UNIVERSIDADE FEDERAL DE MINAS GERAIS Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

METODOLOGIA DE CURVAS ENVOLTÓRIAS PROBABILÍSTICAS PARA A ESTIMAÇÃO DE CHEIAS DE PROJETO EM BACIAS HIDROGRÁFICAS NÃO MONITORADAS NO ESTADO DE MINAS GERAIS

José Alexandre Pinto Coelho Filho

Belo Horizonte 2010

METODOLOGIA DE CURVAS ENVOLTÓRIAS PROBABILÍSTICAS PARA A ESTIMAÇÃO DE CHEIAS DE PROJETO EM BACIAS HIDROGRÁFICAS NÃO MONITORADAS NO ESTADO DE MINAS GERAIS

José Alexandre Pinto Coelho Filho

METODOLOGIA DE CURVAS ENVOLTÓRIAS PROBABILÍSTICAS PARA A ESTIMAÇÃO DE CHEIAS DE PROJETO EM BACIAS HIDROGRÁFICAS NÃO MONITORADAS NO ESTADO DE MINAS GERAIS

Dissertação apresentada ao Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Recursos Hídricos

Linha de pesquisa: Modelagem de Processos Hidrológicos

Orientador: Mauro da Cunha Naghettini

Co-orientador: Éber José de Andrade Pinto

Belo Horizonte Escola de Engenharia da UFMG 2010 Página com as assinaturas dos membros da banca examinadora, fornecida pelo Colegiado do Programa

AGRADECIMENTOS

Agradeço a Deus por me dar forças, me guiar e iluminar em todos os momentos da minha vida.

À minha família, por me incentivar e me dar suporte nos momentos mais difíceis ao longo dessa caminhada, aos meus pais por me fazerem compreender a importância do estudo em minha vida.

Ao meu orientador, professor Mauro Naghettini, pelas incontáveis horas dedicadas a esse trabalho, pela paciência, pelas palavras de incentivo, pela oportunidade de sua orientação e pelo apoio fundamental para meu crescimento profissional e para que esta pesquisa pudesse ser realizada.

Ao Éber, pela oportunidade de sua co-orientação e pelo fornecimento de dados e ajuda nas rotinas computacionais.

À Maísa pelo carinho, paciência e compreensão, e também pelo auxílio imprescindível na elaboração dos mapas contidos na presente dissertação de mestrado.

Aos professores Nilo Nascimento, Mário Cicareli, Márcia Lara, Márcio Baptista e Carlos Martinez, pelos valiosos conhecimentos transmitidos ao longo desse curso de mestrado.

Aos meus colegas de mestrado, pelos momentos de alegria e de aprendizado, tenho certeza que esse será um período pelo qual nos lembraremos pelo resto de nossas vidas.

À CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, pela concessão de bolsa de estudos. À Fapemig e ao CNPq pelos respectivos apoios PPM0158-09 e Proc.301133/2009-3 aos projetos de pesquisa coordenados pelo professor Mauro Naghettini, dos quais esta dissertação é parte integrante.

Finalmente, a todos que, de alguma forma, possibilitaram e acreditaram na conclusão de mais esta etapa em minha vida.

RESUMO

As curvas envoltórias regionais têm sido utilizadas desde o início da década de 1920, como meio simples de sintetizar graficamente o regime de vazões de cheias observadas em estações de monitoramento localizadas em uma ou mais regiões geográficas. De maneira geral, as curvas envoltórias de cheias representam o conhecimento disponível no que se refere à produção de vazões máximas por área de drenagem, sintetizando graficamente o regime de extremos hidrométricos em uma determinada região.

Em todo o mundo, as curvas envoltórias, mesmo que dependentes das amostras disponíveis, implicando em limites superiores empíricos e passíveis de serem excedidos, tornando complexa a tarefa de atribuição de uma probabilidade de igualdade ou superação às mesmas, vêm sendo utilizadas como um meio simples para a obtenção de estimativas preliminares de vazões de projeto. Recentemente, Castellarin *et al.* (2005) e Castellarin (2007) introduziram uma interpretação probabilística às curvas envoltórias de cheias, segundo a qual torna-se possível atribuir uma probabilidade de igualdade ou superação ao valor esperado dessa curva, traçada para uma determinada região. O método descrito em Castellarin (2007) parte do pressuposto de que a região que contém as estações fluviométricas em estudo é considerada homogênea, no sentido das hipóteses inerentes ao método de regionalização da cheia-índice, e que a distribuição Generalizada de Valores Extremos (GEV) é o modelo distributivo utilizado para a estimação do tempo de retorno associado à curva envoltória, em regiões não instrumentadas com área de drenagem compreendida nos limites dessa curva.

A presente dissertação de mestrado estende o método proposto por Castellarin (2007) através da estimação dos três parâmetros que descrevem a distribuição GEV, usando o tempo de retorno associado à curva envoltória, estimando assim a curva de freqüência completa para uma determinada região provida ou não de uma rede de monitoramento. Esse procedimento pode ser executado por meio da resolução combinada de um sistema constituído por 3 equações, cujas incógnitas são os parâmetros que descrevem a distribuição GEV. Na seqüência, busca-se a validação do procedimento de elaboração da curva de freqüência completa para qualquer estação pertencente à região pela comparação dos resultados com aqueles obtidos através da aplicação da análise de freqüência regional utilizando os momentos-L.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ABSTRACT

Regional envelope curves have been used since the beginning of the 20th century as convenient summaries of the largest flood discharges observed at all gauging stations located in one or more geographical regions. Usually the envelope curve for a specific region relates the upper bound on all observed floods of record to the corresponding drainage areas.

Regional envelope curves have been used by practitioners worldwide as a simple and expedite procedure to provide preliminary estimates of design floods for hydraulic structures, in spite of the fact that they have been usually regarded as deterministic graphical tools and, as such, they were not associated to probabilistic statements. Only recently Castellarin *et al.* (2005) and Castellarin (2007) proposed a new interpretation of regional envelope curves according to which it is possible to assign an exceedance probability p to the expected envelope curve valid for a given region. The method described by Castellarin (2007) relies on the assumptions of regional homogeneity in the sense of the index-flood hypothesis and a GEV (Generalized Extreme Value) regional parent distribution, allowing at the end the estimation of the *T*-year flood for the ungauged site draining a given catchment area comprised within the interval of areas of the expected envelope curve, the exceedance probability of which being p = 1/T.

The method proposed by Castellarin (2007) was extended to the estimation of the set of the 3 GEV parameters, and thus the entire flood frequency curve, for any gauged and/or ungauged site within a given region. This extension has been performed by combining the method's assumptions and its main result into a system of 3 equations, having the GEV parameter estimates as the 3 unknowns. Then, with the possibility of estimating the entire GEV distribution for any site in the region, a validation procedure was performed for the gauged sites by comparing the results of the proposed extension with the ones obtained by L-moment-based regional frequency analysis.

iii

SUMÁRIO

L	ISTA I	DE FIGURAS	.VI
L	ISTA I	DE TABELAS	.IX
L	ISTA I	DE ABREVIATURAS, SIGLAS E SÍMBOLOS	.XI
1		INTRODUÇÃO	1
1			1
2		UBJEIIVUS	0
	2.1	OBJETIVO GERAL	6
	2.2	OBJETIVOS ESPECIFICOS	6
3		REVISÃO DA LITERATURA	7
	3.1	CONTEXTUALIZAÇÃO DOS PROBLEMAS RELATIVOS ÀS CHEIAS	7
	3.2	CHEIA DE PROJETO	. 17
	3.3	ESTIMAÇÃO DA CHEIA DE PROJETO	. 22
	3.3	3.1 Método direto	. 26
	3.3	3.2 Método indireto	. 41
	3.4	REGIONALIZAÇAO HIDROLOGICA	. 51
	3.4	4.1 Fundamentos e utiliadae em hidrologia	. 32
	3.4 2 4	4.2 Metodo index-flood	. 54
	2.5	4.5 Etapas para a regionalização por momentos-L	. 33
	5.5 2 5	CURVAS ENVOLTORIAS DE CHEIAS	. 30 50
	3.5	5.2 Comentários sobre a utilização das curvas envoltórias de cheias	63
	5.5		.05
4		METODOLOGIA	. 66
	4.1	PREMISSAS PARA A APLICAÇÃO DA METODOLOGIA PROPOSTA POR CASTELLARIN (2007)	. 67
	4.1	1.1 Lei de escala proposta por Castellarin et al. (2005)	. 68
	4.1	1.2 Método de regionalização da cheia-índice, ou index-flood	. 69
	4.1	1.3 Medida de discordância D	.70
	4.1	1.4 Medida de heterogeneidade H	. /1
	4.1	1.5 Medida de aderencia Z	. /3
	4.2	BASES TEORICAS PARA ASSOCIAR UMA INTERPRETAÇÃO PROBABILISTICA AS CURVAS ENVOLTORIAS DE	:
	CHEIA	AS 2.1 Estimação da probabilidade de superação da envoltóvia	. / / 70
	4.2	2.1 Estimação da probabilidade de superação da envoltoria	. 70
	4.2	 2.2 Modelagem au correlação cruzada entre as estações 2.3 Estimação do número efativo de observações amostrais 	. 79 . 80
	4.2	2.5 Estimação da nosição da plotagam	. 80
	43	$S=0$ \hat{I} \hat	. 02
		ELLADIN (2007) EM BACIAS DO ESTADO DE MINAS GEDAIS	82
	4 7	2 1 Aquisição e tratamento dos dados	. 02
	4.3	3.2 Delimitação das regiões homogêneas	. 83
	4.3	3.3 Elaboração das curvas envoltórias empíricas.	. 83
	4.3	3.4 Reducão da variabilidade espacial contida nos dados amostrais	. 83
	4.3	3.5 Determinação do número efetivo de observações amostrais	. 85
	4.3	3.6 Estimação da posição de plotagem	. 85
	4.3	3.7 Estimação da probabilidade de superação da curva envoltória	. 86
	4.4	EXEMPLO DE APLICAÇÃO PRÁTICA PARA AS ETAPAS DE REDUÇÃO DA VARIABILIDADE ESPACIAL CONTI	DA
	NOS D	DADOS AMOSTRAIS E DETERMINAÇÃO DO NÚMERO EFETIVO DE OBSERVAÇÕES	. 86
	4.5	EXTENSÃO DA METODOLOGIA PROPOSTA POR CASTELLARIN (2007): ESTIMAÇÃO DOS QUANTIS DE	
	VAZÕ!	ES MÁXIMAS, PARA DIVERSOS TEMPOS DE RETORNO, UTILIZANDO A PROBABILIDADE DE SUPERAÇÃO	
	ASSOC	CIADA ÀS CURVAS ENVOLTÓRIAS DE CHEIAS	. 92
	4.6	AVALIAÇÃO DE DESEMPENHO DA METODOLOGIA ESTENDIDA	. 93
5		APLICAÇÃO DA METODOLOGIA	.95
-		- ,	

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

iv

	5.1	LOC	ALIZAÇÃO E CARACTERIZAÇÃO DA REGIÃO	95
	5.	1.1	Geologia e Geomorfologia	97
	5.	1.2	Vegetação	102
	5.	1.3	Clima	103
	5.	1.4	Sistemas de aqüíferos (hidrogeologia da bacia)	107
	5.2	Aqu	ISIÇÃO DOS DADOS FLUVIOMÉTRICOS	109
	5.3	Deli	IMITAÇÃO DAS REGIÕES HOMOGÊNEAS	109
	5.4	ELAI	BORAÇÃO DAS CURVAS ENVOLTÓRIAS EMPÍRICAS	119
	5.5	RED	UÇÃO DA VARIABILIDADE ESPACIAL CONTIDA NOS DADOS AMOSTRAIS	125
	5.:	5.1	Calibração do modelo para toda a área de estudo	126
	5.:	5.2	Calibração do modelo utilizando as estações agrupadas por região homogênea	127
	5.6	Cálo	CULO DO NÚMERO EFETIVO DE OBSERVAÇÕES AMOSTRAIS	130
	5.7	Esti	MAÇÃO DA POSIÇÃO DE PLOTAGEM	131
	5.8	Esti	MAÇÃO DA PROBABILIDADE DE SUPERAÇÃO DA ENVOLTÓRIA	132
	5.9	Esti	MAÇÃO DOS QUANTIS DE VAZÕES MÁXIMAS UTILIZANDO O TEMPO DE RETORNO ASSOCIADO ÀS	
	CURV	AS EN	IVOLTÓRIAS DE CHEIAS	133
6		CON	NCLUSÕES E RECOMENDAÇÕES	152
	6.1	Етан	PAS CONTEMPLADAS NO PRESENTE TRABALHO DE DISSERTAÇÃO	152
	6.2	С	OMENTÁRIOS E RECOMENDAÇÕES PARA A APLICAÇÃO DA METODOLOGIA PROPOSTA POR	
	CAST	ELLA	RIN (2007), E ESTENDIDA PARA A ESTIMAÇÃO DOS QUANTIS DE VAZÕES MÁXIMAS	154
R	EFER	ÊNC	IAS BIBLIOGRÁFICAS	160
A] H	NEXC IDRO) 1 - DLOG	- PRINCIPAIS FUNÇÕES DE DISTRIBUIÇÃO DE PROBABILIDADES USUAIS HA PARA A ANÁLISE DE FREQUÊNCIA DE VAZÕES DE CHEIAS	EM 169
A 1	NEV	י ר ר ר	NETEDMINAÇÃO E CONSIDEDAÇÕES SODDE AS DISTÂNCIAS DELATIVAS ENV	TDF
A A	NEAC S EST	AÇÕ	DETERMINAÇÃO E CONSIDERAÇÕES SOBRE AS DISTANCIAS RELATIVAS EN DES FLUVIOMÉTRICAS	173
A	NEXC) 3 -	SÉRIES DE VAZÕES MÁXIMAS ANUAIS POR ANO HIDROLÓGICO REGISTRAI	DAS
N.	AS ES	STAÇ	OES FLUVIOMÉTRICAS UTILIZADAS NO ESTUDO	178
A]	NEXC) 4 – 9	SUBCONJUNTOS REGIONAIS FORMADOS PARA CADA REGIÃO HOMOGÊNEA	194
A]	NEXC) 5 -	· DESVIOS MÉDIOS PERCENTUAIS PARA AS ESTAÇÕES DE MONITORAMEN	ото
PI	ERTE	NCE	NTES ÀS REGIÕES HOMOGÊNEAS	214

v

LISTA DE FIGURAS

Figura 3.1 - Esquema de transbordamento de um rio para a planície de inundação (Adaptado
de Fisrwg,1998)
Figura 3.2 - Danos provocados pelas cheias no Japão (Adaptado de Wohl, 2000)9
Figura 3.3 - Esquema de impactos causados pelas inundações (Adaptado de Smith e Ward,
1998)9
Figura 3.4 - Influência do uso do solo sobre a formação do escoamento superficial (Adaptado
de Costa e Teuber, 2001)15
Figura 3.5 - Balança de Lane (Adaptado de Chang, 1988)15
Figura 3.6 - Evolução do uso dos recursos hídricos (Fonte: Naghettini, 1999)17
Figura 3.7 - Tempo de retorno e risco hidrológico (Fonte: Naghettini e pinto, 2007)20
Figura 3.8 - Categorização das enchentes (Adaptado de Nathan e Weinmann, 2001)22
Figura 3.9 - Evolução no uso dos métodos direto e indireto no setor hidrelétrico do Brasil
(Adaptado de ELETROBRÁS, 1987)25
Figura 3.10 - Séries de máximos anuais e de duração parcial
Figura 3.11 - Série de vazões máximas grafadas no papel de gumbel
Figura 3.12 - Procedimento de inferência estatística (Fonte: Naghettini e Pinto, 2007)33
Figura 3.13 - Representação do modelo do hidrograma unitário
Figura 3.14 - Princípio da constância do tempo de base
Figura 3.15 - Princípio da proporcionalidade das vazões
Figura 3.16 - Princípio da superposição de hidrogramas correspondentes a eventos discretos
seqüenciais de precipitação46
Figura 3.17 - Fluxograma dos modelos hidrológicos (Fonte: Tucci, 1998)
Figura 3.18 - Descrição gráfica da medida de discordância (Fonte: Naghettini e Pinto,
2007)
Figura 3.19 - Descrição gráfica da medida de heterogeneidade (Fonte: Naghettini e Pinto,
2007)
Figura 3.20 - Visualização gráfica da medida de aderência (Fonte: Naghettini e Pinto, 2007)57
Figura 3.21 - Diagrama de curtose-L x assimetria-L (Adaptado de CPRM, 2001)58
Figura 3.22 - Exemplo de curva envoltória (Fonte: Castellarin <i>et al.</i> , 2005)60
Figura 3.23 - Curva envoltória de cheias (Fonte: Watt et al., 1988)61
Figura 4.1 - Definição dos subconjuntos regionais81
vi

Figura 4.2 - Representação gráfica das distâncias entre as estações versus os valores dos
coeficientes de correlação (Fonte: Castellarin, 2007)
Figura 5.1 - Localização das sub-bacias 40 e 41 no estado de Minas Gerais
Figura 5.2 - Unidades geomorfológicas das sub-bacias 40 e 41 (Adaptado de CPRM,
2001)
Figura 5.3 - Unidades lito-estratigráficas das sub-bacias 40 e 41 (Adaptado de CPRM,
2001)
Figura 5.4 - Legenda referente à Figura 5.3 (Adaptado de CPRM, 2001)101
Figura 5.5 - Classificação climática das sub-bacias 40 e 41 (Adaptado de CPRM, 2001)106
Figura 5.6 - Visualização dos sistemas de aqüíferos presentes nas sub-bacias 40 e 41
(Adaptado de CPRM, 2001)
Figura 5.7 - Limites geográficos das regiões homogêneas definidas por CPRM (2001) nas
sub-bacias 40 e 41 (Adaptado de CPRM, 2001)112
Figura 5.8 - Curva de freqüência da região MAX III redefinida117
Figura 5.9 - Curva de freqüência da região MAX IV redefinida117
Figura 5.10 - Curva de freqüência da região MAX II redefinida118
Figura 5.11 - Ajuste potencial sobre a lei de escala para a região MAX I119
Figura 5.12 - Ajuste potencial sobre a lei de escala para a região MAX II redefinida120
Figura 5.13 - Ajuste potencial sobre a lei de escala para a região MAX III redefinida
Figura 5.14 - Ajuste potencial sobre a lei de escala para a região MAX IV redefinida120
Figura 5.15 - Ajuste potencial sobre a lei de escala para a região MAX V121
Figura 5.16 - Ajuste potencial sobre a lei de escala para a região MAX VI121
Figura 5.17 - Ajuste potencial sobre a lei de escala para a região MAX VII121
Figura 5.18 - Curva envoltória traçada para a região MAX I122
Figura 5.19 - Curva envoltória traçada para a região MAX II redefinida
Figura 5.20 - Curva envoltória traçada para a região MAX III redefinida123
Figura 5.21 - Curva envoltória traçada para a região MAX IV redefinida123
Figura 5.22 - Curva envoltória traçada para a região MAX V124
Figura 5.23 - Curva envoltória traçada para a região MAX VI124
Figura 5.24 - Curva envoltória traçada para a região MAX VII124
Figura 5.25 - Calibração da equação 4.28 para toda a área de estudo127
Figura 5.26 - Calibração da equação 4.28 para a região MAX I128
Figura 5.27 - Calibração da equação 4.28 para a região MAX II redefinida128
Programa da Réa graduação em Sancamento, Meio Ambiento e Regurços Hídricos da LIENG

Figura 5.28 - Calibração da equação 4.28 para a região MAX III redefinida	
Figura 5.29 - Calibração da equação 4.28 para a região MAX IV redefinida	
Figura 5.30 - Calibração da equação 4.28 para a região MAX V	
Figura 5.31 - Calibração da equação 4.28 para a região MAX VI	129
Figura 5.32 - Calibração da equação 4.28 para a região MAX VII	130
Figura 5.33 - Procedimentos para a estimação de quantis de vazões máximas e	m uma região
homogênea não monitorada	
Figura 5.34 - Curvas de freqüência para a estação Taquaraçu	137
Figura 5.35 - Curvas de freqüência para a estação Iguatama	
Figura 5.36 - Curvas de freqüência para a estação Major Porto	138
Figura 5.37 - Curvas de freqüência para a estação Tapiraí-Jusante	
Figura 5.38 - Curvas de freqüência para a estação Vargem Bonita	139
Figura 5.39 - Curvas de freqüência para a estação Velho da Taípa	139
Figura 5.40 - Curvas de freqüência para a estação Ponte Nova do Paraopeba	139
Figura 5.41 - Curva de freqüência para a região MAX II-a	143
Figura 5.42 - Curva de freqüência para a região MAX II-b	143
Figura 5.43 - Ajuste potencial sobre a lei de escala para a região MAX II-a	144
Figura 5.44 - Ajuste potencial sobre a lei de escala para a região MAX II-b	144
Figura 5.45 - Curva envoltória traçada para a região MAX II-a	145
Figura 5.46 - Curva envoltória traçada para a região MAX II-b	145
Figura 5.47 - Calibração da equação 4.28 para a região MAX II-a	146
Figura 5.48 - Calibração da equação 4.28 para a região MAX II-b	147
Figura 5.49 - Curva de freqüência para a estação Iguatama	150
Figura 5.50 - Curva de freqüência para a estação Porto Pará (CEMIG)	150

viii

LISTA DE TABELAS

Tabela 3.1 - Devastações decorridas dos efeitos das cheias (Adaptado de Wohl, 2000)11
Tabela 3.2 - Parâmetros de estimação de características físicas da bacia 13
Tabela 3.3 - Tempo de retorno para a estimação da cheia de projeto de estruturas
hidráulicas19
Tabela 3.4 - Métodos de determinação da cheia de projeto
Tabela 3.5 - Fórmulas para a estimação da posição de plotagem, onde i é posição na amostra
ordenada
Tabela 3.6 - Fórmulas empíricas para a obtenção de vazões de cheias (Adaptado de Gray,
1972)
Tabela 3.7 - Valores característicos do coeficiente de escoamento superficial para diferentes
tipos de cobertura de solo (Adaptado de Watt et al. 1988)44
Tabela 3.8 - Valores críticos da medida de discordância55
Tabela 4.1 - Vazões máximas por ano hidrológico para a região MAX IV
Tabela 4.2 - Vazões máximas rearranjadas por ano hidrológico para a região MAX IV90
Tabela 4.3 - Coeficientes de correlação ajustados às distancias entre as estações que compõem
cada subconjunto regional91
Tabela 4.4 - Cálculo do número efetivo de observações amostrais91
Tabela 5.1 - Estações que formam as regiões homogêneas para as vazões máximas anuais. 113
Tabela 5.2 - Resultados das rotinas Hosking para as regiões homogêneas114
Tabela 5.3 - Resultados das rotinas Hosking para as regiões homogêneas redefinidas115
Tabela 5.4 - Nomes e códigos das estações pertencentes às regiões redefinidas116
Tabela 5.5 - Estimação dos parâmetros da distribuição GEV117
Tabela 5.6 - Síntese dos cálculos efetuados na aplicação da metodologia
Tabela: 5.7-a - Estimativa do quantil de vazão máxima anual, da média das vazões máximas
anuais, e dos parâmetros que descrevem a distribuição GEV135
Tabela: 5.7-b - Estimativa do quantil de vazão máxima anual, da média das vazões máximas
anuais, e dos parâmetros que descrevem a distribuição GEV136
Tabela 5.8 - Desvios médios para as regiões homogêneas
Tabela 5.9 - Estações pertencentes às regiões homogêneas MAX II-a e MAX II-b142
Tabela 5.10 - Resultados das rotinas Hosking para as regiões homogêneas MAX II-a e MAX
II-b142

Tabela 5.11 - Estimação dos parâmetros da distribuição GEV para as regiões MAX II-a e
MAX II-b
Tabela 5.12 - Síntese dos cálculos efetuados na aplicação da metodologia para as regiões
MAX II-a e MAX II-b
Tabela 5.13 - Estimação do quantil de vazão máxima anual, da média das vazões máximas
anuais, e dos parâmetros que descrevem a distribuição GEV, para as regiões MAX II-a e
MAX II-b
Tabela 5.14 - Desvios médios para as regiões MAX II-a e MAX II-b151

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

a	Coeficiente linear da equação da curva envoltória
A	Área de drenagem
ALEA	Análise de Freqüência Local de Eventos Anuais
ANEEL	Agência Nacional de Energia Elétrica
b	Coeficiente angular da equação da curva envoltória
С	Coeficiente de escoamento superficial
CPRM	Companhia de Pesquisa de Recursos Minerais
CV-L	Coeficiente de variação-L
D	Diâmetro do material do fundo D_{50} , medida de discordância
D_d	Densidade de drenagem
$d_{i,j}$	Distância que separa as seções transversais das estações fluviométricas i e j
DNAEE	Departamento Nacional de Águas e Energia Elétrica
EMP	Enchente Máxima Provável
f_X	Função densidade de probabilidades de X
F(x)	Distribuição acumulada de probabilidades
GEV	Distribuição Generalizada de Valores Extremos
Н	Medida de heterogeneidade

i	Posição na amostra ordenada, intensidade da chuva de projeto
IAHS	International Association of Hydrological Sciences
ICOLD	Comissão Internacional de Grandes Barragens
k	Parâmetro de forma
k _T	Fator de freqüência
L	Comprimento do rio mais longo da bacia
L_i	Extensão total dos cursos d'água existentes na bacia
lr,j	Momentos-L amostrais
ls	Número de vezes em que uma combinação de dados de vazão em comum ocorreu única e exclusivamente para aquele ano, ou anos, ao longo da série hidrológica
L_s	Número de postos de monitoramento que constituem um subconjunto regional
М	Estações fluviométricas da região homogênea
M_{EC}	Número equivalente de seqüências estatisticamente independentes
<i>m</i> _i	Momentos amostrais
MML	Método dos momentos-L
MOM	Método dos momentos
MVS	Método de máxima verossimilhança
n	Número de anos, tamanho da amostra

xii

n _{ef}	Número efetivo de observações amostrais
NRC	Conselho Nacional de Pesquisas dos Estados Unidos
N _{sub}	Subconjuntos regionais
<i>n</i> ₁	Registros únicos de vazão máxima anual
ONU	Organização das Nações Unidas
р	Probabilidade de superação do valor esperado da curva envoltória
P _{ef}	Chuva efetiva
PMP	Precipitação Máxima Provável
РОТ	Peaks-over-threshold
P_r	Perímetro da bacia
PUB	Prediction in Ungauged Basins
PUT	Pits-under-threshold
Q	Vazão liquida, na equação 3.3
$Q_{ m max}$	Vazão máxima anual
Q^{est}_{max}	Estimativa do quantil de vazão máxima anual
Q_p	Vazão de pico
Q_s	Vazão sólida
$\overline{\mathcal{Q}}$	Vazão média anual, na equação 3.15

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

xiii

R	Risco hidrológico permissível associado à implantação do projeto
S	Declividade do talvegue, na equação 3.3
SCS	Soil Conservation Service
SEAF	Sistema Especialista para Análise Local de Freqüência
Т	Período de retorno
t _j e t _{r,j}	Razões-L amostrais
V	Medida de variância como uma medida de dispersão, ponderada pelo tamanho das séries
V_{es}	Volume de escoamento superficial
V_p	Volume total precipitado
WMO	Organização Meteorológica Mundial
X	Variável aleatória
x(F)	Curva regional de quantis adimensionais
x_T	Quantis de distribuições de probabilidades
Ζ	Medida de aderência
μ^{est}	Estimativa da média das vazões máximas anuais
μ_i	Momentos populacionais
$\overset{\wedge}{\sigma}_{x}$	Desvio padrão amostral

xiv

μ_x	Fator de escala ou index-flood, média das vazões máximas anuais
ρ	Coeficiente de correlação
η	Probabilidade empírica
λ	Coeficiente de decaimento exponencial da correlação cruzada para a região em estudo
$ au_{3}$	Assimetria – L
$ au_{_4}$	Curtose – L
α	Parâmetro de escala
β	Parâmetro de posição

xv

1 INTRODUÇÃO

Sabe-se da tendência natural das civilizações em ocupar as planícies marginais aos cursos de água e vales fluviais, uma vez que esta localização garante um mais rápido e fácil acesso aos recursos hídricos, bem indispensável ao desenvolvimento agrícola, industrial e urbano em uma sociedade. Entretanto, eventualmente, o rio reapropria-se do vale ou da planície fluvial, ocorrendo o transbordamento de suas margens, podendo acarretar diversos prejuízos às comunidades situadas em zonas ribeirinhas, sejam eles relativos à agricultura e demais atividades sociais, ou até mesmo perda de vidas humanas.

De acordo com O'Connor e Costa (2004), as inundações enquadram-se entre um dos fenômenos naturais mais poderosos em nosso planeta, sendo esses eventos relevantes na alteração do ecossistema e na conformação das paisagens naturais. Ao longo dos anos, a humanidade vem desenvolvendo sistemas para a proteção e atenuação dos efeitos causados pelas inundações. Nesse sentido, enquadram-se os sistemas de alertas contra cheias, a construção de diques e muros de contenção ou, até mesmo, a construção de barragens.

Dessa forma, é necessário o estabelecimento de uma estimativa confiável dos valores de quantis raros de vazões. O processo da estimação de cheias raras é complexo, dado que os fatores físicos e meteorológicos envolvidos são de difícil estimação, tendo em vista que a ocorrência da precipitação pode ser variável ao longo da escala espaço-tempo, uma vez que as condições climatológicas e geomorfológicas determinam sua distribuição e ocorrência em nosso planeta.

Nesse contexto, pode-se citar que a bacia hidrográfica, enquanto laboratório do ciclo hidrológico, vem a ser considerada como uma unidade representativa de um complexo modelo geofísico transformador de chuva em vazão. Nesse processo, a bacia hidrográfica retém parte da precipitação, condicionando o quanto desta converte-se em chuva efetiva, ou seja, qual o deflúvio superficial que os rios, ou drenos naturais desse sistema, irão escoar em um determinado período de tempo. Tem-se como fatores intervenientes nesse processo as características climatológicas e geomorfológicas presentes na bacia, sendo a primeira relacionada com a distribuição espaço-temporal da precipitação, e a segunda com a tipologia de vegetação, solo ou relevo constituintes dessa unidade fisiográfica.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Assim, pode-se notar o quão complexa é a questão relativa à estimação de algumas variáveis hidrológicas, uma vez que tais variáveis são regidas por fenômenos aleatórios e, portanto, sujeitas à modelação estatística. A estimação de descargas, sejam elas mínimas, médias ou máximas, resulta em diversas aplicações no campo da engenharia de recursos hídricos.

Sistemas de abastecimento de água, seja para fornecimento residencial ou público, ou para fins agrícolas, ou para sua utilização como insumo na produção de bens, são dimensionados para a situação crítica em termos de volume de adução de água, ou seja, são dimensionados com base nos registros de vazões mínimas. Por outro lado, a estimativa das vazões máximas serve como critério de cálculo para obras hidráulicas de drenagem pluvial e de escoamento e condução de cheias, tais como vertedores de barragens, ou estruturas de desvios de cursos de água, por exemplo. As vazões médias de longo termo são utilizadas para a concepção de reservatórios de regularização, onde objetiva-se o represamento do excesso de água que ocorre no período chuvoso, para sua posterior utilização em época de estiagem, compatibilizando os volumes de água disponíveis com as necessidades específicas em um dado momento.

Dessa maneira, percebe-se que as estruturas hidráulicas estão presentes em diversas aplicações em nossa sociedade, seja para a geração de energia elétrica, abastecimento residencial e comercial de água, sistemas de vertimento de barragens, redes de drenagem pluvial ou recreação e paisagismo. Tais estruturas necessitam de uma correta estimativa dos quantis raros de vazões de cheias, aos quais associa-se uma probabilidade de igualdade ou superação, cujo inverso, expresso em anos, recebe a denominação de período de retorno. Existem metodologias para a estimação de quantis raros e extremos de vazões de cheias, as quais podem ser subdivididas em duas categorias, a saber: métodos diretos e métodos indiretos.

O método direto consiste na utilização de registros de dados fluviométricos obtidos na rede de monitoramento hidrométrico operada na bacia hidrográfica em análise. Esse método baseia-se em uma abordagem estatística de dados fluviométricos, por meio da análise de freqüência, relacionando a magnitude dos eventos com sua freqüência de ocorrência, por meio de uma função paramétrica de distribuição de probabilidades.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

A escolha dessa distribuição envolve importantes incertezas. Dependendo da distribuição estatística adotada, como modelo distributivo para sintetizar o comportamento de eventos raros e extremos em determinada região, pode-se obter diferentes valores estimados de quantis de vazões máximas.

Para a aplicação do método indireto, torna-se necessário o conhecimento de observações meteorológicas e pluviométricas acerca de uma determinada região. Estes dados servem de base para a simulação hidrológica da Enchente Máxima Provável (EMP). Essa cheia decorre da chamada Precipitação Máxima Provável (PMP), gerada sob condições hidrometeorológicas extremas, porém passíveis de ocorrência, que se abate sobre a bacia hidrográfica. No entanto, esta metodologia não possibilita o estabelecimento de associações probabilísticas ou a aferição da análise de risco do evento de projeto, podendo assim levar ao superdimensionamento das obras hidráulicas.

Com efeito, a utilização das metodologias presentes tanto no método direto, quanto no método indireto, está atrelada à qualidade e à disponibilidade de dados hidrológicos obtidos na rede hidrométrica existente na bacia hidrográfica em estudo. Um dos desafios apresentados à hidrologia é a obtenção de dados hidrológicos em localidades não instrumentadas, ou providas de uma rede de monitoramento deficiente.

Neste sentido, iniciativas recentes tais como as desenvolvidas pela Associação Internacional de Ciências Hidrológicas (*IAHS - International Association of Hydrological Sciences*), como aquela denominada *PUB (Prediction in Ungauged Basins*), descrita por Sivapalan *et al.* (2003), têm estimulado o desenvolvimento de trabalhos de concepção de métodos para a estimação de cheias em bacias hidrográficas para as quais se dispõe apenas de uma rede de monitoramento deficitária, ou até mesmo de nenhum monitoramento.

Neste contexto, a interpretação probabilística das curvas envoltórias e a atribuição de uma probabilidade de igualdade ou superação para os valores raros e extremos vêm de encontro à afirmação apresentada no parágrafo anterior, podendo constituir em uma ferramenta para o dimensionamento de estruturas hidráulicas em locais desprovidos de redes de monitoramento.

Em geral, as curvas envoltórias de cheias constituem uma representação gráfica, em escala bilogarítmica, da observação das máximas vazões ocorridas em diferentes áreas de drenagem, podendo sintetizar os extremos hidrométricos em uma dada região geográfica.

Desde o seu surgimento, no início do século XX, essa metodologia de registros de vazões máximas vem sendo cada vez menos utilizada, uma vez que torna-se complexa a associação de uma probabilidade de excedência a um valor específico de uma curva envoltória de cheias, em função do empirismo intrínseco à sua construção.

Entretanto, Castellarin *et al.* (2005) e Castellarin (2007) propuseram uma metodologia, apresentando resultados promissores, no sentido da interpretação probabilística dos métodos empíricos de construção de curvas envoltórias de cheias. Por meio dessa nova interpretação, pode-se propor o dimensionamento de estruturas hidráulicas, através da metodologia de curvas probabilísticas para a estimação de cheias de projetos em bacias não monitoradas.

A idéia de que existe um limite físico superior para a produção de tormentas e eventos de cheias extremas em uma bacia hidrográfica, tal como sugere Horton (1936), reforça o conceito de se buscar a síntese dos limites de experiência em cheias extremas através de observações sistemáticas de vazões de enchentes em uma certa região. Entretanto, em séries hidrológicas de tamanho usualmente reduzidas, é praticamente impossível encontrar o valor do limite físico superior entre as observações. Esse fato faz com que as curvas envoltórias possam ser superadas, a depender da inclusão de novas observações nas curvas já existentes.

Com efeito, a associação de uma probabilidade de superação do valor esperado da curva envoltória é de grande utilidade para a estimação de vazões máximas em bacias hidrográficas do estado de Minas Gerais, em geral providas de considerável potencial hídrico e desprovidas de uma eficiente rede de monitoramento hidrométrico.

Assim, a presente pesquisa objetiva a aplicação da metodologia de interpretação probabilística associada ao valor esperado da curva envoltória de cheias elaborada para uma bacia hidrográfica tomada para o estudo, considerando a delimitação de regiões homogêneas, ou seja, aquelas que apresentam características semelhantes do ponto de vista hidrológico, geomorfológico e climatológico.

Como decorrência da extensão da metodologia existente, em uma segunda etapa, busca-se elaborar a curva de freqüência completa de vazões máximas para bacias hidrográficas compreendidas nos limites das curvas envoltórias traçadas para a região em estudo.

Em uma última etapa, de posse da estimativa dos quantis de vazões máximas utilizando a metodologia das curvas envoltórias de cheias, efetuar-se-á a comparação com os quantis de vazões máximas estimados pela metodologia descrita por Hosking e Wallis (1997), pelo método dos momentos (MOM) e pelo método dos momentos-L (MML).

Esta dissertação estrutura-se em seis capítulos, incluindo este tópico introdutório. No Capítulo 2 apresentam-se os objetivos geral e específicos a serem buscados na aplicação das etapas metodológicas anteriormente delineadas. O Capítulo 3 refere-se à revisão da literatura, onde são abordados os seguintes tópicos principais: (i) contextualização dos problemas relativos às cheias, (ii) cheia de projeto, (iii) estimação da cheia de projeto, (iv) regionalização hidrológica e, (v) curvas envoltórias de cheias.

A metodologia para o desenvolvimento deste trabalho, conforme a proposta apresentada por Castellarin *et al.* (2005) e Castellarin (2007), é objeto do Capítulo 4. No Capítulo 5 apresentase o desenvolvimento e a aplicação da metodologia, já elucidada no Capítulo 4. Finalmente, o Capítulo 6 traz as conclusões obtidas no percalço do desenvolvimento dos objetivos do trabalho, e também apresenta as recomendações e propostas para a aplicação de eventuais estudos futuros acerca da metodologia de estimação de cheias por meio da interpretação probabilística das curvas envoltórias.

2 **OBJETIVOS**

2.1 Objetivo Geral

Esta dissertação de mestrado tem como objetivo geral o desenvolvimento e aplicação de uma metodologia para a estimação das curvas de freqüência de vazões máximas em bacias hidrográficas não monitoradas, por meio da interpretação probabilística das curvas envoltórias de cheias.

2.2 Objetivos Específicos

Constituem os objetivos específicos do presente trabalho os itens especificados abaixo:

- Estudar a metodologia desenvolvida por Castellarin *et al.* (2005) e Castellarin (2007) para a estimação da probabilidade de superação do valor esperado da curva envoltória;
- Obter as curvas envoltórias para a bacia hidrográfica do alto rio São Francisco, incluindo o rio das Velhas;
- Estender a metodologia, objeto do primeiro objetivo específico, de modo que a interpretação probabilística das curvas envoltórias possa ser usada para a obtenção de curvas de freqüência completas de vazões máximas em locais com pouco ou nenhum monitoramento fluviométrico;
- Comparar os resultados obtidos anteriormente com aqueles obtidos por metodologias clássicas de regionalização de vazões máximas anuais.

3 REVISÃO DA LITERATURA

Nos tópicos apresentados neste capítulo, busca-se a análise de algumas publicações referentes aos temas pertinentes a essa dissertação, a saber: contextualização dos problemas relativos às cheias, cheia de projeto, estimação da cheia de projeto, regionalização hidrológica e, por último, curvas envoltórias de cheias. Para a contextualização dos problemas relativos às cheias, faz-se uma abordagem dos problemas oriundos de eventos de precipitações raras e seus fatores causais. Em um segundo momento, busca-se apresentar o conceito da cheia de projeto e a importância de sua correta estimação para o dimensionamento de estruturas hidráulicas. Para a estimação da cheia de projeto, apresentam-se as etapas metodológicas inseridas na aplicação do método direto e do método indireto. Em seguida, faz-se uma abordagem acerca da regionalização hidrológica, seus fundamentos e utilidade em hidrologia. Por último, apresentam-se as curvas envoltórias de cheias, seus conceitos e aplicações.

3.1 Contextualização dos problemas relativos às cheias

Desde a constituição das primeiras civilizações humanas, estas tinham por preferência seu estabelecimento em planícies marginais aos vales fluviais de cursos de água. Esta localização facultava o fácil acesso aos recursos hídricos, permitindo agilidade na captação e condução da água, tanto para consumo e higiene humana, quanto para a utilização em atividades agrícolas e artesanais.

Correia (1983) menciona a atração natural que sobre as civilizações exercem as planícies e margens de cursos de água, mencionando que este procedimento implica em um risco, uma vez que o rio, por vezes, reapropria-se do vale ou da planície, danificando o que foi fruto de esforços e trabalhos penosos por parte do homem.

Rostvedt *et al.* (1968) configuram as inundações como qualquer aumento adicional no nível da vazão de um rio, podendo ocasionar o transbordamento para suas margens, sejam estas naturais ou artificiais. Desta maneira, pode-se dizer que a inundação é caracterizada pelo preenchimento, em seção plena, da calha fluvial, onde qualquer acréscimo de vazão implica no transbordamento para a planície de inundação, conforme mostra a Figura 3.1.

Figura 3.1 - Esquema de transbordamento de um rio para a planície de inundação (Adaptado de Fisrwg,1998)

De acordo com O'Connor e Costa (2004), as inundações enquadram-se entre os fenômenos naturais mais poderosos em nosso planeta, sendo estes eventos relevantes na alteração do ecossistema e na conformação das paisagens naturais. Ainda segundo os mesmos autores, sociedades de todo o planeta vêm convivendo com o risco iminente representado pelas cheias, as quais, por vezes, podem acarretar em perda de vidas humanas, sendo alvo de estudo de geólogos, hidrólogos e historiadores, no sentido de definir a implicação das enchentes em moldar nossa cultura e paisagem física.

Veyret (2007) afirma que as inundações representam um dos riscos naturais de grande impacto para as sociedades humanas. Tais fenômenos podem ocasionar diversos danos, sejam eles diretos, tais como a perda de equipamentos urbanos, ou indiretos, denotados pela paralisação de atividades econômicas ou sociais. Segundo Berz (2000, *apud* Baptista, Nascimento e Barraud, 2005), em todo o mundo, os danos relativos às inundações elevaramse a 250 bilhões de dólares entre o período de 1988 a 1997.

A Figura 3.2 representa o cômputo de perda de vidas humanas e o prejuízo financeiro, em dólares, estimado em danos materiais provocados pelas cheias no Japão, entre o período de 1946 a 1981.

Para Smith e Ward (1998), as cheias são um evento geofísico que, em áreas urbanas, podem causar uma série de desastres, incluindo a perda de vidas humanas. De acordo com esses autores, os impactos causados por inundações em áreas urbanizadas podem ser agrupados em perdas diretas e indiretas, tal como ilustrado pela Figura 3.3.

Figura 3.3 - Esquema de impactos causados pelas inundações (Adaptado de Smith e Ward, 1998)

As perdas diretas são subdivididas em duas categorias: tangíveis e intangíveis. Os impactos diretos e tangíveis envolvem os danos físicos causados à localidade atingida pela inundação, tal como a destruição de casas e prédios, escolas, ruas, entre outros, e, conseqüentemente, o aporte financeiro despendido para a recuperação dessas estruturas. Para as perdas diretas e intangíveis, enquadram-se o ceifamento de vidas humanas e os possíveis danos psicológicos remanescentes nas vítimas, em função do impacto emocional causado pelo evento de cheia.

As perdas indiretas também se bifurcam nas categorias de tangíveis e intangíveis. As perdas indiretas e tangíveis referem-se à paralisação de atividades comerciais e sociais na localidade, enquanto as perdas indiretas e intangíveis denotam o receio, por parte da população local, da ocorrência de um novo evento catastrófico de cheia, podendo ocasionar a migração populacional para áreas adjacentes, enfraquecendo a economia e as atividades sociais da região.

Não raramente, os efeitos das cheias podem ser catastróficos. Em Bangladesh, no ano de 1986, ocorreu o transbordamento simultâneo dos rios Ganges, Brahmaputra e Meghna, após a ocorrência de três semanas de chuvas intensas. Foram registradas mais de 1.000 perdas de vidas humanas (O'Connor e Costa, 2004).

A Tabela 3.1 apresenta uma lista parcial de registros de devastações decorrentes do efeito de cheias extremas ao longo da história da humanidade, computando a perda de vidas humanas e o prejuízo financeiro, em dólares, estimado em perdas materiais.

Pode-se perceber também que as cheias se distinguem em duas modalidades: as causadas por eventos naturais e as decorrentes de fatores artificiais. As cheias geradas por eventos naturais estão relacionadas à interação dos aspectos climatológicos com as características geomorfológicas e fisiográficas da bacia hidrográfica.

Os aspectos climatológicos compreendem uma série de fatores, tais como a formação e a circulação geral das massas de ar presentes na atmosfera, cuja especificidade restringe-se ao campo de estudos meteorológicos. Nota-se também a influência de algumas características morfológicas, fisiográficas e de uso do solo, peculiares a uma bacia hidrográfica, tais como: área, forma, densidade de drenagem, vegetação e tipo de solo, na conformação do hidrograma de cheia em sua seção exutória.

Localização	Data	Causa	Danos	
Rio Nilo, Egito	747 A.C	Chuva	Desconhecidos	
Rio Mississipi, EUA	Março, 1543	Chuva	Desconhecidos	
China	1642	Chuva	300.000 mortes	
Rio James, EUA	Maio, 1771	Chuva	Virgínia, destruída	
Costa da Califórnia, EUA	Dezembro, 1861	Chuva	Desconhecidos	
Região central - Colorado, EUA	Maio, 1864	Chuva	19 afogamentos	
Rio Connecticut, EUA	Maio, 1874	Falha no reservatório	\$1 milhão e 143 mortes	
Rio Amarelo, China	1887	Chuva	mais de 900.000 mortes	
Johnstown, EUA	Maio, 1889	Falha no reservatório	2.200 mortes	
Bacia do alto rio Mississipi, EUA	Maio, 1903	Chuva	\$40 milhões e mais de 100 mortes	
Rio Yangtze, China	1911	Chuva	100.000 mortes	
Bacia do baixo rio Mississipi, EUA	Março, 1912	Chuva	\$70 milhões	
Bacia do rio Mississipi, EUA	Março, 1913	Chuva	\$154 milhões e mais de 470 mortes	
Texas, EUA	Dezembro, 1913	Chuva	\$9 milhões e 177 mortes	
Região central - Colorado, EUA	Junho, 1921	Chuva	\$25 milhões e 120 mortes	
Texas, EUA	Setembro,1921	Chuva	\$19 milhões e 224 mortes	
Flórida, EUA	Setembro, 1926	Tempestade	350 mortes	
Bacia do baixo rio Mississipi, EUA	Março, 1927	Chuva	\$300 milhões e 313 mortes	
Sul da Califórnia, EUA	Março, 1928	Falha no reservatório	\$15 milhões e mais de 350 mortes	
Rio Amarelo, China	1933	Falha no dique	18.000 mortes	
Nordeste dos EUA	Março, 1936	Chuva	\$270 milhões e 107 mortes	
Bacia do rio Mississipi, EUA	Fevereiro, 1937	Chuva	\$420 milhões e 137 mortes	
Nordeste dos EUA	Setembro, 1938	Tempestade	\$37 milhões e 500 mortes	
Rio Amarelo, China	1938	Ruptura no dique	890.000 mortes	
Rio Kansas, EUA	Julho, 1951	Chuva	\$1 bilhão e 50 mortes	
Manchuria, China	Agosto, 1951	Desconhecido	mais de 5.000 mortes	
Distrito de Kazvin, Irã	Agosto, 1954	Desconhecido	mais de 2.000 mortes	
Belluno, Itália	Outubro, 1963	Galgamento da barragem	mais de 2.000 mortes	
Gujarat, Índia	Agosto, 1968	Desconhecido	1.000 mortes	
Oeste da Virgínia, EUA	Fevereiro, 1972	Falha no reservatório	\$10 milhões e 125 mortes	
Dakota, região sul, EUA	Junho, 1972	Chuva	\$164 milhões e 237 mortes	
Colorado, EUA	Julho, 1976	Chuva	\$56 milhões e 141 mortes	
Gujarat, Índia	1979	Falha na barragem	mais de 10.000 mortes	
Sul da Tailandia	Novembro,1988	Chuva	\$11 milhões	
Filipinas	Novembro,1991	Chuva	8.000 mortes	
Bacia do rio Mississipi, EUA	Junho, 1993	Chuva	\$20 bilhões e 48 mortes	
Região central da China	1996	Desconhecido	\$113 milhões e 1.509 mortes	
Vietnã e Tailândia	Novembro,1997	Chuva	\$472 milhões e 313 mortes	

Tabela 3.1 - Devastações decorridas dos efeitos das cheias (Adaptado de Wohl, 2000)

A área de drenagem de uma bacia hidrográfica é definida como a projeção vertical da linha fechada dos divisores de água sobre um plano horizontal, sendo comumente mensurada em quilômetros quadrados (km²) ou hectares (ha). Em geral, quanto maior a área de uma bacia, maior será o volume de escoamento superficial e, conseqüentemente, maiores as vazões.

Como a capacidade de armazenamento das grandes bacias é maior, o tempo de resposta a um evento de precipitação também é maior, com vazões de pico relativamente mais atenuadas.

As precipitações frontais, aquelas cuja gênese está relacionada com o encontro de duas massas de ar atmosférico de diferentes temperaturas e conteúdo de umidade, ocasionando precipitações duradouras e pouco intensas, é o evento hidrometeorológico que pode levar à inundação de bacias com grandes áreas de drenagem, uma vez que estas possuem maior capacidade de armazenamento e escoamento superficial.

Para as bacias hidrográficas com menor área de drenagem, têm-se o inverso dos efeitos observados para as bacias com grande área de drenagem. As precipitações convectivas, geradas por células de convecção térmica, são geralmente de grande intensidade e pequena duração, restrita a pequenas áreas, podendo assim causar inundações em bacias hidrográficas com menor área de drenagem.

Com efeito, a área de drenagem de uma bacia encontra-se correlacionada com as máximas vazões observadas nessa localidade. Assim, procura-se o estabelecimento de relações em que se possa estimar a vazão de pico por meio da área de drenagem, tal como a equação 3.1, mencionada por Singh (1992).

$$Q_p = kA^x \tag{3.1}$$

Nessa equação, os coeficientes $k \in x$ podem ser estimados por meio da análise estatística dos dados de vazões de pico Q_p , observados em bacias hidrográficas de diferentes áreas de drenagem A.

