UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas

> Dissertação de Mestrado Metalurgia Extrativa

" Modelamento Matemático do Refino do Aço Inoxidável em Conversores AOD-L "

Autor: Humberto Marin Orientador: Prof. Roberto Parreiras Tavares

Belo Horizonte, dezembro de 2006.

UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas

Humberto Marin

MODELAMENTO MATEMÁTICO DO REFINO DO AÇO INOXIDÁVEL EM CONVERSORES AOD-L

Dissertação de Mestrado apresentada ao Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas do Departamento de Engenharia Metalúrgica e de Materiais, da Universidade Federal de Minas Gerais, em dezembro de 2006.

> Área de concentração: Metalurgia Extrativa Orientador: Prof. Roberto Parreiras Tavares

> > Belo Horizonte - Minas Gerais Escola de Engenharia da UFMG 2006

Aos meus pais, Diara W. Marin e Humberto Marin, aos meus avós maternos, Ermelina S. Woczikosky e Orlando Woczikosky, aos meus avós paternos, Orilde O. Marin e Norvino H. Marin, e a minha esposa Vanessa A. S. Marin.

AGRADECIMENTOS

Agradeço primeiramente a Deus por me dar condições de concluir este trabalho e também a todos que me ajudaram, mas especialmente:

Aos brasileiros, que através do pagamento de seus impostos, me permitiram cursar excelentes universidades, a quem eu reconheço uma dívida eterna.

Aos ilustríssimos Prof. Roberto Parreiras Tavares, pela dedicação, paciência e empenho com que me orientou no desenvolvimento do trabalho e na elaboração da dissertação, e ao Prof. Marcelo de Aquino Martorano, pelo convite para trabalhar com o refino de aços inoxidáveis e pela troca intensa de conhecimentos realizada.

À minha família que sempre me apoiou e me ensinou o valor da educação.

À minha esposa, por ter me apoiado e compreendido os momentos de ausência.

Às empresas Voith Máquinas e Equipamentos e Acesita S.A. pelo apoio para o desenvolvimento do trabalho de mestrado. Especialmente aos seguintes funcionários e dirigentes destas empresas: Amandio da Cruz Pires, Waldir C. Trafaniuc, Roberto Alves da Silva, Nivaldo Faria Gonçalves, Alan Furlan, José Cláudio Resende, Valdir dos Santos e José Severino do Nascimento (da Voith), e Paulo Roberto Magalhães Bastos, Carlos Eduardo Junqueira, Clênio Afonso Magalhães, José Cordeiro Neves, Antônio Francisco Martins Barreto, José Geraldo Ank, Décio Sartori, Alessandro Martins Duarte, Maurício Ferreira Coelho, João Domingos, operadores e supervisores da Gerência de Convertedores (da Acesita).

Às bibliotecárias da USP, da UFMG e da Acesita, que auxiliaram nas pesquisas bibliográficas e obtenção de artigos técnicos.

E a todos os outros que de alguma forma ajudaram e por falha ou omissão não foram citados.

SUMÁRIO

DEDICATÓRIA	ii
AGRADECIMENTOS	iii
SUMÁRIO	iv
LISTA DE FIGURAS	vi
LISTA DE TABELAS	viii
LISTA DE SÍMBOLOS	ix
RESUMO	xii
ABSTRACT	xiii
1 INTRODUÇÃO	1
2 OBJETIVOS	3
3 REVISÃO BIBLIOGRÁFICA	4
3.1 Aços inoxidáveis	4
3.2 O Processo AOD	5
3.2.1 Histórico	5
3.2.2 Relevância	9
3.2.3 Príncipios teóricos	10
3.3 Experiência de Descaburação Realizada por Fruehan	14
3.4 Modelos Matemáticos	18
3.4.1 Definição	18
3.4.2 Tipos de Modelos Matemáticos	18
3.5 Modelos Matemáticos para Descarburação de Aços Inoxidáveis	20
3.5.1 Modelo de Assai e Szekely (1974)	20
3.5.2 Modelo de Fruehan (1976)	23
3.5.3 Modelo de Roy e Robertson (1976)	26
3.5.4 Modelo de Wijk e Sjöberg (1992)	28
3.5.5 Modelo de Vercruyssen, Wollants, Roos, Robertson and Bertels (1993)	32
3.5.6 Modelo de Ji-He e De-Ping Zhu (2000)	36
4 METODOLOGIA	41
4.1 Desenvolvimento do Modelo Matemático	41
4.1.1 Hipóteses consideradas	41
4.1.2 Equacionamento do Modelo Matemático	44
4.2 Coleta de dados industriais	48
4.3 Estratégia de simulação	50

5 RESULTADOS E DISCUSSÃO	52
5.1 Simulação das principais variáveis de processo	52
5.1.1 Temperatura	53
5.1.2 Relação O₂:gás inerte	54
5.1.3 Composição química	55
5.1.4 Evolução da composição da fase gasosa em função da altura	57
5.1.5 Teor de oxigênio dissolvido no banho	58
5.1.6 Eficiência de remoção de carbono (CRE) para um aço da série 430	59
5.2 Parâmetros do modelo	59
5.2.1 Áreas de interface de reação	60
5.2.2 Coeficiente de transporte de massa do oxigênio dissolvido no banho.	62
5.3 Resultados das simulações de corridas de aços da série 430	62
5.4 Resultados das simulações de corridas de aços da série 304	66
5.5 Discussão dos resultados	68
6 CONCLUSÕES	71
7 SUGESTÕES PARA TRABALHOS FUTUROS	72
8 REFERÊNCIAS BIBLIOGRÁFICAS	73
APÊNDICE I – Tratamento da Interface Metal-Óxido	76
APÊNDICE II – Tratamento da Interface Óxido-Gás	88
APÊNDICE III – Tratamento da Interface Metal-Gás	106
APÊNDICE IV – Desenvolvimento do Cálculo da Energia Livre	112
APÊNDICE V – Valores das Constantes de Equilíbrios das Reações Utilizadas	nos
Modelos	117
APÊNDICE VI – Cálculo dos Coeficientes de Atividade	118
APÊNDICE VII - Cálculo das Densidades Molares nas 3 Fases (metal líquido, e	escória,
gás)	120
APÊNDICE VIII – Cálculo do Balanço Térmico	122
APÊNDICE IX – Dados Termodinâmicos para o Balanço Térmico	127
APÊNDICE X – Folha de Corrida da Acesita	130
APÊNDICE XI – Dados Referentes as Corridas Utilizadas para Simulação	131

LISTA DE FIGURAS

Figura 3.1 – Tipos de aços inoxidáveis5
Figura 3.2 – Conversor AOD-L7
Figura 3.3 – Processos de refino para produção de aços inoxidáveis8
Figura 3.4 – Distribuição da produção mundial de aços inoxidáveis por equipamento 10
Figura 3.5 – Algumas reações possíveis em um conversor com sopro combinado11
Figura 3.6 – Curvas de equilíbrio para a reação (11)15
Figura 3.7 – A taxa de oxidação do Cr e C para um aço inoxidável a 1610 $^{\circ}\text{C}$ usando
uma mistura gasosa 50 % O_2 50% Ar (1 I(CNTP)/min.)16
Figura 3.8 - Comparação dos resultados experimentais com os do modelo, para uma
corrida de 40t22
Figura 3.9 - Conteúdos de carbono calculados e observados em uma corrida do aço
409, com relação O ₂ :Ar=3:125
Figura 3.10 - Resultados de temperatura, teor de carbono e eficiência de remoção de
carbono (CRE) para uma corrida de 58 t31
Figura 3.11 – Componentes e suas reações consideradas no modelo
Figura 3.12 - Resultados obtidos para um processo típico de refino em conversores
MRPA, evolução em função do tempo para: (a) cromo, (b) carbono, (c) silício, (d)
temperatura (os pontos representam dados experimentais)
Figura 3.13 - Previsão da evolução da composição química do banho para C, Cr, Si e
Mn e, da temperatura. 1- adição de sucata e elementos de liga, 2- fim do primeiro
período de sopro, 3- fim do segundo período de sopro, 4- fim do terceiro período
de sopro
Figura 4.1 - Desenho esquemático de um bolha com a camada de óxido formada em
torno da mesma, com a representação dos fluxos de C e O43
Figura 4.2 - Desenho esquemático detalhando o fluxo de O e C para dentro de uma
bolha de gás43
Figura 4.3 – Divisão do conversor em fatias45
Figura 4.4 – Conversor AOD-L de 80t da Acesita S.A
Figura 4.5 – Esquema do processo de refino do aço inoxidável no conversor AOD-L da
Acesita S.A
Figura 4.6 – Fluxograma do programa para simulação do processo
Figura 5.1 – Curvas de descarburação em função da temperatura

Figura 5.2 - Curvas de descarburação em função da diluição do oxigênio com gás
inerte55
Figura 5.3 – Curvas de descarburação em função do teor de Ni
Figura 5.4 – Curvas de descarburação em função do teor de Cr56
Figura 5.5 - Evolução da composição da fase gasosa em função da altura em um
instante t da descarburação57
Figura 5.6 - Evolução do teor de oxigênio dissolvido no banho em função da
temperatura58
Figura 5.7 – Curva com a evolução do CRE para um aço da série 43059
Figura 5.8 - Curva de descarburação em função da área de reação interface Metal-
Gás (valores de 6, 9 e 12 m²/m³)60
Figura 5.9 - Curva de descarburação em função da área de reação interface Metal-
Óxido (valores de ((0.04, 0.07 ou 0.10)*Num mol óxidos) m²)61
Figura 5.10 - Curva de descarburação em função da área de reação interface Óxido-
Gás (valores de ((0.04, 0.07 ou 0.10)*Num mol óxidos) m²)61
Figura 5.11 - Curva de descarburação em função do coeficiente de transporte de
massa do oxigênio dissolvido no metal (valores de 0,02, 0,025 e 0,03 m/s)62
Figura 5.12 – Resultado da simulação da corrida 652683D63
Figura 5.13 – Resultado da simulação da corrida 652755J64
Figura 5.14 – Resultado da simulação da corrida 652758D64
Figura 5.15 – Resultado da simulação da corrida 652759B65
Figura 5.16 – Resultado da simulação da corrida 653379H65
Figura 5.17 – Resultado da simulação da corrida 653079D66
Figura 5.18 – Resultado da simulação da corrida 653196F67
Figura 5.19 – Resultado da simulação da corrida 653440H67
Figura A.1 - Ilustração da Lei de Hess. Onde ${}^{\Delta}H_{{}^{ au}}$ é a energia total gerada (ou
absorvida) pela reação a uma temperatura T123

LISTA DE TABELAS

Tabela III.1 – Taxas de Oxidação do Cr e do C em uma Mistura Gasosa	0 ₂ :Ar16
Tabela III.2 – Resultados apresentados por Deb Roy e Robertson ⁽¹⁵⁾ j	untamente com
dados experimentais	27
Tabela IV.1 – Composição química dos aços P304A e P430A	48
Tabela V.1 - Dados utilizados para as simulações	52
Tabela V.2 – Resumo dos resultados	68

LISTA DE SÍMBOLOS

A - área da interface (m²)

 a_i - atividade Raoultiana do componente i (-)

 C_i - concentração molar do componente i (mol.m⁻³)

 C_G - densidade molar do gás (mol.m⁻³)

 C_M - densidade molar do metal (mol.m⁻³)

 C_{s} - densidade molar do óxido (mol.m⁻³)

 C_p^{Esc} - calor específico da escória (Cal.kg⁻¹.K⁻¹)

 C_p^{Met} - calor específico do aço (Cal.kg⁻¹.K⁻¹)

 e_i^j - coeficiente de iteração de 1^ª ordem do componente j sobre o componente i no ferro líquido (-)

 f_{\perp} - coeficiente de atividade Henriana do componente i (-)

 $h_{\scriptscriptstyle Esc}$ - altura da coluna de escória (m)

 h_{Met} - altura da coluna de metal (m)

 h_i - atividade Henriana do componente i (-)

 $k_{\scriptscriptstyle i}$ - coeficiente de transporte de massa do componente i (m.s⁻¹)

 $K_{num.dareacão}$ - constante de equilíbrio (-)

 M_{i} - massa molar do elemento i (kg)

 $N_{\rm r}$ - fluxo molar total do componente i (mol.m⁻².s⁻¹)

 $oldsymbol{O}_2^i$ - quantidade de oxigênio usada na oxidação do componente i (Nm³)

 P_i - pressão parcial do componente i (atm)

 $P_{_{Tot}}$ - pressão total (atm)

R - constante universal dos gases (atm.l.K⁻¹.mol⁻¹)

 r_{i}^{j} - coeficiente de iteração de 2^a ordem do componente j sobre o componente i no ferro líquido (-)

t - tempo (s)

T - temperatura (K)

- V volume da fase (m³)
- χ_i fração molar do componente i (-)
- $W_{\scriptscriptstyle Met}$ peso de metal (kg)
- $W_{\scriptscriptstyle Fsc}$ peso de escória (kg)
- Δt intervalo de tempo utilizado para as iterações do modelo (ciclo de simulação) (s)
- ΛG variação da energia livre de Gibbs (cal)
- $\Delta G^{^{0}}$ variação de energia livre de Gibbs no estado padrão (cal)
- γ_{\perp} coeficiente de atividade Raoultiano do componente i (-)
- $ho_{\rm {\scriptscriptstyle Met}}$ densidade do metal (kg.m⁻³)
- %i porcentagem do componente i em massa (%)

Sobrescritos

- b bulk (seio do banho metálico ou do óxido)
- eq equilíbrio (interface entre duas fases)
- Esc fase escória (fase óxido sobrenadante no metal)

Gas - fase gás

- H estado padrão Henriano
- Met fase metal
- Oxi fase óxido (fase óxido formada no interior do banho)
- R estado padrão Raoultiano
- Tot total

Subscritos

- Esc fase escória (fase óxido sobrenadante no metal)
- Gas fase gás
- Met fase metal

Oxi - fase óxido (fase óxido formada no interior do banho)

Fases

- () gás
- { } líquido
- < > sólido
- M componente M dissolvido no Fe líquido (1%)

Observação: nos casos em que houver utilização de outra simbologia, a explicação é apresentada abaixo das equações.

RESUMO

Neste trabalho foi apresentado um estudo sobre o desenvolvimento e a aplicação de um modelo matemático multifásico e multicomponente para a descarburação de aços inoxidáveis. O modelo desenvolvido trata, de maneira explícita, as três interfaces possíveis de reação (metal-gás, metal-óxido e óxido-gás) e considera os principais componentes envolvidos no processo (C, Cr, Fe, Ni, Mn, Si, Al, O). Para o modelamento do processo foi considerado que o oxigênio injetado por baixo no conversor reage com o metal na região das ventaneiras, formando óxidos metálicos que sobem junto com as bolhas de gás. Durante a subida do gás, os óxidos são arrastados e reduzidos, ocorrendo formação de CO e CO2 devido à reação com o carbono dissolvido no banho, causando um fluxo de carbono para a fase gasosa (bolhas) e conseqüente descarburação do banho. O modelo foi ajustado para as condições de processo do conversor AOD-L de 80 toneladas da Acesita S.A., que trabalha com carga proveniente do forno elétrico a arco e gusa desfosforado. Os resultados das simulações mostraram que o modelo é capaz de reproduzir de maneira satisfatória às principais variações de processo (temperatura do banho, composição química do banho e diluição do oxigênio injetado com gás inerte), correspondendo ao que é conhecido da prática operacional e registros bibliográficos. Resultados obtidos com o modelo foram comparados com resultados industriais, de corridas do aco austenítico, ACE P304A e do aço ferrítico ACE P430A, fornecendo uma boa precisão na previsão do teor de carbono e temperatura do banho em função do tempo de processo.

Palavras-Chave: aços inoxidáveis, descarburação, modelos matemáticos, AOD

ABSTRACT

In the present work was presented a study about the development and the application of a multiphase and multicomponent mathematical model for the decarburisation of stainless steels. The developed model takes into account three possible interfaces of reaction (metal-gas, metal-oxide and oxide-gas) and considers the main components involved in the process (C, Cr, Fe, Ni, Mn, Si, Al, O). To model the process it was assumed that the oxygen injected by the bottom in the converter reacts with the metal in the region of the tuyeres, forming metallic oxides that rise with the gas bubbles. During the rising of the bubbles, the oxides are dragged and reduced, forming CO and CO₂ due to the reaction with the carbon dissolved in the bath. This causes a carbon flow towards the gaseous phase (bubbles) and, consequently, decarburisation. The model was adjusted to the Acesita S.A. 80 tonnes AOD-L converter process conditions. The converter works with charge from an electric arc furnace and dephosforized hot metal. The simulation results showed that the model reproduces well the main process variations (bath temperature, bath chemical composition and oxygen dilution by inert gas), corresponding to the operational practice and bibliographic reports. The results of the simulations were compared to industrial data, of austenitic ACE P304A steel grade and of ferritic ACE P430A steel grade heats, giving a good prevision of carbon content and temperature as function of the process time.

Key Words: stainless steel, decarburisation, mathematical model, AOD

1 INTRODUÇÃO

O conversor AOD é o principal equipamento utilizado na produção do aço inoxidável. AOD é uma sigla que vem do inglês e significa descarburação com argônio e oxigênio (A-argon, O-oxygen, D-decarburization). Como o próprio nome explicita, o processo de conversão do aço inoxidável ocorre através da injeção de uma mistura de oxigênio e gás inerte no banho metálico, com o objetivo de fazer a oxidação seletiva do carbono.

O conversor AOD é um vaso de aço, na forma de barril, revestido com refratário em seu interior, com uma abertura na parte superior para receber o banho metálico, e com ventaneiras na parte de baixo para soprar gás no banho. Em alguns conversores (AOD-L) também é instalada uma lança, com o objetivo de aumentar a taxa de injeção de oxigênio.

No processo AOD, o banho metálico, composto por sucata e ferroligas fundidos em um forno elétrico a arco, é transformado em aço inoxidável. Este processo de transformação é também chamado de conversão, pois o banho metálico (pré-metal) é convertido em aço inoxidável, através da remoção do carbono e enxofre e ajuste da composição química através da adição de ferroligas. O objetivo do processo é fazer a conversão em aço, buscando-se redução dos custos de fabricação, através da otimização do consumo de insumos como cal, cal dolomítica, ferro-silício e refratário, e alta produtividade, através da redução do tempo de processo. Neste sentido, o AOD foi uma revolução em relação aos processos tradicionais de produção do aço inoxidável⁽¹⁾, que demandavam longos ciclos de produção, com baixa produtividade.

Durante o processo é necessário controlar o momento de adição das ligas e fundentes utilizados para produzir o aço e também o volume, vazão e relação oxigênio/gás inerte dos gases soprados no conversor. Este controle pode ser feito manualmente ou automaticamente, dependendo do grau de automação da instalação.

No Brasil, a Companhia Aços Especiais Itabira (ACESITA S.A.) iniciou a operação de conversores AOD em 1978, inaugurando um conversor AOD de 35t, que permitiu que a companhia se transformasse na principal produtora de aços inoxidáveis da América Latina, com produção de 168 mil toneladas por ano. Em 2002, um novo conversor

AOD-L de 80t, foi instalado, permitindo a Acesita chegar a uma capacidade instalada de 800 mil toneladas por ano de aços inoxidáveis.

No processo de expansão, a Acesita foi obrigada a desenvolver uma nova rota de produção para o aço inoxidável. Devido à baixa disponibilidade de sucata no país, a Acesita desenvolveu uma rota de produção a partir de gusa, proveniente dos 2 altos-fornos instalados na usina. Este gusa sofre um pré-tratamento de dessulfuração e desfosforação para poder ser utilizado na produção de aço inoxidável. Com isso, as condições iniciais de processo no AOD-L da Acesita são únicas no mundo, com baixa temperatura do pré-metal (aprox. 1300 °C) e alto teor de carbono (aprox. 4%). Na bibliografia não existem referências sobre a utilização de conversores AOD em condições similares às da Acesita.

O sistema que define os parâmetros de processo é baseado em um modelo matemático, que utilizando fundamentos de termodinâmica, cinética e estequiometria define como o processo deve ser conduzido. O modelo matemático é importante para um bom controle da temperatura, evitando temperaturas altas que danificam o revestimento refratário e temperaturas baixas que provocam oxidação excessiva de cromo. O modelo também define os momentos exatos para substituição da mistura gasosa e vazão, otimizando o tempo de processo. A principal vantagem de se utilizar um modelo matemático para condução do processo é a padronização dos resultados, fazendo com que as diferentes equipes de operação possam alcançar resultados semelhantes e otimizados.

Neste trabalho foi desenvolvido um modelo matemático capaz de prever a variação da composição química e da temperatura do banho metálico em função do tempo de processo. O modelo foi ajustado para as condições de processo da Acesita e os resultados do modelo foram comparados com dados industrias. Com isso, utilizando o modelo matemático desenvolvido, é possível desenvolver novas estratégias de produção, treinar operadores, testar novas matérias-primas e otimizar o processo, sem necessidade de se produzir corridas reais, com menores riscos e custos, e maior velocidade.

2 OBJETIVOS

Este trabalho tem como objetivo desenvolver um modelo matemático que descreve o processo de descarburação dos aços inoxidáveis em conversores a oxigênio com sopro pelo fundo durante os estágios finais de descarburação (teor C < 0.4%).

3 REVISÃO BIBLIOGRÁFICA

Neste capítulo serão revisados alguns aspectos referentes ao modelamento do refino do aço inoxidável. Inicialmente é feita uma introdução sobre aços inoxidáveis. Posteriormente, o processo AOD é descrito, incluindo o seu histórico, importância e os princípios teóricos envolvidos no processo. Em seguida é apresentada uma importante experiência realizada por Fruehan. Finalmente são discutidos os diversos tipos de modelos matemáticos, destacando a abordagem em relação ao processo, as vantagens e desvantagens de cada um, seguida de uma revisão sobre modelos matemáticos para refino do aço inoxidável.

3.1 Aços inoxidáveis

Aços inoxidáveis são um grupo de aços resistentes à corrosão, contendo acima de 10,5% de cromo, podendo conter uma quantidade variável de elementos de liga como níquel, molibdênio, titânio, nióbio e manganês. As propriedades mecânicas e o comportamento em serviço dos vários tipos de aço dependem da sua composição. Os aços inoxidáveis podem ser de vários tipos: austeníticos, ferríticos, duplex, martensíticos e endurecíveis por precipitação (PH), conforme resumido na figura 3.1.

As propriedades únicas dos aços inoxidáveis fazem deles um excepcional material de construção. Apesar de alguns julgarem o aço inoxidável como uma opção mais cara, o preço do aço vem caindo e a análise do custo, levando em conta o ciclo de vida, vai freqüentemente revelar que é a opção mais econômica. Na construção de turbinas para hidrogeração de energia, por exemplo, o custo de reparar ou trocar o rotor é muito mais alto do que um investimento em um material mais nobre na sua produção. Considerando um ciclo de vida de dezenas de anos, um custo alto de mão-de-obra e custo da parada de produção de energia para troca ou reparo do rotor, o aço inoxidável é a opção mais econômica.

Figura 3.1 – Tipos de aços inoxidáveis.⁽²⁾

As principais propriedades do aço inoxidável que o distinguem dos outros materiais são: resistência à corrosão, boa soldabilidade, alta resistência em alta e baixa temperatura, alta resistência mecânica e a possibilidade de conformação por diversos processos.

3.2 O Processo AOD

3.2.1 Histórico

O desenvolvimento do processo AOD iniciou em 1954, no "Metals Research Laboratories" da Union Carbide, em Niagara Falls, Estados Unidos. Krivsky⁽³⁾ estava estudando a relação carbono-cromo-temperatura e tentando entender porque os resultados obtidos previamente por Hilty e Crafts⁽⁴⁾ da Union Carbide e os de

Richardson e Dennis^(5,6) na Inglaterra não eram iguais. As experiências consistiam em soprar oxigênio sobre a superfície de um banho contendo 45,4kg de uma liga de cromo líquida. Devido à natureza fortemente exotérmica da reação do cromo com o oxigênio, era muito difícil fazer experiências sob condições isotérmicas. Krivsky, então, adicionou argônio ao oxigênio, com o objetivo de controlar a temperatura do banho. Ele observou que, com a diluição promovida pelo argônio, o banho podia ser descaburado a níveis mais baixos do que obtidos previamente, sem uma excessiva oxidação de cromo. Os resultados obtidos e a revisão de conceitos básicos da físico-química do sistema em estudo permitiram conceber a idéia de que talvez um processo de refino poderia ser desenvolvido, utilizando o princípio de que fazer uma descarburação mais eficiente do ferrocromo e possivelmente do aço inoxidável era possível. Muitos anos de pesquisa e trabalho de desenvolvimento se seguiram, inicialmente na Divisão de Ferroligas da Union Carbide e em seguida na Divisão Linde, até se chegar ao AOD.

Inicialmente, acreditava-se que seria vantajoso poder adicionar uma mistura oxigênioargônio através de uma lança no banho do forno elétrico a arco. Isto eliminaria a necessidade de fazer o processamento do banho em duas etapas (processo duplex), utilizando um segundo vaso de refino. Algum trabalho neste sentido foi realizado na Haynes Stellite em Kokomo, Estados Unidos, mas a maior quantidade de testes foi realizado na usina da Joslyn Aços Inoxidáveis (atual Slater), em Indiana, Estados Unidos⁽³⁾.

Em 1960, a Union Carbide e a usina de Joslyn iniciaram um programa de trabalho cooperativo para desenvolvimento do AOD. Em paralelo aos testes no forno elétrico a arco na usina de Joslyn, a idéia de se utilizar um vaso separado para refino ou convertedor foi explorada na Divisão Linde da União Carbide no "Towanda Laboratories". Considerando as limitações experimentais do laboratório de Towanda, foi possível aumentar gradualmente o tamanho das corridas refinadas.

Após muitas experiências na usina de Joslyn com um forno elétrico de 15t, tornou-se evidente que o desenvolvimento de um processo prático não teria sucesso sem a utilização de um vaso de refino separado. Um conversor de teste de 15t, com 3 ventaneiras foi, então, construído. Após vários testes, uma corrida foi finalmente refinada, terminada e vazada com sucesso em 24 de outubro de 1967. Esta foi a

primeira corrida de AOD da história. Subseqüentemente, duas outras corridas foram processadas. Baseados nesses poucos resultados de sucesso, a usina de Joslyn decidiu no final de 1967 projetar e construir o primeiro AOD comercial. Ele iniciou a operação em abril de 1968. A figura 3.2 mostra um conversor AOD-L, evolução do projeto original do AOD, incorporando a utilização de uma lança para aumentar a taxa de injeção de oxigênio no banho metálico.

Figura 3.2 – Conversor AOD-L.⁽⁷⁾

Nos processos antigos⁽¹⁾ de produção do aço inoxidável a partir da sucata do próprio aço da usina, sucata de aços baixo e alto-carbono, e ferroligas, o material era fundido em fornos elétricos a arco, juntamente com minério de cromo e ferro, para que o cromo fosse reduzido, e as temperaturas geradas fossem suficientes para que o carbono fosse reduzido a teores próximos de 0,05%. Muito CaO e ferro-silício eram utilizados na fase de redução da escória (recuperação de metais nobres como Cr e Mn). Normalmente o volume de escória desses processos ultrapassava o de metal, reduzindo a capacidade do forno. O AOD representou uma verdadeira revolução no processo de produção do aço inoxidável, permitindo significativa redução do custo de produção e aumento de produtividade.

O desenvolvimento da tecnologia para produção de gases industriais puros (argônio e oxigênio) a um custo viável⁽⁸⁾ foi essencial para o desenvolvimento da aciaria a oxigênio, e o processo AOD foi o coroamento deste processo, capitaneado pelos fabricantes de gases e usinas siderúrgicas. A partir do desenvolvimento do AOD, o

princípio da otimização da reação do oxigênio com o carbono, através da diluição do CO com argônio ou nitrogênio, para descarburar o banho, foi aplicado em diversos processos de produção do aço inoxidável. Algumas variações do processo utilizam outros gases, como CO₂ e H₂O_(vapor), com o objetivo de diluir o CO, e um processo mais moderno, o VOD (V-vacum, O-oxygen, D-decarburization) reduz a pressão parcial do CO, através da redução da pressão total do sistema. A figura 3.3 mostra os principais processos de refino para produção do aço inoxidável.

AOD-L:	Argon	Oxygen D	ecarburization-Lanc
KOD C.	March 199	Combined	Disulas Chaisless

- KCB-S: Krupp Combined Blowing-Stainless K-BOP: Kawasaki-Basic Oxygen Process
- VODK: Vacuum Oxygen Decarburization Converter
- VOD: Vacuum Oxygen Decarburization

Figura 3.3 – Processos de refino para produção de aços inoxidáveis⁽⁹⁾.

3.2.2 Relevância

A relevância do processo AOD para a produção do aço inoxidável está diretamente ligada aos benefícios que o processo traz em relação às outras formas de produção. O AOD se destaca pela qualidade, custo e produtividade do aço produzido. Utilizando o processo AOD é possível se conseguir baixíssimos níveis de enxofre (S<0,002%), além de uma boa desgaseificação do aço e remoção de óxidos, evitando inclusões. O custo de produção via AOD é competitivo, devido à maior eficiência na remoção do carbono, conseguida através da injeção da mistura oxigênio mais gás inerte pelo fundo do conversor, que permite economizar redutores (FeSi e AI) e fundentes (cal, cal dolomítica e fluorita), além de não se necessitar de temperaturas altíssimas, como nos outros processos, que reduzem a vida do refratário. A produtividade também é beneficiada pela maior eficiência no processo de descarburação, além da possibilidade de se ter altas taxas de injeção de oxigênio e da reação ocorrer entre o gás e o metal líquido, que tem uma cinética mais favorável do que as reações de óxidos com metal líquido dos processos mais antigos⁽¹⁾.

Os benefícios do processo fizeram com que a produção via AOD crescesse de forma consistente após seu desenvolvimento no final da década de sessenta. O processo foi patenteado pela Union Carbide, que o comercializou no mundo inteiro. Na década de oitenta, a patente expirou e vários fornecedores mundiais de equipamentos também passaram a comercializar o processo AOD. Nos novos projetos siderúrgicos para produção de inoxidáveis, o AOD continua sendo o processo escolhido, demonstrando sua eficiência e vanguarda tecnológica, apesar de ter sido desenvolvido a mais de trinta anos atrás. Expressando a importância do processo AOD em números, tem-se que mais de 68% da produção mundial de aços inoxidáveis é via AOD, e que da produção que não é via AOD, a maior parte é de processos com grande similaridade ou que utilizam o conversor para fazer a descarburação principal (até 0,2% de C) e depois um VOD para concluir a descarburação (exemplo: processo triplex via MRP-L). A figura 3.4 mostra a distribuição da produção mundial de aços inoxidáveis por equipamento.

Figura 3.4 – Distribuição da produção mundial de aços inoxidáveis por equipamento.⁽⁷⁾

3.2.3 Príncipios teóricos

A reação de descarburação durante a "conversão" do aço pode ser direta ou indireta⁽¹⁰⁾. Durante a descarburação direta, o carbono reage com oxigênio gás ($\frac{1}{2}O_2$) ou com oxigênio dissolvido na fase de metal líquido <u>O</u>:

$$\underline{C} + \underline{O} = (CO) \tag{3.1}$$

$$\underline{C} + \frac{1}{2}(O_2) = (CO)$$
(3.2)

Durante a descarburação indireta, o carbono reage com óxidos metálicos:

$$x \underline{C} + \{MO_x\} = x (CO) + \underline{M}$$
(3.3)

Reações de descarburação indireta têm sido observadas tanto no refino de aços comuns quanto de aços inoxidáveis, em processos de injeção pelo fundo ou pelo topo dos conversores. No processo de injeção pelo fundo, o ferro e, no caso do aço inoxidável, o cromo, reagem com o oxigênio na região das ventaneiras. Experimentos com conversores AOD⁽¹¹⁾ mostraram que a taxa de oxidação dos vários elementos na fase metálica é proporcional à sua concentração e, com isso, ferro e cromo são os principais elementos oxidados na região das ventaneiras. Durante o transporte de óxidos metálicos através do metal em direção ao topo do conversor, a reação com o carbono dissolvido no metal (reação (3.3)) é possível. No caso do aço inoxidável, o

óxido de ferro pode também reagir com o cromo no banho metálico para formar um óxido mais estável:

$$3 \{FeO\} + 2 \underline{Cr} = \{Cr_2O_3\} + 3 \{Fe\}$$
(3.4)

Na figura 3.5, a reação de descarburação e outras possíveis reações em um conversor de sopro combinado são resumidas. Na zona de impacto do oxigênio com o metal, a descarburação direta (reação (3.1)) pode acontecer, o oxigênio pode dissolver-se no metal fundido e metais podem ser oxidados. No banho metálico, descarburação direta (reação (3.1)) e descarburação indireta (reação (3.3)) são possíveis. Na interface metal-escória, redução de alguns óxidos metálicos, para formação de óxidos mais estáveis (reação (3.4)) é possível. Na região do jato, ocorre a reação de pós-combustão.

Figura 3.5 – Algumas reações possíveis em um conversor com sopro combinado.⁽¹⁰⁾

O processo de refino no AOD é dividido em dois estágios distintos: descarburação – neste estágio é injetado oxigênio mais gás inerte no banho, com objetivo de promover a descarburação; redução – neste estágio só é injetado argônio e, são adicionados o

ferro-silício e fundentes, com o objetivo de fazer a dessulfuração do banho metálico e a redução dos óxidos metálicos contidos na escória (recuperação de metais nobres como Cr, Mn, Ni, Mo e Fe). Durante o estágio de descarburação, todas as reações têm importância. Durante o estágio de redução, somente as reações metal-escória têm importância.

Existem duas condições distintas de controle da reação de descarburação. Com um teor de carbono relativamente alto, a taxa de descarburação do aço inoxidável é alta, sendo independente da quantidade de carbono, mas dependente do fluxo de oxigênio. Com um teor de carbono relativamente baixo, a taxa de descarburação é pequena e dependente da concentração do carbono no banho. O teor crítico de carbono, onde ocorre a transição da cinética da reação de ordem 0 para primeira-ordem em relação ao carbono, é dependente do sistema⁽¹⁰⁾. Essas observações levam à conclusão de que para altos teores de carbono, a etapa controladora da descarburação é o transporte do oxigênio gasoso, e que com baixa concentração de carbono, a etapa controladora é o transporte de carbono na fase metálica⁽¹²⁾. Descarburação direta (reação (3.1)) é também possível pela reação com oxigênio dissolvido no metal líquido. O transporte do elemento em menor concentração é a etapa controladora da reação. Como conseqüência, o transporte do oxigênio na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte de carbono na fase metálica é o controlador da velocidade para altos teores de carbono, e o transporte do

A reação de descarburação indireta (reação (3.3)) pode acontecer através da fase gasosa. Este mecanismo é chamado de "ferritização"⁽¹⁰⁾. A reação é a combinação da reação:

$$\{MO_x\} + x (CO) = \underline{M} + x (CO_2)$$
(3.5)

na interface escória-gás, e da reação:

$$\underline{C} + (CO_2) = 2 (CO)$$
 (3.6)

na interface metal-gás. O transporte na fase metal ou escória pode ser o controlador da reação⁽¹⁰⁾. Descarburação indireta pode também acontecer como uma combinação da dissolução do óxido metálico na interface metal-escória:

$$\{MO_x\} = \underline{M} + x \underline{O} \tag{3.7}$$

e uma reação de descarburação na interface metal-gás:

$$\underline{\mathbf{C}} + \underline{\mathbf{O}} = (\mathbf{CO}) \tag{3.8}$$

Com relativamente alta concentração de carbono, o transporte do óxido metálico ou do oxigênio no metal é o controlador da velocidade da reação⁽¹⁰⁾. Com baixa concentração de carbono, a velocidade da reação é limitada pelo transporte de carbono. Como é aparente da reação (3.3), a velocidade da descarburação indireta também controla a velocidade de redução dos óxidos metálicos. Com alta concentração de carbono, a maior parte dos óxidos metálicos formados na zona de impacto ou na zona das ventaneiras vai ser reduzida, e a oxidação resultante, de metal, vai ser pequena. Com a diminuição da concentração de carbono no banho, a oxidação do metal aumenta⁽¹⁰⁾.

