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Resumo 

 Em uma situação típica de avaliação utilizando questões de prova, os candidatos não 

podem escolher quais itens preferem responder. A principal razão é um problema técnico em 

se obter estimativas confiáveis para as habilidades dos candidatos e as dificuldades dos itens. 

Este trabalho propõe uma nova representação dos dados utilizando análise de redes. As 

questões de prova, e os itens selecionados, para cada candidato, são codificados como 

camadas, vértices e arestas em uma rede multicamadas. Dessa forma, um novo modelo de 

Teoria de Resposta ao Item (TRI), que incorpora a informação obtida a partir da rede 

multicamadas utilizando modelagem Bayesiana, é proposto. Diversos estudos de simulação, 

nos quais os candidatos podem escolher um subconjunto de itens, foram realizados. Os 

resultados mostram uma melhora substancial na recuperação dos parâmetros utilizando o 

modelo proposto em comparação ao modelo convencional de TRI. Este modelo é a primeira 

proposta que permite obter estimativas satisfatórias em cenários críticos reportados na 

literatura.  

Palavras-chaves: Seleção de itens, Análise de Redes, Medidas de Centralidade, Teoria de 

Resposta ao Item,  Modelagem Bayesiana.  

 

  



iv 
 

Abstract 

 In a typical questionnaire testing situation, the examinees are not allowed to choose 

which items they would rather answer. The main reason is a technical issue in obtaining 

satisfactory statistical estimates of examinees' abilities and items' difficulties. This paper 

introduces a new Item Response Theory (IRT) model that incorporates information from a 

novel representation of the questionnaire data, using network analysis. The questionnaire data 

set is coded as layers, the items are coded as nodes and the selected items are connected by 

edges. The new proposed Item Response Theory (IRT) model incorporates network 

information using Bayesian estimation. Several simulation studies in which examinees are 

allowed to select a subset of items were performed.  Results show substantial improvements 

in the parameters' recovery over the standard model. To the best of our knowledge, this is the 

first proposal to obtaining satisfactory IRT statistical estimates in some critical scenarios 

reported in literature.   

Keywords: Examinee choice, Selection of items, Network analysis, Centrality Measures, Item 

Response Theory, Bayesian Modeling.  
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Chapter 1 

1. Introduction 

 One important challenge faced by large scale tests is to provide comparability between 

examinees performance, particularly in assessment situations in which it is not possible to 

apply the same test for them all. Furthermore, the comparability of the examinees 

performance over the years is crucial for evaluating the educational system. This problem has 

been overcome by estimating the examinees abilities using a set of statistical models that 

compose the Item Response Theory (IRT). This property, knowing as invariance, is obtained in 

IRT models by introducing separate parameters for examinees and items. The IRT models 

provides optimal estimates when all items within a test are mandatory to the examinees.  On 

the other hand, if the examinees are allowed to choose a subset of items,  instead of answer 

them all, the model estimates can became seriously biased. As a consequence, examinees 

typically are not allowed to choose which items they would rather answer.  

 The problem of allowing examinee choice has been raised by many works [Wainer, 

Wang and Thissen, 1994; Fitzpatrick and Yen, 1995; Wang, Wainer and Thissen, 1995;  Bradlow 

and Thomas, 1998;  Linn, Betebenner and Betebenner, 1998; Cankar,  2010; Wang et al., 2012], 

but remains without a proposal that can satisfactorily deal with it. This thesis is comprised by 

two manuscripts that address such context. The first manuscript, i.e., the Chapter 2,  explore a 

novel representation of the data set using network analysis. The examinees and their select 

items are coded as layers, nodes and edges. Two matrices are obtained from this 

representation. Moreover, several network centrality measures are calculated using both 

matrices in order to find a statistical measure that strongly correlates with items difficulties. 
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The second manuscript, i.e., the Chapter 3,  introduces a new IRT model that incorporates the 

information obtained from network analysis by using Bayesian estimation.  Results show 

substantial improvements in the parameters' recovery over the standard Rasch model. To the 

best of our knowledge, this is the first proposal to obtaining satisfactory IRT statistical 

estimates in some critical scenarios reported in literature. 
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Chapter 2 

2. A Network Approach to Evaluate the Problem of 

Examinee Choice under Item Response Theory 

Abstract 

 Item Response Theory (IRT) models are widely applied to estimate examinee ability 

and item difficulty using questionnaire data. However, if examinees are allowed to choose 

fewer items in the questionnaire then statistical estimates of parameters can be biased. This is 

because  the choice may depend on the examinee personal ability and on the item difficulty. In 

this work, we explore a novel representation of examinees and their selected items using a 

multilayer network: the questionnaire data is coded as layers, nodes and edges. Using the 

multilayer network, we propose a statistical method to create a monolayer network from 

which network centrality measures are calculated. Simulated and real case data sets show that 

the estimated centrality measures are strongly and statistically correlated to item difficulty. In 

addition, we propose a statistical inference test to determine if the examinees are randomly 

selecting items. Findings are currently being investigated to minimize statistical bias in IRT 

estimates. 

Keywords: Network analysis, Network aggregation, Centrality measures,  Item Response 

Theory,  Examinee Choice,  Missing data. 

Introduction 
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This study analyzes the problem of evaluating individuals (or examinees) in a specific 

field of interest using a questionnaire or test. The test has ܸ items and for each item each 

individual must provide a response. After evaluating the completed test, a value is given to 

each item. Let ௜ܻఈ  be the random variable of interest that represents the value for each item ݅ 

(݅ = 1, … , ܸ) and examinee ߙ) ߙ = 1, … ,  If the responses of the examinees are correct .(ܯ

then ௜ܻఈ = 1, otherwise ௜ܻఈ = 0. Classical Test Theory uses the number of correct responses, 

∑ ௜ܻఈ௜ , to estimate the examinee ability. However, this approach does not take into account 

the fact that different items have different levels of difficulty [Hambleton, Swaminathan and 

Rogers, 1991]. For example, suppose two examinees achieve the same number of correct 

responses but the subset of items answered by the first examinee are, in general, more 

difficult. In this example, the first examinee has a superior ability which is not identified only 

by using the number of correct items. In practice, the examinee ability, hereafter identified as 

 ఈ, and the item difficulty, hereafter identified as  ܾ௜, are not known in advance. They must beߠ

estimated using the set of responses ௜ܻఈ. Item Response Theory (IRT) is the methodology 

which is widely used to estimate examinee ability and item difficulty [Hambleton, 

Swaminathan and Rogers, 1991]. 

IRT has optimal statistical properties when responding to all ܸ items is mandatory for 

all examinees. On the other hand, if the examinees are free to choose ݒ items (ݒ < ܸ) from 

the total number of items (ܸ), then the model estimates can be statistically biased since the 

choice may depend on the examinee ability and on the item difficulty. In general, the 

examinees will choose the ݒ items for which the difficulties are most closely matched to their 

personal abilities [Wang, Wainer and Thissen, 1995; Bradlow and Thomas, 1998; Wang et al., 

2012]. Nonetheless, if a particular subset of items is frequently chosen, then this subset of 

items can be evaluated as if it were mandatory. Thus, statistical estimates of the abilities and 

difficulties can potentially be improved. Furthermore, if the subset of items, hereafter named 

non-random subset, can be identified then the frequencies of correct responses for each item 
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can be used to differentiate more difficult items from less difficult items. Therefore, it is of 

interest to identify summary statistics which can be used to select potential mandatory 

subsets, and which are potentially correlated to the difficulties of the items. 

In this work, we explore a novel representation of the examinees and their selected 

items using a multilayer network. Each examinee is represented as a single-layer network  in 

which the total number of items are the vertices, or nodes, and the selected items are fully 

connected by edges. That is, each edge connects pairs of items chosen by the examinee. 

Therefore, each layer of the multilayer network represents one examinee and the selected 

items. This novel representation may show relationships among the examinees and items 

which are not identified using only frequency of selection. 

Many systems can be seen as networks or multilayer networks. For example, social 

networks [Verbrugge, 1979; Barrett, Henzi and Lusseau, 2012], gene co-expression networks 

[Li et al., 2011], transportation networks [Cardillo et al., 2013], climate networks [Donges et al., 

2011], among others [Kivelä et al., 2014]. Furthermore, a multilayer representation may 

include interaction between layers, generally represented as connecting edges between layers. 

Multilayer network analysis implies that relevant information might not be identified if the 

single layers were analyzed separately [Menichetti et al., 2014; Battiston, Nicosia and Latora, 

2014]. On the other hand, summary statistics easily can be estimated from a monolayer 

network. Therefore, it is of interest to represent multilayer networks as a compact layer from 

which relevant information regarding the problem is obtained [De Domenico et al., 2015].  

Our proposed methodology summarizes the questionnaire multilayer as follows: first 

we propose a single weighted network  in which, for each edge, the weight is related to the 

frequency of the selected pairs of items; next, we propose a statistical procedure to eliminate 

edges which are found to be randomly selected. Thus, the final network is composed of edges 

which are statistically evaluated as non-random. In addition, we propose a Monte Carlo 
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statistical inference procedure to test the null hypothesis that the examinees are choosing 

items randomly. This is a useful test for investigating whether the layers in a multilayer 

network are correlated [Bianconi, 2013]. Finally, the following centrality measures: 

betweenness, closeness, degree, eigenvector and strength are calculated using the monolayer 

network in order to find statistical measures which are correlated to item difficulty. Simulated 

and real case studies show that the proposed analysis provides relevant information about 

item difficulty, which potentially can be used to improve IRT estimates.  

Figure 2.1 illustrates our proposed network representation considering data from 8 

examinees (A-H). Each examinee selected 5 items from a questionnaire with a total of 20 items 

(nodes). All items selected by one examinee are a clique of connected nodes [Luce and Perry, 

1949]. Figures 2.1A to 2.1H show the examinee network layer. Figure 2.1I shows the summary 

network in which one edge represents a pair of items which was selected by at least one 

examinee [Battiston, Nicosia and Latora, 2014]. It can be shown that the larger the number of 

examinees the more saturated with edges the summary network eventually becomes.  
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Figure 2.1: Network representation of selected items from a questionnaire with 20 items. (A-

H) Represents 8 examinee networks, each with 5 selected items. In these networks, each 

vertex represents an item and all vertices selected by an examinee are fully connected.   (I) 

Aggregated single-layer network in which each edge connects two items that were selected by 

at least one examinee. 

Material and Methods 
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   Following Barrat, Barthélemy and Vespignani [2008], a network is any system that 

admits an abstract mathematical representation using graphs. A graph G = ൫VሬሬԦ, EሬሬԦ൯ is a 

collection of ܸ vertices (or nodes) which identifies the elements of a particular system and a 

set of ܧ edges, related to the vector ܧሬԦ. Each edge connects pairs of vertices ൛v୧, v୨ൟ, v୧, v୨ ∈ ሬܸԦ 

indicating the presence of a relationship or interaction between them. The maximum number 

of edges in network G is given by: 

ఌߟ =
௏(௏ିଵ)

ଶ
 ,      (2.1) 

and its density is defined by [Lewis, 2009, p. 53]:   

ࣞ =
ா

ఎഄ
  .     (2.2) 

Network Aggregation 

 Consider a complex system represented using ܸ vertices and ܯ layers. Let ܩԦ =

,ଵܩ) ,ଶܩ … , ߙ ,ߙ ఈ is the network at layerܩ ெ) be a set of networks (or graphs) andܩ = 1, … ,  .ܯ

 ,Ԧ is also known as a multilayer network [Battiston, Nicosia and Latora, 2014]. Each networkܩ

ఈܩ = ൫ሬܸԦ,  .ሬԦఈܧ ሬԦఈ൯, is represented using the vector of vertices ሬܸԦ and the vector of edgesܧ

Hereafter, it is assumed that the set of vertices ሬܸԦ is the same for every layer ߙ,  while the set 

of edges ܧሬԦఈ  depends on each layer.  

Each network can be represented using an adjacency squared matrix ۯ[஑] of dimension 

ܸ where ܽ௜௝
[ఈ] = 1 if there is an edge between vertices ݅ and ݆ in layer ߙ, and ܽ௜௝

[ఈ] = 0, otherwise.  

Suppose each layer ܩఈ has ఈܸ selected vertices (0 < ఈܸ ≤ ܸ), which are fully connected by 

edges. Thus, the sum of the total number of edges present in the multilayer network ܩԦ is: 

[௢]ܧ =  ∑ ௏ഀ (௏ഀ ିଵ)

ଶ
ெ
ఈୀଵ   .       (2.3) 
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The simplest way to aggregate multiple layers is using aggregation matrices. For 

instance, let ۯ be the aggregation matrix ۯ = [ܽ௜௝] , where:  

ܽ௜௝ = ቊ1, :ߙ ∃ ݂݅  ܽ௜௝
[ఈ] = 1;

0, .݁ݏ݅ݓݎℎ݁ݐ݋
      (2.4) 

That is, pairs of vertices in matrix ۯ are connected if there is, at least, one layer ߙ in which 

vertices v୧ and v୨ are connected ( ܽ௜௝
[ఈ] = 1) [Battiston, Nicosia and Latora, 2014]. Therefore, 

matrix ۯ is a summary matrix of the multilayer GሬሬԦ which ignores multi-ties between pairs of 

nodes among layers. 

