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Abstract

Finite Element Method (FEM) has been widely used for the numerical modeling

of structural/mechanical problems. Use of computer-based FEM programs was greatly

facilitated with the development of pre- and post-processors rich interactive graphics capabilities,

allowing users with basic knowledge of geometry to easily work with them. However,

modeling of discontinuous fields with a standard finite element approximation presents

challenges like restrictions on the finite element mesh to align with the discontinuity and

the need for remeshing as the discontinuity evolves. The generalized or extended FEM

(G/XFEM) was proposed as a numerical method to solve some of these challenges. The

G/XFEM method enriches the standard finite element shape functions locally with enrichment

functions which are based on the physics associated with the problem.

The goal of this thesis is to fracture modeling in thin-walled structure, specifically

Plate structures, by extending the available capabilities of the G/XFEM method implemented

in INSANE (INteractive Structural ANalysis Environment) in-house code, a computational

environment developed by the Department of Structural Engineering (DEEs) at the Federal

University of Minas Gerais (UFMG), which has been implemented using Object Oriented

Programming (OOP). A stable version of G/XFEM is implemented to have a well-conditioning

systems of equations. Then, the crack propagation strategy is applied to plane stress/strain

and Reissner-Mindlin problems using classical and two-scale G/XFEM. These whole implementations

and design are explained in detail and their robustnesses and accuracies are examined by

solving various structural problems.

Keywords: Generalized/Extended Finite Element Method (G/XFEM), Reissner-

Mindlin Plate, Fracture Mechanics, Object-Oriented Programming (OPP), Two-scale Analysis
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Resumo

O Método dos Elementos Finitos (MEF) tem sido amplamente utilizado para a

modelagem numérica de problemas estruturais/mecânicos. O uso de programas baseados

em MEF foi grandemente facilitado com o desenvolvimento pré e pós-processadores ricos em

recursos gráficos interativos, permitindo aos usuários com conhecimento básico de geometria

trabalhar facilmente com eles. No entanto, a modelagem de campos descont́ınuos com uma

aproximação de elementos finitos padrão apresenta desafios como restrições na malha de

elementos finitos para alinhar com a descontinuidade e a necessidade de remalhar à medida

que a descontinuidade evolui. O MEF generalizado ou estendido (MEFG/X) foi proposto

como um método numérico para resolver alguns desses desafios. O método MEFG/X enriquece

localmente as funções de forma padrão de elementos finitos com funções de enriquecimento

que se baseiam na f́ısica associada ao problema.

O objetivo desta tese é a modelagem de fratura em estruturas de paredes finas,

especificamente estruturas Placas, estendendo as capacidades dispońıveis do método MEFG/X

implementado no ambiente INSANE (INteractive Structural ANalysis Environment), uma

plataforma computacional desenvolvida no Departamento de Engenharia de Estruturas (DEEs)

da Universidade Federal de Minas Gerais (UFMG), totalmente implementada utilizando

programação orientada a objetos. Uma versão estável do MEFG/X é implementada para

se ter sistemas de equações bem condicionados. Em seguida, a estratégia de propagação

de fissuras é aplicada a problemas de tensão/deformacão plana e de placas de Reissner-

Mindlin, usando o MEFG/X clássico e na versão global-local. Todas essas implementações

são explicados em detalhes e a robustez e precisão são examinadas pela resolução de vários

problemas estruturais.

Palavras-Chave: Método dos Elementos Finitos Generalizados ou Estendido, Placa

Reissner-Mindlin, Mecânica da fratura, Programação Orientada a Objetos, Estratégia duas

escalas
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Chapter 1

INTRODUCTION

1.1 Literature

M
any of natural phenomena can be described by mathematical models based on dif-

ferential equations. In engineering, particularly the use of this feature allows an

understanding of several problems: solid mechanics, fluid mechanics, electro-magnetics, heat

flow, and similar problems. The common feature of these problems is using Partial Differen-

tial Equations (PDEs) relating field variables within a given domain beside to meet boundary

conditions on its boundaries. Numerical solution of PDEs having discontinuities is impor-

tant, since it is applicable to a wide range of solid mechanics problems: such as modeling

the crack propagation, dislocations and material inclusions.

Finite Element Method (FEM) has been widely used for the numerical modeling of struc-

tural problems (Hughes, 2000). With the advent and popularization of high-performance

computers, the FEM has gained more space over the past two decades, specifically for spe-

cial technique aiming to reduce the computational costs either with mesh reduction technique

or using parallel processing approach. The application of the FEM, in the various branches

of engineering, requires constant improvement to treat nonlinear problems, material behavior

and geometric changes, or even the spread of micro or macro defects throughout the area. In

addition, the use of computer-based FEM programs was greatly facilitated with the develop-

ment of pre- and post-processors. Rich interactive graphics capabilities, allowing users with

basic knowledge of geometry to easily work with them. On the other hand, there are phe-

nomena that FEM can not satisfactorily describe, raising the development of new strategies

for this purpose. One of them are the presence of the discontinuities in the domain, such as

cracks, micro-cracks, voids, inclusions, etc. The main focus of early implementations of Finite

Element (FE) models for discontinuity problems was defining meshes conformed to the dis-

continuity surface(s) (Ingraffea and Saouma, 1985; Cook et al, 2002). This constraint brings

two issues: the first challenging issue is the creating of a mesh compatible with the disconti-

nuity surfaces, and the second one is the inaccurate solutions due to high mesh-dependency

(de Borst et al, 1993). Meshless methods, among them the smooth particle hydrodynamics
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(Monaghan, 1982), reproducing kernel particle method (W. K. Liu and Zhang, 1995), ele-

ment free Galerkin method (Belytschko et al, 1993) and hp-cloud method (Duarte and Oden,

1996) were proposed aiming to avoid this remeshing by defining approximations built on a

set of nodes. The mesh independence, however, is accomplished by establishing non-analytic

approximations, that demand a higher computation cost and that is unable to satisfy the

Kronecker delta property (necessary to directly impose the boundary conditions).

1.1.1 Partition of Unity-based methods for fracture mechanics

Another approach, so-called continuous/discontinuous FEMs, has been developed (Ortiz

et al, 1987; Belytschko and Black, 1999) in oder to overcome the draw-backs related to

modeling discontinuity problems using the classical FEM, in which specific functions have

been added to the classical FE approximations in order to capture discontinuities. These

specific functions are selected in order to represent the discontinuous behavior of the problem

studied. This helps to model the discontinuity in any part for the model, without any need

of either remeshing or conforming mesh at the discontinuity boundaries.

Two families of enrichment strategies can be distinguished here: first is the so-called em-

bedded FEMs (EFEMs) and second is based on the Partition of Unity (PU) approach. In

the EFEM, the enrichment functions are defined on the local enhanced degrees of freedom

(DOFs) for each element and these enhanced DOFs are removed by static condensation prior

to the global tensor assembly (Ortiz et al, 1987). Therefore, total number of DOFs remains

unchanged. However, this approach has some limitations, such as: (1) using the elemental

enrichments that are defined on the internal DOFs corresponding to the jump over discon-

tinuity surfaces, which leads to a non-conforming formulation in which the compatibility of

strain fields is not satisfied and it is only enforced in a weak sense (due to discontinuous

enrichment over element surfaces and its boundaries); (2) lack of the kinematic decoupling

due to connectivity of the strains on both sides of the discontinuity surface (in elements that

are crossed by the discontinuity surface); and (3) the uniqueness and numerical robustness

of solutions, because of some numerical problems due to use some special approaches to

eliminate the additional DOFs from the model.

The partition of unity concept uses the nodal enrichment as the so-called special FEM

approach (Babuška et al, 1994). In this approach, the discontinuity surfaces are modeled by

enriching the polynomial functions with special functions that are associated with additional

parameters, called enriched DOFs. These enriched DOFs are added globally to the discretized

system; therefore, they increase the total number of DOFs with contrast to the EFEM

method. Generalized or eXtended Finite Element Method (G/XFEM) (Strouboulis et al,

2000a, 2001; Belytschko and Black, 1999), a partition of unity-based method (PUM), is

an example of the method that uses the local enrichments. In these methods, the local

enrichments have been used in sub-domains around discontinuities and special numerical

integration algorithms have been utilized for cells intersected by discontinuities.
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A lot of experiments has been developed, showing the success of the before-mentioned tech-

nique in solving complex problems and pointing to future studies in the field of computational

parallelization, as discussed in Pereira et al (2011) and Kim et al (2011). Its performance in

terms of convergence rate is already well established in the literature, allowing advances in

solving problems in elastoplastic media, partly fragile, or metal forming problems for large

localized deformations.

Three important advantages can be identified for these mesh-based formulations when they

are compared to the meshless methods. Firstly, the strategy of extrinsically enrich the PU

Method (PUM) presents a lower computation cost. Following, the interpolation characteris-

tics of the approximate functions produce solutions that satisfy the Kronecker delta property.

Finally, the similarity between PUM/GFEM/XFEM and FEM can allow a straightforward

migration for these new approaches and also the reuse of the FEM structure. From the

computational point of view, both the migration and reusing aspects depend, of course, on

how the FEM code is implemented.

On the other hand, the enrichment strategy of G/XFEM can produce a badly conditioned

stiffness matrix, which leads to severe loss of accuracy in the numerical solution. In this

case, preconditioners should be used such as the ones proposed by Béchet et al (2005) and

Menk and Bordas (2011). Babuška and Banerjee (2011, 2012) presented a new approach,

named Stable G/XFEM (SG/XFEM), which can overcome such problems and keeps the good

properties of conventional G/XFEM. Another advantage is that the SG/XFEM does not use

ramp-functions in the transitory elements between regions of different kinds of enriched

functions as proposed by Fries (2008). These are the so-called blending-elements, considered

by the first time by Chessa et al (2003). In such work it is shown that the presence of blending

elements can negatively affect the accuracy and the rate of convergence of the method. Two

strategies aiming to overcome this problem are described, the first based on the Hu-Washizu

variational principle and the other one through a enhanced strain field. Other works has

presented further developments at this subject such as (Fries and Belytschko, 2006; Gracie

et al, 2008; Tarancón et al, 2009).

1.1.2 Crack propagation Modeling using G/XFEM

Initial implementation of the G/XFEM for crack propagation problems was introduced by

Belytschko and Black (1999) and Moës et al (1999). After that, this method has been

extensively used for the simulation of crack propagation problems, such as: three-dimensional

crack propagation was proposed by Duarte et al (2001); a quasi-static crack growth was

proposed by Sukumar and Prévost (2003) using G/XFEM; three-dimensional modeling of

initiation, branching, growth of crack in non-linear solids including statics and dynamics

problems was presented by Bordas et al (2008); Rabczuk et al (2010) proposed some crack

tracking techniques for three-dimensional problems using partition of unity and meshfree

technique; and an enhanced G/XFEM method for modeling of dynamic crack branching

presented by Xu et al (2014).
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Dolbow et al (2000b) modeled the fracture in Reissner-Mindlin plate with XFEM and com-

puted the mixed-mode stress intensity factor using the domain forms of interaction integral.

Subsequently, different researchers have used G/XFEM formulations based on Reissner-

Mindlin plate theory to develop fracture modeling in shell and plate structures, see for exam-

ple (Barcellos et al, 2009; Lasry et al, 2010; Mendonca et al, 2011; Zeng et al, 2016). Areias

and Belytschko (2005) established a new formulation for cracked shells with the G/XFEM

and an enhanced strain formulation is used to attenuate the locking in thin structures with

a Reissner-Mindlin four-node shell element. In these two researches, a 3D ‘solid-like’ shell

based models were used to model the crack propagation. Then, they proposed a quadrilat-

eral Kirchhoff-Love shell element and the overlapped paired elements method with reduced

integration for thin shells in (Areias et al, 2006). The aforementioned works are presented

for the static problems. Studies with regard to the dynamic growth of crack in the shells

using G/XFEM is limited in literature. Song and Belytschko (2009) developed a phantom

nodes method for the a special shell element by modifying the displacement formulation of

the standard G/XFEM to model crack propagation in shell structures. An introduction of

G/XFEM into the continuum-based shell element and modeling of crack growth in the shells

is presented in (Zhuang and Cheng, 2011; Zheng et al, 2014, 2015). Larsson et al (2011) used

a cohesive-zone-based concept applied to a kinematically consistent shell model enhanced

with an XFEM-based discontinuous kinematical representation in order to model fractures

in shell structures. An extension of this method for elastoplastic analysis is presented in

(Mostofizadeh et al, 2013). A geometrically nonlinear discontinuous solid-like shell element

with phantom node method was proposed by (Ahmed et al, 2012).

1.1.3 Global-Local methodology for large-scale problems

In most structures, the nonlinear damages mainly occurs in some local regions. The cor-

relation between the local damage and the global structural behavior is helpful to predict

clearly the failure mechanism. Thus, an efficient numerical method is necessary to simulate

the relation of the global behavior and local damage. Among the different analysis method-

ologies that have high potential for the accurate prediction of detailed stress distribution in

structures, are the global-local methodologies. These methods are basically hybrid modeling

and/or analysis techniques. Global-local FEM was proposed by Noor (1986) in order to solve

non-linear problems. This method was presented after zooming method proposed by Hirai

et al (1985). A local problem is defined where a local phenomenon happens. The global-local

FEM approach has two steps. The first step is done with a coarse FEM mesh that ignores

the effect of the local phenomena. This is followed by the second step which includes an

analysis of the local region using refined finite element meshes. The key parameter for the

local analysis is the application of field state variables as boundary conditions on the local

boundaries. Once the solution of local problem is obtained, the global-local FEM analysis

can be finished. In global-local G/XFEM (G/XFEMgl) (Duarte et al, 2007), a variation of

the standard G/XFEM, enrichment functions are constructed numerically from the solution
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of a local problem. G/XFEMgl approach has three steps, its first and second steps are the

same as the global-local FEM. In the third step, the results of the local problem are used to

enrich the global problem which improves the approximate solution. In the case of fracture

mechanic problems, the stress field around the crack tip presents high gradients and it is

discretized using a large number of elements. The great advantage is providing a well-refined

description of the local problem. This approach allows to solve the problem using coarse

global meshes around crack fronts.

The global-local strategy based on G/XFEM approach is applied to high-cycle fatigue crack

growth in 3D bodies by Pereira et al (2011). Their coarse-scale mesh in the G/XFEMgl

doesn’t need to model the crack surface explicitly. Instead, the cracks are modeled through

global-local enrichment functions. A two-scale approach using the G/XFEMgl applied to

multi-site cracking problems was presented by Evangelista et al (2013) where realistic bound-

ary conditions are applied and multiple cracks with different geometries in a three-dimensional

airfield slab are considered. Plews and Duarte (2014) used an interdependent solution

of global and local problems in order to resolve multi-scale effects due to fine-scale het-

erogeneities under G/XFEM strategy. Although there are many investigations on two-

scale/multi-scale analysis of fracture problems using G/XFEM method, all of them were

done only for three-dimensional problems, while there is no thorough study for Reissner-

Mindlin plate problems.

1.1.4 Object-oriented programming G/XFEM codes

The viability of extending a traditional FEM code by adding the G/XFEM enrichment

strategy has already been demonstrated by Strouboulis and co-workers in the remarkable

papers (Strouboulis et al, 2000a, 2001). Using an object-oriented strategy, the necessary

modifications are outlined from a software engineering perspective and an abstract structure

of a G/XFEM framework is presented. Beyond the general ideas about the migration from

FEM to other numerical methods such as PUM/GFEM/XFEM, Sukumar and Prévost (2003)

describe details of its implementation within a general-purpose finite element code written

in Fortran.Emphasis is placed on the design of such a code to enable the modeling of

discontinuous phenomena by using G/XFEM. Several of the advances about this topic can

be found in the overview presented by Fries and Belytschko (2010).

Application of object-oriented programming for FEM has been receiving great attention over

the last two decades (Mackie, 2009). The object-oriented codes can be slower than structured

language codes, mainly because of their size and the way they manage their data. However,

improvements in computational tool performances have quite solved the speed problem.

Some main concepts of OOP that makes it easy to use and maintenance are: objects and

classes, data abstraction and encapsulation, inheritance, and polymorphism. Here are some

OOP based FEM codes: a FE analysis to solve structural problems using OOP approach

within: Object NAP code (Forde et al, 1990), OOFEM (Zimmermann et al, 1992), and a
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FE code (Patzák and Bittnar, 2001); a finite element differential equations analysis library

(Bangerth et al, 2007); an object-oriented environment to solve multidisciplinary problems

(combination of thermal, fluid dynamics, and structural different fields) (Dadvand et al,

2010); implementation of a unified library of nonlinear solution schemes in FE programming

scheme (Leon et al, 2011). Beside this, the OOP has been successfully used to represent

also different numerical methods, such as the boundary element method (Lage, 1998) and

meshfree methods (Barbieri and Meo, 2012). Also, a bunch of G/XFEM codes used object-

oriented concept as their implementation strategy: an extension of a FEM code by adding

the G/XFEM enrichment strategy (Strouboulis et al, 2000b, 2001); demonstration of an open

source architecture for G/XFEM (Bordas et al, 2007); an extension of an original FEM code

(Chamrová and Patzák, 2010); implementing a G/XFEM code from scratch (Dunant et al,

2007); automated meshing for integrated experiments project proposed by Dunant (2009);

and a generic toolbox for finite element methods in C++ (GetFEM++ library) (Renard and

Pommier, 2017). An available FEM programming environment was expanded to enclose

the standard version of G/XFEM in (Alves et al, 2013). This environment, so called IN-

SANE (Interactive Structural Analysis Environment) is an open source software available at

http://www.insane.dees.ufmg.br, and it was firstly proposed in (Fonseca and Pitangueira,

2007). Afterwards, the G/XFEM method was extended to have numerically-built enrichment

function within the so-called global-local G/XFEM (G/XFEMgl) method in (Malekan et al,

2016a, 2017b; Malekan and Barros, 2016). The current G/XFEM implementation in IN-

SANE is able to solve different types of structural problems with material nonlinearities and

it can easily extended to incorporate any kind of enrichment function.

1.2 Motivation and Objectives

Engineering structures are designed to withstand their service loads until a crack/flaw start

to initiate in the structure. The stress values close to the maximum admissible stress must

never be attained under the service loading. Thus, high stress concentrations are avoided

and a reasonable safety margin is taken into account. However, as mentioned before, the

occurrence of fracture due to propagation of a pre-exist crack/flaw is something that engineers

have to take into account in their design. So, it is very important to see how a structure will

respond to a pre-crack condition, in other words, what the crack path is look like. On of the

demanding area to use this kind of analysis is the aircraft structures. There are three ways

to model a thin-walled structure, like aircraft fuselage, under fracture condition: 1) three-

dimensional model of the structure which is computationally expensive and cumbersome,

and 2) mixed-dimensional model of the structure where can reduce the computational cost,

and 3) using the plate/shell element types to reduce the computational costs by their specific

features.

The possibilities offered by technological resources for software development are broad re-

search field in the area of numerical and computational methods applied to engineering.

http://www.insane.dees.ufmg.br
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The domain of these resources and to implement them in the progressive improvement of

the models require a segmented computing environment, friendly to changes and scalable in

complexity, as was proposed in section 1.1.4. The INSANE computational environment is

composed by three great applications: pre-processor, processor and post-processor. The pre

and post-processor are interactive graphical applications that provide tools to build different

discrete representations of a structural problem as well as its results visualization. The pro-

cessor is the numerical core of the system and it is responsible for obtaining the results from

the analysis. The general objective of this work is to add some new features to the INSANE

numerical core in order to establish classical and two-scale G/XFEM methodology for crack

propagation problems in thin-walled structures.

According to section 1.1.3, there is a lack of using numerically built global-local enrichment

in modeling of crack propagation in thin-walled structures (Plates and Shells). Thus, one

can use the advantages of global-local approaches to analyze fracture mechanics problems of

thin-walled structures like shells and plates.

This PhD thesis is focusing on the crack propagation modeling in two-dimensional and

Reissner-Mindlin plates using either classical or two-scale G/XFEM method. The stable

G/XFEM will be also adapted to have a well-conditioned system of equations. The whole

numerical steps are already implemented within the INSANE computational platform. The

final goal of this project is to fracture modeling in plate structure by extending

the available capabilities of the G/XFEM method implemented in INSANE

in-house code . It is important to mention here that the crack in the Reissner-Mindlin

plate problems is a through-thickness crack and the effect of crack fronts orientation over the

thickness is not considered in this PhD thesis. In addition, all numerical modelings are done

under linear elastic fracture mechanics assumptions.

As a conclusion, the main objective of this work can be explained as: to design an efficient,

simple and reliable G/XFEM-based global-local framework for crack propagation problems in

plate structures implemented in INSANE in-house platform. This framework uses available

tools from INSANE and extends them to provide required functionalities to support the

Global-Local G/XFEM and SG/XFEM methods. In summary, the following specific goals

should be achieved through this framework:

• Development and design of an object-oriented data structure as well as implemen-

tation of a geometry engine algorithm based on G/XFEM strategy for crack growth

parameterization for two-dimensional and Reissner-Mindlin plate problems.

• Extend available G/XFEMgl approach in INSANE platform to work with the Reissner-

Mindlin plates.

• Design and implementation of a classical G/XFEM algorithm for crack growth simu-

lations in plane stress/strain and Reissner-Mindlin plate problems.

• Extend classical G/XFEM implementation for crack propagation to two-scale, i.e.,
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G/XFEMgl, in order to work for plane stress/strain and Reissner-Mindlin plate prob-

lems.

1.3 Thesis outline

The remainder of the present thesis is organized as follows:

– Chapter 2: Presents theoretical background for current project. It includes: the

basic formulation of the generalized/extended FEM, stable G/XFEM, and global-local

G/XFEM, and an overview of the Reissner-Mindlin plate formulations,

– Chapter 3: A general explanation of INSANE system is made in this chapter,

– Chapter 4: Implementations and numerical examples for stable G/XFEM methodol-

ogy for various enrichment types,

– Chapter 5: Presenting the crack propagation procedure based on G/XFEM for both

plane stress/strain and Reissner-Mindlin plate problems,

– Chapter 6: Presenting the crack propagation procedure based on two-scale G/XFEM

for both plane stress/strain and Reissner-Mindlin plate problems,

– Chapter 7: The PhD thesis concludes with the presentation of a concluding remarks

and also present possible future works as an extension of this research.



Chapter 2

THEORETICAL BACKGROUND

2.1 Introduction

T
his chapter deals with the concepts and formulations of different mathematical method-

ologies that are used in this PhD thesis, from classical and two-scale G/XFEM to main

formulation of the Reissner-Mindlin plate problem.

