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Co-advisor: Pierre-Louis de Assis

Dissertation presented to the Universidade Federal
de Minas Gerais to partially fulfill the requirements
for the degree of Master of Sciences in Physics.

Belo Horizonte, July of 2016





Fue en la selva, en la
amazonia ecuatoriana.

Los indios shuar estaban
llorando a una abuela

moribunda.
Lloraban sentados, a la
orilla de su agonı́a. Un
testigo, venido de otros

mundos, preguntó:
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ABSTRACT

We predict the confinement of excitons in quantum dots generated by strain via the
atomic force microscope (AFM) in atomically thin molybdenum disulfide (MoS2).
MoS2 is a transition metal dichalcogenide (TMDC) and a bidimensional material
which is now being studied due to its potential applications for transistors, detec-
tors, sensors and single-photon emitters. We used an AFM probe to indent a mono-
layer flake of MoS2 over a poly-methyl methacrylate (PMMA) and thus generate
an energy funnel of nanometric scale in which the excitons can be confined. The
PMMA substrate has elastic-plastic properties that allow the indentations to have
the suitable size to generate quantum dots.
We make a review of the electronic, mechanical, vibrational and optical features of
MoS2 in order to describe the exciton and how it is affected by the presence of a
strain field. We make use of the deformation potential theory, and combine it to
the k · p perturbation theory to describe the exciton energy and wavefunctions as a
funcion of the biaxial strain. We also model the nanoindentation via the method
of finite elements and find that the most feasible conditions for achieving exciton
confinement at 10 K are 15 nm - size and 2% - 3% average strained indentations.
We review the experimental aspects of the AFM technique such as the contact
and non-contact mode, the properties of the cantilever and the tip in order to es-
timate the force applied on the material at each nanoindentation. We also mea-
sure the mechanical response of PMMA to the deformation via AFM and obtain
the stress-strain curve, showing that the substrate behaves plastically at the same
regime in which MoS2 is elastic, which is convenient for performing nanoindenta-
tions without damaging the TMDC. Additionally, we perform Raman spectroscopy
and photoluminescence spectroscopy measurements to characterize the emission of
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the strained MoS2 at room and low temperatures. We introduce the hyperspectrum
which allows us to map the indented sample with a sub-µm resolution and observe
the local phenomena associated to the nanoindentation.
Despite we did not observe the single sharp emission lines that are a signature of
quantum-dot emission, we observed both a redshift of the exciton emission due to
the strain generated in the monolayer, and a slant due to the shift of the populations
of charged and neutral exciton at the indentation.

Keywords: Molybdenum disulfide, mechanical exfoliation, quantum dots, exciton
confinement, nanoindentation, atomic force microscopy, strain field, deformation
potential, k · p theory, Raman spectrum, photoluminescence, elastic-plastic poly-
mer, poly-methyl methacrylate, single photon emission, charged exciton, photolu-
minescence hyperspectrum.



INTRODUCTION

The quantum offers a plenty of possibilities for the development of technologies
and the discovery of new phenomena in the microscopic world. Bidimensional
materials and semiconductor nanostructures are widely used in detectors, sensors,
lasers and even in quantum optics and quantum information experiments, as well
as in fundamental physics research [1–4]. For instance, bidimensional materials
are useful because of their interesting mechanical, topological and electronic prop-
erties [5–7], while nanosystems are attractive due to all those effects that emerge
from the confinement of particles [8, 9]. In particular, we are interested in struc-
tures called quantum dots, which are nothing else than 3D confiners and are known
for being the “artificial atoms” of the condensed matter. Additionally, the recent
exploration of bidimensional systems since the graphene in the 2000’s contributed
to the achievement of a class of non-zero gap materials known as transition metal
dichalcogenides (MoS2, WS2, MoSe2, etc.) which display some interesting elec-
tronic features when subjected to mechanical deformation.

Thereby, the main motivation of this work is to develop and prove the hypothesis
that quantum dots in atomic layers of molybdenum dysulfide (MoS2) can be gener-
ated via nanoindentation. To achieve this goal, we shall review the strain-dependent
phenomena on MoS2 and describe it via perturbation theory and simulations of the
confined wavefunctions; we will also analyze the physics of nano-indentations fab-
ricated via atomic-force-microscopy (AFM), which is a common technique used
to study mechanical properties of materials. Finally, we characterize optically the
quantum dots generated via nanoindentation through the photoluminescence spec-
trum, which is a powerful way to study the emission of any substance. In the

xv



xvi INTRODUCTION

following paragraphs we will point out some arguments and historical background
that constitute the basis of our work.

The quantum dot and the materials in the flatland

As atoms and molecules display quantized attributes such as energy, vibrational and
angular momentum, then the transitions between quantum states that lead to light
emission are sharp, making it easy to define discrete collective quantum states.
Nevertheless, it is harder to achieve this regime in condensed matter systems be-
cause the strong interactions between atoms tend to obscure the individual states
of the atoms and molecules. Instead of discrete levels of energy we observe bands
which are filled with many charge carriers, then the electronic transitions are broad
and incoherent.

Although the coherence properties of atoms and molecules make the quantum
processes be more evident and suitable for quantum information and computation
than those in condensed matter systems, the latter are closer to any practical appli-
cation. Then we should find the means to generate structures that imitate the same
features of atoms and molecules: such structures have already been found, and are
known as quantum dots. Incredibly versatile, they can be combined with cavities
to produce states of ligth-matter interaction, or generate two-state quantum bits to
perform computation tasks.

Since their discovery in colloidal solutions in the 1980s, the study of quantum
dots grew rapidly because of their capacity to combine the properties of bulk solid
state systems and those of discrete molecules [10]. Also, their energy levels can be
tuned through adjusting the dot size and composition, making them able to be part
of optoelectronic devices in the infrared and the visible. There exist some ways to
create quantum dots, such as epitaxial semiconductor heterostructures, colloidal,
defect vacancies in crystals, or zero-dimensional fullerenes.

Apart from the mentioned before, quantum dots are able to be produced in
graphene (or any 2D material by default) by growing tiny crystals which are then
deposited on a substrate, or left suspended in a liquid [11]. Their unique fea-
tures, such as high absorption and intense photoluminescence have made two-
dimensional materials very attractive to generate quantum dots. Moreover, 2D
crystals such as Molybdenum disulfide could be transferred to the top of a photonic
crystal to enhance the photon emission and to couple light with matter. Atomically
thin molybdenum disulfide have been recently discovered [12] and gained a lot of
attention together with other transition metal dichalcogenides because they are di-
rect band-gap semiconductors, thus the optical processes are more efficient in them
than those in graphene.

Hybrid devices such as lead(II) sulfide PbS colloidal quantum dots [13], or even
graphene nanocrystals [14] are deposited over a MoS2 sheet to enhance the quan-
tum efficiency of photodetectors. Other way of creating quantum dots is making
them of MoS2, by the means of liquid exfoliation and sonication in which nanocrys-
tals of monolayers are suspended: very tiny cristals (≈ 2 nm size) have been re-
ported with this technique [15,16], and can be implemented as catalysts for efficient
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evolution of hydrogen (electrolysis) [17]. Perhaps the most successful attepmt of
producing quantum dots in 2D materials is through the trapping of excitons within
defects of the lattice. In 2015, four different groups claimed to have characterized
single-photon sources in tungsten selenide (WSe2) [18–21]: very sharp emission
lines and photon antibunching at low temperatures reveal the quantumness of the
light produced by these defects. The defects are spontaneously generated as vacan-
cies of chalcogen atoms, and are hard to control and tune, which is an important
difficulty for their implementation in devices.

Now, in order to engineer a quantum dot in a 2D material, scientists have been
used the fact that the electronic properties are highly dependent on the strain, to cre-
ate exciton funnels [22] or even quantum confiners at exact positions. For instance,
we also know an attempt in 2015 to produce strain-induced quantum emitters in
WSe2, in which spectral isolation was achieved at very specific places at the edge
of a suspended membrane [23] on a pre-patterned SiO2 substrate. However, it is
hard to know where along the edge the quantum dots will appear. Until now, the
possibility to generate QDs via AFM nanoindentation has been unexplored. In this
work we address this possibility and explain how it allows us to achieve a bet-
ter control of the dot properties and localization, and which are the advantages or
disadvantages of this method compared to the other techniques mentioned above.

Summarizing, the importance of generating artificial atoms in condensed matter
relies not only upon their almost infinite practical applications, such as quantum
information processing, nanoscale lasers and optoelectronic devices, but also they
may help us to understand the behaviour of the matter in the nanoscale. Here, MoS2
is presented as a potential candidate for the generation of quantum dot structures
because of its astonishing strain-dependent properties and the assumed facility of
quantum dots being obtained through AFM nanoindentation. This work is divided
in three parts in order to expose clearly the development of our hypothesis: Part I
is devoted to address the MoS2, the exciton and the strain-dependent phenomena.
The subject of Part II is to describe the quantum dot and establish the hypothesis of
exciton confinement in MoS2, together with our main theoretical and experimental
results. Finally, Part III is a short insight into the perspectives and main difficulties
found along the progress of this work.

Part I is divided in four chapters, whose main topic is the molybdenum dysul-
fide: The first is a short chapter in which we introduce the MoS2 and the different
techniques for achieving the monolayer. In Chapter 2 we review the electronic, me-
chanical, excitonic and optical properties of MoS2. Chapter 3 is devoted to explain
in detail the experimental techniques used to produce and characterize the quan-
tum dots in the samples. Chapter 4 is mainly theoretical, in which we present the
calculation of the main features of the exciton, based on perturbative methods and
simulations.

Part II consists on two chapters dedicated to present and discuss the results of
our work: In Chapter 5 we state the hypothesis of exciton confinement, define the
quantum dot and show our model based on the deformation potential theory for the
exciton energy as a function of the strain field. In Chapter 6 we show our model
of AFM nano-indentation and the results of the characterization via photolumines-
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cence and Raman spectroscopy for both room-temperature and low-temperature
regimes.

Part III has only one chapter: the conclusions and future work, in which we
expose the difficulties and the possible reasons why the quantum dot generation
and characterization were not completely successful. We also review other different
measurements which may help us to corroborate the generation of quantum dots in
MoS2 atomic monolayers.

An general overview of our research is related to the organization of the ideas
exposed in this work, which can be addressed from the following diagram:

GenerationEofE
quantumEdotsEinE

MoS2Emonolayers.

Chap. 5

MoS2EstrainE-E
dependentE

phenomena.

Sec. 2.2, 5.3

DeformationE
potentialEtheoryE/E

simulations.

Sec. 4.1, 4.2

AFME
nanoindentation.

Sec. 6.1

Photoluminescen-
ceEandERamanE
spectroscopy.

Sec. 6.2

ExperimentalE
aspectsE/EsampleE

preparation.

Chap. 3

The central discussion and the hypothesis of generation of quantum dots in
MoS2 monolayers is found in Chapter 5. The hypothesis is supported by four im-
portant aspects which are closely-related among them: the review strain-dependent
phenomena (Section 2.2, 5.3), the theoretical background based on the deformation
potential theory and finite-element simulations (Sections 4.1 and 4.2), the physi-
cal realization of the quantum dots using AFM nanoindentation (Section 6.1) and
the characterization of the quantum dots via photoluminescence and Raman spec-
troscopy (Section 6.2). The generation and characterization are in turn supported
by the experimental details of the preparation of the samples in the Chapter 3.
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CHAPTER 1

MOS2 AND 2D MATERIALS

Molybdenum disulfide (MoS2) is part of the family of the transition metal dichalco-
genides (TMDs) which consist on molecules of the type MX2, where M is the tran-
sition metal and X is a chalcogen atom. Other common examples of TMDs are
WS2, MoSe2, WSe2, MoTe2, etc. All of them share along with graphene the prop-
erty of being layered, that is, they are composed of sucessive layers which are held
together by weakly attractive Van der Waals forces. This feature enables the ob-
taining of atomically thin layers, which give rise to different electrical, optical and
mechanical phenomena than that of their bulk counterpart. MoS2 and other TMDs
have attracted a great interest recently [24] because of their potential applications in
2D devices such as transistors [25, 26], memories and logic gates [27], gas sensors
[2], photodetectors [28], solar cells [29], single-photon sources and Bose-Einstein
condensates [30] and many others.

MoS2 is found in nature in its solid form called molybdenite, which is silvery
black and similar in appearance to graphite. Molybdenite (See Figure 1.1) is also
the most common ore of molybdenum and despite the fact that being carbon its
major contaminant, MoS2 is considered as nonreactive. Its low friction coefficient
makes it very useful as a dry lubricant [31]; similarly to graphene, MoS2 can be
added to plastics to improve their strength and reduce friction [32]. MoS2 is also
used as a catalyst in a wide variety of reactions in petrochemistry and some organic
synthesis, for example, in the hydrogen evolution, and the electrolysis of water [17].
All these properties were well-known and used even much before the achievement

Generation of Quantum Dots.
By José D. Hernández
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4 MOS2 AND 2D MATERIALS

Figure 1.1 MoS2: The compound molybdenite is the main ore of molybdenum.

of its bidimensional form, then MoS2 among the other TMDs has been favoured
with a high interest along the past decades.

Before their bidimensional forms were explored, some studies based on band
structure calculations since the 1970s addressed the atomically thin TMDs [33], and
in the late 1990s the study of the bands of MoS2 nanotubes revealed an important
feature of these nanostructures: the emergence of a direct band gap when reducing
the thickness of the material to the atomic scale [34].

All TMDs display a transition between indirect band gap in the bulk to direct
in the monolayer, which is a great advantage for applications in optoelectronics.
Additionally, a monolayer TMD crystal has a new degree of freedom called the
k-valley index due to the lack of inversion center: this leads to the birth of a new
research area, the valleytronics, which consists on the manipulation of the valley
index of charge carriers to create quantum bits of information. One of the reasons
why TMDs and in general all 2D materials are successful, is the relatively easy
fabrication of samples and devices. In the next section we will review the main
ways to prepare MoS2 monolayer samples.

1.1 Achieving the MoS2 monolayer

There exist some techniques to obtain atomically thin MoS2, each one suitable for
a different need. For example, characterization of electrical and optical properties
requires a sample with highly pure, pristine and clean structure [35]. Mechanical
exfoliation is a technique in which atomically layers of a material are separated
from the material with the help of an adhesive tape. It gives one of the most clean
and pristine samples, nevertheless it is not suitable for practical applications at large
scale because of the disadvantages in controlling the sheet size and layer number
[36]. Other techniques aspire to satisfy these requirements, such as chemical ex-
foliation (CE) and chemical vapour deposition (CVD) synthesis. CE uses solvents
such as lithium ions to create intercalation of Li and MoS2 sheets which are then
sonicated in order to isolate the sheets. CE allows us to increase the production of
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monolayer flakes, but the sonication process causes crystalline defects and reduces
the size of the flake, limiting the technical applications.

CVD is a set of techniques in which deposition of Mo and S atoms, and chem-
ical reactions or nucleation processes, are present. The most common is the sul-
furization of Mo or Mo-based oxides: a thin film of Mo is deposited on SiO2 by
electron beam evaporation and then it is put to react with S vapour in a furnace
at 750°C [37, 38]. Other CVD technique is based on the reaction of solid MoO3
and S powders on a SiO2 substrate at room temperature [2]. CVD allows us to
obtain large-area monolayers, but the strong interaction with the substrate and the
large density of defects affect both electronic and optic properties, and make this
technique unsuitable for fundamental research [39, 40].

