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Resumo

Sistemas Dinâmicos Max-Plus Lineares são sistemas modelados por Grafos de

Eventos Temporizados (GET) cuja dinâmica pode ser descrita pela álgebra max-

plus. Esta tese trata de políticas de controle aplicadas à Sistemas Dinâmicos

Max-Plus Lineares. Uma nova formulação multi-objetivo para problemas de con-

trole é proposta, tal formulação é baseada em problemas de otimização e, por meio

desta, é possivel considerar restrições não convexas (na álgebra convencional) no

problema. Duas políticas de controle são obtidas a partir do problema geral.

A primeira política de controle é o Controle “Just-in-Time” em malha aberta,

que pode ser desenvolvida tanto em horizonte finito quanto em horizonte infinito

visando a economia de recursos e o controle ótimo. As condições necessárias

e suficientes para a solução dos problemas são apresentadas, bem como a dis-

cussão sobre a complexidade computacional dos métodos propostos. Visando

solucionar os problemas de controle, alguns conceitos da álgebra max-plus, como

espaços (A,B)-invariantes, Teoria da Residuação e a Teoria dos Semimódulos, são

utilizados. Devido à complexidade computacional do método geral de solução,

propriedades algébricas são utilizadas para solucionar uma classe importante de

problemas de interesse prático. A segunda política de controle é o Controle por

Realimentação de Estados no contexto “Just-in-Time”. As condições para a ex-

istência de uma matriz de realimentação são apresentadas e, se esta matriz existe,

um meio para encontrar a maior matriz de realimentação é proposto, a fim de

atender à um calendário de demanda para a saída do sistema. Ao final do de-

senvolvimento de cada política de controle, exemplos numéricos são apresentados

para ilustratar as metodologias propostas e a importância dos sistemas tratados



neste trabalho.

Palavras-chave: Sistemas a Eventos Discretos, Álgebra Max-Plus, Sistemas

Dinâmicos Max-Plus Lineares, Controle “Just-in-Time”, Controle por Realimen-

tação de Estados.



Abstract

Max-Plus Linear Dynamical Systems are systems modeled by Timed Event

Graphs (TEG) whose dynamic can be described by Max-Plus Algebra. This the-

sis deals with control policies applied to the Max-Plus Linear Dynamical Systems.

A new multi-objective formulation to control this class of systems is proposed.

This formulation is based on optimization problems and it is possible to consider

non-convex constraints (in conventional algebra) in the formulation. Two control

policies are obtained from the general problem. The first one is the open-loop

Just-in-Time Control, which can be developed either in finite horizon or in infi-

nite horizon aiming to saving resources and the optimal control. The necessary

and sufficient conditions to solve the problems are presented, as well as the dis-

cussion about the computational complexity of the proposed methods in order to

solve them. Some concepts on max-plus algebra are used, such as (A,B)-invariant

sets, Residuation Theory and the Theory of Semimodules. Due to computational

complexity of general method of solution, algebraic properties are used to solve

an important class of problems of practical interest. The second control policy is

the Feedback control in Just-in-Time context. The conditions for the existence

of a feedback matrix are presented. It is also presented a way to find the greatest

feedback matrix in order to comply with deadline dates for the system output. At

the end of each control problem, numerical examples are developed to illustrate

the applicability of the proposed methodologies and the relevance of systems here

addressed.

Keywords: Discrete Event Systems, Max-Plus Algebra, Max-Plus Linear Dy-



namic Systems, Just-in-Time Control, Feedback Control.
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Chapter 1

Introduction

1.1 Brief Contextualization of the Thesis

Technological advances have increasingly required new techniques for the syn-

thesis and control of complex systems. Some of these systems have man-made

operational rules and the rules are related to events, observable or not observable.

Events are such as the beginning of a machine operation, a resource enters a sys-

tem and a server starts the customer service. The events are discrete by system

definition, i.e., the events do not have a time duration. This class of systems is

classified as Discrete Event Systems (DES).

The behavior of a DES cannot be described by the classical theory of systems,

which is based on differential and difference equations. However, there are some

tools to deal with DES, for example, Petri Nets, Automata, Markov Process

and Dioid Algebra (Cassandras and Lafortune, 2008). This thesis deals with

Petri nets, more precisely a subclass of Petri Nets, called Timed Event Graphs

(TEG), in which the dynamic behavior can be described by dioid algebra. The

dioid algebra used in this work is known as Max-Plus Algebra (also called in
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some works as Tropical Algebra), because the algebra uses the maximization and

addition operations from conventional algebra. So, the systems modeled by a

TEG and described by max-plus algebra are called Max-Plus Linear Dynamic

Systems (MPLS).

The nonlinear systems based on events cannot use the classical theory of con-

trol because the classical theory deals with continuous systems in time. The

main importance of max-plus algebra is the fact it describes complex nonlinear

systems. That is done in a linear way by using space state equations.

In order to illustrate the statements described in the previous paragraph,

consider the queuing system illustrated in Figure 1.1. There are different sys-

tems that can be viewed as queuing system, for example, production systems,

communications and computer systems, transportation systems, garage systems,

airports, and so forth.

The elements of this system are the queue, the server and the customers. The

term customer can refer to people, tasks, trucks, pieces, patients, airplanes, e-

mail, cases, orders, and so on. The term server might refer to something able to

do a service like a receptionist, a machine, a medical personnel, an attendant, a

CPU in a computer, any resource that provides service. The queue is the place

where the customers must wait by the service because, normally, the capacity

of the server is bound, and, in some systems, there is a limit to the number of

customers that may be in the queue.

Customer
output

Customer
input

serverqueue

Figure 1.1: Queuing System
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It is possible to consider three events driving the queuing system:

• event a: the customer enters the system.

• event s : the service starts.

• event c: the service is completed and the customer leaves the system.

The system can be modeled by Timed Event Graphs (TEG), as showed in

Figure 1.2, representing the events 𝑎, 𝑠 and 𝑐 as transitions (bars associated with

𝑎, 𝑠 and 𝑐). The queue and the server are represented by places (circles) 𝑄 and 𝐵,

respectively. The place 𝐼 represents when the server is idle or busy, this condition

is shown by the token (black circle in place), i.e., when the server is idle there is

a token in place 𝐼.

a

s

c

B

I
Q

t

(a)

a

s

c

B

I
Q

t

(b)

Figure 1.2: Timed Event Graphs. (a) Queuing System A. (b) Queuing System B.

In Figure 1.2a no tokens are placed in 𝑄 and 𝐵, indicating that there are no

customers in the queue and the server is idle, respectively. In Figure 1.2b there

are two tokens in place 𝑄, indicating that there are two customers in queue, and
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one token in 𝐵, indicating that the server is busy.

The event 𝑎 is spontaneous and requires no condition to happen, occurring at

instant 𝑡𝑎. On the other hand, the event 𝑠 depends on two conditions to happen:

the presence of customers in the queue and the server being idle, i.e., the event 𝑠

can happen at the instant 𝑡𝑠 = 𝑚𝑎𝑥(𝑡𝑎, 𝑡𝑐−), in which the instant 𝑡𝑐− represents

the date when the server is idle by the output of a previous customer of system.

Lastly, the transition 𝑐 requires that the server to be busy and a time 𝑡 of service,

so the event 𝑐 will happen at date 𝑡𝑐 = 𝑡𝑠 + 𝑡. So a customer leaves the system

at date 𝑡𝑐 = max(𝑡𝑎,𝑡𝑐−) + 𝑡𝑠 + 𝑡.

Considering that the system can serve a lot of customers, although just one

at a time, the system can be represented, in a general way, by the TEG of Figure

1.3.

x

x

B

I
Q

t

u

1

2

Figure 1.3: Queuing System modeled as Timed Event Graph

The same notation will be used to denominate a transition of a TEG and the

variable associated with it. In Figure 1.3, the transition 𝑢 is the input transition

to which the arriving instants (dates) of customers in the system will be associ-

ated. The 𝑥1 and 𝑥2 are the internal transitions, also called state transitions. The
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transition 𝑥2 can also be called output transition 𝑦, that represents the date when

a customer leaves the system. In this way, considering the previous statements,

the dynamic behavior of the system is described by the following equations:

𝑥1(𝑘) = 𝑚𝑎𝑥(𝑢(𝑘), 𝑥2(𝑘 − 1)),

𝑥2(𝑘) = 𝑡+ 𝑥1(𝑘),

𝑦(𝑘) = 𝑥2(𝑘),

being that the integer variable 𝑘 numerates the transitions firing dates, for ex-

ample, 𝑥1(𝑘) indicates the instant (date) in which the 𝑘𝑡ℎ customer is accepted

by the server.

The system dynamic behavior in this example could be completely described

using the operator maximization (𝑚𝑎𝑥) and operator addition (+). The operator

𝑚𝑎𝑥 is related to the synchronization phenomena and the operator + to the

processing time of the process. Then, the behavior of a TEG can be completely

described by Max-Plus Algebra, in which the operator 𝑚𝑎𝑥 is represented by the

symbol ⊕ and the operator + is represented by the symbol ⊗. Therefore, the

previous equations can be rewritten as:

𝑥1(𝑘) = 𝑥2(𝑘 − 1)⊕ 𝑢(𝑘)

𝑥2(𝑘) = 𝑡⊗ 𝑥1(𝑘)

𝑦(𝑘) = 𝑥2(𝑘)
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This queuing systems can be used to compose a complex queuing net and,

consequently, it is possible to get equations in max-plus algebra to describe the

system behavior.

Based on the previous equations, the max-plus algebra is very relevant and it

simplifies the representation of several complex systems because, as previously

mentioned, it is able to write non-linear equations (endowed with operator 𝑚𝑎𝑥

and + in conventional algebra) in a linear way.

Besides queuing systems, several systems can be classified as MPLS and use

the max-plus algebra to describe the temporal dynamic, as examples, it is possi-

ble to mention the manufacturing systems; logistics, transportation and distribu-

tion systems; chemical systems; communication and computational systems; mil-

itary and health applications, and so on (Cassandras and Lafortune, 2008)(Banks

et al., 2005)(Katz, 2007). Therefore, tools and theories used for modeling and

controlling these complex systems, in a simple way, are very valuable given the

importance of systems.

Efficient ways to model and control the mentioned systems are useful to gen-

erate the optimization of a chosen criterion. Namely, in a manufacturing system

it is possible to optimize the stock of resources and save money. In a queuing

system it is possible to optimize the number of servers and decrease the time for

the customer service. In a transportation system it is possible to optimize the

number of vehicles and do not make passengers waiting time go beyond a certain

limit.
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1.1.1 Thesis Justification

Based on the context previously described, this thesis presents results related to

Max-Plus Linear Dynamic Systems. The main results are useful to synthesize

optimal controllers in order to make the system respect some constraints. The

main objective of the controller proposed in this work is making the system evolve

in accordance with the Just-in-Time (JIT) policy, i.e., finding the maximum

system input dates in order to comply with deadline dates aiming to develop

the minimum cost policy for the inventory. The inventory can be time, money,

pieces, and so fourth.

This policy is a management strategy in which the production rate is decided

by the demand requires. The main advantage is controlling the inventory costs

while still serving customers demand. The control must satisfy some initial con-

dition, state variables are subject to some constraints and the control is optimal

to the chosen criterion (Houssin et al., 2007).

The objective of JIT control is to find the maximum input dates from a given

date 𝑘 = 𝑘′ so that the output dates respect a desirable viable trajectory, i.e.,

the output dates are less than or equal to the desirable output dates.

This control policy can be applied in a finite horizon or in an infinite horizon.

The difference between finite and infinite horizon is determinate by the desir-

able trajectory for output dates. When the desirable trajectory is bound, the

JIT control is applied in finite horizon, otherwise, if the desirable trajectory is

not bound, the control problem is applied in infinite horizon. It is possible to

understand the control problem in finite horizon as a control problem in infinite

horizon but, in this case, the horizon must be large enough (greater than the

transient interval of a system).
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Initially in this thesis, a general control problem formulation is proposed. The

formulation is developed as a multiobjective optimization problem . Two control

policies are derived from this general control problem: The Open-Loop Just-in-

Time Control and the Feedback Just-in-Time Control policies.

It is important to remark that the control policy choice depends on practical

interest and the system features. The distinction between an open-loop control

system and a feedback control is important and fundamental. In the open-loop

control, the inputs are fixed and independent of output effects (variables of sys-

tem), the variables of the system do not have any a posteriori influence in control

action. On the other hand, the feedback control uses any available information

about the system behavior to adjust the control input.

From the classical control theory, in closed-loop control policy, the feedback

makes the system output relatively more insensible to external disturbances and

the internal parameter variations of the system, in comparison with open-loop

control policy. In this way, it is possible to use some inaccurate components

in order to get a precise control of the system. However, considering stability,

open-loop control policies are better than closed-loop control policies since the

closed-loop control policies can cause oscillations in the output of a stable system

(If a system is unstable it will remain unstable for feedback control in classical

control theory). Therefore, the feedback can make a stable system becomes

unstable.

On the other hand, considering DES modeled as a TEG, one of stability

concepts is related to the number of tokens in places, i.e., a TEG is stable if the

number of tokens in places is bound for any input applied. Therefore, in order

to obtain a stable system, the feedback control is better than open-loop policies,
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although the feedback policy is bound in the sense of satisfing some constraints.

The open-loop control policies can guarantee optimal performance for any kind of

DES system, but it cannot guarantee stability (for more details see Maia (2003)).

To systems in which the inputs are known in advance and there are no distur-

bances, the open-loop control systems are more indicated. To systems endowed

with unknown parameters and subjected to disturbances the closed-loop control

policy is more indicated.

From the general control problem, this thesis presents initially an approach to

the open-loop JIT control in finite horizon which is useful to solve some problems.

A second approach of open-loop JIT control in infinite horizon is also presented.

In order to solve these problems, two issues can be exposed. The first issue is

the time computational complexity. As the horizon grows, the time complexity

can grow double exponential with the horizon using some methodologies. The

second issue is the computational memory. The computational memory to find

the solution can be impracticable for some applications depending on the size of

the horizon.

In order to deal with the issues previously mentioned, algebraic properties to

solve an important class of problems of practical interest are studied. The nec-

essary and sufficient conditions to solve these classes of problems are presented.

Thanks to these properties, it is possible to find the solution to problems of

practical interest.

The second control policy obtained from the general control problem is the

Feedback Control Policy in Just-in-Time context. In this case, the problem ob-

jective is to find the greatest feedback matrix so that the system will evolve in

accordance with a desired trajectory. In some cases, the feedback matrix found
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can be non causal, i.e., there are entries in the feedback matrix less than zero,

but a causal feedback matrix can be found from the non causal feedback matrix.

The control problem formulation presented in this work is original, however,

other works have being developing the JIT control and the feedback control. Con-

cerning the JIT control in infinite horizon, the approach presented in Menguy

et al. (2000) does not allow to take general constraints into the system dynamic,

but to consider past values of the input dates. Houssin et al. (2007) also deal

with a constrained Just-in-Time control in infinite horizon, the authors presented

a sufficient condition to find the optimal solution based on an iterative approach

using transfer function and the Residuation Theory. On the other hand, finite

horizon control is present in De Schutter and van den Boom (2001), in which a

state space formulation based on daters is presented, but general constraints can

be taken into account by conventional algebra (non general convex constraints).

Since conventional algebra was used, the optimization problem is mono-objective

and formulated using a complex nonlinear model. The paper does not deal with

the algebraic properties of the problem, like the necessary and sufficient condi-

tions for the existence of solutions. A simple formulation of a complex multi-

objective optimization problem in finite horizon is presented in Gomes da Silva

and Maia (2014), general constraints on the inputs are presented in a convex way

using the max-plus algebra (non-convex in conventional algebra) and two meth-

ods to solve the problem was developed. The first one is based on the Theory of

Semimodule and the optimal solution is given deterministically by an equation,

the second one is based on the Modified Alternating Algorithm, originally pre-

sented by Cuninghame-Green and Butkovic (2003), and the optimal solution, if

it exists, is a fixed point of that algorithm.
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Another control policy of interest is the Feedback Control. Regarding con-

strained feedback control problem, several results were obtained for some class of

problems. The paper Maia et al. (2011b) aims to find a feedback controller that

ensures the system evolution in accordance with semimodule constraints. The

methodology to achieve the goal is based on the super-eigenvector of a matrix.

The paper Amari and Isabel Demongodin (2012) develops the constrained feed-

back controller and the solution is addressed looking for the constrained state

equations. The supervisor feedback controllers are calculated and classified ac-

cording to their performance, and there is no guarantee for the optimal feedback

control. In Maia et al. (2011a) the feedback controller is calculated using an

equation that involves the system, the feedback and the constraint matrices. The

sufficient conditions to calculate a causal feedback matrix, using the Alternating

Algorithm Cuninghame-Green and Butkovic (2003), are presented.

Houssin et al. (2013) deals with feedback control using dioid series (idempo-

tent semiring) ℳ𝑎𝑥
𝑖𝑛 [[𝛾,𝜎]] in an infinite horizon, however, the control objective

is the opposite of Just-in-Time policy, i.e., the transitions will fire as soon as

possible. All works mentioned about feedback control aim to find the smallest

causal feedback matrix.

Based on the previously literature review, this thesis proposes a new general

formulation that covers two important policies of control largely studied in liter-

ature of control systems. It is based on optimization problems because the work

aims to find the optimal control, with multiple objectives and some constraints,

including non-convex constraints in conventional algebra. These constraints will

be applied to the control problem using the semimodule equation. Recall that

the semimodule (in max-plus algebra) is similar to the notion of linear space
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state in conventional algebra. The main importance of semimodules is the fact

that all solutions to equations like 𝐷𝑥 = 𝐸𝑥 belong to a space finitely generated

characterized by an image of a matrix (Butkovic and Hegedus, 1984)(Gondran

and Minoux, 2010).

The two policies are important in control theory and largely used in many

practical applications. In this sense, the formulation deals with the direct real-

ization for the problem, i.e., dioid series are not applied because the applicability

of direct realization is simpler and easier to manipulate in practice. Unlike some

previous papers on the subject, this thesis presents the discussion about the

necessary and sufficient conditions to find a solution to the problems.

Lastly, the author hopes that the results published in this thesis will be useful

to increase the applicability and the interest in the DES theory.

1.2 Publications

The publications related to this PhD thesis are:

• Gomes da Silva, G. and Maia, C. A. (2012). Controle “just-in-time” em

horizonte finito de sistemas max-plus lineares. In Congresso Brasileiro de

Automatica (CBA2012). Campina Grande, Paraiba - Brazil.

• Gomes da Silva, G. and Maia, C. A. (2014). On Just-in-Time Control of

Timed Event Graphs with input constraints: a semimodule approach. In

Discrete Event Dynamic Systems Journal, (DOI: 10.1007/s10626-014-0200-

z).

• Gomes da Silva, G. and Maia, C. A. (2014). Controle “Just-in-Time” em

Horizonte Infinito de Grafos de Eventos Temporizados com Restrições. In
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Congresso Brasileiro de Automatica (CBA2014). Belo Horizonte, Minas

Gerais - Brazil.

• Gomes da Silva, G. and Maia, C. A. (2015). Controle "Just-in-Time" Apli-

cado à um Sistema de Transporte Urbano Max-Plus Linear. In Simpósio

Brasileiro de Automação Inteligente (SBAI2015). Natal, Rio Grande do

Norte - Brazil.

• Gomes da Silva, G. and Maia, C. A. (2015). A Multiobjective Formulation

for Just-in-Time Control of Constrained Max-Plus Linear Systems in Infi-

nite Horizon. In Conference on Decision and Control (CDC2015). Osaka,

Japan.

• Gomes da Silva, G. and Maia, C. A. (2016). Multi-objective Optimization

of Max-Plus Linear Systems in Infinite Horizon: Performing the Open-Loop

and Feedback Control Policies. Submitted for Publication.

1.3 Organization

The thesis is organized as follows:

• Chapter 1 is the introduction.

• Chapter 2 presents preliminary concepts useful for the comprehension of the

thesis, for example, the Residuation Theory, the Theory of Semimodules and

the Modified Alternating Algorithm. These concepts were obtained from

Baccelli et al. (1992), Cassandras and Lafortune (2008) and Gondran and

Minoux (2010).

• Chapter 3 presents the contributions of this thesis. To the general control
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problem formulation, the open-loop JIT control problem, in finite and infi-

nite horizon, and the feedback control problem in JIT context are developed.

The solutions to the control problems as well as the necessary and sufficient

conditions to solve the problems are present. In this chapter, for each con-

trol problem proposed, numerical examples are developed to illustrate the

methodology proposed.

• Chapter 4 presents the final discussion about the thesis. Proposals of fu-

ture works and the conclusions about the contributions of this thesis are

presented.



Chapter 2

Preliminary Concepts

The necessary concepts on Discrete Event Systems for the comprehension of this

thesis will be presented in this chapter. The objective of the chapter is just

introduce the used concepts such as, for example, Timed Event Graphs (TEG),

Max-Plus Algebra and Residuation Theory.

2.1 Discrete Event Dynamic Systems

As mentioned in the previous chapter, many man-made systems evolve according

to some rules related to observable or not, deterministic or stochastic events. The

events should be considered as occurring instantaneously and causing transitions

from one state value to another in a system.

An event can be identified as a specific taken action, a spontaneous occur-

rence dictated by nature or it may be the result of several conditions which are

suddenly all met. Examples of events are the beginning and the end of a task

in a manufacturing system, the input of a customer in a queuing system and the

act of sending a message in a communication system.
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Discrete Event Dynamic Systems (DEDS), or simply Discrete Event Systems,

are systems in which the state changes by the occurrence of events (in general

asynchronous events), the set of reachable states is discrete and the transition

between states occurs only in some discrete points in time.

In other words, in Discrete Event Systems the space state is described by a

discrete set and the state transitions are only observed at discrete points in time,

these state transitions are associated with events.

Definition 2.1.1 (Discrete Event System) (Cassandras and Lafortune, 2008)

A Discrete Event System is a discrete-state event-driven system, that is, its state

evolution depends entirely on the occurrence of asynchronous discrete events over

time.

Important complex systems such as manufacturing systems; logistics, trans-

portation and distribution systems; chemical systems; communication and com-

putational systems; military and health systems, are all examples of DEDS. If

these systems can be described by max-plus algebra (this algebra will be in-

troduced further), the DEDS can be classified as a Max-Plus Linear Dynamic

System.

Example: 2.1.1 (Discrete Event Dynamic System - Warehouse System)

Consider the warehouse system illustrated in Figure 2.1. The system presents one

input area, one output area and a robotic manipulator. When a box enters the

system, this fact is related to event “𝑎” and the event “𝑑” occurs when a box leaves

the system. Therefore, the system evolution will be driven by the occurrence of

two events. The system state will be given by the number of boxes in the ware-

house and this number can be given by the sequence of occurrence of events “𝑎”
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and “𝑑”. For example, considering the warehouse initially empty, if the sequence

of events which occurred in the system is:

𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑎𝑎𝑎𝑑𝑑𝑎

the number of boxes in the warehouse will be equal to four.

Input

a d

Output

Figure 2.1: Warehouse System

Another example of system evolution is presented in Figure 2.2. By this figure,

it is possible to see that five events “𝑎” occur , at dates 𝑡1 to 𝑡5, and in sequence

one event “𝑑” occurs at date 𝑡6 and so on.

Therefore, this system is an event-driven system and the set of possible reached

states is discrete.

x(t)

t

1

2
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4

5

6

7

8

9

10

t t t t t1 2 3 4 5 6 7 8 9 10t t t t t t t t t t t t11 12 13 14 15 16 17

Figure 2.2: Warehouse System State (x(t)) Evolution
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There are some tools to deal with DEDS, for example, Graphs, Automata,

Petri Nets, Timed Event Graphs, Markov Process and Dioid Algebra. In this

thesis, the methodologies will be develop based on Graphs, Petri Nets, Timed

Event Graphs and systems described by using Dioid Algebra.

2.2 Graphs

In this section, some necessary graph concepts for the comprehension of this thesis

are presented. Concepts such as the definition of a graph and connected graphs

are useful to understand the Petri nets and some tools in max-plus algebra. The

definitions were obtained in Baccelli et al. (1992). Firstly, the directed graphs

are defined.

Definition 2.2.1 (Directed Graph) A directed graph 𝐺 is a pair (𝑉, 𝜖), being

𝑉 a set of elements called nodes and 𝜖 a set of elements which are ordered pairs

of nodes, called arcs.

A directed graph is illustrated in Figure 2.3.

1 2 3

node

arc

Figure 2.3: Directed Graph

Definition 2.2.2 If in a graph (𝑖,𝑗) ∈ 𝜖, then node 𝑖 is called a predecessor of

node 𝑗 and node 𝑗 is called a successor of node 𝑖.
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Definition 2.2.3 (Path, Circuit, Loop, Length) A path 𝜌 is a sequence of

nodes 𝑖1, 𝑖2, ..., 𝑖𝑝, 𝑝 > 1, so that 𝑖𝑗 belongs to the set of nodes 𝜋(𝑖𝑗+1), 𝑗 =

1,..., 𝑝− 1, in which the set 𝜋(𝑖𝑗+1) indicates the predecessor nodes of node 𝑖𝑗+1.

Node 𝑖1 is the initial node and node 𝑖𝑝 is the final node of the path. In other

words, a path is a sequence of arcs which connects a sequence of nodes. When

the initial node and the final node are the same, it is called the path as a circuit,

by definition a circuit is defined as a sequence of nodes (𝑖1, 𝑖2, ...,𝑖𝑝, 𝑖1). A loop

is a circuit (𝑖,𝑖) composed by a single node which is the initial and the final node.

The length of a path or a circuit is equal to the sum of the lengths of the arcs

which compose this path. The lengths of the arcs are 1 unless otherwise specified.

By this definition, the length of a loop is 1.

Definition 2.2.4 (Subgraphs) Given a graph 𝐺 = (𝑉, 𝜖), a graph 𝐺
′
= (𝑉

′
, 𝜖

′
)

is said to be a subgraph of 𝐺 if 𝑉 ′ ⊂ 𝑉 and if 𝜖′ consists of a set of arcs of 𝐺

which have their origins and destinations in 𝑉
′.

Definition 2.2.5 (Connected Graphs) A graph is called connected when there

exists a chain joining 𝑖 and 𝑗 for every pair of nodes 𝑖 and 𝑗. A chain is a se-

quence of nodes (𝑖1, 𝑖2, ..., 𝑖𝑝) so that between each pair of successive nodes either

the arc (𝑖𝑗, 𝑖𝑗+1) or the arc (𝑖𝑗+1, 𝑖𝑗) exists. If one disregards the directions of the

arcs in the definition of a path, one obtains a chain.

Definition 2.2.6 (Strongly Connected Graphs) A graph is called strongly

connected when there is at least a path from 𝑖 to 𝑗 for any two different nodes 𝑖

and 𝑗 . According to this definition, a graph which is comprised by an isolated

node, with or without a loop, is a strongly connected graph.

Example: 2.2.1 (Graphs) Consider the graph in Figure 2.4 to exemplify the
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concepts introduced in this section. It is a directed graph since the arcs are di-

rected. The graph has nine nodes. Node 2 is a predecessor node of node 3,

therefore 2 ∈ 𝜋(3). The sequence of nodes 1, 2, 3, 7, 2, 4 is a path. The arc (9,9)

is a loop. The sequence of nodes 1, 2, 3, 9, 8, 1 is a circuit of length equal to 5.

The graph of Figure 2.4 is connected.

1 2 3

4 5 6

7

8 9

Figure 2.4: Example of Directed Graph

Definition 2.2.7 (Bipartite Graph) If the set of nodes 𝑉 of a graph 𝐺 can be

partitioned into two disjoint subsets 𝑉1 and 𝑉2 so that, every arc of 𝐺 connects

an element of 𝑉1 to one of 𝑉2 or the other way around, then 𝐺 is called bipartite.

Definition 2.2.8 (Equivalence Relation R) Let 𝑖, 𝑗 ∈ 𝑉 be two nodes of a

graph. The equivalence 𝑖 R 𝑗 holds, if either 𝑖 = 𝑗 or there exist paths from 𝑖 to

𝑗 and from 𝑗 to 𝑖.

Definition 2.2.9 (Maximal Strongly Connected Subgraphs) The subgraphs

𝐺𝑖 = (𝑉𝑖, 𝜖𝑖) corresponding to the equivalence classes determined by R are the

maximal strongly connected subgraphs of 𝐺.
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Definition 2.2.10 (Cycle Mean) (Baccelli et al., 1992) The mean weight of

a path is defined as the sum of the weights of the individual arcs of this path,

divided by the length of this path. If the path is denoted 𝜌, then the mean weight

is equal to |𝜌|𝑤/|𝜌|𝑙 (where |𝜌|𝑤 is the weight of path 𝜌 and |𝜌|𝑙 is the length of

path 𝜌). If such path is a circuit, one talks about the mean weight of circuit, or

simple cycle mean.

Definition 2.2.11 (Maximum Cycle Mean) The maximum cycle mean is taken

over all circuits in the graph, i.e., the maximum over all the cycle mean.

These definitions are useful to understand and work with Petri nets theory

since these nets are directed graphs.

2.3 Petri Nets

Petri nets are directed bipartite graphs, more precisely, a Petri net is a weighted

graph endowed with a finite set of places, transitions and arcs. Besides that,

there are arc weight functions.

Definition 2.3.1 (Petri Nets) (Baccelli et al., 1992) A Petri net is a directed

bipartite graph (𝑃, 𝑇,𝐴,𝑤), being 𝑃 a finite set of places, 𝑇 a finite set of tran-

sitions, 𝐴 a finite set of arcs, and 𝑤 are arc weight functions.

In this thesis, only connected graphs are stated and treated, i.e., there are no

isolated places in the graph. Consider the graph in Figure 2.5 to illustrate Petri

nets.

