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Resumo

O número de aplicações utilizando sistemas embutidos conectados em redes de
comunicação vem crescendo nos últimos anos, em particular, as Redes de Sensores
Sem Fio (RSSF). Contudo, RSSF apresentam alguns desafios que devem ser tratados,
por exemplo, capacidade de energia limitada. É muito importante nos estágios iniciais
de um projeto de RSSF estimar o consumo e a energia disponível em cada nó sensor e
em toda a rede. Vários simuladores de RSSF foram desenvolvidos nos últimos anos, no
entanto, vários desses simuladores não modelam o hardware do nó sensor e não simulam
o código da aplicação que é utilizado no nó sensor real, visto que esses dois fatores
são importantes na estimação do consumo de energia. Além disso, simuladores de
RSSF implementam somente modelos de bateria simples e lineares. Portanto, é muito
importante detectar as diferenças e semelhanças entre os simuladores e selecionar o
simulador mais adequado para uma determinada aplicação. Algumas taxonomias foram
propostas, porém elas consideram somente a modelagem da rede e do software utilizados
em RSSF. Este trabalho propõe uma nova taxonomia para simuladores de RSSF, que é
baseada na modelagem dos quatro domínios que um simulador deve tratar, são eles: nó
sensor, rede, ambiente e energia. Baseado na taxonomia proposta, o simulador COOJA
foi selecionado para a implementação de um novo estimador de consumo de energia
e a inclusão de um modelo de baterias alcalinas que considera o efeito de relaxação,
a retenção de capacidade e a taxa de descarga. Este trabalho estende o simulador
COOJA provendo uma nova versão que estima a energia consumida e disponível em
cada nó sensor e em toda a rede. A nova extensão do Cooja apresenta um erro médio
menor do que 4,5% para as estimativas da capacidade remanecente final e tempo de
vida do nó sensor.
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Abstract

Networked Embedded System (NES) is a fast growing application for embedded
systems, in particular, for Wireless Sensor Networks (WSN). WSNs pose a set of
challenges that should be address, such as the limited available energy. It is very
important at the early stages of a WSN project to estimate the consumption and
available energy of each sensor node and the whole network. Many WSN simulators
have been developed in the recent past, but some simulators were not conceived for
hardware modeling and they do not simulate the same application code used in the
real sensor node, which are very important in order to estimate the consumption and
available energy. Besides, WSN simulators have implemented only very simple and
linear battery models and a realistic battery model have not been implemented yet.
Therefore, it is very important to find out differences and similarities of WSN simulators
and select the right one for a given application. Some taxonomies were proposed, but
they addressed mostly the network and software domains only. This work proposes a
new taxonomy for WSN simulators that is based on modeling four domains that WSN
simulators must address, namely, the sensor node, the network, the environment and
the energy. Based on the proposed taxonomy, the COOJA simulator was selected to
implement a new energy consumption estimator and a realistic and non-linear battery
model for alkaline batteries that incorporates the relaxation effect, discharge rate and
capacity retention. This work also extends the COOJA simulator providing a new
version that estimates the consumption and available energy of sensor nodes and the
whole WSN. The proposed extended version of Cooja presents an average error less
than 4.5% for the final remaining capacity and sensor node lifetime estimative.
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Chapter 1

Introduction

With the goal to instrument the physical world with pervasive networks that are able to
sense, process and interact with their surrounding environment, networked embedded
systems have emerged, in particular, the concept of a wireless sensor network (WSN).

WSNs are composed of many devices called sensor nodes. Sensor nodes are
autonomous, compact, low-power sensors integrated with a low-power embedded CPU,
memory and wireless communication, and can also have local data processing and
multihop communication capabilities. Sensors nodes can be used to detect or monitor
a variety of physical parameters or conditions (e.g. humidity, temperature and
seismicity). Therefore, WSN can be used in wide range of applications such as habitat
monitoring, military applications, health care applications and monitoring volcanic
activity [Vieira et al., 2003][Warneke and Pister, 2002][Zheng, 2009].

1.1 Motivation

Wireless Sensor Networks poses a set of challenges that need to be addressed. First, the
lifetime of the network. Second, the limited available energy. Third, a network formed
by sensor nodes that needs to cover lager areas, but the communication is provided via
short-distance radios, as a result, the communication is the most expensive operation.
Fourth, computation and storage are limited. [Fonseca, 2009].

Energy management is a critical concern in a WSN since sensor nodes are
commonly powered by primary batteries, with a finite capacity and need replacement
when depleted, which increase the maintenance costs. In some WSNs, the replacement
of batteries can be cost prohibitive or even not feasible. It is desirable that each
sensor node manages and balances its energy resources efficiently and autonomously.
Without energy management, the lifetime of a WSN is limited to only a few weeks or

1



1. Introduction 2

even days, depending on the type of application it is running and the size of batteries
it is using. Besides, energy management in a WSN is an important requirement for
the maintenance, development of self-management techniques, planning, viability and
design of protocols and applications for WSN [da Cunha, 2010]. Therefore, WSN
designers need to know for what and why the energy is consumed and the amount of
available energy and necessary to make the WSN operational. For example, how much
energy do individual operations, such as transmitting and receiving packets or using
CPU, cost?

It is very important at the early stages of a WSN project to estimate the energy
consumption and the amount of available energy of each sensor node and the whole
network. For this reason, the use of simulators in a WSN project is almost imperative.
There are many reasons for that. First, WSNs are not cheap, hence experiments on
a real-world WSN, which could consist of hundreds or thousands of sensor nodes, are
very expensive. In some applications, sensor nodes are deployed in inaccessible and
dangerous areas. For this reason, it is more cost-effective to use simulation. Secondly,
simulation allows debugging. Thirdly, simulation allows experiments under controlled
conditions. [Jevtić et al., 2009].

Many WSN simulators have been presented in the recent past, however, these
WSN simulators were developed to accomplish different goals. For example, TOSSIM
[Levis et al., 2003] and COOJA [Österlind et al., 2006] are designed to simulate the
behavior of an operating system. TOSSIM and COOJA simulate the same application
code used in the real sensor node. Castalia [Boulis, 2011] is intended to simulate the
behavior of algorithms and protocols in a wireless communication channel.

Some simulators such as PAWiS [Glaser et al., 2008], ns-2 [Fall and Varadhan,
2011], j-sim [Sobeih et al., 2006] and Castalia were not conceived for hardware modeling
and they do not simulate the same application code used in the real sensor node, which
is very important to estimate the consumption and available energy [Haase et al., 2011].
These simulators also provide a very simple and inaccurate energy model. For example,
in ns-2, the level of energy is decreased at every transmitted and received packet by
some given value and the energy is linearly subtracted from a virtual battery in Castalia.

COOJA uses the duty command of MSPsim [Eriksson et al., 2007] (i.e.
COOJA and MSPsim are integrated) that only prints the duty cycle of components
of a sensor node in different activity states. TOSSIM has an extension called
PowerTOSSIM [Shnayder et al., 2004] that estimates the energy consumption per-node
and per-component. PowerTOSSIM is a post-processor that uses data annotated
during a TOSSIM simulation. After simulation, PowerTOSSIM analyzes the collected
data and generates power information. However, TOSSIM loses the fine-grained timing



1. Introduction 3

and interrupts properties of the code that can be important when the application runs
on the hardware, that are important to estimate the consumption and available energy
[Titzer et al., 2005].

Besides, WSN simulators have implemented a very simple and linear battery
model that provides the available energy in a WSN. A realistic battery model like
BMAB (Behavioral Model of Alkaline Batteries) [da Cunha, 2010] [da Cunha and
da Silva, 2012] that incorporates the discharge rate, capacity retention, and relaxation
effect are not implemented yet.

Therefore, it is very important to find out differences and similarities of WSN
simulators and select the right one for a given application. In the literature, some
classification schemes [Jevtić et al., 2009] [Haase et al., 2011] [Du et al., 2010c] were
proposed aiming at helpingWSN designers to find differences and similarities. However,
these classification schemes do not address all the aspects that compose a WSN with the
purpose of simulation, such as the sensor node (hardware and software), the network,
the environment and the energy.

These classification schemes address mostly the network and software domains
only. Energy, environment and hardware domains are not considered. They do not
expose the advantages, disadvantages and limitations of the WSN simulators in the
implementation of energy awareness and energy availability estimators.

1.2 Objectives

This work has the following objectives:

1. Propose a new taxonomy for WSN simulators with four domains to capture
and describe a real WSN. With these fours domains one can characterize and
compare different simulators in order to properly choose the most adequate for
a given application. The proposed taxonomy aims at helping WSN designers to
find the most appropriate WSN simulator for their WSN projects providing a
detailed vision on different aspects of a complete WSN simulation. The proposed
taxonomy enables designers to easily find out differences and similarities among
WSN simulators.

2. Implement a new energy consumption estimator and a realistic and non-linear
battery model for alkaline batteries that incorporates the relaxation effect,
discharge rate and capacity retention. Using the proposed taxonomy the COOJA
simulator was selected. This work also extends the COOJA simulator providing a
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new version that estimates the consumption and available energy of every sensor
nodes of a WSN.

1.3 Organization

This document is organized as follows. Chapter 2 presents a brief summary for
some main concepts of WSN. Chapter 3 presents the proposed taxonomy. The
implementation of an energy consumption estimator and a realistic and non-linear
battery model for alkaline batteries is described in Chapter 4. Chapter 5 describes
the experimental project to validate the implementation of the energy consumption
estimator and battery model. Chapter 6 presents the results and model validation of
the consumption and available energy estimator. Chapter 7 concludes this work and
presents some future works.



Chapter 2

Basic Concepts of Wireless Sensor
Networks

This Chapter presents a brief summary for the main concepts of WSNs: sensor node
architecture, WSN hardware platforms, WSN power supply, WSN operating system
and WSN simulators.

2.1 Sensor Nodes

A sensor node or mote (both names will be used in the rest of this work) is a tiny
computer network node that can sample analog signals and communicate with other
sensor nodes wirelessly, especially by radio. A sensor node is composed of four main
parts: sensing unit, processing unit, communication unit and power unit, as show in
Figure 2.1. The sensing unit is responsible for collecting data from the environment
(e.g. temperature, heat, seismicity). The processing unit is composed of a internal
memory to store data and applications programs, a CPU to process data and an
Analog-to-Digital Converter (ADC) to convert analog signals from the sensing unit.
The communication unit consists of a bidirectional wireless communication channel
that allows sensor nodes to communicate. The power unit has the purpose to supply
the energy to the sensor node provided by primary batteries [Vieira et al., 2003] [Zheng,
2009].

2.1.1 Processing Unit

The processing unit is responsible for controlling all the modules of the sensor
node and to perform any required computation. The processing unit is composed

5
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Figure 2.1: Sensor Node Architecture [Vieira et al., 2003]

of a microcontroller unit (MCU). Microcontroller is a microprocessor with memory
and peripherals or support devices embedded in a single chip. Beyond the CPU,
microcontrollers also include volatile and non-volatile memories and interfaces such
as UART, USB, SPI and I2C, and peripherals such as Analog-to-Digital Converters
(ADC), counters and timers. In order to be energy efficient, the microcontroller
hardware needs to be low power, with different operating modes, and fast wake-up
time. Another important feature is the start-up time since the microcontroller of a
sensor node will usually switch between the idle and active modes [Vieira et al., 2003]
[Zheng, 2009].

2.1.2 Communication Unit

Sensor nodes communicate using a wireless communication channel. The
communication unit must be energy-efficient, and allows output power setting. Several
aspects affect the power consumption of a radio including the type of modulation, data
rate, and transmission power. In general, radios can operate in three distinct modes:
transmit, receive, and idle.

2.1.3 Sensing Unit

The sensing unit is composed of sensors, which are devices that produce electrical
signals in response to a change in a physical condition. Examples include thermal
sensors, seismic sensor, tilt sensor, pressure sensors, temperature sensor, radiation
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detectors, magnetic sensors, and chemical and biological sensors. In short, the sensing
unit of the sensor node is the link to the outside world [Vieira et al., 2003] [Zheng,
2009].

2.1.4 Power Unit

The power unit has the purpose to supply power to the sensor node, and sensor nodes
are usually powered by batteries. Batteries are classified into two groups, primary
and secondary. A primary battery is a battery that is designed to be used once and
discarded (i.e. non-rechargeable battery) while secondary batteries are rechargeable
and can have their stored energy replenished many times.

2.2 Hardware Platforms for WSN

Several hardware platforms have been developed over the past few years to aid
researches in WSNs. The capabilities of these platforms vary significantly and they
can be classified into two categories based on their capabilities and usage, low-end
and high-end platforms. This section presents a brief description of them, in particular
MicaZ and Tmote Sky, since they are the most mentioned and used hardware platforms
in this work.

Low-end platforms such as Mica2, MicaZ (Fig. 2.2), Telosb and Tmote Sky
(Fig. 2.3) have been used for the validation and assessment of new applications and
protocols, and they are characterized by their limited capabilities in terms of processing,
memory, and communication.

The main difference between Mica2 and MicaZ platforms is the wireless
transceiver, Mica2 uses the Chipcon CC1000 [CC1000-datasheet, 2012] while MicaZ
is based on the Chipcon CC2420, but both use the same microcontroller, the
ATmega128L. The ATmega128L is an 8-bit low-power microcontroller that provides
128 kbytes of Flash, 4 kbytes of EEPROM, 4 kbytes of SRAM, 53 general purpose
I/O, four flexible Timer/Counters with compare modes and PWM, two USARTs, a
byte oriented Two-wire Serial Interface, a 10-bit ADC with 8-channels, a SPI serial
port and an internal calibrated RC oscillator [Lajara et al., 2010].

Telosb and Tmote Sky share the same design, but they were designed by two
different companies, Crossbow and Moteiv Corporation, respectively. Moteiv and
Crossbow changed their names and are now called Sentilla and Memsic, respectively.
Both platforms use the MSP430F1611 MCU and the CC2420 wireless transceiver.
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Figure 2.2: MicaZ platforms

The MSP430F1611 is part of the Texas Instruments MSP430 family based on an
ultra-low-power microcontroller with a clock of 8 MHz. It is a 16-bit RISC processor
with several power-down modes and extremely low sleep current consumption. It also
features 10 kbytes of RAM, 48 kbytes of program flash memory, SPI, UART, timers
with capture and compare functionality, a 2-port 12-bit Digital-to-Analog converter
(DAC) module, a supply voltage supervisor and a 3-port DMA controller [Sky, 2012]
[Lajara et al., 2010]. The CC2420 radio implements the IEEE 802.15.4 standard and
can be configured and controlled by an SPI port and a series of digital I/O lines and
interrupts. The CC2420 offers reliable wireless communication, a programmable output
power and power management capabilities with a very low-power consumption [Sky,
2012] [Lajara et al., 2010] [CC2420-datasheet, 2012].

Figure 2.3: Tmote Sky

Beyond sensing, local processing and multiple hops communication, WSNs require
some functionalities that cannot be efficiently executed by the low-end platforms. For
example, sensor network management require higher processing power and memory,
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the integration of a WSN with existing network infrastructure demand multiple
communication techniques to be integrated through gateway modules. To address
these requirements, high-end platforms have been developed such as Stargate [Stargate,
2012]. Stargate is a high-performance processing platform developed for sensing, signal
processing, control, and sensor network management. Stargate uses the Intel PXA-255
Xscale processor with a clock of 400MHz, has 23Mbytes of flash memory, 64Mbytes
of SDRAM, and an onboard connector for Mica family platforms as well as PCMCIA
Bluetooth and IEEE 802.11 cards.

2.3 Power Supply for WSN

Energy is a critical concern in a WSN, since sensor nodes are usually powered by
primary batteries, and these batteries have a finite capacity and need replacement
when depleted, which increases the maintenance costs. The replacement of batteries
can be cost prohibitive or even not feasible in some WSNs.

For this reason, it is very important to control the power consumption of sensor
nodes, since with high power consumption the batteries will be depleted very quickly.
Each sensor node should manage and balance its energy resources efficiently and
autonomously. Without energy management, the lifetime of a WSN is limited to only
a few weeks or even days, depending on the type of application it is running and the
capacity of its batteries [da Cunha, 2010]. Harvesting energy from the ambient has
emerged as an alternative to provide supply to the sensor node, but requires secondary
batteries to store the extra energy.

2.3.1 Terminology

We presented a brief summary of the some common terms related to batteries [Pop
et al., 2005]:

1. Cell: a cell is the basic electrochemical unit of a battery. A cell consists of two
electrodes in a container filled with an electrolyte, and it is used to generate
electrical energy from stored chemical energy or to store electrical energy in the
form of chemical energy.

2. Battery: a battery is a device capable of converting chemical energy into
electrical energy and vice versa. A battery is composed by one or more cells
connected in an appropriate series arrangement to obtain the required operating
voltage and capacity for a certain load.
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3. State of Charge (SoC): is the percentage of the maximum possible charge that
is present inside the battery.

4. Cycle Life: the number of times the battery can be charged/discharged.

5. Cutoff Voltage: is the lowest operating voltage of a cell at which the cell is
considered depleted.

2.3.2 Recovery Effects and Rate Capacity

Two important factors of batteries are the charge recovery effect and the rate capacity
effect. Charge recovery effects are due to the relaxation effect, when the battery is
discharging at a high rate for some time, and then its discharge current is cutoff or
reduced, there is a capacity recovery. Rate capacity effects are due to the dependency
between the actual capacity of a battery and the magnitude of the discharge current
[Castillo et al., 2004][da Cunha, 2010].

2.3.3 Thermal Effects

Researchers should choose a battery with a low self-discharge and relative immunity to
temperature variations. In fact, the effect of temperature on battery efficiency depends
on the specific chemistry being considered. At lower temperatures, increased internal
resistance of the battery lead to reduced capacity, and at high temperatures, decreased
internal resistance leads to increased effective capacity of the battery, but continuous
exposure to high temperatures leads to a shortened cycle life [Park et al., 2005].

2.3.4 Battery Types

There are several primary and secondary battery types available such as alkaline,
nickel cadmium, nickel metal-hydride and lithium ion, and this section presents a brief
summary of them [Pop et al., 2005][da Cunha, 2010][Castillo et al., 2004].

1. Alkaline is a primary battery that uses an alkaline aqueous solutions as
electrolyte and its advantages over zinc-carbon include longer shelf life, higher
energy density, and superior leakage resistance.

2. Nickel Cadmium (NiCd) is a secondary battery that uses a positive nickel
electrode of a Ni(OH)2/NiOOH compound and a negative cadmium electrode of
Cd and Cd(OH)2, and its advantages include low cost, fast charge and discharge
times. The main disadvantage of NiCd is the so-called memory effect, which
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causes the battery to deliver only the capacity that was used during the repeated
charge/discharge cycles before.

3. Nickel Metal-Hydride (NiMH): is a secondary battery with a construction is
very similar to the NiCd battery. The major difference between them is the fact
that in a NiMH a metal hydride alloy is used for the negative electrode instead
of cadmium, and it has roughly twice the energy density of NiCd.

4. Lithium Ion: is a secondary battery that uses a positive electrode built of
metal oxides to store the lithium ions and a negative electrode made of graphite
or petroleum coke. During the discharge, lithium ions move from the negative
electrode to the positive electrode and back when charging. It has significant
higher energy density and twice the life cycle of a NiMH battery.

For the interested reader, more information about batteries can be find in
[da Cunha, 2010] [Pop et al., 2005] [Castillo et al., 2004].

2.4 Operating Systems for WSN

Contiki [Dunkels et al., 2004] and TinyOS [Levis et al., 2004] are the two most common
operating systems used in WSN and for this reason, they will be detailed in this section.

2.4.1 Contiki

Contiki is a lightweight and highly portable open source operating system written
in C for WSNs that was built around an event-driven kernel, and provides optional
threading facilities for individual processes. The Contiki kernel comprises a lightweight
event scheduler that dispatches events to running processes. Process execution is
triggered by events dispatched by the kernel to the processes or by a polling mechanism.
Any scheduled event will run to completion, however, event handlers can use internal
mechanisms for preemption [Lajara et al., 2010][Farooq and Kunz, 2011].

Contiki supports many hardware platforms (e.g. Tmote Sky, MicaZ, Z1 [Z1, 2012]
and Wismote [Wismote, 2012]), microcontrollers (e.g. TI MSP430 family, Atmel AVR
family and ST STM32w) and radios (e.g. the Texas Instruments CC2420, CC2520 and
CC1020, and RFM TR1001) [Contiki-WebSite, 2012].

One of the main contributions of Contiki is the introduction of protothreads.
Protothreads are lightweight threads developed for severely memory constrained
devices with a very small memory overhead for concurrent programming. They enable
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programmers to block conditions that stop a thread waiting for the activation of an
event from another concurrent thread and simplify and reduce the number of the state
machines needed to implement the sequence of high-level operations [Lajara et al.,
2010][Farooq and Kunz, 2011].

In Contiki, an application can use either IPv4 or IPv6. Contiki provides an
implementation of uIP (i.e. a TCP/IP protocol stack for small microcontroller). uIP
supports TCP, UDP, ICMP and IP protocols, and has a minimum set of features needed
for a full TCP/IP stack. Contiki also provides another layered protocol stack, named
Rime. Rime provides single hop broadcast, single hop unicast, and multiple hops
communication support, and enables applications to run their own routing protocols
in multiple hops comunication. Finally, Contiki also provides an implementation of
RPL (IETF IPv6 Routing Protocol for Low-power and Lossy Networks) [Jamieson and
Moss, 2012] by the name ContikiRPL [Farooq and Kunz, 2011].