Another, lesser common, technique for growing TMDs is based on the molec-
ular beam epitaxy [41], in which pure Mo and S are heated and sublimated, then
the vapor generated condenses on a SiC wafer. The resulting compound grows as
a structure in which the sucessive layers are weakly interacting through van der
Waals forces, reason why this technique is also called the Van der Waals epitaxial
growth and preserves most of the characteristics of mecanically exfoliated MoS2
[42].

Summarizing, the distinct techniques to obtain atomically thin layers of MoS2
are adjusted to the necessities of the research: from pristine-mechanically exfoli-
ated monolayers for the study of fundamental properties of MoS2 to the large-area
flakes generated via CVD that are suitable to build devices, solar funnels and field-
effect transistors. These techniques may also be combined to achieve very specific
scenarios such as sonicated graphene on exfoliated MoS2, generating quantum dots
and so on. To achieve the main goal of this work, we used the mechanical exfolia-
tion over polymer substrates to achieve the most convenient conditions to perform
AFM nanoindentation. In the next chapter we will review other important features
of MoS2 that will help us to understand the physics of the nanoindentation and the
generation of quantum dots via strain.





CHAPTER 2

FEATURES OF THE MOS2 MONOLAYER

As stated in Chapter 1, the MoS2 molecule is composed by two sulfur atoms that are
covalently bound to a molybdenum atom. When packed together, MoS2 molecules
form the crystalline structure of an atomic layer, which is not “strictly” atomic
(Figure 2.1 (a)) due to the vertical separation of the two S atoms in each site. The
top view shows that the structure is that of a honeycomb lattice (Figure 2.1 (b)),
the same as that of grahpene, in which the unit cell is composed of two sites (one
molybdenum at one and two sulfurs at the other) resulting in a triangular Bravais
lattice of parameter a = 3.16 Å. The two lattice vectors can be written as a1 =
a
2(1,
√

3), a2 =
a
2(1,−

√
3).

Two sucessive layers are stacked with the Mo center of the upper layer right
above the S of the lower layer, with their unit cells inverted with respect to each
other, where c = 12.58 Å. The Brillouin zone of the honeycomb lattice is another
hexagonal lattice with reciprocal lattice vectors b1 =

2π

a (1, 1√
3
), b2 =

2π

a (1,− 1√
3
).

The Brillouin zone is sketched in Figure 2.2(a): it shows the high symmetry points
of an hexagon, which are the Γ, M, M′, K and K′ points. In the next section we will
discuss the actual importance of these symmetry points and how they are related to
the electronic or mechanical properties of the material.

2.1 Electronic properties

The electronic configuration of Mo (4d55s1) tells us that there are six valence elec-
trons in the d shell. On the other hand, the electronic configuration of S (3s23p4)
Generation of Quantum Dots.
By José D. Hernández
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(a)

(b) (c)

1

2

Figure 2.1 Structure of MoS2: (a) monolayer side view, (b) monolayer top view and (c) unit cell and bilayer
stacking.

displays other six valence electrons in the p shell: in order to satisfy the octet rule,
two additional electrons are needed in the Mo site, thus MoS2 is a negatively doped
semiconductor. We will see later how this fact is manifested in the photolumi-
nescence spectrum. The covalent σ bonds between Mo and S atoms are made of
hybridized p and s states, and the weak π bonds are responsible for the interlayer
coupling 1. One of the properties of transition metals is their strong spin-orbital
coupling (SOC) due to their relatively high mass. We also expect that the SOC will
originate a large spin-orbit splitting (SOS), which is proportional to 1

r
dV (r)

dr L · S,
where V (r) is the Coulomb potential of the Mo valence electrons, L and S their
angular momenta and spin, respectively. SOS in MoS2 is approximately 100 meV.

When studying the electronics of the crystal, a fundamental issue emerges: we
need to describe a wavefunction which depends on the 3N coordinates of the many-
electron problem, which becomes a computationally impossible task when the
number N of electrons tend to the thermodynamic limit. Beyond the Hartree-Fock
approximation, the so-called density functional theory (DFT) in the local density
approximation (LDA) gives us an accurate description of the ground state of the
electrons at the different bands of the crystal [43, 44].

Symmetry provides helpful information about the degeneracies and states close
to the band edges 2. As most of the optical phenomena involves direct-gap tran-
sitions at the K point of the Brillouin zone, the Mo-d orbitals can be divided in
three irreducible representations: A′(dz2), E ′1(dxy,dx2−y2) and E ′′(dxz,dyz); in the

1The covalent σ bonds lie within the plane of the lattice and are responsible of most of the elastic properties of the monolayer,
while the π bonds represent the weak Van der Waals interlayer coupling.
2A formalism based on group theory and irreducible representations for the dependence of the observables on the crystal
symmetry has been extensively reviewed in the literature [45].
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monolayer limit, reflection symmetry σh only allows the hybridization between A′

and E ′1 orbitals. To determine the weight of each orbital at the band edges and what
is the band structure itself, DFT ab initio calculations have to be performed. Figure
2.2 (b)-(c) shows the density of states (DOS) and the electronic band structure for
spin up (red lines) and spin down (blue lines). A study of the DOS reveals that the
states at the bottom of conduction band are mostly projected on the Mo dz2 orbital
and secondarily on the S px, py orbitals, while the states at the top of valence band
are mostly Mo dx2−y2,dxy and in a lesser proportion are S px, py orbitals.

Figure 2.2 Color online. Electronic band structure of MoS2 monolayer, (a) Brillouin zone and the path along
which the bands are calculated, (b) the density of states and (c) the band structure with the projection of spin
operator Jz. Partially extracted from [46].

The band structure shows the direct band gap opening in the K, K′ points, which
is due to the lack of the inversion symmetry of the monolayer, as seen in Figure 2.2
(c). The SOS of the valence band (VB) is much larger than that of the conduction
band (CB), and have opposite sign for each K or K′ points: this phenomenon in
which the spin 3 of the electron at the top of VB (TVB) is coupled to the valley
index of the bottom CB (BCB) is called the spin-valley coupling [47] 4. In Figure
2.2 (c) note that the TVB electron spin is 3/2 at the K point, and 1/2 at the K′

point: this tells us that the polarization of light, the valley and the electron spin are
mutually coupled. We are able to control the population of each valley by exciting
the material with either σ+ or σ− light. In the next sections we describe other
mechanical, excitonic and optical properties of MoS2.

3When we are referred to the spin of an electron in the electronic band structure, we are actually speaking about the total
angular momentum J,Jz, which is defined for each band.
4The light emitted from an optical transition is circularly polarized (we denote the polarization of the light as σ+ for right-
polarization and σ− for left-polarized) due to the optical selection rules: the change in the angular momentum of the electron
in the transition must be ∆L =±1, which is the angular momentum σ± of the photon emited
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2.2 Mechanical and vibrational properties

One of the more interesting properties of MoS2 is its high hardness, despite of
its apparently fragile layered structure. Furthermore, the gap is highly sensitive
to strain variations: a semiconductor-to-semimetal transition occurs at ∼30% of
tensile strain [48].

Bulk molybdenum disulfide has a Young’s modulus 330 GPa, which is softer
than graphene (1050 GPa), but stiffer than steel (200 GPa). The in-plane stiffness
is reported to be 120.1 N/m [5, 49]. We need to exert a tension on MoS2 in order
to study its mechanical properties; one way is by uniaxial stretching as shown in
Figure 2.3 (a), in which a rod which descends horizontally makes the membrane be
stretched in one direction. The honeycomb lattice has the same elastic properties
than that of an isotropic 2D material, reason why the uniaxial strain in the armchair
and the zig-zag directions is the same for a given force load. The other way is to
stretch in both directions at the same time via nanoindentation, Figure 2.3 (b); this
can be done5 using an AFM probe in contact mode with a force load of several nN.

Force
 lo

ad

(a) (b)

Figure 2.3 Two ways to stretch membranes to study (a) uniaxial or (b) biaxial strain.

Now, we will talk about another mechanical feature of MoS2 and of every solid
in general: a property that concerns to the lattice vibrations, or phonons. These vi-
brations form a field which can propagate along the material as plane waves, whose
wavevector and frequency are related to each other through the dispersion relation,
ω(k). The modes of lattice vibrations can be either optical or acoustical depending
on the coupling of the mode to the light waves at the Γ point. The vibration field of
these modes propagate along the crystal with a finite group velocity vg = ∂ω/∂k.
In most of the known solids, the optical modes are active in the infrared (IR) and
visible (red, R) [45]. Figure 2.4 shows the dispersion relation of phonons in MoS2
monolayer and their calculated density of states. This information is also provided
by ab initio calculations, in which the lattice parameter, the angle between Mo-S
bonds and the layer thickness are found in such a way that minimizes the elastic
energy of the lattice; then the modes are studied [50].

When light strikes the surface of a material, it is either elastically or inelastically
scattered at very specific frequencies which correspond to the excitation of phonon
modes, since the law of conservation of momentum is satisfied. Inelastic scattering
of light involves the creation of phonons of very small wavevectors (compared to

5The strain in an uniaxial deformation of MoS2 has proven to be the same in the zig-zag and armchair directions [1].
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Figure 2.4 Dispersion relation of phonon modes for MoS2 monolayer, (a) as calculated, (b) the corresponding
density of states and (c) depiction of the optically active phonon modes. Extracted from [51].

that of electrons), normally between 280 cm−1 and 470 cm−1 for ultrathin MoS2
[52]. Figure 2.4 (c) depicts the motion of each one of the optical phonon modes
of the monolayer. The most representative optically active modes in the Raman
spectrum are the longitudinal E ′ and the transversal A′1, because they offer to us
an accurate identification of the number of layers of the material [53], see Figure
2.5. The separation between E ′ and A′1 peaks for a monolayer is ∼ 18.5 cm−1; for
bulk the separation of the E1

2g and A1g raises to 25 cm−1. Besides, Raman shift
could serve as an indicator of the strain of the monolayer, since the strain affects
the average bond length and the frequency of each mode, then it may also change
the phonon energy. In the next section, we review the optical properties of MoS2,
which are somehow related to the Raman spectrum, in the sense that we study the
way that light is scattered by or interacts with a substance.

2.3 Optical properties

The optical processes which involve both light and matter are refraction, scattering,
absorption and luminescence. Then it is fundamental to study these processes to
understand the optical behavior of materials. For instance, the refractive index gives
the velocity of light through the medium and the transmission amplitude, which are
very important factors to consider in the identification of atomically thin MoS2 by
optical contrast: the thicker the film, the more contrast with the substrate we will
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see. The refractive index is usually a complex and wavelength-dependent quantity
whose real part is related to the optical polarizability (εr ≈ 4.5 for λ = 650 nm)
and the imaginary part is related to the absorbance. The absorption as a function of
the frequency of the light is called the absorption spectrum, and is shown in Figure
2.6. The absorption of the monolayer and the bilayer is characterized by two lines at
1.85 eV and 2.1 eV that correspond to the exciton A and B absorption, respectively.
Additionally, as increasing the energy, more states of the are accessible and the
absorption tends to increase. Figure 2.6 shows the photoluminescence of both the
monolayer and bilayer (red solid lines); in which the bilayer spectrum displays
three peaks corresponding to the indirect gap recombination (that will be explained
later) and the exciton A and B emission. In contrast, the photoluminescence of the
monolayer is characterized by the absence of the indirect band gap recombination.

Figure 2.5 Raman spectra for MoS2 few layers and
bulk. Extracted from [54].

Figure 2.6 Absorbance spectrum (black solid line)
and photoluminescence (red solid line) for one- and
bi-layer MoS2. Extracted from [12].

The transition rate in absorption processes are described by the Fermi’s golden
rule [55], which states that the amplitude of the transition between two states la-
beled as i and f is

Wi→ j =
2π

h̄
|M|2g(h̄ω), (2.1)

where h̄ is the reduced Planck’s constant, M is the element of the matrix which
describes the light-matter interaction, and g(h̄ω) the DOS evaluated at the photon
energy h̄ω . For most materials, the nature of the interaction is dipolar, in which

M = 〈 f |(−p ·E (r))|i〉, (2.2)

where p is the electric dipole moment −er and E (r) the electric field at r. As
the photon momentum is very small compared to typical electronic momentum, the
conservation law establishes that ki = k f for the initial and final momenta, thus the
absorption processes involve a direct transition. The DOS near to the TVB or BCB
for a 2D material in the effective mass approximation is
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g(E) =
1

4π

(
2m∗

h̄2

)
, (2.3)

where m∗ is the effective mass of the electron. Until now we have described
the optical absorption process labeled as A in Figure 2.7: an electron from VB is
“vertically” promoted to CB via laser excitation, leaving a hole behind it. Then the
carriers relax to the bottom of CB, as shown in process B. The diference between
the parts (a) and (b) of Figure 2.7 is that the bottom of CB is located at different
positions in the reciprocal space; this will give rise to a direct gap recombination
for (a) and an indirect gap recombination. For (a), a photon is emitted without
perturbing the crystal; for (b), a photon of momentum q is created in the lattice, as
described by process C. The whole process is known as photoluminescence (PL):
luminescence is defined as any process of emission of light from a substance, and
photoluminescence is the luminescence but restricted to the case when the excita-
tion is performed optically.

kk

CB CB

VB VB

A

B

C
A

B

C

(a) (b)

q

Figure 2.7 Optical transitions in MoS2 for (a) direct and (b) for indirect bandgap recombination.

As MoS2 is found to be an indirect band gap (∼1.2 eV) semiconductor from the
bilayer to the bulk form, its PL is very weak (see Figure 2.6) due to the inefficient
process of luminescent recombination, then the main mechanism of relaxation is
through phonon-assisted emission. PL is only enhanced in the monolayer form,
in which the CB electrons relax in the points K or K′ that correspond to a direct
transition. Treatment of direct gap recombination in TMDs has to be very careful
because the transition does not occur at the bare gap energy; the electron and hole
of each band interact very strongly between them forming an exciton, then the PL
occurs at a lower energy than the band gap [56]. Moreover, the PL spectrum is
composed of several broad peaks which come not only from the neutral exciton
recombination, but also from the negatively charged exciton recombination; these
features will be addressed in the next section as well as in Chapter 4.
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2.4 Excitonic properties

When an electron reaches the conduction band, it remains there for a few ps un-
til it relaxes to the BCB and recombines with the corresponding hole. While the
electron is in the CB, the resulting picture is that of a state of two particles bound
by a Coulomb interaction: the exciton. In bulk semiconductors, excitons can move
freely through the material for a lifetime; such lifetime is mainly limited by both
the radiative and the non-radiative decay rates in the exciton. The non-radiative de-
cay can occur in several pathways such as Auger recombination, electron-phonon
relaxation, or by trapping in defects of the material, [57, 58].

Because of the electron-hole binding energy, the excitonic states lie within the
band gap, but this phenomenon is strongly dependent on the dimensionality (which
causes electron confinement) and the structure of the material in which they are
formed. For instance, there are two kinds of excitons in semiconductors and in-
sulators: the Wannier-Mott (WM) exciton and the Frenkel (F) exciton. The first
ones are the usual excitons found in non-organic semiconductors (GaAs, for in-
stance) and the second ones in organic semiconductors or molecular crystals. Al-
tough WM excitons are much more common in the nowadays semiconductor-based
technology, the concept of exciton came first with the idea of excitation waves in
organic molecules by Frenkel (1931) [59]. Narrow and intense lines in the spectra
from these molecules were seen in the late 1920s. Large molecular separation in
these crystals impedes the overlap between intermolecular electron wavefunctions,
thus the electron-hole pair remains tightly bound to each site. Typical Bohr radius
of Frenkel excitons are of the order of the lattice constant and the binding energy is
∼ 0.1−1 eV [60].

