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Abstract

Regional robust stabilization for a class of uncertain MIMO nonlinear systems with parametric

uncertainties is investigated. The closed-loop robust stability is achieved using linear time-

invariant state feedback control. In this context, two cases are investigated: (i) uncertain nonlin-

ear systems resulting from attempts to use the well-known Input-Output Feedback Linearization

technique applied considering nominal parameters; and (ii) uncertain nonlinear systems with

input saturation. In both cases, the fact that the uncertain systems have Differential Algebraic

Representations (DAR) is the main theoretical assumption employed to derive sufficient condi-

tions, in the form of Linear Matrix Inequalities (LMI), to solve the corresponding control prob-

lem. The regional character of the stability result obtained using this approach is associated with

the largest ellipsoidal Domain of Attraction (DOA), considered to be inside a given polytopic

region in the closed-loop system state space, which is a byproduct of solving the associated op-

timization problem of searching for appropriate feedback gain matrices. Specifically, the thesis

contributions are new sufficient LMI conditions with new decision variables used to compute the

feedback gain matrices without prior knowledge of an initial stabilizing matrix. The new con-

ditions have also shown favorable comparisons with recently published similar control design

methodologies, particularly for the case of uncertain nonlinear systems with input saturation,

where a polytopic description of this nonlinearity has led to new LMI conditions.
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Chapter 1

Introduction

1.1 Control of Uncertain Nonlinear Dynamical Systems

In the real world, many dynamical systems behave like nonlinear continuous-time systems

whose physical parameters are not precisely known. However, sometimes one might be able

to determine the bounds of these parameters. Assume the following description of an uncertain

nonlinear system whose states time derivatives are described by a nonlinear vector field:

ẋ(t) = F (x, δ, u), (1.1)

where the state vector x(t) ∈ Rn, the control vector u(t) ∈ Rm and the vector of norm-bounded

parametric uncertainties δ ∈ Rl.

A very popular and simple method to analyze the stability and/or to design a stabilizing con-

troller for system (1.1) is the linear control approach in the vicinity of a system’s equilibrium

point. Within this context, the robust stabilization and performance of uncertain linear systems

was mostly investigated around the decade of 1980 (Leitmann, 1979, Barmish, 1985, Petersen

and Hollot, 1986, Schmitendorf, 1988, Madiwale et al., 1989, Khargonekar et al., 1990, Xie and

De Souza, 1990, Xie et al., 1992). However, the local linear analysis approach fails to guar-

antee the stability whenever not only the parametric uncertainties and nonlinearities are both

involved but also when one is interested in finding a large enough stabilizing region instead of

investigating the stability in a sufficiently small vicinity of an equilibrium point.

1
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FIGURE 1.1: Stability region Ω in a compact region X in the state space.

An interesting alternative approach is to look for a compact region, including the equilibrium

point, inside which the robust stabilization of uncertain nonlinear systems is guaranteed if the

systems states initiate within that region. Figure 1.1 illustrates an example of such a region in

a 2-dimensional state space where one of the system’s trajectories asymptotically converges to

the origin.

According to what was discussed, if we take into account the system’s nonlinearities and uncer-

tainties in the robust stability analysis and control synthesis for obtaining a stabilizing region the

problem is likely to be less conservative compared to linearization approach for the uncertain

nonlinear systems. In this respect, the robust stability analysis pursued in this thesis is based

on the notion of polytopic description of set X ⊂ R2 in Figure 1.1 to which the system states

belong, and trying to find a guaranteed stabilizing and invariant region Ω ⊂ X in the presence

of parametric uncertainties. This region is known as the Domain Of Attraction (DOA) in the

literature (see (El Ghaoui and Scorletti, 1996, Tibken, 2000, Hachicho and Tibken, 2002, Chesi,

2004b, Rohr et al., 2009, Coutinho et al., 2009, Chesi, 2009, Zečević and Šiljak, 2010, Ichihara,

2011, Coutinho and De Souza, 2013, Lee, 2013, Trofino and Dezuo, 2014, Gering et al., 2015)

and the references therein). In this work we are particularly interested in estimating the largest

DOA for a given class of uncertain nonlinear systems by verifying the satisfaction of specific

stabilizing Linear Matrix Inequality (LMI) conditions.
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1.2 Motivation

The class of uncertain nonlinear systems (1.1) can be recast by different representation and

approximation techniques in order to enable LTI control design (see Figure 1.2). Applying these

techniques depend on the type of mathematical model of the system. In the context of regional

stability and DOA the aforementioned studies investigated different classes of nonlinear systems

such as polynomial systems (Tibken, 2000, Hachicho and Tibken, 2002, Chesi, 2004b), non-

polynomial systems (Chesi, 2009, Zečević and Šiljak, 2010, Ichihara, 2011), Takagi–Sugeno (T-

S) Fuzzy Systems (Lee, 2013, Gering et al., 2015) and rational systems (El Ghaoui and Scorletti,

1996, Rohr et al., 2009, Coutinho et al., 2009, Coutinho and De Souza, 2013, Trofino and Dezuo,

2014). However, when the parametric uncertainties and nonlinearities are taken into account the

conservatism of robust stability analysis and control synthesis of the nonlinear systems will rely

on how the system is represented. This problem can be addressed while the system states and

the uncertainties explicitly show up in the stability analysis instead of being considered as a

norm-bounded input perturbation. Accordingly, among the aforementioned classes of nonlinear

systems the rational systems, which covers polynomial systems as well, seems to be interesting

for investigation since one is able to recast them in Linear Fractional Representation (LFR)

and/or Differential Algebraic Representation (DAR) as will be discussed in detail in Chapter

2, Sections 2.2 and 2.3, specifically when the uncertainties are considered. The LFR and DAR

representations of rational uncertain nonlinear systems were mostly used in the robust control

community, that employs LMIs, as basic tools after it was shown that LMI-based robust stability

FIGURE 1.2: Different approaches to recast the system.



Introduction 4

Robust LTI

Controller

y
ref Nonlinear

System

Approx. Inverse

Model

x

y

FIGURE 1.3: Inverse Dynamics based Control as a feedback linearization strategy.

and performance analysis can be performed on the corresponding Linear Differential Inclusion

(LDI) systems (Boyd et al., 1994). Specifically an LDI system can be reduced to a Linear Time-

Invariant (LTI) system for which straightforward systematic robust stability analysis and control

synthesis approaches are investigated with different kinds of uncertainties (Khargonekar et al.,

1987, Georgiou et al., 1987, Verma, 1989, Huang et al., 2000, Lastman and Sinha, 2001, Cheng

and Zhang, 2004, Ebihara and Hagiwara, 2005, Lim et al., 2006, Gonçalves et al., 2006, Lim

et al., 2014, Lee et al., 2015).

On the other hand, if system (1.1) is affine in input control we might be able to apply an inverse

dynamics method, a nonlinearity cancellation technique, such that an approximate uncertain LTI

system around instantaneous operating points is obtained and this provides LTI robust stabiliz-

ing control design. The general concept of robust control with inverse dynamics is depicted in

block diagram of Figure 1.3. The inverse dynamics method, inside the red dashed box, strongly

depends on the exact knowledge of the system structure and parameters (Isidori, 1989, Nijmei-

jer and Schaft, 1990). The role of the LTI robust controller here is to guarantee stability and

performance of the closed-loop system, even when the linearization is not perfect due to the

parametric uncertainties, such that the system in the dashed box is only approximately linear

and time-invariant. In this context, some studies tackled the inexact linearization problem by

proposing different approximately linearizable approaches (Guardabassi, 2004, Deutscher and

Schmid, 2006, Jemai et al., 2010, Cardoso and Schnitman, 2011, Menini and Tornambè, 2012,

Atam et al., 2014).

A well-known nonlinear control design technique of inverse dynamics is feedback lineariza-

tion, whose application is intimately related to the idea of canceling nonlinearities aiming to

achieve a resulting linear behavior for the system, in new coordinates (Isidori, 1989, Slotine

et al., 1991). However, feedback linearization has one significant drawback associated with the
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fact that usually one has to assume exact knowledge of the system equations, together with the

ideal measurement of all system states (Guardabassi and Savaresi, 2001).

As it will be discussed in Chapter 2, the case of nonlinear systems described by vector fields

with uncertain parameters is presented in Section 2.2. Clearly the application of feedback lin-

earization procedures for this class of systems relies on the nominal system model and this leads

to another nonlinear, instead of linear, dynamical system in new coordinates as will be explained

in Section 2.4. Accordingly, the degree of nonlinearity of the resulting system is actually un-

known. In this scenario, a natural approach is to consider the resulting system as a new uncertain

nonlinear system, whose dynamics is possibly closer to that exhibited by a genuine LTI system,

and for which one has to synthesize robust stabilizing control laws. This idea is interesting be-

cause it makes amenable the use of more general synthesis procedures for uncertain nonlinear

systems to solve the problem of robust stabilization. Moreover, it becomes specially important

in those general methods that seem to arise from extensions of the robust control theory for LTI

systems, such as gain scheduling relying on uncertain Linear Parameter Varying (LPV) models

(Rotondo et al., 2014), or the use of more detailed representations to describe the nonlinearities

in the system dynamics (Wang et al., 1992, El Ghaoui and Scorletti, 1996, Coutinho et al., 2002,

Franco et al., 2006, Coutinho et al., 2008, Trofino and Dezuo, 2014).

Among the different approaches that have been reported in the literature to stabilize the result-

ing nonlinear uncertain system obtained after an attempt of feedback linearization, a key issue

seems to be the choice of an appropriate representation for what is left, after such attempt, with

respect to what is expected in the absence of uncertainties. This is intimately related to structural

properties of the nonlinear part of the system dynamics that are necessary in many methods, e.g.

in (Marino and Tomei, 1993). One of these structural properties could be that the remaining

uncertain nonlinear part is rational with respect to both parametric uncertainties and states in

new coordinates. If such a property is met, as discussed earlier, one can represent the system in

LFR and/or DAR forms as it will be shown in Section 2.4.

LFR was studied for nonlinear dynamical systems with vector fields described by rational func-

tions in (El Ghaoui and Scorletti, 1996), where one of the authors contribution was the use of

the DOA concept in the analysis of closed-loop regional stability. By generalizing the concept

of LFR through the proposition of DAR, which is used to describe not only the nonlinearities,

but also the associated parametric uncertainties, Coutinho, Trofino and co-workers (Coutinho
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FIGURE 1.4: Saturation of input signal and linear state feedback control command.

et al., 2002, 2008, Trofino and Dezuo, 2014, Coutinho et al., 2009) have obtained very inter-

esting analysis results with respect to the enlargement of DOA, which is either represented as

a non-ellipsoidal DOA through polynomial Lyapunov functions or as an ellipsoidal invariant

region inside the true DOA of the uncertain nonlinear system (see for example the region Ω in

Figure 1.1). The theoretical framework of ellipsoidal DOA will be presented in Section 3.2 of

Chapter 3 and it was specifically utilized for the problem of stabilizing feedback linearizable

systems in (Rohr et al., 2009). Analogously, for the class of Input-Output feedback linearizable

systems with parametric uncertainties, and representable in DAR format, the ellipsoidal DOA

in new coordinates can also be addressed by the proposition of sufficient LMIs as it will be

discussed in Section 4.1 of Chapter 4. However, previous researches were not restricted to the

ellipsoidal DOA of DAR systems such that recent studies aimed to estimate a non-ellipsoidal

description of the guaranteed DOA (Chesi, 2004a, Chesi et al., 2004, Coutinho et al., 2008,

Coutinho and De Souza, 2013, Coutinho et al., 2009, Trofino and Dezuo, 2014). In this con-

text, they looked for polynomial Lyapunov candidate functions, instead of quadratic ones which

characterize ellipsoidal DOA. On the other hand, despite the successful analysis tools, control

synthesis strategies of DAR systems were only recently presented to estimate the DOA (Oliveira

et al., 2012, 2013, Da Silva et al., 2014), in the context of systems with input saturation.

Despite the fact that in practice the inputs of every real system are bounded, sometimes the

saturation of input signals can be beneficial in terms of achieving larger guaranteed DOAs and,

therefore, better closed-loop stability properties (Hu and Lin, 2001), particularly in the present

context of uncertain nonlinear systems controlled by means of static linear state feedback.

As depicted in Figure 1.4, the saturation condition occurs when the linear state feedback control

command exceeds the saturation limits. In this respect, many recent works have considered
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saturation of inputs, combined with different assumptions and techniques (Barreiro et al., 2002,

Castelan et al., 2005, 2008, Coutinho and Da Silva, 2010, Valmórbida et al., 2010, Oliveira et al.,

2012, 2013). A particularly interesting approach is the use of the so-called generalized sector

condition (Hu et al., 2004) and considering deadzone nonlinearities together with static anti-

windup control for a system in DAR form, as recently investigated in (Da Silva et al., 2014).

On the other hand, it was shown that the input saturation signal can be recast by the convex

combination of the linear state feedback control command and another proper linear vector

function whose idea will be presented in Section 2.5 (Hu and Lin, 2001). Within this context,

as it will be seen in Section 4.2 of Chapter 4, an interesting approach can be the application of

polytopic description of saturated input for the DAR systems in order to evaluate the conjecture

that less conservative robust stability analysis and control synthesis problem can be obtained.

1.3 Objectives

In this study we are interested in the broader context of controlling nonlinear dynamical systems,

considering parametric uncertainties in their mathematical model representations. Therefore,

based on what was discussed above, the following objectives are pursued:

1. First, we attempt to investigate robust control strategy based on inverse dynamics of the

system (1.1). For this purpose, in order to apply feedback linearization, we will represent

system (1.1) in control-affine form with vector fields having norm-bounded parametric

uncertainties and we will consider the class of Input-Output feedback linearizable sys-

tems. Owing to the approximate linearization the resulting system in new coordinates

is in a quasi-canonical form. Therefore, the DAR representation of such system is han-

dled enabling regional stabilization analysis and control synthesis over the polytopic set

of state space and parametric uncertainties. Then, sufficient synthesis LMIs are derived

under the condition of Input-to-State Stability (ISS) of the system’s internal dynamics.

2. To consider the class of input saturation uncertain nonlinear systems representable in DAR

form and to investigate the regional robust stabilization of such systems in terms of DOA

estimation we will represent the polytopic description of saturation input as convex combi-

nation of unsaturated inputs and appropriate vectors. This polytopic description alongside

the DAR representation enables the derivation of synthesis LMIs.
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1.4 Summary of Contributions

The first contribution of the present work is the proposition of new sufficient LMI conditions to

synthesize robust controllers for input-output feedback linearizable uncertain nonlinear systems,

using the DAR approach. The system is assumed to satisfy the property of input-to-state stability

of its internal dynamics by providing the corresponding ISS-Lyapunov function. Using this

assumption, it will be shown that by solving an SDP problem subject to sufficient LMIs one can

estimate a guaranteed ellipsoidal DOA inside the polytopic set of state space in new coordinates.

The second contribution of this work is the proposition of new sufficient LMI conditions to

synthesize robust linear state feedback controllers for uncertain Multiple-Input Multiple-Output

(MIMO) nonlinear systems with input saturation, assuming that they can be described in a DAR

form. A part of the mathematical development relies on the approach proposed in (Hu and

Lin, 2001), for linear systems with input saturation, to represent the signals resulting from the

saturation of the inputs as convex combinations of unsaturated inputs and appropriate vectors,

instead of making direct use of a generalized sector condition (Hu et al., 2004). In addition, the

search for the largest ellipsoidal guaranteed DOA by means of quadratic Lyapunov candidate

functions is pursued to simplify the process of deriving sufficient synthesis conditions. As it will

be shown, better results, in the sense of larger guaranteed ellipsoidal DOAs, are obtained when

compared to the results recently reported in the literature for the same numerical examples. In

this respect, the following paper addresses this contribution:

S. Azizi, L. A. B. Torres & R. M. Palhares (2017): Regional robust stabilisation and domain-of-

attraction estimation for MIMO uncertain nonlinear systems with input saturation, International

Journal of Control, DOI: 10.1080/00207179.2016.1276634.

1.5 Thesis Organization

The report is written with the following order:

Chapter 2 gives different representation techniques for the uncertain nonlinear systems including

LFR and DAR models, representation by applying inverse dynamics and polytopic description

of input saturation. Regional stability analysis in the context of ellipsoidal DOA is represented

in Chapter 3 where it is shown that how the ellipsoidal DOA is characterized by the quadratic

Lyapunov candidate function and how can ensure that the DOA is a subset of the states polytopic
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set. Moreover, the condition of input-to-state stability of the internal dynamics for the class of

I/O linearizable systems is indicated in this chapter. In Chapter 4 the synthesis problems for the

DAR of I/O linearizable system and input saturation system are presented in terms of sufficient

LMIs and the estimation of maximum DOAs. Such estimations are computed my means of

convex optimization problems subject to the LMIs. Chapter 5 brings some illustrative numerical

examples from the literature to examine the effectiveness of the study. To that end, Chapter 6

concludes the thesis with some remarks and possible future research directions.