2.4.2 TinyOS

TinyOS is an open source, flexible and component-based operating system written in
NesC [Gay et al., 2003] (a variant of the C programming language) for WSN. According
to the requirements of the application, different components are connected together by
means of interfaces with the scheduler to compose a static image that runs on the sensor
node. Therefore, new applications can be programmed by combining components
connected using their interfaces and only the components that are really needed in
the application are compiled and included in the final executable file, with a significant
reduction of the total amount of memory required. TinyOS provides a robust and
reliable functionality by making use of static memory allocation and a non-preemptive
FIFO scheduler. When an interruption occurs, the microcontroller jumps immediately
to the corresponding event handler, stopping the execution of the current task [Farooq
and Kunz, 2011][Lajara et al., 2010].

TinyOS supports several hardware platforms (e.g. Tmote Sky, MicaZ, Mica2
and IRIS [IRIS, 2012]), microcontrollers (e.g. MSP430 family, the Atmel Atmega128,
the Atmega128L, the Atmega1281, and the Intel PX27ax processor) and radios (e.g.
The Texas Instruments CC2420, CC1100 and CC2500, Atmel RF212 and RF230, the
Infineon TDA5250 and the Semtech XE1205) [Stehlik, 2011].

At the MAC layer, TinyOS provides an implementation of the following protocols:
a single hop TDMA protocol, a TDMA/CSMA hybrid protocol that implements
Z-MAC’s slot stealing optimization, B-MAC, and an optional implementation of an
IEEE 802.15.4 compliant MAC. Regarding network protocols, TinyOS has implemented
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several protocols such as TYMO (TinyOS implementation the DYMO protocol -
a point-to-point routing protocol for Mobile Ad-hoc Networks), TinyRPL (TinyOS
implementation of the IETF IPv6 Routing Protocol for Low-power and Lossy Networks
(RPL)), and 6lowpan (TinyOS implementation of the IETF IPv6 for Low power
Wireless Personal Area Networks) [Farooq and Kunz, 2011] [TinyOS, 2012].

2.5 Simulators for WSN

Many simulators for WSN have been developed in recent past and six simulators were
selected based on the criteria of popularity, availability, and maintainability after 2008.
The selected simulators are: TOSSIM 2.x [TOSSIM, 2012], Cooja 2.5 [Contiki-WebSite,
2012], MSPsim 2.5 [Eriksson et al., 2007], Avrora [Titzer et al., 2005], Castalia 3.2
[Boulis, 2011], and ns-2 2.35 [Fall and Varadhan, 2011]. Recently, another class of
simulators using the SystemC language have been presented and IDEA1 1.0 [Du et al.,
2011], ATLeS-SN 2.0 [ATLeS-SN, 2012], and SNOPS 1.0 [Fall and Varadhan, 2011]
simulator were also selected.

2.5.1 TOSSIM

TOSSIM [Levis et al., 2003] is a discrete event simulator for the operating system
TinyOS [TinyOS, 2012]. It is part of the TinyOS distribution. TOSSIM maps directly
to TinyOS code, i.e. compiling an application for the simulation environment is
equivalent to compiling it for an actual real sensor node. TOSSIM works by replacing
hardware components by simulation wrappers using a Hardware Abstraction Layer
[Perla et al., 2008][TOSSIM, 2012]. Unfortunately, TOSSIM only supports the MicaZ
mote [MICAz, 2012].

2.5.2 MSPsim

MSPsim is a java-based instruction level simulator for the MSP430 microprocessor
series, that provides the execution time of each instruction. MSPsim includes a sensor
board simulator that simulates hardware peripherals such as sensors, radio, and LED’s.
MSPsim can simulate a complete sensor node such as the Tmote Sky [Sky, 2012].
MSPSim can simulate both TinyOS and Contiki applications [Eriksson et al., 2009]
[Eriksson et al., 2007] [Stecklina et al., 2011].
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2.5.3 Avrora

Avrora is a java-based cycle-accurate simulator for embedded sensing programs. It can
simulate Mica2 motes [MICA2, 2012]. Avrora includes a nearly complete ATMega128L
MPU, and the CC1000 radio. Avrora is also capable of running a complete WSN
simulation, allowing applications to communicate via the radio using the software stack
provided by TinyOS. Avrora has some extensions such as AVRORAz [de Paz Alberola
and Pesch, 2008], that allows simulation of the MicaZ motes and includes an indoor
radio channel model [Haase et al., 2011][TinyOSWiki-Avrora, 2012][Titzer et al., 2005].

2.5.4 Cooja

Cooja [Österlind et al., 2006] is a java-based simulator designed for sensor nodes
running the Contiki operating system [Dunkels et al., 2004]. MSPsim and Avrora
are integrated into Cooja.

Cooja can simulate Contiki applications in two ways, either by running the
application as a compiled native code directly on the target CPU, or by running
compiled application code in MSPSim. Cooja can also simulate a WSN without a
specific sensor node or Contiki application focusing only on the network behavior.
Using MSPsim, Cooja can also simulate TinyOS applications for MSP430 motes (e.g.
Telosb [Polastre et al., 2005]) [Eriksson et al., 2009]. Cooja also uses the Avrora
simulator to simulate Contiki AVR-based motes applications (e.g. MicaZ [MICAz,
2012]).

2.5.5 Castalia

Castalia [Boulis, 2011] is a simulator for WSN and BAN (Body Area Network). It is
based on the OMNeT++ platform [Varga and Hornig, 2008]. An OMNeT++ based
simulator is built from elements called modules which might be simple or compound. A
simple module is the basic unit of execution. A compound module is a construction of
simple and/or other compound modules. Modules communicate using packets that are
sent through connections that span between modules or directly to their destination
modules [Jevtić et al., 2009] [Boulis, 2011] [Varga and Hornig, 2008].

2.5.6 ns-2

ns-2 [Fall and Varadhan, 2011] is the most notorious and well known simulator for
networks. It is a discrete event simulator targeted to computer network research.
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It began as a wired network simulator, but today it also offers support for mobile
ad-hoc wireless networks. ns-2 is an object-oriented simulator, written in C++, with
an OTcl [OTcl, 2012] interpreter as a front-end. The protocols, models and simulator
itself are implemented in C++ while simulator configuration, specification scenarios
and network topology set up are written in OTcl scripts [Jevtić et al., 2009][Fall and
Varadhan, 2011]. There is a new simulator, named ns-3 [Henderson et al., 2006], that
is a new improved version and eventual replacement of ns-2.

2.5.7 IDEA1

IDEA1 (hIerarchical DEsign plAtform for Sensor Networks Exploration) [Du et al.,
2010a] is a WSN simulator written in SystemC language and uses the SCNSL
(SystemC Network Simulation Library) alpha library [Fummi et al., 2008]. The main
contributions of IDEA1 are the following: a graphical user interface (GUI), an energy
model that enable energy awareness, processors (e.g. ATMEL ATMega128), radio
transceivers and an IEEE 802.15.4 media access algorithms model [Du et al., 2011].

2.5.8 ATLeS-SN

ATLeS-SN (Arizona Transaction-Level Simulator for Sensor Networks) [Hiner et al.,
2010] is a transaction-level modeling and simulation environment for WSN implemented
in SystemC language. ATLeS-SN enables the modeling of various hardware components
of the sensor nodes (e.g. sensor, communication units) and across WSN (e.g. wireless
communication channels).

2.5.9 SNOPS

SNOPS (Sensor Networks Optimization by Power Simulation) [Damm et al., 2010]
is a simulation library to design WSNs, written in SystemC and TLM 2.0 [Aynsley,
2009]. It uses transaction concepts from TLM 2.0 [Aynsley, 2009] to model end-to-end
communications among sensor nodes, including multiple hops communication [Haase
et al., 2011] [Moreno et al., 2011].



Chapter 3

Taxonomy for WSN Simulators

3.1 Taxonomies for WSN simulators

It is very important to find out differences and similarities of WSN simulators and select
the right one for a given application. In the literature, some taxonomies were proposed
in past years aiming at helping WSN designers to find differences and similarities.

Jevtic et al. [Jevtić et al., 2009] classified WSN simulators into three types:
generic, code level and firmware. A generic WSN simulator simulates a WSN with the
focus on networking aspects while operating system and hardware architecture are not
considered. A code level WSN simulator simulates the same application code as in
the real sensor node. The firmware WSN simulator uses instruction set simulators and
CPU cycle-accurate models to execute deployable application and system operation
code compiled for the target sensor node.

Haase et al. [Haase et al., 2011] classified WSN simulators in a similar manner as
the Jevtic classification (see Figure 3.1), but using a different nomenclature: network
and system simulators, operation system emulators and microcontroller emulators.
These categories are equivalent to the ones presented by Jevtic, with one exception:
network and system simulators also include WSN simulators based on SystemC
language [Grotker, 2002].

Du et al. [Du et al., 2010c] classified WSN simulators into four categories:
network simulators with node models (NSNM), network simulators with node emulators
(NSNE), node system simulator with network models (NSSNM), and node emulators
with network models (NENM). NSNM is equivalent to the generic type of Jevtic
classification. NSNE includes WSN simulators that integrates the generic and the
firmware types of Jevtic classification. NSSNM includes the WSN simulators that were
designed using hardware description languages (e.g. SystemC). NENM includes the
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WSN simulators classified as code level and firmware types of Jevtic classification.
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Figure 3.1: Taxonomies for WSN simulators

Figure 3.1 shows the WSN simulators presented in Chapter 2 classified according
to the taxonomies found in the literature, as described above. All taxonomies addresses
mostly the network and software domains only. Energy, environment and hardware
domains are not considered. These taxonomies do not provide a detailed vision of
different aspects of a real WSN. A new proposed taxonomy that addresses all the
mentioned limitations will be described in the following.

3.2 The proposed Taxonomy for WSN simulators

This work proposes a new taxonomy for WSN simulators with four domains to
capture and describe a real WSN. With these fours domains one can characterize and
compare different simulators in order to properly choose the most adequate for a given
application.

The proposed taxonomy aims at helping WSN designers to find the most adequate
WSN simulator for their WSN projects providing a detailed vision on different aspects
of a complete and closer to WSN simulation. The proposed taxonomy enables designers
to easily find out differences and similarities among WSN simulators.
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3.3 Proposed Domains

Figure 3.2 illustrates a real WSN. Each sensor node collects environmental data and
processes them. The sensor nodes use a network protocol stack to communicate to
each other and to the Base Station node through a wireless communication channel.

A WSN is formed by three main domains: sensor nodes, a network
(communication among sensor nodes) and the environment (communication medium
and sensing). Besides these three domains, energy should also be included as another
central domain, since it is a critical constraint of a real WSN.
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Figure 3.2: Different aspects of a WSN that simulators should address

Therefore, for a detailed simulation that provides accurate information on
different aspects of a real WSN, the simulator must address different domains that
compose a real WSN. This work proposes a new view for a WSN: the sensor node
computing platform, the communication network, the surrounding environment, and
the available and necessary energy to make and sustain the WSN operational. The
proposed domains names are: sensor node, network, environment and energy.

The sensor node domain models the computing platform and is divided into
two separated sub-domains: hardware and software. The network domain models
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the communication. The environment domain models the ambient where the WSN
is deployed and involves the communication medium and the sensory operation. The
energy domain models how the sensor nodes and the WSN perceives the available
energy for the operation.

Each domain is divided into layers that represent the level of details used in the
simulation. The layers of each domain are explained in the following subsections.

3.3.1 Network Domain

The network domain is usually modeled after the OSI model from ITU-T and is
commonly known as layered protocol stack. However, protocols for traditional wireless
networks cannot be applied directly to WSN without modification, because they do
not take into account energy, computation and storage constraints as primary concerns.
Besides, transport and application layers are not used in many WSN applications [Yick
et al., 2008][Zheng, 2009].

The physical layer is responsible for encoding bit streams into signals that are
suitable for transmission over the communication medium. For this purpose, the
physical layer must deal with various related issues such as transmission medium and
frequency selection, carrier frequency generation, signal modulation and detection.

For a WSN, minimizing energy consumption starts at the physical layer. A proper
selection of transmission/listen/reception power and modulation is needed to minimize
energy consumption. Physical layers for WSN include some requirements: low power
radio design, power-aware transmission schemes, and power-aware modulation schemes.

The data link layer is responsible for data frame creation and detection, data
stream multiplexing, medium access control (MAC), and error control in order to
provide reliable point-to-point and multipoint transmissions. The design of the data
link layer for WSN must address attributes such as energy efficiency, flow control,
scalability to node density, and bandwidth utilization.

The network layer handles the routing of data across the network from the source
to the destination. In general, a source sensor node can transmit the data to the base
station node either via a single hop or multiple hops. Single hop is usually costly
in terms of energy consumption for sensor nodes. In contrast, multiple hops cannot
only significantly reduce the energy consumption of sensor nodes, but also effectively
reduce the signal propagation and channel fading effects inherent in single hop, and is
therefore preferred.

In summary, the network domain is defined by three layers: physical, data link
and network.
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3.3.2 Sensor Node Domain

The sensor node domain is divided into two sub-domains: software and hardware.
Figure 3.3 illustrates the layers of the sensor node domain.

Software

APP

OS

PMS

HA

ISS

RTL

Hardware

Figure 3.3: Sensor Node Domain and layers.

The Software domain has two layers: APP (application) and OS (operating
system). APP is the description level of an application program to be executed
on the sensor node, generally using Nesc [Gay et al., 2003], C, C++, SystemC, or
Java languages. This application program can be executed either on the development
environment or on the sensor node. SO is the description that includes the application
program and an operation system or microkernel.

The Hardware domain has four layers: HA (Hardware Abstraction), PMS
(Process/Memory/Switch), ISS (Instruction Set Simulator), and RTL (Register
Transfer Level). HA is the hardware abstraction level where modules and subsystems
are described as an executable code or simulatable code. At this level no specific
hardware description is used, and no mapping to existing actual hardware is enforced.
PMS is a notation where the embedded system architecture is described as a
composition of modules like processors, memories, buses, and peripherals [Siewiorek
et al., 1982]. At PMS level a real hardware can be described and more details related
to real implementations can be used. ISS is the level equivalent to an instruction set
simulator of a processor. At this level, the hardware behavior can be described as
a sequence of machine instructions. RTL is the description level of a digital system
composed by registers, functional units and their interconnections. RTL is the lowest
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and more detailed level of abstraction that is useful for networked embedded systems
designers.

3.3.3 Environment Domain

The environment domain is divided into three layers: wireless channel, sensing and
sensing model.

In WSN, sensor nodes communicate through a wireless communication channel.
However, this communication presents imperfections due to collisions, noise, fading,
path loss, deflection, reflection, interferences (internal and external), obstacles (e.g.
walls, floors, trees, light sources) and so forth. WSN simulators should model the
wireless communication channel, since it is an important requirement for the simulation
of a real WSN.

In a sensor node, sensors are responsible to produce some measurable responses
to the changes in physical or chemical conditions. But, sensed-data generation (i.e.
sensing) is usually neglected in WSN simulators, in other words, WSN simulators
usually only feed random numbers to sensor nodes. However, WSN simulators can use
sensed-data generation more realistically (e.g. feeding the sensor nodes with traces of
sensed-data based on specific physical process) [Boulis, 2011] [Hossain et al., 2008].
Since sensing is an important requirement for a real WSN, this proposed taxonomy
model the sensing activities.

Besides, in WSN, the sensing ability is marked by the sensing model. It has
a direct influence on the coverage ability (i.e. how well an area of interest is being
monitored by a deployed WSN) and service quality. Sensing model can be either
simple (e.g. if the occurrence of an event is within the sensing range of a node then
the event will be assumed to be detected, otherwise not) or more realistic (e.g. sensing
model takes into account many elements (e.g. obstacles) which might interfere with the
sensing ability) [Hossain et al., 2008] [Ningning et al., 2010]. Since network coverage is
an important issue for WSN, the proposed taxonomy also takes into account sensing
models.

3.3.4 Energy Domain

As sensor nodes usually operate on limited battery power and when a sensor node is
depleted of energy, it disconnects from the network and that can significantly impact
the performance of the application. WSN lifetime depends on the number of active
sensor nodes, so energy must be used efficiently in order to maximize the WSN lifetime.
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Each sensor node must manage and balance its energy resources intelligently and
autonomously. Besides, energy management in WSN is an important requirement
for the maintenance, development of self-management techniques, planning, quality of
service (QoS), viability and design of protocols and applications for WSN [da Cunha,
2010].

Since energy usage is a very important concern for a WSN, designers need to
know accurately the energy resource of their applications before the deployment in real
environments. Therefore, it is necessary that WSN simulators calculate accurately the
energy consumption and the amount of available energy of a WSN [da Cunha, 2010].

The proposed taxonomy defines energy awareness as the ability to provide the
energy consumption of a WSN. Energy awareness consists of providing at any time
the energy consumption for each sensor nodes and the whole WSN. Also, the proposed
taxonomy defines energy availability as the ability to estimate the amount of available
energy in a WSN. Energy availability consists of providing at any time the amount of
available energy of the sensor node and the whole WSN [da Cunha, 2010].

The implementation of the energy availability in WSN simulators requires the
modeling of the power unit of the sensor nodes. Then, to WSNs with no capability of
energy harvesting, energy availability consists in the use of battery models [da Cunha,
2010]. Therefore, the energy domain has two layers: energy awareness and energy
availability.

3.4 Classification Scheme

In the proposed taxonomy, WSN simulators are represented by rectangles covering
domains layers, and each layer covered by the simulator shows the level of approximate
detail used by the WSN simulator in the modeling of each domain.

Regarding implementation details, a simulator can use a sophisticated or a very
simple or partial model and the corresponding rectangle will be drawn with a different
gray tone. A dark gray rectangle means that the simulator properly covers that modeled
layer and a light gray rectangle means that it is partially covered. For example,
ATLeS-SN [Hiner et al., 2010] models the wireless communication channel considering
only the signal attenuation using an equation for the free space attenuation based on
the distance, then its rectangle color in the wireless channel layer of the Environment
Domain is light gray. In contrast, Castalia models the average path loss calculation
using lognormal shadowing and allows sensor node mobility, then its corresponding
rectangle color is dark gray.
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Figure 3.4 shows several referred WSN simulators in the literature classified
according to the proposed taxonomy and these two examples can be found on the
first and fifth columns. The current classification of WSN simulators depends on their
versions, thus this classification can be modified with simulators further improvements
and new versions.

3.5 Classification of the WSN Simulators

The simulators presented in Chapter 2 are classified according to the proposed approach
and the level of implementation detail is compared. As a result, Figure 3.4 is generated
and a clear view of each simulator and a corresponding comparison can be made.
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Figure 3.4: The most referred simulators in the literature classified according to the
proposed taxonomy.

3.5.1 TOSSIM

In regard to sensor node domain, TOSSIM models the sensor nodes at the APP, OS
and HA layers. TOSSIM maps directly to TinyOS code, i.e. compiling an application
for the simulation environment is equivalent to compiling it for the real sensor node.
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TOSSIM works by replacing hardware components by simulation wrappers using a
Hardware Abstraction Layer [Perla et al., 2008][TOSSIM, 2012].

For the network domain, the behavior of the physical layer is simulated
through a radio object that is based on experimental results using the TI CC2420
[CC2420-datasheet, 2012] radio. TOSSIM also provides some primitives that can be
used to model others radios. The MAC object deals with the data link layer, and can
control several properties (e.g. backoffs) important for the CSMA protocol. Besides,
TOSSIM supports routing protocols available in TinyOS [TOSSIM, 2012].

For the environment domain, the default radio propagation model is based on
signal-strength. Designers can provide a set of data to TOSSIM which describes the
propagation strengths, and can also specify noise floor and receiver sensitivity. TOSSIM
simulates the radio frequency noise and interference using the Closest Pattern Matching
(CPM) algorithm [TOSSIM, 2012]. CPM takes a noise trace as input and generates
a statistical model from it. This model can capture bursts of interference and other
correlated phenomena. However, this model is not perfect since it does not handle
correlated interference at sensor nodes that are close to one another. TOSSIM does
not implement the sensing and sensing model layers.

Regarding the energy domain, TOSSIM has an extension called PowerTOSSIM
[Shnayder et al., 2004] that estimates the energy consumption per-node and
per-component. PowerTOSSIM is a post-processor that uses data annotated during
a TOSSIM simulation. After the simulation, PowerTOSSIM analyzes the collected
data and generates power information. There are three versions of PowerTOSSIM:
PowerTOSSIM [Shnayder et al., 2004] for TinyOS 1.x, PowerTOSSIM2 [Prabhakar
et al., 2008] for TinyOS 2.x and MICA2 motes [MICA2, 2012] and PowerTOSSIMz
[Perla et al., 2008] for TinyOS 2.x and MICAz [MICAz, 2012] motes. PowerTOSSIMz
can calculate the energy consumption per-node and per-component, and has a battery
model that estimate the energy availability in each sensor node [Perla et al., 2008]
[Haase et al., 2011]. This battery model assumes that the recovery probability varies
according to the battery’s remaining charge using a stochastic approach, modeling the
non-linearity of the discharging rate of the battery.

