UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas

Dissertação de Mestrado

Flotação Fracionada: Aumento do Rendimento da Flotação Através da Divisão da Alimentação em Duas Frações Granulométricas

Autor: Marcello Rodrigues Cruz Orientador: Prof. Antônio Eduardo Clark Peres

Março/2010

UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas

Marcello Rodrigues Cruz

Flotação Fracionada: Aumento do Rendimento da Flotação Através da Divisão da Alimentação em Duas Frações Granulométricas

> Dissertação de mestrado apresentada ao Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito parcial para obtenção do Grau de Mestre em Engenharia Metalúrgica e de Minas

Área de concentração: Tecnologia Mineral

Orientador: Prof. Antônio Eduardo Clark Peres

Belo Horizonte Universidade Federal de Minas Gerais Escola de Engenharia 2010

DEDICATÓRIA

À minha esposa Camila aos meus pais Helena (em memória) e Tarcísio, ao meu irmão Eduardo e às minhas tias Zezé, Cidinha e Noeme.

AGRADECIMENTOS

Agradeço a Deus, sem ele não sou nada.

Agradeço à minha família, avós, tios, primos, primas, que sempre me incentivaram a ir além.

Agradeço a todos aqueles que, de alguma forma, colaboraram na condução e execução deste estudo e, em especial a:

Antônio Eduardo Clark Peres, pela orientação, incentivo, ensinamentos e amizade.

Emir Birro de Castro, Michael Costa Marques, Aloísio Borges, Cássia Cristine de Souza pelo incentivo, apoio e amizade.

Henrique Dias Gatti Turrer pela amizade e pelos ensinamentos sobre o Minitab, principalmente na reta final do mestrado, e a Ari Dias Turrer (em memória) pela amizade e estímulo no aprendizado em estatística e idiomas.

Carlos González e Daniel Santos em nome da Anglo Ferrous Brazil pelo incentivo e oportunidade de desenvolvimento pessoal e profissional.

Leandro Maciel e Carlos Magalhães pela amizade e oportunidade de trabalhar na Anglo Ferrous Brazil que tem sido um diferencial para minha carreira e para minha vida.

Wellington Ribeiro Moreira, Fabiano Gonzaga, Julio Silva, Josué Lima, Manoel Braga, Antonio Schetthino, Ronney Rogério e Luciano Rocha pelo auxílio na condução e execução dos ensaios e análises.

Colegas da MBR, Anglo, Samarco, Usiminas e Vale pelo companheirismo e constante estímulo.

Membros da banca examinadora, pela dedicação de seu tempo na leitura deste estudo.

Professores do curso de Engenharia de Minas e CPGEM da UFMG pelos ensinamentos e aos funcionários Nelson e Cida pela constante ajuda.

SUMÁRIO

1- INTRODUÇÃO1
2. OBJETIVO
3. REVISÃO BIBLIOGRÁFICA 2
3.1 – Classificação Minérios de Ferro 2
3.2 – Flotação
3.2.1 - Aspectos gerais
3.2.2 - Flotação de oxi-minerais
3.2.3 - Influência da granulometria na flotação8
3.3 – Planejamento Fatorial
4 – METODOLOGIA
4.1 – Materiais
4.1.1 – Amostras
4.1.2 – Reagentes
4.2 – Métodos
4.2.1- Amostragem e preparação das amostras
4.2.2- Flotação
4.2.3- Planejamento experimental
5- RESULTADOS E DISCUSSÃO DO ESTUDO PRELIMINAR
5.1 – Testes de flotação do estudo preliminar
5.2 - Análise dos resultados de sílica no concentrado
5.3 - Análise dos resultados de recuperação metalúrgica de ferro
5.4 - Análise dos resultados de Índice de Seletividade
5.5 - Análise dos resultados de Razão de Concentração de ferro
5.6 - Análise cruzada dos resultados de teor de sílica no concentrado e recuperação
metalúrgica do ferro 58
6- RESULTADOS E DISCUSSÃO DO ESTUDO FINAL
6.1 - Análise Granulométrica do ROM 61
6.2 - Análise granulométrica classificação e deslamagem

6.3 - Análise granulométrica das três frações granulométricas submetidas aos testes de flotação e análise da classificação da fração -0,150 +0,010 mm e duas 6.4 - Testes de Flotação 6.4.1 – Resultados Flotação Fração Composta (-0,150 +0,010 mm) 70 6.4.1.1 - Recuperação metalúrgica do ferro 6.4.1.2– Teor de sílica no concentrado 6.4.1.3 – Recuperação mássica da flotação 6.4.1.4 – Índice de seletividade ferro-sílica 6.4.1.5 – Resultados agrupados de sílica no concentrado e recuperação metalúrgica do ferro 6.4.2.1 – Recuperação metalúrgica do ferro 6.4.2.2 – Teor de sílica no concentrado 6.4.2.3 – Recuperação mássica da flotação 6.4.2.4 – Índice de seletividade ferro-sílica 6.4.2.5 – Resultados agrupados de sílica no concentrado e recuperação metalúrgica do ferro 6.4.3.3 – Recuperação mássica da flotação 6.4.3.4 – Índice de seletividade ferro-sílica 6.4.3.5 - Resultados agrupados de sílica no concentrado e recuperação metalúrgica do ferro 6.4.4 - Comparação dos resultados da flotação fracionada com a flotação -0,150 +0.010 mm 6.4.5 - Testes Cinética da Flotação 6.4.6 - Avaliação dos resultados para redução da energia de re-moagem 104 8 – SUGESTÕES PARA TRABALHOS FUTUROS 9 - RELEVÂNCIA DOS RESULTADOS108

10 - REFERÊNCIAS BIBLIOGRÁFICAS	
Anexo I– Informações Adicionais sobre planeja	amento fatorial114
Anexo II – Resultados e complemento de resu	ltados do estudo flotação fracionada

LISTA DE FIGURAS

Figura 3.1 – Desenho esquemático de uma coluna de flotação, enfatizando-se as zonas
de coleta e limpeza. (Kelles, 1996)6
Figura 3.2 - Diagrama esquemático mostrando a relação entre as propriedades físicas e
químicas de partículas finas e seu comportamento na flotação. (Fuerstenau,
1980)
Figura 3.3 – Efeito do "Hold-up" do ar (0g) sobre a eficiência de coleta (Ek), calculada
a partir do modelo desenvolvido por Dobby (1987). Tamanho de bolha = 0,1 cm;
densidade da partícula = 4,0 g/cm3. (Dobby, 1987)15
Figura 3.4 – Recuperação de galena. Células "Rougher". o:células 1-3; □: células 4-6;
Δ: células 7-15. (Trahar, 1981)
Figura 3.5 – Influência da dosagem de xantato na recuperação de calcocita. Tempo de
flotação = 1 min.; espumante: PPG 400. Dosagens: 0 mg/l (o); 1,1 mg/l (\Box); 3,7 mg/l
$(\Delta); 7,5 \text{ mg/l} (\diamond). (Trahar, 1981)$
Figura 3.6 – Eficiência de colisão calculada usando o modelo descrito pela equação de
eficiência de colisão total definida por Schulze (1989), como sendo uma função do
tamanho de partícula para vários tamanhos de bolha; isto é, $db = 2,0 \text{ mm}$ (-); $db = 1,0$
mm () e db = 0,5 mm (). (Hewitt et al, 1994)
Figura 3.7 – Sistema de coordenada polar usado na determinação do ângulo crítico de
incidência e da probabilidade de adesão. (Yoon et al, 1989)
Figura 4.1 – Localização das amostras em 3D em relação a cava projetada para os 5
primeiros anos de operação do projeto na região de Conceição do Mato Dentro.
Figura 4.2 -Representação das condições de amina, amido e pH segundo o
planejamento
Figura 5.1 – Efeitos principais sobre o teor de SiO_2 no concentrado para a amostra
composta
Figura 5.2 – Efeitos das interações sobre o teor de SiO_2 no concentrado para a amostra
composta
Figura 5.3 - Respostas do teor de sílica no concentrado em função das dosagens da
amina e do pH no concentrado para a amostra composta

Figura 5.4 – Efeitos principais sobre o teor de SiO ₂ no concentrado para a fração -0,150
+0,037 mm
Figura 5.5 – Efeitos das interações sobre o teor de SiO_2 no concentrado para a fração -
0,150 +0,037 mm
Figura 5.6 - Respostas do teor de sílica no concentrado em função das dosagens da
amina e do amido no concentrado para a amostra -0,150 +0,037 mm
Figura 5.7 – Efeitos principais sobre o teor de SiO ₂ no concentrado para a fração -0,037
+0,010 mm
Figura 5.8 – Efeitos das interações sobre o teor de SiO_2 no concentrado para a fração -
0,037 +0,010 mm
Figura 5.9 - Respostas do teor de sílica no concentrado em função das dosagens da
amina e do pH no concentrado para a amostra -0,037 +0,010 mm
Figura 5.10 – Efeitos principais sobre a recuperação metalúrgica de ferro para a amostra
composta
Figura 5.11 – Efeitos das interações sobre a recuperação metalúrgica de ferro para a
amostra composta
Figura 5.12 – Respostas da recuperação metalúrgica de ferro em função das dosagens da
amina e do amido para a amostra composta
Figura 5.13 – Efeitos principais sobre a recuperação metalúrgica de ferro para a fração -
0,150 +0,037 mm
Figura 5.14 – Efeitos das interações sobre a recuperação metalúrgica de ferro para a
fração -0,150 +0,037 mm
Figura 5.15 – Respostas da recuperação metalúrgica de ferro em função das dosagens da
amina e d amido para a fração -0,150 +0,037 mm47
Figura 5.16 – Efeitos principais sobre a recuperação metalúrgica de ferro para a fração -
0,037 +0,010 mm
Figura 5.17 – Efeitos das interações sobre a recuperação metalúrgica de ferro para a
fração -0,037 +0,010 mm
Figura 5.18 – Respostas da recuperação metalúrgica de ferro em função das dosagens da
amina e do amido para a fração -0,037 +0,010 mm49

Figura 5.19 – Efeitos principais sobre o índice de seletividade para a amostra composta.

Figura 5.20 – Efeitos das interações sobre o índice de seletividade para a amostra composta. Figura 5.21 – Respostas do índice de seletividade em função das dosagens do amido e do pH para a amostra composta. Figura 5.22 - Efeitos principais sobre o índice de seletividade para a fração -0,150 Figura 5.23 - Efeitos das interações sobre o índice de seletividade para a fração -0,150 Figura 5.24 - Respostas do índice de seletividade em função das dosagens da amina e do pH para a fração -0,150 +0,037 mm. Figura 5.25 - Efeitos principais sobre o índice de seletividade para a fração -0,037 Figura 5.26 – Efeitos das interações sobre o índice de seletividade para a fração -0,037 Figura 5.27 – Respostas do índice de seletividade em função das dosagens do amido e Figura 5.28 – Efeitos principais sobre a razão de concentração de ferro para a amostra composta. Figura 5.29 – Efeitos das interações sobre a razão de concentração de ferro para a amostra composta. Figura 5.30 – Respostas da razão de concentração de ferro em função das dosagens da amina e do amido para a amostra composta......55 Figura 5.31 – Efeitos principais sobre a razão de concentração de ferro para a fração -0,150 +0,037 mm. Figura 5.32 – Efeitos das interações sobre a razão de concentração de ferro para a fração Figura 5.33 – Respostas da razão de concentração de ferro em função das dosagens da Figura 5.34 - Efeitos principais sobre a razão de concentração de ferro para a fração -

Figura 5.39 – Respostas do teor de sílica no concentrado e recuperação metalúrgica de ferro em função das dosagens da amina e do pH para a fração -0,037 +0,010 mm

Figura 6.1 – Distribuição Granulométrica do ROM da amostra Cava 5 anos...... 61

Figura 6.5 – Principais efeitos dos reagentes na recuperação metalúrgica de ferro..70

Figura 6.6 – Efeitos da interação entre os reagentes para recuperação metalúrgica de

Figura 6.8 - Superfície de resposta 2D para amina, pH e recuperação metalúrgica de

Figura 6.10 – Efeitos da interação entre os reagentes para SiO2 no concentrado...73

Figura 6.11 – Superfície de resposta 3D para amina, pH e SiO2 no concentrado...74

Figura 6.12 – Superfície de resposta 2D para amina, pH e SiO2 no concentrado...74

Figura 6.24 – Efeitos da interação entre os reagentes para recuperação metalúrgica de

Figura 6.26 - Superfície de resposta 2D para amina, pH e recuperação metalúrgica de

Figura 6.37 – Superfície de resposta 3D para amina, pH e índice de seletividade..88 Figura 6.38 – Superfície de resposta 2D para amina, pH e índice de seletividade..88

Figura 6.45 – Principais efeitos dos reagentes para SiO2 no concentrado......92

Figura 6.46 – Efeitos da interação entre os reagentes para SiO2 no concentrado...93

Figura 6.47 – Superfície de resposta 3D para amina, pH e SiO2 no concentrado...93

Figura 6.48 – Superfície de resposta 2D para amina, pH e SiO2 no concentrado...94

Figura 6.50 – Efeitos da interação entre os reagentes para recuperação mássica....95

Figura 6.51 – Superfície de resposta 3D para amina, pH e recuperação mássica....95

Figura 6.54 – Efeitos da interação entre os reagentes para recuperação mássica....97

Figura 6.55 – Superfície de resposta 3D para amina, pH e índice de seletividade..97

Figura 6.56 – Superfície de resposta 2D para amina, pH e índice de seletividade..98

Figura 6.57 – Superfície de resposta 2D para os resultados agrupados de sílica no concentrado e recuperação metalúrgica de ferro, com amido fixo em 700 g/t.......98

 Figura 6.60 – Curva de cinética da flotação -0,150 +0,010 mm.
 103

 Figura 6.61 – Curva de cinética da flotação -0,150 +0,044 mm.
 103

LISTA DE TABELAS

Tabela 4.1 – Representação das condições a serem submetidas às amostras
Tabela 5.1 - Balanços mássicos, metalúrgicos e de eficiência da amostra composta
fatorial
Tabela 5.2 - Balanços mássicos, metalúrgicos e de eficiência da amostra -0,150 +0,037
mm
Tabela 5.3 - Balanços mássicos, metalúrgicos e de eficiência da amostra -0,037 +0,010
mm
Tabela 5.4 - Resultados dos testes de flotação da amostra composta
Tabela 5.5 - Resultados dos testes de flotação da amostra -0,150 +0,037 mm39
Tabela 5.6 - Resultados dos testes de flotação da amostra -0,037 +0,010 mm 40
Tabela 6.1 - Resumo comparativo entre os passantes acumulado nas malhas de 0,150 e
0,044 mm, conforme fluxos da Figura 6.262
Tabela 6.2 - Resumo comparativo entre os passantes acumulado na malha de 0,044 mm
para cada fração granulométrica testada
Tabela 6.3 – Partição da alimentação da flotação em ciclone.
Tabela 6.4 - Resumo dos resultados de flotação do planejamento fatorial para os três
blocos de experimento
Tabela 6.5 – Ganhos relativos ao estudo de comparação entre a flotação fracionada e a
flotação -0,150 +0,010 mm
Tabela 6.6 – Estimativa de redução de custos da etapa de re-moagem com a implantação
da flotação fracionada

RESUMO

A motivação da presente investigação foi avaliar as diferenças no processo de flotação de minério de ferro tratando-se a alimentação deslamada global e fracionada em duas faixas de tamanho. Em ambos os estudos o *top size* foi 0,150 mm. No estudo preliminar o fracionamento foi feito em 0,038 mm e no estudo final em 0,044 mm.

Todo o estudo foi elaborado e executado segundo método estatístico denominado planejamento fatorial, tendo sido estabelecidos pares de variáveis para cada fator e para cada fração (-0,150 +0,038mm e -0,038 +0,010 mm no estudo preliminar e -0,150 +0,044mm e -0,044 +0,010 mm no estudo final) e também para o experimento controle, amostra -0,150 +0,010 mm não fracionada. Foram estabelecidos os pares de variáveis ótimas para a flotação de cada fração distinta e as possíveis otimizações utilizando-se a ferramenta estatística.

Para o estudo preliminar foram realizados testes em escala bancada com uma amostra expedita coletada na planta de beneficiamento de Vargem Grande na alimentação da flotação de minério predominantemente hematítico e para o estudo final foram realizados testes em escala bancada com uma amostra representativa de 4 toneladas de minério predominantemente itabirítico da região de Conceição do Mato Dentro e um outro teste exploratório com minério predominantemente hematítico.

Os resultados para o estudo preliminar alcançaram o objetivo de mostrar a diferença entre a flotação fracionada e a não fracionada demonstrando que a flotação não fracionada requer condições de dosagem específica de reagentes que não atendem idealmente nenhuma das duas frações da flotação fracionada, fato esse que estimulou a continuidade dos estudos. Para o estudo final se foram obtidos aumentos na recuperação mássica de 47,3% para 50,9%, na recuperação metalúrgica de ferro de 81,9 para 87,3%, redução no teor de sílica de 0,75% para 0,53% e incremento no índice de seletividade de Gaudin ferro/sílica de 23 para 32.

Outra constatação extraída do estudo é que dividindo-se a alimentação da flotação em 0,044 mm, a fração mais fina não necessitará passar por processos de re-moagem ou classificação após sua concentração, pois já se encontra na faixa granulométrica ideal de transporte por mineroduto.

ABSTRACT

The motivation for the present investigation was to evaluate the differences in an iron ore flotation process when the feed is treated globally or splitted in two size ranges. In both cases the top size was 0.150 mm. In the preliminary study the cut size was 0.038 mm and in the final study the cut size was 0.044 mm.

The full investigation was planned with the aid of the statistical method known as factorial design. Pairs of variables for each factor and fraction (-0.150 + 0.038 mm and - 0.038 + 0,010 mm in the preliminary study and -0.150 + 0.044 mm and -0.044 + 0,010 mm in the final study) and also for the control experiment, global sample -0.150 + 0,010 mm. Optimized variables pairs were established for the flotation of each fraction.

In the preliminary study laboratory tests were performed with a sample collected in the Vargem Grande concentrator flotation feed, consisting of predominantly hematite ore. The final study was carried out with a representative sample of an itabirite ore from Conceição do Mato Dentro and in another exploratory test a hematite ore was used.

The results of the preliminary study reached the target of showing the difference between the flotation of the global sample and of the two size fractions individually. The flotation of the global sample requires specific reagents dosages that are not ideal for any of the two fractions. The results of the final study showed increases in weight recovery from 47.3% to 50.9% and in metallurgical recovery from 81.9 to 87.3%, decrease in the silica content in the concentrate from 0.75% to 0.53% and increase in Gaudin's selectivity index from 23 to 32.

Another finding of the study was that splitting the flotation feed at 0.044 mm, the concentrate achieved with the fine fraction will not require further grinding prior to transportation via pipeline.

1- INTRODUÇÃO

Grande parte do desenvolvimento da indústria mineral não seria possível sem a flotação, pois a concepção e evolução deste processo possibilitaram o melhor aproveitamento de minérios finos. A flotação vem sendo usada desde o início do século passado, porém sua utilização industrial, em larga escala, no Brasil começou nas décadas de sessenta e setenta do século passado.

Partículas finas e ultrafinas estão normalmente presentes nos diversos litotipos de minérios. Os processos de flotação estão sendo cada vez melhor estudados com o objetivo de aprimorar o processo no que diz respeito à recuperação metálica de ferro ou mássica, à melhor qualidade do concentrado final, ao menor teor de ferro no rejeito final e à redução do consumo específico de reagentes.

Os finos de minérios de ferro do Quadrilátero Ferrífero estão sendo beneficiados em várias empresas através do processo de flotação catiônica reversa dos minerais de ganga (geralmente da classe dos silicatos, principalmente o quartzo). Considerando que os recursos minerais estão sendo exauridos e ao longo do tempo está havendo uma maior utilização de minérios itabiríticos, frente a minérios hematíticos, a busca por desenvolvimentos tecnológicos minerais e a utilização de ferramentas estatísticas como é aplicada no caso deste estudo estão sendo priorizadas com o objetivo de aproveitar melhor o recurso mineral disponível.

A mistura de minérios hematíticos e itabiríticos durante as operações de lavra proporciona variações físicas e químicas na alimentação das usinas e de forma mais significativa na alimentação do processo de flotação. Apesar da relativa simplicidade da remoção de quartzo pela flotação em coluna, a interferência dos tamanhos de partícula (principalmente partículas finas -0,044 mm e ultrafinas -0,010 mm) contidas na polpa de alimentação tem alterado negativamente a seletividade do processo, comprometendo nesses casos o teor final do concentrado da flotação e a recuperação desta etapa de flotação.

Algumas empresas brasileiras do ramo de fosfato já utilizam o processo de separação da alimentação em duas ou três faixas granulométricas distintas (grossos, finos e ultrafinos) a fim de obter melhores resultados comparados ao processo onde a alimentação não é separada em duas frações. A motivação desta investigação foi aplicar a mesma sistemática a minérios de ferro de baixo teor.

O grande motivador destes estudos foi identificar as necessidades diferentes das partículas grossas e finas em termos de adição especifica de reagentes e também com relação à dificuldade ou facilidade de colisão e adesão de cada partícula dependendo do tamanho e da massa desta.

2. OBJETIVO

O objetivo do estudo é comparar os resultados obtidos com a flotação fracionada em duas alíquotas -0,150 +0,044 mm e -0,044 +0,010 mm, com a flotação realizada sem o fracionamento, ou seja, com a amostra em uma única fração -0,150 +0,010 mm.

3. REVISÃO BIBLIOGRÁFICA

3.1 – Classificação de Minérios de Ferro

A classificação dos tipos de minérios não segue um critério genético e sim critérios práticos, apresentados a seguir (Castro, 2002):

Composição química:

Hematitas: Fe > 64,0%, P \leq 0,12% e Al₂O₃ < 4,0%

Itabiritos: Fe < 64,0%

Comportamento granulométrico após britagem abaixo de 50,8 mm:

Hematitas:

Compacto:	+50% > 25,4 mm
Compacto/médio:	+35% > 25,4 mm
Médio: + 50%	% > 6,35 mm
Médio/macio:	+ 35% > 6,35 mm

Macio: - 35% > 6,35 mm

Itabiritos:

Friável: rocha que sofreu a ação de intemperismo; Semi-compacto: rocha em processo da ação do intemperísmo Compacto: rocha sã.

3.2 - Flotação

3.2.1 - Aspectos gerais:

Flotação em espuma, ou simplesmente flotação, é um processo de separação aplicado a partículas sólidas que explora diferenças nas características de superfície entre as várias espécies presentes (Araujo e Peres, 1995). A seletividade do processo se baseia no fato de que a superfície de diferentes espécies minerais pode apresentar diferentes graus de hidrofobicidade. O conceito de hidrofobicidade de uma partícula está associado à sua "molhabilidade" pela água. O conceito oposto à hidrofobicidade é designado como hidrofilicidade.

A distribuição de tamanho das partículas a serem separadas é fator determinante no desempenho do processo. O limite inferior da faixa granulométrica está relacionado com o conceito de lamas, que demonstram ser prejudiciais ao processo de flotação catiônica reversa de minério de ferro. Existe uma tentativa de se quantificar o conceito de lamas. Partículas entre 0,150 mm e 0,010 mm são designadas como finos, entre 0,010 mm e 0,001 mm ultrafinos, abaixo de 0,001 mm coloides; a faixa de ultrafinos e coloides é designada como lamas. Porém esta quantificação não é universalmente aceita.

Segundo Hall (1996), não existe nenhum método mais versátil e seletivo para separar partículas minerais na faixa de 0,010 mm a 0,250 mm em processamento mineral.

Li et al (1993) descreveram que os princípios básicos da flotação de partículas podem ser divididos em duas áreas principais:

i) química de superfície e;

ii) hidrodinâmica.

A química de superfície inclui:

- interações;

- energia;

- adsorção em interfaces;

- molhabilidade natural dos minerais;

- uso de reagentes para tornar hidrofóbicas as superfícies minerais.

A hidrodinâmica inclui:

- dispersão das bolhas de ar;

- suspensão de sólidos na polpa;

- colisão e adesão entre partículas minerais e bolhas de ar;

- estabilidade do agregado partícula-bolha.

É importante lembrar que o tamanho da partícula tem grande influência na hidrodinâmica da polpa.

Discorrendo sobre colisão e adesão entre partículas em bolhas de ar, Derjaguin e Dukhin (1961) propuseram que o produto da eficiência de colisão (Ec) com a eficiência de adesão (Ea) e a eficiência de estabilidade do agregado partícula-bolha (Es) é a eficiência de coleta do processo e que esta focaliza a atenção nas três zonas de interação partícula-bolha onde, respectivamente, interação hidrodinâmica, forças interfaciais e estabilidade do agregado partícula-bolha são dominantes.

Na década de 80, a flotação era realizada industrialmente em células mecânicas, entretanto estas máquinas de flotação apresentam desvantagens tais como: - maior turbulência na zona de recuperação; - maior probabilidade de destacamento após formação do agregado partícula-bolha.

Esses fatores limitam a seletividade do processo. Com o objetivo de contornar esses problemas, surgiram as colunas de flotação (Wellenkamp e Martins, 2001)

Alguns aspectos distinguem a coluna de flotação de uma célula mecânica no que tange aos projetos. São eles:

- na coluna de flotação a água de lavagem, que pode ser instalada no topo da camada de espuma ou inserida dentro da mesma, permite a formação de um leito de espuma estável e profundo. Na prática industrial de flotação reversa de minérios de ferro tornou-se comum a eliminação da água de lavagem, buscando redução no teor de sílica no concentrado. A ausência da água de lavagem causava perdas significativas de minerais de ferro na espuma, o que levou à retomada de seu uso.

- a ausência de agitação através de difusores na coluna de flotação proporciona quase um regime de escoamento laminar oposto ao da célula mecânica que apresenta este regime somente na região de coleta do flotado e na região inferior apresenta regime turbulento provocado pelos agitadores mecânicos. É importante destacar-se que para a flotação de grossos esta característica é bastante importante, pois a turbulência pode favorecer o destacamento de partículas grossas coletadas pelas bolhas de ar (Dobby e Finch, 1987; Ahmed e Jameson, 1989). Segundo esses autores, a turbulência em células mecânicas é a limitação mais importante para a recuperação de partículas grossas. Foi demonstrado que a recuperação decresce quando a velocidade de agitação aumenta além de um certo valor crítico. Porém, é possível flotar partículas grossas (-0,150 mm + 0,044 mm) em células mecânicas caso a velocidade de agitação seja ajustada para esta faixa granulométrica.

- o sistema de geração de bolhas na coluna pode ser interno ou externo.

A figura 3.1 apresenta esquematicamente uma coluna de flotação. É mostrado na figura que a coluna de flotação é composta por duas zonas principais: a zona de coleta e a zona

de limpeza (espuma). Essas zonas são separadas pela interface polpa espuma e definidas de acordo com a função específica de cada uma, como:

- zona de limpeza: corresponde ao volume de espuma. Nesta zona ocorre o fluxo em contracorrente de bolhas mineralizadas e da água de lavagem, introduzida no topo da coluna. As partículas hidrofílicas que foram arrastadas pelas bolhas de ar e aquelas que passaram do ponto de alimentação para a zona de limpeza são retornadas para a zona de coleta.

- zona de coleta: situada entre a entrada de ar e a interface polpa-espuma. É a parte onde ocorre o fluxo em contracorrente da polpa e das bolhas ascendentes de ar. Esta zona tem como objetivo promover o contato e a adesão partícula-bolha.

Figura 3.1 – Desenho esquemático de uma coluna de flotação, enfatizando-se as zonas de coleta e limpeza. (Kelles, 1996)

O produto das recuperações da zona de coleta e zona de limpeza é o valor de recuperação total. Finch e Dobby, (1990) demonstraram que a recuperação da zona de coleta está diretamente relacionada à cinética de flotação, tempo de residência das partículas e grau de mistura das fases. Esses parâmetros, por sua vez, dependem das variáveis operacionais e de processo, das características físico-químicas dos minerais presentes e das dimensões da coluna.

Rubio (1996) apresentou resultados obtidos com uma coluna de flotação modificada para minérios de ouro, cobre, chumbo e fluorita, onde a zona de espuma foi separada da zona de coleta por uma zona intermediária de 30 a 90 cm de comprimento e esta modificação alcançou resultados de recuperação pouco menores e teores de concentrados melhores, ou seja, o projeto da coluna pode ser modificado ou dimensionado para atender os objetivos definidos.

3.2.2- Flotação de oxi-minerais

Os oxi-minerais constituem um universo muito vasto e diversificado. As diferenças de composição química, estrutura cristaloquímica e solubilidade em água estão entre os aspectos com maior grau de diversidade entre os minerais oxidados. O elemento oxigênio é comum a todos esses compostos. Este elemento, ou os íons O⁼ ou OH⁻, constituem a fração volumétrica absolutamente dominante na estrutura cristaloquímica desses minerais (Brandão, 1995).

A maioria das ligações entre o oxigênio e os outros elementos é iônica e/ou covalente, mais raramente ligações de hidrogênio também estão presentes.

A quase totalidade dos oxi-minerais apresenta superfícies de fratura predominantemente polares, devido ao rompimento de ligações total ou parcialmente iônicas. Estas superfícies têm, portanto, alta afinidade com a água, tendo então caráter hidrofílico.