Chapter 2

Uncertain Nonlinear Dynamical

Systems Representations

Representation of the uncertain nonlinear system (1.1) plays an important role in the robust

stability analysis and control synthesis. In this respect, there are many research studies that

attempted to represent uncertain nonlinear systems both with an admissible approximation and

with an exact representation. Some famous representation models are LPV, LFR and DAR

forms. In view of obtaining sufficient LMI conditions based on Lyapunov theory, these repre-

sentations are used to facilitate stability analysis and control synthesis problems. In the rest of

this chapter these three representation methods are discussed and compared. Then, we study

the problem of trying to represent uncertain nonlinear systems in new coordinates by applying

feedback linearization technique aiming nonlinearity reduction in the presence of uncertainties.

Finally we justify the importance of investigating uncertain nonlinear systems with input sat-

uration and we represent the saturation input signal as a convex combination of input control

command vector and properly chosen vector, such that this combination satisfies saturation con-

dition.

10
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2.1 Linear Parameter Varying Models

As first introduced by Shamma (Shamma, 1988), an LPV representation of system (1.1), in the

context of uncertain nonlinear systems, leads to the following state-space formulation:

ẋ(t) = A(θ(t))x+B(θ(t))u,

y = C(θ(t))x+D(θ(t))u,
(2.1)

where x(t) ∈ Rn, y(t) ∈ Rny , u(t) ∈ Rm, A(θ(t)) ∈ Rn×n, B(θ(t)) ∈ Rn×m, C(θ(t)) ∈

Rny×n, D(θ(t)) ∈ Rny×m, and θ(x(t), δ(t)) ∈ Θ ∈ Rnθ (Θ is a bounded region) is an exoge-

nous non-stationary vector of parameters that varies inside the region Θ, with the norm-bounded

uncertainty δ(t) belonging to a polytopic set ∆ ⊂ Rl. The block diagram of this LPV model is

depicted in Figure 2.1.

Since then, many studies, mostly published by late 90s, applied this LPV concept to investigate

controllers based on the multiplier approach and relying on full block S-procedure (Scherer,

1997, 2001), parametric Lyapunov function based stabilizing LMIs and disturbance attenuation

(Kose and Jabbari, 1999, Sato, 2004), gain scheduling output feedback controllers (Sato and

Peaucelle, 2013, Hanifzadegan and Nagamune, 2014), robust stability analysis and LPV control

design of uncertain polytopic systems (Daafouz et al., 2008, Oliveira and Peres, 2009, Rotondo

et al., 2014), fault detection and diagnosis systems (Hecker and Pfifer, 2014). The parameter

θ can be an uncertain nonlinear function of system states. For example by considering the

following uncertain nonlinear system with time-varying uncertainty δ(t):

ẋ1 = x2,

ẋ2 = −x2 + δ(t)(x1x2+1)x2
1+δ(t) + u,

(2.2)

FIGURE 2.1: Block diagram of linear parameter varying model (2.1).
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where |δ(t)| ≤ N , in which N is the upper bound for δ(t), we can represent it by the following

LPV system:

ẋ(t) = A(θ(t))x+Bu, θ(t) ∈ Θ = {|θ(t)| ≤M}, (2.3)

with θ(t) = δ(t)(x1x2+1)
1+δ , A(θ(t)) =

0 1

0 θ(t)− 1

 and B =
[
0 1

]T
. Therefore, the LPV

system (2.3) is an approximation of (2.2) for all x(t) and δ(t) satisfying |θ(t)| ≤ M where the

real scalar M characterizes the bounds of the region Θ in (2.3). However, it is not necessary

for the two systems (2.2) and (2.3) to be equivalent because one of the main ideas of using

LPV representation is to provide the design of linear non-stationary state feedback controllers

which are independent from the system states and its nonlinearities. That is, unlike the gain-

scheduling approach in which the controllers are dependent to the system nonlinearities, an

LPV model consists of an indexed collection of linear systems, in which the indexing parameter

is exogenous, i.e., independent of the system states and its nonlinearities.

Based on what is explained above, the advantages of LPV representations over LTI representa-

tions of the system’s behavior around equilibria is that, first, it is a better system approximation

and, second, its feedback control is non-stationary. That is, unlike LTI local representations,

the non-stationary feedback control u = K(θ(t))x in LPV representations can depend on the

parameter θ(t), if θ(t) is available for measurement or estimation. Also, the LPV model can

be built such as it becomes a good approximation of the original system in a region containing

equilibrium points. On the other hand, considering the LTI system for stability analysis and

control synthesis of the original nonlinear system is only valid in a small neighborhood of the

equilibrium point.

2.2 Linear Fractional Representations

As discussed earlier, the choice of an appropriate system representation can facilitate stability

analysis and control synthesis. In the one hand approximate representations, such as LPV mod-

els, include some nonlinearities of the system encoded as bounded parameters. On the other

hand, there exist some representations, such as LFR, which encode uncertainties and nonlinear-

ities by adding more states to the system description and using uncertainty dependent vectors

instead of considering them as bounded parameters. Suppose that the uncertain nonlinear sys-

tem (1.1) belongs to the more specific class of input-affine uncertain nonlinear systems, with the
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FIGURE 2.2: Linear Fractional Representation of rational system (2.4).

same number of inputs and outputs, given by:

ẋ(t) = f(x, δ) +
∑m

j=1 gj(x, δ)uj(t),

yi = hi(x), i = 1, 2, ...,m,
(2.4)

where x takes values in X ⊂ Rn; u(t) ∈ Rm, with m ≤ n; δ ∈ ∆ ⊂ Rl is an uncertain

norm-bounded parameter vector which can be divided into nominal and uncertain parts; f(·) :

Rn × Rl → Rn, gj(·) : Rn × Rl → Rn and hi(·) : Rn → R are smooth vector functions in

their arguments, and also are rational in X × ∆. Besides, f(x, δ) satisfies f(0, δ) = 0 for all

δ ∈ ∆. Here we assumed that there is no uncertainty in the output equations and hi(0) = 0. It

should be noted that the control-affine dynamics (2.4), despite being less general than (1.1), still

represents a large number of uncertain nonlinear systems. Therefore, the LFR of (2.4) can be

obtained as (El Ghaoui and Scorletti, 1996):

ẋ = Axx+Buu+Bππ,

q = Cqx+Dquu+Dqππ,

y = Cyx+Dyππ, π = ∆̃(x, δ)q,

(2.5)

where ∆̃(x, δ) = diag{x1Ir1 , ..., xnIrn , δ1Is1 , ..., δlIsl} is related to the degree of nonlin-

earity in the system, π ∈ Rnπ is the vector of lumped nonlinearities and uncertainties with

nπ =
∑n

i=1 ri +
∑l

j=1 sj , in which ri and si are nonnegative integers, and Ax ∈ Rn×n, Bu ∈

Rn×m, Bπ ∈ Rn×nπ , Cq ∈ Rnπ×n, Dqu ∈ Rnπ×m, Dqπ ∈ Rnπ×nπ , Cy ∈ Rm×n, Dyπ ∈

Rm×nπ are constant matrices. Also the state-space representation (2.5) is such that:

f(x, δ) G(x, δ)

H(x) 0

 =

Ax Bu

Cy 0

+

 Bπ
Dyπ

 ∆̃(x, δ)
[
I −Dqπ∆̃(x, δ)

]−1 [
Cq Dqu

]
,

(2.6)
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where H(x) = [h1(x), ..., hm(x)]T and I − Dqπ∆̃(x, δ) is assumed to be a full rank matrix

for well-posed systems. Accordingly, we can associate with the LFR (2.5) an LTI system with

some fictitious input π and some fictitious output q as shown in Figure 2.2. This is interesting

because, apart from the above definition, for the uncertain state dependent matrix ∆̃(x, δ) it can

also be interpreted other different forms of perturbations belonging to a set Λ which describes

the size, nature and structure of the uncertainty. In this respect, many works in the literature

consider different types of uncertain perturbation matrix ∆̃ such that the LFR (2.5) can be recast

as an LDI system by replacing ∆̃(x, δ) with a time-varying uncertain norm-bounded matrix ∆(t)

(El Ghaoui and Scorletti, 1996, Wang et al., 1992, Chesi et al., 2004, Apkarian and Tuan, 2000,

Hentabli et al., 2003, Laroche and Knittel, 2005, De la Sen, 2007, Roos et al., 2010, Chesi, 2010,

2013); or with rational parametric uncertainty belonging to a polytopic set (Cockburn, 1998,

Korogui and Geromel, 2009); or with uncertainties due to frequency variations and complex

dynamics (Sana and Rao, 2000, Xu et al., 2008, Pfifer and Hecker, 2011, Xu et al., 2012).

As an example of LFR (2.5), system (2.2) can be represented using the following matrices:

π =
[
δx1x22
1+δ

δx22
1+δ

δx2
1+δ

]T
, ∆̃(x, δ) =


x1 0 0

0 x2 0

0 0 δ

 ,

Ax =

0 1

0 −1

 , Bu =

0

1

 , Bπ =

0 0 0

1 0 1

 , Cq =


0 0

0 0

0 1

 , Dqu = 01×3, Dqπ =


0 1 0

0 0 1

0 0 −1

 ,

Cy =
[
1 0

]
, Dyπ = 01×3.

As it can be seen, the LFR of example (2.2) provides constant realization matrices which charac-

terize an LTI system with an uncertain input nonlinear vector comprising the rest of information

of the original uncertain nonlinear system. On the contrary, applying LPV representation is

likely a conservative approach since we are approximating some system nonlinearities and un-

certainties by the time-varying parameter θ which causes missing of information about those

nonlinearities.

It is important to note that LFRs of rational systems are not unique and one can obtain different

LFRs for the same system. In addition, obtaining LFRs for nonlinear systems, specifically when

they have high degrees of nonlinearities, is not a trivial and easy task.
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2.3 Differential Algebraic Representations

It was already claimed that the LFR (2.5) corresponds to the rational system (2.4) (El Ghaoui

and Scorletti, 1996). A generalization of the idea of representing a system in LFR form is the

so-called DAR, which was proposed in (Coutinho et al., 2002, 2008). Since every LFR system

can be reformulated as a DAR one, rational systems have also exact, although not unique, DARs

(Coutinho et al., 2008, Coutinho and De Souza, 2013). DARs are more general than LFRs in

the sense that, instead of having constant matrices, in DARs the matrices can be affine functions

of uncertainties and states, such that (2.4) would be rewritten as:

ẋ(t) = A1(x, δ)x+A2(x, δ)π +A3(x, δ)u(t), (2.7)

0 = Π1(x, δ)x+ Π2(x, δ)π + Π3(x, δ)u(t),

with π ≡ π(x, u, δ) ∈ Rnπ any possible and freely chosen vector of nonlinear functions; and

A1(x, δ) ∈ Rn×n, A2(x, δ) ∈ Rn×nπ , A3(x, δ) ∈ Rn×m, Π1(x, δ) ∈ Rnπ×n, Π2(x, δ) ∈

Rnπ×nπ and Π3(x, δ) ∈ Rnπ×m are matrices of affine functions with respect to (x, δ), such that

Π2(x, δ) is a square full-rank matrix for all (x, δ) ∈ X×∆. From now on, the dependences of

A1, A2, A3, Π1, Π2, Π3 on (x, δ) and of π on (x, u, δ) are omitted for clarity of presentation.

To verify the correctness of the DAR (2.7), one can compare (2.4) to the corresponding expres-

sion

ẋ(t) = (A1 −A2Π−1
2 Π1)x+ (A3 −A2Π−1

2 Π3)u(t).

It is worthy of note that having LFR of system (2.4) one is able to define new matrices Π1(x, δ) =

∆̃(x, δ)Cq, Π2(x, δ) = ∆̃(x, δ)Dqπ − I, Π3(x, δ) = ∆̃(x, δ)Dqu, with Π2(x, δ) being full-

rank, such that the following specific DAR is obtained:

ẋ = Axx+Bππ +Buu, (2.8)

0 = Π1(x, δ)x+ Π2(x, δ)π + Π3(x, δ)u,

y = Cyx+Dyππ,

in which the relation of fictitious input/output is replaced by a null equality.

Despite the fact that DAR is more general than LFR obtaining the DAR of uncertain nonlinear

system (2.4) is easier than obtaining its LFR because, in DAR (2.7), we are more free to choose

nonlinear input π and state and/or uncertainty dependent matricesA1−A3, while these matrices
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are restricted to be constant in LFR. For an illustration, considering again system (2.2), one

possible DAR (2.7) for such a system can be obtained with

π =
[
δx1x2
1+δ

δx2
1+δ

]T
,

A1 =

0 1

0 −1

 , A2 =

 0 0

x2 1

 , A3 =

0

1

 ,Π1 =

0 0

0 δ

 ,Π2 =

−1 x1

0 −(δ + 1)

 ,Π3 = 02×1,

in which the input nonlinearity dimension is reduced in this DAR representation.

Remark 2.1. It should be noted that DAR representation, as well as LFR, is not unique and one

can obtain different DARs for the same system. This fact may lead to different stability analyses,

that is, if the DAR of a system is not properly chosen one can cause more conservative stability

results.

For DARs in (Coutinho et al., 2002), it was investigated the problem of guaranteed cost control

design over LMI conditions by employing polynomial Lyapunov functions. Then, the regional

robust stability and performance was investigated in (Coutinho et al., 2008), for the DARs of

uncertain nonlinear rational systems, by means of sufficient LMI conditions aiming to analyze

input-to-output properties. Similar stability analysis together with the estimation of DOA was

performed in (Coutinho and De Souza, 2013) for discrete-time DAR systems. Also the estima-

tion of DOA and robust local stability for a class of implicit polynomial systems was studied

in (Coutinho et al., 2009) considering Implicit Bilinear Representation (IBR) which is a repre-

sentation similar to DAR. Meanwhile, in (Rohr et al., 2009) it was applied dynamic inversion

considering a DAR of an uncertain SISO system inside a DOA, and the authors maximized the

DOA through a feasibility optimization problem subject to LMI conditions.

A recent study published in (Trofino and Dezuo, 2014) investigated both regional and global

robust asymptotic stability of the same type of system using the notion of DAR. They derived

LMI conditions using rational Lyapunov functions with respect to states and uncertain param-

eters. Then, they Maximized the DOA subject to LMIs in the case of regional stability. A

more complex Lyapunov function (i.e. non-quadratic one) was used together with the notion of

annihilators, and the Finsler lemma in order to achieve less conservative results.

Based on the considerations about the advantages of DAR over LFR and LPV representations

we have chosen to use the DAR (2.7) of nonlinear uncertain system (2.4) to investigate regional

robust stabilization problems, while estimating the largest ellipsoidal DOA of such systems.
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Since it is more straightforward for rational systems to be rewritten in a DAR form, that is the

main reason why we are assuming rational vector fields in (2.4). When the mathematical model

of the system has some trigonometric functions one can consider, without loss of generality

and with no conservativeness, a change of variables which represents trigonometric functions

in rational forms. This strategy was used by (Coutinho and Danes, 2006), (Danes and Bellot,

2006) and (Rohr et al., 2009) for robotic and inverted pendulum systems as well. Consider the

following change of variable suggested by (Rohr et al., 2009):

θ = 2 arctan(r). (2.9)

In this case, one has that

sin(θ) =
2r

1 + r2
, cos(θ) =

1− r2

1 + r2
. (2.10)

Note that the domains of θ and r are bounded and the above change of variable does not hold

everywhere.

2.4 On the Feedback Linearization of Uncertain Nonlinear Systems

The study of approximate linearization of system (2.4) has been a subject of investigation mostly

since 80s (Desoer and Wang, 1980, Krener, 1984, Reboulet and Champetier, 1984, Rugh, 1984).

This is interesting because if one could transform the system nonlinearities by a proper nonlinear

mapping, the investigation of the robust stabilization problem would become easier. There are

many research studies which tackled this issue with different methods of inverse dynamics in

order to approximately linearize nonlinear systems with or without uncertainty (Guardabassi and

Savaresi, 2001, Deutscher and Schmid, 2006, Jemai et al., 2010, Cardoso and Schnitman, 2011,

Menini and Tornambè, 2012, Atam et al., 2014). Looking for an appropriate locally nonlinear

mapping a higher than first order approximation by Taylor expansion was investigated in 1984 by

Krener (Krener, 1984). At the same time, the problem of pseudo-linearization was investigated

by looking for invertible transformations such that the achieved linear model, tangent to the

original one, is independent of the operating point (Reboulet and Champetier, 1984). The similar

approach of extended linearization for I/O linearization problem was studied by Rugh in 1984

(Rugh, 1984).
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Introducing nonlinearity metrics some researchers attempted to calculate and measure the degree

of nonlinearity of a system. In this context, they could design a non-exact linearizing controller

to achieve approximate linearization of the system. Therefore, different measures of nonlinear-

ity, called nonlinearity indices, were proposed (Desoer and Wang, 1980, Stack and Doyle, 1997).