 The overlapping matrix  ۽ =  is an alternative aggregation matrix in which the  [௜௝݋]

multi-ties between pairs of nodes are not ignored [Battiston, Nicosia and Latora, 2014; 

Bianconi, 2013; Barigozzi, Fagiolo and Garlaschelli, 2010]:  

௜௝݋ = ∑ ܽ௜௝
[ఈ]

ఈ ,      (2.5) 

therefore 0 ≤ ௜௝݋ ≤ ,݅ ∀  ܯ ݆ .  The overlapping matrix ۽ preserves the number of layers in 

which the connections are present as compared to matrix ۯ. Nevertheless, matrices  ۯ  and ۽ 

do not provide additional information about the existence of connections between layers, i.e., 

the inter-layer edges [Battiston, Nicosia and Latora, 2014]. 

Moreover, two layers of a multilayer network can be either dependent or independent 

[Bianconi, 2013]. A multilayer is independent if specific connections between nodes in one 

layer do not give any additional information about the chance of connecting nodes in different 

layers. On the contrary, dependent multilayer has recurrent connections among layers or 

inter-layer edges. This work proposes statistical tests to identify recurrent connections, and to 

indentify if a multilayer is dependent or independent. To do so, a new aggregation matrix, 

named matrix ܃ =  :is proposed as follows ,[௜௝ݑ]
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௜௝ݑ = ൜
1, ௜௝݋ ݂݅ > Ψ;   ݅ ≠ ݆;
0, .݁ݏ݅ݓݎℎ݁ݐ݋

       (2.6) 

where ݋௜௝  is given by equation 2.5 and Ψ is a critical upper bound value which is estimated 

under the null hypothesis (ܪ଴) that the multilayer is independent. Let ݋௜௝  be the random 

variable of interest. It represents the number of times one edge between vertex v୧ (hereafter 

known as vertex ݅) and vertex v୨ (hereafter known as vertex ݆) is observed in the multilayer ܩԦ. 

Under the null hypothesis that the multilayer is independent, it can be shown that the 

expected number of times that one edge connecting vertices ݅ and  ݆ happens in a multilayer 

is: 

݁௜௝ =  
ா[೚]

ఎഄ
.      (2.7) 

The aggregation matrix ܃ assumes that ݑ௜௝ = 1 if there is evidence that the null 

hypothesis is rejected, or ݋௜௝ > ݁௜௝. It is straightforward to show that:    

௜௝݋ > ݁௜௝  → ௜௝݋    >  
ா[೚]

ఎഄ
 →   

௢೔ೕ

ா[೚] >  
ଵ

ఎഄ
.     (2.8) 

Alternatively, let  ߨ௜௝ be a random variable defined as ߨ௜௝ =
௢೔ೕ

ா[೚]. ߨ௜௝ is the proportion of 

connections between vertices ݅ and  ݆ among the sum of the total number of edges of the 

multilayer. Therefore, the null and alternative hypothesis are written as: 

൜
:଴ܪ ௜௝ߨ = ఌߨ ,
:ଵܪ ௜௝ߨ > ఌߨ .

       (2.9) 

Where ߨఌ =
ଵ

ఎഄ
. The null and alternative hypothesis, described in equation 2.9, can be 

evaluated using a standard statistical proportion test [Casella and Berger, 2002, p. 493 - 494]. 

Let ߛ be the level of significance of the statistical test. It can be shown that the null hypothesis 

H0 is rejected if: 
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௜௝݋ >
ா[೚]

ఎഄ
+ ܼఊටா[೚]

ఎഄ
(1 −

ଵ

ఎഄ
)      (2.10) 

where ܼఊ  is z-score statistic. For example, if ߛ = 0.05 (5%) then ܼఊ = 1.645. Therefore, given 

Ψ ,ߛ =
ா[೚]

ఎഄ
+ ܼఊටா[೚]

ఎഄ
(1 −

ଵ

ఎഄ
). Alternativelly, Ψ is the upper bound of the observed number 

of edges between vertices ݅ and  ݆ if ܧ[௢] edges were randomly distributed among the layers in 

the multilayer ܩԦ. It is worth mentioning that, under the null hypothesis, the statistical 

distribution of the number of incident edges in each vertex is the same for all vertices in the 

network. Consequently, the threshold is the same for all vertices. Thus, the proposed 

aggregation matrix ܃ is a summary matrix in which vertices ݅ and  ݆ are connected if the 

observed number of edges between vertices ݅ and  ݆ in the multilayer ܩԦ is statistically 

significant.  

 Figure 2.2A  shows the overlapping network ۽ܩ, which is represented by matrix ۽ and 

Figure 2.2B the statistically significant network ܃ܩ, which is represented by matrix ܃. The 

simulated data was previously used in Figure 2.1. The value of Ψ was estimated as 1.49, using 

ܼఊ = 1.645. 
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Figure 2.2: Network aggregation. (A) The overlapping network represented by matrix O. (B) 

The statistically significant network represented by matrix U. 

Centrality Measures 

As previously shown, the elements of the adjacency matrix ܃ represent edges which 

are statistically proven to be non-random. This connecting structure among vertices can be 

further used to identify those which are the most connected. In our proposed questionnaire 

network representation, statistical measures of connections among vertices, known as 

centrality measures, are used to  identify important vertices. 

Some of the most frequently used centrality measures found in the literature [Batool 

and Niazi, 2014] include: betweenness centrality, closeness centrality, degree centrality, 

eigenvector centrality and strength centrality [Barrat et al., 2004]. The first three measures 

were proposed by Freeman [1978] and the eigenvector centrality was proposed by Bonacich 

[1972]. 

The degree of vertex ݅ (݀ܥ௜), given an adjacency matrix ܃, is the number of first order 

neighbors:   
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௜݀ܥ = ∑ ௜௝௝ஷ୧ݑ ,        (2.11) 

where ݑ௜௝ ∈ {0,1}.  

The closeness centrality measure of vertex ݅, shown in equation 2.12, is the inverse of 

the sum of the distances from vertex ݅ to all vertices in the network. The distance between two 

vertices ݅ and ݆, ݈௜௝, is the number of edges in the shortest path to reach vertex ݆ starting from 

vertex ݅.  

௜ܿܥ =
ଵ

∑ ௟೔ೕೕಯ೔
.     (2.12) 

If there is no path between two vertices (i. e., ݈௜௝ = ∞)  the total number of vertices is 

generally used as the distance [Csardi and Nepusz, 2006]. 

The betweenness centrality of vertex ݅ is the number of times the vertex ݅ is found in 

the shortest paths between two other vertices. Let ௛ܶ௝ be the total number of shortest paths 

between vertices ℎ and ݆, then ௛ܶ௝(݅) is the number of those paths that include vertex ݅. The 

betweenness centrality of vertex ݅ is: 

௜ܾܥ = ∑
்೓ೕ(௜)

்೓ೕ
௛ஷ௝ஷ௜  .     (2.13) 

The eigenvector centrality of vertex ݅ is the ݅-th element of the first eigenvector of the 

adjacency matrix ܃, 

ܠߣ =  (2.14)      ,ܠ܃

where ߣ is the eigenvalue and ܠ is the first eigenvector of matrix ܃. The eigenvector centrality 

is a relative score assigned to each vertex. In general, vertices with high eigenvector 

centralities are those which are connected to many other vertices which are, in turn, 

connected to many others (and so on). Further information about eigenvector centrality score 

is found in Bonacich [1972]. 
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  The strength of a vertex ݅, given the overlapping  matrix O,  is the sum of the weights 

of all the edges incident on a vertex ݅: 

௜ݏܥ = ∑ ௜௝݋ .௝      (2.15) 

Multilayer Network Statistical Independence Test 

The edges represented in matrix ܃ rejected the null hypothesis shown in equation 2.9. 

Given statistical significance level ߛ, a certain number of the edges will reject the null 

hypothesis even if the null hypothesis is true. This is known as the error type I [Casella and 

Berger, 2002,  p. 382 - 383]. Therefore, given the number of edges in matrix ܃, we propose a 

global statistical test using the number of edges of matrix ܃ or, similarly, the density of matrix 

 ,defined in equation 2.2. A Monte Carlo inference is proposed [Kroese, Taimre and Botev ܃

2011, p. 281- 343]. 

Under the null hypothesis that the multilayer is independent and given the total 

number of edges in each layer, a multilayer network is simulated by randomly connecting pairs 

of vertices in each layer. Then, matrix ܃ and its density ࣞ are estimated. This procedure is 

repeated ܵ times, say ܵ = 10,000, to generate an empirical distribution of ऎ = ࣞଵ, … , ࣞଵ଴,଴଴଴. 

The final p-value is calculated as the proportion of simulated densities greater than the 

observed density (ࣞ௢௕௦): 

݁ݑ݈ܽݒ ܲ = ∑ ௦ࣞ)ܫ ≥ ࣞ௢௕௦)ଵ଴,଴଴଴
௦ୀଵ 10,000⁄     (2.16) 

where ܫ(ࣞ௦ ≥ ࣞ௢௕௦) = 1 if ࣞ௦ ≥ ࣞ௢௕௦ and 0, otherwise. If the p-value <  then it can be ,ߛ

concluded that the null hypothesis is false. 

Fundamentals of Item Response Theory 
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Item Response Theory (IRT) is a psychometric theory used to evaluate data collected 

from a questionnaire or test. It is used to estimate the abilities of the examinees  and also the 

difficulties of the questions (or items). The examinee ability estimated by IRT do not depend on 

the questionnaire, i.e., examinees estimated abilities can be compared even if different 

questionnaires were applied. This property, known as invariance, is one important property of 

IRT as compared to classical test theory [Hambleton and Swaminathan, 1985]. The invariance 

property is obtained by introducing statistical models with separate parameters for the 

examinee ability and the item difficulty [Hambleton,  Swaminathan and Rogers, 1991, p. 2 - 8]. 

The Rasch model [Rasch, 1960] is a widely used IRT model. The item characteristic curve for 

the Rash model is given by [Hambleton,  Swaminathan and Rogers, 1991, p. 13]: 

ܲ( ௜ܻఈ = ,ఈߠ|1 ܾ௜)  =
௘ഇഀష್೔

ଵା௘ഇഀష್೔
  ,    (2.17) 

where   ܲ( ௜ܻఈ = ,ఈߠ|1 ܾ௜)  is the probability model that a randomly chosen examinee with 

ability ߠఈ correctly answers item ݅.  In the Rasch model, the parameter ܾ௜ represents the ability 

required for any examinee to have a 50% (0.50) chance of correctly answering item ݅. 

Estimates for ߠఈ and ܾ௜ in the IRT models are found using the following likelihood equation 

[Hambleton,  Swaminathan and Rogers, 1991]:    

݂൫ݕԦหߠԦ, ሬܾԦ൯ = ∏ ∏ (ܲ( ௜ܻఈ = ,ఈߠ|1 ܾ௜))௬೔ഀ௏
௜ୀଵ (1 − ܲ( ௜ܻఈ = 1|ܾ௜, ఈ))ଵି௬೔ഀெߠ

ఈୀଵ ,  (2.18) 

where ߠԦ = ,ଵߠ) ,ଶߠ … , ெ) is the vector that contains the M examinees abilities,  ሬܾԦߠ =

(ܾଵ, ܾଶ, … , ܾ௏)  is the vector that contains the V difficulties of the items and  ሬܻԦ is the vector of 

observed responses.  

 When allowing examinee choice, the likelihood equation includes the missing-data-

indicator vector ሬܴԦ = (ܴଵ,ଵ, ܴଵ,ଶ, … , ܴ௜,ఈ , … , ܴ௏,୑) where ܴ௜ఈ = 1 if the examinee ߙ response 

for item ݅ is observed; otherwise, ܴ௜ఈ = 0 [Bradlow and Thomas, 1998]. Given ሬܴԦ, the set of 

responses ሬܻԦ can be written as ሬܻԦ = (YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦) [Rubin, 1976], where YሬሬԦ௢௕௦ denotes the 
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observed values and YሬሬԦ୫୧ୱ denotes the missing values. Thus, the new likelihood function, 

described in Bradlow and Thomas [1998], is given by: 

݂ ቂቀYሬሬԦݏܾ݋ , YሬሬԦ݉݅ݏቁ , ሬܴሬԦቚߠሬሬԦ, ሬܾሬԦቃ = ݂ ቂሬܴሬԦቚ ቀYሬሬԦݏܾ݋ , YሬሬԦ݉݅ݏቁ , ,ሬሬԦߠ ሬܾሬԦቃ ݂ ቂቀYሬሬԦݏܾ݋ , YሬሬԦ݉݅ݏቁ ቚߠሬሬԦ, ሬܾሬԦቃ. (2.19) 

 Bradlow and Thomas [1998] showed that if the examinees are allowed to choose items 

then valid inference for θሬԦ and ሬܾԦ can be obtained, using equation (2.18), only if the following 

assumptions are applied: 

݂ൣ ሬܴԦห൫YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦൯, ,Ԧߠ ሬܾԦ൧ = ݂ൣ ሬܴԦหYሬሬԦ௢௕௦, ,Ԧߠ ሬܾԦ൧,    (2.20) 

݂ൣ ሬܴԦหYሬሬԦ௢௕௦, ,Ԧߠ ሬܾԦ൧ = ݂ൣ ሬܴԦหYሬሬԦ௢௕௦൧.    (2.21) 

 The first assumption (2.20) is known as the missing at random (MAR) assumption 

and implies that examinees are not able to distinguish items that they would usually find 

difficult, given their abilities. The second assumption (2.21) implies that examinees of different 

abilities generally do not select broadly the easier or the more difficult items. Details can be 

found in Bradlow and Thomas [1998]. Hereafter, it is assumed that if the examinees are not 

randomly selecting items then the unobserved values are not missing at random.  

 To further illustrate the consequences of the two assumptions described above, 

suppose that item ݅ is very difficult, therefore, only a few examinees with high ability choose to 

answer this item. In this example, the estimates of the difficulty parameter for item ݅ will 

possibly be underestimated. This is because the abilities of the examinees are unknown and 

only a few data for the item ݅ are available. Wang et al. [2012] proposed to include an 

additional random effect parameter to account the process of the selection of items. 