Em sistemas formados por oxi-minerais e coletores, o mecanismo de adsorção pode ser considerado como um somatório de processos químicos e físicos.

A quimissorção é um mecanismo frequente em muitos sistemas minerais, principalmente com ácidos carboxílicos (de cadeia longa) ou seus sabões alcalinos. Altas densidades de adsorção e mesmo altas recuperações na flotação de minerais, com coletores aniônicos, em faixa de pH onde o potencial zeta é altamente negativo, sugerem adsorção química do coletor.

O que promove a quimissorção é a ligação da parte polar do coletor em relação a sítios catiônicos, usualmente metais alcalinos e de transição, ou complexos derivados desses minerais (Vieira, 2005).

3.2.3 - Influência da granulometria na flotação

Partículas finas e ultrafinas contidas nos minérios de ferro têm causado efeitos negativos nos processos de concentração de minerais, seja em processos que exploram as propriedades gravíticas e magnéticas dos minerais, bem como, nos processos de concentração que atuam nas diferenças existentes entre as propriedades físico-químicas superficiais dos minerais e suas interações com as fases aquosa e gasosa, como é o caso específico da flotação.

A presença de lamas nas polpas de alimentação da flotação tem sido atribuída às ineficiências dos processos clássicos de deslamagem, geralmente efetuada por hidrociclonagem, e às vezes conjugada com espessamentos.

Um dos principais efeitos da presença de partículas ultrafinas e coloides em polpas de flotação é o vertiginoso aumento da área de superfície específica do sistema, acarretando efeitos indesejáveis durante o processo de flotação das espécies minerais a serem separadas.

Especificamente na flotação catiônica reversa de minério de ferro, os efeitos provocados podem ser (Castro, 2002):

- alteração no comportamento cinético dessas partículas, provocando recobrimentos preferenciais sobre a superfície de partículas maiores ("slimes coating");
- alteração no comportamento hidrodinâmico dessas partículas, atingindo ou quase atingindo o tempo de residência da fase líquida dentro das células de flotação, podendo ser transportadas (arrastadas) hidraulicamente tanto para o flotado quanto para o afundado;
- a alta reatividade dessas partículas pode levá-las a reagir quimicamente com as espécies coletoras e depressoras do sistema, ocasionando uma redução da coleta seletiva dos minerais de interesse, além de proporcionar o aumento do consumo desses reagentes envolvidos no processo;
- aumento da solubilização, principalmente de determinados minerais, em especial da classe dos argilo-minerais contidos nos minérios de ferro.

Existe um consenso, proveniente de vários estudos realizados que, a partir de uma determinada granulometria, na qual as partículas são classificadas como lamas, a taxa de flotação decresce com a diminuição do tamanho das partículas, entretanto, cálculos teóricos falham ao tentar prever e explicar esses resultados experimentais. A maioria dos estudiosos tem feito as predições baseadas em certos modelos de colisão e adesão de partículas com bolhas de ar (Fuerstenau, 1980).

A figura 3.2 segundo Fuestenau (1980) mostra que para partículas finas de massa pequena é baixa a probabilidade de adesão, fato este questionável. Essas partículas possuem baixa probabilidade de colisão, porém não existem fatos que demonstram a baixa probabilidade de adesão.

A figura 3.2 apresenta os vários efeitos provocados por essas partículas.

Figura 3.2 - Diagrama esquemático mostrando a relação entre as propriedades físicas e químicas de partículas finas e seu comportamento na flotação. (Fuerstenau, 1980).

O fenômeno denominado "slimes coating" pode ser entendido como sendo a adesão de partículas ultrafinas e coloides à superfície de partículas mais grossas, através de forças intermoleculares semelhantes às forças existentes nas interações entre partículas e bolhas de ar.

"Slimes coating" pode ser deletério para a flotação de diferentes maneiras. Se as partículas finas são o mineral de valor e as partículas grossas são o mineral de ganga, o teor do concentrado se torna mais pobre.

Quando as partículas finas é que consistem de minerais de ganga e, então, se aderem às superfícies das partículas dos minerais de valor, impedindo o contato destas partículas com as bolhas de ar, a recuperação do mineral minério cai significativamente. A redução na recuperação de partículas finas é primariamente atribuída à baixa probabilidade de colisão (Fuerstenau, 1980).

Sun (1943) e Fuerstenau et al. (1958) estudaram extensivamente o fenômeno "slimes coating" e observaram que a cobertura por lamas é mais intensa quando as lamas possuem carga elétrica neutra ou oposta à da superfície do mineral objeto da flotação.

Em estudos de flotação de minerais hematita e quartzo na presença de lamas, Souza e Araujo (1999) sugerem que existe um efeito negativo na interação partícula/bolha, refletindo num aumento de consumo de reagentes. Além disso, as partículas ultrafinas podem acompanhar o fluxo de água, não respondendo seletivamente ao processo de flotação.

Segundo Vieira (2005), a menor recuperação de partículas finas é atribuída a uma menor probabilidade de colisão dessas partículas com as bolhas de ar, enquanto que, para as partículas grossas, o decréscimo na recuperação se deve à ruptura do agregado partícula-bolha, devido ao tamanho, ao peso e à insuficiência de cobertura hidrofóbica das superfícies das partículas. A autora salienta ainda que a recuperação de partículas grossas de quartzo em um circuito de flotação de minério de ferro poderia ter numerosas vantagens, tais como: obtenção de concentrados de ferro mais puros; possibilidade de se realizar uma cominuição mais grossa dos minérios (nos quais partículas livres de quartzo ocorrem em tamanhos maiores) e deste modo reduzir o consumo de energia nesta etapa.

Na separação hematita/quartzo observa-se contaminação do concentrado final por partículas de quartzo com diâmetros superiores a 0,150 mm. O decréscimo na recuperação destas partículas pode ser explicado pela baixa estabilidade do agregado partícula-bolha. É então necessário aumentar as forças atrativas ou diminuir as forças de ruptura para aumentar a estabilidade do agregado partícula-bolha através da utilização de coletores seletivos e de uma dosagem ótima do mesmo (Vieira, 2005).

Vieira (2005) apresenta as principais variáveis de operação e seus efeitos no processo de flotação em coluna como sendo:

- vazão de ar;
- tamanho de bolha (db);
- hold-up de ar;
- altura da camada de espuma;
- água de lavagem;
- "bias" (relação volumétrica entre a vazão de polpa no afundado e alimentação) e;
- porcentagem de sólidos na alimentação

Laplante et al. (1983) descrevem que a vazão de ar é a variável de maior importância na cinética de flotação. Os valores utilizados são transformados em valores de velocidade superficial (Jg) que é definida como sendo a relação entre a vazão de ar e a área da seção transversal da coluna.

A velocidade superficial de ar máxima a ser utilizada em coluna está limitada por (Oliveira e Aquino, 1993; Finch et al., 1989):

- perda de "bias" positivo;
- perda de regime de fluxo;
- perda de interface;
- insuficiência do aerador e;
- tamanho de bolha.

A velocidade superficial de ar crescente aumentará o tamanho de bolhas (db) na zona de coleta e na zona de espuma, tornando-as mais instáveis e menos propícias a coleta de partículas grossas.

Lins e Adamian (1989) estudaram a influência das variáveis aeração e velocidade de agitação na flotação, em células mecânicas, de partículas de ouro em diversas granulometrias. Essa investigação demonstrou a importância de um ajuste adequado para melhores resultados de recuperação de partículas grossas.

A eficiência de coleta e de transporte de partículas através da célula é influenciada pelo tamanho de bolha e sua distribuição. Ahmed e Jameson. (1989) concluíram que quanto menor a bolha maior será sua eficiência de coleta.

Ahmed e Jameson (1985) verificaram que bolhas menores que 0,100 mm proporcionam uma flotação mais eficiente na faixa de estudo, que foi com bolhas de 0,075 mm a 0,655 mm. Dobby e Finch (1987) observaram também o efeito do tamanho de bolha e da partícula na eficiência de coleta e verificaram que a eficiência de coleta cresce com a redução do tamanho de bolha, devido principalmente aos aumentos de eficiências de colisão e adesão. Os autores confirmaram que as melhores eficiências foram obtidas com bolhas menores, porém, essas bolhas menores não melhoraram a seletividade.

A constante cinética de flotação é afetada pelo tamanho de bolha, segundo as investigações realizadas por Penafiel e Dobby (1994). Os autores também observaram que as partículas grossas tinham coletas mais eficientes quando eram utilizadas bolhas menores dentro da faixa de tamanho de bolhas estudada (0,8 a 2,0 mm). Para partículas muito pequenas dp < 0,005 mm o tamanho de bolha não apresenta efeitos significativos na eficiência de coleta.

Pode ocorrer perda de sólidos já coletados para o afundado se a velocidade de ascensão for menor que a velocidade da polpa descendente. Esse fato pode ocorrer com mais frequência para bolhas de tamanho menor, porém essas bolhas apresentam maior área superficial por volume aumentando a cinética de coleta devido ao maior transporte de sólidos por volume de ar (Dobby e Finch, 1986).

Deglon et al. (2000) mencionaram que o tamanho de bolhas para a célula mecânica é significativamente menor que os tamanhos de bolha das flotações em colunas, fato discutível, pois o tamanho de bolha é função do equipamento gerador de bolha.

"Hold-up" do ar da coluna de flotação é definido como sendo a fração volumétrica da zona de coleta ocupada pelo ar.

Segundo Vieira (2005), "o *hold-up* cresce linearmente com a velocidade superficial do gás até um ponto onde ocorre um desvio. A região linear da curva caracteriza-se pela distribuição homogênea de tamanho e de forma das bolhas ascendentes em uma taxa uniforme, adequada ao processo de flotação, denominado regime "bubbly flow". Acima do valor limite de velocidade superficial o "hold-up" do ar torna-se instável, e as bolhas tornam-se grandes, não uniformes e em movimento irregular no interior da coluna, caracterizando o regime turbulento, indesejável para o processo de flotação em coluna".

São introduzidos agora os conceitos sobre camada de espuma e sua importância. Segundo Ladeira et al. (1998) a camada de espuma é uma das variáveis de processo mais importantes na operação da coluna de flotação. Esta variável está intimamente ligada à seletividade do processo.

Soto (1992) observou que quanto maior o tamanho da partícula menor é a recuperação na camada de espuma. Conclui-se com isso que a recuperação de grossos tende a diminuir à medida que a camada de espuma se torna mais espessa. Outros fatores que devem ser observados em relação à camada de espuma são: estabilidade das bolhas, transporte das bolhas e tamanho das bolhas.

Hall (1996) observou que a recuperação das partículas grossas está diretamente relacionada à estabilidade do agregado partícula e bolha, e que a recuperação de partículas grossas pode ser melhorada com o controle da taxa de fluxo de ar, taxa de água de lavagem entre outros que apresentam relação com a estabilidade das bolhas.

Essas constatações indicam que para uma recuperação efetiva de grossos é necessário aplicar condições específicas e essas condições podem não ser adequadas para a flotação de partículas mais finas, o que indica que uma separação da flotação é adequada para obtenção de melhores resultados (Cruz et al., 2003).

Figura 3.3 – Efeito do "Hold-up" do ar (0g) sobre a eficiência de coleta (Ek), calculada a partir do modelo desenvolvido por Dobby e Finch (1987). Tamanho de bolha = 0,1 cm; densidade da partícula = 4,0 g/cm3. (Dobby e Finch, 1987)

No que se refere a água de lavagem, o propósito de sua utilização é conseguir melhorar a qualidade ou o teor do produto flotado, quando se trata de flotação direta ou reduzir a perda de material útil quando se trata de flotação reversa. A pressão e vazão dessa água de lavagem devem ser bem ajustadas de maneira a não comprometer a estabilidade das bolhas.

Bias é definido como sendo a relação volumétrica entre a vazão de polpa no afundado e a alimentação. Este fluxo é necessário para a ação da limpeza de partículas arrastadas hidraulicamente e para que esta limpeza seja efetiva é necessário que ocorra um fluxo residual de água através da zona de limpeza.

Em alguns casos as colunas de flotação são operados com *bias* positivo. O *bias* positivo significa dizer que a água de lavagem será suficiente para substituir a água de alimentação no flotado e promover o deslocamento de uma fração de água nova para a base da coluna, tentando assim limpar o flotado de elementos não úteis (flotação direta). Esta condição tem melhor utilização para aplicação em flotações de partículas finas para a tentativa de se recuperar minerais de interesse que poderiam sair por arraste hidráulico. B*ias* negativo seria interessante para a flotação de grossos para garantir e auxiliar o encaminhamento destas partículas para o topo da coluna. Este tipo de operação normalmente é utilizado para tratamento de minério de ferro (flotação reversa) onde o flotado é a fração a ser descartada e passará ainda por outras etapas de limpeza, portanto a limpeza da espuma passa a não ser interessante.

Öteyaka e Soto (1994) propuseram que é melhor a operação de colunas com *bias* negativo para incrementar a recuperação de minérios liberados em tamanhos grosseiros tais como fosfatos e outros minérios não metálicos.

Com relação à porcentagem de sólidos na alimentação, segundo Glembotskii et al. (1972), partículas grossas são frequentemente melhor flotadas em polpas diluídas, nas quais há menor tendência ao destacamento.

Penafiel e Dobby (1994) observaram que existe um ponto máximo na curva Ek x dp (eficiência de coleta versus tamanho de partícula). Esses autores explicaram o máximo, considerando o efeito do tamanho de partícula sobre a colisão e adesão. A faixa estudada por eles foi de 0,005 a 0,050 mm. O diâmetro das partículas reduz a eficiência

de colisão e aumenta a eficiência de adesão. Nesse mesmo estudo observou-se que a coleta de partículas maiores é mais eficiente para tamanho de bolha menor.

Cada vez mais os estudos de tamanho máximo de partícula ou faixa de tamanho que pode ser concentrada através do processo de flotação estão sendo realizados com o objetivo de aclarar os efeitos das variáveis que mais podem afetar o comportamento dessas partículas no processo (Hall, 1996). Ahmed e Jameson (1989) estudaram o efeito da agitação em célula mecânica (100, 300 e 600 rpm) na constante cinética de coleta, para diferentes tamanhos de partícula de quartzo (0,005; 0,010; 0,020 e 0,040 mm) e diferentes tamanhos de bolha (0,075; 0,165; 0,360; 0,655 mm). Neste estudo observouse que para uma agitação de 300 rpm, bolhas de todos os tamanhos foram efetivas, sendo que bolhas de 0,075 mm proporcionaram maior constante cinética de coleta. Em 600 rpm, as taxas de flotação são menores que aquelas obtidas em rotação mínima (100 rpm). Os estudos mostraram que existe relação entre a agitação e constante cinética de coleta, diâmetro da partícula e diâmetro de bolha.

Ahmed e Jameson (1989) citaram outros trabalhos realizados por pesquisadores avaliando o efeito da agitação em relação ao tamanho máximo de partícula a ser flotada e observaram que partículas grossas, especialmente acima de 0,5 mm, obtêm recuperações máximas quando se submete o processo à velocidade de agitação mínima, mas suficiente para manter todas as partículas em suspensão.

Partículas grossas, intermediárias e finas apresentam variações na recuperação metalúrgica e também uma sensibilidade ao meio químico, havendo uma redução na recuperação de partículas grossas causada pela deficiência de coletor ou excesso de depressor ou pH não adequado (Trahar, 1981).

Algumas conclusões relacionadas a investigações do efeito de partículas grossas de quartzo e calcita (0,126 a 0,714 mm) em colunas de flotação, variando alguns parâmetros de flotação, realizadas por Öteyaka e Soto (1994) foram que:

- as partículas de aproximadamente 0,1 a 1,0 mm, se liberadas, apresentam uma rápida cinética de flotação. Uma coluna com zona de coleta de apenas 100 cm de comprimento foi suficiente para alcançar máxima recuperação;

- a cinética de flotação de partículas menores que 0,050 mm era controlada por uma menor probabilidade de colisão. Para compensar essa menor probabilidade maior *"hold-up"* e menores bolhas deveriam ser usados;

- a cinética de flotação de partículas grossas é controlada pela estabilidade dos agregados formados. O aumento da estabilidade pode ser conseguido através de uma melhor dosagem de coletor ou aumento de hidrofobicidade.

Estudo realizado por Trahar (1981) mostraram que as partículas grossas são concentradas por flotação verdadeira. Partículas finas podem ser coletadas por flotação verdadeira se a dosagem de coletor for adequada. Caso seja insuficiente é possível que sejam coletadas por arraste. As recuperações de partículas grossas e finas são menores do que aquelas das partículas intermediárias (Figura 3.4), porém na Figura 3.5 é mostrado que a faixa de alta recuperação se amplia a medida que a dosagem especifica de coletor é aumentada.

Para um dado tamanho de partícula é preciso um aumento no grau de hidrofobicidade ou grau de cobertura da superfície da partícula pelo coletor, antes de se obter uma maior flotabilidade.

Partículas finas requerem menor cobertura para serem flotadas que partículas maiores, apesar de que partículas finas apresentam uma maior superfície específica (cm²/g) que as partículas grossas. Segundo Bazin e Proulx (2001), o consumo de coletor requerido para produzir um dado grau de cobertura é muito maior por unidade de massa de partículas finas que para partículas grossas.

Figura 3.4 – Recuperação de galena. Células "Rougher". o:células 1-3; □: células 4-6; ∆: células 7-15. (Trahar, 1981).

Quando se misturam partículas grossas com finas e estas são colocadas em contato com um coletor concomitantemente, grande parte do coletor será consumida pelas partículas finas, fato que reduziria a quantidade mínima suficiente para alterar a superfície das partículas grossas e assim reduziria a recuperação destas partículas (Vieira, 2005). Segundo Cruz et al. (2003), cada faixa granulométrica ou tamanho de partícula possui suas condições ideais de dosagem específica de reagentes para maiores recuperações.

Figura 3.5 – Influência da dosagem de xantato na recuperação de calcocita. Tempo de flotação = 1 min.; espumante: PPG 400. Dosagens: 0 mg/l (o); 1,1 mg/l (\Box); 3,7 mg/l (Δ); 7,5 mg/l (\Diamond). (Trahar, 1981)

Anthony et al. (1975) confirmaram esta suposição, verificando que para flotar as partículas de 0,125 mm de esfalerita foi necessário, pelo menos, uma dosagem 5 vezes maior se comparada à dosagem utilizada para flotar as partículas de 0,015 mm de esfalerita.

Ladeira et al. (1998) discutiram os ganhos de se estagiar a adição de reagentes, em experiências e estudos realizados na Samarco Mineração usina de Germano, onde os autores conseguiram reduzir os teores de sílica e aumentar a recuperação metalúrgica da

usina. Passou-se a estagiar na proporção de 80%/20% o total da amina respectivamente nas colunas "rougher" e "cleaner" e amido na alimentação de todos os estágios.

Como comentado por Cruz et al. (2003) e Trahar (1976), os estudos realizados indicam que o tratamento separado de faixas de tamanho será necessário para minérios mais complexos ou mesmo para melhorar as recuperações e seletividade do processo. Frações diferentes de tamanho poderão ser condicionadas separadamente em meios mais adequados a elas. Tal procedimento tem mostrado várias vantagens, incluindo o aumento na taxa de flotação de grossos, o aumento na seletividade e redução do consumo de reagentes.

Os fatores probabilidade de adesão e probabilidade da estabilidade do agregado partícula-bolha não se romper até o mineral de interesse ser flotado podem limitar a taxa de flotação de partículas grossas. Estudos têm mostrado que partículas grossas apresentam uma maior probabilidade de aderir a bolhas que as partículas finas o que deveria resultar em altas recuperações, porém não é o caso frequente.

O grande problema com a flotação de grossos não é a capacidade de aderir a bolha e sim a dificuldade de permanecer aderida à bolha ao longo da zona de coleta.

Oteyaka et al. (1994) descreveram que a colisão partícula-bolha consiste no encontro de uma partícula em sentido descendente com uma bolha de ar em sentido ascendente.

Ahmed e Jameson. (1989) relataram que para uma partícula colidir com uma bolha, esta deve ter inércia suficiente para resistir a tendência de seguir as linhas de corrente ao redor da bolha e atingir sua superfície.

As observações a partir da eficiência de colisão calculadas por Hewitt et al. (1994) são:

- para a faixa de tamanho de partícula de 0,010 a 0,020 mm, a eficiência de colisão é aproximadamente igual à zero;

- para a faixa de tamanho de partícula de 0,020 a 0,040 mm, a eficiência de colisão é maior, porém ainda próxima de zero;

- para a faixa de tamanho de partícula de 0,040 a 0,080 mm, a eficiência de colisão torna-se crescente à medida que o tamanho aumenta;

 para o maior tamanho de bolha (db = 2,0 mm), a eficiência de colisão é menor, para qualquer tamanho de partícula;

- para o menor tamanho de bolha (db = 0.5 mm), a eficiência de colisão é maior e cresce a medida que o tamanho de partícula aumenta.

Figura 3.6 – Eficiência de colisão calculada usando o modelo descrito pela equação de eficiência de colisão total definida por Schulze (1989), como sendo uma função do tamanho de partícula para vários tamanhos de bolha; isto é, db = 2,0 mm (-); db = 1,0 mm (----) e db = 0,5 mm (.....). (Hewitt et al. 1994).

No que tange ao mostrado com relação aos modelos de colisão, pode-se dizer que estes comprovam que a ocorrência de colisões entre partículas hidrofóbicas e bolhas de ar está condicionada principalmente aos tamanhos de partículas e de bolhas. O tamanho de bolhas, o tamanho de partículas, os aspectos hidrodinâmicos, e massa das partículas, a dispersão das partículas, a cinética de flotação, a porcentagem de sólidos na polpa, o número de bolhas e a distribuição das bolhas nos equipamentos de flotação afetam diretamente as probabilidades de colisão partícula-bolha. Conforme todas as condições citadas é difícil explicar o fenômeno de colisão, quando todas as condições estão sendo tratadas de forma conjunta.

Tratando agora do efeito da adesão partícula-bolha em função do tamanho de partícula, Yoon e Luttrell (1989) relatam que quando uma colisão ocorre entre bolha e partícula e essas entram em contato, a partícula começa a deslizar sobre a superfície da bolha e reside durante esta superfície durante um tempo definido, o qual é denominado tempo de deslizamento (ts). A magnitude do tempo de deslizamento é determinada pela velocidade com que o sólido se arrasta ao longo da superfície da bolha. Crawford e Ralston (1988), Dobby e Finch (1987), Nyguyen et al. (1997, 1998 e 2001) relatam que durante este tempo, para que a adesão partícula-bolha ocorra, os seguintes eventos devem ocorrer:

- afinamento do filme líquido de interseção partícula-bolha até a espessura crítica, na qual o filme rompe;

 ruptura do filme líquido e formação de um núcleo de contato das três fases: gás, sólido e líquido;

- expansão da linha de contato das três fases e formação de um perímetro de molhamento estável.

Tempo de indução (ti) é definido como sendo o tempo para que ocorram os três eventos descritos acima. Quando o tempo de deslizamento for maior que o tempo de indução

ocorre à adesão partícula-bolha. Laskowski (1974) afirmou que a probabilidade de adesão está relacionada ao tempo de indução.

Yoon e Luttrell (1989) descreveram que o ângulo de incidência (Φ i), no qual a partícula colide com a bolha, determina a distância a ser percorrida por uma partícula ao longo da superfície da bolha e também que esta condição se altera de acordo com o tamanho de bolha e de partícula. A figura 3.7 mostra que quando o ângulo de incidência é menor que o ângulo limite (Φ o), a partícula terá um tempo maior de deslizamento que o tempo de indução e então ocorrerá a adesão.

Figura 3.7 – Sistema de coordenada polar usado na determinação do ângulo crítico de incidência e da probabilidade de adesão. (Yoon e Luttrell. 1989)

Segundo Vieira (2005), o tempo de indução pode ser reduzido, por exemplo, por meio do aumento da dosagem de coletor, o que sugere, mais uma vez, que o tempo de indução é fortemente influenciado pela hidrofobicidade da partícula. Também foi verificado que, para um dado tempo de indução, Pa cresce quando o tamanho de partícula decresce, fato resultante da menor velocidade tangencial e, consequentemente, do maior tempo de deslizamento para partículas menores. Assim a autora sugere que partículas menores tornam-se aderidas mais prontamente que as maiores, uma vez que a colisão tenha sido estabelecida.

Hewitt et al. (1994) demonstraram que a probabilidade de adesão aumenta com o decréscimo do tamanho de partícula e com o aumento do grau de hidrofobicidade.

Com relação à estabilidade/ruptura do agregado partícula bolha, partículas grossas podem ser destacadas por diversas circunstâncias dinâmicas. Quando o contato entre as três fases é formado, é necessário um fator externo para que a partícula seja destacada, um exemplo é a energia de transporte sobre regime turbulento (Schulze, 1982). A partícula se destacará da bolha se sua energia cinética for maior que a energia de adesão partícula-bolha (Schulze, 1977), fato que torna claro que partículas mais grosseiras têm maior facilidade de destacamento em relação a partículas finas devido à sua maior inércia quando em movimento.

Ahmed e Jameson (1989) comprovaram que para a melhor estabilidade de um agregado partícula-bolha em um sistema estático, as forças características associadas com o peso da partícula devem ser balanceadas pela força restauradora de tensão superficial.

Vieira (2005) relatou que através deste balanço e da análise destas forças fundamentais que estão envolvidas no destacamento partícula-bolha, pode-se determinar o máximo tamanho flotável de partícula e começar a entender os parâmetros que causam ou que impedem o destacamento. Utilizando os modelos dos mecanismos de destacamento, pode-se verificar a importância relativa de cada fator contribuinte.

Um dos pioneiros em medir a força real de destacamento em escala real foi Morris (1950). Seu trabalho foi realizado com pequenas esferas de parafina colocadas em um cilindro e fixadas em bolhas grandes em meio fluido aquoso. Então foi medido o ângulo de contato estático. Uma observação importante é que este ângulo sempre foi menor que o ângulo de contato máximo. O autor observou que quanto maiores as partículas, mais próximas essas estavam do ângulo máximo e assim estavam mais próximas do ponto de destacamento e que o tamanho de bolha era um fator crítico no destacamento e que a chance de partículas grossas permanecerem aderidas é muito dependente do ângulo de contato.

Experimentos relatados por Bazin e Proulx (2001) mostraram que houve uma redução na recuperação de partículas grossas e que este decréscimo poderia ser explicado pela ocorrência da ruptura do agregado partícula-bolha devido a insuficiente cobertura hidrofóbica das superfícies das partículas grossas.

Alguns fatores que influenciam a estabilidade do agregado partícula-bolha são: ângulo de contato, raios da partícula e bolha e densidade da partícula (Laskowski, 1974).

Para a flotação de partículas grossas a probabilidade de estabilidade do agregado partícula-bolha (Ps) é comprometida pelas forças de inércia, gravidade ou cisalhamento. Assim, para desenvolver um modelo para Ps, Öteyaka e Soto (1994) consideraram que o destacamento ocorre quando essas forças são maiores que as forças atrativas (interfaciais).

Vieira (2005) concluiu que o tipo de coletor deve ser considerado para diferentes tamanhos de partícula e que o efeito da variação da percentagem de sólidos foi mais marcante em relação às recuperações de quartzo grosso, ou seja, o tamanho de partícula deve ser conhecido para um melhor desempenho do sistema de flotação.

Pita (2001) afirmou que a agitação provocada pelo rotor na célula mecânica é responsável pela suspensão das partículas para favorecimento da colisão das partículas com as bolhas, porém esta agitação pode contribuir com o destacamento de algumas

partículas já ligadas a bolha, e que este efeito se torna mais intenso quanto mais intensa for a agitação.

Na prática industrial brasileira existem concentradores que utilizam exclusivamente colunas (Usinas de beneficiamento do Pico, Vargem Grande, Casa de Pedra, etc.). Entretanto a configuração mais eficiente é adotada pela Samarco que emprega flotação em máquinas mecânicas para o produto da moagem primária e flotação em coluna para o produto da moagem secundária e da deslamagem que precede a flotação mecânica (Mapa, 2006).

Capponi et al. (2005) sugeriram que existe uma diversidade de alternativas para o aumento da recuperação das partículas finas e ultrafinas e que essas partículas apresentam um grau diferenciado de eficiência. As técnicas existentes são baseadas em novos conceitos, visando redução na geração de materiais ultrafinos nas instalações de beneficiamento, na otimização da captura de partículas por bolhas e no aumento do tamanho das partículas problema. O autor acredita que uma das técnicas que apresenta o maior potencial é o tratamento fracionado por tamanho.

Pease et al. (2005) concluíram que não existe nada de especial em relação ao processo de flotação de partículas ultrafinas, o que existe na verdade é que essas respondem ao processo de maneira diferente, fato que ocorre também para o outro extremo, ou seja, partículas grossas (Cruz et al, 2003).

O comportamento na flotação das partículas grossas é muito diferente daquele das partículas ultrafinas, as finas constituindo situação intermediária (Rocha, 2008). Algumas afirmações de que partículas muito finas não flotam são devidas ao fato de que essas são misturadas às partículas mais grossas o que as impedem de possuírem as melhores condições de acordo com suas características. Normalmente os sistemas são ajustados para o tratamento das partículas mais grossas o que causa efeitos danosos às partículas finas tais como falta de coletor no sistema e maior tempo de residência. Com as alterações de tempo de residência e maior dosagem de coletor no sistema, haveria uma perda de seletividade do mesmo. (Pease et al., 2005).