Other authors have investigated systems which are not exactly feedback linearizable, by trying

to approximate the original system to a tangent model, which is feedback linearizable, with re-

spect to the equilibrium manifold (Hauser, 1990). A nonlinearH∞ control theory was applied to

the problem of synthesizing approximately I/O-linearizing controllers in (Allgöwer et al., 1994),

where the authors have designed a controller that approximately transform a nonlinear system

into a linear one by means of minimizing the H∞ norm associated with model-matching error.

2.4.1 Approximate Feedback Linearization

Feedback linearization is one of the most common techniques of inverse dynamics aiming sys-

tem’s nonlinearity cancellation. The motivation of applying this well-known approach arises

from the fact that some control-affine nonlinear systems can be linearized along the instanta-

neous states by means of a change of coordinates together with an input transformation using

state feedback (Isidori, 1989, Nijmeijer and Schaft, 1990). However, feedback linearization has

some significant drawbacks. Since it needs the fully knowledge of system and the exact mea-

surement of system states, feedback linearization can fail to stabilize uncertain systems. This

is because the inverse of the nonlinear model is not able to completely cancel the real system’s

nonlinearities due to the existence of uncertainties.

Considering the specific class of input-affine MIMO uncertain nonlinear systems with equal

number of inputs and outputs, one can separate system (2.4) into a nominal part and an uncertain

part as follows:

ẋ(t) = f0(x, p0) +

m∑
j=1

g0j(x, p0)uj(t) + ∆f(x, δp) +

m∑
j=1

∆gj(x, δp)uj(t),

yi = hi(x), i = 1, 2, ...,m,

(2.11)

where f = f0 + ∆f , gj = g0j + ∆gj and the parametric uncertainty vector δ = p0 + δp

includes the nominal parameters vector p0 ∈ Rl and the vector of parametric variations δp such

that δ ∈ ∆ in which the polytopic set ∆ := {δ ∈ Rl | |δps| ≤ δ̄s, s = 1, 2, ..., l} where δ̄s is

the maximum bound of δps variations. The I/O feedback linearization of system’s nominal part
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will be taken in order to reduce the system’s nonlinearities. However, due to the existence of

uncertainty vector δ, the whole dynamical system cannot be transformed to a canonical form.

To implement I/O feedback linearization consider the following definition (Isidori, 1989, Slotine

et al., 1991).

Definition 2.2. The nominal part of system (2.11), i.e. the system (2.11) with ∆f(.) ≡ 0 and

∆gj(.) ≡ 0, has a (vector) relative degree {r1, ..., rm} at a point xo if

Lg0jL
k
f0hi(x) = 0

for all 1 ≤ j ≤ m, 1 ≤ i ≤ m, 0 ≤ k < ri − 1, and for all x in a neighborhood of xo, and the

m×m matrix

G∗ =


Lg01L

r1−1
f0

h1 Lg02L
r1−1
f0

h1 · · · Lg0mL
r1−1
f0

h1

Lg01L
r2−1
f0

h2 Lg02L
r2−1
f0

h2 · · · Lg0mL
r2−1
f0

h2

...
...

. . .
...

Lg01L
rm−1
f0

hm Lg02L
rm−1
f0

hm · · · Lg0mL
rm−1
f0

hm

 ,

is nonsingular at x = xo. Alternatively, ri, the associated relative degree of the output channel

hi(x), is the number of times it is required to differentiate hi(x) until at least one component of

the input vector u(t) appears.

Based on the above definition the total relative degree of system (2.4) can be defined as r =
m∑
i=1

ri, which is not necessarily equal to the system’s state vector dimension. Therefore, by

considering the following nonlinear mapping:

ϕ = Φ(x) = [zT ζT ]T ,

z = [h1, Lf0h1, ..., L
r1−1
f0

h1, ..., hm, ..., L
rm−1
f0

hm]T ,
(2.12)
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in which Φ takes values inside the set χ ⊂ Rn, and differentiating the new state vector ϕ with

respect to time the following will be obtained:

ż1 = ḣ1 = Lfh1 = Lf0h1 + L∆fh1 = z2 + L∆fh1,

ż2 = d
dt(Lf0h1) = LfLf0h1 = L2

f0
h1 + L∆fLf0h1 = z3 + L∆fLf0h1,

...

żr1 = d
dt(L

r1−1
f0

h1) = LfL
r1−1
f0

h1 = Lr1f0h1 +
m∑
i=1

Lg0iL
r1−1
f0

h1ui + L∆fL
r1−1
f0

h1

+
m∑
i=1

L∆giL
r1−1
f0

h1ui,

...

żrm = d
dt(L

rm−1
f0

h1) = LfL
rm−1
f0

h1 = Lrmf0 h1 +
m∑
i=1

Lg0iL
rm−1
f0

h1ui + L∆fL
rm−1
f0

h1

+
m∑
i=1

L∆giL
rm−1
f0

h1ui,

ζ̇(t) = w(z, ζ, u, δp).

(2.13)

Therefore, the approximate I/O feedback linearizing control input which puts system (2.4) in a

quasi-canonical form is given by

u = G−1
∗ (v − f∗), (2.14)

where

f∗ =
[
Lr1f0h1, L

r2
f0
h2, ..., L

rm
f0
hm

]T
,

with v being the new control input vector to be designed. Further, ζ ∈ Rn−r is the vector of

internal dynamics states. Substituting (2.14) in (2.13), the following system is obtained:

ż(t) = Acz(t) + bcv(t) +W (z, ζ, u, δp),

ζ̇(t) = w(z, ζ, u, δp),
(2.15)

where z(t) ∈ Z ⊂ Rr, and Z ⊂ χ, v(t) = [v1(t), v2(t), ..., vm(t)]T ∈ Rm and Ac =

diag{A1, A2, ..., Am} in which

Ai =


0 1 0 · · · 0
...

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0

 ∈ Rri×ri ,
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bc =
[
bT1 b

T
2 · · · bTm

]T , with each bj ∈ Rrj , j = 1, 2, . . . ,m, a rj-dimensional vector of rj − 1

zeros appended by the last element equal to one; and W (z, ζ, u, δp) ≡ W (z, ζ, v, δp) is the

vector in which all remaining nonlinearities associated with the inexact I/O linearization are

grouped together, such that

W (z, ζ, u, δp) =



L∆fh1 +
m∑
j=1

L∆gjh1uj

L∆fLf0h1 +
m∑
j=1

L∆gjLf0h1uj

...

L∆fhm +
m∑
j=1

L∆gjhmuj

...

L∆fL
rm−1
f0

hm +
m∑
j=1

L∆gjL
rm−1
f0

hmuj



,

with u = [u1, u2, . . . , um]T given by (2.14). Therefore, due to parametric uncertainties, the

nonlinear control (2.14) can only linearize the nominal part of system (2.11) and, as a result, the

system in ϕ-coordinates is approximately transformed into a normal form (Isidori, 1989).

The uncertainty vector W (z, ζ, u, δp), in quasi-canonical system (2.15), should be taken into

consideration in order to accomplish robust control of the system. One possible approach is

to consider that W (z, ζ, u, δp) ≡ W (t) is just a norm bounded external disturbance signal

(Marino and Tomei, 1993, Joo and Seo, 1996, Jong-Tae, 2000, 2004, Shan et al., 2007); but

this assumption amounts to loss of information about the internal structure of W (z, ζ, u, δp),

together with the not easily justifiable fact that this signal is considered a priori bounded. Within

this context, what makes this work distinct from previous studies is the exact representation of

I/O quasi-canonical system explicitly in terms of new state vector ϕ and uncertainties such that

the structural information of W (z, ζ, u, δp) is taken into account in stability analysis.

Whereas the original uncertain nonlinear system (2.4) is comprised by rational vector func-

tions, the I/O linearization process leads to a set of rational systems (2.15) in new coordinates.

Therefore, as depicted in Figure 2.3, one can represent the external part of (2.15), which is in

quasi-canonical form, into the DAR system such that it enables regional robust stabilization

analysis and control synthesis. Therefore, the quasi-canonical system (2.15) can be recast as the
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following DAR system in (z, ζ)-coordinates:

ż(t) = A1(z, ζ, δp)z +A2(z, ζ, δp)π +A3(z, ζ, δp)v, (2.16)

0 = Π1(z, ζ, δp)z + Π2(z, ζ, δp)π + Π3(z, ζ, δp)v.

Now, one can investigate the regional robust stabilization of system (2.16) by synthesizing a

linear feedback control for the input v as it will be described in Chapter 4. We will show

later that if the system has input-to-state stable internal dynamics one can prove the closed-loop

system stability.

Regarding robustifying techniques applied to feedback linearizable systems, some literature are

reviewed here to have a comparison with our approach. In (Marino and Tomei, 1993) a robust

global stabilizing state feedback control is designed for a time varying single-input nonlinear

system whose parameters uncertainties are unmodelled but bounded. The feedback linearized

system disturbed by unknown nonlinearities is shown to be globally stabilizable by a fixed dy-

namic state feedback compensator while the time varying nonlinear uncertainties satisfy a struc-

tural coordinate-free triangularity condition. They improved the stabilization results in (Kanel-

lakopoulos et al., 1991) by removing the linear parametrization assumption and considering the

bounded time-varying parameters and uncertainties on nonlinearities. In (Joo and Seo, 1996) it

was investigated the robust stability of a SISO feedback linearized system containing paramet-

ric uncertainties and input disturbance, and it is shown that a linear parametrized transformed

system can be derived from an uncertain nonlinear system with single and affine input control.

FIGURE 2.3: Representation of I/O linearized model to DAR model.
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The resulting parameter varying system, which is strongly accessible from any initial condition,

is proved to be globally stabilizable by static-state feedback control law.

An exact feedback linearizable model under unstructured uncertainty is considered in (Chao

et al., 1994). The stability robustness is guaranteed using two conditions, the relation between

L2 induced norm and the Hamilton-Jacobi inequality for the nonlinear system, and also the

relation between L2 induced norm of the nonlinear system and H∞ norm of its linearization.

The robust stabilization of uncertain input-state feedback linearizable system, and approximate

feedback linearization are also investigated in (Jong-Tae, 2000), (Jong-Tae, 2004), (Guardabassi

and Savaresi, 2001) and (Shan et al., 2007). Meanwhile, a class of time-varying nonlinear

systems was taken under consideration by (Han-Lim and Jong-Tae, 2003). They developed a

stabilizing feedback linearization control scheme by proposing the concept of a time varying

diffeomorphism. By representing the uncertain disturbed nonlinear system with Tagaki Sugeno

(TS) fuzzy model, an LMI-based L2 robust stability synthesis was performed on fuzzy feedback

linearized system by (Park et al., 2004).

The new concept of robust feedback linearization, in which the Brunovsky canonical form of

linearized system differs form that of classical feedback linearization, was first introduced in

(Guillard and Bourlès, 2000). It is done by performing a clever transformation in the original

change of coordinates (or diffeomorphism) and in the original linearizing control law of the non-

linear system. However, this technique works only in a small neighborhood of some operating

points.

In (Driemeyer Franco et al., 2005) and (Franco et al., 2006) it was applied robust feedback lin-

earization technique together with a robust linear H∞ controller for uncertain magnetic bearing

system. In (Mokhtari et al., 2005) mixed robust feedback linearization with GH∞ controller

was also used for the application of nonlinear quad-rotor UAV. A MIMO twin rotor applica-

tion using Lyapunov based robust feedback linearization scheme was investigated as well in

(Karimi and Jahed Motlagh, 2006). And the research in (Liu and Soffker, 2009) investigated the

disturbance rejection of I/O linearizable system by applying feedback of the system uncertain-

ties and modeling error which are estimated by a specific high-gain PI observer and by states

measurements.

Overall, one major challenge of the reviewed studies above is that how can deal with the uncer-

tain nonlinearities of feedback linearizable systems (corresponding to the vector W (z, ζ, u, δp)
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in system (2.15)). In this context, some assumptions, such as structural coordinate-free trian-

gularity, and some strategies, such as estimation and approximation methods were utilized for

those nonlinearities. In the current study, however, we utilize the instrumental DAR tool to have

an exact representation of uncertain nonlinearities such that we can incorporate their structural

information in the robust stability analysis and control synthesis.

2.4.1.1 Approximate Feedback Linearization of Inverted Pendulum

This section presents an inverted pendulum system model in order to apply approximate feed-

back linearization strategy. The same inverted pendulum model studied in (Rohr et al., 2009) is

used here. The differential equation of this system is

θ̈(t) =
g

l
sin(θ(t))− bθ̇(t)

M
+
u(t)

Ml2
, (2.17)

where g is the gravitational acceleration, l is the length of pendulum, M is the total mas and

b is the damping coefficient. Also the state θ(t) is the angle of pendulum bar with respect to

the vertical direction, and u(t) is the control torque actuation. Figure 2.4 depicts the schematic

of inverted pendulum dynamics. Note that for simplicity the explicit dependencies on time for

states and control signals will not be shown in the next expressions.

According to the change of variables in (2.9) and (2.10) the rational system identical to (2.17) is

r̈ =
2rṙ2

1 + r2
− bṙ

M
+
gr

l
+
u(1 + r2)

2Ml2
. (2.18)

FIGURE 2.4: Schematic of the inverted pendulum dynamics



Uncertain Nonlinear Dynamical Systems Representations 25

To show the system (2.18) in state-space form we define x1 = r and x2 = ṙ, such that

ẋ1 = x2,

ẋ2 =
2x1x22
1+x21

+ g
l x1 − b

M x2 +
1+x21
2Ml2

u,

y = x1.

(2.19)

Suppose that there exist uncertainties in the parameters b and M . The nominal and uncertain

parts of them can be written together as b0(1 + δ2) and M0(1 + δ1) in which the uncertainty

vector is δp = [δ1 δ2]T . Therefore, the uncertain nonlinear rational system is

ẋ1 = x2,

ẋ2 =
2x1x22
1+x21

+ g
l x1 − b0(1+δ2)

M0(1+δ1)x2 +
1+x21

2M0(1+δ1)l2
u,

y = x1.

(2.20)

Rewriting system (2.20) in the form (2.4) the following drift and steering vector fields, respec-

tively, are obtained:

f(x, δ) =

 x2

2x1x22
1+x21

+ g
l x1 − b0(1+δ2)

M0(1+δ1)x2

 , g(x, δ) =

 0

1+x21
2M0(1+δ1)l2

 ,
with x = [x1 x2]T . Hence, (2.20) can be rewritten as (2.11) by taking

f0(x, p0) =

 x2

2x1x22
1+x21

+ g
l x1 − b0

M0
x2

 , g0(x, p0) =

 0

1+x21
2M0l2

 ,

∆f(x, δp) =

 0

− b0(δ2−δ1)
M0(1+δ1)x2

 ,∆g(x, δp) =

 0

− (1+x21)δ1
2M0l2(1+δ1)

 .
By differentiating twice the output y the input u appears, which means the system has full

relative degree (r = n = 2) and does not have internal dynamics. Then, by considering the

mapping z = [x1 x2]T one can obtain the following linearizing control from (2.14)

u(t) = (Lg01Lf0x1)−1
(
v − L2

f0x1

)
, (2.21)

whereLg01Lf0x1 =
1+x21
2M0l2

andL2
f0
x1 =

2x1x22
1+x21

+ g
l x1− b0

M0
x2. Therefore, the feedback linearized

system (2.15) is achieved in which
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Ac =

0 1

0 0

, bc =

0

1

 ,
and

W (z, u, δp) =

 L∆fx1

L∆fLf0x1 + L∆gLf0x1u

 =

 0

− b0(δ2−δ1)
M0(1+δ1)z2 −

(1+z21)δ1
2M0l2(1+δ1)

u

 .
According to (2.21) we substitute u with v in vector W . So the approximately feedback lin-

earized system is

ż = Acz + bcv +

 0

− b0δ2
M0(1+δ1)z2 + δ1

1+δ1
(

2z1z22
1+z21

+ g
l z1)− δ1

1+δ1
v

 . (2.22)

2.4.1.2 Approximate Input/Output Linearization of a MIMO System

The following MIMO system, having internal dynamics, is taken from (Zhang and Bien, 2000):

ẋ1 = x4 − (1 + δ2)x1,

ẋ2 = x2 + x1x3(1 + δ1) + (1 + 2(1 + δ1)x3)u1 + u2,

ẋ3 = x2
1 − x2 − (1 + δ1)x3 + 2(1 + δ1)x3u1 + u2,

ẋ4 = (1 + δ1)x3,

y = h(x) =
[
x2 − x3 x4

]T
,

(2.23)

in which δp = [δ1 δ2]T .

Rewriting (2.23) in the form (2.11), with x = [x1 x2 x3 x4]T and the control vector u =

[u1 u2]T , we have

f0(x, p0) =


x4 − x1

x2 + x1x3

x2
1 − x2 − x3

x3

 , g0(x, p0) =


0 0

1 + 2x3 1

2x3 1

0 0

 ,
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∆f(x, δp) =


−δ2x1

δ1x1x3

−δ1x3

δ1x3

 ,∆g(x, δp) =


0 0

2δ1x3 0

2δ1x3 0

0 0

 .