O coeficiente de forma tem por objetivo avaliar a tendência de contorno da bacia hidrográfica em apresentar um formato alongado ou arredondado. De acordo com Singh (1992), o formato de uma bacia hidrográfica depende da interação de fatores geológicos e climáticos, sendo avaliado quantitativamente por meio de algumas expressões matemáticas que incorporam as características físicas da bacia em sua formulação, tal como exemplificado na Tabela 3.2.

Parâmetro/Autor	Definição	Equação	Valor
Parâmetro de forma Horton (1932)	área de drenagem da bacia (comprimento do rio mais longo da bacia) ²	$\frac{A}{L^2}$	≤1
Parâmetro de forma U.S. Army Corps of Engineers	(comprimento do rio mais longo da bacia) ² área de drenagem da bacia	$\frac{L^2}{A}$	≥1
Raio de alongamento Schumm (1956)	área de drenagem da bacia comprimento do rio mais longo da bacia	$\frac{1,128A^{0,5}}{L}$	≤1
Raio de circuferência Miller (1959)	área de drenagem da bacia perímetro da bacia	$\frac{12,57A}{P_r^2}$	≤1
Coeficiente de compacidade Strahler (1964)	perímetro da bacia área de drenagem da bacia	$\frac{0,2821P_{r}}{A^{0,5}}$	≥1

Tabela 3.2 - Parâmetros de estimação de características físicas da bacia

Fonte: Singh (1992)

Assim, pode-se notar que as bacias hidrográficas que apresentam o valor dos parâmetros mencionados na Tabela 3.2 próximos à unidade, possuem uma tendência de contorno em formato arredondado, estando sujeitas, geralmente, a uma resposta relativamente mais rápida em decorrência de um evento de precipitação, implicando em uma vazão de pico superior às bacias com tendência de contorno alongadas (Singh, 1992).

Outro aspecto relativo à tendência de formação de cheias em uma unidade fisiográfica referese à densidade de drenagem, denotada por D_d . Este termo indica o comprimento total dos rios de uma bacia por unidade de área, conforme a seguinte expressão:

$$D_d = \sum \frac{L_i}{A} \tag{3.2}$$

onde L_i representa a extensão total dos cursos d'água existentes na bacia, em (km), e A a área de drenagem da bacia em (km²).

De acordo com Singh (1992), quanto maior a densidade de drenagem de uma bacia, maior será a capacidade desta unidade em concentrar o escoamento superficial em seu exutório, podendo propiciar inundações e maiores vazões de pico.

A vegetação e o uso e ocupação do solo em uma bacia hidrográfica são características fundamentais para a conformação dos hidrogramas de cheias nessas unidades, uma vez que indicam com que proporção a precipitação transforma-se em escoamento superficial, bem como a velocidade com que esse é transportado à rede de drenagem.

A vegetação influência as parcelas de perdas do volume precipitado por meio das abstrações hidrológicas, as quais estão relacionadas com o armazenamento de água na folhagem e troncos de árvores; com a evaporação e com a transpiração, ou seja, com o retorno da água para a atmosfera por meio da evapotranspiração da água levada até os estômatos das espécies vegetais.

Além disso, as raízes das plantas geram algumas fissuras nos solos, permitindo a maior infiltração da água nesse meio. Os processos de desmatamento e urbanização de uma bacia hidrográfica implicam em menores perdas por meio da intercepção e infiltração, disponibilizando um maior volume de água para o escoamento superficial, tal como ilustrado pela Figura 3.4, onde tem-se a influência do uso do solo sobre a formação do escoamento superficial para diferentes volumes precipitados em diferentes culturas e usos do solo. Como conseqüência, tem-se um maior volume de escoamento superficial e um menor tempo de resposta da bacia, acarretando uma maior vazão de pico.

Os efeitos dos impactos da urbanização sobre o regime de escoamento em cursos de água pertencentes a uma bacia hidrográfica também podem ser observados por meio da balança de Lane, conforme ilustra a Figura 3.5.

A balança de Lane traduz a seguinte relação de proporcionalidade:

$$Q_s D \approx QS \tag{3.3}$$

onde: Q_s = vazão sólida, D = diâmetro do material do fundo D_{50} , Q = vazão liquida e S = declividade do talvegue.

Figura 3.4 - Influência do uso do solo sobre a formação do escoamento superficial (Adaptado de Costa e Teuber, 2001)

Figura 3.5 - Balança de Lane (Adaptado de Chang, 1988)

Se uma das variáveis se altera, a outra irá se modificar de maneira a manter o equilíbrio estável em um canal fluvial. Assim, o aumento da vazão líquida, devido à impermeabilização da bacia, implica no aumento da vazão sólida em um curso de água, havendo uma tendência de deposição e a conseqüente agradação do leito fluvial em decorrência do processo erosivo das margens dos rios. A avaliação quantitativa da interação destes processos é complexa,

15

envolvendo estudos referentes ao campo de pesquisas teóricas e experimentais em transportes de sedimentos.

De fato, percebe-se que as características fisiográficas da bacia hidrográfica, atreladas ao seu processo de uso e ocupação, interferem na gênese das vazões de pico e, conseqüentemente, na atenuação ou intensificação das cheias. A ocorrência da precipitação que se abate sobre a bacia hidrográfica irá condicionar a intensidade da cheia nesta localidade, dependendo de diversos fatores meteorológicos, a saber:

- intensidade, volume e duração da precipitação;
- forma da precipitação (chuva, neve, granizo);
- tipo de precipitação (convectiva, orográfica, frontal);
- distribuição espaço-temporal da precipitação;
- formação de fenômenos frontais estacionários, tais como a formação da zona de convergência do Atlântico Sul, por exemplo;
- possível movimento da chuva de jusante para montante em uma bacia hidrográfica, provocando chuvas em localidades em que o curso de água esteja em estado de cheia.

A interação entre as características geográficas e fisiográficas da bacia, atreladas aos processos meteorológicos citados condicionam, geralmente, o regime de cheias em uma região.

Entretanto, os eventos de cheias podem também ser causados por fatores artificiais, os quais incluem aqueles devidos a falhas humanas e tecnológicas, e aos acidentes naturais. As falhas humanas são resultantes da indevida operação de estruturas hidráulicas, ou referentes à errônea concepção projetiva ou executiva dessas estruturas. As cheias causadas por falhas tecnológicas restringem-se àquelas em que a ruptura de sistemas hidráulicos tem como fator causal as patologias construtivas em função da ausência do desempenho esperado dos materiais empregados na construção da estrutura.

Pode-se citar alguns outros fatores que condicionam a formação de cheias naturais, tais como: deslizamentos de terra para o interior de canais ou reservatórios; o degelo de grandes

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

quantidades de neve; a erosão de maciços rochosos, liberando o volume de água represada em suas fissuras; o derretimento de neve provocado pela ação de eventos tectônicos; entre outros. Tais fatores não serão abordados neste trabalho; para o leitor interessado em maiores detalhes sobre estes tópicos recomenda-se a leitura de O'Connor e Costa (2004), e Wohl (2000).

O presente trabalho tem como proposta apresentar o estudo de uma metodologia de estimação de quantis máximos de vazões de cheias geradas por processos meteorológicos, resultantes de eventos de precipitação em forma de chuva, para fins de dimensionamento de estruturas hidráulicas de armazenamento ou condução do excesso de água.

3.2 Cheia de Projeto

Em nossa sociedade, a água está presente em múltiplas atividades, seja para fins de geração de energia elétrica, abastecimento industrial e residencial, navegação, irrigação, ou até mesmo recreação e paisagismo. Atualmente, nota-se uma crescente demanda pela utilização da água para as diversas atividades mencionadas, conforme apresenta a Figura 3.6, a qual ilustra a evolução do uso dos recursos hídricos no mundo entre os períodos de 1900 a 2000.

Figura 3.6 - Evolução do uso dos recursos hídricos (Fonte: Naghettini, 1999)

— — — — Uso Agricola — Uso Total

Observa-se na Figura 3.6 que a demanda pelo uso dos recursos hídricos aumentou em torno de 10 vezes, ao passo que a população mundial apenas quadruplicou no período em questão.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG
Embora a água seja um recurso renovável, sua ocorrência em forma de precipitação pode ser variável ao longo da escala espaço-tempo, causando escassez ou excesso desse recurso em uma determinada localização geográfica.

Assim, tem-se a intervenção do homem sobre o ciclo hidrológico por meio de medidas de engenharia que envolvem planejamento, projeto e operação de obras hidráulicas, sendo estas constituídas pelos mais diversos arranjos e variando em suas múltiplas finalidades, uma vez que apenas as vazões naturais dos cursos de água não seriam capazes de atender às demandas.

Com a concepção e implantação das obras hidráulicas, essas estão sujeitas aos critérios de dimensionamento. Desta forma busca-se definir a magnitude da vazão da cheia de projeto, à qual associa-se uma probabilidade de igualdade ou superação, cujo inverso, expresso em anos, recebe a denominação de período de retorno, de modo a garantir a operação segura e confiável dessas estruturas.

Para sistemas de condução ou controle do excesso de cheias, tais como vertedores de barragens, bueiros, canais, galerias de drenagem, entre outras, o critério de dimensionamento baseia-se na estimação da cheia de projeto.

Correia (1983) define a cheia de projeto como a maior cheia para a qual a estrutura é projetada, de tal modo que se essa cheia não for excedida a estrutura não sofre qualquer diminuição em sua eficiência. Assim, a cheia de projeto pode ser caracterizada por alguns parâmetros, tais como: o limite superior de vazão associado a um evento de cheia, o intervalo de tempo acima de uma determinada vazão, ou o volume de cheia, sendo o primeiro mais usual para sua caracterização. A Tabela 3.3 apresenta alguns valores usuais de tempo de retorno para a estimação da cheia de projeto de algumas estruturas hidráulicas utilizadas comumente no campo da engenharia.

Dessa forma, a adoção de um tempo de retorno para a estimação da cheia de projeto de um projeto associado a uma obra de engenharia depende da importância dessa estrutura, implicando em um valor para o qual o risco de igualdade ou superação da cheia seja adequado à segurança operativa do empreendimento e da população que por ele é afetada.

Estrutura Hidráulica	Classificação	Tempo de Retorno (anos)	
	tráfego baixo	5 -10	
Bueiros Rodoviários	tráfego intermediário	10 - 25	
	tráfego alto	50 - 100	
Dontes Podoviários	estradas secundárias	10 - 50	
Polites Rodovialias	estradas principais	50 - 100	
	galerias de pequenas cidades	2 - 25	
Drenagem Urbana	galerias de grandes cidades	25 - 50	
	canalização de córregos	50 - 100	
Diques e Muros de Contenção	área rural	2 - 50	
Diques e Muios de Contenção	área urbana	50 - 200	
Barragens	sem risco de perda de vidas humanas	200 - 1.000	
Danagens	com risco de perda de vidas humanas	10.000	

Tabela 3.3 - Tempo de retorno para a estimação da cheia de projeto de estruturashidráulicas

Fonte: Naghettini (1999)

Assim, conforme cita Menescal (2005), deve-se buscar o cotejo entre a relação custo *versus* risco, para a tomada de decisão acerca da seleção de determinado período de retorno para o projeto de estruturas de condução e contenção do excesso de cheias, de onde se extraem priorizações adequadas de investimentos e quantificações de exposição ao risco de falha dessas estruturas, em conjunto com o planejamento de medidas de controle e mitigação contra os efeitos das cheias.

Nesse contexto, pode-se introduzir o conceito de risco hidrológico, definido por Correia (1983) como a probabilidade do valor estimado para a cheia de projeto ser excedido pelo menos em um ano ao longo do horizonte de projeto, sendo calculado pela seguinte equação:

$$R = 1 - \left(1 - \frac{1}{T}\right)^n \tag{3.4}$$

onde T denota o tempo de retorno, o qual, expresso em anos, representa o tempo médio em que um evento pode ser igualado ou superado em um ano qualquer, n representa o número de anos considerados para a avaliação do risco e, R refere-se ao risco hidrológico permissível associado à implantação do projeto. Se o risco hidrológico é previamente fixado, em função da importância e das dimensões da estrutura hidráulica, assim como das conseqüências de seu eventual colapso para as populações ribeirinhas ou para as comunidades situadas a jusante de

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

sua posição no sistema fluvial, pode-se aplicar a equação 3.4 para determinar para qual tempo de retorno deve ser calculada a cheia de projeto de uma determinada estrutura, cuja vida útil estimada seja de *n* anos. A Figura 3.7 ilustra as relações entre o risco hidrológico, o tempo de retorno e a vida útil do empreendimento, ambos expressos em anos.

Um exemplo de inundações provocadas por falhas de dimensionamento ou operação de estruturas hidráulicas refere-se ao rompimento de barragens, onde tem-se a elevação do nível de água a montante da estrutura e seu posterior galgamento, apresentando como fator causal a ocorrência de uma vazão superior àquela calculada para a cheia de projeto.

A Tabela 3.1 inclui algumas catástrofes relativas às cheias que tiveram como fator preponderante o galgamento, ou *overtopping*, de barramentos. Segundo ELETROBRÁS (1987), a Comissão Internacional de Grandes Barragens - *ICOLD* - contabiliza que 31% das falhas em barragens de terra ou enrocamento tem como causa primária o galgamento dessas estruturas, sendo o fator secundário em 18% dos casos. Para as barragens de concreto, o galgamento dessas estruturas representa cerca de 20% da causa primária de acidentes, enquanto 43% é a porcentagem devido à causa secundária.

Assim, busca-se estabelecer um determinado período de retorno para a estimação da cheia de projeto das estruturas hidráulicas a serem dimensionadas, tendo como base a avaliação do

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

risco permissível deste projeto, e levando em conta a aleatoriedade dos fatores que influenciam no processo de formação das cheias. Essa aleatoriedade traduz a incerteza em se determinar e quantificar, com absoluta precisão, os fatores causais que provocam a ocorrência e/ou a recorrência de um dado evento. Além disso, existe a variabilidade própria da variável, ou variáveis, que caracterizam um certo evento, a qual deve estar retratada em uma amostra finita de observações, ponto de partida da inferência estatística.

Nesse contexto de aleatoriedade e variabilidade, intrínseco aos eventos de cheias, pode-se citar o exemplo mencionado por Garcia (1996), retratando o projeto do sistema de vertimento do reservatório de Rincón del Bonete, localizado no Rio Negro, Uruguai. Esta estrutura foi dimensionada para uma vazão de 9.200 m³/s, correspondendo a um período de retorno de 1.000 anos, a partir de uma série hidrológica de 27 anos, na qual o máximo valor de vazão observado era de 3.820 m³/s. Decorridos quatorze anos após a construção, em 1959, ocorreu uma vazão de 17.130 m³/s, que corresponderia, pela distribuição probabilística ajustada, a um período de retorno de 500.000 anos.

Nathan e Weinmann (2001) categorizam as enchentes como grandes, raras e extremas, conforme ilustrado na Figura 3.8, de acordo com suas respectivas probabilidades anuais de superação. Em geral, as enchentes consideradas grandes ainda se encontram no domínio das medições e observações diretas, enquanto as enchentes raras localizam-se entre essas e o chamado "limite crível de extrapolação" da curva de probabilidades anuais de superação. As enchentes extremas possuem pequenas probabilidades anuais de superação, além do limite crível de extrapolação.

O processo da estimação de cheias raras e extremas é complexo, dado que os fatores físicos e meteorológicos envolvidos são de difícil estimação, tendo em vista que a ocorrência da precipitação pode ser muito variável ao longo da escala espaço-tempo. Desta maneira, as incertezas inerentes às estimativas das enchentes raras e extremas são grandes, algumas delas quantificáveis e outras não quantificáveis pelos procedimentos de inferência estatística.

Essas incertezas estão associadas à escolha do modelo distributivo e aos procedimentos de estimação de parâmetros e quantis, a partir de uma amostra finita de dados de tamanho usual na faixa de 25 a 80 anos.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 3.8 - Categorização das enchentes (Adaptado de Nathan e Weinmann, 2001)

Assim, busca-se a estimativa de descargas associadas a diferentes tempos de retorno estabelecidos pelo projetista, ou seja, o dimensionamento de estruturas hidráulicas por meio da estimação da cheia de projeto, correspondendo aos quantis de vazões máximas obtidos para uma determinada probabilidade de igualdade ou superação, considerando uma taxa de risco permissível para o projeto. Essas vazões de dimensionamento de estruturas de condução ou controle de cheias podem ser estimadas através das etapas metodológicas inseridas na aplicação dos métodos diretos e dos métodos indiretos, os quais serão descritos nos tópicos subseqüentes.

3.3 Estimação da Cheia de Projeto

Existem diversos métodos de estimação da cheia de projeto para estruturas hidráulicas, variando desde métodos que trazem a utilização de equações empíricas em suas etapas metodológicas, até modelos matemáticos e computacionais de simulação de vazões, tal como os modelos hidrometeorológicos. Segundo ELETROBRÁS (1987), a fase em que se encontra o projeto, a disponibilidade de dados registrados na rede de monitoramento hidrométrico operada na bacia, e as condições hidrológicas específicas da área de drenagem em questão, condicionam a definição dos métodos para a estimação da cheia de projeto.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Correia (1983) apresenta um relatório elaborado pela Organização das Nações Unidas (ONU, 1976) preparado para a Comissão Econômica da Europa, baseado na consulta de 23 países membros, onde identifica-se uma ausência de uniformidade nos critérios utilizados para a estimação da cheia de projeto e na avaliação dos prejuízos causados pelas cheias.

Anjos e Almeida (1981) conduziram um estudo no qual apresentam o levantamento dos procedimentos adotados em projetos de barragem do sistema hidrelétrico brasileiro, reunindo informações de aproximadamente 70 aproveitamentos. Posteriormente, este estudo foi aprofundado por Damazio, Moreira, Costa e Kelman (1983), retratando a evolução histórica da utilização de diferentes métodos para o cálculo da cheia de projeto, em território brasileiro.

Basicamente, Correia (1983) define os métodos de estimação de cheias de projeto em três categorias: as que se baseiam na imposição de um período de retorno, as que se baseiam na determinação de um limite superior máximo provável de cheia, e as que se baseiam na teoria estatística da decisão e análise econômica.

A primeira categoria retrata a utilização de métodos estatísticos para o estabelecimento de um tempo de retorno para a ocorrência do evento de cheia. A segunda categoria refere-se ao cálculo de uma cheia máxima provável, ou seja, leva em conta os fatores meteorológicos e geomorfológicos da bacia para a estimação de uma cheia resultante de um evento máximo de precipitação. A terceira categoria busca o cotejo entre a análise econômica do projeto e a teoria estatística de decisão, não implicando necessariamente no estabelecimento, a priori, de um período de retorno para as vazões.

Segundo Naghettini (1999), a magnitude de uma cheia pode ser avaliada por meio da previsão de vazões e da pré-determinação de vazões. A previsão de vazões busca avaliar a cheia em um curto período de tempo, estabelecendo não só o seu valor, como também sua ocorrência temporal. Nesse sentido, a previsão de vazões serve como ferramenta para a definição de regras operacionais em reservatórios, bem como para a tomada de decisões relativas às providências de emergência para a atenuação dos danos causados pelas enchentes.

A pré-determinação de vazões busca avaliar a cheia em um período de longo prazo, quantificando uma probabilidade de igualdade ou superação a um determinado evento de cheia, sem precisar, entretanto, a data de sua ocorrência.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Com efeito, a previsão de vazões é um método de estudo das vazões sob a ótica da antecipação de sua ocorrência no tempo, tendo utilidade em regras operacionais de reservatórios e em sistemas de alerta e alarmes contra cheias, enquanto a pré-determinação de vazões implica na quantificação dos eventos de cheias, assumindo assim caráter em nível de planejamento e projeto de estruturas de engenharia. Nesse sentido, pode-se citar alguns métodos usuais, no contexto da pré-determinação de vazões, relativos à estimação da cheia de projeto para estruturas hidráulicas:

- Método Direto
- > análise local ou regional de freqüência dos dados fluviométricos.
- Métodos Indiretos
- Fórmulas Empíricas;
- Método Racional;
- ➢ Hidrograma Unitário;
- Métodos hidrometeorológicos e simulação chuva-vazão.

As etapas metodológicas inseridas tanto na aplicação do método direto, quanto do método indireto, serão abordadas em itens posteriores. A Figura 3.9 apresenta a evolução histórica do uso dos métodos direto e indireto no Brasil, onde nota-se o predomínio da utilização do método direto até a década de 70.

Atualmente observa-se a predominância pela aplicação do método indireto, face aos crescentes avanços tecnológicos para a elaboração de rotinas computacionais de simulação hidrológica para a bacia hidrográfica.

De modo ideal, busca-se o cotejo econômico da implantação de um projeto *versus* o risco permissível imposto às populações a jusante da estrutura a ser executada. Nesse sentido, cabe ao engenheiro projetista avaliar estudos e experiências semelhantes ocorridas no passado para o estabelecimento da metodologia de estimação de cheia de projeto a ser adotada.

Figura 3.9 - Evolução no uso dos métodos direto e indireto no setor hidrelétrico do Brasil (Adaptado de ELETROBRÁS, 1987)

Assim, deve-se ter em mente a finalidade da estrutura hidráulica, o risco de falha dessa estrutura e as conseqüências advindas de seu colapso. Gray (1972) apresenta um quadro comparativo, ilustrado na Tabela 3.4, para o auxílio na tomada de decisão acerca da utilização entre as metodologias de estimação de cheias de projeto, tendo como referência a área de drenagem da bacia hidrográfica.

Área da Bacia (km²)) Métodos Usualmente Aplicados	
menor que 2,6	Método Racional	
menor que 260	Método Racional, Hidrograma Unitário, Métodos Estatísticos	
260 - 5.200	Hidrograma Unitário, Métodos Estatísticos	
maior que 2.600	Métodos Estatísticos, Simulação de Vazões	
$\overline{\mathbf{E}}_{\text{restant}} \left(\mathbf{C}_{\text{restant}} \left(1072 \right) \right)$		

Tabela 3.4 - Métodos de determinação da cheia de projeto

Fonte: Gray (1972)

Os itens a seguir apresentam as etapas correspondentes à aplicação do método direto e indireto, visando o dimensionamento de estruturas hidráulicas de condução ou controle de cheias por meio da estimação da cheia de projeto.

O método direto baseia-se na utilização de dados fluviométricos, registrados pela rede regional de monitoramento hidrométrico operada nas bacias hidrográficas em estudo, objetivando a estimação das descargas de projeto para o dimensionamento de obras hidráulicas.

Neste contexto, pode-se citar a análise local de freqüência de vazões, ou volumes, os quais sejam máximos ou mínimos de uma série hidrológica discretizada ao longo do tempo, por meio de uma distribuição de probabilidade. A análise local de freqüência é o método direto mais utilizado em hidrologia, sendo aplicado tanto para a estimação de quantis de vazões máximas, quanto à obtenção dos quantis de vazões mínimas, através do ajuste de distribuições de probabilidades sobre a série hidrológica de registros fluviométricos, atribuindo aos quantis de cheias uma probabilidade de igualdade ou superação.

A metodologia da análise de freqüência pode ser utilizada para a estimação de variáveis hidrológicas em geral. Entretanto, a presente dissertação considera somente as vazões de cheias, cujo tópico a seguir aborda apenas as questões particulares relativas a este tipo de variável.

3.3.1.1 <u>Análise de freqüência para estimação de quantis máximos</u>

Os processos hidrológicos, principalmente os que referem a eventos máximos, são enquadrados na categoria de fenômenos aleatórios, ou seja, não produzem sempre os mesmos resultados, dado que certas condições ou circunstâncias recorram, produzindo resultados diferentes entre si.

Isso se deve ao fato de que nem todos os fatores causais ou influentes no processo da formação das cheias, bem como suas dependências ao longo da escala tempo-espaço, são conhecidos e determinados com absoluta precisão.

Assim, as diferentes realizações de um evento estão sujeitas a variações aleatórias, denotadas por um grande número de possíveis combinações de diferentes processos influentes. Nesse contexto, a variável aleatória está associada a um processo dito estocástico, estando assim sujeita à abordagem estatística.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Naghettini e Pinto (2007) afirmam que o objetivo da análise de freqüência é o de relacionar a magnitude dos eventos com sua freqüência de ocorrência, por meio de uma distribuição de probabilidade. Tal metodologia é fundamentada em duas premissas, sendo a primeira baseada na homogeneidade dos dados hidrológicos, segundo a qual todos são amostrados de uma mesma população, enquanto a segunda afirma que os mesmos dados também são independentes, inexistindo a dependência serial entre os elementos que constituem a série.

Assim, a análise de freqüência consiste em fixar, para cada tipo de estrutura, um período de retorno para o valor de cheia, de acordo com a importância da estrutura e com uma avaliação de cunho qualitativo e quantitativo dos prejuízos advindos da igualdade ou superação dos valores estimados dos quantis máximos de vazões.

Ao longo dos anos observam-se diversas publicações e artigos científicos acerca dos aspectos gerais e particulares de utilização da análise de freqüência. Pode-se citar alguns autores, tais como Chow (1964), Haan (1977), Kite (1977), Rao e Hamed (2000), e Kidson (2005) que, em diferentes trabalhos, procuraram desenvolver e aprimorar as técnicas metodológicas relativas à análise de freqüência de variáveis hidrológicas. No Brasil, observam-se publicações gerais, porém não menos importantes, inseridas no campo da análise de freqüência, tal como a produzida por Naghettini e Pinto (2007).

Com efeito, perante a variedade de trabalhos e estudos envolvidos direta ou indiretamente com o método de estimação de variáveis hidrológicas por meio da análise de freqüência, esta continua sendo objeto de investigações por diversos autores, tal como constatam Potter (1987) e Bobée e Rasmussen (1995), uma vez que não existe um consenso entre os pesquisadores quanto aos diferentes métodos empregados e pela incerteza presente em sua aplicação, sendo que esta metodologia trabalha com a estimação de quantis relacionados a períodos de retorno superiores à extensão das séries históricas.

A análise de freqüência pode ser classificada em local ou regional, conforme seja a extensão espacial das informações envolvidas. Na análise de freqüência local, tem-se a definição dos quantis de igualdade ou superação de um determinado valor estimado, utilizando uma série de registros hidrométricos ou hidrometeorológicos observados em uma determinada estação, no caso uma estação fluviométrica.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Quando são agrupadas informações de diversas estações de monitoramento localizadas em pontos distintos de uma região geográfica, desde que essa região seja considerada homogênea, ou seja, apresente características semelhantes do ponto de vista hidrológico, climatológico e geomorfológico, configura-se a análise de freqüência regional.

As particularidades da análise de freqüência regional serão apresentadas no item 3.4 desta dissertação. De modo geral, pode-se afirmar que a análise de freqüência regional leva vantagem sobre a análise de freqüência local, uma vez que a primeira permite aumentar a confiabilidade dos quantis estimados para um ponto já monitorado, assim como para estimar quantis em localidades não instrumentadas, ou com uma ineficiente rede de monitoramento hidrométrico, dado que a escala de tempo é substituída pela escala de espaço, enquanto a segunda leva em conta apenas os dados fluviométricos disponíveis em uma única estação de monitoramento.

Para a aplicação da análise de freqüência, incluída na categoria de estimação de cheia de projeto por meio do método direto, são necessários os registros de dados hidrológicos, sendo estes, no contexto da presente dissertação, dados de descargas máximas anuais.

Assim, a aplicação metodológica da análise de freqüência encontra-se atrelada às séries hidrológicas, sendo estas de duração anual, ou de duração parcial. As séries de duração anual são aquelas formadas por um único valor para cada ano de observações, seja ele o ano hidrológico ou o ano civil, enquanto as séries de duração parcial consistem em observações independentes de magnitude superior a certo valor limiar de referência.

A Figura 3.10 exemplifica as séries de duração anual e parcial, entre os períodos hipotéticos de outubro de 1977 a setembro de 1979, com um valor de referência para máximos, denominada abordagem *peaks-over-threshold (POT)*, e valor mínimo de referência, associada à abordagem *pits-under-threshold (PUT)*.

A escolha da utilização de séries de duração anual ou duração parcial no emprego da análise de freqüências é subjetiva. Alguns autores, tais como Naghettini *et al.* (1996) defendem o uso de séries de duração parcial, enquanto Cox *et al.* (2002) demonstram que as séries de máximos anuais podem gerar quantis de variância relativamente menor.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 3.10 - Séries de máximos anuais e de duração parcial

Ainda, com relação às séries hidrológicas utilizadas para a aplicação da análise de freqüência, as mesmas devem ser representativas das variáveis hidrológicas em questão, não apresentando eventuais erros de medição dessas mesmas variáveis, além dos dados contidos serem homogêneos e independentes. A homogeneidade é garantida quando tem-se os dados amostrais extraídos de uma mesma população, enquanto a condição de independência implica na inexistência de dependência serial entre os elementos consecutivos que formam as séries.

De acordo com Naghettini e Pinto (2007), a análise de freqüência pode ser dividida em três modalidades: a análise de freqüência efetuada de modo empírico, baseada em gráficos de probabilidade; a análise de freqüência analítica, onde especifica-se um modelo distributivo capaz de descrever o comportamento probabilístico da variável analisada; e a análise de freqüência utilizando o fator de freqüência, conforme descrito por Chow (1964).

3.3.1.2 Análise de freqüência com gráficos de probabilidade

A análise de freqüência com gráficos de probabilidade é efetuada de modo empírico, onde grafam-se as observações devidamente ordenadas *versus* a freqüência empírica para essas mesmas observações, em um papel de probabilidade, conforme Figura 3.11, sendo o papel de Gumbel comumente utilizado para o procedimento de análise de eventos máximos.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 3.11 - Série de vazões máximas grafadas no papel de Gumbel

Os critérios para a definição de fórmulas de estimação de posição de plotagem são, de acordo com Gumbel (1958), os seguintes:

- a posição de plotagem deve ser adequada para que todas as observações possam ser grafadas;
- a posição de plotagem deve estar entre $i \frac{1}{n}$ e $\frac{i}{n}$, onde *i* representa a ordem de classificação de uma amostra de tamanho *n*;
- para as séries anuais, o tempo de retorno de um valor maior ou igual à maior observação, deve convergir para n, para os valores elevados de n;
- as observações devem ser separadas igualmente na escala de freqüências;
- a posição de plotagem deve ser de fácil aplicação e intuitiva.

Nesse sentido, diversas equações para a estimação da posição de plotagem podem ser observadas na literatura, sendo algumas delas citadas na Tabela 3.5.

Fórmula	Autor	Aplicação	
$q_i = \frac{i}{n+1}$		Probabilidades de	
	Weibull	excedência não	
		enviesada para todas as	
		distribuições	
$q_i = \frac{i - 0.44}{n + 0.12}$	Gringorten	Quantis de distribuição de Gumbel e Generalizada de Valores Extremos (GEV)	
$q_i = \frac{i - 0,375}{n + 0,25}$		Quantis não enviesados	
	Blom	para as distribuições	
		Normal e Log-Normal	
$q_i = \frac{i - 0.5}{n}$	Hazen	Quantis da distribuição	
	1 luzen	Gama de 3 parâmetros	
$q_i = \frac{i - 0.40}{n + 0.20}$		Quantis	
	Cunnane	aproximadamente não	
		enviesados para todas	
		as distribuições	

Tabela 3.5 - Fórmulas para a estimação da posição de plotagem, onde *i* é posição na
amostra ordenada

De acordo com Naghettini e Pinto (2007), a estimação do conjunto de posição de plotagem, ou probabilidade empírica, resulta na elaboração de um gráfico de probabilidades, de acordo com os seguintes procedimentos:

- se máximos, classificação dos dados em ordem decrescente, em caso de mínimos, classificação em ordem crescente;
- escolha de uma das fórmulas, apresentadas na Tabela 3.5, para a estimação da posição de plotagem;
- seleção do tipo de gráfico em papel de probabilidades adequado ao procedimento;
- plotagem das observações ordenadas versus as suas respectivas probabilidades empíricas.

Com efeito, a plotagem das observações ordenadas *versus* as suas respectivas probabilidades empíricas, em um papel de probabilidade, permite a análise visual da tendência linear da relação entre as magnitudes dos valores de uma determinada variável hidrológica, com

Fonte: Naghettini e Pinto (2007)

relação aos seus respectivos tempos de retorno, permitindo até mesmo a identificação de possíveis pontos amostrais atípicos, chamados de *outliers*.

Apesar de o procedimento descrito envolver certo grau de subjetividade na escolha do papel de probabilidades, ou na possível extrapolação dos quantis estimados de uma determinada variável hidrológica para diferentes períodos de retorno, a análise visual do ajuste das distribuições de probabilidade candidatas e os dados observados pode ser útil no sentido da escolha de um modelo distributivo para explicar o comportamento dessa mesma variável.

Também, a tendência linear dos pontos grafados em um papel de probabilidades pode indicar a homogeneidade da amostra, ou seja, de que esta foi extraída de uma mesma população.

3.3.1.3 Análise de freqüência analítica

A análise de freqüência analítica convencional de realizações de uma variável aleatória consiste em estimar os parâmetros populacionais de uma distribuição de probabilidades a partir da interpretação dos registros históricos de dados disponíveis e, por meio dessa amostra, estimar eventos associados a probabilidades de excedência.

Nesse sentido, Righetto (1998), denota por $x_1, x_2, ..., x_n$ os valores amostrais ordenados para uma variável aleatória X, de modo que $x_1 \le x_2 \le ... \le x_n$. Para cada tipo de processo hidrológico considerado, uma ou mais distribuições teóricas são selecionadas no intuito de se buscar aquela que melhor se adapte à distribuição de freqüência da amostra. A Figura 3.12 ilustra tal procedimento.

No contexto da análise de freqüência analítica, busca-se a estimação de parâmetros populacionais de uma função paramétrica de distribuição de probabilidades por meio da análise de uma amostra retirada dessa mesma população. As funções de distribuição de probabilidades são aquelas que descrevem o comportamento de uma variável aleatória X, seja ela contínua ou discreta.

As variáveis aleatórias contínuas são aquelas que podem assumir qualquer valor real em um dado intervalo, tais como as vazões máximas anuais registradas em uma estação fluviométrica, por exemplo, correspondendo a espaços amostrais infinitos e não-numeráveis.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 3.12 - Procedimento de inferência estatística (Fonte: Naghettini e Pinto, 2007)

O número de vezes que as vazões de um rio ultrapassam um limite de referência ao longo de uma certa unidade de escala temporal, podendo ocasionar em inundações em uma determinada localidade, constitui um exemplo de variável aleatória discreta, assumindo somente valores inteiros e correspondendo a espaços amostrais finitos ou infinitos numeráveis.

Algumas das distribuições de probabilidades utilizadas na descrição do comportamento das vazões máximas anuais, as quais enquadram-se na categoria de variáveis aleatórias contínuas, de uso corrente em hidrologia são, de acordo com Naghettini e Pinto (2007): Exponencial, Log-Normal, Valores Extremos tipo I (Gumbel), Generalizada de Valores Extremos (GEV),

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Pearson III e Log-Pearson III. No Anexo 1 apresenta-se o detalhamento acerca das distribuições citadas, suas propriedades e os parâmetros que as descrevem.

Para Cândido (2003), a metodologia de análise de freqüência de eventos máximos anuais pode ser aplicada de acordo com as seguintes etapas:

- verificação dos dados amostrais;
- escolha da distribuição de probabilidades;
- estimação dos parâmetros das distribuições;
- identificação e tratamento dos pontos atípicos, ou *outliers*.
- a) Verificação dos dados amostrais

Para a aplicação da análise de freqüência, é necessário que as séries amostrais sejam independentes, estacionárias e representativas da população, além de homogêneas, tal como menção anterior. A independência é caracterizada pela ausência de correlação entre os valores da série, ou seja, a inexistência de correlação entre o registro de um determinado ano, com o registro anterior ou posterior a este ano.

A estacionariedade da série indica que suas características estatísticas não são variáveis ao longo do tempo. Assim, caso ocorra a realocação de uma estação fluviométrica, a construção de uma barragem a montante do posto de monitoramento hidrométrico, a urbanização ou desmatamento na área da bacia, ou qualquer outro fator causal que altere o regime de vazões de um curso de água, a série hidrológica registrada por esta estação, nesse caso, irá perder sua configuração original de valores amostrais.

Isto implica na alteração das características estatísticas presentes nessa série, ou seja, a série não se desenvolve ao longo do tempo aleatoriamente ao redor de uma média constante e, finalmente, perde as características de estacionariedade. A estimação de parâmetros e quantis com tendências ou variações temporais têm sido objeto de investigações relativamente recentes [eg: Cox *et al.* (2002) e Clarke (2002)].

O tamanho da amostra é um dos fatores que podem influenciar na representatividade de uma série. Assim, séries amostrais curtas podem enviesar a estimativa dos quantis de vazão, uma vez que uma série com o mesmo número de registros em um período seco fornecerá valores certamente discrepantes aos registrados no período chuvoso, na mesma escala de tempo.

Dessa maneira, uma série hidrológica não representativa não será capaz de caracterizar a variabilidade do processo natural de formação ou ocorrência de um determinado evento aleatório em análise.

Nesse contexto, tem-se a necessidade da definição de qual seria o tamanho adequado de dados amostrais presentes em uma série hidrológica para que a mesma seja considerada representativa de um universo de realizações e confiável do ponto de vista das estimativas que produz.

Naghettini e Pinto (2007) citam o trabalho de Benson (1960), que elaborou um estudo tomando por base uma série sintética de 1.000 anos de vazões máximas, concluindo que, para estimar uma cheia de período de retorno de 50 anos são necessárias amostras de, no mínimo, 39 anos, para que as estimativas situem-se na faixa de 24% do valor correto, em 95% dos casos. Ainda, de acordo com o referido estudo, é necessário um período de 15 anos de registros para que se obtenha uma confiança de acerto de 80%.

Outro requisito para a aplicação da análise de freqüência é de que as séries hidrológicas sejam homogêneas. A homogeneidade é assegurada quando todos os dados de uma amostra são retirados de uma mesma população. Todavia, essa condição nem sempre é verificada.

Em séries de vazões máximas anuais, por exemplo, alguns dos valores registrados podem ser advindos de precipitações convectivas, enquanto outros podem ser causados por eventos climáticos locais ou regionais. Assim, têm-se duas populações de descargas de cheias, porém diferenciadas pelo seu mecanismo de formação, podendo resultar em heterogeneidade da série.

Existem alguns testes estatísticos para indicar a homogeneidade, a independência e a estacionariedade das séries de registros hidrológicos disponíveis. Tais ferramentas estatísticas são baseadas em testes paramétricos e não-paramétricos. Nos testes paramétricos são

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

comparados os parâmetros da população, tais como média e variância, baseando na suposição de uma distribuição específica para os dados amostrais, enquanto os testes não-paramétricos não necessitam da hipótese subjacente de uma distribuição específica para descrever uma dada amostra. Segundo Naghettini e Pinto (2007), as premissas de independência, homogeneidade e estacionariedade de uma série de registros hidrológicos podem ser testadas primordialmente por meio de testes não-paramétricos.

Assim, de modo a se testar a homogeneidade, a independência e a estacionariedade de séries de registros hidrológicos, entre as quais se enquadram as séries de vazões máximas anuais, pode-se citar alguns testes não-paramétricos usuais em hidrologia A homogeneidade da série pode ser verificada por meio da aplicação do teste de Mann-Whitney. O teste de Spearman é usado com freqüência para testar a estacionariedade de séries de máximos anuais, enquanto o teste de Wald-Wolfowitz tem utilidade na indicação da independência dos valores de uma série.

O leitor deve remeter-se a Naghettini e Pinto (2007) para detalhes sobre as aplicações desses testes na análise de freqüência de variáveis hidrológicas.

b) Escolha da distribuição de probabilidades

Na análise de freqüência de vazões máximas anuais, não existe um critério objetivo ou consensual para a escolha de uma distribuição de probabilidades mais adequada à amostra em questão. De acordo com Cândido (2003), cabe ao analista a decisão em escolher uma determinada distribuição de probabilidades, afirmando a inexistência de leis dedutivas que justifiquem o emprego de uma distribuição, ou de uma família de distribuições, na aplicação da análise de freqüência de máximos anuais.

Um procedimento útil na escolha da distribuição a ser adotada baseia-se na análise visual do ajuste entre as distribuições candidatas e os dados observados, tal como discutido no item 3.3.1.2 deste trabalho. Nesse sentido, seleciona-se um papel de probabilidades e calculam-se os quantis de interesse por meio de uma determinada distribuição, observando se esses valores grafados no papel de probabilidades formam uma linha reta. A tendência linear dos pontos indica o ajuste da amostra àquela distribuição correspondente àquele papel de probabilidades em particular.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Ainda, como critério de escolha de um modelo distributivo adequado à amostra em questão, pode-se citar a comparação entre o coeficiente de assimetria amostral e o valor da assimetria teórico esperado para uma determinada distribuição de probabilidades. A utilização desse critério fica condicionada à precisão do estimador do coeficiente de assimetria, apresentando valores crescentes com o tamanho da amostra, consistindo apenas em um indicador de ajuste.

Recentemente, diagramas baseados em estatísticas-L, tais como a curtose-L *versus* a assimetria-L, têm sido utilizados no auxílio da seleção de uma família de modelos distributivos candidatos ao ajuste dos dados amostrais, entre as quais: Log-Normal, Pearson, Log-Pearson, Generalizada de Valores Extremos (GEV) e Generalizada de Pareto.

Desenvolvido por Hosking e Wallis (1997), o método dos momentos-L, compreendendo a aplicação das estatísticas-L, será apresentado oportunamente nesta dissertação. Vale ressaltar que a aplicabilidade desses diagramas está condicionada à consideração de uma região homogênea, na qual exista um conjunto de estações de monitoramento hidrométrico.

Existem alguns testes estatísticos de hipóteses úteis para a indicação da condição de aderência de uma distribuição de probabilidades, ou seja, se este modelo distributivo é capaz de oferecer um bom ajuste aos dados amostrais disponíveis. Desta maneira, pode-se citar alguns testes usuais em hidrologia, sendo esses: o teste do Qui-Quadrado, o teste de Kolmogorov-Smirnov, e o teste de Filliben, sendo que este último apresenta algumas vantagens em relação aos outros, segundo Vogel e McMartin (1991).

De acordo com Naghettini e Pinto (2007), os testes de hipótese de aderência, no contexto da análise de freqüência, apresentam limitações críticas, uma vez que as amostras são de tamanho relativamente pequeno. O leitor deve remeter-se a Naghettini e Pinto (2007) para maiores detalhes sobre os testes de aderência.

c) Estimação dos parâmetros das distribuições

A inferência estatística consiste no ato de se produzir as estimativas dos parâmetros populacionais, a partir de uma amostra de dados. Uma função de distribuição de probabilidades é definida por um conjunto de parâmetros, os quais descrevem essa distribuição integralmente.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Após a definição das distribuições de probabilidades candidatas ao ajuste dos dados amostrais, o próximo passo consiste na estimação dos parâmetros dessas distribuições no sentido de se determinar os valores das vazões máximas, ou quantis, associados a certos períodos de retorno de interesse.

Dentre os métodos de estimação dos parâmetros de distribuições de probabilidades, pode-se citar o método dos momentos (MOM), o método de máxima verossimilhança (MVS), e o método dos momentos-L (MML). Outros métodos de estimação de parâmetros podem ser observados na literatura, porém são menos utilizados, tais como o método da máxima entropia, o método dos momentos generalizados, entre outros (Rao e Hamed, 2000).

• Método dos momentos (MOM)

O método dos momentos é o mais simplificado para a estimação de parâmetros da distribuição de probabilidades em questão, consistindo basicamente em se igualar os momentos populacionais aos momentos amostrais. Assim, sejam $x_1, x_2, ..., x_n$, os valores observados constituintes de uma amostra aleatória simples retirada de uma população de variável aleatória distribuída conforme a função densidade $f_x = y; \theta_1, \theta_2, ..., \theta_k$, de k parâmetros, com momentos populacionais μ_i . Se m_i representam os momentos amostrais, o sistema de equações do método dos momentos baseia-se em:

$$\mu_i = \theta_1, \theta_2, ..., \theta_k = m_i$$
. $i = 1, 2, ..., k$ (3.5)

As soluções $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_k$ do sistema formado pelas k equações 3.5, fornecem as estimativas dos parâmetros da distribuição.

• Método da máxima verossimilhança (MVS)

De acordo com Bussab e Morettin (2004), o princípio da verossimilhança consiste em se maximizar uma função dos parâmetros da distribuição. Nesse sentido, o equacionamento para a condição de máximo resulta em um sistema de igual número de equações e incógnitas, para as quais as respectivas soluções produzem os estimadores de máxima verossimilhança.

Formalmente, seja uma amostra aleatória simples $x_1, x_2, ..., x_n$, extraída de uma população de uma variável aleatória distribuída conforme a densidade de probabilidades $f_x = y; \theta_1, \theta_2, ..., \theta_k$. Sendo os dados amostrais considerados independentes, a distribuição de probabilidades conjunta desses elementos é dada por:

$$L(\theta_1, \theta_2, ..., \theta_k) = \prod_{i=1}^N f_X(y; \theta_1, \theta_2, ..., \theta_k)$$
(3.6)

A equação 3.6 é conhecida como a função de verossimilhança, a qual maximizada consiste no método da máxima verossimilhança. A busca para se obter a condição de máximo da equação 3.6 implica no seguinte sistema de k equações e k incógnitas:

$$\frac{\partial L(\theta_1, \theta_2, ..., \theta_k)}{\partial \theta_i} = 0; \qquad i = 1, 2, ..., k$$
(3.7)

As soluções do sistema 3.7, formado pelas k equações, fornecem as estimativas dos parâmetros de distribuição. Geralmente emprega-se a função logaritmo de verossimilhança, $\ln[L(\theta)]$, em lugar da função de verossimilhança. Esse procedimento é adotado para facilitar a construção do sistema formado pela equação 3.7, uma vez que a função logarítmica é contínua, monótona e crescente, e a maximização do logaritmo dessa função é o mesmo que maximizar a função.

• Método dos momentos-L (MML)

O método dos momentos-L para a estimação de parâmetros de distribuições de probabilidade assemelha-se ao método dos momentos convencionais, consistindo em igualar os primeiros k momentos-L amostrais aos seus respectivos correspondentes momentos populacionais, por meio da aplicação das estatísticas-L.

De acordo com Vogel e Fennessey (1993), o método dos momentos-L apresenta, como maior vantagem, estimadores mais robustos, enquanto Davis e Naghettini (2001) citam um crescimento significativo do número de aplicações em análise de freqüência de variáveis hidrológicas devido às vantagens potenciais inseridas pela aplicação do método de estimação de parâmetros utilizando os momentos-L.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Para o leitor interessado em um maior detalhamento acerca dos métodos para a estimação de parâmetros de distribuições de probabilidade, bem como sua formulação matemática e seus resultados de estimativa para as principais distribuições usuais em hidrologia, recomenda-se a leitura de Clarke (1994), Rao e Hamed (2000) e Naghettini e Pinto (2007).

d) Identificação e tratamento dos pontos atípicos, ou *outliers*

Pontos atípicos registrados em uma série de registros hidrológicos, ou *outliers*, são definidos por Hawkins (1980), como uma observação que se desvia significativamente, para valores acima ou abaixo, em relação à tendência central dos dados observados, indicando ter sido causada por fenômenos distintos daqueles que geraram a série amostral de dados. A presença desses pontos atípicos na série de dados de vazões máximas pode estar relacionada com erros na coleta de dados e registros, ou em decorrência de eventos raros de ocorrência de vazões de cheias excepcionais na região.

Uma técnica de uso freqüente em hidrologia, no que tange a identificação de pontos atípicos em séries amostrais, refere-se à estatística de teste modificada de Grubbs e Beck (1972), tal como recomendado pelo *United States Water Resources Council (USWRC*, 1976).

Vencidas as etapas de verificação dos dados amostrais, escolha da distribuição de probabilidades, estimação dos parâmetros das distribuições e identificação dos pontos atípicos, pode-se utilizar a análise de freqüência de dados hidrológicos de vazões para a estimação de quantis de vazões máximas para diferentes períodos de retorno.

3.3.1.4 Análise de freqüência utilizando o fator de freqüência

Para a estimação de quantis de variáveis hidrológicas, Chow (1964) apresenta uma equação geral baseada em um termo denominado de fator de freqüência, onde a estimativa do quantil x_T de uma determinada variável hidrológica é dada por:

$$x_T = \hat{\mu}_x + k_T \hat{\sigma}_x$$
(3.8)

O fator de freqüência k_T , ainda segundo Chow (1964), pode ser definido como uma função do tempo de retorno e da distribuição de probabilidades empregada na análise. Os termos $\hat{\mu}_x$ e σ_x representam a média e o desvio-padrão amostrais, respectivamente. Para maiores detalhes acerca da utilização da análise de freqüência utilizando o fator de freqüência para diferentes distribuições de uso corrente em hidrologia, recomenda-se a leitura de Naghettini e Pinto (2007).

3.3.1.5 Comentários sobre a utilização do método direto

Algumas dificuldades são observadas com relação à utilização da análise de freqüência para a estimação de eventos extremos. Bayazit e Önoz (2004) afirmam que a análise de freqüência pressupõe a existência de uma amostra de tamanho suficiente de enchentes observadas na bacia, e também a fixação de uma função paramétrica de distribuição de probabilidades, cuja escolha envolve incertezas, sendo que a estimação das vazões máximas pode variar consideravelmente com a distribuição a ser adotada.

A análise de freqüência de eventos máximos deve ser aplicada em bacias hidrográficas que disponham de registros de dados fluviométricos, além da bacia em estudo não ter sofrido alterações em suas características fisiográficas e geomorfológicas, sob pena das séries hidrológicas observadas perderem as características de homogeneidade, independência e estacionariedade.

Outra fonte de incertezas acerca da utilização da análise de freqüência é a estimação dos parâmetros das distribuições de probabilidades, os quais são estimados a partir de séries hidrológicas de tamanho reduzido, podendo não representar os verdadeiros parâmetros populacionais.

3.3.2 Método indireto

Os métodos indiretos de estimação de cheias de projeto podem ser utilizados em localidades com uma rede de monitoramento fluviométrico esparsa ou deficitária, não prescindindo das observações fluviométricas disponíveis para a bacia em estudo. Alguns dos métodos indiretos têm como princípio a estimação das vazões de projeto a partir dos dados de chuva, que são menos escassos em relação aos dados de vazão.

