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Resumo

Propriedades físicas associadas aos fenômenos de superposição e interferência quântica têm,

ao passar dos anos, se mostrado em direta oposição com a nossa intuição clássica. Neste

trabalho, à parte de uma breve revisão sobre as peculiaridades associadas aos fenômenos

de superposição quântica e suas consequências, apresentamos e propomos um experimento

original no contexto de interferência quântica com o qual introduzimos pela primeira vez a

noção de `Forças Anômalas' existentes em um contexto quântico. Em particular, discutimos

como se torna possível que um objeto físico quântico adquira momento linear em um sentido

`errado', após ter interagido ou não com outro sistema físico conhecido dentro de um inter-

ferômetro. Mostramos como, nesse contexto, o efeito de superposição de uma força positiva

(em um braço do interferômetro) e uma força nula (no braço alternativo) `gera uma força

resultante negativa' sobre um objeto físico. Quando essa noção é aplicada para dois elétrons

dentro de um interferômetro, torna-se então possível simular uma atração elétrica entre dois

elétrons em um contexto quântico. O trabalho aqui apresentado foi inspirado em um artigo

publicado em 2013 por Aharonov et. al. [1], no qual os autores discutem a existência de uma

pressão de radiação negativa de fótons em um espelho quântico. Nesse texto, argumentamos

em como esse fenômeno aparentemente ilógico é possível, sendo derivado diretamente de

propriedades contra intuitivas da interferência quântica, e propomos uma versão do exper-

imento usando interferência com elétrons com o qual acreditamos que resultados análogos

possam ser observados em laboratório.

Palavras-chave: Superposição e Interferência Quântica, Fundamentos de Mecânica Quântica
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Abstract

Physical properties concerning the phenomena of quantum superposition and quantum inter-

ference have throughout the years been found in direct opposition to our classical every day

physical intuition. In this work, together with a brief review on the peculiarities concerning

the phenomena of quantum superposition and it's consequences, we present and propose an

original experiment in the context of quantum interference in which we �rst introduce the

notion of `Anomalous Forces' existing in a quantum interferometric context. In particular,

we discuss how it becomes possible for a quantum physical object to acquire a physical lin-

ear momentum in a `wrong' direction, after having interacted or not with some other known

physical system inside a two-paths interferometer. We show how, in this context, it is as if

the superposition of a positive force (in one arm of the interferometer) and a null force (in the

alternative arm) `generated an interferometric negative force' acting on the interfering physi-

cal object. When this notion is applied to two traveling electrons inside the interferometer it

becomes possible to simulate an electric attraction between electrons in a quantum context.

The present work was inspired by a paper published in the year of 2013 by Aharonov et. al.

[1], in which the authors discuss the existence of a negative radiation pressure of photons in

a quantum mirror. In this text, we argue on how this seemingly illogical phenomenon comes

about, being derived directly from the counter intuitive properties of quantum interference,

and propose a version of the experiment using interfering electrons with which we believe

that analogous results can be observed in the laboratory.

Keywords: Quantum superposition, Quantum interference, Fundamentals of Quantum Mechanics
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Chapter 1

Introduction

It is reported that, when Einstein sent out his theory of relativity to be published, �he

warned them that there were not more than twelve persons in the whole world who would

understand it� [12]. On that regard, physicist Richard Feynman remarked, during a lecture

opening, that �there was a time when the newspapers said that only twelve men understood

the theory of relativity. I do not believe there ever was such a time. There might have been

a time when only one man did, because he was the only guy who caught on, before he wrote

his paper. But after people read the paper a lot of people understood the theory of relativity

in some way or other, certainly more than twelve. On the other hand, I think I can safely

say that nobody understands quantum mechanics�. He proceeded: �I am going to tell you

what nature behaves like. If you will simply admit that maybe she does behave like this,

you will �nd her a delightful, entrancing thing. Do not keep saying to yourself, if you can

possible avoid it, �But how can it be like that?� because you will get `down the drain', into

a blind alley from which nobody has ever escaped. Nobody knows how it can be like that�.

Of course, it is a bold move to a�rm that nobody understands or has ever understood

quantum mechanics. And of course, saying something seems incomprehensible is not to say

that it is false. But the dilemma surrounding the world presented by quantum mechanics,

1



Chapter 1. Introduction 2

with all its nuances and although it has already proved itself successful in many ways as a

physical theory, is indeed a real one. If quantum mechanics represents the truth about the

behavior of the physical world as much as it seems to, it seems to be also possible to a�rm

that our human minds are simply not naturally `tuned in' to the way the world is, or to the

logic it seems to follow. In this dissertation, we are not interested in discussing in depth the

roll of interpretations that the strange world of quantum mechanics suggests, but instead

address some of the poignant peculiarities pertaining this theory, and how they seem to

oppose our standard every day classical intuition. In particular, in this work we propose an

original experiment in the context of quantum interference in which the result that the quan-

tum mechanical formalism yields, although being derived by application of basic concepts,

opposes directly our classical logic. In it we show how, in a quantum context, it becomes

possible for a quantum physical object to acquire a physical linear momentum in a `wrong'

direction, after having interacted or not with some other known physical system. The two ex-

isting and here presented versions of our experiment make use of the quantum superposition

phenomena applied to electrons in a two-paths interferometer, and were �rstly inspired by

the contents of a paper published in the year of 2013 by physicists Yakir Aharonov, Alonso

Botero, Shmuel Nussinov, Sandu Popescu, Je� Tollaksen and Lev Vaidman, named �The

classical limit of quantum optics: not what it seems at �rst sight� [1], in which the authors

present and discuss a rather astounding existing di�erence concerning the interpretation of

a physical phenomenon when looked at in classical or quantum regimes. This di�erence in

possible physical interpretations in the scenario presented by the Aharonov et. al. paper

arises from the strange conclusion that the traveling light beam responsible for an existing

momentum transfer inside a certain system do not coincide between the two regimes - and

that, in the quantum context, the photons found responsible for this momentum transfer

are the ones that could not intuitively be accounted as responsible for it. In this context

it becomes possible to introduce the notion of `anomalous forces' inside a interferometer.

Both discussions, the one contained in Aharonov et. al. paper and the one contained in our

present dissertation and original proposed experiments, serve well as to enrich and further

exercise our knowledge of what can or can not be possible in a world ultimately led by quan-

tum mechanics. Also, we believe that at least one version of our proposed experiment, as

opposed to the thought experiment discussed by the authors in the aforementioned paper,
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is in this day within experimental reach.

In Chapter 2, we start our discussion with a brief exposure of the quantum superposition

phenomena, showing some of its peculiar characteristics in order to obtain some intuition

pertaining the notion of quantum interference. This chapter is not in any way essential for

understanding the original results presented in this dissertation, and a reader familiar with

its contents would �nd no problem in skipping it if they please. Following this �rst discus-

sion, in Chapter 3, we present a more in-depth overview of the paper of Aharonov et. al.,

presenting and describing their interferometric thought experiment with light, deriving their

results and showing how these results derive in the quantum context directly from a quan-

tum superposition, which is the essential physical phenomenon we are in exploring in this

text. Finally, in Chapter 4, we present the discussion concerning our original interferometric

experiment with electrons, where we �rst introduce the notion of `quantum interferometric

anomalous forces', which accounts for our studied possible `wrong momentum gains' inside

a physical system when treated in a context of quantum interference. This central chapter

serves as presenting both a new discussion about the seemingly strange e�ects of quantum

interference and superposition and a more viable way of experimentally observing the un-

usual results of anomalous momentum gain of a physical object due to the phenomenon of

quantum interference.

A manuscript containing the here presented original results is currently under prepara-

tion and should be submitted for publication soon [13].



Chapter 2

What is Quantum Interference?

For the most part of science history, interference was regarded as a purely classical phe-

nomenon. It is the result of the physical principle of superposition applied to the propagation

of waves in a linear medium: the net response at a given point in space-time caused by two

or more di�erent incoming disturbances is the sum of the responses that would be generated

by each disturbance individually. Mathematically speaking, it is nothing more than the

addition of two or more wave functions - functions that satisfy the wave equation - to build

the shape of a �nal wave.

In the year of 1801 Thomas Young performed a double-slit light interference experiment

that demonstrated that light had a wave nature, as opposed to the corpuscular theory of light

put forward by many philosophers and upheld by Newton in the 18th century [14]. The idea

that light could consist of a large number of fast moving particles was then nearly abandoned,

and today's classical theory of light, a very fruitful area of physics that culminated in today's

Electromagnetic theory, was taking its �rst steps. It was not until the year of 1900, when Max

Planck presented his paper �On the Law of Distribution of Energy in the Normal Spectrum�

[15], that the discussion between the two points of view arose again and took a central part in

the scienti�c scenario. Trying to solve a mathematical thermodynamic problem of radiation

4
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equilibrium, Planck proposed that the expected results on the black body radiation could be

obtained if it could be considered that a light source emits its radiation not continuously, but

in equal �nite "packs" of energy, the quanta. Five years later, Albert Einstein, making use

of Planck's quanta of light, successfully explained the photoelectric e�ect [16]. An uneasy

question, however, prevailed: if a black body emits discontinuously, in the form of quanta,

was the radiation not expected too to behave like quanta in times past its emission? Is light,

after all, not a wave form but is it composed by small separated grains, or particles, of light?

Throughout the history of what we now call the �old quantum theory�, which one may

say had its beginning with Planck's paper, the fact that light seemed to present a `mixture'

of wave-like and particle-like natures brought physicists more questions than answers. At the

same time, while the particle theory of light could be used to explain new phenomena, it also

obscured what scientists thought they knew about the `old' phenomena. In this dissertation,

we are concerned with the physical long-known phenomenon of interference, and how it

is understood in the context of Quantum Mechanics, the branch of physics born at the

confusing times we brie�y described. Interference is no longer regarded as a only classical

phenomenon, but the concepts of quantum wave functions and quantum superposition have

a richness of their own. Within this new and exciting context, a simple phenomenon such

as wave interference can bring us quite counterintuitive results - so much that the famous

physicist Richard Feynman, confronted by those, went so far as to call the characteristics of

quantum superposition the Quantum Mechanic's "only mystery" [3].

2.1 The Quantum Double Slit Experiment with Light

The principle of the classical `double-slit' interference of light is one easy to follow and

is discoursed in detail in elemental text books on Electromagnetism [17]: a light beam, a

wave consisting of varying electromagnetic �elds, is split in two by an optical device like a

semitransparent mirror or a screen with two small apertures, as in the case of the famous

Young's double slit experiment. These beams take the two di�erent spatially separated

paths and are then reunited in a second screen to form an interference pattern. The light

splitting has an important role, since to form the fringes it is necessary that the incoming

beams be coherent with each other. The di�erence in path length is then what generates

the light and dark areas on the screen in the form of an interference pattern, as is depicted
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Figure 2.1: An schematic diagram of Young's double slit experiment with light beams. (a)

The beam is directed towards a dividing screen containing two small slits S1 and S2 that act

as coherent sources of light waves and produce alternate light and dark regions on the �nal

screen. (b) Piece on the center of interference fringes formed on the viewing screen. Image

extracted from ref. [2].

in Fig. 2.1. The total intensity is proportional to the square modulus of the total electric

�eld ~E = ~E1 + ~E2, which is the superposition of the electric �elds of the wave fronts coming

through aperture 1 and aperture 2, at any point x of the screen:

I1 = | ~E1|2, I2 = | ~E2|2, (2.1)

IT = | ~E1 + ~E2|2 = | ~E1|2 + | ~E2|2 + 2| ~E1|| ~E2| cos δ

= I1 + I2 + 2
√
I1I2 cos δ, (2.2)

where δ is the phase di�erence between the electric �elds and a function of x, and I1 and I2

the wave intensities due to each source individually. If the di�erence on the path length of

light coming from the di�erent apertures is an integer multiple of the light's wavelength, then

δ = n2π (where n is an integer) and we have a constructive interference point which results

in a light area on the screen. These light areas are then surrounded by dark areas where the

opposite situation occurs: the di�erence on path length is an odd integer multiple of half the

light's wavelength and the waves interfere destructively. The complete interference pattern

is therefore made of these alternating light and dark areas representing high and low wave

intensities.

What happens, however, if we lower the intensity of light to the point that only one
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particle of light, or photon, arrives per unity time at the screen containing the apertures? It

appears that the light splitting referred above has lost its meaning entirely, as it is expected

that, as an indivisible particle, the photon will take one and only one of the two routes

possible for it, even if we can not predict exactly what route it would take. The very idea of

a light beam is obscured here, and in this new context we can only talk about the probability

that the photon will arrive at some given point x on the screen as a function of x. If we

kept sending photons to the screen in this way to try to visualize the probability distribution

of photon arrival, and had some way to detect each photon as it hits the screen, what we

would expect is that we would get a larger number of photons arriving at the center of the

receiving screen, and that this number would become lower as the position x drew away

from the center. This is, in fact, only what we would get by adding up the probabilities

that the photon would arrive at point x with either aperture 1 or 2 closed. That is to say,

we do not expect that the probability of arrival at some point x for the photon coming

through one of the apertures would `interfere' in any way with the analogous probability for

the photon coming through the other. We expect that they will arrive following a classical

probability theory, the one followed by billiard balls or any other solid `particles' we can

have direct experience of. This probability distribution, including the partial probabilities

that are expected with each aperture closed - that intuitively consists of two curves with

peaks right in front of each aperture - is represented in Fig 2.2. We can visualize how the

curves representing the situations where the photon has only one of the apertures open to

it simply add together to a �nal probability distribution.

Strangely enough, that is not the way photons go. In fact, the probability distribution in

x that we would get by doing this experiment in the way just described would be very much

alike the intensity curve as a function of x in our classical experiment with a light beam. Even

if we can still talk about the partial probabilities of a photon arriving at the receiving screen

having passed by a certain one of the two apertures, is it clear now that these probabilities do

not simply add together. By waiting until many photons have arrived at the screen, what we

get is an interference pattern, with fringes just like shown in Fig 2.1, and this pattern is again

dependent on the di�erence in length between the two possible paths. This new situation is

depicted in Fig 2.3. But how can we understand the formation of this pattern in the photons

picture? It does not in principle seem illogical that we can say for sure that the photon has
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passed through only one of the two apertures. Consequently we could as well assume that

one photon could only �know� about the length of one of the two paths - but how then can

the photons arrive in a pattern that depends on the di�erence of length between these paths?

One can argue that, indeed, the interference pattern can be formed only by a collection of

photons arriving after a long exposure time, and this collection as a whole could have all

the available �knowledge� about the paths. That would imply the interference e�ect to have

some large dependance on the intensity that we sent the photons through the screen: by

lowering this intensity, at some point the interference pattern would start to become blurry

and then, by the time each photon became spatially separated from all other photons in the

experiment so that no information from one could reach another, it would not exist at all.

But that isn't what happens. The `visibility' v, v = (Imax − Imin)/(Imax + Imin), where

Imax and Imin are the maximal and minimum 'intensities' (proportional to the probability

of photon arrival) of the fringes, is not dependent on the intensity we send the photons in.

Experiments at very low light intensities have already been performed and con�rmed this in

the twentieth century [18, 19].

It is now known that the probability of photon detection doesn't just add together

classically, but mathematically it behaves exactly like the classical electromagnetic �elds:

P1 = |ϕ1|2, P2 = |ϕ2|2, (2.3)

PT = |ϕ1 + ϕ2|2 = |ϕ1|2 + |ϕ2|2 + 2|ϕ1||ϕ2| cos δ

= P1 + P2 + 2
√
P1P2 cos δ, (2.4)

where ϕ1 and ϕ2 are the wave functions associated to the existing possible paths for the

photons, and δ the phase shift between them.

This is a mathematical result that can't be obtained by any simple classical method that

considers single photons traveling through one aperture or the other. And yet that is the

probability curve we can test in the laboratory, had we performed the above experiment.

We should note, however, as much mathematically alike these results are, that there is

an important di�erence here in what concerns the interpretations of the two theories, the

quantum and the classical, in the double-slit experiment and in any context when speaking

about interference in physics. The wave functions ϕ1 and ϕ2, the actual mathematical
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Figure 2.2: Classical particles are sent through a dividing wall (a) containing two apertures

of enough size. A second wall works as a backstop for the incoming particles, and a movable

detector is introduced to measure the rate that these particles arrive as a function of the

position on the backstop wall. In (b), it is shown the partial probabilities P1 and P2 that the

particles will arrive at the backstop wall having passed through aperture 1 OR 2, respectively.

These partial probability curves can be achieved by closing one of the apertures at the �rst

wall so that the particles can only go through the other during the experiment. In (c), there

is the total probability curve for the arrival of the classical particles. This curve can be

achieved by the simple sum of the partial probability curves, so that P12 = P1 + P2. Image

from ref. [3].
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Figure 2.3: Young's double slit experiment with single photons. It is clear here that the

photons do not behave as classical particles. The partial probabilities for the photon to have

passed through a given aperture (b) don't simple add together to a �nal arrival probability

(c), and P12 6= P1 + P2. However, the probability amplitudes corresponding to each possible

indistinguishable path for the photons are additive and the total probability of photon arrival

as a function of the position at the �nal screen is the square of the absolute value of the

total probability amplitude. Image from ref. [3].
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amplitudes that arrive at the �nal screen and are what we can indeed associate with each

path, are now complex functions of time and space variables. In general we can't work

only with the real parts of these amplitudes, and, di�erently from the case of the classical

electromagnetic �elds, we cannot really regard this functions as real disturbances in space-

time. Due to this, in spite of the equivalent mathematical results, there is an essential

di�erence between the two phenomenons, or between the same phenomenon in the two

regimes, the quantum and the classical. We can only use and talk about the �wave functions�

of the photons as what they are: quantum probability amplitudes, that do not exist in

space-time. Within this scenario we can say that the photons, arriving one by one at highly

localized points in our �nal screen are detected discretely and thus behave like particles,

however that the probability amplitude's of detecting each photon interfere like waves.

As about the common question of `what if we tried to track the photons to see which

route it has taken inside the interferometer before its detection?', it is a frustrating but well

known fact to physicists that there is no way to do so and at the same time maintain our

interference pattern. In the case of the double-slit experiment, anything that can be used

to measure the complete `which-way' information of the photon disturbs its path in such a

random way that a photon that could be going to end up in a peak of arrival probability

actually ends up in a minimum of arrival probability, and this randomness acts as to mimic

classical probability distributions and destroy the fundamental quantum interference e�ect

we wish to observe. The `principle' invoked by physicist Niels Bohr to to explain this

feature of quantum behavior was the Heisenberg's uncertainty relations, more precisely the

uncertainty relations applied to the conjugate pair of the position and momentum operators.

They state that the product of the `uncertainty' of the dynamical variables associated to

these two operators has a lower bound, and as a result it fundamentally says that, even

at the most perfect laboratory conditions, there is a limit of what we can know about one

without essentially altering the other. As a result, measuring the position of the photon

just after it has passed through a slit alters its momentum just enough so that we lose the

interference. In fact, as we now know, the complete theory of quantum mechanics depends

so much on the correctness of these relations that, if they were proven wrong, and there

was no essential limit on the knowledge about two conjugate quantities, we would need a

throughout reformulation of the theory.
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To see how the interference pattern is intrinsically dependent on the which-way informa-

tion of the photon, and how this is a result that comes naturally in the context of quantum

mechanics, we will discuss brie�y a thought experiment [3] used by Richard Feynman to

introduce quantum mechanics and quantum behavior. Let us imagine that behind each

aperture of the �rst screen in our interference experiment there is some imaginary system

that accuses the photon to have passed through it. The result does not depend on the

speci�cs of this system, so it could be anything that marks the way of the photon - lets say

it scatters some particle at a detector near it with some �xed probability. We do the exact

same behind the other aperture. Also, we don't want our path marking to be perfect, and

to add a source of error we include another probability, small compared to the �rst, that the

detector behind one aperture will trigger even though the photon has taken the other way.

(See Fig 2.4.)

As before, we write the amplitude that a photon sent by a source S will arrive at the

position x of the screen having passed through aperture 1 as ϕ1, and the analogous amplitude

for aperture 2 as ϕ2. Those would be the �nal amplitudes if there was nothing behind the

�rst screen. We consider now the existence of the detectors D1 and D2 as our `�awed' path-

markers. What is now the amplitude that the photon will be emitted by source S, pass

through aperture 1, trigger the �correct� detector D1, and arrive at the second screen at

position x? If a is the probability amplitude that a photon coming through aperture 1 will

trigger the detector D1, the total amplitude in this case is the product of the two probability

amplitudes, aϕ1. If b is the smaller probability amplitude that the photon coming through

aperture 2 would �wrongly� trigger detector D1, the analogous amplitude in this case would

be bϕ2. So the total probability amplitude that detector D1 will be triggered by a passing

photon is the sum of these two probability amplitudes, and the total probability of this event

is the square of the sum of the amplitudes:

PD1(x) = |aϕ1 + bϕ2|2. (2.5)

Following this line, analogous amplitudes exist for the cases where detector D2, not

detector D1, is triggered. If we assume for simplicity that the system is symmetric, and we

can use amplitudes a and b in an analogous manner, the total probability of this event is

then calculated as:

PD2(x) = |bϕ1 + aϕ2|2. (2.6)
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Figure 2.4: Two detectors, D1 and D2, are placed behind the dividing screen of a double-slit

interference experiment of single photons. The detectors are placed in the vicinity of the

apertures 1 and 2 of the dividing screen, and can 'detect' the passage of the photons via any

third physical system that can accuse a photon to have passed through it. The probabilities

of detection in the various situations can be �xed at will for the purposes of this imaginary

experiment. Image from ref. [3].
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Finally, the total probability that the photon sent by source S will arrive at a certain

position x of the second screen and in its way trigger any one of the two detectors is:

PT (x) = |aϕ1 + bϕ2|2 + |bϕ1 + aϕ2|2, (2.7)

where ϕ1 and ϕ2 are both (complex) functions of x.

