UNIVERSIDADE FEDERAL DE MINAS GERAIS PROGRAMA DE PÓS-GRADUAÇÃO EM SANEAMENTO, MEIO AMBIENTE E RECURSOS HÍDRICOS

AVALIAÇÃO DE MÉTODOS PARA A REGIONALIZAÇÃO DE CURVAS DE PERMANÊNCIA DE VAZÕES PARA A BACIA DO RIO DAS VELHAS

Jorge Antonio de Oliveira Pinto

Belo Horizonte 2006

AVALIAÇÃO DE MÉTODOS PARA A REGIONALIZAÇÃO DE CURVA DE PERMANÊNCIA DE VAZÕES PARA A BACIA DO RIO DAS VELHAS

Jorge Antonio de Oliveira Pinto

AVALIAÇÃO DE MÉTODOS PARA A REGIONALIZAÇÃO DE CURVA DE PERMANÊNCIA DE VAZÕES PARA A BACIA DO RIO DAS VELHAS

Dissertação apresentada ao Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Recursos Hídricos

Linha de pesquisa: Modelos de simulação e previsão hidrológica

Orientador: Prof. Mauro da Cunha Naghettini

Belo Horizonte
Escola de Engenharia da UFMG
2006

Pinto, Jorge Antônio de Oliveira P659a Avaliação de métodos para a

Avaliação de métodos para a regionalização de curva de permanência de vazões para a bacia do Rio das Velhas [manuscrito] / Jorge Antônio de Oliveira Pinto .— 2006.

219 f., enc. : il.

Orientador: Mauro da Cunha Naghettini

Dissertação (mestrado) — Universidade Federal de Minas Gerais, Escola de Engenharia.

Bibliografia: f. 123-128

Anexos: f. 129-219

1. Recursos hídricos - Teses. 2. Curvas de permanência - Teses. 3. Vazante - Teses. 4. Escoamento de base - Teses. 1. Naghettini, Mauro da Cunha. II. Universidade Federal de Minas Gerais, Escola de Engenharia. III. Título.

CDU: 556 (043)

Ficha elaborada pelo Processamento Técnico da Biblioteca da EE/UFMG

UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos Av. Contorno 842 – 7° andar 30110-060 Belo Horizonte – BRASIL Tel: 55 (31) 3238-1882 Fax: 55 (31) 3238-1882 posgrad@desa.ufmg.br www.smarh.eng.ufmg.br

FOLHA DE APROVAÇÃO

Avaliação de Métodos para a Regionalização de Curvas de Permanência de Vazões para a Bacia do Rio das Velhas

JORGE ANTONIO DE OLIVEIRA PINTO

Dissertação defendida e aprovada pela banca examinadora constituída pelos Senhores:

Prof. MAURO DA CUNHA NAGHETTINI - Orientador

Prof. CELSO DE OLIVEIRA LOUREIRO

Prof. Márcio Benedito Baptista

PESQ. EBER JOSÉ DE ANDRADE PINTO

Aprovada pelo Colegiado do PG SMARH

Versão Final aprovada por

Profa. Mônica Maria Diniz Leão

Coordenadora

Belo Horizonte, 06 de outubro de 2006.

Prof. Mauro da Cunha Naghettini

Orientador

AGRADECIMENTOS

Agradeço aos meus pais pelo estímulo, pelos ótimos exemplos e por estarem sempre ao meu lado me apoiando nos momentos mais difíceis e às minhas irmãs, sobrinhas e sobrinho por fazerem parte da minha vida.

Ao meu orientador Prof. Mauro Naghettini, pela amizade, pelo incentivo e dedicação que foram essenciais ao aprimoramento desta dissertação.

À Isabela, pelo apoio, amizade, carinho e por sua enorme boa vontade em querer sempre me ajudar me dando um apoio essencial durante este período de minha vida.

Ao Éber (CPRM), Wilson e Maria Antonieta (CPRM) pela disponibilidade e boa vontade em me ajudar em muitos momentos durante a realização desta dissertação.

Aos professores Pierluigi Claps (Politecnico di Torino) e Stefano Casadei (Università degli Studi di Perugia) pela atenção, boa vontade e grande contribuição para esta dissertação.

Aos funcionários Jussara e Roberto do Departamento de Engenharia Hidráulica e Recursos Hídricos pelas conversas e amizade ao longo do curso.

Agradeço a todos meus amigos Luiz, Rubens, Norma, Marcus, Ana Paula, Vanessa, Nebai, José Geraldo, Fernando, Ney, Robélia, Marco Túlio, Fausto e aos professores do Departamento de Hidráulica e Recursos Hídricos e muitos outros amigos pelas conversas, convivência e pelo aprendizado que obtive com todos vocês.

RESUMO

Com o aumento da demanda pelo uso da água devido ao crescimento populacional, à industrialização e à expansão das fronteiras agrícolas, torna-se necessário o desenvolvimento de ferramentas de análise e simulação. Estas ferramentas funcionam como suporte ao planejamento e gerenciamento e, consequentemente, tomadas de decisão quanto aos múltiplos usos dos recursos hídricos de uma bacia hidrográfica.

O conhecimento das vazões mínimas possui importância vital dentro desse contexto. Um índice de vazão mínima muito utilizado está relacionado a uma vazão que é igualada ou superada durante uma alta porcentagem do tempo (e.g. 95%), obtida da chamada curva de permanência.

A curva de permanência é o complemento da função cumulativa de distribuição de vazões diárias, mensais, anuais (ou de outro intervalo de tempo) e representa a magnitude e freqüência com que essas vazões são igualadas ou superadas em um dado período de tempo. Freqüentemente, a elaboração de curvas de permanência pode ser prejudicada pela inexistência ou pouca disponibilidade de dados que cubram a totalidade dos locais de interesse em uma bacia.

Neste trabalho, foram avaliados dois métodos, a saber, o de Tucci (1991) que é um método para regionalização de curvas de permanência de longo termo e o de Claps e Fiorentino (1997), o qual oferece uma abordagem diferente. Nesse método, as curvas de permanência são elaboradas a partir de um ano completo de dados observados e são tratadas estatisticamente da mesma forma como seriam tratados os dados anuais de vazões mínimas ou máximas.

O procedimento utilizado para avaliação dos métodos foi o procedimento "Jack-knife cross validation", em que uma estação com disponibilidade de dados é excluída da análise regional e, posteriormente, incluída, quando da exclusão da outra estação em análise. Desse modo, os dados observados em uma estação são confrontados com os dados estimados para essa mesma estação. Esse procedimento foi aplicado às estações fluviométricas da bacia do Rio das Velhas, em Minas Gerais. O método de Tucci (1991) apresentou, um bom ajuste em todas as análises regionais realizadas para todas as estações de três regiões homogêneas na bacia do rio das Velhas. O método de Claps e Fiorentino (1997) apresentou uma boa performance, porém é necessário que este método seja melhor explorado, por meio de mais aplicações em

diferentes regiões. Como existe uma estreita relação entre vazões mínimas e características hidrogeológicas de uma bacia, e a necessidade de inclusão de variáveis relacionadas às mesmas, foi também utilizado um método de estimação de *IEB* (Índice de escoamento de base) para locais com escassez, ou ausência de dados, que não mostrou resultados satisfatórios para a área de estudo devido à natureza geológica do local e, possivelmente, à qualidade de informação utilizada.

ABSTRACT

With the increasing demand for water due to population growth, industrialization and expansion of the agricultural frontiers, the development of tools of analysis and simulation becomes necessary. These tools are the basis for planning and management and, consequently, making decisions about how much water should be used by the multiple users of water resources within a catchment.

The knowledge of the minimum flows is of upmost importance in this context. A frequently-used low flow index refers to the flow wich is equaled or exceeded in the high percentage of time (e.g. 95%), as given by the so-called flow duration curve (FDC).

The FDC is the complement of the cumulative distribution function of daily, monthly, or annual streamflows and represents the magnitude and frequency with which these flows are equaled or exceeded in a certain period of time. Frequently, the construction of the FDC is affected by the inexistence or restricted data availability at the places of interest in a river basin.

In this MS thesis, two methods have been evaluated, namely, Tucci's method (1991), which is used for the regionalization of long term FDC and the Claps and Fiorentino's method (1997), which offers a different approach. In the latter, FDCs are constructed on a yearly-based interval and the resulting FDCs are treated statistically, in the same way as annual minimum or maximum streamflow data.

The procedure used for evaluation of the methods was the Jack-knife cross validation procedure, where a station with availability of data is excluded from the regional analysis and later included, with the exclusion of another station of the regional analysis. In this way, the observed data in a station are compared with computed values for the same station. The method of Tucci (1991) showed a good adjustment in all the regional analysis carried out for all the stations in three homogeneous regions for FDC for the Das Velhas river basin. The Claps and Fiorentino's method (1997) showed a good performance. However, it is necessary to further explore this method, with other application studies in other regions. As there is a strong relation among minimum flows and hydrogeologic characteristic of a basin, and given the need for inclusion of variables related with hydrogeologic characteristic, it was also used a method of computing the *BFI* (base flow index) for places with no data or scarce data, which

did not show satisfactory results for the study area, probably due to the local geologic nature		
and possibly, to the quality of the available information.		

SUMÁRIO

L	ISTA DE	FIGURAS	VIII
L	ISTA DE	TABELAS	X
L	ISTA DE	ABREVIATURAS, SIGLAS E SÍMBOLOS	XI
1	INTI	RODUÇÃO	1
2		ETIVOS	
-			
	2.1 2.2	OBJETIVO GERAL	
3		ISÃO BIBLIOGRÁFICA	
	3.1 3.1.1	VAZÕES DE ESTIAGEM: CARACTERIZAÇÃO DE FATORES INTERVENIENTES	
	3.1.1	REGIONALIZAÇÃO HIDROLÓGICA	
	3.2.1	Regionalização de Funções Estatísticas de Variáveis hidrológicas	
	3.2.2	Seleção e Análise de Dados	
	3.2.3	Definição de Regiões Homogêneas para Curvas de Permanência	
	3.2.4	Regressão Linear múltipla	
	3.3	Curva de Permanência	
	3.3.1	Definição de Curva de Permanência	
	3.3.2	Histórico e Construção de Curvas de Permanência	
	3.3.3	Utilização de Curvas de Permanência	20
	3.3.4	Regionalização das curvas de permanência	24
	3.4	VARIÁVEIS HIDROGEOLÓGICAS	28
	3.4.1	Índice de Escoamento de Base	28
4	MET	ODOLOGIA	36
	4.1	MÉTODO DE TUCCI(1991)	
	4.2	MÉTODO DE CLAPS E FIORENTINO (1997)	
	4.3	OS MODELOS REGIONAIS DE REGRESSÃO	50
	4.4	OBTENÇÃO DAS VARIÁVEIS EXPLICATIVAS DOS MODELOS DE REGRESSÃO	50
	4.4.1	Determinação de características físicas da Bacia Hidrográfica	51
	4.4.2	Determinação das características hidrológicas da bacia hidrográfica	
	4.5	SELEÇÃO DOS MELHORES MODELOS DE REGRESSÃO	56
	4.5.1	Coeficiente de Determinação	
	4.6	AVALIAÇÃO DOS MÉTODOS REGIONAIS UTILIZADOS	59
5	EST	JDO DE CASO: BACIA DO RIO DAS VELHAS	61
	5.1	CARACTERIZAÇÃO DA BACIA DO RIO DAS VELHAS	61
	5.2	LOCALIZAÇÃO	61
	5.3	CLIMA	
	5.4	GEOLOGIA E GEOMORFOLOGIA	
	5.5	PEDOLOGIA	
	5.6	HIDROGEOLOGIA	
	5.7	HIDROGRAFIA	
	5.8	APLICAÇÃO DOS MÉTODOS DE REGIONALIZAÇÃO DE CURVAS DE PERMANÊNCIA	
	5.8.1	Séries históricas de vazões médias diárias	
	5.8.2 5.8.3	Características Físicas das Estações Utilizadas	
	5.6.5	Características Hidrológicas das Estações Utilizadas	
	5.9 5.9.1	Alto rio das Velhas	
	5.9.1	Médio rio das Velhas	
	5.9.2	Baixo rio das Velhas	
	3.3.3	DUMO TO AUS YELHUS	01

	5.9.4	Avaliação de desempenho do método	82
5.1		GIONALIZAÇÃO PELO MÉTODO DE CLAPS E FIORENTINO (1997)	
	5.10.1	Estimação das vazões médias anuais locais	
5.1	1 Es	TIMAÇÃO DO IEB	87
	5.11.1	Estimação de IEB através de correlação com complexos hidrogeológicos	87
	5.11.2	Correlação entre o IEB e área total de cada bacia	108
5.1	2 RE	SULTADOS PELO MÉTODO DE REGIONALIZAÇÃO DE CLAPS E FIORENTINO (1997)	110
	5.12.1	Alto rio das Velhas	
	5.12.2	Médio rio das Velhas	112
	5.12.3	Baixo rio das Velhas	113
	5.12.4	Avaliação de desempenho do método de Claps e Fiorentino (1997)	113
6	CONCL	USÕES E RECOMENDAÇÕES	119
7	REFER	ÊNCIAS BIBLIOGRÁFICAS	123

LISTA DE FIGURAS

Figura 3.1 – Porosidade Primária e porosidade secundária – Fonte: Cabral et al (2001)	8
Figura 3.2 – Aquíferos não confinados, confinados e suspensos – Fonte: Cabral et al (2001)	
Figura 3.3 – Regime pluvial com breve período de seca	
Figura 3.4 – Regime pluvial perene	21
Figura 3.5 – Regime fortemente torrencial perene	22
Figura 3.6 – Hidrograma toral e de base	31
Figura 4.1 – Curva de permanência	
Figura 4.2 – 41650002 Estação Ponte Licinio Jusante- Método de Tucci (1993)	
Figura 4.3 – Ajuste de Distribuição Normal aos parâmetros anuais α da estação fluviométrica do	rio
das Velhas em Ponte do Licínio-Jusante	40
Figura 4.4 – Ajuste de Distribuição Normal aos parâmetros anuais β da estação fluviométrica do F	Rio
das Velhas em Ponte do Licínio Jusante	41
Figura 4.5 – 41650002- Estação Ponte do Licinio Jusante – Método de Claps e Fiorentino (1997)	
Figura 4.6 – Regressão entre os coeficientes \(\alpha \) e vazões médias anuais	
Figura 4.7 – Regressão entre os coeficientes β e vazões médias anuais	43
Figura 4.8 – Curvas de permanência de diferentes probabilidades anuais de não superação conform	
método de Claps e Fiorentino (1997).	
Figura 4.9 – Regressão entre Alfa e beta para estação Pirapama	
Figura 4.10 – Fluxograma do método de Claps e Fiorentino (1997)	
Figura 5.1 – Bacia Sub 41 rio das Velhas (Fonte CPRM:2001)	
Figura 5.2 - Divisão da bacia do rio das Velhas em partes (Fonte: IGAM-2005)	
Figura 5.3 – Classificação Climática de Köppen para a bacia do rio das Velhas	
Figura 5.4 – Unidades geomorfológicas da bacia do rio das Velhas	69
Figura 5.5 – Mapas de solos da bacia do rio das Velhas	72
Figura 5.6 – Complexos hidrogeológicos da bacia do rio das Velhas	74
Figura 5.7 – Localização das estações utilizadas para o alto, médio e baixo rio das Velhas	
Figura 5.8 - Regressão entre a porcentagem de área do aqüífero de rochas ígneas e metamórficas de	
alto grau e <i>IEB</i> – Sub-bacias 40 e 41	
Figura 5.9 - Regressão entre a porcentagem de área do aquifero de rochas ígneas e metamórficas de	
alto grau e <i>IEB</i> – Sub-bacia 41	
Figura 5.10 - Regressão entre a porcentagem de área do aquífero de rochas ígneas e metamórficas o	
alto grau e <i>IEB</i> - Sub-bacia 41- Região homogênea alto rio das Velhas	
Figura 5.11 - Regressão entre a porcentagem de área do aqüífero de rochas ígneas e metamórficas o alto grau e <i>IEB</i> - Sub-bacia 41 - Região homogênea médio rio das Velhas	
Figura 5.12 - Regressão entre a porcentagem de área do aquífero de rochas e metamórficas de alto	90
grau e <i>IEB</i> - Sub-bacia 41- Região homogênea baixo rio das Velhas	01
Figura 5.13 - Regressão entre a porcentagem de área do aquífero de rochas quartzíticas e <i>IEB</i> – Sub	
bacias 40 e 41	
Figura 5.14 - Regressão entre a porcentagem de área do aquifero de rochas quartzíticas e <i>IEB</i> – Sul	
bacia Sub 41	
Figura 5.15 - Regressão entre a porcentagem de área do aquifero de rochas quartzíticas e <i>IEB</i> – Sub	
bacia 41- Região homogênea alto rio das Velhas	
Figura 5.16 - Regressão entre a porcentagem de área do aquifero de rochas quartzíticas e IEB - Sub	
bacia 41- Região homogênea médio rio das Velhas	93
Figura 5.17 - Regressão entre a porcentagem de área do aqüífero de rochas quartzíticas e IEB - Sub	
bacia 41 - Região homogênea baixo rio das Velhas	
Figura 5.18 - Regressão entre a porcentagem de área do aquifero de rochas ítabiríticas e IEB - Sub-	
bacias 40 e 41	
Figura 5.19 - Regressão entre a porcentagem de área do aqüífero de rochas ítabiríticas e <i>IEB</i> - Sub-	
bacia 41	95

Figura 5.20 - Regressão entre a porcentagem de área do aquifero de rochas ítabiríticas e <i>IEB</i> - Sub-	
bacias 41 - Região Homogênea alto rio das Velhas	96
Figura 5.21 - Regressão entre a porcentagem de área do aqüífero de rochas ítabiríticas e <i>IEB</i> - Subbacia 41 - Região homogênea médio rio das Velhas	06
Figura 5.22 - Regressão entre a porcentagem de área do aquífero de rochas xistosas e <i>IEB</i> - Sub-ba	
40 e 41	
Figura 5.23 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e IEB - Sub-bac	
41	97
Figura 5.24 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e IEB - Sub-bar	
41 - Região homogênea alto rio das Velhas	
Figura 5.25 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e IEB - Sub-bar	cia
41- Região homogênea médio rio das Velhas	
Figura 5.26 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e IEB - Sub-bar	cia
41- Região homogênea baixo rio das Velhas	99
Figura 5.27 - Regressão entre a porcentagem de área do aqüífero pelíto-carbonático e IEB - Sub-ba	icias
40 e 41	
Figura 5.28 - Regressão entre a porcentagem de área do aqüífero Pelito-carbonático e IEB - Sub-ba	acia
41	
Figura 5.29 - Regressão entre a porcentagem de área do aqüífero Pelito-Carbonático e IEB - Sub-b	acia
41 - Região homogênea médio rio das Velhas	
Figura 5.30 - Regressão entre a porcentagem de área do aqüífero Pelito-Carbonático e IEB - Sub-b	acia
41 - Região homogênea baixo rio das Velhas	
Figura 5.31 - Regressão entre a porcentagem de área do aqüífero Pelítico e <i>IEB</i> – Sub-bacias 40 e 4	41
Figura 5.32 - Regressão entre a porcentagem de área do aqüífero Pelítico e <i>IEB</i> – Sub-bacia 41	
Figura 5.33 - Regressão entre a porcentagem de área do aquifero de rochas carbonáticas e <i>IEB</i> – Su	
bacia 40 e 41	
Figura 5.34 - Regressão entre a porcentagem de área do aquifero de rochas carbonáticas e IEB - Su	
bacia 41	
Figura 5.35 - Regressão entre a porcentagem de área do aquifero de rochas carbonáticas e IEB - Su	
bacia 41 - Região homogênea médio rio das Velhas	
Figura 5.36 - Regressão entre a porcentagem de área do aquifero de rochas carbonáticas e <i>IEB</i> – Su	
bacia 41 - Região homogênea baixo rio das Velhas	
Figura 5.37 - Regressão entre a porcentagem de área do aqüífero aluvial e <i>IEB</i> – Sub-bacias 40 e 4	
Figura 5.38 - Regressão entre a porcentagem de área do aqüífero aluvial e IEB - Sub-bacia 41	
Figura 5.39 - Regressão entre a porcentagem de área do aqüífero aluvial e IEB - Sub-bacia 41- Re	gião
homogênea médio rio das Velhas	.106
Figura 5.40 - Regressão entre a porcentagem de área do aqüífero aluvial e IEB - Sub-bacia 41- Re	gião
homogênea baixo rio das Velhas	.106
Figura 5.41 - Regressão entre a porcentagem de área do aqüífero arenítico e IEB - Sub-bacias 40 e	
Figura 5.42 - Regressão entre a porcentagem de área do aqüífero arenítico e IEB - Sub-bacia 41	
Figura 5.43 - Regressão entre a porcentagem de área do aqüífero arenítico e IEB – Sub-bacia 41-	
Região homogênea baixo rio das Velhas	.108
Figura 5.44 - Regressão entre Área total e IEB.(alto rio das Velhas)	
Figura 5.45 - Regressão entre Área total e <i>IEB</i> (médio rio das Velhas)	
Figura 5.46 - Regressão entre Área total e <i>IEB</i> (baixo rio das Velhas)	.109

LISTA DE TABELAS

Tabela 3.1 – Usos de índices de vazões mínimas provenientes das curvas de permanência	6
Tabela 4.1 - Valores de α_{ϕ} , β_{ϕ} e u_{ϕ}	44
Tabela 4.2 - <i>IEB</i> s calculados para a Estação de Pirapama	54
Tabela 4.3 - Matriz de correlação	57
Tabela 5.1 - Variáveis Explicativas para o alto rio das Velhas	
Tabela 5.2 - Variáveis Explicativas para o médio rio das Velhas	77
Tabela 5.4 - Equações Q_{50} para o Alto Rio das Velhas	
Tabela 5.5 - Equações Q_{95} para o Alto Rio das Velhas	
Tabela 5.6 - Valores Q_{50} e Q_{95} para o Alto Rio das Velhas e modelos regionais	
Tabela 5.7 - Equações \mathcal{Q}_{50} para o Médio Rio das Velhas	
Tabela 5.8 - Equações Q_{95} para o médio rio das Velhas	80
Tabela 5.9 - Valores Q_{50} e Q_{95} para o médio rio das Velhas e modelos regionais	
Tabela 5.10 - Equações Q_{50} para o baixo rio das Velhas	81
Tabela 5.11 - Equações $Q_{95}\mathrm{para}$ o baixo rio das Velhas	81
Tabela 5.12 - Valores Q_{50} e Q_{95} para o Baixo Rio das Velhas e modelos regionais	82
Tabela 5.13 - Valores de $E_{\rm S}$ para o método de Tucci (1993), para o alto rio das Velhas	82
Tabela 5.14 - Valores de $E_{\rm S}$ para o método de Tucci (1993), para o médio rio das Velhas	83
Tabela 5.15 - Valores de $E_{\rm S}$ para o método de Tucci (1993), para o baixo rio das Velhas	83
Tabela 5.16 - Porcentagem para intervalos de E_{S}	83
Tabela 5.17 - Variáveis utilizadas na análise de regressão para o alto e médio rio das Velhas	
Tabela 5.18 - Variáveis utilizadas na análise de regressão para o baixo rio das Velhas	
Tabela 5.19 - Equações utilizadas na análise de regressão para o alto rio das Velhas	
Tabela 5.20 - Equações utilizadas na análise de regressão para o	
Tabela 5.22 - <i>IEB</i> estimado por regressão para o baixo Rio das Velhas	
Tabela 5.23 - Valores de $\mu(\alpha)$ e $\mu(\beta)$ para o alto rio das Velhas	
Tabela 5.24 - Valores de $\mu(\alpha)$ e $\mu(\beta)$ para o médio rio das Velhas	
Tabela 5.25 – Valores de $\mu(\alpha)$ e $\mu(\beta)$ para o baixo rio das Velhas	
Tabela 5.26 - Equações de $\mu(\alpha)$ para o alto rio das Velhas	111
Tabela 5.27 - Equações $\mu(\beta)$ para o alto rio das Velhas	112
Tabela 5.28 - Equações $\mu(\alpha)$ para o médio rio das Velhas	112
Tabela 5.29 - Equações $\mu(\pmb{\beta})$ para o médio rio das Velhas	113
Tabela 5.30 - Equações $\mu(\alpha)$ para o baixo rio das Velhas	113
Tabela 5.31 - Equações $\mu(\pmb{\beta})$ para o baixo rio das Velhas	113
Tabela 5.32 - Valores de $E_{\rm S}$ para o método de Claps e Fiorentino (1997) para o alto $$ rio das V	elhas
Tabela 5.33 - Valores de E_s para o método de Claps e Fiorentino(1997) para o baixo rio das V	
T. 1. 524 D	
Tabela 5.34 - Porcentagem para intervalos de E_s	114

Tabela 5.35 - Valores de E_S para o método de Claps e Fiorentino (1997) para o médio $$ rio das Ve	elhas
(com IEB e vazão média observada)	115
Tabela 5.36 - Valores de E_s para o método de Claps e Fiorentino (1997) para o Alto Rio das	
Velhas(com IEBs e vazões médias observadas)	115
Tabela 5.37 - Porcentagem para intervalos de $E_{\rm S}$ (com dados de entrada observados)	116
Tabela 5.38 - $\mu(\alpha)$ e $\mu(\beta)$ estimados e observados	116
Tabela 5.39 - Valores de E_s para o método de Claps e Fiorentino (1997) para o Médio Rio das	
Velhas(com IEBs e vazões médias observadas)	117
Tabela 5.40 - Porcentagem para intervalos de E_s (com dados de entrada observados)	118

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

IGAM Instituto Mineiro de Gestão das Águas

CPRM Companhia de Pesquisa de Recursos Mineirais

NERC Natural Environmental Research Council, Inglaterra

USGS United States Geological Survey, EUA

LISTA DE NOTAÇÕES

A Área de drenagem, em km²

CE Capacidade específica

Cesc Coeficiente de escoamento

Densidade de drenagem, em junções/ km²

Es Índice de desempenho para curvas de permanência

E(Q) Média anual das vazões médias diárias

F Freqüência para a permanência p

IEB Índice de escoamento de base

I equiv. Declividade equivalente, em (m/km)

K Constante de recessão

L Comprimento do rio principal (km)

Precipitação média, em mm

P Precipitação média, em mm

 P_1, P_2, P_3 Índices de qualidade geral de curvas de permanência

p Excedência de um determinado tempo de permanência

p Número de variáveis independentes

Q Vazão média diária, em (m 3 /s)

 Q_p Vazão para uma determinada excedência p, em (m 3 /s)

 $Q_b(i)$ Vazão de base para um tempo i, em (m³/s)

Q(i) Vazão para um tempo i, em (m³/s)

q Vazão média diária adimensional

 q_0 Vazão limiar (terceiro parâmetro de uma distribuição log normal de 3

parâmetros)

r	Coeficiente de regressão simples
r_{ab}	Coeficiente de correlação simples entre a e b
R	Coeficiente de correlação múltipla
R^2	Coeficiente de determinação
S	Armazenabilidade
S_{e}	Armazenabilidade específica
Z	Variável normal reduzida para a freqüência F
α	Parâmetro de posição da distribuição log-normal .
β	Parâmetro de escala da distribuição log-normal
$lpha_{_{f \phi}}$	Alfa para a probabilidade de não excedência φ
eta_ϕ	Beta para a probabilidade de não excedência φ
η	Porosidade em fração decimal
$oldsymbol{\eta}_e$	Porosidade efetiva em fração decimal
$\mu(\alpha)$	Média dos parâmetros alfa anuais
$\mu(\beta)$	Média dos parâmetros beta anuais
$\sigma(\alpha)$	Desvio-padrão dos parâmetros alfa anuais
$\sigma(oldsymbol{eta})$	Desvio-padrão parâmetros beta anuais
$CV(\mathbf{\alpha})$	Coeficiente de variação dos parâmetros alfa anuais
$CV(\boldsymbol{\beta})$	Coeficiente de variação dos parâmetros beta anuais
ф	Probabilidade de não excedência
v_{i}	Volume de interstíticos de uma amostra
V_m	Volume de água de uma amostra saturada
u_{ϕ}	Variável normal reduzida de φ

1 INTRODUÇÃO

A água, como recurso, é vital para as pessoas, sociedades e países. A escassez desse recurso pode comprometer o desenvolvimento de toda uma sociedade, pela possibilidade de causar sérios prejuízos a diversas atividades, tais como abastecimento público, industria e irrigação, entre outros usos. As tomadas de decisão quanto ao uso, ou aos múltiplos usos, dos recursos hídricos de uma bacia hidrográfica passam a ser um assunto de prioridade, em períodos em que a disponibilidade hídrica de um local alcança seus valores mais baixos. Esses períodos de escassez estão relacionados principalmente às vazões mínimas que são caracterizadas pelos escoamentos superficiais que ocorrem em períodos de uma série histórica, nos quais as disponibilidades podem vir a não atender as necessidades regionais de consumo de água. Esta definição não é consensual e, de fato, as vazões mínimas podem ter diferentes significados, dependendo da finalidade dos estudos hidrológicos. Nessa situação, é de suma importância o uso de vazões mínimas de referência para previsão, ou para a estimativa de vazões mínimas em períodos de estiagem, visando a análise, a regulamentação legal, a operação e o planejamento de projetos de abastecimento de água, irrigação, recuperação ambiental e energia elétrica.

Em geral, a vazão mínima diária é pouco útil, por ser um indicador pouco representativo do período de estiagem. Normalmente, o interesse fica concentrado nas vazões médias de durações maiores, como 7 ou 30 dias, relacionadas a um determinado período de retorno, ou mesmo, no conhecimento de uma certa vazão que é igualada ou superada durante uma alta porcentagem do tempo (e.g. 95%), obtida da chamada curva de permanência.

Os órgãos de gestão de recursos hídricos de alguns estados brasileiros utilizam índices de vazões mínimas extraídas de curvas de permanência, como critério de outorga de uso de recursos hídricos. A curva de permanência é o complemento da função de distribuição de vazões diárias, mensais, anuais, ou de outro intervalo de tempo, e representa, de modo gráfico, a relação entre a magnitude e a freqüência com que essas vazões são igualadas ou superadas em um dado período de tempo. Tal curva fornece uma simples, porém concisa, visão gráfica do comportamento hidrológico de uma bacia, quanto à variabilidade das vazões ao longo do tempo. Porém, a elaboração de curvas de permanência são muito afetadas pela ausência de uma rede hidrométrica que se estenda por todos os locais de interesse. Essa situação de desconhecimento do comportamento hidrológico de uma região, em períodos de

escassez de água, gera grande problema para órgãos e tomadores de decisão no planejamento e gerenciamento do uso da água.

Uma possível solução para esse problema é o emprego da análise de frequência regional para a estimação de valores característicos de vazões de estiagens em locais desprovidos, ou com pouca disponibilidade, de dados, por meio dos dados fluviométricos existentes na região homogênea que contem a bacia em estudo.

Neste trabalho, propõe-se a aplicação e a avaliação de dois métodos para regionalização de curvas de permanência. O propósito vem de encontro a uma tendência de se propor métodos para regionalização de curvas de permanência sem a devida e completa avaliação de seu desempenho. Dois métodos foram aplicados e avaliados: o método de Tucci (1991), que é comumente utilizado no Brasil para regionalização de curvas de permanência de longo termo e o método de Claps e Fiorentino (1997), utilizado para a regionalização de curvas de permanência anuais. Essa última abordagem visa o tratamento estatístico e probabilístico das curvas de permanência anuais da mesma forma como se tratam valores de vazões mínimas ou máximas anuais de uma série, ao longo de um período histórico. É uma abordagem que ainda não foi utilizada no Brasil.

As vazões mínimas têm estreita ligação com características hidrogeológicas, razão pela qual utilizou-se, neste trabalho, o índice de escoamento de base (*IEB*), obtido pela relação entre escoamento de base e o escoamento total, como variável explicativa para as vazões características de estiagem. Foi pesquisado também um método para estimação de *IEB* em locais sem dados.

A escolha da bacia do rio das Velhas, se deve ao fato da mesma possuir uma série longa de informações hidrológicas e por sua importância histórica, econômica e estratégica.

No capítulos 2, o objetivo geral e os objetivos específicos são apresentados.

Definidos os objetivos, no capítulo 2, apresenta-se uma revisão sobre os métodos de construção e regionalização das curvas de permanência no capítulo 3. Apresenta-se também uma revisão sobre a influência das variáveis hidrogeológicas, em particular do *IEB*, nas vazões de estiagem e seu possível uso em análise de freqüência regional.

No capitulo 4, apresenta-se a metodologia usada para comparar e analisar os métodos de regionalização de curvas de permanência aqui empregados.

No capítulo 5, faz-se uma descrição das características climáticas geomorfológicas e hidrológicas da área de estudo, e apresentam-se os resultados da aplicação dos métodos utilizados para estimar curvas de permanência, bem como de estimação de algumas variáveis utilizadas nos modelos.

No capítulo 6, apresentam-se as conclusões relativas à comparação dos métodos de regionalização aqui empregados, e as recomendações para eventuais trabalhos futuros.

2 OBJETIVOS

2.1 Objetivo geral

Estudar, aplicar e comparar metodologias para a construção de curvas de permanência de vazões para a bacia do Rio das Velhas, supondo-se a ausência parcial de dados fluviométricos na mesma, valendo-se de modelos distributivos cujos parâmetros estão sujeitos à análise regional e relacionados às características físico-climáticas de uma bacia hidrográfica.

2.2 Objetivos específicos

- Aplicação e regionalização de curvas de permanência para vazões diárias, em intervalo anual, na bacia do Rio das Velhas, utilizando a metodologia de Claps e Fiorentino (1997);
- Aplicação e regionalização das curvas de permanência de longo termo para vazões diárias, utilizando a metodologia de Tucci (1991);
- Estabelecer indicadores de performance e comparar as vazões estimadas pelas duas metodologias com as vazões observadas, para várias permanências, e, assim, verificar o desempenho das mesmas.

3 REVISÃO BIBLIOGRÁFICA

3.1 Vazões de estiagem: caracterização de fatores intervenientes

O conhecimento da variabilidade dos recursos hídricos de uma bacia hidrográfica é essencial para estudos sobre o planejamento e o gerenciamento de sua disponibilidade hídrica. Com o aumento da demanda pelo uso da água devido ao crescimento populacional, industrialização, expansão das fronteiras agrícolas, tornou-se necessário o desenvolvimento de ferramentas de análise e simulação, como suporte para o planejamento e gerenciamento e, conseqüentemente, tomadas de decisão quanto ao uso, ou aos múltiplos usos dos recursos hídricos, de uma bacia hidrográfica.

No que concerne ao conhecimento sobre o comportamento hidrológico de uma bacia, é importante o conhecimento das vazões mínimas, que são caracterizadas pelos escoamentos superficiais que ocorrem em períodos de uma série histórica, nos quais as disponibilidades hídricas podem não atender as necessidades regionais de consumo de água. Esta definição não é consensual e, de fato, as vazões mínimas podem ter diferentes significados, dependendo da finalidade dos estudos hidrológicos. De acordo com Smakhtin (2001), os diferentes significados podem estar relacionados ora com as vazões de um rio, ocorridas durante a estação seca do ano, ora com o intervalo de tempo entre inundações, ou ora com as vazões que afetam a sustentabilidade da ecologia local.

Segundo Tucci (2002), as vazões mínimas ficam melhor representadas por índices de vazões mínimas que são referências para previsão, ou para a estimativa das mesmas em períodos de estiagem, visando a análise, a regulamentação legal, a operação e o planejamento de projetos de abastecimento de água, irrigação, recuperação ambiental e geração de energia elétrica. Em geral, a vazão mínima diária é pouco útil, por não ser representativa do período de estiagem e o interesse fica concentrado em índices de vazões mínimas relacionados às vazões médias para durações maiores, como 7 ou 30 dias, associadas a um determinado período de retorno, ou no conhecimento de uma certa vazão que é igualada ou superada durante uma alta porcentagem do tempo (e.g. 95%), obtida da chamada curva de permanência.

Os órgãos de gestão de recursos hídricos de alguns estados brasileiros utilizam índices de vazões mínimas extraídos de curvas de permanência para regulamentação do uso dos recursos hídricos de domínio estadual.

Pyrce (2004) realizou um exame detalhado sobre índices de vazões mínimas, a qual revelou a existência de numerosos usos para índices específicos que podem cobrir um amplo intervalo de necessidades da engenharia e das ciências biológicas. A tabela 3.1 mostra partes de resultados obtidos por Pyrce (2004).

Tabela 3.1 – Usos de índices de vazões mínimas provenientes das curvas de permanência

Indice de vazão	Uso	Estudos
Q_{95} *	Índice de vazão mínima ou indicador de condições extremas de vazões mínimas	Riggs et al (1980), Brilly et al.(1997), Smaktin (2001), Wallace e Cox (2002), Tharme (2003)
	Escoamento mínimo para proteção de rio	Petts el al.(1997)
	Condição mínima mensal para ponto de descarga	Michigan Department of Environment Quality (2002)
	Licenciamento de extração de água superficial e avaliação de limites de descarga de efluentes	Higgs e Petts (1988) Smakhtin e Toulouse (1988)
	Índice biológico para vazão média mensal	Dakova et al (2000)
	Manutenção da variação sazional mensal natural	Stewardson e Gippel (2003)
	Otimização de regras de vazão ambiental	
Q_{90} **	Índice de vazão mínima	Smakhtin et al (1995) Smakhtin (2001)
	Valor mensal para condições de vazão média e estável	Caissie e El-Jabi (1995)
	Valor mensal para vazão mínima para habitat aquático	Yulanti e Burn (1998)
	Uso em exames de padrão descarga- duração de pequenos rios	Ogunkoya (1989)
	Valor limiar para advertência de níveis críticos de vazões	Rivera-Ramirez et al. (2002)
	Descrição de condições limitantes de vazão e estimador conservador de escoamento de base médio	Wallace and Cox (2002)
Q ₅₀ *** mensal	Política de escoamento de base aquática para planejamento de gerenciamento de recursos hídricos	Ries e Friesz (2000), Ries (1997)
	Uso para proteção da biota aquática	U.S. Fish and Wildlife Service (1981)
	Uso para recomendação de descarga mínima sazonal para rios utilizados na geração de energia	Metcalfe et al. (2003)

 $[{]Q_{95}}^*$ - Vazão da curva de permanência que é igualada ou excedida em 95% do tempo.

 $Q_{90}^{\quad **}$ - Vazão da curva de permanência que é igualada ou excedida em 95% do tempo.

 $Q_{50}^{}$ - Vazão da curva de permanência mensal que é igualada ou excedida em 50% do tempo.

As curvas de permanência, embora tenham aplicabilidade em uma grande variedade de estudos, despertam grande interesse, principalmente nos ramos inferiores das mesmas que caracterizam o comportamento hidrológico de uma região quanto às vazões mínimas. De um modo geral, esse comportamento é muito influenciado pelas características do aqüífero da região em estudo. Por essa razão, é necessário compreender algumas características dos aqüíferos e suas influências na variabilidade das vazões mínimas ou de estiagem.

3.1.1 Caracterização de Aqüíferos

O regime dos rios, principalmente em época de estiagem, é dominado, em grande parte, pelas características dos aqüíferos. Em uma bacia, os aqüíferos são representados por formações geológicas que armazenam e liberam água ao longo do tempo. O parâmetro capacidade específica *CE* (m³/h.m) é uma forma de se comparar a produtividade de aqüíferos distintos. Este parâmetro consiste na relação entre a vazão, em m³/h, de um poço e o rebaixamento do nível d'água em metros. Um bom aqüífero apresenta *CE* média de 3m³/h.m, e aqüíferos mais pobres apresentam *CE* média de 0,5 m³/h.m, ou menos.

Segundo Singh (1997), as vazões observadas em períodos de estiagem em rios são dependentes do escoamento de base (contribuição dos aqüíferos), sendo que a quantidade e a duração do escoamento de base é dependente da quantidade de precipitação, de condições geológicas que permitem que a água infiltrada seja armazenada no aqüífero e das condições hidrogeológicas que são responsáveis pelo escoamento de base para os rios. É importante o conhecimento de algumas das propriedades de um aqüífero, tais como a condição de recarga, armazenabilidade, porosidade e a permeabilidade, justamente por suas influências na recarga, no armazenamento e na liberação da água subterrânea. Essas propriedades são definidas a seguir:

• porosidade é uma variável adimensional proveniente da relação entre o volume de vazios e o volume total de uma amostra da formação geológica que constitui o aqüífero. Observa-se que nem toda a água armazenada em um meio poroso é liberada, seja pela inexistência de conexão entre alguns poros, seja por aderência da água ao material sólido. Tal fato faz com que a porosidade efetiva obtida pela relação entre o volume drenável e o volume total do meio poroso, seja uma informação bastante relevante sobre a característica do aqüífero. Quantitativamente, a porosidade pode ser descrita pelas equações 3.1 e 3.2, a seguir:

$$\eta = \frac{v_i}{V} = \frac{v_w}{V} = \frac{V - v_m}{V} = 1 - \frac{v_m}{V}$$
(3.1)

em que η é a porosidade em fração decimal, V é o volume total, v_i é o volume de interstícios, v_w é o volume de água em uma amostra saturada e v_m é o volume de partículas minerais, e

$$\eta = \frac{\rho_m - \rho_d}{\rho_m} = 1 - \frac{\rho_d}{\rho_m} \tag{3.2}$$

em que $\mathbf{\rho}_m$ é a densidade da amostra seca, e $\mathbf{\rho}_d$ é a densidade de partículas.

A porosidade efetiva pode ser descrita pela equação 3.3

$$\mathbf{\eta}_e = \frac{v_i}{v_m} = \frac{v_w}{v_m} = \frac{\mathbf{\eta}}{1 - \mathbf{\eta}} \tag{3.3}$$

em que η_e é a porosidade efetiva;

Tem-se a porosidade primária e secundária, sendo que na porosidade primária, os poros estão presentes desde o tempo em que as rochas foram formadas, e na porosidade secundária, os poros apareceram após a formação da rocha. A figura 3.1 ilustra as duas diferentes porosidades.

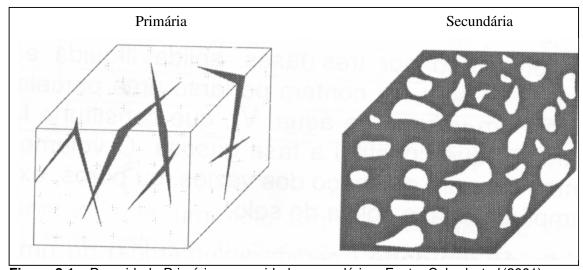


Figura 3.1 – Porosidade Primária e porosidade secundária – Fonte: Cabral et al (2001)

 condição de recarga: a recarga de um aqüífero ocorre com o movimento e armazenamento de água no aqüífero, que tem início com a infiltração de uma quantidade de água aplicada na superfície. A infiltração depende fundamentalmente do tipo de solo, da cobertura vegetal do solo, do estado de umidade do solo, do período de aplicação de água na superfície e da quantidade de água precipitada;

• armazenabilidade: é a capacidade de um aqüífero armazenar e transmitir água, ou seja, é o parâmetro hidráulico adimensional que expressa o volume de água que um aqüífero é capaz de receber e ceder, em função de uma variação unitária da superfície potenciométrica, numa base de área unitária. Está associada à porosidade e aos fenômenos elásticos, tanto da água como das características litológicas do aqüífero. A armazenabilidade é dada por:

$$S = b.S_a \tag{3.4}$$

em que S é a armazenabilidade ou coeficiente de armazenamento, b é a espessura do aquífero, S_e é o armazenamento específico, que é definido como o volume de água liberado ou recebido por um volume unitário do aquífero submetido a um decréscimo ou acréscimo unitário de carga hidráulica.

 Permeabilidade de um meio poroso é uma medida de sua capacidade de escoamento de fluidos, para diferentes gradientes de potencial hidráulico.

Segundo Cabral *et al* (2001), os aqüíferos têm diferentes denominações conforme sua relação com as camadas não saturadas, assim como suas características de recarga e armazenabilidade, sendo classificados como:

- não confinados ou livres: quando o seu nível de água serve como limite superior da zona de saturação, sobre o qual atua a pressão atmosférica. Possui grande interação com os corpos e cursos d'água superficiais como rios e lagos;
- aqüíferos confinados artesianos ou sob pressão: nesse caso, o nível superior de água está confinado, sob pressão maior que a atmosférica, por estratos sobrejacentes relativamente impermeáveis;
- aquíferos suspensos: esse é o caso especial do aquífero não confinado que ocorre quando o volume de água subterrânea está separado de um aquífero não confinado principal por um estrato relativamente impermeável. Ao se infiltrar no terreno, a água encontra uma superfície impermeável, o que a impede de percolar até o nível do lençol freático. Normalmente, esses aquíferos possuem pequena extensão de área com distribuição espacial restrita e existência temporária.

A figura 3.2 ilustra os aqüíferos não confinados, confinados e suspensos.

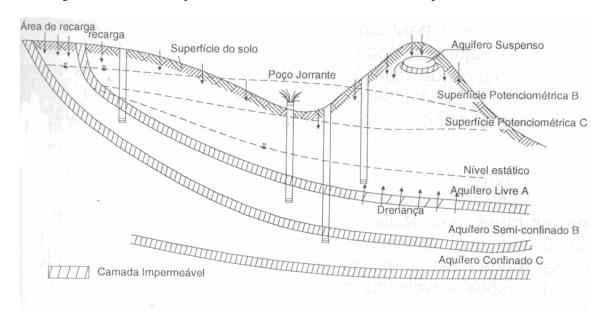


Figura 3.2 – Aqüíferos não confinados, confinados e suspensos – Fonte: Cabral et al (2001)

Quanto às características dos maciços porosos, Cabral *et al* (2001) caracterizam os aqüíferos em três tipos diferentes:

- granulares: A água ocupa espaços intergranulares dos solos e rochas sedimentares;
- fraturadas: A água ocupa fraturas e fendas abertas em rochas ígneas e metamórficas, que são basicamente rochas duras e compactas com baixíssima permeabilidade primária; e,
- cársticos: A dissolução de parte do material original do complexo geológico de origem promove o aparecimento de espaços que são ocupados pela água. Esses aqüíferos são comuns em rochas carbonáticas, como calcários, dolomitos e mármores.

Quanto ao comportamento hidrogeológicos dos aqüíferos Cabral *et al* (2001) caracterizam os aqüíferos em quatro tipos diferentes:

 aqüífero magmático-metamórfico: esse tipo de aqüífero está associado a rochas de origem magmática como granitos, basaltos e rochas metamórficas. Geralmente são compostos de rochas duras e impermeáveis. O escoamento pela matriz é praticamente inexistente, embora a presença de fraturas crie condições para a percolação da água. O escoamento pelo material rochoso, de modo geral, é restrito a grandes profundidades devido à redução na abertura das fraturas decorrente de confinamento, tendendo a ser maior na superfície pela maior permeabilidade das fraturas mais abertas. Os esforços de tração que ocorrem na superfície são os responsáveis por essas fraturas mais abertas. Quanto aos valores da capacidade específica, por exemplo, para o alto São Francisco, há uma variação de 0,0014 a 7,99 m³/h.m com média de 0,61 m³/h.m, segundo RURALMINAS (1999a) e Silva *et al* (1995), apud Mourão *et al* (2001).

- aquifero sedimentar: os aquiferos sedimentares são compostos de sequências sedimentares com granulometria variando entre média e grossa, tais como a encontrada em arenitos e conglomerados. De um ponto de vista regional, podem ser considerados aquiferos produtivos em função de um conjunto de parâmetros que estabelecem as condições de um aquifero, tais como:
 - camadas com espessura de até dezenas de metros;
 - camadas com extensão lateral possuindo vários milhares de quilômetros quadrados; e,
 - não ter sua continuidade hidráulica comprometida pela presença de grandes fraturas.

Quanto aos valores da capacidade específica média, por exemplo, para o alto São Francisco, é de 2,09 m³/h.m, segundo RURALMINAS (1999a) e Silva *et* al (1995), apud Mourão *et al* (2001).

- Aluviões e sedimentação litorânea: esse tipo de sistema aqüífero está relacionado aos rios e aos sedimentos que compõem as regiões litorâneas. São compostos principalmente de sedimentos dendríticos, com grãos variando muito em tamanho e composição mineralógica. Sua distribuição granulométrica pode incluir areia, silte e argila. Em termos espaciais, pode estender-se desde poucos quilômetros quadrados, com um baixo volume de produção, até dezenas de quilômetros quadrados com enorme capacidade de produção;
- Rochas Cársticas: nesse sistema predomina o processo cárstico que consiste na propriedade da água de dissolver minerais constituintes das paredes nas fraturas da rocha, enquanto percola. Esse processo tende a aumentar a largura da fratura e, conseqüentemente, aumentar a percolação de água. Calcário e dolomitos sedimentares estão incluídos nessa categoria pois podem apresentar elevadíssima porosidade devido à dissolução de carbonato. Apresentam o problema de serem descontínuos. Geralmente, não são afloramentos contínuos de grande extensão e, sim, pequenos afloramentos associados a outros tipos de rocha. Nesses casos, é difícil o estudo do comportamento hidrológico de

uma região, quando o objetivo é a quantificação de vazões e avaliação de sua produtividade.

Em geral, a delimitação topográfica de uma bacia sobre terrenos cársticos, muitas vezes, não é coincidente com a delimitação hidrogeológica. O efeito do afloramento de complexos calcários sobre o mecanismo de transformação chuva-escoamento precisa ser levado em consideração para explicar a quantidade de água drenada. O sistema de fraturas e os fenômenos cársticos têm grande influência na direção da drenagem subterrânea, a qual pode até escoar entre bacias diferentes. Em tais circunstâncias, é muito difícil encontrar uma correspondência direta entre a área topográfica, a quantidade de chuva precipitada e a quantidade de água drenada para fora da bacia. Dependendo da circulação subterrânea, uma quantidade significativa de água infiltrada não contribui para as vazões observadas na bacia, em um período de estiagem.

3.2 Regionalização hidrológica

A variabilidade das vazões em uma bacia hidrográfica é avaliada pela disponibilidade das séries temporais obtidas nas estações fluviométricas. No início do século XX, o extinto Serviço geológico e Mineralógico realizou campanhas pelo interior do país para execução de estudos que compreendiam levantamentos topográficos de cachoeiras e corredeiras, assim como as primeiras apreciações sobre descargas de rios para avaliação do potencial hidráulico do Brasil. A primeira grande expansão da rede hidrométrica ocorreu nas décadas de 30, 40 e 50 devido à necessidade de identificação dos potenciais hidráulicos para geração de energia, principalmente aproveitamentos de grande e médio porte, motivo da pequena disponibilidade de estações fluviométricas para áreas de drenagem inferiores a 500 km². A expansão da rede hidrométrica acompanha o desenvolvimento econômico do país, ou seja, existem séries longas onde há ocupação e vias de comunicação implantadas a mais tempo A preocupação com a instalação de estações que atendessem outros setores, tais como agricultura e abastecimento, passou a ocorrer depois da década de 70. Atualmente, o Brasil possui uma rede hidrometeorológica de aproximadamente 11.000 estações hidrométricas, administradas por organismos federais, setoriais, estaduais.

Com frequência, a estimativa de vazões mínimas necessárias ao planejamento e gerenciamento dos recursos hídricos de um local fica comprometidos pelo desconhecimento do comportamento hidrológico do mesmo, devido à insuficiência de uma rede hidrométrica

que cubra todos os locais de interesse em uma bacia hidrográfica. Como os dados fluviométricos referem-se a medidas pontuais, torna-se necessário à espacialização desses dados a partir da associação dos mesmos, às características fisiográficas, climáticas e hidrogeológicas do local de interesse, como tentativa de preencher essa lacuna temporal e espacial em locais desprovidos de dados. A essa espacialização dá-se o nome de regionalização, ou análise regional.

Na maioria das bacias hidrográficas, não é possível a implantação de uma rede hidrométrica que cubra todos os pontos de interesse devido ao alto custo que demanda a implantação e manutenção de uma rede hidrométrica. Nesse contexto, é importante considerar a variabilidade e a representatividade das séries fluviométricas, bem como as suas correlações com as características fisiográficas, climáticas e hidrogeológicas da bacia. Esse estudo é a base para o desenvolvimento de técnicas de regionalização que espacializam as informações hidrológicas para que as mesmas sejam utilizadas em locais sem a disponibilidade de dados hidrométricos. A regionalização, por ser um método muito utilizado mundialmente, desperta constante interesse em estudos que visam o seu aperfeiçoamento.

Segundo Tucci (1993), a regionalização, ou análise regional, consiste de um conjunto de ferramentas de análise das séries históricas numa bacia hidrográfica que visam a estimativa das variáveis em locais sem dados ou com insuficiência de dados, do ponto de vista da qualidade ou curta extensão da série histórica. A regionalização pode também ser usada para verificar a consistência da série hidrológica e identificar a necessidade de instalação de um posto fluviométrico em um determinando local, dentro da bacia hidrográfica. A regionalização, dentre outras finalidades, pode ser empregada para obter:

- funções estatísticas de variáveis hidrológicas: curvas de probabilidade de vazões e/ou precipitações máximas, médias ou mínimas entre outras;
- funções específicas que relacionam variáveis: curva de permanência, curva de regularização e curva de infiltração; e,
- parâmetros de modelos hidrológicos: características do hidrograma unitário e de outros modelos hidrológicos;

Observa-se, entretanto, que a premissa de base da regionalização hidrológica é que as variáveis sob análise devem ter distribuições de probabilidade idênticas, a menos de um fator

de adimensionalização, o qual é função das características locais. Esta premissa de base pode ser sintetizada pelo conceito de "região homogênea", a qual deve englobar os locais com características distributivas tal como enunciadas.

3.2.1 Regionalização de Funções Estatísticas de Variáveis hidrológicas

Quanto à regionalização de funções estatísticas de variáveis hidrológicas, Tucci (1993) cita três tipos básicos de procedimentos:

- métodos que regionalizam parâmetros de uma distribuição estatística;
- métodos que regionalizam o evento associado a um certo período de retorno ou a um certo risco; e,
- métodos que regionalizam uma curva de probabilidade adimensional e o fator de adimensionalização;

3.2.1.1 Método de regionalização de parâmetros de distribuição

Esse método tem como premissas:

- que os dados dos postos da região escolhida são oriundos de um mesmo fenômeno aleatório, cujas populações são regidas por uma única distribuição teórica, em que apenas os parâmetros distributivos podem apresentar variação; e,
- que uma única distribuição teórica seja capaz de modelar os dados de um certo posto da região estudada;

Uma vez estabelecidas essas premissas, o método consiste em:

- definir a região homogênea ou as regiões homogêneas, do ponto de vista da variável a ser estudada;
- calcular os parâmetros necessários ao ajuste;
- relacionar os parâmetros da distribuição às características físicas, climáticas e hidrogeológicas da região através de análise de regressão; e,
- estimar os quantis nos locais de interesse.

3.2.1.2 Método de regionalização de eventos

Diferentemente do método anterior, em que se ajusta uma única distribuição a todos os postos, nesse caso, pode-se ajustar uma ou mais diferentes distribuições. Nesse caso, a diferença dos métodos anteriores refere-se ao fato de que não é necessário a definição a priori de região homogênea. A equação de regressão é estabelecida entre eventos, para tempos de retorno de interesse, e as características da bacia.

