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A B S T R A C T

In the present work, we theoretically address the possibility of using
strongly coupled photonic crystal molecules to efficiently increase
the mutual coupling rate between two quantum dots at large inter-
dot distances. The photonic molecules we are interested in are com-
posed of two coupled photonic crystal slab cavities, or photonic crys-
tal dimers. We specifically consider coupled L3 cavities, i.e., three
missing holes in a hexagonal lattice. We treat the light-matter cou-
pling with a semiclassical formalism based on Green’s tensors and
the classical electromagnetic fields are solved within a guided-mode
expansion approach. We find that when the quantum dots are in res-
onance with either of the two lowest energy modes (bonding/anti-
bonding) of the photonic dimer, and in the strong cavity-cavity cou-
pling regime, the inter-dot radiative coupling strength is proportional
to the quality factors of the dimer modes and it can be of the order
of 1 meV, which is at least an order of magnitude larger than typi-
cal values achieved in one-dimensional systems. We also address the
effects of structural disorder in the photonic crystal lattice on the mu-
tual coupling between the two quantum dots, by assuming disorder
parameters that are consistent with the current state-of-art fabrication
technology. We find that the effective radiative coupling between the
dots is robust against non-perfect quantum dot positioning and, to a
smaller extent, to structural disorder in the photonic crystal. Using a
fully quantum mechanical model, based on the master equation, we
quantify the entanglement between the quantum dots by the Peres-
Horodecki negativity criterion. We show that it is possible to achieve
negativity values of the order of 0.1 (20% of the maximum value) in
the steady sate regime, for interdot distances which are larger than
the characteristic wavelength of the system. We also find that this
amount of entanglement remains of the same order of magnitude, as
long as the distance between the dots is such that the normal mode
splitting of the photonic dimer is much greater than the normal mode
linewidth. Considering detuned quantum dots, we find that the en-
tanglement is preserved as long as the dot-dot detuning is smaller
than the exciton linewidth. Finally, we determine that the most ap-
propriate configuration for long-range entanglement applications is
the one for which the line connecting the centers of the L3 cavities
is at an angle of 30 degrees with the horizontal axis. Based on this
configuration, we propose a simple device for practical applications
in the transient dynamics where the amount of entanglement can be
of the order of 40% for state-of-art InGaAs quantum dots.
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1
I N T R O D U C T I O N

In 1987, Eli Yablonovitch proposed in a revolutionary work the pos-
sibility of inhibiting the spontaneous emission using a three dimen-
sional periodic dielectric semiconductor structure, by overlapping the
electromagnetic band gap with the electron-hole recombination en-
ergy of the semiconductor [1]. In the same year, Sajeev John intro-
duced the idea of strong Anderson localization of photons in dis-
ordered dielectric systems, by fluctuating a periodic dielectric func-
tion in a superlattice with a random dielectric contribution [2]. Due
to these important works, nowadays 1987 is known as the birthday
of photonic crystals, namely, periodic spatially-modulated dielectrics,
with potential capabilities of controlling the flow of light. Photonic
crystals, schematically represented in Fig. 1, can be periodic in one,
two or three dimensions, allowing the engineering of the electromag-
netic density of states throughout the dielectric structure [3]. In partic-
ular, two-dimensional photonic crystals embedded in planar semicon-
ductor dielectric waveguides, i.e., two-dimensional photonic crystal
slabs, have emerged as the best candidates for on-chip implementa-
tions due to the high-nanometric precision of lithography and etching
processes achieved nowadays [4, 5]. On the other hand, semiconduc-
tor quantum dots have attracted considerable attention in the last two
decades, because they are promising candidates to realize solid state
quantum bits (qubits) to be employed in quantum information and
communication technologies [6, 7]; their characteristic discrete spec-
tra, long coherence times, and large oscillator strengths make them
almost ideal artificial atoms that can be fixed in position and inte-
grated into semiconductor structures [8, 9]. Interfacing photonic crys-
tals with semiconductor quantum dots have allowed to study a vast
variety of cavity quantum electrodynamics phenomena [10, 11, 12],
quantum information technologies [13] and quantum photonic ap-
plications [14, 15]. Specifically, fully quantum mechanical effects as
strong light-matter coupling [16, 17] and control of spontaneous emis-
sion [18, 19] have been successfully demonstrated in photonic crystal
cavities due to their capabilities of confining the light with modal vol-
umes next to the diffraction limit and very high quality factors [20].

The realization of two coherently interacting quantum dots and the
possibility to externally control such interaction are crucial require-
ments to perform two-qubit operations, which are the building blocks
of a quantum information protocol [22]. Nevertheless, the interaction
strength between two quantum dots decays rapidly as a function

1



2 introduction

Figure 1: Schematic illustration of one, two and three dimensional periodic-
ity in photonic crystals. Figure taken from Ref. [21].

of the inter-dot distance [23], which makes entanglement challeng-
ing when their distances are larger than their characteristic emission
wavelength. Thus, there is a growing theoretical and experimental
interest to mediate the dot-dot coupling via electromagnetic modes
in a semiconductor photonic crystal structure [24, 25, 26], enabling
controlled gate operations with such interacting qubits through a
photonic quantum bus, namely, a photonic degree of freedom which
interacts with the localized qubits. Due to the exceptional capabil-
ities to efficiently guide and confine the electromagnetic radiation,
and the high degree of precision in fabrication techniques currently
achieved, photonic crystal slab structures should allow to overcome
the short-range Förster coupling between interacting quantum dots,
thus achieving sizable effective radiative coupling at distances quite
larger than their emission wavelength. Proposals for increasing the
mutual interaction distance between two quantum dots in a photonic
crystal platform mainly considered using a waveguide as a bus for
photon propagation [26, 27, 28]. The role of structural disorder on
light localization was also addressed [29]. Alternatively, preliminary
studies considered the mutual coupling between two quantum dots
positioned at the field antinodes within the same photonic crystal cav-
ity [26, 30], for which early experimental evidence was shown [24, 31].
The possibility of mediating the inter-dot coupling through the nor-
mal modes of a photonic molecule has been considered for coupled
micro disks [32], where the distance is limited by evanescent inter-
cavity coupling in free space.

In the present thesis we theoretically address the possibility of us-
ing strongly coupled photonic crystal molecules, i.e., two or more
strongly coupled photonic crystal cavities, to efficiently increase the
mutual quantum dot coupling rate even at large distances, which
was overlooked in the literature up to our first publication, Ref. [33].
The key parameters leading to a sizable radiative coupling between
quantum dots in resonance with a given photonic mode are either



introduction 3

Figure 2: Schematic representation of the system investigated in this work:
two strongly coupled photonic crystal (PC) nanocavities, each con-
taining a single quantum dot (QD). The distance between the
nanocavities, dc, can be larger than the characteristic exciton emis-
sion wavelength in vacuum, λ0.

the coupling strengths between each dot and the field, or the total
(intrinsic and extrinsic) photonic mode and exciton loss rates. The for-
mer quantity increases as the modal volume decreases, for two quan-
tum dots that are spatially positioned at an electric field antinode
of the corresponding photonic mode, and the latter should be small
as compared to the exciton-field coupling strengths. Photonic crys-
tal molecules naturally fulfill these required conditions. In fact, the
normal modes associated to photonic crystal molecules are strongly
localized in the photonic cavities, allowing modal volumes next to the
diffraction limit, and quality factors can be even larger (i.e., smaller
losses) than the quality factors of the decoupled cavities [34]. In ad-
dition, it has been recently shown that it is possible to have strongly
coupled photonic crystal cavities at inter-cavity distances which are
quite larger than the characteristic wavelength of the system in a pho-
tonic crystal molecule [35]. A schematic representation of our system
is shown in Fig. 2. The photonic molecules we are interested in are
composed of two coupled nominally identical photonic crystal slab
cavities, i.e., photonic crystal dimers.

This thesis is organized as follows. In Chapter 2, the fundamental
theory of photonic crystals and the key aspects of the guided mode
expansion method are presented. We also discuss the basic theory
of quantum dots within a simple harmonic oscillator model as well
as the 1/R3 dependence of Förster interaction between two coupled
quantum dots spatially separated by R. The semiclassical and quan-
tum formalisms adopted for studying the two-dot photonic-molecule
system are also discussed in detail. In Chapter 3, the main results on
the long-distance radiative coupling between the quantum dots cou-
pled through the normal modes of a photonic crystal dimer, disorder
effects and long-range entanglement between the dots are present.
Finally, the conclusions and future developments are given in Chap-
ter 4.





2
F U N D A M E N TA L T H E O RY

This chapter is addressed to review the basic theory of photonic crys-
tals and quantum dots, as well as the classical, semiclassical and fully
quantum mechanical methods adopted for solving the system which
is the subject of study of the present thesis.

2.1 theory of photonic crystals

The electronic transport in atomic or molecular crystals is determined
by the geometry of the underlying Bravais lattice and the physical
properties of the atomic basis. As it is well known from solid state
physics, electrons suffer coherent scattering when the period of the
lattice and the size of the atomic basis, determined by the atomic po-
tential, is of the order of their de Broglie wavelength. These scattered
waves can interfere, giving rise to allowed (constructive interference)
and forbidden (destructive interference) states. The former are known
as electronic bands and the latter as electronic band gaps. Similarly,
electromagnetic waves suffer coherent scattering in periodic dielec-
tric media when the period of the lattice and the dielectric dimensions
are of the order of the electromagnetic wavelength. Here, constructive
and destructive interference of the scattered waves determine the pho-
tonic bands and photonic band gaps of the system, respectively. Such
structures, whose dielectric function is periodically modulated, are
known as photonic crystals, and they are a subject of study of electro-
magnetic theory, applying methods and concepts usually employed
in quantum mechanics.

2.1.1 Maxwell’s equations in periodic dielectric media

The starting point of every study on photonic crystals is determined
by the formulation of the problem in terms of the fundamental equa-
tions of the electromagnetic theory, i.e., Maxwell’s equations. Since
we are mainly interested in the spectrum of the system instead of its
physical response, we assume that free charges and electric currents
are absent. Under these assumptions, Maxwell’s equations take the
following form in Gaussian units:

∇ ·D(r, t) = 0, ∇× E(r, t) = −
1

c

∂

∂t
B(r, t),

∇ ·B(r, t) = 0, ∇×H(r, t) =
1

c

∂

∂t
D(r, t), (1)
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6 fundamental theory

where E, H, D and B are the electric, magnetic, electric displacement
and magnetic induction fields, respectively, and c is the speed of light
in vacuum. The electromagnetic fields H and B, as well as E and D
are related by the constitutive relations [36]:

B(r, t) = µ̂(r)H(r, t), D(r, t) = ε̂(r)E(r, t), (2)

where µ̂(r) and ε̂(r) are the magnetic and dielectric tensors. In most
cases, photonic crystals are fabricated using isotropic and non-magnetic
materials, which allow us to safely set µ̂(r) = µ(r) = 1 and ε(r) = ε̂(r).
Furthermore, since H and E are complicated functions of space and
time, we take advantage of the linearity of Maxwell’s equations by
expanding the fields in a set of harmonic modes. The harmonic solu-
tions are written as:

H(r, t) = H(r)e−iωt, E(r, t) = E(r)e−iωt, (3)

which automatically separates the time and space dependence. Using
the expressions of Eqs. (2) and (3), and decoupling the electric and
magnetic fields from Eq. (1), we obtain the wave equations for electric
and magnetic fields,

Θ̂H(r) = ∇× 1

ε(r)
∇×H(r) =

ω2

c2
H(r), (4)

L̂EE(r) =
1

ε(r)
∇×∇× E(r) =

ω2

c2
E(r). (5)

subject, respectively, to the transversality conditions:

∇ ·H(r) = 0, ∇ · [ε(r)E(r)] = 0, (6)

In the literature of photonic crystals Θ̂ is known as the Maxwell opera-
tor. The wave equations in Eqs. (4) and (5) determine eigenvalue prob-
lems which resemble the stationary Schrödinger equation; in fact, the
function ε(r) can be understood as the dielectric potential. The linear
operator Θ̂ in Eq. (4) is Hermitian, hence, the following expressions
are guaranteed [37]:

ω2

c2
=

(
ω2

c2

)∗
,

∫
H∗i (r) ·Hj(r)d3r = N2δij, (7)

with N a normalization factor. In addition to this, for ε(r) > 0, Θ̂ is
positive semidefinite, i.e., ω

2

c2
> 0, constraining the frequencies ω to

be real in lossless media [21]. On the other hand, the linear operator
L̂E is not Hermitian, and orthogonality relations as in Eq. (7), are
not guaranteed [3]. Furthermore, from Eq. (6), the electric field is not
transversal, and the zero-divergence equation depends on the specific
dielectric function. These mathematical issues turn the solution of
Maxwell’s equations quite complicated from the electric point of view.



2.1 theory of photonic crystals 7

Notice, however, that the magnetic field is fully transversal, and such
a condition, as well as the hermiticity of Θ̂, do not depend on the
specific dielectric system in lossless media. Therefore, the solution of
the electromagnetic problem is less difficult when we start from the
magnetic wave equation, and the corresponding electric field solution
can be obtained via the curl equation:

E(r) = i
c

ωε(r)
∇×H(r). (8)

In this way, we will adopt the solution of Eq. (4) instead of Eq. (5) for
computing the eigenmodes of photonic crystals from now on. Any
particular condition on the spatial dependence of ε(r) has heretofore
not been specified, in fact, Eq. (4) does not necessarily describe a
photonic structure. Photonic crystals are represented by a periodic
dielectric function:

ε(r) = ε(r + R), (9)

where R is the translation vector of the Bravais lattice. Atomic and
molecular crystals are the result of a Bravais lattice plus an atomic
basis; analogously, photonic crystals are the result of a Bravais lat-
tice plus a dielectric basis. Since there are no fundamental differences
between the mathematical concepts describing atomic and photonic
crystals, and the physics of both systems is totally equivalent, the
theoretical framework of solid state physics can be applied to electro-
magnetic crystals. The magnetic field solutions of Eq. (4) considering
Eq. (9) are written, accordingly, in the Bloch-Floquet form:

Hk(r) = eik·ruk(r), uk(r) = uk(r + R). (10)

The differential equation for the periodic function of Bloch states,
uk(r), is found by substituting the first expression of Eq. (10) in the
wave equation of Eq. (4). It can be easily shown that:

(ik +∇)×
[
1

ε(r)
(ik +∇)× uk(r)

]
=
ω2k
c2

uk(r). (11)

Due to the periodic boundary condition of uk(r), the Hermitian prob-
lem in Eq. (11) is restricted to a single primitive cell of the lattice,
i.e., finite volume, consequently, we expect the solutions to be dis-
cretely spaced with band index n. Moreover, the Maxwell operator
depends on k, which can vary continuously over the reciprocal space,
and the frequency spectrum, ωk = ωn(k), defines the photonic band
structure of the system. The function ωk = ωn(k) is represented in
the irreducible Brillouin zone, which is determined by the symmetry
properties of both, the dielectric basis and the reciprocal Bravais lat-
tice [38]. If there is no real solutions for ωk = ωn(k), irrespective the
value of k, we say that the system has a photonic band gap.
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Figure 3: Typical dispersion relations of cavity modes, red band, and waveg-
uide modes, green band. the corresponding density of states is
sketched at right. At bottom, waveguide and localized modes are
represented in a two dimensional photonic crystal, where orange
and white correspond to different refractive indices.

Photonic crystals become very interesting where “impurities”, known
as defects, are introduced in the dielectric lattice. In the same manner
as for solid state crystals, where localized states appear due to the im-
purities, the electromagnetic field can be localized around dielectric
defects, creating allowed states inside the photonic band gap. Defects
on photonic crystals can be produced either modifying the geome-
try or changing the dielectric properties at specific regions of the lat-
tice; in particular, point and linear defects represent the fundamental
blocks for the vast majority of systems currently studied. The former
is commonly called cavity and the latter waveguide.