Here, we do not add all the existing probability amplitudes and then take the square at

the end because the events where D1 and D2 are triggered are distinguishable events, and we

only add up amplitudes for events that are indistinguishable, for those are the events that

can interfere in accord to the quantum formalism.

Taking a look at this expression we can see what happens if, for example, a = 1 and

b = 0. This is the speci�c case where a passing photon always trigger a detector, and it is

always the �correct� one. This represents a perfect marking of the photon's path. In this

case the probability is just the sum |ϕ1|2 + |ϕ2|2 of partial probabilities, which is just the

expected classical result, representing no interference pattern. Even if a di�ers from unity

(but still we keep b = 0, a < 1), this probability is then just reduced by a factor |a|2 and

still we get no interference for the photons that have triggered the detector. We say that the

detection at D1 has reduced the `visibility' of the interference. But if a is practically equal

to b, and the �wrong� and �right� detectors have nearly the same chance to be triggered

whenever a photon enters the interferometer, then the �nal probability distribution becomes

|ϕ1 +ϕ2|2 (multiplied by the factor |a|2), the result we would get in the case where we have

no detectors at all. In the intermediate cases, where the detection is partially e�ective, we

get more complicate forms for the �nal probability at the screen and therefore intermediate

forms of the interference pattern. It is clear by this example that the dependence of the

existence of quantum interference on path marking is something very intrinsic to the indeed

`mysterious', but very successful quantum mechanical formalism.

In talking consistently about probabilities, we have thus implied that probabilities are

all the information quantum mechanics can give us, and this is actually absolutely right.

As opposed to classical mechanics, where, if given all information, in principle everything

can be predicted, in quantum mechanics we get only the outcome's probabilities, sometimes

even in the more perfect scenarios. It is in general impossible to predict exactly what would

happen in a given situation, and, as we have discoursed in this section, it is in general

impossible to know exactly what is happening - the question of `where did the photon pass
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through' is almost a `forbidden' question here, in the sense that trying to answer it generally

only brings us inconsistencies. This has given birth to many di�erent quantum mechanical

interpretations, and many of them exists 'till today - though we are not concerned here about

the details of existing interpretations, but with the properties held by quantum interference

phenomena and con�rmed by experiments even within the context of seemingly illogical

physical e�ects of self-interference of single photons. We continue then, in the following

sections, to explore these properties and try to gain some intuition about the behavior of

particles in the quantum regime.

2.2 Matter Waves and the Complementarity Principle

Surprisingly, we are able to get interference patterns in a double-slit interferometer for light

even in the single photons regime, and those patterns are formed at our screen following the

exact same mathematical rules as for high intensity light beams. Although this is true, a

very di�erent story can be told about these two (mathematically identical) situations that

put them widely apart when it comes down to our interpretations and concepts about the

physical world. While the latter can be completely and satisfactorily explained by use of

electromagnetic �elds following the wave equation, we seem to lose our ground when trying

to grasp the reality of the �rst. It still seems illogical that physical indivisible objects

could `interfere with themselves' to produce visible, real interference fringes. Wave and

particle properties and concepts seem to be intertwined in a single, strange physical being.

As was mentioned in the introduction to this chapter, what brought the discussion back

about what could be the real nature of light, even years before the double-slit interferometer

experiment was ever performed in the quantum regime, was the paper published by Max

Planck in 1900 where he introduced to the scienti�c world the mathematical concept of

energy divided in packs, the later named photons. In this paper it was showed how the

paradoxes surrounding the black body radiation curve could be solved by the quantization

the energy exchange between light and matter - a concept that, as we now know, followed

by Einstein's quantization of radiation energy, came to be very fruitful and escalated to the

development of the modern quantum theory. The so introduced Planck's indivisible packs
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of energy followed the simple mathematical relation:

W = hv, (2.8)

whereW is the total energy of the photon, v is the frequency, and h a mathematical constant

known as the Planck's constant. The �rst noticeable thing about this relation is that at �rst

sight it seems to present us with some kind of inconsistency. Through it an indivisible

photon can be identi�ed with a frequency, knowingly a wave property. What is the kind

of periodicity that can be intrinsically attributed to a single, indivisible object? From this

early relation, it seemed to be clear that a theory that guides the photon's behavior could

not be a purely corpuscular, nor a purely wave one.

So, even though light was found to be composed by groups of indivisible separated

photons, it could still be associated with di�erent frequencies. In times following Planck's

paper, physicist Louis de Broglie was intrigued by the fact that small known particles were

at times demonstrating to posses behavior properties not normally attributed to indivisible

corpuscles. Borh's theory for the atom, for example, included quantized orbits for the

electrons around the nucleus - so that the atoms could be stable, the energy levels of those

electrons had too to be quantized [20]. It was in this context and encouraged by these

apparent inconsistencies around the behavior of both photons and matter that de Broglie

proposed for the �rst time a sort of parallelism, and shook the scienti�c world with a strange

idea [21]: just as light demonstrated to have both particle-like and wave-like properties, so

should all matter present this duality and possess in themselves both properties of wave and

particles. This parallelism is well expressed in de Broglie's own words:

`(...)Firstly the light-quantum theory cannot be regarded as satisfactory since it

de�nes the energy of a light corpuscle by the relation W = hv which contains

a frequency v. Now a purely corpuscular theory does not contain any element

permitting the de�nition of a frequency. This reason alone renders it necessary in

the case of light to introduce simultaneously the corpuscle concept and the con-

cept of periodicity. On the other hand the determination of the stable motions of

the electrons in the atom involves whole numbers, and so far the only phenom-

ena in which whole numbers were involved in physics were those of interference

and of eigenvibrations. That suggested the idea to me that electrons themselves
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could not be represented as simple corpuscles either, but that a periodicity had

also to be assigned to them too. I thus arrived at the following overall concept

which guided my studies: for both matter and radiation, light in particular, it

is necessary to introduce the corpuscle concept and the wave concept at the same

time. In other words the existence of corpuscles accompanied by waves has to

be assumed in all cases.' [22]

In his doctoral thesis, and making use of relativistic principles we will not dive into,

de Broglie showed how any moving piece of matter can be associated with a wavelength λ

following the relation:

p = hλ = ~| ~K|, (2.9)

where p is the total momentum of the particle's center-of-mass, ~K = 2π/λ is called the wave

vector and ~ = h/2π. Both relations (2.8) and (2.9) were now considered applicable for all

physical objects, light or matter, in the exact same fashion.

The wave nature of electrons was �rst demonstrated in an experiment performed by

Davisson and Germer just a few years after de Broglie's proposal [23]. Atoms in a crystal

act as a tridimensional arrange of di�raction centers for the `electron waves', strongly scat-

tering the electrons in various characteristic directions, just as had already at the time been

demonstrated to occur for the case of X rays. The results of this experiment could only be

explained as being a result of the constructive interference of waves scattered by the peri-

odic array of atoms in the planes of the crystal, in complete analogy with the already known

`bragg re�ections' for light. The form of the di�raction patterns obtained by this method

experimentally con�rmed the validity of the de Broglie relations for the case of electrons.

It is in this manner and in this sense that both light and matter were found to hold

in themselves two apparently confronting natures, depending on when or how they were

observed. Strangely, that is indeed the common sense for things existing on a quantum scale

- they are unlike anything our classical minds can have any direct experience of. Electrons

were �rst introduced to our knowledge as very small particles constituting an important part

of the atomic structure of our universe, yet as we now know they can be demonstrated to

behave as something rather stranger. Electrons are not only particles and they are not only

waves - they can behave like both and, therefore, overall they really behave like neither.

They are neither. However, physicist Richard Feynman pointed out a lucky break: electrons
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behave just like light. The quantum behavior of atomic objects (electrons, protons, neutrons,

photons, and so on) is the same for all, they are all �particle waves�, or whatever you want to

call them [3]. All objects in the quantum world posses strange, extremely counterintuitive

behaviors, but they all act strangely in the same manner. Therefore, all of the essential

results of quantum theory are valid for all these small physical objects, including the results

surrounding the double-slit interferometer experiment that was discussed in Sec. 1. It is

possible, today, to perform a double slit interferometry experiment using single electrons,

and we shall deeply explore this idea in the last part of this dissertation.

One such experiment was performed by the Hitachi Group in 1989 [4]. Instead of a screen

with two apertures for the passage of the electrons, in their experiment an electron biprism

was used to spatially separate the two possible paths of the interferometer. This biprism

consists of two parallel plates with a thin positive charged �lament placed at the center. A

sketch of the used experimental apparatus is depicted at Fig 2.5. Electrons emitted by a

source can pass on either side of the �lament when passing through the electron biprism, and

the interference of the amplitudes associated with each of these two paths is captured by an

specially modi�ed detecting screen that accuses each electron's arrival by a light emission.

At �rst the electrons seem to arrive at random positions at the detecting screen, but enough

exposition time reveal the formed interference fringes (See Fig 2.6). In this experiment the

electrons were accelerated to reach 40 percent of the speed of light and were emitted at time

intervals such as that no more than one electron traveled inside the interferometer at the

same time.

In 2002, science historian Robert Crease asked the readers of the Physical World magazine

to submit candidates for the `most beautiful experiment in physics' [24]. The leading result

of a list published in the September edition was the Young's double slit interferometer

experiment applied to the case of single electrons. What is it that makes the single electrons

interference pattern so astoundingly beautiful, when by the time it was �rst performed

so many strange quantum results had already been experimentally tested? Quoting Mark

P. Silverman, maybe �the unambiguous directness of the observable results, despite being

expected, have the capacity to shock the intellect into realizing, like no mathematical proof

is capable of achieving, that the formalism of quantum mechanics reveals a strange and

disturbing reality� [25]. In the closing remarks of his report, Crease wrote:
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Figure 2.5: Experimental apparatus of the HITACHI double-slit interference experiment

with single electrons. The path division is accomplished by a thin �lament positioned inside

an elelctron biprism. Image extracted from ref. [4].

It is natural to call beautiful those [experiments] that captivate and transform our

thinking, that make the result stand out clearly [. . .] in a materially embodied

way, and that reveal that we are actively engaging with something beyond us.

It is not just electrons that were observed to have a wave nature. Another experi-

ment that well illustrates the wave behavior of matter, this time presented by atoms and

molecules, is an interferometric experiment performed in the year of 1995 by Michael S.

Chapman et. al. [5]. In this experiment the center-of-mass of atomic and molecular sodium

particles could be coherently manipulated and their wave properties could so be visualized

and demonstrated. Nanofabricated di�raction gratings were used to measure the properties

of the object's di�raction. Also, for this experiment a pure molecular beam was created so

that the wave properties of the Na2 molecules could be solely analyzed. This was accom-

plished by use of resonant light pressure forces acting solely on the atomic specimens to

de�ect them sideways from a previously created mixed beam containing both Na and Na2

specimens. This situation is depicted in Fig 2.7. The de�ecting laser beam was produced

with a laser tuned to the F = 2 → F ′ = 3 transition of the D2 line in Na (589.0 nm). The
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Figure 2.6: Figure 4. The arrival pattern for single electrons in a double slit interference

experiment for increasing exposition times. Each image correspond to: (a) 8 electrons; (b)

270 electrons; (c) 2000 electrons; and (d) 160 000 electrons. The total exposure time to form

the �nal image (d) was of 20min. Image extracted from ref. [4].
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Figure 2.7: Figure 5. Sodium atoms are removed from a mixed beam containing both Na

and Na2. The de�ecting lased gives transverse momentum to the atomic specimens, thus

de�ecting them away from the �nal collimation slit. A knife edge blocks the sodium atoms

that could escape the de�ecting process. Image extracted from ref. [5].

Na2 molecules are not resonant with this de�ecting laser and were therefore una�ected by

its presence.

Since the atomic and molecular specimens in the previously created mixed beam had

nearly the same velocity, their momenta and therefore their de Broglie wavelength di�er

by a factor of 2 due to their mass di�erence. Fig. 2.8(a) shows the measured di�raction

pattern of the matter beam using a nanofabricated 100nm grating in the case where the

de�ecting laser was turned o� and the beam remained in its mixed form. The di�raction

grating can be seen as a multiple slit interferometer having a 100nm separation between

its various slits, with quantum interference happening due to the superposition of the this

time various possible paths for the di�racted physical objects. We see that the di�racted

orders of the atomic sodium specimens are well resolved and su�ciently separated so that

the intermediate molecular di�raction peaks at half the atomic di�raction angles can be

unambiguously identi�ed. When the de�ecting laser is turned on, the di�raction pattern

for a nearly pure Na2 molecular beam is resolved out to the fourth di�raction order, as

shown in Fig 2.8(b). The use of these nanofabricated di�raction gratings for matter waves

constitutes a powerful experimental non-destructive way of analyzing the properties of very
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weakly bound matter systems, and have been also used for example to produce evidence

of the existence of He2 molecules [26]. The interference patterns arising from matter wave

di�raction at material di�raction gratings were experimentally observed even for much larger

objects such as C60 molecules [27].

Hence, we see that the wave-like and particle-like behaviors of both radiation and matter

were, with experimental evidence, undoubtedly established - physicists now accept that they

must `borrow' concepts from both models for any complete description of the same physical

entities. It is very important to note here, however, that these concepts cannot be appli-

cable simultaneously. In fact, the wave-like and particle-like behaviors of physical objects

are complementary behaviors, in the sense that a single object cannot depict both under

any single experimental context. This complementarity principle was �rst introduced and

strongly upheld by Niels Bohr in the last century, in an attempt to embrace in it the singu-

larities held by the known quantum phenomena at the time and to clarify peculiar aspects

of observational problems within this scienti�c �eld [28, 29]. The complementarity principle

is an interesting one, and derives from the notion that the account of our knowledge about

the physical reality can be achieved only through experimental data, and this data must in

turn `speak our classical language'. In other words, as much as the physical reality of events

deviates from those of our classical, intuitive world, any evidence that can be tested in our

laboratories must be expressed in our own classical terms. This corresponds to an insepa-

rability between what we can know about the behavior of existing physical objects and the

necessary, uncontrollable interaction that these objects have with our classical apparatus.

Bohr named it an `individuality' of typical quantum phenomena that any attempt to subdi-

vide these phenomena to create new observational evidence will demand an exchange of the

experimental arrangement, uncontrollably introducing new possibilities of interactions be-

tween the central physical objects and our measuring devices that act as to change our whole

observational picture. These studied objects cannot, therefore, be comprehended within sin-

gle pictures, and only the totality of observational phenomena can `exhaust the possible

physical information about them'. The contexts where these two seemingly irreconcilable

types of behavior, particle and wave, appear, correspond in the context of complementar-

ity to mutually exclusive experimental builds. We choose by each placing or con�guration

of the experimental apparatus which behavior is it that we are going to observe, and only
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Figure 2.8: Figure 6. (a) Di�raction patterns of the mixed atomic/molecular sodium beam

when the de�ecting laser is turned o� and (b) of the molecular sodium beam by a nanofrabri-

cated grating of 100nm period. The thin solid line in (a) is a �t for the di�raction pattern

of Na2 and indicates that 16,5 percent of the detected intensity are from the molecular

specimens when the de�ecting laser is o�. Image extracted from ref. [5].
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taking account of all of these contexts together can bring us all the information needed to a

complete knowledge of these quantum entities.

Concepts contained in Bohr's complementarity principle bring into scene the question

about the reality of unobserved physical phenomena. By saying that we can only talk about

what has, in fact, been measured, and that the simple act of performing a measurement

on a system always includes uncontrollable physical interactions between this system and

our measurement devices, the question is open about what was `really' there before any

measurement was made. For example, can we as physicists a�rm, after having obtained a

measured result about a certain physical quantum system, that this result was true even

before our act of measurement had been performed? The answer is, typically, �No�. This

kind of classical objectivity appears to be simply lost at this point. Even the concept of

physical `realism' becomes, in the context of Bohr's quantum mechanical complementarity,

questionable. Such perturbing ideas have historically found resistance in famous physicists

such as Einstein, Planck and Ehrenfest. Re�ering to those, Heisenberg wrote:

�... all the opponents of the Copenhagen interpretation do agree on one point.

It would, in their view, be desirable to return to the reality concept of classical

physics or, to use a more general philosophical term, to the ontology of mate-

rialism. They would prefer to come back to the idea of an objective real world

whose smallest parts exist objectively in the same sense as stones or trees exist,

independently of whether or not we observe them.�

The measurement problem in quantum theory was and is an exhaustive theme of research

and much can be gained by the studies of its characteristics and implications [30, 31, 32].

The `self-interference' of particles, the intrinsic wave nature of matter and the comple-

mentary principle are all parts of a whole that sometimes we may �nd di�culty in accepting,

but are every bit as scienti�c as any other seemingly `less fantastic' theory is. This apparent

fantastic or `mystic' aspect of quantum theory is probably the reason why its name has

derived so much into less scienti�c statements and beliefs of the modern popular imagery.

It is clear that there are times when may �nd necessary to adjust our intuition and question

our previously untouchable statements in order to be able to better explore this quantum

`brave new world '. With this in mind, we continue our discussion of the properties of quan-
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tum particles, specially concerning the characteristics and apparent paradoxes of quantum

superposition and quantum interference phenomena.

2.3 Wheeler's Delayed Choice Experiment

Perhaps the most unsettling feature of the Young's double-slit interference phenomenon with

single photons is the apparent incompatibility between our classical concepts of a spatially

distributed wave traveling through two di�erent paths at once and a localized particle that

can only take one path at a time. Intrigued by this incompatibility and by the fact that

how we choose to perform the experiment seems to de�ne which type of behavior we expect

to observe (a good example would be the thought experiment that was brie�y described

in the �rst section of this chapter, where we could choose between placing or not the two

detectors behind the screen and observe or not the full interference pattern), various thought

experiments were proposed around the end of last century to try to answer the question:

since the photons can take either a wave-like or a particle-like behavior, but not both at the

same time, at what time does the photon `chooses' how it is going to behave? The question

essentially means to test the possibility that the photon could `sense' what lies ahead of its

path and previously adjust its behavior accordingly, or if it remains in a indeterminate form

until the time of its detection. These famous thought experiments were proposed by John

Archibald Wheeler in his paper named �The "Past" and the "Delayed-Choice" Double-Slit

Experiment� [33].

The delayed choice experiment consists in determining the �nal con�guration of the

experimental apparatus in a time past the entry of the photon in the interferometer. In that

manner, even if the photon could somehow sense this con�guration before-time and `decide'

between behaving as a wave by taking both paths or behaving as a particle and taking a

single path, it could not have known at which con�guration the apparatus would be by the

time it left the interferometer. This would bring up an apparent paradox if a last minute

change in the con�guration indicated that the photon could have decided to behave in an

opposite way even after having `chosen' previously about its paths. As to make clear the

implications of this, an ingenious version of the experiment was proposed by Wheeler that

consists in considering a giant, cosmic interferometer of single photons [33]. In this cosmic

version of the delayed-choice experiment we imagine a photon source on a distant quasar,
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Figure 2.9: Cosmic version of the delayed-choice interferometric thought experiment (not

in scale). A photon coming from an emitting distant quasar can reach a point on Earth

traveling through two possible paths. The image indicates the two formed images of the

quasar if looked directly with a telescope. How an experimenter on Earth decides to measure

the incoming photons determines the type of behavior he is going to observe.

billions of light-years away from Earth. Midway across this distance there is a galaxy or

cluster of galaxies that act on the photon as a gravitational lens. The distortion in space-

time in the vicinity of this galaxy would alter the path of the photon as to send it directly

towards some point on Earth, however this photon could reach this point either by passing

by one side of the galaxy or the other. A physicist on Earth could then make a choice of how

he wishes to observe the incoming photons. He could either point his detectors - lets say

telescopes - directly at the two formed images of the quasar, and by it infer that light has

traveled billions of years as a particle, or make the more complicated choice of combining

the output of the two telescopes in a single beam-splitter device to form interference fringes

and by it infer that light has traveled billions of years as a wave. Fig 2.9 represents a sketch

of this thought experiment.

