
Universidade Federal de Minas Gerais
Programa de Pós Graduação em Engenharia Elétrica

Aquisição simultânea de eletroencefalografia e
ressonância magnética funcional para
investigação da plasticidade neural

Ana Cláudia Silva de Souza

Tese submetida ao Programa de Pós Graduação
em Engenharia Elétrica da Universidade Fede-
ral de Minas Gerais como requisito parcial para
obtenção do grau de Doutor em Engenharia
Elétrica.

Belo Horizonte
Agosto, 2010



Universidade Federal de Minas Gerais
Graduate Program in Electrical Engineering

Simultaneous acquisition of
electroencephalography and functional

magnetic resonance for the investigation of
neural plasticity

Ana Cláudia Silva de Souza

A dissertation submitted to the Graduate Program
in Electrical Engineering of the Universidade Fe-
deral de Minas Gerais in partial fulfillment of the
requirements for the degree of Doctor of Electrical
Engineering.

Belo Horizonte
August, 2010



Resumo

Este trabalho apresenta um estudo sobre plasticidade neural baseado em registros
simultâneos de eletroencefalografia (EEG) e ressonância magnética funcional (fMRI). Di-
versas evidências indicam que a especificidade neural à estimulação sensorial básica é
mutável e dependente da experiência do indivíduo. Uma maneira de se verificar essa
plasticidade é por meio da aprendizagem perceptiva, a qual consiste em uma melhoria na
discriminação sensorial após um período de treinamento. Para este fim, foi implementada
uma tarefa de discriminação de frequências, com tons padrão e desviantes apresentados
a voluntários. A hipótese investigada é se o direcionamento da atenção do indivíduo à
tarefa sendo executada melhora a habilidade em distinguir os tons desviantes em um
treinamento de curta duração.

Uma primeira contribuição deste estudo está no fato de a atividade cerebral ser ex-
plorada durante o processo de aprendizagem, enquanto a maioria dos trabalhos na área
investiga esta atividade antes e após a aprendizagem perceptiva. Os resultados obtidos
mostram que este tipo de aprendizagem pode ser medida por meio de uma melhoria no
desempenho da tarefa ao longo de um intervalo de curta duração.

Além disso, o registro simultâneo do EEG e da fMRI fornece uma melhor localização
espacial e temporal das fontes de ativação da atividade neural. Isto é importante no prob-
lema de localização das fontes neurais que geram um determinado grupo de sinais registra-
dos no escalpo (problema inverso). A partir dos dados coletados nas duas modalidades,
implementa-se um método hierárquico Bayesiano variacional onde as soluções inversas
do EEG estão restritas às regiões de ativação elevada vistas nas imagens de ressonância
magnética funcional.

Finalmente, a principal contribuição deste trabalho é revelar que mesmo alterações
provocadas por um aprendizado de rápida duração não estão restritas ao córtex sensorial, e
compõem um substrato neural para modulações de atenção seletiva que iniciam o processo
de aprendizagem perceptiva auditiva.
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Abstract

This thesis presents a study on neuronal plasticity based on simultaneous recording
of electroencephalography (EEG) and functional magnetic resonance (fMRI). There is an
accumulating body of evidence indicating that neuronal functional specificity to basic sen-
sory stimulation is mutable and subject to experience. One way to look at this plasticity is
by means of perceptual learning, which is an improvement in sensory discrimination after
a period of training. For that purpose, a frequency discrimination task was performed
with standard and deviant tones presented to subjects. The hypothesis investigated is
whether focused attention enhanced the discrimination of the deviant tones.

The first original contribution of this study is that brain activity is explored during
the process of learning whereas most works have investigated brain activity after relative
to before perceptual learning. The results obtained show that perceptual learning can be
assessed in rapid early performance having the improvement in behavioral performance
as reference.

Moreover, recording EEG and fMRI simultaneously provides better spatial and tem-
poral localization of activated sources. This is important in the problem of localizing
the activated sources that generated the signals measured at the scalp (inverse problem).
Based on data from both modalities, this thesis employs a method in which the EEG
inverse solutions are constrained to regions where fMRI indicates large hemodynamic ac-
tivation. The variational hierarchical Bayesian method used overcomes problems such
as false positive, incorporating fMRI information as a hierarchical prior on the variance
distribution.