Figure 3 shows a schematic representation of the typical bands, in
red and green colors, associated to cavity and waveguide modes, re-
spectively; the yellow region corresponds to the photonic gap of the
system and lighter-blue regions represent the photonic bands. The
group velocity dω/dk of cavity modes is zero in all points of the
Brillouin zone, while for waveguide modes is in general different
from zero. The corresponding photonic density of states is sketched
at right in darker-blue; localized modes have the largest density of
states, as well as the band edges of waveguide modes and photonic
bands edges, where the group velocity is near to zero1. At bottom
of Fig. 3, waveguide and localized modes are represented in a two
dimensional photonic crystal, where orange and white correspond to

1 The band edge regions are specially interesting for slow light phenomena [39].
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different refractive indices. Here, the waveguide is created by remov-
ing a complete row of circles, and the cavity by removing only three
of them. Due to the low losses of dielectrics at optical frequencies and
the efficient photonic band gap confinement mechanism2, waveguide
and cavity modes in photonic crystals usually have very high quality
factors3, and the light confinement is next to the diffraction limit. The
latter allows to obtain very small modal volumes in photonic crystal
cavities4. The elevated density of states at cavity resonances, together
with their high quality factors and diffraction limited modal volumes,
open the possibility of cavity quantum electrodynamics phenomena,
as Purcell enhancement [40] and strong coupling, when light emit-
ters are positioned within the photonic crystal nanocavities to interact
with the electromagnetic fields [12, 19].

2.1.2 Photonic crystal molecules

Two or more coupled photonic crystal cavities form a photonic crystal
molecule. In Fig. 4 we schematically represent the weak and strong
coupling regime of a photonic crystal molecule formed by two iden-
tical cavities, which is known as a photonic crystal dimer. When the
distance between the two cavities is much larger than their mode
wavelengths, i.e., dc >> λc, the spectrum of the system is degener-
ated with the same single cavity frequencies. Over these conditions
the system is in the weak coupling regime, and it does not strictly
represent a photonic molecule. For intercavity distances smaller than,
or of the same order of λc, the system is in the strong coupling regime
with non-degenerated frequency spectrum determined by the splitted
states of the single cavities. In the case of photonic dimers (identical
cavities), where the system has a symmetry point, the normal mode
frequencies are separated in bonding (subscript +) and antibonding
(subscript −) states, resembling atomic molecules. The bonding and
antibonding behavior are determined by the symmetry of the electro-
magnetic modes; the former is symmetric while the latter is antisym-
metric with respect to the symmetry point, as it is shown schemati-
cally in Fig. 4, where the symmetry point is at the center of the pho-
tonic lattice. The photonic normal mode frequencies of the molecule
can be written as the single cavity frequency plus a coupling term δ,
which depends on the amount of overlapping and interference con-
ditions between the single cavity modes. In general, the strength of

2 The photonic band gap confinement mechanism for light, based on interference phe-
nomena, is known as distributed Bragg reflection (DBR mechanism).

3 The quality factor of a photonic mode measures the photon lifetime within the cavity
and it is defined as the ratio between the resonant frequency and the linewidth:
Q = ω

δω .
4 The modal volume of a dielectric cavity measures the effective space occupied by the

photonic mode, and it is defined as: V =
∫
ε(r)|E(r)|2dr
ε(r0)|E(r0)|2

, where r0 is the position of

the electric field peak. In photonic crystals V ∼ (λ/n)3, with n the refractive index.
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Figure 4: Schematic representation of a photonic crystal molecule formed
by two identical cavities, i.e., a photonic crystal dimer, in the weak
(above) and strong (below) coupling regimes. The frequency levels
for both cases are sketched, correspondingly, at right.

the coupling term δ, which can be positive or negative, is different
for bonding and antibonding modes, i.e. |δ+| 6= |δ−|, furthermore, dis-
tinct from the atomic case, antibonding ground sates and increasing
splitting with increasing dc are possible in photonic crystal molecules
[41].

The delocalized nature of normal modes in photonic crystal molecules
will be useful to radiatively couple two semiconductor quantum light
emitters in Sec. 3.2, separated by a distance that can be larger than
the characteristic wavelength of the system.

2.1.3 Two-dimensional photonic crystal slabs

Three-dimensional complete photonic band gap is the ultimate objec-
tive of the light confinement paradigm. Theoretical studies on fully
three dimensional photonic crystals have been addressed in the litera-
ture for solving the photonic band gap problem with satisfactory and
promising results [1, 2, 42, 43]. Nevertheless, large-area and defect-
free implementations are quite challenging even for state-of-art fabri-
cation techniques [44, 45, 46]. Two-dimensional photonic crystals em-
bedded into planar dielectric waveguides, known as two-dimensional
photonic crystal slabs, have emerged in the last decade as the best
candidates for efficiently confining and guiding the electromagnetic
fields at optical frequencies in three dimensions. Currently, lithogra-
phy and etching processes at sub-micron scales are in a very mature
and advanced stage, allowing the fabrication of large-area photonic
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Figure 5: Representation of the total internal reflection and the distributed
Bragg reflection mechanisms in two-dimensional photonic crystal
slabs.

crystal slabs with high-nanometric precision [4, 5]. Although exper-
imental and theoretical complete photonic band gap has not been
achieved in these structures up to now, three-dimensional confine-
ment is possible for specific mode polarizations as it will be discussed
below.

Figure 5 shows a typical photonic crystal slab where the two dimen-
sional periodic pattern is defined by a square lattice of circular holes
in a dielectric planar waveguide. Vertical confinement of light is con-
trolled by total internal reflection (TIR) 5, and in-plane propagation is
controlled by the photonic pattern via distributed Bragg reflection
(DBR); photonic band gaps in these systems are thus conditioned
by both TIR and DBR mechanisms. The electromagnetic modes of
fully two-dimensional photonic crystals, which are periodic in a cer-
tain plane and uniform along the axis perpendicular to that plane,
are separated in two orthogonal polarizations, namely, transverse-
electric (TE) and transverse-magnetic (TM); considering xy as the
plane where the photonic pattern is present, the former has the non-
vanishing field components (Ex,Ey,Hz) and the latter has the non-
vanishing field components (Hx,Hy,Ez). The separation of modes in
two different solutions is due to the existence of a symmetry plane
parallel to the periodic pattern at any position of the perpendicular
axis. Figure 6 schematically shows the two mode polarizations with
different symmetry properties for two-dimensional crystals (top). The
system is uniform along the z direction, i.e. thickness d→∞, and any
plane perpendicular to the z axis corresponds to a symmetry plane of
the system; they are shown three of them in the figure (top), z = ±δ
and z = 0, where delta is any real number. The electric and magnetic
fields are confined at these planes for TE and TM modes, respectively.
In comparison with quantum mechanics, where the presence of sym-
metry plane on the quantum potential separates the wavefunction

5 Also know as index guiding for photonic crystal slabs [21].
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Figure 6: Schematic representation of the electromagnetic modes for fully
two-dimensional photonic crystals (top), and two-dimensional
photonic crystal slabs (bottom). The former has an infinite set of
symmetry planes along the z axis, and the latter has only one sym-
metry plane at z = 0, i.e., center of the slab.

solutions in even and odd sets, the TE and TM solutions are even
and odd, respectively, with respect to any plane parallel to the pho-
tonic pattern. TE, TM and complete (both TM and TE) band gap have
been successfully demonstrated for two-dimensional photonic crys-
tals [21]. At the bottom of Fig. 6 we represent the slab case, where
the dielectric thickness is of the order of the medium-wavelength of
the system d ∼ λ. There is only one symmetry plane at z = 0 (center
of the slab), and the solutions can be classified as even and odd with
respect to this plane. At z = 0, the electric and magnetic fields are
confined in the plane for even and odd modes, respectively, as in the
fully two-dimensional case. Nevertheless, z = ±δ are not symmetry
planes of the system and all six the electromagnetic field components
are in general non-vanishing, then, we cannot separate anymore the
solutions in purely TE and TM modes. Odd and even low-frequency
modes in slabs, however, resembles the two-dimensional pure solu-
tions, as it is shown in the figure (bottom); at z = ±δ, with δ < 0.5d,
the electric and magnetic fields have in general in-plane dominant
components for even and odd modes, respectively. The former be-
haves like a TE mode and the latter behaves like a TM mode. Hence,
the even eigenmodes of two-dimensional photonic crystal slabs are
known in the literature as TE-like modes, while the odd eigenmodes
are known as TM-like modes.
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Figure 7: (a) Radiative and guided mode regions on the dispersion rela-
tion of a photonic crystal slab; the light line and a quasi-guided
mode are illustrated. (b) Band diagram of a typical GaAs two-
dimensional photonic crystal slab in the irreducible Brillouin zone.

Photonic band gaps for either TE-like or TM-like modes have been
successfully demonstrated through theoretical and experimental stud-
ies [47, 48, 49, 50]. The fine-thickness condition along the vertical axis
introduces new physical phenomena which are not present in the
fully two-dimensional case. Since the space is open outside the pho-
tonic crystal slabs, the electromagnetic field is not bounded in this
region and it determines a continuous spectrum. On the other hand,
the electromagnetic field is bounded inside the slab and the spec-
trum is discrete. Discrete resonances, i.e., guided modes, can thus in-
teract with the continuous spectrum, i.e., radiative (or leaky) modes,
through the vertical boundary, allowing the possibility of energy flux
from within to outside the photonic crystal, and vice versa. Figure 7(a)
illustrates the radiative and guided mode zones in the band diagram
of photonic crystal slabs. These regions are separated by the light
line, which is defined as the dispersion relation of light in the outside
medium; since we are interested in suspended membranes the fron-
tier is defined by the dispersion relation of light in air 6, i.e., ω = ck.
Photonic resonances crossing the light line are called quasi-guided
modes, and they are subject to out-of-plane diffraction losses, i.e.,
diffraction processes out of the waveguide plane for the Bloch waves
propagating in the photonic crystal slab. In the radiative region of the
band diagram, quasi-guided modes are discrete states within a con-
tinuum of states, which gives rise to Fano interference phenomena7

[51, 52]. Panel (b) of Fig 7 shows a numerical calculation in dimen-

6 For a general asymmetric two-dimensional photonic crystal slab, where there is a
substrate of refractive index n1 and the outside medium has a refractive index n3,
the light lines are ω = ck/n1 and ω = ck/n3, and the frontier between the radiative
and guided modes is determined by the light line with the largest refractive index.

7 Fano resonances are characterized by asymmetric peaks in the response function
of the system, e.g., reflectivity spectrum. The asymmetry occurs in a frequency or
energy interval which is smaller than the linewidth of the resonance.
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sionless frequency units, using the guided mode expansion method
(see following section), of a typical GaAs two-dimensional photonic
crystal slab along the edges of the irreducible Brillouin zone. The
crystal is formed by a hexagonal lattice of circular holes, with lattice
parameter a = 260 nm and hole radius r = 65 nm, embedded in a
slab of thickness d = 120 nm and refractive index n = 3.41. This pho-
tonic crystal has a TE-like bang gap, highlighted in yellow, between
0.267 and 0.318, or between 1.274 eV and 1.517 eV in electron-volt
units, however, forbidden odd states are not favored by the system
and TM-like band gaps are not present. The bands fully-below, fully-
above and crossing the light line, correspond to guided, radiative (or
leaky) and quasi-guided modes of the slab, respectively.

2.1.4 The guided mode expansion method (GME)

Over the last decade, several numerical methods have been proposed
for studying photonic crystal slabs by solving the three-dimensional
set of Maxwell’s equations, which in general requires a huge numer-
ical and computational effort. Some examples are the plane wave
expansion with perfectly matched layers [53], the scattering matrix
method [54] and the canonical finite-difference time-domain method
(FDTD) [55], the latter has proved to be very flexible for solving the
fields in any electromagnetic system, but computationally expensive
[56]. Currently, the guided mode expansion method (GME) is the
most efficient and reliable approach for solving the photonic disper-
sion and radiation losses of photonic crystal slabs, providing numer-
ical and computational facilities due, mainly, to the analyticity of the
matrix representation of Maxwell operator Θ̂. Since the GME method
is the photonic-crystal-solver used in the present work, the key as-
pects of the method will be discussed in this section. For specific de-
tails the reader is referred to the original works cited in Refs. [48, 57].

2.1.4.1 Photonic dispersion

Starting from the wave equation of Eq. (4) with the corresponding
transversality condition in Eq. (6), the magnetic field can be expanded
in a set of basis as

H(r) =
∑
µ

cµHµ(r), (12)

subject to the orthonormality condition∫
H∗µ(r) ·Hν(r)dr = δµν. (13)

Equation (4) is then transformed into a linear eigenvalue problem∑
ν

Hµνcν =
ω2

c2
cµ, (14)
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where it is easy to show that the matrix elements Hµν are given by:

Hµν =

∫
1

ε(r)
(
∇×H∗µ(r)

)
· (∇×Hν(r))dr. (15)

An appropriate set {Hµ(r)} for solving Eq. (14) in photonic crystal
slabs is the basis of guided mode solutions of the effective planar
waveguide. In Fig. 8(a) we show a schematic picture of the system we
are interested in. Labeling r|| = (x,y) the in-plane coordinate vector,
the photonic crystal slab, with dielectric function ε2(r||), is consid-
ered between two semi-infinite layers with dielectric functions ε1(r||)
and ε3(r||), namely, the substrate and external media. The basis for
expanding the system is defined by the homogeneous planar waveg-
uide problem, shown in panel (b), with dielectric constants ε̄1 (lower
cladding), ε̄2 (core) and ε̄3 (upper cladding ) determined by the aver-
ages of εi(r||)

ε̄i =
1

A

∫
cell

εi(r||)dr||, (16)

where the integral is over a unit cell of area A. In order to guided
modes be supported by the effective slab, the condition ε̄2 > ε̄1, ε̄3
must be fulfilled. Denoting by g = gĝ the two-dimensional wave vec-
tor in the xy plane, and by ωg the frequency of a guided mode which
satisfies cg/

√
ε̄2 < ωg < cg/max(

√
ε̄1,
√
ε̄3) we define the following

quantities:

χ1 =

(
g2 − ε̄1

ω2g

c2

)1/2
,

qg =

(
ε̄2
ω2g

c2
− g2

)1/2
,

χ3 =

(
g2 − ε̄3

ω2g

c2

)1/2
, (17)

representing the real (imaginary) parts of the wave vector in the core
(upper and lower cladding), respectively.