Nevertheless, the proposed model was not able to produce valid statistical inference using the 

simulation study described in Bradlow and Thomas [1998], in which the MAR assumption is 

false. 
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  Particularly, if the IRT data is structured as aggregation networks then frequencies and 

correlations among items (or vertices) selected by the examinees can be represented using 

centrality measures. Furthermore, equation 2.6 creates the aggregation matrix ܃ whose edges 

were individually evaluated under the null hypothesis that the assumptions described in 

Bradlow and Thomas [1998] are true. That is, matrix ܃ represents the questionnaire post-

processed network in which the edges represent pairs of items that rejected the null 

hypothesis of MAR.  In addition, centrality measures can be evaluated as potential predictors 

of the item difficulty.  

 Simulated and real data sets are used to estimate the elements of matrix ܃ and to 

evaluate statistical correlations among the centrality measures and item difficulty. 

Simulation Study 

 The proposed network aggregation method and the centrality measures were 

evaluated using three simulated scenarios.  In all scenarios, there is an additional random-

effect parameter ߛఈ  for each examinee that account for the choice effect, hereafter known as 

choice parameter [Wang et al., 2012].  All scenarios have a questionnaire with 50 items 

(݅ = 1, … , 50) and 1,000 examinees (ߙ = 1, … , 1,000). The examinees can choose 20 items. In 

all scenarios, the abilities of the examinees, ߠఈ, and the difficulties of the items, ܾ௜, are 

generated using a normal density distribution with mean zero and variance one, 

ߤ)݈ܽ݉ݎ݋ܰ~ఈߠ = ଶߪ ;0 = 1) and ܾ௜~ܰߤ)݈ܽ݉ݎ݋ = ଶߪ ;0 = 1). 

 The first scenario, hereafter named scenario 1, is based on the simulation study 

presented by Bradlow and Thomas [1998]. In this scenario, the choice parameter ߛఈ  was set 

equal to the personal ability (ߛఈ =  ఈ). As previously mentioned, the probability of anߠ

examinee correctly answered item ݅ using the Rasch model is greater than 0.50 (50%) if ߠఈ > 

ܾ௜. Therefore, for each examinee ߙ, the items are divided into two groups: the first group 
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comprises items which are easier as compared to the examinee ability, i.e., ܾ௜ ≤  ఈ. This is theߛ

group in which the examinee has a probability higher than 0.50 to achieve a correct answer. 

The second group comprises  items which are more difficult as compared to the examinee 

ability, i.e., ܾ௜ >  ఈ. In this group, the examinee has a probability lower than 0.50 to achieve aߛ

correct answer. Next, a weight value (ݓ௜) is assigned to each item. For items in group 2, the 

weight value is  ݓ௜
[ଶ] = 1; whereas, for items in group 1, the weight value varies from 1 to 2: 

௜ݓ
[ଵ] ∈ {1, 1.1, 1.2, 1.3, … , 1.9, 2.0}. If ݓ௜

[ଵ] = 1 then the MAR assumption is true; whereas, for 

௜ݓ
[ଵ] > 1, the MAR assumption is false. For example, if ݓ௜

[ଵ] = 1.1, then it can be said that the 

items in group 1 have a 10% higher chance of being selected as compared to the items in 

group 2. For each weight value in group 1, ݓ௜
[ଵ], 10,000 Monte Carlo simulations are used. 

Furthermore, for each Monte Carlo simulation, each examinee chooses 20 items. Selected 

items are generated using a multinomial probability distribution. That is, the probability of 

examinee ߙ selecting item ݅ is: 

௜ఈ݌   =
௪೔ഀ

∑ ௪೔ഀ೔
.     (2.22) 

 In the second scenario (scenario 2), similarly to scenario 1,  the items are divided 

into two groups: bellow and above the choice parameter ߛఈ. However in the scenario 2 the 

choice parameter is not fixed, it is updated after each choice made by the examinee, i. e., the 

choice parameter was defined as a vector ߛఈ௧, where t = 1, ..., 20. The selection of the first 

item is similar to scenario 1, i.e.,  ߛఈଵ  ఈ. Suppose the first selected item has a difficultyߠ =

value of ܾ(ଵ). Then,  ߛఈଶ = ܾ(ଵ)  and the remaining items will be divided into two new groups  

using the following rule: one item belongs to group 1 if ܾ௜ ≤  ఈଶ and belongs to group 2 ifߛ

ܾ௜ >  ఈଶ. Given the weigth value for group 2, the next item (second item) is selected using theߛ

multinomial distribution and equation 2.22. After choosing the second item, the items will be 

divided into two new groups again based on the average value of  items difficulty level, 

previously selected, or ߛఈ௧ = ∑ ܾ(௞) ݐ) − 1)⁄௧ିଵ
௞ୀଵ . Therefore, the groups of easy and difficult 
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items are changed using the rule: one item belongs to group 1 if ܾ௜ ≤  ఈ௧  and belongs toߛ

group 2 if ܾ௜ >  ఈ௧. Thus, the  probabilities of selecting new items are changed using the pastߛ

selected items.  

 The proposed second scenario is assumed to be the more consistent with a 

questionnaire applied over a longer period of time. Suppose, for instance, undergraduate 

programs of 4 to 5 years in which an examinee (or student) may pass or fail  a course (or item) 

in each academic semester. As the examinee  passes or fails some of the items, the choice 

parameter  is changed. Consequently, the next items (courses) are chosen based on 

cumulative experience.  In the proposed scenario,  the choice parameter  is estimated using 

the difficulty values of the past selected items. This scenario assumes that the tendency of 

examinees to try harder items  may increase or decrease over time. 

 The third scenario, named scenario 3, is based on a job selection trainee program. In 

this scenario, the job candidates or the examinees are free to choose 20 items from a total 

number of 50 items. Suppose that each examinee must choose one item after a training 

period. The examinees must compete among themselves in order to finish the questionnaire 

with the largest number of difficult items with correct responses. In this situation, the difficulty 

of the selected item must be closer to the ability of the examinee. Examinees which select the 

much more difficult items are more likely to provide incorrect responses and fail the trainee 

program. Similarly, examinees which select the easiest items may also fail the trainee program. 

Given the previous description, the following simulation, named scenario 3, is proposed: 

initially, items with similar difficulties are grouped using the k-means clustering method 

[Hartigan and Wong, 1979]. A total of 10 groups is created. Each group has items with similar 

difficulties and different groups may have different numbers of items. On average, each group 

has 5 items. In the first step we set ߛఈଵ =  ఈ and each examinee is more likely to choose itemsߠ

from the closest group of items using the minimum distance between the choice parameter 
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 ఈଵ and the average group difficulty. In addition to the closest group, each examinee is alsoߛ

more likely to choose items from adjacent groups: the closest group with either a slightly 

higher or slightly lower average difficulty. These three groups are hereafter named the target 

group. Different from scenarios 1 and 2, in which the examinees are more likely to choose the 

easiest items, this scenario creates groups of items from which each examinee is more likely to 

choose items. Each simulation uses different weights for the items in the target group, 

௜ݓ
[ଵ] > 1; whereas for items in the remaining groups, ݓ௜

[ଶ] = 1. As a consequence, the 

probability of the examinees choosing items from the target group is greater than the 

probability of them choosing items from the remaining groups. Similar to scenario 2, after each 

selected item, each choice parameter  (ߛఈ௧) is updated using the 60% percentile of the 

difficulties of the previously selected items. Table 2.1 shows the main features of each 

simulated scenario; also, the differences between them.   

Table 2.1: Summary of the main features of the three simulated scenarios 

Scenario Choice parameter  
Group of items to which greater weight is 

assigned 

1 Fixed 
Items with difficulty below the choice 

parameter 

2 
Changed according to previous 

choice 
Items with difficulty below the choice 

parameter 

3 
Changed according to previous 

choice 
Items with difficulty close to the choice 

parameter 
 

 It is worth mentioning that in each simulated scenario 10,000 Monte Carlo 

simulations were evaluated using ݓ௜
[ଵ] = 1. These are the simulations in which the MAR 

assumption is valid. That is, the selection of items is random, regardless of the abilities of the 

examinees or the difficulties of the items. As a consequence, the simulated multilayer 

networks are independent and both assumptions described in Bradlow and Thomas [1998] are 

true. Furthermore, different intensities of dependence,  i.e., the MAR assumption is false, were 

evaluated: ݓ௜
[ଵ] ∈ {1, 1.1, 1.2, 1.3, … , 1.9, 2.0} for scenarios 1 and 2 and for scenario 3, 
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௜ݓ
[ଵ] ∈ {1, 1.5, 2.5, 5.0, 10, 20, 30, 50}. This is because, for scenario 3, convergence of the 

network density was achieved for larger values of ݓ௜
[ଵ], as compared to scenarios 1 and 2. The 

simulation study was performed using the R software [R Core Team, 2015].  

Case Studies 

The School of Engineer Data Set 

The data set comprises 23 elective (i.e., not mandatory) subjects  attended by 217 

students of Control and Automation Engineering  in years 2004, 2005 and 2006, at the Federal 

University of Minas Gerais (UFMG), Brazil. We obtained permission from the Graduate Studies 

Office of the Federal University of Minas Gerais to access this data set in compliance with 

Brazilian Law no. 12527 which states that all information produced or held in the custody of 

the government, except for personal or legally classified information, is public and therefore 

accessible to all citizens. No personal identification of the students was required, i.e., the data 

was de-identified.  

The selected 217 students were enrolled in at least two of the 23 subjects. Most of the 

students attended from 6 to 12 courses. Therefore, the associated multilayer network has 217 

layers, each layer represents the student network of selected courses. The total number of 

edges in the multilayer network (ܧ[௢]) is 10,253. The total number of vertices, in each layer, is 

23.  

In addition to the selected courses, the difficulty level of each course (ܾ௜) was 

estimated using a survey. The coordinator of the undergraduate program assigned a score 

from 1 to 10 for each subject, where 1 means very easy and 10 means very difficult. In order to 

include the evaluations by the students, the questionnaire was put online. To request the 

participation of the students, a professor from the undergraduate program (cited in the 
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acknowledgments) sent an email to all students. Completion of the questionnaire was entirely 

voluntary. The data was anonymous, i.e., there was no field in the questionnaire for personal 

identification. Twenty four former students assigned score values to the courses. The linear 

correlation of median score values of the former students and the coordinator score values is 

0.62. The final estimate of the difficulty level for each course is the average value of the 

coordinator score and the median score of the former students. 

The coordinator also classified each course into one of the following groups: low 

relevant course, medium relevant course and high relevant course. Each group is based on the 

opinion of the coordinator about the course contribution to the minimum preparation of a 

control and automation engineer. 

The Brazilian Lottery Data Set 

The Mega Sena is a very popular lottery game in Brazil. It happens two times a week, 

on average. The game comprises 6 numbers which are randomly selected from a group of 60 

numbers: 1, 2, . . . , 60. Selected numbers from previous games are available online 

(http://loterias.caixa.gov.br/wps/portal/loterias/landing/megasena).  All numbers drawn in 

the Brazilian Lottery are obtained by clicking on the link "Resultado da Mega sena por ordem 

crescente"  located at the bottom of the page. The data are publicly available for free 

download, therefore no permission was required. 

 We evaluated the numbers from the first game, in  March 11, 1996 to game number 

1,741, which happened in September 12, 2015. Therefore, the multilayer network has 1,741 

layers. Each layer has a total of 60 vertices and 6 selected vertices, forming a clique. The total 

number of edges in the multilayer network (ܧ[௢]) is 26,115. This data set was selected because 

it represents a real case data in which the MAR assumption is supposed to be true. 
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Results 

Figure 2.3 shows boxplots of the density statistic (ࣞ) of matrix ܃ for the simulated 

scenarios (1, 2 and 3), for the different values of ݓ௜. Note that if ݓ௜ = 1 then the MAR 

assumption is true. Figure 2.3 also shows a horizontal line which represents the 95th percentile 

of the simulated densities for ݓ௜ = 1. Therefore, simulations in which the density is above the 

horizontal line statistically reject the MAR assumption. For scenario 1, shown in Figure 2.3A,  

when ݓ௜ = 1.1 the simulated density distribution was slightly different from the MAR 

simulated density. If ݓ௜ > 1.1 then the simulated density distributions become much different 

from the MAR simulations. In general, the larger the weigth ݓ௜ the greater the differences 

between simulated densities and simulated densities under the MAR assumption. Therefore, 

simulated results for scenario 1 show that the greater the density statistic of matrix U the 

more likely the examinees are choosing easier items given their personal abilities. 

Figure 2.3B  shows simulated results for scenario 2. It is worth mentioning that the 

results for ݓ௜ = 1 are similar to scenario 1.  The greater the value of ݓ௜ the greater the 

differences between simulated densities and the MAR simulations, as similar to scenario 1. 

Furthermore, scenario 2 has a larger increasing rate of the distances as compared to scenario 

1. For example, the median density for scenario 1  is  0.082 if  ݓ௜ = 1.2, whereas for scenario 2 

the median density is 0.132 using the same ݓ௜ value. This is because selected items are 

affected by previous selected items in scenario 2. At each step, when the examinee chooses an 

easier item, the number of items that comprises group 1 became smaller. As a consequence, 

the chance of choosing these fewer (and easier) items in the future is high. Thus, the network 

density rate is larger for scenario 2 as compared to the network density rate for scenario 1. 

