that the product 𝑈1𝑚 can vanish with the terms 𝑥1:

Assumption 2.1 The multiagent system with communication delay is subject to the same
delay in all the communication links, such that 𝜏𝑘(𝑡) = 𝜏(𝑡) for all 𝑘 = 1, . . . , 𝑟.

Assumption 2.2 The network topology 𝒢 of a multiagent system with communication
delay is considered to be a special case of regular graph with 𝒟 = 𝐼𝑚.
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With assumptions 2.1 and 2.2, equation (2.47) simplifies to

�̇�(𝑡) =𝑈1𝑚 ⊗ 𝐼𝑛𝐴𝑥1(𝑡)− 𝑈1𝑚 ⊗𝐵𝐾𝑥1(𝑡) + (𝑈𝑊 ⊗ 𝐴)𝑧(𝑡)− (𝑈𝑊 ⊗𝐵𝐾)𝑧(𝑡)

+ 𝑈1𝑚 ⊗ 𝐼𝑛𝐵𝐾𝑥1(𝑡− 𝜏(𝑡))− (𝑈𝐿1𝑚 ⊗ 𝐼𝑛𝐵𝐾𝑥1(𝑡− 𝜏(𝑡)))

+ (𝑈𝑊 ⊗𝐵𝐾)𝑧(𝑡− 𝜏(𝑡))− (𝑈𝐿𝑊 ⊗𝐵𝐾)𝑧(𝑡− 𝜏(𝑡)). (2.48)

Then, from the facts that 𝑈1𝑚 = 0𝑚−1 and 𝐿1𝑚 = 0𝑚, which eliminate the terms with
𝑥1(𝑡), and noticing that 𝑈𝑊 = 𝐼𝑚−1, the following disagreement system is obtained:

�̇�(𝑡) = (𝐼𝑚−1 ⊗ (𝐴−𝐵𝐾))𝑧(𝑡) + ((𝐼𝑚−1 − �̄�)⊗𝐵𝐾)𝑧(𝑡− 𝜏(𝑡)). (2.49)

with
�̄� = 𝑈𝐿𝑊 ∈ R(𝑚−1)×(𝑚−1). (2.50)

Based on the disagreement of the state variables, consensus for a multiagent system
with a network topology described by a regular graph as in Assumption 2.2, for agents
with dynamics (2.17) with uniform communication delays, and consensus protocol given
similarly to (2.18) with 𝜏𝑘(𝑡) = 𝜏(𝑡), as

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏(𝑡))

)︀
, (2.51)

can be assessed by establishing stability of the disagreement system in (2.49) according
to Corollary (2.1). In this context, Corollary (2.1) can be rewritten as follows:

Proposition 2.2 The multi-agent system with agent dynamics (2.17) and consensus pro-
tocol (2.51), asymptotically reaches consensus if and only if the transformed system (2.49)
with assumptions 2.1 and 2.2 is asymptotically stable, i.e.:

lim
𝑡→∞

𝑧(𝑡) = 0 (2.52)

holds for any initial state condition.

2.2.3 Consensus Problem with Input Delay

Consider a system with 𝑚 agents with delayed linear dynamics:

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝑡− 𝜏𝑖(𝑡)), 𝑖 = 1, 2, . . . ,𝑚, (2.53)

where 𝑥𝑖 ∈ R𝑛 is the state-vector of variables of the 𝑖-th agent, 𝑛 is the order of the agent
dynamics, 𝑢𝑖 ∈ R𝑝 is the control input of the 𝑖-th agent, 𝐴 ∈ R𝑛×𝑛, and 𝐵 ∈ R𝑛×𝑝, with
𝑝 representing the order of the input. The variable 𝜏𝑖(𝑡) is a time-varying input delay
affecting the control input of the 𝑖-th agent.
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The analysis is based on the following consensus protocol without communication
delays:

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

)︀
, (2.54)

where 𝐾 ∈ R𝑝×𝑛 is a constant Gain Matrix, the topology arrangement is taken into
account through 𝑎𝑖𝑗, and 𝑢𝑖(𝑡) indicates the control input based on the neighbors of agent
𝑖. Initial conditions for the agents’ states are denoted like (2.19).

A unique augmented dynamics is given to comprise all the agents modeled by (2.53)
and consensus protocol (2.54), similarly to (2.20) with (2.22):

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴)𝑥(𝑡) + (𝐼𝑚 ⊗𝐵)
𝑚∑︁
𝑖=1

𝜗𝑖 ⊗ 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)) (2.55)

where 𝑥(𝑡) is the complete stacked state vector as in (2.8).

From (2.54), the control input 𝜗𝑖 ⊗ 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)) becomes

𝜗𝑖 ⊗ 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)) = −𝜗𝑖 ⊗
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏𝑖(𝑡))

)︀
, (2.56)

=

(︃
𝜗𝑖 ⊗𝐾

𝑚∑︁
𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗(𝑡− 𝜏𝑖(𝑡))
)︃
−
(︃
𝜗𝑖 ⊗𝐾

𝑚∑︁
𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖(𝑡− 𝜏𝑖(𝑡))
)︃
.

(2.57)

As in (2.25) and (2.26), it is possible to write

𝑚∑︁
𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗(𝑡− 𝜏𝑖(𝑡)) = (𝜗𝑇
𝑖 𝒜𝑎,𝑖 ⊗ 𝐼𝑛)𝑥(𝑡− 𝜏𝑖(𝑡)), (2.58)

and
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖(𝑡− 𝜏𝑖(𝑡)) = 𝑑𝑖𝑖𝑥𝑖(𝑡− 𝜏𝑖(𝑡)) = (𝜗𝑇
𝑖 𝒟𝑎,𝑖 ⊗ 𝐼𝑛)𝑥(𝑡− 𝜏𝑖(𝑡)), (2.59)

where 𝒜𝑎,𝑖 and 𝒟𝑎,𝑖 are the Adjacency and Degree matrices of the subgraph on node 𝒢𝑎,𝑖,
respectively, containing edges 𝑒𝑗𝑖 pointing toward 𝑣𝑖.

Replacing (2.58) and (2.59) into (2.57) yields

𝜗𝑖 ⊗ 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)) = 𝜗𝑖 ⊗𝐾
(︀
𝜗𝑇
𝑖 (𝒜𝑎,𝑖 −𝒟𝑎,𝑖)⊗ 𝐼𝑛

)︀
𝑥(𝑡− 𝜏𝑖(𝑡)) (2.60)

= −𝜗𝑖 ⊗𝐾
(︀
𝜗𝑇
𝑖 𝐿𝑎,𝑖 ⊗ 𝐼𝑛

)︀
𝑥(𝑡− 𝜏𝑖(𝑡)), (2.61)
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where 𝐿𝑎,𝑖 is the Laplacian Matrix of 𝒢𝑎,𝑖, satisfying 𝐿𝑎,𝑖 = 𝒟𝑎,𝑖−𝒜𝑎,𝑖 from (2.2). Following
the properties of Kronecker product and writing term 𝑥(𝑡− 𝜏𝑖(𝑡)) similarly to (2.22), i.e.
𝑥(𝑡− 𝜏𝑖(𝑡)) =

∑︀𝑚
𝑖=1 𝜗𝑖 ⊗ 𝑥𝑖(𝑡− 𝜏𝑖(𝑡)), gives

𝜗𝑖 ⊗ 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)) = −𝜗𝑖 ⊗ (1⊗𝐾)
(︀
𝜗𝑇
𝑖 𝐿𝑎,𝑖 ⊗ 𝐼𝑛

)︀ 𝑚∑︁
𝑙=1

(𝜗𝑙 ⊗ 𝑥𝑙(𝑡− 𝜏𝑖(𝑡))), (2.62)

= −
𝑚∑︁
𝑙=1

(𝜗𝑖1)⊗ 𝜗𝑇
𝑖 𝐿𝑎,𝑖𝜗𝑙 ⊗𝐾𝑥𝑙(𝑡− 𝜏𝑖(𝑡)), (2.63)

= −
𝑚∑︁
𝑙=1

(𝜗𝑖 ⊗ 𝜗𝑇
𝑖 )(𝐿𝑎,𝑖𝜗𝑙)⊗𝐾𝑥𝑙(𝑡− 𝜏𝑖(𝑡)). (2.64)

Noticing that

𝑚∑︁
𝑖=1

(𝜗𝑖 ⊗ 𝜗𝑇
𝑖 )𝐿𝑎,𝑖 = 𝐿𝑎,𝑖, (2.65)

then

𝜗𝑖 ⊗ 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)) = −
𝑚∑︁
𝑙=1

(𝐿𝑎,𝑖𝜗𝑙)⊗𝐾𝑥𝑙(𝑡− 𝜏𝑖(𝑡)), (2.66)

= −
𝑚∑︁
𝑙=1

(𝐿𝑎,𝑖 ⊗𝐾)(𝜗𝑙 ⊗ 𝑥𝑙(𝑡− 𝜏𝑖(𝑡))), (2.67)

= −(𝐿𝑎,𝑖 ⊗𝐾)𝑥(𝑡− 𝜏𝑖(𝑡)). (2.68)

Finally, replacing (2.68) into (2.55), the closed-loop dynamics is given by

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴)𝑥(𝑡)−
𝑚∑︁
𝑖=1

(𝐿𝑎,𝑖 ⊗𝐵𝐾)𝑥(𝑡− 𝜏𝑖(𝑡)). (2.69)

Transformed System

As in previous section, the tree-type transformation is used to translate the consensus
problem into a stability problem using the disagreement variables 𝑧𝑖(𝑡) in (2.9) with
transformation (2.11).

Taking the time-derivative of equation (2.11) and considering the system dynamics in
(2.69), yields

�̇�(𝑡) = (𝑈 ⊗ 𝐼𝑛)

(︃
(𝐼𝑚 ⊗ 𝐴)𝑥(𝑡)−

𝑚∑︁
𝑖=1

(𝐿𝑎,𝑖 ⊗𝐵𝐾)𝑥(𝑡− 𝜏𝑖(𝑡))
)︃
. (2.70)
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Now, replacing 𝑥(𝑡) from the inverse transformation in (2.13) into the previous equa-
tion (2.70):

�̇�(𝑡) =(𝑈 ⊗ 𝐼𝑛)(𝐼𝑚 ⊗ 𝐴)(1𝑚 ⊗ 𝑥1(𝑡)) + (𝑈 ⊗ 𝐼𝑛)(𝐼𝑚 ⊗ 𝐴)(𝑊 ⊗ 𝐼𝑛)𝑧(𝑡)

−
𝑚∑︁
𝑖=1

(𝑈 ⊗ 𝐼𝑛)(𝐿𝑎,𝑖 ⊗𝐵𝐾)
(︀
1𝑚 ⊗ 𝑥1(𝑡− 𝜏𝑖(𝑡))

)︀
−

𝑚∑︁
𝑖=1

(𝑈 ⊗ 𝐼𝑛)(𝐿𝑎,𝑖 ⊗𝐵𝐾)(𝐼𝑛 ⊗𝑊 )𝑧(𝑡− 𝜏𝑖(𝑡)),

= (𝑈1𝑚)⊗ (𝐴𝑥1(𝑡)) + (𝑈𝑊 )⊗ (𝐴) 𝑧(𝑡)

−
𝑚∑︁
𝑖=1

(𝑈𝐿𝑎,𝑖1𝑚)⊗ (𝐵𝐾𝑥1(𝑡− 𝜏𝑖(𝑡)))−
𝑚∑︁
𝑖=1

(𝑈𝐿𝑎,𝑖𝑊 )⊗ (𝐵𝐾) 𝑧(𝑡− 𝜏𝑖(𝑡)). (2.71)

Then, using the properties 𝑈1𝑚 = 0𝑚−1 and 𝐿𝑎,𝑖1𝑚 = 0𝑚, which eliminate the terms with
𝑥1(𝑡), and noticing that 𝑈𝑊 = 𝐼𝑚−1, the following disagreement system is obtained:

�̇�(𝑡) = (𝐼𝑚−1 ⊗ 𝐴)𝑧(𝑡)−
𝑚∑︁
𝑖=1

(�̄�𝑎,𝑖 ⊗ (𝐵𝐾))𝑧(𝑡− 𝜏𝑖(𝑡)), (2.72)

with
�̄�𝑎,𝑖 = 𝑈𝐿𝑎,𝑖𝑊 ∈ R(𝑚−1)×(𝑚−1). (2.73)

Based on the disagreement of the state variables, consensus of a directed network of
agents with delayed input dynamics (2.53) and consensus protocol given in (2.54) can
be assessed by establishing stability of the disagreement system in (2.72) according to
Corollary (2.1). In this context, Corollary (2.1) can be rewritten as follows:

Proposition 2.3 The multi-agent system composed of agents with delayed input dynam-
ics (2.53) and consensus protocol (2.54), asymptotically reaches consensus if and only if
the transformed system (2.72) is asymptotically stable, i.e.:

lim
𝑡→∞

𝑧(𝑡) = 0 (2.74)

holds for any initial state condition.

2.2.4 Consensus free of Time-Delays

A group of 𝑚 agents free of delays in the control inputs or in the communication links is
described according to the agents dynamics in (2.17) and consensus protocol as in (2.54).

The closed-loop stacked dynamics for the multi-agent system can be obtained either
from (2.45) or (2.69), just by considering the time-delays null, giving

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴− 𝐿⊗𝐵𝐾)𝑥(𝑡). (2.75)
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Equation (2.75) can also be written in the form

�̇�(𝑡) = Γ𝑥(𝑡), (2.76)

with Γ = 𝐼𝑚 ⊗ 𝐴− 𝐿⊗𝐵𝐾.

Likewise, the transformed system can be given by (2.49) or (2.72), also considering
null time-delays, as

�̇�(𝑡) = (𝐼𝑚−1 ⊗ 𝐴)𝑧(𝑡)− (�̄�⊗ (𝐵𝐾))𝑧(𝑡). (2.77)

Finally consensus can be assessed according to:

Proposition 2.4 The multi-agent system composed of agents with input dynamics (2.17)
and consensus protocol (2.54), asymptotically reaches consensus if and only if system
(2.77) is asymptotically stable, i.e.:

lim
𝑡→∞

𝑧(𝑡) = 0 (2.78)

holds for any initial state condition.

The following lemmas are useful:

Lemma 2.3 (Ren et al. (2006)) The matrix Γ in (2.76) has at least 𝑛 zero eigenvalues. It
has exactly 𝑛 zero eigenvalues if and only if the Laplacian 𝐿 has a simple zero eigenvalue,
i.e. the zero eigenvalue has multiplicity one. Moreover, if 𝐿 has a simple zero eigenvalue,
the zero eigenvalue of Γ has only one linearly independent eigenvector associated with the
eigenvalue zero.

Lemma 2.4 (Ren et al. (2006)) The system in (2.76) achieves consensus asymptotically
if and only if matrix Γ has exactly 𝑛 zero eigenvalues and all the other eigenvalues have
negative real parts.

Note that, combining Lemmas 2.1, 2.3, and 2.4, consensus in directed networks of
multi-agents with dynamics (2.17) and protocol (2.54), free of delays, is achieved if and
only if the related graph 𝒢 has a directed spanning tree and the nonzero eigenvalues of
Γ, in (2.76), lie in the open left half-plane.

Also, regarding the eigenvalues of 𝐿 and the tree-type transformation, the following
proposition is useful for the next results.
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Proposition 2.5 Consider the Laplacian matrix 𝐿 of a graph that has a directed spanning
tree. Then, the eigenvalues of the transformed matrix �̄� as in (2.50) are the nonzero
eigenvalues of 𝐿, which are all in the open right half plane.

Proof Assuming that the graph has a directed spanning tree, and applying Lemma 2.1,
it yields that 𝐿 has exactly one zero eigenvalue and all the other eigenvalues are in the
open right half plane.

Now consider the invertible matrix:

𝑇 =

[︃
1 0 𝑇

𝑚−1

1𝑚−1 −𝐼𝑚−1

]︃
=

[︃
𝜈𝑇

𝑈

]︃
= 𝑇−1 =

[︁
1𝑚 𝑊

]︁
, (2.79)

with 𝜈𝑇 = [1 0𝑇
𝑚−1].

Then the following similarity transformation

𝑇𝐿𝑇−1 =

[︃
𝜈𝑇𝐿1𝑚 𝜈𝑇𝐿𝑊

𝑈𝐿1𝑚 𝑈𝐿𝑊

]︃
=

[︃
0 𝜈𝑇𝐿𝑊

0𝑚−1 �̄�

]︃
(2.80)

reveals that the matrix �̄� has all the nonzero eigenvalues of 𝐿. This concludes the proof.
�

2.3 Additional Lemmas

The lemmas and definitions summarized next are used to prove the results in the next
chapters.

Lemma 2.5 (Sun et al., 2009) For any constant matrix 𝑀 = 𝑀𝑇 > 0 and scalars
𝑡 > 𝑡− 𝜏 ≥ 0 such that the following integrations are well defined, then∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝜁

𝑧𝑇 (𝜉)𝑀𝑧(𝜉)𝑑𝜉𝑑𝜁 ≥ 2

𝜏 2

∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝜁

𝑧𝑇 (𝜉)𝑑𝜉𝑑𝜁𝑀

∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝜁

𝑧(𝜉)𝑑𝜉𝑑𝜁. (2.81)

Lemma 2.6 (Wirtinger inequality) (Seuret and Gouaisbaut, 2013) For any constant
matrix 𝑀 = 𝑀𝑇 > 0 and scalars 𝑡 > 𝑡 − 𝜏 ≥ 0 such that the following integrations are
well defined, then ∫︁ 𝑡

𝑡−𝜏

�̇�𝑇 (𝜉)𝑀�̇�(𝜉)𝑑𝜉 ≥ 1

𝜏

∫︁ 𝑡

𝑡−𝜏

�̇�𝑇 (𝜉)𝑑𝜉𝑀

∫︁ 𝑡

𝑡−𝜏

�̇�(𝜉)𝑑𝜉 +
3

𝜏
Ω𝑇𝑀Ω, (2.82)

with

Ω = 𝑧(𝑡− 𝜏) + 𝑧(𝑡)− 2

𝜏

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉. (2.83)
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Lemma 2.7 (Xiong and Lam, 2009) Let a real number 𝛾 ∈ R, a square matrix 𝑀 ∈
R𝑛×𝑛, and a symmetric positive definite matrix 𝑁 ∈ R𝑛×𝑛 be given. The following in-
equality is true:

𝛾(𝑀 +𝑀𝑇 ) ≤ 𝛾2𝑁 +𝑀𝑁−1𝑀𝑇 . (2.84)

Lemma 2.8 (Ren and Beard, 2005) If a nonnegative matrix 𝒜 has the same positive
constant row sums given by 𝜇 > 0, then 𝜇 is an eigenvalue of 𝒜 with an associated
eigenvector 1 and 𝜌(𝒜) = 𝜇, where 𝜌(·) denotes the spectral radius. In addition, the
eigenvalue 𝜇 of 𝒜 has algebraic multiplicity equal one, if and only if the graph associated
with 𝒜 has a spanning tree. Furthermore, if the graph associated with 𝒜 has a spanning
tree and 𝑎𝑖𝑖 > 0, then 𝜇 is the unique eigenvalue of maximum modulus.

Definition 2.2 (Fei et al., 2009) Let a stochastic process be defined by 𝜃𝑡, 𝑡 ∈ [0,+∞],
the infinitesimal generator applied to an arbitrary function 𝑓(𝜃𝑡) is given by

ℒ𝑓(𝜃𝑡) = lim
Δ→0

E
[︂
𝑓(𝜃𝑡+Δ)− 𝑓(𝜃𝑡)

∆

]︂
, (2.85)

where ℒ represents the infinitesimal generator operator and E the expectancy.

Definition 2.3 (Dynkin’s Formula) (Dynkin (1965)) A stochastic extension of the
second fundamental theorem of calculus is given by

E[𝑓(𝑋(𝜃𝑡))] = 𝑓(0) + E
[︂∫︁ 𝑡

0

ℒ𝑓(𝑋(𝜃𝜉))𝑑𝜉

]︂
where 𝑓(𝑋(𝜃𝑡)) is a function on a stochastic variable 𝑋(𝜃𝑡).



Chapter 3

Consensus with Constant Time-Delays:
Exact Conditions

If a multiagent system is able to achieve consensus, it is said that this system is con-
sensable. The property of being consensable is called consensability. In this chapter, a
method to analyze the margins of time-delays in which a multiagent system is consensable
is developed based on the Direct Method by Walton and Marshall (1987) for stability anal-
ysis. The results show that consensability is given on intervals of communication delays
in Theorem 3.1, or input delays in Theorem 3.2. It is also shown that communication and
input delays have different impacts in the system dynamics. For example, it is shown that
communication delays do not avoid consensus for agents described by single-integrators,
but the input delay does, see Corollaries 3.1 and 3.3, respectively. It is also shown that
the system can also be independent of communication delays for second-order dynamics
when the gains in the consensus protocol are properly adjusted according to Corollary 3.2.
For input delays, there is always a delay margins for first- and second-order integrator
dynamics in which the system can achieve consensus, see Corollaries 3.3 and 3.4. For
higher-order, consensability switches may occur.

Many examples are given to illustrate these results. It is shown an example for a
system that can achieve consensus independent of the communication delay. Addition-
ally, it is also presented an example of a system consensable in two different intervals of
communication delays, i.e. achieves consensus if the communication delay belongs to the
interval [0, 2.2958), is not consensable in [2.2958, 6.3358], and regain the ability to achieve
consensus if the delay increases to (6.3358, 7.2585). For input delays, the first examples
are given for first- and second-order integrator agents, showing the delay margins of input
delays. For third-order agents, an example is shown in which the system is not consensable
when free of delay, but if the delay is properly increased to the interval (0.1332, 0.4349)

the system is then able to achieve consensus. These examples serve as counterexamples

47
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for the usual acceptance that the time-delay only degrades the system’s performance.

Following these results, agents described by a chain of integrators are studied, i.e. high-
order integrator dynamics. This class of systems is chosen in order to explicitly present the
influence of the order of the chain of integrators and the gains in the consensus protocol.
For the analysis of intervals only, other methods like the one presented by de Oliveira
et al. (2008) for general linear dynamics could be applied. Ren et al. (2006) showed that
consensus in a delay-free network of agents with high-order integrator dynamics depends
on the gains in the consensus protocol, even if the topology has a directed spanning tree.
Afterwards, Wieland et al. (2008) presented a linear matrix inequality solution to design
these gains such that the delay-free system could achieve consensus. Sipahi and Qiao
(2011) showed exact results for the input time-delay margin in first-order integrator agents
in undirected networks and its relation to the Laplacian eigenvalues. It was extended to
second-order dynamics with input delays and communication delays by Cepeda-Gomez
and Olgac (2011a,b). More recently, Yang (2013) investigated consensability switches
in the time-delay domain, considering high-order consensus but limited to undirected
networks.

In this chapter, consensus is studied by checking the stability of the associated trans-
formed system constructed by means of the tree-type transformation, whose characteristic
equation is directly related to the Laplacian matrix. This result extends the results for
consensability switches by Yang (2013) to the case of directed networks of multi-agent sys-
tems with input and communication delays. Furthermore, particular results are presented
for networks of agents with first- and second-order dynamics, for both communication and
input delays.

The result for consensus on intervals of input delays has been presented by the author
in Savino et al. (2015), at the 12th IFAC Workshop on Time Delay Systems. In this
chapter, the result is also presented for communication delays.

3.1 Dynamics free of Delay

Consider a multiagent system composed of 𝑚 agents with state variables

𝑥𝑖(𝑡) =

⎡⎢⎢⎢⎢⎣
𝑥𝑖,1(𝑡)

𝑥𝑖,2(𝑡)
...

𝑥𝑖,𝑛(𝑡)

⎤⎥⎥⎥⎥⎦ , 𝑖 = 1, 2, . . . ,𝑚, (3.1)
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with 𝑥𝑖,1(𝑡), 𝑥𝑖,2(𝑡), . . . , 𝑥𝑖,𝑛(𝑡) ∈ R such that 𝑥𝑖(𝑡) ∈ R𝑛, and let the dynamics be given by
a chain of integrators

�̇�𝑖,1(𝑡) = 𝑥𝑖,2(𝑡),

�̇�𝑖,2(𝑡) = 𝑥𝑖,3(𝑡),

... (3.2)

�̇�𝑖,𝑛−1(𝑡) = 𝑥𝑖,𝑛(𝑡),

�̇�𝑖,𝑛(𝑡) = 𝑢𝑖(𝑡),

where 𝑢𝑖(𝑡) ∈ R is the control input acting only in state 𝑥𝑖,𝑛(𝑡). The agent dynamics can
be represented as

d
d𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑖,1(𝑡)

𝑥𝑖,2(𝑡)
...

𝑥𝑖,𝑛−1(𝑡)

𝑥𝑖,𝑛(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0
. . . 1

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑖,1(𝑡)

𝑥𝑖,2(𝑡)
...

𝑥𝑖,𝑛−1(𝑡)

𝑥𝑖,𝑛(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...
0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝑢𝑖(𝑡), (3.3)

or generally by

�̇�𝑖(𝑡) =

[︃
0𝑛−1 I𝑛−1

0 0 𝑇
𝑛−1

]︃
𝑥𝑖(𝑡) +

[︃
0𝑛−1

1

]︃
𝑢𝑖(𝑡). (3.4)

Equation (3.4) can be written similarly to the general form of a linear system in (2.17)
as

�̇�𝑖(𝑡) = 𝐴ℎ𝑜𝑥𝑖(𝑡) +𝐵ℎ𝑜𝑢𝑖(𝑡), (3.5)

with

𝐴ℎ𝑜 =

[︃
0𝑛−1 I𝑛−1

0 0 𝑇
𝑛−1

]︃
, (3.6)

𝐵ℎ𝑜 =

[︃
0𝑛−1

1

]︃
, (3.7)

which are equivalent to 𝐴 and 𝐵 in (2.17), respectively.

The considered delay-free consensus protocol is given by

𝑢𝑖(𝑡) =−
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗

[︂
𝛼1

(︁
𝑥𝑖,1(𝑡)− 𝑥𝑗,1(𝑡)

)︁
+ 𝛼2

(︁
𝑥𝑖,2(𝑡)− 𝑥𝑗,2(𝑡)

)︁
+ . . .+ 𝛼𝑛

(︁
𝑥𝑖,𝑛(𝑡)− 𝑥𝑗,𝑛(𝑡)

)︁]︂
, (3.8)
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where 𝛼1, 𝛼2, . . . , 𝛼𝑛 > 0 are arbitrary real constants and 𝑎𝑖𝑗 are given by the Adjacency
Matrix of the graph 𝒢 describing the network topology. The consensus protocol (3.8) can
also be represented by

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾ℎ𝑜

(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

)︀
, (3.9)

with

𝐾ℎ𝑜 =
[︁
𝛼1 𝛼2 . . . 𝛼𝑛

]︁
(3.10)

equivalent to 𝐾 in (2.54).

Considering the agents dynamics (3.5) with consensus protocol (3.9), the system dy-
namics can be written similarly to (2.75) or with Γℎ𝑜 = 𝐼𝑚⊗𝐴ℎ𝑜−𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜 equivalent
to Γ in (2.76). Thus, the transformed system is given according to (2.77) by

�̇�(𝑡) = (𝐼𝑚−1 ⊗ 𝐴ℎ𝑜)𝑧(𝑡)− (�̄�⊗ (𝐵ℎ𝑜𝐾ℎ𝑜))𝑧(𝑡), (3.11)

such that consensus for (3.5) with protocol (3.9) can be assessed by the stability of (3.11).

3.2 Dynamics with Communication Delay

It was shown that the high-order integrator dynamics (3.5) is a particular case of the
linear system (2.17) with 𝐴, 𝐵, and 𝐾 given by 𝐴ℎ𝑜, 𝐵ℎ𝑜, and 𝐾ℎ𝑜, respectively.

For the analysis carried out with communication delay, the protocol (3.9) is given by

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾ℎ𝑜

(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏)

)︀
, (3.12)

which is similar to (2.18) subject to uniform and constant delay, i.e. 𝜏𝑖𝑗(𝑡) = 𝜏 .

Thus, in order to show consensus according to Proposition 2.2, considering regular
graphs by Assumption 2.2, the transformed system to be analyzed is given according to
(2.49), considering the dynamics given by 𝐴ℎ𝑜, 𝐵ℎ𝑜, and 𝐾ℎ𝑜, with 𝜏(𝑡) = 𝜏 :

�̇�(𝑡) = (𝐼𝑚−1 ⊗ (𝐴ℎ𝑜 −𝐵ℎ𝑜𝐾ℎ𝑜))𝑧(𝑡) + ((𝐼𝑚−1 − �̄�)⊗𝐵ℎ𝑜𝐾ℎ𝑜)𝑧(𝑡− 𝜏). (3.13)

3.2.1 Analysis

Consensus for agents with high-order integrator dynamics (3.5) and communication delay
in protocol (3.12), can be assessed by studying the stability of the reduced-dimension
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transformed system in (3.13). The stability of (3.13) is dictated by the location of the
roots of the transcendental function

∆𝜏 (𝑠) = det(𝑠𝐼𝑛(𝑚−1) − 𝐴𝑐𝑜𝑚 − �̄�𝑐𝑜𝑚𝑒
−𝑠𝜏 ), (3.14)

with 𝐴𝑐𝑜𝑚 = (𝐼𝑚−1 ⊗ (𝐴ℎ𝑜 −𝐵ℎ𝑜𝐾ℎ𝑜)) and �̄�𝑐𝑜𝑚 = ((𝐼𝑚−1 − �̄�)⊗𝐵ℎ𝑜𝐾ℎ𝑜).

Next lemma establishes that the location of the roots of ∆𝜏 (𝑠) in (3.14) in the stability
region is equivalent to the location of the roots of a simple set of quasi-polynomials in the
stability region. This is a central result for the further analysis.

Lemma 3.1 Consider the multiagent system in (3.5) with protocol (3.12). Assume a
directed network topology containing a directed spanning tree with Laplacian Matrix 𝐿.
Then, the multiagent system is consensable when subject to time-delay 𝜏 if and only if all
roots of

𝑝𝑖(𝑠) = 𝑠𝑛 +
(︀
1 + (𝜆𝑖{𝐿} − 1)𝑒−𝑠𝜏

)︀ 𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝, (3.15)

where 𝜆𝑖{·} refers to the eigenvalues of a matrix, and 𝛼𝑝 given in (3.10) have negative
real part, for 𝑖 = 1, 2, . . . ,𝑚− 1.

Proof Based on Proposition 2.2, the multiagent system in (3.5) with protocol (3.9)
asymptotically achieves consensus if and only if (3.13) is asymptotically stable. This
happens if and only if all roots of ∆𝜏 (𝑠) in (3.14) have negative real parts.

Note that ∆𝜏 (𝑠) in (3.14) can be rewritten using the Laplace expansion for computing
the determinant as

∆𝜏 (𝑠) = det

(︃
𝑠𝑛𝐼𝑚−1 +

𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

(︀
𝐼𝑚−1 − (𝐼𝑚−1 − �̄�)𝑒−𝑠𝜏

)︀)︃
, (3.16)

=
𝑚−1∏︁
𝑖=1

(︃
𝑠𝑛 + 𝜆𝑖

{︁ 𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

(︀
𝐼𝑚−1 − (𝐼𝑚−1 − �̄�)𝑒−𝑠𝜏

)︀}︁)︃
. (3.17)

It follows

∆𝜏 (𝑠) =
𝑚−1∏︁
𝑖=1

(︃
𝑠𝑛 + 𝜆𝑖

{︁(︀
𝐼𝑚−1 − (𝐼𝑚−1 − �̄�)𝑒−𝑠𝜏

)︀}︁ 𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

)︃
, (3.18)

=
𝑚−1∏︁
𝑖=1

(︁
𝑠𝑛 +

(︀
1− (1− 𝜆𝑖{�̄�})𝑒−𝑠𝜏

)︀ 𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

)︁
. (3.19)
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Based on Proposition 2.5, the eigenvalues of �̄� in (3.19) can be directly related to the
non-zero eigenvalues of 𝐿. Then,

∆𝜏 (𝑠) =
𝑚−1∏︁
𝑖=1

(︁
𝑠𝑛 +

(︀
1 + (𝜆𝑖{𝐿} − 1)𝑒−𝑠𝜏

)︀ 𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

)︁
, (3.20)

assuming the eigenvalues of 𝐿 ordered such that the 𝑚-th eigenvalue of 𝐿 is zero, i.e.,
𝜆𝑚{𝐿} = 0.