Fortunately there are simpler ways where we could test this assumptions and analyze the

complete behavior of the photons in a delayed-choice type of experiment in the laboratory.
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Figure 2.10: Mach Zehnder interferometer for single photons. The presence of the output

beam splitter BSoutput represents the closed con�guration of the interferometer. When

BSoutput is absent, the arrival of the photons at each one of the �nal detectors D1 and D2

correspond to a determined path inside the interferometer and the interference e�ect is lost.

Image extracted from ref. [6].

For this consider a Mach-Zehnder interferometer of single-photons sketched in Fig 2.10. This

represents a closed con�guration of our interferometer, where the �rst beam-splitter BSinput

gives the photon an equal probability of being transmitted or re�ected, and thus separates

spatially the two possible paths for the photon. The photon is thus in a superposition of

amplitude components associated with the two arms of the interferometer. If we denote the

states corresponding to each of the separated path directions as the state vectors |I〉and |II〉,

then the total state of the photon just after having passed through beam-splitter BSinput

can be written in the form of a quantum superposition as |Ψ〉 = (|I〉 + i|II〉)/
√

2, where

i represents the phase shift due to a re�ection on the beam-splitter. The paths are then

recombined and made to interfere at the second beam-splitter BSoutput. By altering the

length of one of the arms we could vary the phase di�erence Φ between the components, and

then get the superposition before BSoutput, writing it as |Ψ′〉 = (|I〉+ i exp(iΦ)|II〉)/
√

2.

We analyze how beam-splitter BSoutput acts on this superposition. We know that, in

the simple case of a photon arriving at a beam-splitter in a given direction, it has an equal

chance of being transmitted or re�ected. A phase i is introduced to the state every time

the photon is re�ected. So, if the photon arrives in the state |I〉, it will have a �fty percent

probability of leaving in a state |I〉 (transmitted) and a �fty percent probability of leaving in

a state i|II〉 (re�ected). The same thing is valid for the inverse case when where the arrival

direction is the state |II〉, only now the transmitted and re�ected states are, respectively,

|II〉 and i|I〉. The states denoting the two di�erent directions |I〉 and |II〉 are orthogonal
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and normalized, so that 〈I|I〉 = 〈II|II〉 = 1 and 〈I|II〉 = 〈II|I〉 = 0. With this, we can

construct an operator UBS that represents the action of a beam-splitter on an arbitrary

superposition of states |I〉 and |II〉:

UBS = 1/
√

2[|I〉〈I|+ |II〉〈II|+ i(|I〉〈II|+ |II〉〈I|)],

where the �rst two terms are associated with transmissions and the terms containing the

phase shift i are associated with re�ections on the beam-splitter.

We are now able to get the detection probabilities of the output ports D1 and D2 as the

square of the amplitudes:

PD1 = |〈I|UBS |Ψ′〉|2

= |1/2(〈I|+ i〈II|)(|I〉+ i exp iΦ|II〉)|2 =
1

2
(1− cos Φ) = (sin(Φ/2))2, (2.10)

PD2 = |〈II|UBS |Ψ′〉|2

= |1/2(〈II|+ i〈I|)(|I〉+ i exp iΦ|II〉)|2 =
1

2
(1 + cos Φ) = (cos(Φ/2))2. (2.11)

These probabilities depend on the phase shift between the arms of the interferometer and

represent the interference between the components associated to the two paths. Of course,

we have PD1 + PD2 = 1 for all Φ. In this case, the existence of an interference pattern is

associated with a wave-like behavior of the photon.

The open con�guration consists in removing BSoutput so that detections at each output

port D1 and D2 are now uniquely associated with a given path inside the interferometer -

as we choose not to combine the amplitudes in a second beam-splitter, we could say that a

photon arriving at D1 came through arm I and a photon arriving at D2 came through arm

II. The probabilities are the square of the projections:

PD1 = |〈I|Ψ′〉|2 = 1/2, (2.12)

PD2 = |〈II|Ψ′〉|2 = 1/2, (2.13)

which do not vary with the phase shift Φ. In the case where the detectors are associated

with unique paths, we do not get interference, and the detection probabilities are constants.

Thus the photons have a corpuscular behavior in the absence of the output beam-splitter.

Here, the delayed-choice experiment consists in deciding between these two con�gurations

in a time past the photon has passed the input beam-splitter BSinput. An experiment like
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described was performed in 2007 by Jacques et al [6]. This experiment was performed in a

highly single photon regime and with a guaranteed relativistic space-time separation between

the choice of the con�guration and the entry of the photon inside the interferometer. This

is important so that no information about the choice of the con�guration could reach the

photon before it passes BSinput. The choice of the presence or not of beam-splitter BSoutput

in each run was made using a quantum random number generator (QRNG), which functions

based on an intrinsic random quantum processes, so that its choice cannot be in any way

predicted. In this way, even if the photon had somehow all knowledge about the details of

the state of the generator, it would not be able to predict the �nal con�guration. Finally,

for each run of the experiment, a di�erent phase shift Φ is set between the arms of the

interferometer. For each realization, the con�guration of the interferometer, the detection

events, and the set phase di�erence Φ were recorded.

After many experimental realizations, the collected data is sorted for the times where

the output beam-splitter was absent and for the times it was present. Plotting the so sorted

data as a function of the phase shift Φ between the arms gives us the statistics for the

photon for each con�guration of the interferometer. When this is done, the plotted data

clearly indicates the existence of a interference pattern between the interferometer arms as a

function of Φ at both detectors for the cases where the output beam-splitter was present, and

no sign of interference can be seen in the cases where it was absent (See Fig 2.11). With this

we are led to the conclusion that, even if the choice of the apparatus con�guration is made

at a time when the photon is already inside the interferometer, we can still choose to observe

a wave-like or a particle-like behavior by choosing to place or not a beam-splitter at the end

of the photon's path. Mathematically, this means choosing at which basis to project the

photon's state after its entry: we can either project it at basis |I〉, |II〉, or at the alternative

rotated basis |I ′〉 = U †BS |I〉 = (|I〉 − i|II〉)/
√

2, |II ′′〉 = U †BS |II〉 = (|I〉 + i|II〉)/
√

2, where

U †BS represents the hermitian conjugate of our constructed beam-splitter operator UBS . This

result can be directly derived by an inspection of Eq. (2.11). So, to project the photon's

states at the detectors at the end of the experimental apparatus means projecting them at

di�erent basis sets according to which con�guration the apparatus is on. This whole picture

is in total accord to Borh's complementarity principle.

But if our choice of placing or not the second beam-splitter is made after the photon
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Figure 2.11: Counts of photon detection in a delayed choice interferometric experiment for

both detectors D1 (blue points) and D2(red points) of the Mach Zehnder interferometer as a

function of the varying phase shift Φ between the arms of the interferometer. According to

the authors of the experiment, each point was recorded with an exposition time of 1.9s and

corresponds to the detection of about 2600 photons. A represents the detection counts for

the closed con�guration of the interferometer, when the output beam splitter was present,

while B represents the counts for the open con�guration. The counts of photon arrival in

the closed con�guration on the detectors shows an interference pattern with phase shift Φ

of 94 percent visibility. In the open con�guration, no interference is observed and equal

detection probabilities of (0.50 ± 0.01) were observed for both detectors, corresponding to

the full knowledge of the photons paths. Image extracted from ref. [6].
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is surely already inside the interferometer, how can we explain this outcome? Again, as

in the case of the cosmic interferometer, at �rst it may seem that our late choice of the

con�guration has in�uenced the photon's past behavior at the slits, somehow creating an

e�ect of reverse causality. In Wheeler's own words, "(...)we have a strange inversion of the

normal order of time. We, now, by moving the mirror in or out, have an unavoidable e�ect

on what we have a right to say about the already past history of the photon" [34]. This

paradox creates a tension with Einstein's theory of relativity, indicating that we could be

twisting the arrow of time, causing the future to in�uence the past.

However, relativity theory and causality can remain untouched by the strange however

plausible conclusion that the photon is, in fact, in a still indeterminate form until the time

it reaches the detectors - that is, until the time any real measurement is made. As was

already previously discussed, it is an idea strongly supported by Bohr that as physicists

we are only able to talk about what has in fact been measured, and therefore to make an

a�rmation about the photon's unmeasured past, i. e. to a�rm that it has passed through

only one or both slits at the beginning of our experiment, is a common fallacy. Even in a

mathematical point of view, the projection of the photon's state occurs only upon the arrival

at the detectors - until then, the photon remains in a evolving superposition of states, and

nothing can really be said about the physical nature of its behavior. We make a pause here

to recall the example presented in Sec. 1, where the detectors D1 and D2 were placed in

the vicinity of the two apertures of a double-slit interferometer in an attempt to mark the

photons paths. In the case where we have set b = 0 and the `wrong' detector could not be

triggered by any passing photon, we had then a�rmed that a click in detector D1 meant

that the photon had �passed through aperture 1�. We are now able to understand that this

conclusion is in fact essentially incorrect. Before the click of the detector, the photon is still

in the superposition of states represented by (ϕ1 + ϕ2)/
√

2, and not yet projected at state

ϕ1, which would actually mean that `it had passed through aperture 1'. The projection at

one of the photon's eigenstates only takes place upon the time the photon's state reaches the

detectors, and we have indeed no right to say anything about its behavior in earlier times.

To make such a�rmations would inevitably result in creating a type of retro causality, in

the sense that removing detectors D1 and D2 after the photon had passed through the �rst

screen could alter what we could say about its past behavior at the apertures. But in reality,
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by removing the detectors, we only leave the superposition unperturbed and free to evolve

until the �nal screen is reached. At the end, it is not a case of path marking, but more

precisely it is about our detector's placement. And with this we can conclude that the

choice of apparatus con�guration does not, as in Wheeler's words, have an e�ect on what we

have a right to say about the past history of the photon, therefore creating a time paradox -

either the case, what it seems most is that we as physicists never get to say anything about

this past history at all.

2.4 Erasure of Information: The Quantum Eraser

In the �rst section of this chapter, we have discussed how the interference pattern in a

double-slit interference experiment with single photons is intrinsically dependent on what

we have called the `which-way' information of each photon, and how this dependence comes

about very naturally by means of the quantum mechanical formalism - we have concluded

that, if we can with this information completely determine the photon's trajectory inside

the interferometer, then the interference pattern must disappear. A subtle question however

may arise when confronting this facts: what if we could, by some means, erase the path

information of the photons? What would happen with the interference then? In 1982,

this very question was asked by physicists Marlan O. Scully and Kai Drühl [35], who �rst

proposed the concept of quantum erasure in a theoretical standing. A few years later, Marlan

O. Scully, B.G. Englert and H. Walther [7] proposed an experiment to bring this new concept

of quantum erasure about: in their paper, they proposed a double-slit type experiment where

the interfering objects were atoms with electrons excited to very high energy levels. Behind

each aperture of the dividing screen of their interferometer there is a cavity which purpose

is to capture the photons emitted by the excited atoms as they decay to lower energy levels.

The idea behind the experiment is quite simple: while there is no connection between the

two cavities, the atom's paths are completely marked by the presence or not of the photons

inside them, and thus no interference pattern should appear at the �nal screen. But if a

connection was created so that the photons could freely travel between the cavities, then

there would be no way of knowing exactly behind which aperture the photon was emitted and

this `erasure' of the path marking would allow us to fully recover the interference pattern.

The details of this proposed experiment are as follows.
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First, we take a closer look at the theoretical `which-way' detector device, showed in

the sketch of the proposed experimental apparatus presented in Fig 2.12. As is shown, a

series of wider slits is �rst used as the collimators to de�ne the two atomic beams that

then arrive at the two apertures screen of our standard double-slit interferometer. If we

disregard for a moment the presence of both the laser and the cavities, this experiment is

then just reduced to the double-slit interference experiment of Sec. 2.1 now applied to atoms

instead of photons, and we expect, just as then, to see an interference pattern formed at the

�nal screen. However, for the present quantum erasure experiment, both the laser and the

cavities are introduced as to function as the so-called `path markers' for the atoms in the

beam. The idea then is as follows: �rst, the laser beam is introduced as to prepare for the

interferometric experiment a beam of atoms that are in an excited internal state. After the

interaction with this laser, the atoms in this beam will then proceed go through one of the

two placed cavities, each associated with a single aperture in the double-slit interferometer's

dividing screen. The cavities are created so that whenever one of the excited atoms of the

atomic beam travels through it, it decays to a lower internal energy level by emission of a

microwave photon. If we suppose that there were no photons present at the cavities before

the experiment, then the presence of a photon in the cavity stores information about the path

taken by the atom and thus the interference pattern should be destroyed. We note here that

the process of photon emission by the excited atoms in the cavity does not a�ect the spatial

state of the traveling atoms - it is possible to show that the interaction of the atoms with the

cavity does not disturb their center-of-mass motion [7], so that the net momentum transfer

to the atoms due to the this interaction is approximately zero. This is important because

it presents in itself an example where the interference pattern is lost to path information

without the existence of any real disturbances in the motion of the atoms.

After the atom has passed through one of the so placed cavities and made a transition

from an excited state to a lower energy level, which we denote here by |a〉 → |b〉, the total

joint state of the atoms spatial and internal degrees of freedom and the cavities is:

|ΨT 〉 =
1√
2

[|ψ1〉|φ1〉+ |ψ2〉|φ2〉]|b〉, (2.14)

where |ψ1〉 and |ψ2〉 are the spatial state vectors of the atom associated respectively with

apertures 1 and 2 of the �rst screen of the interferometer and |φ1〉 = |1102〉 and |φ2〉 = |0112〉

are the states of the cavities representing respectively the cases where cavity 1 has a photon
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Figure 2.12: The double-cavity `which-way' detector device coupled to a double-slit interfer-

ometry experiment using atoms in excited internal states, as proposed in [7]. The existence

of a photon in one of the two placed cavities indicates the passage of an atom through a given

cavity, therefore storing information about the path taken by the atoms in the experiment

and eradicating the phenomenon of interference. Image extracted from ref. [7].
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(and cavity 2 has none) or cavity 2 has a photon (and cavity 1 has none). The total state of

the system is then as usual a superposition of the possibilities for the atom and the cavities.

The arrival probability curve for the atom at a point x at the �nal screen with this setting

of the apparatus is then |〈x|ΨT 〉|2:

P (x) =
1

2
[|ψ1|2 + |ψ2|2 + ψ1 ∗ ψ2〈φ1|φ2〉+ ψ2 ∗ ψ1〈φ2|φ1〉]〈b|b〉 (2.15)

where ψ1 = 〈x|ψ1〉 and ψ2 = 〈x|ψ2〉 are the wave functions in coordinate representation

associated with apertures 1 and 2 of the �rst screen. Because |φ1〉 and |φ2〉 are orthogonal,

their inner product vanishes and the arrival probability is then reduced to

P (x) =
1

2
[|ψ1|2 + |ψ2|2], (2.16)

and as expected no interference can be seen at the �nal screen.

The important question now is: is there a way to retrieve the interference terms in the

arrival probability curve by erasing the path information of the atom that is stored at the

cavities? Theoretically, as is shown with detail in ref. [35], the answer is `yes', and the

proposed way of doing so in this present experiment is sketched in Fig 2.13. If we imagine

that the cavities are now separated by a shutter-detector combination, then, if the shutters

are set open, the photon existing at either one of the cavities will be allowed to interact with

a centered photo-detection wall. Photon detection is a destructive phenomenon and, if the

photon turns out to be absorbed by the wall in this manner, its `memory of passage' can be

said to have been completely erased. If we now expand the total state of the system after

the passage of the atom through the cavities to include the state of the introduced detection

wall when the shutters are closed, we will have:

|ΨT 〉 =
1√
2

[|ψ1〉|φ1〉+ |ψ2〉|φ2〉]|b〉|d〉, (2.17)

where |d〉 is the vector state of the detection wall ground state (no detected photons). When

the shutters are set open, the detector can then make a transition |d〉 → |e〉 to an excited

state |e〉 (representing photon detection).

Before we continue, it is convenient to introduce here an alternative vector basis consisting

of the symmetric and antisymmetric states, denoted by:

|χ±〉 =
1√
2

[|χ1〉 ± |χ2〉], (2.18)



Chapter 2. What is Quantum Interference? 36

Figure 2.13: The implemented shutter-detection device allowing the photons in the cavities

to reach a photo-detection wall is indicated in the space between the cavities. As photon

detection is a destructive physical phenomenon and no information is left about the origins

of the so absorbed photons, this process culminates in a `erasure' of our previous path

information and the recovery of interference Image extracted from ref. [7].
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where, in our discussion, χ can be replaced by either ψ or φ. The total state vector of the

system in Eq. 2.17 written on this alternative basis set for the degrees of freedom of ψ and

φ is then:

|ΨT 〉 =
1√
2

[|ψ+〉|φ+〉+ |ψ−〉|φ−〉]|b〉|d〉. (2.19)

We consider the interaction between the radiation in the cavity and the photodetector,

which we consider as having two possible states, |d〉 and the excited state |e〉, in the likes of

a two energy leveled atom. The interaction Hamiltonian for this case between the radiation

and the detector is so that it will depend on the symmetric combination of the state variables,

in a way that only the symmetric combination for the photon in the cavity could be `detected'

(and the antisymmetric combination remains unchanged). With this in mind, the total state

is then turned into:

|ΨT 〉 =
1√
2

[|ψ+〉|0102〉|e〉+ |ψ−〉|φ−〉|d〉|b〉], (2.20)

where |0102〉 means no photons present at either one of the cavities.

It is easy to see that, as long as the �nal state of the photodetector is unknown, we

remain observing no interference pattern at our �nal screen, as we get an arrival probability

curve for this �nal state in the form of Eq. 2.16. But something seemingly unusual happens

when we ask the question of what is the probability Pe(x) of atom arrival at the screen and

in the same event a count at the centered photodetector. For this cases, we have an arrival

probability:

Pe(x) = |〈x|ψ+〉|2 =
1

2
(|ψ1|2 + |ψ2|2 +Re(ψ1 ∗ ψ2)), (2.21)

and we have, here, surprisingly regained the interference term. For the complementary cases

when the photodetector does not trigger any counts (corresponding to the antisymmetric

state of the photon, that is not `detected'), we have a similar arrival probability distribution:

Pd(x) = |〈x|ψ−〉|2 =
1

2
(|ψ1|2 + |ψ2|2 −Re(ψ1 ∗ ψ2)), (2.22)

where the sign of the interference term is changed, indicating the existence of the called

antifringes at our screen, an `inverted' interference pattern. Thus, when we lose the path

information, interference is regained. The case of no interference will correspond to half the

sum of the probability curves Pe(x) and Pd(x).

Although the idea contained in this experiment is a simple one, a quantum eraser exper-

iment has not been performed following directly this original proposal, since there are much
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simpler, equivalent ways to perform it in the laboratory. Here, to again visualize what is

happening in a quantum erasure type of experiment, let us once more consider a double-slit

interferometer of single photons. To analyze the quantum erasure process in this context we

will for the �rst time make use of an internal property of the photons, namely their polariza-

tion states. We proceed as follows: we prepare our photons so that each photon arrives at

the �rst screen with linear vertical polarization, which we denote as the state |V 〉. Behind

only one of the two apertures, say aperture 1, we place a half wave plate to rotate this

polarization into a horizontal polarization state |H〉. A half wave plate is an optical device

used to `rotate' the direction of polarization of linear polarized light by altering the phase

shift between orthogonal components - here we use them to rotate the direction of the light's

polarization from an angle θ to a new angle θ+π/2. This should erase our interference pat-

tern, since now measuring the polarization of the photons that have passed the �rst screen

gives us information about through which aperture it has passed in the beginning of our

experiment - the photons that passed through aperture 1 will have horizontal polarizations,

while the photons that passed through aperture 2 will remain with the prepared vertical

polarizations. This situation is represented by the total �nal state:

|ψ〉 =
1√
2

(|ψ1〉|H〉+ |ψ2〉|V 〉) , (2.23)

in which the vector states associated with the passing through each aperture have a one-to-

one correspondence with the photon's polarization states. To calculate the arrival probability

of the photons at the �nal screen as a function of x in this case, we project this state at the

the position basis and then take the square of the absolute value:

P (x) = |〈x|ψ〉|2

= 1/2(|ψ1|2〈H|H〉+ |ψ2|2〈V |V 〉+ ψ1 ∗ ψ2〈H|V 〉+ ψ1ψ2 ∗ 〈V |H〉)

= 1/2(|ψ1|2 + |ψ2|2), (2.24)

where ψ1 and ψ2 are both functions of x. Here, since the polarization states |H〉 and

|V 〉 are orthonormal with respect to each other, we have that 〈H|H〉 = 〈V |V 〉 = 1 and

〈H|V 〉 = 〈V |H〉 = 0. Thus we see that, as expected, we get no interference pattern at the

screen.

