Danielle Ferreira de Magalhães

PREVALENCIA DE AGLUTININAS ANTI-LEPTOSPIRA INTERROGANS EM CÃES DE BELO HORIZONTE, MINAS GERAIS, 2001/02.

Dissertação apresentada à Universidade Federal de Minas Gerais, Escola de Veterinária, como requisito parcial para obtenção de grau de Mestre em Medicina Veterinária

Área de Concentração: Epidemiologia

Orientador: José Ailton da Silva

BELO HORIZONTE
ESCOLA DE VETERINÁRIA – UFMG
2005
Prevalência de aglutininas anti-\textit{Leptospira interrogans} em cães de Belo Horizonte, Minas Gerais, 2001/02 / Danielle Ferreira de Magalhães. – 2005.
57 p.: il.

Orientador: José Ailton da Silva
Dissertação (mestrado) – Universidade Federal de Minas Gerais,
Escola de Veterinária
Inclui bibliografia

II. Universidade Federal de Minas Gerais. Escola de Veterinária.
III. Título.

CDD – 636.708 969
Tese defendida e aprovada em 10 de fevereiro de 2005, pela Comissão Examinadora constituída por:

Prof. José Ailton da Silva
(orientador)

Prof. Elvio Carlos Moreira

Profa. Isabella Bias Fortes Feitraz

Prof. José Newton Coelho Meneses

Profa. Vera Lúcia Viegas de Abreu
Ao Professor, mestre e amigo José Ailton da Silva, que há alguns anos vem conduzindo meus passos na carreira de Veterinária com sua competência, responsabilidade e ética, no qual sempre encontrei uma palavra de incentivo, de força e a quem eu devo a grande parte das conquistas profissionais que alcancei até hoje.

À Deus que enche a minha vida de alegrias e me proporciona realizar sonhos como esse que agora concretizo. “O Senhor é minha luz e salvação. O que poderei temer?”

(Salmo 27)

AGRADECIMENTOS

Aos meus queridos pais, que acreditaram em mim e apoiaram todas as minhas decisões, especialmente a minha mãe que não permitiu que eu desistisse nunca.

Ao Thadeu, meu veterinário preferido, pelo amor, respeito, dedicação e carinho em todos os momentos.

A minha irmã Juliana, pelo exemplo de vida a ser seguido, em quem sempre me espelhei e ao seu marido Humberto pelo exemplo de trabalho, competência e família feliz.

A minha sobrinha Mariana, que não me deixa ficar triste nunca pelo simples fato de existir, encher minha vida de momentos alegres.

A minha Avozinha, tio Gê, Cibelle e Raimunda que me ajudam tanto no dia-a-dia e a todos os meus familiares que sempre me apoiaram.

Ao Professor e Mestre Élvio Carlos Moreira por tantos ensinamentos, não apenas sobre leptospirose, mas também sobre o prazer de viver a profissão de veterinário além dos livros e da sala de aula.

A todos os professores do DMVP, especialmente ao Pedro Litgh e José Newton que me deram a honra de tornar-me sua “colégia” de profissão, nos quais também me espelho e agradeço por toda a confiança e ensinamentos. Ao José Newton agradeço também pela correção do trabalho e por me ensinar a valorizar mais as minhas ideias.
A grande amiga Aline Bezerra Virgílio Nunes, minha parceira nos primeiros meses de projeto, pelas ideias, pelas coletas de sangue, processamento e digitação dos dados e a amiga Renata Pataro pela força no processamento das amostras, pelo alto astral e companheirismo.

Ao grande amigo Antônio Benjamin de Paula, o "Toninho" que já me deu seu ombro algumas vezes prà chorar, me acolheu tão bem no departamento e me ajudou no processamento das amostras.

Ao também mestre e conselheiro Francisco Viana, pelos ensinamentos, críticas construtivas e incentivo.

Ao Professor João Paulo pela grande ajuda nas análises estatísticas, paciência e boa vontade.

As "prá sempre amigas" Renata Freitas, Ana Paula, Ana Luisa e Amanda, além da Aline e Rê já mencionadas, pelo incentivo para entrar no mestrado e pela força para não desanimar.

Aos amigos do Departamento Denise, Andreza, Jader, Cássio, Rogério, Raquel, Mônica, Leandro, Pedro, Dani, Lili, Ricardo, Ju, Liz e todos os outros pelos ótimos momentos que passamos juntos.

As amigas Isabella Farnezi e Valdelaine Araújo pela ajuda com os dados do Epinfo.

Aos funcionários do Centro de Controle de Zoonoses, especialmente Vanessa Wiike, Élder, Mário e Maria do Camo pela grande parceria no projeto, carinho e cuidados com o envio das amostras.

A funcionária do DMVP Nâdia, pela amizade e formatação da dissertação e as funcionários do colegiado de Pós-graduação, especialmente a Nilde e a Lu, por todas as orientações fornecidas.

Ao Felipe Antônio Carneiro, técnico em geoprocessamento da Prodabel, pela grandiosa ajuda na produção dos mapas, pela paciência e disponibilidade sem limites.

Ao Grupo Gerencial de Saneamento da Prefeitura Municipal de Belo Horizonte, especialmente ao Eulo, Sónia e Miriam, pela disponibilidade dos bancos de dados utilizados na confecção dos mapas.

A Gerência de Epidemiologia da Secretaria Municipal de Saúde de Belo Horizonte, pelos dados fornecidos.

Aos funcionários da Biblioteca da Escola de Veterinária da UFMG, especialmente a Rosilene, pelas correções.

Aos amigos Raphael e Juliana pela tradução do resumo e correção do trabalho.

Aos meus amigos da Clinica Veterinária Univet que durante esse período me acolheram nos finais de semana com tanto carinho, especialmente à Elaine, que tanto me ajudou com as trocas de plantões.

A todos os meus amigos que de alguma forma colaboraram para a realização desse trabalho.
SUMÁRIO

<table>
<thead>
<tr>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMO</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
</tr>
<tr>
<td>2 LITERATURA CONSULTADA</td>
</tr>
<tr>
<td>3 MATERIAL E MÉTODOS</td>
</tr>
<tr>
<td>3.1 Caracterização da área de estudo</td>
</tr>
<tr>
<td>3.2 Definição da amostra</td>
</tr>
<tr>
<td>3.3 Técnica de soroaglutinação microscópica</td>
</tr>
<tr>
<td>3.4 Associação entre fatores de risco e aglutininas anti-Leptospira interrogans nos cães</td>
</tr>
<tr>
<td>3.5 Organização dos dados e análise estatística</td>
</tr>
<tr>
<td>4 RESULTADOS E DISCUSSÃO</td>
</tr>
<tr>
<td>5 CONCLUSÕES</td>
</tr>
<tr>
<td>6 REFERÊNCIAS BIBLIOGRÁFICAS</td>
</tr>
<tr>
<td>Anexo 1</td>
</tr>
<tr>
<td>Anexo 2</td>
</tr>
<tr>
<td>Anexo 3</td>
</tr>
</tbody>
</table>

LISTA DE QUADROS

Quadro 1	Atendimento por abastecimento de água em Belo Horizonte	17
Quadro 2	Atendimento por esgotamento sanitário em Belo Horizonte	17
Quadro 3	Formas de esgotamento sanitário dos domicílios de Belo Horizonte	17
Quadro 4	Sorovariedades de Leptospira interrogans utilizadas como antígenos no teste de soroaglutinação microscópica	22

LISTA DE TABELAS

<p>| Tabela 1 | Estimativa da população canina de acordo com as regionais da Prefeitura de Belo Horizonte – 2000 | 19 |
| Tabela 2 | Apreensão de cães vadios realizada pelo Centro de Controle de Zoonoses da Prefeitura de Belo Horizonte, 2000 | 19 |
| Tabela 3 | Busca domiciliar comum realizada pelo Centro de Controle de Zoonoses da Prefeitura de Belo Horizonte, 2000 | 20 |
| Tabela 4 | Busca domiciliar de leishmaniose realizada pelo Centro de Controle de Zoonoses da Prefeitura de Belo Horizonte, 2000 | 20 |
| Tabela 5 | Número de cães de acordo com a forma de apreensão pelo Centro de Controle de Zoonoses de Belo Horizonte, 2000 | 21 |
| Tabela 6 | Amostragem de cães por regional da Prefeitura de Belo Horizonte, 2000 | 21 |</p>
<table>
<thead>
<tr>
<th>Tabela</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabela 7</td>
<td>Distribuição dos cães positivos para L. interrogans de acordo com a forma de apreensão dos animais nas diferentes regionais da Prefeitura de Belo Horizonte, de setembro de 2001 a setembro de 2002</td>
<td>24-</td>
</tr>
<tr>
<td>Tabela 8</td>
<td>População por categoria de risco* segundo regionais da Prefeitura de Belo Horizonte, 2000</td>
<td>30</td>
</tr>
<tr>
<td>Tabela 9</td>
<td>Distribuição dos cães positivos para aglutininas anti-Leptospira interrogans de acordo com a forma de apreensão feita pelo Centro de Controle de Zoonoses de Belo Horizonte, de setembro de 2001 a setembro de 2002</td>
<td>33</td>
</tr>
<tr>
<td>Tabela 10</td>
<td>Distribuição das sorovariedades de Leptospira interrogans de acordo com as titulações sorológicas pela técnica de soroaglutinação microscópica em cães de Belo Horizonte, setembro de 2001 a setembro de 2002</td>
<td>35</td>
</tr>
<tr>
<td>Tabela 11</td>
<td>Solicitações de controle de roedores atendidas e recebidas por regional em Belo Horizonte, de setembro de 2001 a setembro de 2002</td>
<td>42</td>
</tr>
</tbody>
</table>

LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1</td>
<td>Localização do município de Belo Horizonte em Minas Gerais e sua divisão em regionais administrativas</td>
<td>15</td>
</tr>
<tr>
<td>Figura 2</td>
<td>Prevalência da Leptospira interrogans em cães nas regionais de Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>25</td>
</tr>
<tr>
<td>Figura 3</td>
<td>Distribuição das aglutininas anti-Leptospira interrogans em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>28</td>
</tr>
<tr>
<td>Figura 4</td>
<td>Distribuição de cães positivos para L. interrogans em relação às áreas não atendidas por rede de esgoto em Belo Horizonte – MG, 2001 – 2002</td>
<td>31</td>
</tr>
<tr>
<td>Figura 5</td>
<td>Distribuição de cães positivos para L. interrogans em relação às áreas não atendidas por coleta de lixo em Belo Horizonte – MG, 2001 – 2002</td>
<td>31</td>
</tr>
<tr>
<td>Figura 6</td>
<td>Sorovariedades de L. interrogans encontradas em soros caninos, Belo Horizonte, MG, setembro de 2001 a setembro de 2002</td>
<td>34</td>
</tr>
<tr>
<td>Figura 7</td>
<td>Distribuição das aglutininas anti-canicola em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>37</td>
</tr>
<tr>
<td>Figura 8</td>
<td>Distribuição das aglutininas anti-ballum em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>37</td>
</tr>
<tr>
<td>Figura 9</td>
<td>Distribuição das aglutininas anti-pyrogene em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>39</td>
</tr>
<tr>
<td>Figura 10</td>
<td>Distribuição das aglutininas anti-icterohaemorrhagiae em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>39</td>
</tr>
<tr>
<td>Figura 11</td>
<td>Solicitações de controle de roedores recebidas e atendidas por regional em Belo Horizonte, de setembro de 2001 a setembro de 2002</td>
<td>43</td>
</tr>
<tr>
<td>Figura 12</td>
<td>Distribuição dos cães testados para aglutininas anti-Leptospira interrogans de acordo com o sexo, Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>44</td>
</tr>
<tr>
<td>Figura 13</td>
<td>Idade dos cães testados para aglutininas anti-Leptospira interrogans, Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>44</td>
</tr>
<tr>
<td>Figura 14</td>
<td>Distribuição dos cães testados para aglutininas anti-Leptospira interrogans em relação a raça, Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>45</td>
</tr>
<tr>
<td>Figura 15</td>
<td>Distribuição dos cães positivos para L. interrogans de acordo com o mês do ano e o índice de precipitação pluvial em Belo Horizonte – MG, setembro de 2001 a setembro de 2002</td>
<td>47</td>
</tr>
</tbody>
</table>
RESUMO

Esse estudo objetivou avaliar a prevalência de aglutininas anti-Leptospira interrogans nos cães recolhidos pelo Centro de Controle de Zoonoses nas nove regionais administrativas da Prefeitura Municipal de Belo Horizonte, em diferentes épocas do ano, correlacionando as áreas de prevalência de cães reagentes com áreas de saneamento ambiental usando recursos de georreferenciamento. De setembro de 2001 a setembro de 2002 foram processadas 3417 amostras sanguíneas de cães pela técnica de soroaglutinação microscópica, encontrando-se 13,11% de positividade, sendo mais prevalentes os sorovares canicola, ballum, pyrogenes e icterohaemorrhagiae. As maiores prevalências ocorreram nas regionais Centro-Sul com 22,48%, 19,12% na Leste e 13,20% na Nordeste. A regional Pampulha, com 8,17%, apresentou o menor percentual de reagentes. As variáveis sexo, raça, idade e tipo de apreensão dos cães relacionaram-se com prevalências mais elevadas nos machos, sem raça definida e não domiciliados e não apresentaram diferenças significativas em relação à idade. Os meses com maior número de infecções nos cães foram dezembro/2001 e janeiro/2002, correspondendo ao período de maior precipitação pluvial e temperaturas médias mais elevadas. As aglutininas anti-Leptospira interrogans nos cães estão amplamente distribuídas no município de Belo Horizonte apresentando áreas de risco diferenciadas. As áreas de maior risco coincidiram com as regiões de vilas, favelas e bairros da periferia onde existia deficiência de saneamento ambiental.