Barros et al. (2001) relataram alterações efetuadas no concentrador da Fosfertil. O fracionamento da flotação do minério friável em circuitos de grossos e de finos, sugerida por estudos em escala de laboratório, foi implementado industrialmente, com ganhos de recuperação de 6%. Os autores salientaram que cada faixa granulométrica apresenta suas especificidades e que estas são diferentes daquelas da flotação conjunta.

São muitos os fatores que influenciam no tamanho de partícula a ser flotada e é nítida a diferença das características para partículas finas e grossas. É necessário encontrar as melhores condições para que a flotação ocorra para cada faixa granulométrica de maneira que estas apresentem os melhores resultados.

Guimarães e Peres (2003) descreveram que partículas finas menores que 0,040 mm passaram a ser flotadas após 1984 em células mecânicas na Arafertil (hoje Bunge) aumentando a recuperação de apatita em 10%.

Valadão e Lima (2009) concluíram que a separação das frações granulométricas tratadas separadamente em duas frações apresentaram diferentes comportamentos no processo de flotação em bancada e que esta separação pode trazer ganhos significativos para a indústria de minério de ferro.

3.3 – Planejamento Fatorial (Barros Neto et al., 1995; Box et al., 1978; Legret e Divet, 1988)

O planejamento fatorial tem sido muito aplicado em pesquisas básicas e tecnológicas e é classificado como um método do tipo simultâneo, onde as variáveis de interesse que realmente apresentam influências significativas na resposta são avaliadas ao mesmo tempo.

Para realizar um planejamento fatorial, escolhem-se as variáveis a serem estudadas e efetuam-se experimentos em diferentes valores desses fatores. A seguir são realizados experimentos para todas as combinações possíveis dos níveis selecionados.

De um modo geral, o planejamento fatorial pode ser representado por $x=b^a$, onde "x" é o número de experimentos necessários, "a" é o número de fatores "b" é o número de níveis escolhidos.

4 – METODOLOGIA

Neste capítulo são apresentados os materiais e métodos utilizados durante a realização da parte experimental deste trabalho.

4.1 – Materiais

4.1.1 - Amostras

Para o estudo preliminar foi utilizada uma amostra expedita na planta de beneficiamento de Vargem Grande coletada na alimentação da flotação predominantemente hematítico. Para o estudo final, foi composta uma amostra de aproximadamente 4 toneladas a partir de 197 amostras provenientes dos intervalos de furos de sonda pertencentes a cava que representa os primeiros 5 anos de operação de um projeto situado na região de Conceição do Mato Dentro, compreendidos entre as litologias itabirito friável e itabirito semi-compacto conforme figura 4.1.

Figura 4.1 – Localização das amostras em 3D em relação a cava projetada para os 5 primeiros anos de operação do projeto na região de Conceição do Mato Dentro.

4.1.2 – Reagentes

Para os ensaios de flotação utilizou-se solução de amido a 1 % (p/v), como depressor dos minerais portadores de ferro, e solução de amina EDA3 a 1 % (p/v), como coletor do quartzo. Para a gelatinização do amido foi utilizada solução de soda cáustica (NaOH) na razão em massa amido/soda de 4:1.

Também utilizou-se solução de hidróxido de sódio a 1 % (p/v) e ácido clorídrico a 1 % (p/v) como moduladores de pH.

Água destilada foi utilizada na preparação de todas as soluções.

4.2 – Métodos

4.2.1- Amostragem e preparação das amostras

A amostra para o estudo preliminar foi coletada através de amostrador de mangote na alimentação do espessador de regularização que por sua vez alimenta a flotação.

Em seguida as amostras foram homogeneizadas e quarteadas. Foi tirada uma alíquota das amostras, denominada amostra composta, posteriormente o restante do material foi peneirado em 0,037 mm, homogeneizado e quarteado de maneira a obter alíquotas de aproximadamente 1 kg para teste de flotação.

Para a amostra do estudo final foi confeccionada uma pilha alongada (chevron). Após homogeneização tal amostra foi britada, moída e deslamada e posteriormente foi subdividida em duas alíquotas, então uma alíquota foi separada para realização do experimento controle com granulometria -0,150 +0,010 mm e a outra alíquota foi separada em ciclone em duas faixas granulométricas, sendo elas -0,150 mm +0,044 mm e -0,044 +0,010 mm. Cada alíquota foi dividida novamente em 20 alíquotas para realização do teste planejado através do planejamento fatorial para o experimento controle (-0,150 +0,010 mm) e para o caso da flotação fracionada em duas frações granulométricas onde cada faixa (conforme descrito acima) foi submetida a quarteamento para gerar 20 alíquotas a serem submetidas aos testes de planejamento fatorial nas mesmas condições em que a amostra controle (sem ser dividida) fora submetida.

4.2.2- Flotação

Os testes de flotação foram realizados em célula de flotação de laboratório, modelo Denver. A rotação do rotor, durante a realização dos testes, foi mantida constante em 1300 rpm.

As amostras foram homogeneizadas e quarteadas até a obtenção do número necessário de amostras com massa desejada para os testes.

Realizaram-se os testes para cada tipo de amostra. A amostra devidamente pesada foi inserida na cuba e foi adicionada água com o objetivo de se formar uma polpa com 60% de sólidos. A polpa com 60% de sólidos foi mantida em agitação e foi feita a leitura do pH natural da polpa. Após a leitura do pH natural adicionou-se depressor. O tempo de condicionamento do amido foi de cinco minutos. Durante o condicionamento do amido foi feita a leitura do pH. Após o condicionamento a polpa foi diluída a 40% de sólidos e foi feita a leitura do pH, mantendo-se o eletrodo do peagâmetro na polpa até que se alcançasse o pH determinado para cada teste do planejamento fatorial. O pH foi controlado através da adição de soda cáustica e ácido clorídrico. Em seguida adicionou-se coletor, com condicionamento por 1 minuto. Após o condicionamento da amina, a aeração da célula de flotação foi aberta por completo e foi coletado o material flotado, utilizando-se duas pás auxiliares.

O material flotado foi coletado em uma bandeja até a sua exaustão sendo posteriormente colocado para secar em uma estufa. O material afundado foi colocado em uma bandeja sendo posteriormente secado em uma estufa. As frações flotado e afundado, após a secagem, foram pesadas com o objetivo de se fechar o balanço de massa. Os materiais flotado e afundado de cada teste foram pulverizados e enviados para a análise química e mineralógica.

Planejou-se a execução de um experimento fatorial para a verificação da influência das dosagens de amina, do amido e do pH na flotação das amostras. Para isto foi utilizado o "software" estatístico Statgraphics Plus versão 3.0 e Minitab 15. Os testes foram realizados seguindo-se os mesmos procedimentos adotados no teste padrão, porém os pares de dosagem da amina, do amido e pH de flotação foram, respectivamente, 30/60 g/t, 500/1200 g/t e 9,5/10,8 para os testes do estudo preliminar. Para os testes do estudo final as condições de dosagem específica de amina, amido e pH foram, respectivamente, 70/140 g/t, 450/700 g/t e 9,5/10,5, conforme tabela 4.1. Os valores são diferentes devido

à diferença de litotipo da amostra do estudo preliminar (minério hematítico) e do estudo final (minério itabiritico).

A tabela 4.1 apresenta o planejamento fatorial, bem como as condições com as quais as alíquotas foram submetidas.

Teste	Amostra	pН	Amina	Amido	Teste	Amostra	pН	Amina	Amido
1	-0,15 mm	9,5	70	450	13	-0,15 +0,044 mm	10,5	70	450
2	-0,15 mm	9,5	70	700	14	-0,15 +0,044 mm	10,5	70	700
3	-0,15 mm	9,5	140	450	15	-0,15 +0,044 mm	10,5	140	450
4	-0,15 mm	9,5	140	700	16	-0,15 +0,044 mm	10,5	140	700
5	-0,15 mm	10,5	70	450	17	-0,044 mm	9,5	70	450
6	-0,15 mm	10,5	70	700	18	-0,044 mm	9,5	70	700
7	-0,15 mm	10,5	140	450	19	-0,044 mm	9,5	140	450
8	-0,15 mm	10,5	140	700	20	-0,044 mm	9,5	140	700
9	-0,15 +0,044 mm	9,5	70	450	21	-0,044 mm	10,5	70	450
10	-0,15 +0,044 mm	9,5	70	700	22	-0,044 mm	10,5	70	700
11	-0,15 +0,044 mm	9,5	140	450	23	-0,044 mm	10,5	140	450
12	-0,15 +0,044 mm	9,5	140	700	24	-0,044 mm	10,5	140	700
Teste									
	Amostra	рH	Amina	Amido	Teste	Amostra	рH	Amina	Amido
25	Amostra -0.15 mm	pH 9.5	Amina 70	Amido 450	Teste 37	Amostra -0.15 +0.044 mm	pH 10.5	Amina 70	Amido 450
25 26	Amostra -0,15 mm -0,15 mm	pH 9,5 9.5	Amina 70 70	Amido 450 700	Teste 37 38	Amostra -0,15 +0,044 mm -0,15 +0.044 mm	pH 10,5 10.5	Amina 70 70	Amido 450 700
25 26 27	Amostra -0,15 mm -0,15 mm -0,15 mm	pH 9,5 9,5 9.5	Amina 70 70 140	Amido 450 700 450	Teste 37 38 39	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm	pH 10,5 10,5 10,5	Amina 70 70 140	Amido 450 700 450
25 26 27 28	Amostra -0,15 mm -0,15 mm -0,15 mm -0,15 mm	pH 9,5 9,5 9,5 9,5	Amina 70 70 140 140	Amido 450 700 450 700	Teste 37 38 39 40	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm	pH 10,5 10,5 10,5 10,5	Amina 70 70 140 140	Amido 450 700 450 700
25 26 27 28 29	Amostra -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm	pH 9,5 9,5 9,5 9,5 10,5	Amina 70 70 140 140 70	Amido 450 700 450 700 450	Teste 37 38 39 40 41	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm	pH 10,5 10,5 10,5 10,5 9,5	Amina 70 70 140 140 70	Amido 450 700 450 700 450
25 26 27 28 29 30	Amostra -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm	pH 9,5 9,5 9,5 9,5 10,5 10,5	Amina 70 70 140 140 70 70	Amido 450 700 450 700 450 700	Teste 37 38 39 40 41 42	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm -0,044 mm	pH 10,5 10,5 10,5 10,5 9,5 9,5	Amina 70 70 140 140 70 70	Amido 450 700 450 700 450 700
25 26 27 28 29 30 31	Amostra -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm	pH 9,5 9,5 9,5 10,5 10,5 10,5 10,5	Amina 70 70 140 140 70 70 140	Amido 450 700 450 700 450 700 450	Teste 37 38 39 40 41 42 43	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm -0,044 mm -0,044 mm	pH 10,5 10,5 10,5 9,5 9,5 9,5 9,5	Amina 70 70 140 140 70 70 140	Amido 450 700 450 700 450 700 450
25 26 27 28 29 30 31 32	Amostra -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm	pH 9,5 9,5 9,5 10,5 10,5 10,5 10,5	Amina 70 70 140 140 70 70 70 140 140	Amido 450 700 450 700 450 700 450 700	Teste 37 38 39 40 41 42 43 44	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm -0,044 mm -0,044 mm	pH 10,5 10,5 10,5 9,5 9,5 9,5 9,5 9,5	Amina 70 70 140 140 70 70 70 140 140	Amido 450 700 450 700 450 700 450 700
25 26 27 28 29 30 31 32 33	Amostra -0,15 mm -0,15 mm	pH 9,5 9,5 9,5 10,5 10,5 10,5 10,5 9,5	Amina 70 70 140 140 70 70 140 140 70	Amido 450 700 450 700 450 700 450 700 450 700 450	Teste 37 38 39 40 41 42 43 44 45	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm	pH 10,5 10,5 10,5 10,5 9,5 9,5 9,5 9,5 9,5 10,5	Amina 70 70 140 140 70 70 140 140 70	Amido 450 700 450 700 450 700 450 700 450
25 26 27 28 29 30 31 32 33 34	Amostra -0,15 mm -0,15 +0,044 mm -0,15 +0,044 mm	pH 9,5 9,5 10,5 10,5 10,5 10,5 10,5 9,5 9,5	Amina 70 70 140 140 70 70 140 140 70 70 70	Amido 450 700 450 700 450 700 450 700 450 700 450 700	Teste 37 38 39 40 41 42 43 44 45 46	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm	pH 10,5 10,5 10,5 10,5 9,5 9,5 9,5 9,5 9,5 10,5 10,5	Amina 70 70 140 140 70 70 140 140 70 70 70	Amido 450 700 450 700 450 700 450 700 450 700
25 26 27 28 29 30 31 32 33 34 35	Amostra -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm	pH 9,5 9,5 9,5 10,5 10,5 10,5 10,5 10,5 9,5 9,5 9,5	Amina 70 70 140 140 70 70 140 140 70 70 70 140	Amido 450 700 450 700 450 700 450 700 450 700 450 700 450	Teste 37 38 39 40 41 42 43 44 45 46 47	Amostra -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,15 +0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm -0,044 mm	pH 10,5 10,5 10,5 9,5 9,5 9,5 9,5 10,5 10,5 10,5 10,5	Amina 70 70 140 140 70 70 140 140 70 70 70 140	Amido 450 700 450 700 450 700 450 700 450 700 450 700 450

Tabela 4.1 – Representação das condições a serem submetidas às amostras.

Outra diferença importante é que para o estudo preliminar os testes de flotação foram realizados sem réplica e no estudo final todos os testes foram realizados em duplicata e assim os resultados foram analisados e os resultados das réplicas foram incluídas no modelamento estatístico gerado, aumentando assim a confiabilidade dos resultados alcançados.

4.2.3- Planejamento experimental

A análise dos resultados dos experimentos também foi realizada com o auxílio do software Statgraphics Plus e Minitab avaliando-se a influência de cada fator nos resultados da flotação. Os fatores analisados foram dosagens de amina, amido e pH e os

resultados analisados foram teor de sílica no concentrado, recuperação metalúrgica do ferro, índice de seletividade de Gaudin e razão de enriquecimento do ferro para o estudo preliminar e para o estudo final os resultados analisados foram teor de sílica no concentrado, recuperação metalúrgica do ferro, recuperação mássica e índice de seletividade de Gaudin. Além do calculo do efeito de cada fator, os dados foram também ajustados a um modelo de equação que possa prever os resultados que serão obtidos na flotação do material dentro do intervalo estudado.

Na figura 4.2 é apresentado o diagrama que representa o planejamento fatorial realizado para o estudo final em relação às dosagens de reagente.

Figura 4.2 – Representação das condições de amina, amido e pH segundo o planejamento fatorial.

5- RESULTADOS E DISCUSSÃO DO ESTUDO PRELIMINAR

5.1 - Testes de flotação do estudo preliminar

Conforme descrito no capítulo da metodologia, foram realizados ensaios de flotação para as diferentes frações granulométricas e a amostra composta.

Testes com planejamento fatorial: para cada fração foram realizados 8 testes, onde foi avaliada a influência da dosagem do coletor amina e do depressor amido e o pH da flotação.

Os resultados obtidos nestes testes, bem como as avaliações das variáveis significativas para a flotação de cada fração de minério, são mostrados nas tabelas 5.1 a 5.6 e nas figuras 5.1 a 5.36.

Teste	Alim. Recalc	Concentrado		Rejeito		Melhor Rend. Mássico	Rec. Met.	
	g	massa - g	%	massa - g	%		Fe	SiO ₂
T9	992,8	699,30	70,44	293,50	29,56	70,55	72,02	86,61
T10	1017,11	870,20	85,56	146,91	14,44	86,37	88,26	74,24
T11	947,58	654,60	69,08	292,98	30,92	68,76	70,39	85,66
T12	1019,93	908,30	89,06	111,63	10,94	89,82	92,05	81,66
T13	946,85	808,70	85,41	138,15	14,59	86,94	88,98	75,31
T14	1055,78	821,30	77,79	234,48	22,21	76,73	78,83	87,14
T15	1036,81	896,00	86,42	140,81	13,58	86,94	88,92	74,78
T16	1028,04	962,90	93,66	65,14	6,34	93,53	95,66	72,66

Tabela 5.1 - Balanços mássicos, metalúrgicos e de eficiência da amostra composta

T (Razão de Enriq	uecimento	Índice de		Distribuiç	ção	
Teste	Fe	SiO ₂	seletividade	Fe conc.	SiO_2 conc.	Fe rej.	SiO ₂ rej.
T9	1,02	0,179	4,080	68,00	0,50	32,00	99,50
T10	1,02	0,288	4,655	68,00	0,80	32,00	99,20
T11	1,02	0,020	3,768	67,80	0,60	32,20	99,40
T12	1,02	0,196	7,180	68,00	0,56	32,00	99,44
T13	1,02	0,275	4,963	67,90	0,80	32,10	99,20
T14	1,03	0,166	5,023	68,20	0,49	31,80	99,51
T15	1,02	0,304	4,878	67,90	0,89	32,10	99,11
T16	1,02	0,290	7,654	67,80	0,87	32,20	99,13

		%Fe	%SiO ₂	%Al2O3	%P	% Mn	%CaO	%MgO	% TiO ₂
	Alimentação	66,7	2,79	0,90	0,044	0,048	0,010	0,019	0,078
T9	concentrado	68,0	0,50	0,97	0,051	0,051	0,010	0,021	0,085
	rejeito	63,3	8,10	0,77	0,031	0,044	0,010	0,028	0,068
	Alimentação	66,6	2,78	0,94	0,045	0,046	0,010	0,022	0,083
T10	concentrado	68,0	0,80	0,89	0,044	0,044	0,010	0,038	0,083
	rejeito	57,3	15,00	1,40	0,053	0,072	0,010	0,035	0,097
	Alimentação	66,3	2,99	1,04	0,049	0,050	0,011	0,080	0,089
T11	concentrado	67,8	0,06	1,00	0,054	0,045	0,010	0,067	0,094
	rejeito	62,8	8,12	0,91	0,039	0,055	0,010	0,080	0,078
	Alimentação	66,4	2,85	0,95	0,049	0,048	0,010	0,075	0,087
T12	concentrado	68,0	0,56	0,89	0,049	0,047	0,010	0,064	0,082
	rejeito	51,8	22,69	1,54	0,050	0,056	0,010	0,084	0,109
	Alimentação	66,4	2,91	0,95	0,047	0,048	0,010	0,065	0,085
T13	concentrado	67,9	0,80	0,93	0,048	0,043	0,010	0,073	0,082
	rejeito	56,0	16,65	1,42	0,053	0,082	0,010	0,079	0,096
	Alimentação	66,4	2,96	0,94	0,048	0,048	0,010	0,066	0,086
T14	concentrado	68,2	0,49	0,84	0,045	0,042	0,010	0,061	0,081
	rejeito	60,4	11,06	1,20	0,051	0,063	0,010	0,068	0,107
	Alimentação	66,3	2,93	0,94	0,048	0,048	0,010	0,068	0,090
T15	concentrado	67,9	0,89	0,92	0,048	0,046	0,010	0,064	0,084
	rejeito	56,3	16,98	1,08	0,038	0,047	0,010	0,085	0,075
	Alimentação	66,3	3,00	0,96	0,049	0,051	0,010	0,086	0,086
T16	concentrado	67,8	0,87	0,89	0,049	0,049	0,010	0,077	0,084
	rejeito	44,4	33,60	1,58	0,045	0,050	0,010	0,095	0,087

Teste	Alimentação -	Concentrado		R	ejeito	Melhor Rend. Mássico	Rec. Met.	
	8	massa - g	%	massa - g	%		Fe	SiO ₂
T1	995,6	904,90	90,89	90,70	9,11	90,05	93,54	80,67
T2	993,42	976,00	98,25	17,42	1,75	98,21	99,31	21,15
T3	995,96	913,60	91,73	82,36	8,27	92,21	95,72	79,13
T4	975,15	940,30	96,43	34,85	3,57	96,14	98,64	52,08
T5	975,04	921,10	94,47	53,94	5,53	94,47	98,35	81,06
T6	989,46	955,80	96,60	33,66	3,40	96,14	98,61	49,59
T7	992,86	967,10	97,41	25,76	2,59	97,59	99,02	31,47
T8	998,27	971,80	97,35	26,47	2,65	97,45	98,66	27,29

Tabela 5.2 - Balanços mássicos, metalúrgicos e de eficiência da amostra -0,150 +0,038 mm

r							
Testa	Razão de Enriq	uecimento	Índice de		Distribui	ção	
Teste	Fe	SiO ₂	seletividade	Fe conc.	SiO_2 conc.	Fe rej.	SiO ₂ rej.
T1	1,04	0,215	7,774	67,00	0,98	33,00	99,02
T2	1,01	0,785	6,213	65,10	3,65	34,90	96,35
T3	1,04	0,211	9,208	67,00	0,96	33,00	99,04
T4	1,02	0,477	8,878	66,20	2,19	33,80	97,81
T5	1,04	0,186	15,972	67,10	0,86	32,90	99,14
T6	1,02	0,518	8,354	66,10	2,46	33,90	97,54
T7	1,01	0,681	6,812	65,60	3,01	34,40	96,99
T8	1,01	0,746	5,257	65,60	3,11	34,40	96,89

		%Fe	%SiO ₂	%Al2O3	%P	% Mn	%CaO	%MgO	% TiO ₂
	Alimentação	64,5	4,56	1,57	0,070	0,056	0,011	0,058	0,134
T1	concentrado	67,0	0,98	1,40	0,063	0,054	0,010	0,032	0,115
	rejeito	41,9	36,97	1,64	0,041	0,056	0,010	0,053	0,157
	Alimentação	64,5	4,65	1,51	0,067	0,056	0,012	0,067	0,132
T2	concentrado	65,1	3,65	1,41	0,061	0,053	0,010	0,034	0,120
	rejeito	25,0	54,51	4,66	0,087	0,104	0,017	0,111	0,339
	Alimentação	64,7	4,54	1,48	0,068	0,057	0,012	0,068	0,137
T3	concentrado	67,0	0,96	1,46	0,065	0,056	0,010	0,018	0,126
	rejeito	35,5	45,51	1,95	0,048	0,062	0,016	0,087	0,184
	Alimentação	64,7	4,59	1,43	0,068	0,055	0,011	0,068	0,132
T4	concentrado	66,2	2,19	1,29	0,061	0,052	0,010	0,030	0,114
	rejeito	22,8	61,05	3,03	0,060	0,048	0,013	0,081	0,283
	Alimentação	64,6	4,62	1,47	0,066	0,056	0,011	0,056	0,133
T5	concentrado	67,1	0,86	1,37	0,063	0,054	0,010	0,034	0,110
	rejeito	19,2	66,83	2,74	0,055	0,051	0,011	0,071	0,297
	Alimentação	64,5	4,75	1,49	0,067	0,056	0,013	0,071	0,131
T6	concentrado	66,1	2,46	1,36	0,060	0,053	0,010	0,019	0,114
	rejeito	23,2	60,83	3,25	0,068	0,091	0,013	0,100	0,266
	Alimentação	64,8	4,42	1,44	0,067	0,056	0,010	0,055	0,128
T7	concentrado	65,6	3,01	1,38	0,062	0,053	0,010	0,016	0,118
	rejeito	26,2	56,99	3,24	0,060	0,050	0,014	0,102	0,265
	Alimentação	64,8	4,17	1,39	0,060	0,054	0,010	0,034	0,124
Т8	concentrado	65,6	3,11	1,31	0,059	0,052	0,010	0,027	0,117
	rejeito	34,1	44,69	3,23	0,072	0,061	0,012	0,093	0,240

Teste	Alim. Recalc	Concentrado		Rejeito		Melhor Rend. Mássico	Rec. Met.	
	g	massa - g	%	massa - g	%		Fe	SiO ₂
T17	1012,24	796,5	78,69	215,74	21,31	79,24	80,77	81,5
T18	1065,08	949,9	89,19	115,18	10,81	89,8	91,58	76,25
T19	1023,67	598,3	58,45	425,37	41,55	61,62	62,66	86,69
T20	1024,13	943,9	92,17	80,23	7,83	92,28	94,18	80,08
T21	1040,4	728,7	70,04	311,7	29,96	73,18	74,79	85,46
T22	983,61	826,9	84,07	156,71	15,93	84,61	86,39	80,98
T23	1066,67	900,3	84,40	166,37	15,60	84,08	85,77	80,12
T24	993,17	925,3	93,17	67,87	6,83	91,03	92,71	76,38

Tabela 5.3 - Balanços mássicos, metalúrgicos e de eficiência da amostra (-0,038 mm

T (Razão de Enriq	uecimento	Índice de	Distribuição			
Teste	Fe	SiO ₂	seletividade	Fe conc.	SiO_2 conc.	Fe rej.	SiO ₂ rej.
T17	1,02	0,217	4,302	68,40	0,51	31,60	99,49
T18	1,02	0,259	5,909	68,50	0,59	31,50	99,41
T19	1,01	0,187	3,306	68,00	0,45	32,00	99,55
T20	1,02	0,199	8,066	68,50	0,46	31,50	99,54
T21	1,02	0,185	4,176	68,50	0,46	31,50	99,54
T22	1,02	0,221	5,199	68,60	0,50	31,40	99,50
T23	1,02	0,245	4,929	68,40	0,60	31,60	99,40
T24	1,02	0,252	6,413	68,40	0,59	31,60	99,41

		%Fe	%SiO ₂	%Al2O3	%P	% Mn	%CaO	%MgO	% TiO ₂
	Alimentação	67,2	2,35	0,74	0,042	0,046	0,010	0,068	0,069
T17	concentrado	68,4	0,51	0,69	0,043	0,047	0,010	0,084	0,072
	rejeito	62,2	9,07	0,82	0,034	0,046	0,010	0,097	0,067
	Alimentação	67,2	2,28	0,73	0,043	0,046	0,010	0,081	0,070
T18	concentrado	68,5	0,59	0,63	0,038	0,041	0,010	0,081	0,068
	rejeito	55,5	16,96	1,55	0,057	0,078	0,010	0,090	0,096
	Alimentação	67,1	2,41	0,76	0,042	0,046	0,010	0,083	0,075
T19	concentrado	68,0	0,45	0,73	0,048	0,046	0,010	0,083	0,082
	rejeito	65,1	5,22	0,74	0,034	0,048	0,010	0,088	0,068
	Alimentação	67,2	2,31	0,72	0,043	0,048	0,010	0,080	0,073
T20	concentrado	68,5	0,46	0,63	0,046	0,046	0,010	0,077	0,070
	rejeito	50,6	23,61	1,69	0,047	0,058	0,010	0,110	0,098
	Alimentação	67,1	2,48	0,75	0,043	0,047	0,010	0,077	0,072
T21	concentrado	68,5	0,46	0,66	0,038	0,040	0,010	0,071	0,069
	rejeito	63,0	7,78	1,01	0,048	0,060	0,010	0,071	0,086
	Alimentação	67,2	2,26	0,73	0,042	0,048	0,010	0,080	0,069
T22	concentrado	68,6	0,50	0,61	0,038	0,040	0,010	0,077	0,066
	rejeito	59,4	11,85	1,38	0,048	0,080	0,010	0,091	0,088
	Alimentação	67,0	2,45	0,76	0,041	0,048	0,010	0,079	0,077
T23	concentrado	68,4	0,60	0,69	0,042	0,046	0,010	0,075	0,071
	rejeito	59,9	12,43	0,99	0,038	0,050	0,010	0,080	0,068
	Alimentação	67,2	2,34	0,74	0,041	0,046	0,010	0,068	0,073
T24	concentrado	68,4	0,59	0,66	0,041	0,047	0,010	0,077	0,074
	rejeito	54,6	19,80	1,16	0,039	0,043	0,010	0,078	0,110

Os resultados dos testes em bancada, com os teores de SiO_2 nos concentrados e respectivos percentuais de recuperação metalúrgica do ferro, índice de seletividade e razão de enriquecimento estão apresentados nas tabelas 5.4, 5.5 e 5.6.