The net can be defined by the set 𝑃 = {𝑃1, 𝑃2}, the set 𝑇 = {𝑡1}, the set

𝐴 = {(𝑃1,𝑡1), (𝑡1,𝑃2)} and by the functions 𝑤(𝑃1,𝑡1) = 2 and 𝑤(𝑡1,𝑃2) = 1.
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2

P
1

t1 P2

Figure 2.5: Petri Net

Definition 2.3.2 (Input and Output Places) Considering an arc (𝑃𝑖, 𝑡𝑖), the

place 𝑃𝑖 is called input place for transition 𝑡𝑖 and 𝑡𝑖 is called output transition for

place 𝑃𝑖, represented by 𝐼(𝑡𝑖) and 𝑂(𝑃𝑖), respectively. In the same way, consid-

ering an arc (𝑡𝑗, 𝑃𝑗), the place 𝑃𝑗 is called output place for transition 𝑡𝑗 and 𝑡𝑗 is

called input place for place 𝑃𝑗, represented by 𝑂(𝑡𝑗) and 𝐼(𝑃𝑗).

Definition 2.3.3 (Marked Petri Nets) (Cassandras and Lafortune, 2008) A

marked Petri net is a quintuple (𝑃, 𝑇,𝐴,𝑤, 𝑥), in which (𝑃, 𝑇,𝐴,𝑤) is a Petri

net and 𝑥 is a marking of the set of places. The vector

𝑥 =
[︁
𝑥(𝑝1) 𝑥(𝑝2) · · · 𝑥(𝑝𝑛)

]︁
∈ N𝑛

is a row vector associated with 𝑥.

Considering the Petri net in Figure 2.5, there are a lot of possible markings

for this net, one of them is the vector

𝑥1 =
[︁
1 0

]︁
and another vector is

𝑥2 =
[︁
3 1

]︁
.

These markings are represented, respectively, in Figure 2.6a and in Figure 2.6b.
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2

P
1

t1 P2

(a) Marked Petri Net 1

2

P
1

t1 P2

(b) Marked Petri Net 2

Figure 2.6: Marked Petri Nets. (a) Marked Petri Net with vector 𝑥1. (b) Marked Petri Net
with vector 𝑥2.

The markings in each place (black circles) are called tokens. The way how

a net is marked represents the net state because there is only one marking for

each state reached by the net. In order to simplify the nomenclature, the marked

Petri nets will be called just Petri nets, since all Petri nets are marked, even if

the marking is a null marking.

Definition 2.3.4 (Enabled Transition) (Cassandras and Lafortune, 2008) A

transition 𝑡𝑗 ∈ 𝑇 in a Petri net is called enabled if

𝑥(𝑝𝑖) ⪰ 𝑤(𝑝𝑖,𝑡𝑗) for all 𝑝𝑖 ∈ 𝐼(𝑡𝑗)

being 𝐼(𝑡𝑗) the set of input places of transition 𝑡𝑗.

A transition in a Petri net can be enabled to fire and indeed fires. A transition

is enabled to fire when the number of tokens in input places of the transition is

greater than the weight of the arcs which connect the respective place to the

transition. The transition can fire as soon as it is enabled. The transition fires

when the event associated with the transition happens. When a transition fires,

tokens are removed from input places and tokens are placed in the output places

in accordance with the weight of the respective arcs.
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Definition 2.3.5 (Dynamic of Petri Net) (Cassandras and Lafortune, 2008)

The state transition function 𝑓 : N𝑛 × 𝑇 → N𝑛, of a Petri net (𝑃,𝑇,𝐴,𝑤,𝑥) is

defined for the transition 𝑡𝑗 ∈ 𝑇 if and only if,

𝑥(𝑝𝑖) ⪰ 𝑤(𝑝𝑖,𝑡𝑗), for all 𝑝𝑖 ∈ 𝐼(𝑡𝑗)

being 𝐼(𝑡𝑗) the set of input places of a transition 𝑡𝑗. If 𝑓(𝑥,𝑡𝑗) is defined, it is

defined 𝑥+ = 𝑓(𝑥,𝑡𝑗), in which

𝑥+(𝑝𝑖) = 𝑥(𝑝𝑖)− 𝑤(𝑝𝑖,𝑡𝑗) + 𝑤(𝑡𝑗,𝑝𝑖), 𝑖 = 1,...,𝑛. (2.1)

For example, in Figure 2.6a, the transition 𝑡1 is not enabled and in Figure 2.6b

the transition 𝑡1 is enabled. When the transition 𝑡1 fires, from Figure 2.6b, two

tokens are removed from place 𝑃1 and one token is placed in 𝑃2, in accordance

with the weights of the arcs. The obtained Petri net when the transition 𝑡1 fires,

from marking 𝑥2, is shown in Figure 2.7. Therefore, it possible to conclude that

the number of tokens in a net is not conserved for some models.

2

P
1

t1 P2

Figure 2.7: Petri net when transition 𝑡1 fire from marking 𝑥2

The Equation 2.1 can be generalized by the following matrix equation:

𝑋+ = 𝑋 + 𝑢𝐴 (2.2)

in which 𝑋 is a row vector with entries the number of tokens in each place, 𝑢 is

a vector representing which transition will fire (if a transition will be fired it is
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represented by number 1 in vector 𝑢, otherwise it is represented by 0. Only one

transition fires each time) and matrix 𝐴 is the incidence matrix (the matrix A

represents the number of tokens removed and placed in places by the transitions).

A transition in a net can fire only if

𝑋 + 𝑢𝐴− ⪰ 0 (2.3)

in which matrix 𝐴− represents the number of tokens taken off by transitions of

places. In order to illustrate these equations, consider the following example.

Example: 2.3.1 Consider the following graph in Figure 2.8. The incidence ma-

trix is given by:

P
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Figure 2.8: Petri Net.



Chapter 2. Preliminary Concepts 26

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1

0 1 −1 0 0

−1 −1 0 1 0

0 0 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The incidence matrix represents the graph structure and it can be obtained by

looking for the weights between places and transitions. For example, consider the

entry 𝑎𝑖𝑗 from matrix 𝐴, the variable 𝑖 is related to transitions and the variable

𝑗 is related to places. Therefore the entry 𝑎11 is the weight between the transition

𝑡1 and place 𝑃1 and it is equal to 1 because 𝑡1 puts one token in place 𝑃1. The

entry 𝑎15 is equal to −1 because 𝑡1 removes one token from place 𝑃5, and so on.

The matrix 𝐴− is obtained similarly to 𝐴. The matrix 𝐴− is obtained from the

number of tokens that each transition removes from each place. In this example,

the matrix 𝐴− is given by:

𝐴− =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1

0 0 −1 0 0

−1 −1 0 0 0

0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The initial marking of the net in this example is:

𝑋0 =
[︁
𝑃1 𝑃2 𝑃3 𝑃4 𝑃5

]︁
=
[︁
0 0 1 0 2

]︁
.

and it gives the number of tokens initially in each place.
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If the transition 𝑡2 will be fired, the vector 𝑢 can be given by:

𝑢 =
[︁
0 1 0 0

]︁
,

but, it is necessary that

𝑋0 + 𝑢𝐴− ⪰ 0.

This inequality holds so the transition 𝑡2 is enabled to fire. If 𝑡2 fires the reached

state is given by:

𝑋1 = 𝑋0 + 𝑢𝐴,

𝑋1 =
[︁
0 1 0 0 2

]︁
.

The Petri nets are useful to model Discrete Event Systems and the model can

use processing time associated with its structure, called holding time. There are

some ways to do the timing, being the time associated with places (Net P-timed)

or the time associated with transitions (Net T-timed) the most common. The

nets P-timed and T-timed are showed in Figure 2.9a and Figure 2.9b, respectively.

P
1

t1 P2

4 1

(a) P-timed Petri Net

P
1

t1 P2

3

(b) T-timed Petri Net

Figure 2.9: Timed Petri Nets. (a) P-timed Petri Net. (b) T-timed Petri Net.

When the time is associated with transitions, after the transition is enabled,

it must wait the associated time and, then, the transition can fire. In cases when

the time is associated with places, a token must spend the time in the place before
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contributing to the enabling of output transitions. In this thesis, the holding time

is associated with places.

The Petri nets of interest for this thesis are a subclass called Timed Event

Graphs (TEG), these nets are introduced in the next section.

2.3.1 Timed Event Graphs

Definition 2.3.6 (Event Graph) A Petri net is called an event graph if each

place has at most one input transition 𝐼(𝑃𝑖) and at most one output transition

𝑂(𝑃𝑖).

An event graph is a Petri net in which each place has at most one input

transition and at most one output transition. The event graph are able to model

discrete event systems endowed with time delay and synchronization phenomena,

i.e. the event graphs are not able to model systems where there is a competition

for resources.

Definition 2.3.7 (Timed Event Graph (TEG)) (Baccelli et al., 1992) A timed

event graph is an event graph in which each place has a holding time associated

with it.

Assumption: 2.3.1 In this thesis, the time associated with places is assumed

non-varying.

Figure 2.10 shows a TEG with three places (𝑃1, 𝑃2 and 𝑃3) and three transi-

tions (𝑢1, 𝑥1 and 𝑥2). In this graph, the transition 𝑥1 can fire by 𝑘𝑡ℎ date after the

𝑘𝑡ℎ firing date of transition 𝑢1 and the (𝑘 − 1)𝑡ℎ firing date of transition 𝑥2. The

𝑘𝑡ℎ firing date of transition 𝑥1 is related to the (𝑘 − 1)𝑡ℎ firing date of transition

𝑥2 by the net initial condition, i.e., there is a token in 𝑃3 enabling the transition
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P
1

1 P2

P3

2

5

X Xu1

Figure 2.10: Timed-Event Graph.

𝑥1 and this token was placed in 𝑃3 when the transition 𝑥2 fired at the (𝑘 − 1)𝑡ℎ

date. Then, the transition 𝑥1 will be enabled to fire at the 𝑘𝑡ℎ date after the

greatest date between the firing date 𝑢(𝑘) and 𝑥2(𝑘 − 1). The place 𝑃2 has 5

time units associated with it, therefore when a token arrives at this place it must

wait, at least, five time units before contributing to enabling transition 𝑥2. It is

possible to describe the 𝑘𝑡ℎ firing date of transition 𝑥1 and 𝑥2 by the following

equations:

𝑥1(𝑘) = 𝑚𝑎𝑥{𝑢1(𝑘), 𝑥2(𝑘 − 1)}, (2.4)

𝑥2(𝑘) = 𝑥1(𝑘) + 5. (2.5)

The Equations 2.4 and 2.5 use the operator addition and the operator max-

imization. The operator addition can be related with time delay linked with

places. The operator maximization can be related to the synchronization phe-

nomena. With these operators the TEG dynamics can be completely described.

Those equations can be described using a dioid, which is an algebraic structure

endowed with all properties of a ring, except the inverse additive element, so the

dioids are characterized algebraically as an idempotent semiring (Baccelli et al.,

1992). The dioids will be defined in the next section.
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2.4 Dioids and Max-Plus Algebra

A ring is defined algebraically as (𝒜,⊕,⊗), with the set 𝒜 endowed with two

internal operators. The operator ⊕ (addition) is associative, invertible, com-

mutative and it has the neutral element 𝜀. The operator ⊗ (multiplication) is

associative, commutative, it admits the neutral element 𝑒 and, besides that, it is

distributive with relation to ⊕.

In this way, dioids are algebraic structures characterized as an idempotent

semiring since the dioids have two operators and all properties of a ring, except

the additive inverse element.

Definition 2.4.1 (Dioids) (Baccelli et al., 1992) A dioid is defined as a set

𝒟 endowed with two internal operators, ⊕ (addition) and ⊗ (multiplication),

obeying the following axioms:

• The addition is associative and commutative: ∀𝑎,𝑏,𝑐 ∈ 𝒟, (𝑎 ⊕ 𝑏) ⊕ 𝑐 =

𝑎⊕ (𝑏⊕ 𝑐) = 𝑐⊕ (𝑏⊕ 𝑎).

• The multiplication is associative and distributive on left and on right with

relation to addition: ∀𝑎,𝑏,𝑐 ∈ 𝒟, (𝑎⊗ 𝑏)⊗ 𝑐 = 𝑎⊗ (𝑏⊗ 𝑐) and (𝑎⊕ 𝑏)⊗ 𝑐 =

(𝑎⊗ 𝑐)(𝑏⊗ 𝑐).

• Existence and absorbing by neutral element of addition (𝜀): ∀𝑎 ∈ 𝒟, 𝑎⊕𝜀 = 𝑎

and 𝑎⊗ 𝜀 = 𝜀.

• Existence of identity element of multiplication (𝑒): ∀𝑎 ∈ 𝒟, 𝑎⊗𝑒 = 𝑒⊗𝑎 = 𝑎.

• Idempotency of addition: ∀𝑎 ∈ D, 𝑎⊕ 𝑎 = 𝑎.

A dioid is said to be complete if it is a complete ordered set in accordance with

the partial canonical relation ⪯ (𝑎 ⪯ 𝑏 ⇔ 𝑏 = 𝑎⊕𝑏 and 𝑐 ⪰ 𝑏 and 𝑏 ⪰ 𝑐 ⇔ 𝑏 = 𝑐 ),
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and if, besides that, it is closed in relation to infinite sums and the multiplication

is distributive with relation to infinite sums.

2.4.1 Lattice Properties of Dioids

The properties and definitions presented in this subsection are used in this thesis

and they were obtained in Baccelli et al. (1992).

Order Relation: a binary relation (denoted by ⪰) which is reflexive, transi-

tive and anti-symmetric.

Total (Partial) Order: the order is total if for each pair of elements (𝑎,𝑏),

the order relation holds true either for (𝑎,𝑏) or for (𝑏,𝑎), or otherwise stated, if 𝑎

and 𝑏 are always comparable; otherwise, the order is partial.

Ordered Set: a set endowed with an order relation; it is sometimes useful

to represent an ordered set by an undirected graph the nodes of which are the

element of the set; two nodes are connected by an arc if the corresponding ele-

ments are comparable, the greater one being higher in the diagram; the minimal

number of arcs is represented, the other possible comparisons being derived by

transitivity.

Top Element (of an ordered set): an element which is greater than any

other element of the set.

Bottom Element (of an ordered set): an element which is smaller than

any other element of the set.

Maximum Element: an element of the subset which is greater than any

other element of the subset; if it exists, it is unique; it coincides with the top

element if the subset is equal to the whole set.

Minimum Element: an element of the subset which is smaller than any
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other element of the subset; if it exists, it is unique; it coincides with the bottom

element if the subset is equal to the whole set.

Maximal Element: an element of the subset which is not smaller than any

other element of the subset; if a subset has a maximum element, it is the unique

maximal element.

Majorant: an element not necessarily belonging to the subset which is greater

than any other element of the subset; if a majorant belongs to the subset, it is

the maximum element.

Minorant: an element not necessarily belonging to the subset which is smaller

than any other element of the subset; if a minorant belongs to the subset, it is

the minimum element.

Upper Bound: the least majorant, that is, the minimum element of the

subset of majorants.

Lower Bound: the greatest minorant, that is, the maximum element of the

subset of minorants.

2.4.2 Max-Plus Algebra

The max-plus algebra is defined as a complete dioid endowed with the structure

(Z ∪ {−∞}, 𝑚𝑎𝑥, +), being denoted by Z𝑚𝑎𝑥.

Definition 2.4.2 (Algebraic Structure of Z𝑚𝑎𝑥) The symbol Z𝑚𝑎𝑥 denotes the

set (Z ∪ {−∞} endowed with the maximization operation and the addition opera-

tion represented, respectively, as ⊕ and ⊗, and the convention (−∞)+∞ = −∞.

The Kleene star operation is another operation defined on any dioid, denoted

by the symbol *. This operator is algebraically defined as:

𝑎* =
⨁︀

𝑖∈N 𝑎
𝑖 = 𝑎⊗ 𝑎𝑖−1,
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being 𝑎0 = 𝑒.

In subsection 2.3.1, the dynamic behavior of a TEG could be completely de-

scribed using only two operators: the addition operator and the maximization

operator. Then, the TEG can be completely described, in a linear way, using the

max-plus algebra, i.e., it is possible to rewrite Equations 2.4 and 2.5 using the

max-plus algebra as:

𝑥1(𝑘) = 𝑢1(𝑘)⊕ 𝑥2(𝑘 − 1) (2.6)

and

𝑥2(𝑘) = 5⊗ 𝑥1(𝑘). (2.7)

In this thesis, in order to simplify the notation, the symbol ⊗ will be omitted

in equations when convenient, without any information loss. From TEG of Figure

2.10, the output dates will be given by:

𝑦(𝑘) = 𝑥2(𝑘). (2.8)

By Equations 2.6, 2.7 and 2.8, it is possible to rewrite these equations in

matrix notation as state space equations in max-plus algebra:

⎧⎨⎩ 𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘).
(2.9)

in which 𝐴, 𝐵 and 𝐶 are matrix of appropriate dimensions with the characteristics

of the system, 𝑥(𝑘) the state vector (also called internal) at 𝑘𝑡ℎ date, 𝑢(𝑘) the

𝑘𝑡ℎ input date and 𝑦(𝑘) the 𝑘𝑡ℎ output date.
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2.4.3 Graphs and Matrices

An important tool to deal with TEG described by max-plus algebra are the

matrices in Z𝑚𝑎𝑥. All weighted graphs (graphs in which the arcs are associated

with weights) are related with matrices (Baccelli et al., 1992), i.e., every weighted

graph has a representative matrix, besides that, every matrix whose entries are

integers has a representative graph.

The matrix operations in max-plus algebra are similar to the matrix operations

in conventional algebra. Let 𝐴,𝐵 ∈ Z̄𝑛×𝑚
𝑚𝑎𝑥 , being 𝑛,𝑚 ∈ N, the addition operation

is defined as:

[𝐴⊕𝐵] = 𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗 (2.10)

in which 𝑖 and 𝑗 are, respectively, the rows and columns of matrices 𝐴 and 𝐵.

Let 𝐶 ∈ Z̄𝑚×𝑝
𝑚𝑎𝑥 , the matrix multiplication between matrix 𝐴 and matrix 𝐶 in

Z𝑚𝑎𝑥 is defined as:

[𝐴⊗ 𝐶]𝑖𝑘 =
𝑚⨁︁
𝑗=1

𝑎𝑖𝑗 ⊗ 𝑐𝑗𝑘 (2.11)

in which 𝑖 and 𝑘 are, respectively, the row and column indexes of the elements

in the resulting matrix.

Example: 2.4.1 (Representation and Operations with Matrices) Consider

the graphs of Figure 2.11. The graph A, graph B and graph C can be related to

the matrices 𝐴, 𝐵 and 𝐶, respectively given by:

𝐴 =

⎡⎣ 4 3

5 2

⎤⎦ , 𝐵 =

⎡⎣ 2 6

1 3

⎤⎦
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(c) Graph C - 𝐺(𝐶)

Figure 2.11: Weighted Graphs. (a) Graph A. (b) Graph B. (c) Graph C.

and

𝐶 =

⎡⎣ 1 0

1 4

⎤⎦ .

Then

𝐴⊕𝐵 =

⎡⎣ 4⊕ 2 3⊕ 6

5⊕ 1 2⊕ 3

⎤⎦ =

⎡⎣ 4 6

5 3

⎤⎦
and

(𝐴⊕𝐵)⊗𝐶 =

⎡⎣ 4⊗ 1⊕ 6⊗ 1 4⊗ 0⊕ 6⊗ 4

5⊗ 1⊕ 3⊗ 1 5⊗ 0⊕ 3⊗ 4

⎤⎦ =

⎡⎣ 5⊕ 7 4⊕ 10

6⊕ 4 5⊕ 7

⎤⎦ =

⎡⎣ 7 10

6 7

⎤⎦ .

In Z𝑚𝑎𝑥 the identity matrix is denoted by 𝐼 with 𝑖𝑚𝑛 = 𝑒 for 𝑚 = 𝑛 and 𝑖𝑚𝑛 = 𝜀

for 𝑚 ̸= 𝑛. Let 𝐴 ∈ R̄𝑚×𝑚
𝑚𝑎𝑥 , the Kleene star operator is defined for matrices as:

𝐴* =
⨁︀

𝑚∈N𝐴
𝑚,

in which 𝐴𝑚 = 𝐴⊗ 𝐴𝑚−1 and 𝐴0 = 𝐼.

In order to facilitate the representation of the neutral element of addition, it
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will be denoted by a dot in matrix notation.

Example: 2.4.2 (Timed Event Graph and Max-Plus Algebra) In order to

illustrate the linearity features of the dynamic behavior of the systems by max-plus

algebra, consider the following timed event graph in Figure 2.12:

t t t t

t
u x x x x

1

1 1

2

2

3 4

5
3 4

u2

Figure 2.12: Timed Event Graph

The TEG in Figure 2.12 can model a queuing system, a manufacturing system,

and so forth. As explained in Chapter 1, the dynamic behavior of a TEG can be

described using only the maximization operator (𝑚𝑎𝑥) and the addition operator

(+) in conventional algebra, by the following equations:

𝑥1(𝑘) = 𝑚𝑎𝑥(𝑡1 + 𝑢1(𝑘), 𝑥2(𝑘 − 1)) (2.12)

𝑥2(𝑘) = 𝑡2 +𝑚𝑎𝑥(𝑡1 + 𝑢1(𝑘), 𝑥2(𝑘 − 1)) (2.13)

𝑥3(𝑘) = 𝑚𝑎𝑥(𝑡3 + 𝑡2 +𝑚𝑎𝑥(𝑡1 + 𝑢1, 𝑥2(𝑘 − 1)), 𝑡5 + 𝑢2(𝑘), 𝑥4(𝑘 − 1)) (2.14)

𝑥4(𝑘) = 𝑡4 +𝑚𝑎𝑥(𝑡3 + 𝑡2 +𝑚𝑎𝑥(𝑡1 + 𝑢1(𝑘), 𝑥2(𝑘 − 1)),𝑡5 + 𝑢2(𝑘), 𝑥4(𝑘 − 1))

(2.15)

The Equations 2.12 to 2.15 are complex nonlinear equations in conventional

algebra that can be used to describe the dynamic behavior of the system. In addi-

tion, these equations are obscure from the point of view of conventional algebra.

However, the behavior of the system can be described in a simpler way by
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using the max-plus algebra, in which the maximization is denoted by ⊕ and the

addition denoted by ⊗ (the symbol ⊗ will be omitted by convenience), by the

following equations:

𝑥1(𝑘) = 𝑥2(𝑘 − 1)⊕ 𝑡1𝑢1(𝑘) (2.16)

𝑥2(𝑘) = 𝑡2𝑥2(𝑘 − 1)⊕ 𝑡2𝑡1𝑢1(𝑘) (2.17)

𝑥3(𝑘) = 𝑡2𝑡3𝑥2(𝑘 − 1)⊕ 𝑥4(𝑘 − 1)⊕ 𝑡3𝑡2𝑡1𝑢1(𝑘)⊕ 𝑡5𝑢2(𝑘) (2.18)

𝑥4(𝑘) = 𝑡4𝑡3𝑡2𝑥2(𝑘 − 1)⊕ 𝑡4𝑥4(𝑘 − 1)⊕ 𝑡4𝑡3𝑡2𝑡1𝑢1(𝑘)⊕ 𝑡5𝑡4𝑢2(𝑘) (2.19)

The Equations 2.16 to 2.19 are linear in max-plus algebra and they can be

written in matrix notation as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

𝑥4(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. 𝑒 . .

. 𝑡2 . .

. 𝑡3𝑡2 . 𝑒

. 𝑡4𝑡3𝑡2 . 𝑡4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑘 − 1)

𝑥2(𝑘 − 1)

𝑥3(𝑘 − 1)

𝑥4(𝑘 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 .

𝑡2𝑡1 .

𝑡3𝑡2𝑡1 𝑡5

𝑡4𝑡3𝑡2𝑡1 𝑡5𝑡4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑢1(𝑘)

𝑢2(𝑘)

⎤⎦

in which the dot in matrices is the neutral element of addition 𝜀.

Therefore, the max-plus algebra is able to describe the behavior of important

complex nonlinear systems in a linear way. Another advantage is that concepts

such as eigenvalues, eigenvectors and linear vector space can be inherited from

conventional algebra by max-plus algebra. These concepts will be presented fur-

ther.
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2.4.4 Systems of Linear Equations

In this subsection, some systems of linear equations are addressed, mainly in

matrix notation. Dealing with max-plus algebra, the general system of equations

is

𝐴𝑥⊕ 𝑐 = 𝐶𝑥⊕ 𝑑 (2.20)

in which 𝐴 and 𝐵 are matrices and 𝑐 and 𝑑 are vectors of appropriate dimensions.

Definition 2.4.3 (Canonical form of a System of Affine Equations) (Baccelli

et al., 1992) The system 𝐴𝑥 ⊕ 𝑐 = 𝐵𝑥 ⊕ 𝑑 is said to be in canonical form if 𝐴,

𝐵, 𝑐 and 𝑑 satisfy:

• 𝐵𝑖𝑗 = 𝜀 if 𝐴𝑖𝑗 ≻ 𝐵𝑖𝑗, and 𝐴𝑖𝑗 = 𝜀 if 𝐴𝑖𝑗 ≺ 𝐵𝑖𝑗;

• 𝑑𝑖 = 𝜀 if 𝑏𝑖 ≻ 𝑑𝑖, and 𝑏𝑖 = 𝜀 and 𝑏𝑖 ≺ 𝑑𝑖.

Cuninghame-Green and Butkovic (2003) developed a methodology to find the

greatest solution, smaller than the initial condition for Equation 2.20. Therefore,

considering the initial condition equal to ⊤ (the greatest element in max-plus

algebra), the method finds the greatest solution to that equation. The solution

to Equation 2.20 will be better discussed in Subsection 2.7.1.

For instance, there are two classes of linear systems of interest for which there

exists a satisfactory theory. The first one is 𝑥 = 𝐴𝑥⊕ 𝑏.

Theorem 2.4.1 (Baccelli et al., 1992) If there are only circuits of non positive

weight in a graph 𝒢(𝐴), there is a solution to 𝑥 = 𝐴𝑥 ⊕ 𝑏 which is given by

𝑥 = 𝐴*𝑏. Moreover, if the circuit weight is negative, the solution is unique.
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The (𝐴*)𝑖𝑗 represents the maximum weight of all paths of any length from 𝑗

to 𝑖 in a graph. Thus, the necessary and sufficient condition for the existence of

(𝐴*)𝑖𝑗 is the non existence of circuits with positive weight.

Theorem 2.4.2 (Baccelli et al., 1992) If a graph has no circuit with positive

weight, then

𝐴* = 𝑒⊕ 𝐴⊕ . . .⊕ 𝐴𝑛−1 (2.21)

where 𝑛 is the dimension of matrix 𝐴.

The second class of linear systems is 𝐴𝑥 = 𝑏. In this case, however, the notion

of subsolution of 𝐴𝑥 = 𝑏 must be considered, i.e., the values of 𝑥 which satisfy

𝐴𝑥 ⪯ 𝑏, where the order relation on the vectors is defined by 𝑥 ⪯ 𝑦 if 𝑥⊕ 𝑦 = 𝑦.

Theorem 2.4.3 (Baccelli et al., 1992) Given an 𝑛×𝑛 matrix 𝐴 and an n-vector

𝑏 in Z𝑚𝑎𝑥, the greatest solution of 𝐴𝑥 ⪯ 𝑏 exists and it is given by

− 𝑥𝑗 = max
𝑖

(−𝑏𝑖 + 𝐴𝑖𝑗) (2.22)

or

𝑥𝑗 = min
𝑖
(𝑏𝑖 − 𝐴𝑖𝑗) (2.23)

The solution to equation 𝐴𝑥 = 𝑏 and the notion of subsolution will be discussed

in Section 2.5.

2.4.5 Spectral Theory of Matrices

The main objective is to find the maximum cycle mean, where the maximum

cycle is obtained from all circuits in a graph. Considering a graph 𝐺(𝐴) related

to a 𝑛× 𝑛 matrix 𝐴, the maximum weight of all circuits of length 𝑗 which pass



Chapter 2. Preliminary Concepts 40

through node 𝑖 of 𝐺 can be written as (𝐴𝑗)𝑖𝑖. The maximum of these weights over

all nodes is
⨁︀𝑛

𝑖=1(𝐴
𝑗)𝑖𝑖, that can be written as the trace of matrix 𝐴. Then, the

maximum cycle mean (𝜈) of a graph can be given, in max-plus algebra notation,

by:

𝜈 =
𝑛⨁︁

𝑗=1

(trace(𝐴𝑗))1/𝑗 (2.24)

Definition 2.4.4 (Baccelli et al., 1992) Let 𝐴 ∈ Z𝑚𝑎𝑥 a square matrix. If there

exists a scalar 𝜆 ∈ Z𝑚𝑎𝑥 and a vector 𝑣 ∈ Z𝑚𝑎𝑥 that has at least one finite entry

so that

𝐴⊗ 𝑣 = 𝜆⊗ 𝑣, (2.25)

then 𝜆 is called an eigenvalue of 𝐴 and 𝑣 an eigenvector associated with eigenvalue

𝜆.

Theorem 2.4.4 (Baccelli et al., 1992) The necessary and sufficient condition

for a square matrix 𝐴 to be irreducible is the graph 𝐺(𝐴) associated with matrix

𝐴 be strongly connected.

Theorem 2.4.5 (Baccelli et al., 1992) If 𝐴 is irreducible, or equivalently if 𝐺(𝐴)

is strongly connected, there exists one and only one eigenvalue (but possible sev-

eral eigenvectors). This eigenvalue is equal to the maximum cycle mean of the

graph:

𝜆 = max
𝜁

|𝜁|𝑤
|𝜁|𝑙

(2.26)

where 𝜁 ranges over the set of circuits of 𝐺(𝐴), in which |𝜁|𝑤 is the weight of

path 𝜁 and |𝜁|𝑙 is the length of path 𝜁.



41 2.4. Dioids and Max-Plus Algebra

2.4.6 Asymptotic Behavior of 𝐴𝑘

Definition 2.4.5 (Critical Circuits) (Baccelli et al., 1992) A circuit 𝜁 of the

graph 𝐺(𝐴) is called critical if it has maximum weight, that is, |𝜁|𝑤 = 𝑒.

Definition 2.4.6 (Critical Graph) (Baccelli et al., 1992) The critical graph

𝐺𝑐(𝐴) consists of those nodes and arcs of 𝐺(𝐴) which belong to a critical circuit

of 𝐺(𝐴). Its nodes constitute the set 𝑉 𝑐.