2.2 Problem description

Consider a domain (Ω) shown in Fig. 2.1. The boundary of domain is partitioned into

displacement (Γu), traction (Γt) and crack surface (Γc) boundaries. The strong form of the

equilibrium equations and boundary conditions can be written as:

O · σ + b = 0 in Ω (2.1)

σ · n̂ = t̄ on Γt : external traction (2.2)

σ · n̂ = 0 on Γc : traction free crack (2.3)

u = ū on Γu : prescribed displacement (2.4)

where σ is the Cauchy stress tensor, u is the displacement field vector, n̂ is the unit outward

normal and b and t̄ are the body force and external traction vector. For small strains and

displacements, strain-displacement relation can be written as:

ε = ε(u) = Osu in Ω (2.5)

In the above equation Os is the symmetric part of the gradient operator and ε is the linear

strain tensor. The constitutive relation for linear elastic material is given by Hook’s law:

σ = Dh ε (2.6)

where Dh is the Hook’s tensor. The variational form of the equilibrium equation can be

written as:

9



10

Figure 2.1: The linear elastic fracture mechanics problem in 3D

Find u such that ∀v:∫
Ω
σ(u) : ε(v)dΩ =

∫
Ω
b̄ · vdΩ +

∫
Γt

t̄ · vdΓ (2.7)

After substituting the trial and test functions and using the arbitrariness of nodal variations,

the following discrete system of equations are obtained:

[K]{d} = {f} (2.8)

where K is the global stiffness matrix, d is the vector of nodal unknowns (both standard

and enriched) and f is the external force vector. The goal is to find an approximation to

the solution u of the problem defined by Eqns. 2.1 - 2.6 for a thin-walled structure, like

plates and shells, by extending the capabilities of the G/XFEM method implemented in the

INSANE computational platform.

2.3 Generalized/Extended Finite Element Method

Early implementations of the finite elements were mainly focused on models for discontinu-

ity problems to define meshes that conformed to the discontinuity surfaces (Ingraffea and

Saouma, 1985; Cook et al, 2002; Swenson and Ingraffea, 1988). One may faces some issues

to model discontinuity within finite element analysis, such as developing the finite element

models to have a mesh compatible with discontinuity surfaces is cumbersome in many phys-

ical problems, the model may suffer from lack of accuracy and mesh-dependency (Bazǎnt,

1976; de Borst et al, 1993), and mesh refinement is inevitable to capture the solution of evolv-

ing discontinuities (Camacho and Ortiz, 1996). The G/XFEM was introduced to overcome

aforementioned problems which is a partition of unity-based method that uses enrichment
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functions to represent global/local phenomena of the problem and also to guarantee interele-

ment continuity. This method was developed mainly for modeling structural problems with

discontinuities (Melenk and Babuška, 1996; Duarte and Oden, 1995; Oden et al, 1998; Fries

and Belytschko, 2010; Alves et al, 2013). The partition of unity functions, PU, are an im-

portant building block in the G/XFEM. The PU (Melenk and Babuška, 1996) functions over

a domain are defined as the collection of smooth non-negative functions Ni’s which satisfy

two key requirements: (1) having
∑n

i=1Ni(x) = 1 everywhere in the domain, and (2) every

point in the domain has only a finite number of non-zero Ni’s acting on it.

A generic patch of elements or cloud ωj ∈ Ω̄ is obtained by the union of finite elements

sharing the vertex node xj . The assemblage of the interpolation functions, built at each

element Ke ⊂ ωj and associated with node xj , composes the function Nj(x) defined over

the support cloud ωj . The set of functions {Nj(x)}Nj=1 in the domain Ω̄ constitutes a PU.

The generalized FE shape functions are determined by the enrichment of the PU functions,

which is obtained by the product of such functions by each one of the components of the

enrichment function at the generic cloud ωj :

{φji}
qj
i=1 = Nj(x)× {Lji(x)}

qj
i=1 (2.9)

where {Lji(x)}
qj
i=1 is called local approximations (also called enrichment functions) and

defined as a set of qj linearly independent functions associated with each cloud ωj . The

resulting shape function φji(x), inherits characteristics of both functions, i.e., the compact

support of the PU and the approximate character of the local function.

As a consequence, the generalized global approximation, denoted by ũ(x), can be described

as a linear combination of the shape functions associated with each node:

ũ(x) =

N∑
j=1

Nj(x)

{
uj +

q∑
i=2

L
p
ji(x)bji +

∑
α=2

Lsjα(x)cjα

}
(2.10)

where uj are nodal parameters associated with standard FE shape function, Nj(x), bji and

cjα are nodal parameters associated with G/XFEM shape functions, Nj(x) ·Lji(x), p and s

are representing polynomial and singular enrichments, respectively. L
p
ji(x) and Lsjα(x) are

polynomial and singular enrichment functions, respectively. An example of the enrichment

function in <2, L
p
ji, based on polynomials is:

L
p
ji(x) =

(
x− xj
hj

)m
×
(
y − yj
hj

)n
(2.11)

where (xj , yj) are the coordinates of node xj , m and n are degree of polynomials in x and

y directions, respectively, and hj is an scaling factor. Another example for the enrichment

function by considering the crack under mode-I and mode-II in linear elastic medium can be

defined as (Duarte et al, 2000):

xLsjα(x)|2α=1 =

{
√
r

[(
κ − 1

2

)
cos

θ

2
− 1

2
cos

3θ

2

]
,
√
r

[(
κ +

3

2

)
sin

θ

2
+

1

2
sin

3θ

2

]}
(2.12)
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yLsjα(x)|2α=1 =

{
√
r

[(
κ +

1

2

)
sin

θ

2
− 1

2
sin

3θ

2

]
,
√
r

[(
κ − 3

2

)
cos

θ

2
+

1

2
cos

3θ

2

]}
(2.13)

where r and θ are the polar coordinates centered on the crack-tip, and κ is the material

constant (3 − 4ν) for plane strain and 3−ν
1+ν is for plane stress state. The superscripts x

and y are referred to x and y directions, respectively. These two enrichment functions are

obtained from the two-dimensional elasticity solution displacement field in the vicinity of

crack-tip (Szabo and Babuška, 1991; Pereira et al, 2009; Gupta and Duarte, 2016). In both

expressions, the first terms are the x and y components related to the first term of mode-I

expansion, respectively. Likewise, the second term of xLsjα(x) and yLsjα(x) is extracted from

the first term of the mode-II expansion.

Another example of the enrichment function, which is called the near-tip enrichment, is

defined as (Belytschko and Black, 1999):

[Fi(r, θ)] =

[
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]
(2.14)

where i is the number of crack-tip functions F (r, θ) and (r, θ) denotes the local polar coor-

dinate defined at the crack-tip.

2.4 Stable Generalized/Extended FEM

Although the G/XFEM offers advantages over the classical FEM approximation, there are

still critical issues that bring some difficulties in practical aspects. Two issues addressed in

(Tian, 2013): the extra nodal degrees of freedom (DOFs) and linear dependence between

standard FEM and enrichment functions. The extra DOF results in a fast expanding linear

system for a high order of local approximation. In the linear dependency, when both the

PU and the local function are polynomial, the resulting global stiffness matrix is positive

semi-definite due to the linear dependency of the functions used to build the approximate

space (Duarte et al, 2000; Tian, 2013). There are remarkable works to solve the first issue,

see (Duarte et al, 2000; Oden et al, 1998; Cai et al, 2010). The linear dependence issue is

also discussed in the context of G/XFEM (Chessa et al, 2003; Wu and Li, 2015).

In addition, the local enrichments of the G/XFEM approximations leads to arising the blend-

ing elements (an element containing both enriched and non-enriched nodes) into the problem

domain (Chessa et al, 2003; Gracie et al, 2008; Tarancón et al, 2009; Shibanuma and Ut-

sunomiya, 2009). Figure 2.2 shows the schematic of a local enrichment and hence, presence

of the blending elements, i.e., Ωblnd and thus the partition of unity cannot be satisfied over

these elements. The presence of these elements results in an arbitrarily ill-conditioned matrix

and penalizes the convergence rate of the approximate solution. To address those problems,
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Menk and Bordas (2011) proposed a method based on pre-conditioners, Laborde et al (2005);

Béchet et al (2005) used enrichment functions at a fixed region, called geometrical enrich-

ment, which lead to optimal convergence rates in the G/XFEM. Shibanuma et al (2014)

were able to obtain good results in terms of reproducibility of stress field in two-dimensional

linear fracture mechanics problem, by explicitly using the partition of unity idea to blend

the approximate functions of the enriched and non-enriched sub-domains on the blending

elements.

Figure 2.2: Schematic of local enrichment and presence of the blending element.

Recently, Babuška and Banerjee (2011, 2012) presented a new approach for one-dimensional

domains, so-called Stable GFEM (SG/XFEM hereafter, considering the equivalence between

GFEM and XFEM) which involves simple modification of the enrichment functions in or-

der to create an enrichment space that is near-orthogonal to the finite element approxima-

tion space, while preserving all the attractive features of the G/XFEM. The SG/XFEM is

aiming to improve the conditioning property of the G/XFEM. Another advantage is that

the SG/XFEM does not use ramp-functions in the transitory elements between regions of

different kinds of enriched functions as proposed by Fries (2008). Babuška and Banerjee

(2011, 2012) show that the SG/XFEM is optimally convergent and it has no issues with

the blending elements. Gupta et al. (Gupta et al, 2013, 2015; Gupta, 2014) extended

one-dimensional SG/XFEM to two- and three-dimensional fracture mechanics. Following

(Babuška and Banerjee, 2011, 2012; Gupta et al, 2013, 2015), the SG/XFEM enrichment

functions are constructed based on a local modification of the G/XFEM enrichments func-

tions, as following:

LSji(x) = Lji(x)− Iωj (Lji)(x) (2.15)

with:

Iωj (Lji)(ξ) =
∑

α∈I(τ)

Lji(xα)Nα(ξ) (2.16)

where Iωj(Lji) is the piecewise bi-linear FE interpolant of the G/XFEM enrichment function

Lji and LSji is the modified SG/XFEM enrichment function, vector xα has the coordinates
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of node α of element τ and Nα is the piecewise linear FE shape function for node α. Then,

similar to G/XFEM formulation (2.9), the shape function of SG/XFEM can be calculated

as (see Fig. 2.3):

φSji(x) = Nj(x)× LSji(x) (2.17)

By referring to Eqs. (2.15) and (2.16), the main additional part for the SG/XFEM method is

the evaluation of the finite element interpolant, Iωj(Lji), which its computational evaluation

is almost straightforward. In other words, we only need to compute the FE shape functions

values at integration points. Further details on the numerical aspects of SG/XFEM and its

detailed explanations can be found in (Gupta et al, 2013, 2015; Malekan and Barros, 2016).

Figure 2.3: Stable G/XFEM enrichment and shape functions calculation procedure (Gupta
et al, 2013).

2.5 Two-scale/Global-Local G/XFEM for Crack Prop-

agation

The global-local G/XFEM originally proposed by Duarte and Babuška (2005), combines the

standard G/XFEM with the global-local strategy proposed by Noor (1986). G/XFEMgl is

suitable for problems with local phenomena, such as stress field next to the crack tip. The

analysis is divided in three steps: Initial global problem (step 1) that uses a coarse FEM

mesh, Local (fine-scale) problem (step 2) which uses a refined mesh in a small part of the

initial global problem, and the Final global problem (step 3) that some of the nodes from

initial global problem are enriched using numerical functions calculated in step 2. Figure 2.4

shows three the global-local steps for quasi-static crack propagation at time step t. The time

step, t, here refers to the number of crack propagation steps during the quasi-static analysis.
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Figure 2.4: Global-local steps for quasi-static crack propagation at time step t. The global
solution utG at a crack propagation time step t provides boundary conditions for local

problem defined in the domain ΩtL of the crack surface Γt+1
c . Then, the solution of the local

problem is used to enrich the global problem at crack propagation time step t+ 1.

2.5.1 Initial Global Problem (step 1)

A coarse FEM mesh is used through the whole domain. Figure 2.5 exemplifies this step

for a problem with several cracks. The position of these cracks can be either between the

element edges or inside of the element boundaries, over their areas. Consider a domain

Ω̄G = ΩG ∪ΓG of an elastic problem in Rn. The boundary is decomposed in ΓG = ΓuG ∪ΓσG
with ΓuG ∩ ΓσG = �, where indices u and σ refer to the Dirichlet and Neumann boundary

conditions. utG ∈ X
t
G(ΩG) represents the solution of the approximate space Xt

G(ΩG) for

the initial global problem in its weak form, shown in:

Find utG ∈X
t
G(ΩG) such that ∀vtG ∈X

t
G(ΩG):∫

ΩG

σ(utG) : ε(vtG)dx =

∫
ΓσG

t̄ · vtGds (2.18)

where σ, ε, vtG ∈ Xt
G(ΩG), and t̄ are stress tensor, strain tensor, test functions, and

prescribed traction vector, respectively.
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(a) Problem with several cracks (b) Discretization of the problem

Figure 2.5: Typical problem with several local domains

2.5.2 Fine-scale Problem (step 2)

A refined mesh is used in a small part of the initial global problem. Figure 2.6 shows an

example where each crack composes a local problem. ΩtL is a sub-domain from ΩG. This

sub-domain may contain cracks, holes or other special features. The corresponding local

solution ut+1
L ∈Xt

L(ΩtL) is obtained from:

Find utLX
t
L(ΩtL) such that ∀vtLX

t
L(ΩtL):∫

ΩtL

σ(utL) : ε(vtL)dx+ η

∫
ΓtL∩ΓuG

utL · v
t
Lds+ κ

∫
ΓtL\(Γ

t
L∩ΓσG)

utL · v
t
Lds =

∫
ΓtL∩ΓσG

t̄vtLds+ η
∫

ΓtL∩ΓuG
ū · vtLds+

∫
ΓtL\(Γ

t
L∩ΓσG)

(t(utG) + κutG) · vtLds
(2.19)

where vtL ∈X
t
L(ΩG) represents the test functions, Xt

L(ΩG) is the space generated by FEM

or G/XFEM functions, η is the penalty parameter and κ is the stiffness parameter to consider

Cauchy boundary condition. κ = 0, κ = η >> 1, and 0 < κ < η, if Eq. (2.19) corresponds to

a Neumann (if ΓtL ∩ Γu = ∅), Dirichlet and Cauchy problem, respectively (Kim et al, 2010).

The spring stiffness, κ, can be selected as (Kim et al, 2012, 2010):

κ =
E

nd√
V0 J

(2.20)

where E is the Young’s modulus, nd is the number of spatial dimensions of the problem, V0

is the volume of the master element used and J is the Jacobian of the global element across

the local boundary where the spring boundary condition is imposed.

In G/XFEMgl, numerical solution produced by local analysis can be easily introduced into

the global problem. The local problem can be strongly refined and it does not affect the

computational performance of the problem. Therefore, the problem is solved using less

memory and processing machine than standard G/XFEM, as observed by Duarte and Kim

(2008) and Kim et al (2010).
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Figure 2.6: Several local problems, adapted from (Alves, 2012)

2.5.3 Enriched Global Problem (step 3)

Some of the nodes from initial global problem are enriched using numerical functions cal-

culated in step 2. The global problem is enriched by solution utL (from step 2). The new

solution utGL ∈X
t
GL(ΩG) is obtained from:

Find utGL ∈X
t
GL(ΩG) such that ∀vtGL ∈X

t
GL(ΩG):∫

ΩG

σ(utGL) : ε(vtGL)dx =

∫
Γσ

t̄ · vtGLds (2.21)

where vtGL represents the test functions andXt
GL(ΩG) is the third step approximation space

obtained by increasing the initial space, Xt
G(ΩG), by u

gl, t
k (x) from local problem uL:

Xt
GL(ΩG) =

ũ(x) =

N∑
j=1

Nj(x)ûtj(x) +
∑

k∈Igl, t

Nk(x)u
gl, t
k (x)

 (2.22)

and k ∈ Igl, t represent the set of nodes enriched by the local solution and u
gl, t
k (x) is the

function obtained from the local solution utL from Eq. (2.19). For global-local analysis of

the static problems, it only needs to neglect the superscript t from whole formulation of this

section.

The global-local cycle shown in Fig. 2.4 can have multiple global-local enrichment process

during each simulation time step. This means that there is a complete global-local enrichment

strategy for each global-local cycle, i.e., solving global problem, then solving local problem,

and finally enriching the global problem. For each crack propagation time step, at least one

global-local cycle must be considered. However, to have better results from the global-local

strategy, one can use multiple global-local cycles at the same time step. An important issue in

the global-local analysis is the applied boundary conditions over the local domain boundaries.

As it said before, the BCs can be either Dirichlet, Neumann, or Cauchy BC. In addition, the
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size of the local domain plays an important role on the effect of the BCs, since for a local

problem with a crack, more close the boundaries to the crack line, the bigger perturbations

gets the crack from the boundaries. So, it is very important to choose an appropriate type of

BCs to be transferred from global to local problem as well as a reasonable local domain size

to have a quite enough distance between the local boundary and the crack line(s) to exclude

the interference of the boundaries over the crack movement.

2.6 Reissner-Mindlin Plate

A structural element which is thin and flat is called plate. The “thin” means that the plate

transverse dimension, or thickness, is small compared to the length and width dimensions.

A mathematical expression of this idea is:

t/L� 1 (2.23)

where t and L represent the plate thickness and a representative length or width dimension,

respectively, as shown in Fig. 2.7. Plates might be classified as very thin if L/t > 100,

moderately thin if 20 < L/t < 100, thick if 3 < L/t < 20, and very thick if L/t < 3. The

“classical” theory of plates, Like Kirchoff and Reissner-Mindlin plate theories, is applicable

to very thin (Kirchoff and Reissner-Mindlin) and moderately thin (Reissner-Mindlin) plates,

while higher order theories are useful for thick plates (Steele and Balch, 2009).

Figure 2.7: An arbitrary plate geometry

Reissner-Mindlin plate theory assumes that the normals to the plate do not remain orthogonal

to the mid-plane after deformation, thus allowing for transverse shear deformation effects.

This allows us to use C0 continuous elements. Unfortunately, some difficulties arise when

Reissner-Mindlin elements are used for thin plate situations due to the excessive influence

of the transverse shear deformation terms like the shear locking defect. Elimination of shear

locking is possible via reduced integration, linked interpolations or assumed transverse shear

strain fields (Onate, 2013).

The assumptions of Reissner-Mindlin plate theory are the following, while it is assumed that

the middle plane is equidistant from the upper and lower faces:



19

(1) In the points belonging to the middle plane (z = 0):

u = v = 0 (2.24)

In other words, the points on the middle plane only move vertically.

(2) The points along a normal to the middle plane have the same vertical displacement

(i.e. the thickness does not change during deformation).

(3) The normal stress σz is negligible (plane stress assumption).

(4) A straight line normal to the undeformed middle plane remains straight but not nec-

essarily orthogonal to the middle plane after deformation (Fig. 2.8), in contrast to

the Kirchoff plate theory that a straight line normal to the undeformed middle plane

remains straight and normal to the deformed middle plane (normal orthogonality con-

dition).

Figure 2.8: Reissner-Mindlin plate theory, rotations of the normal.

Assumptions 1, 2, 4 and Fig. 2.8 leads to:

u(x, y, z) = −z θx(x, y)

v(x, y, z) = −z θy(x, y)

 assumptions 1 and 4

w(x, y, z) = w(x, y) (assumption 2)

(2.25)

where w is the vertical displacement of a point on the middle plane and the rotations θx and

θy are corresponding to the angles followed by the normal vectors contained in the planes

xz and yz, respectively. Vector u = [w, θx, θy]T is the displacement vector of a point on the

middle plane of the plate.

From Fig. 2.8, following expressions can be obtained for the rotations angles, as a result of

assumption 4:

θx = ∂w
∂x + ϕx

θy = ∂w
∂y + ϕy

(2.26)
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The rotation of the normal in each of the two vertical planes xz and yz is obtained as the sum

of two terms: 1) the adequate slope of the plate middle plane, and 2) an additional rotation φ

resulting from the lack of orthogonality of the normal with the middle plane after deformation

(Fig. 2.8). Consequently, the rotations θx and θy can not be computed in terms of the

deflection only and, therefore, are treated as independent variables. This is a substantial

difference between Reissner-Mindlin and Kirchhoff plate theories. The assumption that the

normals remain straight is only an approximation since in practice the normals are distorted,

as shown in Fig. 2.8, and the angles θx and θy depend on the thickness coordinate. The

hypothesis of a straight normal is equivalent to assuming an average uniform rotation for the

normal, which obviously simplifies the kinematics.

Following Dolbow et al (2000b), the strain is given by:

1

2

(
Ou+ (Ou)t

)
= z εb(θ) +

1

2
[εs(w, θ)⊗ z + z ⊗ εs(w, θ)] (2.27)

with the bending and shear definitions as:

εb(θ) =
1

2

(
Oθ + (Oθ)t

)
(2.28a)

εs(w, θ) = Ow + θ (2.28b)

The z related components are zero for both εb and εs. The virtual internal work is defined

by:

∂W int =

∫
Ω
σ : O(∂u) dΩ (2.29)

where σ is the symmetric stress tensor, and du is an arbitrary virtual displacement from the

current position. After a few manipulations, the following relation can be obtained:

σ : O(∂u) = zσp : εb(∂θ) + σs · εs(∂w, ∂θ) (2.30)

where the p superscript indicates a reduction of the operator to the in plane (x, y) components

and σs is the shear stress vector σs = σ · z.

Substituting Eq. (2.30) into Eq. (2.29) and integrating through the thickness gives the work

expression:

∂W int =

∫
Ω

(M : εb(θ) +Q · εs(w, θ)) dΩ (2.31)

where the moment M and shear Q are defined by:

M =

∫ t/2

−t/2
zσpdz (2.32a)

Q =

∫ t/2

−t/2
σsdz (2.32b)
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The virtual external work is composed of the action of the bending and twisting moments

gathered in a couple vector C, and of the shear traction T . The virtual external work is

then:

∂W ext =

∫
Γ
C · ∂θdΓ +

∫
Γ
T · ∂wdΓ (2.33)

Equating the internal and external virtual work, and applying the divergence theorem yields

the equilibrium equations in Ω:

O ·M −Q = 0 (2.34a)

O ·Q = 0 (2.34b)

and the traction boundary conditions on Γ:

C = M · n (2.35a)

T = Q · n (2.35b)

where n is the unit outward normal to the boundary. The constitutive relationships are

obtained by energetic equivalence between the plate and three-dimensional model. Assuming

the plate is made of an isotropic homogeneous elastic material of Young’s modulus E and of

Poisson’s ratio ν, the constitutive relations are given by:
Mxx

Myy

Mxy

 =
Et3

12(1− ν2)


1 ν 0

ν 1 0

0 0 1− ν



εxxb

ε
yy
b

ε
xy
b

 (2.36a)

Qxz
Qyz

 = µkt

εxzs
ε
yz
s

 (2.36b)

where µ is the shear modulus. The correction factor k accounts for the parabolic variation of

the transverse shear stresses through the thickness of the plate, and is taken to be k = 5/6.