Fator			Resultados			
Amina	Amido	рН	% SiO2 Concentrado	% Rec. Met.	Índice de Seletividade - Fe	Razão de enriquecimento - Fe
30	500	9,5	0,80	88,98	4,963	1,02
30	500	10,8	0,89	88,92	4,878	1,02
30	1200	9,5	0,80	88,26	4,655	1,02
30	1200	10,8	0,87	95,66	7,654	1,02
60	500	9,5	0,60	70,39	3,768	1,02
60	500	10,8	0,50	72,02	4,080	1,02
60	1200	9,5	0,49	78,83	5,023	1,03
60	1200	10,8	0,56	92,05	7,180	1,02

Tabela 5.4 - Resultados dos testes de flotação da amostra composta

Tabela 5.5 - Resultados dos testes de flotação da amostra -0,150 +0,038 mm

Fator			Resultados			
Amina	Amido	рН	% SiO2 Concentrado	% Rec. Met.	Índice de Seletividade - Fe	Razão de enriquecimento - Fe
30	500	9,5	2,46	98,61	8,354	1,02
30	500	10,8	3,01	99,02	6,812	1,01
30	1200	9,5	3,65	99,31	6,213	1,01
30	1200	10,8	3,11	98,66	5,257	1,01
60	500	9,5	0,96	95,72	9,208	1,04
60	500	10,8	0,98	93,54	7,774	1,04
60	1200	9,5	0,86	98,35	15,972	1,04
60	1200	10,8	2,19	98,64	8,878	1,02

Fator			Resultados	Resultados			
Amina	Amido	рН	% SiO Concentrado	2%] Met.	Índice Rec. Seletividade Fe	de Razão de enriquecimento - Fe	
30	500	9,5	0,50	86,39	5,199	1,02	
30	500	10,8	0,60	85,77	4,929	1,02	
30	1200	9,5	0,59	91,58	5,909	1,02	
30	1200	10,8	0,59	92,71	6,413	1,02	
60	500	9,5	0,45	62,66	3,306	1,01	
60	500	10,8	0,51	80,77	4,302	1,02	
60	1200	9,5	0,46	74,79	4,176	1,02	
60	1200	10,8	0,46	94,18	8,066	1,02	

Tabela 5.6 - Resultados dos testes de flotação da amostra -0,038 +0,010 mm

5.2 - Análise dos resultados de sílica no concentrado

Amostra composta

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas das figuras 5.1 e 5.2. Quanto maior a inclinação maior é a influência do fator (ex: Para Sílica no concentrado a maior inclinação é do fator amina que é o que representa maior influencia neste fator).

Main Effects Plot for SiO2 Conc

Figura 5.1 – Efeitos principais sobre o teor de SiO_2 no concentrado para a amostra composta.

Figura 5.2 – Efeitos das interações sobre o teor de SiO_2 no concentrado para a amostra composta.

Na figura 5.3 estão apresentadas as curvas dos teores de SiO2 no concentrado em função dos fatores que se mostraram mais significativos.

Figura 5.3 – Respostas do teor de sílica no concentrado em função das dosagens da amina e do pH no concentrado para a amostra composta.

Amostra -0,150 + 0,038 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas da figura 5.4 e figura 5.5. Quanto maior a inclinação maior é a influência do fator.

Figura 5.4 – Efeitos principais sobre o teor de SiO_2 no concentrado para a fração -0,150 +0,038 mm.

Figura 5.5 – Efeitos das interações sobre o teor de SiO_2 no concentrado para a fração - 0,150 +0,038 mm.

Na figura 5.6 estão apresentadas as curvas dos teores de SiO_2 no concentrado em função dos fatores que se mostraram mais significativos.

Figura 5.6 – Respostas do teor de sílica no concentrado em função das dosagens da amina e do amido no concentrado para a amostra -0,150 +0,038 mm.

Amostra -0,038 +0,010 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas da figura 5.7 e figura 5.8. Quanto maior a inclinação maior é a influência do fator.

Main Effects Plot for SiO2 Conc

Figura 5.7 – Efeitos principais sobre o teor de SiO₂ no concentrado para a fração -0,038 +0,010 mm.

Figura 5.8 – Efeitos das interações sobre o teor de SiO_2 no concentrado para a fração -0,038 +0,010 mm.

Na figura 5.9 estão apresentadas as curvas dos teores de SiO_2 no concentrado em função dos fatores que se mostraram mais significativos.

Figura 5.9 – Respostas do teor de sílica no concentrado em função das dosagens da amina e do pH no concentrado para a amostra -0,038 +0,010 mm.

5.3 - Análise dos resultados de recuperação metalúrgica de ferro

Amostra composta

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas das figuras 5.10 e 5.11. Quanto maior a inclinação maior é a influência do fator.

Figura 5.10 – Efeitos principais sobre a recuperação metalúrgica de ferro para a amostra composta.

Figura 5.11 – Efeitos das interações sobre a recuperação metalúrgica de ferro para a amostra composta.

Na figura 5.12 estão apresentadas as curvas da recuperação metalúrgica de ferro em função dos fatores que se mostraram mais significativos.

Figura 5.12 – Respostas da recuperação metalúrgica de ferro em função das dosagens da amina e do amido para a amostra composta.

Amostra -0,150 +0,038 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas da figura 5.13 e figura 5.14. Quanto maior a inclinação maior é a influência do fator.

Figura 5.13 – Efeitos principais sobre a recuperação metalúrgica de ferro para a fração -0,150 +0,038 mm.

Figura 5.14 – Efeitos das interações sobre a recuperação metalúrgica de ferro para a fração - 0,150 +0,038 mm.

Na figura 5.15 estão apresentadas as curvas da recuperação metalúrgica de ferro em função dos fatores que se mostraram mais significativos.

Figura 5.15 – Respostas da recuperação metalúrgica de ferro em função das dosagens da amina e do amido para a fração -0,150 +0,038 mm.

Amostra -0,038 +0,010 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas das figuras 5.16 e 5.17. Quanto maior a inclinação maior é a influência do fator.

Figura 5.16 – Efeitos principais sobre a recuperação metalúrgica de ferro para a fração -0,038 +0,010 mm.

Interaction Plot for % Rec Met

Figura 5.17 – Efeitos das interações sobre a recuperação metalúrgica de ferro para a fração - 0,038 +0,010 mm.

Na figura 5.18 estão apresentadas as curvas da recuperação metalúrgica de ferro em função dos fatores que se mostraram mais significativos.

Figura 5.18 – Respostas da recuperação metalúrgica de ferro em função das dosagens da amina e do amido para a fração -0,038 +0,010 mm.

5.4 - Análise dos resultados de Índice de Seletividade

Amostra composta

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas da figura 5.19 e figura 5.20. Quanto maior a inclinação maior é a influência do fator.

Main Effects Plot for I S

Figura 5.19 – Efeitos principais sobre o índice de seletividade para a amostra composta.

Figura 5.20 – Efeitos das interações sobre o índice de seletividade para a amostra composta.

Na figura 5.21 estão apresentadas as curvas de índice de seletividade em função dos fatores que se mostraram mais significativos.

Figura 5.21 – Respostas do índice de seletividade em função das dosagens do amido e do pH para a amostra composta.

Amostra -0,150 +0,038 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas das figuras 5.22 e 5.23. Quanto maior a inclinação maior é a influência do fator.

Figura 5.22 – Efeitos principais sobre o índice de seletividade para a fração -0,150 +0,038 mm.

Figura 5.23 – Efeitos das interações sobre o índice de seletividade para a fração -0,150 +0,038 mm.

Na figura 5.24 estão apresentadas as curvas do índice de seletividade em função dos fatores que se mostraram mais significativos.

Figura 5.24 – Respostas do índice de seletividade em função das dosagens da amina e do pH para a fração -0,150 +0,038 mm.

Amostra -0,038 +0,010 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas das figuras 5.25 e 5.26. Quanto maior a inclinação maior é a influência do fator.

Figura 5.25 – Efeitos principais sobre o índice de seletividade para a fração -0,038 +0,010 mm.

Figura 5.26 – Efeitos das interações sobre o índice de seletividade para a fração -0,038 +0,010 mm.

Na figura 5.27 estão apresentadas as curvas do índice de seletividade em função dos fatores que se mostraram mais significativos.

Figura 5.27 – Respostas do índice de seletividade em função das dosagens do amido e do pH para a amostra -0,038 +0,010 mm.

5.5 - Análise dos resultados de Razão de Concentração de Ferro

Amostra composta

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas da figura 5.28 e figura 5.29. Quanto maior a inclinação maior é a influência do fator.

Figura 5.28 – Efeitos principais sobre a razão de concentração de ferro para a amostra composta.

Figura 5.29 – Efeitos das interações sobre a razão de concentração de Ferro para a amostra composta.

Na figura 5.30 estão apresentadas as curvas da razão de concentração de ferro em função dos fatores que se mostraram mais significativos.

Figura 5.30 – Respostas da razão de concentração de ferro em função das dosagens da amina e do amido para a amostra composta.

Amostra -0,150 +0,038 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas das figuras 5.31 e 5.32. Quanto maior a inclinação maior é a influência do fator.

Figura 5.31 – Efeitos principais sobre a razão de concentração de ferro para a fração -0,150 +0,038 mm.

Figura 5.32 – Efeitos das interações sobre a razão de concentração de ferro para a fração -0,150 +0,038 mm.

Na figura 5.33 estão apresentadas as curvas da recuperação metalúrgica de ferro em função dos fatores que se mostraram mais significativos.

Figura 5.33 – Respostas da razão de concentração de ferro em função das dosagens da amina e do amido para a fração -0,150 +0,038 mm.

Amostra -0,038 +0,010 mm

As magnitudes das influências dos fatores e das interações entre eles podem ser visualizadas pelas inclinações das retas da figura 5.34 e figura 5.35. Quanto maior a inclinação maior é a influência do fator.

Figura 5.34 – Efeitos principais sobre a razão de concentração de ferro para a fração -0,038 +0,010 mm.

Figura 5.35 – Efeitos das interações sobre a razão de concentração de ferro para a fração -0,038 +0,010 mm.

Na figura 5.36 estão apresentadas as curvas da razão de concentração de ferro em função dos fatores que se mostraram mais significativos.

Figura 5.36 – Respostas da razão de concentração de ferro em função das dosagens da amina e do amido para a fração -0,038 +0,010 mm.

Comparando-se a amostra composta com as frações em separado, nota-se que para cada fração granulométrica, existe um par de fatores diferentes, de modo que a concentração feita em separado é mais eficiente visto que as curvas de superfícies de respostas não são regidas pela mesma função matemática.

Os resultados para teor de sílica no concentrado para fração -0,150 +0,038 mm apresentaram grande amplitude comparando-se o melhor e o pior resultado, indicando que a adição de reagentes é um fator determinante para obtenção de um produto com baixo teor de sílica, por outro lado obteve-se uma amplitude baixa na amostra composta e na fração -0,038 +0,010 mm, o que por sua vez apresenta um resultado com baixa seletividade quando composta a amostra.

5.6 - Análise cruzada dos resultados de teor de sílica no concentrado e recuperação metalúrgica de ferro.

Os resultados cruzados nos permitem verificar regiões onde o concentrado atende as especificações de maneira a facilitar a adição de reagentes segundo as curvas no gráfico.

Cada gráfico foi construído de maneira a ter seus eixos com os fatores de maior magnitude de influências, conforme visualização nas figuras 5.37, 5.38 e 5.39.

Amostra Composta

Figura 5.37 – Respostas do teor de sílica no concentrado e recuperação metalúrgica de ferro em função das dosagens da amina e do amido para a amostra composta.

Figura 5.38 – Respostas do teor de sílica no concentrado e recuperação metalúrgica de ferro em função das dosagens da amina e do amido para a fração -0,150 +0,038 mm.

Fração -0,038 +0,010 mm

Figura 5.39 – Respostas do teor de sílica no concentrado e recuperação metalúrgica de ferro em função das dosagens da amina e do pH para a fração -0,038 +0,010 mm.

Os gráficos de teor de sílica no concentrado e recuperação metalúrgica de ferro quando sobrepostos facilitam a visualização de regiões onde é possível compor um melhor produto, ou seja, não ultrapassando o teor de sílica especificado, que não é o caso de alguns destes testes, e ainda aliado a melhor recuperação metalúrgica de ferro.

Os resultados preliminares mostraram claramente que existe uma diferença nas necessidades de adição especifica de reagentes e que os resultados podem ser melhorados quando a flotação é realizada fracionando-se a alimentação. A flotação de grossos apresentou resultados de até 98,3% de recuperação metalúrgica de ferro frente a 95,7% da flotação não fracionada e a flotação de finos apresentou teores de sílica no concentrado de 0,46% frente a 0,87% da flotação não fracionada. Os resultados alcançados com o estudo preliminar foram animadores e motivaram a realização do estudo final.

6- RESULTADOS E DISCUSSÃO DO ESTUDO FINAL.

A seguir são apresentados os resultados obtidos para a amostra -0,150 +0,010 mm e as alíquotas -0,150 +0,044 mm e -0,044 +0,010 mm.

6.1 - Análise Granulométrica do ROM

A análise da amostra cava 5 anos é apresentada na figura 6.1. Nesta figura são apresentadas as curvas granulométricas da amostra cava 5 anos.

Figura 6.1 – Distribuição Granulométrica da alimentação da flotação da amostra Cava 5 anos.

Observa-se que toda a amostra apresenta-se abaixo de 4 mm e que aproximadamente 55% da amostra já se encontra abaixo de 0,15 mm que é a faixa adequada ao circuito de flotação.

6.2 - Analise granulométrica classificação e deslamagem

A figura 6.2 apresenta as curvas granulométricas de acumulado passante dos fluxos de OF do CE01, UF e OF do HC01, UF e OF do HC02 (lamas) e UF HC01 + UF HC02, que representa a alimentação da flotação antes da separação em duas frações. Tomando como referência as malhas de 150µm e 44µm, pode-se construir a tabela 6.1.

Tabela 6.1 - Resumo comparativo entre os passantes acumulado nas malhas de 150 e 44 μ m, conforme fluxos da Figura 6.2

Fluxo	% Passante Acumulado									
Fluxo	150µm	45µm								
OF CE01	89,2	51,7								
UF HC01	90,7	31,5								
OF HC01	100	98,5								
UF HC02	100	96,33								
OF HC02	100	100								
Alim. Flot	88,1	37,0								

Size Distribution

Figura 6.2 - Distribuição Granulométrica Passante dos fluxos: OF CE01, UF e OF HC01, UF e OF HC02 e -0,150 +0,010 mm

6.3 - Analise granulométrica das três frações granulométricas submetidas aos testes de flotação e análise da classificação da fração -0,150 +0,010 mm e duas frações (-0,150 +0,044 mm e -0,044 +0,010 mm)

A figura 6.3 apresenta as curvas granulométricas das frações -0,150 +0,010 mm, -0,150 +0,044 mm e -0,044 +0,010 mm, que representam as alimentações dos testes de flotação. Na tabela 6.2 tem-se uma referência da malha de 44µm que é a malha de controle para fracionamento da flotação.

Tabela 6.2 - Resumo comparativo entre os passantes acumulado na malha de 44 μm para cada fração granulométrica testada

Amostra das	% Passante Acumulado						
Flotações	44µm						
-0,150 +0,010 mm	38,80						
-0,15 +0,044 mm	23,27						
-0,044 +0,010 mm	77,44						

Pode-se observar que a fração -0,044 +0,010 mm apresenta 22,6% da massa acima da malha de controle, assim como a fração -0,150 +0,044 mm apresenta 23,3% da sua massa abaixo da malha de controle. Este efeito é devido à separação não ser perfeita na classificação em hidrociclones. Esta imperfeição de separação garante a estabilidade de bolhas no processo de flotação para a fração -0,150 +0,044 mm. Os pesquisadores Soto (1992), Hall (1996), (Schulze, 1982), (Schulze, 1977) e Öteyaka e Soto (1994) relataram que a estabilidade partícula-bolha para as partículas grossas é comprometida pelas forças de inércia, gravidade ou cisalhamento

Na tabela 6.3 são apresentadas a partição em massa e as análises químicas de cada uma das frações.

	Teores Ciclonagem de classificação												
Fração Granulométrica	Massa(%)	Fe(%)	SiO ₂ (%)	$Al_2O_3(\%)$	P(%)								
-0,150 +0,010 mm	100%	40,13	42,40	0,63	0,014								
-0,150 +0,044 mm	47,14%	32,47	52,01	0,19	0,010								
-0,044 +0,010 mm	52,86%	46,96	29,48	1,16	0,018								

Tabela 6.3 – Partição da alimentação da flotação em ciclone

Observa-se que com o fracionamento da alimentação cerca de 53% da massa está abaixo de 0,044mm e não precisa passar pelo processo de re-moagem para adequar sua granulometria ao processo de transporte por mineroduto.

Figura 6.3 - Distribuição Granulométrica Passante das frações: -0,150 +0,010 mm, -0,150 mm +0,044 mm e -0,044 +0,010 mm.

6.4 - Testes de Flotação

A seguir são apresentados os resultados dos ensaios de flotação para a amostra -0,150 +0,010 mm e as alíquotas -0,150 +0,044 mm e -0,044 +0,010 mm.

Na tabela 6.4 são apresentados todos os resultados obtidos a partir do planejamento fatorial.

Os melhores resultados (teste e duplicata) para o bloco -0,150 +0,010 mm foram os testes T8 e T32, para o bloco -0,150 + 0,044 mm foram os testes T15 e T39 e para o bloco -0,044 +0,010 mm foram os testes T22 e T46.

Melhor resultado se refere a sílica abaixo de 1 % no concentrado e a melhor recuperação metalúrgica de ferro associada. É possível observar para cada bloco de testes que existem melhores resultados isolados em termos de sílica no concentrado ou recuperação metalúrgica de ferro, porém não atendem os dois requisitos concomitantemente.

Para os resultados apresentados na figura 6.4 e tabela 6.4 nota-se que, definindo o teor de sílica ideal abaixo de 1%, os valores de recuperação metalúrgica de ferro para os blocos -0,150 +0,010 mm (pontos verdes) são menores que os valores que os apresentados para os demais blocos. O melhor resultado em termos de recuperação metalúrgica de ferro do bloco -0,150 +0,010 mm foi de 82% enquanto que para os demais blocos a recuperação foi de 88,6% e 86,1%. Cruz et al. (2003), em estudos anteriores, chegaram a resultados semelhantes aos obtidos neste estudo.

