

Universidade Federal de Minas Gerais

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

THE NN-DM METHOD - AN ARTIFICIAL NEURAL NETWORK
MODEL FOR DECISION-MAKER’S PREFERENCES

Luciana Rocha Pedro

Tese de Doutorado submetida à Banca Examinadora
designada pelo Colegiado do Programa de Pós-Graduação
em Engenharia Elétrica da Escola de Engenharia da
Universidade Federal de Minas Gerais como requisito
para obtenção do T́ıtulo de Doutor em Engenharia
Elétrica.

Orientador: Ricardo Hiroshi Caldeira Takahashi

Belo Horizonte - MG

Dezembro de 2013

 P372n Pedro, Luciana Rocha.
 The NN-DM method [manuscrito]: an artificial neural network model for

decision-maker’s preferences / Luciana Rocha Pedro. - 2013.
 xviii, 164 f., enc.: il.

 Orientador: Ricardo Hiroshi Caldeira Takahashi.

 Tese (doutorado) Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Anexos: f. 145-162.

 Bibliografia: f. 136-144.

 1. Engenharia elétrica - Teses. 2. Algoritmos genéticos - Teses.
3. Processo decisório por critério múltiplo - Teses. I. Takahashi, Ricardo
Hiroshi Caldeira. II. Universidade Federal de Minas Gerais. Escola de
Engenharia. III. Título.

 CDU: 621.3(043)

“Your act was unwise,” I exclaimed “as you see by the outcome.”
He solemnly eyed me. “When choosing the course of my action,”

said he, “I had not the outcome to guide me.”

Ambrose Bierce

iii

Acknowledgements

To my faithful companion, Paloquinho, for his support at all times.

To my advisor, Ricardo Takahashi, for freedom of thought and his un-
conditional support.

To my family that, even distant, always cheer for me.

To the doctors Alexandre Celestino and Rodrigo Cardoso and to my fri-
ends Cristine Almeida, Camila Albino, Fernanda Alvarenga, and Adriano
Silva for the friendship over the past decades.

To Chrystian, Fernando, and Leonardo for the support in those final mo-
ments.

To all my friends for the moments of relaxation and fun.

To Capes for the encouraging scientific and financial support.

iv

Abstract

This work presents a methodology based on the multi-attribute utility the-
ory to approximate the decision-maker’s utility function: the Neural Network
Decision-Maker method (NN-DM method). The preference information ex-
tracted from the Decision-Maker (DM) involves ordinal description only and
is structured by a partial ranking procedure. An artificial neural network is
then constructed to approximate the partial ranking reproducing the DM’s
preferences in a specific domain. The NN-DM method is suitable in situa-
tions in which a recurrent decision process must be performed considering
different sets of alternatives and the same DM.

A hybridization between the NN-DM method and the Interactive Ter-
ritory Defining Evolutionary Algorithm (iTDEA) is also developed in this
work. Considering the same amount of preference information, the NN-DM
method is able to construct a model for the DM’s preferences to guide iT-
DEA. Henceforth, no further queries are required from the DM related to
similar decision-making problems.

Additionally, an Interactive Non-dominated Sorting algorithm with Pre-
ference Model (INSPM) based on NSGA-II is proposed. A slight modification
in the diversity maintenance strategy inside NSGA-II enables INSPM to dis-
tinguish preferable regions within an estimate of the Pareto-optimal front. A
parameter allows the control of the preferable regions density and provides
from fronts in which there is no interference from the DM until fronts in
which the preferred solution is apparent. In all situations the Pareto-front
extent is guaranteed.

Finally, the NN-DM method is adapted to find a model for the DM’s
preferences in a polymer extrusion process. The DM’s requirement is filling a
matrix expressing the preferences considering ordinal comparisons. The NN-
DM method is able to provide a model which sorts the alternatives from the
best to the worst one according to the DM’s preferences in a real scenario.

Keywords: Multi-criteria decision analysis, preference model, artificial neu-
ral network, multi-objective optimization, genetic algorithm.

v

Resumo

Este trabalho apresenta uma metodologia baseada na teoria da utilidade
multi-atributo para aproximar a função de utilidade de um tomador de de-
cisão: o método NN-DM. A informação de preferência extráıda do tomador
de decisão (DM) envolve apenas descrição ordinal e é estruturada por um
procedimento de ordenação parcial. Uma rede neural artificial é então cons-
trúıda para aproximar a ordenação parcial reproduzindo as preferências do
DM em um domı́nio espećıfico. O método NN-DM é apropriado em situações
em que um processo de decisão recorrente deve ser realizado considerando
diferentes conjuntos de alternativas e um mesmo DM.

Uma hibridização entre os métodos NN-DM e iTDEA também é desen-
volvida neste trabalho. Considerando-se a mesma quantidade de informação
de preferência, o método NN-DM é capaz de construir um modelo para as
preferências do DM para guiar o iTDEA. Deste ponto em diante não são mais
necessárias perguntas ao DM relacionadas a tomadas de decisão semelhantes.

Adicionalmente, o algoritmo INSPM, inspirado no NSGA-II, é proposto.
Uma ligeira modificação na estratégia de manutenção da diversidade do
NSGA-II possibilita ao INSPM distinguir regiões prefeŕıveis em uma esti-
mativa da fronteira Pareto-ótimo. Um parâmetro permite o controle da
densidade nas regiões prefeŕıveis e fornece desde fronteiras em que não há
nenhuma interferência do DM até fronteiras em que a solução preferida é
aparente. Em todas as situações a extensão da fronteira Pareto é garantida.

Finalmente, o método de NN-DM é adaptado para encontrar um modelo
para as preferências do DM em um processo de extrusão de poĺımeros. O
requisito ao DM é preencher uma matriz que expressa suas preferências con-
siderando comparações ordinais. O método NN-DM é capaz de fornecer um
modelo que classifica as alternativas da melhor para a pior de acordo com as
preferências do DM em um cenário real.

Palavras-chave: Análise de decisão multi-critério, modelo de preferência,
rede neural artificial, otimização multi-objetivo, algoritmo genético.

vi

Contents

Acknowledgements iv

Abstract v

Resumo vi

Table of Contents x

List of Figures xii

List of Tables xiv

List of Symbols xv

List of Abbreviations xvii

1 Introduction 1
1.1 Organization . 6

2 Decision Models 10
2.1 Introduction . 10
2.2 Classical Decision-making Methods 11

2.2.1 Introduction . 11
2.2.2 ELECTRE Methods 11
2.2.3 AHP Methods . 12
2.2.4 ROR Methods . 13

2.3 Modeling the DM’s Preferences 15
2.3.1 Introduction . 15
2.3.2 Artificial Neural Networks 15
2.3.3 Other Techniques . 19

2.4 Requirements to the DM . 21

vii

3 Notation and Problem Statement 23
3.1 Multi-Criteria Decision-Making Analysis 23
3.2 Multi-Objective Optimization 26
3.3 INSPM . 30

4 The NN-DM Method 32
4.1 Introduction . 32
4.2 The NN-DM Methodology . 33

4.2.1 Step 1: Domain Establishment 34
4.2.2 Step 2: Ranking Construction 37
4.2.3 Step 3: Artificial Neural Network Approximation . . . 39
4.2.4 Step 4: Performance Assessment 46
4.2.5 DM calls . 48

4.3 The Algorithm . 49
4.4 Illustrative Examples . 50
4.5 Discussion . 52

5 The Improved NN-DM Method 55
5.1 Introduction . 55
5.2 Step 1 - Domain Establishment 56
5.3 Step 2 - Ranking Construction 57

5.3.1 Dominance . 57
5.3.2 The Improved Partial Ranking 58

5.4 DM Calls . 59
5.5 The Algorithm . 60
5.6 Illustrative Examples . 61

5.6.1 Example A . 61
5.6.2 Example B . 64

5.7 Discussion . 67

6 The NN-DM Method And iTDEA 69
6.1 Introduction . 69

6.1.1 Interactive Algorithms 69
6.2 TDEA, prTDEA, and iTDEA 73
6.3 Computational Experiments 77
6.4 Discussion . 82

7 The NN-DM Method And NSGA-II 84
7.1 Introduction . 84
7.2 The Adapted NN-DM Methodology 86

7.2.1 Step 1 - Domain Establishment 87

viii

7.2.2 Step 2 - Ranking Construction 87
7.2.3 Step 4 - Performance Assessment 91

7.3 NN-DM Method and NSGA-II 91
7.3.1 Dynamic Crowding Distance 92
7.3.2 Neural Network Dynamic Crowding Distance 93

7.4 The Algorithm . 94
7.4.1 NN-DM Model . 95
7.4.2 INSPM Main Program 97

7.5 Computational Experiments 100
7.5.1 INSPM and Utility Function 102
7.5.2 INSPM and NN-DM Method 104
7.5.3 Comparison with iTDEA 106

7.6 Discussion . 109

8 Polymer Extrusion Process 112
8.1 Introduction . 112
8.2 Available Data . 113
8.3 Interaction with the DM . 115
8.4 The Adapted NN-DM Methodology 119

8.4.1 Step 1: Domain Establishment 119
8.4.2 Step 2: Ranking Construction 120
8.4.3 Step 4: Performance Assessment 120
8.4.4 Algorithm . 121

8.5 Computational Experiments 122
8.6 Case Study . 124
8.7 Discussion . 130

9 Conclusions and Ideas for Future Work 132

Bibliography 136

A The NEWRB Function 145
A.1 Definition . 145
A.2 Description . 145
A.3 Algorithm . 146
A.4 Simulating the Network . 147

B A Comparison Between Mergesort and Quicksort 149
B.1 Algorithms . 150

B.1.1 Quicksort . 150
B.1.2 Mergesort . 151

ix

B.2 Results . 152

C Decision-making Matrices - Polymer Extrusion Process 155

Index 163

x

List of Figures

1.1 Similar Pareto-optimal fronts. 5

4.1 Refinement of a regular two-dimensional domain D. 35
4.2 Refinement of a regular three-dimensional domain D. 36
4.3 Refinement of a generic domain. 36
4.4 Refinement of a Pareto-optimal front. 37
4.5 RBF network architecture. 40
4.6 Gaussian functions with σ = 1, 2, 3. 41
4.7 Surface and level sets of the functions U and Û 45
4.8 Example of a function Û being employed. 45
4.9 DM’s underlying utility functions. 51
4.10 Partial ranking. 51
4.11 Models Û obtained by the NN-DM method. 52
4.12 Partial ranking examples. 53

5.1 Domain establishment. 57
5.2 DM’s underlying utility function U 62
5.3 Partial ranking with n = 50 alternatives. 63
5.4 Model Û for the DM’s preferences. 63
5.5 DM’s underlying utility function U 65
5.6 Partial ranking with n = 50 alternatives. 65
5.7 Model Û for the DM’s preferences. 66
5.8 Two-dimensional instance: number of queries and KTD. . . . 66
5.9 Three-dimensional instance: number of queries and KTD. . . . 67
5.10 Partial ranking examples. 68

6.1 Different territory sizes in two dimensions. 75
6.2 Estimates of the Pareto-optimal front from iTDEA and NN-

DM methods. 79
6.3 Statistical values. 80
6.4 Estimates of the Pareto-optimal front from iTDEA and NN-

DM methods. 81

xi

6.5 Statistical values. 82

7.1 Ranking examples. 89
7.2 DM’s underlying utility functions. 101
7.3 Utility function U1: results for w = −1, w = 0, and w = 0.5. . 103
7.4 Utility function U1: results for w = 1, w = 2, and w = 5. . . . 103
7.5 Utility function U1: INSPM results. 105
7.6 Level sets of the functions U and Û 107
7.7 Comparison between iTDEA and INSPM methods. 108

8.1 Available estimates of the Pareto-optimal fronts. 115
8.2 General NN-DM model: Q×P. 122
8.3 General NN-DM model: Q×W. 123
8.4 NN-DM model sorting in the problem Q×P. 123
8.5 NN-DM model sorting in the problem Q×W. 124
8.6 NN-DM models applied to the estimates of the Pareto-optimal

front. 126
8.7 Comparison among models Û1, Û2, Û3, and Û4 in EPF QW1. . 127
8.8 EPF QW1 embedded in two different domains. 129
8.9 Level sets of the resulting NN-DM model constructed based on

the domain of EPF QW1. The colorbar indicates the modeled
DM’s preferences. 130

B.1 Average number of comparisons considering Quicksort and
Mergesort. 152

B.2 Average number of comparisons considering four sorting algo-
rithms. 153

xii

List of Tables

2.1 The fundamental scale of absolute numbers (AHP). 13
2.2 The set of the utility function linguistic variable’s values. . . . 19

4.1 MATLAB c© parameters of the NEWRB function. 44
4.2 Example of the KTD metric. 47
4.3 Concordant and discordant pairs. 47
4.4 DM’s underlying utility functions. 50

5.1 MATLAB c© parameters: the NEWRB function. 64

6.1 iTDEA parameters. 77
6.2 NN-DM parameters. 78

7.1 Parameters of the INSPM algorithm. 100
7.2 KTD and number of queries in INSPM. 106
7.3 iTDEA parameters. 109

8.1 Multi-objective optimization problems in a single screw extru-
sion process. 114

8.2 Objectives, aim of optimization, and range of variation. 114
8.3 Example of a decision-making matrix M. 116
8.4 Example of a filled decision-making matrix M. 117
8.5 Partitions of each objective. 118
8.6 Sub-matrices with different preferences. 125

A.1 Parameters of the NEWRB function. 146
A.2 Inputs of the SIM function. 147
A.3 Outputs of the SIM function. 148

B.1 Average number of comparisons spent for sorting a list. 153

C.1 Unfilled decision-making matrix: Q×P. 156
C.2 Filled decision-making matrix: Q×P. 157
C.3 Unfilled decision-making matrix: Q×W. 158

xiii

C.4 Filled decision-making matrix: Q×W – Matrix M1. 159
C.5 Filled decision-making matrix: Q×W – Matrix M2. 160
C.6 Filled decision-making matrix: Q×W – Matrix M3. 161
C.7 Filled decision-making matrix: Q×W – Matrix M4. 162

xiv

List of Symbols

a An available alternative of the MCDM problem 23
A Set of alternatives of the MCDM problem 23
C Set of criteria of the MCDM problem . 24
Ci A criterion of the MCDM problem . 24
d Dimension of the decision-making problem 35
D Domain of the approximation . 33
δ Function which represents the grid’s position116
f Objective function in a general MOOP .26
fi Component of the objective function in a general MOOP . . .26
Fi Preferred alternatives related to the pivot vi 37
F Feasible set . 27
F Set of simulated alternatives . 29
gi Inequality constraint in a general MOOP 26
G Grid of simulated alternatives . 35
hi Equality constraint in a general MOOP . 26
k Number of pivot alternatives . 58
Lmelt The length of screw required to melt the polymer 112
m Number of objective functions in a general MOOP 27
M Matrix of the underlying utility function 64
M Decision-making matrix .115
mij Element of the decision-making matrix M 115

ni
Number of alternatives linearly spaced
in each sub-dimension of the domain D

. 35

nin
Number of random simulated alternatives consid-
ered in constructing the initial NN-DM model

. 87

nstep
Number of random simulated alternatives
added in each NN-DM model update

. 87

nvp Number of points in each validation set . 48
nvs Number of validation sets . 48
N Number of radial basis functions . 40
Npop Number of individuals in the genetic population97

xv

p Number of inequality constraints in a general MOOP 27
p Image of an available alternative of the MCDM problem . . . 24
P DM’s preference function . 24
P Set of alternatives . 37
P The power consumption required to rotate the screw 112
Pmax The capacity of pressure generation . 112
P Estimate of the Pareto-optimal front . 27

PNN

Estimate of the Pareto-optimal
front and the NN-DM model

. 31

PDM

Estimate of the Pareto-optimal
front and the utility function U

. 31

φ Radial basis function . 40
q Number of equality constraints in a general MOOP 27
Q The mass output of the machine . 112
R Function which provides the ranking of an alternative 38
σ Parameter of the Gaussian function . 41
Tmelt The average melt temperature of the polymer at die exit . . 112
T (n) Approximated number of queries to the DM 48
Ti Non-preferred alternatives related to the pivot vi 37
τ Average Kendall-tau distance value . 47

tolup
Tolerance for the KTD value regarding
the NN-DM model updating

. 98

tolst
Tolerance for the KTD value regarding
the NN-DM model stability

. 48

U Utility function . 24

Û Approximation of the utility function U . 33

Ûc Current ANN obtained by the NN-DM method 31

Ûf Former ANN obtained by the NN-DM method 31
vi Pivot alternative chosen randomly in the stage i 37
w Parameter to control the preferable regions density93

W
The mixing capacity measure by
the average of deformation

. 112

wi Weight of the RBF network . 40
x Input of the neural network . 40
xi Center of each radial basis function . 40
X Vector of decision variables in a general MOOP 27
y Neural network approximating function . 40

xvi

List of Abbreviations

ALENA Artificial Life Evolving from Natural Affinities 4
AHP Analytic Hierarchy Process . 12
ANFIS Adaptive Neuro-Fuzzy Inference System 19
ANN Artificial Neural Network . 15
AWTP Augmented Weighted Tchebycheff Programs 16

BC-EMO
Brain-Computer Evolutionary
Multi-objective Optimization

. 21

CD Crowding Distance .91
DCD Dynamic Crowding Distance . 91
DM Decision-Maker . 1
DMS Diversity Maintenance Strategy . 92
DNN Decision Neural Network .17
DSM Downhill Simplex Method . 19
EPF Estimate of the Pareto-optimal Front 29

ELECTRE
ELimination Et Choix Traduisant la REalité
(ELimination and Choice Translating REality)

. 11

EMO Evolutionary Multi-objective Optimization 84
FFANN Feed-Forward Artificial Neural Network 15
FIS Fuzzy Inference System . 19

INSPM
Interactive Non-dominated Sorting
algorithm with Preference Model

. 85

IPOA Interactive Polyhedral Outer Approximation 21
iTDEA Interactive Territory Defining Evolutionary Algorithm .70
IWTP Interactive Weighted Tchebycheff Procedure 16
KTD Kendall-Tau Distance . 46
LMS Least Mean Squares . 43
MATLAB c© MATrix LABoratory . 6
MAUT Multi-Attribute Utility Theory . 2
MCDA Multi-Criteria Decision Analysis . 2
MCDM Multi-Criteria Decision-Making . 2
MCDS Multi-Criteria Decision Support .18

xvii

MLP Multi-Layer Perceptron . 17
MOOP Multi-Objective Optimization Problem 4
NN-DCD Neural Network Dynamic Crowding Distance 91
NN-DM Neural Network Decision-Maker .33
NSGA-II Non-dominated Sorting Genetic Algorithm-II 85
PF Pareto-optimal front . 27

PI-EMO-VF
Progressively Interactive EMO
approach using Value Functions

. 20

prTDEA Preference-based TDEA . 73
R-NSGA-II Reference-point-based NSGA-II . 70
RBF Radial Basis Function .39
ROR Robust Ordinal Regression . 13
RPSGAe Reduced Pareto Set Genetic Algorithm with Elitism . 113
RSO Reactive Search Optimization . 20
SBX Simulated Binary Crossover . 97
SVD Singular Value Decomposition . 43
TDEA Territory Defining Evolutionary Algorithm 73
UTA UTilités Additives . 14

UTAGMS UTilités Additives revisited by
Greco, Mousseau, and S lowiński

. 14

ZDT4 Acronym inspired in Zitzler, Deb, and Thiele 101

xviii

Chapter 1

Introduction

One of the most common actions to human beings is decision-making.

Each person is constantly making decisions on a variety of different subjects.

There are all kinds of decisions: easy and difficult, important and irrelevant,

personal and professional. It is well-known that there are good and bad

decisions. So, a natural question is asked: is there a procedure for making a

decision to ensure that the final result reflects a good decision?

Several efforts have been undertaken to explore this issue. Psycholo-

gists studied how decision-makers work under different circumstances and

philosophers have questioned whether there is really a good decision. Logic

contributed to the understanding of the process of decision-making and math-

ematics, including statistics, provided a formal structure for the process,

defining criteria for optimality.

A decision-making problem can be visualized as a situation in which a

person, called decision-maker and denoted by DM, has to select the best

alternative (or action) belonging to a set of alternatives. The DM should then

1

express her/his preferences toward the elements of this set and the solution

of the problem is the DM’s preferred alternative. As each alternative is

often associated with several attributes the problem becomes a Multi-Criteria

Decision-Making (MCDM) problem.

The Multi-Criteria Decision Analysis (MCDA) is a research area com-

posed of methods and techniques for assisting or supporting people and or-

ganizations in decision-making. At present there are several methods for

decision-making and this number grows every day. All methods claim to

solve decision-making problems, but in several situations different methods

produce different results for the exactly same problem; even simple problems

with few alternatives and criteria. Among the studies comparing decision-

making methods one stands out to make clear an important question: what

decision-making method should be employed in choosing the best decision-

making method? [Triantaphyllou and Mann, 1989]

One main theoretical tendency in mathematical modeling of decision-

making problems is the decision based on the Multi-Attribute Utility Theory

(MAUT). MAUT assumes that there exists a function U , denoted utility func-

tion, which reproduces the DM’s preferences. This function assigns a scalar

value to the alternatives which can then be sorted by the simple compari-

son of the values [Keeney and Raiffa, 1976]. The MAUT-based methods are

appropriate in situations in which there is a previous complete knowledge

of all necessary information about the problem leading to well-structured

preferences for the DM.

In current MAUT methodologies, the problem setting is usually stated

as: given a decision problem, with its set of possible solutions (the alter-

2

natives), establish a rational route to find a acceptable solution, under the

DM’s viewpoint. It is not always possible to assume that the DM is able to

inform the cardinal value of her/his preferences on any alternative; instead,

the DM is usually able to supply only ordinal information, stating that an

alternative ai is better than an alternative aj or that aj is better than ai, or

still that those alternatives are equivalent. Also, the DM is usually able to

perform comparisons within a set with few alternatives only, being unable to

process large sets properly.

The context of the present work is a problem that should be solved sev-

eral times in instances that differ from one to another in certain decision

parameters that affect the preferences and the set of available alternatives.

Nevertheless, it is expected that the decision-making over similar sets of deci-

sion parameters and available alternatives leads to similar decisions. Indeed,

there should be a structure for the DM’s preferences that can be assumed to

be valid in all such problem instances. This structure can be arbitrary and

possibly presenting non-linear dependencies among several decision criteria.

The aim of this thesis is to present a methodology for the extraction of such

preference structure in the form of a neuron’s network function1 that repro-

duces the preference relations obtained from the DM. This function performs

a kind of regression on the DM answers about her/his preferences delivering

new answers to alternatives that were not evaluated.

The specific structure of interaction with the DM assumed here requires

only holistic judgments, considering situations in which the DM should eval-

uate a solution as a whole, instead of weighting the criteria employed in

1Mathematically, a neuron’s network function is defined as a composition of other

functions, which can further be defined as a composition of other functions.

3

constructing this solution. For instance, in generative art image, it would

be meaningless to ask a DM for the relative importance of features such as

brightness or contrast. A more meaningful query is formulated as what is

the preferred image, considering certain given alternatives.