The above equations can be rewritten in a more compact form using the fourth order bending

stiffness tensor Db and the second order shear stiffness tensor Ds:

M = Db εb (2.37a)

Q = Ds εs (2.37b)

These equations are valid only for isotropic materials.

2.7 Summary

The focus of this chapter was to present the concept and formulations of G/XFEM, stable

G/XFEM and G/XFEMgl methods that will be used through this whole PhD thesis. In

addition, some main formulations of the Reissner-Mindlin plate are presented to have the

main idea of this kind of structural problems.



Chapter 3

INSANE COMPUTATIONAL
PLATFORM, A GENERAL
OVERVIEW

3.1 Introduction

I
NSANE (INteractive Structural ANalysis Environment) computational platform, (Fon-

seca and Pitangueira, 2007), is an open source software implemented in Java, an Object-

Oriented Programming (OOP) language. The choice for an OOP language was made because

of the several benefits brought by this programming paradigm, as extensibility, robustness

and maintenance. Additionally, Java language provides a simpler object model, high-level

facilities and the Java application can run on any computer architecture with a Java Virtual

Machine. Similar to all FEM codes, it is composed of three parts: pre-processor, proces-

sor (numerical core) and post-processor. The numerical core is composed by the interfaces

Assembler and Persistence and the abstract classes Solution and Model, aiming to analyze

different problems, from linear to nonlinear static and dynamic problems using different nu-

merical approaches (FEM (Fonseca and Pitangueira, 2007; Fonseca, 2008), BEM (Peixoto,

2016; Peixoto et al, 2016), classical, stable, and two-scale G/XFEM (Wolff, 2010; Alves, 2012;

Alves et al, 2013; Malekan et al, 2016a, 2017b; Malekan and Barros, 2016; Malekan et al,

2016b), Meshless method (Faria, 2014; Silva, 2012; Hosseini et al, 2017; Gori et al, 2017),

and Hp-cloud method (Pereira, 2015; Pereira et al, 2015)). The persistence of data among

these three segments of INSANE is performed by structured data files written in eXtensible

Markup Language (XML) format.

3.2 INSANE Environment

The INSANE numerical core is composed by the interfaces Assembler, Model and Persistence

and the abstract class Solution. Figure 3.1 shows the Unified Modeling Language (UML)

diagram from INSANE numerical core. Three different colors are used here in UML diagrams

in order to facilitate the visualization of the extensions and modifications made: cream for

22
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the modified classes, green for the new classes that were created for this work, and white

for the unchanged classes. This chapter mainly describes the INSANE numerical core in

a general way. Several of the classes that appear here are discussed in detail in the next

chapters together with the implemented strategy.

Figure 3.1: Organization of the INSANE numerical core

There is an observation strategy inside INSANE numerical core. This strategy is determined

by the Observer-Observable design pattern, which is a change propagation mechanism. When

an object of type observer (which implements the interface java.util.observer) is instantiated,

it is added to a list of observers of other objects of type observables (which extends the

class java.util.observable). Any modification in the state of an observed object notifies the

corresponding observer object that updated itself.

3.2.1 Persistence Interface

Persistence interface treats the input data and persists the output data. For current work,

this class is extended to deal with either static or quasi-static fracture analysis with both

two-dimensional and Reissner-Mindlin plate problems. Figure 3.2 shows the components of

the persistence package.

Figure 3.2: UML diagram of the persistence package
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3.2.2 Assembler Interface

Assembler interface is responsible for assembling the linear equation system provided by the

discretization of the boundary or initial value problem. This class is implemented following

the generic representation:

A Ẍ +B Ẋ +C X = D (3.1)

where X is the solution vector; the single dot represent its first time derivative and the

double dots its second time derivative; A, B and C are matrices with the properties of the

problem and D is a vector that represents the system excitation. In static analysis, Eq. (3.1)

is simplified by eliminating the two first terms. The resulting matrix system is:

 Cuu Cup

Cpu Cpp

 Xu

Xp

 =

 Dp

Du

 (3.2)

 Dp

Du

 =

 Np

Nu

+

 Ep

Eu

 (3.3)

In these equations, the matrix C is the model stiffness matrix, X is the vector of nodal

displacements, D is the vector of forces. The vector D is composed of two parts: the

vector N and the vector E which are the forces vector applied directly to the nodes and the

forces/displacements prescribed by equivalent nodal vector, respectively. The sub-indices u

and p informs if the vector is unknown or prescribed. This class is also extended to deal with

either static or quasi-static fracture analysis with both two-dimensional and Reissner-Mindlin

plate problems.

Figure 3.3: UML diagram of the Assembler package

3.2.3 Solution Abstract Class

Solution abstract class starts the solution process and has the necessary resources for solving

the matrix system of the fracture analysis approach. It contains different classes to handle
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either static, dynamic, or modal analysis. Some of this classes are either modified or extended

to have new capabilities to handle the shell structures. Figure 3.4 shows component of the

Solution package. Also, it contains different direct and iterative solvers to solve the system of

equations. Also, a Sparse matrix (see Appendix C) is incorporated for the linear problems in

order to accelerate the solution procedure. This class is extended to deal with either static or

quasi-static fracture analysis for both two-dimensional and Reissner-Mindlin plate problems.

Figure 3.4: The solution package

The main class for solving linear equation systems from Eq. (3.1), is the LinearEquationSys-

tems class, as its UML diagram is shown in Fig. 3.5. This class contains several solver types

to solve the static system of equations, using either direct or iterative solvers. Nowadays,

the SteadyState and GlobalLocal classes use different solvers from the LinearEquationSystems

class to solve the problem with the classical and two-scale approaches, respectively.

Figure 3.5: UML diagram of the LinearEquationSystems class

3.2.4 Model Interface

The Model interface contains the data of the discrete model and provides to Assembler

informations to assemble the final matrix system. Both Model and Solution communicate

with the Persistence interface, which treats the input data and persists the output data
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to the other applications, whenever it observes a modification of the discrete model state.

For current work, several classes are implemented or modified under this interface aiming to

provide required information for the process. Some examples of these classes are: different

Enrichment classes for either classical G/XFEM or stable and two-scale G/XFEM methods,

and ProblemDriver class as a part of matrix assembly process. This class is extended to deal

with either static or quasi-static fracture analysis for both two-dimensional and Reissner-

Mindlin plate problems. The ProblemDriver abstract class is designed to inform Assembler

class all the necessary data for assembling the Eq. (3.1). Different finite element formulations

originally provided within the INSANE environment are implemented by different classes

derived from SolidMech abstract class, each one with a specific way to calculate the different

parts of the Eq. (3.1). Some of these classes are: parametric (class Parametric), Kirchhoff

thin plate (class KirchhoffThinPlate), and frame (class Frame). In addition, there are various

models already implemented within INSANE code: space frame, plane stress/strain, plate

and solid. When the Assembler starts to assemble the system of equations (3.1), it asks the

object of AnalysisModel for characteristics about the model, such as how the deformation

matrix should be calculated. Figure 3.6 presents the model package.

Figure 3.6: UML diagram of the model package

3.3 Summary

An overview of the INSANE numerical core with its main classes was presented in this

chapter. The focus was to present the general aspects of INSANE environment, emphasizing

the requirement for the static and quasi-static fracture analysis using G/XFEM method.

Detail implementations along with the numerical examples for each part is presented in the

following chapters.



Chapter 4

STABLE
GENERALIZED/EXTENDED
FINITE ELEMENT METHOD

4.1 Introduction

U
sing the locally-enriched strategy to enrich a small/local part of the problem by gener-

alized/extended finite element method (G/XFEM) leads to non-optimal convergence

rate and ill-conditioning system of equations due to presence of blending elements. The local

enrichment can be chosen from polynomial, singular, branch or numerical types. The so-

called stable version of G/XFEM method provides a well-conditioning approach when only

singular functions are used in the blending elements.

This chapter shows and discusses a generic implementation of the well-conditioning approach

toward generalized/extended finite element method. These implementations are performed

into an academic computational platform, follows the object-oriented approach presented

before for the standard version of G/XFEM in which the shape functions of finite elements

are hierarchically enriched by analytical functions, according to the problem behavior. The

stable version of G/XFEM is employed here to avoid the bad effects of blending elements

on the approximate solution convergence rate. In global-local G/XFEM, the enrichment

functions are constructed numerically from the solution of a local problem. Furthermore,

several enrichment strategies are adopted along with the global-local enrichment. The results

obtained with these enrichments strategies are discussed in detail, considering convergence

rate in strain energy, growth rate of condition number, and computational processing. All the

explanations and numerical results for this chapter are brought from Malekan et al (2016b);

Malekan and Barros (2016).
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4.2 OOP Implementations

The EnrichmentType class is a part of the Model interface which provides required infor-

mation for the enrichment strategy of the G/XFEM method. The GlobalLocalEnrichment,

PolynomailEnrichment, and CrackEnrichment (singularity enrichment) extend Enrichment-

Type class to have G/XFEM enrichment functions for various problems.

Figure 4.1: UML diagram of the EnrichmentType package

The class PolynomailEnrichment holds some arrays to represent the monomial functions

used in Eqs. (2.9) and (2.11). On the other hand, the class CrackEnrichment (Eqs. (2.12)

and (2.13)) holds some necessary parameters to simulate functions with high singularity in

the derivatives. In addition, GlobalLocalEnrichment provides specific methods to build the

enriched functions from the solution of the local problem and applied in the third step of

the global-local problem, according to procedure described in section 2.5. EnrichmentType

class has some generic methods which are responsible to calculate enrichment functions and

their derivatives in a point. Each node, instance of an object Node, can have a list of the

objects of class EnrichmentType. This relationship allows the existence of multiple types of

enrichment functions for the mesh as a whole and also for each node.

Figure 4.2: UML diagram of the StablePolynomialEnrichment class
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Furthermore, to implement the SG/XFEM approach, the StableGlobalLocalEnrichment, Sta-

blePolynomailEnrichment, and StableCrackEnrichment are added under EnrichmentType

class. The StableGlobalLocalEnrichment provides specific methods to build the SGFEM

enriched functions from the solution of the local problem and applied in the third step of

the global-local problem. Figure 4.1 shows the EnrichmentType class UML diagram. En-

richmentType is an abstract class and its methods are abstract. Thus, both G/XFEM and

SG/XFEM related enrichment classes contain the same method, as the EnrichmentType

class. Figures 4.2, 4.3, and 4.4 show the UML diagrams of these new classes. In all UML

diagrams, white, cream, and green colors represent unchanged, modified, and new classes,

respectively.

Figure 4.3: UML diagram of the StableCrackEnrichment class

Figure 4.4: UML diagram of the StableGloblLocalEnrichment class
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4.3 Numerical Example

This section presents three linear-elastic problems in <2. Section 4.3.1 presents a double-edge

cracked plate, section 4.3.2 presents a plate with an edge crack, and a beam with a crack is

presented in section 4.3.3. The geometry and boundary conditions are very simple and the

goal of choosing them is to demonstrate the capabilities of the SG/XFEM method as well as

the SG/XFEMgl method. The cracked zone in these problems produces singular stress field

near the crack tip.

In examples 4.3.1, 4.3.2 and 4.3.3, the crack surface is geometrically represented in the

global and local models using double nodes. This approach is chosen here because, by our

experience, if the crack isn’t described in the initial global problem, the boundary conditions

of the local problem provided by the initial global solution impact the quality of the final

solution. Among the three aforementioned boundary conditions, the Dirichlet boundary

condition (a limiting case of Cauchy boundary condition) leads to worse results than Cauchy

boundary condition (Kim et al, 2010). Thus, the first one will be applied on the local problem

boundaries in order to demonstrate the robustness of the methodology in the worst case

scenario. Numerical integration for the first and second steps of the global-local analysis is

done based on standard Gaussian quadrature procedure. The integration order of G/XFEMgl

and SG/XFEMgl for both global and local problems is chosen to be enough to reproduce

the polynomial approximation and are equal to 6 × 6, respectively. In the third step, the

numerical integration for those global elements that contain local elements is done over the

Gauss points of local elements, as proposed by Kim et al (2010). Consider that a global

element contains nLe local elements and the number of Gauss points for each local element

is equal to GP . Thus, the number of integration points for this global element is obtained

by:
∑nLe

i=1 GPi.

All problems are analyzed under plane stress state, have the following parameters (in con-

sistent units): modulus of elasticity E = 1.0, Poisson ratio ν = 0.3, and the shear stress

τ = 1.0, if applicable.

4.3.1 Double-edge cracked problem

This example considers a double-edge cracked problem submitted to a shear stress, as shown

in Fig. 4.5 and is analyzed under plane stress condition. The cracked zone produces singular

stress field near the crack tips. The objective of this example is to illustrate the use of

SG/XFEM with singular enrichment (shown in Eqs. (2.12) and (2.13)) for fracture mechanic

problems.

The reference solution of this problem is obtained using a mesh of 14531 quadrilateral el-

ements (CPS4, a 4-node bilinear plane stress quadrilateral element) in ABAQUS R©. The

mesh used around the crack tip is shown in Fig. 4.7. The number of integration points for

this problem is considered equal to 8× 8.
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Figure 4.5: Geometry and loading of the double-edge cracked problem

Using INSANE, there are three different average element sizes (h) in this study, h = 2.0, 1.0,

and 0.5. The total number of elements are 98, 248, and 832 elements with a combination of

regular and geometrical mesh distribution considering these three element sizes, as shown in

Fig. 4.6(a). As it can be seen from this figure, only four elements from the cloud associated

with the crack tip is discretized with the geometric mesh. The geometric refining approach

in this study is based on four refinement level (L4) with f = 10% reduction rate, as shown

in Fig. 4.6(b), according to Szabo and Babuška (1991). Only nodes inside the red area

(38 nodes) are enriched with the polynomial and singular enrichment functions. The goal

is having an equivalent enrichment zone for all three meshed. Of course, there is no need

to geometric mesh when the problem is enriched with singular enrichment, because this

enrichment function is able to capture the singularity around the crack tip. We decided to

have the same mesh for all enrichment cases. The P2 (quadratic) enrichment function is

considered here to enrich the problem with the polynomial enrichment. The formulation of

this function for x direction is as follows:

φTj (x) =


Nj(x) 0

(
x− xj
hj

)2

Nj(x) 0

0 Nj(x) 0

(
x− xj
hj

)2

Nj(x)

(
y − yj
hj

)2

Nj(x) 0

0

(
y − yj
hj

)2

Nj(x)

 (4.1)
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(a) Three meshes (b) Geometric mesh with reduction rate of f

Figure 4.6: Double-edge cracked problem meshing strategy.

Similar expression is used for y direction. The enrichment function is cubic and the is

polynomials with order one, i.e., linear. The reason behind using only quadratic polynomials

is that the linear polynomials in the case of SG/XFEM returns zero for enrichment functions.

The polynomial enrichment of order one provides null enrichment in Eq. (2.15), because

the FE interpolant Iωj , used in the stable strategy is also linear. The FE interpolant is

not considered in the SG/XFEM for the linear terms of the polynomial enrichment, so the

interpolation is performed only for the polynomials of second degree.

Figure 4.8 shows the convergence rate results against the inverse of the element size for

different enrichment types. Here are different case used here: GFEM/SGFEM-poly is the

problem enriched with polynomials of order 2, GFEM/SGFEM-crackMixed is the problem

enriched with mode-I and mode-II singular enrichments, from Eqs. (2.12) and (2.13), and

GFEM/SGFEM-poly crackMixed is the problems enriched with both polynomials and the

singular enrichment functions. As it can be seen from this figure, both error values and rate of

convergences for SG/XFEM shown an improvement over the G/XFEM and FEM approaches.

Specially, for having both polynomial and singular enrichment together (poly crackMixed),

the difference between the convergence rate is meaningful, 0.3 − 0.4 for both FEM and

G/XFEM, while 0.4− 0.9 for SG/XFEM. The FEM approach here also uses the same mesh

shown in Fig. 4.6(a) and the problem is solved using the INSANE code.

The condition numbers for three methods are illustrated in Fig. 4.9. Rate of growth in

condition numbers for all three methods are almost similar. This is because we only enrich a

small part of the problem and with limited number of nodes, so the total system of equations

between three method cannot change heavily.

Table 4.1 shows the CPU time of the conventional approach use here which is Babuška

iterative approach. Only corresponding data to the enriching problem with the singular

enrichment are brought in this Table.
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Figure 4.7: Mesh discretization used in ABAQUS for the whole problem and around one
the crack tips.

Table 4.1: CPU time for the Babuška solver

G/XFEM SG/XFEM

h size 2 1 0.5 2 1 0.5

DOF 389 718 1940 389 718 1940

CPU time (msec)

Babuška iterative method
145 722 6369 139 667 6081

4.3.2 Problem with an edge crack

A two-dimensional linear elastic fracture problem is solved by different enrichment strategies

based on global-local analysis to approximate the problem solution. This example considers

a rectangular plate with an edge crack submitted to a shear stress, as shown in Fig. 4.10.

The reference solution of this problem is obtained using a mesh of 89711 quadrilateral el-

ements (CPS4, a 4-node bilinear plane stress quadrilateral element) in ABAQUS R©. For

SG/XFEMgl analysis, however, a smaller number of finite elements as well as of DOFs is

used. The reason for using a smaller number of DOFs is explained by the use of global-local

enrichment function, which is suitable for high stress concentration. For this problem, the

penalty parameter, η, of Dirichlet boundary condition is chosen equal to 1× 108.

4.3.2.1 Type of the mesh refinement

There are three different element sizes (h) for global mesh in this study, h = 2.0, 1.0, and

0.5. Therefore, the total number of elements are 50, 200, and 800 elements with regular
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Figure 4.8: Relative error in strain energy against the inverse of average element size (1/h)
for FEM, G/XFEM, and SG/XFEM methods with different enrichment strategies. β refers

to the convergence rate.

distribution considering these three element sizes, as shown in Fig. 4.11. The final answer

for a problem solved using global-local strategy depends on the size of the local domain as

well as the local problem mesh, as shown by Duarte and Kim (2008). Large local domains

are preferable, since they give a better numerical solution to the global problem. However,

large local domains also increase the computational cost in solving problems.

The dimension of local domain considered here is equal to 6×8. This domain is composed by

12, 48, and 192 global element with h = 2.0, 1.0, and 0.5, respectively, see colored elements

of Fig. 4.11. The local mesh is shown in Fig. 4.12 and it is fixed with 224 elements for all

three global meshes. For the three discretization, the local problem has exactly the same

description with a combination of regular and geometric mesh (with refinement of level L4),

as shown in Fig. 4.13. Only the four elements from the cloud associated with the crack tip

in local problem are discretized with geometric mesh. The geometric refining approach in

this study is based on four refinement level (L4) with f = 10% reduction rate, as shown in

Fig. 4.13, according to Szabo and Babuška (1991).

Results of strain energy for the three global meshes are presented in Table 4.2. These results

are obtained for global problem (first step in global-local strategy) with no enrichment.
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Table 4.2: DOFs and strain energy for different regular mesh size in the global problem

Analysis DOFs Strain energy
% of error in

strain energy

Reference 180328 266.483 —

50 elements 134 209.4957 21.38

200 elements 468 220.8901 17.11

800 elements 1730 229.5691 13.85

4.3.2.2 Enrichment strategy

There are two global-local enrichment strategies used here: enriching only the crack-tip node

and enriching several nodes around the crack. Figure 4.14 shows the global-local steps and

also the local domain discretization for the case of h = 2.0.

Those strategies are used with different combinations of polynomial and numerical enrich-

ments, with or without the stable modification given by the Eq. (2.15). They are represented

as SGFEM
gl
PG=X,PL=Y or GFEM

gl
PG=X,PL=Y if the stable enrichment with the numerical

local solution is performed or not. ‘PG’ and ‘PL’ are the polynomial order used for global

and local problems, respectively. If PG or PL is preceded by the letter S, a stable poly-

nomial enrichment is employed, instead of conventional polynomial enrichment. As it said

before, GFEMgl refers to global-local G/XFEM method while SGFEMgl refers to stable

global-local G/XFEM method. The resulting strategies are:

– GFEM
gl
PG=PL=0 and SGFEM

gl
PG=PL=0: No polynomial enrichment for both global
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Figure 4.10: Geometry and loading of a problem with an edge crack under plane stress state
submitted to a shear stress. With (in consistent units): Young modulus E = 1.0, Poisson’s

ratio ν = 0.3, and the shear stress τ = 1.0.

and local problems.

– GFEM
gl
PG=0,PL=2 and SGFEM

gl
PG=0,PL=2: No polynomial enrichment for global prob-

lem and with second order for local problem.

– GFEM
gl
PG=0,SPL=2 and SGFEM

gl
PG=0,SPL=2: No polynomial enrichment for global

problem and stable polynomial enrichment of second order for local problem.

– GFEM
gl
PG=2,PL=0 and SGFEM

gl
PG=2,PL=0: Polynomial enrichment of second order for

global problem and no polynomial enrichment for local problem.

– GFEM
gl
PG=PL=2 and SGFEM

gl
PG=PL=2: Polynomial enrichment of second order for

both global and local problems.

– GFEM
gl
PG=SPL=2 and SGFEM

gl
PG=SPL=2: Polynomial enrichment of second order for

global problem and stable polynomial enrichment of second order for local problem.

– GFEM
gl
SPG=2,PL=0 and SGFEM

gl
SPG=2,PL=0: Stable polynomial enrichment of second

order for global problem and no polynomial enrichment for local problem.

– GFEM
gl
SPG=SPL=2 and SGFEM

gl
SPG=SPL=2: Stable polynomial enrichment of second

order for global and local problems.

The polynomial enrichment of order one has not been used because the FE interpolant Iωj ,

used in the stable strategy, is also linear and provides null enrichment in Eq. (2.15).
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Figure 4.11: Schemes of three global meshes. Blue elements represent the local domain.

Figure 4.12: Mesh representation of the local problem

4.3.2.3 Enriching crack-tip node

Firstly only the crack tip node is enriched using the global-local strategy. Figure 4.15 shows

the relative error in strain energy against the inverse of element size (1/h) considering all en-

richment cases described in section 4.3.2.2 for both G/XFEMgl and SG/XFEMgl approaches.

Although the SG/XFEMgl error is smaller than G/XFEMgl for the h = 2.0, the convergence

rate of G/XFEMgl is higher than SG/XFEMgl case. Higher convergence rate of G/XFEMgl

is in accordance with results presented in Gupta (2014) for one-cycle-based global-local anal-

ysis which is the case here. Although, there are some differences between convergence rate in

the strain energy error obtained from current research and those presented in Gupta (2014)

(0.1-0.35 from current work and 0.5-1.0). The difference in number of enriched nodes us-

ing global-local numerically enrichment function, explain the mis-consistency between the
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Figure 4.13: Geometric mesh with reduction rate of f

Figure 4.14: Global-local strategy sequences and local domains discretization for global
element size of h = 2.0.

results. In addition, enriching global problem with the polynomial/stable polynomial enrich-

ments along with global-local enrichment leads to lower convergence rate.