Palavras-chave: Cão, Leptospira, prevalência, distribuição espacial

ABSTRACT

The aim of this study was to evaluate the prevalence of anti-Leptospira agglutinins in dogs collected for the Zoonosis Control Center, in nine neighborhoods of Belo Horizonte in different times of the year, establishing a relation between areas where dogs with positive results prevail and areas of environmental sanitation, using sources of georeference. From September 2001 to September 2002 3,417 blood samples from dogs were submitted to the microscopic agglutination test (MAT), and we found 13.11% of seropositivity, being the most reactive serovars canicola, ballum, pyrogenes and icterohaemorrhagiae. Higher prevalence was found in Center-southern with 22.48%, 19.12% in Eastern and 13.20 in Northeastern neighborhoods. Pampulha region, with 8.17%, presented the smallest percentage of positive reactions. The variables sex, race, age and type of apprehension reveal an increased prevalence of infection in male wandering dogs of undefined race, without difference to age. Months with highest number of dog infection were December 2001 and January 2002, corresponding to the period of downfall and increased temperature. A closer analysis of the pattern of distribution of anti-Leptospira interrogans agglutinin shows it is widespread throughout the city of Belo Horizonte, and there are areas with different risk level. Those with higher risk are villages, slums and suburbs with environmental sanitation deficiency.

Keywords: Dog, Leptospira, prevalence, spatial distribution.
1 INTRODUÇÃO

As leptospiroses são doenças infecto-contagiosas de grande repercussão na saúde pública, devido a sua facilidade de transmissão, alta letalidade, apesar da baixa morbididade, e relação direta com as condições sócio-econômicas da população. Apresentam alta prevalência em países tropicais, onde há grandes precipitações pluviais e o solo é neutro ou alcalino. A temperatura ideal para a sobrevivência de leptospiras patogênicas no meio ambiente é em torno de 28°C e pH entre 7,2 a 7,4. As leptospiroses estão amplamente distribuídas pelo mundo, podendo afetar várias espécies de animais domésticos, silvestres e também o homem. Os roedores são portadores sadios da doença, entre eles o rato de esgoto (Rattus norvegicus), o rato dos telhados (Rattus rattus) e o camundongo (Mus musculus) que são fontes de infecção para o cão e também para o homem.

O cão tem um importante papel na transmissão da doença ao homem, por manter a leptospirosa por longo período em seus rins, podendo eliminá-la na urina sem apresentar sinais clínicos ou até mesmo após obter melhora clínica. Esses fato se torna mais agravante devido aos hábitos domésticos do cão e sua estreita relação com o homem.

A contaminação do homem se dá pelo contato direto com urina, tecidos ou sangue de animais infectados; ou indiretamente pelo contato com água e/ou solos úmidos contaminados. No homem, a doença pode ser discreta (febre, cefaléia, dores musculares, anorexia, náuseas e vômitos) ou evoluir para uma doença icterícia grave (disfunção renal, fenômenos hemorrágicos, alterações hemodinâmicas, cardíacas, pulmonares e de consciência). No cão, os sinais clínicos poderão ser vagos ou inaparentes dependendo da sorovariedade infectante. Na maioria das vezes, os cães apresentam um quadro de anorexia, depressão, vômito, melena e icterícia, embora esses não sejam sinais patognomônicos para o diagnóstico da doença.

As leptospiroses apresentam forte significado sócio-econômico-cultural e são exacerbadas por fatores como o crescimento desordenado de grandes centros urbanos, as migrações, as deficiências nas condições de saneamento básico e o acúmulo de lixo, que promovem a expansão de roedores.

A persistência do agente na natureza e o elevado potencial de infecção são assegurados pela diversidade de identidades sorológicas, pela multiplicidade de espécies hospedeiras e pelo relativo grau de sobrevivência das leptospiras patogênicas no ambiente, sem parasitismo, ainda que essas não se multipliquem fora do organismo dos hospedeiros (Faine et al. 1999).

A escassez de artigos detalhados em relação à distribuição da leptospirose canina em Belo Horizonte, não fornece elementos sobre áreas diferenciadas de risco, que são úteis para planejar ações de um programa eficaz para controle dessa zoonose, permitindo intervenções saneadoras amplas nos locais de maior risco. Nessa cidade é comum encontrar nas ruas animais vadios, principalmente cães, muitos deles semidomiciliados e outros totalmente abandonados, que podem servir de fonte de infecção e dispersão da doença.

O presente estudo teve como objetivo avaliar a prevalência de aglutininas anti-Leptospira interrogans em cães de Belo Horizonte em diferentes épocas do ano, correlacionando as áreas de prevalência de cães reagentes com áreas de saneamento ambiental usando recursos de georreferenciamento.
2 LITERATURA CONSULTADA

Deve-se a Darcos Filho (1940) o estudo inicial sobre a leptospirose canina no Brasil, com o isolamento de uma amostra de Leptospira identificada como sendo, provavelmente,icterohaemorrhagiae.

Azevedo e Santos (1946) conseguiram isolar, utilizando-se de minuciosas pesquisas bacteriológicas, anátomo e histopatológicas, 15 amostras de leptospiiras no Rio de Janeiro, sendo sete de cães e oito de casos humanos. Três das sete amostras de cães foram identificadas como pertencendo ao sorotipo Leptospira icterohaemorrhagiae. As outras amostras, incluindo as de soros humanos, comportaram-se de modo diferente do sorotipo clássico icterohaemorrhagiae, ficando na época sem as devidas identificações.

Guida (1948) isolou pela primeira vez no Brasil Leptospira canicola de cão, tendo realizado a respectiva identificação sorológica. O mesmo autor, em 1949, pesquisando aglutininas e lisinas anti-leptospiiras em 100 amostras de soros de cães normais da cidade de São Paulo, verificou que 13% e 18% delas reagiam, respectivamente, com culturas de Leptospira icterohaemorrhagiae e Leptospira canicola, além de encontrar 3% de aglutinação para as duas sorovariedades.

Yamamoto (1951), em Tóquio, examinando 132 cães reagentes para canicola, sorvar responsável pela Febre Canícola no homem, encontrou 21 (15,9%) portadores, enquanto que em 30 cães reagentes para icterohaemorrhagiae, sorvar responsável pela Doença de Weil no homem, encontrou apenas um portador (3,3%).

Veronesi et al. (1956) realizaram inquérito sorológico em 125 cães da cidade de São Paulo com a finalidade de apurar a frequência da infecção nesses animais e avaliar sua importância como veiculador da doença. Os resultados foram positivos apenas para icterohaemorrhagiae (4,8%) e canicola (4,8%), não encontrando reações para as outras sorovariedades testadas.

Castro et al. (1962) na cidade de São Paulo, examinaram 279 amostras de cães sem sinais clínicos de leptospirose, com exceção de um cão da raça boxer que morreu e foi isolado de sua urina e de seus rins o sorovar icterohaemorrhagiae. Os soros foram testados pela técnica de soroaglutinação microscópica (SAM), encontrando 14,1% de reagentes com títulos iguais ou superiores a 1:200. Os sorotipos que reagiram foram icterohaemorrhagiae (10,4%), canicola (2,86%), sejroe (0,7%), hyos, australis e bataviae (0,3%).

Santa Rosa et al. (1970), analisaram os trabalhos realizados no Instituto Biológico de São Paulo no período de 1960 a 1968. Nesse período, foram examinados 21.263 soros, com uma taxa de positividade de 22,4% dentre várias espécies, inclusive o homem. A frequência de cães positivos foi de 14,0%, sendo encontradas 10,56% de reações para o sorotipo icterohaemorrhagiae e 1,87% para canicola, além de um resultado menos expressivo para os sorovares pomona, tarassovi, sejroe, australis, bataviae e pyogenes.

Reis et al. (1972) pesquisaram 445 amostras de cães em Belo Horizonte pela técnica de SAM, encontrando 10,1% de positivos, sendo que 44 (9,9%) reagiram para icterohaemorrhagiae e 38 (8,5%) para canicola. A frequência maior ocorreu entre os meses de março a setembro, entre as idades de dois a sete anos e nas fêmeas.

Santa Rosa et al. (1974) realizaram inquérito sorológico também em Belo Horizonte em 135 cães clinicamente normais, utilizando a técnica de SAM, considerando-se reagentes apenas os animais cujos soros apresentaram títulos iguais ou superiores a 1:200. Dos cães testados, 5,9% foram positivos aos sorotipos icterohaemorrhagiae, pomona, tarassovi e pyogenes. Chama a atenção o fato de não ter sido encontrada nenhuma reação positiva para o sorotipo canicola.

Hagiwara e Santa Rosa (1975), na cidade de São Paulo, pesquisaram aglutininas anti-Leptospira interrogans em 40 cães entre um e dez anos de idade que haviam sido
levados ao Hospital Veterinário para vacinação anti-rábica. Apenas três (7,5%) foram positivos em diluições iguais ou superiores a 1:200 e os sorotipos reagentes foram *icterohaemorragiae, canicola* e *pyrogenes*.

Caldas e Dória (1976) analisaram aspectos epidemiológicos da leptospirose canina na cidade de Salvador, obtendo 21,6% de positividade, em títulos que variaram de 1:100 a 1:12.800, sendo mais frequentes os sorotipos *canicola* (24,5%) e *icterohaemorragiae* (22,6%). A diferença de positividade entre machos e fêmeas não foi estatisticamente significativa. A faixa etária de 12 a 18 meses representou 67,7% das observações, sendo que 82,8% dos positivos eram cães sem raça definida.

Ávila et al. (1980), no município de Jaboticabal, estudaram 120 amostras de cães pela técnica de SAM. Dessas, 41 (34,1%) foram reagentes para um ou mais sorotipos, com títulos aglutinantes variando de 1:100 até 1:102.400. Do total de cães positivos, 26,8% eram machos e 73,2% eram fêmeas. Os sorotipos encontrados foram *canicola* (78,0%), *balaen* (26,8%), *bubalum* e *pyrogenes* (12,1%), *icterohaemorragiae* e *pomona* (9,7%), *panama* (3,7%), *grippotyphosa* (4,8%), *autumnalis*, *bataviae* e *wolffi* (2,4%).

Ávila et al. (1998), no Rio Grande do Sul, diferentemente dos autores anteriormente citados, estudaram a prevalência da doença na cidade de Pelotas e as relações dos resultados encontrados com algumas variáveis importantes para a sobrevivência do agente no ambiente. Foram detectadas 34,8% de amostras positivas, com título igual ou superior a 1:100, para os sorotipos: *canicola* (58,1%), *icterohaemorragiae* (20,9%), *copenhageni* (11,4%), *grippotyphosa* e *castellonis* (2,7%), andamanana, *autumnalis*, *pyrogenes* (1,4%). Houve maior ocorrência da infeção nos meses de março, agosto, setembro, outubro e novembro, coincidindo com o registro de temperaturas mais elevadas e maiores precipitações pluviométricas um mês antes de cada surto, caracterizando que estes dois fatores são importantes para a manutenção das leptospirosas no ambiente.

Modolo et al. (1999), em inquérito soroepidemiológico no município de Botucatu, analisaram 775 amostras de soros caninos durante a campanha de vacinação anti-rábica. O método de SAM revelou 15,4% de amostras positivas com títulos iguais ou superiores a 1:100, com maior frequência para *canicola* (64,7%) e *pyrogenes* (50,4%), seguidos dos sorotipos *icterohaemorragiae* (18,5%), *copenhageni* (14,3%), *autumnalis* (11,7%), *braziliensis* (10,1%), *pomona* (4,2%), *australis* e *hardjo* (3,3%), *grippotyphosa* (1,6%) e *djasiman* (0,8%). Pela análise estatística, encontrou-se diferença significativa entre a raça e sexo, com maior positividade em machos sem raça definida.

Rosseti et al. (1999) analisaram pela prova de SAM, 709 soros caninos suspeitos de leptospirose, provenientes de oito regiões da grande Buenos Aires. Do total de soros processados, 55% apresentaram títulos maiores ou iguais a 1:100 para pelo menos um dos sorotipos testados. O sorovar *castellonis*, com 33% foi o mais frequente, seguido de *copenhageni* com 29%. Os machos e os animais adultos foram as categorias mais afetadas.

Alves et al. (2000) pesquisaram as aglutininas anti-leptospirosas em cães no município de Patos, na Paraíba. O material examinado constituiu-se de 114 amostras de soros coletados durante o período de 1997 e 1998 de cães com ou sem sintomas clínicos de leptospirose e processadas pela técnica de SAM. Dessas amostras, 20% foram positivas com títulos iguais ou superiores a 1:100, com predominância dos sorotipos *autumnalis* (34,78%), *grippotyphosa* (13,04%), *bubalum* (13,04%), *australis* (8,70%), *pomona*, *panama*, *wolffi*, *pyrogenes*, *icterohaemorragiae* e *hardjo* (4,35%). Não houve diferença significativa entre machos e fêmeas positivos ou entre cães com idade inferior ou superior a um ano. Também no ano 2000, Rocha et al. examinaram 110 soros de cães da Vila Acaba Mundo, no município de Belo Horizonte. Foram detectadas 28% de
amostras positivas com títulos iguais ou superiores a 1:100, sendo encontradas as sorovariedades castellonis (8,2%), icterohaemorrhagiae (4,5%), tarassovi (4,5%), canicola (3,6%), braisliava (2,7%) e pyrogenes (0,9%).

Faverero et al. (2002) realizaram um estudo retrospectivo de casos de leptospirose em seis espécies animais pela técnica de SAM. Foram testados 983 cães, sendo 80,7% provenientes de São Paulo, 19% do Piauí, 0,10% do Rio Grande do Sul e 0,10% de Santa Catarina. A triagem foi efetuada na diluição de 1:100 e, quando houve aglutinação, os soros foram titulados em série geométrica, sendo considerado o título da maior diluição onde ocorreu aglutinação. A soropositividade entre os cães foi de 17,9% em São Paulo, encontrando reações para as variantes copenhagenii (24,0%) e icterohaemorrhagiae (10,9%) e de 19,7% no Piauí com 100,0% de reações para o sorovar pyrogenes. Os estados do Rio Grande do Sul e de Santa Catarina não apresentaram cães reagentes, provavelmente devido a pequena amostra testada.

A estação do ano é uma variável muito importante quando se estuda a leptospirose. Rocha et al. (2000) afirmam que, em épocas de alta precipitação pluvial, associadas aos problemas da presença de esgoto a céu aberto, terrenos baldios e a ineficácia de sistemas de drenagem da água facilitam o contato do homem com o agente.