By applying Maxwell’s equations to the waveguide problem, transverse-
electric (electric field lying in the xy plane) and transverse-magnetic
(magnetic field lying in the plane xy) solutions are determined, re-
spectively, by the following implicit equations:

q(χ1 + χ3) cos(qd) + (χ1χ3 − q
2) sin(qd) = 0, (18)

q

ε̄2

(
χ1
ε̄1

+
χ3
ε̄3

)
cos(qd) +

(
χ1χ3
ε̄1ε̄3

−
q2

ε̄22

)
sin(qd) = 0, (19)

where d is the slab thickness. Equations (18) and (19) come from the
continuity conditions of the tangential components of the fields at the
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Figure 8: (a) Schematic picture of the photonic crystal slab, where r|| rep-
resents the in-plane coordinate vector. (b) Effective homogeneous
problem for computing the guided mode basis where ε̄1, ε̄2 and
ε̄3 are the dielectric constants of the lower cladding, core and up-
per cladding, respectively.

waveguide interfaces, and the dispersion relation ω(g) of the waveg-
uide is computed by solving these equations numerically. When sym-
metric planar wave guides are considered, i.e. ε̄1 = ε̄3 and z = 0 is
a mirror symmetry plane, Eqs. (18) and (19) split into the following
equations for odd and even solutions:

q sin
(
qd

2

)
− χ1 cos

(
qd

2

)
= 0, TE, even, (20)

q cos
(
qd

2

)
+ χ1 sin

(
qd

2

)
= 0, TE, odd, (21)

q

ε̄2
cos
(
qd

2

)
+
χ1
ε̄1

sin
(
qd

2

)
= 0, TM, even, (22)

q

ε̄2
sin
(
qd

2

)
−
χ1
ε̄1

cos
(
qd

2

)
= 0, TM. odd (23)

The even and odd modes can hence be solved separately reducing the
computational effort required by solving directly Eqs. (18) and (19).
The solutions of the implicit equations Eqs. (20) to (23) are shown in
Fig. 9, for the effective homogeneous slab associated to the system of
Fig. 7(b), i.e., ε̄1 = ε̄3 = 1, ε̄2 = 9.218 and d = 120 nm. Irrespective of
the parity of the solutions, TE and TM bands alternate on the condi-
tion that the fundamental mode corresponds to a TE polarization. On
the other hand, the parity alternates between even and odd solutions
for TE and TM polarizations providing that the TE and TM funda-
mental modes have even and odd polarizations, respectively. Figure 9

shows that the wave vector g can take, in principle, any value in the
xy plane for guided modes8. In the case of two-dimensional photonic
crystal slabs, the modes have the Bloch form shown in Eq. (10), and
the k vector is restricted to the first Brillouin zone; larger vectors in

8 Since the problem of the homogeneous waveguide is actually one-dimensional in
Fig. 9 is shown the magnitude of g.
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Figure 9: Dispersion relation of a symmetric planar waveguide with ε̄1 =

ε̄3 = 1, ε̄2 = 9.218 and d = 120 nm.

the reciprocal space are generated by adding to k the appropriate
reciprocal lattice vector G. Thus, when the photonic crystal is taken
into account, the wave vector g can be written in terms of two con-
tributions, the Bloch vector k and the reciprocal lattice vector G, i.e.,
g = k + G. The main effect of the periodic dielectric modulation on
the guided bands of the homogeneous waveguide is to fold them to
the first Brillouin zone, giving rise to photonic allowed and forbid-
den states. Denoting with α the α-th guided mode, the expansion of
Eq. (12) is written for the guided mode basis as

H(r) =
∑
G,α

c(k + G)Hguidedk+G (r), (24)

where the sum is over the guided modes and reciprocal lattice vectors.
The basis set must be truncated in order to obtain a finite number of
linear equations determined by Eq. (14). The set of guided modes is
truncated up to the α-th element, while the set of reciprocal vectors is
truncated providing the cutoff condition |G| <= Gmax, where Gmax
is the maximum vector magnitude considered in the expansion 9. To
calculate the matrix elements in Eq. (15), the inverses of the dielectric
functions are then expanded in a set of plane waves over the recipro-
cal lattice vectors

εi(r||)−1 =
∑

G

ηi(G)e−iG·r|| , (25)

9 This cutoff condition defines a circle centered at the origin of the reciprocal space
with radius Gmax, where only reciprocal lattice points inside the circle, with vector
position G, are considered in the expansion.
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with Fourier coefficients

ηi(G) =
1

A

∫
cell

εi(r||)−1eiG·r||dr||, (26)

where the integral extends over a unit cell of area A. The GME matrix
elements Hµν are analytical and depend on the matrix elements of
η̂i, defined as ηi(G, G ′) = ηi(G ′ − G) [48]. A convenient approach
for calculating the elements ηi(G, G ′) is based on the Fourier inverse
rule or Ho-Chan-Soukoulis (HCS) method [42], where ηi(G, G ′) are
computed by numerical inversion of the dielectric matrix ε̂i, i.e., η̂i =
ε̂−1i , with Fourier elements

εi(G, G ′) =
1

A

∫
cell

εi(r||)ei(G ′−G)·r||dr||, (27)

This rule has shown to improve the convergence of numerical Fourier-
based methods for truncated Fourier representation of discontinuous
functions [58].

When the photonic structure has a center of inversion (symmetry
point), the matrix elements ηi(G, G ′) and Hµν are real, then, Eq. (14)
becomes a symmetric eigenvalue problem. In the most general case,
where the photonic structures do not have a symmetry point, these
matrix elements are complex and Eq. (14) determines a Hermitian
eigenvalue problem. This is an important consideration because the
computational effort for solving real eigenvalue problems is much
lower than for solving the Hermitian ones. The construction of the
matrix Hµν is illustrated in Fig. 10 for a one-dimensional slab pho-
tonic crystal with lattice parameter a. We consider Nα = 2 guided
modes and NG = 3 plane waves. For each element of the basis µ,
given a vector k, we associate a guided mode index α and a recip-
rocal lattice vector G (plane wave element); the index µ is therefore
univocally represented by k, α and G, i.e., µ = (k + G,α). As it is
shown in the figure, three plane waves and two guided modes deter-
mine six orthonormal basis elements Hµ for constructing the matrix
Hµν. Hence, the dimension of the eigenvalue problem for computing
the photonic dispersion is Nα ×NG.

Although we have considered all the set of guided modes for cal-
culating the photonic dispersion, this set is not complete since the
leaky modes of the planar waveguide are not taken into account. The
coupling of quasi-guided modes to all radiative spectrum produces a
second-order shift which is not considered in the present formulation
of the method; usually, this shift is of the order of a few per cent and
increases for small dielectric contrast (weakly guided modes). Never-
theless, the first-order coupling to leaky modes above the light line at
the same frequency is the dominant effect, leading to a radiative de-
cay, i.e., imaginary part of frequency, which can be calculated using
time-dependent perturbation theory.
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Figure 10: Schematic representation of the construction of the guided
mode basis for calculating the matrix elements Hµν in a one-
dimensional photonic crystal slab of lattice parameter a. For the
sake of simplicity we consider only two guided modes and three
plane waves.

2.1.4.2 Radiation losses

The periodic dielectric modulation of the photonic crystal slab folds
the guided modes of the effective homogeneous waveguide, lying be-
low the light line, to the first Brillouin zone of the photonic lattice.
Therefore, photonic crystal resonances can fall above the light line
allowing the coupling to radiative modes, i.e., they are subject to in-
trinsic losses due to scattering out of the plane. These radiation losses
can be estimated through time-dependent perturbation theory using
a formulation totally analogous to the Fermi’s golden rule in quan-
tum mechanics. The decay rate of a photonic crystal mode |Hph〉 to
a continuum set of radiative modes |Hrad〉, at a given frequency ω,
can be represented by

Γph→rad ∝
∑
rad

∣∣∣〈Hph|Ôp|Hrad〉∣∣∣2 ρ(ω), (28)

where ρ(ω) is the photonic density of radiative modes. Since the ra-
diation losses are caused by the in-plane periodicity and the vertical
boundary condition of the dielectric function, the perturbation opera-
tor is represent by Ôp → ε(r)−1. From Eq. (28), the following expres-
sion is obtained for the imaginary part of ω2k/c

2 at a given k in the
first Brillouin zone [48, 59]:

Im
(
ω2k
c2

)
= −π

∑
G ′

∑
λ=TE,TM

∑
j=1,3

|Hk,rad|
2 ρj

(
k + G ′,

ω2k
c2

)
, (29)
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Figure 11: Representation of the scattering processes with outgoing compo-
nents in lower (a) and upper (b) claddings.

where the matrix element between a photonic crystal mode and a
leaky mode is

Hk,rad =

∫
1

ε(r)
(∇×H∗k(r)) ·

(
∇×Hradk+G ′,λ,j(r)

)
dr. (30)

Equation (29) is known as the photonic golden rule. Since the field pro-
file of a scattering state tends to a plane wave form in the far field,
irrespective of the field profile of the photonic crystal slab modes, the
mean approximation of the method is introduced by considering the
radiative modes of the effective waveguide in the matrix elements of
Eq. (30), and the following one-dimensional photonic density of states
at a fixed in-plane wave vector g

ρj

(
g ′,
ω2

c2

)
=

∫∞
0

dkz

2π
δ

(
ω2

c2
−
g2 + k2z
ε̄j

)

=
ε̄
1/2
j c

4π

θ
(
ω2 − c2g2

ε̄j

)1/2
(
ω2 − c2g2

ε̄j

)1/2 , (31)

which is valid for homogeneous planar waveguides. In Eq. (31) δ and
θ are the Dirac delta and Heaviside functions, respectively. All lattice
vectors G ′, polarizations λ and scattering processes j = 1 and j = 3

contribute to radiation losses. Such scattering processes, to be con-
sidered in the sum of Eq. 29, are illustrated in Fig. 11. The outgoing
(radiative) components in the lower and upper claddings, which con-
tribute to the diffraction losses, are represented by the red arrows in
panels (a) and (b), respectively.

Using the expansion of Hk shown in Eq. (24) over the set of guided
modes, the matrix elements of Eq. (30) can be written as

Hk,rad =
∑
G,α

c(k + G,α)∗Hguided,rad, (32)
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where

Hguided,rad =

∫
1

ε(r)

(
∇×Hguidedk+G,α (r)∗

)
·
(
∇×Hradk+G ′,λ,j(r)

)
dr. (33)

The matrix elements Hguided,rad are analytical and the reader is re-
ferred to the works cited in Refs. [48, 57] for more details on their
calculation. Finally, after computing Im(ω2k) through Eq. (29), for a
photonic mode with frequency ωk, the quality factor can be calcu-
lated using the expression

Qk =
ωk

2Im (ωk)
, (34)

where Im(ωk) = Im(ω2k)/[2Re(ωk)].

2.2 semiconductor quantum dots

The confinement of electrons in one, two and three dimensions in
nano-structured semiconductors has been the focus of intense research
during the last decades for applications on opto-electronic devices
[60]. In particular, semiconductor quantum dots, in which electrons
are subject to a three dimensional confinement, are characterized
by their discrete spectra, long coherence time and large oscillator
strengths [9]. These characteristics make them almost ideal artificial
atoms that can be fixed in position and integrated into other semicon-
ductor structures as photonic crystals, enabling new opportunities for
on-chip quantum optics. In fact, quantum dots are promising candi-
dates to realize solid state quantum bits (qubits) to be employed in
quantum information and communication technologies [6, 7, 22].

InAs/GaAs/AlAs III-V semiconductor quantum dots, relevant for
the present work, are fabricated by epitaxial methods such as molecu-
lar beam epitaxy, where the semiconductor heterostructure is grown
layer by layer under high-vacuum conditions. The most common ap-
proach for generating InGaAs quantum dots is the Stranski-Krastanov
method, where a thin wetting layer of InAs is deposited on GaAs;
the difference between the InAs and GaAs lattice parameters (7%)
generates a strain which is relaxed by the nucleation of randomly
positioned islands, i.e., self-assembled quantum dots. They are subse-
quently covered by a GaAs layer with the aim of protecting them from
surface states and oxidation [8]. Since the InGaAs gap is smaller than
the GaAs one, the quantum dot determines three-dimensional con-
finement potentials in the valence and conduction bands, for holes
and electrons, respectively. Figure 12 illustrates schematically such
phenomena, where a InGaAs region is surrounded by GaAs.

In this section, a simple model for a quantum dot is presented and
the R−3 dependence of the Förster mechanism in coupled quantum
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Figure 12: Schematic representation of a InGaAs quantum dot. The confine-
ment potential is created by the different GaAs/InGaAs semicon-
ductor band gaps.

dots is obtained. The results shown in the following were taken from
the work cited in Ref. [23].

2.2.1 Single-particle and exciton states

The starting point for studying semiconductor quantum dots is the
stationary single-particle Schrödinger equation, which can be written
in the effective mass and envelope function approximations as

Hi(r)φi(r) =
(
−

 h2

2
∇ 1

m∗i
∇+ Vi(r)

)
φi(r) = Eiφi(r), (35)

where i = e,h denotes electrons or holes, m∗i is the effective mass
of the particle i and Vi(r) is the three dimensional dot confinement
potential due to the difference between the semiconductor gaps in the
heterostructure, see Fig. 12. In Eq. (35) φi(r) is the envelope part of
the total wavefunction

ψi(r) = φi(r)Ui(r), (36)

which describes the slowly varying contribution to the wavefunction
over the dot region, and Ui(r) is a rapidly varying periodic function
with the period of the crystal lattice [61]. One of the most basic mod-
els for Vi(r), providing analytical expressions for φi(r) and Ei, is the
harmonic oscillator potential

V(x,y, z) =
1

2
m∗ω2xx

2 +
1

2
m∗ω2yy

2 +
1

2
m∗ω2zz

2. (37)
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By considering the potential of Eq. (37) the Schrödinger equations in
Eq. (35) becomes separable and the envelope function for electrons
and holes can be written as a product of single-coordinate functions

φi(r) = ξi,x(x)ξi,y(y)ξi,z(z), (38)

where ξ is the solution of the one-dimensional quantum harmonic
oscillator:

ξn(x) =

(
1

n!2ndx
√
π

)1/2
Hn

(
x

dx

)
e
− x2

2d2x . (39)

Here, n labels the quantum state with energy En = (n + 1/2) hωx,
H ′ns are the Hermite polynomials and dx = [ h/(m∗ωx)]

1/2. The
ground-sate solution for electrons and holes is then given by the en-
velope function

φi(x,y, z) =
(

1

dxdydzπ3/2

)1/2
e
− x2

2d2x e
− y2

2d2y e
− z2

2d2z , (40)

with energy E0 = 1
2
 h(ωx +ωy +ωz).

When an electron is excited with enough energy to be promoted from
the valence to the conduction bands, the total charge in the valence
band is unbalanced diminishing in one unit the amount of negative
charge, which determines an effective positive charge, i.e., a hole.
Holes and electrons may form bound states through Coulomb inter-
action, in the same manner as protons and electrons in atoms. The
bound states of electron-hole pairs in these artificial atoms, namely,
quantum dots, are known as excitons, and they are considered in the
electron-hole pair Hamiltonian

H = He +Hh −
e2

4πε|re − rh|
+ Egap, (41)

where He and Hh are given by Eq. (35), ε is the background dielectric
constant of the semiconductor and Egap is the quantum dot band
gap energy. The Coulomb term Heh = e2/4πε|re − rh| produces a
small shift in the energy states for quantum dots whose sizes are
smaller than the corresponding bulk exciton radius (∼ 35 nm for InAs
and ∼ 13 nm for GaAs); at this regime the Coulomb interaction can
be considered as a perturbation and the energy spectrum is mainly
determined by the confinement potentials. Then, the Hamiltonian of
Eq. (41) can be rewritten as

H = H0 +Heh, (42)

and the solutions of H0, which are the antisymmetric excitonic wave-
functions, can be written in the following form:

Ψ = A
[
ψ ′n(re,σe),ψm(rh,σh)

]
, (43)



24 fundamental theory

where r and σ are position (with respect to the center of the dot) and
spin variables, respectively, n and m labels the quantum states, and
A represents overall antisymmetry. The wavefunction of Eq. (43) rep-
resents an electron ψ ′n(re,σe) which has been promoted from the va-
lence band into a conduction band, while ψm(rh,σh) represents the
hole state created in the valence band. By considering the same poten-
tial in all three directions, i.e., dx = dy = dz = d = [ h/(m∗ω)]1/2, the
first order correction to the ground state energy due to the Coulomb
interaction is given by [23]

E0,eh = 〈Ψ0|Heh|Ψ0〉 =
1

2

e2

π3/2 h1/2ε

√
m∗em

∗
hωeωh

m∗eωe +m
∗
hωh

, (44)

where the exchange interaction term, which is much smaller than the
direct one10, is not considered in this calculation.

2.2.2 Förster coupling between two quantum dots

Excitons from different quantum dots can be coupled via Coulomb
interaction if the interdot distances are of the order of the dot sizes.
In particular, the Förster coupling, which can be under certain con-
ditions of dipole-dipole type, is responsible for resonant exciton ex-
change, or resonant energy transfer, between the quantum dots. The
Förster interaction VF can be estimated within first order perturbation
theory by

VF = 〈Ψi|HF|Ψf〉, (45)

considering the Coulomb Hamiltonian

HF =
1

4πε

e2

|R + r1 − r2|
, (46)

where R, r1 and r2 correspond to the interdot separation vector, and
the position vectors defined from the centers of the dot 1 and dot
2, respectively. These vectors are schematically shown in Fig. 13 for
two interacting quantum dots. For calculating the matrix element of
Eq. (45), the following initial and final states can be considered:

Ψi = A
[
ψ ′n(r1,σ1),ψm(r2,σ2)

]
, (47)

Ψf = A
[
ψn(r1,σ1),ψ ′m(r2,σ2)

]
.