According to (Babuška and Banerjee, 2012; Gupta et al, 2013, 2015), one of the important

feature of the SG/XFEM is that its conditioning is better than that of the G/XFEM. Figure

4.16 presents the condition number of the scaled stiffness matrix obtained against the inverse

of element size, again considering whole enrichment cases described in Section 4.3.2.2 for both

G/XFEMgl and SG/XFEMgl approaches.

Because the stable GFEM improves the conditioning of the system of equations, computa-

tional efficiency can be improved compared with the GFEM method. Figure 4.17 compares

the number of iterations for the preconditioning conjugate gradient (PCG) method ran inside

of the Babuska procedure (Strouboulis et al, 2000a) between G/XFEMgl and SG/XFEMgl
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(a) G/XFEMgl

(b) SG/XFEMgl

(c) both G/XFEMgl and SG/XFEMgl for PG = PL = 0,
PG = PL = 2, and SPG = SPL = 2

Figure 4.15: Relative error in strain energy against the inverse of element size (1/h) for
global problem (third step) for enriching only crack-tip node in the cases of both

G/XFEMgl and SG/XFEMgl. β refers to the convergence rate.
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(a) G/XFEMgl and SG/XFEMgl for PG = 2

(b) G/XFEMgl and SG/XFEMgl for SPG = 2

(c) G/XFEMgl and SG/XFEMgl for PG = 0

Figure 4.16: Condition number against the inverse of element size (1/h) for global problem
(third step) for enriching only crack-tip node in the cases of both G/XFEMgl and

SG/XFEMgl. β is the growth rate of the condition number.



41

with different enrichment strategies, against the inverse of element size. The preconditioner

used is the Jacobi (or diagonal) preconditioner and the target error for PCG method was set

equal to 1 × 10−12. The results show that the SG/XFEMgl method needs smaller number

of iterations to solve the problem than G/XFEMgl method, i.e. the SG/XFEMgl method is

faster than the G/XFEMgl method, especially when h is equal to 0.5.

4.3.2.4 Enriching several nodes around the crack

This section deals with the results obtained by enriching several nodes around the crack.

Béchet et al (2005); Laborde et al (2005) showed that for a optimal convergence rate, the

crack tip enrichment must be fixed within a predefined geometry. This approach with a

fixed enrichment domain which is independent of the mesh size is called the geometrical

enrichment. The geometrical enrichment can be used to achieve the optimal convergence

rate by enriching the elements located in an predefined area. Figure 4.18 shows location of

enriched nodes for different mesh sizes using geometrical enrichment strategy. The number

of enriched nodes for global element size of h = 2.0, 1.0, and 0.5 are equal to 10, 27, and 85,

respectively.

It was shown in section 4.3.2.3 that having polynomial/stable polynomial enrichment for

global problem along with global-local enrichment leads to lower convergence rate. Thus,

only the local problem will be enriched with polynomial/stable polynomial functions in this

section.

The convergence rate results against the element size shows an improvement for the ge-

ometrical enrichment approach compared to those results shown before for crack-tip node

enrichment, when the results from Fig. 4.19 are compared with the ones from Fig. 4.15. Spe-

cially, for SG/XFEMgl, the difference between the convergence rate is meaningful. In fact,

expected convergence rate for a problem with a crack, in terms of strain energy, is O(h0.5)

Szabo and Babuška (1991). On the other hand, if the approximation is able to represent the

non smooth behavior of the solution, the optimal convergence can be recovered. In the case

of a linear finite element problem, this optimal convergence rate is O(h1). As it can seen in

Fig. 4.19, the convergence rate for G/XFEMgl method, considering all enrichment cases, is

about 0.3 while for SG/XFEMgl is between 0.5− 1.2.

The condition numbers for global-local GFEM/SGFEM methods for geometrical enrichment

are illustrated in Fig. 4.20. When geometrical enrichment is used, condition numbers corre-

sponding to the G/XFEMgl for different enrichment cases presents a growth rate of about

3.5− 3.8, while for SG/XFEMgl is about 2.6− 2.8. These values are in accordance with the

values obtained for the standard G/XFEM and S/XGFEM by Gupta (2014).

The number of PCG iterations required for both global-local G/XFEM and global-local

SG/XFEM to solve the problem based on geometrical enrichment is presented in Fig. 4.21.

It can be seen that the number of required PCG iterations increases as the mesh is refined for

the current enrichment strategy. Again, the number of iterations for SG/XFEMgl is smaller
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(a) G/XFEMgl

(b) SG/XFEMgl

(c) both G/XFEMgl and SG/XFEMgl for PG = 0,SPL = 2,
PG = PL = 2, and SPG = SPL = 2

Figure 4.17: Number of iterations for Preconditioning conjugate gradient method vs. the
inverse of element size (1/h) for global problem (third step) for enriching only crack-tip

node in the cases of both G/XFEMgl and SG/XFEMgl.
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Figure 4.18: Enriched nodes in the local region from global domain using geometrical
enrichment strategy for element size of: h = 2.0 (left picture), h = 1.0 (middle picture), and
h = 0.5 (right picture). Again, the red marker indicates that there are two overlapped

nodes there.

Figure 4.19: Strain energy error vs. the inverse of element size (1/h) for global problem
(third step) in the case of geometrical enrichment. β refers to the convergence rate.

than G/XFEMgl method which means that stable strategy is faster than standard G/XFEM

strategy.

4.3.3 Beam with a crack

In this section a beam under distributed load is analyzed using both G/XFEMgl and SG/XFEMgl

enrichment strategies. Figure 4.22 shows the geometry and related data of the beam. The

reference solution of this problem is obtained using a mesh of 21912 quadrilateral elements

(CPS4, a 4-node bilinear plane stress quadrilateral element) in ABAQUS R©. Similar to the

previous example, there are three different element sizes (h) for global mesh in this study, h

= 20, 10, and 5. Therefore, the total number of elements are 125, 500, and 2000 elements

with regular distribution considering these three element sizes, as shown in Fig. 4.23. A

local domain with 120× 80 is used and it is composed by 24, 96, and 384 elements for global
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Figure 4.20: Condition number against the inverse of element size (1/h) for global problem
(third step) in the case of geometrical enrichment. β is the growth rate of the condition

number.

element size of h = 20, 10, and 5, respectively, as shown by red elements in Fig. 4.23. In

addition, the local mesh is fixed for all three global meshes and it consists of 408 elements.

The local mesh construction is exactly the same as the previous example, except the use of

L3 refinement (with f = 30% reduction rate) for the geometric mesh. The penalty parameter

is chosen equal to 1× 1010.

Also, the nodes to be enriched by global-local strategy are shown in Fig. 4.24, defining a

fixed enriched domain, as it is expected in the geometrical enrichment. The number of them

are 21, 65, and 225 for h = 20, 10, and 5, respectively.

Results of strain energy for three global meshes are presented in Table 4.3. These results are

obtained for global problem (first step in global-local strategy) with no enrichment.

Table 4.3: DOFs and strain energy for different mesh size in the global problem of the
beam problem

Analysis DOFs Strain energy
% of error in

strain energy

Reference 44644 0.285375 —

125 elements 310 0.200738 29.66

500 elements 1122 0.219133 23.21

2000 elements 4246 0.234318 17.89

Figure 4.25 shows the results of error in strain energy and the rate of growth in condition

number against the inverse of the element size. As it can seen in Fig. 4.25(a), the con-

vergence rate for G/XFEMgl method, considering all enrichment cases, is about between

0.2− 0.4 while for SG/XFEMgl is between 0.5− 0.9. The condition numbers for global-local
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Figure 4.21: Number of PCG iterations against the inverse of element size (1/h) for global
problem (third step) for geometrical enrichment.

Figure 4.22: Geometry and loading of a beam with a crack. With (in consistent units):
Young modulus E = 200× 109, Poisson’s ratio ν = 0.3.

GFEM/SGFEM methods are illustrated in Fig. 4.25(b). The rate of growth in condition

number for G/XFEMgl for different enrichment cases is about 4.0−5.7, while for SG/XFEMgl

is about 2.0−2.6. These values of convergence rates and rate of growth in condition number

are close to the values presented for the standard G/XFEM and S/XGFEM in section 4.3.2.4.

4.4 Summary and Conclusion

The aim of this chapter was to present the implementation of stable G/XFEM for the IN-

SANE computational framework. The validation of these implementations and some addi-

tional conclusions about the SG/XFEM for different enrichment strategies were presented by

numerical examples for solid mechanics. The SG/XFEM method is implemented and tested
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Figure 4.23: Schemes of three global meshes for the beam example. Red elements represent
the local domain.

Figure 4.24: Enriched nodes using global-local enrichment for element size of: h = 20 (left
picture), h = 10 (middle picture), and h = 5 (right picture). Again, the brown marker

indicates that there are two overlapped nodes there.

for both standard and global-local approaches. In all enrichment cases, the SG/XFEM de-

livers better convergence rates in strain energy. The following are the main conclusions

obtained from this chapter:

– The stable G/XFEM for both polynomial and singular enrichment shows a better

convergence rate. The rate of growth in condition number for these two cases were

almost the same, because a small number of nodes were enriched with the G/XFEM

and SG/XFEM methods. If more nodes are enriched, a comparable difference would

be extracted from these two strategies.

– Two enrichment strategies were adopted here, enriching the crack-tip node and enrich-

ing several nodes in a fixed region around the crack (a geometrical enrichment), along

with different polynomial enrichment cases. The geometrical enrichment strategy was

substantially superior in terms of accuracy, which is consistent with researches pre-

sented before in (Laborde et al, 2005; Béchet et al, 2005; Rojas-Diaz et al, 2011). In

all cases, geometrical enrichment performs quite better, specially for SG/XFEMgl.

– The conditioning of SG/XFEMgl is near to G/XFEMgl in the case of enriching crack-

tip only, but it becomes considerably lower than G/XFEMgl in the case of geometrical

enrichment. Thus, it can be inferred that the SG/XFEMgl can deliver a more stable
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(a) Relative error in strain energy

(b) Rate of growth in condition number

Figure 4.25: Relative error in strain energy against the inverse of element size (1/h) for
global problem (third step) for geometrical enrichment in the cases of both G/XFEMgl and

SG/XFEMgl. β refers to the convergence rate.
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results than G/XFEMgl, even when different polynomial enrichments are used for both

global and local problems.

– Fries proposed a method in (Fries, 2008), called corrected XFEM, which may lead to ill-

conditioned system matrices if more than one enrichment function are employed. Here,

in addition to global-local enrichment function, various cases of polynomial enrichment

function are also considered to assess the effect of combined enriching strategy on the

behavior of the numerical analysis. When polynomial enrichments are used in global

problem, one can observe the bad convergence rate in the case of enriching only the

crack tip node.



Chapter 5

CRACK PROPAGATION
MODELING USING CLASSICAL
G/XFEM

5.1 Introduction

A
numerical implementation of generalized/extended finite element method (G/XFEM)

to analyze a fractured structure, under the Linear Elastic Fracture Mechanics (LEFM)

approach, is presented in this chapter. A discontinuous function along with the asymptotic

crack-tip displacement fields are used to represent the crack without explicitly meshing its

boundaries. Generally speaking, the enrichment functions can be continuous, discontinuous

or numerically-built (global-local) functions. One of the most important parameters in frac-

ture mechanics is the determination of the crack propagation direction under mixed mode

conditions. In the concept of linear elastic fracture mechanics, the stress intensity factor

can be used to either determine the crack propagation direction or propagation status, i.e.

the crack can start to propagate or not. This chapter presents a fracture modeling using an

object-oriented based implementation of two-dimensional problems using G/XFEM method.

A domain-based interaction energy integral is used to extract the stress intensity factor for

different fracture modes. Also, maximum circumferential stress criterion is selected for cal-

culation of the crack propagation direction. Accuracy and robustness of the implementation

are presented in detail by solving different linear elastic fracture mechanics problems for two

cases: plane stress and Reissner-Mindlin plate problem. The numerical results are compared

with the reference solutions from the analytical, numerical and the literature. All the expla-

nations and numerical results for this chapter are brought from Malekan et al (2017c,d,a).

49
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5.2 Representation of Fixed and Moving Discontinu-

ities

This section presents the procedure of discontinuity modeling in order to analyze a static

crack propagation problem. The term crack growth or crack propagation here is referred

to quasi-static crack growth, in which inertia effects are neglected. In this approach, the

problem is assumed in equilibrium at all time steps.

5.2.1 Crack Representation Procedure

The traditional approach to analyze a problem with discontinuity is to generate a mesh

conform to the line, or surface, of discontinuity Γc in Fig. 5.1. However, in the G/XFEM

the discontinuity along Γc may be modeled using special enrichment functions that describe

the discontinuity as well as the stress field behavior close the the crack tip. In this case,

the appropriate enrichment function must be selected and applied to those nodes that are

around/close to the discontinuity surfaces. The signed distance function along with the so-

called Heaviside function are used here to represent the discontinuity in a model. For linear

elastic fracture mechanics, the crack-tip singularity can be captured with either singular

enrichment (Eqs. (2.12) and (2.13)) or near-tip enrichment function (Eq. (2.14)). Following

subsections are presented in detail the procedure of modeling a discontinuity within a problem

using the G/XFEM approach and also the corresponding formulation that is used for this

research.

5.2.1.1 The Signed Distance Function

The level-set method is a numerical tool for the tracking of the moving interfaces (Sethian,

1999). The signed distance function is one particularity of the level-set method which is

used to represent the moving interface and also is one dimension higher than the interface

dimension.

Consider a domain Ω divided into two non-overlapping domains ΩA and ΩB , sharing an

interface, or surface of discontinuity, denoted by Γc, as shown in Fig. 5.1. The signed

distance function is defined for the representation of the interface position as:

φ(x) =‖ x− x∗ ‖ sign
(
nΓc · (x− x

∗)
)

(5.1)

where x∗ is the closest point projection of x onto the discontinuity Γc, and nΓc is the vector

normal to the interface at point x∗. In this definition, ‖ ‖ denotes the Euclidean norm, where

‖ x− x∗ ‖ specifies the distance of point x to the discontinuity Γc (Fig. 5.1).
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Figure 5.1: Signed distance function φ(x) representing a two-dimensional crack.

5.2.1.2 The Heaviside Function

A strong discontinuity is defined as a jump in the displacement field. The discontinuity in the

displacement occurs where the displacement of one side of the crack is completely different

from the displacement field of the other side. In such cases, the kinematics of the strong

discontinuity can be defined based on the Heaviside function Belytschko et al (2001). This

function is one of the most popular functions used to model the crack discontinuity in the

G/XFEM formulation and is defined as:

H(x) =

 1 if φ(x) > 0

0 if φ(x) < 0
(5.2)

in which φ(x) is the signed distance function, defined in Eq. (5.1), and the discontinuity can

be represented using this function as, according to Fig. 5.1:

φ(x) =


> 0 if x ∈ ΩA

= 0 if x ∈ Γc

< 0 if x ∈ ΩB

(5.3)

In a more general case such as that shown in Fig. 5.2 which is considered in our imple-

mentations, the crack tip will not coincide with an element edge, and in this instance the

discontinuity cannot be adequately described using only a function such as H(x). The jump

enrichment of the circled nodes in this case only provides for the modeling of the discontinu-

ity until point P . To seamlessly model the entire discontinuity along the crack, the squared

nodes are enriched with the asymptotic crack tip functions with the technique developed

in (Belytschko and Black, 1999). The approximation for the case of an arbitrary crack, as

shown in Fig. 5.2, takes the form:



52

ũ(x) =
∑
j∈J
Nj(x)uj+

∑
i∈I
Ni(x)H(x)bi+

∑
k∈K1

Nk(x)

(
n∑
l=1

C
l1
k L

1
l

)
+
∑
k∈K2

Nk(x)

(
n∑
l=1

C
l2
k L

2
l

)
(5.4)

in which J is the set of all nodes, I is the set of nodes enriched with Heaviside function, K1

and K2 are the sets of nodes to be enriched for the first and second crack tip, respectively.

The function L1
l (x) and L2

l (x) are the crack tip enrichments that can be either the singular

enrichment of Eqs. (2.12) and (2.13) or near tip enrichment function (Eq. (2.14)), and n is

number of enrichment functions used.

Figure 5.2: Local axes for the polar coordinates at the crack tips for an arbitrary crack
shape and types of nodes in a general case.

5.2.1.3 Node Selection for Enrichment Strategy

Heaviside enrichment function enriches the nodes that belongs to those element that are

completely cut by the discontinuity. According to (Dolbow, 1999), a direct use of this

approach could provide an ill-conditioned stiffness matrix. Consider a crack/discontinuity

cutting through some elements, as shown in Fig. 5.3. Since the crack doesn’t cross through

element E from Fig. 5.3(a), nodes i and j are enriched by Heaviside function whereas nodes

k and l are not enriched. In other case, if crack crosses the element E completely, then all

nodes must be enriched by the Heaviside function. However, the classical and enriched shape

functions at these nodes will only differ in the very thin band of width ε (Fig. 5.3(b)), leading

to ill-conditioned system of equations. This happens because the resulting basis functions

are almost identical.
In this particular situation, nodes k and l must not be enriched by the Heaviside function.

To overcome this situation, a criterion is defined by Dolbow (1999) in which, for a certain

node j (see Fig. 5.3(c)), if the values of A+/(A+ +A−) or A−/(A+ +A−) are smaller than

the allowable tolerance value of 10−4, the node must not be enriched. The A+ and A− are

the area of the influence domain of a node above and below the crack, respectively.
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(a) (b) (c)

Figure 5.3: Node selection strategy: (a) the crack is aligned with a mesh, (b) the crack is
almost aligned with a mesh, and (c) the criterion for enriching node j based on the area of

the influence domain of node j.

5.2.2 Criteria for Mixed-Mode Crack Propagation

In crack propagation problems, there are two main requirements at each time step: crack

propagation status and propagation direction. The crack propagation criteria may be a

function of the stress intensity factors (SIFs), the strain energy release rate, the strain energy

density, and so on. The direction of the crack can be determined based on the fracture

toughness of brittle material, which is usually measured in a pure mode-I loading conditions

by KIC .

For the determination of crack kinking angle, researchers have introduced several criteria.

Some of these criteria determine the crack growth direction based on stresses and strains

field at the crack tip. These criteria generally give acceptable results for LEFM, such as

maximum principal stress, maximum circumferential stress (Erdogan and Sih, 1963), and

maximum strain (Maiti and Smith, 1984). However, for non-linear fracture mechanics more

complicated methods are needed such as criteria that determine the crack growth direction

based on energy distribution on a cracked body. The most commonly used criterion is the

maximum strain energy release rate (Hussain et al, 1974). Some other criteria are based

on the nature of crack creation such as criteria that use micro-void continuum damage for

determination of crack growth direction. In these theories, the crack growth is controlled

by the creation and propagation of micro-voids in the vicinity of the crack tip. Therefore,

the crack propagates in the direction that most of the voids have been nucleated (Gurson,

1997; Biglari and O’Dowd, 2002). In this work, the maximum circumferential tensile stress

criterion is used to determine the crack direction angle. This theory was first presented

by Erdogan and Sih (1963), based on the near the crack-tip state of stress. Based on this

theory, and representing the stress field in term of polar coordinate (r, θ) with its center at

the crack tip, the crack propagates perpendicularly to the direction of maximum tension,

when σmax
θ reaches a critical material-dependent constant. In this case, the hoop stress

reaches its maximum value on the plane of zero shear stress. The singular term solutions

of stress at the crack tip can be used to determine the crack propagation angle, where the
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shear stress becomes zero. Considering the mixed-mode loading conditions, the asymptotic

crack tip circumferential stress can be defined in polar coordinate system as (Miranda et al,

2003; Khoei, 2015):

σr =
1√
2πr

cos
θ

2

{
KI [1 + sin2 θ

2
] +

3

2
KII sin θ − 2KII tan

θ

2

}
σθ =

1√
2πr

cos
θ

2

{
KI cos2 θ

2
− 3

2
KII sin θ

}
τrθ =

1√
2πr

cos
θ

2

{
KI sin θ +KII [3 cos θ − 1]

}
(5.5)

where KI and KII are stress intensity factors of mode-I and mode-II fracture, respectively,

and r and θ are polar coordinate of a point with respect to the crack tip point, as previously

shown in Fig. 5.2. The crack is represented in this work as a set of straight line segments

that are connected to each other. It is necessary to compute the critical crack propagation

angle, θc, and increment length, ∆a, for the new propagation step, see Fig. 5.4. The critical

angle can be determined by setting the derivative of the shear stress τrθ with respect to θ

equal to zero. Thus, the θc is as follows:

θc = 2 arctan
1

4

[
KI
KII

±
√(

KI
KII

)2
+ 8

]
(5.6)

Figure 5.4: Representation of the crack extension and its new orientation, θc.

The result that gives the sign as opposite to sign of KII is the correct one. Using the

derivative of the shear stress with respect to θ in mode-I loading (KII = 0), the crack

propagation angle is zero. In mode-II loading, by solving the equation KII [3 cos θ − 1] = 0,

the crack propagation angle is ±70.5◦. So the maximum range of the crack propagation angle

under linear elastic fracture mechanics approach is limited to an angle range of [−70.5◦ to

70.5◦]. If KII > 0, the crack growth direction θc < 0, and if KII < 0, the crack growth

direction θc > 0. An efficient expression of the critical angle of crack propagation can also

be given as:

θc = 2 arctan

[
−2KII/KI

1 +
√

1 + 8(KII/KI)
2

]
(5.7)

In addition, the crack increment length, ∆a, should be chosen in such a way to have a

reasonable and stable crack propagation procedure. According to (Huang et al, 2003), an
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appropriate value must be chosen according to the type of crack propagation, i.e., straight

or curved crack, and mesh size to have a reliable crack propagation path. Small values could

help to obtain a better accuracy, however, if ∆a is too small with respect to the element

size, multiple changes in the direction of the crack path may occur which leads to a time

consuming element partitioning for numerical integration.

5.3 Object-oriented Implementations

Following subsection present in detail the new implementations and also modifications of the

existing classes corresponding to the crack growth process.

5.3.1 Persistence Interface

Persistence interacts with the input and output data. Figure 5.5 shows the UML diagram of

PersistenceAsXml class which presents those methods that are modified or created in order

to facilitate the crack growth procedure.