Outras reações além da descarburação podem também ocorrer na interface metalescória. A oxidação do metal ou dissolução dos óxidos metálicos pode ocorrer⁽¹⁰⁾:

$$\underline{M} + x \underline{O} = \{MO_x\}$$
(3.9)

assim como a redução do óxido metálico pela formação de um óxido mais estável:

$$\underline{X} + \{MO\} = \underline{M} + \{XO\}$$
(3.10)

Também, essas reações são controladas pelo transporte de massa⁽¹⁰⁾.

Como fica claro da cinética das reações, o transporte de material é normalmente a etapa controladora da velocidade para todas as reações durante o processo de refino. As reações químicas acontecendo nas interfaces, nas temperaturas características dos processos pirometalúrgicos, são rápidas⁽¹⁰⁾.

No item 3.3 será apresentada uma importante experiência realizada por Fruehan⁽¹¹⁾, que valida o mecanismo de reação demonstrado acima para as reações na região das

ventaneiras. Os resultados desta experiência foram utilizados como base para o desenvolvimento de diversos modelos matemáticos^(13,14,15).

3.3 Experiência de Descaburação Realizada por Fruehan⁽¹¹⁾

Na produção de aço inoxidável em conversores AOD, misturas de argônio e oxigênio gasosos são insuflados no banho metálico e o carbono é oxidado preferencialmente ao cromo. A reação geral básica descrevendo o processo pode ser representada por:

$$+ 3 C = 3 (CO) + 2 Cr$$
 (3.11)

Existem algumas reservas em relação a essa equação; por exemplo, o óxido de cromo pode ser Cr_3O_4 ou $FeCr_2O_4^{(11)}$. As curvas de equilíbrio para a reação acima nas temperaturas de 1600 e 1700 °C são mostradas na figura 3.6 para uma concentração de 18% de Cr e para a atividade do Cr_2O_3 igual a 1. Nessas condições, acima da curva o carbono vai ser oxidado, abaixo da curva o cromo vai ser oxidado. Contudo, as indicações são de que o equilíbrio não é alcançado no processo. Para obter uma melhor compreensão das reações e sua seqüência, experiências foram conduzidas por Fruehan⁽¹¹⁾, nas quais misturas de Ar-O₂ foram injetadas em um cadinho raso contendo uma liga fundida de Fe-Cr-C e as taxas de oxidação do cromo e do carbono foram medidas.

Os experimentos foram especialmente projetados para obter informações sobre a seqüência das reações e os mecanismos de oxidação do carbono e do cromo.

Na experiência de descarburação, 0,5% de carbono foi adicionado ao aço-inoxidável e as misturas de $Ar-O_2$ foram injetadas no metal fundido.

Figura 3.6 – Curvas de equilíbrio para a reação (11).⁽¹¹⁾

Os resultados da oxidação do carbono e do cromo em um aço inox por uma mistura 1:1 de oxigênio e argônio são mostrados na figura 3.7. Curvas com taxas similares, mas inclinações diferentes, foram obtidas com 100% de oxigênio e mistura de gases na relação 3:1. As concentrações de cromo e carbono decrescem de modo aproximadamente linear com o tempo. As taxas k_{Cr} e k_c são listadas na Tabela III.1 para as três composições de gás utilizadas. Para ambas as reações, a taxa é representada por:

$$\frac{d(\% i)}{dt} = -k_i \tag{3.12}$$

onde i indica cromo ou carbono. Aproximadamente 50% do oxigênio injetado é consumido na reação com Cr e C, o resto sai do sistema na forma gasosa ou de óxido de ferro.

Figura 3.7 – A taxa de oxidação do Cr e C para um aço inoxidável a 1610 $^{\circ}$ C usando uma mistura gasosa 50 % O₂ 50% Ar (1 I(CNTP)/min.).⁽¹¹⁾

O ₂	Ar	K _{Cr} x 10 ²	$K_C \times 10^2$	$\underline{k_{cr}}$
(l/min)	(l/min)	(% Cr/min)	(% C/min)	k_c
1.00	0	3.25	0.11	29.5
0.75	0.25	2.74	0.10	27.4
0.50	0.50	1.90	0.07	27.1

Tabela III.1 – Taxas de Oxidação do Cr e do C em uma Mistura Gasosa O₂:Ar.⁽¹¹⁾

Algumas importantes observações são feitas desse trabalho⁽¹¹⁾:

- A oxidação do cromo é consideravelmente mais rápida do que a do carbono (maior taxa);
- 2 A relação das taxas de oxidação (k_{cr}/k_c) é relativamente independente da composição do gás. A relação das taxas é aproximadamente 28, o que é similar às relações das concentrações de Cr e C (igual a 38);
- 3 A oxidação do cromo ocorreria sob condições diferentes das previstas caso o equilíbrio fosse alcançado. Por exemplo, se a mistura fosse 1:1 argônio-oxigênio, a oxidação do cromo não deveria ocorrer até que a concentração do carbono baixasse para 0,25%.

Dos resultados obtidos neste trabalho, é possível especular sobre a seqüência das reações que ocorrem durante o refino do aço-inoxidável com argônio-oxigênio. Na região das ventaneiras, uma quantidade significativa de oxigênio está presente na

forma gasosa, cromo, ferro e carbono são oxidados não importando qual a relação oxigênio-argônio. A oxidação do cromo é mais rápida (maior taxa) do que a do carbono, e a relação entre as taxas é aproximadamente igual à relação entre as concentrações.

Desta forma, as principais reações que ocorrem na zona das ventaneiras são a oxidação do cromo, ferro e carbono⁽¹¹⁾:

$$2 \underline{Cr} + \frac{3}{2} (O_2) = \langle Cr_2 O_3 \rangle$$
 (3.13)

$$\{Fe\} + \frac{1}{2}(O_2) = \{FeO\}$$
 (3.14)

$$\underline{C} + \frac{1}{2} (O_2) = (CO)$$
 (3.15)

A razão de o cromo ser oxidado muito mais rapidamente que o carbono está relacionada com o fato do teor de cromo no banho ser maior.⁽¹¹⁾

Quando as bolhas de gás abandonam a região das ventaneiras, elas contêm principalmente argônio com algum CO e partículas de Cr_2O_3 e FeO líquido na interface metal-gás. O FeO é rapidamente reduzido, principalmente pelo cromo e age apenas como um intermediário na reação global. À medida que a bolha de gás sobe no banho, o Cr_2O_3 oxida o carbono do banho. A reação (3.11) ocorre no sentido direto porque o CO formado é diluído no argônio. Sob as condições da experiência de Fruehan⁽¹¹⁾, as bolhas de gás não ficaram muito tempo no banho raso de metal, e não houve tempo suficiente para a reação (3.11) progredir significativamente. No processo de refino comercial com argônio-oxigênio, a profundidade do banho (150 cm) é muito maior do que na experiência de Fruehan⁽¹¹⁾ (7,5 cm) e o gás fica retido no banho tempo suficiente para a reação (3.11) ser completada. Pesquisas realizadas por Choulet⁽¹⁶⁾, indicam que o gás deve ser injetado profundamente no banho metálico para o processo ser efetivo.

Conclui-se a partir dos ensaios realizados por Fruehan⁽¹¹⁾ que, quando misturas gasosas de argônio-oxigênio são injetadas no aço-inoxidável contendo carbono, o cromo, e possivelmente o ferro, são oxidados principalmente na região das

ventaneiras. A maior parte do FeO formado é rapidamente reduzida pelo cromo. Á medida que as bolhas de argônio, contendo partículas de Cr_2O_3 , sobem no banho, o Cr_2O_3 oxida o carbono. A reação (3.11) é termodinamicamente favorável por causa da diluição do CO resultante do argônio.

3.4 Modelos Matemáticos

3.4.1 Definição

Inicialmente será apresentado o conceito de modelo matemático, aplicado à metalurgia, principalmente. Para Szekely⁽¹⁷⁾:"Um modelo matemático é um conjunto de equações, algébricas ou diferenciais, que são usadas para representar ou prever certos fenômenos. O termo modelo em oposição a lei, implica em que a relação empregada não deve ser exata e que as previsões derivadas dele são somente aproximadas.". Para Ashby⁽¹⁸⁾:"Um modelo é uma idealização. Sua relação com um problema real é como a do mapa do metrô de Londres para a malha real de linhas: uma grande simplificação, mas que conserva o essencial. O mapa não representa as distâncias e direções, mas apresenta elegantemente as conexões. Então, como em todo modelo de sucesso; ele distorce o que não é essencial, no sentido de capturar somente o que realmente importa. Na pior das hipóteses, um modelo é uma descrição concisa de um corpo de dados. Na melhor, captura a essência física do problema, isto ilustra os princípios que sublinham as observações chaves, e prediz comportamentos sob condições que não tenham sido estudadas."

3.4.2 Tipos de Modelos Matemáticos

Os modelos matemáticos podem ser divididos em tipos. Essa divisão se baseia no enfoque utilizado para desenvolver o modelo. Szekely⁽¹⁹⁾ classifica os modelos da seguinte maneira:

- (i) Modelos Fundamentalistas ou Mecanísticos;
- (ii) Modelos Empíricos ou tipo "Caixa-Preta";
- (iii) Modelos de Balanço Populacional;

(iv) Modelos Sistêmicos ou Entrada-Saída.

Os Modelos Fundamentalistas são baseados nas leis básicas da física e da química, tais como equilíbrio termodinâmico, cinética química, transporte de calor, mecânica dos fluídos, transporte de massa, processos de deformação e outros equivalentes. Esses modelos tendem a ter uma validade geral e, com alguma abstração, o escopo da aplicação pode freqüentemente ser expandido.

Os Modelos Empíricos são baseados na observação de um sistema particular, e não em fundamentos teóricos. Por vezes não existem alternativas para sua utilização (só podem ser utilizados no processo para o qual foram desenvolvidos), e muito cuidado deve ser tomado na extrapolação ou generalização das relações encontradas.

Os Modelos de Balanço Populacional tratam de parâmetros de distribuição, tais como distribuição do tamanho de partículas em um circuito de grelhas (peneiras), a coalescência de inclusões no processamento de aços, ou síntese da fase vapor de partículas finas de cerâmica. Esses tendem a ser uma classe especial dos Modelos Mecanisticos, porque são baseados em conceitos fundamentais.

Os Modelos Entrada-Saída satisfazem todas relações de conservação e encontram uma grande variedade de usos, incluindo análise de custos, programação, eliminação de "gargalos", e semelhantes. Às vezes tais modelos podem ser efetivamente combinados com uma abordagem mecanística.

Ashby⁽¹⁸⁾ classifica os modelos em dois tipos, com duas categorias. Segundo ele: "É útil distinguir os modelos físicos dos empíricos. Um modelo empírico é uma aproximação matemática ajustada a um conjunto de medidas experimentais e não tem o poder da previsão. Um modelo físico é baseado em leis estabelecidas da física e da química, das quais deriva a capacidade de previsão. O ideal é o modelo físico. Mas problemas com materiais são complexos: um tratamento totalmente físico pode não ser possível. Então o objetivo é estabelecer um trabalho base físico, no qual descrições empíricas do comportamento de algumas variáveis são incluídas. Existem bons precedentes disso. O modelamento de sólidos elásticos, por exemplo, é baseado nos princípios físicos do equilíbrio e compatibilidade – e no comportamento linear elástico quando as deformações são pequenas. Os números e valores do módulo elástico e sua dependência com a pressão e temperatura não podem ainda ser derivados dos princípios físicos com precisão satisfatória, eles devem ser inseridos empiricamente. O modelamento da cinética química ativada termicamente, usando a lei de Arrhenius, tem sua base em mecanismos estatísticos . A energia de ativação pode muitas vezes ser prevista a partir de um modelo molecular com precisão satisfatória; mas os valores das pré-exponenciais iludem os correntes modelamentos – e isso também precisa ser considerado empiricamente. É também útil distinguir os modelos estáticos dos dinâmicos. Um modelo estático é aquele que tem propriedades que não variam com o tempo; um modelo que tem dependência com o tempo é um modelo dinâmico. O interesse no comportamento de um material é normalmente dinâmico. Quando este é o caso, é importante identificar a origem da dependência com o tempo; mais comumente ele vem de um processo cinético (como viscosidade, ou difusão, ou taxa de reação química), ou de um fluxo de calor, ou inércia.".

3.5 Modelos Matemáticos para Descarburação de Aços Inoxidáveis

A seguir são revistos os principais modelos matemáticos desenvolvidos para refino do aço inoxidável em ordem cronológica.

3.5.1 Modelo de Assai e Szekely (1974)^(20,21)

No trabalho de Assai e Muchi⁽²⁰⁾ de desenvolvimento de um modelo unificado para os processos de produção de aço com oxigênio, foi proposto que, durante a injeção de oxigênio, as taxas de reações envolvendo cada elemento de liga podem ser calculadas pelo balanço entre duas forças motrizes:

- (i) Uma que força o sistema ao equilíbrio termodinâmico;
- E outra que, devido ao suprimento de oxigênio ao banho, afasta o sistema do equilíbrio.

Experiências realizadas por Tamamoto como indicado no trabalho de Szekely^(20,21) mostraram que a concentração de carbono e oxigênio no banho metálico é sempre superior à concentração de equilíbrio.

No modelo proposto por Assai e Szekely⁽²⁰⁾, as velocidades das reações envolvendo cada elemento (oxigênio, carbono, cromo e silício) são consideradas proporcionais à

diferença de concentração instantânea do elemento no banho e a concentração de equilíbrio deste mesmo elemento.

O equacionamento do modelo foi baseado nas reações e equações mostradas abaixo:

Reações:

$$\underline{\mathbf{C}} + \frac{1}{2} (\mathbf{O}_2) = (\mathbf{CO}) \tag{3.16}$$

$$2 \underline{Cr} + \frac{3}{2} (O_2) = \langle Cr_2 O_3 \rangle$$
 (3.17)

Equações Termodinâmicas:

$$K_1 = \frac{P_{co}}{a_c \cdot a_o} \tag{3.18}$$

$$K_{2} = \frac{a_{Cr_{2}O_{3}}}{a_{Cr}^{2} \cdot a_{O}^{3}}$$
(3.19)

Equações de Fluxo (Cinéticas):

$$\frac{d(\% O)}{dt} = I \cdot (\% O^{eq} - \% O^{b}) + \frac{S}{W_{Met}}$$
(3.20)

$$\frac{d(\% C)}{dt} = I \cdot (\% C^{eq} - \% C^{b})$$
(3.21)

$$\frac{d(\% Cr)}{dt} = I \cdot (\% Cr^{eq} - \% Cr^{b})$$
(3.22)

Onde:

S - taxa de injeção de oxigênio (Kg.s⁻¹);

I - condutância incorporando todas resistências a transferências (s⁻¹).

Equação para cálculo da pressão de CO:

$$P_{co} = \frac{N_{co}}{N_{o_2} + \frac{1}{2} \cdot N_{co} + N_{g.i.} - N_{o_2,Cr}} \cdot P_{Tot}$$
(3.23)

Onde:

N_i - fluxo molar do gás i para dentro da bolha de gás (mol.s⁻¹.kg_(Fe)⁻¹);

g.i. - gás inerte;

O₂, Cr - oxigênio que reagiu com o cromo.

As equações diferenciais do modelo foram resolvidas utilizando um método numérico. No procedimento adotado, conhecendo-se a concentração de oxigênio e gás inerte e sua vazão, e a concentração inicial dos elementos, a nova composição do banho é calculada após um dado intervalo de tempo.

A variação da temperatura do banho é calculada a partir da entalpia das reações. Em cada iteração, o valor da nova temperatura é utilizado e os fluxos são calculados. Alguns dos resultados obtidos por Assai e Szekely⁽²¹⁾ são mostrados na figura 3.8.

Figura 3.8 – Comparação dos resultados experimentais (Δ - temperatura, • - %Cr, \circ - %C, x- %Si) com os do modelo (curva), para uma corrida de 40t.⁽²¹⁾

O modelo desenvolvido por Assai e Szekely^(20,21) não propõe explicitamente nenhum mecanismo de como as reações de redução e oxidação ocorrem. Além disso, não explicita as três interfaces existentes (metal-escória, metal-gás e escória-gás) e como
se dão os fluxos entre elas. O modelo também é muito dependente do parâmetro I, que é um fator que é calculado de maneira empírica, variando de um conversor para outro. Com isso, o modelo só pode ser utilizado para um caso específico (o conversor para o qual os parâmetros foram ajustados) e as extrapolações feitas não têm respaldo teórico claro, podendo levar a conclusões erradas.

3.5.2 Modelo de Fruehan (1976)⁽¹³⁾

No processo AOD de produção de aços inoxidáveis, o carbono é oxidado preferencialmente em relação ao cromo, pois o CO formado é diluído no argônio. A reação global do processo pode ser escrita como:

$$+ 3 C = 2 Cr + 3 (CO)$$
 (3.24)

Várias investigações de laboratório e estudos de dados industriais indicaram que a reação (3.24) não alcança o equilíbrio e a oxidação do cromo ocorre mesmo em condições de níveis de carbono alto. Segundo Fruehan⁽¹³⁾, o processo de descarburação com AOD não é governado apenas pelo equilíbrio termodinâmico da reação acima, pois a seqüência das reações e a cinética devem ser consideradas.

A partir de suas experiências⁽¹¹⁾, discutidas no item 3.3, Fruehan construiu um modelo matemático assumindo que praticamente todo oxigênio injetado no conversor é consumido na oxidação do cromo, formando Cr_2O_3 . Este óxido, então, sobe juntamente com as bolhas de gás, reagindo com o carbono e sofrendo redução.

A taxa de reação é considerada controlada pelo transporte de massa do carbono do "bulk" (seio do banho metálico) até a interface metal-gás. Após algumas manipulações matemáticas, a taxa de descarburação foi avaliada pela equação abaixo⁽¹³⁾:

$$\frac{d(\% C)}{dt} = -\alpha \cdot \left[\% C^{b} + \frac{\left[\frac{\left[a_{Cr}\right]^{\frac{2}{3}} \cdot W_{Met} \cdot P_{Tot}}{K_{eq}^{\frac{1}{3}} \cdot M_{Fe} \cdot \gamma_{C}} \cdot \frac{d(\% C)}{dt}\right]}{\left(N_{Ar} - \frac{10^{-2} \cdot W_{Met}}{M_{C}} \cdot \frac{d(\% C)}{dt}\right)} \right]$$
(3.25)

Onde:

 α - parâmetro empírico proporcional à taxa de transporte de massa (s⁻¹); N_{Ar}: é o fluxo molar do gás argônio para o interior da bolha (mol.s⁻¹).

Esta equação é uma equação não linear, que pode ser resolvida numericamente, para um dado conjunto de parâmetros.

Deve ser notado que, se a taxa de oxidação do carbono pelo Cr_2O_3 for controlada por outra etapa que não a transferência de massa do C, a equação (3.25) não é válida.

No desenvolvimento da equação (3.25), foi assumido que sempre havia oxigênio disponível na forma de óxido de cromo para oxidar todo carbono que era transportado para a interface. Com altos teores de carbono, há uma força motriz para transferência do carbono para a interface suficientemente grande que, para as taxas de oxigênio normalmente utilizadas na injeção, falta oxigênio para oxidar todo carbono que chega à interface. Isto é, para altos teores de carbono, a taxa de descarburação via óxido de cromo é controlada principalmente pelo fluxo de oxigênio injetado. Neste caso a taxa de descarburação é dada por:

$$\frac{d(\% C)}{dt} = -\frac{2 \cdot M_{c} \cdot N_{o_2}}{10^{-2} \cdot W_{Met}}$$
(3.26)

Onde:

N₀₂ - fluxo molar de O₂ injetado no conversor (mol.s⁻¹).

Desta forma, a taxa de descarburação será dada pelo menor valor entre aqueles calculados pelas equações (25) e (26).

Como em outros processos pneumáticos, na produção de aço inoxidável com AOD acredita-se que muito do silício é oxidado nos estágios iniciais⁽¹³⁾. Portanto, para a formulação do balanço de massa do carbono e do cromo, o tempo de sopro é corrigido, deduzindo-se o tempo gasto na oxidação do silício. Com isso, o tempo de sopro, t nos procedimentos adotados, é a diferença t=t(atual)-t(Si), representado por⁽¹³⁾:

$$t = t(atual) - \frac{10^{-2} \cdot W_{Met} \cdot \Delta\% Si}{M_{Si} \cdot N_{O_2}}$$
(3.27)

Onde:

t - tempo de sopro efetivo para oxidação do cromo e carbono (s);

t(atual) - tempo de sopro total (s);

 Δ %Si - porcentagem de silício oxidado (%).

Na figura 3.9 são apresentados alguns resultados obtidos por Fruehan.

Figura 3.9 – Conteúdos de carbono calculados e observados em uma corrida do aço AISI 409, com relação O₂:Ar=3:1.⁽¹³⁾

Este modelo apresenta os mecanismos de reação de forma mais clara do que no modelo de Assai e Szekely^(20,21). No entanto, o modelo assume apenas dois tipos de mecanismos controladores para a reação, não considera os diversos tipos de interfaces entre fases e um número limitado de elementos é considerado em cada fase.

O modelo não apresenta detalhes da influência da temperatura, e não considera as reações de oxidação do ferro. Os resultados obtidos foram satisfatórios. No entanto, cuidados semelhantes aos mencionados sobre o modelo de Assai e Szekely^(20,21) devem ser tomados quanto a extrapolação dos resultados e utilização em outros processos.

3.5.3 Modelo de Roy e Robertson (1976)^(14,15)

Este modelo é baseado no modelo proposto por Fruehan⁽¹³⁾, que considera que a maior parte do oxigênio que entra no conversor reage com o cromo, formando Cr_2O_3 . Este óxido fica aderido à bolha de gás, que sobe no banho. Durante a subida, o óxido reage com o carbono dissolvido no banho, formando gás CO e cromo, que retorna ao banho metálico. Outra reação considerada é a do carbono com o oxigênio dissolvido no banho formando CO.

A reação de equilíbrio utilizada é:

$$+ 3 C = 2 Cr + 3 (CO)$$
 (3.28)

As equações de fluxo são:

$$N_{co} = \frac{\theta_{co} \cdot k_{co} \cdot \left(P_{co}^{eq} - P_{co}^{b}\right)}{R \cdot T \cdot P_{Tot}} + \frac{P_{co}^{eq}}{P_{Tot}} \cdot N_{co}$$
(3.29)

$$N_{Cr} = k_{Cr} \cdot \left(c_{Cr}^{eq} - c_{Cr}^{b} \right)$$
(3.30)

$$N_{c} = k_{c} \cdot \left(c_{c}^{eq} - c_{c}^{b} \right)$$
(3.31)

$$N_o = k_o \cdot \left(c_o^{eq} - c_o^b \right) \tag{3.32}$$

Onde:

 θ_{CO} - coeficiente de correção para altas taxas de transporte de massa de CO dentro da bolha gasosa (cm.s⁻¹).

Alguns resultados obtidos neste modelo são apresentados na tabela III.2.

Tabela III.2 – Resultados apresentados por Deb Roy e Robertson⁽¹⁵⁾ juntamente com dados experimentais.

Corrida	instante	Experim.	%C	%Cr	Temp.(K)	% Si
		/modelo			in or a second se	
n a chailteachta an		experimental	0,41	16.90	1923	506150065299
Å.		modelo	0.371	17.036	1919	0.115
	II	experimental	0.12	16.70	1998	625224029
		modelo	0.163	16.471	1997	0.071
	III	experimental	0.047	16.45	2003	*****
		modelo	0.083	16.311	1994	0.063
B	1	experimental	0.50	16.70	1948	5 20 9 78 9 9 9 9 9
		modelo	0,368	16.967	1931	0.154
	l II	experimental	0.19	16.55	1975	2822d#83
		modelo	0,184	16.340	1995	0,101
	III	experimental	0.027	15.91	2008	205382355
		modelo	0.038	16.117	2019	0.073
ų ynen yran ar an	1	experimental	0.23	17.35	1963	
	0.4	modeko	0.252	16,998	1973	0.082
	n n	experimental	0.13	17.10	1993	045 444 9 2 V 40
C		modelo	0.169	16.695	1998	0.065
	III	experimental	0.037	16.57	2013	P\$25448078
		moxielo	0.062	16.437	2005	0.054
2245 Travel Rocking of Long Control Statistics - Service	I	experimental	0.45	17.14	1933	5942645594
		modelo .	0.306	17.296	1952	0,116
	II	experimental	0.14	16.78	1983	
D		radelo	0.119	16.687	2032	0.072
	III.	cxperimental	0.047	16.31	1998	
		modelo	0.032	16.330	2037	0.036
dig til för delakade och det generale en skar en som e	I	experimental	0.41	16.11	1913	6448+9482
		modsko	0.356	16.424	1919	0.113
	II II	experimental	0.11	15.85	2003	+06400544
E		modelo	0,139	15.752	2008	0.053
	III	experimental	0.041	15.53	2013	*******
		modelo	0.048	15.452	2011	0.050
	Name and Address of the Address of t	experimental	0.42	17.53	1923	*22244621
		modelo	0.354	17.226	1934	0.116
	II	experimental	0.16	17.19	1993	6 52 95 3 76
		modelo	0,152	16.622	2011	0.073
	III	experimental	0.049	17.05	2023	8255665
		modelo	0.048	16.233	2012	0.056

Este modelo considera que todo oxigênio que entra no conversor forma óxidos e que a composição dos óxidos formados tem uma proporcionalidade com a fração molar do elemento dissolvido no metal líquido. Considera também que nenhum oxigênio na forma de gás sai do conversor. O modelo não considera as reações com o óxido de ferro, que sabidamente ocorrem. Um aspecto bastante importante considerado neste

modelo é que a composição do gás que sobe no conversor varia com a altura, devido à mudança da pressão total na bolha e devido aos fluxos de CO. Com isso, este modelo está muito mais próximo do que ocorre na prática do que o modelo proposto por Fruehan⁽¹³⁾.

Para poder incorporar a variação da composição do gás à medida que este sobe no conversor, e calcular os fluxos decorrentes das mudanças no gás, os autores dividiram o conversor em fatias. O programa de computador desenvolvido calcula os fluxos para todas as fatias e depois calcula os fluxos totais. O modelo considera que existe equilíbrio nas interfaces, e que o fluxo é promovido pela diferença de concentração entre os elementos na interface e no interior do metal líquido, ou do gás.

A reação com a escória que se acumula no topo do banho metálico é desprezada, pois, segundo os autores, sua área de reação (interface metal-escória) é pelo menos uma ordem de grandeza inferior à área da interface metal-gás e o erro, neste caso, é desprezível.

3.5.4 Modelo de Wijk e Sjöberg (1992)⁽²²⁾

O mecanismo de reação concebido pelos autores considera duas zonas: uma que engloba a zona do jato e a da escória, que fica em cima do metal líquido, chamada zona metal-óxido, e outra zona que fica em frente as ventaneiras, chamada de zona das ventaneiras. Como o jato é muito forte, provocando grande agitação, é considerado que não existem gradientes de concentração no metal ("bulk").

a) Zona das Ventaneiras

Nesta região é considerada a oxidação dos metais (C, Cr, Mn, Si e Fe) que entram em contato com o jato de gás inerte e oxigênio soprado no conversor, de acordo com as reações:

$$\underline{\mathbf{C}} + \frac{1}{2} \left(\mathbf{O}_2 \right) = (\mathbf{CO}) \tag{3.33}$$

$$x \underline{\mathsf{Me}} + \frac{y}{2} (\mathsf{O}_2) = \langle \mathsf{Me}_x \mathsf{O}_y \rangle$$
(3.34)

É assumido que nenhum oxigênio abandona o conversor na forma de gás.

Para determinar as quantidades de C, Cr, Mn, Si e Fe oxidadas na região das ventaneiras, uma expressão para a força motriz é desenvolvida. Para uma reação genérica entre oxigênio dissolvido e um elemento metálico dissolvido tem-se:

$$\underline{\mathsf{Me}} + \underline{\mathsf{O}} \to \langle \mathsf{MeO} \rangle \tag{3.35}$$

A condição de equilíbrio é dada pelas relações:

$$\Delta G_{Me}^{0} = -R \cdot T \cdot \ln K_{Me} = -R \cdot T \cdot \ln \frac{a_{MeO}}{a_{Me} \cdot a_{O}}$$
(3.36)

$$\Delta G_{Me} = \Delta G_{Me}^{0} + R \cdot T \cdot \ln \frac{a_{MeO}}{a_{Me} \cdot P_{O_2}^{\frac{1}{2}}} = R \cdot T \cdot \ln \frac{a_{MeO}}{K_{Me} \cdot a_{Me} \cdot P_{O_2}^{\frac{1}{2}}}$$
(3.37)

Reescrevendo as equações anteriores, uma força motriz hipotética, $\Delta G'_i$, para a oxidação de cada elemento na região das ventaneiras é definida como:

$$\Delta G_{i} = \exp\left(-\frac{\Delta G}{R.T}\right) = \frac{K \cdot a_{Me} \cdot P_{O_{2}}^{\frac{1}{2}}}{a_{MeO}}$$
(3.38)

Para determinar a oxidação do C, Cr, Mn, Si e Fe em frente à região das ventaneiras, uma força motriz total é introduzida como:

$$\Delta G_{Tot} = \Delta G_{c} + \Delta G_{Cr} + \Delta G_{Mn} + \Delta G_{Si} + \Delta G_{Fe}$$
(3.39)

Se a oxidação do C, Cr, Mn, Si, e Fe é assumida proporcional a sua parte da força motriz hipotética, o oxigênio injetado é distribuído entre o C, Cr, Mn, Si e Fe de acordo com:

$$O_{2}^{i} = \frac{\Delta G_{i}}{\Delta G_{Tot}} \cdot O_{2}^{Tot}$$
(3.40)

b) Zona Metal-Óxido

O monóxido de carbono formado em frente à região das ventaneiras é diluído pelo gás inerte, enquanto assume-se que os óxidos Cr₂O₃, MnO, SiO₂ e FeO formam uma camada de óxidos misturados, na interface metal-gás, que sobe junto com as bolhas de gás através do metal líquido. Durante a subida das bolhas de gás, na zona metal-óxido, o carbono se difunde para a interface gás-metal, reduzindo os óxidos.

O fluxo de C é expresso em função da diferença entre as atividades do carbono no interior do metal líquido e na interface.

A pressão total é definida como a soma da pressão atmosférica e a pressão metalostática. A pressão parcial do CO na bolha a uma altura h é dada por:

$$\boldsymbol{P}_{CO,h} = \left(\frac{\boldsymbol{n}_{CO,h}}{\boldsymbol{n}_{CO,h} + \boldsymbol{n}_{g.i.,h}}\right) \cdot \boldsymbol{P}_{Tot,h}$$
(3.41)

Onde:

 $n_{CO,h:}$: fluxo molar de CO na altura h; $n_{g.i.h:}$ fluxo molar de gás inerte na altura h; $P_{CO,h}$: pressão parcial de CO dentro da bolha na altura h.

À medida que a bolha sobe no metal líquido, a área de interface metal-gás aumenta. Assumindo que a bolha tem uma forma de calota esférica, a interface gás-metal tem uma área proporcional ao volume da bolha elevado a 2/3. A equação para a área de interface gás-metal fica, então, na seguinte forma:

$$A_{i,h} \propto \left(V_g \right)_{h}^{\frac{2}{3}} = \left(\frac{\left(n_{CO,h} + n_{g,i,h} \right) R.T}{P_{Tot,h}} \right)^{\frac{2}{3}}$$
(3.42)

Onde:

 ∞ - significa proporcionalidade;

A_{i,h} - área de interface gás-metal na altura h.

A equação final, que descreve a taxa de descarburação em função da altura h acima das ventaneiras, é:

$$\left(\frac{d(\%C)}{dh}\right)_{h} = -\alpha \cdot \left(\frac{P_{Tot,huy}}{P_{Tot,h}} \cdot \left(n_{CO,h} + n_{g.i,h}\right)T\right)^{\frac{2}{3}} \cdot a_{C}^{b} \cdot \left(1 - \frac{1}{P_{CO,eq}} \cdot \frac{n_{CO,h}}{\left(n_{CO,h} + n_{g.i,h}\right)} \cdot \left(P_{atm} + \rho_{m} \cdot g.(H-h)\right)\right)$$
(3.43)

Onde:

 α - coeficiente geral de transporte de massa (depende da geometria do conversor).

A quantidade de carbono removida na zona metal-óxido é dada pela integração da equação deduzida acima, em função da altura do conversor.

A figura 3.10 mostra os resultados obtidos pelos autores, onde os "x" são os dados experimentais para comparação.

Figura 3.10 – Resultados de temperatura, teor de carbono e eficiência de remoção de carbono (CRE) para uma corrida de 58 t.⁽²²⁾

Neste modelo⁽²²⁾ também é considerado que todo oxigênio que entra no conversor se transforma em óxido. No modelo de Roy e Robertson^(14,15) é considerado que a oxidação dos elementos de liga ocorre de maneira proporcional à concentração dos elementos no metal líquido. Porém, Wijk e Sjöberg⁽²²⁾ consideram que a oxidação ocorre em função de uma força motriz, que é diferente para cada elemento. Este conceito apesar de apresentar uma certa coerência, não apresenta um rigor em relação aos seus fundamentos termodinâmicos (não existe um desenvolvimento matemático que prove a sua validade).

Outra consideração importante feita pelos autores é a de que nenhum oxigênio sai do conversor na forma de gás. O oxigênio é utilizado para oxidar os elementos de liga, formar CO, ou dissolver-se no banho metálico.

Neste modelo, diferentemente dos outros, a área de interface não é considerada constante. O modelo considera que, à medida que a bolha sobe, a sua pressão total decresce, devido à diminuição da coluna de metal, e o seu tamanho aumenta. Além disso, os autores consideram (implicitamente) que a área de interface metal-gás é igual à área de interface de reação do carbono com o óxido. Com isso a bolha, em qualquer altura do banho, estará totalmente recoberta com uma camada de óxido. Esta hipótese aparenta não ser totalmente verdadeira, pois à medida que a bolha sobe, a quantidade de óxido diminui e a área superficial da bolha aumenta.