Equation (3.20) shows that, for each nonzero eigenvalue of 𝐿 there are 𝑛 eigenvalues
for the whole system dynamics, given by the roots of the polynomials in (3.15). This
completes the proof. �

In short, Lemma 3.1 allows to write the characteristic equation (3.14) as the poly-
nomials in (3.15), whose roots dictate consensability of the multi-agent system due to
Proposition 2.2. It is important to note that the polynomials in (3.15) do not require any
transformation of the system due to Proposition 2.5.

3.2.2 Consensus on Time-Delay Intervals

The next result is based on the stability analysis of the quasi-polynomials in (3.15),
given by Lemma 3.1, which is mainly centered on their roots location. When one varies
the constant value of the time-delay, these roots move and eventually can change from
the open-right half plane to the open-left half plane, or vice-versa, which may cause
consensability switches. This fact is analyzed based on the Direct Method for the stability
analysis by Walton and Marshall (1987). This method relies on finding a finite number of
zero-crossing frequencies 𝜔𝑖𝑗, at which the roots of ∆𝜏 (𝑠) are over the imaginary axis, i.e.
𝑠 = 𝑗𝜔𝑖𝑗. Furthermore, it is know that if a zero-crossing happens at some 𝜏𝑖𝑗, other pairs
of roots (𝜔𝑖𝑗, 𝜏

ℓ
𝑖𝑗) of ∆𝜏 (𝑠) also cross the imaginary axis at the same 𝑠 = 𝑗𝜔𝑖𝑗 an infinite

number of times for every

𝜏 ℓ𝑖𝑗 = 𝜏𝑖𝑗 + 2ℓ𝜔−1
𝑖𝑗 𝜋, ℓ = 0,±1,±2, . . . (3.21)

Next it is presented a method that shows how to completely characterize the time-delay
intervals of consensability in directed networks of multiagent systems with high-order
integrator dynamics and communication delays. This result is stated in the next theorem.

Theorem 3.1 Consider the multi-agent system in (3.5) with protocol (3.12). Assume
a regular directed network topology according to Assumption 2.2 containing a directed
spanning tree with Laplacian 𝐿. Let the nonzero eigenvalues of 𝐿, subtracted by 1, be
written in the exponential form: 𝜆𝑖{𝐿} − 1 = 𝜇𝑖𝑒

𝑗𝜑𝑖.
Compute:
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𝑖) 𝑁𝑈(𝜏) for 𝜏 = 0, that is the number of unstable roots of ∆𝜏 (𝑠) with 𝜏 = 0. Note that
𝑁𝑈(0) can be determined by the nonzero eigenvalues of Γℎ𝑜 = 𝐼𝑚⊗𝐴ℎ𝑜−𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜

equivalent to Γ in (2.76).

𝑖𝑖) The triplets Ψ𝑖𝑗 = (𝜔𝑖𝑗, 𝜏𝑖𝑗,Φ𝑖𝑗), for 𝑖 = 1, 2, . . . ,𝑚 − 1 and 𝑗 = 1, 2, . . . , 𝑟𝑖, with 𝑟𝑖

the number of positive roots of (3.22) below, for a given 𝑖. Moreover, 𝜔𝑖𝑗 for each 𝜇𝑖

are the positive roots of

𝜌𝑖(𝜔) =
⃒⃒⃒
(𝑗𝜔)𝑛 +

𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝

⃒⃒⃒2
− 𝜇2

𝑖

⃒⃒⃒ 𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝

⃒⃒⃒2
, (3.22)

each 𝜏𝑖𝑗 is any value of 𝜏 for a given 𝜔𝑖𝑗 that satisfies the system of equations⎧⎪⎨⎪⎩
sin(𝜔𝑖𝑗𝜏 − 𝜑𝑖) =

−𝑎0𝑅𝑎𝑖𝐼 + 𝑎0𝐼𝑎𝑖𝑅
|𝑎𝑖|2

,

cos(𝜔𝑖𝑗𝜏 − 𝜑𝑖) =
−𝑎0𝑅𝑎𝑖𝑅 − 𝑎0𝐼𝑎𝑖𝐼

|𝑎𝑖|2
,

(3.23)

where 𝑎0𝑅(𝜔) and 𝑎0𝐼(𝜔) are the real and imaginary parts of 𝑎0(𝜔) ≡ (𝑗𝜔)𝑛 +∑︀𝑛
𝑝=1(𝑗𝜔)𝑝−1𝛼𝑝, respectively, and similarly 𝑎𝑖𝑅(𝜔) and 𝑎𝑖𝐼(𝜔) are the real and imag-

inary parts of 𝑎𝑖(𝜔) ≡ 𝜇𝑖

∑︀𝑛
𝑝=1(𝑗𝜔)𝑝−1𝛼𝑝, respectively. Finally, Φ𝑖𝑗 is calculated for

each 𝜔𝑖𝑗 as the sign of
d

d𝜔
𝜌𝑖(𝜔)

⃒⃒⃒⃒
𝜔=𝜔𝑖𝑗

. (3.24)

Now, define the set

Ψ := {(Ψ𝑖𝑗) : 𝑖 = 1, 2, . . . ,𝑚− 1 and 𝑗 = 1, 2, . . . , 𝑟𝑖}.

Then, depending on the set Ψ consisting of all obtained triplets Ψ𝑖𝑗, there are two
possible cases:

Case 1: If Ψ = ∅, no consensability switches occur. Therefore, if 𝑁𝑈(0) = 0, the system
achieves consensus for 𝜏 = 0 and is still consensable for any 𝜏 > 0, alternatively, if
𝑁𝑈(0) > 0, the system does not achieve consensus for 𝜏 = 0 or for any 𝜏 > 0.

Case 2: If Ψ ̸= ∅, consensability switches may occur. Then, in order to identify the
switches, form a table such that:

∙ The first column entries are 𝜏 ℓ𝑖𝑗 > 0, given by (3.21), for all 𝜏𝑖𝑗 ∈ Ψ, in the
ascending order.

∙ The second column entries are the values of 𝜔𝑖𝑗 ∈ Ψ associated with each 𝜏 ℓ𝑖𝑗

from the first column.
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∙ The third column entries are the values of Φ𝑖𝑗 ∈ Ψ associated with each 𝜏 ℓ𝑖𝑗

from the first column.

∙ The fourth column entries are given by the number of unstable roots for a
specific value of time-delay 𝜏 , 𝑁𝑈(𝜏). Before progressing further, add new lines
between each line in the table built so far, the elements in the fourth column will
appear only in the new lines added. The first element of this column is 𝑁𝑈(0),
then the next ones are the number of unstable roots for 𝜏 = 𝜏 ℓ𝑖𝑗 + 𝜖, 0 < 𝜖≪ 1.
If Φ𝑖𝑗 = +1 in the line below, then 𝑁𝑈(𝜏) increases by 2, if Φ𝑖𝑗 = −1, then
𝑁𝑈(𝜏) decreases by 2.

Finally, the regions in the time-delay domain where the multi-agent system is con-
sensable are those where 𝑁𝑈(𝜏) = 0.

Proof Initially, to identify the time-delay intervals of consensability, the zero-crossing
frequencies 𝜔𝑖𝑗 of quasi-polynomials (3.15) are found using the Direct Method from Walton
and Marshall (1987) in the following procedure.

Considering the conjugate symmetry of (3.15), for some 𝑠 = 𝑗𝜔, the following holds⃒⃒⃒
(𝑗𝜔)𝑛 +

𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝

⃒⃒⃒2
−
⃒⃒⃒
(𝜆𝑖{𝐿} − 1)𝑒−𝑗𝜔𝜏

𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝

⃒⃒⃒2
= 0. (3.25)

Writing the nonzero eigenvalues of 𝐿, subtracted by 1, in the exponential form 𝜆𝑖{𝐿}−1 =

𝜇𝑖𝑒
𝑗𝜑𝑖 gives (3.22).

If there is no solution for (3.22), then the roots of the quasi-polynomials in (3.15) never
cross the imaginary axis. Therefore, no consensability switches occur, which concludes
the proof for Case 1.

On the other hand, if (3.22) has real solutions 𝜔𝑖𝑗 > 0, the associated values of the
delay 𝜏𝑖𝑗 can be found. A similar procedure used by Yang (2013) is followed by separating
the terms of (3.15), with 𝑠 = 𝑗𝜔, in real and imaginary parts, as:

𝑝𝑖(𝑗𝜔) =
(︁
𝑎0𝑅(𝜔) + 𝑗𝑎0𝐼(𝜔)

)︁
+
(︁
𝑎𝑖𝑅(𝜔) + 𝑗𝑎𝑖𝐼(𝜔)

)︁
𝑒−𝑗(𝜔𝜏−𝜑𝑖), (3.26)

where 𝑎0𝑅(𝜔) and 𝑎0𝐼(𝜔) are the real and imaginary parts of

𝑎0(𝜔) ≡ (𝑗𝜔)𝑛 +
𝑛∑︁

𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝, (3.27)

respectively, and similarly 𝑎𝑖𝑅(𝜔) and 𝑎𝑖𝐼(𝜔) are the real and imaginary parts of

𝑎𝑖(𝜔) ≡ 𝜇𝑖

𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝, (3.28)
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respectively.

Expanding the exponential term by Euler’s form, a value for 𝜏𝑖𝑗 for each 𝜔𝑖𝑗 can be
found solving the following system of equations:{︃

𝑎𝑖𝑅 cos(𝜔𝜏 − 𝜑𝑖) + 𝑎𝑖𝐼 sin(𝜔𝜏 − 𝜑𝑖) = −𝑎0𝑅,
𝑎𝑖𝐼 cos(𝜔𝜏 − 𝜑𝑖)− 𝑎𝑖𝑅 sin(𝜔𝜏 − 𝜑𝑖) = −𝑎0𝐼 ,

(3.29)

which is equivalent to the system of equations (3.23).

Note that an infinite number of values for 𝜏 that satisfies the system of equations
(3.23) can be found, which is expected due to the periodic property of the transcendental
function in (3.14). For each root on the imaginary axis 𝑗𝜔𝑖𝑗 there are associated many
periodically spaced delays 𝜏 ℓ𝑖𝑗 given by (3.21). Therefore, (3.23) can be used to identify
only one time-delay and the others can the obtained by (3.21).

Next, the tendency of the roots of (3.15) is analyzed. This allows to investigate
consensability switches as the value of the time-delay increases. Then define the quantity

Φ𝑖𝑗 = sign
(︂

Re
(︂

d𝑠
d𝜏

⃒⃒⃒
𝑠=𝑗𝜔𝑖𝑗

)︂)︂
(3.30)

which is an indicator of the crossing direction of the imaginary root 𝑗𝜔𝑖𝑗. If Φ𝑖𝑗 = +1,
a pair of roots of (3.15) cross the imaginary axis at 𝑗𝜔𝑖𝑗 from left to right; conversely, if
Φ𝑖 = −1, a pair of roots of (3.15) cross the imaginary axis at 𝑗𝜔𝑖𝑗 from right to left. From
Walton and Marshall (1987), this is given by the sign of (3.24).

Finally, it remains to determine the number of roots, if any, in the right half plane,
when 𝜏 = 0. Which can be assessed from the nonzero eigenvalues of Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 −
𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜 equivalent to Γ in (2.76). Note that, for infinitesimally small 𝜏 , there will be
also infinitely new roots of (3.15) at the infinity of the left half-plane, since the degree of
the polynomial 𝑎0(𝜔) is strictly greater than the degree of 𝑎𝑖(𝜔) (Walton and Marshall
(1987)).

Then, organizing this data in the ascending order of time-delay, and considering the
increase, or decrease, in the number 𝑁𝑈(𝜏) of roots in the open-right half plane, consens-
ability is given whenever this 𝑁𝑈(𝜏) = 0. This concludes Case 2. �

The previous theorem brings out a structured methodology for identifying time-delay
intervals where consensus in directed networks of multi-agent systems with high-order
integrator dynamics is achieved. However, it can be further simplified when particular
cases are considered.
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In the following, particular results are obtained for networks of agents with first- and
second-order integrator dynamics.

Corollary 3.1 Agents with first-order dynamic, i.e. 𝑛 = 1 in (3.5) and in consensus
protocol (3.9), with a regular directed network according to Assumption 2.2 containing a
directed spanning tree, achieve consensus independently of the communication delay.

Proof For 𝑛 = 1, matrix Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 − 𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜 becomes −𝛼1𝐿, and Lemma 2.4
is satisfied according to Lemma 2.1 since the graph has a directed spanning tree. Thus,
the system achieves consensus for 𝜏 = 0, i.e. 𝑁𝑈(0) = 0 in Theorem 3.1. Additionally,
equation (3.22) becomes

𝜔2 + 𝛼2
1 − 𝜇2

𝑖𝛼
2
1 = 0, (3.31)

𝜔2 = 𝛼2
1(𝜇

2
𝑖 − 1). (3.32)

Note that the eigenvalues of 𝐿 are related to 𝜆𝑖{𝐿} = 𝜆𝑖{𝒟 −𝒜}, and from Assump-
tion 2.2 of regular graphs for networks with communication delays, assuming 𝒟 = 𝐼𝑚,
yields 𝜆𝑖{𝐿} = 𝜆𝑖{𝐼𝑚 −𝒜}, such that

𝜆𝑖{𝐿} − 1 = −𝜆𝑖{𝒜}. (3.33)

Thus, the spectral radius of 𝜆𝑖{𝐿}−1 gives 𝜇2
𝑖 ≤ 1 from Lemma 2.8, which yields no solu-

tions for 𝜔 > 0 in (3.32). Therefore, this is case 1 in Theorem 3.1 and no crossings occur,
meaning that consensus is never lost due to uniform constant communication delays. �

Corollary 3.2 Agents with second-order integrator dynamics, i.e. 𝑛 = 2 in (3.5) and in
consensus protocol (3.9), with a regular directed network containing a directed spanning
tree is delay-independent if all 𝜇𝑖 = 1 or

𝛼1 ≤ min
𝑖

�̄�𝑖,𝛼2

(︁
1 +

⃒⃒⃒√︀
(1− 𝜇2

𝑖 )
⃒⃒⃒)︁

𝜇2
𝑖

, (3.34)

with

�̄�𝑖,𝛼2 = 𝛼2
2

(1− 𝜇2
𝑖 )

2
. (3.35)

If not, crossings occur, and can happen in both directions. Thus, consensability switches
may occur.
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Proof The proof follows from Theorem 3.1. For second-order integrator, Equation (3.22)
becomes

| − 𝜔2 + 𝑗𝜔𝛼2 + 𝛼1|2 − 𝜇2
𝑖 |𝑗𝜔𝛼2 + 𝛼1|2 = 0, (3.36)

𝜔4 + 𝜔2(𝛼2
2(1− 𝜇2

𝑖 )− 2𝛼1) + 𝛼2
1(1− 𝜇2

𝑖 ) = 0, (3.37)

yielding

𝜔𝑖 =

(︃
2𝛼1 − 𝛼2

2(1− 𝜇2
𝑖 )±

√︀
(𝛼2

2(1− 𝜇2
𝑖 )− 2𝛼1)2 − 4𝛼2

1(1− 𝜇2
𝑖 )

2

)︃ 1
2

, (3.38)

which can be rewritten as

𝜔𝑖 =

⎛⎝𝛼1 − �̄�𝑖,𝛼2 ±
√︃

(�̄�𝑖,𝛼2 − 𝛼1)
2 − 2

(︂
𝛼1

𝛼2

)︂2

�̄�𝑖,𝛼2

⎞⎠ 1
2

, (3.39)

with �̄�𝑖,𝛼2 in (3.35).

First, in order to exist real 𝜔𝑖 > 0, the term in the square-root in (3.39) has to be
greater or equal to zero, i.e

(�̄�𝑖,𝛼1 − 𝛼1)
2 − 2

(︂
𝛼1

𝛼2

)︂2

�̄�𝑖,𝛼2 ≥ 0, (3.40)

(�̄�𝑖,𝛼1 − 𝛼1)
2 − 𝛼2

1(1− 𝜇2
𝑖 ) ≥ 0, (3.41)

(�̄�𝑖,𝛼2)
2 − 2�̄�𝑖,𝛼2𝛼1 + 𝛼2

1𝜇
2
𝑖 ≥ 0. (3.42)

Thus, the roots 𝛼1 for inequality (3.42) are:

𝛼′
1 =

�̄�𝑖,𝛼2

(︁
1−

⃒⃒⃒√︀
(1− 𝜇2

𝑖 )
⃒⃒⃒)︁

𝜇2
𝑖

, (3.43)

𝛼′′
1 =

�̄�𝑖,𝛼2

(︁
1 +

⃒⃒⃒√︀
(1− 𝜇2

𝑖 )
⃒⃒⃒)︁

𝜇2
𝑖

. (3.44)

Next, it is considered different cases depending on the location of 𝛼1 in terms of 𝛼′
1

and 𝛼′′
1.

Case 1 For 𝛼′
1 < 𝛼1 < 𝛼′′

1, implies @𝜔𝑖 > 0, 𝜔𝑖 ∈ R.

Since 𝜇2
𝑖 > 0 in (3.42), if 𝛼′

1 < 𝛼1 < 𝛼′′
1 there is no solution for 𝜔𝑖 > 0, 𝜔𝑖 ∈ R,

and thus no crossings occur.
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Next condition for the existence of 𝜔𝑖 > 0, 𝜔𝑖 ∈ R, in (3.39), is that

𝛼1 − �̄�𝑖,𝛼2 ±
⃒⃒⃒⃒√︁

(�̄�𝑖,𝛼2 − 𝛼1)
2 − 𝛼2

1(1− 𝜇2
𝑖 )

⃒⃒⃒⃒
> 0, (3.45)

thus, consider the following two cases.

Case 2 For 𝛼1 < 𝛼′
1, implies @𝜔𝑖 > 0, 𝜔𝑖 ∈ R,

For an arbitrary �̌�′
1 in the interval 0 < �̌�′

1 < 𝛼′
1, it can be shown that �̌�′

1 < �̄�𝑖,𝛼2 .
Thus, for 𝛼1 = �̌�′

1 it is sufficient to show

�̌�′
1 − �̄�𝑖,𝛼2 +

⃒⃒⃒⃒√︁
(�̄�𝑖,𝛼2 − �̌�′

1)
2 − �̌�′2

1 (1− 𝜇2
𝑖 )

⃒⃒⃒⃒
> 0, (3.46)⃒⃒⃒⃒√︁

(�̄�𝑖,𝛼2 − �̌�′
1)

2 − �̌�′2
1 (1− 𝜇2

𝑖 )

⃒⃒⃒⃒
> �̄�𝑖,𝛼2 − �̌�′

1. (3.47)

Since �̄�𝑖,𝛼2 − �̌�′
1 > 0,

(�̄�𝑖,𝛼2 − �̌�′
1)

2 − �̌�′2
1 (1− 𝜇2

𝑖 ) > (�̄�𝑖,𝛼2 − �̌�′
1)

2, (3.48)

�̌�′2
1 (1− 𝜇2

𝑖 ) < 0. (3.49)

Condition (3.49) is a contradiction, thus (3.45) has no solution for 𝜔𝑖 > 0,
𝜔𝑖 ∈ R, and thus no crossings occur.

Case 3 For 𝛼1 > 𝛼′′
1, implies ∃𝜔𝑖 > 0, 𝜔𝑖 ∈ R, if and only if 𝜇𝑖 < 1.

For an arbitrary �̂�′′
1 in the interval �̂�′′

1 > 𝛼′′
1, it can be shown that �̂�′′

1 > �̄�𝑖,𝛼2 .
Thus, for 𝛼1 = �̂�′′

1 it is sufficient to show

�̂�′′
1 − �̄�𝑖,𝛼2 +

⃒⃒⃒⃒√︁
(�̄�𝑖,𝛼2 − �̂�′′

1)2 − �̂�′′2
1 (1− 𝜇2

𝑖 )

⃒⃒⃒⃒
> 0, (3.50)⃒⃒⃒⃒√︁

(�̄�𝑖,𝛼2 − �̂�′′
1)2 − �̂�′′2

1 (1− 𝜇2
𝑖 )

⃒⃒⃒⃒
> �̄�𝑖,𝛼2 − �̂�′′

1. (3.51)

Since �̄�𝑖,𝛼2 − �̂�′′
1 < 0,

(�̄�𝑖,𝛼2 − �̂�′′
1)

2 − �̂�′′2
1 (1− 𝜇2

𝑖 ) < (�̄�𝑖,𝛼2 − �̂�′′
1)2, (3.52)

�̂�′′2
1 (1− 𝜇2

𝑖 ) > 0. (3.53)

Condition (3.53) is feasible if and only if 𝜇𝑖 < 1, yielding solutions 𝜔𝑖 > 0,
𝜔𝑖 ∈ R, in (3.45). Therefore crossings occur.
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Figure 3.1: Regular directed network with four agents.

If crossings occur, they occur in both directions, thus consensability switches may
occur. For the direction in which the crossing occurs, equation (3.24) becomes:

Φ𝑖𝑗 = sign
(︀
𝜔2
𝑖𝑗 + �̄�𝑖,𝛼2 − 𝛼1

)︀
. (3.54)

Replacing (3.39) into equation above gives

Φ𝑖𝑗 = sign

⎛⎝±
⃒⃒⃒⃒
⃒⃒
√︃

(�̄�𝑖,𝛼2 − 𝛼1)
2 − 2

(︂
𝛼1

𝛼2

)︂2

�̄�𝑖,𝛼2

⃒⃒⃒⃒
⃒⃒
⎞⎠ , (3.55)

which yields both positive and negative results.

From the combination of cases 1, 2, and 3, crossings occur only when 𝛼1 > 𝛼′′
1 and

𝜇𝑖 < 1. Therefore, there are no zero-crossing roots if

𝛼1 ≤ min
𝑖

�̄�𝑖,𝛼2

(︁
1 +

⃒⃒⃒√︀
(1− 𝜇2

𝑖 )
⃒⃒⃒)︁

𝜇2
𝑖

, (3.56)

which turns the system into a delay-independent system. �

3.2.3 Numerical Examples

Consider the multi-agent system represented by the directed network topology depicted
in Figure 3.1, with corresponding Adjacency Matrix

𝒜 =

⎡⎢⎢⎢⎢⎣
0 0 0 1

0.5 0 0 0.5

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎦ (3.57)

and Laplacian Matrix

𝐿 =

⎡⎢⎢⎢⎢⎣
1 0 0 −1

−0.5 1 0 −0.5

0 −1 1 0

0 0 −1 1

⎤⎥⎥⎥⎥⎦ . (3.58)
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The agents are considered to have second-order integrator dynamics, i.e. 𝑛 = 2 in (3.5)
and (3.9). The example follows the application of Corollary 3.2. First, the eigenvalues of
𝜆𝑖{𝐿} − 1 are written in the exponential form 𝜇𝑖𝑒

𝑗𝜑𝑖 :

𝜆1{𝐿} − 1 = 0.6478 = 0.6478𝑒𝑗0, (3.59)

𝜆2{𝐿} − 1 = 0.1761 + 𝑗0.8607 = 0.8785𝑒𝑗1.369, (3.60)

𝜆3{𝐿} − 1 = 0.1761− 𝑗0.8607 = 0.8785𝑒−𝑗1.369, (3.61)

such that

𝜇1 = 0.6478, 𝜑1 = 0, (3.62)

𝜇2 = 0.8785, 𝜑2 = 1.369, (3.63)

𝜇3 = 0.8785, 𝜑3 = −1.369. (3.64)

Choosing 𝛼2 = 1, the maximum value of 𝛼1 such that consensability is delay-independent
is checked using (3.34). Thus

𝛼1 ≤ min
�̄�𝑖,𝛼2

(︁
1 +

⃒⃒⃒√︀
(1− 𝜇2

𝑖 )
⃒⃒⃒)︁

𝜇2
𝑖

, (3.65)

𝛼1 ≤ min(1.2183, 0.2184, 0.2184), (3.66)

𝛼1 ≤ 0.2184. (3.67)

It means that if 𝛼1 is chosen 𝛼1 ≤ 0.2184, no crossings occur and the system becomes
delay-independent.

Delay-independet

Consider 𝛼2 = 0.21 and, for delay-free dynamics, consensability is checked by the nonzero
eigenvalues of Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 − 𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜. For this example⎡⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦⊗
[︃

0 1

0 0

]︃
−

⎡⎢⎢⎢⎢⎣
1 0 0 −1

−0.5 1 0 −0.5

0 −1 1 0

0 0 −1 1

⎤⎥⎥⎥⎥⎦⊗
[︃

0

1

]︃ [︁
0.21 1

]︁
, (3.68)

and the eigenvalues of (3.68) are: 0, 0, −0.2343±𝑗0.0296, −0.247, −0.9418±𝑗0.8903𝑖, and
−1.4008. The two zero eigenvalues are expected since the graph has a directed spanning
tree, according to Lemma 2.3, and the system achieves consensus asymptotically since all
the nonzero eigenvalues have negative real parts, according to Lemma 2.4.

Since the system free of delay achieves consensus, and the value of 𝛼2 is chosen such
that the system is delay-independent, the multi-agent system will always be able to achieve
consensus for any value of communication delay 𝜏 .
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(b) State trajectories for 𝑥𝑖,2(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.2: State trajectories and error for 𝜏 = 1s.

Simulations are carried out for 𝜏 = 1𝑠, 𝜏 = 5𝑠, and 𝜏 = 10𝑠, in order to show that the
system is consensable for any of these cases. See the system state trajectories in Figures
3.2, 3.3, and 3.4, respectively. Additionally, an error metrics given as the norm of the
stacked disagreement vector ‖𝑧(𝑡)‖ is introduced in Figures 3.2c, 3.3c, and 3.4c to check
stability of the transformed system as the error between the agents decreases.

An interesting fact from Figure 3.4 is that the error between the agents’ states con-
verges to zero asymptotically in Figure 3.4c, although the states 𝑥𝑖,1(𝑡) in Figure 3.2 and
𝑥𝑖,2(𝑡) in Figure 3.3 are varying. Note, however, that the states vary similarly.
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(b) State trajectories for 𝑥𝑖,2(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.3: State trajectories and error for 𝜏 = 5s.

Consensus on intervals

Finally, assume 𝛼2 = 0.30. For the delay-free dynamics, consensability is checked by the
non-zero eigenvalues of Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 − 𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜, where

Γℎ𝑜 =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦⊗
[︃

0 1

0 0

]︃
−

⎡⎢⎢⎢⎢⎣
1 0 0 −1

−0.5 1 0 −0.5

0 −1 1 0

0 0 −1 1

⎤⎥⎥⎥⎥⎦⊗
[︃

0

1

]︃ [︁
0.30 1

]︁
, (3.69)

and its eigenvalues are: 0, 0, −0.3416±𝑗0.0726, −0.3944, −0.8345±𝑗0.9333𝑖, and−1.2534.
The two zero eigenvalues are expected since the graph has a directed spanning tree,
according to Lemma 2.3. Since the number of positive nonzero eigenvalues is null, then
𝑁𝑈(0) = 0, following the procedure in Theorem 3.1.

Next, the triplets Ψ𝑖𝑗 = (𝜔𝑖𝑗, 𝜏𝑖𝑗,Φ𝑖𝑗) are computed and the set Ψ is written. The
elements of Ψ are summarized in the Table 3.1. As it is obtained Ψ ̸= ∅, this example is
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.4: State trajectories and error for 𝜏 = 10s.

Table 3.1: Elements of Ψ

𝑖 𝑗 𝜔𝑖𝑗 𝜏𝑖𝑗 Φ𝑖𝑗

2 1 0.2597 16.8773 −1
2 2 0.5517 7.2585 +1
3 1 0.2597 6.3358 −1
3 2 0.5517 2.2958 +1

the Case 2 in Theorem 3.1.

Then, following the procedure of Theorem 3.1, Case 2, Table 3.2 is built in the as-
cending order of 𝜏 ℓ𝑖𝑗.

By looking at Table 3.2 consensability intervals can be analyzed. Note that the
system is consensable in the first time-delay interval [0, 2.2958). As the communica-
tion time-delay increases, the system becomes unable to achieve consesus in the interval
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Table 3.2: Consensusability switches analysis

𝜏 ℓ𝑖𝑗 𝜔𝑖𝑗 Φ𝑖𝑗 𝑁𝑈(𝜏)

0
2.2958 0.5517 1

2
6.3358 0.2597 −1

0
7.2585 0.5517 1

2
13.6844 0.5517 1

4
16.8773 0.2597 −1

2
18.6471 0.5517 1

4
25.0730 0.5517 1

6
30.0356 0.5517 1

8
30.5268 0.2597 −1

...
...

...
...

𝜏 ∈ [2.2958, 6.3358]. However, if the delay is even greater within 𝜏 ∈ (6.3358, 7.2585) the
system is able to achieve consensus again, loosing consensability after 𝜏 >= 7.2585. Thus,
the system is consensable only in the intervals 𝜏 ∈ [0, 2.2958) and 𝜏 ∈ (6.3358, 7.2585),
because after 𝜏 = 7.2585 there will be always more roots crossing the imaginary axis from
left to right (Φ𝑖𝑗 = +1) than from right to left (Φ𝑖𝑗 = −1), which prevents the system
achieving consensus ever again. In order to illustrate this situation, the system state
trajectories are presented for 𝜏 = 2, 𝜏 = 4, 𝜏 = 7, and 𝜏 = 8, in Figures 3.5, 3.6, 3.7, and
3.8, respectively. This last scenario serves as a counterexample for the usual claim that
the time-delay only degrades the system’s performance.
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(b) State trajectories for 𝑥𝑖,2(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.5: State trajectories and error for 𝜏 = 2s.

3.3 Dynamics with Input Delay

In the presence of input delay, the agent dynamics in (3.2) is considered with the control
input in (3.8) subject to uniform and constant delays, i.e. 𝜏(𝑡) = 𝜏 , such that

�̇�𝑖,1(𝑡) = 𝑥𝑖,2(𝑡)

�̇�𝑖,2(𝑡) = 𝑥𝑖,3(𝑡)

... (3.70)

�̇�𝑖,𝑛−1(𝑡) = 𝑥𝑖,𝑛(𝑡)

�̇�𝑖,𝑛(𝑡) = 𝑢𝑖(𝑡− 𝜏),

which can be simplified to

�̇�𝑖(𝑡) = 𝐴ℎ𝑜𝑥𝑖(𝑡) +𝐵ℎ𝑜𝑢𝑖(𝑡− 𝜏), (3.71)

with 𝐴ℎ𝑜 and 𝐵ℎ𝑜 in (3.6) and (3.7), respectively.
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(b) State trajectories for 𝑥𝑖,2(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.6: State trajectories and error for 𝜏 = 4s.

The consensus protocol is given by (3.8), or simplified as (3.9) with 𝐾ℎ𝑜 in (3.10).

In the presence of input delay, the system can be described by a closed-loop dynamics
as presented in (2.69), with 𝜏(𝑡) = 𝜏 . The dynamics of the system can be described by
the same matrices 𝐴ℎ𝑜, 𝐵ℎ𝑜, and 𝐾ℎ𝑜, analogous to 𝐴, 𝐵, and 𝐾, respectively. Therefore,
the system to be analyzed can be written as

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴ℎ𝑜)𝑥(𝑡)− (𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜)𝑥(𝑡− 𝜏). (3.72)

Proposition 2.3 can be used in order to show consensus for (3.72) through the analysis
of a transformed system as shown for (2.72), given by

�̇�(𝑡) = (𝐼𝑚−1 ⊗ 𝐴ℎ𝑜)𝑧(𝑡)− (�̄�⊗ (𝐵ℎ𝑜𝐾ℎ𝑜))𝑧(𝑡− 𝜏𝑖(𝑡)). (3.73)
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(b) State trajectories for 𝑥𝑖,2(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.7: State trajectories and error for 𝜏 = 7s.

3.3.1 Analysis

Consensus for agents with high-order integrator dynamics and input time-delay as in
(3.71), subject to protocol (3.8), can be assessed by studying stability of the reduced-
dimension transformed system in (3.73), dictated by the location of the roots of the
transcendental function

∆𝜏 (𝑠) = det(𝑠𝐼𝑛(𝑚−1) − 𝐴𝑖𝑛 + �̄�𝑖𝑛𝑒
−𝑠𝜏 ), (3.74)

with 𝐴𝑖𝑛 = (𝐼𝑚−1 ⊗ 𝐴ℎ𝑜) and �̄�𝑖𝑛 = (�̄�⊗ (𝐵ℎ𝑜𝐾ℎ𝑜)).

Similar to Lemma 3.1, next lemma is presented to establish the stability of the roots
of ∆𝜏 (𝑠) in (3.74) equivalently to the stability of the roots of a set of quasi-polynomials.