3.2.1.3 <u>Métodos que regionalizam uma curva de probabilidade adimensional e o fator de</u> adimensionalização

Esse método consiste na definição de uma curva de freqüência regional a partir de séries adimensionalizadas. Analisam-se as curvas de cada posto de acordo com suas respectivas semelhanças quanto às características físicas e quanto à tendência apresentada em papéis de probabilidade adequados, identificando aquelas que apresentam a mesma tendência. Determina-se uma curva adimensional regional média para esses postos. Em seguida, o fator de adimensionalização é objeto de análise de regressão, para sua eventual associação a características físicas, climática ou geomorfológicas.

A curva de freqüência regional pode ser paramétrica, ou seja, aquela obtida pelo ajuste de uma distribuição de probabilidades aos dados adimensionais regionais, ou não paramétrica. A curva regional não paramétrica é definida a partir das curvas empíricas das estações da mesma região homogênea, grafadas no papel de probabilidade. A curva regional não paramétrica é traçada a sentimento, de maneira que a curva regional seja a mediana das curvas empíricas individuais da região homogênea.

3.2.2 Seleção e Análise de Dados

NERC (1980) determina que, devido à busca de relação entre o regime de vazões mínimas de um rio e as características da bacia hidrográfica responsáveis por tal regime, somente aquelas bacias cujos dados representem condições razoavelmente naturais sejam consideradas.

Os três seguintes critérios devem ser empregados para a escolha das bacias a serem estudadas:

- precisão da medição das vazões;
- extensão das influências artificiais comparadas às vazões naturais do rio; e,

• comprimento dos registros disponíveis.

Tucci (1993) afirma que a análise de dados básicos está implícita na maioria dos estudos hidrológicos. Entretanto, na regionalização, é necessário que essa análise seja orientada para que a escolha e a seleção das informações hidrológicas sejam examinadas de acordo com a variável a ser regionalizada. No caso específico das vazões mínimas, a parte inferior da curva de descarga e a mobilidade do leito são fatores importantes na qualidade dos dados de um posto. Parte dos dados não deve ser utilizada se os mesmos não apresentarem a qualidade adequada ao estudo ou se o período comum de registros não for suficientemente grande.

Sobre a área a ser regionalizada, devem ser reunidos os dados hidrológicos, físicos e descritivos, em que:

- dados hidrológicos representam todos os dados dos postos selecionados e analisados quanto à qualidade da curva de descarga, mobilidade da seção e confiabilidade dos dados históricos, observando que cada série de dados deve apresentar pelo menos cinco anos;
- dados físicos devem ser obtidos de mapas cartográficos, em escalas apropriadas, ou de estudos anteriormente realizados na região de interesse; e,
- dados descritivos estão relacionados à localização geográfica e política da região, descrição dos rios principais e de seus afluentes, cobertura vegetal, relevo, formação geológica, distribuição climática, uso da terra, entre outros.

3.2.3 Definição de Regiões Homogêneas para Curvas de Permanência

É de suma importância, fazer inicialmente, uma análise criteriosa das características físicas, climáticas, e dos sistemas de aqüíferos e aspectos geológicos da região, os quais têm influência primordial no regime dos rios da região e, posteriormente, uma análise gráfica das tendências das vazões características e das áreas de drenagem das estações em estudo.

Baena *et al* (2004) citam a existência de vários critérios para a definição de regiões hidrologicamente homogêneas, sendo que, no estudo por eles realizado, de espacialização da Q_{710} , Q_{90} e Q_{95} para a bacia do Rio Paraíba do Sul, foram utilizados dois critérios:

 critério baseado na análise da distribuição de freqüência das vazões adimensionalizadas de cada estação. Este tem por princípio que as distribuições de freqüência das vazões mínimas das estações em uma região de comportamento hidrológico homogêneo seguem uma mesma tendência, sendo as diferenças proporcionais à média das séries de vazões consideradas. Esta característica permite que, ao se obter séries transformadas de vazões, por meio da divisão de seus valores pelas respectivas médias, as distribuições de freqüência dessas séries transformadas sejam idênticas.

• critério estatístico baseado na análise do ajuste de modelo de regressão múltipla. De acordo com esse critério, estabelecem-se regressões múltiplas entre as séries de vazões mínimas e as diferentes características físicas e climáticas das bacias. As regiões de comportamento hidrológico homogêneo são definidas em função da distribuição geográfica das estações e da combinação de estações, que apresentam o melhor ajuste, avaliado por intermédio do teste F de Fisher-Snedecor, do coeficiente de determinação ajustado, do desvio padrão dos erros do ajustamento e dos erros percentuais entre os valores das vazões observadas e estimadas pelos modelos de regressão para cada uma delas.

Quando os dois critérios apresentam resultados satisfatórios e, consequentemente, valores adequados para todos os parâmetros avaliados, a região pode ser definida como região de comportamento hidrológico homogêneo. Se os objetivos dos critérios não são atingidos, há a necessidade de subdividir a região ou reorganizar as estações dentro das regiões e reiniciar o processo.

3.2.4 Regressão Linear múltipla

Riggs (1973), afirma que a regressão múltipla é diretamente útil como uma ferramenta de regionalização, porém a interpretação dos resultados de uma análise regional não é tão direta porque não se pode descrever toda a variabilidade das características da bacia por uma regressão.

A relação entre a variável dependente e as demais variáveis independentes pode, segundo Haan (1977), ser formulada de acordo com um modelo linear dado por:

$$Y = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 X_2 + \dots + \boldsymbol{\beta}_i X_i + \boldsymbol{\varepsilon}$$
 (3.5)

em que Y é a variável dependente, $X_1, X_2, ..., X_i$ são as variáveis independentes, $\beta_1, \beta_2, ..., \beta_i$ são os coeficiente e ε denota os erros da regressão.

Um modelo análogo ao anterior, porém em forma não linear, é aquele expresso pela equação 3.6. Esse modelo pode ser linearizado aplicando-se o logaritmo nos dois termos da equação 3.6, fazendo-se, então, a regressão linear múltipla entre os logaritmos das variáveis envolvidas.

$$Y = \beta_1 X_2^{\beta_2} ... X_i^{\beta_i} + \varepsilon \tag{3.6}$$

Analogamente ao caso anterior, $\beta_1, \beta_2, ..., \beta_i$ podem ser calculados pela minimização dos quadrados dos erros da regressão.

Helsel e Hirsch (1992) advertem sobre os cuidados que devem ser tomados para se evitar a multi-colinearidade entre as variáveis explicativas em uma regressão linear múltipla. A multi-colinearidade é a situação em que uma certa variável explicativa possui alta correlação com uma ou mais variáveis explicativas, implicando em super-parametrização do modelo de regressão. Algumas conseqüências da multi-colinearidade são:

- equações aceitáveis em termos do teste de F total cujos coeficientes possuem escala não realista;
- coeficientes podem ter sinais não realistas; e
- coeficientes instáveis: uma pequena mudança em um ou poucos dados de entrada podem provocar grandes mudanças nos coeficientes.

Em geral, as etapas e os critérios de seleção dos melhores modelos de regressão e do melhor conjunto de variáveis explicativas são: (a) definição da matriz de correlação simples entre as variáveis; (b) cálculo do coeficiente de determinação múltipla; (c) cálculo do coeficiente de determinação ajustado e (d) testes de estatísticas F_{total} , para a verificação da significância do modelo de regressão como um todo, e $F_{parcial}$, para a inclusão/exclusão de variáveis explicativas. O detalhamento desses itens será objeto do item 4.5, do capítulo 4.

3.3 Curva de Permanência

3.3.1 Definição de Curva de Permanência

A curva de permanência é o complemento da função de distribuição de vazões diárias, mensais, anuais, ou de qualquer outro intervalo de tempo, que representa de modo gráfico, a relação entre a magnitude e freqüência com que essas vazões são igualadas ou superadas em um dado período de tempo. Tal curva fornece uma simples, porém concisa, visão gráfica do comportamento hidrológico de uma bacia, quanto à variabilidade das vazões ao longo do tempo.

3.3.2 Histórico e Construção de Curvas de Permanência

Foster (1934), *apud* Vogel e Fenessey (1990), atribuiu o uso mais antigo da curva de permanência a Clemens Herschel, por volta de 1880. Vogel e Fennessey (1990) fornecem um breve histórico sobre o uso da curva de permanência e discorrem sobre o amplo uso das mesmas durante a primeira metade do século passado. Referem-se também ao pequeno número de artigos sobre curvas de permanência após o advento da tecnologia computacional.

Searcy (1963) e NERC (1980) fornecem roteiros de fácil compreensão para a construção, interpretação e aplicação de curvas de permanência. Searcy (1963) recomenda a separação das vazões em 20 a 30 intervalos de classe, bem distribuídos, e define a curva de permanência como um histograma cumulativo de vazões, com base nos intervalos de classe. As ordenadas de uma curva de permanência são obtidas pela acumulação das freqüências classificadas em ordem decrescente. A abscissa da curva fica definida pela vazão do limite inferior do intervalo.

Com os avanços da tecnologia computacional, pode-se utilizar toda a série de dados sem a necessidade de separação por intervalos. A construção da curva de permanência empírica segue dois passos principais:

• as vazões observadas Q_i são ordenadas para produzir um conjunto de dados indexados por i=1,2,3,.... N, em que N é o comprimento amostral, e Q_1 e Q_N são, respectivamente, o maior e o menor valores observados;

• cada valor ordenado Q_i é relacionado a uma fração D_i do intervalo de tempo total, a qual é adimensional e coincidente com uma estimativa p_i de probabilidade de excedência de Q_i . Vogel e Fennessey (1990) recomendam para esse fim, o uso de posição de plotagem de Weibull dada por:

$$p_i = P(Q > Q_i) = \frac{i}{N+1} \tag{3.7}$$

3.3.3 Utilização de Curvas de Permanência

Inicialmente, o grande interesse na curva de permanência estava relacionado ao estudo das características de uma bacia hidrográfica, com o objetivo de compará-las às outras bacias, por meio do estudo das formas das suas respectivas curvas de permanência.

De acordo com Searcy (1963), a presença de declividades fortes nas curvas de permanência denota o fluxo altamente variável, com predominância de escoamento direto, enquanto declividades mais planas revelam a presença de armazenamento de água na superfície ou no aqüífero da bacia, que tende a equalizar as vazões. A declividade da parte inferior da curva de permanência fornece informações quanto às características hidrogeológicas do aqüífero da bacia, em relação à sua capacidade de armazenamento. Uma declividade mais plana indica maior capacidade de armazenamento e uma declividade íngreme indica menor capacidade de armazenamento da bacia.

Franchini e Ferraresi (1988), analisaram as informações sobre as características de cursos d'água, por meio da curva de permanência, tal como a ilustrada na Figura 3.3, a qual exemplifica o comportamento de um curso d'água de regime pluvial, com breve período de seca. Por outro lado, a Figura 3.4 representa um curso d'água de regime pluvial perene, enquanto a Figura 3.5 representa um regime fortemente torrencial perene.

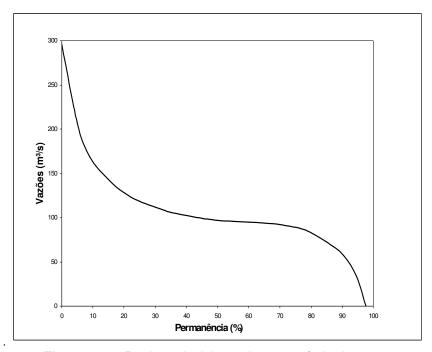


Figura 3.3 – Regime pluvial com breve período de seca

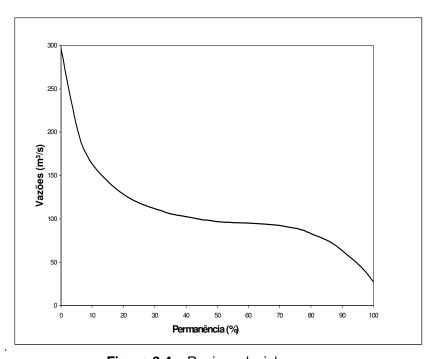


Figura 3.4 – Regime pluvial perene

Figura 3.5 – Regime fortemente torrencial perene

Segundo Vogel e Fennessey (1994), a curva de permanência pode ser uma ferramenta útil em vários estudos hidrológicos:

"As curvas de permanência são aplicadas a uma variedade de problemas em recursos hídricos, são fáceis de usar, explica, e entender e, como dispositivos gráficos, expressam uma riqueza de informações hidrológicas. Seu uso difundido é em parte devido ao fato que as curvas de permanência podem fornecer informações hidrológicas complexas para detentores do poder de decisão que podem não ter uma experiência em hidrologia. Curvas de permanência têm uma longa história em engenharia de recursos hídricos, e inovações recentes que permitem computar períodos de retorno médios e intervalos de confiança para as curvas de permanência (Vogel e Fennessey, 1994) fornecem flexibilidade adicional à sua aplicação. As curvas de permanência são atraentes porque tendem a simplificar problemas de recursos hídricos e permitem fáceis explicações para eles; porém, sua limitação primária é que tendem a simplificá-los demasiadamente." Vogel e Fennessey (1994).

As curvas de permanência utilizadas atualmente podem ser de longo termo ou anuais.

3.3.3.1 Curvas de permanência de longo termo

As curvas de permanência, ou curvas de permanência de longo termo, são construídas a partir do uso da série histórica completa de dados. Embora, ao longo da história, o uso de curvas de permanência seja prolífico em estudos hidrológicos, sua utilização é prejudicada por ser dependente exclusivamente do período de registros em que foi baseada e, portanto, sensível a períodos atipicamente úmidos ou secos, ao longo da série histórica. Assim, a elaboração de curvas de permanências utilizando dados de períodos secos ou úmidos dentro de uma dada série histórica, podem produzir resultados distintos da curva de permanência baseada na série histórica completa. Não é possível quantificar a incerteza quanto ao quantil, ou percentil, estimado para uma permanência de interesse, ao longo do tempo.

Vogel e Fennessey (1994) afirmam: "Ao nosso conhecimento, não existem procedimentos para a construção de intervalos de confiança para curvas de permanência de longo termo".

Devido a essas limitações, e à alta dependência das curvas de permanência em relação ao período utilizado, foi implementado o conceito de curvas de permanência anuais.

3.3.3.2 <u>Curvas de permanência anuais</u>

Como alternativa aos problemas citados anteriormente, LeBoutilier e Waylen (1993), *apud* Castellarin (2004) e Vogel e Fennessey (1994), sugerem o uso de curvas de permanência anuais, as quais são passíveis de serem tratadas estatisticamente, do mesmo modo em que se tratariam valores anuais máximos, ou mínimos, admitindo-se uma independência entre as curvas de permanência anuais. Supondo que uma série histórica, suficientemente longa e representativa da variação de vazões, esteja disponível no local de interesse, é possível dizer que a curva de permanência anual média (ou mediana), entre aquelas calculadas para cada ano, é mais robusta, do ponto de vista da influência de períodos atípicos, do que a curva de permanência de longo termo. O uso das curvas de permanência anuais proporciona também, a possibilidade de se associar o conceito de probabilidade às curvas de permanência, ou a qualquer valor de vazão associado às mesmas, além da possível construção de intervalos de confiança. A construção das curvas de permanência anuais segue os mesmos passos da construção de curva de permanência de longo termo. Nesse caso, na equação 3.7, *N* torna-se igual a 365 ou a 366 em caso de ano bissexto.

3.3.4 Regionalização das curvas de permanência

Embora as curvas de permanência sejam ferramentas muito úteis para os hidrólogos, há uma literatura escassa sobre a regionalização das curvas de permanência, se comparada à literatura sobre regionalização de curvas de freqüência.

Segundo Tucci (1993), o ajuste de uma função matemática a uma curva de permanência empírica permite uma sintetização maior de informações, facilitando os estudos sobre regionalização da mesma.

Segundo Yu (2002), os vários métodos de regionalização de curvas de permanência podem ser divididos em dois grupos. O primeiro grupo consiste na análise regional entre os coeficientes ou parâmetros provenientes de funções matemáticas ajustadas às curvas de permanência e características das bacias. O segundo grupo utiliza regressões entre vazões, com porcentagens específicas de excedência, e a área de drenagem da bacia, além de outras variáveis explicativas.

3.3.4.1 Ajuste da curva de permanência a uma função e análise regional

Considerando que a curva de permanência é uma representação amostral da função acumulada de uma distribuição de probabilidades, Beard (1943), *apud* Tucci (1993), sugeriu o uso da distribuição Log-Normal para tal finalidade. Entretanto, o emprego dessa distribuição apresenta as seguintes limitações:

- existe correlação serial entre as vazões diárias, implicando que a amostra, supostamente aleatória simples, não possui, de fato, 365n valores independentes, com n representando o número de anos de registros, resultando, assim, em uma violação dos pressupostos de inferência estatística; e,
- a curva teórica é ajustada à amplitude total de valores, podendo apresentar desajustes e anomalias no trecho de interesse, ou seja, no ramo inferior da curva.

Vogel e Fennessey (1990) utilizaram, em um estudo de análise regional em Massachusetts, curvas de permanência no intervalo $0,50 \le p \le 0,99$ em que p é a probabilidade de excedência definida por:

$$p = P(Q > Q_p) = 1 - P(Q \le Q_p)$$
(3.8)

Na equação 3.8, Q_p corresponde ao valor de vazão média diária que é excedida em p% do tempo considerado.

Foi utilizada a distribuição log-normal de dois parâmetros, a qual forneceu uma aproximação satisfatória para o ramo inferior da curva de permanência, sendo que a equação 3.8 foi reescrita como:

$$p = P(Z > z_p) = 1 - (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp(-\frac{1}{2}x^2) dx$$
 (3.9)

sendo:

$$z_p = [\ln(Q_p) - \mu]/\sigma \tag{3.10}$$

As estimativas da médias μ e da variância σ^2 dos logaritmos neperianos das vazões foram obtidas por minimização do erro quadrático dos logaritmos das vazões. Não foi possível o uso do estimador de máxima verossimilhança devido à alta correlação serial entre vazões. A média μ foi correlacionada com as áreas das bacias e σ^2 com os desníveis máximos das bacias. No estudo regional, foram utilizadas 23 estações, sendo que para a validação do trabalho, foram utilizadas 3 com disponibilidade de dados que não foram utilizadas no estudo de regionalização. O modelo apresentou boas estimativas de vazões em relação aos valores observados para as 3 estações.

Tucci (1991) apud Siveira (2001), indicou dois procedimentos na regionalização da curva de permanência baseados em : (a) na parametrização da curva, relacionando os parâmetros com características fisiográficas e climatológicas e, (b) na interpolação, gráfica ou analítica, de uma curva, passando por vazões com permanência pré-definidas e estimadas a partir das características da bacia em estudo, sendo que deste segundo procedimento, propõe o ajuste de uma equação do tipo exponencial estimada através das vazões Q_{50} e Q_{95} das curvas de permanência de longo termo. O método de Tucci (1991) está elencado como um daqueles que serão avaliados nesta dissertação e será detalhado no capítulo 4.

Claps e Fiorentino (1997) propõem o ajuste de curvas de permanência anuais a uma equação log normal de dois parâmetros. Da mesma forma, o método proposto por Claps e Fiorentino (1997), a ser descrito em detalhes no capítulo 4 desta dissertação, também será avaliado.

Franchini e Suppo (1996) propuseram um ajuste restrito ao ramo inferior da curva de permanência em que três vazões, para 3 determinadas permanências de interesse, são utilizadas nas equações, a saber,

$$Q = c[(100 - D)/a]^{1/b}$$
(3.11)

$$Q = c + \exp[a + b.D] \tag{3.12}$$

em que D é a permanência, a, b, c são coeficientes calculados por meio do método dos mínimos quadrados. A escolha de (3. 11) ou (3. 12) está relacionada à concavidade e forma do ramo inferior da curva de permanência. A equação 3.11 é ajustada a curvas de permanência que se comportam de acordo com a figuras 3.3 e 3.4, e a equação 3. 12 é ajustada a curvas de permanência semelhantes à figura 3.5. A análise regional foi feita considerando os valores de duração D_k , k=1,2,3, pertinentes ao ramo inferior. Os valores de vazões correspondentes a essas durações foram correlacionados a características físico-climáticas da bacia. Com as características da bacia de interesse, Franchini e Suppo (1996) estimaram as vazões Q para cada D_k , obtendo 3 pares vazão-duração que foram utilizados para a estimação dos coeficientes a, b e c presentes nas equações 3.11 ou 3.12.

Castellarin *et al* (2004), introduziram uma abordagem de modelo estocástico "vazão-índice" de curvas de permanência, para a modelagem das relações entre curvas de permanência de longo período e curvas de permanência anuais, bem como médias, medianas e variâncias de curvas de permanência anuais. A abordagem vazão-índice tem princípio análogo ao de cheia-índice (index flood), utilizado em análises regionais de freqüência de inundações, sendo que as vazões diárias da curva de permanência são adimensionalizadas pela vazão anual do ano em que essas vazões ocorreram. Essa abordagem foi aplicada com sucesso a três bacias italianas.

Yu (2002) ajustou dois modelos para dezenove bacias em Taiwan. O primeiro modelo ajustado foi uma equação polinomial. Por não ser uma distribuição de probabilidade, essa

função não é adequada para a estimação de quantis. Entretanto, uma vazão pode ser estimada pela equação polinomial, desde que a probabilidade p seja usada como uma variável independente da seguinte forma:

$$Q_p = a - b \cdot p + c \cdot p^2 - d \cdot p^3$$
(3.13)

em que Q_p é a vazão para determinada excedência e a,b,c e d são coeficientes de regressão. O segundo modelo foi o modelo índice-área, que consiste em se fazer a regressão entre vazões Q_i , para i=10,20,...,90, e as respectivas áreas de drenagem das bacias em estudo.

Casadei (2005) utilizou o modelo semelhante ao proposto por Claps e Fiorentino (1997), ajustando uma distribuição log-normal de três parâmetros aos logaritmos na base 10 das vazões anuais adimensionalizadas pelas médias anuais. A variável reduzida z é representada por:

$$z = a \cdot \log(q - q_0) - b \tag{3.14}$$

onde a e b são os momentos de ordem 1 e 2 dos logaritmos, na base 10, das vazões adimensionais anuais, e q_0 representa o parâmetro de ajuste, com o significado de um limite inferior de descarga. Casadei (2005) utilizou q_0 com o valor de 40% da q_{95} do ano em questão. Atingiu melhores resultados na estimação de a e b para cada ano através de regressão linear entre z e $(q-q_0)$.

Assim, a equação ajustada da curva de permanência é:

$$Q = E(Q) \left(10^{\frac{-(z+b)}{a}} + q_0 \right) / 100$$
 (3.15)

A equação pode ser utilizada em locais sem dados, a partir de análises de regressão entre os valores médios de *a* e *b* e as características da bacia.

Mazvimavi *et al* (2004) fizeram um estudo de análise regional em cinqüenta e três bacias no Zimbabwe para a estimação de curvas de permanência usando uma equação exponencial e

redes neurais. A equação exponencial para a modelagem da relação entre vazões Q_p e sua probabilidade de excedência p tem a seguinte forma:

$$Q_p = b_0 \exp(-b_1 p) (3.16)$$

onde b_0 e b_1 são coeficientes da equação. Uma rede neural foi utilizada para estimação de Q_{90} , Q_{80} , Q_{70} , Q_{60} , Q_{50} , Q_{40} , Q_{30} , Q_{20} , Q_{10} , a partir das características da bacia. A rede neural apresentou melhores estimativas das curvas de permanência, quando comparadas às do modelo exponencial. Entretanto, tanto a rede neural quanto a equação exponencial, apresentaram problemas na estimação de vazões com probabilidade de excedência menor que 20%.

É fácil constatar que, em todos os métodos existentes de análise regional de curvas de permanência, cujo objetivo é estimar vazões relacionadas aos períodos de estiagem, há um crescente interesse em se acrescentar variáveis relacionadas intrinsecamente à capacidade de armazenamento e permeabilidade dos aqüíferos, como forma de acrescentar significativa melhoria a essas estimativas. No item que se segue, é feita uma descrição de uma das principais variáveis hidrogeológicas usadas para essa finalidade.

3.4 Variáveis hidrogeológicas

3.4.1 Índice de Escoamento de Base

O índice de escoamento de base, geralmente representado por *IEB*, é a relação entre o volume de escoamento de base proveniente da água armazenada no aqüífero, e o volume de escoamento total.

O *IEB* vem sendo considerado uma importante variável nos estudos de análise regional, principalmente envolvendo estudos de vazões mínimas. O cálculo do *IEB* é muito influenciado pela técnica utilizada para a separação do escoamento de base em relação ao escoamento total em um hidrograma. Segundo Singh (1997), embora tal separação do escoamento de base seja algumas vezes arbitrária e subjetiva, ela é útil na análise do hidrograma.

3.4.1.1 Utilização do IEB

O uso do IEB em estudos de regionalização de vazões mínimas apresenta alguma controvérsia. Por exemplo, NERC (1980) apresentou conclusões importantes sobre a relação entre vazões mínimas e as características de uma bacia. Mostrou-se, nesse estudo, a importância de características geomorfológicas, tais como a área da bacia, o comprimento do rio principal e o número de junções de rios por área da bacia, na estimação de índices tais como $Q_{7,10}$ e Q_{95} . Entretanto, o *IEB* apresentou melhor desempenho, do ponto de vista de análise de resíduos, como parâmetro a ser acrescentado a esses estudos.

Por outro lado, Medeiros (2000), em um estudo na bacia do Paraopeba, em Minas Gerais procurou estabelecer um modelo regional de regressão entre um fator de outorga, FC, e a vazão característica de um período de recessão, com as características da bacia, sendo FC a razão entre o índice de vazão Q_7 mínima do ano de interesse e a vazão de referência $Q_{7,10}$. Não foi encontrada correlação entre IEB e FC. No mesmo estudo, o IEB foi uma das variáveis utilizadas em uma análise regional de vazões médias apresentando correlação relativamente baixa com a variável de interesse.

3.4.1.2 <u>Cálculo do *IEB* para locais com dados</u>

Existem diversos métodos subjetivos de separação do escoamento de base. Um método simples é o da visualização do hidrograma e escolha de uma vazão de recessão que parece representar o início do escoamento proveniente apenas do escoamento de base. O hidrograma de recessão tem baixa declividade porque o movimento de água no aquifero é lento. A separação pode ser feita desenhando-se uma linha reta do ponto em que se inicia a ascensão no hidrograma até o ponto em que cessa o escoamento superficial direto proveniente de alguma precipitação. Esse método de separação é muito questionável. Esse processo pressupõe que durante o evento chuvoso, não há recarga do aquifero que contribui para o aumento do escoamento de base durante o evento. A falta de realismo físico é um dos motivos para a não utilização dessa técnica de separação para o cálculo do *IEB*.

Há outros métodos subjetivos, sendo preferível, porém, o uso de métodos analíticos que não dependem de avaliações subjetivas dos analistas dos hidrogramas. Um método subjetivo de separação do escoamento de base é aquele baseado na relação não linear entre tempo e área, em que:

 $N = bA^{0,2} (3.17)$

onde A é a área da bacia, b é um coeficiente que é unitário, se a área é expressa em milhas quadradas, e igual a 0,8, se em km², N é o tempo, em dias, do pico do hidrograma até fim do escoamento superficial direto.

NERC (1980), propõe um método analítico para determinação anual do *IEB* a partir de séries de vazões médias diárias cujas etapas são:

- dividir o ano em blocos de 5 dias não sobrepostos, a partir do dia 1º de janeiro;
- identificar a vazão mínima ocorrida em cada bloco e nomeá-la como Q₁, Q₂,...Q_n, sendo
 n=73, o número de blocos de 5 dias;
- montar os blocos formados por (Q₁,Q₂,Q₃),(Q₂,Q₃,Q₄)....(Q₇₁,Q₇₂,Q₇₃). Em cada bloco, o valor central é multiplicado por 0,9 e comparado aos outros valores. Se este resultado do valor central for inferior aos outros, então o valor central é um ponto de inflexão da linha de separação do escoamento de base.
- definir as datas dos pontos de inflexão como $x_1, x_2, ..., x_p$ e as vazões relacionadas a esses pontos de inflexão como $q_1, q_2, ..., q_p$. Os tempos entre os pontos de inflexão são calculados como $(x_2 x_1), (x_p x_{p-1})$, e as vazões médias como $(q_1 + q_2)/2, (q_{p-1} + q_p)/2$;
- calcular o volume abaixo da linha de separação do hidrograma, ou escoamento de base (VB), através das somas das áreas entre os pontos de inflexão, o que implica na multiplicação dos tempos entre pontos de inflexão pelas vazões médias;
- calcular o volume total do escoamento (VT) somando-se as vazões médias diárias entre os pontos de inflexão;

Terminada a separação analítica do escoamento de base, calcula-se o IEB como IEB = VB/VT.

Casadei (1995) propõe uma modificação no método apresentado por NERC (1980). Ele analisou que, por definição, o método apresentado por NERC, exclui o primeiro e o último grupo de cinco dias do ano. Conseqüentemente, se as vazões mínimas de alguns grupos de 5 dias seguintes ao primeiro grupo, e grupos de 5 dias anteriores ao último, não forem pontos de inflexão, podem também ser excluídas do cálculo de *IEB*. Isso implica no fato do método não utilizar os 365 dias do ano. Se os primeiros e últimos grupos de cinco dias do hidrograma forem caracterizados por um período intenso de chuvas, a ausência destes pode gerar uma superestimação no *IEB*. Foi proposta uma modificação em que a primeira vazão mínima do primeiro grupo de cinco dias seja utilizada no cálculo de *IEB*. A figura 3.6 ilustra o hidrograma da estação Pirapama, para o ano hidrológico (1969-1970), com a separação do escoamento total em escoamento de base e escoamentos superficial direto pelo método de NERC (1980), modificado por Casadei (1995).

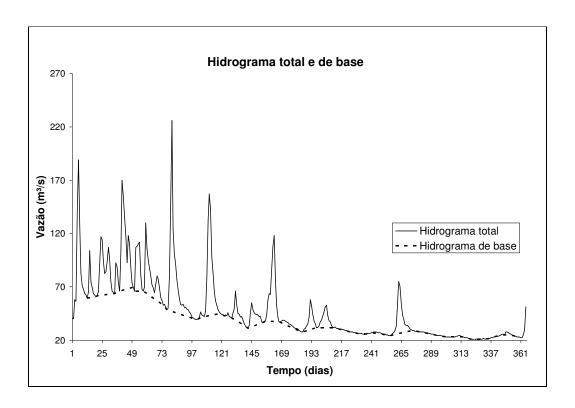


Figura 3.6 – Hidrograma toral e de base

Grayson *et al* (1996) fornecem outros 3 métodos de separação do hidrograma. O primeiro método necessita de uma constante *K* que pode ser a constante de recessão. A partir do cálculo da constante de recessão, tem-se a equação

$$Q_b(i) = \frac{K}{2-k}Q_b(i-1) + \frac{1-k}{2-k}Q(i)$$
(3.18)

sendo:

$$Q_b(i) \le Q(i)$$

em que, $Q_b(i)$ é vazão de base para o tempo $i,\ Q(i)$ é a vazão medida no tempo i e K é a constante de recessão

O segundo método tem sido usado para a separação de hidrogramas, quando se têm dados obtidos por traçadores químicos ou radioativos. Nesse caso,

$$Q_b(i) = \frac{K}{1 - C}Q_b(i - 1) + \frac{C}{1 + C}Q(i)$$
(3.19)

em que C é um parâmetro geralmente usado quando há uso de traçadores que auxiliam na separação do escoamento superficial.

O terceiro método, segundo Grayson *et al* (1996), não possui o mesmo embasamento teórico que os dois métodos anteriores, porém é bastante utilizado. Esse método consiste no uso da equação:

$$Q_f(i) = \alpha \cdot Q_f(i-1) + [Q(i) - Q(i-1)] \frac{1+\alpha}{2}$$
(3.20)

para $Q_f(i) \ge 0$

em que, $Q_f(i)$ denota a vazão de resposta rápida no tempo i, Q(i) é a vazão observada no tempo i e α é um parâmetro cujo valor para dados diários é tomando como 0,925.

O valor do escoamento de base é portanto:

$$Q_b = Q - Q_f \tag{3.21}$$

Para uso deste algoritmo em uma planilha eletrônica ou programa computacional, uma equação condicional deverá ser utilizada sempre que o valor computado para Q_f for menor do que 0, com a fixação do valor Q_b para Q. O algoritmo separa o escoamento de base do escoamento total através de três passos sucessivos (adiante, para trás, e adiante novamente). O primeiro e o terceiro são passos adiante com calculo direto pela equação 3.20. O segundo é um passo para trás em que (i-1) é substituído por (i+1) na mesma equação 3.20. No primeiro passo, Q(i) é a vazão medida. No segundo passo Q(i) é o escoamento de base calculado do primeiro passo. No terceiro passo, Q(i) é o escoamento de base calculado passo.

USGS (1996) disponibilizou um programa computacional, denominado HYSEP, para a separação do hidrograma. O programa tem como resultados, o hidrograma anual separado em escoamentos total e de base, para cada ano da série, resumos mensais e anuais dos escoamentos, curvas de permanência do escoamento total, de base e superficial, fornecendo também os *IEBs* anuais e o *IEB* mediano, a partir de todos *IEBs* calculados. A facilidade e os critérios de separação do escoamento, proporcionados pelo programa HYSEP, determinaram o seu emprego nesta dissertação. Por essa razão, os seus algoritmos de separação serão descritos, em detalhe, no capítulo 4.

3.4.1.3 Cálculo do *IEB* para locais sem dados

Um método para estimar o *IEB* para um local sem dados é apresentado por NERC (1980), a qual consiste em se comparar os *IEB*s calculados em locais com dados, com características geológicas similares, de forma que seja possível estabelecer um intervalo de *IEB*s para um determinando complexo geológico. A partir disso, é possível estimar o *IEB* para um local por meio de médias ponderadas, caso a bacia possua diferentes aqüíferos.

Uma forma de se estabelecer intervalos de variação de *IEB*, para determinados complexos geológicos, de modo a servir de suporte ao uso das médias ponderadas citadas no parágrafo anterior, foi apresentada por Manciola e Casadei (1991). Eles desenvolveram um estudo em cinqüenta e sete bacias com disponibilidade de dados, na região central da Itália. Para essas bacias, utilizaram o método de NERC (1980) para o cálculo dos *IEB*s. Esses autores encontraram correlação significativa entre os *IEB*s e parâmetros, tais como, densidade de drenagem, uso do solo e declividade da bacia, encontrando também alguma correlação entre

o *IEB* e características de onze complexos geológicos. Fizeram uma correlação entre as porcentagens de área de determinado complexo para cada bacia e o respectivo *IEB*. Assim, foram estimados *IEB*s para cada bacia através de ponderação entre os *IEB*s estimados por cada equação de regressão. Com os *IEB*s observados e estimados, utilizaram técnicas que minimizam erros de estimação para gerar intervalos de valores de *IEB* para cada complexo geológico.

Mazvimavi *et al* (2004) fizeram um estudo de análise regional em cinqüenta e duas bacias no Zimbabwe para estimação de várias variáveis, sendo o *IEB* uma das variáveis estudadas. O *IEB* foi estimado nesse estudo por meio de duas técnicas. A primeira técnica consistia no uso de regressão linear do *IEB* tendo como variáveis explicativas, a precipitação média anual, a declividade e a proporção de pastagem na bacia. A segunda técnica consistiu no uso de uma rede neural para a estimação do *IEB*. A rede neural apresentou melhores resultados que a regressão linear. Diferenças na litologia e no tipo de cobertura do solo não se mostraram variáveis explicativas significativas.

Haberlandt (2001) estudou a possibilidade para a regionalização de componentes de uma vazão, com especial atenção para o *IEB*. Para a regionalização do *IEB*, foram usadas técnicas como regressão linear múltipla e abordagens geoestatísticas, como krigagem ordinária e krigagem orientada. O *IEB* mostrou-se altamente correlacionado com as características topográficas, pedológicas, hidrogeológicas e de precipitação, com pouca correlação com a cobertura e uso do solo.

3.4.1.4 <u>Considerações</u>

Foi possível verificar e ressaltar na revisão bibliográfica a importância do conhecimento da variabilidade dos recursos hídricos de uma bacia hidrográfica, como essencial para estudos sobre o planejamento e gerenciamento de sua disponibilidade hídrica. Dentro desse assunto, foi abordada a importância do uso das curvas de permanência, bem como da freqüente necessidade de se construir curvas de permanência em locais desprovidos de dados. Nota-se também que a literatura sobre regionalização de curvas de permanência é escassa, se comparada à literatura sobre outras formas de regionalização.

Nos capítulos seguintes, serão aplicados e avaliados dois métodos para a regionalização de curvas de permanência. Um dos métodos é utilizado para a regionalização de curvas de

permanência de longo termo (Tucci, 1991), enquanto o outro método é utilizado para a regionalização de curvas de permanência anuais (Claps e Fiorentino, 1997).

A escolha do método de Tucci (1991) se deve ao fato de que, embora esse método seja muito utilizado no Brasil, ainda não foi realizado um estudo sobre seu desempenho dentro dos moldes propostos por esse trabalho, como será explicado posteriormente.

O método de Claps e Fiorentino (1997) foi escolhido pelo fato de que no Brasil, o uso de curvas de permanência anuais, com uma abordagem probabilística ainda não é difundido. O seu emprego, nesta dissertação pode gerar posteriormente, o interesse de outros pesquisadores sobre esta outra abordagem de curvas de permanência, com eventual aplicação do método de Claps e Fiorentino (1997) em outras regiões brasileiras e, possivelmente, outros desdobramentos.

4 METODOLOGIA

Para atender os objetivos desta dissertação, propõe-se a seguir uma sequência de procedimentos necessários à avaliação do desempenho de alguns métodos de regionalização de curvas de permanência.

Os métodos selecionados para esta avaliação são os métodos de Tucci (1993) e o de Claps e Fiorentino (1997). A escolha desses, entre outros métodos possíveis, se deu pelas seguintes razões:

- o método de Tucci (1991), que é muito difundido no Brasil para a estimação de curvas de permanência de longo termo, ainda não possui avaliação de desempenho sob critérios quantitativos objetivos;
- o método de Claps e Fiorentino (1997), por outro lado, ainda não tem uso difundido no Brasil e possui base conceitual bem estabelecida. O mesmo é formulado com base em modelo probabilístico de curvas de permanência anuais, às quais podem-se atribuir probabilidades de serem igualadas ou superadas.

Nos itens 4.1 e 4.2 deste capítulo, esses dois métodos de regionalização de curvas de permanência serão objeto de descrição detalhada.

Nos itens seguintes, descreve-se sequencialmente, (i) a formulação das equações de regressão para regionalizar as curvas de permanência, tal como obtidas pelos métodos de Tucci (1991) e Claps e Fiorentino (1997), (ii) a obtenção das principais variáveis explicativas a serem utilizadas nos modelos regionais de regressão propostos.

Finalmente, no item 4.6, apresenta-se um procedimento para a avaliação do desempenho dos métodos regionais em análise, o qual baseia-se em uma técnica de re-amostragem denominada *Jack knife cross validation*. A seqüência metodológica aqui apresentada foi aplicada na bacia do Rio das Velhas, em Minas Gerais. Os detalhes da aplicação serão descritos nos capítulos posteriores.

4.1 Método de Tucci(1991)

O método proposto por Tucci (1991) consiste no ajuste de uma equação do tipo exponencial a uma curva de permanência observada, por meio das vazões Q_{50} e Q_{95} . Formalmente, a equação proposta é:

$$Q = \exp(p.a + b) \tag{4.1}$$

em que a obtenção das variáveis a e b são explicadas a seguir:

Pela figura 4.1, nota-se o ajuste da equação 4.1 aos pontos ($P1,Q_{P1}$) e ($P2,Q_{P2}$).

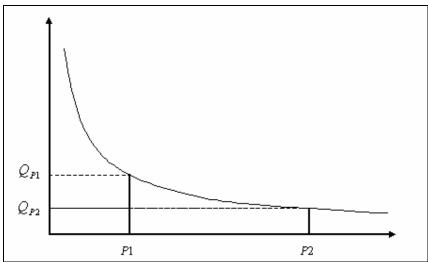


Figura 4.1 - Curva de permanência

sendo obtido o sistema de equações mostrado abaixo

$$\begin{cases} Q_{P1} = \exp(P1.a + b) \Rightarrow \ln Q_{P1} = P1.a + b \Rightarrow b = \ln Q_{P1} - P1.a \\ Q_{P2} = \exp(P2.a + b) \Rightarrow \ln Q_{P2} = P2.a + b \end{cases}$$

A equação para variável b é obtida isolando a mesma na primeira equação do sistema como é mostrado da equação 4.2

$$b = \ln Q_{P1} - P1.a \tag{4.2}$$

Substituindo a equação 4.2 na segunda equação do sistema, obtem-se a variável a pela equação 4.3, ou seja,

$$\ln Q_{P2} = P2.a + b \Rightarrow \ln Q_{P2} = P2.a + \ln Q_{P1} - P1.a$$

$$\ln Q_{P2} - \ln Q_{P1} = a(P2 - P1)$$

$$\ln Q_{P2} / \ln Q_{P1} = a(P2 - P1)$$

$$a = (\ln Q_{P2} / \ln Q_{P1})/(P2 - P1)$$
 ou $a = -(\ln Q_{P1} / \ln Q_{P2})/(P2 - P1)$ (4.3)

A Figura 4.2 ilustra o ajuste do modelo de Tucci (1991) à curva de permanência de longo termo, elaborada a partir dos dados de vazão média diária da estação fluviométrica Ponte do Licínio Jusante, no Rio das Velhas, em Minas Gerais.

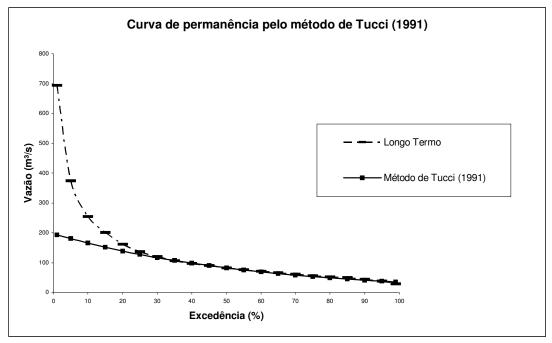


Figura 4.2 – 41650002 Estação Ponte Licinio Jusante- Método de Tucci (1993)

Como pode ser visto na figura 4.2, a equação exponencial se ajusta à curva de permanência no intervalo de valores associados às maiores probabilidades de excedência.

A construção de curvas de permanência em locais desprovidos de dados fluviométricos, com o método proposto por Tucci (1991), é possível a partir de análises de regressão entre Q_{50} e Q_{95} , com as características da bacia, em uma região homogênea do ponto de vista das curvas de permanência. Em outros termos, pode-se estabelecer as regressões entre Q_p , com p=50 ou p=95, com a área de drenagem A, a altura média anual de precipitação P, ou a densidade de drenagem Dd, entre tantas outras possíveis variáveis explicativas. Formalmente:

$$Q_p = f(A, P, Dd, \dots) \tag{4.4}$$

Este método, por trabalhar com ajuste de uma equação exponencial para curvas de permanência de longo termo, passa a ter os mesmos problemas que as curvas de permanência de longo termo observadas, ou seja, a sensibilidade à presença de períodos atípicos dentro da série. Tem como grande vantagem a simplicidade de aplicação e de regionalização.

4.2 Método de Claps e Fiorentino (1997)

De acordo com a proposta de Claps e Fiorentino (1997), a distribuição log-normal de três parâmetros pode ser ajustada a uma curva de permanência de acordo com a seguinte relação:

$$\ln(q - q_0) = \alpha + \beta z \tag{4.5}$$

na qual, q representa a vazão média diária adimensional, dada por q = Q/E(Q), onde E(Q) representa a vazão média no ano considerado, α e β representam, respectivamente os parâmetros de posição e de escala de uma distribuição log-normal, q_0 representa o parâmetro de ajuste, com o significado de um limite inferior de descarga, e z é a variável normal reduzida que representa intrinsecamente a freqüência da vazão q. Claps e Fiorentino (1997) utilizaram 14 estações na região de Basilicata, no sul da Itália, em que propuseram uma aproximação probabilística das curvas de permanência anuais de vazões, por meio da distribuição Log-Normal de 2 parâmetros, implicando, nesse caso, que $q_0 = 0$, uma vez que no estudo de caso realizado por eles, a definição de um limite inferior de vazão é sempre uma tarefa muito difícil em rios perenes. Nesta dissertação, reconhecendo a dificuldade de se impor um limite inferior q_0 às vazões de rios perenes, foi feita a opção de uso do método de Claps e Fiorentino (1997) com o modelo log-normal de 2 parâmetros.

Comparando a equação (4.5) com a definição da variável log-normal reduzida $z = (\ln q - \mu)/\sigma$, nota-se que α e β podem ser expressos por:

$$\mathbf{\alpha} = \mathbf{\mu}(\ln q) \tag{4.6}$$

$$\mathbf{\beta} = -\mathbf{\sigma}(\ln q) \tag{4.7}$$

No contexto do método proposto por Claps e Fiorentino (1997), cada aproximação probabilística representa um ano de dados e, conseqüentemente, α e β estão relacionados ao ano em questão. Claps & Fiorentino (1997) verificaram que, para cada estação, os parâmetros anuais α e β podem ser considerados normalmente distribuídos. Eles afirmaram que isso é teoricamente justificável, uma vez que α e β foram estimados pela média e pelo desvio padrão de uma variável transformada normal. Como exemplo ilustrativo, esses autores apresentaram um gráfico entre as variáveis normais reduzidas e as estimativas anuais de α e β . Utilizando a mesma forma de ilustração gráfica para uma bacia do médio rio das Velhas, verificou-se comportamento análogo ao das bacias italianas utilizadas no estudo de Claps e Fiorentino (1997), como pode ser verificado nas Figuras 4.3 e 4.4.

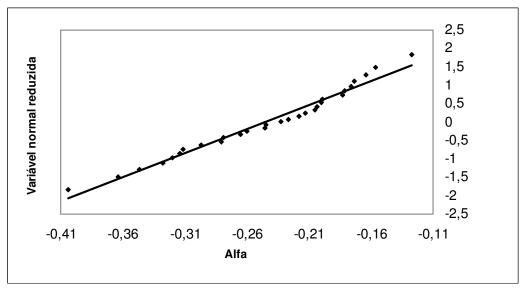


Figura 4.3 – Ajuste de Distribuição Normal aos parâmetros anuais α da estação fluviométrica do rio das Velhas em Ponte do Licínio-Jusante

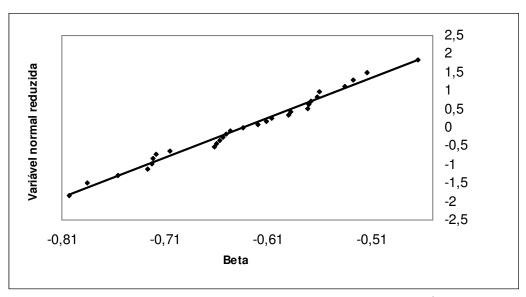


Figura 4.4 – Ajuste de Distribuição Normal aos parâmetros anuais β da estação fluviométrica do Rio das Velhas em Ponte do Licínio Jusante

A representação probabilística do método de Claps e Fiorentino (1997) pode ser posta na seguinte forma:

$$X_{F,\bullet} = \alpha_{\bullet} + \beta_{\bullet} z(F) \tag{4.8}$$

em que $X = \ln q$ e F corresponde à permanência de q. A freqüência F corresponde a p, da equação (3.3), em que i é a permanência atual de q, em termos de números de dias em que q é excedido; N é igual a 365; ϕ é a probabilidade de não excedência de X_F . A determinação dos parâmetros α_{ϕ} e β_{ϕ} é feita a partir da análise da estrutura probabilística dos conjuntos de parâmetros α e β , de todas as séries anuais das estações fluviométricas em estudo. Com efeito, por meio dos momentos $\mu(\alpha)$, $\sigma(\alpha)$ e $\mu(\beta)$, $\sigma(\beta)$, pode-se alterar a estrutura da equação 4.8. Inicialmente faz-se:

$$\alpha_{\bullet} = \mu(\alpha) + u_{\bullet} \sigma(\alpha) \tag{4.9}$$

e

$$\beta_{\phi} = \mu(\beta) + u_{\phi} \sigma(\beta) \tag{4.10}$$

em que u_{ϕ} é a variável normal reduzida.

Substituindo esses termos da equação 4.8, resulta:

$$Q_{F, \bullet} = \exp(\alpha_{\bullet} + \beta_{\bullet} z(F)).E(Q)$$
(4.11)

em que E(Q) pode ser estimado pela média global das vazões.

A Figura 4.5 ilustra uma curva de permanência com probabilidade de 0,5 (u_{ϕ} = 0), construída a partir do método de Claps e Fiorentino (1997), para os dados de vazão diária da estação fluviométrica de Ponte do Licínio-Jusante e também uma curva de permanência de longo termo para a mesma estação. Essa curva de permanência de longo termo foi construída a partir de anos com séries completas; portanto, anos com falhas no registro histórico não foram considerados.

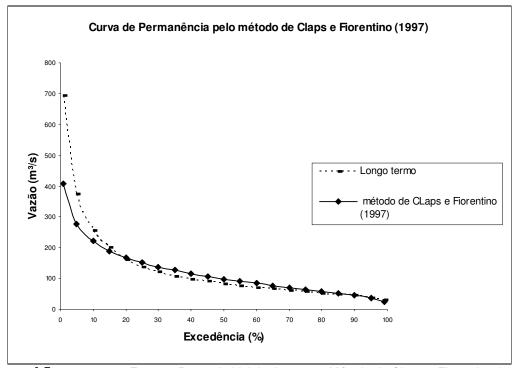


Figura 4.5 – 41650002- Estação Ponte do Licinio Jusante – Método de Claps e Fiorentino (1997)

O momento E(Q), utilizado na equação 4.11 deve ser empregado nos casos em que não há presença de correlação entre as vazões médias anuais e os respectivos parâmetros α e β , conforme recomendação de Claps e Fiorentino (1997). No caso das estações da bacia do rio das Velhas, as vazões médias não apresentam alta correlação com α e β , o que significa a possibilidade de uso das médias das vazões médias anuais para a elaboração das curvas de permanência. As figuras 4.6 e 4.7 ilustram os baixos coeficientes de determinação entre α e

 β , e as vazões médias para cada respectivo ano, válidos para as vazões observadas na estação fluviométrica do rio das Velhas em Pirapama (41600000).

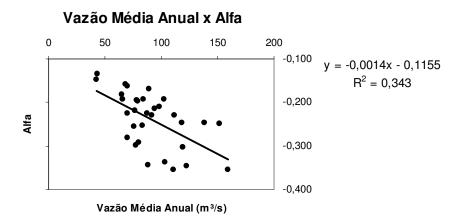


Figura 4.6 – Regressão entre os coeficientes α e vazões médias anuais

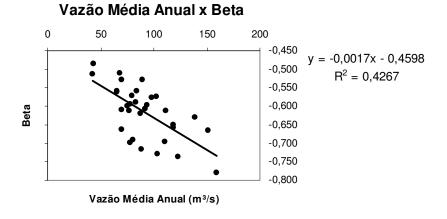


Figura 4.7 – Regressão entre os coeficientes β e vazões médias anuais

Para efeito de melhor ilustração do método de Claps e Fiorentino (1997), foram a elaboradas curvas de permanência, de várias probabilidades para a Estação 41600000 – Pirapama, a qual possui uma série de 29 anos completos de dados disponíveis. Todas as vazões foram adimensionalizadas pelas médias dos seus respectivos anos. Em seguida, aplicou-se o logaritmo neperiano a cada vazão adimensional. Pelas equações 4.6 e 4.7 foram obtidos 29 pares de parâmetros α e β , os quais, por construção, seguem uma distribuição normal. O passo seguinte foi a obtenção das médias $\mu(\alpha)$ e $\mu(\beta)$, e dos desvios-padrão $\sigma(\alpha)$ e $\sigma(\beta)$.

Os valores encontrados, respectivamente, para $\mu(\alpha)$ e $\mu(\beta)$, foram de -0,228 e -0,607, enquanto os valores dos desvios-padrão $\sigma(\alpha)$ e $\sigma(\beta)$ foram de 0,069 e 0,089. Esses valores são aqueles necessários para a obtenção de α_{ϕ} e β_{ϕ} pelas equações 4.9 e 4.10. Os valores de α_{ϕ} e β_{ϕ} para diferentes probabilidades foram calculados utilizando diferentes de valores u_{ϕ} (variável normal padrão) e utilizados na equação (4.11).

A tabela 4.1 contém os valores de α_{ϕ} , β_{ϕ} e u_{ϕ} para diferentes probabilidades, enquanto a Figura 4.7 apresenta curvas de permanência para as probabilidades apresentas na tabela. 4.1.

Tabela 4.1 - Valores de α_{ϕ} , β_{ϕ} e u_{ϕ}

		ı ı	
$\alpha_{_{m{\phi}}}$	β_{ullet}	Probabilidade	u_{ϕ}
-0,364	-0,781	0,025	-1,960
-0,342	-0,753	0,05	-1,645
-0,317	-0,721	0,1	-1,282
-0,286	-0,681	0,2	-0,842
-0,264	-0,653	0,3	-0,524
-0,246	-0,629	0,4	-0,253
-0,239	-0,616	0,5	0,000
-0,211	-0,584	0,6	0,253
-0,192	-0,560	0,7	0,524
-0,170	-0,532	0,8	0,842
-0,139	-0,493	0,9	1,282
-0,114	-0,461	0,95	1,645
-0,093	-0,433	0,975	1,960

Pode ser verificado, no exemplo da Figura 4.8 e em outros casos, que as curvas se cruzam em um único ponto. Esse fato parece não possuir significado físico, sendo apenas uma decorrência matemática de construção metodológica. De fato, igualando-se a equação 4.11 para duas curvas de permanência de diferentes probabilidades, resulta que:

$$\exp(\mathbf{\alpha}_{\bullet}^{'} + \mathbf{\beta}_{\bullet}^{'}.Z(F)).E(Q) = \exp(\mathbf{\alpha}_{\bullet}^{''} + \mathbf{\beta}_{\bullet}^{''}.Z(F)).E(Q)$$

ou

$$\mathbf{\alpha}_{\phi}^{'} + \mathbf{\beta}_{\phi}^{'}.Z(F) = \mathbf{\alpha}_{\phi}^{''} + \mathbf{\beta}_{\phi}^{''}.Z(F)$$

Substituindo α_{ϕ} e β_{ϕ} , por suas expressões nas equações 4.9 e 4.10, segue-se que:

$$\mu(\alpha) + \sigma(\alpha).u_{\phi}^{'} + (\mu(\beta) + \sigma(\beta)u_{\phi}^{'})Z(F) = \mu(\alpha) + \sigma(\alpha).u_{\phi}^{''} + (\mu(\beta) + \sigma(\beta)u_{\phi}^{''})Z(F)$$

ou

$$\sigma(\alpha).(u_{\phi}^{'}-u_{\phi}^{''})=\sigma(\beta).Z(F),(u_{\phi}^{''}-u_{\phi}^{'})$$

$$\frac{\mathbf{\sigma}(\mathbf{\alpha})}{\mathbf{\sigma}(\mathbf{\beta})} = \frac{(u_{\phi}^{'} - u_{\phi}^{''})}{(u_{\phi}^{''} - u_{\phi}^{'})}.Z(F)$$

$$\frac{\sigma(\alpha)}{\sigma(\beta)} = -Z(F).$$

$$Z(F) = -\frac{\sigma(\alpha)}{\sigma(\beta)} \tag{4.12}$$

A equação 4.12 demonstra que as curvas, correspondentes a diferentes probabilidades anuais, se cruzam em um ponto cuja abscissa corresponde à razão entre os desvios-padrão de α e β . Tal fato matemático decorre dos aspectos construtivos da metodologia proposta por Claps e Fiorentino (1997).