Example: 2.4.3 Baccelli et al. (1992) Consider the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑒 𝑒 𝜀 𝜀

−1 −2 𝜀 𝜀

𝜀 −1 −1 𝜀

𝜀 𝜀 𝑒 𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Its precedence graph 𝐺(𝐴) has three critical circuits, namely: the circuit from

node 1 to node 1, the circuit from node 3 to node 4 and to node 3 and the circuit

from node 4 to node 4.

Its critical graph is the precedence graph of matrix

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑒 𝜀 𝜀 𝜀

𝜀 𝜀 𝜀 𝜀

𝜀 𝜀 𝜀 𝜀

𝜀 𝜀 𝑒 𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, the matrix 𝐴 has the eigenvector

[︁
𝑒 −1 −2 −2

]︁𝑇
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associated with eigenvalue 𝑒.

Definition 2.4.7 (Baccelli et al., 1992) The cyclicity of a maximal strongly con-

nected subgraph is the greatest common divisor of the lengths of all its circuits.

The cyclicity 𝜍(𝐺) of a graph 𝐺(𝐴) is the least common multiple of the cyclicities

of all its maximal strongly connected subgraphs.

Definition 2.4.8 (Baccelli et al., 1992) Let 𝐴 ∈ Z𝑚𝑎𝑥 such that the correspond-

ing graph has at least one circuit. The cyclicity of 𝐴, denoted by 𝜍(𝐴), is the

cyclicity of the critical graph of 𝐴.

Theorem 2.4.6 (Baccelli et al., 1992) Let 𝐴 ∈ Z𝑚𝑎𝑥 an irreducible matrix, then

∃𝑘0 ∈ N such that ∀𝑘 ⪰ 𝑘0 : 𝐴𝑘+𝜍 = 𝜆𝜍 ⊗ 𝐴𝑘, in which 𝜆 is the eigenvalue of

matrix 𝐴 and 𝜍 is the cyclicity of 𝐴.

Definition 2.4.9 (Baccelli et al., 1992) A matrix 𝐴 is said to be cyclic if there

exist 𝑑 and 𝑀 such that ∀𝑚 ⪰ 𝑀 , 𝐴𝑚+𝑑 = 𝐴𝑚. The least such 𝑑 is called the

cyclicity of matrix 𝐴 and 𝐴 is said to be 𝑑−cyclic.

Lemma 2.4.1 (Baccelli et al., 1992) Let 𝐴 ∈ Z𝑚𝑎𝑥 be an irreducible matrix

endowed with cyclicity 𝜍(𝐴). Then, the cyclicity of matrix 𝐴𝜍 is equal to 1.

The cyclicity equal to 1 defines a periodic behavior in steady state. Consider

the initial state 𝑥(0), from the state 𝑥(𝑘) at the 𝑘𝑡ℎ date, the behavior will be

periodic at 𝑥(𝑘 + 𝜍), by the following equation:

𝑥(𝑘 + 𝜍) = 𝐴(𝑘+𝜍) ⊗ 𝑥(0) (2.27)

that can be rewritten as

𝑥(𝑘 + 𝜍) = 𝜆𝜍𝐴𝑘 ⊗ 𝑥(0) (2.28)
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and considering, thanks to the periodicity, 𝑥(𝑘) = 𝐴𝑘𝑥(0),

𝑥(𝑘 + 𝜍) = 𝜆𝜍 ⊗ 𝑥(𝑘). (2.29)

For a graph endowed with cyclicity equal to 1, it is possible to show that

𝑥(𝑘 + 1) = 𝐴⊗ 𝑥(𝑘) = 𝜆𝑥(𝑘). (2.30)

Theorem 2.4.7 (Baccelli et al., 1992) A necessary and sufficient condition to

have 𝑙𝑖𝑚𝑘→∞𝐴𝑘 = 𝑄 is that the cyclicity of each maximal strongly connected

subgraph of 𝐺(𝐴) is equal to 1.

Theorem 2.4.8 (Baccelli et al., 1992) Suppose that 𝐺(𝐴) is strongly connected

graph. Then there exists a 𝑘
′ such that

∀𝑘 ⪰ 𝑘
′
, 𝐴𝑘 = 𝑄, (2.31)

if and only if the cyclicity of each maximal strongly connected subgraph of 𝐺(𝐴)

is equal to 1.

2.4.7 Max-Plus Linear Systems Theory

Firstly, the max-plus linear systems are defined.

Definition 2.4.10 (Max-Plus Linear Dynamic Systems) The systems mod-

eled by timed event graphs whose dynamics are described by max-plus algebra by

state space equations are called Max-Plus Linear Dynamic Systems.

The Equations in 2.9 are used to describe max-plus linear systems and in

these systems the firing dates of transitions are non-decreasing, i.e., 𝐴 ⪰ 𝐼, since



Chapter 2. Preliminary Concepts 44

𝑥(𝑘) ⪰ 𝑥(𝑘 − 1).

By using the max-plus algebra to describe max-plus linear systems it is com-

mon to find equations such as

𝑥(𝑘) = 𝐴0𝑥(𝑘)⊕ 𝐴1𝑥(𝑘 − 1)⊕𝐵0𝑢(𝑘) (2.32)

in which 𝐴0, 𝐴1 and 𝐵0 are system matrices, but this equation can be rewritten

as:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) (2.33)

considering what was presented in Theorem 2.4.1.

u P1 x1
P

2 x2

P
3

5 8

x3

3

Figure 2.13: Timed Event Graph

This important result can be better understood by considering the TEG in

Figure 2.13, that has the firing dates described by an equation as Equation 2.32,

which can be rewritten as

𝑥(𝑘) = 𝐴0𝑥(𝑘)⊕𝑊, (2.34)
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in which 𝑊 = 𝐴1𝑥(𝑘−1)⊕𝐵0𝑢(𝑘). Suppose that 𝑥(𝑘) is a solution, consequently,

𝑥(𝑘) must satisfy the Equation 2.34, so

𝑥(𝑘) = 𝐴0𝑥(𝑘)⊕𝑊 (2.35)

𝑥(𝑘) = 𝐴0(𝐴0𝑥(𝑘)⊕𝑊 )⊕𝑊 (2.36)

𝑥(𝑘) = 𝐴2
0𝑥(𝑘)⊕ 𝐴0𝑊 ⊕𝑊 (2.37)

...

𝑥(𝑘) = 𝐴𝑙
0𝑥(𝑘)⊕ 𝐴𝑙−1

0 𝑊 ⊕ 𝐴𝑙−2
0 𝑊 ⊕ · · · ⊕𝑊 (2.38)

and then 𝑥(𝑘) ⪰ 𝐴*
0𝑊 . Equation 2.38 can be rewritten as 𝑥 = 𝐴𝑥 ⊕ 𝑏. Using

Theorem 2.4.1 and considering all graph circuits with non positive weights, the

solution to Equation 2.38 is given by:

𝑥(𝑘) = 𝐴*
0𝑊, (2.39)

since the entries of 𝐴𝑙
0 are the maximum weights of circuits with weight 𝑙. For 𝑙

great enough, the entries of 𝐴𝑙
0 are weights of the paths of length 𝑘. Those paths

necessarily traverse some circuits of 𝐴0 a number of times going to ∞ with 𝑙.

Since the weights of these circuits are all negative, 𝐴𝑙
0 → [𝜀] when 𝑙 → ∞.

Replacing 𝑊 in Equation 2.39, the equation

𝑥(𝑘) = 𝐴*
0𝐴1𝑥(𝑘 − 1)⊕ 𝐴*

0𝐵0𝑢(𝑘) (2.40)

is obtained, resulting in

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) (2.41)
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with 𝐴 = 𝐴*
0𝐴1 and 𝐵 = 𝐴*

0𝐵0.

Example: 2.4.4 (Max-Plus Linear System) Consider a system modeled as

the TEG in Figure 2.13. The dinamic behavior of the TEG can be described by

the following equations in max-plus algebra:

𝑥1(𝑘) = 𝑥2(𝑘 − 1)⊕ 5⊗ 𝑢1(𝑘)

𝑥2(𝑘) = 8⊗ 𝑥1(𝑘)

𝑥3(𝑘) = 3⊗ 𝑥2(𝑘)

𝑦(𝑘) = 𝑥3(𝑘)

This equations can be rewritten as 𝑥(𝑘) = 𝐴0𝑥(𝑘) ⊕ 𝐴1𝑥(𝑘 − 1) ⊕ 𝐵0𝑢(𝑘), in

matrix notation, as:

⎡⎢⎢⎢⎢⎣
𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
. . .

8 . .

. 3 .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

⎤⎥⎥⎥⎥⎦⊕

⎡⎢⎢⎢⎢⎣
. 𝑒 .

. . .

. . .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝑥1(𝑘 − 1)

𝑥2(𝑘 − 1)

𝑥3(𝑘 − 1)

⎤⎥⎥⎥⎥⎦⊕

⎡⎢⎢⎢⎢⎣
5

.

.

⎤⎥⎥⎥⎥⎦𝑢(𝑘)

(2.42)

𝑦(𝑘) =
[︁
. . 𝑒

]︁
⎡⎢⎢⎢⎢⎣

𝑥1(𝑘 − 1)

𝑥2(𝑘 − 1)

𝑥3(𝑘 − 1)

⎤⎥⎥⎥⎥⎦ . (2.43)

Using the previous result, the Equation 2.42 can be rewritten as the Equation

2.41:
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⎡⎢⎢⎢⎢⎣
𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
. 𝑒 .

. 8 .

. 11 .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝑥1(𝑘 − 1)

𝑥2(𝑘 − 1)

𝑥3(𝑘 − 1)

⎤⎥⎥⎥⎥⎦⊕

⎡⎢⎢⎢⎢⎣
5

13

16

⎤⎥⎥⎥⎥⎦𝑢(𝑘). (2.44)

2.5 Residuation Theory

As previously mentioned, the max-plus algebra is an idempotent semiring (dioid)

which does not have the inverse element for the ⊕ operation, therefore the op-

eration ⊕ is not particularly invertible for matrix applications such as finding a

solution to matrix equations such as 𝐴𝑥 ⪯ 𝑏 or 𝐴𝑥 = 𝑏.

Definition 2.5.1 (Isotone Mappings) (Baccelli et al., 1992) A mapping 𝑓 de-

fined on a dioid (𝒟,⊗,⊕) in a dioid (𝒞,⊗,⊕) is called isotone mapping if, for all

𝑎,𝑏 ∈ 𝒟, the following order relation is preserved:

𝑎 ⪯ 𝑏 ⇔ 𝑓(𝑎) ⪯ 𝑓(𝑏)

The Residuation Theory, applied to dioids, deals with the inversion of isotone

mappings and with the solutions to equations in partially ordered sets. Let 𝑓

be the isotone mapping of a dioid 𝒟 on a dioid 𝒞, if an equation 𝑓(𝑥) = 𝑏 is

not surjective, the equation cannot have a solution to some values of 𝑏, and if

𝑓(𝑥) = 𝑏 is not injective, the equation has non unique solutions, i.e., equations

like 𝑓(𝑥) = 𝑏 can have innumerable or no solutions. The solution to this problem

can be obtained considering a subset of solutions, i.e., values to 𝑥 that satisfy

𝑓(𝑥) ⪯ 𝑏. The Residuation Theory is particularly useful to find the maximal

sub-solution to the inequality of the form 𝑓(𝑥) ⪯ 𝑏. The maximal sub-solution

𝑥𝑠𝑢𝑏 is equal to the maximal value of 𝑥 so that the 𝑓(𝑥𝑠𝑢𝑏) is smaller than or equal
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to b. Dually, the Dual Residuation Theory finds the smallest super-solutions to

equations such as 𝑓(𝑥) = 𝑏 in dioid algebra. The smallest super-solution 𝑥𝑠𝑢𝑝 is

the smallest solution to 𝑥 such that 𝑓(𝑥𝑠𝑢𝑝) is greater than or equal to 𝑏 (Maia,

2003) (Baccelli et al., 1992). To ensure the existence of a lower bound and an

upper bound, the dioids 𝒟 and 𝒞 are assumed as complete dioids.

The definitions and theorems presented below were obtained from Baccelli

et al. (1992) and Maia (2003) and applications of Residuation Theory on dioids

are shown in Baccelli et al. (1992).

Definition 2.5.2 (Residual and Residuated Mapping) Let 𝒟 and 𝒞 be par-

tially ordered sets. The isotone mapping 𝑓 : 𝒟 ↦→ 𝒞 is a residuated mapping if,

for all 𝑦 ∈ 𝒞, there exists the greatest subsolution for the inequality 𝑓(𝑥) ⪯ 𝑦.

The mapping 𝑓 ♯ is called residual of mapping 𝑓 and the greatest subsolution is

denoted by 𝑓 ♯(𝑦).

Theorem 2.5.1 (Residuation) Let 𝒟 and 𝒞 be ordered sets. The isotone map-

ping 𝑓 : 𝒟 ↦→ 𝒞 is residuated, if and only if 𝑓 ♯ is the unique isotone mapping

such that

(𝑓 ∘ 𝑓 ♯)(𝑦) ⪯ 𝑦 and (𝑓 ♯ ∘ 𝑓)(𝑥) ⪰ 𝑥

∀𝑥 ∈ 𝒟 and ∀𝑦 ∈ 𝒞.

The residuated mappings to complete dioids are characterized by the following

theorem.

Theorem 2.5.2 (Residuation for Complete Dioids) Consider the complete

dioids 𝒟 and 𝒞, the mapping 𝑓 : 𝒟 ↦→ 𝒞 is residuated, if and only if, for all subset
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𝑋 of 𝒟,

𝑓

(︃⨁︁
𝑥∈𝑋

𝑥

)︃
=

⨁︁
𝑥∈𝑋

𝑓(𝑥),

𝑓(𝜀) = 𝜀.

To dually residuated mappings, analogous statements from residuated map-

pings can be demonstrated.

Definition 2.5.3 (Dual Residue and Dually Residuated Mapping) Let 𝒟

and 𝒞 be ordered sets. The isotone mapping 𝑓 : 𝒟 ↦→ 𝒞 is dually residuated, if

for all 𝑦 ∈ 𝒞, there exists the smallest super-solution for the inequality 𝑓(𝑥) ⪰ 𝑦.

This smallest super-solution is denoted by 𝑓 ♭(𝑦) and the mapping 𝑓 ♭ is called dual

residue of 𝑓 .

Theorem 2.5.3 (Dual Residuation) Let 𝒟 and 𝒞 be ordered sets. The isotone

mapping 𝑓 : 𝒟 ↦→ 𝒞 is dually residuated, if and only if, 𝑓 ♭ is the unique isotone

mapping such that,

𝑓 ∘ 𝑓 ♭(𝑦) ⪰ 𝑦 and 𝑓 ♭ ∘ 𝑓(𝑥) ⪯ 𝑥

∀𝑥 ∈ 𝒟 and ∀𝑦 ∈ 𝒞.

Theorem 2.5.4 (Dual Residuation for Complete Dioids) Let 𝒟 and 𝒞 be

complete dioids. The mapping 𝑓 : 𝒟 ↦→ 𝒞 is dually residuated, if and only if, for

all subsets 𝑋 of 𝒟

𝑓

(︃⋀︁
𝑥∈𝑋

𝑥

)︃
=

⋀︁
𝑥∈𝑋

𝑓(𝑥)

𝑓(⊤) = ⊤
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in which
⋀︀

is the lower bound operator and ⊤ is the upper bound element (infinity

element in conventional algebra).

Residuated Mappings and Dually Residuated Mappings in Complete Dioids

Let the mappings 𝐿𝑎, 𝑅𝑎 and 𝑇𝑎 defined on a complete dioid 𝒟 as:

𝐿𝑎 : 𝑥 ↦→ 𝑎⊗ 𝑥 (2.45)

𝑅𝑎 : 𝑥 ↦→ 𝑥⊗ 𝑎 (2.46)

𝑇𝑎 : 𝑥 ↦→ 𝑎⊕ 𝑥 (2.47)

The Theorem 2.5.2 ensures that these mappings are residuated. From map-

pings presented in this section, it is straightforward to see that 𝑅𝑎(𝜀) = 𝐿𝑎(𝜀) = 𝜀.

It is also possible to verify that the multiplication is distributive with respect to

infinite sums on the right and on the left for the mappings 𝐿𝑎 and 𝑅𝑎 since, as

mentioned in Section 2.4, a dioid is said to be complete and distributive if it is

closed in relation to infinite sums and if the multiplication is distributive over

infinite sums. Besides that, if 𝒟 is commutative, 𝐿𝑎 = 𝑅𝑎 and, consequently,

𝐿♯
𝑎 = 𝑅♯

𝑎.

Considering a complete and distributive dioid, 𝑇𝑎(𝜀) ̸= 𝜀, so the mapping 𝑇𝑎 is

not always residuated. However, 𝑇𝑎(⊤) = ⊤, then this mapping is, in accordance

to the Theorem 2.5.4, dually residuated.

From the theorems and definitions presented in Section 2.5, the linear map-

pings 𝑓(𝑥) = 𝑎 ⊗ 𝑥 and 𝑓(𝑥) = 𝑥 ⊗ 𝑎 and the affine mapping 𝑓(𝑥) = 𝑥 ⊕ 𝑎 are,

respectively, residuated and dually residuated in any dioid.

The notations presented in the following subsection for the mappings 𝐿𝑎, 𝑅𝑎

and 𝑇𝑎 are shown in Baccelli et al. (1992).
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Notation: 2.5.1 (Residues of 𝐿𝑎, 𝑅𝑎 and 𝑇𝑎)

𝐿♯
𝑎(𝑥) = 𝑎 ∘∖𝑥

𝑅♯
𝑎(𝑥) = 𝑥∘/𝑎

𝑇 ♭
𝑎(𝑥) = 𝑥 ∘− 𝑎

in which ∘∖ is the symbol for left residuation, ∘/ is the symbol for right residuation

and ∘− is the symbol for dual residuation.

For the particular case of Z𝑚𝑎𝑥, it is possible to show that 𝐿♯
𝑎 = 𝑅♯

𝑎 = 𝑥 −

𝑎 (subtraction operation in conventional algebra). The residue of mapping 𝑇 ♭
𝑎

implies that:

𝑇 ♭
𝑎 = 𝑥 ∘− 𝑎 =

⎧⎨⎩ 𝑥, 𝑖𝑓 𝑥 ≻ 𝑎

; 𝜀, 𝑖𝑓 𝑥 ⪯ 𝑎.

Generally, if a dioid 𝒟 is a complete dioid, 𝒟𝑛×𝑛 is also a complete dioid.

Then the operations 𝐿𝐴(𝑋) = 𝐴⊗𝑋 and 𝑅𝐴(𝑋) = 𝑋 ⊗ 𝐴 are also residuated,

being 𝐴 and 𝑋 matrices with coefficients in 𝒟. It is possible to show that the

residuals of matrices 𝐿♯
𝐴 = 𝐴 ∘∖𝑋 and 𝑅♯

𝑎 = 𝑋∘/𝐴 are given by:

(𝐿♯
𝐴)𝑖𝑗 = (𝐴 ∘∖𝑋)𝑖𝑗 =

𝑛⋀︁
𝑙=1

𝑎𝑙𝑖 ∘∖𝑥𝑙𝑗 (2.48)

(𝑅♯
𝐴)𝑖𝑗 = (𝑋∘/𝐴)𝑖𝑗 =

𝑛⋀︁
𝑙=1

𝑥𝑙𝑖 ∘∖𝑎𝑙𝑗 (2.49)

in which 𝑖,𝑗 and 𝑛 are, respectively, the rows, columns and the dimensions of ma-

trices 𝑅♯
𝐴 or 𝐿♯

𝐴. Analogously, the mapping 𝑇𝐴(𝑋) = 𝑋 ⊕𝐴 is dually residuated

and the dual residue is given by:
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(𝑇 ♭
𝐴)𝑖𝑗 = (𝑋 ∘− 𝐴)𝑖𝑗 =

⎧⎨⎩ 𝑥𝑖𝑗, 𝑖𝑓 𝑥𝑖𝑗 ≻ 𝑎𝑖𝑗;

𝜀, 𝑖𝑓 𝑥𝑖𝑗 ⪯ 𝑎𝑖𝑗.
(2.50)

Example: 2.5.1 (Residuation and Dual Residuation) Let the matrices 𝐴,𝐵 ∈

R̄2×2
𝑚𝑎𝑥, be given by

𝐴 =

⎡⎣ 2 3

1 0

⎤⎦ and 𝐵 =

⎡⎣ 0 4

1 2

⎤⎦ .

By the Residuation Theory, the greatest solution to 𝑋 such that 𝐴 ⊗𝑋 ⪯ 𝐵

is given by:

𝑋 = 𝐴 ∘∖𝐵 =

⎡⎣ −2 1

−3 1

⎤⎦
and the greatest solution to 𝑋 ⊗ 𝐴 ⪯ 𝐵, is given by:

𝑋 = 𝐵∘/𝐴 =

⎡⎣ 0 −1

−2 −2

⎤⎦ .

By the Dual Residuation, the lowest solution to 𝑋 such that 𝑋 ⊕ 𝐴 ⪰ 𝐵 is

given by:

𝑋 = 𝐵 ∘− 𝐴 =

⎡⎣ 𝜀 4

𝜀 2

⎤⎦ .
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2.6 Theory of Semimodules

In the same way that the operator in dioid algebra can be related to conventional

algebra, the concept of semimodule can be related to the classical theory of

systems. By definition, the concept of semimodule is equivalent in semirings to

the notion of linear state space in classical theory of systems.

In order to introduce the definition of semimodule, first consider the definition

of monoids.

Definition 2.6.1 (Monoids) Let ℳ be a set, ⊗̂ an operation in ℳ and 𝜀ℳ ∈

ℳ is the neutral element when ∀𝑥 ∈ ℳ : 𝜀ℳ⊗̂𝑥 = 𝑥 ∧ 𝑥⊗̂𝜀ℳ = 𝑥. Then, if

there exists a neutral element to the pair (ℳ, ⊗̂), this pair is called a monoid. If

the operator ⊗̂ is commutative, the monoid is also commutative.

The definition of monoids is useful to define the semimodules.

Definition 2.6.2 (Semimodules) (Cohen et al., 2004) A semimodule is de-

fined on a semiring (𝒟,⊕,⊗, 𝜀𝑠, 𝑒) as a commutative monoid (ℳ,⊗̂), with neu-

tral element 𝜀ℳ and equipped with the map (𝒟 ×ℳ) ↦→ ℳ, that is (𝜆,𝑣) ↦→ 𝜆.𝑣

(left action), in which:

1. (𝜆⊗ 𝜇).𝑣 = 𝜆.(𝜇.𝑣)

2. 𝜆(𝑢⊕̂𝑣) = 𝜆𝑢⊕̂𝜆𝑣

3. (𝜆⊕̂𝜇).𝑣 = 𝜆.𝑣⊕̂𝜇𝑣

4. 𝜀𝑠.𝑣 = 𝜀ℳ

5. 𝜆.𝜀ℳ = 𝜀ℳ

6. 𝑒.𝑣 = 𝑣
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for all 𝑢,𝑣 ∈ ℳ and 𝜆, 𝜇 ∈ 𝒟.

Definition 2.6.3 (Subsemimodule) (Katz, 2007) A subsemimodule of ℳ is

a subset 𝒮 ⊂ ℳ for which if 𝑢,𝑣 ∈ 𝒮 and 𝜆, 𝜇 ∈ 𝒟 then 𝜆.𝑣⊕̂𝜇.𝑣 ∈ 𝒮.

In this work, the subsemimodule is considered the 𝑛−dimensional vector with

entries in 𝒟 equipped with operators (𝑢⊕̂𝑣)𝑖 = 𝑢𝑖 ⊕ 𝑣𝑖 and 𝜆.𝑣 = 𝜆⊗ 𝑣.

In this context, it is possible to show that the set of all solutions to equations

like 𝐴𝑥 = 𝐵𝑥1, for which 𝐴,𝐵 and 𝑥 have entries in Z𝑚𝑎𝑥, can be characterized

as a semimodule finitely generated, i.e., the set of all solutions to this kind of

equation can be expressed as an image of a matrix with entries in Z𝑚𝑎𝑥 (Butkovic

and Hegedus, 1984) (Gaubert, 1992) (Maia et al., 2011a).

2.6.1 Finding All Solutions to Equation 𝐴𝑥 = 𝐵𝑥

The methodology to generate all solutions to the equation 𝐴𝑥 = 𝐵𝑥 was pre-

sented first in Butkovic and Hegedus (1984). Complexity issues are discussed

in Allamigeon et al. (2008) and a simplified version of the method, as well as a

mathematical proof of its effectiveness, is presented in Maia et al. (2011b). The

objective of this subsection is to introduce this methodology.

The interest is in equations based on the dioid Z𝑚𝑎𝑥. As previously mentioned,

all solutions to equation 𝐴𝑥 = 𝐵𝑥, for which 𝐴 and 𝐵 ∈ Z𝑚×𝑛
𝑚𝑎𝑥 and 𝑥 ∈ Z𝑛

𝑚𝑎𝑥,

belong to a finitely generated semimodule given by the columns of a matrix.

The semimodule can be computed by the algorithm presented in Butkovic and

Hegedus (1984), this algorithm was improved in Allamigeon et al. (2008).

In order to find a solution to equation 𝐴𝑥 = 𝐵𝑥, it is possible to consider

solving the equation row by row of the matrices 𝐴 and 𝐵. The solution to this
1Inequalities like 𝐴𝑥 ⪯ 𝐵𝑥 can be easily rewritten as an equation since they are equivalent to (𝐴⊕𝐵)𝑥 = 𝐵𝑥,

considering 𝐴𝑥 ⪯ 𝐵𝑥 ⇒ 𝐴𝑥⊕𝐵𝑥 = 𝐵𝑥 ⇒ (𝐴⊕𝐵)𝑥 = 𝐵𝑥.
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equation can be straightforwardly obtained by solving the first row of the matrices

𝐴 and 𝐵 and then using the result to solve the second row of the matrices and

so on.

Therefore, the equation to be solved in each step is:

𝑎1 ⊗ 𝑥1 ⊕ . . .⊕ 𝑎𝑛 ⊗ 𝑥𝑛 = 𝑏1 ⊗ 𝑥1 ⊕ . . . 𝑏𝑛 ⊗ 𝑥𝑛. (2.51)

Hereafter, without loss of generality, these vectors are assumed so that 𝑎𝑘 ⊕

𝑏𝑘 ̸= 𝜀, ∀𝑘 ∈ {1, . . . ,𝑛}. In this sense, if there exists a non null solution to the

problem, then:

∃(𝑖,𝑗)|𝑎𝑖 ⊗ 𝑥𝑖 = 𝑏𝑗 ⊗ 𝑥𝑗, (2.52)

for which

(𝑎𝑘 ⊗ 𝑥𝑘 ⪯ 𝑎𝑖 ⊗ 𝑥𝑖) and (𝑏𝑘 ⊗ 𝑥𝑘 ⪯ 𝑥𝑗),∀𝑘. (2.53)

Since the solution is non null, ∃𝑘 such that 𝑥𝑘 ̸= 𝜀. Then 𝑎𝑘 ⊗ 𝑥𝑘 ̸= 𝜀 or

𝑏𝑘 ⊗ 𝑥𝑘 ̸= 𝜀. As a result of Inequality 2.53, 𝑎𝑖 ⊗ 𝑥𝑖 = 𝑏𝑗 ⊗ 𝑥𝑗 ̸= 𝜀 is ensured.

Therefore

𝑎𝑖 ⊗ 𝑏𝑗 ̸= 𝜀, (2.54)

and it can be seen [𝑥𝑖 𝑥𝑗]
𝑇 ∈ Im [𝑏𝑗 𝑎𝑖]

𝑇 , 𝑎𝑖 ⪰ 𝑏𝑖 and 𝑏𝑗 ⪰ 𝑎𝑗. Moreover, it is

possible to show that all vectors 𝑣(𝑙,𝑝) ∈ Z𝑛
𝑚𝑎𝑥, such that 𝑣(𝑙,𝑝)(𝑙) = 𝑏𝑝, 𝑣(𝑙,𝑝)(𝑝) = 𝑎𝑙

and 𝑣(𝑙,𝑝)(𝑘) = 𝜀 for 𝑘 /∈ {𝑙,𝑝}, for which 𝑎𝑙 ⪰ 𝑏𝑙 and 𝑏𝑝 ⪰ 𝑎𝑝, generate a solution

to the Equation 2.51. Based on this result, the following set is defined:

ϒ = {(𝑙,𝑝)|(𝑎𝑙 ⪰ 𝑏𝑙) and (𝑏𝑝 ⪰ 𝑎𝑝)} (2.55)
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Therefore, it is easy to see that all vectors 𝑣(𝑙,𝑝), (𝑙,𝑝) ∈ ϒ are solution to

Equation 2.51. Then all vectors in the image of the matrix, denoted by ℳ, in

which the columns are vectors 𝑣(𝑙,𝑝), (𝑙,𝑝) ∈ ϒ, are solutions to that equation.

If there exists a non null solution 𝑥 = [𝑥1 . . . 𝑥𝑛]
𝑇 for the problem

∃(𝑖,𝑗) ∈ ϒ|𝑎𝑖 ⊗ 𝑥𝑖 = 𝑏𝑗 ⊗ 𝑥𝑗 (2.56)

then Inequalities 2.53 and 2.54 hold true. Therefore, 𝑥𝑖 and 𝑥𝑗 are generated by

the vector 𝛽𝑣(𝑖,𝑗) by taking 𝛽 such that 𝑥𝑖 = 𝛽𝑏𝑗. It remains to show that all other

non null entries of 𝑥𝑘 such that 𝑘 ∈ {𝑖,𝑗} can be generated by a linear combination

of columns of ℳ. In this sense, it is possible to have both possibilities presented

below, obtained from Maia et al. (2011b).