Figure 5.5: UML diagram of the PersistenceAsXml class

The method fillDiscontinuityByGFEMListFromFile and fillIsWithCrackPropagationFromFile

are added to the PersistenceAsXml class aiming to provide initial information for crack prop-

agation procedure, such as fracture modes and radius of the integral domain for SIF calcula-

tion, see A. In addition, fillIsWithCrackPropagationFromFile looks into the input file if the

crack is stationary or can be propagated during the analysis (see Code 5.1). This code looks

into the corresponding part of the XML file and informs the discontinuity type, whether it

can be static or quasi-static crack. Also, in the case of crack propagation procedure, it in-

forms if the problem is dealing with single or multiple cracks. Appendix B presents different

parts of the XML input file for crack propagation procedure with the G/XFEM.
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1 public void fillIsWithCrackPropagationFromFile(String fileName) throws Exception {

2 try {

3 OMElement root = readXmlFile(fileName);

4 String ns = root.getNamespace ().getNamespaceURI ();

5 String isWithCrackPropagation;

6 String onlyOneCrack;

7 String crackPropagationType;

8 // Read "<Model ... >"

9 OMElement modelElement = root.getFirstChildWithName(new QName(ns, "Model"));

10 // Read "< IsWithCrackPropagation ... >"

11 OMElement isWithCrackPropElement = modelElement.getFirstChildWithName(new QName(ns, "IsWithCrackPropagation"));

12 if (!( isWithCrackPropElement == null)) {

13 isWithCrackPropagation = (isWithCrackPropElement.getAttributeValue(new QName(null , "boolean"))).trim();

14 (( GFemModel) model).setWithCrackPropagation(Boolean.parseBoolean(isWithCrackPropagation));

15 // Read "< OnlyOneCrack ... >"

16 OMElement xmlElement = isWithCrackPropElement.getFirstChildWithName(new QName(ns, "OnlyOneCrack"));

17 if (!( xmlElement == null)) {

18 onlyOneCrack = xmlElement.getText ().trim();

19 (( GFemModel) model).setOnlyOneCrack(Boolean.parseBoolean(onlyOneCrack));

20 }

21 // Read "< crackPropagationType ... >"

22 xmlElement = isWithCrackPropElement.getFirstChildWithName(new QName(ns, "crackPropagationType"));

23 if (!( xmlElement == null)) {

24 crackPropagationType = xmlElement.getText ().trim();

25 (( GFemModel) model).setDiscontinuityType(crackPropagationType);

26 }

27 }

28 }

29 }

Code 5.1: Code block of the fillIsWithCrackPropagationFromFile(...) method from PersistenceAsXml class

The method fillSolutionFromFile from the PersistenceAsXml class is responsible to get so-

lution type definition and corresponding parameters from the XML input file. A small part

fo this method is shown in Code 5.2, in which for either SteadyState, StaticEquilibriumPath,

or GlobalLocal, it will initialize a solution object. The SteadyState class is responsible to

solve static problems for FEM, G/XFEM, Hp-cloud, Mesh-free, etc., methods; the StaticE-

quilibriumPath class is responsible for the nonlinear analysis and quasi-static approach for

classical FEM/G/XFEM methods (will be discussed in section 5.3.4).

1 public void fillSolutionFromFile(String fileName) throws Exception {

2 try {

3 OMElement root = readXmlFile(fileName);

4 String ns = root.getNamespace ().getNamespaceURI ();

5 OMElement solElement = root.getFirstChildWithName(new QName(ns, "Solution"));

6 if (( solElement.getAttributeValue(new QName(null , "class"))).trim().equals("SteadyState")) {

7 solution = new SteadyState ();

8 } else if (( solElement.getAttributeValue(new QName(null , "class"))).trim().equals("StaticEquilibriumPath")) {

9 solution = new StaticEquilibriumPath ();

10 } else if (( solElement.getAttributeValue(new QName(null , "class"))).trim().equals("GlobalLocal")) {

11 solution = new GlobalLocal ();

12 (( GlobalLocal) solution).setGlobalPath(fileName);

13 }

14 ...

15 }

16 }

Code 5.2: Code block of the fillIsWithCrackPropagationFromFile(...) method from PersistenceAsXml class

5.3.2 Model Abstract Class

The Model abstract class contains the data of the discrete model and provides information

for the Assembler to assemble the final matrix system (3.1). For current work, several classes

are implemented or modified under this abstract class aiming to provide required information

for the process. These classes are explained in the following subsections.
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5.3.2.1 AnalysisModel Abstract Class

Analysis model is defined by different classes derived from the AnalysisModel abstract class,

see Fig. 5.6. There are various models already implemented within INSANE code: space

frame, plane stress/strain, plate and solid. Therefore, when the Assembler starts to assemble

the system of equations (3.1), it asks the object of AnalysisModel for characteristics about

the model, such as how the deformation matrix should be calculated. Beside this, the GFem-

AnalysisModel interface is created to have additional information for G/XFEM analysis. As

it can be seen in Fig. 5.6, all three classes of GFemPlaneStress, GFemPlaneStrain and GFem-

ReissnerMindlinPlate are derived from the AnalysisModel abstract class and simultaneously

implement the methods from the GFemAnalysisModel interface.

Figure 5.6: UML diagram of the AnalysisModel abstract class relations.

5.3.2.2 EnrichmentType Package

Figure 5.7 shows different classes from the EnrichmentType package. As it can be seen from

this figure, there are various enrichment types that can be used either for classical elasticity

problems or LEFM problems.

Figure 5.7: EnrichmentType package

CrackEnrichmentModeI and CrackEnrichmentModeII classes are responsible to enrich the

problem with corresponding parts of Eqs. (2.12) and (2.13) regarding to mode-I and mode-

II fracture. NearTipEnrichment contains all the information from Eq. (2.14). In addition,
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CrackEnrichmentModeI, CrackEnrichmentModeII, DiscontinuousEnrichment, NearTipEnrich-

ment, and GlobalLocalEnrichment classes are modified to have some necessary methods in

order to facilitate their use in the crack propagation procedure. Furthermore, other classes

such as the StableCrackEnrichment are available to facilitate the use of the stable G/XFEM

approach. Figure 5.8 presents the discontinuousEnrichment class that contains the neces-

sary information for the Heaviside function calculation. This function will be used along with

NearTipEnrichment and/or CrackEnrichment to facilitate the crack propagation approach.

Figure 5.8: UML diagram of the DiscontinuousEnrichment class

5.3.2.3 StressIntensityFactors class

Figure 5.9 shows the structure of the StressIntensityFactors class. This class is mainly used

to calculate the stress intensity factors, either for plane stress/strain or Reissner-Mindlin

problems, specifically for linear elastic materials. The strategy used to calculate the

SIF is the interaction energy integral. It returns the SIFs for different modes, so the crack

propagation status and its direction angles can be calculated for the crack analysis process.

This class is written based on the formulation from Appendix B and Refs. (Dolbow et al,

2000b,a).

Figure 5.9: Structure of the StressIntensityFactors class

5.3.3 Assembler Interface

The task of the Assembler interface is to mount the linear equation system from Eq. (3.1),

returning the stiffness matrix and its partitions related to free/restrained degrees of freedom.

In order to better understand the relationship between the classes described before, the
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process of assembling the stiffness matrix of the problem will be described in this section, as

shown in Fig. 5.10, as the main part of the Assembler interface. An object of the Solution

class presented as “Actor”, asks for one of its attributes, an Assembler, i.e., GFemAssembler,

to perform the assembly of the stiffness matrix C (from Eq. (3.1)). The Assembler object,

in turn, performs a loop in the list of elements that is stored in the class GFemModel, an

attribute of the Assembler.
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Figure 5.10: Sequence diagram for assembly of the stiffness matrix

Different finite element formulations originally provided within the INSANE environment

are implemented by different classes derived from SolidMech abstract class (inherited from

the ProblemDriver abstract class), each one with a specific way to calculate the different

parts of the Eq. (3.1). Some of these classes are: parametric (class Parametric), Kirchhoff

thin plate (class KirchhoffThinPlate), and frame (class Frame), as it can be seen in Fig.

5.11. The GFemParametric class is also designed to carry out the necessary tasks related

to the G/XFEM analysis, along with its inheritance the GFemPhysicallyNonLinear class

to facilitate the nonlinear analysis. Depending on the strategy used to solve the nonlinear

analysis via Newton-Raphson method, the stiffness matrix can be elastic (getC() method),

secant (getTotalC() method) and tangent (getIncrementalC() method). Therefore, in the

sequence of stiffness matrix mounting, Element calls one of its attributes, the GFemPara-

metric object which is responsible for constructing the element’s contribution to the stiffness

matrix. The GFemParametric queries Element to obtain certain information that will be

used in the construction of the stiffness matrix of the element. The first required informa-

tion is the type of the analysis model that is provided here by the GFemAnalysisModel ob-

ject, either GFemPlaneStress/GFemPlaneStrain or GFemReissnerMindlinPlate types. The

KirchhoffThinPlate, Frame, and Parametric/GFemParametric classes are derived from the

SolidMech class since they use different approaches to mount the stiffness matrix. Paramet-

ric/GFemParametric use a numerical integration approach, while KirchhoffThinPlate and

Frame cases use analytical formulation to mount the stiffness matrix, with respect to their
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corresponding formulations. As a consequence, the PlaneStress/PlaneStrain and Reissner-

MindlinPlate classes can use the Parametric class to numerically integrate and mount the

stiffness matrix. Therefore, these plane/plate cases are derived from the AnalysisModel ab-

stract class, as it was shown in Fig. 5.6, and not from SolidMech class. Another reason for

this is that plane and plate cases can use the same approach to mount the stiffness matrix

and only they degrees of freedom and procedure to provide the required derivatives matrices

are different.

Figure 5.11: UML diagram of the ProblemDriver class

Afterwards, the Element object queries another attribute, the object Degeneration (see Fig.

5.10). The Degeneration object has stored the section and material properties and coordi-

nates of the integration points. This list of integration points is used for a loop that runs

through each integration point of the current element in order to calculate the portion of

the stiffness matrix of the element at each integration point. At each step of this loop, the

derivatives of the shape function and its enriched part must be evaluated. This is done by

the EnrichedShape object, which is also an Element attribute. The derivatives of the shape

function depends on PU from underlying FE mesh and enrichment types from G/XFEM

approach, either continuous or discontinuous functions. The EnrichedShape object manages

this dependency between these two parts.

For each node, the EnrichedShape object is evaluated at the corresponding integration point.

The PU is given by a Shape object which is a member of the EnrichedShape. Enrichment

functions are obtained from a list of EnrichedType objects, which is the attribute of the

Node object. This list is stored in GFemModel and is accessed through a list of associated

objects for the corresponding node. The original and derived shape functions, computed

by the EnrichedShape, after a loop through the nodes of the element, are sent to the ob-

ject GFemParametric which is responsible for building the array of the element stiffness.

GFemParametric sends this information to the GFemAnalysisModel object, which provides

the matrix of derivatives, integration factors, and the Jacobian for a specific analysis model.

Finally, the Degeneration object is queried to provide the numerical integration weights for
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a particular point of the integration. Thus, the GFemParametric object can return the stiff-

ness matrix of the element, which uses this portion to form the stiffness matrix C, from Eq.

(3.1), of the problem.

5.3.4 Solution Abstract Class

Solution abstract class starts the solution process and has the necessary resources for solving

the matrix system of the fracture analysis approach. As it can be seen in Fig. 3.4, it shows

different classes derived from the class Solution to handle either static (SteadyState, Glob-

alLocal, ThermoStructural, StaticEqulibriumPath), dynamic (DynamicEqulibriumPath), or

modal analysis (ModalVibration). The StaticEqulibriumPath class is responsible for the

nonlinear analysis and it is used here to handle the quasi-static linear elastic fracture analysis

based on the G/XFEM method.

Code 5.3 shows the main block (execute() method) of the StaticEqulibriumPath class. It

starts with the solution initialization at step zero, then defining the proportional load for the

upcoming steps. There is do-while loop that solves the problem step-by-step to reach the

maximum number of steps defined by the user.

StaticEqulibriumPath class calls the LEFMcrackGrowthByGFem class through GFemModel

class (line 37 from code 5.3), by calling update() and evaluateCrackPropagationLEFM()

methods, see Fig. 5.12. The LEFMcrackGrowthByGFem and DiscontinuityByGFem classes

are the main core for the quasi-static crack propagation approach based on the G/XFEM

methodology for linear and nonlinear material models, respectively. The UML diagram of

the LEFMcrackGrowthByGFem class is shown in Fig. 5.13. The DiscontinuityByGFem class

is related to the cohesive crack propagation (Silva, 2016). If the crack propagation status

is true, then the update() method from GFemModel class will start to analyze the problem

and follow the procedure from SIF calculation (linear elastic material) and adding Heaviside

and singular/near-tip enrichment functions for the corresponding nodes. The nodes selec-

tion procedure here is based on the definition from section 5.2.1.3. The update() method

from the GFemModel class is presented in Code 5.4. If the solution procedure is quasi-

static, i.e., there must be some crack propagation, then lines 4-13 from this code must be

followed in the process. As an example, line 4 checks whether the problem type is non-

linear or not, i.e., if this is related to DiscontinuityByGFem (cohesive crack propagation)

or LEFMcrackGrowthByGFem (crack propagation in linear elastic medium) cases. If not,

it will call evaluateCracksPropagation() method, which is shown in the same block. This

method will call update() method from LEFMcrackGrowthByGFem class which is responsi-

ble for the crack propagation process. The discontinuities variable is a list of objects from

LEFMcrackGrowthByGFem/DiscontinuityByGFem that represent the cracks of the problem.

1 private Step step;

2 private IterativeStrategy [] iterativeStrategy;

3 private LoadCombination loadCombination;

4

5 public void execute () throws Exception {

6 int cont = 0;
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7 step.addObserver(this);

8 step.setIterativeStrategy(iterativeStrategy[cont]);

9

10 step.getAssembler ().setXp();

11 this.setCurrentStep (0);

12 step.setLabel(this.getCurrentStep ());

13 step.update ();

14 step.getAssembler ().update ();

15 this.setCurrentStep (1);

16

17 step.getAssembler ().addLoading(loadCombination);

18 this.step.setProportionalLoad(this.getAssembler ().setProportionalLoad ());

19 this.step.setConstantLoad(this.getAssembler ().setConstantLoad ());

20

21 do {

22 if (step.getAssembler () instanceof GFemAssembler) {

23 if ((( GFemModel) step.getAssembler ().getModel ()).isWithCrackPropagation ()) {

24 this.step.setProportionalLoad(this.getAssembler ().setProportionalLoad ());

25 this.step.setConstantLoad(this.getAssembler ().setConstantLoad ());

26 }

27 }

28 iterativeStrategy[cont]. setStep(step);

29 step.setLabel(this.getCurrentStep ());

30 step.execute ();

31 step.getAssembler ().setIterationEnd ();

32 if (!( step.getConvergence ())) {

33 break;

34 } else {

35 LoadCombination lcomb = step.getAssembler ().getModel ().getLoadCombinationsList ().get(0);

36 step.getAssembler ().addLoading(lcomb);

37 step.getAssembler ().update ();

38 this.setCurrentStep(this.getCurrentStep () + 1);

39 }

40 } while (this.getCurrentStep () <= this.getNumMaxSteps ());

41 }

Code 5.3: Main code block of the StaticEqulibriumPath class

Figure 5.12: Structure of the GFemModel class

In the first step of the crack propagation procedure, the PersistenceAsXml class is used to

fill the data, constructing an object of the LEFMcrackGrowthByGFem class and then the

buildNotch() method is called in order to create the initial crack from the user-inserted data,

using the Heaviside function.

1 public void update () throws Exception {

2 super.update ();

3 if (withCrackPropagation) {

4 if(this.getDiscontinuityType ().equals(DiscontinuityByGfem.class.getSimpleName ())) {

5 this.evaluateCracksPropagation ();// For nonlinear materials

6 if (! onlyOneCrack) {

7 this.evaluateCracksNucleation ();

8 } else if (this.discontinuities.size() == 0) {

9 this.evaluateCracksNucleation ();

10 }

11 } else if (this.getDiscontinuityType ().equals(LEFMcrackGrowthByGfem.class.getSimpleName ()))

{

12 this.evaluateCracksPropagationLEFM ();// For linear materials

13 }



63

14 }

15 }

16 protected void evaluateCracksPropagationLEFM () {

17 for (int i = 0; i < discontinuities.size(); i++) {

18 discontinuities.get(i).update ();

19 }

20 }

Code 5.4: Code block of the update() method from GFemModel class

Figure 5.13: UML diagram of the LEFMcrackGrowthByGFem class

Moreover, the stressIntensityFactors and LEFMcrackGrowthByGFem classes use some meth-

ods from the ComputationalGeometry class, Fig. 5.14, in order to find either the elements

inside of the interaction domain integral, intersections of the crack surface with element edges,

node selection for Heaviside or singular/near-tip enrichments. For example, we need to find

position of all Gauss points with respect to the discontinuity line inside of a nodal support,

to see if that node has to be enriched with the Heaviside function or not, in accordance to
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the section 5.2.1.3.

Figure 5.14: UML diagram of the ComputationalGeometry class

5.3.5 Crack Propagation Strategy Based on OOP Approach

Figure 5.15 shows the crack propagation modeling flowchart from the current implementation,

in which the numbers specify the steps for crack propagation process at each time step. In

addition, Code 5.3 showed the main block (execute() method) of the StaticEqulibriumPath

class that is related to steps shown in Fig. 5.15. After defining the model, loading, material

properties, and mesh discretization in step 1 and 2, the solution starts for each time step with

a do-while loop (step 3 from Fig. 5.15 and line 21 from Code 5.3). The iterative approach

(line 28 from Code 5.3) and convergence study (lines 32-33 from Code 5.3) is mainly defined

for the nonlinear materials, and hence, they don not interfere for the linear materials, which

is the case of this PhD thesis. The main solution process takes place with the execute()

method at line 30 from Code 5.3.

The crack will be propagated if there is a pre-existing crack in the model, by calculating

the stress intensity factors at step 4 from Fig. 5.15. Then, the propagation status will be

evaluated at step 5 from Fig. 5.15, where the SIF obtained from the model will be compared

with fracture toughness of the problem (Kc). If the calculated SIF is greater than or equal

to this Kc, the crack can grow, if not it cannot grow under current loading conditions at

the current step time. Afterwards, if the crack grows, its direction and also new crack-tip(s)

will be calculated in step 6 from from Fig. 5.15. If the crack is not able to propagate at the

current time step, the loop goes for the next time step to apply a bigger loading magnitude

(step 5 from Fig. 5.15). At the step 7 from Fig. 5.15, if the new crack-tip crosses the

problem boundaries, it won’t be created and analysis will be followed to the next step until

it reaches its final time step without any crack propagation. While, if the new crack-tip is

inside of the problem boundaries, then the discontinuous enrichment will be used to include

the new crack segment into the model (step 8 from Fig. 5.15) and the whole model will be

updated with this new crack-tip (step 9 from Fig. 5.15). These whole steps, from 4 to step

9 of Fig. 5.15, are taken place in line 37 from Code 5.3, by calling the update() method from

GFemModel class, as shown in Code 5.4. The do-while loop will be stopped when it reach

its maximum time step number (step 10 from Fig. 5.15).
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Figure 5.15: Flowchart of the current crack modeling implementation.

5.4 Numerical Examples

This section presents three linear-elastic problems in <2. Section 5.4.1 shows a rectangular

plate with an oblique crack, section 5.4.2 presents a plate with an inclined crack under tension

loading and a Reissner-Mindlin plate with a crack is analyzed in section 5.4.3. The geometry

and boundary conditions are very simple and the goal of choosing them is to demonstrate the

capabilities of the G/XFEM method for quasi-static crack propagation process. The number

of integration points that are used for these problem were selected big enough to accurately

capture the crack prorogation direction within the element boundary, even for elements

containing singular enrichment functions. For simplicity, the same number of integration

points is used for the all elements with and without singular/Heaviside enrichment functions.

The number of integration points for all two problems is considered equal to 8× 8.

The domain size of the interaction integral is considered here (see section 5.3.2.3 and Ap-

pendix A) by a circle with radius r defined by r = rm helem, in which the element char-

acteristic length, helem, is the square root of the crack tip element area and rm is a scalar

multiplier (Moës et al, 1999). To have an accurate SIF results, one have to select a proper

multiplier rm. This scalar multiplier can be chosen by performing numerical experiments

with different values to have an independent J-integral path. The scalar multiplier rm for

the following three problems is considered equal to 2.0, but the crack increment length has

different values for each problem. In all examples, the Heaviside enrichment function (Eq.
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(5.2)) is used to insert the discontinuity line within the model boundary, while the singular

enrichment functions (Eqs. (2.12) and (2.13), or Eq. (2.14)) are used to capture the stress

gradient around the crack tip(s).

5.4.1 A Rectangular Plane Stress Problem with an Oblique Crack

A rectangular plane stress with an oblique crack under a tension stress is shown in Fig. 5.16

along with the discretization mesh. The mesh is composed of 1202 triangular elements, each

one with 13 Gauss points. Also, total number of DOFs are equal to 1268. This problem is

solved using the single scale G/XFEM approach and its goal is to prove the functionality

of the calculation procedure for the crack propagation direction. It is also used to show the

possibility of use triangular elements for this kind of analysis. The problem has the following

parameters (in consistent units): modulus of elasticity E = 1.0, Poisson ratio ν = 0.3, and

the tension stress σ = 1.0.

(a) The geometry of the problem. (b) Mesh discretization.

Figure 5.16: A plate with an oblique crack. The tension stress is equal to σ = 1.0.

As it was expected, the crack propagates in the mode-I of fracture (cleavage mode) is almost

horizontal for this problem, as it can be seen in Fig. 5.17(a). This path is perpendicular

to the maximal principal stress which is vertical due to the type applied load shown in Fig.

5.16(a), and it is with accordance to the results from (Bouchard and F. Bay, 2003). In

addition, Fig. 5.17(b) is shown the distribution of the displacement in y direction.

5.4.2 Inclined Crack Under Tension

This section presents the results for a problem with an inclined crack, as shown in Fig.

5.18. The objective of this problem is to illustrate the mixed-mode crack propagation using

G/XFEM method. The problem is analyzed under plane stress state with the following

parameters (in consistent units): modulus of elasticity E = 1.0, Poisson ratio ν = 0.3, and
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(a) Crack propagation path.

(b) Contour of the displacement in y direction.

Figure 5.17: Results for the plate with an oblique crack.

the tension stress σ = 1.0. The geometrical parameters of this problem are: W = 3.0,

2a = 0.35, and β = 48.5◦.The element size is equal to 0.25 for this problem with total of 144 elements, a uniform

mesh of 12 × 12 elements. The crack increment length considered here is equal to 0.19.

Displacement distributions in y direction along with crack propagation path are shown in

Fig. 5.19. There are some small fluctuations in the crack propagation path, but this figure

clearly shows the mixed-mode propagation path, in accordance with (Ayatollahi and Aliha,

2009).
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Figure 5.18: Geometry and loading of the problem with an inclined crack.

(a) Step 3 (b) Step 5 (c) Step 7

Figure 5.19: Contour of displacement in y direction for inclined crack problem, at different
stage of the crack propagation process.
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5.4.3 A Reissner-Mindlin Plate with Bending Moment

An infinite plate subjected to a far-field moment M is shown in Fig. 5.20 to have a purely

mode-I loading. The aim of this example is to illustrate the crack propagation using G/XFEM

method for Reissner-Mindlin plate problems, with E = 1.0, ν = 0.3 in consistent units.