Differentiating once the output y1 = h1(x) = x2 − x3 and twice y2 = h2(x) = x4 the

elements of input vector u appear, which means that the total relative degree is r = 3 and

there exists internal dynamics since r < 4. In this respect, the mapping Φ(x) = [zT ζ]T =

[h1 h2 Lf0h2 ζ]T , in which Lf0h2 = x3 and ζ = x1, can be considered in order to obtain the

linearizing control input from (2.14) as:

u =

 Lg01h1 Lg02h1

Lg01Lf0h2 Lg02Lf0h2

−1 (
v −

Lf0h1

L2
f0
h2

), (2.24)

where Lg01h1 Lg02h1

Lg01Lf0h2 Lg02Lf0h2

 =

 1 0

2x3 1

 ,
Lf0h1

L2
f0
h2

 =

2x2 + x3 − x2
1 + x1x3

x2
1 − x2 − x3

 ,
and v ∈ R2 is the new control input. Therefore, the approximately feedback linearized system

for (2.23) is obtained as

ż =


0 0 0

0 0 1

0 0 0

 z +


1 0

0 0

0 1

 v + δ1z3


1 + ζ

1

−2ζz3 + 2ζ2 − 6z3 − 4z1 − 1 + 2v1

 , (2.25)

and the corresponding internal dynamics is

ζ̇ = z2 − (1 + δ2)ζ. (2.26)

2.5 On the Representation of Input Saturation

As earlier discussed in Section 1.2 whereas every dynamical system in practice is subject to

some actuation limit, by considering this characteristic in the system’s nonlinear model some-

times it is expected to achieve better stability results, which means, in the present context, DOA
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FIGURE 2.5: Input-saturated uncertain nonlinear system.

estimates with higher volume. On the other hand, ignoring the saturation condition in the sys-

tem model and control design might, in extreme case, lead to instability in practical situations

in which actuator saturates while higher control command is demanded (Hu and Lin, 2001).

Even though one can neglect saturation in system model and prevent control command from ex-

ceeding actuator limits, this strategy is conservative and may cause lower stability performance

compared to when saturation is taken into account.

In this thesis we will also investigate regional robust stabilization and DOA estimation, by de-

signing a linear state feedback control with saturated input as shown in Figure 1.4, for the MIMO

uncertain input-affine system (2.4) with only one difference that the input control u(t) is replaced

by its corresponding saturation vector function sat(u(t)). Therefore, system (2.4) is rewritten

as:

Σ : ẋ(t) = f(x, δ) +
m∑
j=1

gj(x, δ)sat(uj(t)), (2.27)

where saturation input element sat(uj(t)) is defined as

sat(uj(t)) := sign(uj(t))×min{|uj(t)|, u0j}; j = 1, ...,m; (2.28)

where u0j ∈ R+ is the maximum absolute value of uj(t). The typical view of system (2.27) is

shown in Figure 2.5.

Interestingly, we can also represent the class of input-saturated systems (2.27) in the following

DAR format:

ẋ(t) = A1(x, δp)x+A2(x, δp)π +A3(x, δp)sat(u(t)), (2.29)

0 = Π1(x, δp)x+ Π2(x, δp)π + Π3(x, δp)sat(u(t)),

with δ = p0 + δp, π ≡ π(x, sat(u), δp) ∈ Rnπ and A1 ∈ Rn×n, A2 ∈ Rn×nπ , A3 ∈ Rn×m,



Uncertain Nonlinear Dynamical Systems Representations 29

FIGURE 2.6: Dead-zone nonlinearity and sector bound condition.

Π1 ∈ Rnπ×n, Π2 ∈ Rnπ×nπ and Π3 ∈ Rnπ×m being matrices of affine functions with respect

to (x, δp), such that Π2 is a square full-rank matrix for all (x, δ) ∈ X×∆.

2.5.1 Description of Input Saturation

The input saturation sat(u) can be described in different ways for the sake of facilitating stability

analysis. One way is to define the so-called dead-zone nonlinearity vector as

ψ(t) := u(t)− sat(u(t)), ψ(t) ∈ Rm, (2.30)

in which ψ(t) takes part as a new input to the system (2.27) such that

ẋ(t) = f(x, δ) +
m∑
j=1

gj(x, δ)u(t)−
m∑
j=1

gj(x, δ)ψ(t). (2.31)

Note that the above system can also be represented in a DAR model. If one considers the linear

state feedback control design u(t) = Kx(t), withK ∈ Rm×n, and also a real matrixG ∈ Rm×n

such that

− u0 ≤ (K −G)x ≤ u0, (2.32)

u0 = [u01u02 · · ·u0m]T , and considering the inequality above element-wise, then the following

matrix inequality condition can be inferred (Da Silva and Tarbouriech, 2005):
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ψ(t)TM [ψ(t)−Gx] ≤ 0, M ∈ Rm×m, M > 0, (2.33)

where M is diagonal and positive definite with M(jj) being its jth diagonal element, and this

inequality is referred to as the sector bound condition. Figure 2.6 shows the dead-zone non-

linearity ψ(t) for the linear state feedback control together with the sector bound condition in

shaded space. To verify sector condition (2.33) three cases may happen based on (2.28):

1. sat(uj(t)) = uj(t): Then ψj(t) = 0 and ψj(t)M(j,j)[ψj(t) − Gjx] = 0, where ψj(t) is

the jth element of vector ψ(t) and Gj is the jth row of matrix G.

2. sat(uj(t)) = u0j

(
it happens when Kjx ≥ u0j

)
: Then ψj(t) = Kjx− u0j ≥ 0 with Kj

being the jth row ofK and, from (2.32),Kjx−Gjx ≤ u0j which means ψj(t)−Gjx ≤ 0.

Then, one can conclude that ψj(t)M(j,j)[ψj(t)−Gjx] ≤ 0.

3. sat(uj(t)) = −u0j

(
it happens when Kjx ≤ −u0j

)
: Then ψj(t) = Kjx+ u0j ≤ 0 and,

from (2.32),−u0j ≤ Kjx−Gjx which means 0 ≤ ψj(t)−Gjx. Then, one can conclude

that ψj(t)M(j,j)[ψj(t)−Gjx] ≤ 0.

Since for all j ∈ [1,m] the inequality ψj(t)M(j,j)[ψj(t)−Gjx] ≤ 0 is true one can infer

m∑
j=1

ψj(t)M(j,j)[ψj(t)−Gjx] ≤ 0,

which results in (2.33). The sector bound condition (2.33) can be incorporated with Lyapunov

theory to develop stabilizing LMIs for system (2.29) or (2.27) and this approach has been used

broadly to study the systems with input saturation in (Castelan et al., 2006, Garcia et al., 2007,

Da Silva et al., 2008, Flores et al., 2009, Garcia et al., 2009, Da Silva et al., 2009, Flores et al.,

2010, Coutinho and Da Silva, 2010, Oliveira et al., 2010, Bender et al., 2011, Flores et al.,

2012, Da Silva and Turner, 2012, Oliveira et al., 2012, Flores et al., 2013, Da Silva et al., 2013,

Oliveira et al., 2013, Da Silva et al., 2014).

On the other hand there is another clever representation of saturation input which is based on

the polytopic description of the nonlinear vector sat(u(t)). Following the work in (Hu and Lin,

2001), the saturation vector function sat(u(t)) belongs to the convex hull of a set of two vectors,

as stated in the following Lemma adapted from Lemma 7.3.2 of (Hu and Lin, 2001):

Lemma 2.3. Define

D := {Ds : s = 1, 2, ..., 2m},
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to be a set of m×m diagonal matrices Ds whose diagonal elements are either 0 or 1. Clearly,

the number of members of the setD is 2m. Also, denoting D−s = Im−Ds, then D−s ∈ D. There

exists a vector ũ(t) ∈ Rm, whose components satisfy |ũj(t)| ≤ u0j , ∀j ∈ [1,m], such that

sat(u(t)) ∈ co
{
Dsu(t) +D−s ũ(t) : s = 1, 2, ..., 2m

}
(2.34)

Proof. Let uj := u
(1)
j and ũj := u

(2)
j . For only one input vector, i.e. m = 1 and j = 1 we

verify from |u(2)
1 | ≤ u01 that:

• sat(u
(1)
1 ) = u

(1)
1 ∈ co{u(1)

1 , u
(2)
1 },

• sat(u
(1)
1 ) = u01 , u

(2)
1 ≤ u01 ≤ u

(1)
1 =⇒ sat(u

(1)
1 ) ∈ co{u(1)

1 , u
(2)
1 },

• sat(u
(1)
1 ) = −u01 , u

(1)
1 ≤ −u01 ≤ u

(2)
1 =⇒ sat(u

(1)
1 ) ∈ co{u(1)

1 , u
(2)
1 }.

Form = 2 (j ∈ [1, 2]) we can infer from the proof form = 1 that there exist α1, α2, β1, β2 such

that
∑2

i=1 αi =
∑2

k=1 βk = 1 and sat(u
(1)
1 ) =

∑2
i=1 αiu

(i)
1 and sat(u

(1)
2 ) =

∑2
k=1 βku

(k)
2 .

Then

sat

(u(1)
1

u
(1)
2

) =

∑2
i=1 αiu

(i)
1∑2

k=1 βku
(k)
2

 =

∑2
i=1 αiu

(i)
1

(∑2
k=1 βk

)
∑2

k=1 βku
(k)
2

(∑2
i=1 αi

)
 =

∑2
i=1

∑2
k=1 αiβku

(i)
1∑2

i=1

∑2
k=1 αiβku

(k)
2



=

2∑
i=1

2∑
k=1

αiβk

u(i)
1

u
(k)
2

 =

2∑
i=1

αi

2∑
k=1

βk

u(i)
1

u
(k)
2

 ∈ co{
u(1)

1

u
(1)
2

 ,
u(1)

1

u
(2)
2

 ,
u(2)

1

u
(1)
2

 ,
u(2)

1

u
(2)
2

}

= co

{1 0

0 1

u1

u2

+

0 0

0 0

ũ1

ũ2

 ,
1 0

0 0

u1

u2

+

0 0

0 1

ũ1

ũ2

 ,
0 0

0 1

u1

u2



+

1 0

0 0

ũ1

ũ2

 ,
0 0

0 0

u1

u2

+

1 0

0 1

ũ1

ũ2

}.
And finally by induction one can continue the proof up to the arbitrary number m of inputs

(j ∈ [1,m]) such that (2.34) is obtained.

If we assume that the input control command u(t) is computed as an LTI feedback of states,

i.e. u = Kx, and also the vector ũ(t) in (2.34) is a linear vector of system states, for example

ũ(t) = Hx, then, the saturation input can be represented by the convex combination of these

linear vectors as depicted in Figure 2.7.
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FIGURE 2.7: Representation of saturated input by the convex combination of linear vectors.

Remark 2.4. In light of Lemma 2.3, sat(u(t)) can be replaced in (2.29) by some linear combi-

nation of the vectors u(t) and ũ(t). Therefore, the DAR (2.29) of input-saturated system (2.27)

gives us a powerful tool to generalize the polytopic description for input-saturated nonlinear

systems using the same approach employed in (Hu and Lin, 2001, Hu et al., 2004) for input-

saturated linear systems. In the other words, the saturated input vector sat(u(t)) is formed by

the convex combination of some elements from u(t) and the rest from ũ(t). This property can

be directly applied in the derivation of Lyapunov-based stabilizing LMIs, and is also applied in

other works for input-saturated linear systems (Hu et al., 2002, Hu and Lin, 2003a, Cao et al.,

2002, Fang et al., 2004, Hu et al., 2005, Hu and Lin, 2003b). However, in the context of deriving

stabilizing LMIs, it is important to emphasize that this approach can be used at the expense of

having 2m inequalities to be considered.

Overall, the use of property (2.34), which represents the input nonlinearity sat(u(t)) in a linear

form, gives us an advantage over dead-zone nonlinearity and sector bound condition. That is,

the use of sector bound condition is mostly applicable with S-procedure Lemma, which will

be stated in Chapter 4, that induces conservativeness to the stabilizing LMI conditions. On the

contrary, the use of property (2.34) for deriving LMI conditions is independent of S-procedure.

We will show in Chapter 4 that how one can synthesize linear feedback control of saturated input

by representing it with a convex combination of two linear vectors based on (2.34).



Chapter 3

Stability Analysis of Uncertain

Nonlinear Dynamical Systems

In this chapter we will use the concepts of regional stability throughout the definition of DOA

for the set of systems (2.15), which was the transformation of (2.4), and analogously for the

input saturated system (2.27). These concepts will be investigated within the context of Lya-

punov quadratic stability which corresponds to obtaining the guaranteed ellipsoidal DOA of

such systems. Moreover, we will recall the input-to-state stability (ISS) condition for the inter-

nal dynamics of the set of interconnected systems (2.15) (Isidori, 1999).

3.1 Polytopic Descriptions of State Space Regions

In this work we will define the set X to be a polytope in the state space of system (2.27) over the

intersections of some hyperplanes:

X = {x | aTk x ≤ 1, k = 1, ..., ne} , (3.1)

where ak is a constant n-dimensional vector whose parameters can be calculated, for example,

by putting the extremum values of the states in each hyperplane equation ak1xk1 + ak2xk2 +

... + aknxkn = 1; and ne is the number of hyperplanes. We will consider that the ellipsoidal

Domain of Attraction, which will be defined in Section 3.2, is inside this polytopic set.

33
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One can find the relation between the polytopic set X × ∆ and the DAR representation (2.29)

of system (2.27). This can be done by showing that the uncertain matrices of DAR system

(2.29) are representable by the convex combination of several constant matrices over the vertices

of polytopic region defined by X × ∆. Since X × ∆ is a polytopic region and A1, A2, A3

and Π1,Π2,Π3 are the matrices of affine functions with respect to (x, δp), then they belong to

polytopes of matrices, i.e. for nx number of vertices in X and 2l number of vertices in ∆:

A1 ∈ D1 =
{
A1(x, δp) ∈ Rn×n | A1 =

∑nx
i=1

∑2l

j=1 αiβjA1(xi, δpj)
}
,

A2 ∈ D2 =
{
A2(x, δp) ∈ Rn×nπ | A2 =

∑nx
i=1

∑2l

j=1 αiβjA2(xi, δpj)
}
,

A3 ∈ D3 =
{
A3(x, δp) ∈ Rn×m | A3 =

∑nx
i=1

∑2l

j=1 αiβjA3(xi, δpj)
}
,

Π1 ∈ D4 =
{

Π1(x, δp) ∈ Rnπ×n | Π1 =
∑nx

i=1

∑2l

j=1 αiβjΠ1(xi, δpj)
}
,

Π2 ∈ D5 =
{

Π2(x, δp) ∈ Rnπ×nπ | Π2 =
∑nx

i=1

∑2l

j=1 αiβjΠ2(xi, δpj)
}
,

Π3 ∈ D6 =
{

Π3(x, δp) ∈ Rnπ×m | Π3 =
∑nx

i=1

∑2l

j=1 αiβjΠ3(xi, δpj)
}
,

where
∑nx

i=1 αi =
∑2l

j=1 βj = 1, αi, βj ≥ 0. Moreover, A1(xi, δpj), A2(xi, δpj), A3(xi, δpj)

and Π1(xi, δpj),Π2(xi, δpj),Π3(xi, δpj) are the valued matrices A1, A2, A3 and Π1,Π2,Π3 in

each vertex of X×∆.

To clarify more, consider again Figure 1.1 (page 2) depicted in Section 1.1. The set X in that

figure defines a region whose vertex points xi, i ∈ [1, 4] are associated with a polytopic set of

states comprising local state trajectories of uncertain nonlinear system (2.29) or (2.27). Anal-

ogously, for the DAR system (2.16), which was the approximate I/O feedback linearization of

system (2.4), one can assign a state-space and uncertainty polytopic set χ × ∆ that includes

local trajectories of system (2.16) in (z, ζ)-coordinates. In this respect, the matrices A1, A2, A3

and Π1,Π2,Π3 in (2.16) will be evaluated over the vertices of χ × ∆1. This notion, for DAR

representations, enables to investigate stabilizing LMI conditions, and it will be explained in

Chapter 4.
1Remember that in the context of (z, ζ)-coordinates, the polytope χ is in function of Φ(x) not x.
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3.2 Regional Stability and Domain of Attraction

As previously mentioned in Section 1.1, within the context of regional stability, the DOA is

a stabilizing compact region of uncertain nonlinear system (2.27) such that every trajectory

initiating inside this region asymptotically converges to the system’s origin. In this sense, one

can intimately relate the DOA with the Lyapunov theory which is described in (Khalil, 2002).

That is if we find a continuously differentiable positive definite function V (x) : X 7→ R+ for

the uncertain nonlinear system (2.27) with input saturation and the associated normalized region

Ω := {x ∈ Rn|V (x) ≤ 1} ⊂ X inside which the time derivative of V (x) satisfies

V̇ < 0, ∀(x, δ) ∈ X×∆, (3.2)

one can conclude that any trajectory x(t) of (2.27), initiating inside Ω, approaches the origin

(system’s equilibrium point) as t→∞. In this context, Ω is called the DOA of system (2.27).