Due to the holistic judgments the methodology introduced in this work

can be applied to a promising field called computational creativity which em-

braces the idea of a machine that makes art. In his book Steiner [2012] tells

the story of how the rise of computerized decision-making affects every as-

pect of business and daily life. Interesting examples are Emily Howell [Cope,

2005], a computer program with an interactive interface that allows both

musical and language communication, and ALENA (Artificial Life Evolving

from Natural Affinities) [Cope, 2011], a program which produces art from

mathematical formulas derived from calculations created by nonlinear func-

tions.

Another example in which this methodology can be applied is a Multi-

Objective Optimization Problem (MOOP) in which the DM has to choose

the preferred solution in the Pareto-optimal front several times in different

instances. In this kind of recurrent situation a preference model, which can

be employed repeatedly either in avoiding further queries to the DM or in re-

ducing the number of necessary queries, constitutes a relevant enhancement

in relation to single-time use models. A recurrent decision situation can

happen, for instance, when a product is to be manufactured several times

in batches, in each case with operational conditions that are different from

the other cases (for instance: different availability or cost of raw materials,

different loading conditions of the required logistic systems, etc.). In each

case there exists different optimization problems, with slightly different con-

4

straints and objective functions, but in all those cases the DM’s preferences

remain the same.

Figure 1.1 exemplifies an analytical situation with four Pareto-optimal

fronts: each front represents a solution of a MOOP instance. In this situation

the similar Pareto-optimal fronts belong to the same domain and represent

different sets of alternatives evaluated by the same DM.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5
0

0.5

1

1.5

2

0 1 2 3 4 5
0

0.5

1

1.5

2

0 1 2 3 4 5
0

0.5

1

1.5

2

0 1 2 3 4 5
0

0.5

1

1.5

2

Figure 1.1: Similar Pareto-optimal fronts.

The proposed methodology also takes into account certain aspects of the

geometric structure in finding an approximation of the DM’s preferences.

The assignment of space coordinates to the alternatives provides a geometric

structure to the utility function making possible a regression process. This

means that alternatives with similar coordinates in the feature space (the

space in which the available alternatives with the corresponding decision

parameters are embedded) should have similar preference values, that is, the

utility function should be modeled as a continuous function. The resulting

function may guide the search for the preferred alternative from any set of

alternatives, even when none of such alternatives has already been considered,

5

relying only on the information about points that belong to the same region

of the space.

This thesis presents a methodology for the construction of a function

which models the DM’s preferences: the Neural Network Decision-Maker

method (NN-DM method). In this methodology, compatible with the MAUT

assumptions, a function is built from a partial ranking process based on the

ordinal information provided by the DM. This function is then employed in

quantifying the preferences within a specific domain. An artificial neural

network is the technique chosen to construct the approximating function

that should have level sets which coincide with the ones of the DM’s utility

function. The resulting function is able to model the DM’s preferences and

can be employed in avoiding the formulation of new queries to the DM in

new instances of the same decision-making problem.

For executing this work all data processing was performed off-line by the

commercial software package MATLAB c© [MathWorks, 2009] on a microcom-

puter with the following configuration: CPU Intel Core i3-3227U 1.90GHz,

RAM Memory 6GB, and operating system Windows 8 64-bit.

1.1 Organization

This thesis is organized as follows:

Chapter 2 presents an extensive review of the literature, including decision-

making methods, interactive algorithms, different models for the DM’s

preferences, and real-world applications.

6

Chapter 3 provides the problem statement and the notation. The prob-

lem statement is presented for the main areas considered in this the-

sis: multi-objective optimization problem and multi-criteria decision-

making problem. The notation employed along the thesis is presented

in this chapter and can also be checked in the List of Symbols.

Chapter 4 introduces the NN-DM method which is an original methodol-

ogy developed in this work. This method is based on the construction

of a partial ranking from a grid of alternatives considering ordinal infor-

mation only from the DM. An artificial neural network is employed in

approximating this ranking creating a model for the DM’s preferences:

the NN-DM model. This work produced a paper in the Congresso

Brasileiro de Redes Neurais with the following details:

[Pedro and Takahashi, 2009]

L. R. Pedro and R. H. C. Takahashi. Modeling the decision-maker util-

ity function through artificial neural networks. In Anais do IX Con-

gresso Brasileiro de Redes Neurais / Inteligência Computacional (IX

CBRN), volume 1, 2009.

Chapter 5 introduces improvements in the NN-DM method. The basic

modifications are: the domain is now composed of random alternatives

and the ranking is constructed based on the total sorting of a subset

of alternatives. These changes are developed to produce a stable par-

tial ranking which provides extra information to the artificial neural

network. Additionally, the dominance among the alternatives is con-

sidered likely reducing the number of queries to the DM. This work

7

produced a paper in the 6th International Conference on Evolutionary

Multi-criterion with the following details:

[Pedro and Takahashi, 2011]

L. R. Pedro and R. H. C. Takahashi. Modeling decision-maker pref-

erences through utility function level sets. In 6th International Con-

ference on Evolutionary Multi-criterion Optimization, volume 6576 of

Lecture Notes in Computer Science, pages 550–563. Springer Berlin

Heidelberg, Ouro Preto, Brasil, 2011.

Chapter 6 describes the iTDEA method and employs the improved NN-

DM method for constructing a model for the DM’s preferences inside

iTDEA. The iTDEA methodology is preserved and the NN-DM model

replaces the original DM in the interactive process. This work pro-

duced a paper in the 7th International Conference on Evolutionary

Multi-criterion with the following details:

[Pedro and Takahashi, 2013]

L. R. Pedro and R. H. C. Takahashi. Decision-maker preference mod-

eling in interactive multiobjective optimization. In 7th International

Conference on Evolutionary Multi-criterion Optimization, volume 7811

of Lecture Notes in Computer Science, pages 811–824. Springer Berlin

Heidelberg, Sheffield, UK, 2013.

Chapter 7 describes an evolutionary algorithm which progressively inter-

acts with the DM called INSPM. In INSPM the NSGA-II methodology

8

is almost entirely preserved, except for the original diversity mechanism

(crowding distance) which is replaced with the NN-DCD, a dynamic

crowding distance weighted by the NN-DM model. This work produced

a paper in the Information Sciences Journal with the following details:

[Pedro and Takahashi, 2014]

L. R. Pedro and R. H. C. Takahashi. Inspm: An interactive evolu-

tionary multi-objective algorithm with preference model. Information

Sciences, 268(0):202–219, 2014.

Chapter 9 presents the final conclusions and ideas for future work.

9

Chapter 2

Decision Models

2.1 Introduction

The purpose of this chapter is to examine the current methodologies em-

ployed in helping the DM to make her/his decision. Classical methods such

as ELECTRE (Section 2.2.2) and AHP (Section 2.2.3) are considered, as

long as new approaches like ROR (Section 2.2.4). Alternative methods in

which a direct approximation of the DM’s preferences is constructed are also

examined. Specifically, a special attention is given to the artificial neural

networks (Section 2.3.2), focus of the proposed work, but other techniques

are also covered in this review (Section 2.3.3). The requirements to the DM

are presented throughout each method’s description and a comparison with

the demands of the proposed method is discussed in Section 2.4.

10

2.2 Classical Decision-making Methods

2.2.1 Introduction

This section briefly reviews two popular MCDM methods, ELECTRE

and AHP, and a promising methodology called Robust Ordinal Regression

(ROR). ELECTRE is a decision making method based on outranking rela-

tionships, AHP uses pairwise comparisons to compare the alternatives and

estimate criteria weights and ROR implements an interactive preference con-

struction paradigm recognized as a mutual learning of the model and the

DM’s preferences.

2.2.2 ELECTRE Methods

The ELECTRE methods comprise a family of MCDM methods that orig-

inated in France during the middle of the 1960s. The acronym ELECTRE

stands for ELimination Et Choix Traduisant la REalité (ELimination and

Choice Translating REality). The method was first proposed by Roy [1968]

and his colleagues at Société d’Economie et de Mathématiques Appliquées

(SEMA). There are two main parts to an ELECTRE application: first, the

construction of one or several outranking relationships1, which aim at com-

paring in a comprehensive way each pair of actions; second, an exploita-

tion procedure that elaborates on the recommendations obtained in the first

phase. The research on ELECTRE methods is still evolving and gaining ac-

ceptance thanks to new application areas, new methodological and theoreti-

1Formally, an outranking relationship states that even though two alternatives ai and

aj do not dominate each other, it is realistic to accept the risk of regarding ai as almost

surely better than aj .

11

cal developments, as well as user-friendly software implementations. Recent

applications of ELECTRE methods can be found in: assisted reproductive

technology [Matias, 2008], promotion of social and economic development

[Rangel et al., 2009], sustainable demolition waste management strategy

[Roussat et al., 2009], assessing the risk of nanomaterials [Tervonen et al.,

2009], and unequal area facility layout problems [Aiello et al., 2013].

2.2.3 AHP Methods

The Analytic Hierarchy Process (AHP) is a structured technique for orga-

nizing and analyzing complex decisions based on mathematics and psychol-

ogy. It was developed by Thomas L. Saaty in the 1970s [Saaty, 1977] and

it has been extensively studied and refined since then. The AHP involves a

theory of measurement through pairwise comparisons and relies on the DM’s

judgments to derive priority scales. The comparisons are made considering a

scale of absolute judgments (Table 2.1) that reproduces how much more one

element dominates another with respect to a given attribute. In an attempt

to improve the judgments, which may be inconsistent, the derived priority

scales are synthesized by multiplying them by the priority of their parent

nodes and adding for all such nodes. Therefore, the DM not only needs

to create priorities for the alternatives with respect to the criteria or sub-

criteria, but also for the criteria themselves. The AHP has been employed in

making decisions in several scenarios and Saaty [2008] includes an extensive

list of applications.

12

Equal Importance 1
Weak or slight 2
Moderate importance 3
Moderate plus 4
Strong importance 5
Strong plus 6
Very strong or

7
demonstrated importance
Very, very strong 8
Extreme importance 9

Table 2.1: The fundamental scale of absolute numbers (AHP).

2.2.4 ROR Methods

The Robust Ordinal Regression (ROR) has been proposed with the pur-

pose of taking into account the sets of parameters compatible with the DM’s

preference information.

Angilella et al. [2004, 2010] proposed a non-additive ROR on a set of al-

ternatives whose utility is evaluated considering the Choquet integral2. The

interaction among the criteria can then be modeled by fuzzy measures pa-

rameterizing the approach. The DM is requested to answer holistic pairwise

preference comparisons on the alternatives and on the importance of criteria

and to express the intensity of the preference on specific pairs of alterna-

tives and pairs of criteria. The output is a set of fuzzy measures (capacities)

such that the corresponding Choquet integral is compatible with the DM’s

preference information. Recently, Corrente et al. [2013] drew attention upon

recent advances in ROR clarifying the specific interpretation of the concept

2The Choquet integral is the discrete form of the generalization of the Lebesgue integral

with respect to fuzzy measures

13

of preference learning adopted in ROR and MCDA.

Greco et al. [2008] presented a method called UTAGMS which generalizes

the UTA method [Jacquet-Lagreze and Siskos, 1982]. The UTAGMS method

considers a set of additive value functions resulting from an ordinal regression

for multiple criteria ranking of a set of alternatives. The following preference

information is required from the DM:

- pairwise preference comparison on the alternatives from a reference set;

- the intensity of preference of a pair of alternatives, say a over b, in

comparison to the intensity of preference of another pair of alternatives,

say c over d;

- pairwise comparison of importance of criteria;

- pairwise comparison of the differences between importance of criteria;

- negative and positive interaction expressing redundancy or synergy be-

tween couples of criteria;

- pairwise comparison of interaction intensity among couples of criteria;

- pairwise comparison of the differences of interaction intensity among

couples of criteria.

The resulting preference model is the set of all additive value functions

compatible with the preference information.

14

2.3 Modeling the DM’s Preferences

2.3.1 Introduction

Several algorithms have been developed to model the DM’s preferences

directly, considering that those preferences are already well defined by the

DM and can be reproduced by a utility function. Two scenarios are usually

proposed:

1. a direct model of the DM’s preferences, employed in making the deci-

sions inside the method, and

2. a model employed in defining the DM’s preferences used as entrance to

classic methods.

Next sections presents algorithms intended to directly model the DM’s

preferences based on an underlying utility function employing artificial neural

networks (Section 2.3.2), which is the tool employed in the NN-DM method,

as well as other techniques (Section 2.3.3).

2.3.2 Artificial Neural Networks

Several previous works have already exploited the idea of representing the

DM’s preferences employing Artificial Neural Networks (ANNs). The main

difference between the following methods and the methodology proposed in

this thesis is the way the information is required from the DM.

The first work found in this category was proposed by Sun et al. [1996].

The Interactive FFANN Procedure is an interactive procedure for solving

15

multiple objective programming problems based on Feed-Forward Artificial

Neural Networks (FFANNs). In this method, the DM articulates preference

information over representative samples from the non-dominated set. The

preference is extracted from the DM either by assigning preference values to

the sample solutions or by making pairwise comparisons answering questions

similar to those posed in the AHP [Saaty, 1977]. The revealed preference

information is considered training a FFANN which solves an optimization

problem to search for improved solutions. In the computational experiments

four different value functions of Lp-metric form with p = 1, p = 2, p = 4,

and p =∞ are chosen to simulate the DM. The efficiency is measured by the

quality of the worst, best, and average non-dominated point.

Sun et al. [2000] proposed a new interactive multiple objective program-

ming procedure that combines the Interactive Weighted Tchebycheff Proce-

dure (IWTP) [Steuer and Choo, 1983] and the interactive FFANN procedure

[Sun et al., 1996]. In this procedure, non-dominated solutions are built by

solving Augmented Weighted Tchebycheff Programs (AWTP) [Steuer, 1986].

The DM indicates preference information by directly assigning values to cri-

terion vectors (which are later rescaled) or by making pairwise comparisons

among non-dominated solutions answering questions similar to those pre-

sented in the AHP [Saaty, 1977]. The revealed preference information is

considered by training a FFANN which selects new solutions for presenta-

tion to the DM on the next iteration. In the computational experiments,

linear, quadratic, L4 metric and Tchebycheff metric3 value functions are cho-

sen to simulate the DM. The efficiency is measured by the quality of the final

solution, the nadir point, and the worst non-dominated point (evaluated as

3Tchebycheff metric is defined by a set of Tchebycheff weight ranges.

16

the non-dominated extreme point that has the lowest preference value).

A method focusing an EMO search on specific areas of the Pareto-optimal

front is developed by Todd and Sen [1999]. The method performs interactions

with the DM to model her/his general preferences employing a Multi-Layer

Perceptron (MLP) network. The proposed EMO requires a second special

population called Pareto population which stores all non-dominated solutions

as they evolve over the generations. The preference process takes place at

regular intervals of the EMO procedure and a preference set with ten indi-

viduals from the normal population is displayed to the DM. The system then

gathers preference information by asking for a score between 0 and 1 for each

member of the preference set and the adjusted training set is employed in

training the MLP with back propagation. The preference surface is employed

in scoring the Pareto individuals and then in selecting a set of individuals

from the Pareto population which are re-inserted into the normal population

promoting the search in the preferable regions. The method concentrates

search effort on the regions of the Pareto surface of greatest interest to the

DM which reflects in a variety in the density of the resulting Pareto solu-

tions. However it is not clear how to control this density and the resources

demanded from the DM are not intuitive.

Chen and Lin [2003] proposed a new approach for solving MCDM prob-

lems based on a Decision Neural Network (DNN) employed in capturing and

representing the DM’s preferences. The interactive DNN approach consists

of four phases: identification, modeling, solving MCDM, and implementa-

tion. With the DNN an optimization problem is solved to search for the

most desirable solution. The architecture involves two ANNs which process

the criterion vectors leading to results whose ratio is calculated and delivered

17

as the final result. The DM is asked to indicate pairwise comparison results

including approximate ratios or intervals.

Golmohammadi [2011] presented a fuzzy multi-criteria decision-making

model based on a FFANN employed in capturing and representing the DM’s

preferences. The proposed model can consider historical data and update

the database information for alternatives over time for future decisions. The

DM’s preferences are captured from pairwise comparisons with a scale similar

to the AHP procedure. The regular procedure of pairwise comparison is

improved by adding a scale in which an objective is compared with an ideal

objective. The mean square error was employed in comparing the network

and the desired outputs validating the obtained results.

Finally, a direct adaptive method of multi-objective optimization based

on neural network approximation of the DM’s preferences is introduced by

Karpenko et al. [2010]. The method considers a linguistic function assuming

the values presented in Table 2.2 and interactions between the DM and a

Multi-Criteria Decision Support (MCDS) system. Each iteration consists of

two phases: analysis phase, in which the DM evaluates the solution proposed

by the MCDS system, and computation phase, in which the MCDS system

produces an optimal solution. The DM’s utility function is approximated

by both MLP and RBF networks considering the components of a weighting

coefficient vector as input and its linguistic function value as output.

18

Extremely bad 1
Very bad 2
Bad 3
Not very bad 4
Satisfactory 5
Quite good 6
Good 7
Very good 8
Excellent 9

Table 2.2: The set of the utility function linguistic variable’s values.

After two years Karpenko et al. [2012] presented a continuation of the ex-

ploration described in Karpenko et al. [2010] in which an investigation of the

MCDM problems was carried out with: MLP and RBF networks, Mamdani-

type Fuzzy Inference System (FIS), Adaptive Neuro-Fuzzy Inference Sys-

tem (ANFIS), and a method based on Downhill Simplex Method (DSM).

The research on the method effectiveness is tested in two two-dimensional

two-objective problems and in one three-dimensional three-objective prob-

lem. Although all the techniques allow the achievement of the optimal solu-

tion, ANFIS and the MLP and RBF networks provided the best solution for

the smallest number of iterations.

2.3.3 Other Techniques

Models for the DM’s preferences constructed by different techniques are

also available in the literature. These methods often assume a specific type of

approximating function, but there are also methods in which the DM’s utility

function is modeled as a general function, as the artificial neural networks

are able to deliver.

19

Yang and Sen [1996] designed linear goal programming models built to es-

timate piecewise linear local utility functions based on pairwise comparisons

of efficient solutions as well as objectives. The models capture the DM’s pref-

erence information and support the search for the best compromise solutions

in multi-objective optimization.

Tangian [2002] considered a model for constructing quadratic utility func-

tions from interviewing the DM. This interview estimate both cardinal and

ordinal utility and it is designed to guarantee a unique non-trivial output

of the model. The constructing of the quasi-concave utility function is then

reduced to a problem of non-linear programming.

The Progressively Interactive EMO approach using Value Functions (PI-

EMO-VF) [Deb et al., 2010] is a preference-based methodology which is

embedded in an EMO algorithm and leads the DM to the most preferred

solution of her/his choice. For this purpose periodically the DM is supplied

with a handful of currently non-dominated points and s/he is asked to rank

the points from the best to the worst one. This preference information is

considered in modeling a strictly monotone value function which drives the

EMO algorithm in major ways: 1) in determining termination of the over-

all procedure, and 2) in modifying the domination principle, which directly

affects EMO algorithm’s convergence and diversity-preserving operators. It

should be noticed that the polynomial value function captures the preference

information related only to the points that had been considered in construct-

ing it. A new model is required every time the DM is interrogated while the

optimization process is running.

The methodology of Reactive Search Optimization (RSO) is adopted by

20

Battiti and Passerini [2010] for evolutionary interactive multi-objective op-

timization. The machine learning technique and the DM’s judgments are

taken into account to build robust incremental models for the DM’s utility

function. The Brain-Computer Evolutionary Multi-objective Optimization

(BC-EMO) employs the technique of support vector ranking together with a

k-fold cross-validation procedure in selecting the best kernel during the util-

ity function training procedure. The DM’s interactions are made through

pairwise comparisons considering only holistic judgments.

Finally, Lazimy [2013] proposed an Interactive Polyhedral Outer Ap-

proximation (IPOA) method which progressively constructs a polyhedral

approximation of the DM’s preference structure and a polyhedral outer-

approximation of the feasible set of the multi-objective optimization prob-

lems. The piecewise linear approximation of the DM’s preferences is con-

structed on the basis of two forms of preference assessments: an estimate of

the local trade-off vector and the ranking of the new objective vector relative

to the existing vectors.

2.4 Requirements to the DM

The classical approaches (Section 2.2) require from the DM information

about her/his preferences that may not be intuitive, such as the outrank-

ing relations (ELECTRE), the scale of absolute judgments (AHP), and the

holistic pairwise preference comparisons. The idea behind those methods is

the construction of relations that help the DM to express her/his preferences

considering that those preferences are not yet well defined by the DM. The

techniques that model the preferences directly (Section 2.3) usually require

21

from the DM pairwise comparisons similar to the information demanded by

the classic approaches or some sort of score or ranking of the alternatives.

The model proposed in this work demands from the DM only ordinal

information about two alternatives. In this context, the assumption that the

DM corresponds to a utility function is reasonable because the comparisons

are made between instances that are familiar to her/him. The DM has

only to choose her/his preferred alternative without making more elaborated

comparisons or giving weights to alternatives or criteria. Based only on this

ordinal information a complete model for the DM’s preferences, the NN-DM

model, is obtained. In this model, alternatives belonging to the same domain

can be evaluated according to the DM’s preferences without any further

information from the DM. The resulting NN-DM model might be thought,

then, as the function providing information about the DM’s preferences to

the methods presented in Sections 2.2 and 2.3. Therefore, with the NN-DM

model the DM is indirectly supplying complex information such as weighted

preferences through only ordinal information.

22

Chapter 3

Notation and Problem
Statement

3.1 Multi-Criteria Decision-Making Analysis

The multi-criteria decision-making analysis consists of a set of methods

and techniques for assisting or supporting people and organizations to make

decisions, considering multiple criteria. The subject of this thesis is the class

of decision-making problems in which the alternatives to the problem are

directly presented to the DM. The DM needs to answer queries concerning

the preferences which lead to the discovery of a model for her/his preferences.

The problem considered here involves the following basic elements.

A set A of alternatives (possible actions or choices)

This set can be discrete or continuous and it is considered the do-

main of the decision-making problem. Each element a ∈ A corresponds

to an available alternative and each feature of a provides a problem di-

mension.

23

A set C of criteria (possible consequences or attributes)

Each alternative a ∈ A has criteria which reflect the consequences

of its execution. Each criterion represents a point of view modeled by

a function Ci : A → R. Therefore, the values p = C(a), a ∈ A, are

the image of the available alternatives and represent the information

on which the DM has to take her/his decision. Since the DM deals only

with the image of the available alternatives, from now on each value p

will be called an alternative for a short notation.

A decision-maker

The merit of each alternative p is assigned by a person, called here

decision-maker (DM). In the context assumed in this work, the DM for-

mally corresponds to a utility function U for which it is not possible to

directly measure the values of U(p), for any p. Only the ordinal infor-

mation extracted from yes/no queries to the DM may be provided by a

preference function P which encodes the preference relations among all

pairs of alternatives. The best alternative p∗ is the one that maximizes

the function U in the set C(A).

The DM is responsible for presenting a solution for the decision-making

problem, which can be stated as:

- provide the best alternative or a limited set of efficient alternatives;

- rank the alternatives from the best to the worst one;

- classify the alternatives in predefined homogeneous groups.

24

The problem presented in this work is to find an approximation of the

utility function U which expresses the DM’s preferences. For this purpose,

the preference function P , which provides ordinal information from the DM,

is employed in extracting information from the DM about her/his utility

function U . For each pair of alternatives (pi, pj) the function P is given by

Equation 3.1.