Curvas de Permanência

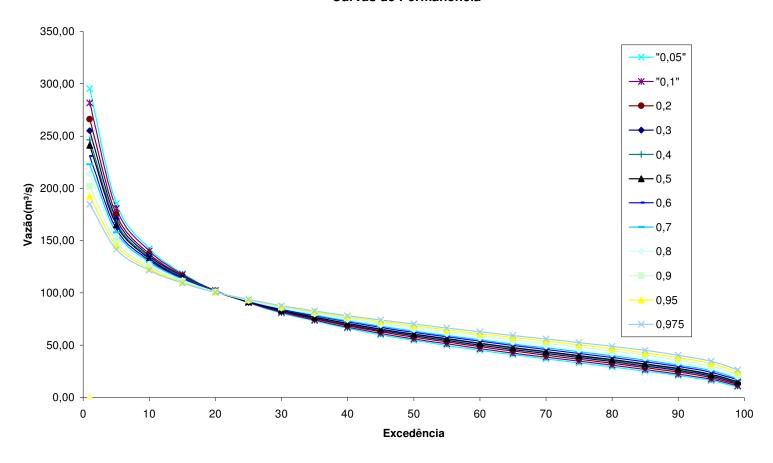


Figura 4.8 – Curvas de permanência de diferentes probabilidades anuais de não superação conforme método de Claps e Fiorentino (1997).

Na metodologia de Claps e Fiorentino (1997), há uma premissa que, uma vez determinado α_{ϕ} e β_{ϕ} , em decorrência, ambos estão associados à mesma probabilidade ϕ . Isso implica em uma correlação perfeita entre α e β . No caso da bacia do rio das Velhas, foi estudada a correlação entre α e β e os resultados mostraram que essa premissa parece ser verdadeira em todas as estações da bacia. A figura 4.9, exemplifica a alta correlação entre α e β , para a estação fluviométrica do rio das Velhas em Pirapama.

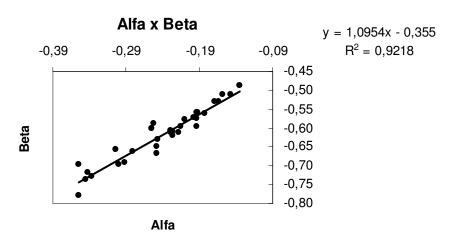


Figura 4.9 – Regressão entre Alfa e beta para estação Pirapama

Apesar dos resultados obtidos para a bacia do rio das Velhas, deve-se ressaltar que Claps $(2006)^1$ não encontrou correlação entre α e β em duas regiões italianas. Nesse caso, as curvas obtidas não são mais gaussianas porque refletem apenas a ligação entre pontos singulares obtidos. Claps $(2006)^2$ recomenda que, nesses caos, deve-se construir as curvas de permanência por trechos, com a indicação de valores singulares de duração z e freqüência ϕ e, reconhece que se trata de um problema estatisticamente complicado que requer maiores estudos.

¹Claps, P. Comunicação Pessoal. 2006. (Politecnico di Torino, DITIC - Dipartimento di Idraulica, Trasporti ed Infrastrutture civili – Italy)

²Ibidem.

Nesta dissertação, para efeito comparativo apenas, foram utilizadas as curvas de permanência com probabilidade anual 0,5, o que corresponde a u_{ϕ} =0. Nesses termos, tanto $\sigma(\alpha)$ quanto $\sigma(\beta)$ não são utilizados na construção das curvas.

O método proposto por Claps e Fiorentino (1997) pode ser aplicado para regiões sem disponibilidade de dados, pelo emprego de análise de regressão entre μ_{α} , σ_{α} e μ_{β} , σ_{β} das estações com disponibilidade de dados, e as características da bacia, observando que $\sigma(\alpha)$ e $\sigma(\beta)$, em geral, não apresentam correlação com as características das bacias. Para a regionalização de uma curva mediana, ou com probabilidade anual de 0,5, não há a necessidade de uso dos valores de $\sigma(\alpha)$ e $\sigma(\beta)$ regionais, uma vez que esses parâmetros são multiplicados por $u_{\phi}=0$

No caso de regionalização para uma região buscando-se uma probabilidade diferente de 0,5, Claps (1997) propôs que o cálculo de $\sigma(\alpha)$ e $\sigma(\beta)$ regionais seja feito utilizando-se de:

$$\sigma(\alpha) = \mu(\alpha).CV(\alpha) \tag{4.13}$$

$$\sigma(\beta) = \mu(\beta).CV(\beta) \tag{4.14}$$

em que $\mu(\alpha)$ e $\mu(\beta)$ são calculados pelos modelos regionais e os coeficientes de variação $CV(\alpha)$ e $CV(\beta)$ regionais são obtidos por meio de média ponderada pelo número de anos da série de cada bacia utilizada na análise de regressão.

A vazão média E(Q) a ser utilizada na equação 4.11 é obtida por meio de regressão entre as médias das vazões médias anuais das estações e características das bacias.

A figura 4.10 apresenta o fluxograma explicativo sobre o método de Claps e Fiorentino (1997).

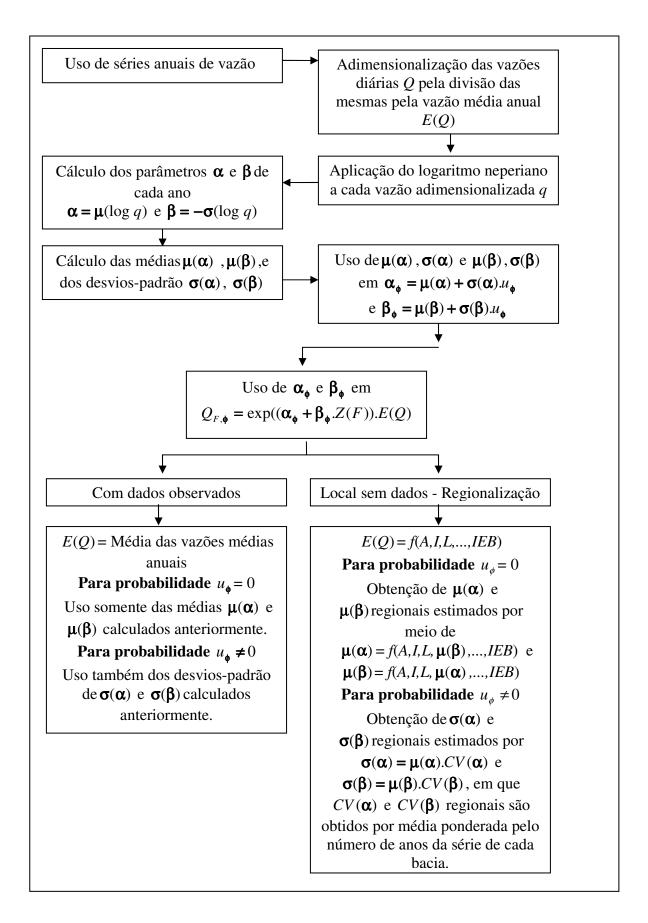


Figura 4.10 – Fluxograma do método de Claps e Fiorentino (1997)

4.3 Os modelos regionais de regressão

No contexto da proposta desta dissertação, relativa à comparação de métodos regionais de estimação de curvas de permanência, descreve-se a seguir, as propostas dos modelos de regressão usados para esta finalidade.

Para a determinação tanto de Q_{50} e Q_{95} , necessários para a aplicação do método de Tucci (1993), e de $\mu(\alpha)$, $\mu(\beta)$ e Q_{med} , para o método de Claps e Fiorentino (1997), foram utilizadas, como variáveis explicativas, a área de drenagem (A), a declividade equivalente (I), o comprimento do curso d'água principal (L), a densidade de drenagem (Dd), a precipitação média anual (P), o coeficiente de escoamento da bacia (C_{esc}) e o Índice de escoamento de base (IEB).

Para $Q=Q_{50}$ ou $Q=Q_{95}$ ou $Q=Q_{med}$, foram utilizados os modelos de regressão não linear do tipo:

$$Q = a.A^b.I^c.L^d.Dd^e.P^f.C_{esc}^g.IEB^h$$
(4.15)

onde a, ..., h são coeficientes a serem estimados pelo método dos mínimos quadrados.

Para $\mu(\alpha)$ e $\mu(\beta)$, foi utilizado um modelo de regressão linear do tipo:

$$\mu(\alpha) = a + b.A + c.I + d.L + e.Dd + f.P + g.C_{esc} + h.IEB + i.\mu(\beta)$$
(4.16)

e

$$\mu(\beta) = a + b.A + c.I + d.L + e.Dd + f.P + g.C_{exc} + h.IEB + i.\mu(\alpha)$$
(4.17)

onde a, b,, i são coeficientes a serem estimados pelo método dos mínimos quadrados.

4.4 Obtenção das variáveis explicativas dos modelos de regressão

Descrevem-se, a seguir, os principais procedimentos para a obtenção das variáveis explicativas a serem usadas nos modelos regionais de regressão.

4.4.1 Determinação de características físicas da Bacia Hidrográfica

4.4.1.1 Área da Bacia

A área de drenagem (A) é obtida após delimitação da bacia hidrográfica em uma carta geográfica de escala apropriada ao seu porte. Para esse fim, antes do advento da tecnologia computacional, usava-se o planímetro. Atualmente, obtém-se a área de drenagem com mais precisão, por meio da digitalização da carta geográfica, com a área já delimitada, para uso posterior em programas computacionais de edição de mapas digitais como Arc Gis, MapInfo e outros.

4.4.1.2 <u>Perfil longitudinal</u>

A definição do perfil longitudinal permite o cálculo do comprimento total do rio e da declividade equivalente do curso d'água. Por meio de mapas geográficos, obtêm-se as altitudes e as distâncias de interesses, como as dos principais afluentes, reservatórios e estações fluviométricas.

O comprimento do trecho entre nascente do rio e cada estação fluviométrica pode ser obtido por meio do perfil longitudinal dos cursos d'água levantados através de curvímetro ou de algum programa computacional

Para determinar a declividade equivalente, utiliza-se todo o perfil longitudinal do rio até o ponto desejado. A declividade pode ser calculada por meio da fórmula 4.18:

$$I_{equiv.} = \left[\frac{L}{\Sigma \left(\frac{l_j}{\sqrt{I_j}}\right)}\right]^2 \tag{4.18}$$

onde L é o comprimento total do trecho, lj e lj denotam o comprimento e a declividade de cada sub-trecho e j é número de ordem do sub-trecho.

4.4.1.3 Densidade de drenagem

A densidade de drenagem indica as variações do relevo superficial e das características gemorfológicas da bacia. Consiste no número de junções por quilômetro quadrado da bacia, sendo uma junção o encontro de dois rios quaisquer.

A densidade de drenagem varia de acordo com a escala na qual é levantada, devendo-se, portanto utilizar sempre a mesma escala. A densidade de drenagem pode ser melhor determinada a partir da digitalização dos mapas e do uso de ferramentas computacionais.

4.4.2 Determinação das características hidrológicas da bacia hidrográfica

Como o interesse em uma curva de permanência está voltado principalmente ao ramo inferior da curva, pode-se utilizar tanto a precipitação média anual (*P*), quanto o índice do escoamento de base (*IEB*).

4.4.2.1 Precipitação média anual

A precipitação média anual utilizada em estudos de regionalização, pode ser calculada pelo método de Thiessen que considera a não uniformidade da distribuição espacial das estações fluviométricas. A metodologia consiste no seguinte:

- ligar as estações por trechos retilíneos;
- traçar as mediatrizes dos segmentos de reta que ligam as estações, ou seja, as linhas perpendiculares aos trechos retilíneos passando pelo meio da linha que liga as estações fluviométricas;
- prolongar as mediatrizes até que elas se encontrem no baricentro do triângulo formado pelas 3 estações pluviométricas próximas.

O denominado polígono de Thiessen é formado pela interseção das linhas, correspondendo à área de influência de cada estação, e a precipitação média por ser calculada pela equação 4.19.

$$P = \frac{\Sigma(A_i P_i)}{A} \tag{4.19}$$

em que Ai é área de influência da estação pluviométrica i; P_i é precipitação registrada na estação fluviométrica i e A é área total da bacia. Neste trabalho foram utilizadas as precipitações médias anuais calculadas por CPRM (2001).

4.4.2.2 Índice de Escoamento de Base para locais com dados

Conforme menção anterior, o índice de escoamento de base (*IEB*) é a relação entre o volume de escoamento de base, proveniente da água armazenada no aqüífero, e o volume de escoamento total.

Para o cálculo do *IEB*, é necessário um procedimento de separação do escoamento total nos componentes do escoamento proveniente de escoamento superficial direto e do escoamento da água armazenada no aquífero, conforme mencionado.

Os valores de *IEB* usados neste trabalho, foram calculados por meio do programa computacional denominado *HYSEP*, disponibilizado pela USGS (1996) através da URL http://water.usgs.gov.

O programa tem como resultado, o hidrograma anual separado em escoamentos total e de base para cada ano da série, resumos mensais e anuais dos escoamentos, curvas de permanência do escoamento total, de base e superficial, fornecendo também os *IEBs* anuais e o *IEB* mediano, a partir de todos *IEBs* calculados.

O programa permite a escolha de três métodos, todos baseados na duração N do escoamento superficial, a qual é definida a partir da área de drenagem em milhas quadradas, ou seja:

$$N = A^{0.2} (4.20)$$

Entre os três métodos de separação, o método do intervalo fixo pode ser entendido como uma barra de intervalo $2N^*$, o qual é o valor inteiro impar, entre 3 e 11, mais próximo de 2N, se movendo ao longo do hidrograma. Para cada intervalo $2N^*$, o volume de escoamento de base é definido como a área da barra, de altura igual à menor vazão contida no intervalo

No método do intervalo móvel, encontra-se o menor valor de vazão no intervalo $[0,5(2N^*-1)]$ dias, antes e após a data considerada. Muda-se para a próxima data e assim sucessivamente. Esse método é visualizado como uma barra deslizando pelo hidrograma, dia a dia, e o valor fixado é a vazão ocorrida no dia médio do intervalo. Esses valores de vazões são interligados e, assim, define-se o hidrograma de escoamento de base.

O método do mínimo local, verifica, a cada dia, se este contém a menor vazão no intervalo $[0,5(2N^*-1)]$ dias, antes e após a data considerada. Se assim for, esse valor é definido como um mínimo local. O volume do escoamento de base é definido como a área abaixo da linha que une os mínimos locais. A título de exemplo, a tabela 4.2 apresenta valores de *IEB* calculados pelos três métodos para a estação fluviométrica de Pirapama.

Tabela 4.2 - IEBs calculados para a Estação de Pirapama

044		Milada da latarrata Cas	•
Séries			Método do intervalo móvel
1956/1957	65,95	61,73	63,21
1969/1970	67,97	67,29	67,65
1970/1971	74,71	74,99	75,85
1971/1972	68,59	70,61	69,27
1972/1973	64,38	66,93	67,00
1973/1974	67,52	72,60	72,20
1974/1975	68,17	75,56	75,36
1975/1976	72,89	74,46	75,27
1976/1977	54,58	63,91	65,54
1977/1978	63,35	65,86	65,54
1979/1980	72,63	72,73	73,77
1980/1981	68,44	75,87	73,62
1981/1982	72,02	70,32	70,82
1982/1983	70,41	71,44	72,21
1983/1984	75,29	81,02	76,60
1984/1985	69,45	69,29	69,86
1985/1986	76,60	76,34	76,67
1986/1987	72,53	72,89	73,82
1987/1988	62,69	68,77	67,13
1988/1989	72,54	72,81	72,68
1989/1990	74,45	71,80	70,31
1990/1991	63,37	66,26	65,55
1991/1992	72,54	71,89	71,64
1992/1993	73,36	71,39	72,47
1993/1994	74,69	71,71	72,40
1994/1995	71,28	72,92	71,87
1995/1996	62,47	64,26	63,16
1997/1998	72,20	72,93	72,98
1998/1999	70,68	70,66	70,79
Mediana	70,68	71,71	71,87

Observa-se que os valores calculados pelos três métodos não apresentam grandes diferenças. Por simplicidade, o método escolhido para este trabalho foi o método do mínimo local.

4.4.2.3 Índice de Escoamento de Base para locais desprovidos de dados

Segundo NERC (1980), o *IEB* pode ser calculado em uma dada bacia, desprovida de observações fluviométricas, por analogia com outra de geologia similar e que possua *IEB* conhecido.

Os preceitos básicos são:

- por meio de um mapa, em escala apropriada, definir a localização de estações que possuam o *IEB* calculado;
- delimitar as principais áreas geológicas; e,
- definir, dentro dos complexos geológicos, as características hidrogeológicas, bem como
 a área de influência de cada aqüífero, em relação às estações com *IEB*s calculados, para
 obter instrumentos de estimação do *IEB* em locais sem dados.

Partindo desses preceitos, Manciola e Casadei (1991), em um estudo desenvolvido em uma região da Itália, construíram uma tabela de intervalos de valores de *IEB* para complexos hidrogeológicos. Fizeram a estimação de *IEB* em função da porcentagem do complexo aquifero, de acordo com:

$$IEB_{est,j} = \frac{\sum_{i=1}^{n} (A_i.IEB_{frm,i})}{\sum_{i=1}^{n} A_i}$$
(4.21)

em que $IEB_{est,j}$ é o IEB estimado para a estação j-ésima estação, $IEB_{frm,i}$ é o IEB associado ao i-ésimo complexo hidrogeológicos e A_i é a área da formação hidrogeológica.

 $IEB_{frm,i}$ é calculado através das regressões entre a porcentagem de área do aquífero e o IEB.

Posteriormente, utilizaram a seguinte função-objetivo

$$\operatorname{Min}\left[\sum_{i=1}^{m}\left(IEB_{obs,j}-IEB_{est,j}\right)^{2}\right] \tag{4.22}$$

com a condição de que $0 \le IEB_i \le 100$, para a otimização dos intervalos de valores de IEB para cada complexo hidrogeológico. Nesta dissertação, foi realizado o mesmo procedimento para estimar o IEB nas estações desprovidas de dados fluviométricos.

4.5 Seleção dos melhores modelos de regressão

Inicialmente, faz-se necessário o cálculo da matriz de correlação entre as variáveis, de modo a verificar a relevância dos mesmos, em um estudo de comportamento regional. A matriz de correlação é construída a partir do cálculo dos coeficientes de correlação simples entre as variáveis do modelo.

A correlação entre duas variáveis X_1 e X_2 é determinada pelo coeficiente de regressão simples r, definido por:

$$r = \frac{n\sum_{i=1}^{n} X_{1,i}.X_{2,i} - \sum_{i=1}^{n} X_{1,i}.\sum_{i=1}^{n} X_{2,i}}{\pm \sqrt{\left[n\sum_{i=1}^{n} X_{1,i}^{2} - (\sum_{i=1}^{n} X_{1,i})^{2}\right].\left[n\sum_{i=1}^{n} X_{2,i}^{2} - (\sum_{i=1}^{n} X_{2,i})^{2}\right]}.$$
(4.23)

onde o sinal + deve ser usado quando o coeficiente angular é positivo, e o sinal -, em caso contrário. Portanto, o coeficiente r varia de -1 a 1. Quando r é positivo, indica uma tendência de crescimento conjunto de X_1 e X_2 . Quanto r é negativo, maiores valores de X_1 são associados a menores valores de X_2 . Quanto mais próximo da unidade, melhor a correlação entre X_1 e X_2 . O valor de r serve também como um dos critérios para a exclusão de variáveis explicativas de regressão múltipla.

Considerando Y a variável dependente, e X_1 e X_2 as variáveis explicativas e r_{ab} o coeficiente simples entre a e b, pode-se escrever a matriz de correlação como:

Tabela 4.3 - Matriz de correlação

			3
	Υ	X ₁	X_2
Υ	1		
X_1	r_{YX1}	1	
X ₂	r_{YX2}	r_{X1X2}	1

O passo posterior é a determinação dos coeficientes do modelo de regressão. Os coeficientes são calculados com base no quanto é minimizada a variância residual (soma dos resíduos ao quadrado) em relação à variância total. O resíduo ou desvio entre o valor observado e o previsto pelo modelo, é interpretado como uma perda na precisão do modelo. Pode-se dizer que o propósito desse tipo de determinação, denominado método dos mínimos quadrados, é minimizar uma função de perdas. Essa função é definida como a soma dos quadrados dos desvios em relação aos valores previstos.

Neste estudo foi utilizado o programa Microsoft Excel para a determinação dos coeficientes de regressão. Após a determinação foi necessária a análise do ajuste do modelo. São descritos a seguir os meios utilizados neste estudo para avaliação dos modelos.

4.5.1 Coeficiente de Determinação

O coeficiente de determinação R^2 não tendencioso é definido por Tucci (2002) como

$$R^2 = 1 - \frac{s^2}{s_y^2} \tag{4.24}$$

em que:

$$s^{2} = \frac{\sum (\ln Q_{oi} - \ln Q_{ci})^{2}}{n - p - 1}$$
(4.25)

e

$$s_y^2 = \frac{(\ln Q_{oi} - \ln Q_{ci})^2}{n - 1} \tag{4.26}$$

e n é o tamanho da amostra, p é o numero de variáveis independentes, Q_{oi} é a vazão observada Q_{ci} é a vazão calculada pelo modelo.

O coeficiente R^2 apresenta a desvantagem de que sempre aumenta quando se acrescenta uma nova variável explicativa ao modelo, independentemente do ganho relativo ser por vezes insignificante. Assim, Montgomery e Peck (1992), *apud* Medeiros (2000), recomendam o uso do R^2 ajustado:

$$R^{2}_{ajustado} = 1 - \frac{n-1}{n-p} (1 - R^{2})$$
(4.27)

onde n é o número de valores observados e o p é o número de variáveis independentes.

Nesta dissertação, a seleção de variáveis explicativas foi feita a partir da análise dos resíduos de regressão. Com efeito, a partir da matriz de correlação, foram ordenadas, em ordem decrescente, as variáveis explicativas com maior correlação simples, com a variável dependente, para a definição da primeira variável a ser utilizada no modelo.

Em seguida, foram analisadas as correlações entre as variáveis explicativas, sendo que aquelas com correlação maior de 85% não foram ambas utilizadas para se evitar a multicolinearidade. Na sequência, prosseguiu-se com a análise dos coeficientes de determinação R^2 , R^2 ajustado e F total.

Nos casos em que R^2 ajustado aumenta muito com o acréscimo de mais uma variável explicativa, considera-se que aquele modelo regional é o mais indicado para uso na análise regional. Quando a diferença entre os valores sucessivos de R^2 ajustado foi mínima, aplicou-se o teste de F parcial para se testar a hipótese de que o acréscimo da variável é significativa em termos de ganho de qualidade no modelo. Em termos formais, calcula-se:

$$F_{parcial\ calculado} = F_{pc} = \frac{R_p^2 - R_{p-1}^2}{1 - R_{p-1}^2}$$

$$\frac{1 - R_{p-1}^2}{N - p - 2}$$
(4.28)

A seguir é feito um teste unilateral para verificar se F_{pc} é maior que o $F_{1,n,\alpha}$ com α =0,05, ou 0,01, obtido de tabela sendo que m=1 grau de liberdade e n=N-P-2. Se F calculado for maior que o tabelado aceita-se a hipótese de que o acréscimo de uma variável explicativa é significativo.

4.6 Avaliação dos métodos regionais utilizados

O procedimento utilizado para a avaliação do desempenho na estimação de curvas de permanência regionais é o mesmo proposto por Castellarin (2004), a partir do método *Jack-knife cross validation* que consiste em:

- a) focalizar as N estações com disponibilidade de dados na área de estudo;
- b) uma dessas estações, indexada por "s", é excluída do conjunto;
- c) definição de modelos regionais caracterizando dados de vazão e características geomorfológicas e climáticas das *N-1* estações restantes;
- d) uso dos modelos regionais, identificados no item anterior, para estimar a curva de permanência para a estação "s";
- e) repetição do item (b) e do item (d), *N-1* vezes, considerando, a cada iteração, cada uma das as estações restantes.

A essa técnica de reamostragem (resampling), associou-se o cálculo dos índices de desempenho E_s , para cada estação s=1,2,...3. Em termos formais, o índice E_s é dado por:

$$E_{s} = 1 - \frac{\sum_{j=1}^{N_{D}} (\bar{q}_{s,j} - q_{s,j})^{2}}{\sum_{j=1}^{N_{D}} (q_{s,j} - \sum_{j=1}^{N_{D}} (q_{s,j}))^{2}}$$
(4.29)

em que N_D é o numero de durações utilizadas, $q_{s,j}$ e $q_{s,j}$ são respectivamente, as vazões estimadas e as observadas. E_S varia entre 1 (ajustamento perfeito) a $-\infty$. Os valores de E_S para cada estação são utilizados para calcular 3 termos adicionais de qualidade geral das curvas de permanência estimadas denominadas. Esses são P_1, P_2 e P_3 , definidos como porcentagens de casos, sobre N possibilidades, em que $E_S > 0.75$, (P_1 = ajuste de bom para

aceitável), $0.75 \ge E_s > 0.50$, (P_2 = ajuste de aceitável para pobre) e $E_S \le 0.50$, (P_3 = ajuste pobre).

Nesse trabalho, o índice de desempenho $E_{\scriptscriptstyle S}$ foi utilizado para avaliação dos métodos de regionalização de curva de permanência, sendo o $N_{\scriptscriptstyle D}$ = 451, com D = 0,500; 0,501; 0,502; ...; 0,950. O intervalo de percentis relativo a 50 e 95 foi utilizado pois abrange os valores utilizados na elaboração das curvas de permanência regionalizadas pelo método de Tucci (1991). O mesmo intervalo foi adotado para avaliação do método de Claps e Fiorentino (1997).

A escolha desse procedimento se deve à possibilidade de se fazer um número de regionalizações igual ao número de estações disponíveis em uma região homogênea, de forma que, para cada curva estimada, exista uma curva observada para comparação e análise.

A metodologia aqui descrita foi aplicada ao conjunto de dados fluviométricos disponíveis para bacia do rio das Velhas, em Minas Gerais. O capítulo 5 apresenta os detalhes desta aplicação.

5 ESTUDO DE CASO: BACIA DO RIO DAS VELHAS

Como área de estudo para a aplicação da metodologia descrita no capítulo anterior, foi escolhida a bacia hidrográfica do Rio das Velhas, localizada no Estado de Minas Gerais. A área foi selecionada devido à sua diversidade de usos de águas superficiais em diversas atividades, tais como a agricultura e, com menor expressão a pecuária, a mineração, a indústria e o abastecimento de água para consumo humano, visto que se trata de uma região densamente habitada. Outro fator que propiciou a escolha dessa bacia está relacionado à disponibilidade de um número razoável de estações hidrometeorológicas e de estudos geológicos.

5.1 Caracterização da Bacia do Rio das Velhas

"O nome rio das Velhas foi provavelmente atribuído pelo Governador Antônio de Albuquerque Coelho de Carvalho no ano de 1.711. O rio apresentava a primitiva denominação indígena de UAIMII, alterada para GUAICHUI, que significa Rio das Velhas Tribos Descendentes" (Camargos, 2005).

5.2 Localização

A bacia do rio das Velhas, codificada como Bacia Sub 41, drena uma área de 29.173km², nasce na serra Geral, entre as serras de Ouro Preto e Antônio Pereira, no município de Ouro Preto, numa altitude de cerca de 1.300m. Depois de desenvolver um percurso de cerca de 500km, predominantemente no sentido SSE-NNW, desemboca no rio São Francisco pela sua margem direita, próximo à cidade de Guaicuí.

Seus principais afluentes da margem esquerda são os ribeirões Jequitibá e Picão e orio Bicudo; da margem direita os rios Taquaraçú, Paraúna, Pardo e Curimataí (CPRM, 1995b *apud* CPRM, 2001).

A localização da bacia, no estudo de Minas Gerais, encontra-se ilustrada na figura 5.1.

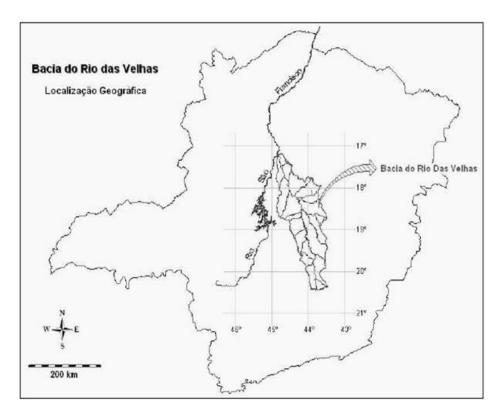


Figura 5.1 – Bacia Sub 41.- rio das Velhas (Fonte CPRM:2001)

É comum descrever a potamografia do Rio das Velhas em três partes:

- alto rio das Velhas: abrange a região denominada "Quadrilátero Ferrífero", sendo que o limite sul dessa região é o Município de Ouro Preto e o limite norte compreende os Municípios de Belo Horizonte, Contagem e Sabará. Uma porção do Município de Caeté faz parte do alto rio das Velhas, tendo a Serra da Piedade como limite leste.
- médio rio das Velhas: ao norte traça-se a linha de limite desse trecho da bacia coincidindo com o rio Paraúna, o principal afluente do rio das Velhas e, a partir de sua barra, segue-se para oeste, na mesma latitude do divisor de águas ao norte do córrego Salobinho, continuando pela linha divisória dos Municípios de Curvelo e Corinto.
- baixo rio das Velhas: compreende, ao sul, a linha divisória entre os Municípios de Curvelo (apenas o Distrito de Thomaz Gonzaga), Corinto, Monjolos, Gouveia e Presidente Kubitscheck e, ao norte, os Municípios de Buenópolis, Joaquim Várzea da Palma, Pirapora e Felício. Os municípios e a divisão em trechos da bacia do Rio das Velhas estão ilustrados não mapa da figura 5.2

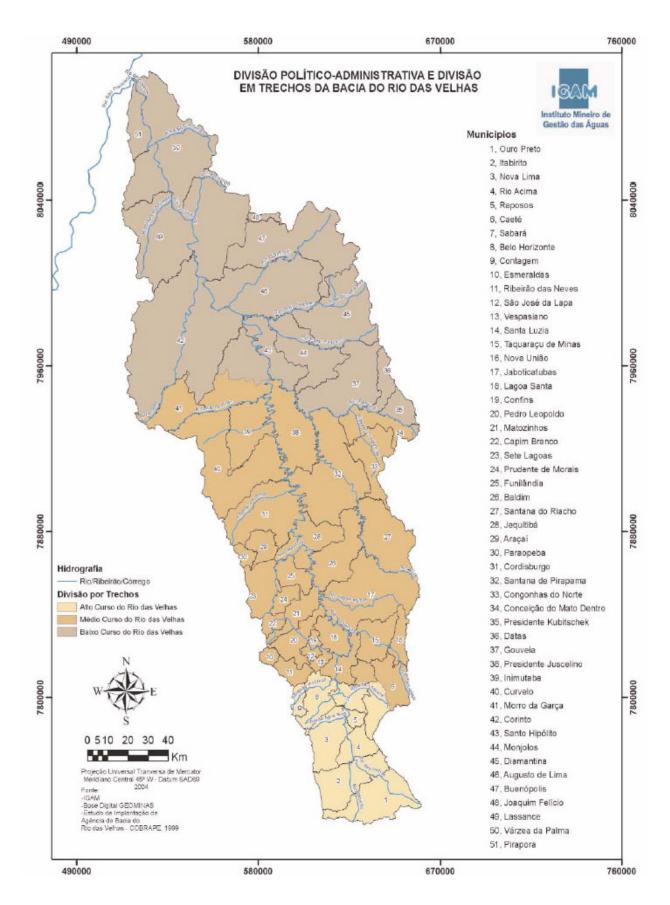


Figura 5.2 - Divisão da bacia do rio das Velhas em partes (Fonte: IGAM-2005)

A bacia hidrográfica apresenta riqueza de cursos d'água, ou seja, uma significativa densidade de drenagem, que alimenta o rio das Velhas em todo o seu percurso.

5.3 Clima

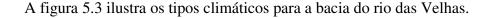
"As características climáticas mais importantes na região em estudo são a predominância de temperaturas medianas a elevadas durante todo o ano e a existência de duas estações bem marcadas: uma estação chuvosa no verão e outra seca no inverno." (CPRM, 1995b *apud* CPRM, 2001)

"As temperaturas médias anuais variam entre 20° e 23°C, atingindo valores inferiores a 20°C apenas nas altitudes mais elevadas encontradas na serra do Espinhaço e nas cabeceiras dos rios Abaeté e das Velhas." (CPRM, 1995b *apud* CPRM, 2001)

"Alguns autores apontam o mês de janeiro como o mês mais quente do ano. Entretanto, de acordo com a publicação "Normais Climatológicas (1961-1990)", editado pelo Ministério da Agricultura e Reforma Agrária em 1992, o mês mais quente do ano na região é o mês de fevereiro, com médias variando de 22º a 24ºC, com exceção apenas em reduzida área no alto da serra do Espinhaço, onde a média cai a 21ºC. A máxima absoluta oscila entre 38º e 40º nas áreas da sub-bacia com altitudes inferiores a 700m." (CPRM, 1995b *apud* CPRM, 2001)

"Julho, o mês mais frio do ano, registra temperaturas médias entre 16° e 20°C, com a média das mínimas variando entre 7° e 12°C. Nas cabeceiras dos rios das Velhas e Abaeté, as mínimas absolutas atingem valores próximos a 0°C. A amplitude térmica anual na subbacia 41 é da ordem de 14° a 19°C." (CPRM, 1995b *apud* CPRM, 2001)

"O regime pluviométrico da sub-bacia 41 está predominantemente ligado ao equilíbrio dinâmico entre o sistema de circulação do anticiclone tropical do Atlântico Sul e o anticiclone polar, além do efeito das correntes perturbadas do oeste. Observa-se também, significativa influência orográfica, com o registro de precipitações mais elevadas nas encostas das montanhas situadas a barlavento. Os ventos predominantes são na direção


NW-NE. O regime pluviométrico é típico dos climas tropicais, com estação chuvosa no verão e estação seca no inverno." (CPRM, 1995b *apud* CPRM, 2001)

"Na bacia do rio das Velhas, as precipitações médias anuais variam de 1.700mm nas cabeceiras, decrescendo com as latitudes, até 1.000mm na confluência do mesmo com o rio São Francisco. A influência orográfica se faz notar, com registro de precipitações médias anuais mais significativas, em torno de 1500mm, nos contrafortes da serra do Espinhaço. Na bacia do rio Abaeté, a precipitação média anual varia entre 1500mm e 1300mm em seu alto e médio curso." (CPRM, 1995b *apud* CPRM, 2001)

"O trimestre mais chuvoso ocorre nos meses de novembro a janeiro em toda a sub-bacia, contribuindo com 50 a 55% da precipitação ocorrida no ano e o trimestre mais seco ocorre nos meses de junho a agosto." (CPRM, 1995b *apud* CPRM, 2001)

"São encontradas na região, três tipologias climáticas, de acordo com a classificação de Wladimir Köppen:

- Cwb clima temperado brando com verão ameno (temperatura média do mês mais quente inferior a 22°C) e inverno brando (temperatura média do mês mais frio inferior a 18°C); a estação seca é coincidente com o inverno. Este tipo climático ocorre junto às cabeceiras da bacia do rio das Velhas e ao longo de toda a serra do Espinhaço, onde as altitudes são mais elevadas, entre 1.000 e 1.300m;
- Cwa clima temperado brando com verão quente (temperatura média do mês mais quente superior a 22°C) e inverno brando (temperatura média do mês mais frio inferior a 18°C); a estação seca corresponde ao inverno. É o tipo climático característico de faixa estreita que se estende a leste da sub-bacia, desde o alto curso rio das Velhas até a serra do Cabral, e da bacia do alto curso do rio Abaeté; e,
- Aw clima tropical chuvoso, quente e úmido, com inverno seco e verão chuvoso. A
 temperatura média do mês mais frio é sempre superior a 18°C. Este tipo climático
 ocorre nas demais áreas da sub-bacia, que apresentam altitudes menos elevadas."
 (CPRM, 1995b apud CPRM, 2001)

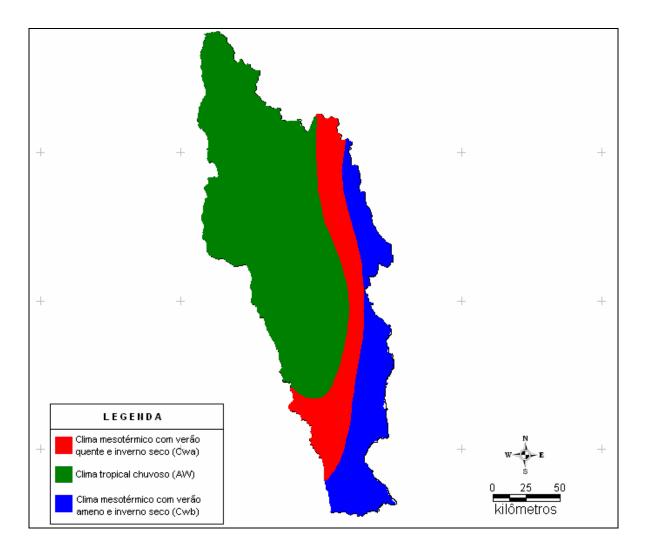


Figura 5.3 – Classificação Climática de Köppen para a bacia do rio das Velhas

5.4 Geologia e Geomorfologia

"O alto rio das Velhas, desde as suas nascentes até o norte de Belo Horizonte, quando adentra a Bacia Sedimentar Proterozóica Superior de Bambuí, drena rochas metavulcânicas, metavulcano- sedimentares e meta-vulcano- sedimentares arqueanas do Super-Grupo Rio das Velhas; rochas meta-sedimentares proterozóicas inferiores do Super-Grupo Minas e rochas granito-gnáissicas arqueanas e proterozóicas dos Complexos Bação e Belo Horizonte. A intensa ocupação pelo homem nesta região, causou uma erosão acelerada dos

terrenos e, consequentemente, um grande volume de sedimentos inconsolidados que tem assoreado os cursos d'água da bacia do rio das Velhas." (CPRM, 1995b *apud* CPRM, 2001)

"No médio curso do rio das Velhas, ou seja, desde a área ao norte de Belo Horizonte até a serra do Cabral, próximo a Várzea da Palma, o rio das Velhas corta rochas principalmente do Grupo Bambuí, sendo que as sub-bacias dos rios Cipó e Paraúna cortam em suas cabeceiras rochas dos Grupos Macaúbas e Espinhaço e do núcleo arqueano de Gouvêa." (CPRM, 1995b *apud* CPRM, 2001)

"Logo ao norte de Belo Horizonte, o vale do rio das Velhas encaixa-se em sedimentos carbonáticos da Fm. Sete Lagoas/Gr. Bambuí. Desenvolve-se então um intenso regime de drenagem cárstica. Em seguida drena rochas pelíticas e carbonáticas intercaladas do Sub-Grupo Paraopeba/Gr. Bambuí, até a serra do Cabral, quando corta rochas da Fm. Jequitaí e Grupo Espinhaço. Seus afluentes da margem direita drenam, além das rochas já citadas, a seqüência carbonática da Fm. Lagoa do Jacaré/Gr. Bambuí, próximo a Santo Hipólito e Buenópolis, as seqüências arenosas e conglomeríticas (quartzitos e meta-conglomerado) dos Grupos Macaúbas e Espinhaço e os gnaisses e xistos verdes do núcleo de Gouvêa." (CPRM, 1995b apud CPRM, 2001)

"Da serra do Cabral até a Barra do Guaicuí, no baixo curso do rio das Velhas, o mesmo corre em uma peneplanície enquanto seus afluentes cortam as serras e chapadas laterais. O terreno do vale é formado por rochas do Sub-Grupo Paraopeba/Gr. Bambuí em seu eixo, por rochas do Grupo Espinhaço e Fm. Jequitaí da serra do Cabral em sua vertente leste e por rochas da Fm. Três Marias/ Gr. Bambuí e de chapadas laterizadas (os Campos Gerais) em sua vertente oeste." (CPRM, 1995b *apud* CPRM, 2001)

"As nascentes do rio Abaeté se situam em rochas da Fm. Mata da Corda do Cretáceo, constituídas de tufos, tufitos e níveis de rochas básicas alcalinas. O rio Abaeté corre em um vale bem encaixado, sobre rochas pelito-carbonáticas do Sub-Grupo Paraopeba/Gr. Bambuí, até poucos quilômetros a NE de São Gonçalo do Abaeté, quando passa a correr sobre rochas areníticas arcosianas da Fm. Três Marias/Gr. Bambuí. Os afluentes das duas

margens drenam rochas das Fms. Areado (arenitos) e Mata da Corda." (CPRM, 1995b *apud* CPRM, 2001)

"Entre a foz do rio Abaeté e a confluência do rio das Velhas, o rio São Francisco corre sobre rochas da Fm. Três Marias/Gr. Bambuí e drena a oeste, através de pequenos afluentes, rochas das Fms. Mata da Corda, Areado e Capacete (arenitos cineríticos), e a leste, também através de pequenos cursos d'água, rochas da Fm. Três Marias/Gr. Bambuí e das chapadas lateríticas do Terciário/Quartenário." (CPRM, 1995b *apud* CPRM, 2001)

"O relevo da sub-bacia 41 é caracterizado por unidades morfoestruturais e por planaltos, depressões e áreas dissecadas resultantes de processos morfoclimáticos. As unidades presentes são:

- o Planalto do São Francisco;
- a Depressão São Franciscana;
- o Quadrilátero Ferrífero; e,
- a Serra do Espinhaço" (CPRM, 1995b apud CPRM, 2001)

A figura 5.4 ilustra as unidades geomorfológicas para a bacia do Rio das Velhas

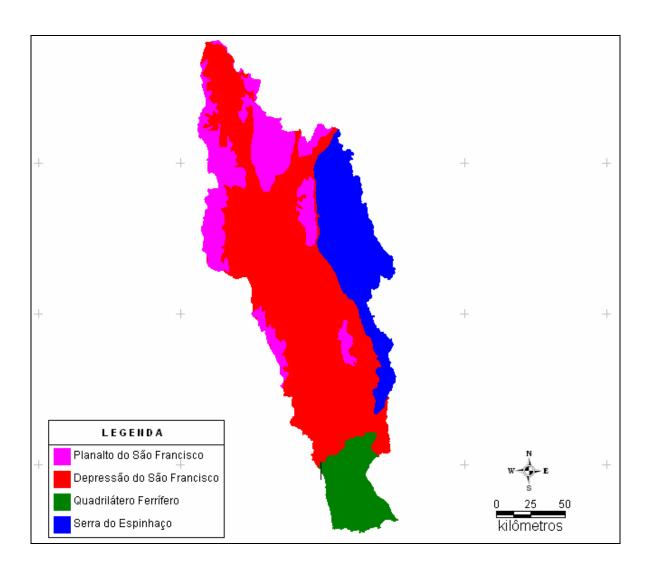


Figura 5.4 – Unidades geomorfológicas da bacia do rio das Velhas

"O Planalto do São Francisco ocorre predominantemente na extremidade oeste e norte da subbacia em estudo, abrangendo toda a bacia do rio Abaeté e parte das bacias dos demais afluentes do rio São Francisco, sendo delimitado a leste pela serra do Espinhaço. Essa unidade apresenta descontinuidades, nas ocorrências da Depressão São Franciscana, desenvolvida ao longo da drenagem do rio São Francisco e de seus afluentes, a partir de altitudes inferiores a 600m. É formado por superfícies tabulares com coberturas sedimentares predominantemente arenosas, recobertas normalmente por cerrado, registrando-se também a ocorrência de veredas. As altitudes no Planalto de São Francisco variam entre 600 e 1.000m." (CPRM, 1995b apud CPRM, 2001)

"A Depressão São Franciscana ocorre principalmente na bacia do rio das Velhas, sendo delimitado ao sul pelo Quadrilátero Ferrífero e a leste pela serra do Espinhaço. A mesma originou-se ao longo da drenagem do rio São Francisco, inicialmente nos vales dos grandes rios orientados por fraturas, alargando-se posteriormente por processos de aplainamento. Aí predominam portanto, as formas aplainadas, as superfícies onduladas e pedimentos ravinados. No contato com os escarpamentos ocidentais da serra do Espinhaço, predominam colinas e cristas com vertentes ravinadas e vales encaixados. Ao norte de Belo Horizonte, observa-se a ocorrência do carste coberto, caracterizado por verrugas, torres e escarpas isoladas, intercaladas com côncavo-convêxo. As altitudes variam entre 500 e 900m." (CPRM, 1995b apud CPRM, 2001)

"As cabeceiras do rio das Velhas se encontram no chamado Quadrilátero Ferrífero, com características geomorfológicas peculiares no estado de Minas Gerais. O condicionamento estrutural desta unidade determinou a existência de formas de relevo invertido do tipo sinclinal suspenso, e anticlinal esvaziado. Nas rochas não controladas pela estrutura, predominam as cristas com vertentes ravinadas, vales encaixados e as colinas com vales de fundo chato. As altitudes variam entre 900 e 1.500m." (CPRM, 1995b *apud* CPRM, 2001)

"A extremidade leste da sub-bacia é formada pela Serra do Espinhaço, de desenvolvimento longitudinal e cotas altimétricas entre 1.000 e 1.300m. A mesma é constituída de formas de dissecação em rochas do Super-Grupo Espinhaço e restos de antigas superfícies de aplainamento que se alternam em picos, cristas e escarpamentos orientados por fratura. Em sua borda ocidental verifica-se uma sucessão de escarpas de linha de falha. Nesta unidade encontram-se importantes aqüíferos fraturados de onde originam numerosas fontes." (CPRM, 1995b apud CPRM, 2001)

5.5 Pedologia

De acordo com Camargos (2005), a formação dos solos está diretamente relacionada a uma série de fatores, quais sejam, clima, biota, material parental, topografia e tempo. A energia dos agentes formadores do solo sobre o material primitivo dá-se com maior ou menor intensidade em um curto ou longo espaço de tempo. Todos os solos têm sua origem na

intemperização das rochas superficiais ou localizadas a pequenas profundidades. Sua natureza está intimamente relacionada, além do clima e topografia, à influência da rocha matriz. As características das rochas que mais influenciam na formação dos solos são a composição mineralógica, a resistência mecânica e a textura.

As sete classes predominantes na bacia são as seguintes:

- Latossolo férrico
- Latossolo vermelho-amarelo
- latossolos vermelho-escuro;
- podzólico vermelho-escuro
- podzólico vermelho-amarelo
- cambissolo;
- litossolo;
- areias Quartzosas;
- solos aluviais.

A figura 5.5 ilustra a os tipos de solos existentes na bacia do rio das Velhas.

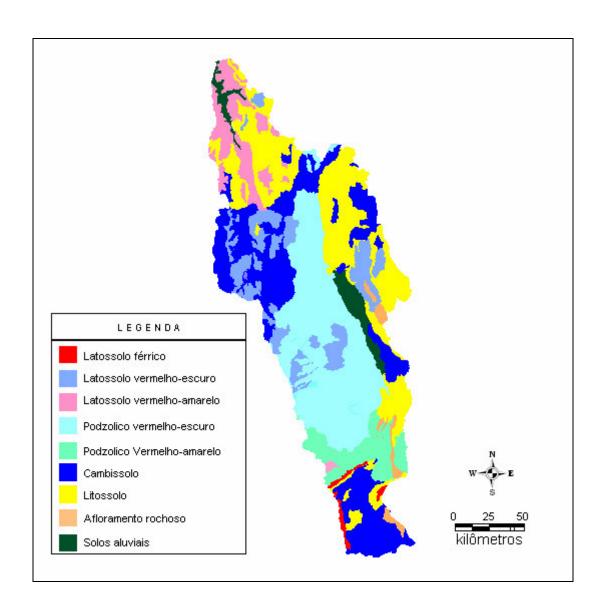


Figura 5.5 – Mapas de solos da bacia do rio das Velhas

5.6 Hidrogeologia

De acordo com Camargos (2005), três grandes grupos de rochas configuram a base geral de todos os sistemas aqüíferos presentes na área da bacia:

Granulares: Neste grupo encontram-se Aluviões Quaternários e as coberturas dentríticas
 Terciário - Quaternárias. Os aluviões ocorrem, preferencialmente, na porção leste da bacia, ao longo das calhas de tributários e em manchas dispersas às margens do rio das
 Velhas. Em geral, esses depósitos aluviais estão conectados hidraulicamente aos leitos

fluviais, mantendo, assim, uma relação de influência entre o rio e o aqüífero, em diversos locais. Tais aqüíferos são propícios à explotação por poços rasos e de grande diâmetro, devido à pouca profundidade do lençol freático.

- Fraturados (ou fissurados): Neste grupo, encontram-se as rochas fraturadas (ou fissuradas), compondo os aquíferos dependentes da atuação de mecanismos adicionais ou secundários, desenvolvidos a partir de estruturas de deformação, originando as fendas (fraturas), por onde se dá a circulação e o armazenamento da água subterrânea.
- Cárstico e cárstico-fissurado: O terceiro grupo possui as características aqüíferas dos terrenos cársticos e cársticos fissurados, representados pelas rochas carbonáticas do Grupo Bambuí, nas formações Sete Lagoas e Lagoa do Jacaré. Estas formações ocupam uma porção restrita nos centro- sul e são importantes reservatórios para o abastecimento de várias cidades, no norte da bacia. O Grupo Bambuí, representado pela Formação Serra de Santa Helena, apresenta, em geral, aqüíferos de expressividade reduzida, principalmente devido à grande predominância de materiais argilosos, aos quais podem ser atribuídas baixas permeabilidades, salvo nas zonas de contato com calcários lenticulares.

O mapa 5.6 ilustra a composição de diferentes complexos hidrogeológicos presentes na bacia do rio das Velhas.

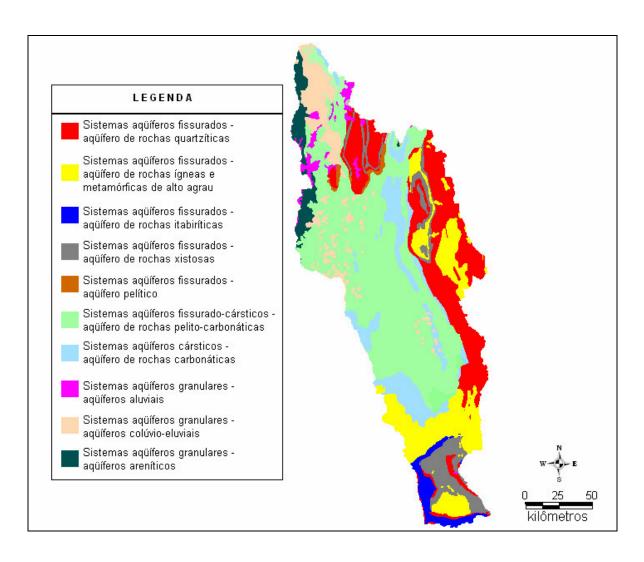


Figura 5.6 - Complexos hidrogeológicos da bacia do rio das Velhas

5.7 Hidrografia

"Com uma área de drenagem igual a 29.173 km², representando cerca de 5% da superfície do todo o Estado de Minas Gerais, o rio das Velhas aflui para o rio São Francisco após quase 800 Km. Nasce na região de Ouro Preto, ao norte da sede do município, no vértice formado pelas serras de Antônio Pereira e de Ouro Preto e deságua no local denominado Barra do Guaicuí, no município de Várzea da Palma. O padrão da rede de drenagem da maioria dos cursos d'água da bacia é do tipo dendrítico, comum às regiões de rochas cristalinas ou rochas do embasamento. Entre os afluentes do rio das Velhas destacam-se, na margem direita, o ribeirão Curimataí (município de Buenópolis), o rio Paraúna, principal afluente, o rio Cipó (afluente do rio Paraúna localizado entre os municípios de Santana de

Pirapama, Presidente Juscelino e Gouveia) e o ribeirão Jaboticatubas (município de Jaboticatubas). Na margem esquerda destacam-se o ribeirão do Cotovelo (Município de Pirapora) e o ribeirão Bicudo". (Camargos, 2005)

5.8 Aplicação dos métodos de regionalização de curvas de permanência.

Neste item são apresentados os resultados das regionalizações realizadas pelo o método de Tucci (1991), bem como o método de Claps e Fiorentino (1997). É apresentada a seleção dos postos, bem como das séries utilizadas. Reitera-se que o objetivo deste estudo é o de elaboração de diversas curvas de permanência, fazendo-se a suposição de ausência de dados em estações, que na realidade possuem dados, para posteriormente comparar as curvas de permanência observadas nesses locais com as curvas estimadas por regionalização.

5.8.1 Séries históricas de vazões médias diárias

Foram utilizadas 22 estações fluviométricas sendo 7 pertencentes ao alto rio das Velhas, 12 pertencentes ao médio rio das Velhas e 5 pertencentes ao baixo Rio das Velhas. A definição das regiões homogêneas para curvas de permanência bem como das estações utilizadas neste trabalho, foi feita em conformidade com o estudo de CPRM (2001). A figura 5.7 mostra a localização das estações utilizadas nesta dissertação.

5.8.1.1 Definição de regiões homogêneas

Em estudo realizado pela CPRM (2001), foram levantadas, a partir das séries de vazões médias diárias, as curvas de permanência das 90 estações selecionadas para a regionalização das Bacias Sub 40 e Sub 41, sendo que a definição das regiões homogêneas foi realizada a partir da análise das tendências das vazões características Q_{50} e Q_{95} e das áreas de drenagem de todas as estações envolvidas. Nessa análise, foram consideradas as características físicas e climáticas, com ênfase nos sistemas de aquiferos existentes e nos aspectos geológicos da região, que exercem grande influência no regime dos cursos d'água. Por meio desse estudo, foram definidas as estações para as três regiões homogêneas da

bacia do rio das Velhas, apresentadas nas tabelas 5.1, 5.2 e 5.3, com as respectivas variáveis explicativas a serem aqui utilizadas.

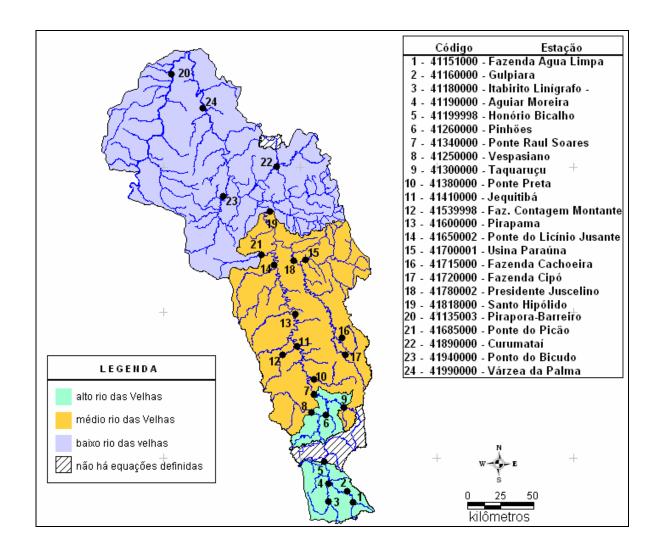


Figura 5.7 – Localização das estações utilizadas para o alto, médio e baixo rio das Velhas

Nas tabelas 5.1 a 5.3, "IEB" denota o índice de escoamento de Base, "Área" a área de drenagem, "L" o comprimento do rio principal, "I equiv" a declividade média, "P médio" a precipitação média da bacia, "Cesc" o coeficiente de escoamento da bacia e "Dd" a densidade de drenagem.