Figure 2.3C shows simulated results for scenario 3. Larger values for ݓ௜ were used to 

show convergence of the density statistic, which achieved convergence for smaller values of ݓ௜ 
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in scenarios 1 and 2. Similar to scenarios 1 and 2, the larger the values of ݓ௜ the larger the 

density statistic. Furthermore, the density statistic achieved larger values before reaching 

convergence, as compared to scenarios 1 and 2. This is because the edges in matrix U, in 

scenario 3, are not concentrated toward the easiest items. 

 

Figure 2.3: Boxplots of the simulated densities for different values of  weight ࢏࢝. (A) Scenario 

1. (B) Scenario  2. (C) Scenario 3. The lower outer contour of the rectangle indicates the first 

quartile (Q1), the upper outer contour of the rectangle indicates the third quartile (Q3) and the 

horizontal line inside the rectangle indicates the median (Q2). Vertical lines extended from the 

box indicate variability outside the first and third quartiles. The upper vertical line indicates the 

maximum observed value within the range [Q3; Q3+1.5(Q3-Q1)]. The lower vertical line 

indicates the minimum observed value within the range [Q1; Q1-1.5(Q3-Q1)]. Observations 

beyond the vertical lines are represented as points and indicate outliers. 

In addition to the density statistic, the centrality measures were also evaluated for 

simulated scenarios 1, 2 and 3. For different values of ݓ௜, the Pearson linear correlation 

coefficient [McDonald, 2014,  p. 190 – 208] between simulated difficulties (ܾ௜) and estimated 

centrality measures for each item was calculated. Figures  2.4 - 2.9 show mean values of the 

linear correlation and the 95% highest probability density (HPD)[Chen and Shao, 1999] interval 
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for each ݓ௜ value. Figure 2.4, Figure 2.6 and Figure 2.8 show centrality measures calculated 

using matrix O. Figure 2.5, Figure 2.7 and Figure 2.9 show centrality measures calculated using 

matrix U.  It is worth noticing that the HPD intervals are centered at zero if ݓ௜ = 1. This is 

because under MAR assumption the correlation between the difficulties of the items and 

centrality measures are zero, on average.  

Results show that the linear correlation between item difficulty and degree centrality, 

and between item difficulty and the betweenness centrality, using matrix O, was always zero. 

This is because, in all simulations, matrix O became fully connected and, consequently, both 

degree and betweenness centrality measures assumed the same value for all vertices. It is 

worth mentioning that the correlation between these two centrality measures and the 

difficulty of the items were set to zero because there is no correlation if one of the variables is 

actually a constant.  In scenarios 1 and 2, the closeness centrality measure using matrix O is 

positively correlated to item difficulty. This is because the weights of the edges are interpreted 

by the algorithm as cost [Dijkstra, 1959]. Therefore, the easier items, with smaller values of ܾ௜,  

also present smaller values of closeness, and vice-versa. If matrix U is used, then the 

correlation is negative. This is because matrix U is binary and sparser and, as a consequence, 

the easiest items have larger values of closeness, and vice-versa. Furthermore, using matrix O, 

HPD intervals for strength and eigenvector centrality measures are very similar for scenarios 1 

and 2. For scenario 3, the HPD intervals for the eigenvector centrality measure are superior, 

with higher mean and non-overlapping intervals, as compared to the HPD interval of the 

strength centrality measure. It is worth noticing that since the examinees choose a fixed 

number of items (20 items), the strength centrality measure is proportional to the frequency 

of selected items. As a conclusion, for scenarios 1, 2 and 3 the eigenvector centrality measure 

is consistently one of the centrality measures most correlated to item difficulty. Therefore, 

there is evidence that the eigenvector centrality measure is a superior and robust statistic for 

evaluating item difficulty as compared to the evaluated centrality measures.  
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 Unlike matrix O, for a larger number of examinees, matrix U does not become 

saturated. As a consequence, none of the evaluated centrality measures become saturated. 

Furthermore, the strength and degree centrality measures are similar if matrix U is used. This 

is because the strength centrality measure, using a non-weighted matrix, is equal to the 

degree centrality measure. It is worth noticing that using matrix U the closeness and 

betweenness centrality measures, which are related to network paths, did not correlate 

equally well with item difficulty as compared to degree and eigenvector centrality measures. 

This is because matrix U is a simplified matrix in which the edges are related to the strength of 

the items rather than to network internal connectivity. Therefore, no physical meaning was 

assigned to the distance between two items in matrix U. 

In general, the eigenvector centrality measure using matrix O achieved slightly 

superior results as compared to matrix U for scenarios 1 and 2. This is because the easiest 

items are the most likely choices among the examinees in these scenarios. These items are 

easily detected using frequency information, which is best represented in matrix O. It is worth 

mentioning that matrix U is a sparser matrix carrying partial information of matrix O. 

Nonetheless, results using matrix U are very close to the results using matrix O. Thus, there is 

evidence that the information loss using matrix U is minimal.  

For scenario 3, results using matrix U are slighlty superior than using matrix O. This is 

because the examinees are more likely to choose different groups of items according to their 

personal abilities, as opposed to a commom group, which are the easiest items used in 

previous scenarios.  In general, examinees in scenario 3 are more likely to choose items from 

the target group. The target group has some items which are sliglty more difficult or less 

difficult as compared to the examinee ability. If the examinees choose the easier items in the 

target group then confounding elements are created in matrix O. The filtering procedure 

applied to matrix O minimizes the presence of confounding elements in matrix U. Therefore, 
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centrality measures using matrix U are more correlated to item difficulty as compared to 

matrix O in scenario 3. 

 

Figure 2.4: HPD intervals for Pearson linear correlation coefficient between simulated 

difficulties and centrality measures using matrix O for different weight values (࢏࢝) – Scenario 

1. HPD is the narrowest interval containing 95% of  the Monte Carlo estimates. The symbols 

inside the intervals indicates the mean value of all the Monte Carlo estimates.  
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Figure 2.5: HPD intervals for Pearson linear correlation coefficient between simulated 

difficulties and centrality measures using matrix U for different weight values (ܑܟ) – Scenario 

1.  
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Figure 2.6: HPD intervals for Pearson linear correlation coefficient between simulated 

difficulties and centrality measures using matrix O for different weight values (ܑܟ) – Scenario 

2. 
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Figure 2.7: HPD intervals for Pearson linear correlation coefficient between simulated 

difficulties and centrality measures using matrix U for different weight values (࢏࢝) – Scenario 

2. 
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Figure 2.8: HPD intervals for Pearson linear correlation coefficient between simulated 

difficulties and centrality measures using matrix O  for different weight values (ܑܟ) – 

Scenario 3. 



 

32 
 

 

Figure 2.9: HPD intervals for Pearson linear correlation coefficient between simulated 

difficulties and centrality measures using matrix U for different weight values (࢏࢝) – Scenario 

3. 

 Finally,  Figure 2.10 shows the bias and the estimated eigenvector, using matrix O, 

both when the MAR assumption is valid (Figure 2.10A) and for different violations of the MAR 

assumption (Figure 2.10B  to Figure 2.10D), using scenario 1. Difficulties were estimated using 

marginal maximum likelihood [Bock and Aitkin, 1981]. The bias of the estimates is the 

difference between  true simulated item difficulty and  estimated item difficulty, ܾ௜ − ෠ܾ௜. In 

addition, information regarding whether the degree of matrix U is equal to zero or greater 

than zero is included. If the degree of matrix U is equal to zero, then the items were selected 

by fewer examinees and were considered as non-recurrent items in the multilayer network 
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analysis. If the degree of matrix U is greater than zero, then the items were statistically 

evaluated as recurrent items in the multilayer network. It is worth noticing that the 

eigenvector is a measure within the range 01. If the MAR assumption is not violated, then the 

eigenvector is concentrated towards 1, as shown in Figure 2.10A. The more violated  the MAR 

assumption is, i.e. the greater the ݓ௜, the larger the range of the eigenvector. Therefore, the 

range of the estimated eigenvector is a measure which indicates the degree of  MAR violation. 

Furthermore, for lower values of ݓ௜, the variability of the bias is very similar to the MAR 

assumption. Therefore, it can be concluded that, for mild to moderate violations of the MAR 

assumption, the bias of the estimates is similar to the bias of the MAR estimate, as shown in 

Figure 2.10B and Figure 2.10C. The stronger the violation of the MAR assumption, the closer to 

zero is the lower range of the eigenvector and the larger the bias variability, as shown in Figure 

2.10D. Figure 2.10 also shows that items with larger eigenvector values are associated with 

items having degrees greater than zero. Therefore, these items were frequently selected by 

the examinees and, consequently, the bias is lower as compared to items with smaller 

eigenvectors and degrees equal to zero. These new results show strong evidence that the 

eigenvector centrality measure is correlated with the bias of the estimates of item difficulty 

and is a standardized statistic, since it lies within the range 01. Very similar results were 

found for scenarios 2 and 3: the more violated the MAR assumption, the larger the range of 

the eigenvectors; and, the lower the eigenvector, the greater the variability of the bias. 
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Figure 2.10: Bias of estimated item difficulty versus eigenvector centrality measure, using 

matrix O, for simulated scenario 1. The legend shows two groups of items: those with degree 

equal to zero and those with degree greater than zero, using matrix U. (A) The MAR 

assumption is true. (B) Weight value is 1.5. (C) Weight value is 2. (D) Weight value is 20. 

Case Studies 

Results: School of Engineering Data Set 

Figure 2.11A shows the overlapping network of the school of engineering data set. The 

critical upper bound value was estimated as Ψ = 50.98, using a statistical significance level of 
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5%. Thus, matrix ܃ has two connected subjects (or vertices) if, at least, 51 students selected 

the same pair of subjects. Figure 2.11B shows the final network related to matrix ܃. The 

network has 17 connected vertices, or subjects. The size of the vertex represents the difficulty 

level of each subject, i.e., the larger the vertex, the larger the estimated difficulty score. 

 

Figure 2.11: School of engineering network. (A) Single-layer network using the aggregation 

matrix ۯ. (B) Single-layer network using the aggregation matrix ܃. Vertex size is proportional 

to the difficulty level of each subject. Vertex color indicates the relevance of the course to the 

minimum preparation of a control and automation engineer, according to the opinion of the 

coordinator. 

The p-value, estimated using equation 2.16, is less than 0.0001 (< 10-4). Therefore, 

there is statistical evidence that the null hypothesis of an independent multilayer network is 

false, i.e., there is statistical evidence of a group of subjects commonly selected by the 

students, shown in Figure 2.11B. 
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In addition, the Pearson linear correlation coefficient between eigenvector centrality 

from matrix U and estimated difficulties; and between strength centrality from matrix O and 

estimated difficulties were estimated, as shown in Table 2.2. The correlation between 

eigenvector measures and estimated difficulties is −0.62  (p-value = 0.0015), and between 

strength measures and estimated difficulties is −0.57 (p-value =0.0048). For low and high 

relevant subjects the correlations are statistically non-significant. For high relevant subjects 

the difficulty does not seem to be a determining factor in the student decision, i. e., the 

correlation coefficient is close to zero. Furthermore, there are fewer subjects in low and high 

relevant subjects' groups. On the contrary, for medium relevant subjects the correlation can be 

considered statistically significant. This indicates that the students are selecting subjects with 

lower difficulties among the medium relevant subjects, as can be seen in Figure 2.11B.  

Table 2.2: Pearson linear correlation coefficient between estimated difficulties and 

eigenvector centrality measures; and between estimated difficulties and strength centrality 

measures. 

 

It is worth mentioning that the difficulty scores for the subjects were estimated 

independently, without fitting an IRT model. Results support the claim that centrality 

measures, using the proposed multilayer network approach, are statistically correlated to item 

difficulty. 

Results: The Brazilian Lottery Data Set 

Group of subjects 
Eigenvector Strength Number of 

subjects Correlation p-value Correlation p-value 
all subjects -0.62 0.0015 -0.57 0.0048 23 
Low relevant subjects -0.59 0.1589 -0.51 0.2382 7 
Medium relevant subjects -0.87 0.0006 -0.84 0.0013 11 
High relevant subjects 0.16 0.796 -0.15 0.8142 5 
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Figure 2.12A shows the overlapping network of the Brazilian lottery data set. The 

critical upper bound value was estimated as Ψ = 21.07, using a statistical significance level of 

5%. Thus, matrix ܃ has two connected lottery numbers (or vertices) if the same pair of 

numbers occurred, at least, in 22 games. Figure 2.12B shows the final network related to 

matrix ܃.  

 

Figure 2.12: The Brazilian lottery network. (A) Single-layer network using the aggregation 

matrix ۯ. (B) Single-layer network using the aggregation matrix ܃.  

The p-value, estimated using equation 2.16, is 0.5308. Thus, there is statistical 

evidence that the null hypothesis of an independent multilayer network is true. That is, there 

is no pattern of numbers which are repeatedly being selected. 

Discussion and Conclusion 

This work proposes a network representation for questionnaire data in order to 

estimate network statistics which are correlated to item difficulty. In particular, we address the 



 

38 
 

scenario in which the examinees are allowed to choose fewer items in the questionnaire. In 

this situation, IRT models fail to estimate the difficulties of the items. The proposed approach 

creates a multilayer network using the questionnaire data. In sequence, an overlapping 

network, identified using matrix O, is created using the multilayer network. Statistical 

procedures simplify the overlapping network generating a sparser network, known as matrix 

U. Centrality measures were investigated using both matrices O and U. 

Results using simulated data and real case data sets show that centrality measures are 

strongly and statistically correlated to item difficulty. In the first and second  simulated 

scenarios, the strength and the eigenvector centrality measures, using matrix O, are the most 

correlated measures to item difficulty. It is worth mentioning that the strength centrality 

measure using matrix O is proportional to the frequency of selected items. In the third 

scenario, the eigenvector centrality measure, using matrix U, is the most correlated measure 

to item difficulty. Nonetheless, our findings strongly suggest that the eigenvector centrality 

measure is the most consistent and robust statistic to estimate item difficulty, as compared to 

the remaining measures.  