P (pi, pj) = −1, if pi is preferable than pj,
P (pi, pj) = 0, if pi and pj are equivalent,
P (pi, pj) = 1, if pi is less preferable than pj.

(3.1)

Although the function P is able to provide only ordinal relation about

the DM’s preferences, it has a direct connection with the utility function U ,

as shown in Equation 3.2.







P (pi, pj) = −1, if and only if U(pi) > U(pj),
P (pi, pj) = 0, if and only if U(pi) = U(pj),
P (pi, pj) = 1, if and only if U(pi) < U(pj).

(3.2)

In this work it is assumed that the function P is defined for any pair of

alternatives (pi, pj) and if two alternatives pi and pj are equally preferable a

coin flip1 decides each one is the preferred alternative. However, there is a

major constraint on the information availability by considering the function

P . As the DM is a human being, the answers to the comparisons between all

pairs of alternatives may not be available, because there are limitations on

time and patience. Therefore, the goal is to minimize the amount of queries

required from the DM. This aim is achieved by selecting certain pairs of

1Coin flipping is the practice of throwing a coin in the air to choose between two

alternatives, sometimes to resolve a dispute between two parties. It is a form of sorting

which inherently has only two possible and equally likely outcomes.

25

alternatives for comparison and then exploring the acquired information to

construct a suitable model for the DM’s preferences.

As the proposed methodology assumes that the DM is a person, the

inherit inconsistency of human-beings, which may lead to ranking reversals,

is taking into the account. Luckily the regression approach proposed here

regulates the final surface in relation to those ranking reversals so that the

corresponding values do not play a significant role in building an adequate

approximation of the DM’s preferences.

Often, the cost or benefit of an alternative p can be expressed through

a function f dependent on decision variables. Therefore, the achievement of

the best arrangement of the variables that maximizes this function leads to

an optimization process, described next.

3.2 Multi-Objective Optimization

A Multi-Objective Optimization Problem (MOOP) is concerned with

mathematical optimization problems involving more than one objective func-

tion to be optimized simultaneously. Formally, a MOOP can be defined by

Equation 3.3:

min f(X) = (f1(X), f2(X), . . . , fm(X))

subject to

{

gi(X) ≤ 0, i = 1, 2, . . . , p
hi(X) = 0, i = 1, 2, . . . , q

(3.3)

in which fi are the objective functions, gi are the inequality constraints, hi are

26

the equality constraints, and X = (x1, x2, . . . , xN) is the vector of decision

variables.

In a MOOP a set of different optimal solutions may exist where no single

solution can be considered better than the others with respect to all the

criteria. The feasible set, denoted F , is composed of the vectors X that

satisfy all constraints. The solution set is then defined by the property of

dominance. A vector X ∈ F is said to be dominated by another vector

X̄ ∈ F if fi(X̄) ≤ fi(X) for all i = 1, . . . ,M and there exists j ∈ {1, . . . ,M}

such that fj(X̄) < fj(X). The notation X̄ ≺ X indicates that X̄ dominates

X. The Pareto-optimal set P , defined by Equation 3.4, is the MOOP’s

solution set.

P =
{

X ∈ F | 6 ∃ X̄ ∈ F such that X̄ ≺ X
}

(3.4)

The image of the Pareto-optimal set in the feature space is called Pareto-

optimal front, or just Pareto-front (PF). In the absence of any additional

subjective preference information, none of the PF solutions can be said to

be inferior when compared to any other solution, as they are superior in at

least one criterion.

Researchers study multi-objective optimization problems from different

viewpoints and, thus, there exist solutions with different philosophies and

goals when setting and solving them. The goal may be to find a representa-

tive set of solutions, and/or quantify the trade-offs in satisfying the different

objectives, and/or find a single solution. In real-world MOOPs usually only

one solution is chosen to be implemented. In order to obtain this single solu-

tion a decision-maker (DM) can make a choice regarding the importance of

27

the objectives in the optimization process or certain external criteria. There-

fore, the final solution of a MOOP results from the combined optimization

and decision processes which motivates the development of methods called

preference-based methods. Preference-based methods are multi-objective op-

timization methods in which the relative importance attributed to the criteria

is considered and the solution that best satisfies the DM’s preferences is se-

lected [Miettinen, 1999]. The preference-based methods can be divided into

three different categories, as follows.

A priori The decision-maker must specify their preferences, expectations,

and/or choices before the optimization process. The method consists of

calculating a single criterion value by considering the individual criteria.

The MOOP then becomes a single-objective optimization generating a

single solution. The preferences can be expressed, for example, in terms

of an aggregate function combining the individual objective values into

a single utility value.

A posteriori All the criteria are optimized simultaneously and the Pareto-

optimal set is obtained. The best solution can be chosen directly by the

DM or selected based on the DM’s preferences. The preferences can

be expressed, for instance, in terms of an approximation of the utility

function.

Interactive Decision-making and optimization are interleaved, that is, the

DM must provide preference information about the current set of avail-

able solutions while the optimization process is running, leading the

optimization algorithm during the search. Usually the outcome is one

or a set of preferred solutions.

28

The selection of a single solution from the PF resultant of an optimiza-

tion process requires information that may be not present in the objective

functions. This information, expressing subjective preferences, must be in-

troduced by the DM. The integration of the DM’s preferences in the opti-

mization procedure allows the distinction among the solutions in the estimate

of the Pareto-optimal front (EPF) and, as a consequence, the selection of a

single solution from the EPF. In the decision-making problem resultant from

the MOOP the following elements are considered here.

A set A of alternatives

This set is composed by the decision variable space. Each alternative

a ∈ A represents a vector of decision variables.

A set C of criteria

This set is composed by the feature space. Each alternative p = C(a)

represents a feasible solution of the MOOP.

A decision-maker

The utility function U is assumed to be defined in the feature space,

which means the criteria are the objectives of the MOOP. Since the

DM evaluates the solutions in the feature space, from now on these

solutions represent the available alternatives.

A simulated decision-making problem

A set F with simulated alternatives is constructed in the feature

space to obtain information from the DM about the entire domain in

29

which the utility function U is being approximated. The set F offers

a kind of information which usually is not provided directly by the

alternatives in the PF.

The idea behind the construction of a simulated decision-making prob-

lem is to find an appropriate model for the DM’s preferences in the entire

specified domain. When it comes to find the best alternative in a PF the

majority of the algorithms in the literature considers only the information

about the available alternatives which usually is enough to find the preferred

alternative belonging to that specific set. However, as the dimension of the

PF is smaller than the dimension of the feature space, this lack of information

could compromise the method’s performance. Therefore, the complete infor-

mation about the feature space, available from the simulated alternatives,

becomes crucial to constructing a precise model for the DM’s preferences in

the whole domain.

3.3 INSPM

Chapter 7 proposes an EMO methodology, called INSPM, developed from

the NSGA-II algorithm interacting with the NN-DM method. In this sce-

nario, the set A is an estimate of the Pareto-optimal set and the correspond-

ing PF works as a problem instance of the multi-criteria decision problem.

Since NSGA-II is an evolutionary algorithm the set A is discrete and each

element p = f(a), a ∈ A, corresponds to the image of an available alternative

located on the current estimate Pareto-optimal set. Additionally, the inter-

action between the NN-DM method and the NSGA-II algorithm demands

the definition of the following elements.

30

- A set PNN of all individuals in the current EPF obtained by NSGA-II

guided by the NN-DM model.

- A set PDM of all individuals in the current EPF obtained by NSGA-II

guided by the utility function U . The set PDM is a reference to assess

the performance of the proposed methodology.

- A function Ûf which is the former artificial neural network obtained by

the NN-DM method.

- A function Ûc which is the current artificial neural network obtained

by the NN-DM method.

31

Chapter 4

The NN-DM Method

4.1 Introduction

This work assumes that the DM is aware of her/his preferences at the

beginning of the decision-making process and those preferences are defined

regarding all the alternatives. The DM’s answers are not quantitative, that

is, given two alternatives pi and pj, with i 6= j, the alternative pi is preferable

than the alternative pj or vice versa, but it is not possible to determine how

much preferable is this solution.

Considering a single decision-making problem one simple way of finding

the best solution is to perform the following procedure among the alterna-

tives:

- an alternative is chosen and compared with the remaining ones; this

alternative is called pivot;

- the alternatives which are preferable than the pivot pass to the next

step;

32

- the process is repeated until only one alternative has left; this alterna-

tive is the preferred alternative on the DM’s viewpoint.

According to MAUT, there exists a utility function U which reproduces

the DM’s preferences assigning a scalar value to each alternative. The prob-

lem of finding an approximation Û of the utility function U can then be

stated as a regression problem that should be performed over sampled points

coming from U . However, as only ordinal information can be obtained from

U by the preference function P , a partial ranking inspired by the described

procedure is considered in constructing the regression. Once the function

Û is estimated it can be employed in quantifying any alternative within its

domain and the DM’s preferred alternative is the one with greatest value of

Û .

4.2 The NN-DM Methodology

The approach of modeling the DM’s preferences in a general domain usu-

ally creates a more expensive process because the DM’s preferences have to

be modeled into an entire domain and not only for the available alterna-

tives. The NN-DM method presents a way of finding not only the preferred

solution, but a model, called here NN-DM model, that simulates the DM’s

preferences in a specific domain D with similar demand from the DM when

s/he is consulted to find only the preferred solution. The NN-DM model

reproduces the DM’s preferences in the domain D considering information

about the feature space. After the training, the model is able to find the

preferred alternative in any problem instance within the considered domain.

Once the NN-DM model is adjusted the preferred solution can be obtained by

33

employing the resulting model in attributing scalar values to each available

alternative and then by choosing the solution which has the higher value.

The resulting NN-DM model can also be employed in taking decisions when

similar decision-making problems are presented.

The original NN-DM method is divided into four steps.

Step 1 Domain Establishment

Select the domain for the utility function approximation and con-

struct a grid of simulated alternatives.

Step 2 Ranking Construction

Build a partial ranking for the alternatives assigning a scalar value

to each alternative.

Step 3 Artificial Neural Network Approximation

Construct an artificial neural network which interpolates the results

and represents the DM’s preferences.

Step 4 Performance Assessment

Evaluate the resulting model according to the DM’s preferences.

The next subsections present the details of those steps.

4.2.1 Step 1: Domain Establishment

The domain D of the approximation Û is defined as the smallest hyper-box

with edges parallel to the coordinate axes that contains the set of available

34

alternatives A. In this domain a simulated decision-making problem in which

the alternatives are located as a grid is built. The queries to the DM are

presented over the simulated decision-making problem, that is, the available

alternatives are not directly considered in the model’s construction. The

grid of alternatives is built to find a uniform representation of the utility

function in the domain D. The number of alternatives in each dimension of

the grid is related to the quality of Û : the bigger the refinement, the better

the approximating function, but also a higher number of queries is required

from the DM.

Consider a decision-making problem in a space with dimension d and let

ni be the number of alternatives linearly spaced in each sub-dimension of

the domain D, with i = 1, 2, . . . , d. The grid of simulated alternatives G is

constructed by the intersection of the refinements in each sub-dimension of D.

As each sub-dimension has ni alternatives, the set G has
n
∏

i=1

ni alternatives.

Figures 4.1 and 4.2 present a visualization of the described procedure in two

and three-dimensional domains, respectively.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Original domain D Grid of simulated alternatives G:
n1 = 10, n2 = 5 e n = 50

Figure 4.1: Refinement of a regular two-dimensional domain D.

35

−1.5 −1 −0.5 0 0.5 1 1.5−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

Original domain D Grid of simulated alternatives G:
n1 = 5, n2 = 10, n3 = 15 e n = 750

Figure 4.2: Refinement of a regular three-dimensional domain D.

Considering a generic domain, the internal and external refinements can

be defined, as shown in Figure 4.3.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Original domain Internal refinement External refinement

Figure 4.3: Refinement of a generic domain.

Considering now alternatives on a curve, for instance a PF derived from

a multi-objective optimization, an external refinement is constructed around

the curve. The external refinement generates the information to find a suit-

able model for DM’s preferences in the whole domain. Figure 4.4 illustrates

an external refinement of a PF obtained in a two-objective optimization

problem. Note that the solutions on the PF are not directly part of the

36

refinement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Available alternatives Grid of simulated alternatives

Figure 4.4: Refinement of a Pareto-optimal front.

4.2.2 Step 2: Ranking Construction

The partial ranking is the developed technique employed in building a

partial sorting for the alternatives. The ranking assigns a scalar value to

each alternative and provides a way of quantifying the DM’s preferences. Let

P be a set with n alternatives and let v1 = p ∈ P be an alternative chosen

randomly1 in A, called alternative pivot. Considering the DM’s preferences

between the pivot v1 and each other alternative p ∈ P two new sets are

constructed: the preferable alternatives, denoted F1, and the non-preferable

alternatives, denoted T1. Choosing a pivot v2 in the set F1 and repeating

the process the sets F2 and T2 are constructed. This process is repeated

until the set Fk has only one alternative which corresponds to the preferred

alternative by the DM2.

1All the random procedures in this work generate values according to a uniform distri-

bution.
2As stated in Section 3.1, in situations in which the alternatives are equally preferable

each alternative has 50% chance to be the preferred one.

37

During the construction of the sets Fi and Ti the level of each alternative

p ∈ P is defined. Let k be the final stage of the technique, that is, the stage

in which the set Fk contains only one alternative. For each p ∈ P, if p ∈ Tj

then the level of p is defined as R(p) = j. If p /∈ Tj, for all j = 1, . . . , k − 1,

then p ∈ Fk and the level of p is defined as R(p) = k. Thus the level of each

alternative p ∈ P is defined by Equation 4.1.

R(p) =

{

j, if a ∈ Tj , for some j,
k, if a /∈ Tj , for all j.

(4.1)

The ranking technique enables to quantify the DM’s preferences in any

set of alternatives within the domain by assigning a scalar value to each

alternative p ∈ P and constructing the function R : P→ R. The function R

provides the data for training a regression technique extending the function

R to a function Û : D → R which represents the DM’s preferences in the

entire domain D.

The ranking-based classification offers a quantitative (cardinal) way of

comparing the alternatives which is a kind of information which is not pro-

vided directly by the DM. In the partial ranking an alternative which is

assigned a level i + 1 is necessarily better than an alternative with a level i

although two alternatives with the same level i may be not equivalent under

the utility function U . The information acquired by the ranking is obtained

through a reasonable amount of information from the DM and it is enough

to allow the regression technique to construct an appropriate model for the

DM’s utility function U .

38

4.2.3 Step 3: Artificial Neural Network Approxima-
tion

The regression technique chosen to approximate the underlying utility

function is an Artificial Neural Network (ANN). An ANN is an information

processing paradigm which is inspired by the way the information process-

ing mechanisms of biological nervous systems, such as the brain, process the

information. The key element of this paradigm is the structure of the in-

formation processing system which is composed of a large number of highly

interconnected processing elements (neurons) working together to solve spe-

cific problems. ANNs often perform well approximating solutions to all types

of problems because they ideally do not make any assumption about the un-

derlying fitness landscape.

An ANN learns by examples and the aim of this learning is the attainment

of models with good generalization capacity associated to the capacity to

learn from a reduced set of examples and to supply coherent answers to

unknown data. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons; in an ANN the synaptic

connections are represented by its weights.

The Radial Basis Function (RBF) network (Figure 4.5) is the type of

ANN employed in this work. The main features of RBF networks are:

- they are two-layer feed-forward networks;

- they are very good at interpolation;

- the hidden layer implements a set of radial basis functions (e.g. Gaus-

sian functions);

39

- the output layer implements linear summation functions;

- the network training is divided into two stages: first the parameters of

the hidden layer are determined, and then the weights from the hidden

to output layer are obtained;

- both training and learning are very fast.

Figure 4.5: RBF network architecture.

Formally, a RBF network is a real-valued function whose value depends

only on the distance from x to a point xi, called center, so that φ(x,xi) =

φ(‖x−xi‖)
3. Sums of radial basis functions are typically considered in build-

ing up function approximations of the form given by Equation 4.2, in which

the approximating function y(x) is represented as a sum of N radial basis

functions, each one associated with a different center xi, and weighted by an

appropriate coefficient wi. It can be shown that any continuous function on a

3The adopted norm is the Euclidean norm.

40

compact interval can in principle be interpolated with arbitrary accuracy by

a sum of this form if a sufficiently large number N of radial basis functions

is considered.

y(x) =
N
∑

i=1

wi · φ(‖x− xi‖) (4.2)

In this work a common type of radial basis function is chosen: a Gaussian

given by Equation 4.3,

φ(r) = exp

(

−
r2

σ2

)

, (4.3)

in which r = ‖x−xi‖ and σ is a parameter related to the spread of the func-

tion. Figure 4.6 presents an example of unidimensional Gaussian functions

with xi = 0 and different σ values.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ=1

σ=2

σ=3

Figure 4.6: Gaussian functions with σ = 1, 2, 3.

The RBF network possess three parameters: (i) the centers of the RBF

functions (xi); (ii) the spread of the Gaussian RBF functions (σ), and (iii)

the weights from the hidden to the output layer (wi). Several methods have

41

been proposed for training RBF networks. Generally, the training is divided

into two stages. In the first stage (Steps 1 and 2) the number of radial

basis functions and their parameters are determined based on unsupervised

methods. In the second stage (Step 3) the adjustment of the weights from

the hidden to the output layer is performed. Essentially this stage consists

in finding the weights that optimize a single layer linear network.

The following techniques have been applied to train the RBF networks

in each specified step.

Step 1 Finding the centers of the radial basis functions

- Initial methods, in which each data sample is assigned to a basis

function [Specht, 1990].

- Fixed centers selected at random [Broomhead and Lowe, 1988].

- K-means algorithm [Macqueen, 1967; Moody and Darken, 1989].

- Adaptive k-means algorithm (self-organizing map) [Kohonen, 1989].

- Subset selection [Berk, 1978; Chen et al., 1991]:

- forward selection: starts with an empty subset; added one

basis function at a time (the one that most reduces the sum-

squared-error); until some chosen criterion stops;

- backward elimination: starts with the full subset; removed

one basis function at a time (the one that least increases the

sum-squared-error); until some chosen criterion stops.

Step 2 Finding the spread of the radial basis function

42

- Each value of σ is defined as the average of the Euclidean distances

between the center of each sample and the center of the nearest

sample [Moody and Darken, 1989].

- P -nearest neighbor algorithm (Equation 4.4): a number P is cho-

sen; for each center, the P nearest centers are found; the root-

mean squared distance between the current cluster center and its

P nearest neighbors is calculated [Knuth, 1998].

σj =

√

√

√

√

1

P

P
∑

i=1

(xj − xi)
2 (4.4)

Step 3 Finding the weights from the hidden to the output layer

- Singular value decomposition (SVD) [Lay, 2002].

- Least Mean Squares (LMS) algorithm [Widrow and Hoff, 1988].

For the construction of the RBF network the MATLAB c© NEWRB

function is employed with the parameters given by Table 4.1. The NEWRB

function iteratively creates a radial basis network one neuron at a time.

Neurons are added to the network until the sum-squared error falls beneath

an error goal or a maximum number of neurons is reached. This function is

flexible enough to provide a suitable approximation of the DM’s preferences

in each scenario considered in this work. For additional information about

the NEWRB function, check the Appendix A.

43

Name Value Name Value

P Alternatives in the domain SPREAD 500
T Ranking of the alternatives MN 200
GOAL 0.1 DF 25

Table 4.1: MATLAB c© parameters of the NEWRB function.

The RBF network Û which approximates the utility function U has the

set of simulated alternatives F as its input and the ranking level R of each

alternative as its output. The major advantage of choosing an artificial neural

network is that the proposed methodology does not require a specific form

from the underlying utility function U . Figure 4.7 presents an example of a

Gaussian underlying utility function and a model obtained by the NN-DM

method. Once the function Û is estimated, it can be employed in quantifying

any alternative within its domain, as shown in Figure 4.8.

44

Underlying utility function Resulting estimated utility function
S

u
rf

ac
e

−2

−1

0

1

2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

L
ev

el
S

et
s

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.7: Surface and level sets of the functions U and Û .

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

Figure 4.8: Example of a function Û being employed.

45

It is not necessary to model U exactly because when the ranking is em-

ployed in building the approximation the resulting function Û has level sets

which are similar to the ones of U and possesses information enough to codify

the DM’s preferences. Therefore, the final surface is normalized by scaling

the RBF output between 0 and 1. It is worth mentioning that any other

interpolation method could have been chosen and the choice of the RBF net-

work is due to its easy implementation and reduced computational load since

the weights are updated linearly.

4.2.4 Step 4: Performance Assessment

Now that a model Û for the DM’s utility function U is available a value

for each alternative can be inferred and a sorting of all alternatives can be

constructed. This section presents a metric to assess the performance of the

model Û related to the DM’s preferences.

The Kendall-tau Distance (KTD) [Kendall, 1938] is a metric that counts

the number of pairwise disagreements between two ranking lists. The KTD

for a set A sorted according the rankings τ1 and τ2 is given by Equation 4.5.

K(τ1, τ2) = | {(i, j) : i < j, (τ1(i) < τ1(j) ∧ τ2(i) > τ2(j))
∨ (τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))} |.

(4.5)

Considering n the list size, the normalized Kendall-tau distance, obtained

by dividing the KTD value by n(n− 1)/2 (total number of pairs), lies in the

interval [0, 1]. The normalized Kendall-tau distance, here simply represented

by KTD, is employed in this work as the merit function.

As an example, consider the sorting by height and weight of a group of

five people is required and consider the sorting provided by Table 4.2.

46

Person A B C D E

Sorting by height 1 2 3 4 5
Sorting by weight 3 4 1 2 5

Table 4.2: Example of the KTD metric.

The calculus of the Kendall-tau distance is made by comparing each pair

of people and counting the number of discordant pairs, that is, the number

of times where the values in the list L1 (height) are in the opposite order in

the list L2 (weight).

Pair Height Weight Discordant Pair

(A,B) 1 < 2 3 < 4
(A,C) 1 < 3 3 > 1 X
(A,D) 1 < 4 3 > 2 X
(A,E) 1 < 5 3 < 5
(B,C) 2 < 3 4 > 1 X
(B,D) 2 < 4 4 > 2 X
(B,E) 2 < 5 4 < 5
(C,D) 3 < 4 1 < 2
(C,E) 3 < 5 1 < 5
(D,E) 4 < 5 2 < 5

Table 4.3: Concordant and discordant pairs.

As there are four pairs whose values are in the opposite order, the KTD

value is 4. Normalizing this value, the resulting KTD, denoted τ , is τ = 0.4.

The value τ = 0.4 indicates that there is a small similarity between the lists

considered.

The KTD evaluates the proximity between the sorting for the alternatives

provided by the approximation Û and the ideal sorting provided by the utility

function U . In the study conducted here the KTD is a suitable metric because

47

an absolute reference (the utility function U) is assumed to be available in

the tests that have been performed. The KTD is a measure of the closeness

between the sorting given by the resulting model and the optimal sorting

provided by the DM.