Pic. Bio. Al. P. Pio. Bio. Al. P. Pio. Bio. Al. P. Pio. Bio. Al. P. Pio. Bio. Al. Pio. Bio. Al. Pio. Bio. Al. Pio. Bio. Bio. Al. Pio. Bio. Bio. Al. Pio. Bio. Bio. Al. Pio. Bio. Bio. Bio. Bio. Bio. Bio. Bio. B	Gran.Ref.	TESTE	STE Alimentação			Concentrado (UF)			Rejeito			Resultados		Distribuição		RE			IS		Distribuição				
6. 6 m 1 40.0 6.8 0.8 6.9 7.878 4.98 8.475 0.15 6.6 0.2 0.16 6.0 0.2 0.16 6.0 0.2 0.16 6.0 0.2 0.17 0.2 0.17 0.18 0.16 0.0 0.15 0.16 0.16 0.16 0.14 0.14 0.15 0.16 0.15 0.16			Fe	SiO ₂	Al ₂ O ₃	Р	Fe	SiO ₂	AI_2O_3	Р	Fe	SiO ₂	AI_2O_3	Р	RFe	RM	DSiO ₂	DAI ₂ O ₃	REFe	RESiO ₂	REAl ₂ O ₃	REP	ISFe -SiO ₂	ISFe - Al ₂ O ₃	DP
b) T 40.2 40.4 40.8 0.10	-0,15mm	T1	40,13	42,40	0,63	0,014	68,31	1,07	0,23	0,021	18,05	74,78	0,94	0,009	74,78%	43,93%	98,89%	83,75%	1,70	0,03	0,37	1,50	16,26	3,91	34,11%
Olsen T2 010 C20 68 018 618 776% 628 924% 87.5% 103 103 123 23.8% Olsen T2 010 62.0 68 63.0 103 123 1	-0,15mm	T25	40,13	42,40	0,63	0,014	68,18	0,96	0,19	0,020	17,65	75,61	0,98	0,009	75,59%	44,49%	98,99%	86,73%	1,70	0,02	0,30	1,43	17,44	4,50	36,44%
d. 4.6m T2 6.41 F.64 6.75 7.25 6.75 7.25 7.25 6.25 7.25 6.25 7.25 <t< td=""><td>-0,15mm</td><td>T2</td><td>40,13</td><td>42,40</td><td>0,63</td><td>0,014</td><td>68,25</td><td>0,69</td><td>0,16</td><td>0,019</td><td>16,48</td><td>77,48</td><td>1,02</td><td>0,010</td><td>77,69%</td><td>45,68%</td><td>99,26%</td><td>88,71%</td><td>1,70</td><td>0,02</td><td>0,25</td><td>1,36</td><td>21,56</td><td>5,23</td><td>38,01%</td></t<>	-0,15mm	T2	40,13	42,40	0,63	0,014	68,25	0,69	0,16	0,019	16,48	77,48	1,02	0,010	77,69%	45,68%	99,26%	88,71%	1,70	0,02	0,25	1,36	21,56	5,23	38,01%
-1.5em T0 64.15 42.40 63.05 81.05 73.25 64.05 74.05 74.05 75.05 7	-0,15mm	T26	40,13	42,40	0,63	0,014	69,41	0,75	0,22	0,017	15,99	76,74	0,97	0,012	78,16%	45,19%	99,20%	84,36%	1,73	0,02	0,35	1,21	21,08	4,39	45,13%
a) b) b)<	-0,15mm	Т3	40,13	42,40	0,63	0,014	69,43	0,55	0,18	0,019	17,06	75,35	0,98	0,010	76,21%	44,05%	99,43%	87,42%	1,73	0,01	0,29	1,36	23,61	4,72	40,22%
A.S.m. Ti Col. Col. <th< td=""><td>-0,15mm</td><td>T27</td><td>40,13</td><td>42,40</td><td>0,63</td><td>0,014</td><td>69,40</td><td>0,62</td><td>0,17</td><td>0,021</td><td>16,94</td><td>75,51</td><td>0,99</td><td>0,008</td><td>76,46%</td><td>44,21%</td><td>99,35%</td><td>87,94%</td><td>1,73</td><td>0,01</td><td>0,27</td><td>1,50</td><td>22,34</td><td>4,87</td><td>33,69%</td></th<>	-0,15mm	T27	40,13	42,40	0,63	0,014	69,40	0,62	0,17	0,021	16,94	75,51	0,99	0,008	76,46%	44,21%	99,35%	87,94%	1,73	0,01	0,27	1,50	22,34	4,87	33,69%
c.15em T2 0.13 42.0 0.24 0.71 12.4 6.40.7 12.4 0.72 0.40 0.14 12.7 0.10 12.4 0.25 <th0.25< th=""> 0.25 0.25 <t< td=""><td>-0,15mm</td><td>T4</td><td>40,13</td><td>42,40</td><td>0,63</td><td>0,014</td><td>68,61</td><td>0,38</td><td>0,25</td><td>0,017</td><td>17,26</td><td>76,15</td><td>0,93</td><td>0,012</td><td>76,15%</td><td>44,54%</td><td>99,60%</td><td>82,31%</td><td>1,71</td><td>0,01</td><td>0,40</td><td>1,21</td><td>28,23</td><td>3,85</td><td>45,92%</td></t<></th0.25<>	-0,15mm	T4	40,13	42,40	0,63	0,014	68,61	0,38	0,25	0,017	17,26	76,15	0,93	0,012	76,15%	44,54%	99,60%	82,31%	1,71	0,01	0,40	1,21	28,23	3,85	45,92%
- 5.5m T6 0.10 6.40 0.80 0.00 8.00 <th< td=""><td>-0,15mm</td><td>T28</td><td>40,13</td><td>42,40</td><td>0,63</td><td>0,014</td><td>68,88</td><td>0,45</td><td>0,33</td><td>0,017</td><td>15,24</td><td>78,71</td><td>0,89</td><td>0,011</td><td>79,64%</td><td>46,40%</td><td>99,51%</td><td>75,80%</td><td>1,72</td><td>0,01</td><td>0,52</td><td>1,21</td><td>28,12</td><td>3,50</td><td>43,66%</td></th<>	-0,15mm	T28	40,13	42,40	0,63	0,014	68,88	0,45	0,33	0,017	15,24	78,71	0,89	0,011	79,64%	46,40%	99,51%	75,80%	1,72	0,01	0,52	1,21	28,12	3,50	43,66%
a).Seem To 4.10 4.24 0.86 0.14 6.87 0.10 0.14 0.13 0.16 4.40 0.24 0.15 0.10 0.14 0.13 0.16 0.14 <t< td=""><td>-0,15mm</td><td>T5</td><td>40,13</td><td>42,40</td><td>0,63</td><td>0,014</td><td>65,69</td><td>4,53</td><td>0,30</td><td>0,018</td><td>12,50</td><td>83,34</td><td>0,98</td><td>0,010</td><td>85,04%</td><td>51,95%</td><td>94,45%</td><td>74,98%</td><td>1,64</td><td>0,11</td><td>0,48</td><td>1,29</td><td>9,83</td><td>4,13</td><td>33,21%</td></t<>	-0,15mm	T5	40,13	42,40	0,63	0,014	65,69	4,53	0,30	0,018	12,50	83,34	0,98	0,010	85,04%	51,95%	94,45%	74,98%	1,64	0,11	0,48	1,29	9,83	4,13	33,21%
d.losm Tis Al.3 Al.9 Al.48 Al.90 Al.48 S.B.90 D.78	-0,15mm	T29	40,13	42,40	0,63	0,014	66,89	4,47	0,29	0,018	11,38	83,15	0,99	0,010	86,33%	51,79%	94,54%	76,13%	1,67	0,11	0,46	1,29	10,45	4,49	33,41%
clsem T3 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	-0,15mm	T6	40,13	42,40	0,63	0,014	64,18	6,61	0,27	0,021	12,96	82,84	1,03	0,006	84,84%	53,05%	91,73%	77,16%	1,60	0,16	0,43	1,50	7,88	4,35	20,43%
Allown T/1 duts 6.00 B33 B30 C02 B50 7.13 C02 C02 F72 C02 C02 <thc02< th=""> C02 C02 C0</thc02<>	-0,15mm	T30	40,13	42,40	0,63	0,014	61,71	10,95	0,36	0,018	13,85	80,70	0,95	0,009	84,44%	54,91%	85,82%	68,47%	1,54	0,26	0,57	1,29	5,73	3,43	29,40%
stam T3 6.01 6.02 6	-0,15mm	T7	40,13	42,40	0,63	0,014	68,33	1,33	0,30	0,021	15,60	78,13	0,91	0,008	79,21%	46,52%	98,54%	77,52%	1,70	0,03	0,48	1,50	16,04	3,62	30,22%
dist Heat Bit Bit </td <td>-0,15mm</td> <td>T31</td> <td>40,13</td> <td>42,40</td> <td>0,63</td> <td>0,014</td> <td>68,23</td> <td>1,19</td> <td>0,24</td> <td>0,020</td> <td>16,29</td> <td>77,36</td> <td>0,95</td> <td>0,009</td> <td>78,04%</td> <td>45,90%</td> <td>98,71%</td> <td>82,21%</td> <td>1,70</td> <td>0,03</td> <td>0,39</td> <td>1,43</td> <td>16,50</td> <td>4,05</td> <td>34,43%</td>	-0,15mm	T31	40,13	42,40	0,63	0,014	68,23	1,19	0,24	0,020	16,29	77,36	0,95	0,009	78,04%	45,90%	98,71%	82,21%	1,70	0,03	0,39	1,43	16,50	4,05	34,43%
Altern Ti2 All All All All Black B	-0,15mm	T8	40,13	42,40	0,63	0,014	68,47	0,45	0,26	0,021	16,78	76,96	0,93	0,008	77,07%	45,17%	99,52%	81,13%	1,71	0,01	0,42	1,50	26,41	3,80	32,25%
Other Fiel 40.13 42.40 0.80 0.14 0.24 0.24 0.26 0.07 15.27 72.85 0.90 0.01 74.875 44.02 42.85 64.85 </td <td>-0,15mm</td> <td>T32</td> <td>40,13</td> <td>42,40</td> <td>0,63</td> <td>0,014</td> <td>69,49</td> <td>0,75</td> <td>0,27</td> <td>0,017</td> <td>13,76</td> <td>79,81</td> <td>0,95</td> <td>0,011</td> <td>81,94%</td> <td>47,32%</td> <td>99,16%</td> <td>79,92%</td> <td>1,73</td> <td>0,02</td> <td>0,42</td> <td>1,21</td> <td>23,18</td> <td>4,25</td> <td>42,54%</td>	-0,15mm	T32	40,13	42,40	0,63	0,014	69,49	0,75	0,27	0,017	13,76	79,81	0,95	0,011	81,94%	47,32%	99,16%	79,92%	1,73	0,02	0,42	1,21	23,18	4,25	42,54%
A)15 A B C B C B C B C B C B C B C B C B C B C B C B C B C B C B C B B B C	-0,15mm	T49	40,13	42,40	0,63	0,014	67,94	0,40	0,28	0,017	18,26	75,43	0,90	0,012	74,53%	44,02%	99,58%	80,48%	1,69	0,01	0,44	1,21	26,49	3,47	46,55%
-0.15-0.044rm T0 24.7 50.01 0.10 0.10 0.10 0.10 0.11 0.40 0.15 0.41 0.10 0.11 0.10 0.15 0.44 0.15 0.44 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.41 0.15 0.10 0.15 0.14 0.15 0.16 0.01 0.15 0.11 0.10 0.15 0.11 0.10 0.15 0.11 0.10 0.10 0.15 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	-0,15mm	T50	40,13	42,40	0,63	0,014	67,96	0,57	0,29	0,017	16,21	78,35	0,91	0,011	78,27%	46,22%	99,38%	78,47%	1,69	0,01	0,47	1,21	24,00	3,62	43,88%
0,15-0,044 mm T33 24,24 22,11 101 0.01 63,24 62,04 0.01 0.05 1.03 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.02 0.01 0.01 0.05 0.01	-0,15 +0,044 mm	Т9	32,47	52,01	0,19	0,010	69,07	0,39	0,22	0,014	7,09	87,81	0,17	0,007	87,11%	40,95%	99,69%	52,92%	2,13	0,01	1,15	1,40	46,84	2,76	42,67%
ch16+0.044rm Tio 24.7 22.01 0.10 0.05 0.7.0 27.06 37.04 33.04 33.05* 30.05* 74.05* 21.4 0.01 0.05 1.7.0 27.06 37.05 37.04 33.05* 30.05* 32.05* 52.04 1.01 0.05 1.7.0 21.4 0.01 1.2.3 1.5.0 35.85 31.0 35.85 31.0 35.85 31.0 35.85 31.0 35.85 31.0 35.85 31.0 35.85 31.0 35.85 31.0 35.85 31.0 35.0 35.85 35.0 31.0 35.0 35.85 35.0 31.0 35.0 35.85 35.0 31.0 35.0 <th< td=""><td>-0,15 +0,044 mm</td><td>T33</td><td>32,47</td><td>52,01</td><td>0,19</td><td>0,010</td><td>69,74</td><td>0,49</td><td>0,11</td><td>0,016</td><td>7,62</td><td>86,36</td><td>0,24</td><td>0,006</td><td>85,91%</td><td>40,00%</td><td>99,62%</td><td>76,47%</td><td>2,15</td><td>0,01</td><td>0,59</td><td>1,60</td><td>40,15</td><td>4,45</td><td>36,00%</td></th<>	-0,15 +0,044 mm	T33	32,47	52,01	0,19	0,010	69,74	0,49	0,11	0,016	7,62	86,36	0,24	0,006	85,91%	40,00%	99,62%	76,47%	2,15	0,01	0,59	1,60	40,15	4,45	36,00%
01-0-0444 mm Ti4 32.47 52.01 0.9 0.019 <	-0,15 +0,044 mm	T10	32,47	52,01	0,19	0,010	69,33	0,46	0,12	0,017	9,27	84,46	0,23	0,006	82,48%	38,63%	99,66%	74,80%	2,14	0,01	0,65	1,70	37,06	3,74	34,33%
0.15 - 0.044 mm Ti 32.47 S2.00 0.19 0.016 60.47 0.03 0.19 0.014 0.02 77.12% 38.47% 57.12% 2.12 0.01 1.03 1.00 83.83 1.04 43.04 0.15 - 0.044 mm Ti2 32.47 S2.00 0.19 0.016 68.68 0.42 0.011 1.48 81.75 0.17 0.006 77.55% S3.14% 98.65% 4.102% 2.12 0.01 1.16 1.60 32.32 2.44 32.47 S0.01 10 0.016 65.6 0.01 0.016 75.67% 53.15% 98.67% 4.102% 2.12 0.01 1.50 0.43 0.42 75.67% 53.15% 98.67% 4.102% 2.15 0.01 1.50 24.7% 4.01% 0.15 0.44 0.04 1.05 1.23 1.03 1.40 42.7% 4.01% 0.04 1.06 1.80 20.23 2.24 2.06 0.04 1.06 1.80 20.23 2.24 2.06 0.05 0.05 0.27 1.23 1.03 1.23 1.04	-0,15 +0,044 mm	T34	32,47	52,01	0,19	0,010	68,93	0,56	0,23	0,018	9,55	84,35	0,16	0,005	81,94%	38,60%	99,58%	52,52%	2,12	0,01	1,23	1,80	32,98	2,24	30,52%
0.15 0.04 m TS 23.74 52.01 0.19 0.010 63.95 0.17 14.84 7.88 0.17 0.16 0.004 m.75 23.74 52.01 0.19 0.010 63.85 0.15 0.014 1.03 1.00 1.00 1.01 0.00 1.01 0.01 1.02 1.01 0.01 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01	-0,15 +0,044 mm	T11	32,47	52,01	0,19	0,010	68,79	0,36	0,25	0,015	11,68	81,57	0,15	0,007	77,12%	36,40%	99,75%	51,73%	2,12	0,01	1,33	1,50	36,53	1,90	45,40%
0.15 -0.044 mm 112 22.47 62.01 0.19 0.000 68.88 0.40 0.02 0.017 0.000 77.19% 89.40% 96.2% 5.6.99% 2.12 0.01 1.19 1.70 0.82 1.50 0.010 68.16 0.000 67.19% 85.15% 96.6% 41.26% 2.13 0.011 1.66 1.68 0.82 5.21% 0.014 1.66 1.68 0.82 5.21% 0.014 1.66 1.68 0.82 5.21% 0.014 1.66 1.68 0.82 5.21% 0.014 1.66 1.68 0.82 0.67 1.71% 8.64% 5.21% 0.04 1.66 0.82 0.82 0.82% 5.52% 0.08 0.04 1.66 0.82 0.21 0.00 67.7% 4.145% 68.4% 4.13% 0.18 0.47 1.70 23.47 2.00 0.15 0.244 2.15 0.01 0.71 7.63 8.15 4.33% 8.45% 4.33% 8.45% 4.33% 8.45% 4.34% 6.44% 6.44% 6.44% 6.44% 6.44% 6.44% <td>-0,15 +0,044 mm</td> <td>T35</td> <td>32,47</td> <td>52,01</td> <td>0,19</td> <td>0,010</td> <td>69,91</td> <td>0,53</td> <td>0,19</td> <td>0,014</td> <td>12,20</td> <td>79,88</td> <td>0,18</td> <td>0,008</td> <td>75,62%</td> <td>35,12%</td> <td>99,64%</td> <td>63,75%</td> <td>2,15</td> <td>0,01</td> <td>1,03</td> <td>1,40</td> <td>29,38</td> <td>2,34</td> <td>50,83%</td>	-0,15 +0,044 mm	T35	32,47	52,01	0,19	0,010	69,91	0,53	0,19	0,014	12,20	79,88	0,18	0,008	75,62%	35,12%	99,64%	63,75%	2,15	0,01	1,03	1,40	29,38	2,34	50,83%
0.15-0.044-mn 758 32.47 \$2.01 0.19 0.010 66.18 0.50 0.31 0.016 11.99 0.010 67.8 0.010 67.8 83.81% 99.68 41.02% 2.13 0.01 1.65 1.60 30.22 2.14 44.27% 0.15-0.044-mn 73 32.47 52.01 0.19 0.010 68.10 1.62 0.41 0.01 73.37% 41.85% 89.87% 54.27% 2.01 0.03 1.50 2.31 2.48 2.44 2.45 3.27% 2.01 0.03 1.50 2.31 2.48 2.45 0.04 6.86 4.13% 9.24% 4.26% 4.36% 8.94% 4.13% 2.16 0.018 6.86 1.00 3.27% 5.15 2.33 0.03 1.28 1.40 3.327 3.20 3.06% 3.016 3.01 3	-0,15 +0,044 mm	T12	32,47	52,01	0,19	0,010	68,86	0,54	0,22	0,017	11,64	81,47	0,17	0,006	77,19%	36,40%	99,62%	56,59%	2,12	0,01	1,19	1,70	29,87	2,10	38,12%
0.15-0.044 mm T10 32.47 52.01 0.19 0.010 67.65 2.08 0.20 0.010 7.01 84.75 53.2% 2.08 0.04 1.06 1.60 2.02 2.24 2.24 2.24 2.24 2.24 2.21 2.24 2.24 2.24 2.24 2.24 2.27 2.20 2.24 2.24 2.27 2.24 2.27 2.24 2.27 2.24 2.27 2.24 2.27 2.20 2.24 2.27 2.20 2.24 2.27 2.20 2.24 2.27 2.20 2.24 2.27 2.20 2.24 2.27 2.20 2.26 0.05 88.75 4.24% 2.06 0.08 0.77 2.18 2.15 0.010 9.75 2.16 0.010 9.75 2.16 0.010 9.75 2.16 0.010 9.75 2.16 0.010 9.75 2.16 0.010 9.75 2.16 0.010 9.75 2.16 0.010 0.65 9.76 9.75 2.17 0.010 0.65 9.75 1.27 0.010 0.65 9.75 <td>-0,15 +0,044 mm</td> <td>T36</td> <td>32,47</td> <td>52,01</td> <td>0,19</td> <td>0,010</td> <td>69,18</td> <td>0,50</td> <td>0,31</td> <td>0,016</td> <td>11,99</td> <td>80,75</td> <td>0,12</td> <td>0,007</td> <td>76,30%</td> <td>35,81%</td> <td>99,66%</td> <td>41,02%</td> <td>2,13</td> <td>0,01</td> <td>1,65</td> <td>1,60</td> <td>30,52</td> <td>1,50</td> <td>42,70%</td>	-0,15 +0,044 mm	T36	32,47	52,01	0,19	0,010	69,18	0,50	0,31	0,016	11,99	80,75	0,12	0,007	76,30%	35,81%	99,66%	41,02%	2,13	0,01	1,65	1,60	30,52	1,50	42,70%
0.15-0.044 mm 17 32.47 52.01 0.19 0.019 68.10 1.62 0.42 0.24 97.7% 41.85% 98.7% 60.05% 2.10 0.03 1.29 1.50 23.31 2.48 77.2% 0.15-0.044 mm 718 32.47 52.01 0.019 0.010 66.24 1.38 0.44 0.14 4.13 91.45% 94.45% 45.5% 98.85% 4.13% 2.13 0.03 1.28 1.40 0.32.7 3.24 93.05% 0.15-0.044 mm 716 32.47 52.01 0.019 0.010 66.75 0.20 0.017 7.16 86.85% 40.18 0.05 86.87% 41.9% 95.7% 55.5% 2.01 0.019 0.010 66.25 0.00 0.016 66.28 93.20 0.005 86.87% 41.9% 95.7% 55.5% 2.01 0.019 0.010 66.28 0.027 0.021 0.011 0.014 7.44 0.90 66.26% 41.20% 99.37% 65.5% 2.10 0.01 1.44 0.44 0.15 0.01 66.16	-0,15 +0,044 mm	T13	32,47	52,01	0,19	0,010	67,65	2,08	0,20	0,018	7,01	88,15	0,18	0,004	87,48%	41,99%	98,32%	55,32%	2,08	0,04	1,06	1,80	20,23	2,94	24,42%
0.15-0.044 mm Ti4 32.47 52.01 0.19 0.010 66.91 4.03 0.61 0.017 32.4 92.3 0.21 0.004 94.61% 45.91% 95.44% 60.26 0.065 0.077 1.70 21.80 5.15 21.80% 0.15-0.044 mm Ti5 32.47 52.01 0.19 0.010 66.86 0.67 0.17 0.63 1.88 1.40 33.7 32.03 30.06% 0.15-0.044 mm Ti5 32.47 52.01 0.19 0.010 66.85 0.69 0.17 1.6 68.64% 40.44% 95.7% 52.16 0.01 1.07 73.55 4.44 50.31% 1.26% 1.017 1.00 1.03 1.00 90.45% 95.5% 7.15% 2.11 0.01 0.53 1.26 4.53 0.55 1.21 6.54% 2.10 0.01 1.03 1.00 90.45% 95.5% 1.21 0.01 1.03 1.00 90.45% 95.5% 1.21 0.01 1.03 1.00 40.45% 92.7% 91.45% 1.21 0.01 <t< td=""><td>-0,15 +0,044 mm</td><td>T37</td><td>32,47</td><td>52,01</td><td>0,19</td><td>0,010</td><td>68,10</td><td>1,62</td><td>0,24</td><td>0,015</td><td>6,83</td><td>88,28</td><td>0,15</td><td>0,006</td><td>87,77%</td><td>41,85%</td><td>98,70%</td><td>46,06%</td><td>2,10</td><td>0,03</td><td>1,29</td><td>1,50</td><td>23,31</td><td>2,48</td><td>37,23%</td></t<>	-0,15 +0,044 mm	T37	32,47	52,01	0,19	0,010	68,10	1,62	0,24	0,015	6,83	88,28	0,15	0,006	87,77%	41,85%	98,70%	46,06%	2,10	0,03	1,29	1,50	23,31	2,48	37,23%
0.15-0.044 mm T5 22.47 52.01 0.19 0.010 69.24 1.38 0.24 0.015 0.027 92.82% 45.53% 98.65% 41.37% 2.14 0.03 1.28 1.40 33.27 3.20 93.06% 0.15-0.044 mm T6 32.47 52.01 0.19 0.010 65.56 0.55 0.20 0.017 7.16 64.94 0.05 88.67% 41.95% 95.55% 2.11 0.01 0.05 52.1 4.44 53.38% 0.45 0.45 0.55 0.51 0.21 0.65 0.55 0.25 0.26 0.05 88.7% 41.99% 99.5% 55.54% 2.11 0.01 0.53 1.495 42.43 5.23% 1.10 0.02 0.94 1.40 30.42 3.18 42.3% 42.3% 42.13 0.01 1.24 1.80 3.31 2.38 2.58 5.56 5.16% 40.69% 94.9% 49.55% 2.10 0.01 1.24 1.80 3.32 2.85 2.85 4.95% 4.96% 49.45% 49.45% 4.95% 4.146	-0,15 +0,044 mm	T14	32,47	52,01	0,19	0,010	66,91	4,03	0,16	0,017	3,24	92,73	0,21	0,004	94,61%	45,91%	96,44%	60,23%	2,06	0,08	0,87	1,70	21,80	5,15	21,95%
0.15 + 0.044 mm T15 32.47 52.01 0.19 0.010 68.68 0.68 0.19 0.021 6.71 71.09K 2.14 0.01 0.88 1.20 37.25 54.44 50.38 0.15 + 0.044 mm T16 32.47 52.01 0.19 0.010 68.75 0.54 0.644 1.95 55.44 4.44 50.38K 0.15 + 0.044 mm T16 32.47 52.01 0.19 0.010 68.19 0.18 0.014 7.46 88.88K 4.139K 99.57K 56.54K 2.11 0.01 0.53 1.30 40.50 52.11 45.41K 0.15 + 0.044 mm T16 22.47 52.01 0.19 0.010 68.19 0.11 0.16 0.05 85.19K 40.39K 42.12K 0.01 1.20 1.30 1.60 43.44 42.22K 0.15 0.16 1.10 50.35K 1.10 0.10 0.11 2.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.16 2.13 0.16 7.50K 5.1445 9.94K	-0,15 +0,044 mm	T38	32,47	52,01	0,19	0,010	69,24	1,38	0,24	0,014	4,13	91,04	0,15	0,007	92,82%	43,53%	98,85%	44,13%	2,13	0,03	1,28	1,40	33,27	3,20	39,06%
0.15 0.044 mm T6 3.247 5.201 0.19 0.010 9.976 0.65.90 0.15 0.044 mm T6 3.247 5.201 0.19 0.010 68.59 0.10 0.017 7.68 86.80% 40.49% 99.52% 7.576 2.11 0.01 1.70 39.24 2.9.3 45.21% 0.15 0.044 mm T61 32.47 52.01 0.19 0.010 68.19 0.61 7.44 87.84 0.19 0.007 86.52% 4.120% 99.35% 4.52% 2.10 0.02 0.34 1.40 33.04 31.8 42.32% 0.15 4.0044 mm T51 32.47 52.01 0.19 0.010 68.10 80.11 0.066 85.51% 39.39% 99.5% 48.51% 2.12 0.01 1.24 1.80 43.04 2.20 35.55% 2.11 0.01 0.21 1.11 25.85% 41.9% 99.5% 48.51% 2.12 0.01 1.24 1.80 43.04 2.20 35.55% 35.5% 35.5% 35.5% 39.5% 41.46 0.01	-0,15 +0,044 mm	T15	32,47	52,01	0,19	0,010	69,58	0,69	0,13	0,012	6,31	88,19	0,23	0,009	88,61%	41,35%	99,45%	71,70%	2,14	0,01	0,68	1,20	37,55	4,44	50,38%
-0.15 -0.044 mm Tic 32.47 52.01 0.19 0.010 68.39 0.59 0.010 0.612 92.30 0.025 0.001 61.22 0.001 68.12 92.30 0.015 0.024 91.5 0.016 0.014 0.014 0.014 7.44 91.70 0.007 61.225 2.10 0.01 0.53 1.00 0.042 3.18 42.32% 0.15 -0.044 mm Tis 32.47 52.01 0.19 0.010 68.12 0.68 0.23 0.015 65.18% 40.60% 99.48% 49.53% 2.10 0.01 1.24 1.80 33.31 2.38 2.628 2.628 49.63% 2.12 0.01 1.30 1.60 0.42 3.331 2.38 2.528 5.10% 99.43% 99.73% 48.81% 2.12 0.01 1.30 1.60 0.42 3.331 2.38 2.628 5.10% 99.73% 48.81% 2.12 0.01 1.30 1.60 0.42 3.331 2.38 2.628 5.10% 99.73% 48.81% 2.16 0.016 5.10 99.36% <td>-0,15 +0,044 mm</td> <td>T39</td> <td>32,47</td> <td>52,01</td> <td>0,19</td> <td>0,010</td> <td>69,76</td> <td>0,55</td> <td>0,20</td> <td>0,017</td> <td>7,16</td> <td>86,94</td> <td>0,18</td> <td>0,005</td> <td>86,86%</td> <td>40,43%</td> <td>99,57%</td> <td>56,54%</td> <td>2,15</td> <td>0,01</td> <td>1,07</td> <td>1,70</td> <td>39,24</td> <td>2,93</td> <td>31,27%</td>	-0,15 +0,044 mm	T39	32,47	52,01	0,19	0,010	69,76	0,55	0,20	0,017	7,16	86,94	0,18	0,005	86,86%	40,43%	99,57%	56,54%	2,15	0,01	1,07	1,70	39,24	2,93	31,27%
-0.15 + 0.044 mm Tot 32.47 52.01 0.19 0.010 68.19 0.87 0.18 0.012 0.19 0.010 68.19 0.87 0.18 0.014 0.000 65.19% 0.400% 69.31% 61.22% 2.10 0.02 0.94 1.40 33.21 2.38 2.68.2% -0.15 + 0.044 mm T52 32.47 52.01 0.19 0.010 68.12 0.66 0.28 0.018 85.18% 0.400% 69.3% 2.12 0.011 1.24 1.80 33.31 2.38 2.68.2% -0.014 mm T17 46.96 29.48 1.16 0.018 68.03 0.22 0.21 1.17 2.78 4.93 9.93% 49.31% 9.14% 1.46 0.01 0.16 1.17 2.593 5.95 9.93% 9.91% 9.14% 1.44 0.01 0.15 1.01 2.28 2.33 0.01 0.16 1.17 2.593 5.75 9.93% 9.94% 9.14% 1.44 0.01 0.15 1.00 2.37 6.34 45.33% 45.37% 9.94%	-0,15 +0,044 mm	T16	32,47	52,01	0,19	0,010	68,59	0,59	0,10	0,013	6,32	89,23	0,25	0,008	88,70%	41,99%	99,52%	77,55%	2,11	0,01	0,53	1,30	40,50	5,21	45,41%
-0.15 + 0.044 mm T51 32.47 52.01 0.19 0.010 68.12 0.66 0.23 0.018 8.10 8.71 0.16 0.005 85.1% 49.60% 99.48% 42.10 0.011 1.24 1.80 33.31 2.38 26.82% 0.0144 mm T52 32.47 52.01 0.19 0.010 68.44 0.36 0.24 0.016 85.58 0.15 0.006 83.51% 39.93% 97.3% 48.61% 2.12 0.01 1.30 1.60 43.04 2.20 36.88% -0.044 mm T14 46.56 29.48 1.16 0.018 68.43 0.22 0.27 61.01 2.20 0.016 75.03% 51.90% 99.54% 91.45% 1.46 0.01 0.16 1.10 27.89 7.64 43.38% -0.044 mm T42 46.36 29.48 1.16 0.018 68.45 0.28 64.78 2.33 0.018 7.82% 51.0% 99.55% 80.75% 1.46 0.01 0.16 1.00 37.67 6.34 45.28% 0.16	-0,15 +0,044 mm	T40	32,47	52,01	0,19	0,010	68,19	0,87	0,18	0,014	7,44	87,84	0,19	0,007	86,52%	41,20%	99,31%	61,22%	2,10	0,02	0,94	1,40	30,42	3,18	42,32%
-0.15 0.044 mm Ti2 32.47 52.01 0.19 0.010 68.84 0.28 0.012 24.14 60.06 83.51% 39.39% 99.73% 48.81% 2.12 0.011 1.00 1.60 43.04 2.20 36.88% -0.044 mm Ti4 46.96 29.48 1.16 0.018 68.43 0.26 0.19 0.20 23.79 61.01 75.03% 51.44% 99.53% 99.53% 1.46 0.01 0.11 1.17 27.98 5.76 42.33% -0.044 mm Ti4 46.96 29.48 1.16 0.018 68.91 0.21 2.02 0.65 99.73% 99.73% 91.4% 1.47 0.01 0.15 1.00 27.38 7.04 43.38% -0.044 mm Ti4 46.96 29.48 1.16 0.18 68.91 0.21 2.02 65.96 2.34 0.018 7.01% 1.46 0.01 0.16 1.00 27.78 7.04 43.38% -0.044 mm Ti4 46.96 29.48 1.16 0.018 68.67 <t< td=""><td>-0,15 +0,044 mm</td><td>T51</td><td>32,47</td><td>52,01</td><td>0,19</td><td>0,010</td><td>68,12</td><td>0,66</td><td>0,23</td><td>0,018</td><td>8,10</td><td>87,11</td><td>0,16</td><td>0,005</td><td>85,18%</td><td>40,60%</td><td>99,48%</td><td>49,63%</td><td>2,10</td><td>0,01</td><td>1,24</td><td>1,80</td><td>33,31</td><td>2,38</td><td>26,92%</td></t<>	-0,15 +0,044 mm	T51	32,47	52,01	0,19	0,010	68,12	0,66	0,23	0,018	8,10	87,11	0,16	0,005	85,18%	40,60%	99,48%	49,63%	2,10	0,01	1,24	1,80	33,31	2,38	26,92%
-0.044 mm T17 46,86 29,48 1.16 0.018 68,50 0.22 0.22 0.21 24,14 60,48 2.13 0.015 75,03% 51,44% 99,85% 14.6 0.01 0.21 1.17 27,33 4.95 39,99% -0.044 mm T14 46,96 29,48 1.16 0.018 68,43 0.26 0.19 0.020 23,79 61.01 2,20 0.016 75,63% 51,90% 99,45% 14,46 0.01 0.16 1,11 25,98 5,76 42,33% -0.044 mm T42 46,96 29,48 1.16 0.018 68,22 0.15 0.19 0.018 20,89 64,78 2,33 0.018 79,81% 54,62% 99,75% 1,46 0.01 0.16 1,17 30,88 61,12 32,64% -0.044 mm T42 46,96 29,48 1.16 0.018 68,12 0.26 0.018 2,22 0.018 76,22% 52,75% 99,75%	-0,15 +0,044 mm	T52	32,47	52,01	0,19	0,010	68,84	0,36	0,24	0,016	8,83	85,58	0,15	0,006	83,51%	39,39%	99,73%	48,81%	2,12	0,01	1,30	1,60	43,04	2,20	36,98%
-0.044 mm Tit 46.96 29.48 1.16 0.018 68.43 0.26 0.19 0.020 23.79 61.01 2.0 0.016 75.5% 51.90% 99.4% 91.4% 1.46 0.01 0.16 1.11 25.98 5.76 42.33% -0.044 mm Tita 46.96 29.48 1.16 0.018 68.20 0.15 0.19 0.018 12.41 0.018 82.28% 56.07% 91.4% 91.4% 0.01 0.16 1.01 0.05 1.00 27.98 7.04 43.93% -0.044 mm Tita 46.96 29.48 1.16 0.018 68.55 0.24 0.21 0.021 20.02 65.96 2.34 0.014 81.03% 55.51% 99.55% 89.75% 1.46 0.01 0.18 1.17 30.68 6.12 35.24% -0.044 mm Tita 46.96 29.48 1.16 0.018 69.25 0.13 0.34 0.021 23.0 61.32 2.05 0.919 7.602% 52.08% 99.68% 84.0% 1.46 0.01	-0,044 mm	T17	46,96	29,48	1,16	0,018	68,50	0,22	0,25	0,021	24,14	60,48	2,13	0,015	75,03%	51,44%	99,62%	89,08%	1,46	0,01	0,21	1,17	27,93	4,95	39,99%
-0.044 mm Ti8 46.96 29.48 1.16 0.018 68.91 0.11 0.18 0.024 mm Ti2 46.96 29.48 1.16 0.018 68.62 0.15 0.19 0.014 0.15 1.00 27.88 7.04 43.93% -0.044 mm Ti2 46.96 29.48 1.16 0.018 68.62 0.17 0.012 20.02 65.96 2.34 0.014 81.03% 94.7% 1.46 0.01 0.16 1.00 37.77 6.34 45.98 -0.044 mm Ti3 46.96 29.48 1.16 0.018 68.47 0.23 0.26 0.018 21.58 64.00 2.22 0.018 78.92% 54.13% 99.58% 89.03% 1.46 0.01 0.02 1.00 2.97.1 5.24 45.67% -0.044 mm Ti4 46.96 29.48 1.16 0.018 68.52 0.14 0.021 2.05 0.019 76.22% 50.20% 99.73% 3.3	-0,044 mm	T41	46,96	29,48	1,16	0,018	68,43	0,26	0,19	0,020	23,79	61,01	2,20	0,016	75,63%	51,90%	99,54%	91,45%	1,46	0,01	0,16	1,11	25,98	5,76	42,33%
-0.044 mm T42 46.96 29.48 1,16 0.018 68.62 0,15 0,19 0.018 20.89 64.78 2.33 0.018 79.81% 54.62% 99.72% 91.05% 1.46 0.01 0.16 1.00 37.67 6,34 45.88% -0.044 mm T43 46.96 29.48 1,16 0.018 68.47 0.23 0.26 60.98 2.24 0.014 81.03% 55.51% 99.75% 14.66 0.01 0.18 1.17 30.68 6,12 35.24% -0.044 mm T20 46.96 29.48 1,16 0.018 68.55 0.14 0.020 1.00 22.05 0.019 76.02% 52.08% 99.68% 84.63% 1.46 0.01 0.22 1.00 29.71 52.44 45.86% -0.044 mm T21 46.96 29.48 1.16 0.018 68.52 0.50 0.39 0.021 17.49 69.33 2.28 0.014 83.29% 57.68%	-0,044 mm	T18	46,96	29,48	1,16	0,018	68,91	0,31	0,18	0,018	18,94	66,71	2,41	0,018	82,28%	56,07%	99,41%	91,44%	1,47	0,01	0,15	1,00	27,98	7,04	43,93%
-0.044 mm T19 46,96 29,48 1,16 0.018 68,55 0.24 0.21 0.021 20,02 65,96 2,34 0.014 81,03% 55,51% 99,55% 89,75% 1,46 0.01 0,18 1,17 30,68 6,12 35,24% -0.044 mm T43 46,96 29,48 1,16 0.018 68,47 0.23 0.26 0.018 21,58 64,00 2.22 0.018 78,92% 54,13% 99,58% 88,00% 1,46 0.01 0.22 1,00 29,71 5,24 45,87% -0.044 mm T44 46,96 29,48 1,16 0.018 68,55 0,14 0.020 21,90 63,53 2,34 0.016 79,22% 53,72% 99,63% 84,63% 1,46 0.01 0.12 1,11 37,29 7,33 43,30% 1,47 0.01 0.22 1,01 37,37% 1,47 0.01 0.21 1,11 37,29 4,31 40,31% 46,96 29,48 1,16 0.018 68,52 0,50 0,39 0,21 18,29 <t< td=""><td>-0,044 mm</td><td>T42</td><td>46,96</td><td>29,48</td><td>1,16</td><td>0,018</td><td>68,62</td><td>0,15</td><td>0,19</td><td>0,018</td><td>20,89</td><td>64,78</td><td>2,33</td><td>0,018</td><td>79,81%</td><td>54,62%</td><td>99,72%</td><td>91,05%</td><td>1,46</td><td>0,01</td><td>0,16</td><td>1,00</td><td>37,67</td><td>6,34</td><td>45,38%</td></t<>	-0,044 mm	T42	46,96	29,48	1,16	0,018	68,62	0,15	0,19	0,018	20,89	64,78	2,33	0,018	79,81%	54,62%	99,72%	91,05%	1,46	0,01	0,16	1,00	37,67	6,34	45,38%
-0.044 mm T43 46.96 29.48 1.16 0.018 68.47 0.23 0.26 0.018 21.58 64.00 2.22 0.018 78.92% 54.13% 99.58% 88.00% 1.46 0.01 0.22 1.00 29.71 5.24 45.87% -0.044 mm T20 46.96 29.48 1.16 0.018 68.55 0.18 0.04 0.017 23.50 61.32 2.05 0.019 76.02% 52.08% 99.68% 84.63% 1.46 0.01 0.30 0.94 31.53 4.18 50.81% -0.044 mm T21 46.96 29.48 1.16 0.018 68.55 0.14 0.022 2.19 0.014 83.29% 57.08% 99.03% 83.04% 1.46 0.01 0.12 1.11 37.29 7.33 40.31% -0.044 mm T45 46.96 29.48 1.16 0.018 68.74 0.39 0.021 17.49 69.33 2.28 0.014 84.29% 57.83% 99.18% 83.04% 1.46 0.01 0.25 1.28 5.13	-0,044 mm	T19	46,96	29,48	1,16	0,018	68,55	0,24	0,21	0,021	20,02	65,96	2,34	0,014	81,03%	55,51%	99,55%	89,75%	1,46	0,01	0,18	1,17	30,68	6,12	35,24%
-0.044 mm T20 46,96 29,48 1,16 0.018 68,55 0,18 0.34 0.017 23,50 61,32 2,05 0,019 76,02% 52,08% 99,68% 84,63% 1,46 0,01 0,30 0,94 31,53 4,18 50,81% -0,044 mm T44 46,96 29,48 1,16 0.018 68,55 0,14 0.020 21,09 63,53 2,34 0.016 79,22% 53,72% 99,73% 93,37% 1,47 0.01 0.12 1,11 37,29 7,33 40,31% -0.044 mm T21 46,96 29,48 1,16 0.018 68,45 0.42 0.34 0.021 17,49 69,33 2,28 0.014 83,29% 57,68% 99,18% 83,04% 1,46 0.01 0.29 1,17 25,54 5,13 32,53% 4,18 50,81% 4,93 57,85% 99,18% 83,04% 1,46 0.01 0.29 1,17 25,54 5,13 32,53% 4,16 0.01 0.29 1,17 25,42 5,13 32,53% 4,94	-0,044 mm	T43	46,96	29,48	1,16	0,018	68,47	0,23	0,26	0,018	21,58	64,00	2,22	0,018	78,92%	54,13%	99,58%	88,00%	1,46	0,01	0,22	1,00	29,71	5,24	45,87%
-0.044 mm T44 46,96 29,48 1,16 0.018 69,25 0,15 0,14 0,020 21,09 63,53 2,34 0,016 79,22% 53,72% 99,37% 1,47 0,01 0,12 1,11 37,29 7,33 40,31% -0,044 mm T21 46,96 29,48 1,16 0,018 68,52 0,50 0,39 0,021 18,29 68,02 2,19 0,014 83,29% 57,08% 99,03% 81,04% 1,46 0,01 0,29 1,17 22,58 4,61 33,41% -0,044 mm T22 46,96 29,48 1,16 0,018 68,74 0,39 0,29 0,021 17,49 69,33 2,28 0,011 84,45% 57,6% 1,46 0,01 0,25 1,28 2,57 5,72 2,6,29% -0,044 mm T24 46,96 29,48 1,16 0,018 67,95 0,38 0,25 0,020 16,15 72,20 2,50 0,015 86,07% 59,48% 99,23% 87,36% 1,45 0,01 0,21 1,11	-0,044 mm	T20	46,96	29,48	1,16	0,018	68,55	0,18	0,34	0,017	23,50	61,32	2,05	0,019	76,02%	52,08%	99,68%	84,63%	1,46	0,01	0,30	0,94	31,53	4,18	50,81%
-0,044 mm T21 46,96 29,48 1,16 0,018 68,52 0,50 0,39 0,021 18,29 68,02 2,19 0,014 83,29% 57,08% 99,03% 81,04% 1,46 0,02 0,33 1,17 22,58 4,61 33,41% -0,044 mm T22 46,96 29,48 1,16 0,018 68,74 0,39 0,29 0,023 17,26 69,14 2,35 0,011 84,45% 57,68% 99,18% 83,04% 1,46 0,01 0,29 1,17 25,42 5,13 32,53% -0,044 mm T22 46,96 29,48 1,16 0,018 67,95 0,38 0,29 0,023 17,26 69,14 2,35 0,011 84,45% 57,69% 99,23% 87,32% 1,45 0,01 0,21 1,11 18,29 68,27 5,72 2,629% -0,044 mm T46 64,96 29,48 1,16 0,018 67,95 1,58 0,30 0,202 12,16 63,64 2,21 0,016 79,64% 55,04% 97,6% 85,61%	-0,044 mm	T44	46,96	29,48	1,16	0,018	69,25	0,15	0,14	0,020	21,09	63,53	2,34	0,016	79,22%	53,72%	99,73%	93,37%	1,47	0,01	0,12	1,11	37,29	7,33	40,31%
-0.044 mm T45 46.96 29.48 1,16 0.018 68.45 0.42 0.34 0.021 17.49 69.33 2.28 0.014 84.29% 57.83% 99.18% 83.04% 1.46 0.01 0.29 1.17 25.42 5.13 32.53% -0.044 mm T22 46.96 29.48 1.16 0.018 68.74 0.39 0.29 0.023 17.26 69.14 2.35 0.011 84.45% 57.69% 99.24% 85.76% 1.46 0.01 0.29 1.17 25.42 5.13 32.53% -0.044 mm T46 46.96 29.48 1.16 0.018 67.95 0.38 0.25 0.001 16.15 72.20 2.50 0.015 86.07% 59.48% 99.23% 87.32% 1.45 0.01 0.21 1.11 28.27 6.52 33.91% -0.044 mm T47 46.96 29.48 1.16 0.018 68.97 0.31 0.29 0.21 19.37 66.22 2.25 0.014 81.75% 55.07% 99.5% 83.87% 1.45	-0,044 mm	T21	46,96	29,48	1,16	0,018	68,52	0,50	0,39	0,021	18,29	68,02	2,19	0,014	83,29%	57,08%	99,03%	81,04%	1,46	0,02	0,33	1,17	22,58	4,61	33,41%
-0.044 mm T22 46.96 29.48 1.16 0.018 68.74 0.39 0.29 0.023 17.26 69.14 2.35 0.011 84.45% 57.69% 99.24% 85.76% 1.46 0.01 0.25 1.28 26.57 5.72 29.29% -0.044 mm T46 46.96 29.48 1.16 0.018 67.95 0.38 0.25 0.020 16.15 72.20 2.50 0.015 86.07% 59.48% 99.23% 87.32% 1.45 0.01 0.21 1.11 28.27 6.52 33.91% -0.044 mm T47 46.96 29.48 1.16 0.018 67.95 1.58 0.30 0.020 21.26 63.64 2.21 0.016 79.64% 55.04% 97.05% 85.61% 1.45 0.01 0.25 1.11 11.34 4.82 38.84% -0.044 mm T44 46.96 29.48 1.16 0.018 68.87 0.31 0.29 0.021 19.37 66.22 2.25 0.014 81.75% 55.74% 99.41% 85.86% 1.47	-0,044 mm	T45	46,96	29,48	1,16	0,018	68,45	0,42	0,34	0,021	17,49	69,33	2,28	0,014	84,29%	57,83%	99,18%	83,04%	1,46	0,01	0,29	1,17	25,42	5,13	32,53%
-0,044 mm T46 46,96 29,48 1,16 0,018 67,95 0,38 0,25 0,020 16,15 72,20 2,50 0,015 86,07% 59,48% 99,23% 87,32% 1,45 0,01 0,21 1,11 28,27 6,52 33,91% -0,044 mm T23 46,96 29,48 1,16 0,018 67,95 1,58 0,30 0,020 21,26 63,64 2,21 0,016 79,64% 55,04% 97,05% 85,61% 1,45 0,01 0,21 1,11 11,34 4,82 38,84% -0,044 mm T47 46,96 29,48 1,16 0,018 68,07 0,31 0,29 0,21 19,37 66,22 2,25 0,014 81,75% 55,74% 99,41% 85,86% 1,47 0,01 0,25 1,17 27,56 5,21 34,97% -0,044 mm T48 46,96 29,48 1,16 0,018 67,99 0,24 0,26 0,21 1,15 55,22 2,17 0,16 79,74% 55,00% 99,57% 88,20% 1,45	-0,044 mm	T22	46,96	29,48	1,16	0,018	68,74	0,39	0,29	0,023	17,26	69,14	2,35	0,011	84,45%	57,69%	99,24%	85,76%	1,46	0,01	0,25	1,28	26,57	5,72	26,29%
-0,044 mm T23 46,96 29,48 1,16 0,018 67,95 1,58 0,30 0,020 21,26 63,64 2,21 0,016 79,64% 55,04% 97,05% 85,61% 1,45 0,05 0,26 1,11 11,34 4,82 38,84% -0,044 mm T47 46,96 29,48 1,16 0,018 68,09 0,35 0,34 0,019 21,13 65,08 2,16 0,017 79,75% 55,00% 99,35% 83,87% 1,45 0,01 0,29 1,06 24,48 4,52 41,94% -0,044 mm T24 46,96 29,48 1,16 0,018 66,799 0,24 0,26 0,021 19,37 66,22 2,25 0,014 81,75% 55,74% 99,41% 85,86% 1,47 0,01 0,25 1,17 27,56 5,21 34,97% -0,044 mm T48 46,96 29,48 1,16 0,018 67,99 0,24 0,26 0,021 23,98 61,42 2,14 0,015 75,59% 52,21% 99,57% 88,20% 1,45 <td>-0,044 mm</td> <td>T46</td> <td>46,96</td> <td>29,48</td> <td>1,16</td> <td>0,018</td> <td>67,95</td> <td>0,38</td> <td>0,25</td> <td>0,020</td> <td>16,15</td> <td>72,20</td> <td>2,50</td> <td>0,015</td> <td>86,07%</td> <td>59,48%</td> <td>99,23%</td> <td>87,32%</td> <td>1,45</td> <td>0,01</td> <td>0,21</td> <td>1,11</td> <td>28,27</td> <td>6,52</td> <td>33,91%</td>	-0,044 mm	T46	46,96	29,48	1,16	0,018	67,95	0,38	0,25	0,020	16,15	72,20	2,50	0,015	86,07%	59,48%	99,23%	87,32%	1,45	0,01	0,21	1,11	28,27	6,52	33,91%
-0.044 mm T47 46,96 29,48 1,16 0,018 68,09 0,35 0,34 0,019 21,13 65,08 2,16 0,017 79,75% 55,00% 99,35% 83,87% 1,45 0,01 0,29 1,06 24,48 4,52 41,94% -0,044 mm T24 46,96 29,48 1,16 0,018 68,87 0,31 0,29 0,021 19,37 66,22 2,25 0,014 81,75% 55,74% 99,41% 85,86% 1,47 0,01 0,25 1,17 27,56 5,21 34,97% -0,044 mm T48 46,96 29,48 1,16 0,018 67,99 0,24 0,26 0,021 23,98 61,42 2,14 0,015 75,59% 52,21% 99,57% 88,20% 1,45 0,01 0,23 1,17 26,94 4,81 39,09% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97% 34,97%	-0,044 mm	T23	46,96	29,48	1,16	0,018	67,95	1,58	0,30	0,020	21,26	63,64	2,21	0,016	79,64%	55,04%	97,05%	85,61%	1,45	0,05	0,26	1,11	11,34	4,82	38,84%
-0.044 mm T24 46.96 29.48 1.16 0.018 68.87 0.31 0.29 0.021 19.37 66.22 2.25 0.014 81.75% 55.74% 99.41% 85.86% 1.47 0.01 0.25 1.17 27.56 5.21 34.97% -0.044 mm T48 46.96 29.48 1.16 0.018 67.99 0.24 0.26 0.021 23.98 61.42 2.14 0.015 75.59% 52.21% 99.57% 88.20% 1.45 0.01 0.23 1.17 26.94 4.81 39.09% -0.044 mm T53 46.96 29.48 1.16 0.018 68.08 0.24 0.33 0.020 21.15 65.22 2.17 0.016 79.74% 55.00% 99.55% 84.15% 1.45 0.01 0.29 1.11 29.58 4.57 38.89% -0.044 mm T54 46.96 29.48 1.16 0.018 68.67 0.24 0.22 0.01 1.92 67.24 2.37 0.017 82.42% 56.36% 99.54% 89.25% 1.46	-0,044 mm	T47	46,96	29,48	1,16	0,018	68,09	0,35	0,34	0,019	21,13	65,08	2,16	0,017	79,75%	55,00%	99,35%	83,87%	1,45	0,01	0,29	1,06	24,48	4,52	41,94%
-0.044 mm T48 46.96 29.48 1.16 0.018 67.99 0.24 0.26 0.021 23.98 61.42 2.14 0.015 75.59% 52.21% 99.57% 88.20% 1.45 0.01 0.23 1.17 26.94 4.81 39.09% -0.044 mm T53 46.96 29.48 1.16 0.018 67.99 0.24 0.33 0.020 21.15 65.22 2.17 0.016 79.74% 55.00% 99.55% 84.15% 1.45 0.01 0.23 1.11 29.58 4.57 38.89% -0.044 mm T54 46.96 29.48 1.16 0.018 68.67 0.24 0.22 0.019 18.92 67.24 2.37 0.017 82.42% 56.36% 99.55% 84.15% 1.46 0.01 0.19 1.06 31.89 6.24 40.51%	-0,044 mm	T24	46,96	29,48	1,16	0,018	68,87	0,31	0,29	0,021	19,37	66,22	2,25	0,014	81,75%	55,74%	99,41%	85,86%	1,47	0,01	0,25	1,17	27,56	5,21	34,97%
-0,044 mm T53 46,96 29,48 1,16 0,018 68,08 0,24 0,33 0,020 21,15 65,22 2,17 0,016 79,74% 55,00% 99,55% 84,15% 1,45 0,01 0,29 1,11 29,58 4,57 38,89% -0,044 mm T54 46,96 29,48 1,16 0,018 68,67 0,24 0,22 0,019 18,92 67,24 2,37 0,017 82,42% 56,36% 99,55% 84,15% 1,46 0,01 0,19 1,06 31,89 6,24 40,51%	-0,044 mm	T48	46,96	29,48	1,16	0,018	67,99	0,24	0,26	0,021	23,98	61,42	2,14	0,015	75,59%	52,21%	99,57%	88,20%	1,45	0,01	0,23	1,17	26,94	4,81	39,09%
-0,044 mm T54 46,96 29,48 1,16 0,018 68,67 0,24 0,22 0,019 18,92 67,24 2,37 0,017 82,42% 56,36% 99,54% 89,25% 1,46 0,01 0,19 1,06 31,89 6,24 40,51%	-0,044 mm	T53	46,96	29,48	1,16	0,018	68,08	0,24	0,33	0,020	21,15	65,22	2,17	0,016	79,74%	55,00%	99,55%	84,15%	1,45	0,01	0,29	1,11	29,58	4,57	38,89%
	-0,044 mm	T54	46,96	29,48	1,16	0,018	68,67	0,24	0,22	0,019	18,92	67,24	2,37	0,017	82,42%	56,36%	99,54%	89,25%	1,46	0,01	0,19	1,06	31,89	6,24	40,51%