Here, Ψi represents a conduction band state in dot 1 and a valence
band state in dot 2, and Ψf represents a valence band state in dot 1

and a conduction band state in dot 2, i.e, a resonant exciton transfer

10 The exchange interaction term comes from the integrals with arguments of the form
ψ ′∗n (r1)ψm(r1)ψ ′n(r2)ψ∗m(r2), while the direct interaction term comes from the inte-
grals with arguments of the form ψ ′∗n (r1)ψ ′n(r1)ψ∗m(r2)ψm(r2).
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Figure 13: Schematic illustration of two interacting quantum dots.

from dot 1 to dot 2 mediated by the Coulomb interaction. The direct
matrix element of Eq. (45) is then given by

VF = −
e2

4πε

∫ ∫
ψ ′∗n (r1)ψn(r1)

1

|R + r1 − r2|
ψ∗m(r2)ψ ′m(r2)dr1dr2. (48)

The Coulomb term in Eq. (48) can be expanded in Taylor series about
the vector R up to second order for |R| � |r1 − r2|, leading to the
following expression for the Förster interaction energy:

VF = −
e2

4πεR3

[
〈rI〉 · 〈rII〉−

3

R2
(〈rI〉 ·R) (〈rII〉 ·R)

]
, (49)

where the integrals

〈rI〉 =
∫
ψ ′∗n (r1)r1ψn(r1)dr1, (50)

〈rII〉 =
∫
ψ∗m(r2)r2ψ ′m(r2)dr2,

are calculated on dot 1 and 2, respectively, between an electron (ψ ′)
and a hole (ψ) states. The behavior of the Förster coupling as a func-
tion of R is clearly seen From Eq. (49); for |R| � |r1 − r2| the Förster
energy transfer mechanism displays a R−3 dependence. This short-
range interaction is a great limitation for independent manipulation
of the quantum dots when they are strongly coupled, which is crucial
for quantum information applications. In view of solving such limi-
tation, the present work explores the possibility of using photonic
modes for long-range dot-dot interaction beyond the Förster regime.

2.3 semiconductor quantum dots in photonic crystals

The possibility of quantum information processing lies on realizing
controlled gate operations with two interacting qubits using a quan-
tum bus, namely, a physical degree of freedom which interacts with



26 fundamental theory

all localized qubits. For solid state qubits, i.e., quantum dots, the pho-
tons are the best candidates to achieve such a quantum bus platform,
due to their long coherence time and high velocity. In view of this,
there is a growing theoretical and experimental interest to control the
photon-mediated interaction (radiative coupling) between two quan-
tum dots through the electromagnetic modes in a semiconductor pho-
tonic crystal structure [24, 25, 62]. Due to their exceptional capabilities
to efficiently guide and confine the electromagnetic radiation, and the
high degree of precision in fabrication techniques currently achieved,
photonic crystals should allow to overcome the short-range Förster
coupling between interacting quantum dots, thus achieving sizable
effective radiative interaction at distances quite larger than their emis-
sion wavelength [29].

The radiative coupling between quantum dots is discussed in this sec-
tion within a semiclassical formalism. Furthermore, a fully quantum
mechanical formulation of the problem is presented for quantifying
the amount of entanglement between quantum dots, which are cou-
pled via photon-mediated interactions.

2.3.1 Semiclassical formalism

A useful semiclassical formalism was described by Minkov and Savona
in Reference [26] to study N quantum dots coupled to M electromag-
netic photonic modes in an arbitrary dielectric structure. Following
this work, our starting point is the inhomogeneous wave equation for
the electric field [see Eq. (5)] with a polarization vector source, which
can be written in Gaussian units as follows:

∇×∇× E(r,ω) −
ω2

c2
[ε(r)E(r,ω) + 4πP(r,ω)] = 0. (51)

The underlying photonic structure is considered through the spatial
dependence of the dielectric function ε(r), while the linear optical
response of the quantum dots is included through a nonlocal suscep-
tibility tensor in the polarization vector

P(r,ω) =

∫
χ̂(r, r ′,ω)E(r,ω)dr ′. (52)

We will consider the specific case of excitons originating from the
heavy-hole band of a semiconductor with cubic symmetry (e.g. InAs).
In this case the x and y components of the polarization couple to
the electromagnetic field according to the following susceptibility
tensor[63, 64]:

χ̂(r, r ′,ω) =
µ2cv
 h

N∑
α=1

Ψ∗α(r)Ψα(r ′)
ω(α) −ω

1 0 0

0 1 0

0 0 0

 , (53)
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where α runs over all dots, µcv is the dipole matrix element of the
inter-band optical transition, Ψα(r) = Ψα(re = r, rh = r), and Ψα(re, rh)
is the quantum dot excitonic wavefunction normalized as∫ ∫

|Ψα(re, rh)|
2 dredrh = 1. (54)

The frequencies of the bare excitons are denoted by bracketed super-
scripts in order to distinguish them from the frequencies of photonic
resonances, which will be denoted by subscripts, i.e., as ωm. In this
treatment all the frequencies are assumed to be complex quantities,
i.e., ω(α) = Re{ω(α)}− iγ(α)/2 and ωm = Re{ωm}− iγm/2, where
γ(α) represents the overall decay rate of the exciton state associated to
the quantum dot α, and γm represents intrinsic and extrinsic losses
of the photonic mode m.

Introducing the quantities Q(r,ω) =
√
ε(r)E(r,ω), the wave equa-

tion Eq. (51) is turned into a self-adjoint inhomogeneous differential
equation [3]:

ΥQ(r,ω) −
ω2

c2
Q(r,ω) =

4π√
ε(r)

ω2

c2

∫
χ̂(r, r ′,ω)

Q(r ′,ω)√
ε(r ′)

dr ′, (55)

with associated self-adjoint differential operator

Υ =
1√
ε(r)
∇×∇× 1√

ε(r)
. (56)

Since the susceptibility tensor in Eq. (53) decouples the z-polarized
fields, we define the two-dimensional field Q = (Qx,Qy), and we can
express the formal solution of the inhomogeneous problem of Eq. (55)
using the Green’s function approach:

Q(r,ω) =Q0(r,ω)+

4π√
ε(r)

ω2

c2

∫
dr ′
∫
dr ′′Ĝ(r, r ′,ω)

χ̂(r ′, r ′′,ω)√
ε(r ′′)

Q(r ′′,ω).

(57)

The Green’s tensor can be expanded onto the set of the orthonormal
eigenfunctions of the self-adjoint operator of Eq. (56):

Ĝ(r, r ′,ω) =
∑
m

Qm(r)⊗Q∗m(r ′)
ω2m
c2

− ω2

c2

, (58)

where the outer product is defined as

A⊗B =

(
AxBx AxBy

AyBx AyBy

)
. (59)
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In the vast majority of structures, the quantum dots are embedded
within a semiconductor dielectric medium of dielectric constant ε∞,
i.e., the wave functions are non-negligible only in the region where
ε(r) = ε∞. Thus, we can safely substitute

√
ε(r ′) =

√
ε(r ′′) = ε∞

in Eq. (57), since the r dependence of all quantities will be consid-
ered into the overlap integrals with the quantum dot wavefunctions.
Furthermore, a very good approximation consists in replacing the ω
on the right side of Eq. (57), as well as (ωm +ω)/2, obtained from
the factorization of the denominator in Eq. (58), with an average ex-
citon transition frequency, ω0. The resonances of the coupled system
are computed considering the homogeneous problem associated to
Eq. (57) (without Q0(r,ω)), which determines the particular solution
of Eq. (55). Then, defining

Qα(ω) =

∫
ΨαQ(r,ω)dr, (60)

we obtain

Q(r,ω) =
2πω0
ε∞

µ2cv
 h

N∑
α=1

M∑
m=1

Qm(r)⊗Qα∗m
(ωm −ω)(ω(α) −ω)

Qα(ω). (61)

Integrating Eq. (61) with
∫
drΨβ(r) and defining Q̃(ω) = Qα(ω)/(ω(α)−

ω), the following set of equations are obtained for the complex fre-
quency poles:

(ω(β) −ω)Q̃β(ω) =
2πω0
ε∞

µ2cv
 h

N∑
α=1

M∑
m=1

Qβm ⊗Qα∗m
(ωm −ω)

Q̃α(ω). (62)

It is easy to show that the nonlinear system of Eq. (62) is mathemati-
cally equivalent to diagonalize the matrix [26]

Λ =



ω
(1)
x 0 · · · 0 g11,x · · · g1M,x

0 ω
(1)
y · · · 0 g11,y · · · g1M,y

... · · · . . .
...

... · · ·
...

0 0 · · · ω(N)
y gN1,y · · · gNM,y

g1∗1,x g1∗1,y · · · gN∗1,y ω1 · · · 0

... · · · . . .
...

... · · ·
...

g1∗M,x g1∗M,y · · · gN∗M,y 0 · · · ωM



, (63)
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where possible deviations from the perfectly symmetrical quantum
dots can be introduced in the model through different transition fre-
quencies in the x and y directions, respectively. The gαm elements are
interpreted as the coupling strengths between the m-th mode of the
photonic crystal and the α-th quantum dot, and they are defined as

gαm =
(
gαm,x,gαm,y

)
=

(
2πω0
ε∞

µ2cv
 h

)1/2
Qαm. (64)

The 2N +M complex eigenvalues of Λ define the frequencies (real
part) and loss rates (−2× imaginary part) of the mixed excitations of
the system, known as polaritons, and their corresponding eigenvectors

λ =
(
λ1x, λ1y, . . . , λNx , λNy , λ1, . . . , λM

)
, (65)

define the Hopfield coefficients, whose square moduli are interpreted
as the bare-exciton (or bare-photon) fractions of the polariton state
[65, 66].

For typical self-organized InGaAs quantum dots, whose size lies in
the 10-20 nm range and the exciton recombination energy is ∼ 1.3 eV
(λ ≈ 950 nm), a point dipole assumption, Ψα(r) = Cδ(r − rα), is a
very good approximation because the electric field varies weakly in
a region where Ψα(r) is non-negligible. Since the wave function is
not properly normalized at equal electron and hole positions, the
constant C, which depends on the oscillator strength, can be esti-
mated through experimental measurements of the quantum dot ra-
diative decay rate. Following Minkov and Savona [26], and Parascan-
dolo and Savona [67], with a radiative lifetime of 1 ns and excita-
tion energy  hω0 ≈ 1.3 eV, the square dipole moment is found to be
d2 ≈ 0.51 eV nm3, which is related to C through the expression:

d2 = µ2cvC
2. (66)

Within the point dipole approximation, the coupling constants of
Eq. (64) are turned into the simple following form:

gαm =
(
gαm,x,gαm,y

)
=

(
2πω0
ε∞ h

)1/2
d Qm(rα). (67)

From Eq. (62) we define the following tensor [33]:

Ĝαβ(ω) =

M∑
m=1

gβm ⊗ gα∗m
(ωm −ω)

= d2
2π

ε∞ h

ω2

c2
Ĝ(rα, rβ,ω), (68)

where Ĝ(rα, rβ,ω) is the Green’s tensor evaluated at the quantum dot
positions rα and rβ. The components Gαβxx , Gαβxy , Gαβyx and Gαβyy are
interpreted as the effective radiative coupling strengths between the
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dot α and dot β at the excitonic transition frequency ω.

Finally, the last requirement of the model are the values of the nor-
malized photonic eigenmodes Qm at the quantum dot positions, and
their corresponding eigenfrequencies and loss rates, which are com-
puted using standard methods to solve photonic crystal structures.
Since we are interested in studying the radiative interaction between
quantum dots in photonic crystal slabs molecules, we employ the
guided mode expansion approach for this task, which is the best
compromise between computational effort and reliable results for ex-
tended and strong localized modes in high dielectric regions.

2.3.2 Quantum formalism

The quantum theory of electromagnetic fields commonly adopted in
quantum optics books, and their corresponding interaction with lo-
calized quantum emitters, does not consider the spatial dependence
of the dielectric permittivity [68, 69]. Some of these approaches are
even restricted to vacuum only. The rigorous formulation of the fully
quantum radiation-matter interaction problem in spatially dependent
dielectric materials is lengthy and not trivial, and it has been ad-
dressed in Refs. [70, 71], where the so called multipolar Hamiltonian11

is formally deduced. The details of this field quantization are not pre-
sented here and the reader is referred to the original works.

We start from the second-quantized multipolar Hamiltonian for the
case of neutral, stationary radiative quantum emitters in a neutral,
nonconducting, dielectric medium in the dipole and rotating wave
approximations12:

Ĥ0 =
∑
n

 hωnâ
†
nân +

∑
α

 hω(α)b̂†αb̂α

+  h
∑
nα

(
g∗αn â

†
nb̂α + gαnânb̂

†
α

)
, (69)

whereωn andω(α) denote the frequency of the photonic mode n and
the excitonic transition frequency of the quantum dot α, respectively;

11 All the multipolar contributions are considered in the field-matter coupling.
12 When the wavefunction of the quantum emitters varies vary rapidly in relation to the

electric field, a very good approximation is to consider a dipole radiation-matter cou-
pling, i.e., the quantum emitter does not feel electric field variations and the value of
the field amplitude is approximately constant in the region where the wavefunction
is non-negligible. This is the so called dipole approximation. Moreover, when we are
interested in the resonant regime of the system, terms with very high frequency in
the radiation-matter coupling can be safely neglected. These rapidly rotating terms
usually have the forms â†nb̂

†
α and ânb̂α. This is the so called rotating wave approxi-

mation.
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â
†
n (ân) denotes the creation (destruction) operator of photons in the

photonic mode n, satisfying bosonic commutation relations[
ân, â†m

]
= δnm, (70)

and all other commutators vanish, while b̂†n (b̂n) denotes the creation
(destruction) operator of electron-hole pairs in the quantum dot n,
satisfying fermionic anticommutation relations{

b̂α, b̂†µ
}
= δαµ, (71)

and all other anticommutators vanish. In the present theory, the light-
matter coupling strength between the mode n and the quantum dot
α is given in Gaussian units as [25]

gαn =

√
2πω(α)

 h
dα · En(rα), (72)

where dα = dαeα denotes the dipole moment of the quantum dot α
with magnitude dα and orientation eα, and En are the eigenmodes
of Eq. (5) subject to the normalization condition∫

ε(r)E∗n(r) · Em(r)dr = δnm. (73)

Equation (72) is totally equivalent to Eq. (67) obtained by semiclassi-
cal means. In the present approach, mutual coupling between semi-
conductor quantum dots is not considered because we are interested
in dot separations which are beyond the Förster and exchange (tun-
neling) regimes. However, all photonic modes interact with all quan-
tum dots, giving rise to an indirect photon-mediated interaction be-
tween them, i.e., to a radiative coupling.

We now consider an exciton coherent pumping in the Hamiltonian of
Eq. (69) through the driven term

Ĥp(t) =  h
∑
α

[
Λα(t)e

−iωptb̂†α +Λ∗α(t)e
iωptb̂α

]
, (74)

where Λα(t) is the pumping rate at which are coherently created
electron-hole pairs in the quantum dot α by a pump laser or electric
potential with frequency ωp. Here, we focus on the continuous wave
excitation regime, in which the pumping rates Λα(t) are time inde-
pendent and can be written in the form Λα(t) = Ωαe

iφα , where Ωα
is a real amplitude and φα is a real phase. The total Hamiltonian of
the system is then written as

Ĥ(t) = Ĥ0 +  h
∑
α

[
Ωαe

−i(ωpt−φα)b̂†α +Ω∗αe
i(ωpt−φα)b̂α

]
. (75)



32 fundamental theory

With the purpose of eliminating the explicit temporal dependence of
the Hamiltonian in Eq. (75), the system dynamics can be described
in a rotating frame of reference with frequency ωp by applying the
operator

R̂(t) = exp

[
iωpt

(∑
n

â†nân +
∑
α

b̂†αb̂α

)]
, (76)

determining an effective Hamiltonian Ĥeff = R̂ĤR̂† − i hR̂
(
dR̂†/dt

)
,

i.e.,

Ĥeff =
∑
n

 hω̄nâ
†
nân +

∑
α

 hω̄(α)b̂†αb̂α

+  h
∑
nα

(
g∗αn â

†
nb̂α + gαnânb̂

†
α

)
+  h
∑
α

(
Ωαe

iφα b̂†α +Ω∗αe
−iφα b̂α

)
,

(77)

where ω̄n = ωn −ωp and ω̄(α) = ω(α) −ωp.