3.5.5 Modelo de Vercruyssen, Wollants, Roos, Robertson and Bertels (1993)⁽¹⁰⁾

O modelo considera os seguintes componentes na fase metal: ferro líquido, cálcio, cromo, manganês, níquel, silício, alumínio, carbono e oxigênio; na fase escória: FeO, CaO, Cr_2O_3 , MnO, NiO, SiO_2 e Al_2O_3, MgO e CaF_2; na fase gás: oxigênio, argônio e nitrogênio, CO e CO_2.

O modelo considera as fases metal-escória-gás e as três possíveis interfaces chamadas: metal-escória, metal-gás e escória-gás. Na interface metal-escória, a oxidação do metal pode ocorrer, mas também a dissolução do óxido de acordo com a reação (3.9) é possível. Uma combinação dessas reações resulta na reação (3.10), que é a redução de um óxido para formação de um outro óxido mais estável. Na

interface metal-gás, a descarburação direta pode ocorrer, seguindo as reações (3.6), (3.8) e:

$$\underline{\mathbf{C}} + 2 \, \underline{\mathbf{O}} = (\mathbf{CO}_2) \tag{3.44}$$

que é a combinação dessas duas reações. A reação (3.6) é parte da descarburação indireta pelo mecanismo de "ferritização". Também, a dissolução do oxigênio:

$$(O_2) = 2 \underline{O} \tag{3.45}$$

pode acontecer na interface metal-gás. Na interface escória-gás, os óxidos podem ser reduzidos seguindo a reação (3.5), a qual é também parte da descarburação indireta por "ferritização". Todas essas reações podem ocorrer durante o estágio de descarburação do processo de refino. Durante o estágio de redução somente as reações na interface metal-escória são importantes. Na figura 3.11, os vários componentes e reações consideradas nas três interfaces são representados esquematicamente.

Figura 3.11 – Componentes e suas reações consideradas no modelo.⁽¹⁰⁾

Com o modelo, a composição das três fases é calculada em função do tempo do processo. A evolução da concentração de um componente i pode ser expressa como:

$$\frac{dc_i}{dt} = \frac{N_i \cdot A}{V}$$
(3.46)

Os fluxos molares totais para os componentes nas fases metal e escória podem ser expressos como:

$$N_{i} = k_{i}^{metal, escoria} \cdot c_{metal, escoria} \cdot \left(x_{i}^{eq} - x_{i}^{b} \right)$$
(3.47)

e para componentes na fase gasosa:

$$N_{i} = k_{i}^{gas} \cdot c_{gas} \cdot (x_{i}^{eq} - x_{i}^{b}) + x_{i}^{eq} \cdot \sum_{j=1}^{m} N_{j}$$
(3.48)

Assume-se que o transporte de material em cada fase é a etapa controladora para todas as reações durante o processo de refino. Foi assumido que o equilíbrio químico é alcançado nas interfaces e, conseqüentemente:

$$\boldsymbol{\chi}_{i}^{o} = \boldsymbol{\chi}_{i}^{eq} \tag{3.49}$$

Experimentos feitos em um conversor BOF ("basic oxygen furnace") provaram que gradientes de concentração existem⁽¹⁰⁾. A concentração é, por exemplo, relacionada com a profundidade no conversor e a distância em relação à parede do conversor. Esta heterogeneidade, típica de conversores com sopro por cima, é parcialmente reduzida pela injeção de gás de agitação pelo fundo. Então é possível assumir que os gradientes de concentração na fase metal e na fase escória são desprezíveis e, com isso, a fase metal e a fase escória podem ser descritas por uma concentração no seu interior:

$$\chi_i^{\infty} = \chi_i^b \tag{3.50}$$

Com base nas equações 3.46 a 3.50, a composição das três fases, durante o processo de refino, pode ser calculada em função do tempo. Primeiro, o fluxo molar total de todos os componentes, nas três interfaces, é calculado. Posteriormente estes fluxos são utilizados para atualizar a composição das fases, assumindo-se uma área de interface de reação e um coeficiente de transferência de massa.

Os cálculos acima foram feitos por meio de um programa de computador, escrito em Turbo Pascal, e os resultados são mostrados na figura 3.12.

Figura 3.12 – Resultados obtidos para um processo típico de refino em conversores MRPA, evolução em função do tempo para: (a) cromo, (b) carbono, (c) silício, (d) temperatura (os pontos representam dados experimentais).⁽¹⁰⁾

3.5.6 Modelo de Ji-He e De-Ping Zhu (2000)^(23,24,25)

O modelo proposto por Ji-He e De-Ping Zhu, propõe uma abordagem um pouco diferente dos modelos vistos acima (3.5.1-3.5.5). Os autores contestam a hipótese da formação do óxido de cromo na região das ventaneiras e sua ascensão no banho metálico⁽¹¹⁾. Os autores propõem que o oxigênio que entra no conversor reage com o ferro líquido (matriz do aço inoxidável) imediatamente e que, logo em seguida, este óxido de ferro formado começa a reagir com os elementos dissolvidos no banho metálico. Este sistema, no início do processo, promove a oxidação do silício e do manganês preferencialmente, até que estes elementos atinjam o equilíbrio. Em seguida, o óxido de ferro formado, reagirá majoritariamente com o carbono e o cromo, e uma pequena parte do oxigênio deixará o banho na forma de CO₂.

O modelo distingue de forma clara as duas etapas controladoras da cinética da reação de descarburação. No início do processo, quando o teor de carbono no banho é alto, a taxa de descarburação é controlada pela taxa de injeção de oxigênio. Quando o teor de carbono alcança o ponto crítico⁽²³⁾, a taxa de descarburação passa a ser controlada pela transferência de massa do carbono.

O modelo considera a natureza não isotérmica do processo, que afeta diretamente o equilíbrio termodinâmico e a cinética das reações. As variações da composição química e da massa, no metal e na escória, são calculadas e consideradas no cálculo do balanço térmico.

No desenvolvimento do modelo foram feitas as seguintes considerações básicas:

- O oxigênio soprado no aço líquido oxida simultaneamente o carbono, cromo, silício e manganês, dissolvidos no aço, e o ferro como matriz. O óxido de ferro formado é também um oxidante para os outros elementos, sendo, essencialmente, um produto intermediário do processo de refino;
- (ii) Todas as possíveis reações de oxidação-redução ocorrem simultaneamente e estabelecem um equilíbrio combinado, em competição na interface líquido/gás (bolha);
- (iii) Com alto teor de carbono, a taxa de oxidação dos elementos é primeiramente relacionada à taxa de injeção de oxigênio; com baixo teor de

carbono, a taxa de descarburação é determinada principalmente pela transferência de massa do carbono no aço líquido;

- (iv) O oxigênio soprado que não é absorvido vai escapar do banho, reagindo com o CO, formando CO₂ no gás de exaustão, ao invés de se dissolver e acumular no aço;
- A composição do banho e a temperatura mudam continuamente e são uniformemente distribuídas, a qualquer momento durante todo processo de refino;
- (vi) A oxidação de outros elementos que não carbono, cromo, silício e manganês não foi considerada. O oxigênio consumido pelos outros elementos foi ignorado.

As reações propostas são:

$$\underline{C} + \frac{1}{2} (O_2) = (CO)$$
(3.51)

$$2 \underline{Cr} + \frac{3}{2} (O_2) = \{Cr_2O_3\}$$
(3.52)

$$\underline{Si} + (O_2) = \{SiO_2\}$$
 (3.53)

$$\underline{Mn} + \frac{1}{2} (O_2) = \{MnO\}$$
(3.54)

$$\{Fe\} + \frac{1}{2} (O_2) = \{FeO\}$$
 (3.55)

O sistema de reação é um só, composto de aço líquido e uma fase escória líquida com uma atmosfera contendo oxigênio. Os seguintes equilíbrios de reação independentes podem ser produzido do rearranjo das reações acima (3.51 a 3.54) com a reação (3.55):

$$\underline{C} + {FeO} = (CO) + {Fe}$$
 (3.56)

$$2 \underline{Cr} + 3 \{FeO\} = \{Cr_2O_3\} + 3 \{Fe\}$$
(3.57)

$$\underline{Si} + 2 \{FeO\} = \{SiO_2\} + 2 \{Fe\}$$
(3.58)

$$\underline{Mn} + {FeO} = {MnO} + {Fe}$$
(3.59)

Para as equações acima, pode-se definir as variações da energia livre:

$$\Delta G_c = \Delta G_c^0 + R \cdot T \cdot \ln \frac{P_{co}}{a_c \cdot a_{FeO}}$$
(3.60)

$$\Delta G_{cr} = \Delta G_{cr}^{0} + R \cdot T \cdot \ln \frac{a_{Cr_2 O_3}}{a_{Cr} \cdot a_{FeO}}$$
(3.61)

$$\Delta G_{si} = \Delta G_{si}^{0} + R \cdot T \cdot \ln \frac{a_{siO_2}}{a_{si} \cdot a_{FeO}^2}$$
(3.62)

$$\Delta G_{Mn} = \Delta G_{Mn}^{0} + R \cdot T \cdot \ln \frac{a_{MnO}}{a_{Mn} \cdot a_{FeO}}$$
(3.63)

Com altos teores de carbono, a perda média de carbono, cromo, silício e manganês, dissolvidos no aço, pela oxidação competitiva, é dada por:

$$-\frac{W_{Met}}{100 \cdot M_{C}} \cdot \frac{d(\% C)}{dt} = \frac{2.\eta \cdot Q_{o}}{22.4} \cdot \chi_{C}$$
(3.64)

$$-1.5 \cdot \frac{W_{Met}}{100 \cdot M_{Cr}} \cdot \frac{d(\% Cr)}{dt} = \frac{2.\eta \cdot Q_o}{22.4} \cdot \chi_{Cr}$$
(3.65)

$$-2 \cdot \frac{W_{Met}}{100 \cdot M_{Si}} \cdot \frac{d(\% Si)}{dt} = \frac{2.\eta \cdot Q_o}{22.4} \cdot \chi_{Si}$$
(3.66)

$$-\frac{W_{Met}}{100 \cdot M_{Mn}} \cdot \frac{d(\% Mn)}{dt} = \frac{2.\eta \cdot Q_o}{22,4} \cdot \chi_{Mn}$$
(3.67)

Onde:

 η - parâmetro para descontar a parte do oxigênio que vai oxidar ferro (-).

 χ_i - parâmetro de distribuição do oxigênio para o componente i (-). Este parâmetro pode ser calculado pela equação (3.68).

$$\chi_{i} = \frac{\Delta G_{i}}{\Delta G_{c} + \Delta G_{cr}/3 + \Delta G_{Mn} + \Delta G_{Si}/2}$$
(3.68)

Com baixo teor de carbono, a taxa de descarburação é dada pela seguinte equação:

$$-W_{Met} \cdot \frac{d(\% C)}{dt} = A \cdot \rho_{Met} \cdot k_{C} \cdot (\% C_{C}^{b} - \% C_{C}^{eq})$$
(3.69)

Para definir qual das duas equações (3.64 ou 3.69) que é válida para um determinado teor de carbono, a taxa de descarburação deve ser calculada pelas duas, a que fornecer o menor valor é a válida. Isto porque, com alto teor de carbono, o transporte de massa do carbono é rápido, e com isso a equação (3.69) vai fornecer um valor maior que o da equação (3.64). À medida que o teor de carbono diminui, a equação (3.69) vai fornecer um valor cada vez menor, até que a etapa controladora da taxa de descarburação passe a ser o transporte de massa do carbono. O ponto onde ocorre esta transição (teor de carbono) é chamado de carbono crítico.

A figura 3.13 apresenta alguns resultados obtidos por Ji-He e De-Ping Zhu⁽²⁴⁾.

Figura 3.13 – Previsão da evolução da composição química do banho para C, Cr, Si e Mn e, da temperatura. 1- adição de sucata e elementos de liga, 2- fim do primeiro período de sopro, 3- fim do segundo período de sopro, 4- fim do terceiro período de sopro. ⁽²⁴⁾

A abordagem utilizada por Ji-He e De-Ping Zhu⁽²⁴⁾ para distribuição do oxigênio em função da variação da energia livre de Gibbs das reações de oxidação é bastante similar a proposta por Wijk e Sjöberg⁽²²⁾. A principal diferença é que no modelo chinês, a oxidação do ferro é considerada constante (e definida por um parâmetro), o que não ocorre na prática, porque, sabidamente, a oxidação do ferro também é função da composição química do banho e da temperatura. Com isso, esta abordagem restringe a aplicação do modelo a condições bastante específicas.

4 METODOLOGIA

Neste capítulo será apresentada a metodologia para desenvolvimento do projeto de pesquisa. Este projeto é composto de três etapas principais: desenvolvimento do modelo matemático, coleta de dados industriais e simulação de corridas. Inicialmente são apresentadas as hipóteses para desenvolvimento e o equacionamento do modelo. Em seguida é detalhado o processo de coleta de dados industriais e, finalmente, a estratégia para simulação de corridas.

4.1 Desenvolvimento do Modelo Matemático

4.1.1 Hipóteses consideradas

As hipóteses consideradas na construção do modelo são as descritas abaixo:

- O modelo desenvolvido trata de maneira explícita as três interfaces possíveis de reação (metal-gás, metal-óxido e óxido-gás), e considera os principais componentes envolvidos no processo (C, Cr, Fe, Mn, Ni, Si, Al, O);
- Todo oxigênio injetado por baixo no conversor reage com o metal na região das ventaneiras, formando óxidos metálicos que sobem junto com as bolhas de gás;
- O oxigênio, que é injetado no conversor, reage imediatamente com o banho metálico, oxidando os metais de forma proporcional à fração molar, conforme experiência realizada por Fruehan⁽¹¹⁾;
- Durante a subida do gás, os óxidos são arrastados e reduzidos, ocorrendo formação de CO e CO₂ devido à reação com o carbono dissolvido no banho, causando um fluxo de carbono para a fase gasosa (bolhas) e conseqüente descarburação do banho;
- Considera-se que nas interfaces existe equilíbrio termodinâmico, ou seja, a etapa controladora das reações não pode ser a reação química, mas apenas a

transferência de massa em qualquer uma das fases. As reações químicas que ocorrem nas interfaces, a altas temperaturas, típicas de processos pirometalúrgicos, normalmente são rápidas⁽¹⁰⁾;

- Na subida das bolhas, o metal líquido não sofre modificação em sua composição durante um passo de tempo (t), mas a composição do gás, a pressão total do gás e a composição do óxido sofrem modificações (em função da altura no banho);
- A atividade dos óxidos é igual à sua concentração molar vezes o coeficiente de iteração, que exceto para o silício foi cnsiderado igual a 1. O valor do coeficiente de atividade pode ser alterado no modelo para que a oxidação dos metais seja equivalente à observada na prática (parâmetro de ajuste do modelo);
- Devido à intensa agitação do banho, a temperatura do metal líquido no conversor, assim como da escória e do gás, é considerada homogênea e igual para as três fases;
- Como a distribuição dos óxidos formados na região das ventaneiras não ocorre de forma aleatória e homogenea no banho, mas sim, preferencialmente em torno das bolhas de gás, temos que a concentração de oxigênio disponível para reação com o carbono do banho em torno das bolhas de gás não é o teor de oxigênio dissolvido no banho, mas sim, a concentração de oxigênio em equilíbrio com a fase óxido. As figuras 4.1 e 4.2 ilustram esta situação. Segundo Oeters⁽²⁶⁾ a região ao redor das bolhas é uma "fonte" de oxigênio, e sua concentração é muito alta, próxima ao valor do equilíbrio entre o óxido e o metal para uma distância pequena (o "bulk" visto pela bolha);
- O coeficiente de transporte de massa do oxigênio (k_o) é considerado igual a 0,025 m/s. Algumas ordens de grandeza maior do que seria no caso do fluxo normal do interior do banho metálico, em condição "infinitamente" distante, ou seja, devido à distância extremamente curta percorrida pelo oxigênio (fornecido pela camada de óxidos aderida a bolha de gás), o coeficiente de transporte de massa corresponde a esta situação.

Figura 4.1 – Desenho esquemático de um bolha com a camada de óxido formada em torno da mesma, com a representação dos fluxos de C e O.

Figura 4.2 – Desenho esquemático detalhando o fluxo de O e C para dentro de uma bolha de gás.

4.1.2 Equacionamento do Modelo Matemático

O modelo proposto neste trabalho foi construído objetivando reproduzir o mecanismo de reação real, considerando de forma explícita as fases e interfaces presentes no sistema (banho metálico), assim como, a dinâmica do processo de refino. Com isso, será possível extrapolar os resultados das simulações para condições não praticadas nos processos industriais correntes, permitindo o desenvolvimento de novas práticas e teste de novas matérias-primas.

No desenvolvimento do modelo proposto, algumas considerações utilizadas por outros autores serão utilizadas. Na região das ventaneiras e na região de impacto do jato da lança supersônica, o oxigênio é imediatamente transformado em óxido e gás. Esta abordagem é baseada na experiência realizada por Fruehan⁽¹¹⁾ e também foi utilizada por Fruehan⁽¹³⁾, Roy e Robertson^(14,15), e Wijk⁽²²⁾. As equações abaixo mostram como foi feita a conversão do oxigênio injetado no conversor:

$$O_2^i = \frac{x_i^b \cdot n_i \cdot O_2^{Tot}}{\sum x_i^b \cdot n_i}$$
(4.1)

Onde:

 n_i - fator estequiométrico para reação de oxidação (-).

Uma técnica fundamental e que não foi utilizada no modelo proposto por C. Vercruyssen, P. Wollants, J. R. Roos, C. Robertson e L. Bertels⁽¹⁰⁾, mas que será utilizada no presente trabalho, necessária para a simulação do processo de descarburação do conversor AOD, onde o sopro é por baixo, foi a divisão do conversor em fatias onde, em cada fatia, tem-se uma pressão total das bolhas de gás que é função da sua altura. No processo de simulação, o programa atualiza a composição do gás no interior das bolhas e do óxido que sobe junto com as bolhas para cada fatia. Considera-se o fluxo específico de cada fatia para atualização do óxido e do gás, enquanto que a composição do metal é determinada fazendo-se o somatório dos fluxos de todas as fatias em um intervalo de tempo ∆t, como ilustra a figura 4.3.

Figura 4.3 – Divisão do conversor em fatias.

Na interface metal-escória as seguintes reações são consideradas:

$$\underline{\mathsf{Me}} + \mathrm{y}\,\underline{\mathsf{O}} = \{\mathsf{MeO}_{\mathrm{y}}\}\tag{4.2}$$

para os elementos Fe,Cr, Ni, Mn, Si, Al.

Na interface metal-gás as seguintes reações são consideradas:

$$\underline{\mathbf{C}} + \underline{\mathbf{O}} = (\mathbf{CO}) \tag{4.3}$$

$$(O_2) = 2 \underline{O} \tag{4.4}$$

$$\underline{C} + (CO_2) = 2 (CO)$$
 (4.5)

Na interface escória-gás as seguintes reações são consideradas:

$$y (CO) + {MeO_y} = Me + y (CO_2)$$
 (4.6)

A evolução da concentração de um componente i em função do tempo de processo é expressa por:

$$\frac{dc_i}{dt} = \frac{N_i \cdot A}{V} \tag{4.7}$$

Ela pode ser calculada a partir da integração dos fluxos, em função do intervalo de tempo de cada iteração e da área de reação (interface) no interior de cada fatia. Temse, então, que:

$$n^{o}mols_{tempo}^{metal} = n^{o}mols_{tempo_anterior}^{metal} + \sum_{0}^{h_{total}} N_{i}^{met-esc} \cdot \Delta t \cdot A_{met-esc} + \sum_{0}^{h_{total}} N_{i}^{met-gas} \cdot \Delta t \cdot A_{met-gas}$$

$$(4.8)$$

$$n^{o}mols_{fatia}^{\delta xido} = n^{o}mols_{fatia_anterior}^{\delta xido} + N_{i}^{met-oxi} \cdot \Delta t \cdot A_{met-oxi} + N_{i}^{oxi-gas} \cdot \Delta t \cdot A_{oxi-gas}$$

$$n^{o}mols_{fatia}^{gas} = n^{o}mols_{fatia_anterior}^{gas} + N_{i}^{met-gas} \cdot \Delta t \cdot A_{met-gas} + N_{i}^{oxi-gas} \cdot \Delta t \cdot A_{oxi-gas}$$
(4.10)

Onde:

 $N_i^{met-oxi}$ - fluxo do elemento i na interface metal-óxido; $N_i^{met-gas}$ - fluxo do elemento i na interface metal-gás e $N_i^{oxi-gas}$ - fluxo do elemento i na interface óxido-gás.

Os fluxos molares totais para os componentes nas fases metal e escória podem ser expressos como:

$$N_{i} = k_{i}^{metal, escória} \cdot c_{metal, escória} \cdot \left(\chi_{i}^{eq} - \chi_{i}^{b} \right)$$
(4.11)

e para componentes na fase gasosa:

$$N_{i} = k_{i}^{gas} \cdot c_{gas} \cdot (x_{i}^{eq} - x_{i}^{b}) + x_{i}^{eq} \cdot \sum_{j=1}^{m} N_{j}$$
(4.12)

(4.9)

Assume-se que o transporte de material em cada fase é a etapa controladora para todas as reações durante o processo de refino e que, o equilíbrio químico é alcançado nas interfaces.

Devido à grande agitação do banho, a concentração na fase metal e na fase escória podem ser descritas por uma concentração no seu interior ("bulk"), igual a χ_i^b .

Com base nas equações (4.7), (4.11) e (4.12), a composição das três fases pode ser calculada em função do tempo durante o processo de refino. Primeiro, o fluxo molar total de todos os componentes nas três interfaces é calculado para cada fatia. Posteriormente, estes fluxos são utilizados para atualizar a composição das fases, assumindo-se uma área de interface de reação e um coeficiente de transferência de massa. Como resultado da conservação de massa, as seguintes relações existem:

$$N_o + \sum_M y \cdot N_{MO_y} = 0 \tag{4.13}$$

$$N_{M} + N_{MO_{n}} = 0 \tag{4.14}$$

A concentração de equilíbrio χ_i^{eq} , que aparece no fluxo molar total, pode ser expressa como uma função da atividade e dos coeficientes de atividade:

$$\boldsymbol{h}_{M}^{eq} = \boldsymbol{f}_{M} \cdot \boldsymbol{\%} \boldsymbol{M}^{eq}$$
(4.15)

$$a_{MO_y}^{eq} = \gamma_{MO_y} \cdot \chi_{MO_y}^{eq}$$
(4.16)

e as atividades de equilíbrio a_i^{eq} e h_i^{eq} são relacionadas pela constante de equilíbrio:

$$K_{MO_{y}}^{eq} = \frac{a_{MO_{y}}^{eq}}{h_{M}^{eq} \cdot (h_{Q}^{eq})^{y}}$$
(4.17)

Substituindo as equações (4.14) a (4.17) na equação (4.13) obtém-se uma equação com uma incógnita, que pode ser resolvida numericamente, pois a incógnita não está

isolada. As equações descrevendo o fluxo nas interfaces metal-óxido e óxido-gás são reduzidas a uma equação com uma variável. E as equações descrevendo o fluxo na interface metal-gás são reduzidas a um conjunto de duas equações com duas variáveis.

Os fluxos de um componente nas três interfaces podem então ser somados. O intervalo de tempo At é calculado de maneira que a concentração de nenhum dos componentes varie muito em um intervalo de tempo.

Conhecendo a concentração em um instante t₁, com os fluxos calculados e o tempo do intervalo de tempo, a concentração no tempo t₂ pode ser calculada usando a equação (4.7).

Nos apêndices I, II e III são apresentados de forma detalhada os desenvolvimentos matemáticos para se obter as equações que descrevem os fluxos entre cada interface. Nos apêndices de IV a IX são apresentados os dados termodinâmicos e o método de cálculo do balanço térmico utilizados no modelo desenvolvido.

4.2 Coleta de dados industriais

Min

Para analisar a adequação do modelo matemático proposto foram coletados dados de corridas produzidas no conversor AOD-L de 80t da Acesita S.A.. Foram coletados dados de 8 corridas, sendo 3 do aço austenítico P304A e 5 do aço ferrítico P430A. Estes dois tipos de aço representam a grande parcela dos aços inoxidáveis produzidos e, permitem avaliar o efeito da presença do níquel e manganês no processo de refino. A tabela IV.1 apresenta a composição química destes dois tipos de aço.

		3 1				
Aço	Teor	C (%)	Si (%)	Mn (%)	Cr (%)	Ni (%
D204A	Max	0.065	0.70	2.00	19.00	9.00
P304A	Min	0.020	0.20	0.80	18.00	8.00
B420A	Max	0.550	0.60	0.60	17.50	0.50
P430A						

0.10

0.10

16.00

Tabela IV.1 – Composição guímica dos acos P304A e P430A

0.200

%

0.00

A figura 4.4 mostra o AOD-L de 80t da Acesita S.A. e a figura 4.5 mostra esquematicamente a seqüência do processo de refino do aço inoxidável no conversor AOD-L, destacando o momento de adição das principais ligas, os parâmetros de sopro para cada fase e as paradas para amostragem.

Figura 4.4 – Conversor AOD-L de 80t da Acesita S.A..

Figura 4.5 – Esquema do processo de refino do aço inoxidável no conversor AOD-L da Acesita S.A..

Os dados necessários para fazer as simulações das corridas são: massa de metal, composição química do banho metálico, composição e peso das adições realizadas, o padrão de sopro utilizado (vazão, volume e tipo de gás) e os resultados de composição química e temperatura amostrados durante o processo. Estes dados são coletados de forma automática pelo sistema de automação do AOD-L da Acesita, e são registrados nas "Folhas de Corrida". No apêndice X é apresentada uma "Folha de Corrida".

O sistema de amostragem utilizado pela Acesita consiste em um amostrador de sucção para a amostra inicial do processo (pré-metal) e amostradores de imersão para as demais amostras. As amostras são analisadas no laboratório químico próprio, utilizando o equipamento Leco para carbono e Raio-X para demais elementos químicos.

4.3 Estratégia de simulação

Para a simulação dos processos de descarburação, um programa de computador foi desenvolvido. A linguagem utilizada foi o C++ e o compilador o C++ Builder v. 4.0 da Borland. A metodologia de resolução segue o esquema da figura 4.6.

Os cálculos foram baseados em dados comuns a todos os processos de refino (ex: dados termodinâmicos) e dados específicos das corridas (ex: massa e composição).

Figura 4.6 – Fluxograma do programa para simulação do processo.

5 RESULTADOS E DISCUSSÃO

Neste capítulo são apresentados os resultados das simulações utilizando o modelo matemático desenvolvido. Inicialmente é feita uma análise dos resultados do modelo em função das principais variáveis de processo. Em seguida os resultados de simulações são comparados com os resultados reais de corridas produzidas na Acesita S.A.. E por último é feita uma discussão dos resultados e influência de alguns parâmetros do modelo, utilisados para ajustar as condições de simulação às da prática.

5.1 Simulação das principais variáveis de processo

Para verificar a coerência dos resultados obtidos através das simulações do modelo matemático desenvolvido, algumas simulações foram realizadas, variando-se alguns parâmetros de processo. A tabela V.1 apresenta as principais características das corridas simuladas. Em alguns casos os valores são alterados justamente para verificar o impacto da alteração.

Massa inicial	75000	kg	
Temperatura inicial	1700	C	
Teor C inicial	0.45	%	
Teor Cr inicial	16.00	%	
Teor O inicial	0.06	%	
k _{Metais}	0.00053	m/s	
k _{Óxidos}	0.00015	m/s	
k _{Gases}	0.13	m/s	
k _o	0.025	m/s	
Vazão O ₂	30	Nm ³ /min	
Vazão N ₂	60	Nm³/min	
Área int Met-Gás	9	m²/m³	
Área int Met-Óxi	0.1 + 0.05 * (Num. Mols óxido)	m²/fatia	
Área int Óxi-Gás	0.1 + 0.05 * (Num. Mols óxido)	m²/fatia	

Tabela V.1 - Dados utilizados para as simulações

Altura conversor	1.6	m
Número de fatias	10	unidades

Os valores utizados na tabela acima são valores encontrados na literatura⁽¹³⁾ e da prática industrial, com exceção dos valores das áreas de interface das fases Metal-Óxido e Óxido-Gás e do coeficiente de transporte de massa do oxigênio. Para as interfaces os valores foram obtidos através de um ajuste empírico (são parâmetros de ajuste do modelo) e a sua influência no processo de descarburação é discutida abaixo. Para o coeficiente de transporte de massa do oxigênio, ele também foi ajustado de maneira empírica, e têm valor algumas ordens de grandeza maior do que os valores tabelados na literatura. O motivo desta "correção" é devido à distância percorrida pelo oxigênio para reagir com o carbono ser muito pequena, conforme discutido em 4.1.1.

5.1.1 Temperatura

A figura 5.1 apresenta o efeito da temperatura (demais parâmetros inalterados) sobre a taxa de descarburação. A simulação mostra que quanto maior a temperatura, maior vai ser a taxa de descarburação, ou seja, para uma mesma quantidade de oxigênio soprado, é possível obter-se teores mais baixos de carbono no fim de sopro, com temperaturas maiores. Este resultado é coerente com os encontrados na bibliografia^(13,14) e com a prática industrial. Apesar da reação do carbono com o oxigênio ser "favorecida" pelo decréscimo da temperatura, com o aumento da temperatura, a quantidade de oxigênio dissolvido no banho aumenta, sendo este efeito preponderante no sentido de aumentar a taxa de descarburação. No item 5.1.5 é apresentada a evolução do oxigênio dissolvido no banho em função da temperatura.

Figura 5.1 – Curvas de descarburação em função da temperatura.

5.1.2 Relação O2:gás inerte

A figura 5.2 apresenta o efeito da diluição do oxigênio com gás inerte sobre a taxa de descarburação (relação O₂:N₂). As simulações mostram que a descarburação é favorecida com o aumento da diluição ou seja, para uma mesma quantidade de oxigênio soprado, é possível obter-se teores mais baixos de carbono no fim de sopro, com o aumento da diluição. Este resultado é coerente com os encontrados na bibliografia^(13,14) e com a prática industrial. O aumento da quantidade de gás inerte permite se conseguir uma maior quantidade de CO formado para obter-se uma mesma concentração de CO, que é o importante para o equilíbrio termodinâmico. Ou seja, o gás inerte dilui o CO, reduzindo sua pressão parcial. Normalmente o uso de gás inerte é limitado devido ao seu custo, disponibilidade e também pelo efeito "refrigerante" que age com sentido inverso na taxa de descarburação.

Figura 5.2 – Curvas de descarburação em função da diluição do oxigênio com gás inerte.

5.1.3 Composição química

As figuras 5.3 e 5.4 apresentam o efeito da composição química do banho metálico sobre a taxa de descarburação. As simulações mostram que a descarburação é favorecida com o aumento do teor de níquel, ou seja, para uma mesma quantidade de oxigênio soprado, é possível obter-se teores mais baixos de carbono no fim de sopro, com o aumento do teor de níquel. Já para o cromo o efeito é inverso, o aumento do teor de níquel. Já para o cromo o efeito é inverso, o aumento do teor de cromo prejudica a descarburação. Este resultado é coerente com os encontrados na bibliografia^(13,14) e com a prática industrial. O níquel apresenta pouca afinidade com o oxigênio, e a sua interação com o carbono aumenta a atividade do mesmo. Já o cromo tem grande afinidade com o oxigênio e compete com o carbono pelo mesmo, além de sua interação com o carbono baixar a atividade do carbono. O efeito do teor de cromo sobre a taxa de descarburação é mais forte do que o do níquel. O aumento do teor de ambos tem um efeito que tende a um vetor nulo, por exemplo, o aço da série 304 (austenítico) tem em torno de 2% a mais de Cr que o da série 430, mais têm 8% de níquel, com isso, a taxa de descarburação de ambos é muito próxima.

Figura 5.3 – Curvas de descarburação em função do teor de Ni.

Figura 5.4 – Curvas de descarburação em função do teor de Cr.

5.1.4 Evolução da composição da fase gasosa em função da altura

A figura 5.5 apresenta a evolução da composição da fase gasosa em função da altura das "bolhas" para um determinado instante da descarburação. Observa-se que a quantidade de CO aumenta à medida que as "bolhas" sobem. Isto é decorrente da redução da pressão exercida pela coluna de metal sobre a fase gás à medida que a "bolha" sobe e ao fluxo de CO, decorrente da reação de descarburação. A quantidade de CO₂ formada é muito pequena, alguns modelos tratados na revisão bibliográfica deste trabalho não tratam deste gás, o que é uma simplificação válida, pois o erro introduzido ao ignorá-lo é desprezível.

Figura 5.5 – Evolução da composição da fase gasosa em função da altura do banho em um instante t= da descarburação.

5.1.5 Teor de oxigênio dissolvido no banho

A figura 5.6 apresenta a evolução do teor de oxigênio dissolvido no banho ao longo da descarburação em função da temperatura. Observa-se que o teor de oxigênio sobe rapidamente, depois se estabiliza e cai lentamente. Isto ocorre, pois inicialmente ele se difunde no banho, procurando o valor de equilíbrio com os óxidos formados, depois, à medida que os teores de carbono e cromo do banho caem, o teor do equilíbrio abaixa e o teor de oxigênio também cai. Observa-se que o teor do oxigênio dissolvido no banho é bastante dependente da temperatura, à medida que a temperatura aumenta, tem-se mais oxigênio dissolvido no banho. Isto decorre também do equilíbrio termodinâmico entre os óxidos e o oxigênio dissolvido (MeO_x \rightarrow <u>Me</u> + x <u>O</u>). Nesta simulação a relação oxigênio:gás inerte foi mantida constante, em corridas reais, ocorre aumento da diluição com o tempo e a queda do teor de oxigênio dissolvido é mais forte.

Figura 5.6 – Evolução do teor de oxigênio dissolvido no banho em função da temperatura.
5.1.6 Eficiência de remoção de carbono (CRE) para um aço da série 430

A figura 5.7 apresenta a curva da eficiência de remoção de carbono (CRE – carbon removal efficiency calculado conforme equação (5.1)) para um aço P430A (composição conforme tabela IV.1), obtida através de simulação utilizando parâmetros padrões da Acesita. São apresentados os valores de CRE instantâneos e os médios de cada fase. No caso da utilização de modelos matemáticos balísticos, normalmente são utilizados os CRE médios de cada fase para o cálculo do volume de oxigênio a ser soprado.

$$CRE = \frac{O_{2}^{C}}{O_{2}^{Tot} - O_{2}^{Si} - O_{2}^{Dissolução}}$$
(5.1)

Figura 5.7 – Curva com a evolução do CRE para um aço da série 430.

5.2 Parâmetros do modelo

O modelo tem alguns parâmetros para os quais são difíceis de se obter valores precisos, pois dependem de condições específicas de cada processo. Estes parâmetros foram ajustados para que o modelo fornecesse resultados os mais

próximos possíveis aos obtidos experimentalmente. Com isso, as áreas de interface de reação, o coeficiente de transporte de massa do oxigênio dissolvido no banho metálico e o coeficeinte de atividade dos óxidos foram utilizados como parâmetros de ajuste do modelo.