3.5.2 Cooja

In regard to the sensor node domain, Cooja models the sensor nodes using the APP,
OS, HA and ISS (using either MSPsim or Avrora) layers. Cooja can simulate Contiki
applications in two ways, either by running the application as a compiled native code
directly on the host CPU, or by running compiled application code in MSPSim. Cooja
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can also simulate a WSN without a specific sensor node or Contiki application focusing
only on the network behavior. Using MSPsim, Cooja can also simulate TinyOS
applications for MSP430-based motes (e.g. Telosb [Polastre et al., 2005]) [Eriksson
et al., 2009]. Cooja also uses the Avrora simulator to simulate Contiki application of
AVR-based motes (e.g. MICAz [MICAz, 2012]).

For the network domain, the set of protocols supported by Cooja is equivalent
to Contiki and has the following main features: TI CC2420 and TR1100
[TR1100-datasheet, 2012] radios; IEEE 802.15.4 standard [IEEE, 2006]; uIPv4, uIPv6
and RPL [Jamieson and Moss, 2012] routing protocols. Due to MSPsim, Cooja also
enables applications to communicate via radio using the software stack provided in
TinyOS.

In regard to the environment domain, Cooja provides four radio propagation
models: Unit Disk Graph Medium (UDGM) Constant Loss; Unit Disk Graph
Medium (UDGM) Distance Loss; Directed Graph Radio Medium (DGRM); Multi-path
Ray-tracer Medium (MRM) [Stehlik, 2011].

UDGM Constant Loss models the transmission range as an ideal circle in which
all the sensor nodes outside that circle do not receive packets while the sensor nodes
within that circle receive all the packets. UDGM Distance Loss is an extension in
which interferences are considered and the packets can be transmitted with SUCCESS
RATIO TX probability and received with SUCCESS RATIO RX probability. DGRM
specifies the transmission success ratio in an asymmetric per-link base and can define
propagation delays for the links. MRM model uses ray tracing technique. The receiver
power is calculated using Friis formula, and obstacles are considered as attenuators.
It also calculates refractions, reflections and diffractions. Furthermore, others radio
propagation models can be added [Österlind et al., 2006]. However, COOJA does not
implement the sensing and sensing model layers.

Cooja does not implement the energy domain itself, but designers can use either
the duty command of MSPsim or the Energy Profiling used in Contiki [Dunkels et al.,
2007]. Duty command prints the duty cycle of components of a sensor node (e.g.
microcontroller and transceiver) in different activity states (e.g. listen and transmit).
Then, based on this information, the designer can calculate the energy consumption
by multiplying the time spent in each activity state with the respective electric current
consumption [Eriksson et al., 2009].

Contiki has implemented an energy profiler named Energest. When the
component is turned on, Energest is called to produce a time stamp. When the
component is turned off, the time interval is computed. These Energest values describe
how much time in clock ticks was spent for radio communication or common tasks using
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the CPU. Energy Profiling is implemented in the device driver for the hardware which
energy is to be estimated. Energest values can be converted to seconds by dividing them
by the clock rate used by the microcontroller (e.g. one second is equal to 32,768 clock
ticks in the Tmote Sky running at 32,768Hz). Thus, developers can calculate the energy
spent by multiplying the time interval with the correspondent current consumption that
can be found in datasheets. Contiki also provides an interface named Powertrace for
the Energy Profiling system.

3.5.3 Castalia

Castalia does not model the sensor node domain, however, the implementation of the
physical and data link layers of the network domain in Castalia are very detailed.

The radio module captures several features of a typical low-power radio used in
sensor nodes. Some of the main features are: multiple states (transmit, receive/listen),
multiple configurable sleep states; transition delays from one state to another; multiple
(configurable) transmission power levels; multiple modulation schemes (e.g. FSK, PSK,
DiffQPSK); and continuous RSSI calculation. Three radios are already implemented:
TI CC2420, TI CC1000 [CC1000-datasheet, 2012] and a so-called BANRadio which
describes the narrowband radio proposed in the IEEE 802.15 Task Group 6 documents
[Boulis, 2011].

Castalia has four main MAC modules implemented: Tunable MAC (a duty-cycle
MAC that exposes many parameters to the user, and the application for tuning),
T-MAC [van Dam and Langendoen, 2003], S-MAC [Ye et al., 2002], IEEE 802.15.4
MAC [IEEE, 2006] and IEEE 802.15.4 MAC draft proposal for BAN.

In contrast, the network layer in Castalia receives less attention. It only provides
multipathRings and bypassRouting that, as the module name suggests, does not
implement any routing.

The environment domain in Castalia has the following features: models the
average path loss calculation using lognormal shadowing; allows sensor node mobility;
models temporal variation of path loss in order to simulate a large variation in the
received signal with time; allows the use of simple radio propagation model so that
designers can test different hypotheses; calculates radio interferences, and SINR (signal
to interference plus noise ratio), and can decide whether or not it receives a packet.
An interesting feature allows to use more realistic values for sensing. For example,
a mathematical formula that determines the value of a physical process at a certain
location and time. Castalia also enables the modeling of sensor deviations (e.g noise
and bias). However, Castalia does not implement the sensing model layers.



3. Taxonomy for WSN Simulators 27

In regard to the energy domain, the computation of energy consumption is the
main task for the resource manager module. It tracks the energy spent by the sensor
nodes and this energy is linearly subtracted from a virtual battery.

3.5.4 IDEA1

In regard to the sensor node domain, IDEA1 models the sensor node at the APP and
PMS levels. IDEA1 models each component of a sensor node as an individual module.
Microcontroller and transceiver are modeled as finite state machines. IDEA1 simulates
an application program written in SystemC language. IDEA1 has implemented some
available off-the-shelf (COTS) processors and transceivers that are basic components
of some actual motes (e.g. MICAz).

For the network domain, IDEA1 has implemented three transceivers as
finite state machines (FSM): TI CC2420 [CC2420-datasheet, 2012], TI CC1000
[CC1000-datasheet, 2012] and Microchip MRF24J40 [Microship-datasheet, 2012].
There are two IEEE 802.15.4 media access algorithms implemented: unslotted
CSMA-CA and slotted CSMA-CA.

IDEA1 models the environment domain using the SCNSL library that models
propagation delay, interferences, collisions and path loss, takes into account the spatial
positions of sensor nodes and their on-going transmissions. Furthermore, sensors are
simulated as a stimuli generator, but IDEA1 does not model the sensing model layer.

IDEA1 models the energy domain using FSMs. It works as follows: during
simulation, the state transitions of each component, such as the microcontroller
and transceiver, are recorded and each state is associated with an electric current
consumption value. Based on this information, the battery module calculates the
energy consumption for each component [Du et al., 2010b]. The battery module also
calculates the battery remaining capacity of sensor nodes (i.e. the energy availability
layer), however, no results were shown [Du et al., 2011].

3.5.5 ATLeS-SN

In regard to sensor node domain, ATLeS-SN models the sensor node at the APP
and PMS layers of the proposed taxonomy. Each sensor node is composed by an
App component to implement the sensor node functionality (user-level application),
a Sensor component for modeling the sensing unit and a NetStack component for
designing the communication unit. ATLeS-SN also simulates an application program
written in SystemC through the App component. An App component is analogous to
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the user-level application software that will execute on a physical sensor node. However,
ATLeS-SN does not have implemented COTS processors or transceivers.

A NetStack component provides the foundation for modeling the network domain.
It enables designers to implement their own protocols such as MAC and routing
protocols. However, at this moment, ATLeSN-SN does not include standard protocols
(e.g. IEEE 802.15.4).

As for the environment domain, ATLeS-SN provides a PhysChannel component
that enables the modeling of wireless communication channels. A designer can
implement various radio propagation models within the PhysChannel component, from
the simplest (e.g. a simple equation based on distance in free space) to the more
complex (e.g. deflection or echoes from obstacles and terrain). However, ATLeSN-SN
does not include advanced radio propagation models. PhysChannel also simulates
collisions.

The Sensor component enables designers to model the sensor unit at various
abstractions levels, from sensor that only reads values from an input file for specific
sensors that incorporates the device driver code. But, advance sensed-data generation
is not available. ATLeS-SN does not model the sensing model layer.

Regarding the energy domain, ATLeSN-SN calculates the energy consumption
per-node and per-component. ATLeSN-SN also calculates the energy consumption
per-state (e.g. active for CPU) for each component. However, ATLeSN-SN does not
have implemented COTS processors and transceivers, and it does not implement the
energy availability layer.

3.5.6 ns-2

ns-2 does not model the sensor node domain. In regard to network domain, the IEEE
802.15.4 standard [IEEE, 2006] is available since version 2.26. ns-2 has implemented five
different routing protocols for ad-hoc wireless network: DSDV (Destination-Sequenced
Distance Vector), DSR (Dynamic Source Routing), TORA (Temporally-Ordered
Routing Algorithm), AODV(Ad hoc On-Demand Distance Vector) and PUMA
(Protocol for Unified Multicasting Through Announcements) [Jevtić et al., 2009] [Fall
and Varadhan, 2011].

As for the environment domain, there are three different radio propagation models
implemented in ns-2: free space model, two-ray ground reflection model and log normal
shadowing model. ns-2 does not implement the sensing and sensing model layers.

In regard to the energy domain, ns-2 has implemented a very simple energy model
that enables energy availability. The level of energy is represented by an attribute that
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is set with a value that represents the initial level of available energy of the sensor
node. Then, the level of energy is decreased at every transmitted and received packet
by some given value.

3.5.7 SNOPS

In regard to the sensor node domain, SNOPS models the sensor node at the APP and
PSM layers. SNOPS enables designers to model their own sensor node components
and applications [Haase et al., 2011].

As for the network domain, SNOPS enables designers to implement their own
protocols and integrate them. However, no protocols has been provided [Haase et al.,
2011].

In regard to the environment domain, the radio propagation model includes
time-variant effects in the attenuation calculation, such as fading or mobility.

As for the energy domain, SNOPS does not provide energy models itself, but
allows designers to create and integrate their own energy models and energy profiles
into SNOPS, that can enable energy awareness.

3.6 Discussion and Comparison

This section presents an elaborate analysis for the simulators surveyed in the previous
section. For each domain all the simulators are classified according to the proposed
approach and the level of implementation detail is compared. As a result, a clear view
of each simulator is generated and a corresponding comparison can be made. With
such view a designer can choose the best simulator for a given WSN project. With
this taxonomy, the advantages and disadvantages of the these WSN simulators in the
implementation of energy awareness and energy availability estimators are presented.

3.6.1 Sensor Node Domain

IDEA1, ATLeS-SN and SNOPS are WSN simulators written using the SystemC
language. SystemC is a hardware description language that enables the simulation
of sensor nodes with different functionality at different abstraction levels, the
communication network and the surrounding environment. The use of a single tool
for the whole system development can be an advantage for the design of networked
embedded systems, in particular, sensor nodes [Fummi et al., 2008].
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SystemC simulators can also model sensor nodes at the RTL layer and can be
integrated to an ISS. An ISS-SystemC integration enables the simulation of the same
application code used in real sensor nodes. SystemC language supports the hardware
and software co-simulation of sensor nodes closer to the real implementation. However,
at the moment, IDEA1, ATLeS-SN and SNOPS model the sensor node domain only at
the PMS layer and they do not simulate the same application code used in real sensor
node. They enable the simulation of heterogeneous WSN, composed by different sensor
nodes and applications. They are also scalable simulators.

TOSSIM and Cooja simulate the same application code used in the real sensor
node, as the result, the designers do not need to spend effort in rewriting the application
code already developed. They also simulate the operating system used by the sensor
nodes.

Cooja enables the simulation of a heterogeneous WSN, but its scalability is
usually poorer than other simulators. Cooja simulates a network composed by MSP430
and AVR-based motes running different Contiki applications, and can also simulate
TinyOS applications on MSP430-based motes. In contrast, TOSSIM do not allow
simulation of a heterogeneous WSN since it only simulate a network composed by
MICAz motes and a single TinyOS application, however, TOSSIM is a scalable
simulator.

Finally, Castalia, and ns-2 do not implement the sensor node domain and no
WSN simulator analysed implement the sensor node at RTL layer.

3.6.2 Network Domain

IDEA1, ATLeS-SN and SNOPS partially cover the network domain. IDEA1 has
implemented some available COTS transceivers and two IEEE 802.15.4 media access
algorithms as FSM, while ATLeS-SN does not model standard protocols and COTS
transceivers and no library module of protocols stack has been provided in SNOPS.

TOSSIM provides the CC2420 radio, CSMA and routing protocols also available
in TinyOS. Cooja is primarily a Contiki operating system simulator, then the set of
network protocol supported by Cooja is equivalent to Contiki’s. Due to MSPsim, Cooja
also allows applications to communicate via the radio using the software stack provided
in TinyOS.

The network domain in Castalia is very detailed. It provides a realistic physical
layer, several MAC protocols and has three radios modeled, but it partially covers the
network layer.



3. Taxonomy for WSN Simulators 31

ns-2 partially cover the network domain, it does not implement MAC or network
protocols specifically designed for WSN like B-MAC,X-MAC and SPIN. Besides, ns-2
provides only routing protocols for ad-hoc wireless network.

3.6.3 Environment Domain

The SystemC language is able to implement the environment domain easily, but IDEA1
and ATLeS-SN partially cover this domain, providing a very simple wireless channel and
sensing layers. In contrast, SNOPS provides a radio propagation model that include
time-variant effects in the attenuation calculation, such as fading or mobility.

Cooja has implemented different radio propagation models from the simplest
to the most complex, as a result, developers can test the behavior of their TinyOS
and Contiki applications on different radio propagation models. In contrast, TOSSIM
partially covers the wireless channel layer.

The environment domain in Castalia is the most detailed. Castalia provides
realistic models of wireless channel and sensing. ns-2 provides three radio propagation
models.

Finally, no simulator analysed implement any sensing model.

3.6.4 Energy Domain

Despite the urge for WSN simulators to provide a way to estimate the energy
consumption and the amount of available energy of a WSN, only two simulators
properly covers at least one layer of the energy domain. TOSSIM is the only simulator
that properly covers the energy availability layer. It has implemented a battery model
that provides the amount of available energy for each sensor node.

However, TOSSIM only simulates a network composed by MicaZ motes and a
single TinyOS application. TOSSIM does not support Low Power Listening (LPL)
[LPL, 2012]. As the result, is not possible to simulate low power TinyOS applications.
Besides, TOSSIM loses the fine-grained timing and interrupt properties of the code
that can be important when the application runs on the hardware [Titzer et al., 2005].

In contrast, IDEA1 enables energy awareness of a heterogeneous WSN composed
by different applications and sensor nodes platforms with different functionality or
description at different abstraction levels, that is the main advantage of IDEA1.
However, it does not simulate the same application code used in the real sensor node.

Castalia and ns-2 partially covers the energy domain. They provide a very simple
and inaccurate energy model. They are not conceived for hardware modeling and they



3. Taxonomy for WSN Simulators 32

do not simulate the same application code as in the real sensor node, which is very
important to estimate the energy consumption [Haase et al., 2011].

Finally, ATLeS-SN partially covers the energy awareness layer. Cooja and
SNOPS does not implement the energy domain.

3.6.5 Summary

The current version of TOSSIM is only suitable for a WSN composed by a single
TinyOS application and several MICAz motes. In contrast, Cooja is adequate
for a WSN composed by MSP430 and AVR-based motes running different Contiki
applications, and can also simulate TinyOS applications on MSP430 motes.

IDEA1, ATLeS-SN and SNOPS are suitable for a heterogeneous WSN composed
by many sensor nodes. Besides, designers can test a WSN that includes their own
sensor node platform. SystemC enables the modeling of embedded systems at RTL
level that is closer to the real implementation. As a result, designers can test the
energy consumption of a WSN in a more accurate way.

Castalia is more adequate for designers who want to test the behavior of their
algorithms and protocols in a wireless communication channel and ns-2 is not suitable
for WSN.



Chapter 4

CoojaED: Extending Cooja Energy
Domain

Chapter 3 presented a new taxonomy for WSN simulators and defined the energy
domain. Based on this taxonomy, the Cooja simulator was selected to design the
energy domain, since it does not implement the energy domain, was integrated to a
cycle-accurate simulator, simulates the same application code used in the real sensor
node (TinyOS and Contiki applications), provides different radio propagation model
from the simplest to the most complex, and the most important, can be extend easily.

4.1 Overview

This work extends Cooja simulator providing a new version (i.e. CoojaED Extension)
that estimates the consumption and available energy of sensor nodes and the whole
WSN. This new version of Cooja provides the energy information at simulation time,
in other words, it calculates and prints the consumption and available energy at every
simulation time. Besides, designers can save a log file with all this information.

A new plugin for Cooja named New Energy Domain, shown in Figure 4.1
was developed. In the Appendix C some parts of the source code of the CoojaED
Extension is provided. With this new plugin, Cooja properly covers the two layers
of the energy domain, since the CoojaED Extension plugin provides, at any time,
the consumption and available energy of every sensor node. The CoojaED Extension
tracks the transition of states and the timing information as the sensor network system
is under operation and provides the energy awareness of every hardware components.

The plugin interface has two text box named ("Energy Awareness
(mAh)","Energy Availability (mAh)") and one button ("Save energy information file").

33
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These text boxes show the total energy consumption total and the battery remaining
capacity, respectively. The button enables designers save a log file with the energy
information.

Figure 4.1: CoojaED Extension plugin GUI.

4.2 Cooja Simulation Design Overview

A Cooja simulation consists of a network composed by a number of sensor nodes being
simulated. A simulated sensor node has three properties: the node type, its data
memory, and its hardware peripherals, as illustrated in Figure 4.2. Each simulated
sensor node is connected to a node type, and has its own memory and a number of
interfaces. Sensor nodes of the same type are initialized with the same data memory,
and during simulation, sensor nodes data memories can eventually differ since the sensor
nodes can have different external inputs. The hardware peripherals of simulated nodes
are called interfaces, and enable Cooja to detect and trigger events such as incoming
radio traffic. Interfaces also represent properties of simulated nodes like positions that
the actual sensor node is not aware of [Österlind et al., 2006] [Österlind, 2006].

All interactions with simulations and simulated nodes are performed via plugins.
The plugins are implemented like a regular Java panel, and they are registered at
runtime before they can be used. Plugins can be of different types [Österlind et al.,
2006] [Österlind, 2006]:

1. The GUI plugin is the simplest plugin type. It only needs a running GUI to
be constructed, and is passed as an argument when a user initializes the plugin.
Via the GUI, relevant information like the current simulation and the simulated
sensor nodes can be accessed. It is not removed when the current simulation is
removed and can be used to transfer information between different simulations.

2. The Simulation plugin depends on a simulation, when such a plugin is created,
the current simulation is passed as an argument. The plugins are removed when
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Figure 4.2: Cooja simulated sensor node [Österlind, 2006].

the simulation is also removed. An example of Simulation plugin can be either
displaying the number of simulated sensor nodes and the current simulation status
or a graphical representation of the positions of all simulated sensor nodes.

3. The Mote plugin depends on a simulation sensor node, if such sensor node is
removed, so will the plugin be. An example of this plugin type is the CoojaED
Extension.

4.3 Design of CoojaED Extension

Cooja and MSPsim were written in JAVA language and they were included in the
Contiki project. To access to Cooja and MSPsim source code. Once the directories
are reached, any part of the simulator can be changed. This section describes the
implementation of the CoojaED Extension and all the java classes and source code
file that were modified and used to create the plugin are presented. The Figure 4.3
shows the CoojaED Extension operation, and the process of consumption and available
energy estimation is illustrated. Each part of the Figure 4.3 is described along the text.

Cooja was implemented using the observer pattern. It is a software design
pattern in which an object, called the subject, maintains a list of its dependents, called
observers, and notifies them automatically of any state changes, usually by calling one
of their methods. Interfaces are observable, any entity of the simulator can register as
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Figure 4.3: An illustration of the CoojaED Extension plugin operation. Each part of
the process of consumption and available energy estimation is illustrated.

an observer (i.e. an interface that enables the implementing class to be notified of any
changes in the observable objects), and is notified whenever the interface decides so.
The observer-observable approach enables very dynamic interactions between different
parts of the simulator, and not only simulation interfaces use this approach. For
example, the simulation notifies all observers when a new sensor node have been either
created or added or removed [Österlind, 2006].

A new observer was included in Simulation.java source code file (see Listing C.1),
with this modification, the CoojaED Extension can track all state transitions of all
components (e.g. cpu, radio) of the sensor nodes during the simulation with a sample
rate that can be defined, as can be seen on the left side of Figure 4.3. The designer
can track the current radio and CPU modes at a rate of 1ms or 100µs, for example,
Table 4.1 and Table 4.2 illustrate two logs generated during plugin execution where
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the CoojaED Extension was programmed to sample at every millisecond and 100µs

the currently radio mode, respectively.
Simulation time (ms) Radio mode

1 RX
2 RX
3 IDLE
4 TX
5 TX

Table 4.1: An example of a log
generated during the plugin execution
using a sample rate of 1 ms.

Simulation time (µs) Radio mode
100 RX
200 RX
300 IDLE
400 TX
500 TX

Table 4.2: An example of a log
generated during the plugin execution
using a sample rate of 100µs.

4.3.1 Energy Awareness

The CC2420 radio has a built-in state machine that is used to switch between different
operational states or modes, which is shown in Figure 4.4. In summary, the CC2420
radio has four modes: receive, transmit, idle, and power off, and can be simplified to
the FSM presented in the Figure 4.5 that is used by the CoojaED Extension. When
the sensor node is receiving, transmitting or idle, the corresponding states are RX, TX,
and IDLE, respectively. When the sensor node is powered off, the state can be either
VROff or Power Down.