Alguns dos métodos indiretos são baseados em modelos de transformação de chuva em vazão, para os quais, a partir das características morfológicas e fisiográficas da área de estudo, ou de

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

um conjunto de parâmetro calibráveis, estima-se a parcela da precipitação que se torna efetiva em uma bacia hidrográfica, gerando o escoamento superficial, com a finalidade de se estimar a cheia de projeto.

Inseridas na categoria dos métodos indiretos estão diversas metodologias para a estimação de qual a parcela da precipitação que irá gerar o escoamento superficial em uma determinada localidade, dentre as quais pode-se citar: as fórmulas empíricas, o método racional, o método do hidrograma unitário, e os métodos hidrometeorológicos, sendo cada um desses abordados nos itens subseqüentes.

3.3.2.1 Fórmulas empíricas

As fórmulas empíricas consistem em um meio de relacionar as vazões observadas em uma localidade por meio de expressões matemáticas que incorporam as características físicas da bacia em sua formulação. Assim, levando-se em conta apenas algumas características físicas das bacias hidrográficas, que podem influir no processo de formação de cheias, são elaboradas essas fórmulas matemáticas.

Na aplicação dessas equações, os parâmetros e coeficientes inseridos em seu tratamento matemático são obtidos por meio empírico, não se adequando, necessariamente, a uma região distinta daquela para a qual a equação foi elaborada. A Tabela 3.6 apresenta algumas fórmulas empíricas utilizadas em hidrologia para a estimação da vazão máxima em uma bacia, tomando por base a área de drenagem dessa unidade.

De acordo com Kelman (1987), as fórmulas empíricas não são empregadas com grande freqüência. A possível justificativa para tal afirmação seria o simplismo inerente a essas fórmulas, obtidas a partir de absoluto empirismo.

Entretanto, as fórmulas empíricas podem servir como uma ferramenta para o estabelecimento de um valor de referência, ou como comparação com os quantis de vazões de cheias estimados por meio de outros tratamentos metodológicos. Em algumas regiões, através de observações sistemáticas dos registros de vazões ocorridas na bacia, pode ser elaborada uma curva empírica envoltória de cheias. Essas curvas servem como um sumário gráfico das máximas vazões ocorridas em uma determinada localidade, podendo servir como uma estimativa preliminar das vazões de projeto.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

O método das curvas envoltórias de cheias será melhor discutido e analisado no item 3.5, que apresenta os fundamentos e as aplicações dessa metodologia, uma vez que o presente trabalho trata de um método de estimação de vazões máximas por meio da interpretação probabilística das curvas envoltórias de cheias, tal como descrito por Castellarin *et al.* (2005) e Castellarin (2007).

Equação	Autor
$Q = 0,013 \times K \times A^{0,8} (1 + \alpha \log T) \times (1 + 2,66 \times A^{-0,3})$	Fuller
$Q = 4.600 \times A^{-0.048 \times A^{-0.048}}$	Creager
$Q = 4.021,5 \times A^{-0.5}T^{0.25}$	Horton
$Q = 200 \times A^{\frac{5}{6}}$	Fanning

Tabela 3.6 - Fórmulas empíricas	para a ob	otenção de	e vazões	de cheias	(Adaptado	de Gra	y,
		1972)					

onde Q = vazão máxima (m³/s), A = área de drenagem da bacia (km²), T = tempo de retorno (anos), K = coeficiente das características da bacia e α =coeficiente (0,8 para rios do leste dos EUA)

3.3.2.2 <u>Método racional</u>

Segundo ELETROBRÁS (1987), o método Racional foi proposto pelo engenheiro irlandês Mulvaney, em 1851, sendo destacado pela simplicidade de formulação e aplicação, amplamente utilizado para a estimação de vazões de projeto em bacias hidrográficas que tenham até 5 km² de área de drenagem. O método racional parte da hipótese que uma precipitação uniforme sobre uma certa bacia, de duração igual ao seu respectivo tempo de concentração e de intensidade média constante, irá produzir, ao fim da duração da chuva, uma vazão de pico cuja magnitude é diretamente proporcional à intensidade média de chuva e à área da bacia.

Assim, a chuva que ocorre na bacia hidrográfica é transferida em forma de escoamento superficial até a seção exutória dessa unidade, ou seja, este método transforma a chuva de projeto, cuja intensidade está associada a um determinado período de retorno, em vazão. Esse procedimento pode ser sumariado pela seguinte equação:

$$Q_p = \frac{C \cdot i \cdot A}{3.6} \tag{3.9}$$

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

43

onde Q_p denota a vazão de pico (m³/s), *C* representa o coeficiente de escoamento superficial, ou coeficiente de *runoff*, que é variável de acordo com o tipo de solo, *i* corresponde à intensidade da chuva de projeto (mm/h), de duração igual ao tempo de concentração da bacia, associada a um certo período de retorno, e *A* representa a área de drenagem da bacia (km²).

O coeficiente de escoamento superficial, ou coeficiente de *runoff*, pode ser definido como a fração da intensidade de chuva bruta que irá produzir o deflúvio superficial máximo por área elementar, estando relacionado com a tipologia do uso e da ocupação do solo da bacia hidrográfica. A Tabela 3.7 apresenta valores típicos do coeficiente de escoamento superficial para diferentes tipos de cobertura de solo.

As críticas em relação ao método Racional residem nas hipóteses de que o coeficiente de escoamento superficial não é variável, e também que a precipitação é considerada de intensidade constante e distribuída uniformemente sobre a bacia hidrográfica.

Cobertura do solo	Coeficiente de Escoamento
superfícies impermeáveis	0,90
áreas urbanas com vias pavimentadas	0,85
terreno estéril ondulado	0,70
terreno estéril plano	0,60
Pastagem	0,50
áreas urbanas com vias não-pavimentadas	0,40
Matas	0,35
Pomares	0,30
áreas cultivadas	0,25
Várzeas	0,20

 Tabela 3.7 - Valores característicos do coeficiente de escoamento superficial para diferentes tipos de cobertura de solo (Adaptado de Watt *et al.* 1988)

Dessa forma, o método Racional é recomendado para dimensionamento de estruturas hidráulicas de menor porte, tais como sistemas de micro drenagem urbana, inseridos em bacias com área de drenagem inferiores a 5 km², embora a aplicação deste método, de acordo com a literatura, possa ser estendido para bacias compreendidas por maiores áreas de drenagem, conforme apresentado na Tabela 3.4. Para o cálculo da vazão de projeto de estruturas hidráulicas de maior complexidade, tais como sistemas de macro-drenagem urbana; ou bacias com uso e ocupação do solo diversificada, e com maiores superfícies de drenagem, desaconselha-se o emprego do método Racional.

3.3.2.3 Método do hidrograma unitário

O modelo do hidrograma unitário (HU) foi proposto por Sherman (1932), definido como um hidrograma resultante de uma precipitação efetiva unitária, uniformemente distribuída na bacia e com intensidade constante na escala temporal, tendo uma duração característica τ . A Figura 3.13 apresenta a representação esquemática do modelo do hidrograma unitário.

Figura 3.13 - Representação do modelo do hidrograma unitário

A teoria do hidrograma unitário baseia-se na hipótese de que se as características físicas da bacia não se alteram, eventos de precipitações semelhantes irão produzir hidrogramas semelhantes.

Assim, conhecido o hidrograma unitário da bacia, pode-se calcular as ordenadas do escoamento superficial correspondentes a qualquer tipo de chuva de intensidade uniforme e discretizada ao longo do tempo em durações unitárias. As informações obtidas no emprego do método do hidrograma unitário podem ser utilizadas na determinação do hidrograma de projeto para o dimensionamento de obras hidráulicas, tais como galerias de águas pluviais, bueiros rodoviários, estrutura de proteção contra cheias, entre outras.

A obtenção do hidrograma unitário é fundada em três princípios, sendo estes:

 para chuvas efetivas de intensidade constante e mesma duração, os tempos de escoamento superficial, ou tempo de base do hidrograma, são iguais. A Figura 3.14 ilustra esse princípio.

Figura 3.14 - Princípio da constância do tempo de base

 chuvas efetivas de mesma duração, porém distintas em volume de escoamento superficial, resultam em hidrogramas cujas ordenadas são proporcionais aos volumes escoados, conforme mostra a Figura 3.15.

Figura 3.15 - Princípio da proporcionalidade das vazões

 a duração do escoamento superficial de uma determinada chuva efetiva não é dependente das precipitações anteriores. O hidrograma total resultante de duas ou mais chuvas efetivas é obtido superpondo-se as ordenadas de cada um dos hidrogramas em tempos correspondentes, assim como ilustra a Figura 3.16.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Dos três princípios apresentados, os mais importantes são o de proporcionalidade e o de superposição. O primeiro refere que os hidrogramas resultantes de chuvas com a mesma duração, porém diferentes alturas terão o mesmo tempo de base e ordenadas proporcionais às alturas de precipitação correspondentes. O segundo diz que o hidrograma resultante de uma seqüência de eventos de precipitação terá as respectivas ordenadas iguais à soma das ordenadas dos hidrogramas correspondentes a cada um dos períodos. De maneira simplificada, o modelo do hidrograma unitário pode ser aplicado segundo as seguintes etapas:

- escolhe-se uma ou várias precipitações isoladas de duração unitária e os hidrogramas correspondentes;
- efetua-se a separação do volume de escoamento superficial do escoamento de base no hidrograma. Para tal, existem vários métodos, desde a consideração constante da vazão de base no escoamento, até sua separação por meio do uso de escala logarítmica, onde podese observar as inflexões do escoamento superficial e de base;
- calcula-se o volume de escoamento superficial V_{es} (m³);
- calcula-se o volume da precipitação total V_p (m³) sobre a bacia, ou seja:

$$V_{p} = P(mm) \times 10^{-3} \times A(km^{2}) \times 10^{-6}$$
(3.10)

 calcula-se o coeficiente médio de escoamento superficial C, dado pela razão entre o volume de escoamento superficial e o volume de precipitação total;

$$C = \frac{V_{es}}{V_p} \tag{3.11}$$

- calcula-se a chuva efetiva, multiplicando-se o coeficiente de escoamento superficial pelas ordenadas da precipitação de projeto;
- calcula-se as ordenadas Y_i do hidrograma unitário aplicando-se a equação 3.12.

$$Y_{i}^{'} = \frac{Y_{i}}{P_{ef}}$$
 (m³/s/mm) (3.12)

onde P_{ef} = chuva efetiva

47

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

As principais limitações do uso do método do hidrograma unitário estão relacionadas ao fato de que as precipitações devem ser consideradas homogêneas e uniformes sobre a área da bacia e as características físicas do ponto de vista do escoamento devem ser as mesmas. Aconselha-se a aplicação dessa metodologia para bacias com até 5.000 km² de superfície de drenagem.

O método do hidrograma unitário pode ser estendido para bacias hidrográficas desprovidas de monitoramento fluviométrico. Nesse sentido, foram desenvolvidos os hidrogramas unitários sintéticos, dentre os quais pode-se citar: o hidrograma unitário de Snyder, o hidrograma unitário do *Soil Conservation Service (SCS)*, e o hidrograma unitário de Gray, dentre outros.

3.3.2.4 Modelos chuva-vazão

O principal objetivo da utilização de modelos chuva-vazão consiste em simular as séries de vazões ao longo do tempo e do espaço usando dados observados ou eventos hipotéticos de precipitação. Assim, a partir das séries de vazões obtidas em função dos registros pluviométricos ou de eventos raros hipotéticos, pode-se estimar a cheia de projeto. Nesse sentido, os modelos chuva-vazão devem incorporar algum nível de descrição da distribuição espacial da precipitação, modelar, reproduzir e descrever as perdas relativas às abstrações hidrológicas, ou seja, perdas devido à intercepção, evaporação e depressões no solo.

O modelo também deve permitir a reprodução e descrição do fluxo de água pelo solo, a infiltração, percolação e contribuição às reservas de água subterrâneas, bem como o escoamento superficial, sub-superficial, e em canais. Assim, os modelos hidrológicos do tipo chuva-vazão procuram simular o ciclo hidrológico, onde dada a precipitação sobre a bacia hidrográfica, o modelo simula a vazão na seção exutória correspondente. A Figura 3.17 apresenta o fluxograma dos processos a serem simulados por um modelo chuva-vazão.

De acordo com Tucci (1998), a aplicação de modelos hidrológicos chuva-vazão envolve a escolha do modelo levando-se em conta o objetivo do projeto, a disponibilidade de dados e a familiaridade com o modelo escolhido, a seleção e a análise dos dados necessários à aplicação do modelo, o ajuste e verificação dos parâmetros do modelo, a definição de cenários de aplicação e a análise das incertezas envolvidas nos resultados obtidos.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Existem diversos modelos de simulação chuva-vazão de uso corrente em hidrologia, dentre os quais pode-se citar os modelos SMAP (*Soil Moisture Accounting Procedure*), SWM-IV (*Stanford Watershed Model IV*), entre tantos outros, procurando representar com grau de detalhamento e complexidade variáveis os processos físicos envolvidos no ciclo hidrológico.

Figura 3.17 - Fluxograma dos modelos hidrológicos (Fonte: Tucci, 1998)

Segundo ELETROBRÁS (1987), dependendo do modelo adotado e das séries de precipitações utilizadas como dados de entrada, os resultados obtidos por meio da aplicação dessa metodologia devem ser confrontados aos obtidos pela utilização de outras técnicas para a determinação das vazões de projeto. O leitor interessado em maiores detalhes referentes à aplicação da modelagem hidrológica deve remeter-se à leitura de Singh e Woolhiser (2002). Neste trabalho, os autores apresentam um estudo onde descrevem uma ampla gama de modelos chuva-vazão, fornecendo uma perspectiva histórica do desenvolvimento e aplicação desse tipo de modelo.

3.3.2.5 Métodos hidrometeorológicos

Para estruturas hidráulicas de grande porte, tal como o sistema de vertimento de grandes barragens, cuja falha pode acarretar diversos prejuízos financeiros e perdas de vidas humanas, os critérios estabelecidos em projeto conduzem à adoção de condições críticas de vazões.

Assim, dentro de limites tecnicamente aceitáveis, a estrutura apresenta probabilidades mínimas de colapso. Dessa maneira, os métodos hidrometeorológicos incorporam modelos matemáticos de simulação hidrológica para calcular o hidrograma resultante de um dado evento de precipitação, com duração e distribuição temporal e espacial críticas para uma determinada área ou bacia hidrográfica, a qual denomina-se Precipitação Máxima Provável (PMP).

De acordo com Organização Meteorológica Mundial (WMO, 1973), a PMP é definida como a maior altura de chuva, para uma dada duração, cuja ocorrência sobre certa área, em certa região geográfica, em uma determinada época do ano, é meteorologicamente possível. Assim tem-se o conceito da Enchente Máxima Provável (EMP), sendo a cheia resultante de um evento de Precipitação Máxima Provável que se abate sobre a área da bacia hidrográfica, esta antecedida por condições de armazenamento de umidade do solo próximo à saturação.

Caso exista um limite superior para a formação dos eventos de cheias, e caso a PMP possa ser determinada com precisão, a probabilidade de ocorrência de uma precipitação superior é obviamente nula. Entretanto, de acordo com Kelman (1987), existe certa subjetividade na estimação da PMP, uma vez que a maximização da precipitação reside na maximização das condições dinâmicas climáticas relacionadas a tormentas excepcionais, onde não raramente, pode-se obter valores de PMP distintos a partir da análise de um mesmo conjunto de dados. Nesse sentido pode-se citar o trabalho de Wallis (1980), onde o autor reporta que a PMP calculada para diversas localidades foi posteriormente ultrapassada por precipitações reais.

Resumidamente, a abordagem da PMP considera que o total precipitado tende a crescer na medida em que se tem o aumento do teor de umidade presente no fluxo de ar que alimenta as tempestades. Admite-se que a coincidência entre a máxima precipitação e a máxima umidade não tenha ocorrido devido aos demais fatores que influenciam no fenômeno, não impedindo, entretanto, que tal coincidência venha a ocorrer no futuro.

Assim, as etapas de cálculo da PMP baseiam-se em: seleção das maiores chuvas intensas observadas na região de estudo, obtenção da umidade representativa e máxima provável de cada evento observado e, cálculo dos fatores de maximização da umidade e estimação das chuvas maximizadas.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Após a obtenção da PMP, a mesma é convertida em EMP, por meio de um modelo chuvavazão. Vale salientar que os parâmetros desses modelos devem ser calibrados para condições extremas de produção de vazões na bacia, de forma a refletir a coincidência entre a maior chuva possível e as condições mais favoráveis de uso e ocupação do solo para a produção de vazão.

3.3.2.6 Comentários sobre a utilização do método indireto

Os métodos indiretos de estimação de cheias de projeto podem ser utilizados em localidades com uma rede de monitoramento fluviométrico esparsa ou deficitária. Alguns dos métodos indiretos têm como princípio a estimativa das vazões de projeto a partir dos dados de chuva, que são menos escassos em relação aos dados de vazão. Entretanto, podem ocorrer erros de medição envolvendo variáveis intrinsecamente relacionadas à aplicação do método indireto, tais como precipitação, evaporação, vazões, ponto de orvalho, entre outras.

A aplicação de um modelo hidrológico destinado ao estudo de bacias hidrográficas tem como requisito a calibração desse modelo, isto é, da determinação dos valores dos seus parâmetros. Todavia, a calibração dos parâmetros do modelo é efetuada com base em registros históricos, os quais podem não reproduzir, com absoluta precisão, as condições extremas associadas, por exemplo, à EMP.

A impossibilidade de se associar uma probabilidade de igualdade ou superação à PMP e, conseqüentemente à EMP, é outro aspecto importante a ser mencionado. Como exemplo, pode-se citar a publicação *Feasibility of Assigning a Probability to the Probable Maximum Flood*, referente ao *Hydrology Subcommittee of the Interagency Advisor Committee on Water Data* (IACWD, 1986), que trata exclusivamente da discussão da oportunidade de fixação de um tempo de retorno específico aos eventos de PMP e EMP.

3.4 Regionalização Hidrológica

Vogel (2005) afirma que uma das questões fundamentais à hidrologia é a transferência de dados hidrológicos para regiões desprovidas de monitoramento, reforçando o conceito da regionalização hidrológica. Apesar de existirem diversas modalidades de regionalização de dados hidrológicos, a metodologia descrita por Castellarin *et al.* (2005) e Castellarin (2007) para a atribuição de probabilidades à curva envoltória de cheias, conforme será visto

ulteriormente, tem como hipótese a aplicação da regionalização conforme o *index-flood*, ou cheia-índice, tal como introduzido por Dalrymple (1960), a qual será abordada nos sub-itens que se seguem.

3.4.1 Fundamentos e utilidade em hidrologia

A regionalização hidrológica consiste na transferência de dados, ou parâmetros hidrológicos, de uma determinada localidade para outra região desprovida de monitoramento, desde que esta região seja considerada homogênea. Naghettini e Pinto (2007) descrevem as regiões homogêneas como aquelas em que existam evidências suficientes de que as diferentes amostras de um grupo possuam a mesma distribuição de freqüências.

Em decorrência, afirma-se que tais localidades apresentam características climáticas, geomorfológicas e hidrometeorológicas semelhantes. Ainda, de acordo com os mesmos autores, na análise regional de freqüências substitui-se a escala de tempo pela de espaço.

Desta maneira procura-se compensar a insuficiente caracterização temporal do comportamento dos eventos extremos por uma melhor caracterização espacial da variável hidrológica em questão. Segundo Pires (1994), uma das razões para se optar pela regionalização consiste no aumento considerável no número de informações, que passa a ter caráter regional, possibilitando uma redução do erro amostral.

Lettenmaier e Potter (1985) afirmam que o uso da regionalização pode permitir a redução das incertezas relativas às estimativas de quantis para uma determinada região, quando comparadas àquelas obtidas por meio da análise local de freqüência.

Assim, a regionalização hidrológica busca a análise regional de freqüência de um conjunto de informações hidrológicas, obtidas para diferentes localidades, tendo por objetivo compensar as amostras individuais de tamanho relativamente curto, dentro do contexto da proposição pelo Conselho Nacional de Pesquisas dos Estados Unidos (NRC, 1988) da substituição da escala de tempo pela escala de espaço.

De acordo com Tucci (1993), os métodos de regionalização hidrológica podem ser classificados em três categorias: métodos de regionalização dos parâmetros da distribuição de probabilidades, métodos de regionalização do evento com um determinado risco, e métodos

de regionalização da curva adimensional de freqüências. Este último também denomina-se método da cheia-índice, ou *index-flood*, sendo o de maior freqüência em estudos hidrológicos.

O método de regionalização dos parâmetros de uma distribuição de probabilidade parte do pressuposto de que um mesmo modelo distributivo é válido para todas as estações de coletas de dados, pertencentes a uma região homogênea segundo a variável a ser regionalizada. O estudo da regressão entre os parâmetros que definem a distribuição de probabilidades em cada estação e as grandezas fisiográficas ou climatológicas locais definem os parâmetros da distribuição de probabilidades ajustada para a região.

Para o método de regionalização do evento com um determinado risco, a primeira etapa consiste na análise de freqüência local para cada amostra de observações, objetivando a estimação dos quantis da variável hidrológica em questão, associados a diferentes períodos de retorno pré-estabelecidos em cada um dos pontos de coleta de dados.

Em seguida, para um determinado período de retorno, busca-se uma relação entre os quantis estimados nas diversas estações e suas respectivas características fisiográficas ou climatológicas, por meio da análise de regressão, não sendo necessário o ajuste de uma mesma distribuição de freqüências para amostras de diferentes estações de coletas de dados.

O método de regionalização da curva adimensional de freqüências, o qual denomina-se cheiaíndice, ou *index-flood*, foi introduzido por Dalrymple (1960), com o objetivo de adimensionalizar qualquer dado proveniente de pontos distintos de uma região, desde que essa região seja considerada homogênea. Hosking e Wallis (1997) apresentam um conjunto metodológico de procedimentos unificados, baseados em estatísticas-L, para a análise do comportamento regional de variáveis hidrológicas, sendo estes procedimentos, de acordo com Bobée e Rasmussen (1995), aqueles que fornecem melhores estimativas das probabilidades de eventos raros.

Dentre os estudos de regionalização hidrológica, no contexto da cheia-índice, ou *index-flood*, utilizando os momentos-L, pode-se citar os trabalhos de Davis e Naghettini (2000), Araújo e Tavares (2003), e CPRM (2001). Sendo esse o modelo de regionalização usado como premissa para a aplicação da metodologia proposta por Castellarin *et al.* (2005), para a estimação de uma probabilidade de igualdade ou superação ao valor esperado da curva

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG
envoltória de cheias, a regionalização conforme a cheia-índice, utilizando os momentos-L, será melhor discutida nos itens subseqüentes.

3.4.2 Método index-flood

De acordo com Naghettini e Pinto (2007), pode-se citar as seguintes premissas inerentes à aplicação do método do *index-flood*:

- as observações em um posto qualquer são identicamente distribuídas;
- as observações em um posto qualquer não apresentam dependência estatística serial;
- as observações em diferentes postos são estatisticamente independentes;
- as distribuições de freqüências em diferentes postos são idênticas, a menos de um fator de escala; e
- a forma matemática da curva regional de quantis adimensionalizados pode ser corretamente especificada.

Mencionadas as hipóteses inerentes à aplicação do método do *index-flood*, segue a definição formal. Seja uma determinada variável hidrológica X, amostrada em localidades inseridas em uma determinada região geográfica com amostras de tamanho n_i (i = 1, 2, ..., m) em cada estação de monitoramento hidrológico, e $X_i(F)$ a função que representa os quantis de probabilidade de não excedência F para um posto de monitoramento *i*. Tomando-se como princípio que a região que compreende as estações de monitoramento seja considerada estatisticamente homogênea, então a função de quantis para todas as estações é a mesma, exceto por um fator de escala local, denominado *index-flood*. Dessa maneira, tem-se que:

$$X_i(F) = \mu_x \cdot x(F) \tag{3.13}$$

onde μ_x representa o fator de escala, ou *index-flood*, para o posto de monitoramento *i* entre os *M* postos da região, e x(F) a curva regional de quantis adimensionais, comum a todos os postos. Assim, o *index-flood* é estimado tomando-se a média amostral da variável hidrológica *X* para cada posto de monitoramento, sendo a variável adimensionalizada $x_{i,j} = X_{i,j}/\mu_x$

 $(i = 1, 2, ..., m; j = 1, 2, ..., n_i)$ utilizada para a estimação dos parâmetros regionais da função x(F).

3.4.3 Etapas para a regionalização por momentos-L

As etapas metodológicas para a aplicação do método *index-flood*, utilizando o método dos momentos-L, podem ser divididas em: análise regional da consistência de dados, identificação de regiões homogêneas, seleção do modelo regional de distribuição de probabilidades, e estimação dos parâmetros e dos quantis do modelo regional de distribuição de probabilidades.

No Capítulo 4 da presente dissertação encontrar-se-ão as definições formais dessas etapas metodológicas propostas por Hosking e Wallis (1997). Nos sub-itens que se seguem, apresentar-se-ão apenas as interpretações heurísticas das etapas para a regionalização por momentos-L.

3.4.3.1 Análise regional da consistência de dados

O objetivo principal da análise regional da consistência de dados refere-se à observação e eliminação de pontos atípicos presentes nos dados amostrais. Nesse sentido, Hosking e Wallis (1997) sugerem o uso de uma ferramenta estatística denominada medida de discordância *D*.

A idéia principal em torno da medida de discordância é a de que se faça uma comparação das características estatísticas do conjunto de postos com as apresentadas pela amostra individual em questão, envolvendo as estimativas dos principais quocientes de momentos-L, a saber, o coeficiente de variação-L, a assimetria-L e a curtose-L. Dessa maneira, Hosking e Wallis (1997) propõem os seguintes valores críticos, apresentados na Tabela 3.8, para a medida de discordância:

Nº de postos na região	Valor crítico	Nº de postos na região	Valor crítico						
5	1,333	11	2,632						
6	1,648	12	2,757						
7	1,917	13	2,869						
8	2,14	14	2,971						
9	2,329	15	3						
10	2,491								
Fonte: Hosking e Wallis (1997)									

 Tabela 3.8 - Valores críticos da medida de discordância

Na Figura 3.18 apresenta-se um gráfico para o melhor entendimento desta estatística. Assim, os pontos fora da área da elipse mais externa são os considerados discordantes.

Figura 3.18 - Descrição gráfica da medida de discordância (Fonte: Naghettini e Pinto, 2007)

3.4.3.2 Identificação das regiões homogêneas

A delimitação de regiões homogêneas baseia-se em torno de características locais e de estatísticas locais para a bacia hidrográfica. As estatísticas locais referem-se a estimadores de medida de dispersão e assimetria, tais como os coeficientes de variação e de assimetria, obtidos diretamente por meio dos dados utilizados para a análise regional de freqüência.

Inicialmente, as características locais são quantidades conhecidas, ou estimadas a partir de amostras pontuais, como a latitude e longitude, ou outras propriedades relacionadas a uma determinada localidade específica. Pode-se citar como características locais indiretamente relacionadas à amostra, a média de precipitação anual e o mês mais freqüente para a ocorrência de cheias, por exemplo.

Hosking e Wallis (1997) propõem um conjunto de estatísticas locais, denominada medida de heterogeneidade *H*. Neste sentido, tem-se a comparação entre uma região candidata aos critérios de homogeneidade, com uma região efetivamente homogênea. A descrição da medida de heterogeneidade pode ser mais bem compreendida através da Figura 3.19.

Figura 3.19 - Descrição gráfica da medida de heterogeneidade (Fonte: Naghettini e Pinto, 2007)

Assim, têm-se os dados simulados de uma região homogênea e sua comparação com uma região candidata à homogeneidade, sendo a assimetria-L e o coeficiente de variação-L, as estatísticas base para a definição da homogeneidade. Conforme proposto por Hosking e Wallis (1997), a região é considerada aceitavelmente homogênea se H < 1, possivelmente homogênea se $1 \le H < 2$, e definitivamente heterogênea se H > 2.

3.4.3.3 <u>Seleção do modelo regional de distribuição de probabilidades</u>

A medida de aderência Z serve de critério para o auxílio na escolha de um modelo distributivo a ser utilizado para a estimação dos quantis regionais, sendo mais uma estatística-L proposta por Hosking e Wallis (1997). A visualização dessa estatística pode ser ilustrada através da Figura 3.20. Dessa forma, os mesmos autores atribuem o valor de $Z \le |1,64|$ como um indicador de boa aderência da distribuição de probabilidades em questão.

57

Além da verificação da medida de aderência *Z*, Hosking e Wallis (1997) sugerem que as médias regionais da assimetria-L e curtose-L sejam grafadas em um diagrama de momentos-L. A Figura 3.21 exemplifica esse procedimento.

Hosking e Wallis (1993) sugerem que, caso a representação das médias regionais da assimetria-L e curtose-L, no gráfico apresentado na Figura 3.21, localizem-se acima da curva da distribuição Logística Generalizada, então nenhuma distribuição de probabilidades de dois ou três parâmetros irá apresentar bons ajustes aos dados em análise. Para casos como esse, recomenda-se utilização das distribuições Kapa de quatro parâmetros ou a Wakeby de cinco parâmetros.

Figura 3.21 - Diagrama de curtose-L x assimetria-L (Adaptado de CPRM, 2001)

3.5 Curvas Envoltórias de Cheias

As curvas envoltórias de cheias representam o conhecimento disponível no que se refere à produção de vazões máximas por área de drenagem, sintetizando graficamente o regime de extremos hidrométricos em uma determinada região geográfica. A construção das curvas envoltórias representa um sumário gráfico dos maiores eventos de cheias ocorridos na região analisada, podendo ser utilizada para a obtenção de estimativas preliminares de vazões de projeto.

Entretanto, se por um lado a simplicidade da construção das curvas envoltórias as torna adequadas para a estimação de cheias em locais desprovidos de uma eficiente rede de

monitoramento hidrométrico, por outro, sua dependência das amostras disponíveis implica em limites superiores empíricos, passíveis de serem excedidos. Devido ao caráter empírico intrínseco à construção das curvas envoltórias de cheias, torna-se complexa a associação de uma probabilidade de excedência a um valor específico dessa curva.

Recentemente, Castellarin *et al.* (2005) propuseram uma interpretação probabilística dos métodos empíricos de construção das curvas envoltórias de cheias, a qual será empregada e estendida na presente dissertação, visando a estimação de cheias de projeto para o dimensionamento de estruturas hidráulicas.

3.5.1 Conceitos e aplicações

As curvas envoltórias de cheias têm sido utilizadas desde a década de 1920 (Jarvis, 1925; Francou e Rodier, 1967; Crippen e Bue, 1977; Kadoya, 1992; Herschy, 2003) como meio simples de sintetizar graficamente o regime de cheias extremas em uma determinada localidade.

Castellarin *et al.* (2005) afirmam que as curvas envoltórias de cheias representam o limite de nossa experiência de percepção das cheias extremas em uma determinada região, através de observações sistemáticas das descargas máximas registradas na rede regional de postos de monitoramento fluviométrico.

Bayazit e Önoz (2004) afirmam que os primeiros estudos relativos às curvas envoltórias foram desenvolvidos nos Estados Unidos, enquanto Castellarin *et al.* (2005) reforçam a utilização desta metodologia em outras localidades, tal como na Itália, citando os trabalhos de Marchetti (1955), na parte ocidental da Grécia, referenciando os trabalhos de Mimikou (1984), no Japão, através dos trabalhos de Kadoya (1992) e em outras partes do globo. De acordo com England (2005), as curvas envoltórias refletem uma relação simples entre a máxima vazão de pico, ou cheia recorde, e a área de drenagem.

Castellarin *et al.* (2005) definem as curvas envoltórias como o sumário gráfico das máximas vazões registradas por unidade de área em diferentes estações fluviométricas de uma bacia hidrográfica *versus* a área de drenagem das respectivas bacias hidrográficas, em escala bilogarítmica, onde a envoltória é representada pela linha mais contígua que envolve todos os pontos, conforme ilustrado na Figura 3.22.

Uma vez que a curva envoltória para uma determinada região tenha sido construída, pode-se associar uma interpretação probabilística à mesma, de acordo com a proposta de Castellarin *et al.* (2005), a qual é empregada na presente dissertação, e estendida para a consecução dos objetivos desta pesquisa.

Figura 3.22 - Exemplo de curva envoltória (Fonte: Castellarin et al., 2005)

As curvas envoltórias de cheias foram pioneiramente utilizadas por Jarvis (1925), que apresentou um trabalho baseado nas cheias máximas registradas em 888 estações de monitoramento fluviométrico nos Estados Unidos.

No mesmo país, Crippen e Bue (1977) e Crippen (1982), aprimoraram o estudo inicial feito por Jarvis (1925), utilizando um total de 883 estações de monitoramento fluviométrico para a elaboração de dezessete curvas envoltórias, sendo uma para cada região com comportamento distinto do ponto de vista hidrológico.

Vogel *et al.* (2001), elaboraram um estudo abordando o trabalho de Crippen e Bue (1977) e Crippen (1982), concluindo que as curvas envoltórias obtidas por esses autores ainda eram válidas para 740 das 883 estações de monitoramento utilizadas na análise, entre os períodos de 1977 a 1994.

Na bacia do rio Colorado, nos Estados Unidos, Enzel *et al.* (1993) examinaram as curvas envoltórias existentes para essa localidade, concluindo que as vazões máximas obtidas eram

próximas àquelas registradas por meio da aplicação da paleohidrologia, sendo esta definida por Baker *et al.* (2002) como a ciência de reconstrução da magnitude e freqüência de ocorrência de grandes cheias em uma determinada localidade, por meio de evidências geológicas e botânicas e outras técnicas interdisciplinares.

Entretanto, a aplicação das curvas envoltórias de cheias não se restringe apenas aos Estados Unidos. Bayazit e Önoz (2004) produziram um estudo elaborando curvas envoltórias para toda a Turquia, comparando os resultados obtidos com as vazões registradas nas curvas envoltórias disponíveis para a China e Estados Unidos, concluindo que tais curvas podem ser empregadas para estudos preliminares de estimação de cheias naquelas localidades.

Creager *et al.* (1945, *apud* Watt *et al.*, 1988) elaboraram uma curva envoltória de cheias, tal como apresentado pela Figura 3.23, por meio dos registros de cheias de 730 cursos de água nos Estados Unidos e outros 30 cursos de água pertencentes à outros países.

Na Croácia, Biondic *et al.* (2007) elaboraram um trabalho usando dados de vazões máximas anuais relativos à bacia do rio Danúbio, comparando os resultados pela aplicação da curva envoltória de cheias proposta por Francou e Rodier (1967), aos obtidos utilizando a curva envoltória elaborada por Creager *et al.* (1945). Os mesmos autores citam que investigações semelhantes foram realizadas em todo o continente Europeu por Stanescu e Matreata (1997).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Outros estudos abordando a utilização das curvas envoltórias de cheias foram elaborados em diferentes localidades, tais como na África do Sul, por meio do trabalho de Pegram e Parak (2004), e, no Japão, onde pode-se citar o estudo de Ohnishi *et al.* (2004).

Com base no exposto, percebe-se a utilidade das curvas envoltórias de cheias no sentido da sumariação gráfica dos registros máximos de vazões ocorridas em uma determinada região, podendo servir de base para estudos preliminares relativos à estimação de cheias.

De acordo com ELETROBRÁS (1987), deve-se, sempre que possível, comparar os valores obtidos para a cheia de projeto por meio de qualquer outra metodologia com eventos extremos observados em qualquer parte do mundo, desde que ocorram em bacias hidrográficas com características semelhantes, fazendo uso das eventuais curvas envoltórias de cheias disponíveis para tais localidades. Para England (2005), as aplicações relativas à construção das curvas envoltórias de cheias são as seguintes:

- estudos de cheias máximas em bacias não monitoradas;
- estudos onde se deseja comparar estimativas probabilísticas de vazões de projeto;
- estudos onde se deseja comparar a pertinência dos valores obtidos pela estimativa da enchente máxima provável.

A curva envoltória de cheias é elaborada de modo empírico, onde grafa-se as observações dos registros das máximas vazões ocorridas em uma determinada bacia, *versus* a área de drenagem da respectiva bacia, em um papel em escala bi-logarítmica.

England (2005) afirma que, geralmente, a utilização de descargas unitárias, ou seja, vazões por unidade de área, facilita a interpretação e o desenvolvimento matemático da curva envoltória. A construção e o tratamento matemático relativo às curvas envoltórias de cheias serão apresentados em detalhe no Capítulo 4 deste trabalho.

As curvas envoltórias são traçadas a partir de relações simples diretas que incorporam em sua formulação matemática as características físicas da bacia. Na maioria das vezes, a área de drenagem é a principal característica que condiciona a formação das máximas vazões registradas em uma determinada localidade.

Nesse sentido, diversos autores obtiveram curvas envoltórias cuja formulação matemática baseia-se na área de drenagem da bacia hidrográfica, tal como a equação modificada de Myers (1967), qual seja:

$$Q_p = 100b\sqrt{A} \tag{3.14}$$

onde Q_p é a vazão de pico (m³/s), A representa a área de drenagem da bacia (km²), e *b* é conhecido como uma constante denominada taxa de Myers, sendo variável entre 1 e 300, onde, de acordo com Linsley *et al.* (1958), torna-se difícil a escolha de um valor para essa constante. Segundo England (2005), diversas equações têm sido propostas envolvendo outros fatores além da área de drenagem, tais como a precipitação média, a altitude, entre outras.

3.5.2 Comentários sobre a utilização das curvas envoltórias de cheias

O empirismo intrínseco à construção das curvas envoltórias de cheias, onde as mesmas são obtidas a partir de eventos regionais, é um dos fatores que condiciona à utilização dessas curvas apenas para as localidades para as quais foram desenvolvidas, não sendo aplicadas, comumente, para diferentes localizações geográficas.

Outro fator que implica na menor utilização das curvas envoltórias para a estimação de cheias de projeto baseia-se na dificuldade em se estabelecer uma probabilidade de excedência para um determinado valor da curva, uma vez que a mesma é traçada com base em registros de vazões máximas disponíveis, onde esses valores são passíveis de serem excedidos.

São diversos os estudos que buscam uma associação probabilística para as curvas envoltórias de cheias. Dentre eles, England (2005) cita os métodos apresentados nos trabalhos de Fuller (1914), Jarrett e Tomlinson (2000), England *et al.* (2001) e Castellarin *et al.* (2005).

Fuller (1914), através da análise dos dados de vazão de centenas de rios americanos, apresentou um método empírico que traz em sua formulação a relação entre a vazão média anual, a área de drenagem da bacia, e o tempo de retorno. As equações seguintes sintetizam as relações descritas:

$$\overline{Q} = CA^{0,8} \tag{3.15}$$

63

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

$$Q = Q(1 + 0.8\log T) \tag{3.16}$$

$$Q_{\rm max} = Q(1 + 2A^{-0.3}) \tag{3.17}$$

onde A é a área de drenagem da bacia hidrográfica (km²), \overline{Q} é a vazão média anual (m³/s), Q representa a maior vazão média diária provável (m³/s) para o período de retorno T, Q_{max} denota a vazão de pico diária (m³/s), e admite-se que o coeficiente C seja constante para a bacia em estudo.

Algumas limitações são observadas acerca do método proposto por Fuller (1914), tais como a quantidade e qualidade dos dados de vazões utilizados no estudo, bem como a localização das estações onde foram tomados os dados para a aplicação do método.

O conjunto de estações utilizados por Fuller (1914) possui poucos registros de vazões, em geral menos de 100 anos, fato que torna o método questionável para aplicações que envolvam projetos com períodos de retorno superiores a 1.000 anos.

O método proposto por Jarrett e Tomlinson (2000) baseia-se na atribuição de uma probabilidade de excedência à curva envoltória por meio da análise de freqüência dos dados observados na bacia em estudo, utilizando, resumidamente, os seguintes procedimentos:

a) construção da curva de freqüência para a bacia hidrográfica;

b) construção da curva envoltória de cheias utilizando os dados de vazões de pico;

c) plotagem dos quantis de vazão obtidos em a) para bacias com áreas de drenagem selecionadas. Em seguida, deve-se verificar o comportamento dos quantis com a variação da área de drenagem e do período de retorno;

 d) comparação entre as curvas obtidas em c) com a curva envoltória construída em b), de forma a verificar com qual curva de quantis a curva envoltória mais se assemelha.

O método proposto por England *et al.* (2001) consiste na atribuição de uma probabilidade de excedência à curva envoltória tomando por base a probabilidade de excedência dos dados que

a compõem. Dessa maneira, os autores atribuíram um período de retorno variável entre 100 e 500 anos para as curvas envoltórias traçadas para bacias hidrográficas localizadas nos Estados Unidos.

O método proposto por Castellarin *et al.* (2005), e posteriormente aperfeiçoado por Castellarin (2007), consiste na estimação de uma probabilidade de igualdade ou superação do valor esperado da curva envoltória, por meio de duas hipóteses:

- a região que contém as estações fluviométricas em estudo é considerada homogênea;
- a relação entre a cheia-índice local e a respectiva área de drenagem obedece a uma lei de escala.

A equação da curva envoltória de cheias proposta por Castellarin *et al.* (2005), bem como os detalhes acerca das etapas metodológicas propostas no trabalho deste autor, serão contemplados ao longo do Capítulo 4.

No âmbito da engenharia de recursos hídricos tem-se a necessidade da estimação confiável dos quantis de enchentes raras e extremas. Existem diversas metodologias para a estimação desses quantis, dentre as quais enquadram-se os métodos diretos e os métodos indiretos, já apresentados no item 3.3 do presente trabalho. Entretanto, a aplicação tanto do método direto, quanto do método indireto, está condicionada à existência de dados fluviométricos registrados pela rede de monitoramento operada na bacia hidrográfica.

Iniciativas recentes, tais como as desenvolvidas pela Associação Internacional de Ciências Hidrológicas (*IAHS - International Association of Hydrological Sciences*), como aquela denominada *PUB (Prediction in Ungauged Basins*), descrita por Sivapalan *et al.* (2003), têm estimulado o desenvolvimento de trabalhos de concepção de métodos para a estimação de cheias em bacias hidrográficas para as quais se dispõe apenas de uma rede de monitoramento deficitária, ou até mesmo de nenhum monitoramento.

A interpretação probabilística das curvas envoltórias e a atribuição de uma probabilidade de igualdade ou superação para os valores extremos vêm de encontro à afirmação apresentada no parágrafo anterior, podendo constituir em uma ferramenta para o dimensionamento de estruturas hidráulicas em locais desprovidos de redes de monitoramento.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

4 METODOLOGIA

Conforme discutido ao longo dos tópicos apresentados no Capítulo 3, as aplicações tanto do método direto, quanto do método indireto, para a estimação de vazões de projeto para o dimensionamento de estruturas hidráulicas, são dependentes da existência de dados hidrológicos registrados pela rede de monitoramento hidrométrico presente na bacia hidrográfica. Entretanto, por mais vasta que seja a rede de monitoramento hidrométricos abrangendo a totalidade dos cursos de água inseridos nessa localidade.

Assim, uma vez que se tenha o intuito da implantação de um determinado empreendimento utilizando o potencial hídrico de um tributário, ou de um determinado trecho de um rio, é possível que nem sempre existam dados fluviométricos disponíveis para a estimação de vazões máximas naquela localidade.

Nesse sentido, tem-se o conceito da regionalização hidrológica, segundo a qual os dados obtidos em uma certa localidade podem ser usados como fonte das estimativas da variável sob análise em locais não monitorados, desde que ambos estejam inseridos em uma mesma região considerada homogênea.

Desta maneira, pode-se aplicar a metodologia proposta por Castellarin (2007), que associa uma interpretação probabilística às curvas envoltórias de cheias, atribuindo um período de retorno às mesmas. A etapa seguinte consiste na estimação dos quantis de vazões máximas obtidas por meio de uma função de distribuição de probabilidade, fazendo uso do tempo de retorno associado às curvas envoltórias.

O presente capítulo apresenta as etapas metodológicas para a aplicação do método introduzido por Castellarin *et al.* (2005) e aperfeiçoado por Castellarin (2007), contemplando as premissas para a aplicação da metodologia, o comportamento probabilístico das curvas envoltórias de cheias e a estimação do tempo de retorno às mesmas, seguido pela estimação dos quantis de vazões máximas.

4.1 Premissas para a aplicação da metodologia proposta por Castellarin (2007)

A constatação por parte de influentes pesquisadores, tais como Horton (1936), de que deve existir um limite físico superior para a produção de tormentas e enchentes em uma certa bacia reforça a idéia de se buscar a síntese dos limites da experiência corrente de cheias extremas, através da coleta de dados fluviométricos e de observação sistemática de vazões de enchentes de uma certa região.

Essa síntese pode ser posta em termos dos recordes de vazões máximas anuais, observados em um grande número de estações fluviométricas de uma região geográfica, em função das respectivas áreas de drenagem envolvidas. De modo genérico, uma curva envoltória de cheias pode ser posta sob a forma:

$$\ln\left(\frac{Q_{\max}}{A}\right) = a + b\ln\left(A\right) \tag{4.1}$$

na qual Q_{max} denota a máxima enchente observada em uma estação fluviométrica de área de drenagem *A*, *a* e *b* representam coeficientes regionais de regressão estabelecidos com base em um grande número de diferentes locais de monitoramento ao longo de uma região homogênea, sob a ótica dos mecanismos físicos e climáticos que governam as ocorrências locais de enchentes extremas. Em sua interpretação probabilística das curvas envoltórias, Castellarin *et al.* (2005) adotaram as seguintes premissas:

- a região que contém as estações fluviométricas em estudo é considerada homogênea, no sentido das hipóteses inerentes ao método de regionalização da cheia-índice, ou *index-flood*, tal como proposto por Dalrymple (1960);
- a relação entre a cheia-índice (ou a cheia-média) local, representada por μ_x, e a respectiva área de drenagem A obedece a uma lei de escala dada por:

$$\mu_x = C A^{b+1} \tag{4.2}$$

onde $b \in C$ denotam constantes, sendo b coincidente com o coeficiente angular da equação 4.1.

Desta forma, o coeficiente angular da equação 4.1 pode ser expresso por meio da regressão das cheias índice, em função de suas respectivas áreas de drenagem. Por outro lado, a estimativa do intercepto *a* pode ser obtida por meio da seguinte equação:

$$a = \max_{j=1,\dots,M} \left\{ \ln \left(\frac{Q_j}{A_j} \right) - \hat{b} \ln (A_j) \right\}$$
(4.3)

onde Q_j representa a máxima vazão observada no local *j*, entre as *M* estações fluviométricas da região homogênea, e A_j representa a respectiva área de drenagem.

4.1.1 Lei de escala proposta por Castellarin et al. (2005)

Sob as premissas enunciadas, Castellarin *et al.* (2005) desenvolveram um método de estimação da probabilidade de superação *p* do valor esperado da curva envoltória, ou seja, da curva média que envolve os extremos hidrométricos de um grupo de bacias com características similares.

O método desenvolvido por Castellarin *et al.* (2005) faz uso de experimentos por simulação de Monte Carlo, em decorrência dos quais, o estimador da probabilidade de superação p é função do número de bacias similares M, do comprimento do período comum de registros hidrométricos n, e do grau de correlação cruzada entre as séries históricas consideradas.

Sob as hipóteses de homogeneidade regional e da lei de escala dada pela equação 4.2, o quantil de cheia x_p , de probabilidade de superação p, é dado por:

$$x_p = \mu_x \dot{x_p} \tag{4.4}$$

onde x'_p corresponde ao quantil regional adimensional de probabilidade de superação p. Combinando as equações 4.1 e 4.3, tem-se a relação entre $\ln(x_p / A)$ e $\ln(A)$, implicando em uma equação análoga à equação 4.1:

$$\ln\left(\frac{x_p}{A}\right) = \ln\left(\frac{\mu_x \cdot x_p}{A}\right) = \ln(Cx_p) + b\ln(A)$$
(4.5)

A analogia entre as equações 4.1 e 4.5, segundo Castellarin *et al.* (2005), baseada nas hipóteses já apresentadas, implica que a curva envoltória regional pode ser obtida através do cálculo de seu coeficiente angular por meio do fator de escala proposto.

4.1.2 Método de regionalização da cheia-índice, ou index-flood

No Capítulo 3 foi introduzido o método de regionalização da cheia-índice, ou *index-flood*, utilizando os momentos-L. Os momentos-L foram apresentados por Hosking (1986), como combinações lineares dos momentos ponderados por probabilidade, MMP's, de uma variável aleatória X.

Resumidamente, as etapas para a aplicação do método da cheia-índice, utilizando os momentos-L, são descritas a seguir:

- cálculo do fator de adimensionalização, μ_x, de cada estação j, através da média aritmética dos eventos observados;
- adimensionalização das séries através da relação, (X_{ij} / μ_x), onde X_{ij} é o iésimo elemento da estação j;
- cálculo dos momentos-L amostrais $l_{r,j}$ das séries adimensionalizadas para r = 1,2,3 e 4;
- cálculo das razões-L amostrais, $t_j e t_{r,j}$, das séries adimensionalizadas para r = 3 e 4;
- definição das regiões homogêneas;
- cálculo das estimativas adimensionais regionais a partir da média ponderada dos momentos-L e razões-L amostrais das estações da região homogênea. As médias são ponderadas pelo tamanho das séries, ou seja,

$$\overline{l_r} = \frac{\sum_{j=1}^{N} n_j l_{r,j}}{\sum_{j=1}^{N} n_j} \quad \text{para } r = 1, 2, 3 \in 4$$
(4.6)

$$\bar{t} = \frac{\sum_{j=1}^{N} n_j t_j}{\sum_{j=1}^{N} n_j}$$
(4.7)

$$\overline{t_r} = \frac{\sum_{j=1}^{N} n_j t_{r,j}}{\sum_{j=1}^{N} n_j} \quad \text{para } r = 3 \text{ e } 4$$
(4.8)

seleção da distribuição teórica regional de probabilidades, e a estimativa, através dos momentos-L, dos parâmetros, θ^R_i, para i = 1, 2, 3, ..., n, onde n é o número de parâmetros da distribuição selecionada;

Com vistas à redução da subjetividade envolvida na delimitação das regiões homogêneas e escolha de um modelo distributivo a ser adotado, Hosking e Wallis (1993, 1995 1997) desenvolveram três estatísticas-L: a medida de discordância, a medida de heterogeneidade e a medida de aderência, as quais são empregadas nas etapas de consistência de dados, delimitação de regiões homogêneas e seleção da distribuição de probabilidades regional, respectivamente.