Lemma 3.2 Consider the multiagent system in (3.71) with protocol (3.8). Assume a
directed network topology containing a directed spanning tree with Laplacian Matrix 𝐿.
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(b) State trajectories for 𝑥𝑖,2(𝑡).
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(c) Disagreement ‖𝑧(𝑡)‖.

Figure 3.8: State trajectories and error for 𝜏 = 8s.

Then, the multiagent system is consensable when subject to input time-delay 𝜏 if and only
if all roots of

𝑝𝑖(𝑠) = 𝑠𝑛 + 𝜆𝑖{𝐿}𝑒−𝑠𝜏

𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝 (3.75)

have negative real part, for 𝑖 = 1, 2, . . . ,𝑚− 1.

Proof Based on Proposition 2.3, the multiagent system in (3.71) with protocol (3.8)
asymptotically achieves consensus if and only if all roots of ∆𝜏 (𝑠) in (3.74) have negative
real part.
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Note that ∆𝜏 (𝑠) in (3.74) can be rewritten after some computation as

∆𝜏 (𝑠) = det

(︃
𝑠𝑛𝐼𝑚−1 +

(︃
𝑛∑︁

𝑝=1

𝑠𝑝−1𝛼𝑝

)︃
𝑒−𝑠𝜏 �̄�

)︃
(3.76)

=
𝑚−1∏︁
𝑖=1

(︃
𝑠𝑛 + 𝜆𝑖

{︃(︃
𝑛∑︁

𝑝=1

𝑠𝑝−1𝛼𝑝

)︃
𝑒−𝑠𝜏 �̄�

}︃)︃
(3.77)

=
𝑚−1∏︁
𝑖=1

(︁
𝑠𝑛 + 𝜆𝑖{�̄�}𝑒−𝑠𝜏

𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

)︁
. (3.78)

Based on Proposition 2.5, the eigenvalues of �̄� in (3.78) can be directly related to the
nonzero eigenvalues of 𝐿, assuming 𝜆𝑚{𝐿} = 0. Then,

∆𝜏 (𝑠) =
𝑚−1∏︁
𝑖=1

(︁
𝑠𝑛 + 𝜆𝑖{𝐿}𝑒−𝑠𝜏

𝑛∑︁
𝑝=1

𝑠𝑝−1𝛼𝑝

)︁
. (3.79)

Equation (3.79) shows that, for each nonzero eigenvalue of 𝐿 there are 𝑛 eigenvalues
for the whole system dynamics, given by the roots of the quasi-polynomials in (3.75).
This completes the proof. �

3.3.2 Consensus on Time-Delay Intervals

Next result is based on the stability analysis of the quasi-polynomials in (3.75), given by
Lemma 3.2, following the same procedure in previous section for communication delays.
The result is stated in the next theorem.

Theorem 3.2 Consider the multiagent system in (3.71) with protocol (3.8). Assume a
directed network topology containing a directed spanning tree with Laplacian Matrix 𝐿.
Let the nonzero eigenvalues of 𝐿 be written in the exponential form: 𝜆𝑖{𝐿} = 𝜇𝑖𝑒

𝑗𝜑𝑖.
Compute:

𝑖) 𝑁𝑈(𝜏) for 𝜏 = 0, that is the number of unstable roots of ∆𝜏 (𝑠) with 𝜏 = 0. Note that
𝑁𝑈(0) can be determined by the nonzero eigenvalues of Γℎ𝑜 = 𝐼𝑚⊗𝐴ℎ𝑜−𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜.

𝑖𝑖) The triplets Ψ𝑖𝑗 = (𝜔𝑖𝑗, 𝜏𝑖𝑗,Φ𝑖𝑗), for 𝑖 = 1, 2, . . . ,𝑚 − 1 and 𝑗 = 1, 2, . . . , 𝑟𝑖, with 𝑟𝑖

the number of positive roots of (3.80) below for a given 𝑖. Moreover, 𝜔𝑖𝑗 for each 𝜇𝑖

are the positive roots of

𝜌𝑖(𝜔) = 𝜔2𝑛 − 𝜇2
𝑖

⃒⃒⃒ 𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝

⃒⃒⃒2
, (3.80)
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each 𝜏𝑖𝑗 is any value of 𝜏 for a given 𝜔𝑖𝑗 that satisfies the system of equations⎧⎪⎪⎨⎪⎪⎩
sin(𝜔𝑖𝑗𝜏 − 𝜑𝑖) =

−𝑎0𝑅𝑎𝑖𝐼 + 𝑎0𝐼𝑎𝑖𝑅
𝜔2𝑛
𝑖𝑗

,

cos(𝜔𝑖𝑗𝜏 − 𝜑𝑖) =
−𝑎0𝑅𝑎𝑖𝑅 − 𝑎0𝐼𝑎𝑖𝐼

𝜔2𝑛
𝑖𝑗

,
(3.81)

where 𝑎0𝑅 and 𝑎0𝐼 are the real and imaginary parts of 𝑎0(𝜔) ≡ (𝑗𝜔𝑖𝑗)
𝑛, respectively,

and 𝑎𝑖𝑅 and 𝑎𝑖𝐼 are the real and imaginary parts of 𝑎𝑖(𝜔) ≡ 𝜇𝑖

∑︀𝑛
𝑝=1(𝑗𝜔𝑖𝑗)

𝑝−1𝛼𝑝,
respectively. Finally, Φ𝑖𝑗 is calculated for each 𝜔𝑖𝑗 as the sign of

d

d𝜔
𝜌𝑖(𝜔)

⃒⃒⃒⃒
𝜔=𝜔𝑖𝑗

. (3.82)

Now, define the set

Ψ := {(Ψ𝑖𝑗) : 𝑖 = 1, 2, . . . ,𝑚− 1 and 𝑗 = 1, 2, . . . , 𝑟𝑖}.

Then, depending on the set Ψ consisting of all obtained triplets Ψ𝑖𝑗, there are two
possible cases:

Case 1: If Ψ = ∅, no consensability switches occur. Therefore, if 𝑁𝑈(0) = 0, then
the system achieves consensus for 𝜏 = 0 and is still consensable for any 𝜏 > 0,
alternatively, if 𝑁𝑈(0) > 0, the system does not achieve consensus for 𝜏 = 0 or for
any 𝜏 > 0.

Case 2: If Ψ ̸= ∅, consensability switches may occur. Then, in order to identify the
switches, form a table whose:

∙ The first column entries are 𝜏 ℓ𝑖𝑗 > 0, given by (3.21), for all 𝜏𝑖𝑗 ∈ Ψ, in the
ascending order.

∙ The second column entries are the values of 𝜔𝑖𝑗 ∈ Ψ associated with each 𝜏 ℓ𝑖𝑗

from the first column.

∙ The third column entries are the values of Φ𝑖𝑗 ∈ Ψ associated with each 𝜏 ℓ𝑖𝑗

from the first column.

∙ The fourth column entries are given by the number of unstable roots for a
specific value of time-delay 𝜏 , 𝑁𝑈(𝜏). Before progressing further, add new lines
between each line in the table built so far, the elements in the fourth column will
appear only in the new lines added. The first element of this column is 𝑁𝑈(0),
then the next ones are the number of unstable roots for 𝜏 = 𝜏 ℓ𝑖𝑗 + 𝜖, 0 < 𝜖≪ 1.
If the Φ𝑖𝑗 = +1 in line below, then 𝑁𝑈(𝜏) increases by 2, if Φ𝑖𝑗 = −1, then
𝑁𝑈(𝜏) decreases by 2.
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Finally, the regions in the time-delay domain where the multi-agent system is con-
sensable are those where 𝑁𝑈(𝜏) = 0.

Proof The proof is similar to the proof of Theorem 3.1. From the conjugate symmetry
of (3.75), for some 𝑠 = 𝑗𝜔, the following holds

|(𝑗𝜔)𝑛|2 − |𝜆𝑖{𝐿}𝑒−𝑗𝜔𝜏

𝑛∑︁
𝑝=1

(𝑗𝜔)𝑝−1𝛼𝑝|2 = 0, (3.83)

and writing the eigenvalues of 𝐿 in the exponential form 𝜆𝑖{𝐿} = 𝜇𝑖𝑒
𝑗𝜑𝑖 , equation (3.80)

is achieved in order to find the zero-crossing frequencies.

If there is no solution for (3.80), then the roots of the quasi-polynomials in (3.75) never
cross the imaginary axis. Therefore, no consensability switches occur. Which concludes
the proof of Case 1.

If (3.80) has solutions 𝜔𝑖𝑗 > 0, a procedure similar to the one used by Yang (2013)
is followed. Therefore, separate the terms of (3.75), with 𝑠 = 𝑗𝜔, in real and imaginary
parts, as:

𝑝𝑖(𝑗𝜔) =
(︁
𝑎0𝑅(𝜔) + 𝑗𝑎0𝐼(𝜔)

)︁
+
(︁
𝑎𝑖𝑅(𝜔) + 𝑗𝑎𝑖𝐼(𝜔)

)︁
𝑒−𝑗(𝜔𝜏−𝜑𝑖), (3.84)

where 𝑎0𝑅(𝜔) and 𝑎0𝐼(𝜔) are the real and imaginary parts of 𝑎0(𝜔) ≡ (𝑗𝜔)𝑛, respec-
tively, and similarly 𝑎𝑖𝑅(𝜔) and 𝑎𝑖𝐼(𝜔) are the real and imaginary parts of 𝑎𝑖(𝜔) ≡
𝜇𝑖

∑︀𝑛
𝑝=1(𝑗𝜔)𝑝−1𝛼𝑝, respectively.

Expanding the exponential term by Euler’s form, a value for 𝜏𝑖𝑗, for each 𝜔𝑖𝑗, can be
found solving the system of equations in (3.29) repeated for convenience in (3.81), which
is equivalent to the system of equations (3.23).

For each root on the imaginary axis 𝑗𝜔𝑖𝑗, the periodically spaced delays 𝜏 ℓ𝑖𝑗 are given
by (3.21). Therefore, (3.81) can be used to identify one of these time-delay, and the others
can the obtained by (3.21).

Next, the tendency of the roots in (3.75) is shown by Φ𝑖𝑗 as defined in (3.30), which
indicates the direction on which the imaginary root 𝑗𝜔𝑖𝑗 crosses the imaginary axis. For
Φ𝑖𝑗 = +1, a pair of roots crosses the imaginary axis from left to right; conversely, for
Φ𝑖 = −1, the pair crosses from right to left.

Finally, the number of roots in the right half plane is determined when 𝜏 = 0. This
can be assessed from the eigenvalues of Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 − 𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜.
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Organizing this data in the ascending order of time-delay, and considering the increase,
or decrease, in the number 𝑁𝑈(𝜏) of roots in the right open half-plane, consensability is
given whenever this 𝑁𝑈(𝜏) = 0. This proves the procedure of Case 2. �

In the following, particular results are obtained for networks of agents with first-
and second-order integrator dynamics. Equivalent results are shown by Xi et al. (2013)
and Yu et al. (2010), respectively. These results show that if the multiagent system is
consensable, it achieves consensus for any time-delay in the interval 𝜏 ∈ [0, 𝜏 *) with a
unique 0 < 𝜏 * ≤ ∞.

Corollary 3.3 Agents with first-order dynamics in (3.71) under protocol (3.8), with a
network containing a directed spanning tree, achieve consensus if and only if 𝜏 ∈ [0, 𝜏 *)

with
𝜏 * = min

1≤𝑖≤𝑚−1

(︂
𝜋/2 + 𝜑𝑖

𝜇𝑖𝛼1

)︂
, (3.85)

where 𝜆𝑖{𝐿} = 𝜇𝑖𝑒
𝑗𝜑𝑖.

Proof For this case Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 − 𝐿⊗ 𝐵ℎ𝑜𝐾ℎ𝑜 is given by −𝛼1𝐿, and Lemma 2.4 is
satisfied according to Lemma 2.1 since the graph has a directed spanning tree. Thus, the
system achieves consensus for 𝜏 = 0, i.e. 𝑁𝑈(0) = 0 in Theorem 3.2.

From Theorem 3.2, for first-order dynamics, equation (3.80) becomes

𝜔2 − 𝜇2
𝑖𝛼

2
1 = 0,

which yields only one solution 𝜔𝑖1 = 𝜇𝑖𝛼1. Then, the crossing direction given by equa-
tion (3.82) becomes Φ𝑖1 = sign (2𝜔𝑖1) , which is always positive and the roots cross the
imaginary axis at 𝑗𝜔𝑖1 only from left to right. Then, the first crossing in the imaginary
axis indicates that the consensability is lost. The value of the delay associated with this
crossing is obtained solving (3.81), yielding (3.85). �

Corollary 3.4 Agents with second-order integrator dynamics in (3.71) under protocol
(3.8), with a network containing a directed spanning tree, achieve consensus if and only
if matrix Γℎ𝑜 = 𝐼𝑚⊗𝐴ℎ𝑜−𝐿⊗𝐵ℎ𝑜𝐾ℎ𝑜 has exactly two zero eigenvalues and all the other
eigenvalues have negative real parts, and 𝜏 ∈ [0, 𝜏 *) with

𝜏 * = min
1≤𝑖≤𝑚−1

(︂
arctan(𝜔𝑖1𝛼2/𝛼1) + 𝜑𝑖

𝜔𝑖1

)︂
, (3.86)

with

𝜔𝑖1 =

√︃
𝜇2
𝑖𝛼

2
2 +

√︀
𝜇4
𝑖𝛼

4
2 + 4𝜇2

𝑖𝛼
2
1

2
. (3.87)
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Figure 3.9: Directed network with four agents.

Proof From Theorem 3.2 for second-order dynamics, equation (3.80) becomes

𝜔4 − 𝜇2
𝑖𝛼

2
2𝜔

2 − 𝜇2
𝑖𝛼

2
1 = 0,

which yields only one positive frequency given in (3.87). Equation (3.82) becomes

Φ𝑖𝑗 = sign
(︀
2𝜔2

𝑖𝑗 − 𝜇2
𝑖𝛼

2
2

)︀
, (3.88)

and replacing (3.87), yields

Φ𝑖1 = sign
(︂√︁

𝜇4
𝑖𝛼

4
2 + 4𝜇2

𝑖𝛼
2
1

)︂
, (3.89)

which is always positive. This indicates that the roots only move from the left to the
right half plane.

Finally, the delay-free stability is analyzed by matrix Γℎ𝑜 = 𝐼𝑚 ⊗ 𝐴ℎ𝑜 − 𝐿 ⊗ 𝐵ℎ𝑜𝐾ℎ𝑜

according to Lemma 2.4, and the first zero-crossing is calculated solving (3.81), yielding
(3.86). �

3.3.3 Numerical Examples

Consider the multi-agent system represented by the directed network topology depicted
in Figure 3.9.

For this graph, the Laplacian Matrix is given by

𝐿 =

⎡⎢⎢⎢⎢⎣
1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1

⎤⎥⎥⎥⎥⎦ , (3.90)

with eigenvalues: 𝜆1{𝐿} = 1.4142𝑒𝑗0.7854, 𝜆2{𝐿} = 1.4142𝑒−𝑗0.7854, 𝜆3{𝐿} = 2, and
𝜆4{𝐿} = 0.

In the following, three scenarios are studied, given the agents with first-, second-, and
third-order integrator dynamics.
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First-order integrator agents

Initially, it is assumed that all agents have a first-order integrator dynamics with gain
𝛼1 = 1 in the consensus protocol. Thus, applying Corollary 3.3, it is given that the
system achieves consensus if and only if 𝜏 ∈ [0, 0.5554).

Second-order integrator agents

Next, it is assumed a second-order integrator dynamics with 𝛼2 = 1 and 𝛼1 = 0.25 in the
consensus protocol. Applying Corollary 3.4, it is given that the system achieves consensus
when free of delay, since

Γℎ𝑜 = 𝐼4 ⊗
[︃

0 1

0 0

]︃
− 𝐿⊗

[︃
0

1

]︃ [︁
0.25 1

]︁
(3.91)

has exactly two zero eigenvalues and all the others with negative real parts. The zero
crossing frequencies are given by 𝑤1,1 = 1.4355, 𝑤2,1 = 1.4355, and 𝑤3,1 = 2.0153. There-
fore, 𝜏 * is given by min(1.5213, 0.4270, 0.7182). Thus, the system achieves consensus if
and only if 𝜏 ∈ [0, 0.427).

Third-order integrator agents

Finally, assume third-order integrator dynamics with gains 𝛼3 = 1, 𝛼2 = 0.25, and 𝛼1 =

0.33 in the consensus protocol. Following the procedure in Theorem 3.1, it is given
𝑁𝑈(0) = 2, since

Γℎ𝑜 = 𝐼4 ⊗

⎡⎢⎣0 1 0

0 0 1

0 0 0

⎤⎥⎦− 𝐿⊗
⎡⎢⎣0

0

1

⎤⎥⎦[︁0.33 0.25 1
]︁

(3.92)

has a pair of conjugate eigenvalues with positive real parts, i.e. 0.0049± 𝑗0.7135.

Next, the triplets Ψ𝑖𝑗 = (𝜔𝑖𝑗, 𝜏𝑖𝑗,Φ𝑖𝑗) are computed and the set Ψ is obtained as
summarized in Table 3.3. Since Ψ ̸= ∅, this example is the Case 2 in Theorem 3.1. Then,
following the procedure of Theorem 3.1, Case 2, Table 3.4 is built in the ascending order
of 𝜏 ℓ𝑖𝑗.

From Table 3.4 consensability intervals can be analyzed. Note that the system is not
consensable when free of delay, or in the first time-delay interval [0, 0.1332). However,
if the control input is properly delayed with 𝜏 ∈ (0.1332, 0.4349) the system achieves
consensus. The system is consensable only on the interval 𝜏 ∈ (0.1332, 0.4349), because
after 𝜏 = 0.4349 there will be always more roots crossing the imaginary axis from left to
right (Φ𝑖𝑗 = +1) than from right to left (Φ𝑖𝑗 = −1). This is illustrated by the simulations
shown in figures 3.10, 3.11, and 3.12, with the state trajectories and error for 𝜏 = 0.07,
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Table 3.3: Elements of Ψ

𝑖 𝑗 𝜔𝑖𝑗 𝜏𝑖𝑗 Φ𝑖𝑗

1 1 1.0396 1.9459 +1
1 2 0.7471 2.2356 −1
1 3 0.6008 1.6460 +1
2 1 1.0396 0.4349 +1
2 2 0.7471 0.1332 −1
2 3 0.6008 −0.9684 +1
3 1 1.8220 0.7792 +1

Table 3.4: Consensability switches

𝜏 ℓ𝑖𝑗 𝜔𝑖𝑗 Φ𝑖𝑗 𝑁𝑈(𝜏)

2
0.1332 0.7471 −1

0
0.4349 1.0396 1

2
0.7792 1.822 1

4
1.646 0.6008 1

6
1.9459 1.0396 1

8
2.2356 0.7471 −1

6
4.2277 1.822 1

8
6.4787 1.0396 1

10
7.6762 1.822 1

...
...

...
...

𝜏 = 0.35, and 𝜏 = 0.44, respectively. Once more, this is a counterexample for the usual
acceptance that the time-delay only degrades the system’s performance.
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(a) State trajectories for 𝑥𝑖,1(𝑡).
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(c) State trajectories for 𝑥𝑖,3(𝑡).
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(d) Disagreement ‖𝑧(𝑡)‖.

Figure 3.10: State trajectories and error for 𝜏 = 0.07s.
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(d) Disagreement ‖𝑧(𝑡)‖.

Figure 3.11: State trajectories and error for 𝜏 = 0.35s.
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(d) Disagreement ‖𝑧(𝑡)‖.

Figure 3.12: State trajectories and error for 𝜏 = 0.44s.



Chapter 4

Consensus with Time-Varying Delays:
Sufficient Conditions

Time-varying delays have been considered by Sun and Wang (2009) and Xi et al. (2013) for
consensus on directed communication networks. The authors considered the possibility of
nonuniform and non-differentiable time-varying delays, i.e. different values for the delays
in each communication link and unknown or fast-varying delays without any constraints
on the delay derivative (Fridman and Niculescu, 2008), satisfying 0 ≤ 𝜏𝑖𝑗(𝑡) ≤ 𝜏max

𝑖𝑗 , where
𝜏𝑖𝑗(𝑡) refers to the time-delay between any agents 𝑖 and 𝑗, and 𝜏max

𝑖𝑗 > 0 are constants
indicating the maximum values for the delays. These results however can only guarantee
consensus in the first interval of time-delay, i.e. from zero to 𝜏max

𝑖𝑗 . However, as shown
in the previous chapter the system can also achieve consensus in other intervals of time-
delays.

In Chapter 3, it was shown that the multiagent system can achieve consensus in differ-
ent intervals of time-delays. More specifically, there was an example in which the system
is consensable only in an interval (0.1332, 0.4349) for input delays. It was also shown an
example in which the agents achieve consensus in the first interval of communication de-
lays [0, 2.2958), but also in (6.3358, 7.2585). Therefore, better than analyzing the delays
varying in 0 ≤ 𝜏𝑖𝑗(𝑡) ≤ 𝜏max

𝑖𝑗 , which covers only the first interval, is to consider a lower
bound for this interval, possibly greater than zero. Considering this, it is possible to
verify consensus in different regions in the domain of time-delay as shown in the previous
chapter.

This chapter shows sufficient conditions for the analysis of consensus in the presence
of time-varying delays considering a lower bound for the time delay that can be different
from zero. The network is considered to be directed, and the agent dynamics are described
by any linear system as in (2.17) with communication delays in the consensus protocol,

79
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or (2.53) with input delays. It generalizes the results published by the author in Savino
et al. (2013), Savino et al. (2014a), Savino et al. (2014b), and Savino et al. (2016b).

The time-delays are considered to be nonuniform, time-varying and non-differentiable.
Furthermore, it is assumed that all of them vary in an interval defined as [𝜏−𝜇, 𝜏+𝜇], i.e.
𝜏𝑖𝑗(𝑡) ∈ [𝜏 − 𝜇, 𝜏 + 𝜇], for 𝜏𝑖𝑗(𝑡) > 0, where 𝜏 and 𝜇 are given constants. The presented
results are shown to be less conservative than previously published conditions in the
numerical examples run with both single-order integrator (Xi et al., 2013) and second-
order integrator dynamics (Liu et al., 2012). Furthermore, it extends the literature to
high-order dynamics and analyzes convergence rate by means of a guaranteed exponential
decay under non-differentiable time-varying delays.

The analysis is carried out for the transformed system in Section 2.2.2, using the
Lyapunov-Krasovskii theory (Gu et al., 2003; Fridman, 2014) taking advantage of the
Wirtinger-based improved integral inequality in Lemma 2.6 (Seuret and Gouaisbaut, 2013)
and LMIs. The choice of Lyapunov-Krasovskii theory and LMIs to derive these results is
made since it can adequately deal with systems subject to uncertain time-delays.

4.1 Consensus analysis

For convenience the agent dynamics with input delays is repeated here:

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝑡− 𝜏𝑖(𝑡)), 𝑖 = 1, 2, . . . ,𝑚, (4.1)

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

)︀
, (4.2)

given in (2.53) and (2.54), respectively, and for uniform communication delays:

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝑡), 𝑖 = 1, 2, . . . ,𝑚, (4.3)

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏(𝑡))

)︀
, (4.4)

given in (2.17) and (2.51), respectively. It is important to note that 𝐴, 𝐵, and 𝐾 are the
same in (4.1)–(4.4), no matter the type of delay being analyzed.

Following the procedure presented in Chapter 2 the closed-loop dynamics for a multi-
agent system is transformed into a stability problem in the form

�̇�(𝑡) = 𝐴�𝑧(𝑡) +
𝑘𝑚𝑎𝑥∑︁
𝑘=1

�̄�𝑘,�𝑧(𝑡− 𝜏𝑘(𝑡)), (4.5)
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where the square index, it is referred to the possibility of replacing � by the index 𝑖𝑛

for input delays, and 𝑐𝑜𝑚𝑚 for communication delays. For 𝑘, it can be replaced by the
index 𝑖 from 1 to 𝑘max = 𝑚 in the case of input delays, and for communication delays
𝑘 refers to the edges and 𝑘max = 𝑟, the number of edges in the graph. Due to the
Assumption 2.1, all the communication delays are considered equal such that 𝜏𝑘(𝑡) = 𝜏(𝑡)

and
∑︀𝑟

𝑘=1 �̄�𝑘,𝑐𝑜𝑚𝑚 = �̄�𝑐𝑜𝑚𝑚, which eliminates the summation in (4.5).

For input delays, replacing � by 𝑖𝑛 and 𝑘 by 𝑖, from 1 to 𝑘max = 𝑚, the matrices 𝐴𝑖𝑛

and �̄�𝑖,𝑖𝑛 are given according to the transformed system in (2.72), such that

𝐴𝑖𝑛 = 𝐼𝑚−1 ⊗ 𝐴, (4.6)

�̄�𝑖,𝑖𝑛 = −�̄�𝑖 ⊗ (𝐵𝐾), (4.7)
𝑚∑︁
𝑖=1

�̄�𝑖,𝑖𝑛 = �̄�𝑖𝑛 = −�̄�⊗ (𝐵𝐾), (4.8)

where 𝐴 and 𝐵 are given by the agent dynamics, 𝐾 is the gain in the consensus protocol,
and �̄�𝑖 = 𝑈𝐿𝑖𝑊 ∈ R(𝑚−1)×(𝑚−1) is the transformed Laplacian Matrix in (2.73), with 𝑈

and 𝑊 given in (2.12) and (2.14), respectively. The Laplacian Matrix 𝐿𝑖 is associated to
the subgraph on node 𝒢𝑎,𝑖 on the 𝑖-th agent.

For communication delays, since uniform delays are considered, the matrices in (4.5)
are written as 𝐴𝑐𝑜𝑚𝑚 and �̄�𝑐𝑜𝑚𝑚, given, according to the transformed system in (2.49),
by:

𝐴𝑐𝑜𝑚𝑚 = 𝐼𝑚−1 ⊗ (𝐴−𝐵𝐾), (4.9)
𝑟∑︁

𝑘=1

�̄�𝑘,𝑐𝑜𝑚𝑚 = �̄�𝑐𝑜𝑚𝑚 = (𝐼𝑚−1 − �̄�)⊗𝐵𝐾. (4.10)

Finally, it is defined the exponential convergence rate as follows.

Definition 4.1 The transformed multiagent system in (4.5) achieves consensus with guar-
anteed exponential convergence rate 𝛿 if

||𝑧(𝑡)|| ≤ 𝜅𝑒−𝛿𝑡, ∀𝑡 ≥ 0,

where 𝜅 is an appropriate scalar.

The main result of this chapter is stated in the next theorem. It gives new sufficient
conditions to verify consensus of a multiagent system with linear dynamics and nonuniform
time-varying delays which vary within a given domain.
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Theorem 4.1 Let be given 𝜏 > 0, 𝜏 ≥ 𝜇𝑚 ≥ 0, and 𝛿 > 0. Then, the transformed
multi-agent system in (4.5) with all 𝜏𝑘(𝑡) ∈ [𝜏 −𝜇𝑚, 𝜏 +𝜇𝑚], 𝑘 = 1, 2, . . . , 𝑘𝑚𝑎𝑥, achieves
consensus with guaranteed exponential convergence rate 𝛿, if there exist real matrices: 𝐹 ,
𝐺, 𝑃1 = 𝑃 𝑇

1 , 𝑃2, 𝑃3 = 𝑃 𝑇
3 , 𝑄 = 𝑄𝑇 > 0, 𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0 and 𝑍 = 𝑍𝑇 > 0,

with dimensions 𝑛(𝑚− 1)× 𝑛(𝑚− 1), such that the following LMIs hold:[︃
𝑃1 𝑃2

* 𝑃3

]︃
> 0, (4.11)

and [︃
Φ 𝜇𝑚Γ

* −𝜇𝑚

𝑒2
𝑍

]︃
< 0 , (4.12)

with 𝑒1 = 𝑒−2𝛿𝜏 , 𝑒2 = 𝑒−2𝛿(𝜇𝑚+𝜏),

Φ = Φ𝑃 + Φ𝑍 + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺, (4.13)

and

Γ =

⎡⎢⎢⎢⎢⎣
𝐹�̄��

𝐺�̄��

0

0

⎤⎥⎥⎥⎥⎦ , (4.14)

with

Φ𝑃 =

⎡⎢⎢⎢⎢⎣
2𝛿𝑃1 + 𝑃2 + 𝑃 𝑇

2 𝑃1 −𝑃2 2𝛿𝑃2 + 𝑃3

* 0 0 𝑃2

* * 0 −𝑃3

* * * 2𝛿𝑃3

⎤⎥⎥⎥⎥⎦ , (4.15)

Φ𝑍 =

⎡⎢⎢⎢⎢⎣
0 0 0 0

* 2𝜇𝑚𝑍 0 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎦ , Φ𝑅 =

⎡⎢⎢⎢⎢⎣
−4𝑒1

𝜏
𝑅 0 −2𝑒1

𝜏
𝑅 6𝑒1

𝜏2
𝑅

* 𝜏𝑅 0 0

* * −4𝑒1
𝜏
𝑅 6𝑒1

𝜏2
𝑅

* * * −12𝑒1
𝜏3
𝑅

⎤⎥⎥⎥⎥⎦ , (4.16)

Φ𝑄𝑆 =

⎡⎢⎢⎢⎢⎣
𝑄− 2𝑒1𝑆 0 0 2𝑒1

𝜏
𝑆

* 𝜏2

2
𝑆 0 0

* * −𝑒1𝑄 0

* * * −2𝑒1
𝜏2
𝑆

⎤⎥⎥⎥⎥⎦ , (4.17)

and

Φ𝐹𝐺 =

⎡⎢⎢⎢⎢⎣
−𝑒2𝐹𝐴� − 𝑒2𝐴𝑇

�𝐹
𝑇 𝑒2𝐹 − 𝑒2𝐴𝑇

�𝐺
𝑇 −𝑒2𝐹�̄�� 0

* 𝑒2𝐺+ 𝑒2𝐺
𝑇 −𝑒2𝐺�̄�� 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎦ . (4.18)



CHAPTER 4. CONSENSUS WITH TIME-VARYING DELAYS: SUFFICIENT
CONDITIONS 83

Proof This proof is concerned with the conditions for stability of the system in (4.5),
which may represent (2.49) or (2.72), and showing consensus with communication or input
delays according to Propositions 2.2 or 2.3, respectively.

Consider the following Lyapunov-Krasovskii functional (LKF) candidate:

𝑉 (𝑧𝑡) =𝜒𝑇 (𝑡)𝑃𝜒(𝑡) +

∫︁ 𝑡

𝑡−𝜏

𝑒2𝛿𝜉𝑧𝑇 (𝜉)𝑄𝑧(𝜉)𝑑𝜉 +

∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝑠

𝑒2𝛿𝜉�̇�𝑇 (𝜉)𝑅�̇�(𝜉)𝑑𝜉𝑑𝑠

+

∫︁ 0

−𝜏

∫︁ 0

𝜃

∫︁ 𝑡

𝑡+𝑠

𝑒2𝛿𝜉�̇�𝑇 (𝜉)𝑆�̇�(𝜉)𝑑𝜉𝑑𝑠𝑑𝜃 +

∫︁ 𝜇𝑚

−𝜇𝑚

∫︁ 𝑡

𝑡+𝑠−𝜏

𝑒2𝛿𝜉�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉𝑑𝑠, (4.19)

where 𝜒𝑇 (𝑡) =
[︁
𝑒𝛿𝑡𝑧𝑇 (𝑡) 𝑒𝛿𝑡

∫︀ 𝑡

𝑡−𝜏
𝑧𝑇 (𝜉)𝑑𝜉

]︁
,

𝑃 =

[︃
𝑃1 𝑃2

* 𝑃3

]︃
, (4.20)

and there exist some real matrices 𝑃1 = 𝑃 𝑇
1 , 𝑃2, 𝑃3 = 𝑃 𝑇

3 , 𝑄 = 𝑄𝑇 , 𝑅 = 𝑅𝑇 , 𝑆 = 𝑆𝑇 ,
and 𝑍 = 𝑍𝑇 .

Initially, the condition 𝑉 (𝑧𝑡) > 0 has to satisfied, where 𝑧𝑡 corresponds to the value
of 𝑧(𝜎) with 𝜎 ∈ [𝑡 − 𝜏 − 𝜇𝑚, 𝑡]. Thus, each matrix variable in each term of (4.19) is
assumed to be positive definite: 𝑃 > 0 in (4.11), 𝑄 > 0, 𝑅 > 0, 𝑆 > 0, and 𝑍 > 0. If
these conditions are satisfied, then 𝑉 (𝑧𝑡) > 0.