3.3 Quadratic Stability and Guaranteed Ellipsoidal DOA

Considering the following quadratic Lyapunov function for system (2.27) or its DAR (2.29):

V (x) = xTPx, P = P T > 0, (3.3)

the corresponding ellipsoidal DOA is obtained as:

Ω(P, 1) = {x ∈ Rn : xTPx ≤ 1}. (3.4)

If we take the time-derivative of V (x) along the trajectory of the state vector x with the input

control command u(t) = Kx(t), K ∈ Rm×n being a static linear time invariant feedback of

the system states, such that:

V̇ (x, δ) = ẋTPx+ xTPẋ, (3.5)

and we show that for all x ∈ Ω(P, 1) ⊂ X and δ ∈ ∆ the time derivative V̇ is negative definite,

then Ω is called the guaranteed ellipsoidal DOA in the sense of quadratic stability. We will show

in Chapter 4 that there exist stabilizing LMI conditions, for the quasi-canonical set of systems

(2.15) or its DAR (2.16), in z-coordinates, and for input-saturated system (2.27) or its DAR

(2.29), such that V̇ < 0 is satisfied while the corresponding positive definite matrix P , which
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defines the guaranteed ellipsoidal set Ω(P, 1), together with the static state feedback gain K

will be synthesized. Then we will define Semidefinite Programming (SDP) problems subject to

those LMIs in order to estimate maximum ellipsoidal DOA inside X for saturation system and

maximum ellipsoidal DOA inside Z, whose definition is the same as (3.1) in z-coordinate, for

quasi-canonical system under the condition of input-to-state stability of internal dynamics.

Remark 3.1. It is noteworthy that some previous works have considered more complex shapes

for the DOA than the ellipsoidal one aiming to achieve less conservatism (Chesi, 2004a, Chesi

et al., 2004, Coutinho et al., 2008, 2009, Coutinho and De Souza, 2013, Trofino and Dezuo,

2014). On the other hand, this leads naturally to more complex Lyapunov candidate functions

with respect to the states and uncertain parameters. In this work, the use of simple quadratic

Lyapunov candidate functions is important to obtain LMI synthesis conditions for the state feed-

back control gain matrix without relying on any further previous knowledge about the system.

This is rather difficult to obtain as one can conclude by studying the referenced papers above

where either only analysis conditions are considered (Chesi, 2004a, Chesi et al., 2004, Coutinho

et al., 2009, Coutinho and De Souza, 2013, Trofino and Dezuo, 2014), or one has to know in

advance an initial estimate of a stabilizing feedback control gain matrix (Coutinho et al., 2008).

Remark 3.2. Another important fact, concerning input-output feedback linearized systems, is

that for the quasi-canonical system (2.15) and its DAR (2.16) we want to search for an estimated

maximized DOA that is a hyper-ellipsoid in the space of the variables z, and this is not the system

state-space because the internal dynamics variables ζ are not account for. To circumvent this

problem, we will have to assume that the internal dynamics are input-to-state stable (ISS).

In order to ensure that Ω(P, 1) is a subset of X we have to enforce an inequality condition. In

this regard, the polytopic set of states X defined in (3.1) can be, alternatively, rewritten as:

2− aTk x− xTak ≥ 0, k = 1, ..., ne. (3.6)

Also according to the quadratic Lyapunov function (3.3) the ellipsoidal DOA Ω(P, 1) is always

a subset of the polytope X if and only if the following inequalities are satisfied [Lemma 3 in

(Rohr et al., 2009)]:

1− aTk x− xTak + xTPx ≥ 0, k = 1, ..., ne. (3.7)
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The above inequalities can be rewritten as

1

x

T  1 −aTk
−ak P

1

x

 ≥ 0, k = 1, 2, ..., ne. (3.8)

Therefore, the feasibility of the following necessary and sufficient LMIs ensures that Ω(P, 1) ⊂

X:  1 −aTk
−ak P

 ≥ 0, k = 1, 2, ..., ne. (3.9)

Analogously, we can derive the condition (3.9) for the DOA

Ωz = {z ∈ Rr : zTPz ≤ 1}, (3.10)

to be the subset of

Z = {z | aTk z ≤ 1, k = 1, ..., ne} , (3.11)

in the new state coordinates z(t) of quasi-canonical system.

3.4 Input-to-State Stability of Internal Dynamics

Before investigating the closed-loop regional stability of I/O part of (2.15) or (2.16) one has to

guarantee the stability of internal dynamics. Note that since we plan to design an LTI feedback

control for the new input v(t), i.e. v(t) = Kz(t), the internal dynamics can be rewritten as

ζ̇ = w(z, ζ, δp) which has to remain stable for all (z, δ) ∈ Z×∆. This problem can be addressed

through the notion of Input-to-State Stability (ISS) of a pair of interconnected systems (2.15) by

investigating the stability of internal dynamics subsystem driven by the bounded input z(t) in

the presence of uncertainties. Within this context, the definitions of input-to-state stability and

ISS-Lyapunov function are recalled here for the internal dynamics of (2.15) as follows (Isidori,

1999):

Definition 3.3. The internal dynamics ζ̇ = w(z, ζ, δp) is said to be input-to-state stable if there

exist a class KL function β(., .) and a class K function γ(.) such that, for any input (z(t), δ) ∈

Z×∆ and any initial state ζ(0) ∈ Rn−r, the response ζ(t) satisfies

||ζ|| ≤ max{β(||ζ(0)||, t), γ(||z||)}. (3.12)
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Definition 3.4. A differentiable function Vζ : Rn−r → R is called an ISS-Lyapunov function

for system ζ̇ = w(z, ζ, δp) if there exist class K∞ functions w1(.), w2(.), w3(.), and a class K

function α(.) such that

w1(||ζ||) ≤ Vζ(ζ) ≤ w2(||ζ||) ∀ζ ∈ Rn−r, (3.13)

and

||ζ|| ≥ α(||z||) ⇒ ∂Vζ
∂ζ w(z, ζ, δp) ≤ −w3(||ζ||) ∀ (ζ, δ) ∈ Rn−r ×∆. (3.14)

Based on above definitions one can imply that the existence of an ISS-Lyapunov function leads

to input-to-state stability of the internal dynamics (Khalil, 2002). In other words, the norm of

internal dynamics state vector ζ remains bounded and the bound is characterized by a class K

function of ||z||. Therefore, if this property is verified, one can investigate regional asymptotic

stability of I/O system (2.16) over the vertices of the polytopic set χ characterized by the new

state coordinates ϕ = Φ(x) = [zT ζT ]T , defined in (2.12), knowing that the ζ trajectories

remain bounded according to (3.12).

Remark 3.5. In the case of asymptotic stability of I/O system (2.16), according to (3.12), the

input-to-state stability of internal dynamics leads to the asymptotic stability as well. This is an

interesting result because if one can ensure closed-loop asymptotic stability of the approximate

I/O linearized system (2.16), under the condition of input-to-state stability of internal dynamics,

it can be concluded that the class K function α(||z||) tends to zero and therefore (3.14) is true

for all ||ζ|| > 0, which means the asymptotic convergence of ζ to the origin.

Unfortunately it is not easy to prove, in general, that the internal dynamics of a nonlinear system

is ISS. Therefore, this is actually a strong assumption on which we will rely to investigate input-

output feedback linearized uncertain systems in the next chapter.



Chapter 4

State Feedback Control Synthesis for

Uncertain Nonlinear Dynamical

Systems

This chapter investigates the regional asymptotic stability of system (2.15), represented as a

DAR system (2.16), which is obtained from the approximate linearization of (2.4). The regional

stability analysis is handled by considering polytopes of states and parametric uncertainties fol-

lowing the approaches in (Coutinho et al., 2008, Coutinho and De Souza, 2013, Coutinho et al.,

2009, Rohr et al., 2009, Trofino and Dezuo, 2014, Da Silva et al., 2014). To estimate the maxi-

mum ellipsoidal DOA for system (2.16), it is applied the Lyapunov direct method as presented

in Chapter 3. Then, the DOA estimation is carried out by solving numerically an SDP problem.

This approach will also be extended for uncertain nonlinear system described as in (2.27) or its

DAR (2.29) with input saturation. In this case a sufficient stabilizing LMI condition is derived

based on the poyltopic description of saturation of state feedback input vector as discussed in

Section 2.5.1.

4.1 Control Synthesis without Input Saturation

Considering the approximately linearized DAR system in (2.16) for the new input v(t) = Kz(t),

the problem is to handle the simultaneous stability analysis of the closed-loop system and con-

trol synthesis of a static gain K and also to estimate the corresponding ellipsoidal DOA inside

39
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the state-space polytopic set Z. Similar approach is considered in literature, but instead of a

synthesis problem, the control gain K is previously specified before performing any robust sta-

bility analysis (Rohr et al., 2009, Trofino and Dezuo, 2014). However, specifying the static gain

K beforehand, without taking the system’s knowledge into account, imposes conservativeness

to the problem. In this section, we will synthesize a stabilizing gain K while solving a convex

optimization problem subject to sufficient LMI conditions. If such an optimization problem is

feasible the estimation of maximum ellipsoid Ωz ⊂ Z will be obtained.

4.1.1 Control Design

This section introduces sufficient LMI conditions for approximately I/O linearized system in

(2.15) or its DAR (2.16) aiming the synthesis of a linear state feedback control gain. Before

explaining the theorem one has to recall S-procedure Lemma from (Boyd et al., 1994).

Lemma 4.1 (S-procedure). Assume that T0, ..., Tp ∈ Rn×n are symmetric matrices. If there

exists τ1 ≥ 0, ..., τp ≥ 0 such that T0 −
p∑
i=1

τiTi < 0, then yTT0y < 0 holds for all y ∈ Rn and

y 6= 0 such that yTTiy ≤ 0, i = 1, ..., p.

Therefore, we are ready to express the following theorem which illustrates the simultaneous

stability analysis and control synthesis problem for (2.16) under the existence of ISS Lyapunov

function for the internal dynamics in (2.15) as described in Section 3.4.

Theorem 4.2. Let ∆ be a set of admissible uncertainties and assume that there exists an ISS-

Lyapunov function for the internal dynamics of (2.15). Consider system (2.16) with the state

feedback control v(t) = Kz(t) and the associate closed-loop system:

ż(t) = (A1(z, ζ, δp) +A3(z, ζ, δp)K)z +A2(z, ζ, δp)π, (4.1)

0 = (Π1(z, ζ, δp) + Π3(z, ζ, δp)K)z + Π2(z, ζ, δp)π.

If there exist matrices Q = QT > 0 and Y ∈ Rm×r, and real scalars η ≥ µ > 0 such that LMIs

QA1
T
i +A1iQ+ Y TA3

T
i +A3iY + ηA2iA2

T
i QΠ1

T
i + Y TΠ3

T
i + ηA2i(Π2i + I)T

Π1iQ+ Π3iY + η(Π2i + I)A2
T
i −µI + η(Π2i + I)(Π2i + I)T

 < 0,

(4.2) 1 −aTkQ

−Qak Q

 ≥ 0, k = 1, 2, ..., ne, (4.3)
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are feasible in all vertices of χ × ∆ (nv = nϕ × 2l vertices) where χ is the polytopic set of

new states ϕ = [zT ζT ]T and Aj i,Πj i, j = 1, 2, 3; i = 1, ..., nv are the valued matrices Aj

and Πj in each vertex
(
according to (3.14) the vertices of internal dynamics states are selected

such that ||ζ|| ≥ α(||z||)
)
. Then, in this case, there exists a quadratic Lyapunov function

V (z) = zTPz, P = P T > 0 with an associate DOA Ωz in Z ⊂ χ
(
Ωz given in (3.10)

)
such

that for all z(0) starting inside Ωz and all δ ∈ ∆ the trajectories of z(t) asymptotically converge

to the origin as t→∞. In the positive case the control gain is given by K = Y Q−1.

Proof. For any real scalar γ ≤ 1 one can write γ ≤ π>π
π>π

. Then, the following can be inferred

from the algebraic equality property in the DAR in (4.1):

γπTπ −
[
(Π1i + Π3iK)z + (Π2i + I)π

]T [
(Π1i + Π3iK)z + (Π2i + I)π

]
≤ 0. (4.4)

The inequality (4.4) can be rewritten as:

z
π

T −(Π1i + Π3iK)T (Π1i + Π3iK) −(Π1i + Π3iK)T (Π2i + I)

−(Π2i + I)T (Π1i + Π3iK) γI − (Π2i + I)T (Π2i + I)

z
π

 ≤ 0. (4.5)

Taking the time-derivative of the Lyapunov function one gets

V̇ (z, ζ, δp) = żTPz + zTP ż = yTT0y < 0.

Denote (4.5) by yTT1y ≤ 0 with y = [zT πT ]T . Notice that considering the S-Procedure

(Lemma 4.1) with variable τ > 0, then T0 − τT1 < 0 can be written as:

 Ma PA2i + τ(Π1i + Π3iK)T (Π2i + I)

A2
T
i P + τ(Π2i + I)T (Π1i + Π3iK) −τγI + τ(Π2i + I)T (Π2i + I)

 < 0, (4.6)

where Ma = A1
T
i P + PA1i +KTA3

T
i P + PA3iK + τ(Π1i + Π3iK)T (Π1i + Π3iK).

Notice that (4.6) can be rewritten asA1
T
i P + PA1i +KTA3

T
i P + PA3iK PA2i

A2
T
i P −τγI

−(Π1i + Π3iK)T

(Π2i + I)T

 (− 1
τ )−1

[
(Π1i + Π3iK) (Π2i + I)

]
< 0.
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Pre- and post multiplying the above inequality by

P−1 0

0 I

 with Q = P−1 and Y = KQ it

follows that QA1
T
i +A1iQ+ Y TA3

T
i +A3iY A2i

A2
T
i −τγI

−QΠ1
T
i + Y TΠ3

T
i

(Π2i + I)T

 (− 1
τ )−1

[
Π1iQ+ Π3iY (Π2i + I)

]
< 0,

which after applying Schur complement leads to:


QA1

T
i +A1iQ+A3iY + Y TA3

T
i A2i QΠ1

T
i + Y TΠ3

T
i

A2
T
i −τγI (Π2i + I)T

Π1iQ+ Π3iY (Π2i + I) − 1
τ I

 < 0 . (4.7)

A necessary condition for the feasibility of this inequality is that γ > 0, therefore 0 < γ ≤ 1.

Rearranging some elements of (4.7) by post multiplying it by the nonsingular matrix M =
I 0 0

0 0 I

0 I 0

 and pre- multiplying it by M−1 = M (notice that this rearrangement does not

affect the feasibility of (4.7)(VanAntwerp and Braatz, 2000)) it follows that


QA1

T
i +A1iQ+A3iY + Y TA3

T
i QΠ1

T
i + Y TΠ3

T
i A2i

Π1iQ+ Π3iY − 1
τ I (Π2i + I)

A2
T
i (Π2i + I)T −τγI

 < 0. (4.8)

Applying again the Schur complement on (4.8), the following is obtained

QA1
T
i +A1iQ+ Y TA3

T
i +A3iY QΠ1

T
i + Y TΠ3

T
i

Π1iQ+ Π3iY − 1
τ I

− A2i

(Π2i + I)

 (−τγI)−1
[
A2

T
i (Π2i + I)T

]
< 0.

(4.9)

Therefore, defining η = 1
τγ and µ = 1

τ in the above inequality LMI (4.2) is obtained. Notice

also that LMI (4.3) explains the DOA Ωz ⊂ Z in z-coordinates and can be derived by pre- and

post multiplying (3.9) by

1 0

0 Q

.
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FIGURE 4.1: Differential Algebraic Representation of feedback linearized closed-loop system.

As a matter of fact, the feasibility of the set of LMIs (4.2) and (4.3) over the vertices of χ ×∆

leads to finding a DOA Ωz , which is characterized by P = Q−1, in z-coordinates. In this

context, one can define the following SDP problem in order to estimate the maximum ellipsoidal

DOA within the polytopic region in state space:

max {log (det (Q))} s.t. (4.2) and (4.3). (4.10)

The following corollary states the regional asymptotic stability of the system in (2.15):

Corollary 4.3. Assume that there exists a feasible solution for the SDP problem (4.10) and there

exists an ISS-Lyapunov function for ζ̇ = w(z, ζ, δp). Then (2.15) is locally asymptotically stable

for all δ ∈ ∆.

Proof. The proof follows in a straightforward way from Remark 3.5 and Theorem 4.2.