In an attempt to assess the model’s performance, in each algorithm

nvs = 30 validation sets with nvp = 50 randomly distributed alternatives

are created in the domain D. The validation sets are constructed to evaluate

the performance of the Û model within the entire domain D. A sorting for

each validation set is obtained by the functions U and Û and the resulting

KTD, also denoted τ , is the average of the obtained values of each validation

set. A model is then said stable if τ satisfies a predefined tolerance tolst.

4.2.5 DM calls

This section presents an estimate of the number of queries required from

the DM in the ranking procedure developed in Section 4.2.2. Let n be the

number of alternatives in the set G and assume n = 2k, for some k ∈ N. In

each step the pivot has to be compared with each alternative and, on average,

the pivot splits the set in two sets with same size. That means in the first

step the pivot is compared with n − 1 alternatives, in the second step with

n/2 − 1 alternatives, and the process goes on until only one alternative has

left. As the expected number of levels is k = log n,4 the total number of

queries, denoted T (n), is given by Equation 4.6.

4The notation log x denotes the same as log
2
x in the whole text.

48

T (n) = (n− 1) +
(n

2
− 1

)

+
(n

4
− 1

)

+ . . . +
(n

n
− 1

)

= 2k +
2k

2
+

2k

4
+ . . . +

2k

2k
− k

= 2k ·

(

1 +
1

2
+

1

4
+ . . . +

1

2k

)

− k (4.6)

= 2k ·

(

2 · 2k − 1

2k

)

− k

= 2 · 2k − 1− k

= 2n− log n− 1.

Taking now an arbitrary number of alternatives the number of queries to

the DM is approximately given by T (n) = 2n. This result represents a linear

behavior between those variables. However, it is important to point out that

the number of queries in the domain is connected to the number of criteria

of the decision-making problem.

4.3 The Algorithm

Consider a decision-making problem with dimension d, domain D, and

underlying utility function U . Let A ⊂ D be a set of available alternatives

and G ⊂ D be a grid of simulated alternatives. Define the function R :

G → R which attributes a real number to each alternative p ∈ G acquired

by the stages of a ranking procedure. By employing a RBF network the

function R can be extended to a function Û : D → R, which reproduces the

DM’s preferences in the entire domain D. Algorithm 1 presents the NN-DM

method.

49

Algorithm 1 NN-DM Method

1: Obtain the domain D
2: Construct the grid of simulated alternatives G
3: while #Fi > 1 do
4: Select a pivot vi belonging to the set Fi

5: Obtain the sets Fi+1 and Ti+1

6: end while
7: Assign a rank R(p) to each alternative p ∈ G
8: Adjust the RBF network Û
9: Assess the performance under a tolerance tolst

4.4 Illustrative Examples

This section presents illustrative examples of the NN-DM method. Figure

4.9 shows three DM’s underlying utility functions simulated by the functions

given by Table 4.4. The functions U1 and U3 possess only one preferred

alternative and the function U2 is an example of a DM with several preferred

solutions. In each instance D = [0, 1] × [0, 1] and p = (p1, p2) represents an

alternative.

Utility Function Expression

U1(p) exp(−p(1) · p(1)) · exp(−p(2) · p(2))
U2(p) sin(p(1) + p(2))
U3(p) p(1) · p(2)

Table 4.4: DM’s underlying utility functions.

50

Function U1 Function U2 Function U3

S
u

rf
ac

e

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

L
ev

el
S

et
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.9: DM’s underlying utility functions.

Figure 4.10 shows the partial ranking obtained by Step 2 of the NN-DM

method considering a grid with n1 = n2 = 20 alternatives. The average

number of queries to the DM is 2 · 202 according to Equation 4.6.

Ranking R1 Ranking R2 Ranking R3

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

Figure 4.10: Partial ranking.

Figure 4.11 presents the RBF network Û which represents the DM’s pref-

erences.

51

Function Û1(p) Function Û2(p) Function Û3(p)

S
u

rf
ac

e

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

L
ev

el
S

et
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.11: Models Û obtained by the NN-DM method.

The tests show that the NN-DM method is able to construct models that

represents the DM’s preferences. Assuming the same utility function U in

problem instances of the same decision-making problem the resulting model

Û can be employed in avoiding the formulation of new queries to the DM.

4.5 Discussion

The NN-DM method is efficient at constructing an approximation Û for

the DM’s utility function U but the partial ranking is not stable, since the

whole process depends on the choice of the pivot alternative. In a poor

scenario, the pivot can be the worst alternative in all stages and the par-

tial ranking becomes a total ranking, demanding excessive information from

the DM. In an even worse scenario, if the first pivot is the best alternative

according to the DM’s preferences only two levels are constructed and the

52

information would not be enough to find an appropriate model for the DM’s

utility function.

Figure 4.12 introduces the same underlying utility functions presented

in Figure 4.9 and examples of the partial ranking obtained by the NN-DM

method considering the same grid with n1 = n2 = 20 alternatives.

Function U1 Function U2 Function U3

F
u

n
ct

io
n
U

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

4

4.2

4.4

4.6

4.8

5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.5

−0.4

−0.3

−0.2

−0.1

0

R
an

k
in

g
R

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

R
an

k
in

g
R

2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

Figure 4.12: Partial ranking examples.

Figure 4.12 shows that, due to the elimination process of alternatives in

the ranking construction, in certain runs the main characteristic of the utility

function is lost in early stages of the technique. The main reason for this

procedure not represent properly the underlying utility functions is the high

number of alternatives with small values. The number of alternatives in each

53

level is approximately half of the number of alternatives in the previous level

which clusters the available information in lower levels quickly.

Another issue present in the NN-DM method is the grid of alternatives.

In situations in which the problem dimension is high the amount of informa-

tion required from the DM to construct an appropriate model may not be

available. Furthermore, if the decision-making process is interactive, as in

successive approximations of the PF, it is not possible to insert new alterna-

tives in the domain without resizing the whole domain.

Finally, no kind of dominance is taken into account here. In the class

of problems considered in this work the dominance among the alternatives

can be considered in replacing certain queries and reducing the requirements

from the DM.

54

Chapter 5

The Improved NN-DM Method

5.1 Introduction

The purpose of the NN-DM method is to find an approximation Û of the

utility function U . Once the domain D is established the DM should answer

queries about her/his preferences over D, conducting to a ranking model

for the preferences and, therefore, the construction of the function Û which

approximates the utility function U .

This chapter presents improvements introduced in the original NN-DM

method. The improved methodology can be described in the same four main

steps as the original NN-DM method, but optimizations are developed in

the Steps 1 and 2: the domain D is now composed by random simulated

alternatives, the dominance is considered in taking the decision replacing the

DM in certain queries, and the partial ranking is built over a totally sorted

subset of the simulated alternatives in an attempt to create a stable ranking.

55

5.2 Step 1 - Domain Establishment

In its original description the NN-DM method constructs a grid of simu-

lated alternatives in the domain A which provides a uniform representation

of the DM’s utility function U . Unfortunately, by considering higher dimen-

sions the grid becomes ineffective, demanding several queries to the DM. In

a real scenario the DM is a person which has restrictions related to her/his

time leading to restrictions in the number of queries to be answered.

In the improved NN-DM method a simulated decision-making problem

in which the alternatives are randomly located is built in the domain D.

The queries to the DM are now presented over these simulated alternatives.

By considering random alternatives instead of the grid of alternatives the

model’s accuracy still varies according to the number of alternatives but now

new alternatives can be added gradually until the method is able to obtain

an appropriate representation of the DM’s preferences.

Figure 5.1 presents an example of the domain establishment consider-

ing non-dominated alternatives from a multi-objective optimization problem.

The available alternatives are not sufficient to represent the entire domain

of the DM’s preferences, demanding the insertion of simulated alternatives.

Note that the available alternatives are not considered in constructing the

model.

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Available alternatives Random simulated alternatives

Figure 5.1: Domain establishment.

5.3 Step 2 - Ranking Construction

5.3.1 Dominance

In the class of problems considered here the dominance between the al-

ternatives can be considered in replacing certain queries to the DM reducing

the demand in the process of preference extraction. Given two alternatives

ai and aj, three situations are possible:

- if ai dominates aj, then ai must be the preferred alternative;

- if aj dominates ai, then aj must be the preferred alternative;

- if neither ai nor aj dominates each other the DM is then consulted to

find the preferred alternative.

In situations in which the decision-making problem comes from a multi-

objective optimization problem usually the available alternatives belong to

57

a set with non-dominated solutions. The extra cost of considering simulated

alternatives within the entire domain the DM’s requirements can now be

reduced by taking into account the dominance. Henceforth, only the infor-

mation about non-dominated alternatives is required from the DM making

the whole process cost-effective.

5.3.2 The Improved Partial Ranking

The partial ranking is a technique employed in finding a partial sorting

for the alternatives leading to the assignment of a scalar value to each alter-

native. In an attempt to produce a stable partial ranking a modification in

the way the pivots are built is introduced in the improved NN-DM method.

Considering a set A with n alternatives the improved partial ranking is per-

formed through the following steps.

1. Choose randomly k = log n alternatives from the set F ; these alterna-

tives are called pivots. The k value is inspired on the expected number

of levels of the original procedure.

2. Sort the pivots in ascending order of the DM’s preferences considering

the ordinal information obtained from yes/no queries. A rank is as-

signed to each pivot corresponding to its position in this sorted list. In

this step the number of queries that the DM has to answer is equal to

the number of comparisons that a sorting algorithm performs. There-

fore, considering an algorithm as Mergesort, the average number of

queries to obtain a total sorting is k · log k.

3. For each one of the n − k remaining alternatives, assign a rank that

58

is the same one of the pivot immediately better than the alternative,

in the DM’s preferences. If the current alternative is better than the

pivot with rank k it receives rank k + 1 and the number of pivots is

increased. Each remaining alternative is compared with the middle

pivot and, based on the result, compared with the middle pivot of the

higher or lower sub-partition. This process continues until a rank is

assigned for each remaining alternative.

The procedure developed here creates a partition of the set F into at

least k = log n disjunct subsets representing the ranking levels which is the

average number of levels of the original methodology. The main difference

between these procedures is that the improved partial ranking always has at

least k levels which provides a more balanced number of alternatives in each

level and generates suitable information to construct the model for the DM’s

preferences.

5.4 DM Calls

In the improved NN-DM method the interaction with the DM is necessary

in two occasions: the pivot total sorting and the position selection of each

remaining alternative.

Pivot Total Sorting

The number of queries the DM has to answer is equal to the number

of comparisons that a sorting algorithm must execute. A method such

as Mergesort is known to perform, on average, k · log k comparisons

59

between the alternatives to sort them, therefore this value represents

a good estimate of the number of queries presented to the DM for the

total sorting of the pivots.

Position Selection Of Each Remaining Alternative

For selecting the position of each remaining alternative this alter-

native must be compared with the pivot alternatives. A binary search

procedure requires on average log k queries by each alternative. So, as

there are n− k remaining alternatives, then (n− k) · log k queries are

made, on average, during this procedure.

Therefore, the average total of queries T (n) to the DM is given by Equa-

tion 5.1.

T (n) = k · log k + (n− k) · log k

= k · log k + n · log k − k · log k (5.1)

= n · log k

= n · log(log n).

5.5 The Algorithm

Algorithm 2 presents the improved NN-DM method.

60

Algorithm 2 Improved NN-DM Method

1: Obtain the domain D
2: Construct the set F with n randomly simulated alternatives
3: Select the k = log n pivots
4: Sort the pivots in ascending order
5: Assign a rank R(vk) to each pivot vk
6: Assign a rank R(ai) to each n− k remaining alternative ai
7: Adjust the RBF network Û
8: Assess the performance

5.6 Illustrative Examples

This section presents two illustrative examples of the improved NN-DM

method. In the first example the DM’s underlying utility function is simu-

lated by a bimodal Gaussian, indicating that the proposed methodology is

effective in relation to multi-modal functions, although with certain restric-

tions. In the second example the DM’s underlying utility function allows

the dominance to replace the DM and a comparison between the queries

effectively answered by the DM and by the dominance is realized.

5.6.1 Example A

The first example considers the DM’s underlying utility function U simu-

lated by a bimodal Gaussian given by Equation 5.2, in which p = (p1, p2) is

an alternative. The function U represents a DM with two distinct preferable

regions (two local maximums), although one region is most preferable than

the other one (global maximum). Figure 5.2 presents the surface and level

sets of the function U .

61

U(p) = 25 · exp(−(p1 − 3)2 − p22) + exp(−p21 − (p2 − 3)2) (5.2)

−2

0

2

4

6

−2

0

2

4

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

6

Surface Level sets

Figure 5.2: DM’s underlying utility function U .

In the domain D = [−2, 5]× [−2, 5] a simulated decision-making problem

with n = 50 alternatives is constructed. Figure 5.3 shows the partial ranking

obtained by Step 2. Note that the difference between the local maximums

are smoothed by the ranking procedure. This behavior is expected since the

pivots take place in an integer scale and, by considering this specific function

U , the majority of the pivots would have values similar to zero leading the

local maximums with similar ranking.

62

−2

0

2

4

6

−2

0

2

4

6

0

1

2

3

4

5

6

7

8

9

Figure 5.3: Partial ranking with n = 50 alternatives.

Figure 5.4 presents the RBF network Û which represents the DM’s pref-

erences for the given function U . In this example the MATLAB c© parameters

are giving by Table 5.1.

−2

0

2

4

6

−2

0

2

4

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

6

Surface Level sets

Figure 5.4: Model Û for the DM’s preferences.

63

Name Value Name Value

P Alternatives in the domain SPREAD 5
T Ranking of the alternatives MN 20

GOAL 0.5 DF 2

Table 5.1: MATLAB c© parameters: the NEWRB function.

5.6.2 Example B

Now the DM’s underlying utility function U is simulated considering the

function given by Equation 5.3, with matrices M given by I2 and I3 (identity

matrices of size 2 and 3, respectively). In this example the dominance can be

considered in replacing the DM in queries in which one alternative dominates

the other one.

U(p) = exp(−p ·M · pt) (5.3)

In the two-dimensional instance a simulated decision-making problem

with n = 50 alternatives is constructed in the domain D = [0, 1] × [0, 1].

Figure 5.5 presents the underlying utility function U .

64

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Surface Level sets

Figure 5.5: DM’s underlying utility function U .

Figure 5.6 shows the partial ranking obtained by Step 2 and Figure 5.7

presents the RBF network Û which represents the DM’s preferences.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

Figure 5.6: Partial ranking with n = 50 alternatives.

65

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Surface Level sets

Figure 5.7: Model Û for the DM’s preferences.

Figure 5.8 presents a comparison among the queries involved in finding an

approximation of the DM’s preferences and the resulting KTD of each model

considering the number of alternatives between 50 and 500, with increments

of 50.

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

Queries solved by dominance
Queries solved by the DM
Total number of queries
Function n.log(log(n))

Number of alternatives

N
u
m
b
er

o
f
q
u
er
ie
s

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of alternatives

K
T
D

Figure 5.8: Two-dimensional instance: number of queries and KTD.

Figure 5.9 reproduces the same graphics in Figure 5.8 for the three-

dimensional instance. The domain now is D = [0, 1]× [0, 1]× [0, 1].

66

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

Queries solved by dominance
Queries solved by the DM
Total number of queries
Function n.log(log(n))

Number of alternatives

N
u
m
b
er

o
f
q
u
er
ie
s

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of alternatives

K
T
D

Figure 5.9: Three-dimensional instance: number of queries and KTD.

The tests show that the improved NN-DM method is still able to construct

models that represents the DM’s preferences with a reasonable amount of

information required from the DM. Figures 5.8 and 5.9 suggest that in higher

dimensions the impact of the queries solved by dominance is reduced leaving

all the hard work to the DM.

5.7 Discussion

Figure 5.10 presents the results of the same underlying utility functions

defined by Table 4.4 in Chapter 4. Now the ranking is stable and the RBF

network is able to produce an approximation Û of the utility function U which

reflects the DM’s preferences. The RBF parameters are the same provided

by Table 4.1.

67

Function U1 Function U2 Function U3

F
u

n
ct

io
n
U

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

F
u

n
ct

io
n
Û

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

R
an

k
in

g
R

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

Figure 5.10: Partial ranking examples.

The improved NN-DM method is an effective way to construct a model

which represents the DM’s preferences. Assuming n > 16, the demand re-

quired from the DM (T (n) = n·log(log n)) is higher than the original NN-DM

method (T (n) = 2n). However, the stability acquired by the improvements

justify the extra costs. Furthermore, the introduction of the dominance re-

duces the number of queries required from the DM. From now on only the

improved NN-DM method is considered in this work and the references will

be made suppressing the term “improved”.

68

Chapter 6

The NN-DM Method And
iTDEA

6.1 Introduction

6.1.1 Interactive Algorithms

The development of multi-objective approaches for the design of an in-

creasing number of real-world systems is a current trend. Although there are

available, at this moment, several Evolutionary Multi-objective Optimiza-

tion (EMO) techniques that aim to provide representative samplings of the

Pareto-sets in multi-objective optimization problems [Fonseca and Fleming,

1995; Knowles and Corne, 2000; Deb et al., 2002; Zitzler et al., 2002], their

application to the actual design of real systems still requires a further step

in which, given a set of possible solution alternatives, a specific alternative

should be chosen to be implemented. This step is usually recognized as a

task that is attributed to the DM. Although the ultimate target in real-world

applications is to come up with a single solution, the interactive procedures

69

can be applied with a decision-making strategy to find the best solution or

a set of preferred solutions in regions of interest to the DM.

Classical interactive multi-objective optimization methods usually de-

mand the DM to suggest a reference direction or reference points or other

clues which result in a preferred set of solutions on the PF. The following

publications present examples of this type of demand.

The reference-point-based NSGA-II (R-NSGA-II) [Deb and Sundar, 2006]

put together one preference-based strategy with an EMO methodology in

a procedure in which the DM supplies one or more reference points. An

iteration of the algorithm demonstrates how a preferred set of solutions near

the reference points can be found. The appointed argument is that with a

number of trade-off solutions in the region of interest the DM would be able

to make a better and more reliable decision than by receiving just a single

solution. The obtained solutions range is controlled by a parameter ǫ that

also controls the PF extent. Since the complete PF is not the target of the

approach, some non-PF solutions can be found by the current procedure.

In another attempt considering reference points Köksalan and Karahan

[2010] developed the Interactive Territory Defining Evolutionary Algorithm (iT-

DEA). The iTDEA method creates a territory around each current solution

where no other solutions are allowed and defines smaller territories around

the preferred solutions producing denser coverage of these regions. At each

interaction, the algorithm asks the DM to choose her/his best solution among

a set of representative solutions to guide the search toward the selected so-

lution neighborhood. The territory idea has been shown to work well in

converging to the PF as well as focusing on the desired parts of the fron-

70

tier. The iTDEA method is better explored in Chapter 6 and its results are

reference to the INSPM algorithm in Chapter 7.

It is well-known that the process of optimizing two or more conflict-

ing objectives usually leads to a set of solutions, the PF solutions, which

cannot be ordered by simple comparison of their objective function values.

These incomparable solutions, called non-dominated solutions, are outcomes

of multi-objective optimization algorithms. The first canonical algorithms for

multi-objective optimization problems intend to deliver a detailed uniform

sampling of the PF [Fonseca and Fleming, 1995; Zitzler and Thiele, 1999;

Deb et al., 2002]. Once this sampling is available it is assumed, for instance,

that a DM would compare those solutions, indicating the preferred one as

the final solution of the problem.

In recent years, a new approach with particular emphasis on the problems

with more than three objectives started to receive a growing attention. Due

to the high cardinality of a detailed sampling of the entire PF, some works

have proposed procedures that concentrate the sampling in some regions of

the PF. These regions are defined on the basis of information obtained from

interactions between the optimization algorithm and the DM.

Among the algorithms which consider the DM interacting with the opti-

mization process the work by Köksalan and Karahan [2010] receives a special

mention here. That work proposed the Interactive Territory Defining Evo-

lutionary Algorithm (iTDEA). iTDEA is a preference-based multi-objective

evolutionary algorithm which identifies the preferable region interacting with

the DM on predetermined generations. In each interaction with the DM, a

new best individual is chosen and a new preferable region is stipulated, with a

71

smaller territory for each individual in that region. Individuals falling in that

region are assigned smaller territories than those located elsewhere leading

to a higher sampling density of the preferable regions.

It should be noticed that the information extracted from the DM by

iTDEA is useful only inside the scope of the optimization process in which

such information is obtained. Whenever the same (or a similar) problem

needs to be solved the DM has to answer the queries about the same region

again. However, frequently a multi-objective optimization problem might

be solved for slightly different conditions, which produces a different PF

from one run to the other, with the DM’s preferences kept unchanged. For

instance, a product may be produced in different instances with different

constraints in the resources availability, or with different parameters in the

objective functions.

This chapter presents the results of the hybridization of the NN-DM

method with iTDEA. Considering the same amount of preference informa-

tion required by iTDEA the NN-DM method is able to construct a model

for the DM’s preferences. From this point forward no further queries are

required from the DM related to that specific region of the feature space.

The NN-DM model can now solve similar decision-making problems com-

ing from optimization problems leading to EPFs in the same region of the

space. Once this preference model is adjusted it also can be employed inside

the optimization process in guiding the search without demanding additional

information from the DM.

72

6.2 TDEA, prTDEA, and iTDEA

The Territory Defining Evolutionary Algorithm (TDEA) was proposed by

Karahan and Köksalan [2010]. The TDEA is a steady-state elitist evolution-

ary algorithm developed to approximate the PF in multi-objective optimiza-

tion problems based on a territory around each individual. Introducing the

DM’s preferences a priori in TDEA the preference-based TDEA (prTDEA) is

an algorithm constructed to obtain a detailed approximation of the desired

regions within the entire PF. Improving this idea the authors proposed the

Interactive Territory Defining Evolutionary Algorithm (iTDEA) [Köksalan

and Karahan, 2010]. iTDEA is an algorithm that interacts with the DM

during the course of the optimization at predetermined generations, finding

the best current solution, and guiding the search toward the neighborhood of

that solution. The next paragraphs present a brief explanation about these

three algorithms. For further information about these methods, including a

detailed overview of the algorithms, check the reference [Karahan, 2008].

The Territory Defining Evolutionary Algorithm (TDEA) is an algorithm

which maintains two populations: a regular population, which has a fixed

size, and an archive population, which has flexible size and contains the

non-dominated individuals copied from the regular population. In each gen-

eration, a single offspring is created and tested considering the dominance for

the acceptance in the regular population. If the offspring is accepted in the

regular population the individuals in the archive population dominated by

the offspring are removed from the archive. If the offspring is dominated by

one individual in the archive population, it is rejected, otherwise a territory

is defined around the individual closest to the offspring. The offspring is

73

accepted in the archive population only if it does not violate this territory.

Let y = (f1, f2, . . . , fm) be an individual in the archive population. The

territory of the individual y is defined as the region within a distance δ of y in

each objective among the regions that neither dominate nor are dominated

by y. Mathematically, the territory of y contains all points in V defined by

Equation 6.1

V = {y′ : |fj − f ′
j| < δ, for j = 1, 2, . . . ,m ∧

y and y′ do not dominate each other}
(6.1)

where fj and f ′
j are the j-th objective values of y and y′, respectively, and δ

determines the territory size1. The objectives are previously scaled between

0 and 1 so that the territory sizes can be meaningfully selected in proportion

to the scaled ranges of the objectives.