1. (𝑎𝑘 ⪰ 𝑏𝑘) : since 𝑏𝑗 ⪰ 𝑎𝑗 then (𝑘,𝑗) ∈ ϒ. 𝑥𝑘 can be generated by the image

of 𝑣(𝑘,𝑗). In this sense 𝛼𝑘 is chosen such that 𝑥𝑘 = 𝛼𝑘 ⊗ 𝑏𝑗. It remains

to show that 𝛼𝑘 ⊗ 𝑎𝑘 ⪯ 𝑥𝑗, since 𝑥𝑗 is already generated by the image of

𝑣(𝑖,𝑗). From Inequality 2.54 𝑎𝑘 ⊗ 𝑥𝑘 ⪯ 𝑎𝑖𝑥𝑖, since 𝑎𝑖𝑥𝑖 = 𝑏𝑗𝑥𝑗. By Inequality

2.55, 𝑏𝑗 is a non null scalar number, then 𝑥𝑖, 𝑥𝑗 and 𝑥𝑘 are generated by

𝛼𝑘𝑣
𝑐(𝑖,𝑗,𝑘) ⊕ 𝛽𝑣(𝑖,𝑗), in which 𝑐(𝑖,𝑗,𝑘) = (𝑘,𝑗).

2. (𝑏𝑘 ⪰ 𝑎𝑘) : since 𝑎𝑖 ⪰ 𝑏𝑖, then (𝑖,𝑘) ∈ ϒ. The proof follows the same

reasoning of the item (1), that is, 𝑥𝑘 can be generated by the image of 𝑣(𝑖,𝑘).

To this end 𝛼𝑘 is chosen such that 𝑥𝑘 = 𝛼𝑘𝑎𝑖 and 𝛼𝑘 ⊗ 𝑏𝑘 ⪯ 𝑥𝑖 must be

ensured, since 𝑥𝑖 is already generated by the image of 𝑣(𝑖,𝑗). By Inequality

2.54, 𝑏𝑘⊗𝑥𝑘 ⪯ 𝑏𝑗𝑥𝑗, since 𝑏𝑗𝑥𝑗 = 𝑎𝑖𝑥𝑖 then 𝑏𝑘⊗𝛼𝑘⊗𝑎𝑖 ⪯ 𝑎𝑖𝑥𝑖. By Inequality

2.55, 𝑎𝑖 is a non null scalar number, then 𝑥𝑖, 𝑥𝑗 and 𝑥𝑘 are generated by

𝛼𝑘𝑣
𝑐(𝑖,𝑗,𝑘) ⊕ 𝛽𝑣(𝑖,𝑗),
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in which 𝑐(𝑖,𝑗,𝑘) = (𝑖,𝑘).

Due to the idempotency of dioid Z𝑚𝑎𝑥, the non null solution 𝑥 is described as

a linear combination of the columns of ℳ, that is, all solutions to Equation 2.51

belong to the image of ℳ, i.e., the semimodule is finitely generated. Explicitly:

𝑥 =
⨁︁

∀𝑘/∈{𝑖,𝑗} and (𝑥𝑘 ̸=𝜀)

(𝛼𝑘𝑣
𝑐(𝑖,𝑗,𝑘))⊕ 𝛽𝑣(𝑖,𝑗) ∈ Imℳ, (2.57)

in which 𝑐(𝑖,𝑗,𝑘) is taken as (𝑘,𝑗) if (𝑎𝑘 ⪰ 𝑏𝑘) or (𝑖,𝑘) otherwise.

Finally, if 𝑎𝑘 ⊕ 𝑏𝑘 = 𝜀 is taken into account by adding a column in the matrix

ℳ in which the 𝑘𝑡ℎ entry is equal to 𝑒 and the others are null.

Example: 2.6.1 (Semimodule) Consider the equation 𝐴𝑥 = 𝐵𝑥 in which the

matrices 𝐴 and 𝐵 ∈ Z2×2
𝑚𝑎𝑥 and 𝑥 ∈ Z2×1

𝑚𝑎𝑥, being

𝐴 =

⎡⎣ 𝑒 3

5 1

⎤⎦ and 𝐵 =

⎡⎣ 2 3

𝜀 2

⎤⎦
and

𝑥 =

⎡⎣ 𝑥1

𝑥2

⎤⎦ .

Using the previously mentioned methodology it is possible to write the equation

of the rows of matrices 𝐴 and 𝐵, i.e.,

𝑒⊗ 𝑥1 ⊕ 3⊗ 𝑥2 = 2⊗ 𝑥1 ⊕ 3⊗ 𝑥2 (2.58)

Then, it is possible to enunciate the following set:

ϒ1 = {(𝑙,𝑝)|(𝑎𝑙 ⪰ 𝑏𝑙) and (𝑏𝑝 ⪰ 𝑎𝑝)} = {(2,1),(2,2)}



Chapter 2. Preliminary Concepts 58

and find the following vector 𝑣(𝑙,𝑝) ∈ Z2×1
𝑚𝑎𝑥, such that 𝑣(𝑙,𝑝)(𝑙) = 𝑏𝑝, 𝑣(𝑙,𝑝)(𝑝) = 𝑎𝑙

and 𝑣(𝑙,𝑝)(𝑘) = 𝜀 for all 𝑘 ∈ {(𝑙,𝑝)}, i.e.,

𝑣(2,1) =

⎡⎣ 3

2

⎤⎦ and 𝑣(2,2) =

⎡⎣ 𝜀

3

⎤⎦ .

These linearly independent vectors are used as columns of the matrix 𝑀1, i.e.,

𝑀1 =

⎡⎣ 3 𝜀

2 3

⎤⎦ .

The columns of 𝑀1 generate a set of solutions in which the solution to Equation

2.58 belongs. This space was generated by the fist row of Equation 𝐴𝑥 = 𝐵𝑥. The

matrix 𝑀1 must be used to solve the equation generated from the second row of

matrices 𝐴 and 𝐵, so that:

[︁
5 1

]︁⎡⎣ 3 𝜀

2 3

⎤⎦⎡⎣ 𝑥1

𝑥2

⎤⎦ =
[︁
𝜀 2

]︁⎡⎣ 3 𝜀

2 3

⎤⎦⎡⎣ 𝑥1

𝑥2

⎤⎦
Simplifying the matrix equation, there exists

8⊗ 𝑥1 ⊕ 4⊗ 𝑥2 = 4⊗ 𝑥1 ⊕ 5⊗ 𝑥2

so that,

ϒ2 = {(1,2)},

and

𝑣(1,2) =

⎡⎣ 5

8

⎤⎦ .
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Therefore,

𝑀2 =

⎡⎣ 5

8

⎤⎦ ,

with the matrices 𝑀1 and 𝑀2 it is possible to find a matrix 𝑀 so that the matrix

columns generate a finite semimodule in which all solutions to equation 𝐴𝑥 = 𝐵𝑥

belong to this semimodule. The matrix 𝑀 is given by:

𝑀 = 𝑀1 ⊗𝑀2 =

⎡⎣ 8

11

⎤⎦
In this way, the solution 𝑥 ∈ Im 𝑀 .

Remark: 2.6.1 The equation 𝐴𝑥 = 𝐵𝑥 is equivalent to:

⎡⎣ 𝐴

𝐵

⎤⎦𝑥 =

⎡⎣ 𝐼

𝐼

⎤⎦ 𝑦

in which 𝐼 is the identity matrix in max-plus algebra and 𝑦 is a vector of appro-

priate dimensions.

Remark: 2.6.2 (Inexistence of Solution) The equation 𝐴𝑥 = 𝐵𝑥 has no so-

lution if any rows of matrix 𝐴 are strictly greater than the respective row of matrix

𝐵. Likewise, the assertion is also true if any rows of 𝐵 are strictly greater than

the respective row of matrix 𝐴.

2.7 Modified Alternating Algorithm

This section presents a function useful to find a solution to equations like 𝐴𝑥 =

𝐵̄𝑦. If a solution exists, it is a fixed point of the algorithm and the following

function can provide a solution in a finite number of steps. This is possible
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because the methodologies deal with the integer case. A finite-time procedure

can be ensured if the matrices are doubly G-astic2, as showed in Cuninghame-

Green and Butkovic (2003). In this thesis, the following contribution is presented

as a result.

function x=altern(𝐴,𝐵̄, 𝑥0)

𝑟 = 0; 𝑥(0) := 𝑥0;

𝑦(𝑟) := 𝐵̄ ∘∖(𝐴𝑥(𝑟));

𝑥(𝑟 + 1) := 𝐴 ∘∖(𝐵̄𝑦(𝑟)) ∧ 𝑥(0) ;

while 𝐴𝑥(𝑟 + 1) ̸= 𝐵̄𝑦(𝑟)

𝑟 := 𝑟 + 1; (2.59)

𝑦(𝑟) := 𝐵̄ ∘∖(𝐴𝑥(𝑟)); (2.60)

𝑥(𝑟 + 1) := 𝐴 ∘∖(𝐵̄𝑦(𝑟)); (2.61)

end

end

Lemma 2.7.1 If the set

𝑆𝐴𝐵(𝐴,𝐵, 𝑥̄) = {𝑥 ∈ Z𝑚𝑎𝑥|𝐴𝑥 ∈ Im 𝐵̄ and 𝑥 ⪯ 𝑥}, (2.62)

is not empty then it has a maximal element, in which Im 𝐵̄ are the elements

generated by columns of 𝐵̄.

Proof: Define 𝑥𝑢𝑝 =
⨁︀

𝑥∈𝑆𝐴𝐵
𝑥, therefore 𝑥𝑢𝑝 ⪰ 𝑥, ∀𝑥 ∈ 𝑆𝐴𝐵. If {𝑥1, 𝑥2} ∈ 𝑆𝐴𝐵,

∃{𝑦1,𝑦2|𝐴𝑥1 = 𝐵𝑦1 and 𝐴𝑥2 = 𝐵𝑦2}, due to linearity, 𝐴𝑥1 ⊕ 𝐴𝑥2 = 𝐵𝑦1 ⊕ 𝐵𝑦2,

therefore it is straightforward to see that 𝑥𝑢𝑝 satisfies the equation 𝐴𝑥 = 𝐵̄𝑦 and,
2The matrices 𝐴 and 𝐵̄ have at least one finite element on each row and on each column. Such matrices are

called doubly G-astic
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due to idempotency, if 𝑥𝑢𝑝 ⪯ 𝑥, since
⨁︀

∀𝑖(𝑥𝑖 ⊕ 𝑥) =
⨁︀

𝑥 = 𝑥, so 𝑥𝑢𝑝 ∈ 𝑆𝐴𝐵.

As a consequence of the presented function, the following modified version of

the Theorem proposed by Cuninghame-Green and Butkovic (2003) is presented.

Theorem 2.7.1 The sequences {𝑥(𝑟)} (𝑟 = 0,1,...) are non-increasing.

Proof: The modified method ensures that 𝑥(1) ⪯ 𝑥(0) . The proof for 𝑟 ⪰ 1

follows the same reasoning of Cuninghame-Green and Butkovic (2003), that is:

Residuation Theory ensures that 𝐴𝑥(𝑟 + 1) ⪯ 𝐵̄𝑦(𝑟) and 𝐵̄𝑦(𝑟) ⪯ 𝐴𝑥(𝑟), so

𝐴𝑥(𝑟+1) ⪯ 𝐴𝑥(𝑟). Since 𝑦(𝑟) = 𝐵̄ ∘∖(𝐴𝑥(𝑟)), isotony guarantees that 𝑦(𝑟+1) ⪯

𝑦(𝑟) and consequently 𝑥(𝑟 + 1) ⪯ 𝑥(𝑟) .

Corollary: 2.7.1 The sequences {𝑦(𝑟)} (𝑟 = 0,1,...) are non-increasing.

Property: 2.7.1 If 𝐴𝑥(𝑟) = 𝐵̄𝑦(𝑟 − 1) (𝑟 ≻ 0) then 𝑥(𝑟 + 1) = 𝑥(𝑟), that is

𝑥(𝑟) = 𝑓(𝑥(𝑟)), in which 𝑓(.) is the isotone function implemented by the Alter-

nating Method, that is 𝑓(𝑥) = (𝐴 ∘∖(𝐵̄𝑦)) ∧ 𝑥(0) for 𝑦 = 𝐵̄ ∘∖(𝐴𝑥).

Proof: If 𝐴𝑥(𝑟+1) = 𝐵̄𝑦(𝑟) then 𝑦(𝑟+1) = 𝐵̄ ∘∖(𝐵̄𝑦(𝑟)). So Residuation Theory

ensures that 𝑦(𝑟 + 1) ⪰ 𝑦(𝑟), since 𝑥 = 𝑦(𝑟) satisfies the inequality 𝐵̄𝑥 ⪯ 𝐵̄𝑦(𝑟),

being 𝑥 = 𝐵̄ ∘∖(𝐵̄𝑦(𝑟)) its greatest element. By Corollary 2.7.1, 𝑦(𝑟 + 1) ⪯ 𝑦(𝑟)),

so 𝑦(𝑟 + 1) = 𝑦(𝑟). By Theorem 2.7.1, 𝑥(𝑟 + 1) ⪯ 𝑥(𝑟), so it is possible to write

𝑥(𝑟 + 1) = (𝐴 ∘∖(𝐵̄𝑦(𝑟))) ∧ 𝑥(0) and then 𝑥(𝑟 + 2) = 𝑥(𝑟 + 1).

Recall Lemma 2.7.1 to ensure that the greatest solution of Equation 𝐴𝑥 = 𝐵̄𝑦

that is smaller than the initial condition 𝑥(0) exists.

Proposition 2.7.1 Denote 𝑥𝑢𝑝 as the greatest solution of Equation 𝐴𝑥 = 𝐵̄𝑦

that is smaller than the initial condition 𝑥(0). 𝑥𝑢𝑝 is a fixed point of the isotone

function 𝑓(.) implemented by the Alternating Method.
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Proof: The method implements 𝑓(𝑥𝑢𝑝) = (𝐴 ∘∖(𝐵̄𝑦)) ∧ 𝑥(0) for 𝑦 = 𝐵̄ ∘∖(𝐴𝑥𝑢𝑝).

Since 𝑥𝑢𝑝 is a solution ∃𝑦 ∈ Z𝑚𝑎𝑥|𝐴𝑥𝑢𝑝 = 𝐵̄𝑦. Therefore 𝑦 = 𝐵̄ ∘∖(𝐴𝑥𝑢𝑝) can be

rewritten as 𝑦 = 𝐵̄ ∘∖(𝐵̄𝑦). Residuation Theory is used to show that 𝐵̄𝑦 = 𝐵̄𝑦 =

𝐴𝑥𝑢𝑝. As a result, 𝑓(𝑥𝑢𝑝) = (𝐴 ∘∖(𝐴𝑥𝑢𝑝)) ∧ 𝑥(0) and Residuation Theory ensures

that 𝐴 ∘∖(𝐴𝑥𝑢𝑝) ⪰ 𝑥𝑢𝑝. Since 𝑥𝑢𝑝 ⪯ 𝑥(0),

𝑓(𝑥𝑢𝑝) ⪰ 𝑥𝑢𝑝. (2.63)

Isotony of multiplication ensures that:

𝐴𝑓(𝑥𝑢𝑝) ⪰ 𝐴𝑥𝑢𝑝 = 𝐵̄𝑦. (2.64)

On the other hand, since 𝑓(𝑥𝑢𝑝) = (𝐴 ∘∖(𝐴𝑥𝑢𝑝))∧𝑥(0) then 𝑓(𝑥𝑢𝑝) ⪯ (𝐴 ∘∖(𝐴𝑥𝑢𝑝)).

As a consequence, isotony of multiplication and Residuation Theory ensures that:

𝐴𝑓(𝑥𝑢𝑝) ⪯ 𝐴(𝐴 ∘∖(𝐴𝑥𝑢𝑝)) = 𝐴𝑥𝑢𝑝 = 𝐵̄𝑦. (2.65)

Inequalities 2.64 and 2.65 ensure that 𝐴𝑓(𝑥𝑢𝑝) = 𝐵̄𝑦. By definition 𝑓(𝑥𝑢𝑝) ⪯

𝑥(0) and therefore 𝑓(𝑥𝑢𝑝) is a solution of Equation 𝐴𝑥 = 𝐵̄𝑦 that is smaller than

the initial condition 𝑥(0). Since 𝑥𝑢𝑝 is the greatest solution in this situation,

𝑓(𝑥𝑢𝑝) ⪯ 𝑥𝑢𝑝. (2.66)

Inequalities 2.63 and 2.66 ensure that 𝑥𝑢𝑝 is a fixed point of 𝑓 , that is 𝑓(𝑥𝑢𝑝) =

𝑥𝑢𝑝.

Property: 2.7.2 The solution found by the modified method is the greatest one

that is smaller than the initial condition 𝑥(0).
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Proof: Recall by Property 2.7.1 that every solution 𝑥 is so that 𝑥 = 𝑓(𝑥), in

which 𝑓 is the isotone function implemented by the method. For a given initial

condition 𝑥(0), consider 𝑥 = 𝑓(𝑥) a solution found by the method. By Lemma

2.7.1 the equation has a greatest solution 𝑥𝑢𝑝 such that 𝑥 ⪯ 𝑥𝑢𝑝 ⪯ 𝑥(0). Since 𝑥

is a solution, ∃𝑚 ∈ N+|𝑥 = 𝑓 (𝑚)(𝑥(0)), in which 𝑓 (𝑚) = 𝑓 (𝑚−1) ∘ 𝑓 is an isotone

function that results from 𝑚 compositions of the function 𝑓 . So 𝑥 ⪯ 𝑥𝑢𝑝 ⪯

𝑥(0) ⇒ 𝑓 (𝑚)(𝑥) ⪯ 𝑓 (𝑚)(𝑥𝑢𝑝) ⪯ 𝑓 (𝑚)(𝑥(0)). Since 𝑥 and 𝑥𝑢𝑝 (by Property 2.7.1)

are solutions (fixed points of 𝑓), then 𝑓 (𝑚)(𝑥) = 𝑥 and 𝑓 (𝑚)(𝑥𝑢𝑝) = 𝑥𝑢𝑝. Therefore

𝑓 (𝑚)(𝑥) ⪯ 𝑓 (𝑚)(𝑥𝑢𝑝) ⪯ 𝑓 (𝑚)(𝑥(0)) ⇒ 𝑥 ⪯ 𝑥𝑢𝑝 ⪯ 𝑥. Consequently 𝑥 = 𝑥𝑢𝑝.

Remark: 2.7.1 The modified algorithm is a contribution of this thesis: the term

𝑥(𝑟) := 𝐴 ∘∖(𝐵̄𝑦(𝑟)) ∧ 𝑥(0) was added. Due to this modification, using Lemma

2.7.1, Properties 2.7.1 to 2.7.2, Proposition 2.7.1 and Theorem 2.7.1, it is possible

to prove that this modified algorithm converge to the greatest solution smaller

than the initial condition. This important result for the proposed problem does

not appear in Cuninghame-Green and Butkovic (2003). Without this new term,

the generated solution cannot be ensured smaller than the initial condition.

2.7.1 Dealing with Equations such as 𝐴𝑥⊕ 𝑐 = 𝐵𝑥⊕ 𝑑

An important equation for this work is the semimodule equation (two-sided linear

equations)

𝐷𝑥 = 𝐸𝑥.

This equation can be solved by the modified alternating algorithm considering

an appropriate initial condition and that
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𝐷𝑥 = 𝑦 and 𝐸𝑥 = 𝑦, (2.67)

that implies ⎡⎣ 𝐷

𝐸

⎤⎦⊗ 𝑥 =

⎡⎣ 𝐼

𝐼

⎤⎦⊗ 𝑦,

in which 𝐼 is the identity matrix in Z𝑚𝑎𝑥.

The modified alternating algorithm can also solve equations such as 𝐴𝑥 ⊕

𝑐 = 𝐵𝑥 ⊕ 𝑑 using the property presented in Equation 2.67, where 𝐴 and 𝐵 are

matrices in Z𝑚𝑎𝑥 and 𝑥, 𝑐 and 𝑑 are vectors in Z𝑚𝑎𝑥 of appropriate dimensions, by

introducing an auxiliary scalar variable 𝑡 (see Cuninghame-Green and Butkovic

(2003)), resulting in:

𝐴𝑥⊕ 𝑐𝑡 = 𝐵𝑥⊕ 𝑑𝑡. (2.68)

So, the Equation 2.68 can be rewritten as:

[︁
𝐴 𝑐

]︁
⊗

⎡⎣ 𝑥

𝑡

⎤⎦ =
[︁
𝐵 𝑑

]︁
⊗

⎡⎣ 𝑥

𝑡

⎤⎦ ,

once this equation is linear in the extended vector 𝑥̄ = [𝑥 𝑡]𝑇 .

Considering the initial condition for the modified alternating algorithm as

𝑥̄0 = [𝑥0 0]𝑇 , if an upper bound solution 𝑥 for 𝐴𝑥⊕ 𝑐 = 𝐵𝑥⊕ 𝑑 exists, such that

𝑥 ⪯ 𝑥0, the vector 𝑥̄ will converge to the solution and 𝑡 will remain equal to 0

(Cuninghame-Green and Butkovic, 2003).

As previously mentioned, the modified alternating algorithm will converge to

the greatest solution smaller than the initial condition. Therefore the greatest

solution to the equation 𝐴𝑥 ⊕ 𝑐 = 𝐵𝑥 ⊕ 𝑑 can be found by using the greatest
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possible initial condition, i.e., 𝑥0 = ⊤.

Recently, a new methodology was proposed for finding the smallest solution

to Equation 2.68 considering a special semimodule. The method introduces the

concept of weak residuation and strong residuation for an element (for more

details see Gonçalves (2015)).

2.8 Conclusion

This chapter presented useful preliminary concepts for comprehension of this

work. The Petri nets, more precisely the timed-event graphs are used to model

the systems and the max-plus algebra is used to mathematically describe the

dynamic behavior of these systems. These tools, as well as, the Residuation

Theory and the Theory of Semimodules, are fundamental to develop the control

strategies presented in the next chapter.





Chapter 3

Control Problem Formulation and

Optimal Synthesis

3.1 Introduction

The control problem formulations and the optimal control synthesis will be pre-

sented in this chapter. The formulation is original and some important classes

of problems can be obtained from it, for example, the open-loop Just-in-Time

control problem and the Feedback control problem. The formulation is based on

optimization problems formulations, so it is desired to maximize a merit function

𝑔(𝑍) of interest subject to some constraints. The main constraint is given by a

semimodule equation (non convex constraint in conventional algebra).

For instance, in this thesis, the main objective is maximize the input dates for

the system for the desired horizon, i.e., it is desired to delay as much as possible

the input dates, in order to avoid inventory generation and respect some con-

straints. The constraints are: a reference demand, a desired system dynamic and

the system characteristics. For example, a desired dynamic can be when a piece
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of a product enters the system after other piece, i.e., the entry order of different

pieces must be respected. Other dynamic constraint can be when a machine

finishes a certain service before another machine can do it. The system dynamic

constraints can be described by using linear equations in max-plus algebra.

From a proposed general formulation, the open-loop Just-in-Time control with

a finite horizon is initially presented. Two ways to find a solution to the control

problem are also proposed. Then, the open-loop Just-in-Time formulation for

infinite horizon is presented. In order to perform the control in infinite horizon,

some max-plus algebraic tools are used to simplify the search for solutions. The

control in infinite horizon can be understood as a finite horizon large enough,

which can have a huge computational cost, making the finding a solution not

feasible. It will be discussed in an appropriate moment in the following sections.

In the end, the feedback control policy in Just-in-Time context is developed.

The conditions for the existence of a feedback matrix 𝐹 are discussed and the

maximal feedback matrix that guarantees that the system will respect the dead-

line dates is found. If the maximal feedback matrix is non causal, a way to find

a causal feedback matrix from the non causal matrix is presented.

Numerical examples to illustrate the applicability of the proposed methodolo-

gies is presented in each section. The examples will also be used to illustrate the

relevance and importance of systems, which can use the proposed methodologies.

3.2 General Optimization Control Problem Formulation

To formulate the general control problem it is considered a Max-Plus Linear

System described by the following state space equations:
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⎧⎨⎩ 𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘).
(3.1)

In order to constrain the system evolution, the system output dates evolu-

tion will be bounded by deadline dates generated using a reference model. The

reference model is also a Max-Plus Linear System described by:

⎧⎨⎩ 𝑥𝑚(𝑘) = 𝐴𝑚𝑥𝑚(𝑘 − 1)⊕𝐵𝑚𝑢𝑚(𝑘),

𝑦𝑚(𝑘) = 𝐶𝑚𝑥𝑚(𝑘),
(3.2)

where the vectors 𝑥(𝑘) ∈ Z𝑛
𝑚𝑎𝑥 and 𝑥𝑚(𝑘) ∈ Z𝑝

𝑚𝑎𝑥 are the state vectors (internal),

𝑢(𝑘) ∈ Z𝑛
𝑚𝑎𝑥 and 𝑢𝑚(𝑘) ∈ Z𝑙

𝑚𝑎𝑥 are the 𝑘𝑡ℎ firing date of input transitions and

𝑦(𝑘) and 𝑦𝑚(𝑘) are the 𝑘𝑡ℎ output dates. 𝐴, 𝐴𝑚, 𝐵, 𝐵𝑚, 𝐶 and 𝐶𝑚 are the

system matrices of appropriate dimensions. The following constraint

𝐶𝑥(𝑘) ⪯ 𝐶𝑚𝑥𝑚(𝑘),∀𝑘 ≥ 𝑘′, (3.3)

must hold, i.e., the system output date must be smaller than or equal to the

reference model output dates ∀𝑘 ⪰ 𝑘′, for a given 𝑘′, and, in addition, the system

state must respect semimodule constraints such as:

ℛ = {𝑥(𝑘)|𝐷𝑥(𝑘) = 𝐸𝑥(𝑘)} (3.4)

in which 𝐷 and 𝐸 are matrices of state constraints of appropriate dimensions. It

is important to remark that the vector state 𝑥(𝑘) can be the system state or an
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extended vector state 𝑥̄(𝑘) defined as

𝑥̄(𝑘) =

⎡⎣ 𝑥(𝑘)

𝑢(𝑘)

⎤⎦ , (3.5)

i.e., the constraint can be applied to the state vector and also to the inputs.

Remark: 3.2.1 Constraints like 𝑇𝑥(𝑘) ⪯ 𝑅𝑥(𝑘) can be easily written as 𝐷𝑥(𝑘) =

𝐸𝑥(𝑘), since 𝑇𝑥(𝑘) ⪯ 𝑅𝑥(𝑘) ⇒ (𝑇 ⊕𝑅)𝑥(𝑘) = 𝑅𝑥(𝑘) ⇒ 𝐷𝑥(𝑘) = 𝐸𝑥(𝑘).

Remark: 3.2.2 Constraint like 𝑇𝑥(𝑘) ⪯ 𝑥(𝑘) ⇒ 𝑇 *𝑥(𝑘) = 𝑥(𝑘) ⇒ 𝑥(𝑘) ∈

Im𝑇 *, in which the operator (.)* is the Kleene star operator. (For more details

see Subsection 2.4.3 and Baccelli et al. (1992)).

Considering what was presented before, the general control problem can be

defined in the following way.

Definition 3.2.1 (General Control Problem Formulation) The general mul-

tiobjective control problem can be defined as:

max (𝑔𝑖(𝑍))

subjected to:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) (3.6)

𝑦(𝑘) = 𝐶𝑥(𝑘) (3.7)

𝑥𝑚(𝑘) = 𝐴𝑚𝑥𝑚(𝑘 − 1)⊕𝐵𝑚𝑢𝑚(𝑘) (3.8)

𝑦𝑚 = 𝐶𝑚𝑥𝑚(𝑘) (3.9)

𝑦(𝑘) ⪯ 𝑦𝑚(𝑘) (3.10)
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𝐷𝑥(𝑘) = 𝐸𝑥(𝑘) (3.11)

𝑥𝑚(0) = 𝑥0
𝑚 (3.12)

where 𝑥0
𝑚 is the initial condition for the the reference model for the system. 𝑔𝑖(𝑍)

is a objective function of interest (a parameter or variable of system), 𝑖 = 1 to

𝑁𝑜𝑏𝑗, being 𝑁𝑜𝑏𝑗 the number of objective functions.

Assumption: 3.2.1 The operator max in the objective function of control prob-

lem formulation means to find the maximal value to objective functions 𝑔𝑖(𝑍), for

𝑖 = 1 to 𝑁𝑜𝑏𝑗, being 𝑁𝑜𝑏𝑗 the number of objective functions.

Remark: 3.2.3 For instance, the control problem objective in this thesis is to

find the maximal input vector 𝑢(𝑘) for the system computing the maximum entries

𝑢𝑖,∀𝑖, of 𝑢(𝑘).

Remark: 3.2.4 The constraint of Equation 3.11 is very general because it can

include constraints on the system inputs. To illustrate this assertion, it is possible

to show that the equation

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘), (3.13)

is equivalent to ⎧⎨⎩ 𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘),

𝑢(𝑘) = 𝑢(𝑘 − 1)⊕ 𝑠(𝑘),

considering the expanded state

𝑥̄(𝑘) =

⎡⎣ 𝑥(𝑘)

𝑢(𝑘)

⎤⎦ ,
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and 𝑠(𝑘) as the system input. Therefore the expanded state equation can be rewrit-

ten as ⎡⎣ 𝑥(𝑘)

𝑢(𝑘)

⎤⎦ =

⎡⎣ 𝐴 𝐵

𝜀 𝐼

⎤⎦⎡⎣ 𝑥(𝑘 − 1)

𝑢(𝑘 − 1)

⎤⎦⊕

⎡⎣ 𝐵

𝐼

⎤⎦ 𝑠(𝑘)

and the Equation 3.11 can be rewritten as

𝐷𝑥̄(𝑘) = 𝐸𝑥̄(𝑘). (3.14)

From the general formulation, some classes of problems can be obtained as

presented in the following sections.

3.3 The Open-Loop Just-in-Time Control Problem in a Fi-

nite Horizon

3.3.1 Introduction

The open-loop just-in-time control problem can be understood as finding the

maximum firing dates of the input transition 𝑢, so that the firing dates of the

output transition 𝑦 occurs before given deadline dates. For a fixed horizon, from

firing 𝑘 up to firing 𝑘 + 𝑁𝑝 − 1, in which 𝑁𝑝 is the prediction horizon, it is

necessary to delay as much as possible the input firing dates in order to respect

the output deadline dates for the firings 𝑘 + 1 until 𝑘 +𝑁𝑝.