Now, it is shown the condition for the functional in (4.19) to satisfy the derivative
condition �̇� (𝑧𝑡) < 0. Initially, consider the following null term (Mozelli et al., 2010; Souza
et al., 2008), derived from the system’s equation (4.5):

0 =2Λ(𝑡)

[︃
�̇�(𝑡)− 𝐴�𝑧(𝑡)−

𝑘𝑚𝑎𝑥∑︁
𝑘=1

�̄�𝑘,�𝑧(𝑡− 𝜏𝑘(𝑡))

]︃
𝑒𝛿(𝑡−𝜏−𝜇𝑚) (4.21)

=2Λ(𝑡)

[︃
�̇�(𝑡)− 𝐴�𝑧(𝑡)−

𝑘𝑚𝑎𝑥∑︁
𝑘=1

�̄�𝑘,�

(︂
𝑧(𝑡− 𝜏)−

∫︁ −𝜏

−𝜏𝑘(𝑡)

�̇�(𝑡+ 𝜉)𝑑𝜉

)︂]︃
𝑒𝛿(𝑡−𝜏−𝜇𝑚) (4.22)

=2Λ(𝑡)
[︀
�̇�(𝑡)− 𝐴�𝑧(𝑡)− �̄��𝑧(𝑡− 𝜏)

]︀
𝑒𝛿(𝑡−𝜏−𝜇𝑚) + 𝑣(𝑡), (4.23)

with

𝑣(𝑡) =
𝑘𝑚𝑎𝑥∑︁
𝑘=1

∫︁ −𝜏

−𝜏𝑘(𝑡)

2Λ(𝑡)�̄�𝑘,��̇�(𝑡+ 𝜉)𝑒𝛿(𝑡−𝜏−𝜇𝑚)𝑑𝜉, (4.24)

Λ(𝑡) = 𝑒𝛿(𝑡−𝜏−𝜇𝑚)
[︁
𝑧𝑇 (𝑡)𝐹 �̇�𝑇 (𝑡)𝐺

]︁
, (4.25)

and 𝐹 and 𝐺 matrices with 𝑛(𝑚− 1) square dimensions.

Then, applying the inequality 2𝑎𝑇 𝑏 ≤ 𝑎𝑇𝑋𝑎+𝑏𝑇𝑋−1𝑏 in (4.24), where 𝑎𝑇 and 𝑏 are the
vectors Λ(𝑡)�̄�𝑘,� and �̇�(𝑡 + 𝜉)𝑒𝛿(𝑡−𝜏−𝜇𝑚), respectively, and 𝑋 is a positive-definite matrix
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chosen to be 𝑍
𝑘𝑚𝑎𝑥

, yields

𝑣(𝑡) ≤
𝑘𝑚𝑎𝑥∑︁
𝑘=1

∫︁ −𝜏

−𝜏𝑘(𝑡)

(Λ(𝑡)�̄�𝑘,�)𝑘𝑚𝑎𝑥𝑍
−1(Λ(𝑡)�̄�𝑘,�)𝑇𝑑𝜉

+
𝑘𝑚𝑎𝑥∑︁
𝑘=1

∫︁ −𝜏

−𝜏𝑘(𝑡)

𝑒2𝛿(𝑡−𝜏−𝜇𝑚)�̇�𝑇 (𝑡+ 𝜉)
𝑍

𝑘𝑚𝑎𝑥

�̇�(𝑡+ 𝜉)𝑑𝜉. (4.26)

Considering appropriate upper bounds for the integral terms, it gives

𝑣(𝑡) ≤
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝜇𝑚(Λ(𝑡)�̄�𝑘,�)𝑘𝑚𝑎𝑥𝑍
−1(Λ(𝑡)�̄�𝑘,�)𝑇 + 𝑒2𝛿(𝑡−𝜏−𝜇𝑚)

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉.

(4.27)

Replace (4.27) in (4.23) and define 𝑒2 = 𝑒−2𝛿(𝜏+𝜇𝑚) to obtain

0 ≤2𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑒2𝐹 �̇�(𝑡) + 2𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑒2𝐺�̇�(𝑡)− 2𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑒2𝐹𝐴�𝑧(𝑡)

− 2𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑒2𝐺𝐴�𝑧(𝑡)− 2𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑒2𝐹�̄��𝑧(𝑡− 𝜏)− 2𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑒2𝐺�̄��𝑧(𝑡− 𝜏)

+
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝜇𝑚(Λ(𝑡)�̄�𝑘,�)𝑘𝑚𝑎𝑥𝑍
−1(Λ(𝑡)�̄�𝑘,�)𝑇 + 𝑒2𝛿(𝑡−𝜏−𝜇𝑚)

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉.

(4.28)

Moreover, the time-derivative of the functional 𝑉 (𝑧𝑡) in (4.19) is

�̇� (𝑧𝑡) =𝜒𝑇 (𝑡)𝑃�̇�(𝑡) + �̇�𝑇 (𝑡)𝑃𝜒(𝑡)

+ 𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑄𝑧(𝑡)− 𝑒2𝛿(𝑡−𝜏)𝑧𝑇 (𝑡− 𝜏)𝑄𝑧(𝑡− 𝜏)

+ 𝜏𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑅�̇�(𝑡)−
∫︁ 𝑡

𝑡−𝜏

𝑒2𝛿𝜉�̇�𝑇 (𝜉)𝑅�̇�(𝜉)𝑑𝜉

+
𝜏 2

2
𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑆�̇�(𝑡)−

∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝑠

𝑒2𝛿𝜉�̇�𝑇 (𝜉)𝑆�̇�(𝜉)𝑑𝜉𝑑𝑠

+ 2𝜇𝑚𝑒
2𝛿𝑡�̇�𝑇 (𝑡)𝑍�̇�(𝑡)−

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

𝑒2𝛿𝜉�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉.

Then, the integrals with terms 𝑅 and 𝑆 may be bounded as in Lemma 2.6 and
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Lemma 2.5, respectively, such that

�̇� (𝑧𝑡) ≤𝜒𝑇 (𝑡)𝑃�̇�(𝑡) + �̇�𝑇 (𝑡)𝑃𝜒(𝑡)

+ 𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑄𝑧(𝑡)− 𝑒1𝑒2𝛿𝑡𝑧𝑇 (𝑡− 𝜏)𝑄𝑧(𝑡− 𝜏)

+ 𝜏𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑅�̇�(𝑡)− 𝑒1𝑒
2𝛿𝑡

𝜏

∫︁ 𝑡

𝑡−𝜏

�̇�𝑇 (𝜉)𝑑𝜉𝑅

∫︁ 𝑡

𝑡−𝜏

�̇�(𝜉)𝑑𝜉 − 3𝑒1𝑒
2𝛿𝑡

𝜏
Ω̃𝑇𝑅Ω̃

+
𝜏 2

2
�̇�𝑇 (𝑡)𝑆�̇�(𝑡)− 2𝑒1𝑒

2𝛿𝑡𝑧𝑇 (𝑡)𝑆𝑧(𝑡)

+
4𝑒1𝑒

2𝛿𝑡

𝜏
𝑧𝑇 (𝑡)𝑆

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉 − 2𝑒1𝑒
2𝛿𝑡

𝜏 2

∫︁ 𝑡

𝑡−𝜏

𝑧𝑇 (𝜉)𝑑𝜉 𝑆

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉

+ 2𝜇𝑚𝑒
2𝛿𝑡�̇�𝑇 (𝑡)𝑍�̇�(𝑡)− 𝑒2𝛿(𝑡−𝜏−𝜇𝑚)

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉. (4.29)

with Ω̃ given as Ω in (2.83) replacing 𝑎 by 𝑡− 𝜏 and 𝑏 by 𝑡.

Adding the null term (4.28) to �̇� (𝑧𝑡) in (4.29), gives:

�̇� (𝑧𝑡) ≤𝜒𝑇 (𝑡)𝑃�̇�(𝑡) + �̇�𝑇 (𝑡)𝑃𝜒(𝑡)

+ 𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑄𝑧(𝑡)− 𝑒1𝑒2𝛿𝑡𝑧𝑇 (𝑡− 𝜏)𝑄𝑧(𝑡− 𝜏)

+ 𝜏𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑅�̇�(𝑡)− 𝑒1𝑒
2𝛿𝑡

𝜏

∫︁ 𝑡

𝑡−𝜏

�̇�𝑇 (𝜉)𝑑𝜉𝑅

∫︁ 𝑡

𝑡−𝜏

�̇�(𝜉)𝑑𝜉 − 3𝑒1𝑒
2𝛿𝑡

𝜏
Ω̃𝑇𝑅Ω̃

+
𝜏 2

2
�̇�𝑇 (𝑡)𝑆�̇�(𝑡)− 2𝑒1𝑒

2𝛿𝑡𝑧𝑇 (𝑡)𝑆𝑧(𝑡)

+
4𝑒1𝑒

2𝛿𝑡

𝜏
𝑧𝑇 (𝑡)𝑆

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉 − 2𝑒1𝑒
2𝛿𝑡

𝜏 2

∫︁ 𝑡

𝑡−𝜏

𝑧𝑇 (𝜉)𝑑𝜉 𝑆

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉

+ 2𝜇𝑚𝑒
2𝛿𝑡�̇�𝑇 (𝑡)𝑍�̇�(𝑡)−

(((
((((

(((
((((

((((

𝑒2𝛿(𝑡−𝜏−𝜇𝑚)

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉

+ 2𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑒2𝐹 �̇�(𝑡) + 2𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑒2𝐺�̇�(𝑡)

− 2𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑒2𝐹𝐴�𝑧(𝑡)− 2𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑒2𝐺𝐴�𝑧(𝑡)

− 2𝑒2𝛿𝑡𝑧𝑇 (𝑡)𝑒2𝐹�̄��𝑧(𝑡− 𝜏)− 2𝑒2𝛿𝑡�̇�𝑇 (𝑡)𝑒2𝐺�̄��𝑧(𝑡− 𝜏)

+
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝜇𝑚(Λ(𝑡)�̄�𝑘,�)𝑘𝑚𝑎𝑥𝑍
−1(Λ(𝑡)�̄�𝑘,�)𝑇 +

(((
((((

(((
((((

((((

𝑒2𝛿(𝑡−𝜏−𝜇𝑚)

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉.

(4.30)

Making

Γ𝑘 =

⎡⎢⎢⎢⎢⎣
𝐹�̄�𝑘,�

𝐺�̄�𝑘,�

0

0

⎤⎥⎥⎥⎥⎦ (4.31)
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and Υ𝑇 (𝑡) = [𝑒𝛿𝑡𝑧𝑇 (𝑡) 𝑒𝛿𝑡�̇�𝑇 (𝑡) 𝑒𝛿𝑡𝑧𝑇 (𝑡 − 𝜏) 𝑒𝛿𝑡
∫︀ 𝑡

𝑡−𝜏
𝑧𝑇 (𝜉)𝑑𝜉], it can be written the

product Λ(𝑡)�̄�𝑘,� = 𝑒−𝛿(𝜏+𝜇𝑚)Υ𝑇 (𝑡)Γ𝑘. Additionally, given Φ in (4.13), the derivative of
the LKF can be written as

�̇� (𝑧𝑡) ≤Υ𝑇 (𝑡)ΦΥ(𝑡) +
𝑟∑︁

𝑘=1

𝜇𝑚𝑒2Υ
𝑇 (𝑡)Γ𝑘𝑘𝑚𝑎𝑥𝑍

−1Γ𝑇
𝑘 Υ(𝑡), (4.32)

=Υ𝑇 (𝑡)

(︃
𝑘𝑚𝑎𝑥∑︁
𝑘=1

(︁ 1

𝑘𝑚𝑎𝑥

Φ + 𝜇𝑚𝑒2Γ𝑘𝑘𝑚𝑎𝑥𝑍
−1Γ𝑇

𝑘

)︁)︃
Υ(𝑡). (4.33)

In order to guarantee �̇� (𝑧𝑡) < 0 for any 𝜁 ̸= 0, the term between the larger parentheses
in (4.33) must be negative definite. Thus, applying Schur’s complement, it is obtained:

𝑘𝑚𝑎𝑥∑︁
𝑘=1

[︃
1

𝑘𝑚𝑎𝑥
Φ 𝜇𝑚Γ𝑘

* −𝜇𝑚

𝑒2𝑘𝑚𝑎𝑥
𝑍

]︃
=

[︃
Φ 𝜇𝑚Γ

* −𝜇𝑚

𝑒2
𝑍

]︃
< 0,

where Γ =
∑︀𝑘𝑚𝑎𝑥

𝑘=1 Γ𝑘, leading to the LMI condition in (4.12). Then, if the LMI in (4.12)
holds, the LKF time-derivative condition �̇� (𝑧𝑡) < 0) is satisfied.

Next, it is shown that if the LMIs conditions presented in the theorem are satisfied,
then the transformed system in (4.5) achieves consensus with exponential convergence
rate 𝛿. Thereby, assuming that the LMIs are satisfied then �̇� (𝑧𝑡) < 0 and 𝑉 (𝑧𝑡) > 0,
yielding

0 ≤ 𝑉 (𝑧𝑡) ≤ 𝑉 (𝑧𝑡) ≤ 𝑉 (𝑧𝑡)|𝑡=0, (4.34)

with

𝑉 (𝑧𝑡) =𝜆max{𝑃}||𝜒(𝑡)||2 + 𝜆max{𝑄}
∫︁ 𝑡

𝑡−𝜏

𝑒2𝛿𝜉||𝑧(𝜉)||2𝑑𝜉

+
(︀
𝜏𝜆max{𝑅}+ 𝜏 2𝜆max{𝑆}

)︀∫︁ 𝑡

𝑡−𝜏

𝑒2𝛿𝜉||�̇�(𝜉)||2𝑑𝜉 + 𝜆max{𝑍}
∫︁ 𝑡

𝑡−𝜏−𝜇𝑚

𝑒2𝛿𝜉||�̇�(𝜉)||2𝑑𝜉,

(4.35)

where 𝜆max{·} is the maximum eigenvalue of a matrix, and,

𝑉 (𝑧𝑡)|𝑡=0 ≤
(︂
𝜆max{𝑃}

)︂
sup

−𝜏≤𝜃≤0
{||𝜒(𝜃)||}+

(︂
𝜆max{𝑄}

∫︁ 0

−𝜏

𝑒2𝛿𝜉𝑑𝜉

)︂
sup

−𝜏≤𝜃≤0
{||𝑧(𝜃)||}

+

(︂(︀
𝜏𝜆max{𝑅}+ 𝜏 2𝜆max{𝑆}

)︀ ∫︁ 0

−𝜏

𝑒2𝛿𝜉𝑑𝜉

+ (𝜏 + 𝜇𝑚)
𝑟∑︁

𝑘=1

𝜆max{𝑍𝑘}
∫︁ 0

−𝜏−𝜇𝑚

𝑒2𝛿𝜉𝑑𝜉

)︂
sup

−(𝜏+𝜇𝑚)≤𝜃≤0

{||�̇�(𝜃)||} = 𝜌(𝛿).

(4.36)

Therefore, it can be noticed from (4.34) and (4.36), that

𝑒2𝛿𝑡𝜆min{𝑃1}||𝑧(𝑡)||2 ≤ 𝑉 (𝑧𝑡) ≤ 𝜌(𝛿),
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where 𝜆min{𝑃1} is the minimum eigenvalue of the matrix 𝑃1, then

||𝑧(𝑡)|| ≤
√︃

𝜌(𝛿)

𝜆min{𝑃1}
𝑒−𝛿𝑡 , 𝜅𝑒−𝛿𝑡.

Therefore, the transformed multiagent system in (4.5) achieves consensus with expo-
nential convergence rate 𝛿 according to Definition 4.1. This completes the proof. �

It is worth to mention that some steps in this proof regarding the bounds of the time-
delays are inspired in the work by Fridman (2006) and Fridman and Niculescu (2008),
where it is also assumed similar description for the time-delay adopted here.

When the time-delays are considered to be constant, i.e 𝜇𝑚 = 0 the following corollary
can be derived from Theorem 4.1.

Corollary 4.1 Let be given 𝜏 > 0 and 𝛿 > 0. Then, the transformed multiagent system in
(4.5) with all 𝜏𝑘(𝑡) = 𝜏 , 𝑘 = 1, 2, . . . , 𝑘𝑚𝑎𝑥, achieves consensus with guaranteed exponential
convergence rate 𝛿, if there exist real matrices: 𝐹 , 𝐺, 𝑃1 = 𝑃 𝑇

1 , 𝑃2, 𝑃3 = 𝑃 𝑇
3 , 𝑄 = 𝑄𝑇 > 0,

𝑅 = 𝑅𝑇 > 0, and 𝑆 = 𝑆𝑇 > 0, of dimensions 𝑛(𝑚 − 1) × 𝑛(𝑚 − 1), such that the LMI
(4.11) and Φ̄ < 0 hold, where Φ̄ = Φ𝑃 + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺 given as in (4.13).

Proof The proof follows from Theorem 4.1 by making 𝜇𝑚 = 0 such that, in (4.33), Φ < 0

is sufficient to guarantee �̇� (𝑧𝑡) < 0. Additionally, since 𝜇𝑚 = 0 the term with 𝑍 vanishes,
which gives Φ̄ = Φ−Φ𝑍 < 0, or Φ̄ = Φ𝑃 + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺. This completes the proof. �

Remark 4.1 In the proposed method the choice of the LKF plays a major role in the
method conservativeness. One efficient strategy to reduce the conservativeness in this
context is the delay discretization technique; see for example Gu et al. (2003), however
in this case the complexity of LMIs computations is increased as a result of an increase
in the number of discretizations. Thus the conservativeness of the proposed method can
be reduced by applying discretization techniques, at the cost of higher computational com-
plexity.

4.2 Numerical Examples

In this section, the proposed method is applied in different examples. For comparison
purpose, the same directed network with 4 agents in the work of Yu et al. (2010) is
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Figure 4.1: Directed network with four agents.

considered. This topology is shown in Figure 4.1 with an associated Laplacian Matrix
given by

𝐿 =

⎡⎢⎢⎢⎢⎣
1 0 −1 0

−1 1 0 0

0 −1 1 0

−1 0 0 1

⎤⎥⎥⎥⎥⎦ . (4.37)

Note that this graph satisfies Assumption 2.2 for the analysis of consensus with commu-
nication delays.

Initially, it is considered the case of uniform and constant time delay, i.e., 𝜏𝑘(𝑡) =

𝜏 . For comparison purpose, consider the agents with dynamics described as a chain of
integrators, with first-, second-, third- and fourth-order dynamics as in (3.2). With 𝜇 = 0

and 𝛿 ≈ 0, a search is made for the highest value of 𝜏 such that the LMI conditions in
Corollary 4.1 hold. For illustration purposes, the gains in matrix 𝐾, for the consensus
protocol in (3.9), are considered to be [1], [1 1], [0.3 1 1], and [0.2 0.3 1 1] for fist-,
second-, third-, and fourth-order integrator dynamics, respectively.

4.2.1 Constant Delays

The obtained results are compared with some related methods for consensus with input
delay using LMIs, such as Xi et al. (2013) and Liu et al. (2012), for first- and second-order
integrator dynamics. Besides, the first interval of delay can be assessed by the analytical
results presented in Theorem 3.1 for communication delays, and Theorem 3.2 for input
delays. The results for input delays are summarized in Table 4.1, and for communication
delays in Table 4.2.

Table 4.1 and Table 4.2 show that Corollary 4.1 presents results that are very close to
the analytical result provided by Theorem 3.2 and Theorem 3.1, respectively, confirming
the validity of the method. Moreover, differently from Xi et al. (2013) and Liu et al.
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Table 4.1: Maximum allowed constant input delay 𝜏𝑖(𝑡) = 𝜏 obtained for multiagent
system in Figure 4.1.

Method 1-integr., 2-integr. 3-integr. 4-integr.

Sufficient

Xi et al. (2013) 0.5773 - - -

Liu et al. (2012) - 0.2870 - -

Corollary 4.1 0.6043 0.2941 0.2768 0.2918

Analytical Theorem 3.2 0.6046 0.2942 0.2769 0.2919

Table 4.2: Maximum allowed constant communication delay 𝜏(𝑡) = 𝜏 obtained for multi-
agent system in Figure 4.1.

Method 2-integrators 3-integrators 4-integrators

Sufficient Corollary 4.1 0.6104 0.4996 0.5576

Analytical Theorem 3.1 0.6105 0.4997 0.5577

τ k
(t
)

t

τ + µm

τ

τ − µm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 4.2: Time-varying delay 𝜏𝑘(𝑡) with random amplitude.

(2012), the proposed method can handle consensus problems with dynamical systems
with any number of integrators and can also deal with communication delays.

4.2.2 Time-varying Delays

Another advantage of the proposed method is its ability to handle any linear dynamics
and non-differentiable time-varying delay, i.e. time-delays without knowledge of the time
derivative of 𝜏𝑘(𝑡). The delays are considered to belong to the interval given by 𝜏𝑘(𝑡) ∈
[𝜏−𝜇𝑚, 𝜏 +𝜇𝑚], 0 ≤ 𝜇 ≤ 𝜏 . An example of the random form of the time-delay for further
analysis is depicted in Figure 4.2.

A multiagent system composed of vehicles with the dynamics given in (1.35) is con-
sidered for the analysis. Thus, the agent dynamics is described by the state variables
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𝑠𝑖(𝑡) 𝑣𝑖(𝑡) 𝑎𝑖(𝑡)

]︁𝑇
and the matrices

𝐴 =

⎡⎢⎣0 1 0

0 0 1

0 0 −1
𝜄𝑖

⎤⎥⎦ (4.38)

and

𝐵 =

⎡⎢⎣0

0
1
𝜄𝑖

⎤⎥⎦ . (4.39)

For the consensus protocol consider the gain matrix 𝐾 = [0.3 1 1]. Also, consider the
inertial delay 𝜄𝑖 = 0.5.

It is illustrated the efficiency given by the proposed method by showing that the system
achieves consensus with guaranteed convergence rate 𝛿 with the considered time-varying
delay. The test is the one of finding the largest value of 𝛿 for given pairs of 𝜏 and 𝜇,
such that the LMI conditions are feasible. The obtained results for input delays and
communication delays are shown in Table 4.3 and Table 4.4, respectively.

Table 4.3: Largest 𝛿 obtained for input delays with given pair (𝜏, 𝜇)

(𝜏, 𝜇) (0.10, 0.05) (0.15, 0.05) (0.10, 0.10) (0.15, 0.10)
𝛿 0.26 0.26 0.25 0.12

Table 4.4: Largest 𝛿 obtained for communication delays with given pair (𝜏, 𝜇)

(𝜏, 𝜇) (0.30, 0.10) (0.30, 0.20) (0.50, 0.20) (0.60, 0.20)
𝛿 0.26 0.26 0.24 0.19

Figure 4.3 shows the state trajectories for the system during simulation for the case
of communication delay varying in the interval 𝜏(𝑡) ∈ [0.10, 0.50], i.e. 𝜏 = 0.30, 𝜇 = 0.20.
The three state variables are represented in three graphics showing that the multiagent
system achieves consensus in all of them. It is also shown the norm of the transformed
variables ||𝑧(𝑡)||, representing the disagreement as it goes to zero. The latter also shows
the convergence curve with 𝛿 = 0.26, represented by the dashed line of an exponential
function that converges similarly to the system and can adequately describe the time
needed to achieve consensus.
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(a) State trajectories for 𝑠𝑖(𝑡).
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(b) State trajectories for 𝑣𝑖(𝑡).
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(c) State trajectories for 𝑎𝑖(𝑡).
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(d) Disagreement ‖𝑧(𝑡)‖ with dashed exponential convergence curve with 𝛿 = 0.26.

Figure 4.3: State trajectories and error with communication delay given by 𝜏 = 0.30 and
𝜇𝑚 = 0.20.



Chapter 5

Consensus Analysis with Switching
Topologies

This chapter proposes a sufficient method for the analysis of consensus on multiagent
systems subject to time-varying delays and switching topology. The switches in the net-
work topology are of great interest and can model failures in the communication channels,
obstructions, and packages dropout. The main contribution is given in Theorem 5.1. It
shows a sufficient condition for consensus on a multiagent system based on linear matrix
inequalities that takes into account the joint effect of time-varying delays and switching
network topology.

The case of multiagent systems subject to switching topology has been addressed in
the literature using several methodologies. For example, Zhao et al. (2011) uses Markov
processes to formulate a mean-square consensus problem for second-order multiagent sys-
tems with time-delays and unknown transition probabilities; in the work by Qin et al.
(2014) communication constraints and linear system dynamics are considered; and by Ren
et al. (2007) the switching topology is considered non-stochastic. In this scenario, many
practical applications in which the network topology may vary can be analyzed using
consensus-based approaches with switching topologies, for example, flight formation of
quadrotors as presented by Michael et al. (2010); Schwager et al. (2011).

The following result is a reprint of the result published by the author in Savino et al.
(2016a), which also generalizes dos Santos Junior et al. (2014) and dos Santos Junior et al.
(2015). Additionally, the result is also extended to the case of multiagent systems subject
to communication delays.

It is assumed that the topology switch behaves as a continuous time Markov chain with
uncertain transition rates, which can be related to systems where the stochastic model

92
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is not exactly known. Thus the multi-agent system is transformed into a Markov jump
linear system (MJLS) and the consensus analysis is carried out by providing sufficient
conditions written as Linear Matrix Inequalities (LMIs) to guarantee the stability of the
transformed system. The treatment given to the uncertain transition rates is inspired on
the ideas presented by Xiong et al. (2005), Xiong and Lam (2009), Zhang et al. (2008),
and Zhang and Boukas (2009).

An extension of the formulation of the problem is presented next, in order to describe
the multiple possible topologies.

5.1 Problem Formulation with Switching Topologies

Let 𝜃𝑡 be the representation of the topology of the multi-agent system at the instant of
time 𝑡, and 𝒮 = 1, 2, . . . , 𝑠 the image of 𝜃𝑡, where 𝑠 is the total number of topologies.
Each topology is associated with a weighted directed graph 𝒢(ℓ) = (𝒱 , ℰ(ℓ),𝒜(ℓ),𝒲), for
all ℓ ∈ 𝒮, with same set of vertices 𝒱 and Weight Matrix 𝒲 , but different sets of edges
ℰ(ℓ), such that the Adjacency Matrix 𝒜(ℓ) = [𝑎𝑖𝑗(ℓ)] with elements 𝑎𝑖𝑗(ℓ) is given by:

𝑎𝑖𝑗(ℓ) =

{︃
0, if 𝑖 = 𝑗 or @ 𝑒𝑗𝑖 ∈ ℰ(ℓ),

𝑤𝑖𝑗, if and only if ∃ 𝑒𝑗𝑖 ∈ ℰ(ℓ),
(5.1)

where 𝑤𝑖𝑗 > 0.

Remark 5.1 Same edges 𝑒𝑗𝑖 in different graphs 𝒢(ℓ) are associated to the same weights
𝑤𝑖𝑗. An element 𝑤𝑖𝑗 exists in 𝒲 even if 𝑒𝑗𝑖 does not exist in ℰ(ℓ).

Consider the set ℰ̄ =
⋃︀𝑠

ℓ=1 ℰ(ℓ) the union of all the edges in each graph 𝒢(ℓ), for all
ℓ = 1, 2, . . . , 𝑠. Thus, it is defined the Joint Graph 𝒢:

Definition 5.1 The Joint Graph 𝒢 = (𝒱 , ℰ̄ ,𝒜,𝒲) is the graph composed of the union of
the edges in the subgraphs 𝒢(ℓ), for all ℓ = 1, 2, . . . , 𝑠. The vertices 𝒱 and weights 𝒲 are
the same for all 𝒢(ℓ) and 𝒢, and the joint Adjacency Matrix 𝒜 = [�̄�𝑖𝑗] is given by:

�̄�𝑖𝑗(ℓ) =

{︃
0, if 𝑖 = 𝑗 or @ 𝑒𝑗𝑖 ∈ ℰ̄ ,
𝑤𝑖𝑗, if and only if ∃ 𝑒𝑗𝑖 ∈ ℰ̄ .

(5.2)

Similarly to (2.2) it can be defined the Laplacian matrices 𝐿(ℓ) for each 𝒢(ℓ),

𝐿(ℓ) = 𝒟(ℓ)−𝒜(ℓ), (5.3)
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where 𝒟(ℓ) is the degree matrix associated to the adjacency matrix 𝒜(ℓ) of graph 𝒢(ℓ).

Consider a multiagent system with 𝑚 agents in a directed network. The following
pairs of equations describe the dynamics of the agents with input delays or communication
delays. With input delays, the dynamics is given by

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝜃𝑡, 𝑡− 𝜏𝑖(𝑡)), 𝑖 = 1, 2, . . . ,𝑚, (5.4)

and the following protocol is considered

𝑢𝑖(𝜃𝑡, 𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗(𝜃𝑡)𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

)︀
. (5.5)

Under communication delays, the dynamics is given by

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝜃𝑡, 𝑡), 𝑖 = 1, 2, . . . ,𝑚, (5.6)

and protocol

𝑢𝑖(𝜃𝑡, 𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗(𝜃𝑡)𝐾
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡− 𝜏(𝑡))

)︀
. (5.7)

The time-varying variable 𝜃𝑡 represents the current topology of the multi-agent system
at each instant of time 𝑡, and 𝑢𝑖(𝜃𝑡, 𝑡) indicates the control input based on the current
connected neighbors of agent 𝑖.

The dynamics of the parameter 𝜃𝑡 is given by a continuous time Markov chain (Wentzell
et al. (1981)) with discrete states given by a set 𝒮 = 1, 2, ..., 𝑠, with 𝑠 the number of
different topologies, and a probability transition matrix Ψ = [𝜓𝑝𝑞] defined by:

𝜓𝑝𝑞=P{𝜃𝑡+Δ=𝑞|𝜃𝑡=𝑝}=

{︃
(𝜋𝑝𝑞 + 𝜖𝑝𝑞)∆ + 𝑜(∆), 𝑝 ̸= 𝑞,

1 + (𝜋𝑝𝑝 + 𝜖𝑝𝑝)∆ + 𝑜(∆), 𝑝 = 𝑞,
(5.8)

in which 𝜓𝑝𝑞 represents the probability of switching from topology 𝑝 to 𝑞 in an interval
∆ > 0 at given time 𝑡, for 𝑝, 𝑞 ∈ 𝒮, and where limΔ→0

𝑜(Δ)
Δ

= 0, and (𝜋𝑝𝑞 + 𝜖𝑝𝑞) are
elements of the uncertain transition rate matrix

Π =

⎡⎢⎢⎢⎢⎣
𝜋11 + 𝜖11 𝜋12 + 𝜖12 · · · 𝜋1𝑠 + 𝜖1𝑠

𝜋21 + 𝜖21 𝜋22 + 𝜖22 · · · 𝜋2𝑠 + 𝜖2𝑠
...

... . . . ...
𝜋𝑠1 + 𝜖𝑠1 𝜋𝑠2 + 𝜖𝑠2 · · · 𝜋𝑠𝑠 + 𝜖𝑠𝑠

⎤⎥⎥⎥⎥⎦ . (5.9)

The value 𝜋𝑝𝑞 is an estimate of the transition rate from state 𝑝 to state 𝑞, and 𝜖𝑝𝑞 represents
the error (uncertainty) of this estimate. It is assumed that 𝜖𝑝𝑞 is an unknown constant
scalar taking values within a known interval 𝜖𝑝𝑞 ∈ [−𝛿𝑝𝑞, 𝛿𝑝𝑞], 𝛿𝑝𝑞 > 0, 𝛿𝑝𝑞 < 𝜋𝑝𝑞. Note that
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𝜋𝑝𝑞 + 𝛿𝑝𝑞 > 0, 𝜋𝑝𝑝 = −∑︀𝑠
𝑞=1,𝑞 ̸=𝑝 𝜋𝑝𝑞, 𝜖𝑝𝑝 = −∑︀𝑠

𝑞=1,𝑞 ̸=𝑝 𝜖𝑝𝑞, and consequently
∑︀𝑠

𝑞=1(𝜋𝑝𝑞 +

𝜖𝑝𝑞) = 0. Finally, denote 𝜈 = (𝜈1, . . . , 𝜈𝑠) the initial distribution of the Markov chain,
related to the probability of the initial topology and first switches.