Thanks to the symmetry about the y axis, only one-half of the plate are modeled with the

finite elements.

Figure 5.20: Schematic of geometry and loading for Reissner-Mindlin plate under bending.
M = 1.0, a = 0.6, W = 6, and thickness t = 1.0, in consistent units.

In order to show the capability of the current implementation to extract reasonable moment

and shear intensity factors for Reissner-Mindlin plate with an inclined crack, a mesh of 625

quadrilateral elements is used here, see Fig. 5.21(a). Number of integration points for this

analysis is set equal to 8×8. Figure 5.21(b) shows the extracted moment and shear intensity

factor values for mode-I, mode-II and mode-III, covering a full range of the β values. The β

is the angle between the crack line and the x direction. As it can be seen from this figure,

the results from current work show a good agreement with those from (Dolbow et al, 2000b).

The element size of this problem also is equal to 0.25 and the model consists of 144 elements,

a uniform mesh of 12 × 12 elements. The crack increment length considered here is equal

to 0.125. Figure 5.22 shows the rotation distributions in y direction along with crack prop-

agation path. As it can be seen from this figure, the crack propagation path is along with

mode-I propagation, since the loading is pure mode-I.
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Figure 5.21: (a) Discretization used for moment and shear intensity factor calculation, with
β = 0o as a schematic. W = 10, a = 0.5, t = 1, and crack geometry is shown in bold. (b)

Normalized moment and shear force intensity factors for the cracked Reissner-Mindlin plate
with different crack angle, β, for current work and from (Dolbow et al, 2000b).

(a) Step 2 (b) Step 5 (c) Step 10

Figure 5.22: Contour of rotation over y direction for Reissner-Mindlin problem, at different
stage of the crack propagation process.
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5.5 Summary and Conclusion

This work presented an object-oriented implementation of two-dimensional crack propaga-

tion for linear and nonlinear material models into an in-house code called INSANE. The

capabilities of the generalized/extended finite element method were used to simulate the

discontinuity propagation within the models. Different enrichment types, from Heaviside to

singular enrichment functions were used to model the discontinuities and also capture the

crack-tip singularities to obtain a better and more accurate crack propagation path. The

stress intensity factors are used to obtain the propagation path. The OOP aspects were dis-

cussed in detail by providing different UML diagrams in package and class levels as well as

different classes interactions aiming to show the whole implementation with regards to these

work. Also, various blocks of codes are brought in order to show a part of implementations

in a practical way.

The validation of these implementations were presented by different numerical examples for

solid mechanics, from plane stress problems to a Reissner-Mindlin problem, aiming to cover

all aspects and features of the current implementations. The numerical results presented here

clearly show the capability of the current G/XFEM implementations to overcome almost all

kinds of two-dimensional crack propagation problems.



Chapter 6

MODELING CRACK
PROPAGATION USING
TWO-SCALE G/XFEM

6.1 Introduction

T
his chapter presents a computational framework two-scale/global-local G/XFEM to

model crack propagation plane stress/strain and Reissner-Mindlin plate problems. It

is noteworthy to say that although there are various investigations on crack propagation for

plane stress/strain problems, but there is no work for Reissner-Mindlin plate problem dealing

with the crack propagation phenomena using two/multi scale G/XFEM. As discussed before

in chapter 5, crack is represented using a discontinuous function along with the asymptotic

crack-tip displacement fields and SIFs are also used to either determine the crack propagation

direction or propagation status. Several algorithms and strategies have been implemented,

within the INSANE. This implementation is presented in detail by solving several linear

elastic fracture mechanics problems for both plane stress and Reissner-Mindlin plate problems

to demonstrate the robustness and accuracy of the proposed approach. All the explanations

and numerical results for this chapter are brought from Malekan et al (2017a).

6.2 Computational Environment

This section presents in detail the new implementations and also modifications of the existing

classes corresponding to the crack growth process for two-scale G/XFEM analysis, specifically

for Persistence and Solution classes. Required information for other classes can be found

in chapter 5. In the case of the G/XFEMgl, the Persistence class must interact with more

than one model, i.e., one global and one local model corresponding to the global and local

problems, respectively. The Code 5.2 from section 5.3.1 contains also additional lines of codes

to include GlobalLocalQuasiStatic approaches. This approach is very similar to GlobalLocal

presented in chapter 4, but includes some necessary methods for the two-scale quasi-static

analysis.

72
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1 public IMatrix getCuu () throws Exception {

2 IMatrix kr = new IMatrix(this.getSizeOfXu (), this.getSizeOfXu ());

3 ListIterator <Element > elements = femmodel.getElementsList ().listIterator ();

4 while (elements.hasNext ()) {

5 Element element = elements.next();

6 int[] redEquations = this.getElementEquations(element);

7 IMatrix c = element.getC();

8 // Adding elements ’ stiffness matrix to model ’s stiffness matrix

9 for (int i = 0; i < element.getNumberOfDegreesOfFreedom (); i++) {

10 int a = redEquations[i];

11 for (int j = 0; j < element.getNumberOfDegreesOfFreedom (); j++) {

12 int b = redEquations[j];

13 if (a > 0 && b > 0) {

14 kr.setElement(a - 1, b - 1, kr.getElement(a - 1, b - 1) + c.getElement(i, j));

15 }

16 }

17 }

18 }

19 // Adding nodal stiffness to model ’s stiffness matrix

20 ListIterator <Node > nodes = this.getModel ().getNodesList ().listIterator ();

21 while (nodes.hasNext ()) {

22 Node node = nodes.next();

23 if (node.nodeValuesContainsKey(Node.COEFFICIENTS_C)) {

24 for (int i = 0; i < node.getNumberOfDegreesOfFreedom (); i++) {

25 int pos = node.getNodeValues(Node.EQUATIONS).getIntPointValue(i);

26 if (pos > 0) {

27 kr.setElement(pos - 1, pos - 1,

28 kr.getElement(pos - 1, pos - 1) + node.getNodeValues(Node.COEFFICIENTS_C).getDoublePointValue(i));

29 }

30 }

31 }

32 }

33 // Adding stiffness related with Dirichlet and Cauchy BCs , for global -local analysis

34 double penaltyFactor = (( GFemModel) this.getModel ()).getPenaltyParameter ();

35 if (penaltyFactor != 0) {

36 elements = this.getModel ().getElementsList ().listIterator ();

37 while (elements.hasNext ()) {

38 Element element = elements.next();

39 int[] redEquations = this.getElementEquations(element);

40 IMatrix cpm = (( GFemElement) element).getCpm ();

41 cpm.scale(penaltyFactor);

42 for (int i = 0; i < element.getNumberOfDegreesOfFreedom (); i++) {

43 for (int j = 0; j < element.getNumberOfDegreesOfFreedom (); j++) {

44 int a = redEquations[i];

45 int b = redEquations[j];

46 if (a > 0 && b > 0) {

47 kr.setElement(a - 1, b - 1, kr.getElement(a - 1, b - 1) + cpm.getElement(i, j));

48 }

49 }

50 }

51 }

52 }

53 double kappa = (( GFemModel) this.getModel ()).getKappaParameter ();

54 if (kappa != 0) {

55 elements = this.getModel ().getElementsList ().listIterator ();

56 while (elements.hasNext ()) {

57 Element element = elements.next();

58 int[] redEquations = this.getElementEquations(element);

59 IMatrix cpmCauchy = (( GFemElement) element).getCpmCauchy ();

60 cpmCauchy.scale(kappa);

61 for (int i = 0; i < element.getNumberOfDegreesOfFreedom (); i++) {

62 for (int j = 0; j < element.getNumberOfDegreesOfFreedom (); j++) {

63 int a = redEquations[i];

64 int b = redEquations[j];

65 if (a > 0 && b > 0) {

66 kr.setElement(a - 1, b - 1, kr.getElement(a - 1, b - 1) + cpmCauchy.getElement(i, j));

67 }

68 }

69 }

70 }

71 }

72 return (kr);

73 }

Code 6.1: Code block of the getCuu() method from GFemAssembler class

As mentioned in previous chapter, Assembler interface is responsible for assembling the linear

equation system provided by the discretization of the initial or boundary value problem, for

different types of problem. Code 6.1 presents the written code in order to calculate the Cuu
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matrix (from Eq. (3.2)), in which it also contain the corresponding parts from Dirichlet (block

starts with penaltyFactor) and Cauchy (block starts with kappa) boundary transferring to

the local problem boundaries (Alves, 2012).

Similar to previous chapter, the Heaviside function is used to model the crack line within the

element boundaries. The CrackEnrichment or NearTipEnrichment class is used to accurately

capture the singularities at the crack-tip and GlobalLocalEnrichment class is used to create

the numerically-build enrichment functions from the local problem solution.

Figure 6.1: Structure and communications of the GlobalLocalQuasiStatic class
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GlobalLocal class not only performs the static analysis for two-scale G/XFEM problems

(Malekan et al, 2016a, 2017b), but also extracts the SIF using the domain-based interac-

tion energy integral (implemented according to Malekan et al (2017d,c) and is shown in

Appendix A). Finally the GlobalLocalQuasiStatic class, as shown in Fig. 6.1, is created in

order to have quasi-static crack propagation using the two-scale G/XFEM method either for

plane stress/strain or Reissner-Mindlin plate problems. A part of the execute() method of

this class is brought in Code 6.2. This part is related to solve the first step of the global-local

analysis. There are different solver types, from direct solvers such as Crout and Cholesky to

iterative solvers such as Preconditioned Conjugate Gradient (PCCG) and PCCG mixed with

the Babuǔka approach (see Appendix D). All these solvers are written in the LinearEqua-

tionSystems class, discussed in section 3.2.3.

1 private final LinearEquationSystems les = new LinearEquationSystems ();

2 public void execute () throws Exception {

3 // solving global problem , initial global -local step

4 if (globalAssembler.getSizeOfXu () != 0) {

5 for (int i = 0; i < globalAssembler.getModel ().getNumberOfElements (); i++) {

6 ArrayList <Element > locElems = new ArrayList <Element >();

7 locElems.add(gloalbAssembler.getModel ().getElementsList ().get(i));

8 (( GFemElement) globalAssembler.getModel ().getElementsList ().get(i)).setElementValues("LOCAL_ELEMENTS",

localElements);

9 }

10 sel.setBVector(new IVector(globalAssembler.getSizeOfXu ()));

11 globalAssembler.addLoading(loadCombination);

12 if (( globalAssembler instanceof GFemAssembler) && (this.restraintCombination != null)) {

13 (( GFemAssembler) globalAssembler).addRestraints(restraintCombination);

14 }

15 IVector v = globalAssembler.getNp ();

16 les.addToBVector(v);

17 les.addToBVector(globalAssembler.getEp());

18 les.getBVector ().scale(mult);

19 les.addToBVector(this.getCupXp ());

20 IMatrix cuu = globalAssembler.getCuu ();

21 les.setAMatrix(cuu);

22 if (this.GlobalSolverType == 1) {

23 les.choleskySolver(cuu , les.getBVector ());

24 } else if (this.GlobalSolverType == 2) {

25 les.croutSolver(cuu , les.getBVector ());

26 } else if (this.GlobalSolverType == 3) {

27 les.preconditionedConjugateGradientsSolver(cuu , les.getBVector ());

28 } else if (this.GlobalSolverType == 4) {

29 les.babuskaSolverWithPCCGDiag(cuu , les.getBVector ());

30 }

31 globalAssembler.setXu(sel.getXVector ());

32 les.setAMatrix(globalAssembler.getCpu ());

33 les.setXVector(globalAssembler.getXu());

34 les.solverB ();

35 les.subFromBVector(globalAssembler.getEu ());

36 les.addToBVector(this.getCppXp ());

37 // Subtracting possibles dual variables previously set.

38 les.subFromBVector(globalAssembler.getNu ());

39 globalAssembler.setNu(les.getBVector ());

40 globalAssembler.setXp ();

41 globalAssembler.update ();

42 }

43 ...

44 }

Code 6.2: Code block of the execue() method from GlobalLocalQuasiStatic class belongs to the first step of global-local

analysis

Furthermore, the global-local enrichment function must be used for the two-scale crack prop-

agation procedure using the G/XFEM methodology. In this case, the boundary conditions

from the global problem have to be transferred to the local boundaries for each analysis step.

This is done using the EquivalentNodalGeneralValue class, as shown in Fig. 6.2, proposed

in (Alves, 2012) and firstly presented in (Malekan et al, 2017b). The corresponding meth-

ods to apply different boundary conditions, such as Dirichlet, Neumann, or Cauchy, are here
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modified to have capabilities to solve both plane stress/strain and the Reissner-Mindlin plate

problems. A short part of the getGFemEquivalentNodalValuesFromElement() method from

this class is brought in Code 6.3 for the case of transferring Dirichlet boundary condition

to the local problem boundaries. It looks for each one of the element edge separately, and

apply the displacement (for Dirichlet case), stress (for Neumann case), both (for Cauchy

case), or nothing to them, see Eq. (2.19) from section 2.5.2. These displacement and stress

come from the solution of the global problem. Lines 29-33 from the Code 6.3 were previously

written in such a way that handle the plane stress/strain problems where each node only has

two physical DOFs (two translational DOFs), while they have three DOFs (one translational

and two rotational DOFs) in the case of Reissner-Mindlin plate. Therefore, these lines are

modified to have a general implementation for both plane stress/strain and Reissner-Mindlin

plate problems.

1 private Element element;

2 public IVector getGFemEquivalentNodalValuesFromElement () {

3 IVector feq = new IVector(this.element.getNumberOfDegreesOfFreedom ());

4 feq.zero();

5 ArrayList <Integer > boundaryInfo = ((ArrayList <Integer >) (( GFemElement) this.element).getElementValues("

BOUNDARY_INFORMATION"));

6 if (boundaryInfo.size() == 4) {// if quadrilateral ( boundaryInfo with 4 values)

7 if (boundaryInfo.get(0) == 3) {

8 IVector feq1 = new IVector(this.element.getNumberOfDegreesOfFreedom ());

9 feq1.zero();

10 for (int i = 0; i < integPoints.getNumCol (); i++) {

11 double [] natCoords = integPoints.getColumn(i).toDoubleArray ();

12 double [] rst = new double [2];

13 rst [0] = natCoords [0];

14 rst [1] = -1;

15 IMatrix n = this.getStateVariableFunctionMatrix(rst , element.getIncidence ());

16 // transform local coordinates of local elem. to global coordinates

17 Shape localShape = this.element.getShape ().getOriginalShape ();

18 IMatrix cN = this.element.getCartesianNodalCoordsMatrix ();

19 IVector glCoordLocalElem = new IVector(cN.getNumCol ());

20 IVector femShapeFunction = localShape.getShapeFunction(rst , cN);

21 glCoordLocalElem.mult(femShapeFunction , cN);

22 // use global coords. and transform in local coords. of global elem.

23 IPoint3d point = new IPoint3d(glCoordLocalElem.getElement (0), glCoordLocalElem.getElement (1));

24 GFemElement masterElem = (GFemElement) this.element.getElementValues("GLOBAL_ELEMENT");

25 double [] natCoordMastElem = masterElem.getNaturalCoords(point).getCoords ();

26 masterElem.setElementValues(masterElem.STEP_GL , 2);

27 Shape shape = masterElem.getShape ();

28 IMatrix shapeFunction = (( EnrichedShape) shape).getShapeFunction(natCoordMastElem , masterElem);

29 IMatrix localDerivates = new IMatrix(IMatrix.identity (3));

30 IMatrix shapeFunc = masterElem.getAnalysisModel ().getStateVariablesOperator(localDerivates ,

shapeFunction , masterElem.getLocalCartesianNodalCoordsMatrix ());

31 IVector nodDispl = new IVector(masterElem.getStateVariables ());

32 IVector dispOnPoint = shapeFunc.mul(nodDispl);

33 IPoint3d p0 = this.element.getIncidence ().get (0).getPoint ();

34 IPoint3d p1 = this.element.getIncidence ().get (1).getPoint ();

35 double j = p0.distance(p1) / 2;

36 n.transpose ();

37 IVector feqi = n.mul(displacementOnPoint);

38 feqi.scale(integrationPointsWeights.getElement(i) * (j));

39 feq.add(feqi); // add contribution of each Gauss point for this edge

40 feq1.add(feqi);

41 }

42 }

43 ...

44 }

45 ...

46 }

Code 6.3: Code block of the fillIsWithCrackPropagationFromFile() method from PersistenceAsXml class

Figure 6.3 shows the solution process to assemble the stiffness matrix and solve the problem.

Similar to chapter 5, the stiffness matrix is mounted by the FemAssembler class, and hence

GFemAssembler class for G/XFEM method, through the getCuu() method which is related

to the elastic approximations of the constitutive tensor. This method looks into the model
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Figure 6.2: UML diagram of the EquivalentNodalGeneralValue class

elements according to the problem types, i.e., solid, planes stress/strain, frame, etc. The

ProblemDriver, by the GFemParametric class, build the stiffness matrix of each element.

The crack propagation strategy is exactly the same as those presented in section 5.3.5 where

except using the StaticEquilibriumPath class, the GlobalLocalQuasiStatic class handles the

whole solution procedure.

Figure 6.3: UML diagram of the solution process

6.3 Numerical Examples

This section presents three linear-elastic problems in two-dimensional domain. Sections 6.3.1

and 6.3.2 present a single-edge cracked plate under tension and shear loads, respectively.
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In addition, a cracked Reissner-Mindlin plate is analyzed in section 6.3.3 for a horizontal

and inclined crack configuration. These problems are brought to show the robustness and

accuracy of the current G/XFEMgl implementations.

Similar to section 4.3, Dirichlet boundary condition will be applied on the local problem

boundaries in order to demonstrate the robustness of the methodology in the worst case

scenario. The integration order of G/XFEMgl for both global and local problems is chosen

to be enough to reproduce the polynomial approximation. When there is only a polynomial

approximation, the number of integration points is equal to the one necessary to accurately

reproduce it. When there is the Heaviside (jump) or singular enrichment functions the num-

ber of points must be large enough to minimize the integration error. Therefore, the number

of integration points that are used for these problem were selected quite big enough to ac-

curately capture the crack propagation direction within the element domain, specifically for

local problem, even for elements containing singular enrichment functions. For simplicity,

the same number of integration points is used for the all elements with and without singu-

lar/Heaviside enrichment functions. Based on our experience with the modeling approach,

the number of global-local cycles for each time step is chosen equal to 3. However, one can

select larger number of global-local cycles, depending on the problem type.

Definition of the domain size of the interaction integral, r, its scalar multiplier, rm, and

the crack increment length, ∆a, are similar to those presented in section 5.4. The scalar

multiplier for all two problems is considered equal to 2.0, but the crack increment length

has different values for each problem. The crack propagation criteria and the propagation

direction are defined based on the stress field around the crack tip, with the help of the SIF

calculation procedure. In addition, the Heaviside (Eq. (5.2)) and singular (Eqs. (2.12) and

(2.13)) enrichment functions are used for all problems (in the local problems only) in order

to model the crack lines and capture the crack-tip singularities within the element domains.

Then, the global-local enrichment function is used to enrich the global problem with the

solution obtained from local problem, thus the discontinuity effects will be transferred to the

global problem via this global-local enrichment function.

6.3.1 A Rectangular Plane Stress Problem with an Edge Crack

This example considers a single-edge cracked plate submitted to a tension stress, as shown in

Fig. 6.4. The cracked zone produces singular stress field near the crack tips. The objective

of this example is to illustrate the crack propagation under mode-I fracture analysis. The

problem is analyzed under plane stress state with (in consistent units): modulus of elasticity

E = 1.0 and Poisson’s ratio ν = 0.3.

According to Tada et al (2000), the reference mode-I SIF for problem shown in Fig. 6.4 is:

KI = [1.12− 0.231(a/b) + 10.55(a/b)2 − 21.72(a/b)3 + 30.39(a/b)4]σ
√
πa (6.1)
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Figure 6.4: Geometry and loading of the single-edge cracked problem. The tension stress is
equal to σ = 1.0.

where a is the crack length, b is the plate width, and the expression inside of the brackets is

an empirical function which is valid for a/b ≤ 0.6, as follows (Tada et al, 2000). Analytical

SIF from Eq. (6.1) and numerical results, both KI and KII , from current simulation for the

single-edge cracked plate (obtained in the third step of global-local analysis) and for various

a/b are shown in Fig. 6.5. Maximum error of the KI for various a/b values are smaller

than 10%. In addition, the KII values are almost near to zero for all a/b values, which in

accordance with the pure mode-I loading for this problem.

Figure 6.6 shows the global-local steps and also the local domain discretization along with

the global nodes to be enriched with the global-local enrichment function. These three-steps

cycle of analysis is repeated for each crack propagation step. There are fourteen global nodes

that are enriched with the global-local enrichment function.

The problem is discretized with 78 (a regular mesh of 6 × 13 elements) and 162 (a regular

mesh of 18 × 9 elements) elements for global and local models, respectively. The element

size of the global problem is 1.5, while the local problem has an element size of 0.5. The

number of integration points of the two-scale G/XFEM are as follows: 8× 8 and 10× 10 for

global and local problem, respectively. The integration order for global problem is chosen in

such a way to have a good initial approximate solution to use for the boundary transferring

to the local problem. In addition, the integration order for the local problem is chosen

big enough to accurately capture the stress intensity factors for each time step, and hence

obtain an accurate crack propagation path. The penalty parameter, η, for Dirichlet boundary
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Figure 6.5: Error between analytical and numerical SIF for single-edge cracked plate.

Figure 6.6: Global-local strategy sequences and local domain (in green) discretization. The
black markers indicate the nodes to be enriched with the global-local enrichment function.
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condition is chosen equal to 1×1012. Note that the crack propagation only occurs in the local

problem and only its effect are transferred to the global problem via the global-local enrichment

function. The crack increment length considered here is equal to 0.325, i.e., almost two-third

of the local model element size.

Displacement distributions in y direction along with crack propagation path are shown in

Fig. 6.7 where mode-I crack propagation can be clearly seen from that. This figure belongs

to the local problem, where the crack propagation procedure is only active in this second

scale. Although there are some small fluctuations in the crack propagation path, but it still

remains in the mode-I propagation direction as it was expected.

For sake of comparison, the crack growth path for a single scale problem with the same

mesh as the global mesh from global-local analysis (a mesh with 78 regular elements), with

a number of integration points of 10, are brought in Fig. 6.8. As it can be seen from Figs.

6.7 and 6.8, the global-local analysis delivers a very good crack propagation path in contrast

to the single scale analysis, with a number of DOFs equal to 188, while a quite similar

crack propagation path can be obtained with a fine mesh (377 quadrilateral elements with

an average size of 0.7) and with 825 DOFs, as it is shown in Fig. 6.8(c). The length of the

propagating crack is kept the same for these two cases shown in Figs. 6.8(a) and Fig. 6.8(c).