In a quantum erasure scenario, however, is not enough that we can mark the way of

the photon - it is also necessary that we can erase the information about its path so we are
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able to get the quantum interference pattern back. We can accomplish this in our simpler

version of the quantum erasure interferometric experiment by directing the photons to a

optic polarizer oriented at an angle of π/4 with respect to the basis (H,V ) in a time before

they can reach the �nal screen. Mathematically, we project the basis (H,V ) in a new rotated

basis (D,A), |D〉 = 1/
√

2(|V 〉 + |H〉) and |A〉 = 1/
√

2(|V 〉 − |H〉). The letters D and A

used to de�ne this new basis set derives from the words `diagonal' and `anti-diagonal'. The

rotated �nal state will then be written as:

|ψ〉 = 1/
√

2
(
|ψ1〉|H〉+ |ψ2〉|V 〉

)
=

1√
2

[
|ψ1〉1/

√
2(|D〉 − |A〉) + |ψ2〉

1√
2

(|D〉+ |A〉)
]

= 1/2[(|ψ1〉+ |ψ2〉)|D〉 − (|ψ1〉 − |ψ2〉)|A〉]. (2.25)

Taking a look at this expression we can see what happens to the state when the photon

passes through the polarizer in the two cases where this polarizer is oriented along the

directions D or A. If we choose to orient the polarizer along the direction D, we project the

photon's state in the expression (2.25) at the polarization vector |D〉 and thus get a �nal

state in the form of the familiar superposition |ψ1〉+ |ψ2〉, leading to quantum interference

and the existence of dark and light fringes in our �nal screen. This is just what we would get

in the case where the half wave plate and the polarizer were both absent. In the case where

the polarizer is oriented along A, the projection is made at the polarization vector |A〉 and we

get a �nal state in the form |ψ1〉−|ψ2〉. Here, the rotation of the vector state has introduced

a phase di�erence of π between the two partial amplitudes in the superposition, leading to

the existence of anti-fringes in our �nal screen (dark and light areas are now exchanged).

Still, what we get is an interference pattern. The probability distribution leading to fringes

and anti fringes at the screen are complementary, in the sense that their addition leads to

(twice) the probability distribution we would get in the case of no interference.

So inserting a half wave plate to rotate the polarization of any photon that passes through

aperture 1, and thus di�erentiating it to any photon that has passed through aperture 2,

have blurred our interference pattern, but projecting all photons in our experiment at a

common polarization vector has brought it back. First, we must note that the uncertainty

principle have no say here, since polarization and position are not conjugate quantities. So

the uncertainty principle invoked by Bohr in his discussions with Einstein must really not be
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what ultimately enforces the complementarity between wave-like and particle-like behaviors.

What is, then, that is enforcing this complementarity? The answer here is entanglement.

Without the presence of the polarizer between the screens, the �nal total state represents

an entanglement between the position and polarization states of the photon. The presence

of the polarizer will `mix' the state vectors that previously made up for the total state

superposition by rotating the vector state basis and in this process entanglement is lost - we

lose our previous one-to-one correspondence between the aperture through which the photon

has passed and its polarization. Thus, we can recover the interference pattern. Secondly,

we see here how it gets even harder to associate the vector states to any physical reality in

any time before some real measurement is made. What we choose to measure determines

the type of behavior we are going to observe, and as we have concluded we have really no

say in what was the behavior of the photon in any time before this measurement.

An experiment similar to the one described was performed by S. P. Walborn, M. O.

Terra Cunha, S. Padua and C. H. Monken in 2002 [36, 8], where they have used circular

polarization instead of linear polarization states for the photons that have passed the dividing

screen. The idea presented was the same and the results analogous - the presence or not

of a �lter before the photons reached the �nal screen determined the presence or not of

interference patterns. Erasing the `which-way' information of each photon have brought

back the quantum interference phenomenon.

However, in addition to this version of the quantum erasure experiment, another exper-

iment was performed to dramatize even more the results obtained by our simplistic method

that makes use of entanglement in a even less intuitive way [8]. The main idea was asking the

question: what if we only erased the which-path information of the photons in a time past

they have already been irreversibly detected? This idea follows the line of Wheeler's delayed

choice experiment and has been called a `delayed choice quantum erasure experiment'.

In their delayed choice quantum erasure, they prepare twin photons with entangled

polarization states. The photons are labeled photons a and b. This can be achieved by a

nonlinear optical process, named `spontaneous parametric down-conversion' [37]. The twin

photons are prepared so that every time photon a is found to have vertical polarization,

photon b will have horizontal polarization, and vice-versa. This situation can be represented



Chapter 2. What is Quantum Interference? 41

by the total state vector

|ψ〉 =
1√
2

(|H〉a|V 〉b − |V 〉a|H〉b), (2.26)

where the states corresponding to each photon are marked with the respective subscripts.

The photons are separated from each other and directed so that photon a is sent through

a double-slit interferometer containing quarter wave plates behind each aperture at the

�rst screen. In their version of the experiment, the quarter wave plates rotate the photons

polarization states so that a photon that passes through aperture 1 would end up with a right-

circular polarization state and a photon that passes through aperture 2 would end up with a

left-circular polarization state, and thus, again, the plates create which-path information for

the photons. The fact that they used circular polarizations instead of linear polarizations as

path markers does not change the experiment's �nal outcome. Finally, photon b is redirected

directly to a separated polarizer P . This process is schemed in Fig. 2.14.

The idea behind sending photon b to a separated polarizer is that, as the photons are

entangled with each other, every measure we make in photon's b state will determine the

state of its twin. That said, we can regard photon b as our quantum erasure `controller' -

by sending it to the separate polarizer P , we can choose whether we want to measure its

polarization in a way that preserves the previously created path information of photon a or

whether we want to destroy this information and recover interference. This is done exactly

as described in the �rst part of this section - if we measure photon b in the (H,V ) basis,

we preserve the which-way information of photon a and thus get no interference, but if we

measure photon b in the rotated basis (D,A) we are able to destroy the information and

thus recover the interference pattern in our screen, whether in the form of fringes or anti

fringes. The way we measure photon b determines the observed behavior of photon a. The

striking feature about this version of the quantum eraser experiment is that the outcome

does not depend on the order in which photons a and b are detected in - so the choice of

the measurement basis for b can be made in a time long after photon a has already been

irreversibly detected. Again, we get an odd sort of situation where it may seem like the

future in�uences the past and common causality is lost. Even more so, as the photons are

spatially separated during this experiment, it seems to be possible for two separated parties

to communicate supraluminally using this sort of experimental apparatus.

But again, this is not so. Quantum mechanics remains true to relativity theory and does
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Figure 2.14: Scheme of the quantum erasure experiment involving twin photons. The twin,

or entangled photons are produced as a result of a parametric down conversion process

in a non linear crystal, and behave such as that any measurement of the polarization of

b immediately determines the polarization of a . After their production, the photons are

separated from each other and sent through two di�erent measuring apparatus: photon a

is sent to a double-slit interferometer containing quarter wave plates behind each slit, while

photon b is sent directly through a polarizer. Even after photon a has been detected, the

polarization of b is entangled with its `which path' informaton. Image extracted from ref.

[8].
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not permit such things. What is really happening then? To try to shed some light on this

subject, we present the following �ctional situation. Lets say a physicist named Charlie

creates various pairs of polarization entangled photons using spontaneous parametric down-

conversion, but does not tell anyone that these photons are entangled. He proceeds by

sending the twin photons with labels a and b to two separated parties, physicists Alice

and Bob, along with instructions of which experiment each one should perform with their

photons. Following instructions brought to her in this manner, physicist Alice sends her

photons a through a double-slit interferometer with the described quarter wave plates, and

what she observes is that nothing unusual happens. Her results are exactly what she would

get using any other group of photons, and that being, she gets no interference at the �nal

screen. During her experiment, Alice records the data for the arrival for each of her photons.

Far away, physicist Bob too follow his instructions and sends each of his photons through a

polarizer, and each time he does so he chooses along each vector of basis (H,V ) or (D,A) to

orient this polarizer. Again nothing unusual happens, and he gets results following exactly

the predicted quantum probabilities followed by any ordinary group of photons. Bob also

record the data of his experiment, always including the measurement results along with the

chosen orientation of the polarizer. It is an ordinary day on both their laboratories.

Both Alice and Bob have thus no way of knowing that their photons have entangled

twins. Where lies the mystery then? The fundamental aspect we are concerned with here

appears only in the form of quantum correlations between the outcomes of Alice's and Bob's

measurements. It is only when Charlie brings the two physicists together to interchange their

data that they can see something rather `unusual' has happened. Charlie asks Alice to plot

the pattern created by the arrival of her photons only in the cases where Bob projected his

photons states at polarization vector |D〉, and, surprisingly, what Alice gets on her computer

by doing so are actual interference fringes! Following this line, if Alice now chooses to plot

the pattern created by her photons in the cases where Bob projected his at |A〉, she gets

anti fringes. But for the cases where Bob used the unrotated (H,V ) measurement basis,

still there is no interference pattern to be seen. In their 2003 paper [8], the authors of this

experiment compared this situation to correlated tosses of two quantum coins. If we look

at the coins when they are separated, we get heads or tails with �fty percent probability on

both coins, but the fact is that every time Coin 1 lands on heads (tails), so does Coin 2,
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and vice-versa. Here, every time Bob's measurement basis is (H,V ) there is no interference,

and every time the measurement basis is (D,A), the quantum interference phenomenon is

brought back. The entangled photons behave thus like correlated, strange quantum coins.



Chapter 3

Paper: 'The classical limit of

quantum optics: not what it seems at

�rst sight'

3.0.1 Introduction

In our previous chapter, we brought attention to the wide di�erence that exists between

our concepts about the reality of the physical world when analyzed in the classical or quan-

tum regimes - a di�erence that stands itself out even in the cases where both theories

demonstrated to bring up the same results, as was the case of our double-slit interference

experiments with high intensity light beams or single photons. While we have no di�culty

accepting one, the other seems to us rather counterintuitive. This brings up the question

of what would be the transition between these two regimes and how would this transition

work. In fact, the classical limit of the quantum theory is not nearly a well understood

matter and constitutes an area of scienti�c research till this day [38, 39, 40, 41]. Still, much

45
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can be gained by exercising our intuition about both reality in quantum context and quan-

tum logic. It was with this in mind that a paper was published in 2013 by Yakir Aharonov,

Alonso Botero, Shmuel Nussinov, Sandu Popescu, Je� Tollaksen and Lev Vaidman, named

�The classical limit of quantum optics: not what it seems at �rst sight� [1], a paper that

inspired both the work presented in this dissertation and our overview on quantum inter-

ference phenomena. In this paper, the authors introduce a light interferometry experiment

where our understanding about the involved physical processes di�er drastically between the

two regimes, classical and quantum, even when both theories give us exactly the same math-

ematical expected result. In their proposed thought experiment with light it is shown that,

in the quantum context, it seems to be possible for the combination of the two possibilities

of pushing a mirror outwards or leaving it still to result in a inward pull in that mirror. How

could this be possible is extremely counterintuitive and is, in fact, as we shall see, a direct

result of a quantum superposition and quantum interference phenomenon.

3.0.2 The Momentum Transfer from Light to a Mirror

We begin our discussion with a brief overview on how can light change the momentum of a

mirror. We do so by considering both contexts, classical and quantum, in the cases where

light is considered whether as a traveling electromagnetic wave in space-time or a traveling

group of individual and indivisible photons.

Classically, light is described as an electromagnetic disturbance in space-time traveling

with �xed velocity c. According to standard electromagnetism theory and Maxwell's equa-

tions, such electromagnetic disturbances carry linear momentum, and this momentum is

stocked in the electromagnetic �elds constituting the wave. The density of linear momen-

tum of an electromagnetic �eld is given by the vector S/c2 = (E×H)/c2, where S is the so

called Poynting Vector and E and H are the electric and magnetic �eld vectors [17]. The

Poynting vector characterizes the electromagnetic wave's energy �ux. For an electromagnetic
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monochromatic plane wave traveling in the ẑ direction, we write:

E = [E0 cos(kz − wt+ δ)]x̂, (3.1)

H = [E0 cos(kz − wt+ δ)/(cµ0)]ŷ, (3.2)

S = [E2
0 cos2(kz − wt+ δ)/(cµ0)]ẑ,

= [E2
0cε0 cos2(kz − wt+ δ)]ẑ, (3.3)

where k is the absolute value of the wave vector k = 2π/λ, w the wave's angular frequency

and δ an arbitrary wave phase. The electric and magnetic �eld vectors oscillate in directions

that are orthogonal to the direction of the wave propagation, which we have taken to be ẑ.

We note that the absolute value of the Poynting vector S varies in time along this direction

of propagation of the wave, and as a result so does the momentum density. In this context

we usually work with the temporal averages of the carried physical quantities. The mean

value of S is taken as the average over the wave's period T = π/λ, so that the averages

values of energy �ux and momentum density are:

〈S〉 = (E2
0cε0)ẑ/2, (3.4)

〈p〉 = (E2
0ε0)ẑ/2c. (3.5)

As stated, the mean magnitude of the Poynting vector 〈S〉 represents the average value of

the electromagnetic wave's energy �ux, and is in Electromagnetism used to formally de�ne

the wave's intensity, 〈S〉 ≡ I. In this manner, �nally, we arrive at the conclusion that an

electromagnetic monochromatic plane wave carries linear momentum along the direction of

its propagation and that the carried momentum's magnitude is proportional to the wave's

total intensity I, in the form:

〈p〉 = I/c2. (3.6)

Thus, when the incident pulsed almost-monochromatic wave described above hits a ma-

terial surface and is re�ected, it exerts a pressure on this surface and this pressure results

on a transferred total linear momentum that depends only on the intensity of the incoming

wave. The pressure exerted due to electromagnetic waves in this manner is called radiation

pressure, and is by de�nition a force acting per unit area per unit time on the material

surface. In the case where the almost-monochromatic wave front makes an angle of α with a

perfectly re�ecting mirror, as sketched in Fig. 3.1, and we take the mirror to have unit area
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Figure 3.1: Figure 10. Light re�ecting on a mirror. [From �The classical limit of quantum

optics: not what it seems at �rst sight�, Yakir Aharonov et. al., NJP. 2013.]

and the experiment to last a unit time, then the total linear momentum transferred by the

wave to the mirror is proportional to twice the component of the wave's momentum normal

to the mirror:

∆pM = 2I cosα/c2. (3.7)

Quantum mechanically, the story is quite di�erent. Energy is now quantized and light

consists of indivisible, independent energy packs - or photons - each carrying momentum

p = ~w. This is a result that can be deduced with a �rst-principles treatment for a photon

re�ection by a quantum mirrorM [42]. In this case we understand the transfer of momentum

as being due to separated mechanical collisions of individual photons with the material

surface. Thus, when each photon hits a perfectly re�ecting mirror and is re�ected, it transfers

to it a total momentum equal to twice its moment component normal to the mirror. The

sum of the momentum transferred by a number of n̄ photons impinging on the mirror in the

same manner is then:

∆pM = 2n̄~w cosα. (3.8)

Thus, if we take the intensity I of the light beam hitting this same mirror (in the same

case where we have taken the mirror to have unit area and the experiment to last a minute

time) to be numerically equal to n̄~w/c, both theories give the exact same mathematical

result for the momentum transferred to the mirror by the re�ection process. It seems,

then, tempting to assume that the transition between these theories happens smoothly in
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this context. As the authors show in their paper [1], and we shall analyze in detail in the

following discussion, strangely it does not happen so.

3.0.3 Aharonov's Interferometer

We proceed by considering the light interferometer depicted in Fig. 3.2. All three mirrors

contained in this experimental apparatus are taken to be perfectly re�ecting, with mirror

M being silvered on both sides. This interferometer is a varied version of a standard Mach-

Zehnder interferometer for light, with the only di�erence that light emerging from the second

beam-splitter towards D1 does not go directly into it, but instead is previously redirected to

an external re�ection on mirror M . In this way, light traveling through the interferometer

can be re�ected by this mirror in two di�erent, separated occasions - one of them from

the inside the interferometer, in which it makes an angle α with the mirror, and one from

the outside, making an angle β with it. We are free to design the experimental apparatus

so that the relation between this two re�ection angles can be chosen. To the purpose of

this proposed thought experiment, we take cosβ = cosα/2. Thus, during our experiment,

mirror M can receive momentum kicks in the two opposite directions as a result of the

re�ections of light hitting on it from both sides. The total momentum gained in this manner

by the so positioned mirror M inside the interferometer is the focus of our attention in this

interferometric thought experiment and is to be analyzed in the following.

Suppose we project the interferometer to have two identical beam-splitters BS1 and BS2,

with re�ectivity r and transmissivity t so that r2+t2 = 1 and |r| > |t|. This unbalance results

in the most part of light impinging on each of the the beam-splitters to be re�ected rather

than transmitted, for a reason that will become clear later. Thus, the �rst beam-splitter

BS1 divides the light's incoming state into a superposition of states corresponding to the

two di�erent spatially separated arms inside our interferometer. If the states corresponding

to each of these separated arms are denoted by the state vectors |A〉 and |B〉, we have that,

just as before, the total state of a photon after having passed through beam-splitter BS1

can be written as the superposition:

|ψ〉 = ir|A〉+ t|B〉. (3.9)

Here we recall that, when describing the delayed choice interferometer experiment with

single photons in Sec. 2.3 , we have concluded that the presence of the output beam-splitter
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Figure 3.2: Modi�ed version of a Mach Zehnder interferometer for light where one of the

output beams is re�ected back onto the exterior side of the two-faced mirror M . Image

extracted from ref. [1].
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in the interferometer mathematically meant that to project the photon's state at the �nal

detectors mathematically meant to project this state at an alternative rotated basis, there

denoted by the vectors |I ′〉 and |II ′〉. This also meant that a photon that is in a state

represented by |I ′〉 and |II ′〉 when inside the interferometer will end up arriving at detectors

D1 and D2, respectively, with probability 1. A generalization of the state vectors |I ′〉 and

|II ′〉 in the more general present case of unspeci�ed values for r and t gives us the basis

vectors |I ′〉 → |A′〉 and |II ′〉 → |B′〉 in the form:

|A′〉 = t|A〉 − ir|B〉, (3.10)

|B′〉 = −ir|A〉+ t|B〉, (3.11)

as can be readily checked.

So, in our present interferometer, projecting the photon's state |ψ〉 at the vector states

forming the rotated basis (A′, B′) means projecting the photon's state at the �nal detectors

D1 and D2. The probability amplitudes that the photon will trigger detectors D1and D2

are then, respectively, 〈A′|ψ〉 and 〈B′|ψ〉. In this manner we are able to calculate the full

detection probabilities at both detectors:

PD1 = |〈A′|ψ〉|2 = 4r2t2, (3.12)

PD2 = |〈B′|ψ〉|2 = (r2 − t2)2 = 1− 4r2t2. (3.13)

What if, instead of single photons, we sent a classical light beam of intensity I towards this

interferometer? In the same manner, given the above setting of the apparatus the intensity

of the light beam traveling in arms A and B are respectively IA = r2I and IB = t2I, and

equally the arriving intensities at the detectors are ID1 = 4r2t2I and ID2 = (1− 4r2t2)I.

It is in this context trivial to calculate the total momentum gained by mirror M during

the interferometric experiment. If we take for simplicity the light beam to have an unit

cross-section area and the experiment to last an unit time, the momentum given to M by

the beam inside the interferometer is 2IB cosα/c2 = 2t2I cosα/c2. In the same manner, the

momentum given to M by the beam on the outside of the interferometer is 2ID1 cosβ/c2 =

8r2t2I cosβ/c2. Using the previously �xed constraint that cosβ = cosα/2, we obtain the



Chapter 3. Aharonov et. al. `The classical limit of quantum optics' 52

net momentum transferred to the mirror:

∆pM =
2t2I

c2
(cosα− 4r2 cosβ)

=
2t2I

c2
(1− 2r2) cosα = −2t2I(r2 − t2) cosα. (3.14)

Thus, in the case where we previously �xed the values of r and t so that we have |r| > |t|,

the net momentum gained by mirror M has an overall negative sign that indicates that it

has received a push towards the inside of the interferometer. This result was calculated

classically, but we already have concluded that a quantum approach to this same question

of momentum transfer yields equivalent mathematical results.

Our focus, however, is not in the question of mathematical equivalency concerning the

numerical results, but rather it is in the story each theory has to tell. The story told by

classical optics is a simple one - during the interferometric experiment, light hits mirror M

from both sides. Although the light beam coming from the external side of the interferometer

hits the mirror at a shallower angle of incidence, its intensity is higher than the intensity

of the beam hitting M from the inside, so that the total momentum transferred by it to

the mirror is larger and as a result M gains a net momentum towards the interior of the

interferometer. Here, we note that the role played by the external re�ection on mirror M

is central to the process, in the sense that the negative contribution for the transferred

momentum in this context its totally attributed to the existence of this re�ection, as in fact

our intuition tells us it must be.