Finally, the main contribution of this work is to show that even fast learning changes
are not confined to sensory cortex, providing a potential neural substrate for top-down
modulation of auditory selective attention that gives rise to auditory perceptual learning.
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Resumo Estendido

Introdução

O cérebro é capaz de se reorganizar. Embora esta afirmação pareça óbvia nos dias
atuais, ela era impensável há 20 anos. À medida que novas habilidades são aprendidas
e novas experiências adquiridas, as células nervosas alteram sua forma de responder ao
ambiente e, com isso, refletir as circunstãncias de sua alteração. A isto chama-se plastici-
dade. Uma maneira de se investigar a plasticidade é por meio da aprendizagem perceptiva
definida como uma melhoria na discriminação sensorial após um período de prática, que
normalmente varia de dias a semanas (Polley, Steinberg, and Merzenich, 2006; Moore,
Amitay, and Hawkey, 2003; Demany, 1985; Watson, 1980). Os estudos mostram que os
efeitos da aprendizagem perceptiva podem ser bastante específicos às características do
estímulo sendo treinado, desta forma a falta de generalização pode ser uma evidência que o
aprendizado é mediado por células em áreas sensoriais (Polley, Steinberg, and Merzenich,
2005). Embora seja aceito que a plasticidade neural ocorre após um treinamento ex-
tensivo, ainda há muito o que investigar sobre os substratos neurais envolvidos quando
indivíduos apresentam melhorias rápidas no desempenho de tarefas ocorridas na primeira
hora de treinamento (Alain, Snyder, He, and Reinke, 2007). Neste contexto, a atenção
pode exercer papel importante na supressão de estímulos distratores. Vários trabalhos
mostram evidências deste papel na aprendizagem perceptiva (Yotsumoto and Watanabe,
2008; Paffen, Verstraten, and Vidnyánszky, 2008; van Wassenhove and Nagarajan, 2007),
enquanto outros apresentam evidências de aprendizagem passiva (Seitz and Watanabe,
2003; Watanabe, Nanez, and Sasaki, 2001). Em especial, durante tarefas auditivas de
discriminação de frequências, a atenção parece desenvolver um papel especial em tare-
fas complexas como compreensão e cognição (Petkov, Kang, Alho, Bertrand, Yund, and
Loods, 2004; Kiehl, Laurens, Duty, Foster, and Liddle, 2001b). Desta forma, é de grande
importância um melhor entendimento das demandas de atenção e um dos caminhos que
podem ser abordados é por meio da atenção seletiva.

Para o estudo da aprendizagem e atenção, esta tese empregou o registro simultâneo
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da ressonância magnética funcional (RMf) e da eletroencefalografia (EEG), permitindo
um ambiente mais realista que combine alta resolução espacial e temporal em experi-
mentos cognitivos. Este protocolo garante não somente a mesma estimulação sensorial,
percepção e comportamento, mas também permite o estudo das interações entre estados
cerebrais intrínsecos e processamento relacionado a eventos em um mesmo estado cog-
nitivo (Debener, Ullsperger, Siegel, and Engel, 2006). A principal desvantagem ao se
trabalhar com a aquisição simultânea é a complexidade do experimento e os artefatos que
surgem em ambas modalidades (Yan, Mullinger, Brookes, and Bowtell, 2009; Debener,
Mullinger, Niazy, and Bowtell, 2008).

A partir dos dados de ambas as modalidades nós trabalhamos com o problema in-
verso para localização das fontes neurais que geraram os potenciais registrados no EEG.
As soluções inversas da eletroencefalografia foram restritas às regiões onde o córtex indi-
cou uma maior ativação dinâmica. Para isto, foi usado o método hierárquico Bayesiano
(VBMEG) proposto por Sato, Yoshioka, Kajiwara, Toyama, Goda, Doya, and Kawato
(2004).

Questionamento científico

Este trabalho tem por objetivo investigar os mecanismos que iniciam a aprendizagem
perceptiva no sistema auditivo, baseado em duas hipóteses: (i) o aperfeiçoamento em
tarefas de discriminação perceptiva resulta em um aumento da atividade cerebral no córtex
sensorial específico e (i) regiões frontais estão envolvidas com a predição e modulação de
cima para baixo da atenção seletiva que inicia a aprendizagem auditiva perceptiva. A
maior contribuição deste trabalho consiste no uso de diferentes técnicas de imageamento
para mostrar a importância da atenção na supressão de estímulos irrelevantes durante a
aprendizagem perceptiva.