Tabela 5.1 - Variáveis Explicativas para o alto rio das Velhas

Código	Estação	IEB	Area (Km ²)	L (km)	I equiv (m/km)	Pmédio (m)	Cesc	Dd (junções/km²)
41151000	Fazenda Água Limpa	0,8038	175	26	8,59	1,498	0,39	0,115
41160000	Gulpiara	0,7375	284	41	5,39	1,498	0,46	0,232
41180000	Itabirito Linígrafo	0,7715	330	48	5,25	1,518	0,5	0,252
41190000	Aguiar Moreira	0,7713	539	75	3,86	1,523	0,43	0,228
41199998	Honório Bicalho	0,7268	1698	90	2,56	1,535	0,36	0,212
41260000	Pinhões	0,7094	3727	157	1,42	1,475	0,37	0,204
41340000	Ponte Raul Soares	0,6715	4874	200	1,13	1,458	0,34	0,209

Tabela 5.2 - Variáveis Explicativas para o médio rio das Velhas

Código	Estação	IEB	Area (Km²)	L (km)	I equiv (m/km)	Pmédio (m)	Cesc	Dd (junções/km²)
41250000	Vespasiano	0,6593	676	56	2,35	1,329	0,29	0,181
41300000	Taquaraçu	0,6754	626	46	7,02	1,447	0,35	0,272
41380000	Ponte Preta	0,5519	553	55	2,55	1,308	0,31	0,128
41410000	Jequitibá	0,6759	6558	289	0,76	1,423	0,31	0,178
41539998	Faz.Contagem Montante	0,4580	460	40	1,40	1,346	0,24	0,070
41600000	Pirapama	0,7068	8086	40	1,40	1,346	0,24	0,070
41650002	Ponte do Licínio	0,6814	10712	474	0,54	1,380	0,28	0,136
41700001	Usina Paraúna	0,6161	1733	80	2,75	1,266	0,47	0,100
41715000	Fazenda Cachoeira	0,7130	85	24	8,56	1,520	0,55	0,059
41720000	Fazenda Cipó	0,4800	341	46	4,28	1,454	0,61	0,114
41780002	Presidente Juscelino	0,4567	3996	100	2,48	1,345	0,46	0,096
41818000	Santo Hipólido	0,6366	16722	566	0,47	1,330	0,30	0,115

Tabela 5.3 - Variáveis Explicativas para o baixo rio das Velhas

Código	Estação	IEB	Area (Km ²)	L (km)	I equiv (m/km)	Pmédio (m)	Cesc	Dd (junções/km²)
41135003	Pirapora Barreiro	0,7541	62334			1,414	0,3	0,071
41685000	Ponte do Picão	0,5090	547	53	1,116	1,117	0,17	0,033
41890000	Curumataí	0,4346	1435	76	1,02	1,108	0,34	0,131
41940000	Ponte do Bicudo	0,4332	2023	112	1,07	1,216	0,25	0,043
41990000	Varzea da Palma	0,6293	26553	707	0,44	1,271	0,28	0,098

5.8.2 Características Físicas das Estações Utilizadas.

Algumas características físicas das estações apresentadas nas tabelas 5.1, 5.2 e 5.3, com exceção do IEB, foram retiradas de CPRM (2001). As áreas de drenagem foram revisadas com a plotagem das estações e a respectiva delimitação das bacias em mapas na escala 1:250.000. As estações com áreas inferiores a 300 km² foram delimitadas em cartas na escala 1:100 000, ou 1:50 000.

Foram levantados os perfis longitudinais dos cursos d'água da sub-bacia 40 e 41 que possuem, ou possuíram, estações fluviométricas. Os perfis foram levantados em mapas do IBGE, em escalas 1:100.000 e 1:50.000, utilizando curvímetro, de acordo com a

disponibilidade das cartas na região. Os perfis longitudinais da sub-bacia 40 são originários da publicação CPRM, 1996. Ao se levantar os perfis longitudinais dos rios, indicaram-se os principais afluentes, reservatórios e estações fluviométricas. As cotas de chegada dos afluentes nos rios foram estimadas através de interpolação linear. (CPRM 2001).

5.8.3 Características Hidrológicas das Estações Utilizadas.

Os dados referentes às características climáticas foram extraídos de um trabalho de regionalização realizado pela CPRM (2001), sendo que uma das etapas realizadas foi a reunião dos dados pluviométricos consistidos das sub-bacias 40 e 41. As séries foram consistidas até o ano de 1992, para a sub-bacia 40 e até o ano de 1993, para a sub-bacia 41. O trabalho de consistência foi realizado pela CPRM, em 1995, e alguns dos produtos do projeto de consistência dos dados pluviométricos da bacia do rio São Francisco foram os mapas de isoietas das médias anuais, do trimestre mais seco e do trimestre mais chuvoso, os quais foram utilizados nos estudos de regionalização.

5.9 Regionalização pelo método de Tucci (1991)

Na seção 4.1, descreveu-se o método de Tucci (1991) e, na seção 4.6, descreveu-se o processo de como foram feitas todas as regionalizações. Foram realizadas 7 regionalizações para o alto rio das Velhas, 12 regionalizações para o médio rio das Velhas e 5 para o baixo rio das Velhas. Na seção 1.1 do Anexo A, apresenta-se o processo de escolha dos modelos que foram utilizados nesta dissertação.

5.9.1 Alto rio das Velhas

Nas tabelas 5.4 e 5.5 são apresentadas os resumos das equações regionais finais utilizadas para a estimação de Q_{50} e Q_{95} , válidas para o alto rio das Velhas.

Tabela 5.4 - Equações \mathcal{Q}_{50} para o Alto Rio das Velhas

Código	Excluindo Estação	1 3	R ²	R² ajustado	Erro Padrão	F	Signif. De F
41151000	J	$Q_{50} = 0.041811A^{0.842376}$	0,996608	0,995759	1,070487	1175,08	0,00000432
41160000	•	$Q_{50} = 0.029335 A^{0.888394}$	0,989740	0,987175	1,146763	385,87	0,00003961
41180000	J	$Q_{50} = 0.025356A^{0.905812}$	0,995004	0,993756	1,104074	796,72	0,00000937
41190000	•	$Q_{50} = 0.028855A^{0.889712}$	0,991329	0,989161	1,142810	457,29	0,00002828
41199998		$Q_{50} = 0.029828A^{0.885917}$	0,990455	0,988069	1,146747	415,07	0,00003427
41260000		$Q_{50} = 0.030765 A^{0.880698}$	0,988049	0,985061	1,145651	330,70	0,00005377
41340000	Ponte Raul Soares	$Q_{50} = 0.025479 A^{0.91296}$	0,989309	0,986637	1,132329	370,16	0,00004301

Tabela 5.5 - Equações \mathcal{Q}_{95} para o Alto Rio das Velhas

Código	Excluindo Estação	Equação	R^2	R² ajustado	Erro Padrão	F	Signif. De F
41151000	• •	$Q_{95} = 0.041253A^{0.766238}$	0,981925	0,977406	1,154975	217,29	0,00012327
41160000		$Q_{95} = 0.026086A^{0.826219}$	0,968203	0,960254	1,254439	121,80	0,00038323
41180000		$Q_{95} = 0.020482A^{0.85536}$	0,978116	0,972644	1,218189	178,78	0,00018093
41190000	•	$Q_{95} = 0.022295A^{0.842902}$	0,979276	0,974095	1,217391	189,01	0,00016218
41199998		$Q_{95} = 0.025094A^{0.829847}$	0,970557	0,963196	1,255543	131,85	0,00032834
41260000		$Q_{95} = 0.027104A^{0.816891}$	0,963249	0,954061	1,251068	104,84	0,00051283
41340000	Ponte Raul Soares	$Q_{95} = 0.017724 A^{0.889619}$	0,974157	0,96769619	1,208938	150,78	0,00025264

Na tabela 5.6 são apresentados os valores de Q_{50} e Q_{95} , estimados pelos modelos regionais das tabelas 5.4 e 5.5, cujos coeficientes foram calculados a partir das equações 4.2 e 4.3.

Tabela 5.6 - Valores \mathcal{Q}_{50} e \mathcal{Q}_{95} para o Alto Rio das Velhas e modelos regionais

Código	Excluindo Estação	Q_{50}	Q_{95}	Modelo regional
41151000	Faz. Água Limpa	3,24	2,16	$Q = \exp(-0.904.P + 1.628)$
41160000	Gulpiara	4,44	2,78	$Q = \exp(-1,041.P + 2,010)$
41180000	Itabirito Linígrafo	4,85	2,92	$Q = \exp(-1,124P + 2,140)$
41190000	Aguiar Moreira	7,77	4,47	$Q = \exp(-1,227.P + 2,664)$
41199998	Honório Bicalho	21,68	12,02	$Q = \exp(-1,311.P + 3,732)$
41260000	Pinhões	42,99	22,41	$Q = \exp(-1,448.P + 4,485)$
41340000	Ponte Raul Soares	59,30	33,84	$Q = \exp(-1,247.P + 4,706)$

5.9.2 Médio rio das Velhas

Nas tabelas 5.7 e 5.8 são apresentadas apresentam os resumos das equações regionais finais para a estimação de Q_{50} e Q_{95} , válidas para o médio rio das Velhas

Tabela 5.7 - Equações \mathcal{Q}_{50} para o Médio Rio das Velhas

Código	Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Signif. De F
41250000	Vespasiano	$Q_{50} = 0,008749A^{0,990812}$		0,989105	1,194065	908,81	0,0000000002
41300000	Taquaraçu	$Q_{50} = 0,008039A^{0,999125}$	0,990464	0,989404	1,192328	934,76	0,0000000002
41380000	Ponte Preta	$Q_{50} = 0.009203A^{0.985414}$		0,990590	1,176638	1053,74	0,000000001
41410000	Jequitibá	$Q_{50} = 0,008785A^{0,986978}$		0,988642	1,192133	871,44	0,000000003
41539998	Faz.Contagem Mont.			0,990979	1,170582	1099,55	0,000000001
41600000	Pirapama	$Q_{50} = 0.008721A^{0.988525}$		0,987927	1,196265	819,31	0,0000000004
41650002	Ponte Licínio Jus.	$Q_{50} = 0,008273A^{0,997442}$		0,987299	1,199260	778,32	0,000000005
41700001	Usina Paraúna	$Q_{50} = 0.008279A^{0.993456}$	0,992672	0,991857	1,168249	1219,12	0,000000001
41715000	Fazenda Cachoeira	- 50	0,987977	0,986641	1,185524	739,54	0,0000000006
41720000		$Q_{50} = 0,008374A^{0,995138}$		0,987888	1,199811	816,62	0,0000000004
41780002	Presidente Juscelino	$Q_{50} = 0.008414A^{0.994684}$	0,989665	0,988517	1,199848	861,85	0,000000003
41818000	Santo Hipólido	$Q_{50} = 0,007601A^{1,010781}$	0,989062	0,987847	1,188431	813,84	0,0000000004

Tabela 5.8 - Equações Q_{95} para o médio rio das Velhas

Código	Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Signif. De F
41250000	Vespasiano	$Q_{95} = 0.002133A^{1.052814}$	0,990192	0,989103	1,207412	908,65	0,0000000002
41300000	Taquaraçu	$Q_{95} = 0,001951A^{1,061547}$	0,990629	0,989587	1,203531	951,37	0,0000000002
41380000	Ponte Preta	$Q_{95} = 0,002158A^{1,051405}$	0,990138	0,989042	1,206131	903,61	0,0000000002
41410000	Jequitibá	$Q_{95} = 0,002243A^{1,040839}$	0,991858	0,990953	1,179666	1096,39	0,0000000001
41539998	Faz.Contagem Mont.		0,991105	0,990117	1,191931	1002,84	0,0000000002
41600000	Pirapama	$Q_{95} = 0,002209A^{1,044073}$		0,989016	1,197756	901,40	0,0000000002
41650002	Ponte Licínio Jus.	$Q_{95} = 0,002076A^{1,054767}$		0,9872412	1,212381	774,77	0,000000005
41700001	Usina Paraúna	$Q_{95} = 0.002065 A^{1.056670}$	0,99025	0,9891657	1,210490	913,99	0,0000000002
41715000		$Q_{95} = 0.001475A^{1.096811}$	0,99102	0,9900265	1,171313	993,66	0,0000000002
41720000		$Q_{95} = 0,002183A^{1,049696}$	0,98951	0,9883395	1,207433	848,6	0,000000003
41780002	Presidente Juscelino	$Q_{95} = 0,002034A^{1,058652}$	0,98993	0,9888093	1,210947	884,6	0,000000003
41818000	Santo Hipólido	$Q_{95} = 0,002034A^{1,058652}$	0,98993	0,9888093	1,210947	884,6	0,000000003

Na tabela 5.9 são apresentados os valores de Q_{50} e Q_{95} , estimados pelos modelos regionais das tabelas 5.7 e 5.8, cujos coeficientes foram calculados a partir das equações 4.2 e 4.3.

Tabela 5.9 - Valores $Q_{50}\,$ e $\,Q_{95}\,$ para o médio rio das Velhas e modelos regionais

Código	Excluindo Estação	Q_{50}	Q_{95}	Modelo regional
41250000	Vespasiano	5,57	2,03	$Q = \exp(-2,239.P + 2,977)$
41300000	Taquaraçu	5,00	1,81	$Q = \exp(-2,255.P + 2,738)$
41380000	Ponte Preta	4,64	1,65	$Q = \exp(-2,297.P + 2,683)$
41410000	Jequitibá	56,10	21,06	$Q = \exp(-2,177.P + 5,116)$
41539998	Faz.Contagem Mont.	3,90	1,38	$Q = \exp(-2,302.P + 2,511)$
41600000	Pirapama	63,60	26,56	$Q = \exp(-1,941.P + 5,123)$
41650002	Ponte Licínio Jus.	86,54	36,97	$Q = \exp(-1,890.P + 5,406)$
41700001	Usina Paraúna	13,66	5,46	$Q = \exp(-2,038.P + 3,634)$
41715000	Fazenda Cachoeira	0,64	0,19	$Q = \exp(-2,662.P + 0,882)$
41720000	Fazenda Cipó	2,78	0,99	$Q = \exp(-2,281.P + 2,161)$
41780002	Presidente Juscelino	32,17	13,22	$Q = \exp(-1,976.P + 4,459)$
41818000	Santo Hipólido	141,15	60,16	$Q = \exp(-1,895.P + 5,897)$

5.9.3 Baixo rio das Velhas

As tabelas 5.10 e 5.11 apresentam os resumos das equações regionais finais para a estimação de Q_{50} e Q_{95} , válidas par a o baixo rio das Velhas

Tabela 5.10 - Equações Q_{50} para o baixo rio das Velhas

Código	Excluindo Estação	Equação	\mathbb{R}^2	R ² ajustado	Erro Padrão	F	Signif. De F
41135003	Pirapora-Barreiro	$Q_{50} = 0,000650A^{1,222557}$	0,998829	0,998244	1,088683	1706,65	0,00058543
41685000	Ponte do Picão	$Q_{50} = 0,000544A^{1,244456}$	0,998999	0,998499	1,094392	1996,90	0,00050040
41890000	Curumataí	$Q_{50} = 0,000652A^{1,227531}$	0,999716	0,999574	1,057480	7033,47	0,00014215
41940000		$Q_{50} = 0,000551A^{1,242058}$	0,999539	0,999309	1,076998	4338,58	0,00023041
41990000	Várzea da Palma	$Q_{50} = 0,000557 A^{1,244837}$	0,999277	0,998916	1,088337	2765,88	0,00036135

Tabela 5.11 - Equações \mathcal{Q}_{95} para o baixo rio das Velhas

Código	Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Signif. De F
41135003	Pirapora-Barreiro	$Q_{95} = 0,000017A^{1,476375}$	0,971997	0,957995	1,664384	69,42	0,01410115
41685000		$Q_{95} = 0,000023A^{1,437474}$	0,975350	0,963025	1,687720	79,14	0,01240190
41890000		$Q_{95} = 0,000014A^{1,482986}$	0,991679	0,987518	1,443081	238,35	0,00416931
41940000	Ponde do Bicudo	$Q_{95} = 0,000037A^{1,398395}$	0,994923	0,992385	1,320300	391,94	0,00254167
41990000	Várzea da Palma	$Q_{95} = 0,000029A^{1,402691}$	0,981243	0,971865	1,633017	104,63	0,00942286

Na tabela 5.12 são apresentados os valores de Q_{50} e Q_{95} , estimados pelos modelos regionais das tabelas 5.10 e 5.11, cujos coeficientes foram calculados a partir das equações 4.2 e 4.3.

Tabela 5.12 - Valores \mathcal{Q}_{50} e \mathcal{Q}_{95} para o Baixo Rio das Velhas e modelos regionais

Código	Excluindo Estação	$Q_{\scriptscriptstyle 50}$	Q_{95}	Modelo regional
41135003	Pirapora-Barreiro	472,87	208,38	$Q = \exp(-1,821.P + 7,069)$
41685000	Ponte do Picão	1,39	0,20	$Q = \exp(-4,327.P + 2,493)$
41890000	Curumataí	4,70	0,67	$Q = \exp(-4,322.P + 3,709)$
41940000	Ponde do Bicudo	7,02	1,55	$Q = \exp(-3,353.P + 3,626)$
41990000	Várzea da Palma	179,12	46,57	$Q = \exp(-2,994.P + 6,685)$

5.9.4 Avaliação de desempenho do método

De acordo com o conteúdo apresentado na seção 4.6, o procedimento *jack-knife* foi aplicado às três regiões homogêneas para o cálculo das curvas de permanência. Em seguida, foram calculados, por meio de uma planilha Excel, 452 percentis para permanências de 0,500 a 0,950 das curvas de permanência observadas, para cada estação, e das curvas estimadas pelos modelos apresentados nas tabelas 5.6, 5.9, 5.12. Os 452 percentis foram utilizados na equação 4.28 para o cálculos dos índices desempenho E_s , os quais encontram-se listados nas tabelas apresentadas na tabelas 5.13, 5.14 e 5.15:

Tabela 5.13 - Valores de E_s para o método de Tucci (1993), para o alto rio das Velhas

Código	Estação	E_{S}
41151000	Fazenda Água Limpa	0,8334
41160000	Gulpiara	0,9992
41180000	Itabirito Linígrafo	0,9520
41190000	Aguiar Moreira	0,9759
41199998	Honório Bicalho	0,9970
41260000	Pinhões	0,9929
41340000	Ponte Raul Soares	0,9580
41199998 41260000	Honório Bicalho Pinhões	0,9970 0,9929

Tabela 5.14 - Valores de $E_{\scriptscriptstyle S}$ para o método de Tucci (1993), para o médio rio das Velhas

Código	Estação	$E_{\scriptscriptstyle S}$
41250000	Vespasiano	0,9945
41300000	Taquaraçu	0,9636
41380000	Ponte Preta	0,9557
41410000	Jequitibá	0,9639
41539998	Faz.Contagem Montante	0,9404
41600000	Pirapama	0,9644
41650002	Ponte do Licínio Jusante	0,9977
41700001	Usina Paraúna	0,9715
41715000	Fazenda Cachoeira	0,9597
41720000	Fazenda Cipó	0,9952
41780002	Presidente Juscelino	0,9990
41818000	Santo Hipólido	0,9613

Tabela 5.15 - Valores de E_s para o método de Tucci (1993), para o baixo rio das Velhas

Código	Estação	$E_{\scriptscriptstyle S}$
41135003	Pirapora Barreiro	0,9948
41685000	Ponte do Picão	0,9761
41890000	Curumataí	0,9663
41940000	Ponte do Bicudo	0,9878
41990000	Varzea da Palma	0,9806

De posse dos valores de E_s para cada estação, os três termos de critério de qualidade geral de curvas de permanência estimadas, P_1 , P_2 e P_3 , foram definidos para o método de Tucci (1993) e encontram-se na tabela 5.16, a seguir.

Tabela 5.16 - Porcentagem para intervalos de $E_{\scriptscriptstyle S}$

P_1	P_2	P_3
100%	0	0

Em 100% dos casos, nas três regiões homogêneas do rio das Velhas, foram obtidos os índices de desempenho $E_s > 0.75$, ou seja, P_1 = ajuste de bom para aceitável, sendo que o menor E_s ocorreu no alto rio das Velhas, para a estação 41151000 - Fazenda Água Limpa. Possivelmente, isso se deve à área dessa estação (175 km²), a qual é menor do que a menor área utilizada na análise de regressão correspondente à estação 41160000 Gulpiara (284 km²). Embora a estação 41340000 - Ponte Raul Soares (4874 km²) tenha área superior à maior área utilizada na análise de regressão do alto rio das Velhas, correspondente à

estação 41260000 Pinhões (3727 km²), o índice de desempenho E_s apresentou o resultado de 0,9580. Para o médio rio das Velhas, a estação 41715000 - Fazenda Cachoeira (85 km²) possui área muito menor do que a menor área da estação utilizada na análise de regressão, correspondente à estação 41720000 - Fazenda Cipó (341 km²), porém o índice de desempenho E_s foi de 0,9952; e a estação 41818000 - Santo Hipólito (16722 km²) possui área maior do que a maior estação utilizada na análise de regressão, correspondente à estação 41650002 Ponte do Licínio Jusante (10712 km²), com um índice de desempenho $E_{\scriptscriptstyle S}$ de 0,9613. Para o baixo rio das Velhas, a Estação 41685000 - Ponte do Picão (547 ${\rm km}^2)$ possui área menor do que a menor área da estação utilizada na análise de regressão, correspondente à estação 41890000 Curumataí (1435 km²), porém o índice de desempenho $E_{\scriptscriptstyle S}$ foi de 0,9761; e a estação 41135003 - Pirapora-Barreiro (62334 ${\rm km}^2)$ possui área maior do que a maior estação utilizada na análise de regressão, correspondente à estação 41990000 Várzea da Palma (26553 km²), com um índice de desempenho E_s de 0,9948. Tucci (2001) sugere que se evite o uso de variáveis com valores fora dos intervalos daqueles utilizados em análises regionais. Entretanto, na presente aplicação, foi observado que na maioria dos casos isso não impediu a obtenção de bons resultados.

5.10 Regionalização pelo método de Claps e Fiorentino (1997)

Por construção, o método de regionalização de curvas de permanência de Claps e Fiorentino pressupõe o conhecimento das vazões médias anuais locais e de características hidrogeológicas das bacias em foco. Antes de prosseguir na aplicação propriamente dita de tal método, será apresentada, nos itens que se seguem, uma breve descrição dos procedimentos de cálculo das variáveis necessárias à obtenção de resultados para a bacia do rio das Velhas.

5.10.1 Estimação das vazões médias anuais locais

Pelo método de Claps e Fiorentino (1997), as curvas de permanência são construídas de forma adimensional. Em seguida, a média das vazões médias anuais são empregadas para torná-las dimensionalizadas em m³/s. Quando da utilização do método de Claps e

Fiorentino (1997) em um local sem dados, torna-se necessária a estimação de vazões médias para os locais em questão. Neste trabalho, foi utilizada a mesma definição de regiões homogêneas definidas pelo estudo da CPRM (2001) de regionalização de vazões médias. O processo para regionalização das vazões médias foi idêntico ao que foi feito anteriormente para regionalização de Q_{50} , Q_{95} com a utilização do procedimento $Jack \, knife$, conforme descrito no item 4.6. As tabelas 5.17 e 5.18 apresentam as estações e as respectivas características físico-climáticas de suas bacias, de acordo com a definição de regiões homogêneas para vazões médias, as quais se referem às sub-bacias 40 e 41. Nas tabelas 5.17 a 5.18, "IEB" denota o índice de escoamento de Base, "Área" a área de drenagem, "L" o comprimento do rio principal, "P médio" a precipitação média da bacia, "Cesc" o coeficiente de escoamento da bacia e "Dd" a densidade de drenagem

Tabela 5.17 - Variáveis utilizadas na análise de regressão para o alto e médio rio das Velhas.

Código	Estação	Q_{med} (m ³ /s)	Area (km²)	IEB	Pmédio (m)	L (km)	I equiv. (m/km)	Cesc
40549998	São Brás do Suaçuí Montante	7,44	461	0,5891	1,4	52	2,69	0,38
40573000	Joaquim Murtinho	3,87	291	0,7039	1,462	32,7	3,94	0,30
40577000	Ponte Jubileu	3,72	244	0,7786	1,466	18,3	7,2	0,33
40579995	Congonhas Linígrafo	10,34	579	0,7555	1,464	41,6	3,18	0,36
40665000	Usina João Ribeiro	4,22	293	0,7706	1,373	45,7	2,44	0,34
40680000	Entre Rios de Minas	9,51	486	0,6768	1,369	47,3	1,25	0,44
40700002	Jeceaba	41,55	2465	0,7266	1,409	88,9	1,81	0,39
40710000	Belo Vale	49,05	2760	0,6981	1,408	118,9	1,59	0,40
40720002	Melo Franco	66,61	3810	0,7356	1,472	178,9	1,2	0,37
40770000	Conceição do Itaguá	11,6	675	0,7663	1,485	53,8	2,96	0,37
41151000	Fazenda Água Limpa Jusante	3,32	175	0,8038	1,498	26,15	8,59	0,39
41160000	Gulpiara	6,32	284	0,7375	1,498	41	5,39	0,46
41180000	Itabirito Linígrafo	8,04	330	0,7715	1,518	47,7	5,25	0,50
41190000	Aguiar Moreira	11,1	539	0,7713	1,523	75	3,86	0,43
41199998	Honório Bicalho-Montante	29,95	1698	0,7268	1,535	90,33	2,56	0,36
41250000	Vespasiano	7,96	676	0,6593	1,329	56	2,35	0,29
41260000	Pinhões	57,63	3727	0,7094	1,475	156,8	1,42	0,37
41295000	José de Melo	4,84	291	0,7263	1,448	32,62	3,54	0,36
41300000	Taquaraçu	9,34	626	0,6754	1,447	46	7,02	0,35
41340000	Ponte Raul Soares	77,2	4874	0,5519	1,458	200,3	1,13	0,34
41380000	Ponte Preta	6,87	553	0,5519	1,308	55	2,55	0,31
	Usina Paraúna	32,8	1733	0,6161	1,266	80	2,75	0,47
41715000	Fazenda Cachoeira	1,66	85	0,4580	1,52	24	8,56	0,55
	Fazenda Cipó	6,5	341	0,4800	1,454	46	4,28	0,61
41780002	Presidente Juscelino	77,83	3996	0,4567	1,345	100	2,48	0,46

Tabela 5.18 - Variáveis utilizadas na análise de regressão para o baixo rio das Velhas

Código	Estação	Q _{med} (m ³ /s)	Area (km²)	IEB	Pmédio (m)	L (km)	I equiv. (m/km)	Cesc
41135000	Pirapora-Barreto	802,07	62334	0,7541	1,414			0,30
41410000		91,21	6558	0,6759	1,423	289	0,76	0,31
41539998	Faz.Contagem Montante	4,53	460	0,4580	1,346	40	1,4	0,24
41600000	Pirapama	107,04	8086	0,7068	1,406	361	0,61	0,30
41650002	Ponte do Licínio	126,34	10712	0,6814	1,360	474	0,54	0,28
41818000	Santo Hipólido	207,28	16722	0,6366	1,330	566	0,47	0,30
41880000	Buenopolis	1,36	148	0,5909	1,108	26,2	11,38	0,26
	Estação de Curumataí	15,45	1435	0,4346	1,108	75,67	1,02	0,34
41990000	Várzea da Palma	295,66	26553	0,6293	1,271	707,33	0,44	0,28

Nas tabelas 5.19 e 5.20 são apresentadas todas as equações utilizadas na análise regional para estimação de vazões médias no alto rio das Velhas, e para o médio e baixo rio das Velhas. Os nomes das estações, ao lado de cada equação, indicam que as mesmas foram excluídas da respectiva análise regional.

Tabela 5.19 - Equações utilizadas na análise de regressão para o alto rio das Velhas.

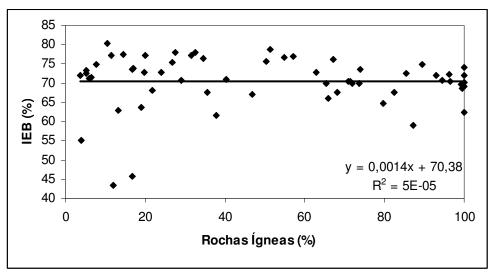
Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
Faz. Água Limpa Jus.	$Q_{med} = 0.017942A^{0.992152}$	0,975183	0,974055	1,194200	864,47	3,742E-19
Gulpiara	$Q_{mad} = 0.017383A^{0.995924}$	0,978331	0,977346	1,184905	993,29	8,401E-20
Itabirito Linígrafo	$Q_{mad} = 0.017192A^{0.997022}$	0,980492	0,979605	1,175522	1105,73	2,643E-20
Aguiar Moreira	$\widetilde{Q}_{med}^{med} = 0.018205 A^{0.989365}$	0,977523	0,976501	1,190140	956,78	1,257E-19
Honório Bicalho Mont.	$Q_{med} = 0.018682A^{0.986316}$	0,975724	0,974621	1,195186	884,25	2,935E-19
Pinhões	$Q_{med} = 0.018000A^{0.992817}$	0,973252	0,972036	1,194949	838,30	5,205E-19
Ponte Raul Soares	$Q_{med} = 0.018104A^{0.991760}$	0,973252	0,972036	1,194949	800,49	8,539E-19

Tabela 5.20 - Equações utilizadas na análise de regressão para o médio e baixo rio das Velhas.

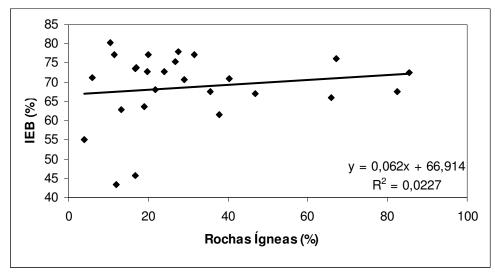
Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
Vespasiano	$Q_{med} = 0.018921A^{0.987021}$	0,981160	0,980304	1,172215	1145,72	1,80E-20
Taquaruçu	$Q_{med} = 0.018736A^{0.987026}$	0,976980	0,975933	1,192412	933,67	1,64E-19
Ponte preta	$Q_{mad} = 0.019156A^{0.984821}$	0,979806	0,978888	1,178314	1067,41	3,87E-20
Usina Paraúna	$Q_{med} = 0.018911A^{0.983996}$	0,975978	0,974886	1,193405	893,83	2,61E-19
Fazenda Cachoeira	$Q_{med} = 0.017358A^{0.99699}$	0,973103	0,971880	1,193335	795,93	9,08E-19
Fazenda Cipó	$Q_{med} = 0.018166A^{0.990208}$	0,976393	0,975319	1,193873	909,91	2,16E-19
Presidente Juscelino	$Q_{med} = 0.019708A^{0.977366}$	0,974110	0,972933	1,191386	827,75	5,96E-19
Jequitiba	$Q_{med} = 0,007241A^{1,052880}$	0,999136	0,998992	1,072941	6940,12	2,01E-10
Fazenda Contagem Mont.	$Q_{med} = 0,007545A^{1,051113}$	0,997840	0,997481	1,104677	2772,42	3,15E-09
Pirapama	$Q_{med} = 0.007306A^{1.052724}$	0,998587	0,998352	1,093930	4240,72	8,82E-10
Ponte do Linicio	$Q_{med} = 0,007260A^{1,055413}$	0,998138	0,997828	1,106122	3216,71	2,02E-09
Santo Hipílito	$Q_{med} = 0.007282A^{1.054669}$	0,996582	0,994304	1,099177	437,38	1,998E-04
Pirapora	$Q_{med} = 0,00707A^{1,058822}$	0,997784	0,997415	1,104522	2701,83	3,40E-09
Curumataí	$Q_{med} = 0,007307A^{1,054379}$	0,998141	0,997831	1,106077	3221,27	2,01E-09
Bicudo e Picão	$Q_{med} = 0.007282A^{1.054679}$	0,998241	0,997989	1,097877	3971,43	6,65E-11
Varzea da Palma	$Q_{med} = 0,006869A^{1,063735}$	0,998765	0,998559	1,084008	4850,64	5,90E-10

5.11 Estimação do IEB

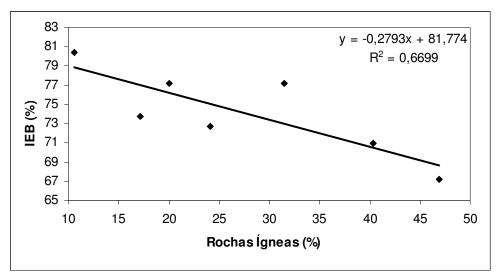
5.11.1 Estimação de IEB através de correlação com complexos hidrogeológicos

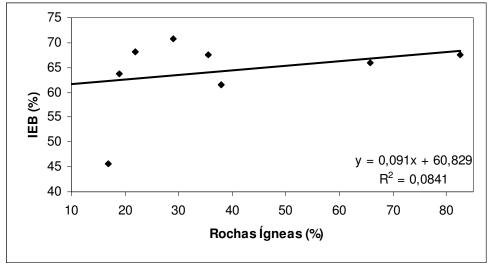

Neste trabalho, foi estudada a possibilidade de estimação de valores de *IEB* através do conhecimento de características hidrogeológicas das bacias estudadas, por meio de regressões entre o *IEB* e a porcentagem da área de contribuição de cada sistema aqüífero presente nas mesmas, a exemplo de NERC (1980) e Manciola e Casadei (1991). Na maioria dos casos, o *IEB* foi uma variável que apresentou grande correlação com os parâmetros utilizados no método de Claps e Fiorentino (1997), mostrando-se válidas as tentativas de estimação mostradas a seguir. As tabelas com a porcentagem das áreas de cada sistema aqüífero das bacias, utilizadas nesta dissertação, estão apresentadas no Anexo B.

Os *IEB*s utilizados nesse estudo foram calculados pelo-se o método dos mínimo locais, por meio do programa HYSEP, disponível a partir da URL http://water.usgs.gov. Os resultados são os *IEB*s anuais e, posteriormente os *IEB*s medianos para cada estação. Foi utilizado um mapa geológico na escala 1:1.000.000 (CPRM, 2003), no qual foi feita a caracterização dos sistemas aqüíferos. Primeiramente, foram utilizadas as estações das sub-bacias 40 e 41. Em


seguida, foram empregados somente a sub-bacia 41 e as respectivas estações de cada região homogênea para curva de permanência. Não foram realizadas as regressões entre porcentagem de áreas dos sistemas aqüíferos colúvio-aluviais e *IEB*, dada a pequena área de influência deste aqüífero nas bacias estudadas.

5.11.1.1 <u>Sistemas aquíferos Fissurados - Aquíferos de rochas ígneas e metamórficas de alto grau</u>


Utilizando-se as estações das sub-bacias 40 e 41, não se obteve correlação entre as porcentagens de área do aqüífero de rochas ígneas e os IEBs observados, como pode ser visto na Fig. 5.8. Foi feita nova regressão utilizando-se apenas as estações da sub-bacia 41 e novamente não se obteve correlação entre as porcentagens de área do aqüífero em questão e os IEBs, tal como pode ser visto na Fig. 5.9. As regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, apresentaram uma melhoria considerável no coeficiente de determinação para o alto rio das Velhas ($R^2 = 0.6699$), nenhuma melhoria para o coeficiente de determinação do médio rio das Velhas e melhoria considerável para o baixo rio das Velhas ($R^2 = 0.7051$), como pode ser visto, respectivamente nas figuras 5.10, 5.11, 5.12, embora tenham sido usadas apenas 3 estações na análise de regressão do baixo rio das Velhas. De acordo com Mourão et al (2001), estes aquiferos apresentam comportamento hidrogeológico bastante variável quanto aos parâmetros hidráulicos, por englobar tipos rochosos bastante distintos que implicam principalmente em grande variação na densidade e continuidade das estruturas que fornecem a permeabilidade dos aquíferos fissurados. Possivelmente, isso seja um dos motivos de não se ter encontrado correlação entre o IEB e a porcentagem do aqüífero de rochas ígneas e metamórficas utilizando-se de grande números de estações.


Figura 5.8 - Regressão entre a porcentagem de área do aqüífero de rochas ígneas e metamórficas de alto grau e *IEB* – Sub-bacias 40 e 41

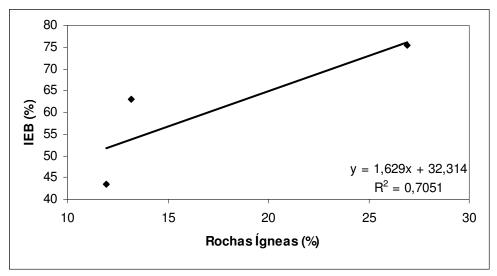
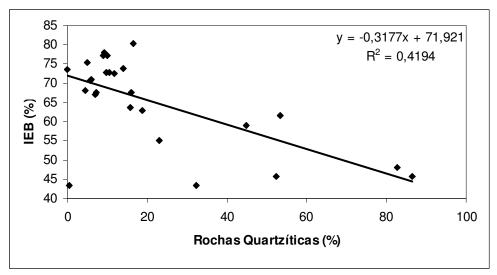
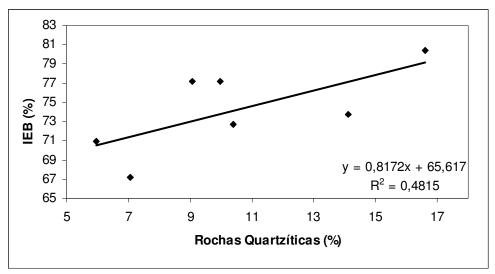

Figura 5.9 - Regressão entre a porcentagem de área do aqüífero de rochas ígneas e metamórficas de alto grau e *IEB* – Sub-bacia 41

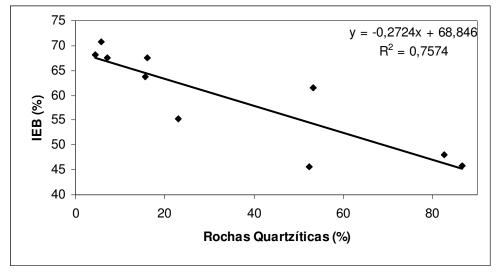
Figura 5.10 - Regressão entre a porcentagem de área do aqüífero de rochas ígneas e metamórficas de alto grau e *IEB* - Sub-bacia 41- Região homogênea alto rio das Velhas

Figura 5.11 - Regressão entre a porcentagem de área do aqüífero de rochas ígneas e metamórficas de alto grau e *IEB* - Sub-bacia 41 - Região homogênea médio rio das Velhas


Figura 5.12 - Regressão entre a porcentagem de área do aqüífero de rochas e metamórficas de alto grau e *IEB* - Sub-bacia 41- Região homogênea baixo rio das Velhas

5.11.1.2 Sistemas aquíferos Fissurados - Aquífero de Rochas Quartzíticas


Não se obteve correlação entre as porcentagens de área do aquifero quartzítico e os IEBs, utilizando-se as estações das sub-bacias 40 e 41, tal como pode ser visto na figura 5.13. Foi feita nova regressão utilizando-se apenas as estações da sub bacias 41 e houve um aumento no coeficiente de determinação ($R^2 = 0.4194$), ainda que insuficiente para o estudo proposto, tal como ilustrado na figura 5.14. Como pode ser visto nas figuras 5.15, 5.16 e 5.17, as regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, apresentaram uma melhoria considerável no coeficiente de determinação para o alto rio das velhas ($R^2 = 0.4815$), bom coeficiente de determinação para o médio rio das Velhas ($R^2 = 0.7574$), e nenhuma correlação para o baixo rio das Velhas. Segundo Mourão et al (2001), os dados referentes à potencialidade desses sistemas são escassos e restringemse praticamente à região do Quadrilátero Ferrífero. Por ser um sistema de aquífero fissurado, pode apresentar falhas, fraturas, juntas e outras superfícies de descontinuidade, sendo, assim, um ambiente altamente heterogêneo e anisotrópico, apresentando, portanto, alta variabilidade no comportamento hidrogeológico. Possivelmente, a situação do sistema aqüífero quartzítico seja semelhante ao do sistema aqüífero de rochas ígneas e metamórficas quanto à inexistência de correlação entre o *IEB* e a porcentagem do aquífero, com grande número de estações.


Figura 5.13 - Regressão entre a porcentagem de área do aqüífero de rochas quartzíticas e *IEB* – Sub-bacias 40 e 41

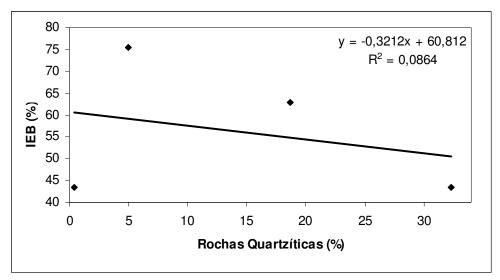
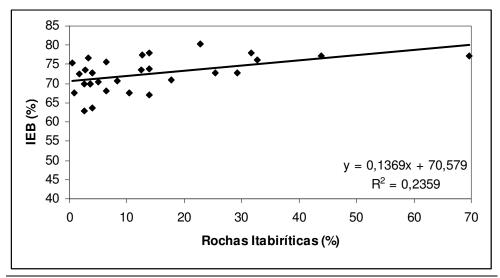
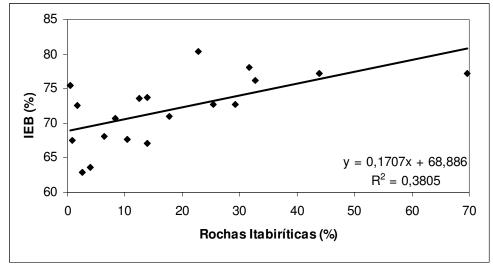
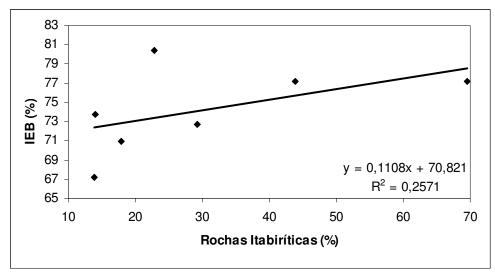

Figura 5.14 - Regressão entre a porcentagem de área do aqüífero de rochas quartzíticas e *IEB* – Sub-bacia Sub 41

Figura 5.15 - Regressão entre a porcentagem de área do aqüífero de rochas quartzíticas e *IEB* – Sub-bacia 41- Região homogênea alto rio das Velhas


Figura 5.16 - Regressão entre a porcentagem de área do aqüífero de rochas quartzíticas e *IEB* – Sub-bacia 41- Região homogênea médio rio das Velhas


Figura 5.17 - Regressão entre a porcentagem de área do aqüífero de rochas quartzíticas e *IEB* – Sub-bacia 41 - Região homogênea baixo rio das Velhas

5.11.1.3 <u>Sistemas aquíferos Fissurados – Aquífero de Rochas Itabiríticas</u>


Não se obteve bom coeficiente de determinação entre as porcentagens de área do aqüífero itabirítico e os IEBs, utilizando-se as estações das sub-bacias 40 e 41 ($R^2 = 0.2359$), tal como pode ser observado na figura 5.18. Foi feita nova regressão utilizando-se apenas as estações da sub-bacia 41 e houve pequena melhoria, mais ainda insuficiente ($R^2 = 0.3805$), conforme a figura 5.19. Como pode ser visto das figuras 5.20 e 5.21, as regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, não apresentaram bom coeficiente de determinação para o alto rio das Velhas ($R^2 = 0.2571$) e para o médio rio das Velhas ($R^2 = 0.1714$). Não foi possível fazer a regressão pois o rio das Velhas possui apenas uma Estação com a área de contribuição do aqüífero itabirítico. Segundo Mourão $et\ al\ (2001)$, estes aqüíferos apresentam comportamento hidrogeológico bastante variável e dependente da composição mineralógica e da intensidade de atuação do intemperismo. A forma de interação desses fatores faz com que os aqüíferos demonstrem características hidráulicas de sistema fissural ou granular.

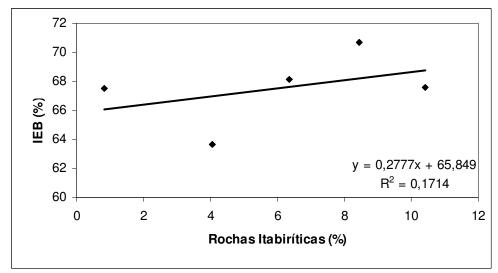

Figura 5.18 - Regressão entre a porcentagem de área do aqüífero de rochas ítabiríticas e *IEB* - Sub-bacias 40 e 41

Figura 5.19 - Regressão entre a porcentagem de área do aqüífero de rochas ítabiríticas e *IEB* - Sub-bacia 41

Figura 5.20 - Regressão entre a porcentagem de área do aqüífero de rochas ítabiríticas e *IEB* - Sub-bacias 41 - Região Homogênea alto rio das Velhas

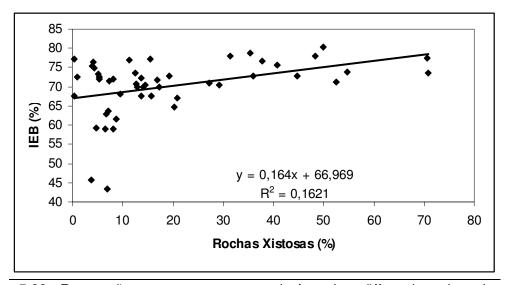
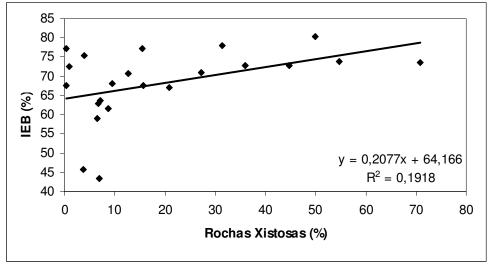
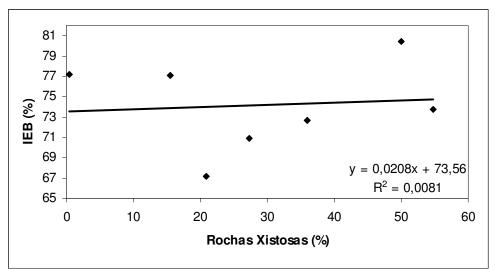
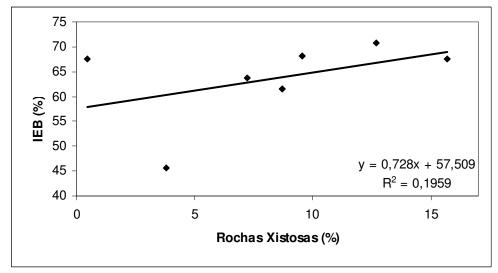


Figura 5.21 - Regressão entre a porcentagem de área do aqüífero de rochas ítabiríticas e *IEB* - Sub-bacia 41 - Região homogênea médio rio das Velhas


5.11.1.4 Sistemas aquíferos Fissurados – Aquíferos de Rochas Xistosas

Não se obteve correlação entre as porcentagens de área do aqüífero Xistoso e os *IEB*s, utilizando-se as estações das sub-bacias 40 e 41, tal como pode ser vista na figura 5.22. Foi feita nova regressão utilizando-se apenas as Estações da Bacia Sub 41 e, novamente, não foi obtida boa correlação, conforme figura 5.23. Como pode ser observado nas figuras 5.24, 5.25 e 5.26, as regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, não apresentaram correlação para o alto rio das Velhas e para o


médio rio das Velhas. Houve bom coeficiente de determinação para o baixo rio das Velhas (R² = 0,8475), embora não seja recomendável o uso dessa regressão, pois utilizou-se apenas 3 estações na análise de regressão, lembrando que a bacia que possui a maior porcentagem de aqüífero xistoso seja somente 7 % do mesmo. Segundo Mourão *et al* (2001), há variações de comportamento hidrogeológico devido à diferença no tamanho dos grãos das rochas, seja de origem primária ou metamórfica, e à distinção na densidade de feições estruturais, dada pela localização quanto ao compartimento geotectônico.


Figura 5.22 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e *IEB* - Sub-bacias 40 e 41

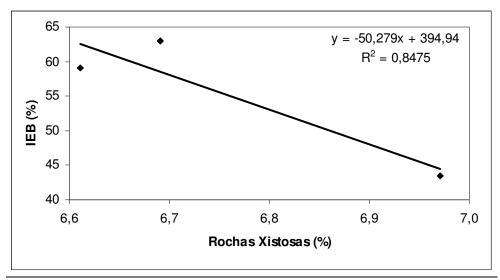
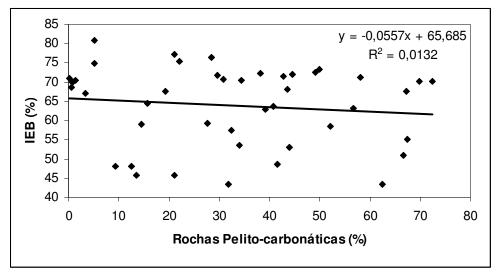
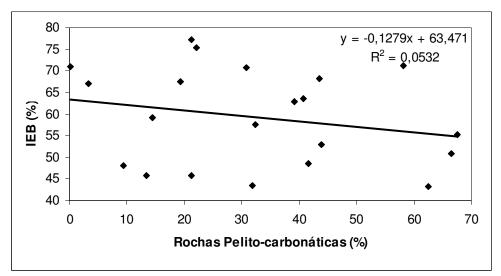
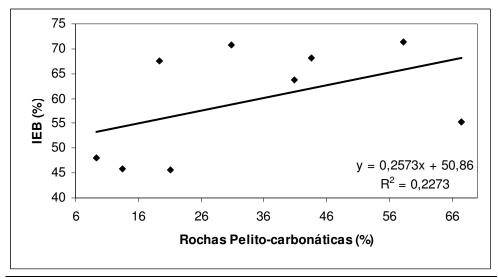

Figura 5.23 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e *IEB* - Sub-bacia 41

Figura 5.24 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e *IEB* - Sub-bacia 41 - Região homogênea alto rio das Velhas


Figura 5.25 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e *IEB* - Sub-bacia 41- Região homogênea médio rio das Velhas


Figura 5.26 - Regressão entre a porcentagem de área do aqüífero de rochas xistosas e *IEB* - Sub-bacia 41- Região homogênea baixo rio das Velhas

5.11.1.5 Sistema Aqüífero Fissurado-Cárstico - Aqüífero de Rochas pelito-carbonáticas


Não se obteve correlação entre as porcentagens de área do aqüífero pelíto-carbonático e os *IEB*s, utilizando-se as estações das sub-bacias 40 e 41, tal como pode ser visto na figura 5.27. Foi feita nova regressão utilizando-se apenas as estações da sub-bacia 41 e, novamente, não foi obtida correlação, conforme figura 5.28. Quanto às regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, não foi possível a realização das análises de regressão para o alto rio das Velhas, pois apenas duas estações apresentavam a presença desde aqüífero. Para o médio rio das Velhas, houve baixo coeficiente de determinação (R² = 0,2273) e, também baixo coeficiente de determinação para o baixo rio das Velhas (R² = 0,3724), como pode ser visto nas figuras 5.29 e 5.30. De acordo com Mourão *et al* (2001), esse sistema agrega as unidades constituídas por intercalações de rochas pelíticas e carbonáticas. Em decorrência da constituição litológica e da diferenciação estrutural, exibem aspectos hidráulicos contrastantes e variáveis, desde aqüíferos fissurados a aqüíferos cársticos, passando por características intermediárias aos dois sistemas. Novamente, ao se utilizar estações em áreas menores, houve uma melhoria das correlações, possivelmente por estas representarem situações mais localizadas.

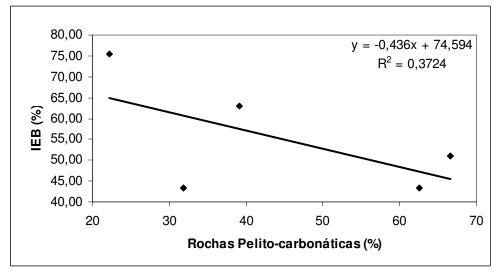

Figura 5.27 - Regressão entre a porcentagem de área do aqüífero pelíto-carbonático e *IEB* - Sub-bacias 40 e 41

Figura 5.28 - Regressão entre a porcentagem de área do aqüífero Pelito-carbonático e *IEB* – Sub-bacia 41

Figura 5.29 - Regressão entre a porcentagem de área do aqüífero Pelito-Carbonático e *IEB* – Sub-bacia 41 - Região homogênea médio rio das Velhas

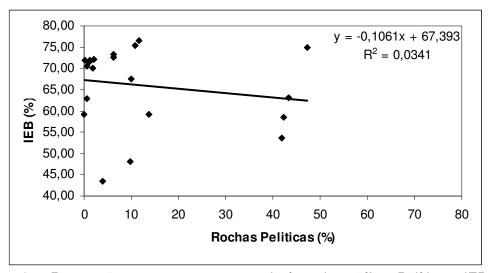
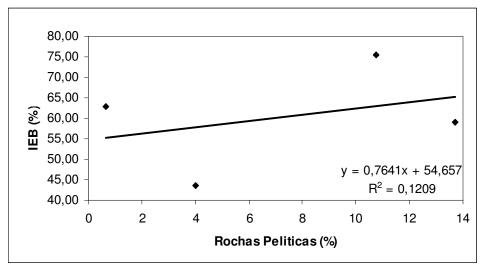
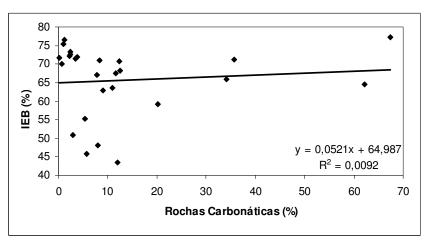


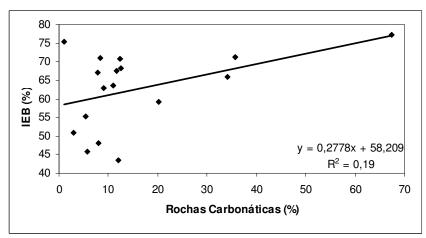
Figura 5.30 - Regressão entre a porcentagem de área do aqüífero Pelito-Carbonático e *IEB* – Sub-bacia 41 - Região homogênea baixo rio das Velhas


5.11.1.6 Sistema Aqüífero Fissurado - Aqüífero Pelítico.

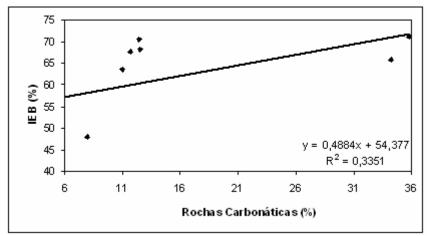
Não se obteve correlação entre as porcentagens de área do aqüífero pelítico e os *IEB*s, utilizando-se as estações das sub-bacias 40 e 41, tal como pode ser visto na figura 5.31. Foi feita nova regressão utilizando-se apenas as Estações da sub-bacia 41 e, novamente, não foi obtida correlação, conforme figura 5.32. Quanto às regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, não foi possível a realização das analises de regressão para o alto rio das Velhas e para o médio rio das Velhas, pois os

mesmos não apresentam estações com dados que possuam o aqüífero pelítico. As estações utilizadas para toda a sub-bacia 41 são as mesmas presentes no baixo rio das Velhas. Os sistemas aqüíferos pelíticos são caracterizados pelo baixo potencial hidrogeológico em conseqüência do espaçamento extremamente reduzido dos planos de descontinuidade, a saber, falhas, fraturas e clivagens. Podem apresentar comportamento de barreira hidráulica ou de aqüífero fraco, a depender da densidade e conexão entre as estruturas. Possivelmente, a descontinuidade de fraturas seja uma explicação para os resultados apresentados bem como para outros sistemas aquiferos fissurados.