We adopt the master equation formalism for describing the dissipa-
tive dynamics of the system, which is written in Markov approxima-
tion for the rotated density matrix, ρ̃ = R̂ρR̂†, as:

dρ̃

dt
=
i
 h

[
ρ̃, Ĥeff

]
+
∑
m

L̂(γm) +
∑
α

L̂(γ(α)), (78)

where

L̂(γm) = γm

(
âmρ̃â

†
m − â†mâmρ̃/2− ρ̃â

†
mâm/2

)
, (79)

and

L̂(γ(α)) = γ(α)
(
b̂αρ̃b̂

†
α − b̂†αb̂αρ̃/2− ρ̃b̂

†
αb̂α/2

)
, (80)

are the Lindblad operators corresponding to the radiative losses of
the photonic modem at a rate γm (intrinsic and extrinsic losses13) and
the losses by spontaneous emission in the quantum dot α at exciton
decay rate γ(α). The master equation of Eq. (78) is obtained by consid-
ering that the system is coupled to a broadband spectrum and very
large (immense number of degrees of freedom) ensemble of harmonic
oscillators at thermal equilibrium, known as bath or reservoir, lead-
ing to a irreversible damping and quantum decoherence. The system-
reservoir dynamics, ρsr(t), is solved using time-dependent perturba-
tion theory up to second order (the system is assumed to be weakly
coupled to the reservoir), and the total density operator is traced over

13 The extrinsic losses is attributed to intentionally-induced or fabrication disorder on
the photonic crystal structure.
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the reservoir to obtain the reduced density operator of the system,
ρs(t). The characteristic times of ρs(t) are subsequently assumed to
be long compared to the inverse bandwidth τr of the reservoir, ob-
taining an equation for ρs(t), namely, the master equation, valid in
this time regime [69]. The latter assumption is the so called Markov
approximation. Pure dephasing of the quantum dot transitions can be
taken into account by an additional Lindblad term

L̂d(γ
(α)
d ) = γ

(α)
d

[
b̂†αb̂αρ̃b̂

†
αb̂α − (b̂†αb̂α)

2ρ̃/2− ρ̃(b̂†αb̂α)
2/2
]

, (81)

where γ(m)
d represents a pure dephasing rate. Lindblad dissipation

terms associated to incoherent pumping could also be considered in
the master equation [24], however, since we are interested in low ex-
citation, low temperature and resonant excitation regimes, they are
safely neglected. Finally, the steady state of the system, ρ̃ss is found
by solving the equation

dρ̃

dt
= 0, (82)

which determines a linear system of algebraic equations that must be
inverted to obtain ρ̃ss. Such an approach is however computationally
expensive and very inefficient for large Hilbert spaces. In order to
avoid numerical inversions, the system of Eq. (82) can be turned into
an eigenvalue problem by following the next steps. First, we take
advantage of the linearity of master equation and write Eq. (78) in
the form

dρ̃

dt
= T̂ρ̃, (83)

by constructing the right operators ÔR which satisfy the relation

ρ̃Ô = ÔRρ̃ (84)

where Ô represents any operator of Eq. (78) on the right side of ρ̃.
Second, considering that Eq. (83) has dimension N, we define the col-
umn vector [ρ̃] with dimensionN2 and the matrix [[T̂]] with dimension
N2 ×N2 such that

[[T̂]][ρ̃] = [T̂ρ̃]. (85)

Third, we define the eigenvalue problem

[[T̂]][ρ̃] = λ[ρ̃], (86)

where the steady state solution correspond to the eigenstate with cor-
responding eigenvalue λ = 0. Finally, the steady state density ma-
trix ρ̃ss is constructed from the eigenvector [ρ̃]ss following the rule
of Eq. (85). Because [[T̂]] usually is a very sparse matrix, the computa-
tional effort required to solve the zero-eigenvalue of Eq. (86) is smaller
than the effort required to numerically invert the system of equations
given by Eq. (82).



34 fundamental theory

2.3.2.1 Two-qubit entanglement

Two quantum mechanical systems ρ1 and ρ2 whose total density op-
erator cannot be written in the factorized form

ρT = ρ1 ⊗ ρ2, (87)

are said to be entangled. Entanglement, which is a fully quantum
mechanical phenomenon, describes situations where the systems ex-
hibit quantum correlations such that we cannot describe one of them
without referring to the others. In particular, photon-mediated in-
teractions between semiconductor quantum dots allow the possibil-
ity of exciton entanglement, and we can take advantage of the non-
separability of the whole system state for quantum information trans-
ferring between single spatially separated quantum dots. The quan-
tification of entanglement is hence fundamental for applications in
quantum technologies, but this is a very hard task for many-body
systems and it is focus of intense research up to now [72, 73, 74]. We
are nonetheless interested in a two-qubit system using two-level quan-
tum dots, for which quantum entanglement has been widely studied
[75, 76, 77, 78]. Here, we adopt the Peres-Horodecki negativity cri-
terion, which leads to a sufficient condition for non-separability of
composite systems in composite Hilbert spaces of dimension 2 ⊗ 2
and 2 ⊗ 3 [79, 80, 81]. Since our two-quantum-dot system is inter-
acting with a photonic environment, the two-qubit reduced density
operator ρQD1QD2 of dimension 2⊗ 2, is calculated by tracing the
whole density operator, ρ, over all photonic degrees of freedom of
the system

ρQD1QD2 = Tr (ρ)ph . (88)

The negativity is defined as the absolute value of the sum of the neg-
ative eigenvalues of ρT1QD1QD2, where T1 represents the partial trans-
pose of ρQD1QD2 with respect to the system 1, i.e., quantum dot 1.
For example, consider a system of two quantum dots and one pho-
tonic mode, the matrix elements of the density operator in a Fock
basis can be written as ραµm,α ′µ ′m ′ where α and µ denote the excita-
tion number, 0 or 1, in the two-level quantum dot 1 and 2, respectively,
and m denotes the photon number, which is a positive integer, in the
photonic mode of the system. Following Eq. (88), the matrix elements
of the quantum dot reduced density operator, which will be denoted
by σ, are given by

σαµ,α ′µ ′ =
∑
m

ραµm,α ′µ ′m, (89)

and the matrix elements of the partial transpose of σ with respect to
the quantum dot 1 read

σT1αµ,α ′µ ′ = σα ′µ,αµ ′ . (90)
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The negativity is therefore the absolute value of the sum of the nega-
tive eigenvalues of σT1 . Since the negativity is an entanglement mono-
tone function for Hilbert spaces of dimension 2⊗ 2 and 2⊗ 3, it is a
good measure of the entanglement degree in these composite spaces.
For such a two-qubit system the negativity ranges from zero for a
separable state up to the maximum value 0.5 for the maximally en-
tangled Bell states. This can be easily shown by considering the Bell
states written in the two-qubit basis as follows:

|φ±〉 = 1√
2
(|00〉 ± |11〉) (91)

|ψ±〉 = 1√
2
(|01〉 ± |10〉), (92)

where the corresponding density operators are given by

ρ̂φ± = |φ±〉〈φ±|, ρ̂ψ± = |ψ±〉〈φ±|. (93)

Considering the ordering of the basis {|00〉, |01〉, |10〉, |11〉}, the matrix
representations of the density operators in Eq. (93) read

ρφ± =
1

2


1 0 0 ±1
0 0 0 0

0 0 0 0

±1 0 0 1

 , ρψ± =
1

2


0 0 0 0

0 1 ±1 0

0 ±1 1 0

0 0 0 0

 . (94)

The matrix elements of ρT1 , namely, the partial transpose of ρ with
respect to qubit 1, i.e., the first entry of |α1α2〉, are obtained from the
matrix elements of ρ following the rule of Eq. (90)

〈α1α2|ρT1 |α ′1α ′2〉 = 〈α ′1α2|ρ|α1α ′2〉. (95)

The matrix representations of ρT1
φ± and ρT1

ψ± are then

ρT1
φ± =

1

2


1 0 0 0

0 0 ±1 0

0 ±1 0 0

0 0 0 1

 , ρT1
ψ± =

1

2


0 0 0 ±1
0 1 0 0

0 0 1 0

±1 0 0 0

 . (96)

Finally, it is easy to show that the characteristic equation to find the
eigenvalues λ of the four matrices in Eq. (96) is

(0.5− λ)3 (0.5+ λ) = 0, (97)

and their solutions are {0.5, 0.5, 0.5,−0.5}. The absolute value of the
sum of the negative eigenvalues in Eq. (97), i.e, the negativity, is there-
fore 0.5. Thus, a negativity value of 0.5 determines an upper bound
for the amount of entanglement in a two-qubit system.





3
R E S U LT S

The mutual interaction between two quantum dots decays rapidly
when their distance is larger than the emission wavelength [67]. Pro-
posals for increasing the mutual interaction distance between two
quantum dots in a photonic crystal platform mainly considered us-
ing a waveguide as a bus for photon propagation [26, 27, 28]. The
role of disorder on light localization was also addressed [29]. Alterna-
tively, preliminary studies considered the mutual coupling between
two quantum dots positioned at the field antinodes within the same
photonic crystal cavity [26, 30], for which early experimental evidence
was shown [24, 62, 31]. The possibility of mediating the inter-dot cou-
pling through the normal modes of a photonic molecule has been
considered for coupled micro disks [82]; nevertheless, the dot-dot dis-
tance is limited by evanescent inter-cavity coupling in free space. In
this thesis, we theoretically address the possibility of using strongly
coupled photonic molecules to efficiently increase the mutual dot-dot
coupling rate even at large distances. A schematic representation of
our system is shown in Fig. 14. We present original results on the
inter-dot radiative coupling, disorder effects and steady state entan-
glement between the quantum dots.

Figure 14: Schematic representation of the system investigated in this thesis:
two strongly coupled photonic crystal nanocavities, each contain-
ing a single quantum dot. The distance between the nanocavities,
dc, can be larger than the characteristic quantum-dot-emission
wavelength in vacuum, λ0.

37
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Figure 15: Schematic representation of the photonic crystal molecule consid-
ered in our work. Two L3 PC slab cavities in a hexagonal lattice
of air holes are coupled along four different directions. We define
a as the lattice parameter of the surrounding photonic crystal lat-
tice, while s is the outward displacement of the end lateral holes
of the cavities, and dc is the center-to-center inter-cavity distance.

3.1 photonic crystal molecule

The photonic crystal molecule that we study here is formed by two
coupled nominally identical L3 cavities, i.e., photonic crystal dimer,
in a two-dimensional photonic crystal slab of a hexagonal lattice of
air holes in GaAs. In the photonic crystal community, the L3 cavity is
commonly defined by three missing holes in a horizontal line of the
photonic lattice [83, 84]; we choose the optimized design where the
radius of the two end lateral holes are diminished to 80% of their orig-
inal value, and the centers are outward displaced by 0.15a, where a is
the lattice parameter [85]. We focus on the four dimers where the line
connecting the centers of the cavities determines an angle of 0◦, 30◦,
60◦ or 90◦ with respect to the horizontal axis, as it is schematically
illustrated in Fig. 15. Typical values for GaAs photonic crystal struc-
tures coupled to InGaAs quantum dots in the 900 nm wavelength
range are considered [30]: lattice parameter a = 260 nm, hole radius
of 65 nm, slab thickness of 120 nm and refractive index of 3.41.

The photonic modes for the 0◦, 30◦, 60◦, and 90◦ photonic crystal
dimer are computed using the GME method of Sec. 2.1.4. We use a
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Figure 16: Photonic dispersion of the bonding (solid lines) and antibonding
(dashed lines) modes for the (a) 0◦, (b) 30◦, (c) 60◦, and (d) 90◦

cases, respectively. The lines only connect the individual points
and serve as a guide for the eye. Electric field components Ey
associated to the (e) bonding and (f) antibonding states for the
30◦ photonic crystal dimer at dc = 5

√
3a.

hexagonal supercell1 of superlattice parameter 24a, and up to 11025
total plane waves tested for convergence in the 30◦ and 60◦ cases;
we use rectangular supercells of dimensions 27a× 8

√
3a and 18a×

25
√
3a, and up to 11915 and 24829 total plane waves tested for con-

vergence, in the 0◦ and 90◦ cases, respectively. Since the photonic
structure has symmetry point, then Eq. (14) determines a real sym-
metric eigenvalue problem. Only one guided mode is used in the ba-
sis expansion, because the contribution of high order guided modes
is negligible for the thickness considered here. Finally, the real part of
the frequencies are averaged in the first Brillouin zone of the super-
lattice in order to smooth out finite supercell effects (see Appendix A).

Figure 16 shows the results of the GME computations for the first two
photonic normal modes, associated to the split states arising from the
fundamental L3 cavity mode. The bonding states are labeled with
the subscript +, while the subscript − is used for the antibonding

1 The supercell method is explained in Appendix A.
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states. Panels (a), (b), (c), and (d) correspond to the 0◦, 30◦, 60◦ and
90◦ dimers, respectively. For the 0◦ case we see a very small split-
ting between the normal modes, which does not change apprecia-
bly with the inter-cavity distance dc (defined from center-to-center of
the two photonic crystal slab cavities). The behavior of the normal
mode frequencies is quantitatively different for the other cases, in
which a large splitting at small inter-cavity distances can be noticed.
Such splitting decreases smoothly for the 30◦ dimer, and much more
rapidly for the 60◦ and 90◦ dimers, on increasing dc. Nevertheless,
between dc = 4a and dc = 5a for the 60◦ case, and between dc = 7a
and dc = 8a for the 0◦ case the splitting increases, which is a rather
counterintuitive behavior and it typically occurs in photonic crystal
molecules, as already evidenced [34, 41]. In addition, the bonding (+)
and antibonding (−) behavior of the modes changes as a function of
distance, which is another interesting phenomenon already seen in
experimental measurements on such systems [41]. As it is expected,
the resonance frequencies of these dimers tend to the values of the
isolated L3 cavity for large distances. In Figs. 16(e) and 16(f) we show
the Ey patterns for the bonding and antibonding states, respectively,
for the case of 30◦ at the inter-cavity distance dc = 5

√
3a. The sym-

metry point of the present photonic crystal molecule is located at the
center of the structure. The bonding (antibonding) mode has an even
(odd) symmetry with respect to this point, as it can be seen in the
figure.

The imaginary parts of photonic eigenfrequencies are calculated us-
ing the photonic Fermi’s golden rule of Eq. (29), and averaging in the
first Brillouin zone of the superlattice, in the same way as it was done
for the real parts; the corresponding quality factor is computed with
these averaged quantities through Eq. (34), i.e.,Q = 〈Re{ω}〉/2〈Im{ω}〉.
Figures 17(a), 17(b), 17(c) and 17(d) show the quality factors of the
split modes for the 0◦, 30◦, 60◦ and 90◦ cases, respectively. As a gen-
eral trend, the quality factors are relatively small with respect to the
quality factor of the fundamental L3 cavity mode for large splitting
(dimers 30◦, 60◦ and 90◦), and increase quickly when dc increases;
they remain relatively constant for large inter-cavity distances and
oscillate around this value. The 0◦ case is quantitatively different
from the other dimers since the normal mode quality factors asso-
ciated to this molecule evidence an enhancement with respect to the
Q value of the fundamental L3 cavity mode, which is an interesting
phenomenon already seen in photonic molecules [86]. The calcula-
tions shown in Figs. 16 and 17 agree with previous work on similar
systems [34].
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Figure 17: Quality factorsQ for the (a) 0◦, (b) 30◦, (c) 60◦ and (d) 90◦ cases as
a function of the inter-cavity distance, dc. The lines only connect
the individual points and serve as a guide for the eye.