Organização do texto

Esta tese está organizada em sete capítulos. O Capítulo 1 contém a introdução e o
propósito da tese. No Capítulo 2 a teoria básica e as técnicas implementadas são apresen-
tadas, assim como uma breve descrição dos processos cognitivos investigados. O Capítulo
3 descreve como a eletroencefalografia é usada para investigar a comunicação neural,
além das técnicas usadas no processamento dos dados. No Capítulo 4 são apresentadas as
etapas do pré-processamento dos dados da ressonância magnética funcional e o método
estatístico paramétrico adotado para testar a ativação de áreas corticais específicas. O
Capítulo 5 mostra a metodologia usada nos experimentos, descrevendo o delineamento
experimental dos estudos de RMf e como é feita a combinação com os registros de EEG.
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O Capítulo 6 apresenta e interpreta os resultados obtidos. Por fim, o Capítulo 7 traz
as conclusões deste trabalho apontando os principais resultados e fornecendo sugestões
para questões que ainda precisam ser investigadas. O Apêndice A descreve o método
hierárquico Bayesiano usado no procedimento de estimação de fontes.

Metodologia

Participantes

Foram coletados dados de EEG/RMf de 11 participantes (10 do sexo masculino),
com idade entre 22 e 40 anos, sem registros de deficiência auditiva ou visual. Todos os
participantes assinaram um termo de consentimento antes de se iniciar o experimento, de
acordo com o comitê de ética da ATR (Human Subject Review Commitee).

Estímulo auditivo

Cada estímulo auditivo era composto por cinco tons de frequências diferentes (400Hz,
600Hz, 700Hz, 800Hz e 1000Hz) com duração total de 150 ms (10 ms de tempo de descida e
tempo de subida). Um estímulo desviante é caracterizado por uma alteração na frequência
do quarto tom. Os desvios variaram de 1 Hz a 40 Hz com passos de 1 Hz. Os estímulos
eram entregues em sequências de cinco sons com intervalos variando de 450 a 500 ms
entre eles. Cada sequência possuía no máximo um estímulo desviante nas posições 2,
3, 4 ou 5. Os demais foram denominados estímulos padrão. A estímulação foi feita de
forma binaural por meio de um tubo de plástico cujas extremidades eram compostas por
protetores auriculares de espuma, em um sistema compatível de EEG e RM. O tubo
introduziu um atraso constante de 64 ms entre o envio do som e a chegada aos ouvidos.

Estímulo visual

O estímulo visual seguiu o mesmo modelo. O estímulo padrão consistiu de barras
brancas retangulares, horizontalmente dispostas e posicionadas no centro da tela (40 cm
dos olhos, vistos por um espelho). As barras desviantes também eram posicionadas no
centro, porém rotacionadas em passos que variaram de 0,2 a 12 graus, em sentido horário.
Os estímulos eram enviados em sequências de cinco barras separadas, temporalmente, de
450 a 500 ms. Assim como na apresentação dos estímulos auditivos, em cada sequência de
cinco estímulos apenas uma barra desviante poderia estar presente e esta nunca aparecia
na primeira posição.
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Teste comportamental

Em cada participante foram testados os limiares de discriminação em frequência e
posição nos testes auditivos e visuais, separadamente, em uma câmara acústica com iso-
lamento de 40 dBA. A diferença em frequência entre os tons desviantes em cada tentativa
era alterada de acordo com um procedimento em escada (staircase) convergindo para 71%
de respostas corretas (Levitt, 1971). No teste visual, foi testada a habilidade do partic-
ipante em determinar pequenas variações na rotação de barras retangulares a partir de
sua posição horizontal inicial. O nível de discriminação obtido no teste comportamental
foi usado como um ponto inicial para a escada no experimento com o escaner.

Escaneamento 3D

Após o teste comportamental, foi colocado um capacete com 64 eletrodos em cada
participante (BrainCap-MR 64 BrainProducts, Munique, Alemanha). Um digitalizador
tridimensional (FastScan hand-held laser scanner) foi usado para registrar o formato da
cabeça e a posição de cada eletrodo. Posteriormente, estas informações foram usadas na
construção dos modelos da cabeça para o procedimento de localização de fontes.

Modelo da superfície cortical

Foi construído um modelo poligonal do córtex cerebral usando a imagem estrutural
T1 de cada participante. O modelo cortical assume um dipolo de corrente em cada vértex
no qual a atividade de RMf eliciada pelo estímulo ultrapassa um limiar. As direções
deste dipolo são consideradas perpendiculares à superfície cortical (Yoshioka, Toyama,
Kawato, Yamashita, and Nishina, 2008). Além disso, as imagens com o formato da
cabeça de cada participante adquiridas com o escaner 3D foram ajustadas às imagens
estruturais T1 usando um método de mínimos quadrados. A cabeça foi segmentada em
três compartimentos: pele, crânio e fluido cerebroespinal. Tal segmentação foi feita usando
o método de elementos de contorno (Boundary Element Method - BEM ) disponível no
software Curry (Neuroscan, EUA).