More precisely, let 𝑘 be the firing number from which it is required to make

the predictions and 𝑦(𝑘 + 𝑙) the output firing dates predicted for a given step 𝑙.

Given the information on the state of the system at the firing number 𝑘 and

the input firing dates firing from 𝑘 up to firing 𝑘 +𝑁𝑝 − 1, the future firing date
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outputs 𝑥̂(𝑘 + 𝑗|𝑘) can be predicted for the firings 𝑘 + 1 until 𝑘 +𝑁𝑝, i.e.:

𝑥̂(𝑘 + 𝑗|𝑘) = 𝐴𝑗𝑥(𝑘)⊕
𝑗−1∑︁
𝑖=0

𝐴𝑗−𝑖−1𝐵𝑢(𝑘 + 𝑖),

𝑦(𝑘 + 𝑗|𝑘) = 𝐶𝐴𝑗𝑥(𝑘)⊕
𝑗−1∑︁
𝑖=0

𝐶𝐴𝑗−𝑖−1𝐵𝑢(𝑘 + 𝑖).

This is a well-known result from classical control theory of linear systems (See for

instance Garcia et al. (1989); De Schutter and van den Boom (2001)). In matrix

notation:

𝑥̂(𝑘) = 𝐻1𝑢̂(𝑘)⊕𝐺1𝑥(𝑘) (3.15)

𝑦(𝑘) = 𝐻2𝑢̂(𝑘)⊕𝐺2𝑥(𝑘). (3.16)

in which

𝑥̂(𝑘) =

⎡⎢⎢⎢⎢⎣
𝑥(𝑘 + 1|𝑘)
...

𝑥(𝑘 +𝑁𝑝|𝑘)

⎤⎥⎥⎥⎥⎦ , (3.17)

𝐻1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐵 𝜀 · · · 𝜀

𝐴𝐵 𝐵 · · · 𝜀

...
... . . . ...

𝐴𝑁𝑝−1𝐵 𝐴𝑁𝑝−2𝐵 · · · 𝐵

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.18)

𝐺1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐴

𝐴2

...

𝐴𝑁𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.19)
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𝑦(𝑘) =

⎡⎢⎢⎢⎢⎣
𝑦(𝑘 + 1|𝑘)
...

𝑦(𝑘 +𝑁𝑝|𝑘)

⎤⎥⎥⎥⎥⎦ , (3.20)

𝐻2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝐵 𝜀 · · · 𝜀

𝐶𝐴𝐵 𝐶𝐵 · · · 𝜀

...
... . . . ...

𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 · · · 𝐶𝐵

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.21)

𝐺2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝐴

𝐶𝐴2

...

𝐶𝐴𝑁𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.22)

and

𝑢̂(𝑘) =

⎡⎢⎢⎢⎢⎣
𝑢(𝑘)

...

𝑢(𝑘 +𝑁𝑝 − 1)

⎤⎥⎥⎥⎥⎦ . (3.23)

Then, the Equation 3.6 can be replaced by Equation 3.15 without losing the

generality.

Therefore it is desired to delay as much as possible the admission dates of

material into the system, given by 𝑢̂(𝑘), in order to deliver the products in ac-

cordance with a known a priori reference demand 𝑟(𝑘) (deadline dates), that is

𝑦(𝑘) ⪯ 𝑟(𝑘).

For the control in a finite horizon, the reference demand will be given by a

priory fixed vector 𝑟(𝑘), generated by a reference model. So 𝐴𝑚 = [𝜀], 𝐵𝑚 = 𝐼

and 𝐶𝑚 = 𝐼, in which [𝜀] is a matrix of appropriate dimensions with entries equal
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to 𝜀 and 𝐼 is the identity matrix in max-plus algebra. The reference demand will

be given by:

𝑟(𝑘) =
[︁
𝑦𝑚(𝑘) 𝑦𝑚(𝑘 + 1) 𝑦𝑚(𝑘 + 2) · · · 𝑦𝑚(𝑘 +𝑁𝑝 − 1)

]︁
. (3.24)

In this section it is also considered time constraints on the dynamics of the

state, so the semimodule constraint can be replaced by an equation such as

𝐷̂𝑥̂(𝑘) = 𝐸̂𝑥̂(𝑘). In this sense it is defined the following multi-objective control

problem.

Definition 3.3.1 (Open-loop Just-in-Time Control Problem in a Finite Horizon)

The multi-objective control problem can be formulated as follows:

max
(︀
𝑢̂(𝑙)(𝑘≤𝑙≤𝑘+𝑁𝑝−1)

)︀
(3.25)

subjected to:

𝑥̂(𝑘) = 𝐻1𝑢̂(𝑙)⊕𝐺1𝑥(𝑘), (3.26)

𝐷̂𝑥̂(𝑘) = 𝐸̂𝑥̂(𝑘), (3.27)

𝑟(𝑘) = 𝑦𝑚(𝑘) = 𝐶𝑚[𝐴𝑚𝑥𝑚(𝑘 − 1)⊕𝐵𝑚𝑢𝑚(𝑘)], (3.28)

𝑦(𝑘) ⪯ 𝑦𝑚(𝑘), (3.29)

𝑢(𝑙) ⪰ 𝑢min(𝑘) (3.30)

where 𝐷̂ and 𝐸̂ are matrices of appropriate dimensions, 𝑥(𝑘) is the system state

at date 𝑘, i.e., the state when the control begins. 𝐴𝑚 = [𝜀], 𝐵𝑚 = 𝐼, 𝐶𝑚 = 𝐼 and

𝑢𝑚(𝑘 + 1) = ⊤ for 𝑘 ⪰ 𝑁𝑝, being ⊤ the greatest element in max-plus algebra.
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𝑢min(𝑘) = [𝑢(𝑘) 𝑢(𝑘) · · · 𝑢(𝑘)]𝑇 .

Remark: 3.3.1 The control problem in Definition 3.3.1, requires finding the

maximal system input dates 𝑢̂(𝑙), 𝑘 ⪯ 𝑙 ⪯ 𝑘 + 𝑁𝑝 − 1, computing the maximum

entries 𝑢̂𝑖, ∀𝑖, of 𝑢̂(𝑙).

The set of solutions of Equation 3.27 can be expressed as a semimodule whose

generator can be computed by several methods, one of them was presented in

Section 2.6.1 (Butkovic and Hegedus, 1984)(Allamigeon et al., 2008). If it is

necessary only one solution, it can be computed by the Modified Alternating

Method (Gomes da Silva and Maia, 2014) (Cuninghame-Green and Butkovic,

2003).

Definition 3.3.2 The reference 𝑟(𝑘) is viable if 𝑟(𝑘) ⪰ 𝑦min(𝑘), in which 𝑦min(𝑘) =

𝐻2𝑢min(𝑘)⊕𝐺2𝑥(𝑘), i.e., the reference 𝑟(𝑘) is viable if it is possible for the system

to produce outputs at the desirable dates.

Proposition 3.3.1 A necessary and sufficient condition for the existence of a

solution is the set Ω𝑢 = {𝑢̂ |𝐷̂(𝐻1𝑢̂⊕𝐺1𝑥(𝑘)) = 𝐸̂(𝐻1𝑢̂⊕𝐺1𝑥(𝑘))} to be non-

empty and the reference 𝑟(𝑘) be viable.

Proof: Necessity is straightforward. Sufficiency: Residuation Theory ensures that

the greatest solution of Inequality 3.29 exists. The Equation 𝐷̂(𝐻1𝑢̂⊕𝐺1𝑥(𝑘)) =

𝐸̂(𝐻1𝑢̂⊕𝐺1𝑥(𝑘)) can be rewritten as 𝐴𝑥 = 𝐵𝑦 and Lemma 2.7.1 completes the

proof.

3.3.2 Determination of Minimum Viable Reference

Unlike conventional systems, the output firing dates of a TEG can only occur

after a certain amount of time, since they depend on the token sojourn times. As
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a result the reference demand 𝑟(𝑘) (deadline dates) could be not viable. How-

ever this issue can be overcome by computing the minimum modification, in an

additive sense, in order to make 𝑟(𝑘) viable.

Fastest output firing dates

Up to the 𝑘𝑡ℎ firing date of the system output, it is assumed that it is known

the (𝑘 − 1)𝑡ℎ firing date of the input of the system 𝑢(𝑘 − 1). Since 𝑢̂(𝑘) is non-

decreasing, in order to obtain the fastest output response for a given system from

firings 𝑘 up to 𝑘+𝑁𝑝, all future inputs are set to 𝑢(𝑘−1), i.e., 𝑢̂(𝑘+𝑗) = 𝑢(𝑘−1)

for all 0 ⪯ 𝑗 ⪯ (𝑁𝑝 − 1). In this sense 𝑢min(𝑘) is defined as the vector 𝑁𝑃 × 1 in

which all entries are equal to 𝑢(𝑘 − 1). As a result the smallest output dates for

the horizon [𝑘 + 1, . . . , 𝑘 +𝑁𝑝] are:

𝑦min(𝑘) = 𝐻2𝑢min(𝑘)⊕𝐺2𝑥(𝑘) (3.31)

in which,

𝑢min(𝑘) =

⎡⎢⎢⎢⎢⎣
𝑢(𝑘)

...

𝑢(𝑘)

⎤⎥⎥⎥⎥⎦ .

The smallest viable projection

The 𝑦min(𝑘) is the fastest firing dates of the system output for the horizon [𝑘 +

1, . . . , 𝑘 + 𝑁𝑝]. Therefore a reference demand 𝑟(𝑘) cannot be viable if 𝑟(𝑘) �

𝑦min(𝑘). However, based on the ideas of Menguy et al. (2000), it is possible to

obtain the smallest viable projection in ⊕ sense.

Definition 3.3.3 (The smallest viable projection) The smallest viable pro-
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jection of 𝑥 (on 𝑦) is denoted by 𝑃𝑦(𝑥) = △𝑥 ⊕ 𝑥, in which △𝑥 is the smallest

element of the set:

Ψ𝑧 = {𝑧|𝑧 ⊕ 𝑥 ⪰ 𝑦}.

Property: 3.3.1 The smallest viable projection can be computed by 𝑃𝑦(𝑥) =

𝑥⊕ 𝑦.

Proof: It follows from Definition 3.3.3 that 𝑥⊕ 𝑦 ∈ Ψ𝑧. As a consequence △𝑥 ⪯

𝑥 ⊕ 𝑦 and △𝑥 ⊕ 𝑥 ⪯ 𝑥 ⊕ 𝑦, thanks to the idempotency of ⊕. On the other hand

△𝑥 ⊕ 𝑥 ⪰ 𝑦, so △𝑥 ⊕ 𝑥 ⪰ 𝑦 ⊕ 𝑥. Therefore △𝑥 ⊕ 𝑥 = 𝑥⊕ 𝑦.

As a result the minimum viable reference closest to the desired one, in ⊕ sense,

is

𝑃𝑦min
(𝑟(𝑘)) = 𝑦min(𝑘)⊕ 𝑟(𝑘). (3.32)

Remark: 3.3.2 It is important to notice that if 𝑟(𝑘) is viable, then 𝑃𝑦min
(𝑟(𝑘)) =

𝑟(𝑘).

3.3.3 Performing the Open-loop in Just-in-Time Control in a Finite

Horizon

Two methods for computing the solution to the control problem in Definition

3.3.1 are presented in the following. The first one is based on the semimodule

generation and the second one uses the Alternating Method.

Solution through semimodule generation

Remark: 3.3.3 As presented in Section 2.7.1, to solve the equation 𝐴𝑥 ⊕ 𝑐 =

𝐵𝑥⊕ 𝑑 it is necessary to consider an auxiliary single scalar variable 𝑡. It is clear
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that the equation has a solution with 𝑡 finite if and only if it has a solution with

𝑡 = 0. This result allows to state the following assumption. (for more details see

Cuninghame-Green and Butkovic (2003))

Assumption: 3.3.1 It is assumed hereafter that the set Ω𝑥 = {𝑥̂ |𝐷̂𝑥̂ = 𝐸̂𝑥̂}

is non-empty, in which 𝑥̂(𝑘) = 𝐻1𝑢̂(𝑘)⊕𝐺1𝑥(𝑘) and 𝑥(𝑘) is the system state at

the beginning of the prediction horizon.

Remark: 3.3.4 Considering the Property 3.3.1, Remark 3.3.3 and the Assump-

tion 3.3.1, the control problem has a solution and, consequently, the auxiliary

scalar variable 𝑡 can be set equal to zero.

It is possible to show that all solutions to Equation 3.27, in which 𝐷̂ and 𝐸̂

are matrices representing the constraints and 𝑥̂(𝑘) is a vector, can be expressed

as a finitely generated semimodule, that is 𝑥̂(𝑘) ∈ Im 𝑀 , in which 𝑀 is a ma-

trix (Butkovic and Hegedus, 1984) (Gaubert, 1992). In this sense, the following

proposition can be stated.

Proposition 3.3.2 Consider a semimodule 𝐷̂𝑥̂(𝑘) = 𝐸̂𝑥̂(𝑘) generated by Ω𝑥 =

Im 𝑀 and the smallest viable projection of the reference demand 𝑃𝑦min
(𝑟(𝑘)). If

the control problem of Definition 3.3.1 is solvable, the optimal solution to the

control problem can be computed by

𝑢̂(𝑙) = 𝑀̄ [(𝐻2𝑀̄) ∘∖𝑃𝑦min
(𝑟(𝑘)) ∧ 𝑄̄ ∘∖0] (3.33)

where 𝑀̄ is a matrix such that 𝑢̂(𝑘) ∈ Im𝑀̄ and 𝑀̄ generated by methodology

of Section 2.6.1, 𝑃𝑦min
(𝑟(𝑘)) is the smallest viable projection for the reference

demand and 𝐻2 is defined in Equation 3.21.

Proof: Replacing Equation 3.26 in Equation 3.27, it is possible to write:
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𝐷̂𝐻1𝑢̂(𝑙)⊕ 𝐷̂𝐺1𝑥(𝑘) = 𝐸̂𝐻1𝑢̂(𝑙)⊕ 𝐸̂𝐺1𝑥(𝑘) (3.34)

which is equivalent to:

[︁
𝐷̂𝐻1 𝐷̂𝐺1𝑥(𝑘)

]︁⎡⎣ 𝑢̂(𝑘)

𝑡

⎤⎦ =
[︁
𝐸̂𝐻1 𝐸̂𝐺1𝑥(𝑘)

]︁⎡⎣ 𝑢̂(𝑙)

𝑡

⎤⎦
being 𝑡 an auxiliary variable and, considering Remark 3.3.1, 𝑡 = 0. Consequently,

by theory of semimodule

⎡⎣ 𝑢̂(𝑙)

𝑡

⎤⎦ ∈ Im

⎡⎣ 𝑀̄

𝑄̄

⎤⎦
where 𝑀̄ and 𝑄̄ are matrices of appropriate dimensions found by using the tech-

nique presented in Section 2.6.1. Then⎡⎣ 𝑢̂(𝑙)

𝑡

⎤⎦ =

⎡⎣ 𝑀̄

𝑄̄

⎤⎦⊗ 𝑣

where 𝑣 is an appropriate vector.

As the control problem is solvable 𝑡 = 0 ⇒ 𝑄̄𝑣 = 0. Therefore

𝑢̂(𝑙) = 𝑀̄𝑣, (3.35)

provided that 𝑣 is such that 𝑄𝑣 = 0. Looking for the deadline dates, it is consid-

ered

𝐻2𝑢̂(𝑙)⊕𝐺2𝑥(𝑘) ⪯ 𝑃𝑦min
(𝑟(𝑘)). (3.36)
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This inequality is equivalent to

𝐻2𝑢̂(𝑙) ⪯ 𝑃𝑦min
(𝑟(𝑘)), (3.37)

𝐺2𝑥(𝑘) ⪯ 𝑃𝑦min
(𝑟(𝑘)). (3.38)

Recall by Equation 3.31 that 𝑦min is such that 𝐺𝑥(𝑘) ⪯ 𝑦min and by Equation

3.32 that 𝑦min ⪯ 𝑃𝑦min
(𝑟(𝑘)). Hence, Inequality 3.38 is always satisfied. Replacing

Equation 3.35 in Inequality 3.37, it is possible to show that:

𝐻2𝑀̄𝑣 ⪯ 𝑃𝑦min
(𝑟(𝑘)). (3.39)

The solution of Inequality 3.39 can be obtained by using the Residuation The-

ory:

𝑣 = (𝐻2𝑀̄) ∘∖𝑃𝑦min
(𝑟(𝑘)) ∧ 𝑄̄ ∘∖0, (3.40)

provided that 𝑣 is such that 𝑄̄𝑣 = 0.

Remember that the Residuation Theory ensures that this 𝑣 is the greatest one

such that Inequality 3.39 holds1 and the control problem has a solution only if

𝑄̄𝑣 = 0. Therefore, by replacing it into Equation 3.35, it is found the greatest

input dates that satisfy the smallest viable projection of the reference demand,

i.e.,

𝑢̂(𝑙) = 𝑀̄ [(𝐻2𝑀̄) ∘∖𝑃𝑦min
(𝑟(𝑘)) ∧ 𝑄̄ ∘∖0]. (3.41)

1If a system of the form 𝐴𝑥 = 𝐵 and 𝑥 ⪯ 𝐶 has a solution, then 𝑥𝑢𝑝 = 𝐴 ∘∖𝐵 ∧ 𝐶 is its biggest solution.
Indeed, a solution 𝑥 must be such that 𝑥 ⪯ 𝑥𝑢𝑝. So isotony of multiplication and residuation theory ensure
𝐵 = 𝐴𝑥 ⪯ 𝐴𝑥𝑢𝑝 ⪯ 𝐵, which means that 𝐴𝑥𝑢𝑝 = 𝐵. Moreover, 𝑥𝑢𝑝 ⪯ 𝐶.
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Provided that it is possible to compute a generator for semimodule Ω𝑥, ex-

pressed as an image of a matrix 𝑀 , Proposition 3.3.4 ensures that the greatest

firing dates of the input can be computed by Equation 3.41. However, in general

situations, the computation of such generator demands a huge computational

effort. In order to deal with this issue, it is proposed a method based on the

Alternating Method, which will be presented in the following section.

Solution through Alternating Method

The restriction presented in Inequality 3.29 is equivalent to

𝐻2𝑢̂(𝑙) ⪯ 𝑃𝑦min
(𝑟(𝑘))), (3.42)

𝐺2𝑥(𝑘) ⪯ 𝑃𝑦min
(𝑟(𝑘))). (3.43)

where 𝐻2 and 𝐺2 are defined in Equations 3.21 and 3.22 and 𝑃𝑦min
(𝑟(𝑘))) is the

smallest viable projection for the reference demand.

As shown in the previous subsection, Inequality 3.43 is always satisfied for

the smallest viable projection. As a consequence, the greatest vector 𝑢̂(𝑙) that

satisfies the Inequality 3.42 always exists and it is given by the following equation:

𝑢̂𝑚𝑎𝑥 = 𝐻2 ∘∖𝑃𝑦min
(𝑟(𝑘)). (3.44)

The vector 𝑢̂𝑚𝑎𝑥 obtained in Equation 3.44 is an upper bound for the solutions

and it is used as the initial condition for the Alternating Method. Recall that

this method can find a solution 𝑥̂ for Equation 𝐷̂𝑥̂ = 𝐸̂𝑥̂.

Remark: 3.3.5 If the solution exists, it is a fixed point of the Modified Alternat-

ing algorithm.
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Proposition 3.3.3 Consider the semimodule of constraint Ω𝑥 = {𝑥̂ |𝐷̂𝑥̂ =

𝐸̂𝑥̂} non-empty and the smallest viable projection of the reference demand, that

is 𝑃𝑦min
(𝑟(𝑘)) = 𝑟(𝑘) ⊕ 𝑦min(𝑘). By taking 𝑢̂(0) = 𝐻2 ∘∖𝑃𝑦min

(𝑟(𝑘)) as the initial

condition, the Alternating Method converges to the optimal solution of the control

problem solving the affine equation

𝐷̂𝐻1𝑢̂(𝑙)⊕ 𝐷̂𝐺1𝑥(𝑘) = 𝐸̂𝐻1𝑢̂(𝑙)⊕ 𝐸̂𝐺1𝑥(𝑘), (3.45)

in which 𝑥(𝑘) is the state at the beginning of the prediction horizon.

Proof: The proof follows from Property 2.7.2, which ensures that the Alternat-

ing Method will lead to the largest 𝑢̂ such that 𝑥̂(𝑘) ∈ Ω𝑥 and 𝑢̂ ⪯ 𝐻2 ∘∖𝑃𝑦min
(𝑟(𝑘)).

Remark: 3.3.6 Proposition 3.3.3 gives another important method to compute,

in general in a more efficient way, the solution to the control problem. It is

important to remark that this solution also leads to the greatest output smaller

than the smallest viable projection of the reference demand.

A Particular Case of Open-loop Control in a Finite Horizon

In some applications it is possible or necessary to consider constraints only on

the inputs, therefore, the control problem in a finite horizon can be simplified.

Based on this fact the following optimization control problem is defined.

Definition 3.3.4 (Particular Open-loop Just-in-Time Control Problem in Finite Horizon)

The multi-objective control problem can be formulated as follows:

max(𝑢̂(𝑙)𝑘≤𝑙≤𝑘+𝑁𝑝−1) (3.46)
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subjected to:

𝑦(𝑘) = 𝐻2𝑢̂(𝑙)⊕𝐺2𝑥(𝑘), (3.47)

𝐷̂𝑢̂(𝑙) = 𝐸̂𝑢̂(𝑙), (3.48)

𝑟(𝑘) = 𝑦𝑚(𝑘) = 𝐶𝑚[𝐴𝑚𝑥𝑚(𝑘 − 1)⊕𝐵𝑚𝑢𝑚(𝑘)], (3.49)

𝑦(𝑘) ⪯ 𝑦𝑚(𝑘), (3.50)

𝑢(𝑙) ⪰ 𝑢min(𝑘) (3.51)

where 𝐷̂ and 𝐸̂ are matrices of appropriate dimensions representing the con-

straints on 𝑢̂(𝑙), 𝑥(𝑘) is the system state at date 𝑘, i.e., the state when the control

begins. 𝐴𝑚 = [𝜀], 𝐵𝑚 = 𝐼, 𝐶𝑚 = 𝐼 and 𝑢𝑚(𝑘 + 1) = ⊤ for 𝑘 ⪰ 𝑁𝑝, being ⊤ the

greatest element in max-plus algebra. 𝑢min(𝑘) = [𝑢(𝑘) 𝑢(𝑘) · · · 𝑢(𝑘)].

In order to solve this control problem, two methods for computing the solution

are presented. The first one is based on the semimodule generation and the second

one uses the Alternating Method.

Solution through semimodule generation

In the same way as previously presented, it is possible to show that all solutions

to Equation 3.48, in which 𝐷̂ and 𝐸̂ are matrices and 𝑢̂ is a vector, can be

expressed as a finitely generated semimodule , that is 𝑢̂ ∈ Im 𝑀 , in which 𝑀 is a

matrix (Butkovic and Hegedus, 1984) (Gaubert, 1992). Based on this result the

following proposition is stated.

Proposition 3.3.4 Consider a semimodule Ω𝑢 = {𝑢̂(𝑙)|𝐷̂𝑢̂(𝑙) = 𝐸̂𝑢̂(𝑙)} gener-

ated by Ω𝑢 = Im 𝑀 and the smallest viable projection of the reference demand
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𝑃𝑦min
(𝑟(𝑘)). The optimal solution to the control problem can be computed by

𝑢̂(𝑙) = 𝑀((𝐻2𝑀) ∘∖𝑃𝑦min
(𝑟(𝑘))). (3.52)

Proof: If 𝑢̂ ∈ Im 𝑀 , it is possible to write:

𝑢̂ = 𝑀𝑣, (3.53)

for a given vector 𝑣. By replacing Equations 3.47, 3.49 and 3.53 into Inequality

3.50, it is possible to write

𝐻2𝑀𝑣 ⊕𝐺2𝑥(𝑘) ⪯ 𝑃𝑦min
(𝑟(𝑘)). (3.54)

Inequality 3.54 is equivalent to

𝐻2𝑀𝑣 ⪯ 𝑃𝑦min
(𝑟(𝑘)) (3.55)

𝐺2𝑥(𝑘) ⪯ 𝑃𝑦min
(𝑟(𝑘)) (3.56)

Recall from Equation 3.31 that 𝑦min is such that 𝐺2𝑥(𝑘) ⪯ 𝑦min and from Equation

3.32 that 𝑦min ⪯ 𝑃𝑦min
(𝑟(𝑘)). Hence, Inequality 3.56 is always satisfied. The

solution of Inequality 3.55 can be obtained using the Residuation Theory:

𝑣 = (𝐻2𝑀) ∘∖𝑃𝑦min
(𝑟(𝑘)). (3.57)

Remember that the Residuation Theory ensures that this 𝑣 is the greatest one so

that Inequality 3.55 holds. Therefore, by replacing it into Equation 3.53, it is

found the greatest input dates that satisfy the smallest viable projection of the
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reference demand, i.e.,

𝑢̂(𝑙) = 𝑀((𝐻2𝑀) ∘∖𝑃𝑦min
(𝑟(𝑘))). (3.58)

Corollary: 3.3.1 If the constraint can be expressed as 𝑇 𝑢̂(𝑙) ⪯ 𝑢̂(𝑙), that is

𝑇 𝑢̂(𝑙)⊕ 𝑢̂(𝑙) = 𝑢̂(𝑙), the optimal solution to the control problem can be computed

by

𝑢̂(𝑙) = 𝑇 *((𝐻2𝑇
*) ∘∖𝑃𝑦min

(𝑟(𝑘))) (3.59)

Proof: The equivalence: 𝑇𝑥 ⪯ 𝑥 ⇔ 𝑇 *𝑥 = 𝑥 ⇔ 𝑥 ∈ Im 𝑇 *, 𝑇 * =
⨁︀
𝑖∈N

𝑇 𝑖, in

which (.)* is the Kleene star operator. Therefore the generator of the semimodule

𝑇 𝑢̂(𝑙) ⪯ 𝑢̂(𝑙) is Im 𝑇 *.

Solution through Alternating Method

The restriction presented in 3.50 is equivalent to

𝐻2𝑢̂(𝑙) ⪯ 𝑃𝑦min
(𝑟(𝑘)), (3.60)

𝐺2𝑥(𝑘) ⪯ 𝑃𝑦min
(𝑟(𝑘)). (3.61)

As shown in the previous subsection, Inequality 3.61 is always satisfies for the

smallest viable projection. As a consequence, the greatest vector 𝑢̂(𝑙) that satisfy

the Inequality 3.60 always exists and it is given by the following equation:

𝑢̂𝑚𝑎𝑥 = 𝐻2 ∘∖𝑃𝑦min
(𝑟(𝑘)). (3.62)

The vector 𝑢̂𝑚𝑎𝑥 obtained with Equation 3.62 is an upper bound for the solutions

and it is used as initial condition for the Alternating Method. Recall that this
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method can find a solution 𝑢̂ for Equation 𝐷̂𝑢̂ = 𝐸̂𝑢̂.

Proposition 3.3.5 Consider the semimodule of constraint Ω𝑢 = {𝑢̂ |𝐷̂𝑢̂ =

𝐸̂𝑢̂}, non-empty and the smallest viable projection of the reference demand, that

is 𝑃𝑦min
(𝑟(𝑘)) = 𝑟(𝑘) ⊕ 𝑦min(𝑘). By taking 𝑢̂(0) = 𝐻2 ∘∖𝑃𝑦min

(𝑟(𝑘)) as the initial

condition, the Alternating Method converges to the optimal solution to the control

problem.

Proof: The proof follows from Property 2.7.2, which ensures that the Alternating

Method will lead to the largest 𝑢̂ ∈ Ω𝑢 so that 𝑢̂ ⪯ 𝐻2 ∘∖𝑃𝑦min
(𝑟(𝑘)).

Remark: 3.3.7 (Computational complexity) The computational complexity

of the approach based on semimodule generation depends on the fact that the

solution to 𝐴𝑥 = 𝐵𝑥, where 𝐴,𝐵 ∈ Z𝑛
𝑚𝑎𝑥 are row vectors, are hyperplanes finitely

generated. Therefore, in the worst case, to compute the solution to all the rows,

the algorithm is double exponential (Butkovic and Hegedus, 1984)(Katz, 2007).

However, for special types of semimodules, as the one presented in Corollary

3.3.1, in which the generator of the semimodule belongs to the image of a matrix

generated by the Kleene star operation, the complexity is polynomial. On the

other hand, the approach based on the “Modified Alternating” method has pseudo-

polynomial complexity2 for several important situations and works quite well in

practice, since in many cases the input size is suitable.

Remark: 3.3.8 Houssin et al. (2013) presented a state restriction, in the form

𝜑𝑥 ⪯ 𝑥 (remark that after state expansion this restriction is convex), which

is similar to the one presented in Corollary 3.3.1, but in their restriction 𝜑 ∈
2A pseudo-polynomial complexity algorithm is one that its running time is polynomial in the dimension

of the problem input and the magnitudes of the data involved (provided these are given as integers), i.e., a
pseudo-polynomial algorithm will display exponential behavior only when confronted with instances containing
exponentially large numbers. Such algorithms are technically exponential functions of their input size and are
therefore not considered polynomial. (Garey and Johnson, 1979)
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ℳ𝑎𝑥
𝑖𝑛 [𝛾,𝛿], they are operating in another dioid, and the solution to the control

problem is based on order reversing mapping (they rely on the Dual Residuation

Theory). In addition, they investigate the infinite horizon control problem, whose

transitions fire as soon as possible, that is, it is the opposite of Just-in-Time

control. Their results are based on the cases in which the matrix 𝐵 is diagonal and

the constraint matrix is factorized by the same matrix 𝐵. Unlike their approach,

this thesis is interested in a Just-in-Time control problem defined as a multi-

objective optimization problem, which allows to deal with a finite horizon control

problem and non-convex constraints of the form 𝐷𝑥 = 𝐸𝑥. Based on Residuation

Theory, it is presented necessary and sufficient conditions to solve the problem

and, for an important class of constraints, an explicit expression to compute

the best solution in polynomial time is obtained. In addition two methods to

solve the problem: one based on semimodule generation and another one based

on the modified version of the alternating method is presented, which is also a

contribution. In this thesis there is no a priori restriction concerning the forms

of matrices 𝐵 or the ones associated with the input constraints.