Quanto ao ambiente econômico-social, Breilh e Granda, (1986), descrevem o processo saúde-doença ligado às questões de ocupação do espaço e suas variáveis sócio-econômicas e ambientais. Os autores esquematizam as variáveis de acordo com suas dimensões, indicadores e escalas. As características ambientais são enquadradas nas dimensões de qualidade de habitação, tipo de água utilizada, tratamento do lixo e de excretas. Segundo os autores, o espaço estabelece através de seu valor econômico e ideológico as fronteiras para sua ocupação por parte das diferentes classes sociais e, por sua vez, a classe que ocupa um determinado espaço, delimita as características deste. Desta forma, podem-se distinguir na cidade espaços homogêneos habitados principalmente por classes sociais semelhantes, nos quais o equipamento arquitetônico e de serviços estabelece condições especiais de consumo e de trabalho que delimitam o nível de vida das mesmas e, consequentemente, seu perfil de saúde-doença. Nos setores de fixação de classes populares, o espaço tem características inadequadas: aglomeração acentuada, falta de serviços de água e de esgoto, má qualidade dos materiais de construção de moradia, umidade, ruas sem asfalto e falta de limpeza, características verificadas por eles na cidade de Quito, no Equador. Ávila et al., (1998) afirmaram que, apesar da leptospirose já ter sido considerada como uma enfermidade ocupacional, atualmente está relacionada com a situação econômica, haja vista, face à crise econômica dos países de terceiro mundo, a situação de miséria em que vive grande parte da população, o que aumenta a proliferação de roedores, bem como facilita o convívio destes com os animais domésticos e com o homem. Alves et al. (2000), na Paraíba, encontraram maior índice de animais positivos provenientes de bairros da periferia, fato este que pode estar associado aos problemas de infra-estrutura, como coleta irregular de lixo, problemas de saneamento básico, baixo nível de instrução da população e presença de cães vadios. Santos (1988) pesquisou as características zoosanitárias e a prevalência de algumas doenças, entre elas a leptospirose, em rebanhos bovinos da Ilha de São Luís, Maranhão, sendo que os sorovar mais prevalentes foram ballum (38,3%), hardjo (19,1%) e wolffii (16,7%). Ele concluiu que os motivos prováveis da elevada prevalência foram a alta densidade dos animais, a procura de alimentos em terrenos baldios e a presença de roedores.

Figueiredo et al. (2001) realizaram uma análise retrospectiva da leptospirose humana no município de Belo Horizonte no ano de 1995 usando recursos de geoprocessamento. As alterações do equilíbrio homem-ambiente foram identificadas a partir de transformações produtivas, territoriais e espaciais que a
ordem social impõe sobre o espaço. Relacionaram-se os aspectos físicos e sociais, embutidos nesse espaço urbano, que propiciaram o aparecimento da leptospirose. Os casos suspeitos e confirmados foram localizados no município, considerando o local de moradia dos indivíduos e suas relações com as fontes de contágio, o crescimento populacional, a presença de favelas e bolsões de pobreza, a altimetria, os principais cursos de água e ausência de redes de esgoto. Foram localizados em Belo Horizonte trinta casos suspeitos e dezenove casos confirmados, com predominância dos últimos nas regiões norte, nordeste e oeste (68,4 ± 13%). Nas áreas de favelas e bolsões de pobreza foram identificados os principais focos da doença. Na periferia, onde ocorreu um aumento populacional, localizaram-se 95 ± 6% dos casos confirmados, sendo o local com maior carência de infra-estrutura básica.

Barcellos et al. (2003) identificaram áreas de maior risco e possíveis componentes ecológicos da transmissão da leptospirose humana no Rio Grande do Sul por meio da agregação de dados epidemiológicos em unidades espaciais que representam a diversidade sócio-ambiental do Estado. Os 1274 casos confirmados da doença ocorridos no ano de 2001 foram georreferenciados por município de residência. Os mapas de municípios foram sobrepostos aos de caracterização de uso do solo, relevo e bacias hidrográficas. Os resultados encontrados sugerem a existência de características ecológicas favoráveis à transmissão da leptospirose em locais de proliferação de roedores sinantrópicos e de produção agrícola intensiva. Segundo o autor, um dos principais desafios dos estudos da leptospirose tem sido a tipificação de ambientes e modos de transmissão para o homem, que são altamente dependentes dos sorovares.

Em relação à profilaxia do cão, Hagiwara et al. (2004) afirmam que a imunidade na leptospirose canina é basicamente do tipo humoral. A imunidade é sorovar específica e, em menor extensão, pode ser específica do sorogrupo. As vacinas utilizadas mundialmente para o cão, contêm bacterinas ou antígenos que imunizam contra os sorovares *icterohaemorragiae e canicola*, os mais prevalentes na maior parte do globo terrestre. Em alguns países, a utilização dessas vacinas diminuiu consideravelmente os casos de leptospirose causados por esses sorovares. Em contrapartida, outros sorovares passaram a ser detectados no cão, como consequência do contato do cão com os reservatórios silvestres. Idealmente, nesses casos, as vacinas para o cão devem conter as bacterinas ou antígenos específicos para cada região, uma vez que o aumento de antígenos predispõe ao aparecimento de maior número de reações de hipersensibilidade.

Quanto à literatura consultada, verificou-se que poucas pesquisas relataram a prevalência da infecção por *Leptospira interrogans* para todas as variáveis testadas e um número ainda menor utilizou amostras representativas da população canina para relatar a frequência de todas as condições presentes. Alguns pesquisadores não descreveram os critérios utilizados para os resultados encontrados. Entre os fatores que poderiam estar envolvidos na determinação da ocorrência de infecção por *L. interrogans* em cães, os mais analisados foram idade, sexo e raça, sendo as características climáticas e de saneamento ambiental raramente verificadas.

Há necessidade de mais estudos para estabelecer a prevalência da infecção por *Leptospira interrogans* em cães, nos diversos municípios brasileiros, além da identificação dos variados fatores de risco envolvidos na epidemiologia das leptospiroses nessa espécie.
3 MATERIAL E MÉTODOS

3.1 Caracterização da área de estudo

Belo Horizonte, capital de Minas Gerais, está situada na região sudeste do Brasil. Possui uma extensão geográfica de 335,5 Km² (Fig. 1) onde predomina o clima tropical, com temperatura média anual de 20,5°C. O índice de precipitação pluvial é relativamente alto - 1200mm anuais - com a concentração de chuvas no período de novembro a março - 80-85% (INMET, 2001).

A população humana de Belo Horizonte no ano de 2000, era de 2.091.380 habitantes, segundo o censo do IBGE. A população canina, conforme estimativa realizada pelo Centro de Controle de Zoonoses de Belo Horizonte (CCZ - BH), foi de 268.272 animais, obtendo-se assim uma relação média de um cão para cada oito habitantes.

A cidade de Belo Horizonte está dividida em nove regionais administrativas segundo a Prefeitura Municipal, e, de acordo com essa divisão, este estudo abrangeu todas as regionais: Norte (N), Nordeste (NE), Noroeste (NO), Leste (L), Oeste (O), Pampulha (P), Barreiro (B), Centro-Sul (CS) e Venda-Nova (VN) – (Fig. 1).

Figura 1 – Localização do município de Belo Horizonte em Minas Gerais e sua divisão em regionais administrativas.
Fonte: Instituto de Geociências Aplicadas - IGA
As principais características de saneamento ambiental da cidade, segundo o Plano Municipal de Saneamento de Belo Horizonte 2004 – 2007, “Saneamento para todos” da Prefeitura de Belo Horizonte, estão apresentadas nos quadros 1, 2 e 3.

Quadro 1 - Atendimento por abastecimento de água em Belo Horizonte.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>População total (hab)</td>
<td>2.277.402</td>
</tr>
<tr>
<td>População atendida (hab)</td>
<td>2.271.059</td>
</tr>
<tr>
<td>Índice de abastecimento (%)</td>
<td>99,7</td>
</tr>
<tr>
<td>Extensão da rede de distribuição (m)</td>
<td>5.113.000</td>
</tr>
<tr>
<td>Número de ligações</td>
<td>469.058</td>
</tr>
<tr>
<td>Número de economias</td>
<td>802.647</td>
</tr>
<tr>
<td>Índice de hidrometração (%)</td>
<td>98,8</td>
</tr>
</tbody>
</table>

0 - Número de imóveis residenciais e comerciais.

Quadro 2. Atendimento por esgotamento sanitário em Belo Horizonte.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Censo 2000 – IBGE</th>
<th>Dados 2001 – SNIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>População total (hab)</td>
<td>2.238.526</td>
<td>2.277.402</td>
</tr>
<tr>
<td>População atendida (hab)</td>
<td>2.040.185</td>
<td>2.064.257</td>
</tr>
<tr>
<td>Índice de atendimento (%)</td>
<td>91,1</td>
<td>90,6</td>
</tr>
<tr>
<td>Extensão da rede coletora (m)</td>
<td></td>
<td>3.591.000</td>
</tr>
<tr>
<td>Percentual de tratamento (%)</td>
<td></td>
<td>10,8</td>
</tr>
<tr>
<td>Número de ligações ativas de esgoto</td>
<td></td>
<td>412.041</td>
</tr>
<tr>
<td>Número de economias residenciais ativas de esgoto</td>
<td></td>
<td>737.910</td>
</tr>
</tbody>
</table>

Quadro 3 – Formas de esgotamento sanitário dos domicílios de Belo Horizonte.

<table>
<thead>
<tr>
<th>Tipo de esgotamento sanitário</th>
<th>Domicílios particulares permanentes</th>
<th>População em domicílios particulares permanentes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rede geral de esgoto ou pluvial</td>
<td>580.196</td>
<td>2.040.185</td>
</tr>
<tr>
<td>Fossa séptica</td>
<td>6.192</td>
<td>23.092</td>
</tr>
<tr>
<td>Fossa rudimentar</td>
<td>11.767</td>
<td>44.547</td>
</tr>
<tr>
<td>Vála</td>
<td>6.188</td>
<td>24.782</td>
</tr>
<tr>
<td>Rio ou lago</td>
<td>15.183</td>
<td>59.773</td>
</tr>
<tr>
<td>Outro escoadouro</td>
<td>6.605</td>
<td>25.958</td>
</tr>
<tr>
<td>Não tinham banheiro ou sanitário</td>
<td>2.316</td>
<td>7.798</td>
</tr>
<tr>
<td>Total</td>
<td>628.447</td>
<td>2.226.135</td>
</tr>
</tbody>
</table>

3.2 - Definição da amostra

Para estimar a prevalência de cães sororeagentes frente às sorovariedades de *Leptospira interrogans*, utilizou-se o valor mediano da proporção ($p = 0,032$). Essa prevalência estimada foi baseada no trabalho de Santa Rosa *et al.* (1974), que verificaram em Belo Horizonte um total de 5,9% de cães reagentes, sendo 3,2% positivos para *icterohaemorrhagiae*. Como essa sorovariedade foi a mais frequente e representa grande importância em saúde pública, foi utilizada no cálculo como prevalência pré-estimada no município.

Baseado na prevalência de 3,2%, adotando-se 95% como grau de confiança e de acordo com a metodologia recomendada na Publicação Técnica nº 18 do Centro Panamericano de Zoonoses – CEPANZO (1979), para estudo de prevalência por amostragem, aplicou-se a fórmula:

$$n = \frac{p(100 - p) \cdot \alpha^2}{d \cdot p^2 / 100}$$

$n=$ número de amostras para estimar a prevalência em uma população infinita;
$p=$ prevalência esperada (3,2%);
$\alpha^2=$ fator determinante do grau de confiança (1,96);
$d=$ erro amostral (18%).

$$n = \frac{3,2(100 - 3,2) \cdot 4}{18 \times 3,2^2 / 100} = \frac{1053}{(0,576)^2} = \frac{1053}{0,33}$$

$$n = 3.191 \text{ cães}$$

Para evitar que possíveis perdas de material durante a coleta e o processamento dos soros pudessem interferir no resultado final da pesquisa e pelo fato de existir um grande número de cães recolhidos pelo CCZ - BH, foi estabelecida uma amostra maior, totalizando 3.500 cães.

Para se obter uma amostra proporcional de, cada distrito sanitário, foi utilizado como base o censo canino do ano de 2000 por regional, como mostra a tabela 1.

Nenhum trabalho até então publicado mostrou a diferença entre cães positivos vadios e domiciliados. Decidiu-se separar os cães de acordo com a forma de apreensão feita pelo CCZ - BH, o qual faz uma divisão dos cães em capturados, busca domiciliar comum e busca domiciliar de leishmaniose. Para análise, optou-se em agrupar os cães de busca domiciliar comum e busca domiciliar de leishmaniose em uma única categoria: busca domiciliar, uma vez que os cães das duas categorias apresentavam endereço completo. As tabelas 2, 3 e 4 apresentam a distribuição dos cães apreendidos no CCZ - BH de acordo com as três categorias, no ano de 2000.
Tabela 1 - Estimativa da população canina de acordo com as regionais da Prefeitura de Belo Horizonte - 2000.