Remarkably, although we may feel tempted to assume that the same logic must be true

in all correct descriptions for this process of momentum transfer, as usual our intuition fails

when trying to make an understanding of the quantum world. The assumption that the

photons constituting the external light beam are the responsible ones for the inward push

in mirror M is false, as we shall here demonstrate. For that purpose we analyze in detail,

using a quantum description, the momentum transferred to M by the photons that end up

reaching detectors D1 and D2.

3.0.4 The Negative Radiation Pressure

First it must be noted that, to maintain the quantum interference e�ect, the path of the

photons cannot be marked. This adds a limitation on the process of re�ection of the photons
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on mirror M , in the sense that the momentum δ transferred to it by each individual photon

on the interferometer must be small if compared to the quantum uncertainty ∆ of the mirror's

momentum. This guarantees that there will be no essential change in the total momentum

of the mirror. In any other way the photons would become entangled with the mirror,

the coherence of the photons inside the interferometer would be destroyed and interference

would be lost. This asks for a quantum description of the mirror M . While a photon

coming through arm A produces no momentum kick onM , a photon coming through arm B

transfer to it a momentum δ. If the quantum state of mirrorM in momentum representation

is previously denoted by φ(p), then after the entry of the photon inside the interferometer

and possible re�ection on M the total state of the system becomes:

|Ψ〉φ(p) =
(
ir|A〉+ t|B〉

)
φ(p)→ ir|A〉φ(p) + t|B〉φ(p− δ), (3.15)

where the mirror states φ(p) and φ(p − δ) must not be orthogonal, as to prevent the path

marking. We take the simple case where the mirror's state in momentum representation

has a form of minimum momentum uncertainty. This state is represented by the Gaussian

function φ(p) = exp
[−p2

2∆2

]
. In the case of a single photon impinging on M from inside the

interferometer, and given that δ = 2~w cosα << ∆, we can approximate the function φ(p)

to the �st two terms of its Taylor series expansion. Thus we rewrite the joint state of the

photon and mirror system just before the photon reaches BS2 as:

|ψ〉φ(p) ≈ ir|A〉φ(p) + t|B〉
(
φ(p)− dφ(p)

dp
δ

)
= |ψ〉φ(p)− t|B〉dφ(p)

dp
δ. (3.16)

In the case where the photon ends up reaching the �rst detector D1, the state of the

mirror is obtained up to normalization by projecting the joint state represented by Eq. (3.16)

at the vector state |A′〉 of Eq. (3.10), that represents the case where the photon is directed

towards D1. The projection yields:

〈A′|
(
|ψ〉φ(p)− t|B〉dφ(p)

dp
δ

)
= 〈A′|ψ〉

(
φ(p)− t〈A′|B〉

〈A′|ψ〉
dφ(p)

dp
δ

)
= 〈A′|ψ〉φ(p− PwB δ) (3.17)

where PwB = t〈A′|B〉
〈A′|ψ〉 . To calculate the numeric value of PwB in our interferometer is straight-
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forward by use of Eq. (3.10) and (3.11):

PwB =
t〈A′|B〉
〈A′|ψ〉

= rt/(rt+ rt) = 1/2. (3.18)

With this we are led to the conclusion that, after the photon directed towards D1 has

entered the interferometer through the �rst beam-splitter BS1, but just before it reaches

BS2, the state of the mirror M in momentum representation is represented by the function

φ(p − 1
2δ) (φ(p) being a Gaussian wave packet in momentum). That is the same as to say

that a photon that ends up reaching the detector D1 changes the momentum of the mirror

M by an amount of 1
2δ = ~w cosα when still inside the interferometer, a momentum transfer

which is just the mean value we would get for the two situations where the mirror gains a

momentum kick of δ or no kick at all. These situations correspond to the propagation of the

photon through the two possible arms inside the interferometer.

When the photon directed towards D1 leaves the interferometer through the output

beam-splitter BS2, it produces another momentum kick on mirror M , this time from the

outside, which produces a momentum transfer in the opposite direction. This second momen-

tum transfer is straightforwardly calculated as 2~w cosβ. By using the previously �xed angle

relation cosβ = cosα/2, we are able to calculate the total momentum transferred to mirror

M by a photon that ends up reaching detector D1 after going through the interferometer:

∆pM = ~w cosα− 2~w cosβ = 0. (3.19)

And with this we arrive at a crucial point of our discussion. Since we are in a context

of linear quantum optics, although this result was reached by analyzing the behavior of the

system for a single photon going through the interferometer and reaching detector D1, this

same conclusion is valid for any number of photons that goes through the so constructed

interferometer and eventually emerges towards D1: none of those photons produce a net

change on the momentum of the mirror M . The contribution to the net momentum transfer

to M of the photons that arrive at D1 is null. At the same time, we have already previously

concluded that, during our interferometric experiment, M gains a non zero net momentum

of 2t2n̄~w(r2 − t2), in the direction of the interior of the interferometer. Where does this

momentum come from? Rather strangely, the answer is that this net momentum appears due

to the photons that emerge towards the detector D2. A calculation similar to our previous
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one, but interchanging the projection vector |A′〉 for |B′〉, leads to the �nal state of the

mirror in the cases where the photons end up arriving at the second detector D2

〈B′|
(
|ψ〉φ(p)− t|B〉dφ(p)

dp
δ

)
= 〈B′|ψ〉(p− P ′w

B δ), (3.20)

with P
′w
B being the quantity

PwB =
t〈B′|B〉
〈B′|ψ〉

= −t2/(r2 − t2), (3.21)

and the momentum kick received by mirror M from a single photon arriving at detector D2

is:

∆pM = PwB δ = −(t2)
2~w
c

cos(α)/(r2 − t2). (3.22)

At the end of our experiment, the total momentum transferred to the mirror M by the

totality of the photons that emerge towards the second detectorD2 is equal to the momentum

due to the collision of each of these photons with the mirror multiplied by the number of

photons in this beam. Since the probability for a photon to end up in the beam directed

towards the detector D2 after emerging from BS2 is given by (r2 − t2)2, we obtain for the

net momentum transferred to M :

∆pM = n̄(r2 − t2)2[(−t2)/(r2 − t2)]2~w cosα = −2t2n̄~w(r2 − t2) cosα, (3.23)

a result identical to our previously classically calculated result in (3.14).

We bring our attention to how di�erent the stories told by the two theories are in the

present context. We have seen that, classically, the light beam that reaches D1 is the beam

responsible for the negative momentum given to the mirror M . In fact, our intuition tells

us that it is the only light beam that could transfer any momentum to M in that direction,

since light traveling inside the interferometer can only push the mirror outwards (beam B)

or leave it still (beam A) - the classical case is, therefore, closed. Quantum Mechanically

though, and against all intuition, we �nd that the photons constituting this beam have no

overall e�ect on the net momentum change of the mirrorM - the two momentum kicks given

by these photons to the mirror cancel out and their sum is found to be strictly zero. All the

momentum change of the mirror must come from the photons that reach D2 and therefore
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are never re�ected outwards by M . How can this be? Although the only re�ection su�ered

by these photons on the mirror M is from the inside the interferometer, still somehow they

manage to pull it inwards! This is a result that is achieved by the quantum superposition of

transferring to the mirror positive momentum or no momentum at all - and this superposition

here is somehow equivalent to transferring to the mirror M a negative net momentum. The

mathematical form of such a superposition can be visualized by projecting the total joint

state 3.15 of the photon and the mirrorM at the vector state representing only those photons

that will end up reaching D2 (represented throughout this discussion by the vector |B′〉):

〈B′|
(
ir|A〉φ(p) + t|B〉φ(p− δ)

)
= −r2φ(p) + t2φ(p− δ), (3.24)

where we have again used Eq. (3.11). With this we are able to make clear the existence

of the superposition of the two Gaussian functions of momentum, one centered in zero (no

momentum transfer) and the other displaced by an amount of δ (momentum transfer of δ).

The coe�cients of this superposition are, respectively, −r2 and t2.

It is in this scenario striking to visualize how our every day logic does not apply to the

happenings in the quantum world and how these happenings can be, for our classical way

of thinking, quite nonsensical. Niels Bohr is said to have remarked that anyone who did not

feel dizzy when thinking about quantum theory must not have really understood it. Even so,

it is hard to stress enough the extraordinary success that quantum theory has in predicting

the observed behavior of physical systems. Quantum theory results have now been tested

in various diverse ways, and never found wanting - to the point we can tell, its results seem

to be strictly correct. Even when dealing with larger scale systems, these results seems to

loose their random, probabilistic aspect and are now found in various ways to agree with the

results of classical mechanics. The inverse situation is, however, not true. Confronted by

this apparent universal and very much successful applicability, we are led to the conclusion

that we must accept quantum theory, even when its results and predictions seem too odd for

us. As in Robert Gilmore's words, 'however nonsensical quantum mechanics may at times

appear to us, that seems to be the way nature wants it - and so we have to play along' [43].

And sometimes, playing along means stressing our imagination far and trying our hardest

to forge new intuition about the very unusual, and even disturbingly odd scenario that is

that where quantum phenomena takes place.



Chapter 4

Quantum Interference of Force

In Chapters 2 and 3 of this dissertation we were introduced to the concept and impli-

cations of the quantum superposition phenomena, using nothing more than basic quantum

formalism most advanced undergraduate students are already familiar with. In this manner,

we have seen how quantum states consisting of superposing di�erent possibilities for the

physical objects existing in the quantum regime are able to generate quite counter intuitive

physical results, even in the most simple cases where we do not have to dive too deep into

the theory to reach them. There is something special about keeping the discussion simple on

a mathematical level, for it allows us to focus more on the fundamental characteristics of the

quantum behavior and on the essentials of the quantum theory that could be otherwise lost

between the lines of exhaustive mathematical calculations. And yet, as much as we reach

further into the depths of the theory, still the most basic results keep their ability to surprise

us. In special, in the previous chapter, we have seen how the quantum superposition of states

corresponding to the two possibilities of using light to push a mirrorM in a certain direction

or leaving this same mirror completely still can in a certain situation result in giving the

mirror a pull in an opposite direction [1]. To achieve this rather surprising, seemingly nonsen-

sical result, the quantum formalism was used in order to describe the behavior of the mirror

57
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M . Sadly, due to technical limitations and although a great e�ort is currently being made in

order to change this scenario, we have until now found no way of building and working with

mirrors so light that the change in it's position must be treated quantum mechanically and

so that we could generate the discussed results in the laboratory while working in the single

photons regime [44]. So the results presented by the paper we have thoroughly discussed in

the previous chapter, though being achieved by application of only basic quantum formalism

that have already showed itself successful by many other means, have yet no way of being

actually tested. In this chapter we present a similar physical situation where no quantum

mirror is needed to observe the almost analogous results. The formalism used is similar

and therefore the discussion is kept mathematically simple, although at some points there

are some non-introduced bits of formalism that the reader is expected to have previously

studied. We note here that, even if we already believe in and accept the fundamentals of

the quantum theory and formalism used to derive our results, still there is much to gain by

exercising our intuition and our knowledge about the essential, though very counterintuitive

behaviors of physical objects existing in the quantum world. We would also like to make

a note about the intents of the here presented work. While Aharonov et. al. wanted to

discuss the di�erence between the classical and quantum descriptions of physical radiation

pressure, our objective here is to describe the e�ect of `interferometric anomalous forces' as

a genuine quantum phenomenon, which does not have a classical analogous, extending the

limit in which the phenomenon can be observed and in a way that could also be observed in

the laboratory.

In the present chapter, we introduce for the noted purposes a Mach Zehnder type of inter-

ferometer that could be used to interfere the amplitudes associated to the di�erent possible

paths taken by massive charged objects in the quantum regime. In particular, we develop our

present discussion for the speci�c case of a single electrons Mach Zehnder interferometer, an

apparatus which is fully sketched in Fig 4.1. The general e�ect of this interferometer on the

traveling electron's wave function is the same that which have already been discussed in the

previous chapters for similar interferometric situations: �rstly, the incoming electron's state

is coherently divided into a superposition of amplitudes by a �rst beam-splitting device,

which we have labeled here as BS1. These two amplitudes, which are associated to the two

di�erent path possibilities A and B inside the interferometer, evolve during the electron's
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travel inside the apparatus and are �nally mixed together and made to interfere in a second

beam-splitting device BS2. The redirection of the electron's paths is accomplished with the

help of two correctly positioned `electron mirrors'. As is shown in Fig 4.1, an electron going

through this apparatus emerge from the interferometer in one of two possible �nal distin-

guishable directions of propagation. Although Mach Zehnder interferometers of this kind

were �rst introduced as interferometric devices used to interfere the path amplitudes of light

beams or single photons, in the following discussion we will show how a single electrons Mach

Zehnder interferometer following this same topology can be built using di�raction gratings

as both the beam splitting devices and the redirecting `electron mirrors' [9].

Here, for the purposes of the experiment in discussion, we imagine that the electrons

going through the described interferometric apparatus will interact with a controlled elec-

tromagnetic force �eld when - and only when - traveling through the upper arm of our Mach

Zehnder interferometer, which we have labeled as path A. We imagine thus that we could

build the experimental apparatus so that a certain length of this arm passes right between

the two charged plates of a capacitor CAP, which generates a controlled electric �eld ~E in

the −ŷ direction in it's interior, as is also shown schematically in Fig.4.1. The other possible

path for the electron inside the interferometer is thought as being free of the in�uence of this

electric �eld as well as of any other possible external disturbance. As we shall see, when this

force �eld region is introduced at only one of the two possible paths for our electrons, we

are able in speci�c situations to generate the quantum counterintuitive results of seemingly

`unusual' momentum gains in our physical system.

For simplicity, in this discussion we take the initial wave function of the incoming elec-

trons to be a Gaussian function of momentum centered in zero in momentum representation

in the two spatial directions orthogonal to their propagation. We expect the momentum

representation to be simpler than the usual coordinate representation whenever a physical

system is invariant under space displacements, as is the case of the electron's free propaga-

tion and it's propagation in uniform force �elds, which are the two situations we deal with

in the interior of our interferometer. While the electrons travel inside the interferometer, we

want two things to happen to it's quantum state: (1) we do not want any big spread of the

electron's wave function during it's motion and (2) we want the interaction with the electro-

magnetic force �eld ~E in the arm A of the interferometer to keep the electron's wave function
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Figure 4.1: A simpli�ed sketch of a single electrons Mach Zehnder interferometer of two

exit channels. A capacitor CAP is placed in one of the interferometer's arms, as to create a

disturbing electric �eld in one of the electron's possible paths.

in a Gaussian form. We then start the discussion of this chapter by considering these aspects

of the electron's state propagation in our experimental apparatus, while considering that the

third direction, the direction of propagation of the electron inside the interferometer, can be

treated classically throughout our discussion.

4.1 Free propagation

Firstly, we consider the motion of a free massive particle in an one dimensional space. In

momentum representation, the Schrodinger equation is written as:

p2

2m
Φ(p, t) = i~

∂Φ(p, t)

∂t
, (4.1)

since in momentum space the momentum operator is diagonal so that we can take p̂ = p, m

on the equation Eq. (4.1) being the particle's mass. We see that by working in momentum

space we have reduced the problem of solving a second order partial di�erential equation,

which would be the Schrodinger equation in coordinate space, to the problem of solving a

simpler �rst order di�erential equation. Eq. (4.1) has a trivial solution:

Φ(p, t) = exp

(
−itp2

2~m

)
Φ(p, 0), (4.2)
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where Φ(p, 0) is just the initial form of the particle's wave function in momentum space.

The exponential term represents the time dependent complex phase of the wave function.

Here we take the initial wave function of the particle in momentum space to be a Gaussian

distribution of momentum centered in zero, in the form

exp

(
− p2

2δ2

)
(4.3)

and we then have that, in a subsequent time t,

Φ(p, t) =

(
1

πδ2

)− 1
4

exp

(
− p2

2δ2

)
exp

(
−itp2

2~m

)
. (4.4)

Since only the phase of the wave is time dependent and this phase has no real e�ect on

the wave form, we see that the particle's wave function in momentum space remains in the

form of a Gaussian centered in zero at all times if it's not under the in�uence of any external

force �elds. The constant coe�cient was introduced to normalize the wave function so that

we have
∫
dp|Φ(p, t)|2 = 1.

We can obtain the particle's wave function in coordinate representation by use of a

Fourier transform:

Ψ(x, t) = (2π)−
1
2

∫
dp exp

(
ipx− itp2

2~m

)
Φ(p, 0)

=

(
1

2π3δ2

)− 1
4
∫
dp exp

[
ipx−

(
1

2~δ2
+
i~t
2m

)
p2

]
, (4.5)

where the last integral can be performed in a standard way by completing the squares in

the exponential argument. The time dependent wave function of the particle in standard

coordinate space is then found to be:

Ψ(x, t) = (2π)−
1
4

[
− 1√

2δ

(
1 +

i~δ2t

m

)] 1
2

exp

(
−x2

4α2

)
, (4.6)

where α2 = 1
2δ2

(
1 + i~δ2t

m

)
is a parameter that characterizes the width of the Gaussian

function. We notice that the parameter α increases in time, so while the wave function of

the particle is also in a Gaussian form in coordinate space, we here have that the form of

the Gaussian is time dependent and that the wave function of the particle in coordinate

space will spread in time. We can rewrite the wave function of Eq. (4.6) in a way that

shows explicitly it's amplitude and phase, so that this behavior is made clearer. This is

accomplished in ref. [45]. If we de�ne the real functions W , ψ and R as:

W (t) =

√
2

δ

[
1 +

(
2ptδ2

m

)2
] 1

2

, (4.7)
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cos (ψ(t)) =

√
2
δ

W (t)
, (4.8)

R(t) =
pt

m

[
1 +

(
m

2ptδ2

)2
]
, (4.9)

then the particle's wave function of Eq. (4.6) can be rewritten in terms of W (t) ψ(t) and

R(t) as:

Ψ(x, t) =

√
δ

π
1
4

[ √
2
δ

W (t)

]
exp

(
−x2

W 2(t)

)
exp i

(
x2

2R(t)
+ ψ(t)

)
, (4.10)

and the behavior of the quantities W , ψ and R is illustrated in Fig. 4.2.

We brie�y examine the implications of the expression given by Eq. (4.10). Firstly, we

note that the function W (t) can now be associated strictly with the Gaussian wave's width

as a function of time. We see by looking at the �rst graphic shown in Fig. 4.2 that this width

will steadily increase as time passes, meaning that the quantum uncertainty associated to the

particles position, being represented by this wave function, and that is associated with width

given by W (t) is also growing steadily in time. Here, the value taken by the time function

W (t) will directly a�ect the form taken by the probability distribution of �nding the particle

in a certain point x in the considered one-dimensional space. Secondly, we brie�y discuss

the �nal coordinate wave function's total phase, that is strictly given by the argument:

(
x2

2R(t)
+ ψ(t)

)
(4.11)

in the wave represented by Eq. (4.10). The �rst term in this expression, x2

2R(t) , have a

geometrical interpretation. If we consider a particle traveling in the z axis direction in a

two dimensional space containing both the x and z axis, and make the classical association

t = z
v , v being the particle's velocity, then the phase x2

2R(t) will represent the distance between

a spherical surface of radius R(t) and the z-plane at a height x from the z-axis (See Fig.

4.3). This spherical surface will be centered at a certain point d(t) (not derived here) in the

z < 0 region. The geometrical meanings of W (t), R(t) and the phase x2

2R(t) in this situation

are schematized in Fig. 4.3. It is shown in the second graphic of Fig. 4.2 that the value of

R(t)/t will tend to unity. The second phase term in Eq. (4.10) is given solely by ψ(t), and

represents an additional phase shift which is associated to the so-called phase anomaly near

focus [46]. As shown in Fig. 4.2, this quantity tends to a constant, nominally −π/2, as the

wave packet evolves.
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Figure 4.2: Plotted behavior of the quantities W (t), ψ(t) and R(t) de�ned by Eqs. (4.7),

(4.8) and (4.9) associated to a normalized Gaussian wave function as a function of the

variable ζ = 2ptδ2

m .
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Figure 4.3: Simpli�ed illustration of the geometrical signi�cance of the parameters W (t),

R(t) and x2

2R(t) used to describe the behavior of a Gaussian wave function evolving in the

standard coordinate space.

It is important to notice that these additional phases do not a�ect the probability distri-

bution of the particles detection as a function of x, and as a result the existence and value of

these wave phases won't a�ect the discussion in the development of this chapter, and were

only introduced together with the width function W (t) for the sake of completeness.