3.3.4 Numerical Examples

Two numerical examples is presented in this section. The first one is a multi-

objective formulation of the problem already studied in De Schutter and van

den Boom (2001), whose solution can be explicitly computed by using Corollary

3.3.1. The second one is a more complex problem with several machines and

non-convex constraints (in conventional algebra).
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Numerical Example 1

The following TEG represents a manufacturing system, which is the same as the

one described in De Schutter and van den Boom (2001), except from the fact

that the authors describe a model with single input while in this example a more

complex model that has two inputs is analyzed, so it is desired to delay as much

as possible the admission of raw material into the two inputs of the system. The
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Figure 3.1: Timed events graph of a Manufacturing System

TEG model can written as in Equation 3.1, so that:

𝐴 =

⎡⎢⎢⎢⎢⎣
11 . .

. 12 .

23 24 7

⎤⎥⎥⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎢⎢⎣
2 .

. 𝑒

14 12

⎤⎥⎥⎥⎥⎦
and

𝐶 =
[︁
. . 7

]︁
,

in which the element 𝜀 is represented by a dot.

As proposed in De Schutter and van den Boom (2001), it is desired the interval
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between two successive firing dates to be in the interval [2 12], that is (2 ⪯

△𝑢𝑖(𝑘) ⪯ 12, 𝑖 = 1,2). Those restrictions can be rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2𝑢1(𝑙) ⪯ 𝑢1(𝑙 + 1),

−12𝑢1(𝑙 + 1) ⪯ 𝑢1(𝑙),

2𝑢2(𝑙) ⪯ 𝑢2(𝑙 + 1),

−12𝑢2(𝑙 + 1) ⪯ 𝑢2(𝑙),

(3.63)

They can be written in a matrix form as:

𝐽𝑢(𝑙) ⪯ 𝐼𝑢(𝑙). (3.64)

As a consequence, they can also be written as the equation (𝐽 ⊕ 𝐼)𝑢(𝑙) = 𝐼𝑢(𝑙),

in which 𝐼 is the max-plus identity matrix. These constraints are of the type

given in Corollary 3.3.1, so given a reference demand, the solution to the control

problem can be computed explicitly, in a polynomial time, by Equation 3.59.

In order to present numerical results, the same values used by De Schutter

and van den Boom (2001) are considered. In this case, the prediction horizon

𝑁𝑝 = 8 is chosen. The matrices 𝐷̂, 𝐸̂, 𝐻2 and 𝐺2 will not be showed because of

their large size, but they are defined in Equations 3.48, 3.21 and 3.22.

The initial condition is:

𝑥(0) =
[︁
0 0 10

]︁𝑇
,

and the reference demand is:

𝑟(𝑘) =
[︁
40 45 55 66 75 85 90 100

]︁𝑇
.
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From Equation 3.31 the smallest output dates are:

𝑦min(𝑘) =
[︁
31 43 55 67 79 91 103 115

]︁𝑇
.

These output dates can be understood as the output generated by the system if

no control is applied. Therefore, by the reference demand, the smallest viable

projection of the reference demand is

𝑃𝑦min
(𝑟(𝑘)) =

[︁
40 45 55 67 79 91 103 115

]︁𝑇
.

Using Equation 3.59, the greatest input dates that satisfies 𝑃𝑦min
(𝑟(𝑘)) are given

by:

𝑢̂1(𝑘) =
[︁
12 23 34 46 58 70 82 94

]︁𝑇
,

𝑢̂2(𝑘) =
[︁
12 24 36 48 60 72 84 96

]︁𝑇
,

and the output dates are given by:

𝑦(𝑘) =
[︁
33 44 55 67 79 91 103 115

]︁𝑇
.

The vector 𝑦(𝑘) is greater than the vector 𝑦min(𝑘), i.e., the control applied makes

the system produces output dates closer to reference demand and it also delays

the input dates for the system, avoiding inventory generation in the system.

In order to solve the problem by the Modified Alternating Method, the initial

condition (an upper bound) is computed by Equation 3.62:

𝑢̂𝑚𝑎𝑥
1 (𝑘) =

[︁
12 23 34 46 58 70 82 94

]︁𝑇
,
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𝑢̂𝑚𝑎𝑥
2 (𝑘) =

[︁
12 24 36 48 60 72 84 96

]︁𝑇
.

It is interesting to observe that this initial condition is already the solution to

the problem.

Remark: 3.3.9 (Computational Time) Recall that computational complexity

of the methods was discussed in Remark 3.3.7. For this example, the solution can

be obtained almost instantaneously and the computational time with both methods

is the same. It takes by the semimodule approach and the Alternating Method

0.001 seconds (average value for 10 experiments), for a desktop computer, Intel

Core i5 2.53GHz, 4GB RAM, Windows 10, 64bits, Cache 3.932 GB using the

Max-Plus toolbox of the Computational Package Scicoslab 3.

Remark: 3.3.10 The obtained results here are different from those of De Schut-

ter and van den Boom (2001) since the approach in this thesis is interested in

a just-in-time formulation with two inputs, which leads to a multi-objective opti-

mization problem. However it is possible to solve the same problem for the single

input TEG as presented in De Schutter and van den Boom (2001) by using the

presented approach. In order to compare the approaches, recall that in the for-

mulation of De Schutter and van den Boom (2001) the mono-objective function

has two parts, one involving the output and the reference demand and another

involving the input, which is given in conventional algebra by:

𝐽 = 𝐽𝑜𝑢𝑡 + 𝐽𝑖𝑛 =

𝑁𝑝∑︁
𝑗=1

𝑚𝑎𝑥(𝑦(𝑘 + 𝑗|𝑘)− 𝑟(𝑘 + 𝑗),0)−
𝑁𝑝∑︁
𝑗=1

𝑢(𝑘 + 𝑗 − 1). (3.65)

So the optimal solution can lead to 𝑦(𝑘 + 𝑗|𝑘) ⪰ 𝑃𝑦min
(𝑟(𝑘))(𝑗), i.e., it can

violates the smallest viable projection of the reference demand. This is the case
3http://www.scicoslab.org/
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of the example presented in De Schutter and van den Boom (2001), whose results

are:

The desirable reference demand is

𝑟(𝑘) =
[︁
40 45 55 66 75 85 90 100

]︁𝑇
,

and the obtained output dates are

𝑦(𝑘) =
[︁
33 43 56 67 79 91 103 115

]︁𝑇
,

by using the obtained input dates

𝑢̂(𝑘) =
[︁
12 24 35 46 58 70 82 94

]︁𝑇
.

Using the proposed methodology in this thesis, this situation never happens be-

cause in the just-in-time formulation, constraints avoid such violation. Actually,

the just-in-time formulation ensures that 𝐽𝑖𝑛 and
∑︀𝑁𝑝

𝑗=1 |𝑦(𝑘+𝑗|𝑘)−𝑃𝑦min
(𝑟(𝑘))(𝑗)|

are minimized. In addition the optimal solution can be computed explicitly in a

polynomial time by Equation 3.59.

Numerical Example 2

Consider a manufacturing system given by the TEG shown in Figure 3.2. This

system has three input transitions, five processing units, which can process only

one product at each time, and one output transition. Places 𝑝𝑖, 𝑖 ∈ {1, . . . 5},

indicate when the process unit 𝑖 is working. Transitions 𝑥1, 𝑥2, 𝑥3, 𝑥7, 𝑥9 indicate

the beginning of the process for units 1, . . . , 5, while transitions 𝑥4, 𝑥5, 𝑥6, 𝑥8, 𝑥10

indicate the end of their respective process. Synthetically, in this model resources
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Figure 3.2: Timed events graph of a Manufacturing System

are provided to the system through input transitions 𝑢1, 𝑢2 and 𝑢3. Then they

are transported to the first three units. This action is indicated by the places 𝑡1,

𝑡2 and 𝑡3. Transitions 𝑥1, 𝑥2 and 𝑥3 indicate the beginning of the processing event

and processing actions are indicated by the places 𝑝1, 𝑝2 and 𝑝3. After processing,

resources coming from 𝑢2 and 𝑢3 are transported (places 𝑡5 and 𝑡6) to be processed

together in the forth processing unit indicated by 𝑝4. The result of this process is

then transported (𝑡7) to be processed in the fifth (final) unit, indicated by place

𝑝5, together with a part that comes from 𝑢1, which availability is indicated in the

place 𝑡4. The conclusion of the manufacturing process is indicated by transition

𝑥10. The transportation and processing times are indicated over the respective

places.
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The TEG model can be represented by the Equation 3.1, with

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 𝑒 . . . . . .

. . . . 𝑒 . . . . .

. . . . . 𝑒 . . . .

. . . 5 . . . . . .

. . . . 7 . . . . .

. . . . . 10 . . . .

. . . . 9 12 . 𝑒 . .

. . . . 24 27 . 15 . .

. . . 8 26 29 . 17 . 𝑒

. . . 28 46 49 . 37 . 20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒 . .

. 𝑒 .

. . 𝑒

5 . .

. 7 .

. . 10

. 9 12

. 24 27

8 26 29

28 46 49

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

𝐶 =
[︁
. . . . . . . . . 𝑒

]︁
.

Suppose that limit the input firing rate in a time interval is necessary, according

to a given resource availability. For a system with 𝑚 inputs, it is possible to

write:

𝑎𝑖 ⪯ △𝑢𝑖 ⪯ 𝑏𝑖, (3.66)

for each 𝑖 = 1,2 . . .𝑚. Inequality 3.66 is equivalent to:⎧⎨⎩ 𝑎𝑖𝑢𝑖(𝑘) ⪯ 𝑢𝑖(𝑘 + 1),

−𝑏𝑖𝑢𝑖(𝑘 + 1) ⪯ 𝑢𝑖(𝑘).
(3.67)

For the present example, the aim is to ensure that the firing dates of 𝑢1 are in an

interval between 2 and 35 time units (2 ⪯ △𝑢1(𝑘) ⪯ 35); the firing dates of 𝑢2

are in an interval between 0 and 45 time units (0 ⪯ △𝑢2(𝑘) ⪯ 45) and the firing
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dates of 𝑢3 are in an interval between 3 and 47 time units (3 ⪯ △𝑢3(𝑘) ⪯ 47).

These constraints can be rewritten as Inequalities 3.67, that is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝑢1(𝑘) ⪯ 𝑢1(𝑘 + 1),

−35𝑢1(𝑘 + 1) ⪯ 𝑢1(𝑘),

0𝑢2(𝑘) ⪯ 𝑢2(𝑘 + 1),

−45𝑢2(𝑘 + 1) ⪯ 𝑢2(𝑘),

3𝑢3(𝑘) ⪯ 𝑢3(𝑘 + 1),

−47𝑢3(𝑘 + 1) ⪯ 𝑢3(𝑘).

(3.68)

Inequalities 3.68 can be easily written in a matrix notation:

𝐽𝑢(𝑘) ⪯ 𝐼𝑢(𝑘). (3.69)

In addition, this inequality can be rewritten as an equation, since 𝐽𝑢(𝑘) ⪯

𝐼𝑢(𝑘) ⇔ (𝐽 ⊕ 𝐼)𝑢(𝑘) = 𝐼𝑢(𝑘), in which 𝐼 is the identity matrix in max-plus

algebra.

Control problems with Inequalities of the type 3.69 can be solved explicitly in

a very efficient way by using Corollary 3.3.1. However, the proposed approach

in this thesis can handle more general constraints that take into account several

system inputs with different firing numbers and even non-convex ones in conven-

tional algebra. In this sense, suppose that it is also desired that the 𝑘𝑡ℎ firing

of the input 𝑢3 occurs immediately after two time units after the 𝑘𝑡ℎ firing of

𝑢1 and five time units after 𝑘𝑡ℎ firing date of 𝑢2, i.e., 𝑢3(𝑘) = 2𝑢1(𝑘) ⊕ 5𝑢2(𝑘).

This constraint equation, which is non convex in conventional algebra, can also

be written in matrix form

𝑄𝑢(𝑘) = 𝑅𝑢(𝑘), (3.70)
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in which 𝑄 and 𝑅 are matrices of appropriate dimensions.

So the overall constraints set, given by Equations 3.69 and 3.70, can be written

as 𝐷𝑢(𝑘) = 𝐸𝑢(𝑘), in which

𝐷 =

⎡⎣ 𝐽 ⊕ 𝐼

𝑄

⎤⎦ , 𝐸 =

⎡⎣ 𝐼

𝑅

⎤⎦ .

As cited previously, this semimodule of constraints can be expressed as 𝑢 ∈ Im 𝑀 .

The matrix 𝑀 will not showed because of its large size. To solve this example,

suppose that the initial condition is given by

𝑥(0) =
[︁
0 0 0 0 0 0 0 0 0 0

]︁𝑇
,

and 𝑢1(0) = 𝑢2(0) = 𝑢3(0) = 0. So

𝑥(1) =
[︁
0 0 0 5 7 10 12 27 29 49

]︁𝑇
.

In addition, suppose that the prediction in the horizon [2,3 . . . 10] is required and

the reference demand is given by

𝑟(𝑘) =
[︁
50 70 100 135 150 155 170 200 270

]︁𝑇
.

By Equation 3.31 the smallest output firing dates for the horizon [2,3 . . . 10] are:

𝑦min(𝑘) =
[︁
69 89 109 129 149 169 189 209 229

]︁𝑇
,

whose are the same for the system if no control is applied considering all inputs

available at the initial prediction horizon date. Therefore the smallest viable
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projection of the reference demand is

𝑃𝑦min
(𝑟(𝑘)) =

[︁
69 89 109 135 150 169 189 209 270

]︁𝑇
.

Using Equation 3.57, the greatest input firing dates that satisfies the 𝑃𝑦min
(𝑟(𝑘))

are

𝑢̂1(𝑘) =
[︁
18 38 58 75 78 98 118 153 188

]︁𝑇
,

𝑢̂2(𝑘) =
[︁
15 35 55 72 75 95 115 155 200

]︁𝑇
,

𝑢̂3(𝑘) =
[︁
20 40 60 77 80 100 120 160 205

]︁𝑇
,

and the largest outputs that respect 𝑃𝑦min
(𝑟(𝑘)) are

𝑦(𝑘) =
[︁
69 89 109 129 149 169 189 209 254

]︁𝑇
.

Therefore, as expected, the applied control delays as much as possible the input

dates and it makes the system produce the output dates closer to the reference

demand.

In order to find a solution by the Alternating Method, Equation 3.62 gives an

upper bound for the input firing dates:

𝑢̂𝑚𝑎𝑥
1 (𝑘) =

[︁
41 61 81 101 101 121 141 181 242

]︁𝑇
,

𝑢̂𝑚𝑎𝑥
2 (𝑘) =

[︁
23 43 63 83 83 103 123 163 224

]︁𝑇
,

𝑢̂𝑚𝑎𝑥
3 (𝑘) =

[︁
20 40 60 80 80 100 120 160 221

]︁𝑇
.

The upper bound is used as the initial condition for the Alternating Method. As
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expected, the obtained results are the same as those obtained by the previous

method.

Remark: 3.3.11 (Computational Time) The obtained solution with both meth-

ods are the same, as expected, but the processing times are quite different. It takes

the semimodule approach 12.577 seconds while it takes the one based on the Al-

ternating Method 0.012 second (average value for 10 experiments), for a desktop

computer, Intel Core i5 2.53GHz, 4GB RAM, Windows 10, 64bits, Cache 3.932

GB. In addition, the semimodule method leads to the matrix 𝑀 of size 27×1022.

3.3.5 Conclusion

In this section, the open-loop Just-in-Time control problem in finite horizon for

TEG was presented, whose aim is to compute the latest input firing dates in

order to respect a given demand profile. This kind of control was studied in

a situation in which the input and the system state dynamics are constrained

by a given semimodule. The necessary and sufficient conditions to solve the

presented problems were given. In addition, two methods to solve them were

introduced: one based on semimodule generation and another one based on the

proposed modified version of the Alternating Method. Numerical examples have

enabled the illustration of the applicability of the results and the discussion of

the computational complexity of both methods.
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3.4 The Open-Loop Just-in-Time Control Problem in Infi-

nite Horizon

3.4.1 Introduction

If the number of desired deadline dates are not bounded, i.e., if the schedule is

generated infinitely, the open-loop Just-in-Time control is performed in infinite

horizon. It is important to remark that the problem addressed in this section

can be solved by the method presented in the previous section considering the

horizon large enough, i.e., the horizon bigger than the transient interval of the

system. Based on the general control problem, the following particular open-loop

control problem in infinite horizon is introduced.

Definition 3.4.1 (Open-loop Just-in-Time Control Problem in Infinite Horizon)

The Just-in-Time control problem in an infinite horizon can be defined as:

max (𝑢(𝑘)∀𝑘≻0)

subjected to:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) (3.71)

𝑥𝑚(𝑘) = 𝐴𝑚𝑥𝑚(𝑘 − 1)⊕𝐵𝑚𝑢𝑚(𝑘) (3.72)

𝐶𝑥(𝑘) ⪯ 𝐶𝑚𝑥𝑚(𝑘) (3.73)

𝐷𝑥(𝑘) = 𝐸𝑥(𝑘) (3.74)

𝑥𝑚(0) = 𝑥0
𝑚 (3.75)

in which, 𝑥0
𝑚 is the initial condition for the reference model for the system.
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Remark: 3.4.1 The control problem in Definition 3.4.1 requires finding the max-

imal system input dates 𝑢(𝑘), 𝑘 ⪰ 0, computing the maximum entries 𝑢𝑖, ∀𝑖, of

𝑢(𝑘).

3.4.2 Performing the Open-Loop Just-in-Time Control in Infinite Hori-

zon

Firstly the following definitions were presented.

Definition 3.4.2 ((A,B) Max-Plus Geometrically Invariant Sets): (Gonçalves,

2015) A semimodule 𝒳 ⊆ Z𝑚𝑎𝑥 is said (A,B) Max-Plus geometrically invariant

if for every 𝑥 ∈ 𝒳 there exists an 𝑢 ∈ Z𝑚𝑎𝑥 so that 𝐴𝑥⊕𝐵𝑢 ∈ 𝒳 .

Definition 3.4.3 (Controllable Coupled Problem) (Gonçalves, 2015) A con-

trol problem is said controllable coupled if the existence of a solution implies that

∃𝑀 ∈ N|∀𝑥 ∈ 𝒳 − {𝜀},∀𝑖,𝑗|𝑥𝑖 − 𝑥𝑗| ⪯ 𝑀. (3.76)

where 𝒳 is the set of all feasible states for the problem. This definition means

that there exists a variable 𝑀 such that all system states 𝑥 in the set of feasible

states for the problem 𝒳 has the difference between two entries of 𝑥 smaller than

or equal to 𝑀 . Therefore, in controllable coupled problems the difference between

the entries of the state vector will be bounded.

Remark: 3.4.2 In order to make a controllable coupled problem, the variable 𝑀

can be large enough. Controllable coupled problems deal with synchronizing joint

subset not with synchronizing disjoint transitions, what means there is at least

one transition that is not connected to the other ones. Many practical applications

can be modeled as a controllable coupled problem.



Chapter 3. Control Problem Formulation and Optimal Synthesis 102

Assumption: 3.4.1 In this section a kind of Regulator Control Problem is ad-

dressed and this control problem is assumed as a controllable couple problem.

The Residuation Theory ensures that the greatest solution to Inequality 3.73

exists. Therefore the necessary and sufficient condition for the existence of a solu-

tion to the proposed open-loop Just-in-Time Control Problem in infinite horizon

is that the system evolution must respect the evolution of a given reference model,

while keeping the state inside the semimodule ℛ = {𝑥(𝑘)|𝐷𝑥(𝑘) = 𝐸𝑥(𝑘)}.

Therefore, if the optimization problem is solvable, it is possible to show that

there exists a (A,B) max-plus geometrically invariant set 𝒳 inside ℛ by using

linearity.

Definition 3.4.4 (Maximal (A,B) Max-Plus Geometrically Invariant Sets): Gonçalves

(2015) Given the semimodule ℛ, 𝒳 *(𝐴,𝐵,ℛ) is the Maximal (A,B) Max-Plus

Invariant Set inside ℛ. Formally, if 𝒳 is a (A,B) Max-Plus Geometrically In-

variant Set,

𝒳 *(𝐴,𝐵,ℛ) =
⋃︁

{𝒳 |𝒳 ⊆ ℛ}. (3.77)

𝒳 * is the set that contains all the (A,B) Max-Plus Geometrically Invariant Sets

contained in ℛ.

Assumption: 3.4.2 Hereafter, the optimization problem is assumed as solvable.

Therefore, the set 𝒳 * is assumed as non-empty (for more details see Gonçalves

(2015)).

If 𝒳 * is finitely generated and the problem is a controllable coupled problem,

it can be characterized by the image of a matrix ℳ, i.e., 𝒳 * ∈ Im ℳ which

implies that 𝑥(𝑘) = ℳ𝑣(𝑘), the matrix ℳ can be found by several methods (see

for instance Butkovic and Hegedus (1984) and Katz (2007)). Therefore,
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𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) = ℳ𝑣(𝑘).

In order to solve the problem, it is sought a trajectory inside 𝒳 *, i.e., 𝑥(𝑘) ∈

𝒳 *,∀𝑘 ⪰ 1. Therefore, as 𝒳 * is non empty by Assumption 3.4.2, there exists

𝑢(𝑘) such that 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) = ℳ𝑣(𝑘) ∈ 𝒳 *.

An initial condition inside 𝒳 * can be obtained by finding a solution to the

equation

𝐴ℳ𝑣(0)⊕𝐵𝑢(1) = ℳ𝑣(1) (3.78)

since 𝑥(𝑘) = ℳ𝑣(𝑘). The constraint

𝐶𝑥(𝑘) ⪯ 𝐶𝑥𝑚(𝑘) ⇒ 𝐶ℳ𝑣(𝑘) ⪯ 𝐶𝑥𝑚(𝑘)

implies that the greatest value to 𝑣(𝑘) is given by Residuation Theory as:

𝑣(𝑘)𝑚𝑎𝑥 = 𝐶ℳ ∘∖𝐶𝑥𝑚(𝑘).

Therefore, the system initial condition 𝑥(0) = ℳ𝑣(0), inside 𝒳 * and according to

the reference model, can be found by Modified Alternating Algorithm considering

the 𝑣(0)𝑚𝑎𝑥 and 𝑣(1)𝑚𝑎𝑥 as the initial conditions for the algorithm.

For each date 𝑘, the greatest input dates 𝑢(𝑘) can also be found by Modified

Alternating Algorithm (Cuninghame-Green and Butkovic (2003) Gomes da Silva

and Maia (2014)) from the initial state 𝑥(0) ∈ 𝒳 * by the following equation:

[︁
𝐴𝑥(𝑘 − 1) 𝐵

]︁⎡⎣ 𝑡

𝑢(𝑘)

⎤⎦ = ℳ𝑣(𝑘), (3.79)
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being 𝑡 = 0 an auxiliary variable and considering 𝑣(𝑘)𝑚𝑎𝑥 the initial condition

for the algorithm in step 𝑘.

Remark: 3.4.3 An interesting particular reference model is autonomous and

evolves by a rate 𝜆𝑚 with the structure 𝑥𝑚(𝑘) = Λ𝑚𝑥𝑚(𝑘 − 1), being

Λ𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆𝑚 . . · · · .

. 𝜆𝑚 . · · · .

. . 𝜆𝑚 · · · .

...
...

... . . . ...

. . . · · · 𝜆𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= diag

{︁
𝜆𝑚, 𝜆𝑚, 𝜆𝑚, · · · 𝜆𝑚

}︁
,

(3.80)

then it does not have a transient interval. Therefore, a particular control problem

that deals with this kind of reference model is presented in the following.

Assumption: 3.4.3 The results obtained so far, allow us to state that if the

control problem is solvable, then there exists a biggest system trajectory that is

achievable inside 𝒳 (𝐴,𝐵,ℛ), which is of the form of Equation 3.71. Moreover, we

can easily show that this trajectory is always upper bounded by the biggest refer-

ence model, whose 𝐴𝑚 = 𝐴, 𝐵𝑚 = 𝐵 and 𝐴𝑥𝑚(𝑘−1)⊕𝐵𝑢𝑚(𝑘) ⪯ 𝐶 ∘∖(𝐶𝑚𝑥𝑚(𝑘)).

In fact, in this case we can have desired dynamics by choosing 𝑢𝑚(𝑘) appropri-

ately. So hereafter, in order to simplify the presentation and the mathematical

developments, we assume that the reference model follows the system dynamics,

that is: 𝐴𝑚 = 𝐴, 𝐵𝑚 = 𝐵 and 𝐶𝑚 = 𝐶.

Particular Reference Model

Among all possible reference models, a particular interesting one is a model

that operates without a transient behavior. Likewise, in several situations, this
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behavior is also desirable for the system. Therefore, a way to find a solution to

an open-loop Just-in-Time control problem is to consider an important class of

reference model that evolves by a rate 𝜆𝑚 as 𝑥𝑚(𝑘) = Λ𝑚𝑥𝑚(𝑘 − 1).

Definition 3.4.5 (Open-Loop Just-in-Time Control in Infinite Horizon

With a Particular Reference Model)

The Just-in-Time control problem in infinite horizon can be defined as:

max (𝑢(𝑘)∀𝑘≻0)

subjected to:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) (3.81)

𝑥𝑚(𝑘) = Λ𝑚𝑥𝑚(𝑘 − 1) (3.82)

𝐶𝑥(𝑘) ⪯ 𝐶𝑥𝑚(𝑘) (3.83)

𝐷𝑥(𝑘) = 𝐸𝑥(𝑘) (3.84)

𝑥𝑚(0) = 𝑥0
𝑚 (3.85)

in which, 𝑥0
𝑚 is the initial condition for the reference model for the system.

Remark: 3.4.4 The control problem in Definition 3.4.5 requires finding the max-

imal system input dates 𝑢(𝑘), 𝑘 ⪰ 0, computing the maximum entries 𝑢𝑖, ∀𝑖, of

𝑢(𝑘).

The main goal of open-loop Just-in-Time control is to make the system evolve

in accordance with a desirable schedule, in this way the constraint in Equation

3.83 can be rewritten as:
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𝐶𝑥̄(𝑘) ⪯ 𝐶𝑚𝑥̄𝑚(𝑘) (3.86)

with

𝐶 =

⎡⎣ 𝐶

𝜀𝑛×𝑚

⎤⎦𝑇

, 𝐶𝑚 =

⎡⎣ 𝐶𝑚

𝜀𝑛×𝑚

⎤⎦𝑇

, 𝑥̄𝑚(𝑘) =

⎡⎣ 𝑥𝑚(𝑘)

𝑢𝑚(𝑘)

⎤⎦ ,

and 𝜀𝑛×𝑚 is a matrix with entries equal to 𝜀 of appropriate dimensions. So,

the semimodule constraint applied to the inputs (𝐷𝑢𝑢(𝑘) = 𝐸𝑢𝑢(𝑘)) and the

semimodule constraint applied to the state (𝐷𝑥𝑥(𝑘) = 𝐸𝑥𝑥(𝑘)) can be rewritten

as

𝐷̄𝑥̄(𝑘) = 𝐸̄𝑥̄(𝑘) (3.87)

with

𝐷̄ =
[︁
𝐷𝑥 𝐷𝑢

]︁
(3.88)

and

𝐸̄ =
[︁
𝐸𝑥 𝐸𝑢

]︁
. (3.89)

Property: 3.4.1 The solution to the control problem belongs to the set 𝒯 , being

this set defined as

𝒯 = {𝑥̄|∃𝑘 𝐶𝑥̄ ⪯ 𝐶𝑚𝑥̄𝑚(𝑘) and 𝐷̄𝑥̄ = 𝐸̄𝑥̄}

The solution to the constraint in Equation 3.84 can be expressed as a semi-

module whose generator can be computed by several methods (Butkovic and

Hegedus, 1984)(Allamigeon et al., 2008). Therefore, the solution to this equation

can be written as:

𝑥̄(𝑘) = 𝑀𝑣 (3.90)
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in which, the matrix 𝑀 is generated by an appropriate method (see for instance

Maia et al. (2011b)).

Proposition 3.4.1 (Upper Limit to State Vector) The upper bound 𝑙𝑠(𝑘) ∈

𝒯 to 𝑥̄(𝑘) that solves the control problem at date 𝑘 is given by:

𝑙𝑠(𝑘) = 𝑀 [𝑀 ∘∖(𝐶 ∘∖(𝐶𝑚𝑥̄𝑚(𝑘)))] (3.91)

Proof: Since the system output dates need to be smaller than or equal to the

reference model output dates, 𝐶𝑥̄(𝑘) ⪯ 𝐶𝑚𝑥̄𝑚(𝑘). The Residuation Theory sets

the greatest value to 𝑥̄(𝑘) given by 𝑥̄(𝑘) = 𝐶 ∘∖(𝐶𝑚𝑥̄𝑚(𝑘)). By the Theory of

Semimodule, 𝐷̄𝑥̄(𝑘) = 𝐸̄𝑥̄(𝑘) ⇒ 𝑥̄(𝑘) = 𝑀𝑣. Thereby 𝑀𝑣 ⪯ 𝐶 ∘∖(𝐶𝑚𝑥̄𝑚(𝑘)) ⇒

𝑣 = 𝑀 ∘∖(𝐶 ∘∖(𝐶𝑚𝑥̄𝑚(𝑘))) ⇒ 𝑙𝑠(𝑘) = 𝑀 [𝑀 ∘∖(𝐶 ∘∖(𝐶𝑚𝑥̄𝑚(𝑘)))].

Lemma 3.4.1 The greatest element 𝑥̄𝑢𝑝 ∈ 𝒯 always exists if the semimodule

𝐷̄𝑥̄(𝑘) = 𝐸̄𝑥̄(𝑘) is non empty.