The block diagram of the closed-loop quasi-linearized system (4.1) together with the associate

internal dynamics is depicted in Figure 4.1 in which the control vector v together with the

nonlinear uncertain vector π are the inputs and the state vector z together with the vector q =

(Π1 + Π3K)z are the outputs.
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4.2 Control Synthesis with Input Saturation

In this section, the simultaneous stability analysis and control synthesis of uncertain nonlinear

system (2.27) or its DAR (2.29), with saturated input, is investigated. The problem is to find an

appropriate static control gain K, for sat(u(t)) = sat(Kx(t)) and to estimate the corresponding

DOA Ω(P, 1) = {x ∈ Rn|xTPx ≤ 1} in the context of quadratic Lyapunov candidate function.

In the sequel we recall the definition of linear annihilators, which leads to introducing auxiliary

decision variable and obtaining more relaxed LMI conditions.

4.2.1 Linear Annihilators

Linear annihilators are useful tools that have been recently proposed in (Trofino and Dezuo,

2014), and employed in (Coutinho et al., 2008, Coutinho and De Souza, 2013). It has been

shown that by using linear annihilators one can obtain less conservative stabilizing LMIs, al-

though linear annihilators are not unique. However, the larger dimension of an annihilator the

less conservative the corresponding result. The definition of this large enough annihilator is

recalled here for the states of system (2.27) as introduced in (Trofino and Dezuo, 2014).

Definition 4.4. (Trofino and Dezuo, 2014)[Linear annihilator] For system (2.27) the matrix

Xx : Rn 7→ Rq×n is a linear annihilator of state vector x(t) if Xxx(t) = 0 and Xx is linear with

respect to x(t). A possible Xx can be obtained as:

Xx(x) =


Φ1(x) Ψ1(x)

...
...

Φn−1(x) Ψn−1(x)

 , (4.11)

where
Ψi(x) = −xiIn−i, i ∈ [1, n− 1],

Φ1(x) = [x2 . . . xn]T , Φi(x) =

0(n−i)×(i−1)

xi+1

...

xn

 , i ∈ [2, n− 1]

and, therefore, the number of rows of this possible linear annihilator is q =
∑n−1

i=1 i = n(n−1)
2 .
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Following the approach in (Trofino and Dezuo, 2014) the combination of linear annihilators and

Finsler Lemma can be used to introduce a new auxiliary decision variable and get more relaxed

LMI conditions.

4.2.2 Control Synthesis for the DAR of Input-saturated Nonlinear System

The idea is to consider that the closed-loop system (2.29) has an input saturation which can be

replaced with the convex combination of the input u(t) = Kx(t) and a linear feedback of sates

ũ(t) = Hx(t), where K,H ∈ Rm×n are two unknown matrices to be synthesized. That is, in

view of Lemma 2.3 and putting u(t) = Kx(t) and ũ(t) = Hx(t), as long as it is possible to

find a matrixH such that |hjx| ≤ u0j , j ∈ [1,m], with hj the jth row of the auxiliary matrixH ,

the saturation input sat(Kx(t)) can be replaced by the convex hull of DsKx(t) and D−s Hx(t)

as:

sat(Kx(t)) =

2m∑
s=1

αs(DsK +D−s H)x, (4.12)

where α = [α1, ..., αN ]T , N = 2m, is a real parameter vector belonging to the simplex ΛN :={
λ ∈ RN :

∑N
s=1 λs = 1, λs ≥ 0

}
. Accordingly, the polytopic description of the input-

saturated closed-loop DAR (2.29) becomes:

ẋ(t) =
(
A1 +A3

2m∑
s=1

αs(DsK +D−s H)
)
x+A2π,

0 =
(

Π1 + Π3

2m∑
s=1

αs(DsK +D−s H)
)
x+ Π2π, (4.13)

where the matrices A1, A2, A3, Π1, Π2 and Π3 can be replaced by the convex combinations

of matrices over the vertices of the polytopic region X ×∆ as it was explained in Section 3.1.

Using the Lyapunov theory it can be proven that in the context of DOA Ω(P, 1) ⊂ X the stability

of 2m nonlinear uncertain systems results in the stability of system (2.29) for u(t) = Kx(t).

Theorem 4.5. For a given ellipsoid Ω(P, 1) ⊂ X assume that there exist K,H ∈ Rm×n such

that:

Ω(P, 1) ⊂
{
x ∈ Rn : |hjx| ≤ u0j , j ∈ [1,m]

}
, (4.14)
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and

2xTP
[(
A1 +A3(DsK+D−s H)

)
x+A2π

]
< 0, ∀s ∈ [1, 2m], (x, δ) ∈ Ω(P, 1)×∆\{(0, δ)}.

(4.15)

Then, Ω(P, 1) is a DOA for system (2.29) with u(t) = Kx(t), and a corresponding quadratic

Lyapunov function is given by

V (t) = xTPx. (4.16)

Proof. Consider the quadratic Lyapunov candidate function V = xTPx for system (2.29) with

u(t) = Kx(t), then

V̇ = 2xTP
[
A1x+A2π +A3sat(Kx(t))

]
.

By assumption for all x ∈ Ω(P, 1) we know that |hjx| ≤ u0j . According to Lemma 2.3 there

exists an α ∈ ΛN such that (4.12) holds and then we can replace sat(Kx(t)) in V̇ as:

V̇ = 2xTP
[
A1x+A2π +A3

2m∑
s=1

αs(DsK +D−s H)x
]

=

2m∑
s=1

αs

{
2xTP

[(
A1 +A3(DsK +D−s H)

)
x+A2π

]}
.

Since αs ≥ 0, ∀s ∈ [1, 2m], we can conclude from assumption (4.15) that V̇ < 0 for all

(x, δ) ∈ Ω(P, 1)×∆\{(0, δ)} and Ω(P, 1) is a DOA for system (2.29).

Theorem 4.5 implies that if Ω(P, 1) is a DOA for 2m systems:

ẋ(t) =
(
A1 +A3(DsK +D−s H)

)
x+A2π,

0 =
(

Π1 + Π3(DsK +D−s H)
)
x+ Π2π, (4.17)

with s ∈ [1, 2m], then it will also be a DOA for system (2.29) (or equivalently (2.27)) with

u(t) = Kx(t). Therefore, Theorem 4.5 is an instrumental tool to obtain the largest possible

ellipsoidal DOA for the original system.

Before explaining the main result, one has to recall part of the well-known Finsler Lemma

(de Oliveira and Skelton, 2002).

Lemma 4.6 (Finsler). Let ξ ∈ Rnξ , Ξ ∈ Rnξ×nξ and H ∈ Rr×nξ (rank(H) < nξ). The

following two statements are equivalent:
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1. ξTΞξ < 0, ∀ Hξ = 0, ξ 6= 0.

2. ∃N ∈ Rnξ×r : Ξ +NH+HTN T < 0.

Now, we can use Theorem 4.5 and Lemma 4.6 to present the main theorem.

Theorem 4.7. Consider the set of closed-loop systems given in (4.17). For each system let ∆ be

a set of admissible uncertainties and suppose that for a given positive real number γ there exist

matrices Q1 = QT1 > 0, Q1 ∈ Rn×n, Q2 ∈ Rnπ×nπ , Y1, Y2 ∈ Rm×n, and a real scalar η > 0

such that the LMIs



A11 A12 A13 Q1X Tx

∗ −2γQ1 γA2iQ
T
2 0

∗ ∗ Π2iQ
T
2 +Q2Π2

T
i 0

∗ ∗ ∗ −η
2I


< 0 , s ∈ [1, 2m], i ∈ [1, nv], nv = nx × 2l

(4.18)

A11 = A1iQ1 +A3i(DsY1 +D−s Y2) +Q1A1
T
i + (Y T

1 Ds + Y T
2 D

−
s )A3

T
i ,

A12 = γQ1A1
T
i + γ(Y T

1 Ds + Y T
2 D

−
s )A3

T
i ,

A13 = A2iQ
T
2 +Q1Π1

T
i + (Y T

1 Ds + Y T
2 D

−
s )Π3

T
i ,

u2
0j

Y2j

Y T
2j

Q1

 ≥ 0, j ∈ [1,m], with Y2j the jth row of Y2, (4.19)

 1 aTkQ1

Q1ak Q1

 ≥ 0, k ∈ [1, ne], (4.20)

are feasible in all vertices of ∆× X, where A1i, A2i, A3i and Π1i,Π2i,Π3i are the valued ma-

trices A1, A2, A3 and Π1,Π2,Π3 in each vertex. In this case, there exists a quadratic Lyapunov

function (4.16) with P = Q−1
1 , and the control gain given by K = Y1Q

−1
1 for the original

system (2.27) with u(t) = Kx(t), such that, for all x(0) starting inside Ω(P, 1) and all δ ∈ ∆,

the trajectory of x(t) approaches the origin as t → ∞ and Ω(P, 1) is also a DOA for system

(2.27).
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Proof. Consider the Lyapunov candidate function (4.16) for model in (4.17). Thus, the idea

is to rewrite the negative definite condition for the time-derivative of the Lyapunov function as

follows:

V̇ = ẋTPx+ xTPẋ =

x
ẋ

T 0 P

P 0

x
ẋ

 =


x

ẋ

π


T 

0 P 0

P 0 0

0 0 0



x

ẋ

π

 < 0. (4.21)

On the other hand, using the equality property of DAR form in (4.17) and the linear annihilator

obtained from the formula (4.11) we have:


Xx 0 0

A1i +A3i(DsK +D−s H) −I A2i

Π1i + Π3i(DsK +D−s H) 0 Π2i



x

ẋ

π

 = 0, (4.22)

Now, considering ξ = [x ẋ π]T one can compare (4.21) and (4.22) with the first statement of

Lemma 4.6. Therefore there exists a block matrix-variable

N =



Nn×q
11 Nn×n

12 Nn×nπ
13

Nn×q
21 Nn×n

22 Nn×nπ
23

Nnπ×q
31 Nnπ×n

32 Nnπ×nπ
33


∈ R(2n+nπ)×(q+n+nπ),

such that: 
0 P 0

P 0 0

0 0 0

+N


Xx 0 0

A1i +A3i(DsK +D−s H) −I A2i

Π1i + Π3i(DsK +D−s H) 0 Π2i



+


Xx 0 0

A1i +A3i(DsK +D−s H) −I A2i

Π1i + Π3i(DsK +D−s H) 0 Π2i


T

N T < 0,
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which is expanded as:



B1
11 B1

12 B1
13

∗ −N22 −NT
22 N22A2i +N23Π2i −NT

32

∗ ∗ N32A2i +N33Π2i +A2
T
i N

T
32 + Π2

T
i N

T
33


< 0,

B1
11 = N11Xx + X Tx NT

11 +N12

(
A1i +A3i(DsK +D−s H)

)
+
(
A1i +A3i(DsK +

D−s H)
)T
NT

12 +N13

(
Π1i + Π3i(DsK +D−s H)

)
+
(
Π1i + Π3i(DsK +D−s H)

)T
NT

13,

B1
12 = P−N12+X Tx NT

21+
(
A1i+A3i(DsK+D−s H)

)T
NT

22+
(
Π1i+Π3i(DsK+D−s H)

)T
NT

23,

B1
13 = X Tx NT

31 +N12A2i +N13Π2i +
(
A1i +A3i(DsK +D−s H)

)T
NT

32 +
(
Π1i +

Π3i(DsK +D−s H)
)T
NT

33.

Clearly the above inequality is not an LMI. However, by choosing appropriately the block matrix

N one can obtain an LMI. Therefore, we can choose some elements of N as

N21, N13, N23, N31, N32 = 0, N12 = P, N22 = γP,

where γ is a real positive number to be determined. Then, the following inequality is obtained:



B2
11 B2

12 B2
13

∗ −2γP γPA2i

∗ ∗ N33Π2i + Π2
T
i N

T
33


< 0,

B2
11 = N11Xx + X Tx NT

11 + P
(
A1i +A3i(DsK +D−s H)

)
+
(
A1i +A3i(DsK +D−s H)

)T
P,

B2
12 = γ

(
A1i +A3i(DsK +D−s H)

)T
P,

B2
13 = PA2i +

(
Π1i + Π3i(DsK +D−s H)

)T
NT

33.
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It should be noted that since the matrix Π2i is full-rank and invertible, from the feasibility of the

term N33Π2i + Π2
T
i N

T
33 < 0 in above inequality, one can infer that N33 is non-singular and in-

vertible as well. Therefore, by Pre- and post multiplying the above inequality by


P−1 0 0

0 P−1 0

0 0 N−1
33



and


P−1 0 0

0 P−1 0

0 0 N−1
33


T

respectively, we have:



B3
11 B3

12 B3
13

∗ −2γP−1 γA2iN
−1T

33

∗ ∗ Π2iN
−1T

33 +N−1
33 Π2

T
i


< 0,

B3
11 = P−1(N11Xx + X Tx NT

11)P−1 +A1iP
−1 +A3i(DsK +D−s H)P−1 + P−1A1

T
i +

P−1(DsK +D−s H)TA3
T
i ,

B3
12 = γP−1A1

T
i + γP−1(DsK +D−s H)TA3

T
i ,

B3
13 = A2iN

−1T

33 + P−1Π1
T
i + P−1(DsK +D−s H)TΠ3

T
i .

Now, defining N11 = 1
ηX

T
x (η > 0) and using the change of variables P−1 = Q1, N

−1
33 =

Q2,KQ1 = Y1, HQ1 = Y2 we obtain:



B4
11 B4

12 B4
13

∗ −2γQ1 γA2iQ
T
2

∗ ∗ Π2iQ
T
2 +Q2Π2

T
i


< 0,

B4
11 = 2

ηQ1X Tx XxQ1 +A1iQ1 +A3i(DsY1 +D−s Y2) +Q1A1
T
i + (Y T

1 Ds + Y T
2 D

−
s )A3

T
i ,

B4
12 = γQ1A1

T
i + γ(Y T

1 Ds + Y T
2 D

−
s )A3

T
i ,

B4
13 = A2iQ

T
2 +Q1Π1

T
i + (Y T

1 Ds + Y T
2 D

−
s )Π3

T
i .

Finaly, applying the Schur complement to the inequality above, one gets LMI (4.18).
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In order to guarantee that the DOA satisfies assumption (4.14) in Theorem 4.5, one should solve

the following optimization problem:

min{V } s.t. hjx = ±u0j , j ∈ [1,m], (4.23)

with V = xTPx. If the minimum value Vmin = min{V } satisfies Vmin ≥ 1 in this case the

ellipsoidal region Ω(P, 1) will be entirely inside the space defined by the hyperplanes hjx =

±u0j . Applying the Lagrange method one can write the corresponding Lagrangian function as:

L := xTPx+ λ(hjx± u0j ) (4.24)

where λ is the Lagrange multiplier. Therefore, the minimum of (4.24) can be found by consid-

ering:

∇L = 0⇒ x∗ = −λ
2P
−1hTj ,

hjx∗ ± u0j = 0⇒ λ∗ = ±2u0j (hjP
−1hTj )−1.

Replacing λ∗ and x∗ in (4.24) we have:

Lmin = u2
0j (hjP

−1hTj )−1 ≥ 1,

which, by applying Schur complement, is equivalent to:

u2
0j

hj

hTj P

 ≥ 0.

Pre- and post multiplying the above inequality by

1 0

0 P−1

 the set of LMIs (4.19) are obtained

where Q1 = P−1 and Y2j = hjQ1. With the same reasoning to meet the assumption Ω(P, 1) ⊂

X, where X is defined in (3.1), the problem

min{Ṽ } s.t. aTk x = 1, k ∈ [1, ne] (4.25)

with Ṽ = xTPx should be solved and it will result in the following inequality:

(aTk P
−1ak)

−1 ≥ 1 ≡

 1 aTk

ak P

 ≥ 0,
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where by pre- and post multiplying it by

1 0

0 P−1

 the set of LMIs (4.20) are obtained.

Remark 4.8. Note that in light of Theorem 4.5 the existence of a Lyapunov function as given in

(4.16) and the feasibility of the inequalities (4.18)-(4.20) for the set of systems in (4.17) leads

to the same reasoning for systems (2.29) and (2.27). In other words, one can conclude from

Theorem 4.7 that the feasibility of (4.18) leads to the existence of matrices P,K andH such that

(4.15) is true and also the feasibility of (4.19) and (4.20) lead to the fact that the corresponding

DOA Ω(P, 1) is always inside both the state polytopic set X and the set of state vectors satisfying

|hjx| ≤ u0j . Therefore, in light of Theorem 4.5 the set Ω(P, 1) is a guaranteed ellipsoidal

domain of attraction for the system (2.27) within which all states trajectories asymptotically

converge to the origin.