4.2 Propagation in an Uniform Force Field

During the experiment in discussion, the interfering charged particle also propagates through

region disturbed by an uniform electromagnetic force �eld. The particle is taken to be an

electron traveling through a constant electric �eld ~E = −Eŷ, generated by a capacitor CAP,

that acts on a limited length of the electron's path, as shown in detail in Fig 4.4. Any e�ect

of the capacitor's borders will be neglected. When under the in�uence of the electric �eld

~E, the one dimensional Hamiltonian of the electron becomes Ĥ = p̂2/2m − F ŷ, where Fy

is the absolute value of the electrical potential energy at a position y, p the momentum of

the electron in that direction, and F corresponds to the absolute value of the force felt by

the electron when under the in�uence of the �eld. As only the motion of the electron in the
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Figure 4.4: Electron traveling though the region containing the disturbing electric �eld ~E

between the capacitor plates.

y direction will be a�ected by the presence of the disturbing electric �eld, again we have a

problem that is essentially one dimensional. The solution for the Schrodinger equation in

momentum space for this case remains simple [47], but some mathematical complications

may arise when taking the Fourier transform to �nd the complete form of wave function

in coordinate space. Since the exact form of the electron's wave function in the standard

coordinate space will not be important for our following discussion, here we will treat the

case of the propagation in an uniform force �eld in a more qualitative manner.

For this, dropping the hats to ease the notation, we write the equations of motion of

the momentum and position operators in this dimension for the electron in the Heisenberg

representation (in which the quantum operators evolve with time) as:

dy(t)

dt
= − i

h
[y,H] =

p(t)

m
, (4.12)

dp(t)

dt
= − i

h
[p,H] = F. (4.13)

By solving the second of these equations and using the result in the �rst, we are able

to determine the time dependence of the two operators in this particular case. Taking the

mean values of the so achieved results will then yield:

〈y〉 =
〈p〉0
m

+
Ft2

2m
, (4.14)

〈p〉 = 〈p〉0 + Ft, (4.15)
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where the subscript 0 indicates that the associated term corresponds to the initial form of

each of the operators, taken in a certain chosen origin for the time component.

We notice by Eqs. (4.14) and (4.15) that the mean values of the position and momentum

operators for the electrons traveling through a region disturbed by an uniform electromag-

netic force �eld are exactly the same as those of the classical evolution for the corresponding

physical dynamical variables. In that manner we can say that the means here behave clas-

sically. But what about the uncertainty associated to the momentum operator during the

electron's motion? If we take ∆p2
t = 〈p2〉t − 〈p〉2t to be a measurement of this uncertainty,

we will have that:

∆p2(t) = 〈p2〉 − 〈p〉2

= 〈(p+ Ft)2〉 − (〈p〉0 + Ft)2

= 〈p2〉0 + 2Ft〈p〉0 + F 2t2 − (〈p〉0 + Ft)2

= 〈p2〉0 − 〈p〉20 = (∆p)2
0. (4.16)

As we see, the quantity ∆p2, which we have associated with the uncertainty of the

momentum operator of the electron, does not change during the electron's motion in the

region disturbed by the electric �eld. This quantity can be directly associated with the

width of our Gaussian function (in the case that the motion indeed does not alter the form

of the electron's wave function, so that it remains a Gaussian), so that again the width of

our Gaussian distribution for the momentum of the electron remains unchanged. The same,

however, again does not hold for the analog quantity associated with the position operator,

and similar calculations will lead to the result that ∆y2(t) = ∆y2
0+

∆p20t
2

m2 + [〈yp+py〉0−2〈y〉0〈p〉0]t
m ,

which varies explicitly with time. So in the motion of the electron in the electric �eld ~E,

again we have a spread in position, but not a spread in momentum.

We have in this manner seen how the mean values of the position and momentum oper-

ators of the electron and the uncertainties associated with them behave during the motion

in the uniform electric �eld, but we have yet to see if the assumption that the wave function

in the momentum representation remains in a Gaussian form after the interaction can be

taken as valid. For this, we will assume that the electric �eld acts brie�y on the electrons

and that during it's action the electrical potential energy exceeds the kinetic energy so that

the �rst term of the electron's Hamiltonian can be ignored during this time (which would
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mean applying a electric �eld ~E of a big enough magnitude). We write the initial electron's

state as the in�nite sum:

|ψ0〉 =

∫
dpψ0(p)|p〉,

where |p〉 are the eigenvectors of the momentum operator with eigenvalues p. The evolved

state from a time t0 to a future time t can be obtained from the initial state with help of the

standard quantum evolution operator U(t−t0) = exp
[
−i
h (Ĥ)(t− t0)

]
= exp

[
−i
h (t− t0)

(
p̂2y
2m − F ŷ

)]
.

The evolution operator acts on each one of the vectors in the state decomposition separately,

so that:

|ψ(t)〉 =

∫
dpψ0(p)U(t− t0)|p〉

=

∫
dpψ0(p) exp

[
−i
h

(t− t0)

(
p̂2
y

2m
− F ŷ

)]
|p〉.

If we now make use of the supposition that
p2y
2m << Fy, we get:

|ψ(t)〉 =

∫
dpψ0(p) exp

[
−i
h

(t− t0)(−F ŷ)

]
|p〉. (4.17)

Now the �nal argument of the exponential function in these equations is −ih (t−t0)(−F ŷ),

where ŷ here is taken as the position operator associated with the direction y. This exponen-

tial argument has become then, according to the quantum mechanical formalism, associated

with the generator of momentum displacement [47]. This means that the full exponential

function of Eq. (4.17) acts on a eigenstate of momentum |p′〉 by changing it into another

momentum eigenstate, now associated with a momentum shifted by a quantity equal to

F (t− t0) = ∆p′. In this manner, Eq. (4.17) becomes:

|ψ(t)〉 =

∫
dpψ0(p)|p+ F (t− t0)〉. (4.18)

We can rearrange the �nal expression in Eq.(4.18) by making the simple change of vari-

ables p′ = p + F (t − t0) → p = p′ − F (t − t0), dp = dp′ to show that the shape of the

Gaussian function of the electron's state in the y direction does not change, and that the

Gaussian distribution will only be dislocated from the origin by a quantity equal to the gain

on the electron's momentum in that direction. This result was obtained by assuming that,

during the interaction, we can make Fy = e|E|y >> p2y
2m , which would in turn imply a big

enough magnitude for the set (constant) electric �eld between the capacitor plates. However,

we must notice that it is also important that the interaction between a electron traveling



Chapter 4. Quantum Interference of Force 68

between the plates and the electric �eld ~E in this region doesn't change the electron's mo-

mentum in such a signi�cant way as to kill the e�ect of interference. For the purposes of

the experiment in mind, it is necessary that we have that e|E|∆t < δ, where ∆t is the total

time of interaction. Since we need that |E| will be big, we will also need the quantity ∆t to

be small so that all the suppositions hold and the e�ect we analyze can be observed.

We have, thus, guaranteed our assumption that, under certain conditions, the interaction

with the electrical �eld ~E keeps the momentum wave function of the electron in a Gaussian

form. In this manner, we will only work with dislocated (associated with the interferometer's

upper arm A) or non dislocated (associated with the interferometer's lower arm B) Gaussian

functions of momentum throughout the following discussion.

4.3 Anomalous Forces in a Mach Zehnder interferometer

While traveling inside the single electrons Mach Zehnder interferometer sketched in Fig 4.1,

each electron's wave function is coherently divided into a superposition of terms associated

with it's path possibilities and as we expect we are able to observe the phenomenon of inter-

ference of the arrival probability amplitudes at the two possible �nal propagation directions,

the `exit channels' labeled as C and D, as a function of the set phase di�erence φ between

the two interferometer's arms. The interferometer we have been referring to, and that is

depicted in Fig 4.1, is a simpli�ed version of an actual, experimental Mach Zehnder interfer-

ometer built to interfere the path amplitudes of massive charged objects in the laboratory.

However, the study of this simpli�ed interferometer of two �nal exit ports contains in it-

self all of the important notions needed to understand the quantum physical phenomenon

here in discussion. In this manner, during this section and in the following, we discuss the

behavior of the interfering electrons while traveling inside a single electrons Mach Zehnder

interferometer of two possible exit channels. Following these discussions, we will analyze a

more realistic version of a particle Mach Zehnder interferometer.

We note that, during the process of interference, it is very important that the electron's

states don't become entangled with the surrounding environment. In other words, during

the experiment we can have no physical system acting as the electron's `path marker', even if

the interaction between the electrons and the electric force �eld ~E generated by the capacitor

CAP takes place in arm A of our Mach Zehnder interferometer. For this, we must have that
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any induced changes on the electron's wave function due to the interaction with this electric

�eld are not bigger than the present quantum uncertainties associated with any possibly

disturbed quantum observables. In this way, the interference phenomenon can be protected,

and we are able to generate the physical results we discuss in the following.

Firstly, we take ẑ to be the direction of the electron's propagation at all times and x̂

as the direction orthogonal to it in the the plane of the interferometer, as shown in detail

in Fig 4.1. The charged plates of the capacitor CAP are positioned so that an electric

�eld ~E is generated inside them and will point in the ŷ direction, orthogonal to the plane

de�ned by the arms of the interferometer. As no other external disturbance is present,

only the momentum wave function of the electrons associated with the direction of this

electric �eld will be disturbed during the electron's motion through our apparatus, and in

this discussion we are only interested in what happens to the wave function associated with

this space component (y). So from here on we will only take into account the wave functions

of momentum p associated with direction ŷ. We take the initial form of the momentum wave

function of each electron sent through the interferometer in direction y just before it reaches

the �rst beam-splitting device BS1 to be a Gaussian distribution of momentum centered in

zero, in the form:

Φ0(p) =
1√
δ2
√
π

exp

[
−(p2)

2δ2

]
, (4.19)

which is in the same form of Eq. (4.3), but normalized so that
∫
dp|Φ0(p)|2 = 1.

In accord with what has been previously discussed throughout our chapters, we are

able to derive what will be the total �nal wave function of each electron going through

the interferometer as it arrives at either one of the two �nal propagation directions, or exit

channels C or D, after having left our interferometric apparatus. Let us denote the electron's

state vectors associated with the corresponding momentum wavefunctions while inside the

interferometer as the vectors |Φ0〉 and |Φ′〉 de�ned so that:

Φ0(p) = 〈p|Φ0〉 (4.20)

and

Φ′(p) ≡ Φ0(p− p0) = 〈p|Φ′〉, (4.21)

p0 = e|E|∆t being the total momentum gain of an electron of electric charge −e after having

interacted with the electric �eld ~E = −|E|ŷ during a time ∆t. Then an electron's momentum
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wave function just after it has passed through the �rst beam-splitting device BS1 can be

written as:

|ΦT (p)〉 = ir1|Φ0, B〉+ t1|Φ0, A〉, (4.22)

where r1 and t1 are respectively the re�ection and transmission coe�cients associated to

BS1, satisfying the condition that r2
1 + t21 = 1.

After having passed through BS1, the electron's state will evolve, each component sep-

arately, until it reaches the second and last beam-splitting device BS2. The electrons total

state just before it passes through BS2 and leaves the interferometer can then be written as:

|ΦT (p)〉 = ir1|Φ0, B〉+ t1 exp (iφ)|Φ′, A〉, (4.23)

where φ is the total phase shift that represents the possibly di�erent gains in phase between

the two arms of the interferometer.

The second beam-splitting device BS2 will then act individually on each of the compo-

nents of this state, and the total e�ect of this device on the electron's state will in turn result

in the following components, each associated with the two �nal propagation directions C

and D:

〈p, C|ΦT 〉 = ΦC(p) = exp (iφ)
√

1− r2
1

√
1− r2

2Φ(p− p0)− r1r2Φ(p), (4.24)

〈p,D|ΦT 〉 = ΦD(p) = exp (iφ)
√

1− r2
1r2Φ(p− p0) + r1

√
1− r2

2Φ(p), (4.25)

where r2 and t2 are respectively the re�ection and transmission coe�cients associated to

BS2, and where we have written t1 =
√

1− r2
1 and t2 =

√
1− r2

2. The functions Φ in these

expressions are quadratic-normalized Gaussian functions of their arguments, in the form

of Eq. (4.19). We can check that indeed
∫
dp|ΦC |2 +

∫
dp|ΦD|2 = 1, as it must be (the

complementary probabilities must add to unity). The results of Eqs. (4.24) and (4.25) were

obtained considering a phase gain of π/2 associated with every re�ection on the (symmetric)

beam-splitting devices.

The main idea upon performing an interferometric experiment with single electrons using

the above described interferometric apparatus is to create with it a situation that mimics

the results obtained by Aharonov et. al. [1] that were described in the previous chapter,

where the quantum superposition of terms associated with two di�erent possibilities for a

quantum system adds up to a very non-intuitive physical situation in what concerns the
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exchange of momentum within the studied physical system. For that purpose, and for

reasons that shall be made clear in the following, we shall try to create a physical situation

with our interferometer where the wave functions of the electron associated with each of the

interferometer's paths interfere destructively at a chosen one of our �nal exit channels (and

therefore constructively at the other). Destructive interference can be achieved in our two

terms superposition when a total phase di�erence of φ = π is introduced between the wave

functions associated with the di�erent interferometer's paths - this is the phase shift that

corresponds to a sign di�erence between the two amplitudes associated with the two paths,

since we have that exp(iπ) = −1. We notice, by direct inspection of Eqs. (4.24) and Eq.

(4.25), that in our given apparatus this situation can be achieved at the �nal propagation

direction C by setting the controllable phase shift as φ = 0mod2π and at the �nal direction

D by setting φ = πmod2π.

We now develop our discussion by considering the case where, by adjusting say the length

of the interferometer's upper arm A, we choose to set φ = 0mod2π to get a destructive

quantum interference at the exit port C. We can notice by inspection of the expression

in Eq. (4.24) when we set φ = 0 that, even in the cases of destructive interference, the

probability amplitude associated with the detection of the electron at the chosen exit C will

not vanish entirely, and there will be still (though small) a chance that a traveling electron

will actually be detected leaving the interferometer through that exit port.

For our experiment, we assume that we are able to choose to set the value of the re�ection

coe�cient of the second beam-splitting device as the �xed value r2 = 1/
√

2, so that while

leaving the interferometer an electron has an equal chance of being re�ected or transmitted

by BS2. With this, we are left with three other variables within our system that we assume

we could somewhat freely manipulate, namely, δ, associated with the incoming Gaussian's

width, p0, the momentum gained by the electron in the ~y direction due to the interaction with

the electric force �eld ~E in the upper arm A of the interferometer, and r1. Fig. 4.5 shows

what happens to the curve corresponding to an interfering electron's momentum distribution

when, for example, we choose to run the experiment setting p0
δ = 0.5 and r1 = 0.84 in the

context of destructive interference set at the exit port C (φ = 0mod2π).

We see by the momentum distribution curve of the electrons traveling at C represented

in Fig. 4.5 that we have managed to create a physical situation where the expectation value
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Figure 4.5: The electron's wave functions in momentum representation and associated with

the lower path B (green line - no external electric �eld) and the upper path A (blue line -

external electric �eld ~E acting in a portion of the electron's path) of the single electrons Mach

Zehnder interferometer. The (15.5 times augmented) momentum distribution associated

with the arrival of the electron at the exit channel C in the case of destructive interference

occurring at this exit (φ = 0mod2π) and when we set p0
δ = 0.5 and r1 = 0.84 is shown in red.

The mean, or expectation value 〈p〉 for the electron's momentum in this scenario is negative.
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〈p〉 of the electron's momentum at exit channel C is turned negative, even though this result

derives directly from a superposition of possibility amplitudes where the electron has either

gained positive momentum during it's accounted interaction with the external electric �eld

or has had no momentum gain at all in any direction. We can explicitly calculate what

will be the expectation value 〈p〉 of the momentum variable of an electron arriving at exit

C under the described interferometric conditions of induced destructive interference as a

function of the physical and experimental variables concerning our system as:

〈p〉χ ≡
∫∞
−∞ p|Φχ(p)|2dp∫∞
−∞ |Φχ(p)|2dp

, (4.26)

where we need to substitute χ for C to get:(√
1− r2

1 − r1

√
1− r2

1 exp(
−p20
4δ2

)
)

1− 2r1

√
1− r2

1 exp(
−p20
4δ2

)
p0. (4.27)

By analyzing this general result for the value of 〈p〉 in C we realize that, in fact, for our

interferometer, there exists speci�c sets of the system variables windows where `anomalous'

events such as the one presented in Fig. 4.5 are expected to happen.

In Fig. 4.6 we show the graphic behavior of the ratio between the expectation value 〈p〉

given by Eq. (4.27) and the initial Gaussian width δ for an interfering electron's momentum

at exit channel C for φ = 0 as a function of both the ratio p0
δ , concerning the overall shape of

the incoming electron wave function, and r1. As we can see, for certain values of p0δ there is

a range in the highest possible values for the re�ecting coe�cient of the �rst beam-splitting

device r1 that makes it so that 〈p〉 ≤ 0, meaning that the electrons emerging from the

interferometer's exit port C in these prepared situations will have a negative mean value for

their momentum in the ŷ direction. In Fig. 4.7 we show two di�erent cross-sections of the

3D Fig. 4.6 made respectively at the �xed values p0
δ = 0.15 and p0

δ = 0.5. A cross-section of

Fig. 4.6 with a �xed value for r1 = 0.8 is shown in Fig. 4.8.

As we have noted, the described phenomenon of anomalous momentum gain is directly

associated with a situation of destructive interference happening at one of the interferom-

eter's exit channels. In turn, destructive interference is a quantum phenomenon associated

with a lower probability of occurrence. In Fig. 4.9 we show the behavior of the electron's

probability of arrival at C for φ = 0 and again as a function of both p0
δ and r1. We can

notice that the areas of this �gure corresponding to the range of the variables where the phe-

nomenon is most apparent coincide with the areas of lower arrival probabilities - although
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not of vanishing arrival probabilities. Quantum mechanics doesn't prevent us from observ-

ing the phenomenon, just makes it rarer to spot. The probability distribution of electron

arrival at the �nal direction C can be calculated, following the quantum formalism, as:

Pχ =

∫
dp|Φχ|2 (4.28)

where we take χ = C.

How can this be? Considering our experimental apparatus, there is no obvious way that

the electron could have gained momentum in the negative y axis direction, and still the

interfering superposition of states of the electron shows that in some cases an electron can

leave our Mach Zehnder interferometer having somehow gained momentum in this direction

with a non vanishing probability. This is an almost analogous situation to the one created

for the quantum mirror M in Aharonov's interferometric thought experiment [1], with the

di�erence that here it is the interfering object going through the interferometer (the elec-

tron) that su�er this `anomalous' momentum gain, and not one of the devices building the

experimental apparatus. If we make a comparison between the form of the �nal wave func-

tions associated with our interfering electron and Aharonov's mirror M , given respectively

by Eq. (4.24) (with φ = 0mod2π) and (3.24), we see that they have identical forms. Both

represent a superposition of two Gaussian functions of momentum, each one representing

either positive or no momentum gain - only the coe�cients of the superposition di�er. We

strain however that in our discussion it is not necessary that we have p0 << δ. We are able

to maximize the e�ect by choosing p0 in the same order (but still smaller) than δ.

Here we shall postpone for a brief moment further discussion about the aspects of the

interferometer to focus our attention at this strange result by taking a closer look on the

form of superpositions of Eq. (4.24) and Eq. (3.24), and try to understand how come this

unusual situation is made possible by quantum physics. In a purely mathematical point of

view, the question resumes to `how can the combination of the two Gaussian functions in

the expressions for the wave functions in momentum representation of the electron or the

mirror M result in a �nal function that is dislocated in the negative y axis and that in

turn results in a negative expectation value for the �nal momentum of these objects?'. The

answer to this question is made clearer in a graphic manner by Fig 4.10. We see by this

�gure that such a situation can be achieved by a superposition of Gaussian functions in the

form aφ(p) + bφ(p − p0) in some of the cases where (1) there is a sign di�erence between
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Figure 4.6: The ratio between the expectation value 〈p〉 for the momentum of an electron

leaving the interferometer at the direction marked by C and the initial Gaussian width δ

of the electron's momentum wave function in the case of destructive interference occurring

at this exit and as a function of p0
δ and r1. We can see clearly that a portion of the

graphic indicates a negative expectation value for the momentum of an electron leaving the

interferometer at exit C under these conditions.
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Figure 4.7: Cross sections of Fig. 4.6 where we have �xed the values p0
δ = 0.5 (a) and

p0
δ = 0.15 (b). The re�ection coe�cient r1 varies over it's upper range, where the expectation

value 〈p〉 shows negative values.

Figure 4.8: Cross section of Fig. 4.6 where we have �xed the value for r1 = 0.8.
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Figure 4.9: (A) Probability distribution of electron detection associated with the case of

destructive interference at exit port C as a function of p0
δ and r1. (B) Portion of the

above probability curve PC plotted in the higher range of the variable r1 and for values

of p0
δ between 0 and 1. Negative values for the expectation value 〈p〉 for the momentum

of an arriving electron are associated in this �gure with smaller, however non vanishing

probabilities of detection.
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the superposition coe�cients (one of the superposing Gaussian functions is turned negative)

and that (2) we set |b| < |a|. With such settings, we are able to create a `lump' in the

negative y axis while at the same time canceling out the function in a signi�cant part of the

positive y axis, creating in this way a total function that appears to be simply dislocated

towards the negative part of this axis. This process inevitably culminates in a �nal wave

function that has a lower total amplitude, which in turn is directly associated with a lower

total probability of occurrence. This is exactly why we wanted to create a case of destructive

interference at the speci�c detector where we wished to observe the phenomenon.