Furthermore, the proposed simplified network can be used to create a visual 

representation of the questionnaire, and the pairs of items which are the most frequently 

chosen by the examinees. This is particularly useful for educational researchers. This is 

illustrated using the Brazilian School of Engineering data set. It is worth noticing that the 

simplified network may have edges between items, even though the examinees are randomly 

choosing items. The proposed Monte Carlo statistical inference procedure provides a global 

statistical test which identifies whether the questionnaire multilayer network is independent.  

Future work aims to propose IRT models using the eigenvector centrality measure in 

order to reduce bias estimates of the item difficulty. Two alternatives are currently being 

investigated: weighted log-likelihood maximization, using weights which are proportional to 
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the eigenvector centrality measure; and, linear predictors of the item difficulty, using centrality 

measures as independent variables. 
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Chapter 3 

3. A New Item Response Theory Model to Adjust 

Data Allowing Examinee Choice  

Abstract 

 In a typical questionnaire testing situation, the examinees are not allowed to choose 

which items they would rather answer. The main reason is a technical issue in obtaining 

satisfactory statistical estimates of examinees' abilities and items' difficulties. This paper 

introduces a new Item Response Theory (IRT) model that incorporates information from a 

novel representation of the questionnaire data, using network analysis. Three scenarios in 

which examinees are allowed to select a subset of items were simulated. In the first scenario, 

the assumptions required to apply the standard Rasch model are met, thus establishing a 

reference of the parameters' accuracy. The second and third scenarios include five increasing 

levels of violation of those assumptions. Results show substantial improvements in the 

parameters' recovery over the standard model. Furthermore, the accuracy was closer to the 

reference in almost every evaluated situation. To the best of our knowledge, this is the first 

proposal to obtaining satisfactory IRT statistical estimates in these two last scenarios.   

Keywords: Bayesian Modeling, Examinee choice, Item Response Theory,  Missing data, 

Network analysis,  Selection of items.  
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 Item response theory (IRT) comprises a set of statistical models for measuring 

examinees' abilities through their answers to a set of items (questionnaire). One of the most 

important advantages of IRT is to allow the comparison between examinees who answered to 

different tests. This property, known as invariance, is obtained by introducing separate 

parameters for the examinees' abilities and items' difficulties [Hambleton, Swaminathan and 

Rogers, 1991, p. 2 -8]. The IRT models have optimal properties when all items within a test are 

mandatory to the examinees.  On the contrary, if the examinees are allowed to choose subset 

of items, instead of answer them all, the model estimates may became seriously biased.  This 

problem has been raised by many researchers [Wainer, Wang and Thissen, 1994; Fitzpatrick 

and Yen, 1995; Wang, Wainer and Thissen, 1995;  Bradlow and Thomas, 1998;  Linn, 

Betebenner and Wheeler, 1998;  Cankar, 2010; Wang et al., 2012], but still remains without a 

satisfactory proposal.   

 This is an  important issue because several studies have provided evidences that choice 

has a positive impact in terms of educational development [Brigham, 1979; Baldwin, Magjuka 

and Loher, 1991; Cordova and Lepper, 1996;  Siegler and Lemaire, 1997]. That is, they 

indicated that allowing students to choose increase the motivation and the depth of 

engagement in the learning process.  In a testing situation, allowing choice seems to reduce 

the concern of examinees regarding the impact of an unfavorable topic [Jennings et al., 1999]. 

Besides, it has been claimed as a necessary step for the improvement of educational 

assessment [Rocklin, O’Donnell and Holst, 1995; Powers and Bennett, 2000].  

 Furthermore, it could be used in benefit of important challenges faced in the 

application of IRT models. For example, to achieve the invariance property the items used in 

different tests must be calibrated in the same scale. This is usually done by creating a bank of 

items from which the items used in all these tests shall be extracted. Items in the bank were 

previously calibrated by been exposed to examinees with similar features to whom the tests 
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are intended. Therefore, these items were pre-tested. The pre-test process is typically 

extremely expensive and time-consuming. For example, in 2010 was reported that the 

Brazilian government spent about $3.1 million to calibrate items for an important national 

exam (ENEM). Nevertheless, serious problems were reported to had occurred during the pre-

test, like the supposedly illegal copy of many items by employees of a private high school 

college and their subsequent leakage. In addition, it was released that the number of items 

currently available in the national bank was about 6 thousand, whereas the ideal number 

would be between 15 and 20 thousand. All these events were harshly criticized by the 

mainstream media [Agência Brasil, 2010; Moura, 2010; Borges, 2011; S.P. and Mandelli, 2011]. 

Many recent researches have developed optimal designs for items calibration in order to 

reduce costs and time [Van der Linden and Ren, 2014;  Lu, 2014].  Still, there is a limit for the 

number of items that an examinee can proper answer within a period of time. If the examinees 

are allowed to choose ݒ items within a total o ܸ items (ݒ < ܸ) and satisfactory statistical 

estimates are provided for all the ܸ items, the costs of calibration per item are reduced. 

 This paper presents a new IRT model to adjust data generated using an examinee 

choice allowed scenario. The proposed model incorporates, in the IRT model, network analysis 

information using Bayesian modeling. Results show substantial improvements in the accuracy 

of the estimated parameters as compared to the standard IRT model, mainly in situations in 

which the examinees' choice are not a random selection of items. To the best of our 

knowledge, this is so far the only proposal that achieved a satisfactory parameters' estimation 

in some scenarios reported in literature, known as very critical scenarios to the standard Rasch 

model estimates [Bradlow and Thomas, 1998].  

Material and Methods 

The Standard IRT Model 
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The Rasch model [Rasch, 1960] is a widely used IRT model. The item characteristic 

curve is given by equation 3.1 [Hambleton, Swaminathan and Rogers, 1991, p. 12]: 

ܲ( ௜ܻఈ = ,ఈߠ|1 ܾ௜)  =
௘ഇഀష್೔

ଵା௘ഇഀష್೔
  ,    (3.1) 

where Y୧஑ = {0,1} is a binary variable that indicates whether examinee α correctly answered 

item ݅; ߠఈ is the ability parameter of examinee α; ܾ௜ is the difficulty parameter of item ݅; 

ܲ( ௜ܻఈ = ,ఈߠ|1 ܾ௜)  is the probability that a randomly chosen examinee with ability ߠఈ correctly 

answers item ݅ and the probability of an incorrect response is equal to ܲ( ௜ܻఈ = ,ఈߠ|0 ܾ௜) =

1 − ܲ( ௜ܻఈ = ఈߠ|1 , ܾ௜).  

 In the Rasch model, the ܾ௜ parameter  represents the ability required for any examinee 

to have a 50% (0.50) chance of correctly answering item ݅. Given M examinees and V items, 

estimates for ߠఈ and ܾ௜ in the IRT models are found using the likelihood showed in equation 

3.2 [Hambleton, Swaminathan and Rogers, 1991, p. 41]: 

,Ԧߠ൫ሬܻԦหܮ ሬܾԦ൯ = ∏ ∏ (ܲ( ௜ܻఈ = ,ఈߠ|1 ܾ௜))௬೔ഀ௏
௜ୀଵ (1 − ܲ( ௜ܻఈ = 1|ܾ௜, ఈ))ଵି௬೔ഀெߠ

ఈୀଵ ,  (3.2) 

where ߠԦ = ,ଵߠ) ,ଶߠ … , ெ) is the vector of the examinees' abilities, ሬܾԦߠ = (ܾଵ, ܾଶ, … , ܾ௏) is the 

vector of the items' difficulties and ሬܻԦ is the vector of the observed responses. To use Bayesian 

estimation, the prior distributions ݂(ߠఈ) and ݂(ܾ௜) must be defined. Since ߠԦ ⊥ ሬܾԦ, ߠԦ௥ ⊥  ,Ԧ௦ߠ

ሬܾԦ௣ ⊥ ሬܾԦ௤, for r ≠ s and p ≠ q, then the joint posterior distribution for parameters ߠԦ and ሬܾԦ is 

given by equation 3.3. 

,Ԧߠ)݂ ሬܾԦ|ݕԦ) ∝ ,Ԧߠ|Ԧݕ)ܮ ሬܾԦ) ∏ ݂(ܾ௜
௏
௜ୀଵ ) ∏ ఈߠ)݂

ெ
ఈୀଵ ).   (3.3) 

 In the Rasch model, each latent ability ߠఈ is assumed to come from a standard normal 

distribution. Since the IRT model has more parameters than observations, this restriction is 

necessary. Further information regarding Bayesian estimation of IRT models is found in Fox 
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[2010]. Furthermore, a usual prior distribution for the item parameter is given by equation 3.4 

[Albert, 1992; Patz and Junker, 1999; Curtis, 2010, Fox, 2010, p. 21]: 

ܾ௜|ߤ௕ , ௕ߪ
ଶ~ ܰ(ߤ௕ , ௕ߪ

ଶ).      (3.4) 

where ܰ(ߤ௕ , ௕ߪ
ଶ) denotes a normal distribution with mean of ߤ௕ and variance of ߪ௕

ଶ. One can 

use Markov Chain Monte Carlo (MCMC) methods to sample from the posterior distribution of 

௕ߪ ௕ andߤ
ଶ. Details about MCMC in the context of IRT are found in Patz and Junker [1999]. In 

the Appendix, a BUGS [Gilks, Thomas and Spiegelhalter,  1994] code for the adjustment of the 

standard Rasch model is found. 

Inference under Examinee Choice Design 

 When allowing examinee choice, the likelihood equation includes the missing-data-

indicator vector ሬܴԦ = (ܴଵ,ଵ, ܴଵ,ଶ, … , ܴ௜,ఈ , … , ܴ௏,୑), where ܴ௜ఈ = 1 if examinee ߙ response for 

item ݅ is observed; otherwise, ܴ௜ఈ = 0. Given ሬܴԦ, the set of responses ሬܻԦ can be written as 

ሬܻԦ = (YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦) [Rubin, 1976], where YሬሬԦ௢௕௦ denotes the observed values and YሬሬԦ௠௜௦ denotes the 

missing values. Thus, the likelihood function given in equation 3.2 is rewritten [Bradlow and 

Thomas, 1998] as shown in equation 3.5: 

, ൫YሬሬԦ௢௕௦ൣܮ YሬሬԦ௠௜௦൯, ሬܴԦหߠԦ, ሬܾԦ൧ = ݂ൣ ሬܴԦห൫YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦൯, ,Ԧߠ ሬܾԦ൧݂ൣ൫YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦൯หߠԦ, ሬܾԦ൧,  (3.5) 

and the joint posterior distribution is given by equation 3.6: 

,Ԧߠ)݂ ሬܾԦ, ሬܻሬԦ
,ሬܴሬԦ|ݏݏ݅݉ ሬܻሬԦ

(ݏܾ݋ ∝ ݂ൣ ሬܴԦหYሬሬԦ௢௕௦ , YሬሬԦ௠௜௦, ,Ԧߠ ሬܾԦ൧݂ൣYሬሬԦ௢௕௦ , YሬሬԦ௠௜௦หߠԦ, ሬܾԦ൧ ∏ ݂(ܾ௜
௏
௜ୀଵ ) ∏ ఈߠ)݂

ெ
ఈୀଵ ).   (3.6) 

 Bradlow and Thomas [1998] showed that if examinees are allowed to choose items 

then valid statistical inference for θሬԦ and ሬܾԦ can be obtained using equation 3.2 only if the 

assumptions in equations (3.7) and (3.8) hold: 
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݂ൣ ሬܴԦห൫YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦൯, ,Ԧߠ ሬܾԦ൧ = ݂ൣ ሬܴԦหYሬሬԦ௢௕௦ , ,Ԧߠ ሬܾԦ൧,    (3.7) 

݂ൣ ሬܴԦหYሬሬԦ௢௕௦ , ,Ԧߠ ሬܾԦ൧ = ݂ൣ ሬܴԦหYሬሬԦ௢௕௦൧.    (3.8) 

 Assumption (3.7) is known as the missing at random (MAR) assumption and implies 

that examinees are not able to distinguish which items they probably would answer correctly. 

Assumption (3.8) implies that examinees of different abilities generally do not broadly select 

the easier or the more difficult items. Further details are found in Bradlow and Thomas [1998]. 

If both assumptions (3.7) and (3.8) hold, then the posterior distribution can be rewritten as 

shown in equation 3.9: 

݂൫ߠԦ, ሬܾԦ, ሬܻԦ௠௜௦௦ห ሬܴԦ, ሬܻԦ௢௕௦൯ ∝ ݂൫ሬܻԦ௢௕௦หߠԦ, ሬܾԦ൯݂൫ሬܻԦ௠௜௦௦หߠԦ, ሬܾԦ൯ ∏ ݂(ܾ௜
௏
௜ୀଵ ) ∏ ఈߠ)݂

ெ
ఈୀଵ ).   (3.9) 

In this case, it is assumed that the process that generates missing data is non-informative. 

Details about statistical inference in the presence of missing data are found in Rubin [1976]. 

Since YሬሬԦ୫୧ୱୱ is unknown, MCMC methods can be used to draw samples from the posterior 

distribution [Patz and Junker, 1999]. That is possible because equation 3.5 is an augmented 

data likelihood. Hereafter, it is assumed that if the examinees are randomly selecting items 

then the unobserved values are MAR; otherwise, the process that generates missing data is 

informative and the unobserved values are not MAR.  