The territory defining property is responsible for the archive population

diversity since each individual in this population controls a territory and

disallows other individuals in its territory. The idea of favorable weights is

employed in identifying the location of an individual. The favorable weights

of an individual are a set of weights that minimize its weighted Tchebycheff

distance from the ideal point.

In TDEA, the parameter δ defines the territory size, which bounds the

maximum number of individuals in the archive population. By allowing the

territory size parameter δ to have two different values the authors introduce

a new version of TDEA: the preference-based TDEA (prTDEA).

The prTDEA possesses a mechanism to incorporate the DM’s preferences

and to modify the territory size of an individual depending on its location on

1The original paper considers the symbol τ which is replaced here with the symbol δ

in an attempt to avoid confusion with the Kendall-tau distance already represented by τ .

74

the PF. Before the optimization, the algorithm requires the DM to specify

her/his preferable region RP , defined by a set of Tchebycheff weight ranges,

and defines the remaining space as RU . Therefore, two values for the pa-

rameter δ are stipulated, respectively: δP and δU . A small δP maintains

more individuals from the preferable region in the archive population while

individuals located elsewhere have the eventual neighbors eliminated by a

larger δU . The prTDEA also requires a change in the acceptance procedure

for the archive population: the δ value is now determined by the region that

contains the offspring. An illustration of different territory sizes is given by

Figure 6.1, obtained from Karahan and Köksalan [2010].

Figure 6.1: Different territory sizes in two dimensions.

Improving the prTDEA, the authors developed the Interactive Territory

Defining Evolutionary Algorithm (iTDEA), an interactive approach that con-

verges to the preferred solutions by progressively obtaining preference infor-

mation from the DM. iTDEA identifies the preferable region interacting with

the DM at predetermined generations. Interaction stages h = 1, 2, . . . , H are

scheduled at the generations G1, G2, . . . , GH , respectively. At the interac-

tion stage h, the DM chooses the preferred individual among the filtered

75

sample of individuals obtained so far by the algorithm. The preferred indi-

vidual determines the preferred weight region Rh, which is defined by a set of

Tchebycheff weight ranges and it has a specific δ value, δh. Individuals falling

in these regions are assigned smaller territories than those located elsewhere

so that the density of the preferable regions is higher. For the acceptance in

the archive population, the algorithm determines all Rh regions to which the

offspring belongs and selects the last created region k, which has the smallest

δk.

The starting territory size is δ0, the final is δH , and the intermediate δ

values calculated by an exponential decrease. The filtering procedure consid-

ers a modified dominance scheme similar to ǫ-dominance to select individuals

to be presented to the DM. Considering m objectives, the number of solu-

tions in each interaction stage is P = 2m, except for the first stage in which

P = 4m. The DM is required to find the best solution among those P filtered

solutions in 4 or 6 interactions with the algorithm. Considering that only

the ordinal information is available with binary comparisons, for each set of

n elements, at least n− 1 queries are made to the DM [Knuth, 1997]. Thus,

a lower bound for the number of queries presented to the DM is 10m−4 in 4

interactions and 14m− 6 in 6 interactions. In this work these estimates are

references to the number of queries that are considered in constructing the

NN-DM model for the DM’s preferences.

The DM’s preferences are simulated considering Tchebycheff, linear, and

quadratic underlying utility functions. The algorithm is tested in three prob-

lems with two and three objectives. The runs are made with and without

filtering and tests are performed with the incorporation of a Gaussian noise

in the utility function calculations. iTDEA converges to the DM’s preferable

76

region interactively in all selected test problems.

This chapter proposes the construction of a model for the DM’s pref-

erences to replace the DM in iTDEA by considering the NN-DM method.

As the decision-making problem is related to a multi-objective optimization

problem the domain for the approximating function Û is induced from the

domain of the EPF during the optimization process.

6.3 Computational Experiments

Computational experiments in multi-objective optimization problems with

two and three objectives are reported in this section. iTDEA is tested consid-

ering 4 interactions with the DM in each problem. The iTDEA and NN-DM

parameters chosen in each scenario are displayed in Tables 6.1 and 6.2, re-

spectively.

2D 3D

Ideal vector, f ∗ (0, 0) (0, 0, 0)
Population size 200 200
τ0 0.1 0.1
τH 0.001 0.001
Number of iterations T 10 000 10 000
Number of replications T 50 50

Table 6.1: iTDEA parameters.

77

2D 3D

Ideal vector, f ∗ (0, 0) (0, 0, 0)
Number of interactions H 4 4
Number of training points T 12 18
Estimate number of queries 16 26
Real number of queries 17 43

Table 6.2: NN-DM parameters.

In each instance the DM’s underlying utility function is simulated con-

sidering the function given by Equation 5.3, reproduced here in the Equation

6.2

U(p) = exp(−p ·M · pt), (6.2)

in which the matrix M is instantiated in the two-dimensional problems with

M10 =

[

1 0
0 0

]

and M11 =

[

1 0
0 1

]

(6.3)

and in the three-dimensional problems with

M100 =





1 0 0
0 0 0
0 0 0



 and M111 =





1 0 0
0 1 0
0 0 1



 . (6.4)

As a first example, a two-objective optimization problem with two deci-

sion variables proposed in Equation 6.5 is considered. The resulting EPFs

are presented in Figure 6.2.

p = {p1, p2}, f = (f1, f2),

fi(p) = (p− µi) · S · (p− µi)
t, i = 1, 2

S =

[

1 0
0 1

]

µ1 = [1 0]
µ2 = [0 1]

(6.5)

78

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

iTDEA (M10) NN-DM (M10)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

iTDEA (M11) NN-DM (M11)

Figure 6.2: Estimates of the Pareto-optimal front from iTDEA and NN-DM
methods.

Figure 6.3 presents the KTD and the total number of queries presented to

the DM considering the number of alternatives in the domain between 10 and

50. This figure is constructed employing the BOXPLOT function2, a shelf

routine from MATLAB c©. The selected parameters values are highlighted in

Figure 6.2.

2The BOXPLOT function produces a box plot of the data in X. On each box, the

central mark is the median, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points the algorithm considers to be not outliers,

and the outliers are plotted individually.

79

10 12 20 30 40 50

0.09

0.25

0.5

0.75

1

10 12 20 30 40 50

17

25

50

75

100

125

KTD (M10) Number of queries (M10)

Figure 6.3: Statistical values.

Now an optimization problem with three objectives and three variables

proposed in Equation 6.6 is considered. The resulting EPFs are presented in

Figure 6.4.

p = {p1, p2, p3}, f = (f1, f2, f3),

fi(p) = (p− µi) · S · (p− µi)
t, i = 1, 2, 3

S =





1 0 0
0 1 0
0 0 1





µ1 = [1 0 0]
µ2 = [0 1 0]
µ3 = [0 0 1]

(6.6)

80

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

iTDEA (M100) NN-DM (M100)

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

iTDEA (M111) NN-DM (M111)

Figure 6.4: Estimates of the Pareto-optimal front from iTDEA and NN-DM
methods.

Figure 6.5 presents the same information as Figure 6.3 considering now

the three-dimensional problem.

81

10 18 20 30 40 50

0.1

0.25

0.5

0.75

1

10 18 20 30 40 50

25

43

50

75

100

125

150

KTD (M100) Number of queries (M100)

Figure 6.5: Statistical values.

The resulting EPFs obtained by both iTDEA and NN-DM methods do

not present any relevant difference between the results of the two algorithms.

The NN-DM model has τ = 0.1 in relation to the ideal utility function U

in all examples, with error of ±1%, and the number of calls to the DM is

similar to the one performed by iTDEA.

6.4 Discussion

This chapter presented a methodology to obtain information concerning

the DM’s preferences in one run of the Interactive Territory Defining Evolu-

tionary Algorithm (iTDEA). After that specific run the DM’s preferences be-

come available for being considered in other decision-making processes. The

preference information is stored on a Neural Network (the NN-DM model)

trained considering ordinal information only, as provided by the queries to

the DM. The proposed procedure is suitable when recurrent decisions with

the same DM over different sets of alternatives are performed.

82

The information extracted from the DM by iTDEA is useful only inside

the current optimization process and new queries are demanded from the

DM whenever a similar problem is required to be solved. However, the

information obtained from the DM should not be discarded, but employed in

constructing a model for the DM’s preferences able to solve similar decision-

making problems on that specific region.

83

Chapter 7

The NN-DM Method And
NSGA-II

7.1 Introduction

The development of multi-objective approaches for the design of an in-

creasing number of real-world systems is a current trend. Although there are

available, at this moment, several Evolutionary Multi-objective Optimiza-

tion (EMO) techniques that aim to provide representative samplings of the

Pareto-sets in multi-objective optimization problems [Fonseca and Fleming,

1995; Knowles and Corne, 2000; Deb et al., 2002; Zitzler et al., 2002], their

application to the actual design of real systems still requires a further step

in which, given a set of possible solution alternatives, a specific alternative

should be chosen to be implemented. This step is usually recognized as a

task that is attributed to a DM.

Current EMO techniques generally assume an a posteriori preference ar-

ticulation scheme in which an entire sampling of the PF is preprocessed

before being presented to the DM. Such a detailed sampling represents an

84

inefficient allocation of computational effort. On the one hand, the knowl-

edge about the solutions in the non-preferable regions has the only role of

informing the DM about the value of the trade-offs that are aggregated in the

preferable regions. For this purpose, a rough sampling of the non-preferable

regions would be enough. On the other hand, a fine sampling of the prefer-

able regions, allowing the choice of a well-tuned solution, would be desirable.

This fine sampling could become compromised if the computational budget

were spent on the construction of a uniform sampling that covers all the

PF including the non-preferable regions. This issue is even more concerning

if the number of objectives is higher than three. In this situation, due to

the exponential growth of the PFs related to the number of objectives, it

may become even computationally impossible to produce a fine sampling of

the PF. Therefore, procedures in which the DM progressively states her/his

preferences in an interactive environment, which steers the multi-objective

optimization algorithm in the search for PF solutions, are nowadays relevant

[Köksalan and Karahan, 2010; Deb et al., 2010].

This chapter proposes a modified NSGA-II algorithm called Interactive

Non-dominated Sorting algorithm with Preference Model (INSPM).

NSGA-II [Deb et al., 2002] is a non-dominated sorting-based multi-objective

algorithm in which a fast non-dominated sorting approach and a new selec-

tion operator are presented. INSPM reproduces NSGA-II algorithm while

progressively interacts with the DM. The original crowding distance (CD)

of NSGA-II is replaced in INSPM with a dynamic crowding distance (DCD)

and combined with the NN-DM model bringing to INSPM the ability to dis-

tinguish preferable regions within the PF. The resulting mechanism is called

here Neural Network Dynamic Crowding Distance (NN-DCD) and it is the

85

only modification introduced in the original NSGA-II algorithm proposed by

Deb et al. [2002]. The NN-DCD is responsible for the density control of so-

lutions in INSPM providing a diversity maintenance strategy and a specific

control on preferable and non-preferable regions. A specific instance of the

NN-DM method is developed to allow the interaction between the DM and

the NSGA-II (or any other EMO technique). These interactions occur in the

initial stage of INSPM until the necessary information to construct a stable

model is obtained. While the optimization process is running, the NN-DM

model is tested and updated when necessary.

The DM’s preferences inside INSPM allow an outcome sampling of the PF

which is denser in the preferable regions and sparser in the non-preferable

regions. The developed EMO methodology combines two features: (i) it

interacts with the DM along the execution of the optimization task, such that

the result of the optimization is guided by that interaction in a progressive

preference articulation, and (ii) it ends the optimization procedure with a

model for the DM’s preferences, which becomes available for re-utilization in

other instances of the same problem.

7.2 The Adapted NN-DM Methodology

INSPM considers the interaction between the NN-DM method and the

NSGA-II algorithm. Therefore, Steps 1, 2, and 4 of the NN-DM method are

adapted to work inside an evolutionary environment, as described next.

86

7.2.1 Step 1 - Domain Establishment

Since the considered methodology is evolutionary the domain may vary

from one generation to another because the alternatives in the EPF are

evolving to the final front (PF). Therefore, in the proposed methodology the

domain D is first represented by a set F of nin random simulated alternatives,

which are taking into account to construct an initial NN-DM model. If the

domain D becomes outdated nstep random simulated alternatives belonging

to the new domain are added to the set F and a new model is constructed

and evaluated. This step is executed until the model becomes stable in the

new domain. This procedure updates the domain D leading to an upgrade

in the NN-DM model. The values of nin and nstep vary regarding the amount

of information available from the DM, the required model precision, and the

problem dimension.

7.2.2 Step 2 - Ranking Construction

In the methodology presented here, although the partially ordered set

is considered in constructing the NN-DM model, the set F is kept sorted

to enhance the efficiency of the interactions with DM. The total sorting is

necessary to avoid additional queries to the DM when new EPFs stimulate

an update in the NN-DM model. By keeping the set F sorted the expected

number of queries presented to the DM to insert any new alternative becomes

approximately two.

The method for finding the sorting is Mergesort which has an average and

worst-case performance of O(n log n). The DM’s ability to answer ordinal

87

queries is converted inside of Mergesort as the number of comparisons mean-

ing that for each comparison the DM is asked to provide an answer to that

query. By considering the Mergesort, the average and the worst-case number

of comparisons are of the order O(n log n). It is noteworthy that, as the al-

ternatives to be sorted are the nin alternatives, conceptually a small number,

other sorting algorithms can be competitive with Mergesort. Appendix B

presents a comparison between Mergesort and Quicksort corroborating the

choice of Mergesort.

Even knowing that a total sorting provides more information than a par-

tial sorting the total sorting is not suitable for the interpolation technique

due to the integer ranking scale. Therefore, the alternatives are grouped into

clusters, with a uniform number of alternatives per group, possibly excepting

the higher level group. The number of levels, inspired by the partial sorting

in the NN-DM method, is log n, providing a number of alternatives in each

level approximately given by (log n)/n.

Figure 7.1 presents three graphics for exemplifying the ranking procedure

in the original and adapted NN-DM methods. The first graphic is constructed

from samples of the underlying utility function U given by the Gaussian

presented in Figure 4.7 and introduces its shape. The second graphic provides

the ranking of the original NN-DM method in which the pivots are sorted

and the remaining alternatives are compared and classified according to these

pivots. The third graphic presents the ranking built by the adapted NN-DM

method in which all the data is sorted and then clustered. The domain D is

represented by a grid with 400 alternatives in an attempt to provide a better

visualization of the difference between the two procedures.

88

−2

−1

0

1

2

−2

−1

0

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Utility function U

−2

−1

0

1

2

−2

−1

0

1

2

0

1

2

3

4

5

6

7

8

9

NN-DM method

−2

−1

0

1

2

−2

−1

0

1

2

0

1

2

3

4

5

6

7

8

INSPM method

Figure 7.1: Ranking examples.

A comparison among these graphics shows that the shape of the function

U is captured by both rankings and the artificial neural network has the whole

of constructing a function which approximates this shape and introduces

answers to other alternatives within the same domain. It is important to

remembering that the preference information is entirely captured by the level

sets making the final ranking scale quite irrelevant to the process.

In the construction of an initial NN-DM model nin simulated alternatives

are sorted by the Mergesort algorithm. After clustering, a RBF network is

employed in constructing the initial NN-DM model Û . For each other step

new solutions to the optimization problem may be available as the EPF is

evolving. These alternatives may induce the model update demanding the

construction of new simulated alternatives that must be inserted in the right

position to keep the set F sorted. The total ranking is not appropriate for

the artificial neural network approximation, but it is crucial for the insertion

of new alternatives induced by the genetic algorithm evolution. Since the set

F is already sorted the insertion of each new alternative costs to the DM

approximately only two new queries. There are two steps to insert a new

alternative on the current sorted set F .

1. Estimate given by the current NN-DM model

89

Once there is already an NN-DM model, this model is employed

in establishing a candidate position for the new alternative in the set

F . The current NN-DM model Ûc evaluates this new alternative and

each alternative within the set F producing a second sorting for the set

F . The position of the alternative immediately greater than the new

alternative is the candidate position.

2. Adjustments provided by the DM to maintain the set F sorted

Consider one more time the set F sorted according to the DM’s

preferences. The new alternative is tested in the candidate position by

asking two new queries to the DM concerning the new alternative and

the eligible neighboring alternatives of the candidate position. If the

preference is coherent the alternative is inserted in the candidate posi-

tion and the procedure is finished. Otherwise, the candidate position

is shifted to the position in which there is a ranking reversal. This last

step, similar to a bubble sort step, is executed until there is no rank-

ing reversal, leading the new alternative to be inserted in the position

which maintains the set F sorted.

The choice of starting the INSPM method with a totally sorted set is

made to reduce the average number of queries presented to the DM. The

algorithm can start by including one alternative at each time or with a large

number of alternatives already sorted by the DM. In the first scenario the

sorting algorithm is not required, but the quality of the first models is poor,

leading to a high number of queries to adjust the estimated position of new

alternatives. In the second scenario a better initial model is estimated, but

several queries would be required to sort the initial set. In the experiments

90

reported here the value nin = 10 has presented a good trade-off concerning

this issue. This value demands an inexpensive initial number of queries to

the DM and produces an initial model which is able to find good estimated

positions. As the optimization process goes on, the NN-DM model becomes

better adjusted, demanding fewer queries to the DM and leading to estimated

positions which are expected to be correct.

It is worth noticing that the dominance is considered during the whole

procedure, replacing the DM when one alternative dominates another. For

instance, in the process of updating the NN-DM model, if the model is already

adjusted to the domain, new alternatives may be inserted in the set F without

new queries to the DM.

7.2.3 Step 4 - Performance Assessment

In the current methodology the KTD is calculated over two sets: F and

PNN. For each set, two sorting functions are considered in establishing the

KTD: Ûc and U .

7.3 NN-DM Method and NSGA-II

This section presents the adaptation performed in the NSGA-II algorithm

to allow it to indicate the preferable regions according to the DM’s model.

Section 7.3.1 reviews the Dynamic Crowding Distance (DCD) which provided

improvements in the original Crowding Distance (CD) allowing the achieve-

ment of an EPF with well-distributed solutions. Section 7.3.2 introduces the

Neural Network Dynamic Crowding Distance (NN-DCD). The NN-DCD is a

91

diversity maintenance strategy weighted by the NN-DM model which allows

the INSPM algorithm to obtain a final sampling of the EPF in which the

DM’s preferable regions are denser.

7.3.1 Dynamic Crowding Distance

For improving NSGA-II Luo et al. [2008] introduced a dynamic crowding

distance (DCD) based Diversity Maintenance Strategy (DMS) (DCD-DMS).

This modification in the classical crowding distance (CD) was proposed to

solve uniformity problems. The current strategy computes individual’s DCD

dynamically (avoiding situations in which there are individuals with small

CD near to each other and all of them are deleted, creating a gap) on the

basis of the difference degree between the CD of different objectives (avoiding

situations in which this difference is significant).

Consider CDi as the original crowding distance of the ith individual in

NSGA-II. The ith individual’s DCD is provided by Equation 7.1.

DCDi =
CDi

log(1/Vi)
. (7.1)

The term Vi, the variance of CDs of individuals which are neighbors of

the ith individual, is stated in Equation 7.2,

Vi =
1

M

M
∑

i=1

(

|fk
i+1 − fk

i−1| − CDi

)2
, (7.2)

in which M is the number of objectives.

A similar idea is considered in this work, with a different purpose: the

current crowding distance has the role of encoding both diversity and pref-

92

erence information providing a solution density control which expresses the

DM’s preferences.

7.3.2 Neural Network Dynamic Crowding Distance

In this chapter the NSGA-II algorithm is adapted to employ the DCD and

the DCD is weighted by the NN-DM model to introduce different sampling

densities according to the DM’s preferences within the EPF.

Apart the DM’s utility function structure the obtained model is able to

provide the sorting of the alternatives. However, as the required information

from the NN-DM method is ordinal no information is obtained related to

the intensity of the preferences. For this reason, before the interaction with

the DCD, the NN-DM model is linearized providing a smoother influence in

the EPF. A parameter w is inserted to control the balance of how much the

model may influence the results. The final diversity maintenance strategy,

called Neural Network Dynamic Crowding Distance (NN-DCD), is given by

Equation 7.3.

NN-DCD = DCD · (Û)w. (7.3)

The NN-DCD modifies the original crowding distance by changing the

perimeter estimated for the cuboid formed by considering the nearest neigh-

bors as vertices. This change modifies the density of each region of the

EPF allowing a greater number of alternatives in the DM’s preferable re-

gions. The NN-DM model interacts with the crowding distance operator as

a by-product which makes the final effect in the concentration of the EPF

sampling to continuously vary according to the NN-DM model.

93

The NN-DCD maintains in the current population the individuals in

which the crowding distance is assigned to have an infinite value. In sit-

uations in which the model Û provides a non-zero value the product handles

the situation automatically; when Û provides zero for some individual, the

product inconsistency is solved manually by defining ∞ · 0 = ∞. This rule

guarantees that in each instance the extent of the whole EPF is preserved.

The smoothness provided by the NN-DCD contrasts with the approach of

reference points for representing the preferences that causes a discrete effect

which may not be continuously controlled. In the current INSPM algorithm

the weighting w = 0 provides an EPF without any interference of the DM

and, as the value of w grows, the influence of the DM’s preferences in the

optimization process becomes greater.

7.4 The Algorithm

The next sections explain the implementation details related to the adapted

NN-DM method employed in constructing the NN-DM model inside the IN-

SPM algorithm. The process starts with the initialization of the genetic

algorithm and the construction of an initial NN-DM model. While the IN-

SPM algorithm evolves, new estimates of the NN-DM model are constructed

to maintain the model updated according to the current EPF. After a pre-

established number of generations gen the final EPF and the updated NN-

DM model are obtained.

94

7.4.1 NN-DM Model

The initial NN-DM model is constructed on the basis of the first popula-

tion of the optimization process. In this step the population is random and

there is no EPF because the optimization process has not yet begun. Fortu-

nately, this fact is irrelevant for the construction of an initial model, since the

relevant information is the domain of the alternatives and the information

required from the DM about the simulated alternatives within this domain.

The initial NN-DM model is stated according to the following procedures.

- The initial genetic population of INSPM provides the domain of the

NN-DM model. The domain is set as the box constructed considering

the minimum and maximum values of the objective functions. In that

domain nin simulated alternatives are randomly created.

- Mergesort algorithm is adapted to construct a total sorting of the sim-

ulated alternatives considering pairwise comparisons only. After that,

the ranking is uniformly clustered in log(nin) classes.

- The simulated alternatives are considered as inputs and their rank val-

ues as outputs to adjust the artificial neural network. The RBF net-

work, Û , is an approximation of the DM’s utility function U .

The NN-DM model should be kept updated while the optimization pro-

cess finds new alternatives in each generation. The update procedure is

similar to the construction of the initial NN-DM model, but certain differ-

ences must be mentioned. The following steps present the changes in the

maintenance procedure of the NN-DM model along the INSPM iterations.

95

- The domain of the approximation is established considering the current

genetic population. The domain definition procedure is the same as

before and every time the NN-DM model is updated, at least nstep

simulated alternatives are added to the set F , which stores all previous

simulated alternatives.