Proof: Since the semimodule 𝐷̄𝑥̄(𝑘) = 𝐸̄𝑥̄(𝑘) is non empty, the solution is

given by 𝑥̄(𝑘) = 𝑀𝑣. If 𝑥̄(𝑘) ⪯ 𝑙𝑠(𝑘) ⇒ 𝑀𝑣 ⪯ 𝑙𝑠(𝑘), so, by the Residuation

Theory, 𝑣 ⪯ (𝑀 ∘∖𝑙𝑠(𝑘)) ⇒ 𝑥̃(𝑘) = 𝑀𝑣 ∈ 𝒯 and 𝑥𝑢𝑝 = 𝑀(𝑀 ∘∖𝑙𝑠(𝑘)).

Lemma 3.4.2 If the semimodule constraint to the control problem can be written

as 𝐸𝑥 ⪯ 𝑥, the greatest element 𝑥𝑢𝑝 ∈ 𝒯 always exists.

Proof: Let 𝜙 = 𝐶 ∘∖(𝐶𝑚𝑥𝑚) and 𝐶𝑥 ⪯ 𝐶𝑚𝑥𝑚 ⇒ 𝑥 ⪯ 𝜙. Using the Kleene star

operation, the inequality 𝐸𝑥 ⪯ 𝑥 is such that 𝐸*𝑥 = 𝑥. Consider 𝑦 = 𝐸* ∘∖𝜙 the

greatest solution to:

𝐸*𝑦 ⪯ 𝜙 ⇔ 𝐸*(𝐸*𝑦) ⪯ 𝜙,

because 𝐸* = 𝐸*𝐸*. Then, 𝐸*𝑦 is also solution to the previous equation and

therefore:
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𝐸*𝑦 ⪯ 𝑦.

But, 𝐸* ⪰ 𝐼 ⇒ 𝐸*𝑦 ⪰ 𝑦 ⇒ 𝐸*𝑦 = 𝑦, i.e., 𝑦 ∈ ℛ𝑥, being ℛ𝑥 = {𝑥|𝐸* = 𝑥}, and

𝑥𝑢𝑝 ⪯ 𝑦 ⇒ 𝑥𝑢𝑝 = 𝑦.

Sufficient Conditions

Every system has a maximum performance 𝜆𝐴 (the maximum cycle mean of a

TEG) and, to control a system. Suppose that, in order to control a certain

system, it is necessary to ensure that the system evolves according to a desirable

performance 𝜆𝑚. So, it is desirable that the chosen value of 𝜆𝑚 is such that 𝜆𝑚 ⪰

𝜆𝐴 because, otherwise, the system cannot evolve in accordance with the desirable

performance. If the trajectory demand generated by reference model is non-viable

to the chosen 𝜆𝑚, 𝑦𝑚(𝑘) � 𝑦min(𝑘) to some 𝑘 ⪰ 𝑞. However, it is possible to find

the smallest viable projection of 𝑦𝑚(𝑘) (on 𝑦min(𝑘)) 𝑃𝑦min(𝑘)(𝑦𝑚(𝑘)). The smallest

viable reference closest to the desirable one is given by

𝑃𝑦min(𝑘)(𝑦𝑚(𝑘)) = 𝑦min(𝑘)⊕ 𝑦𝑚(𝑘), ∀𝑘 ⪰ 𝑞. (3.92)

If 𝑦𝑚(𝑘) is viable to all 𝑘 ⪰ 𝑞, then 𝑃𝑦min(𝑘)(𝑦𝑚(𝑘)) = 𝑦𝑚(𝑘).

Remark: 3.4.5 The reference model will evolve in accordance with the following

equation:

𝑥̄𝑚(𝑘) = 𝜆𝑚𝑥̄𝑚(𝑘 − 1). (3.93)

In this way, the 𝑘𝑡ℎ firing dates of the transitions are related to the initial

condition by the following equation:

𝑥̄𝑚(𝑘) = 𝜆𝑘
𝑚𝑥̄𝑚(0). (3.94)
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The Equation 3.94 can be placed in Equation 3.91, resulting in:

𝑙𝑠(𝑘) = 𝑀 [𝑀 ∘∖(𝐶 ∘∖(𝐶𝑚𝜆
𝑘
𝑚𝑥̄𝑚(0)))] (3.95)

Proposition 3.4.2 (Evolution to the State Upper Limit) The evolution of

state upper limit for the system described by Equation 3.94 is given by the follow-

ing relation:

𝑙𝑠(𝑘 + 1) = 𝜆𝑚𝑙𝑠(𝑘) (3.96)

Proof: The only variable element in Equation 3.91 is 𝑥𝑚(𝑘) and by using the

Equation 3.93 it is straightforward to verify that 𝑙𝑠(𝑘 + 1) = 𝜆𝑚𝑙𝑠(𝑘).

Remark: 3.4.6 The state upper limit vector 𝑙𝑠(𝑘) is defined over 𝑥̄𝑚(𝑘) which

entries are the state 𝑥𝑚(𝑘) for the reference model and the firing dates of the

inputs 𝑢𝑚(𝑘). Therefore, it is possible to write

𝑙𝑠(𝑘) =

⎡⎣ 𝑙𝑥𝑠 (𝑘)

𝑙𝑢𝑠 (𝑘)

⎤⎦ (3.97)

where 𝑙𝑥𝑠 (𝑘) is the internal upper bound and 𝑙𝑢𝑠 (𝑘) is the input upper bound at date

𝑘.

The Reached System States:

Considering the equations 3.81, 3.83 and 3.87, the reached system states must

comply with the following equations:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘)

𝐷𝑥𝑥(𝑘) = 𝐸𝑥𝑥(𝑘)

𝐷𝑢𝑢(𝑘) = 𝐸𝑢𝑢(𝑘)
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These equations can be written as a equation 𝐷̂𝑥̂(𝑘) = 𝐸̂𝑥̂(𝑘), in which

𝑥̂(𝑘) =
[︁
𝑥(𝑘 − 1) 𝑥(𝑘) 𝑢(𝑘)

]︁𝑇
.

Therefore, considering an extended upper bound vector to 𝑥̂(𝑘) equal to

𝑙̂𝑠(𝑘) =
[︁
𝑙𝑥𝑠 (𝑘 − 1) 𝑙𝑥𝑠 (𝑘) 𝑙𝑢𝑠 (𝑘)

]︁𝑇
and the equation 𝐷̂𝑥̂(𝑘) = 𝐸̂𝑥̂(𝑘) is equivalent to

⎧⎨⎩ 𝐷̂𝑥̂(𝑘) = 𝐼𝑧(𝑘)

𝐸̂𝑥̂(𝑘) = 𝐼𝑧(𝑘)

that can be written as ⎡⎣ 𝐷̂

𝐸̂

⎤⎦ 𝑥̂(𝑘) =

⎡⎣ 𝐼

𝐼

⎤⎦ 𝑧(𝑘). (3.98)

Therefore, the maximum solution to the vector 𝑥̂(𝑘) equal to or smaller than

𝑙̂𝑠(𝑘), if the solution exists, can be found by the Modified Alternating algorithm.

Remark: 3.4.7 If a solution to Equation 3.98 exists, the auxiliary variable 𝑡 in

𝑥̂(𝑘) must converge to zero and remains zero at 𝑥𝑚(𝑘), for a given extended upper

bound.

Alternatively, the maximum solution can be found using the Theory of Semi-

module, since 𝐷̂𝑥̂(𝑘) = 𝐸̂𝑥̂(𝑘) ⇒ 𝑥̂(𝑘) ∈ Im𝑀̂, ∀𝑘, therefore

𝑥̂(𝑘) = 𝑀̂𝑤(𝑘),
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and for each date 𝑘 it is possible find an upper limit to state 𝑙̂𝑠(𝑘), then

𝑤𝑚𝑎𝑥(𝑘) = 𝑀̂ ∘∖𝑙̂𝑠(𝑘).

Consequently, the maximum reached state by the system will be given by:

𝑥𝑚𝑎𝑥(𝑘) = 𝑀̂𝑤𝑚𝑎𝑥(𝑘). (3.99)

3.4.3 Complexity Issues

The methodologies presented in this section consider both an upper bound to the

state vector and the constraints written as a semimodule equation, i.e.,

𝐷𝑥̄ = 𝐸𝑥̄,

so 𝑥̄(𝑘) ∈ Im ℳ, if it is assumed the semimodule finitely generated. Two im-

portant methodologies were used to find the solution, the semimodule theory

(Butkovic and Hegedus, 1984) and the Modified Alternating algorithm (Cuninghame-

Green and Butkovic, 2003)(Gomes da Silva and Maia, 2014)..

As previously discussed, the first methodology has a double exponential com-

plexity in relation to the length of the horizon, so the size of the semimodule and

the computational time will grow double exponentially as the horizon grows. The

second methodology has a pseudo-polynomial complexity, this fact means that

the computational time to find the solution will grow polynomially in relation to

the horizon. Therefore, the computational time and the computational memory

cannot be feasible to solve some problems since they can be very large.

At this point, some algebraic tools that simplify the methodology in relation to

computational time and memory can be used to find the solution to an important
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class of problems of practical interest. These tools are presented in the following

section.

3.4.4 Algebraic Results to Compute the Just-in-Time Control in In-

finite Horizon

Initially, consider the following theorem.

Theorem 3.4.1 (Adapted from Gonçalves (2015)) The Maximal (A,B) Max-

Plus Geometrically Invariant set 𝒳 * inside 𝒮 = {𝑥|𝐷𝑥 = 𝐸𝑥} is non empty if

and only if the set 𝒱(𝐴,𝐵,𝐷,𝐸) = {(𝑢,𝑣,𝜆)|𝐴𝑣⊕𝐵𝑢 = 𝜆𝑣 and 𝐷𝑣 = 𝐸𝑣} is non

empty, and the entries of 𝒱(𝐴,𝐵,𝐷,𝐸) are proper4.

Then it is possible to define the following control problem.

Definition 3.4.6 (Just-in-Time Control in an Infinite Horizon with Tran-

sientless Reference Model) The Just-in-Time control problem in an infinite

horizon can be defined as:

max (𝑢(𝑘)∀𝑘≻0)

subjected to:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1)⊕𝐵𝑢(𝑘) (3.100)

𝑥𝑚(𝑘) = 𝜆𝑥𝑚(𝑘 − 1) (3.101)

𝐶𝑥(𝑘) ⪯ 𝐶𝑥𝑚(𝑘) (3.102)

𝐷𝑥(𝑘) = 𝐸𝑥(𝑘) (3.103)
4That is, they have no 𝜀 element.
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Remark: 3.4.8 The control problem in Definition 3.4.6 requires finding the max-

imal system input dates 𝑢(𝑘), 𝑘 ⪰ 0, computing the maximum entries 𝑢𝑖, ∀𝑖, of

𝑢(𝑘).

Remark: 3.4.9 Recall that, if the optimization problem (Definition 3.4.6) has a

solution, there exists a non-empty (A,B) Max-Plus Geometrically Invariant Set

𝒳 * inside 𝒮 = {𝑥|𝐷𝑥 = 𝐸𝑥}. So the set 𝒱(𝐴,𝐵,𝐷,𝐸) must be non-empty.

Remark: 3.4.10 If the optimization problem is solvable, then the set 𝒱(𝐴,𝐵,𝐷,𝐸)

is non-empty.

The generation of the set of constraints 𝒳 * is a significative computational

challenge since the methods to generate semimodules have double exponential

complexity (see Katz (2007)). However, Theorem 3.4.1 leads to an useful con-

straint semimodule compatible with the model and the constraints, which oper-

ates at a rate 𝜆 and has no transient behavior, with a relatively low computational

cost. In this sense, consider the following definition:

Definition 3.4.7 (Model-Compatible Constraint Semimodule) A model-

compatible constraint set is given by ℛ𝑚(𝜆) = {∃𝑢, 𝑣|𝐴𝑣 ⊕ 𝐵𝑢 = 𝜆𝑣 and 𝐷𝑣 =

𝐸𝑣}.

It is important to highlight that ℛ𝑚(𝜆) is non empty if the control problem

is solvable.

As mentioned previously, among all possible reference models a particular

interesting one is a model that operates without transient behavior. In the same

sense, in several situations, this behavior is also desirable for the system. So,

consider the following assumption:
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Assumption: 3.4.4 It is assumed that 𝑥(𝑘) and 𝑥𝑚(𝑘), ∀𝑘 ⪰ 0, belong to the

model-compatible constraint set ℛ𝑚(𝜆).

The Remark 3.4.9 has motivated the seek for a feasible reference model tra-

jectory inside the set ℛ𝑚(𝜆). In this sense, it is necessary to find the smallest

feasible 𝜆 and an appropriated initial condition.

Assumption: 3.4.5 (Feasible Transientless Reference Model With Largest

Production Rate) Hereafter, the feasible reference model is given by 𝐴𝑥𝑚(𝑘)⊕

𝐵𝑢𝑚(𝑘) = 𝜆min𝑥𝑚(𝑘), being 𝜆min = min{𝜆|ℛ𝑚(𝜆) ̸= ∅}.

Remark: 3.4.11 In order to compute 𝜆min see Gaubert and Sergeev (2013).

The Modified Alternating Algorithm (Gomes da Silva and Maia, 2014) can be

used to find the initial condition 𝑥𝑚(0) in an efficient way.

Remark: 3.4.12 The initial condition 𝑥(0) = 𝑥𝑢𝑝 = max{𝑣|𝑣 ∈ ℛ𝑚(𝜆)}, such

that (𝐶𝑥(0)) ⪯ 𝐶𝑥𝑚(0), belongs to 𝒳 * and consequently belongs to 𝒱(𝐴,𝐵,𝐷,𝐸).

As a result, the initial condition will be such that 𝐴𝑥(0) ⪯ 𝜆𝑥(0).

Proposition 3.4.3 The state of the system, at a 𝑘𝑡ℎ transition, must belong

to the set 𝒵(𝜆) = {𝑥|𝐶𝑥 ⪯ 𝜆𝑘(𝐶𝑥𝑚(0)) and 𝑥 ∈ ℛ𝑚(𝜆)}, which has a biggest

solution denoted as 𝜆𝑘𝑥𝑢𝑝, whose 𝑥𝑢𝑝 is given by max{𝑣|𝑣 ⪯ 𝐶 ∘∖(𝐶𝑥𝑚(0)) and 𝑣 ∈

ℛ𝑚(𝜆)}.

Proof: According to Assumption 3.4.4 the state must evolves as 𝑥(𝑘) = 𝜆𝑘𝑥(0)

and must respect 𝐶𝑥(𝑘) ⪯ 𝜆𝑘𝐶𝑥(0). Remark 3.4.12 ensures that 𝑥(0) = 𝑥𝑢𝑝 and

Theorem 3.4.1 ensures that a proper value to 𝑥(0) exists. Then 𝑥(𝑘) = 𝜆𝑘𝑥𝑢𝑝.

The fastest system behavior is particularly useful. It can be achieved by

computing max{𝑣|𝑣 ⪯ 𝐶 ∘∖(𝐶𝑥𝑚(0)) and 𝑣 ∈ ℛ𝑚(𝜆min)}. By Assumption 3.4.4
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and Remark 3.4.3, the equations 𝐴𝑣 ⊕𝐵𝑢 = 𝜆𝑣 and 𝐷𝑣 = 𝐸𝑣, can be rewritten

as a max-plus linear equation in the following way:

⎡⎣ 𝐴 𝐵

𝐷 [𝜀]

⎤⎦⎡⎣ 𝑣

𝑢

⎤⎦ =

⎡⎣ 𝜆 [𝜀]

𝐸 [𝜀]

⎤⎦⎡⎣ 𝑣

𝑢

⎤⎦ .

By the theory of semimodules [𝑣𝑇𝑢𝑇 ]𝑇 ∈ Im𝑄, which implies that we can write

𝑣 = 𝑄𝑣𝑧 and 𝑢 = 𝑄𝑢𝑧. So we can always compute the biggest initial condition

as 𝑥𝑢𝑝 = 𝑄𝑣𝑧, for a certain 𝑧. Since 𝐶𝑥𝑢𝑝 ⪯ 𝐶𝑥𝑚(0), we have:

𝑥𝑢𝑝 = 𝑄𝑣[(𝐶𝑄𝑣 ∘∖𝐶𝑥𝑚(0)] (3.104)

Proposition 3.4.4 The proposed control problem is solvable and the upper bound

for the inputs is given by 𝑢𝑢𝑝(𝑘) = 𝜆𝑘(𝐶 ∘∖𝑥𝑢𝑝).

Proof: By Proposition 3.4.3 the biggest state of the system at a 𝑘𝑡ℎ transition

is given by 𝑥(𝑘) = 𝜆𝑘𝑥𝑢𝑝. Since 𝐴𝑥(𝑘 − 1) ⊕ 𝐵𝑢(𝑘) = 𝑥(𝑘), Residuation theory

ensures that the biggest 𝑢𝑢𝑝(𝑘) is given by 𝜆𝑘(𝐶 ∘∖𝑥𝑢𝑝).

Recall that 𝑥𝑢𝑝 = max{𝑣|𝑣 ⪯ 𝐶 ∘∖(𝐶𝑥𝑚(0)) and 𝑣 ∈ ℛ𝑚(𝜆min)} can be com-

puted using the modified alternating algorithm, considering 𝑣0 = 𝐶 ∘∖(𝐶𝑥𝑚(0))

and 𝑢0 = 𝐵 ∘∖(𝜆𝑚𝑖𝑛𝑣0) the initial condition for the algorithm.

Remark: 3.4.13 (Methods of Solution and Computational complexity)

There are three methodologies to solve the infinite horizon control problems pre-

sented in this section. The first one considers the finite control horizon big enough

(methodology presented in a previous section), i.e., if the control horizon is finite,

but it is big enough, it can be considered an infinite horizon for some applications

and it can be used to solve the examples in the following section. The second

one is the methodology that aims to finding a solution to the semimodule equa-
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tion in order to solve the problem, and the third methodology uses the modified

alternating algorithm to find the solution to the control problem.

As mentioned previously, the computational complexity of the approach based

on semimodule generation depends on the fact that the solution to 𝐴𝑥 = 𝐵𝑥,

where 𝐴,𝐵 ∈ Z𝑛
𝑚𝑎𝑥 are row vectors, are hyperplanes finitely generated. Therefore,

in the worst case, to compute the solution to all rows, the algorithm is double ex-

ponential (Butkovic and Hegedus, 1984)(Katz, 2007). However, for special types

of semimodules, as the one presented in Corollary 3.3.1, in which the generator

of the semimodule belongs to the image of a matrix generated by the Kleene star

theorem, the computational complexity is polynomial.

Other issue is the computational memory, the approach of semimodule gener-

ation considers a matrix equation row by row. Firstly, the methodology considers

the solution to the first row and uses this solution to find the solution to the second

row and so on. Then, for each row of matrix equation the methodology needs to

save a matrix, that can have a big size in simple applications (the methodology is

presented in Section 2.6.1). Therefore, for some applications the computational

memory necessary to find a solution to the control problem can be impracticable,

i.e, the methodology can exceed the memory of the computer.

So, the first method and the second method, mentioned in this remark, find the

set of all solutions to the control problems, but in general they need an expressive

computational effort to find the optimal solution.

On the other hand, if just one solution is necessary, the approach based on

the “Modified Alternating” method has pseudo-polynomial complexity for several

important situations and works quite well in practice, since in many cases the

input size is suitable.
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The Modified Alternating algorithm is very simple and can deal with big ma-

trices without exceeding the memory stack size since it uses mainly the Theory of

Residuation.

3.4.5 Numerical Examples

A Transportation Network

The transportation system used in this example are described in detail in Katz

(2007) and de Vries et al. (1998) and it is represented in Figure 3.3. To model

a transportation network as a Timed Event Graph, it is assumed that the tran-

sitions are controllable and the transitions 𝑥𝑖(𝑘),∀𝑖, denote the date of the 𝑘𝑡ℎ

departure of trains leaving stations.

X3

X 4X1 X2
u1

u4

u 2

u3

11

11

9

17
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9 11
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Figure 3.3: The Model to a Transportation System

The control problem objectives presented in Katz (2007) are the requirement

that the time between two consecutive train departure does not exceed a given
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limit and the passengers waiting time coming from a given station and going

to another station must not exceed a given limit. To this end, the system was

described as in Equation 3.1 and the constraint obtained from Katz (2007) is

given by:

𝐸𝑟𝑥(𝑘 + 1) ⪯ 𝑥(𝑘), (3.105)

with

𝐸𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−15 𝜀 −18 −18

−21 −15 𝜀 𝜀

𝜀 −15 −15 −15

𝜀 −13 −13 −15

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The constraint can be written as:

[︁
𝐸𝑟 𝜀

]︁⎡⎣ 𝑥(𝑘 + 1)

𝑥(𝑘)

⎤⎦ ⪯
[︁
𝜀 𝐼

]︁⎡⎣ 𝑥(𝑘 + 1)

𝑥(𝑘)

⎤⎦ .

Using the previously methodology and the algorithm presented in Katz (2007),

the maximal (A,B)-invariant set 𝒳 * ∈ Im ℳ and ℳ is given by:
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ℳ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18 17 17 17 17

15 14 15 15 15

18 17 18 18 18

19 18 19 19 19

3 2 2 4 2

0 0 0 0 0

4 3 4 4 4

5 4 6 5 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This numerical example will be solved considering the fastest behavior of the

reference model 𝑥𝑚(𝑘) = 𝐴𝑥𝑚(𝑘 − 1) ⊕ 𝐵𝑢𝑚(𝑘), given when the input vector

𝑢𝑚(𝑘) = [𝜀], ∀𝑘 ⪰ 0. Then, arbitrarily choosing

𝑥𝑚(0) =
[︁
20 20 20 20 6 6 6 6

]︁𝑇
,

the system reference trajectory for 𝑘 = 2 until 𝑘 = 6 is given by:

𝑥𝑚(2) =
[︁
37 31 34 34

]︁
,

𝑥𝑚(3) =
[︁
48 45 51 51

]︁
,

𝑥𝑚(4) =
[︁
62 62 62 62

]︁
,

𝑥𝑚(5) =
[︁
79 73 76 76

]︁
,

𝑥𝑚(6) =
[︁
90 87 93 93

]︁
.
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Solving the Equation 3.78, the system initial condition is given by:

𝑥(0) =
[︁
19 16 19 20 5 2 5 6

]︁𝑇
,

Then, solving the equation 𝐴𝑥(𝑘−1)⊕𝐵𝑢(𝑘) = ℳ𝑣(𝑘), considering the upper

value to 𝑣(𝑘) equal to 𝑣𝑢𝑝(𝑘) = (𝐶ℳ ∘∖𝐶𝑥𝑚(𝑘)), by using the Modified Alternating

Algorithm for 𝑘 = 2 until 𝑘 = 6, the maximal input dates and state, that respect

the deadline dates, are given by:

𝑢𝑚𝑎𝑥(2) = 𝑥(2) =
[︁
33 30 33 34

]︁𝑇
,

𝑢𝑚𝑎𝑥(3) = 𝑥(3) =
[︁
48 45 48 49

]︁𝑇
,

𝑢𝑚𝑎𝑥(4) = 𝑥(4) =
[︁
61 58 61 62

]︁𝑇
,

𝑢𝑚𝑎𝑥(5) = 𝑥(5) =
[︁
75 72 75 76

]︁𝑇
,

𝑢𝑚𝑎𝑥(6) = 𝑥(6) =
[︁
90 87 90 91

]︁𝑇
.

However, if no control is applied, the following trajectory starting from the

same initial state can be obtained, considering all the inputs at the starting

control date:

𝑥(2) =
[︁
32 29 31 31

]︁𝑇
,

𝑥(3) =
[︁
46 42 46 46

]︁𝑇
,

𝑥(4) =
[︁
59 57 60 60

]︁𝑇
,
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𝑥(5) =
[︁
74 71 73 73

]︁𝑇
,

𝑥(6) =
[︁
88 84 88 88

]︁𝑇
.

Therefore, the applied control delays as much as possible the input dates and

it makes the system produce the output dates closer to the reference demand.

Unlike Katz (2007), in this thesis, it is applied the Just-in-time control policy,

the firing dates of state transitions are the maximum possible and respect the

problem constraints, i.e., the dates are the maximum departure time to a train

to leave a station in order to respect the constraints. The obtained system states

from Katz (2007) are:

𝑥(2) =
[︁
32 29 32 33

]︁𝑇
,

𝑥(3) =
[︁
46 43 46 47

]︁𝑇
,

𝑥(4) =
[︁
60 57 60 61

]︁𝑇
,

𝑥(5) =
[︁
74 71 74 75

]︁𝑇
,

considering the system initial state:

𝑥(0) =
[︁
4 0 4 5

]︁𝑇
.

Remark: 3.4.14 (Computational Time) The obtained solution by the pro-

posed methods are the same, as expected, but the processing times are quite dif-

ferent. It takes the semimodule approach in finite horizon, considering the horizon

𝑁𝑝 = 6, 1.637 seconds (using the Kleene star operator), it takes the semimodule

approach in infinite horizon 1 minute and 31.892 seconds (finding the maximal



Chapter 3. Control Problem Formulation and Optimal Synthesis 122

(A,B)-invariant set), while it takes the one based on the Alternating Method 0.230

seconds (average value for 10 experiments), for a desktop computer, Intel Core

i5 2.53GHz, 4GB RAM, Windows 10, 64bits, Cache 3.932 GB.

A Small Manufacturing System

This example is presented in order to illustrate the computational complexity of

finding the maximum (A,B)-invariant set 𝒳 *. A simple manufacturing system

under some constraints is considered but, because of the large size of the matrices,

𝒳 * cannot be computed. However, the algebraic properties to solve this problem

with lower computational cost can be used. This example is interesting because

the production rate 𝜆 of system can be determined. The fastest behavior (𝜆min)

is considered.

The example presented in this section is described in Gomes da Silva and Maia

(2015b). Consider a small manufacturing system composed by three different

areas, an input area and two units processor areas. The TEG model for the

manufacturing system is presented in Figure 3.4. The input area has three input

transitions (𝑢1, 𝑢2 and 𝑢3). The items placed in 𝑢1, 𝑢2 and 𝑢3 take 1, 3 and 4

time units, respectively, to arrive in the first unit processor. This unit processor

has unitary capacity and it begins a new process at least six time units after the

previous process.

In the first unit processor the system has an input transition for a complement

item enters the unit. This complement item enters by transition 𝑢4 and takes two

time units to be ready. The first unit processor also has the main process. The

three items from input area are processed together (Place 𝑃4) and takes five time

units to get ready. The main process in unit processor one has unitary capacity.

The two pieces are sent to the second unit processor to be processed together.
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Figure 3.4: A Small Manufacturing System

This main processor also has unitary capacity and takes seven time units to get

ready. When the product is ready, a box enters the system by input transition

𝑢5 and takes four time units to get ready (Place 𝑃7).

It is desirable that the evolution of the system state happens in accordance

with some performance and constraints and, to this end, some constraints will

be applied to the system state. The first constraint is that the 𝑘𝑡ℎ firing date

of transition 𝑥3 needs to happen before the 𝑘𝑡ℎ firing date of transition 𝑥1 plus

eighteen time units and the 𝑘𝑡ℎ firing date of transition 𝑥2 plus ten time units. The

transition 𝑥4 needs to fire before transition 𝑥2 plus two time units and transition

𝑥5 fires before transition 𝑥3 plus three time units. This last two constraints help

to ensure the unitary capacity of processors.

In order to give a better performance some constraints will be applied to the

inputs, because some input transitions can fire delayed. The pieces necessary to

begin the production arrive by inputs 𝑢1, 𝑢2 and 𝑢3, so the input in 𝑢4 and 𝑢5

can be delayed. The 𝑘𝑡ℎ input firing date of transition 𝑢4 needs to happen after

seven time units after the 𝑘𝑡ℎ firing of input transition 𝑢3 and the input 𝑢5 after
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five time units after input 𝑢4. The input 𝑢1(𝑘) needs to fire three time units after

𝑢3(𝑘) and the firing date of input 𝑢2(𝑘) after one time unit after 𝑢3(𝑘). Therefore,

the state constraints and input constraints can be written mathematically as the

following equations.

𝑥3(𝑘) ⪯ 18𝑥1(𝑘)⊕ 10𝑥2(𝑘),

𝑥4(𝑘) ⪯ 2𝑥2(𝑘),

𝑥5(𝑘) ⪯ 3𝑥3(𝑘),

𝑢4(𝑘) = 7𝑢3(𝑘),

𝑢5(𝑘) = 5𝑢4(𝑘),

𝑢1(𝑘) = 3𝑢3(𝑘),

𝑢2(𝑘) = 1𝑢3(𝑘).

This constraints can be easily written as 𝐷̄𝑥̄ = 𝐸̄𝑥̄. Considering the open-loop Just-in-Time

Control problem in a finite horizon as a particular case of the infinite horizon control problem, in

this example the results only to open-loop Just-in-Time Control problem in infinite horizon are

computed. Using the presented methodologies in previous sections, the system was described

by max-plus algebra as Equation 3.100, however, as previously mentioned, the maximal (A,B)-

invariant set 𝒳 * cannot be computed because of the large size of the system matrices. On

average, 27 minutes were spent until exceed the stack size of memory 5.

In order to develop the fastest behavior the rate 𝜆min = 8, and by choosing arbitrarily an

upper bound to initial condition of reference model (𝑥̄𝑢𝑝
𝑚 (0)) equal to

𝑥̄𝑢𝑝
𝑚 (0) =

[︂
21 21 21 21 21 21 21 3 1 0 7 12

]︂
,

the initial state of the system inside 𝒵, obtained from Equation 3.104, is equal to:

𝑥̄(0) =

[︂
3 11 21 13 21 6 14 3 1 0 7 12

]︂
,

then, for 𝑥̄𝑚(0) be inside ℛ𝑚, in this example it is considered the reference model initial

5For a Desktop Computer, Intel Core i5 2.53GHz, 4GB RAM, Windows 10, 64bits, Cache 3.932 GB.
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condition 𝑥̄𝑚(0) = 𝑥̄(0).

Using the previously presented methodology, the input dates, for 𝑘 = 1 until 𝑘 = 6, to solve

the control problem are given by:

𝑢(1) =

[︂
16 14 13 20 25

]︂
,

𝑢(2) =

[︂
24 22 21 28 33

]︂
,

𝑢(3) =

[︂
32 30 29 36 41

]︂
,

𝑢(4) =

[︂
40 38 37 44 49

]︂
,

𝑢(5) =

[︂
48 46 45 52 57

]︂
,

𝑢(6) =

[︂
56 54 53 60 65

]︂
.