5.2.1 Áreas de interface de reação

Existem três áreas de interface de reação, referentes as três interfaces existentes no sistema, interface metal-gás, interface metal-óxido e interface óxido-gás. As figuras 5.8, 5.9 e 5.10 mostram o efeito da variação dos valores destas áreas sobre a curva de descarburação. Como mostrado pelas figuras, o valor da área da interface metal-gás é o mais importante para ajustar a curva de descarburação. As áreas das outras duas interfaces quase não têm influência sobre a curva de descarburação, afetando apenas a velocidade com que o oxigênio se dissolve no banho metálico.

Figura 5.8 – Curva de descarburação em função da área de reação interface Metal-Gás (valores de 6, 9 e 12 m^2/m^3).

Figura 5.9 – Curva de descarburação em função da área de reação interface Metal-Óxido (valores de ((0.04, 0.07 ou 0.10)*Num mol óxidos) m²).

Figura 5.10 – Curva de descarburação em função da área de reação interface Óxido-Gás (valores de ((0.04, 0.07 ou 0.10)*Num mol óxidos) m²).

5.2.2 Coeficiente de transporte de massa do oxigênio dissolvido no banho

A variação do coeficiente de transporte de massa do oxigênio dissolvido no banho metálico praticamente não influencia a taxa de descarburação; a principal conseqüência da sua alteração é a mudança da velocidade com que o teor de oxigênio dissolvido aumenta no banho, conforme mostrado pela figura 5.11.

Figura 5.11 – Curva de descarburação em função do coeficiente de transporte de massa do oxigênio dissolvido no metal (valores de 0,02, 0,025 e 0,03 m/s).

5.3 Resultados das simulações de corridas de aços da série 430

Abaixo são apresentados os resultados da simulação de corridas reais produzidas na Acesita. Os gráficos mostram a evolução do teor de carbono em função do tempo, destacando os resultados obtidos nas amostragens. Em alguns casos são apresentadas as curvas geradas pelo modelo de Carbometria, que utiliza valores medidos no sistema de desempoeiramento (vazão e composição dos gases) para prever o teor de carbono no banho. Estes valores obtidos pelo modelo de Carbometria não serão discutidos em detalhe, mas é mais uma referência de comparação dos resultados obtidos. Para a simulação das corridas os dados de processo foram inseridos no modelo, de maneira a refletir exatamente todas as etapas e condições reais de processo. As principais informações fornecidas ao modelo foram: massa de metal, composição química do banho metálico, massa de escória, composição e peso das adições realizadas, o padrão de sopro utilizado (vazão, volume e tipo de gás) e a temperatura inicial do banho, estes dados são apresentados no apêndice XI.

Figura 5.12 – Resultado da simulação da corrida 652683D.

Figura 5.13 – Resultado da simulação da corrida 652755J.

Figura 5.14 – Resultado da simulação da corrida 652758D.

Corrida 652758D

Figura 5.15 - Resultado da simulação da corrida 652759B.

Corrida 653379H

Figura 5.16 – Resultado da simulação da corrida 653379H.

5.4 Resultados das simulações de corridas de aços da série 304

Os resultados das corridas de aços da série 304 seguem a mesma abordagem dos da série 430. Os dados utilizados para simulação são apresentados no apêndice XI.

Corrida 653079D

0.45 1775 0.4 1750 0.35 1725 0.3 Temperatura (C) Teor de C (%) C_Carbometria 1700 0.25 C_Modelo * Amostra C 0.2 T_Modelo 1675 imes Amostra T 0.15 1650 Ж 0.1 1625 0.05 0 1600 0 200 400 600 800 1000 Tempo (s)

Figura 5.17 – Resultado da simulação da corrida 653079D.

Figura 5.18 - Resultado da simulação da corrida 653196F.

Figura 5.19 – Resultado da simulação da corrida 653440H.

Corrida 653440H

Corrida	Identificação	Tempo (s)	Exper.	Modelo	Difer.
652683D	Amostra teor de C intermediária (%)	684	0,120	0,086	0.034
	Amostra Temperatura intermediária (°C)	684	1750	1753	-3
	Amostra teor de C final (%)	1261	0,048	0,027	0.021
652755J	Amostra teor de C intermediária (%)	585	0,109	0,136	-0.027
	Amostra Temperatura intermediária (°C)	585	1697	1700	-3
	Amostra teor de C final (%)	1178	0,038	0,044	-0.006
652758D	Amostra teor de C intermediária (%)	578	0,119	0,109	0.01
	Amostra Temperatura intermediária (°C)	578	1725	1736	-11
	Amostra teor de C final (%)	1186	0,033	0,033	0
652759B	Amostra teor de C intermediária (%)	515	0,128	0,126	0.002
	Amostra Temperatura intermediária (°C)	515	1725	1725	0
	Amostra teor de C final (%)	1168	0,037	0,035	0.002
653379H	Amostra teor de C intermediária (%)	637	0,127	0,112	0.015
	Amostra Temperatura intermediária (°C)	637	1730	1724	6
	Amostra teor de C final (%)	1194	0,037	0,039	-0.002
653079D	Amostra teor de C intermediária (%)	730	0,105	0,080	0.025
	Amostra Temperatura intermediária (°C)	730	1734	1743	-9
	Amostra teor de C final (%)	1030	0,040	0,041	-0.001
653196F	Amostra teor de C intermediária (%)	760	0,092	0,106	-0.014
	Amostra Temperatura intermediária (°C)	760	1734	1717	17
	Amostra teor de C final (%)	1270	0,040	0,041	-0.001
653440H	Amostra teor de C intermediária (%)	728	0,128	0,089	0.039
	Amostra Temperatura intermediária (°C)	728	1725	1744	-19
	Amostra teor de C final (%)	1455	0,037	0,022	0.015

Tabela V.2 – Resumo dos resultados

5.5 Discussão dos resultados

Os resultados fornecidos pelo modelo foram coerentes aos encontrados nas referências bibliográficas e com a prática operacional. As simulações das corridas realizadas na Aciaria da Acesita comprovaram que os resultados fornecidos com o modelo apresentam boa correlação com os dados obtidos experimentalmente. Considerando-se as variações de processo típicas do ambiente industrial, pode considerar-se bons os resultados obtidos.

Os desvios encontrados em relação ao teor de carbono previsto pelo modelo e os resultados experimentais foram inferiores a \pm 0,04% para teores na faixa de 0,10%-0,12% de carbono e inferiores a \pm 0,015% para teores de carbono na faixa de 0,05%-0,25%. Os desvios encontrados em relação à temperatura foram inferiores a 19 °C.

Para os aços da série 430 o modelo apresentou melhor precisão do que para os da série 304. Em ambos os casos observaram-se desvios positivos e negativos.

Os parâmetros de ajuste utilizados para as duas séries de aços foram iguais, indicando que o próprio modelo contempla através dos cálculos padrões as diferenças encontradas nestes dois tipos de aço.

Apesar das curvas com a evolução do teor de carbono propotas pelo modelo não serem exatamente coincidentes com as propostas pelo modelo de Carbometria, observa-se que a tendência das duas é muito parecida, o que é uma evidência positiva da capacidade do modelo de descrever de forma apropriada o processo de descarburação (as curvas do modelo de Carbometrias são correlações lineares entre a taxa de descarburação e o teor de carbono do banho, tendo maior precisão para os pontos próximos aos teores de amostragem).

Para as simulações realizadas observou-se um maior desvio para as corridas 652683D e 653440H. Em ambas o modelo previu um teor de carbono bem abaixo dos valores experimentais. Este fato pode ser explicado por uma provável variação da basicidade da escória, que quando baixa, aumenta a capacidade do óxido de cromo se diluir, baixando sua atividade e favorecendo uma oxidação preferencial do cromo em relação ao carbono. Este fenômeno não é capturado pelo modelo, pois não existe um modelamento do efeito da basicidade do banho sobre a atividade do óxido de cromo.

O principal parâmetro de ajuste do modelo é a área de interface Metal-Gás. Conforme mostrado nas figuras 5.10 e 5.11, as áreas de interface Metal-Óxido e Óxido-Gás praticamente não interferam nas taxas de descarburação (foi adotado o valor de 0,007 . nº mols de óxido m²). Este fato mostra que é bastante razoável a hipótese adotada por muitos autores^(13,14,22,23) de modelar o processo de refino a partir da reação de redução do óxido de cromo pelo carbono, desprezando-se a dissolução do oxigênio no banho.

O valor adotado para a área de interface Metal-Gás, e que melhor se ajustou aos resultados experimentais foi de 9 m^2/m^3 . Para comparar este valor ao valor utilizado

por outros autores devemos multiplica-lo pelo coeficiente de transporte de massa do carbono ($A_{Met-Gás}.k_C$). No presente modelo, $A_{Met-Gás}.k_C = 9$. 0,00053 = 0,00477 s⁻¹. O valor utilisado por Fruehan⁽¹³⁾ para $A_{Met-Gás}.k_C$ é 0,0015 s⁻¹ e por Robertson^(14,15) 0,0047 s⁻¹, que é muito próximo ao valor adotado neste modelo, estando todos dentro da mesma ordem de grandeza.

Para o ajuste do balanço térmico, como a principal perda térmica é por radiação, o principal parâmetro de ajuste é a emissividade da escória (apêndice VIII). O valor utilisado para ajustar o balanço térmico foi de 0,75. Geiger⁽²⁹⁾ descreve que a emissividade varia de 0,76 a 0,82, para escórias contendo sílica, alumina e óxido de ferro.

6 CONCLUSÕES

Foi desenvolvido um novo modelo matemático, com algumas características que o diferem de outros modelos anteriormente propostos. As principais características deste modelo, que o diferem dos demais são a aplicação simultânea das seguintes características: o tratamento explícito das 3 interfaces possíveis de reação, o tratamento do oxigênio e do dióxido de carbono na fase gás, a divisão do conversor em "fatias" e a consideração da resistência ao transporte de massa para todos os elementos, e não só do carbono, como é comum na maioria dos modelos.

O modelo respondeu de maneira satisfatória às simulações de diferentes condições de processo, como, variação de temperatura, variação da diluição do oxigênio com gás inerte e variação da composição química do banho.

Os principais parâmetros de ajuste do modelo foram identificados como sendo a área de interface Metal-Gás para a taxa de descarburação, e a emissividade da escória para o balanço térmico. Os valores adotados para estes parâmetros foram de 9 m²/^{m3} e 0,75, respectivamente. Estes valores são compatíveis com as faixas encontradas nas referências bliobliográficas^(13,14).

Os resultados das simulações de corridas da Acesita mostraram que o modelo permite boa previsibilidade da evolução do teor de carbono e da temperatura do banho. A precisão do modelo pode ser considerada boa, compatível / melhor que a dos modelos utilisados atualmente na industria. O erro médio encontrado para as corridas simuladas foi de 0,02% para a amostra intermediária de carbono (%C entre 0,12 e 0,10%), 8,5 °C para a amostra intermediária de temperatura e de 0,006% para a amostra final de carbono (%C entre 0,050 e 0,025%).

7 SUGESTÕES PARA TRABALHOS FUTUROS

Neste trabalho foi tratado o modelamento do refino do aço inoxidável para banhos metálicos com teores de carbono inferiores a 0.4%. O autor sugere que trabalhos futuros abordem o modelamento da descarburação de banhos metálicos com altos teores de carbono (%C > 1%). Com altos teores de carbono, a camada de óxido formada na reação do oxigênio com o metal podem se extinguir durante a ascenção das bolhas de gás (reação com o carbono) no banho metálico, e algumas das condições de contorno propostas neste trabalho precisam ser revistas neste caso.

Com o tratamento do processo de descarburação com altos teores de carbono, um modelo integrado (processo completo de refino) pode ser construído. Os modelos encontrados na literatura não tratam de maneira clara o que ocorre no processo de descarburação com altos teores de carbono, e muitas vezes, são propostas simplificações que só retratam condições bem específicas.

Outros assuntos que necessitam de um tratamento em maior profundidade dos conceitos abordados neste trabalho são: o estudo das áreas de reação das interfaces, como elas são influenciadas pela vazão dos gases utilisados e sua variação em função da altura da bolha no banho; o cálculo da atividade dos óxidos presente na fase óxido e a influência da basicidade da escória nestas atividades; a influência da escória sobrenadante (quantidade e composição) sobre as taxas de descarburação.

8 REFERÊNCIAS BIBLIOGRÁFICAS

1. HILTY, D. C.; KAVENEY, T. F.; Stainless Steel Melting. *Electric Furnace Steelmaking*. Capítulo 13, p.143-159.

2. ASSDA (Australian Stainless Steel Development Association), <u>www.assda.asn.au/studnootes1.html</u> (Página da Internet, acessada em 12/2004).

3. KRIVSKY, W. A.; The Linde Argon-Oxygen Process for Stainless Steel – A Case Study of Major Inovation in a Basic Industry. *Metallurgical Transactions*, v.4, p.1439-1447, Junho de 1973.

4. HILTY, D.C.; RASSBACK, H.P.; CRAFTS, W.; Observations of Stainless Steel Melting Practice. *Iron and Steel Institute Journal*, n.380, p.116-128, 1955.

5. RICHARDSON, F.D.; DENNIS, W.E.; Effect of Chromium on the Thermodynamic Activity of Liquid Iron. *Journal of the Iron and Steel Institute*, p.257-263, Novembro de 1953.

6. RICHARDSON, F.D.; DENNIS, W.E.; The Equilibrium Controlling the Decarburisation of Iron-Chromium-Carbon Melts. *Journal of the Iron and Steel Institute*, p.264-266, Novembro de 1953.

7. CHOULET, R.J.; CHAN, A.H.; PATIL, B.V.; Refining of Stainless Steel. In: FRUEHAN, R.J.. *Making, Shaping and Treating of Steel*. 11^a Edição. Pittsburg, Estados Unidos: The AISE Foundation, 1998, Capítulo 12, p.716.

8. BRUNNER, M.; The Use of Gas Within Metallurgy. In: Scaninject, n.5, 1989, Lulea-Sweden. *Proceedings*, v.1, p.57-85.

9. LINDENBERG, H.; SCHUBERT, K.; ZÖRCHER, H. Developments in Stainless Steel Process Metallurgy. *Metallurgical Plant and Technology*, p.42-45, 1988.

10. VERCRUYSSEN, C.; WOLLANTS P.; ROOS, J. R.; ROBERTSON, D. G. C.; BERTELS, L. Mathematical Modeling of Refining of Stainless Steel in MPRA Converter. *Ironmaking and Steelmaking*, v.21, n.4, p.287-296, 1994.

11. FRUEHAN, R.J.; Nitrogenation and Decarburization of Stainless Steel. *Metallurgical Transactions*, v.6B, p.573-577, 1975.

12. FRUEHAN, R.J.; The Rates of Several Gas-Liquid Reactions in the Q-BOP. *Ironmaking and Steelmaking*, n.1, p.33-37, 1976.

13. FRUEHAN, R.J.; Reaction Model for the AOD Process. *Ironmaking and Steelmaking*, n.3, p.153-158, 1976.

14. ROY, T.D.; ROBERTSON, D. G. C. Mathematical Model for Stainless Steelmaking: Part 1 Argon-Oxygen and Argon-Oxygen-Steam Mixtures. *Ironmaking and Steelmaking*, n.5, p.198-206, 1978.

15. ROY, T.D., ROBERTSON; D. G. C. Mathematical Model for Stainless Steelmaking: Part 2 Application to AOD Heats. *Ironmaking and Steelmaking*, n.5, p.207-210, 1978.

16. Choulet, R.J.; Death, F.S.; Dokken, R.N.; Argon-Oxygen Refining of Stainless Steel. *Canadian Metallurgical Quarterly*, v.10, n.2, p.129-136, 1972.

17. SZEKELY, J.; Some Perspectives on Mathematical Modelling of Metals Processing Operations. *Ironmaking and Steelmaking*, v.16, n.3, p.183-192, 1989.

18. ASHBY, M. F.; Physical Modeling of Materials Problems. *Materials Science and Technology*, v.8, p.102-111, Fevereiro de 1992.

19. SZEKELY, J.; The Mathematical Modeling Revolution in Extractive Metallurgy. *Metallurgical Transactions*, v.19B, p.525-540, 1988.

20. ASAI, S.; SZEKELY, J.; Decarburization of Stainless Steel: Part 1 - A Mathematical Model for Laboratory Scale Results. *Metallurgical Transactions*, v.5, p.651-657, 1974.

21. ASAI, S.; SZEKELY, J.; Decarburization of Stainless Steel: Part 2. A Mathematical Model and a Process Optimization for Industrial Scale Systems. *Metallurgical Transactions*, v.5, p.1573-1580, 1974.

22. WIJK, O.; SJÖBERG, P.; Reaction Model for Decarburization of Molten High-Chromium Steels in Converters. In: Scaninject, n.6, 1992, Lulea-Sweden, *Proceedings*, v.2, pg.05-26.

23. WEI, J.H.; ZHU, D.P.; Mathematical Modeling of the Argon-Oxygen Decarburization Refining Process of Stainless Steel: Part I - Mathematical Model of the Process. *Metallurgical and Materials Transactions B*, v.33B, p.111-119, 2002.

24. WEI, J.H.; ZHU, D.P.; Mathematical Modeling of the Argon-Oxygen Decarburization Refining Process of Stainless Steel: Part II – Application of the Model to Industrial Practice. *Metallurgical and Materials Transactions B*, v.33B, p.111-119, 2002.

25. WEI, J.H.; ZHU, D.P.; Mathematical Modeling for AOD Refining Process of Stainless Steel. In: Iron & Steel Society - Steelmaking Conference Proceedings, 2001, Estados Unidos. *Steelmaking Conference Proceedings*, p.643-660.

26. OETERS, F.; The Metallurgy of Steelmaking, Verlag Sthaleisen mbH, 1994, p. 384-395.

27. KUBACHEWSKI, O.; EVANS, E. L.; ALCOCK, C.B.; Metallurgical Thermochemistry, 4ed, New York, Pergamon, 1967, p. 304-408.

28. TURKDOGAN, E. T.; Fundamentals of Steelmaking, Institute of Materials.

29. GEIGER, G. H.; POIRIER, D. R.; Transport Phenomena in Metallurgy, Califórnia, Addison Wesley Publishing Company, 1973, p. 542-546 e 376.

APÊNDICE I – TRATAMENTO DA INTERFACE METAL-ÓXIDO

Reações

1) Fe +
$$\underline{O} \Leftrightarrow \{\text{FeO}\}$$
 (Al.1)

2)
$$\underline{Cr} + \frac{3}{2} \underline{O} \Leftrightarrow \frac{1}{2} < Cr_2O_3 >$$
 (AI.2)

- 3) <u>Ni</u> + <u>O</u> \Leftrightarrow <NiO> (AI.3)
- 4) $\underline{Mn} + \underline{O} \Leftrightarrow \langle MnO \rangle$ (AI.4)
- 5) $\underline{Si} + 2 \underline{O} \Leftrightarrow \{SiO_2\}$ (AI.5)

6)
$$\underline{AI} + \frac{3}{2} \underline{O} \Leftrightarrow \frac{1}{2} < Al_2O_3 >$$
 (AI.6)

Constantes de Equilíbrio

$$K_{I} = \frac{\gamma_{FeO} \cdot x_{FeO}^{eq}}{\gamma_{Fe} \cdot x_{Fe}^{eq} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}$$
(AI.7)

$$\boldsymbol{K}_{II} = \frac{\left(\boldsymbol{\gamma}_{Cr_2O_3} \cdot \boldsymbol{x}_{Cr_2O_3}^{eq}\right)^{0.5}}{\boldsymbol{f}_{Cr} \cdot \boldsymbol{x}_{Cr}^{eq} \cdot \boldsymbol{\phi}_{Cr} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}\right)^{1.5}}$$
(AI.8)

$$K_{III} = \frac{\gamma_{NiO} \cdot x_{NiO}^{eq}}{f_{Ni} \cdot x_{Ni}^{eq} \cdot \phi_{Ni} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}$$
(AI.9)

$$\boldsymbol{K}_{IV} = \frac{\boldsymbol{\gamma}_{MnO} \cdot \boldsymbol{x}_{MnO}^{eq}}{\boldsymbol{f}_{Mn} \cdot \boldsymbol{x}_{Mn}^{eq} \cdot \boldsymbol{\phi}_{MO} \cdot \boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}}$$
(AI.10)

$$\boldsymbol{K}_{V} = \frac{\boldsymbol{\gamma}_{SiO_{2}} \cdot \boldsymbol{x}_{SiO_{2}}^{eq}}{\boldsymbol{f}_{Si} \cdot \boldsymbol{x}_{Si}^{eq} \cdot \boldsymbol{\phi}_{Si} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}\right)^{2}}$$
(AI.11)

$$\boldsymbol{K}_{VI} = \frac{\left(\boldsymbol{\gamma}_{Al_2O_3} \cdot \boldsymbol{x}_{Al_2O_3}^{eq}\right)^{0.5}}{\boldsymbol{f}_{Al} \cdot \boldsymbol{x}_{Al}^{eq} \cdot \boldsymbol{\phi}_{Al}} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}\right)^{1.5}}$$
(AI.12)

Fluxos

$$N_{FeO} = k_{FeO} \cdot c_s \cdot \left(x_{FeO}^{eq} - x_{FeO}^{b} \right)$$
(AI.13)

$$N_{Cr_2O_3} = k_{Cr_2O_3} \cdot c_s \cdot \left(x_{Cr_2O_3}^{eq} - x_{Cr_2O_3}^{b} \right)$$
(AI.14)

$$N_{\text{NiO}} = k_{\text{NiO}} \cdot c_s \cdot \left(x_{\text{NiO}}^{eq} - x_{\text{NiO}}^{b} \right)$$
(AI.15)

$$N_{MnO} = k_{MnO} \cdot c_{s} \cdot \left(x_{MnO}^{eq} - x_{MnO}^{b} \right)$$
(AI.16)

$$N_{sio_{2}} = k_{sio_{2}} \cdot c_{s} \cdot \left(x_{sio_{2}}^{eq} - x_{sio_{2}}^{b} \right)$$
(AI.17)

$$N_{Al_2O_3} = k_{Al_2O_3} \cdot c_s \cdot \left(x_{Al_2O_3}^{eq} - x_{Al_2O_3}^{b} \right)$$
(AI.18)

$$N_{o} = k_{o} \cdot c_{M} \left(x_{o}^{eq} - x_{o}^{b} \right)$$
(AI.19)

$$N_{Fe} = k_{Fe} \cdot c_{M} \left(x_{Fe}^{eq} - x_{Fe}^{b} \right)$$
(AI.20)

$$N_{Cr} = k_{Cr} \cdot c_{M} \left(x_{cr}^{eq} - x_{Cr}^{b} \right)$$
(AI.21)

$$N_{NI} = k_{NI} \cdot c_{M} \left(x_{NI}^{eq} - x_{NI}^{b} \right)$$
(AI.22)

$$N_{Mn} = k_{Mn} \cdot c_{M} \left(x_{NI}^{eq} - x_{NI}^{b} \right)$$
(AI.23)

$$N_{SI} = k_{SI} \cdot c_{M} \cdot \left(x_{SI}^{eq} - x_{SI}^{b} \right)$$
(AI.24)

$$N_{AI} = k_{AI} \cdot c_{M} \cdot \left(x_{SI}^{eq} - x_{AI}^{b} \right)$$
(AI.25)

79

Balanço de Massa

$$N_{Fe} + N_{FeO} = 0 \tag{AI.26}$$

$$N_{Cr} + 2N_{Cr_2O_3} = 0 \tag{AI.27}$$

$$N_{Ni} + N_{NiO} = 0$$
 (AI.28)

$$N_{Mn} + N_{Mn0} = 0$$
 (AI.29)

$$N_{si} + N_{sio_2} = 0$$
 (AI.30)

$$N_{Al} + 2N_{Al_2O_3} = 0 \tag{A1.31}$$

$$N_{O} + N_{FeO} + 3 \cdot N_{Cr_{2}O_{3}} + N_{NiO} + N_{MnO} + 2 \cdot N_{SiO_{2}} + 3 \cdot N_{Al_{2}O_{3}} = 0$$
(AI.32)

Fazendo as substituições dos fluxos dos metais no balanço de massa do oxigênio:

$$N_{O} - N_{Fe} - 1.5. N_{Cr} - N_{Ni} - N_{Mn} - 2. N_{Si} - 1.5. N_{Al} = 0$$
(Al.33)

Obtenção da equação F(x_o)=0

Isolamos as concentrações de equilíbrio dos óxidos:

$$\chi_{FeO}^{eq} = \frac{K_I \cdot \gamma_{Fe} \cdot \chi_{Fe}^{eq} \cdot f_O \cdot \chi_O^{eq} \cdot \phi_O}{\gamma_{FeO}}$$
(AI.34)

$$\boldsymbol{x}_{Cr_{2}O_{3}}^{eq} = \frac{\left(\boldsymbol{K}_{II} \cdot \boldsymbol{f}_{Cr} \cdot \boldsymbol{x}_{Cr}^{eq} \cdot \boldsymbol{\phi}_{Cr}\right)^{2} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}\right)^{3}}{\boldsymbol{\gamma}_{Cr_{2}O_{3}}}$$
(AI.35)

$$\boldsymbol{\chi}_{NiO}^{eq} = \frac{\boldsymbol{K}_{III} \cdot \boldsymbol{f}_{Ni} \cdot \boldsymbol{\chi}_{Ni}^{eq} \cdot \boldsymbol{\phi}_{Ni} \cdot \boldsymbol{f}_{O} \cdot \boldsymbol{\chi}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}}{\boldsymbol{\gamma}_{NiO}}$$
(AI.36)

$$\chi_{MnO}^{eq} = \frac{K_{IV} \cdot f_{Mn} \cdot \chi_{Mn}^{eq} \cdot \phi_{Mn} \cdot f_{O} \cdot \chi_{O}^{eq} \cdot \phi_{O}}{\gamma_{MnO}}$$
(AI.37)

$$\boldsymbol{\chi}_{SiO_2}^{eq} = \frac{\boldsymbol{K}_{V} \cdot \boldsymbol{f}_{Si} \cdot \boldsymbol{\chi}_{Si}^{eq} \cdot \boldsymbol{\phi}_{Si} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{\chi}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}\right)^{2}}{\boldsymbol{\gamma}_{SiO_2}}$$
(AI.38)

$$\chi_{Al_{2}O_{3}}^{eq} = \frac{\left(K_{VI} \cdot f_{Al} \cdot \chi_{Al}^{eq} \cdot \phi_{Al}\right)^{2} \cdot \left(f_{O} \cdot \chi_{O}^{eq} \cdot \phi_{O}\right)^{3}}{\gamma_{Al_{2}O_{3}}}$$
(AI.39)

Substituímos esses valores nos fluxos:

$$N_{FeO} = k_{FeO} \cdot c_{s} \left(\frac{K_{I} \cdot \gamma_{Fe} \cdot x_{Fe}^{eq} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}{\gamma_{FeO}} - x_{FeO}^{b} \right)$$
(AI.40)

$$N_{Cr_{2}O_{3}} = k_{Cr_{2}O_{3}} \cdot c_{s} \left(\frac{\left(K_{II} \cdot f_{Cr} \cdot x_{Cr}^{eq} \cdot \phi_{Cr} \right)^{2} \cdot \left(f_{O} \cdot x_{O}^{eq} \cdot \phi_{O} \right)^{3}}{\gamma_{Cr_{2}O_{3}}} - x_{Cr_{2}O_{3}}^{b} \right)$$
(AI.41)

$$N_{NiO} = k_{NiO} \cdot c_s \left(\frac{K_{III} \cdot f_{Ni} \cdot x_{Ni}^{eq} \cdot \phi_{Ni} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}{\gamma_{NiO}} - x_{NiO}^{b} \right)$$
(AI.42)

$$N_{MnO} = k_{MnO} \cdot c_s \left(\frac{K_{IV} \cdot f_{Mn} \cdot x_{Mn}^{eq} \cdot \phi_{I} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}{\gamma_{MnO}} - x_{MnO}^{b} \right)$$
(AI.43)

$$N_{sio_{2}} = k_{sio_{2}} \cdot c_{s} \cdot \left(\frac{K_{v} \cdot f_{si} \cdot x_{si}^{eq} \cdot \phi_{si} \cdot (f_{o} \cdot x_{o}^{eq} \cdot \phi_{o})^{2}}{\gamma_{sio_{2}}} - x_{sio_{2}}^{b} \right)$$

$$(AI.44)$$

$$N_{sio_{2}} = k_{sio_{2}} \cdot c_{s} \cdot \left(\frac{(K_{vI} \cdot f_{sI} \cdot x_{sI}^{eq} \cdot \phi_{sI})^{2} \cdot (f_{o} \cdot x_{o}^{eq} \cdot \phi_{o})^{3}}{\gamma_{sio_{2}}} - x_{sio_{2}}^{b} \right)$$

$$(AI.45)$$

$$N_{Al_2O_3} = k_{Al_2O_3} \cdot c_s \cdot \left(\frac{\frac{\alpha (v_1 \cdot y_{-Al} - v_{Al} - v_{-Al} - v_{-Al_2O_3})}{\gamma_{Al_2O_3}} - x_{Al_2O_3} \right)$$
(Al.4)

Substituímos esses valores no balanço de massa:

$$k_{Fe} \cdot c_{M} \cdot \left(x_{Fe}^{eq} - x_{Fe}^{b} \right) + k_{FeO} \cdot c_{S} \cdot \left(\frac{K_{I} \cdot \gamma_{Fe} \cdot x_{Fe}^{eq} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}{\gamma_{FeO}} - x_{FeO}^{b} \right) = 0$$
(AI.46)

$$k_{Cr} \cdot c_{M} \cdot \left(x_{Cr}^{eq} - x_{Cr}^{b} \right) + 2 \cdot k_{Cr_{2}O_{3}} \cdot c_{S} \cdot \left(\frac{\left(K_{II} \cdot f_{Cr} \cdot x_{Cr}^{eq} \cdot \phi_{Cr}^{} \right)^{2} \cdot \left(f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}^{} \right)^{3}}{\gamma_{Cr_{2}O_{3}}} - x_{Cr_{2}O_{3}}^{b} \right) = 0$$
(AI.47)

$$k_{Ni} \cdot c_{M} \cdot \left(x_{Ni}^{eq} - x_{Ni}^{b} \right) + k_{NiO} \cdot c_{S} \cdot \left(\frac{K_{III} \cdot f_{Ni} \cdot x_{Ni}^{eq} \cdot \phi_{Ni} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O}}{\gamma_{NiO}} - x_{NiO}^{b} \right) = 0$$
(AI.48)

$$k_{Mn} \cdot c_M \cdot \left(x_{Mn}^{eq} - x_{Mn}^{b} \right) + k_{MnO} \cdot c_S \left(\frac{K_{IV} \cdot f_{Mn} \cdot x_{Mn}^{eq} \cdot \phi_{Mn} \cdot f_O \cdot x_O^{eq} \cdot \phi_O}{\gamma_{MnO}} - x_{MnO}^{b} \right) = 0$$
(AI.49)

$$k_{Si} \cdot c_{M} \cdot \left(x_{Si_{2}}^{eq} - x_{Si}^{b} \right) + k_{SiO_{2}} \cdot c_{S} \cdot \left(\frac{K_{V} \cdot f_{Si} \cdot x_{Si}^{eq} \cdot \phi_{Si} \cdot \left(f_{O} \cdot x_{O}^{eq} \cdot \phi_{O} \right)^{2}}{\gamma_{SiO_{2}}} - x_{SiO_{2}}^{b} \right) = 0$$
(A1.50)

$$k_{Al} \cdot c_{M} \cdot (x_{Al}^{eq} - x_{Al}^{b}) + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \left(\frac{(K_{VI} \cdot f_{Al} \cdot x_{Al}^{eq} \cdot \phi_{Al})^{2} \cdot (f_{O} \cdot x_{O}^{eq} \cdot \phi_{O})^{3}}{\gamma_{Al_{2}O_{3}}} - x_{Al_{2}O_{3}}^{b} \right) = 0$$
(AI.51)

Isolamos as concentrações de metais em função da concentração do O:

$$\chi_{Fe}^{eq} = \frac{\left(k_{FeO} \cdot c_{s} \cdot x_{FeO}^{b} + k_{Fe} \cdot c_{M} \cdot x_{Fe}^{b}\right) \gamma_{FeO}}{k_{FeO} \cdot c_{s} \cdot K_{I} \cdot \gamma_{Fe} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O} + k_{Fe} \cdot c_{M} \cdot \gamma_{FeO}}$$
(AI.52)

$$\boldsymbol{x}_{Cr}^{eq} = \frac{-k_{Cr} \cdot \boldsymbol{c}_{M} \cdot \boldsymbol{\gamma}_{Cr_{2}O_{3}} + \left(k_{Cr}^{2} \cdot \boldsymbol{c}_{M}^{2} \cdot \boldsymbol{\gamma}_{Cr_{2}O_{3}}^{2} + 8 \cdot k_{Cr_{2}O_{3}} \cdot \boldsymbol{c}_{S} \cdot \boldsymbol{\gamma}_{Cr_{2}O_{3}} \cdot \left(\boldsymbol{k}_{H} \cdot \boldsymbol{f}_{Cr} \cdot \boldsymbol{\phi}_{Cr}\right)^{2} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O} \cdot \boldsymbol{\phi}_{O}\right)^{3} \cdot \left(\boldsymbol{k}_{Cr} \cdot \boldsymbol{c}_{M} \cdot \boldsymbol{x}_{Cr}^{b} + 2 \cdot \boldsymbol{k}_{Cr_{2}O_{3}} \cdot \boldsymbol{c}_{S} \cdot \boldsymbol{x}_{Cr_{2}O_{3}}^{b}\right)^{\frac{1}{2}}}{4 \cdot \boldsymbol{k}_{Cr_{2}O_{3}} \cdot \boldsymbol{c}_{S} \cdot \left(\boldsymbol{k}_{H} \cdot \boldsymbol{f}_{Cr} \cdot \boldsymbol{\phi}_{Cr}\right)^{2} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O} \cdot \boldsymbol{\phi}_{O}\right)^{3}}$$
(AI.53)

$$\chi_{Ni}^{eq} = \frac{\left(k_{NiO} \cdot c_{S} \cdot x_{NiO}^{b} + k_{Ni} \cdot c_{M} \cdot x_{Ni}^{b}\right) \gamma_{NiO}}{k_{NiO} \cdot c_{S} \cdot K_{III} \cdot f_{Ni} \cdot \phi_{Ni} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O} + k_{Ni} \cdot c_{M} \cdot \gamma_{NiO}}$$
(A1.54)

$$\chi_{Mn}^{eq} = \frac{\left(k_{MnO} \cdot c_{s} \cdot x_{MnO}^{b} + k_{Mn} \cdot c_{M} \cdot x_{Mn}^{b}\right) \gamma_{MnO}}{k_{MnO} \cdot c_{s} \cdot K_{IV} \cdot f_{Mn} \cdot \phi_{Mn} \cdot f_{O} \cdot x_{O}^{eq} \cdot \phi_{O} + k_{Mn} \cdot c_{M} \cdot \gamma_{MnO}}$$
(AI.55)

$$\boldsymbol{\chi}_{SiO_2}^{eq} = \frac{\left(\boldsymbol{k}_{SiO_2} \cdot \boldsymbol{c}_S \cdot \boldsymbol{\chi}_{SiO_2}^{b} + \boldsymbol{k}_{Si} \cdot \boldsymbol{c}_M \cdot \boldsymbol{\chi}_{Si}^{b}\right) \boldsymbol{\gamma}_{SiO_2}}{\boldsymbol{k}_{SiO_2} \cdot \boldsymbol{c}_S \cdot \boldsymbol{K}_V \cdot \boldsymbol{f}_{Si} \cdot \boldsymbol{\phi}_{Si} \cdot \left(\boldsymbol{f}_O \cdot \boldsymbol{\chi}_O^{eq} \cdot \boldsymbol{\phi}_O\right)^2 + \boldsymbol{k}_{Si} \cdot \boldsymbol{c}_M \cdot \boldsymbol{\gamma}_{SiO_2}}$$
(A1.56)

$$\boldsymbol{x}_{Al}^{eq} = \frac{-k_{Al} \cdot \boldsymbol{c}_{M} \cdot \boldsymbol{\gamma}_{Al_{2}O_{3}} + \left(k_{Al}^{2} \cdot \boldsymbol{c}_{M}^{2} \cdot \boldsymbol{\gamma}_{Al_{2}O_{3}}^{2} + 8 \cdot k_{Al_{2}O_{3}} \cdot \boldsymbol{c}_{S} \cdot \boldsymbol{\gamma}_{Al_{2}O_{3}} \cdot \left(\boldsymbol{K}_{VI} \cdot \boldsymbol{f}_{Al} \cdot \boldsymbol{\phi}_{Al}\right)^{2} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O} \cdot \boldsymbol{\phi}_{O}\right)^{3} \cdot \left(\boldsymbol{k}_{Al} \cdot \boldsymbol{c}_{M} \cdot \boldsymbol{x}_{Al}^{b} + 2 \cdot \boldsymbol{k}_{Al_{2}O_{3}} \cdot \boldsymbol{c}_{S} \cdot \boldsymbol{x}_{Al_{2}O_{3}}^{b}\right)^{\frac{1}{2}}}{4 \cdot \boldsymbol{k}_{Al_{2}O_{3}} \cdot \boldsymbol{c}_{S} \cdot \left(\boldsymbol{K}_{VI} \cdot \boldsymbol{f}_{Al} \cdot \boldsymbol{\phi}_{Al}\right)^{2} \cdot \left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O} \cdot \boldsymbol{\phi}_{O}\right)^{3}}$$
(A1.57)