4.1.3 Medida de discordância D

Definida em termos dos momentos-L dos locais em estudo, a aplicação da medida de discordância *D* tem por finalidade a identificação de estações que diferem grosseiramente das características médias regionais.

Formalmente, em um local monitorado j, considera-se os quocientes-L, quais sejam, o coeficiente de variação-L, a assimetria-L e a curtose-L, como um ponto em um espaço tridimensional, o qual pode ser representado por um vetor (3 x 1), denotado por u_i e dado por:

$$u_i = \left(t^{(j)} t_3^{(j)} t_4^{(j)}\right)^T \tag{4.9}$$

em que os termos $t^{(j)}, t_3^{(j)}, t_4^{(j)}$ representam o coeficiente de variação-L, a assimetria-L e a curtose-L locais, respectivamente, e *T* indica a matriz transposta.

70

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

A média grupal ou regional entre todos os postos considerados no estudo, denotada por \overline{u} , é dada por:

$$\bar{u} = N^{-1} \sum_{j=1}^{N} u_{j}$$
(4.10)

Como u também é um vetor (3 x 1) contendo as médias regionais, tem-se:

$$u = \left(t^{(R)} t_3^{(R)} t_4^{(R)}\right)^T \tag{4.11}$$

onde N representa o número de postos de observação do grupo ou região R em análise. Representando a matriz de covariância amostral por S, tem-se:

$$S = (N-1)^{-1} \sum_{j=1}^{N} (u_j - \overline{u}) (u_j - \overline{u})^T$$
(4.12)

De acordo com Hosking e Wallis (1997), a medida de discordância *D* para o local *j* é definida como:

$$D_{j} = \frac{N}{3(N-1)} \left(u_{j} - \overline{u} \right)^{T} S^{-1} \left(u_{j} - \overline{u} \right)$$
(4.13)

4.1.4 Medida de heterogeneidade *H*

Dentre as etapas referentes à análise regional de freqüências de variáveis hidrológicas, a etapa de identificação e delimitação das regiões homogêneas é considerada a mais difícil e sujeita a subjetividades. Segundo Bobée e Ramussen (1995), a análise regional de freqüência e, em particular, a delimitação de regiões homogêneas, são construídas com base em premissas difíceis de serem tratadas com absoluto rigor matemático.

De acordo com os mesmos autores, torna-se fator complicador a existência de diversas metodologias que têm por finalidade o agrupamento de bacias hidrográficas que apresentam comportamento hidrológico semelhante, não havendo um método consensual que permita a identificação e delimitação das regiões homogêneas.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Segundo Naghettini e Pinto (2007), os diversos métodos e técnicas de agrupamento de localidades similares em regiões homogêneas podem ser categorizados da seguinte maneira:

• conveniência geográfica

Os métodos que delimitam as regiões homogêneas segundo a conveniência geográfica baseiam-se no agrupamento subjetivo ou conveniente dos postos de monitoramento, geralmente contíguos, situados em áreas administrativas ou em regiões previamente definidas segundo limites arbitrários. Esse procedimento de delimitação de regiões homogêneas foi empregado no estudo de regionalização de vazões de enchentes das Ilhas Britânicas (NERC, 1975) e da Austrália (*Institution of Engineers Australia*, 1987).

• agrupamento subjetivo

O agrupamento subjetivo de postos de observação pode ser utilizado para a delimitação de regiões homogêneas. Assim, tem-se um agrupamento de estações que apresentam similaridade com relação a características locais, tais como: classificação climática, relevo ou conformação das isoietas anuais, por exemplo.

Uma aplicação desse método encontra-se no trabalho de Schaefer (1990), que utilizou alturas similares de precipitação para delimitar as regiões homogêneas no estado de Washington, Estados Unidos.

• agrupamento objetivo

Neste procedimento busca-se efetuar o agrupamento dos postos de monitoramento de forma que uma determinada estatística não exceda um valor limiar, previamente estabelecido, de maneira a minimizar os critérios de heterogeneidade.

• análise de aglomerados ou análise de *clusters*

A análise de *clusters* consiste na aglomeração seqüencial de indivíduos em grupos cada vez maiores, de acordo com algum critério, tal como a distância entre as estações, por exemplo. Assim, efetua-se uma análise estatística multivariada, onde se associa a cada posto um vetor de dados contendo as características e/ou estatísticas locais.

Após este procedimento, as estações são agrupadas e reagrupadas, de forma com que torne-se possível a identificação de maior ou menor similaridade entre os seus vetores de dados. Hosking e Wallis (1997) consideram esse método como o mais prático para a definição preliminar de regiões homogêneas.

• outros métodos

Pode-se citar a aplicação de outros métodos para a delimitação de regiões homogêneas, tais como: análise de resíduos de regressão, análise de componentes principais, análise fatorial, entre outros. De acordo com Naghettini e Pinto (2007), estes métodos também apresentam limitações e elementos subjetivos em sua aplicação.

Inserido na categoria de agrupamentos objetivos para a delimitação de regiões com comportamento hidrológico semelhante, pode-se citar a medida de heterogeneidade *H*, proposta por Hosking e Wallis (1997). A medida de heterogeneidade é fundamentada na avaliação de um grupo de bacias hidrográficas considerado homogêneo, onde espera-se que todas as áreas inseridas no grupo possuam os mesmos momentos-L populacionais, embora seus momentos-L amostrais sejam distintos devido à variabilidade natural da amostra.

Assim, a idéia em torno da medida de heterogeneidade *H* baseia-se na comparação do coeficiente de variação-L (CV-L) amostral com o esperado para um grupo tido como homogêneo, sendo este simulado por meio do método de Monte Carlo, onde considera-se que a distribuição de probabilidade Kapa de quatro parâmetros seja a mais adequada para a simulação.

O cálculo da medida de heterogeneidade *H* para um grupo formado por regiões candidatas à homogeneidade inicia-se pela análise da dispersão das regiões proposta e simulada, através do CV-L amostral, ou seja, *t*. Hosking e Wallis (1997) apresentam a medida de variância como uma medida de dispersão, ponderada pelo tamanho das séries, tal como descrito na seguinte equação:

$$V = \left[\frac{\sum_{j=1}^{N} n_j (t^j - t^R)^2}{\sum_{j=1}^{N} n_j}\right]^{\frac{1}{2}}$$
(4.14)

onde *N* representa o número de postos de monitoramento na região homogênea a ser testada, n_j representa o tamanho da amostra correspondente ao posto j, t^j e t^R representam o quociente de variação-L amostral do posto j e o quociente de variação-L regional, obtido através da média dos valores dessa variável, ponderados pelo tamanho n_j de cada amostra.

Conforme menção anterior, Hosking e Wallis (1997) propõem a utilização da distribuição de probabilidade Kapa de quatro parâmetros. Incluindo como casos particulares de distribuição, os mesmos autores relacionam as distribuições Logística, Generalizada de Valores Extremos e Generalizada de Pareto. As funções de densidade de probabilidade, distribuição acumulada e de quantis da distribuição Kapa são dadas respectivamente por:

$$f(x) = \frac{1}{\alpha} \left[1 - \frac{k(x - \xi)}{\alpha} \right]^{\frac{1}{k-1}} [F(x)]^{1-h}$$
(4.15)

$$F(x) = \left\{ 1 - h \left[1 - \frac{k(x - \xi)}{\alpha} \right]^{\frac{1}{k}} \right\}^{\frac{1}{h}}$$
(4.16)

$$x(F) = \xi + \frac{\alpha}{k} \left[1 - \left(\frac{1 - F^{h}}{h}\right)^{k} \right]$$
(4.17)

sendo ξ o parâmetro de posição, α o parâmetro de escala e k e h os parâmetros de forma da distribuição Kapa.

De acordo com Hosking e Wallis (1997), o número de simulações, N_{SIM} , realizadas por meio dos momentos-L observados é igual a 500. A variância dos dados simulados, representada por V_{SIM} , pode ser obtida aplicando-se a equação 4.14. Desta forma, é obtida a variância dos dados simulados para cada uma das $n = 1, 2, ..., N_{SIM}$ populações Kapa. A dispersão média esperada na região homogênea, μ_{SIM} , pode ser obtida através da média aritmética da variância, segundo a seguinte equação:

$$\mu_{SIM} = \frac{\sum_{j=1}^{N_{SIM}} V_{SIM}}{N_{SIM}}$$
(4.18)

Finalmente tem-se a formalização da medida de heterogeneidade *H*, que representa a comparação entre a dispersão observada e simulada. Assim, a medida de heterogeneidade é descrita conforme equação abaixo:

$$H = \frac{(V - \mu_{SIM})}{\sigma_{SIM}}$$
(4.19)

onde σ_{SIM} representa o desvio padrão dos valores da medida de dispersão V_{SIM} , ou seja:

$$\sigma_{SIM} = \sqrt{\frac{\sum_{j=1}^{N_{SIM}} (V_{SIM} - \mu_{SIM})^2}{N_{SIM} - 1}}$$
(4.20)

Tal como mencionado no item 3.4.3.2 deste trabalho, Hosking e Wallis (1997) propõem que a região seja considerada aceitavelmente homogênea se H < 1, possivelmente homogênea se $1 \le H < 2$, e definitivamente heterogênea se H > 2.

4.1.5 Medida de aderência Z

A medida de aderência Z consiste em uma análise estatística proposta por Hosking e Wallis (1997), baseada em estatísticas-L, que auxilia na escolha de um modelo distributivo adequado para a estimação dos quantis regionais. Assim, a medida de aderência verifica se os momentos-L médios regionais são coerentes com os da distribuição candidata.

De acordo com Pinheiro (1997 *apud* CPRM, 2001), pode-se seguir o seguinte roteiro para a definição de uma distribuição de freqüência regional:

• "assuma uma série de distribuições de três parâmetros como candidatas";

Dentre as distribuições candidatas pode-se citar as seguintes: Logística Generalizada (GLO), Generalizada de Valores Extremos (GEV), Generalizada de Pareto (GP), Lognormal (LN) e Pearson tipo III (P3).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

- "ajuste cada distribuição candidata ao grupo de momentos-L regionais: $\overline{l}, \overline{t_3}, \overline{t_4}$. Denote por τ_4^{DIST} a curtose-L da distribuição ajustada, onde DIST poderá ser qualquer uma das distribuições, GLO, GEV, etc;"
- "ajuste a distribuição Kapa ao grupo de momentos-L regionais;"
- "simule um grande número de N_{SIM} regiões para essa população Kapa. Esta simulação deverá ser efetuada da mesma forma como apresentada na descrição da medida de Heterogeneidade;"
- "calcule a assimetria-L regional $t_3^{(n)}$, e a curtose-L regional $t_4^{(n)}$, para a $j^{\acute{esima}}$ região simulada;"
- "calcule a medida de tendenciosidade de $\overline{t_4}$, β_4 :"

$$\beta_4 = \left(N_{SIM}\right)^{-1} \sum_{j=1}^{N_{SIM}} \left(\frac{t_j}{t_4} - \bar{t}_4 \right)$$
(4.21)

• "calcule o desvio padrão de $\overline{t_4}$, σ_4 :"

$$\sigma_{4} = \sqrt{\left(N_{SIM}\right)^{-1} \left[\sum_{j=1}^{N_{SIM}} \left(\frac{-j}{t_{4}} - t_{4}\right)^{2} - N_{SIM}\beta_{4}^{2}\right]}$$
(4.22)

• "calcule a estatística-L, Z, para cada distribuição candidata:"

$$Z^{DIST} = \frac{\left(\tau_4^{DIST} - \bar{t}_4 + \beta_4\right)}{\sigma_4}$$
(4.23)

- "declare o ajuste adequado, se | Z^{DIST} | \leq 1,64;"
- "plote a curva de freqüência adimensional regional".

De acordo com Hosking e Wallis (1997), o critério $|Z^{DIST}| \le 1,64$ consiste em um indicador de boa aderência, não sendo uma estatística de teste formal, podendo apresentar resultados inconsistentes caso haja correlação cruzada entre os postos de monitoramento.

Nesse sentido, segundo os mesmos autores, deverão ser plotados o ponto médio regional da assimetria-L e da curtose-L (τ_3 e τ_4) em um diagrama de quocientes de momentos-L, tal como apresentado na Figura 3.21, onde caso o ponto médio regional localize-se acima da curva da distribuição Logística Generalizada, nenhuma distribuição de três ou dois parâmetros será aceita, devendo então ser ajustada uma distribuição genérica, tais como a Wakeby de cinco parâmetros ou a Kapa de quatro parâmetros.

As etapas descritas para o cálculo da medida de discordância, heterogeneidade e aderência foram codificadas por Hosking e Wallis (1997) em um conjunto de rotinas, em linguagem Fortran-77, para a automação dos procedimentos citados. Este conjunto de rotinas encontra-se disponível ao público, podendo ser acessado via Internet pelo endereço eletrônico *http://lib.stat.cmu.edu/general/lmoments*.

4.2 Bases teóricas para associar uma interpretação probabilística às curvas envoltórias de cheias

Apesar da construção das curvas envoltórias de cheias representarem a magnitude dos eventos de ocorrências de vazões máximas em uma determinada localidade, esse método não relaciona uma probabilidade de excedência a esses eventos. Nesse contexto, Castellarin *et al.* (2005) introduziram uma interpretação probabilística às curvas envoltórias de cheias, na qual experimentos de Monte Carlo foram realizados para a atribuição de uma probabilidade de excedência a esses curvas.

Posteriormente, Castellarin (2007) aprimorou o método descrito por Castellarin *et al.* (2005), e discutiu os efeitos da correlação cruzada entre as estações de monitoramento utilizadas no estudo. Nos itens subseqüentes são apresentadas as etapas metodológicas para a associação de uma interpretação probabilística às curvas envoltórias de cheias, segundo a metodologia proposta nos trabalhos dos autores acima referenciados.

4.2.1 Estimação da probabilidade de superação da envoltória

Dentro das duas premissas apresentadas no item 4.1, Castellarin *et al.* (2005) mostraram que o problema fundamental relativo à estimação de uma probabilidade de excedência *p* ao valor esperado da curva envoltória baseia-se na estimativa da probabilidade de superação do maior valor em uma série composta pelos valores máximos anuais de vazão registrados em um grupo de estações de monitoramento pertencentes a uma região considerada homogênea.

Os mesmos autores propuseram um estimador empírico da probabilidade de excedência p, que considera a correlação cruzada entre os dados regionais. O estimador avalia um número equivalente de seqüências estatisticamente independentes M_{EC} para as M estações fluviométricas da região homogênea, compostas por n valores de período comum de dados fluviométricos concomitantes. Esse estimador empírico é dado conforme a seguinte equação:

$$\hat{M}_{EC} = \frac{M}{1 + \overline{\rho^{\beta}}(M - 1)}$$
(4.24)

em que

$$\beta = \frac{1.4(nM)^{0.176}}{(1-\rho)^{0.376}}$$
(4.25)

onde $\overline{\rho^{\beta}}_{e} (1-\rho)^{0.376}$ são os valores médios das respectivas funções de coeficiente de correlação ρ entre as estações i e j, com $1 \le i < j \le M$. Conforme dedução de Castellarin (2007), a estimação da probabilidade de superação da curva envoltória pode ser posta sob a forma:

$$p = 1 - \frac{\hat{n}_{ef} - \eta}{\hat{n}_{ef} + 1 - 2\eta}$$
(4.26)

onde η representa uma probabilidade empírica, calculada por meio de um parâmetro de posição de plotagem, o qual é dependente da distribuição selecionada, e \hat{n}_{ef} denota o número efetivo de observações amostrais, resultante da soma dos tamanhos efetivos das amostras de todos os subconjuntos regionais.

Posteriormente, Castellarin (2007) propõe a utilização da distribuição Generalizada de Valores Extremos (GEV), que de acordo com Vogel e Douglas (2005), é considerada um modelo distributivo usual para descrever o comportamento de eventos extremos.

4.2.2 Modelagem da correlação cruzada entre as estações

De acordo com Castellarin (2007), uma possível aproximação da modelagem da correlação cruzada entre as estações de monitoramento utilizadas no estudo consiste no cálculo dos coeficientes de correlação amostrais utilizando estimadores já propostos na literatura, tal como descreve Stedinger (1981).

Desse modo, busca-se a correlação cruzada entre as estações de monitoramento através de fórmulas de correlação empíricas em função das distâncias entre as seções transversais dessas estações ou entre os centróides das bacias hidrográficas por elas drenadas. Por simplicidade adota-se, doravante nesta dissertação, que a distância refere-se àquela que separa as seções transversais de duas estações fluviométricas, tal como justificado no Anexo 2.

Nesse contexto, Castellarin (2007) cita o trabalho de Tasker e Stedinger (1989), no qual os autores descrevem um modelo de correlação entre as estações em função da distância, comumente utilizado em estudos de regionalização. Este modelo é descrito pela seguinte equação:

$$\rho_{i,j} = \exp\left(-\frac{\lambda_1 d_{i,j}}{1 + \lambda_2 d_{i,j}}\right)$$
(4.27)

na qual, $\rho_{i,j}$ indica a correlação entre as estações *i* e *j*, separadas pela distância $d_{i,j}$, e λ_1 e λ_2 denotam coeficientes a serem estimados pelo método dos mínimos quadrados.

Para Castellarin (2007), a equação 4.27 pode ser aplicada para a análise da tendência do decaimento gradual do grau de correlação cruzada em função da distância entre as estações utilizadas no estudo. Ainda, de acordo com o mesmo autor, uma função de correlação mais simples e passível de utilização pode ser posta da seguinte maneira:

$$\rho_{i,j} = \exp\left(-\lambda d_{ij}\right) \tag{4.28}$$

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

79

onde, $\rho_{i,j}$ indica a correlação entre as estações *i* e *j*, separadas pela distância $d_{i,j}$, e λ denota o coeficiente de decaimento exponencial da correlação cruzada para a região em estudo.

4.2.3 Estimação do número efetivo de observações amostrais

De acordo com Castellarin (2007), a condição de períodos em comum entre todos os dados de vazões máximas anuais entre as séries hidrológicas, registradas em estações fluviométricas de uma região considerada homogênea, é raramente verificada na prática da hidrologia, inviabilizando a aplicação da equação 4.24.

Dessa maneira, o mesmo autor propõe a estimação de um número efetivo n_{ef} de observações amostrais, segundo o seguinte raciocínio: suponha que uma determinada região homogênea contenha M estações de monitoramento, onde cada estação possua n registros de vazões máximas anuais.

Primeiro, torna-se necessário identificar os registros únicos de vazão máxima anual, ou seja, o número de vezes, n_1 , em que o registro de vazão máxima é presente em apenas um determinado ano ao longo da série histórica, não ocorrendo nenhum outro valor de vazão em comum no mesmo ano em nenhuma das M estações. Desta forma, por definição, essas observações são efetivas.

Assim, os registros de vazões máximas remanescentes, ou seja, $(n-n_1)$ pertencentes às M estações inseridas dentro de uma região homogênea, são subdivididos em subconjuntos regionais N_{sub} . Desta maneira, quando ocorrerem dois ou mais registros de vazões máximas em comum para um determinado ano ou seqüência de anos da série hidrológica, sendo esses registros únicos para esse mesmo período, irão constituir um subconjunto regional N_{sub} . A Figura 4.1 ilustra a definição de subconjuntos regionais hipotéticos.

Desta forma, após definidos os registros em comum de vazões que constituem um subconjunto regional composto por L_s postos de monitoramento, dentre as M estações constituintes de uma região considerada homogênea, pode-se definir o conceito de número efetivo de observações utilizado na análise.

Figura 4.1 - Definição dos subconjuntos regionais

Considerando os subconjuntos regionais formados a partir dos registros fluviométricos disponíveis para a região considerada homogênea, com registros de vazões máximas anuais em comum para um ou mais anos ao longo da série fluviométrica, composto por L_s estações fluviométricas, o número efetivo de observações n_{ef} corresponde àqueles a serem efetivamente utilizados no estudo, dentre os *n* registros das *M* estações, de maneira a reduzir a correlação cruzada entre essas estações de monitoramento. Nesse contexto, a equação para o cálculo do número efetivo de observações amostrais é definida da seguinte forma:

$$n_{ef} = n_1 + \sum_{s=1}^{N_{sub}} \frac{L_s \cdot l_s}{1 + \overline{\rho^{\beta}}(L_s - 1)}$$
(4.29)

onde

$$\beta = \frac{1.4(L_s \cdot l_s)^{0.176}}{(1-\rho)^{0.376}}$$
(4.30)

em que os termos $\overline{\rho^{\beta}}_{e} (\overline{(1-\rho)^{0.376}})$ possuem o mesmo significado daqueles presentes na equação 4.25, l_s denota o número de vezes em que uma combinação de dados de vazão em comum ocorreu única e exclusivamente para aquele ano, ou anos, ao longo da série hidrológica, que caracterizam a formação de um subconjunto regional.

Para o exemplo apresentado na Figura 4.1, tem-se três subconjuntos regionais, onde os valores de L_s e l_s são, respectivamente: subconjunto 1 (2 e 3), subconjunto 2 (4 e 8), subconjunto 3 (2 e 3).

4.2.4 Estimação da posição de plotagem

Castellarin *et al.* (2005) utilizaram as equações de posição de plotagem de Weibull e Gringorten, entretanto não discutiram os efeitos do emprego dessas equações para a estimação do valor de superação associado à curva envoltória.

De acordo com Castellarin (2007), a estimação da posição de plotagem por meio da distribuição Generalizada de Valores Extremos (GEV) é a que fornece os melhores resultados para a aplicação da metodologia para a interpretação probabilística das curvas envoltórias.

Assim, conforme apresentado por Arnell *et al.* (1986), reportado no trabalho de Castellarin (2007), uma estimativa da posição de plotagem para o cálculo de uma probabilidade empírica η segundo uma distribuição de freqüência GEV pode ser aproximada por uma relação linear, tal como descreve a equação 4.31.

$$\eta(k) \cong \frac{\exp(\gamma) - 1}{\exp(\gamma)} - \frac{\pi^2}{12 \exp(\gamma)} k \cong 0,439 - 0,462k$$
(4.31)

onde $\gamma = 0,5772$ representa a constante de Euller e *k* é o parâmetro de forma da distribuição GEV. Assim, para Castellarin (2007), a aplicação da equação 4.31 para a estimação da posição de plotagem segundo uma distribuição GEV traz vantagens em relação às outras constantes na literatura, uma vez que a referida equação é dependente apenas do parâmetro de forma *k*.

4.3 Seqüência de etapas necessárias para a aplicação da metodologia proposta por Castellarin (2007) em bacias do estado de Minas Gerais

Com o objetivo de simplificar a aplicação da metodologia de Castellarin (2007) em algumas bacias do estado de Minas Gerais, faz-se a seguir um resumo dos procedimentos seqüenciais necessários.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

4.3.1 Aquisição e tratamento dos dados

A primeira etapa dos trabalhos consiste na seleção de um conjunto de bacias hidrográficas no estado de Minas Gerais, as quais devem dispor de informações fluviométricas apropriadas à aplicação da metodologia, de maneira a constituir um banco de dados de vazões naturais máximas anuais.

Nesse particular, a Companhia de Pesquisas de Recursos Minerais (CPRM) forneceu um estudo de regionalização de vazões máximas anuais para a bacia do Alto São Francisco, abrangendo as sub-bacias 40 e 41, conforme a divisão da Agência Nacional de Energia Elétrica - ANEEL.

4.3.2 Delimitação das regiões homogêneas

Inicialmente, deve-se delimitar as regiões homogêneas, do ponto de vista das vazões máximas anuais, para o conjunto de bacias adotado para análise. O estudo de regionalização das vazões máximas, conforme produzido por CPRM (2001), já apresenta a delimitação das regiões homogêneas para a área de estudo. Entretanto, conforme será visto ulteriormente, as regiões homogêneas foram redefinidas. Essa etapa envolve certo grau de subjetividade, o qual pode ser atenuado com o emprego das estatísticas de momentos-L, tal como descritas por Hosking e Wallis (1997).

4.3.3 Elaboração das curvas envoltórias empíricas

Tem-se o início do traçado destas curvas com a aplicação da equação 4.2, denotando uma lei de escala entre a cheia-índice local e a respectiva área de drenagem. Com o valor de b, a ser obtido pelo expoente do ajuste potencial sobre a lei de escala proposta por Castellarin *et al.* (2005), pode-se calcular o valor do coeficiente linear a da curva envoltória por meio da aplicação direta da equação 4.3. Este procedimento é repetido para cada posto de uma região considerada homogênea, e o máximo valor do coeficiente linear a dentre os postos pertencentes a esta região é utilizado para o cálculo da envoltória.

4.3.4 Redução da variabilidade espacial contida nos dados amostrais

Na seqüência, deve-se identificar uma função regional de correlação cruzada entre os locais sob análise, nesse particular, Castellarin (2007) propuseram os modelos apresentados pelas

equações 4.27 e 4.28. Ainda segundo o mesmo autor, a aplicação de qualquer uma das duas equações satisfaz a condição de redução da variabilidade espacial dos dados amostrais. Nesse sentido opta-se pela utilização da equação 4.28, uma vez que seu tratamento matemático facilita no ajuste de um modelo exponencial aos dados observados presentes nas estações.

A aplicação da equação 4.28 inicia-se com o cálculo da correlação entre as estações i e j, separadas pela distância $d_{i,j}$, abrangendo todas as estações presentes no estudo. Desta maneira têm-se a distância entre todas as estações, combinadas com os respectivos coeficientes de correlação obtidos para o período em comum de dados de vazões máximas entre estas mesmas estações. Assim, pode-se construir a representação gráfica das distâncias entre as estações *versus* os valores dos coeficientes de correlação, conforme ilustrado na Figura 4.2. Através de um ajuste exponencial sobre os dados contidos no gráfico, tem-se a calibração da equação 4.28.

Figura 4.2 - Representação gráfica das distâncias entre as estações *versus* os valores dos coeficientes de correlação (Adaptado de Castellarin, 2007)

Seguindo os mesmos procedimentos, a equação 4.28 também pode ser calibrada por região homogênea, entretanto as estações consideradas são apenas aquelas inseridas dentro dessas regiões. Nesta dissertação de mestrado foram consideradas essas duas maneiras de calibração para a equação 4.28, conforme será visto ao longo do Capítulo 5.

4.3.5 Determinação do número efetivo de observações amostrais

Esta etapa consiste no cálculo do número efetivo de observações amostrais a serem efetivamente utilizados no estudo, dentre os registros de observações de vazões máximas anuais presentes nas M estações fluviométricas tomadas para análise. Assim, são definidos os subconjuntos regionais N_{sub} e o número de observações únicas n_1 , conforme descrito no item 4.2.3.

A próxima etapa consiste na obtenção do grau de correlação entre os subconjuntos regionais, por meio da utilização do modelo de correlação cruzada proposto conforme a equação 4.28. Assim, pode-se entrar com a distância entre as L_s estações pertencentes a cada subconjunto regional em um gráfico tal como representado pela Figura 4.2 e, através da equação 4.28 já calibrada por meio de um ajuste exponencial sobre os dados contidos nesse gráfico, obtêm-se o coeficiente de correlação entre as estações que constituem os subconjuntos regionais.

Repetindo esses procedimentos para todos os subconjuntos regionais, pode-se calcular os termos $\overline{(1-\rho)^{0.376}}$ e $\overline{\rho^{\beta}}$ das equações 4.30 e 4.29, respectivamente, e finalmente efetua-se o cômputo do número de observações efetivas.

A idéia posta como pano de fundo ao cálculo do número de observações efetivas consiste na tentativa da redução da correlação cruzada entre as estações de monitoramento utilizadas na análise. Assim, por exemplo, se são utilizadas M estações de monitoramento no estudo, e o cálculo de n_{ef} corresponde a w, apenas w dos n registros de descargas máximas anuais contidas nas M estações serão considerados, onde os (n-w) registros apresentam correlação cruzada entre si.

4.3.6 Estimação da posição de plotagem

A estimativa de uma probabilidade empírica calculada por meio de uma equação de posição de plotagem pode ser efetuada por meio da aplicação da equação 4.31, segundo descreve Castellarin (2007). Desta forma, conforme discutido, o único termo a ser estimado para a aplicação dessa equação é o parâmetro de forma k da distribuição GEV.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

No item 3.3.1.3 foram discutidos alguns métodos de estimativas de parâmetros de funções de distribuição de probabilidade, entre os quais: métodos dos momentos (MOM), método da verossimilhança (MVS) e método dos momentos-L (MML).

Assim, recomenda-se a utilização do método MML, uma vez que este, de acordo com Naghettini e Pinto (2007), produz estimadores de parâmetros comparáveis, em qualidade, àqueles produzidos pelo método MVS, com a vantagem de exigirem um menor esforço computacional para a solução de sistemas de equações complexas.

Com efeito, a estimação do parâmetro de forma *k* da distribuição GEV, segundo o método dos momentos-L, pode ser obtido pelo seguinte conjunto de equações:

$$\hat{k} = 7,8590C + 2,9554C^2 \tag{4.32}$$

onde

$$C = \frac{2}{(3+t_3) - \frac{\ln(2)}{\ln(3)}}$$
(4.33)

em que o termo t_3 representa o coeficiente de assimetria-L (CV-L).

4.3.7 Estimação da probabilidade de superação da curva envoltória

Após o cálculo da probabilidade empírica η , e do número efetivo de observações amostrais a serem utilizados no estudo, pode-se estimar por meio da aplicação da equação 4.26 uma probabilidade de superação p, cujo inverso denota o tempo de retorno associado à curva envoltória traçada para uma determinada região homogênea.

4.4 Exemplo de aplicação prática para as etapas de redução da variabilidade espacial contida nos dados amostrais e determinação do número efetivo de observações

Algumas das etapas necessárias para a aplicação da metodologia proposta por Castellarin (2007) são complexas e podem gerar algumas dúvidas ao leitor da presente dissertação de

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

mestrado. Assim, optou-se por apresentar um exemplo de aplicação para melhor elucidar os procedimentos contidos nos itens 4.3.4 e 4.3.5.

Assim, será abordada a aplicação prática referente à redução da variabilidade espacial contida nos dados amostrais e à determinação do número efetivo de observações amostrais para a região homogênea MAX IV. Essa região foi tomada como exemplo para a aplicação prática por conter apenas três estações fluviométricas, facilitando assim o desenvolvimento dos cálculos. Maiores detalhes referentes à região homogênea MAX IV serão devidamente tratados no Capítulo 5 deste trabalho.

As etapas de aquisição e tratamento dos dados, delimitação das regiões homogêneas, elaboração das curvas envoltórias de cheias, estimação da posição de plotagem e estimação da probabilidade de superação da curva envoltória serão apresentadas no Capítulo 5 para toda a área de estudo. Neste tópico serão mostradas apenas as etapas de redução da variabilidade espacial contida nos dados amostrais e determinação do número efetivo de observações amostrais para a região homogênea MAX IV.

Conforme mencionado no item 4.2.2, a função de correlação cruzada segue um modelo exponencial, podendo ser calibrado para toda a área de estudo, ou por região homogênea. Neste exemplo adota-se a calibração desse modelo para toda a área de estudo uma vez que, segundo Castellarin (2007), este processo implica em maior robustez na calibração da equação 4.28. Ao longo do Capítulo 5 será mostrado que essa equação foi calibrada tanto para toda a área de estudo, quanto por região homogênea.

Assim, para a calibração da equação 4.28, é necessário tomar a distancia d_{ij} , entre as estações *i* e *j*, e em seguida efetuar o cálculo do coeficiente de correlação para o período de dados de vazões máximas em comum entre essas mesmas estações. Desta maneira, pode-se elaborar a representação gráfica das distâncias *versus* os coeficientes de correlação obtidos.

Após um ajuste exponencial sobre os dados contidos no gráfico, tem-se a calibração da equação 4.28 para toda a área de estudo, onde o coeficiente de decaimento exponencial da correlação cruzada λ estimado foi de -0,006. Este procedimento será discutido no Capítulo 5.

Em seguida, tem-se a definição dos subconjuntos regionais para a região MAX IV. A Tabela 4.1 mostra os dados de descargas máximas anuais registradas nas três estações pertencentes à região homogênea MAX IV. Assim, pode-se efetuar a definição dos subconjuntos regionais, tal como mostrado na Tabela 4.2. Nessa tabela são observados quatro subconjuntos regionais e 22 anos de registros de vazões máximas não comuns, n_1 , em um determinado ano, para as três estações em análise.

Após esse procedimento, torna-se necessário a aplicação da equação 4.29. O termo L_s representa o número de estações consideradas em cada subconjunto regional formado para a região MAX IV, enquanto o termo l_s denota o número de vezes em que uma combinação de dados de vazão em comum ocorreu única e exclusivamente para aquele ano, ou anos, ao longo da serie hidrológica, que caracterizam a formação de um subconjunto regional. Para o caso do subconjunto regional 1, por exemplo, tem-se que $L_s = 2$ e $l_s = 6$.

Utilizando as distâncias entre as estações fluviométricas correspondentes a cada subconjunto regional, ajusta-se um coeficiente de correlação teórico, representado pela equação 4.28, por meio da aplicação do modelo de correlação espacial calibrado para toda a área de estudo, ou seja, são ajustados coeficientes de correlação às distancias entre as estações que compõem cada subconjunto regional, tal como mostrado na Tabela 4.3.

Finalmente, pode-se calcular os termos $\overline{(1-\rho)^{0.376}}$ e $\overline{\rho^{\beta}}$ das equações 4.30 e 4.29, respectivamente, e finalmente efetuando o cômputo do número de observações efetivas, onde a Tabela 4.4 mostra os resultados referentes a esses procedimentos.

Estação Fluviométrica		Vazões Máximas por Ano Hidrológico										
		1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950
Fazenda Capoeirão + Montante do Bom Sucesso		44,8	39,6	45,8	23,3	46,6	49,7	52,9	26,8	35,9	38,6	40,3
Ponte Capoeirão					30,9	74,3	89,8	81,3	39	54,4		
Tapiraí-Jusante		56,8	47,4	94	31,7	68,5	54,6					56
Subconjuntos regionais		sub. 2	sub. 2	sub. 2	sub. 4	sub. 4	sub. 4	sub. 1	sub. 1	sub. 1	1	sub. 2
Estação Fluviométrica		Vazões Máximas por Ano Hidrológico										
		1952	1953	1954	1955	1956	1957	1958	1959	1960	1964	1966
Fazenda Capoeirão + Montante do Bom Sucesso		31,2	36,8	24,9	40,8	43,8	40,9	39,6	42,4	42,4		
Ponte Capoeirão	72	41,9	44,9	34,9			64,8	59,3	59,3	69,2		
Tapiraí-Jusante		36,6			40,2	40,3	45,3	37,7	40		74	49,6
Subconjuntos regionais		sub. 4	sub. 1	sub. 1	sub. 2	sub. 2	sub. 4	sub. 4	sub. 4	sub. 1	2	3
Estação Fluviométrica		Vazões Máximas por Ano Hidrológico										
		1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
Fazenda Capoeirão + Montante do Bom Sucesso									53,2	64,5	58	57,7
Ponte Capoeirão												
Tapiraí-Jusante		52,2	57	38,4	53,9	55,8	40,7	47,2	40,7	48,6	39,6	35,1
Subconjuntos regionais		4	5	6	7	8	9	10	sub. 2	sub. 2	sub. 2	sub. 2
Estação Fluviométrica		Vazões Máximas por Ano Hidrológico										
		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Fazenda Capoeirão + Montante do Bom Sucesso			72	69,5	62,6	69,2	57,8			35	64,3	
Ponte Capoeirão												
Tapiraí-Jusante		30,9	40,2	65,1	57,2	63	51,1	46,6	45,2	35,3	44,5	42,5
Subconjuntos regionais		11	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	12	13	sub. 2	sub. 2	14
Estação Fluviométrica		Vazões Máximas por Ano Hidrológico										
		1992	1993	1994	1995	1996	1997	1998				
Fazenda Capoeirão + Montante do Bom Sucesso												
Ponte Capoeirão												
Tapiraí-Jusante		30,5	45,3	45,3	44,2	61,6	38,2	40,2				
Subconjuntos regionais		16	17	18	19	20	21	22	J			

Tabela 4.1 - Vazões máximas por ano hidrológico para a região MAX IV
Estação Fluviométrica				Sé rie	Rearra	anjada d	le Vazõ	es Máx	timas			
Fazenda Capoeirão + Montante do Bom Sucesso	38,6											
Ponte Capoeirão												
Tapiraí-Jusante		74	49,6	52,2	57	38,4	53,9	55,8	40,7	47,2	30,9	46,6
Subconjuntos regionais	1	2	3	4	5	6	7	8	9	10	11	12
Estação Fluviométrica				Sé rie	Rearra	anjada d	le Vazõ	es Máx	timas			
Fazenda Capoeirão + Montante do Bom Sucesso											52,9	26,8
Ponte Capoeirão											81,3	39
Tapiraí-Jusante	45,2	42,5	41,5	30,5	45,3	45,3	44,2	61,6	38,2	40,2		
Subconjuntos regionais	13	14	15	16	17	18	19	20	21	22	sub. 1	sub. 1
Estação Fluviométrica				Sé rie	Rearra	anjada d	le Vazõ	es Máx	timas			
Fazenda Capoeirão + Montante do Bom Sucesso	35,9	36,8	24,9	42,4	35,8	44,8	39,6	45,8	40,3	40,8	43,8	53,2
Ponte Capoeirão	54,4	44,9	34,9	69,2								
Tapiraí-Jusante					48,5	56,8	47,4	94	56	40,2	40,3	40,7
Subconjuntos regionais	sub. 1	sub. 1	sub. 1	sub. 1	sub. 2	sub. 2	sub. 2	sub. 2				
Estação Fluviométrica		-	-	Sé rie	Rearra	anjada d	le Vazõ	es Máx	imas		-	-
Fazenda Capoeirão + Montante do Bom Sucesso	64,5	58	57,7	66,2	72	69,5	62,6	69,2	57,8	35	64,3	
Ponte Capoeirão												68,1
Tapiraí-Jusante	48,6	39,6	35,1	41,5	40,2	65,1	57,2	63	51,1	35,3	44,5	58,1
Subconjuntos regionais	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 2	sub. 3
Estação Fluviométrica	Série Rearranjada de Vazões Máximas											
Fazenda Capoeirão + Montante do Bom Sucesso	23,3	46,6	49,7	44,3	31,2	40,9	39,6	42,4				
Ponte Capoeirão	30,9	74,3	89,8	72	41,9	64,8	59,3	59,3				
Tapiraí-Jusante	31,7	68,5	54,6	69	36,6	45,3	37,7	40				
Subconjuntos regionais	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4				

Tabela 4.2 - Vazões máximas rearranjadas por ano hidrológico para a região MAX IV

Subconjunto 1	Distancia (km)	ρ	
Fazenda Capoeirão + Montante do Bom Sucesso	2 53	0 9849	
e Ponte Capoeirão	2,35	0,7047	
Subconjunto 2	Distância (km)	ρ	
Fazenda Capoeirão + Montante do Bom Sucesso	10.6	0.0284	
e Tapiraí-Jusante	10,0	0,750+	
Subconjunto 3	Distância (km)	ρ	
Ponte Capoeirão e Tapiraí-Jusante	11,59	0,9328	
Subconjunto 4	Distância (km)	ρ	
	2,53	0,9849	
Todos os postos	10,6	0,9384	
	11,59	0,9328	

 Tabela 4.3 - Coeficientes de correlação ajustados às distancias entre as estações que compõem cada subconjunto regional

Tabela 4.4 - Cálculo do número efetivo de observações amostrais

Subconjunto 1									
Ls =	2	ls =	6						
ρ	$\overline{(1-\rho)^{0,376}}$	ß	$\overline{ ho^{eta}}$	$\frac{L_s \cdot l_s}{1 + \left[\rho^{\beta}\right] (L_s - 1)}$					
0,9849	0,2065	10,4989	0,8527	6,4771					
Subconjunto 2									
$Ls = 2 \qquad ls = 19$									
ρ	$\overline{(1-\rho)^{0,376}}$	ß	$\overline{ ho^{eta}}$	$\frac{L_s \cdot l_s}{1 + \left[\overline{\rho^{\beta}} \right] \left(L_s - 1 \right)}$					
0,9384	0,3507	7,5724	0,6178	23,4888					
	Subconjunto 3								
Ls =	2	ls =	1						
ρ	$\overline{(1-\rho)^{0,376}}$	ß	$\overline{ ho^{eta}}$	$\frac{L_s \cdot l_s}{1 + \left[\overline{\rho^{\beta}} \right] (L_s - 1)}$					
0,9328	0,3623	4,3659	0,7382	1,1506					
		Subcon	junto 4						
Ls =	3	ls =	8						
ρ	$\overline{(1-\rho)^{0,376}}$	ß	$\overline{ ho^{eta}}$	$\frac{L_s \cdot l_s}{1 + \left[\overline{\rho^{\beta}} \right] (L_s - 1)}$					
0,9849	0,2065	7,9915	0,8858	10,1096					
0,9384	0,3507		0,6015						
0,9328	0,3623		0,5737						
	0,3065		0,6870						
$n_{I} = 22$ $n_{ef} = n_{1} + \sum_{s=1}^{N_{sub}} \frac{L_{s} \cdot l_{s}}{1 + \rho^{\beta}} = 63,22$									

4.5 Extensão da metodologia proposta por Castellarin (2007): Estimação dos quantis de vazões máximas, para diversos tempos de retorno, utilizando a probabilidade de superação associada às curvas envoltórias de cheias

Sabendo-se a probabilidade de superação, e conseqüentemente o tempo de retorno, do valor esperado da curva envoltória, pode-se estimar a vazão para esse mesmo período de retorno em qualquer bacia pertencente àquela região homogênea, com área de drenagem compreendida nos limites da curva envoltória, na qual a distribuição Generalizada de Valores Extremos seja o modelo probabilístico regional.

De acordo com Naghettini e Pinto (2007), a distribuição Generalizada de Valores Extremos, ou distribuição GEV, da terminologia inglesa *Generalized Extreme Value*, foi introduzida por Jenkinson (1955) e incorpora em uma única expressão, conforme pode ser verificado no item A1. 4 do Anexo 1, as três formas assintóticas de valores extremos máximos, a saber, os modelos distributivos Fréchet, Gumbel e Weibull.

Assim, conhecido o quantil de vazão estimado através da envoltória, denotado por X_{T} , e admitindo que esta região apresente a distribuição GEV como o modelo distributivo para descrever o comportamento de vazões máximas anuais, e com a média das máximas vazões obtida pela lei de escala proposta por Castellarin *et al.* (2005), pode-se estender a metodologia e construir a curva de freqüências completa para aquela bacia em particular, ou para qualquer outra localizada na área de estudo.

De fato, uma vez estimado o parâmetro de forma κ , por meio do método dos momentos-L, tal como descrito por Hosking e Wallis (1997), as estimativas dos outros parâmetros, a saber, o de escala $\hat{\alpha}$ e o de posição $\hat{\beta}$ da distribuição GEV podem ser calculados por meio da solução do seguinte sistema formado pelas equações 4.34 e 4.35, que representam a média e a função de quantis da distribuição GEV, respectivamente:

$$\mu_{X} = \beta + \frac{\alpha}{\kappa} \left[1 - \Gamma(1 + \kappa) \right] \tag{4.34}$$

$$x(T) = \beta + \frac{\alpha}{\kappa} \left\{ 1 - \left[-\ln\left(1 - \frac{1}{T}\right) \right]^{\kappa} \right\}$$
(4.35)

92

Conhecidas as estimativas dos parâmetros de forma, escala e posição da distribuição de freqüência GEV, pode-se construir a curva de freqüência completa para qualquer bacia de área de drenagem compreendida nos limites da curva envoltória traçada para a região em estudo.

4.6 Avaliação de desempenho da metodologia estendida

Uma vez efetuada a estimação dos quantis de vazões máximas de interesse, utilizando a metodologia que associa um tempo de retorno às das curvas envoltórias de cheias, tal como descrito por Castellarin (2007), estendida para o cálculo da curva total de freqüências, a comparação é efetuada com os quantis de vazões máximas estimados pela regionalização hidrológica utilizando os momentos-L, descrita por Hosking e Wallis (1997), e também pela análise de freqüência local, utilizando as estimativas dos parâmetros da distribuição GEV pelo método dos momentos (MOM) e pelo método dos momentos-L (MML).

Para o processo de estimação dos quantis de vazões máximas para diferentes períodos de retorno, utilizando a análise de freqüência local, onde aplica-se o método dos momentos e o método dos momentos-L para a estimação dos parâmetros da distribuição GEV, e a análise de freqüência regional usando os momentos-L, busca-se o emprego de recursos computacionais.

A regionalização hidrológica proposta por Hosking e Wallis (1997) é efetuada com a utilização das rotinas computacionais em linguagem Fortran-77, disponibilizadas pelos mesmos autores no endereço eletrônico *http://lib.stat.cmu.edu/general/lmoments*.

Para a estimação dos parâmetros da distribuição de probabilidade GEV, fazendo uso do método dos momentos (MOM), aplica-se o programa ALEA (Análise de Freqüência Local de Eventos Anuais), versão 1, que usa os métodos dos momentos e da máxima verossimilhança para estimar os parâmetros (e quantis) das principais distribuições de probabilidades usadas na análise de freqüências de eventos hidrológicos mínimos, médios e máximos anuais. O programa encontra-se disponível para *download* em *http://www.ehr.ufmg.br/downloads.php*.

A análise de freqüência local, utilizando o método dos momentos-L (MML) para a estimação dos parâmetros da distribuição GEV, pode ser efetuada pela aplicação do programa SEAF (Sistema Especialista para Análise Local de Freqüência), sendo um programa de auxílio à decisão multi-critério para a escolha de uma ou mais distribuições de probabilidade adequadas

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

à modelação de uma amostra de eventos hidrológicos máximos anuais. Este programa encontra-se disponível no endereço eletrônico *http://www.ehr.ufmg.br/downloads.php*.

Dessa forma, obtidos os quantis de descargas máximas anuais para diferentes períodos de retorno utilizando a metodologia que associa uma probabilidade de excedência ao valor esperado da curva envoltória de cheias, pode-se comparar esses resultados àqueles referentes à análise de freqüência local, usando o método dos momentos e o método dos momentos-L para a estimação dos parâmetros da distribuição de freqüência GEV. Em seguida, faz-se também a comparação daqueles quantis estimados pela aplicação da metodologia das curvas envoltórias com aqueles obtidos através da análise de freqüência regional utilizando os momentos-L.

Por fim, pode-se calcular o desvio médio percentual para cada região homogênea, onde temse a análise dos desvios percentuais entre as estimativas dos valores de quantis de vazões máximas obtidos tanto pela metodologia das curvas envoltórias de cheias, quanto pela regionalização utilizando os momentos-L. Assim, os desvios podem ser obtidos, para diferentes períodos de retorno, tomando-se a média dos desvios calculados para cada estação de monitoramento pertencente a uma região hidrologicamente homogênea.

Estes desvios são computados subtraindo-se os quantis estimados de vazões máximas obtidos pela metodologia das curvas envoltórias pelos quantis de vazões máximas estimados pela regionalização utilizando os momentos-L, e dividindo esse resultado pelos quantis de vazões máximas estimados pela regionalização utilizando os momentos-L.

O capítulo seguinte traz os tópicos referentes à aplicação da metodologia aqui descrita para a bacia do Alto São Francisco, abrangendo as sub-bacias 40 e 41, conforme a divisão da Agência Nacional de Energia Elétrica – ANEEL.

94

5 APLICAÇÃO DA METODOLOGIA

Para o início do trabalho aqui proposto, tem-se a necessidade da definição de uma bacia hidrográfica para o estudo, a qual deve dispor de informações fluviométricas apropriadas à aplicação da metodologia proposta por Castellarin *et al.* (2005) e Castellarin (2007), aqui estendida conforme apresentado no Capítulo 4, de modo a construir um banco de dados de vazões naturais máximas anuais.

Neste sentido, a Companhia de Pesquisas de Recursos Minerais (CPRM, 2001) forneceu um estudo de regionalização de vazões máximas anuais para a bacia hidrográfica do alto rio São Francisco, incluindo o rio das Velhas, abrangendo as sub-bacias 40 e 41, conforme a divisão da Agência Nacional de Energia Elétrica (ANEEL).

A escolha desta área como região para a aplicação da metodologia deve-se à qualidade, quantidade e disponibilidade de informações hidrológicas fornecidas através da rede hidrométrica operada na bacia. Assim, as séries hidrológicas de vazões máximas anuais encontraram-se consistidas e prontas para serem empregadas na análise de freqüência. Outro aspecto importante na definição da área de estudo é o fato das regiões homogêneas já terem sido definidas conforme estudo produzido por CPRM (2001).

5.1 Localização e caracterização da região

De acordo com (CPRM, 1995 *apud* CPRM, 2001), a sub-bacia 40 situa-se na região central do Estado de Minas Gerais, numa área da ordem de 51.000 km² compreendida entre as nascentes do rio São Francisco e a Barragem de Três Marias, correspondendo aproximadamente às latitudes 18° 15' e 20° 40' Sul e longitudes 43° 50' e 46° 10' Oeste.

Ainda, de acordo com as informações contidas em (CPRM, 1995 *apud* CPRM, 2001), a subbacia 41, corresponde à parcela da bacia do rio São Francisco, com área aproximada de 39.000 km², compreendida entre a barragem de Três Marias exclusive e a barra do rio das Velhas inclusive. Está localizada no centro do estado de Minas Gerais, entre as latitudes 17° 20' e 20° 30' Sul e longitudes 43° 30' e 46° 20' Oeste. Apresenta forma irregular, abrangendo trecho relativamente curto do curso do rio São Francisco, cerca de 150 km, sendo sua área mais expressiva, a bacia do rio das Velhas, o maior tributário do Alto São Francisco.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

O rio Abaeté é o segundo maior tributário do rio São Francisco nesta sub-bacia, seguindo-se outros bem menos expressivos, como o rio Formoso, afluente da margem esquerda e o rio de Janeiro, afluente da margem direita. A localização das sub-bacias 40 e 41 no Estado de Minas Gerais encontra-se ilustrada na Figura 5.1.