In order to obtain a compact representation of the multi-agent system, the augmented
system dynamics comprising all the agents with input delays, given by the closed-loop of
(5.4) with protocol (5.5), is

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴)𝑥(𝑡)−
𝑚∑︁
𝑖=1

(𝐿𝑎,𝑖(𝜃𝑡)⊗𝐵𝐾)𝑥(𝑡− 𝜏𝑖(𝑡)) (5.10)

and for communication delays, the closed-loop of (5.6) with protocol (5.7) is

�̇�(𝑡) = (𝐼𝑚 ⊗ 𝐴−𝒟 ⊗𝐵𝐾)𝑥(𝑡) +
𝑟∑︁

𝑘=1

(𝒟(𝜃𝑡)⊗𝐵𝐾 − 𝐿(𝜃𝑡)⊗𝐵𝐾)𝑥(𝑡− 𝜏(𝑡)), (5.11)

where (5.10) and (5.11) are obtained similarly to (2.69) and (2.45), respectively.

Consider the closed-loop dynamics for a multiagent system written as

�̇�(𝑡) = 𝐴�𝑥(𝑡) +
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝐵𝑘,�(𝜃𝑡)𝑥(𝑡− 𝜏𝑘(𝑡)), (5.12)

with the square index � referring to the index 𝑖𝑛 for input delays, and 𝑐𝑜𝑚𝑚 for com-
munication delays. As presented previously in Section 4.1, 𝑘 can be replaced by the
index 𝑖 from 1 to 𝑘𝑚𝑎𝑥 = 𝑚 in the case of input delays, and for communication delays 𝑘
refers to the edges and 𝑘𝑚𝑎𝑥 = 𝑟, which due to Assumption 2.1, all 𝜏𝑘(𝑡) = 𝜏(𝑡) making∑︀𝑟

𝑘=1𝐵𝑘,𝑐𝑜𝑚𝑚 = 𝐵𝑐𝑜𝑚𝑚. Thus, for input delays, it yields

𝐴𝑖𝑛 = 𝐼𝑚 ⊗ 𝐴, (5.13)

𝐵𝑖,𝑖𝑛(𝜃𝑡) = −𝐿𝑎,𝑖(𝜃𝑡)⊗ (𝐵𝐾), (5.14)
𝑚∑︁
𝑖=1

𝐵𝑖,𝑖𝑛(𝜃𝑡) = 𝐵𝑖𝑛(𝜃𝑡) = −𝐿(𝜃𝑡)⊗ (𝐵𝐾), (5.15)

and for communication delays

𝐴𝑐𝑜𝑚𝑚 = 𝐼𝑚 ⊗ (𝐴−𝐵𝐾), (5.16)
𝑟∑︁

𝑘=1

𝐵𝑘,𝑐𝑜𝑚𝑚(𝜃𝑡) = 𝐵𝑐𝑜𝑚𝑚(ℓ) = (𝐼𝑚 − 𝐿(𝜃𝑡))⊗𝐵𝐾. (5.17)

With these definitions, it is formalized the definition of consensus under stochastic
topologies:
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Definition 5.2 (Miao et al. (2014)) Under stochastic switching topology, the closed-loop
multiagent system (5.12), reaches mean-square consensus if, for all 𝑖 ̸= 𝑗, the limits
lim𝑡→∞ E||𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)||2 = 0 hold in the mean-square sense for any initial distribution
𝜈 = (𝜈1, . . . , 𝜈𝑠) for 𝜃𝑡, 𝑡 = 0, and any initial state conditions.

Next, conditions are proposed to verify whether the multiagent system in (5.12)
achieves consensus according to Definition 5.2.

The tree-type transformation can be applied in (5.10) and (5.11) as in Chapter 2, in
order to obtain the transformed disagreement systems analogous to (2.72) and (2.49),
respectively, taking into account the variable 𝜃𝑡, yielding

�̇�(𝑡) = 𝐴�𝑧(𝑡) +
𝑘𝑚𝑎𝑥∑︁
𝑘=1

�̄�𝑘,�(𝜃𝑡)𝑧(𝑡− 𝜏𝑘(𝑡)). (5.18)

The square index can be filled with index 𝑖𝑛 in order to make

𝐴𝑖𝑛 = 𝐼𝑚−1 ⊗ 𝐴, (5.19)

�̄�𝑖,𝑖𝑛(𝜃𝑡) = −�̄�𝑎,𝑖(𝜃𝑡)⊗ (𝐵𝐾), (5.20)
𝑚∑︁
𝑖=1

�̄�𝑖,𝑖𝑛(𝜃𝑡) = �̄�𝑖𝑛(𝜃𝑡) = −�̄�(𝜃𝑡)⊗ (𝐵𝐾), (5.21)

for input delays, or with index 𝑐𝑜𝑚𝑚 giving

𝐴𝑐𝑜𝑚𝑚 = 𝐼𝑚−1 ⊗ (𝐴−𝐵𝐾), (5.22)
𝑟∑︁

𝑘=1

�̄�𝑘,𝑐𝑜𝑚𝑚(𝜃𝑡) = �̄�𝑐𝑜𝑚𝑚(𝜃𝑡) = (𝐼𝑚−1 − �̄�(𝜃𝑡))⊗𝐵𝐾, (5.23)

for communication delays, where (5.19)–(5.23) are analogous to (4.6)–(4.10), with the
introduction of term 𝜃𝑡.

Remark 5.2 For the analysis with communication delays, all the possible graphs that the
multiagent system can assume must satisfy Assumption 2.2, and the time-varying delays
have to be considered uniform, i.e. 𝜏𝑘(𝑡) = 𝜏(𝑡) (Assumption 2.1), in order to the tree-type
transformation to be satisfied.

Based on the disagreement of the state variables, consensus on system (5.12) is assessed
by establishing stability of the transformed system in (5.18). In this context, Definition
5.2 can be rewritten as follows:
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Definition 5.3 Under stochastic switching topology, the closed-loop multiagent system in
(5.12), reaches mean-square consensus if the transformed system (5.18) is stochastically
stable in the mean-square sense, i.e.:

lim
𝑡→∞

E[𝑧𝑇 (𝑡)𝑧(𝑡)] = 0 (5.24)

holds in mean square sense for any initial distribution of the Markov chain and initial
state conditions.

Remark 5.3 For simplicity in the notation of the stochastic variables, the dependency
on the argument 𝜃𝑡 will be denoted by the subscript index ℓ, when no confusion can arise.
For example, a matrix 𝑀(𝜃𝑡) will be denoted simply by 𝑀ℓ.

5.2 Consensus analysis

The main result of this chapter is stated in the next theorem. This theorem gives new
sufficient conditions to verify consensus of a specified multiagent system with linear dy-
namics and, possibly, switching topology and time-varying delays. The only restriction
about the topologies is that they switch accordingly as a specified Markov chain switches
from one state to another. The time-delays can be regarded as communication or input
delays.

Theorem 5.1 Consider the closed-loop multiagent system in (5.12) with 𝜏 > 0, 𝜏 ≥
𝜇𝑚 ≥ 0, and Π defined as in (5.9), whose 𝜖𝑝𝑞 ∈ [−𝛿𝑝𝑞, 𝛿𝑝𝑞] with 𝛿𝑝𝑞 > 0 ∀ 𝑝, 𝑞 ∈ 𝒮,
and multiple time-delays 𝜏𝑘(𝑡) ∈ [𝜏 − 𝜇𝑚, 𝜏 + 𝜇𝑚], for 𝑘 = 1, 2, ...,𝑚. For communication
delay it is considered 𝜏𝑘(𝑡) = 𝜏(𝑡) and all the topologies to be regular. Then, the multiagent
system (5.12) achieves consensus in the mean-square sense if there exist 𝑛(𝑚−1)×𝑛(𝑚−1)

matrices 𝐹ℓ, 𝐺ℓ, 𝑃1ℓ = 𝑃 𝑇
1ℓ, 𝑃2ℓ, 𝑃3ℓ = 𝑃 𝑇

3ℓ, 𝑄 = 𝑄𝑇 > 0, 𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0, and
𝑍 = 𝑍𝑇 > 0, such that the following LMIs hold ∀ℓ = 1, 2, ..., 𝑠:[︃

𝑃1ℓ 𝑃2ℓ

* 𝑃3ℓ

]︃
> 0, (5.25)

and [︃
Φℓ 𝜇𝑚Γℓ

* −𝜇𝑚𝑍

]︃
< 0, (5.26)

where
Φℓ = Φ𝑃ℓ + Φ𝑍 + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺ℓ, (5.27)
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and

Γℓ =

⎡⎢⎢⎢⎢⎣
𝐹ℓ�̄��(ℓ)

𝐺ℓ�̄��(ℓ)

0

0

⎤⎥⎥⎥⎥⎦ , (5.28)

with

Φ𝑃ℓ =

⎡⎢⎢⎢⎢⎣
𝑃2ℓ + 𝑃 𝑇

2ℓ + Σ𝜋𝛿(𝑃1𝑞) 𝑃1ℓ −𝑃2ℓ 𝑃3ℓ + Σ𝜋𝛿(𝑃2𝑞)

* 0 0 𝑃2ℓ

* * 0 −𝑃3ℓ

* * * Σ𝜋𝛿(𝑃3𝑞)

⎤⎥⎥⎥⎥⎦ , (5.29)

where Σ𝜋𝛿(·) is a matrix function such that, for any matrix 𝑀𝑞, Σ𝜋𝛿(𝑀𝑞) =
∑︀𝑠

𝑞=1 𝜋ℓ𝑞𝑀𝑞 +∑︀𝑠
𝑞=1

5𝛿ℓ𝑞
4
𝑀𝑞,

Φ𝑍 =

⎡⎢⎢⎢⎢⎣
0 0 0 0

* 2𝜇𝑚𝑍 0 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎦ , Φ𝑅 =

⎡⎢⎢⎢⎢⎣
− 4

𝜏
𝑅 0 − 2

𝜏
𝑅 6

𝜏2
𝑅

* 𝜏𝑅 0 0

* * − 4
𝜏
𝑅 6

𝜏2
𝑅

* * * − 12
𝜏3
𝑅

⎤⎥⎥⎥⎥⎦ , (5.30)

Φ𝑄𝑆 =

⎡⎢⎢⎢⎢⎣
𝑄− 2𝑆 0 0 2

𝜏
𝑆

* 𝜏2

2
𝑆 0 0

* * −𝑄 0

* * * − 2
𝜏2
𝑆

⎤⎥⎥⎥⎥⎦ , (5.31)

and

Φ𝐹𝐺ℓ =

⎡⎢⎢⎢⎢⎣
−𝐹ℓ𝐴� − 𝐴𝑇

�𝐹
𝑇
ℓ 𝐹ℓ − 𝐴𝑇

�𝐺
𝑇
ℓ −𝐹ℓ�̄��(ℓ) 0

* 𝐺ℓ +𝐺𝑇
ℓ −𝐺ℓ�̄��(ℓ) 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎦ . (5.32)

Proof First, it is shown that if the proposed LMIs hold, then the inequalities 𝑉 (𝑧𝑡, ℓ) > 0

and ℒ𝑉 (𝑧𝑡, ℓ) < 0 are satisfied, where ℒ is the infinitesimal generator operator given in
Definition 2.2, and 𝑉 (𝑧𝑡, ℓ) is the following Lyapunov–Krasovskii stochastic functional:

𝑉 (𝑧𝑡, ℓ) = 𝑉1(𝑧𝑡, ℓ) + 𝑉2(𝑧𝑡) + 𝑉3(𝑧𝑡) + 𝑉4(𝑧𝑡) + 𝑉5(𝑧𝑡), (5.33)
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where 𝑧𝑡 corresponds to the state vector 𝑧(𝜎) values for 𝜎 within the interval [𝑡−𝜏−𝜇𝑚, 𝑡],

𝑉1(𝑧𝑡, ℓ) = 𝜒𝑇 (𝑡)𝑃ℓ𝜒(𝑡), (5.34)

𝑉2(𝑧𝑡) =

∫︁ 𝑡

𝑡−𝜏

𝑧𝑇 (𝜉)𝑄𝑧(𝜉)𝑑𝜉, (5.35)

𝑉3(𝑧𝑡) =

∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝜁

�̇�𝑇 (𝜉)𝑅�̇�(𝜉)𝑑𝜉𝑑𝜁, (5.36)

𝑉4(𝑧𝑡) =

∫︁ 0

−𝜏

∫︁ 0

𝜃

∫︁ 𝑡

𝑡+𝜁

�̇�𝑇 (𝜉)𝑆�̇�(𝜉)𝑑𝜉𝑑𝜁𝑑𝜃, (5.37)

𝑉5(𝑧𝑡) =

∫︁ 𝜇𝑚

−𝜇𝑚

∫︁ 𝑡

𝑡−𝜏+𝜁

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉𝑑𝜁, (5.38)

with 𝜒𝑇 (𝑡) = [𝑧𝑇 (𝑡)
∫︀ 𝑡

𝑡−𝜏
𝑧𝑇 (𝜉)𝑑𝜉], and there exist some real matrices

𝑃ℓ =

[︃
𝑃1ℓ 𝑃2ℓ

* 𝑃3ℓ

]︃
= 𝑃 𝑇

ℓ ,

𝑄 = 𝑄𝑇 , 𝑅 = 𝑅𝑇 , 𝑆 = 𝑆𝑇 , and 𝑍 = 𝑍𝑇 .

To satisfy the condition 𝑉 (𝑧𝑡, ℓ) > 0, assume each matrix variable in each term of
(5.33) to be positive definite: 𝑃ℓ > 0, as in LMI (5.25); 𝑄 > 0; 𝑅 > 0; 𝑆 > 0; and 𝑍 > 0.
If these conditions are satisfied, then 𝑉 (𝑧𝑡, ℓ) > 0.

Next, it is shown the LMI condition to guarantee ℒ𝑉 (𝑧𝑡, ℓ) < 0. Initially, consider the
following null term (Mozelli et al., 2010; Souza et al., 2008), with procedure similar to the
one presented in Chapter 4, derived from the system’s equation (5.18):

0 =2Λℓ(𝑡)

[︃
�̇� − 𝐴�𝑧(𝑡)−

𝑚∑︁
𝑘=1

�̄�𝑘�(ℓ)𝑧(𝑡− 𝜏𝑘(𝑡))

]︃
(5.39)

=2Λℓ(𝑡)

[︃
�̇� − 𝐴�𝑧(𝑡)−

𝑚∑︁
𝑘=1

�̄�𝑘�(ℓ)

(︂
𝑧(𝑡− 𝜏)−

∫︁ −𝜏

−𝜏𝑘(𝑡)

�̇�(𝑡+ 𝜉)𝑑𝜉

)︂]︃
(5.40)

=2Λℓ(𝑡)

[︃
�̇�(𝑡)− 𝐴�𝑧(𝑡)−

𝑚∑︁
𝑘=1

�̄�𝑘�(ℓ)𝑧(𝑡− 𝜏)

]︃
+ 𝑣ℓ(𝑡), (5.41)

with

𝑣ℓ(𝑡) =
𝑚∑︁
𝑘=1

∫︁ −𝜏

−𝜏𝑘(𝑡)

2Λℓ(𝑡)�̄�𝑘�(ℓ)�̇�(𝑡+ 𝜉)𝑑𝜉, (5.42)

Λℓ(𝑡) = [𝑧𝑇 (𝑡)𝐹ℓ + �̇�𝑇 (𝑡)𝐺ℓ], and 𝐹ℓ and 𝐺ℓ with appropriate dimensions.

Then, applying the inequality 2𝑎𝑇 𝑏 ≤ 𝑎𝑇𝑋𝑎 + 𝑏𝑇𝑋−1𝑏 in (5.42), where 𝑎𝑇 and 𝑏 are
the vectors Λℓ(𝑡)�̄�𝑘�(ℓ) and �̇�(𝑡 + 𝜉), respectively, and 𝑋 is a positive definite matrix
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chosen 𝑍
𝑚

, it gives

𝑣ℓ(𝑡) ≤
𝑚∑︁
𝑘=1

∫︁ −𝜏

−𝜏𝑘(𝑡)

(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑚𝑍−1(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑇𝑑𝜉

+
𝑚∑︁
𝑘=1

∫︁ −𝜏

−𝜏𝑘(𝑡)

�̇�𝑇 (𝑡+ 𝜉)
𝑍

𝑚
�̇�(𝑡+ 𝜉)𝑑𝜉

≤
𝑚∑︁
𝑘=1

(Λℓ(𝑡)�̄�𝑘�(ℓ))𝜇𝑚𝑚𝑍
−1(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑇 +

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉. (5.43)

Replace (5.43) in (5.39) to obtain

0 ≤− 2𝑧𝑇 (𝑡)𝐹ℓ�̇�(𝑡) + 2𝑧𝑇 (𝑡)𝐹ℓ𝐴�𝑧(𝑡)− 2�̇�𝑇 (𝑡)𝐺ℓ�̇�(𝑡) + 2�̇�𝑇 (𝑡)𝐺ℓ𝐴�𝑧(𝑡)

− 2𝑧𝑇 (𝑡)𝐹ℓ

𝑚∑︁
𝑘=1

�̄�𝑘�(ℓ)𝑧(𝑡− 𝜏)− 2�̇�𝑇 (𝑡)𝐺ℓ

𝑚∑︁
𝑘=1

�̄�𝑘�(ℓ)𝑧(𝑡− 𝜏)

+
𝑚∑︁
𝑘=1

𝜇𝑚(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑚𝑍−1(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑇 +

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉. (5.44)

Moreover, invoking the operator ℒ of infinitesimal generator in the functional in (5.33),
yields

ℒ𝑉 (𝑧𝑡, ℓ) = ℒ𝑉1(𝑧𝑡, ℓ) + ℒ𝑉2(𝑧𝑡) + ℒ𝑉3(𝑧𝑡) + ℒ𝑉4(𝑧𝑡) + ℒ𝑉5(𝑧𝑡). (5.45)

The term ℒ𝑉1(𝑧𝑡, ℓ) is given by:

ℒ𝑉1(𝑧𝑡, ℓ) = 2�̇�𝑇 (𝑡)𝑃ℓ𝜒(𝑡) + 𝜒𝑇 (𝑡)

[︃
𝑠∑︁

𝑞=1

(𝜋ℓ𝑞 + 𝜖ℓ𝑞)𝑃𝑞

]︃
𝜒(𝑡),

= 2�̇�𝑇 (𝑡)𝑃ℓ𝜒(𝑡) + 𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

𝜋ℓ𝑞𝑃𝑞

)︃
𝜒(𝑡) + 𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

𝜖ℓ𝑞𝑃𝑞

)︃
𝜒(𝑡). (5.46)

By Lemma 2.7, it is given that:

𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

𝜖ℓ𝑞𝑃𝑞

)︃
𝜒(𝑡) = 𝜒𝑇 (𝑡)

[︃
𝑠∑︁

𝑞=1

1

2
𝜖ℓ𝑞(𝑃𝑞 + 𝑃𝑞)

]︃
𝜒(𝑡),

≤ 𝜒𝑇 (𝑡)
𝑠∑︁

𝑞=1

[︂(︁𝜖ℓ𝑞
2

)︁2
𝑁 + 𝑃𝑞𝑁

−1𝑃𝑞

]︂
𝜒(𝑡). (5.47)

Since 𝜖ℓ𝑞 ∈ [−𝛿ℓ𝑞, 𝛿ℓ𝑞], thus 𝜖2ℓ𝑞 ≤ 𝛿2ℓ𝑞, such that

𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

𝜖ℓ𝑞𝑃𝑞

)︃
𝜒(𝑡) ≤ 𝜒𝑇 (𝑡)

𝑠∑︁
𝑞=1

(︂
𝛿2ℓ𝑞
4
𝑁 + 𝑃𝑞𝑁

−1𝑃𝑞

)︂
𝜒(𝑡). (5.48)
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Choosing 𝑁 = 1
𝛿ℓ𝑞
𝑃𝑞, since 𝑃𝑞 is assumed to be positive-definite ∀𝑞 = 1, ..., 𝑠, it gives

𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

𝜖ℓ𝑞𝑃𝑞

)︃
𝜒(𝑡) ≤ 𝜒𝑇 (𝑡)

𝑠∑︁
𝑞=1

[︂
𝛿ℓ𝑞
4
𝑃𝑞 + 𝛿ℓ𝑞𝑃𝑞

]︂
𝜒(𝑡)

≤ 𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

5𝛿ℓ𝑞
4
𝑃𝑞

)︃
𝜒(𝑡). (5.49)

Then, ℒ𝑉1(𝑧(𝑡), ℓ) can be written as

ℒ𝑉1(𝑧𝑡, ℓ) ≤ 2�̇�𝑇 (𝑡)𝑃ℓ𝜒(𝑡) + 𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

𝜋ℓ𝑞𝑃𝑞

)︃
𝜒(𝑡) + 𝜒𝑇 (𝑡)

(︃
𝑠∑︁

𝑞=1

5𝛿ℓ𝑞
4
𝑃𝑞

)︃
𝜒(𝑡). (5.50)

The next terms are given by

ℒ𝑉2(𝑧𝑡) = 𝑧𝑇 (𝑡)𝑄𝑧(𝑡)− 𝑧𝑇 (𝑡− 𝜏)𝑄𝑧(𝑡− 𝜏), (5.51)

ℒ𝑉3(𝑧𝑡) = 𝜏 �̇�𝑇 (𝑡)𝑅�̇�(𝑡)−
∫︁ 𝑡

𝑡−𝜏

�̇�𝑇 (𝜉)𝑅�̇�(𝜉)𝑑𝜉, (5.52)

and with 𝑅 > 0 Lemma 2.6 can be applied to yield

ℒ𝑉3(𝑧𝑡) ≤ 𝜏 �̇�𝑇 (𝑡)𝑅�̇�(𝑡)− 1

𝜏

∫︁ 𝑡

𝑡−𝜏

�̇�𝑇 (𝜉)𝑑𝜉𝑅

∫︁ 𝑡

𝑡−𝜏

�̇�(𝜉)𝑑𝜉 − 3

𝜏
Ω̃𝑇𝑅Ω̃, (5.53)

with Ω̃ given as Ω in (2.83) replacing 𝑎 by 𝑡− 𝜏 and 𝑏 by 𝑡.

For ℒ𝑉4(𝑧𝑡):

ℒ𝑉4(𝑧𝑡) =
𝜏 2

2
�̇�𝑇 (𝑡)𝑆�̇�(𝑡)−

∫︁ 0

−𝜏

∫︁ 𝑡

𝑡+𝜁

�̇�𝑇 (𝜉)𝑆�̇�(𝜉)𝑑𝜉𝑑𝜁, (5.54)

and with 𝑆 > 0 Lemma 2.5 can be applied, giving

ℒ𝑉4(𝑧𝑡) ≤
𝜏 2

2
�̇�𝑇 (𝑡)𝑆�̇�(𝑡)− 2𝑧𝑇 (𝑡)𝑆𝑧(𝑡)

+
4

𝜏
𝑧𝑇 (𝑡)𝑆

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉 − 2

𝜏 2

∫︁ 𝑡

𝑡−𝜏

𝑧𝑇 (𝜉)𝑑𝜉𝑆

∫︁ 𝑡

𝑡−𝜏

𝑧(𝜉)𝑑𝜉. (5.55)

Finally, for ℒ𝑉5(𝑧𝑡):

ℒ𝑉5(𝑧𝑡) =2𝜇𝑚�̇�
𝑇 (𝑡)𝑍�̇�(𝑡)−

∫︁ 𝑡−𝜏+𝜇𝑚

𝑡−𝜏−𝜇𝑚

�̇�𝑇 (𝜉)𝑍�̇�(𝜉)𝑑𝜉. (5.56)

Adding the null-term in (5.44) to the ℒ-infinitesimal of the functional in (5.45), and
replacing ℒ𝑉1(𝑧𝑡), ℒ𝑉3(𝑧𝑡), and ℒ𝑉4(𝑧𝑡) by the upper bounds (5.50), (5.53), and (5.55),
respectively, gives

ℒ𝑉 (𝑧𝑡, ℓ) ≤ Υ𝑇ΦℓΥ +
𝑚∑︁
𝑘=1

𝜇𝑚(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑚𝑍−1(Λℓ(𝑡)�̄�𝑘�(ℓ))𝑇 , (5.57)
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where Υ𝑇 =
[︁
𝑧𝑇 (𝑡) �̇�𝑇 (𝑡) 𝑧(𝑡− 𝜏)

∫︀ 𝑡

𝑡−𝜏
𝑧(𝜉)𝑑𝜉

]︁
and Φℓ as defined in (5.27).

Note that Λℓ(𝑡)�̄�𝑘,�(ℓ) = Υ𝑇 (𝑡)Γ𝑘ℓ with

Γ𝑘ℓ =

⎡⎢⎢⎢⎢⎣
𝐹ℓ�̄�𝑘,�(ℓ)

𝐺ℓ�̄�𝑘,�(ℓ)

0

0

⎤⎥⎥⎥⎥⎦ . (5.58)

Thus, (5.57) can be written as

ℒ𝑉 (𝑧𝑡, ℓ) ≤ Υ𝑇ΦℓΥ +
𝑚∑︁
𝑘=1

𝜇𝑚Υ𝑇Γ𝑘ℓ𝑚𝑍
−1Γ𝑇

𝑘ℓΥ,

≤ Υ𝑇

(︃
𝑚∑︁
𝑘=1

(︂
1

𝑚
Φℓ + 𝜇𝑚Γ𝑘ℓ𝑚𝑍

−1Γ𝑇
𝑘ℓ

)︂)︃
Υ. (5.59)

In order to guarantee ℒ𝑉 (𝑧𝑡, ℓ) < 0 for any Υ ̸= 0, the matrix between the larger
parentheses in (5.59) must be imposed negative. Thus, applying Schur’s complement, it
gives

𝑚∑︁
𝑘=1

[︃
1
𝑚

Φℓ 𝜇𝑚Γ𝑘ℓ

* −𝜇𝑚

𝑚
𝑍

]︃
=

[︃
Φℓ 𝜇𝑚Γℓ

* −𝜇𝑚𝑍

]︃
< 0 (5.60)

where Γℓ =
∑︀𝑚

𝑘=1 Γ𝑘ℓ, leading to the inequality in (5.26). If 𝑅 > 0, 𝑆 > 0, and the LMI
in (5.26) holds, then the ℒ-infinitesimal condition ℒ𝑉 (𝑧𝑡, ℓ) < 0 is satisfied.

Finally, assume that the LMIs (5.25) and (5.26) hold, then 𝑉 (𝑧𝑡, ℓ) > 0 and

ℒ𝑉 (𝑧𝑡, ℓ) ≤ −𝜌𝑧𝑇 (𝑡)𝑧(𝑡), (5.61)

for some sufficiently small 𝜌 > 0. Applying the expectancy, it is obtained: E[𝑉 (𝑧𝑡, ℓ)] > 0

and
E[ℒ𝑉 (𝑧𝑡, ℓ)] ≤ −𝜌E[𝑧𝑇 (𝑡)𝑧(𝑡)]. (5.62)

Then, applying the Dynkin’s formula (Definition 2.3), which can be seen as an stochas-
tic extension of the second fundamental theorem of calculus, it yields

E [𝑉 (𝑧𝑡, ℓ)]− 𝑉 (𝑧(0), ℓ0) =

∫︁ 𝑡

0

E [ℒ𝑉 (𝑧(𝜉), ℓ)] 𝑑𝜉,

≤ −𝜌
∫︁ 𝑡

0

E
[︀
𝑧𝑇 (𝜉)𝑧(𝜉)

]︀
𝑑𝜉, (5.63)
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where ℓ0 is the arbitrary initial topology at 𝑡 = 0. Thus,

𝜌

∫︁ 𝑡

0

E
[︀
𝑧𝑇 (𝜉)𝑧(𝜉)

]︀
𝑑𝜉 < 𝑉 (𝑧(0), ℓ0)− E [𝑉 (𝑧𝑡, ℓ)]∫︁ 𝑡

0

E
[︀
𝑧𝑇 (𝜉)𝑧(𝜉)

]︀
𝑑𝜉 <

1

𝜎
𝑉 (𝑧(0), ℓ0). (5.64)

which implies lim𝑡→∞ E[𝑧𝑇 (𝑡)𝑧(𝑡)] → 0, meaning that (5.18) is stochastic asymptotically
stable in the mean-square sense. Consequently, system (5.12) achieves consensus according
to Definition 5.3. This completes the proof. �

When the time-delays are considered to be constant, i.e 𝜇𝑚 = 0 like in Corollary 4.1
for static topology, the following corollary can be derived from Theorem 5.1.

Corollary 5.1 Consider the closed-loop multiagent system in (5.12) with 𝜏 > 0 and Π

defined as in (5.9), whose 𝜖𝑝𝑞 ∈ [−𝛿𝑝𝑞, 𝛿𝑝𝑞] with 𝛿𝑝𝑞 > 0 ∀ 𝑝, 𝑞 ∈ 𝒮, and all 𝜏𝑘(𝑡) = 𝜏 ,
for 𝑘 = 1, 2, ...,𝑚. Then, the multiagent system (5.12) achieves consensus in the mean-
square sense if there exist 𝑛(𝑚−1)×𝑛(𝑚−1) matrices 𝐹ℓ, 𝐺ℓ, 𝑃1ℓ = 𝑃 𝑇

1ℓ, 𝑃2ℓ, 𝑃3ℓ = 𝑃 𝑇
3ℓ,

𝑄 = 𝑄𝑇 > 0, 𝑅 = 𝑅𝑇 > 0, and 𝑆 = 𝑆𝑇 > 0, such that the LMIs (5.25) and Φ̄ < 0 hold
∀ℓ = 1, 2, ..., 𝑠, where Φ̄ℓ = Φ𝑃ℓ + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺ℓ given as in (5.27).

Proof The proof follows from Theorem 5.1 making 𝜇𝑚 = 0 such that, in (5.59), Φℓ < 0

is sufficient to guarantee ℒ𝑉 (𝑧𝑡, ℓ) < 0. Additionally, since 𝜇𝑚 = 0 the term with 𝑍

vanishes, which gives Φ̄ℓ = Φℓ−Φ𝑍 < 0, or Φ̄ℓ = Φ𝑃ℓ + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺ℓ. This completes
the proof. �

5.3 Numerical Example

A numerical example is presented to illustrate the applicability of Theorem 5.1 and Corol-
lary 5.1. In order to show that the method can indeed provide interesting results in
practical problems, consider the following scenario: a team of three networked quadrotors
coordinating themselves with the objective of reaching formation on one of its coordinate
axis, in relation to a given inertial frame assuming intermittent communication caused by
links that drop unexpectedly.

Initially, assume the dynamics free of delays. The quadrotors are assumed with the
same second order model described by Michael et al. (2010); Schwager et al. (2011), but
also considering switching topology:

𝑝𝑖(𝑡) + 𝑏�̇�𝑖(𝑡) + 𝑐𝑝𝑖(𝑡) = �̄�𝑖(𝜃𝑡), (5.65)
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where 𝑝𝑖(𝑡) is the position of the quadrotor along the axis in which formation is desired,
and 𝑏 and 𝑐 are the damping and spring constants, respectively. Equation (5.65) can be
compactly written in state space as[︃

�̇�𝑖(𝑡)

𝑝𝑖(𝑡)

]︃
=

[︃
0 1

−𝑐 −𝑏

]︃[︃
𝑝𝑖(𝑡)

�̇�𝑖(𝑡)

]︃
+

[︃
0

1

]︃
�̄�𝑖(𝜃𝑡). (5.66)

In order to analyze this problem by the proposed methodology, the formation problem
is rewritten as a consensus one using the distributed control law

�̄�𝑖(𝜃𝑡, 𝑡) = 𝑐𝛼𝑖 −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗(𝜃𝑡)𝑘𝑞
(︀
𝑝𝑖(𝑡)− 𝛼𝑖 − 𝑝𝑗(𝑡) + 𝛼𝑗

)︀
, (5.67)

where 𝛼𝑖 and 𝛼𝑗 are used to compute the desired constant distance between the 𝑗-th and
𝑖-th agents as 𝛼𝑗,𝑖 = 𝛼𝑗 − 𝛼𝑖, and 𝑘 is the control gain. Replacing (5.67) into (5.66), the
system can be reformulated as[︃

�̇�𝑖(𝑡)

𝑝𝑖(𝑡)

]︃
=

[︃
0 1

−𝑐 −𝑏

]︃[︃
𝑝𝑖(𝑡)− 𝛼𝑖

�̇�𝑖(𝑡)

]︃
+

[︃
0

1

]︃
𝑢𝑖(𝜃𝑡) (5.68)

with

𝑢𝑖(𝜃𝑡, 𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗(𝜃𝑡)
[︁
𝑘𝑞 0

]︁(︃[︃𝑝𝑖(𝑡)− 𝛼𝑖

�̇�𝑖(𝑡)

]︃
−
[︃
𝑝𝑗(𝑡)− 𝛼𝑗

�̇�𝑗(𝑡)

]︃)︃
. (5.69)

The previous two equations are in the same format of (5.4) and (5.5), respectively, by
making

𝑥𝑖(𝑡) =

[︃
𝑝𝑖(𝑡)− 𝛼𝑖

𝑝𝑖(𝑡)

]︃
, (5.70)

such that 𝐴, 𝐵, and 𝐾 matrices in (5.4) are equivalent to

[︃
0 1

−𝑐 −𝑏

]︃
,

[︃
0

1

]︃
, and

[︁
𝑘𝑞 0

]︁
,

respectively. For input and communication delays, matrices 𝐴, 𝐵 and 𝐾 in (5.6) can be
obtained similarly to the procedure above.