Figura 5.31 - Regressão entre a porcentagem de área do aqüífero Pelítico e *IEB* – Subbacias 40 e 41


Figura 5.32 - Regressão entre a porcentagem de área do aqüífero Pelítico e *IEB* – Subbacia 41

5.11.1.7 Sistema Aquífero Cárstico – Aquífero de Rochas Carbonáticas.


Não se obteve correlação entre as porcentagens de área do aqüífero carbonático e os *IEB*s utilizando-se as estações das sub-bacias 40 e 41, tal como pode ser visto na figura 5.33. Foi feita nova regressão utilizando-se apenas as estações da sub-bacia 41 e, novamente, não foi obtida correlação, conforme figura 5.34. Quanto às regressões em que foram utilizadas estações de regiões homogêneas, para curvas de permanência, não foi possível a realização das analises de regressão para o alto rio das Velhas, já que o mesmo não possui área que compreenda esse aqüífero. Para o médio e o baixo rio das Velhas, não houve uma melhoria satisfatória dos coeficientes de determinação como foi ilustrado, respectivamente, nas figuras 5.35 e 5.36, embora tenha se utilizado um o número baixo de estações que possuem esse aqüífero. De acordo com Mourão *et al* (2001) esse tipo de aqüífero possui propriedade secundária resultante do alargamento, por dissolução, de superfícies de descontinuidade tais como fraturas, planos de acamamento e falhas, gerando um meio anisotrópico e heterogêneo, formada por uma rede intrincada de condutos.

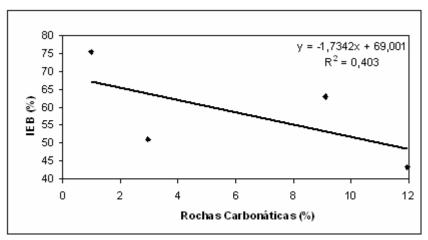
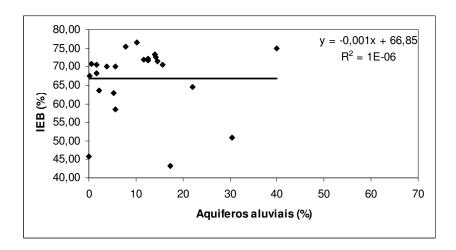
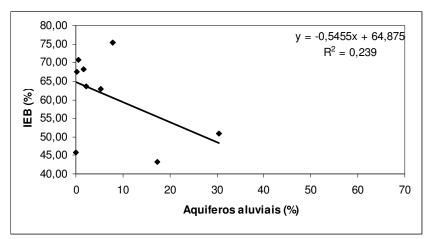
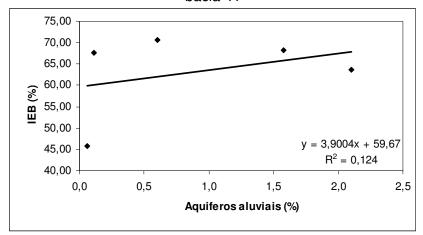

Figura 5.33 - Regressão entre a porcentagem de área do aqüífero de rochas carbonáticas e *IEB* – Sub-bacia 40 e 41

Figura 5.34 - Regressão entre a porcentagem de área do aqüífero de rochas carbonáticas e *IEB* – Sub-bacia 41


Figura 5.35 - Regressão entre a porcentagem de área do aqüífero de rochas carbonáticas e *IEB* – Sub-bacia 41 - Região homogênea médio rio das Velhas


Figura 5.36 - Regressão entre a porcentagem de área do aqüífero de rochas carbonáticas e *IEB* – Sub-bacia 41 - Região homogênea baixo rio das Velhas

5.11.1.8 Sistema Aqüífero Granular- Aqüífero aluvial


Não se obteve correlação entre as porcentagens de área do aqüífero Aluvial e os *IEB*s, utilizando-se as estações das sub-bacias 40 e 41, como pode ser visto na figura 5.37 Foi feita nova regressão utilizando-se apenas as estações das sub-bacias 41 e, novamente, não foi obtida correlação, como ilustrado na figura 5.38. Quanto às regressões, em que foram utilizadas estações de regiões homogêneas para curvas de permanência, não foi possível a realização das analises de regressão para o alto rio das Velhas, pois o mesmo não possuía estações com a contribuição desde tipo de aqüífero. Para o médio rio das Velhas não houve correlação, como pode ser visto na figura 5.39 e para o baixo rio das velhas foi encontrada baixa correlação, como foi ilustrado na figura 5.40. Segundo Mourão *et al* (2001), esse aqüífero possui grande variabilidade de comportamento hidrogeológico devido à grande variabilidade dimensional e litológica, em decorrência da natureza e morfologia da área fonte, do relevo pretérito do substrato e da complexidade do sistema deposicional marcada por migração dos canais fluviais e conseqüente ascensão vertical de depósitos distintos.

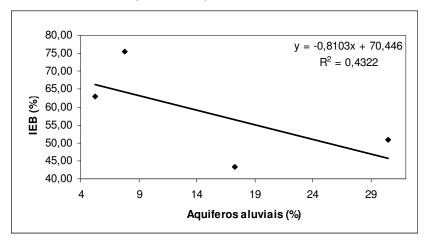
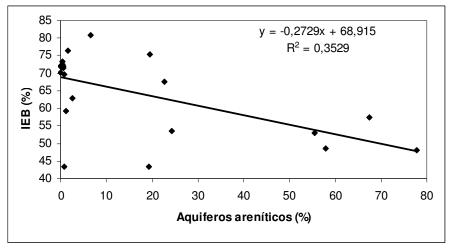
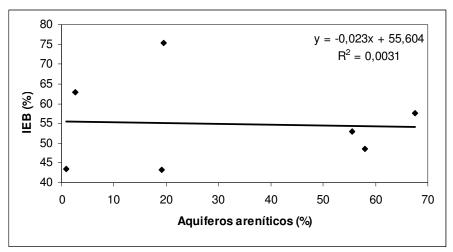

Figura 5.37 - Regressão entre a porcentagem de área do aqüífero aluvial e *IEB* – Subbacias 40 e 41

Figura 5.38 - Regressão entre a porcentagem de área do aqüífero aluvial e *IEB* – Subbacia 41


Figura 5.39 - Regressão entre a porcentagem de área do aqüífero aluvial e *IEB* – Subbacia 41- Região homogênea médio rio das Velhas


Figura 5.40 - Regressão entre a porcentagem de área do aqüífero aluvial e *IEB* – Subbacia 41- Região homogênea baixo rio das Velhas

5.11.1.9 Sistema Aquífero Granular- Aquífero arenítico

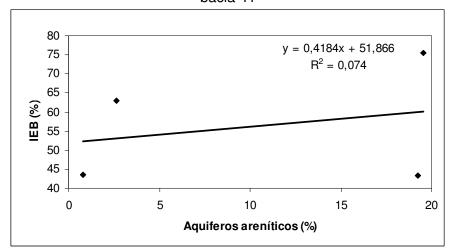

Não se obteve correlação entre as porcentagens de área do aqüífero arenítico e os *IEB*s, utilizando-se as estações das sub-bacias 40 e 41, como ilustrado na figura 5.41. Foi feita nova regressão utilizando-se apenas as estações da sub-bacia 41 e, novamente, não se obteve correlação, como pode ser visto na figura 5.42. Quanto às regressões, em que foram utilizadas estações de regiões homogêneas para curvas de permanência, não foi possível a realização das analises de regressão para o alto rio das Velhas e o médio rio das Velhas pois os mesmos não possuíam estações com a contribuição desde tipo de aqüífero. Para o baixo rio das velhas não, não foi obtida correlação, como pode ser visto na figura 5.43. De acordo com Mourão (2001), apesar da diferenciação composicional dos litotipos cretáceos pode-se inferir um comportamento hidrogeológico único devido ao predomínio de termos areníticos e semelhança na configuração geomorfológica.

Figura 5.41 - Regressão entre a porcentagem de área do aqüífero arenítico e *IEB* – Subbacias 40 e 41

Figura 5.42 - Regressão entre a porcentagem de área do aqüífero arenítico e *IEB* – Subbacia 41

Figura 5.43 - Regressão entre a porcentagem de área do aqüífero arenítico e IEB – Subbacia 41- Região homogênea baixo rio das Velhas

5.11.2 Correlação entre o IEB e área total de cada bacia

Alternativamente, tentou-se estabelecer a regressão entre os *IEB*s e as áreas totais das bacias, usando como critério de região homogênea, aquelas definidas para as curvas de permanência.

Essas regressões estão ilustradas nas figuras 5.44, 5.45 e 5.46. Para o alto rio das Velhas, os resultados foram aceitáveis. O médio rio das Velhas não apresentou boa correlação entre o *IEB* e a área total. O baixo rio das Velhas mostrou boa correlação, embora esse resultado tenha que ser visto com cuidado, pois o número de estações usadas é pequeno e a sub-bacia acumula as vazões provenientes das áreas de drenagem do alto e médio rio das Velhas

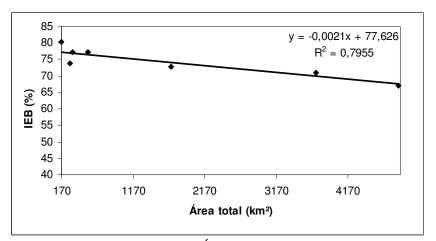


Figura 5.44 - Regressão entre Área total e IEB.(alto rio das Velhas)

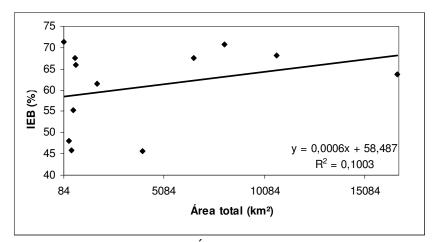


Figura 5.45 - Regressão entre Área total e *IEB* (médio rio das Velhas)

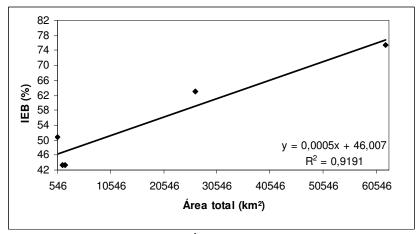


Figura 5.46 - Regressão entre Área total e *IEB* (baixo rio das Velhas)

O procedimento *jack knjfe cross* validation também foi utilizado para a estimação de IEB, no alto e baixo rio das Velhas, utilizando-se a regressão entre o IEB e a área total das estações, tal como pode ser visto nas tabelas 5.21 e 5.22.

Tabela 5.21 - IEB estimado por regressão para o alto Rio das Velhas

Excluindo	Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
Faz.Água Limpa	$IEB = 0.766 - 1.80 \times 10^{-5}.A$	0,845479	0,806849	1,016970	21,89	0,00945965
Ponte Raul Soares	$IEB = 0.775 - 1.95 \times 10^{-5}.A$	0,606988	0,508735	1,024752	6,18	0,06780908

Tabela 5.22 - *IEB* estimado por regressão para o baixo Rio das Velhas

Código	Excluindo	Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
41135003	Pirapora-Barreiro	$IEB = 0.451 + 7.0x10^{-6}.A$	0,819537	0,729306	0,047996	9,08	0,09471702
41685000	Ponte do Picão	$IEB = 0.439 + 5.4 \times 10^{-6}.A$	0,958439	0,937659	0,039280	46,12	0,02100077
41890000	Curumataí	$IEB = 0,475 + 4,7x10^{-6}.A$	0,921172	0,881757	0,048355	23,37	0,04022320
41940000	Ponte do Bicudo	$IEB = 0.476 + 4.6 \times 10^{-6}.A$	0,927579	0,891369	0,046187	25,62	0,03689094
		$IEB = 0.453 + 4.8 \times 10^{-6}.A$			0,046701	29,68	0,03207603

5.12 Resultados pelo método de regionalização de Claps e Fiorentino (1997)

O método de Claps e Fiorentino (1997) e o processo sobre como foram feitas todas as regionalizações, foram descritos, respectivamente nas seções 4.2 e 4.6. Foram realizadas 7 regionalizações para o alto rio das Velhas, 12 regionalizações para o médio rio das Velhas e 5 para o baixo rio das Velhas. A seção 1.2 do Anexo A descreve todo o processo de escolha dos modelos a que foram utilizados nesta dissertação.

Os valores $\mu(\alpha)$ e $\mu(\beta)$ utilizadas nas regressões com as demais variáveis referentes às com características físicas e climáticas das bacias, já mostradas em outras tabelas, estão apresentados na tabelas 5.23, 5.24 e 5.25

Tabela 5.23 - Valores de $\mu(\alpha)$ e $\mu(\beta)$ para o alto rio das Velhas

Código	Estação	$\mu(\alpha)$	$\mu(\beta)$
41151000	Fazenda Água Limpa	-0,166	-0,493
41160000	Gulpiara	-0,183	-0,552
41180000	Itabirito Linígrafo	-0,150	-0,465
41190000	Aguiar Moreira	-0,137	-0,456
41199998	Honório Bicalho	-0,165	-0,502
41260000	Pinhões	-0,204	-0,569
41340000	Ponte Raul Soares	-0,238	-0,615

Tabela 5.24 - Valores de $\mu(\alpha)$ e $\mu(\beta)$ para o médio rio das Velhas

Código	Estação	$\mu(\alpha)$	$\mu(\beta)$
41250000	Vespasiano	-0,298	-0,679
41300000	Taquaraçu	-0,320	-0,708
41380000	Ponte Preta	-0,445	-0,785
41410000	Jequitibá	-0,239	-0,616
41539998	Faz.Contagem Montante	-0,253	-0,637
41600000	Pirapama	-0,228	-0,607
41650002	Ponte do Licínio Jusante	-0,245	-0,634
41700001	Usina Paraúna	-0,469	-0,920
41715000	Fazenda Cachoeira	-0,817	-1,081
41720000	Fazenda Cipó	-0,765	-1,116
41780002	Presidente Juscelino	-0,595	-0,972
41818000	Santo Hipólido	-0,355	-0,740

Tabela 5.25 – Valores de $\mu(\alpha)$ e $\mu(\beta)$ para o baixo rio das Velhas

Código	Estação	$\mu(\alpha)$	$\mu(\beta)$
41135003	Pirapora Barreiro	-0,295	-0,763
41685000	Ponte do Picão	-0,701	-1,100
41890000	Curumataí	-0,917	-1,224
41940000	Ponte do Bicudo	-0,863	-1,286
41990000	Varzea da Palma	-0,364	-0,786

5.12.1 Alto rio das Velhas

As tabelas 5.26 e 5.27 resumem as equações obtidas a partir de regionalização de $\mu(\alpha)$ e $\mu(\beta)$, válidas para o alto rio das Velhas

Tabela 5.26 - Equações de $\mu(\alpha)$ para o alto rio das Velhas

Código	Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Signif. de F
41151000	Faz. Água Limpa	$\mu(\alpha) = -1,405 + 0,604.IEB + 0,522.P$	0,985985	0,976642	0,005655	105,53	0,00165918
41160000	Gulpiara	$\mu(\alpha) = 0.131 + 0.596 \mu(\beta)$	0,989901	0,987376	0,004192	392,09	0,00003837
41180000	Itabirito Linígrafo	$\mu(\alpha) = -1,223 + 0,705.P + (-7,8x10^{-6}).A$	0,890668	0,817780	0,014924	12,22	0,03615116
41190000	Aguiar Moreira	$\mu(\alpha) = -1,082 + 0,610.P + (-8,1x10^{-6}).A$	0,925435	0,875724	0,011270	18,62	0,02036136
41199998	Honório Bicalho	$\mu(\alpha) = -2,362 + 1,460.P$	0,969998	0,962498	0,007147	129,33	0,00034097
41260000	Pinhões	$\mu(\alpha) = -1,275 + 0,739.P - (9x10^{-6}).A$	0,906673	0,844455	0,013883	14,57	0,02851080
41340000	Ponte Raul Soares	$\mu(\alpha) = -1.613 + 0.770.P + (1.196).A + 0.375.IEB$	0,879148	0,697870	0,012963	4,85	0,17568567

Tabela 5.27 - Equações $\mu(\beta)$ para o alto rio das Velhas

Código	Excluindo Estação	Equação	R^2	R² ajustado	Erro Padrão	F	Signif. de F
41151000	Faz. Água Limpa	$\mu(\beta) = -0.228 + 1.662.\mu(\alpha)$	0,968258	0,960322	0,012450	122,01	0,00038191
41160000	Gulpiara	$\mu(\beta) = -0.459 + (3x10^{-5}).A$	0,930454	0,913068	0,018369	53,52	0,00185751
41180000	Itabirito Linígrafo	$\mu(\beta) = -0.234 + 1.628.\mu(\alpha)$	0,964509	0,955636	0,012209	108,70	0,00047806
41190000	Aguiar Moreira	$\mu(\beta) = -0.220 + 1.696\mu(\alpha)$	0,952918	0,941147	0,013477	80,96	0,00084468
41199998	Honório Bicalho	$\mu(\beta) = -0.222 + 1.685 \cdot \mu(\alpha)$	0,963800	0,954750	0,013476	106,50	0,00049747
41260000	Pinhões	$\mu(\beta) = -0.225 + 1.667.\mu(\alpha)$	0,959853	0,949817	0,013417	95,63	0,00061269
41340000	Ponte Raul Soares	$\mu(\beta) = -0.190 + 1.886.\mu(\alpha)$	0,948543	0,93567861	0,0115838	73,73	0,00101048

5.12.2 Médio rio das Velhas

As tabelas 5.28 e 5.29 resumem as equações obtidas a partir de regionalização de estimação de $\mu(\alpha)$ e $\mu(\beta)$, válidas para o médio rio das Velhas

Tabela 5.28 - Equações $\mu(\alpha)$ para o médio rio das Velhas

Código	Excluindo Estação	Equação	R^2	R² ajustado	Erro Padrão	F	Signif. de F
41250000	Vespasiano	$\mu(\alpha) = -1,634 + 1,990.IEB$	0,886377	0,873752	0,075512	70,21	0,00001526
41300000	Taquaraçu	$\mu(\alpha) = -1,651 + 2,026$.IEB	0,889366	0,877073	0,074947	72,35	0,00001352
41380000	Ponte Preta	$\mu(\alpha) = -1,681 + 2,058$. <i>IEB</i>	0,908252	0,898058	0,068995	89,10	0,00000577
41410000	Jequitibá	$\mu(\alpha) = -1,622 + 1,968.IEB$	0,885965	0,873295	0,073997	69,92	0,00001552
41539998	Faz.Contagem Mont.	$\mu(\alpha) = -1,506 + 1,803.IEB$	0,868314	0,853683	0,065701	59,34	0,00002989
41600000	Pirapama	$\mu(\alpha) = -1,641 + 2,007 .IEB$	0,878944	0,865493	0,075859	65,35	0,00002037
41650002	Ponte Licínio Jus.	$\mu(\alpha) = -1,627 + 1,979.IEB$	0,883105	0,870117	0,075141	67,99	0,00001737
41700001	Usina Paraúna	$\mu(\alpha) = 0.470 + 1.134\mu(\beta)$	0,984409	0,982677	0,028382	568,27	0,000000002
41715000	Fazenda Cachoeira	$\mu(\alpha) = -1,666 + 2,054$. <i>IEB</i>	0,886560	0,873955	0,074276	70,34	0,000015151
41720000	Fazenda Cipó	$\mu(\alpha) = -1,541 + 1,858.IEB$	0,876242	0,862491	0,068065	63,72	0,00002252
41780002	Presidente Juscelino	$\mu(\alpha) = -1.822 + 2.277 .IEB$	0,936267	0,929186	0,055428	132,22	0,00000111
41818000	Santo Hipólido	$\mu(\alpha) = -1,638 + 1,999.IEB$	0,888346	0,875939	0,075809	71,61	0,00001410

Tabela 5.29 - Equações $\mu(\beta)$ para o médio rio das Velhas

Código	Excluindo Estação	Equação	R^2	R ² ajustado	Erro Padrão	F	Signif. de F
41250000	Vespasiano	$\mu(\beta) = -0.425 - 0.876.\mu(\alpha)$	0,962503	0,958336	0,038734	231,02	0,00000010
41300000	Taquaraçu	$\mu(\beta) = -0.422 + 0.879 \mu(\alpha)$	0,963086	0,958985	0,038766	234,81	0,00000009
41380000	Ponte Preta	$\mu(\beta) = -0.425 + 0.880.\mu(\alpha)$	0,966194	0,962438	0,037474	257,23	0,00000006
41410000	Jequitibá	$\mu(\beta) = -0.428 + 0.870 \cdot \mu(\alpha)$	0,961160	0,956845	0,038337	222,72	0,00000012
41539998	Faz.Contagem Mont.	$\mu(\beta) = -0.395 + 0.966 \mu(\alpha)$	0,973923	0,971025	0,028610	336,13	0,00000002
41600000	Pirapama	$\mu(\beta) = -0.428 + 0.870.\mu(\alpha)$	0,960781	0,956423	0,038306	220,48	0,00000012
41650002	Ponte Licínio Jus.	$\mu(\beta) = -0.425 + 0.876.\mu(\alpha)$	0,961032	0,956703	0,038759	221,96	0,00000012
41700001	Usina Paraúna	$\mu(\beta) = -1.851 + 1.761.IEB$	0,903873	0,893192	0,061645	84,63	0,00000714
41715000	Fazenda Cachoeira	$\mu(\beta) = -0.426 + 0.874 \cdot \mu(\alpha)$	0,961326	0,957028	0,038669	223,71	0,00000012
41720000	Fazenda Cipó	$\boldsymbol{\mu}(\boldsymbol{\beta}) = -0.430 + 0.855.\boldsymbol{\mu}(\boldsymbol{\alpha})$	0,950197	0,944663	0,037855	171,71	0,00000036
41780002	Presidente Juscelino	$\mu(\beta) = -0.426 + 0.866.\mu(\alpha)$	0,962393	0,958214	0,037587	230,32	0,00000010
41818000	Santo Hipólido	$\mu(\beta) = -0.423 + 0.878 \cdot \mu(\alpha)$	0,963544	0,959494	0,038765	237,87	0,00000009

5.12.3 Baixo rio das Velhas

As tabelas 5.30 e 5.31 resumem as equações obtidas a partir de regionalização de $\mu(\alpha)$ e $\mu(\beta)$, válidas para o baixo rio das Velhas.

Tabela 5.30 - Equações $\mu(\alpha)$ para o baixo rio das Velhas

Código	Excluindo Estação	Equação	R^2	R² ajustado	Erro Padrão	F	Signif. de F
41135003	Pirapora-Barreiro	$\mu(\alpha) = -2,058 + 2,685.IEB$	0,990166	0,985248	0,030234	201,37	0,00492939
41685000	Ponte do Picão	$\mu(\alpha) = -1,737 + 2,002.IEB$	0,937073	0,905609	0,099956	29,78	0,03197472
41890000	Curumataí	$\mu(\alpha) = -1,635 + 1,857.IEB$	0,929713	0,894569	0,086990	26,45	0,03578379
41940000	Ponde do Bicudo	$\mu(\alpha) = -1,732 + 1,998.IEB$	0,921003	0,881505	0,100451	23,32	0,04031077
41990000	Várzea da Palma	$\mu(\alpha) = -1,674 + 1,839.IEB$	0,985558	0,978337	0,041379	136,48	0,00724726

Tabela 5.31 - Equações $\mu(\beta)$ para o baixo rio das Velhas

Código	Excluindo Estação	Equação	R ²	R ² ajustado	Erro Padrão	F	Signif. de F
41135003	Pirapora-Barreiro	$\mu(\beta) = -2,299 + 2,392.IEB$	0,985152	0,977729	0,033179	132,70	0,00745156
41685000	Ponte do Picão	$\mu(\beta) = -0.500 + 0.844 \mu(\alpha)$	0,972006	0,958008	0,057077	69,44	0,01409654
41890000	Curumataí	$\mu(\beta) = -0.466 + 0.932.IEB$	0,992293	0,988439	0,027234	257,50	0,00386109
41940000	Ponde do Bicudo	$\mu(\beta) = -0.523 + 0.781 \cdot \mu(\alpha)$	0,989754	0,984631	0,028426	193,20	0,00513625
41990000	Várzea da Palma	$\mu(\beta) = -0.527 + 0.815.\mu(\alpha)$	0,964930	0,947395	0,053498	55,03	0,01769148

5.12.4 Avaliação de desempenho do método de Claps e Fiorentino (1997)

De acordo com a metodologia apresentada na seção 4.6, o procedimento *jack knife* foi aplicado às três regiões homogêneas para curvas de permanência. Em seguida, 452

percentis para permanências de 0,500 a 0,950 foram calculados, por meio de planilha Excel, para as curvas de permanência observadas com probabilidade 0,5, e para as curvas de permanência estimadas por regionalização, com probabilidade 0,5 para cada estação. Inicialmente, foram geradas as curvas de permanência pelo método de Claps e Fiorentino (1997), com vazões médias e com os IEBs estimados por regionalização. Os 452 percentis foram utilizados na equação 4.29 para o cálculos dos índices desempenho E_s .

Nas tabelas 5.32 e 5.33 são apresentadas os valores de índice de desempenho E_s para o alto e baixo rio das Velhas, utilizando-se vazões médias e os IEBs obtidos por regionalização.

Tabela 5.32 - Valores de $E_{\scriptscriptstyle S}$ para o método de Claps e Fiorentino (1997) para o alto $\,$ rio das Velhas

	uas veirias	
Código	Estação	$E_{\scriptscriptstyle S}$
41151000	Fazenda Água Limpa	0,9917
41160000	Gulpiara	0,9681
41180000	Itabirito Linígrafo	0,8983
41190000	Aguiar Moreira	0,9587
41199998	Honório Bicalho	0,9977
41260000	Pinhões	0,9974
41340000	Ponte Raul Soares	0,9907

Tabela 5.33 - Valores de $E_{\scriptscriptstyle S}$ para o método de Claps e Fiorentino(1997) para o baixo rio

das Velhas			
Código	Estação	$E_{\scriptscriptstyle S}$	
41135003	Pirapora-Barreiro	0,6906	
41685000	Ponte do Picão	0,9987	
41890000	Estação Curumataí	0,9842	
41940000	Ponde do Bicudo	0,9860	
41990000	Várzea da Palma	0,9734	

A partir dos valores de E_s para cada estação, os três termos de critério de qualidade geral para as curvas de permanência estimadas, P_1 , P_2 e P_3 , foram definidos para o método de Claps e Fiorentino (1997), conforme a tabela 5.34.

Tabela 5.34 - Porcentagem para intervalos de $E_{\it S}$

P_{1}	P_2	P_3
94,67%	8,33%	0

Foi observado que, em 94,67 % das vezes, houve um ajuste de bom a aceitável (E_s >0,75) e, em 8,33% das vezes, houve um ajuste de aceitável a insuficiente. Como as curvas de permanência pelo método de Claps e Fiorentino (1997) são construídas a partir de curvas adimensionais que necessitam ser multiplicadas por uma vazão média para terem valores dimensionais, resta a dúvida se isso ocorreu por causa de alguma inadequação do modelo gerado a partir de regionalização ou por problemas na estimação da vazão média ou de outra variável independente usada no modelo que precise ser estimado de forma indireta, para o local em questão. Testou-se também a hipótese de que os dados de entrada no modelo, tais como a vazão média e o IEB, sejam os próprios dados observados, tais como apresentados nas tabelas 5.35 e 5.36.

Tabela 5.35 - Valores de E_s para o método de Claps e Fiorentino (1997) para o médio rio das Velhas (com *IEB* e vazão média observada)

Código	Estação	$E_{_{\!S}}$	
41151000	Fazenda Água Limpa	0,99752	
41160000	Gulpiara	0,99600	
41180000	Itabirito Linígrafo	0,99924	
41190000	Aguiar Moreira	0,99858	
41199998	Honório Bicalho	0,99192	
41260000	Pinhões	0,98184	
41340000	Ponte Raul Soares	0,99998	

Tabela 5.36 - Valores de E_s para o método de Claps e Fiorentino (1997) para o Alto Rio das Velhas(com *IEB*s e vazões médias observadas)

Código	Estação	E_{s}
41135003	Pirapora-Barreiro	0,76819
41685000	Ponte do Picão	0,99967
41890000	Estação Curumataí	0,99967
41940000	Ponde do Bicudo	0,99805
41990000	Várzea da Palma	0,96204

A partir dos valores de E_s para cada estação, os três termos de critério de qualidade geral para as curvas de permanência estimadas, P_1 , P_2 e P_3 , foram definidos para o método de Claps e Fiorentino(1997), como na tabela 5.37.

Tabela 5.37 - Porcentagem para intervalos de E_s (com dados de entrada observados)

P_1	P_2	P_3
100%	0	0

Analisando-se P_1 , foi possível notar que, para a estação 41180000 Itabirito - Linígrafo, houve uma melhoria do $E_{\rm S}$ de 0,8983 para 0,99924. Possivelmente, isso se deve à vazão média utilizada para dimensionalizar as vazões, já que o $\it IEB$ não foi utilizado nesse modelo.

Analisando-se Pirapora Barreiro, houve uma melhoria no índice E_s que foi de 0,6906 para 0,7681, passando de P_2 para P_1 . Porém o índice E_s ainda ficou próximo do limite do ajuste aceitável a insuficiente. Foi feita uma comparação entre os parâmetros $\mu(\alpha)$ e $\mu(\beta)$, estimados pela equação regional com o *IEB* observado e a vazão média observada, e os parâmetros $\mu(\alpha)$ e $\mu(\beta)$ calculados a partir dados de vazões observadas. A tabela 5.38 apresenta os valores de $\mu(\alpha)$ e $\mu(\beta)$ estimados e observados.

Tabela 5.38 - $\mu(\alpha)$ e $\mu(\beta)$ estimados e observados

		$\mu(\alpha)$		μ ((β)
Código	Estação	estimado	observado	estimado	observado
41135003	Pirapora Barreiro	-0,033	-0,295	-0,495	-0,763
41685000	Ponte do Picão	-0,756	-0,701	-1,111	-1,100
41890000	Curumataí	-0,736	-0,917	-1,151	-1,224
41940000	Ponte do Bicudo	-0,756	-0,863	-1,111	-1,286
41990000	Varzea da Palma	-0,602	-0,364	-1,015	-0,786

Para Pirapora Barreiro, o parâmetro $\mu(\alpha)$ estimado, para ser utilizado na equação (4.9) no cálculo de α_{ϕ} , foi aproximadamente nove vezes menor que o $\mu(\alpha)$ calculado por meio de dados observados. Isso se deve ao fato de que embora a equação regional para o cálculo da $\mu(\alpha)$, com a variável independente *IEB*, tenha bom coeficiente de correlação, excluindo Pirapora Barreiro, o *IEB* de Pirapora-Barreiro está fora do intervalo de *IEB*s usados na analise de regressão. Isso mostra a validade da recomendação de se evitar esse tipo de procedimento ao se usar valores de variáveis menores ou maiores do que as variáveis independentes utilizadas na formulação dos modelos.

No médio rio das Velhas, tanto $\mu(\alpha)$ quanto $\mu(\beta)$ apresentaram alta correlação apenas com *IEB*, porém nenhuma forma de estimação de *IEB* utilizada nesse trabalho foi válida para o médio rio das Velhas. Tanto NERC (1980), como Claps e Fiorentino (1997), citam a possibilidade de ao menos um ano de medições para a obtenção do *IEB* a ser utilizado em tais casos. Para as bacias do médio rio das Velhas foram utilizados *IEB*s observados para um ano de dados. Como existe a possibilidade de uso de *IEB* de um ano atípico, em termos de estiagem ou de altas vazões que podem vir a afetar o valor de *IEB*, para cada estação foram utilizados todos os anos das respectivas séries.

Inicialmente, verificou-se o índice de desempenho E_s , com os IEBs observados e com as vazões médias observadas, tal como mostra a tabela 5.39.

Tabela 5.39 - Valores de $E_{\scriptscriptstyle S}$ para o método de Claps e Fiorentino (1997) para o Médio Rio das Velhas(com IEBs e vazões médias observadas)

Código	Estações	$E_{\scriptscriptstyle S}$
41250000	Vespasiano	0,9987
41300000	Taquaraçu	0,9967
41380000	Ponte Preta	0,9796
41410000	Jequitibá	0,9945
41539998	Faz.Contagem Montante	0,9977
41600000	Pirapama	0,9999
41650002	Ponte do Licínio	0,9975
41700001	Paraúna	0,9777
41715000	Fazenda Cachoeira	0,9892
41720000	Fazenda Cipó	0,9673
41780002	Presidente Juscelino	0,9554
41818000	Santo Hipólido	0,9999

Foi obtido P_1 de 100% pois todas apresentaram índice de desempenho $E_S > 0.75$, ou seja, desempenho de bom a aceitável.

Utilizando-se de toda a série de *IEB*s anuais para todas as estações do médio rio das Velhas, obtêm-se os resultados da tabela 5.40. Os índices de desempenho para esta situação estão apresentados no Anexo C.

Tabela 5.40 - Porcentagem para intervalos de $E_{\scriptscriptstyle S}$ (com dados de entrada observados)

Código	Estações	Séries(anos)	$P_{_1}$	P_2	P_3
41250000	Vespasiano	44	61%	16%	23%
41300000	Taquaraçu	50	94%	6%	0
41380000	Ponte Preta	49	85%	10%	5%
41410000	Jequitibá	32	100%	0%	0
41539998	Faz.Contagem Montante	30	100%	0	0
41600000	Pirapama	29	100%	0	0
41650002	Ponte do Licínio	29	100%	0	0
41700001	Paraúna	25	100%	0	0
41715000	Fazenda Cachoeira	5	100%	0	0
41720000	Fazenda Cipó	20	95%	0	5%
41780002	Presidente Juscelino	23	95%	5%	0
41818000	Santo Hipólido	46	100%	0	0

Nota-se que, em muitas estações, o desempenho de bom a aceitável aconteceu em 100% das vezes, utilizando-se a vazão média estimada por regressão e os *IEB*s anuais. Houve casos de índice de desempenho negativo em anos em que ocorreu um valor de *IEB* atípico, em relação aos *IEB*s medianos, o que mostra que um ano de dados pode apresentar problemas quanto a se obter uma curva de permanência com vazões fora da realidade hidrológica da bacia.

6 CONCLUSÕES E RECOMENDAÇÕES

Essa dissertação teve, como tema central, o estudo de métodos de regionalização de curvas de permanência. Procurou-se a fundamentação, a aplicação e a avaliação de dois métodos de regionalização, a saber, o de Tucci (1991) e o de Claps e Fiorentino (1997), selecionados entre diversas outras propostas. O método de Tucci (1991) foi selecionado por ser de uso corrente no Brasil, para o fim de construção de curvas de permanência de longo termo. O método de Claps e Fiorentino (1997) tem como objetivo a regionalização de curvas de permanência anuais, sendo essa, juntamente com o seu ineditismo em aplicações brasileiras e o seu formalismo matemático, as principais razões que determinaram seu emprego nesta dissertação. A bacia do rio das Velhas, subdividida em três regiões homogêneas, a saber, alto, médio e baixo rio das Velhas, foi escolhida para a aplicação e avaliação dos métodos.

O método de Tucci (1991) apresentou bons resultados na regionalização de curvas de permanência, sendo utilizados para essa avaliação, os índices de desempenho propostos por Castellarin (2001). Em 100 % dos casos para as três regiões homogêneas, o índice de desempenho E_S foi superior a 0,75, situando-se na faixa de desempenho de bom a aceitável. Mesmo que nesta dissertação, a variável $\acute{A}rea$ tenha se mostrado suficiente para estimativa de Q_{50} e Q_{95} , sem a necessidade de uso de informação regional adicional por meio de outras variáveis, sugere-se, em outros estudos, a incorporação e avaliação da variável IEB, bem como o de outras variáveis hidrológicas, nas estimativas de Q_{50} e Q_{95} .

O método de Claps e Fiorentino (1997) fornece uma outra abordagem quanto ao uso de curvas de permanência, uma vez que permite a construção de curvas em base de tempo anual, em um contexto probabilístico. Com efeito, o método de Claps e Fiorentino (1997) permite que os tomadores de decisões afetas à locação de recursos hídricos em uma bacia, possam tomá-las com base em curvas de permanência específicas, associadas a probabilidades de excedência ou riscos previamente prescritos.

A regionalização das curvas de permanência, utilizando o método de Claps e Fiorentino (1997), apresentou bons resultados para o alto e baixo rio das Velhas, utilizando-se vazões médias e os *IEB*s estimados por regionalização. Para o médio rio das Velhas, dada a

dificuldade de se estimar os IEBs para as estações, por meio de alguma técnica que os correlacione aos complexos hidrogeológicos ou às áreas totais das bacias, foi testada a hipótese de uso de, pelo menos, um ano de dados observados para o cálculo do IEB, sendo que para cada estação, foram utilizadas todas as séries anuais disponíveis. Em muitas estações, o índice de desempenho P_1 foi igual a 100%, ou seja, ajuste de bom para aceitável, o que significa que em 100 % dos casos houve um E_S foi superior a 0,75. Houve casos de ajuste pobre, ou seja, $E_S < 0,50$, com a ocorrência de E_S negativos, devido principalmente aos valores de IEB utilizados. Esses IEBs estão relacionados a períodos atípicos dentro da série, sendo que as curvas de permanência resultantes do uso desses IEBs ficaram totalmente fora da realidade, em comparação àquelas ajustadas pelo método de Claps e Fiorentino (1997) a partir de dados observados.

Neste trabalho, foi ajustada uma equação log-normal, de 2 parâmetros, considerando q_0 na equação (4.5), igual a 0. Seria muito importante que em outros estudos, em outras regiões, fossem testados outros valores para q_0 , além do valor 0, bem como investigadas as relações entre os parâmetros utilizados no modelo. A vantagem do modelo de Claps e Fiorentino (1997) é o novo enfoque dado aos valores extraídos da curva de permanência, os quais ficam associados a uma determinada probabilidade. Porém, em um estudo de regionalização, a desvantagem do método de Claps e Fiorentino (1997) está relacionada ao número de regressões utilizadas para a estimação de variáveis, tais como vazão média e o IEB, que não tem determinação direta e, portanto, devem ser estimadas para que possam ser empregadas no modelo, bem como a estimação dos parâmetros regionais $\mu(\alpha)$ e $\mu(\beta)$, no caso de estimação de uma curva de permanência com probabilidade ϕ igual a 0,5. Para probabilidades ϕ diferentes de 0,5, acrescentada-se ao modelo mais uma fonte de erro relacionada à necessidade de estimação dos parâmetros regionais $CV(\alpha)$ e $CV(\beta)$.

Como o *IEB* tem sido uma importante variável hidrogeológica em estudos de vazões mínimas e demonstrou ter alta correlação com parâmetros utilizados no método de Claps e Fiorentino (1997), realizou-se aqui um estudo para se estimar os *IEB*s para locais sem

dados, a partir da relação de *IEB* com porcentagens de aqüíferos, a exemplo dos trabalhos de Manciola e Casadei (1991) e NERC (1980).

Inicialmente, para todos os aquíferos, foram utilizadas estações das sub-bacias 40 e 41. A inclusão da sub-bacia 40 teve como objetivo a tentativa de se incorporar mais informação, por se tratar de uma bacia vizinha à bacia de estudo. Não foram obtidas as correlações entre porcentagem de sistemas aquíferos para cada bacia e os seus respectivos *IEB*s calculados. Nova tentativa foi realizada a partir do uso de estações apenas da sub-bacia 41, e novamente, não foram obtidas as correlações significativas. Possivelmente, um dos motivos tenha sido a variabilidade de comportamento dos sistemas aquíferos na área de estudo, em que alguns aquíferos podem ter contribuição muito significativa para o escoamento de base mesmo localizadas em pequenas áreas em uma bacia. Outro motivo pode ser a dificuldade de obtenção de informação mais detalhada na escala dos mapas utilizados. Foram feitas novas tentativas utilizando as mesmas áreas utilizadas para definição de regiões homogêneas para curvas de permanência. Para alguns sistemas aqüíferos, houve uma melhoria considerável na correlação entre suas respectivas porcentagens e os IEBs, devido à influência de características mais localizadas dos aquíferos, mesmo que ainda insuficientes para a construção de intervalos de IEB para cada sistema aquífero. Mesmo assim, com a redução das áreas utilizadas, de certa forma, mostrou-se que os métodos utilizados por Manciola e Casadei (1991) e NERC (1980) ainda podem ser muito úteis em estudos relacionados ao IEB ou a outras variáveis hidrogeológicas no Brasil, desde que possam ser realizados monitoramentos em aquíferos específicos com a redução das áreas de drenagem monitoradas e uso de escalas mais detalhadas.

Manciola e Casadei (1991) utilizaram mapas na escala 1:250.000 e tiveram, possivelmente, uma rede de drenagem mais densa monitorando áreas de drenagem menores, o que possibilitou um número reduzido de sistemas aqüíferos para cada área de drenagem, propiciando uma situação em que a influência da contribuição de cada aqüífero no valor de *IEB* seja mais detectável. Para a região da bacia do rio das Velhas, o mapa mais recente está na escala 1:1.000.000 e apresenta muitas áreas indivisas, nas quais não se sabe propriamente a exata localização dos aqüíferos. Com uma melhoria na qualidade de

informação, é possível que os métodos de Manciola e Casadei (1991) e NERC (1980) apresentem resultados semelhantes aos encontrados na Itália e Inglaterra.

Com base, nos resultados e discussões desta dissertação, é possível notar que o assunto relacionado às curvas de permanência anuais está apenas iniciando-se, e outros novos estudos podem ser feitos visando a melhoria de métodos existentes ou a proposta de novas metodologias.

O uso de variáveis hidrogeológicas como o *IEB*, entre outros, e estudos que possibilitem sua estimação em locais desprovidos de dados, no contexto de regionalização de vazões características de estiagem, são aqui sugeridos como temas importantes para a eventual continuidade deste trabalho acadêmico.

7 REFERÊNCIAS BIBLIOGRÁFICAS

- BAENA, L. G. N. *et al.* Espacialização da Q_{7,10}, Q_{90%} e Q_{95%} visando à gestão dos recursos hídricos: estudo de caso para a Bacia do Rio Paraíba do Sul. *Engenharia na Agricultura*, Viçosa, v.12, n.1, 24-31, Jan./Mar. 2004.
- BEARD, L. R. Statistical analysis in hydrology. *ASCE Trans.*, 108, 1110-1160, 1943 *apud* TUCCI, C. E. M. Regionalização de vazões. In: TUCCI, C. E. M.(Ed.), *Hidrologia*: Ciência e Aplicação. Porto Alegre: Editora da Universidade UFRGS, 1993. Capítulo 15, p. 573-619.
- BRILLY, M.; KOBOLD, M.; VIDMAR, A. Water information management system and low flow analysis in Slovenia. In: FRIEND '97 Regional Hydrology: concepts and models for sustainable water resource management, 1997. *Proceedings from the International Conference*, 246:117-124 (1997) *apud* PYRCE, R. Hydrological low flow indices and their uses, *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.
- CABRAL, J. *et al.* Recursos hídricos subterrâneos. In: PAIVA, J. B.; PAIVA, E. M. (coord). *Hidrologia aplicada à gestão de pequenas bacias hidrográficas*. Recope-Rehidro sub rede 1 Finep. UFSM, Santa Maria. ABRH, 2001. Cap. 9, p.237-277.
- CAISSIE, D.; EL-JABI, N., Comparison and regionalization of hydrologically based instream flow techniques in Atlantic Canada. *Canadian Journal of Civil Engineering*, n. 22, p. 235-246, 1995 *apud* PYRCE, R., Hydrological low flow indices and their uses. *Watershed Science Centre*, n.4, 37p., Agosto, 2004.
- CAMARGOS, L. M. M. (coord). *Plano diretor de recursos hídricos da bacia hidrográfica do rio das Velhas*: resumo executivo dezembro 2004. Belo Horizonte: Instituto Mineiro de Gestão das Águas, Comitê da Bacia Hidrográfica do Rio das Velhas, 228 p., 2005.
- CASADEI, S. Analisi delle portate di magra e gestione delle resorce idriche superficiali il software Tiber. *Comitato italiano per irrigazione e la bonifica idraulica*, 24p., 2005.
- CASADEI, S. Analise del deflusso di base (BFI) in alcuni bacini dell' Italia Centrale. *Idrotecnia*, n.3,177-191, 1996.
- CASTELLARIN, A.; LEATI, G.; BRANDIMARTE, L.; MONTANARI, A.; BRATH, A. Regional flow duration curves: reliability for ungauged basins. *Advances in Water Resources*, 27, p. 953-965, 2004.
- CASTELLARIN, A.; VOGEL, R. M.; BRATH, A. Stochastic index flow model of duration curves. *Water Resourc. Res.*, 40, W03104, doi:10.1029/2003WR002524, 2004.
- CASTELLARIN, A.; et al A. Regional flow duration curves: reliability for ungauged basins. Advances in Water Resources, 27, p. 953-965, 2004.

- CLAPS, P.; FIORENTINO, M. Probabilistic Flow Duration Curves for use in Environmental Planning and Management. In: HARMANCIOGLU *et al.* (eds.). *Integrated Approach to Environmental Data Management Systems*. Kluwer, Dordrecht, The Netherlands, NATO-ASI, series 2 (31), p. 255-266, 1997.
- CPRM COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. *Caracterização física e análise dos dados básicos*, Convênio: 015/2000 ANEEL-013/CPRM/2000, Relatório Final, Volume I, 2001.
- CPRM COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. *Regionalização das Curvas de Permanência e Curvas de Regularização*, Convênio: 015/2000 ANEEL-013/CPRM/2000, Relatório Final, Volume III, 2001.
- CPRM COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. *Mapa Geológico de Minas Gerais*. Belo Horizonte: CPRM/COMIG, 2003. Escala 1:1. 000.000. Meio Digital.
- CPRM COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. *Projeto Análise de Consistência de Dados Pluviométricos Bacia do Rio São Francisco. Sub-Bacias 40 a 44*: Relatório Técnico Parcial. Sub-Bacia 41. Belo Horizonte, DNAEE/CPRM, 1995b, 3 v. *apud* CPRM COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. *Caracterização física e análise dos dados básicos*, Convênio: 015/2000 ANEEL-013/CPRM/2000, Relatório Final, Volume I, 2001.
- DAKOVA, S.; UZUNOV, Y.; MANDADJIEV, D., Low flow the river's ecosystem limiting factor. *Ecological Engineering*, 16: 167-174, 2000 apud PYRCE, R., Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.
- FOSTER, H. A Duration curves, *ASCE Trans*, 99, 1213-1267, 1934 *apud* VOGEL, R. M., FENNESSEY, N. M.. Flow duration curves I: new interpretation and confidence intervals. *J. Water Resources Planning Management*, 120 (4), p.485-504, 1994.
- FRANCHINI, M.; FERRARESI, M. Analisi regionale dei deflussi di magra tramite lê curve de durata. Proc. XXI Convegno di idraulica e construcioni idrauliche, *L' áquila*, Maggioli Editore, Setembro, 1988. Col.1, 139-149.
- FRANCHINI, M.; SUPPO, M. Regional analysis of flow duration curves for a limestone region. *Water Resour. Manegement*, 10, p. 199-218, 1996.
- HAAN, C. T. *Statistical methods in hidrology*. 2. ed. Ames, Iowa: The Iowa State, University, Press/Ames, 378 p., 1977.
- HELSEL, D.R.; HIRSCH, R. M. *Techniques of Water-Resources Investigations of the United States Geological Survey*. Book 4, Hydrologic Analysis and Interpretation. Capitulo A3, Statistical Methods in Water Resources 510p., 1993.

HIGGS, G.; PETTS, G., Hydrological changes and river regulation in the UK. *Regulated Rivers: Research & Management*, 2: 349-368, 1988 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre* n. 4, 37p., Agosto, 2004.

MANCIOLA, P.; CASADEI, S. Low flow index and hidrogeological characteristics, ASCE *Proc. National Conf. on hydraulic engineering*, 29 July- 2 August, Nashville, TN, 1991. 930-936.

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY, SURFACE WATER QUALITY DIVISION, 2002. Total maximum daily load for mercury for Hammell creek, Houghton County, Michigan, Accessed: March 2004, http://www.deq.state.mi.us/documents/deq-wd-water-tmd/-hammellcreek.pdf>, 7p. *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre* n. 4, 37p., Agosto, 2004.

MAZVIMAVI, D. Estimation of flow characteristics of ungauged catchments: Case study in Zimbabwe, 2003. 188 f. (PH.D. Thesis Wageningen University, Netherlands). Avaliable from http://library.wur.nl/wda/dissertations/dis3514.pdf Acesso em: jan. 2006.

MEDEIROS, M. J. Avaliação da vazão referencial como critério de outorga dos direitos de uso das águas na bacia do Rio Paraopeba. 2000. 176 f. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos) - Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2000.

METCALFE, R.A.; SMAKHTIN, V.Y.; AND KREZEK, C. Simulating and characterising natural flow regimes. *Waterpower Project Science Transfer*: Report 1.0, Ontario Ministry of Natural Resources, 14p. 2003 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre* n. 4, 37p., Agosto, 2004.

MONTGOMERY, D. C.; PECK, E. A. *Introduction to linear Regression Analysis*. 2.ed. EUA: John Wiley & Sons, 527p., 1992 apud MEDEIROS, M. J. *Avaliação da vazão referencial como critério de outorga dos direitos de uso das águas na bacia do Rio Paraopeba. Belo Horizonte*: Escola de Engenharia da UFMG, 2000. 176p. (Dissertação, Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos).

MOURÃO, M. A. A *et al.* Caracterização hidrogeológica da porção mineira da Bacia Hidrográfica do São Francisco. In: PINTO, C. P.; MARTINS-NETO, M.A. (coord), Geologia de Recurso Naturais, p. 327-350 – *SBG/MG* – Belo Horizonte, 2001.

NERC – Natural Environment Research Council. Low Flow Studies, Institute of Hydrology, Report Number 1-3, Wallingford, Oxon, UK., 224p., 1980.

OGUNKOYA, O. O. Discharge-duration patterns of some small streams in southwestern Nigeria. *Journal of African Earth Sciences*, 9: 701-710, 1989 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre* n. 4, 37p., Agosto, 2004.

- PETTS, G. E.; BICKERTON, M. A.; CRAWFORD, C.; LERNER, D.N.; EVANS, D. Flow management to sustain groundwater-dominated stream ecosystems. *Hydrological Processes*, 13: 497-513, 1997 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre* n.04, 37p., Agosto, 2004.
- PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.
- RIES, K.G.; FRIESZ, P.J. Methods for estimating low-flow statistics for Massachusetts streams. *Water-Resources Investigations Report 00-4135*, 2000. U.S. Geological Survey. *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.
- RIGGS, H. C. Regional Analyses of Streamflow. U.S. Geological Survey Techniques of Water Resources Investigations. Book 4, U.S. Geological Survey, Washington, D.C. 1973.
- RIGGS, H.C.; CAFFEY, J.E.; ORSBORN, J.F.; SCHAAKE, J.C.; SINGH, K.P.; WALLACE, J.R. (Task Committee of Low-Flow Evaluation, Methods, and Needs of the Committee on Surface-Water Hydrology of the Hydraulics Division), Characteristics of low flows. Proceedings of the American Society of Civil Engineers, *Journal of the Hydraulics Division*, 106: 717-731, 1980 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.
- RIVERA-RAMIREZ, H.D.; WARNER, G.S.; SCATENA, F.N. Prediction of master recession curves and baseflow recessions in the Luquillo mountains of Puerto Rico. *Journal of the American Water Resources Association*, 38: 693-704, 2002 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n.4, 37p., Agosto, 2004.
- RURALMINAS Fundação Rural Mineira, Colonização e Desenvolvimento Agrário. 1999a. Hidrogeologia. *Plano Diretor de Recursos Hídricos da Bacia de Afluentes do Rio São Francisco, em Minas Gerais*. Belo Horizonte, MMA/ SRH/ SEAPA/ RURALMINAS/ SEMAD/ IGAM Consórcio Ecoplan/Magna/Cab, Tomo 8, v.1, 120 p. *apud* MOURÃO, M. A. A *et al.* Caracterização hidrogeológica da porção mineira da Bacia Hidrográfica do São Francisco. In: PINTO, C. P.; MARTINS-NETO, M.A. (coord), Geologia de Recurso Naturais, p. 327-350 *SBG/MG* Belo Horizonte, 2001
- RURALMINAS Fundação Rural Mineira, Colonização e Desenvolvimento Agrário. 1999b. *Plano de Gerenciamento Integrado de Recursos Hídricos da Bacia do Rio Grande*. Belo Horizonte, MMA/ SRH/ SEAPA/ RURALMINAS/ SEME Consórcio Tecnosolo/Episa, 171p. *apud* MOURÃO, M. A. A *et al.* Caracterização hidrogeológica da porção mineira da Bacia Hidrográfica do São Francisco. In: PINTO, C. P.; MARTINS-NETO, M.A. (coord), Geologia de Recurso Naturais , p. 327-350 *SBG/MG* Belo Horizonte, 2001

SEARCY, J. K. Flow duration curves-manual of hydrology: Part 2. Low flow techniques, 1963.

SINGH, V. P. Elementary Hydrology, 1° ed. 973 p, Prentice Hall. 1997.

SMAKHTIN, V. U. Low flow hydrology: a review. *Journal of Hydrology*, v. 240, p. 147-186, 2001.

SMAKHTIN, V.Y.; TOULOUSE, M. Relationships between low-flow characteristics of South African streams. *Water SA*, 24: 107-112, 1998 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.

SMAKHTIN, V.Y.; WATKINS, D.A.; HUGHES, D.A., Preliminary analysis of low-flow characteristics of South African rivers. *Water SA*, 21: 201-210, 1995.

STEWARDSON, M.J.; GIPPEL, C.J. Incorporating flow variability into environmental flow regimes using the flow events method. *River Research and Applications*, 19: 459-472 (2003) *apud* PYRCE, R., Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.

THARME, R.E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. *River Research and Applications*, 19: 397-441 (2003) *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centr,e*, n. 4, 37p., Agosto, 2004.

TUCCI, C. E. M. Regionalização de vazões no Rio Grande do Sul. Porto Alegre: IPH/UFRGS. 2v em 4, 1991 apud SILVEIRA, A. L. L.; SILVEIRA, G. L. Vazões Mínimas. In: PAIVA, J. B.; PAIVA, E. M. (coord). Hidrologia aplicada à gestão de pequenas bacias hidrográficas: Recope-Rehidro sub rede 1 Finep. UFSM, Santa Maria. ABRH, 2001, cap. 9. p. 237-277.