Os itens a seguir contemplam alguns tópicos relativos à caracterização da área de estudo, segundo o trabalho produzido por CPRM (2001). Para maior detalhamento acerca da caracterização das sub-bacias 40 e 41, o leitor deve se referir ao trabalho citado.

5.1.1 Geologia e Geomorfologia

• Sub-bacia 40

"A região em estudo estrutura-se essencialmente sobre rochas de idade precambriana, desde arqueanas até proterozóicas superiores. Apenas uma pequena parcela drena unidades mesozóicas da serra Mata da Corda." (CPRM, 1995 apud CPRM, 2001, p.05).

"O relevo da sub-bacia 40 é caracterizado por planaltos, depressões e áreas dissecadas resultantes predominantemente da alternância de atuação de processos morfoclimáticos associados ao condicionamento geológico. As unidades geomorfológicas existentes são as seguintes:

- Planalto Dissecado do Centro-Sul e Leste de Minas;
- Depressão São Franciscana;
- Planalto do São Francisco." (CPRM, 1995 apud CPRM, 2001, p.05-06).
- Sub-bacia 41

"O alto rio das Velhas, desde as suas nascentes até o norte de Belo Horizonte, quando adentra a Bacia Sedimentar Proterozóica Superior de Bambuí, drena rochas metavulcânicas, metavulcano-sedimentares e meta-vulcano-sedimentares arqueanas do Super-Grupo Rio das Velhas; rochas meta-sedimentares proterozóicas inferiores do Super-Grupo Minas e rochas granito-gnáissicas arqueanas e proterozóicas dos Complexos Bação e Belo Horizonte. A intensa ocupação pelo homem nesta região causou uma erosão acelerada dos terrenos e, conseqüentemente, um grande volume de sedimentos inconsolidados que tem assoreado os cursos d'água da bacia do rio das Velhas." (CPRM, 1995 apud CPRM, 2001, p.06).

"No médio curso do rio das Velhas, ou seja, desde a área ao norte de Belo Horizonte até a serra do Cabral, próximo a Várzea da Palma, o rio das Velhas corta rochas principalmente do Grupo Bambuí, sendo que as sub-bacias dos rios Cipó e Paraúna cortam em suas cabeceiras rochas dos Grupos Macaúbas e Espinhaço e do núcleo arqueano de Gouvêa." (CPRM, 1995 apud CPRM, 2001, p.06).

"Logo ao norte de Belo Horizonte, o vale do rio das Velhas encaixa-se em sedimentos carbonáticos da Fm. Sete Lagoas/Gr. Bambuí. Desenvolve-se então um intenso regime de drenagem cárstica. Em seguida drena rochas pelíticas e carbonáticas intercaladas do Sub-Grupo Paraopeba/Gr. Bambuí, até a serra do Cabral, quando corta rochas da Fm. Jequitaí e Grupo Espinhaço. Seus afluentes da margem direita drenam, além das rochas já citadas, a seqüência carbonática da Fm. Lagoa do Jacaré/Gr. Bambuí, próximo a Santo Hipólito e Buenópolis, as seqüências arenosas e conglomeríticas (quartzitos e meta-conglomerado) dos Grupos Macaúbas e Espinhaço e os gnaisses e xistos verdes do núcleo de Gouvêa." (CPRM, 1995 apud CPRM, 2001, p.06).

"Da serra do Cabral até a Barra do Guaicuí, no baixo curso do rio das Velhas, o mesmo corre em uma peneplanície enquanto seus afluentes cortam as serras e chapadas laterais. O terreno do vale é formado por rochas do Sub-Grupo Paraopeba/Gr. Bambuí em seu eixo, por rochas do Grupo Espinhaço e Fm. Jequitaí da serra do Cabral em sua vertente leste e por rochas da Fm. Três Marias/ Gr. Bambuí e de chapadas laterizadas (os Campos Gerais) em sua vertente oeste." (CPRM, 1995 apud CPRM, 2001, p.07).

"As nascentes do rio Abaeté se situam em rochas da Fm. Mata da Corda do Cretáceo, constituídas de tufos, tufitos e níveis de rochas básicas alcalinas. O rio Abaeté corre em um vale bem encaixado, sobre rochas pelito-carbonáticas do Sub-Grupo Paraopeba/Gr. Bambuí, até poucos quilômetros a NE de São Gonçalo do Abaeté, quando passa a correr sobre rochas areníticas arcosianas da Fm. Três Marias/Gr. Bambuí. Os afluentes das duas margens drenam rochas das Fms. Areado (arenitos) e Mata da Corda." (CPRM, 1995 apud CPRM, 2001, p.07).

"Entre a foz do rio Abaeté e a confluência do rio das Velhas, o rio São Francisco corre sobre rochas da Fm. Três Marias/Gr. Bambuí e drena a oeste, através de pequenos afluentes, rochas das Fms. Mata da Corda, Areado e Capacete (arenitos cineríticos), e a leste, também através de pequenos cursos d'água, rochas da Fm. Três Marias/Gr. Bambuí e das chapadas lateríticas do Terciário/Quartenário." (CPRM, 1995 apud CPRM, 2001, p.07).

"O relevo da sub-bacia 41 é caracterizado por unidades morfoestruturais e por planaltos, depressões e áreas dissecadas resultantes de processos morfoclimáticos. As unidades presentes são:

- O Planalto do São Francisco;
- A Depressão São Franciscana;
- O Quadrilátero Ferrífero;
- A Serra do Espinhaço" (CPRM, 1995 apud CPRM, 2001, p.07).

As Figuras 5.2 e 5.3 apresentam, respectivamente, o mapa geomorfológico e as unidades litoestratigráficas, referentes às sub-bacias 40 e 41. A Figura 5.4 retrata a legenda associada ao mapa das unidades lito-estratigráficas.

Figura 5.2 - Unidades geomorfológicas das sub-bacias 40 e 41 (Adaptado de CPRM, 2001)

Figura 5.3 - Unidades lito-estratigráficas das sub-bacias 40 e 41 (Adaptado de CPRM, 2001)

Figura 5.4 - Legenda referente à Figura 5.3 (Adaptado de CPRM, 2001)

5.1.2 Vegetação

• Sub-bacia 40

"A vegetação nativa na região do alto São Francisco é constituída predominantemente pelo cerrado, que se estendia originalmente por quase toda a sub-bacia. Este tipo de vegetação é característico de regiões de clima semi-úmido, constituindo-se principalmente de gramíneas, arbustos e árvores de médio porte, tendo como principais características os troncos e galhos retorcidos e a folhas espessas e coriáceas." (CPRM, 1995 apud CPRM, 2001, p.08).

"Atualmente, principalmente nas regiões mais planas, grandes áreas de cerrado vem sendo substituídas por pastagens e áreas de cultivo mecanizado, ou mesmo devastadas para a exploração de lenha e carvão. Nas regiões de relevo mais acidentado, entretanto, o cerrado se encontra mais preservado." (CPRM, 1995 apud CPRM, 2001, p.08).

"As áreas de florestas subcaducifólias, originalmente localizadas ao sul da bacia, já não existem na região em sua forma original, tendo sido totalmente substituídas por pastagens. Manchas de matas e capoeiras, entretanto, podem ser encontradas na região, principalmente próximo aos municípios de Pará de Minas, Pitangui e Bom Despacho. Florestas artificiais, geralmente de eucaliptus, foram implantadas nas regiões compreendidas entre os municípios de Paraopeba - Curvelo e Bom Despacho - Martinho Campos." (CPRM, 1995 apud CPRM, 2001, p.08).

"Em algumas áreas, os campos são originados a partir das intervenções antrópicas que resultaram na degradação de áreas de cerrado pelo uso do fogo. Esses campos são encontrados a oeste da bacia e próximo à barragem de Três Marias." (CPRM, 1995 apud CPRM, 2001, p.08).

• Sub-bacia 41

"A vegetação nativa da sub-bacia 41 era constituída originalmente por formações características de climas semi-úmidos, com duas estações bem marcadas, uma chuvosa e outra seca. Estas formações seriam: a floresta subcaducifólica tropical, existente na parte leste das bacias do alto e médio rio das Velhas; os campos de altitude, característicos das altitudes superiores a 900 m, aliados a solos rasos e topografia suave, predominantes na serra do Espinhaço; e o cerrado, presente nas demais áreas da sub-bacia em suas diversas

gradações, ou seja, o cerradão, o cerrado típico e o cerrado ralo. Esta vegetação original foi sendo gradativamente eliminada pela desordenada ocupação humana. As regiões com relevo suave, propícias à agricultura mecanizada e à criação extensiva de gado, bem como as regiões onde predominavam as matas, posteriormente depredadas para a extração da madeira, procura de novas terras para plantio, exploração de lenha e carvão, foram as mais atingidas, permanecendo mais preservada a vegetação das áreas de relevo mais acentuado." (CPRM, 1995 apud CPRM, 2001, p.09).

5.1.3 Clima

• Sub-bacia 40

"A região em estudo apresenta temperatura média anual variando entre 19 e 23 °C, sendo que as menores temperaturas são encontradas ao sul da bacia devido à influência orográfica, ocorrendo um aumento gradativo à medida que se alcançam as latitudes mais baixas." (CPRM, 1995 apud CPRM, 2001, p.10).

"Esses valores indicam a predominância de temperaturas medianas a elevadas na região durante quase todo o ano, principalmente na primavera e no verão. O mês mais quente, janeiro, apresenta média das máximas variando entre 28 e 30 °C. Já no período outonoinverno ocorre um significativo decréscimo na temperatura, sendo que a média das mínimas do mês mais frio, julho, varia entre 8 e 10 °C. A amplitude térmica anual é da ordem de 12 a 14 °C." (CPRM, 1995 apud CPRM, 2001, p.10).

"Com relação às precipitações, os totais pluviométricos anuais variam, de forma geral, entre 1.700 mm nas cabeceiras da bacia a 1.150 mm na região próxima à barragem de Três Marias. O regime pluviométrico é típico das regiões de clima tropical, com a ocorrência dos valores mensais máximos no período de verão e dos mínimos no inverno." (CPRM, 1995 apud CPRM, 2001, p.10).

"São encontradas na região, três tipologias climáticas, de acordo com a classificação de Wladimir Köppen:

Cwb - clima temperado brando com verão ameno (temperatura média do mês mais quente inferior a 22 °C) e inverno brando (temperatura média do mês mais frio inferior a 18 °C);

a estação seca é coincidente com o inverno. Este tipo climático ocorre na faixa meridional da região em estudo (latitudes 20°15' a 21°), junto às cabeceiras da bacia, onde as altitudes são mais elevadas, da ordem de 1.000 m;

- Cwa clima temperado brando com verão quente (temperatura média do mês mais quente superior a 22 °C) e inverno brando (temperatura média do mês mais frio inferior a 18 °C); a estação seca corresponde ao inverno. É o tipo climático característico da faixa central da região em estudo, correspondendo aproximadamente às latitudes entre 19 e 20 °;
- Aw clima tropical chuvoso, quente e úmido, com inverno seco e verão chuvoso. A temperatura média do mês mais frio é sempre superior a 18 °C. Este tipo climático ocorre nas latitudes mais baixas da sub-bacia, entre 18 e 19 °, nas proximidades da represa de Três Marias." (CPRM, 1995 apud CPRM, 2001, p.10-11).

• Sub-bacia 41

"As características climáticas mais importantes na região em estudo são a predominância de temperaturas medianas a elevadas durante todo o ano e a existência de duas estações bem marcadas: uma estação chuvosa no verão e outra seca no inverno." (CPRM, 1995 apud CPRM, 2001, p.11).

"As temperaturas médias anuais variam entre 20° e 23°C, atingindo valores inferiores a 20°C apenas nas altitudes mais elevadas encontradas na serra do Espinhaço e nas cabeceiras dos rios Abaeté e das Velhas." (CPRM, 1995 apud CPRM, 2001, p.11).

"O regime pluviométrico da sub-bacia 41 está predominantemente ligado ao equilíbrio dinâmico entre o sistema de circulação do anticiclone tropical do Atlântico Sul e o anticiclone polar, além do efeito das correntes perturbadas do oeste. Observa-se também, significativa influência orográfica, com o registro de precipitações mais elevadas nas encostas das montanhas situadas a barlavento. Os ventos predominantes são na direção NW-NE. O regime pluviométrico é típico dos climas tropicais, com estação chuvosa no verão e estação seca no inverno." (CPRM, 1995 apud CPRM, 2001, p.11).

"São encontradas na região, três tipologias climáticas, de acordo com a classificação de Wladimir Köppen:

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

- Cwb clima temperado brando com verão ameno (temperatura média do mês mais quente inferior a 22 °C) e inverno brando (temperatura média do mês mais frio inferior a 18 °C); a estação seca é coincidente com o inverno. Este tipo climático ocorre junto às cabeceiras da bacia do rio das Velhas e ao longo de toda a serra do Espinhaço, onde as altitudes são mais elevadas, entre 1.000 e 1.300 m;
- Cwa clima temperado brando com verão quente (temperatura média do mês mais quente superior a 22 °C) e inverno brando (temperatura média do mês mais frio inferior a 18 °C); a estação seca corresponde ao inverno. É o tipo climático característico de faixa estreita que se estende a leste da sub-bacia, desde o alto curso rio das Velhas até a serra do Cabral, e da bacia do alto curso do rio Abaeté;
- Aw clima tropical chuvoso, quente e úmido, com inverno seco e verão chuvoso. A temperatura média do mês mais frio é sempre superior a 18 °C. Este tipo climático ocorre nas demais áreas da sub-bacia, que apresentam altitudes menos elevadas." (CPRM, 1995 apud CPRM, 2001, p.11-12).

A Figura 5.5 mostra, segundo a classificação de Wladimir Köppen, as tipologias climáticas presentes nas sub-bacias 40 e 41.

Figura 5.5 - Classificação climática das sub-bacias 40 e 41 (Adaptado de CPRM, 2001)

5.1.4 Sistemas de aqüíferos (hidrogeologia da bacia)

A Sociedade Brasileira de Geologia, núcleo de Minas Gerais, elaborou um estudo de caracterização dos sistemas de aqüíferos referentes à porção mineira da bacia hidrográfica do rio São Francisco. Este estudo, conduzido por Mourão *et al.* (2001), contempla os quatro sistemas presentes na região, a saber: Sistema Aqüífero Granular, Sistema Aqüífero Cárstico, Sistema Aqüífero Fissurado-Cárstico e Sistema Aqüífero Fissurado, onde a visualização dessas estruturas pode ser observada na Figura 5.6.

"A individualização dos sistemas aqüíferos fundamentou-se nos aspectos litoestruturais e na natureza da permeabilidade das rochas. Litotipos com permeabilidade primária, que consiste no armazenamento de água nos espaços intergranulares, foram reunidos na categoria de Sistema Aqüífero Granular. Tipos rochosos em que a permeabilidade depende, sobretudo, do desenvolvimento das cavidades e aberturas causadas pela dissolução dos carbonatos, foram agrupados no Sistema Aqüífero Cárstico. Os pacotes rochosos em que se verifica a mistura ou alternância de frações argilo-siltosas e carbonáticas, foram classificados como Sistema Aqüífero Fissurado-Cárstico. As rochas caracterizadas pela presença de água em fissuras, fraturas, falhas ou outros planos de descontinuidade foram integradas nos Sistema Aqüífero Fissurado." (Mourão et al., 2001 apud CPRM, 2001, p.12).

"Os sistemas cárstico, fissurado-cárstico e fissurado inserem-se em compartimentos geotectônicos distintos associados ao neoproterozóico: o cráton do São Francisco e as faixas móveis Brasília e Araçuaí. Nas faixas móveis as rochas encontram-se deformadas e metamorfisadas enquanto na área cratônica mostram-se praticamente indeformadas com exceção das bordas e porções internas restritas. Parte expressiva das unidades inseridas nos 13 sistemas aqüíferos granulares tiveram origem em reativações tectônicas ocorridas no Mesozóico e Cenozóico e ocorrem, irregularmente distribuídas na bacia, recobrindo os demais sistemas." (Mourão et al., 2001 apud CPRM, 2001, p.12-13).

107

Figura 5.6 - Visualização dos sistemas de aqüíferos presentes nas sub-bacias 40 e 41 (Adaptado de CPRM, 2001)

5.2 Aquisição dos dados fluviométricos

Conforme mencionado, CPRM (2001) conduziu um estudo de regionalização de vazões máximas anuais para a bacia do alto São Francisco, incluindo o rio das Velhas, abrangendo as sub-bacias 40 e 41, o qual foi cedido para a utilização na presente pesquisa.

Assim, CPRM (2001) elaborou a montagem e consistência das séries de vazões máximas anuais referentes ao ano hidrológico, com duração de outubro do ano corrente a setembro do ano seguinte, para a região em estudo. Nesse sentido, foram reunidas séries de 62 estações fluviométricas pertencentes à região das sub-bacias 40 e 41, as quais encontram-se no Anexo 3.

No estudo elaborado por CPRM (2001), foram usadas 63 estações fluviométricas com séries de vazões máximas anuais por ano hidrológico. Entretanto, ao se fazer a análise dessas estações por meio do Inventário das Estações Fluviométricas, do Departamento Nacional de Águas e Energia Elétrica (DNAEE), concluiu-se que as estações Fazenda Capoeirão (40056002) e Montante do Bom Sucesso (40056200) tratavam-se do mesmo posto de monitoramento.

Isso se deve ao fato de que estas estações possuem a mesma área de drenagem, e não possuem dados de vazões em comum. Portanto, as séries hidrológicas contidas nessas duas estações foram agrupadas, de forma caracterizar apenas um posto de monitoramento. De acordo com CPRM (2001), as séries de vazões máximas anuais foram submetidas a testes estatísticos não paramétricos e, na seqüência, consideradas independentes, homogêneas e estacionárias.

5.3 Delimitação das regiões homogêneas

Outro aspecto importante a ser mencionado é o fato das regiões homogêneas já estarem definidas conforme estudo produzido por CPRM (2001), sendo estas descritas da seguinte maneira:

Região MAX I – Alto rio das Velhas

A região compreende as nascentes do rio das Velhas até a estação de Jequitibá, (41410000), englobando as bacias dos rios Taquaraçu, Jaboticatubas, ribeirão da Mata, ribeirão da Onça, ribeirão Arrudas e ribeirão Sabará.

Região MAX II - Baixo rio das Velhas, baixo e médio rio São Francisco e rio Lambari

Essa região é formada pela bacia do rio das Velhas a jusante de Jequitibá, (41410000), englobando os tributários da margem esquerda e direita. Também se encontra inserida nesta região a bacia do rio São Francisco a jusante da foz do rio Samburá, até a confluência com o rio das Velhas, abrangendo parte das bacias do rio Bambuí, São Miguel, Pará e Paraopeba, além das bacias dos ribeirões São Domingos, Santana, do Jacaré, Santa Luzia, Santo Antônio, dos Machados, Jorge Grande, dos Veados e da Marmelada e excluindo as bacias dos rios Abaeté, Borrachudo e Indaiá. Faz parte desta região a bacia do rio Pará a jusante da estação Velho da Taipa, (40330000), englobando as bacias dos rios Lambari, do Peixe e do Picão. Também compõe a região a bacia do rio Paraopeba a jusante da estação Ponte Nova do Paraopeba, (40800001), englobando as bacias do ribeirão São João e do rio Pardo e excluindo as bacias dos rios Juatuba e Florestal na margem esquerda.

Região MAX III - Rios Borrachudo e Abaeté, baixo e médio rio Indaiá

Essa região compreende as bacias dos rios Abaeté e Borrachudo e pela parcela da bacia do rio Indaiá, a jusante da estação Barra do Funchal, (40930000).

Região MAX IV - Alto rios Indaiá, da Perdição e Bambuí

Essa região é formada pelas bacias: do rio Indaiá até a estação Barra do Funchal, (40930000); do rio da Perdição até a estação Tapiraí-Jusante, (40060001); do rio Bambuí até a confluência com o ribeirão Bom Sucesso, considerando inclusive este ribeirão.

Região MAX V - Alto rio São Francisco

Essa região refere-se ao Alto São Francisco, compreendendo a área de drenagem do rio São Francisco até a confluência com rio Samburá, considerando inclusive a bacia deste rio, acrescida das nascentes dos rios Ajudas, até a confluência com o córrego Caxangá, inclusive, Pium-hi, até confluência com o córrego do Corisco, exclusive, das Araras, dos Patos, até o encontro com o córrego da Vaca, inclusive e a bacia do rio São Miguel até a estação de Calciolândia, (40053000).

Região MAX VI - Alto e Médio rio Pará

A região é formada pela bacia do rio Pará até a estação Velho da Taipa, (40330000), abrangendo as bacias dos rios São João e Itapecerica.

Região MAX VII - Alto e Médio rio Paraopeba

A região é formada pela bacia do rio Paraopeba até a estação Ponte Nova do Paraopeba, (40800001), acrescida das bacias dos rios Juatuba e Florestal. Esta região abrange as bacias dos rios Camapuã, Maranhão, ribeirão São Mateus, ribeirão dos Cordeiros, rio Macaúbas, ribeirão do Marinho, ribeirão Casa Branca, ribeirão Águas Claras, rio Manso e rio Betim.

A Figura 5.7 ilustra os limites geográficos das 7 regiões homogêneas descritas, enquanto a Tabela 5.1 apresenta a relação das estações constituintes de cada região.

Assim, utilizam-se, a priori, as regiões delimitadas no referido estudo e, posteriormente, a modificação ou delimitação de novas regiões homogêneas. Conforme menção anterior, o trabalho de Castellarin (2007) pressupõe que a distribuição de freqüências a ser utilizada seja a Generalizada de Valores Extremos (GEV).

Figura 5.7 - Limites geográficos das regiões homogêneas definidas por CPRM (2001) nas sub-bacias 40 e 41 (Adaptado de CPRM, 2001)

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

112

	Região MAX-I	Nome do Curso de Água		Região MAX-IV	Nome do Curso de Água
41151000	Fazenda Água Limpa Jusante	Velhas	40056200	Fazenda Capoeirão +	Daraharí
41199998	Honório Bicalho-Montante	Velhas	40036200	Montante do Bom sucesso	Bambui
41250000	Vespasiano	da Mata	40056500	Ponte Capoeirão	Bambuí
41260000	Pinhões	Velhas	40060001	Tapiraí-Jusante	Perdição
41300000	Taquaraçu	Taquaraçu	40930000	Barra do Funchal	Indaiá
41340000	Ponte Raul Soares	Velhas		Região MAX-V	Nome do Curso de Água
41380000	Ponte Preta	Jaboticatubas	40025000	Vargem Bonita	São Francisco
41410000	Jequitibá	Velhas	40032000	Fazenda Samburá	Samburá
	Região MAX-II	Nome do Curso de Água	40037000	Fazenda da Barra	Santo Antônio
40050000	Iguatama	São Francisco	40040000	Fazenda Ajudas	Ajudas
40067000	Ponte Olegário Maciel	São Francisco	40053000	Calciolândia	São Miguel
40070000	Ponte do Chumbo	São Francisco		Região MAX-VI	Nome do Curso de Água
40100000	Porto das Andorinhas	São Francisco	40130000	Ponte do Vilela	Pará
40102000	Porto da Barra	São Francisco	40150000	Carmo do Cajuru	Pará
40350000	Usina Camarão	Lambari	40170000	Marilândia	Itapecerica
40380000	Araújos	Lambari	40180000	Carmo da Mata	Boa Vista
40400000	Estação Álvaro da Silveira	Lambari	40185000	Pari	Itapecerica
40450001	Porto Pará (CEMIG)	Pará	40190002	Divinópolis	Itapecerica
40530000	Abaeté	Marmelada	40300001	Jaguaruna Jusante	São João
40850000	Ponte da Taquara	Paraopeba	40330000	Velho da Taipa	Pará
41135000	Pirapora-Barreiro	São Francisco		Região MAX-VII	Nome do Curso de Água
41600000	Pirapama	Velhas	40549998	São Brás do Suaçui Montante	Paraopeba
41650002	Ponte do Licínio Jusante	Velhas	40573000	Joaquim Murtinho	Bananeiras
41780002	Presidente Juscelino Jusante	Paraúna	40577000	Ponte Jubileu	Soledade
41818000	Santo Hipólito	Velhas	40579995	Congonhas Linígrafo	Maranhão
41890000	Estação Curimataí	Curimataí	40700002	Jeceaba	Paraopeba
41990000	Várzea da Palma	Velhas	40710000	Belo Vale	Paraopeba
	Região MAX-III	Nome do Curso de Água	40720002	Melo Franco	Paraopeba
40963000	Porto Indaiá (CEMIG)	Indaiá	40740000	Alberto Flores	Paraopeba
40975000	Fazenda São Felix	Borrachudo	40770000	Conceição do Itaguá	Manso
40960000	Fazenda Bom Jardim	Indaiá	40788000	São Joaquim de Bicas (CEMIG)	Paraopeba
41050000	Major Porto	Areado	40790000	Betim	Betim
41075001	Porto do Passarinho	Abaeté	40800001	Ponte Nova do Paraopeba	Paraopeba
			40818000	Juatuba	Serra Azul
			40830000	Fazenda Escola Florestal	Florestal

Tabela 5.1 - Estações que formam as regiões homogêneas para as vazões máximas anuais

Dessa maneira, algumas regiões homogêneas, previamente definidas por CPRM (2001), foram verificadas sob o critério da aderência. Para tal, utilizou-se o conjunto de rotinas computacionais em linguagem Fortran-77 propostas por Hosking e Wallis (1997), analisando os dados sob o ponto de vista da discordância, da aderência e da homogeneidade. Para a utilização dessas rotinas, pode-se seguir o seguinte roteiro de procedimentos:

• Geração de um arquivo de dados de entrada

Neste arquivo colocam-se o número de postos a serem avaliados, o número de dados por estação, e as séries de vazões máximas anuais registradas nas respectivas estações. Assim, torna-se necessário um arquivo de entrada para cada tentativa de avaliação para os critérios de discordância, heterogeneidade e aderência.

• Análise da saída do arquivo gerado pelo programa

Após ser fornecido o arquivo de dados de entrada para o programa, o mesmo gera um conjunto de saídas contemplando: coeficiente de variação-L, assimetria-L e curtose-L para as amostras de cada estação. Este resultado torna-se o arquivo de entrada de uma nova rotina a ser simulada pelo programa, onde se tem uma nova saída que contém os valores de discordância, homogeneidade e aderência para o conjunto de estações simulado.

Entretanto as regiões MAX III e MAX IV, definidas como homogêneas por CPRM (2001), não apresentaram bons resultados para a medida de aderência para uma distribuição de freqüências GEV. Vale ressaltar que, no referido estudo, essas regiões apresentaram valores de aderência satisfatórios segundo outras distribuições de probabilidades, tais como Logística Generalizada (LG) e Log-Normal de três parâmetros (LN-3P). Na Tabela 5.2 seguem os resultados das simulações das rotinas descritas por Hosking e Wallis (1997), para a medida de aderência segundo uma distribuição GEV, para as regiões MAX II, MAX III e MAX IV.

				01	0		•
Dogião	Nº de	Med	ida <i>D</i>	Med	lida <i>H</i>	Medida Z	
Regiao	postos	D	Status	H	Status	Ζ	Status
MAX II	18	2,47	ok	0,55	ok	0,09	ok
MAX III	5	1,33	ok	1,36	ok	2,01	não passa
MAX IV	4	1,27	ok	0,78	ok	-1,73	não passa

Tabela 5.2 - Resultados das rotinas Hosking para as regiões homogêneas

Na busca dos ajustes desejados, ou seja, na aceitação do critério da medida de aderência segundo uma distribuição GEV, optou-se por trabalhar com o rearranjo de alguns postos fluviométricos pertencentes às regiões MAX II, MAX III e MAX IV, uma vez que estas são regiões fronteiriças, permitindo com que as estatísticas locais não prevalecessem sobre as características físicas locais nestas mesmas regiões.

Dessa maneira optou-se pela exclusão da estação fluviométrica Fazenda São Félix (40975000), pertencente à região homogênea MAX III, uma vez que este posto de monitoramento implica na inviabilidade de aceitação conjunta dos critérios de discordância, homogeneidade e aderência propostos por Hosking e Wallis (1997). Além disso, a estação Barra do Funchal (40930000), pertencente à região homogênea MAX IV, foi transladada para a região homogênea MAX II.

Tais procedimentos, tanto de exclusão quanto de deslocamento de estações de monitoramento de uma localidade a outra, são recomendados por Hosking e Wallis (1997) desde que exista um sentido físico em seu emprego, ou seja, que as estatísticas locais não prevaleçam sobre as características físicas locais dessas regiões.

Após o rearranjo das estações fluviométricas, novas regiões homogêneas foram estabelecidas de acordo com as estatísticas-L propostas por Hosking e Wallis (1997). A Tabela 5.3 referencia os resultados dessas rotinas para estas novas regiões redefinidas.

Dogião	Nº de	Medida D		Med	lida <i>H</i>	Medida Z	
Regiao	postos	D	Status	H	Status	Ζ	Status
MAX II	19	2,59	ok	0,48	ok	-0,16	ok
MAX III	4	1	ok	1,07	ok	1,60	ok
MAX IV	3	0	ok	0,39	ok	0,57	ok

Tabela 5.3 - Resultados das rotinas Hosking para as regiões homogêneas redefinidas

Na Tabela 5.4 apresentam-se as novas regiões homogêneas definidas a partir dos critérios estatísticos sugeridos por Hosking e Wallis (1997), tendo por objetivo o ajuste de uma distribuição GEV para essas regiões, com os nomes e códigos das respectivas estações fluviométricas pertencentes às sub-bacias 40 e 41.

Região M	AX IV - Dados Fluviométricos	Região M	AX III - Dados Fluviométricos
Código	Estação	Código	Estação
40056200	Fazenda Capoeirão + Montante	40963000	Porto Indaiá (CEMIG)
40030200	do Bom sucesso	40960000	Fazenda Bom Jardim
40056500	Ponte Capoeirão	41050000	Major Porto
40060001	Tapiraí-Jusante	41075001	Porto do Passarinho
	Região MAX II - I	Dados Fluvio r	nétricos
Código	Estação	Código	Estação
40050000	Iguatama	40850000	Ponte da Taquara
40067000	Ponte Olegário Maciel	41135000	Pirapora-Barreiro
40070000	Ponte do Chumbo	41600000	Pirapama
40100000	Porto das Andorinhas	41650002	Ponte do Licínio Jusante
40102000	Porto da Barra	41780002	Presidente Juscelino Jusante
40350000	Usina Camarão	41818000	Santo Hipólito
40380000	Araújos	41890000	Estação Curimataí
40400000	Estação Álvaro da Silveira	41990000	Várzea da Palma
40450001	Porto Pará (CEMIG)	40930000	Barra do Funchal
40530000	Abaeté		

 Tabela 5.4 - Nomes e códigos das estações pertencentes às regiões redefinidas

Em seguida, pode-se elaborar a curva de freqüência para cada estação pertencente aos conjuntos formados pelas regiões homogêneas redefinidas. O traçado dessas curvas pode ser obtido pelos seguintes procedimentos: (1) ordenamento decrescente dos registros de vazões máximas anuais, (2) adimensionalização de cada registro de vazão máxima anual ordenada pela média aritmética dos registros de vazões máximas anuais, (3) estabelecimento do número de ordem das séries de registros máximos de vazões anuais adimensionalizadas, (4) cálculo da posição de plotagem, que para o presente trabalho foi empregada a fórmula de Gringorten, uma vez que de acordo com Naghettini e Pinto (2007), é uma equação pertinente para a aplicação de uma distribuição GEV, (5) por meio da divisão do número de ordem das vazões máximas anuais adimensionalizadas pelo valor obtido pela aplicação da fórmula de posição de plotagem efetua-se o cálculo do tempo de retorno empírico, e (6) estimando os parâmetros de posição, escala e forma de uma distribuição GEV, e utilizando sua função inversa de distribuição de probabilidade, pode-se calcular os quantis adimensionais associados aos respectivos tempos de retorno empíricos calculados em (5).

No presente trabalho aplicou-se o método dos momentos-L para a estimação dos parâmetros de posição, escala e forma da distribuição GEV, cujos resultados são mostrados na Tabela 5.5.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Região	Estimativa dos parâmetros da GEV							
redefinida	Escala (α)	Posição (ß)	Forma (k)					
MAX II	0,278	0,856	0,065					
MAX III	0,337	0,775	-0,083					
MAX IV	0,221	0,912	0,218					

Tabela 5.5 - Estimação dos parâmetros da distribuição GEV

As curvas de freqüência para cada estação fluviométrica pertencente às regiões homogêneas redefinidas seguem nas Figuras 5.8, 5.9 e 5.10, onde a sobreposição dessas curvas indica a homogeneidade da região.

Figura 5.8 - Curva de freqüência da região MAX III redefinida

Figura 5.9 - Curva de freqüência da região MAX IV redefinida

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

5.4 Elaboração das curvas envoltórias empíricas

Após a definição das regiões homogêneas, previamente traçadas por CPRM (2001), e modificadas para que estas estejam de acordo com o requisito de uma distribuição regional de freqüências GEV, tem-se o início da aplicação da metodologia apresentada por Castellarin *et al.* (2005) para a elaboração das curvas envoltórias.

Uma curva envoltória é um gráfico das áreas de drenagem das estações fluviométricas consideradas *versus* as máximas vazões registradas divididas pela respectiva área de drenagem, em escala bi-logarítmica.

Tem-se o início do traçado destas curvas com a aplicação da equação 4.2, pressupondo uma lei de escala entre a cheia-índice local e a respectiva área de drenagem. Nesse sentido, para cada estação fluviométrica de uma região homogênea, foram tomadas as médias das vazões máximas de cada posto.

Em seguida elaboram-se gráficos da área de drenagem de cada estação *versus* a vazão máxima anual média de cada posto. Após o ajuste potencial para estes pontos registrados, têm-se os gráficos tais como exemplificados pelas Figuras 5.11 a 5.17, para as 7 regiões homogêneas consideradas no estudo.

Figura 5.11 - Ajuste potencial sobre a lei de escala para a região MAX I

Figura 5.12 - Ajuste potencial sobre a lei de escala para a região MAX II redefinida

Figura 5.13 - Ajuste potencial sobre a lei de escala para a região MAX III redefinida

Figura 5.16 - Ajuste potencial sobre a lei de escala para a região MAX VI

Com o valor do coeficiente angular *b*, a ser obtido pela subtração da unidade ao valor do expoente do ajuste potencial, pode-se calcular o coeficiente linear *a* da curva envoltória por meio da aplicação direta da equação 4.3.

Este procedimento é repetido para cada posto de uma região considerada homogênea, e o máximo valor do coeficiente linear *a* dentre os postos pertencentes a esta região é utilizado para o cálculo da envoltória.

O cálculo da curva envoltória é decorrente da manipulação da equação 4.1. Na aplicação foram tomados os logaritmos naturais do quociente dos valores de vazões máximas anuais das séries registradas pelas estações fluviométricas, pertencentes a uma mesma região homogênea, pelas respectivas áreas de drenagem, e compilados no eixo das ordenadas do gráfico da curva envoltória.

O eixo das abscissas denota os logaritmos naturais dos valores da área de drenagem das respectivas estações componentes da bacia. Esse procedimento foi realizado para as 7 regiões homogêneas presentes no estudo.

As Figuras 5.18 a 5.24 apresentam as curvas envoltórias traçadas para as 7 regiões homogêneas.

Figura 5.18 - Curva envoltória traçada para a região MAX I

Figura 5.19 - Curva envoltória traçada para a região MAX II redefinida

Figura 5.20 - Curva envoltória traçada para a região MAX III redefinida

Figura 5.22 - Curva envoltória traçada para a região MAX V

Figura 5.23 - Curva envoltória traçada para a região MAX VI

5.5 Redução da variabilidade espacial contida nos dados amostrais

Conforme discutido no item 4.2.2 deste trabalho, Castellarin (2007) propõe os modelos apresentados pelas equações 4.27 e 4.28, no sentido de se reduzir a variabilidade espacial contida nos dados amostrais das estações fluviométricas. O mesmo autor relata que a aplicação tanto da equação 4.27 quanto da equação 4.28 implica em resultados semelhantes.

Nesse sentido fez-se a opção pela utilização da equação 4.28, uma vez que seu tratamento matemático facilita no ajuste de um modelo exponencial aos dados observados presentes nas estações.

Ainda, de acordo com Castellarin (2007), qualquer um dos dois modelos pode ser calibrado por meio de dois procedimentos distintos, a saber: (1) utilizando todas as estações presentes na região de estudo, e (2) utilizando as estações agrupadas por região homogênea.

Castellarin (2007) recomenda a utilização do procedimento citado em (1), onde o autor justifica que tal aplicação conduz em uma maior robustez para o modelo, ou seja, este se tornaria menos sensível a possíveis pontos atípicos presentes na amostra.

Entretanto, o mesmo autor afirma que a calibração da equação 4.28, utilizando tanto os procedimentos descritos em (1) quanto em (2) implica em uma variação pequena em resultados para a calibração do modelo exponencial. No presente trabalho, efetuou-se a calibração da equação 4.28 utilizando os dois procedimentos mencionados.

A aplicação da equação 4.28 inicia-se com o cálculo da correlação entre as estações i e j, cujas seções transversais são separadas pela distância $d_{i,j}$, abrangendo todas as estações presentes no estudo, ou agrupadas por região homogênea.

Desta maneira têm-se a distância entre todas as estações, combinadas com os respectivos coeficientes de correlação obtidos para o período em comum de dados de vazões entre estas mesmas estações.

Assim, pode-se construir a representação gráfica das distâncias entre as estações *versus* os valores dos coeficientes de correlação. Através de um ajuste exponencial sobre os dados contidos no gráfico, tem-se a calibração da equação 4.28.
5.5.1 Calibração do modelo para toda a área de estudo

A seguir apresentam-se os resultados da calibração da equação 4.28, para toda a área de estudo. Para tal, buscou-se a localização geográfica das estações consideradas de modo a se montar uma matriz de distâncias entre os postos de monitoramento.

Para a localização geográfica das estações fluviométricas foram utilizadas as informações contidas no Inventário das Estações Fluviométricas, do extinto Departamento Nacional de Águas e Energia Elétrica (DNAEE). A etapa seguinte foi o lançamento destas informações no programa Google Earth, disponível para download via internet pelo endereço eletrônico *http://earth.google.com/intl/en/download-earth.html*.

Assim, utilizando uma ferramenta específica do programa Google Earth, foram tomadas as distâncias entre as 61 estações presentes na área de estudo, ou seja, a distância entre as estações 1 e 2, 1 e 3, ..., 1 e 61; 2 e 3, 2 e 4, ..., 2 e 61; ..., 60 e 61. A numeração dessas estações não foi efetuada, sendo exemplificadas aqui apenas para o entendimento do procedimento de montagem da matriz de distâncias entre as estações. Vale ressaltar que a priori trabalhava-se com 62 estações fluviométricas, entretanto a estação Fazenda São Felix foi excluída da análise, conforme mencionado no item 5.3.

A próxima etapa consiste na elaboração de uma matriz de coeficientes de correlação entre os dados contidos nas estações presentes no estudo. Para isso, foram calculados os coeficientes de correlação para o período em comum de registros de vazões máximas anuais entre as 61 estações consideradas no estudo, tomadas duas a duas.

A aplicação dos procedimentos supracitados implica na elaboração de um gráfico das distâncias entre as estações *versus* os valores dos respectivos coeficientes de correlação entre essas mesmas estações, o qual pode ser visualizado na Figura 5.25.

Figura 5.25 - Calibração da equação 4.28 para toda a área de estudo

Através de um ajuste exponencial, representado pela linha sobre os dados contidos no gráfico, tem-se a calibração da equação 4.28. Verifica-se aqui a enorme dispersão entre os pontos, a qual procura-se decrescer por meio do ajuste ao modelo exponencial, conforme sugestão de Castellarin (2007).

5.5.2 Calibração do modelo utilizando as estações agrupadas por região homogênea

Esta etapa do trabalho segue os mesmos procedimentos mencionados no item 5.5.1, entretanto, as estações são agrupadas por região homogênea.

A seguir apresentam-se os resultados da calibração da equação 4.28 para as 7 regiões homogêneas consideradas no trabalho.

Novamente, por meio de um ajuste exponencial representado pela linha sobre os dados contidos nos gráficos, tem-se a calibração da equação 4.28 por região homogênea. As Figuras 5.26 a 5.32 apresentam o procedimento descrito.

Figura 5.27 - Calibração da equação 4.28 para a região MAX II redefinida

Figura 5.30 - Calibração da equação 4.28 para a região MAX V

Figura 5.32 - Calibração da equação 4.28 para a região MAX VII

Assim, de posse da equação 4.28 calibrada, seja para toda a região do estudo ou por região homogênea, pode-se efetuar a redução da variabilidade espacial nos dados amostrais contidos nas estações.

Essa etapa constitui no cálculo do coeficiente de correlação entre os dados dos subconjuntos regionais formados pelas 61 estações consideradas. Dessa forma, para um determinado subconjunto regional pertencente a uma região homogênea, com uma determinada distância entre as estações que o compõe, pode-se aplicar a equação 4.28 para a obtenção do coeficiente de correlação cruzada entre esse subconjunto, o qual será aplicado para a determinação do número efetivo de observações amostrais.

5.6 Cálculo do número efetivo de observações amostrais

O número efetivo de observações amostrais constitui os dados de vazões máximas anuais registradas nos 61 postos de monitoramento fluviométrico a serem efetivamente aplicados na análise. Esse procedimento, segundo Castellarin (2007), busca a redução da correlação cruzada entre as estações de monitoramento utilizadas no estudo e o conseqüente uso apenas das observações independentes entre os postos.

Dessa forma, para cada uma das 7 regiões homogêneas, são definidos os subconjuntos regionais N_{sub} e o número de observações únicas n_1 , conforme descrito no item 4.2.3 desse trabalho. Os subconjuntos regionais formados para cada região homogênea encontram-se no Anexo 4.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

O cálculo do número efetivo de observações amostrais é executado aplicando-se as equações 4.29 e 4.30. A próxima etapa consiste na obtenção do grau de correlação entre os subconjuntos regionais, por meio da utilização do modelo de correlação cruzada proposto conforme a equação 4.28, seja esta calibrada por região homogênea ou para toda a região de estudo.

Com efeito, pode-se entrar com a distância entre as estações pertencentes aos subconjuntos regionais formados para uma região homogênea em um gráfico tal como representado pela Figura 5.25, que denota o modelo exponencial calibrado para toda a área de estudo, ou pelas Figuras 5.26 a 5.32, que representam o ajuste do modelo exponencial para as respectivas regiões homogêneas, e assim obtêm-se o coeficiente de correlação entre os dados das estações que constituem os subconjuntos regionais.

Repetindo esses procedimentos para todos os subconjuntos regionais formados para cada umas das 7 regiões homogêneas, pode-se calcular os termos $\overline{(1-\rho)^{0.376}}$ e $\overline{\rho^{\beta}}$ das equações 4.30 e 4.29, respectivamente, efetuando, finalmente, o cálculo do número de observações efetivas.

5.7 Estimação da posição de plotagem

Conforme discutido no item 4.2.4, Castellarin (2007) propõe uma estimação da posição de plotagem para o cálculo de uma probabilidade empírica η segundo uma distribuição de freqüência GEV.

Assim, o cálculo da probabilidade empírica η pode ser efetuado pela aplicação da equação 4.31, a qual é dependente apenas do parâmetro de forma k da distribuição GEV. Para a estimação do parâmetro de forma foi aplicado o método dos momentos-L, por meio da aplicação conjunta das equações 4.32 e 4.33.

A Tabela 5.6 apresenta os resultados referentes ao cálculo do parâmetro de forma da distribuição GEV para cada uma das regiões homogêneas consideradas no estudo.

Após a estimação do parâmetro de forma da distribuição GEV, o cálculo da probabilidade empírica η para cada região homogênea pode ser obtida pela aplicação direta da equação 4.31; a Tabela 5.6 mostra os resultados obtidos.

	Calibração do modelo de correlação para toda a região								
Cálculos Efetuados	MAVI	MAX II	МАХ Ш	MAX IV	MANN	MANVI	маууп		
	MAA I	redefinida	redefinida	redefinida	MAA V	WIAA VI			
Número de estações	8	19	4	3	5	8	14		
Número de observações	245	545	74	98	146	193	328		
Número de observações únicas (n_1)	9	1	8	22	9	7	3		
Número de observações efetivas (n_{ef})	104,11	216,37	47,58	63,23	71,07	106,06	116,06		
Parâmetro de forma da $\text{GEV}(k)$	0,0297	0,0655	-0,0839	0,0544	-0,0896	-0,0658	-0,0037		
Coeficiente angular (b)	-0,2169	-0,1732	0,1815	-0,8248	0,1518	-0,2851	-0,0999		
Coeficiente linear (a)	0,9563	0,6277	-1,9300	3,4350	-1,1430	1,2444	-0,2896		
Parâmetro (C)	0,7636	0,3990	0,0657	17538	0,0856	0,9096	0,2319		
Parâmetro do modelo de correlação (λ)	-0,006	-0,006	-0,006	-0,006	-0,006	-0,006	-0,006		
Probabilidade empírica (η)	0,4253	0,4087	0,4778	0,4139	0,4804	0,4694	0,4407		
Subconjuntos amostrais (N _{sub})	21	53	10	4	9	20	42		
Probabilidade de excedência (p)	0,0055	0,0027	0,0110	0,0092	0,0073	0,0050	0,0048		
Tempo de retorno (anos)	181	366	91	108	136	200	208		
	Calibração do modelo de correlação por região homogênea								
	C	Calibração d	o modelo de	correlação	por região	o homogên	ea		
Cálculos Efetuados		Calibração de MAX II	o modelo de MAX III	correlação MAX IV	por região MAX V	o homogên MAX VI	ea MAX VII		
Cálculos Efetuados	MAX I	Calibração de MAX II redefinida	o modelo de MAX III redefinida	correlação MAX IV redefinida	por região MAX V	o homogên MAX VI	ea MAX VII		
Cálculos Efetuados Número de estações	MAX I 8	<mark>Calibração de</mark> MAX II redefinida 19	o modelo de MAX III redefinida 4	correlação MAX IV redefinida 3	por região MAX V 5	o homogên MAX VI 8	ea MAX VII 14		
Cálculos Efetuados Número de estações Número de observações	0 MAX I 8 245	Calibração de MAX II redefinida 19 545	o modelo de MAX III redefinida 4 74	correlação MAX IV redefinida 3 98	por região MAX V 5 146	b homogên MAX VI 8 193	ea MAX VII 14 328		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n 1)	MAX I 8 245 9	Calibração de MAX II redefinida 19 545 1	o modelo de MAX III redefinida 4 74 8	correlação MAX IV redefinida 3 98 22	por região MAX V 5 146 9	b homogên MAX VI 8 193 7	ea MAX VII 14 328 3		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n ₁) Número de observações efetivas (n _{ef})	MAX I 8 245 9 104,11	Calibração de MAX II redefinida 19 545 1 196,33	o modelo de MAX III redefinida 4 74 8 43,66	correlação MAX IV redefinida 3 98 22 85,21	por região MAX V 5 146 9 124,37	b homogên MAX VI 8 193 7 128,88	ea MAX VII 14 328 3 169,22		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k)	MAX I 8 245 9 104,11 0,0297	2alibração de MAX II redefinida 19 545 1 196,33 0,0655	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839	correlação MAX IV redefinida 3 98 22 85,21 0,0544	por região MAX V 5 146 9 124,37 -0,0896	b homogên MAX VI 8 193 7 128,88 -0,0658	ea MAX VII 14 328 3 169,22 -0,0037		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b)	MAX I 8 245 9 104,11 0,0297 -0,2169	2alibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248	por região MAX V 5 146 9 124,37 -0,0896 0,1518	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b) Coeficiente linear (a)	8 245 9 104,11 0,0297 -0,2169 0,9563	2alibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732 0,6277	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815 -1,9300	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248 3,4350	por região MAX V 5 146 9 124,37 -0,0896 0,1518 -1,1430	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851 1,2444	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999 -0,2896		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b) Coeficiente linear (a) Parâmetro (C)	MAX I 8 245 9 104,11 0,0297 -0,2169 0,9563 0,7636	2alibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732 0,6277 0,3990	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815 -1,9300 0,0657	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248 3,4350 17,538	por região MAX V 5 146 9 124,37 -0,0896 0,1518 -1,1430 0,0856	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851 1,2444 0,9096	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999 -0,2896 0,2319		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b) Coeficiente linear (a) Parâmetro (C) Parâmetro do modelo de correlação (λ)	MAX I 8 245 9 104,11 0,0297 -0,2169 0,9563 0,7636 -0,006	2alibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732 0,6277 0,3990 -0,005	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815 -1,9300 0,0657 -0,004	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248 3,4350 17,538 -0,082	por região MAX V 5 146 9 124,37 -0,0896 0,1518 -1,1430 0,0856 -0,038	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851 1,2444 0,9096 -0,014	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999 -0,2896 0,2319 -0,019		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b) Coeficiente linear (a) Parâmetro (C) Parâmetro do modelo de correlação (λ) Probabilidade empírica (η)	MAX I 8 245 9 104,11 0,0297 -0,2169 0,9563 0,7636 -0,006 0,4253	Calibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732 0,6277 0,3990 -0,005 0,4087	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815 -1,9300 0,0657 -0,004 0,4778	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248 3,4350 17,538 -0,082 0,4139	por região MAX V 5 146 9 124,37 -0,0896 0,1518 -1,1430 0,0856 -0,038 0,4804	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851 1,2444 0,9096 -0,014 0,4694	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999 -0,2896 0,2319 -0,019 0,4407		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b) Coeficiente linear (a) Parâmetro (C) Parâmetro do modelo de correlação (λ) Probabilidade empírica (η) Subconjuntos amostrais (N_{sub})	MAX I 8 245 9 104,11 0,0297 -0,2169 0,9563 0,7636 -0,006 0,4253 21	2alibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732 0,6277 0,3990 -0,005 0,4087 53	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815 -1,9300 0,0657 -0,004 0,4778 10	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248 3,4350 17,538 -0,082 0,4139 4	por região MAX V 5 146 9 124,37 -0,0896 0,1518 -1,1430 0,0856 -0,038 0,4804 9	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851 1,2444 0,9096 -0,014 0,4694 20	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999 -0,2896 0,2319 -0,019 0,4407 42		
Cálculos Efetuados Número de estações Número de observações Número de observações únicas (n_{1}) Número de observações efetivas (n_{ef}) Parâmetro de forma da GEV (k) Coeficiente angular (b) Coeficiente linear (a) Parâmetro (C) Parâmetro do modelo de correlação (λ) Probabilidade empírica (η) Subconjuntos amostrais (N_{sub}) Probabilidade de excedência (p)	MAX I 8 245 9 104,11 0,0297 -0,2169 0,9563 0,7636 -0,006 0,4253 21 0,0055	Calibração de MAX II redefinida 19 545 1 196,33 0,0655 -0,1732 0,6277 0,3990 -0,005 0,4087 53 0,0030	o modelo de MAX III redefinida 4 74 8 43,66 -0,0839 0,1815 -1,9300 0,0657 -0,004 0,4778 10 0,0119	correlação MAX IV redefinida 3 98 22 85,21 0,0544 -0,8248 3,4350 17,538 -0,082 0,4139 4 0,0069	por região MAX V 5 146 9 124,37 -0,0896 0,1518 -1,1430 0,0856 -0,038 0,4804 9 0,0042	b homogên MAX VI 8 193 7 128,88 -0,0658 -0,2851 1,2444 0,9096 -0,014 0,4694 20 0,0041	ea MAX VII 14 328 3 169,22 -0,0037 -0,0999 -0,2896 0,2319 -0,019 0,4407 42 0,0033		

 Tabela 5.6 - Síntese dos cálculos efetuados na aplicação da metodologia

5.8 Estimação da probabilidade de superação da envoltória

De posse dos valores da probabilidade empírica η , e do número efetivo de observações amostrais a serem utilizados no estudo, pode-se aplicar a equação 4.26 que, de acordo com Castellarin *et al.* (2005), associa uma probabilidade de superação *p* à curva envoltória de cheias traçada para uma região homogênea. O inverso da probabilidade de superação p denota o tempo de retorno referente ao valor esperado da curva envoltória elaborada para a região homogênea. Esse procedimento foi realizado para as 7 regiões homogêneas presentes no estudo. A Tabela 5.6 apresenta a síntese completa dos resultados relativos à aplicação da metodologia.