A destructive interference occurring at one of the �nal interferometer's exit channels

chosen to observe the phenomenon in discussion, where the electron is expected to gain

momentum in the `wrong' direction, implies in turn in a constructive type of interference at

the other exit, so that the detection probabilities will add to unity. Fig. 4.11 shows the form

of the wave function of the electron leaving the interferometer in the �nal direction D for the

case of destructive interference happening at direction C and for the same values that were

previously set for the variables p0
δ = 0.5 and r1 = 0.84 as in Fig. 4.5. We see that in the case

of constructive interference at this propagation direction the �nal electron's wave function

is dislocated in the positive y axis direction, so that the expectation value of the electron's

�nal momentum there is positive, as is intuitively expected. Also, as a direct result of a

constructive interference, the probability for the electron to leave the interferometer traveling

in the D direction is in this situation signi�cantly higher than the probability for it to leave

the interferometer in the direction C, where the wave functions interfere destructively. This

characterizes an `inverse version' of the phenomenon occurring at propagation direction C,

since the electron leaving the interferometer here ends up gaining momentum now in the

positive y axis direction and have a higher probability of arrival - this is, in fact, actually

necessary so that the mean value of the electron's momentum is conserved overall. To show

that the overall momentum conservation happens in all cases for our single electron Mach

Zehnder interferometer with two exit ports, we can calculate the following value:

PC〈p〉C + PD〈p〉D, (4.29)

that is, the sum of the expectation values for the electron's momentum at the �nal directions

of propagation C or D weighted by the probabilities of arrival for these electrons at the

respective directions. The probabilities of arrival at the �nal directions of the interferometer
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Figure 4.10: To achieve the �nal wave function in momentum space associated with an elec-

tron leaving the interferometer through exit port C for the case of destructive interference at

this exit (where we have φ = πmod2π), we write a convex combination of the respective two

Gaussian functions of momentum, one centered in zero (green line) and the other dislocated

in the positive y axis direction (blue line), each associated to one path inside the interferom-

eter, with coe�cients given by the physical variables associated to the interferometer, and

so that there is sign di�erence between these coe�cients (characterizing the aforementioned

destructive interference). One convex combination of this kind, representing a possible �nal

wave function of an electron in this situation and one that leads to a negative expectation

value for the �nal electron's linear momentum, is represented in red. This aspect of the red

curve is achieved in the case of destructive interference when the coe�cient of the convex

combination associated to the blue curve (path A) is smaller than the one associated to the

green curve (path B).
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and the expectation value of the electron's momentum at them are calculated following Eqs.

(4.28) and (4.26), where we substitute the variable χ for eitehr C or D. Making use of these

results, we will have that:

PC〈p〉C + PD〈p〉D = PC

∫
dp|ΦC |2p
PC

+ PD

∫
dp|ΦD|2p
PD

=

∫
dp|ΦC |2p+

∫
dp|ΦD|2p = |t21|p0 (4.30)

as becomes simple to show if we take into account that, for the Gaussian functions, the ex-

pectation value of the electron's momentum coincides with the center of the Gaussian lump.

We see by this calculation that indeed the mean value |t21|p0 of the electron's momentum,

which represents simply the mean value for the cases where it has gained momentum p0 at

one certain direction after being transmitted in the �rst beam splitter device BS1 with trans-

mission coe�cient t1, or no momentum at all after being re�ected in BS1, is conserved until

the end of the experiment, if we take into account the interference phenomenon happening

at both possible exit ports.

What can we make of this physical scenario? Since the initial momentum wave function

of an interfering electron is made to be a Gaussian distribution of momentum centered in

zero, and therefore having an uncertainty that covers both negative and positive values

for the electron's momentum, it is possible to understand the phenomenon of interference

happening at both of the interferometer's exit channels described above as an interferometric

way of post-selecting the momentum variable of an incoming single electron into two di�erent

momentum groups: one where the expectation value 〈p〉 for the electron's momentum will

be negative and other where it will be positive. That post-selection would then cover both

`sides' of the initial full Gaussian distribution, where in turn we have that 〈p〉 = 0 overall.

We've also seen how, during this process, the total momentum of the system is conserved.

This created interferometric post-selection can only be achieved if we assume that p0, the

momentum gain due to the electromagnetic interaction, has an absolute value that is low

enough if compared to the initial Gaussian distribution uncertainty , so that in this manner

the phenomenon of interference can be maintained and we are able to guarantee our results.

With this we have presented another context where the quantum interference phe-

nomenon have the central part in both bringing forth a new way of understanding how the

quantum world works and what can we do with a system possessing quantum properties,
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Figure 4.11: The electron's wave functions in momentum representation associated with

the lower path B (green line - no external electric �eld) and the upper path A (blue line -

external electric �eld ~E) of the single electrons Mach Zehnder interferometer. The momen-

tum distribution associated with an electron leaving the interferometer at exit channel D

in the case of constructive interference occurring at this exit and when we set p0
δ = 0.5 and

r2 = 0.84 is shown in red. The mean, or expectation value 〈p〉 for the electron's momen-

tum in this scenario is positive, although it's value is small and the curve is less dislocated

when comparing to the curve corresponding to the wave function of a electron leaving the

interferometer at direction C for the same values of the set variables as in Fig. 4.5. This

happens because the sum of the means of the electron's momentum at both exit channels

weighted by the arrival probability at these detectors must remain a constant, and here we

have a higher arrival probability due to the constructive interference.
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while at the same time challenging our intuition about what can or cannot be physically

possible. It is important to notice that the experiment of interference with matter here

presented cannot have a classic analogous, in the sense that it is not classically possible

to separate particles in a group having negative momentum in any classical interferomet-

ric experimental realization following our protocol. This happens because the classical and

quantum probabilities distributions of particle arrival have intrinsically di�erent properties

and are achieved in essential di�erent manners, with negative probability amplitudes being

exclusive to quantum mechanics. Since the quantum destructive interference is an essential

part in our experiment proposal, we conclude that the phenomenon discussed of anomalous

momentum gain is intrinsically a quantum phenomenon.

4.3.1 Can two electrons attract each other?

We have seen how in an interferometric experiment and in certain experimental conditions we

are able to achieve a situation where we have a non zero probability that a physical object will

end up gaining momentum in the `wrong' direction after having interacted or not with some

known physical system while traveling inside a Mach-Zehnder interferometer of two possible

exit channels, characterizing what we have called a type of `anomalous force' in a quantum

interferometer. We can stretch this same concept and expand the idea, for example, to the

situation where we have an interaction between two of the interfering objects while they

travel inside the interferometric apparatus. Suppose that instead of having an apparatus

consisting of a single electron Mach-Zehnder interferometer and correctly placed charged

capacitor plates, we have now a particle Mach-Zehnder interferometer free of the in�uence

of any other external physical system and that we choose to send through it two electron's

at a time. Each electron on their own will travel through the system taking one of the two

possible paths for it with probabilities dictated by the re�ection and transmission coe�cients

of the �rst beam-splitting device. However, an electromagnetic interaction will take place

between the interfering electrons in the cases where they happen to take the same

path inside the physical apparatus, and, in principle, we can say that the interferometer's

arms are far apart and/or shielded from each other so that no interaction exists between

them if instead they happen to take di�erent paths. The sum of the quantum amplitudes

associated with the di�erent possibilities for this system to evolve is capable of generating
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physical situations similar to the ones previously studied, where the momentum gain of the

involved physical objects behave non intuitively. Throughout this section we discuss the

results concerning the momentum gains and the behavior of two electrons sent together

through a standard Mach-Zehnder interferometer of two exit channels capable of interfering

the path amplitudes for multiple massive charged particles.

We consider the Mach-Zehnder interferometer built to interfere the paths of the electrons

in our experiment as depicted in Fig.4.12. This is the exact same apparatus of our previous

discussion with the exception that the charged capacitor plates have been removed from the

vicinity of the interferometer, so that no external �eld will now disturb the wave functions

of the electrons going though the apparatus, and only interactions between the electrons of

the experiment are allowed to take place. Again, we suppose that we are able to control

the re�ection and transmission coe�cients of the beam-splitting devices as well as the phase

di�erence associated to the di�erence in length between the interferometer's two arms. In

the same manner, just as was done in the previous discussion, the state vectors |A〉 and |B〉

are taken to be the vectors associated with the two distinguishable paths of propagation that

are accessible for the electrons during their travel through our system, and the vectors |C〉

and |D〉 as the vectors associated to the two possible exit ports of the interferometer.

As has been stated, in this version of the experiment two electrons are sent at a time

through our matter Mach Zehnder interferometer. We notice that we choose to send the

electrons so that they enter the interferometric apparatus from di�erent sides of the �rst

beam splitting device, each one having di�erent directions of propagation prior to their

entry inside the interferometer, as is also shown in Fig.4.12. We make that choice so that

the only accountable interaction between the electrons occur when they are already inside

our system. We label our electrons as e1 and e2, which are associated directly with one

of the two possible directions of propagation upon their arrival at the �rst beam-splitting

device. Throughout our thought experiment, we suppose that our electrons could still be

di�erentiated from one another by their position in relation to a certain central axis of

propagation, as is also sketched in Fig.4.12, where we have marked the expected `classical

path' of the electrons with help of colored dotted lines. With this what we assume is that

the wave function's widths in coordinate representation associated to the wave functions of

each of the propagating electrons that are given by Eqs. (4.6) and (4.10) can be kept smaller
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Figure 4.12: Sketch of the two-electrons Mach Zehnder interferometer. The dotted lines

represent the classical expected possible `trajectories' of the electrons e1 (blue line) and

e2(red line) inside the interferometer. Quantum mechanically, we suppose that we are able

di�erentiate the electrons leaving the interferometer through any speci�c exit port in what

concerns the di�erent regions of detection associated with the di�erent colored lines, and

therefore that we are able to associate each electron with their respective initial entry ports

after they leave the apparatus.
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than the existing separation between them until the end of the experiment. We will also

assume that the suppositions made at the beginning of this chapter can still be accounted

as valid throughout our following study.

For this version of the experiment, again we denote the electron's state vectors corre-

sponding momentum gains while inside the interferometer as the vectors |Φ0〉 and |Φ′〉 of

Eq. (4.20) and Eq. (4.21), and introduce the vector |Φ′′〉 de�ned so that:

Φ(p)′′ ≡ Φ0(p+ p0) = 〈p|Φ′′〉. (4.31)

In this interferometric experiment with two interfering particles, we choose post select the

events where electron e1 ends up arriving at exit channel |D〉 and e2 at exit |C〉. This means

that all other possible outcomes are excluded from consideration, in the sense that they will

not be taken into account in the system's wave functions that we want to consider. As we

know, the �nal joint state of the system composed by the two interfering electrons e1 and e2

will consist of a sum over the amplitudes associated with all the possible ways for this system

to evolve in time. In our context, where we have thus �xed the exit channels for both the

electrons in our experiment, we have four possibilities of evolution for our system: two where

the electrons take di�erent paths inside the interferometer and therefore do not interact, and

two where they happen to take the same path and an electric interaction between them exists.

Firstly, we calculate the quantum states associated with the two possibilities of evolution

where the electrons take di�erent paths inside our interferometer as:

(1) e1 goes through |A〉 and e2 goes through |B〉:

−r2
1t

2
2 exp (iφ)|Φ1, D〉1|Φ2, C〉2, (4.32)

(2) e1 goes through |B〉 and e2 goes through |A〉:

−t21r2
2 exp (iφ)|Φ1, D〉1|Φ2, C〉2, (4.33)

where the states associated to each electron are labeled accordingly.

In turn, the quantum states associated with the two possibilities of system evolution

where the electrons take the same path are calculated as:

(3) Both e1 and e2 go through |A〉:

−r1t1r2t2 exp [i(2φ+ α)]|Φ′1, D〉1|Φ′′2, C〉2, (4.34)
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(4) Both e1 and e2 go through |B〉:

−r1t1r2t2 exp (iα)|Φ′1, D〉1|Φ′′2, C〉2, (4.35)

where α represents the phase gain due to the electromagnetic interaction between the elec-

trons. Here we have already guaranteed that, if electron e1 gains momentum p0 due to the

electric interaction, then electron e2 will have a momentum gain of −p0.

If the �nal total joint state of the system formed by the two electrons e1 and e2, corre-

sponding to a sum over the joint states associated to each one of all the possible evolutions

for the system (no post-selections made) is denoted by the vector |ΦT 〉, then after the post

selection is made we are left with the following global quantum amplitude, calculated for the

simpler case where we have taken r1 = r2 in the above expressions:

〈p1〈p2|〈D|1〈C|2ΦT 〉 = Φps(p1, p2) = [Φ1(p1)Φ2(p2)+exp (iα) cos (φ)Φ1(p1−p0)Φ2(p2+p0)]N,

(4.36)

where N is a normalization constant, p1 and p2 are the momentum variables associated

respectively with electrons e1 and e2, where φ again represents the phase shift between

the two interferometer's arms. Equation (4.36) is a two dimensional version of the sum of

Gaussian amplitudes of the previous equations Eq. (4.24) and Eq. (4.25).

Here, we are able analyze the quantum states associated to each of the electrons separately

by taking the partial traces of the density matrix associated to the quantum state of Eq.

(4.36). If we denote |Φps〉 so that:

〈D|1〈C|2ΦT 〉 =
∣∣Φps〉 = [|Φ1〉|Φ2〉+ exp (iα) cos (φ)|Φ′1〉|Φ′′2〉

]
N, (4.37)

then the density matrix associated to the state |Φps〉 can be written, apart from the normal-

ization constant, as:

ρps ≡ |Φps〉〈Φps| (4.38)

∝ |Φ1,Φ2〉〈Φ1,Φ2|+ exp(−iα) cos(φ)|Φ1,Φ2〉〈Φ′1,Φ′′2|+ (4.39)

+ exp(iα) cos(φ)|Φ′1,Φ′′2〉〈Φ1,Φ2|+ cos2(φ)|Φ′1,Φ′′2〉〈Φ′1,Φ′′2|. (4.40)

The density matrix ρ1 associated separately to electron e1 can be obtained by taking the

partial trace of ρps in Eq. (4.38) with respect to the momentum variable associated with

electron e2, so that we have:

ρ1 = Tr(2)(ρps) =

∫
dp〈p|2ρps|p〉2, (4.41)
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ρ1 = |Φ1〉〈Φ1|+ I exp(−iα) cos(φ)|Φ1〉〈Φ′1|+ I exp(iα) cos(φ)|Φ′1〉〈Φ1|+ cos2(φ)|Φ′1〉〈Φ′1|,

(4.42)

where we have I =
∫

Φ2(p)Φ2(p+ p0)dp2 = exp
(
− p20

4δ2

)
.

In the same manner, the density matrix ρ2 associated separately to electron e2 can be

obtained as the analogous partial trace:

ρ2 = Tr(1)(ρps) =

∫
dp〈p|1ρps|p〉1, (4.43)

ρ2 = |Φ2〉〈Φ2|+ I exp(−iα) cos(φ)|Φ2〉〈Φ′′2|+ I exp(iα) cos(φ)|Φ′′2〉〈Φ2|+ cos2(φ)|Φ′′2〉〈Φ′′2|,

(4.44)

with I =
∫

Φ1(p)Φ1(p− p0)dp1 = exp
(
− p20

4δ2

)
having the same value as for ρ1.

Both density matrices ρ1 and ρ2, which were derived from the entangled pure state of

Eq. (4.37), represent mixed states for the electrons e1 and e2 when looked at separately from

each other. This means that the partial states associated to each of the electrons separately

will consist of statistical mixtures of pure states, and that they cannot therefore be expressed

in standard vector state terms. However, in possession of these partial mixed states, we are

still able to obtain the probability distributions P1(p1) and P2(p2) associated respectively to

the momentum observables p1 and p2 of both the interfering electrons e1 and e2 as:

P1(p1) = Tr(ρ1|p〉1〈p|1) (4.45)

P1(p1) = Φ(p1)2 + cos2(φ)Φ2(p1 − p0) + 2I cos(φ) cos(α)Φ(p1)Φ(p1 − p0), (4.46)

P2(p2) = Tr(ρ2|p〉2〈p|2) (4.47)

P2(p2) = Φ(p2)2 + cos2(φ)Φ2(p2 + p0) + 2I cos(φ) cos(α)Φ(p2)Φ(p2 + p0). (4.48)

Both probability distributions have the same form except for a change in sign in p0.

In Fig.4.13 we have plotted the probability distributions P (p1) and P (p2) of the momen-

tum variables associated to the electrons in each run of the experiment for the �xed values

p0
δ = 0.3, and φ = 3π/4, and where we have imposed the constraint that the interaction

phase follows α = 0mod2π. We are able to observe in the �gure that each probability dis-

tribution have been dislocated to represent a momentum gain in the `wrong' direction for

each of the electrons in the experiment. The direction in which the curve is dislocated is

determined by the sign of the momentum gain due to the electric interaction between the
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electrons, that are either ±p0. If the variable p0 is taken to be positive p0
δ = 0.3, then the

probability distributions represented in the �gure makes it so that electron e1 will leave the

interferometer having a negative expectation value 〈p1〉 for it's momentum, in spite of having

whether gained positive momentum due to a possible electric interaction, or no momentum

gain at all. At the same time, electron e2 will end up leaving the interferometer having a

positive expectation value 〈p2〉 for it's momentum, in spite of having whether gained negative

momentum due to the interaction or no momentum gain at all. We have here that the e�ect

is doubled and each of the electrons going though our apparatus would su�er individually

from the phenomenon of `wrong' momentum gain that was observed for a single electron

in our previous version of the experiment, creating the illusion that some sort of attraction

have happened between them during the evolution of our physical system.

We can calculate the expectation value for the momentum of the electron e1 leaving the

interferometer at the conditions stated above as:

〈p1〉ps =

∫∞
−∞ dp1dp2p1|Φps|2∫∞
−∞ dp1dp2|Φps|2

(4.49)

=
p0(cos2(φ) + cos(φ) exp

(
−p20
4δ2

)
)

1 + cos2(φ) + 2 cos(φ) exp(
−p20
4δ2

)
. (4.50)

It is straightforward to show that 〈p2〉ps = −〈p1〉ps.

In Fig. 4.14 we again show the plotted probability distribution P (p1) associated with the

momentum of electron e1 for the same set values for the physical variables of the problem

(with α = 0mod2π), now together with the terms adding up to this distribution as given by

Eq. (4.46). In it we can see the important role of the cross-term in determining the intensity

of occurrence of the phenomenon. This term is weighted by the absolute values of both I

the set phase φ. An equivalent result exists for the analogous distribution P (p2) associated

with electron e2.

It is interesting to note that in the limit where I ≈ 1, the partial density matrices ρ1 and

ρ2 cease to represent statistical mixtures of pure states and become the representation of

unique pure states themselves. As the parameter I = exp(− p20
4δ2

) represents the inner state

products 〈Φ1|Φ+
2 〉 and 〈Φ2|Φ−1 〉, this is the limit where the interaction almost doesn't change

the electron's initial state, and that can be achieved when p0 << δ. In this situation the



Chapter 4. Quantum Interference of Force 89

Figure 4.13: The P (p1) (blue line) and P (p2) (pink line) distribution curves for �xed values

of p0
δ = 0.3 and φ = 3π/4 (α = 0mod2π). Counter intuitively, the expectation value for

the linear momentum of the electron e1 is turned negative, while the expectation value for

the linear momentum of the electron e2 is turned positive. This version of the phenomenon

where both particles seem to gain momentum in the `wrong' direction due to the existence

or not of an interaction between them inside the interferometer seem to mimic a type of

physical attraction between the two negative charged particles in the context of interference.
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Figure 4.14: Plotted P (p1) distribution (blue line) together with the it's constituting terms

as given by Eq. (4.46) and for the �xed values p0/δ = 0.3 and φ = 3π/4 (α = 0mod2π). In

this image, the �rst term of Eq. (4.46) is represented by the pink line, the second term is

represented by a yelowish line and the cross-term is represented by the negative green line.)
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electron states can be expressed as the simple state vector sums:

|Φ1〉ps = |Φ1〉+ cos(φ) exp(iα)|Φ−1 〉 (4.51)

|Φ2〉ps = |Φ2〉+ cos(φ) exp(iα)|Φ+
2 〉. (4.52)

Just as in the previous single electrons version of our interferometric experiment, again

the phenomenon of anomalous momentum gains for the interfering particles presented in this

section is intrinsically a quantum phenomenon, and cannot therefore be mimicked classically.

However, in this particular version, the two electrons in the experiment behave as both the

interfering particles and the entities generating the required electric disturbance on one

another, both being treated quantum mechanically during the process of interference. We

can therefore conclude that, purely with the phenomenon of quantum interference, it is

possible to simulate an `electromagnetic attraction' between two traveling electrons. This

result can easily be extended for any negative charged quantum particles, and an analogous

result can be just as easily generated for any positive charged quantum particles.