Now, an SDP problem subject to LMIs (4.18) to (4.20) can be solved by seeking the largest

Ω(P, 1). In this regard, to maximize the volume of Ω(P, 1) one can define an objective function

such as log (det (Q1)), resulting in the following convex optimization problem:

max {log (det (Q1))} s.t. (4.18)− (4.20). (4.26)

Remark 4.9. Note that the number of LMIs (4.18) to be solved by numerical solvers is equal to

nx×2l+m because their feasibility should be evaluated over the set of systems (4.17). Therefore,

for MIMO dynamical systems with many states and control inputs the problem can become

computationally prohibitive.
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Numerical Examples

5.1 Input/Output Linearizable System with Internal Dynamics

In this first example, the idea is to solve a control problem for the set of uncertain systems as in

(2.15) consisting of approximately I/O linearized subsystems in z-coordinates and considering

the existence of an ISS Lyapunov function for the internal dynamics. For that, consider the I/O

linearizable MIMO system given in (2.23) which following (2.15) has the approximately I/O

linearized form in (2.25) with corresponding leftover dynamos (internal dynamics) in (2.26). In

this case the DAR of the approximately I/O linearized systems (2.25) has the form as in (2.16)

with:

π =
[
δ1ζz3 δ1z3 δ1v1

]>
,

A1 =


0 0 0

0 0 1

0 0 0

 , A3 =


1 0

0 0

0 1

 , A2 =


1 1 0

0 1 0

2ζ − 2z3 −6z3 − 4z1 − 1 2z3

 ,

Π1 =


0 0 0

0 0 δ1

0 0 0

 , Π3 =


0 0

0 0

δ1 0

 ,Π2 =


−1 ζ 0

0 −1 0

0 0 −1

 .
Before solving the SDP problem (4.10) one has to verify the input-to-state stability of (2.26).

Accordingly, consider an ISS-Lyapunov candidate function Vζ(ζ) = 1
2ζ

2 which satisfies (3.13).

53
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Then, we have

V̇ζ =
∂Vζ(ζ)
∂ζ w(z, ζ, δp) = ζ(z2 − (1 + δ2)ζ) ≤ ||ζ||||z2|| − (1 + δ2)||ζ||2.

Now, one should seek if there exists a class K∞ function w3(||ζ||) such that (3.14) is satisfied.

To do so, pick any real scalar 0 < ε < 1 and, according to (3.14), set

α(||z||) =
1

1− ε
||z2||.

Now, if ||ζ|| ≥ α(||z||) then ||ζ||||z2|| ≤ (1− ε)||ζ||2 and

∂Vζ(ζ)

∂ζ
w(z, ζ, δp) ≤ −(ε+ δ2)||ζ||2,

in which for all |δ2| < ε the internal dynamics (2.26) is input-to-state stable. Therefore, in order

to solve the SDP problem (4.10) for the closed-loop I/O linearized system (4.1) one should

determine the vertices of the polytopic set χ such that 0 < ε ≤ 1 − ||z2||||ζ|| . In this regard, and

checking the feasibility of LMIs (4.2) and (4.3), the following bounds for the polytopic sets of

states and uncertainties are obtained as:

|z1| ≤ 0.2, |z2| ≤ 0.2, |z3| ≤ 0.07, |ζ| ≤ 0.67,

|δ1| ≤ 0.04, |δ2| ≤ 0.7015,

such that by solving SDP (4.10) the estimated maximum ellipsoidal DOA and the synthesized

linear feedback control gain matrix K are calculated as:

Ωz =
{
z ∈ R3|zT


25 0 0

0 25 0.0036

0 0.0036 204.0816

 z ≤ 1
}
,

K =

−0.0099 0 −0.0012

−0.0001 −0.1227 −27.7746

 ,
which guarantees the regional asymptotic stability of the approximately I/O linearized system

in (2.25). Therefore, according to Corollary 4.3, for all |ζ| ≤ 0.67, the internal dynamics (2.26)

is asymptotically stable as well. Figure 5.1 shows the output trajectories of the system (2.23)

with different initial conditions within the border of the projected DOA in z1−z2 plane together
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FIGURE 5.1: Estimated projected DOA in the z1−z2 plane (upper plot) and output trajectories
together with the time responses of internal dynamics (lower plot).

FIGURE 5.2: Output trajectories and time responses of internal dynamics for δ1 = 1.1.
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with the time responses of internal dynamics. The results illustrate the asymptotic convergence

of system states within the polytopic set χ for the admissible parametric uncertainties inside ∆.

In order to analyze the robustness performance of the closed-loop system, several simulations

are performed by gradually increasing the bound of uncertainty δ1 such that unstable conditions

occur. Therefore, as depicted in Figure 5.2, the system responses go unstable if |δ1| ≥ 1.1.

5.2 Feedback Linearized Inverted Pendulum without Input Satu-

ration

This section checks the stability of the approximately linearized inverted pendulum given in

(2.22) in z-coordinates, (see section 4.1), and gives an estimate to its DOA in the new coordinates

for the designed control law. A comparison with reference (Rohr et al., 2009) is also presented.

The data for the DAR of the inverted pendulum in (2.22) are:

π =
[

z1
1+δ1

z2
1+δ1

z1z2δ1
(1+δ1)(1+z21)

z1δ1
1+z21

z21δ1
1+z21

v
1+δ1

]T
, A1 = Ac,

A2 =

 0 0 0 0 0 0

g
l δ1 − b0

M0
δ2 2z2 0 0 −δ1

 , A3 = bc,Π1 =



0.02 0

0 0.006

0 0

0.02δ1 0

0 0

0 0


,Π3 =



0

0

0

0

0

0.002


,

Π2 =



−0.02(1 + δ1) 0 0 0 0 0

0 −0.006(1 + δ1) 0 0 0 0

0 0 −0.02(1 + δ1) 0.02z2 0 0

0 0 0 −0.02 −0.02z1 0

0 0 0 0.2z1 −0.2 0

0 0 0 0 0 −0.002(1 + δ1)


.

Since this system has full relative degree there is not an internal dynamics. Therefore, the sta-

bility of its DAR (2.16) results in the stability of whole system.



Numerical Examples 57

Actuation Limit on New Input Control

Notice that in order to have a fair comparison with the similar research study in (Rohr et al.,

2009) it is required to consider a control limit condition for the new input v(t). Denoting the

maximum available control norm as vmax, it follows that:

||v||2 ≤ v2
max, v = Kz ⇒ (Kz)T (Kz) ≤ v2

max,

with K = Y Q−1, according to Theorem 4.2, and Q = QT we obtain zTQ−1Y TY Q−1z ≤

v2
max or equivalently

1

v2
max

zT [Q−1Y TY Q−1]z ≤ 1. (5.1)

Since we are investing initial conditions and invariant ellipsoidal region satisfying zTQ−1z ≤ 1

we can ensure that (5.1) is satisfied by imposing (sufficient condition):

1
v2max

zT [Q−1Y TY Q−1]z ≤ zTQ−1z ≤ 1.

So, we have

1
v2max

Q−1Y TY Q−1 ≤ Q−1.

Multiplying both sides by Q on the right and left we obtain

1
v2max

Y TY ≤ Q⇔ Q− 1
v2max

Y TY ≥ 0.

Therefore, by taking the Shur complement of the above inequality we achieve the following

LMI which imposes a saturation limit on the control input:

Q Y T

Y v2
maxI

 ≥ 0. (5.2)

Remark 5.1. Since we are taking the I/O feedback linearization there exists a nonlinear relation

between the real input u and virtual input v based on equation (2.14). Therefore, computing

vmax from umax is not in general an easy task.
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Now regarding Theorem 4.2 the SDP problem (4.10) can be solved for the inverted pendulum

system by including the LMI constraint in (5.2). For the sake of comparison the same physical

parameters of the inverted pendulum used in (Rohr et al., 2009) are also considered here as

presented in Table 5.1.

TABLE 5.1: Parameters of Inverted Pendulum

Parameter Value
M0 2 Kg
l 1 m
g 9.8 m

s2

b0 0.5 N.s
m

The same maximum control used in (Rohr et al., 2009) is also considered here. For the given

control K = [−1 − 2] and the associated DOA one can compute the exact vmax = K||x||max

from (Rohr et al., 2009). In this case, vmax = 0.25 and it can be used in LMI (5.2) as a given pa-

rameter. In this regard, to find a feasible solution of SDP problem (4.10) which satisfies stability

condition of Theorem 4.2, the following bounds on states polytope and uncertain parameters are

obtained:

|z1| ≤ 0.17, |z2| ≤ 0.18,

|δ1| ≤ 0.105, |δ2| ≤ 1,

together with the following estimate of DOA and synthesized control matrix K:

Ωz =
{
z ∈ R2|zT

47.99 23.95

23.95 42.81

 z ≤ 1
}
,K =

[
−1.1928 −1.6022

]
.

Figure 5.3 depicts the estimated DOA Ωz , together with the system trajectories, denoted by solid

curves, with all possible bounds of uncertain parameters and the estimated DOA, denoted by the

dotted ellipsoid which is obtained in (Rohr et al., 2009). As it can be seen, the ellipsoidal DOA

obtained by synthesis problem is larger than that of (Rohr et al., 2009) which is obtained by a

priori synthesized control matrix K. To investigate the robustness of the closed-loop system the

uncertainty parameter δ1 is gradually increased to evaluate its effect on the DOA volume. As

depicted in Figure 5.4 there exists a sudden fall of DOA volume once δ1 > 0.465.

Table 5.2 shows the comparative results obtained by the proposed control design and (Rohr et al.,

2009). This table shows that although similar results are obtained, a moderately larger volume

of DOA is estimated.
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TABLE 5.2: Comparison of Results of DOA for Inverted Pendulum

Proposed approach (Rohr et al., 2009)
States Polytope |x1| ≤ 0.17, |x2| ≤ 0.18 |x1| ≤ 0.15, |x2| ≤ 0.15

Uncertainty Polytope |δ1| ≤ 0.105, |δ2| ≤ 1 |δ1| ≤ 0.097, |δ2| ≤ 0.99

log(det(Q)) -7.3 -7.96
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FIGURE 5.3: Estimated ellipsoidal DOA and Phase Trajectories of States with Different
Bounds of δ1 and δ2.

5.3 Lorenz System

To illustrate the effectiveness of our approach in finding guaranteed DOA for nonlinear system

(2.29) in DAR form, an analysis problem is considered in this section. The following system

describes a Lorenz attractor and it is borrowed from (Valmórbida et al., 2010):

ẋ1 = −σx1 + σx2,

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = −bx3 + x1x2,

(5.3)
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FIGURE 5.4: variation of DOA volume versus uncertainty |δ1| growth.

where σ, ρ and b are positive real scalars. Following the same approach in (Valmórbida et al.,

2010) the error dynamics of the system around the equilibrium point xep = [
√
b(ρ− 1)

√
b(ρ− 1) ρ−

1]T , for the values σ = 10, ρ = 4 and b = 8
3 , is given by:

Ẋ1 = −10X1 + 10X2,

Ẋ2 = X1 −X2 −
√

8X3 −X1X3,

Ẋ3 =
√

8X1 +
√

8X2 − 8
3X3 +X1X3,

(5.4)

in which X = x− xep. Hence, system (5.4) can be recast as DAR (2.29) such that:

π(X) =
[
0 −X1X3 X1X2

]T
, A1(X) =


−10 10 0

1 −1 −
√

8
√

8
√

8 −8
3

 , A2(X) = I3,

Π1(X) =


0 0 0

X3 0 0

−X2 0 0

 ,Π2(X) = I3.

The SDP problem (4.26) can be solved for different values of γ (the constant scalar in LMIs

(4.18)) , as shown in Figure 5.5, such that the LMI (4.18) remains feasible. For illustration,

if one pick γ = 10−4 the following estimation of the largest guaranteed ellipsoidal DOA is

obtained:
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FIGURE 5.5: Variation of the largest guaranteed ellipsoidal DOA volume for different values
of γ.

Ω(P, 1) =
{
X ∈ R3|XT


0.2112 0.0893 0.0386

0.0893 1.3341 −0.4532

0.0386 −0.4532 0.7510

X ≤ 1
}
,

with the corresponding state space polytopic set X defined by:

|X1| ≤ 2.3, |X2| ≤ 1, |X3| ≤ 1.32.

Therefore, the proposed approach estimates the volume of Ω(P, 1) for system (5.4) with log(det(Q1)) =

1.85 which is larger than the estimated volume obtained by (Valmórbida et al., 2010) in which

log(det(Q1)) = 0.3691. The estimated DOA for the error dynamics (5.4) together with some

trajectories, initiating outside of it, are depicted in Figure 5.6.

According to the Remark 2.1 in order to check the effect of different DARs in the stability

analysis results we solve the SDP problem (4.26), with the same γ, for the following different

DAR of system (5.4):

π(X) =
[
0 −X3 X2

]T
, A1(X) =


−10 10 0

1 −1 −
√

8
√

8
√

8 −8
3

 , A2(X) =


0 0 0

0 X1 0

0 0 X1

 ,

Π1(X) =


0 0 0

0 0 1

0 −1 0

 ,Π2(X) = I3.
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FIGURE 5.6: Guaranteed DOA for the Lorenz system together with some state trajectories.

Therefore, the estimation of maximum DOA with the new DAR is calculated as:

Ω(P, 1) =
{
X ∈ R3|XT


1.0530 −0.7145 −0.2332

−0.7145 1.1504 0.0545

−0.2332 0.0545 0.4040

X ≤ 1
}
,

with the polytopic set of state-space X characterized by:

|X1| ≤ 1.4, |X2| ≤ 1.3, |X3| ≤ 1.8.

In conclusion, the new estimation of DOA has the volume log(det(Q1)) = 1.44 which shows

that with a different DAR more conservative stability result is obtained.
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5.4 SISO System with Input Saturation

The following case is an illustrative example, without parametric uncertainty, that was employed

in (Oliveira et al., 2012), where the circle criterion and a generalized sector bound condition

were used in the theoretical development. The following nonlinear system with saturated input

is considered:
ẋ1 = x2,

ẋ2 = (1 + x2
1)x1 + (2 + 8x2

2)x2 + sat(u(t)),
(5.5)

whose DAR (2.29) can be obtained as

π =
[
x2

1 x2
2

]T
, A1 =

0 1

1 2

 , A2 =

 0 0

x1 8x2

 , A3 =

0

1

 ,

Π1 =

x1 0

0 x2

 , Π2 = −I2, Π3 = 02×1.

Considering the same saturation bound of u0 = 1.96 used in (Oliveira et al., 2012), the SDP

(4.26) is solved for different values of γ to obtain the maximum possible volume for the guar-

anteed ellipsoidal DOA. Figure 5.7 illustrates that this maximum is attained with γ = 0.05 for

which log{det(Q1)} = −2.26. For values of γ < 0.05 the volume log{det(Q1)} remains ap-

proximately constant. In addition, for γ = 0.05 the corresponding ellipsoidal DOA Ω(P, 1) lies

inside the state polytope described by:

|x1| ≤ 0.74, |x2| ≤ 0.46.

Accordingly, the estimated ellipsoidal DOA (depicted in Figure 5.8 by solid lines) and synthe-

sized control gain K are obtained as:

Ω(P, 1) =
{
x ∈ R2|xT

2.0331 1.0436

1.0436 5.2616

x ≤ 1
}
, K =

[
−9.2093 −43.0533

]
.

Figure 5.8 shows the corresponding guaranteed ellipsoidal DOA together with state trajectories

for different initial conditions in solid line. Also, Figure 5.8 depicts the guaranteed ellipsoidal

DOA in dotted line obtained, with the same saturation limit, using the approach in (Oliveira

et al., 2012). Accordingly, the estimated volume of the guaranteed ellipsoidal DOA obtained
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FIGURE 5.7: The variation of largest guaranteed ellipsoidal DOA volume for different values
of γ.
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FIGURE 5.8: DOA and states trajectories for system (5.5).

TABLE 5.3: Characteristics of DOA of system (5.4).

(Oliveira et al., 2012) Proposed approach
States Polytope |x1| ≤ 0.61, |x2| ≤ 0.35 |x1| ≤ 0.74, |x2| ≤ 0.46

log(det(Q1)) -3.5375 -2.2626

with the proposed approach is greater than that of (Oliveira et al., 2012) and encompasses their

estimated DOA. In this context Table 5.3 shows some comparative results as well.
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5.5 MIMO System with Input Saturation

A MIMO nonlinear system is adapted from (Da Silva et al., 2014) for the sake of further evalu-

ation of the theoretical development. The system’s model is:

ẋ1 = (x1 + 2(1 + δ))x2
1 + 10x2 + 10sat(u1(t)),

ẋ2 = −100x1 − 30x2 + 10sat(u2(t)),
(5.6)

whose DAR (2.29) is formed by:

A1 =

 0 10

−100 −30

 , A2 =

x1 + 2(1 + δ)

0

 , A3 = 10I2,

π = x2
1, Π1 =

[
x1 0

]
, Π2 = −1, Π3 = 01×2.

Note that the uncertainty δ does not exist in (Da Silva et al., 2014). Therefore, for the sake of fair

comparison, first, we assume that δ = 0. Considering the same saturation bound of u0 = [1 1]T

used in (Da Silva et al., 2014) SDP (4.26) is solved for different values of γ to search for the

maximum possible volume for the guaranteed ellipsoidal DOA. Figure 5.9 shows that greater

volumes can be obtained as γ gets closer to zero. However, for some γ in the vicinity of zero

the LMI (4.18) does not have feasible solutions. A small enough γ for which LMI (4.18) is

feasible is γ = 5 × 10−4, and the corresponding volume log(det(Q1)) = 7.4. Moreover, the

corresponding DOA lies inside the set X defined by:
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FIGURE 5.9: Variation of the largest guaranteed ellipsoidal DOA volume for different values
of γ.
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|x1| ≤ 4.