Substituímos nos fluxos e temos:

$$N_{Fe} = k_{Fe} \cdot c_M \cdot \left(\frac{\left(k_{FeO} \cdot c_S \cdot x_{FeO}^b + k_{Fe} \cdot c_M \cdot x_{Fe}^b \right) \gamma_{FeO}}{k_{FeO} \cdot c_S \cdot K_I \cdot \gamma_{Fe}} \cdot f_O \cdot x_O^{eq} \cdot \phi_O + k_{Fe} \cdot c_M \cdot \gamma_{FeO}} - x_{Fe}^b \right)$$
(AI.58)

$$N_{cr} = k_{cr} \cdot c_{M} \cdot \left(\frac{-k_{cr} \cdot c_{M} \cdot \gamma_{cr_{2}o_{3}} + \left(k_{cr}^{2} \cdot c_{M}^{2} \cdot \gamma_{cr_{2}o_{3}}^{2} + 8 \cdot k_{cr_{2}o_{3}} \cdot c_{s} \cdot \gamma_{cr_{2}o_{3}} \cdot (K_{II} \cdot f_{cr} \cdot \phi_{cr})^{2} \cdot (f_{o} \cdot x_{o} \cdot \phi_{o})^{3} \cdot (k_{cr} \cdot c_{M} \cdot x_{cr}^{b} + 2 \cdot k_{cr_{2}o_{3}} \cdot c_{s} \cdot x_{cr_{2}o_{3}}^{b})^{\frac{1}{2}}}{4 \cdot k_{cr_{2}o_{3}} \cdot c_{s} \cdot (K_{II} \cdot f_{cr} \cdot \phi_{cr})^{2} \cdot (f_{o} \cdot x_{o}^{eq} \cdot \phi_{o})^{3}}$$
(Al.59)

$$\boldsymbol{N}_{Ni} = \boldsymbol{k}_{Ni} \cdot \boldsymbol{c}_{M} \cdot \left(\frac{\left(\boldsymbol{k}_{NiO} \cdot \boldsymbol{c}_{S} \cdot \boldsymbol{x}_{NiO}^{b} + \boldsymbol{k}_{Ni} \cdot \boldsymbol{c}_{M} \cdot \boldsymbol{x}_{Ni}^{b} \right) \boldsymbol{\gamma}_{NiO}}{\boldsymbol{k}_{NiO} \cdot \boldsymbol{c}_{S} \cdot \boldsymbol{K}_{III} \cdot \boldsymbol{f}_{Ni} \cdot \boldsymbol{\phi}_{Ni} \cdot \boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O} + \boldsymbol{k}_{Ni} \cdot \boldsymbol{c}_{M} \cdot \boldsymbol{\gamma}_{NiO}} - \boldsymbol{x}_{Ni}^{b} \right)$$
(AI.60)

$$N_{Mn} = k_{Mn} \cdot c_M \left\{ \frac{\left(k_{MnO} \cdot c_S \cdot x_{MnO}^b + k_{Mn} \cdot c_M \cdot x_{Mn}^b\right) \gamma_{MnO}}{k_{MnO} \cdot c_S \cdot K_{IV} \cdot f_{Mn} \cdot \phi_{Mn} \cdot f_O \cdot x_O^{eq} \cdot \phi_O + k_{Mn} \cdot c_M \cdot \gamma_{MnO}} - x_{Mn}^b\right\}$$
(AI.61)

$$N_{si} = k_{si} \cdot c_{M} \cdot \left(\frac{\left(k_{sio_{2}} \cdot c_{s} \cdot x_{sio_{2}}^{b} + k_{si} \cdot c_{M} \cdot x_{si}^{b} \right) \gamma_{sio_{2}}}{k_{sio_{2}} \cdot c_{s} \cdot K_{V} \cdot f_{si} \cdot \phi_{si} \cdot \left(f_{o} \cdot x_{o}^{eq} \cdot \phi_{o} \right)^{2} + k_{si} \cdot c_{M} \cdot \gamma_{sio_{2}}} - x_{si}^{b} \right)$$
(A1.62)

$$N_{Al} = k_{Al} \cdot c_{M} \cdot \left(\frac{-k_{Al} \cdot c_{M} \cdot \gamma_{Al_{2}O_{3}} + \left(k_{Al}^{2} \cdot c_{M}^{2} \cdot \gamma_{Al_{2}O_{3}}^{2} + 8 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \gamma_{Al_{2}O_{3}} \cdot \left(k_{Vl} \cdot f_{Al} \cdot \phi_{Al}\right)^{2} \cdot \left(f_{O} \cdot x_{O} \cdot \phi_{O}\right)^{3} \cdot \left(k_{Al} \cdot c_{M} \cdot x_{Al}^{b} + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot x_{Al_{2}O_{3}}^{b}\right)^{\frac{1}{2}}}{4 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \left(k_{Vl} \cdot f_{Al} \cdot \phi_{Al}\right)^{2} \cdot \left(f_{O} \cdot x_{O} \cdot \phi_{O}\right)^{3}} - x_{Al}^{b}\right)^{2} \cdot \left(f_{O} \cdot x_{O} \cdot \phi_{O}\right)^{3}}$$
(A1.63)

Fazendo o balanço de massa do oxigênio temos a equação final:

$$F(\chi_{o}^{eq}) = -\sum x. N_{MO_{x}} + N_{o} = \sum y. N_{M} + N_{o} = 0$$
(AI.64)

A solução desta equação é obtida através de método numérico.

APÊNDICE II – TRATAMENTO DA INTERFACE ÓXIDO-GÁS

Reações

7)
$${FeO} + (CO) \Leftrightarrow Fe + (CO_2)$$
 (All.1)

8)
$$\frac{1}{2} < Cr_2O_3 > + \frac{3}{2} (CO) \Leftrightarrow \underline{Cr} + \frac{3}{2} (CO_2)$$
 (All.2)

9)
$$\langle NiO \rangle + (CO) \Leftrightarrow \underline{Ni} + (CO_2)$$
 (All.3)

$$10) \quad \langle MnO \rangle + (CO) \Leftrightarrow \underline{Mn} + (CO_2) \tag{AII.4}$$

11)
$${SiO_2} + 2 (CO) \Leftrightarrow \underline{Si} + 2 (CO_2)$$
 (AII.5)

12)
$$\frac{1}{2} \langle AI_2O_3 \rangle + \frac{3}{2} (CO) \Leftrightarrow \underline{AI} + \frac{3}{2} (CO_2)$$
 (AII.6)

Constantes de Equilíbrio

$$K_{VII} = \frac{X_{CO_2}^{eq} \cdot \gamma_{Fe} \cdot X_{Fe}^{eq}}{X_{CO}^{eq} \cdot \gamma_{FeO} \cdot X_{FeO}}$$
(AII.7)

$$K_{VIII} = \frac{\left(\chi_{CO_2}^{eq}\right)^{1.5} \cdot f_{Cr} \cdot \chi_{Cr}^{eq} \cdot \phi_{Cr}}{\left(\chi_{CO}^{eq}\right)^{1.5} \cdot \left(\gamma_{Cr_2O_3} \cdot \chi_{Cr_2O_3}^{eq}\right)^{0.5}}$$
(AII.8)

$$\boldsymbol{K}_{IX} = \frac{\boldsymbol{X}_{CO_2} \cdot \boldsymbol{f}_{Ni} \cdot \boldsymbol{X}_{Ni}^{eq} \cdot \boldsymbol{\phi}_{Ni}}{\boldsymbol{X}_{CO}^{eq} \cdot \boldsymbol{\gamma}_{NiO} \cdot \boldsymbol{X}_{NiO}}$$
(All.9)

$$K_{X} = \frac{x_{CO_{2}}^{eq} \cdot f_{Mn} \cdot x_{Mn}^{eq} \cdot \phi_{Mn}}{x_{CO}^{eq} \cdot \gamma_{MnO} \cdot x_{MnO}}$$
(All.10)

$$\boldsymbol{K}_{XI} = \frac{\left(\boldsymbol{x}_{CO_2}^{eq}\right)^2 \cdot \boldsymbol{f}_{Si} \cdot \boldsymbol{x}_{Si}^{eq} \cdot \boldsymbol{\phi}_{Si}}{\left(\boldsymbol{x}_{CO}^{eq}\right)^2 \cdot \boldsymbol{\gamma}_{SiO_2} \cdot \boldsymbol{x}_{SiO_2}^{eq}}$$
(All.11)

$$K_{XII} = \frac{\left(\chi_{CO_2}^{eq}\right)^{1,5} \cdot f_{AI} \cdot \chi_{AI}^{eq} \cdot \phi_{AI}}{\left(\chi_{CO}^{eq}\right)^{1,5} \cdot \left(\gamma_{AI_2O_3} \cdot \chi_{AI_2O_3}^{eq}\right)^{0,5}}$$
(All.12)

Fluxos

$$N_{Fe} = k_{Fe} \cdot c_M \cdot \left(x_{Fe}^{eq} - x_{Fe}^{b} \right)$$
(All.13)

$$N_{cr} = k_{cr} \cdot c_M \cdot \left(x_{cr}^{eq} - x_{cr}^b \right)$$
(All.14)

$$N_{Ni} = k_{Ni} \cdot c_M \cdot \left(x_{Ni}^{eq} - x_{Ni}^{b} \right)$$
(AII.15)

$$N_{Mn} = k_{Mn} \cdot c_M \cdot \left(x_{Mn}^{eq} - x_{Mn}^{b} \right)$$
(All.16)

$$N_{si} = k_{si} \cdot c_M \cdot \left(x_{si}^{eq} - x_{si}^b \right)$$
(All.17)

$$N_{Al} = k_{Al} \cdot c_M \cdot \left(x_{Al}^{eq} - x_{Al}^{b} \right)$$
(All.18)

$$N_{FeO} = k_{FeO} \cdot c_s \cdot \left(x_{FeO}^{eq} - x_{FeO}^{b} \right)$$
(AII.19)

91

$$N_{Cr_2O_3} = k_{Cr_2O_3} \cdot c_s \cdot \left(x_{Cr_2O_3}^{eq} - x_{Cr_2O_3}^{b} \right)$$
(AII.20)

$$N_{NiO} = k_{NiO} \cdot c_s \cdot \left(x_{NiO}^{eq} - x_{NiO}^{b} \right)$$
(All.21)

$$N_{MnO} = k_{MnO} \cdot c_s \cdot \left(x_{MnO}^{eq} - x_{MnO}^{b} \right)$$
(All.22)

$$N_{sio_2} = k_{sio_2} \cdot c_s \cdot \left(x_{sio_2}^{eq} - x_{sio_2}^{b} \right)$$
(All.23)

$$N_{Al_2O_3} = k_{Al_2O_3} \cdot c_s \cdot \left(x_{Al_2O_3}^{eq} - x_{Al_2O_3}^{b} \right)$$
(All.24)

$$N_{co} = k_{co} \cdot c_{G} \cdot \left(x_{co}^{eq} - x_{co}^{b} \right) + x_{co}^{eq} \cdot \left(N_{co} + N_{co_{2}} \right)$$
(All.25)

$$N_{co_2} = k_{co_2} \cdot c_G \cdot (x_{co_2}^{eq} - x_{co_2}^{b}) + x_{co_2}^{eq} \cdot (N_{co} + N_{co_2})$$
(All.26)

Balanço de Massa

	92
$N_{Fe} + N_{FeO} = 0$	(AII.27)
$N_{Cr} + 2 \cdot N_{Cr_2 o_3} = 0$	(All.28)
$N_{Ni} + N_{NiO} = 0$	(All.29)
$N_{Mn} + N_{MnO} = 0$	(All.30)
$N_{si} + N_{siO_2} = 0$	(All.31)
$N_{Al} + 2 \cdot N_{Al_2O_3} = 0$	(All.32)
$N_{co} + N_{co_2} = 0 \rightarrow N_{co} = -N_{co_2}$	(AII.33)
$\sum x \cdot N_{MO_x} + N_{CO} + 2 \cdot N_{CO_2} = 0 \Rightarrow \sum x \cdot N_{MO_x} - N_{CO} = 0$	(All.34)
$-N_{Fe}-1.5.N_{Cr}-N_{Ni}-N_{Mn}-2.N_{Si}-1.5.N_{Al}-N_{CO}=0$	(All.35)

Obtenção da equação F(x_{co})=0

Isolamos as concentrações de equilíbrio dos metais:

$$\boldsymbol{\chi}_{FeO}^{eq} = \frac{\boldsymbol{\gamma}_{Fe} \cdot \boldsymbol{\chi}_{Fe}^{eq}}{\boldsymbol{K}_{VII} \cdot \boldsymbol{\gamma}_{FeO}} \cdot \left(\frac{\boldsymbol{\chi}_{CO_2}^{eq}}{\boldsymbol{\chi}_{CO}^{eq}} \right)$$
(All.36)

$$\boldsymbol{\chi}_{Cr_{2}O_{3}}^{eq} = \frac{\left(f_{Cr} \cdot \boldsymbol{\chi}_{Cr}^{eq} \cdot \boldsymbol{\phi}_{Cr}\right)^{2}}{K^{2}_{VIII} \cdot \boldsymbol{\gamma}_{Cr_{2}O_{3}}} \cdot \left(\frac{\boldsymbol{\chi}_{CO_{2}}^{eq}}{\boldsymbol{\chi}_{CO}^{eq}}\right)^{3}$$
(AII.37)

$$\boldsymbol{\chi}_{NiO}^{eq} = \frac{\boldsymbol{f}_{Ni} \cdot \boldsymbol{\chi}_{Ni}^{eq} \cdot \boldsymbol{\phi}_{Ni}}{\boldsymbol{K}_{IX} \cdot \boldsymbol{\gamma}_{NiO}} \cdot \left(\frac{\boldsymbol{\chi}_{CO_2}^{eq}}{\boldsymbol{\chi}_{CO}^{eq}} \right)$$
(AII.38)

$$\chi_{MnO}^{eq} = \frac{f_{Mn} \cdot \chi_{Mn}^{eq} \cdot \phi_{Mn}}{K_x \cdot \gamma_{MnO}} \cdot \left(\frac{\chi_{CO_2}^{eq}}{\chi_{CO}^{eq}}\right)$$
(All.39)

$$\boldsymbol{\chi}_{SiO_2}^{eq} = \frac{\boldsymbol{f}_{Si} \cdot \boldsymbol{\chi}_{Si}^{eq} \cdot \boldsymbol{\phi}_{Si}}{\boldsymbol{K}_{XI} \cdot \boldsymbol{\gamma}_{SiO_2}} \cdot \left(\frac{\boldsymbol{\chi}_{CO_2}^{eq}}{\boldsymbol{\chi}_{CO}^{eq}}\right)^2$$
(AII.40)

$$\chi_{Al_{2}O_{3}}^{eq} = \frac{\left(f_{Al} \cdot \chi_{Al}^{eq} \cdot \phi_{Al}\right)^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \cdot \left(\frac{\chi_{CO_{2}}^{eq}}{\chi_{CO}^{eq}}\right)^{3}$$
(AII.41)

Substituímos esses valores nos fluxos:

$$N_{FeO} = k_{FeO} \cdot c_s \left(\frac{\gamma_{Fe} \cdot x_{Fe}^{eq}}{K_{VII} \cdot \gamma_{FeO}} \left(\frac{x_{CO_2}^{eq}}{x_{CO}^{eq}} \right) - x_{FeO}^{b} \right)$$
(All.42)

$$N_{Cr_{2}O_{3}} = k_{Cr_{2}O_{3}} \cdot c_{s} \cdot \left(\frac{\left(f_{Cr} \cdot x_{Cr}^{eq} \cdot \phi_{Cr} \right)^{2}}{K_{VIII}^{2} \cdot \gamma_{Cr_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{3} - x_{Cr_{2}O_{3}}^{b} \right)$$
(AII.43)

$$N_{NiO} = k_{NiO} \cdot c_s \cdot \left(\frac{f_{Ni} \cdot x_{Ni}^{eq} \cdot \phi_{Ni}}{K_{IX} \cdot \gamma_{NiO}} \cdot \left(\frac{x_{CO_2}^{eq}}{x_{CO}^{eq}} \right) - x_{NiO}^{b} \right)$$
(All.44)
$$N_{MnO} = k_{MnO} \cdot c_s \left(\frac{f_{Mn} \cdot x_{Mn}^{eq} \cdot \phi_{Mn}}{K_x \cdot \gamma_{MnO}} \left(\frac{x_{CO_2}^{eq}}{x_{CO}^{eq}} \right) - x_{MnO}^{b} \right)$$
(AII.45)

$$N_{siO_2} = k_{siO_2} \cdot c_s \cdot \left(\frac{f_{si} \cdot \boldsymbol{x}_{si}^{eq} \cdot \boldsymbol{\phi}_{si}}{K_{xI} \cdot \boldsymbol{\gamma}_{siO_2}} \cdot \left(\frac{\boldsymbol{x}_{cO_2}^{eq}}{\boldsymbol{x}_{cO}^{eq}} \right)^2 - \boldsymbol{x}_{siO_2}^{b} \right)$$
(All.46)

$$N_{Al_{2}O_{3}} = k_{Al_{2}O_{3}} \cdot c_{s} \cdot \left(\frac{\left(f_{Al} \cdot x_{Al}^{eq} \cdot \phi_{Al} \right)^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{3} - x_{Al_{2}O_{3}}^{b} \right)$$
(All.47)

Substituímos esses valores no balanço de massa:

$$k_{Fe} \cdot c_{M} \cdot \left(x_{Fe}^{eq} - x_{Fe}^{b} \right) + k_{FeO} \cdot c_{S} \cdot \left(\frac{\gamma_{Fe} \cdot x_{Fe}^{eq}}{K_{VII} \cdot \gamma_{FeO}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right) - x_{FeO}^{b} \right) = 0$$
(AII.48)

$$k_{Cr} \cdot c_{M} \cdot \left(x_{Cr}^{eq} - x_{Cr}^{b} \right) + 2 \cdot k_{Cr_{2}O_{3}} \cdot c_{S} \cdot \left(\frac{\left(f_{Cr} \cdot x_{Cr}^{eq} \cdot \phi_{Cr} \right)^{2}}{K_{VIII}^{2} \cdot \gamma_{Cr_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{3} - x_{Cr_{2}O_{3}}^{b} \right) = 0$$
(All.49)

$$k_{Ni} \cdot c_{M} \cdot \left(x_{Ni}^{eq} - x_{Ni}^{b} \right) + k_{NiO} \cdot c_{S} \cdot \left(\frac{f_{Ni} \cdot x_{Ni}^{eq} \cdot \phi_{Ni}}{K_{IX} \cdot \gamma_{NiO}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right) - x_{NiO}^{b} \right) = 0$$
(AII.50)

$$k_{Mn} \cdot c_M \cdot \left(x_{Mn}^{eq} - x_{Mn}^{b} \right) + k_{MnO} \cdot c_S \cdot \left(\frac{f_{Mn} \cdot x_{Mn}^{eq} \cdot \phi_{Mn}}{K_X \cdot \gamma_{MnO}} \cdot \left(\frac{x_{CO_2}^{eq}}{x_{CO}^{eq}} \right) - x_{MnO}^{b} \right) = 0$$
(All.51)

$$k_{Si} \cdot c_M \cdot \left(x_{Si}^{eq} - x_{Si}^{b} \right) + k_{SiO_2} \cdot c_S \left(\frac{f_{Si} \cdot x_{Si}^{eq} \cdot \phi_{Si}}{K_{XI} \cdot \gamma_{SiO_2}} \cdot \left(\frac{x_{CO_2}^{eq}}{x_{CO}^{eq}} \right)^2 - x_{SiO_2}^{b} \right) = 0$$
(AII.52)

$$k_{Al} \cdot c_{M} \cdot \left(x_{Al}^{eq} - x_{Al}^{b} \right) + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \left(\frac{\left(f_{Al} \cdot x_{Al}^{eq} \cdot \phi_{Al} \right)^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{3} - x_{Al_{2}O_{3}}^{b} \right) = 0$$
(AII.53)

Isolamos os valores das concentrações de equilíbrio dos metais:

$$\chi_{Fe}^{eq} = \frac{\left(\chi_{Fe}^{b} \cdot k_{Fe} \cdot c_{M} + \chi_{FeO}^{b} \cdot k_{FeO} \cdot c_{S}\right)}{k_{Fe} \cdot c_{M} + k_{FeO} \cdot c_{S} \cdot \left(\frac{\gamma_{Fe}}{K_{VII} \cdot \gamma_{FeO}} \cdot \left(\frac{\chi_{CO_{2}}^{eq}}{x_{CO}^{eq}}\right)\right)}$$
(All.54)

$$\chi_{Cr}^{eq} = \frac{-k_{Cr} \cdot c_{M} + \sqrt{k_{Cr}^{2} \cdot c_{M}^{2} + 8 \cdot k_{Cr_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Cr} \cdot \phi_{Cr})^{2}}{K_{VIII}^{2} \cdot \gamma_{Cr_{2}O_{3}}} \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{2}}\right)^{3} \cdot (k_{Cr} \cdot c_{M} \cdot x_{Cr}^{b} + 2 \cdot k_{Cr_{2}O_{3}} \cdot c_{S} \cdot x_{Cr_{2}O_{3}}^{b})}}{4 \cdot k_{Cr_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Cr} \cdot \phi_{Cr})^{2}}{K_{VIII}^{2} \cdot \gamma_{Cr_{2}O_{3}}} \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{2}}\right)^{3}}$$

(All.55)

$$\chi_{Ni}^{eq} = \frac{\left(\chi_{Ni}^{b} \cdot k_{Ni} \cdot c_{M} + \chi_{NiO}^{b} \cdot k_{NiO} \cdot c_{S}\right)}{k_{Ni} \cdot c_{M} + k_{NiO} \cdot c_{S} \cdot \left(\frac{f_{Ni} \cdot \phi_{Ni}}{K_{IX} \cdot \gamma_{NiO}} \cdot \left(\frac{\chi_{CO_{2}}^{eq}}{\chi_{CO}^{eq}}\right)\right)}$$

$$x_{Mn}^{eq} = \frac{\left(x_{Mn}^{b} \cdot k_{Mn} \cdot c_{M} + x_{MnO}^{b} \cdot k_{MnO} \cdot c_{S}\right)}{k_{Mn} \cdot c_{M} + k_{MnO} \cdot c_{S} \cdot \left(\frac{f_{Mn} \cdot \phi_{Mn}}{K_{X} \cdot \gamma_{MnO}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}}\right)\right)}$$

$$\boldsymbol{x}_{Si}^{eq} = \frac{\left(\boldsymbol{x}_{Si}^{b} \cdot \boldsymbol{k}_{Si} \cdot \boldsymbol{c}_{M} + \boldsymbol{x}_{SiO_{2}}^{b} \cdot \boldsymbol{k}_{SiO_{2}} \cdot \boldsymbol{c}_{S}\right)}{\boldsymbol{k}_{Si} \cdot \boldsymbol{c}_{M} + \boldsymbol{k}_{SiO_{2}} \cdot \boldsymbol{c}_{S} \cdot \left(\frac{\boldsymbol{f}_{Si} \cdot \boldsymbol{\phi}_{Si}}{\boldsymbol{K}_{XI} \cdot \boldsymbol{\gamma}_{SiO_{2}}} \cdot \left(\frac{\boldsymbol{x}_{CO_{2}}^{eq}}{\boldsymbol{x}_{CO}^{eq}}\right)^{2}\right)}$$

(All.56)

(All.57)

(All.58)

98

$$x_{Al}^{eq} = \frac{-k_{Al} \cdot c_{M} + \sqrt{k_{Al}^{2} \cdot c_{M}^{2} + 8 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Al} \cdot \phi_{Al})^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}}\right)^{3} \cdot (k_{Al} \cdot c_{M} \cdot x_{Al}^{b} + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot x_{Al_{2}O_{3}}^{b})}}{4 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Al} \cdot \phi_{Al})^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}}\right)^{3}}{4 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Al} \cdot \phi_{Al})^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}}\right)^{3}}$$
(AII.59)

Substituímos nos fluxos e temos:

$$N_{Fe} = k_{Fe} \cdot c_M \cdot \left(\frac{\left(x_{Fe}^b \cdot k_{Fe} \cdot c_M + x_{FeO}^b \cdot k_{FeO} \cdot c_S \right)}{k_{Fe} \cdot c_M + k_{FeO} \cdot c_S \cdot \left(\frac{\gamma_{Fe}}{K_{VII} \cdot \gamma_{FeO}} \cdot \left(\frac{x_{Fo}^{eq}}{x_{CO}^{eq}} \right) \right)} - x_{Fe}^b \right)$$
(All.60)

$$N_{cr} = k_{cr} \cdot c_{M} \cdot \left(\frac{-k_{cr} \cdot c_{M} + \sqrt{k_{cr}^{2} \cdot c_{M}^{2} + 8 \cdot k_{cr_{2}o_{3}} \cdot c_{s} \cdot \frac{(f_{cr} \cdot \phi_{cr})^{2}}{K_{VIII}^{2} \cdot \gamma_{cr_{2}o_{3}}}} \cdot \frac{(x_{co})^{2}}{x_{co}} \cdot (x_{cr})^{2} \cdot (x_{cr}) \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2}}{K_{cr_{2}o_{3}}^{2} \cdot (x_{cr})^{2}} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2}}{K_{cr_{2}o_{3}}^{2} \cdot (x_{cr})^{2}} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2}}{K_{cr_{2}o_{3}}^{2} \cdot (x_{cr})^{2} \cdot (x_{cr})^{2}} \cdot (x_{cr})^{2} \cdot (x_{c$$

$$N_{Ni} = k_{Ni} \cdot c_{M} \cdot \left(\frac{\left(x_{Ni}^{b} \cdot k_{Ni} \cdot c_{M} + x_{NiO}^{b} \cdot k_{NiO} \cdot c_{S} \right)}{k_{Ni} \cdot c_{M} + k_{NiO} \cdot c_{S} \cdot \left(\frac{f_{Ni} \cdot \phi_{Ni}}{K_{IX} \cdot \gamma_{NiO}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right) \right)} - x_{Ni}^{b} \right)$$

(All.62)

(All.63)

(All.64)

$$N_{Mn} = k_{Mn} \cdot c_M \left(\frac{\left(x_{Mn}^b \cdot k_{Mn} \cdot c_M + x_{MnO}^b \cdot k_{MnO} \cdot c_S \right)}{k_{Mn} \cdot c_M + k_{MnO} \cdot c_S \left(\frac{f_{Mn} \cdot \phi_{Mn}}{K_X \cdot \gamma_{MnO}} \left(\frac{x_{CO_2}^{eq}}{x_{CO}^{eq}} \right) \right)} - x_{Mn}^b \right)$$

$$N_{Si} = k_{Si} \cdot c_{M} \cdot \left(\frac{\left(x_{Si}^{b} \cdot k_{Si} \cdot c_{M} + x_{SiO_{2}}^{b} \cdot k_{SiO_{2}} \cdot c_{S} \right)}{k_{Si} \cdot c_{M} + k_{SiO_{2}} \cdot c_{S} \cdot \left(\frac{f_{Si} \cdot \phi_{Si}}{K_{XI} \cdot \gamma_{SiO_{2}}} \cdot \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{2} \right)} - x_{Si}^{b} \right)$$

$$N_{Al} = k_{Al} \cdot c_{M} \cdot \left(\frac{-k_{Al} \cdot c_{M} + \sqrt{k_{Al}^{2} \cdot c_{M}^{2} + 8 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Al} \cdot \phi_{Al})^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}}} \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{3} \cdot (k_{Al} \cdot c_{M} \cdot x_{Al}^{b} + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot x_{Al_{2}O_{3}}^{b}} - x_{Al}^{b}} \right)$$

$$4 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Al} \cdot \phi_{Al})^{2}}{K_{XII}^{2} \cdot \gamma_{Al_{2}O_{3}}} \left(\frac{x_{CO_{2}}^{eq}}{x_{CO}^{eq}} \right)^{3}} + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot x_{Al_{2}O_{3}}^{b}} \right)$$

$$(AII.65)$$

Agora precisamos de uma equação para achar $\chi_{CO_2}^{eq}$ em função de χ_{CO}^{eq} , essa relação é obtida igualando os fluxos de CO e CO₂ e isolando a X_{CO}:

$$\boldsymbol{\chi}_{CO_{2}}^{eq} = \left(\frac{k_{CO} \cdot \left(\boldsymbol{\chi}_{CO}^{b} - \boldsymbol{\chi}_{CO}^{eq}\right)}{k_{CO_{2}}} + \boldsymbol{\chi}_{CO_{2}}^{b}\right)$$
(AII.66)

Finalmente substituimos $\chi^{_{eq}}_{_{CO_2}}$ nos fluxos:

$$N_{Fe} = k_{Fe} \cdot c_{M} \left(\frac{\left(\frac{k_{Fe}}{X_{Fe}} \cdot k_{Fe} \cdot c_{M} + \frac{k_{Feo}}{X_{Feo}} \cdot k_{Feo} \cdot c_{S} \right)}{\left(\frac{k_{Fe}}{K_{Fe}} \cdot c_{M} + k_{Feo} \cdot c_{S} \left(\frac{\gamma_{Fe}}{K_{vu} \cdot \gamma_{Feo}} \cdot \left(\frac{\frac{k_{eo}}{k_{co}} \cdot \frac{x_{co}}{x_{co}} - \frac{x_{co}}{x_{co}} \right)}{x_{co}} \right) \right)}{x_{co}^{eq}} \right) - x_{Fe}^{b}}$$

$$N_{Ce} = k_{Ce} \cdot c_{M} + \left[k_{Ce}^{2} \cdot c_{M}^{2} + 8 \cdot k_{Ceo_{1}} \cdot c_{S} \cdot \frac{\left(\frac{f_{Ce}}{K_{vu}} \cdot \frac{q_{O}}{x_{co}} \right)}{k_{vu} \cdot \gamma_{Ceo_{1}}} \left(\frac{k_{co}}{k_{co}} \cdot \frac{x_{co}}{x_{co}} \right)}{x_{co}^{eq}} \right) \right] \left(k_{Ce} \cdot c_{M} \cdot x_{ce}^{b} + 2 \cdot k_{ceo_{1}} \cdot c_{S} \cdot x_{co}^{b} \right)}{k_{Ce}^{2} \cdot c_{M}^{2} + 8 \cdot k_{Ceo_{1}} \cdot c_{S} \cdot \frac{\left(\frac{f_{Ce}}{K_{vu}} \cdot \frac{q_{O}}{x_{co}} \right)}{k_{co}} \left(\frac{k_{co}}{k_{co}} \cdot \frac{x_{co}}{x_{co}} \right) \right] \left(k_{Ce} \cdot c_{M} \cdot x_{ce}^{b} + 2 \cdot k_{ceo_{1}} \cdot c_{S} \cdot x_{co}^{b} \right)}{k_{Ce}^{2} \cdot c_{M}^{2} \cdot x_{co}^{2} \cdot \frac{\left(\frac{k_{co}}{k_{co}} \cdot \frac{x_{co}}{x_{co}} \right)}{k_{co}} \left(\frac{k_{co}}{k_{co}} \cdot \frac{x_{co}}{x_{co}} + x_{co}^{b} \right)}{k_{co}} \right] \right) - x_{co}^{b}$$

(All.68)

102

$$N_{Ni} = k_{Ni} \cdot c_{M} \cdot \left(\frac{\left(\frac{k_{Ni}}{k_{Ni}} \cdot k_{Ni} \cdot c_{M} + x_{Ni0}^{b} \cdot k_{Ni0} \cdot c_{S} \right)}{k_{Ni} \cdot c_{M} + k_{Ni0} \cdot c_{S} \cdot \left(\frac{f_{Ni}}{K_{IX}} \cdot \gamma_{Ni0} \cdot \left(\frac{\left(\frac{k_{co}}{k_{co}} - x_{co}^{eq} \right) + x_{co_{1}}^{b} \right)}{k_{co_{2}}} \right) - x_{Ni}^{b}} \right)$$

$$N_{Mn} = k_{Mn} \cdot c_{M} \cdot \left(\frac{\left(\frac{k_{Mn}}{k_{Mn}} \cdot k_{Mn} \cdot c_{M} + x_{Mn0}^{b} \cdot k_{Mn0} \cdot c_{S} \right)}{k_{co_{2}}} - x_{co}^{eq} + x_{co_{2}}^{b} \right)}{k_{co_{2}}} - x_{Mn}^{b}} - x_{Mn}^{b} \cdot k_{Mn} \cdot c_{M} + x_{Mn0}^{b} \cdot k_{Mn0} \cdot c_{S} \right)} - x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn0} \cdot x_{Co}^{b} - x_{Co}^{eq} + x_{Co_{2}}^{b} - x_{Mn}^{b}} - x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn}^{eq} \cdot x_{Co}^{b} - x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn}^{eq} - x_{Co}^{eq} - x_{Co}^{eq} + x_{Co_{2}}^{b} - x_{Mn}^{b} - x_{Mn}^{b} \cdot x_{Mn}^{b} \cdot x_{Mn}^{eq} \cdot x_{Co}^{eq} - x_{Co}^{eq} -$$

(All.70)

)

$$N_{Si} = k_{Si} \cdot c_M \cdot \left(\frac{\left(x_{Si}^b \cdot k_{Si} \cdot c_M + x_{Sio_2}^b \cdot k_{Sio_2} \cdot c_S \right)}{k_{Si} \cdot c_M + k_{Sio_2} \cdot c_S \cdot \left(\frac{f_{Si} \cdot \phi_{Si}}{K_{XI} \cdot \gamma_{Sio_2}} \cdot \left(\frac{\left(\frac{k_{Co} \cdot \left(x_{Co}^b - x_{Co}^e \right)}{k_{Co_2}} + x_{Co_2}^e \right)}{x_{Co}^e} \right)^2 \right)} - x_{Si}^b$$

$$N_{Al} = k_{Al} \cdot c_{M} \cdot \left[\frac{-k_{Al} \cdot c_{M} + \sqrt{k_{Al}^{2} \cdot c_{M}^{2} + 8 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot \frac{(f_{Al} \cdot \phi_{Al})^{2}}{K_{Xll}^{2} \cdot \gamma_{Al_{2}O_{3}}}} \left[\frac{(\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b})}{\frac{k_{Al} \cdot c_{M} \cdot x_{Al}^{b} + 2 \cdot k_{Al_{2}O_{3}} \cdot c_{S} \cdot x_{Al_{2}O_{3}}^{b}}{K_{Xll}^{2} \cdot \gamma_{Al_{2}O_{3}}}} - x_{Al}^{b}\right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{\frac{k_{co}} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} - x_{co}^{eq}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co_{2}}} + x_{co_{2}}^{b}}{k_{co_{2}}} \right] \right] \cdot \left[\frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{eq})}{k_{co}} + x_{co_{2}}^{b}}{k_{co}} \right] + \frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{e})}{k_{co}} + x_{co}^{b}}{k_{co}} \right] + \frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{e})}{k_{co}} + x_{co}^{b}}{k_{co}} + x_{co}^{b}}{k_{co}} \right] + \frac{k_{co} \cdot (x_{co}^{b} - x_{co}^{e})}{k_{co}} + x_{co}^{b}}{k_{co}} + x_{co}^{b}}{k_{co}}$$

Fazendo o balanço de massa do oxigênio temos a equação final:

$$F(\chi_{CO}^{eq}) = -\sum x \cdot N_{MO_x} - N_{CO} = 0$$
(All.73)

A solução desta equação é obtida através de método numérico.