- As the set F is kept sorted the previous NN-DM model is employed

in finding an estimate of the position of each new alternative. After

that, the DM is required to compare each new alternative and the

neighboring alternatives of the candidate position to verify the model’s

accuracy. If the right position is selected, only two queries are made

to insert each new alternative, regardless the number of alternatives in

the sorted set F . Otherwise, a procedure similar to a bubble sort step

is employed in finding the right position of the alternative to be in-

serted. After the insertion of new alternatives the ranking is uniformly

clustered. As stated previously, the dominance is checked before each

query being presented to the DM, likely avoiding the submission of

queries to her/him.

- The process of finding an artificial neural network to approximate the

DM’s utility function remains the same as the one employed in the

initial NN-DM model’s construction.

- The KTD is calculated for nvs validation sets with nvp points each one

sorted according to the functions Ûc and U under a tolerance tolst. The

resulting KTD is the average of the obtained values of each set.

96

7.4.2 INSPM Main Program

The INSPM algorithm starts by the initialization of the variables in the

optimization process and the construction of an initial NN-DM model. An

initial population is created with Npop individuals, which is the fixed size

for the population in the beginning of each generation. A non-dominated

sorting procedure sorts the initial population by the front rank followed by

the NN-DCD value. Then the following steps are executed iteratively:

Tournament Selection

A binary tournament selection is employed in the INSPM algorithm.

In this procedure two individuals are selected randomly and their fitness

are compared. Selection is based on the EPF rank and if the individuals

have the same front rank then their NN-DCD are compared. A lower

EPF rank followed by a higher NN-DCD are the selection criteria. The

individual with better fitness is selected as a parent. The tournament

selection is carried out until the pool size is filled.

Crossover and Mutation Operators

INSPM employs Simulated Binary Crossover (SBX) and polyno-

mial mutation. The crossover probability is pc = 0.9 and the mutation

probability is pm = 1/V , in which V represents the number of ob-

jective functions. The distribution indices for crossover and mutation

operators are both equal to 20.

Offspring Generation

97

The parents are selected for reproduction to produce offspring. The

intermediate population is the combined population of parents and off-

spring individuals of the current generation. The size of this interme-

diate population is two times the size of the initial population (2Npop).

Non-dominated Sorting

The non-dominated sorting procedure updates the values of rank,

CD, and NN-DM model for each individual of the intermediate popu-

lation.

New Population Selection

This procedure selects the Npop individuals of the new population on

the basis of rank and NN-DCD. Initially each front of the intermediate

population is copied into the new population, one by one, from the best

one to the worst one, until the moment in which the inclusion of a new

complete front results in exceeding the size of the new population. At

this point a dynamic procedure involving this last front starts: DCD

and NN-DCD are calculated and the worst individual is removed on

the basis of the NN-DCD value. This procedure is repeated until the

new population size becomes equal to Npop.

NN-DM Model Update

In the beginning of the first generation an initial NN-DM model is

constructed: Ûc. The model Ûc is compared under a tolerance tolup with

the underlying utility function U by calculating the KTD in relation

to the current population PNN. If the KTD value does not satisfy

the tolerance tolup a new NN-DM model is constructed considering

98

the information about the current population and the former model is

disregarded.

Steps 1-3 are the same present in the NSGA-II algorithm, Steps 4-5 are

modified versions to allow the interaction with the NN-DM model, and the

Step 6 is executed by the INSPM algorithm to maintain the model updated.

Algorithm 3 presents the INSPM main algorithm and Table 7.1 presents the

parameters and their description.

Algorithm 3 INSPM Algorithm

1: Parameters initialization (tolup, gen, w)
2: Objective function description
3: Initial population construction
4: Initial NN-DM model construction
5: Non-dominated sorting
6: for i← 1 to #gen do
7: Tournament selection
8: Crossover and mutation operators
9: Offspring generation
10: Non-dominated sorting
11: New population selection
12: if KTD < tolup then
13: NN-DM model updating
14: end if
15: end for

16: procedure New Population Selection(pop, rbf)
17: Sort pop based on the rank
18: Add each front based on the rank
19: while #pop != Npop do
20: Calculate the CD
21: Calculate the DCD
22: Calculate the NN-DCD
23: Remove the worst individual of pop
24: end while
25: end procedure

99

Name Description Comment Value

gen Generations
This parameters defines the du-
ration of the program.

50

Npop Population size
A bigger population provides a
better sampling of the EPF.

50

nvs Validation sets
This parameters establishes a
valid statistical analysis.

30

nvp
Points in each valida-
tion set

This parameters controls the
cover of the space.

50

nin
Alternatives in the
initial NN-DM model

This parameter defines a cover
of the space for initial NN-DM
model.

10

nstep
Alternatives added in
each model update

This parameters controls the
updating rate on the NN-DM
model.

2

tolup

Tolerance for the dif-
ference between Ûc
and U over PNN

A more tolerant parameter de-
mands more generations.

0.1

tolst

Tolerance for the dif-
ference between Ûc
and U over F

A more tolerant parameter de-
mands more model updates.

0.1

Table 7.1: Parameters of the INSPM algorithm.

7.5 Computational Experiments

This section presents the results obtained by INSPM in the following

situations: (i) guided by the DM’s utility function U (Section 7.5.1), (ii)

guided by the NN-DM model Û (Section 7.5.2), and (iii) compared with

iTDEA (Section 7.5.3). The DM’s underlying utility function U is simulated

considering the same function given by Equation 5.3 and restated here in

Equation 7.4:

100

U(p) = exp(−p ·M · pt) (7.4)

in which p represents an alternative. Three different M matrices are chosen

to simulate different kinds of preferences: a balanced preference between the

two objective functions (M11), a matrix that favors the first objective (M01),

and a matrix that favors the second objective (M10). Figure 7.2 presents the

matrices M11, M01, and M10 and their respective underlying utility functions

U1, U2, and U3.

U1 U2 U3

M
at

ri
x
M

M11 =

[

1 0
0 1

]

M01 =

[

0.1 0
0 1

]

M10 =

[

1 0
0 0.1

]

S
u

rf
ac

e

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

L
ev

el
S

et
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7.2: DM’s underlying utility functions.

The multi-objective optimization problem solved for all the tests in this

chapter is given by the ZDT4 function [Zitzler et al., 2000]. The test function

ZDT4 contains 219 local PFs and, therefore, tests the EMO’s ability to deal

101

with multi-modality. Equation 7.5 describes ZDT4 function in which m = 10,

x1 ∈ [0, 1], and x2, . . . , xm ∈ [−5, 5].



















f1(x1) = x1

g(x2, . . . , xm) = 1 + 10(m− 1) +
m
∑

i=2

(x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√

f1/g

(7.5)

The global PF is formed with g(x) = 1 and the best local PF with

g(x) = 1.25. Note that not all local PF sets are distinguishable in the feature

space.

7.5.1 INSPM and Utility Function

This section presents the results obtained considering directly the DM’s

underlying utility function U instead of the NN-DM model in the INSPM

algorithm. The NN-DCD diversity maintenance strategy is tested here and

the results are taken into account to estimate the right moment to stop the

INSPM algorithm with the NN-DM model guiding the search (Section 7.5.2).

Figures 7.3 and 7.4 present the results of the INSPM algorithm guided

by the utility function U1. Each graphic has a specific w value and shows the

U level sets and the EPF PDM. The values of the parameter w are indicated

in the figures. The average time for each run is 25 seconds.

102

w = −1 w = 0 w = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.3: Utility function U1: results for w = −1, w = 0, and w = 0.5.

Figure 7.3 shows that a uniform sampling of the EPF is obtained for

w = 0 while a positive value w = 0.5 produces a sampling that is denser

in the region of the solutions that are preferable in the utility function U1.

As a curiosity, it is also shown that a negative value of w produces a denser

sampling of the regions that are non-preferable in U1.

w = 1 w = 2 w = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.4: Utility function U1: results for w = 1, w = 2, and w = 5.

Figure 7.4 presents the effect of increasing the value of w. Small values

of w lead to a sampling of the EPF which is well-distributed while slightly

concentrated on the preferable regions. High values of w produce a more

concentrated sampling of the EPF nearby the DM’s preferable regions. It

103

should be noticed that in all these scenarios the whole extent of the EPF is

covered; in particular, the extremal solutions always appear.

The tests show that the replacement of the conventional CD for the NN-

DCD is an effective strategy to produce a denser sampling of the DM’s prefer-

able regions, as long as the DM’s utility function U is available.

7.5.2 INSPM and NN-DM Method

Section 7.5.1 has established that the proposed dynamic crowding distance

is effective as a diversity maintenance strategy in a simplified situation in

which the algorithm relies on queries presented directly to the DM. Now

the complete INSPM algorithm is presented considering the NN-DM model.

Figure 7.5 presents the results obtained by INSPM guided by the NN-DM

model considering the underlying utility function U1. The level sets on the

figures correspond to the level sets of the resulting NN-DM model. The w

values are indicated in each graphic.

104

w = −1 w = 0 w = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w = 1 w = 2 w = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.5: Utility function U1: INSPM results.

The results presented in Figure 7.5 show that under the condition of pref-

erence pressure (w > 0) INSPM employing the NN-DM model produces a

concentrated sampling around the DM’s preferable regions. The obtained re-

gion is the same one constructed when the DM’s underlying utility function

is employed in giving answers to all queries instead of the NN-DM model

(Figures 7.3 and 7.4). Figure 7.5 also presents the level sets of each obtained

model showing that, even when the model is slightly different from the un-

derlying utility function, the DM’s preferences are well represented in the

final EPF.

Table 7.2 presents the average values obtained for the KTD and the num-

ber of queries presented to the DM considering 50 runs. With a higher w

there is less diversity in the genetic population favoring ranking reversals and

105

increasing the demand to the DM. The author is at present studying other

ways of validating the DM’s model to avoid this extra demand, considering

situations in which previous models are already available, as shown in Figure

7.5.

w = −1 w = 0 w = 0.5 w = 1 w = 2 w = 5

KTD 0.0664 0.0513 0.0451 0.0762 0.0431 0.0538
Queries 20 16 18 23 17 15

Table 7.2: KTD and number of queries in INSPM.

The average time for each INSPM run is 1500 seconds. This time is much

higher than the running time presented in Section 7.5.1. The extra cost

comes from the routine that evaluates the RBF network for each individual

in each generation. However, as the main goal of the current methodology is

to reduce the number of queries to the DM, the computational time for the

RBF function evaluation does not constitute an important problem. Once the

NN-DM model becomes fitted there is no further requirement of presenting

queries to the DM.

The resulting NN-DM model running together with the NSGA-II algo-

rithm in other instances of the same problem spends approximately the same

time. It is worth mentioning that when the model is employed just in sorting

the final EPF of other instances less than a minute is spent.

7.5.3 Comparison with iTDEA

A comparison is now provided with iTDEA. In the original paper the

DM’s preferences are simulated considering Tchebycheff utility functions with

106

weights that favors the objectives in a different way.. Here, the utility func-

tions employed are the same presented in Equation 7.4 with M matrices

given by Figure 7.2. Once more the number of queries required from iTDEA

is estimated considering that only ordinal information is available from the

DM.

Figure 7.6 presents the models for the DM’s preferences with underlying

utility functions given by U1, U2, and U3. The first row presents the level

sets of the utility function U and the second row presents the level sets of

the model Û obtained in a sample run of the INSPM method with w = 1.25.

U1 U2 U3

F
u

n
ct

io
n
U

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
u

n
ct

io
n
Û

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.6: Level sets of the functions U and Û .

Figure 7.7 displays plots of sample runs of iTDEA considering the filtered

mode with four and six interactions and INSPM considering w = 1.25. The

w = 1.25 value was determined by a trial-and-error process in an attempt to

estimate a final EPF resembling iTDEA with a higher number of interactions.

107

The number of queries required from both methods is the average of the three

considered scenarios. The average time for each iTDEA run is 50 seconds.

Table 7.3 presents the chosen parameters for the iTDEA method; the INSPM

parameters are the same presented in Table 7.1.

iTDEA iTDEA INSPM
Four interactions Six interactions w = 1.25

U
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u

er
ie

s

16 22 32

Figure 7.7: Comparison between iTDEA and INSPM methods.

108

Parameter Value

Ideal vector, f ∗ (0, 0)
Population size 50
τ0 0.1
τH 0.001
Number of iterations T 2000

Table 7.3: iTDEA parameters.

The iTDEA algorithm in the unfiltered mode is more similar to the IN-

SPM algorithm, since all the individuals of the current population are affected

by the NN-DM model. However, the iTDEA’s final results considering both

modes are similar and, since the number of queries required in the unfiltered

mode is a multiple of the population size, the author has considered the

iTDEA’s performance in the filtered mode a fairer comparison.

In iTDEA a higher number of interactions with the DM allows a better

convergence to the desired location. As the number of queries depends on

the number of interactions, a restriction on this amount prevents the deter-

mination of a sampling of the EPF that becomes smooth.

The INSPM algorithm provides results that exhibit a smooth behavior

because the NN-DM model is active during the whole process. Furthermore

INSPM also provides, at the end of the algorithm execution, a model for the

DM’s preferences that can be employed repeatedly in recurrent problems.

7.6 Discussion

This chapter presented an algorithm for interactive multi-objective opti-

mization: INSPM. This new algorithm is based on the NSGA-II algorithm

109

with the replacement of the usual crowding distance operator for a dynamic

crowding distance weighted by a DM’s preference model (the NN-DM model).

The NN-DM model is constructed considering the ordinal information pro-

vided by the DM about her/his preferences acquired along the algorithm

interactions with the DM. INSPM requires a number of queries from the DM

compatible with other methods from the literature and still delivers a model

for the DM’s preferences.

The NSGA-II algorithm was the chosen EMO algorithm to interact with

the NN-DM method, but it is not difficult to embed a model for the DM’s

preferences in different EMO algorithms. The main idea is to adapt the di-

versity maintenance strategy to consider the preferences while the diversity is

controlled. The CD limitations on finding solutions uniformly distributed has

prevented the NN-DM method of achieving the same quality of results con-

sidering the NSGA-II algorithm in higher dimensions. Different algorithms

guided by the NN-DM model should fix this problem.

The INSPM algorithm has, as an advantage, a fine-tuning ability to con-

trol the EPF sampling density, which is not provided by other methods. A

parameter w controls the asymmetry intensity of the sampling density along

the EPF: for w = 0 there is no asymmetry (the EPF is uniformly sampled)

and the higher the w, the greater the asymmetry, until the limiting situa-

tion in which only the preferred solution and the extremes of the EPF are

sampled. Moreover, INSPM provides a sampling that covers the whole EPF

while guaranteeing that the most preferable regions receive a denser sampling

and the non-preferable regions have a sparser sampling.

In new instances of the same decision-making problem (the recurrent

110

decision-making problems), the resulting NN-DM model constructed inside

INSPM can be employed without new queries to the DM, except when the

domain requires updates. In this situation new queries can be proposed to

the DM at a low cost.

111

Chapter 8

Polymer Extrusion Process

8.1 Introduction

This chapter presents further adaptations in the NN-DM method to find a

model for the DM’s preferences in a real scenario: the single screw extrusion,

which is an important polymer processing technology, allowing the produc-

tion of products such as pipes, film, profiles, fibers, and so forth. The pro-

cess performance depends on three different type of parameters: the polymer

properties, the system geometry, and the operating conditions. The objec-

tives considered in the definition of the multi-objective optimization problem

usually studied are: the mass output of the machine (Q), the average melt

temperature of the polymer at die exit (Tmelt), the power consumption re-

quired to rotate the screw (P), the capacity of pressure generation (Pmax),

the mixing capacity measure by the average of deformation (W), and the

length of screw required to melt the polymer (Lmelt).

The decision-making problem considered here works with solutions of

the multi-objective optimization problem, that is, estimates of the PF pro-

112

vided by the Reduced Pareto Set Genetic Algorithm with Elitism (RPS-

GAe) [Gaspar-Cunha and Covas, 2004; Gaspar-Cunha, 2009]. RPSGAe is an

algorithm based on the assignment of the fitness through a ranking function

obtained using a clustering algorithm. This optimization methodology has

already been applied to the optimization of the operating conditions and to

the design of screws for polymer extrusion. The results obtained by Gaspar-

Cunha and Covas [2004] showed that RPSGAe is able to find solutions with

physical meaning. Further details of the modeling routine implemented can

be found elsewhere [Gaspar-Cunha, 2009].

Two multi-objective optimization problems are investigated and in each

scenario three sets of estimates of the PF are available considering different

decision variables. The DM is required to indicate preference relations among

alternatives in a specific domain leading the adapted NN-DM method to the

construction of a model for the DM’s preferences. The resulting NN-DM

model is responsible for providing the sorting of the solutions within the

EPFs from the best to the worst one according to the DM’s preferences.

8.2 Available Data

As the single screw extrusion is a computationally expensive multi-objective

optimization problem this application deals directly with estimates of dif-

ferent PFs obtained by RPSGAe. The objectives considered in the multi-

objective optimization problems are: the process performance characterized

by the mass output of the machine (Q), the power consumption required

to rotate the screw (P), and the degree of mixing capacity measure by the

average of deformation induced, denoted WATS (W). Two problems are

113

then considered: Mass Output × Power Consumption and Mass Output ×

WATS. In each problem three EPFs are available considering different deci-

sion variables. The first set considers the operating conditions (four decision

variables), the second set considers the geometry (six decision variables) and,

finally, in the third set both types of decision variables are considered. Table

8.1 resumes the information about the available EPFs and Table 8.2 provides

the objectives, aim of optimization, and range of variation.

EPF Objectives Optimization Type Number of Decision Variables

QP1 Q and P Operating conditions Four variables
QP2 Q and P Geometry Six variables
QP3 Q and P Both Ten variables
QW1 Q and W Operating conditions Four variables
QW2 Q and W Geometry Six variables
QW3 Q and W Both Ten variables

Table 8.1: Multi-objective optimization problems in a single screw extrusion
process.

Objective Aim of optimization Range of variation

Mass Output (kg/hr) Maximization [1, 20]
Power consumption (W) Minimization [0, 9200]
WATS Maximization [0, 1300]

Table 8.2: Objectives, aim of optimization, and range of variation.

Figure 8.1 presents the available EPFs considering Q × P (EPFs QP1,

QP2, and QP3) and Q×W (EPFs QW1, QW2, and QW3). The domain

is established by the range of variation presented in Table 8.2.

114

2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

EPF QP1
EPF QP2
EPF QP3

Q

P

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

EPF QW1
EPF QW2
EPF QW3

Q

W

Q×P: EPFs QP1, QP2, and QP3 Q×W: EPFs QW1, QW2, and QW3

Figure 8.1: Available estimates of the Pareto-optimal fronts.

8.3 Interaction with the DM

The decision-making matrixM is a matrix filled by the DM to assist the

NN-DM method in the construction of a model for the DM’s preferences.

Each element mij of M is defined as given in Equation 8.1.







mi,j = −1, if ai is preferable than aj;
mi,j = 0, if ai and aj are equivalents;
mi,j = 1, if aj is preferable than ai.

(8.1)

Considering n the number of partitions in each dimension and m the

number of objectives the total number of simulated alternatives is given by

nm. Therefore, the total number of pairwise comparisons is given by n2m

which corresponds to the number of entries of the decision-making matrix.

The information required from the DM is reduced by the dominance and

the comparisons between the same alternative (the matrix diagonal). The

symmetry also develops an important role: given a utility function U and two

alternatives a and b, with U(a, b) = U(b, a) = a, the entries in the decision-

115

making matrix are mδ(a),δ(b) = −1 and mδ(b),δ(a) = 1, so that only one query

is required from the DM1.

For exemplifying the whole described process consider a decision-making

problem with two objective functions F1 and F2 whose aim is to mini-

mize. The function F1 is defined in the interval [a1, b1] and the function

F2 is defined in the interval [a2, b2]. Assuming the number of partitions in

each dimension of the grid established as 2 the interval partition matches

with the interval extremes. Therefore, the decision-making process con-

sists of 16 queries demanded by the combination of elements in the set

{[a1, a2], [a1, b2], [b1, a2], [b1, b2]}. Table 8.3 presents the unfilled decision-making

matrix M for this example, with variables si, i = 1, . . . , 16, representing the

entries.

Table 8.3: Example of a decision-making matrix M.

F1 × F2 [a1, a2] [a1, b2] [b1, a2] [b1, b2]

[a1, a2] s1 s2 s3 s4
[a1, b2] s5 s6 s7 s8
[b1, a2] s9 s10 s11 s12
[b1, b2] s13 s14 s15 s16

The solutions to the queries si are divided into four groups.

Equivalence The solutions s1, s6, s11, and s16 derive from queries made

between the same alternative (the matrix diagonal). Therefore, the

answer is 0 since the solutions are equivalent.

Dominance The solutions s2, s3, s4, s8, and s12 are obtained considering

1The function δ represents the grid’s position of an alternative.

116

the dominance, since a1 < a2, b1 < b2 and the aim of the optimization

for both objectives is minimization.

Symmetry The solutions s5, s9, s13, s14, and s15 result from symmetry,

since if the preferred alternative between a and b is, for example, a, the

preferred alternative between b and a is also a.

Decision-maker The solutions s7 and s10 demand the DM’s expertise. Con-

sidering that s7 and s10 are provided from queries between the same

alternatives only one query has to be presented to the DM.

Table 8.4 shows the decision-making matrix partially filled by considering

the equivalence, the dominance, and the symmetry among the alternatives.

This matrix is then presented to the DM who needs to provide an answer to

the remaining queries.

Table 8.4: Example of a filled decision-making matrix M.

F1 × F2 [a1, a2] [a1, b2] [b1, a2] [b1, b2]

[a1, a2] 0 1 1 1
[a1, b2] −1 0 s7 1
[b1, a2] −1 s10 0 1
[b1, b2] −1 −1 −1 0

In the real scenario considered here the number of partitions in each

dimension of the grid is established as 4. This value provides enough in-

formation for the NN-DM method to construct suitable NN-DM models for

the DM’s preferences. Considering the range of variation in Table 8.2 the

partitions are displayed in Table 8.5.

117

Symbol Objective Partition

Q Mass Output [1, 7, 14, 20]
P Power consumption [0, 3067, 6134, 9200]
W WATS [0, 434, 867, 1300]

Table 8.5: Partitions of each objective.

As each optimization problem is composed of two objective functions

there are 16 pairs of simulated alternatives which generate a total of 256

pairwise comparisons. Excluding the comparison of pairs composed by the

same alternatives (the matrix diagonal) and considering that M is anti-

symmetric the resulting number of queries is given by 120. Among these 120

queries the dominance is applied considering the aim of optimization in each

scenario and 84 queries are solved. Therefore the DM had to answer to only

36 among those 256 queries in each optimization problem. The resulting

matrix was presented to the DM who had to choose the best alternative of

each pair of simulated alternatives whose answer was not obtained by one

of those described decision criteria. The decision-making matrices employed

in estimating the DM’s preferences in the polymer extrusion process are

available in Appendix C.

Once the NN-DM model is constructed it can be applied to the EPF of

the considered scenario. For this purpose the MOOP’s solutions are loaded

and the model is employed in establishing a scalar value for each one. From

this point forward the alternatives can be sorted from the best to the worst

one according to the DM’s preferences represented by the NN-DM model.

118

8.4 The Adapted NN-DM Methodology

Since a real DM is considered here it is assumed that his preferences can

also be reproduced by a utility function U and hence by a NN-DM model Û .

However, the absence of an underlying utility function demands adaptations

in some steps of the NN-DM method to consider the available information.