TUCCI, C. E. M. Regionalização de vazões. In: TUCCI, C. E. M.(Ed.). *Hidrologia*: Ciência e Aplicação. Porto Alegre: Editora da Universidade – UFRGS, 1993. Capítulo 15, p. 573-619.

TUCCI, C. E. M. *Regionalização de vazões*. Porto Alegre: Editora da Universidade – UFRGS, 250 p., 2002.

U.S. Fish and Wildlife Service. Interim regional policy for New England stream flow recommendations, Region 5 of U.S., Fish and Wildlife Service, Newton Corner, MA., 3p., 1981 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.

VOGEL, R. M.; FENNESSEY, N. M. Flow duration curves I: new interpretation and confidence intervals. *J. Water Resources Planning Management*, 120 (4), p. 485-504, 1994.

VOGEL, R. M., FENNESSEY, N. M. Flow duration curves: II: a review of applications e in water resources planning. *Water Resources Bulletin*, 31(6), p.1029-1039, 1994.

VOGEL, R. M.; FENNESSEY, N. M Regional flow duration curve for ungauged sites in Massachusetts. *J. Water Resources Planning Management*, 116(4), p.530-549, 1990.

WALLACE, T.B.; COX, W.E. Locating information on surface water availability in Virginia (draft). Accessed: March 2004, http://www.rappriverbasin.state.va.us/studies, 24p (2002) apud PYRCE, R. Hydrological low flow indices and their uses. Watershed Science Centre n. 4, 37p., Agosto, 2004.

YU, P. S.; YANG, T. C.; WANG, Y. C. Uncertainty analysis of regional flow duration curves. *J. Water Resour. Plann. Manage*, ASCE, 128(6), p. 424-30, 2002.

YULIANTI, J.S.; BURN, D.H. Investigating links between climatic warming and low streamflow in the Prairies region of Canada. *Canadian Water Resources Journal*, 23: 45-60, 1998 *apud* PYRCE, R. Hydrological low flow indices and their uses. *Watershed Science Centre*, n. 4, 37p., Agosto, 2004.

ANEXOS

ANEXO A

Análises de regressão para o alto, médio e baixo rio das Velhas, para as aplicações do método de Tucci (1991) e do método de Claps e Fiorentino (1997)

ANALISES DE REGRESSÕES PARA O ALTO, MÉDIO E BAIXO RIO DAS VELHAS

1.1. Método de Tucci (1993)

1.1.1. Alto rio das Velhas.

A tabela A1 contém todos os valores das variáveis utilizadas nas análises de regressão para o alto rio das Velhas. Na tabela A 1, " Q_{50} " denota a vazão com 50 por cento de excedência da curva de permanência, " Q_{95} " a vazão com 95 por cento de excedência da curva de permanência, "IEB" o escoamento de Base, "Área" a área de drenagem, "L" o comprimento do rio principal, "I equiv" a declividade média, "P médio" a precipitação média da bacia, "Cesc" o coeficiente de escoamento superficial da bacia e "Dd" a densidade de drenagem

Tabela A 1 - Variáveis utilizadas na análise de regressão para o Alto Rio das velhas.

Código	Estações	Q 50	Q ₉₅	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	C _{esc}
41151000	Faz. Água Limpa Jus.	2,4	1,38	175	1,498	0,8038	26	8,59	0,115	0,39
41160000	Gulpiara	4,5	2,61	284	1,498	0,7375	41	5,39	0,232	0,46
41180000	Itabirito Linígrafo	6,01	3,79	330	1,518	0,7715	48	5,25	0,252	0,5
41190000	Aguiar Moreira	8,32	5,76	539	1,523	0,7713	75	3,86	0,228	0,43
41199998	Honório Bicalho Mont.	22	12,5	1698	1,535	0,7268	90	2,56	0,212	0,36
41260000	Pinhões	44,9	25	3727	1,475	0,7094	157	1,42	0,204	0,37
41340000	Ponte Raul Soares	50,8	24,1	4874	1,458	0,6715	200	1,13	0,209	0,34

1.1.1.1.Excluindo Estação 41151000 - Fazenda Água Limpa

A tabela A2 apresenta matriz de correlação simples entre Q_{50} e demais variáveis independentes.

Tabela A 2 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Fazenda Água Limpa

	Q 50	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	$C_{\it esc}$
Q ₅₀	1							
Área (Km²)	0,99467111	1						
P médio (m)	-0,76930545	-0,80055373	1					
IEB	-0,89787798	-0,91949956	0,79245721	1				
L (km)	0,98162996	0,98942410	-0,77854355	-0,87570128	1			
I equiv (m/km)	-0,94963274	-0,93139218	0,56287567	0,80952166	-0,94131804	1		
Dd (junções /km²)	-0,82683819	-0,79928849	0,48208177	0,78942110	-0,79281469	0,90961092	1	
C _{esc}	-0,85180914	-0,84098087	0,44138312	0,82712835	-0,84258060	0,94488299	0,95604227	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis I equiv, L e IEB possuem correlação com a área A superior a 0,85, portanto não foram utilizadas na análise de regressão para se evitar a multi-colinearidade entre variáveis

explicativas. Na tabela A 3, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 3 - Equações obtidas através regressões lineares entre Q_{50} e variáveis independentes, excluindo Fazenda Água Limpa

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.041811A^{0.842376}$	0,996608	0,995759	1,070487	1175,08	0,00000432
$\widetilde{Q}_{50}^{30} = 0.045078A^{0.936877}C_{esc}^{0.815408}$	0,998264	0,997106	1,057882	862,36	0,00007236
$Q_{50} = 0.115791A^{0.895896}Dd^{0.925728}$	0,997539	0,995899	1,069279	608,07	0,00012207
$Q_{50} = 0.022617 A^{0.855184} P^{1.292988}$	0,996987	0,994978	1,076942	496,29	0,00016541

O F_{pc} (F parcial calculado) para o acréscimo de C_{esc} foi 0,976, para o acréscimo de Dd foi 0,549 e para o acréscimo de P foi 0,223. O F tabelado foi de 18,51. Nos três casos rejeita-se a hipótese que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

Na tabela A4 é apresentada matriz de correlação entre Q_{95} e demais variáveis independentes

Tabela A 4 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Fazenda Água Limpa

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	C _{esc}
Q ₉₅	1							
Área (Km²)	0,97348180	1						
P médio (m)	-0,72292099	-0,80055373	1					
IEB	-0,85285099	-0,91949956	0,79245721	1				
L (km)	0,96128575	0,98942410	-0,77854355	-0,87570128	1			
I equiv (m/km)	-0,96082650	-0,93139218	0,56287567	0,80952166	-0,94131804	1		
Dd (junções /km²)	-0,85209084	-0,79928849	0,48208177	0,78942110	-0,79281469	0,90961092	1	
C _{esc}	-0,85357986	-0,84098087	0,44138312	0,82712835	-0,84258060	0,94488299	0,95604227	1

A variável independente com maior correlação com Q_{95} é a área da bacia A. As variáveis I equiv, L.e IEB possuem correlação com a área da bacia superior a 0,85, portanto não foram utilizadas na análise de regressão. Na tabela A5, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 5 - Equações obtidas através regressões lineares entre Q_{95} e variáveis independentes, excluindo Fazenda Água Limpa

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.041253A^{0.766238}$	0,981925	0,977406	1,154975	217,29	0,00012327
$Q_{95} = 0.044995 A^{0.875335} C_{esc}^{0.941351}$	0,984553	0,974255	1,166254	95,61	0,00191988
$Q_{95} = 0.079454 A^{0.800677} Dd^{0.595679}$	0,982384	0,970640	1,178497	83,65	0,00233810
$Q_{95} = 0.005171A^{0.809522}P^{4.369671}$	0,987081	0,978468	1,151022	114,61	0,00146842

O F_{pc} (F parcial calculado) para o acréscimo de C_{esc} foi 0,291, para o acréscimo de Dd foi 0,051 e para o acréscimo de P foi 0,57. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

1.1.1.2.Excluindo Estação 41160000 Gulpiara

A tabela A6 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes.

Tabela A 6 - Matriz de correlação entre \mathcal{Q}_{50} e variáveis independentes, excluindo Gulpiara

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	$C_{\rm esc}$
Q ₅₀	1							
Área (Km²)	0,99413325	1						
P médio (m)	-0,75286253	-0,79188156	1					
IEB	-0,95813612	-0,95589524	0,59538149	1				
L (km)	0,98013309	0,98378915	-0,73755796	-0,96409925	1			
I equiv (m/km)	-0,85084800	-0,81734996	0,34856620	0,91673640	-0,87967796	1		
Dd (junções /km²)	0,16302156	0,12738283	0,23938862	-0,33982557	0,25160529	-0,57809543	1	
$C_{\rm esc}$	-0,69224598	-0,70288079	0,50296496	0,63576331	-0,64394574	0,46343281	0,42406376	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis L., IEB e I equiv, possuem correlação com a área da bacia superior a 0,85 e portanto, não foram utilizadas na análise de regressão. Na tabela A7, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 7 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Gulpiara

Equação	R ²	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.029335 A^{0.888394}$	0,989740	0,987175	1,146763	385,87	0,00003961
$\widetilde{Q}_{50}^{30} = 0.310445A_{0.021011}^{0.621011}I^{-0.469247}$	0,991075	0,985124	1,158917	166,56	0,00084321
$Q_{50} = 0.004642A^{0.921061}P^{3.984947}$	0,992734	0,987889	1,142336	204,93	0,00061941
$Q_{50} = 0.048027 A^{0.971652} C_{esc}^{1.149245}$	0,998805	0,998008	1,055455	1253,46	0,00004132

O F_{pc} (F parcial calculado) para o acréscimo de I equiv, que representada por I, foi 0,260. Para o acréscimo de P foi 0,584 e para o acréscimo de C_{esc} foi 1,767. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese que o acréscimo das variáveis é significativo. O modelo escolhido foi o primeiro.

A tabela A8 apresenta a tabela com a matriz de correlação simples entre Q_{95} e demais variáveis independentes

Tabela A 8 - Matriz de correlação variáveis independentes entre Q_{95} e variáveis independentes, excluindo Gulpiara

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	$C_{\it esc}$
Q ₉₅	1							
Área (Km²)	0,97245797	1						
P médio (m)	-0,70324186	-0,79188156	1					
IEB	-0,94144929	-0,95589524	0,59538149	1				
L (km)	0,96323585	0,98378915	-0,73755796	-0,96409925	1			
I equiv (m/km)	-0,87527707	-0,81734996	0,34856620	0,91673640	-0,87967796	1		
Dd (junções /km²)	0,19321207	0,12738283	0,23938862	-0,33982557	0,25160529	-0,57809543	1	
C _{esc}	-0,67399791	-0,70288079	0,50296496	0,63576331	-0,64394574	0,46343281	0,42406376	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis L e IEB possuem correlação com a área da bacia superior a 0,85, e portanto, não foram utilizadas na análise de regressão. Na tabela A9, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 9 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Gulpiara

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.026086A^{0.826219}$	0,968203	0,960254	1,254439	121,80	0,00038323
$Q_{95} = 1,141107 A^{0,751513} I^{-0,751513}$	0,972074	0,953457	1,278011	52,21	0,00466662
$Q_{95} = 0.000782 A^{0.888357} P^{7.579962}$	0,980453	0,967422	1,227810	75,24	0,00273288
$Q_{95} = 0.054384 A^{0.950298} C_{esc}^{1.712687}$	0,990972	0,984953	1,149671	164,65	0,00085779

O F_{pc} (F parcial calculado) para o acréscimo de I equiv, representada por I, foi 0,244. Para o acréscimo de P foi 0,771 e para o acréscimo C_{esc} foi 1,432. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

1.1.1.3.Excluindo Estação 41180000 Itabirito Linígrafo

Na tabela A 10 é apresentada a matriz de correlação entre Q_{50} e variáveis independentes:

Tabela A 10 - Matriz de correlação dentre Q_{50} e variáveis independentes, excluindo Itabirito-Linígrafo

			_					
	Q_{50}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99410203	1						
P médio (m)	-0,66618642	-0,71124264	1					
IEB	-0,87728239	-0,88110083	0,55981677	1				
L (km)	0,98070689	0,98395723	-0,64902567	-0,88098537	1			
I equiv (m/km)	-0,85215135	-0,82037965	0,28927873	0,87887951	-0,87937583	1		
Dd (junções /km²)	0,23604698	0,20715030	0,11191149	-0,55209018	0,32312229	-0,66333883	1	
C _{esc}	-0,76652965	-0,77075907	0,36116937	0,52609312	-0,71349809	0,51854487	0,25292773	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis L e IEB possuem correlação com a área da bacia superior a 0,85, e portanto, não foram utilizadas na análise de regressão. Na tabela A11, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 11 - Equações obtidas de através regressões lineares entre Q_{50} e variáveis independentes, excluindo Itabirito-Linígrafo.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.025356A^{0.905812}$	0,995004	0,993756	1,104074	796,72	0,00000937
$Q_{50} = 0.095349 A_{0.75591}^{0.75591} I^{-0.267133}$	0,995497	0,992496	1,114645	331,65	0,00030212
$\widetilde{Q}_{50}^{30} = 0.04278 A_{0.970006}^{0.970006} C_{esc}^{1.022934}$	0,998643	0,997739	1,061393	1103,98	0,00004998
$Q_{50} = 0,00687 A^{0,924381} P^{\frac{630}{2,917217}}$	0,996582	0,994304	1,099177	437,38	0,00019981

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,197 para o acréscimo de C_{esc} foi 1,457 e para o acréscimo de P foi 0,632. O F tabelado foi de 18,51. Nos três casos rejeitase a hipótese que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

A tabela A 12 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes

Tabela A 12 - Matriz de correlação entre Q_{95} e variáveis independentes excluindo Itabirito Linígrafo

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97229976	1						
P médio (m)	-0,60833298	-0,71124264	1					
IEB	-0,85137668	-0,88110083	0,55981677	1				
L (km)	0,96447395	0,98395723	-0,64902567	-0,8809854	1			
I equiv (m/km)	-0,87444751	-0,82037965	0,28927873	0,87887951	-0,87937583	1		
Dd (junções /km²)	0,26188438	0,20715030	0,11191149	-0,5520902	0,32312229	-0,663338833	1	
C _{esc}	-0,74719552	-0,77075907	0,36116937	0,52609312	-0,713498093	0,518544872	0,252927733	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis L e IEB possuem correlação com a área da bacia superior a 0,85, portanto não foram utilizadas na análise de regressão. Na tabela A13, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 13 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes excluindo Itabirito-Linígrafo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.020482A^{0.85536}$	0,978116	0,972644	1,218189	178,78	0,00018093
$Q_{95} = 0.109383A^{0.665755}I^{-0.337885}$	0,978985	0,964975	1,250227	69,88	0,00304645
$Q_{95} = 0.04878A^{0.961868}C_{esc}^{1.697201}$	0,989158	0,981929	1,173993	136,85	0,00112897
$Q_{95} = 0.001049A^{0.897623}P^{6.639529}$	0,987125	0,978542	1,191008	115,01	0,00146085

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,079, para o acréscimo de C_{esc} foi 1,009 e para o acréscimo P foi 0,823. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

1.1.1.4. Excluindo Estação 41190000 Aguiar Moreira

A tabela A 14 apresenta a correlação entre Q_{50} e variáveis independentes:

Tabela A 14 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Aguiar Moreira

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /k m²)	$C_{\it esc}$
Q ₅₀	1							
Área (Km²)	0,99429302	1						
P médio (m)	-0,66848526	-0,71284529	1					
IEB	-0,88024693	-0,88353477	0,54979621	1				
L (km)	0,99253911	0,99694277	-0,68839685	-0,90437229	1			
I equiv (m/km)	-0,89310388	-0,86439640	0,36373312	0,93218559	-0,89169848	1		
Dd (junções /km²)	0,12488105	0,09737246	0,16067753	-0,42770205	0,17237834	-0,49424271	1	
Cesc	-0,72195301	-0,72885168	0,41420943	0,54661922	-0,68676751	0,51771775	0,45612218	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis L, I equiv e IEB possuem correlação com a área da bacia superior a 0,85, e portanto, não foram utilizadas na análise de regressão. Na tabela A15, encontra-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 15 - Equações obtidas através de regressões lineares entre $\mathcal{Q}_{\scriptscriptstyle{50}}$ e variáveis

independentes, excluindo Aguiar Moreira

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.028855A_{0.072492}^{0.889712}$		0,989161	1,142810	457,29	0,00002828
$Q_{50} = 0.044142A^{0.973482}C_{asc}^{1.08348}$	0,998757	0,997928	1,060102	1205,00	0,00004384
$Q_{50} = 0.0062A^{0.911644}P^{3.44340}$	0,993235	0,988725	1,145850	220,23	0,00055641

O F_{pc} (F parcial calculado) para o acréscimo de C_{esc} foi 1,713 e para o acréscimo de P foi 0,44. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese de que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

Na tabela A16, é apresentada a matriz de correlação entre Q_{95} e demais variáveis independentes

Tabela A 16 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Aguiar Moreira

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) [Od (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97437365	1						
P médio (m)	-0,61833557	-0,71284529	1					
IEB	-0,85835975	-0,88353477	0,54979621	1				
L (km)	0,97277405	0,99694277	-0,68839685	-0,90437229	1			
I equiv (m/km)	-0,90581876	-0,86439640	0,36373312	0,93218559	-0,89169848	1		
Dd (junções /km²)	0,13866606	0,09737246	0,16067753	-0,42770205	0,17237834	-0,49424271	1	
C _{esc}	-0,70926876	-0,72885168	0,41420943	0,54661922	-0,68676751	0,51771775	0,45612218	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis L, I equiv e IEB possuem correlação com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão. Na tabela A17, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 17 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes excluindo Aguiar Moreira

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.022295A^{0.842902}$	0,979276	0,974095	1,217391	189,01	0,00016218
$Q_{95} = 0.039478A^{0.955491}C_{esc}^{1.456227}$		0,990073	1,129493	250,35	0,00045965
$Q_{95} = 0.00149A^{0.881492}P^{6.058977}$	0,985772	0,976287	1,207079	103,93	0,00169709

O F_{pc} (F parcial calculado) para o acréscimo de C_{esc} foi 1,425 e para o acréscimo de P foi 0,627. O F tabelado foi de 18,51. Nos dois casos, rejeita-se a hipótese de que o acréscimo das variáveis é significativo. O primeiro modelo foi o escolhido.

1.1.1.5.Excluindo Estação 41199998 Honório Bicalho

A tabela A 18 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes.

Tabela A 18 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Honório Bicalho

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	l (junções /km²) C	Sesc
Q ₅₀	1							
Área (Km²)	0,99535684	1						
P médio (m)	-0,86580855	-0,88940211	1					
IEB	-0,89206119	-0,90054141	0,82329642	1				
L (km)	0,98380422	0,98540342	-0,80940036	-0,90225857	1			
I equiv (m/km)	-0,87323772	-0,85108987	0,57660584	0,88246384	-0,91270434	1		
Dd (junções /km²)	0,06439345	0,03799155	0,23512845	-0,33656857	0,14560241	-0,49363903	1	
C _{esc}	-0,76626558	-0,78699654	0,82368505	0,55496048	-0,74264538	0,46052711	0,52690358	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis L, I equiv, IEB e P possuem correlação com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão. Na tabela A19, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 19 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Honório Bicalho

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.029828A^{0.885917}$	0,990455	0,988069	1,146747	415,07	0,00003427
$\tilde{Q}_{50}^{30} = 0.048464 A^{0.975423} C_{esc}^{1.212071}$	0,999585	0,999309	1,033504	3616,02	0,00000844

O F_{pc} (F parcial calculado) para o acréscimo de C_{esc} foi 1,913. O F tabelado foi de 18,51, então, rejeita-se a hipótese de que o acréscimo da variável seja significativo. O primeiro modelo foi o escolhido.

Na tabela A20 é apresentada a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 20 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Honório Bicalho

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97716042	1						
P médio (m)	-0,82394724	-0,88940211	1					
IEB	-0,86535235	-0,90054141	0,82329642	1				
L (km)	0,97102203	0,98540342	-0,80940036	-0,90225857	1			
I equiv (m/km)	-0,88861688	-0,85108987	0,57660584	0,88246384	-0,91270434	1		
Dd (junções /km²)	0,08441290	0,03799155	0,23512845	-0,33656857	0,14560241	-0,49363903	1	
C _{esc}	-0,74298277	-0,78699654	0,82368505	0,55496048	-0,74264538	0,46052711	0,52690358	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis L, I equiv, IEB e P possuem correlação com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão. Na tabela A 21 encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 21 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes excluindo Honório Bicalho

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.025094A^{0.829847}$ $Q_{95} = 0.050541A^{0.958956}C^{1.74837}$	0,970557	0,963196	1,255543	131,85	0,00032834
$Q_{95}^{55} = 0.050541A^{0.958956}C_{esc}^{1.74837}$	0,991773	0,986289	1,149009	180,83	0,00074617

O F_{pc} (F parcial calculado) para o acréscimo de C_{esc} foi 1,432. O F tabelado foi de 18,51, então se rejeita a hipótese que o acréscimo da variável seja significativo. O primeiro modelo foi o escolhido.

1.1.1.6. Excluindo Estação 41260000 Pinhões

A tabela A 22 apresenta a matriz de correlação entre Q_{50} e variáveis independentes.

Tabela A 22 - Matriz de correlação entre \mathcal{Q}_{50} e variáveis independentes, excluindo Pinhões

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Dd (j	unções /km²) (\mathcal{I}_{esc}
Q ₅₀	1							
Área (Km²)	0,99688895	1						
P médio (m)	-0,61320784	-0,67230329	1					
IEB	-0,89876027	-0,88791116	0,53729260	1				
L (km)	0,98462922	0,98188997	-0,60411796	-0,88318107	1			
l equiv (m/km)	-0,82060789	-0,78228734	0,18025312	0,87116066	-0,85435887	1		
Dd (junções /km²)	0,10176410	0,06246597	0,22734494	-0,37006916	0,17999222	-0,56101773	1	
C _{esc}	-0,71917321	-0,71631905	0,37355280	0,52288463	-0,65893066	0,44242596	0,48549162	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis L e IEB possuem correlação com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão. Na tabela A23, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 23 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes excluindo Pinhões

Equação	R ²	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.030765 A_{0.65550}^{0.880698}$	0,988049	0,985061	1,145651	330,70	0,00005377
$Q_{50} = 0.224593A^{0.655569}I^{-0.402886}$	0,989512	0,982520	1,158453	141,52	0,00107410
$Q_{50} = 0.044727 A^{0.975438} C_{esc}^{1.106105}$	0,998235	0,997058	1,062200	848,24	0,00007417
$Q_{50} = 0,005254A^{0,902437}P^{3,980635}$	0,991684	0,986141	1,139931	178,89	0,00075829

O F_{pc} (F parcial calculado) para o acréscimo de I equiv, que na equação está referido como I foi 0,245, para o acréscimo de C_{esc} foi 1,705 e para o acréscimo P foi 0,608. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese que o acréscimo das variáveis é significativo.

A tabela A 24 apresenta a matriz de correlação entre Q_{95} e demais variáveis independentes

Tabela A 24 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Pinhões

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,98524020	1						
P médio (m)	-0,53760669	-0,67230329	1					
IEB	-0,89746388	-0,88791116	0,53729260	1				
L (km)	0,98371486	0,98188997	-0,60411796	-0,88318107	1			
I equiv (m/km)	-0,86046362	-0,78228734	0,18025312	0,87116066	-0,85435887	1		
Dd (junções /km²)	0,13947663	0,06246597	0,22734494	-0,37006916	0,17999222	-0,56101773	1	
C _{esc}	-0,72503679	-0,71631905	0,37355280	0,52288463	-0,65893066	0,44242596	0,48549162	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis L, IEB possuem correlação com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão.

Na tabela A25, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 25 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes excluindo Pinhões

Equação	R ²	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.027104A^{0.816891}$	0,963249	0,954061	1,251068	104,84	0,00051283
$Q_{95} = 0.334382 A^{0.532341} I^{-0.509225}$	0,965897	0,943161	1,282945	42,48	0,00629786
$Q_{95} = 0.045743 A^{0.949397} C_{esc}^{1.547037}$	0,985827	0,976378	1,174244	104,33	0,00168736
$\underline{Q_{95}} = 0,000689A^{0,862061}P^{8,270897}$	0,981033	0,968389	1,204196	77,59	0,00261210

O $F_{pc}(F)$ parcial calculado) para o acréscimo de I equiv foi 0,144, para o acréscimo de C_{esc} foi 1,229 e para o acréscimo P foi 0,968. O F tabelado foi de 18,51. Nos três casos, rejeita-se a hipótese de que o acréscimo das variáveis é significativo.

1.1.1.7.Excluindo Estação 41340000 Ponte Raul Soares

A tabela A26 apresenta a matriz de correlação entre Q_{50} e variáveis independentes.

Tabela A 26 - Matriz de correlação simples entre \mathcal{Q}_{50} e variáveis independentes, excluindo Ponte Raul Soares

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) L	Dd (junções /km²) C _{es}
Q ₅₀	1						
Área (Km²)	0,99905221	1					
P médio (m)	-0,42780226	-0,45958223	1				
IEB	-0,78967605	-0,77909412	0,22202709	1			
L (km)	0,97395685	0,96703825	-0,34019409	-0,7780578	1		
I equiv (m/km)	-0,82038535	-0,79744216	-0,0096382	0,86747774	-0,892701147	1	
Dd (junções /km²)	0,07557779	0,03985812	0,32033851	-0,4578773	0,199554247	-0,551013385	1
C _{esc}	-0,611539	-0,6255465	0,14775426	0,34184274	-0,543915782	0,342544195	0,561348959

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A27, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 27 - Equações obtidas através de regressões lineares entre \mathcal{Q}_{50} e variáveis

independentes, excluindo Ponte Raul Soares

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.025479 A^{0.91296}$	0,989309	0,986637	1,132329	370,16	0,00004301
$Q_{50} = 0.77112A^{0.532314}I^{-0.710671}$	0,993393	0,988988	1,119427	225,52	0,00053709
$Q_{50} = 0.023684 A_{0.878678}^{0.878678} IEB_{-1.03277}^{-1.03277}$	⁷ 0,989884	0,983140	1,149804	146,78	0,00101744
$Q_{50}^{0} = 0.0401A^{0.984913}C_{esc}^{1.042632}$	0,998932	0,998220	1,046399	1403,15	0,00003490

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,764, para o acréscimo de IEB foi 0,108 e para o acréscimo C_{esc} foi 1,800. O F tabelado foi de 18,51. Nos três casos, rejeitase a hipótese de que o acréscimo das variáveis é significativo.

A tabela A28 apresenta a matriz de correção simples entre Q_{95} e demais variáveis independentes

Tabela A 28 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Raul Soares

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) I	Dd (junções /km²)	C_{esc}
Q ₉₅	1							
Área (Km²)	0,99673826	1						
P médio (m)	-0,40592883	-0,45958223	1					
IEB	-0,78637515	-0,77909412	0,22202709	1				
L (km)	0,98276638	0,96703825	-0,34019409	-0,7780578	1			
I equiv (m/km)	-0,83716164	-0,79744216	-0,0096382	0,86747774	-0,892701147	1		
Dd (junções /km²)	0,09657565	0,03985812	0,32033851	-0,4578773	0,199554247	-0,551013385	1	
C _{esc}	-0,60455896	-0,6255465	0,14775426	0,34184274	-0,543915782	0,342544195	0,561348959	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85, e portanto, não foi utilizada na análise de regressão. Na tabela A29, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 29 - Equações obtidas através de regressões lineares entre $\mathcal{Q}_{\scriptscriptstyle{95}}$ e variáveis

independentes, excluindo Raul Soares

Equação	R²	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.017724A^{0.889619}$	0,974157	0,967696	1,208938	150,78	0,00025264
$Q_{95}^{95} = 3,633559A^{0,295424}I^{-1,109371}$	0,984475	0,974126	1,185083	95,12	0,00193432
$Q_{95} = 0.017895 A^{0.89413} IEB^{0.13588}$	6 0,974167	0,956945	1,244895	56,57	0,00415198
$Q_{95} = 0.032729 A^{0.986931} C_{esc}^{1.410095}$	0,992410	0,987349	1,126075	196,12	0,00066129

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,799, para o acréscimo de IEB foi 0,001 e para o acréscimo C_{esc} foi 1,413. O F tabelado foi de 18,51. Nos três casos, rejeitase a hipótese de que o acréscimo das variáveis é significativo.

1.1.2. Médio Rio das Velhas

A tabela A 30 contém todos os valores das variáveis utilizadas nas análises de regressão para o médio rio das Velhas, em que " Q_{50} " denota a vazão com 50 por cento de excedência da curva de permanência, " Q_{95} " a vazão com 95 por cento de excedência da curva de permanência, "IEB" o escoamento de Base, "Área" a área de drenagem, "L" o comprimento do rio principal, "I equiv" a declividade média, "P médio" a precipitação média da bacia, "Cesc" o coeficiente de escoamento superficial da bacia e "Dd" a densidade de drenagem

Tabela A 30 - Variáveis utilizadas nas análises de regressão

Código	Estações	Q ₅₀	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²	C _{esc}
41250000	Vespasiano	4,88	1,79	676	1,329	0,6593	56	2,35	0,181	0,29
41300000	Taquaraçu	5,82	2,15	626	1,447	0,6754	46	7,02	0,272	0,35
41380000	Ponte Preta	3,57	1,43	553	1,308	0,5519	55	2,55	0,128	0,31
41410000	Jequitibá	60,1	29,1	6558	1,423	0,6759	289	0,76	0,178	0,31
41539998	Faz.Contagem Mont.	2,90	1,07	460	1,346	0,4580	40	1,4	0,070	0,24
41600000	Pirapama	70,9	33,2	8086	1,346	0,7068	40	1,4	0,070	0,24
41650002	Ponte do Licínio Jus.	82,7	37,9	10712	1,38	0,6814	474	0,54	0,136	0,28
41700001	Usina Paraúna	18,4	5,04	1733	1,266	0,6161	80	2,75	0,100	0,47
41715000	Fazenda Cachoeira	0,82	0,29	85	1,52	0,7130	24	8,56	0,059	0,55
41720000	Fazenda Cipó	2,81	0,87	341	1,454	0,4800	46	4,28	0,114	0,61
41780002	Presidente Juscelino	32	12,3	3996	1,345	0,4567	100	2,48	0,096	0,46
41818000	Santo Hipólido	115	49,6	16722	1,33	0,6366	566	0,47	0,115	0,3

1.1.2.1.Excluindo Estação 41250000 Vespasiano

A tabela A31 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes.

Tabela A 31 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Vespasiano.

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²)	C_{esc}
Q ₅₀	1							
Área (Km²)	0,99003167	1						
P médio (m)	-0,26526597	-0,26462577	1					
IEB	0,41202241	0,36347161	0,28467371	1				
L (km)	0,86322081	0,89336499	-0,15889450	0,29059146	1			
I equiv (m/km)	-0,66371327	-0,63576408	0,68043004	0,17346765	-0,57223951	1		
Dd (junções /km²)	-0,01623863	-0,02399688	0,21996915	0,25054939	0,13964595	0,17463905	1	
C _{esc}	-0,49695654	-0,47294242	0,43389784	-0,22237182	-0,36465359	0,62564652	-0,15266429	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0.85 e, portanto, não foi utilizada na análise

de regressão. Na tabela A32, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 32 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Vespasiano

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008749 A^{0.990812}$	0,990194	0,989105	1,194065	908,81	0,0000000002
$Q_{50} = 0.008749 A^{0.990812} Q_{50} = 0.003543 A^{1.093194} I^{0.212447}$	0,994433	0,993041	1,152285	714,50	0,000000010

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,03. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

A tabela A33 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 33 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Vespasiano

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,98004234	1						
P médio (m)	-0,22228989	-0,26462577	1					
IEB	0,43897029	0,36347161	0,28467371	1				
L (km)	0,85212327	0,89336499	-0,15889450	0,29059146	1			
I equiv (m/km)	-0,66296776	-0,63576408	0,68043004	0,17346765	-0,57223951	1		
Dd (junções /km²)	-0,00282990	-0,02399688	0,21996915	0,25054939	0,13964595	0,17463905	1	
C _{esc}	-0,52309873	-0,47294242	0,43389784	-0,22237182	-0,36465359	0,62564652	-0,15266429	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão.

Na tabela A34, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 34 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Vespasiano

Equação	R^2	R² ajustado	Erro Padrão	F	F de significação
$ Q_{95} = 0,002133 A^{1,052814} Q_{95} = 0,001219 A^{1,116151} I^{0,131426} $	0,990192	0,989103	1,207412	908,65	0,0000000002
$Q_{95} = 0,001219 A^{1,116151} I^{0,131426}$	0,991629	0,989536	1,202846	473,84	0,0000000049

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,03. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

1.1.2.2. Excluindo Estação 41300000 Taquaruçu

A tabela A 35 apresenta a matriz de correlação entre Q_{50} e variáveis independentes.

Tabela A 35 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Taquaruçu

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,98987941	1						
P médio (m)	-0,14927445	-0,15664825	1					
IEB	0,42635079	0,37957640	0,18962210	1				
L (km)	0,86158086	0,89235468	-0,07081192	0,30691721	1			
l equiv (m/km)	-0,61601417	-0,59261738	0,63434996	0,06066507	-0,54638464	1		
Dd (junções /km²)	0,13973869	0,12596633	-0,14547122	0,18940066	0,34748977	-0,42968989	1	
C _{esc}	-0,45062252	-0,43181130	0,49559244	-0,24345228	-0,33475692	0,75322520	-0,25610387	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão.

Na tabela A36, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 36 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes excluindo Taquaruçu

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008039 A^{0.999125}_{1.074232 - 0.160678}$	0,990464	0,989404	1,192328	934,76	0,0000000002
$\widetilde{Q}_{50}^{30} = 0.004157 A^{1.074222} I^{0.160678}$	0,993218	0,991523	1,170394	585,82	0,0000000021

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 2,02. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo da variável é significativo.

A tabela A 37 apresenta a matriz de correção simples entre Q_{95} e demais variáveis independentes.

Tabela A 37 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Taquaruçu

				1 3				
	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) C	c_{esc}
Q ₉₅	1							
Área (Km²)	0,97994106	1						
P médio (m)	-0,10646238	-0,15664825	1					
IEB	0,45375124	0,37957640	0,18962210	1				
L (km)	0,85056594	0,89235468	-0,07081192	0,30691721	1			
I equiv (m/km)	-0,61692152	-0,59261738	0,63434996	0,06066507	-0,54638464	1		
Dd (junções /km²)	0,15849650	0,12596633	-0,14547122	0,18940066	0,34748977	-0,42968989	1	
C _{esc}	-0,47696190	-0,43181130	0,49559244	-0,24345228	-0,33475692	0,75322520	-0,25610387	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão.

Na tabela A38, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 38 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Taquaruçu

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.001951A^{1.061547}$ $Q_{95} = 0.001440A^{1.096414}I^{0.077571}$	0,990629	0,989587	1,203531	951,37	0,0000000002
$Q_{95}^{73} = 0.001440A^{1.096414}I^{0.077571}$	0,991419	0,989274	1,206861	462,17	0,000000054

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,99. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo da variável é significativo.

1.1.2.3.Excluindo Estação 41380000 Ponte Preta

A tabela A 39 apresenta a matriz de correlação simples entre Q_{50} , e variáveis independentes.

Tabela A 39 - Matriz de correlação simples entre \mathcal{Q}_{50} e variáveis independentes, excluindo Ponte Preta

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99006614	1						
P médio (m)	-0,29805931	-0,29410137	1					
IEB	0,32919281	0,28806973	0,20155651	1				
L (km)	0,86353310	0,89347669	-0,17875462	0,23389308	1			
I equiv (m/km)	-0,65921580	-0,63098501	0,69699499	0,15551350	-0,56771385	1		
Dd (junções /km²)	-0,08102848	-0,08262668	0,15929798	0,28967310	0,08870549	0,14887665	1	
C _{esc}	-0,48327821	-0,45953736	0,43682321	-0,28218030	-0,35337618	0,62622737	-0,20070074	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizadas na análise de regressão. Na tabela A40, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 40 - Equações obtidas através de regressões lineares entre \mathcal{Q}_{50} e variáveis independentes, excluindo Ponte Preta

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.009203A^{0.985414}$	0,991531	0,990590	1,176638	1053,74	0,000000001
$\widetilde{Q}_{50}^{30} = 0.003904 A^{1.082564} I^{0.200584}$	0,995399	0,994249	1,135602	865,44	0,0000000004

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,20. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo da variável é significativa.

A tabela A41 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 41 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Ponte Preta

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	Od (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97996332	1						
P médio (m)	-0,25203682	-0,29410137	1					
IEB	0,35799236	0,28806973	0,20155651	1				
L (km)	0,85220074	0,89347669	-0,17875462	0,23389308	1			
I equiv (m/km)	-0,65767135	-0,63098501	0,69699499	0,15551350	-0,56771385	1		
Dd (junções /km²)	-0,06713446	-0,08262668	0,15929798	0,28967310	0,08870549	0,14887665	1	
C _{esc}	-0,50824839	-0,45953736	0,43682321	-0,28218030	-0,35337618	0,62622737	-0,20070074	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0.85 e, portanto, não foi utilizada na análise de regressão.

Na tabela A 42, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 42 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Ponte Preta

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002158A^{1.051405}$ $Q_{95} = 0.001239A^{1.114241}I^{0.129737}$	0,990138	0,989042	1,206131	903,61	0,0000000002
$Q_{95}^{73} = 0.001239A^{1.114241}I^{0.129737}$	0,991558	0,989447	1,201926	469,80	0,0000000051

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,01. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

1.1.2.4. Excluindo Estação 41410000 Jequitibá

A tabela A43 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes.

Tabela A 43 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Jequitibá

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²)	$\overline{C_{esc}}$
Q ₅₀	1							
Área (Km²)	0,99311020	1						
P médio (m)	-0,26532793	-0,24947284	1					
IEB	0,32724673	0,29641777	0,20723580	1				
L (km)	0,85923478	0,89650829	-0,17967102	0,21777380	1			
I equiv (m/km)	-0,60840540	-0,59660969	0,77711396	0,22977523	-0,52461144	. 1		
Dd (junções /km²)	-0,14729833	-0,12554630	0,09946792	0,23931098	0,02545255	0,23523295	1	
C _{esc}	-0,41163120	-0,39986861	0,50327786	-0,22311791	-0,29858172	0,61443942	-0,16820960	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A44, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 44 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Jequitibá

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$ Q_{50} = 0,008785A^{0,986978} Q_{50} = 0,003249A^{1,098507}I^{0,243202} $	0,989778	0,988642	1,192133	871,44	0,0000000003
$\bar{Q}_{50}^{\circ} = 0.003249 A^{1.098507} I^{0.243202}$	0,995602	0,994502	1,130058	905,49	0,0000000004

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,99. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

A tabela A 45 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 45 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Jequitibá

	Q95	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) C	Sesc
Q95	1							
Área (Km²)	0,98756170	1						
P médio (m)	-0,23477292	-0,24947284	1					
IEB	0,34949501	0,29641777	0,20723580	1				
L (km)	0,84675234	0,89650829	-0,17967102	0,21777380	1			
I equiv (m/km)	-0,60314525	-0,59660969	0,77711396	0,22977523	-0,52461144	1		
Dd (junções /km²)	-0,14641130	-0,12554630	0,09946792	0,23931098	0,02545255	0,23523295	1	
Cesc	-0,43674811	-0,39986861	0,50327786	-0,22311791	-0,29858172	0,61443942	-0,16820960	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A46, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 46 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Jequitibá

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002243A^{1.040839}$ $Q_{95} = 0.001082A^{1.122632}I^{0.178361}$	0,991858	0,990953	1,179666	1096,39	0,000000001
$Q_{95}^{5} = 0,001082A^{1,122632}I^{0,178361}$	0,994681	0,993351	1,152180	747,98	0,0000000008

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 2,43. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo da variável é significativo.

1.1.2.5.Excluindo Estação 41539998 Fazenda Contagem Montante

A tabela A 47 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 47 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Fazenda Contagem Montante

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) De	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99003741	1						
P médio (m)	-0,24758261	-0,24782042	1					
IEB	0,28220405	0,24426533	0,21117543	1				
L (km)	0,86126602	0,89189893	-0,14899018	0,19270072	1			
I equiv (m/km)	-0,70738182	-0,67506460	0,67226862	0,08276993	-0,60806283	1		
Dd (junções /km²)	-0,16530442	-0,15918524	0,11995717	0,16560808	0,03274397	0,10060585	1	
C _{esc}	-0,55445522	-0,52495145	0,44295535	-0,49254915	-0,41111244	0,60837533	-0,32728403	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto , não foi utilizada na análise de regressão. Na tabela A48, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 48 - Equações obtidas através de regressões lineares entre \mathcal{Q}_{50} e variáveis independentes, excluindo Fazenda Contagem Montante

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.009430A^{0.982461}$	0,991881	0,990979	1,170582	1099,55	0,000000001
$Q_{50} = 0.009430A^{0.982461}$ $Q_{50} = 0.003986A^{1.079705}I^{0.187512}$	0,994141	0,992676	1,152480	678,70	0,000000012

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,95. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

A tabela A49 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 49 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Fazenda Contagem Montante

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97992117	1						
P médio (m)	-0,20462199	-0,24782042	1					
IEB	0,31704463	0,24426533	0,21117543	1				
L (km)	0,85005260	0,89189893	-0,14899018	0,19270072	1			
I equiv (m/km)	-0,70497214	-0,67506460	0,67226862	0,08276993	-0,60806283	1		
Dd (junções /km²)	-0,14850683	-0,15918524	0,11995717	0,16560808	0,03274397	0,10060585	1	
C _{esc}	-0,57953915	-0,52495145	0,44295535	-0,49254915	-0,41111244	0,60837533	-0,32728403	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizadas na análise de regressão. Na tabela A50, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 50 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes excluindo Fazenda Contagem Montante

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002268A^{1.045927}$ $Q_{95} = 0.001547A^{1.089079}I^{0.083207}$	0,991105	0,990117	1,191931	1002,84	0,0000000002
$Q_{95}^{(1)} = 0.001547 A^{1.089079} I^{0.083207}$	0,991498	0,989372	1,199701	466,45	0,0000000052

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,31. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo desta variável é significativo.

1.1.2.6. Excluindo Estação 41600000 Pirapama

A tabela A51 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes.

Tabela A 51 - Matriz de correlação dentre Q_{50} e variáveis independentes, excluindo Pirapama

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99264080	1						
P médio (m)	-0,18020794	-0,19031122	1					
IEB	0,29074697	0,26427915	0,30003899	1				
L (km)	0,98578334	0,98215112	-0,14899018	0,33942590	1			
I equiv (m/km)	-0,61318615	-0,59019967	0,67226862	0,23350178	-0,60806283	1		
Dd (junções /km²)	0,01015311	-0,01525572	0,11995717	0,41609759	0,03274397	0,10060585	1	
C _{esc}	-0,36718837	-0,36668446	0,44295535	-0,16109867	-0,41111244	0,60837533	-0,32728403	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A52, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 52 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Pirapama

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008721A^{0.988525}$ $Q_{50} = 0.003356A^{1.099058}I^{0.219684}$	0,989134	0,987927	1,196265	819,31	0,0000000004
$Q_{50}^{55} = 0.003356A^{1.099058}I^{0.219684}$	0,993763	0,992204	1,154895	637,32	0,000000015

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 2,98. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

A tabela A 53 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes

Tabela A 53 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Pirapama

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,98505094	1						
P médio (m)	-0,13543843	-0,19031122	1					
IEB	0,31382745	0,26427915	0,30003899	1				
L (km)	0,98925769	0,98215112	-0,14899018	0,33942590	1			
I equiv (m/km)	-0,61371232	-0,59019967	0,67226862	0,23350178	-0,60806283	1		
Dd (junções /km²)	0,03400947	-0,01525572	0,11995717	0,41609759	0,03274397	0,10060585	1	
C _{esc}	-0,38996212	-0,36668446	0,44295535	-0,16109867	-0,41111244	0,60837533	-0,32728403	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia L porém, a diferença para A é mínima. Por uma questão de praticidade considera-se A como a primeira variável de entrada . A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A54, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 54 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Pirapama

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002209 \ A_{1.01388}^{1.044073}$	0,990114	0,989016	1,197756	901,40	0,0000000002
$Q_{95} = 0.001346 \ A^{1.101388} I^{0.113914}$	0,991231	0,989039	1,197531	452,15	0,000000059

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,35. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo desta variável é significativo.

1.1.2.7.Excluindo Estação 41650002 Ponte do Licínio Jusante

A tabela A 55 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 55 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Ponte do Licínio Jusante

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,98866560	1						
P médio (m)	-0,23696808	-0,24002801	1					
IEB	0,29770402	0,25246752	0,24457571	1				
L (km)	0,84403365	0,88617810	-0,16088089	0,15903420	1			
I equiv (m/km)	-0,58643487	-0,56093919	0,71585083	0,24440417	-0,49346551	1		
Dd (junções /km²)	-0,10917867	-0,10989063	0,14941284	0,27978397	0,07098053	0,17004539	1	
C _{esc}	-0,38086545	-0,36274377	0,47322737	-0,20578140	-0,24478120	0,60073684	-0,19373473	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A56, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 56 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Ponte do Licínio Jusante

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008273A^{0.997442}$	0,988569	0,987299	1,199260	778,32	0,000000005
$Q_{50} = 0.003327 A^{1.098594} I^{0.228470}$	0,993746	0,992183	1,153210	635,62	0,000000015

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,17. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo desta variável é significativo.

A tabela A57 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 57 - Matriz de correlação simples entre variáveis independentes Q_{95} e variáveis independentes, excluindo Ponte do Licínio jusante

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²)(C_{esc}
Q ₉₅	1							
Área (Km²)	0,97774636	1						
P médio (m)	-0,19494343	-0,24002801	1					
IEB	0,32608601	0,25246752	0,24457571	1				
L (km)	0,82570636	0,88617810	-0,16088089	0,15903420	1			
I equiv (m/km)	-0,58573864	-0,56093919	0,71585083	0,24440417	-0,49346551	1		
Dd (junções /km²)	-0,09604271	-0,10989063	0,14941284	0,27978397	0,07098053	0,17004539	1	
Cesc	-0,40911997	-0,36274377	0,47322737	-0,20578140	-0,24478120	0,60073684	-0,19373473	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A 58, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 58 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Ponte do Licínio Jusante

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002076A^{1.054767}$ $Q_{95} = 0.001125A^{1.122752}I^{0.153559}$	0,988517	0,987241	1,212381	774,77	0,000000005
$\bar{Q}_{95} = 0.001125 A^{1,122752} I^{0.153559}$	0,990609	0,988261	1,202896	421,92	0,0000000078

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,27. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

1.1.2.8. Excluindo Estação 41700001 Usina Paraúna

A tabela A59 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 59 - Matriz de correlação simples entre $\mathcal{Q}_{\scriptscriptstyle{50}}$ e variáveis independentes excluindo Usina Paraúna

	Q_{50}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) E	Od (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99051116	1						
P médio (m)	-0,30203598	-0,32260543	1					
IEB	0,36398232	0,32351151	0,28775132	1				
L (km)	0,86419138	0,89430320	-0,20398378	0,26157927	1			
I equiv (m/km)	-0,63637808	-0,61575632	0,76073399	0,16063938	-0,55918178	1		
Dd (junções /km²)	-0,09885336	-0,10489055	0,09703482	0,28920881	0,07078214	0,14767922	1	
C _{esc}	-0,41507623	-0,39137879	0,67949899	-0,26198456	-0,30247172	0,65168187	-0,17084619	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A60, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 60 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Usina Paraúna

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008279 A^{0.993456}_{1.993592}$	0,992672	0,991857	1,168249	1219,12	0,000000001
$Q_{50} = 0,003769A^{1,083592}I^{0,189331}$	0,995836	0,994795	1,132390	956,62	0,000000003

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,02. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo da variável é significativo.

A tabela A61 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 61 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Usina Paraúna

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,98060243	1						
P médio (m)	-0,28404989	-0,32260543	1					
IEB	0,39478505	0,32351151	0,28775132	1				
L (km)	0,85365589	0,89430320	-0,20398378	0,26157927	1			
I equiv (m/km)	-0,64167747	-0,61575632	0,76073399	0,16063938	-0,55918178	1		
Dd (junções /km²)	-0,09268161	-0,10489055	0,09703482	0,28920881	0,07078214	0,14767922	1	
C _{esc}	-0,43212563	-0,39137879	0,67949899	-0,26198456	-0,30247172	0,65168187	-0,17084619	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A62, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 62 - Equações obtidas através regressões lineares entre Q_{95} e variáveis independentes excluindo Usina Paraúna

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002065 A^{1.056670} Q_{95} = 0.001068 A^{1.132189} I^{0.158626}$	0,990249	0,989166	1,210490	913,99	0,0000000002
$\widetilde{Q}_{95}^{95} = 0.001068A^{1.132189}I^{0.158626}$	0,992208	0,990260	1,198565	509,32	0,0000000037

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,41. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo da variável é significativo.

1.1.2.9. Excluindo Estação 41715000 Fazenda Cachoeira

A tabela A 63 apresenta matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 63 - Matriz de correlação simples entre \mathcal{Q}_{50} e variáveis independentes, excluindo Fazenda Cachoeira

	Q_{50}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,98981673	1						
P médio (m)	-0,05683419	-0,07666383	1					
IEB	0,49142109	0,43696136	0,04217776	1				
L (km)	0,85926527	0,89052373	0,01785735	0,35782461	1			
I equiv (m/km)	-0,64722147	-0,62806181	0,42749192	-0,11107926	-0,57709708	1		
Dd (junções /km²)	-0,19180132	-0,18627797	0,51594019	0,45683237	0,01134454	0,59166271	1	
Cesc	-0,35990265	-0,34755276	0,23715419	-0,48325590	-0,25622050	0,47459590	-0,04269041	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A64, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 64 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes excluindo Fazenda Cachoeira

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.006923A^{1.018389}$	0,987977	0,986641	1,185524	739,54	0,0000000006
$\tilde{Q}_{50}^{30} = 0.002902A^{1.116959}I^{0.212902}$	0,993754	0,992192	1,138951	636,36	0,000000015

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,02. O F tabelado foi de 5,59, Então, rejeita-se a hipótese que o acréscimo desta variável é significativo.

A tabela A65 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 65 - Matriz de correlação simples entre \mathcal{Q}_{95} e variáveis independentes, excluindo Fazenda Cachoeira

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	Od (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97962529	1						
P médio (m)	-0,01103276	-0,07666383	1					
IEB	0,51599091	0,43696136	0,04217776	1				
L (km)	0,84801861	0,89052373	0,01785735	0,35782461	1			
I equiv (m/km)	-0,65504737	-0,62806181	0,42749192	-0,11107926	-0,57709708	1		
Dd (junções /km²)	-0,17277488	-0,18627797	0,51594019	0,45683237	0,01134454	0,59166271	1	
$C_{\rm esc}$	-0,39436983	-0,34755276	0,23715419	-0,48325590	-0,25622050	0,47459590	-0,04269041	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A66, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 66 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes excluindo fazenda Cachoeira

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$ Q_{95} = 0.001475 A^{1.096811} Q_{95} = 0.000873 A^{1.156227} I^{0.128332} $	0,991024	0,990027	1,171313	993,66	0,0000000002
$\overline{Q}_{95}^{5} = 0.000873A^{1.156227}I^{0.128332}$	0,992839	0,991049	1,161605	554,58	0,0000000026

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,42. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo da variável é significativo.

1.1.2.10. Excluindo Estação 41720000 Fazenda Cipó

A tabela A67 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Fazenda do Cipó.

Tabela A 67 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Fazenda do Cipó

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,98988190	1						
P médio (m)	-0,13527744	-0,14558489	1					
IEB	0,29043204	0,24946270	0,45532118	1				
L (km)	0,86224741	0,89273624	-0,06577390	0,20432644	1			
I equiv (m/km)	-0,61521833	-0,59150105	0,66957735	0,25986568	-0,53905463	1		
Dd (junções /km²)	-0,09991537	-0,10028886	0,18486063	0,28213535	0,07599185	0,16257970	1	
C _{esc}	-0,36381496	-0,35303580	0,32902400	0,01578491	-0,27335366	0,66881575	-0,20235294	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A 68, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 68 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Fazenda do Cipó

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008374A^{0.995138}$		0,987888	1,199811	816,62	0,0000000004
$\widetilde{Q}_{50}^{30} = 0.003371A^{1.098476}I^{0.218896}$	0,993944	0,992430	1,154904	656,46	0,000000013

 $F_{pc}(F)$ parcial calculado) para o acréscimo de I equiv foi 3,11. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo desta variável é significativo.

A tabela A 69 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes

Tabela A 69 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Fazenda do Cipó

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,97981285	1						
P médio (m)	-0,09237267	-0,14558489	1					
IEB	0,32223433	0,24946270	0,45532118	1				
L (km)	0,85106430	0,89273624	-0,06577390	0,20432644	1			
I equiv (m/km)	-0,61527388	-0,59150105	0,66957735	0,25986568	-0,53905463	1		
Dd (junções /km²)	-0,08570781	-0,10028886	0,18486063	0,28213535	0,07599185	0,16257970	1	
C _{esc}	-0,40039833	-0,35303580	0,32902400	0,01578491	-0,27335366	0,66881575	-0,20235294	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A 70, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 70 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Fazenda Cipó

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002183A^{1.049696}$	0,989506	0,988340	1,207433	848,60	0,0000000003
$Q_{95}^{95} = 0.001213A^{1.116441}I^{0.141381}$	0,991323	0,989153	1,199374	456,97	0,0000000057

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,35. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo da variável é significativo.

1.1.2.11. Excluindo Estação 41780002 Presidente Juscelino

A tabela A 71 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 71 - Matriz de correlação $\,$ simples entre $\,Q_{50}\,$ e variáveis independentes, excluindo $\,$ Presidente Juscelino

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) [Od (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99031662	1						
P médio (m)	-0,21099618	-0,21565789	1					
IEB	0,40656822	0,35709333	0,20877564	1				
L (km)	0,86853409	0,89817293	-0,13469723	0,24736127	1			
I equiv (m/km)	-0,63108897	-0,60805525	0,67858322	0,15654416	-0,56016639	1		
Dd (junções /km²)	-0,08323356	-0,08543230	0,13263632	0,23776957	0,07368932	0,14257693	1	
C _{esc}	-0,43897004	-0,42087619	0,50422040	-0,15481377	-0,31072943	0,65564965	-0,16880276	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A72, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 72 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Presidente Juscelino

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.008414A^{0.994684}$	0,989665	0,988517	1,199848	861,85	0,000000003
$\tilde{Q}_{50}^{30} = 0.002659A^{1.128426}I^{0.268425}$	0,995334	0,994167	1,138660	853,21	0,0000000005

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 3,84. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo da variável é significativo.