3.2 long-distance radiative coupling between quantum

dots

After characterizing the photonic eigenmodes of the photonic crys-
tal dimer, we have all the parameters required to study the cou-
pled quantum-dot photonic-dimer system. We consider each dot po-
sitioned at the center of each L3 cavity, which simplifies considerably
the problem since the quantum dots only couple with the y compo-
nent of the electric field. This is due to the fact that the x field com-
ponent is negligible for small inter-cavity distances dc at the center
of each L3 cavity, and eventually tends to zero for large dc values
(the Ex is exactly zero at the center of the isolated L3 cavity). We
also consider that the loss rates through the photonic normal modes,
γm = 2Im{ωm}, are significantly larger than the quantum dot loss
rates γ(α) through other channels, therefore, we set γ(α) = 0. With
these conditions the Λ matrix of Eq. (63) takes the following simpli-
fied form:

Λy =


ω(1) 0 g11,y g12,y

0 ω(2) g21,y g22,y

g1∗1,y g2∗1,y ω1 − i
γ1
2 0

g1∗2,y g2∗2,y 0 ω2 − i
γ2
2

 , (98)

where ω(1) = ω
(1)
y , ω(2) = ω

(2)
y , ω1 = min(ω+,ω−) and ω2 =

max(ω+,ω−). In Fig. 18(a) we show the real part of the eigenfre-
quencies from diagonalization of the matrix in Eq. (98), for the same
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dimer configuration shown in Figs. 16(e) and 16(f), as a function of
the frequencies of the two quantum dots at zero dot-dot detuning.
We see that vacuum Rabi splitting occurs in the frequency regions as-
sociated to the coupled modes resonances (the vertical dashed lines),
which is the signature of the strong coupling between the excitonic
states and the photonic crystal modes. Due to the opposite symmetry
of the two photonic modes, i.e. symmetric (bonding) and antisym-
metric (antibonding), the relevant excitonic states are the ones with
the symmetry of the dimer mode. In this way, the first anti-crossing,
which is associated to the bonding normal mode, corresponds to an
excitonic symmetric state and the antisymmetric remains dark, while
the second anti-crossing, which is associated to the antibonding nor-
mal mode, corresponds to an excitonic antisymmetric state with the
symmetric one remaining dark. When the first photonic mode is an-
tibonding, as in the case of some configurations of the 0◦, 60◦ and
90◦ dimers, the first anti-crossing corresponds to an antisymmetric
excitonic state, and the second one to a symmetric excitonic state,
as verified in our calculations. The Hopfield coefficients are shown
in Fig. 18(b), where an interesting collective behavior is seen. In the
region of the first strong coupling the polaritons 1 and 3 have com-
parably significant values of the coefficients λ1y (quantum dot 1), λ2y
(quantum dot 2), and λ1 (mode 1), and we see the same behavior for
polaritons 2 and 4 in the region of the second strong coupling, but
now with the mode coefficient λ2 (mode 2), which corresponds to
the antisymmetric mode. Usually, it is very likely that two quantum
dots are detuned due to their inhomogeneous distribution of sizes.
Therefore, we show in Figs. 18(c) and 18(d) the same analysis made
in panels (a) and (b) but now introducing a finite and sizable detun-
ing between the two dots ∆ =  hω(1) −  hω(2) = 300 µeV. We see that
under such conditions, symmetric and antisymmetric excitonic states
are possible and the dark mode is not present. All the Hopfield coeffi-
cients associated to the coupling of the dots with each photonic mode
are non-negligible, and consequently radiative coupling between the
quantum dots remains present.

We now try to give an answer to the question of how the radiative
coupling depends on the inter-cavity distance in a photonic crystal
dimer. The radiative coupling between the quantum dots is quanti-
fied by the tensor components of Eq. (68), which are proportional
to the Green’s function evaluated at the dot positions. The dominant
component of the Green’s tensor in our case is the yy due to the dom-
inant polarization of the normal modes in the y direction, and to the
small value of the x electric field component at the center of the L3

cavities, which is identically zero for the fundamental isolated-L3 cav-
ity mode. Therefore, considering the two dimer modes with y electric
field components, E1,y and E2,y, frequencies ω1 and ω2, and associ-
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Figure 18: (a) Real part of the eigenfrequencies of the quantum-dot photonic-
dimer system for the 30◦ case at dc = 5

√
3a, for zero dot-dot

detuning. (b) The square modulus of the Hopfield coefficients as-
sociated to (a). (c) and (d) correspond to the same case as in (a)
and (b), respectively, but with a finite dot-dot detuning of ∆ = 300

µeV. In panels (b) and (d), λ1y and λ2y are associated to the quan-
tum dots 1 and 2, respectively, and λ1 and λ2 are associated to the
photonic crystal modes with frequenciesω1 andω2, respectively.

ated loss rates γ1 = ω1/Q1 and γ2 = ω2/Q2, the effective radiative
coupling between the two quantum dots positioned at the centers of
the cavities, i.e., r1 and r2, at the excitonic transition frequency ω, can
be reduced to the following formal expression [33]:

G12yy(ω) =
2πωd2

 h

(
E1,y(r1)E∗1,y(r2)
ω1 − i

γ1
2 −ω

+
E2,y(r1)E∗2,y(r2)
ω2 − i

γ2
2 −ω

)
, (99)

We plot the absolute value of this function, evaluated at the two dimer
eigenfrequencies, in Fig. 19 as a function of the inter-cavity distance,
where panels (a), (b), (c) and (d) correspond to the 0◦, 30◦, 60◦ and 90◦

cases, respectively. These results evidence that the radiative coupling
is highly enhanced at resonance with the dimer modes and the ef-
fective energy transfer between the quantum dots can achieve values
of the order of 2.5 meV for the 0◦ case, and 1.5 meV for the 30◦, 60◦

and 90◦ cases, which are at least an order of magnitude larger than
typical values achieved in one-dimensional systems [26, 87]. However,
for the 30◦, 60◦ and 90◦ dimers the dot-dot coupling strength at res-
onance is surprisingly minimal at small inter-cavity distance, which
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Figure 19: Absolute value of the component G12yy(ω) evaluated at ω = ω1
and ω = ω2 as a function of the inter-dot distance, for the (a)
0◦, (b) 30◦, (c) 60◦ and (d) 90◦ dimers. The lines only connect the
individual points and serve as a guide for the eye.

are the cases where the coupling between the cavity modes is largest.
As a counterintuitive consequence, the coupling strength between the
dots increases with the interdot distance after the smallest values of
dc, and remains relatively constant (small oscillations) at larger val-
ues of dc. It is important to remind that these results, which allow the
possibility of sizable long-distance interaction between quantum dots,
are valid as long as the normal mode splitting exceeds the photonic
radiative linewidth, i.e., where the mode splitting can be spectrally
resolved (strong cavity-cavity coupling condition).

These interesting behaviors can be interpreted by analyzing the ex-
pression for the coupling constant G12yy(ω) in Eq. (99). Since the fields
are strongly localized in both cavity regions for all inter-cavity dis-
tances in the strong cavity-cavity coupling regime, the functions Ey(rα)
depend very weakly on the dc parameter; furthermore, the functions
E1,y(r1)E∗1,y(r2) and E2,y(r1)E∗2,y(r2) are real due to the point sym-
metry of the structure with respect to the origin of coordinates, and
have approximately the same value with opposite signs due to the
opposite symmetries of the two modes [see Figs. 16(e) and 16(f)]. In
this way, we can approximate the |G12yy(ω)| function as:

|G12yy(ω)| ≈ 2πd
2|g12|
 h

ω

∣∣∣∣∣ ∆m − iγ2−γ12

(ω1 − i
γ1
2 −ω)(ω2 − i

γ2
2 −ω)

∣∣∣∣∣ , (100)

where |g12| = |E1,y(r1)E∗1,y(r2)| ≈ |E2,y(r1)E∗2,y(r2)|, and ∆m = ω2 −

ω1. Neglecting the γ terms when they do not contribute significantly
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to the sums, as well as their second order terms, we obtain the follow-
ing trends for the effective coupling constant:

|G12yy(ωi)| ∝ Qi , for i = 1, 2, (101)

which qualitatively explains the results of Fig. 19. The key assump-
tion in Eq. (101) lies in the fact that the normal modes of a photonic
molecule are strongly localized in the cavity regions, and such field
distributions are weakly dependent on the inter-cavity distance. This
leads to a dependence of the radiative coupling on the inverse of the
loss rates only [see Eq. (99)], which are inversely proportional to the
quality factors.

3.3 disorder effects on the radiative coupling between

quantum dots

Usually, quantum dots are not perfectly positioned at the center of
the cavities due to the precision limitation in modern sample fabri-
cation techniques. In this way, we studied how the results shown in
Fig. 19 are affected by considering disorder in the dot positioning.
To accomplish this, the position of one quantum dot is generated by
a random distribution with Gaussian probability of given variance
σ; since the inter-dot distance is kept fixed, the position of the other
quantum dot is automatically determined, which models in a realis-
tic way possible misalignments between the photonic pattern and the
dots. Fig. 20 shows the results of this analysis for the 0◦, 30◦, 60◦ and
90◦ cases in panels (a), (b), (c) and (d), respectively, where the dimers
are assumed in resonance with the lowest frequency normal mode
ω1. The radiative coupling was averaged over 1000 realizations for
each of the variances considered, and the statistical standard error is
shown in the error bars of the curves2. Our numerical calculations
show that when the variance is of the order of the precision achieved
in modern fabrication techniques, which is around 20 nm [88], the
effective radiative coupling between the quantum dots at resonance
with the photonic normal mode remains quite sizable, i.e., on the or-
der of 1.5 meV for the 0◦ dimer and 1.2 meV for the 30◦, 60◦ and
90◦ dimers. We verified that the results in which the dots are in reso-
nance with the second normal mode of frequency ω2 are equivalent,
and the effective coupling strengths remain of the same order of mag-
nitude for each dimer.

We have also studied the question of how the radiative coupling be-
tween the two distant quantum dots is modified by considering struc-
tural disorder in the photonic crystal dimer. Usually the predicted
losses of perfectly arranged photonic structures (intrinsic losses) are

2 The standard error is defined as the corrected standard deviation over the square
root of the number of realizations.
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Figure 20: Radiative effective coupling between the quantum dots at ω =

ω1 for the statistical analysis of their non ideal position. Panels
(a), (b), (c) and (d) correspond to the 0◦, 30◦, 60◦ and 90◦ dimers.
The coupling strength is averaged over 1000 realizations and the
standard error is shown in the error bars. The lines only connect
the individual points and serve as a guide for the eye.

much smaller than the value measured in the fabricated sample; this
is mainly due to small errors in the fabrication process, which de-
viates the holes of the structure (in an photonic crystal slab of cir-
cular holes) from their ideal position, shape and size, producing ex-
tra channels of losses in the photonic structure (extrinsic diffraction
losses). Here, we consider the fluctuations of the hole radii as the
principal disorder contribution to the extrinsic diffraction losses. In
our model of disorder we generate the hole radii randomly in the
supercell with Gaussian probability, centered at 65 nm with standard
deviation σS. As a natural consequence of Eq. (101), we expect the
decreasing of G12yy as long as σS increases (losses are larger and con-
sequently the quality factors are smaller). Nevertheless, the effect of
disorder in photonic molecules does not only increase the losses of
the system; since the random fluctuations of the radii have the ef-
fect of modifying independently the resonant frequencies of the cavi-
ties, the normal modes of the system (dressed states) are turned into
the cavity modes (bared cavity states) if the magnitude of the struc-
tural disorder, which can be quantified by σS, is much larger than
the cavity-cavity coupling constant Jλ = ∆λ/2, where ∆λ is the wave-
length normal mode splitting at zero disorder if Jλ is not strongly
modified by the random fluctuations [89]. The consequence of this
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“normal mode breaking” is the decreasing of the field products in
each of the two terms of G12yy [see Eq. (99)], since the field is more
localized in only one of the two cavities for large values of σS. There-
fore, the effective energy transfer between the two quantum dots is
reduced by two independent contributions when structural disorder
is considered: disorder-induced losses and normal mode breaking of
the photonic dimer. Figure 21 shows the results of the absolute value
of G12yy in resonance with the fundamental and first excited normal
mode, at dc = 7a, dc = 5

√
3a, dc = 5a and dc = 3

√
3a for the

0◦, 30◦, 60◦ and 90◦ dimers, respectively, in the corresponding (a),
(b), (c) and (d) panels. The G12yy component has been averaged over
30 disorder realizations and the standard error is shown in the er-
ror bars. The values of σS considered here are of the same order of
the Jλ constants in the associated configurations, which are equal to
0.119 nm, 0.450 nm, 0.475 nm and 0.263 nm for the 0◦, 30◦, 60◦ and 90◦

cases, respectively. As it is expected, the effective coupling strength
between the quantum dots decreases when the disorder parameter
σS increases. From Figs. 20 and 21, we can see also that the effect of
the structural disorder on decreasing the energy transfer between the
dots is much stronger than the effect of their non-ideal positioning;
the |G12yy| component decreases by ∼ 0.5 meV in a very narrow range
of σS (∼ 1 nm, as seen in Fig. 21), while the same ∼ 0.5meV decreasing
is seen over a quite larger range when calculated as a function of σ
(∼ 30 nm, as seen in Fig. 20). Nevertheless, our results show that val-
ues of σS which are of the order of Jλ not affect strongly the effective
dot-dot coupling and |G12yy| remains of the same order of magnitude,
i.e., disorder magnitudes which are of the order of 0.5 nm (0.0019a),
1.5 nm (0.0058a), 1.6 nm (0.0061a) and 0.9 nm (0.0035a) for the 0◦,
30◦, 60◦ and 90◦ dimers, respectively, do not affect appreciably the ra-
diative coupling. Larger values of the structural disorder magnitude
are shown in the corresponding insets of Fig. 21, where we have con-
sidered σS up to 5 nm. The radiative coupling is strongly reduced
when very disordered systems are taken into account, and the effec-
tive coupling strength between the quantum dots can be reduced up
to an order of magnitude. However, values around 4 nm (0.015a), rel-
evant for the state of the art fabrication tolerances in GaAs or InGaAs
structures, determine an effective energy transfer of ∼ 250 µeV be-
tween the dots, which is still an order or magnitude larger than the
effective strengths obtained in previous disordered systems [29], and
two times larger than our dot-field coupling strengths (∼ 110 µeV).
We have obtained equivalent results for the other inter-dot distances
in all dimer’s configurations.

Finally, in the present semiclassical study we have considered reso-
nant coupling between the dots and the photonic normal modes of
the photonic molecule. Nevertheless, the excitonic frequencies of typ-
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Figure 21: Radiative effective coupling between the quantum dots as a func-
tion of the standard deviation σS, which quantifies the structural
disorder in the photonic crystal dimer. Panel (a) corresponds to
the 0◦ dimer at dc = 7a, panel (b) to the 30◦ dimer at dc = 5

√
3a,

panel (c) to the 60◦ dimer at dc = 5a and panel (b) to the 90◦

dimer at dc = 3
√
3a. Insets show the results for larger values of

σS. The coupling strength is averaged over 30 disorder realiza-
tions and the standard error is shown in the error bars. The lines
only connect the individual points and serve as a guide for the
eye.

ical semiconductor quantum dots are inhomogeneously distributed
with a width of several meV. This effect can be modeled as another
disorder contribution on the excitonic transition frequencies of the
dots; such a study will be carried out in a future work. Nevertheless,
we expect a strong reduction of the radiative coupling strengths if
the non-resonant condition determines a dot-dot detuning which is
much larger than the linewidth of the corresponding photonic nor-
mal mode. An efficient experimental setup for tuning the quantum
dot transition frequencies using the quantum confined Stark effect,
and bring them into resonance, is implemented in Refs. [24, 90].