 Wang,  Wainer and Thissen [1995] conducted an experiment called “Choose one, 

Answer all” to test whether the MAR assumption is empirically plausible.  In the experiment, 

225 students indicated, among pairs of items, which items they would rather answer. 

Nevertheless, all items needed to be answered. Results showed that the MAR assumption did 

not hold.  For example, a particular pair of items (items 11 and 12) was introduced to the 

students. One item (item 12) was very difficult as compared to the other item (item 11). It was 

observed that only 20% of the examinees preferred to answer item 12. It was further observed 

that those students who had chosen item 12 performed far better on item 11, which indicated 



 

46 
 

that they had made a disadvantaged choice. Moreover, the examinees who chose item 11 

performed better on both items as compared to those who chose item 12.  These results were 

observed elsewhere (Chi, 1978; Chi, Glaser and Rees, 1982), suggesting that students with 

higher abilities are more able to differentiate difficulties between items.   

 Furthermore, Bradlow and Thomas [1998] performed simulation studies to 

demonstrate the bias in the estimated parameter, using the standard Rasch model in violation 

of assumptions (3.7) and (3.8). The complete data set had 5.000 examinees and 200 items. In 

the simulation study, 50 items were mandatory and the remaining 150 items were divided into 

75 choice pairs. In the experiment in which the first assumption (3.7) was violated, there 

occurred a consistent underestimation of item difficulty for the 50 mandatory items and more 

severe underestimation for the remaining 75 choice pairs. Furthermore, in the experiment in 

which the second assumption (3.8) was violated, there occurred overestimation of item 

difficulty for high-difficulty items and underestimation for low-difficulty items. The authors 

also stated that very little is known about the nature and magnitude of realistic violations of 

those assumptions.  

 Wang et al. [2012] proposed the inclusion of a random-effect parameter γ஑ in the 

standard IRT models to account for the choice effect. The proposed model produced better 

results in some simulated scenarios as compared to the standard IRT model. Nevertheless, the 

authors state that if the first (3.7) or the second assumption (3.8) is violated, as described in 

Bradlow and Thomas [1998], valid statistical inferences are not obtained for the standard IRT 

model, or for the proposed model with the random-effect parameter.  

Network Information 

 In the Chapter 2 of this thesis, several simulation studies in violation of the MAR 

assumption were performed, in which M examinees choose ఈܸ items from a total of ܸ items, 
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0 < ఈܸ ≤ ܸ. A novel representation of examinees and their selected items using network 

analysis was proposed. The data set was coded as layers, vertices (or nodes) and edges.  

Briefly, a network (or graph) G = ൫VሬሬԦ, EሬሬԦ൯ consists of a set of ܸ vertices (VሬሬԦ) that identify 

elements of a system and a set of E edges (EሬሬԦ) that connect pairs of vertices {ݒ௜,  ௝}, pointingݒ

out the presence of a relationship between the vertices [Barrat, Barthélemy and Vespignani, 

2008]. In the proposed network representation, each examinee is represented as a single 

network in which the ܸ items are the vertices and every pair of the ఈܸ selected items is 

connected by an edge. That is, the data set is initially represented as M single-layer networks, 

or a multilayer network ܩԦ = ,ଵܩ) ,ଶܩ … ,  ெ) [Battiston, Nicosia and Latora, 2014]. From theܩ

multilayer network, two matrices are created.  

The first matrix, called overlapping matrix, ۽ = ܸ ௜௝൧, is a weighted݋ൣ × ܸ matrix in 

which the elements ݋௜௝  indicate the number of examinees that chose both items ݅ and ݆ 

[Bianconi, 2013; Battiston, Nicosia, Latora, 2014]: 

௜௝݋ = ∑ ܽ௜௝
[ఈ]ெ

ఈୀଵ      (3.10) 

where ܽ௜௝
[ఈ] = 1 if examinee ߙ chose both items ݅ and ݆ and 0 otherwise, 0 ≤ ௜௝݋ ≤ ,݅ ∀  ܯ ݆. 

The second matrix, called matrix ܃ = ܸ is a binary , [௜௝ݑ] × ܸ matrix in which ݑ௜௝ is equal to 1 

if ݋௜௝  (equation 3.10) is greater than a threshold (Ψ) and zero otherwise. The threshold is 

calculated to identify recurrent edges in the multilayer network and is given by equation 3.11: 

Ψ =
ா[೚]

ఎഄ
+ ܼఊටா[೚]

ఎഄ
(1 −

ଵ

ఎഄ
),      (3.11) 

where ܧ[௢] =  ∑ ௏ഀ (௏ഀ ିଵ)

ଶ
ெ
ఈୀଵ  is the total number of edges in the multilayer network, 

ఌߟ =
௏(௏ିଵ)

ଶ
  is the maximum number of edges in a single-layer network and  ܼఊ  is a z-score 

statistic (ܼ଴,଴ହ = 1.645). Under the null hypothesis, the statistical distribution of the number 
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of incident edges in each pair of vertices is the same. Thus, Ψ represents the upper bound of 

the observed number of edges between vertices ݅ and ݆ under the hypothesis that the ܧ[௢] 

edges are randomly distributed. Further details are found in the Chapter 2 of this thesis. 

Therefore, matrix ܃ is a binary matrix that preserves only the statistically significant edges, as 

shown in equation 3.12:  

௜௝ݑ = ൜
1, ௜௝݋ ݂݅ > Ψ;   ݅ ≠ ݆;
0, .݁ݏ݅ݓݎℎ݁ݐ݋

       (3.12) 

 In the Chapter 2 of this thesis, it was shown that the density of matrix U can be used to 

test whether the MAR assumption holds. Furthermore, the larger the density of matrix U the 

more violated the MAR assumption; that is, the density of matrix U indicates the violation level 

of the MAR assumption. The density of a network G = ൫VሬሬԦ, EሬሬԦ൯ is given in equation 3.13  [Lewis, 

2009, p. 53]:  

ࣞ =
ଶா

௏(௏ିଵ)
.     (3.13) 

Moreover, in the Chapter 2 several simulation studies using three different scenarios 

were performed. Several network centrality measures, and their correlations with item 

difficulty when MAR assumption is violated, were evaluated. Most frequently centrality 

measures found in literature [Batool and Niazi, 2014] were tested.  The eigenvector of matrix 

O was found to be the most consistent and robust network statistic to estimate item difficulty.  

The eigenvector centrality of a vertex ݅ (ߩ௜) is the ݅-th element of the first eigenvector of matrix 

O: 

ρሬԦߣ = ભρሬԦ      (3.14) 

where ભ represents the matrix O,  ߣ is the eigenvalue and ρሬԦ is the first eigenvector of matrix O. 

Further details about eigenvector centrality are found in Bonacich [1972]. In addition, their 

simulation study indicates that the larger the MAR assumption violation, the larger the 
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correlation between the eigenvector centrality and items difficulties. It is worth mentioning 

that the eigenvector centrality assumes values within the range 01. Therefore, it provides a 

standardized measure of vertex centrality. 

The Proposed Model 

 In general, the relation between item difficulty ܾ௜ and first eigenvector of matrix O can 

be written as shown in equation 3.15.    

ܾ௜ =  (3.15)      (௜ߩ)݃

where ݃(ߩ௜) is a function of the ݅-th element of the first eigenvector ρሬԦ. We propose a new IRT 

model that takes into account the relation shown in equation 3.15. This can be achieved 

defining the following prior distribution: 

ܾ௜|ߤ௕೔
, ௕ߪ

ଶ~ ܰ൫ߤ௕೔
, ௕ߪ

ଶ൯,    (3.16) 

where ߤ௕೔
= ௕ߪ and (௜ߩ)݃

ଶ accounts for the variability of ܾ௜ that can not be explained by ݃(ߩ௜). 

It is worth mentioning that the larger the correlation between ρሬԦ and ሬܾԦ the lower the dispersion 

parameter ߪ௕
ଶ. The posterior distribution, shown in equation 3.6, can be rewritten as follows in 

equation 3.17: 

݂൫ߠԦ, ሬܾԦ, ሬܻԦ௠௜௦௦หρሬԦ, ሬܴԦ, ሬܻԦ௢௕௦൯ ∝ ݂ൣ ሬܴԦหρሬԦ, YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦, ,Ԧߠ ሬܾԦ൧

                                              × ݂ൣYሬሬԦ௢௕௦ , YሬሬԦ௠௜௦หρሬԦ, ,Ԧߠ ሬܾԦ൧ ∏ ݂(ܾ௜
௏
௜ୀଵ ∏ (௜ߩ| ఈߠ)݂

ெ
ఈୀଵ ).

  (3.17) 

If the assumptions (3.7) or (3.8) do not hold but, given ρሬԦ, the equation 3.18 holds, the 

proposed model can provide valid statistical inference.  

݂ൣ ሬܴԦหρሬԦ, YሬሬԦ௢௕௦ , YሬሬԦ௠௜௦, ,Ԧߠ ሬܾԦ൧ ∝ ݂ൣ ሬܴԦหρሬԦ, YሬሬԦ௢௕௦൧.     (3.18) 
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Equation 3.18 assumes that, given ρሬԦ, the missing-data-indicator ሬܴԦ became independent of 

YሬሬԦ௠௜௦, ߠԦ and ሬܾԦ. Further information about conditioning on covariates for missingness 

mechanism become ignorable are found in [Little and Rubin, 1987, p. 9 -17; Bhaskaran and 

Smeeth, 2014]. 

 In this paper, the following mathematical model between ρሬԦ and ሬܾԦ is proposed: 

ܾ௜ = −
ଵ

ఉభ
ቀlog ቀ

ଵି(ఘ೔ିఉమ)
(ఘ೔ାఉమ)ି஼

ቁ +  ଴ቁ    (3.19)ߚ

where ߚ଴,  ߚଵ and ߚଶ are coefficients, to be estimated, and C is the minimum value of ߩ௜, i. e., 

ܥ = min(ρሬԦ). This model represents the inverse equation of a logistic function with a changed 

shape that asymptotically tends to the lowest value of ρሬԦ .The ߚଶ parameter is required to 

move the vector ρሬԦ bellow 1. Furthermore, the ߚଶ parameter is also used to shift vector ρሬԦ above 

its lowest value to prevent that log ቀ
ଵି(ఘ೔ିఉమ)

଴
ቁ = +∞. This model was empirically proposed 

based on the simulation studies, shown in the Results section.  It is worth mentioning that 

other functions to describe the relation between ρሬԦ and ሬܾԦ can be proposed. The BUGS code for 

the Proposed Model is available in the Appendix. 

Simulation Study 

 To investigate the data behavior under the violations of assumptions (3.7) and (3.8), 

we performed several simulations using three different scenarios. In all scenarios, 1.000 

examinees (ߙ = 1, … , 1,000) choose 20 items within a total of 50 items (݅ = 1, … , 50). The 

examinee ability (ߠఈ) and item difficulty (ܾ௜) were both generated from a standard normal 

density distribution and held fixed. The complete data set can be represented by a 1,000 

versus 50 dimensional matrix of binary responses. For each examinee ߙ and item ݅ the 

probability of a correct answer was calculated using equation 3.1. This probability was used to 

generate the outcome ௜ܻఈ  using a Bernoulli random number generator.  
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 In the first scenario, hereafter named scenario 1, both assumptions (3.7) and (3.8) 

were valid. That is, the items were randomly selected by the examinees and consequently the 

process that causes missing data was non-informative. Therefore, this is the scenario in which 

valid statistical inference can be obtained using the standard Rasch model. 

 The second scenario, named scenario 2, is identical to the first simulation scenario 

presented in the Chapter  2. In this scenario, each examinee chooses items based on current 

values of ߠఈ and ܾ௜. That is, for each examinee ߙ, the items are divided into two groups: the 

first group comprises items which are easier as compared to the examinee ability, i.e., ܾ௜ ≤  .ఈߠ

This is the group in which the examinee has a probability higher than 0.50 to achieve a correct 

answer. The second group comprises items which are more difficult as compared to the 

examinee ability, i.e., ܾ௜ >  ఈ. In this group, the examinee has a probability lower than 0.50 toߠ

answer the items correctly. A weight value (ݓ௜) is assigned to the items in each group. For 

items in group 2, the weight value is  ݓ௜
[ଶ] = 1; whereas, for items in group 1, the weight value 

varies from 1.5 to 30: ݓ௜
[ଵ] ∈ {1.5, 2, 5, 10, 30}. For example, if ݓ௜

[ଵ] = 2, then it can be said 

that the items in group 1 have twice the chance of being selected by the examinee as 

compared to the items in group 2. In this scenario, assumptions (3.7) and (3.8) are violated.   

 Finally, in the third scenario, named scenario 3, the examinee choice depends on the 

 the items ,ߙ ௠௜௦. That is, assumption (3.7) is violated. Similar to scenario 2, for each examineeݕ

are divided into two groups. Nonetheless, in scenario 3, the first group comprises items that 

were correctly answered by the examinee in the complete data set (ݕ௜,ఈ = 1) and the second 

group contains the items in which the examinee failed (ݕ௜,ఈ = 0). Likewise scenario 2, for 

items in group 2, the weight value is  ݓ௜
[ଶ] = 1; whereas, for items in group 1, the weight value 

varies from 1.5 to 30: ݓ௜
[ଵ] ∈ {1.5, 2, 5, 10, 30}. This scenario is similar to the second simulation 

study described in Bradlow and Thomas [1998]. 
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 It is worth mentioning that the selected items were generated using a multinomial 

probability distribution. That is, the probability of examinee ߙ selecting item ݅ is: 

௜ఈ݌ =
௪೔ഀ

∑ ௪೔ഀ೔
.     (3.20) 

 In scenario 1, ݓ௜ఈ = 1 ∀ ݅.   