5.9 Estimação dos quantis de vazões máximas utilizando o tempo de retorno associado às curvas envoltórias de cheias

Após a estimação do tempo de retorno associado à curva envoltória de cheias traçada para cada uma das 7 regiões homogêneas presentes no estudo, pode-se estender a metodologia proposta por Castellarin *et al.* (2005) e Castellarin (2007), de modo a se obter os quantis de vazões máximas para uma região não monitorada, utilizando a distribuição de freqüência GEV. A Figura 5.33 ilustra os procedimentos para esta etapa do trabalho.

Figura 5.33 - Procedimentos para a estimação de quantis de vazões máximas em uma região homogênea não monitorada

O quantil de vazão máxima anual X_T pode ser obtido utilizando-se uma distribuição de freqüência GEV, ajustada para o período de retorno associado às curvas envoltórias traçadas para as 7 regiões homogêneas presentes no estudo. A média das vazões máximas anuais pode ser estimada pelo ajuste potencial sobre a lei de escala proposta por Castellarin *et al.* (2005).

Dessa forma, pode-se aplicar o sistema formado pelas equações 4.34 e 4.35, que representam a média e a função de quantis da distribuição GEV, respectivamente. Para a aplicação dessas equações, resta a estimação dos parâmetros de forma κ , escala α e posição β , da distribuição GEV.

O parâmetro de forma regional foi estimado aplicando-se o método dos momentos-L, tal como descrito nas equações 4.32 e 4.33. Os resultados da aplicação para as 7 regiões homogêneas também encontram-se na Tabela 5.6. Estimado o parâmetro de forma regional para cada uma das 7 regiões homogêneas, resta o cálculo dos parâmetros de escala e posição, os quais podem ser obtidos por meio das equações 4.35 e 5.1:

$$\beta = \mu_x - \frac{\alpha}{k} \left[1 - \Gamma(1+k) \right] \tag{5.1}$$

Com efeito, a manipulação matemática do sistema formado pelas equações 4.35 e 5.1 gera a expressão 5.2, a qual é utilizada para a estimação do parâmetro de escala da distribuição GEV:

$$\alpha = \frac{(X_T - \mu_x)k}{\left[-1 + \Gamma(1+k)\right] + \left\{1 - \left[-\ln(1-1/T)\right]^k\right\}}$$
(5.2)

Estimado o parâmetro de escala, o mesmo pode ser levado à equação 5.1 para a obtenção do parâmetro de posição da distribuição GEV. De posse da estimativa dos três parâmetros que descrevem o comportamento da distribuição GEV, pode-se traçar a curva de freqüência completa para a bacia com área de drenagem compreendida nos limites da curva envoltória. Esse procedimento foi executado para todas as estações presentes no estudo. As Tabelas 5.7-a e 5.7-b contemplam os resultados da estimativa do quantil de vazão máxima anual Q^{est}_{max} , da média das vazões máximas anuais μ^{est} , e dos parâmetros que descrevem a distribuição GEV, para todas as estações fluviométricas pertencentes às 7 regiões homogêneas aqui analisadas, comparados aos quantis de vazões máximas anuais e média das vazões máximas anuais amostrais.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

		Região ho	omogên	ea MAX I				
Estação	Q _{max} (m ³ /s)	μ (m ³ /s)	Q^{est}_{max} (m ³ /s)	μ^{est} (m ³ /s)	α^1	β^1	α^2	β^2
Fazenda Água Limpa Jusante	73	38,4	149	43,6	24,59	30,10	24,59	30,10
Honório Bicalho-Montante	575	272	880	258	145,73	178,41	145,73	178,41
Vespasiano	236	102	428	126	70,85	86,73	70,85	86,73
Pinhões	894	570	1629	478	269,72	330,20	269,72	330,20
Taquaraçu	403	117	403	118	66,71	81,67	66,71	81,67
Ponte Raul Soares	1108	576	2010	590	332,79	407,41	332,79	407,41
Ponte Preta	261	148	366	107	60,54	74,11	60,54	74,11
Jequitibá	1208	622	2536	744	419,86	514,00	419,86	514,00
	Regiã	io homogé	ènea MA	X II redefii	nida			
Estação	Q_{max}	$u(m^3/c)$	Q^{est}_{max}	est (m3/a)	" ¹	ρ^1	a ²	ρ^2
Estação	(m³/s)	μ (IIF/S)	(m³/s)	μ (m/s)	a	р	a	р
Iguatama	939	484	2292	488	412,04	275,62	418,37	272,36
Ponte Olegário Maciel	980	743	3479	741	625,34	418,31	634,95	413,35
Ponte do Chumbo	1064	671	3781	805	679,62	454,63	690,07	449,24
Porto das Andorinhas	2814	889	4984	1062	895,87	599,28	909,64	592,18
Porto da Barra	1667	1032	5072	1080	911,74	609,90	925,75	602,67
Usina Camarão	63	31,2	191	40,7	34,37	22,99	34,90	22,72
Araújos	154	100	657	140	118,01	78,94	119,83	78,01
Estação Álvaro da Silveira	300	154	921	196	165,62	110,79	168,17	109,48
Porto Pará (CEMIG)	1580	753	4205	896	755,81	505,59	767,43	499,60
Abaeté	91,8	49,7	309	65,9	55,57	37,17	56,43	36,73
Ponte da Taquara	1330	690	3398	724	610,75	408,55	620,13	403,71
Pirapora-Barreiro	5840	3050	17254	3675	3101,31	2074,58	3148,96	2049,99
Pirapama	1249	694	3188	679	573,03	383,32	581,84	378,78
Ponte do Licínio Jusante	1359	823	4023	857	723,04	483,67	734,15	477,94
Presidente Juscelino Jusante	1780	1065	1780	379	319,96	214,03	324,87	211,49
Santo Hipólito	2260	1337	5813	1238	1044,91	698,98	1060,97	690,70
Estação Curimataí	417	236	763	163	137,20	91,78	139,31	90,69
Várzea da Palma	3120	1965	8520	1815	1531,52	1024,49	1555,05	1012,35
Barra do Funchal	261	160	508	108	91,23	61,03	92,63	60,30
	Regiã	o homogê	nea MA	X III redefi	nida			
Estação	Q_{max} (m ³ /s)	μ (m³/s)	Q^{est}_{max} (m ³ /s)	μ^{est} (m ³ /s)	α^1	β^1	α^2	β^2
Porto Indaiá (CEMIG)	1320	613	1320	598	150,19	497,30	154,22	494,61
Fazenda Bom Jardim	835	463	981	444	111,62	369,60	114,62	367,60
Major Porto	592	275	635	287	72,26	239,27	74,20	237,97
Porto do Passarinho	2305	1203	2727	1234	310,25	1027,31	318,58	1021,75

 Tabela 5.7-a - Estimativa do quantil de vazão máxima anual, da média das vazões máximas anuais, e dos parâmetros que descrevem a distribuição GEV

Os termos sobrescritos (1) e (2) acima dos parâmetros de escala α e posição β da distribuição GEV indicam a estimação do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea, respectivamente.

	Região) homogêr	nea MA	X IV redefin	nida			
Estação	<i>Q</i> _{max} (m ³ /s)	μ (m ³ /s)	Q ^{est} _{max} (m ³ /s)	μ^{est} (m ³ /s)	α^1	β^1	α^2	β^2
Fazenda Capoeirão + Montante do Bom Sucesso	72,0	47,0	85,9	48,5	10,36	43,10	9,74	43,42
Ponte Capoeirão	89,8	58,9	91,9	51,9	11,08	46,09	10,42	46,44
Tapiraí-Jusante	94,0	48,3	94,0	53,1	11,34	47,16	10,66	47,52
]	Região hoi	nogêne	a MAX V				
Estação	Q_{max} (m ³ /s)	μ (m³/s)	Q^{est}_{max} (m ³ /s)	μ^{est} (m ³ /s)	α^1	β^1	α^2	β^2
Vargem Bonita	230	92,8	230	61,7	30,58	41,13	26,31	44,01
Fazenda Samburá	246	129	666	179	88,61	119,17	76,23	127,51
Fazenda da Barra	529	246	668	179	88,87	119,53	76,46	127,90
Fazenda Ajudas	98,5	48,2	192	51,5	25,53	34,33	21,96	36,74
Calciolândia	86,7	44,7	231	62,0	30,70	41,29	26,41	44,18
	R	Região hon	nogênea	MAX VI				
.	Q _{max}	(21)	Q^{est}_{max}	est (21)	1	a1	2	o?
Estaçao	(m ³ /s)	μ (m ³ /s)	(m ³ /s)	μ^{csr} (m ³ /s)	α	ß	α-	β-
Ponte do Vilela	280	173	716	188	92,80	127,50	88,48	130,30
Carmo do Cajuru	493	264	934	245	121,08	166,36	115,44	170,01
Marilândia	340	110	503	132	65,27	89,68	62,23	91,65
Carmo da Mata	48,4	33,3	121	31,8	15,72	21,60	14,99	22,07
Pari	560	199	775	203	100,56	138,16	95,87	141,19
Divinópolis	310	202	795	208	103,11	141,67	98,30	144,77
Jaguaruna Jusante	665	207	665	174	86,25	118,50	82,23	121,10
Velho da Taipa	1213	539	2021	530	262,18	360,21	249,95	368,11
	R	egião hon	nogênea	MAX VII				
Estação	Q_{max}	u (m ³ /s)	Q^{est}_{max}	uest (m3/a)	~ ¹	p ¹	a ²	ρ^2
Estação	(m³/s)	μ (IIP/S)	(m³/s)	μ (IIF/S)	a	ρ	a	ρ
São Brás do Suaçui Montante	187	64,7	187	57,9	26,85	42,33	24,86	43,49
Joaquim Murtinho	50,7	31,5	124	38,3	17,75	27,98	16,43	28,74
Ponte Jubileu	44,8	30,4	105	32,7	15,15	23,87	14,02	24,53
Congonhas Linígrafo	206	78,2	230	71,1	32,97	51,97	30,52	53,39
Jeceaba	420	242	846	262	121,45	191,43	112,43	196,67
Belo Vale	785	352	936	290	134,46	211,94	124,48	217,74
Melo Franco	459	329	1251	388	179,73	283,29	166,38	291,04
Alberto Flores	1133	437	1290	399	185,19	291,91	171,45	299,90
Conceição do Itaguá	120	74,5	264	81,7	37,85	59,66	35,04	61,29
São Joaquim de Bicas	872	542	1717	532	246,58	388,67	228,28	399,31
Betim	66,1	29,8	83,4	25,8	11,98	18,88	11,09	19,40
Ponte Nova do Paraopeba	1017	534	1793	555	257,46	405,82	238,35	416,92
Juatuba	48,7	35,5	117	36,1	16,76	26,41	15,51	27,14
Fazenda Escola Florestal	35,1	12,6	40,4	12,5	5,80	9,14	5,37	9,39

Tabela 5.7-b - Es	stimativa de	o quantil de	e vazão	máxima	anual,	da média	das \	/azões	máximas
a	nuais, e do	s parâmeti	ros que	descrev	em a d	istribuição	GEV	/	

Os termos sobrescritos (1) e (2) acima dos parâmetros de escala α e posição β da distribuição GEV indicam a estimação do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea, respectivamente.

A próxima etapa consiste na comparação dos resultados obtidos àqueles referentes à análise de freqüência local, usando o método dos momentos (MOM) e o método dos momentos-L (MML) para a estimação dos parâmetros da distribuição de freqüência GEV.

Em seguida, faz-se também a comparação daqueles quantis estimados pela aplicação da metodologia das curvas envoltórias com aqueles obtidos através da analise de freqüência regional utilizando os momentos-L.

Uma vez que neste estudo foram analisadas 61 estações de monitoramento fluviométrico, optou-se por apresentar os gráficos com as respectivas curvas de freqüências, para diferentes períodos de retorno, apenas para as estações com o maior número de registros fluviométricos por região homogênea.

As Figuras 5.34 a 5.40 ilustram as curvas de freqüência obtidas utilizando o tempo de retorno estimado às curvas envoltórias, aplicando o modelo de correlação calibrado para toda a área de estudo e também por região homogênea.

Os termos sobrescritos (1) e (2) indicam, pela ordem, a estimação do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea.

Figura 5.34 - Curvas de freqüência para a estação Taquaraçu

Figura 5.36 - Curvas de freqüência para a estação Major Porto

Figura 5.37 - Curvas de freqüência para a estação Tapiraí-Jusante

Figura 5.39 - Curvas de freqüência para a estação Velho da Taípa

Figura 5.40 - Curvas de freqüência para a estação Ponte Nova do Paraopeba

Finalmente, foi calculado o desvio médio percentual para as estações pertencentes a cada região homogênea, onde tem-se a análise dos desvios percentuais entre as estimativas dos valores de quantis de vazões máximas obtidos tanto pela metodologia das curvas envoltórias de cheias, quanto pela regionalização utilizando os momentos-L. Os desvios foram obtidos, para diferentes períodos de retorno, tomando-se a média dos desvios calculados para cada estação de monitoramento pertencente a uma região hidrologicamente homogênea.

Estes desvios são calculados subtraindo-se os quantis estimados de vazões máximas obtidos pela metodologia das curvas envoltórias pelos quantis de vazões máximas estimados pela regionalização utilizando os momentos-L, e dividindo esse resultado pelos quantis de vazões máximas estimados pela regionalização utilizando os momentos-L.

Assim, objetivando a análise dos desvios percentuais entre as estimativas dos valores de quantis de vazões máximas obtidos tanto pela metodologia das curvas envoltórias de cheias, quanto pela metodologia de regionalização utilizando os momentos-L descrita por Hosking e Wallis (1997), efetuou-se o cálculo do desvio médio percentual para as 7 regiões homogêneas consideradas no estudo, conforme apresentado na Tabela 5.8. Os gráficos que ilustram esse procedimento encontram-se no Anexo 5.

Dessa maneira, pode-se notar que, para um dado período de retorno, T = 100 anos, por exemplo, o desvio médio percentual entre a aplicação da interpretação probabilística da curva envoltória de cheias e a utilização da metodologia descrita por Hosking e Wallis (1997), para a região homogênea MAX VI, oscila em trono de 25%. Análise semelhante pode ser efetuada para todas as 7 regiões homogêneas.

Conforme pode ser observado na Tabela 5.8, e também na Figura 5.35, os resultados obtidos para a região homogênea MAX II redefinida foram discrepantes em relação às demais estações. Os desvios médios por estação para essa região variou em média, aproximadamente, 70%, para um período de retorno de apenas 10 anos, comparado ao quantil de vazão estimado aplicando-se a regionalização utilizando os momentos-L. Acredita-se que uma das justificativas para tais resultados seja a existência de regiões de comportamento hidrológico diferenciado, inseridas dentro da região MAX II redefinida. Nesse sentido, optou-se por uma nova redefinição desta região, sendo ela subdividida nas regiões MAX II-a e MAX II-b.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

	Região MAX	I	Regiã	o MAX II red	efinida
	Desvio	Desvio		Desvio	Desvio
T (anos)	Médio $(\%)^1$	Médio $(\%)^2$	T (anos)	Médio $(\%)^1$	Médio $(\%)^2$
2	-2,1	-2,1	2	-5,3	-5,5
5	13,4	13,4	5	47,0	48,0
10	19,0	19,0	10	68,7	70,2
50	26,3	26,3	50	99,2	101,4
100	28,3	28,3	100	108,0	110,4
500	31,6	31,6	500	122,9	125,6
1000	32,7	32,7	1000	127,8	130,6
10000	35,2	35,2	10000	139,8	142,9
Região	o MAX III red	lefinida	Região	MAX IV red	lefinida
T (area)	Desvio	Desvio	T (area)	Desvio	Desvio
I (anos)	Médio $(\%)^1$	Médio $(\%)^2$	I (anos)	Médio $\left(\%\right)^1$	Médio $(\%)^2$
2	2,9	2,7	2	0,8	1,0
5	-6,0	-5,5	5	-0,7	-1,6
10	-9,5	-8,8	10	-1,3	-2,8
50	-14,4	-13,3	50	-2,3	-4,6
100	-15,8	-14,5	100	-2,6	-5,1
500	-18,1	-16,7	500	-3,1	-6,0
1000	-18,9	-17,4	1000	-3,2	-6,3
10000	-20,7	-19,0	10000	-3,7	-7,1
1	Região MAX ^v	V	R	legião MAX V	VI
T (anos)	Desvio	Desvio	T (anos)	Desvio	Desvio
	Médio $(\%)^1$	Médio $(\%)^2$		Médio $(\%)^1$	Médio $(\%)^2$
2	-1,7	0,7	2	-4,7	-4,0
5	18,8	13,5	5	12,6	10,9
10	27,3	18,9	10	19,6	17,0
50	39,4	26,5	50	29,3	25,4
100	42,9	28,6	100	32,1	27,8
500	48,8	32,3	500	36,8	31,8
1000	50,7	33,5	1000	38,3	33,1
10000	55,4	36,5	10000	42,0	36,3
R	egião MAX V	II	Os termos sob	prescritos (1) e	(2) acima dos
T (anos)	Desvio	Desvio	"Desvios Médio	s" indicam a est	imação do tempo
	Médio (%) ¹	Médio $(\%)^2$	1	:	14 4 min 4 ili
2	-3,0	-2,2	de retorno assoc	ciado a curva env	oltoria utilizando
5	12,3	9,8	a equação de c	orrelação calibra	ada para toda a
10	18,6	14,7	1 3	3	
50	27,3	21,6	região e por regiã	io homogênea, re	spectivamente.
100	29,9	23,6			
500	34,2	27,0			
1000	35,6	28,1			
10000	39,1	30,8			

 Tabela 5.8 - Desvios médios para as regiões homogêneas

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Na Tabela 5.9 apresenta-se a nova configuração da região homogênea MAX II, a partir dos critérios estatísticos sugeridos por Hosking e Wallis (1997), com os nomes e códigos das respectivas estações fluviométricas pertencentes às sub-bacias 40 e 41.

	Região MAX II-a	Curso de Água
40050000	Iguatama	São Francisco
40067000	Ponte Olegário Maciel	São Francisco
40070000	Ponte do Chumbo	São Francisco
40100000	Porto das Andorinhas	São Francisco
40102000	Porto da Barra	São Francisco
41135000	Pirapora-Barreiro	São Francisco
	Região MAX II-b	Curso de Água
40350000	Usina Camarão	Lambari
40380000	Araújos	Lambari
40400000	Estação Álvaro da Silveira	Lambari
40450001	Porto Pará (CEMIG)	Pará
40850000	Ponte da Taquara	Paraopeba

Tabela 5.9 - Estações pertencentes às regiões homogêneas MAX II-a e MAX II-b

Para a redefinição da região homogênea MAX II nas regiões MAX II-a e MAX II-b buscou-se o deslocamento das estações fluviométricas de forma com que exista sentido físico para esse procedimento, ou seja, com que as estatísticas locais não se sobrepusessem às características físicas locais dessa região.

Nesse sentido, buscando a aceitação conjunta das medidas de discordância, homogeneidade e aderência, tal como apresentado na Tabela 5.10, foram excluídas as estações fluviométricas Abaeté (40530000), Santo Hipólito (41818000), Várzea da Palma (41990000), Curimataí (41890000), Presidente Juscelino Jusante (41780002), Pirapama (41600000) e Ponte do Licínio Jusante (41650002).

U							
Dogião	N° de	Medida D		Medi	ida <i>H</i>	Medida Z	
Regiao	postos	D	Status	H	Status	Ζ	Status
MAX II-a	6	1,60	ok	-0,22	ok	-0,14	ok
MAX II-b	5	1,32	ok	0,05	ok	-1,33	ok

Tabela 5.10 - Resultados das rotinas Hosking para as regiões homogêneas MAX II-a e MAX

Novamente, a estimação dos parâmetros de posição, escala e forma da distribuição GEV foi efetivada pela aplicação do método dos momentos-L, cujos resultados seguem na Tabela 5.11.

Foram também traçadas as curvas de freqüência para essas regiões, conforme apresentado nas Figuras 5.41 e 5.42.

Região	Estimativa dos parâmetros da GEV							
redefinida	Escala (α)	Posição (ß)	Forma (k)					
MAX II-a	0,223	0,848	-0,094					
MAX II-b	0,268	0,847	0,006					

Tabela 5.11 - Estimação dos parâmetros da distribuição GEV para as regiões MAX II-a eMAX II-b

Após a redefinição da região MAX II nas regiões homogêneas MAX II-a e MAX II-b, foram repetidos os procedimentos descritos ao longo dos tópicos 5.4 a 5.9 para essas localidades.

Figura 5.41 - Curva de freqüência para a região MAX II-a

Os resultados referentes à análise das regiões MAX II-a e MAX II-b seguem da seguinte maneira:

• Elaboração das curvas envoltórias empíricas

Nessa etapa foram executados os mesmos procedimentos descritos no item 5.4, ou seja, para cada estação fluviométrica pertencente às regiões MAX II-a e MAX II-b foram tomadas as médias das vazões máximas de cada posto e, em seguida, a aplicação da equação 4.2, denotando a lei de escala entre a cheia-índice local e a respectiva área de drenagem. As Figuras 5.43 e 5.44 ilustram o procedimento.

Figura 5.43 - Ajuste potencial sobre a lei de escala para a região MAX II-a

Figura 5.44 - Ajuste potencial sobre a lei de escala para a região MAX II-b

Em seguida foram tomados os logaritmos naturais da divisão dos valores de vazões máximas anuais das séries registradas pelas estações fluviométricas, pertencentes a essas regiões, pelas respectivas áreas de drenagem, e compilados no eixo das ordenadas do gráfico da curva.

O eixo das abscissas denota os logaritmos naturais dos valores da área de drenagem das respectivas estações. Assim, com a aplicação da equação 4.1, pode-se traçar as curvas envoltórias para as regiões MAX II-a e MAX II-b, conforme ilustrado nas Figuras 5.45 e 5.46.

Figura 5.45 - Curva envoltória traçada para a região MAX II-a

Figura 5.46 - Curva envoltória traçada para a região MAX II-b

• Redução da variabilidade espacial contida nos dados amostrais

Para a etapa de redução da variabilidade espacial contida nos dados amostrais, Castellarin (2007) propõe um modelo de correlação espacial a ser calibrado utilizando as estações distribuídas por toda a área de estudo, ou agrupadas por regiões homogêneas. Este procedimento foi discutido nos itens 5.5.1 e 5.5.2.

O ajuste da equação 4.28 para as regiões MAX II-a e MAX II-b continua o mesmo do obtido no item 5.5.1, uma vez que o cálculo da correlação entre as estações i e j, separadas pela distância $d_{i,j}$, foi efetuado abrangendo as estações distribuídas por toda a área de estudo.

Em contrapartida, para o ajuste da equação 4.28 considerando os postos agrupados por região homogênea, ou seja, os postos constituintes das regiões MAX II-a e MAX II-b, foram utilizados novos coeficientes de correlação obtidos para o período em comum de dados de vazões entre essas regiões, em função da exclusão das estações já mencionadas da análise.

Dessa maneira, têm-se as distâncias entre todas as estações pertencentes à região MAX II-a e MAX II-b, combinadas com os respectivos coeficientes de correlação obtidos para o período em comum de dados de vazões entre estas mesmas estações.

O gráfico obtido para tal procedimento segue nas Figuras 5.47 e 5.48, onde o ajuste exponencial sobre os pontos permite a calibração da equação 4.28 para as estações agrupadas para as regiões homogêneas MAX II-a e MAX II-b.

Figura 5.48 - Calibração da equação 4.28 para a região MAX II-b

Cálculo do número efetivo de observações amostrais

O cálculo do número efetivo de observações amostrais para as regiões homogêneas MAX II-a e MAX II-b segue conforme descrito no item 5.6. Os subconjuntos regionais formados para essas regiões seguem no Anexo 4.

• Estimação da posição de plotagem

Conforme apresentado no item 5.7, o cálculo de uma probabilidade empírica η pode ser efetuado pela aplicação da equação 4.31, a qual é dependente apenas do parâmetro de forma k da distribuição GEV. A Tabela 5.12 mostra os resultados dos cálculos efetuados para a estimativa do parâmetro de forma aplicando o método dos momentos-L, para as regiões homogêneas MAX II-a e MAX II-b.

De posse da estimativa do parâmetro de forma da distribuição GEV, o cálculo da probabilidade empírica η para essas regiões pode ser obtido pela aplicação direta da equação 4.31; a Tabela 5.12 apresenta os resultados.

• Estimação da probabilidade de superação da envoltória

A estimação da probabilidade de superação para as curvas envoltórias referente às regiões MAX II-a e MAX II-b seguem conforme os procedimentos descritos no item 5.8. Assim, obtidos os valores da probabilidade empírica η , e do número efetivo de observações

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

amostrais, pode-se aplicar a equação 4.26. A Tabela 5.12 mostra a síntese dos cálculos efetuados na aplicação da metodologia para essas duas regiões.

Cálculos Efetuados	MAX II-a ¹	MAX II-b ¹	MAX II-a ²	MAX II-b ²
Número de estações	6	5	6	5
Número de observações	158	146	158	146
Número de observações únicas (n_1)	8	16	8	16
Número de observações efetivas (n_{ef})	119,54	96,67	101,89	106,83
Parâmetro de forma da GEV (k)	-0,0948	0,0061	-0,0948	0,0061
Coeficiente angular (b)	-0,2405	-0,1217	-0,2405	-0,1217
Coeficiente linear (a)	0,6980	-0,7707	0,6980	-0,7707
Parâmetro (C)	0,6847	0,2169	0,6847	0,2169
Parâmetro do modelo de correlação (λ)	-0,006	-0,006	-0,003	-0,009
Probabilidade empírica (η)	0,4828	0,4362	0,4828	0,4362
Subconjuntos amostrais (N sub)	13	14	13	14
Probabilidade de excedência (p)	0,0043	0,0058	0,0051	0,0053
Tempo de retorno (anos)	231	172	197	190

Tabela 5.12 - Síntese dos cálculos efetuados na aplicação da metodologia para as regiõesMAX II-a e MAX II-b

Os termos sobrescritos (1) e (2) acima das "regiões MAX II" indicam a estimativa do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea, respectivamente.

• Estimação dos quantis de vazões máximas utilizando o tempo de retorno associado às curvas envoltórias de cheias

Para a estimação dos quantis de vazões máximas utilizando o tempo de retorno associado às curvas envoltórias de cheias referentes às regiões MAX II-a e MAX II-b, foram executados os mesmos procedimentos descritos no presente item.

A Tabela 5.13 mostra os resultados da estimação do quantil de vazão máxima anual Q^{est}_{max} , da média das vazões máximas anuais μ^{est} , e dos parâmetros que descrevem a distribuição GEV, para todas as estações fluviométricas pertencentes às regiões MAX II-a e MAX II-b, comparados aos quantis de vazões máximas anuais e média das vazões máximas anuais amostrais dessas duas regiões.

Região homogênea MAX II-a									
Estação	Q_{max} (m ³ /s)	μ (m³/s)	Q^{est}_{max} (m ³ /s)	μ^{est} (m ³ /s)	α^1	β^1	α^2	β^2	
Iguatama	939	484	1379	470	141,14	373,74	147,22	369,60	
Ponte Olegário Maciel	980	743	2023	689	207,05	548,27	215,98	542,20	
Ponte do Chumbo	1064	671	2183	744	223,51	591,85	233,14	585,29	
Porto das Andorinhas	2814	889	2814	959	288,07	762,81	300,49	754,37	
Porto da Barra	1667	1032	2860	974	292,76	775,22	305,38	766,64	
Pirapora-Barreiro	5840	3050	8805	3000	901,38	2386,82	940,23	2360,40	
]	Região ho	mogênea	a MAX II-b					
Estação	Q _{max} (m ³ /s)	μ (m³/s)	Q^{est}_{max} (m ³ /s)	μ^{est} (m ³ /s)	α^1	β^1	α^2	β^2	
Usina Camarão	63	31,2	63	29,5	7,45	25,28	7,29	25,37	
Araújos	154	100	234	110	27,63	93,72	27,05	94,06	
Estação Álvaro da Silveira	300	154	335	157	39,60	134,34	38,77	134,82	
Porto Pará (CEMIG)	1580	753	1679	787	198,65	673,84	194,46	676,24	
Ponte da Taquara	1330	690	1339	628	158,41	537,33	155,06	539,24	

Tabela 5.13 - Estimação do quantil de vazão máxima anual, da média das vazões máximas anuais, e dos parâmetros que descrevem a distribuição GEV, para as regiões MAX II-a e MAX II-b

Os termos sobrescritos (1) e (2) acima dos parâmetros de escala α e posição β da distribuição GEV indicam a estimação do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea, respectivamente.

A próxima etapa consiste na comparação dos resultados obtidos àqueles referentes à análise de freqüência local, usando o método dos momentos (MOM) e o método dos momentos-L (MML) para a estimação dos parâmetros da distribuição de freqüência GEV.

As Figuras 5.49 e 5.50 ilustram, pela ordem, as curvas de freqüência obtidas utilizando o tempo de retorno estimado às curvas envoltórias traçadas para as regiões MAX II-a e MAX II-b. Os termos sobrescritos (1) e (2) indicam a estimação do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea (MAX II-a e MAX II-b), respectivamente.

Figura 5.49 - Curva de freqüência para a estação Iguatama

Figura 5.50 - Curva de freqüência para a estação Porto Pará (CEMIG)

Para a análise dos desvios percentuais entre as estimativas dos valores de quantis de vazões máximas obtidos tanto pela metodologia das curvas envoltórias de cheias, quanto pela metodologia de regionalização utilizando os momentos-L, efetuou-se o cálculo do desvio médio percentual, conforme descrito no presente item, para as regiões homogêneas MAX II-a e MAX II-b. A Tabela 5.14 traz os resultados. Observa-se a sensível diminuição dos desvios percentuais após a subdivisão da região MAX II redefinida, com resultados próximos àqueles obtidos para as outras regiões.

R	egião MAX II	[-a	R	egião MAX II	[-b
T (anos)	Desvio	Desvio	T (apag)	Desvio	Desvio
I (allos)	Médio $(\%)^1$	Médio $(\%)^2$	\mathbf{I} (allos)	Médio $(\%)^1$	Médio $(\%)^2$
2	-2,3	-2,8	2	0,6	0,7
5	6,2	7,2	5	-0,9	-1,3
10	10,3	12,0	10	-1,6	-2,2
50	16,7	19,5	50	-2,5	-3,5
100	18,7	21,8	100	-2,8	-3,8
500	22,3	26,0	500	-3,3	-4,5
1000	23,5	27,4	1000	-3,4	-4,7
10000	26,6	31,0	10000	-3,8	-5,2

Tabela 5.14 - Desvios médios para as regiões MAX II-a e MAX II-b

Os termos sobrescritos (1) e (2) acima dos "Desvios Médios" indicam a estimativa do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea, respectivamente.

O Capítulo 6 aborda as conclusões e recomendações acerca da aplicação da metodologia para as sub-bacias 40 e 41, conforme apresentado ao longo deste capítulo.

6 CONCLUSÕES E RECOMENDAÇÕES

A presente dissertação de mestrado teve como objetivo principal compreender e aplicar a metodologia desenvolvida por Castellarin *et al.* (2005) e Castellarin (2007) para a estimação da probabilidade de superação do valor esperado da curva envoltória, estendendo-a de modo que a interpretação probabilística das curvas envoltórias pudesse ser usada para a obtenção de curvas de freqüência completas de vazões máximas em locais com pouco ou nenhum monitoramento fluviométrico.

6.1 Etapas contempladas no presente trabalho de dissertação

a) Elaboração das curvas envoltórias para as 7 regiões homogêneas delimitadas para o estudo

Nesta etapa foram traçadas as curvas envoltórias para as 7 regiões homogêneas que abrangem a área de estudo. Para este procedimento foram selecionadas as estações fluviométricas pertencentes a cada região homogênea e os coeficientes linear a e angular b da curva envoltória foram expressos por regressão das cheias-índice, em função de suas respectivas áreas de drenagem, por meio do ajuste potencial da lei de escala proposta por Castellarin *et al.* (2005).

b) Redução da variabilidade espacial contida nos dados amostrais

Para a redução da variabilidade espacial contida nos dados amostrais, Castellarin (2007) propôs um modelo exponencial para a análise da tendência do decaimento gradual do grau de correlação cruzada em função da distância entre as estações utilizadas no estudo. Esse modelo foi calibrado tanto para toda a área de estudo, quanto por região homogênea. No presente trabalho consideraram-se as duas possibilidades de aplicação.

c) Determinação do número efetivo de observações amostrais

Esta etapa consistiu no cálculo do número efetivo de observações amostrais a serem efetivamente utilizados no estudo. Para isso, as séries de vazões máximas registradas para um conjunto de estações fluviométricas pertencentes à região homogênea em análise foram divididas em subconjuntos regionais.

Cada subconjunto regional é constituído por um número de estações que contém dois ou mais registros de vazões máximas em comum para um determinado ano ou seqüência de anos da série hidrológica, sendo esses registros únicos para esse mesmo período.

Também foram identificados os registros únicos de vazão máxima anual, ou seja, o número de vezes em que o registro de vazão máxima é presente em apenas um determinado ano ao longo da série histórica, não ocorrendo nenhum outro valor de vazão em comum no mesmo ano em nenhuma das estações pertencentes à região homogênea em análise.

Finalmente, com a definição do número de estações pertencentes a cada subconjunto regional, foram tomadas as distâncias entre as seções transversais dessas estações e ajustado um coeficiente de correlação em função dessas mesmas distâncias por meio da aplicação do modelo exponencial calibrado tanto para toda a área de estudo quanto por região homogênea, conforme mencionado em b), e assim estimou-se um coeficiente de correlação entre cada par de estações pertencentes a um subconjunto regional. Após esse procedimento foi possível calcular o número efetivo de observações amostrais.

d) Estimação da posição de plotagem

De acordo com Castellarin (2007), a estimação da posição de plotagem por meio da distribuição Generalizada de Valores Extremos (GEV) é a que fornece os melhores resultados para a aplicação da metodologia para a interpretação probabilística das curvas envoltórias. Este procedimento foi executado aplicando-se a e equação 4.31, onde a qual é dependente apenas do parâmetro de forma da distribuição GEV. Nesse contexto, o parâmetro de forma foi estimado pelo método dos momentos-L.

e) Estimação da probabilidade de superação da envoltória

Após a estimação da posição de plotagem e do número efetivo de observações amostrais a serem utilizados no estudo, pôde-se estimar probabilidade de superação p, cujo inverso, denota o tempo de retorno associado à curva envoltória média traçada para uma determinada região homogênea.

f) Extensão da metodologia proposta por Castellarin (2007)

Na presente dissertação de mestrado fez-se a extensão da metodologia proposta por Castellarin (2007), objetivando a estimação dos quantis de vazões máximas, para diversos tempos de retorno, utilizando a interpretação probabilística das curvas envoltórias de cheias.

Sabendo-se a probabilidade de superação, e conseqüentemente o tempo de retorno do valor esperado da curva envoltória, pode-se estimar a vazão para esse mesmo período de retorno em qualquer bacia pertencente àquela região homogênea, na qual a distribuição Generalizada de Valores Extremos seja o modelo probabilístico regional.

Para esse procedimento é montado um sistema matemático constituído por três equações e três incógnitas, as quais são os parâmetros de forma, escala e posição da distribuição GEV. Com o tempo de retorno estimado para a curva envoltória traçada para uma determinada região homogênea e com a estimação do parâmetro de forma da distribuição GEV pela aplicação do método dos momentos-L, pode-se estimar os parâmetros regionais de posição e escala da distribuição GEV, válidos para a região homogênea em análise.

g) Avaliação de desempenho da metodologia estendida

Objetivando a análise de desempenho da metodologia estendida, foram comparados os resultados obtidos pela estimativa dos quantis de vazões máximas, para diferentes tempos de retorno, com os quantis de vazões máximas estimados pela regionalização hidrológica utilizando os momentos-L, proposta por Hosking e Wallis (1997), e também pela análise de freqüência local, utilizando as estimativas dos parâmetros da distribuição GEV pelo método dos momentos (MOM) e pelo método dos momentos-L (MML).

6.2 Comentários e recomendações para a aplicação da metodologia proposta por Castellarin (2007), e estendida para a estimação dos quantis de vazões máximas

Primeiramente, deve-se fazer um breve comentário sobre os dados de vazões máximas utilizados nesse estudo. De acordo com CPRM (2001), os dados de vazões máximas utilizados não se referem às vazões máximas instantâneas, ou seja, às vazões de pico dos hidrogramas de cheia, uma vez que os dados disponíveis foram obtidos através de dupla

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

leitura diária dos níveis dos rios e não por registro contínuo dos mesmos. Ainda, segundo CPRM (2001), para pequenas bacias a diferença entre essas vazões pode ser significativa.

Outro aspecto a ser abordado consiste na etapa da delimitação das regiões homogêneas. Conforme comentado no Capítulo 5, as 7 regiões homogêneas utilizadas nesse estudo foram previamente delimitadas por CPRM (2001). Entretanto, o trabalho de Castellarin (2007) pressupõe que a distribuição de freqüência a ser utilizada seja a GEV, onde as regiões MAX II, MAX III e MAX IV não apresentaram bons resultados da medida de aderência para essa distribuição.

Nesse contexto, as regiões MAX II, MAX III e MAX IV foram redefinidas, fazendo-se a opção pela exclusão da estação fluviométrica Fazenda São Félix (40975000), pertencente à região homogênea MAX III, uma vez que a inclusão desse posto de monitoramento implica na inviabilidade de aceitação conjunta dos critérios de discordância, homogeneidade e aderência propostos por Hosking e Wallis (1997). Além disso, a estação Barra do Funchal (40930000), pertencente à região homogênea MAX IV, foi transladada para a região homogênea MAX II.

Na etapa da redução da variabilidade espacial contida nos dados amostrais, o modelo de correlação proposto por Castellarin (2007) foi calibrado tanto para toda a área de estudo (Figura 5.25), quanto por região homogênea (Figuras 5.26 a 5.32). Nas duas situações, pôde-se observar a grande dispersão dos pontos contidos no gráfico elaborado considerando as distâncias entre as seções transversais das estações fluviométricas *versus* seus respectivos coeficientes de correlação para o período em comum de registros de vazões máximas anuais entre essas mesmas estações. É justamente objetivando a redução da variabilidade desses registros que Castellarin (2007) propõe um ajuste exponencial a esses pontos.

Segundo Castellarin (2007), a calibração do modelo de correlação para toda a área de estudo é mais "robusta" em comparação à calibração do mesmo modelo por região homogênea. Ainda, segundo o mesmo autor, tanto a primeira quanto a segunda forma de calibração para a equação 4.28 não irá implicar em diferenças significativas para a associação de um tempo de retorno à curva envoltória. Entretanto, na presente dissertação, conforme pode ser constatado na Tabela 5.6, o tempo de retorno associado à curva envoltória diferiu de modo relativamente importante para os dois métodos de calibração da equação 4.28.

Após a estimativa do tempo de retorno associado às curvas envoltórias de cheias, segundo a metodologia proposta por Castellarin (2007), foram estimados os quantis de vazões máximas para diferentes períodos de retorno. Para isso, o parâmetro de forma da distribuição GEV foi estimado através do método dos momentos-L. Os parâmetros regionais de posição e escala da distribuição GEV foram estimados utilizando as equações 4.35, 5.1 e 5.2.

A média das vazões máximas foi estimada através do ajuste potencial sobre a lei de escala proposta por Castellarin *et al.* (2005). Com a estimação da média das vazões máximas e dos parâmetros regionais de posição, escala e forma da distribuição GEV, de acordo com o tempo de retorno associado à curva envoltória, pôde-se resolver a equação que descreve essa curva e estimar os quantis de vazão máxima, para diferentes períodos de retorno, para localidades com área de drenagem compreendida nos limites dessa curva.

Assim, efetuou-se a estimação dos quantis de vazões máximas, para diferentes períodos de retorno, para todas as estações utilizadas no estudo. As Tabelas 5.7-a e 5.7-b sintetizam os resultados obtidos.

A análise dos resultados contidos nas Tabelas 5.7-a e 5.7-b mostram que os quantis de vazões estimados, para diferentes períodos de retorno, são semelhantes tanto para o tempo de retorno associado à curva envoltória utilizando o modelo de correlação calibrado para toda a área de estudo, quanto por região homogênea. Conforme menção anterior, para o presente estudo, o tempo de retorno estimado para a curva envoltória diferiu dependendo da maneira pela qual o modelo descrito pela equação 4.28 foi calibrado. Entretanto, para a estimação dos quantis de vazão máxima, as diferenças entre os tempos de retorno associados às curvas envoltórias traçadas para as 7 regiões homogêneas, tanto pela calibração da equação 4.28 para toda a área de estudo ou por região homogênea, foram pouco expressivas.

Ainda conforme pode ser observado nas Tabelas 5.7-a e 5.7-b, as médias estimadas para as estações fluviométricas pertencentes ao estudo são semelhantes às médias dos dados de vazões máximas presentes nas estações. Análise similar pode ser feita para as vazões máximas estimadas, sendo essas de valor semelhante às vazões máximas registradas nas estações. Diferenças significativas, tanto para a estimativa da média das vazões máximas, quanto das vazões máximas ocorreram para a região homogênea MAX II. Tal constatação

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

pode ser observada na Figura 5.35, e também na Tabela 5.8, onde, para um tempo de retorno de apenas 10 anos, os desvios médios ficaram em torno de 70%.

Acredita-se que esses resultados tenham sido influenciados pela existência de regiões de comportamento diferenciado, ou de outras regiões homogêneas, inseridas na região homogênea MAX II. Desta forma, a região homogênea MAX II redefinida foi subdividida nas regiões MAX II-a e MAX II-b. Em seguida, foram executados os mesmos procedimentos metodológicos descritos na presente dissertação de mestrado para essas duas regiões. A análise conjunta das Tabelas 5.13 e 5.14, e também das Figuras 5.49 e 5.50, mostram resultados similares àqueles obtidos para as demais regiões homogêneas.

Nas tabelas 5.8 e 5.14 pode-se observar que os desvios médios por região homogênea apresentam uma tendência de crescimento na medida em que se aumenta o período de retorno. Tal constatação deve-se ao aumento da variabilidade amostral, uma vez que para maiores períodos de retorno, tem-se uma maior extrapolação dos dados amostrais, e conseqüentemente são maiores as incertezas envolvidas no processo de estimação de vazões.

A equação 4.1, que representa uma forma matemática genérica para as curvas envoltórias de cheias, pode ser interpretada pelo leitor da presente dissertação de mestrado como uma relação espúria, uma vez que relaciona-se a área de drenagem da bacia com as máximas vazões registradas nessa mesma unidade divididas pelas respectivas áreas de drenagem. De fato, sabe-se que as máximas vazões registradas em uma bacia estão correlacionadas com a área de drenagem dessas unidades. Assim, no presente trabalho, acredita-se que a relação entre quocientes de variáveis que apresentem o mesmo denominador não ira invalidar a utilização da equação 4.1, uma vez que a mesma foi aplicada nos trabalhos de Castellarin *et al.* (2005) e Castellarin (2007).

Na presente dissertação de mestrado, não foi identificada nenhuma tendência com relação a qual metodologia, dentre as contempladas neste trabalho, fornece uma estimativa de quantis de vazões máximas com valores sistematicamente maiores ou menores.

Tal constatação pode ser visualizada nas Figuras 5.34 a 5.40, onde os quantis estimados pela interpretação probabilística das curvas envoltórias nem sempre foram superiores àqueles estimados pela análise de freqüência local, utilizando o método dos momentos e o método dos

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

momentos-L para a estimação dos parâmetros que descrevem a distribuição GEV, e a regionalização hidrológica utilizando o método dos momentos-L, tal como descrito por Hosking e Wallis (1997).

As tabelas 5.6 e 5.12 apresentam o tempo de retorno associado as respectivas curvas envoltórias traçadas para as regiões consideradas hidrologicamente homogêneas para o presente trabalho. Não foram obtidos tempos de retorno da ordem de milhares de anos para nenhuma das curvas envoltórias traçadas, não impedindo, entretanto, que tais valores sejam obtidos no futuro, na medida em que eventos de cheias extremas venham a ocorrer na área de estudo e adicionem novos registros de vazões aos utilizados para a elaboração desse trabalho.

Outro aspecto a ser abordado nesse estudo é o fato da dependência da utilização do método dos momentos-L para a estimação do parâmetro de forma regional da distribuição GEV. Cabe ressaltar que existem outras metodologias para a estimativa desse parâmetro de forma, restando como recomendação a estimação desse parâmetro por outros métodos e a verificação de como esse resultado irá influenciar nos resultados obtidos pela aplicação da metodologia aqui descrita.

Outra possibilidade consiste na elaboração de um mapa da região de estudo com a estimação do parâmetro de forma da distribuição GEV para diversas localidades, buscando o traçado de isolinhas representativas da variação espacial das estimativas desse parâmetro.

Em uma nova etapa pode-se considerar o desenvolvimento de uma ferramenta computacional para a automação da metodologia descrita no presente trabalho de dissertação. Em contatos recentes via correio eletrônico, o professor Attilio Castellarin, da Universidade de Bolonha, mencionou o desenvolvimento de uma rotina computacional, ainda em fase de testes, para a automação das etapas metodológicas para a associação de uma probabilidade de igualdade ou superação ao valor esperado da curva envoltória.

Uma questão importante a ser mencionada seria a razão pela utilização da interpretação probabilística das curvas envoltórias de cheias, uma vez que a regionalização baseada nos momentos-L, proposta por Hosking e Wallis (1997), encontra-se consagrada no meio científico. De fato, este trabalho não traz a pretensão de prover qual das duas metodologias fornece estimativas mais confiáveis de quantis de vazões máximas.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Com efeito, a partir de um quantitativo mínimo de informações, ou seja, a curva envoltória traçada para uma região considerada homogênea, e a estimativa do parâmetro de forma da distribuição GEV, pode-se estimar quantis de vazões de cheias para qualquer localidade com área de drenagem compreendida pelos limites da envoltória.

Por fim, espera-se que investigações futuras sobre o método aqui contemplado aprimorem os procedimentos realizados nesta pesquisa, e que esta dissertação de mestrado tenha colaborado com a agregação de informações na área da estimação de quantis de vazões de cheias em localidades não instrumentadas, ou desprovidas de uma eficiente rede de monitoramento fluviométrico.

REFERÊNCIAS BIBLIOGRÁFICAS

ANJOS, N. F. R. e ALMEIDA, S. B. Diagnóstico Preliminar dos Critérios Utilizados pelo Setor Elétrico para Cálculo das Vazões de Projeto de Vertedores. IV Simpósio Brasileiro de Hidrologia e Recursos Hídricos, Anais, v. 4, p. 452-463, Fortaleza, 1981.

ARAÚJO, L. M. N.; TAVARES, J. C. Regionalização de vazões da bacia do rio Paraíba do Sul. in XV Simpósio Brasileiro de Recursos Hídricos, Curitiba- PR, Nov. 2003. Anais em CD, 2003.

ARNELL, N. W., M. BERAN, e J. R. M. HOSKING, Unbiased plotting positions for the general extreme value distribution, *Journal of Hydrology*, 86, 59–69, 1986.

BAKER, V. R.; WEBB, R. H.; HOUSE, P. K. The scientific and societal value of paleoflood hydrology. In: HOUSE, P. K.; WEBB, R. H.; BAKER, V. R.; LEVISH, D. R. (Ed.) *Ancient floods, modern hazards: Principles and applications of paleoflood hydrology*, Water Science and Application 5, American Geophysical Union, Washington, p. 1-19, 2002.

BAYAZIT, M. e ÖNÖZ, B. Envelope Curves for Maximum Floods in Turkey. *Teknik Dergi* Vol.15, No. 1 January, p. 3125-3130, 2004.

BENSON, M. A. *Evolution of the methods for evaluating the occurrence of floods*. USGS, Water Resources Paper 1580-A, 1960.

BERZ, G. Flood Disasters: Lessons from the past – Worries for the future. *Water and Maritime Engineering*, 142, 2000, p. 3-8 *apud* BAPTISTA, M. B., NASCIMENTO, N. O., BARRAUD, S. *Técnicas Compensatórias em Drenagem Urbana*. Porto Alegre: ABRH, 2005. 266 p.

BIONDIĆ, D.; BARBALIĆ, D.; PETRAŠ, J. Creager's and Francou-Rodier's envelopes of extreme floods in the Danube river basin in Croatia. Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 20–22 November 2002). IAHS Publ. 309, 2007.