<table>
<thead>
<tr>
<th>Regionais</th>
<th>População humana</th>
<th>População canina</th>
<th>Relação homem/cão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N°</td>
<td>%</td>
</tr>
<tr>
<td>Venda Nova</td>
<td>218.192</td>
<td>37.658</td>
<td>14.0</td>
</tr>
<tr>
<td>Barreiro</td>
<td>237.046</td>
<td>37.089</td>
<td>14.0</td>
</tr>
<tr>
<td>Noroeste</td>
<td>336.230</td>
<td>36.869</td>
<td>13.7</td>
</tr>
<tr>
<td>Nordeste</td>
<td>251.126</td>
<td>33.734</td>
<td>12.5</td>
</tr>
<tr>
<td>Leste</td>
<td>243.302</td>
<td>33.609</td>
<td>12.5</td>
</tr>
<tr>
<td>Norte</td>
<td>175.604</td>
<td>28.188</td>
<td>10.5</td>
</tr>
<tr>
<td>Oeste</td>
<td>252.354</td>
<td>25.061</td>
<td>9.4</td>
</tr>
<tr>
<td>Pampulha</td>
<td>120.865</td>
<td>21.082</td>
<td>7.8</td>
</tr>
<tr>
<td>Centro-Sul (*)</td>
<td>256.661</td>
<td>15.002</td>
<td>5.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.091.380 (**)</td>
<td>268.272</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fonte: SV CZoonoses/Distritos Sanitários SMSA/PBH
 (*) A regional Centro-Sul realizou o último censo em 1999.
 (**) Contagem Populacional de 1995/IBGE

<table>
<thead>
<tr>
<th>Mês</th>
<th>B</th>
<th>CS</th>
<th>L</th>
<th>NE</th>
<th>NO</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>VN</th>
<th>Roteiro</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>69</td>
<td>18</td>
<td>113</td>
<td>104</td>
<td>83</td>
<td>54</td>
<td>31</td>
<td>54</td>
<td>135</td>
<td>83</td>
<td>744</td>
</tr>
<tr>
<td>F</td>
<td>146</td>
<td>15</td>
<td>77</td>
<td>75</td>
<td>77</td>
<td>109</td>
<td>54</td>
<td>67</td>
<td>221</td>
<td>11</td>
<td>852</td>
</tr>
<tr>
<td>M</td>
<td>28</td>
<td>3</td>
<td>48</td>
<td>25</td>
<td>78</td>
<td>35</td>
<td>34</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>280</td>
</tr>
<tr>
<td>A</td>
<td>57</td>
<td>13</td>
<td>81</td>
<td>72</td>
<td>64</td>
<td>62</td>
<td>61</td>
<td>47</td>
<td>117</td>
<td>32</td>
<td>606</td>
</tr>
<tr>
<td>M</td>
<td>88</td>
<td>2</td>
<td>37</td>
<td>60</td>
<td>92</td>
<td>34</td>
<td>50</td>
<td>29</td>
<td>45</td>
<td>59</td>
<td>496</td>
</tr>
<tr>
<td>J</td>
<td>91</td>
<td>8</td>
<td>67</td>
<td>96</td>
<td>86</td>
<td>93</td>
<td>65</td>
<td>63</td>
<td>89</td>
<td>26</td>
<td>684</td>
</tr>
<tr>
<td>J</td>
<td>191</td>
<td>1</td>
<td>46</td>
<td>51</td>
<td>95</td>
<td>71</td>
<td>46</td>
<td>64</td>
<td>138</td>
<td>62</td>
<td>765</td>
</tr>
<tr>
<td>A</td>
<td>31</td>
<td>13</td>
<td>17</td>
<td>41</td>
<td>22</td>
<td>45</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>434</td>
<td>622</td>
</tr>
<tr>
<td>S</td>
<td>64</td>
<td>2</td>
<td>40</td>
<td>80</td>
<td>38</td>
<td>48</td>
<td>30</td>
<td>55</td>
<td>101</td>
<td>34</td>
<td>492</td>
</tr>
<tr>
<td>O</td>
<td>93</td>
<td>1</td>
<td>40</td>
<td>79</td>
<td>68</td>
<td>37</td>
<td>44</td>
<td>33</td>
<td>98</td>
<td>77</td>
<td>570</td>
</tr>
<tr>
<td>N</td>
<td>59</td>
<td>7</td>
<td>36</td>
<td>9</td>
<td>71</td>
<td>17</td>
<td>52</td>
<td>38</td>
<td>75</td>
<td>31</td>
<td>395</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
<td>0</td>
<td>31</td>
<td>72</td>
<td>53</td>
<td>58</td>
<td>19</td>
<td>39</td>
<td>55</td>
<td>51</td>
<td>413</td>
</tr>
<tr>
<td>TOTAL</td>
<td>952</td>
<td>83</td>
<td>633</td>
<td>764</td>
<td>827</td>
<td>663</td>
<td>505</td>
<td>494</td>
<td>1085</td>
<td>913</td>
<td>6919</td>
</tr>
</tbody>
</table>

- B = Barreiro, CS = Centro-Sul, L = Leste, NE = Nordeste, NO = Noroeste, N = Norte, P = Pampulha, VN = Venda Nova.
- Cães recolhidos pela "carrocinha" durante o seu trajeto até a regional determinada.
Tabela 3 - Busca domiciliar comum realizada pelo Centro de Controle de Zoonoses da Prefeitura de Belo Horizonte, 2000.

<table>
<thead>
<tr>
<th>Mês</th>
<th>B</th>
<th>CS</th>
<th>L</th>
<th>NE</th>
<th>NO</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>VN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>260</td>
<td>56</td>
<td>186</td>
<td>276</td>
<td>210</td>
<td>166</td>
<td>186</td>
<td>102</td>
<td>333</td>
<td>1775</td>
</tr>
<tr>
<td>F</td>
<td>245</td>
<td>52</td>
<td>172</td>
<td>311</td>
<td>219</td>
<td>138</td>
<td>190</td>
<td>71</td>
<td>368</td>
<td>1766</td>
</tr>
<tr>
<td>M</td>
<td>191</td>
<td>66</td>
<td>178</td>
<td>378</td>
<td>214</td>
<td>230</td>
<td>206</td>
<td>114</td>
<td>352</td>
<td>1929</td>
</tr>
<tr>
<td>A</td>
<td>191</td>
<td>43</td>
<td>153</td>
<td>264</td>
<td>165</td>
<td>153</td>
<td>135</td>
<td>85</td>
<td>276</td>
<td>1442</td>
</tr>
<tr>
<td>M</td>
<td>169</td>
<td>43</td>
<td>170</td>
<td>264</td>
<td>192</td>
<td>181</td>
<td>166</td>
<td>46</td>
<td>326</td>
<td>1557</td>
</tr>
<tr>
<td>J</td>
<td>150</td>
<td>62</td>
<td>106</td>
<td>246</td>
<td>133</td>
<td>156</td>
<td>139</td>
<td>54</td>
<td>153</td>
<td>1199</td>
</tr>
<tr>
<td>J</td>
<td>190</td>
<td>41</td>
<td>116</td>
<td>244</td>
<td>160</td>
<td>185</td>
<td>154</td>
<td>91</td>
<td>328</td>
<td>1509</td>
</tr>
<tr>
<td>A</td>
<td>194</td>
<td>20</td>
<td>108</td>
<td>264</td>
<td>193</td>
<td>215</td>
<td>115</td>
<td>86</td>
<td>288</td>
<td>1483</td>
</tr>
<tr>
<td>S</td>
<td>206</td>
<td>31</td>
<td>148</td>
<td>164</td>
<td>159</td>
<td>191</td>
<td>136</td>
<td>75</td>
<td>304</td>
<td>1414</td>
</tr>
<tr>
<td>O</td>
<td>215</td>
<td>28</td>
<td>182</td>
<td>398</td>
<td>190</td>
<td>226</td>
<td>129</td>
<td>90</td>
<td>311</td>
<td>1769</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
<td>50</td>
<td>202</td>
<td>287</td>
<td>149</td>
<td>172</td>
<td>126</td>
<td>86</td>
<td>284</td>
<td>1555</td>
</tr>
<tr>
<td>D</td>
<td>232</td>
<td>49</td>
<td>180</td>
<td>276</td>
<td>134</td>
<td>227</td>
<td>106</td>
<td>99</td>
<td>297</td>
<td>1600</td>
</tr>
<tr>
<td>Total</td>
<td>2445</td>
<td>541</td>
<td>1901</td>
<td>3372</td>
<td>2118</td>
<td>2240</td>
<td>1788</td>
<td>999</td>
<td>3620</td>
<td>18998</td>
</tr>
</tbody>
</table>

O B = Barreiro, CS = Centro-Sul, L = Leste, NE = Nordeste, NO = Noroeste, N = Norte, P = Pampulha, VN = Venda Nova.

Tabela 4 - Busca domiciliar de leishmanose realizada pelo Centro de Controle de Zoonoses da Prefeitura de Belo Horizonte, 2000.

<table>
<thead>
<tr>
<th>Mês</th>
<th>B</th>
<th>CS</th>
<th>L</th>
<th>NE</th>
<th>NO</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>VN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>4</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>7</td>
<td>48</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>139</td>
</tr>
<tr>
<td>J</td>
<td>16</td>
<td>7</td>
<td>15</td>
<td>47</td>
<td>28</td>
<td>72</td>
<td>4</td>
<td>7</td>
<td>167</td>
<td>363</td>
</tr>
<tr>
<td>J</td>
<td>17</td>
<td>10</td>
<td>40</td>
<td>68</td>
<td>38</td>
<td>83</td>
<td>3</td>
<td>35</td>
<td>115</td>
<td>409</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>27</td>
<td>78</td>
<td>77</td>
<td>96</td>
<td>64</td>
<td>5</td>
<td>30</td>
<td>43</td>
<td>426</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>16</td>
<td>72</td>
<td>122</td>
<td>18</td>
<td>63</td>
<td>25</td>
<td>15</td>
<td>30</td>
<td>363</td>
</tr>
<tr>
<td>O</td>
<td>11</td>
<td>5</td>
<td>49</td>
<td>141</td>
<td>24</td>
<td>29</td>
<td>21</td>
<td>18</td>
<td>20</td>
<td>318</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>5</td>
<td>27</td>
<td>116</td>
<td>21</td>
<td>104</td>
<td>11</td>
<td>10</td>
<td>14</td>
<td>312</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>47</td>
<td>22</td>
<td>41</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>143</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>102</td>
<td>379</td>
<td>657</td>
<td>275</td>
<td>483</td>
<td>91</td>
<td>151</td>
<td>417</td>
<td>2620</td>
</tr>
</tbody>
</table>

O B = Barreiro, CS = Centro-Sul, L = Leste, NE = Nordeste, NO = Noroeste, N = Norte, P = Pampulha, VN = Venda Nova.
O total de cães apreendidos no CCZ - BH no ano de 2000 foi de 28.535, sendo 6.919 de captura, 18.998 de busca domiciliar comum e 2.620 de busca domiciliar de leishmaniose (Tab. 5).

Nessa amostra de 3500 cães, 25% foram de captura e 75% de busca domiciliar. Em cada regional foi feita uma amostragem de acordo com o tamanho da população canina estimada em 2000 (Tab. 6).

Tabela 5 - Número de cães de acordo com a forma de apreensão pelo Centro de Controle de Zoonoses da Prefeitura de Belo Horizonte, 2000.

<table>
<thead>
<tr>
<th>Tipo de apreensão</th>
<th>Nº. de cães</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busca domiciliar</td>
<td>18.998</td>
<td>21.618</td>
<td>75,0</td>
</tr>
<tr>
<td>Leishmaniose</td>
<td>2.620</td>
<td>2.620</td>
<td>25,0</td>
</tr>
<tr>
<td>Captura</td>
<td>6.919</td>
<td>6.919</td>
<td>25,0</td>
</tr>
<tr>
<td>Total</td>
<td>28.535</td>
<td>6.919</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela 6 - Amostragem de cães por regional da Prefeitura de Belo Horizonte, 2000.

<table>
<thead>
<tr>
<th>Regional</th>
<th>População de cães</th>
<th>% da população</th>
<th>Amostra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venda Nova</td>
<td>37.658</td>
<td>14,0</td>
<td>490</td>
</tr>
<tr>
<td>Barreiro</td>
<td>37.089</td>
<td>14,0</td>
<td>490</td>
</tr>
<tr>
<td>Noroeste</td>
<td>36.869</td>
<td>13,7</td>
<td>480</td>
</tr>
<tr>
<td>Nordeste</td>
<td>33.734</td>
<td>12,5</td>
<td>437</td>
</tr>
<tr>
<td>Leste</td>
<td>33.069</td>
<td>12,5</td>
<td>437</td>
</tr>
<tr>
<td>Norte</td>
<td>28.188</td>
<td>10,5</td>
<td>368</td>
</tr>
<tr>
<td>Oeste</td>
<td>25.061</td>
<td>9,4</td>
<td>329</td>
</tr>
<tr>
<td>Pampulha</td>
<td>21.062</td>
<td>7,8</td>
<td>273</td>
</tr>
<tr>
<td>Centro - Sul</td>
<td>15.002</td>
<td>5,6</td>
<td>196</td>
</tr>
<tr>
<td>Total</td>
<td>288.272</td>
<td>100,0</td>
<td>3500</td>
</tr>
</tbody>
</table>

As amostras de soros dos cães foram coletadas no período de setembro de 2001 a setembro de 2002 no CCZ - BH, localizado na rua Edna Quintel, 173 - bairro São Bernardo.

Foram coletados mensalmente 290 soros assim distribuídos: 190 de busca domiciliar e 100 de cães de captura. Para cada soro coletado foi preenchida uma ficha de identificação do animal, conforme anexo 1.

A coleta venosa foi feita usando vacutainer para retirada de 5mL, aproximadamente, de sangue dos cães. O material coletado foi mantido em repouso por 60 minutos para se obter o soro que foi transferido para um ependorf já etiquetado e em seguida congelado a – 20°C para posterior análise.

3.3 - Técnica de soroaglutinação microscópica

Todas as amostras armazenadas no laboratório de Zoonoses do Departamento de Medicina Veterinária Preventiva da Escola de Veterinária da UFMG foram processadas pela técnica de soroaglutinação microscópica (SAM) descrita por Ryu (1970), sendo esse teste recomendado pela Organização Mundial de Saúde - OMS para o diagnóstico da leptospirose (Hagiwara et al. 2004).

A SAM consiste em reagir 25µl de soro suspeito diluído 1:100, com igual volume de uma suspensão de antígenos, incubados em temperatura de 25 a 30°C por um período de tempo de 120 minutos. Neste trabalho foi utilizado um tempo de incubação de 60 minutos a 27°C +/- 1 de acordo com Hermann, (2002).
As amostras de soro foram primeiramente diluídas em tubos de ensaio 7x120 mm com uma solução de PBS (0,02M Na2HPO4; 0,15M NaCl pH 7,2).

Cada amostra de soro foi diluída inicialmente em 1:5, utilizando 200µl de soro canino e 800µl de PBS. Em seguida realizou-se uma segunda diluição do soro em um segundo tubo de ensaio contendo 900µl de PBS no qual adicionou-se 100µl do soro previamente diluído (1:5), obtendo desta forma, uma diluição do soro de 1:50 e volume final de 1000µl.

Obtido o volume de 1000µl da diluição do soro (1:50), esse foi transferido para uma cubeta de depósito e em seguida, com uma pipeta de oito canais, depositou-se 25µl do soro em oito poços diferentes em uma fila vertical de uma microplaca de poliestireno (NUNC F). A seguir, adicionou-se 25µl de oito sorovariidades de antígenos diferentes, uma em cada fileira vertical, para que o volume final em cada placa atingisse 50µl.