Since structural disorder breaks the symmetry of the photonic crystal,
the eigenvalue problem of Eq. (14) becomes complex hermitian and
computationally expensive. Therefore, the statistical analysis of |G12yy|
as a function of σS shown in Fig. 21, was carried out using rectan-
gular smaller supercells of dimensions 21a× 6

√
3a with 6951 plane

waves, 20a× 7
√
3a with 7727 plane waves, 17a× /8

√
3a with 7489

plane waves and 14a× 11
√
3a with 8497 plane waves, tested for con-

vergence, the 0◦, 30◦, 60◦ and 90◦ dimers, respectively. Here, we also
considered only one guided mode in the expansion because we are
interested in the frequency region below the second-order mode of
the homogeneous slab.
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3.4 long-range entanglement between radiatively cou-
pled quantum dots

We have studied the resonant energy transfer between two distant
quantum dots in photonic crystal dimers using a semiclassical ap-
proach based on the photonic Green’s function, giving rise to an ef-
fective dot-dot long-distance radiative coupling which can be of the
order of 1 meV. Here, using the fully quantum mechanical formalism
presented in Sec. 2.3.2, we focus on the role of the normal modes as
channels for entanglement between the quantum dots, as well as the
necessary conditions for entanglement generation in photonic crys-
tal dimers. In order to describe the two-level-dot photonic-dimer sys-
tem we consider the second-quantized effective driven Hamiltonian
of Eq. (77), written in the normal mode basis:

Ĥeff =

2∑
n=1

 hω̄nâ
†
nân +

2∑
α=1

 hω̄(α)b̂†αb̂α

+  h

2∑
n,α=1

(
g∗αn â

†
nb̂α + gαnânb̂

†
α

)

+  h

2∑
α=1

(
Ωαe

iφα b̂†α +Ω∗αe
−iφα b̂α

)
,

(102)

where ω̄n = ωn −ωp and ω̄(α) = ω(α) −ωp. In Eq. (102), ωn and
ω(α) correspond to the frequency of the normal mode n (given by
GME) and the excitonic transition frequency of the two-level quan-
tum dot α, respectively; â†n (ân) is the creation (destruction) operator
of photons in the normal mode n; b̂†α (b̂α) is the creation (destruction)
operator of one electron-hole pair in the dot α; gαn are the coupling
strengths between normal mode n and quantum dot α; and Ωn is
the pumping rate, with phase φα, at which are coherently created
electron-hole pairs in the dot α by a continuous wave pump laser or
electric potential with frequency ωp. We assume the two quantum
dots at the centers of the dimer cavities and optimal dipole orienta-
tion (parallel to the electric field); over these conditions the coupling
strength of Eq. (72) is given by

gαn =

√
2πω0d2

 h
Ey,n(rα), (103)

where ω0 and d2 are the average exciton transition frequency and
the square dipole moment which are in the range of ∼ 1.3 eV and ∼

0.51 eV nm3, respectively, for typical self-organized InGaAs quantum
dots, and Ey,n(rα) is the non-vanishing electric field component at
the center of the dimer cavities, which is calculated with GME. The
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master equation Eq. (78), for describing the losses of the system, reads

dρ̃

dt
=
i
 h

[
ρ̃, Ĥeff

]
+

2∑
n=1

L̂(γn) +

2∑
α=1

L̂(γ(α)), (104)

where

L̂(γ1) = γ1

(
â1ρ̃â

†
1 − â

†
1â1ρ̃/2− ρ̃â

†
1â1/2

)
L̂(γ2) = γ2

(
â2ρ̃â

†
2 − â

†
2â2ρ̃/2− ρ̃â

†
2â2/2

)
L̂(γ(1)) = γ(1)

(
b̂1ρ̃b̂

†
1 − b̂

†
1b̂1ρ̃/2− ρ̃b̂

†
1b̂1/2

)
L̂(γ(2)) = γ(2)

(
b̂2ρ̃b̂

†
2 − b̂

†
2b̂2ρ̃/2− ρ̃b̂

†
2b̂2/2

)
(105)

The normal mode losses of Eq. (105) are given by the photonic Fermi’s
golden rule within the GME approximation, i.e., γn = 2Im{ωn}, and
the exciton decay rates γ(α) are free parameters in our model. The
master equation of Eq. (104) depends on the interdot distance via the
gαn, ωn and γn parameters, which are implicit functions of the cavity-
cavity separation, and it is numerically implemented by expressing
the operators on a occupation number Fock basis, truncated to the
most suitable photon number prior checked for convergence.

After defining the key parameters of our quantum model, we begin
by characterizing the photonic normal modes as channels for quan-
tum entanglement in the steady state. For determining the state with
maximum entanglement we define the phase difference between the
pumpings φ = φ1 − φ2 and we write the pumping frequency as
ωp = ω1 + δ with Ωα = Ω0 (same pumping rates for both dots).
Considering the two quantum dots resonant with the lower frequency
normal mode, i.e., ω(1) = ω(2) = ω1, and using the calculated
GME parameters we compute the negativity by solving the master
equation for the steady state density matrix as a function of φ and
δ, with φ2 = 0. Figure 22 shows the results for the 30◦ dimer at
dc = 2

√
3a = 901 nm, where the vertical black and white dashed lines

correspond to the dark state and polariton branches of the system, re-
spectively. The largest entanglement, corresponding to a negativity of
0.103 or ∼ 20% of the maximum (see Sec. 2.3.2.1), is seen at the dark
state with a phase difference of π. Since the excitonic dark state does
not couple effectively to the photonic mode due to their opposite sym-
metry, the former remains “protected” from the dissipative effects of
the latter, allowing the non-zero steady state negativity seen in the
figure. The phase difference between the pumpings is determined by
the bonding (symmetric) or antibonding (antisymmetric) behavior of
the normal mode; for bonding modes the optimal phase difference
will be (2m+ 1)π (antisymmetric excitonic dark state) while for anti-
bonding modes will be 2mπ (symmetric excitonic dark state), with m
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Figure 22: Steady state negativity for the 30◦ dimer at dc = 2
√
3a = 901 nm

as a function of the phase difference between the pumpings φ =

φ1 − φ2, with φ2 = 0, and the frequency shift δ, where ωp =

ω1 + δ. The maximum negativity is 0.103. The two quantum dots
are in resonance with the lower frequency normal mode and we
have considered γ(α) = 0 and  hΩ0 = 1 µeV.

integer. In the calculations of Fig. 22 we have considered γ(α) = 0 and
 hΩ0 = 1 µeV; since  hγn is between 10 and 60 µeV and  hgαn ∼ 110 µeV
for all dimers, we are in the weak pumping regime and the basis used
for solving the master equation |α1α2n1n2>, with αi the excitation
number (0 or 1) in the dot i and ni the number of photons in the
mode i, is safely truncated at ni = 1. We have obtained equivalent re-
sults for all dimer configurations at all intercavity distances allowed
by the corresponding supercell.

Taking into account that the largest steady state negativity corre-
sponds to the dark state, at the phase difference determined by the
photonic mode in resonance with the quantum dots, we now inves-
tigate how the entanglement depends on the dot-dot separation dc.
Figure 23 shows the negativity results as a function of the interdot dis-
tance, for the 0◦, 30◦, 60◦ and 90◦ dimers, considering  hγ(α) = 0 µeV,
black circles,  hγ(α) = 0.66 µeV, red squares,  hγ(α) = 3.3 µeV, blue
triangles, and  hγ(α) = 6.6 µeV, green diamonds. The quantum dots
are in resonance with the lower frequency normal mode and  hΩ0 =

1 µeV as in Fig 22. We identify a negativity decreasing as a function
of the interdot distance in the large dc region for all dimers, which
suggests a proportional dependence of the entanglement on the nor-
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Figure 23: Steady state negativity for the dimers 0◦, in (a), 30◦, in (b), 60◦,
in (c), and 90◦, in (d), as a function of the distance between
the quantum dots dc considering  hγ(α) = 0 µeV, black circles,
 hγ(α) = 0.66 µeV, red squares,  hγ(α) = 3.3 µeV, blue triangles,
and  hγ(α) = 6.6 µeV. The two quantum dots are in resonance
with the lower frequency normal mode and  hΩ0 = 1 µeV. The
lines connecting the individual points only serve as a guide for
the eye.

mal mode splitting. The latter is a decreasing-monotone function for
large intercavity distances and non-monotonic for intermediated val-
ues of dc; in fact, the splitting can increase for increasing intercavity
distance at specific dimer configurations (see Fig. 16). Such a phe-
nomenon is clearly reflected in the negativity, i.e., the entanglement
increases for increasing dc, into the dc intervals [1820, 2080] nm and
[2340, 2600] nm for panel (a), and [1040, 1300] nm for panel (c); in
these cases, the normal mode splitting changes from a very small
value to a large value, with respect to the linewidths of the photonic
modes. At the other intermediated values of the interdot distances,
the negativity is roughly of the order of ∼ 0.1. Hence, the results of
Fig 23 show that when the normal mode splitting is well defined
(quite larger than the photonic linewidths), the negativity remains
of the order of ∼ 0.1. The 30◦ dimer, in panel (b), clearly evidences
such a behavior; the negativity is a very flat function, around 0.1, up
to dc = 2252 nm, where the mode splitting is much greater than
the normal mode linewidths. For larger values of dc, the splitting
becomes of the order of γn and the negativity decreases. The 90◦

dimer, in panel (d), is characterized by its rapidly splitting decreas-
ing where dc increases, consequently, significant values of negativity
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Figure 24: Steady state negativity for the 30◦ dimer at dc = 2
√
3a = 901 nm,

panel (a), and dc = 7
√
3a = 3151 nm, panel (b), as a function of

the pure dephasing rate γ(α)d = γ
(1)
d = γ

(2)
d , for different exci-

ton loss rates. The two quantum dots are in resonance with the
lower frequency normal mode, i.e., ω(1) = ω(2) = ω1, and the
pumping rate is  hΩ0 = 1 µeV.

are not supported at interdot distances which are larger than the char-
acteristic wavelength of the system. Furthermore, it is very interesting
that the entanglement is not strongly affected by the γn rates as long
as the normal mode splitting is well defined; along the flat region
of the 30◦ dimer,  hγ1 and  hγ2 change from 67 µeV and 37 µeV, to
17 µeV and 16 µeV, respectively, when dc changes, correspondingly,
from 901 nm to 2252 nm. In Sec. 3.2, we showed that the resonant en-
ergy transfer between radiatively-coupled quantum dots depends on
the quality factor of the normal mode in resonance with the dots, i.e.,
Eq. (101), where the 0◦ configuration is the most convenient in terms
of energy transfer, due to its very-high normal mode quality factors
(see Fig. 17). Here, we show that when the figure of merit is long-
range entanglement, the 30◦ dimer is the best choice due to its well
defined normal mode splitting even for distances larger than the char-
acteristic wavelength of the system. Results of Fig. 23 also evidence
that the entanglement of the dark state is not strongly modified when
losses of typical self-organized InGaAs quantum dots are taken into
account; state-of-art InGaAs-dot excitonic lifetimes are between the
triangle-blue and square-red curves [88, 91, 92], i.e., between 0.2 ns
and 1 ns.

As a further loss channel, semiconductor quantum dots are known to
be subject to pure dephasing [24, 93]. To complete the study on the
dependence of entanglement on the main system losses, in Fig. 24

we investigate the dependence of the steady state negativity on their
pure dephasing rates by adding the term of Eq. (81) to the Master
equation of Eq. (104). Results are reported for the 30◦ dimer at two
different interdot distances in panels (a) and (b), and considering the
same values of γ(m) rates as in the previous Figure. The steady state
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entanglement is not strongly affected by viable experimental pure de-
phasing rates [94]. In panel (a), where the normal mode splitting is
much larger than the photonic linewidth, the negativity is decreased
to 82% for  hγ(m) = 0 µeV at  hγ

(m)
d = 1 µeV and to ∼ 70% for state-of-

art InGaAs quantum dot excitonic lifetimes. For very large intercav-
ity distances, where the splitting is of the order of the normal mode
linewidth, the entanglement is more sensible and it is decreased to
∼ 50% at  hγ

(m)
d = 1 µeV for realistic InGaAs dots. Since we are in-

terested in the strong cavity-cavity coupling regime, i.e., well defined
normal mode splitting, and low-loss quantum dot excitonic states, we
will safely consider γ(m)

d = 0 from now on. Equivalent results were
obtained for entanglement as a function of the pure dephasing rates
in the 0◦, 60◦ and 90◦ dimers.

Since quantum dots are very likely to be detuned due to their in-
homogeneous distribution of sizes, we also studied the effect of de-
tuning, between the excitonic transition frequencies, on the entangle-
ment. Figure 25 shows the results of this study for the 30◦ dimer, at
the minimum and maximum interdot distances, panel (a) and (b), re-
spectively. The same exciton loss rates of Fig 23 were considered here,
but neglecting pure dephasing. The entanglement is a very sensible
function of the dot-dot energy detuning, in fact, for ∆ = 10 µeV the
negativity drops from 20% (∆ = 0) to 5%, in panel (a), and from 8%
(∆ = 0) to 3%, in panel (b). The presence of the second normal mode
at large intercavity distances produces the softer decreasing in the
curves of panel (b) in relation with the corresponding curves in panel
(a). Radiative coupling between the quantum dots through a photonic
mode is possible as long as the non-resonant condition determines a
dot-dot detuning smaller than the linewidth of the mode; neverthe-
less, Fig. 25 evidences that the condition for entanglement between
radiatively-coupled quantum dots is more stringent. In panel (a), the
line width of the photonic normal mode is 67 µeV, however, the nega-
tivity is near to zero for detuning values larger than 40 µeV, where the
radiative coupling is still present between the dots. In this way, the
entanglement is more conditioned by the linewidth of the excitonic
states of the dots than by the linewidth of the photonic mode, i.e., the
entanglement is sizable when the dot-dot detuning is smaller than
the exciton linewidth. We have obtained equivalent results for the 0◦,
60◦ and 90◦ dimers.

We have shown that it is possible to obtain 20% of the maximum
entanglement between two radiatively-coupled quantum dots, in the
steady state regime, for interdot separations that can be larger than
the characteristic wavelength of the system. However, practical appli-
cations for quantum information technologies require strongly entan-
gled qubits. Larger values for negativity, proper for practical devices,
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Figure 25: Steady state negativity for the 30◦ dimer at dc = 2
√
3a = 901 nm,

panel (a), and dc = 7
√
3a = 3151 nm, panel (b), as a function

of the detuning between the excitonic transition frequencies of
the quantum dots, for different exciton loss rates. The dot 1 is in
resonance with the lower frequency normal mode, i.e., ω(1) =

ω1, and ω(2) = ω(1) +∆ with a pumping rate  hΩ0 = 1 µeV.

can be achieved in the transient dynamics of our system. We focus on
the 30◦ dimer, which is the most convenient configuration for entan-
glement applications, and we consider the two quantum dots in reso-
nance with the lower frequency normal mode, as well as  hΩ0 = 1 µeV
at the optimal phase difference between the pumpings. The basis
|α1α2m1m2> for solving the dynamics of master equation Eq. (104),
is safely truncated at mi = 1. Figure 26 shows the negativity dynam-
ics up to 6 ns at dc = 2

√
3a = 901 nm and γ(α) = 0 for two different

initial conditions: one excitation in dot 1, i.e., |1000>, and one pho-
ton in the lower frequency normal mode, i.e., |0010>. The negativity
oscillates with a frequency determined by the pumping rate, ∼ Ω0/2,
and the amplitude of the oscillations approximates to the maximum
negativity, i.e., 0.5, when the initial condition is at the photonic mode;
which is the most favorable picture since the two quantum dots are
equally populated in time by the field, giving rise to an optimal con-
dition for maintaining the entanglement through the resonant-dot co-
herent pumping. When we consider an excited dot at t = 0, the two
quantum dots are not equally populated in time leading to an unfa-
vorable condition for increasing the entanglement between them. As
it is physically expected, the amplitude of the oscillations decreases
with increasing time, due to the normal mode dissipation, tending
asymptotically to the steady state negativity.