BOBÉE, B. e RASMUSSEN, P. Recent advances in flood frequency analysis, U.S. National Report to IUGG, 1991-1994, Rev. Geophysics, v. 33, 1995. Disponível em http://earth.agu.org/revgeophys/bobee01/bobee01.htm.

BUSSAB, W. O., MORETTIN, P. A. Estatística Básica, Editora Saraiva, 5ª edição, São Paulo, 2004.

CÂNDIDO, M. O. SEAF – Um Protótipo de sistema especialista para analise de freqüência local de eventos hidrológicos máximos anuais, Dissertação de Mestrado, Programa de Pós Graduação em Saneamento, Meio Ambiente e Recursos Hídricos – UFMG, Belo Horizonte, 2003.

CASTELLARIN, A. Probabilistic envelope curves for design flood estimation at ungauged sites. *Water Resources Research*, 43, 2007.

CASTELLARIN, A.; VOGEL, R. M.; MATALAS, N. C. Probabilistic behavior of a regional envelope curve. *Water Resources Research*, 41, W06018, 2005.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

CHANG, H. H., Fluvial processes in river engineering. United States Copyright, 1988.

CHOW, V. T. (Ed.). Handbook of applied hydrology, McGraw-Hill, New York, NewYork , 1964.

CLARKE, R. T. Estimating trends in data from the Weibull and a generalized extreme value distribution, Water Resources Research, v. 38, n. 6, p. 25.1-25.10, 2002.

CLARKE, R. T. Statistical Modeling in Hydrology, John Wiley e Sons, England, 1994.

CORREIA, F. N. Métodos de Análise e Determinação de Caudais de Cheia, Tese apresentada ao concurso para Investigador Auxiliar do Laboratório Nacional de Engenharia Civil, Lisboa, 1983.

COSTA, H. e TEUBER, W. Enchentes no Estado do Rio de Janeiro – Uma abordagem Geral. Rio de Janeiro: Secretaria de Estado de Meio ambiente e Desenvolvimento Sustentável, 2001.

COX D. R., ISHAM, V. S. e NORTHROP, P. J. Floods: some probabilistic and statistical approaches, Research Report 224, University College London, Londres, 2002.

CPRM - COMPANHIA DE PESQUISA DE RECURSOS MINERAIS – Superintendência Regional de Belo Horizonte. Regionalização de vazões sub-bacias 40 e 41, Convênio 015/2000 ANEEL – 013/CPRM/2000, Relatório Final. Belo Horizonte, 2001, 5v.

CPRM - COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. (Brasil) Projeto Análise de Consistência de Dados Pluviométricos – Bacia do Rio São Francisco. Sub-Bacias 40 a 44: Relatório Técnico Parcial. Sub-Bacia 40. Belo Horizonte, DNAEE/CPRM, 1995a, 3v.

CPRM - COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. (Brasil) Projeto Análise de Consistência de Dados Pluviométricos – Bacia do Rio São Francisco. Sub-Bacias 40 a 44: Relatório Técnico Parcial. Sub-Bacia 41.Belo Horizonte, DNAEE/CPRM, 1995b, 3v.

CREAGER, W. P., JUSTIN, J. D. e HINDS, J. Engineering for dams: Volume 1, General design, John Wiley and Sons, New York, New York, 1945.

CRIPPEN, J. R.; BUE, C. D. *Maximum flood flows in the conterminous United States*. Geological Survey Water Supply Paper 1887, US GPO, Washington, 1977.

CRIPPEN, J. R. Envelope curves for extreme flood events, J. Hy- draul. Div. Am. Soc. Civ. Eng., 108(HY10), 1208–1212, 1982.

DAMAZIO, J. M., MOREIRA, J. C., COSTA, J. P., KELMAN, J. Seleção de Métodos para Estimação de Vazões com Tempos de Retorno Elevados. V Simpósio Brasileiro de Hidrologia e Recursos Hídricos, v.2, p. 145, Blumenau, 1983.

DALRYMPLE, T., *Flood-frequency analysis, Manual of Hydrology: Part.3. Flood-flow Techniques*, Geological Survey Water Supply Paper 1543-A, U.S. GPO, Washington, D.C., 80p., 1960.

DAVIS, E. G. e NAGHETTINI, M. C. Estudo de Chuvas Intensas no Estado do Rio de Janeiro. CPRM, Brasília, 2000.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG
DAVIS, E. G. e NAGHETTINI, M. C. Estudo de Chuvas Intensas, Projeto Rio de Janeiro, CPRM, Belo Horizonte, 2001.

DNAEE – Departamento Nacional de Recursos Hídricos. *Inventário das Estações Fluviométricas*. Brasília, 1996.

DOUGLAS, E.M.; VOGEL, R.M. The probabilistic behavior of floods of record in the United Sates. *Journal of Hydrologic Engineering*, 2005.

ELETROBRÁS – Centrais Hidrelétricas S.A., Guia para Cálculo de Cheia de Projeto de Vertedores, Ministério das Minas e Energia, 1987.

ENGLAND, J. F. *Envelope curve probabilities for dam safety*, U.S. Department of the Interior, Bureau of Reclamation, 21 p., 2005.

ENGLAND, J. F.; KLINGER, R. E.; CAMRUD, M.; KLAWON, J. E. Guidelines for preparing preliminary flood frequency analysis reports for comprehensive facility reviews. Version 1.0. Bureau of Reclamation, Denver, Colorado, 16 p., 2001.

ENZEL, Y.; ELY, L. L.; HOUSE, P. K.; BAKER, V. R.; WEBB, R. H. Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado river basin. *Water Resources Research*, v. 29, n. 7, p. 2287–2297, 1993.

FISRWG – The Federal Interagency Stream Restoration Working Group. *Stream corridor restoration: principles, processes and practices.* Federal agencies of the US gov't, 1998.

FRANCOU, J.; RODIER, J. A. *Essai de classification des crues maximales observées dans le monde*. Cahiers ORSTOM, Série Hydrologie, V. IV (3), Paris, 1967.

FULLER, W.E. Flood flows. Trans. Am. Soc. Civ. Eng., v. 77, p. 564-617, p. 618-694, 1914.

GARCIA, L. A. V. Método Conjugado – Combinação dos Métodos Estatísticos e Determinísticos para Determinação de Valores Máximos e de Variáveis Hidrológicas, Tese de doutorado apresentada na Escola Politécnica da Universidade de São Paulo, 1996.

GRAY, D. M. Manuel des Principies D'Hydrologie, Otawa, Canadá, 1972.

GRUBBS, F. E. e BECK, G. Extension of sample sizes and percentage points for significance tests of outlying observations, Technometrics, v.14, n° 4, p. 847-854, 1972.

GUMBEL E. J. Statistics of Extremes. New York: Columbia University Press, 1958.

HAAN, C. T. (1977) Statistical Methods in Hydrology, The Iowa State University Press, Ames, Iowa, USA, 1977, 378 p.

HAWKINS, D. M. Identification of outliers, Monographs on Applied Probability and Statistics, Chapman and Hall, New York, 1980.

HERSCHY, R. World catalogue of maximum observed floods. IAHS Publication 284, 2003.

HORTON, R. E. Hydrologic conditions as affecting the results of the application of methods of frequency analysis to flood records. *U.S. Geological Survey Water-Supply Papers*, n. 771, p. 433–449, 1936.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

HOSKING J. R. M. The theory of probability weighted moments. *Research Report RC* 12210. Yorktown Heights (NY): IBM Research, 1986.

HOSKING, J. R. M., WALLIS, J. R. Some statistics useful in regional frequency analysis. In: *Water Resources Research*, American Geophysical Union. V.29, n.1, p.271-281, Fev., 1993.

HOSKING, J. R. M., WALLIS, J. R. Correction to "Some statistics useful in regional frequency analisys". In: *Water Resources Research*, American Geophysical Union. V.31, n.1, p.251, Jan., 1995.

HOSKING, J. R. M.; WALLIS, J. R. *Regional Frequency Analysis: An Approach Based on L-moments*. 1^a ed. New York: Cambridge University Press, 1997, 224 p.

IACWD. *Feasibility of assigning a probability to the probable maximum flood*. Hydrology Subcommitee: Interagency Advisory Committee on Water Data – Office of Water Data Coordination, 79 p., 1986.

INSTITUTION OF ENGINEERS AUSTRALIA. *Australian rainfall and runoff : a guide to flood estimation*. V. 1, Institution of Engineers Australia, Canberra, Australia, 374pp., 1987.

JARVIS, C. S. Flood flow characteristics. Transactions ASCE, 88, p. 985-1032, 1925.

JARRETT, R. D.; TOMLINSON, E. M. Regional interdisciplinary paleoflood approach to assess extreme flood potential, *Water Resources Research*, v. 36, n. 10, p. 2957–2984, 2000.

JENKINSON, A. F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. *Quarterly Journal of the Royal Meteorological Society*, v. 81, p.158-171, Apr. 1955.

KADOYA, M. Study on record flood peaks in Japan. *Proceedings of the Japanese Academy*, Series B, 68, p. 133-138, Tokyo, 1992.

KITE, G. W. Frequency and risk analysis in hydrology, Water Resources Publications, Fort Collins, Colorado, 1977.

KELMAN, J. Cheias e aproveitamentos hidrelétricos. *Revista Brasileira de Engenharia*, p 170, 1987.

KIDSON, R.; RICHARDS, K. S. Flood frequency analysis: assumptions and alternatives. *Progress in Physical Geography*, v. 29, n.3, p. 392 – 410, 2005.

LETTENMAIER, D. P. e POTTER, K. W. Testing flood frequency estimation methods using a regional model. Water Resources Research, 21(2), p. 1903-1914, 1985.

LINSLEY, R. K.; KOHLER, M. A.; PAULHUS, J. L. H. *Hydrology for engineers*. New York: McGraw-Hill, 340 p., 1958.

MARCHETTI, G. Sulle massime portate di piena osservate nei corsi d'acqua italiani a tutto il 1953, G. Genio Civ., 93, 3–4, 1955.

MENESCAL, R. A. A segurança de barragens e a gestão de recursos hídricos no Brasil. Brasília, 2005.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

MIMIKOU, M. Envelope curves for extreme flood events in north-western and western Greece. *Journal of Hydrology*, 67, p. 55-66, 1984.

MYERS, V. A. Meteorological estimation os extreme precipitation for spillway design floods. Weather Bureau Technical Memorandum WBTM HYDRO-5, Office of Hydrology, Washington, D.C., USA, 1967.

NAGHETTINI, M. C. Notas de Aula de Hidrologia Aplicada, Escola de Engenharia da UFMG, Departamento de Engenharia Hidráulica e Recursos Hídricos da UFMG, 1999.

NAGHETTINI, M.; PINTO, E. J. A. *Hidrologia Estatística*. 1^a ed. Belo Horizonte: CPRM – Companhia de Pesquisa de Recursos Minerais – Superintendência Regional de Belo Horizonte, 2007.

NAGHETTINI, M., POTTER, K. W. e ILLANGASEKARE, T. Estimating the upper tail of flood-peak frequency distributions using hydrometeorological information, Water Resources Research, v.32, n° 6, p.1729-1740, 1996.

NATHAN, R. J.; WEINMANN, P. E.; Estimation of large to extreme floods: book VI. In: *Australian rainfall and runoff – a guide to flood estimation*. The Institution of Engineers, Australia, 2001.

NERC. Flood Studies Report, Vol. 1. London: National Environmental Research Coucil, 1975.

NRC. *Estimating Probabilities of Extreme Floods*, National Academy Press, Washington, D.C., 1988.

O'CONNOR, J. E., e COSTA, J. E., 2004, The world's largest floods, past and present Their causes and magnitudes: *U.S. Geological Survey Circular 1254*, Virginia, 2004.

OHNISHI, R.; KATO, T.; IMAIZUMI, M.; TANJI, H. A study to determine an equation of curve for regional flood peaks by maximum rainfall data. *Paddy Water Environment*, v. 2, p. 83 – 90, 2004.

ONU – Organização das Nações Unidas. Méthodes Rationelles de Planification de Lutte Contre les Inondations dans l' Amenagemente des Bassins Fluviauxs, Relatório n° ECE/Water/17, Organização das Nações Unidas, New York, New York, 1976.

PEGRAM, G.; PARAK, M. A review of the regional maximum flood and rational formula using geomorphological information and observed floods. *Water SA*, v. 30, n. 3, p. 377 – 392, 2004.

PINHEIRO. M. M. G. *Estudo de chuvas intensas na região metropolitana de Belo Horizonte* – *RMBH*. Belo Horizonte: EE-UFMG. Dissertação de Mestrado, 216 p., 1997.

PIRES, C. L. F. Análise de Freqüência - Revisão Metodológica. In: *A Água em Revista, n. 3*. CPRM, Belo Horizonte, Out., p. 13-22, 1994.

POTTER, K. W. Research on flood frequency analysis: 1983-1986, Rev. Geophys, v. 26, n° 3, p. 113-118, 1987.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

RAO A. R. e HAMED, K. H. Flood Frequency Analysis, CRC Press, Boca Raton, Flórida, 2000.

RIGHETTO, A. M. Hidrologia e Recursos Hídricos, EESC/USP Projeto REENGE, São Carlos, 1998.

ROSTVEDT, J. O. et al. (1968) Summary of Floods in the United States during 1963, USGS Wat. Sup. Pap., 1830-B

SCHAEFER, M.C., Regional analysis of precipitation annual maxima in Washington State. *Water Resources Research*, v.26, n.1, p.119-131, 1990.

SINGH V. P. Elementary hydrology. Prentice Hall Englewood Cliffs, 1992.

SINGH, V. P. e WOOLHISER, D. A. Mathematical Modeling of Watershed Hydrology American Society of Civil Engineers, Journal of Hydrology Engineering, paper 150th. Anniversary, p. 270-292, 2002.

SIVAPALAN, M.; TAKEUSHI, K.; FRANKS, S. W.; GUPTA, V. K.; KARAMBIRI, H.; LAKSHMI, V.; MCDONNEL J. J.; MENDIONDO, E. M.; O'CONNELL, P. E.; OKI, T.; POMEROY, J. W.; SCHERTZER, D.; UHLENBROOK, S; ZEHE, E. IAHS Decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. *Hydrological Sciences Journal*, 48(6), p. 857-880, 2003.

SMITH, K. e WARD, W. Floods: Physical Processes and Human Impacts, John Wiley e Sons, England, 1998.

SHERMAN, L. K. Streamflow from Rainfall by the Unit-Graf Method, Engineering News Record, v. 108, 1932.

STANESCU, V. A. e MATREATA, M. Large floods in Europe. In: *FRIEND – Flow Regimes* from International Experimental and Network Data, Third reeport: 1994-1997, Cemagref Editions, Antony, France, 1997.

STEDINGER, J. R. Estimating correlations in multivariate streamflow models, Water Resour. Res., 17(1), 200–208, 1981

TASKER, G. D., e J. R. STEDINGER, An operational GLS model for 971 hydrologic regression, *Journal of Hydrology*, 361–375, 1989.

TUCCI, C. E. M. Modelos Hidrológicos, 1^a ed., Editora Universidade UFRGS, Associação Brasileira de Recursos hídricos, 1998.

TUCCI, C. E. M. Regionalização de vazões In: Hidrologia: ciência e aplicação. Porto Alegre, Ed. UFRGS/ABRH/EDUSP, p. 573-611, 1993.

USWRC - U. S. WATER RESOURCES COUNCIL. Guidelines for determining flood flow frequency – Bulletin 17, USWRC Hydrology Committee, Washington, 1976.

VEYRET, Y. (Org.). Os Riscos: O homem como agressor e vítima do meio ambiente. São Paulo: Contexto, 2007. 320 p.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

VOGEL, R.M. e FENNESSEY, N. M. L-moment diagrams should replace product-moment diagrams. Water Resources Research, 29(6), pp. 1745-1752, 1993.

VOGEL, R. M. e MACMARTIN, D. E. Probability plot goodness-of-fit and skewness estimation procedures for Pearson type III distribution. Water Resources Research, 27(12), pp. 3149-3158, 1991.

VOGEL, R. M., Regional Calibration of Watershed Models, Chapter 3 in *Watershed Models*, V.P. Singh and D.F. Frevert editors, CRC Press, pp.47-71, 2005.

VOGEL, R. M., ZAFIRAKOU-KOULOURIS A., and MATALAS N. C. Frequency of record breaking floods in the United States, Water Resources Research., 37(6), 1723–1731, 2001.

WALLIS, J. R. Risk and Uncertainties in the Evaluation of Flood Events for Design of Hydrologic Structures. Seminar on Extreme Hydrological Events: Floods and Droughts, Italia, 1980.

WATT, W. E., LATHEM, K. W., NEILL, C. R., RICHARDS, T. L. e ROUSSELLE, J. The hydrology of floods in Canada: A guide to planning and design, National Research Council of Canada, 1988.

WOHL, E. E. Inland flood hazards: Human, riparian, and aquatic communities. Cambridge University Press, p.14-15, 2000.

WORLD METEOROLOGICAL ORGANIZATION (WMO). Estimation of probable maximum precipitation. WMO Report no. 332, Genebra, 1973.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ANEXO 1 – PRINCIPAIS FUNÇÕES DE DISTRIBUIÇÃO DE PROBABILIDADES USUAIS EM HIDROLOGIA PARA A ANÁLISE DE FREQUÊNCIA DE VAZÕES DE CHEIAS

Neste anexo encontram-se a formulação matemática de algumas das distribuições de probabilidades utilizadas na descrição do comportamento das vazões máximas anuais, as quais se enquadram na categoria de variáveis aleatórias contínuas, de uso corrente em hidrologia. Resumidamente, são apresentadas nos itens seguintes a função densidade de probabilidade e a função de distribuição de probabilidades acumulada, representadas por $f_X(x)$ e $F_X(x)$, respectivamente, para os modelos distributivos Exponencial, Log-Normal, Valores Extremos tipo I (Gumbel), Generalizada de Valores Extremos (GEV), Pearson III e Log-PearsonIII.

A 1.1 Distribuição Exponencial

Função densidade de probabilidades:

 $f_X(x) = \lambda e^{-\lambda x}; \quad x > 0, \lambda > 0$

Função acumulada de probabilidades:

$$F_{x}(x) = 1 - e^{-\lambda x}; \quad x > 0$$

Parâmetro: λ

A 1.2 Distribuição Log-Normal

Função densidade de probabilidades $f_Y(y) = \frac{1}{\sigma_Y \sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]; -\infty < x < \infty$

Função acumulada de probabilidades
$$F_Y(y) = \int_{-\infty}^{x} \frac{1}{\sigma_Y \sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right] dy; \quad x > 0$$

Parâmetros: μ_{y} e σ_{y}

Variável Transformada: $y = \ln(X)$

A 1.3 Distribuição de Valores Extremos Tipo I (Gumbel)

Função acumulada de probabilidades

 $F_{Y}(y) = \exp[-\exp(-y)],$ máximos

$$F_{Y}(y) = 1 - \exp[-\exp(y)], \text{ mínimos}$$

onde: $y = \frac{x - \beta}{\alpha}$

Parâmetros $\alpha \in \beta$.

A 1.4 Distribuição de Valores Extremos (GEV)

Função densidade de probabilidades

$$F_X(x) = \frac{1}{\alpha} \exp[-(1-k)y - \exp(-y)]$$

$$\begin{cases} y = -\frac{1}{k} \ln \left[1 - \frac{k}{\alpha}(x - \beta)\right] & \text{se } k \neq 0 \\ y = \frac{x - \beta}{\alpha}, & \text{se } k = 0 \end{cases}$$

Função acumulada de probabilidades

$$F_{X}(x) = \exp\left[-\left(1 - k\frac{x - \beta}{\alpha}\right)^{\frac{1}{k}}\right]$$

Sendo:
$$\begin{cases} k < 0 \quad (\beta + \alpha/k \le x < \infty), & \text{Fréchet} \\ k = 0 \quad (-\infty < x < \infty), & \text{Gumbel} \\ k > 0 \quad (-\infty < x < \beta + \alpha/k), & \text{Weibull} \end{cases}$$

Parâmetros: $k, \alpha \in \beta$

A 1.5 Distribuição Pearson III

Função densidade de probabilidades

$$f_X(x) = \frac{\lambda^{\beta} (x - \varepsilon)^{\beta - 1} e^{-\lambda(x - \varepsilon)}}{\Gamma(\beta)}; \quad x \ge \varepsilon$$

Função acumulada de probabilidades

$$F_{X}(x) = \int_{\varepsilon}^{x} \frac{\lambda^{\beta} (x - \varepsilon)^{\beta - 1} e^{-\lambda(x - \varepsilon)}}{\Gamma(\beta)} \quad x \ge \varepsilon$$

Parâmetros: λ , $\beta \in \varepsilon$

A 1.6 Distribuição Log-Pearson III

Função densidade de probabilidades $f_{Y}(y) = \frac{\lambda^{\beta}(y-\varepsilon)^{\beta-1}e^{-\lambda(y-\varepsilon)}}{y\Gamma(\beta)}; \quad y = \ln(x), \quad \ln(x) \ge \varepsilon$

Função acumulada de probabilidades $F_{Y}(y) = \int_{\varepsilon}^{y} \frac{\lambda^{\beta}(y-\varepsilon)^{\beta-1}e^{-\lambda(y-\varepsilon)}}{y\Gamma(\beta)}; \quad y = \ln(x), \quad \ln(x) \ge \varepsilon$

Parâmetros: λ_Y , β_Y e ε_Y

Para um melhor detalhamento da descrição matemática das distribuições de probabilidades aqui relacionadas, bem como outros modelos distributivos aplicados em hidrologia, o leitor deve remeter-se a Rao e Ramed (2000).

ANEXO 2

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ANEXO 2 - DETERMINAÇÃO E CONSIDERAÇÕES SOBRE AS DISTÂNCIAS RELATIVAS ENTRE AS ESTAÇÕES FLUVIOMÉTRICAS

De acordo com Castellarin (2007), a modelagem da correlação cruzada entre as estações de monitoramento utilizadas no estudo consiste no cálculo dos coeficientes de correlação amostrais utilizando estimadores já propostos na literatura.

Nesse contexto, busca-se a correlação cruzada entre as estações de monitoramento utilizando fórmulas de correlação empíricas em função das distâncias d_1 entre as seções transversais dessas estações. Castellarin (2007) ajustou um modelo de correlação cruzada usando as distâncias, d_2 , entre os centróides das bacias hidrográficas formadas pela área de drenagem controlada pelas respectivas estações fluviométricas.

Entretanto, uma vez que na presente dissertação de mestrado consideram-se 62 estações fluviométricas, optou-se, por simplicidade, que as distâncias adotadas sejam aquelas entre as seções transversais das estações utilizadas, ou seja, admite-se que $d_1 \cong d_2$.

Assim, utiliza-se o pressuposto de que d_1 e d_2 não diferem significativamente a ponto de influir na seqüência de cálculos da metodologia proposta por Castellarin (2007). Tal suposição pode ser justificada por meio do exemplo aplicado para as bacias do rio Pará e do rio das Velhas, ambas pertencentes à região de estudo.

A Figura A 2.1 mostra a bacia do rio Pará, juntamente com a localização geográfica das estações Ponte do Vilela (40130000) e Porto Pará (40450001) e o centro de gravidade das bacias controladas por essas estações. Assim, pode-se tomar a distancia d_1 , ou seja, a distância entre as seções transversais dessas estações.

Também foi tomada a distância d_2 , sendo essa referente ao centro de gravidade da área de drenagem controlada pela estação Ponte do Vilela, até o centro de gravidade da área de drenagem controlada pela estação Porto Pará.

O valor da distância entre as seções transversais das estações Ponte do Vilela e Porto Pará corresponde a 135,14 km, enquanto a distância entre os centros de gravidade das áreas de drenagem controladas por essas estações corresponde a 90,90 km.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura A 2.1 - Localização geográfica das estações Ponte do Vilela e Porto Pará, inseridas na bacia do rio Pará

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Os mesmos procedimentos já descritos foram aplicados para a bacia do rio das Velhas, onde foram consideradas as estações Ponte Raul Soares (41340000) e Ponte do Licínio Jusante (41650002). A Figura A 2.2 mostra a bacia do rio das Velhas, com a localização geográfica das estações citadas.

O valor da distância entre as seções transversais das estações Ponte Raul Soares e Ponte do Licínio Jusante corresponde a 105,40 km, enquanto a distância entre os centros de gravidade das áreas de drenagem controladas por essas estações correspondem a 76,63 km

Nesse contexto, frente aos resultados apresentados, assume-se que as diferenças entre as distâncias d_1 e d_2 não irão implicar em possíveis alterações significativas para a aplicação da metodologia descrita por Castellarin (2007).

Pode também ocorrer um caso típico, onde $d_1 = 0$ e $d_2 \neq 0$. Esta situação corresponde a duas estações fluviométricas localizadas na seção exutória de duas bacias hidrográficas adjacentes.

Entretanto, dada a dispersão observada através da representação gráfica dos coeficientes de correlação *versus* distâncias, tal como verificado na Figura 5.25, as eventuais variações entre d_1 e d_2 não irão provocar diferenças muito significativas na seqüência de cálculos, uma vez que os valores efetivamente utilizados são dados pelo modelo apresentado pela equação 4.28.

Figura A 2.2 - Localização geográfica das estações Ponte Raul Soares e Ponte do Licínio Jusante, inseridas na bacia do rio das Velhas

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ANEXO 3

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ANEXO 3 – SÉRIES DE VAZÕES MÁXIMAS ANUAIS POR ANO HIDROLÓGICO REGISTRADAS NAS ESTAÇÕES FLUVIOMÉTRICAS UTILIZADAS NO ESTUDO

São apresentadas, a seguir, as séries de vazões máximas anuais por ano hidrológico referentes às 62 estações de monitoramento pertencentes à região das sub-bacias 40 e 41. Estas séries foram compiladas do estudo de regionalização de vazões máximas elaborado por CPRM (2001).

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1935 1936 1937 1938 1939 1940 1941 1942 19								
Courgo	Estação Fluviometrica	1935	1936	1937	1938	1939	1940	1941	1942	1943
41151000	Fazenda Água Limpa Jusante									
41199998	Honório Bicalho-Montante									
41250000	Vespasiano									
41260000	Pinhões									
41300000	Taquaraçu									120
41340000	Ponte Raul Soares				902	370	425	555	754	688
41380000	Ponte Preta									
41410000	Jequitibá									
40050000	Iguatama	356	547	709		525	372	326	690	286
40067000	Ponte Olegário Maciel					651	613	655	933	
40070000	Ponte do Chumbo									
40100000	Porto das Andorinhas									
40102000	Porto da Barra					807	1124	701	1537	610
40350000	Usina Camarão				63	31,6	28,4	22,5		
40380000	Araújos									
40400000	Estação Álvaro da Silveira		200	230	265	162	132	81,1	161	121
40450001	Porto Pará (CEMIG)					587	686	651	1240	571
40530000	Abaeté									
40850000	Ponte da Taquara									
41135000	Pirapora-Barreiro									5840
41600000	Pirapama									
41650002	Ponte do Licínio Jusante									
41780002	Presidente Juscelino Jusante									
41818000	Santo Hipólito									1860
41890000	Estação Curimataí									
41990000	Várzea da Palma					1541	1800	2493	2709	2516
40930000	Barra do Funchal						120	117	183	83,5
40963000	Porto Indaiá (CEMIG)									
40960000	Fazenda Bom Jardim									
41050000	Major Porto									
41075001	Porto do Passarinho									

Cádigo	Estação Eluviomátrica	Vazões Máximas por Ano Hidrológico 1935 1936 1937 1938 1939 1940 1941 1942 1943								
Couigo	Estação Fluvionietrica	1935	1936	1937	1938	1939	1940	1941	1942	1943
40056200	Fazenda Capoeirão + Montante do Bom Sucesso					35,8	44,8	39,6	45,8	23,3
40056500	Ponte Capoeirão									30,9
40060001	Tapiraí-Jusante					48,5	56,8	47,4	94	31,7
40025000	Vargem Bonita									
40032000	Fazenda Samburá									
40037000	Fazenda da Barra									
40040000	Fazenda Ajudas									
40053000	Calciolândia									
40130000	Ponte do Vilela				280	146				
40150000	Carmo do Cajuru		371	432	466	210	182	493	345	176
40170000	Marilândia									
40180000	Carmo da Mata				40,4	42,1	16,1	42,1	48,4	31,8
40185000	Pari									
40190002	Divinópolis		253	303	290	119	118	282	279	171
40300001	Jaguaruna Jusante									
40330000	Velho da Taipa									353
40549998	São Brás do Suaçui Montante									
40573000	Joaquim Murtinho									
40577000	Ponte Jubileu								43	22,2
40579995	Congonhas Linígrafo				93,6	85,6	112	48,4	103	62,9
40700002	Jeceaba									212
40710000	Belo Vale									
40720002	Melo Franco		259	344	326	236	312	301	439	279
40740000	Alberto Flores									
40770000	Conceição do Itaguá									
40788000	São Joaquim de Bicas (CEMIG)									
40790000	Betim				39,7	20,6	19,2			
40800001	Ponte Nova do Paraopeba				576	414	472	458	684	408
40818000	Juatuba								27,7	23,3
40830000	Fazenda Escola Florestal									

Cádigo	Estação Eluviomótrica	Vazões Máximas por Ano Hidrológico 1944 1945 1946 1947 1948 1949 1950 1951 1952									
Courgo	Estação Fluvionie trica	1944	1945	1946	1947	1948	1949	1950	1951	1952	
41151000	Fazenda Agua Limpa Jusante										
41199998	Honório Bicalho-Montante										
41250000	Vespasiano										
41260000	Pinhões										
41300000	Taquaraçu	109	115	96,5			65,8	77,2	88,7	66,5	
41340000	Ponte Raul Soares	799						580	650	312	
41380000	Ponte Preta										
41410000	Jequitibá										
40050000	Iguatama			804	455	491	475	613	540	355	
40067000	Ponte Olegário Maciel						683		970	474	
40070000	Ponte do Chumbo										
40100000	Porto das Andorinhas										
40102000	Porto da Barra	907	1667	1520	1100	1241	957	1350		740	
40350000	Usina Camarão										
40380000	Araújos				80,4	108		115	125		
40400000	Estação Álvaro da Silveira	130	196	124	136	189	130	124	182	130	
40450001	Porto Pará (CEMIG)			743				662			
40530000	Abaeté										
40850000	Ponte da Taquara										
41135000	Pirapora-Barreiro	3806					2238	2507	3984	1595	
41600000	Pirapama										
41650002	Ponte do Licínio Jusante										
41780002	Presidente Juscelino Jusante										
41818000	Santo Hipólito	1783	1743				1207	1420	1551	880	
41890000	Estação Curimataí										
41990000	Várzea da Palma	2502	2422	1672	2493		1684	2036	2200	1254	
40930000	Barra do Funchal	180	187	185	107	156	169	177	183	61,6	
40963000	Porto Indaiá (CEMIG)										
40960000	Fazenda Bom Jardim										
41050000	Major Porto										
41075001	Porto do Passarinho										

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1944 1945 1946 1947 1948 1949 1950 1951 1952								
Couigo	Estação Fluviometrica	1944	1945	1946	1947	1948	1949	1950	1951	1952
40056200	Fazenda Capoeirão + Montante do Bom Sucesso	46,6	49,7	52,9	26,8	35,9	38,6	40,3	44,3	31,2
40056500	Ponte Capoeirão	74,3	89,8	81,3	39	54,4			72	41,9
40060001	Tapiraí-Jusante	68,5	54,6					56	69	36,6
40025000	Vargem Bonita									
40032000	Fazenda Samburá									
40037000	Fazenda da Barra									
40040000	Fazenda Ajudas									
40053000	Calciolândia									
40130000	Ponte do Vilela									
40150000	Carmo do Cajuru	185	278	196	243	302	353	306	247	137
40170000	Marilândia									
40180000	Carmo da Mata		29,6	27,2	28	29,6				
40185000	Pari									
40190002	Divinópolis	136	162	209	198	310	170	207	224	106
40300001	Jaguaruna Jusante		251		665	340	183	256	197	170
40330000	Velho da Taipa	419	626	480	569	804	412			
40549998	São Brás do Suaçui Montante									
40573000	Joaquim Murtinho			33			28,8		39,3	34,9
40577000	Ponte Jubileu	34,4	19,9	26,5	30,9	44,8	21,8	44,8	34,1	28,2
40579995	Congonhas Linígrafo	76,7	41,2	54,1	62,3	104	46	206	110	89
40700002	Jeceaba	209	165	302		420	190	336	285	150
40710000	Belo Vale									
40720002	Melo Franco		239	402	356	411	244	459		
40740000	Alberto Flores									
40770000	Conceição do Itaguá									
40788000	São Joaquim de Bicas (CEMIG)									
40790000	Betim		31,7	31,5		31,5			29,3	15
40800001	Ponte Nova do Paraopeba	371	333	570	502	810	366	690	570	288
40818000	Juatuba	18,9	30,1	36,2	48,7		26,4	30,3	38,6	47,8
40830000	Fazenda Escola Florestal				35,1		6,67	9,64	11,8	14,3

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1953 1954 1955 1956 1957 1958 1959 1960 1961									
Courgo	Estação Fluvionie uica	1953	1954	1955	1956	1957	1958	1959	1960	1961	
41151000	Fazenda Agua Limpa Jusante				30,3	30,3	29,1	20,6	32,8	23,7	
41199998	Honório Bicalho-Montante										
41250000	Vespasiano										
41260000	Pinhões										
41300000	Taquaraçu	84,2	93,4	97,2	88,5	68,1	43	89	123	79,6	
41340000	Ponte Raul Soares	274	480	490	748	380	245	632	1006	449	
41380000	Ponte Preta										
41410000	Jequitibá										
40050000	Iguatama	289	280	378	534	305	440				
40067000	Ponte Olegário Maciel										
40070000	Ponte do Chumbo										
40100000	Porto das Andorinhas						642	839	873	680	
40102000	Porto da Barra				995	610		903	937	760	
40350000	Usina Camarão										
40380000	Araújos	52,8	73			86		90,1	112		
40400000	Estação Álvaro da Silveira						87,3	113	162		
40450001	Porto Pará (CEMIG)	282	541	625	739	455	254	747	1170	431	
40530000	Abaeté										
40850000	Ponte da Taquara										
41135000	Pirapora-Barreiro		2364	2606	3508		2052				
41600000	Pirapama				970						
41650002	Ponte do Licínio Jusante					747	400				
41780002	Presidente Juscelino Jusante										
41818000	Santo Hipólito	735	1250	1300	1690					1135	
41890000	Estação Curimataí										
41990000	Várzea da Palma	1050			2320	1561		2184	2988	1665	
40930000	Barra do Funchal										
40963000	Porto Indaiá (CEMIG)										
40960000	Fazenda Bom Jardim										
41050000	Major Porto										
41075001	Porto do Passarinho										

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1953 1954 1956 1957 1958 1959 1960 1961									
Comgo	Estação Fluvioinetrica	1953	1954	1955	1956	1957	1958	1959	1960	1961	
40056200	Fazenda Capoeirão + Montante do Bom Sucesso	36,8	24,9	40,8	43,8	40,9	39,6	42,4	42,4		
40056500	Ponte Capoeirão	44,9	34,9			64,8	59,3	59,3	69,2		
40060001	Tapiraí-Jusante			40,2	40,3	45,3	37,7	40			
40025000	Vargem Bonita		70,1	72,4	196	226			69,6	64,2	
40032000	Fazenda Samburá										
40037000	Fazenda da Barra										
40040000	Fazenda Ajudas										
40053000	Calciolândia										
40130000	Ponte do Vilela										
40150000	Carmo do Cajuru	51,9	189	223	320	96,5					
40170000	Marilândia										
40180000	Carmo da Mata								31,4		
40185000	Pari										
40190002	Divinópolis										
40300001	Jaguaruna Jusante	158	172	128		83,3	74,5				
40330000	Velho da Taipa					257	166	348	804	279	
40549998	São Brás do Suaçui Montante				97,2	42,2	44,1	51,7	80,3	56,6	
40573000	Joaquim Murtinho	20		22	49,3	20,5	23,5	21	50,7	40,6	
40577000	Ponte Jubileu	12,9	39,3	16,5		22,5	26,6	40,4	39,3	23,8	
40579995	Congonhas Linígrafo			41,2	112	44,1				75,6	
40700002	Jeceaba	143	239	248							
40710000	Belo Vale										
40720002	Melo Franco										
40740000	Alberto Flores										
40770000	Conceição do Itaguá										
40788000	São Joaquim de Bicas (CEMIG)										
40790000	Betim	18,2	36,9	26,4		19,2	9,96	66,1		28,9	
40800001	Ponte Nova do Paraopeba	295	498	470	774	388	408	448	822	414	
40818000	Juatuba		48,7	47,8	43,1	29,6	21	36,2	45,6		
40830000	Fazenda Escola Florestal		10,6	8,73	10,7	6,79		16,3	11,3	7,5	

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1962 1963 1964 1965 1966 1967 1968 1969 1970									
Courgo	Estação Fluvionietrica	1962	1963	1964	1965	1966	1967	1968	1969	1970	
41151000	Fazenda Agua Limpa Jusante			34,3	35,7				18,6	12,2	
41199998	Honório Bicalho-Montante										
41250000	Vespasiano							55,8	108		
41260000	Pinhões										
41300000	Taquaraçu	80,7	50,9	120	96	105	62,5	83,1	86,7	58,9	
41340000	Ponte Raul Soares	790	569	624	654			380	497	182	
41380000	Ponte Preta										
41410000	Jequitibá				761	627	540	447	591	218	
40050000	Iguatama		346	839	660	501	507	410	422	160	
40067000	Ponte Olegário Maciel	870	599	980							
40070000	Ponte do Chumbo							618	618		
40100000	Porto das Andorinhas	1080	706	1358	1105	867	901	801	740		
40102000	Porto da Barra		744	1438							
40350000	Usina Camarão										
40380000	Araújos										
40400000	Estação Álvaro da Silveira							142	141		
40450001	Porto Pará (CEMIG)	961	1140	1200	1080	627	651	739	662	262	
40530000	Abaeté										
40850000	Ponte da Taquara						580	653	490	322	
41135000	Pirapora-Barreiro										
41600000	Pirapama								691	248	
41650002	Ponte do Licínio Jusante				1140	1019	779	663			
41780002	Presidente Juscelino Jusante										
41818000	Santo Hipólito	1740	1267	1427	1473	1371	1047	924	1231	656	
41890000	Estação Curimataí										
41990000	Várzea da Palma	2349	1665	1896	2004	1924	1469	1359	1812	932	
40930000	Barra do Funchal							131	139		
40963000	Porto Indaiá (CEMIG)										
40960000	Fazenda Bom Jardim										
41050000	Major Porto							116	286	204	
41075001	Porto do Passarinho										

Cádigo	Estação Eluviomátrico	Fluviométrica Vazões Máximas por Ano Hidrológico 1962 1963 1964 1965 1966 1967 1968 1969 19								
Couigo	Estação Fluviometrica	1962	1963	1964	1965	1966	1967	1968	1969	1970
40056200	Fazenda Capoeirão + Montante do Bom Sucesso									
40056500	Ponte Capoeirão						68,1			
40060001	Tapiraí-Jusante			74		49,6	58,1	52,2	57	38,4
40025000	Vargem Bonita	70,2	71						66,2	23,4
40032000	Fazenda Samburá							112	124	70,7
40037000	Fazenda da Barra						183		399	149
40040000	Fazenda Ajudas					37,2	47,3	38	34	
40053000	Calciolândia					34,9	36,9	39,2	27,4	
40130000	Ponte do Vilela				226	141	105	212	102	94,1
40150000	Carmo do Cajuru									
40170000	Marilândia						60,4	103	95,4	
40180000	Carmo da Mata									
40185000	Pari									
40190002	Divinópolis									
40300001	Jaguaruna Jusante									
40330000	Velho da Taipa	606	811	829	705	342	354	507	398	175
40549998	São Brás do Suaçui Montante	44			81	77,8	58	56,9		
40573000	Joaquim Murtinho	18,5	36,1	33,7						
40577000	Ponte Jubileu		39,3	27,4						
40579995	Congonhas Linígrafo	52,8	72,9	68,2	112					
40700002	Jeceaba									
40710000	Belo Vale				457	350	220	268	190	147
40720002	Melo Franco									
40740000	Alberto Flores						315	356	255	182
40770000	Conceição do Itaguá					104	66,9	66,9	51,9	60,8
40788000	São Joaquim de Bicas (CEMIG)									
40790000	Betim	44,2	37,4	30,6						
40800001	Ponte Nova do Paraopeba	515	748	570	726	580	450	478	340	246
40818000	Juatuba	39,9	29,8	41,1						
40830000	Fazenda Escola Florestal	14,3								

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1971 1972 1974 1975 1976 1977 1978 1979										
Coulgo	Estação Fluvionietrica	1971	1972	1973	1974	1975	1976	1977	1978	1979		
41151000	Fazenda Agua Limpa Jusante		22,4	22,6	25,9	12,9	31	55,1	71,5	44,4		
41199998	Honório Bicalho-Montante	148	246	271	201	95,1	234	240	402	211		
41250000	Vespasiano		60,4	44,3	54,9		159	123		83,8		
41260000	Pinhões											
41300000	Taquaraçu	105	69,3	96,3	71,2	27,7	179	403		179		
41340000	Ponte Raul Soares	351	498	309	375	171	745			564		
41380000	Ponte Preta					62	175	165	224			
41410000	Jequitibá	433	626	381	423	200	771			612		
40050000	Iguatama	426	418	406	441	412	438	380	487	554		
40067000	Ponte Olegário Maciel											
40070000	Ponte do Chumbo	575					689	610	791	897		
40100000	Porto das Andorinhas	707	663	720	767	586	847	772	993	1124		
40102000	Porto da Barra											
40350000	Usina Camarão						25,5	23,3	31,2	42,4		
40380000	Araújos				76,7	117	92,8	103	117	154		
40400000	Estação Álvaro da Silveira	122	129	105	98,2	157	129	141	161	211		
40450001	Porto Pará (CEMIG)	809	596	541	527	649	828	833	1340	835		
40530000	Abaeté			35,8	33,6	23,1	54,2	50	55	78,2		
40850000	Ponte da Taquara	702	650	602	488	390	868	860		735		
41135000	Pirapora-Barreiro											
41600000	Pirapama	514	740	448	480	232	797	754		620		
41650002	Ponte do Licínio Jusante		1005	583	575		879	846		714		
41780002	Presidente Juscelino Jusante				1334	454	1682	1414		734		
41818000	Santo Hipólito	1004	1423	840	846	640	1831	1629		1316		
41890000	Estação Curimataí		179	187		161	313	304		312		
41990000	Várzea da Palma	1534	2053	1265	1231	891		2373		2485		
40930000	Barra do Funchal	174	215	210	162							
40963000	Porto Indaiá (CEMIG)							694		808		
40960000	Fazenda Bom Jardim		330	339	295		542	542	638	400		
41050000	Major Porto	215	238	178	172	169	281	291	373	349		
41075001	Porto do Passarinho							1501	1222	1532		

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1971 1972 1973 1974 1975 1976 1977 1978 1979								
Couigo	Estação Fluviometrica	1971	1972	1973	1974	1975	1976	1977	1978	1979
40056200	Fazenda Capoeirão + Montante do Bom Sucesso					53,2	64,5	58	57,7	66,2
40056500	Ponte Capoeirão									
40060001	Tapiraí-Jusante	53,9	55,8	40,7	47,2	40,7	48,6	39,6	35,1	41,5
40025000	Vargem Bonita	68,5	63,8	69,6	65,3	56,4	71,4	52,8	45,8	50,8
40032000	Fazenda Samburá	79,6	100	106	116	87,5	152	138	246	174
40037000	Fazenda da Barra	150	138	281	230	205	252	258	245	244
40040000	Fazenda Ajudas	24,2	39,1	23,8	42	33,8	79,6	33,3	60,3	58,7
40053000	Calciolândia	55,5	27,6	22,5	27,6	34,5	75,2	50,7	47,8	58,7
40130000	Ponte do Vilela	248	165	154	176	164	129	275	147	
40150000	Carmo do Cajuru									
40170000	Marilândia		93,4	53,1	100	110	107	79,1		
40180000	Carmo da Mata									
40185000	Pari			127	146	188	201	154	251	275
40190002	Divinópolis					168	136			
40300001	Jaguaruna Jusante									244
40330000	Velho da Taipa	542	415	391	337	605	426	363		682
40549998	São Brás do Suaçui Montante		91,7	53,3	48	33,1	65,6	112	132	
40573000	Joaquim Murtinho									
40577000	Ponte Jubileu									
40579995	Congonhas Linígrafo		77	111	45,5	30,8	55,8	148	128	59,4
40700002	Jeceaba									
40710000	Belo Vale	378	330	295	207	150	350	670	403	336
40720002	Melo Franco									
40740000	Alberto Flores	474	410	351			456	723	457	460
40770000	Conceição do Itaguá	120					58,2	69,8	107	
40788000	São Joaquim de Bicas (CEMIG)									
40790000	Betim									
40800001	Ponte Nova do Paraopeba	568	520	449	357	276		736	822	550
40818000	Juatuba									
40830000	Fazenda Escola Florestal									

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 49.9 62.4 32.8 48.2 70.4 61.5 53.9 24.3 23.5 64.6											
Couigo	Estação Fluvionietrica	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989		
41151000	Fazenda Agua Limpa Jusante	49,9	62,4	32,8	48,2	70,4	61,5	53,9	24,3	23,5	64,6		
41199998	Honório Bicalho-Montante	269	435	297	234	417	129	237	293	146	326		
41250000	Vespasiano	95	141		94	163	42,9	40,8			104		
41260000	Pinhões	497	872	750	578	894	262	303	513	216	787		
41300000	Taquaraçu	149			154	274	102	41,2	200	82,4	148		
41340000	Ponte Raul Soares				858	1108			570		984		
41380000	Ponte Preta		159	222	88,5	181	132	60,3	170	102	140		
41410000	Jequitibá	591		846		1208		342	811	384			
40050000	Iguatama	327	556	642	452	515	477	677	414	314	577		
40067000	Ponte Olegário Maciel												
40070000	Ponte do Chumbo	521	867	1064	710	877	590	752	552	431			
40100000	Porto das Andorinhas	638	1104	1349	867	1125	729	785	780	477	767		
40102000	Porto da Barra												
40350000	Usina Camarão	18,6	34,9	33,4	29,6	39,4	17,4			27			
40380000	Araújos												
40400000	Estação Álvaro da Silveira	93			153	266				92,5			
40450001	Porto Pará (CEMIG)	543	1060	1240	743	1580	596	1010	527	393	583		
40530000	Abaeté	42,6	61,7	84,8	56,1	54	47,6	45,3	45,1	27,7	48,3		
40850000	Ponte da Taquara	678	678	851	773	1330	589	624	709	438	681		
41135000	Pirapora-Barreiro												
41600000	Pirapama		931	874		1249		346	970	390			
41650002	Ponte do Licínio Jusante	760	991	1092	959	1334	662	446	1034	393			
41780002	Presidente Juscelino Jusante	1262	1135		853	1588	1120	665	1127	671	860		
41818000	Santo Hipólito	1449	1700	1853	1303	1909	1409	914	1618	804			
41890000	Estação Curimataí	329		168	142	302	265	139	115	120	314		
41990000	Várzea da Palma	1741	2272	2504	1647	2715	2513	1627	1939	1305	2823		
40930000	Barra do Funchal		223			171	118	155	131				
40963000	Porto Indaiá (CEMIG)		789	1040	306	390	468						
40960000	Fazenda Bom Jardim	425	652	813	283	317	400	451	400	283	438		
41050000	Major Porto	284	592	524	208	393	270	153	204	127	291		
41075001	Porto do Passarinho	778	2032	2305	709	962	1305						

Cádigo	Fatação Eluviomátrico	Vazões Máximas por Ano Hidrológico 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 Successo 72 69.5 62.6 69.2 57.8 35 64.3									
Coulgo	Estação Fluvionietrica	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
40056200	azenda Capoeirão + Montante do Bom Sucess	0	72	69,5	62,6	69,2	57,8			35	64,3
40056500	Ponte Capoeirão										
40060001	Tapiraí-Jusante	30,9	40,2	65,1	57,2	63	51,1	46,6	45,2	35,3	44,5
40025000	Vargem Bonita	40,2	81,9	86,1	74,5	71,8	230	187	84,3	76,4	67,1
40032000	Fazenda Samburá	90,3	176	151	124	174	89,3	140	111	93	94,6
40037000	Fazenda da Barra	241						267	192	162	179
40040000	Fazenda Ajudas	21	52,2	71,4	53,6	73,8	50,8	60,2	39,5	28,2	30,8
40053000	Calciolândia	26	70	52,2	55,1	52,5	33,1	59,2	12,8	12,5	64
40130000	Ponte do Vilela										
40150000	Carmo do Cajuru										
40170000	Marilândia	56	124	128	97,2	216	98,6	218	92,1	51,8	62,3
40180000	Carmo da Mata										
40185000	Pari	125	254	261	196	426	187	317	130	77,9	101
40190002	Divinópolis										
40300001	Jaguaruna Jusante	152		377	173			107	214		114
40330000	Velho da Taipa	411	745	712	578	1213	499	748	485	302	504
40549998	São Brás do Suaçui Montante		187	68,6	48,5	50,4	38,3	36,4	77	37,2	44,6
40573000	Joaquim Murtinho										
40577000	Ponte Jubileu										
40579995	Congonhas Linígrafo	50,9	94,6	132	88,2	132			54,7	22,1	63,4
40700002	Jeceaba										
40710000	Belo Vale	385	460	451	374	785	287	322	418	161	397
40720002	Melo Franco										
40740000	Alberto Flores	432	519	443	387	816	345	423	455	222	
40770000	Conceição do Itaguá	56	66,9	102	56,9			91,4	39,3		
40788000	São Joaquim de Bicas (CEMIG)			642	524				529	233	471
40790000	Betim										
40800001	Ponte Nova do Paraopeba			698	585	1017	437	549	601	288	481
40818000	Juatuba										
40830000	Fazenda Escola Florestal										

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico										
Courgo	Estação Fluvionietrica	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
41151000	Fazenda Agua Limpa Jusante	73	65,2	56	17,2	17,9	47,4	54,4	20,3	25,5		
41199998	Honório Bicalho-Montante	351	435	293	163	431	575		159	94,1		
41250000	Vespasiano	102	159	87,8	105	83,8	236		145	47,2		
41260000	Pinhões	653	738	802	345	509	876		411	251		
41300000	Taquaraçu	269	252	229	122	40,7	281		114	33,5		
41340000	Ponte Raul Soares	934	953		539	514				281		
41380000	Ponte Preta	183	195	158	122	117	261		105	84,9		
41410000	Jequitibá	965	1004	848	599	577	1131		485	386		
40050000	Iguatama	763	939	533	618	615	354		360	381		
40067000	Ponte Olegário Maciel											
40070000	Ponte do Chumbo	857		573	654	652	517		490	538		
40100000	Porto das Andorinhas	811		712	915	765	760	2814	668	848		
40102000	Porto da Barra											
40350000	Usina Camarão											
40380000	Araújos											
40400000	Estação Álvaro da Silveira	215	300	174		147			138			
40450001	Porto Pará (CEMIG)	883	1190	558	765	585						
40530000	Abaeté	44,9	91,8	48,1	35,2	29,9						
40850000	Ponte da Taquara	958	910			657	851		566			
41135000	Pirapora-Barreiro											
41600000	Pirapama	1011	1023		663	595	1137		560	412		
41650002	Ponte do Licínio Jusante	1045		827	702	598	1359		678			
41780002	Presidente Juscelino Jusante	1613	1621	1044	685	552	868	1780	904	519		
41818000	Santo Hipólito	1875	2260	1309	978	777	2111		1355	654		
41890000	Estação Curimataí	340	417	235	190	249	158	242				
41990000	Várzea da Palma	2852	3120		1795	1072	2475		1884	1551		
40930000	Barra do Funchal	261										
40963000	Porto Indaiá (CEMIG)	603	1320	349	359	225						
40960000	Fazenda Bom Jardim	555	835	331								
41050000	Major Porto	437	497	446	236	164	144	256	291	145		
41075001	Porto do Passarinho					373				510		

Cádigo	Estação Eluviomátrico	Vazões Máximas por Ano Hidrológico										
Coulgo	Estação Fluvionietrica	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
40056200	azenda Capoeirão + Montante do Bom Sucesso											
40056500	Ponte Capoeirão											
40060001	Tapiraí-Jusante	42,5	41,5	30,5	45,3	45,3	44,2	61,6	38,2	40,2		
40025000	Vargem Bonita	208		70,4	92,8	192	97,8		156	51,6		
40032000	Fazenda Samburá			134	221							
40037000	Fazenda da Barra	444	529	285	374	267	171		140	154		
40040000	Fazenda Ajudas	73,2	68,5	50,1	98,5	52,4	40,7		32,2	44,5		
40053000	Calciolândia			35,1	51,8	50,4	59,3	86,7	24,1	56,8		
40130000	Ponte do Vilela											
40150000	Carmo do Cajuru											
40170000	Marilândia	105	340	92,1	69,9	60,1	69,6	250	59,2	80,7		
40180000	Carmo da Mata											
40185000	Pari	200	560	167	195	139	97		77,4	125		
40190002	Divinópolis											
40300001	Jaguaruna Jusante	162	258	132	166	174				229		
40330000	Velho da Taipa	694	1034	492	607	573	568		490	690		
40549998	São Brás do Suaçui Montante			57,9	33	63,2	42,4	85,7		39		
40573000	Joaquim Murtinho											
40577000	Ponte Jubileu											
40579995	Congonhas Linígrafo	19,8	74,6	57,2	55,1	60,3			66,5	84,2	90,2	
40700002	Jeceaba											
40710000	Belo Vale											
40720002	Melo Franco											
40740000	Alberto Flores	715		300	336	461	372	1133	205	235		
40770000	Conceição do Itaguá											
40788000	São Joaquim de Bicas (CEMIG)	872	703	409	468	566						
40790000	Betim											
40800001	Ponte Nova do Paraopeba	927	827	424	603	633	695		296	427		
40818000	Juatuba											
40830000	Fazenda Escola Florestal											

ANEXO 4

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ANEXO 4 – SUBCONJUNTOS REGIONAIS FORMADOS PARA CADA REGIÃO HOMOGÊNEA

Neste anexo encontram-se as séries rearranjadas de vazões máximas anuais por ano hidrológico, discretizada em subconjuntos regionais, tal como descrito no Capítulo 4 deste trabalho. A abreviatura "sub." indica os subconjuntos regionais.