Foram utilizadas oito culturas vivas de leptospiras de 5 a 7 dias de idade, obtidas oficialmente no Centro Panamericano de Zoonoses da Organização Panamericana de Saúde, como apresenta o quadro 4.

Quadro 4: Sorovariidades de *Leptospira interrogans* utilizadas como antígenos no teste de soroaglutinação microscópica.

<table>
<thead>
<tr>
<th>Sorogrupo</th>
<th>Sorovariade</th>
<th>Amostra de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANICOLA</td>
<td>canicola</td>
<td>Hond Utrecht IV</td>
</tr>
<tr>
<td>ICTEROHAEMORRHAGIAE</td>
<td>icterohaemorrhagiae</td>
<td>RGA</td>
</tr>
<tr>
<td>POMONA</td>
<td>pomona</td>
<td>Pomona</td>
</tr>
<tr>
<td>BALLUM</td>
<td>ballum</td>
<td>Mus 127</td>
</tr>
<tr>
<td>TARASSOVI</td>
<td>tarassovi</td>
<td>Perepelcin</td>
</tr>
<tr>
<td>PYROGENES</td>
<td>pyrogenes</td>
<td>Salinem</td>
</tr>
<tr>
<td>AUSTRALIS</td>
<td>australis</td>
<td>Ballico</td>
</tr>
<tr>
<td>AUTUMNALIS</td>
<td>autumnalis</td>
<td>Akyiali A</td>
</tr>
</tbody>
</table>

As leituras das reações foram feitas na microplaca de poliestireno, com microscópio AxioLab®, equipado com condensador seco de campo escuro, objetiva de longa distância (LD) Epiplan 10 x 0,20, oculares Epi 10x/20 e EP-L 10x/20.

O critério de leitura das reações da SAM adotado foi o descrito por Galton (1962), que recomenda a seguinte chave:

- O grau de aglutinação e lise é dado em cruzes, variando de negativo até 4 cruzes.

- Reação 4 cruzes (+++), quando 75 a 100% das leptospiras estão aglutinadas.

- Reação 3 cruzes (++), quando, aproximadamente, 75% estão aglutinadas.

- Reação 2 cruzes (+) quando, aproximadamente, 50% das leptospiras estão aglutinadas.

- Reação 1 cruz (+) quando ocorre, aproximadamente, 25% de aglutinação.

- O soro foi considerado positivo quando ocorreu, no mínimo, 50% de aglutinação, ou seja, a partir da reação de 2 cruzes.

Os soros considerados positivos (2+) foram diluídos até o título de 1:25.600. A partir dessa diluição só foram considerados realmente positivos aqueles soros em que ocorreram reação com título igual ou maior que 1:200.
3.4 - Associação entre fatores de risco e aglutininas anti *Leptospira interrogans* nos cães.

Foi feita a verificação da associação dos cães positivos com os fatores de risco como saneamento e controle de roedores comparativamente com dados registrados nas regionais fornecidos pela Gerência de Epidemiologia e Zoonoses da Secretaria Municipal de Saúde (2001/02) e pelo Grupo Gerencial de Saneamento - GGSAN - da Prefeitura Municipal de Belo Horizonte (2004). Essa comparação foi feita de forma descritiva verificando a distribuição espacial dos cães reagentes e das aglutininas anti-*Leptospira interrogans* mais prevalentes em cada regional e o mapeamento das regiões com ausência de rede de esgoto e coleta de lixo.

Os números de solicitações para controle de roedores e de atendimentos realizados no município em 2001 e 2002 também foram relacionados com as áreas de prevalência de cães reagentes, bem como os casos humanos positivos para leptospirose.

3.5 - Organização dos dados e análise estatística

Para organização do banco de dados foi utilizado o programa Epi-info versão 6.02 (Dean et al., 1995).

Para a distribuição espacial dos cães reagentes e das aglutininas anti *Leptospira interrogans* foram processados mapas utilizando-se os softwares MapInfo Professional Versão 6.0. Os bancos de dados utilizados para confecção dos mapas foram cedidos pela Prodabel e pelo GGSAN da Prefeitura Municipal de Belo Horizonte. Os cães domiciliados foram georreferenciados na posição exata do logradouro, uma vez que tinham endereço correto e os cães de captura tiveram a localização geográfica demonstrada pela porcentagem de amostras positivas em cada regional. Os cães domiciliados negativos ao teste de SAM também tiveram sua localização georeferenciada no mapa do município com o objetivo de fornecer melhor visualização das áreas afetadas. Os mapas do município foram sobrepostos aos de caracterização de rede de esgoto e coleta de lixo.

As diferenças de frequências entre as regionais, raça, sexo, idade e tipo de apreensão dos cães foram analisadas pelo teste do *x*² descrito por Sampaio (1998), fixando-se o nível de significância em *p*<0,05 e processando as estatísticas na planilha eletrônica Excel versão 97. Para obtenção das *Odds Ratio* dos diferentes fatores de risco foram utilizados modelos de regressão logística descritos por Dohoo et al. (2003).

4 RESULTADOS E DISCUSSÃO

Das 3500 amostras de soros caninos fornecidas pelo CCZ – BH, 3417 foram analisadas, devido a ocorrência de perda de material entre a coleta e o processamento, por fatores como hemólise do sangue, abertura de *ependorf* com extravasamento de soro durante o congelamento, entre outros. Ocorreram aglutinações em 448 amostras (13,11%), para uma ou mais sorovariedades de *L. interrogans*, com títulos que variaram de 1.200 a 1.25.600. Esse percentual foi maior que o de 10,1% e 5,9% encontrados por Reis et al. (1972) e por Santa Rosa et al. (1974), respectivamente, ambos em Belo Horizonte e maior que o de 28% encontrado por Rocha et al. (2000) no mesmo município. Santa Rosa et al. (1974) avaliaram apenas cães do biotério e do ambulatório da Escola de Veterinária da UFMG que foram receber a vacina anti-rábica, o que poderia explicar a menor frequência de aglutininas encontrada nesses animais, que provavelmente não estavam expostos aos riscos de infecção como os cães de rua. Rocha et al. (2000), possivelmente encontraram uma prevalência mais alta de aglutininas por terem avaliado cães de uma favela em Belo Horizonte, onde o ambiente é altamente favorável à sobrevivência do agente e à contaminação do animal.

1. Comunicação pessoal
Na tabela 7 observa-se o número de cães positivos encontrados em cada uma das nove regionais administrativas da Prefeitura de Belo Horizonte. A classificação das regionais, em ordem decrescente de positividade, foi: Centro-Sul (22,48%), Leste (19,12%), Nordeste (13,20%), Norte (12,45%), Oeste (12,42%), Venda Nova (12,40%), Barreiro (11,32%), Noroeste (11,09%) e Pampulha (8,17%). Na figura 2, podem-se visualizar essas informações.

A análise estatística revelou que as diferenças entre as prevalências de cada regional são significativas em um intervalo de confiança de 95% e p<0,001.

Tabela 7 – Distribuição dos cães positivos para *L. interrogans* de acordo com a forma de apreensão nas diferentes regionais da Prefeitura de Belo Horizonte, de setembro de 2001 a setembro de 2002.

<table>
<thead>
<tr>
<th>Regional</th>
<th>Amostra examinada</th>
<th>Número de cães positivos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BD %</td>
<td>CAP %</td>
</tr>
<tr>
<td>Centro-Sul</td>
<td>169</td>
<td>20</td>
</tr>
<tr>
<td>Leste</td>
<td>387</td>
<td>54</td>
</tr>
<tr>
<td>Nordeste</td>
<td>424</td>
<td>32</td>
</tr>
<tr>
<td>Norte</td>
<td>482</td>
<td>36</td>
</tr>
<tr>
<td>Oeste</td>
<td>298</td>
<td>24</td>
</tr>
<tr>
<td>Venda Nova</td>
<td>460</td>
<td>25</td>
</tr>
<tr>
<td>Barreiro</td>
<td>459</td>
<td>35</td>
</tr>
<tr>
<td>Noroeste</td>
<td>469</td>
<td>30</td>
</tr>
<tr>
<td>Pampulha</td>
<td>289</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>3417</td>
<td>268</td>
</tr>
</tbody>
</table>

0 - BD = Busca domiciliar; CAP = Captura

\[\chi^2 = 34,54, \text{ p} < 0,001 \]
A figura 3 apresenta a distribuição espacial dos cães amostrados, sendo que os cães reagentes para uma ou mais sorovarieties de *Leptospira interrogans* foram georreferenciados nas nove regionais do município de Belo Horizonte através de desenhos coloridos, na posição exata do logradouro, uma vez que tinham endereço correto. Os cães capturados, por não terem endereço completo, foram georreferenciados pela prevalência encontrada em cada regional por sombreamento. Os cães negativos tiveram sua localização geográfica destacada por pontos negros, onde se observa uma ampla distribuição em todas as regionais.

A regional Centro-Sul tem o menor número de cães em relação às outras áreas de Belo Horizonte e é considerada, segundo o Índice de Vulnerabilidade à Saúde calculado pela Secretaria Municipal de Saúde (SMS – BH, 2000), a regional onde 75% da população humana se encontra na categoria de baixo risco (Tab. 8). Apesar disso, esta foi a regional que proporcionalmente apresentou o maior número de cães positivos para *Leptospira interrogans*. Esse resultado provavelmente ocorreu porque os casos positivos se concentraram nas áreas de vilas e favelas existentes nesta regional. O aglomerado da Serra, do qual faz parte a favela do Catezal, deteve o maior percentual de cães reagentes da regional Centro-Sul.
A segunda regional mais acometida foi a Leste, com as mesmas características de distribuição encontradas na Centro-Sul: predominância dos casos nas periferias e favelas da região com destaque para os bairros Taquaril, Alto Vera Cruz e Novo Horizonte. Como essa regional possui mais da metade da população (55,06%) classificada nas categorias de médio e elevado risco, conforme a tabela 8, houve uma maior dispersão dos casos em outros bairros da regional, o que não foi observado na regional Centro-Sul.

A Pampulha foi a regional de menor prevalência de aglutininas anti-*L. interrogans*, com uma distribuição de casos mais uniformes em relação aos bairros, o que pode estar relacionado ao fato dessa regional ter 77,8% de seus moradores enquadrados nas categorias de baixo e médio risco à saúde. Nessa área, as favelas não representam um fator relevante em termos de expansão física, uma vez que se apresentam de forma dispersa. O menor número de reações à *L. interrogans* nessa regional demonstra o papel que esse tipo de moradia representa em termos de distribuição espacial da doença, conforme verificado nos estudos de Figueiredo *et al.* (2001), onde a Pampulha foi a única regional que não apresentou casos humanos de leptospirose. O conjunto habitacional Confisco deteve a maior porcentagem de cães reagentes da regional Pampulha.

As demais regionais apresentaram valores semelhantes de prevalência para a infecção, todas com uma maior concentração de cães reagentes em áreas de vilas e favelas. As leptospiroses são zoonoses de alto risco para populações residentes em favelas e periferias das cidades, que vivem em precárias condições sanitárias, como esgoto a céu aberto, terrenos baldios, destino inapropriado de dejetos e presença de roedores, variáveis que também foram observadas nos estudos de Rocha *et al.* (2000).

LEGENDA - Figura 3
Aglutininas anti-leptospira interrogans - BDC

<table>
<thead>
<tr>
<th>Aglutininas</th>
<th>Percentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumnalis</td>
<td>(11)</td>
</tr>
<tr>
<td>Ballum</td>
<td>(51)</td>
</tr>
<tr>
<td>Ballum - Pyrogenes</td>
<td>(8)</td>
</tr>
<tr>
<td>Canicola</td>
<td>(63)</td>
</tr>
<tr>
<td>Canicola - Autumnalis</td>
<td>(1)</td>
</tr>
<tr>
<td>Canicola - Ballum</td>
<td>(32)</td>
</tr>
<tr>
<td>Canicola - Ballum - Pyrogenes</td>
<td>(13)</td>
</tr>
<tr>
<td>Canicola - Icterohaemorrhagiae</td>
<td>(5)</td>
</tr>
<tr>
<td>Canicola - Icterohaemorrhagiae - Ballum</td>
<td>(4)</td>
</tr>
<tr>
<td>Canicola - Icterohaemorrhagiae - Ballum - Pyrogenes</td>
<td>(3)</td>
</tr>
<tr>
<td>Canicola - Icterohaemorrhagiae - Ballum - Pyrogenes - Autumnalis</td>
<td>(1)</td>
</tr>
<tr>
<td>Canicola - Icterohaemorrhagiae - Pyrogenes</td>
<td>(1)</td>
</tr>
<tr>
<td>Canicola - Pyrogenes</td>
<td>(8)</td>
</tr>
<tr>
<td>Canicola - Pyrogenes - Ballum</td>
<td>(1)</td>
</tr>
<tr>
<td>Icterohaemorrhagiae</td>
<td>(38)</td>
</tr>
<tr>
<td>Icterohaemorrhagiae - Ballum</td>
<td>(2)</td>
</tr>
<tr>
<td>Icterohaemorrhagiae - Ballum - Pyrogenes</td>
<td>(2)</td>
</tr>
<tr>
<td>Icterohaemorrhagiae - Pyrogenes</td>
<td>(1)</td>
</tr>
<tr>
<td>Pyrogenes</td>
<td>(13)</td>
</tr>
</tbody>
</table>

Aglutininas anti-leptospira interrogans - CAP

- CS 10,65%
- B 3,70%
- P 3,71%
- O 4,35%
- NO 4,70%
- N 4,97%
- L 5,16%
- NE 5,56%
- VN 6,95%

* Cães negativos de busca domiciliar
Tabela 8 – População por categoria de risco* segundo regionais da Prefeitura de Belo Horizonte, 2000.