Results  

 In the Results section first we present empirical evidence of the proposed function 

given in equation 3.19 to describe the relation between ሬܾԦ and ߩԦ. Second, we define values for 

the variance parameter of the prior distribution (ߪ௕
ଶ). Prior values of the ߪ௕

ଶ paramater improve 

statistical properties of the proposed model. Finally, several simulation studies are performed 

in different conditions to compare the accuracy of parameters recovery obtained using the 

standard Rasch model and using our proposed model.  

 Empirical Validation of the Proposed Model  

 To evaluate the performance of the proposed function (equation 3.19) to predict item 

difficulty, using the first eigenvector of matrix O, we performed 10.000 Monte Carlo 

simulations for scenarios 2 and 3 and calculated the Residual Sum of Squares (RSS), shown in 

equation 3.21.  

ܴܵܵ =  ∑ (ܾ௜
௏
௜ୀ௜ − ෠ܾ௜)ଶ      (3.21) 

where ෠ܾ௜ is the fitted value of ܾ௜ using equation 3.19. It is worth mentioning that the smaller 

the value of RSS, the better the fit of the model and the lower the bias of the estimates. The  

 ଶ coefficients were estimated using the least-squares method adapted to aߚ ଵ andߚ  ,଴ߚ

nonlinear model in software R [Fox and Weisberg, 2010; R Core Team, 2015]. Table 3.1 shows 

the minimum, mean, maximum and standard deviation values of the RSS for different weight 
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values used in scenarios 2 and 3. In both scenarios, the larger the weights, the lower the RSS. 

Thus, there is empirical evidence that the proposed function seems to provide a better fit in 

situations in which the MAR assumptions is more violated. 

Table 3.1: Summary of Residual Sum of Squares 

Weight 
Scenario 2 Scenario 3 

Min Mean Max Sd Min Mean Max Sd 
1.5 4.6521 10.0364 20.5177 1.8479 7.7194 16.793 32.3424 3.3918 
2 2.1942 5.8299 11.0088 1.2245 2.9474 7.4835 13.6649 1.5131 
5 0.6577 2.5018 5.5351 0.825 0.7303 1.9269 4.2557 0.4335 

10 0.4425 1.9922 4.6373 0.7541 0.4524 1.1196 2.4593 0.2501 
30 0.2682 1.8019 4.4424 0.7522 0.2799 0.738 1.5916 0.1545 

 

 Figure 3.1A shows the density of matrix U versus the RSS, using data generated from 

scenario 2. Figure 3.1B shows the density of matrix U versus the RSS, using data generated 

from scenario 3. In general, the larger the density of matrix U, the lower the RSS. In the 

Chapter 2 of this thesis, was shown that the larger the density of matrix U, the stronger the 

MAR assumption violation. Therefore, the density of matrix U can be used as a predictor of the 

goodness-of-fit statistic of the proposed model, shown in equation 3.19.  
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Figure 3.1: Residual Sum of Squares versus density of matrix U. (A) Scenario 2. (B) Scenario 3. 

 We propose to use the observed density value of matrix U to chose different values for 

௕ߪ
ଶ in the prior distribution (equation 3.16). Lower prior values for ߪ௕

ଶ mean that the posterior 

distribution of ܾ௜ will be concentrated towards its mean, ߤ௕೔
=  i.e., the posterior ,(௜ߩ)݃

estimate of ܾ௜ is mostly defined by the proposed eigenvector centrality function. On the 

contrary, the larger the prior value of ߪ௕
ଶ, the lower the posterior estimate of ܾ௜ is affected by 

the eigenvector centrality function. 

 Based on the results showed in Figure 3.1 and further simulation studies, the proposed 

values of ߪ௕
ଶ are showed in Table 3.2. As previously mentioned, the lower the density of matrix 

U, the larger the prior value of ߪ௕
ଶ. Furthermore, if the density of matrix U is within 0.00.1, 

there is empirical evidence that the MAR assumptions holds. In this case, a large variance value 

is chosen in order to make the prior distribution for ܾ௜ less informative. Future work includes 

exhaustive simulation studies to propose a mathematical function that relates the density of 



 

55 
 

matrix U and the prior value of ߪ௕
ଶ, therefore, further minimizing the bias of the proposed 

model.  

Table 3.2: The proposed values for the variance of the prior distribution 

Density of matrix U Proposed value for ࢈࣌
૛ 

[0 - 0.10] 10 
(0.10 - 0.20] 5 
(0.20 - 0.25] 0.5 
(0.25 - 0.30] 0.4 
(0.30 - 0.35] 0.3 

>=0.35 0.2 

 Figure 3.2 illustrates the proposed function. It shows the plot of ܾ௜ versus ߩ௜ for 10 

Monte Carlo simulations. Black circles represent data generated from scenario 1 (ݓ௜ = 1), in 

which there is no correlation between ሬܾԦ and ߩԦ.  With exception of the black circles, Figure 3.2A 

shows data generated from scenario 2 and Figure 3.2B data generated from scenario 3 using 

three different weight values, ݓ௜ ∈ {2, 5, 30} . The proposed function was adjusted using the 

mean value of ߩ௜ for each simulated weight, that is ̅ߩ௜ = ∑ ௜ߩ
ଵ଴
௜ୀଵ , and is represented as the 

black lines. In both scenarios, the proposed function achieved a good data  fit.  
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Figure 3.2: Item difficulty versus the first eigenvector of matrix O. (A) Scenario 2. (B) Scenario 

3. Black lines represent the proposed function (equation 3.19). 

Accuracy of the Estimated Parameters  

 In order to evaluate the performance of the proposed model as compared to the 

standard Rasch model, 100 Monte Carlo simulations were performed under the three 

scenarios, previously described. Scenario 1 is used as the reference scenario, since in this 

scenario valid statistical inferences can be obtained using the standard Rasch model [Bradlow 

and Thomas, 1998]. The accuracy of the estimated parameters is evaluated  using the bias, the 

root mean square error (RMSE) and the root maximum square error (RSE୑୅ଡ଼) , given by 

equations (3.22), (3.23) and (3.24). 

(௜ܾ)ݏܽ݅ܤ = ∑ (ଵ଴଴
௡ୀଵ

෠ܾ௡௜ − ܾ௜)/100    (3.22) 

(௜ܾ)ܧܵܯܴ = ට ଵ

ଵ଴଴
× ∑ (ଵ଴଴

௡ୀଵ
෠ܾ௡௜ − ܾ௜)ଶ     (3.23) 
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ெ஺௑ (ܾ௜)ܧܴܵ = ටݔܽܯ (⋃  {൫ ෠ܾ௡௜ − ܾ௜൯
ଶଵ଴଴

௡ୀଵ } )   (3.24) 

where ܾ௜ is the true difficulty of item ݅, ෠ܾ௡௜ is the estimated value of ܾ௜ in the n-th Monte Carlo 

simulation. In addition, 95% highest probability density (HPD) intervals [Chen and Shao, 1999] 

are provided for each estimated difficulty. Using the HPD intervals, the proportion of simulated 

parameters that fall within the HPD intervals are calculated. It is worth mentioning that the 

expected a posterior (EAP), i.e., the mean of the posteriori distribution was used as the point 

estimate of ܾ௜ [Kieftenbeld and Natesan, 2012].  

  The standard Rasch model and the proposed model were estimated using the BUGs 

codes shown in Table 3.6 and Table 3.7, in Appendix. The WinBugs [Lunn et al., 2000] software 

was used. The MCMC simulations used 10.000 iterations, a burn-in period of 1.000 iterations 

and a sample period (thin) of 5 iterations. The variance of the prior distribution was selected as 

10, for the standard Rasch model, and was selected according to Table 3.2 for the proposed 

model. Initial values of the parameters were: ߚ଴ = 0, ଵߚ =  −1.5, ଶߚ = 0.01, ௕ߤ = 0, ܾ௜ =

0 ∀݅, ఈߠ =  The convergence of the model was evaluated using the autocorrelation level .ߙ∀ 0

of the chains, which was near to zero, and the trace plot, which indicated that the convergence 

was achieved. The average time to run the standard Rasch model once was 15.10 minutes and 

the average time to run the  proposed model was 15.40 minutes using a Intel (R) Core i7 

processor with 2 GHz and 8 GB of RAM. Further details about model specifications in WinBugs 

can be found in Spiegelhalter et al. [2003]. 

 Figure 3.3 shows differences between the estimates using the standard Rach model 

and the true items' difficulties, plotted against the true items' difficulties. Figure 3.3A shows 

the results using data generated from scenario 1. Figure 3.3B and  3.3C show the results using 

data generated from scenario 2 and scenario 3, respectively, using weight value equals to 10. 

Figure 3.3A shows that the residues ( ෠ܾ௜ − ܾ௜) behave as a random cloud around zero. On the 
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contrary, Figure 3.3B shows that the dispersion of the residues around zero are larger for more 

difficult items. Figure 3.3C shows a severe underestimation of the items' difficulties. Figure 3.4 

shows the estimated 95% HPD intervals and the true items' difficulties (red points). The HPD 

obtained using the data set generated from scenario 1 (Figure 3.4A) and scenario 2 (Figure 

3.4B) contains most of the true items' difficulties. It is worth noticing that some of the HPD 

intervals shown in Figure 3.4B are larger as compared to Figure 3.4A. On the contrary, all the 

HPD intervals shown in Figure 3.4C (scenario 3) do not contain the true item's difficulties,  

which shows a serious model fitting problem. 

 

Figure 3.3: Estimates minus true items' difficulties plotted against true items' difficulties for 

three simulated data sets. (A) Data set generated from scenario 1. (B) Data set generated from 

scenario 2 using weight value equals to 10. (B) Data set generated from scenario 3 using 

weight value equals to 10. 
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Figure 3.4: 95% HPD plotted according the item order for three simulated data sets. Red 

points represent the true items' difficulties. (A) Data set generated from scenario 1. (B) Data 

set generated from scenario 2 using weight value equal to 10. (B) Data set generated from 

scenario 3 using weight value equal to 10. 

 Empirical results showed that the fitting problem reported in scenario 3 can not be 

solved by replacing the standard Rasch model for the proposed model. It can be seen that the 

variability of the bias is lower, nevertheless, the estimated difficulties are consistently shifted 

toward lower values. We suggest fixing this problem by fitting the proposed model in two 

stages. In the first stage, the examinees are free to choose ݒ within V items. In the second 

stage, a few of those V items will be set as mandatory (ݒ௖) and the examinees are required to 

answer, again, these ݒ௖ items. Thus, these ݒ௖ items will be estimated twice as follows: in the 

first stage the ݒ௖ items are adjusted using our proposed method; in the second stage, the 

complete responses of the ݒ௖ items are adjusted separately using the standard IRT model. The 

average difference between the estimated difficulties in the second and the first stages of the 

 ௖ items is calculated and added to the first difficulty estimates of all V items. This procedureݒ

adds a constant value to the estimates obtained in the first stage, thus correcting the bias shift 

in scenario 3.   
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 Two items were used to perform this calibration. Results show that two items were 

sufficient to correct the bias shift. Future work includes more exhaustive simulation studies to 

define the number of mandatory items in the second stage. It is worth mentioning that this 

procedure is not necessary in scenario 2 since the residues are already centered at zero. 

Nevertheless, in a real case situation, is it not possible to identify whether the choice was 

made following scenario 2 or scenario 3.  Nonetheless, this procedure can be applied in both 

scenarios. 

  Table 3.3 shows parameters' accuracy for scenario 1 using the standard Rasch model 

and the proposed model. As previously mentioned, the standard Rasch model achieves valid 

statistical inference in this scenario and will be used as the accuracy reference of the estimated 

parameters. Thus, the reference model has minimum and the maximum Bias of -0.2542 and 

0.1648, respectively. The mean and the maximum values for the RMSE are 0.1225 and 0.2814, 

respectively. The RSE୑୅ଡ଼ represents the largest absolute difference between the true and 

estimated difficulty for each item, the mean value is 0.3251 and the maximum value is 0.7342. 

That is, the largest difference between true and estimated items difficulties in scenario 1 is 

0.7342. The width of the 95% HPD interval is 0.4996, on average, and the maximum width is 

0.8198. Finally, on average, 95.30% of the true items' difficulties is inside the 95% HPD interval 

and the minimum proportion is 82%. 

Table 3.3: Summary of estimated parameters in scenario 1 

STANDARD RASCH MODEL PROPOSED MODEL 

  BIAS RMSE RSE MAX HPD WIDTH INSIDE HPD BIAS RMSE RSE MAX HPD WIDTH INSIDE HPD 

Min -0.2542 0.0718 0.1732 0.4480 82.0% -0.257 0.0835 0.2134 0.4509 86.0% 

Mean -0.0248 0.1225 0.3251 0.4996 95.3% -0.0227 0.1231 0.3111 0.5014 95.0% 

Max 0.1648 0.2814 0.7342 0.8198 100.0% 0.1699 0.2831 0.5715 0.8257 100.0% 

Sd 0.0755 0.0359 0.1013 0.0671 3.44% 0.0784 0.0356 0.0704 0.0675 2.72% 
 

 Furthermore, Table 3.3 shows that the proposed model is suitable to fit data 

generated from scenario 1. This is because the variance of the prior distribution when the 
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density of matrix U is close to zero is sufficiently large, which makes the prior distribution less 

informative. It is worth noticing that the maximum value of RSE୑୅ଡ଼ is lower in the proposed 

model (0.5715) as compared to the standard Rasch model (0.7342). This is because even 

though the data sets were generated using a random selection of items, a correlation between 

the eigenvector and the items difficulties can eventually occur in a few simulations. This may 

be the reason why the maximum value of  RSE୑୅ଡ଼  is lower in the proposed model.  