With the definitions of 𝐴, 𝐵 and 𝐾, the transformed system, with both input or
communication delays, can be written according to (5.18). Thus, Theorem 5.1 and Corol-
lary (5.1) can be applied. In the following example, it is considered 𝑏 = 1, 𝑐 = 0, and
𝑘𝑞 = 1.

Intermittent communication is modeled with a directed network topology switching
between two topologies: 𝒢1 and 𝒢2. These topologies are illustrated in Figure 5.1 for
input-delays, where the arrows indicate the existing communication channels in each case
and 𝜏𝑖(𝑡) is the value of the associated time delay, and in Figure 5.2, with regular graphs
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τ3(t)
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Figure 5.1: Multi-agent system subject to input delays 𝜏𝑖(𝑡), composed of three agents
with switching topologies 𝒢1 and 𝒢2.

1

2 3

(G1)

1

2 3

(G2)

Figure 5.2: Multi-agent system subject to communication delays 𝜏(𝑡), composed of three
agents with switching topologies 𝒢1 and 𝒢2.

according to Assumption 2.2 and uniform communication delays 𝜏(𝑡) from Assumption
2.1. The Laplacians for 𝒢1 and 𝒢2 in Figure 5.1 with unitary weights are:

𝐿1 =

⎡⎢⎣1 0 −1

0 0 0

0 0 0

⎤⎥⎦ and 𝐿2 =

⎡⎢⎣0 0 0

0 1 −1

0 −1 1

⎤⎥⎦ . (5.71)

Similarly, the Laplacians for 𝒢1 and 𝒢2 in Figure 5.2 are:

𝐿1 =

⎡⎢⎣ 1 0 −1

−1 1 0

0 −1 1

⎤⎥⎦ and 𝐿2 =

⎡⎢⎣ 1 −1 0

0 1 −1

−1 0 1

⎤⎥⎦ . (5.72)

Notice the important fact that this system would never be able to achieve consensus
if the topology were fixed at either 𝒢1 or 𝒢2 in Figure 5.1, for input-delays, since none of
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these graphs contains a spanning tree. However, the joint graph of the stochastic switch
between the two topologies makes consensus possible.

Suppose the transition rates not precisely known but modeled by 𝜋𝑝𝑞 = 1, ∀(𝑝 ̸= 𝑠),
𝑝, 𝑞 ∈ 𝒮 and uncertainty 𝜖𝑝𝑞 = ±0.25, ∀ 𝑝, 𝑞 ∈ 𝒮, such that

Π =

[︃
−1± 0.25 1± 0.25

1± 0.25 −1± 0.25

]︃
. (5.73)

In the remainder, the application of the results in this chapter is illustrated in various
scenarios.

First consider the case of constant and uniform time-delays, i.e, 𝜇𝑚 = 0. In order to
find the upper bound for the delay, a search for the highest value of 𝜏 guaranteeing the
feasibility of LMIs in Corollary 5.1 is made, both for input and communication delays.
The maximum value on which the LMIs hold for input delays is 𝜏 = 0.274, and for
communication delays is 𝜏 = 0.731.

Next, it is considered the case with input time-varying delays. For given values of 𝜏 , a
search is made for the highest value of 𝜇𝑚 satisfying Theorem 5.1. Results are summarized
in Table 5.1. Notice that −− stands for unfeasibility.

Table 5.1: Largest 𝜇𝑚 obtained for given 𝜏

𝜏 0.100 0.200 0.300 0.400 0.500 0.600

Input delay (Fig. 5.1) 𝜇𝑚 0.100 0.059 −− −− −− −−
Comm. delay (Fig. 5.2) 𝜇𝑚 0.100 0.200 0.207 0.158 0.111 0.063

Finally, the values of 𝜏 and 𝜇𝑚 are chosen for different pairs, with transition rates
𝜋𝑝𝑞 = �̄� (∀ 𝑝, 𝑞 ∈ 𝒮), in order to search for common largest interval bound, 𝛿𝑝𝑞 = 𝛿

(∀ 𝑝, 𝑞 ∈ 𝒮), for the uncertain transition rates in (5.9) that satisfy Theorem 5.1. This
search is performed for various triplets (𝜏, 𝜇𝑚, �̄�) and the results are summarized in Table
5.2.

Table 5.2: Largest 𝛿 obtained for given (𝜏, 𝜇𝑚, �̄�)

(𝜏, 𝜇𝑚, �̄�) (0.15, 0.10, 0.5) (0.15, 0.10, 1) (0.15, 0.10, 2)

Input delay (Fig. 5.1) 0.14 0.25 0.47

Comm. delay (Fig. 5.2) 0.50 0.81 1.27

For illustration, a simulation of the state trajectories for 𝑝𝑖(𝑡) and �̇�𝑖(𝑡), for all the
agents, is shown in Figure 5.3 for the multiagent system with input-delays switching
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(a) State trajectories for 𝑝𝑖(𝑡).
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(b) State trajectories for �̇�𝑖(𝑡).
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(c) State of the switching topology 𝜃𝑡, 𝒢1 and 𝒢2, for 𝜃𝑡 = 1 and 𝜃𝑡 = 2, respectively.

Figure 5.3: Simulation with time-varying delay and switching topologies with 𝜏 = 0.15
and 𝜇𝑚 = 0.10.

between 𝒢1 and 𝒢2 in Figure 5.1. It is considered the desired displacements between the
agents defined by 𝛼1 = 1, 𝛼2 = 2, and 𝛼3 = 3, i.e., 𝛼2,1 = 1, 𝛼3,1 = 2 and 𝛼3,2 = 1. The
initial conditions are 𝑝1(0) = 0, 𝑝2(0) = 4, and 𝑝3(0) = 7 for the position, and �̇�1(0) = 3,
�̇�2(0) = 2, and �̇�3(0) = −1 for the velocity. The bottom plot in Figure 5.3 shows the
switching behavior of 𝜃𝑡 which governs the switch between the topologies 𝒢1 and 𝒢2 (see
Figure 5.1). The topology 𝒢1 is active when 𝜃𝑡 = 1 and the topology 𝒢2 is active when
𝜃𝑡 = 2. The simulation is performed with input-delays given by the parameters 𝜏 = 0.15

and 𝜇𝑚 = 0.10, such that all 𝜏𝑘 ∈ [0.05, 0.25]. Π is chosen as in (5.73).

This example illustrates that the proposed method can be applied in the verification
of consensus of time-delayed systems with linear dynamics also considering an upper and
a lower bound for the delay variation. Furthermore, the simulation illustrates how the
system converges even when switching from two topologies that have no spanning trees,
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as indicated by the analysis. Finally, since the transition rates are only estimates, this
method can analyze consensus while considering uncertainties in the transition rates,
which allows a more flexible, while still guaranteed, analysis for consensus.



Chapter 6

Design of the Coupling Strengths for
Agents with First-Order Integrator
Dynamics

This chapter proposes a method that allows the design of the coupling strengths between
agents in an arbitrary directed network. The design of the coupling gains helps achieving
consensus and also meeting a guaranteed convergence rate. Numerical simulations are
provided to demonstrate the effectiveness of the proposed results compared to previous
results in the literature. The results presented in this Chapter are part of a book chapter
to be published on the series of Advances in Delays and Dynamics, Springer (Savino et al.,
2016c).

The design of the weights of the coupling strengths associated to the network commu-
nication links, i.e. the choice of 𝑎𝑖𝑗 related to gain attributed to each agent interaction
as in the graph shown in Figure 6.1, has been considered in order to enable consensus
or improve overall performance reducing the settling time of the system. In the works of
Xiao and Boyd (2004) and Jakovetic et al. (2010) the authors used optimization to adjust
these values and improve the convergence rate. An analytical study and design of the
coupling strengths considering time-delays is shown by Qiao and Sipahi (2013) for fully
connected networks, with a concept based on the placement of the rightmost eigenvalue
of the Laplacian. An adaptive approach, based on the availability of the instantaneous
value of time-delay, is used by Qiao and Sipahi (2014) to deal with time-varying delays.

This chapter presents a new LMI-based method to solve the problem of designing
the coupling strengths in networks of agents with first-order dynamics. A guaranteed
exponential convergence rate is considered in order to enable performance improvement.
It is considered multiple time-delays in the control inputs, which are assumed to be non-

109
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Figure 6.1: Coupling strengths 𝑎𝑖𝑗 to be designed.

differentiable and nonuniform. Differently from Qiao and Sipahi (2013, 2014) this method
does not require fully connected topologies, on the contrary, it can deal with arbitrary
directed networks.

Although single-integrator dynamics is considered for each agent in the multiagent sys-
tem, its applications are vast in the context of mechanical systems described by kinematic
models. See examples by Gonçalves et al. (2010), Pimenta et al. (2013), and the models
for the mobile manipulators considered in Chapter 7. Numerical examples are given to
show the applicability of the proposed method. Besides, the examples show comparable
or better results in terms of settling time when compared to related works.

The design of the coupling strengths emerges from the adoption of special cases for
matrices 𝐹 and 𝐺 presented in Theorems 4.1 and 5.1 for single-order integrator dynamics.
It is considered the alternative representation of the Laplacian Matrices written in the
alternative form presented as in Lemma 2.2, in order to obtain the designed weights in a
diagonal matrix.

6.1 Fixed Topology

For convenience, the model of single-order integrator dynamics with input delays is re-
peated here:

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡− 𝜏𝑖(𝑡)), 𝑖 = 1, 2, . . . ,𝑚, (6.1)

𝑢𝑖(𝑡) = −
𝑚∑︁

𝑗 ̸=𝑖,𝑗=1

𝑎𝑖𝑗
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

)︀
, (6.2)

given in (2.53) and (2.54), respectively, with 𝑥𝑖 ∈ R, 𝑢𝑖 ∈ R, 𝐴 = 0, 𝐵 = 1, and 𝐾 = 1.

Consider the closed-loop dynamics for a fixed topology multi-agent system transformed
into a stability problem as in (2.72) in the form

�̇�(𝑡) =
𝑚∑︁
𝑖=1

�̄�𝑎,𝑖𝑧(𝑡− 𝜏𝑖(𝑡)), (6.3)
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where �̄�𝑎,𝑖 = 𝑈𝐿𝑎,𝑖𝑊 as in (2.73), with 𝐿𝑎,𝑖 the Laplacian matrix of the subgraph on
the 𝑖-th agent, as described in Section 2.1, and 𝑈 and 𝑊 defined in (2.12) and (2.14),
respectively.

Thus, with the following Theorem one is able to design the coupling strengths also
considering a convergence rate as a performance requirement to be satisfied.

Theorem 6.1 Let be given 𝜏 > 0, 𝜏 ≥ 𝜇𝑚 ≥ 0, 𝛿 > 0, and 𝑔 a tuning scalar parameter.
Then, the transformed multiagent system in (6.3) with all 𝜏𝑖(𝑡) ∈ [𝜏 − 𝜇𝑚, 𝜏 + 𝜇𝑚],
𝑖 = 1, 2, . . . ,𝑚, achieves consensus with guaranteed exponential convergence rate 𝛿, if there
exist a scalar 𝑓 and real matrices: 𝑃1 = 𝑃 𝑇

1 , 𝑃2, 𝑃3 = 𝑃 𝑇
3 , 𝑄 = 𝑄𝑇 > 0, 𝑅 = 𝑅𝑇 > 0,

𝑆 = 𝑆𝑇 > 0 and 𝑍 = 𝑍𝑇 > 0, of dimensions (𝑚 − 1) × (𝑚 − 1), such that the following
LMIs hold: ⎡⎣𝑃1 𝑃2

* 𝑃3

⎤⎦ > 0, (6.4)

and ⎡⎣ Φ 𝜇𝑚Γ

* −𝜇𝑚

𝑒2
𝑍

⎤⎦ < 0 , (6.5)

given 𝑒1 = 𝑒−2𝛿𝜏 , 𝑒2 = 𝑒−2𝛿(𝜇𝑚+𝜏),

Φ = Φ𝑃 + Φ𝑍 + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺, (6.6)

and

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑈�̄�𝒲𝑑𝐻
𝑇𝑊

𝑔𝑈�̄�𝒲𝑑𝐻
𝑇𝑊

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.7)

with

Φ𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2𝛿𝑃1 + 𝑃2 + 𝑃 𝑇
2 𝑃1 −𝑃2 2𝛿𝑃2 + 𝑃3

* 0 0 𝑃2

* * 0 −𝑃3

* * * 2𝛿𝑃3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.8)



CHAPTER 6. DESIGN OF THE COUPLING STRENGTHS FOR AGENTS WITH
FIRST-ORDER INTEGRATOR DYNAMICS 112

Φ𝑍 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

* 2𝜇𝑚𝑍 0 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Φ𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4𝑒1
𝜏
𝑅 0 −2𝑒1

𝜏
𝑅 6𝑒1

𝜏2
𝑅

* 𝜏𝑅 0 0

* * −4𝑒1
𝜏
𝑅 6𝑒1

𝜏2
𝑅

* * * −12𝑒1
𝜏3
𝑅

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.9)

Φ𝑄𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑄− 2𝑒1𝑆 0 0 2𝑒1
𝜏
𝑆

* 𝜏2

2
𝑆 0 0

* * −𝑒1𝑄 0

* * * −2𝑒1
𝜏2
𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.10)

and

Φ𝐹𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑒2𝑓I −𝑒2𝑈�̄�𝒲𝑑𝐻
𝑇𝑊 0

* 2𝑒2𝑔𝑓I −𝑒2𝑔𝑈�̄�𝒲𝑑𝐻
𝑇𝑊 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

Thus, the designed weights 𝑎𝑘 of the coupling strengths are given in the diagonal of 𝒲 =
1
𝑓
𝒲𝑑 and the Laplacian is given by 𝐿 = �̄� 1

𝑓
𝒲𝑑𝐻

𝑇 according to Lemma 2.2, where the
indices 𝑘 are given according to Algorithm 2.1.

Proof The proof follows from the results in Theorem 4.1. However, the system is assumed
to be of single-order dynamics. In order to keep the problem as an LMI, differently from
Theorem 4.1, matrices 𝐹 and 𝐺 are chosen to be the scalars 𝑓 and 𝑔𝑓 , respectively, with
𝑔 an arbitrary tuning scalar.

Besides, the Laplacian matrix is written in an alternative form given by Lemma 2.2.
Thus, all terms with 𝐹�̄� and 𝐺�̄� in Theorem 4.1 become, respectively, 𝑓𝑈�̄�𝒲𝐻𝑇𝑊

and 𝑔𝑓𝑈�̄�𝒲𝐻𝑇𝑊 . Finally, the design procedure is obtained by making the product
𝑓𝒲 a single matrix variable𝒲𝑑. The designed weights of the coupling strengths are thus
obtained by making 𝒲 = 1

𝑓
𝒲𝑑. �

The applicability of Theorem 6.1 is dependent on the prior knowledge of the global
topology when the gains are being designed, which is a limitation of the method. However,
despite the necessity of global information for design, only local information is used at the
execution of the consensus protocols at running time. Moreover, the following remarks
discuss some conservatism and complexity related issues of the presented method.
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Remark 6.1 It is known that the introduction of slack variables in LMI conditions can
reduce the conservatism of delay dependent conditions, see e.g. Xu and Lam (2005).
Therefore, the consideration of 𝑓 and 𝑔 as scalars, instead of full matrices, can be seen
as a source of conservativeness, imposed in order to keep Theorem 6.1 formulated via
LMI conditions. Therefore, a possible strategy to reduce the conservatism of the proposed
method is to replace the scalars 𝑓 and 𝑔 by full matrices, however such changes lead to
bilinear matrix inequality (BMI) conditions. Thus BMI methods as used by Kanev et al.
(2004) can be studied in order to relax this source of conservativeness. This method is
intended to be studied in a future research.

6.2 Switching Topology

Consider a multiagent system composed of 𝑚 single-order agents arranged in a switching
directed network. Consider also the dynamics of each agent as in (5.4), with 𝐴 = 0, and
𝐵 = 1, given by

�̇�𝑖(𝑡) = 𝑢𝑖(𝜃𝑡, 𝑡− 𝜏𝑖(𝑡)), 𝑖 = 1, 2, ...,𝑚, (6.12)

where 𝜃𝑡 represents the topology of the multi-agent system at the instant of time 𝑡. The
considered consensus protocol is given as in (5.5) with 𝐾 = 1, i.e.

𝑢𝑖(𝜃𝑡, 𝑡) = −
𝑛∑︁

𝑗=1

𝑎𝑖𝑗(𝜃𝑡)
(︀
𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)

)︀
. (6.13)

Let 𝜃𝑡 be modeled as a continuous time Markov chain as in Section 5.1, where each
topology ℓ = 1, 2, . . . 𝑠 (with 𝑠 the number of different topologies), is associated with a
weighted directed graph 𝒢(ℓ) = (𝒱 , ℰ(ℓ),𝒲).

In order to simplify the subscript notation, it is assumed the ordered index 𝑘 related
to each edge, instead of the pair (𝑖, 𝑗), such that 𝑒𝑘(𝑡) = 𝑒𝑗𝑖(𝑡), letting 𝑟 represent the total
number of directed edges in the Joint Graph 𝒢, such that 𝑘 = 1, . . . , 𝑟. The assignment
of index 𝑘 is an extension of Algorithm 2.1, outlined in Algorithm 6.1 below with some
other useful additional variables.

From Algorithm 6.1, it is defined the Laplacian matrices 𝐿(ℓ) for each 𝒢(ℓ) in which
the weights of the edges can be conveniently displayed in the main diagonal of a matrix.
This form plays an important role in the design method for switching topologies. Consider
the index of each directed edge 𝑒𝑖𝑗 ∈ ℰ̄ rewritten according to Algorithm 6.1, such that the
edges are ordered as 𝑒𝑘 = 𝑒𝑗𝑖, with associated weights 𝑤𝑘, and vectors ℎ𝑘(ℓ) and ℎ̄𝑘(ℓ) for
each 𝒢(ℓ). Also 𝑘 = 1, . . . , 𝑟 where 𝑟 is the number of edges in the Joint Graph 𝒢. Thus,
it is defined the Incidence matrix of each graph 𝒢(ℓ) as 𝐻(ℓ) = [ℎ1(ℓ) . . . ℎ𝑟(ℓ)], and
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Algorithm 6.1: New indices 𝑘
Initialize: 𝑘 ← 0;
forall the 𝑖 = 1, 2, . . . ,𝑚 do

forall the 𝑗 = 1, 2, . . . ,𝑚 do
if ∃𝑒𝑗𝑖 ∈ ℰ̄, for ℰ̄ ∈ 𝒢 then

𝑘 ← 𝑘 + 1;
𝑤𝑘 ← 𝑎𝑖𝑗;
𝑒𝑘 ← 𝑒𝑗𝑖;
forall the ℓ = 1, 2, . . . , 𝑠 do

ℎ𝑘(ℓ)← zero column-vector of size 𝑚;
ℎ̄𝑘(ℓ)← zero column-vector of size 𝑚;
if ∃𝑒𝑗𝑖 ∈ ℰ(ℓ) for ℰ ∈ 𝒢 then

ℎ𝑘(ℓ) 𝑖-th entry ← 1; ℎ𝑘(ℓ) 𝑗-th entry ← −1;
ℎ̄𝑘(ℓ) 𝑖-th entry ← 1;

also the associated Heading matrix �̄�(ℓ) = [ℎ̄1(ℓ) . . . ℎ̄𝑟(ℓ)], both matrices of dimension
𝑚× 𝑟. Additionally, the coupling strengths, related to the weights 𝑤𝑘 = 𝑤𝑖𝑗 according
to Algorithm 6.1, in a weight diagonal matrix 𝑊 ∈ ℜ𝑟×𝑟 are written in the ascending
order of 𝑘. Then, the Laplacian matrix of each graph 𝒢(ℓ) can be written according to
the following Lemma.

Lemma 6.1 Let 𝐻(ℓ) = [ℎ1(ℓ) . . . ℎ𝑟(ℓ)] be the 𝑚 × 𝑟 Incidence matrix. Similarly,
let �̄�(ℓ) = [ℎ̄1(ℓ) . . . ℎ̄𝑟(ℓ)] be the 𝑚 × 𝑟 associated Heading matrix, and 𝑊 be the
𝑟 × 𝑟 Weight diagonal matrix associated with a weighted directed graph 𝒢(ℓ). Thus, the
Laplacian matrix 𝐿(ℓ) can be written as

𝐿(ℓ) = �̄�(ℓ)𝑊𝐻𝑇(ℓ). (6.14)

Remark 6.2 The weights 𝑤𝑘 = 𝑤𝑖𝑗 are given in the main diagonal of 𝑊 , i.e.

𝑊 = diag{𝑤1, 𝑤2, . . . , 𝑤𝑟}.

Finally, similarly to (5.12), the closed loop dynamics is given by

�̇�(𝑡) = −
𝑚∑︁
𝑖=1

𝐿𝑎,𝑖(𝜃𝑡)𝑥(𝑡− 𝜏𝑖(𝑡)), (6.15)

with 𝐴𝑖𝑛 = 0 and 𝐵𝑖,𝑖𝑛 = 𝐿𝑎,𝑖 in (5.12), with 𝐿𝑎,𝑖 the Laplacian matrix of the subgraph
on the 𝑖-th agent, and 𝜃𝑡 is the stochastic variable indicating the state ℓ of the Markov
chain at the instant of time 𝑡.
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The main result of this chapter is stated in the next theorem. This theorem presents
conditions based on linear matrix inequalities. The feasibility of the LMI conditions allows
for design of proper coupling strengths to enable consensus.

Theorem 6.2 Let be given 𝜏 ≥ 𝜇𝑚 ≥ 0, Π defined as in (5.9), whose 𝜖𝑝𝑞 ∈ [−𝛿𝑝𝑞, 𝛿𝑝𝑞]
with 𝛿𝑝𝑞 > 0 ∀ 𝑝, 𝑞 ∈ 𝒮, and 𝑔 a tuning scalar parameter. Then, the closed-loop multiagent
system in (6.15) with multiple input time-delays 𝜏𝑖(𝑡) ∈ [𝜏−𝜇𝑚, 𝜏+𝜇𝑚], for 𝑖 = 1, 2, ...,𝑚,
achieves consensus in the mean-square sense with the designed coupling strengths 𝑤𝑘 given
as in Remark 6.2, if there exist: (𝑚 − 1) × (𝑚 − 1) matrices 𝑃1ℓ = 𝑃 𝑇

1ℓ, 𝑃2ℓ, 𝑃3ℓ = 𝑃 𝑇
3ℓ,

𝑄 = 𝑄𝑇 > 0, 𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0, and 𝑍 = 𝑍𝑇 > 0; a 𝑟 × 𝑟 diagonal matrix 𝑊𝑑;
and a scalar 𝑓 ; such that the following LMIs hold ∀ℓ = 1, 2, ..., 𝑠:⎡⎣ 𝑃1ℓ 𝑃2ℓ

* 𝑃3ℓ

⎤⎦ > 0, (6.16)

and ⎡⎣ Φℓ 𝜇𝑚Γℓ

* −𝜇𝑚𝑍

⎤⎦ < 0, (6.17)

where
Φℓ = Φ𝑃ℓ + Φ𝑍 + Φ𝑅 + Φ𝑄𝑆 + Φ𝐹𝐺ℓ, (6.18)

and

Γℓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑓𝑈�̄�(ℓ)𝒲𝐻𝑇 (ℓ)

𝑔𝑓𝑈�̄�(ℓ)𝒲𝐻𝑇 (ℓ)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.19)

with

Φ𝑃ℓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑃2ℓ + 𝑃 𝑇
2ℓ + Σ𝜋𝛿(𝑃1𝑞) 𝑃1ℓ −𝑃2ℓ 𝑃3ℓ + Σ𝜋𝛿(𝑃2𝑞)

* 0 0 𝑃2ℓ

* * 0 −𝑃3ℓ

* * * Σ𝜋𝛿(𝑃3𝑞)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.20)
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where Σ𝜋𝛿(·) is a matrix function such that, for any matrix 𝑀𝑞, Σ𝜋𝛿(𝑀𝑞) =
∑︀𝑠

𝑞=1 𝜋ℓ𝑞𝑀𝑞 +∑︀𝑠
𝑞=1

5𝛿ℓ𝑞
4
𝑀𝑞,

Φ𝑍 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

* 2𝜇𝑚𝑍 0 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Φ𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 4
𝜏
𝑅 0 − 2

𝜏
𝑅 6

𝜏2
𝑅

* 𝜏𝑅 0 0

* * − 4
𝜏
𝑅 6

𝜏2
𝑅

* * * − 12
𝜏3
𝑅

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.21)

Φ𝑄𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑄− 2𝑆 0 0 2
𝜏
𝑆

* 𝜏2

2
𝑆 0 0

* * −𝑄 0

* * * − 2
𝜏2
𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.22)

and

Φ𝐹𝐺ℓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑓I −𝑓𝑈�̄�(ℓ)𝒲𝐻𝑇 (ℓ) 0

* 2𝑔𝑓 −𝑔𝑓𝑈�̄�(ℓ)𝒲𝐻𝑇 (ℓ) 0

* * 0 0

* * * 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.23)

Thus, the designed weights 𝑤𝑘 of the coupling strengths are given in the diagonal of
𝒲 = 1

𝑓
𝒲𝑑 and the Laplacian matrices are given by 𝐿(ℓ) = �̄�(ℓ) 1

𝑓
𝒲𝑑𝐻

𝑇 (ℓ) according
to Lemma 6.1, where the indices 𝑘 are given according to Algorithm 6.1.

Proof The proof follows from Theorem 5.1, for single-order dynamics. As in the previous
result, in order to keep the conditions formulated by LMIs, matrices 𝐹ℓ and 𝐺ℓ are chosen
to be 𝑓 and 𝑔𝑓 , respectively, with 𝑔 an arbitrary tuning scalar.

Besides, the Laplacian matrices 𝐿(ℓ) are written in the alternative form given by
Lemma 6.1. Thus, all terms with 𝐹ℓ�̄�ℓ and 𝐺ℓ�̄�ℓ in Theorem 5.1 can be rewritten as
𝑓𝑈�̄�(ℓ)𝒲𝐻𝑇 (ℓ)𝑊 and 𝑔𝑓𝑈�̄�(ℓ)𝒲𝐻𝑇 (ℓ)𝑊 , respectively. Finally, the design procedure
is obtained by making the product 𝑓𝒲 a single matrix variable𝒲𝑑. The designed weights
of the coupling strengths are thus obtained by making 𝒲 = 1

𝑓
𝒲𝑑. �

6.3 Numerical Examples for fixed topology

In the following, some examples are given in order to show the applicability of Theorem 6.1
for fixed topology. Besides, it is shown that Theorem 6.1, differently from the other
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design methods in the literature, can be applied to directed networks. Furthermore, by
restricting the problem to undirected networks, Theorem 6.1 is compared to some results
in the literature. Therefore, throughout this section it is shown that the proposed method
is more general and performs better or comparable to similar ones in the literature.

Consider the network topology given in Figure 6.2 with seven agents, i.e. 𝑚 = 7.
The edges 𝑒𝑖𝑗 and weights 𝑎𝑖𝑗 are represented in Figure 6.2(a). After the application of
Algorithm 2.1, the indices are changed according to Figure 6.2(b), with 𝑟 = 8. Resulting
from the application of Algorithm 2.1, it is also obtained the vectors ℎ𝑘 and ℎ̄𝑘 and the
Incidence and Heading matrices are written according to Lemma 2.2, containing each of
the ℎ𝑘 and ℎ̄𝑘 in its columns, respectively,

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 −1 1 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −1

−1 0 0 0 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and �̄� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.24)

Note that in order to apply Theorem 6.1, it is required the Laplacian given by the
alternative form in Lemma 2.2, using 𝐻 and �̄� in (6.24). Before applying Theorem 6.1 it
is worth to mention that this multiagent system with unitary coupling strengths 𝑎𝑘 = 1

and subject to constant time-delay, i.e. 𝜏𝑘(𝑡) = 𝜏 , achieves consensus if and only if
𝜏 ∈ [0, 0.5554) Bliman and Ferrari-Trecate (2008).

6

1 2 3
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7

(a) Graph with indices 𝑖, 𝑗.
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(b) Graph with indices 𝑘.
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𝑒6, 𝑎6𝑒7, 𝑎7

𝑒 1
,𝑎

1

𝑒8,
𝑎8 𝑒
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Figure 6.2: Directed graph of the network topology with indices 𝑖, 𝑗 in (a), and 𝑘 in (b)
after the application of Algorithm 2.1.

For illustration purpose, the multiagent system in the network given in Figure 6.2 is
simulated, with dynamics in (6.1) under protocol (6.2) with unitary coupling strengths
𝑎𝑘 = 1 and time-varying delays 𝜏𝑖(𝑡) ∈ [0.55, 0.65]. The state trajectories for this simu-
lation are shown in Figure 6.3 which as expected do not achieve consensus.

Now, Theorem 6.1 is applied in order to enable the system to achieve consensus when
it is subject to time-varying delays out of the range [0, 0.5554). Thus, it is used 𝐻 and
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Figure 6.3: The state trajectories for the multi-agent system in Fig. 6.2, with unitary
coupling strengths, subject to multiple time-varying delays 𝜏𝑖(𝑡) ∈ [0.55, 0.65], and initial
states 𝑝(0) = [8 5 2 0 −2 −5 −8]𝑇 .

�̄� in (6.24), 𝑚 = 7 the number of agents, 𝑟 = 8 the number of delays, and 𝜏 = 0.60 and
𝜇𝑚 = 0.05, such that 𝜏𝑖(𝑡) ∈ [0.55, 0.65]. Moreover, initially, it is set a approximately zero
convergence rate 𝛿 > 0 (𝛿 = 10−15) since there is no performance requirement, and choose
𝑔 = 1 for simplicity. With this data, the LMI constraints in Theorem 6.1 are feasible
and return the matrix 𝒲 = diag{0.1111, 0.3511, 0.1755, 0.1684, 0.3002, 0.2476, 0.2072,

0.1834}, containing the designed weights in its main diagonal, and thus the Laplacian for
the network in Figure 6.2 with the designed weights is given by

𝐿 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1111 0 0 0 0 0 −0.1111

−0.3511 0.3511 0 0 0 0 0

0 −0.1755 0.3439 −0.1684 0 0 0

0 0 0 0.3002 0 0 −0.3002

0 0 0 −0.2476 0.2476 0 0

0 0 0 0 −0.2072 0.2072 0

0 0 0 0 0 −0.1834 0.1834

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.25)

The simulation for the multiagent system achieving consensus with the designed weights
is shown in Figure 6.4a.

Finally, Theorem 6.1 is applied in order to design the weights of the coupling strengths
leading to better performance. For that, a search for the highest 𝛿 is carried out in a given
set of discrete values for 𝑔 such that the LMI conditions are feasible. Figure 6.5 illustrates
the feasibility of Theorem 6.1 for various pairs (𝑔, 𝛿), with 𝑔 ranging from 0 to 4 with
a step size of 0.1, where one can check that the highest 𝛿 found is 𝛿 = 0.19. Thus, for
the pair with 𝑔 = 0.8 and 𝛿 = 0.19, the corresponding designed weights are given by
𝒲 = diag{0.1907, 1.0271, 0.4175, 0.1387, 0.6219, 0.5745, 0.3133, 0.2156}. The designed
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(a) Design for enabling consensus.
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(b) Design for consensus with the highest convergence rate found.

Figure 6.4: The state trajectories for the multi-agent system in Fig. 6.2 subject to multiple
time-varying delays 𝜏𝑖(𝑡) ∈ [0.55, 0.65], with initial states 𝑝(0) = [8 5 2 0 −2 −5 −8]𝑇

and designed coupling strengths by Theorem 6.1 for: (a) very small 𝛿 > 0 and 𝑔 = 1; (b)
𝛿 = 0.19 and 𝑔 = 0.8.
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Figure 6.5: Feasibility of Theorem 6.1 for various pairs (𝑔, 𝛿), with 𝑔 ranging from 0 to
4 with a step size of 0.1 and 𝛿 ranging from 0.1 to 0.2 with a step size of 0.01. A feasible
pair is represented by cross, and an unfeasible one by dot.