<table>
<thead>
<tr>
<th>Regional</th>
<th>Muito elevado</th>
<th>Elevado</th>
<th>Médio</th>
<th>Baixo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número</td>
<td>%</td>
<td>Número</td>
<td>%</td>
</tr>
<tr>
<td>Barreiro</td>
<td>18.593</td>
<td>7,09</td>
<td>102.851</td>
<td>39,22</td>
</tr>
<tr>
<td>Centro Sul</td>
<td>31.473</td>
<td>11,83</td>
<td>26.756</td>
<td>10,05</td>
</tr>
<tr>
<td>Leste</td>
<td>18.121</td>
<td>7,27</td>
<td>47.658</td>
<td>19,13</td>
</tr>
<tr>
<td>Nordeste</td>
<td>15.065</td>
<td>5,50</td>
<td>79.677</td>
<td>29,07</td>
</tr>
<tr>
<td>Noroeste</td>
<td>17.567</td>
<td>5,20</td>
<td>54.096</td>
<td>16,03</td>
</tr>
<tr>
<td>Norte</td>
<td>16.829</td>
<td>8,68</td>
<td>85.834</td>
<td>44,30</td>
</tr>
<tr>
<td>Oeste</td>
<td>16.654</td>
<td>6,19</td>
<td>81.451</td>
<td>30,31</td>
</tr>
<tr>
<td>Pampulha</td>
<td>8.037</td>
<td>5,63</td>
<td>23.513</td>
<td>16,48</td>
</tr>
<tr>
<td>Venda Nova</td>
<td>15.558</td>
<td>6,36</td>
<td>101.764</td>
<td>41,61</td>
</tr>
<tr>
<td>Total</td>
<td>157.897</td>
<td>7,05</td>
<td>603.600</td>
<td>26,97</td>
</tr>
</tbody>
</table>

* Categoría de risco segundo Índice de Vulnerabilidade à Saúde.

Assim, verifica-se que os principais focos de infecção por *L. interrogans* se concentraram nas áreas de periferia das regionais, principalmente nas favelas. Essas áreas são caracterizadas por contarem com medidas de saneamento ambiental deficientes, como ausência de rede de esgoto, coleta de lixo e controle de roedores insuficientes, expondo toda a população residente e os animais que vivem nesses locais ao risco de contraírem diversas doenças infecciosas e parasitárias, especialmente aquelas veiculadas pela água contaminada e pelo lixo, o que foi observado por Breilh e Granda, (1986) em Quito, Equador. Alguns autores verificaram essa distribuição da infecção por *Leptospira interrogans* em áreas de favelas e bolsões de pobreza, como Alves et al. (2000) em cães no município de Patos, na Paraíba e Figueiredo et al. (2001), em Belo Horizonte, estudando casos de leptospirose humana.

A figura 4 apresenta a distribuição espacial das áreas não atendidas por rede de esgoto, com sobreposição dos casos reagentes às aglutininas anti-*L. interrogans*. É possível notar que a maior parte dos cães reagentes foram provenientes de locais com deficiência de rede de esgoto, principalmente nas áreas de vilas e favelas, o que foi observado por Figueiredo et al. (2001).

A variável coleta de lixo não mostrou correlação com os casos caninos de infecção por *L. interrogans*, como observa-se na Figura 5. A não sobreposição dos cães reagentes nas áreas de deficiência de coleta de lixo pode ser explicada pelo fato da Prefeitura de Belo Horizonte atender com serviços de limpeza a, aproximadamente, 95% da população belorizontina. Além disso, o percentual médio da população atendida por coleta de lixo em vilas e favelas é de 70%, sendo a coleta de resíduos domiciliares nestes locais realizada por caminhões e garis que se deslocam porta a porta, com carrinhos de mão (Plano Municipal de Saneamento, 2004). O controle do lixo urbano é de extrema importância para se evitar o surgimento de novos focos de infecção por *Leptospira interrogans*. O fato dessa variável não ter sido expressiva neste trabalho não diminui a responsabilidade da população e dos serviços de saúde em investir em projetos de limpeza, higiene e educação sanitária, principalmente em terrenos baldios e áreas intra e peridomiciliares.

Quando se utiliza a regressão logística para análise das regionais (Anexo 2), nota-se que, ao considerar a regional Barreiro como referência, pode-se pela Odds Ratio, verificar que o fato do cão ser domiciliado ou ser capturado na regional Centro-Sul aumenta em 2,25 vezes a chance desse animal ter infecção por *L. interrogans*. Da mesma forma, o fato do cão ser domiciliado ou ser capturado na regional Pampulha representa um risco de 0,69, fazendo com que o local de moradia possa ser apontado como um fator protetor. Isso pode ser explicado mais uma vez pelas características sócio-econômicas e de saneamento ambiental de cada regional.

De acordo com a forma de apreensão dos cães pelo CCZ - BH, foi possível identificar uma maior prevalência entre os animais capturados, em relação aos cães de busca domiciliar, como pode ser observado na tabela 9. Possivelmente essa maior prevalência encontrada se deve ao fato dos cães de rua estarem mais expostos às fontes de contaminação, além de, provavelmente, não serem vacinados contra a leptospirose. Os proprietários dos cães domiciliados, em sua maioria, cuidam melhor de seus animais, com o mínimo necessário à sobrevivência desses, como água e comida de boa qualidade, abrigo de chuvas e vacinação anual.

Tabela 9 – Distribuição dos cães positivos para aglutininas anti-*Leptospira interrogans* de acordo com a forma de apreensão feita pelo Centro de Controle de Zoonoses de Belo Horizonte, de setembro de 2001 a setembro de 2002.

<table>
<thead>
<tr>
<th>Tipo de apreensão</th>
<th>Amostra examinada</th>
<th>Positivo</th>
<th>Negativo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Busca Domiciliar</td>
<td>2589</td>
<td>268</td>
<td>10.35%</td>
</tr>
<tr>
<td>Captura</td>
<td>828</td>
<td>180</td>
<td>21.73%</td>
</tr>
<tr>
<td>Total</td>
<td>3417</td>
<td>448</td>
<td>13.11%</td>
</tr>
</tbody>
</table>

$\chi^2 = 71.5; p < 0.001$

- Cães vadios, sem domicilio.

Em relação às sorovariedades de *Leptospira interrogans* encontradas nas amostras sanguíneas, a mais prevalente foi a *canicola* (7,0%), seguida da *ballum* (6,1%), *pyrogenes* (3,2%), *icterohaemorrhagiae* (2,9%), *autumnalis* (0,6%), *pomona* (0,3%), *australis* (0,3%) e *tarassovi* (0,1%) – (Fig. 6). Como hipótese desse trabalho, já era esperada uma menor prevalência para *canicola*, uma vez que essa sorovariedade, segundo Hagiwara et al. (2004), tem no cão seu hospedeiro natural e foi descrita por diversos autores como a mais prevalente nesta espécie (Caldas e Dória, 1976; Ávila et al., 1980; Ávila et al., 1998; Modolo et al., 1999). A grande importância de se encontrar alta prevalência quando se trata de *canicola* é dada em relação ao título de anticorpos e a instalação do quadro de leptospiúria. Segundo Alves et al. (2000), após a fase de leptospiúria, que dura em média 4 a 5 dias, quando o animal consegue superar a fase aguda, seu sistema imune reage produzindo anticorpos, fazendo com que as leptospiras persistam apenas em algumas áreas do organismo, onde os anticorpos ocorrem em títulos baixos, como na luz dos túbulos renais. Dessa forma, o animal pode se manter como portador durante vários meses. Essa característica ocorre em maiores proporções em infecções por *canicola* quando se compara com a *icterohaemorrhagiae* conforme verificado por Yamamoto (1951).

Chama a atenção o fato da sorovariedade *ballum* ter sido a segunda mais prevalente em Belo Horizonte, o que também foi observado por Ávila et al. (1980) em Jaboticabal. Em Buenos Aires, Rossetti et al. (1999) e Rocha et al. (2000), em Belo Horizonte, encontraram o sorogrupo *ballum*
como o mais frequente. Esses resultados diferem de Santa Rosa et al. (1974) em Belo Horizonte e Hagiwara e Santa Rosa (1975) na cidade de São Paulo, que encontraram o sorovar *icterohaemorrhagiae* como o mais prevalente. A alta prevalência das aglutininas anti-*ballum* pode indicar que houve contato recente desses cães com roedores infectados, principalmente com camundongos (*Mus musculus*), demonstrando assim uma possível contaminação intradomiciliar tanto para o cão quanto para o homem. Santos (1988) relatou *ballum* como a principal sorovariedade em bovinos na Ilha de São Luís, Maranhão, associando a alta prevalência desse sorovar ao modo de criação pelo qual os animais estavam submetidos. Segundo o autor, a maioria das propriedades, não contendo com áreas suficientes para o plantio de capineiras, possibilitava que os bovinos, após a ordenha, se dirigissem para as ruas à procura de gramíneas e outros alimentos. Assim, permanecendo em terrenos baldios, com acúmulo de lixo e água estagnada de chuvas e esgotos, esses animais ficavam sujeitos ao risco constante da infecção por *L. interrogans*, pela grande concentração de roedores que poderiam servir de reservatório aos vários sorovares, principalmente ao *ballum*.

![Graph showing the prevalence of sorovariedades of *L. interrogans*](image_url)

Figura 6 - Sorovariedades de *L. interrogans* encontradas em soros caninos, Belo Horizonte, MG, setembro de 2001 a setembro de 2002.

Se na diluição 1:100 os cães fossem considerados positivos, seriam 727 cães infectados, o que aumentaria a prevalência para 21.27%. Segundo Santa Rosa et al. (1970), a presença de aglutininas em títulos de 1:100 é suficiente para confirmar o diagnóstico, embora em seu trabalho no ano de 1974, em Belo Horizonte, ele tenha considerado o título mínimo de 1:200. É importante considerar como positivas reações com títulos iguais ou superiores a 1:200 para diminuir a probabilidade de encontrar reações inespecíficas, fato comum na SAM, uma vez que as sorovariedades possuem características antigênicas semelhantes. Cento e sessenta soros seriam positivos para aglutininas anti-*canicola*, 114 para anti-*icterohaemorragiae* e 94 para anti-*ballum*, se a diluição 1:100 fosse considerada. Dessa forma, a sorovariedade *icterohaemorrhagiae* passaria a ser a segunda mais prevalente no
município de Belo Horizonte, com a canicola permanecendo como a de maior ocorrência.

A tabela 10 apresenta os títulos encontrados para as oito sorovariedades testadas. A alta porcentagem de reações em títulos iguais a 1:200 indica que ocorreu reação cruzada entre os sorovares, sendo pouco provável reações para as sorovariedades tarassovi, pomona e australis. No entanto, as quatro sorovariedades mais prevalentes — canicola, ballum, pyrogenes e icterohaemorrhagiae — apresentaram reações para títulos de até 1:25.600, indicando que realmente elas estão presentes no município de Belo Horizonte. O sorovar autumnalis, embora tenha apresentado reações em títulos mais altos, provavelmente também apareceu nos resultados como reação cruzada, uma vez que reagiu sozinho em apenas um cão, em título de 1:200. As outras reações para esse sorovar se deram em soros que reagiram também com canicola e ballum.

Tabela 10 – Distribuição das sorovariedades de *Leptospira interrogans* de acordo com as titulações sorológicas pela técnica de soroaglutinação microscópica em cães de Belo Horizonte, setembro de 2001 a setembro de 2002.

<table>
<thead>
<tr>
<th>Sorovar</th>
<th>1.200</th>
<th>1.400</th>
<th>1.600</th>
<th>1.800</th>
<th>1.1600</th>
<th>1.3200</th>
<th>1.6400</th>
<th>1.12800</th>
<th>1.25600</th>
</tr>
</thead>
<tbody>
<tr>
<td>canicola</td>
<td>21,7%</td>
<td>13,8%</td>
<td>12,5%</td>
<td>13,7%</td>
<td>11,3%</td>
<td>10,5%</td>
<td>5,0%</td>
<td>11,3%</td>
<td></td>
</tr>
<tr>
<td>ballum</td>
<td>32,4%</td>
<td>25,2%</td>
<td>14,3%</td>
<td>14,3%</td>
<td>4,3%</td>
<td>2,4%</td>
<td>2,8%</td>
<td>4,3%</td>
<td></td>
</tr>
<tr>
<td>pyrogenes</td>
<td>37,0%</td>
<td>18,0%</td>
<td>15,3%</td>
<td>12,6%</td>
<td>4,5%</td>
<td>7,2%</td>
<td>1,6%</td>
<td>3,6%</td>
<td></td>
</tr>
<tr>
<td>ictero</td>
<td>34,3%</td>
<td>22,2%</td>
<td>18,1%</td>
<td>10,1%</td>
<td>7,0%</td>
<td>3,0%</td>
<td>2,0%</td>
<td>3,0%</td>
<td></td>
</tr>
<tr>
<td>autumnalis</td>
<td>56,5%</td>
<td>21,7%</td>
<td>-</td>
<td>4,3%</td>
<td>4,3%</td>
<td>4,3%</td>
<td>8,7%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>tarassovi</td>
<td>50,0%</td>
<td>50,0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>australis</td>
<td>-</td>
<td>100,0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>pomona</td>
<td>100,0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

A distribuição espacial das principais sorovariedades encontradas no município de Belo Horizonte pode ser visualizada nas figuras 7, 8, 9 e 10. Nota-se que os quatro sorovares mais prevalentes se encontram distribuídos em todas as regiões de Belo Horizonte, predominando nas áreas de vilas, favelas e nos bairros das periferias da cidade. Os sorovares canicola e ballum apresentaram praticamente a mesma distribuição espacial. Esse fato pode ter ocorrido porque os hospedeiros de ambas as sorovariedades têm hábitos intra ou peridomiciliares, sendo o cão o hospedeiro natural da canicola e o carnudongo (*Mus musculus*) o hospedeiro natural da ballum. Esse roedor, conhecido popularmente também como catita é o menor dos roedores urbanos, encontrado infestando geralmente o interior das residências e construções. Tem uma vida média em torno de um ano, e a família é sempre numerosa, girando em torno de seis filhotes.
Figura 7 – Distribuição das aglutininas anti-*canicola* em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002.

Figura 8 – Distribuição das aglutininas anti-*ballum* em soros de cães de Belo Horizonte – MG, setembro de 2001 a setembro de 2002.

Geralmente, o camundongo procura habitar o interior da casa, onde faz seus ninhos dentro de gavetas, armários, motores elétricos, porões e dispensas; raramente faz túneis e é um animal preferentemente de hábitos noturnos. Por isso, as ações de um Programa de Controle para Leptospirose devem envolver também limpeza e desratização intradomiciliar, além das demais medidas preconizadas no Manual de Leptospirose (1998), como disposição e coleta adequada de lixo, medidas de proteção individual em situações de risco, ingestão de água filtrada, armazenagem correta dos alimentos e vigilância sanitária, higiene de instalações, vacinação de animais, tratamento dos portadores e educação em saúde. Atenção especial deve ser dada a educação em saúde, ato de grande importância quando se trata de leptospirose. As condições precárias de moradia e a grande exposição aos fatores de risco em que vive grande parte das pessoas e animais acometidos pela doença reflete um nível baixo de educação dessa população, associado a ineficiência de infraestrutura.