The term Wannier-Mott exciton was coined in the late 1930s for materials in
which the eletron wavefunction extends over several lattice sites, thus the hop-
ping energy between any two adjacent crystal cells exceeds the exciton Coulomb-
binding energy [61]. Unlike Frenkel excitons, Wannier-Mott excitons have a small
binding energy of a few meV and typical sizes of several tens of lattice con-
stants. Nonetheless, there may exist certain regimes in which the Wannier-Mott
and Frenkel excitons share their features. The concept of hybrid Frenkel-Wannier-
Mott excitons which could combine both large binding energies and relatively large
size was introduced in the late 1990s [62]. Excitons in MoS2 atomic monolayers
are suspect to be Frenkel-Wannier-Mott ones [22] and could manifest attractive
features such as strong exciton confinement [63], single-photon emission [64] and
wide-spectrum solar energy harvesting [22]. Probably one of the most remarkable
properties of Frenkel excitons is that excitons may be created and recombined at
room conditions because the thermal fluctuations in this regime are not sufficient
to dissociate the highly bound excitons.

The exciton in MoS2 2D monolayer has to be carefully treated since the molyb-
denum disulfide molecule is noncentrosymmetric, then the transitions at K and
K′ points are correlated to the electron spin. Furthermore, excitons have been pre-
dicted theoretically to have both large Bohr radius and large exciton binding energy.
The splitting from the spin-orbit coupling allows the creation of two different types
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of exciton: the exciton A and B. The energy of the optical recombination between
a CB electron and a hole in the lower VB at the K point is greater than that of a
recombination with a hole in the upper VB; the first is known as exciton B emis-
sion, while the second is the exciton A emission, as shown in Figure 2.8. Exciton B
emission occurs typically at 624 nm (1.98 eV) and is usually less intense than the
exciton A emission, which occurs at 665 nm (1.86 eV). The reason for B emission
being less intense than A is that the holes at VB tend to occupy the lower energy
states, i.e. at the top of the valence band, making the recombination to the lower
valence band be less probable.

Figure 2.8 Photoluminescence spectrum of the MoS2 monolayer displaying the different features of the
excitonic emission. From [65].

Despite the fact of MoS2 being an electrically neutral material, at room temper-
atures there exists a certain population of electrons in the conduction band even
before the creation of an electron-hole pair. These electrons can interact with the
hole at VB, forming a three-body bound system called the negatively charged ex-
citon or trion. As there are two electrons coupled to the same hole, the binding
energy of the additional electron in the trion (∼ 20 meV) is significantly lower than
that of the neutral exciton; then we expect for the PL spectrum two peaks separated
by ∼ 20 meV around 1.85 eV [66], as shown in Figure 2.8. As the width of the
neutral exciton line is about 60 meV, we actually observe a composite line instead
of two separated peaks. The respective weights of the charged and neutral exci-
tons in the PL can be controlled through a gate voltage [67, 68], but also depends
on the temperature since the thermal fluctuations at 300 K are comparable to the
trion binding energy and favor the population of negatively charged excitons in the
material. Besides, the substrate may affect the electron population at the CB due
to additional doping of the material and also modify the weights of the emission of
neutral and charged excitons in the PL. In Chapter 4 we discuss theoretically the
excitons in a strain field by the combination of DFT-LDA and k · p theories.





CHAPTER 3

SAMPLE PREPARATION AND
CHARACTERIZATION - EXPERIMENTAL
DETAILS

Generation of quantum dots in monolayer MoS2 involves a set of experimental
techniques which range from the creation of the samples to advanced measurement
techniques to characterize and identify the QDs. For the creation of the samples
we have to consider both a substrate with the suitable elastic-plastic properties that
allow us to generate deterministically the indentations and a pristine 2D crystal of
MoS2 to observe only the phenomena associated to strain. As stated in Chapter 1,
mechanical exfoliation is the best method to study our fundamental problem. In the
next section we will provide details on the fabrication of the samples.

3.1 Mechanical exfoliation on polymer substrates

We choose organic compounds to serve as a substrate to perform the indentations
because they have a broad regime in which they behave elastically and undergo a
soft transition to a plastic regime [69]. Methyl metacrilate (MMA) and Polymethyl
metacrilate (PMMA) were considered.

3.1.1 MMA and PMMA spin coating

MMA and PMMA spin-coatings were performed on a hard substrate which consists
of a 300 nm-thickness SiO2 layer on a 0.7 mm thickness Si wafer. After a 4000 rpm
cleaning with isopropyl alcohol and acetone in the spinner, the wafers were blown
with N2 to dry the residuals of acetone, then 50 µl of the polymer were deposited
onto the 100 rpm-rotating wafer. The next step in the program varied whether we
Generation of Quantum Dots.
By José D. Hernández
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were using either PMMA or MMA; for example, for MMA we used 4000 rpm
for 30 s and then lowered the velocity to 1500 rpm for 30 s. This gave the most
uniform and flat film of MMA (∼ 100 nm thickness). Moreover, for PMMA we
3800 rpm for 80 s and then lowered the velocity to 1000 rpm for 30 s; this gives a
∼200 nm thickness for the film. Then the wafers were taken to the hot plate with
an initial temperature of 60 °C, with increments of 40 °C every 3 minutes until 220
°C. The reason of this is that we experienced bubble formation in the film (∼ 200
nm - 300 nm diameter bubles) probably due to a sudden heating when putting the
wafer directly on a 220 °C plate.

3.1.2 Mechanical exfoliation

We may define a quantifier called the difficulty of exfoliation as the inverse of the
number of monolayer flakes of >5 µm size over the total number of monolayer
flakes. In this sense, it is more difficult to exfoliate over a high-molecular weight
polymer than over a low one, since initially we always found a larger number of tiny
monolayer flakes for 950K-C4 PMMA than for 450K-C2 PMMA and for MMA.
The reason for that is that MMA and 450K PMMA are more viscous than 950K
PMMA and thus they are more adhesive to the contact with MoS2

1. That means
that if we need to use 950K PMMA as a substrate, then we have to develop a
particular exfoliation technique by adjusting several details in the process.

Figure 3.1 Mechanical exfoliation of MoS2 over PMMA substrate: (a) PMMA spin-coated wafer, (b)
scotch-tape fixed to the table, (c) MoS2 seed in tape, (d) transferring the MoS2 seed to the fixed tape, (e) result
of the exfoliation and (f) transference to the wafer.

We used commercial MoS2 (from “SPI Supplies”) for all our experiments. Fig-
ure 3.1 (a) shows a typical 1 cm2 spin-coated substrate. The details on a typical
exfoliation were performed as follows: (b), one scotch tape piece was fixed to the
table with masking tape to avoid shear stresses when sticking and unsticking the
tapes; (c) the MoS2 flake was placed over the freestanding tape. In (d) we gen-

1Molecular weight is an adimensional quantity that expresses the weight of a molecule. Two polymers of different molecular
weights will have different mechanical or thermal properties are also different. In our work we name the polymer 450K as a
polymer of molecular weight of 450,000
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tly put one tape against the other to let them scarcely be in contact and then pull
the upper tape. We usually repeat (d) three to four times and obtain (e). In (f)
we put the tape face down to the substrate without touching it directly with the
fingers and then we blow it with pressurized N2. This method improves the flake
size of monolayer MoS2 on 950K PMMA by 200% (with respect to conventional
recipes of exfoliation), and consequently, reduces the difficulty of exfoliation for
this substrate.

Figure 3.2 Monolayer MoS2 on PMMA optical images, showing each one different flakes and different
optical contrast with the substrate. 1L, 2L, 3L... stand for mono-, bi-, tri-layer and so on.

Optical contrast can be ambiguous to identify MoS2 monolayers when the atom-
ically thin material is exfoliated on a (almost uniform) thin film. Figure 3.2 shows
four monolayers found along the same PMMA sample: note that the color of the
substrate is not the same. In general, the greenish substrates mean thicker PMMA
films than the purplish or the reddish. Nevertheless, we found that there is a cor-
relation between the monolayer color/contrast and the color of the film: Purple
films give high-contrasted greenish monolayer flakes, while green films give poor-
contrasted yellowish monolayer flakes.

3.2 AFM topography - nanoindentation

Atomic force spectroscopy (AFM) is a wide spread scanning-probe microscopy
technique that allows imaging the topography of a surface with atomic resolution
[70]. It consists of a probe with a very sharp tip of 2 nm - 10 nm radius at the apex
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in a cantilever of a few hundred micrometers length. Forces between the surface
and the tip emerge when mutually approached: this results in a deflection of the
cantilever which can be measured by optical means. Then using a fine piezoelectric
positioner, the probe sweeps a given area and allows a computer to form an image
of the surface. AFM can operate in various modes, among them we find: contact
mode (CM) and non-contact mode (NCM). In CM, the tip is approached to the
sample until it reaches a distance of the order of the interatomic distances, then the
repulsive forces from the electronic clouds become relevant and we can scan with
ultra-high resolution or even manipulate the surface (See Figure 3.3) [71, 72].

The parameter that is monitored in CM is the cantilever deflection, also called
the setpoint [71]. For small deformations the cantilever behaves as a spring with
frequency of resonance ω0 and the Hooke’s law F =−k∆x applies. As the deflec-
tion in AFM is usually given in units of voltage, then the bending of the cantilever
must be characterized by a sensiblity s which relates the voltage applied ∆V to the
total deformation of the cantilever, then F =−k∆V/s.

Figure 3.3 AFM. (a) Diagram of working in the contact mode. (b) Scanning electron microscoy of a typical
probe used in our indentations. Extracted from [59]

The NCM works with distances which range from 1 nm to 10 nm to study sam-
ples which are very soft or at risk of being damaged. The resolution is limited to
several tens of nanometers [71, 72]. The feedback system makes NCM work at a
constant distance to the surface, then the electronics is able to monitor either the
cantilever’s amplitude or frequency of resonance.

CM is needed to perform nanoindentations on MoS2. Additionally, a very sharp
probe with a low-elastic constant cantilever are necessary, therefore we chose the
SuperSharpSilicon™ - Non-Contact / Tapping mode - High Resonance Frequency
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- Reflex Coating (SSR-NCHR) from the fabricant NANOSENSORS™ [65]. This
probe has a typical radius of curvature of 2 nm at the tip and a half-cone angle of
the apex <10°; the cantilever has a thickness of 4 µm, a spring constant of ∼42
N/m and a resonance frequency of 330 kHz.

Before the characterization of the topography of the substrate, we made a cal-
ibration of the cantilever to know the spring constant based on the Sader method
[73]. This method uses the length L and width b of the cantilever and the density of
air ρ as input information. Additionally a thermal noise spectra is measured on the
unloaded AFM cantilever and we fit the response of a Simple Harmonic Oscillator
(SHO) with added white noise floor to the amplitude of the unloaded cantilever:

A = Awhite +
A0ω4

(ω2−ω2
r )

2 + ω2ω2
r

Q2

,

where ωr and Q are the fitted resonance frequency and quality factor of the
cantilever, respectively. For our tip, the fitted parameters were ωr=286.19 s−1 and
Q =337.58. The Sader method relates all these quantities to the spring constant:

k = 0.1906ρb2LQω
2
r Γi(ωr) = 16.3 N/m, (3.1)

where Γi is the imaginary part of the hydrodynamic function [74]. The sensi-
bility was calculated by putting the tip in contact with a hard substrate (SiO2) and
calculate the bare deflection of the cantilever as a function of the setpoint volt-
age. The process is shown in Figure 3.4: the load is represented by the ABC red
curve, and the unload by the DEF curve. The slope is equal to the sensibility and
the discontinuities at B, E correspond to the attractive force experienced by the tip
just before touching the surface and the adhesive force due to the water meniscus
which is formed via capillarity, respectively. This method yields s =67.339 V/µm.
By using these concepts, in the next section we will study the plastic behavior of
PMMA because it may provide an estimate of the shape that will be achieved via
nanoindentation on MoS2.
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Figure 3.4 Force curve of AFM for nanoindentations. Processes A, B and C (solid red line) describe the
load. Processes D, E and F correspond to the unload.
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3.2.1 Nanoindentation on plastic PMMA: stress-strain curves

The scheme shown in Figure 3.4 is the same as that of the nanoindentation: the
only difference is that the sample is deformable and a net vertical displacement of
the tip is added to the deflection of the cantilever. That is, for a given setpoint the
total deflection will be greater than the actual displacement of the cantilever (See
Figure 3.5): Let h be the total displacement measured in a force curve for a given
setpoint ∆V , and also let ∆x = ∆V/s be the deflection of the cantilever. Then the
travel inside the PMMA is h′= h−∆x or h′= h−∆V/s (See Figure 3.5 (a)). In this
sense we can define an “effective plastic sensibility” of the PMMA as s′ = ∆V/h′.

EXAMPLE 3.1 Indentation over PMMA

Consider an indentation which yields the force curve of Figure 3.5 (c). The
setpoint was 2.6 V and the total displacement of the cantilever was 39.2 nm
in the load curve (red). Then the deflection is ∆x = 26.7 nm and the travel
distance is h′ = 12.4 nm and the PMMA sensibility is s′ = 0.14 V/µm. A
statistical averaging over 81 indentations on PMMA at different setpoints yield
s′ = (151±3) V/nm. The PMMA sensibility will let us know what is the travel
distance for a given setpoint voltage.

Figure 3.5 Indentation on PMMA. (a) load force (b) unload and (c) the force curve.

The elastoplastic effect of the indentation will make PMMA tend to recover its
original shape when the tip is removed. Figure 3.5 (b) plots an indentation reaching
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a depth h′′ < h′. In the roughest approximation we will assume a triangular shape
of the nanoindentation, whose strain can be easily calculated as

ε =
δ l
l
= 2

(
h′′

l

)2

, (3.2)

where l is the width of the indentation. Besides, the stress is equal to the force
applied divided by the area of the tip that is in contact with the sample [75]. Pro-
vided all this information, now we are able to construct a stress-strain curve which
reveals the elastic-plastic behavior of PMMA and gives us an idea of the stress of
the sample as a function of the strain, as plotted in Figure 3.6. That figure was ob-
tained from a set of force curves of nearly eighty indentations. This curve reflects
most of the plastic behavior of the material, which follows a power-law, while the
elastic regime for low strain is approximately linear. The forces (in volts) ranged
between 1.8 V and 2.6 V; the fitted curve obtained for the plastic regime was

σ = 5.155ε
0.189 [GPa]. (3.3)

Figure 3.6 Stress-strain curve of indentations on PMMA. (a) shows the maximum indentation depth h′ vs.
the load force; (b) the correlation between the h′ and the final plastic depth h′′; (c) the correlation between the
indentation width l and the plastic depth and (d) the stress-strain curve.

It can be deduced that PMMA behaves plastically for forces greater than 1.8 V.
As MoS2 has a high in-plane stiffness, then the force needed to stretch it has to
be comparable to the value of the stiffness. We may also expect an indentation on
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MoS2 to be much more superficial than that on just PMMA for the same force. The
relation between the force of the indenter and the final strain reached will be dis-
cussed in further detail in Section 6.1. For now, we will describe other techniques
used in the characterization of the vibrational and optical properties of MoS2, such
as the Raman and photoluminescence spectroscopy.

3.3 Raman spectroscopy

The equipment in spectroscopic techniques consists, roughly speaking, of an exci-
tation source, a monochromator and a detector2. The monochromator for Raman
spectroscopy usually works in the so called triple-mode in which three diffraction
gratings are used, giving an effective number of 1800 lines/mm and a high spec-
tral resolution. The scheme of the Raman spectroscopy setup used for our mea-
surements is similar to that of photoluminescence (See Figure 3.7), which will be
addressed in the next section: a continuous wave (CW) laser pumping of 488 nm
(or 514.5 nm) and 0.4 mW excites the sample through a 100x magnification and
0.94 numerical aperture (NA) objective. Then the signal is collected by the same
objective and sent to the monochromator which scatters the different wavelengths
and selects the light of an specific wavelength which is detected by a silicon-based
charge coupled device (CCD). The CCD operates in temperatures below -120°C,
an is usually cooled with liquid nitrogen.