Laplacian matrix is

𝐿 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1907 0 0 0 0 0 −0.1907

−1.0271 1.0271 0 0 0 0 0

0 −0.4175 0.5562 −0.1387 0 0 0

0 0 0 0.6219 0 0 −0.6219

0 0 0 −0.5745 0.5745 0 0

0 0 0 0 −0.3133 0.3133 0

0 0 0 0 0 −0.2156 0.2156

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.26)



CHAPTER 6. DESIGN OF THE COUPLING STRENGTHS FOR AGENTS WITH
FIRST-ORDER INTEGRATOR DYNAMICS 120

The simulation considering the designed weights is presented in Figure 6.4b. The
improvement in the performance for the design with higher convergence rate is noted
regarding the time needed to achieve consensus compared to Figure 6.4a.

6.3.1 Fully connected network with constant time-delay

Next, this method is compared to the example by Qiao and Sipahi (2013). This example
consists of a fully connected network with seven agents, subject to a constant time-delay
𝜏 = 0.027. In the work by Qiao and Sipahi (2013), a controller design procedure is shown
to improve this system’s performance by placing the rightmost eigenvalue further to the
left of the imaginary axis. Figure 6.6 shows the simulation result using the method by
Qiao and Sipahi (2013) with initial conditions 𝑥(0) = [0 5 1 3 0 1 2]𝑇 , whose settling time
is about 0.22 sec.
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Figure 6.6: Simulation for fully connected network with coupling strengths designed by
Qiao and Sipahi (2013) and constant time-delay 𝜏 = 0.027.

Next, Theorem 6.1 is used to design the weights of the coupling strengths for the
same example. For this fully connected topology with seven agents, 𝑚 = 7, there are
𝑟 = 42 directed edges, which is the maximum number of directed links in the network,
i.e. 𝑚(𝑚−1). Matrices 𝐻 and �̄� are given according to Algorithm 2.1. Also, the Weight
matrix 𝑊 is a diagonal matrix diag{𝑎1, 𝑎2, . . ., 𝑎42}.

In order to design the coupling strengths, a search for the pair (𝑔, 𝛿) with highest 𝛿 is
carried out, with 𝑔 ranging from 0 to 1 with a step size of 0.01. The highest 𝛿 found is
𝛿 = 23, with 𝑔 = 0.03. The coupling strengths are thus designed such that the Laplacian
matrix is given by

𝐿 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

13.4096 −2.2350 −2.2349 −2.2349 −2.2349 −2.2349 −2.2350

−2.2348 13.4092 −2.2350 −2.2348 −2.2348 −2.2349 −2.2350

−2.2350 −2.2350 13.4097 −2.2349 −2.2348 −2.2349 −2.2350

−2.2351 −2.2348 −2.2349 13.4096 −2.2348 −2.2349 −2.2350

−2.2350 −2.2349 −2.2349 −2.2349 13.4096 −2.2349 −2.2351

−2.2352 −2.2350 −2.2350 −2.2349 −2.2349 13.4099 −2.2350

−2.2347 −2.2350 −2.2349 −2.2349 −2.2349 −2.2349 13.4093

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The aspect of symmetry noted in the Laplacian matrix above is expected due to the
symmetry of the fully connected network topology. Note that no restrictions related to
symmetry have been imposed.

Figure 6.7 shows the simulation results with the same initial conditions and the Lapla-
cian matrix designed by the proposed method, with settling time reduced to about 0.12

sec. In this comparison, it is shown that the method is able to achieve performance better
than the one presented by Qiao and Sipahi (2013). Moreover, unlike the method by Qiao
and Sipahi (2013), the proposed method is able to deal with multiagent systems subject
to time-varying delays, as considered next.
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Figure 6.7: Simulation for fully connected network with coupling strengths designed by
Theorem 6.1 and constant time-delay 𝜏 = 0.027.

6.3.2 Fully connected network with non-differentiable

time-varying delay

Now it is considered an example by Qiao and Sipahi (2014), where the authors design
adaptive coupling strengths while considering a non-differentiable time-varying delay in
the range [1, 2.2]. The multi-agent system consists of a fully connected network of five
agents, (𝑚 = 5), which was previously unable to achieve consensus if the time-delay is
higher than 0.5166. Figure 6.8 shows the simulation considering the adaptive controller
by Qiao and Sipahi (2014) with initial conditions 𝑥(0) = [0 5 3 1 2]𝑇 and settling time of
about 25 sec.

For this fully connected topology with five agents there are 𝑟 = 20 directed edges.
Matrices 𝐻 and �̄� are given according to Algorithm 2.1. The Weight matrix 𝒲 is now
a diagonal matrix diag{𝑎1, 𝑎2, . . ., 𝑎20}. Using Theorem 6.1, given 𝜏 = 1.6 and 𝜇 = 0.6

such that 𝜏𝑖(𝑡) ∈ [1, 2.2], the highest feasible 𝛿 achieved with 𝑔 ranging from 0 to 2.5 with
a step size of 0.01 was 𝛿 = 0.24 for 𝑔 = 2.07. The associated Laplacian matrix with the
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Figure 6.8: Simulation for fully connected network with adaptive controller designed by
Qiao and Sipahi (2014) with non-differentiable time-varying delay in the range [1, 2.2].

designed coupling strength is given by

𝐿 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1894 −0.0473 −0.0473 −0.0473 −0.0473

−0.0473 0.1894 −0.0473 −0.0473 −0.0473

−0.0473 −0.0473 0.1894 −0.0473 −0.0473

−0.0473 −0.0473 −0.0473 0.1894 −0.0473

−0.0473 −0.0473 −0.0473 −0.0473 0.1894

⎤⎥⎥⎥⎥⎥⎥⎦ .

Figure 6.9 shows the simulation results using the proposed method for this example,
with settling time reduced to about 12 sec.
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Figure 6.9: Simulation for fully connected network with coupling strengths designed by
Theorem 6.1 with non-differentiable time-varying delay in the range [1, 2.2].

6.4 Numerical Example for Switching Topologies

In order to illustrate the applicability of Theorem 6.2 it is considered a team of four agents
that must achieve consensus on a given variable 𝑥𝑖, for 𝑖 = 1, . . . , 4, assuming time-varying
delayed control inputs and intermittent communication.
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Figure 6.10: Graphs 𝒢(1) and 𝒢(2) representing the two possible topologies of the multi-
agent system.

The intermittent communication is modeled as a network topology switching between
the graphs 𝒢(1) and 𝒢(2). These two topologies are illustrated in Figure 6.10, also showing
the representation of the coupling-strengths 𝑤𝑖𝑗 = 𝑤𝑘, for 𝑘 = 1, . . . , 6 the edge index
according to Algorithm 6.1.

In this example, it is worth noticing that when the system is on the topology 𝒢(2)

agents 3 and 4 do not receive information from the other agents, therefore if the system
never leaves this topology it will never reach consensus, unless agents 3 and 4 are in
consensus occasionally.

Initially, to represent the multi-agent system as in (6.15) it is given 𝑟 = 6 the total
number of links in the Joint graph 𝒢. Also, the subgraphs 𝒢(ℓ) are associated with the
following Incidence matrix 𝐻(ℓ) and Heading matrix �̄�(ℓ) given by Algorithm 6.1:

𝐻(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 −1 0

−1 0 1 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, �̄�(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.27)
and

𝐻(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 0 0 0

−1 0 1 1 0 0

0 −1 0 0 0 0

0 0 0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, �̄�(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.28)
where indices ℓ = 1 and ℓ = 2 are associated to the topologies 𝒢(1) and 𝒢(2). Thus, the
number of topologies is 𝑠 = 2 and 𝑚 = 4 is the number of agents.
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Figure 6.11: State trajectories of the multi-agent system in the numerical example without
any design of the coupling strengths. The initial states are 𝑥(0) = [4 2 1 −2]𝑇 .
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Figure 6.12: Switches of the topology for one simulation, where 𝑙 = 1, 2 are the Markov
chain states.

Moreover, assume that the switching topology dynamics is described by a continuous
time Markov chain with transition rate matrix

Π =

⎡⎣ −1 1

1 −1

⎤⎦ . (6.29)

Besides, consider that the system is subject to non-differentiable and nonuniform time-
varying delays 𝜏𝑖(𝑡) ∈ [𝜏 − 𝜇𝑚, 𝜏 + 𝜇𝑚].

A numerical simulation is run considering the introduced multiagent system with
𝜏 = 0.7 and 𝜇𝑚 = 0.3, such that the time-delays can vary in the interval 𝜏𝑖(𝑡) ∈ [0.40, 1.00],
for all 𝑖. Initially, it was considered the system without any design for the coupling
strengths, i.e. all the weights of the coupling strengths 𝑤𝑘 = 1 and simulated the system
for 50 seconds. During this simulation, consensus is not achieved. Figure 6.11 shows
the state trajectories of the multiagent system and the disagreement of the agents. The
switches of topology are shown in Figure 6.12.

Next, Theorem 6.2 is used to design proper weights. So, for 𝜏 = 0.7, 𝜇𝑚 = 0.3,
Π in (6.29), and the topologies described by 𝐻(1), �̄�(1) in (6.27), and 𝐻(2), �̄�(2) in
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Figure 6.13: State trajectories of the multi-agent system in the numerical example with
the designed coupling strengths.

(6.28), an LMI solver is applied to obtain a feasible solution. Since 𝒲 = 1
𝑓
𝒲𝑑, where

𝑓 and 𝒲𝑑 are variables with solutions returned by the LMI solver, it results in 𝒲 =

diag{0.1392, 0.1244, 0.2880, 0.0900, 0.4825, 0.3751} such that 𝑤𝑘 are given in its main
diagonal, from 𝑤1 to 𝑤6.

With the designed coupling strengths, the system is simulated for 20 seconds to show
that consensus is achieved, as illustrated in Figure 6.13.



Chapter 7

Dual Quaternion Pose-Consensus and
Robotics

This chapter shows the extension of consensus to the algebra of dual quaternions. It
enables the application of general results of consensus onto rigid-bodies pose-consensus
and formation for multiple mobile manipulators. In addition, future extensions can con-
sider this problem with the results presented for time-delays, switching topologies, and
design of the coupling strengths. Examples are shown for the formation control of scal-
able systems with rigid-bodies and applications in cooperative robotics. It summarizes
the results obtained during the exchange program at the Interactive Robotics Group in
the Massachusetts Institute of Technology, in collaboration with Prof. Bruno Vilhena
Adorno (UFMG) and Julie Shah (MIT). Part of the results have also been published in
the work by Brito et al. (2015).

Some studies in consensus have considered multiagent systems described as rigid-
bodies, with the objective of achieving a common attitude or pose (position and orienta-
tion). Some recent results are summarized next. Hatanaka et al. (2015) use homogeneous
representations to describe the complete pose and make use of passivity in rigid motion to
show consensus in strongly connected networks. Mayhew et al. (2012) show consensus in
the attitude for undirected networks by applying a hybrid controller and a representation
based on quaternions. Aldana et al. (2015) expressed the pose by means of vectors for
the position and quaternions for the orientation, showing consensus in undirected net-
works also supporting a leader-following problem. Wang et al. (2012) considered dual
quaternions for the pose in order to show consensus for networks limited to rooted-tree
topologies (a tree type graph in which one of the nodes is designated as a root) and applied
a control law based on the logarithm of the dual quaternions.

A unit quaternion is a singularity-free representation used to describe rigid-body ori-

126
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entation. The logarithm of a quaternion was defined by Kim et al. (1996), which served as
base for the logarithmic controller by Wang et al. (2012). Of major interest in the work of
Kim et al. (1996) is the differential formula for an exponential map and is highly related
to the proposed control law presented in this chapter. Additionally, as pointed by Adorno
and Fraisse (2016), dual quaternions are of great interest in the representation of com-
plete rigid motions, twists, wrenches, and several geometrical primitives—e.g. Plucker
lines and planes—due to its many benefits such as: the more compact representation
than, for example, Homogeneous Transformation Matrices (HTM); the ease to extract
geometric parameters from a given unit dual quaternion (translation, axis of rotation and
angle of rotation); the low computational cost for the multiplications of dual quaternions
compared to HTM; the absence of representational singularities (although this feature is
also present in HTM); and dual quaternions are easily mapped into a vector structure,
which can be particularly convenient when controlling a robot, as there is no need to
extract parameters from the dual quaternion to perform such task. Additionally, com-
plex systems can be easily modeled with dual quaternions using a whole-body approach
(Adorno, 2011).

The contributions of this chapter are the following: (𝑖) first, the differentiable logarith-
mic mapping by Kim et al. (1996) is extended to dual quaternions; (𝑖𝑖) second, differently
from the literature, a standard consensus-based approach is used to show consensus in
the pose by means of an output given by the logarithmic mapping of the dual quater-
nion describing the pose of each agent, this is of great interest since making consensus in
unit dual quaternions is much more complicated because unit dual quaternions lie in a
non-Euclidean topological space (Spin(3) n R3); (𝑖𝑖𝑖) this result enables the application
of general results of consensus in Euclidean spaces with time-delays, switching topologies,
and design of the coupling strengths onto rigid-bodies pose-consensus; (𝑖𝑣) whole-body
control and consensus are used to propose a strategy that allows decentralized formation
control in the 3D space for the end-effectors of mobile manipulators with kinematics mod-
els given by the algebra of dual quaternions; (𝑣) finally, the proposed strategy is verified
in a real world cooperative manipulation task.

7.1 Dual quaternions

A quaternion ℎ is a number composed of one real element and three complex elements
associated to the quaternionic imaginary units �̂�, 𝚥, and 𝑘, such that ℎ = ℎ1 + ℎ2�̂� + ℎ3𝚥 +

ℎ4𝑘, where ℎ1, . . . , ℎ4 ∈ R, and �̂�2 = 𝚥2 = 𝑘2 = �̂�𝚥𝑘 = −1 (Selig, 2005). The notation H is
used to represent this set. A unit quaternion ℎ is defined as a quaternion with unit norm
‖ℎ‖ = 1, with the norm of ℎ given by ‖ℎ‖ =

√
ℎ*ℎ, where ℎ* = ℎ1−ℎ2�̂�−ℎ3𝚥−ℎ4𝑘 is the

conjugate of ℎ. Unit quaternions represent the group of rotations Spin(3), which double
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covers the 3D rotation group, often denoted as the special orthogonal group 𝑆𝑂(3). A
rotation from an inertial frame ℱ0 to frame ℱ𝑖 can always be represented by

𝑟𝑖 = cos

(︂
𝜑𝑖

2

)︂
+ sin

(︂
𝜑𝑖

2

)︂
𝑛𝑖, (7.1)

where 0 ≤ 𝜑𝑖 < 2𝜋 is the angle of the rotation around the rotation axis 𝑛𝑖 = 𝑛𝑖𝑥�̂�+𝑛𝑖𝑦𝚥+

𝑛𝑖𝑧𝑘, ‖𝑛𝑖‖ = 1. Quaternions defined as 𝑛𝑖, whose real parts are zero, are called pure
quaternions and are isomorphic to R3 under the addition operation, and thus can be used
to represent translations (Selig, 2005).

Dual quaternions, represented by the set ℋ, extend the algebra of quaternions with
the addition of Clifford’s dual unit 𝜀, where 𝜀2 , 0, but 𝜀 ̸= 0 (Selig, 2005). They are
composed of two quaternions as ℎ = ℎ𝑝 + 𝜀ℎ𝑑, with ℎ ∈ ℋ the dual quaternion, and
ℎ𝑝,ℎ𝑑 ∈ H the primary and dual parts. More specifically, the dual quaternion can be
written as ℎ = ℎ1 + ℎ2�̂� + ℎ3𝚥 + ℎ4𝑘 + 𝜀

(︁
ℎ5 + ℎ6�̂�+ ℎ7𝚥+ ℎ8𝑘

)︁
, where ℎ1, . . . , ℎ8 ∈ R.

Unit dual quaternions, i.e. 𝑥𝑖 ∈ ℋ with unit norm
√︀

𝑥*
𝑖𝑥𝑖 = 1, represent the group of

rigid motions Spin(3) n R3, which double covers 𝑆𝐸(3). Thus, a rigid motion from an
inertial frame ℱ0 to frame ℱ𝑖, given by a translation followed by a rotation, can always
be represented by (Selig, 2005)

𝑥𝑖 = 𝑟𝑖 + 𝜀
1

2
𝑝𝑖𝑟𝑖, (7.2)

where 𝑝𝑖 is a pure quaternion representing the translation from ℱ0 to ℱ𝑖 and 𝑟𝑖 is a unit
quaternion representing the rotation from ℱ0 to ℱ𝑖 as in (7.1).

Since Spin(3) and Spin(3)nR3 are non-commutative groups, analogous to 𝑆𝑂(3) and
𝑆𝐸(3), quaternions and dual quaternions are also non-commutative under multiplications.
However, some operators, called Hamilton operators, are matrices defined by Adorno
(2011) for both quaternions and dual quaternions in order to commute these terms in
algebraic expressions, such that, for ℎ1,ℎ2 ∈ H and ℎ1,ℎ2 ∈ ℋ,

vec4(ℎ1ℎ2) =
+

H4(ℎ1)vec4ℎ2 =
−
H4(ℎ2)vec4ℎ1, (7.3)

vec8(ℎ1ℎ2) =
+

H8(ℎ1)vec8ℎ2 =
−
H8(ℎ2)vec8ℎ1, (7.4)

where vec4ℎ = [ℎ1 . . . ℎ4]
𝑇 and vec8ℎ = [ℎ1 . . . ℎ8]

𝑇 is a bijective mapping of quaternions
into R4 and dual quaternions into R8, respectively, i.e. vec4 : H→ R4 and vec8 : ℋ → R8.
Also,

+

H4(ℎ) =

⎡⎢⎢⎢⎣
ℎ1 −ℎ2 −ℎ3 −ℎ4
ℎ2 ℎ1 −ℎ4 ℎ3

ℎ3 ℎ4 ℎ1 −ℎ2
ℎ4 −ℎ3 ℎ2 ℎ1

⎤⎥⎥⎥⎦ , −
H4(ℎ) =

⎡⎢⎢⎢⎣
ℎ1 −ℎ2 −ℎ3 −ℎ4
ℎ2 ℎ1 ℎ4 −ℎ3
ℎ3 −ℎ4 ℎ1 ℎ2

ℎ4 ℎ3 −ℎ2 ℎ1

⎤⎥⎥⎥⎦ , (7.5)
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+

H8(ℎ) =

⎡⎣+

H4(ℎ𝑝) 0
+

H4(ℎ𝑑)
+

H4(ℎ𝑝)

⎤⎦ , −
H8(ℎ) =

⎡⎣−
H4(ℎ𝑝) 0
−
H4(ℎ𝑑)

−
H4(ℎ𝑝)

⎤⎦ , (7.6)

where ℎ = ℎ𝑝+𝜀ℎ𝑑, and
+

H4(·),
−
H4(·),

+

H8(·), and
−
H8(·) are the Hamilton operators defined

by Adorno (2011).

The logarithm of a unit quaternion as in (7.1) is defined as (Kim et al., 1996)

log 𝑟𝑖 =
𝜑𝑖

2
𝑛𝑖. (7.7)

Similarly, the logarithm of a unit dual quaternion as in (7.2) is defined as (Han et al.,
2008)

log𝑥𝑖 =
1

2
(𝜑𝑖𝑛𝑖 + 𝜀𝑝𝑖). (7.8)

Remark 7.1 Unit dual quaternions double cover 𝑆𝐸(3), with 𝑥𝑖 representing the same
rigid-motion as −𝑥𝑖. There are cases when log𝑥𝑖 = log(−𝑥𝑖), although representing the
same pose.

The following Theorem, adapted from the differential formula of the exponential map
by Kim et al. (1996) is of major importance for the next results.

Theorem 7.1 Given a unit quaternion 𝑟𝑖 = 𝑟𝑖1 + 𝑟𝑖2�̂� + 𝑟𝑖3𝚥 + 𝑟𝑖4𝑘, 𝑟𝑖 = cos (𝜑𝑖/2) +

sin (𝜑𝑖/2)𝑛𝑖, 0 ≤ 𝜑𝑖 < 2𝜋, 𝑛𝑖 = 𝑛𝑖𝑥�̂� + 𝑛𝑖𝑦𝚥 + 𝑛𝑖𝑧𝑘, ‖𝑛𝑖‖ = 1, and its logarithm given by
the pure quaternion 𝑦𝑖 = log 𝑟𝑖 defined as in (7.7), 𝑦𝑖 = 𝑦𝑖1�̂�+ 𝑦𝑖2𝚥+ 𝑦𝑖3𝑘, the logarithmic
mapping is continuously differentiable and

vec4 �̇�𝑖 = 𝑄4(𝑟𝑖)vec4 �̇�𝑖, (7.9)

where
𝑄4(𝑟𝑖) =

[︂
−vec4𝑟𝑖

𝜕 vec4𝑟𝑖

𝜕(𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3)

]︂
, (7.10)

𝜕 vec4𝑟𝑖

𝜕(𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝑟𝑖2 −𝑟𝑖3 −𝑟𝑖4
Γ𝑛2

𝑖𝑥 + Θ Γ𝑛𝑖𝑥𝑛𝑖𝑦 Γ𝑛𝑖𝑥𝑛𝑖𝑧

Γ𝑛𝑖𝑦𝑛𝑖𝑥 Γ𝑛2
𝑖𝑦 + Θ Γ𝑛𝑖𝑦𝑛𝑖𝑧

Γ𝑛𝑖𝑧𝑛𝑖𝑥 Γ𝑛𝑖𝑧𝑛𝑖𝑦 Γ𝑛2
𝑖𝑧 + Θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7.11)

with Γ = 𝑟𝑖1 −Θ, and

Θ =

⎧⎪⎨⎪⎩
1, if 𝜑𝑖 = 0,

sin(𝜑𝑖/2)

(𝜑𝑖/2)
, otherwise.

(7.12)
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Furthermore, vec4 �̇�𝑖 = 04 if and only if vec4 �̇�𝑖 = 04.

Proof The proof follows from Kim et al. (1996) noticing that 𝑟𝑖 = exp(𝑦𝑖). Differently
from Kim et al. (1996), (7.11) is written in an alternative form and the definition of 𝑄4(𝑟𝑖)

includes the vector −vec4𝑟𝑖 yielding a 4×4 dimensional matrix. This allows to use vec4 �̇�𝑖

instead of the 3-dimensional vector of the pure quaternion �̇�𝑖 in the work of Kim et al.
(1996). This is done to simplify notation.

Furthermore, computing the determinant of 𝑄4(𝑟𝑖) gives

det𝑄4(𝑟𝑖) = −𝑟𝑖1[ΓΘ2(𝑛2
𝑖𝑥 + 𝑛2

𝑖𝑦 + 𝑛2
𝑖𝑧) + Θ3]− 𝑟2𝑖2Θ2 − 𝑟2𝑖3Θ2 − 𝑟2𝑖4Θ2. (7.13)

Since ‖𝑛𝑖‖ =
√︁
𝑛2
𝑖𝑥 + 𝑛2

𝑖𝑦 + 𝑛2
𝑖𝑧 = 1, and Γ = 𝑟𝑖1 −Θ then

det𝑄4(𝑟𝑖) = −𝑟2𝑖1Θ2 − 𝑟2𝑖2Θ2 − 𝑟2𝑖3Θ2 − 𝑟2𝑖4Θ2, (7.14)

= −[cos2(𝜑𝑖/2) + (𝑛2
𝑖𝑥 + 𝑛2

𝑖𝑦 + 𝑛2
𝑖𝑧) sin2(𝜑𝑖/2)]Θ2, (7.15)

= −[cos2(𝜑𝑖/2) + sin2(𝜑𝑖/2)]Θ2 = −Θ2, (7.16)

which is different from zero for 0 ≤ 𝜑𝑖 < 2𝜋. Thus, 𝑄4(𝑟𝑖) is nonsingular, then vec4 �̇�𝑖 = 04

if and only if vec4 �̇�𝑖 = 04. �

Remark 7.2 Any column-vector can be chosen for the first column of 𝑄4(𝑟𝑖) in (7.10),
yielding the same mapping for vec4�̇�𝑖. This is true since the first element of vec4�̇�𝑖 is
always zero. The choice of −vec4𝑟𝑖 as this column-vector in Theorem 7.1 is made in
order to provide a non-singular matrix for the interval of 𝜑𝑖 ∈ [0, 2𝜋).

Next, this result is extended to the relation between the time-derivative of a unit dual
quaternion and the logarithm of a unit dual quaternion.

Theorem 7.2 Given a unit dual quaternion 𝑥𝑖 defined as in (7.2), and its logarithm
given by the pure dual quaternion 𝑦

𝑖
= log𝑥𝑖 defined as in (7.8), thus

vec8�̇�𝑖 = 𝑄8(𝑥𝑖)vec8�̇�𝑖
, (7.17)

with

𝑄8(𝑥𝑖) =

⎡⎣ 𝑄4(𝑟𝑖) 0

1
2

+

H4(𝑝𝑖)𝑄4(𝑟𝑖)
−
H4(𝑟𝑖)

⎤⎦ , (7.18)

where 0 is a zero matrix 4×4 and 𝑄4(𝑟𝑖) is given in Theorem 7.1. Furthermore, vec8 �̇�𝑖 =

08 if and only if vec8 �̇�𝑖
= 08.
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Proof Taking the time derivative of 𝑥𝑖 in (7.2) yields

�̇�𝑖 = �̇�𝑖 + 𝜀
1

2
(�̇�𝑖𝑟𝑖 + 𝑝𝑖�̇�𝑖). (7.19)

Applying the operator vec8, and the Hamilton operators
+

H4(·) and
−
H4(·), it gives

vec8�̇�𝑖 =

⎡⎣ vec4 �̇�𝑖

1
2

−
H4(𝑟𝑖)vec4 �̇�𝑖 + 1

2

+

H4(𝑝𝑖)vec4 �̇�𝑖

⎤⎦ (7.20)

From the definition of the logarithm, 𝑦
𝑖

= 𝑦𝑖 + 𝜀1
2
𝑝𝑖, with 𝑦𝑖 = log 𝑟𝑖. Then, taking

the time-derivative of 𝑦
𝑖
and applying the vec8 operator yields

vec8�̇�𝑖
=

⎡⎣ vec4 �̇�𝑖

1
2
vec4 �̇�𝑖,

⎤⎦ (7.21)

Since, from Theorem 7.1, vec4 �̇�𝑖 = 𝑄4(𝑟𝑖)vec4 �̇�𝑖, considering (7.20) and (7.21) gives
(7.17).

Finally, since 𝑄4(𝑟𝑖) and
−
H4(𝑟𝑖) are nonsingular for 0 ≤ 𝜑𝑖 < 2𝜋, then 𝑄8(𝑟𝑖) is

nonsingular, and vec8 �̇�𝑖 = 08 if and only if vec8 �̇�𝑖
= 08. This completes the proof. �

7.2 Dual Quaternion Consensus

Consider a multiagent system with 𝑚 agents, in which each agent has an output state
related to a given variable of interest defined as a dual quaternion. Define the dual
quaternion 𝑦

𝑖
as the output of the 𝑖-th agent, for 𝑖 = 1, . . . ,𝑚. The topology of the infor-

mation exchange in the network is described by a directed graph as defined in Chapter 2.
The output consensus problem is to make the multiagent system reach an agreement on
the output variable of interest considering only the information provided by neighboring
agents. Then it is defined output consensus with dual quaternions:

Definition 7.1 The multiagent system with output variables 𝑦
𝑖
(𝑡) ∈ ℋ, ∀𝑖, is said to

asymptotically achieve output consensus on the dual quaternion variable of interest if and
only if

lim
𝑡→∞

(︁
𝑦
𝑖
(𝑡)− 𝑦

𝑗
(𝑡)
)︁

= 0, ∀𝑖, 𝑗 = 1, . . . ,𝑚. (7.22)

Given the definition of output consensus, the following theorem shows a consensus
protocol that enables the multi-agent system to achieve output consensus.
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Theorem 7.3 The multi-agent system composed of 𝑚 agents with dynamics given by

�̇�
𝑖

= 𝑢𝑖, (7.23)

for all 𝑖 = 1, . . . ,𝑚, with the consensus protocol given by

𝑢𝑖 = −
𝑚∑︁
𝑗=1

𝑎𝑖𝑗

(︁
𝑦
𝑖
− 𝑦

𝑗

)︁
, (7.24)

where 𝑎𝑖𝑗 are the elements of the adjacency matrix of a directed graph 𝒢 describing the
network topology, achieves output consensus according to Definition 7.1 if and only if 𝒢
has a directed spanning tree.

Proof The consensus problem in the dual quaternion variables 𝑦
𝑖
, ∀𝑖 can be transformed

into a stability problem with an extension to the dual quaternions of the tree-type trans-
formation shown in Section 2.2.1. Thus, for a multi-agent system with 𝑚 agents, it is
defined 𝑚− 1 dual quaternions as error variables given by

𝑧𝑖 = 𝑦
1
− 𝑦

(𝑖+1)
, 𝑖 = 1, . . . ,𝑚− 1. (7.25)

Stacking these error variables 𝑧𝑖 in a vector of dual quaternions 𝑧 ∈ ℋ𝑚−1, where
𝑧 = [𝑧1 𝑧2 . . . 𝑧(𝑚−1)]

𝑇 , output consensus is asymptotically achieved if and only if 𝑧 goes
to zero as shown in Section 2.2.1, Proposition 2.1. Therefore, similarly to (2.11),

z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

1 0 −1 0

... . . . ...

1 0 0 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

𝑈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦
1

𝑦
2

...

𝑦
𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

y

, (7.26)

where 𝑈 ∈ Z(𝑚−1)×𝑚 and 𝑦 = [𝑦
1
𝑦
2
. . . 𝑦

𝑚
]𝑇 . Considering (7.26), the inverse transfor-

mation is given as in (2.13), by

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

1

...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

1𝑚

𝑦
1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

−1 0 · · · 0

0 −1 · · · 0

...
... . . . ...

0 0 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

𝑊

z . (7.27)
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Thus, y = 1𝑚𝑦1
+𝑊 z , where 𝑊 ∈ Z𝑚×(𝑚−1).

The closed-loop dynamics considering (7.24) into (7.23) gives

�̇�
𝑖

= −
𝑚∑︁
𝑗=1

𝑎𝑖𝑗

(︁
𝑦
𝑖
− 𝑦

𝑗

)︁
, (7.28)

which can be written using the Laplacian matrix of the network topology 𝒢, considering
the whole multiagent system:

ẏ = −𝐿y . (7.29)

Taking the time-derivative of (7.26), and then considering (7.27) and (7.29), yields

ż = −𝑈𝐿y = −𝑈𝐿(1𝑚𝑦1
+𝑊 z ),

and since 𝐿1𝑚 = 0𝑚 from (2.3), it follows that

ż = −𝑈𝐿𝑊 z . (7.30)

The equilibrium point z = 0𝑚−1 in (7.30) is asymptotically stable if and only if all the
eigenvalues of 𝑈𝐿𝑊 have positive real parts. As in Proposition 2.5, this happens if and
only if 𝒢 has a directed spanning tree. This concludes the proof. �

Therefore, Theorem 7.3 indicates that a dynamical system that can be written in the
form of (7.28), achieves consensus depending only on the network topology.

7.3 Pose Consensus

Since the dynamical system written in the form of (7.28) relies on linear operations, which
can be regarded as the most traditional consensus algorithm, the result in Theorem 7.3
can only correctly perform averaging in Euclidean spaces (Jorstad et al., 2010). For dual
quaternions, consensus can not be directly applied to the unit dual quaternions 𝑥𝑖 in (7.2)
since the group of rigid motions Spin(3)nR3 is not Euclidean, and directly averaging unit
dual quaternions does not produce meaningful values, generally not yielding a unit dual
quaternion.

A workaround to this problem is to choose an output for the system that is not required
to be a unit dual quaternion and thus can be averaged without losing its group properties,
i.e. the logarithm 𝑦

𝑖
= log𝑥𝑖. From Remark 7.1 and Definition 7.1, dual quaternion pose

consensus is defined.
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Definition 7.2 The multiagent system with output variables 𝑦
𝑖

= log𝑥𝑖, ∀𝑖, asymptot-
ically achieves pose consensus if consensus on the dual quaternions 𝑦

𝑖
is asymptotically

achieved.

Next result summarizes the application of dual quaternion pose consensus to multi-
agent rigid-bodies.