Tabela 6.4 – Resumo dos resultados de flotação do planejamento fatorial para os três blocos de experimento.

Figura 6.4 - Representação de todos os testes de flotação considerando SiO2 Concentrado versus recuperação metalúrgica de ferro.

Outra observação interessante é que a dispersão de resultados para os blocos que representam a flotação fracionada é bem menores que aquela relativa ao bloco que representa a flotação do -0,150 +0,010 mm, ou seja, indica um maior controle operacional dos resultados para a flotação fracionada. Vieira (2005) e Trahar (1981) descreveram que quando se trata partículas grossas com finas e estas são colocadas em contato com um coletor concomitantemente, grande parte do coletor será consumido pelas partículas finas, fato que reduziria a disponibilidade para adsorção nas partículas grossas e assim reduziria a recuperação dessas partículas.

6.4.1 – Resultados Flotação Fração Composta (-0,150 +0,010 mm).

6.4.1.1 - Recuperação metalúrgica do ferro

Os resultados de recuperação metalúrgica de ferro obtidos com auxilio do software minitab são apresentados nas figuras 6.5 a 6.8

Figura 6.5 – Principais efeitos dos reagentes na recuperação metalúrgica de ferro.

Nota-se que o efeito do amido é o menor se comparado aos outros dois, portanto para compor uma curva de superfície trabalha-se com variação nas dosagens de amina e pH e fixa-se o valor da dosagem de amido no melhor resultado que neste caso foi 700 g/t. Todas as demais análises a seguir serão realizadas conforme este critério descrito acima.

Figura 6.6 – Efeitos da interação entre os reagentes para recuperação metalúrgica de ferro.

Figura 6.7 – Superfície de resposta 3D para amina, pH e recuperação metalúrgica de ferro.

Figura 6.8 – Superfície de resposta 2D para amina, pH e recuperação metalúrgica de ferro.

6.4.1.2- Teor de sílica no concentrado

Os resultados de teor de sílica obtidos com auxilio do software minitab são apresentados nas figuras 6.9 a 6.12

Figura 6.9 – Principais efeitos dos reagentes para SiO2 no concentrado.

Figura 6.10 – Efeitos da interação entre os reagentes para SiO2 no concentrado.

Figura 6.11 – Superfície de resposta 3D para amina, pH e SiO2 no concentrado.

Figura 6.12 – Superfície de resposta 2D para amina, pH e SiO2 no concentrado.

6.4.1.3 - Recuperação mássica da flotação

Os resultados de recuperação mássica obtidos com auxilio do software minitab são apresentados nas figuras 6.13 a 6.16

Figura 6.13 – Principais efeitos dos reagentes para recuperação mássica.

Figura 6.14 – Efeitos da interação entre os reagentes para recuperação mássica.

Figura 6.15 – Superfície de resposta 3D para amina, pH e recuperação mássica.

Figura 6.16 – Superfície de resposta 2D para amina, pH e recuperação mássica.

6.4.1.4 – Índice de seletividade ferro-sílica

Os resultados de recuperação mássica obtidos com auxilio do software minitab são apresentados nas figuras 6.17 a 6.20

Figura 6.17 – Principais efeitos dos reagentes para índice de seletividade.

Figura 6.18 – Efeitos da interação entre os reagentes para indicie de seletividade.

Figura 6.19 – Superfície de resposta 3D para amina, pH e índice de seletividade.

Figura 6.20 – Superfície de resposta 2D para amina, pH e índice de seletividade.

6.4.1.5 – Resultados agrupados de sílica no concentrado e recuperação metalúrgica do ferro

Figura 6.21 – Superfície de resposta 2D para os resultados agrupados de sílica no concentrado e recuperação metalúrgica de ferro, com amido fixo em 700 g/t.

Observa-se na figura 6.21 que, com ferramentas estatísticas, ou mesmo com Excel, pode-se associar valores definidos de variáveis resposta (neste caso SiO_2 no concentrado e recuperação metalúrgica de ferro) de maneira a obter áreas (representada na figura pela área branca) onde pode-se variar os regentes de maneira a obter o resultado desejado. Para montar esta figura definiu-se que a sílica no concentrado deveria ser menor que 1% e que a recuperação metalúrgica de ferro deveria ser maior que 78% (com base nos melhores resultados obtidos segundo tabela 6.4).

Figura 6.22 – Superfície de resposta 2D para os resultados agrupados de sílica no concentrado e recuperação metalúrgica de ferro, com amido fixo em 700 g/t.

A figura 6.22 representa o mesmo resultado obtido na figura 6.21 porém com recuperação metalúrgica de ferro de no mínimo 79%, observa-se que a área branca é reduzida e indica que os melhores resultados são obtidos com pH 10,5 e amina acima de 130 g/t.

6.4.2- Resultados Flotação Fração Grossa (-0,150 mm + 0,044 mm).

6.4.2.1 - Recuperação metalúrgica do ferro

Os resultados de recuperação metalúrgica de ferro obtidos com auxilio do software minitab são apresentados nas figuras 6.23 a 6.26

Figura 6.23 – Principais efeitos dos reagentes para recuperação metalúrgica de ferro.

Figura 6.24 – Efeitos da interação entre os reagentes para recuperação metalúrgica de ferro.

Figura 6.25 – Superfície de resposta 3D para amina, pH e recuperação metalúrgica de ferro

Figura 6.26 – Superfície de resposta 2D para amina, pH e recuperação metalúrgica de ferro.

6.4.2.2 - Teor de sílica no concentrado

Os resultados de teor de sílica obtidos com auxilio do software minitab são apresentados nas figuras 6.27 a 6.30

Figura 6.27 – Principais efeitos dos reagentes para SiO2 no concentrado.

Figura 6.28 – Efeitos da interação entre os reagentes para SiO2 no concentrado.

Figura 6.29 – Superfície de resposta 3D para amina, pH e SiO2 no concentrado.

Figura 6.30 – Superfície de resposta 2D para amina, pH e SiO2 no concentrado.

6.4.2.3 - Recuperação mássica da flotação

Os resultados de teor de sílica obtidos com auxilio do software minitab são apresentados nas figuras 6.31 a 6.34

Figura 6.31 – Principais efeitos dos reagentes para recuperação mássica.

Figura 6.32 – Efeitos da interação entre os reagentes para recuperação mássica.

Figura 6.33 – Superfície de resposta 3D para amina, pH e recuperação mássica.

Figura 6.34 – Superfície de resposta 2D para amina, pH e recuperação mássica.

6.4.2.4 – Índice de seletividade ferro-sílica

Os resultados de índice de seletividade obtidos com auxilio do software minitab são apresentados nas figuras 6.35 a 6.38

Figura 6.35 – Principais efeitos dos reagentes para índice de seletividade.

Figura 6.36 – Efeitos da interação entre os reagentes para índice de seletividade.

Figura 6.37 – Superfície de resposta 3D para amina, pH e índice de seletividade.

Figura 6.38 – Superfície de resposta 2D para amina, pH e índice de seletividade.

6.4.2.5 – Resultados agrupados de sílica no concentrado e recuperação metalúrgica do ferro

Figura 6.39 – Superfície de resposta 2D para os resultados agrupados de sílica no concentrado e recuperação metalúrgica de ferro, com amido fixo em 450 g/t.

Figura 6.40 – Superfície de resposta 2D para os resultados agrupados de sílica no concentrado e recuperação metalúrgica de ferro, com amido fixo em 450 g/t.
Para o bloco -0,150 +0,044 mm observa-se que os melhores resultados são obtidos com pH em 10,5, amina com dosagem acima de 115 g/t e amido 450 g/t, conforme figura 6.39, 6.40 e tabela 6.4.

6.4.3 - Resultados Flotação Fração Fina (-0,044 +0,010 mm).

6.4.3.1 – Recuperação metalúrgica do ferro

Os resultados de índice de seletividade obtidos com auxilio do software minitab são apresentados nas figuras 6.41 a 6.44

Figura 6.41 – Principais efeitos dos reagentes para recuperação metalúrgica de ferro.

Figura 6.42 – Efeitos da interação entre os reagentes para recuperação metalúrgica de ferro.

Figura 6.43 – Superfície de resposta 3D para amina, pH e recuperação metalúrgica de ferro.

Figura 6.44 – Superfície de resposta 2D para amina, pH e recuperação metalúrgica de ferro.

6.4.3.2 - Teor de sílica no concentrado

Os resultados de teor de sílica no concentrado obtidos com auxilio do software minitab são apresentados nas figuras 6.45 a 6.48

Figura 6.45 – Principais efeitos dos reagentes para SiO2 no concentrado.

Figura 6.46 – Efeitos da interação entre os reagentes para SiO2 no concentrado.

Figura 6.47 – Superfície de resposta 3D para amina, pH e SiO2 no concentrado.

Figura 6.48 – Superfície de resposta 2D para amina, pH e SiO2 no concentrado.

6.4.3.3 - Recuperação mássica da flotação

Os resultados de recuperação mássica obtidos com auxilio do software minitab são apresentados nas figuras 6.49 a 6.52

Figura 6.49 – Principais efeitos dos reagentes para recuperação mássica.

Figura 6.50 – Efeitos da interação entre os reagentes para recuperação mássica.

Figura 6.51 – Superfície de resposta 3D para amina, pH e recuperação mássica.

Figura 6.52 – Superfície de resposta 2D para amina, pH e recuperação mássica.

6.4.3.4 – Índice de seletividade ferro-sílica

Os resultados de índice de seletividade obtidos com auxilio do software minitab são apresentados nas figuras 6.53 a 6.56

Figura 6.53 – Principais efeitos dos reagentes para índice de seletividade.

Figura 6.54 – Efeitos da interação entre os reagentes para recuperação mássica.

Figura 6.55 – Superfície de resposta 3D para amina, pH e índice de seletividade.

Figura 6.56 – Superfície de resposta 2D para amina, pH e índice de seletividade.

6.4.3.5 – Resultados agrupados de sílica no concentrado e recuperação metalúrgica do ferro

Figura 6.57 – Superfície de resposta 2D para os resultados agrupados de sílica no concentrado e recuperação metalúrgica de ferro, com amido fixo em 700 g/t.

Para o bloco -0,044 +0,010 mm observa-se que os melhores resultados são obtidos com pH em 10,5, amina com dosagem abaixo de 100 g/t e amido 700 g/t, conforme figura 6.57 e tabela 6.4.

6.4.4 – Comparação dos resultados da flotação fracionada com a flotação -0,150 +0,010 mm.

Conforme os resultados apresentados nos capítulos 6.4.1, 6.4.2 e 6.4.3 pode-se destacar como melhores resultados para o bloco -0,150 + 0,010 mm o par de testes T8 e T32, para o bloco -0,150 + 0,044 mm o par de testes T15 e T39 e para o bloco -0,044 + 0,010 mm o par de testes T22 e T46 do estudo final.

Agrupando também as melhores condições para cada teste e os melhores resultados alcançados pode-se chegar à comparação direta dos resultados, conforme apresentado na figura 6.59. Nesta mesma figura pode-se observar que um resultado esperado foi observado em termos de consumo de amido para as partículas grossas houve um menor consumo se comparado ao consumo das partículas finas, este fato pode ser explicado devido à maior quantidade de sítios carregados expostos para reação do reagente.

Para implantação da flotação fracionada será necessário instalar um circuito classificador em 0,044 mm novo, porém os demais circuitos dimensionados já se encontram em duas linhas, não sendo necessárias grandes alterações de layout, visto que separando a fração em 0,044 mm a massa é partida em aproximadamente 50% para cada circuito de flotação. O esboço desta modificação é apresentado na figura 6.58.

Na figura 6.58 apresenta-se um esboço das alterações necessárias

Figura 6.58 – Esboço do circuito novo para implementação da flotação fracionada.

			Dosaç reagente melhore Flotação	gem especí s para obte es desempe por resulta	fica de nção dos enhos da do isolado	Dosaç reagentes da flotação	gem especí para melho o para resul	fica de r resultado tado global					
	% Massa	Resultados Isolados	Amina	pН	Amido	Amina	pН	Amido	Resultados Flotação				
		Recuperação metalúrgica Fe	70	10,5	700				81,94	├	81,94	Recuperação metalúrgica Fe	a
E E	% 0	SiO ₂ Concentrado	70	10,5	700	- 140	10.5	700	0,75	→	0,75	SiO ₂ Concentrado	a ç ã o n c io n
- 0 , 1 5	10	Recuperação Massa	70	10,5	700		10,0	100	47,32	├	47,32	Recuperação mássica	F lo t o n v e
		Índice Seletividade Fe-Si	140	9,5	450				23,18	→	23,18	Índice Seletividade Fe-Si	0
u m		Recuperação metalúrgica Fe	70	10,5	700				88,61			Resultado Final	
,044 1	4 %	SiO ₂ Concentrado	70	10,5	700	140	10 5	450	0,69				
15+0	47,1	Recuperação Massa	70	10,5	700		10,0	100	41,35		87,27	Recuperação metalúrgica Fe	
0 -		Índice Seletividade Fe-Si	140	9,5	450				37,55		0,53	SiO ₂ Concentrado	a ç ã o o n a d a
		Recuperação metalúrgica Fe	70	10,5	700				86,07		50,93	Recuperação mássica	F lo ta F ra c io
4 m m	4 m m 6 %	SiO ₂ Concentrado	140	10,5	450	70	70 10.5	700	0,38		32,64	Índice Seletividade Fe-Si	
- 0 , 0 4	52,8	Recuperação Massa	70	10,5	700		10,0	700	59,48				
		Índice Seletividade Fe-Si	70	9,5	700				28,27				

Figura 6.59 – Comparação do resultado da flotação fracionada com a flotação -0,150 +0,010 mm.

A tabela 6.5 apresenta os ganhos relativos à flotação fracionada comparada à flotação -0,150 +0,010 mm.

Tabela 6.5 – Ganhos relativo	s ao estudo de	comparação	entre a f	flotação fi	racionada e	e a
flotação -0,150 +0,010 mm						

		Resultados Flotação				
	RM	RFe	SiO2 Conc	IS		
-0,150 +0,010 mm	47,32	81,94	0,75	23,18		
Flotação de Grossos + Finos	50,93	87,27	0,53	32,64		
-0,150 +0,044 mm	41,35	88,61	0,69	37,55		
-0,044 +0,010 mm	59,48	86,07	0,38	28,27		
Ganho	3,61	5,33	-0,22	9,46		
Ganho (%)	7,63%	6,50%	-29,85%	40,83%		

O ganho em recuperação mássica do processo de flotação foi de 7,63% e o ganho em recuperação metalúrgica de ferro foi de 6,50%.

Considerando este aumento na recuperação mássica e o valor de produção do projeto Minas-Rio de 24.500.000 toneladas por ano espera-se uma produção adicional de 1.879.000 toneladas por ano.

Relativamente às diferenças de dosagem específica ideal para cada bloco de testes realizados e a partição da flotação fracionada é possível estimar que a redução no consumo específico de amido será da ordem de 17% e a redução no consumo da amina da ordem de 26%.