In this work, Raman spectroscopy was used to characterize the number of layers
in the flakes. In order to avoid any damage of the sample we used no more than
0.4 mW of excitation, but this resulted simultaneously in a low signal intensity and
also low signal-to-noise ratio, reason why we performed three to six acquisitions
of sixty seconds each.

The difficulty of properly locating the laser spot in the sample was remedied
by the measurement of maps of spectra spread over a region of the flake where
we expected to find the indentations. These maps might be composed of points
distributed either within a square, along a line, or at random positions. We recall
the advantage of possessing a servo-displacer mechanism embedded in the sample
holder for this purpose. In the next section we will address other spectroscopic
technique that plays a central role in our research and follows a similar scheme to
that of Raman spectroscopy: the photoluminescence (PL) spectroscopy. In some
cases, it was necessary to use the same equipment to measure both PL and Raman
signal, which can be done by making a few adjustments on the gratings of the
monochromator.

3.4 Photoluminescence spectroscopy

Similarly to Raman spectroscopy, photoluminescence studies the light which comes
from an optically excited sample. The same objective focuses the excitation light
on the sample and collects the signal to be measured in the spectrometer. In this

2The excitation source for Raman spectroscopy is normally a laser
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case, the spectrometer is composed of a single 600 lines/mm and 500 nm blaze
diffraction grating. The monochromator used has a length of 55 cm and is operated
with a 100 µm-entrance slit3.

Electronics

CWvLASER

Sample

Computer

Monocrhomator

CCD

Filter

100xvObjective

514vnm
BS

Figure 3.7 Diagram of a setup of photoluminescence spectroscopy operating at room temperature.

The objectives used in the measurements were a 100X 0.49 NA and a 50X 0.49
Mitutoyo lenses, with high (∼20 mm) working distance. This is a suitable condition
when the sample has to be inserted in a cryostat for low-temperature measurements.
The implementation of this kind of objectives makes the technique be renamed as
micro-PL (µ-PL) because the laser spot on the sample has a gaussian profile of∼ 1
µm width. The samples were excited with a CW argon solid-state laser of 514 nm
wavelength and 0.4 mW - 1.0 mW excitation power. In other measurements, when
specified, we used a 488 nm diode laser.

The detectors used were either liquid-nitrogen-cooled or Peltier-based-cooled.
In most of the cases the CCD is front illuminated (FI). In other few cases, when
specified, they were back illuminated (BI). The main advantage of a BI CCD is that
the photosensitive Si layer is directly exposed to the signal, contrary to the FI case
in which the polysilicon electrodes go ahead and blocks a portion of the signal4.

We have described the main aspects of µ-PL, now we will address the types of
measurements involving PL spectra. By the number of spectra obtained in a single
measurement, we distinguish between single spectrum (SS), spectra along-a-line
(SAL) and hyperspectrum (HS).

Single spectrum In this type of spectroscopic technique, we are concerned with all
the main features of PL. Here we usually work with long integration times (between
1 - 2 min) and relatively low excitation power (no more than 700 mW) in order to

3By reducing the size of the entrance slit we expect to avoid the incoming signal from any other source in the laboratory,
because just the signal directed towards the slit should pass through a narrow slit, this should be manifested in a high signal-
to-noise ratio.
4However, the main disadvantage of BI is that the photosensitive layer displays multiple internal reflections resulting in an
etaloning of the spectrum, a well-known artifact in spectroscopy. Etaloning is manifested strongly from 800 nm and above,
thus it limits the range of wavelengths in which spectra can be measured [76].
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avoid sample burning and thermal drift. By using the same parameters in all spectra
we may, for instance, measure the ratio of the PL intensities (counts per second) of
a monolayer to a bi- or multi-layer. Besides, single spectra are very useful when
we need to quickly examine some other features of spectra, such as shifts of the
positions of each peak and the broadening/narrowing of the distinct lines.

Spectra along a line SAL consists on a sequence of spectra tightly distributed along
a line in a region of the sample. The number of spectra and the length covered varies
according to the specific purpose of the measure. For example, a high-resolution
SAL can be achieved with 125 spectra along a 5 µm line: almost any feature of
the sample (a defect, a wrinkle, etc) should be observed. As the distance between
two adjacent spectra is usually much lesser than the laser spot size, then a decon-
volution of the signal with the gaussian shape of the beam must be performed to
reduce the oversampling effect. As we will explain below, SAL is a special case
of the hyperspectrum, and has the main advantage of being low-time-consuming
compared to HS. Among the main disadvantages we find the limited information
which can be obtained (in contrast to a 2D map) and the oversampling outside the
line that we wish to measure.

Hyperspectrum HS combines a complete information about the emission and spa-
tial resolution, which is suitable for those cases in which some features are being
expected at specific locations of the sample, such as defects, quantum dots and/or
wrinkles in MoS2. Because of the long-time consumption of this technique, we
find some issues such as thermal drifting, sample overheating and damaging. The
only way to avoid those artifacts is by reducing the integration time (no more than
5 seconds) and the excitation power (below 125 µW).

Having discussed the distinct number of spectra, we may also classify the PL
according to the temperature. The range of temperatures in which spectra can be
obtained lies between 10K and 300K. We are particularly interested in the extreme
cases of 10 K and room temperature because most of the features of quantum dot
emission are displayed at very low temperatures. Furthermore, these results can be
contrasted to that obtained at room temperatures in the pursuit of some emergent
phenomena.

The implementation of low-temperature measurements makes it necessary to
carry out a scheme of cooling the sample which includes 4K-liquid helium, a cryo-
stat and a turbo-vacuum pump. As stated a few sections above, the usage of a long-
work-distance objective allows us to easily couple the cryostat to the pre-existent
setup. The usual path to perform a temperature-dependent measurement is to lower
the pressure inside the cryostat by using a mechanical pump to around 10−3 mbar
and then, to use a turbo-molecular pump to reduce the pressure to around 10−6

mbar. Then the sample is cooled with liquid helium in a cold-finger cryostat. This
procedure allows us to achieve temperatures around 10 K.

Summarizing, in this chapter we listed and explained the main experimental
techniques that we used in our research: from a detailed description of mechan-
ical exfoliation, to the spectroscopic techniques used to characterize the samples,
passing through the AFM-based nanoindentation. We also presented a short but
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detailed study on the plastic-elastic properties of the PMMA substrate. We showed
the indentation force curves and the stress-strain curve of PMMA, which are im-
portant to be considered in the indentation of MoS2. About PL, we detailed several
schemes of photoluminescence measurements, such as the single-PL spectrum, the
spectra along-a-line and the hyperspectrum, which were performed in this work.
Since PL is used to study the main features of the emission due to excitons, we
devote the next chapter to address the physics of excitons with a special emphasis
on the theoretical approach.





CHAPTER 4

THEORY OF THE EXCITON IN MOS2

As discussed in Section 2.4, the excitations in MoS2 have some special features
which make the exciton here be rather different to excitons in other conventional
semiconductors, such as GaAs, Si, Ge, etc. The large binding energy, the rela-
tively large Bohr radius and the two-dimensional character makes the exciton be
exceptionally appropriate for studying confinement or binding to defects. Differ-
ent approaches for studying the exciton in MoS2 have been addressed: analytical
approaches and ab-initio calculations. We first discuss the ab initio calculations,
among which we find the DFT and Bethe-Salpeter equation (BSE) theories.

Density functional theory (DFT) in the local density approximation (LDA) or
the BSE [50, 56, 77, 78] give the most accurate estimates of the gap energy, kinetic
energy and effective mass of carriers. Particularly, several groups around the world
have performed highly computing-expensive calculations of MoS2 in order to pro-
vide a set of parameters which can be used as the base of other more approximate
analytical approaches which deal with the description of the shape of the bands and
orbitals at the bands themselves [50]. Table 4.1 compiles some of the most relevant
results of ab initio calculations of several groups, where the gap energy ∆, the hop-
ping integral t, the spin-orbital coupling 2λ and deformation potentials D‖,D⊥ are
displayed and whose employment in this work will be clarified later.

The main perturbative approaches that were pointed out in the preceding para-
graph consist on two complementary theories for the quantitative description of the
bands: the tight-binding approximation (TBA) and the k · p theory. TBA assumes
that the electronic wavefunctions are a linear combination of single-electron atomic
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By José D. Hernández

29



30 THEORY OF THE EXCITON IN MOS2

Eg (eV) a (nm) Mexc/m0 t 2λ (eV) ε β D‖ (eV) D⊥ (eV)

Value 2.05 0.318 0.98 1.1 0.15 4.26 3.3 0.28 -7.18

Table 4.1 Table of ab-initio parameters for MoS2, such as energy gap Eg, lattice parameter a, exciton’s mass
Mexc/m0, hopping amplitude t, spin-orbit coupling λ , relative dielectric constant ε , and perturbation parameters
β ,D‖,D⊥ from deformation potential theory used in this work for theoretical approximations. From [50, 79]

orbitals belonging to each one of the bands. By using arguments based on group
theory, we are allowed to specify these orbitals and calculate the perturbation on
one orbital due to other neighboring atom orbitals. The result of this formalism is
an estimate of the band shape in terms of the hopping integrals between adjacent
sites [80].

Moreover, the k · p approach consists on calculating perturbatively the elements
of the momentum operator near to the local minima/maxima of the bands. The
result of this approach is an estimate of the band shape and also of the effective
mass of the carrier, which is useful when calculating states of bound particles, such
as excitons [81, 82]; this method will be examined in more detail in the following
sections. Among other theoretical approaches of the exciton in 2D materials we
find the Dirac equation and the Schrödinger equation which give accurate values
of the exciton binding energy and reduced mass [83, 84]. There will not be further
discussion of these last methods in this work, nonetheless we use their concepts to
complement our k · p formalism which will be shown in the next section.

4.1 The k · p method for excitons in MoS2

Single particle states are described through the one-electron Schrödinger equation:

Hψn,k(r) = En,kψn,k(r), (4.1)

where k is the momentum, n is the label of the orbital state, En,k is the energy
and H the Hamiltonian (without considering the spin-orbit coupling yet) of the
particle:

H =
p2

2m
+U(r), (4.2)

where the potential U(r) involves the periodicity of the lattice. That is the reason
why we write the electron state as a Bloch wavefunction:

ψn,k(r) = eik·run,k(r). (4.3)

Since p =−ih̄∇, the Schrödinger equation for un,k(r) holds

(
H +

h̄2k2

2m
+Hk·p

)
un,k(r) = En,kun,k(r), Hk·p =

h̄
m

k ·p (4.4)
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Here, we consider Hk·p as a perturbation. As our aim is to calculate the bands
around the K point, we have to expand perturbatively the relative momentum q
which is measured from K and writing k=q+K. A complete description of the k · p
treatment around points other than the Γ point in the Brillouin zone is done in the
references [82,85], we just describe the k · p model around K for the momentum q:

Hk·p =
h̄

2m
(q+p−+q−p+), (4.5)

where q±= qx±qy and p±= px± py. Within this k ·p formalism for electrons in
monolayer MoS2, we will just consider the coupling between the CB and VB edges,
and write this hamiltonian in a basis of two states. We use the same derivation of
the exciton features as that shown in the references [79, 81], which use the first-
order perturbation theory to calculate the matrix elements of the Hk·p hamiltonian,
〈φn|p±|φm〉, provided the |φi〉 basis vectors are independent of k. All considerations
on symmetry and group theory applied to the case of orbitals at the K point of the
Brilloin zone in MoS2 come from references [82, 86]. These same considerations
allow us to construct the k · p hamiltonian:

H0 = at(τkxσ̂x + kyσ̂y)+
∆

2
σ̂z, (4.6)

where a is the lattice parameter, t is the hopping integral between neighboring
lattice sites, ∆ is the electronic band gap, the σ̂i are the usual Pauli matrices and
τ =±1 is the valley index indicating whether the K or K′ valley, respectively. The
matrix form of the hamiltonian is

H0 =

(
∆

2 at(τkx− iky)

at(τkx + iky) −∆

2

)
(4.7)

As seen in Section 2.1, it is necessary to include the spin-orbit coupling in the
hamiltonian, despite this enlarges the Hilbert space to include the spin degree of
freedom. The new hamiltonian is

H = H0− (λτ)
σ̂z−1

2
⊗ ŝz, (4.8)

or in matrix notation,

H =


∆

2 at(τkx− iky) 0 0
at(τkx + iky) −∆

2 +λτ 0 0
0 0 ∆

2 at(τkx− iky)

0 0 at(τkx + iky) −∆

2 −λτ

= H↑+H↓

(4.9)
The new basis is {|φc↑〉, |φ τ

ν↑〉, |φc↓〉, |φ τ

ν↓〉}, where ↑, ↓ denote spin-up and spin-
down respectively. As seen in eq. (4.9), the spin-up components are decoupled
from the spin-down components, thus we could study the physics of just one of
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these spin projections. The energy eigenvalues of the spin-up particle (or equiva-
lently the τ =+1 valley) are the roots of the characteristic polynomial of H↑:

(∆/2− ε)(λ −∆/2− ε)−atk2 = 0

ε =
λ

2
± 1

2

√
(λ −∆)2 +4atk2. (4.10)

The sign “+” corresponds to the energy of a particle in the conduction band and
the “-” for the valence band. At this point, we have just described the energy of
a single particle in the conduction and valence bands of single layer MoS2. But
actually we are interested about the description of two coupled particles at CBM
and VBM. Therefore, we can write the two-particle state as a function of two coor-
dinates:

Ψi j↑(r1,r2) = φi↑(r1)φ j↑(r2), (4.11)

where i = c,ν . We have now 4-component spinors to describe the state:

Ψ↑ =


φc↑(r1)φc↑(r2)

φc↑(r1)φν↑(r2)

φν↑(r1)φc↑(r2)

φν↑(r1)φν↑(r2)

=

(
ψc

ψν

)
, (4.12)

where

ψc =

(
φc↑(r1)φc↑(r2)

φc↑(r1)φν↑(r2)

)
, ψν =

(
φν↑(r1)φc↑(r2)

φν↑(r1)φν↑(r2)

)
(4.13)

As the Coulomb interaction depends only on the relative distance of the particles
r = |r| ≡ |r1−r2|, the hamiltonian takes the form HT = H1+H2+V (r), where the
Hi is the hamiltonian of the i-th particle, and V (r) = 1/4πεε0r the usual Coulomb
potential.

Note that the fact of the hole being an electron vacancy at the valence band
means that it has the opposite quantum numbers of one electron at the same position
in the valence band, including its energy and spin, just like an object reversed by a
mirror reflection. A consequence of this is that the energy of a hole ε(h) is related to
the corresponding electron energy ε(e) as ε

(h)
↑ = −ε

(e)
↓ . Taking this argument into

account, we write the hamiltonian in the new basis as:
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HT =


V (r) −at(k2x− ik2y) at(k1x− ik1y) 0

−at(k2x + ik2y) ∆−λ +V (r) 0 at(k1x− ik1y)

at(k1x + ik1y) 0 −∆+λ +V (r) −at(k2x− ik2y)

0 at(k1x + ik1y) −at(k2x + ik2y) V (r)

 .