In MSPsim, the CC2420 class models the complete radio state machine (see
Figure 4.4) and provides a method named getState(), that allows to get the currently
radio operational state. MSPsim also provides a method called getMode(), that returns
whether the radio is either receive, transmit, idle or power off state. Then, during the
simulation, the CoojaED Extension tracks radio mode through getMode() method, and
each operation mode is associated with an electric current consumption value. If the
mode is power off, the CoojaED Extension call the method getState() to return whether
radio is in VROff or Power Down state, since according to the CC2420 datasheet the
current consumption in VROff is 0.02µs and Power Down is 20µs (see Listing C.3).

Besides, the MSP430 class provides the method getMode() that can be used to get
the current microcontroller operational state (i.e. active, LMP0, LPM1, LPM2, LPM3,
LPM4). The CoojaED Extension also tracks the current microcontroller operation
mode, and each mode is also associated with an electric current consumption value
(see Listing C.3).
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In Cooja, the LED class implements the three sensor node LEDs (red, green and
blue) and provides four methods: isAnyOn(), isRedOn(), isGreen(), and isYellowOn().
The first one returns true whether any LED is on and false otherwise, the second, third
and forth returns true whether the red, green, and blue LED are on and false otherwise,
respectively, and the current spent when a specific LED is on is also computed (see
Listing C.3). The process described above can be seen in Figure 4.3.
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Figure 4.4: CC2420 radio control state machine [CC2420-datasheet, 2012].

The Table 4.3 illustrates an example of the current consumption estimation for the
radio when the CoojaED Extension was programmed to sample at every millisecond,
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VROff

Power Down

Idle

RX TX

VREG_En Low

SXOSCOFF

SRFOFF

SRXON

VREG_En High

SXOSCON

STXON

STXON

Transmission end

Figure 4.5: CC2420 radio control state machine simplified.

Simulation Time (ms) Radio operation mode Current consumption
sample (mA)

1 RX 19.7
2 RX 19.7
3 IDLE 0.426
4 IDLE 0.426
5 RX 19.7
6 TX 17.4
7 TX 17.4
8 IDLE 0.426

Table 4.3: An example of the current consumption estimation for the radio when the
CoojaED Extension was programmed to sample at every millisecond , and based on
the radio operation mode, an electric current consumption is associated.

and the current consumption was extracted from the CC2420 datasheet. Based on the
radio mode, the corresponding current consumption is associated, according to /the
CC2420 datasheet, the current spent when the radio is in receive mode is 19.7mA.

The CoojaED Extension also tracks the current radio power transmission
transition (see Listing C.2) since CC24220 can transmit packages with different
transmission power, from -25dBm to 0dBm. It is very important to track the
current radio power transmission since each power transmission has a different current
consumption, which is shown in Table 4.4. The CC2420 class provides a method called
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PA_LEVEL TXCTRL register Output Power (dBm) Current
Consumption
(mA)

31 0xA0FF 0 17.4
27 0xA0FB -1 16.5
23 0xA0F7 -3 15.2
19 0xA0F3 -5 13.9
15 0xA0EF -7 12.5
11 0xA0EB -10 11.2
7 0xA0E7 -15 9.9
3 0xA0E3 -25 8.5

Table 4.4: Output power configuration for the CC2420 radio [Sky, 2012]
[CC2420-datasheet, 2012].

getOutputPower() that provides the current radio power transmission, which can be
seen in Figure 4.3.

The CoojaED Extension not only calculates the sensor node energy awareness
using current consumption values obtained from datasheet, but it can also compute the
energy awareness based on experimental values. Chapter 5 describes the experimental
setup to validate the CoojaED Extension where the sensor node current consumption
was sampled during its battery discharge and saved in a log file. These current
consumption values can be also used by the CoojaED Extension

4.3.2 Energy Awareness Model

The CoojaED Extension uses an energy model for the sensor node energy awareness
developed by da Cunha [da Cunha, 2010] [da Cunha and da Silva, 2012]. The energy
awareness E (mAh) is defined by equation 4.1

E =
1

3600
× [

n∑
k=1

(Ik ×∆t) +
1

1000
×

m∑
nT=1

(If × toff × nT )]

(4.1)

where Ik is the current consumption sample (mA), ∆t is the sampling period (s), n is
the nth time interval of the nth current sample, If is the current consumption sample
(µA) at instants where the current dropped to the lower level (If is a constant), nT is
the number of period (i.e. how much time the current was dropped to the lower level),
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toff is the time that the current of the sensor node was dropped to the lower level(s),
and m is the nth period of the nth periods.

Equation 4.1 has two summations, the fist calculates the energy consumption
when the sensor node is on, and the second one computes the energy consumption
when the load drops to a lower level. The energy model takes into account the low
current consumption when the sensor node is idle. As the sensor node energy awareness
is provided in mAh, the first and second terms are divided by 3600, in order to have
the value expressed in mAh.

4.3.3 Energy availability

The implementation of the awareness of energy availability in simulators for WSN
requires the modeling of the power unit of the sensor nodes. Then, to WSN with no
capability of energy harvesting, awareness of energy availability consists in the use of
battery models [da Cunha, 2010]. Battery models for WSN vary from a simple linear
model to a complex one that take into account the relaxation effect.

4.3.4 Battery Model

The Behavioral Model of Alkaline Batteries (BMAB) [da Cunha, 2010] [da Cunha and
da Silva, 2012] is a realistic and non-linear battery model for alkaline batteries that
incorporates the relaxation effects, discharge rate and capacity retention.

BMAB takes into account the discharge rate in a more realistic approach. Instead
of factoring the effective capacity for a given load to the maximum capacity or datasheet
maximum capacity, the actual effective capacity is defined using the following equation:

Ceff−f−a = Rc−a × Ceff (Im) (4.2)

where Ceff−f−a is the final effective capacity of an alkaline battery, Rc−a is the capacity
retention, Im is the mean value of current samples during the first switch on the sensor
node, and Ceff is the effective capacity for an Im that is obtained from a lookup table
(see Table B.1 and Listing C.4). The capacity retention is provided using the following
equation:

Rc−a = 1− Pc (4.3)

where Pc is defined by:

Pc = Pca × na (4.4)
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where Pca is the capacity loss due to temperature (in Celsius) and na is the alkaline
battery shelf time (years). For each temperature, there is a corresponding capacity loss
that is obtained from a lookup table (see Table A.1 and Listing C.5).

BMAB also takes into account the capacity recovery (see Listing C.6) due to the
relaxation effect, that is defined by the following formula:

CrT =


0s if toff < 1s

0, 051× toff + 0, 445 if 1s ≤ toff ≤ 4s

0, 540 if toff > 4s

(4.5)

where CrT is the capacity recovery per period (µAh/T) and toff is the time(s) the
radio is either idle or in power down or VROff mode, the cpu is in LPMx mode, and
all LEDs are off.

The battery remaining capacity (see Listing C.8) is provided by the following
equation:

Cres = Ceff−f−a −
1

3600
× [

n∑
k=1

(Ik ×∆t) +
1

1000
×

m∑
nT=1

(If × toff × nT )]

+
1

1000
× [

m∑
nT=1

(CrT × nT )]

(4.6)

where Cres is the battery remaining capacity (mAh), Ceff−f−a is the final effective
capacity of the alkaline battery, Ik is the current consumption sample (mA), ∆t is the
sampling period (s), n is the nth time interval of the nth current consumption sample,
If is the current sample (µA) at instants where the current dropped to the lower level,
nT is the number of period, and m is the nth period of the nth periods.

The difference between equations 4.6 and 4.1 is the third sum (capacity recovery)
and the battery effective capacity (Ceff−f−a). The accumulated actual energy
consumption is subtracted from Ceff−f−a, and the result is added to capacity recovery,
giving the battery remaining capacity Cres (i.e. the sensor node available energy). This
means that BMAB estimates the sensor node lifetime based on the actual load minus
the past energy consumption plus the capacity recovery.



Chapter 5

Experiments

We performed several experiments in order to validate the power consumption and
available energy estimator. The estimator or BMAB battery model, uses as input the
electrical current consumed for several WSN applications in a given period of time.
To validate BMAB implementation in CoojaED extension, the input voltage is also
sampled in order to compare the actual power consumption. As a result of these
requirements, the experiment can be characterized according to the model presented
in Figure 5.1 with the following paraments: inputs, outputs, controlled factors, and
uncontrolled factors.

5.1 Design of Experiments Model

The validation of CoojaED extension, sensor nodes were equipped with fully charged
batteries and the parameter measured is the time period in which the sensor nodes
remain in operation running different applications (i.e. the sensor node lifetime). The
sensor node lifetime is directly related to the battery voltage discharge rate. The
power consumption is also measured, since it is directly related to the current drawn.
The current gives an indication of the total power consumption and it can be easily
measured by sampling the voltage drop across an i-v converter connected in series with
the battery. Actual measurements provide an understanding of the battery discharge
behavior under different loads and the voltage discharge profile.

Five applications were selected: Sens, Oscilloscope, Radio-Test, RSSI-Scanner,
and TestAMOnOff. Sens, Oscilloscope and TestAMOnOff are TinyOS applications,
and Radio-Test and RSSI-Scanner are Contiki applications. Sens is a typical WSN
application where the sensor node reads the temperature sensor every second and
transmits this value wirelessly. Oscilloscope is a simple data-collection demonstration

43
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Process

(Application running)

X1 X2 Xp

X2 XqX1

Inputs Outputs

(Applications)

Controllable factors

Uncontrollable factors

(Node Lifetime)

...

...

Figure 5.1: Experiment model (a schematic for a process with controlled inputs,
outputs, controlled and uncontrolled factors).

application, and it periodically samples a given sensor and broadcast a message every
ten readings. TestAMOnOff has two different versions, slave and master. The master
sensor node is always on and broadcasts a packet every second. Four of five packets
are data packets and one is a control packet. It toggles the red LED when it sends
a data packet and the green LED when it sends a control packet. When a slave
sensor node receives a data packet, it toggles the red LED, when and it receives a
control packet, it turns off its radio for a short and random period of time. The
green LED indicates whether the slave radio is on. Oscilloscope and TestAMOnOff
are available in the TinyOS examples directory while Sens is available by Lajara et
al.[Lajara et al., 2010]. Radio-Test is a simple application to indicate connectivity
between two sensor nodes. At every second the sensor node sends a packet and toggles
its red LED. The other sensor node toggle its green LED whenever it can hear other
sensor nodes but not necessary vice versa (i.e unidirectional communication). The blue
LED indicates that both sensor nodes can communicate to each other (i.e. bidirectional
communication). RSSI-Scanner scans the 2.4 GHz radio frequency range using the
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radio channel and prints the RSSI values. These applications are available in the
Contiki examples directory.

Some parameters can potentially affect the application lifetime such as the
transmission power (the power level at which the radio transmits a bit) and the
distance (distance between the sender and receiver), however, these parameters can be
controlled (i.e. they are controllable factors). The power transmission was programmed
to be 0dBm for all applications and the distance between sensor nodes was fixed
in approximately 25cm in order to reduce collisions, packet loss, interferences and
attenuation. It is acknowledged that temperature can also affect battery lifetime,
but in these tests, the temperature was stable. All tests were conducted at the
LabSCI laboratory with a temperature approximately 21◦C. The temperature is also
a controllable factor. However, there are other factors that cannot be easily controlled
(i.e. uncontrollable factors) such as sensor node and data acquisition failures.

5.2 Experimental Setup

The experimental setup for measuring the sensor node lifetime is presented in
Figure 5.2. The setup includes two NI-USB 6216 DAQ boards [Instruments,
2012], LabVIEW SignalExpress 2010 instrumentation software, one power supply,
one protoboard, five Tmotes Sky, several MN1604 alkaline batteries, one the LM35
temperature sensor [LM35, 2012], two i-v converters, one multimeter and one computer.

Figure 5.2: The experimental setup bench.
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The sensor nodes and the NI-USB 6216 DAQ are show in Figure 5.3a and
Figure 5.3b, respectively.

(a) Tmote Sky sensor nodes. (b) NI-USB 6216 DAQ.

Figure 5.3: Tmote Sky sensor nodes and NI-USB 6216 DAQ.

A Duracell MN1604 9V battery is composed of six 1.5V alkaline batteries. One
such battery was open and the cells were connected in groups of two cells with 3V
potential (2 x 1.5 each), which can be seen in Figure 5.4.

(a) The Duracell MN1604 9V
battery.

(b) The cells connected in groups
of two cells with 3V potential.

Figure 5.4: A MN1604 Duracell 9V battery composed of six 1.5V alkaline batteries
was open and connected in groups of two cells with 3V potential.
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The i-v converters have a 1 ohm value and was placed in series between the alkaline
battery and the sensor node in order to measure the current consumption. The battery
voltage is also sampled, as illustrate in the Figure 5.5. The NI USB-6216 was connected
to the computer via USB interface. The NI USB-6216 is a DAQ with 16-bit accuracy
and capable of 400 kSamples/s and was programmed to sample at every millisecond.
The DAQ was used to measure the voltage across the i-v converter with a relation
of 1mV to 1mA. The DAQ was also programmed to measure the battery voltage to
calculate the battery remaining capacity and the sensor node lifetime. The LabVIEW
SignalExpress 2010 is an interactive and data-logging software for DAQ devices that
was used to collect and save a log file with the voltage across the i-v converter, battery
voltage, sensor node voltage, temperature and the time stamp.

+

-

DAQ

Vsensor
Vsupply

Vi-v converter

I

Computer

Figure 5.5: Measurement of battery voltage and sensor node voltage and current
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5.3 Case Studies

To validate the CoojaED extension, three case studies were developed, and are shown
in Figure 5.6.

Base 

Stataion

Sens

Oscilloscope

(a) A WSN composed by three sensor nodes: a
base station application node, Sens application
node, and Oscilloscope application node.

TestAMOnOff 

Master

TestAMOnOff  

Slave

RSSI-Scanner

(b) A WSN formed by three sensor nodes:
RSSI-Scanner application node, master and
slave TestAMOnOff application nodes.

Radio Test Radio Test 

(c) A WSN composed by two Radio Test
application nodes.

Figure 5.6: Case Studies

The first case study consists of a WSN composed by three sensor nodes: a base
station, Sens , and Oscilloscope nodes, as shown in Figure 5.6a. The Sens node reads
the temperature sensor every second and transmits to the base station node, and the
Oscilloscope node samples the default sensor every second and transmits a message
every ten readings to the base station node.

The second case study consists of a WSN formed by three sensor nodes:
RSSI-Scanner, TestAMOnOff master and slave nodes. The RSSI-Scanner node scans
the 2.4 GHz radio frequency range using the radio and prints the RSSI values. The
master sensor node broadcasts a packet every second and keeps its radio always on.
When the slave node receives a data packet, it toggles the red LED, and when a slave
node receives a control packet, it turns off its radio for a short random interval.

The third case study consists of a WSN composed by two Radio Test nodes.
Every second both Radio-Test node 1 and node 2 transmit a packet and toggles their
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red LED, if one of them can hear the other, this node toggle its green LED. If both
nodes can communicate to each other, they toggle their blue LED.

The Sens and Oscilloscope, RSSI-Scanner, TestAMOnOff slave, and Radio Test
nodes were connected in series with a 1ohm i-v converter and the alkaline battery as the
diagram shown in Figure 5.5. For each applications, two experiments were performed
and data were collected until the battery voltage dropped to 1.5V.

5.4 Sensor Node Lifetime

The sensor node cutoff voltage is defined as the minimum supply voltage that permits
the sensor node to be fully operational. It is usually defined as the minimum operating
voltage for the communication unit. Battery cutoff voltage affects the time period in
which the battery delivers power. Battery cutoff voltage is the lowest operating voltage
at which the cell is then considered depleted. Figure 5.7 presents four cutoff voltages
(7V, 6V, 5.4V, and 4.8V) of a typical constant current discharge characteristics at 21
◦C for a MN1604 battery. Each MN1604 has six cells and a nominal voltage of 9V.
Dividing each cutoff voltage by 6, then each cutoff voltage for a cell is 1.17V, 1V, 0.9V
and 0.8V, respectively. The cutoff voltage for two cells are 2.3V, 2V, 1.8V and 1.6V,
respectively.

Figure 5.7: MN1604 battery typical constant current discharge characteristics at 21◦C
[MN1604, 2012].
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In order to define the sensor node lifetime, the relationship between voltage
and current for each application is plotted over the time, the voltage curve plotted
in dV (decivolts volts), i.e. a value of 10 in the graph means 1V, and the current
curve is plotted in mA. The Sens, Oscilloscope, Radio Test, RSSI-Scanner, and
TestAMOnOffSlave applications power behaviors are plotted along with a zoomed
portion of the current plot to show the detailed current profile. The current
consumption is also plotted over a very short time interval in order to detailed the
current profile for each application, which is shown Figure 5.9, Figure 5.11, Figure 5.13,
Figure 5.15, and Figure 5.17.

Figure 5.8 shows the voltage and current profiles for the Sens application and
Figure 5.10, Figure 5.12, Figure 5.14 and Figure 5.16 show the power behaviors for
the remaining applications. All voltage curves show a similar behavior close to 1.8V,
where the supply drops to 1.5V and the current curve looses its usual behavior. This
event defines the sensor node cutoff voltage value.
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Figure 5.8: Sens application voltage and current profiles
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Figure 5.9: Sens application zoomed portion of current consumption plotted over a
time interval of 10 seconds.
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Figure 5.10: Oscilloscope application voltage and current profiles
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Figure 5.11: Oscilloscope application zoomed portion of current consumption plotted
over a time interval of 10 seconds.
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Figure 5.12: Radio Test application voltage and current profiles.
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Figure 5.13: Radio Test application zoomed portion of current consumption plotted
over a time interval of 10 seconds.
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Figure 5.14: RSSI-Scanner application voltage and current profiles.
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Figure 5.15: RSSI application current zoomed portion of consumption plotted over a
time interval of 1 seconds.
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Figure 5.16: TestAMOnOffSlave application voltage and current profiles.
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Figure 5.17: TestAMOnoffSlave application zoomed portion of current consumption
plotted over a time interval of 20 seconds.

Applications Voltage cutoff = 1.8 V Voltage cutoff = 2.1 V
Sens 1 25:37:12 25:11:24
Sens 2 26:22:12 25:25:12

Oscilloscope 1 25:10:48 24:45:36
Oscilloscope 2 26:03:36 25:21:00
Radio Test 1 108:17:24 94:25:48
Radio Test 2 110:32:24 95:51:00

RSSI-Scanner 1 28:53:24 26:46:48
RSSI-Scanner 2 29:16:12 27:31:12

TestAMOnOffSlave 1 66:59:24 60:37:12
TestAMOnOffSlave 2 69:33:36 62:21:36

Table 5.1: Sensor node lifetime (hh:mm:ss) with different sensor node cutoff voltage,
1.8V and 2.1V.

According to the Tmote Sky datasheet, the sensor node and radio operating
voltage range is from 3.6V to 2.1V. For this reason, the sensor node lifetime is also
computed for a cutoff voltage equal to 2.1V, and Table 5.1 presents a comparison of
sensor node lifetimes with cutoff voltages of 1.8V and 2.1V.

During the Radio Test application experiments some LEDs stopped to blink when
the battery voltage dropped to 2.1V. After the battery voltage dropped below 2.1V,
the radio was still working. Since toggling LEDs is not a very important task in WSN
applications, the actual sensor node cutoff voltage can be considered as 1.8V.
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5.5 Simulations

To validate CoojaED extension, all applications described above were simulated using
the same configuration of the case studies. The power transmission was fixed in 0dBm,
the distance between sensor nodes was approximately 25cm and the UDGM (Unit
Disk Graph Medium) propagation model was used. UDGM models the transmission
range as an ideal circle in which all the sensor nodes outside that circle do not receive
packets while the sensor nodes within that circle receive all the packets. For these
simulations the current consumption values for the cpu, radio and LED were extracted
from datasheets, the battery voltage was fixed as 3V, and the current consumption
value for each LED was defined as 2.1mA.

Each case studies application was simulated using CoojaED extension and the
value of power consumption and available energy were calculated. Three simulations
were made for each application using different current consumption values, resulting
in three simulated sensor node lifetime results, which is shown in Table 5.5. For each
application, one of these results was selected to validated the CoojaED extension.

Operation mode Current Consumption (mA)
Radio RX and CPU on 23
Radio TX and CPU on 21
Radio idle and CPU on 2.4

Radio RX and CPU low power mode 19.5
Radio TX and CPU low power mode 21.8

Table 5.2: Maximum current consumption values of Tmote Sky for 3V power supply.

Operation mode Current Consumption (mA)
Radio RX and CPU on 21.8
Radio TX and CPU on 19.5
Radio idle and CPU on 1.8

Radio RX and CPU low power mode 18.3
Radio TX and CPU low power mode 20.6

Table 5.3: Nominal current consumption values of Tmote Sky for 3V power supply.