Therefore, the estimated DOA together with the synthesized control gain are given by:

Ω(P, 1) =
{
x ∈ R2|xT

0.1374 0.0271

0.0271 0.0098

x ≤ 1
}
, K =

−332.3525 −65.4635

−820.8413 −296.3322

 .
The DOA, obtained above, is depicted in Figure 5.10 with different system trajectories initiating

within its border. The results are compared with those of (Da Silva et al., 2014) (obtained from

static anti-windup control approach). Since the DOA in (Da Silva et al., 2014) is obtained in the

augmented state-space, after they defined new dynamics control variables, their DOA volume

is calculated in the original (x1 − x2) state-space plane. As shown in Table 5.4 more relaxed

bounds of variations for the state-space polytopic set and larger volume in x1 − x2 plane are

obtained for u0.

TABLE 5.4: Characteristics of state space polytope of system (5.6).

(Da Silva et al., 2014) Proposed approach
States Polytope |x1| ≤ 3 |x1| ≤ 4

log(det(Q1))
5.65 (corresponding area of the projected
DOA on x1 − x2 plane)

7.4

Now, we consider the uncertainty in the system and investigate its variation on the volume of

DOA with the same actuation and state bounds. Figure 5.11 shows the effect of uncertainty
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FIGURE 5.10: Guaranteed ellipsoidal DOA with the system trajectories.
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FIGURE 5.11: Variation of DOA volume versus the growth of uncertainty bound.
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FIGURE 5.12: Guaranteed ellipsoidal DOA with the system trajectories in the presence of
uncertainty.

bound growth on the estimation of maximum guaranteed ellipsoidal DOA. Accordingly, the

volume of DOA decreases moderately versus the uncertainty bounds growth while |δ| ≤ 0.225.

However, for |δ| ≥ 0.25 the volume decreases with higher pace as the uncertainty bounds

increase. The DOA with the system trajectories for |δ| = 0.25 is depicted in Figure 5.12.

5.6 Feedback Linearized Pendulum with Input Saturation

In this example the same feedback linearized inverted pendulum model described in (2.22) is

studied with some differences such that, firstly, since the mapping does not change the system’s
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coordinates between (2.19) and (2.22) (z = [x1 x2]T ) and (2.19) is input-state linearizable (there

is no internal dynamics) (2.22) is rewritten in x-coordinates; and secondly, we consider the new

control input v(t) = sat(u(t)) to be an input saturation control. That is because we can check

whether or not assuming input-saturated system can estimate larger volume of DOA. If so, the

advantage of considering saturated input to the system would unfold. Therefore, we rewrite

(2.22) in x-coordinates and put v(t) = sat(u(t)) as following:

ẋ1 = x2,

ẋ2 = − b0δ2
M0(1+δ1)x2 + δ1

1+δ1
(

2x1x22
1+x21

+ g
l x1) + 1

1+δ1
sat(u(t)).

(5.7)

Therefore, the DAR (2.29) of above input-saturated system can be obtained with:

π(x, δp, sat(u(t))) =
[

x1
1+δ1

x2
1+δ1

x1x2δ1
(1+δ1)(1+x21)

x1δ1
1+x21

x21δ1
1+x21

sat(u(t))
1+δ1

]T
,

A1(x, δp) =

0 1

0 0

 , A2(x, δp) =

 0 0 0 0 0 0

g
l δ1 − b

M δ2 2x2 0 0 −δ1

 , A3(x, δp) =

0

1

 ,

Π1(x, δp) =



1 0

0 1

0 0

δ1 0

0 0

0 0


,Π2(x, δp) =



−1− δ1 0 0 0 0 0

0 −1− δ1 0 0 0 0

0 0 −1− δ1 x2 0 0

0 0 0 −1 −x1 0

0 0 0 x1 −1 0

0 0 0 0 0 −1− δ1


,

Π3(x, δp) =
[
0 0 0 0 0 1

]T
.

Now regarding Theorem 4.7, the SDP problem (4.26) is solved for the DAR of system (5.7)

(with u(t) = Kx(t)) which can be recast as (4.13) with m = 1 and Ds, D
−
s ∈ {0, 1}, s = 1, 2.

The physical parameters are given in Table 5.1 and the saturation limit u0 = 0.25. The approach

proposed in (Oliveira et al., 2012), which is based on the generalized sector bound condition and

the circle criterion, is also implemented on this example for further comparisons.

The largest guaranteed ellipsoidal DOA, with maximum volume, can be obtained for γ = 0.001

when solving (4.26). Figure 5.13 depicts the variation of DOA volume for several values of γ.

For γ = 0.001, log {det (Q1)} = −6.8, for which the corresponding DOA Ω(P, 1) lies inside

the state polytope defined by:
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FIGURE 5.13: Variation of the largest guaranteed ellipsoidal DOA volume for different values
of γ.

|x1| ≤ 0.19, |x2| ≤ 0.22,

and the bounds for the uncertainties:

|δ1| ≤ 0.1, |δ2| ≤ 0.99,

whose amplitudes still ensure the asymptotic stability of system trajectories inside Ω(P, 1). In

this case, the estimated guaranteed ellipsoidal DOA (which is also depicted in Figure 5.14) and

the control gain K are given by:

Ω(P, 1) =
{
x ∈ R2|xT

43.3560 22.5876

22.5876 32.5898

x ≤ 1
}
, K =

[
−84.5238 −132.0494

]
.

Figure 5.14 illustrates the asymptotic convergence of states inside DOA for different initial

conditions. Also, a sensitivity analysis is performed to evaluate the robustness of linear state

feedback saturated control by gradually increasing the bound of parametric uncertainty δ1 until

some instability occurs. Accordingly, as depicted in Figure 5.15, unstable behavior is detected

for some trajectories of the closed-loop system when the bound for the norm of δ1 is greater

than 0.137, which is well far away from the originally considered bound of 0.1.
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FIGURE 5.14: Estimated DOA and states trajectories of the inverted pendulum with different
bounds of δ1 and δ2.
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FIGURE 5.15: States trajectories of the inverted pendulum and DOA for |δ1| ≥ 0.137 and
different bounds of δ2.
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TABLE 5.5: Characteristics of robustly asymptotically stable DOA of Inverted Pendulum.

(Rohr et al., 2009) (Oliveira et al., 2012) Proposed approach

States Polytope
|x1| ≤ 0.15
|x2| ≤ 0.15

|x1| ≤ 0.19
|x2| ≤ 0.21

|x1| ≤ 0.19
|x2| ≤ 0.22

Uncertainty Polytope
|δ1| ≤ 0.097
|δ2| ≤ 0.99

|δ1| ≤ 0.1
|δ2| ≤ 0.99

|δ1| ≤ 0.1
|δ2| ≤ 0.99

log(det(Q1)) -7.965 -7.11 -6.80

Table 5.5 shows the comparison of our study with both the results of (Rohr et al., 2009) and the

results generated by applying the circle criterion-based LMIs in (Oliveira et al., 2012). Com-

pared with (Rohr et al., 2009), a larger guaranteed ellipsoidal DOA is estimated while its ro-

bustness against uncertain parameter δ1 is greater. Moreover, compared with the approach in

(Oliveira et al., 2012), although the same bounds of uncertainties were employed, our method

estimates a larger guaranteed ellipsoidal DOA.



Chapter 6

Final Remarks

6.1 Overview

This study, tackled with the problem of robust stability of uncertain nonlinear systems after

applying feedback linearization strategy. The parametric uncertainties were assumed to be

bounded and their bound were known. In this circumstance, the study relied on systems with

rational vector fields with respect to the uncertainties and system states. Hence, the DAR tool

was used to identically represent the approximately I/O linearized system in such a way that

one can use LMI based stability analysis and control synthesis problem. The outcome, for the

systems with total relative degree equal to the states dimension, was the synthesis of a linear

state feedback controller in new coordinates through solving an SDP problem. The SDP prob-

lem found a control gain which estimated the maximum ellipsoidal DOA inside the polytope of

system states in new coordinates. The approach was examined by an illustrative example, an in-

verted pendulum, and the comparison with the recent reference in (Rohr et al., 2009) illustrated

its efficiency in terms of achieving lager estimation of DOA volume. However, for I/O feedback

linearizable systems, it was required to investigate the stability of internal dynamics after ob-

taining an approximate linearization if the total relative degree of the system was smaller than

states dimension. In this respect, the same sufficient LMIs for I/O linearized systems in the form

of DAR, were used under the condition of input-to-state stability of internal dynamics and the

corresponding SDP problem was solved subject to those LMIs in order to estimate the maximum

hyper ellipsoidal DOA in new coordinates. It was shown that if such optimization problem is

feasible the input-to-state stability of internal dynamics leads to the regional asymptotic stability

of the whole system. The outcome, for a borrowed example, owning internal dynamics, from

72
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a previous study, showed that the full states trajectories are asymptotically stabilizable within

the DOA of output dynamics and the pre-determined bounds of internal dynamics state in the

presence of uncertainties.

In another investigation, the regional robust stabilization problem of input-saturated uncertain

nonlinear systems was investigated in this work with emphasis on the maximization of the as-

sociate guaranteed ellipsoidal DOA volume. The class of uncertain MIMO nonlinear systems

under consideration was representable in a DAR form, with polytopic parametric uncertainties,

and whose matrices are affine on the states and parameters. In addition, the ellipsoidal DOAs

are searched for a priori defined polytopic regions of the state space. A part of mathematical

development relied on the main idea of representing the saturated input as a convex combination

of an unsaturated input and properly chosen vectors (Hu and Lin, 2001), together with the simul-

taneous use of Finsler Lemma and linear annihilators (Trofino and Dezuo, 2014). The numerical

experiments support the conjecture that the derived LMI conditions for control synthesis are less

conservative.

6.2 Uncertain Nonlinear Systems Representations

As comprehensively explained in chapter 2, some representations of uncertain nonlinear systems

were addressed and compared. Overall, the DAR representation were an intriguing tool in the

context of regional robust stability and in terms of its simpleness over LFR representation when

it is applied to systems with higher degree of nonlinearities, although these two representations

are closely related conceptually. However, these representations are confined to the class of

systems with rational vector fields with respect to the states and uncertainties.

The inverse dynamics technique for I/O linearizable rational systems owning uncertainties were

applied to approximately linearize such class of systems around instantaneous operating points.

Thereafter, the remaining quasi-canonical form could still remain rational such that it was rep-

resentable in DAR form. This characteristic enabled us to take into account the information of

remaining nonlinearities in the system caused by inexact feedback linearization attempt. There-

fore, regardless of internal dynamics at first, the DAR of quasi canonical dynamics were obtained

to facilitate robust stability analysis and control synthesis for the new input control.

Despite applying DAR for the control-affine systems, this representation was also applicable for

systems with saturation input which are closer to their real dynamical models due to actuation
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restrictions. In this context, the combination of DAR form, as a beneficial tool, and polytopic

representation of input saturation was a constructive preliminary for the stability analysis pur-

pose and the outcomes showed proficiency of such representations.

6.3 Stability Analysis

Chapter 3 dealt with the notion of quadratic stability conditions and state-space polytopic de-

scription of uncertain nonlinear systems. Within this context, the set of system states and corre-

sponding DOAs, in terms of quadratic Lyapunov candidate functions, were defined and it was

shown that how one can propose sufficient LMI conditions such that the DOAs are always inside

the system’s state-space polytopic sets. Further, the polytopic description of matrices in DAR

systems were presented in order to enable proposition of stabilizing LMI conditions in Chapter

4 for such representations either for the approximately I/O linearized systems or for the input

saturation systems.

6.4 State Feedback Control Synthesis

Chapter 4 tackled the problem of designing a static state feedback control for the DAR of ap-

proximate I/O linearized systems and the DAR of uncertain nonlinear systems with input satu-

ration. In both cases the static feedback control gains, as decision variables, and the associate

DOA were the outcomes of proposed sufficient stabilizing LMI conditions. The obtained static

feedback gains guaranteed asymptotic convergence of every systems’ trajectory initiating inside

the DOA in the presence of parametric uncertainties whose variations were confined to compact

polytopic sets.

6.5 Possible Future Work

6.5.1 Reducing Conservatism

For the class of input saturation systems the possible future investigations could be performed

at least in two areas. First, one can try to reduce the number of sufficient stabilizing LMIs, since

the number of LMIs to be satisfied grows exponentially with the number of states, parameters
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and control inputs, which can prevent the search for numerical solutions in practice. Second,

it could be possible to develop less conservative stabilizing LMIs by choosing more wisely the

block matrix-variableN in Finsler Lemma, such that the number of decision variables increases.

6.5.2 Study of Non-minimum Phase Systems

Future studies could investigate the problem of non-minimum phase systems which have unsta-

ble internal dynamics. In this regard many investigations have been performed for this class of

systems. The studied methodologies are classified in (Rajput and Weiguo, 2014) as followings:

• Approximate feedback linearization: In this method a slightly non-minimum phase non-

linear system is transformed into an approximate minimum phase one.

• Output redefinition: The method relies on finding a new system output in which the inter-

nal dynamics states explicitly appear in the stability analysis.

• Real-Zero elimination: This method tries to approximate a class of non-minimum phase

systems by minimum phase ones.

• Stable inversion: In this method a bounded solution for input control and system states is

computed such that it imposes the requirement for the inverse solution to be stable.

• Output-feedback stabilization: This method is used for nonlinear non-minimum phase

systems whose some of states are not measurable in order to be available for output feed-

back.

6.5.3 Inverse Dynamics in The Context of Model Predictive Control

Inverse dynamics control can be used in the context of trying to find the appropriate inputs that

will drive the nonlinear uncertain dynamical system to a prescribed reference trajectory yref, as

it is depicted in Figure 6.1. In this case, the use of inverse dynamics is closer to the Optimal

Control approach (Kirk, 2004) as applied to Nonlinear Model Predictive Control (NMPC) meth-

ods (Garcı́a et al., 1989, Allgower and Zheng, 2000, Diehl et al., 2009), particularly when the

instantaneous values of the inputs are calculated as a result of some underlying optimization

procedure (e.g. to minimize a quadratic energy-like function over a finite or infinite horizon,

at each time step). The robust LTI controller, in this case, can be used to guarantee the overall
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system stability and performance around the reference trajectory. Assuming that the inverse

dynamics is only an approximation since the system model is uncertain, incremental stabilizing

corrections should be added by the robust LTI controller to the resulting inputs used to drive the

nonlinear system.

6.5.4 Inverse Dynamics in The Context of Passivity Theory

Other possible future study can be investigated within the context of passivity theory where

the approximate inverse dynamics of an uncertain nonlinear system, which was calculated in

Section 2.4.1 of Chapter 2 throughout the nominal parts of system’s vector fields, would be

considered as an input nonlinearity such that in closed-loop form it satisfies passivity condition.

More precisely, consider again the uncertain nonlinear system (2.4), in the closed-loop scheme

of Figure 6.1, which is representable in DAR form (2.7). Now, if the approximate inverse model,

in red block of Figure 6.1, can be calculated from (2.14) as a nonlinear input ψ(x) = −G−1
∗ f∗

together with the robust LTI controller, in blue block, to be ū(t) = Ky(t), where K ∈ Rm×m,

with yref = 0, the system in closed-loop form, with the input control u(t) = ū(t) + ψ(x), can

be modeled as:

ẋ(t) = A1(x, δ)x+A2(x, δ)π +A3(x, δ)(ū+ ψ(x)), (6.1)

0 = Π1(x, δ)x+ Π2(x, δ)π + Π3(x, δ)(ū+ ψ(x)),

y = h(x).

Now the uncertain nonlinear system (6.1) is subject to the input nonlinearity ψ(x) which is de-

rived from the approximate I/O linearization attempt. The system structure encourages applying

Nonlinear

System

Robust LTI

Controller

Approx. Inverse

Model

y
ref

x

y

FIGURE 6.1: Inverse Dynamics based Control in the context of nonlinear model predictive
control or passivity theory.
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passivity theory which might lead to the whole system stability including internal dynamics. To

clarify the problem, according to the notion of passivity, the system (6.1) is output strictly pas-

sive if there exists a continuously differentiable positive semidefinite function V (x) such that

ūT y ≥ V̇ + yTψ and yTψ ≥ 0, ∀y 6= 0 Khalil (2002). This can be interpreted within the

context of supplied energy and storage energy in the system. That is if we consider the flow of

energy into the system as supply function S(x, t) =
∫ T
t (ūT y − yTψ) dt, yTψ ≥ 0, and the

total storage energy in the system to be V (x), one can imply that the system is output strictly

passive if S(x, t) ≥ V (x) for all t ≥ 0 and y 6= 0.

Therefore, one can derive sufficient LMIs and seek their feasibility based on the notion of pas-

sivity to investigate stability of the system.
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