(4.14)
The detailed calculation of the solution of the two-body problem with the hamil-

tonian (4.14) can be found in the appendix A. We just clarify that the low-kinetic-
energy approximation is used again in our first-order considerations. Besides, we
arrive to the Schrödinger equation for a 2D hydrogen atom:[

F1(ε)∇
2
r−

e2

4πε0ε

]
φcν = F0(ε)φcν , (4.15)

where F1(ε) =
2a2t2

ε
ans F0(ε) = ε−∆+λ − a2t2K2

2ε
. From the solutions of this

equation we are able to obtain the analytical expressions for the binding energy, the
rest energy, and the effective mass of the exciton:

ε(0) =
8ζ (∆−λ )

8ζ +C
, Exciton rest energy

M =
h̄2(∆−λ )

ζ
, Exciton effective mass

EB =
C(∆−λ )

8ζ +C
, Exciton binding energy (4.16)

where ζ = a2t2 and C = (e2/(4πε0ε)(n−1/2))2.

4.2 Excitons in a deformed lattice

Those simple formulae allows us to make some important predictions when the
LDA parameters (∆,λ ,a, t) are dependent on a certain feature of the system. To be
more specific, consider the case when the MoS2 is subject to a certain strain. For
now, we will not specify the type of strain that is acting on the material, nor the
nature of the forces and stresses that provoked such strain, just we will assume that
strain implies the displacement of the atoms from the sites Ri to their new positions
at Ri + δRi. The energy of a crystal can be expanded around the unstrained state
characterized by the positions Ri as follows:

En,k = E0
n,k +

∂En,k

∂R
·δR, (4.17)

where n,k labels the n-th band and momentum k and E0
n,k the energy of the

unstrained lattice. Then the energy shift is ∂En,k
∂R · δR. The deformation potential
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theory states that the energy shift can be written in such a way that it reflects the
symmetry of the crystal and is proportional to the strain [45]. For small deforma-
tions of the C3h honeycomb lattice, the energy gap yields [45]

∂En,k

∂R
·δR = D‖ε‖+D⊥(εxx + εyy), (4.18)

where D‖ and D⊥ are parameters that represent the energy shifts for a defor-
mation parallel and perpendicular to the normal vector of the plane, respectively.
These parameters are obtained via ab initio methods. It can also be shown that for
small deformations the lattice parameter is affected by strain as [63]

a = (1+ ε) ·a0, (4.19)

where a0 = 0.324 nm is the lattice parameter of a free MoS2 membrane and ε is
the strain. The momentum element t of the k · p hamiltonian is also dependent on
the interatomic distance, then we could also approximate it by

t = t0(1−β
δa
a0

), (4.20)

where β is a positive constant and t0 is the hopping term at zero strain. As the
tensile strain is defined as ε = δ l/l = δa/a, we write the hopping element as

t = t0(1−βε). (4.21)

This equation states that the hopping element decreases as the interatomic dis-
tance becomes greater: this is because the overlapping of the orbitals of adjacent
atoms is lessened when the tensile strain raises. The parameter β is also obtained
from ab initio calculations and has the rough value of 3.2 for MoS2 [87]. The spin-
orbital coupling is not affected by strain [88], thus in principle, we are able to know
the dependence on the strain of the gap energy, the rest energy and the effective
mass of the MoS2 exciton for small deformations. For most of the cases, the strain
tensor ε is a function of the coordinates (x,y), thus we can model the exciton fea-
tures for an arbitrary strain field. For instance, this will be useful when considered
abrupt spatial variations of the strain field such as the case of a nanoindentation.

Summarizing, in this part we have reviewed the main electronic, mechanical,
vibrational optical and excitonic properties of MoS2, in order to give an overall
idea of the features and concepts that will be addressed in later chapters of this
work. We also discussed the effect of the strain on the gap energy and the exciton
effective mass and how this can be useful to develop our hypothesis of quantum
dot generation via nanoindentation. Then in the following chapters we will intro-
duce the definition of quantum dot by supporting ourselves in the idea of quantum
confinement and present our results on theoretical calculations of quantum dots.
Furthermore we present our main experimental results of AFM, Raman and photo-
luminescence spectroscopy measurements.



PART II

THE QUANTUM DOT





CHAPTER 5

QUANTUM DOTS IN MOS2

Since the 1990s, scientists began to use the term quantum dot to describe “artificial
atoms” which were formed when growing nano-heterostructures in semiconductors
[10]. These artificial atoms have the property of emitting in a single, very narrow
spectral line because of two facts: the enhancement of radiative processes over
the non-radiative increases the emission intensity and the quantum confinement
propitiates a discrete distribution of energy levels, rather similar to the energy levels
of atoms.

But how are these energy levels distributed within the confinement potential? To
answer this question we recall the Heisenberg’s uncertainty principle which relates
the spreading of both particle’s momentum ∆p and position ∆x. As the spreading
(or separation) of the confined levels is proportional to the kinetic energy, e.g. to
∆p2, we expect this separation to be greater than the thermal fluctuations which are
proportional to kBT/2. If we associate ∆x to the width of the well, we have a first
criterion of confinement [55]

∆x≤

√
h̄2

mkBT
(5.1)

We also expect that quantum confinement emerges when the de Broglie wave-
length of the particle λ = h/∆p is comparable to the size of the well, and the
spreading of the energy levels is related to it through the following formula:
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∆x = λ ∼
√

h̄2/2m∆E, (5.2)

where ∆E is the energy separation between the first confined levels of the well.
At this point we have given a satisfactory definition of confinement and established
the minimum requirements for the confinement to be manifested in a quantum sys-
tem. But the meaning of quantum well is still obscure, reason why we will introduce
this concept in the context of semiconductors.

5.1 What is a quantum dot?

When layered structures of different semiconductors are formed, there will be re-
gions of different band gaps, which will be arranged in such a way that the Fermi
level is the same along the structure. This can generate potential energy wells for
both electrons and holes at the conduction and valence bands, respectively and then
the criteria of quantum confinement can be addressed here. When studying the mo-
tion of a free electron in a semiconductor, it is necessary to describe the density of
states g(E) i.e. the number of states that can be occupied by an electron of energy
E. The density of states depends on the dimensionality of the material, as can be
seen in Figure 5.1, where g(E) changes from a monotonically and smoothly vary-
ing function in the bulk (3D) case, to a discrete energy distribution in the quantum
dot (defined as the zero dimensional case), passing through the step-shaped g(E)
for quantum well (2D) and hair comb-shaped for quantum wires (1D).

Figure 5.1 Density of states for the same material as a bulk form, a quantum well, quantum wire or quantum
dot. Extracted from [1].

Despite the fact that in our work on MoS2 we do not address any heterostructure,
the principle of confinement and the density of states is completely analogous to
the situation described above, regardless of the nature of the spatial variation of
the band gap. As MoS2 is nearly a two-dimensional semiconductor, the density
of states of a free electron is described by that of a quantum well in Figure 5.1,
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and the criteria for three-dimensional confinement (a quantum dot) is given by eqs
(5.1), (5.2) for all three dimensions. Then we present our definition of quantum
dot:

Definition 1 Quantum dot: A structure that confines particles with a certain de
Broglie wavelength and satisfies the criteria of confinement given by the Heisen-
berg’s uncertainty principle in the form of the equations (5.1) and (5.2).

Having properly defined a quantum dot, then we will describe the confinement
of excitons in quantum dots in the next section, and establish the regimes in which
the confinement energy is more relevant than the Coulomb interaction between
electron and hole (and vice versa).

5.2 Excitons in quantum dots

As stated in the last section, a spatial variation of the band gap can lead to the
emergence of confinement potentials for both electrons and holes in a semiconduc-
tor. This is still the case of MoS2 in which some mechanisms are able to induce
such spatial variations of the gap. But first, we will describe separately the quantum
dot-induced confinement for each Wannier-Mott and Frenkel excitons.

The large Bohr radius and low binding energy of a Wannier-Mott exciton allows
us to treat the Coulomb interaction between electron and hole as a perturbation,
since the energy gap Eg is much greater than the exciton binding energy Eb [59]. In
this case, the energy levels for both electron and hole are quantized separately, thus
we can think of the quantum dot as a confiner of almost independent electrons and
holes [59].

On the other hand, Frenkel excitons have a binding energy such that the confin-
ing potential has to be treated as a perturbation, then the whole particle is confined
[60]. Thus in this case, the quantum dot acts as a confiner of excitons. The most
common examples of quantum dots of this kind in MoS2 are probably those defect
sites that trap the so-called bound excitons.

As excitons in MoS2 share some features of both Wannier-Mott and Frenkel,
then we assume that the whole exciton is the particle that suffers confinement in
the QD, hence the description of the exciton given in Section 4.1 also remains
valid for excitons confined in quantum dots. Along this work we have addressed
several times the behaviour of MoS2 when is subject of strain: a sufficiently abrupt
spatial variation on the strain field applied to a MoS2 monolayer could generate a
quantum well that acts as a confinement potential, and this spatial variation could
be produced via nanoindentation, then we can now formulate the central hypothesis
of this dissertation:

Hypothesis 1 Exciton confinement via nanoindentation: A quantum dot that con-
fines excitons in MoS2 can be generated through nanoindentation if the following
two conditions are satisfied: The width of the well is such that satisfies equation
(5.1) for thermal fluctuations at a given temperature T , and the depth of the well is
such that the energy separation between the first levels satisfies the equation (5.2).
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Provided this definition, we can now generate a set of specific conditions that
satisfy the hypothesis of confinement. We will have to describe the shape of the
nanoindentation in order to model the strain field but this is not a trivial task, then
we will have to assume some shapes that could give us an estimate of the energy
separation and the exciton wavefunctions. This will be the subject of the next
section, in which we characterize the shape of the MoS2 membrane through its
width and depth and define an optimal indentation that behaves as a true quantum
dot. For now, we can choose the indentation width l∼∆x that satisfies the condition
(5.1): at 10 K, the maximum width of the well that exhibits confinement of excitons
of mass M = 0.98m0 is l ≈ 10 nm, while at 4 K the maximum width is l ≈ 15 nm.

5.3 Wavefunctions for an exciton in a nanoindented MoS2 monolayer.

To find the distribution of confined levels in indented MoS2 we should first briefly
address the wavefunctions. Using the same notation as in the preceding chapters,
we model the confined exciton through the following hamiltonian:

Hexc = H(e)
k·p +H(h)

k·p +V (r)+U(R), (5.3)

where H(e)
k·p and H(h)

k·p are the k · p hamiltonians for electon and hole, respectively,
V (r) is the Coulomb electrostatic potential which depends on the relative e-h dis-
tance and U(R) is the confinement potential for the exciton, which depends on the
center-of-mass position of the exciton. In our first-order approximation, U(R) is
decoupled of the rest of the terms of Hexc, thus we can write the exciton wavefunc-
tion as

Ψexc(R,r)(m,n,k) = Φ
m(R)φ n,k

cν (r), (5.4)

where the indices m,n specify the confined state in the well and the 2D-hydrogen
level of the exciton, and k stands for the exciton momentum. At low temperatures,
we can consider just those ground-state excitons with q=0, then the Schrr̈odinger
equation stands:

HexcΦ
m(R)φcν(r) = (E0 +Em)Φ

m(R)φcν(r), (5.5)

where E0 is the exciton rest energy. As the ground state of the exciton is just
an additive constant for the confined energies, our aim in this chapter will be to
calculate the eigenfunctions of U(R), that is, we will calculate Φm(R).

In a first approximation, we will assume that the shape of the indentation is
isotropic, whose profile is shown in Figure 5.2 (a). A more complete approach of
the deformation due to a spherical indenter is given by the J2 plastic-flow theory
which assumes a power-law for the strain-stress curve, small elastic-plastic defor-
mations and paraboloidal indenters [89]. The central role of this theory is to find
the hardening function of the material, which goes beyond the scope of this work,
due to the large number of considerations that we have to make to describe the
deformation of an atomically thin membrane on a plastic polymer.
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(a) (b)

Figure 5.2 Profile of a nanoindentation. (a) Shows the shape assumed for calculations, while (b) represents
the real shape due to the plastic deformation by a spherical indenter.

Note that the only difference between Figure 5.2 (a) and (b) is the pile-up in the
borders of the indentation. As we shall see later, this pile-up is no more than a few
tenths of nm, thus we can neglect them in our description of the strain. The most
similar shape to that represented in the diagram is a sinusoidal function (See also
Figure 5.3 (a)):

z(r) =

{
h
(
sin πr

l −1
)

0≤ r ≤ l/2
0 otherwise

(5.6)

then the strain tensor could be written as

εxx = εyy =
1
2

(
dz
dr

)2

=

{
π2

2

(h
l

)2
cos2 πr

l 0≤ r ≤ l/2
0 otherwise

, εzz = νεxx, (5.7)

where ν is the Poison ratio of MoS2. Here, εxx = εyy because MoS2 behaves
isotropically for biaxial deformations [90]. In order to obtain an expression for
the potential U(R), we recall the results of Chapter 4: The band gap, the hopping
amplitude and the lattice constant are

∆ = ∆0− (D‖ν +2D⊥)εxx,

t = t0(1−βεxx), a = a0(1+ εxx) (5.8)

Using the notation ζ0 = t2
0 a2

0, we obtain for the exciton rest energy:

E0(εxx) =
8ζ0(∆0−λ )

8ζ0 +C

[
1−
(

2(β −1)+
D‖ν +2D⊥

∆0−λ

)
εxx +O(ε2

xx)

]
. (5.9)

The strain-field potential U(R) should be assumed to be generated by the spatial
variations of the exciton energy. In this way, we can set the potential equal to zero
out of the indentation and combine the equations (5.7) and (5.9) to obtain a specific
form of the potential:
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U(R) =

{
−π2

2 E0(0)
(h

l

)2
(

2(β −1)+
D‖ν+2D⊥

∆0−λ

)
cos2 πr

l 0≤ r ≤ l/2

0 otherwise
, (5.10)
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Figure 5.3 Strain profiles of indentations used to model the exciton confination: (a) the smooth sinusoidal
profile and (b) a triangular profile.

Nevertheless, this potential seems to be very difficult to solve. In order to obtain
an estimate for the confined levels, let us make a gross assumption: let the shape
of indentation be triangular, as shown in Figure 5.3 (b). This rough approximation
describes a constant strain εxx = 2(h/l)2 inside the indentation, and zero outside.
That means that the confinement potential is then reduced to a finite square well
potential of depth

V0 = 2E0(0)
(

h
l

)2(
2(β −1)+

D‖ν +2D⊥
∆0−λ

)
. (5.11)

Equation (5.11) is also useful to quantify the modification of the exciton energy
as a function of the (biaxial) strain, if we consider that V0 is the negative energy shift
of the exciton energy. Figure 5.4 shows this behavior, in which the exciton energy
is lowered when increased the biaxial tensile strain of MoS2 monolayer. In the
Example 5.1 we illustrate the assumption of a triangular shape of the indentation in
MoS2.
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Figure 5.4 Gap energy (a) and exciton energy (b) vs.tensile strain based on the deformation potential theory.

EXAMPLE 5.1 Excitons in a cylindricallly symmetric square well

We can assume the excitons to be confined in a cylindrically symmetric square
well, in order to have a first estimation of the confinement criteria. If these cri-
teria is satisfied for this case, then they will also be satisfied for the sine-shaped
profile. The solutions of the Schrödinger equation are radial wavefunctions
written in terms of Bessel and modified Bessel functions or the first kind:

Φ(R) =


AnJn

(√
2m(V0−E)

h̄2 r
)

0≤ r ≤ l/2

BnKn

(√
2mE
h̄2 r
)

r > l/2
, (5.12)

where An,Bn are constants to be adjusted to satisfy the conditions of conti-
nuity in the function and in the first derivative of both solutions at l/2. n are
integer indices that describe the angular part of the wavefunction, einφ .