Theorem 7.4 Consider a group of 𝑚 agents described as rigid-bodies with pose expressed
by 𝑥𝑖 in (7.2). Let the kinematics for each agent be given as

vec8�̇�𝑖 = vec8𝑢𝑖, 𝑖 = 1, . . . ,𝑚, (7.31)

with output
𝑦
𝑖

= log𝑥𝑖, 𝑖 = 1, . . . ,𝑚. (7.32)

Under consensus protocol

vec8𝑢𝑖 = −𝑄8(𝑥𝑖)
𝑛∑︁

𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑖

− vec8𝑦𝑗

)︁
, (7.33)

where 𝑄8(𝑥𝑖) is given in Theorem 7.2, the multiagent system asymptotically achieves
consensus in the dual quaternion output 𝑦

𝑖
, which implies consensus in the pose according

to Definition 7.2, if and only if the network topology described by 𝒢 has a directed spanning
tree.

Proof From Theorem 7.3, a multiagent system described in the form of (7.28) is able to
achieve consensus on 𝑦

𝑖
if and only if the 𝒢 has a directed spanning tree, which applying

the vec8 operator is equivalent to

vec8�̇�𝑖
= −

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑖

− vec8𝑦𝑗

)︁
. (7.34)

From Theorem 7.2, the relationship between �̇�𝑖 and �̇�
𝑖
can be applied to give

vec8�̇�𝑖 = vec8𝑢𝑖 = 𝑄8(𝑥𝑖)vec8�̇�𝑖
. (7.35)

Choosing vec8𝑢𝑖 as (7.33), implies (7.34) since 𝑄8(𝑥𝑖) is nonsingular, allowing the system
to achieve consensus on the pose according to Definition 7.2. �

Corollary 7.1 Consider the kinematics of each agent expressed by

�̇�𝑖 =
1

2
𝜉
𝑖
𝑥𝑖, 𝑖 = 1, . . . ,𝑚, (7.36)
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where 𝑥𝑖 is given in (7.2) and the dual quaternion

𝜉
𝑖

= 𝜔𝑖 + 𝜀(�̇�𝑖 + 𝑝𝑖 × 𝜔𝑖) (7.37)

is the twist of agent 𝑖 at the inertial frame ℱ0, including the angular velocity 𝜔𝑖 and linear
velocity �̇�𝑖, and the cross-product for pure quaternions is given by

𝑝𝑖 × 𝜔𝑖 =
𝑝𝑖𝜔𝑖 − 𝜔𝑖𝑝𝑖

2
, (7.38)

which is equivalent to the vector product in R3 given the isomorphism between pure quater-
nions and R3 relative to additions. If the input control actions are given as

vec8𝜉𝑖 = vec8𝑢𝑖, 𝑖 = 1, . . . ,𝑚, (7.39)

consensus on the pose can be achieved by using protocol

vec8𝑢𝑖 = −2
−
H8(𝑥

*
𝑖 )𝑄8(𝑥𝑖)

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑖

− vec8𝑦𝑗

)︁
. (7.40)

Proof The proof follows from the application of the Hamilton operators in (7.36) and
considering the protocol (7.33) in Theorem 7.4. �

7.4 Consensus-Based Formation

As presented in Section 1.4.1, in formation control problem, the goal is to make a group of
agents achieve desired relative poses in relation to neighbor agents and keep this formation
anywhere in space. Figure 7.1 illustrates the case of a system composed of four agents in
a two-dimensional space for better visualization, and formulates the problem in terms of
dual quaternions representing the poses.

The agents in the desired formation are shown in Figure 7.1a, with the coordinate
frame (𝑥-axis,𝑦-axis) representing the inertial reference frame, (𝑥𝑐, 𝑦𝑐) the center of for-
mation relative to the inertial frame, and (𝑥𝑖, 𝑦𝑖) the local coordinate frames for each
agent, for all 𝑖-th agent. Each agent’s desired relative pose to the center of formation is
represented by the rigid motion given by the dual quaternion 𝛿𝑖 ∈ ℋ. The dual quater-
nion representing the relation from the inertial frame to the center of formation, i.e. the
pose of group formation, is represented by 𝑥𝑐 ∈ ℋ.

The pose of each agent can be expressed by 𝑥𝑖 ∈ ℋ, and the desired relation 𝛿𝑖 to the
center of formation is locally known and constant. Then, each agent has its local opinion
regarding the center of formation, which is considered as the agent’s state and given by
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(b) Consensus approach.

Figure 7.1: Each agent has a desired relation with the center of formation. The informa-
tion exchanged is each agent’s opinion on this center.

𝑥𝑐,𝑖 = 𝑥𝑖𝛿
*
𝑖 as shown in Figure 7.1b. A consensus-based approach is used in order to

enable all the agents to reach a common center of formation.

The information shared with neighboring agents is given by an output given as the
logarithmic mapping of the agent’s state, i.e.

𝑦
𝑐,𝑖

= log𝑥𝑐,𝑖 = log(𝑥𝑖𝛿
*
𝑖 ). (7.41)

Finally, since the desired 𝛿𝑖 ∈ ℋ is locally defined (i.e. only the 𝑖-th agent has the
information about its desired constant 𝛿𝑖) and the only variable that 𝑥𝑐,𝑖 depends on is
the pose 𝑥𝑖, the formation control problem can be defined as the problem of reaching
output consensus on the 𝑦

𝑐,𝑖
variables. Therefore, the consensus protocol that enables the

system to achieve formation is presented in the following theorem.

Theorem 7.5 Consider a multiagent system composed of 𝑚 agents described as rigid-
bodies with pose expressed by 𝑥𝑖 as given in (7.2). Let the kinematics for each agent be
given by

vec8�̇�𝑖 = vec8𝑢𝑖, 𝑖 = 1, . . . ,𝑚, (7.42)

and each agent’s output
𝑦
𝑐,𝑖

= log(𝑥𝑖𝛿
*
𝑖 ), 𝑖 = 1, . . . ,𝑚, (7.43)

with 𝛿𝑖 the desired pose in relation to the center of formation. By means of the consensus
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protocol given by

vec8𝑢𝑖 = −
−
H8(𝛿𝑖)𝑄8(𝑥𝑐,𝑖)

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑐,𝑖

− vec8𝑦𝑐,𝑗

)︁
, (7.44)

where 𝑎𝑖𝑗 are the elements of the adjacency matrix of the directed graph 𝒢 describing the
network topology, the multiagent system asymptotically achieves formation if and only if
𝒢 has a directed spanning tree.

Proof From Theorem 7.2, it is given that

vec8�̇�𝑐,𝑖 = 𝑄8(𝑥𝑐,𝑖)vec8�̇�𝑐,𝑖
. (7.45)

The time-derivative of the agent’s state 𝑥𝑐,𝑖 = 𝑥𝑖𝛿
*
𝑖 can also be given by the following,

with constant 𝛿𝑖:

�̇�𝑐,𝑖 = �̇�𝑖𝛿
*
𝑖 , (7.46)

�̇�𝑖 = �̇�𝑐,𝑖𝛿𝑖. (7.47)

Applying the Hamilton and vec operators in (7.47) and taking vec8�̇�𝑐,𝑖 from (7.45), it
gives

vec8�̇�𝑖 = vec8𝑢𝑖 =
−
H8(𝛿𝑖)𝑄8(𝑥𝑐,𝑖)vec8�̇�𝑐,𝑖

. (7.48)

From Theorem 7.3, a system is able to achieve consensus on 𝑦
𝑖

if and only if the 𝒢
has a directed spanning tree, and

vec8�̇�𝑐,𝑖
= −

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑐,𝑖

− vec8𝑦𝑐,𝑗

)︁
(7.49)

Choosing 𝑢𝑖 as in (7.44), since
−
H8(𝛿𝑖)𝑄8(𝑥𝑐,𝑖) are all nonsingular matrices, then (7.49) is

satisfied, and the system achieves consensus according to Theorem (7.3). This completes
the proof. �

Corollary 7.2 If the kinematics of each agent is expressed by (7.36) and the input control
actions are given by

vec8𝜉𝑖 = vec8𝑢𝑖, 𝑖 = 1, . . . ,𝑚, (7.50)

consensus-based formation can be achieved by using the consensus protocol

vec8𝑢𝑖 = −2
−
H8(𝑥

*
𝑖 )

−
H8(𝛿𝑖)𝑄8(𝑥𝑐,𝑖)

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑐,𝑖

− vec8𝑦𝑐,𝑗

)︁
. (7.51)
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Proof The proof follows from Theorem 7.5, by applying the Hamilton operators in (7.36)
and considering protocol (7.44).

Remark 7.3 It can be shown that
−
H(𝑥*

𝑖 )
−
H(𝛿𝑖) =

−
H(𝑥*

𝑐,𝑖), which gives an equivalence
between (7.51) and (7.40) when comparing 𝑥𝑐,𝑖 and 𝑥𝑖.

7.5 Examples

It is presented simulation results for a system composed of 𝑚 = 5 agents. In this example,
the desired formation is a circle in which 𝛿𝑖 is given such that the agents poses are equally
distributed in a complete revolution around the 𝑧-axis of the center of formation, and the
displacement in relation to this center is 𝑝𝑦 = −0.5 in the 𝑦-axis after rotation. More
specifically, for 𝑖 = 1, . . . , 5, the geometrical parameters are given by

𝜑𝛿,𝑖 =
2𝜋(𝑖− 1)

𝑚
, 𝑝𝛿,𝑖 = 𝑝𝑦𝚥, (7.52)

and

𝑟𝛿,𝑖 = cos

(︂
𝜑𝛿,𝑖

2

)︂
+ 𝑘 sin

(︂
𝜑𝛿,𝑖

2

)︂
, (7.53)

𝛿𝑖 , 𝑟𝛿,𝑖 + 𝜀
1

2
𝑟𝛿,𝑖𝑝𝛿,𝑖. (7.54)

For any initial position the system must achieve formation as described by 𝛿𝑖 in (7.54)
anywhere in the space. The network topology is depicted in Figure 7.2, as a directed graph
with a spanning tree, and does not require to be strongly connected. For simulation, the
numerical integration is carried out by the formula

𝑥𝑖(𝑡+ ∆𝑡) = exp

(︂
∆𝑡

2
𝜉
𝑖

)︂
𝑥𝑖(𝑡), (7.55)

where ∆𝑡 is the time interval of integration, and the exponential map exp(·) is given by
Adorno (2011).

4 5

321

Figure 7.2: Network topology.

The simulation result is shown in Figure 7.3, where the initial and final poses are
represented by orthogonal axes, the initial positions of the agents are randomly chosen and
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Figure 7.3: Simulation for five agents in a circular formation.

marked by 𝑥𝑖(0), for 𝑖 = 1, . . . , 5, and the trajectories executed by each agent are shown
by the continuous lines. The final circular formation is shown at the center of the figure.
The state-trajectories for each part of 𝑦

𝑐,𝑖
(𝑡) = 𝑦2𝑐,𝑖�̂�+𝑦3𝑐,𝑖𝚥+𝑦4𝑐,𝑖𝑘+𝜀(𝑦6𝑐,𝑖�̂�+𝑦7𝑐,𝑖𝚥+𝑦8𝑐,𝑖𝑘)

are shown in Figure 7.4 as the agents achieve consensus in the dual quaternion output.

Finally, in order to show scalability, a simulation with a random fixed directed network,
containing a spanning tree, and random initial poses is carried out with 𝑚 = 300 agents.
The objective is to reach a circular formation with 𝛿𝑖 chosen similarly to previous example
given by (7.52), (7.53) and (7.54), with radius 𝑝𝑦 = 1. The simulation is shown in
Figure 7.5, where 𝑇 is a unit of time dependent on the topology. Figure 7.5a shows
the random initial poses, Figures 7.5b and 7.5c show snapshots as the time evolves, and
Figure 7.5d shows the final achieved formation.

7.6 Whole Body Kinematics Model

Now, the results are applied in mobile manipulators modeled using dual quaternion alge-
bra. A whole-body model is used to describe the pose of the end-effector, and the control
inputs are the angular velocities of the manipulator joints and the velocities of the mobile
base.

Consider a holonomic mobile base moving in the plane 𝑋𝑌 and an inertial reference
frame ℱ0 somewhere in the space. The position of the local reference frame ℱ𝑏 in the
center of the mobile base is given by the coordinates (𝑥, 𝑦), and the orientation is given
by the rotation angle 𝜑 around axis 𝑍. Thus, the generalized coordinates of the base can
be written as 𝜃𝑏 = [𝑥 𝑦 𝜑]𝑇 and its pose, relative to ℱ0, is given by the following dual
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Figure 7.4: Time-evolution for each part of the output.
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Figure 7.5: Simulation for 300 agents in a circular formation.

quaternion

𝑥0
𝑏 = 𝑟0

𝑏 + 𝜀
1

2
𝑝0
𝑏𝑟

0
𝑏 , (7.56)

where 𝑟0
𝑏 = cos (𝜑/2) + 𝑘 sin (𝜑/2) and 𝑝0

𝑏 = 𝑥�̂�+ 𝑦𝚥 Adorno (2011).

Thus, taking the first time-derivative of (7.56) and mapping into R8 with the vec8
operator, the differential forward kinematics of the holonomic mobile base is given by

vec8�̇�0
𝑏 = 𝐽𝑏𝜃𝑏, (7.57)

where 𝐽𝑏 = [𝑏𝑖𝑗] ∈ R8×3 with

𝑏13 = −𝑏62 = 𝑏71 = −1

2
sin

(︂
𝜑

2

)︂
,

𝑏43 = 𝑏61 = 𝑏72 =
1

2
cos

(︂
𝜑

2

)︂
,

𝑏63 = −𝑥
4

sin

(︂
𝜑

2

)︂
+
𝑦

4
cos

(︂
𝜑

2

)︂
,

𝑏73 = −𝑥
4

cos

(︂
𝜑

2

)︂
− 𝑦

4
sin

(︂
𝜑

2

)︂
,

and all other elements equal zero (Adorno, 2011).
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Next, consider a manipulator on top of the mobile base. Let the reference frame of
the manipulator’s base be ℱ𝑚 and 𝑥𝑏

𝑚 be a constant dual quaternion representing the
rigid-motion from ℱ𝑏 to ℱ𝑚. For a serial manipulator with 𝜂 revolute joints, with 𝜃𝑘 the
angle of the 𝑘-th joint, for 𝑘 = 1, . . . , 𝜂, the forward kinematics that relates the frame
ℱ𝑒 of the end-effector to the base of the manipulator ℱ𝑚 is a function of all joints, i.e.
the pose of the end-effector related to the base of the manipulator is given by the dual
quaternion 𝑥𝑚

𝑒 = 𝑓(𝜃𝑚), with 𝜃𝑚 = [𝜃1 . . . 𝜃𝜂]
𝑇 the vector containing all the joint angles.

The differential forward kinematics is given by �̇�𝑚
𝑒 = 𝑓 ′(𝜃𝑚), where 𝑓 ′ , 𝑑𝑓/𝑑𝑡. Thus,

applying the vec8 operator, the differential forward kinematics of the manipulator is

vec8�̇�𝑚
𝑒 = 𝐽𝑚𝜃𝑚, (7.58)

where 𝐽𝑚 = 𝜕𝑓/𝜕𝜃𝑚 ∈ R8×𝜂 is the analytical Jacobian relating the joint velocities to the
dual quaternion derivative. Notice that both forward kinematics and differential forward
kinematics are obtained in the algebra of dual quaternions (Adorno, 2011).

Coupling the manipulator to the mobile base, the pose of the end-effector, related to
the inertial coordinate frame ℱ0, is described by the composition of each subsystem, i.e.

𝑥0
𝑒 = 𝑥0

𝑏𝑥
𝑏
𝑚𝑥

𝑚
𝑒 . (7.59)

In order to obtain the differential forward kinematics for the whole-body mobile ma-
nipulator, take the time-derivative of (7.59) (recall that 𝑥𝑏

𝑚 is constant):

�̇�0
𝑒 = �̇�0

𝑏𝑥
𝑏
𝑚𝑥

𝑚
𝑒 + 𝑥0

𝑏𝑥
𝑏
𝑚�̇�

𝑚
𝑒 . (7.60)

Mapping (7.60) into R8, using the Hamilton operators given in (7.4), and considering
the differential forward kinematics for each subsystem (7.57) and (7.58), yields

vec8�̇�0
𝑒 =

−
H8(𝑥

𝑏
𝑚𝑥

𝑚
𝑒 )𝐽𝑏𝜃𝑏 +

+

H8(𝑥
0
𝑏𝑥

𝑏
𝑚)𝐽𝑚𝜃𝑚,

which can be written as
vec8�̇�0

𝑒 = 𝐽𝑤𝜃𝑤, (7.61)

with

𝐽𝑤 =
[︁−
H8(𝑥

𝑏
𝑚𝑥

𝑚
𝑒 )𝐽𝑏

+

H8(𝑥
0
𝑏𝑥

𝑏
𝑚)𝐽𝑚

]︁
(7.62)

and 𝜃𝑤 =

⎡⎣ 𝜃𝑏
𝜃𝑚

⎤⎦.
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7.6.1 Mobile Manipulators Formation Control

The result presented in Theorem 7.5 can be applied in the context of a multiagent system
composed of multiple mobile manipulators. In this case, the objective is to achieve desired
formations for the set of mobile manipulator end-effectors. Each end-effector is regarded
to one agent in the multiagent system. Thus, in analogy to Theorem 7.5, define

𝑥0
𝑒,𝑖 , 𝑥0

𝑖 , (7.63)

such that 𝑥0
𝑒,𝑖 is the pose of the end-effector of the 𝑖-th robot, for 𝑖 = 1, . . . ,𝑚, given

as in (7.59), with the addition of the index 𝑖 relating to the 𝑖-th robot. Therefore, a
whole-body control strategy is used to move the joints accordingly. Hence, from (7.61)
and considering the agents kinematics (7.42) considered in Theorem 7.5, the robot’s low
level controller can be given by

𝜃𝑤,𝑖 = 𝐽†
𝑤,𝑖vec8�̇�0

𝑒,𝑖 = 𝐽†
𝑤,𝑖vec8𝑢𝑖, (7.64)

where 𝐽†
𝑤,𝑖 is the Moore-Penrose Generalized Pseudoinverse of 𝐽𝑤,𝑖. Finally, replacing

(7.44) into (7.64) yields the control law to achieve formation on the end-effectors of the
mobile manipulators, given by

𝜃𝑤,𝑖 = −𝐽†
𝑤,𝑖

−
H8(𝛿𝑖)𝑄8(𝑥𝑐,𝑖)

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

(︁
vec8𝑦𝑐,𝑖

− vec8𝑦𝑐,𝑗

)︁
.

Remark 7.4 It is assumed that vec8𝑢𝑖 is in the range space of 𝐽𝑤,𝑖 in order to guarantee
feasible 𝜃𝑤,𝑖 to respect the desired �̇�0

𝑒,𝑖 in (7.64). In other words, it is assumed that the
manipulator is not in a singular configuration or has not reached its joint limits (both in
position and velocity).

7.6.2 Experiment with two real KUKA youBots and a fixed

reference

An experiment with actual robots is presented next. It is considered the multiagent system
composed of mobile manipulators with holonomic base, namely KUKA youBots (Bischoff
et al., 2011). These robots are modeled using the whole-body kinematics modeling as given
in Section 7.6. Each robot is equipped with a Mini-ITX board as onboard computer, with
a processor Intel AtomTM Dual Core D510 (1M Cache, 2×1.66 GHz), 2GB single-channel
DDR2 667MHz memory, 32GB SSD drive, and communicate via a usb connected Vonets
Wireless Wifi Vap11g. The experiments were performed at CSAIL, MIT in a laboratory
equipped with a Vicon motion capture system providing the local pose for each robot
wirelessly at 50Hz. The control algorithm was implemented in ROS1 using a unit dual
quaternion computational open-source library, called DQ_robotics2.

1http://www.ros.org
2http://dqrobotics.sourceforge.net/
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The formation task is described as follows. The two agents are able to send information
to each other. Additionally, there is also a third virtual agent, considered as an additional
agent acting as a leader, which provides a constant output reference related to the desired
center of formation. This fixed reference is modeled as an agent that provides information
without listening to other agents and without executing the consensus protocol to update
these variables. This can be modeled by the network topology given in Figure 7.6, where
node 3 is the reference and 1 and 2 are the robots.

3

1 2

Figure 7.6: Network topology.

In this framework, agent 3 gives the constant reference about the desired center of
formation, and is only reachable to agent 1. In the example below, the objective is to
achieve formation around a box, whereas the position of the box is informed by the state
of agent 3. For this task, the 𝛿𝑖’s are defined such that the end-effectors of agents 1 and
2 should point to the reference at a distance of 0.30m in the 𝑥 axis in opposite directions,
i.e.

𝛿1 = 1− 𝜀0.15�̂� (7.65)

and

𝛿2 = 1𝑘 − 𝜀0.15𝚥. (7.66)

The initial configuration of the experiment is shown in Figure 7.7a, showing the two
KUKA YouBots, agents 1 in the left and 2 in the right, and the box, whose pose will be
informed by the virtual agent 3. The Laplacian Matrix is thus given by

𝐿 =

⎡⎢⎢⎢⎢⎣
0.5 −0.5 0

−0.5 1 −0.5

0 0 0

⎤⎥⎥⎥⎥⎦ , (7.67)

where the weights of each link were all chosen 0.5 from several trials of the experiment
for better performance.

During the execution of the experiment, as shown in Figures 7.7b, 7.7c, and finally
Figure 7.7d, the agents are able to achieve formation around the box with the desired poses
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(a) 𝑡 = 0s. (b) 𝑡 = 1s.

(c) 𝑡 = 3s. (d) 𝑡 = 14s.

Figure 7.7: Experiment on formation with KUKA YouBots.

given by 𝛿1 and 𝛿2, relative to the center of formation, around the box. Additional trials
have been recorded and are available in https://www.youtube.com/watch?v=zgz1SlpFJ5k
and https://www.youtube.com/watch?v=zCD4pMG-Zdc.

The state trajectories of the outputs 𝑦
𝑐,𝑖

= 𝑦𝑐,𝑖,2�̂�+𝑦𝑐,𝑖,3𝚥+𝑦𝑐,𝑖,4𝑘+𝜀(𝑦𝑐,𝑖,6�̂�+𝑦𝑐,𝑖,7𝚥+𝑦𝑐,𝑖,8𝑘)

for each agent are shown in Figure 7.8. The constant yellow line represents the leader
state, and the blue and orange represent agents 1 and 2, respectively. The continuous
lines represents the measurements of the agents outputs, and the thinner dashed lines
represent a simulation carried out with the same initial pose configurations. The states
mainly follow the expected behavior given by the simulation, although noises, delays, and
initial conditions on velocities, which are not considered, may cause the noticed differences.

7.6.3 Application of the main result in cooperative manipulation

Finally, the proposed technique is applied to a cooperative manipulation task. It’s consid-
ered the same multiagent system and communication network from Section 7.6.2, where
the two agents start in arbitrary initial positions in Figure 7.7a. Given a reference about
the pose of the object (box), which is passed by agent 3 to agent 1 only, and also consid-
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(f) 𝑦𝑐,𝑖,8(𝑡) for each agent.

Figure 7.8: Measure and simulation of each part of the output of each agent in the
experiment on formation with two KUKA YouBots.

ering the predefined 𝛿𝑖’s in (7.65) and (7.66) assigned to each agent, the agents achieve
the desired formation around the box in Figure 7.7b.

Then, the references 𝛿𝑖 are changed to a lower position in the 𝑧 axis and rotated around
the 𝑦 axis, so that the agents achieve a pre-grasping position (Figure 7.9a). By reducing
the distance of each 𝛿𝑖 and returning the reference to a higher position in the 𝑧 axis, the
agents grasp the box by the flexible straps (Figure 7.9b). Next, the reference is changed
in order to drive the agents to a pick up zone where the box is loaded (Figure 7.9c).
After loading, the reference is changed again and the agents carry the box in the direction
of a delivery zone, passing through the position shown in Figure 7.9d, then reaching the
delivery zone in Figure 7.9e. Once the agents reach the delivery zone, the 𝛿𝑖’s are changed
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(a) Pre-grasping. (b) Carrying the box.

(c) Pick-up zone. (d) Carrying the box to the delivery zone.

(e) Delivery zone. (f) Delivering the box.

Figure 7.9: Experiment on cooperative manipulation with KUKA YouBots.

in order to release and deliver the box (Figure 7.9f).

With the interplay between changing the reference of an object, controlled by agent
3, and providing different assignments of 𝛿𝑖’s, many different tasks can be achieved, as
depicted in the given example.



Conclusion

The study of consensus problems is of major importance due to the growing availability
of networked distributed systems. The exchange in information and the necessity to co-
operate in tasks can be appropriately described by consensus-based approaches. Chapter
1 briefly summarizes how some distributed tasks can be written as consensus problems;
examples were given in formation control, flocking, and platoon. In this context, the
delays in communication and processes are always present and need to be analyzed ac-
cordingly. Therefore, the effects of delays in consensus problems form the main focus of
this thesis. The rewriting of the consensus problem as a stability analysis one form the
basis to develop the results proposed in this thesis. To this end, Chapter 2 provides some
preliminary and background results.

In Chapter 3, necessary and sufficient, i.e. exact, results were presented for the anal-
ysis of consensus in multiagent systems with agents’ dynamics described by a chain of
integrators subject to constant communication or input delays. The analysis carried out
analytically is motivated to understand the influence of the protocol gains and the order
of the chain of integrators in order to analyze the influence of different values of delays.
The results have shown that the system can achieve consensus in multiple disjoint inter-
vals of time-delay. To illustrate the theoretical results, some numerical examples were
constructed and presented. Also in Chapter 3, it is presented different effects that a mul-
tiagent system may suffer when subject to communication or input delays. It was shown
in Corollary 3.1 that a multiagent system with agents described as a single integrator
can achieve consensus independently of the communication delay. The same is not true
for input delays, as shown in Corollary 3.3 the input delay has an upper delay margin to
guarantee consensus on first-order agent dynamics. For second-order integrator dynamics,
in Corollary 3.2 it is shown that the system can be independent of the communication
delay if the gains in the consensus protocol are properly adjusted. However for input
delays, there is always an upper delay margin for the value of the delay to guarantee con-
sensus. Therefore, it was shown the importance of studying the time-delays on intervals.
It means, there are cases in which the multiagent system cannot achieve consensus when
free of delays, but the introduction of the delays can lead the system to consensus, which
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goes against the usual acceptance that time-delays only degrade performance. This is
the main motivation for the analysis of consensus with time-varying delays with lower
bound greater than zero. Different methods for the analysis of the delay margins such
as de Oliveira et al. (2008) can be applied when general linear dynamics, other than a
chain of integrators, has to be analyzed, however this method cannot present the explicit
influence of some of the agents parameters like the order of the dynamics and the gains
in the consensus protocol.

With the conclusions about delay margins of Chapter 3 in hand, Chapter 4 is cen-
tered on delay-range consensus analysis in multiagent systems subject to multiple non-
differentiable time-varying delays. Due to the uncertainties in the time-delays, some
sufficient conditions for the consensus analysis are proposed based on techniques usually
applied in robust control such as Lyapunov-Krasovskii theory and linear matrix inequal-
ities. An exponential decay rate was considered in the Lyapunov-Krasovskii functional
which can be related to the time needed for the system to achieve consensus. These results
have significantly improved the analysis of the delay margins for systems subject to mul-
tiple time-varying delays. The comparisons with previous results from the literature have
shown the improvement of the method’s result, which are mainly due to the treatment
given to the proposed Lypaunov-Krasovskii functional, the null term, and the improved
Wirtinger inequality. The transformation carried out presented limitations on the study
of communication delays, in which the network topology had to be considered as a regu-
lar graph and thus cannot handle leader-following problems. Different approaches to the
analysis may remove this limitation and generalize the study of communication delays.
This is regarded as a future work.

In real world applications there are cases in which the multiagent system’s network
is subject to switches in the topology, for example when communication links fail, some
sensors are obstructed, or when congestion in the communication network causes the
drop of packages. Chapter 5 addresses such problems and gives some results following the
lines of the analysis with Lyapunov-Krasovskii and LMIs in Chapter 4. The switching
behavior was modeled as a Markov chain with uncertain transition rates, which is valuable
when the model is not exactly known, as is most practical cases. It is shown that a
multiagent system with switching topologies can achieve consensus even if the system is
not consensable in each possible topology considered individually, this is illustrated in
the numerical example of formation control with second-order models of quadrotors in
Chapter 5. However, differently from the results in Chapter 4, the analysis for switching
topologies has not considered the exponential convergence rate. This can be regarded as
a future work and is expected to assist as a performance requirement for the design.
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The design of the weights assigned to each link in the network topology, was considered
in Chapter 6. The objective of this chapter was to develop a method able to provide the
gains for the network couplings such that the system becomes consensable in regions of
time-delays where the agents were previously unable to achieve consensus. This method
is based on LMIs and is limited to single-order integrator dynamics. However, when
compared to similar results in the literature, there is a noticeable improvement in the
system’s performance, both regarded to the convergence rate and to the delay margins.
The limitation of this method is the necessity of the knowledge of the global topology
or, in the case of switching topologies, all the possible topologies, and thus can only be
applied prior to the execution of the task. Future results can be addressed to extension
of this design to general linear dynamics, which is mainly thought by the application of
BMI conditions.

As a main concern presented in the introduction of this thesis regarded to the ap-
plication of consensus problems, Chapter 8 presented the application of consensus in
multiagent systems composed of mobile manipulators. The main result in this chapter
shows how the results on consensus presented in previous chapters can be extended to
the algebra of dual quaternions and then to consensus on the pose of rigid-bodies such
as robot manipulators. This is of great interest since general results for consensus on R𝑛

Euclidean spaces could be extended to consensus on the pose described by the logarithm
of unit dual quaternions lying on the topological space Spin(3) n R3. The result was
demonstrated in formation problems carried out in both simulations and experiments,
and a framework for cooperative manipulation was described. The inherent problem of
unwinding, i.e. the behavior that can cause the controller to unnecessarily perform a full
rotation instead of a small angle rotation, has not been addressed, and future results can
deal with switching controllers to handle this problem. Initial results in human-robot
interaction have been addressed by considering the human operator as an extra agent in
the system, which can lead to many future results in interactive robotics. The results
presented in this final chapter were obtained during the exchange doctoral program in
the context of a collaboration project between the universities UFMG (Brazil) and MIT
(USA) in cooperative robotics3.

The contributions are summarized next:

∙ The analytical analysis of the delay margins for multiagent systems consensus com-
posed of agents with dynamics described by a chain of integrators. It is written the
influence of the order and the gains in the consensus protocol in the delay margin

3Development of a framework for risk-aware heterogeneous multi-agent cooperative manipulation –
CNPq/MIT No 88/2013, coordinated by Professors Bruno Adorno and Julie Shah.
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intervals.

∙ Sufficient conditions for the analysis of consensus for agents with general linear
dynamics subject to time-varying delays with guaranteed convergence rate are pre-
sented based on LMI conditions. The results perform better than similar sufficient
conditions in the literature.

∙ It is presented guaranteed conditions for consensus with switching topologies. The
topology switch is modeled as a Markov jump linear system and the transition rates
are considered to be uncertain. The results are presented based on sufficient LMI
conditions.

∙ The design for the coupling strength between the agents, with single-order integrator
dynamics, is presented by means of an LMI synthesis method. This is done in order
to improve the delay margins or increase the exponential convergence rate.

∙ The results are extended to the algebra of dual quaternions and applied on rigid-
body pose consensus. The results are then applied into a practical example of
formation and cooperative manipulation in system composed of multiple mobile
manipulators.

The following topic are addressed as future results:

∙ To remove the restriction of a regular graph for the analysis of consensus with
communication delays. This might be possible with the adoption of a different
transformation, other than the tree-type transformation.

∙ The analysis of multiagent system subject to both communication and input delays.

∙ The extension of the analysis of switching topologies with the consideration of an
exponential convergence rate.

∙ The extension of the design of the coupling strengths for general linear dynamics.
This can possibly be addressed with the use of BMI conditions.

∙ Analysis of consensus with different policies for adaptive attribution of the coupling
strengths or the gains in the consensus protocol. The application of Fuzzy-Logic
could lead to improvements in this topic.

∙ The analysis of the delay margins after the application of the design of the coupling
strengths. There is an interest to check if, after the synthesis of the controller for a
given delay interval, the system might still be unstable in a first time-delay interval.
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∙ The results presented in this thesis could be extended to many other problems
in consensus, as the analysis of consensus with quantized outputs, consensus with
heterogeneous agents, switching dynamics, platoon, etc.

∙ Results in cooperative manipulation, considering the interaction between human
operators and multiple robots. Initial results have already been achieved on this
topic.

∙ Analysis of hybrid controllers to deal with the unwinding problem in pose consensus.
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