 Table 3.4 shows accuracies of estimated parameters for scenario 2 using the standard 

Rasch model and the proposed model, with five levels of MAR assumption violation.  The 

standard Rasch model results are close to scenario 1 for lower weight values: ݓ௜ = 1.5 and 

௜ݓ = 2. For larger levels of MAR assumption violation, ݓ௜ = 5, ௜ݓ = 10 and   ݓ௜ = 30, the 

Bias, RMSE and RSE୑୅ଡ଼ values are different from those observed in scenario 1. On the 

contrary, results using the proposed model are closer to those observed in scenario 1, even for 

larger weights. Therefore, our proposed model presents lower Bias, RMSE and RSE୑୅ଡ଼  values, 

narrower 95% HPD width and a larger average proportion of the true items' difficulties inside 

HPD intervals.  
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Table 3.4: Summary of parameters recovery in scenario 2 

STANDARD RASCH MODEL PROPOSED MODEL 

  Weight = 1.5 Weight = 1.5 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2407 0.0733 0.1857 0.4497 68.00 -0.2058 0.0733 0.1773 0.4431 66.00 

Mean -0.0223 0.1333 0.3599 0.5013 93.34 -0.0190 0.1297 0.3507 0.4898 93.66 
Max 0.1528 0.2660 0.6305 0.7535 100.00 0.1507 0.2356 0.5860 0.6885 100.00 
Sd 0.0750 0.0326 0.0833 0.0708 5.41 0.0720 0.0308 0.0774 0.0610 5.30 

  Weight = 2 Weight = 2 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2455 0.0809 0.1751 0.4453 74.00 -0.2028 0.0634 0.1692 0.4323 70.00 

Mean -0.0246 0.1387 0.3748 0.5054 92.22 -0.0255 0.1278 0.3273 0.4816 92.94 
Max 0.1476 0.2693 0.7198 0.7734 100.00 0.1611 0.2286 0.5586 0.6848 100.00 
Sd 0.0788 0.0350 0.1071 0.0830 5.12 0.0740 0.0335 0.0770 0.0644 5.08 

  Weight = 5 Weight = 5 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2168 0.0738 0.1754 0.4135 64.00 -0.1821 0.0717 0.1635 0.3963 66.00 

Mean -0.0311 0.1454 0.3941 0.5315 91.96 -0.0243 0.1224 0.3162 0.4825 94.70 
Max 0.1818 0.3147 0.8963 1.0369 100.00 0.1461 0.2299 0.6164 0.7751 100.00 
Sd 0.0824 0.0509 0.1536 0.1497 7.17 0.0690 0.0371 0.1000 0.1004 4.85 

  Weight = 10 Weight = 10 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2356 0.0757 0.2234 0.3970 64.00 -0.1848 0.0596 0.1602 0.3830 72.00 

Mean -0.0365 0.1467 0.3930 0.5594 92.88 -0.0297 0.1238 0.3228 0.4965 94.10 
Max 0.2016 0.3485 1.1578 1.2580 100.00 0.1441 0.2544 0.6915 0.8789 100.00 
Sd 0.0885 0.0636 0.1718 0.2116 6.56 0.0739 0.0481 0.1262 0.1327 4.58 

  Weight = 30 Weight = 30 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.3008 0.0654 0.1551 0.3837 64.00 -0.2548 0.0591 0.1234 0.3715 72.00 

Mean -0.0321 0.1664 0.4247 0.6061 91.74 -0.0479 0.1365 0.3321 0.5260 93.44 
Max 0.3197 0.5310 1.3339 1.7749 100.00 0.1224 0.3141 0.6980 1.0569 100.00 
Sd 0.1213 0.1009 0.2573 0.3192 6.21 0.0878 0.0632 0.1335 0.1843 5.20 

 
  Table 3.5 shows results using scenario 3. The RSME and RSE୑୅ଡ଼ values for both 

models are larger than those values observed in scenario 2. Results of the proposed model are 

different from those values observed in scenario 1 only for ݓ௜ = 30. Nevertheless, the 

proposed model presents better results as compared to the standard Rasch model, especially 

for larger levels of MAR assumption violation (ݓ௜ = 5, ௜ݓ = 10, ௜ݓ = 30). In general, main 

conclusions are similar to those found for scenario 2.  
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 In addiction, it is worth noticing that the largest difference between true and 

estimated items' difficulties is 0.7082 in the proposed model, whereas using the standard 

Rasch model the largest difference is 1.3339. This improvement is significant since the scale of 

the items' difficulties is based on a  standard normal distribution.  

Table 3.5: Summary of parameters recovery in scenario 3 

STANDARD RASCH MODEL PROPOSED MODEL 

  Weight = 1.5 Weight = 1.5 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2444 0.0811 0.1954 0.4538 68.00 -0.2370 0.0806 0.1798 0.4560 76.00 

Mean -0.0254 0.1386 0.3778 0.5066 92.70 -0.0328 0.1373 0.3640 0.5085 92.86 
Max 0.1593 0.2778 0.6631 0.8751 100.00 0.1493 0.2700 0.6367 0.8722 100.00 
Sd 0.0749 0.0349 0.0889 0.0717 5.59 0.0763 0.0340 0.0892 0.0718 4.72 

  Weight = 2 Weight = 2 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2286 0.0823 0.1937 0.4631 74.00 -0.2263 0.0868 0.2217 0.4522 64.00 

Mean -0.0294 0.1420 0.3764 0.5159 92.88 -0.0469 0.1412 0.3600 0.5000 91.70 
Max 0.1410 0.2841 0.6047 0.8906 100.00 0.1291 0.2507 0.5056 0.7951 100.00 
Sd 0.0717 0.0320 0.0870 0.0730 5.93 0.0723 0.0311 0.0728 0.0608 7.05 

  Weight = 5 Weight = 5 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2104 0.0731 0.2066 0.5098 66.00 -0.2104 0.0615 0.1343 0.4736 72.00 

Mean -0.0565 0.1611 0.4364 0.5743 91.98 -0.0461 0.1339 0.3452 0.5205 93.96 
Max 0.1110 0.2780 0.7341 1.0585 100.00 0.1111 0.2354 0.4734 0.8205 100.00 
Sd 0.0691 0.0375 0.1119 0.0913 6.61 0.0702 0.0333 0.0734 0.0607 5.38 

  Weight = 10 Weight = 10 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.2967 0.0907 0.2690 0.5681 54.00 -0.2572 0.0559 0.1573 0.5050 64.00 

Mean -0.0847 0.1945 0.5134 0.6416 89.56 -0.0742 0.1485 0.3615 0.5511 92.40 
Max 0.0970 0.3312 1.0218 1.2108 100.00 0.1193 0.2759 0.5444 0.8494 100.00 
Sd 0.0809 0.0453 0.1375 0.1051 8.97 0.0819 0.0431 0.0788 0.0598 7.66 

  Weight = 30 Weight = 30 

  BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD BIAS RMSE RSE MAX WIDTH HPD INSIDE HPD 
Min -0.4101 0.1066 0.2877 0.6803 56.00 -0.3770 0.0623 0.1640 0.5362 62.00 

Mean -0.0970 0.2436 0.6307 0.7613 86.74 -0.0684 0.1710 0.3785 0.5757 87.20 
Max 0.1275 0.4483 1.0165 1.4042 98.00 0.3421 0.3887 0.7082 0.8335 100.00 
Sd 0.1260 0.0639 0.1592 0.1164 9.09 0.1428 0.0787 0.1132 0.0496 7.22 

 
 Figure 3.5 shows differences between the proposed model and the standard Rasch 

model using a data set generated from scenario 2, with weight equal to 10. The same data set 

was used in Figure 3.3B. Figure 3.5A presents the residues of the standard Rasch model and 
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Figure 3.5B presents the residues of the proposed model. Results shown in  Figure 3.5B seems 

to be a random cloud centered at zero, as observed in Figure 3.3A. Furthermore, differences 

between the true and estimated items' difficulties are, in general, lower for the proposed 

model. 

 

Figure 3.5: Differences between estimated and true items' difficulties plotted against true 

items difficulties, using data set generated from scenario 2, with weight value equals to 10. 

(A) Estimated values using the standard Rasch model. (B) Estimated values obtained using the 

proposed Model. 

 Figure 3.6 shows differences between the proposed model and the standard Rasch 

model using the same data presented in Figure 3.3C. The proposed two stage procedure is able 

to center the residues at zero. That is, the severe underestimation problem observed in Figure 

3.3.3C is fixed. Figure 3.6A shows the results of the standard Rasch model. It is worth noticing 

that these results are the previously estimated results, shown in Figure 3.3C, with the addition 

of the constant shift. Figure 3.6B shows results using the proposed model.  The residues of the 
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proposed model are closer to a random cloud centered at zero, as observed in Figure 3.3A,  

compared to residues of the standard Rasch model. 

 

Figure 3.6: Differences between estimated and true items' difficulties plotted against true 

items difficulties, using data set generated from scenario 3, with weight value equals to 10. 

(A) Estimated values using the standard Rasch model. (B) Estimated values using the proposed 

model. 

Discussion and Conclusion 

 This paper presents a new IRT model to estimate items' difficulties using questionnaire 

data in which examinees are allowed to choose a subset of items. Using network analysis, new 

information is incorporated in the model. Results are presented using three simulation 

scenarios. In the first scenario, the assumptions required in literature to apply the standard 

Rasch model are met. This scenario is used as the reference scenario. Second and third 

scenarios include five increasing levels of violations of those assumptions. These scenarios are 
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reported in IRT literature and, to the best of our knowledge, none existing proposal had 

provided satisfactory results.   

 In both scenarios 2 and 3, the standard Rasch model is robust for lower levels of 

violations. The proposed model performs better in both scenarios, especially for larger levels 

of violations. Furthermore, the proposed model is able to achieve accuracies of the estimated 

parameters closer to reference values for both scenarios and different levels of violations, 

except for the largest violation level in scenario 3. As our main conclusion, we strongly 

recommend the use of the proposed model over the standard Rasch model, if allowing 

examinees to choose items.  

 In order to overcome further technical issues that prevents allowing examinee choice 

in practical situations, further investigations are required. For instance, real data set analyses 

are a crucial point to understand how examinees actually make their choices. Experiments in 

which examinees are required to indicate which subset of items they would rather answer, 

despite of all items being mandatory, could be used. Furthermore, some important issues like 

the number of items and which items should be mandatory for the two stage adjustment were 

out of the scope of this paper, and requires further investigation. Finally, the proposed 

approach requires further evaluation and research in order to be used in more complex IRT 

models. 
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Appendix 

 Table 3.6 shows the BUGS code for the standard Rasch model estimation using MCMC 

method. This BUGs code can be run using one of the following free softwares: WinBugs [Lunn, 

et al., 2000], OpenBugs [Thomas et al., 2006] and JAGS [Plummer, 2003]. Generally speaking, 

the BUGs code comprises the likelihood function (lines 2-5) and the prior distributions (lines 6-

9). It is worth mentioning that BUGs language uses the precision parameter as opposed to the 

variance parameter for the normal. Thus, line 10 shows the precision parameter as a function 

of the standard deviation. Further details about BUGS code to fit IRT models can be found in 

Curtis [2010].  

Table 3.6: BUGS code for the standard Rasch Model 

1 model <- function(){ 
2 for( alfa in 1 : M ) { 
3  for(i in 1:V){ 
4   y[alfa,i] ~ dbern(prob[alfa,i]) 
5   logit(prob[alfa,i])<-theta[alfa]-b[i] }} 
6     for ( alfa in 1 : M ) { 
7      theta[alfa] ~ dnorm(0,1)} 
8 for(i in 1:V){ 
9  b[i] ~ dnorm(m.b,pr.b)} 
10 pr.b<-pow(s.b,-2)} 

 

 Table 3.7 shows the BUGS code for the proposed model estimation. Lines 2-5 comprise 

the likelihood function, lines 6-8 shows the hyperparameters' prior distributions (ߚ଴, ߚଵ and 

 It is worth noticing .(ఈ and ܾ௜ߠ) ଶ) and lines 9-14 shows the parameters' prior distributionsߚ

that Line 8 shows that the prior density distribution of ߚଶ was truncated in the left at 0.0001 in 

order to avoid division by zero in equation 3.19, that is, ߚଶ > 0. Furthermore, in Line 12, 

"rho[i]" represents ߩ௜ and, in Line 13, "C" represents the lowest value of ρሬԦ; both values are 

data driven.   
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Table 3.7: BUGS code for the Proposed Model 

1 model <- function(){ 
2 for( alfa in 1 : M ) { 
3  for(i in 1:V){ 
4   y[alfa,i] ~ dbern(prob[alfa,i]) 
5   logit(prob[alfa,i])<-theta[alfa]-b[i] }} 
6 beta0~dnorm(0,0.001) 
7 beta1~dnorm(0, 0.001) 
8 beta2~dnorm(0, 0.001)I(0.0001,) 
9 for( alfa in 1 : M ) { 
10  theta[alfa] ~ dnorm(0, 1)} 
11 for(i in 1:V){  
12  m.b[i]<- -1/beta1 * (log((1-rho[i] + beta2)/(rho[i] 13                      
+ beta2 - C)) + beta0) 
14  b[i] ~ dnorm(m.b[i],pr.b[i]) } 
15 pr.b<-pow(s.b,-2)} 
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