APÊNDICE III – TRATAMENTO DA INTERFACE METAL-GÁS

Reações

13)	$(O_2) \Leftrightarrow 2 \ \underline{O}$	(AIII.1)
14)	$\underline{C} + \underline{O} \Leftrightarrow (CO)$	(AIII.2)
15)	\underline{C} + (CO ₂) \Leftrightarrow 2 (CO)	(AIII.3)

Constantes de Equilíbrio

$$\boldsymbol{K}_{XIII} = \frac{\left(\boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O}\right)^{2}}{\boldsymbol{x}_{O_{2}}^{eq} \cdot \boldsymbol{P}_{Tot}}$$
(AIII.4)

$$K_{XIV} = \frac{\chi_{CO}^{eq} \cdot P_{Tot}}{(f_C \cdot \chi_C^{eq} \cdot \phi_C)(f_O \cdot \chi_O^{eq} \cdot \phi_O)}$$
(AIII.5)

$$K_{XV} = \frac{\left(\chi_{CO}^{eq} \cdot P_{Tot}\right)^2}{\chi_{CO_2}^{eq} \cdot P_{Tot} \cdot \left(f_C \cdot \chi_C \cdot \phi_C\right)}$$
(AIII.6)

Fluxos

$$N_{c} = k_{c} \cdot c_{M} \cdot \left(x_{c}^{eq} - x_{c}^{b} \right)$$
(AIII.7)

$$N_o = k_o \cdot c_M \cdot \left(x_o^{eq} - x_o^b \right)$$
(AIII.8)

$$N_{co} = k_{co} \cdot c_G \cdot \left(x_{co}^{eq} - x_{co}^{b} \right) + x_{co}^{eq} \cdot \left(N_{co} + N_{co_2} + N_{o_2} \right)$$
(AIII.9)

$$N_{co_2} = k_{co_2} \cdot c_G \cdot (x_{co_2}^{eq} - x_{co_2}^{b}) + x_{co_2}^{eq} \cdot (N_{co} + N_{co_2} + N_{o_2})$$
(AIII.10)

$$N_{o_2} = k_{o_2} \cdot c_G \cdot (x_{o_2}^{e_q} - x_{o_2}^{b}) + x_{o_2}^{e_q} \cdot (N_{co} + N_{co_2} + N_{o_2})$$
(AIII.11)

Balanço de Massa

$$N_{o} + N_{co} + 2 \cdot N_{co_{2}} + 2 \cdot N_{o_{2}} = 0$$
(AIII.12)

$$N_{co} + N_{co_2} + N_c = 0$$
 (AIII.13)

Obtenção da equação de F(x_{co},x_o)=0

a) Manipulando a equação (Al.11) tiramos:

$$(N_{co} + N_{co_2} + N_{o_2}) = \frac{N_{co} - N_o}{2}$$
 (AIII.14)

b) Substituímos esse valor na equação (AI.9):

$$N_{co} = \frac{2 \cdot k_{co} \cdot c_{G} \cdot \left(x_{co}^{eq} - x_{co}^{b}\right)}{\left(2 - x_{co}^{eq}\right)} - \frac{x_{co}^{eq}}{\left(2 - x_{co}^{eq}\right)} \cdot N_{o}$$
(AIII.15)

c) Substituímos primeiro a equação (AI.14) em (AI.10) e depois (AI.15):

$$N_{co_{2}} = k_{co_{2}} \cdot c_{G} \cdot \left(x_{co_{2}}^{eq} - x_{co_{2}}^{b}\right) + \frac{x_{co_{2}}^{eq}}{2} \cdot \left(\frac{2 \cdot k_{co} \cdot c_{G} \cdot \left(x_{co}^{eq} - x_{co}^{b}\right)}{\left(2 - x_{co}^{eq}\right)} - \frac{x_{co}^{eq}}{\left(2 - x_{co}^{eq}\right)} \cdot N_{o} - N_{o}\right)$$
(AIII.16)

d) Substituímos primeiro a equação (AI.14) em (AI.11) e depois (AI.15):

$$N_{o_2} = k_{o_2} \cdot c_G \cdot \left(x_{o_2}^{eq} - x_{o_2}^{b}\right) + \frac{x_{o_2}^{eq}}{2} \cdot \left(\frac{2 \cdot k_{co} \cdot c_G \cdot \left(x_{co}^{eq} - x_{co}^{b}\right)}{\left(2 - x_{co}^{eq}\right)} - \frac{x_{co}^{eq}}{\left(2 - x_{co}^{eq}\right)} \cdot N_o - N_o\right)$$
(AIII.17)

 e) Como desejamos obter todos os fluxos em função de x_{co} e x_o devemos utilizar as equações de equilíbrios e os fluxos para fazer substituições e obter as equações desejadas:

N_{co}

$$N_{co} = \frac{2 \cdot k_{co} \cdot c_{g} \cdot \left(x_{co}^{eq} - x_{co}^{b}\right)}{\left(2 - x_{co}^{eq}\right)} - \frac{x_{co}^{eq} \cdot k_{o} \cdot c_{M} \cdot \left(x_{o}^{eq} - x_{o}^{b}\right)}{\left(2 - x_{co}^{eq}\right)}$$
(AIII.18)

isolando $\chi_{co_2}^{eq}$ na equação (AI.6) e isolando χ_c^{eq} na equação (AI.5) e substituindo na (AI.6) manipulada temos:

$$\boldsymbol{x}_{CO_2}^{eq} = \frac{\boldsymbol{K}_{XIV}}{\boldsymbol{K}_{XV}} \cdot \boldsymbol{f}_{O} \cdot \boldsymbol{x}_{O}^{eq} \cdot \boldsymbol{\phi}_{O} \cdot \boldsymbol{x}_{CO}^{eq}$$

utilizando esta equação na equação (AI.16) temos:

$$N_{co_2}$$

$$N_{co_{2}} = k_{co_{2}} \cdot c_{G} \left(\frac{K_{XIV}}{K_{XV}} \cdot f_{o} \cdot x_{o}^{eq} \cdot \phi_{o} \cdot x_{co}^{eq} - x_{co_{2}}^{b} \right) + \frac{K_{XIV} \cdot f_{o} \cdot x_{o}^{eq} \cdot \phi_{o} \cdot x_{co}^{eq}}{2 \cdot K_{XV}} \left(\frac{2 \cdot k_{co} \cdot c_{G} \cdot (x_{co}^{eq} - x_{co}^{b})}{(2 - x_{co}^{eq})} - \frac{x_{co}^{eq} \cdot k_{o} \cdot c_{M} \cdot (x_{o}^{eq} - x_{o}^{b})}{(2 - x_{co}^{eq})} - k_{o} \cdot c_{M} \cdot (x_{o}^{eq} - x_{o}^{b}) \right)$$
(AIII.20)

Utilizando a equação (AI.4) e substituindo a pressão do oxigênio na equação (AI.17) temos:

$$N_{o_2}$$

$$N_{o_{2}} = k_{o_{2}} \cdot c_{G} \left(\frac{\left(f_{o} \cdot x_{o}^{eq} \cdot \phi_{o} \right)^{2}}{K_{xIII} \cdot P_{Tot}} - x_{o_{2}}^{b} \right) + \frac{\left(f_{o} \cdot x_{o}^{eq} \cdot \phi_{o} \right)^{2}}{2 \cdot P_{Tot} \cdot K_{xIII}} \left(\frac{2 \cdot k_{co} \cdot c_{G} \cdot \left(x_{co}^{eq} - x_{co}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(2 - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{o}^{b} \right)}{\left(x_{co}^{eq} - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{co}^{eq} \right)}{\left(x_{co}^{eq} - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{co}^{eq} \right)}{\left(x_{co}^{eq} - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{co}^{eq} \right)}{\left(x_{co}^{eq} - x_{co}^{eq} \right)^{2}} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{co}^{eq} \right)}{\left(x_{co}^{eq} - x_{co}^{eq} - x_{co}^{eq} \right)} - \frac{x_{co}^{eq} \cdot \left(x_{co}^{eq} - x_{co}$$

(AIII.19)

Substituindo a equação (AI.5) em (AI.7):

N_{c}

$$N_{c} = k_{c} \cdot c_{M} \cdot \left(\frac{x_{co}^{eq} \cdot P_{Tot}}{f_{c} \cdot \phi_{c} \cdot K_{XIV} \cdot f_{o} \cdot x_{o}^{eq} \cdot \phi_{o}} - x_{c}^{b} \right)$$
(AIII.22)

N_o

$$N_o = k_o \cdot c_M \cdot \left(x_o^{eq} - x_o^b \right)$$
(AIII.23)

para resolver os equilíbrios desta interface vamos ter duas funções F1 e F2 que são funções de χ_o^{eq} e χ_{CO}^{eq} :

$$F_{1}(x_{co}^{eq}, x_{o}^{eq}) = N_{o} + N_{co} + 2 \cdot N_{co_{2}} + 2 \cdot N_{o_{2}} = 0$$
(AIII.24)
$$F_{2}(x_{co}^{eq}, x_{o}^{eq}) = N_{co} + N_{co_{2}} + N_{c} = 0$$
(AIII.25)

A solução desta equação é obtida através de método numérico.

APÊNDICE IV – DESENVOLVIMENTO DO CÁLCULO DA ENERGIA LIVRE

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
.....(cal)

Reação 1:

$$\frac{1}{2}$$
 (O₂) + {Fe} \Leftrightarrow {FeO}
 $\Delta G^0 = -61.200 + 12,83 \cdot T^{(28)}$
 $\underline{O} \Leftrightarrow \frac{1}{2}$ (O₂)
 $\Delta G^0 = 27.646 + 1,11 \cdot T^{(28)}$
{Fe} + O \Leftrightarrow {FeO}
 $\Delta G^0 = -33.554 + 13,94 \cdot T$

$$< Cr> + \frac{3}{4} (O_2) \Leftrightarrow \frac{1}{2} < Cr_2O_3> \qquad \Delta G^0 = -132.665 + 29,555 \cdot T^{(28)}$$

$$\frac{Cr}{2} \Leftrightarrow < Cr> \qquad \Delta G^0 = -4.597 + 11,19 \cdot T^{(28)}$$

$$\frac{3}{2} O \Leftrightarrow \frac{3}{4} (O_2) \qquad \Delta G^0 = 41.469 + 1,665 \cdot T^{(28)}$$

$$\frac{Cr}{2} + \frac{3}{2} O \Leftrightarrow \frac{1}{2} < Cr_2O_3> \qquad \Delta G^0 = -95.792 + 42,41 \cdot T$$

Reação 3:

$$+ \frac{1}{2}$$
 (O₂) \Leftrightarrow
 $\Delta G^0 = -56.310 + 20,57 \cdot T^{(28)}$
 $\{Ni\} \Leftrightarrow$
 $\Delta G^0 = -4.180 + 2,42 \cdot T^{(28)}$
 $Ni \Leftrightarrow \{Ni\}$
 $\Delta G^0 = 4.997 + 7,42 \cdot T^{(28)}$
 $\underline{O} \Leftrightarrow \frac{1}{2}$ (O₂)
 $\Delta G^0 = 27.646 + 1,11 \cdot T^{(28)}$
 $\underline{Ni} + \underline{O} \Leftrightarrow$
 $\Delta G^0 = -27.847 + 31,51 \cdot T$

Reação 4:

<u>Mn</u> + <u>O</u> ⇔ <mno></mno>	∆G ⁰ = - 69.169 + 30,36 . T
$\underline{O} \Leftrightarrow \frac{1}{2} (O_2)$	ΔG^0 = 27.646 + 1,11 . T ⁽²⁸⁾
$\underline{Mn} \Leftrightarrow \{Mn\}$	ΔG^{0} = - 975 + 9,11 . T ⁽²⁸⁾
$\{Mn\} \Leftrightarrow \langle Mn \rangle$	$\Delta G^{0}\text{=}$ - 2900 + 1,9 . T $^{(28)}$
$<$ Mn> + $\frac{1}{2}$ (O ₂) \Leftrightarrow $<$ MnO>	$\Delta G^{0}\text{=}$ - 92.940 + 18,24 . T $^{(28)}$

Reação 5:

<u>Si</u> + 2 <u>O</u> ⇔ {SiO₂}	∆G⁰= - 140.339 + 54,42 . T
$\langle SiO_2 \rangle \Leftrightarrow \{SiO_2\}$	ΔG^0 = 1.840 - 1,08 . T ⁽²⁸⁾
$2 \underline{O} \Leftrightarrow (O_2)$	ΔG^{0} = 55.292 + 2,22 . T ⁽²⁸⁾
<u>Si</u> ⇔ {Si}	ΔG^0 = 31.408 + 4,12 . T ⁽²⁸⁾
{Si} ⇔ <si></si>	ΔG^{0} = - 12.080 + 7,17 . T ⁽²⁸⁾
$\langle Si \rangle + (O_2) \Leftrightarrow \langle SiO_2 \rangle$	ΔG^0 = - 216.800 + 42,0 . T ⁽²⁸⁾

Reação 6:

$\underline{\mathbf{AI}} + \frac{3}{2} \ \underline{\mathbf{O}} \Leftrightarrow \frac{1}{2} < \mathbf{AI}_2\mathbf{O}_3 >$	∆G ⁰ = - 145.071 + 47,38 . T
$\frac{3}{2} \ \underline{O} \Leftrightarrow \frac{3}{4} \ (O_2)$	ΔG^0 = 41.469 + 1,665 . T ⁽²⁸⁾
$\underline{AI} \Leftrightarrow \{AI\}$	ΔG^0 = 15.090 + 6,67 . T ⁽²⁸⁾
${AI} + \frac{3}{4} (O_2) \Leftrightarrow \frac{1}{2} < AI_2O_3 >$	ΔG^0 = - 201.630 + 39,055 . T ²⁸⁾

 $\{FeO\} \Leftrightarrow \{Fe\} + \frac{1}{2} (O_2) \qquad \Delta G^0 = 61.200 - 12,83 . T^{(28)}$ $(CO) \Leftrightarrow \langle C \rangle + \frac{1}{2} (O_2) \qquad \Delta G^0 = 27.340 + 20,50 . T^{(28)}$ $\langle C \rangle + (O_2) \Leftrightarrow (CO_2) \qquad \Delta G^0 = -94.490 - 0,13 . T^{(28)}$

$$\{\mathsf{FeO}\}+(\mathsf{CO}) \Leftrightarrow \{\mathsf{Fe}\}+(\mathsf{CO}_2)$$

∆G⁰= - 5.950 + 7,54 . T

Reação 8:

 $\frac{1}{2} < Cr_2O_3 > \Leftrightarrow < Cr > + \frac{3}{4} (O_2)$ $\Delta G^0 = 132.665 - 29,555 \cdot T^{(28)}$ $\Delta G^0 = 4.597 - 11,19 \cdot T^{(28)}$ $\Delta G^0 = 41.010 + 30,75 \cdot T^{(28)}$ $\frac{3}{2} < C > + \frac{3}{4} (O_2)$ $\Delta G^0 = 41.010 + 30,75 \cdot T^{(28)}$ $\frac{3}{2} < C > + \frac{3}{2} (O_2) \Leftrightarrow \frac{3}{2} (CO_2)$ $\Delta G^0 = -141.735 - 0,195 \cdot T^{(28)}$ $\frac{1}{2} < Cr_2O_3 > + \frac{3}{2} (CO) \Leftrightarrow \underline{Cr} + \frac{3}{2} (CO_2)$ $\Delta G^0 = 36.537 - 10,19 \cdot T$

Reação 9:

 $<NiO> \Leftrightarrow <Ni> + \frac{1}{2} (O_{2})$ $\Delta G^{0} = 56.310 - 20,57 \cdot T^{(28)}$ $\Delta G^{0} = 4180 - 2,42 \cdot T^{(28)}$ $\Delta G^{0} = -4.997 - 7,42 \cdot T^{(28)}$ $\Delta G^{0} = -4.997 - 7,42 \cdot T^{(28)}$ $(CO) \Leftrightarrow <C> + \frac{1}{2} (O_{2})$ $\Delta G^{0} = 27.340 + 20,50 \cdot T^{(28)}$ $<C> + (O_{2}) \Leftrightarrow (CO_{2})$ $\Delta G^{0} = -94.490 - 0,13 \cdot T^{(28)}$

Reação 10:

- $< MnO> \Leftrightarrow < Mn> + \frac{1}{2} (O_2) \qquad \Delta G^0 = 92.940 18,24 . T^{(28)} \\ < Mn> \Leftrightarrow \{Mn\} \qquad \Delta G^0 = 2.900 1,9 . T^{(28)} \\ \{Mn\} \Leftrightarrow \underline{Mn} \qquad \Delta G^0 = 975 9,11 . T^{(28)} \\ (CO) \Leftrightarrow <C> + \frac{1}{2} (O_2) \qquad \Delta G^0 = 27.340 + 20,50 . T^{(28)} \\ <C> + (O_2) \Leftrightarrow (CO_2) \qquad \Delta G^0 = -94.490 0,13 . T^{(28)} \\ <MnO> + (CO) \Leftrightarrow \underline{Mn} + (CO_2) \qquad \Delta G^0 = 29.665 8,88 . T$
- Reação 11:

$\langle SiO_2 \rangle \Leftrightarrow \langle Si \rangle + (O_2)$	ΔG^0 = 216.800 - 42,0 . T ⁽²⁸⁾
<si> ⇔ {Si}</si>	$\Delta G^{0}\text{=}$ 12.080 - 7,17 . T $^{(28)}$
{Si} ⇔ <u>Si</u>	$\Delta G^0 \text{=}$ - 31.408 - 4,12 . T $^{(28)}$
$2 \text{ (CO)} \Leftrightarrow 2 < C > + (O_2)$	ΔG^0 = 54.680 + 41,00 . T ⁽²⁸⁾
2 <c> + 2 (O₂) ⇔ 2 (CO₂)</c>	ΔG^0 = - 188.980 + 0,26 . T ⁽²⁸⁾

<SiO₂> + 2 (CO) ⇔ Si + 2 (CO₂)

∆G⁰= 61.332 - 11,47 . T

Reação 12:

$$\frac{1}{2} < AI_2O_3 > \Leftrightarrow \{AI\} + \frac{3}{4} (O_2)$$

$$\Delta G^0 = 201.630 - 39,055 \cdot T^{(28)}$$

$$\Delta G^0 = -15.090 - 6,67 \cdot T^{(28)}$$

$$\frac{3}{2} (CO) \Leftrightarrow \frac{3}{2} < C > + \frac{3}{4} (O_2)$$

$$\Delta G^0 = 41.010 + 30,75 \cdot T^{(28)}$$

$$\Delta G^0 = -141.735 + 0,195 \cdot T^{(28)}$$

Reação 13:

 $(O_2) \Leftrightarrow 2 \ \underline{O}$ $\triangle G^0 = -55.293 - 2,21 \ . T^{(28)}$

Reação 14:

<u>C</u> + <u>O</u> ⇔ (CO)	$\Delta {f G}^0$ = - 5.090 - 9,30 . T $^{(28)}$
$\underline{C} \Leftrightarrow \langle C \rangle$	ΔG^0 = - 5.396 + 10,09 . T ⁽²⁸⁾
$\underline{O} \Leftrightarrow \frac{1}{2} (O_2)$	ΔG^0 = 27.646 + 1,11 . T ⁽²⁸⁾
$\langle C \rangle + \frac{1}{2} (O_2) \Leftrightarrow (CO)$	ΔG^0 = - 27.340 - 20,50 . T ⁽²⁸⁾

Reação 15:

<u>C</u> + (CO ₂) ⇔ 2 (CO)	$\Delta {f G}^{0}$ = 35.213 - 29,68 . T $^{(28)}$
$\underline{C} \Leftrightarrow <\!\!\mathsf{C\!\!>}$	ΔG^0 = - 5.396 + 10,09 . T ⁽²⁸⁾
$(CO_2) \Leftrightarrow {<}C> + (O_2)$	ΔG^0 = - 94.490 - 0,13 . T ⁽²⁸⁾
$2 < C > + (O_2) \Leftrightarrow 2 (CO)$	ΔG^{0} = - 54.680 - 41,00 . T ⁽²⁸⁾

APÊNDICE V – VALORES DAS CONSTANTES DE EQUILÍBRIOS DAS REAÇÕES UTILIZADAS NOS MODELOS

$$\Delta G^{\circ} = -R.T.\ln(K) \Rightarrow K = \exp\left(\frac{-\Delta G^{\circ}}{R.T}\right)$$
(AV.1)

$$K_I = exp(16.886,556 / T-7,014)$$
(AV.2) $K_{II} = exp(48.209,466 / T - 21,342)$ (AV.3) $K_{III} = exp(14.014,560 / T - 15,859)$ (AV.4) $K_{IV} = exp(34.810,787 / T - 15,279)$ (AV.5) $K_v = exp(70.628,555 / T - 27,388)$ (AV.6) $K_{VI} = exp(73.009,852 / T - 23,845)$ (AV.7) $K_{VII} = exp(2.994,464 / T - 3,795)$ (AV.8) $K_{VIII} = exp(-18.387,936 / T + 5,130)$ (AV.9) $K_{IX} = exp(5.866,460 / T + 5,051)$ (AV.10) $K_x = exp(-14.929,767 / T + 4,471)$ (AV.11) $K_{XII} = exp(-30.866,515 / T + 5,771)$ (AV.12) $K_{XII} = exp(27.827,290 / T + 1,113)$ (AV.13) $K_{XIV} = exp(2.561,687 / T + 4,681)$ (AV.15) $K_{XV} = exp(-17.721,777 / T + 14,936)$ (AV.16)

Obs: calculados a partir dos ΔG^0 das reações do modelo apresentadas no apêndice IV.

APÊNDICE VI – CÁLCULO DOS COEFICIENTES DE ATIVIDADE

Definição de Atividade Raultiana (a)

$$a_{M} = \gamma_{M} \cdot \chi_{M} \tag{AVI.1}$$

Definição de Atividade Henriana (h)

$$h_{M} = f_{M} \cdot \% M \tag{AVI.2}$$

Cálculo do Coeficiente de Atividade Raultiana (γ)

$$\ln \gamma_{M} = \sum_{j=2}^{n} \varepsilon_{i}^{j} \cdot (\chi_{M})$$
(AVI.3)

Cálculo do Coeficiente de Atividade Henriana (f)

$$\log f_{M} = \sum_{j=2}^{n} e_{i}^{j} . (\% j) + \sum_{j=2}^{n} r_{i}^{j} . (\% j)^{2} + \sum_{j=2}^{n} \sum_{k=2}^{n} r_{i}^{j,k} . (\% j) . (\% k)$$
(AVI.4)

Desenvolvimento do Cálculo para os diversos elementos no aço:

Cr

$$\log f_{cr} = -0,0003.(\%Cr) + 0,0002.(\%Ni) - 0,0043.(\%Si) - 0,002.(\%Al) - 0,12.(\%C) + (-399,75/T + 0,1005).(\%O)$$
(AVI.5)

Ni

$$\log f_{Ni} = -0,0003.(\% Cr) + 0,0009.(\% Ni) + 0,0057.(\% Si) + 0,042.(\% C) + 0,01.(\% O)$$
(AVI.6)

$$\log f_{Mn} = -0.07.(\% C) - 0.083.(\% O) \tag{AVI.7}$$

Si

$$\log f_{Si} = -0,0003.(\% Cr) + 0,005.(\% Ni) + 0,002.(\% Mn) + (0,089 + 34,5/T).(\% Si) + 0,058.(\% Al) + (-0,023 + 380/T).(\% C) - 0,23.(\% O) + (-0,0055 + 6,50/T).(\% Si)^{2}$$
(AVI.8)

AI

$$\log f_{Al} = 0,0056.(\% Si) + (0,011 + 63/T).(\% Al) + 0,091.(\% C) + (11,95 - 34740/T).(\% O) - 0,001.(\% Al)^{2} - 0,0006.(\% Al).(\% Si) - 0,004.(\% Al).(\% C)$$
(AVI.9)

С

$$\log f_{c} = (0,0269 - 95,56/T).(\%Cr) + 0,012.(\%Ni) - 0,012.(\%Mn) + (-0,008 + 162/T).(\%Si) + 0,043.(\%Al) + (0,0581 + 158,2/T).(\%C) - 0,34.(\%O) + (0,000795 - 1,462/T).(\%Cr)^{2} + (-0,047 + 177,2/T - 150000/T^{2}).(\%C)^{2} + (-0,0114 + 24,10/T).(\%Cr).(\%Cr)$$
(AVI.10)

0

 $\log f_o = (0,034 - 123/T).(\% Cr) + 0,006.(\% Ni) - 0,021.(\% Mn) - 0,131.(\% Si) - 0,45.(\% C) + (7,15 - 20600/T).(\% Al) + (0,734 - 1750/T).(\% O)$

(AVI.11)

APÊNDICE VII – CÁLCULO DAS DENSIDADES MOLARES NAS 3 FASES (metal líquido, escória, gás)

Fase: Metal Líquido

$$C_{M} = \frac{\rho_{Met.Liq.}}{100} \cdot \sum_{i=1}^{n} \frac{\%i}{M_{i}}$$
 (a partir da porcentagem em massa) (AVII.1)

$$C_{M} = \frac{\rho_{Met.Liq.}}{\sum_{i=1}^{n} x_{i} \cdot M_{i}}$$
 (a partir da fração molar) (AVII.2)

Fase: Escória

$$C_{s} = \frac{\rho_{slag}}{100} \cdot \sum_{i=1}^{n} \frac{\%i}{M_{i}}$$
 (a partir da porcentagem em massa) (AVII.3)
$$C_{s} = \frac{\rho_{slag}}{\sum_{i=1}^{n} x_{i} \cdot M_{i}}$$
 (a partir da fração molar) (AVII.4)

Fase: Gás

$$C_{G} = \frac{\left(P_{atm} + P_{met}\right)}{RT}$$
(AVII.5)

 C_F em: mol.m⁻³

Obs: n=número de elementos, F=fase e %i=porcentagem do elemento i em massa

Transformações de Unidades de Concentração

De fração molar (\mathbf{x}_i) para % em massa^{*}:

$$\% i = \frac{X_i \cdot M_i}{\sum_{j=1}^n X_j \cdot M_j}$$
(AVII.6)
$$\% i = \frac{C_M \cdot X_i \cdot M_i \cdot 100}{\rho_{fase}}$$
(AVII.7)

De % em massa para fração molar $(\mathbf{x}_i)^*$:

$$\chi_{i} = \frac{\frac{\%i}{M_{i}}}{\sum_{j=1}^{n} \frac{\%j}{M_{j}}}$$
(AVII.8)

*- para escória e metal líquido

Obs: n=número de elementos e %i,%j=porcentagem do elemento i,,j em massa

APÊNDICE VIII – CÁLCULO DO BALANÇO TÉRMICO

O balanço térmico foi feito baseado na Lei de Hess^{*}, onde o calor gerado ou absorvido por uma reação é igual ao calor de formação dos produtos menos o calor de formação dos reagentes:

$$\Delta \boldsymbol{H}_{\operatorname{Re}ac\tilde{a}o}^{o} = \Delta \boldsymbol{H}_{\operatorname{Pr}odutos}^{o} - \Delta \boldsymbol{H}_{\operatorname{Re}agentes}^{o}$$
(AVIII.1)

Para o cálculo utilizaremos todos os calores de formação a 298 K, com isso os produtos e reagentes devem ser trazidos a essa temperatura, para se calcular o calor de reação. Para o cálculo do calor gerado ou fornecido para mudança de temperatura temos:

$$\Delta H_{T1}^{T2} = \int_{T_1}^{T_2} c_p dT$$
 (AVIII.2)

No caso de haver transformação de fase o calor de transformação se calcula por:

$$\Delta H_{Transformação} = \pm c_L \cdot T_{Transformação}$$
(AVIII.3)

onde o sinal varia dependendo do sentido em que a transformação ocorre.

Para o balanço térmico da reação a temperatura T (de descarburação), deve-se fazer a soma do calor de reação a 298 K com o calor necessário para aquecer ou resfriar os reagentes e produtos, até a temperatura de reação, e o calor necessário para as transformações de fase que ocorrem nesse intervalo de temperaturas.

Para esses cálculos, conforme ilustrado na figura A.1, foram necessários os valores dos calores de formação a 298 K (1), os calores específicos (2) e os calores latentes (3) dos elementos, que foram tabulados por Kubaschewski⁽²⁷⁾ e são apresentados no apêndice IX.

Figura A.1 - Ilustração da Lei de Hess. Onde ΔH_T é a energia total gerada (ou absorvida) pela reação a uma temperatura T.

No processo de descarburação e redução podemos dividir o balanço térmico em dois grupos de termos:

Termos que absorvem calor:

Aquecimento dos gases (argônio, nitrogênio e oxigênio) de $T_{g}^{entrada}$ até T_{g}^{saida} .

Aquecimento do $\text{FeO}_{(\text{sol})}$ de 298 a 1651 K (ponto de fusão), fusão do $\text{FeO}_{(\text{sol})}$ e aquecimento do $\text{FeO}_{(\text{liq})}$ de 1651 K a $\text{T}_{(\text{escória})}$.

Aquecimento do $Cr_2O_{3 (sol)}$ de 298 a $T_{(escória)}$. O ponto de fusão do $Cr_2O_{3 (sol)}$ é 2673 K, muito acima da temperatura da escória.^{**}

Aquecimento do NiO de 298 a T_(escória). O ponto de fusão do NiO é 2257 K.**

Aquecimento do MnO_(sol) de 298 a T_(escória). O ponto de fusão do MnO é 2148 K e é assumido que a temperatura da escória é menor do que isso.^{**}

Aquecimento do SiO_{2 (α -quartzo)} de 298 a 848 K, transformação de SIO_{2 (α -quartzo)} em SIO₂ (β -quartzo), aquecimento do SIO_{2 (β -quartzo)} de 848 a 1883 K (ponto de fusão do SiO₂, fusão do SIO_{2 (β -quartzo)} e aquecimento do SiO_{2 (liq)} de1883 K a T_(escória).^{**}

Aquecimento do AI_2O_3 (sol) de 298 a $T_{(escória)}$. O ponto de fusão do AI_2O_3 (sol) é , e é assumido que a temperatura da escória é inferior a essa.^{**}

Aquecimento do CO e CO₂ de 298 a T_a^{saida} .**

Retirada dos metais de solução no ferro líquido ("desdissolução"). Neste trabalho este termo não foi considerado.

Compensação das perdas térmicas:

Por radiação:

$$Q_{1} = A^{Sup.Escória} \cdot \mathcal{E}_{escória} \cdot \sigma \cdot \left(T^{4}_{escória} - T^{4}_{Cha\min e}\right)$$
(AVIII.4)

Por condução:

$$Q_{2} = A^{Sup.Vaso} \cdot k_{carcaça} (T_{carcaça} - T_{ambiente})$$
(AVIII.5)

Perda térmica total:

$$Q_{Total} = Q_1 + Q_2 + U \tag{AVIII.6}$$

U é o erro utilizado para ajuste.

Termos que geram calor:

Resfriamento do Fe_(liq) de T_{banho} até 1536 K, solidificação do Fe, resfriamento de 1536 até 1400 K, transformação de Fe δ em Fe γ , resfriamento do Fe γ de 1400 a 910 K, transformação de Fe β em Fe β , resfriamento do Fe β de 910 a 760 K, transformação de Fe β em Fe α , resfriamento do Fe α de 760 a 298 K.^{**}

Resfriamento do $Cr_{(liq)}$ de T_{banho} até 1900 K, solidificação do Cr, resfriamento de 1900 até 298 K.^{**}

Resfriamento do Ni_(liq) de T_{banho} até 1728 K, solidificação do Ni, resfriamento de 1728 até 298 K.^{**}

Resfriamento do $Mn_{(liq)}$ de T_{banho} até 1244 K, solidificação do Mn, resfriamento de 1244 até 1136 K, transformação de Mn δ em Mn γ , resfriamento do Mn γ de 1136 a 1100 K, transformação de Mn γ em Mn β , resfriamento do Mn β de 1100 a 720 K, transformação de Mn β em Mn α , resfriamento do Mn α de 720 a 298 K.^{**}

Resfriamento di Si_(liq) de T_{banho} até 1410 K, solidificação do Si, resfriamento de 1410 até 298 K.**

Resfriamento do Al_(liq) de T_{banho} até 659 K, solidificação do Al, resfriamento de 659 até 298 K.**

Resfriamento do C_(liq) de T_{banho} até 659 K, solidificação do C, resfriamento de 659 até 298 K.^{**}

Reações químicas (oxidação).**

Mistura dos componentes da escória (SiO₂, MnO, FeO, CaO, AlO_{1,5},CrO_{1,5},NiO). Este termo não foi considerado neste trabalho.