The first simulation used the current consumption values shown in Table 5.2.
These values represents the maximum current consumption for each operation mode
of radio and CPU, and these values were extracted from Tmote Sky datasheet. The
second simulation used the current consumption values shown in Table 5.3. These
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CC240 Radio MSP430 Microcontroller
Voltage regulator: 0.02 µA Active mode: 500 µA
Power down mode: 20 µA LPM0 mode: 75 µA
Idle mode: 426 µA LPM2 mode: 17 µA
Receive mode: 19.7mA LPM3 mode: 2.6 µA
Transmit mode (0dBm): 17.4mA LPM4 mode: 0.2 µA

LPM1 mode: 80 µA

Table 5.4: Nominal current consumption values of tihe CC2420 radio and the MSP430
microcontroller for 3V power supply.

values represents the nominal current consumption for each operation mode of radio and
CPU, and they were also extracted from Tmote Sky datasheet. The third simulation
used the current consumption shown in Table 5.4. The values were extracted from the
CC2420 radio datasheet and the MSP430 datasheet, and they represent the nominal
current consumption for each operation mode of radio and CPU, respectively.

Applications Sim. 1 (hh:mm:ss) Sim. 2 (hh:mm:ss) Sim. 3 (hh:mm:ss)
Sens 26:34:48 29:13:48 30:28:12

Oscilloscope 26:05:24 27:42:00 29:00:36
Radio Test 90:57:00 96:27:00 94:01:12

RSSI-Scanner 26:09:00 27:37:48 29:43:12
TestAMOnOffSlave 53:06:36 63:37:12 66:30:00

Table 5.5: Simulated sensor node lifetime for Tmote Sky platform.

CoojaED extension can also use current consumption values measured through
a data acquisition module, such as the experimental setup explained above, then the
sensor node current consumption values that were sampled and saved in a log file are
also used by the CoojaED extension. These results are presented in Chapter 6.



Chapter 6

Results and Validation

This Chapter describes the results and model validation of the proposed CoojaED
extension. Validation of simulation models means determining whether the simulation
model is an acceptable representation of the real system [Kleijen, 1999]. A comparison
between the real system (i.e. measuring the sensor node lifetime using an experimental
setup) and the simulation model (the CoojaED extension) is made. A comparison
means checking the simulation model output behavior to either the system output
behavior or another reference model output behavior using graphical displays or
statistical tests and procedures [Sargent, 1998]. With this validation approach and the
results presentation, the BMAB battery model and its implementation are validated.

6.1 Overview

There are some approaches used in comparing the simulation model output and the
real system output such as the use of graphs, tables, and statistical techniques. A
comparison means checking the simulation model output behavior to the real system
output behavior using graphical displays, tables or statistical tests [Sargent, 1998].

Several types of graphs can be used, such as histograms, box plots, and scatter
plots. Statistical techniques are also usually applied for the validation of simulation
models. They depend on the availability of data of the real system, and there are three
possible situations: no real data are available; there is only real data on the output; and
both output and input data are known (trace-driven) [Kleijen, 1999] [Sargent, 1998].

In this work, real data input (applications) and output (sensor node lifetime)
are known. Trace-driven simulation means to feed real input data into the simulation
model (usually a computer program), in historical order. After running the simulation

58
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program, we compared the time series of simulated output with the time series of the
real output. [Kleijen, 1999].

In trace-driven simulation, a particular kind of regression analysis is applied.
Hypothesis tests can also be used in the comparison of means and variances of the
output data of the simulation model and the real system for a set of experiments to
determine if the simulation models output behavior has an acceptable range of accuracy.
An acceptable range of accuracy is the amount of accuracy that is required of a model
to be valid for its intended purpose [Sargent, 1998].

A comparison between the real system and simulation model (i.e. CoojaED
extension using electric current consumption values that can be obtained from both
the datasheets and from an experimental setup) is made. For each WSN application,
CoojaED extension was set to calculate the available energy (mAh) at every ten seconds
interval during the sensor node lifetime time interval (hours) with a sensor node cutoff
voltage equal to 1.8V.

In the rest of this work, the name Cooja1 will be used to refer to the CoojaED
extension using electric current consumption values obtained from the experimental
setup described in the previous chapter, and the name Cooja2 will be used to refer
the to CoojaED extension using electric current consumption values obtained from
datasheets.

6.2 Total Effective Capacity and Remaining

Capacity

6.2.1 Total Effective Capacity

A major constraint in modeling the battery model is to determine the battery effective
capacity (i.e. the capacity for a given effective voltage of battery) during an application
execution, since the battery initial voltage is not fixed, the voltage battery curve is not
linear, and is not exactly 1.5V for alkaline batteries. Besides, there is a charge recovery
phenomena due to the relaxation effect. Table 6.1 presents the initial voltage of a set
of two alkaline batteries in series used in each of the experiments. As can be seen, it
varies from 2.99V to 3.13V.
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Application Initial Voltage (V)
Sens 1 2.998878
Sens 2 3.007412
Oscilloscope 1 3.066985
Oscilloscope 2 3.119681
Radio Test 1 3.018767
Radio Test 2 3.030478
RSSI-Scanner 1 3.085252
RSSI-Scanner 2 3.113558
TestAMOnOffSlave 1 3.108292
TestAMOnOffSlave 2 3.131660

Table 6.1: Battery initial voltage.

The total effective capacity is the total energy supplied by the battery to the
sensor node. It is measured in milliampere-hour (mAh), which is the number of hours
the battery can supply a certain amount of current before its voltage drops below a
predetermined threshold value (1.8V for two alkaline batteries in series). In reality
the total effective capacity is the initial battery capacity plus the eventual recovered
capacity.

The real total effective capacity is computed through the method known as
coulomb counting, where it calculates the battery final effective capacity by integrating
the sensor node current over time. The estimated final effective capacity is provided
by the BMAB battery model parameter Ceff−f−a. An inaccurate final effective
capacity estimative Ceff−f−a influence the remaining capacity result (Cres), since the
accumulated energy consumption is subtracted from Ceff−f−a, and the result is added
to the recovered capacity, giving the battery remaining capacity (Cres).

Table 6.2 presents the measured and estimated (Cooja1) total effective capacity
estimative for each application and their respective differences (absolute and
percentual) to the measured total effective capacity. Contiki applications show a
large difference between measured and Cooja1 total effective capacity. In particular,
RSSI-Scanner 1 and RSSI-Scanner 2 applications show a percentual difference of more
than 9%, as can be seen on the fourth column of Table 6.2. TinyOS applications show a
difference of less than 3%, and Oscilloscope applications present the smallest difference.

Table 6.3 presents the measured and estimated (Cooja2) total effective capacity
estimative for each application and their respective differences (absolute and
percentual) to the measured total effective capacity. Contiki applications also show
a large difference between measured and Cooja2 total effective capacity. RSSI-Scanner
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Application Real (mAh) Cooja1 (mAh) Difference (mAh) Difference (%)
Sens 1 592.61 601.34 8.73 1.47
Sens 2 609.91 601.52 8.39 1.38

Oscilloscope 1 577.13 583.39 6.26 1.08
Oscilloscope 2 582.29 588.84 6.19 1.06
Radio Test 1 548.64 576.18 27.54 5.02
Radio Test 2 555.36 576.81 21.45 3.86

RSSI-Scanner 1 545.41 601.98 56.57 10.37
RSSI-Scanner 2 551.32 601.52 50.2 9.11

TestAMOnOffSlave 1 583.55 597.07 13.52 2.32
TestAMOnOffSlave 2 588.06 601.31 13.25 2.25

Table 6.2: Comparison between measured and Cooja1 total effective capacity.

Application Real (mAh) Cooja2 (mAh) Difference (mAh) Difference (%)
Sens 1 592.61 601.68 9.07 1.53
Sens 2 609.91 601.68 8.23 1.35

Oscilloscope 1 577.13 596.63 19.5 3.38
Oscilloscope 2 582.29 596.63 14.34 2.46
Radio Test 1 548.64 582.96 34.32 6.26
Radio Test 2 555.36 582.96 27.6 4.97

RSSI-Scanner 1 545.41 600.55 55.14 10.11
RSSI-Scanner 2 551.32 600.55 49.23 8.93

TestAMOnOffSlave 1 583.55 593.03 9.48 1.62
TestAMOnOffSlave 2 588.06 593.03 4.97 0.85

Table 6.3: Comparison between actual and Cooja2 total effective capacity.

applications present a percentual difference of more than 8%, which is also show on
the fourth column in Table 6.3. TinyOS applications show a percentual difference of
less than 3.5%, and TestAmOnOffSlave 2 present the smallest difference.

6.2.2 Remaining Capacity

In this section, we present the remaining capacity values for each application. The
remaining capacity is plotted against the sensor node lifetime time interval (hours),
and we compare the measured, Cooja1 and Cooja2 remaining capacity curve.
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Figure 6.1 presents Sens 1 application remaining capacity plots curves. The
measured (reference) and Cooja1 estimative curves have the same linear profile. Cooja2
estimative curve presents a slightly smaller inclination than the measured curve. Both
Cooja1 and Cooja2 indicate that there is available energy (8.66mAh and 42.87mAh,
respectively, from Table 6.4) when the battery stopped to supply the energy to the
sensor node, i.e., the battery reached its defined battery cutoff voltage (1.8V).

0 5 10 15 20 25 30
-100

0

100

200

300

400

500

600

700
Remaining capacity - Sens 1 Applications

Time (Hours)

R
em

ai
ni

ng
 c

ap
ac

ity
 (m

A
h)

 

 
1) Measured
2) Cooja1
3) Cooja2

Figure 6.1: Remaining capacity for Sens 1 application.
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Figure 6.2 shows Sens 2 application remaining capacity plots curves. Cooja1
estimative curve profile as the same as the measured curve while Cooja2 estimative
curve present a slightly smaller inclination than the measured curve. Cooja1 provides
a result that indicates that there is not available energy when the sensor node is
still working (-8.46mAh). In contrast, Cooja2 indicates that there is available energy
(26.51mAh) when the battery stopped to supply energy to the sensor node.
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Figure 6.2: Remaining capacity for Sens 2 application.
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Figure 6.3 presents Oscilloscope 1 application remaining capacity plots curves.
The measured and the both estimative curves present the same inclination. Cooja1 is
very close the measured curve, while Cooja2 is a bit far from the measured one. Both
Cooja1 and Cooja2 indicate that there is available energy (6.19mAh and 20.9mAh,
respectively) when the battery stopped to supply the energy to the sensor node.
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Figure 6.3: Remaining capacity for Oscilloscope 1 application.
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Figure 6.4 shows Oscilloscope 2 application remaining capacity plots curves. The
measured and the both estimative curves present the same inclination. Cooja1 is very
close the measured curve, while Cooja2 is a bit far from the measured one. Both
Cooja1 and Cooja2 indicate that there is available energy (6.74mAh and 0.76mAh,
respectively) when the battery stopped to supply energy to the sensor node.
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Figure 6.4: Remaining capacity for Oscilloscope 2 application.
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Figure 6.5 presents RSSI-Scanner 1 application remaining capacity plots curves.
The measured and Cooja1 estimative curves have the same linear profile, and Cooja1
estimative is very far from the measured one. Cooja2 curve presents a stronger
inclination than the measured curve. In regard to final remaining capacity estimative,
Cooja2 present errors lower than Cooja1, however, Cooja1 is a better approximation
than Cooja2, since for every point in the curve the distance to the measured one is
approximately fixed. A simple calibration can provide an accurate estimative. Both
Cooja1 and Cooja2 estimatives indicate that there is available energy (56.48mAh and
16.86mAh) when the battery stopped to supply the energy to sensor node.
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Figure 6.5: Remaining capacity for RSSI-Scanner 1 application.
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Figure 6.6 shows RSSI-Scanner 2 application remaining capacity plots curves.
Cooja1 curve profile is the same as the measured curve while Cooja1 estimative is
very far from the measured one. Cooja2 curve presents a stronger inclination than
the measured curve. In regard to final remaining capacity estimative, Cooja2 present
errors lower than Cooja1, however, Cooja1 is a better approximation than Cooja2,
since for every point in the curve the distance to the measured one is approximately
fixed. A simple calibration can provide an accurate estimative. Cooja2 curve present a
stronger inclination than measured curve. Both Cooja1 and Cooja2 estimative indicate
that there is available energy (49.02mAh and 9.18mAh, respectively) when the battery
stopped to supply energy to the sensor node.
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Figure 6.6: Remaining capacity for RSSI-Scanner 2 application.
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Figure 6.7 shows Radio Test 1 application remaining capacity plots curves.
Cooja1 curve presents a similar profile to the measured curve while Cooja2 curve
shows a stronger inclination than the measured curve. Cooja2 computed more energy
consumption than was actually consumed. Since measured and Cooja1 do not have a
linear profile, there is evidence of the charge recovery phenomena (relaxation effect),
and there is also an evidence that energy consumption decreased during application
execution. Cooja2 estimated energy consumption was fixed during the application
execution, and the charge recovery was not computed. Cooja2 provides a result that
indicates that there is not available energy when the sensor node is still working (see
Table 6.4). In contrast, Cooja1 indicates that there is available energy (32.93mAh)
when the battery stopped to supply energy to the sensor node.
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Figure 6.7: Remaining capacity for Radio Test 1 application.
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Figure 6.8 shows Radio Test 2 application remaining capacity plots curves. Very
similar to Radio Test 1 application, the only difference is the final remaining capacity
of 27.32mAh.
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Figure 6.8: Remaining capacity for Radio Test 2 application.
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Figure 6.9 shows TestAMOnOffSlave 1 application remaining capacity plots
curves. The measured and Cooja1 curves have three points of inclination rate changes,
which is maybe due to charge recovery phenomena (relaxation effect). Based on the
measured and Cooja1 curves profiles, there is evidence of a charge recovery, and there
is also an evidence that energy consumption decreased during application execution.
Cooja1 curve has a slightly smaller inclination than the measured curve. Cooja2
provides a result that indicates that there is no available energy when the sensor node
is still working (see Table 6.4). In contrast, Cooja1 indicates that there is available
energy (18.03mAh) when the battery stopped to supply energy to the sensor node.
Again, Cooja2 profile is a straight line, due to the fixed value of voltage supply and
current consumption.
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Figure 6.9: Remaining capacity for TestAMOnOffSlave 1 application.
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Figure 6.10 presents TestAMOnOffSlave 2 application remaining capacity plots
curves. Very similar to TestAMOnOffSlave 1 application, there are two differences:
only two inclination changes for the measured and Cooja1 estimatives, and the final
remaining capacity for Cooja1 is 14.69mAh.

0 10 20 30 40 50 60 70
-100

0

100

200

300

400

500

600
Remaining capacity - TestAMOnOffSlave 2 Application

Time (Hours)

R
em

ai
ni

ng
 c

ap
ac

ity
 (

m
A

h)

 

 
1) Measured
2) Cooja1
3) Cooja2

Figure 6.10: Remaining capacity for TestAMOnOffSlave 2 application.
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Application Cooja1(mAh) Error(%) Cooja2(mAh) Erro(%)
Sens 1 8.66 1.46 42.87 7.23
Sens 2 -8.46 1.39 26.51 4.35

Oscilloscope 1 6.19 1.07 20.9 3.62
Oscilloscope 2 6.74 1.16 0.76 0.13
Radio Test 1 32.93 6.00 -85.27 15.54
Radio Test 2 27.32 4.92 -99.14 17.85

RSSI-Scanner 1 56.48 10.36 16.86 3.09
RSSI-Scanner 2 49.02 8.89 9.18 1.67

TestAMOnOffSlave 1 18.03 3.09 -7.29 1.25
TestAMOnOffSlave 2 14.69 2.50 -31.22 5.31

Table 6.4: Comparison between Cooja1 and Cooja2 final remaining capacities.

Table 6.4 shows Cooja1 and Cooja2 final remaining capacity values for each
application when the battery stopped to supply energy to the sensor node (i.e. when
the battery voltage dropped below 1.8V).

For TinyOS applications, Cooja1 shows errors of less than 3.1% when compared
to the measured sensor node data. Cooja1 for Contiki applications shows error of more
than 5%, in particular RSSI-Scanner applications that presents an error of more than
8%. Except for Sens 2 application, Cooja1 provides results that indicates that there is
available energy when the sensor node stopped working. The average error for Cooja1
is 4.08%.

For Oscilloscope 1, TestAMOnOffSlave 1, RSSI-Scanner 1 and RSSI-Scanner 2
applications, Cooja2 presents errors lower than Cooja1. In contrast, for Sens 1, Sens
2, Radio Test 1, Radio Test 2, TestAMonOffSlave 1, and TestAMonOffSlave, Cooja2
errors is larger than Cooja1 errors, in particular Radio Test 1, Radio Test 2, Sens 1 and
TestAMOnOff 1 applications, that present errors of more than 17%, 15%, 7%, and 5%,
respectively. For Radio Test and TestAMOnOff applications, Cooja2 provides results
that indicate that there is no available energy when the sensor node is still working.
In contrast, Sens, RSSI-scanner and Oscilloscope applications indicate that there is
available energy when the sensor node stopped working. The average error for Cooja2
is 6.0%.
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Application Cooja1 remaining capacity (mAh) Absolute Difference (mAh)
Sens 1 8.66 8.73
Sens 2 -8.46 8.39

Oscilloscope 1 6.19 6.26
Oscilloscope 2 6.74 6.19
Radio Test 1 32.93 27.54
Radio Test 2 27.32 21.25

RSSI-Scanner 1 56.48 56.57
RSSI-Scanner 2 49.02 50.2

TestAMOnOffSlave 1 18.03 13.52
TestAMOnOffSlave 2 14.69 13.15

Table 6.5: Cooja1 remaining capacity versus the absolute difference between the
measured and Cooja1 total effective capacities

Table 6.5 presents Cooja1 final remaining capacity and the absolute difference
between the measured and Cooja1 total effective capacities. As can been see in
Table 6.5 and in the graphs shown above, there is evidence that the major source of
error of Cooja1 remaining capacity estimative is the inaccurate battery initial capacity
estimative. For example, according to the measured Sens 1 application remaining
capacity curve (Figure 6.1), there is no evidence of a charge recovery phenomena due
to relaxation effect, since the third sum of the equation 4.6 computed zero for charge
recovery and the measured remaining capacity curve presents a linear behavior. Then,
the actual battery initial capacity is 592.61mAh, but Cooja1 computed 601.34mAh,
the energy consumption started to subtract from 601.34mAh instead of 592.61mAh,
resulting in 8.66mAh as the final remaining capacity.

Regarding to Radio Test, beyond the error due to an inaccurate initial battery
capacity estimative, the Radio Test applications spent more energy than was computed
by Cooja1. For TestAMOnOffSlave applications, Cooja1 computed more charge
recovery than actually occurred.

In regard to Cooja2 estimatives, part of their errors is due to the difference
between the measured and Cooja2 total effective capacities, but the major source
of error of Cooja2 estimative is the current consumption values used by Cooja2 to
calculate the consumption and available energy that are based on electric current
consumption values extracted from datasheets.

Figure 5.8, Figure 5.10, Figure 5.12, Figure 5.14, and Figure 5.16 presented
the relationship between voltage and current for each application (Sens, Oscilloscope,
Radio Test, RSSI-Scanner, TestAMOnOff, respectively). These figures showed that
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ID Application Measured
(hh:mm:ss)

Cooja1 (hh:mm:ss) Difference
(hh:mm:ss)

Difference (%)

1 Sens 1 25:37:12 25:29:24 00:22:12 1.44
2 Sens 2 26:22:12 26:00:00 -1:37:48 -1.40
3 Oscilloscope 1 25:10:48 25:27:36 00:16:48 1.11
4 Oscilloscope 2 26:03:36 27:01:12 00:57:36 3.68
5 Radio Test 1 108:17:24 118:28:48 10:11:24 9.41
6 Radio Test 2 110:32:24 119:29:36 09:07:12 8.25
7 RSSI-Scanner 1 28:53:24 31:53:24 03:00:00 10.38
8 RSSI-Scanner 2 29:16:12 31:31:12 02:15:00 7.69
9 TestAMOnOffSlave 1 66:59:24 69:48:36 02:49:12 4.21
10 TestAMOnOffSlave 2 69:33:26 71:46:48 02:13:11 3.19

Table 6.6: Measured sensor node lifetime versus Cooja1 sensor node lifetime with a
sensor node cutoff voltage equal to 1.8V

during sensor node lifetime the battery voltage decrease from 3.1V to 1.8V, and current
consumption values present a large variability. However, Cooja2 current consumption
values are fixed during the simulation, since they are extracted from datasheets and
the battery voltage values was also fixed. For each radio, CPU and LED operation
modes a given constant current consumption value is used.

For some applications, such as Radio Test and TestAMOnOffSlave, there were
sharp drops in the current curves close to 2.1V, that maybe indicates that some sensor
node components, such as LEDs stopped working. Besides, during the experiments,
in these applications was observed that some LEDs stopped to blink when the battery
voltage dropped around 2.1V, but during Cooja2 simulation, the LEDs did not stop
working and the energy spent by them were computed.

6.3 Sensor Node Lifetime

This section presents the results and describes the model validation of CoojaED
extension that determines whether the simulated sensor node lifetime (Cooja1 and
Cooja2) is an acceptable representation of the measured sensor node lifetime.

Table 6.7 shows the measured and Cooja1 sensor node lifetime for each application
and their respective differences to the measured sensor node lifetimes.