6.4.5 - Testes Cinética da Flotação

Nas figuras 6.60, 6.61 e 6.62 são apresentadas os resultados de cinética de flotação nas mesmas condições com as quais foram obtidos os melhores resultados para cada bloco testado. O objetivo é demonstrar a diferença da cinética, que corrobora a expectativa de que cada fração deveria ser tratada de maneira separada, pois cada bloco apresenta sua especificidade.

Figura 6.60 – Curva de cinética da flotação -0,150 +0,010 mm.

Figura 6.61 – Curva de cinética da flotação -0,150 +0,044 mm.

Figura 6.62 – Curva de cinética da flotação -0,044 +0,010 mm.

Para análise da cinética fixou-se o tempo de 1:00 minuto de flotado e comparou-se com a quantidade de sílica recuperada para o rejeito. Para o bloco -0,150 +0,010 mm a recuperação de sílica para o rejeito foi de 60%, para o bloco -0,150 +0,044 mm a recuperação foi de aproximadamente 60%, porém para o bloco -0,044 +0,010 mm no primeiro minuto o processo de flotação recuperou cerca de 70% de toda sílica presente na alimentação.para o rejeito indicando que este bloco tem uma cinética mais rápida. Estes fatos mostrados são comprovados pelo fator K da cinética de flotação mostrado nas figuras 6.60, 6.61 e 6.62.

6.4.6 - Avaliação dos resultados para redução da energia de re-moagem

Para o calculo de redução de energia para a re-moagem, considera-se que para o circuito do projeto Minas-Rio o dimensionamento da re-moagem foi de 16 moinhos Vertimill modelo VTM-1500. Considerando-se também que com a inclusão da flotação fracionada cerca de 50% da alimentação da flotação estará com a granulometria abaixo de -0,044 +0,010 mm e será beneficiada em um circuito exclusivo, o concentrado deste circuito devido a sua granulometria não necessitará passar pelo circuito de re-moagem reduzindo assim o consumo energético desta etapa e o consumo de corpos moedores.

A seguir é apresentada na tabela 6.6 uma estimativa de redução de custos com esta etapa.

	DESCRIÇÃO	ALTERNATIVA Atual Vertimill	ALTERNATIVA Flotação Fracionada Vertimill	Unidade	DIFERENÇA (Atual - Flotação Fracionada)
	Tamanho dos Moinhos	VTM-1500	VTM-1500		
	Quantidade de Moinhos	16	8		
	Potencia acionamento cada moinho	1.118	1.118	Kw	
	Potencia acionamento total	17.880	8.940	Kw	8.940
Energia	Tempo operação:				
Energia	Horas/dia	24	24	h/dia	
	Dias/ano	365	365	dia/ano	
	Disponibilidade	95%	95%	%	
	Tempo operação por ano	8.322	8.322	h/ano	
	Custo energia	0,070	0,070	US\$/Kwh	
	Custo total energia por ano	10.415.815	5.207.908	US\$	5.207.908
	Capacidade alimentação nova	3.040	1.520	t/h	
	Granulometria alimentação F80	50	50	μm	
	Granulometria produto P80	35	35	μm	
	Tamanho das bolas (Ø de reposição)	1	1	pol.	
	Tempo operação:				
Corpo	Horas/dia	24	24	h/dia	
Moedor	Dias/ano	365	365	dia/ano	
	% operacional	95%	95%	%	
	Tempo operação por ano	8.322	8.322	h/ano	
	Consumo medio de bolas (indice)	117	117	g/ ton	
	Consumo total de bolas por nora	356	1/8	Kg/ n	
		2.959.969	1.4/9.904		
	Custo bolas	1,30	2 210 077	US\$/NY	2 210 077
	Total Podução cuetos Moagom	4.405.500	2.219.911	116¢	7 /07 99/
	Total neuução custos Modgelli	1		Taxa B\$/US\$	1.427.004
				R\$	13 370 191 78

Tabela 6.6 – Estimativa de redução de custos da etapa de re-moagem com a implantação da flotação fracionada.

A redução estimada é da ordem de 13 milhões de reais por ano com esta alteração.

Os resultados apresentam que as condições de dosagem específica de reagentes ideais são muito distintas considerando as duas frações da flotação fracionada.

Os parâmetros de eficiência da flotação se modificam para cada fração da flotação fracionada e pode-se atuar em cada fração mais especificamente de maneira a obter melhores resultados.

É possível estabelecer os parâmetros ótimos para a flotação de um minério de ferro contendo partículas grossas e finas com seus contaminantes químicos e mineralógicos,

através de ensaios padronizados de flotação e utilizando planejamento fatorial para verificação de cada variável (amina, amido e pH) e de como consegue-se melhorar os resultados.

7 – CONCLUSÕES

As amostras apresentaram diferentes comportamentos se fracionadas se comparadas ao resultado da flotação com a granulometria não fracionada.

Comparando-se os melhores resultados da flotação fracionada com o melhor resultado da flotação sem fracionar (testes controle) para este estudo se obtém uma melhora na recuperação mássica de 47,3% para 50,9%, uma melhora na recuperação metalúrgica de ferro de 81,9% para 87,3%, uma redução do teor de sílica final de 0,75% para 0,53% e uma melhora na seletividade ferro/sílica de 23 para 32 segundo índice de seletividade de Gaudin.

Quando se trata a faixa granulométrica completa as condições de dosagem específica na que a amostra precisa se submetida tem que ser um valor "médio" entre a melhor condição da fração grossa e fração fina, fato este que não corrobora para os melhores resultados da fração fina e da fração grossa.

As curvas de cinética de flotação são mais uma evidência da especificidade de cada fração granulométrica e apresenta a fração fina como sendo a que tem uma cinética mais rápida.

Os resultados alcançados neste estudo demonstraram que haverá uma redução de consumo de reagentes para a flotação fracionada e que para esta amostra foi da ordem de 17% de redução no consumo de amido e da ordem de 26% de redução no consumo da amina.

As análises granulométricas e a proposição da alteração para tratamento em flotação fracionada indicam que o concentrado da fração -0,044 +0,010 mm pode seguir para os tanques do mineroduto sem antes passar pela etapa de re-moagem, reduzindo assim o custo operacional do processo de re-moagem.

8 – SUGESTÕES PARA TRABALHOS FUTUROS

Avaliar a flotação para outros cortes granulométricos.

Alterar os reagentes com o objetivo de aumentar a eficiência do processo de flotação.

Realizar o mesmo estudo com amostras de minérios com diferentes características mineralógicas.

Estudar a melhor forma de realizar o corte granulométrico para aplicação em flotação fracionada.

Estudar quais os equipamentos que melhor se adéquam a cada faixa granulométrica com o objetivo de potencializar os ganhos relativos a este estudo.

9 - RELEVÂNCIA DOS RESULTADOS

Os resultados obtidos indicam a viabilidade técnica para a aplicação da flotação fracionada em substituição ao processo convencional já que este processo aumenta a recuperação mássica e metalúrgica de ferro frente aos resultados obtidos com a flotação sem fracionamento.

O aumento de recuperação proporciona um aumento na vida útil das minas de minério de ferro devido ao melhor aproveitamento das reservas minerais ou a um aumento de produção considerando-se a mesma vida útil projetada para a flotação não fracionada e também proporciona uma menor deposição de rejeitos em barragem.

10 - REFERÊNCIAS BIBLIOGRÁFICAS

AHMED, N.; JAMESON, G.J. (1985) The effect of bubble size on the rate of flotation of fine particles. *International Journal of Mineral Processing*, v. 14, p. 195 – 215.

AHMED, N.; JAMESON, G.J. (1989) Flotation Kinetics. *Mineral Processing and Extractive Metallurgy Review*, v. 5, p. 77 – 99.

ANTHONY, R.M.; KELSALL, D.F.; TRAHAR, W.J. (1975) The effect of particle size on the activation and flotation of sphalerite. *Proc. Australas. Inst. Min. Metall.*, v. 254, p. 47 – 58, apud TRAHAR, W.J. A rational interpretation of the role of particle size in flotation. *International Journal of Mineral Processing*, v. 8, p. 289 – 327, 1981.

ARAUJO, A.C.; **PERES, A.E.C.** (1995) Froth Flotation: Relevant Facts and Brasilian Case. Serie Tecnologia Mineral, Rio de Janeiro, n 70, p 1-38.

BARROS, L.A.F.; LEAL FILHO, L.S.; PERES, A.E.C. (2001) *Mineral Engineering.* Volume 14, Issue 1. pages 117-121.

BARROS NETO, B.; SCARMINIO, I.S.; BRUNS, R.E. (1995) "Planejamento e Otimização de Experimentos". Editora Unicamp, Campinas, SP

BAZIN, C.; PROULX, M. (2001) Distribution of reagents down a flotation bank to improve the recovery of coarse particles. *International Journal of Mineral Processing*, v. 61, p. 1 - 12.

BOX, G.P.G.; HUNTER, W.G.; HUNTER, J.S. (1978) "Statistics for Experimenter: An Introduction to Design, Data Analysis and Model Building". John Wiley & Sons. New York.

BRANDÃO, P.R.G. (1995) Curso de Flotação – Realizado internamente na Minerações Brasileiras Reunidas – MBR.

CAPPONI, F., MATIOLO, E., RUBIO, J. (2005) Flotação Extensora de Finos de Minérios de Cobre e Molibdênio, Anais do XXI Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, Natal, PE.

CASTRO, E. (2002) Influência de finos na flotação de minério de ferro: efeitos da granulometria e da mineralogia. Dissertação de mestrado. Curso de Pós Graduação em Engenharia Metalúrgica e de Minas, Universidade Federal de Minas Gerais.

CRAWFORD, R.; RALSTON, J. (1988) The influence of particle size and contact angle in mineral flotation. *International Journal of Mineral Processing*, v. 23, p. 1 – 24.

CRUZ, M.R.; PERES, A.E.C.; CASTRO, E.B.; TURRER, H.D.G. (2003) Modificação do circuito de Flotação da planta de beneficiamento de Vargem Grande. *IV Simpósio Brasileiro de Minério de Ferro e XXXIII Seminário de redução de minério de Ferro e Matérias Primas*; Ouro Preto-MG. **DEGLON, D.A.; EGYA-MENSAH, D.; FRANZIDIS, J.P.** (2000) Review of hydrodynamics and gas dispersion in flotation cells on South African platinum concentrators. *Minerals Engineering*, v. 13, n. 3, p. 235 – 244.

DERJAGUIN, B.V.; DUKHIN, S.S. (1961) Theory of flotation of small and mediumsize particles. *Trans. Inst. Min. Metall.*, v. 70, p. 221 – 246. apud YOON, R.H. The role of hydrodynamic and surface forces in bubble-particle interaction. *International Journal of Mineral Processing*, v. 58, p. 129 – 143, 2000.

DOBBY, G,S.; FINCH, J.A. (1987) Particle size dependence in flotation derived from a fundamental model of the capture process. *International Journal of Mineral*. *Processing*, v. 21, p. 241 – 260.

DOBBY, G.S.; FINCH, J.A. (1986) Particle collection in columns – gas rate and bubble size effects. *Canadian Metallurgical Quarterly*, v. 25, n. 1, p. 9 – 13.

FINCH, J.A.; DOBBY, G.S. (1990) Column Flotaion, Oxford, Pergamon Press, 180 p.

FINCH, J.A.; DOBBY, G.S; YIANATOS, J.B. (1989) Column Froths. *Mineral Processing and Extractive Metallurgy Review*, v. 5, p. 281 – 305.

FUERSTENAU, D.W.; GAUDIN, A.M.; MIAW, H. L. (1958) Iron oxide slime coatings in flotation. *Trans. Am. Inst. Min. Engrs*, 211, 793-5.

FUERSTENAU, D. W. (1980) Fine Particle Flotation. Proceedings of International Symposium on Fine Particles Processing Las Vegas, Nevada, February 24-28, p. 669-705.

GLEMBOTSKII, V.A.; KLASSEN, V.I.; PLAKSIN, I.N. (1972) The effect of mineral particle size on flotation In: Flotation, capítulo 2, p. 230 – 250.

GUIMARÃES, R.C.; PERES, A.E.C. (2003) Production of phosphate concentrates from slimes: Brazilian experience. Proceedings XXII – IMPC. p. 606 – 612.

HALL, S. (1996) Froth flotation – the importance of the froth. *Mining Magazine*, p. 16 e 17.

HEWITT, D.; FORNASIERO, D; RALSTON, J. (1994) Bubble particle attachment efficiency. *Minerals Engineering*, v. 7, n. 5/6, p. 657 – 665.

KELLES, M.H.V. (1996) *Desenvolvimento de um sistema de medição para implementação do controle de nível em colunas de flotação*. Belo Horizonte: Escola de Engenharia da UFMG, 143 p. (Dissertação, Mestrado em Tecnologia Mineral).

LADEIRA, W.G.; SOUZA Jr, M.; MAPA, P.S. (1998) A flotação em colunas na Samarco Mineração S/A. In: Encontro Nacional de Tratamento de Minérios e

Metalurgia Extrativa, XVII e Seminário de Química de Colóides aplicada à Tecnologia Mineral, I, Águas de São Pedro, São Paulo. Volume 2, p. 433 – 443.

LAPLANTE, A.R.; TOGURI, J.M.; SMITH, H.W. (1983) The effect of air flow rate on the kinetics of flotation. Part 1: the transfer of material from the slurry to the froth. *International Journal of Mineral Processing*, v. 11, p. 203 – 219.

LASKOWSKI, J. (1974) Particle-bubble attachment in flotation. *Minerals Science Engineering*, v. 6, n. 4, p. 223 – 235.

LEGRET, M.; DIVET, L. (1988) "Application of Factorial designs in Optimization of the Determination of Lead by Electrotermal Atomization" Analusis.

LI, R.; HOBERG, H.; SCHNEIDER, F.U. (1993) Investigations on the influence of particle size in flotation. In: International Mineral Processing Congress, XVIII, Sydney. Volume 3, p. 689 – 697.

LINS, F.F.; ADAMIAN, R. (1989) Influência da aeração na flotação de partículas de ouro e considerações sobre o tamanho máximo de flotação. *Metalurgia – ABM*, v. 45, n. 382, p. 898 – 906.

MAPA, P. S. (2006) Rota de processo para o underflow da deslamagem de minérios de ferro do concentrador da Samarco Mineração S.A. Dissertação de mestrado. Curso de Pós Graduação em Engenharia Metalúrgica e de Minas, Universidade Federal de Minas Gerais.

MORRIS, T.M. (1950) Measurement of equilibrium forces between na air bubble and an attached solid in water. *Transactions AIME*, v. 187, p. 91 – 95.

NGUYEN, A.V.; EVANS, G.M.; SCHULZE, H.J. (2001) Prediction of van der Waals interaction in bubble-particle attachment in flotation. *International Journal of Mineral Processing*, v. 61, p. 155 – 169.

NGUYEN, A.V.; RALSTON, J.; SCHULZE, H.J. (1998) On modelling of bubbleparticle attachment probability in flotation. *International Journal of Mineral Processing*, v. 53, p. 225 – 249.

NGUYEN, A.V.; SCHULZE, H.J.; RALSTON, J. (1997) Elementary steps in particle-bubble attachment. *International Journal of Mineral Processing*, v. 51, p. 183–195.

OLIVEIRA, M.L.M.; AQUINO, J.A. (1993) *Manual de Operação da Coluna de Flotação*, 28 p..

ÖTEYAKA, B.; SOTO, H. (1994) Modelling of negative bias column for particles flotation. *Minerals Engineering*, v. 8, n. 1/2, p. 91 – 100.

PEASE, J.D., CURRY, D.C., YOUNG, M.F. (2005) *Designing Flotation Circuits for High Fines Recovery, Minerals Engineering, Vol. 19*, p. 831-840.

PENAFIEL, P.D.; **DOBBY, G.S.** (1994) Kinetic studies in flotation columns: bubble size effect. *Minerals Engineering*, v. 7, n. 4, p. 465 – 478.

PITA, F.A.G., (2001) Influência do Equipamento na Flotação por Espumas: Célula Mecânica Versus Coluna, Série Rochas e Minerais Industriais, Vol. 5, CETEM/MCT, Rio de Janeiro, p. 5-10.

ROCHA, L. (2008) Estudo de aproveitamento econômico das lamas de uma mineração de ferro, através de concentração por flotação catiônica reversa. Dissertação de mestrado. Curso de Pós Graduação em Engenharia Metalúrgica e de Minas, Universidade Federal de Minas Gerais.

RUBIO, J. (1996) Modifiel column flotation of mineral particles. *International Journal of Mineral Processing*, v. 48, n. 3/4, p. 183 – 196.

SCHULZE, H.J. (1982) Dimensionless number and approximate calculation of the upper particle size of floatability in floatation machines. *International Journal of Mineral Processing*, v. 9, p. 321 – 328.

SCHULZE, H.J. (1989) Hydrodynamics of bubble-mineral particle collisions. *Mineral Processing and Extractive Metallurgy Review*, v. 5, p. 43 – 76.

SCHULZE, H.J. (1977) New theoretical and experimental investigations on stability of bubble/particle aggregates in flotation: a theory on the upper particle size of floatability. *International Journal of Mineral Processing*, v. 4, p. 241 – 259.

SOTO, H.S. (1992) Development of novel flotation-elutriation method for coarse phosphate beneficiation. *FIPR publication*, n. 02-070-098, Laval University.

SOUZA, C.C.; ARAUJO, A.C. (1999) A Influência do Tamanho da Partícula de Lama na Flotação de Minério de Ferro. In: II Símpósio Brasileiro de Minério de Ferro: Caracterização, Beneficiamento e Pelotização, Ouro Preto, p. 73-88.

SUN, S. C. (1943) The Mechanism of Slime Coating, Mining Techonology. Trans. AIME, Vol. 153, p. 479.

TRAHAR, W.J. (1981) A rational interpretation of the role of particle size in flotation. *International Journal of Mineral Processing*, v. 8, p. 289 – 327.

TRAHAR, W.J. (1976) The selective flotation of galena from sphalerite with special reference to effects of particle size. *International Journal of Mineral Processing*, v. 3, p. 151–166.

VALADÃO, G.E.S.; LIMA, N.P. (2009) Avaliação do efeito da granulometria no processo de flotação. Revista da Escola de Minas de Ouro Preto.

VIEIRA, A.M. (2005) Efeito da granulometria na flotação de quartzo. Tese de doutorado. Curso de Pós Graduação em Engenharia Metalúrgica e de Minas, Universidade Federal de Minas Gerais.

WELLENKAMP, F.J.M.; MARTINS, A.P. (2001) Análise da influência das variáveis do processo de flotação da apatita em coluna. In: VI SHMMT/XVIII ENTMME, Rio de Janeiro. *Anais...* Volume 3, p. 173 – 177.

YOON, R.H.; LUTTRELL, G.H. (1989) The effect of bubble size on fine particle flotation. *Mineral Processing and Extractive Metallurgy Review*, v. 5, p. 101 – 122.

YOON, R.J.; LUTTRELL, G.H. (1986) *Coal Preparation*, v.2, p.179, A. AHMED,.; JAMESON, G.J. (1989) Flotation Kinetics. *Mineral Processing and Extractive Metallurgy Review*, v. 5, p. 77 – 99.

Anexo I- Informações adicionais sobre planejamento fatorial

Exemplo de como é montado um planejamento fatorial

No exemplo mostrado na Tabela A.1, verifica-se que foram escolhidos dois diferentes níveis para os 3 fatores: temperatura, concentração e catalisador. Em função deste número de fatores e de níveis, este planejamento fatorial pode ser indicado como sendo 2^3 , o que já sugere que o número de experimentos diferentes a serem realizados é 8.

Em geral, os planejamentos fatoriais do tipo 2^{a} são os mais comuns. Um dos aspectos favoráveis deste tipo de planejamento é a realização de poucos experimentos. Torna-se óbvio que com um número reduzido de níveis não é possível explorar de maneira completa uma grande região no espaço das variáveis. Entretanto é possível observar tendências importantes para a realização de investigações posteriores.

A Tabela A.1 exemplifica um planejamento fatorial onde são levadas em consideração 3 variáveis: temperatura e concentração, que são quantitativas, e a espécie de catalisador, que é uma variável qualitativa.

Tabela A.1 - O Planejamento fatorial de três variáveis e dois níveis	3.
--	----

Variáve	eis	Níveis seleci	onados
Temper °C	ratura (T),	160	180
Concen (<i>C</i>), %	tração	20	40
Catalisa	ador, (<i>K</i>)	А	В
	Combinaçõ	ões	
ехр., у	Т	С	Κ

1	160	20	А
2	180	20	А
3	160	40	А
4	180	40	А
5	160	20	В
6	180	20	В
7	160	40	В
8	180	40	В

Embora no exemplo da Tabela A.1, as 3 variáveis tenham sido estudadas com o mesmo número de níveis, pode-se ter planejamentos fatoriais em que seja interessante explorar uma ou mais variáveis com um números de níveis diferente das demais. Desta forma a representação do fatorial passa a ser, por exemplo, 2¹ x 3¹ x 5¹, isto é, 2, 3 e 5 são níveis para as variáveis b1, b2 e b3, respectivamente.

Realização de experimentos e estimativa do erro experimental

Alguns cuidados devem ser observados para que se possa obter o máximo de informação na realização do planejamento fatorial. Dentre estes encontra-se a necessidade de realizar repetições de alguns ensaios para que se possa estimar o erro experimental. As replicatas devem ser repetições autênticas, devendo representar adequadamente o espaço experimental no qual o planejamento fatorial foi desenvolvido. Outro cuidado a ser observado refere-se à realização dos experimentos. É importante que todos os ensaios e replicatas previstos no desenvolvimento do fatorial sejam realizados de forma aleatória. Estes cuidados visam evitar distorções estatísticas que possam comprometer a qualidade dos resultados obtidos e dos efeitos calculados para as variáveis estudadas.

Nos planejamentos experimentais onde as variáveis são exploradas em 2 níveis é comum codificá-los usando os sinais (+) e (-). A atribuição destes sinais aos níveis superiores ou inferiores é feita de forma arbitrária e não interfere na realização dos experimentos ou interpretação dos resultados, além de permitir esquematizar o planejamento na forma de matrizes de planejamento. A partir dessas considerações, o exemplo anterior pode ser representado pela Tabela A.2, onde os resultados das medidas em duplicata e suas médias também são mostrados. A resposta seria, por exemplo, o rendimento de uma planta piloto industrial.

Variáveis				Ní	Nível baixo			Nível alto	
Temperatura (T) , °C				160 (-)			180 (+)		
Concentração (<i>C</i>), %			20 (-)			40 (+)			
Catalisador, (K)				A	(-)		B (+)		
				Replicatas					
ехр., <i>у</i>	Т	С	K		Primeira	Segu	ında	Média	
1	-	-	-		59 61			60	
2	+	-	-		74 70			72	
3	-	+	-		50	58		54	
4	+	+	-		69	67		68	
5	-	-	+		50	54		52	
6	+	-	+		81	85		83	

Tabela A.2 - Matriz de Planejamento

7	-	+	+	46	44	45
8	+	+	+	79	81	80

Esta codificação de variáveis, embora pareça desnecessária, é de grande ajuda quando se realizam os cálculos para determinar qual a influência das variáveis estudadas e das suas interações no sistema em estudo.

Cálculo dos efeitos principais e de interações

Os efeitos são definidos como "a mudança ocorrida na resposta quando se move do nível baixo (-) para o nível alto (+)" e podem ser classificados em duas categorias: efeitos principais e efeitos de interação.

Para o cálculo dos efeitos, além da codificação das variáveis utilizando os sinais (+) e (-), é necessário incluir mais 4 colunas na matriz de planejamento do exemplo citado (Tabela A.3). O conteúdo dessas quatro colunas representa o efeito de interação entre as variáveis e é obtido levando-se em consideração os sinais já atribuídos às variáveis envolvidas, como se fosse uma operação matemática de multiplicação. Para o caso do experimento na Tabela A.3, a interação entre temperatura (-) e concentração (-), leva a um sinal (+), característico da interação entre T e C e representado como (TC). Todas as outras interações podem ser tratadas da mesma forma.

Variáveis	Nível baixo	Nível alto
Temperatura $(T), °C$	160 (-)	180 (+)
Concentração (C), %	20 (-)	40 (+)
Catalisador, (<i>K</i>)	A (-)	B (+)

Tabela A.3 - Matriz de planejamento contendo os efeitos de interação.

				Interações Replicatas						
exp., y	Т	С	K	TC	TK	СК	ТСК	Primeira	Segunda	Média
1	-	-	-	+	+	+	-	59	61	60
2	+	-	-	-	-	+	+	74	70	72
3	-	+	-	-	+	-	+	50	58	54
4	+	+	-	+	-	-	-	69	67	68
5	-	-	+	+	-	-	+	50	54	52
6	+	-	+	-	+	-	-	81	85	83
7	-	+	+	-	-	+	-	46	44	45
8	+	+	+	+	+	+	+	79	81	80

O cálculo dos efeitos principais.

O efeito principal é calculado como a média dos efeitos individuais e permite definir qual o efeito médio da variável examinada sobre as condições das demais variáveis, usando a Tabela de Coeficientes em Contrastes (sinais (+) e (-) na Tabela A.3. Matematicamente o efeito principal pode ser representado por:

Effito Principal = $2(\sum y^+ - \sum y^-)/(b^a)$

Onde: y corresponde à média dos efeitos individuais da medida, (+) e (-) corresponde ao nível alto e nível baixo e b^{a} corresponde ao número total de experimentos do planejamento. Exemplo: Efeito da Temperatura, (T): Para o exemplo da Tabela A.3, tem-se:

$$\sum y^{+} = y_{2} + y_{4} + y_{6} + y_{8} = 72 + 68 + 83 + 80 = 303$$
$$\sum y^{-} = y_{1} + y_{3} + y_{5} + y_{7} = 60 + 54 + 52 + 45 = 211$$

Substituindo na equação:

$$(T) = \frac{2(303 - 211)}{8} = 23$$

Uma outra maneira de se chegar ao mesmo resultado seria usar o esquema de cálculo abaixo:

Temperatura		Concentração	Catalisador
$Y = (y_2 - y_1) = 72 - 60 = -$	12	20	А
$Y = (y_4 - y_3) = 68 - 54 =$	14	40	A
$Y = (y_6 - y_5) = 83 - 52 =$	31	20	В
$Y = (y_8 - y_7) = 80 - 45 =$	35	40	В
	92		

Efeito Principal da Temperatura = 92/4 = 23,0

Observa-se que, neste outro procedimento, o efeito principal foi calculado através da diferença entre os ensaios para os 2 níveis de temperatura, fixados a concentração e o catalisador. Este modo de calcular, embora não seja o mais prático, como o descrito pela fórmula, permite verificar exatamente o que acontece na mudança de níveis da variável estudada. O somatório dos efeitos individuais calculados é então dividido por 4, obtendo-se a média dos efeitos, correspondente ao efeito principal da temperatura.

Efeitos secundários de Interação (ou de 2ª ordem)

Considerando, por exemplo, as variáveis Temperatura e Concentração, pode-se escrever, de modo análogo, que o efeito de interação entre essas duas variáveis, (TC), será dado por:

$$(TC) = 2\left[\left(\sum y^{++} + \sum y^{-}\right) - \left(\sum y^{-+} + \sum y^{+-}\right)\right]/b^{a}$$

Numericamente, para o exemplo dado na Tabela 3.5, tem-se que:

$$\sum y^{++} = y_4 + y_8 = 68 + 80 = 148$$

$$\sum y^{--} = y_1 + y_5 = 60 + 52 = 112$$

$$\sum y^{+-} = y_2 + y_6 = 72 + 83 = 155$$

$$\sum y^{-+} = y_3 + y_7 = 54 + 45 = 99$$

Desta forma: $(TC) = 2[(148+112) - (155+99)]/2^3 = 1,5$. Isto significa que o efeito de interação é fornecido pela média da diferença entre as médias do efeito da temperatura em relação ao nível alto (+) e nível baixo (-) da concentração. Um esquema de cálculo alternativo para os experimentos descritos na Tabela A.3 seria:

Concentração Média do efeito tem peratura (+) 40 $(\underline{y_4}, \underline{y_3}) + (\underline{y_8}, \underline{y_7}) = (\underline{68}, \underline{54}) + (\underline{80}, \underline{45}) = 24,5$ (-) 20 $(\underline{y_2}, \underline{y_1}) + (\underline{y_8}, \underline{-y_5}) = (\underline{72}, \underline{60}) + (\underline{83}, \underline{52}) = 21,5$ Diferença ===> 24,5 - 2Diferença ===> 24,5 - 2Diferença ===> 24,5 - 2Diferença = 3,0 / 2 = 1,5 2

Cálculo do desvio padrão para os efeitos

Pode-se demonstrar que, para um fatorial do tipo 2^{a} , a estimativa da variância dos efeitos pode ser dada por:

$$S_e^2 = \frac{1}{n2^{a-2}}S^2$$

onde: n corresponde ao número de replicatas de cada conjunto, a é o número de fatores e S² é a estimativa amostral da variância da população.