In addition, Fig. 6.9 shows the analytical SIF from Eq. (6.1) and numerical results, both

KI and KII , for the two cases shown in Fig. 6.8. The maximum error for KI with respect

to analytical values are 13% and 40%, for meshes with the element size of 0.7 and 1.5,

respectively. In addition, the maximum KII/KI ratio for these two cases are equal to 0.049

(element size of 0.7) and 0.27 (element size of 1.5), which clearly describes the crack path

fluctuation for mesh with bigger element size.
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(a) Step 5

(b) Step 9

(c) Step 14

Figure 6.7: Contour of the displacement in y direction along with the crack propagation
path for local problem.
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(a) Step 5 (b) Step 9 (c) Step 10 with a fine mesh

Figure 6.8: Deformed shape along with the crack propagation path for a single scale
problem, for two different element sizes: one with the same as the global problem, and

another with smaller element size.
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6.3.2 Single-edge Cracked Problem Under Shear Loading

This example corresponds to a rectangular single-edge cracked problem, clamped at the

bottom and under the far-field shear stress along the top edge, as it can be seen in Fig.

6.10(a). Material properties are: Young’s modulus E = 3× 107N/mm2 and Poisson’s ratio

ν = 0.25. This problem is analyzed under the plane strain condition and it will be compared

with the results from (Nguyen-Xuan et al, 2013) aiming to demonstrate the robustness of

the current implementation under the mixed-mode fracture condition.

(a) (b)

Figure 6.10: A rectangular single-edge cracked plate under shear loading: (a) geometry and
loading, with: h = 8, W = 7, a = 3.5, thickness t = 1.0, and shear loading τ = 1N/mm2,

(b) global and local meshes along with local domain (in blue), with emphasizing steps of the
global-local analysis. All dimensions are in millimeters.

The problem is discretized with 55 (a regular mesh of 5 × 11 elements) and 135 (a regular

mesh of 15 × 9 elements) elements for global and local models, respectively, as it is shown

in Fig. 6.10(b). The element size of the global problem is 1.5, while the local problem has

an element size of 0.5. The number of integration points of the two-scale G/XFEM are as

follows: 8×8 and 10×10 for global and local problem, respectively. The penalty parameter,

η, for Dirichlet boundary condition and crack increment length are chosen equal to 1× 1012

and 0.325, respectively. There are twelve global nodes that are enriched with the global-local

enrichment function. As it can be seen in Fig. 6.11, a good agreement is obtained for the

crack path from local problem using the two-scale G/XFEM, with the results comparing with

those obtained by Nguyen-Xuan et al (2013).

6.3.3 Reissner-Mindlin Plate with a Crack

An infinite plate is subjected to a far-field moment M as shown in Fig. 6.12 to have a

purely mode-I loading. Two different cases are studied here: plate with a horizontal crack,

i.e., β = 0, and with inclined crack with β = 60 degrees. This problems has the following

parameters (in consistent units): modulus of elasticity E = 1.0 and Poisson’s ratio ν = 0.3.

For horizontal crack, only one-half of the plate are modeled with the finite elements using
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Figure 6.11: Crack propagation trajectory of plate under shear loading: (a) Step 5 and (b)
Step 10 for current implementation obtained from local problem, (c) Results from

(Nguyen-Xuan et al, 2013).

(a) (b)

Figure 6.12: Schematic the Reissner-Mindlin plate under bending: (a) geometry and
loading with: a = 0.6, W = 6, and thickness t = 1.0, (b) global mesh along with local

domain (in blue).
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the symmetry about the x2 axis. In addition, the plate width W is taken to be 20 times the

half crack length a in order to have an approximation of the infinite plate, with: a = 0.5,

W = 10, and thickness t = 1.0. The length of the plate is chosen equal to the W . The

global and local element sizes are equal to 0.7 and 0.25, respectively, with 104 (a regular

mesh of 8×13 elements) and 216 (a regular mesh of 24×9 elements) elements for global and

local problems, respectively. The crack increment length considered here is equal to 0.23, in

which the crack propagation only occurs in the local problem. Figure 6.13 shows the global

as well as the local problem discretization along with the global nodes to be enriched with

the global-local enrichment function. There are eighteen global nodes that are enriched with

the global-local enrichment function.

Figure 6.13: Local problem discretization along with the local domain from global mesh, in
the case of plate with a horizontal crack. The black markers indicate the nodes to be

enriched with the global-local enrichment function.

Table 6.1 gives the comparison of extracted moment intensity factors values for mode-I results

from the exact solution, numerical reference from (Dolbow et al, 2000b) using XFEM method,

and current G/XFEM and G/XFEMgl analyses for β = 0. These results are from two steps

of the global-local strategy, one obtained in the global problem (first step) and the other in

the global-local enriched problem (third step). It can be observed that the solution obtained

with the global-local approximation strategy with only 1044 DOFs is quite accurate as the

standard G/XFEM approximation with 2868 DOFs. The scalar multiplier rm for G/XFEM

and G/XFEMgl are equal to 2.5 and 2.0, respectively.

Table 6.1: Comparison of extracted moment intensity factors values for mode-I, for a = 0.5,
t = 5.0, β = 0.

Analysis DOFs KI % of Error

Exact (Joseph and Erdogan, 1991) — 0.684 —

Dolbow et al (2000b) 3087 0.685 0.15

G/XFEM 2868 0.691 1.02

G/XFEMgl, 1st Step 948 0.441 35.53

G/XFEMgl, 3rd Step 1044 0.668 2.34

Figure 6.14 presents the rotation distributions over y direction, i.e., θy, along with crack

propagation path. Similar to section 6.3.1, the crack propagation procedure is only active in



87

the second scale, i.e., the local problem. A quite pure mode-I of the crack propagation can

be clearly seen from this, as it was expected from having a purely mode-I far-field moment.

In the case of inclined crack with β = 60 degrees, the whole plate are modeled with following

geometrical parameters: a = 0.25, W = 5, and thickness t = 0.5. Again, the W/a is set

equal to 20 to represent an approximation of the infinite plate. The global and local elements

are equal to 56 and 216, respectively, with an element size of 0.7 for global and 0.25 for the

local problem. The crack increment length considered here is equal to 0.153. Figure 6.15

shows the local problem discretization along with the crack position for plate with the central

inclined crack. Similar to the horizontal crack case, there are eighteen global nodes that are

enriched with the global-local enrichment function.

Figure 6.16 presents the crack propagation path for the Reissner-Mindlin plate with an

inclined crack. Again, the crack propagation procedure is only active in the second scale,

i.e., the local problem. As it can be clearly seen from this figure, the initial inclined crack is

propagating horizontally after initial steps of analysis, which is due to the mode-I far-field

moment.

6.4 Summary and Conclusion

The aim of this chapter was to present a computational framework for crack propagation

modeling using the capabilities of the object-oriented programming along with two-scale

generalized/extended finite element method. The OOP with its main characteristics such

as abstraction and inheritance greatly helps to include new numerical approaches to solve

different kind of problems with small required changes (meshfree, G/XFEM, and nonlocal

methods were easily derived from FEM implementations here in INSANE code) and 6.1, in

which quasi-static two-static was derived from classical two-scale class, only small changes

were done to include the crack propagation strategy. Also, the OOP helps to use different

types of problems in a single solution class with the aim of object creation. Moreover, various

solvers can be adopted for the solution strategy in this class, as it was shown in Code 6.2

and user easily can mitigate between them with just a single string definition shown in Code

B.2. The present object-oriented implementations, as a part of INSANE computational

platform, were explained in details and every aspect of them were shown through different

UML diagrams, block of codes, both from implementation parts and user input files.

Finally, the validation of the whole implementations were presented by solving two numerical

examples for solid mechanics, aiming to cover all aspects of the current work. The first one

dealt with a plane stress problem under tension loading, and the second one showed the

capability of the proposed computational framework for Reissner-Mindlin plate problem.

The main conclusions from the current implementations can be summarized as:

– Heaviside function along with singular enrichment functions are used to facilitate the

crack propagation procedure, in the local problem. Also, the global-local enrichment
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(a) Step 5

(b) Step 10

(c) Step 13

Figure 6.14: Contour of the rotation over y direction (θy) for Reissner-Mindlin plate, along
with the crack propagation path for local problem.
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Figure 6.15: Local problem discretization along with the crack position, for
Reissner-Mindlin plate with β = 60o.

(a) Step 3

(b) Step 9

Figure 6.16: Crack propagation path of the Reissner-Mindlin plate with an inclined crack,
from local problem.
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function is used to enrich the global problem from the precise solution obtained from

the local problem.

– The two-scale crack propagation is established in such a way that the crack only prop-

agates in the local problem and its effects were transferred to the global problem via

global-local enrichment functions.

– The numerical results from two examples clearly show the capability of the current

OOP-based two-scale G/XFEM implementations to overcome almost all kind of two-

dimensional crack propagation problems, with a good accuracy and also easy to expand

for three-dimensional or shell problems, where the shell part is a potential research

theme to be pursued in the future.



Chapter 7

CONCLUSIONS AND FUTURE
WORKS

D
etailed conclusions were drawn at the end of each chapter. The research trend and

some important conclusions and contributions are summarized below.

7.1 Conclusions

Application of object-oriented programming for FEM has been receiving great attention over

the last two decades. There are some main concepts of OOP that makes it easy to use and

maintenance, such as: objects and classes, data abstraction and encapsulation, inheritance,

and polymorphism. The main objective of this project was to fracture modeling in thin-

walled structure by extending the available capabilities of the G/XFEM method implemented

in INSANE in-house code. Therefore, this work used the capabilities of the OOP to perform

a crack propagation study using single and two-scale G/XFEM approaches. The problem

studies were plane stress/strain and Reissner-Mindling plates. The reason to choose the

Reissner-Mindling plate problem was because of their assumptions which lead to have C0

continuity, as it was mentioned in chapter 2. Thus, the conventional plane stress/strain

elements can be used with some small modifications only to include all three degrees of

freedom for Reissner-Mindling plate problem. Following are the main conclusion from this

PhD thesis:

• Different enrichment functions were introduced/modified into the INSANE computa-

tional platform aiming to facilitate the fracture analysis for G/XFEM and G/XFEMgl

methods, such as: CrackEnrichmentModeI, CrackEnrichmentModeII, NearTipEnrich-

ment and DiscontinuousEnrichment.

• The stable G/XFEM shows its capabilities to improve the conditioning and convergence

rate of the G/XFEM, for classical and two-scale analyses. Although, current research

didn’t use this strategy for the crack propagation procedure, but it can be useful which

makes the crack propagation feasible with this approach.

91
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• This work introduced a two-scale approach with the G/XFEM method to analyze

Reissner-Mindlin plate for static analysis, which is an extension to G/XFEM method

for plate structures. The two-scale/global-local approach helps to eliminate the need of

using fine/very-fine meshes to capture an accurate solution. More details on this issue

can be found in (Malekan et al, 2017b). The modifications were made for GlobaLocal,

EquivalentNodalValue, and GlobalLocalEnrichment classes.

• A crack propagation procedure was established for classical and two-scale G/XFEM

methods aiming to model the fracture for plane stress/strain and Reissner-Mindlin

plate. This procedure uses the stress intensity factor as the main parameter to deter-

mine the crack propagation status and its direction. The main OOP classes for this part

of PhD thesis, that were created/modified, are LEFMcrackGrowthByGFem, GlobalLo-

calQuasiStatic, StressIntensityFactors, GFemModel, GFemElement, and GFemPara-

metric, among others.

• The OOP with its main characteristics such as abstraction and inheritance greatly

helps to include new numerical approaches to solve different kind of problems with

small required changes. Therefore, with the aim of current implementations, different

numerical approaches (such as meshfree method) can also use the two-scale analysis

scheme, using the inheritance concept of the OOP.
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7.2 Recommendations for Future Works

Although this PhD thesis covers a variety of two-dimensional structural problems, but there

are some works that can be done in order to fill some voids of this research, such as:

- The stable G/XFEM can be used to model the crack propagation for both single and

two-scale analysis cases. In this manner, some enrichment functions may have to change

in order to make the crack propagation feasible with this approach.

- The enrichment functions of the G/XFEM may not be smooth over an enriched ele-

ment due to presence of the discontinuity inside the element. Therefore, the standard

Gauss quadrature rule cannot be used for this type of element, and a modifications

are necessary for numerical integration over the element crosses by the discontinuity.

In this research, the increasing of the number of Gauss points is used as a solution,

however, this approach may result in loss of accuracy. In order to overcome these dif-

ficulties, two other techniques can be used : the triangular/quadrilateral partitioning

method and the rectangular sub-grids method. Thus, another future line of research

http://periodicos.unb.br/index.php/ripe/article/view/23957
http://periodicos.unb.br/index.php/ripe/article/view/23957
http://dx.doi.org/10.20906/CPS/CILAMCE2015-0439
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could be implementing one of these techniques in order to make the crack propagation

procedure more accurate.

- This research only covers the analysis for two-dimensional and Reissner-Mindlin plate

problems, solving either single or two-scale approaches. Since, there is no research

work on two-scale G/XFEM analysis for Shell structures, this can be a very interesting

research theme to be done. Also, this topic can be mixed with the crack propaga-

tion implementation from the current project to model the crack propagation in shell

structure using the two-scale analysis.

- Although the two-scale/global-local G/XFEM already show their advantages to solve

the structural problems, but a three-scale approach can even reduce the computational

cost more than the existing two-scale analysis. This can be done by defining a coarse

global problem as the first scale, the quite-fine local problem as the second scale, and

a very fine sub-local problem as the third scale. The sub-local problem will be used

to enrich the local problem, and the local problem will be used to enrich the global

problem. With this approach, a small local domain can be chosen, since the third scale

can be used to obtain a more precise solution.

- Another promising topic for future studies is using of parallel processing strategy to

accelerate solution procedure. Although, the INSANE empowered by incorporating a

SuiteSparse matrix approach which uses the advantage of sparse matrix to solve the

matrix system of equations. But, implementing a parallel processing approach can help

two-scale G/XFEM analysis with multiple local problems to solve each local problem

with a separated thread/processor.

- The local domain from global problem in two-scale G/XFEM approach was considered

as a fixed boundary during the crack propagation process. However, the more efficient

way to deal with this kind of problems is to have a moving local problem that updates

itself with the crack-tip position.

- The last recommendation but not least, is the modeling the crack front formation,

i.e., the orientation of the crack front, with respect the upper/lower surfaces of the

problem. There is no study in the literature that considered this behavior for the

Reissner-Mindlin plates.



Appendix A

SIF CALCULATION PROCEDURE

Interaction energy integral method is used here to calculate the stress intensity factors. This

method requires auxiliary displacement, stress and strain field solutions. Both plane stress

and Reissner-Mindlin plate problems will be discussed in this section. These explanations

are brought from Malekan and Barros (2017).

A.1 Plane Stress Problems

The J-integral contour for a plane stress problem is defined as Rice (1968):

J =

∮
Γ

[
Wδ1j − σij

∂ui
∂x1

]
njdΓ (A.1)

where W is the strain energy density defined as W = 1
2σijεij , σij and εij are the stress and

strain tensor, respectively, ui is the displacement field, nj is the unit outward normal vector

to the contour integral Γ that contains the crack, and δ is the Kronecker delta.

Following Belytschko and Black (1999); Nguyen (2005), assume two states of a cracked

body: State (1) (σ
(1)
ij , ε

(1)
ij , u

(1)
i ) represents the current state and State (2) (σ

(2)
ij , ε

(2)
ij , u

(2)
i )

is an auxiliary state which will be chosen as the asymptotic fields for modes I and II. The

J-integral for the sum of the these two states is:

J(1+2) =

∮
Γ

[
1

2

(
σ

(1)
ij + σ

(2)
ij

)(
ε
(1)
ij + ε

(2)
ij

)
δ1j −

(
σ

(1)
ij + σ

(2)
ij

)
∂

∂x1

(
u

(1)
i + u

(2)
i

)]
j

dΓ

(A.2)

expanding Eq. (A.2) results in:

J(1+2) = J(1) + J(2) + I(1,2) (A.3)

where J(1) and J(2) are obtained from Eq. (A.1) and the states (1) and (2), respectively.

I(1,2) is called the interaction integral for states (1) and (2) and defined as:
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I(1,2) =

∮
Γ

[
W (1,2)δ1j − σ

(1)
ij

∂u
(2)
i

∂x1
− σ(2)

ij

∂u
(1)
i

∂x1

]
njdΓ (A.4)

in which W (1, 2) is the interaction strain energy defined by:

W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij (A.5)

For general mixed mode problems, the following relationship between the value of the J-

integral and the stress intensity factors can be generally defined Rice (1968):

J =
1

E′
(
K2
I +K2

II

)
(A.6)

in which E′ = E for plane stress and E′ = E/(1 − ν2) for plane strain problems. The

J-integral definition in Eq. (A.6) can be rewritten for the combined states (1) and (2), using

KI = K
(1)
I +K

(2)
I and KII = K

(1)
II +K

(2)
II , as:

J(1+2) = J(1) + J(2) +
2

E′

(
K

(1)
I K

(2)
I +K

(2)
II K

(1)
II

)
(A.7)

Equations (A.3) and (A.7) provide this new description to the interaction integral:

I(1,2) =
2

E′

(
K

(1)
I K

(2)
I +K

(2)
II K

(1)
II

)
(A.8)

K
(1)
I and K

(1)
II can be obtained by choosing an appropriate auxiliary field for state (2). For

an auxiliary field of mode I (with K
(2)
I = 1 and K

(2)
II = 0), the interaction integral I(1,2) is

expressed as I
(1)
mode I :

K
(1)
I =

E′

2
I

(1)
mode I (A.9)

Similarly, to a mode II auxiliary field (with K
(2)
I = 0 and K

(2)
II = 1), I(1,2) is expressed as

I
(1)
mode II and:

K
(1)
II =

E′

2
I

(1)
mode II (A.10)

Aiming to simplify the numerical integration of Eq. (A.4), it can be converted into an area

integral by multiplying the integrand with a smooth bounded weighting function q, described

below. Then for each contour Γ, assuming the crack faces are stress free and straight in the

interior of the region A and bounded by the outer prescribed contour C0, the interaction

integral may be written as:

I(1,2) =

∮
C

[
W (1,2)δ1j − σ

(1)
ij

∂u
(2)
i

∂x1
− σ(2)

ij

∂u
(1)
i

∂x1

]
q mj dΓ (A.11)
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with:

q =

 1 on Γ

0 on C0

(A.12)

where C = Γ + C+ + C− + C0 and mj is the outward unit normal vector, equal to nj on

C0 ∪ C+ ∪ C− to the contour C, see Fig. A.1(a). The divergence theorem is used, which

gives the following equation for the interaction integral in domain form:

I(1,2) =

∮
A

[
σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
−W (1,2)δ1j

]
∂q

∂xj
dA (A.13)

Following expressions can be adopted to compute the displacement, stress and strain fields

for auxiliary states:

Table A.1: Expressions to calculate auxiliary states.

Field Mode I Mode II

ux
1
2µ

√
r
2π cos θ2

(
κ− 1 + 2 sin2 θ

2

)
1
2µ

√
r
2π sin θ

2

(
κ+ 1 + 2 cos2 θ2

)
uy

1
2µ

√
r
2π sin θ

2

(
κ+ 1− 2 cos2 θ2

)
1
2µ

√
r
2π cos θ2

(
κ− 1− 2 sin2 θ

2

)
σxx

1√
2πr

cos θ2
(
1− sin θ

2 sin 3θ
2

)
− 1√

2πr
sin θ

2

(
2 + cos θ2 cos 3θ

2

)
σyy

1√
2πr

cos θ2
(
1 + sin θ

2 sin 3θ
2

)
1√
2πr

sin θ
2 cos θ2 cos 3θ

2

τxy
1√
2πr

cos θ2 sin θ
2 cos 3θ

2
1√
2πr

cos θ2
(
1− sin θ

2 sin 3θ
2

)

where µ and κ are material constants defined by:

µ =
E

2(1 + ν)
; κ =


3− 4ν plane strain

3− ν
1 + ν

plane stress

(A.14)

By having the displacement, one can obtain the strain fields by using the following expression:

ε
(2)
ij =

1

2

(
u

(2)
i,j + u

(2)
j,i

)
(A.15)

Since all terms in Eq. (A.13) were defined, the interaction integral can be calculated numer-

ically over the domain elements (Fig. A.1(b)) using:

I(1,2) =
∑

elements
over domain A

Ngp∑
gp=1

{[
σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
−W (1,2)δ1j

]
∂q

∂xj

}
wgp detJ (A.16)

where Ngp is the number of Gauss points, wgp is the Gauss point weight, and detJ is the

determinant of the Jacobian.
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(a) (b)

Figure A.1: J-integral domain definition: (a) Conventions at crack tip. Domain A is
enclosed by Γ, C+, C−, and C0. Unit normal mj = nj on C+, C−, and C0 and mj = −nj

on Γ. (b) Elements selected around the crack tip, over a circle with radius of r, for the
interaction energy integral calculation.

A.2 Reissner-Mindlin plate problem

The J-integral contour for a Reissner-Mindlin plate problem is defined as Dolbow et al

(2000b):

J =

∮
Γ

{
Wδ1β −

[
Mαβψα,1 +Qβw,1

]}
nβdΓ (A.17)

where Mαβ is the bending moment, Qβ is the shear, w is the transverse displacement and

ψα is section rotation about the xα axes that define the middle plane of the plate, in which

α and β ranging over the values 1,2.

After following similar mathematical to the section A.1, one can reach following interaction

energy integral equation for the Reissner-Mindlin plate:

I =

∮
Γ

{
Wδ1β −

[
M

(1)
αβ ψ

(2)
α,1 +M

(2)
αβ ψ

(1)
α,1 +Q

(1)
β w

(2)
,1 +Q

(2)
β w

(1)
,1

]}
njdΓ (A.18)

in which, similar to the section A.1, State (1) represents the current state and State (2) is

an auxiliary state. The interaction strain energy, W , is defined by:

W (1,2) = M (1) : ε
(2)
b +Q(1) · ε(2)

s = M (2) : ε
(1)
b +Q(2) · ε(1)

s (A.19)

where εb and εs are bending and shear strains, respectively. Referring to Fig. A.1(a) and

Eq. (A.12), Eq. (A.18) can be rewritten for a crack with traction free faces as:

I =

∮
C

{
−Wδ1β +

[
M

(1)
αβ ψ

(2)
α,1 +M

(2)
αβ ψ

(1)
α,1 +Q

(1)
β w

(2)
,1 +Q

(2)
β w

(1)
,1

]}
mβ q dC (A.20)
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Applying the divergence theorem to the integral over A, we obtain:

I =

∫
A

{[
M

(1)
αβ ψ

(2)
α,1 +M

(2)
αβ ψ

(1)
α,1 +Q

(1)
β w

(2)
,1 +Q

(2)
β w

(1)
,1

]
−Wδ1β

}
qβ dA (A.21)

The above integral can be reduced depending on whether the quantity of interest is KI , KII ,

or KIII , as certain terms in the auxiliary fields vanish for each case. For example, for KI
and KII the integral takes the form:

I =

∫
A

{[
Q

(1)
β w

(2)
,1 +Q

(2)
β w

(1)
,1

]
−Wδ1β

}
qβ dA (A.22)

whereas for KIII the integral is:

I =

∫
A

{[
M

(1)
αβ ψ

(2)
α,1 +M

(2)
αβ ψ

(1)
α,1

]
−Wδ1β

}
qβ dA (A.23)

The auxiliary state for the displacement fields in Reissner-Mindlin plate theory can be found

in Sosa (1986) as a power series in
√
r and are shown in the following Table.