The interactions with the DM are also made in a different way: the DM has

to fill the decision-making matrix regarding the unsolved queries (Section

8.3).

As presented in Chapter 5, the NN-DM method is divided into four steps.

For this application the domain D is previously provided by the DM. Thereby

it is not necessary to establish the domain as the original Step 1 has pro-

posed. Step 2 introduces the ranking of alternatives which is now built from

a total sorting (the decision-making matrix). Step 3 is unchanged, but ad-

ditional changes are made in Step 4 since the performance of the resulting

model, assessed by the KTD in the original method, is now evaluated by the

DM himself. The reported changes are better described next.

8.4.1 Step 1: Domain Establishment

In this application the DM provides the decision-making domain which

is employed in establishing the domain D of the model Û . Into the domain

D a grid of simulated alternatives F is constructed to extract information

about the DM’s preferences. The grid is considered in an attempt to make

the DM’s answers easier. The equivalence, the dominance, and the symme-

try are first considered here in taking the decision in situations in which an

119

answer is acquired without consulting the DM. The remaining queries are

then presented to the DM as a matrix (the decision-making matrix M) re-

lating each pair of simulated alternatives. The matrixM captures the DM’s

preferences within the domain D and the adapted NN-DM method is now

able to proceed to the next step.

8.4.2 Step 2: Ranking Construction

The NN-DM method builds a partial ranking R for the alternatives as-

signing a scalar value to each alternative. The partial ranking is an interac-

tive procedure in which the DM has to be consulted to sort the pivots and

then classify each remaining alternative through comparisons with the pivots.

In an attempt to simplify the process to the real DM, the decision-making

matrix M is constructed and filled by the DM in his own time. Since the

answers to all the queries are supplied by the matrix M a total ranking R

is now available, but once more the alternatives are clustered as in INSPM

for the convenience of the approximation technique.

8.4.3 Step 4: Performance Assessment

The NN-DM method relies on the KTD as an efficiency metric. The lists

to be compared are generated by sorting the available alternatives according

to the DM’s utility function and the resulting NN-DM model. The KTD is

an applicable metric because an underlying utility function is available to

provide information about the quality of the resulting model.

As this chapter focus in a real DM there is no available utility function

120

which demands another validating process. The advantage is that here the

process is validated by the DM himself. Once the model for the DM’s prefer-

ences is constructed it is applied to sort the available data and the DM can

verify the results accuracy.

8.4.4 Algorithm

Algorithm 4 presents the adapted NN-DM method to the real scenario in-

troduced in Section 8.1. A grid of alternatives is constructed in the domain D

provided by the DM. The decision-making matrixM is filled by the answers

provided by the DM related to the alternatives belonging to the grid. A

total ranking R is constructed and then clustered into log n levels. The RBF

network converts the ranking R into a function Û able to provide answers to

alternatives belonging to the entire domain D. The NN-DM model is now

fit to be employed in the EPF solutions.

Algorithm 4 Adapted NN-DM Method

1: Read the domain D
2: Read the decision-making matrix M
3: Built the total ranking of alternatives R
4: Classify the alternatives into log n levels
5: Construct the RBF network Û

Algorithm 5 introduces the NN-DM model applied to the polymer extru-

sion process. In each considered scenario, the EPF and the NN-DM model

Û are loaded. The model Û is then employed in evaluating each solution

generating a sorting of the solutions from the best to the worst one.

121

Algorithm 5 NN-DM model applied to the polymer extrusion process

1: Load the estimates of the PF (EPFs)
2: Load the NN-DM model Û
3: Evaluate each available solution
4: Sort the solutions from the best to the worst one

8.5 Computational Experiments

The filled decision-making matrices provided by the DM are taken into

account to construct general NN-DM models as described in Section 8.4.

Figures 8.2 and 8.3 present respectively the models for the two considered

scenarios: Q×P and Q×W. The models are trained in the provided domain

D (Table 8.2).

5

10

15

20

0

2000

4000

6000

8000

0

0.2

0.4

0.6

0.8

1

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QP

M
o
d
el

Û

2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

P

Surface Level Sets

Figure 8.2: General NN-DM model: Q×P.

122

5

10

15

20

0

200

400

600

800

1000

1200

0

0.2

0.4

0.6

0.8

1

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QW

M
o
d
el

Û

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

Surface Level Sets

Figure 8.3: General NN-DM model: Q×W.

Figures 8.4 and 8.5 present the general NN-DM models applied to sort

the EPFs considering the objectives Mass Output and Power Consumption

(EPFs QP1, QP2, and QP3) and Mass Output and WATS (EPFs QW1,

QW2, and QW3). The models’ level sets are illustrated in the figures and

the DM’s preferences are represented by the external scale.

1 2 3 4 5 6 7 8 9

200

400

600

800

1000

1200

1400

1600

1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

P

EPF QP1

10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 11.1 11.2

1250

1260

1270

1280

1290

1300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

P

EPF QP2

4 6 8 10 12 14 16

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

P

EPF QP3

Figure 8.4: NN-DM model sorting in the problem Q×P.

123

1 2 3 4 5 6 7 8 9

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

EPF QW1

5 6 7 8 9 10 11 12

100

200

300

400

500

600

700

800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

EPF QW2

6 7 8 9 10 11 12 13 14 15 16

100

200

300

400

500

600

700

800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

EPF QW3

Figure 8.5: NN-DM model sorting in the problem Q×W.

The DM’s preferences, captured by the decision-making matrices, are

now represented by the NN-DM models which are employed in sorting the

alternatives belonging to the EPFs. Moreover, the resulting models are now

available to represent the DM’s preferences in any other situations without

demanding further information from the DM.

8.6 Case Study

Consider now three decision-making matrices similar to the original ma-

trix M for the Mass Output × WATS problem. This case study analyzes

the effect in the resulting NN-DM models and reveals that small differences

in the matrices can lead to similar models with different sorting and matrices

with higher differences can lead to models with the same sorting.

The first difference between the original and the new matrices is the

position [8, 434]× [1, 1300] which now is filled with −1. The other differences

belong to the block [8/9/10, 434]× [1/8/14, 1300] which is filled as described

in Table 8.6. The complete matrices are available in Appendix C.

124

Table 8.6: Sub-matrices with different preferences.

Matrix M1 (Original Matrix) Matrix M2

F1 × F2 [1, 1300] [8, 1300] [14, 1300]

[8, 867] 1 1 1
[14, 867] 1 1 1
[20, 867] −1 −1 1

F1 × F2 [1, 1300] [8, 1300] [14, 1300]

[8, 867] −1 1 1
[14, 867] −1 −1 1
[20, 867] −1 −1 −1

Matrix M3 Matrix M4

F1 × F2 [1, 1300] [8, 1300] [14, 1300]

[8, 867] 1 1 1
[14, 867] −1 −1 1
[20, 867] −1 −1 −1

F1 × F2 [1, 1300] [8, 1300] [14, 1300]

[8, 867] 1 1 1
[14, 867] 1 1 1
[20, 867] 1 1 1

The matrices M1, M2, and M3 have been filled by the DM while the

matrix M4 has been filled by the author. The level sets of the resulting

NN-DM models, called respectively models Û1, Û2, Û3, and Û4, are provided

by Figure 8.6. The domain of the approximation is still given by Table 8.2

and the sorting of each EPF can be visualized by the external scale in each

figure.

125

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

Model Û1 Model Û2

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

Model Û3 Model Û4

Figure 8.6: NN-DM models applied to the estimates of the Pareto-optimal
front.

EPFs QW2 and QW3 received the same sorting provided by the NN-DM

models corresponding to all the matrices, but EPF QW1 showed variations

in the sorting. The reason for this behavior relies on the similarities between

the curvature of the level sets of the model and the curvature of the EPF.

Since EPF QW1 is almost parallel to the level sets of the resulting NN-DM

model this EPF presents a situation in which the alternatives seem to be

similar in the DM’s viewpoint which makes the decision-making sensible to

small changes.

126

Figure 8.7 presents the level sets of the four models and EPF QW1 in

its own domain which enhances the differences in the sorting. Four areas

are highlighted in the figures to assist the analysis: A, B, C, and D. The

sorting of these areas provided by the models are Û1: 〈B, A−C, D〉; Û2: 〈C,

B, A−D〉; Û3: 〈C, B, A, D〉; and Û4: 〈B, A−C, D〉. The regions connected

by − indicate regions with similar preferences.

A
B

C

D

1 2 3 4 5 6 7 8 9

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

A
B

C

D

1 2 3 4 5 6 7 8 9

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

Model Û1 Model Û2

A
B

C

D

1 2 3 4 5 6 7 8 9

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

A
B

C

D

1 2 3 4 5 6 7 8 9

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

Model Û3 Model Û4

Figure 8.7: Comparison among models Û1, Û2, Û3, and Û4 in EPF QW1.

Figure 8.7 shows that models Û2 and Û3 provide similar sorting; the same

127

happens with models Û1 and Û4. Even matricesM2 andM3 possessing only

one different entry their respective models quantify the region A differently.

Meanwhile model Û4 has been constructed with three different entries and

possess almost the same preference distribution than model Û1. All the

models are good in prediction the region D as the least favorite, but the

most preferable region varies between B and C.

This analysis illustrates how different decision-making matrices affect the

construction of different decision-making models. Small differences in the

matrices can lead to similar models with different sorting and matrices with

higher differences can lead to models with similar sorting. The model is extra-

sensitive when the PF has its curvature almost parallel to the level sets of

the model making slightly changes in the decision-making matrix generate

models in which the preferable regions are different (EPF QW1). However,

similar models applied to EPFs QW2 and QW3 provide the same sorting,

since the fronts and the level sets of the models are not similar, making the

final model robust to small changes in the decision-making matrices.

In an attempt to obtain a robust model for EPF QW1, the DM was

consulted once more to provide answers to queries concerning a new domain.

Figure 8.8 presents EPF QW1 and grids in two considered domains: the

original domain provided by the objectives and the minimum domain which

contains the alternatives in EPF QW1. The number of partitions in each

dimension of the new grid is established as 3. After considering the automatic

decision criteria (Section 8.3) the resulting matrix was presented to the DM

who had to answer to only 9 new queries. The decision-making matrix is

available in the supplementary material.

128

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Estimate of the Pareto Optimal−front

Grid in the original domain

Grid in the specific domain

Q

W

Figure 8.8: EPF QW1 embedded in two different domains.

Figure 8.9 shows the level sets of the resulting model obtained by the NN-

DM method considering the domain of EPF QW1. The level sets are now

parallel to the x-axis leading to a robust model for the DM’s preferences.

Thereafter the alternatives can now be easily sorted from the best to the

worst one.

129

1 2 3 4 5 6 7 8 9

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

W

Figure 8.9: Level sets of the resulting NN-DM model constructed based
on the domain of EPF QW1. The colorbar indicates the modeled DM’s
preferences.

8.7 Discussion

Adaptations in the NN-DM method have been executed to obtain a model

for the DM’s preferences in a real scenario considering a polymer extrusion

process: the single screw extrusion. In the adapted NN-DM method the DM

has to fill a decision-making matrix constructed by alternatives belonging to

a grid in the domain D provided by the DM. The adapted NN-DM method

is able to construct an accurate NN-DM model Û for the DM’s preferences in

each considered scenario. Once the model Û is available it can be employed

in quantifying any alternative according to the DM’s preferences and sort

them from the best to the worst one. Six EPFs derived from the polymer

130

extrusion process are sorted by the resulting NN-DM models. The model Û

can be repeatedly employed without further queries to the DM as long as

the alternatives belong to the domain D.

The results show that the NN-DM method is able to construct models

that correspond to the DM’s expectation in sorting the alternatives belonging

to the considered EPFs. The DM’s demand is reasonable and henceforth

the resulting models Û can replace the DM in recurrent decisions within

the trained domain D. Additionally, a case study revels that the NN-DM

method is robust to small variations in the decision-making matrices, leading

to models which provide the same sorting (EPFs QW2 and QW3). However,

EPF QW1 presented different sorting, implying that the method is sensible

to small changes in situations in which the EPF is almost parallel to the

model’s level sets.

The average melt temperature of the polymer at die exit (Tmelt) and the

length of screw required to melt the polymer (Lmelt) also characterize the

process performance and could have been considered in the multi-objective

optimization problem. However, in a five-objective problem the decision-

making matrix is inappropriate since it is difficult for a person to decide

between two alternatives considering five conflicting objectives. Therefore,

it is necessary a different approach to extract information from the DM.

The author is studying improvements in the NN-DM method to consider a

more complete polymer extrusion process. Additionally, since the optimiza-

tion problem in this real scenario is computationally expensive, the NN-DM

model may be employed in guiding the optimization process directly to the

most preferable region avoiding computational effort expended in the non-

preferable regions.

131

Chapter 9

Conclusions and Ideas for
Future Work

The work developed in this thesis presented the construction of a model

for the DM’s preferences considering the existence of a utility function. In

the NN-DM method the preference information is extracted from the DM

involving ordinal description only and is structured considering a partial

ranking procedure. An artificial neural network which approximates this

partial ranking is constructed and the resulting model is able to reproduce

the DM’s preferences in a specific domain.

The proposed methodology is suitable in those situations in which a re-

current decision process must be performed, for instance several runs of a

multi-objective optimization algorithm over the same problem with different

parameters in each run, assuming that the utility function is not depen-

dent on the changing parameters. Examples of such a situation are: (i)

the choice of the operation point of an electric power system under different

load constraints (intra-day or intra-week periods); (ii) the manufacturing of a

compound which may be composed of different raw materials under different

132

relative prices of such materials; and (iii) the choice of routes, in any routing

problem, under different situations of the costs associated to the problem

links, or under situations of unavailability of certain links.

A characteristic of the NN-DM method is the ability to represent arbi-

trary dependencies among the decision criteria, including non-linear ones, in

situations in which the DM should evaluate a solution as a whole, instead of

weighting the criteria. The outcome of the proposed method has the purpose

of being a representation of the DM’s preference structure in a region of the

feature space instead of being oriented to solve a specific decision problem.

The main point raised here is: the information obtained from the DM

should not be discarded leading to a new complete interaction each time

similar decision-making problems with the same DM are required. It is also

straightforward to notice that in new situations it is possible to perform

either a refinement of the NN-DM model or its validation through further

interactions with the DM in new runs of the algorithm.

The interaction with the DM on the course of a multi-objective optimiza-

tion process might provide good solutions in situations in which the complete

PF cannot be achieved properly. By considering the DM guiding the opti-

mization process the computational effort usually spent in searches inside

non-preferable regions can now be employed to map the preferable regions

accurately.

The methodology developed here was also employed in developing an

EMO methodology called INSPM which combines two characteristics: (i) it

interacts with the DM along the execution of the optimization task, such that

the result of the optimization is guided by that interaction in a progressive

133

preference articulation, and (ii) it ends the optimization procedure with a

model for the DM’s preferences, which becomes available in other instances

of the same problem. In the INSPM algorithm, the EPF is modeled densely

according to the DM’s preferences and the NN-DM model is constructed

on the EPF domain. A parameter w controls the influence of the DM in

the density of the EPF: w = 0 means that there is no DM interference in

the optimization process and the higher the w, the greater the interference,

conducting to a scenario in which only the preferred solution and the extremes

of the EPF are selected. In new instances of the same optimization problem,

the resultant NN-DM model can be employed without new queries to the

DM, except when the domain requires updates. In this situation new queries

can be proposed to the DM at a low cost.

Some ideas for future work are presented next.

- Investigating a methodology inspired on a tournament procedure to

improve the NN-DM method reducing the requirements to the DM.

- Analyzing further developments of the human-machine interaction ap-

plied to multi-objective optimization in the context of certain engineer-

ing problems.

- Employing the NN-DM method in the construction of a function P

that works in methods such as Electre ou Promethee.

- Finding the ranking only with the EPF alternatives.

- Placing the alternatives as centers of the RBF functions of the artificial

neural network.

134

- Finding a better cover for the space, since grid and random are already

tested and are inefficient with higher dimension problems.

135

Bibliography

G. Aiello, G. La Scalia, and M. Enea. A non dominated ranking multi

objective genetic algorithm and ELECTRE method for unequal area facil-

ity layout problems. Expert Systems with Applications, 40(12):4812–4819,

2013.

S. Angilella, S. Greco, F. Lamantia, and B. Matarazzo. Assessing non-

additive utility for multicriteria decision aid. European Journal of Op-

erational Research, 158:734–744, 2004.

S. Angilella, S. Greco, and B. Matarazzo. Non-additive robust ordinal re-

gression: A multiple criteria decision model based on the Choquet integral.

European Journal of Operational Research, 201:277–288, 2010.

R. Battiti and A. Passerini. Brain-computer evolutionary multiobjective

optimization: A genetic algorithm adapting to the decision maker. IEEE

Transactions on Evolutionary Computation, 14(5):671–687, 2010.

K. N. Berk. Comparing Subset Regression Procedures. Technometrics,

20(1):1–6, 1978.

D. S. Broomhead and D. Lowe. Multivariable Functional Interpolation and

Adaptive Networks. Complex Systems 2, pages 321–355, 1988.

136

J. Chen and S. Lin. An interactive neural network-based approach for solv-

ing multiple criteria decision-making problems. Decision Support Systems,

36:137–146, 2003.

S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning

algorithm for radial basis function networks. IEEE Transactions on Neural

Networks, 2(2):302–309, March 1991.

D. H. Cope. Computer Models of Musical Creativity. The MIT Press, 2005.

D. H. Cope. Comes the Fiery Night: 2,000 Haiku by man and machine.

CreateSpace Independent Publishing Platform, Santa Cruz, CA, 2011.

S. Corrente, S. Greco, M. Kadziński, and R. S lowiński. Robust ordinal regres-

sion in preference learning and ranking. Machine Learning, 93(2–3):381–

422, 2013.

K. Deb and J. Sundar. Reference point based multi-objective optimization

using evolutionary algorithms. In International Journal of Computational

Intelligence Research, pages 635–642. Springer-Verlag, 2006.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

K. Deb, A. Sinha, P. J. Korhonen, and J. Wallenius. An interactive evolu-

tionary multiobjective optimization method based on progressively approx-

imated value functions. IEEE Transactions on Evolutionary Computation,

14(5):723–739, 2010.

C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms

137

in multiobjective optimization. Evolutionary Computation, 7(3):205–230,

1995.

A. Gaspar-Cunha and J. A. Covas. RPSGAe–Reduced Pareto Set Genetic

Algorithm: Application to Polymer Extrusion. In Metaheuristics for Mul-

tiobjective Optimisation, pages 221–249. Springer. Lecture Notes in Eco-

nomics and Mathematical Systems Vol. 535, Berlin Heidelberg, 2004.

A. Gaspar-Cunha. Modelling and Optimisation of Single Screw Extrusion

Using Multi-Objective Evolutionary Algorithms. Lambert Academic Pub-

lishing, Koln, Germany, 1st edition, 2009.

D. Golmohammadi. Neural network application for fuzzy multi-criteria de-

cision making problems. International Journal of Production Economics,

131(2):490–504, 2011.

S. Greco, V. Mousseau, and R. S lowiński. Ordinal regression revisited: Mul-

tiple criteria ranking using a set of additive value functions. European

Journal of Operational Research, 191(2):416–436, 2008.

E. Jacquet-Lagreze and J. Siskos. Assessing a set of additive utility functions

for multicriteria decision-making, the UTA method. European Journal of

Operational Research, 10(2):151–164, 1982.

I. Karahan and M. Köksalan. A territory defining multiobjective evolu-

tionary algorithms and preference incorporation. IEEE Transactions on

Evolutionary Computation, 14(4):636–664, 2010.

I. Karahan. Preference-based flexible multiobjective evolutionary algo-

rithms. Master’s thesis, Dept. Ind. Eng., Middle East Technical University,

Ankara, Turkey, 2008.

138

A. P. Karpenko, D. T. Mukhlisullina, and V. A. Ovchinnikov. Multicriteria

optimization based on neural network approximation of decision maker’s

utility function. Optical Memory and Neural Networks, 19(3):227–236,

2010.

A. P. Karpenko, D. A. Moor, and D. T. Mukhlisullina. Multicriteria opti-

mization based on neural network, fuzzy and neuro-fuzzy approximation

of decision maker’s utility function. Optical Memory and Neural Networks,

21(1):1–10, 2012.

R. L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences

and value tradeoffs. J. Wiley, New York, 1976.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–

93, 1938.

J. D. Knowles and D. W. Corne. M-PAES: a memetic algorithm for multiob-

jective optimization. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 325–332, 2000.

D. E. Knuth. The art of computer programming, volume 2 (3rd ed.):

seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1997.

D. E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.)

Sorting and Searching. Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA, 1998.

T. Kohonen. Self-organization and Associative Memory: 3rd Edition.

Springer-Verlag New York, Inc., New York, NY, USA, 1989.

139

M. Köksalan and I. Karahan. An interactive territory defining evolutionary

algorithm: iTDEA. IEEE Transactions on Evolutionary Computation,

14(5):702–722, 2010.

D. C. Lay. Linear Algebra and Its Applications. Pearson Education, 2002.

R. Lazimy. Interactive polyhedral outer approximation (IPOA) strategy for

general multiobjective optimization problems. Annals of Operations Re-

search, 210(1):73–99, 2013.

B. Luo, J. Zheng, J. Xie, and J. Wu. Dynamic crowding distance - a

new diversity maintenance strategy for MOEAs. In Natural Computa-

tion, 2008. ICNC’08. Fourth International Conference, ICNC ’08, pages

580–585, Washington, DC, USA, 2008. IEEE Computer Society.

J. Macqueen. Some methods for classification and analysis of multivariate

observations. In In 5-th Berkeley Symposium on Mathematical Statistics

and Probability, pages 281–297, 1967.

The MathWorks. MATLAB – Version 6.9.0 (R2009b). The MathWorks,

Inc., Natick, Massachusetts, 2009.

S. P. S. Matias. A multicriteria decision aiding assignment methodology for

assisted reproductive technology. Master’s thesis, Technical University of

Lisbon, Lisbon, Portugal, 2008.

K. M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic

Publishers, Boston, USA, 1999.

J. Moody and C. J. Darken. Fast learning in networks of locally-tuned pro-

cessing units. Neural Computation, 1(2):281–294, June 1989.

140

L. R. Pedro and R. H. C. Takahashi. Modeling the decision-maker utility

function through artificial neural networks. In Anais do IX Congresso

Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN),

volume 1, pages 550–563, Ouro Preto, Brasil, 2009.

L. R. Pedro and R. H. C. Takahashi. Modeling decision-maker preferences

through utility function level sets. In 6th International Conference on

Evolutionary Multi-criterion Optimization, volume 6576 of Lecture Notes

in Computer Science, pages 550–563. Springer Berlin Heidelberg, Ouro

Preto, Brasil, 2011.

L. R. Pedro and R. H. C. Takahashi. Decision-maker preference modeling in

interactive multiobjective optimization. In 7th International Conference on

Evolutionary Multi-criterion Optimization, volume 7811 of Lecture Notes

in Computer Science, pages 811–824. Springer Berlin Heidelberg, Sheffield,

UK, 2013.

L. R. Pedro and R. H. C. Takahashi. INSPM: An interactive evolutionary

multi-objective algorithm with preference model. Information Sciences,

268(0):202–219, 2014.