So, the maximum reached states by the system to 1 ⪯ 𝑘 ⪯ 6 are:

𝑥𝑚𝑎𝑥(1) =

[︂
17 22 29 23 30 20 25

]︂
,

𝑥𝑚𝑎𝑥(2) =

[︂
25 30 37 31 38 28 33

]︂
,

𝑥𝑚𝑎𝑥(3) =

[︂
33 38 45 39 46 36 41

]︂
,

𝑥𝑚𝑎𝑥(4) =

[︂
41 46 53 47 54 44 49

]︂
,

𝑥𝑚𝑎𝑥(5) =

[︂
49 54 61 55 62 52 57

]︂
.

𝑥𝑚𝑎𝑥(6) =

[︂
57 62 69 63 70 60 65

]︂
.

The output dates are

𝑦(𝑘) =

[︂
29 37 45 53 61 69

]︂
,
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and the desirable trajectory to the output dates is

𝑦𝑚(𝑘) =

[︂
29 37 45 53 61 69

]︂
.

Analyzing the vectors 𝑥𝑚𝑎𝑥(𝑘), the controlled system evolves, in the 50 steps simulated, re-

specting all the constraints imposed. Due to the system periodicity, the result is guaranteed to

all 𝑘 (see Baccelli et al. (1992)).

However, if no control is applied, the following output trajectory, starting from the same

initial state, can be obtained considering all inputs available at the initial prediction horizon

date:

𝑦(𝑘) =

[︂
28 36 44 52 60 68

]︂
.

Therefore, as expected, the applied control delays as much as possible the input dates and

it makes the system produce output dates closer to the reference demand.

Remark: 3.4.15 (Computational Time) The obtained solution by the proposed methods

are the same, as expected, but the processing times are quite different. It takes the semimodule

approach in finite horizon, considering arbitrarily the horizon 𝑁𝑝 = 6, 23.007 seconds, it takes

the semimodule approach in infinite horizon 17.994 seconds, while it takes the one based on the

Alternating Method 0.129 seconds (average value for 10 experiments), for a desktop computer,

Intel Core i5 2.53GHz, 4GB RAM, Windows 10, 64bits, Cache 3.932 GB.

3.4.6 Conclusion

This section presented the open-loop Just-in-Time control in infinite horizon for max-plus linear

systems under some constraints (non convex constraints in conventional algebra). In order

to solve the problems, general methodologies based on (A,B)-invariant sets, the Residuation

Theory and the Theory of Semimodules were proposed. However, due to the computational

complexity of general methods, algebraic properties on max-plus algebra were used to solve an

important class of problems of practical interest. The necessary and sufficient conditions to solve

the problems were presented and discussed. Numerical examples illustrated the methodologies

and the applicability of the results. It is important to remark that if the horizon is bounded,
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the methodologies presented in this section can also solve the problems in a finite horizon and,

using both methods, the results are the same.

3.5 Feedback Control Problem

3.5.1 Introduction

The idea of feedback in control system theory is to use any available information about the

system behavior or system parameter to continuously adjust the control input along with an

input reference. For example, in a manufacturing system, if a machine has unitary capacity,

the feedback is important to inform the system when the machine is idle.

Using feedback control, the desirable behavior of a system becomes less sensitive to distur-

bances and errors. A system output can track automatically a desirable reference signal by

seeking to minimize the difference between the output date and the reference date. On the

other hand, complex equipment can be necessary to monitor the desirable information of the

system.

In Discrete Event Systems one concept of stability is related to the number of tokens in

each internal place as given in the following definition.

Definition 3.5.1 (Stability) A TEG is said to be stable if, for any input, the number of

tokens in places remains bounded.

Remark: 3.5.1 Though there is other definition about stability in literature, the work in this

thesis is interested only in Definition 3.5.1 about stability of Discrete Event Systems.

The advantage of feedback control is to ensure that the controlled system is stable. To

illustrate this issue, consider the TEG in Figure 3.5. In this figure, the holding time of a token

in place 𝑃3 is three time units and the holding time in place 𝑃5 is six time units, this fact can

make the number of tokens in place 𝑃4 grows unbounded since a token can be placed in 𝑃4

each three time units and one token leaves 𝑃4 after at least six time units.

In other hand, if the same net with feedback is considered, as presented in Figure 3.6, a

token will enter place 𝑃3 at least after six time units due to the holding time in the feedback.
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Figure 3.5: Timed Event Graph Without Feedback

Therefore, it is not possible to accumulate tokens in place 𝑃4, making the system stable (for

more details see Maia (2003)).
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Figure 3.6: Timed Event Graph With Feedback

Other advantage of feedback control is presented in the following.

Definition 3.5.2 (Structural Controllability) (Maia, 2003) An event graph is structurally

controllable if there exists a path for all internal transition from at least one input transition.

Definition 3.5.3 (Structural Observability) (Maia, 2003) An event graph is structurally

observable if there exists a path from all internal transition for at least one output transition.

Theorem 3.5.1 (Stabilization by Feedback) (Baccelli et al., 1992) All event graph struc-

turally controllable and observable can be stabilized by the output feedback.
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The proof for Theorem 3.5.1 is based on that all event graph structurally controllable and

observable can be stabilized if one connection by feedback is established from all outputs for

all inputs. This procedure ensures that the event graph in closed-loop is strongly connected.

Based on the previously presented in this section, feedback control is addressed in this

thesis. Sometimes, it is desirable a minimal restrictive feedback matrix, i.e., it is sought the

smallest causal feedback matrix. However, as deadline dates are considered and the desirable

output dates are the greatest dates smaller than or equal to the deadline dates, the control

objective is computing the maximal feedback matrix so that 𝐹𝑥(𝑘−1) is the maximum. In this

section, necessary and sufficient conditions to find a feedback matrix are shown. The feedback

control problem formulation is presented next.

Assumption: 3.5.1 To perform the feedback control, canonical initial conditions are assumed,

that is 𝑥(𝑘) = [𝜀], ∀𝑘 ≺ 0.

Definition 3.5.4 (Feedback Control Problem Formulation) The feedback control prob-

lem can be defined as:

max (𝐹𝑥(𝑘)∀𝑘≻0)

subjected to:

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) ⊕𝐵𝑢(𝑘) (3.106)

𝐴𝑥𝑚(𝑘) ⊕𝐵𝑢𝑚(𝑘 + 1) = 𝜆𝑥𝑚(𝑘) (3.107)

𝐶𝑥(𝑘) ⪯ 𝐶𝑥𝑚(𝑘) (3.108)

𝐷𝑥(𝑘) = 𝐸𝑥(𝑘) (3.109)

3.5.2 Performing the Feedback Control Problem

In the previous subsection an open-loop version of this problem was approached, ensuring that

exists 𝑢𝑢𝑝 and 𝑥𝑢𝑝 such that 𝐴𝑥𝑢𝑝 ⊕ 𝐵𝑢𝑢𝑝 = 𝜆𝑥𝑢𝑝, being 𝑢𝑢𝑝 = 𝜆𝑘(𝐵∘∖𝑥𝑢𝑝). In this context,

we have the following results.
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Proposition 3.5.1 (Existence of Solution) A feedback matrix 𝐹 always exists if any vector

𝑣 ∈ 𝒵(𝜆), is such that 𝒵(𝜆) = {𝑥|𝐶𝑥 ⪯ 𝜆𝑘(𝐶𝑥𝑚(0)) and 𝑥 ∈ ℛ𝑚(𝜆)}. One matrix 𝐹 is given

by:

𝐹 =
𝑢𝑣𝑇

𝑣𝑇 𝑣
. (3.110)

Proof: The vector 𝑣 must be inside ℛ𝑚(𝜆), then 𝑣 is such that

𝐴𝑣 ⊕𝐵𝑢 = 𝜆𝑣,

so the maximal input 𝑢, called 𝑢𝑚𝑎𝑥, is given by Residuation Theory as 𝑢𝑚𝑎𝑥 = 𝐵∘∖(𝜆𝑣). Since

𝑥 ∈ 𝑅𝑚(𝜆), the trajectory must evolve as 𝑥(𝑘) = 𝜆𝑘𝑣. So 𝑢𝑚𝑎𝑥(2) = 𝜆𝑢𝑚𝑎𝑥 ⇒ 𝑢𝑚𝑎𝑥(𝑘) =

𝜆(𝑘−1)𝑢𝑚𝑎𝑥. Since the feedback matrix is given by

𝐹 =
𝑢𝑣𝑇

𝑣𝑇 𝑣
, (3.111)

we can show that 𝑢𝑚𝑎𝑥 = 𝐹𝑣. Making 𝑥(0) = 𝑣 and 𝑢(1) = 𝑢𝑚𝑎𝑥, it is possible to show that

𝑢(𝑘) = 𝜆𝑘𝑢 ⇒ 𝑢(𝑘) = 𝜆𝑘𝐹𝑥(0) ⇒ 𝑢(𝑘) = 𝐹𝑥(𝑘 − 1).

As a result, if a feedback matrix to the control problem exists, there exists the greatest one

given by the next proposition.

Proposition 3.5.2 (Greatest Feedback Matrix) If a solution exists, there is the greatest

one that respect the deadline dates given by

𝐹𝑚𝑎𝑥 = 𝐵∘∖[𝜆𝑣]∘/𝑣 (3.112)

being 𝑣 ∈ 𝒵(𝜆).

Proof: It is sought a trajectory inside 𝒵(𝜆) = {𝑥|𝐶𝑥 ⪯ 𝜆𝑘(𝐶𝑥𝑚(0)) and 𝑥 ∈ ℛ𝑚(𝜆)}, so if 

𝑥(0) ∈ 𝒵(𝜆) it is possible to make 𝑥(𝑘) ∈ 𝒵(𝜆), ∀𝑘. Therefore, since 𝑥(𝑘) = 𝜆𝑘𝑣, for any 𝑘, the 

equation 𝐴𝑥(𝑘) ⊕ 𝐵𝑢(𝑘 + 1) = 𝑥(𝑘 + 1) implies by Proposition 3.5.1 that there exists 𝐹 such that 

𝐴𝑣 ⊕ 𝐵𝐹 𝑣 = 𝜆𝑣 so, by the Residuation Theory,

𝐹𝑚𝑎𝑥 = 𝐵∘∖[𝜆𝑣]∘/𝑣.
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Realization Issues About Feedback Control

Some results presented in this context can be found in Baccelli et al. (1992) and Maia et al.

(2013). However, in Maia et al. (2013) the authors are interested in the minimal feedback

matrix, i.e., in a feedback causal matrix that increases as least as possible the eigenvalue

of the closed-loop matrix 𝐴𝑐𝑙 = (𝐴 ⊕ 𝐵𝐹𝑚𝑎𝑥). This work is interested in the maximum

feedback matrix in order to comply with deadline dates, and the delay caused by the feedback

matrix is desired. Even though, the greatest feedback matrix 𝐹𝑚𝑎𝑥 found in Proposition 3.5.2

can be non realizable (the matrix can be non causal). Considering the closed-loop matrix

𝐴𝑐𝑙 = (𝐴 ⊕ 𝐵𝐹𝑚𝑎𝑥), it is possible to find a realizable matrix (causal matrix) 𝐹𝑐 if 𝐴𝑐𝑙 is

irreducible and this matrix has an eigenvalue bigger than 0.

If the problem has a solution as defined in Proposition 3.5.1, there exists a non causal

control law 𝑢𝑛𝑐(𝑘) = 𝐹𝑛𝑐𝑥(𝑘 − 1), in which

𝑥(𝑘) = (𝐴⊕𝐵𝐹𝑛𝑐)𝑥(𝑘 − 1). (3.113)

Using the Equation 3.113 for an initial condition 𝑥(0),

𝑢𝑛𝑐(𝑘) = 𝐹𝑛𝑐(𝐴⊕𝐵𝐹𝑛𝑐)
𝑚−1𝑥(𝑘 −𝑚),∀𝑘 ⪰ 𝑚. (3.114)

The controlled inputs for 𝑘 ≺ 𝑚 can be considered as 𝑢(𝑘) = 𝜆𝑘𝑢𝑚(0). This means that

all inputs for 𝑘 ≺ 𝑚 occur before starting the feedback control. So, as it is desirable that

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) ⊕𝐵𝑢(𝑘) ⪯ 𝜆𝑘𝑥𝑚(0) these implies that 𝑢(𝑘) = 𝜆𝑘𝑢𝑚(0), for 𝑘 ≺ 𝑚.

From spectral theory of matrices, it is possible to show for a irreducible matrix 𝐻, 𝐻𝑘+𝑐 =

𝛾𝑐𝐻𝑘, ∀𝑘 ⪰ 𝑝, for a large 𝑝, in which 𝛾 is the eigenvalue and 𝑐 the cyclicity of the matrix 𝐻.

So 𝐴𝑐𝑙 ⪰ 𝐼 and irreducible with eigenvalue greater than 0. Therefore, it is always possible to

find a causal matrix

𝐹𝑐 = 𝐹𝑛𝑐(𝐴⊕𝐵𝐹𝑛𝑐)
𝑚−1 (3.115)

by the necessary increment of 𝑚.

Remark: 3.5.2 An other way to find a causal matrix was presented in Gonçalves et al. (2014)
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using a predictor algorithm.

3.5.3 Numerical Examples

A Small Manufacturing System

The current example is the same previously presented in Subsection 3.4.5 and modeled by a

Petri Net in Figure 3.7.
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Figure 3.7: A Small Manufacturing System

Concerning the feedback control and using the presented results, the maximal feedback
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control is given by:

𝐹𝑚𝑎𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 11 10 17 22

5 3 2 9 14

−5 −7 −8 −1 4

3 1 0 7 12

−5 −7 −8 −1 4

10 8 7 14 19

2 0 −1 6 11

13 11 10 17 22

15 13 12 19 24

16 14 13 20 25

9 7 6 13 18

4 2 1 8 13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇

.

Therefore 𝐹𝑛𝑐 = 𝐹𝑚𝑎𝑥 since 𝐹𝑚𝑎𝑥 is non causal. However, using the Equation 3.115, the

maximal causal feedback matrix is given by:

𝐹𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

27 25 24 31 36

19 17 16 23 28

9 7 6 13 18

17 15 14 21 26

9 7 6 13 18

24 22 21 28 33

16 14 13 20 25

27 25 24 31 36

29 27 26 33 38

30 28 27 34 39

23 21 20 27 32

18 16 15 22 27

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇

,

for 𝑚 equal to 2. Therefore, the causal feedback control law will be 𝑢(𝑘) = 𝐹𝑐𝑥(𝑘 − 2), the
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inputs 𝑢(𝑘) = 𝜆𝑘𝑢𝑚(0), ∀𝑘 ≺ 2. The Just-in-Time policy of control is applied, so the reached

states using the matrix 𝐹𝑐 are:

𝑥𝑚𝑎𝑥(1) =

[︂
17 22 29 23 30 20 25

]︂
,

𝑥𝑚𝑎𝑥(2) =

[︂
25 30 37 31 38 28 33

]︂
,

𝑥𝑚𝑎𝑥(3) =

[︂
33 38 45 39 46 36 41

]︂
,

𝑥𝑚𝑎𝑥(4) =

[︂
41 46 53 47 54 44 49

]︂
,

𝑥𝑚𝑎𝑥(5) =

[︂
49 54 61 55 62 52 57

]︂
.

𝑥𝑚𝑎𝑥(6) =

[︂
57 62 69 63 70 60 65

]︂
.

The output dates are

𝑦(𝑘) =

[︂
29 37 45 53 61 69

]︂
,

and the desirable trajectory of the output dates is

𝑦𝑚(𝑘) =

[︂
29 37 45 53 61 69

]︂
.

As expected, these results are the same as those previously presented in this example for 𝑘 ⪰ 2.

With the feedback control, the controlled system evolves, in the 50 steps simulated, respecting

all the constraints imposed. Again, due to the system periodicity, the result is guaranteed for

all 𝑘 (see Baccelli et al. (1992)).

A Transportation Network

This example was also previously presented in Subsection 3.4.5, described in detail in Katz

(2007) and de Vries et al. (1998), and represented in Figure 3.8.

The control problem objectives presented in Katz (2007) are the time between two consec-

utive departure trains must not exceed a given limit and the passengers waiting time coming
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Figure 3.8: The Model to Transportation System

from a given station and going to another station must not exceed a given limit. To this end,

the system was described as in Equation 3.1 and the constraint obtained from Katz (2007) is

given by:

𝐸𝑟𝑥𝑚(𝑘) ⪯ 𝑥𝑚(𝑘 − 1), (3.116)

with

𝐸𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−15 𝜀 −18 −18

−21 −15 𝜀 𝜀

𝜀 −15 −15 −15

𝜀 −13 −13 −15

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Considering 𝑥𝑚(0) = 𝑣 ⇒ 𝑥𝑚(𝑘) = 𝜆𝑘𝑣. The constraint 𝐸𝑟𝑥𝑚(𝑘) ⪯ 𝑥𝑚(𝑘− 1) is equivalent

to 𝐸𝑟𝜆𝑣 ⪯ 𝑣 ⇒ 𝐸𝑟𝜆𝑣 ⊕ 𝑣 = 𝑣 ⇒ (𝜆𝐸𝑟 ⊕ 𝐼)𝑣 = 𝑣 ⇒ 𝐷𝑣 = 𝐸𝑣.

Concerning the feedback control problem, the matrix 𝐹𝑚𝑎𝑥 for the expanded state vector

𝑥𝑒 = [𝑥(𝑘 − 1) 𝑥(𝑘)]𝑇 , is given by:
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𝐹𝑚𝑎𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

14 17 14 13 28 31 28 26

11 14 11 10 25 28 25 23

14 17 14 13 28 31 28 26

14 17 14 13 28 31 28 26

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This result is similar to the greatest feedback matrix found in Maia et al. (2011b) using

the super eigenvalue methodology for the same example. However, it is different from the

one obtained by Katz (2007) because it is not interested in Just-in-Time control. The matrix

obtained by Katz (2007) is

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

14 14 14 13 14 14 14 14

11 14 11 10 14 14 14 14

14 14 14 13 14 14 14 14

14 14 14 14 14 14 14 14

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

As expected, the input dates and internal dates are the same as previously presented. Unlike

Katz (2007), the controller is found in a simpler way and, in this work, the Just-in-time control

policy is applied, the firing dates of state transitions are the maximum possible and respect

the problem constraints, i.e., the dates are the maximum departure time for a train to leave a

station in order to respect the constraints.

𝑢𝑚𝑎𝑥(2) = 𝑥(2) =

[︂
33 30 33 34

]︂𝑇
,

𝑢𝑚𝑎𝑥(3) = 𝑥(3) =

[︂
48 45 48 49

]︂𝑇
,

𝑢𝑚𝑎𝑥(4) = 𝑥(4) =

[︂
61 58 61 62

]︂𝑇
,

𝑢𝑚𝑎𝑥(5) = 𝑥(5) =

[︂
75 72 75 76

]︂𝑇
,

𝑢𝑚𝑎𝑥(6) = 𝑥(6) =

[︂
90 87 90 91

]︂𝑇
.
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Small Manufacturing System II

Consider the manufacturing system with three machines (𝑀1, 𝑀2 and 𝑀3) endowed with

unitary capacity in Figure 3.9. This system was originally presented in Maia et al. (2005). The

raw materials are processed by machines 𝑀1 and 𝑀2 whose inputs are given by 𝑢1 and 𝑢2,

respectively. The product of these two machines are grouped and processed by machine 𝑀3,

resulting in a final product with the date of deliver given by 𝑦.
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Figure 3.9: Manufacturing System

This system can be described by state space equations in max-plus algebra given by:

⎧⎪⎨⎪⎩ 𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) ⊕𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)

with

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. 𝑒 . . . .

. 1 . . . .

. . . 𝑒 . .

. . . 2 . .

. 3 . 4 . 2

. 6 . 7 . 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 .

5 .

. 3

. 5

7 7

10 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝐶 =

[︂
. . . . . 7

]︂
.
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In order to solve this example, initially it will be considered the system working in open-loop

(without feedback) and all inputs 𝑢(𝑘), ∀𝑘 ⪰ 1, equal to 𝑒, i.e., all the raw material will be

available at system initial date. This behavior is useful to keep the machines working as long

as possible, however, this behavior is inefficient since it will produce internal inventory. This

assertion can be confirmed with the open-loop state vectors 𝑥𝑜𝑙(𝑘):

𝑥(0) =

[︂
4 5 3 5 7 10

]︂

𝑥𝑜𝑙(1) =

[︂
5 6 5 7 10 13

]︂

𝑥𝑜𝑙(2) =

[︂
6 7 7 9 13 16

]︂

𝑥𝑜𝑙(3) =

[︂
7 8 9 11 16 19

]︂

𝑥𝑜𝑙(4) =

[︂
8 9 11 13 19 22

]︂

𝑥𝑜𝑙(5) =

[︂
9 10 13 15 22 25

]︂

𝑥𝑜𝑙(6) =

[︂
10 11 15 17 25 28

]︂

𝑥𝑜𝑙(7) =

[︂
11 12 17 19 28 31

]︂

𝑥𝑜𝑙(8) =

[︂
12 13 19 21 31 34

]︂

Analyzing the vectors 𝑥𝑜𝑙, it is possible to see that the transitions 𝑥1 and 𝑥2 fire every time

unit from four time units and five time units. The transitions 𝑥3 and 𝑥4 fire every two time units

and the transitions 𝑥5 and 𝑥6 fire every three time units. Therefore, this system is unstable

because it can accumulate tokens in places between transitions 𝑥2 and 𝑥4 with transition 𝑥5.

This internal inventory is undesirable for some applications.

However, to deal with this issue, the feedback control can make the system stable. In open-

loop, the system has a production rate equal to one product each three time units (𝜆 = 3).

Using the Equation 3.112, the maximal feedback in order to respect 𝜆 = 3 can be computed.
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This maximal feedback matrix is given by:

𝐹𝑚 =

⎡⎢⎣ −1 −2 0 −2 −4 −7

−1 −2 0 −2 −4 −7

⎤⎥⎦ .

However, the maximal feedback matrix is non causal since it has non positive entries. Using

the Equation 3.115, the maximal causal feedback matrix for the system can be computed with

𝑚 = 4 and it is given by:

𝐹𝑐 =

⎡⎢⎣ 8 7 9 7 5 2

8 7 9 7 5 2

⎤⎥⎦ .

Computing the system state with the feedback matrix (𝑥𝑐𝑙 = (𝐴 ⊕ 𝐵𝐹 )𝑥(𝑘 − 𝑚)), the

following system states are obtained.

𝑥𝑐𝑙(1) =

[︂
7 8 6 8 10 13

]︂

𝑥𝑐𝑙(2) =

[︂
10 11 9 11 13 16

]︂

𝑥𝑐𝑙(3) =

[︂
13 14 12 14 16 19

]︂

𝑥𝑐𝑙(4) =

[︂
16 17 15 17 19 22

]︂

𝑥𝑐𝑙(5) =

[︂
19 20 18 20 22 25

]︂

𝑥𝑐𝑙(6) =

[︂
22 23 21 23 25 28

]︂

𝑥𝑐𝑙(7) =

[︂
25 26 24 26 28 31

]︂

𝑥𝑐𝑙(8) =

[︂
28 29 27 29 31 34

]︂
Analyzing the vectors 𝑥𝑐𝑙, it is possible to conclude that the production rate is respected

and the output dates are equal to the output dates in open-loop system simulation, therefore

the feedback does not cause delay in the system. It is also possible to conclude that the input

dates in closed-loop simulation are greater than those in the open-loop simulation. This fact
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avoid the internal inventory in the system since the raw material will enter the system only

when necessary.

The feedback control makes more robust the system in relation to internal parameter varying

since it is able to limit the number of tokens in the system and, consequently, ensure the system

stability for any sequence of inputs.

The system with the computed feedback is presented in Figure 3.10, in which it is possible

to see that the system graph with feedback is strongly connected, so the system is stable for

any input.
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Figure 3.10: Manufacturing System

Based on ideas from Maia et al. (2005), the two control methodologies can be combined (the

open-loop control and the feedback control). The combination is useful to ensure the desired

behavior of the system and know the input dates in order to comply with deadline dates. The

open-loop control will be useful to find the maximal input dates to enter the raw material in

the system. The feedback control will be useful to ensure a more robust system in relation to

system parameter varying.
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This example was solved using the methodology of open-loop just-in-time control in a finite

horizon. The maximal input dates found are given by:

𝑢𝑚𝑎𝑥
1 (𝑘) =

[︂
3 6 9 12 15 18 21 24

]︂

𝑢𝑚𝑎𝑥
2 (𝑘) =

[︂
3 6 9 12 15 18 21 24

]︂
Therefore, the feedback matrix can be used together with the maximal input dates to feed

the system with the raw material.

3.5.4 Conclusion

This section presented the constrained Feedback control problem in the Just-in-Time context.

The necessary conditions for the feedback matrix existence are developed as well as the maxi-

mum feedback matrix. In the end, three numerical examples illustrated the methodology and

the applicability of results.

3.6 Synthesis of Controllers

In this section the characteristics of controllers developed in this thesis are presented. The

controllers are used only in Discrete Event Systems, therefore, the open-loop control in finite

horizon is useful to systems endowed with not huge transient behavior since after the transient

part the system can have a periodic behavior, so the input dates will be periodic.

The open-loop control is useful to systems with huge transient behavior since the solution

in finite horizon can be impracticable, i.e., the computational time and computational memory

cannot be feasible.

In addition, the open-loop control can ensure the optimal control but cannot ensure the

stability addressed in this thesis. Therefore, the open-loop control is better to systems with

negligible parameters variation, such as completely automated and traffic light systems.

However, the feedback control can ensure stability for any input, then it is useful to systems

endowed with uncertain or variable parameters such as non-completed automated manufactur-
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ing systems with human operations.

Finally, the results found by using any of these methods will respect the constraints and,

consequently, the reference demand (deadline dates).



Chapter 4

Final Discussion

4.1 Conclusion

Based on the formulation and results presented in this thesis, it is possible to conclude, first of

all, that the contributions of this work will be useful to model, analyze, control, evaluate the

performance and optimize Max-Plus Linear Dynamical Systems.

It is important to reinforce the fact that timed event graphs are graphical tools able to model

discrete event systems where there is no concurrence by resources. The max-plus algebra is

useful to describe the behavior of a system modeled as a timed event graph in a linear way,

what is not the case in the conventional algebra. Concepts of classical system theory, such

as state space equations, eigenvalues and eigenvectors, can be inherited from classical system

theory.

The first contribution of this work is a general problem formulation based on the optimiza-

tion theory. This formulation is useful to represent optimal control problems since it is possible

to determine a main objective and constraints of interest. An important constraint in the

general formulation is the semimodule equation because it can include non-convex constraints

in the system. Some important constraints can be written as a semimodule equation such as,

for example, temporal limitation of a manufacturing process duration or the maximal waiting

time of passengers in a transportation system.
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It was shown that the general formulation is simpler than some previous formulations pub-

lished in papers by different authors. It is also more efficient since: the formulation deals with

the direct realization of the problem; it deals only with the max-plus algebra allowing the use

of non-convex constraints; it is possible to solve the problems in different ways; it obtains two

different control policies.

From the general problem formulation it was possible to develop the open-loop and feedback

control policies. The first policy developed was the open-loop control in the finite horizon.

This methodology is useful when the deadline dates are finite. However, the control problem

in a finite horizon can be understood as an infinite horizon by the expansion of the control

horizon for a big enough size (greater than the transient interval). Two methodologies to solve

the control problem was developed, one based on semimodule, which has double exponential

computational complexity, and one based on the Modified Alternating Algorithm, which has

pseudo-polynomial computational complexity. Using the second method, the maximal input

dates that respect a viable deadline dates are computed with a simple algorithm in short time.

The second problem stated was the open-loop control policy in infinite horizon. The first

methodology to solve the problem is based on (A,B)-invariant sets and the second methodology

is based on semimodules and residuation theory. Both methodologies have high computational

complexity. In the first case, finding the maximum (A,B)-invariant set inside a space needs

a huge computational effort. In the second case, finding the space that has all solutions to

the semimodule equations has a double exponential computational complexity. Although, the

methodologies are able to solve important complex problems of practical interest, as previously

mentioned, it is possible to consider non-convex constraints in conventional algebra.

In order to propose a solution with lower computational complexity, algebraic tools in max-

plus algebra were applied. Using the results presented in Gonçalves (2015), it was possible

to solve the problem considering a particular reference model, without any transient behavior

that evolves by a rate 𝜆.

Finally, the feedback control policy, in the Just-in-Time context, was addressed in this

work. The necessary conditions for the feedback matrix existence and a method to compute

the maximum feedback matrix in order to comply with deadline dates were presented.

The theoretical results show that, respecting the proposed conditions, it is always possible
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to apply the Just-in-Time control policy. The necessary and sufficient conditions to solve the

control problems are developed as well as the optimal solutions to the classes of proposed

problems. In the end of each section, along with theoretical development, numerical examples

were presented with the intention to show the applicability of the new results in important

classes of systems of practical interest.

The proposed optimization control problem is useful to companies, e.g., industrial companies

or small warehouses, since it is able to control this kind of systems by discrete event systems

theory without complex mathematical equations. It is also able to determine the maximal

input dates in order to comply with the demand trajectory.

In conclusion, it is possible to use the contributions of this thesis to analyze the dynamic

of the system. For example, in a queuing system, if the smallest viable deadline dates are not

feasible for a system of interest, the number of servers can be improved.

4.2 Future Works

As perspective of future works from this thesis, the following items are listed:

• Applying the obtained results in real systems, even in prototypes of real systems, to

develop and analyze the real behavior of the system, as well as developing easy ways to

apply the contributions in practice.

• Investigating new control policies that can be obtained from the general formulation like

the cyclic control, given the cyclicity of some max-plus linear systems, in special industrial

systems. Therefore the control policy can be computed in a finite horizon considering one

cycle of production, as well as applying new constraints in the control problem.

• Developing the theory of variant max-plus linear systems, initially presented in Gomes

da Silva and Maia (2015a). This theory considers the entries of matrices in state space

equations as variables, stochastically or in an interval of parameters.
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