Fazendo o balanço desses dois grupos temos a variação total de energia no sistema de um instante para outro e com isso podemos calcular a variação de temperatura no sistema:

$$\Delta Energia_{Total} = Energia_{gerada} - Energia_{consumida}$$
(AVIII.7)

$$\Delta Energia_{Total} = \int_{T_{ant}}^{T_{pos}} W_{Met} \cdot c_p^{Met} + W_{Esc} \cdot c_p^{Esc} dT \qquad (AVIII.8)$$

desenvolvendo a integral temos:

$$T_{post} = T_{ant} + \frac{\Delta Energia_{Total}}{\left(W_{Met} \cdot C_{p}^{Met} + W_{Esc} \cdot C_{p}^{Esc}\right)}$$
(AVIII.9)

observar que se a convenção utilizada para energia for: energia gerada (exotérmica): negativa e energia consumida (endotérmica): positiva, as equações se alteram, e a equação da temperatura fica:

$$T_{post} = T_{ant} - \frac{\Delta Energia_{Total}}{\left(W_{Met} \cdot C_p^{Met} + W_{Esc} \cdot C_p^{Esc}\right)}$$
(AVIII.10)

e observamos que se $\Delta Energia_{Total}$ <0 (exotérmica), ocorre aumento de temperatura do banho.

* Lei de Hess: "a variação de entalpia para qualquer processo depende somente da natureza dos reagentes e produtos e independe do número de etapas do processo ou da maneira como é realizada a reação "

** Nos casos em que a reação ocorre no sentido inverso (redução), os valores mudam de sinal, e esses termos mudam de geradores de calor para consumidores e vice-versa.

APÊNDICE IX – DADOS TERMODINÂMICOS PARA O BALANÇO TÉRMICO

	Temperatura (K)	2030						
AI_2O_3	Transformação		$\langle AI_2O_3 \rangle \rightarrow \{AI_2O_3\}$					
	Energia (kcal)	26						
	Temperatura (K)	1378						
FeO	Transformação	$\langle FeO \rangle \rightarrow \{FeO\}$						
	Energia (kcal)		7.4					
	Temperatura (K)		1785					
MnO	Transformação		<mno> -</mno>	→ {MnO}				
	Energia (kcal)		1	3				
	Temperatura (K)	57	75	18	83			
SiO ₂	Transformação	α <sio<sub>2>-</sio<sub>	→ β <sio₂></sio₂>	$\beta < SiO_2 > \rightarrow \{SiO_2\}$				
	Energia (kcal)	0.	15	3.	.6			
	Temperatura (K)		659					
AI	Transformação	$\langle AI \rangle \rightarrow \{AI\}$						
	Energia (kcal)	2.5						
	Temperatura (K)	1900						
Cr	Transformação	$\langle Cr \rangle \rightarrow \{Cr\}$						
	Energia (kcal)		5					
	Temperatura (K)	760	910	1400	1536			
Fe	Transformação	$Fe\alpha \rightarrow Fe\beta$	$Fe\beta \rightarrow Fe\gamma$	$Fe\gamma \rightarrow Fe\delta$	$Fe\delta \rightarrow \{Fe\}$			
	Energia (kcal)	1.2	0.22	0.21	3.3			
	Temperatura (K)	720	1100	1136	1244			
Mn	Transformação	$Mn\alpha \rightarrow Mn\beta$	$Mn\beta \rightarrow Mn\gamma$	$Mn\gamma \rightarrow Mn\delta$	$Mn\delta \rightarrow \{Mn\}$			
	Energia (kcal)	0.48	0.55	0.43	3.2			
	Temperatura (K)	358		1455				
Ni	Transformação	$<$ Ni> $\alpha \rightarrow <$ Ni> β		$\langle Ni \rangle \beta \rightarrow \{Ni\}$				
	Energia (kcal)	0.14		4.1				
	Temperatura (K)	1410						
Si	Transformação	$\langle Si \rangle \rightarrow \{Si\}$						
	Energia (kcal)	12.1						

Ental	pias de	e Mudanca	de fa	se segundo	o Kubasc	hewski ⁽²³⁾ :

	Calor específico (C _P) = A + B.T + C.T ⁻² (cal.°C ⁻¹ .mol ⁻¹)			
Fase	A	В	С	
Ar	5,02	0	0	
<al<sub>2O₃></al<sub>	25.48	4.25	-6.82	
(CO)	6,79	0,98	-0,11	
(CO ₂)	10,55	2,16	-2,04	
<cr<sub>2O₃></cr<sub>	28,53	2,20	-3,74	
<feo></feo>	12.38	1.62	-0.38	
{FeO}	16.30	0	0	
<mno></mno>	11.11	1.94	-0.88	
{MnO}				
(N ₂)	6,66	1,02	0	
<nio>α</nio>	-4.99	37.58	3.89	
<nio>β</nio>	13.88	0	0	
<nio>γ</nio>	11.18	2.02	0	
$\alpha < SiO_2 >$	11,22	8,20	-2,70	
β <sio<sub>2></sio<sub>	14,41	1,94	0	
<al></al>	4,94	2,96	0	
{AI}	7,00	0	0	
<cr></cr>	5,84	2,36	-0,88	
{Cr}	9,40	0	0	
<fe>α</fe>	4,18	5,92	0	
<fe>β</fe>	9,0	0	0	
<fe>γ</fe>	1,84	4,66	0	
<fe>δ</fe>	10,5	0	0	
{Fe}	10,0	0	0	
<mn>α</mn>	5,16	3,81	0	
<mn>β</mn>	8,33	0,66	0	
< M n>γ	10,70	0	0	
<mn>δ</mn>	11,30	0	0	
{Mn}	11,00	0	0	
<ni>α</ni>	7,80	-0,47	-1,335	

Calores específicos para diversas fases segundo Kubaschewski^(num):

<ni>β</ni>	7,10	1,00	-2,23
{Ni}	9,3	0	0
(O ₂)	7,16	1,00	-0,40
<si></si>	5,72	0,59	-0,99
{Si}	6,12	0	0

Entalpia de formação a temperatura de 298 K, segundo Kubaschewski⁽²⁷⁾:

Substância	-∆H° ₂₉₈ (kcal)	Substância	-∆H ^o ₂₉₈ (kcal
<al<sub>2O₃></al<sub>	200	(CO)	26.4
(CO ₂)	94.05	<cr<sub>2O₃></cr<sub>	135
<feo></feo>	63.2	<mno></mno>	92,0
<nio></nio>	57,5	<sio₂>α</sio₂>	217,0

APÊNDICE X – FOLHA DE CORRIDA DA ACESITA

N°CORRIDA:	DA	ATA:	TUR	NO:	LETRA:	4	AÇO PRO	DUZIDO	D:	CAR	TON	RC	DTA	PF	ROCESSC)	OPE. RELATÓRIO	REVIS	ÃO	PESO PR:	77000	l kg	COD.	DESCR.	LO	PES	so '	TEMPO	EL.PF	RIN.
652759B	25/07	7/2006	3	3	D	A	ACE P430	A/AISI43	30	DXF	P000	FEA	PTG		Duplex		ac371562	REAOD	A0406	PESO CARREG .:	76250	kg				(kį	g)	(h:m)	Cod	(%)
ELEI	ENTOS:	:			%C	%Mn	%Si	%P	%S	%Cr	%Ni	%Mo	%Co	%Cu	%Nb	%Ti	N2 (ppm) %B			PESO ESCÓRIA:	750	kg	L010	Cal Medio P	Sile	100	62	19:10	CaO	91.8
	MÍNIMO: MÁXIMO:	:			0.050			0.038	0.010		0.500	0.100	0.030	0.500	0.050					ACO VAZADO:	80900	кg I ka	L081	Cal Medio P	Sile	10	40 70	19:10	CaO	60.4 91.8
OBJI	TIVADO:	:				0.330	0.350			15.800										PRODUÇÃO R	EALIZADA	۰.	L081	Cal Dolomítica	Sil	12	17	19:17	CaO	60.4
CALC."	OPAOD: CARBO:	:			0.044	0.330	0.468	0.023	0.010	15.788	0.142	0.004	0.022	0.020	0.013	0.000	0.000			(1) 642705H	80900	kg kg	L046	Ferro Manganês Import Ferro Cromo a/C 10~60	adoa/Sil/	17	'9 60	19:23	Mn Cr	79.1 54.5
0,20.	0/1100.								AN	ALISE QU	ÍMICA DO	PRÉ-MET	AL					PESO(Kg)		(3)		kg	L010	Cal Medio P	Sile	92	10	19:23	CaO	91.8
(1)	6220	15F_1			3.102	0.280	0.261	0.028	0.013	28.070	0.405	0.011	0.011	0.029	0.027			310	00	(4)		kg	L081	Cal Dolomítica	Sile	100	31	19:23	CaO	60.4
(2)	01142.	230_2			3.784	0.055	0.015	0.007	0.033	0.030	0.028	0.001	0.002	0.003	0.002			440	0	(Total) N°PANELA VAZ	40	кд	L010	Cal Dolomítica	Silo	3	39	19:35	CaO	91.8 60.4
(4)																				VIDA	3		L081	Cal Dolomítica	Sile	80	12	19:41	CaO	60.4
PRE-M	TAL CA	LCULAD	DO		3.502	0.148	0.117	0.016	0.025	11.620 ANI	0.184 ÁLISE OLÍ	0.005	0.006	0.014	0.012		Peso Tota	: 750	00	TEM. REFRAT	850	(°C)	L059	Ferro Silício Comum Fluorita	Silo	212	21 79	19:58	Si CaF2	75.2 93.6
OPERAÇÃO																				ALT. ESCÓRIA	28	cm	L010	Cal Medio P	Sile	54	12	19:58	CaO	91.8
SOPRO:	(1a)				3.4280	0.157	0.067	0.015	0.0260	11.424	0.152	0.004	0.024	0.021	0.014	0.000				ALTURA BANHO	124	cm	0	0	0	0)	0		0.0
ADICÃO:	(2a) (3a)				0.3760	0.229	0.000	0.020	0.0240	13.386	0.206	0.007	0.020	0.014	0.003	0.003				No.	50 VIDA	Cm								
******	(4a)																			CAMP: 183	106									
GENESIS:	(5a) (6a)																			CONE: 1	106									
1410	(7a)																			LANÇA: 8	191									
	(8a)																			Compr.	VIDA									
	(9a) (10a)																			VENI. N°.1 985 VENT. N°.2 940	106									
	FINAL				0.0370	0.341	0.250	0.024	0.0002	15.934	0.200	0.007	0.016	0.016	0.011	0.008	519			VENT. Nº.3 950	106									
CONTR		TEMPO			ESCÓRIA-	CaO SiO2	57.95		MgO NiO	12.56		Cr2O3	0.43		MnO P2O5	0.12	PESO	146	kg/Ton	VENT. Nº.4 890	106									
CONT		I LIVII O	, ,		LOCONA.	FeO	0.39		TiO2	0.02		S	0.18		1200	0.00	MGO/SIO2	0.42		CONSUMOS E RE	INDIMEN1	ros								
EACEC	INI.	FIM	DUR.	TP		VOLU	ME DE GA	ASES	VAZÃ	O DE	VO		02	ALTUR	RADA	ODE	CARRONO	TEMPER		OXIGÊNIO	54.3	Nm3/t								
PAGES	(h:m)	(h:m)	(min)	(min)		L	REAL		PROC	ESSO		LOWEDE	02	LAN	IÇA	GRE	CARBONO	TEMPER	ATURA	ARGÔNIO	9.0	Nm3/t								
ÚLTIMA CORRIDA	17:30	18:46	76			02	Ar	N2	02	GI	REAL	CALC	DIF	PROG	REAL	CALC	OBJ REAL	CALC	REAL	NITROGÊNO	27.0	Nm3/t								
ESPERA	18:46	19:06	20		LANÇA		INITI3		INT.	s/min		Nm3		n	n (76	%			FeSi TOTAL	26.2	Kg/t								
					VENT.	1	7	203												CAL	69.6	Kg/t			RESUMO D	AS ADIÇO	DES			
73 A P3P3P 73 AL # APT 73					A DESCRIPTION OF A DESC	x						2			<u> </u>															
HOMOGENEIZAÇÃO	19:06	19:07	1		VENT.			49											1290	DOLOMITA	50.6 13.3	i Kg/t Kg/t	FA	ASE 0	COD. 1 010	RE 10	AL 62	CALC 1000	DIF 62	
HOMOGENEIZAÇÃO 1a. DECARB	19:06 19:07 19:08	19:07 19:08 19:17	9	8	VENT. VENT. LANÇA	1193		49 30	143		1601	1516	95				2000	1543	1290	dolomita Fluorita Rend. Mang.:	50.6 13.3 105.6	Kg/t Kg/t %	FA Di Di	ASE ec1 ec1	COD. L010 L081	RE 100	AL 62 40	CALC 1000	DIF 62 104	0
HOMOGENEIZAÇÃO 1a. DECARB	19:06 19:07 19:08	19:07 19:08 19:17	9	8	VENT. VENT. LANÇA VENT.	1193 408		49 30 113	143 49	14	1601	1516	85	1.9	1.9	82	2.000	1543	1290	DOLOMITA FLUORITA REND. MANG.: REND. CROMO	50.6 13.3 105.6 99.2	Kg/t Kg/t %	FA Di Di	ASE ec1 ec1 ec2	COD. L010 L081 L010	RE 100 100 100	AL 62 40 70	CALC 1000 715	DIF 62 104 355	0
HOMOGENEIZAÇÃO 1a. DECARB 2a. DECARB	19:06 19:07 19:08 19:17	19:07 19:08 19:17 19:23	1 9 6	8	VENT. VENT. LANÇA VENT. LANÇA VENT.	1193 408 735 201		49 30 113 130 137	143 49 109 30	14 19 20	1601 936	1516 937	85	1.9	1.9	82	2.000	1543	1290	Dolomita Fluorita Rend. Mang.: Rend. Cromo Rend. Níquel Rend.Molib.:	50.6 13.3 105.6 99.2	5 Kg/t 5 Kg/t 5 % 9 %	FA Di Di Di Di Di	ASE 0 ec1 ec2 ec2 ec2 ec2	COD. L010 L081 L010 L080 L081	RE 100 100 100 100	AL 62 40 70	CALC 1000 715 79 1189	DIF 62 104 355 -79 28	0
1a. DECARB 2a. DECARB 3a. DECARB	19:06 19:07 19:08 19:17 19:23	19:07 19:08 19:17 19:23 19:35	1 9 6 12	8 7 9	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA	1193 408 735 201 1040		49 30 113 130 137 187	143 49 109 30 110	14 19 20 20	1601 936 1322	1516 937 1405	85 -1 -83	1.9	1.9	82 87	2.000	1543 1695	1290	DOLOMITA FLUORITA REND. MANG.: REND. CROMO REND. NÍQUEL REND. NÍQUEL REND. METÁLI.:	50.6 13.3 105.6 99.2 99.3	Kg/t Kg/t % % %		ASE 0 ec1 ec2 ec2 ec2 ec2 ec2	COD. L010 L081 L010 L080 L081 L010	RE 100 100 100 100 100 100	AL 62 40 70 17 20	CALC 1000 715 79 1189 1234	DIF 62 104 355 -79 28 -314	- 0 5 9
ARKEGAVENIO HOMOGENEIZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP	19:06 19:07 19:08 19:17 19:23	19:07 19:08 19:17 19:23 19:35	1 9 6 12	8 7 9	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA	1193 408 735 201 1040 282		49 30 113 130 137 187 261	143 49 109 30 110 30	14 19 20 20 28	1601 936 1322	1516 937 1405	85 -1 -83	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65	0.500	1543 1695	1290 1744	DOLOMITA FLUORITA REND. MANG.: REND. CROMO REND. NGUEL REND. METÁLI: <u>RESUMO DAS</u> COD. REAL	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC	i Kg/t i Kg/t i % 2 % % i % 5 DIF		4SE / / ec1 / / / / / / / / / / / / / / / / / / /	COD. L010 L081 L010 L080 L081 L010 L046 L054	RE 100 10- 10- 10- 10- 10- 10- 92 17 78	AL 62 40 70 17 19 60	CALC 1000 715 79 1189 1234 185 7713	DIF 62 104 355 -79 28 -31 -6 147	- 5 9 4
ARKEGANENIO HOMOGENEIZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP	19:06 19:07 19:08 19:17 19:23	19:07 19:08 19:17 19:23 19:35	1 9 6 12	8 7 9	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT.	1193 408 735 201 1040 282		49 30 113 130 137 187 261	143 49 109 30 110 30	14 19 20 20 28	1601 936 1322	1516 937 1405	85 -1 -83	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65	0.500	1543 1695	1290	DOLOMITA FLUORITA REND. MANG: REND. NIQUEL REND. NOLIB: REND. MOLIB: REND. METÁLI: RESUMO DAS COD. REAL LD10 5633	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449	i Kg/t i Kg/t i % 2 % % % i % S DIF 1184	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	4SE 6 ec1 ec2 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3	COD. L010 L081 L010 L080 L081 L010 L046 L054 L054	RE 100 100 100 100 100 92 17 780 100	AL 62 40 70 17 10 '9 60 31	CALC 1000 715 79 1189 1234 185 7713 1722	DIF 62 104 355 -79 28 -314 -6 147 -69	- 5 9 4 7
CARREGAVENTZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1	19:06 19:07 19:08 19:17 19:23 19:23	19:07 19:08 19:17 19:23 19:35 19:35	1 9 6 12 5	8 7 9 5	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT.	1193 408 735 201 1040 282		49 30 113 130 137 187 261	143 49 109 30 110 30	14 19 20 20 28	1601 936 1322 203	1516 937 1405 203	85 -1 -83 0	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65	2.000 0.500 0.200	1543 1695 1678	1290	DOLOMITA FLUORITA REND. MANG: REND. NIQUEL REND. NIQUEL REND. MOLIB: REND. METÁLI: RESUMO DAS COD. REAL L010 5633 L046 179	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7712	i Kg/t i Kg/t i % % % % DIF 1184 -6 147	FA Di Di Di Di Di Di Di Di Di	VSE 0 ec1 ec1 ec2 ec2 ec3 ec3 ec3 ec3 ec1 ec1	COD. L010 L081 L010 L080 L081 L010 L046 L054 L081 L010 L081	RE 100 100 100 120 120 120 120 120 120 120	AL 62 40 70 17 20 79 60 31 39	CALC 1000 715 79 1189 1234 185 7713 1722 1000	DIF 62 104 355 -79 28 -31 -6 147 -69 103 000	- 5 9 4 7 1 9 7
CARREGAVENTZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2	19:06 19:07 19:08 19:17 19:23 19:23 19:35	19:07 19:08 19:17 19:23 19:35 19:40 19:40	1 9 6 12 5 3	8 7 9 5 2	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT.	1193 408 735 201 1040 282 203 68		49 30 113 130 137 187 261 286 147	143 49 109 30 110 30 30 30 39 29	14 19 20 20 28 55 63	1601 936 1322 203 68	1516 937 1405 203 68	85 -1 -83 0	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51	2.000 0.500 0.200 0.200	1543 1695 1678 1687	1290	DOLOMITA FLUORITA REND. MANG.: REND. KOMO REND. MOUEL REND.MOUEL: REND.MOUEL RESUMD DAS COD. REAL LD10 5633 LD46 179 LD54 7860 LD59 2121	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7713 2021	5 Kg/t 5 Kg/t 5 % % % % 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	VSE 0 ec1 0 ec2 0 ec2 0 ec3 0 ec3 0 ec3 0 ec4 0 ec5 0 ec6 0 ec7 0 ec3 0 ec4 0 ec5 0 ec6 0 ec7 0	COD. L010 L081 L010 L080 L081 L046 L054 L081 L081 L081	RE 100 100 100 100 120 92 17 780 100 200 3 80	AL 62 40 70 17 20 9 60 31 39 31 39 31 22	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000	DIF 62 104 355 -79 28 -31 -6 147 -69 103 -09 802 802	- 5 9 4 7 1 9 7 2
CARREGAVENTZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 2	19:06 19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:40	19:07 19:08 19:17 19:23 19:35 19:35 19:40 19:40 19:43 19:43	1 9 6 12 5 3 4	8 7 9 5 2 1	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. VENT. VENT.	1193 408 735 201 1040 282 203 68 41 203	170	49 30 113 130 137 187 261 286 147 4 900	143 49 109 30 110 30 30 30 30 39 29 29 29 29 29	14 19 20 20 28 55 63 123 74	1601 936 1322 203 68 41	1516 937 1405 203 68 10	85 -1 -83 0 0 31	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.200 0.150 0.120	1543 1695 1695 1678 1687 1733 1733	1290	DOLOMITA FLUORITA FLUORITA REND. KGOMO REND. NGUEL REND. MCIUEL: REND. MCIUEL: RESUMD DAS COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7713 2021 936	5 Kg/t 5 Kg/t 5 % % % 5 DIF 1184 -6 147 100 143	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	VSE 0 ec1 0 ec2 0 ec2 0 ec3 0 ec3 0 ec3 0 ec4 0 ec5 0 ec6 0 ec7 0 ec3 0 ec4 0 ec5 0 ec6 0 ec7 0	COD. L010 L081 L080 L080 L081 L010 L046 L054 L061 L061 L081 L081 L081 L081 L070	RE 100 100 100 100 120 92 17 780 100 200 3 80 80 54	AL 62 40 70 17 10 '9 60 31 39 31 39 31 22 24	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000	DIF 62 104/ 355 -79 28 -31/ -6 -6 -147 -69 103 -99, 802 -802 -542	0 5 4 7 1 9 7 2 2
CARREGAVENCIAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 2 DEC FINAL 3 DEC FINAL 4 RESSOPRO	19:06 19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47	19:07 19:08 19:17 19:23 19:35 19:40 19:40 19:43 19:47 20:00	1 9 6 12 5 3 4 13	8 7 9 5 2 1 11	VENT. VENT. LANCA VENT. LANCA VENT. LANCA VENT. LANCA VENT. VENT. VENT. VENT. VENT. VENT. VENT.	1193 408 735 201 1040 282 203 68 41 222	170 6	49 30 113 130 137 187 261 286 147 4 809	143 49 109 30 1110 30 30 30 1110 30 39 29 29 29 29 20	14 19 20 20 28 55 63 123 74	1601 936 1322 203 68 41 222	1516 937 1405 203 68 10 171	85 -1 -83 0 0 31 51	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49	2.000 2.000 0.500 0.200 0.150 0.045	1543 1695 1695 1678 1687 1733 1745	1290 1744 1725	DOLOMITA FLUORITA REND. MANG.: REND. CROMO REND. NGUEL REND. MCUEL REND. MCTALL: COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L059 2121 L075 1079 L081 4083 L080	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7713 2021 936 3910 79	Kg/t Kg/t % % % % % % % % % % % % % % % % % % %	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE 0 6c1 0 6c2 0 6c2 0 6c3 0 6c3 0 6c3 0 6c4 0 6c5 0 6c6 0 6c7 0 6c74 0 6c74 0 6c74 0	COD. L010 L081 L010 L080 L081 L010 L081 L081 L081 L081 L081 L081 L081 L059 L059 L075	RE 100 10- 102 92 17 780 100 200 3 80 54 211 100	AL 62 40 70 17 20 79 60 31 39 31 39 31 22 12 21 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000	DIF 62 104 355 -79 28 -314 -6 147 -69 103 -99 802 542 212 212	0 5 4 7 1 9 7 2 2 1 9
CARREGAVERIO HOMOGENEZACÃO 1a. DECARB 2a. DECARB 3a. DECARB GLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 2 DEC FINAL 3 DEC FINAL 3 DEC FINAL 4 RESSOPRO	19:06 19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47	19:07 19:08 19:17 19:23 19:35 19:35 19:40 19:43 19:43 19:47 20:00	1 9 6 12 5 3 4 13	8 7 9 5 2 1 11	VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. VENT. VENT. VENT. VENT. VENT.	11193 408 735 201 1040 282 203 68 41 222	170	49 30 113 130 137 261 286 147 4 809	143 49 109 30 110 30 110 30 29 29 29 20	14 19 20 20 28 55 63 123 74	1601 936 1322 203 68 41 222	1516 937 1405 203 68 10 171	85 -1 -83 0 0 31 51	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.200 0.120 0.045	1543 1695 1678 1687 1733 1745	1290	DOLOMITA FLUORITA REND. MANG: REND. CROMO REND. NIQUEL REND. METALL: COD. REAL LOYO 5633 LOYA 7860 LOYA 7860 LOYA 7860 LOYA 7860 LOYA 1075 LOYA 1079 LOYA 1079 LOYA 1079 LOYA 1079	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7713 2021 936 3910 79	Kg/t Kg/t % % % % % % 5 DIF 1184 -6 147 100 143 183 -79	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE (sc1 sc2 sc2 sc2 sc3 sc3 sc3 sc3 sc3 sc3 sc3 sc4 ff1 cf1 cf2 cf4 sc4 sc4 sc4 sc4 sc4 sc4 sc5 sc3 sc3 sc3 sc3 sc4 sc4 sc4 sc4 sc4 sc4 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc4 sc4 sc4 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc4 sc5 sc5 sc5 sc5 sc5 sc5 sc5 sc5	COD. L010 L081 L080 L080 L080 L081 L046 L046 L046 L046 L046 L046 L046 L046 L046 L040 L081 L081 L081 L081 L081 L081 L080 L081 L090 L080 L095 L075	RE 100 10- 102 922 17 780 100 200 54 200 54 210 100	AL 62 40 70 '9 60 31 39 31 22 12 21 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000	DIF 62 104 355 -79 28 -31 -6 147 -69 103 103 -99 802 542 212 212 212 212 542 542 542 542 542 542 542 542 542 54	0 5 4 7 1 9 7 2 2 1 9 9
CLARREAVEND HONOGENEZIZÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 RESSOPRO REDUÇÃO	19:06 19:07 19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47 20:00	19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47 20:00 20:14	1 1 9 6 12 5 3 4 13 14	8 7 9 5 2 1 11 11	VENT. UNICA VENT. LANCA VENT. LANCA VENT. LANCA VENT. LANCA VENT. VE	11193 408 735 201 1040 282 203 68 41 222	170 6	49 30 113 130 137 261 286 147 4 809	143 49 109 30 110 30 30 30 39 29 29 20 20	14 19 20 20 28 55 63 123 74 55	1601 936 1322 203 68 41 222	1516 937 1405 203 68 10 171	85 -1 -83 0 0 31 51	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.200 0.150 0.150 0.045	1543 1543 1695 1695 1678 1687 1733 1745	1290 1744 1725 1708	DOLOMITA FLUORITA REND, MANG: REND, CROMO REND, NIQUEL REND, METALL REND, METALL REND, METALL COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L054 093 L080	50.6 13.3 105.6 99.2 99.3 ADICÕES CALC 4449 185 7713 2021 936 3910 79	Kg/t Kg/t Kg/ % % % % % % % % % % % % % % % % % % %	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE 1 861 861 862 862 863 863 863 863 863 864 864 864 864 864 864 864	COD. L010 L081 L080 L080 L080 L081 L046 L046 L046 L046 L046 L046 L046 L081 L081 L081 L081 L081 L075 L010 L059 L075	RE 100 100 101 122 92 17 780 100 200 3 80 54 210 100	AL 62 40 70 '9 60 31 39 3 12 21 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 1000 2021 936	DIF 62 104 355 -79 28 -31 -69 103 -99 802 542 212 212 217 -500 -500 -202	0 5 4 7 1 9 7 2 2 1 9 9 0 2 1 6
CHARRESOVEND HONOGENEZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 2 DEC FINAL 2 DEC FINAL 3 DEC FINAL 3 RESSOPRO REDUÇÃO RESSOPRO	19:06 19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47 20:00	19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:40 19:43 19:47 20:00 20:14	1 1 9 6 12 5 3 4 13 14	8 7 9 5 2 1 11 11	VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA	11193 408 735 201 1040 282 203 68 41 222	170 6 5552	49 30 113 130 137 187 261 286 147 4 809 32	143 49 109 30 110 30 30 30 30 39 29 29 29 20	14 19 20 20 28 55 63 123 74 55 55	1601 936 1322 203 68 41 222	1516 937 1405 203 68 10 171	85 -1 -83 0 0 31 51	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.200 0.150 0.150 0.045	1543 1543 1695 1695 1678 1687 1733 1745	1290 1744 1725 1708	DOLOMITA FLUORITA REND, MANG: REND, CROMO REND, CROMO REND, MOUBL: REND, METALL: RESUMD DAS COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L081 4093 L080	50.6 13.3 105.6 99.2 99.3 ADICOES CALC 4449 185 7713 2021 936 3910 79	Kg/t Kg/t Kg/ % % % % % % % % % % % % % % % % % % %	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE 4 ec1 ec1 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L010 L010 L081 L010 L081 L010 L081 L010 L081 L081 L081 L081 L081 L081 L081 L075 L010 L059 L075	RE 100 100 101 12' 92 17 780 200 3 80 54 210 100	AL 62 40 70 17 80 99 60 31 339 3 3 22 21 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 1000 2021 936	DIF 62 104/ 355 -79 28 -31/ -66 147 103 -99 802 542 212 212 212 212 212 -93/	0 5 4 7 7 2 2 1 9 9 0 2 1 6
CLEAREGUERD Ta, DECARE 2a, DECARE 3a, DECARE	19:06 19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47 20:00	19:07 19:08 19:17 19:23 19:35 19:40 19:43 19:47 20:00 20:14	1 9 6 12 5 3 4 13 14	8 7 9 5 5 2 1 111 11	VENT. URNT. URNT. LANÇA VENT. LANÇA VENT. LANÇA VENT. URNT. VENT. VENT. VENT. VENT. VENT. VENT. URNÇA VENT. URNÇA VENT. LANÇA VENT. LANÇA VENT. URNT. VENT. LANÇA VENT. VENT. VENT. LANÇA VENT. VE	1193 408 735 201 1040 282 203 68 41 2222	170	49 30 113 130 137 187 261 286 147 4 809 32	143 49 109 30 110 30 30 29 29 29 20	14 19 20 20 20 28 55 63 123 74 55 55	1601 936 1322 203 68 41 222	1516 937 1405 203 68 10 171	85 -1 -83 0 0 31 51	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.500 0.150 0.150 0.120 0.045 0.120 0.045	1543 1543 1695 1695 1677 1773 1745	1290 1744 1725 1708	DOLOMITA FLUORITA REND. MANG.: REND. KCROMO REND. NGUEL REND. MCUBL: REND. MCIBL: RENJ. MCIBL: RED. MCTALL: COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L059 2121 L059 L059 L059 L059 L059 L059	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 77713 2021 936 3910 79	Kg/t Kg/t Kg/ % % % % 5 DIF 1184 -6 147 100 143 183 -79	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE 6 601 601 602 602 603 603 603 603 603 603 604 604 604 604 604 604 604 604	COD. L010 L010 L081 L010 L081 L010 L046 L054 L081 L010 L081 L010 L081 L010 L081 L010 L055 L010 L059 L075	RE 100 100 12 92 17 788 100 200 3 80 54 211 100	AL 62 40 70 17 10 99 60 31 339 51 22 12 22 17 9	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 1000 500 2021 936	DIF 62 1044 355 -79 28 -31 -6 147 -69 103 103 542 212 212 1077 -500 -202 -930	- 6 7 7 9 9 0 2 1 9 9 0 2 1 6
CARRESOVEND Ta. DECARB 2a. DECARB 3a. DECARB GLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 3 DEC FINAL 4 RESSOPRO REDUÇÃO RESSOPRO VAZMENTO	19:06 19:07 19:08 19:17 19:23 19:23 19:23 19:35 19:40 19:43 19:40 19:43 19:40 19:43 19:40 19:43 19:40 19:40 19:40 19:40 19:23 20:00	19:07 19:08 19:17 19:23 19:35 19:35 19:40 19:43 19:47 20:00 20:14 20:14	1 9 6 12 5 3 4 13 14	8 7 9 5 5 2 1 11 11	VENT. UENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. TENÇA VENT. TENÇA	1193 408 735 201 1040 282 203 68 41 222 4392 4392	170 5552 730 737	49 30 113 130 137 187 261 286 147 4 809 32 32 2184 2387	143 49 109 30 110 30 39 29 29 29 20 20 20 50MA AT	14 19 20 20 28 55 63 123 74 55 55	1601 936 1322 203 68 41 222 3859 533	1516 937 1405 203 68 10 171 171 3858 452	85 -1 -83 0 0 31 51 51 -81 81	1.9 1.7 1.7	1.9 1.7 1.7	82 87 65 68 51 49 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.000 0.500 0.200 0.150 0.005	1695 1695 1678 1678 1678 1733 1745	1290 1744 1725 1708 1708	DOLOMITA FLUORITA REND, MANG: REND, MOUEL REND, MOUEL: REND, METÁLI: COD, REAL L010 5633 L046 179 L054 77800 L059 2121 L075 1079 L054 093 L080	50.6 13.3 105.6 99.2 99.3 ADICÓES CALC 4449 185 77713 2021 936 3910 79	Kg/t Kg/t % % % % 5 DIF 1184 -6 147 100 143 -79	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE 1 ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3	COD. L010 L081 L081 L080 L080 L081 L081 L054 L054 L054 L054 L054 L054 L054 L054	RE 100 100 100 120 92 177 780 100 200 3 80 54 201 100	AL 62 40 70 17 80 79 60 60 331 339 8 82 22 12 21 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 1000 500 2021 936	DIF 62 1044 355 -79 28 -31 -6 147 -69 103 103 542 212 1077 -500 -202 -93	0 5 4 7 1 9 7 2 2 1 9 9 0 2 1 5 9 9 0 2 1 5 9 9 0 2 1 5 9 9 6
CLARRESOVEND HONOCENEZIZÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 RESSOPRO REDUÇÃO RESSOPRO VAZAMENTO	19:06 19:07 19:08 19:17 19:23 19:23 19:23 19:35 19:40 19:43 19:47 20:00 20:14	19:07 19:08 19:17 19:23 19:35 19:40 19:43 19:47 20:00 20:14 20:14	1 9 6 12 5 5 3 4 13 14	8 7 9 5 5 2 1 111 111	VENT. UANÇA VENT. UANÇA VENT. UANÇA VENT. UANÇA VENT. UANÇA VENT. VENT. VENT. VENT. UANÇA VENT. UANÇA VENT. TOT. PROC. TOT. CORR.	11193 408 735 201 1040 282 203 68 41 223 68 41 222 4392 4392	170 6 552 730 737	49 30 113 130 137 261 286 147 4 809 32 2184 2387 2184	143 49 109 30 110 30 39 29 29 29 20 20 20 50MA AT SOMA AT	14 19 20 20 28 55 63 123 74 55 55 55 63 123 74	1601 936 1322 203 68 41 222 3859 533 4392	1516 937 1405 203 68 10 171 171 3858 452 4310	85 -1 -83 0 0 31 51 51 -83 -83 -83 -82 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83	1.9 1.7 1.7	1.9 1.7 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.500 0.150 0.150 0.120 0.045 VA2MENTO MMIS ALTA	1543 1695 1695 1678 1687 1733 1745 1745	1290 1744 1725 1708 1708	DOLOMITA FLUORITA REND, MANG: REND, INQUEL REND, CROMO REND, INQUEL: REND, METALL: REND, METALL: RESUMD DAS COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L051 4093 L080	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7713 2021 936 3810 79	Kg/t Kg/t % % % % % 5 DIF 1184 -6 147 100 143 -79	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE 4 ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L010 L081 L080 L080 L080 L081 L010 L054 L054 L054 L054 L054 L054 L059 L075 L010 L059 L075	RE 100 100- 100 122 922 17 788 100 200 3 800 54 210 100	AL 62 40 70 70 9 9 60 33 12 21 22 12 22 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 500 2021 936	DIF 62 1044 355 -79 28 -31 -69 103 -99 802 542 212 212 212 212 -930	0 5 4 7 1 9 7 2 2 1 9 9 0 2 1 5 9 0 2 1 5 9 6
Charlessention Poliodecenetazcio 1a. DECARB 2a. DECARB 3a. DECARB 3a. DECARB 3a. DECARB 3a. DECARB 3a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 DEC FINAL 3 DEC FINAL 4 RESSOPRO VAZAMENTO CONTT CONT	19:06 19:07 19:08 19:17 19:23 19:23 19:23 19:35 19:40 19:43 19:47 20:00 20:14	19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47 20:00 20:14 20:14 TEMPC	1 9 6 12 12 5 3 3 4 13 14 10 0	8 7 9 9 5 2 1 111 111	VENT. UPNT. UPNT. UPNCA VENT. VE	1193 408 735 201 1040 282 203 68 41 222 203 68 41 222 203 68 41 222	170 6 552 730 737	49 30 113 130 137 261 286 286 286 286 147 4 809 32 2184 2387	143 49 109 30 110 30 110 30 29 29 29 29 29 20 20 50MA AT SOMA AT	14 19 20 20 28 55 63 123 74 55 55 55 55 FÉ CLEAN TÉ DECF4 TOTAL	1601 936 1322 203 68 41 222 222 3859 533 4392	1516 937 1405 203 68 10 171 171 171 3858 452 4310	85 -1 -83 0 0 31 51 51 -83 -83 -83 -82	1.9 1.7 1.7	1.9 1.7 1.7 	82 87 65 68 51 49 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.000 0.500 0.200 0.150 0.150 0.150 0.150 0.045 0.04 0.04	1543 1695 1695 1678 1678 1687 1733 1745 1745 1745	1290 1744 1725 1708 1708 1744	DOLOMITA FLUORITA REND, KROMO REND, CROMO REND, KIQUEL REND, MCUBL: REND, METALL: RESUMD DAS COD. REAL L046 179 L054 7860 L059 2121 L055 1079 L051 4093 L081 4093	50.6 13.3 105.6 99.2 99.3 ADIÇÕES CALC 4449 185 7713 2021 936 3910 79	i Kg)t i Kg)t i % % % % % % % % % % % % % %	F# Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE (cc1 cc1 cc2 cc2 cc3 cc3 cc3 cc3 cc3 cc3	COD. L010 L081 L010 L080 L081 L080 L081 L046 L054 L046 L054 L010 L051 L010 L061 L075 L010 L059 L075	RE 100 100- 100 122 922 17 788 100 200 3800 54 211 100	AL 62 40 70 99 60 60 331 339 31 221 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 1000	DIF 62 1044 355 -79 28 -31 -69 103 -999 802 542 212 212 212 212 -500 -993	0 6 7 1 9 7 2 2 1 1 9 0 2 1 6
Chargeswend Polocoenezação 1a. DECARB 2a. DECARB 3a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 3 DEC FINAL 3 DEC FINAL 3 DEC FINAL 4 RESSOPRO REDUÇÃO RESSOPRO VAZAMENTO CONTF CHARGE TO TAP TABETO TAP	19.05 19.07 19.07 19.08 19.17 19.23 19.23 19.23 19.43 19.43 19.43 19.47 20.00 20.14	19:07 19:08 19:17 19:23 19:23 19:35 19:40 19:43 19:47 20:00 20:14 20:14 TEMPC	1 9 6 12 12 5 3 4 13 14 14 0 0	8 7 9 5 2 1 11 11	VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. VENT. TON. ROÇA	11193 408 7735 201 1040 282 203 68 411 222 203 68 411 222 4392	170 6 552 730 737	49 30 113 130 137 261 187 261 286 147 4 809 32 2184 2387 2184	143. 49 109 30 110 30 110 30 30 29 29 29 20 20 20 20 50MA A	14 19 20 20 28 55 63 123 74 55 55 55 55 55 55 55 55 55	1601 936 1322 203 68 41 222 222 3859 533 4392	1516 937 1405 203 68 10 171 171 3858 452 4310	85 -1 -83 0 0 31 51 51 1 81 82	1.9 1.7 1.7	1.9 1.7 1.7 	82 87 65 68 51 49 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.000 0.500 0.200 0.150 0.045 0.045 0.045	1695 1695 1697 1678 1687 1733 1745 1745 1745	1290 1744 1725 1708 1708	DOLOMITA FLUORITA REND. KROMO REND. NGUEL REND. MGUEL REND. MCUBL: REND. MCIBL: REND. MCIBL: RENJ. MCIBL: REN	50.6 13.3 105.6 99.2 99.3 ADIÇÕËS CALC CALC CALC CALC 2021 936 3910 3910 79	Kg/t Kg/t % % % % % % % % % % % % % % % % % % %	FA Di Di Di Di Di Di Di Di Di Di Di Di Di	ISE (ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L010 L081 L010 L080 L081 L080 L081 L046 L046 L046 L046 L041 L010 L081 L010 L081 L010 L081 L010 L055 L010 L075	RE 100 100 12 92 17 788 100 200 3 80 54 211 100	AL 62 40 70 9 9 60 31 33 8 12 221 79	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 2021 936	Dif 62 1044 355 -79 28 -31 -61 -49 103 -99 8020 542 542 212 1077 -500 -202 -938	0 6 7 1 9 7 2 2 1 1 9 0 2 1 6
Characterização Ta. DECARB 2a. DECARB 2a. DECARB 2a. DECARB 2a. DECARB CLEAN UP DEC FINAL 2 DEC FINAL 2 DEC FINAL 3 DEC FINAL	19:06 19:07 19:07 19:08 19:07 19:07 19:07 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:03 19:05	19:07 19:08 19:08 19:17 19:23 19:35 19:43 19:47 20:00 20:14 TEMPC	1 9 6 12 12 5 3 4 13 14 14 0 68 88	8 7 9 9 5 2 1 11 11 11 11	VENT. UENT. LANCA VENT. LANCA VENT. LANCA VENT. LANCA VENT. VENT. VENT. VENT. VENT. VENT. UENCA VENT. VENT. LANCA VENT. TOT. PROC. TOT. CORR.	11193 408 7735 201 1040 282 203 68 411 222 203 68 411 222 4392	170 6 552 730 737	49 30 113 130 137 261 187 261 286 147 4 809 32 32 2184 2387	143 49 109 30 110 30 30 110 30 30 29 29 20 20 20 20 50MA AT SOMA AT	14 19 20 20 55 63 123 74 55 55 55 55 123 74	1601 936 1322 203 68 41 222 3859 533 4392	1516 937 1405 203 68 10 171 171 3858 452 4310	85 -1 -83 0 0 0 31 51 51 1 81 82	1.9	1.9 1.7 1.7 1.7 TEMPEF	82 87 65 68 51 49	2.000 0.500 0.200 0.150 0.150 0.045 0.045 0.045 0.045 0.045 0.045	1695 1695 1695 1678 1687 1733 1745 1745 1745	1290 1744 1725 1708 1708 1744	DOLOMITA FLUORITA REND, MANG: REND, CROMO REND, NIQUEL REND, MOLIE: REND, MCHALL: REND, MCHALL: REND, MCHALL: COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L054 093 L080	50.6 13.3 105.6 99.2 99.2 99.3 79.2 7713 2021 936 3910 79	Kght Kght	F# D D D D D D D D D D D D D D D D D D D	ISE 1 ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L010 L010 L081 L080 L081 L081 L010 L046 L054 L054 L081 L081 L081 L081 L081 L059 L075 L075	RE100 100 101 121 92 17 789 100 200 3 80 200 3 80 200 54 211 100	AL 62 40 70 17 10 10 10 10 10 10 10 10 10 10	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 1000 2021 936	DIF 62 1044 355 -79 28 -31 -69 1033 -99 800 542 212 212 1077 -500 -202 -936	- 0 5 6 7 2 2 1 1 9 0 2 1 6
CHARGEGWIEND HONOCENEZIQÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 2 DEC FINAL	19:06 19:07 19:07 19:07 19:08 19:070	19:07 19:08 19:08 19:17 19:23 19:35 19:35 19:40 19:43 19:47 20:00 20:14 TEMPC	1 1 9 6 12 12 5 3 4 13 14 0 68 88	8 7 9 9 5 2 1 111 111 111 555	VENT. UENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. UENT. VENT. VENT. VENT. VENT. VENT. UANÇA VENT. TOT. PROC. TOT. CORR.	1193 408 735 201 1040 282 203 68 41 222 223 68 41 222 223 4392 4392	170 6 552 730 737	49 30 1113 130 137 187 261 286 147 4 809 32 2184 2387	143 49 109 30 30 30 30 30 30 30 29 29 20 29 20 20 50MA A1 SOMA A1	14 19 20 20 28 28 55 63 123 74 74 55 55 55 55 7 [°] CLEAN 7 [°] CLEAN 7 [°] 7 [°] 7 [°] 7 [°]	1601 936 1322 203 68 41 222 222 3859 533 4392	1516 937 1405 203 68 10 171 171 203 68 10 171 203 68 10 10 171 203 68 10 10 171 203 68 10 10 10 10 10 10 10 10 10 10 10 10 10	85 -1 -83 0 0 0 31 51 1 81 81 82	1.9	1.9 1.7 1.7 1.7 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.500 0.150 0.150 0.120 0.045 VA2MENTO MMIS ALTA	1695 1695 1678 1687 1687 1687 1745 1745	1290 1744 1725 1708 1708 1744	DOLOMITA FLUORITA FLUORITA REND, MANG: REND, INQUEL REND, MCUBL: REND, MCIBL: REND, MCTALL RESUND DAS COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L054 4093 L080	506 (13.3) 1056 99.2 99.3 1056 99.2 99.2 CALC CALC 185 7713 2021 185 7713 2031 79 3810 79	i Kght i Kght i % % % % % 00 00 1184 -6 147 100 143 183 -79	F# D D D D D D D D D D D D D D D D D D D	ISE 4 ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. LO10 LO110 LO210 LO210 LO241 LO240 LO241 LO241 LO241 LO241 LO241 LO241 LO241 LO241 LO254 LO255 LO100 LO255 LO75	RE100 100 101 122 17 789 100 2002 2002 54 211 100	AL 62 40 70 17 10 10 10 10 10 10 10 10 10 10	CALC 1000 715 79 1189 1234 185 7713 1722 1000 1000 500 2021 936	DIF 62 1044 355 -79 28 28 -89 103 103 103 103 103 103 103 202 212 212 212 212 212 212 -50 -50 -93	- 0 5 6 7 9 9 7 2 2 1 9 9 0 21 6
CHARGE TO TAP TOPOLOGENESSORIO Ta. DECARB 3a. DECARB 3a. DECARB 3a. DECARB GLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 2 DEC FINAL 2 DEC FINAL 3 DEC FINAL 4 RESSOPRO VAZAMENTO CONTE CHARGE TO TAP TAPT O TAP TEMPO DE PROC. COMENTARIOS/PRO	19:06 19:07 19:07 19:07 19:08 19:07 19:08 19:07 19:08 19:070	19:07 19:08 19:17 19:23 19:35 19:40 19:43 19:47 20:00 20:14 20:14 20:14 20:14	1 1 9 6 12 5 3 4 13 1 14 0 68 88	8 7 9 9 5 5 1 11 11 11 11	VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. TOT. PROC. TOT. CORR.	1193 408 735 201 1040 282 203 68 41 222 223 68 41 222 223 4392	170 6 552 730	49 30 1113 130 137 187 261 286 147 4 809 32 2184 2184 2387	143 49 109 30 30 30 30 30 30 30 29 29 29 29 29 20 50MA A1 SOMA A1	14 19 20 20 28 63 72 74 55 55 55 55	1601 936 1322 203 68 41 222 3859 533 4392	1516 937 1405 203 68 10 171 171 23858 452 452 452	85 -1 -83 0 0 0 31 51 51 1 81 82	1.9	1.9 1.7 1.7 1.7	82 87 65 68 51 49 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.000 0.500 0.500 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.045 VA2MENTO MAIS ALTA	1695 1695 1678 1687 1733 1745 1745	1290 1744 1725 1708 1708	DOLOMITA FLUORITA REND, MANG: REND, CROMO REND, CROMO REND, MOUBL: REND, METALL: RESUMD DAS COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L051 4093 L080	506 (13.3) 1056 99.2 99.3 1056 99.2 99.2 CALC CALC CALC 185 7713 2021 185 7713 2021 793 3910 79	Kght Kght Kght Kght S 5 5 5 5 5 5 5 5 5 5 5 5 5	FF	ISE 4 ec1 ec1 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L010 L010 L010 L081 L080 L081 L010 L046 L054 L064 L064 L061 L064 L061 L061 L061 L069 L075 L010 L075	RE1000	AL 62 40 77 70 17 70 99 60 31 39 32 12 21 79	CALC 1000 715 79 1189 1234 186 7713 1722 1000 1000 2021 936	DIF 62 104 355 -79 28 -311 -61 147 -69 103 -99 802 542 212 212 212 207 -500 -99 99 99 -99 99 802 -99 -99 -90 -99 -90 -90 -90 -90 -90 -90	- 0 5 7 1 9 7 2 2 1 9 9 0 21 6
CHARGEOVERIO PODOCENEZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 3 DEC FINAL 3 DEC FINAL 3 DEC FINAL 3 DEC FINAL 4 RESSOPRO REDUÇÃO RESSOPRO VAZAMENTO CONTR CHARGE TO TAP TAP TO TAP TAP TO TAP COMENTARIOS/PRO	19:06 19:07 19:07 19:07 19:08 19:07 19:08 19:00 19:03 19:00 19:03 19:00 19:03 19:00 19:03 19:03 19:03 19:03 19:03 19:03 19:070	19:07 19:08 19:17 19:23 19:35 19:40 19:43 20:00 20:14 20:14 20:14 20:14 20:14	1 9 6 12 5 5 3 4 13 14 14 0 6 68 88	8 7 9 9 5 5 1 11 11 11	VENT. URNCA UNCA VENT. LANCA VENT. LANCA VENT. LANCA VENT. UNCA VENT. VENT. VENT. VENT. VENT. VENT. VENT. TOT. PROC. TOT. CORR.	1193 408 735 201 1040 282 203 68 41 222 4392 4392	170 6 552 730 737	49 30 1113 130 137 187 261 286 147 4 809 32 2286 147 4 809 2286 147 2387	143. 49 109 30 110 30 30 29 29 29 20 20 20 20 20 50MA A SOMA A	14 19 20 28 55 63 72 74 55 55 55 74 55 55 75 74	1601 936 1322 203 68 41 222 3869 533 4392	1516 937 1405 203 68 10 171 171 3858 3858 452 4310	85 -1 -83 0 0 0 31 51 51 - 1 1 81 81 82	1.9	1.9 1.7 1.7 1.7 1.7	82 87 65 65 68 51 49 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.000 0.500 0.200 0.200 0.150 0.045 0.045 VAZMENTO MAIS ALTA	1543 1695 1697 1733 1745 1745 1745 1745 1745	1290 1744 1725 1708 1708 1744	DOLOMITA FLUORITA REND, MANG: REND, NGUEL REND, MGUEL REND, METÁLL: COD. REAL LOYO 5633 LO46 179 LO54 77800 LO54 77800 LO59 2121 LO75 1079 LO56 4093 LO80	506 133 1056 992 99.3 99.2 99.3 99.2 99.5 99.2 936 936 936 936 936 936 936 937 9	Kg/t Kg/t % % % % DIF 1184 -6 -147 1000 143 183 -79	FFF	ISE 4 ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L070 L0710 L070 L080 L080 L081 L071 L074 L075 L075 L075	RE 100 10- 102 17 129 22 17 78% 100 200 3 3 800 545 2121 100	AL 62 40 77 17 10 19 60 31 39 31 22 21 79	CALC 1000 715 79 1189 1189 1224 185 7713 1722 1000 1000 1000 2021 936	DIPIP 622 1044 3555 28 3355 -75 28 28 -81 -87 -89 99 103 39 99 99 8055 212 212 212 212 212 202 -89 99 99 8055 -89 99 99 99 99 99 99 99 99 99 99 99 99 9	- 05 59 44 71 99 72 21 199 021 6
CARRESOVEND Ta. DECARB 2a. DECARB 3a. DECARB 3a. DECARB CLEAN UP DEC FINAL 1 DEC FINAL 2 DEC FINAL 3 DEC FINAL 4 RESSOPRO REDUÇÃO REDUÇÃO RESSOPRO VAZMENTO CONTR CHARGE TO TAP TAP TO TAP TAP TO TAP TAP TO TAP COMENTÁRIOS/PRO	19:06 19:07 19:07 19:07 19:08 19:08 19:08 19:08 19:08 19:07 19:08 19:070	19:07 19:08 19:17 19:08 19:17 19:23 19:23 19:23 19:23 19:23 19:23 19:23 19:23 19:23 19:23 19:24 19:23 19:24 19:25 20:00 20:14 TEMPC	1 9 6 12 5 3 4 13 14 14 0 0 68 88	8 7 9 5 5 2 1 1 11 11 11 55	VENT. UENT. LANCA VENT. LANCA VENT. LANCA VENT. LANCA VENT. VENT. VENT. VENT. VENT. VENT. UENCA VENT. VENT. TOT. PROC. TOT. CORR.	1193 408 735 2011 1040 282 203 68 41 222 203 68 41 222 203 43 222 4332	1170 6 552 730 737	49 30 1113 130 137 187 261 286 147 4 809 32 286 147 4 32 2184 2387	143. 49 109 30 110 30 30 29 29 20 20 20 20 20 20 50MA A 50MA A	14 19 20 20 28 55 63 123 74 55 55 55 55 55 55 55	1601 936 1322 203 68 41 222 222 3855 533 4392	1516 937 1405 203 68 10 171 171 171 3858 452 452 452 452	85 -1 -83 0 0 0 31 51 51 	1.9	1.9 1.7 1.7 TEMPER	82 87 65 68 51 49	2.000 0.500 0.200 0.150 0.045 0.045 0.045	1543 1695 1695 1687 1733 1745 1745	1290 1744 1725 1708 1708	DOLOMITA FLUORITA REND, MANG: REND, MOUEL REND, MOUEL: REND, MOUEL: REND, MOLEL: REND, METÁLL: COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L054 7860	506 0 133 1026 0 99.2 99.2 99.2 99.2 99.2 99.2 99.2 99.	Kgit Kgit % % % % DIF 1184 -6 147 100 143 183 3 79	FFF	ISE 4 ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4 ec4	COD. L010 L010 L010 L010 L010 L010 L010 L01	RE 100 10- 102 17 789 100 200 3 800 845 212 100 100	AL 62 40 70 17 10 19 60 31 339 12 12 12 17 79	CALC 1000 715 713 1189 11234 185 1722 1000 1000 500 1000	DIFID 62 20 355 28 31 -6 -6 -7 -7 -7 28 28 -7 -7 -7 -28 28 20 147 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	- 05 7 1 9 7 2 2 1 9 0 21 6
CARRESTORY CARE HONOCENEZAÇÃO 1a. DECARB 2a. DECARB 3a. DECARB 3a. DECARB CLEAN UP DEC FINAL 2 DEC FINAL 3 DEC FIN	19:06 19:07 19:07 19:07 19:08 19:07 19:08 19:00 19:03 19:00 19:03 19:40 19:43 19:43 19:43 19:43 19:44 20:00 20:14 20:00 20:14 20:00 20:14 20:00 20:14 20:00 20:14 20:00 20:14 20:00 20:14 20:00 20:14 20:00 20:14	19:07 19:08 19:17 19:23 19:35 19:43 19:43 19:43 19:47 20:00 20:14 20:14 TEMPC	1 9 6 12 5 5 3 4 13 14 14 0 0 688	8 7 9 5 5 2 1 1 11 11 11 55	VENT. UANÇA VENT. LANÇA VENT. LANÇA VENT. LANÇA VENT. VENT. VENT. VENT. VENT. VENT. UANÇA VENT. VENT. UANÇA VENT. VENT. TOT. PROC. TOT. CORR.	1133 408 735 201 1040 282 282 203 268 68 64 41 222 4392 4392	170 6 552 730 737	49 30 1113 130 137 187 261 286 147 4 809 32 2184 2387	143, 49 109 30 110 30 30 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	14 19 20 20 28 55 63 123 74 74 55 55 74 74 74 74 74 74 74 74 74 74 74 74 74	1601 936 1322 203 68 41 222 3855 533 4392	1516 937 1405 203 68 10 171 771 3858 452 4310	85 -1 -83 0 0 0 31 51 51 -83 82	1.9	1.9 1.7 1.7 1.7	82 87 65 68 51 49	2.000 0.500 0.200 0.150 0.150 0.150 0.05	1543 1695 1678 1677 1733 1745 1745	1290 1744 1725 1708 1708	DOLOMITA FLUORITA REND, MANG: REND, NGUIEL REND, NGUIEL REND, MCIUEL REND, MCIUEL REND, MCIUEL REND, MCIUEL RESUND DAS COD. REAL L010 5633 L046 179 L054 7860 L059 2121 L075 1079 L054 4093 L080	506 133 1056 992 992 992 992 992 992 792 771 2021 996 771 2021 996 779	Kgt Kgt % % % 5 DF 1184 	FFF	ISE er ec1 ec1 ec2 ec2 ec2 ec3 ec3 ec3 ec3 ec3 ec3 ec3 ec4 ec74 ec74 ec74 ec74 ec74 ec74 ec74	200. L001 L001 L001 L001 L001 L001 L001 L	RE 100 10- 10- 12- 22 17 778 10: 200 3 3 800 54 212 107	AL 62 40 70 17 80 9 60 31 339 8 12 12 17 79	CALC 1000 715 715 718 1189 11234 185 11234 185 1722 1000 1000 1000	DIFIE 62 1040 3555 28 28 31 -6 1477 -6 99 98 000 -99 98 000 -99 98 000 -99 98 000 -99 98 000 -99 98 000 -99 98 000 -99 98 000 -99 98 000 -99 98 000 -97 6 2 8 5 4 2 5 5 4 5 5 5 6 2 8 5 6 2 8 5 6 5 5 6 2 8 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5	-
APÊNDICE XI – DADOS REFERENTES AS CORRIDAS UTILIZADAS PARA SIMULAÇÃO