L. A. D. Rangel, L. F. A. M. Gomes, and R. A. Moreira. Decision theory

with multiple criteria: an application of ELECTRE IV and TODIM to

SEBRAE/RJ. Pesquisa Operacional, 29:577–590, 2009.

N. Roussat, C. Dujet, and J. Méhu. Choosing a sustainable demolition waste

management strategy using multicriteria decision analysis. Waste Manage-

ment, 29(1):12–20, 2009.

B. Roy. Classement et choix en présence de points de vue multiples: La

141

méthode ELECTRE. Revue Francaise d’Informatique et de Recherche

Opérationnelle, 8:57–75, 1968.

T. L. Saaty. A scaling method for priorities in hierarchical structures. Journal

of Mathematical Psychology, 15:234–281, 1977.

T. L. Saaty. Decision making with the analytic hierarchy process. Interna-

tional Journal of Services Sciences, 1:83–98, 2008.

D. F. Specht. Probabilistic neural networks and the polynomial adaline as

complementary techniques for classification. IEEE Transactions on Neural

Networks and Learning Systems, 1(1):111–121, March 1990.

C. Steiner. Automate this: how algorithms came to rule our world. Portfo-

lio/Penguin, New York, 2012.

R. E. Steuer and E. Choo. An interactive weighted Tchebycheff procedure for

multiple objective programming. Mathematical Programming, 26(1):326–

344, 1983.

R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and

Application. John Wiley, New York, 1986.

M. Sun, A. Stam, and R. E. Steuer. Solving multiple objective programming

problems using feed-forward artificial neural networks: The interactive

FFANN procedure. Management Science, 42:835–849, 1996.

M. Sun, A. Stam, and R. E. Steuer. Interactive multiple objective program-

ming using Tchebycheff programs and artificial neural networks. Comput-

ers and Operations Research, 27(7–8):601–620, 2000.

142

A. S. Tangian. Constructing a quasi-concave quadratic objective function

from interviewing a decision maker. European Journal of Operational Re-

search, 141(3):608–640, 2002.

T. Tervonen, I. Linkov, J. R. Figueira, J. Steevens, M. Chappell, and

M. Merad. Risk-based classification system of nanomaterials. Journal

of Nanoparticle Research, 11(4):757–766, 2009.

D. S. Todd and P. Sen. Directed multiple objective search of design spaces

using genetic algorithms and neural networks. In Genetic and Evolutionary

Computation Conference, pages 1738–1743. Morgan Kaufmann, 1999.

E. Triantaphyllou and S. H. Mann. An examination of the effectiveness of

multi-dimensional decision-making methods: a decision-making paradox.

Decision Support Systems, 5(3):303–312, 1989.

B. Widrow and M. E. Hoff. Neurocomputing: Foundations of research. In

Neurocomputing: Foundations of Research, chapter Adaptive Switching

Circuits, pages 123–134. MIT Press, Cambridge, MA, USA, 1988.

J. B. Yang and P. Sen. Preference modelling by estimating local utility

functions for multiobjective optimization. European Journal of Operational

Research, 95(1):115–138, 1996.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-

ative case study and the strenght Pareto approach. IEEE Transactions on

Evolutionary Computation, 3(4):257–271, 1999.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8:173–195, 2000.

143

E. Zitzler, M. Laumanns, and L. Thiele. SPEA 2: Improving the Strenght

Pareto Evolutionary Algorithms. In EUROGEN 2001. Evolutionary Meth-

ods for Design, Optimization and Control with Applications to Industrial

Problems, pages 95–100, 2002.

144

Appendix A

The NEWRB Function

This appendix reproduces the information about the NEWRB function, as

described in MATLAB c© documentation. The related MATLAB c© functions

and the function parameters are designed in capital letters.

A.1 Definition

The NEWRB function designs a radial basis network. The call for the

NEWRB function is [net,tr] = NEWRB(P,T,GOAL,SPREAD,MN,DF).

A.2 Description

Radial basis networks can be used to approximate functions. The NEWRB

function adds neurons to the hidden layer of a radial basis network until it

meets the specified mean squared error goal. The NEWRB function takes the

arguments introduced by Table A.1 and returns a new radial basis network.

145

Parameter Description

P RxQ matrix of Q input vectors.
T SxQ matrix of Q target class vectors.
GOAL Mean squared error goal, default = 0.0.
SPREAD Spread of radial basis functions, default = 1.0.
MN Maximum number of neurons, default is Q.
DF Number of neurons to add between displays, default = 25.

Table A.1: Parameters of the NEWRB function.

The larger that SPREAD the smoother the function approximation; a

spread too large means a lot of neurons is required to fit a fast changing

function. A spread too small means many neurons is required to fit a smooth

function and the network may not generalize well.

A.3 Algorithm

The NEWRB function creates a two layer network. The first layer has

RADBAS1 neurons, calculates its weighted inputs with DIST2, and its net

input with NETPROD3. The second layer has PURELIN4 neurons, calculates

its weighted input with DOTPROD5, and its net inputs with NETSUM6.

Both layers have biases.

1RADBAS is a neural transfer function. Transfer functions calculate a layer’s output

from its net input.
2DIST is the Euclidean distance weight function. Weight functions apply weights to

an input to get weighted inputs.
3NETPROD is a net input function. Net input functions calculate a layer’s net input

by combining its weighted inputs and biases.
4PURELIN is a neural transfer function. Transfer functions calculate a layer’s output

from its net input.
5DOTPROD is the dot product weight function. Weight functions apply weights to an

input to get weighted inputs.
6NETSUM is a net input function. Net input functions calculate a layer’s net input by

combining its weighted inputs and biases.

146

Initially the RADBAS layer has no neurons. The following steps are

repeated until the network’s mean squared error falls below GOAL or the

maximum number of neurons are reached.

1. The network is simulated.

2. The input vector with the greatest error is found.

3. A RADBAS neuron is added with weights equal to that vector.

4. The PURELIN layer weights are redesigned to minimize error.

A.4 Simulating the Network

The SIM function simulates neural networks. The call for the SIM func-

tion is [Y,Xf,Af] = sim(net,X,Xi,Ai,T), with inputs and outputs described

by Tables A.2 and A.3, respectively.

Parameter Description

net Network.
X Network inputs.
Xi Initial layer delay conditions (default = zeros).
Ai Initial layer delay conditions (default = zeros).
T Network targets (default = zeros).

Table A.2: Inputs of the SIM function.

147

Parameter Description

Y Network outputs.
Xf Final input delay conditions.
Af Final layer delay conditions.

Table A.3: Outputs of the SIM function.

148

Appendix B

A Comparison Between
Mergesort and Quicksort

The comparison of sorting algorithms has the computation time and the

memory requirement as the main merit factors in most of the situations.

However, here the sorting algorithms have the number of element com-

parisons as the only relevant merit factor. This occurs because the “lim-

ited resource” that should be saved now is the number of queries to the

Decision-Maker (DM). The answers to those queries are employed in solving

the comparisons between the elements of the set to be sorted. Since the DM

is usually a human being the number of queries hardly could reach the order

of some hundreds making any asymptotic analysis irrelevant. Due to the

specificity of the requirements on the sorting algorithms for the present work

an analysis of those algorithms in the relevant framework is presented in this

appendix.

The DM’s ability to answer ordinal queries is translated inside of sorting

algorithms as the number of comparisons realized between the elements in the

set. In essence the DM is asked to provide an answer to solve each comparison

149

required by the sorting algorithm. In this work Mergesort was chosen against

Quicksort as the sorting algorithm due to its smaller number of comparisons.

The main reason behind this fact seems to be the uneven splitting at each

Quicksort step. This appendix presents a comparison between Mergesort and

Quicksort performances considering both time and number of comparisons.

B.1 Algorithms

B.1.1 Quicksort

Quicksort is a sorting algorithm developed by Tony Hoare in 1960 [Knuth,

1997]. Quicksort is a divide and conquer algorithm that first selects a pivot

and divides a large list into two smaller sub-lists (the low and the high el-

ements) which are recursively sorted. The base of the recursion are lists of

size zero or one which never needs to be sorted. The steps are the following.

1. Select an element, called pivot, from the list.

2. Reorder the list so that all elements with values lower than the pivot

come before the pivot while all elements with values higher than the

pivot come after it (equal values can go either way). After this parti-

tioning, the pivot is in its final position. This is called the partition

operation.

3. Recursively apply the above steps to the sub-list of elements with

smaller values and to the sub-list of elements with higher values.

150

Quicksort, on average, makes O(n log n) comparisons to sort n items.

In the worst-case, it makes O(n2) comparisons. Quicksort takes O(n log n)

time on average, when the input is a random permutation, and O(n2) in the

worst-case.

B.1.2 Mergesort

Mergesort is a divide and conquer algorithm invented by John von Neu-

mann in 1945 [Knuth, 1997]. Conceptually, Mergesort works as follows.

1. Divide the unsorted list into n sub-lists each containing 1 element (a

list of 1 element is considered sorted).

2. Repeatedly merge sub-lists to produce new sub-lists until there is only

1 sub-list remaining. This will be the sorted list.

Mergesort is an O(n log n) comparison-based sorting algorithm. In the

worst-case, Mergesort does about 39% fewer comparisons than Quicksort

in the average-case. Mergesort’s performance has an average and worst-

case performance of O(n log n) time. The drawback of Mergesort is that

most implementations must be done with 2n space whereas Quicksort can

be done in-place (which is not a concern in the proposed application). The

additional n locations are commonly required because merging two sorted

sets in place is more complicated and would need additional comparisons

and move operations.

151

B.2 Results

A comparison between Quicksort and Mergesort is now presented. Figure

B.1 shows the obtained results displaying on y-axis (a) time and (b) num-

ber of comparisons versus the list size on x-axis. The x-axis represents the

number of elements in the set which is not uniform; otherwise the behavior

would not be clear enough for the first entries. The list size is up to 10, 000

and the results are average values taken in 50 executions.

0 50 100 200 500 1000 2000 5000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Quicksort

Mergesort

Time

0 50 100 200 500 1000 2000 5000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Quicksort

Mergesort

Number of comparisons

(a) (b)

Figure B.1: Average number of comparisons considering Quicksort and
Mergesort.

Figure B.2 presents the average number of comparisons considering four

sorting algorithms: Bubble Sort, Insertion Sort, Quicksort, and Mergesort.

Since the number of queries presented to the DM should be small the list

size is now up to 200. The results are average values taken in 50 executions.

Table B.1 reproduces the values of Figure B.2.

152

0 10 20 30 40 50 100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Mergesort

Quicksort

Insertion Sort

Bubble Sort

Number of comparisons

Figure B.2: Average number of comparisons considering four sorting algo-
rithms.

List Size Bubble Sort Insertion Sort Quicksort Mergesort

10 45 22 34 22
20 190 129 95 61
30 435 256 169 112
40 780 431 238 164
50 1,225 706 323 217
100 4,950 2,595 810 540
200 19,900 9,826 1,973 1,277

Table B.1: Average number of comparisons spent for sorting a list.

Table B.1 shows that Insertion Sort is suitable if the number of elements

is 10. Since the nin parameter has assumed 10 in all tests, the Insertion

Sort, which has an easier implementation, could have been chosen. However,

153

considering that nin is a parameter of the INSPM algorithm and the difference

between the number of comparisons spent by Mergesort and Insertion Sort for

higher values is significant, Mergesort was chosen to be the sorting algorithm

inside INSPM.

154

Appendix C

Decision-making Matrices -
Polymer Extrusion Process

155

Table C.1: Unfilled decision-making matrix: Q×P.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 -1 X X X -1 X X X -1 X X X

[f11, f20] -1 0 1 1 -1 -1 X X -1 -1 X X -1 -1 X X

[f12, f20] -1 -1 0 1 -1 -1 -1 X -1 -1 -1 X -1 -1 -1 X

[f13, f20] -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f21] 1 1 1 1 0 1 1 1 -1 X X X -1 X X X

[f11, f21] X 1 1 1 -1 0 1 1 -1 -1 X X -1 -1 X X

[f12, f21] X X 1 1 -1 -1 0 1 -1 -1 -1 X -1 -1 -1 X

[f13, f21] X X X 1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f22] 1 1 1 1 1 1 1 1 0 1 1 1 -1 X X X

[f11, f22] X 1 1 1 X 1 1 1 -1 0 1 1 -1 -1 X X

[f12, f22] X X 1 1 X X 1 1 -1 -1 0 1 -1 -1 -1 X

[f13, f22] X X X 1 X X X 1 -1 -1 -1 0 -1 -1 -1 -1

[f10, f23] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

[f11, f23] X 1 1 1 X 1 1 1 X 1 1 1 -1 0 1 1

[f12, f23] X X 1 1 X X 1 1 X X 1 1 -1 -1 0 1

[f13, f23] X X X 1 X X X 1 X X X 1 -1 -1 -1 0

156

Table C.2: Filled decision-making matrix: Q×P.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1

[f11, f20] -1 0 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1

[f12, f20] -1 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f13, f20] -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f21] 1 1 1 1 0 1 1 1 -1 1 1 1 -1 -1 -1 1

[f11, f21] -1 1 1 1 -1 0 1 1 -1 -1 1 1 -1 -1 -1 -1

[f12, f21] -1 -1 1 1 -1 -1 0 1 -1 -1 -1 1 -1 -1 -1 -1

[f13, f21] -1 -1 1 1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f22] 1 1 1 1 1 1 1 1 0 1 1 1 -1 -1 1 1

[f11, f22] -1 1 1 1 -1 1 1 1 -1 0 1 1 -1 -1 1 1

[f12, f22] -1 1 1 1 -1 -1 1 1 -1 -1 0 1 -1 -1 -1 1

[f13, f22] -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1 -1

[f10, f23] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

[f11, f23] 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 1 1

[f12, f23] 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 0 1

[f13, f23] -1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 0

157

Table C.3: Unfilled decision-making matrix: Q×W.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f11, f20] -1 0 1 1 X 1 1 1 X 1 1 1 X 1 1 1

[f12, f20] -1 -1 0 1 X X 1 1 X X 1 1 X X 1 1

[f13, f20] -1 -1 -1 0 X X X 1 X X X 1 X X X 1

[f10, f21] -1 X X X 0 1 1 1 1 1 1 1 1 1 1 1

[f11, f21] -1 -1 X X -1 0 1 1 X 1 1 1 X 1 1 1

[f12, f21] -1 -1 -1 X -1 -1 0 1 X X 1 1 X X 1 1

[f13, f21] -1 -1 -1 -1 -1 -1 -1 0 X X X 1 X X X 1

[f10, f22] -1 X X X -1 X X X 0 1 1 1 1 1 1 1

[f11, f22] -1 -1 X X -1 -1 X X -1 0 1 1 X 1 1 1

[f12, f22] -1 -1 -1 X -1 -1 -1 X -1 -1 0 1 X X 1 1

[f13, f22] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 X X X 1

[f10, f23] -1 X X X -1 X X X -1 X X X 0 1 1 1

[f11, f23] -1 -1 X X -1 -1 X X -1 -1 X X -1 0 1 1

[f12, f23] -1 -1 -1 X -1 -1 -1 X -1 -1 -1 X -1 -1 0 1

[f13, f23] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

158

Table C.4: Filled decision-making matrix: Q×W – Matrix M1.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f11, f20] -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f12, f20] -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

[f13, f20] -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1

[f10, f21] -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1

[f11, f21] -1 -1 -1 -1 -1 0 1 1 -1 1 1 1 1 1 1 1

[f12, f21] -1 -1 -1 -1 -1 -1 0 1 -1 -1 1 1 -1 -1 1 1

[f13, f21] -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1 -1 -1 -1 1

[f10, f22] -1 -1 -1 -1 -1 1 1 1 0 1 1 1 1 1 1 1

[f11, f22] -1 -1 -1 -1 -1 -1 1 1 -1 0 1 1 1 1 1 1

[f12, f22] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 0 1 1 1 1 1

[f13, f22] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 1 1

[f10, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 0 1 1 1

[f11, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 0 1 1

[f12, f23] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0 1

[f13, f23] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

159

Table C.5: Filled decision-making matrix: Q×W – Matrix M2.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f11, f20] -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f12, f20] -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

[f13, f20] -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1

[f10, f21] -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1

[f11, f21] -1 -1 -1 -1 -1 0 1 1 -1 1 1 1 -1 1 1 1

[f12, f21] -1 -1 -1 -1 -1 -1 0 1 -1 -1 1 1 -1 -1 1 1

[f13, f21] -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1 -1 -1 -1 1

[f10, f22] -1 -1 -1 -1 -1 1 1 1 0 1 1 1 1 1 1 1

[f11, f22] -1 -1 -1 -1 -1 -1 1 1 -1 0 1 1 -1 1 1 1

[f12, f22] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 0 1 -1 -1 1 1

[f13, f22] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1

[f10, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 0 1 1 1

[f11, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 0 1 1

[f12, f23] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0 1

[f13, f23] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

160

Table C.6: Filled decision-making matrix: Q×W – Matrix M3.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f11, f20] -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f12, f20] -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

[f13, f20] -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1

[f10, f21] -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1

[f11, f21] -1 -1 -1 -1 -1 0 1 1 -1 1 1 1 -1 1 1 1

[f12, f21] -1 -1 -1 -1 -1 -1 0 1 -1 -1 1 1 -1 -1 1 1

[f13, f21] -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1 -1 -1 -1 1

[f10, f22] -1 -1 -1 -1 -1 1 1 1 0 1 1 1 1 1 1 1

[f11, f22] -1 -1 -1 -1 -1 -1 1 1 -1 0 1 1 1 1 1 1

[f12, f22] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 0 1 -1 -1 1 1

[f13, f22] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1

[f10, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 0 1 1 1

[f11, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 0 1 1

[f12, f23] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0 1

[f13, f23] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

161

Table C.7: Filled decision-making matrix: Q×W – Matrix M4.

Q × W [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f11, f20] -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f12, f20] -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

[f13, f20] -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1

[f10, f21] -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1

[f11, f21] -1 -1 -1 -1 -1 0 1 1 -1 1 1 1 -1 1 1 1

[f12, f21] -1 -1 -1 -1 -1 -1 0 1 -1 -1 1 1 -1 -1 1 1

[f13, f21] -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1 -1 -1 -1 1

[f10, f22] -1 -1 -1 -1 -1 1 1 1 0 1 1 1 1 1 1 1

[f11, f22] -1 -1 -1 -1 -1 -1 1 1 -1 0 1 1 1 1 1 1

[f12, f22] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 0 1 1 1 1 1

[f13, f22] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1

[f10, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 0 1 1 1

[f11, f23] -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 0 1 1

[f12, f23] -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0 1

[f13, f23] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

162

Index

Adaptive Neuro-Fuzzy Inference Sys-

tem, 19

AHP, 12, 18

ALENA, 4

algorithm, 49, 60, 99, 121

artificial neural network, 15, 39

AWTP, 16

BC-EMO, 21

Choquet integral, 13

crowding distance, 92

decision-maker, 24

decision-making, 1, 11, 23

decision-making matrix, 115, 120, 124

DM calls, 48, 59

DNN, 17

domain establishment, 34, 56, 87, 119

dominance, 27, 57, 64, 115, 116

Downhill Simplex Method, 19

dynamic crowding distance, 92

ELECTRE, 11

Emily Howell, 4

evolutionary multi-objective optimiza-

tion, 69, 84

FFANN, 15, 16, 18

Fuzzy Inference System, 19

grid of simulated alternatives, 35, 54,

119

holistic judgments, 3, 13, 21

INSPM, 30, 85

interactive algorithms, 70, 85

IPOA, 21

iTDEA, 71, 75, 106

ITWP, 16

KTD, 46, 66, 79, 91, 105

ktd, 96, 98

linguistic function, 18

MATLAB c©, 6, 43, 79

MAUT, 2, 33

MCDM, 2, 23

163

MCDM applications, 12

MCDS system, 18

Mergesort, 58, 87, 95, 151

MLP network, 17, 19

multi-objective optimization, 4, 71, 78,

80

NN-DCD, 93, 102

NN-DM method, 6, 30, 33, 55, 72, 86,

95

NN-DM method examples, 50, 61

NSGA-II, 30, 91, 97

number of queries, 60, 66, 79, 105

partial ranking examples, 51, 53, 62,

65, 88

performance assessment, 46, 91, 120

PI-EMO-VF, 20

pivot alternative, 32, 37, 58

polymer extrusion process, 112

preference function, 24

prTDEA, 74

Quicksort, 88, 150

R-NSGA-II, 70

ranking construction, 37, 57, 87, 120

RBF network, 19, 39, 51, 63, 65, 67

reactive search optimization, 20

real DM, 119

real scenario, 112

recurrent problem, 4, 132

regression problem, 3, 5, 33, 39

ROR, 13

RPSGAe, 113

simulated decision-making problem, 29,

35

single screw extrusion, 112

stable, 86

stable model, 48, 52, 67

Tchebycheff, 16, 74, 106

TDEA, 73

underlying utility function, 50, 61, 64,

78, 100

utility function, 2, 24, 33

validation sets, 48

ZDT4, 101

164

	Acknowledgements
	Abstract
	Resumo
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Organization

	Decision Models
	Introduction
	Classical Decision-making Methods
	Introduction
	ELECTRE Methods
	AHP Methods
	ROR Methods

	Modeling the DM's Preferences
	Introduction
	Artificial Neural Networks
	Other Techniques

	Requirements to the DM

	Notation and Problem Statement
	Multi-Criteria Decision-Making Analysis
	Multi-Objective Optimization
	INSPM

	The NN-DM Method
	Introduction
	The NN-DM Methodology
	Step 1: Domain Establishment
	Step 2: Ranking Construction
	Step 3: Artificial Neural Network Approximation
	Step 4: Performance Assessment
	DM calls

	The Algorithm
	Illustrative Examples
	Discussion

	The Improved NN-DM Method
	Introduction
	Step 1 - Domain Establishment
	Step 2 - Ranking Construction
	Dominance
	The Improved Partial Ranking

	DM Calls
	The Algorithm
	Illustrative Examples
	Example A
	Example B

	Discussion

	The NN-DM Method And iTDEA
	Introduction
	Interactive Algorithms

	TDEA, prTDEA, and iTDEA
	Computational Experiments
	Discussion

	The NN-DM Method And NSGA-II
	Introduction
	The Adapted NN-DM Methodology
	Step 1 - Domain Establishment
	Step 2 - Ranking Construction
	Step 4 - Performance Assessment

	NN-DM Method and NSGA-II
	Dynamic Crowding Distance
	Neural Network Dynamic Crowding Distance

	The Algorithm
	NN-DM Model
	INSPM Main Program

	Computational Experiments
	INSPM and Utility Function
	INSPM and NN-DM Method
	Comparison with iTDEA

	Discussion

	Polymer Extrusion Process
	Introduction
	Available Data
	Interaction with the DM
	The Adapted NN-DM Methodology
	Step 1: Domain Establishment
	Step 2: Ranking Construction
	Step 4: Performance Assessment
	Algorithm

	Computational Experiments
	Case Study
	Discussion

	Conclusions and Ideas for Future Work
	Bibliography
	The NEWRB Function
	Definition
	Description
	Algorithm
	Simulating the Network

	A Comparison Between Mergesort and Quicksort
	Algorithms
	Quicksort
	Mergesort

	Results

	Decision-making Matrices - Polymer Extrusion Process
	Index