Assumindo-se que existem n replicatas para cada um dos 2^{a} experimentos do planejamento (no caso, 2³), e se y_{i1} , y_{i2} , y_{i3} , ..., y_{in} são observações do i-ésimo experimento, pode-se então dizer que:

$$S_i^2 = \frac{1}{(n-1)} \sum_{j=1}^n (y_{ij} - \bar{y}_i)^2$$

é uma estimativa da variância para o i-ésimo experimento, onde i=1,2,3,..., 2a e \overline{y}_i a respectiva média. Combinando-se as estimativas dos 2^a experimentos, tem-se a estimativa da variância total:

$$S^{2} = \frac{1}{2^{a}(n-1)} \sum_{i=1}^{2^{a}} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i})^{2}$$

Considerando-se então que S² é uma boa estimativa da variância populacional Se, podese escrever que:

$$S_e = \pm \sqrt{\frac{1}{n 2^{(a-2)}} S^2}$$

Para o exemplo mostrado na Tabela A.3, tem-se n=2 (duas replicatas) e a=3 (três fatores), e o valor de S² será dado por:

$$S^{2} = \frac{1}{2^{2}(n-1)} \left\{ \left[(y_{11} - \bar{y}_{1})^{2} + (y_{12} - \bar{y}_{1})^{2} \right] + \left[(y_{21} - \bar{y}_{2})^{2} + (y_{22} - \bar{y}_{2})^{2} \right] + \dots + \left[(y_{81} - \bar{y}_{8})^{2} + (y_{82} - \bar{y}_{8})^{2} \right] \\S^{2} = \frac{1}{2^{3}(2-1)} \left\{ \left[(59 - 60)^{2} + (61 - 60)^{2} \right] + \left[(74 - 72)^{2} + (70 - 72)^{2} \right] + \dots + \left[(79 - 80)^{2} + (81 - 80)^{2} \right] \right\}$$

Efetuando-se o somatório, $S^2 = (1/8)64 = 8$, de modo que:

$$S_e = \pm \sqrt{\frac{1}{2 \times 2^{(3-2)}}} = 1,41$$

Assim, os efeitos e o desvio padrão de efeito do fatorial do exemplo serão:

	Temperatura	=	23,0	±	1,4
Efeito Principal	Concentração	=	- 5,0	±	1,4
	Catalisador	=	1,5	±	1,4
	TC	=	1,5	±	1,4
Efeito Secundário	ТК	=	10,0	±	1,4
	СК	=	0,0	±	1,4
Efeito Terciário	ТСК	=	0,5	±	1,4

Interpretação dos efeitos do fatorial

A interpretação do resultado pode ser facilitada com o auxílio da figura A.1, na qual estão representadas graficamente as respostas obtidas para os experimentos realizados como função das variáveis estudadas. Este tipo de representação é bastante utilizado e tem como objetivo fornecer uma visão global de como as variáveis otimizadas atuam sobre a resposta do sistema químico em estudo.

Analisando os valores dos efeitos (principal e de interação) e considerando-se o desvio padrão desses efeitos, pode-se concluir basicamente que:

Figura A.1 - Representação do exemplo de fatorial 2³.

1. As informações obtidas pelo cálculo dos efeitos principais indicam que a temperatura tem um efeito positivo marcante (+23) e que a concentração tem um efeito sensível, mas oposto (-5).

2. Pelos cálculos dos efeitos secundários nota-se que os efeitos da temperatura e do catalisador não podem ser interpretados separadamente, em razão do grande valor de interação entre eles (+10). Os outros efeitos de interação são desprezíveis.

Assim, esta análise sugere que o melhor rendimento deveria ser obtido com o catalisador B, temperatura mais elevada e concentração mais baixa.

A partir deste exemplo percebe-se que o planejamento fatorial não determina valores ótimos em uma única etapa, porém este procedimento indica satisfatoriamente o caminho a ser tomado para que se possa atingir o objetivo proposto.

Anexo II – Resultados e complemento de resultados do estudo flotação fracionada.
Cálculos de efeitos e coeficientes para recuperação em massa, teor de sílica no concentrado, recuperação de ferro e índice de seletividade para a fração -0,150 +0,010 mm

Factorial Fit: Rec. Mássica; SiO2 Concentrado; Rec. Fe; IS Fe-Si

Factorial Fit: Rec. Mássica versus pH; Amina; Amido

Estimated Effects and Coefficients for Rec. Mássica (coded units) Term Effect Coef SE Coef Т Ρ Constant pH Amina 47,194 0,2212 213,31 0,000 4,765 2,382 0,2212 10,77 0,000 -3,360 -1,680 0,2212 -7,59 0,000 Amina Amido Amido1,1770,5890,22122,660,029pH*Amina-3,338-1,6690,2212-7,540,000pH*Amido-0,105-0,0520,2212-0,240,818Amina*Amido-0,490-0,2450,2212-1,110,300 pH*Amina*Amido -0,548 -0,274 0,2212 -1,24 0,251 S = 0,884979PRESS = 25,062R-Sq = 96,78% R-Sq(pred) = 87,12% R-Sq(adj) = 93,96%

Analysis of Variance for Rec. Mássica (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	141,525	141,525	47 , 1751	60,23	0,000
2-Way Interactions	3	45 , 560	45,560	15 , 1867	19,39	0,000
3-Way Interactions	1	1,199	1,199	1,1990	1,53	0,251
Residual Error	8	6,265	6,265	0,7832		
Pure Error	8	6,265	6,265	0,7832		
Total	15	194,550				

Estimated Coefficients for Rec. Mássica using data in uncoded units

Term	Coef
Constant	-30,9055
рН	7,70500
Amina	0,218200
Amido	-0,112410
pH*Amina	-0,0234000
pH*Amido	0,0123000
Amina*Amido	0,00119543
pH*Amina*Amido	-1,25143E-04

Factorial Fit: SiO2 Concentrado versus pH; Amina; Amido

Estimated Effects and Coefficients for SiO2 Concentrado (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant	2110000	2,234	0,2722	8,21	0,000
рН	3,101	1,551	0,2722	5,70	0,000
Amina	-3,039	-1 , 519	0,2722	-5 , 58	0,001
Amido	0,789	0,394	0,2722	1,45	0,185

 pH*Amina
 -2,671
 -1,336
 0,2722
 -4,91
 0,001

 pH*Amido
 1,021
 0,511
 0,2722
 1,88
 0,098

 Amina*Amido
 -1,204
 -0,602
 0,2722
 -2,21
 0,058

 pH*Amina*Amido
 -1,266
 -0,633
 0,2722
 -2,33
 0,048

 S = 1,08899
 PRESS = 37,9486

 R-Sq = 92,83%
 R-Sq(pred) = 71,32%
 R-Sq(adj) = 86,56%

 Analysis of Variance for SiO2 Concentrado (coded units)

 Source
 DF
 Seq SS
 Adj SS
 Adj MS
 F
 P

 Main Effects
 3
 77,896
 77,8955
 25,965
 21,90
 0,000

 2-Way Interactions
 3
 38,510
 38,5102
 12,837
 10,82
 0,003

 3-Way Interactions
 1
 6,414
 6,414
 5,41
 0,048

 Residual Error
 8
 9,487
 9,4872
 1,186

 Pure Error
 8
 9,487
 9,4872
 1,186

Unusual Observations for SiO2 Concentrado

		SiO2				
Obs	StdOrder	Concentrado	Fit	SE Fit	Residual	St Resid
6	6	6,6100	8,7800	0,7700	-2,1700	-2,82R
14	30	10,9500	8,7800	0,7700	2,1700	2,82R

R denotes an observation with a large standardized residual.

Estimated Coefficients for SiO2 Concentrado using data in uncoded units

Term	Coef
Constant	107,243
рН	-11 , 0570
Amina	-0,865307
Amido	-0,368000
pH*Amina	0,0901000
pH*Amido	0,0385600
Amina*Amido	0,00275671
pH*Amina*Amido	-2,89429E-04

Factorial Fit: Rec. Fe versus pH; Amina; Amido

Estimated Effects and Coefficients for Rec. Fe (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		79,474	0,3954	200,98	0,000
рН	5,279	2,639	0,3954	6,67	0,000
Amina	-2 , 769	-1,384	0,3954	-3 , 50	0,008
Amido	1,034	0,517	0,3954	1,31	0,227
pH*Amina	-3 , 329	-1,664	0,3954	-4,21	0,003
pH*Amido	-1,116	-0,558	0,3954	-1,41	0,196
Amina*Amido	0,186	0,093	0,3954	0,24	0,820
pH*Amina*Amido	0,776	0,388	0,3954	0,98	0,355
0 1 50170		00 050			
S = 1,58172 R-Sq = 90,83%	PRESS = R-Sq(pr	ed) = 63	,32% R-	Sq(adj)	= 82,81%

Analysis of Variance for Rec. Fe (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	146,399	146,399	48,800	19,51	0,000
2-Way Interactions	3	49,445	49,445	16,482	6,59	0,015
3-Way Interactions	1	2,410	2,410	2,410	0,96	0,355
Residual Error	8	20,015	20,015	2,502		
Pure Error	8	20,015	20,015	2,502		
Total	15	218,269				

Unusual Observations for Rec. Fe

Obs	StdOrder	Rec. Fe	Fit	SE Fit	Residual	St Resid
8	8	77 , 0700	79 , 5050	1,1184	-2 , 4350	-2,18R
16	32	81,9400	79 , 5050	1,1184	2,4350	2,18R

R denotes an observation with a large standardized residual.

Estimated Coefficients for Rec. Fe using data in uncoded units

Coef
-228,585
31,1120
1,91949
0,277500
-0,197129
-0,0275600
-0,00175300
0,000177429

Factorial Fit: IS Fe-Si versus pH; Amina; Amido

Estimated Effec	ts and C	Coefficie	nts for i	IS Fe-Si	(coded 1	units)
Term	Effect	Coef	SE Coef	Т	P	
Constant		18,416	0,2717	67,78	0,000	
рН	-7 , 827	-3,914	0,2717	-14,40	0,000	
Amina	9,275	4,638	0,2717	17 , 07	0,000	
Amido	3,715	1,857	0,2717	6,84	0,000	
pH*Amina	2,785	1,393	0,2717	5,12	0,001	
pH*Amido	-1 , 120	-0,560	0,2717	-2 , 06	0,073	
Amina*Amido	3,147	1,574	0,2717	5,79	0,000	
pH*Amina*Amido	2,782	1,391	0,2717	5,12	0,001	
S = 1,08683 R-Sq = 98,76%	PRESS = R-Sq(pr	= 37,7984 red) = 95	,03% R	-Sq(adj)	= 97,67 ⁹	80
Anarysis or var	Tance IC	I IS IE		a unites/		
Source	DF	Seq SS	Adj S	S Adj M	IS	F P
Main Effects	3	644,386	644,38	5 214 , 79	5 181,	85 0,000
2-Way Interacti	ons 3	75 , 670	75,67) 25 , 22	3 21,3	35 0,000
3-Way Interacti	ons 1	30,969	30,96	9 30,96	9 26,2	22 0,001
Residual Error	8	9,450	9,45	0 1,18	1	
Pure Error	8	9,450	9,45) 1 , 18	1	
Total	15	760,475				

Unusual Observations for IS Fe-Si

Obs	StdOrder	IS Fe-Si	Fit	SE Fit	Residual	St Resid
8	8	26,4100	24,7950	0 , 7685	1 , 6150	2,10R

163223,180024,79500,7685-1,6150-2,10RR denotes an observation with a large standardized residual.Estimated Coefficients for IS Fe-Si using data in uncoded unitsTermCoefConstant-256,003pH27,3680Amina2,78695Amido0,734490pH*Amina-0,286129pH*Amido-0,00600029pH*Amina*Amido0,000636000

Cálculos de efeitos e coeficientes para recuperação em massa, teor de sílica no concentrado, recuperação de ferro e índice de seletividade para a fração -0,150 mm +0,044 mm.

Factorial Fit: Rec. Mássica; SiO2 Concentrado; Rec. Fe; IS Fe-Si

Factorial Fit: Rec. Mássica versus pH; Amina; Amido

Estimated Effect	s and Co	pefficien	nts for R	Rec. Mássi	ca (coded	units)
Torr	Rffoot	Coof	CE Coof	т	D	
ieim	Ellect	COEL	SE COEL	1	P	
Constant		40,010	0,1981	201,99	0,000	
pН	4,542	2 , 271	0,1981	11,47	0,000	
Amina	-2,845	-1 , 423	0,1981	-7 , 18	0,000	
Amido	0,498	0,249	0,1981	1,26	0,245	
pH*Amina	0,768	0,384	0,1981	1,94	0,089	
pH*Amido	1,255	0,628	0,1981	3,17	0,013	
Amina*Amido	0,028	0,014	0,1981	0,07	0,946	
pH*Amina*Amido	-1,075	-0,537	0,1981	-2,71	0,027	
S = 0,792323	PRESS =	20,0888				
R-Sq = 96,26%	R-Sq(pre	ed) = 85,	,03% R-	-Sq(adj) =	92 , 98%	
	_					
Analysis of Vari	ance foi	r Rec. Ma	ássica (c	coded unit	s)	
Sourco	DF	22 202	Nd- CC	. Ndi Mg	F	D
Main Réferte	2	115 002	115 003			0 000
Main Effects	3	115,903	115,903	38,6345	61,54	0,000
2-Way Interactio	ns 3	8,659	8,659	2,8865	4,60	0,038
3-Way Interactio	ns 1	4,623	4,623	4,6225	7,36	0,027
Residual Error	8	5,022	5,022	2 0,6278		

131

Pure Error85,0225,0220,6278Total15134,207

Unusual Observations for Rec. Mássica

		Rec.				
Obs	StdOrder	Mássica	Fit	SE Fit	Residual	St Resid
6	14	45,9100	44,7200	0,5603	1,1900	2 , 12R
14	38	43,5300	44,7200	0,5603	-1 , 1900	-2,12R

R denotes an observation with a large standardized residual.

Estimated Coefficients for Rec. Mássica using data in uncoded units

Term	Coef
Constant	227,003
рН	-18,3680
Amina	-1 , 67459
Amido	-0,356740
pH*Amina	0,163214
pH*Amido	0,0358400
Amina*Amido	0,00246029
pH*Amina*Amido	-2,45714E-04

Factorial Fit: SiO2 Concentrado versus pH; Amina; Amido

Estimated Effects and Coefficients for SiO2 Concentrado (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		0,9856	0,1695	5,82	0,000
рН	0,9812	0,4906	0,1695	2,89	0,020
Amina	-0 , 7887	-0,3944	0,1695	-2,33	0,048
Amido	0,2687	0,1344	0,1695	0,79	0,451
pH*Amina	-0,8138	-0 , 4069	0,1695	-2,40	0,043
pH*Amido	0,2137	0,1069	0,1695	0,63	0,546
Amina*Amido	-0,2012	-0,1006	0,1695	-0,59	0,569
pH*Amina*Amido	-0,1712	-0,0856	0,1695	-0,51	0,627

S = 0,677933 PRESS = 14,707 R-Sq = 72,60% R-Sq(pred) = 0,00% R-Sq(adj) = 48,62%

Analysis of Variance for SiO2 Concentrado (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	6,6288	6,62882	2,2096	4,81	0,034
2-Way Interactions	3	2,9935	2,99352	0,9978	2,17	0,169
3-Way Interactions	1	0,1173	0,11731	0,1173	0,26	0,627
Residual Error	8	3,6768	3,67675	0,4596		
Pure Error	8	3,6768	3,67675	0,4596		
Total	15	13,4164				

Unusual Observations for SiO2 Concentrado

		SiO2				
Obs	StdOrder	Concentrado	Fit	SE Fit	Residual	St Resid
6	14	4,03000	2,70500	0,47937	1,32500	2 , 76R
14	38	1,38000	2,70500	0,47937	-1 , 32500	-2 , 76R

R denotes an observation with a large standardized residual.

Estimated Coefficients for SiO2 Concentrado using data in uncoded units

Term	Coef
Constant	-0,5980
рН	0 , 07600
Amina	0,009386
Amido	-0,0547100
pH*Amina	-0,0007429
pH*Amido	0,00582000
Amina*Amido	0,000368429
pH*Amina*Amido	-3,91429E-05

Factorial Fit: Rec. Fe versus pH; Amina; Amido

Estimated Effects and Coefficients for Rec. Fe (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		84,815	0,2490	340 , 57	0,000
рН	8,712	4,356	0,2490	17,49	0,000
Amina	-5,400	-2 , 700	0,2490	-10,84	0,000
Amido	0,510	0,255	0,2490	1,02	0,336
pH*Amina	2,402	1,201	0,2490	4,82	0,001
pH*Amido	2,472	1,236	0,2490	4,96	0,001
Amina*Amido	-0,385	-0 , 193	0,2490	-0,77	0,462
pH*Amina*Amido	-2,722	-1 , 361	0,2490	-5,47	0,001

S = 0,996143 PRESS = 31,7536 R-Sq = 98,43% R-Sq(pred) = 93,74% R-Sq(adj) = 97,06%

Analysis of Variance for Rec. Fe (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	421,311	421,311	140,437	141,53	0,000
2-Way Interactions	3	48,134	48,134	16,045	16,17	0,001
3-Way Interactions	1	29,648	29,648	29,648	29,88	0,001
Residual Error	8	7,938	7,938	0,992		
Pure Error	8	7,938	7,938	0,992		
Total	15	507,031				

Estimated Coefficients for Rec. Fe using data in uncoded units

Coef
563,476
-47 , 4390
-4,31641
-0,844540
0,426457
0,0851200
0,00617886
-6,22286E-04

Factorial Fit: IS Fe-Si versus pH; Amina; Amido

Estimated Effects and Coefficients for IS Fe-Si (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		33,103	1,183	27,98	0,000

рН	-4 , 626	-2 , 313	1,183	-1 , 95	0,086	
Amina	2,296	1,148	1,183	0,97	0,360	
Amido	-2,101	-1,051	1,183	-0,89	0,401	
pH*Amina	9,979	4,989	1,183	4,22	0,003	
pH*Amido	3,516	1,758	1,183	1,49	0,176	
Amina*Amido	-0,746	-0,373	1,183	-0,32	0,761	
pH*Amina*Amido	-3,604	-1,802	1,183	-1 , 52	0,166	
S = 4,73324	PRESS =	716,915			= 0	
R-Sq = 77,75%	R-Sq(pr	ed) = 11	,00% R	-Sq(adj)	= 58,	28%
Analysis of Var	iance fo	r IS Fo-	si (code	d units)		
Indry515 Of Var.		1010	Di (COUC	a anres,		
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	124,36	124,36	41,45	1,85	0,216
2-Way Interactio	ons 3	449,99	449,99	150,00	6,70	0,014
3-Way Interactio	ons 1	51,95	51,95	51,95	2,32	0,166
Residual Error	8	179,23	179,23	22,40		
Pure Error	8	179,23	179,23	22,40		
Total	15	805,52	·			
		•				

Estimated Coefficients for IS Fe-Si using data in uncoded units

Term	Coef
Constant	1034,03
рH	-100,469
Amina	-7 , 50559
Amido	-1 , 14565
pH*Amina	0,758743
pH*Amido	0,114620
Amina*Amido	0,00815186
pH*Amina*Amido	-8,23714E-04

Alias Structure
I
рН
Amina
Amido
pH*Amina
pH*Amido
Amina*Amido
pH*Amina*Amido

Contour Plot of Rec. Mássica vs Amina; pH

Response Optimization

Paramete	ers					
Rec. Fe	Goal Maximum	Lower 75,62	Target 88,61	Upper 88,61	Weight 1	Import 1
Global S	Solution					
pH Amina	= 10,5 = 70					

```
Amido = 700
Predicted Responses
Rec. Fe = 93,715 , desirability = 1,000000
Composite Desirability = 1,000000
```

Cálculos de efeitos e coeficientes para recuperação em massa, teor de sílica no concentrado, recuperação de ferro e índice de seletividade para a fração -0,044 +0,010 mm.

Factorial Fit: Rec. Mássica; SiO2 Concentrado; Rec. Fe; IS Fe-Si

Factorial Fit: Rec. Mássica versus pH; Amina; Amido

Estimated Effects and Coefficients for Rec. Mássica (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		54 , 9712	0,3006	182,85	0,000
рН	2,5750	1,2875	0,3006	4,28	0,003
Amina	-1,5850	-0 , 7925	0,3006	-2,64	0,030
Amido	0,4600	0,2300	0,3006	0,77	0,466
pH*Amina	-1 , 9375	-0 , 9687	0,3006	-3,22	0,012
pH*Amido	-0,4175	-0 , 2087	0,3006	-0 , 69	0,507
Amina*Amido	-1 , 9425	-0,9713	0,3006	-3,23	0,012
pH*Amina*Amido	0,8550	0,4275	0,3006	1,42	0,193

S = 1,20253	PRESS = 46,2744	
R-Sq = 86,01%	R-Sq(pred) = 44,06%	R-Sq(adj) = 73,78

Analysis of Variance for Rec. Mássica (coded units)

DF	Seq SS	Adj SS	Adj MS	F	P
3	37,4178	37,4178	12 , 473	8,63	0,007
3	30,8061	30,8061	10,269	7,10	0,012
1	2,9241	2,9241	2,924	2,02	0,193
8	11,5686	11,5686	1,446		
8	11,5686	11,5686	1,446		
15	82,7166				
	DF 3 1 8 8 15	DF Seq SS 3 37,4178 3 30,8061 1 2,9241 8 11,5686 8 11,5686 15 82,7166	DF Seq SS Adj SS 3 37,4178 37,4178 3 30,8061 30,8061 1 2,9241 2,9241 8 11,5686 11,5686 8 11,5686 11,5686 15 82,7166	DF Seq SS Adj SS Adj MS 3 37,4178 37,4178 12,473 3 30,8061 30,8061 10,269 1 2,9241 2,9241 2,924 8 11,5686 11,5686 1,446 8 11,5686 11,5686 1,446 15 82,7166	DF Seq SS Adj SS Adj MS F 3 37,4178 37,4178 12,473 8,63 3 30,8061 30,8061 10,269 7,10 1 2,9241 2,9241 2,924 2,02 8 11,5686 11,5686 1,446 8 11,5686 11,5686 1,446 15 82,7166

Unusual Observations for Rec. Mássica

		Rec.				
Obs	StdOrder	Mássica	Fit	SE Fit	Residual	St Resid
8	24	55 , 7400	53 , 9750	0,8503	1 , 7650	2,08R
16	48	52,2100	53 , 9750	0,8503	-1 , 7650	-2,08R

 $\ensuremath{\mathsf{R}}$ denotes an observation with a large standardized residual.

Estimated Coefficients for Rec. Mássica using data in uncoded units

Term	Coef
Constant	-178 , 183

pН	22 , 1070
Amina	1,78229
Amido	0,263750
pH*Amina	-0,167729
pH*Amido	-0,0238600
Amina*Amido	-0,00217629
pH*Amina*Amido	0,000195429

Factorial Fit: SiO2 Concentrado versus pH; Amina; Amido

Estimated Effects and Coefficients for SiO2 Concentrado (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		0,3694	0,07787	4,74	0,001
рН	0,3037	0,1519	0,07787	1,95	0,087
Amina	0,0812	0,0406	0,07787	0,52	0,616
Amido	-0,2112	-0 , 1056	0 , 07787	-1 , 36	0,212
pH*Amina	0,1163	0,0581	0,07787	0,75	0,477
pH*Amido	-0,1713	-0 , 0856	0 , 07787	-1,10	0,304
Amina*Amido	-0 , 1687	-0,0844	0 , 07787	-1,08	0,310
pH*Amina*Amido	-0,1387	-0,0694	0,07787	-0,89	0,399

S = 0,311498	PRESS = 3,105	
R-Sq = 54,67%	R-Sq(pred) = 0,00%	R-Sq(adj) = 15,01%

Analysis of Variance for SiO2 Concentrado (coded units)

DF	Seq SS	Adj SS	Adj MS	F	P
3	0 , 57397	0,573969	0,19132	1,97	0,197
3	0,28527	0,285269	0,09509	0,98	0,449
1	0,07701	0,077006	0,07701	0,79	0,399
8	0,77625	0,776250	0,09703		
8	0,77625	0,776250	0,09703		
15	1,71249				
	DF 3 1 8 8 15	DF Seq SS 3 0,57397 3 0,28527 1 0,07701 8 0,77625 8 0,77625 15 1,71249	DF Seq SS Adj SS 3 0,57397 0,573969 3 0,28527 0,285269 1 0,07701 0,077006 8 0,77625 0,776250 8 0,77625 0,776250 15 1,71249	DFSeq SSAdj SSAdj MS30,573970,5739690,1913230,285270,2852690,0950910,077010,0770060,0770180,776250,7762500,0970380,776250,7762500,09703151,71249	DF Seq SS Adj SS Adj MS F 3 0,57397 0,573969 0,19132 1,97 3 0,28527 0,285269 0,09509 0,98 1 0,07701 0,077006 0,07701 0,79 8 0,77625 0,776250 0,09703 3 15 1,71249 1,71249 1,71249

Unusual Observations for SiO2 Concentrado

		SiO2				
Obs	StdOrder	Concentrado	Fit	SE Fit	Residual	St Resid
7	23	1,58000	0,96500	0,22026	0,61500	2 , 79R
15	47	0,35000	0,96500	0,22026	-0,61500	-2 , 79R

R denotes an observation with a large standardized residual.

Estimated Coefficients for SiO2 Concentrado using data in uncoded units

Term	Coef
Constant	11,2890
рН	-1,17200
Amina	-0,203321
Amido	-0,0184200
pH*Amina	0,0215571
pH*Amido	0,00196000
Amina*Amido	0,000297857
pH*Amina*Amido	-3,17143E-05

Factorial Fit: Rec. Fe versus pH; Amina; Amido

Estimated Effects and Coefficients for Rec. Fe (coded units)TermEffectCoefSECoefTPConstant80,1730,4950161,950,000pH3,3611,6810,49503,390,009Amina-2,366-1,1830,4950-2,390,044Amido0,9510,4760,49500,960,365pH*Amina-2,976-1,4880,4950-3,010,017pH*Amido-0,729-0,3640,4950-0,740,483Amina*Amido-2,641-1,3210,4950-2,670,028pH*Amina*Amido1,3940,6970,49501,410,197

S = 1,98014 PRESS = 125,470 R-Sq = 82,16% R-Sq(pred) = 28,63% R-Sq(adj) = 66,55%

Analysis of Variance for Rec. Fe (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	71,208	71 , 2081	23 , 736	6,05	0,019
2-Way Interactions	3	65,461	65,4614	21,820	5,57	0,023
3-Way Interactions	1	7,770	7,7702	7 , 770	1,98	0,197
Residual Error	8	31,368	31 , 3675	3,921		
Pure Error	8	31,368	31 , 3675	3,921		
Total	15	175,807				

Unusual Observations for Rec. Fe

Obs	StdOrder	Rec. Fe	Fit	SE Fit	Residual	St Resid
8	24	81,7500	78 , 6700	1,4002	3,0800	2,20R
16	48	75 , 5900	78 , 6700	1,4002	-3,0800	-2,20R

R denotes an observation with a large standardized residual.

Estimated Coefficients for Rec. Fe using data in uncoded units

Term	Coef
Constant	-285,450
pН	34,8760
Amina	2,82191
Amido	0,428300
pH*Amina	-0,268214
pH*Amido	-0,0392800
Amina*Amido	-0,00348757
pH*Amina*Amido	0,000318571

Factorial Fit: IS Fe-Si versus pH; Amina; Amido

Estimated Effects and Coefficients for IS Fe-Si (coded units)

Term	Effect	Coef	SE Coef	Т	P
Constant		27,621	1,111	24,87	0,000
рН	-6,951	-3,476	1,111	-3,13	0,014
Amina	-0 , 359	-0 , 179	1,111	-0,16	0,876
Amido	5,711	2,856	1,111	2,57	0,033
pH*Amina	-2,771	-1 , 386	1,111	-1 , 25	0,247
pH*Amido	0,669	0,334	1,111	0,30	0,771
Amina*Amido	1,066	0,533	1,111	0,48	0,644

pH*Amina*Amido 1,894 0,947 1,111 0,85 0,419

S = 4,44281 PRESS = 631,633 R-Sq = 70,41% R-Sq(pred) = 0,00% R-Sq(adj) = 44,51%

Analysis of Variance for IS Fe-Si (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	3	324,27	324,27	108,09	5,48	0,024
2-Way Interactions	3	37,06	37,06	12,35	0,63	0,618
3-Way Interactions	1	14,35	14,35	14,35	0,73	0,419
Residual Error	8	157 , 91	157 , 91	19,74		
Pure Error	8	157 , 91	157 , 91	19,74		
Total	15	533 , 58				

Unusual Observations for IS Fe-Si

Obs	StdOrder	IS Fe-Si	Fit	SE Fit	Residual	St Resid
7	23	11,3400	17,9100	3,1415	-6 , 5700	-2,09R
15	47	24,4800	17,9100	3,1415	6,5700	2,09R

R denotes an observation with a large standardized residual.

Estimated Coefficients for IS Fe-Si using data in uncoded units

Term	Coef
Constant	-221,820
рН	24,4200
Amina	3 , 20552
Amido	0,411050
pH*Amina	-0,328071
pH*Amido	-0,0401000
Amina*Amido	-0,00420671
pH*Amina*Amido	0,000432857

Alias Structure I pH Amina Amido pH*Amina pH*Amido Amina*Amido pH*Amina*Amido