652683D							
tempo (s)	0	684	1261				
%C	0,368	0,120	0,048				
%Mn	0,171	0,168	0,231				
%Cr	14,971	13,891	16,142				
%Ni	0,267	0,278	0,274				
%Fe	84,183	,	,				
T (°C)	1736	1750					
M. metal (kg)	76302	75462	75195				
M. escória (kg)	9412	12370	13175				
	D E4	D 50	D F0	D 54			
N A (1) 3	Dec F1	Dec F2	Dec F3	Dec F4			
$Vaz O_2 (Nm^2)$	39,8	30,0	30,1	15,2			
$Vaz N_2 (Nm)$	216	00, I 11/	00,0 65	146			
tempo (s)	325	554	684	1261			
	323	- 554	004	1201			
Adicoes							
Dec F1	F01 - 1115						
Dec F2	F02 - 1100						
Dec F3							
Dec F4	F01 - 700						
	65	52758D					
tempo (s)	0	578	1186				
%C	0,367	0 119					
%Mn		0,110	0,033				
	0,222	0,238	0,033				
%Cr	0,222 14,56	0,238 13,942	0,033 0,324 16,054				
%Cr %Ni	0,222 14,56 0,246	0,238 13,942 0,249	0,033 0,324 16,054 0,242				
%Cr %Ni %Fe	0,222 14,56 0,246 84,565	0,238 13,942 0,249	0,033 0,324 16,054 0,242				
%Cr %Ni %Fe T (°C) M. metal (kg)	0,222 14,56 0,246 84,565 1741 82410	0,238 0,238 0,249 0,249 1725 81847	0,033 0,324 16,054 0,242 1710 81423				
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg)	0,222 14,56 0,246 84,565 1741 82410 9108	0,238 0,238 13,942 0,249 1725 81847 11383	0,033 0,324 16,054 0,242 1710 81423 12055				
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg)	0.222 14,56 0,246 84,565 1741 82410 9108 Dec F1	0,238 0,238 13,942 0,249 1725 81847 11383 Dec F2	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3	Dec F4			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz Q ₂ (Nm ³)	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6	Dec F4 20			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz Q₂(Nm ³) Vaz № (Nm ³)	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9 64,1	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5	Dec F4 20 64,8			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³)	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3 153	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9 64,1 102	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5 47	Dec F4 20 64,8 204			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³) Vol O ₂ (Nm ³) tempo (s)	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3 153 230	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9 64,1 102 434	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5 47 578	Dec F4 20 64,8 204 1186			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm³) Vaz N ₂ (Nm³) Vol O ₂ (Nm³) tempo (s) Adicoes	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3 153 230	0.238 13,942 0.249 1725 81847 11383 Dec F2 29,9 64,1 102 434	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5 47 578	Dec F4 20 64,8 204 1186			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vol O ₂ (Nm ³) Vol O ₂ (Nm ³) tempo (s) Adicoes Dec F1	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3 153 230	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9 64,1 102 434	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5 47 578	Dec F4 20 64,8 204 1186			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz O ₂ (Nm ³) Vol O ₂ (Nm ³) tempo (s) Adicoes Dec F1 Dec F2	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3 153 230 F01 - 1020 F02 - 1010	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9 64,1 102 434	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5 47 578	Dec F4 20 64,8 204 1186			
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³) Vol O ₂ (Nm ³) tempo (s) Adicoes Dec F1 Dec F2 Dec F3	0,222 14,56 0,246 84,565 1741 82410 9108 Dec F1 39,9 55,3 153 230 F01 - 1020 F02 - 1010	0,238 13,942 0,249 1725 81847 11383 Dec F2 29,9 64,1 102 434	0,033 0,324 16,054 0,242 1710 81423 12055 Dec F3 19,6 64,5 47 578	Dec F4 20 64,8 204 1186			

652755J							
tempo (s)	0	585	1178				
%C	0,4110	0,1090	0,038				
%Mn	0,191	0,202	0,322				
%Cr	14,549	13,955	16,069				
%Ni	0,234	0,235	0,229				
%Fe	84,575						
T (°C)	1683	1697	1672				
M. metal (kg)	75252	74586	74166				
M. escória (kg)	9462	11831	12515				
	Dec F1	Dec F2	Dec F3	Dec F4			
Vaz O ₂ (Nm ³)	39,9	30,2	29,5	20,2			
Vaz N ₂ (Nm ³)	55,6	64,5	59,7	65,2			
Vol O ₂ (Nm ³)	229	73	47	200			
tempo (s)	345	490	585	1178			
Adicoes							
Dec F1	F01 - 1008	1					
Dec F2	F02 - 1000						
Dec F3							
Dec F4							
	65	52759B					
tempo (s)	0	515	1168				
%C	0.376	0 128					
%Mn	0,010	0,120	0,037				
701 4 11 1	0,229	0,240	0,037 0,341				
%Cr	0,229	0,240	0,037 0,341 15,934				
%Cr %Ni	0,229 14,053 0,206	0,120 0,240 13,386 0,208	0,037 0,341 15,934 0,200				
%Cr %Ni %Fe	0,229 14,053 0,206 85,096 1744	0,120 0,240 13,386 0,208	0,037 0.341 15,934 0,200				
%Cr %Ni %Fe T (°C)	0,229 14,053 0,206 85,096 1744 78917	0,120 0,240 13,386 0,208 1725 78364	0,037 0,341 15,934 0,200 1708 78022				
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg)	0,229 14,053 0,206 85,096 1744 78917 10159	0,120 0,240 13,386 0,208 1725 78364 13089	0,037 0,341 15,934 0,200 1708 78022 13772				
%Cr %Ni %Fe T (°C) M. metal (kg) M. escória (kg)	0,229 14,053 0,206 85.096 1744 78917 10159 Dec F1	0,120 0,240 13,386 0,208 1725 78364 13089 Dec F2	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3	Dec F4			
%Cr %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³)	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9	0,240 0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1	Dec F4 20,1			
%Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³)	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7	0,240 0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1 63	Dec F4 20,1 65,1			
%Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³) Vol O ₂ (Nm ³)	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7 200	0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3 70	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1 63 35	Dec F4 20,1 65,1 219			
%Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³) Vol O ₂ (Nm ³) tempo (s)	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7 200 300	0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3 70 440	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1 63 35 515	Dec F4 20,1 65,1 219 1168			
%Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm ³) Vaz N ₂ (Nm ³) Vol O ₂ (Nm ³) tempo (s) Adicoes	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7 200 300	0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3 70 440	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1 63 35 515	Dec F4 20,1 65,1 219 1168			
%Ni %Fe T (°C) M. metal (kg) M. escória (kg) Vaz O ₂ (Nm³) Vaz N ₂ (Nm³) Vol O ₂ (Nm³) tempo (s) Adicoes Dec F1	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7 200 300 F01 - 2040	0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3 70 440	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1 63 35 515	Dec F4 20,1 65,1 219 1168			
7000000000000000000000000000000000000	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7 200 300 F01 - 2040 F02 - 800	0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3 70 440	0,037 0,341 15,934 0,200 1708 78022 13772 Dec F3 28,1 63 35 515	Dec F4 20,1 65,1 219 1168			
7000000000000000000000000000000000000	0,229 14,053 0,206 85,096 1744 78917 10159 Dec F1 39,9 55,7 200 300 F01 - 2040 F02 - 800	0,240 0,240 13,386 0,208 1725 78364 13089 Dec F2 30,0 63,3 70 440	0,037 0,341 15,934 0,200 78022 13772 Dec F3 28,1 63 35 515	Dec F4 20,1 65,1 219 1168			

		65337	9H				- 65	53196F		
tempo (s)	0	637	1194			tempo (s)	0	760	1270	
%C	0,384	0,127	0,037			%C	0,449	0,0920	0,040	
%Mn	0,316	0,306	0,436			%Mn	0,762	0,947	1,142	
%Cr	14,003	13,200	15,874			%Cr	16,257	15,621	18,018	1
%Ni	0,173	0,171	0,174			%Ni	8,448	8,495	8,014	1
%Fe	85,084			1		%Fe	74,044		i	4
T (°C)	1714	1730	1722			T (°C)	1686	1734	1709	1
M. metal (kg)	81236	80560	80199			M. metal (kg)	82541	81501	81378	4
M. escória (kg)	9268	11674	12253			M. escória (kg)	10592	13614	13864	1
	Dec F1	Dec F2	Dec F3	Dec F4	Dec F5		Dec F1	Dec F2	Dec F3	Dec F4
Vaz O₂ (Nm³)	39,6	30,2	16,6	21,2	15	Vaz O ₂ (Nm ³)	39,0	30,0	15,1	9,6
$Vaz N_2 (Nm^3)$	55,3	64,7	63,2	65,6	62,6	Vaz N_2 (Nm ³)	52,8	66,5	65,5	69,1
Vol O ₂ (Nm ³)	225	100	27	137	41	Vol O ₂ (Nm ³)	273	170	65	40
tempo (s)	340	540	637	1029	1194	tempo (s)	421	760	1019	1270
Adicoes						Adicoes				
Dec F1	F01 - 1111	1				Dec F1	F01 - 1100	1		
Dec F2	F02 - 910					Dec F2	F02 - 1200			
Dec F3		1				Dec F3				
Dec F4						Dec F4				
Dec F5										
	65	3079D			1		65	3440H		
tompo (s)		720	1020	1		tempo (s)		720	1455	1
	0 402	0.105	0.040			04C	0 355	0.12	0.040	
%Mn	0,402	0,103	1 168			///C	0,355	0,12	1 1 26	1
%Cr	15 77	15 178	17 955	1		%Cr	16 389	15 549	18 062	1
%Ni	8 301	8 4 5 6	7 99			%Ni	7 896	8 287	7 751	1
%Fe	74 604	0,700	7,00			%Fe	74 463	0,207	,,, <u>,,</u> ,,,	1
T (°C)	1706	1734	1696			T (°C)	1705	1724		1
M. metal (kg)	77043	77133	76987			M. metal (kg)	80764	79913	79586	
M. escória (kg)	10159	12727	12873			M. escória (kg)	9123	12225	12746	
	Dec F1	Dec F2	Dec E3	Dec F4	-		Dec F1	Dec F2	Dec E3	Dec F4
$V_{27} O_2 (Nm^3)$	40.0	30.1	15.7	14.3	1	$Vaz O_2 (Nm^3)$	39.4	30.0	15.4	14.9
$Vaz N_2 (Nm^3)$	56,5	66,8	61,1	65,8		$Vaz N_2 (Nm^3)$	57,2	66,7	65,3	66,6
Vol O_2 (Nm ³)	304	137	22	51	1	Vol O_2 (Nm ³)	186	225	89	95
tempo (s)	456	730	816	1030		tempo (s)	279	728	1076	1455
Adicoas					1	Adicoes				
Dec E1	E01 - 1020	1				Dec E1	F01 - 1220	1		

Dec F1	F01 - 1020
Dec F2	F02 - 1000
Dec F3	
Dec F4	

653440H								
(s)	0	728	1455					
	0,355	0,12	0,040					
	0,857	0,915	1,126					
	16,389	15,549	18,062					
	7,896	8,287	7,751					
	74,463							
)	1705	1724						
(kg)	80764	79913	79586					
a (kg)	9123	12225	12746					
	Dec F1	Dec F2	Dec F3	Dec F4				
n ³)	39.4	30.0	15.4	14.9				
n^{3}	57.2	66.7	65.3	66.6				

	Dec F1	Dec F2	Dec F3	Dec F4	
Vaz O₂ (Nm ³)	39,4	30,0	15,4	14,9	
Vaz N₂ (Nm³)	57,2	66,7	65,3	66,6	
Vol O₂ (Nm³)	186	225	89	95	
tempo (s)	279	728	1076	1455	
Adicoes		_			
Dec F1	F01 - 1220				
Dec F2	F02 - 1350				
Dec F3					
Dec F4					