Table 6.6 presents the measured and Cooja2 sensor node lifetime for each
application and their respective differences to the measured sensor node lifetimes. The
Cooja2 sensor node lifetime result is deterministic.
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ID Application Measured
(hh:mm:ss)

Cooja2 (hh:mm:ss) Difference
(hh:mm:ss)

Difference (%)

1 Sens 1 25:37:12 26:24:48 00:57:36 3.75
2 Sens 2 26:22:12 26:24:48 00:12:36 0.80
3 Oscilloscope 1 25:10:48 26:05:24 00:54:36 3.61
4 Oscilloscope 2 26:03:36 26:05:24 00:01:48 0.12
5 Radio Test 1 108:17:24 96:27:00 -12:09:36 -10.93
6 Radio Test 2 110:32:24 96:27:00 -15:54:36 -12.75
7 RSSI-Scanner 1 28:53:24 29:43:12 00:49:48 2.87
8 RSSI-Scanner 2 29:16:12 29:43:12 00:26:00 1.54
9 TestAMOnOffSlave 1 66:59:24 66:30:00 -1:30:36 -0.73
10 TestAMOnOffSlave 2 69:33:26 66:30:00 -4:56:24 -4.40

Table 6.7: Measured sensor node lifetime versus Cooja2 sensor node lifetime with a
sensor node cutoff voltage equal to 1.8V

Although the consumption and available estimatives using values extracted from
datasheets (Cooja2) present errors larger than based on experimental values, this
estimation approach has some advantages. First one, designers do not need to develop
an experimental setup to sample and save in a log file the current consumption and
battery voltage of a measured sensor node application in order to evaluate the sensor
node energy consumption and sensor node lifetime. Second one, depending on the
sample rate and type of application, the log file size can be very large, for example, the
log file size of each Radio Test application was approximately 20GB. Finally, the same
current consumption values can be used for several applications. For this reasons, the
results and a validation of the Cooja2 sensor node lifetime are presented below.

Except for Sens 2 application, Cooja1 provides results that indicates that there
is no available energy when the sensor node is still working. For TinyOS applications,
Cooja1 show errors of less than 4.5% when compared to measured sensor node
lifetime. Cooja1 for Contiki applications shows errors of more than 7%, in particular,
RSSI-Scanner 1 and Radio Test 1 applications that present an error of more than 9%.
The average error for Cooja1 is 5.07%.

For Radio Test and TestAMOnOff applications, Cooja2 provides results that
indicate that there is no available energy when the sensor node is still working. In
contrast, for Sens, RSSI-scanner and Oscilloscope applications, indicates that there is
remaining capacity when the sensor node stopped working.

Radio Test applications show the largest percentage difference between measured
and estimated sensor node lifetime, and present errors of more 10%. During the
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experiments, it was observed that some LEDs stopped to blink when the battery
voltage dropped to around 2.1V, but Cooja2 simulation continued to compute their
energy consumption. Thus, Cooja2 computed more energy consumption then it
was actually consumed. For this reason, Radio Test applications present this large
difference between the measured and estimated sensor node lifetime. In contrast, Sens,
Oscilloscope, RSSI-Scanner and TestAMOnOffSlave applications show errors of less
5% than when compared to measured sensor node data. These applications present
errors of less 3.8%, 3.7%, 2.9%, and 4.5%, respectively. The average error for Cooja2
is 4.29%.

Figure 6.11 presents a comparison between the measured and estimated sensor
node lifetime (Cooja1 and Cooja2) for each application. The applications are numbered
according their ID column in Table 6.7.
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Figure 6.11: Real and estimated sensor node lifetimes.
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Figure 6.13 and Figure 6.12 present scatter plots with measured sensor node
lifetime (x) and estimated sensor node lifetime (y). A scatter plot is a diagram
displaying observations of two variables, x and y. Each observation is represented by a
point showing its x-y coordinates. The scatter plot is very effective in revealing the joint
variability of x and y or the nature of the relationship between them [Montgomery and
Runger, 2006]. An application of linear regression analysis describes the relationship
between the measured and simulated sensor node lifetime (Cooja1 and Cooja2) is
investigated. If the regression line passes exactly through every point on the scatter
plot, it would be able to explain all of the variations.

A correlation analysis establishes if a linear relationship exists between the
measured and estimated sensor node lifetime. The correlation value quantifies the
strength of a linear relationship between two variables. When there is no correlation
there is no tendency for the values of the variables to increase or decrease in tandem
[Center, 2012][Montgomery and Runger, 2006].

Figure 6.12 shows a scatter plot of the measured sensor node lifetime versus
Cooja1 sensor node lifetime presented in Table 6.6. We used MATLAB and its Basic
Fitting GUI to display the graph, and the fitting data, respectively. There is an
evidence of a linear relationship between measured and Cooja1 sensor node lifetimes
since the pair of points in the graph (measured-estimated coordinates) have a slightly
linear behavior.

Correlation coefficient is a dimensionless measure of the interdependence between
two variables, usually lying in the interval from −1 to +1, where a value close to 1
indicates that there is a positive linear relationship between x and y; a value close to
−1 indicates a negative linear; and a value close to or equal to 0 (zero) suggests there
is no linear relationship.

The most common form of the correlation coefficient used in practice is a measure
of the linear association between the two variables y and x [Montgomery and Runger,
2006]. The correlation coefficient when applied to a population is represented by the
letter ρ. The correlation coefficient when applied to a sample is represented by the
letter r, and is obtained by the following equation

r =
σxy√
σxσy

where σxy is the covariance between measured (x) and Cooja1 (y) sensor node lifetime
outputs.

The sample correlation coefficient (r) is 0.9992. The coefficient of determination
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Figure 6.12: Validation of the estimated sensor node lifetime(Cooja1) with a sensor
node cutoff voltage equal to 1.8V.

R2 (the square of sample correlation coefficient) is often used to judge the adequacy of a
regression model. In this case R2 is equal to 0.9985, that indicates that approximately
99.56% of the variability in Cooja1 sensor node lifetime is explained by the linear
relationship to the actual sensor node lifetime.

Sometimes, there is a correlation between the measured and simulation model
sample, however, it does not guarantee a correlation between the measured and Cooja1
populations since r 6= 0 is no guarantee that ρ 6= 0. In order to solve this problem, the
test hypotheses with a confidence interval α must be applied.

H0 : ρ = 0

H1 : ρ 6= 0 (6.1)
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where ρ = 0 means that there is no correlation between measured and simulation
populations. The appropriate test statistic for these hypotheses is

t0 =
R
√
n− 2√
n− r2

(6.2)

which has the t distribution with (n - 2) degrees of freedom (i.e., the number of
independent comparisons that can be made among the elements of a sample) if
H0 : ρ = 0 is true. The null hypotheses is rejected if |t0| > tα/2,n−2, where n is
the sample size (i.e., the number of observations in a sample).

We applied a hypotheses test with α = 0.5. The result of equation 6.2 is t0 =
76.7403. Since t0.025,8 = 2.306, H0 is rejected, and implies that the correlation coefficient
p 6= 0 which indicates that there is a strong correlation between measured and Cooja1
sensor node lifetime.

It is possible to construct an appropriate 100(1 −α)% confidence interval for ρ,
using the transformation in Equation 6.3.

tanh(arctanh(r)−
Zα/2√
n− 3

) ≤ ρ ≤ tanh(arctanh(r) +
Zα/2√
n− 3

) (6.3)

where Zα/2 is the critical value (i.e. the value of a statistic corresponding to a stated
significance level as determined from the sampling distribution) of the 0.05 level of
significance. Therefore, an approximate 95% confidence interval on ρ is constructed
which reduces to 0.9966 ≤ ρ ≤ 0.9998.

There is a strong positive relationship between the measured and estimated sensor
node lifetimes. If two variables are correlated, it is possible to predict one based on
the other. Then it is possible to predict the measured sensor node lifetime based on
Cooja1 sensor node lifetime. However, a correlation cannot indicate anything about
whether one variable caused the other.
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Figure 6.13 shows the scatter plot of the measured sensor node lifetime versus
Cooja2 sensor node lifetime (presented in Table 6.7). We also used MATLAB and its
Basic Fitting GUI to display the graph, and the fitting data, respectively. There is
also an evidence of a linear relationship between measured and Cooja2 sensor node
lifetime since the points in graph (measured-estimated coordinates) have a slightly
linear behavior.
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Figure 6.13: Validation of the estimated sensor node lifetime (Cooja2) with a sensor
node cutoff voltage equal to 1.8V

The calculated sample correlation coefficient r is 0.9978 and the coefficient
of determination R2 is 0.9956, which indicates that approximately 99.56% of the
variability in Cooja2 sensor node lifetime is explained by the linear relationship to
measured sensor node lifetime.

Applying a hypotheses test with α = 0.5 (Equation 6.2) to obtain t0 = 45.096.
Since t0.025,8 = 2.306, H0 is rejected, and implies that the correlation coefficient p 6= 0
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(Equation 6.1) which indicates that there is a strong correlation between measured and
Cooja2 sensor node lifetime.

We also constructed an approximate 95% confidence interval on ρ provided by
Equation 6.3, which reduces to 0.9903 ≤ ρ ≤ 0.9995. There is also a strong positive
relationship between the measured and Cooja2 sensor node lifetime. It is possible to
predict the measured sensor node lifetime based on Cooja2 sensor node lifetime.



Chapter 7

Conclusions and Future Works

In this work, a new taxonomy for WSN simulators with four domains to capture and
describe a real WSN was proposed. The proposed taxonomy aims at helping WSN
designers to find the most appropriate WSN simulator for their WSN projects providing
a detailed vision on different aspects of a complete WSN simulation. Designers can
characterize and compare different simulators in order to properly choose the most
adequate for a given application.

The proposed taxonomy has the following advantages: the first one: proposes
and addresses four domains that characterize a real WSN: sensor node (hardware and
software), network, energy and the environment. Secondly, provides the actual level of
detail for each WSN simulator in each domain. Thirdly, provides a detailed vision about
different aspects of the simulation of a WSN. Fourth one, enables WSN designers to
easily find out differences and similarities among WSN simulators. Finally, includes the
new generation of WSN simulators based on the SystemC language, that can describe
the sensor node and the environment with a broader scope and details closer to the
real implementation. In order to show that the proposed taxonomy is reasonable and
comprehensive, several WSN simulators referred in the literature were classified and
an elaborate analysis of these simulators was also presented.

Using the proposed taxonomy the CoojaED simulator was selected to implement
a new energy consumption estimator and a realistic and non-linear battery model for
alkaline batteries that incorporates the relaxation effect, discharge rate and capacity
retention. This work extends COOJA simulator providing a new version that estimates
the power consumption and the available energy of sensor nodes. CoojaED extension
provides the energy information at simulation time, in other words, it calculates and
prints the energy consumption and the available at every simulation step and designers
can save a log file with all this information.

82
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To determine whether the simulation model is an acceptable representation of
the real system, an experimental setup was built to validate CoojaED extension, and a
comparison between the real system and the simulation model, using graphical displays
and statistical tests, was made.

Regarding to Cooja-ED extension (Cooja1) estimative, there is evidence that
major source of error for the remaining capacity estimative is the inaccurate battery
initial capacity estimative. The total effective capacity results showed a great difference
between real and estimated estimatives, in particular for RSSI-Scanner application.

Radio Test applications spent more energy than was computed by Cooja1, and
more charge recovery than actually recovered in TestAMOnOffSlave applications. For
all applications, the Cooja1 remaining capacity curve showed a similar profile to the
real curve, and the average error of the final remaining capacity estimative is 4.08%. For
sensor node lifetime estimatives, Cooja1 showed errors of less than 4.5% for TinyOS
applications. In contrast, for Contiki applications, Cooja1 presented errors of more
than 7%.

In regard to Cooja2 estimatives, part of their errors are due to the difference
between the real and Cooja2 total effective capacities, but the major source of error
of Cooja2 estimative is the electric current consumption values used to calculate
the consumption and available energy that are based on current consumption values
extracted from datasheets and the battery voltage values are also fixed, and remaining
constant during the simulations.

For some applications such as, Oscilloscope 1, TestAMOnOffSlave 1,
RSSI-Scanner 1 and RSSI-Scanner 2, Cooja2 final remaining capacity result present
errors lower than Cooja1. Cooja2 remaining capacity curves did not show a very similar
profile to real curve, and the average error for Cooja2 remaining capacity estimatives
is 6.0%. Regarding to sensor node lifetime estimatives, Radio Test applications
showed the largest error. Sens, Oscilloscope, RSSI-Scanner and TestAMOnOffSlave
applications showed errors of less 5% than when compared to real sensor node data.

The scatter plot showed an evidence of a linear relationship between real and
simulated sensor node lifetimes (Cooja1 and Cooja2). There is a strong positive
relationship, which indicates that is possible to predict the real sensor node lifetime
based on estimated sensor node lifetime. The results indicate that the simulation model
is an acceptable representation of the real system.
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7.1 Future Works

This work is the starting point to the following further research. First one, the
implementation of the BMAB battery model in the Contiki operating system, and
also extends the Contiki energy profile system. As explained in Chapter 3, Contiki
has implemented an energy profiler named Energest, and provides an interface, named
Powertrace, for the energy profiling system. However, it only prints how much time
in clock ticks was spent for radio communication or common tasks using the CPU, in
other words, the duty cycle of sensor node components in different activity states. The
proposed research has the objective to extends the Contiki energy profiler, providing a
new version that estimates the consumption and available energy of a real sensor node
platform during the application execution. This is a work in progress research.

Second one, at the moment, CoojaED Extension only estimates the consumption
and available energy for a network composed by sensor nodes based on the MSP430
family and the CC2420 radio, and does not provide the energy information for the
sensors and flash memory. This proposed research extends CoojaED, providing a new
version that estimates the consumption and available energy of networks based on
others cpu, radio, and sensor node platforms (e.g. AVR-based motes), and can also
provide the energy information for the sensors and flash memory.

Finally, up to now, CoojaED extension has implemented only a non-rechargeable
battery model (the BMAB battery model). Another further research is the inclusion
of rechargeable battery model and energy harvesting.
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Appendix A

Temperature versus Capacity Loss
Look up Table

Temperature Capacity
Loss

Temperature Capacity
Loss

Temperature Capacity
Loss

20,0 0.035 33.4 0.072 46.8 0.193
20.1 0.035 33.5 0.073 46.9 0.194
20.2 0.035 33.6 0.073 47.0 0.196
20.3 0.036 33.7 0.074 47.1 0.198
20.4 0.036 33.8 0.074 47.2 0.199
20.5 0.036 33.9 0.074 47.3 0.201
20.6 0.036 34.0 0.075 47.4 0.203
20.7 0.036 34.1 0.075 47.5 0.204
20.8 0.036 34.2 0.076 47.6 0.205
20.9 0.037 34.3 0.076 47.7 0.206
21.0 0.037 34.4 0.076 47.8 0.207
21.1 0.037 34.5 0.077 47.9 0.208
21.2 0.037 34.6 0.077 48.0 0.209
21.3 0.037 34.7 0.078 48.1 0.210
21.4 0.037 34.8 0.078 48.2 0.211
21.5 0.038 34.9 0.078 48.3 0.212
21.6 0.038 35.0 0.079 48.4 0.213
21.7 0.038 35.1 0.079 48.5 0.214
21.8 0.038 35.2 0.080 48.6 0.215
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21.9 0.038 35.3 0.080 48.7 0.216
22.0 0.039 35.4 0.081 48.8 0.217
22.1 0.039 35.5 0.081 48.9 0.218
22.2 0.039 35.6 0.081 49.0 0.219
22.3 0.039 35.7 0.082 49.1 0.220
22.4 0.039 35.8 0.082 49.2 0.221
22.5 0.039 35.9 0.083 49.3 0.222
22.6 0.040 36.0 0.083 49.4 0.223
22.7 0.040 36.1 0.084 49.5 0.224
22.8 0.040 36.2 0.084 49.6 0.225
22.9 0.040 36.3 0.085 49.7 0.226
23.0 0.040 36.4 0.085 49.8 0.227
23.1 0.041 36.5 0.086 49.9 0.228
23.2 0.041 36.6 0.086 50.0 0.229
23.3 0.041 36.7 0.086 50.1 0.231
23.4 0.041 36.8 0.087 50.2 0.233
23.5 0.042 36.9 0.087 50.3 0.234
23.6 0.042 37.0 0.088 50.4 0.236
23.7 0.042 37.1 0.088 50.5 0.238
23.8 0.042 37.2 0.089 50.6 0.239
23.9 0.042 37.3 0.089 50.7 0.241
24.0 0.043 37.4 0.090 50.8 0.243
24.1 0.043 37.5 0.090 50.9 0.244
24.2 0.043 37.6 0.090 51.0 0.246
24.3 0.043 37.7 0.091 51.1 0.248
24.4 0.043 37.8 0.091 51.2 0.249
24.5 0.044 37.9 0.092 51.3 0.251
24.6 0.044 38.0 0.092 51.4 0.252
24.7 0.044 38.1 0.092 51.5 0.254
24.8 0.044 38.2 0.093 51.6 0.256
24.9 0.044 38.3 0.093 51.7 0.257
25.0 0.045 38.4 0.094 51.8 0.259
25.1 0.045 38.5 0.094 51.9 0.261
25.2 0.045 38.6 0.094 52.0 0.262
25.3 0.045 38.7 0.095 52.1 0.264
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25.4 0.046 38.8 0.095 52.2 0.266
25.5 0.046 38.9 0.096 52.3 0.267
25.6 0.046 39.0 0.096 52.4 0.269
25.7 0.046 39.1 0.096 52.5 0.271
25.8 0.046 39.2 0.097 52.6 0.272
25.9 0.047 39.3 0.097 52.7 0.273
26.0 0.047 39.4 0.098 52.8 0.274
26.1 0.047 39.5 0.098 52.9 0.275
26.2 0.047 39.6 0.098 53.0 0.277
26.3 0.047 39.7 0.099 53.1 0.278
26.4 0.048 39.8 0.099 53.2 0.279
26.5 0.048 39.9 0.100 53.3 0.280
26.6 0.048 40.0 0.100 53.4 0.281
26.7 0.048 40.1 0.101 53.5 0.282
26.8 0.049 40.2 0.103 53.6 0.284
26.9 0.049 40.3 0.104 53.7 0.285
27.0 0.049 40.4 0.105 53.8 0.286
27.1 0.049 40.5 0.106 53.9 0.287
27.2 0.049 40.6 0.108 54.0 0.288
27.3 0.050 40.7 0.109 54.1 0.289
27.4 0.050 40.8 0.110 54.2 0.291
27.5 0.050 40.9 0.111 54.3 0.292
27.6 0.050 41.0 0.113 54.4 0.293
27.7 0.051 41.1 0.114 54.5 0.294
27.8 0.051 41.2 0.115 54.6 0.295
27.9 0.051 41.3 0.116 54.7 0.296
28.0 0.052 41.4 0.118 54.8 0.298
28.1 0.052 41.5 0.119 54.9 0.299
28.2 0.052 41.6 0.120 55.0 0.300
28.3 0.053 41.7 0.121 55.1 0.302
28.4 0.053 41.8 0.123 55.2 0.305
28.5 0.054 41.9 0.124 55.3 0.307
28.6 0.054 42.0 0.125 55.4 0.310
28.7 0.054 42.1 0.126 55.5 0.312
28.8 0.055 42.2 0.128 55.6 0.314
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28.9 0.055 42.3 0.129 55.7 0.317
29.0 0.055 42.4 0.130 55.8 0.319
29.1 0.056 42.5 0.131 55.9 0.322
29.2 0.056 42.6 0.133 56.0 0.324
29.3 0.056 42.7 0.134 56.1 0.326
29.4 0.057 42.8 0.135 56.2 0.329
29.5 0.057 42.9 0.136 56.3 0.331
29.6 0.057 43.0 0.138 56.4 0.334
29.7 0.058 43.1 0.139 56.5 0.336
29.8 0.058 43.2 0.140 56.6 0.338
29.9 0.058 43.3 0.141 56.7 0.341
30.0 0.059 43.4 0.143 56.8 0.343
30.1 0.059 43.5 0.144 56.9 0.346
30.2 0.060 43.6 0.145 57.0 0.348
30.3 0.060 43.7 0.146 57.1 0.350
30.4 0.060 43.8 0.148 57.2 0.353
30.5 0.061 43.9 0.149 57.3 0.355
30.6 0.061 44.0 0.150 57.4 0.358
30.7 0.062 44.1 0.151 57.5 0.360
30.8 0.062 44.2 0.153 57.6 0.361
30.9 0.062 44.3 0.154 57.7 0.363
31.0 0.063 44.4 0.155 57.8 0.364
31.1 0.063 44.5 0.156 57.9 0.366
31.2 0.064 44.6 0.158 58.0 0.367
31.3 0.064 44.7 0.159 58.1 0.369
31.4 0.064 44.8 0.160 58.2 0.370
31.5 0.065 44.9 0.161 58.3 0.372
31.6 0.065 45.0 0.163 58.4 0.373
31.7 0.066 45.1 0.164 58.5 0.375
31.8 0.066 45.2 0.166 58.6 0.376
31.9 0.066 45.3 0.168 58.7 0.378
32.0 0.067 45.4 0.169 58.8 0.379
32.1 0.067 45.5 0.171 58.9 0.381
32.2 0.068 45.6 0.173 59.0 0.382
32.3 0.068 45.7 0.174 59.1 0.384
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32.4 0.068 45.8 0.176 59.2 0.385
32.5 0.069 45.9 0.178 59.3 0.386
32.6 0.069 46.0 0.179 59.4 0.388
32.7 0.070 46.1 0.181 59.5 0.389
32.8 0.070 46.2 0.183 59.6 0.391
32.9 0.070 46.3 0.184 59.7 0.392
33.0 0.071 46.4 0.186 59.8 0.394
33.1 0.071 46.5 0.188 59.9 0.395
33.2 0.072 46.6 0.189 60.0 0.397
33.3 0.072 46.7 0.191