A tabela A73 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 73 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Presidente Juscelino

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) D	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,98120600	1						
P médio (m)	-0,17436537	-0,21565789	1					
IEB	0,42094332	0,35709333	0,20877564	1				
L (km)	0,85603641	0,89817293	-0,13469723	0,24736127	1			
I equiv (m/km)	-0,63298526	-0,60805525	0,67858322	0,15654416	-0,56016639	1		
Dd (junções /km²)	-0,07444994	-0,08543230	0,13263632	0,23776957	0,07368932	0,14257693	1	
Cesc	-0,45893121	-0,42087619	0,50422040	-0,15481377	-0,31072943	0,65564965	-0,16880276	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A74, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 74 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Presidente Juscelino

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002034 A_{1.1537100100785}^{1.058652}$	0,989928	0,988809	1,210947	884,60	0,000000003
$\tilde{Q}_{95}^{93} = 0.000897 A^{1.153710} I^{0.190785}$	0,992457	0,990571	1,192068	526,29	0,0000000032

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 1,76. O F tabelado foi de 5,59 então, rejeita-se a hipótese de que o acréscimo desta variável é significativo.

1.1.2.12. <u>Excluindo Estação 41818000 Santo Hipólito</u>

A tabela A75 apresenta a matriz de correlação simples entre Q_{50} , e variáveis independentes:

Tabela A 75 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Santo Hipólito

	Q ₅₀	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₅₀	1							
Área (Km²)	0,99459096	1						
P médio (m)	-0,10934020	-0,10471724	1					
IEB	0,40018053	0,37556079	0,26648921	1				
L (km)	0,75455910	0,78696549	0,01848567	0,27364126	1			
I equiv (m/km)	-0,60432820	-0,60376515	0,66293408	0,19606181	-0,50637667	1		
Dd (junções /km²)	-0,05390861	-0,05564926	0,14156504	0,29028657	0,18024160	0,13685086	1	
C _{esc}	-0,42619426	-0,43100997	0,43738372	-0,23630090	-0,28565386	0,61012673	-0,21359266	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A76, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 76 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes excluindo Santo Hipólito

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0,008414A^{0,994684}$ $Q_{50} = 0,002659A^{1,128426}I^{0,268425}$	0,989062	0,987847	1,188431	813,84	0,0000000004
$Q_{50}^{50} = 0,002659A^{1,128426}I^{0,268425}$	0,995334	0,994167	1,138660	853,21	0,0000000005

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,04. O F tabelado foi de 5,59. Então, rejeita-se a hipótese que o acréscimo desta variável é significativo.

A tabela A77 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes

Tabela A 77 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Santo Hipólito

	Q_{95}	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km) Do	d (junções /km²) (C_{esc}
Q ₉₅	1							
Área (Km²)	0,99022729	1						
P médio (m)	-0,06228543	-0,10471724	1					
IEB	0,42255236	0,37556079	0,26648921	1				
L (km)	0,75278038	0,78696549	0,01848567	0,27364126	1			
I equiv (m/km)	-0,59501143	-0,60376515	0,66293408	0,19606181	-0,50637667	1		
Dd (junções /km²)	-0,03755595	-0,05564926	0,14156504	0,29028657	0,18024160	0,13685086	1	
C _{esc}	-0,45104299	-0,43100997	0,43738372	-0,23630090	-0,28565386	0,61012673	-0,21359266	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável L possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A78, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 78 - Equações obtidas através de regressões lineares entre \mathcal{Q}_{95} e variáveis independentes excluindo santo Hipólito

Equação	R^2	R ² ajustado	Erro Padrão	F	F de significação
$Q_{05} = 0.002034A^{1.058652}$	0,989928	0,988809	0,191403	884,60	0,0000000003
$Q_{95} = 0,002034A^{1,058652}$ $Q_{95} = 0,000897A^{1,153710}I^{0,190785}$	0,992457	0,990571	0,175690	526,29	0,0000000032

O F_{pc} (F parcial calculado) para o acréscimo de I equiv foi 0,01. O F tabelado foi de 5,59. Então, rejeita-se a hipótese de que o acréscimo da variável é significativo.

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.002034A^{1.058652}$		0,988809	1,210947	884,60	0,000000003
$Q_{95}^{95} = 0.000897 A^{1.153710} I^{0.190785}$	0,992457	0,990571	1,192068	526,29	0,0000000032

1.1.3. Baixo Rio das Velhas

A tabela A79 contem todos os valores das variáveis utilizadas nas análises de regressão para o Baixo Rio das Velhas, em que " Q_{50} " denota a vazão com 50 por cento de excedência da curva de permanência, " Q_{95} " a vazão com 95 por cento de excedência da curva de permanência, "IEB" o índice de escoamento de Base, "Área" a área de drenagem, "P médio" a precipitação média da bacia, "Cesc" o coeficiente de escoamento da bacia e "Dd" a densidade de drenagem

Tabela A 79 - Variáveis utilizadas na análise de regressão para o baixo rio das Velhas.

Código	Estações	Q 50	Q ₉₅	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	C _{esc}
41135003	Pirapora-Barreiro	519,0	162,2	62334	1,414	0,7541	0,071	0,3
41685000	Ponte do Picão	1,5	0,2	547	1,117	0,5090	0,033	0,17
41890000	Curumataí	4,3	1,3	1435	1,108	0,4346	0,131	0,34
41940000	Ponde do Bicudo	7,7	0,8	2023	1,216	0,4332	0,043	0,25
41990000	Várzea da Palma	166,0	65,0	26553	1,271	0,6293	0,098	0,28

1.1.3.1. Excluindo Estação 41135003 Pirapora-Barreiro

A tabela A80 apresenta a correlação simples entre Q_{50} e demais variáveis independentes.

Tabela A 80 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Pirapora Barreiro

	Q ₅₀	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C _{esc}
Q ₅₀	1					
Área (km²)	0,99984374	1				
Pmédio(m)	0,80143834	0,80656254	1			
IEB	0,91264579	0,90528298	0,61833938	1		
Dd (junçõeskm²)	0,31374355	0,32193367	-0,03960368	0,08289627	1	
Cesc	0,20155865	0,21524591	0,08176955	-0,14247060	0,91928968	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. A variável IEB possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizado na análise de regressão. Na tabela A81, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 81 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes excluindo Pirapora Barreiro

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.000650A^{1,222557}$	0,998829	0,998244	1,088683	1706,65	0,00058543
$Q_{z0} = 0.000819 A^{1,130310} P^{2,009774}$	0,999978	0,999933	1,016727	22414,69	0,00472295
$Q_{50}^{50} = 0.115791A^{0.895896}Dd^{0.925728}$	0,999828	0,999485	1,047107	2910,49	0,01310584

Não é possível utilizar o teste de $F_{pc}(F)$ parcial calculado), dado o pequeno número de estações utilizadas no estudo regional no baixo rio das Velhas. É necessário um mínimo de 5 estações para que o teste possa ser executado. Para a escolha do modelo a ser utilizado, foram analisados os \mathbb{R}^2 ajustados e erros-padrão. O acréscimo de P e Dd não apresentaram um aumento que justifique a escolha destes modelos. O primeiro modelo foi o escolhido.

A tabela A82 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 82 - Matriz de correlação entre Q_{95} e variáveis independentes, excluindo Pirapora Barreiro

	Q ₉₅	Área (km²)	Pmédio(m)	IEB	Dd (junçõesk m²)	C_{esc}
Q ₉₅	1					
Área (km²)	0,99915833	1				
Pmédio(m)	0,78463073	0,80656254	1			
IEB	0,91883454	0,90528298	0,61833938	1		
Dd (junçõeskm²)	0,32406149	0,32193367	-0,03960368	0,08289627	1	
Cesc	0,20160807	0,21524591	0,08176955	-0,14247060	0,91928968	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. A variável IEB possui correlação com a área da bacia superior a 0,85 e, portanto, não foi utilizada na análise de regressão. Na tabela A83, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes

Tabela A 83 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Pirapora Barreiro

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.000017A^{1.476375}$		0,957995	1,664384	69,42	0,01410115
$Q_{05} = 0.000004 A^{1,911524} P^{-12,40902}$	0,999462	0,998387	1,104974	929,64	0,02318526
$Q_{95}^{595} = 0,000217A^{1,358437}Dd^{0,582197}$	0,989185	0,967554	1,564782	45,73	0,10399604

O acréscimo da variável Pmédio , aumenta o R² ajustado de 0,959995 para 0,998387, Entretanto, a variável P está elevada à potência negativa de 12, a qual não tem significado físico; portanto, o uso do modelo com o acréscimo da variável P foi descartado. O acréscimo da variável *Dd* não promove um aumento tão significativo que justifique o seu uso em uma análise de regressão. Os resultados dessa equação regional para Pirapora-Barreiro, devem ser observados com muita cautela, pois a área da mesma é muito superior à área da maior bacia usada na regressão, algo que deve ser evitado em regionalizações.

1.1.3.2. Excluindo Estação 41685000 Ponte do Picão

A tabela A84 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 84 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Ponte do Picão

	Q_{50}	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C _{esc}
Q ₅₀	1					
Área (km²)	0,99464684	1				
Pmédio(m)	0,93249866	0,94072574	1			
IEB	0,95276432	0,97899923	0,92156994	1		
Dd (junçõeskm²)	-0,21099772	-0,19039353	-0,49660592	-0,12776608	1	
Cesc	0,06179636	0,03628272	-0,30046109	0,00123483	0,86936727	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão.

Na tabela A85 encontra-se a equação obtida por meio de regressão entre Q_{50} e a variável independente A.

Tabela A 85 - Equação obtida através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Ponte do Picão

Equação	R²	R² ajustado	Erro Padrão	F	F de significação
$Q_{50} = 0,000544A^{1,244456}$	0,998999	0,998499	0,090199	1996,90	0,00050040

A tabela A86 apresenta as tabelas com a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 86 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Ponte do Picão

	Q ₉₅	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	$C_{\it esc}$
Q ₉₅	1					
Área (km²)	0,99985121	1				
Pmédio(m)	0,93656420	0,94072574	1			
IEB	0,97627847	0,97899923	0,92156994	1		
Dd (junçõeskm²)	-0,18297078	-0,19039353	-0,49660592	-0,12776608	1	
C_{esc}	0,04997443	0,03628272	-0,30046109	0,00123483	0,86936727	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão.

Na tabela A87, encontram-se a equação obtida por meio de regressão entre Q_{95} e a variável independentes A

Tabela A 87 - Equação obtida através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Ponte do Picão

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.026086A^{0.826219}$	0,975350	0,963025	0,523378	79,14	0,01240190

1.1.3.3. Excluindo Estação 41890000 Curumataí

A tabela A 88 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 88 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Curumataí

	Q_{50}	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C _{esc}
Q ₅₀	1					
Área (km²)	0,99433521	1				
Pmédio(m)	0,94252720	0,95191589	1			
IEB	0,94139373	0,95977680	0,84129277	1		
Dd (junçõeskm²)	0,51477436	0,60282391	0,61917860	0,66274635	1	
Cesc	0,74087270	0,78115633	0,91600478	0,65793333	0,76614602	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão. Na tabela A89, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 89 - Equações obtidas através de regressões lineares entre \mathcal{Q}_{50} e variáveis independentes, excluindo Curumataí

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.000652A^{1,227531}$	0,999716	0,999574	0,055889	7033,47	0,00014215
$Q_{50} = 0,000652A^{1,227531}$ $Q_{50} = 0,001058A^{1,205718}C_{esc}^{0,208303}$		0,999342	0,069421	2279,48	0,01480878
$Q_{50} = 0,000268A^{1,266112}Dd^{-0,191238}$	0,999925	0,999774	0,040686	6637,13	0,00867918

O acréscimo das variáveis $C_{\it esc}$ e $\it Dd$, não apresentam um aumento do R^2 ajustado ou uma diminuição no erro padrão que justifique os uso das mesmas. O primeiro modelo foi o escolhido.

A tabela A90 apresenta matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 90 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Curumataí

	Q ₉₅	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C _{esc}
Q ₉₅	1					
Área (km²)	0,99971637	1				
Pmédio(m)	0,94604469	0,95191589	1			
IEB	0,96150277	0,95977680	0,84129277	1		
Dd (junçõeskm²)	0,58798160	0,60282391	0,61917860	0,66274635	1	
C _{esc}	0,76651974	0,78115633	0,91600478	0,65793333	0,76614602	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão.

Na tabela A91, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 91 - Equações obtidas através de regressões lineares entre Q_{95} e variáveis independentes, excluindo Curumataí

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.000014A^{1.482986}$	0,991679	0,987518	0,366781	238,35	0,00416931
$O = 5.4 \cdot 10^{-8} A^{1,732380} C^{-2,381523}$	0,997451	0,992353	0,287086	195,66	0,05048754
$Q_{95} = 0.000473A^{1.330072}Dd^{0.757969}$	0,993910	0,981729	0,443761	81,60	0,07804078

O acréscimo das variáveis $C_{\it esc}$ e $\it Dd$, não apresentam um aumento do R^2 ajustado ou uma diminuição no erro padrão que justifique os uso das mesmas. O primeiro modelo foi o escolhido.

1.1.3.4.Excluindo Estação 41940000 Ponte do Bicudo

A tabela A92 apresenta a matriz de correlação simples entre Q_{50} e variáveis independentes:

Tabela A 92 - Matriz de correlação simples entre \mathcal{Q}_{50} e variáveis independentes, excluindo Ponte do Bicudo

	Q 50	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C esc
Q ₅₀	1					<u>.</u>
Área (km²)	0,99430087	1				
Pmédio(m)	0,97553745	0,99290137	1			
IEB	0,94430886	0,96310906	0,98088496	1		
Dd (junçõeskm²)	-0,12462311	-0,09149380	-0,09938669	-0,27385914	1	
C_{esc}	0,29483226	0,30842624	0,27521511	0,08568964	0,89909743	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão.

Na tabela A93, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes.

Tabela A 93 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes excluindo Ponte do Bicudo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.000551A^{1,242058}$ $Q_{50} = 0.000379A^{1,255551}C^{-0.193511}$	0,999539	0,999309	0,074178	4338,58	0,00023041
$\bar{Q}_{50}^{33} = 0.000379 A^{1.255551} C_{esc}^{-0.193511}$	0,999856	0,999569	0,058558	3482,01	0,01198227

O acréscimo da variável C_{esc} não apresenta um aumento do R^2 ajustado e uma diminuição no erro padrão que justifique seu uso. O primeiro modelo foi o escolhido.

A tabela A94 apresenta a matriz de correlação simples entre Q_{95} e variáveis independentes.

Tabela A 94 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Ponte do Bicudo

	Q ₉₅	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C esc
Q ₉₅	1					
Área (km²)	0,99978297	1				
Pmédio(m)	0,99072666	0,99290137	1			
IEB	0,96168580	0,96310906	0,98088496	1		
Dd (junçõeskm²)	-0,10295900	-0,09149380	-0,09938669	-0,27385914	1	
C_{esc}	0,30098764	0,30842624	0,27521511	0,08568964	0,89909743	1

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão.

Na tabela A95, encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes

Tabela A 95 - Equações obtidas através de regressões lineares entre \mathcal{Q}_{95} e variáveis independentes, excluindo Ponte do Bicudo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0.000037 A^{1.398395}$ $Q_{95} = 0.000158 A^{1.346392} C^{0.745798}$	0,994923	0,992385	0,277859	391,94	0,00254167
$\tilde{Q}_{95}^{95} = 0,000158A^{1,346392}C_{esc}^{0,745798}$	0,998623	0,995869	0,204660	362,57	0,03711001

O acréscimo da variável C_{esc} não apresenta um aumento do R^2 Ajustado e uma diminuição no erro padrão que justifique seu uso. O primeiro modelo foi o escolhido.

1.1.3.5.Excluindo Estação 41990000 Várzea da Palma

A tabela A96 apresenta a matriz de correlação simples entre \mathcal{Q}_{50} e variáveis independentes.

Tabela A 96 - Matriz de correlação simples entre Q_{50} e variáveis independentes, excluindo Várzea da Palma

	Q_{50}	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C _{esc}
Q ₅₀	1					
Área (km²)	0,99994780	1				
Pmédio(m)	0,94181522	0,94390473	1			
IEB	0,97039295	0,96792397	0,87704754	1		
Dd (junçõeskm²)	0,02307064	0,02683969	-0,14540057	-0,10967316	1	
Cesc	0,32246357	0,32919340	0,26353587	0,12398383	0,88127594	1

A variável explicativa com maior correlação com Q_{50} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão Na tabela A97, encontram-se as equações obtidas por meio de regressão entre Q_{50} e demais variáveis independentes

Tabela A 97 - Equações obtidas através de regressões lineares entre Q_{50} e variáveis independentes, excluindo Várzea da Palma

Equação	R ²	R² ajustado	Erro Padrão	F	Significância de F
$Q_{50} = 0.000557 A^{1.244837}$	0,999277	0,998916	0,084651	2765,88	0,00036135
$ Q_{50} = 0,000557 A^{1,244837} Q_{50} = 0,000370 A^{1,260636} C_{esc}^{-0,206717} $	0,999706	0,999119	0,076313	1702,39	0,01713531

O acréscimo da variável C_{esc} não apresenta um aumento do R^2 ajustado e ma diminuição no erro padrão que justifique seu uso. O primeiro modelo foi o escolhido.

A tabela A98 apresenta a matriz de correlação simples entre Q_{95} e demais variáveis independentes.

Tabela A 98 - Matriz de correlação simples entre Q_{95} e variáveis independentes, excluindo Várzea da Palma

	Q ₉₅	Área (km²)	Pmédio(m)	IEB	Dd (junçõeskm²)	C esc	
Q ₉₅	1						
Área (km²)	0,99985446	1					70
Pmédio(m)	0,93884596	0,94390473	1				
IEB	0,97130645	0,96792397	0,87704754	1			
Dd (junçõeskm²)	0,02743773	0,02683969	-0,14540057	-0,10967316	1		
C _{esc}	0,32352529	0,32919340	0,26353587	0,12398383	0,88127594	1	

A variável explicativa com maior correlação com Q_{95} é a área da bacia A. As variáveis IEB e P possuem correlações com a área da bacia superior a 0,85 e, portanto, não foram utilizadas na análise de regressão. Na tabela A99 encontram-se as equações obtidas por meio de regressão entre Q_{95} e demais variáveis independentes.

Tabela A 99 - Equações obtidas através regressões lineares entre \mathcal{Q}_{95} e variáveis independentes

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$Q_{95} = 0,000029A^{1,402691}$ $Q_{95} = 0,000135A^{1,343346}C_{esc}^{1,343346}$	0,981243	0,971865	0,490429	104,63	0,00942286
$Q_{95}^{5} = 0,000135A^{1,343346}C_{esc}^{1,343346}$	0,985924	0,957771	0,600837	35,02	0,11864424

O acréscimo da variável C_{esc} apresenta uma diminuição do R^2 ajustado e um aumento no erro padrão. O primeiro modelo foi o escolhido.

1.2. Claps e Fiorentino (1997)

1.2.1. Alto Rio das Velhas

Conforme equações (4.6) e (4.7), os parâmetros α e β foram calculados para todos os anos, para todas as estações utilizadas neste trabalho para, posteriormente serem obtidas as médias $\mu(\alpha)$ e $\mu(\beta)$. As variáveis explicativas são: "IEB" o escoamento de Base, "Área" a área de drenagem, "L" o comprimento do rio principal, "I equiv" a declividade média, "P médio" a precipitação média da bacia, "Cesc" o coeficiente de escoamento da bacia e "Dd" a densidade de drenagem

A tabela A 100 contém todos os valores das variáveis utilizadas nas análises regionais.

Tabela A 100 - Valores das variáveis utilizadas na analise de regressão para o alto rio das Velhas

Código	Estações	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	$C_{\it esc}$
41151000	Faz. Água Limpa Jus.	-0,166	-0,493	175	1,498	0,8038	26	8,59	0,115	0,39
41160000	Gulpiara	-0,183	-0,552	284	1,498	0,7375	41	5,39	0,232	0,46
41180000	Itabirito Linígrafo	-0,150	-0,465	330	1,518	0,7715	48	5,25	0,252	0,5
41190000	Aguiar Moreira	-0,137	-0,456	539	1,523	0,7713	75	3,86	0,228	0,43
41199998	Honório Bicalho Mont.	-0,165	-0,502	1698	1,535	0,7268	90	2,56	0,212	0,36
41260000	Pinhões	-0,204	-0,569	3727	1,475	0,7094	157	1,42	0,204	0,37
41340000	Ponte Raul Soares	-0,238	-0,615	4874	1,458	0,6715	200	1,13	0,209	0,34

1.2.1.1. Excluindo Estação 41151000- Fazenda Água Limpa

A tabela A 101 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 101 - Matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis independentes, excluindo Fazenda Água Limpa

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) (Cesc
$\mu(\alpha)$	1								
$\mu(\beta)$	0,984001	1							
Área (Km²)	-0,878641	-0,808242	1						
P médio (m)	0,916954	0,897350	-0,800554	1					
IEB	0,959045	0,936847	-0,919500	0,792457	1				
L (km)	-0,827983	-0,750000	0,989424	-0,778544	-0,875701	1			
I equiv (m/km)	0,682425	0,615184	-0,931392	0,562876	0,809522	-0,941318	1		
Dd (junções /km²)	0,644146	0,650059	-0,799288	0,482082	0,789421	-0,792815	0,909611	1	
Cesc	0,652048	0,620785	-0,840981	0,441383	0,827128	-0,842581	0,944883	0,956042	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. A escolha entre fazer $\mu(\alpha)$, em função de $\mu(\beta)$, ou $\mu(\beta)$ em função $\mu(\alpha)$ está relacionada com a variável de maior correlação com ambas variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável IEB foi a variável que apresentou maior correlação, tanto $\text{com}\,\mu(\alpha)$, quanto $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Foi definida a regressão entre $\mu(\alpha)$ e IEB, com a inclusão, ou não, de outras variáveis explicativas e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A 102

Tabela A 102 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Fazenda Água Limpa

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = 0.857 + 0.927.IEB$	0,919766	0,899708	0,011717	45,85	0,00248168
$\mu(\alpha) = -1,405 + 0,604.IEB + 0,522.P$	0,985985	0,976642	0,005655	105,53	0,00165918
$\mu(\alpha) = -1,448 + 0,779.IEB + 0,474.P - 0,004.I$	0,997241	0,993102	0,003073	240,94	0,00413613

O primeiro modelo possui a variável IEB como única variável explicativa. No segundo modelo, houve a inclusão de uma segunda variável explicativas P, resultando em um valor de R^2 ajustado maior que o do primeiro modelo. O segundo modelo foi considerado mais

apropriado do que o primeiro modelo. No terceiro modelo, houve a inclusão de uma terceira variável I. Como a diferença entre R^2 ajustados foi mínima, testou-se a hipótese sobre a significância da inclusão da variável I, através do teste de F parcial. O F parcial calculado foi de 1,61 e; portanto, menor que do que F tabelado de 18,51. Esse resultado demonstra a não significância do acréscimo da variável I. O segundo modelo foi o escolhido para ser utilizado na análise regional.

A variável $\mu(\beta)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A103;:

Tabela A 103 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Fazenda Água Limpa

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.228 + 1.662.\mu(\alpha)$	0,968258	0,960322	0,012450	122,01	0,00038191
$\mu(\beta) = -0.197 - 1.950.\mu(\alpha) + 0.0002.L$	0,981585	0,969308	0,010950	79,95	0,00249899

No primeiro modelo, $\mu(\beta)$ foi correlacionado com $\mu(\alpha)$. As variáveis IEB e P não foram utilizadas na análise regional por terem sido utilizadas na estimação da $\mu(\alpha)$, e a variável A não foi utilizado por ter correlação maior do que 85% com $\mu(\alpha)$. No segundo modelo, houve a inclusão da variável L. O F parcial calculado foi de 0,84 e, portanto, menor que do que F tabelado de 18,51. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

1.2.1.2. Excluindo Estação 41160000 Gulpiara

A tabela A104 apresenta a correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 104 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis. excluindo Gulpiara

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) C	esc
$\mu(\alpha)$	1								
$\mu(\beta)$	0,994938	1							
Área (Km²)	-0,940974	-0,964600	1						
P médio (m)	0,899604	0,880000	-0,791882	1					
IEB	0,837532	0,868662	-0,955895	0,595381	1				
L (km)	-0,878637	-0,909253	0,983789	-0,737558	-0,964099	1			
I equiv (m/km)	0,581053	0,640065	-0,817350	0,348566	0,916736	-0,879678	1		
Dd (junções /km²)	0,123433	0,098357	0,127383	0,239389	-0,339826	0,251605	-0,578095	1	
Cesc	0,709939	0,746033	-0,702881	0,502965	0,635763	-0,643946	0,463433	0,424064	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável A apresentou melhor correlação tanto $com \mu(\alpha)$ quanto $\mu(\beta)$, sendo que a correlação entre $\mu(\beta)$ e A foi maior do que a correlação entre $\mu(\alpha)$ e A. Foi definida a regressão entre $\mu(\beta)$ e demais variáveis explicativas e, posteriormente, a regressão entre $\mu(\alpha)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\beta)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A105.

Tabela A 105 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Gulpiara

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.459 + (3x10^{-5}).A$	0,930454	0,913068	0,018369	53,52	0,00185751
$\mu(\beta) = -1,449 - 2,264.A + 0,649.P$	0,966630	0,944384	0,014692	43,45	0,00609578
$\mu(\beta) = -1,449 - 2,264.A + 0,649.P$ $\mu(\beta) = -0,522 + (-2,7x10^{-5}).A + 0,143.C_{esc}$	0,939602	0,899337	0,019766	23,34	0,01484335

O primeiro modelo possui a variável A como única variável explicativa. No segundo modelo, houve a inclusão de uma segunda variável explicativas P. Como a diferença entre \mathbb{R}^2 ajustados foi mínima, foi testada a hipótese sobre a significância da inclusão da variável P, por meio do teste de F parcial. O F parcial calculado foi de 1,043 e; portanto, menor que do que F tabelado de 18,51. Esses resultado demonstra a não significância do acréscimo da variável P. No terceiro modelo houve a inclusão de uma segunda variável explicativa C_{esc} . Como a diferença entre os R^2 ajustados foi mínima, foi testada a hipótese sobre a significância da inclusão da variável C_{esc} , por meio do teste de F parcial. O F parcial calculado foi de 0,26 e; portanto menor que do que o F tabelado de 18,51. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A106.

Tabela A 106 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Gulpiara

Equação	R²	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = 0.131 + 0.596 \mu(\beta)$	0,989901	0,987376	0,004192	392,09	0,00003837
$\mu(\alpha) = 0.166 + 0.628.\mu(\beta) - 0.046.C_{esc}$	0,992257	0,987094	0,004239	192,21	0,00068140

No primeiro modelo, $\mu(\alpha)$ foi correlacionado com a variável explicativa $\mu(\beta)$. A variável A não foi utilizada na analise regional por ter sido utilizada na estimação da $\mu(\beta)$ e a variáveis P, IEB e L não foram utilizadas por terem correlação maior que 85% com $\mu(\beta)$. No segundo modelo, houve a inclusão da variável C_{esc} . O F parcial calculado foi de 0,47 e, portanto menor que do que F tabelado de 18,51. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

1.2.1.3.Excluindo Estação 41180000 Itabirito Linígrafo

A tabela A107 apresenta a correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis: independentes.

Tabela A 107 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Itabirito Linígrafo

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,982094	1						
Área (Km²)	-0,851465	-0,794939	1					
P médio (m)	0,891720	0,859175	-0,711243	1				
IEB	0,820352	0,842185	-0,881101	0,559817	1			
L (km)	-0,777961	-0,725656	0,983957	-0,649026	-0,880985	1		
I equiv (m/km)	0,519408	0,526523	-0,820380	0,289279	0,878880	-0,879376	1	
Dd (junções /km²)	-0,068609	-0,190637	0,207150	0,111911	-0,552090	0,323122	-0,663339	1
Cesc	0,557077	0,425167	-0,770759	0,361169	0,526093	-0,713498	0,518545	0,252928 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável P apresentou melhor correlação, tanto $com \mu(\alpha)$, quanto $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e P foi maior do que a correlação entre $\mu(\beta)$ e P. Foi definida a regressão entre $\mu(\alpha)$ e demais variáveis explicativas e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A108.

Tabela A 108 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes excluindo Itabirito Linígrafo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,808 + 1,086.P$	0,795165	0,743956	0,017690	15,53	0,01695198
$\mu(\alpha) = -1,223 + 0,705.P + (-7,8x10^{-6}).A$	0,890668	0,817780	0,014924	12,22	0,03615116
$\mu(\alpha) = -1.251 + 0.717.P + (-7.3 + 10^{-6}).A + 0.021.C_{esc}$	0,890915	0,727287	0,018257	5,44	0,15908078

O primeiro modelo possui a variável P como única variável explicativa. No segundo modelo, houve a inclusão de uma segunda variável explicativas A, sendo que este apresentou um R^2 ajustado maior que o do primeiro modelo. O segundo modelo foi considerado mais apropriado do que primeiro modelo. No terceiro modelo, houve a inclusão de uma terceira variável C_{esc} , que apresentou uma diminuição significativa R^2 ajustado. O segundo modelo foi o escolhido para ser utilizado na análise regional.

A variável $\mu(\beta)$ foi correlacionada com a variável $\mu(\alpha)$ e demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A109

Tabela A 109 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Itabirito Linígrafo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.234 + 1.628.\mu(\alpha)$	0,964509	0,955636	0,012209	108,70	0,00047806
$\mu(\beta) = -0.364 + 1.476.\mu(\alpha) + 0.139.IEB$	0,968588	0,947646	0,013263	46,25	0,00556741
$\mu(\beta) = -0.219 + 1.754.\mu(\alpha) + (8.3x10^{-5}).L$	0,968239	0,947065	0,013336	45,73	0,00566031

No primeiro modelo, $\mu(\beta)$ foi correlacionado com $\mu(\alpha)$. As variáveis P e A não foram utilizadas na analise regional por terem sido utilizadas na estimação da $\mu(\alpha)$. No segundo modelo houve a inclusão da variável IEB. Houve pequena redução do R^2 ajustado. No terceiro modelo houve inclusão da variável L, sendo que este também apresentou pequena redução do R^2 ajustado. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

1.2.1.4.Excluindo Estação 41190000 Aguiar Moreira

A tabela A110 apresenta a correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 110 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Aquiar Moreira

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) C	Cesc
$\mu(\alpha)$	1								
$\mu(\beta)$	0,976175	1							
Área (Km²)	-0,886637	-0,819215	1						
P médio (m)	0,893797	0,848067	-0,712845	1					
IEB	0,838525	0,853524	-0,883535	0,549796	1				
L (km)	-0,874320	-0,809812	0,996943	-0,688397	-0,904372	1			
I equiv (m/km)	0,658593	0,654477	-0,864396	0,363733	0,932186	-0,891698	1		
Dd (junções /km²)	-0,006534	-0,078853	0,097372	0,160678	-0,427702	0,172378	-0,494243	1	
Cesc	0,630146	0,569288	-0,728852	0,414209	0,546619	-0,686768	0,517718	0,456122	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável P apresentou melhor correlação com $\mu(\alpha)$ e IEB apresentou maior correlação com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e P foi maior do que a correlação entre $\mu(\beta)$ e IEB. Foi definida a regressão entre $\mu(\alpha)$ e demais variáveis explicativas ,e posteriormente a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A111.

Tabela A 111 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Aguiar Moreira

Equação	R ²	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1.718 + 1.024.P$	0,798873	0,748592	0,016030	15,89	0,01631963
$\mu(\alpha) = -1,082 + 0,610.P + (-8,1x10^{-6}).A$	0,925435	0,875724	0,011270	18,62	0,02036136
$\mu(\alpha) = 1,468 + 0,698.P + (-5,4x10^{-7}).A + 0,325.IEB$	0,971732	0,929330	0,008499	22,92	0,04210117

O primeiro modelo possui a variável P como única variável explicativa. No segundo modelo, houve a inclusão de uma segunda variável explicativa A, sendo que este apresentou um R^2 ajustado maior que o do primeiro modelo. O segundo modelo foi considerado mais apropriado do que primeiro modelo. No terceiro modelo, houve a inclusão de uma terceira variável IEB, que apresentou um aumento R^2 ajustado. Foi testada a hipótese sobre a significância da inclusão da variável IEB através do teste de F parcial. O F parcial calculado foi de 1,24 e;

portanto, menor que do que *F* tabelado de 18,51. Isso significa a não significância do acréscimo da variável *IEB*. O segundo modelo foi o escolhido para ser utilizado na análise regional.

A variável $\mu(\beta)$ foi correlacionada com a variável $\mu(\alpha)$ e demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A112.

Tabela A 112 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Aguiar Moreira

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.220 + 1.696 \mu(\alpha)$	0,952918	0,941147	0,013477	80,96	0,00084468
$\mu(\beta) = -0.355 + 1.524.\mu(\alpha) + 0.141.IEB$	0,957038	0,928397	0,014865	33,41	0,00890471

No primeiro modelo, $\mu(\beta)$ foi correlacionado com $\mu(\alpha)$. As variáveis P e A não foram utilizadas na analise regional por terem sido utilizadas na estimação da $\mu(\alpha)$. No segundo modelo, houve a inclusão da variável IEB. Houve pequena redução do R^2 ajustado. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

1.2.1.5. Excluindo Estação 41199998 Honório Bicalho

A tabela A113 apresenta a correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 113 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Honório Bicalho

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	Cesc
$\mu(\alpha)$	1								
$\mu(\beta)$	0,981733	1							
Área (Km²)	-0,879967	-0,825692	1						
P médio (m)	0,984885	0,952533	-0,889402	1					
IEB	0,883268	0,894864	-0,900541	0,823296	1				
L (km)	-0,809233	-0,759789	0,985403	-0,809400	-0,902259	1			
I equiv (m/km)	0,615153	0,614706	-0,851090	0,576606	0,882464	-0,912704	1		
Dd (junções /km²)	0,095579	0,029364	0,037992	0,235128	-0,336569	0,145602	-0,493639	1	
Cesc	0,736462	0,675922	-0,786997	0,823685	0,554960	-0,742645	0,460527	0,526904	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e P. Foi definida a regressão entre $\mu(\alpha)$ e P e a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A114.

Tabela A 114 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Honório Bicalho

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -2,362 + 1,460.P$	0,969998	0,962498	0,007147	129,33	0,00034097
$\mu(\alpha) = -2,080 + 1,185.P + 0,172.IEB$	0,986275	0,977125	0,005582	107,79	0,00160797

O primeiro modelo possui a variável *P* como única variável explicativa. No segundo modelo houve a inclusão de uma segunda variável explicativa *IEB*, sendo que este apresentou um R^2 ajustado maior que o do primeiro modelo. Foi testada a hipótese sobre a significância da inclusão da variável *IEB* através do teste de *F* parcial. O *F* parcial calculado foi de 1,27 e; portanto, menor que do que *F* tabelado de 18,51. Esse resultado demonstra a não significância do acréscimo da variável *IEB*. O primeiro modelo foi o escolhido para ser utilizado na regionalização.

A variável $\mu(\beta)$ foi correlacionada com a variável $\mu(\alpha)$ e demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A115:

Tabela A 115 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes excluindo Honório Bicalho.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.222 + 1.685.\mu(\alpha)$	0,963800	0,954750	0,013476	106,50	0,00049747
$\mu(\beta) = -0.205 + 1.825.\mu(\alpha) + (8.99x10^{-5})L$	0,967281	0,945468	0,014794	44,34	0,00591839

No primeiro modelo, $\mu(\beta)$ foi correlacionado com $\mu(\alpha)$. A variável P não foi usada por ter sido utilizada regressão para obtenção da equação regional de $\mu(\alpha)$. As variáveis A e IEB não foram utilizadas na analise regional, por terem correlação $com\mu(\alpha)$ maior que 0,85. No segundo modelo, houve a inclusão da variável L. Houve pequena redução do R^2 ajustado. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

1.2.1.6.Excluindo Estação 41260000 Pinhões

A tabela A116 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis independentes.

Tabela A 116 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Pinhões

-	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Ceso
$\mu(\alpha)$	1							
$\mu(\beta)$	0,979721	1						
Área (Km²)	-0,852998	-0,786917	1					
P médio (m)	0,886731	0,844473	-0,672303	1				
IEB	0,818049	0,835891	-0,887911	0,537293	1			
L (km)	-0,770154	-0,710453	0,981890	-0,604118	-0,883181	1		
I equiv (m/km)	0,472720	0,474126	-0,782287	0,180253	0,871161	-0,854359	1	
Dd (junções /km²)	0,095755	0,025186	0,062466	0,227345	-0,370069	0,179992	-0,561018	1
Cesc	0,581521	0,526985	-0,716319	0,373553	0,522885	-0,658931	0,442426	0,485492 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se as correlações entre as mesmas e as demais variáveis, é possível identificar que a variável P apresentou melhor correlação, tanto $\mu(\alpha)$, quanto $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e P foi maior do que a correlação entre $\mu(\beta)$ e P. Foi definida a regressão entre $\mu(\alpha)$ e P e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A117.

Tabela A 117 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Pinhões

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,900 - 1,147.P$	0,786293	0,732866	0,018194	14,72	0,01851807
$\mu(\alpha) = -1,275 + 0,739.P - (9x10^{-6}).A$	0,906673	0,844455	0,013883	14,57	0,02851080
$\mu(\alpha) = -1.319 + 0.757.P + (-7.9 \times 10^{-6}).A + 0.040.C_{esc}$	0,908908	0,772270	0,016799	6,65	0,13347745

O primeiro modelo possui a variável P como única variável explicativa. No segundo modelo, houve a inclusão de uma segunda variável explicativa A, sendo que este apresentou um R^2 ajustado consideravelmente maior que o do primeiro modelo. O segundo modelo foi considerado mais apropriado do que o primeiro. No terceiro modelo houve a inclusão de uma terceira variável explicativa, sendo que a mesma apresentou R^2 ajustado menor que o segundo modelo. O segundo modelo foi o escolhido para ser utilizado na regionalização.

A variável $\mu(\beta)$ foi correlacionada com a variável $\mu(\alpha)$ e demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A118:

Tabela A 118 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes excluindo Pinhões.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.225 + 1.667.\mu(\alpha)$	0,959853	0,949817	0,013417	95,63	0,00061269
$\mu(\beta) = -0.351 + 1.522.\mu(\alpha) + 0.135.IEB$	0,963437	0,939062	0,014785	39,53	0,00699139

No primeiro modelo, $\mu(\beta)$ foi correlacionado com $\mu(\alpha)$. As variáveis P e A não foram utilizadas, pois as mesmas foram utilizadas na análise de regressão para obtenção da equação de $\mu(\alpha)$. No segundo modelo, houve a inclusão da variável IEB. Houve pequena redução do R^2 ajustado. O primeiro modelo foi o escolhido para ser utilizado na análise regional.

1.2.1.7.Excluindo Estação 41340000 Ponte Raul Soares

A tabela A119 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 119 - Matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, excluindo Ponte Raul Soares

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,973932	1						
Área (Km²)	-0,686105	-0,616870	1					
P médio (m)	0,797647	0,739615	-0,459582	1				
IEB	0,656141	0,714562	-0,779094	0,222027	1			
L (km)	-0,527209	-0,485302	0,967038	-0,340194	-0,778058	1		
I equiv (m/km)	0,310160	0,341717	-0,797442	-0,009638	0,867478	-0,892701	1	
Dd (junções /km²)	0,180730	0,065570	0,039858	0,320339	-0,457877	0,199554	-0,551013	1
Cesc	0,415579	0,351900	-0,625547	0,147754	0,341843	-0,543916	0,342544	0,561349 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se as correlações entre as mesmas e as demais variáveis, é possível identificar que a variável P apresentou melhor correlação com $\mu(\alpha)$ e $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e P foi maior do que a correlação entre $\mu(\beta)$ e P. Foi definida a regressão entre $\mu(\alpha)$ e demais variáveis explicativas e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$, com a inclusão, ou não, de outras variáveis explicativas.

A variável $\mu(\alpha)$ foi correlacionada com as demais variáveis para a escolha do melhor modelo a ser utilizado no estudo. Os modelos são apresentando na tabela A120:

Tabela A 120 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Ponte Raul Soares

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,478 + 0,869.P$	0,636241	0,545302	0,015903	7,00	0,05727704
$\mu(\alpha) = -1,164 + 0,666.P + (-6,9x10^{-6}).A$	0,765673	0,609455	0,014738	4,90	0,11343164
$\mu(\alpha) = -1.613 + 0.770.P + (1.196).A + 0.375.IEB$	0,879148	0,697870	0,012963	4,85	0,17568567

O primeiro modelo possui a variável P como única variável explicativa. No segundo modelo, houve a inclusão de uma segunda variável explicativa A, sendo que este apresentou um R^2 ajustado consideravelmente maior que o do primeiro modelo. O segundo modelo foi considerado mais apropriado do que o primeiro. No terceiro modelo houve a inclusão de uma terceira variável explicativa sendo que a mesma apresentou R^2 ajustado consideravelmente melhor que o segundo modelo. O terceiro modelo foi o escolhido para ser utilizado na regionalização.

A variável $\mu(\beta)$ foi correlacionada com a variável $\mu(\alpha)$ e demais variáveis para a escolha do melhor modelo ser utilizado no estudo. Os modelos são apresentando na tabela A 121.

Tabela A 121 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Raul Soares

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.19 + 1.886.\mu(\alpha)$	0,948543	0,935679	0,011584	73,73	0,00101048

No primeiro modelo, $\mu(\beta)$ foi correlacionado com $\mu(\alpha)$. As variáveis P, A e IEB não foram utilizadas pois as mesmas foram utilizadas na análise de regressão para obtenção da equação de $\mu(\alpha)$.

1.2.2. Médio Rio das Velhas

Conforme equações (4.6) e (4.7), os parâmetros α e β foram calculados para todos os anos, para todas as estações utilizadas neste trabalho para, posteriormente, serem obtidas as médias $\mu(\alpha)$ e $\mu(\beta)$, As variáveis explicativas são: " IEB " índice de escoamento de Base, " $\mathit{Área}$ " a área de drenagem, " L " o comprimento do rio principal, " $\mathit{I equiv}$ " a declividade média, " $\mathit{P médio}$ " a precipitação média da bacia, " Cesc " o coeficiente de escoamento da bacia e " Dd " a densidade de drenagem

A tabela A122 contém todos os valores das variáveis $\mu(\alpha)$ e $\mu(\beta)$ utilizadas nas análises regionais

Tabela A 122 - Valores das variáveis utilizadas na analise de regressão para o médio rio das Velhas

Código	Estações	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²)	$C_{\it esc}$
41250000	Vespasiano	-0,298	-0,679	676	1,329	0,6593	56	2,35	0,181	0,29
41300000	Taquaraçu	-0,320	-0,708	626	1,447	0,6754	46	7,02	0,272	0,35
41380000	Ponte Preta	-0,445	-0,785	553	1,308	0,5519	55	2,55	0,128	0,31
41410000	Jequitibá	-0,239	-0,616	6558	1,423	0,6759	289	0,76	0,178	0,31
41539998	Fazenda Cachoeira	-0,817	-1,081	460	1,346	0,4580	40	1,40	0,070	0,24
41600000	Pirapama	-0,228	-0,607	8086	1,346	0,7068	40	1,40	0,070	0,24
41650002	Ponte do Licínio	-0,245	-0,634	10712	1,380	0,6814	474	0,54	0,136	0,28
41700001	Usina Paraúna	-0,469	-0,920	1733	1,266	0,6161	80	2,75	0,100	0,47
41715000	Faz.Contagem Montante	-0,253	-0,637	85	1,520	0,7130	24	8,56	0,059	0,55
41720000	Fazenda Cipó	-0,765	-1,116	341	1,454	0,4800	46	4,28	0,114	0,61
41780002	Presidente Juscelino	-0,595	-0,972	3996	1,345	0,4567	100	2,48	0,096	0,46
41818000	Santo Hipólido	-0,355	-0,740	16722	1,330	0,6366	566	0,47	0,115	0,30

1.2.2.1. Excluindo Estação 41250000 Vespasiano

A tabela A123 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis:

Tabela A 123 - Matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis excluindo Vespasiano.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,981072	1						
Área (Km²)	0,447406	0,442612	1					
P médio (m)	0,185101	0,226449	-0,264626	1				
IEB	0,941476	0,920229	0,363472	0,284674	1			
L (km)	0,368228	0,361082	0,893365	-0,158894	0,290591	1		
I equiv (m/km)	0,056513	0,029377	-0,635764	0,680430	0,173468	-0,572240	1	
Dd (junções /km²)	0,276597	0,261111	-0,023997	0,219969	0,250549	0,139646	0,174639	1
Cesc	-0,288160	-0,394998	-0,472942	0,433898	-0,222372	-0,364654	0,625647	-0,152664 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$, quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A124:

Tabela A 124 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Vespasiano.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,634 + 1,990.IEB$	0,886377	0,873752	0,075512	70,21	0,00001526

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$ e demais. O modelo é apresentando na tabela A125.

Tabela A 125 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Vespasiano.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.425 - 0.876.\mu(\alpha)$	0,962503	0,958336	0,038734	231,02	0,00000010

1.2.2.2. Excluindo Estação 41300000 Taquaraçú

A tabela A126 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 126 - Matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, excluindo Taquaruçu.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,981370	1						
Área (Km²)	0,438287	0,428577	1					
P médio (m)	0,100242	0,144014	-0,156648	1				
IEB	0,943062	0,922465	0,379576	0,189622	1			
L (km)	0,364255	0,353148	0,892355	-0,070812	0,306917	1		
I equiv (m/km)	-0,039772	-0,065611	-0,592617	0,634350	0,060665	-0,546385	1	
Dd (junções /km²)	0,308999	0,300148	0,125966	-0,145471	0,189401	0,347490	-0,429690	1
Cesc	-0,311254	-0,416193	-0,431811	0,495592	-0,243452	-0,334757	0,753225	-0,256104 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação tanto com $\mu(\alpha)$ quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e posteriormente a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A127.

Tabela A 127 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Taquaruçu.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,651 + 2,026.IEB$	0,889366	0,877073	0,074947	72,35	0,00001352

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A128.

Tabela A 128 – Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Taquaruçu

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.422 + 0.879 \mu(\alpha)$	0,963086	0,958985	0,038766	234,81	0,00000009

1.2.2.3.Excluindo Estação 41380000 Ponte Preta

A tabela A129 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 129 - Matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, excluindo Ponte Preta.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,982952	1						
Área (Km²)	0,392200	0,396192	1					
P médio (m)	0,136308	0,191111	-0,294101	1				
IEB	0,953023	0,940731	0,288070	0,201557	1			
L (km)	0,325622	0,324947	0,893477	-0,178755	0,233893	1		
l equiv (m/km)	0,041821	0,016689	-0,630985	0,696995	0,155513	-0,567714	1	
Dd (junções /km²)	0,313849	0,300326	-0,082627	0,159298	0,289673	0,088705	0,148877	1
Cesc	-0,323565	-0,420884	-0,459537	0,436823	-0,282180	-0,353376	0,626227	-0,200701 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$ quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$. Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A130.

Tabela A 130 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Ponte Preta.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,681 + 2,058.IEB$	0,908252	0,898058	0,068995	89,10	0,00000577

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A131:

Tabela A 131 – Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Ponte Preta.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.425 + 0.880.\mu(\alpha)$	0,966194	0,962438	0,037474	257,23	0,00000006

1.2.2.4. Excluindo Estação 41410000 Jequitibá

A tabela A132 apresenta a correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 132 - Matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, excluindo Jequitibá.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,980388	1						
Área (Km²)	0,370572	0,362821	1					
P médio (m)	0,089080	0,125430	-0,249473	1				
IEB	0,941257	0,920520	0,296418	0,207236	1			
L (km)	0,281808	0,268909	0,896508	-0,179671	0,217774	1		
I equiv (m/km)	0,124175	0,102150	-0,596610	0,777114	0,229775	-0,524611	1	
Dd (junções /km²)	0,258237	0,239306	-0,125546	0,099468	0,239311	0,025453	0,235233	1
Cesc	-0,287935	-0,396392	-0,399869	0,503278	-0,223118	-0,298582	0,614439	-0,168210 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$, quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. Os modelo é apresentando na tabela A133:

Tabela A 133 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Jequitibá.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,622 + 1,968.IEB$	0,885965	0,873295	0,073997	69,92	0,00001552

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A134.

Tabela A 134 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Jequitibá

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.428 + 0.870.\mu(\alpha)$	0,961160	0,956845	0,038337	222,72	0,00000012

1.2.2.5. Excluindo Estação 41539998 Fazenda. Contagem Montante

A tabela A 135 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 135 - Matriz de correlação entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, excluindo Fazenda Contagem Montante.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) (Cesc
$\mu(\alpha)$	1								
$\mu(\beta)$	0,986875	1							
Área (Km²)	0,330486	0,323837	1						
P médio (m)	0,084460	0,137642	-0,247820	1					
IEB	0,931834	0,897429	0,244265	0,211175	1				
L (km)	0,273621	0,264886	0,891899	-0,148990	0,192701	1			
I equiv (m/km)	-0,086141	-0,086311	-0,675065	0,672269	0,082770	-0,608063	1		
Dd (junções /km²)	0,175587	0,185288	-0,159185	0,119957	0,165608	0,032744	0,100606	1	
Cesc	-0,680125	-0,703055	-0,524951	0,442955	-0,492549	-0,411112	0,608375	-0,327284	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e. $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto $com\mu(\alpha)$, quanto $com\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. Os modelo é apresentando na tabela A136.

Tabela A 136 – Equação obtida através de regressões linear entre $\mu(\alpha)$ e *IEB*, excluindo Fazenda Contagem montante.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,506 + 1,803.IEB$	0,868314	0,853683	0,065701	59,34	0,00002989

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A137:

Tabela A 137 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Fazenda Contagem

		Montante.			
Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.395 + 0.966\mu(\alpha)$	0,973923	0,971025	0,028610	336,13	0,00000002

1.2.2.6.Excluindo Estação 41600000 Pirapama

A tabela A138 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis

Tabela A 138 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Pirapama.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
$\mu(\alpha)$	1							
$\mu(\beta)$	0,980194	1						
Área (Km²)	0,348109	0,337811	1					
P médio (m)	0,187410	0,232480	-0,190311	1				
IEB	0,937520	0,913684	0,264279	0,300039	1			
L (km)	0,406812	0,405577	0,982151	-0,148990	0,339426	1		
I equiv (m/km)	0,102601	0,078936	-0,590200	0,672269	0,233502	-0,608063	1	
Dd (junções /km²)	0,437712	0,434566	-0,015256	0,119957	0,416098	0,032744	0,100606	1
Cesc	-0,242581	-0,351640	-0,366684	0,442955	-0,161099	-0,411112	0,608375	-0,327284 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto $com \mu(\alpha)$, quanto $com \mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. Os modelo é apresentando na tabela A139:

Tabela A 139 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Pirapama,

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,641 + 2,007.IEB$	0,878944	0,865493	0,075859	65,35	0,00002037

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. Os modelos são apresentando na tabela A140.

Tabela A 140 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$ excluindo Pirapama.

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.428 + 0.870.\mu(\alpha)$	0,960781	0,956423	0,038306	220,48	0,00000012

1.2.2.7. Excluindo Estação 41650002 Ponte do Licínio

A tabela A141 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis:

Tabela A 141 - Matriz de correlação entre $\mu(\alpha), \mu(\beta)$ e demais variáveis excluindo Ponte do Licínio.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) (Cesc
$\mu(\alpha)$	1								
$\mu(\beta)$	0,980323	1							
Área (Km²)	0,324597	0,316117	1						
P médio (m)	0,140492	0,180152	-0,240028	1					
IEB	0,939737	0,917708	0,252468	0,244576	1				
L (km)	0,226281	0,213955	0,886178	-0,160881	0,159034	1			
I equiv (m/km)	0,129722	0,101357	-0,560939	0,715851	0,244404	-0,493466	5 1		
Dd (junções /km²)	0,311762	0,298439	-0,109891	0,149413	0,279784	0,070981	0,170045	1	
Cesc	-0,271335	-0,381388	-0,362744	0,473227	-0,205781	-0,244781	0,600737	-0,193735	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$, quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A142.

Tabela A 142 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Ponte do Licínio

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,627 + 1,979.IEB$	0,883105	0,870117	0,075141	67,99	0,00001737

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A143.

Tabela A 143 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Ponte do Licínio.

Equação	R²	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.425 + 0.876.\mu(\alpha)$	0,961032	0,956703	0,038759	221,96	0,00000012

1.2.2.8.Excluindo Estação 41700001 Usina Paraúna

A tabela A144 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis:

Tabela A 144 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Usina Paraúna

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
	1							
	0,992174	1						
Área (Km²)	0,385245	0,364891	1					
P médio (m)	0,120638	0,088568	-0,322605	1				
IEB	0,947608	0,950722	0,323512	0,287751	1			
L (km)	0,321589	0,301988	0,894303	-0,203984	0,261579	1		
I equiv (m/km)	0,042267	0,013045	-0,615756	0,760734	0,160639	-0,559182	. 1	
Dd (junções /km²)	0,306627	0,279227	-0,104891	0,097035	0,289209	0,070782	0,147679	1
Cesc	-0.305790	-0.382826	-0.391379	0.679499	-0.261985	-0.302472	0.651682	-0.170846 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$, quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\beta)$ e *IEB* foi maior do que a correlação entre $\mu(\alpha)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e $\mu(\beta)$. O modelo é apresentando na tabela A145.

Tabela A 145 – Equação obtida através de regressão linear entre $\mu(\alpha)$ e $\mu(\beta)$, excluindo Usina Paraúna.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = 0.470 + 1.134 \mu(\beta)$	0,984409	0,982677	0,028382	568,27	0,000000002

Realizou-se a regressão entre $\mu(\beta)$ e *IEB*. O modelo é apresentando na tabela A146.

Tabela A 146 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Usina Paraúna.

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -1.851 + 1.761.IEB$	0,903873	0,893192	0,061645	84,63	0,00000714

1.2.2.9. Excluindo Estação 41715000 Fazenda Cachoeira

A tabela A147 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 147 - Matriz de correlação entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, excluindo Fazenda Cachoeira.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) (Cesc
	1								
	0,980472	1							
Área (Km²)	0,483005	0,479896	1						
P médio (m)	-0,024281	0,018104	-0,076664	1					
IEB	0,941573	0,917693	0,436961	0,042178	1				
L (km)	0,404027	0,398410	0,890524	0,017857	0,357825	1			
I equiv (m/km)	-0,193011	-0,243091	-0,628062	0,427492	-0,111079	-0,577097	1		
Dd (junções /km²)	0,445384	0,436284	-0,186278	0,515940	0,456832	0,011345	0,591663	1	
Cesc	-0,503570	-0,631936	-0,347553	0,237154	-0,483256	-0,256221	0,474596	-0,042690	1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$, quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A148.

Tabela A 148 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Fazenda Cachoeira.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,666 + 2,054.IEB$	0,886560	0,873955	0,074276	70,34	0,000015151

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A149.

Tabela A 149 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Fazenda Cachoeira.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.426 + 0.874.\mu(\alpha)$	0,961326	0,957028	0,038669	223,71	0,00000012

1.2.2.10. <u>Excluindo Estação 41720000 Fazenda Cipó</u>

A tabela A 150 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 150 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Fazenda do Cipó.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
	1							
	0,974780	1						
Área (Km²)	0,326490	0,317487	1					
P médio (m)	0,407082	0,475355	-0,145585	1				
IEB	0,936078	0,913064	0,249463	0,455321	1			
L (km)	0,279658	0,269231	0,892736	-0,065774	0,204326	1		
l equiv (m/km)	0,160776	0,136296	-0,591501	0,669577	0,259866	-0,539055	1	
Dd (junções /km²)	0,328780	0,317710	-0,100289	0,184861	0,282135	0,075992	0,162580	1
Cesc	0,017759	-0,116141	-0,353036	0,329024	0,015785	-0,273354	0,668816	-0,202353 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto com $\mu(\alpha)$ quanto com $\mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

A variável $\mu(\alpha)$ foi correlacionada com *IEB*. O modelo é apresentado na tabela A151.