4.3.2 Particle Mach Zehnder Interferometer with Material Di�raction

Gratings

In this section, we study how we can make use of the principles involved in wave di�raction

by material di�raction gratings to build experimental Mach-Zehnder interferometers in the

context of matter optics, where the action of the beam-splitting devices are accomplished

by the selection between the orders of di�raction at these gratings. A more in-depth study

concerning this type of wave di�raction is presented in the appendix A.

Suppose we have a physical system composed of three aligned N-slits material di�raction

gratings that are su�ciently separated from each other, and send through this system a

coherent electron matter beam, as shown in Fig. 4.15. As we have studied, the incoming

electron beam will �rstly be di�racted into various characteristic directions by the �rst

di�raction grating G1. Each one of those orders of di�raction will then evolve in time and

space until they reach the second di�raction grating G2, where the process of di�raction will

repeat individually for each of the newly formed incoming electron beams. One last step

of di�raction will then happen at the third di�raction grating G3, from where now various

di�erent di�racted electron beams will emerge and evolve freely. To create with this system



Chapter 4. Quantum Interference of Force 92

Figure 4.15: Three grating system and progressive di�raction of an incoming beam, repre-

sented by the dotted lines. Only the di�raction orders m = −1, 0 or 1 are represented for

simpli�cation.

an interferometer of the Mach-Zehnder type for matter beams, we need only to select what

orders of di�raction we will take into consideration in our experiment.

In appendix A we show that the orders of di�raction of an incoming matter Gaussian

beam at the N-slits di�raction grating are associated to the angles of di�raction θ′ that obey

the following relation:

sin θ′ =
2mπ

kh
− sin θ (4.53)

in the limit where N is big, and where θ is the angle of incidence and m = ...−2,−1, 0, 1, 2...

characterizes the di�erent existing orders of di�raction. The di�racted orders are also matter

Gaussian beams, however with lower beam intensities.

To project our matter Mach Zehnder interferometer with the di�raction gratings forming

the described physical system, we �rst disregard the existence of any order of di�raction with

|m| ≥ 2. With this done, we select the orders of di�raction with m between −1, 0, or 1 for

each stage of di�raction in our system, in the way shown in Fig.4.16. As we can see, this

construct creates in our system two possible `paths' between the gratings G1 and G3, which

we name as paths A and B, together with two possible exit channels C and D for the

matter beam. If we consider that the �rst two di�raction grating G1 and G2 account for the

action of a �rst beam-splitter device BS1 together with the redirecting mirrors, and that

the third di�raction grating G3 accounts for a second beam-splitting device BS2, we will
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Figure 4.16: A three-grating Mach Zehnder interferometer. An interfering particle enters the

interferometer and is di�racted at the �rst interferometer grating G1 with di�raction order

m = 0 or m = −1, therefore creating two possible paths inside the apparatus. The particle's

wave function taking the upper path su�er a second di�raction at the middle grating G2

with order m = −1 while the lower particle's wave function is di�racted at this grating with

m = 1. The two beams are then reunited at a �nal di�raction grating, and two possible

output ports for the beams are taken in consideration for the interferometer in discussion.

have that this system have thus the same basic topology of the Mach Zehnder interferometer

for matter beams that we have studied throughout our chapter. The relation between the

re�ection and transmission coe�cients associated to the so constructed `beam-splitters' can

be calculated from the theory of Gaussian beam di�raction at the material gratings (studied

in the appendix A), being associated directly with the intensity of the matter beam resulting

from each order of di�raction m. An alternative entry direction for this interferometer can

be considered and is marked in the �gure by a red dotted line. As many existing orders of

beam di�raction have been disregarded from consideration, it is important to re-normalize

the particle's wave functions as to calculate the correct expectation values and probabilities

concerning our system, and as to make so that the re�ection and transmission coe�cients r

and t associated to the beam-splitters obey the basic relation |r|2 + |t|2 = 1.

The �rst three-grating Mach Zehnder interferometer for atomic beams in the way exposed

was built in 1991 by Keith et. al.[48], and an electron beam Mach Zehnder interferometer

with three N-slits di�raction gratings have already been built in the past [49, 50, 9], al-

though it is known that the electron-grating interactions can in certain situations give rise
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to decoherence [51]. Also, electron interferometry has already been applied to many tasks in

physics[52, 53, 54]. In 2006, Gronniger et. al.[9] observed electron interference fringes from

an electron interferometer using a construct with three nanofabricated di�raction gratings

at low energies ranging from 6 to 10KeV. Fig. 4.17 shows the experimental apparatus used

in this occasion. A system composed of an electron gun and two collimating slits was used to

create the coherent electron beam that was directed at three 100nm periodicity di�raction

gratings composing the interferometer. The middle grating was attached to a movable slide

which was connected to a device called the piezoelectric transducer (PZT) on one side and

�tted with a mirror on the other. The mirror allows the use of a separated optical inter-

ferometer �tted with the purpose to measure the movement of the second grating, which is

also depicted in the �gure. The moving middle grating was used as to controllably change

the phase shift between the three-grating interferometer's two arms and better observe the

electron interference. The electron detection was accomplished with use of a �nal slit and an

electron channel multiplier. Fig.4.18 shows the so obtained electron interference pattern as

a function of the second grating position together with the curves representing the classical

and the quantum mechanical theoretical path calculations. The contrast obtained in the ex-

perimental data indicates the occurrence of a quantum interference phenomenon, although a

better data visibility might be required to observe the results presented in this dissertation.

In 1995, Ekstrom et. al. realized a three-grating Mach Zehnder interferometric experi-

ment with sodium atoms where a physical barrier was placed between the two arms of the

interferometer, therefore shielding one from another[55]. Much like our proposed interfero-

metric experiment with electron beams, the experiment consisted in exposing the interfering

particles to a region containing a disturbing electric potential that only acted on one of

the arms of the interferometer. In the occasion, the experimental apparatus permitted the

scientists to measure directly the electric polarizability U of the interfering sodium atoms,

since the phase shift Φ induced by the interaction is a linear function of this polarizabil-

ity (Φ = Uτ/~, τ being the time duration of the electric interaction). A simple sketch of

the apparatus used is depicted at Fig.4.19. To electrically separate the paths, a thin metal

foil was inserted between the two interferometer's arms directly after the second di�raction

grating. In this experiment, to observe the atomic interference fringes the third di�raction

grating could be moved along it's lenght, which allowed the separated paths to be recom-
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Figure 4.17: The sketch showing the experimental apparatus, including the light interferom-

eter used with purpose to measure the second grating position (not to scale). Two slits are

used to collimate the electron beam before it reaches the three-grating (100 nm periodicity)

interferometer, and an additional slit is used to select the interferometer output port (out-

put ports 1 and 2 are indicated and 1 is selected in this example). Image extracted from

reference [9].
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Figure 4.18: Experimental data comparison to theoretical calculations. The result of the

classical straight line path calculation is represented by the solid line. The result of the

full path integral calculation is represented by the dashed line. Experimental data are

represented by square dots. The contrast of the device exceeds the classical contrast by

about three times, showing the quantum mechanical nature of the data. Image extracted

from reference [9].
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Figure 4.19: The atom Mach Zehnder interferometer at MIT, using nanofabricated di�rac-

tion gratings as the beam splitters. The interaction region consists of a metal foil held

symmetrically between two side electrodes, allowing an electric �eld to be applied to one

arm only. Image extracted from reference [10].

bined having a phase shift which varied according to the grating's position. The results of

the measurements in this experiment gave an atomic sodium polarizability with an error of

only 0.3 per cent.

In our proposed interferometric experiment, we have treated the interfering electrons in

the quantum momentum space. However, to measure the interference pattern and observe

the phenomenon here discussed, a measurement in the position of the arriving electrons

should take place. As we know, the momentum and position quantum operators of the

interfering electrons are closely related to each other, and the wave functions in each of

the spaces formed by the eingenvectors of this operators are achieved from one another

via Fourier transforms. It is possible to show that, in the far �eld, after the electrons

have traveled away from the interferometer's exit channels, the spatial wave functions of the

arriving electrons will fully reproduce their momentum wave functions at the interferometer's

exit. In this manner the properties of momentum gain inside the experimental apparatus

associated to the interfering electrons can be extracted from the measurements of their later

positions. With these measurements we are then able to observe the discussed phenomenon

of anomalous momentum gains.

Matter interferometry is a growing area of physics, resulting from the scienti�c advances
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in areas such as fundamental quantum mechanics, precision metrology and atomic and molec-

ular physics. We believe that the experimental techniques and scienti�c advances needed

to observe the phenomenon described in this dissertation, with a better and su�cient data

visibility and good measurement precision, are well within reach - and �nally that the ex-

perimental observation of the proposed phenomenon will enrich our experience and under-

standing of the strange world of quantum mechanics.

A scienti�c paper containing the original results here presented is in this time under

preparation [13].



Chapter 5

Conclusion

In this work we have showed how, in a context of a quantum interference experiment, it

becomes possible to create a situation where the expectation value for the linear momentum

of an interfering physical object after it has traveled through our apparatus points in an op-

posite direction then what is classically expected for it, creating in this way the illusion that a

type of physical `anomalous' force exists in our apparatus. We have showed however that this

is a phenomenon that derives directly from the quantum superposition of the wave functions

associated with each one of the `possible evolutions' for the system inside the interferometer,

being therefore a result of the intrinsic characteristics concerning quantum interference. The

�rst version of the here discussed original experiment consisted in coherently sending single

electrons through a two-paths Mach Zehnder particle interferometer where one of the arms

was exposed to a controlled space-disturbing electric �eld, while the other remained free

from any external disturbance. The resulting wave function of each electron at a chosen exit

channel presented then the apparent inconsistency concerning each electron's momentum

expectation value sign, and the lack of any accounted for physical forces that could have

altered the momentum of the electrons giving them momentum in that seemingly `wrong'

direction. We have here argued how this unexpected result is not only consistent within

quantum theory, but also that it can in fact only exist and be understood in a quantum

99



Chapter 5. Conclusion 100

physical scenario of interference. A very similar phenomenon of quantum interference was

then discussed in a second version of the experiment where now two electrons were coherently

sent at a time through the same two-paths Mach-Zehnder particle interferometer, now free

from any external in�uence. We have then discussed how, after a post-selection of each of

the electron's exit ports was made, it was possible to observe the same behavior of `anoma-

lous' momentum gain when the electrons were looked at separately, therefore simulating an

attraction between two negative charged particles in a quantum context.

The purpose of this dissertation as a whole was to present, together with the aforemen-

tioned central counter intuitive results concerning our electron Mach Zehnder interferometer,

a brief review about the still strange characteristics of phenomena centrally involving the

notion of quantum superposition. This idea was primary nourished in Chapter 2, where

we have presented brief accounts concerning quantum double-slit interferometry [14, 3], the

wave-particle duality and Bohr's complementarity principle [20, 28, 21, 22, 23, 5], delayed-

choice interferometry and it's theoretical implications [6, 34], and the phenomenon of quan-

tum erasure of information and the close relation it posses with the maintenance of quantum

interference patterns [35, 7, 8]. The intricacies of quantum theory contained in these exam-

ples of behavior of small objects living in the quantum regime are representative of a broader

whole of somewhat strange and still seemingly nonsensical behaviors that characterize the

rich �eld that is modern quantum mechanics. A more in-depth example of a classically

counter intuitive quantum behavior was then analyzed in Chapter 3, the space that we have

dedicated to review the 2013 Aharonov. et. al. paper that inspired this work [1]. This

review explored the notion held by the authors in what concerns the wide di�erence between

the possible interpretations of a physical phenomenon whether it is considered in a classical

or quantum context, and in our exposure we have argued how the strange results that ap-

peared to exist in the quantum regime version of the phenomenon discussed were a direct

result of quantum superposition and quantum interference phenomena, therefore making it

an addition to our previous discussion.

Chapter 4 contains the original part of the here presented work. We believe that the pre-

sented original discussion is a valid addition to the broader topic of quantum superposition

and it's characteristics, forcing us even further in exercising our logic about the world that

physics, as a natural science, pursues continually to describe. In addition, we believe that an
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experimental method of testing our results concerning the `anomalous interferometric forces'

and the counter intuitive momentum gain of particles in the single electrons version of our

matter Mach-Zehnder interferometry experiment is today within reach, as we have argued

throughout examples of accomplished general matter, and speci�cally electron interferome-

try experiments with spatially separated beams in the last years.



Appendix A

Gaussian beams in Di�raction

Gratings

As we have noted but shall analyze with more depth in our following discussion, one

of the main physical devices used to create interferometers of spatially separated beams for

interfering massive particles is called a di�raction grating. Di�raction gratings are periodic

optical components used to scatter an incoming optical beam into several characteristic direc-

tions by making use of the physical phenomenon of wave di�raction. A common di�raction

grating consists of a material structure containing a periodic array of �nite apertures or slits

used to scatter an incoming beam, although it is possible to create di�raction gratings for

matter beams in alternative manners, where for example the material structure is replaced

by laser standing waves [56]. We discuss in this section the scattering of an incoming matter

beam through a di�raction grating consisting of a one-dimensional wall containing a number

of N slits of size b and with a �xed slit separation of h. This type of material di�raction

grating is depicted in Fig.A.1. Firstly, we consider the di�raction of an incoming plane wave

through this N -slits di�raction grating, and with this extend our results to the case where

the incoming wave is in the form of a Gaussian matter beam.

We start by introducing a known mathematical result in the �eld of electromagnetism

and optics, named the Kirchho� Integral Theorem, that can be written as:

UP = − 1

4π

∫ ∫ (
Ugradn

exp(ikr)

r
− exp(ikr)

r
gradnU

)
dA. (A.1)
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Figure A.1: Multiple slit aperture or di�raction grating, with slit size b and slit separation

h. Image extracted from reference [11].

This is a theorem that mathematically establishes the relation between the value of any

scalar wave function U at any point P inside an arbitrary closed surface A, and the value

of this same function at this surface. In Eq. A.1, gradn represents the gradient operation

in the direction ~n orthogonal to the surface A. This theorem can be derived directly by

manipulation of Green's Theorem.

In the application of the above Kirchho� Integral Theorem in the context of wave di�rac-

tion, the function U is known as the calculated `wave disturbance' at a point P beyond a

positioned di�racting object. (The function U is by de�nition a scalar function of space and

time, and therefore it cannot directly represent an electromagnetic vector disturbance. How-

ever, the scalar approximation where the square of the absolute value of the function U can

be associated with a measurement of the wave disturbance radiance is in great accord with

experimental observations). Fig. A.2 shows the standard case where the wave di�raction

of an incoming wave happens due to the presence of a wall containing a small aperture. In

this �gure, S represents the source of the incoming wave, and P is the point where we wish

to calculate the wave disturbance resulting from the di�raction on the wall. To reach the

wanted results, two simplifying assumptions are made concerning U - �rst, that both U and
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Figure A.2: Study of di�raction of a wave emitted from source S through a one-slit di�raction

wall.

gradnU contribute negligibly to the total integral when taken outside the aperture itself,

and that the values of both U and gradnU are not changed by the presence of the di�raction

wall. Those are again results that are in agreement with experimental observations and work

withing the scalar approximation of the di�raction theory.

The mathematical treatment of wave di�raction distinguishes between two general cases,

named the `Fraunhofer di�raction' or the `Fresnel di�raction'. Fraunhofer di�raction theory

is applicable when both the incoming and di�racted waves can be taken to be e�ectively

plane. In our discussion we assume to be working in the Fraunhofer di�raction regime. In this

regime, the equation relating the wanted `wave disturbance' U(P ) in a point P (r), resulting

from the di�raction of a plane wave in the form exp (i~k • ~r) that makes an angle θ with an

N -slits di�raction wall equivalent to that of Fig. A.1, can be derived from approximations

of Eq. A.1 and takes the simple form:

U(P ) =

∫
dx exp (ikxx) exp (ik′xx) =

∫
dx exp (i(k sin (θ) + k′ sin (θ′))x) (A.2)

where x is only varied over the slits on the di�raction wall. In Eq. (A.2), ~k′ represents the

wave vector of the resulting di�racted beam, and θ′ is the angle of di�raction. With this we
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have that, for our N-slits di�raction grating:

U(P ) = U(kx, k
′
x) =

∫ b

0
+

∫ h+b

h
+ . . .+

∫ (N−1)h+b

(N−1)h
exp (i(kx + k′x)x)dx (A.3)

from which we can derive that, after straightforward integration:

U(P ) = U(kx, k
′
x) = b exp (iβ) exp (i(N − 1)γ)

(
sinβ

β

)(
sinNγ

sin γ

)
(A.4)

where β = 1
2b(kx + k′x) and γ = 1

2h(kx + k′x).

The wave intensity distribution function associated to the resulting di�racted wave am-

plitude given by Eq. (A.4) is written as:

I = I0

(
sinβ

β

)2( sinNγ

N sin γ

)2

(A.5)

where a factor of N have been introduced to normalize the expression. We have then that

I = I0 when θ = 0.

In Fig.A.3 is shown the behavior of the quantity I
I0
as we vary the di�raction angle θ′ (and

therefore the parameter γ) and for growing values for the number N of slits of the di�raction

wall. We see by the �gure that the di�raction pattern generated by the incoming plane wave

consists of various equally spaced peaks of wave intensity, existing for periodic values of the

di�raction angle θ′ and representing what is called the various orders of di�raction. The

intensity peaks are enveloped by the sinusoidal term of the form
(

sinβ
β

)2
. It is apparent

that the width and de�nition of each of the wave intensity peaks increase with increasing

values for N . In the limit where N → ∞, the incoming wave will only be di�racted into

very speci�c periodic values for the di�raction angle θ′.

We can extend these results so we can calculate what will be the di�raction pattern for

the case where the incoming wave is in a Gaussian beam form. Firstly we notice that, like

any other beam form, a Gaussian beam can be decomposed and represented by a (in�nite)

sum of standard plane waves. For the speci�c case of a Gaussian beam, the coe�cients of

the decomposition are also Gaussian distributions. Each of the plane-wave components of

the so decomposed Gaussian beam will be di�racted independently when sent through the

N-slits di�raction grating, in the manner just as we have discussed above and generating a

di�racted wave in the exact form of Eq. (A.4). In this manner, by integrating the product

between the result of Eq. (A.4) for the di�raction of a plane wave on the di�raction wall
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Figure A.3: The Fraunhofer di�raction pattern originating from a multiple slit aperture, or

N -slits di�raction grating. Graphs (a) and (b) are derived from the di�raction of monochro-

matic incoming beams. Graph (c) is originated from when we have a large number N of

slits and for the case of two incoming wavelengths. Image extracted from reference [11].
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and a Gaussian distribution of wave vectors kx, we are able to calculate what will be the �nal

di�raction pattern UT (k′x) for a di�racting Gaussian beam as:

UT (k′x) =

∫
dkxG(kx)U(kx, k

′
x), (A.6)

where

G(kx) =
2α

π

1
4

exp (−α2k2
x) (A.7)

is a (normalized) Gaussian distribution in ~kx centered in zero.

We solve the integral of Eq. (A.6) for the limit case where N →∞, using the expressions

in Eq. (A.4). For this, we make use of a limit representation of the Dirac delta function,

which can be written as:

δ(x) = lim
N→∞

sinNx

πx
. (A.8)

In possession of this expression, it is possible to write the following equality:

lim
N→∞

(
sinNγ

sin γ

)
= π

∞∑
m,−∞

(−1)mδ(γ −mπ). (A.9)

Finally, we substitute the expressions of Eq. (A.4) and (A.9) into (A.6) to get:

UT (k′x) =

∫
dkxbπ exp (iβ) exp (i(N − 1)γ)

(
sinβ

β

) ∞∑
m,−∞

((−1)mδ(γ −mπ))G(kx).

(A.10)

The integral of Eq. (A.10) will only have non zero values for UT (k′x) in the cases when

we have that γ = mπ,m = . . .− 2,−1, 0, 1, 2, . . .. This condition can be expressed in terms

of the relation between the arrival and di�raction angles θ and θ′:

γ = mπ,m = . . .− 2,−1, 0, 1, 2, . . .

kx + k′x =
2mπ

h

sin θ′ =
2mπ

kh
− sin θ. (A.11)

Again, the di�raction pattern consists of peaks of wave intensity, existing for the periodic

values of the di�raction angle θ′ that follow the proper conditions. The intensity peaks are

in the same manner enveloped by a sinusoidal function term
(

sinβ
β

)2
. However, the peaks

representing the various orders of di�racted waves are now also in Gaussian beam forms, in

the form of:

U(T )(k′x) ∝
∞∑

m,−∞
(−1)m

(
sin
(
b
hmπ

)
b
hmπ

)
exp

[
−α

(
2γ

h
mπ − k′x

)2
]
. (A.12)

.
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