We calculate numerically the first confined levels of the cylindricallly sym-
metric square well. We use the following parameters for the calculation: l= 15
nm, h = 1.5 nm, then V0 = -323.8 meV. Then the energy difference between
the first two confined levels is ∼24 meV, which is greater than the thermal
fluctuations at 4 K (∼0.3 meV). Using this values, we find that the de Broglie
wavelenght of the exciton for this energy separation is λ ∼ 20 nm, which is
even larger than the diameter of the indentation.

The example 5.1 confirms that a 15 nm - diameter and 1.5 nm - depth indenta-
tion are suitable conditions for exciton confinement in MoS2. Additionally, we
simulated the confined exciton wavefunctions for the sine-shaped indentation case
via finite-elements, powered by COMSOLT M. Figure 5.5 shows the first confined
wavefunctions in a 15 nm sized circular indentation. We have to consider, how-
ever, that in most of the cases (as we will explore in the next chapters) the actual
shape of indentations is not circular but triangular, due to the format of the AFM
tip used to produce the indentation. This will break a degeneracy due to the cylin-
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drical symmetry in the former case, causing a small splitting of the excited states
of excitons.

Figure 5.5 Simulation in COMSOL of the first four confined states of the potential of equation (5.10) in a
circular indentation, organized from (i) to (iv).

The simulations on a 15 nm - side triangular indentations were also performed
with COMSOLTM. We obtained an energy separation of ∼9 meV between the first
two confined levels, which is still larger than the thermal fluctuations at 4K. The
wavefunctions of the first confined states are plotted in Figure 5.6.

In this chapter we constructed the hypothesis of exciton confinement that helped
us to determine the conditions in which a quantum dot could be generated via
a strain field. As the technique used to generate this local field was the AFM-
nanoindentation, the devote the next chapter to review the features of AFM in-
dentation for the case of a membrane of MoS2 deposited over a plastic polymer
substrate. We also discuss the main results of the optical characterization via the
photoluminescence.
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Figure 5.6 Simulation in COMSOL of the first four confined states of the potential of equation (5.10) in a
triangular indentation, organized from (i) to (iv).





CHAPTER 6

GENERATION AND CHARACTERIZATION OF
QUANTUM DOTS

Provided enough theoretical background, we performed nanoindentations via the
atomic force microscopy of MoS2 monolayers over PMMA substrate, because this
polymer displays most of the plastic - elastic attributes that are suitable to achieve
the indentation sizes required for exciton confinement. Nevertheless, the technique
of nanoindentation of MoS2 over a polymer substrate has not been developed by
any other group yet1, thus an exhaustive analysis of all the possible issues has to be
performed and recorded systematically, before starting the characterization of the
indentation itself.

6.1 Nanoindentation of MoS2 on PMMA substrate via AFM

We have already addressed the plastic - elastic behavior of PMMA in past chapters
and obtained the stress-strain, σ − ε , curve of the substrate, which behaves as σ =
αεβ , where α is a positive constant and β is an exponent between zero and one.
As we assumed that only the spherical end of the indenter was in physical contact
with the sample at the indentation [75], we may also relate the force of the indenter
to the mean strain generated ε̄ as:

FPMMA = Aαε̄
β , (6.1)

1We found in the literature some atomistic simulations of nanoindentations on ultrathin materials, such as in ref. [91], and
also on few-layers of MoS2 over a rigid substrate, as in reference [92]

Generation of Quantum Dots.
By José D. Hernández
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where A = 2πr2 is the surface of the half-spherical indenter. We also know by
the large elastic modulus of MoS2 that the membrane remains elastic for most of the
forces used in the indentation. The formalism of the Föpl-Henkyl equation [93] for
a clamped circular membrane subjected to central concentrated force loads has been
known for giving analytical expressions for the membrane deformation and radial
tension. They also predict that for a given Poison’s ratio, there could emerge some
radial wrinkles that make the membrane shape lose its original azimutal symmetry.
Nonetheless, for the case of MoS2, which has a low Poison’s ratio (ν=0.245), the
membrane deformation is azimutally symmetrical and its maximum deflection at
the center w0 is related to the force load F by the following expression:(

2ω0

l

)3

≈
(

4
5

)2 F
πY l

, (6.2)

where l and Y are the membrane radius and the membrane stiffness, respectively.
If we take the mean strain ε̄2 = (w0/l)2, we can write the force as

FMoS2 =

(
5
4

)2
πY l
23/2 ε̄

3/2 (6.3)

That means that a system composed by both the polymer substrate and MoS2
membrane should satisfy the principle of superposition when performing an inden-
tation:

Findent = FPMMA +FMoS2 = αAε̄
β +

5
4

πY l
23/2 ε̄

3/2 (6.4)

This reasoning could be justified by considering that all the force exerted by the
indenter is invested on a plastic deformation of PMMA plus an elastic deflection
of the MoS2 membrane. Conservation of energy could also prove this statement by
additionally requiring that the work done on the system be slow and adiabatical i.
e. no energy is used to heating the material. To put some numbers in this equation,
let us consider a nanoindentation of l = 30 nm size and mean strain of 2%, then the
force needed to produce such an indentation is

Findent ≈ 30.9 nN+14.7 nN = 45.6 nN (6.5)

Then, what force is needed on the AFM cantilever in order to produce a force
Findent over the sample?. By using the same considerations for the cantilever sen-
sibility s and spring constant k that were addressed in Section 3.2, we are able to
assert that the maximum deflection2 of the cantilever ∆x in the force curve is related
to the setpoint voltage ∆V and Findent via the following equation:

∆x =
∆V
s

+
Findent

k
,

2not to be confused with the width of the confinement potential of last chapter, also named ∆x
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which allows us to predict which setpoint voltage is needed to perform the
nanoindentation

∆V = s
(

∆x− Findent

k

)
. (6.6)

Now, by extracting information of a force curve in which ∆x =39 nm (that is a
typical value for MoS2 indentations), and using the known parameters of our can-
tilever we obtain that ∆V ≈ 2.42 V. We have to make an important clarification here:
the force of indentation and setpoint voltage calculated here are mere estimates of
the actual scenario, which we summarize below:

The MoS2 was assumed to be a clamped circular membrane of radius l. This
means that the strain on the borders does not tend to zero but the MoS2 is fixed
there. This is partially true because the strain field generated by an indentation
is not zero out of it, despite MoS2 could be displaced, peeled off, or even torn,
as we will see later.

The indentation was assumed to be slow and adiabatic. This was considered
due to the ”low“ indenter velocities (∼4 µm/s). However, a more detailed study
of the (thermo)dynamics of nanoindentations is needed to prove this argument
[94](this goes beyond the scope of this work) and leads us to the third point in
this discussion,

the dynamics of the indentation is rather complicated: Plastic deformations are
processes with hystheresis [95], thus a maximum AFM cantilever’s deflection
just reveals the maximum depth achieved by the indented onto the sample, but
the final depth is always less. This could also explain a certain randomness in
the indentation’s size and depth: we will return to this point after showing our
results.

Now, we will show our main results with respect to AFM indentation in PMMA
substrates. There are two types of configurations in which the indentations were
performed: the single indentation and the matrix indentation. The first consists
on several isolated indentations which were spatially separated (∼1.5 µm between
two of them, see Figure 6.1). The main advantages of this configuration are that we
avoid the generation of strain fields among the indentations and we can measure
the photoluminescence of each one separately. The main disadvantages are that the
PL signal coming from the indentation could be very weak due to the low ratio
between the areas of indented zones and strain-free regions which are illuminated
by the laser, and that the diffraction limit of visible light impedes us to know the
exact position of the indentation in the µPL setup. One way to solve this issue is
to place the indentations close to the edges of the flake or at visually recognizable
zones.

The second type of indentations consists of an array of indentations, usually
within a matrix (See Figure 6.2). The usual spacing between these indentations is
100 nm - 200 nm. Each indentation within a matrix is performed with the same
parameters as the others, this leads us to the main advantage: the PL signal from



50 GENERATION AND CHARACTERIZATION OF QUANTUM DOTS

Figure 6.1 Single indentations of MoS2 on PMMA substrate. From up-left to down-right: optical image of
the flake, general AFM topograhpy of the flake and zoom to single indentations.

matrix indentations should be enhanced, since we are measuring the photolumi-
nescence of many “nearly identical” indentations, where the ratio of the areas of
strained to the strain-free fields is being increased. Unfortunately, the main disad-
vantage of this type of indentation is that while building the matrix, each single in-
dentation will pre-stress the membrane for the next indentation, then the strain field
is progressively incremented until the material fails and suffers a tear, as shown in
Figure 6.3. We have observed that the stress is of the order of the 11% of the bulk
modulus of MoS2 for the tearing to occur.

As discussed above, we expect all indentations to be the same in a matrix ar-
rangement, but this is not what actually happens: the randomness in the indenta-
tion’s size is mostly due to the plastic hysteresis of PMMA, but also because the
same force could produce different ls and εs such that equation (6.4) still holds.
Then there exists a not controllable parameter in the nanoindentations and it may
be either the size or the mean strain. However, the best way to ameliorate this sit-
uation is to search for a perfectly plastic substrate, in which the material does not
return to its original shape and the size of the indentation be accurately determined
by the apex angle of the AFM tip. We also point out that when 2.4 V is used as
the setpoint voltage, the mean indentation size was 25 nm - 40 nm: this size is still
large for our requirements. One possible way to solve this issue is to try using other
more viscous polymer substrates to obtain a more plastic behavior.
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Figure 6.2 AFM matrix of indentations of MoS2 on PMMA substrate performed with 2.6 V force.

Figure 6.3 Examples of torn matrices of indentations. In the upper-left corner we show the force used in the
indentations.

For now, we will focus on the characterization via PL and Raman spectroscopy
of each type of indentations in order to decide which one of the methods gives the
best results about exciton confinement.

6.2 Photoluminescence and Raman spectroscopy of MoS2 and indentations

The optical attributes of MoS2 monolayers have been mostly studied via photolu-
minescence and Raman spectroscopy. The main features of PL spectra have been
already discussed in the Chapter 2, as well as the aspects of the Raman spectrum.
Now we present the results of the optical characterization of MoS2 layers and dis-
cuss what is changed when indentations are performed in monolayers. We begin
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with the Raman spectrum shown in Figure 6.4: the two optical E’ and A’1 modes
are dependent on the strain, but E’ is more sensitive than A’1 for strained mono-
layer; the shifts with respect to the relaxed membrane is about 0.2 cm−1 for E’
and 2.3 cm−1 redshift for A’1, which indicates that in-plane vibrations are more
affected by deformation than out-of plane ones. This is easily explained by the fact
that tensile strain modifies more the Mo-Mo and Mo-S interatomic distances than
the vertical S-S distance, then in-plane strain is always greater than out-of-plane.
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Figure 6.4 Raman spectrum for (a) unstrained and
(b) ∼2.3% strained monolayer MoS2.
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Figure 6.5 Raman spectra for different number of
layers in MoS2-PMMA.

The Raman spectrum - based characterization of the strain is difficult to be per-
formed for the case of nanoindentations because of two facts: the first is that in-
dentations are too small compared to the area that is being sampled in the micro-
Raman, then the features of the indentations could be eclipsed by those of un-
strained region. The second fact is that every indentation also pre-stress its sur-
roundings, and the presence of wrinkles or tears could generate more complicated
strain fields, making it troublesome to establish the reference spectrum of a un-
strained relaxed MoS2 membrane [96]. These are the reasons why we do not de-
vote more interest on Raman spectroscopy along this work; we just relegate this
technique to characterize the number of layers of MoS2: in Figure 6.5 we show our
most relevant results on this characterization on PMMA substrates. The mean E’-
A’1 separation we found for monolayers in our samples was 19.5 cm−1, for bilayers
21.4 cm−1 and for four or more layers >24.2 cm−1.

Different types of PL measurements were performed in various dependences
of ICEX-UFMG due to the specific facilities of each laboratory. For example,
in the Laboratory of Raman Spectroscopy we measured high signal-to-noise ratio
spectra in the range 530 nm - 800 nm, but the main issue was that the diffraction
grating (1800 lines/mm) needed at least twelve wavelenght windows to acquire
the whole spectrum. In the Laboratory of Semiconductors we performed more
satisfactory PL measurements because of the facilities provided by the piezoelectric
device attoCube which allows to control suitably the position of the excitation on
the sample.
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We also performed measurements in the Laboratory of Spectroscopy in which
the setup for hyperspectra was equipped. These measurements at room tempera-
ture provided relevant information about the borders of the flakes and indentations
which will be discussed in this chapter. For now, we organize our PL results by the
temperature at which spectra were measured as follows: in Section 6.2.1 we address
the room temperature measurements for both single indentations and matrices-of-
indentations. Similarly, in Section 6.2.2 we discuss low-temperature measurements
in the same manner as that for room temperature.

6.2.1 Room temperature PL

Most of the measurements were performed in this regime because MoS2 lumi-
nesces at room conditions. Some features of room temperature results such as peak
broadening and shift of the PL will be addressed in this section. Photoluminescence
spectra for both unstrained MoS2, single and matrix indentations are shown in Fig-
ure 6.6, where violet (black) dots in (a) and (b) correspond to spectra of a nearby
unstrained (indented) region. Unstrained spectra show the characteristic two lumi-
nescence peaks that describe the recombination of A and B exciton at ∼ 1.81 eV
and ∼ 2.02 eV, respectively. Exciton A peak is indeed composed of two contri-
butions: one from exciton A itself and other for a negatively charged exciton, or
trion, whose energy is slightly lesser than that of the neutral A exciton (20 meV
lesser) due to the interaction with an additional electron in CB; these curves are
well-fitted with three or four Voigt profiles (as seen in Figure 6.7). A Voigt profile
is the convolution of a gaussian and a lorentzian curves, and is used to describe
cases in which both homogeneous and inhomogeneous broadening are present.

Figure 6.6 Photoluminescence spectrum at room temperature for (a) single indentations and (b) matrix of
indentations. Violet dots represent the spectra for unstrained regions and black dots for strained. Insets show a
detail of the redshift due to strain and the topography of the indentation.

In most of our room temperature spectra, Voigt curves were used for the fitting
due to the predominance of inhomogeneous broadening. We chose four of them
in order to fit the exciton B, exciton A, charged exciton and one broad line that
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helps to fit the 1.5 eV - 1.8 eV part of the spectrum that we will name as satellite
peak. We do not expect any isolated peak in this region because the high carrier-
carrier and carrier-phonon scattering in this material at room temperature increases
the rates of non-radiative processes and impedes the thermalization of the excitons
within the nanoindentations. We also see that the indentations provoke a strain
in the material, lowering the exciton recombination energy. Figure 6.6 shows the
effect of the strain in the membrane due to a single indentation and to a matrix
of indentations: in the case of a single indentation (a), the strain is low and the
redshift (8 meV) is lesser than that of a matrix of indentations (13 meV). This is
an expected result from our considerations about tensile strain in MoS2: the more
the membrane is stretched, the lesser is the exciton recombination energy. We also
point out that a low tensile strain should not affect significantly the intensity of
the exciton A emission, because local small variations of the strain field do not
produce any effect of exciton funneling, while large and extended variations could
produce it. Among other interesting features of the photoluminescence at room
temperatures, as shown in Figure 6.6, we find a broad satellite peak centered barely
at 1.6 eV which is not expected from the theory of exciton emission. In some cases,
such as in Figure 6.6 (b) the intensity is appreciable: it may come from some effect
of the MoS2 on the polymer substrate, or from a residual strain along the flake.
We discard the funneling phenomena as a possible explanation because the width
of the peak is not expected to be so large. Another feature of the spectra at room
temperature was the low (almost negligible) intensity of B emission, this can be
due to the spin population alterations in the flake or an interaction with the polymer
substrate. A fact that supports this argument is that we observed the B intensity
to vary as we move from one PMMA-substrate sample in to other also made of
PMMA, then this feature may depend on the way the samples are prepared.