Série Rearranjada de Vazões Máximas - subconjuntos regionais - Região MAX I												
Fazenda Água Limpa Jusante									9			
Honório Bicalho-Montante												
Vespasiano												
Pinhões												
Taquaraçu						6	7	8		120	109	77,2
Ponte Raul Soares	1	2	3	4	5					688	799	580
Ponte Preta												
Jequitibá												
	-				<i>n</i> ₁				-	sub. 1	sub. 1	sub. 1
Fazenda Água Limpa Jusante								30,3	30,3	29,1	20,6	32,8
Honório Bicalho-Montante												
Vespasiano												
Pinhões												
Taquaraçu	88,7	66,5	84,2	93,4	97,2	80,7	50,9	88,5	68,1	43	89	123
Ponte Raul Soares	650	312	274	480	490	790	569	748	380	245	632	1006
Ponte Preta												
Jequitibá												
	sub. 1	sub. 1	sub. 1	sub. 1	sub. 1	sub. 1	sub. 1	sub. 2				
Fazenda Água Limpa Jusante	23,7	34,3	35,7	12,2				18,6		22,4	22,6	25,9
Honório Bicalho-Montante									148	246	271	201
Vespasiano							55,8	108		60,4	44,3	54,9
Pinhões												
Taquaraçu	79,6	120	96	58,9	105	62,5	83,1	86,7	105	69,3	96,3	71,2
Ponte Raul Soares	449	624	654	182			380	497	351	498	309	375
Ponte Preta												
Jequitibá			761	218	627	540	447	591	433	626	381	423
	sub. 2	sub. 2	sub. 3	sub. 3	sub. 4	sub. 4	sub. 5	sub. 6	sub. 7	sub. 8	sub. 8	sub. 8

Série Rearranjada de Vazões Máximas - subconjuntos regionais - Região MAX I													
Fazenda Água Limpa Jusante	44,4	12,9	31	55,1	71,5	49,9	62,4	32,8	48,2	64,6	70,4	73	
Honório Bicalho-Montante	211	95,1	234	240	402	269	435	297	234	326	417	351	
Vespasiano	83,8		159	123		95	141		94	104	163	102	
Pinhões						497	872	750	578	787	894	653	
Taquaraçu	179	27,7	179	403		149			154	148	274	269	
Ponte Raul Soares	564	171	745						858	984	1108	934	
Ponte Preta		62	175	165	224		159	222	88,5	140	181	183	
Jequitibá	612	200	771			591		846			1208	965	
sub. 8 sub. 9 sub. 10 sub. 11 sub. 12 sub. 13 sub. 14 sub. 15 sub. 16 sub. 16 sub. 17 sub. 17													
	sub. 8	sub. 9	sub. 10	sub. 11	sub. 12	sub. 13	sub. 14	sub. 15	sub. 16	sub. 16	sub. 17	sub. 17	
Fazenda Água Limpa Jusante	sub. 8 65,2	sub. 9 17,2	sub. 10 17,9	sub. 11 25,5	sub. 12 61,5	sub. 13 53,9	sub. 14 56	sub. 15 47,4	sub. 16 20,3	sub. 16 24,3	sub. 17 23,5	sub. 17	
Fazenda Água Limpa Jusante Honório Bicalho-Montante	sub. 8 65,2 435	sub. 9 17,2 163	sub. 10 17,9 431	sub. 11 25,5 94,1	sub. 12 61,5 129	sub. 13 53,9 237	sub. 14 56 293	sub. 15 47,4 575	sub. 16 20,3 159	sub. 16 24,3 293	sub. 17 23,5 146	sub. 17	
Fazenda Água Limpa Jusante Honório Bicalho-Montante Vespasiano	sub. 8 65,2 435 159	sub. 9 17,2 163 105	sub. 10 17,9 431 83,8	sub. 11 25,5 94,1 47,2	sub. 12 61,5 129 42,9	sub. 13 53,9 237 40,8	sub. 14 56 293 87,8	sub. 15 47,4 575 236	sub. 16 20,3 159 145	sub. 16 24,3 293	sub. 17 23,5 146	sub. 17	
Fazenda Água Limpa Jusante Honório Bicalho-Montante Vespasiano Pinhões	sub. 8 65,2 435 159 738	sub. 9 17,2 163 105 345	sub. 10 17,9 431 83,8 509	sub. 11 25,5 94,1 47,2 251	sub. 12 61,5 129 42,9 262	sub. 13 53,9 237 40,8 303	 sub. 14 56 293 87,8 802 	sub. 15 47,4 575 236 876	sub. 16 20,3 159 145 411	sub. 16 24,3 293 513	sub. 17 23,5 146 216	sub. 17	
Fazenda Água Limpa Jusante Honório Bicalho-Montante Vespasiano Pinhões Taquaraçu	sub. 8 65,2 435 159 738 252	sub. 9 17,2 163 105 345 122	sub. 10 17,9 431 83,8 509 40,7	sub. 11 25,5 94,1 47,2 251 33,5	sub. 12 61,5 129 42,9 262 102	sub. 13 53,9 237 40,8 303 41,2	sub. 14 56 293 87,8 802 229	sub. 15 47,4 575 236 876 281	sub. 16 20,3 159 145 411 114	sub. 16 24,3 293 513 200	sub. 17 23,5 146 216 82,4	sub. 17	
Fazenda Água Limpa Jusante Honório Bicalho-Montante Vespasiano Pinhões Taquaraçu Ponte Raul Soares	sub. 8 65,2 435 159 738 252 953	sub. 9 17,2 163 105 345 122 539	sub. 10 17,9 431 83,8 509 40,7 514	sub. 11 25,5 94,1 47,2 251 33,5 281	sub. 12 61,5 129 42,9 262 102	sub. 13 53,9 237 40,8 303 41,2	 sub. 14 56 293 87,8 802 229 	sub. 15 47,4 575 236 876 281	sub. 16 20,3 159 145 411 114	sub. 16 24,3 293 513 200 570	sub. 17 23,5 146 216 82,4	sub. 17	
Fazenda Água Limpa Jusante Honório Bicalho-Montante Vespasiano Pinhões Taquaraçu Ponte Raul Soares Ponte Preta	sub. 8 65,2 435 159 738 252 953 195 195 105 <th 105<="" td=""><td>sub. 9 17,2 163 105 345 122 539 122</td><td>sub. 10 17,9 431 83,8 509 40,7 514 117</td><td>sub. 11 25,5 94,1 47,2 251 33,5 281 84,9 </td><td>sub. 12 61,5 129 42,9 262 102 132</td><td>sub. 13 53,9 237 40,8 303 41,2 60,3</td><td>sub. 14 56 293 87,8 802 229 158</td><td>sub. 15 47,4 575 236 876 281 261</td><td>sub. 16 20,3 159 145 411 114 105</td><td>sub. 16 24,3 293 513 200 570 170</td><td><pre>sub. 17 23,5 146 216 82,4 102</pre></td><td>sub. 17</td></th>	<td>sub. 9 17,2 163 105 345 122 539 122</td> <td>sub. 10 17,9 431 83,8 509 40,7 514 117</td> <td>sub. 11 25,5 94,1 47,2 251 33,5 281 84,9 </td> <td>sub. 12 61,5 129 42,9 262 102 132</td> <td>sub. 13 53,9 237 40,8 303 41,2 60,3</td> <td>sub. 14 56 293 87,8 802 229 158</td> <td>sub. 15 47,4 575 236 876 281 261</td> <td>sub. 16 20,3 159 145 411 114 105</td> <td>sub. 16 24,3 293 513 200 570 170</td> <td><pre>sub. 17 23,5 146 216 82,4 102</pre></td> <td>sub. 17</td>	sub. 9 17,2 163 105 345 122 539 122	sub. 10 17,9 431 83,8 509 40,7 514 117	sub. 11 25,5 94,1 47,2 251 33,5 281 84,9	sub. 12 61,5 129 42,9 262 102 132	sub. 13 53,9 237 40,8 303 41,2 60,3	sub. 14 56 293 87,8 802 229 158	sub. 15 47,4 575 236 876 281 261	sub. 16 20,3 159 145 411 114 105	sub. 16 24,3 293 513 200 570 170	<pre>sub. 17 23,5 146 216 82,4 102</pre>	sub. 17

sub. 17 sub. 17 sub. 17 sub. 17 sub. 18 sub. 19 sub. 19 sub. 19 sub. 19 sub. 20 sub. 21

Série Rearranjada de Vazões Máximas - subconjuntos regionais - Região MAX II redefinida												
Iguatama	1	547	709		525	372	326	690	286			804
Ponte Olegário Maciel					651	613	655	933				
Ponte do Chumbo												
Porto das Andorinhas												
Porto da Barra					807	1124	701	1537	610	907	1667	1520
Usina Camarão				63	31,6	28,4	22,5					
Araújos												
Estação Álvaro da Silveira		200	230	265	162	132	81,1	161	121	130	196	124
Porto Pará (CEMIG)					587	686	651	1240	571			743
Abaeté												
Ponte da Taquara												
Pirapora-Barreiro									5840	3806		
Pirapama												
Ponte do Licínio Jusante												
Presidente Juscelino Jusante												
Santo Hipólito									1860	1783	1743	
Estação Curimataí												
Várzea da Palma					1541	1800	2493	2709	2516	2502	2422	1672
Barra do Funchal						120	117	183	83,5	180	187	185
	n_1	sub. 1	sub. 1	sub. 2	sub. 3	sub. 4	sub. 4	sub. 5	sub. 6	sub. 7	sub. 8	sub. 9
Série Rearranj	jada de `	Vazões I	Máxima	s - subc	onjuntos	regiona	ais - Reg	gião MA	X II red	definida		
------------------------------	-----------	----------	--------	----------	----------	---------	-----------	---------	----------	----------	------	------
Iguatama	455	491	475	355	613	540	289	280	378	534	305	440
Ponte Olegário Maciel			683	474		970						
Ponte do Chumbo												
Porto das Andorinhas												642
Porto da Barra	1100	1241	957	740	1350					995	610	
Usina Camarão												
Araújos	80,4	108			115	125	52,8	73			86	
Estação Álvaro da Silveira	136	189	130	130	124	182						87,3
Porto Pará (CEMIG)					662		282	541	625	739	455	254
Abaeté												
Ponte da Taquara												
Pirapora-Barreiro			2238	1595	2507	3984		2364	2606	3508		2052
Pirapama										970		
Ponte do Licínio Jusante											747	400
Presidente Juscelino Jusante												
Santo Hipólito			1207	880	1420	1551	735	1250	1300	1690		
Estação Curimataí												
Várzea da Palma	2493		1684	1254	2036	2200	1050			2320	1561	
Barra do Funchal	107	156	169	61,6	177	183						

sub. 10 sub. 11 sub. 12 sub. 12 sub. 13 sub. 14 sub. 15 sub. 16 sub. 17 sub. 18 sub. 19 sub. 20

Série Rearran	jada de `	Vazões I	Máxima	s - subc	onjuntos	regiona	ais - Reg	gião MA	X II red	definida		
Iguatama					346	839	660	501	507	410	422	426
Ponte Olegário Maciel				870	599	980						
Ponte do Chumbo										618	618	575
Porto das Andorinhas	839	873	680	1080	706	1358	1105	867	901	801	740	707
Porto da Barra	903	937	760		744	1438						
Usina Camarão												
Araújos	90,1	112										
Estação Álvaro da Silveira	113	162								142	141	122
Porto Pará (CEMIG)	747	1170	431	961	1140	1200	1080	627	651	739	662	809
Abaeté												
Ponte da Taquara									580	653	490	702
Pirapora-Barreiro												
Pirapama											69 1	514
Ponte do Licínio Jusante							1140	1019	779	663		
Presidente Juscelino Jusante												
Santo Hipólito			1135	1740	1267	1427	1473	1371	1047	924	1231	1004
Estação Curimataí												
Várzea da Palma	2184	2988	1665	2349	1665	1896	2004	1924	1469	1359	1812	1534
Barra do Funchal										131	139	174

sub. 21 sub. 21 sub. 22 sub. 23 sub. 24 sub. 24 sub. 25 sub. 25 sub. 26 sub. 27 sub. 28 sub. 28

Série Rearranj	ada de `	Vazões I	Máxima	s - subc	onjuntos	regiona	ais - Reg	gião MA	X II red	definida		
Iguatama	160	418	406	441	412	438	380	554	487	327	452	556
Ponte Olegário Maciel												
Ponte do Chumbo						689	610	897	791	521	710	867
Porto das Andorinhas		663	720	767	586	847	772	1124	993	638	867	1104
Porto da Barra												
Usina Camarão						25,5	23,3	42,4	31,2	18,6	29,6	34,9
Araújos				76,7	117	92,8	103	154	117			
Estação Álvaro da Silveira		129	105	98,2	157	129	141	211	161	93	153	
Porto Pará (CEMIG)	262	596	541	527	649	828	833	835	1340	543	743	1060
Abaeté			35,8	33,6	23,1	54,2	50	78,2	55	42,6	56,1	61,7
Ponte da Taquara	322	650	602	488	390	868	860	735		678	773	678
Pirapora-Barreiro												
Pirapama	248	740	448	480	232	797	754	620				931
Ponte do Licínio Jusante		1005	583	575		879	846	714		760	959	991
Presidente Juscelino Jusante				1334	454	1682	1414	734		1262	853	1135
Santo Hipólito	656	1423	840	846	640	1831	1629	1316		1449	1303	1700
Estação Curimataí		179	187		161	313	304	312		329	142	
Várzea da Palma	932	2053	1265	1231	891		2373	2485		1741	1647	2272
Barra do Funchal		215	210	162								223

sub. 29 sub. 30 sub. 31 sub. 32 sub. 33 sub. 34 sub. 35 sub. 35 sub. 36 sub. 37 sub. 37 sub. 38

Série Rearranj	ada de `	Vazões I	Máxima	s - subc	onjuntos	regiona	ais - Reg	gião MA	X II red	lefinida		
Iguatama	642	515	477	677	414	314	577	763	939	533	618	615
Ponte Olegário Maciel												
Ponte do Chumbo	1064	877	590	752	552	431		857		573	654	652
Porto das Andorinhas	1349	1125	729	785	780	477	767	811		712	915	765
Porto da Barra												
Usina Camarão	33,4	39,4	17,4			27						
Araújos												
Estação Álvaro da Silveira		266				92,5		215	300	174		147
Porto Pará (CEMIG)	1240	1580	596	1010	527	393	583	883	1190	558	765	585
Abaeté	84,8	54	47,6	45,3	45,1	27,7	48,3	44,9	91,8	48,1	35,2	29,9
Ponte da Taquara	851	1330	589	624	709	438	681	958	910			657
Pirapora-Barreiro												
Pirapama	874	1249		346	970	390		1011	1023		663	595
Ponte do Licínio Jusante	1092	1334	662	446	1034	393		1045		827	702	598
Presidente Juscelino Jusante		1588	1120	665	1127	671	860	1613	1621	1044	685	552
Santo Hipólito	1853	1909	1409	914	1618	804		1875	2260	1309	978	777
Estação Curimataí	168	302	265	139	115	120	314	340	417	235	190	249
Várzea da Palma	2504	2715	2513	1627	1939	1305	2823	2852	3120		1795	1072
Barra do Funchal		171	118	155	131			261				

sub. 39 sub. 40 sub. 41 sub. 42 sub. 42 sub. 43 sub. 44 sub. 45 sub. 46 sub. 47 sub. 48 sub. 49

Série Rearranjada de Vaz	vões Máx	kimas <mark>-</mark> s	ubconju	ntos reg	gionais -	Região	MAX I	I redefin	nida	
Iguatama	354		360	381						•
Ponte Olegário Maciel										
Ponte do Chumbo	517		490	538	1					
Porto das Andorinhas	760	2814	668	848]					
Porto da Barra										
Usina Camarão										
Araújos										
Estação Álvaro da Silveira			138		1					
Porto Pará (CEMIG)										
Abaeté										
Ponte da Taquara	851		566							
Pirapora-Barreiro										
Pirapama	1137		560	412						
Ponte do Licínio Jusante	1359		678		1					
Presidente Juscelino Jusante	868	1780	904	519						
Santo Hipólito	2111		1355	654						
Estação Curimataí	158	242								
Várzea da Palma	2475		1884	1551						
Barra do Funchal										
	sub. 50	sub. 51	sub. 52	sub. 53	-					
Série Rearran	jada de V	Vazões N	Máxima	s - subco	onjuntos	regiona	is - Reg	jião MA	X III re	def
Porto Indaiá (CEMIG)									359	
Fazenda Bom Jardim										3
Major Porto	1	2	3	4	5	6	7	8	236	2
Porto do Passarinho										

n₁

sub. 2 sub. 4 sub. 4 sub. 4

Série Rearranj	ada de V	/azões N	Aáxima	s - subco	onjuntos	regiona	is - Reg	jião MA	X III re	definida				
Porto Indaiá (CEMIG)							694	808	789	1040	306	390		
Fazenda Bom Jardim	542	451	400	283	438		542	400	652	813	283	317		
Major Porto	281	153	204	127	291	145	291	349	592	524	208	393		
Porto do Passarinho						510	1501	1532	2032	2305	709	962		
	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 6	sub. 7							
Porto Indaiá (CEMIG)	468			603	1320	349	225							
Fazenda Bom Jardim	400	638	425	555	835	331								
Major Porto	270	373	284	437	497	446	164							
Porto do Passarinho	1305	1222	778				373							
	sub. 7	sub. 8	sub. 8	sub. 9	sub. 9	sub. 9	sub. 10	-						
Série Rearranjada de Vazões Máximas - subconjuntos regionais - Região MAX IV redefinida														
Faz. Cap. + M. do Bom Sucesso	1													
Ponte Capoeirão														
Tapiraí-Jusante		2	3	4	5	6	7	8	9	10	11	12		
						n	1							
Faz. Cap. + M. do Bom Sucesso											52,9	26,8		
Ponte Capoeirão											81,3	39		
Tapiraí-Jusante	13	14	15	16	17	18	19	20	21	22				
					n	1					sub. 1	sub. 1		
Faz. Cap. + M. do Bom Sucesso	35,9	36,8	24,9	42,4	35,8	44,8	39,6							
Ponte Capoeirão	54,4	44,9	34,9	69,2										
Tapiraí-Jusante					48,5	56,8	47,4							
	sub. 1	sub. 1	sub. 1	sub. 1	sub. 2	sub. 2	sub. 2	-						

Série Rea	arranjad	a de Va	zões Má	áximas -	subcon	juntos re	egionais	- Regiã	o MAX	V		
Vargem Bonita	1	2	3	4	5	6	7	8				
Fazenda Samburá												112
Fazenda da Barra											183	
Fazenda Ajudas									9	37,2	47,3	38
Calciolândia										34,9	36,9	39,2
					n_1					sub. 1	sub. 2	sub. 3
Vargem Bonita	66,2	66,2	66,2	66,2	66,2	56,4	71,4	52,8	45,8	50,8	40,2	187
Fazenda Samburá	124	124	124	124	124	87,5	152	138	246	174	90,3	140
Fazenda da Barra	399	399	399	399	399	205	252	258	245	244	241	267
Fazenda Ajudas	34	34	34	34	34	33,8	79,6	33,3	60,3	58,7	21	60,2
Calciolândia	27,4	27,4	27,4	27,4	27,4	34,5	75,2	50,7	47,8	58,7	26	59,2
	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4
Vargem Bonita	84,3	76,4	67,1	70,4	92,8	23,4	81,9	86,1	74,5	71,8	230	208
Fazenda Samburá	111	93	94,6	134	221	70,7	176	151	124	174	89,3	
Fazenda da Barra	192	162	179	285	374	149						444
Fazenda Ajudas	39,5	28,2	30,8	50,1	98,5		52,2	71,4	53,6	73,8	50,8	73,2
Calciolândia	12,8	12,5	64	35,1	51,8		70	52,2	55,1	52,5	33,1	
	sub. 4	sub. 4	sub. 4	sub. 4	sub. 4	sub. 5	sub. 6	sub. 6	sub. 6	sub. 6	sub. 6	sub. 7
Vargem Bonita		192	97,8	156	51,6							
Fazenda Samburá												
Fazenda da Barra	529	267	171	140	154							
Fazenda Ajudas	68,5	52,4	40,7	32,2	44,5							
Calciolândia		50,4	59,3	24,1	56,8							
-	sub 8	sub 9	sub 9	sub 9	sub 9	-						

Série Rea	rranjada	a de Vaz	zões Má	iximas -	subconj	untos re	gionais	- Regiã	o MAX	VI		
Ponte do Vilela										280	146	
Carmo do Cajuru	1							371	432	466	210	182
Marilândia							7					
Carmo da Mata										40,4	42,1	16,1
Pari												
Divinópolis								253	303	290	119	118
Jaguaruna Jusante												
Velho da Taipa		2	3	4	5	6						
		_		<i>n</i> ₁	-	-	-	sub. 1	sub. 1	sub. 2	sub. 2	sub. 3
Ponte do Vilela												
Carmo do Cajuru	493	345	176	196	185	278	243	302	353	306	247	137
Marilândia												
Carmo da Mata	42,1	48,4	31,8	27,2		29,6	28	29,6				
Pari												
Divinópolis	282	279	171	209	136	162	198	310	170	207	224	106
Jaguaruna Jusante						251	665	340	183	256	197	170
Velho da Taipa			353	480	419	626	569	804	412			
	sub. 3	sub. 3	sub. 4	sub. 4	sub. 5	sub. 6	sub. 6	sub. 6	sub. 7	sub. 8	sub. 8	sub. 8
Ponte do Vilela							226	141	94,1	248	105	212
Carmo do Cajuru	51,9	189	223	96,5								
Marilândia											60,4	103
Carmo da Mata						31,4						
Pari												
Divinópolis												
Jaguaruna Jusante	158	172	128	83,3	74,5							
Velho da Taipa				257	166	804	705	342	175	542	354	507

sub. 9 sub. 9 sub. 9 sub. 10 sub. 11 sub. 12 sub. 13 sub. 13 sub. 13 sub. 13 sub. 14 sub. 14

Série Rea	arranjad	a de Vaz	zões Má	iximas -	subconj	untos re	gionais	- Regiã	o MAX	VI		
Ponte do Vilela	102	165	154	176	275	164	129	147				
Carmo do Cajuru												
Marilândia	95,4	93,4	53,1	100	79,1	110	107			56	128	97,2
Carmo da Mata												
Pari			127	146	154	188	201	251	275	125	261	196
Divinópolis						168	136					
Jaguaruna Jusante									244	152	377	173
Velho da Taipa	398	415	391	337	363	605	426		682	411	712	578
	sub. 14	sub. 14	sub. 15	sub. 15	sub. 15	sub. 16	sub. 16	sub. 17	sub. 18	sub. 19	sub. 19	sub. 19
Ponte do Vilela												
Carmo do Cajuru												
Marilândia	218	92,1	62,3	105	340	92,1	69,9	60,1	80,7	124	216	98,6
Carmo da Mata												
Pari	317	130	101	200	560	167	195	139	125	254	426	187
Divinópolis												
Jaguaruna Jusante	107	214	114	162	258	132	166	174	229			
Velho da Taipa	748	485	504	694	1034	492	607	573	690	745	1213	499
	sub. 19	sub. 19	sub. 19	sub. 19	sub. 19	sub. 19	sub. 19	sub. 19	sub. 19	sub. 20	sub. 20	sub. 20
Ponte do Vilela												
Carmo do Cajuru												
Marilândia	51,8	69,6	59,2									
Carmo da Mata												
Pari	77,9	97	77,4]								
Divinópolis]								
Jaguaruna Jusante				l								
Velho da Taipa	302	568	490	J								

sub. 20 sub. 20 sub. 20

Série Real	rranjada	ı de Vaz	ões Má	ximas -	subconj	untos re	gionais ·	- Região	MAX	VII		
São Brás do Suaçui Montante							Ĭ					
Joaquim Murtinho												33
Ponte Jubileu								43	22,2	34,4	19,9	26,5
Congonhas Linígrafo			3	93,6	85,6	112	48,4	103	62,9	76,7	41,2	54,1
Jeceaba									212	209	165	302
Belo Vale												
Melo Franco	1	2		326	236	312	301	439	279		239	402
Alberto Flores												
Conceição do Itaguá												
São Joaquim de Bicas (CEMIG)												
Betim				39,7	20,6	19,2					31,7	31,5
Ponte Nova do Paraopeba				576	414	472	458	684	408	371	333	570
Juatuba								27,7	23,3	18,9	30,1	36,2
Fazenda Escola Florestal												
		<i>n</i> ₁		sub. 1	sub. 1	sub. 1	sub. 2	sub. 3	sub. 4	sub. 5	sub. 6	sub. 7
São Brás do Suaçui Montante		<i>n</i> ₁		sub. 1	sub. 1	sub. 1	sub. 2	sub. 3	sub. 4	sub. 5 97,2	sub. 6 42,2	sub. 7 44,1
São Brás do Suaçui Montante Joaquim Murtinho		<i>n</i> ₁	28,8	sub. 1	sub. 1 39,3	sub. 1 34,9	sub. 2 22	sub. 3 20	sub. 4	sub. 5 97,2 49,3	sub. 6 42,2 20,5	sub. 7 44,1 23,5
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu	30,9	<i>n</i> ₁ 44,8	28,8 21,8	sub. 1 44,8	sub. 1 39,3 34,1	sub. 1 34,9 28,2	sub. 2 22 16,5	sub. 3 20 12,9	sub. 4 39,3	sub. 5 97,2 49,3	sub. 6 42,2 20,5 22,5	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo	30,9 62,3	<i>n</i> ₁ 44,8 104	28,8 21,8 46	sub. 1 44,8 206	sub. 1 39,3 34,1 110	sub. 1 34,9 28,2 89	sub. 2 22 16,5 41,2	sub. 3 20 12,9	sub. 4 39,3	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba	30,9 62,3	<i>n</i> ₁ 44,8 104 420	28,8 21,8 46 190	sub. 1 44,8 206 336	sub. 1 39,3 34,1 110 285	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248	sub. 3 20 12,9 143	sub. 4 39,3 239	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale	30,9 62,3	n ₁ 44,8 104 420	28,8 21,8 46 190	sub. 1 44,8 206 336	sub. 1 39,3 34,1 110 285	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248	sub. 3 20 12,9 143	sub. 4 39,3 239	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco	30,9 62,3 356	n ₁ 44,8 104 420 411	28,8 21,8 46 190 244	sub. 1 44,8 206 336 459	sub. 1 39,3 34,1 110 285	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248	sub. 3 20 12,9 143	sub. 4 39,3 239	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores	30,9 62,3 356	<i>n</i> ₁ 44,8 104 420 411	28,8 21,8 46 190 244	sub. 1 44,8 206 336 459	sub. 1 39,3 34,1 110 285	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248	sub. 3 20 12,9 143	sub. 4 39,3 239	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá	30,9 62,3 356	<i>n</i> ₁ 44,8 104 420 411	28,8 21,8 46 190 244	sub. 1 44,8 206 336 459	sub. 1 39,3 34,1 110 285	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248	sub. 3 20 12,9 143	sub. 4 39,3 239	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG)	30,9 62,3 356	<i>n</i> ₁ 44,8 104 420 411	28,8 21,8 46 190 244	sub. 1 44,8 206 336 459	sub. 1 39,3 34,1 110 285	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248	sub. 3 20 12,9 143	sub. 4 39,3 239	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG) Betim	30,9 62,3 356	<i>n</i> ₁ 44,8 104 420 411 31,5	28,8 21,8 46 190 244	sub. 1 44,8 206 336 459	sub. 1 39,3 34,1 110 285 29,3	sub. 1 34,9 28,2 89 150	sub. 2 22 16,5 41,2 248 26,4	sub. 3 20 12,9 143 	sub. 4 39,3 239 36,9	sub. 5 97,2 49,3 112	sub. 6 42,2 20,5 22,5 44,1 19,2	sub. 7 44,1 23,5 26,6
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG) Betim Ponte Nova do Paraopeba	30,9 62,3 356 502	<i>n</i> ₁ 44,8 104 420 411 31,5 810	28,8 21,8 46 190 244 366	sub. 1 44,8 206 336 459 690	sub. 1 39,3 34,1 110 285 285 29,3 570	sub. 1 34,9 28,2 89 150 	sub. 2 22 16,5 41,2 248 248 26,4 470	sub. 3 20 12,9 143 	sub. 4 39,3 239 36,9 498	sub. 5 97,2 49,3 112 774	sub. 6 42,2 20,5 22,5 44,1 19,2 388	sub. 7 44,1 23,5 26,6 9,96 408
São Brás do Suaçui Montante Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG) Betim Ponte Nova do Paraopeba Juatuba	30,9 62,3 356 502 48,7	<i>n</i> ₁ 44,8 104 420 411 31,5 810	28,8 21,8 46 190 244 366 26,4	sub. 1 44,8 206 336 459 	sub. 1 39,3 34,1 110 285 29,3 570 38,6	sub. 1 34,9 28,2 89 150 	sub. 2 22 16,5 41,2 248 248 26,4 470 47,8	sub. 3 20 12,9 143 143 18,2 295	sub. 4 39,3 239 36,9 498 48,7	sub. 5 97,2 49,3 112 774 43,1	sub. 6 42,2 20,5 22,5 44,1 19,2 388 29,6	sub. 7 44,1 23,5 26,6 9,96 408 21

sub. 8 sub. 9 sub. 10 sub. 11 sub. 12 sub. 12 sub. 12 sub. 13 sub. 14 sub. 15 sub. 16 sub. 17

Série Rea	rranjada	de Vaz	ões Má	ximas -	subconji	untos re	gionais ·	- Região	MAX	VII		
São Brás do Suaçui Montante	51,7	80,3	56,6	44			81	48	33,1	77,8	58	56,9
Joaquim Murtinho	21	50,7	40,6	18,5	36,1	33,7						
Ponte Jubileu	40,4	39,3	23,8		39,3	27,4						
Congonhas Linígrafo			75,6	52,8	72,9	68,2	112	45,5	30,8			
Jeceaba												
Belo Vale							457	207	150	350	220	268
Melo Franco												
Alberto Flores											315	356
Conceição do Itaguá										104	66,9	66,9
São Joaquim de Bicas (CEMIG)												
Betim	66,1		28,9	44,2	37,4	30,6						
Ponte Nova do Paraopeba	448	822	414	515	748	570	726	357	276	580	450	478
Juatuba	36,2	45,6		39,9	29,8	41,1						
Fazenda Escola Florestal	16,3	11,3	7,5	14,3								
	sub. 18	sub. 19	sub. 20	sub. 21	sub. 22	sub. 22	sub. 23	sub. 23	sub. 23	sub. 24	sub. 25	sub. 25
São Brás do Suaçui Montante	36.4				917	53.3	50.4	65,6	187	112	132	
3	50,1				/1,/	00,0						
Joaquim Murtinho	50,1				>1,7	00,0)					
Joaquim Murtinho Ponte Jubileu	50,1				71,7	00,0	/					
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo	50,1				77	111	132	55,8	94,6	148	128	59,4
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba					77	111	132	55,8	94,6	148	128	59,4
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale	322	190	147	378	77 330	111 295	132 785	55,8 350	94,6	148 670	128 403	59,4 336
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco	322	190	147	378	77 330	111 295	132 785	55,8 350	94,6	148 670	128 403	59,4 336
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores	322 423	190 255	147	378 474	77 330 410	111 295 351	132 785 816	55,8 350 456	94,6 460 519	148 670 723	128 403 457	59,4 336 460
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá	322 423 91,4	190 255 51,9	147 182 60,8	378 474 120	77 330 410	111 295 351	132 785 816	55,8 350 456 58,2	94,6 460 519 66,9	148 670 723 69,8	128 403 457 107	59,4 336 460
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG)	322 423 91,4	190 255 51,9	147 182 60,8	378 474 120	77 330 410	111 295 351	132 785 816	55,8 350 456 58,2	94,6 460 519 66,9	148 670 723 69,8	128 403 457 107	59,4 336 460
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG) Betim	322 423 91,4	190 255 51,9	147 182 60,8	378 474 120	77 330 410	111 295 351	132 785 816	55,8 350 456 58,2	94,6 460 519 66,9	148 670 723 69,8	128 403 457 107	59,4 336 460
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG) Betim Ponte Nova do Paraopeba	322 423 91,4 549	190 255 51,9 340	147 182 60,8 246	378 474 120 568	77 330 410 520	111 295 351 449	132 785 816 1017	55,8 350 456 58,2	94,6 460 519 66,9	148 670 723 69,8 736	128 403 457 107 822	59,4 336 460 550
Joaquim Murtinho Ponte Jubileu Congonhas Linígrafo Jeceaba Belo Vale Melo Franco Alberto Flores Conceição do Itaguá São Joaquim de Bicas (CEMIG) Betim Ponte Nova do Paraopeba Juatuba	322 423 91,4 549	190 255 51,9 340	147 182 60,8 246	378 474 120 568	77 330 410 520	111 295 351 449	132 785 816 1017	55,8 350 456 58,2	94,6 460 519 66,9	148 670 723 69,8 736	128 403 457 107 822	59,4 336 460 550

sub. 25 sub. 26 sub. 26 sub. 26 sub. 27 sub. 27 sub. 27 sub. 28 sub. 28 sub. 29 sub. 29 sub. 30

Série Rea	rranjada	a de Vaz	ões Má	ximas -	subconj	untos re	gionais ·	- Região	MAX	VII		
São Brás do Suaçui Montante		68,6	48,5	77	38,3	37,2	44,6			57,9	33	63,2
Joaquim Murtinho												
Ponte Jubileu												
Congonhas Linígrafo	50,9	132	88,2	54,7		22,1	63,4	19,8	74,6	57,2	55,1	60,3
Jeceaba												
Belo Vale	385	451	374	418	287	161	397					
Melo Franco												
Alberto Flores	432	443	387	455	345	222		715		300	336	461
Conceição do Itaguá	56	102	56,9	39,3								
São Joaquim de Bicas (CEMIG)		642	524	529		233	471	872	703	409	468	566
Betim												
Ponte Nova do Paraopeba		698	585	601	437	288	481	927	827	424	603	633
Juatuba												
Fazenda Escola Florestal												
	sub. 31	sub. 32	sub. 32	sub. 32	sub. 33	sub. 34	sub. 35	sub. 36	sub. 37	sub. 38	sub. 38	sub. 38
São Brás do Suaçui Montante	42,4	85,7		39								
Joaquim Murtinho												
Ponte Jubileu												
Congonhas Linígrafo			66,5	84,2								
Jeceaba												
Belo Vale												
Melo Franco												
Alberto Flores	372	1133	205	235								
Conceição do Itaguá												
São Joaquim de Bicas (CEMIG)												
Betim												
Ponte Nova do Paraopeba	695		296	427								
Juatuba												
Fazenda Escola Florestal												

sub. 39 sub. 40 sub. 41 sub. 42

Série Rearranjada de Vazões Máximas - subconjuntos regionais - Região MAX II-a												
Iguatama	1	2	3		5	6	7		525	372	326	690
Ponte Olegário Maciel									651	613	655	933
Ponte do Chumbo												
Porto das Andorinhas								8				
Porto da Barra				4					807	1124	701	1537
Pirapora-Barreiro												
n_1 sub. 1 sub. 1 sub. 1 sub. 1 sub. 1												sub. 1
Iguatama	286	613	534		804	455	491	305	475	355	540	280
Ponte Olegário Maciel									683	474	970	
Ponte do Chumbo												
Porto das Andorinhas												
Porto da Barra	610	1350	995	907	1520	1100	1241	610	957	740		
Pirapora-Barreiro	5840	2507	3508	3806					2238	1595	3984	2364
		1 0			1 4	I - 4	1 - 4	1 4	E		1 (
	sub. 2	sub. 2	SUD. 2	sub. 3	sub. 4	SUD. 4	SUD. 4	sub. 4	sub. 5	sub. 5	sub. 6	sub. 7
Iguatama	378	sub. 2 440	sub. 2	sub. 3	sub. 4	sub. 4	sub. 4 346	sub. 4 839	SUD. 5 660	SUD. 5 501	sub. 6 507	sub. 7 418
Iguatama Ponte Olegário Maciel	SUD. 2 378	sub. 2 440	sub. 2	sub. 3	sub. 4	870	346 599	Sub. 4 839 980	660	501	Sub. 6 507	sub. 7 418
Iguatama Ponte Olegário Maciel Ponte do Chumbo	378	sub. 2 440	sub. 2	sub. 3	sub. 4	870	sub. 4 346 599	839 980	660	501	sub. 6 507	sub. 7 418
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas	SUD. 2 378	Sub. 2 440 642	SUD. 2 839	SUD. 3 873	sub. 4	sub. 4 870 1080	sub. 4 346 599 706	sub. 4 839 980 1358	SUD. 5 660 1105	SUD. 5 501 867	sub. 6 507 901	418 663
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra	SUD. 2 378	sub. 2 440 642	839 903	SUD. 3 873 937	sub. 4 680 760	870 1080	346 599 706 744	sub. 4 839 980 1358 1438	5 3 660	SUD. 5 501 867	sub. 6 507 901	418 663
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro	SUD. 2 378 2606	sub. 2 440 642 2052	839 903	873 937	sub. 4 680 760	870 1080	sub. 4 346 599 706 744	sub. 4 839 980 1358 1438	sub. 5 660 1105	SUD. 5 501 867	sub. 6 507 901	Sub. 7 418 663
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro	SUD. 2 378 2606 sub. 7	sub. 2 440 642 2052 sub. 8	839 903 sub. 9	sub. 3 873 937 sub. 9	sub. 4 680 760 sub. 9	870 870 1080 sub. 10	sub. 4 346 599 706 744 sub. 11	sub. 4 839 980 1358 1438 sub. 11	sub. 5 660 1105 sub. 12	sub. 5 501 867 sub. 12	sub. 6 507 901 sub. 12	sub. 7 418 663 sub. 12
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro Iguatama	sub. 2 378 2606 sub. 7 406	sub. 2 440 642 2052 sub. 8 441	sub. 2 839 903 sub. 9 412	sub. 3 873 937 sub. 9 577	sub. 4 680 760 sub. 9 410	sub. 4 870 1080 sub. 10 422	sub. 4 346 599 706 744 sub. 11 426	sub. 4 839 980 1358 1438 sub. 11 438	sub. 5 660 1105 sub. 12 380	sub. 5 501 867 sub. 12 487	sub. 6 507 901 sub. 12 554	sub. 7 418 663 sub. 12 327
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro Iguatama Ponte Olegário Maciel	sub. 2 378 2606 sub. 7 406	sub. 2 440 642 2052 sub. 8 441	sub. 2 839 903 sub. 9 412	sub. 3 873 937 sub. 9 577	sub. 4 680 760 sub. 9 410	sub. 4 870 1080 sub. 10 422	sub. 4 346 599 706 744 sub. 11 426	sub. 4 839 980 1358 1438 sub. 11 438	sub. 5 660 1105 sub. 12 380	sub. 5 501 867 sub. 12 487	sub. 6 507 901 sub. 12 554	sub. 7 418 663 sub. 12 327
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro Iguatama Ponte Olegário Maciel Ponte do Chumbo	sub. 2 378 2606 sub. 7 406	sub. 2 440 642 2052 sub. 8 441	sub. 2 839 903 sub. 9 412	sub. 3 873 937 sub. 9 577	sub. 4 680 760 sub. 9 410 618	sub. 4 870 1080 sub. 10 422 618	sub. 4 346 599 706 744 sub. 11 426 575	sub. 4 839 980 1358 1438 sub. 11 438 689	sub. 5 660 1105 sub. 12 380 610	sub. 5 501 867 sub. 12 487 791	sub. 6 507 901 sub. 12 554 897	sub. 7 418 663 sub. 12 327 521
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas	sub. 2 378 378 2606 sub. 7 406 720	sub. 2 440 642 2052 sub. 8 441 767	sub. 2 839 903 sub. 9 412 586	sub. 3 873 937 sub. 9 577 767	sub. 4 680 760 sub. 9 410 618 801	sub. 4 870 1080 	sub. 4 346 599 706 744 sub. 11 426 575 707	sub. 4 839 980 1358 1438 sub. 11 438 689 847	sub. 5 660 1105 sub. 12 380 610 772	sub. 5 501 867 sub. 12 487 791 993	sub. 6 507 901 sub. 12 554 897 1124	sub. 7 418 663 sub. 12 327 521 638
Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra Pirapora-Barreiro Iguatama Ponte Olegário Maciel Ponte do Chumbo Porto das Andorinhas Porto da Barra	sub. 2 378 2606 sub. 7 406 720	sub. 2 440 642 2052 sub. 8 441 767	sub. 2 839 903 sub. 9 412 586	sub. 3 873 937 sub. 9 577 767	sub. 4 680 760 sub. 9 410 618 801	sub. 4 870 1080 sub. 10 422 618 740	sub. 4 346 599 706 744 sub. 11 426 575 707	sub. 4 839 980 1358 1438 sub. 11 438 689 847	sub. 5 660 1105 sub. 12 380 610 772	sub. 5 501 867 sub. 12 487 791 993	sub. 6 507 901 sub. 12 554 897 1124	sub. 7 418 663 sub. 12 327 521 638

sub. 12 sub. 12 sub. 12 sub. 12 sub. 13 sub. 1

Série Rea	rranjada	de Vaz	ões Má	ximas - s	subconji	intos reg	gionais -	Região	MAXI	I-a		
Iguatama	556	642	452	515	477	677	414	314	763	533	618	615
Ponte Olegário Maciel												
Ponte do Chumbo	867	1064	710	877	590	752	552	431	857	573	654	652
Porto das Andorinhas	1104	1349	867	1125	729	785	780	477	811	712	915	765
Porto da Barra												
Pirapora-Barreiro												
	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13	sub. 13
Iguatama	354	360	381									
Ponte Olegário Maciel												
Ponte do Chumbo	517	490	538									
Porto das Andorinhas	760	668	848									
Porto da Barra												
Pirapora-Barreiro												
	sub. 13	sub. 13	sub. 13	-								
Série Rea	rranjada	de Vaz	ões Má	ximas - s	subconji	intos re	gionais -	Região	MAXI	I-b		
Usina Camarão												
Araújos												
Estação Álvaro da Silveira	1	2	3	4	5	6						
Porto Pará (CEMIG)							7	8	9	10	11	12
Ponte da Taquara												
	-	-		-	-	n	1	-	-	-	-	
Usina Camarão					63	31,6	28,4	22,5				
Araújos												
Estação Álvaro da Silveira					265	162	132	81,1	161	121	124	87,3
Porto Pará (CEMIG)	13	14	15			587	686	651	1240	571	743	254
Ponte da Taquara				16								
		n	1		sub. 1	sub. 2	sub. 2	sub. 2	sub. 3	sub. 3	sub. 3	sub. 3

Série Rearranjada de Vazões Máximas - subconjuntos regionais - Região MAX II-b												
Usina Camarão												
Araújos		80,4	108	125	115	90,1	112	52,8	73	86		
Estação Álvaro da Silveira	174	136	189	182	124	113	162					
Porto Pará (CEMIG)	558				662	747	1170	282	541	455	651	262
Ponte da Taquara											580	322
	sub. 3	sub. 4	sub. 4	sub.4	sub. 5	sub. 5	sub. 5	sub.6	sub.6	sub. 6	sub. 7	sub. 7
Usina Camarão												
Araújos												76,7
Estação Álvaro da Silveira				142	141	122	129	105	215	300	147	98,2
Porto Pará (CEMIG)	1010	527	583	739	662	809	596	541	883	1190	585	527
Ponte da Taquara	624	709	681	653	490	702	650	602	958	910	657	488
	sub. 7	sub. 7	sub. 7	sub. 8	sub. 9							
Usina Camarão		25,5	23,3	42,4	31,2	18,6	29,6	39,4	27	34,9	33,4	17,4
Araújos	117	92,8	103	154	117							
Estação Álvaro da Silveira	157	129	141	211	161	93	153	266	92,5			
Porto Pará (CEMIG)	649	828	833	835	1340	543	743	1580	393	1060	1240	596
Ponte da Taquara	390	868	860	735		678	773	1330	438	678	851	589
	sub. 9	sub. 10	sub. 10	sub. 10	sub. 11	sub. 12	sub. 12	sub. 12	sub. 12	sub. 13	sub. 13	sub. 13

Usina Camarão	
Araújos	
Estação Álvaro da Silveira	138
Porto Pará (CEMIG)	
Ponte da Taquara	566
	-

sub. 14

ANEXO 5

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ANEXO 5 – DESVIOS MÉDIOS PERCENTUAIS PARA AS ESTAÇÕES DE MONITORAMENTO PERTENCENTES ÀS REGIÕES HOMOGÊNEAS

Neste anexo encontram-se os gráficos relativos aos desvios médios percentuais entre as estimativas dos valores de quantis de vazões máximas obtidos tanto pela metodologia das curvas envoltórias de cheias, quanto pela metodologia de regionalização utilizando os momentos-L, para as estações de monitoramento pertencentes a cada região homogênea.

Os termos sobrescritos (1) e (2) indicam a estimação do tempo de retorno associado à curva envoltória utilizando a equação de correlação calibrada para toda a região e por região homogênea, respectivamente.

Figura A 5.1: Desvios médios para a região MAX I¹

Figura A 5.2: Desvios médios para a região MAX I²

Figura A 5.3: Desvios médios para a região MAX II redefinida¹

Figura A 5.4: Desvios médios para a região MAX II redefinida²

Figura A 5.5: Desvios médios para a região MAX II-a¹

Figura A 5.6: Desvios médios para a região MAX II-a²

Figura A 5.7: Desvios médios para a região MAX II-b¹

Figura A 5.8: Desvios médios para a região MAX II-b²

Figura A 5.9: Desvios médios para a região MAX III redefinida¹

Figura A 5.10: Desvios médios para a região MAX III redefinida²

Figura A 5.11: Desvios médios para a região MAX IV redefinida¹

Figura A 5.12: Desvios médios para a região MAX IV redefinida²

Figura A 5.13: Desvios médios para a região MAX V¹

Figura A 5.14: Desvios médios para a região MAX V²

Figura A 5.15: Desvios médios para a região MAX VI¹

Figura A 5.16: Desvios médios para a região MAX VI²

Figura A 5.17: Desvios médios para a região MAX VII¹

Figura A 5.18: Desvios médios para a região MAX VII²