Semelhante ao que ocorreu com a canicola e a ballum, a icterohaemorrhagiae e a pyrogenes, por terem no rato de esgoto (Rattus norvegicus) seu hospedeiro natural, apresentaram uma distribuição espacial parecida. Esse é o roedor urbano de maior porte e o mais agressivo entre todas as espécies. Prefere fazer seu habitat no solo, onde escava uma rede de túneis subterrâneos ligados entre si e dotados de várias aberturas ou tocas. É hábil nadador e pode permanecer submerso por até 3 minutos. Nas cidades, garante sua subsistência através do lixo, habitando principalmente a rede de esgoto e os terrenos baldios. A alta prevalência do sorovar pyrogenes foi observada por Favero et al. (2002) no Piauí, onde encontrou 100.0% das reações positivas para esse sorovar.

De acordo com os dados do Setor de Epidemiologia da Secretaria Municipal de Saúde de Belo Horizonte (Tab. 11), no período de setembro de 2001 a setembro de 2002, foram recebidas 70.775 solicitações para controle de roedores nas nove regionais, sendo que a Nordeste foi responsável por 44,8% das reclamações, seguida pela Noroeste (15,8%) e Oeste (10,9%). A regional Venda Nova foi a de menor índice de solicitações, sendo responsável por apenas 1,5% das chamadas. Nota-se que a regional Nordeste não foi a que apresentou maior prevalência de cães positivos, mas dos quatro sorovares georreferenciados em Belo Horizonte, ballum foi o que teve maior distribuição espacial nessa regional, provavelmente, devido à expressiva presença de roedores, o que pode ser justificado pelo maior número de solicitações da comunidade feitas ao Serviço de Controle de Zoonoses. A associação de casos de leptospirose com a presença de roedores sinantrópicos também foi verificada por Barcellos et al. (2003) no Rio Grande do Sul.

Na Figura 11 observa-se que 100.0% das solicitações para controle de roedores foram atendidas. A presença intensa de roedores ocorreu em todos os meses do ano, sendo nesse período os meses de inverno aqueles de maior contaminação ambiental, onde maio e julho de 2002, responderam por 29,74% do total de chamadas. Provavelmente, no verão e na primavera, por terem alimentação farta e disponível, os roedores não são vistos tão facilmente ao redor das residências. Já nos meses de inverno, quando a comida se torna escassa, esses animais se vêem obrigados a se expor em locais visíveis pelo homem, o que faz com que o número de solicitações nesse período aumente.
<table>
<thead>
<tr>
<th>Mês</th>
<th>Atendida</th>
<th>Total</th>
<th>Recebida</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B CS L NE NO N O P VN</td>
<td>B CS L NE NO N O P VN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>508 96 118 6263 1443 1062 446 206 44</td>
<td>10186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>700 130 204 2025 1223 330 343 159 81</td>
<td>5195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>363 134 251 1502 2029 384 391 222 161</td>
<td>5437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>315 80 251 1968 770 246 399 129 116</td>
<td>4283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1044 187 303 1503 449 165 582 250 95</td>
<td>4578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>861 95 273 994 339 157 344 154 107</td>
<td>3324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>876 186 208 1283 744 155 608 292 77</td>
<td>4429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1014 229 397 3117 597 132 477 232 83</td>
<td>6278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>753 198 389 4581 857 414 518 268 89</td>
<td>8097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1 106 159 998 551 328 69 318 83</td>
<td>2623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0 114 292 9258 507 254 2085 329 167</td>
<td>13006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>346 126 252 4000 1636 181 794 321 92</td>
<td>7758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>633 104 171 2126 691 148 647 252 94</td>
<td>4886</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7414 (10.4) 1794 (2.5) 3278 (4.6) 3518 (55.8) 11858 (16.7) 39568 (5.5) 7703 (10.8) 3152 (4.4) 1289 (1.8)</td>
<td>70960</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 11 – Solicitações de controle de roedores atendidas e recebidas por regional em Belo Horizonte, de setembro de 2001 a setembro de 2002.
Figura 11 – Solicitações de controle de roedores recebidas e atendidas por regional em Belo Horizonte, de setembro de 2001 a setembro de 2002.

Na Figura 12 observa-se a distribuição dos cães positivos de acordo com o sexo. A prevalência de machos positivos (14,97%) foi maior que a de fêmeas positivas (10,77%), o que também foi verificado por Modolo et al. (1999) em Botucatu e Rosseti et al. (1999) em Buenos Aires. Reis et al. (1972) em Belo Horizonte e Ávila et al. (1980) em Jaboticabal, encontraram maior prevalência entre as fêmeas. Azevedo e Santos (1946) afirmaram que, além da transmissão pela urina, a leptospira é propagada de cão a cão diretamente pela boca e narinas, quando o cão cheira ou lambe os órgãos genitais de um cão portador. Cães machos são mais acometidos, principalmente cães de rua quando as fêmeas entram no cio, sendo comum encontrar diversos machos ao redor de uma única fêmea. A Odds Ratio para a variável sexo indica que ser macho aumenta 1,45 vezes a chance do cão ter infecção por *L. interrogans*.
Figura 12 - Distribuição dos cães testados e reagentes para aglutininas anti-*Leptospira interrogans* de acordo com o sexo, Belo Horizonte - MG, setembro de 2001 a setembro de 2002.

Em relação à idade, não houve diferença significativa entre os cães positivos maiores ou menores de um ano ($\chi^2 = 0.078$), o que também foi observado por Modolo *et al.* (1999). A ausência de diferença significativa entre cães acima de 1 ano (13.10%) e abaixo de 1 ano (15.38%) pode ter ocorrido pelo fato dos cães recolhidos pelo CCZ – BH serem, na grande maioria, adultos e, consequentemente, a maior parte das amostras sanguíneas terem sido oriundas desses animais. Além disso, como a coleta venosa foi realizada, na maioria das vezes, por funcionários do CCZ – BH, a dificuldade em coletar sangue de filhotes permitiu que ocorresse um viés de erro na pesquisa, com predomínio de amostras de cães adultos. Alguns autores como Reis *et al.* (1972) em Belo Horizonte e Alves *et al.* (2000) na Paraíba encontraram maior prevalência em cães adultos. Embora não tenham relatado esses valores no seu trabalho, Rosseti *et al.* (1999) afirmaram que, de acordo com a epidemiologia da doença, é lógico que quanto maior a idade, maiores são as possibilidades de um cão adulto contrair a doença. A figura 13 apresenta a idade dos cães testados.

A figura 14 apresenta a distribuição dos cães positivos entre animais com e sem raça definida. Do total de cães coletados sem raça definida, 14,08% foram positivos para uma ou mais sorovariedades de *Leptospira interrogans*, enquanto entre os cães de raça definida, 7,92% reagiram ao teste de SAM, mostrando que as diferenças são significativas com p < 0,05. Esse resultado também foi observado por Caldas e Dória (1976) e Modolo *et al.* (1999). Pode-se inferir que a maioria dos cães vadios não têm raça definida e por viverem nas ruas, provavelmente, estão mais expostos aos fatores de risco da infecção, além de não terem tido a oportunidade de serem protegidos contra a leptospirose através da vacinação. A *Odds Ratio* para a variável raça mostra que não ter raça definida, aumenta em 1,89 vezes a chance do cão ter infecção por *L. interrogans*. (Anexo 2).

Figura 14 - Distribuição dos cães testados e reagentes para aglutininas anti-*Leptospira interrogans* em relação a raça, Belo Horizonte - MG, setembro de 2001 a setembro de 2002.

Analisando as interações entre as variáveis tipo de apreensão, raça e sexo, pela regressão logística, nota-se que existe uma associação entre as variáveis raça e sexo e entre tipo de apreensão e raça (Anexo 3). O fato de o animal ser fêmea, como já foi mencionado anteriormente, faz com que ocorra uma certa proteção ao risco de adquirir a infecção, e quando essa variável interage com a variável raça, o fato de ser fêmea e de raça definida aumenta ainda mais a proteção ao fator doença. Da mesma forma ocorre com o macho. Ser macho acarreta um risco de 1,45 vezes mais chances de ter a infecção, e ser macho sem raça definida incrementa ainda mais o risco, tendo esse cão 1,74 vezes mais chance de adquirir a infecção do que uma fêmea de raça definida.

Uma interação semelhante ocorre em cães domiciliados e de raça definida. As duas variáveis têm um fator protetor em relação ao risco de contrair a infecção, e, quando estão relacionadas, esse fator protetor aumenta mais, correspondendo a um risco de se infectar, de 1,035. Já os cães capturados nas ruas, ou seja, cães sem donos ou de proprietários relapsos e sem raça definida, correspondem à categoria com maior chance de se infectar: têm 3,59 vezes mais risco. Esse fato já foi citado anteriormente pelo hábito do cão de rua andar em grupos quando fêmeas estão no cio. Além disso, pode-se considerar que o cão vadio não é vacinado contra leptospirose, bebe água empaçada e, ocasionalmente, se envolve em brigas podendo ocorrer contaminação pela saliva, conforme citado por Veronesi *et al.* (1956).
Em relação à infecção por leptospiras, a estação do ano é uma variável importante que deve ser levada em consideração nas análises, uma vez que elas sobrevivem em temperaturas amenas, em torno de 28ºC e umidade relativa do ar elevada. Em épocas de alta precipitação pluvial esses fatores, associados à ineficácia dos sistemas de drenagens da água, facilitam o contato do cão com o agente. Na figura 15 observam-se os meses com maior prevalência de cães reagentes às aglutininas anti-Lespospíra interrogans e os índices de precipitação pluvial no período estudado. Nota-se que os meses de chuva concentram os maiores índices de infecção: dezembro/2001 (21,9%), janeiro/2002 (21,7%) e setembro/2001 (20,4%), como observado também nos trabalhos de Ávila et al. (1998) em Pelotas, que encontraram maior índice de infecção nos meses de março, agosto, setembro, outubro e novembro, correspondendo aos períodos de maiores índices pluviométricos naquele município.

Figueiredo et al. (2001) fizeram uma consideração interessante quanto ao período chuvoso e sua relação com a doença. "As vias públicas das grandes cidades facilitam a circulação de bens e pessoas, mas exigem a crescente utilização de asfalto e concreto que reduzem a capacidade de absorção d'água diretamente pelo solo, dificultando o escoamento da água das chuvas pelas galerias pluviais. Soma-se a esse aspecto o problema de destinação do lixo, com acondicionamento incorreto em terrenos baldios ou mesmo em espaços públicos. Em época de chuva, o lixo acumulado nas ruas é carregado até as galerias pluviais entupindo-as. O solo impermeabilizado, incapaz de absorver as águas da chuva, aumenta o volume hídrico nas vias públicas favorecendo a ocorrência de inundações". Esses fatores aparecem com grande frequência nas manchetes de jornais dos principais centros urbanos como causas do aparecimento de novos casos de leptospirose humana, sendo provavelmente, responsáveis também pela disseminação da doença no cão nos períodos de altas precipitações pluviais. Além da água, o contato com a matéria orgânica úmida da lama resultante de inundações representa outra fonte de contaminação importante, para o homem e para os animais. As leptospiras sobrevivem no solo úmido por longos períodos, podendo infectar o indivíduo com a mesma facilidade que ocorre mediante contato com água contaminada.

De setembro de 2001 a setembro de 2002 foram confirmados sete casos humanos de leptospirose em Belo Horizonte, segundo informações da Secretaria Municipal de Saúde. Esses casos foram assim distribuídos: um em novembro/2001 na regional Venda Nova, um em dezembro/2001 na Noroeste, dois em janeiro/2002, ocorrendo um caso na regional Leste e um na Norte; um em fevereiro/2002 na Leste e dois em março/2002, sendo um na regional Noroeste e um na Norte. A doença no homem apresenta, na maioria das vezes, sinais clínicos inespecíficos, que compreendem febre, cefaléia, dores musculares, anorexia, náuseas e vômitos, podendo evoluir para uma doença icteríca grave com disfunção renal, fenômenos hemorrágicos, alterações hemodinâmicas, cardíacas, pulmonares e de consciência. Na primeira fase com sinais clínicos discretos, ocorre um grande número de sub-notificações da doença, podendo ser confundida com diversas viroses inclusive com a Dengue. Por isso, no Brasil, as estatísticas muitas vezes não revelam a situação real dessa doença, e, diferentemente dos países desenvolvidos, onde a leptospirose é considerada uma enfermidade ocupacional, aqui no Brasil ela está muito mais ligada aos problemas de moradia, higiene e educação. Desse modo, não foi possível relacionar os casos humanos confirmados de leptospirose com os valores encontrados nos cães. O que se fez, foi a observação de que os meses de verão, onde ocorreram o maior número de infeções nos cães, foram os meses onde ocorreram casos humanos e que a regional Leste, a segunda com maior prevalência nos cães, foi a que apresentou dois casos humanos nos meses de maior precipitação pluvial e de temperaturas mais elevadas no período estudado (janeiro e fevereiro de 2002), mostrando que as características ambientais estão estreitamente relacionadas com o aparecimento da leptospirose.

Em relação à vacinação de cães em Belo Horizonte, a maioria dos produtos comerciais existentes hoje no mercado contêm antígenos que imunizam contra os
sorovares *icterohaemorrhagiae* e *canicola*, segundo Hagiwara *et al.* (2004). Alguns laboratórios já produzem vacinas contendo outros sorovares detectados em estudos no Brasil. Nesse entanto, em Belo Horizonte, não existe, até o momento, nenhuma vacina comercial que contenha os sorovares *ballum* e *pyrogenes*, encontrados como o segundo e o terceiro mais prevalentes no município, respectivamente. Sugere-se, portanto, que a partir desse estudo, novas pesquisas possam ser realizadas com o intuito de isolar os sorovares *ballum* e *pyrogenes* de cães suspeitos da doença em Belo Horizonte e assim acrescentar os dois sorovares nas vacinas comerciais contra leptospirose utilizadas em cães nesse município.