Table A.2: Auxiliary states for the displacement fields of Reissner-Mindlin plate.

Field Mode I Mode II Mode III

w 6r
√
2r

Et3

[
1
3 (7 + ν)C 3θ

2
− (1− ν)C θ

2

]
6r

√
2r

Et3

[
− 1

3 (5 + 3ν)S 3θ
2

+ (1− ν)S θ
2

]
6
√
2r

5tµ S θ
2

ψ1
6
√
2r

Et3 C θ
2

[4− (1 + ν)Cθ]
6
√
2r

Et3 S θ
2

[4 + (1 + ν)Cθ]
16r

√
2r

5Et3

[
−S θ

2
− (1 + 3ν)C θ

2
Sθ

]
ψ2

6
√
2r

Et3

[
4S θ

2
− (1 + ν)C θ

2
Sθ

]
6
√
2r

Et3

[
−2C θ

2
(1− ν) + (1 + ν)S θ

2
Sθ

]
16r

√
2r

5Et3 C θ
2

[1 + (1 + 3ν)Cθ]

in which Cθ and Sθ represent cos θ and sin θ functions, respectively. Moreover, the auxiliary

bending moments and shears in polar coordinates are as follows (Sosa, 1986):

Mrr = − K1

4
√

2r

(
cos

3θ

2
− 5 cos

θ

2

)
+

3K2

4
√

2r

(
sin

3θ

2
− 5

3
sin

θ

2

)
(A.24)

Mθθ =
K1

4
√

2r

(
cos

3θ

2
+ 3 cos

θ

2

)
− 3K2

4
√

2r

(
sin

3θ

2
+ sin

θ

2

)
(A.25)

Mrθ =
K1

4
√

2r

(
sin

3θ

2
+ sin

θ

2

)
+

3K2

4
√

2r

(
cos

3θ

2
+

1

3
cos

θ

2

)
(A.26)

Qr =
K3√

2r
sin

θ

2
(A.27)

Qθ =
K3√

2r
cos

θ

2
(A.28)

The quantities M11, M22, M12, Q1, and Q2 can be calculated from the following transfor-

mation formulas:

M11 = Mrr cos2 θ +Mθθ sin2 θ − 2Mrθ sin θ cos θ (A.29)

M22 = Mrr sin2 θ +Mθθ cos2 θ + 2Mrθ sin θ cos θ (A.30)
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M12 = (Mrr −Mθθ) sin θ cos θ + 2Mrθ(cos2 θ − sin2 θ) (A.31)

Q1 = Qr cos
θ

2
−Qθ sin θ (A.32)

Q2 = Qr sin
θ

2
+Qθ cos θ (A.33)

Thus, we can have the following relations for auxiliary bending moments and shears:

M11 =
K1√

2r
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
− K2√

2r
sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)
(A.34)

M22 =
K1√

2r
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
− K2√

2r
sin

θ

2
cos

θ

2
cos

3θ

2
(A.35)

M12 =
K1√

2r
sin

θ

2
cos

θ

2
cos

3θ

2
+

K2√
2r

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(A.36)

Q1 = − K3√
2r

sin
θ

2
(A.37)

Q2 =
K3√

2r
cos

θ

2
(A.38)

As an example, K2 and K3 must be set equal to zero in all equation in order to calculate

auxiliary moment intensity factor of mode I. The process of evaluating the mixed-mode

intensity factors must be carried out with a judicious choice of the auxiliary moment and

shear force intensity factors to evaluating the interaction energy integral. From the Eq.

(A.17) and the energy release rate formulation, one can obtain the following expression:

I =
24π

Et3

[
KIK

(2)
I +KIIK

(2)
II

]
+

12π

10µt
KIIIK

(2)
III (A.39)

where, to extract KI , the following values is chosenK
(2)
i = 1, K

(2)
II = 0, and K

(2)
III = 0.

Then, the moment intensity factor KI can be calculated as:

KI =
Et3

24π
I (A.40)



Appendix B

XML INPUT FILE

This section presents a detail explanation on different parts of the XML input file for both

classical and two-scale analysis. Code B.1 shows the input data for Solution type definition

for classical analysis using StaticEquilibriumPath solver class. It needs to define total number

of steps, required parameters for iterative approach such as: maximum number of iterations;

tolerance; convergence type (Force:1, Displacement:2, Both:3); and equilibrium type (1, 2,

3), and iterative strategy (such as displacement control and cylindrical arc-length control).

1 <Solution class="StaticEquilibriumPath">

2 <NumMaxSteps >10</NumMaxSteps >

3 <Step class="StandardNewtonRaphson">

4 <NumMaxIterations >100</NumMaxIterations >

5 <Tolerance >1.0E-08</Tolerance >

6 <ConvergenceType >1</ConvergenceType >

7 <EquilibriumType >1</EquilibriumType >

8 </Step>

9 <IterativeStrategyList >

10 <IterativeStrategy class="DisplacementControl" LoadFactor="0.1">

11 <NodeControl >10</NodeControl >

12 <DirectionControl >y</DirectionControl >

13 </IterativeStrategy >

14 </IterativeStrategyList >

15 </Solution >

Code B.1: XML input file for Solution definition

Two-scale analysis is done using GlobalLocal and GlobalLocalQuasiStatic for static and quasi-

static crack propagation problems, respectively, as shown in Code B.2. GlobalEnrichedNodes

defines global node labels to be enriched by the global-local enrichment strategy. LocalEn-

richerList specifies whether any node of GlobalEnrichedNodes is belong to two-overlapped

local element, if so it must be specified by number ‘1’ in this tag. LocalPath is related to the

local file name, which it only differs by a string defined in this tag from the global file name.

GlobalSolverType, LocalSolverType, and GlobalLocalSolverType specify the solver type at each

step of the global-local analysis for step 1, step 2, and step 3, respectively (see Fig. 2.4 for

step definition). GlobalLocalIterations defines how many iterations must be followed for each

static or quasi-static step. For example, if this values is set equal to 2, the global-local steps

will be repeated two times for the same loading magnitude to have a more precise solution.

Finally, the NumMaxSteps defines number of quasi-static steps for the crack propagation

procedure. This tag must be used only with the GlobalLocalQuasiStatic solver class.
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1 <Solution class="GlobalLocalQuasiStatic">

2 <GlobalEnrichedNodes >9 18</GlobalEnrichedNodes >

3 <LocalEnricherList >0 0</LocalEnricherList >

4 <LocalPath >-1</LocalPath >

5 <GlobalSolverType >4</GlobalSolverType >

6 <LocalSolverType >4</LocalSolverType >

7 <GlobalLocalSolverType >4</GlobalLocalSolverType >

8 <GlobalLocalIterations >3</GlobalLocalIterations >

9 <NumMaxSteps >4</NumMaxSteps >

10 </Solution >

Code B.2: XML input file for quasi-static global-local analysis definition

Code B.3 defines the material properties, for either linear or nonlinear analysis. It is a list

which means the model can be created with multiple material mediums. The tag Fracture-

Toughness is used for crack propagation in order to verify the crack propagation with the

literature, if there is any.

1 <MaterialList >

2 <Material class="LinearElasticIsotropic" label="Material">

3 <Elasticity >1.0</Elasticity >

4 <Poisson >0.3</Poisson >

5 <FractureToughness >0.025</FractureToughness >

6 </Material >

7 </MaterialList >

Code B.3: XML input file for Material definition

The enrichment definition is brought with the explanation in the Code B.4. This block of

codes contain two different enrichment types: singular and polynomial for classical and stable

G/XFEM analyses, respectively. InitialPoint is related to the crack-tip point, Lambda and Q

are singular parameters shown in Eq. (2.12), and Theta is the crack orientation with respect

to the positive x-coordinate direction from global coordinate system. The parameters in

StablePolynomialEnrichment type are related to order of polynomials that is used to enrich

the problem.

1 <EnrichmentList >

2 <Enrichment class="CrackEnrichmentModeI" label="crack">

3 <InitialPoint >8.0 0.0 0</InitialPoint >

4 <Lambda >0.5</Lambda >

5 <Q>0.333333333 </Q>

6 <Theta>3.14159265358 </Theta >

7 </Enrichment >

8 <Enrichment class="StablePolynomialEnrichment" label="poly">

9 <X>1 0 2 0</X>

10 <Y>0 1 0 2</Y>

11 <Z>0 0 0 0</Z>

12 </Enrichment >

13 </EnrichmentList >

Code B.4: XML input file for Enrichment definition

Code B.5 is shown the nodal definition tags. It contains the nodal: coordinate, labels,

restraint types (false:free to move, true:fixed), enrichment type definition (can hold multiple

enrichment types for a single node), and scaling factor which mostly related to the polynomial

enrichment function.

1 <Node label="1">

2 <Coord>0.000000 1.000000 0.000000 </Coord>

3 <NodeValues >

4 <DOFLabels >Dx Dy</DOFLabels >
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5 <Restraints >false false</Restraints >

6 <EnrichmentType >poly</EnrichmentType >

7 <ScalingFactor >1</ScalingFactor >

8 </NodeValues >

9 </Node>

Code B.5: XML input file for Node definition

The main part to specify the linear or nonlinear materials is in the element definition, as

shown in the Code B.6. Incidence defines the nodal incidence of the element and Analy-

sisModel specifies the problem type, from plane stress (GFemPlaneStress) and plane strain

(GFemPlaneStrain) to Reissner-Mindlin plate (GFemReissnerMindlinPlate), for G/XFEM

analysis. Gaussian quadrature order is defined with IntegrationOrder tag. Constitutive-

Model defines if the material mode is linear (LinearElasticConstModel) or nonlinear (ML-

FOCM SCM FD) and ElmDegenerations sets the element section properties. GlobalElement

tag is used in the local problem definition in order to specify this local element belongs

to which global element. BoundaryInformation defines the boundary condition type to be

applied on the corresponding local problem boundary, from the global solution comes from

the first global-local step. Each number is related to corresponding element edge: 0 for ap-

ply nothing on the boundary, 3 for Neumann boundary, 4 for Dirichlet boundary, and 5 for

Cauchy boundary transferring types.

1 <Element class="ParametricElement.Quadrilateral.Q4" label="E1">

2 <Incidence >1 2 3 4</Incidence >

3 <AnalysisModel >GFemPlaneStress </AnalysisModel >

4 <!-- or "GFemReissnerMindlinPlate" for Reissner -Mindlin problem -->

5 <IntegrationOrder >6 6 0</IntegrationOrder >

6 <ConstitutiveModel >LinearElasticConstModel </ConstitutiveModel >

7 <!-- or "MLFOCM_SCM_FD" for Nonlinear materials -->

8 <ElmDegenerations >Section </ElmDegenerations >

9 <GlobalElement >F10</GlobalElement >

10 <BoundaryInformation >3 0 0 3</BoundaryInformation >

11 </Element >

Code B.6: XML input file for Element definition

Code B.7 has required tags to define the discontinuity type, crack line, and other parameters

for the static and quasi-static analysis based on G/XFEM method. This code defines the

crack geometry by setting two points, representing a straight line. Lines 5-6 and 11-13 are

parameters related to the singular (crack) or near-tip enrichment functions. Lines 15-18

fill some parameters specifically for LEFM crack propagation, such as: fractureModes to

define mode(s) of fracture (1, 2, 3, 4, 5, and 6 for mode-I, mode-II, mode-III, mode-I and II,

mode-I and III, and mode-II and III, respectively), InteractIntegRadiusMultiplier to define

the interaction integral multiplier, i.e. rm, SingleOrDoubleCrackTip to define whether both

crack-tips are inside of the model boundaries or not, crackIncrement which defines the δa,

from section 5.2.2. The tag IsWithCrackPropagation specifies if the problem is a static

(‘false’) analysis or quasi-static (‘true’). Finally, the OnlyOneCrack forces the problem to

be analyzed with a single (‘true’) or multiple cracks (‘false’). This belongs only for nonlinear

material analysis procedure.

1 <DiscontinuityList >

2 <Discontinuity class="LEFMcrackGrowthByGfem" label="D1">

3 <FirstPoint >
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4 <coordinateFirst >10.0 2.0 0.0</coordinateFirst >

5 <firstTheta0 >0.0</firstTheta0 >

6 <firstQ >0.3333333 </firstQ >

7 <firstLambda >0.5</firstLambda >

8 </FirstPoint >

9 <SecondPoint >

10 <coordinateSecond >8.0 2.0 0.0</coordinateSecond >

11 <secondTheta0 >3.14159265359 </secondTheta0 >

12 <secondQ >0.3333333 </secondQ >

13 <secondLambda >0.5</secondLambda >

14 </SecondPoint >

15 <fractureModes >4</fractureModes >

16 <InteractIntegRadiusMultiplier >2.0</InteractIntegRadiusMultiplier

>

17 <SingleOrDoubleCrackTip >2</SingleOrDoubleCrackTip >

18 <crackIncrement >0.75</crackIncrement >

19 </Discontinuity >

20 </DiscontinuityList >

21 <IsWithCrackPropagation boolean="false">

22 <OnlyOneCrack >true</OnlyOneCrack >

23 <crackPropagationType >LEFMcrackGrowthByGfem </crackPropagationType >

24 </IsWithCrackPropagation >

Code B.7: XML input file for Discontinuity definition



Appendix C

SuiteSparse MATRIX APPROACH

A Sparse matrix data structure uses the advantage of sparse matrix to solve the matrix

system of equations. In order to optimize computational time, the sparse matrix can be

held in some form of compact data structure that avoids storing the numerically zero entries

in the matrix. The two most common formats for sparse direct methods are the triplet

matrix and the compressed-column matrix (or the compressed-row matrix) (Davis, 2004).

The simplest sparse matrix data structure is a list of the non-zero entries in arbitrary order,

also called the triplet form. However, in the compressed-column format, which is used in

INSANE computational framework, each column is represented as a list of values and their

corresponding row indices for each column. To create this data structure, the first step counts

the number of entries in each column of the matrix, and the column pointer array, as well

as its corresponding value, is constructed as the cumulative sum of the column counts. The

entries are placed in their appropriate columns in a second step.

Popular choice to solve static finite element problems (Ax = b) are direct methods that

rely on numerical factorizations. Among various direct methods, one can use the unsym-

metric multifrontal method in particular (Davis and Duff, 2004; Pais et al, 2012; Zheng and

Luo, 2014; Davis et al, 2016). The UMFPACK (Davis, 2009) code is written based on the

multifrontal method. This code is chosen to accelerate the processor part mainly because

it is well-designed and its source codes are easily available. It already has been used by

different commercial and in-house codes, such as ANSYS (2015); NASTRAN (2015), and

FreeFem++(Hecht, 2012).

A typical multifrontal algorithm consists of the symbolic and the numerical factorization. In

the symbolic factorization stage, an elimination tree is formed. The numerical factorization

includes pivoting, assembling, and updating is then performed on each of the frontal matrices.

For a frontal matrix, the following transformation is performed (Yu et al, 2011).P Q

R C

 =

L1 0

L2 C − L2U2

U1 U2

0 1

 (C.1)

where block P contains all of the pivots in the current supernode, blocks Q and R contain
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Algorithm C.1: General multifrontal numerical factorization approach used in UMFPACK
(Davis, 2004; Yu et al, 2011)

1: procedure numerical factorization
2: Initialization
3: Symbolic factorization and form the elimination tree
4: for all frontal matrices do
5: while factorize the frontal do
6: Assemble using update matrices and original matrix elements
7: Perform row pivoting
8: Factor the pivot to get a part of L1 and U1
9: Update part of L2

10: end while
11: Update U2 and C
12: end for
13: end procedure

the corresponding nonzero rows and columns of the pivots, P = L1U1, L2 = RU−1
1 , and

U2 = L−1
1 Q. Figure C.1 shows a schema of the matrices notations for the multifrontal

method used in UMFPACK. Also, algorithm C.1 is a simplified version of the unsymmetric

multifrontal method used by UMFPACK.

Figure C.1: Matrices notations for the multifrontal method

Figure C.2 shows the structure of the SparseMatrix class that extends the IMatrix class

(Andrade and Silva, 2015). The main implementation for conducting and utilizing the UMF-

PACK capabilities is written in this class. After filling the required parts of this class, the

corresponding libraries related to the UMFPACK will be called in order to solve the system

of equations.

The example presented in section 4.3.1 were also solved using the SparseMatrix approach.

As mentioned earlier, using the SuiteSparse library is a powerful tool to accelerate solving

procedure of matrix system of equations. Table C.1 clearly shows the advantage of using the

LU factorization algorithm provided by the SuiteSparse library over a so-called conventional

approaches (Babuška iterative approach). In INSANE, this last one also corresponds to the

LU factorization, but it is totally written in Java and the stiffness matrix is fully stored.
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Figure C.2: UML diagram of the SparseMatrix class

Only corresponding data to the enriching problem with the singular enrichment are brought

in this Table.

Table C.1: Comparing CPU time between conventional and using the SuiteSparse library

G/XFEM SG/XFEM

h size 2 1 0.5 2 1 0.5

DOF 389 718 1940 389 718 1940

CPU time (msec)

Babuška iterative method
145 722 6369 139 667 6081

CPU time (msec)

SuiteSparse method
8 25 48 8 23 44



Appendix D

PCCG MIXED WITH THE
BABUŠKA APPROACH

The conjugate gradient (CG) method was first proposed by Hestenes and Stiefel in 1952

(Hestenes and Stiefel, 1952) as a direct solver. Moreover, it is one of the most effective

and simple methods that can solve the linear system of equations in an iterative fashion.

It and is based on the idea that the solution of linear system of equations Ax = b can

be transformed to the minimization of the potential Π = 1
2x

TAx − bx (Bathe, 1996).

However, the CG method is not always more efficient than direct methods such as LU and

Cholesky factorization methods. The convergence rate of the CG method greatly depends

on the condition number of the matrix A. If the conditioning of matrix A is very poor,

the CG method may lead to higher computational cost than a direct solver. Consequently,

in industrial applications, a preconditioner C is almost always used with the conjugate

gradient method to improve the conditioning of the matrix. This approach is denoted the

preconditioned conjugate gradient method (PCCG). According (Bathe, 1996; Kim et al,

2015), the following two steps with their detail sub-steps is the preconditioned conjugate

gradient algorithm:

(1) Initialization: Choose the initial guess x0:

(i). r0 = b−Ax0

(ii). r̄0 = C−1r0

(iii). p0 = r̄0

(2) Preconditioned conjugate gradient algorithm: While ‖ b −Axi ‖ / ‖ b ‖≥ TOL for

i = 0, 1, 2, ... repeat the following procedure. Here, TOL denotes the level of tolerance

set for convergence.

(i). λi =
r̄Ti ri

pTi Api

(ii). xi+1 = xi + λipi
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Algorithm D.1: Algorithm of the Babuǔka procedure (Strouboulis et al, 2000b; Barros,
2002)

1: Initialization

2: Tij =
δij
Kij

3: F̄ = TF
4: K̄ = TKT (normalizing the principal diagonal)
5: Kε = K̄ + εI
6: Ū0 = K−1

ε F̄
7: r0 = F̄ −KŪ0
8: e0 = K−1

ε r0
9: i = 1

10: while ‖ eiK̄ei
U iK̄U i

‖< TOL do

11: ri = r0 −
∑i−1

j=0 K̄ej

12: ei = K−1
ε ri

13: Ūi = Ū0 +
∑i−1

j=0 ej
14: i = i+ 1
15: end while
16: U = TK̄

(iii). ri+1 = ri + λiApi

(iv). r̄i+1 = C−1ri+1

(v). αi =
r̄Ti+1ri+1

r̄Ti ri

(vi). pi+1 = r̄i+1 + αipi

In general, as the eigenvalues of the preconditioner C get closer to those of the matrix A,

the convergence of the PCCG method improves (Bathe, 1996).

The PCCG mixed with the Babuška approach is shown in Code D.1. This approach is

already implemented into the INSANE computational framework, under the class LinearE-

quationSyestems. The tolerance for Babuška procedure is set equal to 1 × 10−10. Also, the

tolerance for preconditioned conjugate gradient method inside of Babuška procedure is set

equal to 1 × 10−12. The PCCG method is used first to obtain U0 and e0. Then, it is used

inside of while loop from Algorithm D.1 to obtain the ei.
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1 public IVector babuskaSolverWithPCCGDiag(IMatrix k, IVector f) {

2 IMatrix ke = new IMatrix(k.getNumRow (), k.getNumCol ());

3 IVector tij = new IVector(k.getNumRow ());

4 tij.setAllElements (1);

5 IMatrix kn = (IMatrix) k.clone ();

6 kn.sqrt();

7 tij.divideBy(kn);

8 IVector fn = new IVector(tij.getSize ());

9 fn = tij.vecDotVec(f);

10 ke.normPrincDiag(tij , k);

11 kn.set(ke);

12 babuskaPerturb = 1e-10;

13 ke.addPerturbDiag(babuskaPerturb);

14 IVector u0 = preconditionedConjugateGradientsSolver(ke , fn);

15 IVector r0 = (IVector) fn.clone ();

16 IVector temp1 = kn.mul(u0);

17 r0.sub(temp1);

18 IVector e0 = preconditionedConjugateGradientsSolver(ke , r0);

19

20 IVector ri = (IVector) r0.clone ();

21 IVector ui = (IVector) u0.clone ();

22 IVector ei = (IVector) e0.clone ();

23 babuskaTol = 1e-10;

24 double var = kn.mul(e0).dot(e0) / kn.mul(u0).dot(u0);

25

26 int i = 1;

27 while (Math.abs(var) > babuskaTol) {

28 ri.sub(kn.mul(ei));

29 ei = preconditionedConjugateGradientsSolver(ke , ri);

30 ui.add(ei);

31 var = (kn.mul(ei).dot(ei) / kn.mul(ui).dot(ui));

32 i += 1;

33 }

34 x = (IVector) tij.vecDotVec(ui);

35 return x;

36 }

Code D.1: Code block of the babuskaSolverWithPCCGDiag(...) method from
LinearEquationSystems class
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