Table A.1: Temperature (oC) versus Capacity Loss Look up Table



Appendix B

Effective Capacity Table

Current (mA) Shelf time (hours) Effective capacity (mAh)
2.0 341.67 683.34
2.1 329.27 691.47
2.2 316.87 697.11
2.3 304.46 700.26
2.4 292.06 700.94
2.5 279.66 699.15
2.6 267.26 694.88
2.7 254.86 688.12
2.8 242.45 678.86
2.9 230.05 667.15
3.0 217.65 652.95
3.1 212.66 659.25
3.2 207.67 664.54
3.3 202.68 668.84
3.4 197.69 672.15
3.5 192.69 674.42
3.6 187.70 675.72
3.7 182.71 676.03
3.8 177.72 675.34
3.9 172.73 673.65
4.0 167.74 670.96
4.1 165.15 677.12
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4.2 162.56 682.75
4.3 159.97 687.87
4.4 157.38 692.47
4.5 154.79 696.56
4.6 152.19 700.07
4.7 149.60 703.12
4.8 147.01 705.65
4.9 144.42 707.66
5.0 141.83 709.15
5.1 139.24 710.12
5.2 136.65 710.58
5.3 134.06 710.52
5.4 131.47 709.94
5.5 128.88 708.84
5.6 126.28 707.17
5.7 123.69 705.03
5.8 121.10 702.38
5.9 118.51 699.21
6.0 115.92 695.52
6.1 113.33 691.31
6.2 110.74 686.59
6.3 108.15 681.35
6.4 105.56 675.58
6.5 102.97 669.31
6.6 100.37 662.44
6.7 97.78 655.13
6.8 95.19 647.29
6.9 92.60 638.94
7.0 90.01 630.07
7.1 89.16 633.04
7.2 88.09 634.25
7.3 87.04 635.39
7.4 86.00 636.40
7.5 84.97 637.28
7.6 83.95 638.02
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7.7 82.94 638.64
7.8 81.95 639.21
7.9 80.97 639.66
8.0 80.00 640.00
8.1 79.04 640.22
8.2 78.09 640.34
8.3 77.16 640.43
8.4 76.23 640.33
8.5 75.32 640.22
8.6 74.42 640.01
8.7 73.53 639.71
8.8 72.65 639.32
8.9 71.78 638.84
9.0 70.92 638.28
9.1 70.07 637.64
9.2 69.23 636.92
9.3 68.40 636.12
9.4 67.58 635.25
9.5 66.77 634.32
9.6 65.97 633.31
9.7 65.18 632.25
9.8 64.40 631.12
9.9 63.63 629.94
10.0 62.87 628.70
10.1 62.39 630.14
10.2 61.92 631.58
10.3 61.45 632.94
10.4 60.99 634.30
10.5 60.53 635.57
10.6 60.07 636.74
10.7 59.61 637.83
10.8 59.16 638.93
10.9 58.72 640.05
11.0 58.28 641.08
11.1 57.84 642.02
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11.2 57.40 642.88
11.3 56.97 643.76
11.4 56.54 644.56
11.5 56.11 645.27
11.6 55.69 646.00
11.7 55.27 646.66
11.8 54.85 647.23
11.9 54.43 647.72
12.0 54.02 648.24
12.1 53.62 648.80
12.2 53.21 649.16
12.3 52.81 649.56
12.4 52.41 649.88
12.5 52.02 650.25
12.6 51.62 650.41
12.7 51.23 650.62
12.8 50.85 650.88
12.9 50.46 650.93
13.0 50.08 651.04
13.1 49.70 651.07
13.2 49.33 651.16
13.3 48.96 651.17
13.4 48.59 651.11
13.5 48.22 650.97
13.6 47.86 650.90
13.7 47.50 650.75
13.8 47.14 650.53
13.9 46.78 650.24
14.0 46.43 650.02
14.1 46.08 649.73
14.2 45.73 649.37
14.3 45.38 648.93
14.4 45.04 648.58
14.5 44.70 648.15
14.6 44.36 647.66
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14.7 44.03 647.24
14.8 43.70 646.76
14.9 43.37 646.21
15.0 43.04 645.60
15.1 42.72 645.07
15.2 42.39 644.33
15.3 42.07 643.67
15.4 41.76 643.10
15.5 41.44 642.32
15.6 41.13 641.63
15.7 40.82 640.87
15.8 40.51 640.06
15.9 40.20 639.18
16.0 39.90 638.40
16.1 39.60 637.56
16.2 39.30 636.66
16.3 39.00 635.70
16.4 38.71 634.84
16.5 38.42 633.93
16.6 38.13 632.96
16.7 37.84 631.93
16.8 37.55 630.84
16.9 37.27 629.86
17.0 36.99 628.83
17.1 36.71 627.74
17.2 36.43 626.60
17.3 36.16 625.57
17.4 35.89 624.49
17.5 35.61 623.18
17.6 35.35 622.16
17.7 35.08 620.92
17.8 34.81 619.62
17.9 34.55 618.45
18.0 34.29 617.22
18.1 34.03 615.94
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18.2 33.78 614.80
18.3 33.52 613.42
18.4 33.27 612.17
18.5 33.02 610.87
18.6 32.77 609.52
18.7 32.52 608.12
18.8 32.27 606.68
18.9 32.03 605.37
19.0 31.79 604.01
19.1 31.55 602.61
19.2 31.31 601.15
19.3 31.07 599.65
19.4 30.84 598.30
19.5 30.61 596.90
19.6 30.38 595.45
19.7 30.15 593.96
19.8 29.92 592.42
19.9 29.69 590.83
20.0 30.00 600.00
20.1 29.86 600.19
20.2 29.73 600.55
20.3 29.59 600.68
20.4 29.46 600.98
20.5 29.32 601.06
20.6 29.19 601.31
20.7 29.06 601.54
20.8 28.92 601.54
20.9 28.79 601.71
21.0 28.66 601.86
21.1 28.53 601.98
21.2 28.40 602.08
21.3 28.27 602.15
21.4 28.14 602.20
21.5 28.01 602.22
21.6 27.89 602.42
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21.7 27.76 602.39
21.8 27.63 602.33
21.9 27.51 602.47
22.0 27.38 602.36
22.1 27.26 602.45
22.2 27.13 602.29
22.3 27.01 602.32
22.4 26.89 602.34
22.5 26.76 602.10
22.6 26.64 602.06
22.7 26.52 602.00
22.8 26.40 601.92
22.9 26.28 601.81
23.0 26.16 601.68
23.1 26.04 601.52
23.2 25.92 601.34
23.3 25.80 601.14
23.4 25.69 601.15
23.5 25.57 600.90
23.6 25.45 600.62
23.7 25.34 600.56
23.8 25.22 600.24
23.9 25.11 600.13
24.0 24.99 599.76
24.1 24.88 599.61
24.2 24.76 599.19
24.3 24.65 599.00
24.4 24.54 598.78
24.5 24.43 598.54
24.6 24.32 598.27
24.7 24.21 597.99
24.8 24.09 597.43
24.9 23.99 597.35
25.0 23.88 597.00
25.1 23.77 596.63
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25.2 23.66 596.23
25.3 23.55 595.82
25.4 23.44 595.38
25.5 23.34 595.17
25.6 23.23 594.69
25.7 23.12 594.18
25.8 23.02 593.92
25.9 22.91 593.37
26.0 22.81 593.06
26.1 22.71 592.73
26.2 22.60 592.12
26.3 22.50 591.75
26.4 22.40 591.36
26.5 22.30 590.95
26.6 22.19 590.25
26.7 22.09 589.80
26.8 21.99 589.33
26.9 21.89 588.84
27.0 21.79 588.33
27.1 21.69 587.80
27.2 21.59 587.25
27.3 21.50 586.95
27.4 21.40 586.36
27.5 21.30 585.75
27.6 21.20 585.12
27.7 21.11 584.75
27.8 21.01 584.08
27.9 20.91 583.39
28.0 20.82 582.96
28.1 20.72 582.23
28.2 20.63 581.77
28.3 20.54 581.28
28.4 20.44 580.50
28.5 20.35 579.98
28.6 20.26 579.44
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28.7 20.16 578.59
28.8 20.07 578.02
28.9 19.98 577.42
29.0 19.89 576.81
29.1 19.80 576.18
29.2 19.71 575.53
29.3 19.62 574.87
29.4 19.53 574.18
29.5 19.44 573.48
29.6 19.35 572.76
29.7 19.26 572.02
29.8 19.18 571.56
29.9 19.09 570.79
30.0 19.00 570.00
30.1 18.95 570.40
30.2 18.90 570.78
30.3 18.85 571.16
30.4 18.80 571.52
30.5 18.76 572.18
30.6 18.71 572.53
30.7 18.66 572.86
30.8 18.61 573.19
30.9 18.56 573.50
31.0 18.52 574.12
31.1 18.47 574.42
31.2 18.42 574.70
31.3 18.37 574.98
31.4 18.33 575.56
31.5 18.28 575.82
31.6 18.23 576.07
31.7 18.18 576.31
31.8 18.14 576.85
31.9 18.09 577.07
32.0 18.04 577.28
32.1 18.00 577.80
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32.2 17.95 577.99
32.3 17.90 578.17
32.4 17.86 578.66
32.5 17.81 578.83
32.6 17.77 579.30
32.7 17.72 579.44
32.8 17.67 579.58
32.9 17.63 580.03
33.0 17.58 580.14
33.1 17.54 580.57
33.2 17.49 580.67
33.3 17.45 581.09
33.4 17.40 581.16
33.5 17.36 581.56
33.6 17.31 581.62
33.7 17.27 582.00
33.8 17.22 582.04
33.9 17.18 582.40
34.0 17.13 582.42
34.1 17.09 582.77
34.2 17.05 583.11
34.3 17.00 583.10
34.4 16.96 583.42
34.5 16.91 583.40
34.6 16.87 583.70
34.7 16.83 584.00
34.8 16.78 583.94
34.9 16.74 584.23
35.0 16.70 584.50
35.1 16.65 584.42
35.2 16.61 584.67
35.3 16.57 584.92
35.4 16.53 585.16
35.5 16.48 585.04
35.6 16.44 585.26
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35.7 16.40 585.48
35.8 16.36 585.69
35.9 16.31 585.53
36.0 16.27 585.72
36.1 16.23 585.90
36.2 16.19 586.08
36.3 16.15 586.25
36.4 16.10 586.04
36.5 16.06 586.19
36.6 16.02 586.33
36.7 15.98 586.47
36.8 15.94 586.59
36.9 15.90 586.71
37.0 15.86 586.82
37.1 15.82 586.92
37.2 15.77 586.64
37.3 15.73 586.73
37.4 15.69 586.81
37.5 15.65 586.88
37.6 15.61 586.94
37.7 15.57 586.99
37.8 15.53 587.03
37.9 15.49 587.07
38.0 15.45 587.10
38.1 15.41 587.12
38.2 15.37 587.13
38.3 15.33 587.14
38.4 15.29 587.14
38.5 15.25 587.13
38.6 15.21 587.11
38.7 15.18 587.47
38.8 15.14 587.43
38.9 15.10 587.39
39.0 15.06 587.34
39.1 15.02 587.28
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39.2 14.98 587.22
39.3 14.94 587.14
39.4 14.90 587.06
39.5 14.86 586.97
39.6 14.83 587.27
39.7 14.79 587.16
39.8 14.75 587.05
39.9 14.71 586.93
40.0 14.67 586.80
40.1 14.64 587.06
40.2 14.60 586.92
40.3 14.56 586.77
40.4 14.52 586.61
40.5 14.49 586.85
40.6 14.45 586.67
40.7 14.41 586.49
40.8 14.37 586.30
40.9 14.34 586.51
41.0 14.30 586.30
41.1 14.26 586.09
41.2 14.23 586.28
41.3 14.19 586.05
41.4 14.15 585.81
41.5 14.12 585.98
41.6 14.08 585.73
41.7 14.04 585.47
41.8 14.01 585.62
41.9 13.97 585.34
42.0 13.93 585.06
42.1 13.90 585.19
42.2 13.86 584.89
42.3 13.83 585.01
42.4 13.79 584.70
42.5 13.76 584.80
42.6 13.72 584.47
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42.7 13.68 584.14
42.8 13.65 584.22
42.9 13.61 583.87
43.0 13.58 583.94
43.1 13.54 583.57
43.2 13.51 583.63
43.3 13.47 583.25
43.4 13.44 583.30
43.5 13.40 582.90
43.6 13.37 582.93
43.7 13.34 582.96
43.8 13.30 582.54
43.9 13.27 582.55
44.0 13.23 582.12
44.1 13.20 582.12
44.2 13.16 581.67
44.3 13.13 581.66
44.4 13.10 581.64
44.5 13.06 581.17
44.6 13.03 581.14
44.7 13.00 581.10
44.8 12.96 580.61
44.9 12.93 580.56
45.0 12.90 580.50
45.1 12.86 579.99
45.2 12.83 579.92
45.3 12.80 579.84
45.4 12.76 579.30
45.5 12.73 579.22
45.6 12.70 579.12
45.7 12.66 578.56
45.8 12.63 578.45
45.9 12.60 578.34
46.0 12.57 578.22
46.1 12.53 577.63
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46.2 12.50 577.50
46.3 12.47 577.36
46.4 12.44 577.22
46.5 12.41 577.07
46.6 12.37 576.44
46.7 12.34 576.28
46.8 12.31 576.11
46.9 12.28 575.93
47.0 12.25 575.75
47.1 12.21 575.09
47.2 12.18 574.90
47.3 12.15 574.70
47.4 12.12 574.49
47.5 12.09 574.28
47.6 12.06 574.06
47.7 12.03 573.83
47.8 12.00 573.60
47.9 11.96 572.88
48.0 11.93 572.64
48.1 11.90 572.39
48.2 11.87 572.13
48.3 11.84 571.87
48.4 11.81 571.60
48.5 11.78 571.33
48.6 11.75 571.05
48.7 11.72 570.76
48.8 11.69 570.47
48.9 11.66 570.17
49.0 11.63 569.87
49.1 11.60 569.56
49.2 11.57 569.24
49.3 11.54 568.92
49.4 11.51 568.59
49.5 11.48 568.26
49.6 11.45 567.92
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49.7 11.42 567.57
49.8 11.39 567.22
49.9 11.36 566.86
50.0 11.33 566.50
50.1 11.30 566.13
50.2 11.27 565.75
50.3 11.24 565.37
50.4 11.22 565.49
50.5 11.19 565.10
50.6 11.16 564.70
50.7 11.13 564.29
50.8 11.10 563.88
50.9 11.07 563.46
51.0 11.04 563.04
51.1 11.01 562.61
51.2 10.99 562.69
51.3 10.96 562.25
51.4 10.93 561.80
51.5 10.90 561.35
51.6 10.87 560.89
51.7 10.85 560.95
51.8 10.82 560.48
51.9 10.79 560.00
52.0 10.76 559.52
52.1 10.73 559.03
52.2 10.71 559.06
52.3 10.68 558.56
52.4 10.65 558.06
52.5 10.62 557.55
52.6 10.60 557.56
52.7 10.57 557.04
52.8 10.54 556.51
52.9 10.51 555.98
53.0 10.49 555.97
53.1 10.46 555.43