Os resultados obtidos nesta pesquisa, apontam a necessidade de estratégias diferenciadas de acordo com as áreas de risco de infecção por *L. interrogans* no município de Belo Horizonte, podendo contribuir com os órgãos de saúde responsáveis pela elaboração e execução das medidas de controle dessa zoonose.

5 CONCLUSÕES

A partir dos resultados obtidos, pode-se concluir que no município de Belo Horizonte:

- As aglutininas anti-*Leptospira interrogans* estão distribuídas nas nove regionais da administração do município de Belo Horizonte, com uma prevalência de 13,11% de cães reagentes.

- As sorovariedades mais encontradas foram *canicola*, *ballum*, *pyrogenes* e *icterohaemorrhagiae*.

- Os cães machos, sem raça definida e não domiciliados apresentam maior prevalência da infecção por *L. interrogans*.

- Existe risco diferenciado de infecção por *L. interrogans* em cães de acordo com a precipitação pluvial e temperatura do ambiente.

- As vacinas contra leptospiroses utilizadas nos cães além de *canicola* e *icterohaemorrhagiae* poderiam incluir *ballum* e *pyrogenes*.

- As áreas de maior risco de infecção por *L. interrogans* coincidem com as regiões de vilas, favelas e bairros da periferia onde existe deficiência de saneamento ambienta.
6 REFERÊNCIAS BIBLIOGRÁFICAS:

ANEXO 1
Ficha de identificação dos cães.

<table>
<thead>
<tr>
<th>Nº FICHA</th>
<th>DATA</th>
<th>DS</th>
<th>ENDEREÇO</th>
<th>FONE</th>
<th>DADOS DO ANIMAL</th>
<th>SOROVARIEDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sexo Idade raça</td>
<td>C P B T P AS AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M F <1 >1</td>
<td></td>
</tr>
</tbody>
</table>

LEGENDA: C. CANICOLA, I. ICTERO, P. POMONA, B. BALLUM, T. TARASSOVY, P. PYROGENES, AS. AUTRAIS.
A. AUTUMNALIS
ANEXO 2

Análise estatística das variáveis estudadas e análise de regressão das regionais.

<table>
<thead>
<tr>
<th>log: G:\Danielle.log</th>
</tr>
</thead>
<tbody>
<tr>
<td>log type: text</td>
</tr>
<tr>
<td>opened on: 7 Jan 2005, 15:28:59</td>
</tr>
</tbody>
</table>

. logistic res sexo

Logistic regression

<table>
<thead>
<tr>
<th>Number of obs = 3416</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR chi2(1) = 13.26</td>
</tr>
<tr>
<td>Prob > chi2 = 0.0003</td>
</tr>
</tbody>
</table>

Log likelihood = -1320.7009

Pseudo R2 = 0.0050

| res | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|------------|-----------|---|-----|----------------------|
| sexo| 1.458856 | .1530237 | 3.60 | 0.000 | 1.187757 1.791833 |

. logistic res raca

Logistic regression

<table>
<thead>
<tr>
<th>Number of obs = 3417</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR chi2(1) = 16.64</td>
</tr>
<tr>
<td>Prob > chi2 = 0.0000</td>
</tr>
</tbody>
</table>

Log likelihood = -1319.1493

Pseudo R2 = 0.0063

| res | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|------------|-----------|---|-----|----------------------|
| raca| 1.893627 | .3176634 | 3.81 | 0.000 | 1.36302 2.630794 |

. logistic res idade

Logistic regression

<table>
<thead>
<tr>
<th>Number of obs = 3417</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR chi2(1) = 0.06</td>
</tr>
<tr>
<td>Prob > chi2 = 0.8120</td>
</tr>
</tbody>
</table>

Log likelihood = -1327.4412

Pseudo R2 = 0.0000

| res | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|------------|-----------|---|-----|----------------------|
| idade| 1.20587 | .9289815 | 0.24 | 0.806 | 2664095 5.458225 |
res | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---+
ldistrito_2 | 2.25367 .5316709 3.44 0.001 1.419321 3.578493
ldistrito_3 | 1.806222 .3548175 3.01 0.003 1.229022 2.65451
ldistrito_4 | 1.083652 .2194742 0.40 0.692 0.728068 1.611704
ldistrito_5 | 1.182274 .243102 0.81 0.415 0.790118 1.769067
ldistrito_6 | 0.9711538 .2021788 -0.14 0.888 0.6457752 1.604077
ldistrito_7 | 1.101385 .2525139 0.42 0.674 0.702724 1.72621
ldistrito_8 | 0.6919963 .1846592 -1.38 0.168 0.4101669 1.167473
ldistrito_9 | 1.107115 .2262145 0.50 0.618 0.741769 1.652407
+---+

. test ldistrito_2 ldistrito_3 ldistrito_4 ldistrito_5 ldistrito_6 ldistrito_7 ldistrito_8 ldistrito_9
> istrito_6 ldistrito_9

(1) ldistrito_2 = 0
(2) ldistrito_3 = 0
(3) ldistrito_4 = 0
(4) ldistrito_5 = 0
(5) ldistrito_6 = 0
(6) ldistrito_7 = 0
(7) ldistrito_8 = 0
(8) ldistrito_9 = 0

 chi2(8) = 32.44
 Prob > chi2 = 0.0001

.xi: logistic res tipo

Logistic regression Number of obs = 3417
 LR chi2(1) = 64.96
Prob > chi2 = 0.0000
Log likelihood = -1294.9882 Pseudo R2 = 0.0245

 res | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------+---+
tipo | 2.40568 .2552847 8.27 0.000 1.953937 2.961865
----------+---+

.xi: logistic res i.distrito sexo raca idade tipo

Logistic regression Number of obs = 3409
 LR chi2(12) = 112.46
Prob > chi2 = 0.0000
Log likelihood = -1266.3309 Pseudo R2 = 0.0425

 res | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------+---+
ldistrito_2 | 2.379637 .5705096 3.62 0.000 1.48762 3.807174
ldistrito_3 | 1.941005 .3875372 3.32 0.001 1.312434 2.870621
----------+---+
idistrito_4	1.162309	.2385487	0.73	0.464	.7773824	1.737879
idistrito_5	1.191461	.2481831	0.84	0.400	.7920879	1.7922
idistrito_6	.9889974	.2084819	-0.05	0.958	.6542756	1.49496
idistrito_7	1.100534	.2558605	0.41	0.680	.6977662	1.735791
idistrito_8	.748522	.2020813	-1.07	0.283	.4409633	1.270594
idistrito_9	1.112588	.2303109	0.52	0.606	.7415348	1.66931
Sexo	1.425496	.152598	3.31	0.001	1.155701	1.758273
raca	1.446656	.2509706	2.13	0.033	1.029665	2.032518
idade	1.52821	.192398	0.54	0.587	.331151	7.052449
tipo	2.262148	.2506895	7.38	0.000	1.821481	2.809423

```
.xi: logistic res i.idistrito sexo raca tipo
i.idistrito    _idistrito_1-9    (_idistrito_1 for distrito==B omitted)

Logistic regression
Number of obs = 3409
LR chi2(11) = 112.19
Prob > chi2 = 0.0000

Log likelihood = -1266.4654                         Pseudo R2 = 0.0424

res | Odds Ratio   Std. Err.     z      P>|z|     [95% Conf. Interval]
-----+---------------------------------------------------------------
_idistrito_2 | 2.382486 | .5711122 | 3.62 | 0.000 | 1.489315 3.811309
_idistrito_3 | 1.940145 | .3873434 | 3.32 | 0.001 | 1.311882 2.659285
_idistrito_4 | 1.163053 | .2386844 | 0.74 | 0.462 | .778882 1.738941
_idistrito_5 | 1.191193 | .248118  | 0.84 | 0.401 | .791921 1.791769
_idistrito_6 | .9866209 | .2085783 | -0.05 | 0.956 | .6547336 1.495798
_idistrito_7 | 1.104258 | .2566009 | 0.43 | 0.670 | .7002829 1.741276
_idistrito_8 | .7475828 | .2018084 | -1.08 | 0.281 | .4404324 1.268935
_idistrito_9 | 1.113607 | .2305088 | 0.52 | 0.603 | .7422314 1.670801
sexo | 1.424642 | .1524865 | 3.31 | 0.001 | 1.155041 1.757171
raca | 1.444054 | .2504446 | 2.12 | 0.034 | 1.027917 2.028657
tipo | 2.258846 | .2495886 | 7.37 | 0.000 | 1.819005 2.805041

.xi: logistic res i.idistrito i.raca*sexo i.raca*tipo
i.idistrito    _idistrito_1-9    (_idistrito_1 for distrito==B omitted)
i.raca        _raca_0-1    (naturally coded; _raca_0 omitted)
i.raca*sexo   _racaXsexo_#    (coded as above)
i.raca*tipo   _racaXtipo_#    (coded as above)

note: _raca_1 dropped due to collinearity

Logistic regression
Number of obs = 3409
LR chi2(13) = 117.36
Prob > chi2 = 0.0000

Log likelihood = -1263.8832                         Pseudo R2 = 0.0444

res | Odds Ratio   Std. Err.     z      P>|z|     [95% Conf. Interval]
-----+---------------------------------------------------------------
_idistrito_2 | 2.392354 | .5742386 | 3.63 | 0.000 | 1.494551 3.829482
```
```
_eldistrito_3 |  1.941272  0.3880047  3.32  0.001  1.312066  2.872217
_eldistrito_4 |  1.158875  0.2360379  0.72  0.473  0.7748117  1.733313
_eldistrito_5 |  1.198299  0.2499887  0.87  0.386  0.7961366  1.803609
_eldistrito_6 |  0.9869497  0.2082157 -0.06  0.950  0.6527065  1.492355
_eldistrito_7 |  1.110654  0.2585042  0.45  0.652  0.7038208  1.752651
_eldistrito_8 |  0.7447145  0.2012067 -1.09  0.275  0.4385433  1.264641
_eldistrito_9 |  1.109739  0.2299459  0.50  0.615  0.739343  1.665697
_liraca_1   |  0.9660632  0.2433821 -0.14  0.891  0.5896045  1.582888
_sexo       |  0.8400579  0.2684722 -0.55  0.586  0.4490302  1.571603
_liracXsexo_1|  1.805284  0.6126166  1.74  0.082  0.9283112  3.510732
_tipo       |  0.6199264  0.6471486 -0.46  0.647  0.0801236  4.796447
_liracXtipo_1|  3.723287  3.3908789  1.25  0.210  0.4756814  29.14317
```

```r
test _eldistrito_2 _eldistrito_3 _eldistrito_4 _eldistrito_5 _eldistrito_6 _eldistrito_7_ld
> istrato_8 _eldistrito_9

(1) _eldistrito_2 = 0
(2) _eldistrito_3 = 0
(3) _eldistrito_4 = 0
(4) _eldistrito_5 = 0
(5) _eldistrito_6 = 0
(6) _eldistrito_7 = 0
(7) _eldistrito_8 = 0
(8) _eldistrito_9 = 0

chisq(8) = 34.40
Prob > chisq = 0.0000

test _liraca_1 sexo _liracXsexo_1

(1) _liraca_1 = 0
(2) sexo = 0
(3) _liracXsexo_1 = 0

chisq(3) = 16.75
Prob > chisq = 0.0008

test _liraca_1 tipo _liracXtipo_1

(1) _liraca_1 = 0
(2) tipo = 0
(3) _liracXtipo_1 = 0

chisq(3) = 57.37
Prob > chisq = 0.0000
```

```
x: logistic res i.district i.liracalsex i.liraca*tipo, coef
i.district _eldistrito_1-9 (_eldistrito_1 for district==B omitted)
i.liraca _liraca_0-1 (naturally coded; _liraca_0 omitted)
```
i.raca*sexo _lracXsexo_# (coded as above)
i.raca*tipo _lracXtipo_# (coded as above)

note: _lrraca_1 dropped due to collinearity

Logistic regression
Number of obs = 3409
LR chi2(13) = 117.36
Prob > chi2 = 0.0000

Log likelihood = -1263.8832 Pseudo R2 = 0.0444

| res | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|-------|-----------|------|-----|--------------------------|
| _ldistrito_2 | .8722777 | .2400308 | 3.63 | 0.000 | .401826 | 1.342729 |
| _ldistrito_3 | .6633436 | .1998713 | 3.32 | 0.001 | .271603 | 1.055084 |
| _ldistrito_4 | .1474497 | .2054043 | 0.72 | 0.473 | -.2551353 | .5500348 |
| _ldistrito_5 | .1809027 | .2086198 | 0.87 | 0.386 | -.2279845 | .5897898 |
| _ldistrito_6 | -.0131362 | .2109689 | -0.06 | 0.950 | -.4266277 | .4003553 |
| _ldistrito_7 | .1049491 | .2327495 | 0.45 | 0.652 | -.3512315 | .5611297 |
| _ldistrito_8 | -.2947543 | .2701796 | -1.09 | 0.275 | -.8242967 | .234788 |
| _ldistrito_9 | .1041252 | .2072071 | 0.50 | 0.615 | -.3019933 | .5102436 |
| _lrraca_1 | -.034526 | .2519319 | -0.14 | 0.891 | -.5283034 | .4592513 |
| Sexo | -.1742845 | .3195878 | -0.55 | 0.586 | -.800665 | .452096 |
| _lracXsexo_1 | .5907182 | .3393463 | 1.74 | 0.082 | -.0743883 | 1.255825 |
| tipo | -.4781545 | 1.043912 | -0.46 | 0.647 | -.2524185 | 1.567876 |
| _lracXtipo_1 | 1.314607 | 1.049822 | 1.25 | 0.210 | -.7430069 | 3.37222 |
| _cons | -2.504336 | .2719806 | -9.21 | 0.000 | -.307408 | 1.971263 |

log close
log: G:\Danielle.log
log type: text
closed on: 7 Jan 2005, 15:32:07
ANEXO 3

Análise de regressão entre as variáveis sexo e raça e tipo de apreensão e raça.

<table>
<thead>
<tr>
<th>Raça</th>
<th>RD</th>
<th>SRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>Fêmea</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Macho</td>
<td>-0.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.174</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raça</th>
<th>RD</th>
<th>SRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Busca</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Captura</td>
<td>-0.478</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.478</td>
</tr>
</tbody>
</table>