Results of Fig. 26 show that the optimal initial condition is consid-
ering a populated photonic mode and unpopulated quantum dot at
t = 0. Nevertheless, this is particularly challenging due to the delo-
calized nature of the normal mode; for achieving this initial condi-
tion it is necessary to prepare a collective state of both cavities at
the same time. Here, we propose a different and less challenging
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Figure 26: Negativity dynamics in the 30◦ dimer at dc = 2
√
3a = 901 nm

and γ(α) = 0, considering the initial conditions |1000>, in black,
and |0010>, in red.

approach. Considering dot 2 out of resonance, and dot 1 in reso-
nance with normal mode ω1, we put the initial condition in dot 1,
i.e., |1000>, and we wait for a time τ at which the normal mode 1
is maximally populated. At this time, we bring into the resonance
dot 2 with dot 1, which can be accomplished, for example, using
the quantum confined Stark effect [24, 90]. All the procedures are
done pumping the dots with the frequency of the resonant dark state
of the system. We show the results of this numerical experiment in
Fig. 27 for the 30◦ dimer at dc = 2

√
3a = 901 nm, panel (a), and

dc = 5
√
3a = 2252 nm, panel (b), where the same exciton loss rates of

Figs. 23 and 25 were considered, and these intercavity distances de-
limit the flat region in Fig. 23(a). Panel (a) shows that our approach
is totally equivalent to consider an initial excitation in the photonic
mode, and the amount of entanglement is also near to the maximum
in the transient dynamics for γ(α) = 0. As in Fig. 26, the amplitude
of the oscillations decreases with increasing time due to the reso-
nant normal mode dissipation. When exciton losses are taken into
account, negativity values around ∼ 0.2 are obtained for state-of-art
quantum dots, however, the presence of this dissipation channel pro-
duces an amplitude decreasing which is faster than the correspond-
ing decreasing for γ(α) = 0, and the steady state is achieved more
rapidly. For dc = 2252 nm, in panel (b), the presence of the second
normal mode, with the same symmetry of the excitonic dark state,
begins to be more relevant in the transient dynamics, providing an
additional loss channel for the entangled dots; even for γ(α) = 0,
the steady state regime is rapidly achieved, nevertheless, negativity
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Figure 27: Numerical experiment for time dependent negativity in the tran-
sient dynamics using the 30◦ dimer at dc = 2

√
3a = 901 nm,

panel (a), and dc = 5
√
3a = 2252 nm, panel (b). The initial con-

dition is |1000> in both cases with dot 1 and photonic mode ω1
in resonance, and dot 2 far from resonance. We wait for a time
τ = 9 ps and τ = 9.3 ps, at dc = 901 nm and dc = 2252 nm,
respectively, with the aim of maximally populate the resonant
photonic mode, and dot 2 is brought into resonance for t > τ.
The quantum dot pumping rate is  hΩ0 = 1 µeV at resonance
with the excitonic dark state for all times. The insets show the
early dynamics of the system.

values of about ∼ 0.2 are still obtained for state-of-art quantum dots.
In the early dynamics, show in insets of Fig. 27, the fast oscillation
frequency is determined by the dot-field couplings gnm and the nega-
tivity amplitude by the loss rates; since the normal mode losses γm
are smaller for dc = 2252 nm than for dc = 901 nm, the negativity
amplitude is larger for dc = 2252 nm than for dc = 901 nm at this
time regime. The transient slow-dynamics (after 200 ps), however, de-
termines large-negativity time intervals which are much greater than
the photonic mode and exciton lifetimes, allowing the possibility of
practical entanglement applications.





4
C O N C L U S I O N S

We have studied the radiative coupling between two distant quan-
tum dots embedded in two identical cavities of a photonic crystal
molecule, or photonic crystal dimer, in a planar waveguide geom-
etry by using a semiclassical formalism based on the Green’s ten-
sor. The photonic eigenmodes are found by guided mode expansion,
which allows to estimate real and imaginary parts (losses) of the pho-
tonic eigenmodes, as well as the spatial mode profiles. Specifically,
we have considered two L3 cavities made of three missing holes in a
hexagonal lattice, in which field antinodes occur at each cavity center
where the quantum dots can be placed. Moreover, we have addressed
the possibility of entanglement between radiatively-coupled quantum
dots using the normal modes of the photonic crystal dimer as quan-
tum channels for long-range interaction. The amount of entanglement
was quantified through the Peres-Horodecki negativity criterion of
the dot-dot reduced density matrix, which is computed using the
quantum-dissipative master equation. Parameters have been chosen
to describe current systems typically fabricated with III-V semicon-
ductors, such as InGaAs quantum dots in GaAs thin membranes.

Irrespective of the coupling angle between the two cavities (0◦, 30◦,
60◦, 90◦, respectively), we have shown that the effective interdot cou-
pling is enhanced when the quantum dots are in resonance with ei-
ther of the two normal modes of the photonic crystal dimer. Under
such resonance conditions, and in the strong cavity-cavity coupling
regime, the interdot coupling strength is actually proportional to the
quality factors of the normal modes (bonding or antibonding), and
it can be of the order of 1 meV for the cases considered in present
study, which is at least an order of magnitude larger than typical val-
ues achieved in one-dimensional systems [26, 87]. Since these quality
factors can also increase as a function of the inter-cavity distance,
tending to the limiting value set by the isolated cavity mode (in the
105 range for the present case), then the radiative coupling can also
increase with distance. Moreover, since the quality factors remain ap-
proximately constant at large distances, the radiative coupling can
also remain constant at inter-dot separation that is significantly larger
than their characteristic emission wavelength. Eventually, the mutual
quantum dot coupling goes to zero when the normal mode splitting
is blurred by their linewidth. We have also shown that our results
on radiative coupling are robust against positioning disorder of the
quantum dots considering the precision achieved by modern sample
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fabrication techniques, and are also relatively robust against a struc-
tural disorder of the photonic crystal dimer of the same magnitude
of the cavity-cavity coupling constant. Our calculations show that the
effective energy transfer between the quantum dots is much more af-
fected by the structural disorder than by the non-perfect positioning
of the quantum dots. The degree of structural disorder which main-
tains almost unaltered the effective coupling strength between the
dots is somewhat around five times smaller than what is presently
achieved [95]. Nevertheless, for a structural disorder compatible with
the state-of-art in GaAs or InGaAs structures the effective radiative
dot-dot coupling is still an order of magnitude larger than previously
studied disordered systems [29].

Into the quantum steady state regime and resonant condition, we
have found that the largest entanglement between radiatively coupled
quantum dots is obtained at the excitonic dark state of the system,
pumping the dots with a phase difference of (2n + 1)π, for bond-
ing resonant normal modes, and of 2nπ for antibonding resonant
normal modes, where n is an integer number. The largest negativ-
ity value achieved in this regime is ∼ 0.1, i.e., 20% of the maximum,
and remains of the same order of magnitude as long as the normal
mode splitting is well defined, i.e., much greater than the photonic
linewidths. These results are shown to be robust against the main
sources of quantum dot decoherence, such as spontaneous emission
and pure dephasing. Furthermore, when the splitting is of the order
of the photonic linewidths, the negativity is proportional to the nor-
mal mode splitting. On the other hand, where dot-dot detuning is
considered in the system, the entanglement is sizable only for detun-
ings which are smaller than the exciton linewidths; therefore, dot-dot
radiative coupling, determined by the photonic linewidths, is a nec-
essary but not a sufficient condition for entanglement between the
quantum dots. We have also shown that when the figure of merit
is long-range entanglement the 30◦ dimer is the most convenient
configuration due to its very-well defined normal mode splitting,
even at intercavity distances which are larger than the characteristic
wavelength of the system. Our steady state results on entanglement
showed to be robust for state-of-art InGaAs quantum dots. We have
also studied the transient dynamics of the system with the aim of ob-
taining much more entangled qubits, with respect to the steady state
regime, proper for applications in quantum information technologies.
We found that an optimal condition for initializing the system is guar-
anteed by considering an initial excitation in the resonant normal
mode, where long-time negativity oscillations with a frequency de-
termined by the exciton pumping rate are seen with a period much
larger than the photon and exciton lifetimes. Finally, based on these
results, we proposed a different and totally equivalent approach for



conclusions 61

generating the same long-time entanglement oscillations in practical
devices, by initializing the system with an excitation in one of the
quantum dots (less challenging task). Negativity values of the order
of ∼ 0.2, i.e. 40% of the maximum, were obtained for state-of-art In-
GaAs quantum dots in our proposed device.

We notice that the conclusions drawn in the present work can be ex-
tended to any type of photonic dimer, in principle. In fact, while the
mentioned values of the radiative coupling strength and negativity
are quantitatively valid for the specific systems considered here, it is
still general the conclusion that the radiative coupling and entangle-
ment between quantum dots in photonic dimers remains sizable even
at significantly large inter-dot distances when two identical cavities
are in the strong cavity-cavity coupling regime. Therefore, in view of
the present conclusions, it is particularly relevant realizing photonic
crystal dimers with normal mode splitting resolved even at very large
distances for long-range quantum dot interactions.

Future developments of this work will be focused on the non-resonant
energy transfer between the quantum dots in photonic crystal dimers.
The present semiclassical formalism allows us to quantify the radia-
tive coupling between the quantum dots at the same excitonic transi-
tion frequency; however, non-resonant radiative interactions through
photonic modes whose linewidth is larger than the dot-dot detun-
ing are not considered in the formulation. Since quantum dots are
very likely to be detuned, the question of how the radiative coupling
depends on the dot-dot detuning is quite relevant for practical appli-
cations. In the same direction, we have not quantified the effective
photon-mediated interaction within the quantum mechanical formal-
ism, in which energy detunings between the quantum dots can be
naturally taken into account. Therefore, this will be also focus of fu-
ture studies on photonic crystal chips with embedded quantum dots.

As a final remark, we believe that photonic molecules, as the ones
studied in the present thesis, could be extremely promising in view
of entangling distant qubits for applications in quantum information
processing in integrated photonic circuits.





A
S U P E R C E L L M E T H O D

Defects on photonic crystals break the translation symmetry of the
Bravais lattice, and the electromagnetic fields cannot adopt anymore
the Bloch-Floquet form of Eq. (10). Nevertheless, it is possible to
consider a cell with larger area containing the defect points with
several periods of the defect-free Bravais lattice. Such a cell, which
corresponds to a new Bravais lattice with larger period, is known
as supercell, and allow us to write the electromagnetic fields in the
Bloch-Floquet form. The supercell period must be chosen such that
the coupling between defects from neighbor supercells be negligible.
Figure 28 shows a schematic representation of a supercell in a square
lattice of circular holes, where a missing hole at the center of the su-
percell represents the defect.

Figure 28: Schematic illustration of a supercell in a square lattice of circular
holes. The defect is created by removing a hole in the center of
the supercell.

The dielectric Fourier coefficients of a photonic crystal with defects
can be calculated using Eq. (27) by considering the periodicity of
the new Bravais lattice with the cell period given by the supercell.
This Fourier integral is usually lengthy and tedious to calculate in
a straightforward way, therefore, we present here two different ap-
proaches to easily compute such coefficients through simple superpo-
sitions.

Let us denote by εT (r||), εb(r||) and ε(j)sh(r|| − r||,j), the dielectric func-
tions of the whole structure (with defect), regular structure (without
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defect) and regular structure with the hole at position r||,j, respec-
tively. Where r|| represents the in-plane coordinate vector of the peri-
odic pattern. We then write

εT (r||) = εb(r||) +
∑
j

ε
(j)
sh(r|| − r||,j), (106)

where εb is equal to the dielectric constant of the slab outside the
corresponding hole, i.e., εs, and is equal to the dielectric constant of
the hole inside the corresponding hole, i.e., εh. Moreover, εsh, inside
the corresponding hole, is equal to εs − εh for removing holes and
equal to εh − εs for creating holes, and is always equal to 0 outside
the corresponding hole. Notice that Eq. (106) gives the dielectric func-
tion of the crystal with defects as a superposition of the regular or
background crystal (without defects) and separated defects, either to
fill or to create holes. The following periodicity conditions must be
fulfilled by the dielectric functions:

εT (r||) = εT (r|| + RS)

εb(r||) = εb(r|| + RS) = εb(r|| + R)

ε
(j)
sh(r||) = ε

(j)
sh(r|| + RS), (107)

where RS and R denote the lattice vector of the crystal with supercell
and the regular crystal (without supercell), respectively. The dielec-
tric functions are now expanded in a set of plane waves with the
periodicity of the corresponding reciprocal lattice∑

GS

εT (GS)e−iGS·r|| =
∑

G

εb(G)e−iG·r|| +
∑
j,GS

εd(GS)e−iGS·r||eiGS·r||,j ,

(108)

where GS and G denote the reciprocal lattice vectors of the crystal
with supercell and the regular crystal (without supercell), respectively.
By multiplying Eq. (108) by e−iG

′
S·r|| and integrating over the supercell

area, we obtain the following expression for the Fourier coefficients
of εT (r||):

εT (GS) = δG,GSεb(G) +
∑
j

εd(GS)eiGS·r||,j . (109)

The condition δG,GS in Eq. (109) means that only the coefficients
εb(G) with G = GS contribute to εT (GS), which implies that the
ratio between the area of the supercell and the area of the regular
unit cell must be an integer number. Taking into account that εb(G)

and εd(GS) functions have the same mathematical form, and the dif-
ferences between them are the period and the values of the dielectric
constants inside and outside the holes, the coefficient εT (GS) is to-
tally determined by the Fourier coefficient of the regular unit cell.
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Therefore, the calculation of the integral in Eq. (27) over the all holes
in the supercell, is reduced in Eq. (109) to the calculation of the inte-
gral over a single hole.

Equation (109) is very useful where the defects are created by a small
quantity of missing or modified holes in the photonic crystal. How-
ever, for disorder calculations in which all the holes are modified,
such a method is not efficient because we would need to remove all
the holes, and then, create them again with different radii. A better
approach consists in directly creating the desired holes in a homoge-
neous background dielectric medium. Thus, we write the dielectric
function of the whole structure in the form

εT (r||) = εs +
∑
j

ε
(j)
hs(r|| − r||,j), (110)

where εs denotes dielectric constant of the background slab dielectric
medium, and εhs is equal to εh − εs and 0, inside and outside the
corresponding hole, respectively. By applying the same procedures to
obtain Eq. (109) from Eq. (106), we get the following expression for
the Fourier coefficients of εT (r||):

εT (GS) = δGS,0εs +
∑
j

εd(GS)eiGS·r||,j . (111)

where j runs over the all holes inside the supercell. In the present
work, we employed Eq. (109) for calculating the Fourier coefficients
of the dimers without disorder, and Eq. (111) was employed for dis-
order calculations.

The supercell method is a good approximation for studying defects
when the size of the supercell is large enough to consider as negligi-
ble the coupling between defects from neighbor supercells. However,
this coupling is not zero and it is always present on the defect bands,
originating numerical dispersions in the group velocity of the mode.
For example, point defects, which should have zero group velocity,
appears in the band diagram with small curvatures giving rise to
a non-zero group velocity along the irreducible Brillouin zone. This
numerical artifact becomes more problematic for small supercells in
comparison with the characteristic exponential decay-length of the
field outside the defect region. The criterion to choose the supercell
dimensions is then given by the flatness of the defect bands whose
group velocity should be null: the defect band must be flat in com-
parison to the band edges defining the band gap of the photonic crys-
tal. In addition to this, for photonic crystal molecules, the normal
mode bands must be also flat in comparison with themselves. Since
the numerical dispersion is always present even for large supercells,
we take the average of the band over the irreducible Brillouin zone,
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and we consider such average as the quantity with physical mean-
ing in the calculation. This averaging procedure has shown to be in
good agreement with “exact” calculations in finite systems given by
finite-difference time-domain (FDTD) methods [48].
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