B. Effective Capacity Table 113

53.2 10.43 554.88
53.3 10.41 554.85
53.4 10.38 554.29
53.5 10.35 553.73
53.6 10.33 553.69
53.7 10.30 553.11
53.8 10.27 552.53
53.9 10.25 552.48
54.0 10.22 551.88
54.1 10.19 551.28
54.2 10.17 551.21
54.3 10.14 550.60
54.4 10.11 549.98
54.5 10.09 549.91
54.6 10.06 549.28
54.7 10.04 549.19
54.8 10.01 548.55
54.9 9.98 547.90
55.0 9.96 547.80
55.1 9.93 547.14
55.2 9.91 547.03
55.3 9.88 546.36
55.4 9.86 546.24
55.5 9.83 545.57
55.6 9.81 545.44
55.7 9.78 544.75
55.8 9.76 544.61
55.9 9.73 543.91
56.0 9.70 543.20
56.1 9.68 543.05
56.2 9.65 542.33
56.3 9.63 542.17
56.4 9.61 542.00
56.5 9.58 541.27
56.6 9.56 541.10
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56.7 9.53 540.35
56.8 9.51 540.17
56.9 9.48 539.41
57.0 9.46 539.22
57.1 9.43 538.45
57.2 9.41 538.25
57.3 9.38 537.47
57.4 9.36 537.26
57.5 9.34 537.05
57.6 9.31 536.26
57.7 9.29 536.03
57.8 9.26 535.23
57.9 9.24 535.00
58.0 9.22 534.76
58.1 9.19 533.94
58.2 9.17 533.69
58.3 9.14 532.86
58.4 9.12 532.61
58.5 9.10 532.35
58.6 9.07 531.50
58.7 9.05 531.24
58.8 9.03 530.96
58.9 9.00 530.10
59.0 8.98 529.82
59.1 8.96 529.54
59.2 8.93 528.66
59.3 8.91 528.36
59.4 8.89 528.07
59.5 8.87 527.77
59.6 8.84 526.86
59.7 8.82 526.55
59.8 8.80 526.24
59.9 8.77 525.32
60.0 9.00 540.00
60.1 8.99 540.30
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60.2 8.98 540.60
60.3 8.97 540.89
60.4 8.96 541.18
60.5 8.95 541.48
60.6 8.94 541.76
60.7 8.93 542.05
60.8 8.92 542.34
60.9 8.91 542.62
61.0 8.90 542.90
61.1 8.89 543.18
61.2 8.88 543.46
61.3 8.87 543.73
61.4 8.86 544.00
61.5 8.85 544.28
61.6 8.84 544.54
61.7 8.83 544.81
61.8 8.82 545.08
61.9 8.81 545.34
62.0 8.80 545.60
62.1 8.79 545.86
62.2 8.78 546.12
62.3 8.77 546.37
62.4 8.76 546.62
62.5 8.75 546.88
62.6 8.74 547.12
62.7 8.73 547.37
62.8 8.72 547.62
62.9 8.71 547.86
63.0 8.70 548.10
63.1 8.69 548.34
63.2 8.68 548.58
63.3 8.67 548.81
63.4 8.66 549.04
63.5 8.65 549.28
63.6 8.64 549.50
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63.7 8.63 549.73
63.8 8.62 549.96
63.9 8.61 550.18
64.0 8.60 550.40
64.1 8.59 550.62
64.2 8.58 550.84
64.3 8.57 551.05
64.4 8.56 551.26
64.5 8.55 551.48
64.6 8.54 551.68
64.7 8.53 551.89
64.8 8.52 552.10
64.9 8.51 552.30
65.0 8.50 552.50
65.1 8.49 552.70
65.2 8.48 552.90
65.3 8.47 553.09
65.4 8.46 553.28
65.5 8.45 553.48
65.6 8.44 553.66
65.7 8.43 553.85
65.8 8.42 554.04
65.9 8.41 554.22
66.0 8.40 554.40
66.1 8.39 554.58
66.2 8.38 554.76
66.3 8.37 554.93
66.4 8.36 555.10
66.5 8.35 555.28
66.6 8.34 555.44
66.7 8.33 555.61
66.8 8.32 555.78
66.9 8.31 555.94
67.0 8.30 556.10
67.1 8.29 556.26
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67.2 8.28 556.42
67.3 8.27 556.57
67.4 8.26 556.72
67.5 8.25 556.88
67.6 8.24 557.02
67.7 8.23 557.17
67.8 8.22 557.32
67.9 8.21 557.46
68.0 8.20 557.60
68.1 8.19 557.74
68.2 8.18 557.88
68.3 8.17 558.01
68.4 8.16 558.14
68.5 8.15 558.28
68.6 8.14 558.40
68.7 8.13 558.53
68.8 8.12 558.66
68.9 8.11 558.78
69.0 8.10 558.90
69.1 8.09 559.02
69.2 8.08 559.14
69.3 8.07 559.25
69.4 8.06 559.36
69.5 8.05 559.48
69.6 8.04 559.58
69.7 8.03 559.69
69.8 8.02 559.80
69.9 8.01 559.90
70.0 8.00 560.00
70.1 7.99 560.10
70.2 7.98 560.20
70.3 7.97 560.29
70.4 7.96 560.38
70.5 7.95 560.48
70.6 7.94 560.56
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70.7 7.93 560.65
70.8 7.92 560.74
70.9 7.91 560.82
71.0 7.90 560.90
71.1 7.89 560.98
71.2 7.88 561.06
71.3 7.87 561.13
71.4 7.86 561.20
71.5 7.85 561.28
71.6 7.84 561.34
71.7 7.83 561.41
71.8 7.82 561.48
71.9 7.81 561.54
72.0 7.80 561.60
72.1 7.79 561.66
72.2 7.78 561.72
72.3 7.77 561.77
72.4 7.76 561.82
72.5 7.75 561.88
72.6 7.74 561.92
72.7 7.73 561.97
72.8 7.72 562.02
72.9 7.71 562.06
73.0 7.70 562.10
73.1 7.69 562.14
73.2 7.68 562.18
73.3 7.67 562.21
73.4 7.66 562.24
73.5 7.65 562.28
73.6 7.64 562.30
73.7 7.63 562.33
73.8 7.62 562.36
73.9 7.61 562.38
74.0 7.60 562.40
74.1 7.59 562.42
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74.2 7.58 562.44
74.3 7.57 562.45
74.4 7.56 562.46
74.5 7.55 562.48
74.6 7.54 562.48
74.7 7.53 562.49
74.8 7.52 562.50
74.9 7.51 562.50
75.0 7.50 562.50
75.1 7.49 562.50
75.2 7.48 562.50
75.3 7.47 562.49
75.4 7.46 562.48
75.5 7.45 562.48
75.6 7.44 562.46
75.7 7.43 562.45
75.8 7.42 562.44
75.9 7.41 562.42
76.0 7.40 562.40
76.1 7.39 562.38
76.2 7.38 562.36
76.3 7.37 562.33
76.4 7.36 562.30
76.5 7.35 562.28
76.6 7.34 562.24
76.7 7.33 562.21
76.8 7.32 562.18
76.9 7.31 562.14
77.0 7.30 562.10
77.1 7.29 562.06
77.2 7.28 562.02
77.3 7.27 561.97
77.4 7.26 561.92
77.5 7.25 561.88
77.6 7.24 561.82
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77.7 7.23 561.77
77.8 7.22 561.72
77.9 7.21 561.66
78.0 7.20 561.60
78.1 7.19 561.54
78.2 7.18 561.48
78.3 7.17 561.41
78.4 7.16 561.34
78.5 7.15 561.28
78.6 7.14 561.20
78.7 7.13 561.13
78.8 7.12 561.06
78.9 7.11 560.98
79.0 7.10 560.90
79.1 7.09 560.82
79.2 7.08 560.74
79.3 7.07 560.65
79.4 7.06 560.56
79.5 7.05 560.48
79.6 7.04 560.38
79.7 7.03 560.29
79.8 7.02 560.20
79.9 7.01 560.10
80.0 7.00 560.00
80.1 6.99 559.90
80.2 6.98 559.80
80.3 6.97 559.69
80.4 6.96 559.58
80.5 6.95 559.48
80.6 6.94 559.36
80.7 6.93 559.25
80.8 6.92 559.14
80.9 6.91 559.02
81.0 6.90 558.90
81.1 6.89 558.78
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81.2 6.88 558.66
81.3 6.87 558.53
81.4 6.86 558.40
81.5 6.85 558.28
81.6 6.84 558.14
81.7 6.83 558.01
81.8 6.82 557.88
81.9 6.81 557.74
82.0 6.80 557.60
82.1 6.79 557.46
82.2 6.78 557.32
82.3 6.77 557.17
82.4 6.76 557.02
82.5 6.75 556.88
82.6 6.74 556.72
82.7 6.73 556.57
82.8 6.72 556.42
82.9 6.71 556.26
83.0 6.70 556.10
83.1 6.69 555.94
83.2 6.68 555.78
83.3 6.67 555.61
83.4 6.66 555.44
83.5 6.65 555.28
83.6 6.64 555.10
83.7 6.63 554.93
83.8 6.62 554.76
83.9 6.61 554.58
84.0 6.60 554.40
84.1 6.59 554.22
84.2 6.58 554.04
84.3 6.57 553.85
84.4 6.56 553.66
84.5 6.55 553.48
84.6 6.54 553.28
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84.7 6.53 553.09
84.8 6.52 552.90
84.9 6.51 552.70
85.0 6.50 552.50
85.1 6.49 552.30
85.2 6.48 552.10
85.3 6.47 551.89
85.4 6.46 551.68
85.5 6.45 551.48
85.6 6.44 551.26
85.7 6.43 551.05
85.8 6.42 550.84
85.9 6.41 550.62
86.0 6.40 550.40
86.1 6.39 550.18
86.2 6.38 549.96
86.3 6.37 549.73
86.4 6.36 549.50
86.5 6.35 549.28
86.6 6.34 549.04
86.7 6.33 548.81
86.8 6.32 548.58
86.9 6.31 548.34
87.0 6.30 548.10
87.1 6.29 547.86
87.2 6.28 547.62
87.3 6.27 547.37
87.4 6.26 547.12
87.5 6.25 546.88
87.6 6.24 546.62
87.7 6.23 546.37
87.8 6.22 546.12
87.9 6.21 545.86
88.0 6.20 545.60
88.1 6.19 545.34
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88.2 6.18 545.08
88.3 6.17 544.81
88.4 6.16 544.54
88.5 6.15 544.28
88.6 6.14 544.00
88.7 6.13 543.73
88.8 6.12 543.46
88.9 6.11 543.18
89.0 6.10 542.90
89.1 6.09 542.62
89.2 6.08 542.34
89.3 6.07 542.05
89.4 6.06 541.76
89.5 6.05 541.48
89.6 6.04 541.18
89.7 6.03 540.89
89.8 6.02 540.60
89.9 6.01 540.30
90.0 6.00 540.00
90.1 5.99 539.70
90.2 5.98 539.40
90.3 5.97 539.09
90.4 5.96 538.78
90.5 5.95 538.48
90.6 5.94 538.16
90.7 5.93 537.85
90.8 5.92 537.54
90.9 5.91 537.22
91.0 5.90 536.90
91.1 5.89 536.58
91.2 5.88 536.26
91.3 5.87 535.93
91.4 5.86 535.60
91.5 5.85 535.28
91.6 5.84 534.94
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91.7 5.83 534.61
91.8 5.82 534.28
91.9 5.81 533.94
92.0 5.80 533.60
92.1 5.79 533.26
92.2 5.78 532.92
92.3 5.77 532.57
92.4 5.76 532.22
92.5 5.75 531.88
92.6 5.74 531.52
92.7 5.73 531.17
92.8 5.72 530.82
92.9 5.71 530.46
93.0 5.70 530.10
93.1 5.69 529.74
93.2 5.68 529.38
93.3 5.67 529.01
93.4 5.66 528.64
93.5 5.65 528.28
93.6 5.64 527.90
93.7 5.63 527.53
93.8 5.62 527.16
93.9 5.61 526.78
94.0 5.60 526.40
94.1 5.59 526.02
94.2 5.58 525.64
94.3 5.57 525.25
94.4 5.56 524.86
94.5 5.55 524.48
94.6 5.54 524.08
94.7 5.53 523.69
94.8 5.52 523.30
94.9 5.51 522.90
95.0 5.50 522.50
95.1 5.49 522.10



B. Effective Capacity Table 125

95.2 5.48 521.70
95.3 5.47 521.29
95.4 5.46 520.88
95.5 5.45 520.48
95.6 5.44 520.06
95.7 5.43 519.65
95.8 5.42 519.24
95.9 5.41 518.82
96.0 5.40 518.40
96.1 5.39 517.98
96.2 5.38 517.56
96.3 5.37 517.13
96.4 5.36 516.70
96.5 5.35 516.28
96.6 5.34 515.84
96.7 5.33 515.41
96.8 5.32 514.98
96.9 5.31 514.54
97.0 5.30 514.10
97.1 5.29 513.66
97.2 5.28 513.22
97.3 5.27 512.77
97.4 5.26 512.32
97.5 5.25 511.88
97.6 5.24 511.42
97.7 5.23 510.97
97.8 5.22 510.52
97.9 5.21 510.06
98.0 5.20 509.60
98.1 5.19 509.14
98.2 5.18 508.68
98.3 5.17 508.21
98.4 5.16 507.74
98.5 5.15 507.28
98.6 5.14 506.80
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98.7 5.13 506.33
98.8 5.12 505.86
98.9 5.11 505.38
99.0 5.10 504.90
99.1 5.09 504.42
99.2 5.08 503.94
99.3 5.07 503.45
99.4 5.06 502.96
99.5 5.05 502.48
99.6 5.04 501.98
99.7 5.03 501.49
99.8 5.02 501.00
99.9 5.01 500.50
100.0 5.00 500.0

Table B.1: Effective Capacity



Appendix C

CoojaED Extension source code

1 private MicrosecondObservable microsecondObservable =
2 new MicrosecondObservable ( ) ;
3 private class MicrosecondObservable extends Observable {
4 private void newMicrosecond ( long time ) {
5 setChanged ( ) ;
6 no t i f yObse rve r s ( time ) ;
7 }
8 }
9 public void addMicrosecondObserver ( Observer newObserver ) {
10 microsecondObservable . addObserver ( newObserver ) ;
11 hasMicrosecondObservers = true ;
12
13 invokeSimulat ionThread (new Runnable ( ) {
14 public void run ( ) {
15 i f ( ! microsecondEvent . i sSchedu l ed ( ) ) {
16 scheduleEvent (
17 microsecondEvent ,
18 currentSimulat ionTime − ( currentSimulat ionTime
19 \% MICROSECOND) + simTimeLog + MICROSECOND) ;
20 }
21 }
22 } ) ;
23 }
24 public void de leteMicrosecondObserver ( Observer obse rve r ) {
25 microsecondObservable . de l e t eObserve r ( obse rve r ) ;
26 hasMicrosecondObservers = microsecondObservable . countObservers ( ) > 0 ;
27 }

Listing C.1: New observer

127
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1 private double radioOutputPower ( ){
2 double outputPower ;
3 int radioOutputPower = rad io . getOutputPower ( ) ;
4
5 switch ( radioOutputPower ){
6 case −1: outputPower = 16 . 5 ;
7 break ;
8 case −3: outputPower = 15 . 2 ;
9 break ;
10 case −5: outputPower = 13 . 9 ;
11 break ;
12 case −7: outputPower = 12 . 5 ;
13 break ;
14 case −10: outputPower = 11 . 2 ;
15 break ;
16 case −15: outputPower = 9 . 9 ;
17 break ;
18 case −25: outputPower = 8 . 5 ;
19 break ;
20 default : outputPower = 17 . 4 ;
21 break ;
22 }
23 return ( outputPower ) ;
24 }

Listing C.2: Track the currently radio power transmission and their corresponding
typical current consumption
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1 private void calculateCurrentConsumption ( ) {
2
3 simTime = s imu la t i on . ge tS imulat ionTimeMi l l i s ( ) ;
4 simTimeSec = simTime / 1000 ;
5 modeRadio = rad io . getMode ( ) ;
6 modeCPU = cpu . getMode ( ) ;
7
8 radioCurrent = 0 ;
9 cpuCurrent = 0 ;
10 ledRedCurrent = 0 ;
11 ledGreenCurrent = 0 ;
12 ledBlueCurrent = 0 ;
13 ledCurrent = 0 ;
14 cpuRadioCurrent = 0 ;
15
16
17 i f ( cu r r en tCon f i gu ra t i on == 0){
18 i f (modeRadio == 1 && modeCPU == 0){
19 cpuRadioCurrent = currentCPUOnRadioRx ;
20 }
21 else i f (modeRadio == 2 && modeCPU == 0){
22 cpuRadioCurrent = currentCPUOnRadioTx ;
23 }
24 else i f (modeCPU == 0 && (modeRadio == 3 | | modeRadio == 0)){
25 cpuRadioCurrent = currentCPUOnRadioOff ;
26 }
27 else i f (modeCPU != 0 && modeRadio == 3){
28 cpuRadioCurrent = currentCPUOffRadioOff ;
29 }
30 else i f (modeRadio == 1 && modeCPU != 0){
31 cpuRadioCurrent = currentCPUOffRadioRx ;
32 }
33 else i f (modeRadio == 2 && modeCPU != 0){
34 cpuRadioCurrent = currentCPUOffRadioTx ;
35 }
36 }
37 else {
38 i f (modeRadio == 3){
39 i f ( rad io . g e tS ta t e ( ) == CC2420 . RadioState .VREG_OFF)
40 radioCurrent = currentRadioMode_3_1 ;
41 else i f ( rad io . g e tS ta t e ( ) == CC2420 . RadioState .POWER_DOWN)
42 radioCurrent = currentRadioMode_3_2 ;
43 }
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44 else i f (modeRadio == 1){
45 radioCurrent = currentRadioMode_1 ;
46 }
47 else i f (modeRadio == 0){
48 radioCurrent = currentRadioMode_0 ;
49 }
50 else i f (modeRadio == 2) {
51 radioCurrent = currentRadioMode_2 ; // radioOutputPower ( ) ;
52 }
53
54 switch (modeCPU){
55 case 0 : cpuCurrent = currentCPUModeActive ;
56 break ;
57 case 1 : cpuCurrent = currentCPUModeLpm_0 ;
58 break ;
59 case 3 : cpuCurrent = currentCPUModeLpm_2 ;
60 break ;
61 case 4 : cpuCurrent = currentCPUModeLpm_3 ;
62 break ;
63 case 5 : cpuCurrent = currentCPUModeLpm_4 ;
64 break ;
65 default : cpuCurrent = currentCPUModeLpm_1 ;
66 break ;
67 }
68
69 }
70 i f (moteLEDs . isRedOn ( ) ) {
71 modeLED1 = 1 ;
72 ledRedCurrent = currentLedRed ;
73 }
74 else { modeLED1 = 0;}
75 i f (moteLEDs . isGreenOn ( ) ) {
76 modeLED2 = 1 ;
77 ledGreenCurrent = currentLedGreen ;
78 }
79 else {modeLED2 = 0;}
80 i f (moteLEDs . isYellowOn ( ) ) {
81 modeLED3 = 1 ;
82 ledBlueCurrent = currentLedBlue ;
83 }
84 else { modeLED3 = 0;}
85
86 ledCurrent = ledRedCurrent + ledGreenCurrent + ledBlueCurrent ;
87
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88 i f ( cu r r en tCon f i gu ra t i on == 0){
89 currentConsumptionTotal = cpuRadioCurrent + ledCurrent ;
90 }
91 else {
92 currentConsumptionTotal = cpuCurrent + radioCurrent + ledCurrent ;
93 }
94
95 CurrentConsumptionLog . add ( simTimeSec + ",␣" +
96 Double . t oS t r i ng ( currentConsumptionTotal ) ) ;
97 }

Listing C.3: Instantaneous current consumption estimation



C. CoojaED Extension source code 132

1 private stat ic void r eadE f f e c t i v eCapac i ty ( S t r ing i npu tF i l e ){
2 St r ing row = "" ;
3
4 try {
5 F i l e inputWorkbook = new F i l e ( i npu tF i l e ) ;
6 workbook w;
7 w = Workbook . getWorkbook ( inputWorkbook ) ;
8 Sheet shee t = w. getSheet ( 0 ) ;
9
10 for ( int i = 0 ; i < shee t . getRows ( ) ; i++){
11 for ( int j = 0 ; j < ( shee t . getColumns ( ) − 1 ) ; j++){
12 Ce l l c e l l = shee t . g e tCe l l ( j , i ) ;
13 row += c e l l . getContents ( ) + "␣" ;
14 }
15 e f f e c t i v eCapa c i t y . add ( row ) ;
16 row = "" ;
17 }
18 }catch ( B i f fExcept i on e ) {
19 e . pr intStackTrace ( ) ;
20 } catch ( Exception e ) {
21 System . e r r . p r i n t l n ("Error:␣" + e . getMessage ( ) ) ;
22 l o gg e r . f a t a l ("Could␣not␣read␣to␣file:␣" +
23 "EffectiveCapacity.xls" ) ;
24 return ;
25 }
26 }
27
28 private double s e a r chE f f e c t i v eCapac i t y ( S t r ing im){
29 double c e f f = 0 . 0 ;
30 St r ing [ ] l i n e ;
31
32 for ( int i = 0 ; i < capac idadeEfe t iva . s i z e ( ) − 1 ; i++){
33 l i n e = capac idadeEfe t iva . get ( i ) . s p l i t ("␣" ) ;
34
35 i f ( Double . parseDouble ( l i n e [ 0 ] . tr im ( ) ) == Double . parseDouble ( im )){
36 c e f f = Double . parseDouble ( l i n e [ 2 ] . tr im ( ) ) ;
37 break ;
38 }
39 }
40 return ( c e f f ) ;
41 }

Listing C.4: Read effective capacity
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1 private stat ic void readCapacityLoss ( S t r ing i npu tF i l e ){
2 St r ing row = "" ;
3
4 try {
5 F i l e inputWorkbook = new F i l e ( i npu tF i l e ) ;
6 Workbook w;
7 w = Workbook . getWorkbook ( inputWorkbook ) ;
8 Sheet shee t = w. getSheet ( 0 ) ;
9
10 for ( int i = 0 ; i < shee t . getRows ( ) ; i++) {
11 for ( int j = 0 ; j < ( shee t . getColumns ( ) − 1 ) ; j++) {
12 Ce l l c e l l = shee t . g e tCe l l ( j , i ) ;
13 row += c e l l . getContents ( ) + "␣" ;
14 }
15 capac i tyLoss . add ( row ) ;
16 row = "" ;
17 }
18 } catch ( B i f fExcept i on e ) {
19 e . pr intStackTrace ( ) ;
20 } catch ( Exception e ) {
21 System . e r r . p r i n t l n ("Error:␣" + e . getMessage ( ) ) ;
22 l o gg e r . f a t a l ("Could␣not␣read␣to␣file:␣" + "CapacityLoss.xlx" ) ;
23 return ;
24 }
25 }
26
27 private double searchCapac i tyLoss (double t ){
28 double pc = 0 . 0 ;
29 St r ing [ ] l i n e ;
30
31 for ( int i = 0 ; i < perdaCapacidade . s i z e ( ) ; i++)
32 {
33 l i n e = perdaCapacidade . get ( i ) . s p l i t ("␣" ) ;
34 i f ( Double . parseDouble ( l i n e [ 0 ] . tr im ( ) ) == t ){
35 pc = Double . parseDouble ( l i n e [ 1 ] . tr im ( ) ) ;
36 break ;
37 }
38 }
39 return ( pc ) ;
40 }

Listing C.5: Read capacity loss
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1 private double recoveryCapac i ty (double t o f f )
2 {
3 double c r t = 0 ;
4
5 i f ( t o f f < 1)
6 c r t = 0 ;
7 else i f ( t o f f >= 1 && t o f f <= 4)
8 c r t = (0 . 051 ∗ t o f f ) + 0 . 4 4 5 ;
9 else i f ( t o f f > 4)
10 c r t = 0 . 5 4 0 ;
11 return ( c r t ) ;
12 }

Listing C.6: Recovery Capacity

1 private double capac i tyLoss (double pc , long years )
2 {
3 double pc1 = pc ∗ ( years / secondToYears ) ;
4 return ( pc1 ) ;
5 }

Listing C.7: Capacity Loss
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1 private void batteryModelBMAB( ArrayList<Str ing> logF i l e ,
2 double time_sample )
3 {
4 double cur rent = 0 , r e l a x a t i o nE f f e c t , sample = 0 ;
5 int s i z e ;
6 S t r ing [ ] l i n e ;
7 s i z e = l o gF i l e . s i z e ( ) ;
8 sample = time_sample / 1000 ;
9
10 i f (meanFlag == fa l se ){
11 meanCurrent ( l o gF i l e ) ;
12 c e f f = s ea r chE f f e c t i v eCapac i t y ( imS ) ;
13 meanFlag = true ;
14 }
15
16 try{
17 for ( int i = 0 ; i < l o gF i l e . s i z e ( ) ; i++)
18 {
19 l i n e = l o gF i l e . get ( i ) . s p l i t ("," ) ;
20 cur rent = Double . parseDouble ( l i n e [ 1 ] . tr im ( ) ) ;
21
22 i f ( cur r ent >= current_cuto f f ){
23 sum_1 = sum_1 + ( cur rent ∗ sample ) ;
24 }
25
26 i f ( cur r ent <= current_cuto f f ){
27 i f ( f l a gPe r i od s == fa l se ){
28 f l a gPe r i od s = true ;
29 }
30 t o f f = t o f f + sample ;
31 flagSum = true ;
32 }
33 else {
34 f l a gPe r i od s = fa l se ;
35 i f ( flagSum == true ){
36 sum_2 = sum_2 + ( s l eep_current ∗ t o f f ∗ 1 ) ;
37 c r t = recoveryCapac i ty ( t o f f ) ;
38 sum_3 = sum_3 + ( c r t ∗ 1 ) ;
39 t o f f = 0 ;
40 }
41 }
42
43 i f ( i == ( timeShowLog − 1) ){
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44 t o f f = t o f f / 1000 ;
45 simTime = s imu la t i on . ge tS imulat ionTimeMi l l i s ( ) ;
46 years = simTime /1000 ;
47
48 pc = searchCapac i tyLoss ( temperature ) ;
49 pca = capac i tyLoss ( pc , years ) ;
50 rca = capac i tyRetent ion ( pca ) ;
51 c e f f a = f i n a lE f f e c t i v eCapa c i t y ( rca , c e f f ) ;
52
53 sum_1 = sum_1 /3600 ;
54 sum_2 = sum_2 /1000 ;
55 sum_2 = sum_2 /3600 ;
56 sum_3 = sum_3 /1000 ;
57
58 sum_1Total = sum_1Total + sum_1 ;
59 sum_2Total = sum_2Total + sum_2 ;
60 sum_3Total = sum_3Total + sum_3 ;
61
62 energyTotal = energyTotal + (sum_1 + sum_2 ) ;
63 energyAva i l ab l e = ( c e f f a − ( energyTotal + sum_2Total ) ) + sum_3Total ;
64 sum_1 = 0 ; sum_2 = 0 ; sum_3 = 0 ;
65 }
66 }
67 }catch ( Exception e ){
68 System . e r r . p r i n t l n ("Error:␣" + e . getMessage ( ) ) ;
69 }
70 }
71 }

Listing C.8: Battery remaining capacity
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