Figure 6.7 Photoluminescence hyperspectra at room temperature. (a) AFM image of the MoS2 flake, (b) a
typical PL spectrum and intensity.

We used the technique of the hyperspectra to study the photoluminescence in
matrices of indentations at room temperature. Figure 6.7 shows the hyperspectra
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analysis of one sample that has three matrices of indentations labelled as 1, 2, and
3, as seen in the AFM topography of Figure 6.7 (a). The indentations in matrix
1 were not uniform, and the effective strain in each indentation oscillates between
0.41% and 4.6% which makes it difficult to predict any phenomena in this region.
On the contrary, matrix 2 has mainly high values of strain which range between
3% and 6%. Additionally, one of these indentations produced a tear, relaxing the
membrane. As well as those of matrix 1, indentations in matrix 3 were not uniform
and suffered some tears. We chose a region which contains all three matrices in the
hyperspectra to analyze any emergent phenomena.

Some wrinkles and tears of the sample are marked in the AFM image with solid
black lines to guide the eye of the reader. Additionally, we mark with circles in
Figure 6.7 (a) two other relevant regions of the map: the unstrained region which is
the most clean zone of the image, is used to extract the reference PL of unstrained
MoS2. The torn region, which is the zone with the largest number of wrinkles and
tears, is used for studying the effects of membrane relaxation due to tearing in the
PL.

Due to the large laser spot size (∼ 1 µm) compared to the typical sizes of the
indentations and the matrices of indentations, there exists an additional difficulty:
in a typical 10 µm x 10 µm hyperspectra we measure about 32 spectra along a
line, resulting in the measurement of PL of points which are separated 300 nm,
which is a distance smaller than the laser spot size; this leads to an issue known
as oversampling of signals. One way to correct the oversampling is to perform a
deconvolution of the hyperspectra with the profile of the laser spot. Typically, the
spot has a gaussian profile 3, then the deconvolution may be performed numerically
with this hypothesis.

We swept over a 7 µm x 7 µm region in such a way that it covered a portion
of the PMMA substrate, plus a part of the unstrained MoS2 monolayer as well as
the matrices of indentations. We also marked some wrinkles and tears in the flake
because they might produce some shifts in the spectrum. With these considerations,
we are able to detect any phenomena at the edge of the flake by characterizing the
shifts on the intensity, position and width of the different peaks that compose the PL
spectrum at each point in the sample. In order to achieve that, we fit each spectrum
with four Voigt curves, as shown in Figure 6.7(b): as we move along the sample,
we study separately the contribution of each line to the PL. We present the results
of our measurement of hyperspectra in Figures 6.8, 6.9 and 6.10 which show the
intensity, position and linewidth maps for the satellite, trion and exciton A peaks.

In our analysis of the emission intensity from Figure 6.8, we observed an abrupt
increase of the emission at the edge of the flake and it remains the same until a
sudden decrease occurs in the leftmost part of the flake. The contribution of the
satellite peak does not exhibit any appreciable change of the intensity when ap-
proaching to the indentation matrices, as shown in Figure 6.8 (b). However, the
A emission from the matrix 2 is strongly suppressed while the trion emission is

3This is true for gas lasers, but may be no longer valid for the 488 nm diode laser that we used because the emission for
diode lasers is not as coherent as that of gas-based lasers; nevertheless we assumed a gaussian shape for the beam as a first
approximation.
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Figure 6.8 PL-intensity hyperspectra at room temperature. (a) AFM image of the MoS2 flake, the (b) satellite
peak, (c) trion and (d) exciton A contributions.

increased (See Figures 6.8 (c)-(d)), possibly due to an interplay between the inten-
sities of trion and A emission in the fitting. We will return to this discussion later
to expose first the rest of the results of hyperspectra.

In order to analyze the shifts in the peak position for each contribution we gen-
erated a color-scale (in eV) in which red means redshift and blue means blueshift,
as displayed in Figure 6.9, taking as reference the peak position at an unstrained
region of the map. The satellite peak in Figure 6.9 (b) shows a strong redshift at the
borders and the torn region of the flake, but it is almost insensitive to the variation
of the position along the map. The same behavior is displayed by the trion peak in
Figure 6.9 (c), but a slightly larger blueshift (∼10 meV) is observed at the matrix
2 in Figure 6.9 (d). This is opposite to the expected for strained MoS2, where a
decrease in the band-gap energy is manifested as a redshift of the A emission. Fur-
ther discussion about this point will be combined with the interplay of trion and A
emission, later in this chapter.

Other feature in the hyperspectra is that of the linewidth, as shown in Figure
6.10, using a color scale that displays in eV whether the peak is narrowed (nega-
tive values) or broadened (positive values) compared to a reference spectrum in an
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Figure 6.9 PL-shift hyperspectra at room temperature, taking as a reference the spectrum of an unstrained
position of the sample. (a) AFM image of the MoS2 flake, the (b) satellite peak, (c) trion and (d) exciton A
shifts.

unstrained region of the map. For the torn region of the map, the satellite (b) and
the trion (c) peaks have opposite behaviors: while the satellite peak is strongly nar-
rowed, the trion is broadened. Then there is a correlation between the the satellite
and trion peaks, which may come from the fitting optimization of the spectra: the
fitting routine may have generated a spurious interplay between peaks. The exciton
A (See Figure 6.10 (d)) peak is strongly narrowed in the matrix 2, as well as for
the satellite and trion peaks, then the matrix of indentations produces an overall
narrowing of the spectrum.

Now, we return to our discussion about the interplay between the trion and A
intensities, which is somehow related to the fact of having observed an unexpected
blueshift of the A emission. Thus, this interplay may cause either an energy shift
of the maximum of the intensity or a slant of the shape. In some areas of the
map, such as in the border of the flake, a strong blueshift is also observed, then
we may compare the nature of the blueshift in the border to that of the blueshift in
the matrix of indentations. To achieve that, we analyze the shape of the spectra at
different points of the sample, such as at the border, at the unstrained region and at
the indented part of the map.
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Figure 6.10 PL-linewidth hyperspectra at room temperature. (a) AFM image of the MoS2 flake, the (b)
satellite peak, (c) trion and (d) exciton A linewidth.

Figure 6.11(a) shows a sequence of points labeled from 1 to 4 which represent
two points in the unstrained region, a point within the matrix of indentations and a
point at the edge of the flake, respectively. The black curve in part (b) shows the
difference between the two nearby 1-2 points, which is mainly white noise. The
green curve shows the difference between unstrained zone and the matrix; there are
three shifts of 1-3 from positive to negative values, which means that the slant of
the spectrum is affected by the strain. In contrast, the violet curve (that corresponds
to the 1-4 shift) displays just one shift of sign, which means that the spectrum does
not change its shape but is shifted to the red. From these facts we could conclude
that the effect of the indentations is to distort the spectrum, probably by increasing
the emission from charged excitons compared to that of neutral excitons. In the
same way we asseverate that there is an energy shift of the emission at the edge of
the flake, but the nature of this shift is not clear.

Room temperature PL-hyperspectra displayed some features such as blueshift of
A emission, slant of the spectrum and overall spectrum narrowing due to the pres-
ence of indentations. Nevertheless, the phenomena that we are expecting to emerge
due to the indentations should actually be manifested in the lowest energy region
of the spectrum, because the confined exciton emission from quantum dots lie on
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Figure 6.11 Color online. Analysis of the shape of the spectra: (a) Map of the intensity of exciton A; points
1 to 4 show the points in which the spectra were analysed. (b) difference of normalized PL of 2, 3 and d with
respect to 1. (c) scheme of the PL redshift as observed in 1-4, and slant as observed in 1-3.

energies close to 1.55 eV or lower, according to our calculations. As discussed in
previous chapters, these phenomena is not observable at room temperature, reason
why we dedicate the next section to analyze our low-temperature measurements.

6.2.2 Low temperature PL

We lowered the temperature of the MoS2 monolayer over PMMA to 10 K to inves-
tigate the emission from the indented membranes at a temperature regime in which
confinement of excitons could appear. In order to make a comparative analysis be-
tween these two temperature regimes, we chose the same sample whose spectra at
room temperature were presented in the last section and measure the PL at the same
positions. The AFM topography is shown in Figure 6.12 (a) in which we marked
the two points, one inside and the other outside the matrix of indentations 2: in this
manner we studied the PL for both strained and unstrained MoS2 and also for both
room and low temperature.

It is known that as the temperature is lowered, the band-gap increases due to
thermal dilatation effects and reduced electron-phonon interaction [97], therefore
the position of exiton A peak is blueshifted. Low temperature also favors the emer-
gence of other emission peak which come from the emission of excitons bound
to surface defects of the lattice; this is called the exciton S peak and appears at a
lower energy than that of exciton A peak at room temperature, explaining the bound
character of this type of exciton [98]. These features are shown in Figure 6.12 (b),
which displays the PL at position 2 for both room and low temperatures. The rea-
son why it is not possible to observe the exciton S at room temperature is the same
why the confinement of excitons cannot also be observed: the thermal fluctuations
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Figure 6.12 Photoluminescence at 10 K for indented MoS2 on a PMMA substrate. (a) shows the sample
and the positions at which the PL was measured, (b) shows the emission at point 2 at both room and low
temperatures. (c) shows the spectra at low temperature at both positions and (d) the power dependent spectrum
at position 2.

imprint enough energy to the excitons to be scattered out of the defects, then the
emission of bound S excitons is decreased.

Moreover, surface defects are randomly (say, uniformly) distributed along the
flake, therefore there should not be any spatial dependence of the emission of exci-
ton S: this is one of the features that we show in Figure 6.12 (c), in which the PL was
measured at both positions for the same 10 K temperature. The intensity of exciton
S is unchanged, as expected, while the exciton A is strongly affected by the posi-
tion; more specifically, the emission of exciton A is lowered and blueshifted at the
matrix of indentations by 19 meV. One possible consequence of this phenomenon
is that the blueshift observed in the part (c) actually corresponds to a reduction of
the population of charged excitons (or electrons) when moving towards the matrix
of indentations. The fact that supports this assertion is that the right-side (blue-side)
of the exciton peak is the same for both spectra: if there were any shift, the sides
of the peaks would not match, just as depicted in Figure 6.11 (c) for a typical shift;
therefore, the blueshift observed here would follow more a change in the weights of
the emission from neutral and charged excitons. Inset in the part (c) shows the 1.44
eV - 1.52 eV region of the PL in which we expected to observe some features of
quantum dot emission; however, there is no such manifestation, maybe due to the
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still high power used to excite the sample (0.6 mW). This could mean that even at
10 K the excitons are strongly scattered out of the matrix of indentations and then
there is no emission from the quantum dots. That could also mean that the QDs
saturate and their PL is low compared to the high background emission.

Another feature observed for the PL as a function of the excitation power matches
with the reviewed in the literature: both peak A and peak S are power-dependent,
as shown in Figure 6.12 (d). The A peak is expected to grow linearly with power,
since the number of excitons created per unit area per unit time are linearly related
to the number of incoming photons per unit time per unit area that excite the sam-
ple. Nevertheless, peak S is expected to grow sublinearly because of the defect-like
nature of its emission: once all the defects at the MoS2 surface are saturated, the
emission does not increase anymore with the power [98]. From this observation
we deduce that there exist a large number of surface defects in the crystal since the
behavior of the intensity for peak S is still linear in the power regime studied.

In this chapter we exposed the main results of the experimental part of our work:
we addressed the physics and the achievement of nanoindentations via the AFM in
MoS2 over PMMA substrate: we found that 2.4 V setpoint voltage was an optimum
value that permitted us to perform small indentations (a few tens of nm diameter),
although we needed sizes lower than 15 nm. We also showed the features of the
Raman spectrum that depend on the strain and on the number of layers, and found
that A’1 Raman mode is strain-dependent, while both E’ and A’1 modes tend to
separate when increasing the number of layers. Finally we showed the results on
single PL and hyperspectra at room and 10 K temperature.
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Conclusions and issues

In this work we described theoretically the generation of quantum dots in atomic
monolayers of molybdenum dysulfide and characterized their emission by means of
the photoluminescence spectrum. Although the photoluminescence measurements
in both room- and low-temperature regimes did not show the enough evidence to
demonstrate the generation of the dots, we exhaustively explored the experimen-
tal difficulties that lead to these results. We organize the specific conclusions as
follows:

Conclusions from the theoretical predictions

We described the exciton attributes such as total energy, binding energy and ef-
fective mass by means of the k · p perturbation theory, which used the results of
ab initio calculations and symmetry considerations found in the literature. Later,
we related these properties to the strain via deformation potential and obtained a
first-order expression for the exciton energy as a function of the local strain; then
we stated our hypothesis of exciton confinement via the nanoindentation in which
a quantum dot could be generated through the strain field induced by a AFM-based
nanoindentation of a MoS2 monolayers. Using this hypothesis we built a criterion
for the generation the quantum dots in the laboratory and supported that criterion
with some examples and simulations of exciton wavefunctions within the nanoin-
dentation.

Experimental conclusions

Provided the theoretical predictions we created some different samples of MoS2
monolayers over a poly-methyl-methacrylate (PMMA) substrate. This substrate
was the best available polymer that satisfied the requirements of elasticity-plasticity
for nanoindentations. AFM-based characterization of the topography revealed that
the substrate was uniform, but the MoS2 flakes often showed several wrinkles
which were a symptom of a pre-strained membrane.

Our main findings are that at room temperature, the strain causes a slant on the
shape of the peak A: this slant comes from a shift of the populations of neutral and
charged excitons in the area of the indentations. The redshift of peak A due to the
strain generated by an indentation is low (a few meV for 2% strain at the inden-
tation): this is because we are actually observing the overall strain field which is
slightly affected by an indentation, while the signal that comes from the indentation
is very low or nonexistent, probably due to the short exciton lifetime that impedes
the population of the confined levels in the indentation before the recombination.

For low temperatures we observed the emergence of the peak S in the PL spec-
trum: this peak comes from exciton emission at surface defects. Peak S intensity
is constant along the flake since the surface defects are uniformly distributed. The
apparent blueshift of peak A at the indented zone could actually be due to an ex-
change of population between neutral and charged excitons wen approaching to the
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strained zone: the exciton A intensity increases at the indentations while the trion
intensity decreases and vice-versa.

The overall conclusion of our PL measurements is that the main features of
the indentations occurred at the highest energy part of the spectrum: redshifts and
slants. Nevertheless the phenomena that we expected, such as narrow and intense
lines at low energy (say, 1.5 eV) were not manifested at 10 K for 30 nm-sized
indentations. This was because the size of the dot was not suitable for the measure-
ments performed at such temperature. The most suitable size calculated to achieve
exciton confinement in a nanoindentation was 15 nm at 4 K.

Issues and perspectives

Along our research we faced several difficulties of both theoretical and experimen-
tal nature; although all the theoretical problems were just related to the lack of a
consensus in the literature around the ab initio calculations and related quantities,
such as the gap energy, the effective mass of the carriers, the deformation potentials
and other relevant parameters which are used in the k · p and tight-binding theories.
Experimental difficulties were more diverse and related to the nanoindentation pro-
cess, the photoluminescence measurements and the temperature issues.