Tabela A 151 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Fazenda do Cipó

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1.541 + 1.858.IEB$	0,876242	0,862491	0,068065	63,72	0,00002252

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A152.

Tabela A 152 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$ excluindo Fazenda do Cipó.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.430 + 0.855.\mu(\alpha)$	0,950197	0,944663	0,037855	171,71	0,00000036

1.2.2.11. Excluindo Estação 41780002 Presidente Juscelino

A tabela A 153 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis:

Tabela A 153 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Presidente Juscelino.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
	1							
	0,981016	1						
Área (Km²)	0,402504	0,400130	1					
P médio (m)	0,112333	0,148736	-0,215658	1				
IEB	0,967609	0,930800	0,357093	0,208776	1			
L (km)	0,317000	0,308371	0,898173	-0,134697	0,247361	1		
I equiv (m/km)	0,031306	0,001073	-0,608055	0,678583	0,156544	-0,560166	1	
Dd (junções /km²)	0,284222	0,267199	-0,085432	0,132636	0,237770	0,073689	0,142577	1
Cesc	-0,267965	-0,373417	-0,420876	0,504220	-0,154814	-0,310729	0,655650	-0,168803 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação tanto $com \mu(\alpha)$ quanto $com \mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A154.

Tabela A 154 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Presidente Juscelino.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,822 + 2,277.IEB$	0,936267	0,929186	0,055428	132,22	0,00000111

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A155.

Tabela A 155 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Presidente Juscelino.

Equação		R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.426 + 0.866.\mu(\alpha)$	0,962393	0,958214	0,037587	230,32	0,00000010

1.2.2.12. <u>Excluindo Estação 41818000 Santo Hipólito</u>

A tabela A156 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis:

Tabela A 156 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis excluindo Santo Hipólito.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	L (km)	I equiv (m/km)	Dd (junções /km²) Cesc
	1							
	0,981603	1						
Área (Km²)	0,477609	0,477344	1					
P médio (m)	0,164448	0,201544	-0,104717	1				
IEB	0,942521	0,921680	0,375561	0,266489	1			
L (km)	0,364223	0,360859	0,786965	0,018486	0,273641	1		
I equiv (m/km)	0,076006	0,044610	-0,603765	0,662934	0,196062	-0,506377	1	
Dd (junções /km²)	0,321339	0,307508	-0,055649	0,141565	0,290287	0,180242	0,136851	1
Cesc	-0,303295	-0,410397	-0,431010	0,437384	-0,236301	-0,285654	0,610127	-0,213593 1

A maior correlação encontrada ocorreu entre as variáveis $\mu(\alpha)$ e $\mu(\beta)$. Analisando-se a correlação entre as mesmas e as demais variáveis, é possível identificar que a variável *IEB* apresentou melhor correlação, tanto $com \mu(\alpha)$, quanto $com \mu(\beta)$, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior do que a correlação entre $\mu(\beta)$ e *IEB*. Não foi encontrada correlação de $\mu(\alpha)$ e $\mu(\beta)$ com as demais variáveis explicativas. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, posteriormente, a regressão entre $\mu(\beta)$ e a variável explicativa $\mu(\alpha)$.

Realizou-se a regressão entre $\mu(\alpha)$ e *IEB*. O modelo é apresentando na tabela A157.

Tabela A 157 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Santo Hipólito.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,638 + 1,999.IEB$	0,888346	0,875939	0,075809	71,61	0,00001410

Realizou-se a regressão entre $\mu(\beta)$ e $\mu(\alpha)$. O modelo é apresentando na tabela A158.

Tabela A 158 - Equação obtida através regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$ excluindo Santo Hipólito.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.423 + 0.878.\mu(\alpha)$	0,963544	0,959494	0,038765	237,87	0,00000009

1.2.3. Baixo Rio das Velhas

Conforme equações (4.6) e (4.7), os parâmetros α e β foram calculados para todos os anos, para todas as estações utilizadas neste trabalho para, posteriormente, serem obtidas as médias $\mu(\alpha)$ e . As variáveis explicativas são: "IEB" denota o índice escoamento de Base, " $\acute{A}rea$ " a área de drenagem, "P" a precipitação média da bacia, "Cesc" o coeficiente de escoamento da bacia e "Dd" a densidade de drenagem.

A tabela A159 contém todos os valores das variáveis $\mu(\alpha)$ e $\mu(\beta)$ utilizadas nas análises regionais.

Tabela A 159 - Valores das variáveis utilizadas na análise de regressão para o baixo rio das Velhas

Código	Estações	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	C _{esc}
41135003	Pirapora Barreiro	-0,295	-0,763	62334	1,414	0,7541	0,071	0,3
41685000	Ponte do Picão	-0,701	-1,100	547	1,117	0,5090	0,033	0,17
41890000	Estação de Curumataí	-0,917	-1,224	1435	1,108	0,4346	0,131	0,34
41940000	Ponte do Bicudo	-0,863	-1,286	2023	1,216	0,4332	0,043	0,25
41990000	Varzea da Palma	-0,364	-0,786	26553	1,271	0,6293	0,098	0,28

1.2.3.1.Excluindo Estação 41135003 Pirapora-Barreiro

A tabela A 160 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 160 - Matriz de correlação entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Pirapora-Barreiro

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	Cesc
$\mu(\alpha)$	1						
$\mu(\beta)$	0,978830	1					
Área (Km²)	0,914571	0,919617	1				
P médio (m)	0,683712	0,583654	0,806563	1			
IEB	0,995071	0,992548	0,905283	0,618339	1		
Dd (junções /km²)	0,025416	0,201211	0,321934	-0,039604	0,082896	1	
Cesc	-0,168823	-0,037940	0,215246	0,081770	-0,142471	0,919290	1

Tanto $\mu(\alpha)$ como $\mu(\beta)$ apresentaram alta correlação com *IEB*, sendo que essa correlação de ambas com *IEB* é maior do que entre elas mesmas. Inicialmente tanto $\mu(\alpha)$ quanto com $\mu(\beta)$ foram utilizadas em regressão com *IEB*.

Os modelos para $\mu(\alpha)$ são apresentando na tabela A161.

Tabela A 161 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Pirapora-Barreiro.

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -2,058 + 2,685.IEB$	0,990166	0,985248	0,030234	201,37	0,00492939
$\mu(\alpha) = -2,376 + 0,025.IEB + 0,349.P$	0,997745	0,993234	0,020475	221,20	0,04748990

Inicialmente a variável $\mu(\alpha)$ foi correlacionada com *IEB*. A variável $\mu(\beta)$ não foi utilizada pois possui correlação com IEB superior a 0,85. No segundo modelo houve o acréscimo da variável P. Não foi possível o uso do teste $F_{pc}(F)$ parcial calculado) devido a número de estações utilizadas no estudo regional no baixo rio das Velhas. É necessário um mínimo de 5 estações para que o teste possa ser executado. Para escolha do modelo a ser utilizado, foram analisados os R^2 ajustados e erros padrões. O primeiro modelo foi o escolhido, pois o segundo não apresentou um aumento R^2 ajustado e diminuição do erro padrão que justificasse sua escolha.

Os modelos para $\mu(\beta)$ são apresentando na tabela A162.

Tabela A 162 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Pirapora Barreiro.

Equação	R ²	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -2,299 + 2,392.IEB$	0,985152	0,977729	0,033179	132,70	0,00745156
$\mu(\beta) = -2,062 + 0,025.IEB + -0,256.P$	0,993358	0,980074	0,031415	74,78	0,08149826

Inicialmente a variável $\mu(\beta)$ foi correlacionada com *IEB*. A variável $\mu(\alpha)$ não foi utilizada pois possui correlação com *IEB* superior a 0,85. No segundo modelo houve o acréscimo da variável *P*. O primeiro modelo foi o escolhido, pois o segundo não apresentou um aumento R^2 ajustado e diminuição do erro padrão que justificasse sua escolha.

1.2.3.2. Excluindo Estação 41685000 Ponte do Picão

A tabela A163 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 163 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Ponte do Picão.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	Cesc
	1						
	0,985903	1					
Área (Km²)	0,899639	0,872864	1				
P médio (m)	0,876666	0,798568	0,940726	1			
IEB	0,968025	0,952961	0,978999	0,921570	1		
Dd (junções /km²)	-0,128675	0,039027	-0,190394	-0,496606	-0,127766	1	
Cesc	-0,123859	0,020116	0,036283	-0,300461	0,001235	0,869367	1

Tanto $\mu(\alpha)$ quanto $\mu(\beta)$ apresentaram entre si a maior correlação. Na análise de correlação simples de $\mu(\alpha)$ e $\mu(\beta)$ com demais variáveis, o *IEB* apresentou maior correlação com as duas, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior que a correlação entre $\mu(\beta)$ e *IEB*. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e entre $\mu(\beta)$ e $\mu(\alpha)$. As variáveis A e P não foram utilizadas, pois ambas tem correlação com IEB superior a 0,85.

Os modelos para $\mu(\alpha)$ são apresentando na tabela A164.

Tabela A 164 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Ponte do Picão.

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,737 + 2,002.IEB$	0,937073	0,905609	0,099956	29,78	0,03197472

Os modelos para $\mu(\beta)$ são apresentando na tabela A165.

Tabela A 165 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Ponte do Picão.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.500 + 0.844 \mu(\alpha)$	0,972006	0,958008	0,057077	69,44	0,01409654

1.2.3.3. Excluindo Estação 41890000 Curumataí

A tabela A166 apresenta a matriz de correlação entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis:

Tabela A 166 - Matriz de correlação entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Curumataí.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	Cesc
$\mu(\alpha)$	1						
$\mu(\beta)$	0,996139	1					
Área (Km²)	0,879060	0,834750	1				
P médio (m)	0,759893	0,701033	0,951916	1			
IEB	0,964538	0,942897	0,959777	0,841293	1		
Dd (junções /km²)	0,810518	0,817191	0,602824	0,619179	0,662746	1	
Cesc	0,654989	0,604024	0,781156	0,916005	0,657933	0,766146	1

Tanto $\mu(\alpha)$ quanto $\mu(\beta)$ apresentaram entre si a maior correlação. Na análise de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, o *IEB* apresentou maior correlação com as duas, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior que a correlação entre $\mu(\beta)$ e *IEB*. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e, entre $\mu(\beta)$ e $\mu(\alpha)$. As variáveis A e P não foram utilizadas, pois ambas tem correlação com *IEB* superior a 0,85.

Os modelos para $\mu(\alpha)$ são apresentando na tabela A167.

Tabela A 167 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e variáveis independentes, excluindo Curumataí.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,635 + 1,857.IEB$	0,930333	0,895500	0,087507	26,71	0,03546206
$\mu(\alpha) = -1,581 + 1,467.IEB + 2,821.Dd$	0,982645	0,947936	0,061767	28,31	0,13173691
$\mu(\alpha) = -1.318 + 2.142.IEB - 0.385.P$	0,939433	0,818298	0,115389	7,76	0,24610445

O acréscimo da variável Dd no segundo modelo proporcionou um pequeno ganho no R² ajustado e uma pequena diminuição no erro padrão, porém, não apresentou uma melhoria que fosse suficiente para justificativa de seu uso. O terceiro, com o acréscimo de P não acrescenta melhorias. O primeiro modelo foi o escolhido

Os modelos para $\mu(\beta)$ são apresentando na tabela A168.

Tabela A 168 - Equações obtidas através de regressões lineares entre $\mu(\beta)$ e variáveis independentes, excluindo Curumataí

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -0.466 + 0.932.IEB$	0,992293	0,988439	0,027234	257,50	0,00386109
$\mu(\beta) = -0.074 + 1.026.\mu(\beta) - 0.270.P$	0,999695	0,999084	0,007667	1636,56	0,01747644
$\mu(\beta) = -0.342 + 0.984 \cdot \mu(\alpha) - 0.376 \cdot C_{esc}$	0,996402	0,989205	0,026317	138,45	0,05998720

O primeiro modelo em que a variável independente é o *IEB* foi o modelo escolhido pois o acréscimo de outras variáveis não se mostrou suficiente para justificativa de seus respectivos usos.

1.2.3.4.Excluindo Estação 41940000 Ponte do Bicudo

A tabela A169 apresenta a matriz de correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis.

Tabela A 169 - Matriz de correlação simples entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Ponte do Bicudo.

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	Cesc
$\mu(\alpha)$	1						
$\mu(\beta)$	0,994864	1					
Área (Km²)	0,864141	0,860097	1				
P médio (m)	0,914273	0,914000	0,992901	1			
IEB	0,959689	0,945743	0,963109	0,980885	1		
Dd (junções /km²)	-0,283544	-0,189825	-0,091494	-0,099387	-0,273859	1	
Cesc	-0,013902	0,064704	0,308426	0,275215	0,085690	0,899097	1

Tanto $\mu(\alpha)$ quanto $\mu(\beta)$ apresentaram entre si a maior correlação. Na análise da correlação simples entre $\mu(\alpha)$, $\mu(\beta)$ e demais variáveis, o *IEB* apresentou maior correlação com as duas, sendo que a correlação entre $\mu(\alpha)$ e *IEB* foi maior que a correlação entre $\mu(\beta)$ e *IEB*. Foi definida a regressão entre $\mu(\alpha)$ e *IEB* e entre $\mu(\beta)$ e $\mu(\alpha)$. As variáveis A e P não foram utilizadas, pois ambas tem correlação com *IEB* superior a 0,85.

Os modelos para $\mu(\alpha)$ são apresentando na tabela A170.

Tabela A 170 - Equação obtida através de regressão linear entre $\mu(\alpha)$ e *IEB*, excluindo Ponte do bicudo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,732 + 1,998.IEB$	0,921003	0,881505	0,100451	23,32	0,04031077

O modelo utilizado, tem como variável independente, o *IEB*, pois as variáveis *A* e *P* possuem correlação com IEB superior a 0,85.

Os modelos para $\mu(\beta)$ são apresentando na tabela A171.

Tabela A 171 - Equação obtida através de regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Ponte do Bicudo

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = 0.523 + 0.781.\mu(\alpha)$	0,989754	0,984631	0,028426	193,20	0,00513625

1.2.3.5. Excluindo Estação 41990000 Várzea da Palma

A tabela A 172 apresenta a matriz de correlação entre $\mu(\alpha), \mu(\beta)$ e demais variáveis.

Tabela A 172 - Matriz de correlação entre $\mu(\alpha), \mu(\beta)$ e demais variáveis, excluindo Várzea da Palma

	$\mu(\alpha)$	$\mu(\beta)$	Área (Km²)	P médio (m)	IEB	Dd (junções /km²)	Cesc
$\mu(\alpha)$	1						
$\mu(\beta)$	0,982309	1					
Área (Km²)	0,940002	0,936526	1				
P médio (m)	0,864927	0,805102	0,943905	1			
IEB	0,992753	0,990816	0,967924	0,877048	1		
Dd (junções /km²)	-0,225869	-0,070880	0,026840	-0,145401	-0,109673	1	
Cesc	0,006997	0,102928	0,329193	0,263536	0,123984	0,881276	1

Tanto $\mu(\alpha)$, como $\mu(\beta)$, apresentaram alta correlação com *IEB*, sendo que a correlação de ambas com *IEB* é maior do que entre elas mesmas. Tanto $\mu(\alpha)$ quanto com $\mu(\beta)$ foram utilizadas em regressão com *IEB*.

Os modelos para $\mu(\alpha)$ são apresentando na tabela A173.

Tabela A 173 - Equações obtidas através de regressões lineares entre $\mu(\alpha)$ e *IEB*, excluindo Várzea da Palma.

Equação	R^2	R² ajustado	Erro Padrão	F	Significância de F
$\mu(\alpha) = -1,674 + 1,839.IEB$	0,985558	0,978337	0,041379	136,48	0,00724726

Os modelos para $\mu(\beta)$ são apresentando na tabela A174.

Tabela A 174 - Equação obtida através regressão linear entre $\mu(\beta)$ e $\mu(\alpha)$, excluindo Várzea da Palma

Equação	R^2	R ² ajustado	Erro Padrão	F	Significância de F
$\mu(\beta) = -1,903 + 1,523.IEB$	0,981716	0,972573	0,038629	107,38	0,00918441

ANEXO B

Tabelas:

Porcentagens de aqüíferos e IEBs

Tabela B 1 - Aqüíferos de rochas ígneas e metamórficas de alto grau Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código Estação			Rochas Igneas(%)
40067000 Ponte Olegario Maciel	8979	72,01	3,88
40070000 Ponte do Chumbo	9932	71,4	6,61
40100000 Porto das Andorinhas	13875	72,58	5,38
40102000 Porto da Barra	14173	73,38	5,27
40130000 Ponte do Vilela	1726	70,75	94,41
40150000 Carmo do Cajuru	2504	72,34	96,15
40160000 Lamounier	159	69,1	100,00
40170000 Marilandia (Ponte Br-494)	1049	70,23	100,00
40180000 Carmo da Mata	144	69,53	99,19
40185000 Pari	1917	71,89	99,94
40190002 Divinopolis	1987	70,2	99,94
40300001 Jaguaruna-Jusante	1563	64,73	79,64
40330000 Velho da Taipa	7370	71,98	93,10
40350000 Usina Camarao	269	74,12	100,00
40380000 Araujos	1196	68,57	99,49
40400000 Estacao Alvaro da Silveira	1809	70,46	96,40
40500000 Martinho Campos	770	74,89	7,72
40535000 Barra do Paraopeba	29366	76,48	34,57
40540000 Jurema	353	74,75	89,36
40549998 São Brás do Suaçuí	459	58,91	87,11
40573000 Joaquim Murtinho	291	70,39	70,84
40577000 Ponte Jubileu	240	77,86	32,53
40579995 Congonhas-Linigrafo	574	75,55	50,43
40665000 Usina Joao Ribeiro	293	77,06	57,17
40680000 Entre Rios de Minas	487	67,68	68,16
40700002 Jeceaba	2457	72,66	62,91
40710000 Belo Vale	2752	69,81	65,53
40720002 Melo Franco	3800	73,56	73,83
40740000 Alberto Flores	3930	69,98	73,61
40770000 Conceição do Itaguá	675	76,63	54,95
40790000 Betim	188	62,47	100,00
40800001 Ponte Nova do Paraopeba	5680	70,55	71,40
40818000 Juatuba	273	77,56	14,43
40830000 Fazenda Escola Florestal	84	78,71	51,38
40850000 Ponte da Taquara	8747	70	71,92

Tabela B 2 - Aqüíferos de rochas ígneas e metamórficas de alto grau Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação			Rochas Igneas(%)
41135003	Pirapora-Barreiro	62334	75,41	26,92
41151000	Fazenda Água Limpa	175	80,38	10,59
41160000	Gulpiara	284	73,75	17,15
41180000	Itabirito Linígrafo	330	77,15	20,03
41190000	Aguiar Moreira	539	77,13	31,49
41195000	Rio Acima	1472	78,03	27,52
41199998	Honório Bicalho	1698	72,68	24,17
41220000	Siderurgica	232	73,62	16,72
41230000	Sabará	2273	72,76	19,76
41242100	General Carneiro	206	76,18	67,29
	Vespasiano	676	65,93	65,82
41260000		3727	70,94	40,30
	Jose de Melo	291	72,63	85,41
	Taquaraçu	626	67,54	82,57
	Ponte Raul Soares	4874	67,15	46,91
41380000	Ponte Preta	553	55,19	4,03
41410000		6558	67,59	35,48
	Represa - Jusante	243	77,23	11,50
	Faz.Contagem Montante	460	71,30	6,06
	Pirapama	8086	70,68	29,08
	Ponte do Licínio Jusante	10712	68,14	21,91
	Usina Paraúna	1733	61,61	37,95
	Presidente Juscelino	3996	45,67	16,85
	Santo Hipólido	16722	63,66	19,02
	Curumataí	1435	43,46	11,96
41990000	Várzea da Palma	26553	62,93	13,21

Tabela B 3 – Aqüífero de rochas quartzíticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação	Área(Km²)	IEB observado	Quartzítico (%)
40025000	Vargem Bonita	303	71,16	47,46
40032000	Fazenda Sambura	758	76,57	99,92
40037000	Fazenda Da Barra	767	59,21	66,20
40040000	Fazenda Ajudas	259	70,55	49,80
40046000	Porto Sabino	4388	71,67	39,08
40050000	Iguatama	5430	72,25	31,17
40056002	Fazenda Capoeirao	334	70,09	24,50
40056500	Ponte Capoeirao	481	70,15	23,72
40060001	Tapirai-Jusante	559,1	80,71	84,27
40067000	Ponte Olegario Maciel	8979	72,01	25,51
40070000	Ponte Do Chumbo	9932	71,4	23,06
40100000	Porto Das Andorinhas	13875	72,58	16,51
40102000	Porto Da Barra	14173	73,38	16,16
40130000	Ponte Do Vilela	1726	70,75	5,59
	Carmo Do Cajuru	2504	72,34	3,85
40300001	Jaguaruna-Jusante	1563	64,73	0,13
40330000	Velho Da Taipa	7370	71,98	1,34
40535000	Barra Do Paraopeba	29366	76,48	8,34
40540000	Jurema	353	74,75	6,20
40549998	São Brás Do Suaçuí	459	58,91	4,76
40577000	Ponte Jubileu	240	77,86	5,24
40579995	Congonhas-Linigrafo	574	75,55	2,19
40665000	Usina Joao Ribeiro	293	77,06	31,43
40680000	Entre Rios De Minas	487	67,68	18,16
40700002	Jeceaba	2457	72,66	13,70
40710000		2752	69,81	13,48
	Melo Franco	3800	73,56	10,94
40740000	Alberto Flores	3930	69,98	10,87
40770000	Conceição Doo Itaguá	675	76,63	3,93
	Ponte Nova Do Paraopeba	5680	70,55	9,01
40818000		273	77,56	2,07
40830000	Fazenda Escola Florestal	84	78,71	13,15
40850000	Ponte Da Taquara	8747	70	6,97

Tabela B 4– Aqüífero de rochas quartzíticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação	Área(Km²)	IEB observado	Quartzítico (%)
41135003	Pirapora-Barreiro	62334	75,41	4,99
41151000	Fazenda Água Limpa	175	80,38	16,61
41160000	Gulpiara	284	73,75	14,13
41180000	Itabirito Linígrafo	330	77,15	9,99
	Aguiar Moreira	539	77,13	9,09
41195000	Rio Acima	1472	78,03	9,35
41199998	Honório Bicalho	1698	72,68	10,42
41220000	Siderurgica	232	73,62	0,07
41230000		2273	72,76	9,77
41260000	Pinhões	3727	70,94	5,96
	Jose De Melo	291	72,63	11,89
41300000	Taquaraçu	626	67,54	16,14
41340000	Ponte Raul Soares	4874	67,15	7,06
41380000	Ponte Preta	553	55,19	22,97
41410000	Jequitibá	6558	67,59	7,24
	Pirapama	8086	70,68	5,86
	Ponte Do Licínio Jusante	10712	68,14	4,42
	Usina Paraúna	1733	61,61	53,36
41715000	Fazenda Cachoeira	85	45,80	86,54
	Fazenda Cipó	341	48	82,72
	Presidente Juscelino	3996	45,67	52,30
41818000	Santo Hipólido	16722	63,66	15,72
41880000	Buenopolis	148	59,09	44,87
41890000	Estação Curumataí	1435	43,46	32,29
	Ponde Do Bicudo	2023	43,32	0,44
41990000	Várzea Da Palma	26553	62,93	18,71

Tabela B 5 - Aqüíferos de rochas itabiríticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	3	Área(Km²)	IEB observado	Itabirítico (%)
40577000	Ponte Jubileu	240	77,86	13,96
40579995	Congonhas-Linigrafo	574	75,55	6,50
40700002		2457	72,66	4,07
40710000	Belo Vale	2752	69,81	3,73
40720002	Melo Franco	3800	73,56	2,74
40740000	Alberto Flores	3930	69,98	2,67
40770000	Conceição do Itaguá	675	76,63	3,27
	Ponte Nova Do Paraopeba	5680	70,55	4,98
40818000		273	77,56	12,80
40850000	Ponte Da Taquara	8747	70	3,64

Tabela B 6 - Aqüíferos de rochas itabiríticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação	Área(Km²)	IEB observado	Itabirítico (%)
41135003	Pirapora-Barreiro	62334	75,41	0,52
41151000	Fazenda Água Limpa	175	80,38	22,79
41160000	Gulpiara	284	73,75	14,01
41180000	Itabirito Linígrafo	330	77,15	69,59
41190000	Aguiar Moreira	539	77,13	43,95
41195000	Rio Acima	1472	78,03	31,70
41199998	Honório Bicalho	1698	72,68	29,30
41220000	Siderurgica	232	73,62	12,45
41230000	Sabara	2273	72,76	25,50
41242100	General Carneiro	206	76,18	32,71
41260000	Pinhões	3727	70,94	17,84
	Jose De Melo	291	72,63	1,71
	Taquaraçu	626	67,54	0,82
41340000	Ponte Raul Soares	4874	67,15	13,92
41410000		6558	67,59	10,43
41600000	Pirapama	8086	70,68	8,44
41650002	Ponte Do Licínio Jusante	10712	68,14	6,36
41818000	Santo Hipólido	16722	63,66	4,07
41990000	Várzea Da Palma	26553	62,93	2,57

Tabela B 7 - Aqüíferos de rochas xistosas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação		IEB observado	
40025000	Vargem Bonita	303	71,16	52,54
	Fazenda da Barra	767	59,21	4,79
40046000	Porto Sabino	4388	71,67	16,94
40050000	Iguatama	5430	72,25	13,65
40067000	Ponte Olegario Maciel	8979	72,01	8,25
40070000	Ponte do Chumbo	9932	71,4	7,46
	Porto das Andorinhas	13875	72,58	5,34
	Porto da Barra	14173	73,38	5,23
	Jaguaruna-Jusante	1563	64,73	20,24
40330000	Velho da Taipa	7370	71,98	5,29
	Barra do Paraopeba	29366	76,48	4,15
40540000		353	74,75	4,43
	São Brás do Suaçuí	459	58,91	8,12
	Joaquim Murtinho	291	70,39	29,16
	Ponte Jubileu	240	77,86	48,28
	Congonhas-Linigrafo	574	75,55	40,88
	Usina Joao Ribeiro	293	77,06	11,40
	Entre Rios de Minas	487	67,68	13,68
40700002		2457	72,66	19,33
	Belo Vale	2752	69,81	17,26
	Melo Franco	3800	73,56	12,49
	Alberto Flores	3930	69,98	12,85
	Conceição do Itaguá	675	76,63	37,85
	Ponte Nova do Paraopeba	5680	70,55	14,61
40818000		273	77,56	70,71
	Fazenda Escola Florestal	84	78,71	35,47
40850000	Ponte da Taquara	8747	70	14,05

Tabela B 8 - Aqüíferos de rochas xistosas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação	Área(Km²)	IEB observado	Xistoso (%)
41135003	Pirapora-Barreiro	62334	75,41	3,99
41151000	Fazenda Água Limpa	175	80,38	50,01
41160000	Gulpiara	284	73,75	54,70
41180000	Itabirito Linígrafo	330	77,15	0,39
41190000	Aguiar Moreira	539	77,13	15,47
41195000	Rio Acima	1472	78,03	31,43
41199998	Honório Bicalho	1698	72,68	35,99
41220000	Siderurgica	232	73,62	70,76
41230000	Sabara	2273	72,76	44,72
41260000	Pinhões	3727	70,94	27,28
41295000	Jose De Melo	291	72,63	0,99
41300000	Taquaraçu	626	67,54	0,46
41340000	Ponte Raul Soares	4874	67,15	20,92
41410000	Jequitibá	6558	67,59	15,67
41600000	Pirapama	8086	70,68	12,69
41650002	Ponte Do Licínio Jusante	10712	68,14	9,56
41700001	Usina Paraúna	1733	61,61	8,70
41780002	Presidente Juscelino	3996	45,67	3,80
	Santo Hipólido	16722	63,66	7,25
41880000	Buenopolis	148	59,09	6,61
41890000	Estação Curumataí	1435	43,46	6,97
41990000	Várzea Da Palma	26553	62,93	6,69
41818000	Santo Hipólido	16722	4,07	63,66

Tabela B 9 - Aqüíferos de rochas pelítico-carbonáticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação	Area(Km²)	IEB observado	Aquífero Pelito-carbonático
40037000	Fazenda da Barra	767	59,21	27,67
40040000	Fazenda Ajudas	259	70,55	34,45
40046000	Porto Sabino	4388	71,67	29,66
40050000	Iguatama	5430	72,25	38,12
40053000	Calciolandia	303	64,54	15,80
40056002	Fazenda Capoeirao	334	70,09	69,87
40056500	Ponte Capoeirao	481	70,15	72,37
40060001	Tapirai-Jusante	559,1	80,71	5,18
40067000	Ponte Olegario Maciel	8979	72,01	44,66
	Ponte do Chumbo	9932	71,4	42,79
40080000		651	63,08	56,77
	Porto das Andorinhas	13875	72,58	49,24
	Porto da Barra	14173	73,38	50,03
40380000	Araujos	1196	68,57	0,51
40400000	Estacao Alvaro da Silveira	1809	70,46	1,39
40500000	Martinho Campos	770	74,89	5,21
40530000		481	58,54	52,15
	Barra do Paraopeba	29366	76,48	28,37
	Ponte da Taquara	8747	70	0,85
40930000	Barra do Funchal	876	67,54	67,26
40960000	Fazenda Bom Jardim	1744	53,56	34,03
40975000	Fazenda Sao Felix	964	48,15	12,50

Tabela B 10 - Aqüíferos de rochas pelítico carbonáticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação	Area(Km ²)	IEB observado	Aquífero Pelito-carbonático
41050000	Major Porto (Aneelcemig)	1207	57,47	32,47
41075001	Porto do Passarinho	4143	53,02	43,94
41090000	Canoeiros	5222	48,49	41,60
41135003	Pirapora-Barreiro	62334	75,41	22,15
41260000	Pinhões	3727	70,94	0,11
41340000	Ponte Raul Soares	4874	67,15	3,29
41380000	Ponte Preta	553	55,19	67,52
41410000	Jequitibá	6558	67,59	19,31
41440005	Represa-Jusante	243	77,23	21,19
41539998	Faz.Contagem Montante	460	71,30	58,17
41600000	Pirapama	8086	70,68	30,84
41650002	Ponte do Licínio Jusante	10712	68,14	43,62
41685000	Ponte do Picão	547	50,9	66,59
41715000	Fazenda Cachoeira	85	45,80	13,46
41720000	Fazenda Cipó	341	48	9,35
41780002	Presidente Juscelino	3996	45,67	21,18
41818000	Santo Hipólido	16722	63,66	40,83
41880000	Buenopolis	148	59,09	14,54
41890000	Estação Curumataí	1435	43,46	31,89
41940000	Ponde do Bicudo	2023	43,32	62,54
41990000	Várzea da Palma	26553	62,93	39,19

Tabela B 11 - Aqüíferos de rochas pelíticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação	Área(Km²)	, , <u>,</u>	Aquífero pelítico
40037000	Fazenda da Barra	767	59,21	0,05
	Porto Sabino	4388	71,67	1,32
40050000		5430	72,25	2,05
	Ponte Olegario Maciel	8979	72,01	1,24
	Ponte do Chumbo	9932	71,4	1,12
40080000		651	63,08	43,23
	Porto das Andorinhas	13875	72,58	6,18
	Porto da Barra	14173	73,38	6,33
40330000	Velho da Taipa	7370	71,98	0,26
	Estacao Alvaro Da Silveira	1809	70,46	0,59
40500000	Martinho Campos	770	74,89	47,22
40530000		481	58,54	42,20
	Barra do Paraopeba	29366	76,48	11,61
	Ponte da Taquara	8747	70	1,95
	Barra do Funchal	876	67,54	10,03
	Fazenda Bom Jardim	1744	53,56	41,78
40975000	Fazenda Sao Felix	964	48,15	9,76

Tabela B 12 - Aqüíferos de rochas pelíticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

	, , , , , , , , , , , , , , , , , , , ,		\ / 1	
Código	Estação	Área(Km²)	IEB observado	Aquífero pelítico
41135003	Pirapora-Barreiro	62334	75,41	10,74
41880000	Buenopolis	148	59,09	13,71
41890000	Estação Curumataí	1435	43,46	4,01
41990000	Várzea Da Palma	26553	62,93	0,67

Tabela B 13 - Aqüíferos rochas carbonáticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código		Área(Km²)	IEB observado	Carbonático (%)
40046000	Porto Sabino	4388	71,67	0,12
40050000		5430	72,25	2,25
	Calciolandia	303	64,54	62,10
40067000	Ponte Olegario Maciel	8979	72,01	3,88
40070000	Ponte Do Chumbo	9932	71,4	3,51
	Porto Das Andorinhas	13875	72,58	2,51
40102000	Porto Da Barra	14173	73,38	2,46
	Barra Do Paraopeba	29366	76,48	1,19
40850000	Ponte Da Taquara	8747	70	0,63

Tabela B 14 - Aqüíferos de rochas Carbonáticas Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação	Área(Km²)	IEB observado	Carbonático (%)
41135003	Pirapora-Barreiro	62334	75,41	0,98
41250000	Vespasiano	676	65,93	34,18
41260000	Pinhões	3727	70,94	8,35
41340000	Ponte Raul Soares	4874	67,15	7,78
41380000	Ponte Preta	553	55,19	5,48
41410000	Jequitibá	6558	67,59	11,68
41440005	Represa-Jusante	243	77,23	67,31
41539998	Faz.Contagem Montante	460	71,30	35,77
41600000	Pirapama	8086	70,68	12,41
41650002	Ponte Do Licínio Jusante	10712	68,14	12,49
41685000	Ponte Do Picão	547	50,9	2,96
	Fazenda Cipó	341	48	7,93
41780002	Presidente Juscelino	3996	45,67	5,80
	Santo Hipólido	16722	63,66	10,98
	Buenopolis	148	59,09	20,27
	Estação curumataí	1435	43,46	11,93
41990000	Várzea da Palma	26553	62,93	9,10

Tabela B 15 - Aqüíferos colúvio-eluviais Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação	Área(Km²)	IEB observado	colúvio-eluviais (%)
40032000	Fazenda Samburá	758	76,57	0,08
	Porto Sabino	4388	71,67	0,01
40050000		5430	72,25	0,01
	Tapirai-Jusante	559	80,71	4,02
	Ponte Olegario Maciel	8979	72,01	0,26
40070000	Ponte do Chumbo	9932	71,40	0,23
40100000	Porto das Andorinhas	13875	72,58	0,17
	Porto da Barra	14173	73,38	0,16
	Barra do Paraopeba	29366	76,48	0,08
41075001	Porto do Passarinho	4143	53,02	0,50
41090000	Canoeiros	5222	48,49	0,39

Tabela B 16 - Aqüíferos colúvio-eluviais Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	Estação	Àrea(Km²)	IEB observado	colúvio-eluviais (%)
	Pirapora-Barreiro	62334	75,41	2,36
41199998	Honório Bicalho	1698	72,68	0,12
41230000		2273	72,76	0,25
41260000		3727	70,94	0,15
41340000	Ponte Raul Soares	4874	67,15	0,12
41410000		6558	67,59	0,09
	Pirapama	8086	70,68	0,07
	Ponte do Licínio Jusante	10712	68,14	0,05
	Santo Hipólido	16722	63,66	0,03
41890000	Estação curumataí	1435	43,46	0,13
	Ponde do Bicudo	2023	43,32	0,52
41990000	Várzea da Palma	26553	62,93	2,01

Tabela B 17 - Aqüíferos aluviais Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação	Área(Km²)	IEB observado	aluvial (%)
40040000	Fazenda Ajudas	259	70,55	15,74
40046000	Porto Sabino	4388	71,67	12,64
40050000	Iguatama	5430	72,25	12,57
	Calciolandia	303	64,54	22,10
40056002	Fazenda Capoeirao	334	70,09	5,63
	Ponte Capoeirao	481	70,15	3,91
	Ponte Olegario Maciel	8979	72,01	11,69
40070000	Ponte do Chumbo	9932	71,40	14,64
40100000	Porto das Andorinhas	13875	72,58	14,26
40102000	Porto da Barra	14173	73,38	13,96
40400000	Estacao Alvaro da Silveira	1809	70,46	1,61
	Martinho Campos	770	74,89	39,84
40530000		481	58,54	5,66
40535000	Barra do Paraopeba	29366	76,48	10,16

Tabela B 18 - Aqüíferos aluviais

Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

	, , , , , , , , , , , , , , , , , , , ,		\ / 1	
Código	3	Área(Km²)	IEB observado	aluvial (%)
41135003	Pirapora-Barreiro	62334	75,41	7,80
41410000	Jequitibá	6558	67,59	0,11
	Pirapama	8086	70,68	0,60
41650002	Ponte do Licínio Jusante	10712	68,14	1,58
41685000	Ponte do Picão	547	50,90	30,44
	Presidente Juscelino	3996	45,67	0,06
41818000	Santo Hipólido	16722	63,66	2,10
	Ponde do Bicudo	2023	43,32	17,26
41990000	Várzea da Palma	26553	62,93	5,25

Tabela B 19 - Aqüíferos areníticos

Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 40

Código	Estação	Área(Km²)	IEB observado	Arenítico (%)
40037000	Fazenda da Barra	767	59,21	1,28
40046000	Porto Sabino	4388	71,67	0,23
40050000	Iguatama	5430	72,25	0,18
40060001	Tapirai-Jusante	559	80,71	6,54
40067000	Ponte Olegario Maciel	8979	72,01	0,63
40070000	Ponte do Chumbo	9932	71,40	0,57
40100000	Porto das Andorinhas	13875	72,58	0,41
40102000	Porto da Barra	14173	73,38	0,40
40180000	Carmo da Mata	144	69,53	0,81
40185000		1917	71,89	0,06
	Divinopolis	1987	70,20	0,06
40330000	Velho da Taipa	7370	71,98	0,02
40535000	Barra do Paraopeba	29366	76,48	1,53
40930000	Barra do Funchal	876	67,54	22,71
	Fazenda Bom Jardim	1744	53,56	24,19
40975000	Fazenda Sao Felix	964	48,15	77,74

Tabela B 20 - Aqüíferos areníticos Área Total da Bacia, IEB (%), Sistema Aqüífero (%) para Sub-bacia 41

Código	3	Área(Km²)	IEB observado	Arenítico (%)
41050000	Major Porto (Aneel cemig)	1207	57,47	67,53
	Porto do Passarinho	4143	53,02	55,57
	Canoeiros	5222	48,49	58,01
41135003	Pirapora-Barreiro	62334	75,41	19,54
	Estação curumataí	1435	43,46	0,81
	Ponde do Bicudo	2023	43,32	19,24
41990000	Várzea da Palma	26553	62,93	2,61

ANEXO C

Índices de desempenho *Es* para o médio rio das Velhas, utilizando-se de todas as séries de *IEB*s observados

Tabela C – Valores de Índice de desempenho Es para o médio rio das Velhas pelo método de Claps e Fiorentino (1997), com vazões médias estimadas e IEBs observados para os anos com término dado na tabela

	s medias e	Sumauas	G IEDS OF	isei vauus	para 08	anus com	i terrinio	uauu na l	autia		
	Ano/término	1940	_	1944	1945	1946	1947	1948	1949	1950	1951
	IEB	0,6226	0,6207	0,7229	0,7333	0,7982	0,7952	0,6947	0,8160	0,6708	0,6310
	Es	0,914782	0,918487	0,509541	0,436134	-0,226637	-0,186724	0,673526	-0,485983	0,778180	0,897033
41300000 Taquaraçu	Ano/término	1944	1945	1946	1947	1950	1951	1952	1953	1954	1955
	IEB	0,693	0,7334	0,742	0,711	0,7566	0,6828	0,7144	0,6867	0,6427	0,6331
	Es	0,919905	0,804952	0,771362	0,876703	0,705673	0,939409	0,867171	0,932349	0,987131	0,992773
41380000 Ponte Preta	Ano/término	1945	1947	1948	1949	1951	1952	1953	1955	1956	1957
	IEB	0,6408	0,6739	0,5784	0,5745	0,5344	0,5113	0,541	0,5319	0,461	0,5033
	Es	0,700664	0,509592	0,909567	0,91758	0,974192	0,98902	0,967789	0,976351	0,988672	0,991686
41410000 Jequitibá	Ano/término	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
	IEB	0,6517	0,6892	0,6533	0,5928	0,6758	0,75	0,697	0,6794	0,6714	0,7536
	Es	0,978453	0,996649	0,979497	0,927891	0,991763	0,98819	0,998543	0,993267	0,989742	0,985721
41539998 Faz.Contagem Montan	Ano/término	1966	1967	1968	1969	1970	1971	1973	1974	1975	1976
	IEB	0,7372	0,7264	0,6928	0,6607	0,5882	0,6016	0,621	0,6318	0,6611	0,648
	Es	0,970362	0,980732	0,998194	0,99792	0,956218	0,967125	0,980678	0,986899	0,998008	0,994172
41600000 Pirapama	Ano/término	1957	1970	1971	1972	1973	1974	1975	1976	1977	1978
·	IEB	0,6595	0,6797	0,7471	0,6859	0,6438	0,6752	0,6817	0,7289	0,5458	0,6335
	Es	0,979007	0,9911	0,990174	0,993887	0,966847	0,988791	0,99205	0,998165	0,856923	0,957758
41650002 Ponte do Licínio	Ano/término	1958	1959	1966	1967	1968	1969	1973	1974	1975	1976
	IEB	0,7102	0,7013	0,6543	0,6603	0,6408	0,5862	0,6525	0,6814	0,6779	0,6836
	Es	0,996308	0,99879	0,991099	0,993747	0,983676	0,93743	0,990223	0,999433	0,99891	0,999669
41700001 Paraúna	Ano/término	1960	1961	1962	1965	1966	1967	1968	1969	1970	1971
	IEB	0,5697	0,7057	0,6835	0,7488	0,7123	0,6665	0,6161	0,4977	0,6564	0,5966
	Es	0,987545	0,898703	0,942668	0,760833	0,88243	0,966413	0,997193	0,929524	0,976967	0,996698
41715000 Fazenda Cachoeira	Ano/término	1943	1944	1950	1951	1952					
	IEB	0,5247	0,488	0,5771	0,5375	0,4836					
	Es	0,972297	0,996983	0,877587	0,956494	0,998177					
41720000 Fazenda Cipó	Ano/término	1940	1943	1944	1945	1946	1947	1948	1949	1950	1951
·	IEB	0,4773	0,4228	0,4458	0,437	0,5644	0,4533	0,4674	0,6836	0,4828	0,4701
	Es	0,986398	0,99907	0,998689	0,999604	0,850243	0,997094	0,9919	0,226376	0,982629	0,990558
41780002 Presidente Juscelino	Ano/término	1975	1976	1977	1978	1980	1981	1982	1984	1985	1986
	IEB	0,5085	0,4702	0,2967	0,3803	0,7081	0,4093	0,4567	0,5129	0,4949	0,4545
	Es	0,949207	0,903949	0,653678	0,77629	0,790674	0,819104	0,886139	0,953762	0,934199	0,883167
				1010	4050	1051	1952	1953	1954	1955	1956
41818000 Santo Hipólido	Ano/término	1944	1945	1946	1950	1951	1932	1900	1904	1900	1930
•	Ano/término IEB	1944 0,6251	1945 0,6848	0,7408	0,7132	0,5807	0,6428	0,6712	0,6921	0,6655	0,6448

Continuação da Tabela C

	Ano/término				1055	1056	1057	1050	1050	1060	1061
41230000 Vespaiano	IEB	1952 0,7140	1953 0,7631	1954 0,7157	1955 0,6497	1956 0,6280	1957 0,5876	1958 0,7161	1959 0,8154	1960 0,6734	1961 0,7835
	Es	0,7140	0,7631	0,7157	0,848851	0,903634	0,966638		-0,476581		-0,040724
			1957		,	,	,	1962			
	Ano/término IEB	1956 0,627	0,6635	1958 0,7545	1959 0,7085	1960 0,6236	1961 0,6238	0,7035	1963 0,6905	1964 0,73	1965 0,7147
	Es	0,827	0,967673	0,7545	0,7065	0,996509	0,9236	0,7035	0,6905	0,73	0,866308
		·		,	,	,	·	,	,	•	,
	Ano/término	1958	1959	1960	1962	1963	1964	1965	1966	1967	1968
L	IEB	0,582	0,6911	0,5219	0,5695	0,5044	0,4829	0,5543	0,6386	0,5803	0,6149
	Es Anno 4 formation of	0,901723	0,381211	0,983602	0,927141	0,991388	0,993528	0,951593	0,711082	0,905481	0,807833
•	Ano/término	1976	1977	1978	1980	1981	1982	1983	1984	1985	1986
l ==	IEB 	0,6944	0,52	0,6325	0,6586	0,676	0,6608	0,6731	0,7249	0,6021	0,7333
	Es	0,997994	0,845077	0,964378	0,982802	0,99185	0,984102	0,990546	0,998678	0,937182	0,996405
41539998 Faz.Contagem Montan		1977	1978	1980	1981	1982	1983	1984	1985	1986	1987
	IEB	0,6402	0,6848	0,7085	0,7504	0,7575	0,7527	0,7881	0,7685	0,792	0,7311
	Es	0,990997	0,999497	0,992607	0,95402	0,943417	0,95073	0,881094	0,924269	0,87099	0,976534
	Ano/término	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
	IEB	0,7263	0,6844	0,7202	0,7041	0,7529	0,6945	0,766	0,7253	0,6269	0,7254
	Es	0,998771	0,993256	0,999709	0,999162	0,986134	0,996947	0,974047	0,998971	0,951524	0,998952
	Ano/término	1977	1978	1980	1981	1982	1983	1984	1985	1986	1987
	IEB	0,5059	0,6479	0,7526	0,6716	0,681	0,6855	0,7503	0,6809	0,79	0,6951
<u> </u>	Es	0,841691	0,987823	0,961437	0,997534	0,999382	0,999814	0,964453	0,999369	0,88975	0,999684
	Ano/término	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
	IEB	0,6507	0,5472	0,7296	0,6328	0,5888	0,5044	0,6056	0,6575	0,7506	0,4969
F	Es	0,981857	0,973811	0,831899	0,992662	0,994971	0,936409	0,99764	0,975937	0,753277	0,928686
41715000 Fazenda Cachoeira	Ano/término										
Į į	IEB										
F	Es										
41720000 Fazenda Cipó	Ano/término	1952	1953	1954	1955	1956	1957	1958	1959	1961	1962
·	IEB	0,4329	0,5648	0,4727	0,5359	0,494	0,5403	0,4506	0,546	0,5047	0,4927
F	Es	0,999696	0,849159	0,989155	0,915162	0,973275	0,90663	0,997758	0,894803	0,962088	0,974481
41780002 Presidente Juscelino	Ano/término	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
j lī	IEB	0,3917	0,4569	0,4124	0,4647	0,3899	0,5167	0,4443	0,507	0,4975	0,4329
	Es	0,793194	0,886408	0,823632	0,896786	0,790529	0,957565	0,869172	0,947619	0,93717	0,853161
41818000 Santo Hipólido	Ano/término	1957	1962	1963	1964	1965	1966	1967	1968	1969	1970
	IEB	0,6254	0,6659	0,5841	0,5937	0,6344	0,6388	0,6484	0,6309	0,5695	0,6343
	Es	0.998195	0,994668	0,978524	0.984749	0.999674	0.999965		0,999236	0,967468	

Continuação da Tabela C

Continuação da Tabela C											
41250000 Vespaiano	Ano/término	1969	1970	1973		1975	1976		1978	1980	1981
	IEB	0,6057	0,7125	0,6653	0,7286	0,6535	0,6310	0,6402	0,5589	0,6379	0,6592
	Es	0,943976	0,575673	0,798419	0,470246	0,837474	0,897033	0,874893	0,987202	0,880704	0,819330
41300000 Taquaraçu	Ano/término	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
	IEB	0,6952	0,6306	0,7179	0,6365	0,6644	0,6235	0,6108	0,6238	0,6516	0,6967
	Es	0,915246	0,993928	0,856872	0,990997	0,966587	0,996539	0,998898		0,980082	0,911975
41380000 Ponte Preta	Ano/término	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
	IEB	0,5573	0,5518	0,5703	0,5135	0,4701	0,5436	0,6945	0,6053	0,5268	0,4938
	Es	0,947292	0,95499	0,925664	0,988078	0,991465	0,964978	0,353141	0,839667	0,98032	0,993384
41410000 Jequitibá	Ano/término	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
	IEB	0,6946	0,6191	0,6958	0,6239	0,6371	0,7105	0,7132	0,7348	0,7108	0,5949
	Es	0,998039	0,953049	0,9983	0,957236	0,967996	0,999987	0,999976	0,995874	0,999991	0,930023
41539998 Faz.Contagem Montan	Ano/término	1988	1989	1990	1991	1992	1994	1995	1996	1998	1999
	IEB	0,5777	0,7218	0,7174	0,7053	0,7503	0,7054	0,6958	0,7201	0,7711	0,8189
	Es	0,946912	0,98439	0,987487	0,994091	0,95416	0,994047	0,997446	0,985632	0,919232	0,785714
41600000 Pirapama	Ano/término	1990	1991	1992	1993	1994	1995	1996	1998	1999	
·	IEB	0,7445	0,6337	0,7254	0,7336	0,7469	0,7128	0,6247	0,722	0,7068	
	Es	0,991739	0,957942	0,998952	0,996744	0,990299	0,99998	0,94938	0,999502	0,999542	
41650002 Ponte do Licínio	Ano/término	1988	1989	1991	1993	1994	1995	1996	1998	1999	
	IEB	0,6224	0,6834	0,5839	0,7188	0,7089	0,7708	0,6558	0,698	0,7045	
	Es	0,97068	0,99965	0,935039	0,992471	0,996762	0,932189	0,9918	0,999348	0,998064	
41700001 Paraúna	Ano/término	1982	1983	1987	1988	1989					
	IEB	0,5257	0,566	0,5684	0,6069	0,674					
	Es	0,956597	0,98563	0,986888	0,997677	0,956908					
41715000 Fazenda Cachoeira	Ano/término						1				
	IEB										
	Es										
41720000 Fazenda Cipó	Ano/término										
· ·	IEB										
	Es										
41780002 Presidente Juscelino	Ano/término	1997	1998	1999							
	IEB	0,3896	0,4401	0,5056							
	Es	0,790085		0,946121							
41818000 Santo Hipólido	Ano/término	1971	1972	1973	1974	1975	1976	1977	1978	1980	1981
· '	IEB	0,6292	0,6444	0,6286	0,7238	0,6046	0,6197	0,4516		0,6403	0,6311
	Es	0,99896	0,9999	0,998853	,	0,990687	0,99668			0,999996	0,999266
	-	,	,	,	, -	, -	,	,		,	,

Continuação da Tabela C

Continuação da Tabela C											
41250000 Vespaiano	Ano/término	1982	1984	1985	1986	1987	1990		1992	1993	1994
	IEB	0,6432	0,7070	0,6346	0,7515	0,6378	0,6758	0,6296		0,7546	0,5766
	Es	0,867030	0,607893	0,888717	0,288378	0,880952	0,758593	0,900150	0,947608	0,260564	0,976572
41300000 Taquaraçu	Ano/término	1976	1977	1978	1980	1981	1984	1985		1987	1988
	IEB	0,6257	0,6699	0,5329	0,6867	0,6694	0,69	0,6919	0,707	0,6717	0,6194
	Es	0,995833	0,959475	0,964585	0,932349	0,960156	0,925994	0,922172	0,887338	0,956965	0,997614
41380000 Ponte Preta	Ano/término	1979	1982	1983	1984	1985	1986	1987	1988	1989	1990
	IEB	0,505	0,5503	0,556	0,6193	0,4662	0,6318	0,5386	0,552	0,5215	0,5057
	Es	0,991217	0,956948	0,949186	0,791896	0,990396	0,741673	0,970238	0,954725	0,983848	0,991009
41410000 Jequitibá	Ano/término	1998	1999								
·	IEB	0,6438	0,6823								
	Es	0,972996	0,994379								
41539998 Faz.Contagem Montan	Ano/término										
•	IEB										
	Es										
41600000 Pirapama	Ano/término										
·	IEB										
	Es										
41650002 Ponte do Licínio	Ano/término										
	IEB										
	Es										
41700001 Paraúna	Ano/término										
	IEB										
	Es										
41715000 Fazenda Cachoeira	Ano/término										
	IEB										
	Es										
41720000 Fazenda Cipó	Ano/término										
· · · · = = = = · · · · · · = = ·	IEB										
	Es										
41780002 Presidente Juscelino	Ano/término										
The state of the s	IEB										
	Es										
41818000 Santo Hipólido	Ano/término	1982	1983	1984	1985	1986	1987	1988	1989	1991	1992
Tre recoordante i ripolido	IEB	0,6699	0,649	0,6898	0,661	0,6004	0,5765	0,5842	0,5932	0,5579	
	Es	0,992738	,				0,972994			0,957477	0,979468
	_5	0,002700	0,000700	J,J100 1 J	5,550005	0,000049	0,012004	0,070000	0,00777/	0,001711	0,070700

Continuação da **Tabela C**

41250000 Vespaiano	Ano/término	1995	1996	1998	1999						
i i	IEB	0,6593	0,5539	0,6439	0,6551						
	Es	0,819000	0,989115	0,865148	0,832514						
41300000 Taquaraçu	Ano/término	1989	1990	1991	1992	1993	1994	1995	1996	1998	1999
, -	IEB	0,6635	0,6435	0,6733	0,6659	0,7353	0,6774	0,7021	0,5372	0,6735	0,6989
	Es	0,967673	0,986571	0,954658	0,964729	0,797838	0,948407	0,89954	0,968131	0,954364	0,907034
41380000 Ponte Preta	Ano/término	1991	1992	1993	1994	1995	1996	1998	1999		
	IEB	0,4997	0,5195	0,626	0,6414	0,5994	0,484	0,5928	0,6021		
	Es	0,99251	0,985026	0,765913	0,697778	0,857334	0,993596	0,875483	0,849422		
41410000 Jequitibá	Ano/término									1	
	IEB	1									
	Es	1									
41539998 Faz.Contagem Montar	n Ano/término	1									
_	IEB	1									
	Es	1									
41600000 Pirapama	Ano/término	1									
· ·	IEB	1									
	Es	1									
41650002 Ponte do Licínio	Ano/término	1									
	IEB	1									
	Es	1									
41700001 Paraúna	Ano/término	1									
	IEB	1									
	Es	1									
41715000 Fazenda Cachoeira	Ano/término	1									
	IEB	1									
	Es	1									
41720000 Fazenda Cipó	Ano/término	1									
·	IEB	1									
	Es	1									
41780002 Presidente Juscelino	Ano/término	1									
	IEB]									
	Es	1									
41818000 Santo Hipólido	Ano/término	1993	1994	1995	1996	1998	1999				
	IEB	0,6311	0,6618	0,683	0,6289	0,6399	0,6689				
	Es	0,999266	0,996318	0,984067	0,998907	0,999991	0,99325				