The nanoindentation-related issues were the proper characterization of the elastic-
plastic regime of the PMMA substrate in which we consider only a macroscopic
model of indentation, neglecting the molecular scales of the nanoindentations. There
was also a difficulty on the measurement of the shape of an indentation: only the
indentation depth and width were measured, neglecting the complicated shape of
an indentation which comes from the combination of elastic and plastic proper-
ties of both MoS2 and PMMA in the process of indentation. We also noticed that
there exists an underestimation of the strain because the size of the probe is always
comparable to the dimensions of the indentations: the calculated uncertainty in the
measurement of strain is about 0.001, which may lead to an error of 50% in the
measurement of the strain. Other common issue in matrices of indentations was
the strain field generated between two adjacent indentations which is difficult to
quantify and sometimes so large that it produced tears that relax completely the
membrane, damaging all neighboring indentations.

Photoluminescence was also difficult to be performed because we were not able
to use a technique which conciliate both the low temperature and spatial resolution
needed to characterize properly the quantum dot emission. We also point out that
the excitation power and energy create electron-hole pairs of high energy in their
respective bands and may recombine much before thermalizing inside the quantum
dot, which allow just a few states within. One possible solution to these issues
could be to apply the same scheme of the hyperspectrum measurement to a sample
mounted on a cryostat and pump it with a low-power laser of wavelenght larger
than 700 nm such that we can excite the quantum dots near-resonantly and avoid
the creation of excitons outside the indentations.

There was also an issue related to the temperature and the thermal processes
at low temperature: the sample never reached the 4 K temperature at which the
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quantum dot features were expected to be manifested. Instead, the minimum tem-
perature measured in the cryostat was 9 K, which is still high for the phenomena
that we predicted. One possible solution of this issue is to decrease very slowly the
temperature of the sample until it reaches 4 K. Processes such as thermal relaxation
of PMMA at low temperatures have been studied: although these processes could
be troublesome, they have been reported to occur at temperatures well below 1 K
[99]. Even thought the thermal expansion coefficient of PMMA is well-known for
temperatures greater than -50 °C, it remains unknown for low temperatures, mak-
ing it difficult to describe quantitatively the structural properties of PMMA in the
low temperature regime.

Finally, we recall that a categorical demonstration of the generation of quantum
dots in MoS2 via nanoindentation should reflect the single-photon nature of the
emitter: this can be performed through a measurement of correlation functions.
Quantum dots are artificial atoms indeed, then the transitions occurring in them
involve the emission of a single photons whose statistics are characterized by the
second-order correlation function. A typical setup for this measurement is known
as the Hanbury-Brown-Twiss experiment (HBT) which counts the coincidences of
the arrival of a photon at one detector and that of a second photon at other detector
which is delayed some time τ in relation to the arrival of the first photon. A measure
of this kind is also regarded as a perspective of future work in this direction.
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COMPLETE CALCULATION OF THE EXCITON

WAVEFUNCTION

As stated in Chapter 1, the electronic states of the band-edges are mixtures of Mo 4d
and S 3p orbitals. In the K points, the d orbitals can be divided in three irreducible
representations: A′(dz2), E ′1(dxy,dx2−y2) and E ′′(dxz,dyz). In the monolayer limit,
reflection symmetry in the z axis allows hybridization between A′ and E ′1 orbitals.
Figure A.1 shows the band-edges in the neighborhood of K and K′ points, and
depicts the electronic state in the CBM and VBM mainly as Mo 4d orbitals. We
label these states as |φc〉 and |φν〉 for the CBM and VBM respectively.

E
CBM

VBM

K K'
k

Figure A.1 Approximate parabolic band structure near K and K′ points. VB is split between spin-up (red
line) and spin-down (blue) at K and K′, resp.
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Therefore, the states of CB and VB can be written as |φc〉= |φc〉′ ≡ |dz2〉, |φν〉 ≡
(|dx2−y2〉+ i|dxy〉)/

√
2 and |φν〉′ ≡ (|dx2−y2〉− i|dxy〉)/

√
2, respectively. We could

define a more compact notation by introducing the valley index τ which is defined
as +1 for K valley and as -1 for the K′ valley. In this manner we can write the
VBM state as |φ τ

ν 〉= (|dx2−y2〉+ iτ|dxy〉)/
√

2. We can construct a suitable basis to
treat the single-particle states in monolayer MoS2, then we use the Dirac fermion
formalism to describe a two-fold spinor whose components are the |φc〉 and the |φ τ

ν 〉
states of the band-edges. The notation follows:

|φc〉=

(
1
0

)
|φ τ

ν 〉=

(
0
1

)
. (A.1)

K

K'K

K'

K K'

C3

(a) (b)

Figure A.2 Symmetry in the hexagonal lattice. (a) Symmetry in the reflection about an axis, (b) Rotation
symmetry in the C3h group.

We use some considerations about symmetry to identify which momentum el-
ements are zero. In Figure A.2 (a) we see that K and K′ are related through a
reflection about the vertical (and horizontal) axis: (K′x,K

′
y) = (−Kx,Ky), thus we

could use a compact notation to describe q by redefining the lowering and raising
operators: q± = τqx± iqy. The Figure A.2 (b) describes the symmetry of a three-
fold rotation C3 of 2π/3 in an hexagonal lattice; the effect of such rotation in the
states and the operators is:

C3|φν〉=C3|A′〉= |A′〉, C3|φv〉=C3|E ′1〉= e2iπ/3|E ′1〉
C3P±C†

3 = e∓2iπ/3P± (A.2)

Therefore, as C†
3C3 gives the identity matrix, then we can calculate for example

the 〈E ′1|C
†
3C3P±C†

3C3|A′〉 entry, which must be equal to 〈E ′1|P±|A′〉, then

〈E ′1|C
†
3C3P±C†

3C3|A′〉= 〈E ′1|e−2iπ/3e∓2iπ/3P±|A′〉=

{
e−4iπ/3〈E ′1|P+|A′〉, P+
〈E ′1|P−|A′〉, P−
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We see that 〈E ′1|P+|A′〉 = e−4iπ/3〈E ′1|P+|A′〉 requires 〈E ′1|P+|A′〉 = 0, thus the
only nonzero 〈E ′1|Hk·p|A′〉 entry is given by 〈E ′1|P−|A′〉. In this manner, we can
construct the k ·p hamiltonian as

H0 = at(τkxσ̂x + kyσ̂y)+
∆

2
σ̂z, (A.3)

where a is the lattice parameter, t is the hopping integral between neighboring
lattice sites, ∆ is the electronic band gap and the σ̂is are the usual Pauli matrices.

Using the same notation and the same basis as in Chapter 4, we return to the
derivation of the exciton properties at the same point in which we announced this
appendix in the Chapter 4. Then, we start with the exciton hamiltonian:

HT =


V (r) −at(k2x− ik2y) at(k1x− ik1y) 0

−at(k2x + ik2y) ∆−λ +V (r) 0 at(k1x− ik1y)

at(k1x + ik1y) 0 −∆+λ +V (r) −at(k2x− ik2y)

0 at(k1x + ik1y) −at(k2x + ik2y) V (r)

 .

(A.4)
The hamiltonian (A.4) satisfies the Schrödinger equation

HT Ψ = εΨ (A.5)

To simplify our notation, we write the hamiltonian (A.4) as:

HT =

(
O2 + γ(σ0−σ3)+V (r)σ0 O1

O+
1 O2− γ(σ0 +σ3)+V (r)σ0

)
, (A.6)

where

O2 =

(
0 −at(k2x− ik2y)

−at(k2x + ik2y) 0

)
, (A.7)

γ = ∆−λ

2 , O1 = at(k1x− ik1y)σ0 is a nonhermitian operator, σ0 is the 2×2 identity
matrix and the σ3 is the Pauli matrix defined before in this section. From this point
we shall omit the redundant index ↑ do describe the K valley. The Schrödinger
equation (A.5) may be written as the following system of coupled equations:

(O2 + γ(σ0−σ3)+V (r)σ0)ψc +O1ψν = σ0εψc

O+
1 ψc +(O2− γ(σ0 +σ3)+V (r)σ0)ψν = σ0εψν . (A.8)

We can invert the last equation of (A.8) as

ψν = (−O2 +σ0ε + γ(σ0 +σ3)−V (r)σ0)
−1 O+

1 ψc, (A.9)
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and make a zeroth-order approximation:

(−O2 +σ0ε + γ(σ0 +σ3)−V (r)σ0)
−1 =

1
εσ0 + γ(σ0 +σ3)

+O{O2,V (r)}.
(A.10)

Here, we assumed the kinetic energy and the Coulomb interaction to be weak
with respect to the quasiparticle total energy, the gap energy and the spin-orbital
coupling. This is justified within a first order perturbation on V (r) and O2. In this
way, we rewrite the first equation of (A.8) as:

(O2 + γ(σ0 +σ3)+V (r)σ0)ψc +
O+

1 O1

εσ0 + γ(σ0 +σ3)
ψc = σ0εψc. (A.11)

Equation (A.11) describes the energy of a bound state in the conduction band;
in the coordinate representation we have to write the ki as differential operators
and solve the equation to obtain the wavefunction. We use a separation of the
center of mass an the relative motions, by defining a “center of mass” coordinate
R = αr1 +βr2 and using the following ansatz:

Ψ j = eiK·R
ψ j(r), (A.12)

where K is the center-of-mass momentum operator which can be decomposed
into the operators K± = Ke±iΦ = Kx± iKy, where Φ = arctan

(
Ky
Kx

)
. In the new

reference frame, we can write the derivatives as:

Kx = αk1x +βk2x, Ky = αk1y +βk2y

∂1xΨ = iαKxeiK·R
ψ(r)+ eiK·R

∂xψ(r),
∂1yΨ = iαKyeiK·R

ψ(r)+ eiK·R
∂yψ(r),

∂2xΨ = iβKxeiK·R
ψ(r)− eiK·R

∂xψ(r),
∂2yΨ = iβKyeiK·R

ψ(r)− eiK·R
∂yψ(r). (A.13)

Given that k =−i∇, thus we can write the identities:

k1x = αKx− i∂x, k1y = αKy− i∂y,

k2x = βKx + i∂x, k2y = βKy + i∂y, (A.14)

and hence

k1x− ik1y = αK−− i∂x−∂y, k1x + ik1y = αK+− i∂x +∂y,

k2x− ik2y = βK−+ i∂x +∂y, k2x + ik2y = βK++ i∂x−∂y. (A.15)
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Equation (A.15) allows us to write the O1 operator as

O1 = at(αK−− i∂x−∂y)σ0, O+
1 = at(αK+− i∂x +∂y)σ0, (A.16)

and

O+
1 O1 = a2t2

σ0(αK+− i∂x +∂y)(αK−− i∂x−∂y)

= a2t2
σ0
[
α

2K2− iα(K++K−)∂x−α(K+−K−)∂y−∇
2
r
]

= a2t2
σ0
[
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

]
, (A.17)

which is assumed to be hermitian. We replace this result in (A.11) to obtain:

(O2 + γ(σ0 +σ3)+V (r)σ0)ψc+

+
a2t2σ0

[
α2K2−∇2

r−2iα(Kx∂x +Ky∂y)
]

εσ0 + γ(σ0 +σ3)
ψc = σ0εψc. (A.18)

as ψc =

(
φcc

φcν

)
, where φcc(r) = φc(r1)φν(r2), then we could write (A.18) as

(
V (r) −at(βK−+ i∂x +∂y)

−at(βK++ i∂x−∂y) V (r)+2γ

)(
φcc

φcν

)
+

+a2t2
σ0
[
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

]( 1
ε+2γ

1
ε

)(
φcc

φcν

)
= ε

(
φcc

φcν

)
(A.19)

which is equivalent to a system of two equations:

[
V (r)+

a2t2

ε +2γ

(
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

)]
φcc−

−at(βK−+ i∂x +∂y)φcν = εφcc, (A.20)[
V (r)+2γ +

a2t2

ε

(
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

)]
φcν−

−at(βK−+ i∂x−∂y)φcc = εφcν . (A.21)

As our goal is to obtain an equation for one electron in c and one hole in ν , i. e.
for φcν , we first obtain φcc from (A.20):
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φcc =

[
V (r)− ε +

a2t2

ε +2γ

(
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

)]−1

×

×at(βK−+ i∂x +∂y)φcν . (A.22)

Using again the approximation of low kinetic energy and Coulomb interaction,

[
V (r)− ε +

a2t2

ε +2γ

(
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

)]−1

=−1
ε
−O{k2,V (r)},

(A.23)

thus, (A.22) is approximated as:

φcc ≈−
at(βK−+ i∂x +∂y)

ε
φcν , (A.24)

and equation (A.21) becomes:

[
V (r)+2γ +

a2t2

ε

(
β

2K2−∇
2
r +2iβ (Kx∂x +Ky∂y)

)
+

+
a2t2

ε

(
α

2K2−∇
2
r−2iα(Kx∂x +Ky∂y)

)]
φcν = εφcν (A.25)

If we make α = β = 1/2, then

[
V (r)+(∆−λ )+

a2t2K2

2ε
− 2a2t2

ε
∇

2
r

]
φcν = εφcν . (A.26)

Using the Coulomb form of the potential V (r), we write the equation in a con-
venient way:

[
−2a2t2

ε
∇

2
r−

e2

4πε0εr

]
φcν =

[
ε−∆+λ − a2t2K2

2ε

]
φcν (A.27)

or

[
F1(ε)∇

2
r−

e2

4πε0ε

]
φcν = F0(ε)φcν , (A.28)

where F1(ε) =
2a2t2

ε
ans F0(ε) = ε −∆+λ − a2t2K2

2ε
. Equation (A.28) is that

of the two-dimensional hydrogenoid atom. As it is well known, the wavefunctions
of the 2D hydrogenoid atom are the product of a decaying exponential function
(which represents the asymptotic behavior at high r), an integer-power of r (for
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asymptotically small r) and hypergeometric functions for intermediate values of r.
The energy spectrum is characterized by the quantum number n as

F0 =−
(

e2

4πε0ε

)2 1
4F1(n−1/2)2 (A.29)

and the normalized wavefunctions [100] are:

φcν =
βn

2|l|

[
(n+ |l|−1)!

(n−|l|−1)!(2n−1)

]1/2

e−βnr/2(βnr)|l|×

× eilφ
√

2π
F(−n+ |l|+1,2|l|+1,βnr), (A.30)

where βn = e2/(n− 1/2)4πε0εF1(ε). We can manipulate equation (A.29) to
know the energy value, from which it follows that:

2ζ

ε

(
ε− (∆−λ )− ζ K2

2ε

)
=−C

4
, (A.31)

where C = (e2/(4πε0ε)(n−1/2))2, and ζ = a2t2. Multiplying both sides of the
last equation by 4ε2 and solving the resulting 2nd-degree algebraic equation, we
obtain the energy:

ε =
1

8ζ +C

[
4ζ (∆−λ )±

√
(4ζ (∆−λ ))2 +4(8ζ +C)ζ 2K2

]
(A.32)

That is the energy dispersion ε(K) of an exciton in TMDC. In the low energy
regime, K2 is small and we can expand (A.32) to get

ε = ε(0)+
h̄2

2M
K2, (A.33)

where

ε(0) =
8ζ (∆−λ )

8ζ +C
, M =

h̄2(∆−λ )

ζ
, (A.34)

are the exciton rest energy and mass, respectively. The exciton binding energy
is obtained by making n = 1 from equation (A.29):

EB =
C(∆−λ )

8ζ +C
(A.35)

These are the results exposed in Chapter 4 for the properties of the exciton.
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