Delineamento Experimental

No experimento principal, o EEG e a RMf foram registrados simultaneamente. Os
estímulos foram enviados baseados no mesmo método das escadas usado no teste com-
portamental. Para a aquisição das imagens foi usada a técnica esparsa para se evitar
contaminação da resposta BOLD pelo ruído acústico vindo do escaner. Outra vantagem
do escaneamento esparso é limitar os trechos do EEG contaminados pelo chaveamento

xii



dos gradientes magnéticos durante a aquisição das imagens. Os dados da ressonância
magnética funcional foram coletados usando-se um escaner Shimadzu Marconi’s Magnex
Eclipse 1.5T PD250. Para registro das imagens funcionais foi usada uma sequência eco-
planar (EPI) ponderada em T2 com tempo de excitação (TE) de 48 ms e ângulo de rotação
(flip angle) de 90 ◦. Foram produzidos, continuamente, 165 volumes em 16,5min, sendo
cada volume composto por 20 fatias axiais com voxels de dimensões 4x4x5mm e um es-
paçamento (gap) de 1mm entre fatias. O tempo de repetição (TR) era de 6 segundos e
o tempo de aquisição 2 segundos. A apresentação dos estímulos deu-se nos períodos de
4 segundos de “silêncio”. As imagens dos dois primeiros volumes de cada sessão foram
descartadas para se evitar efeitos de saturação magnética. Ao final do experimento foram
coletadas imagens estruturais ponderadas em T1 que seriam, posteriormente, usadas como
referência no alinhamento das imagens funcionais coletadas em múltiplas sessões.

O experimento era composto por duas condições: auditiva e visual. Trechos referentes
à mesma condição experimental foram agrupados em blocos compostos por 18 sequências
de 10 estímulos (cinco estímulos auditivos e cinco estímulos visuais) com duração total de
120 segundos. Os estímulos auditivos e visuais eram intercalados na sequência, separados
por intervalos pseudo-aleatórios variando de 150 a 175 ms. Cada bloco era iniciado com
uma instrução posicionada no centro da tela, a uma distância de 40 cm dos olhos do
participante. Dependendo do que era mostrado (imagem de uma orelha para a condição
auditiva ou um olho para a condição visual), o participante deveria prestar atenção no
estímulo auditivo ou visual. Cada instrução durava quatro segundos na tela. A ordem
das tarefas era intercalada entre sessões e também entre participantes. Os estímulos eram
apresentados durante os quatro segundos de silêncio entre períodos de escaneamento.
Anterior à sequência de 10 estímulos (cinco auditivos e cinco visuais) havia um período
basal (baseline period) de 650 ms a 800 ms. Após cada sequência, aparecia uma cruz
verde na tela e o participante deveria indicar se havia ou não um sinal desviante inserido
na sequência. Caso a resposta estivesse correta, aparecia uma imagem de uma face feliz
e se a resposta estivesse incorreta, aparecia uma face triste. Havia também um período
de repouso após o aparecimento da instrução assim como ao final de cada bloco. A
Figura 1 apresenta um esquemático do experimento. O registro total consistiu de quatro
sessões de oito blocos cada (quatro blocos onde a atenção era direcionada ao estímulo
auditivo e quatro blocos onde a atenção era direcionada ao estímulo visual) totalizando
144 trechos por condição para cada sessão, com intervalos curtos de repouso entre sessões.
Neste experimento, a condição de não-atenção ao estímulo (auditivo ou visual) foi atingida
direcionando-se a atenção do participante à outra modalidade também sendo apresentada.
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Figura 1: Esquemático do experimento.

Registro do EEG

O EEG foi registrado simultaneamente ao experimento, de modo contínuo, usando
um sistema de registro compatível com ressonância magnética (Brain Amp MR+fMRI-
compatible) e um capacete com 64 eletrodos. Os potenciais registrados tinham como
referência o centro do escalpo (Cz). A atividade ocular foi monitorada com um eletrodo
posicionado abaixo do olho esquerdo. Foi feito também o registro simultâneo do eletro-
cardiograma. A resistência de cada eletrodo foi mantida inferior a 5kΩ e os dados foram
digitalizados a 5kHz por canal.

Análise das imagens funcionais

A análise foi realizada usando o SPM2 (Wellcome Trust Centre for Neuroimaging,
UK). O pré-processamento foi feito nas imagens funcionais e anatômicas usando-se o
seguinte procedimento: correção do tempo de aquisição (slice timing), correção do movi-
mento, normalização e suavização. As imagens funcionais de cada participante foram
coregistradas às imagens estruturais T1 dos mesmos. As imagens foram normalizadas
espacialmente em relação a um padrão anatômico definido por uma imagem ponderada
em T2 do MNI (Montreal Neurological Institute). A reamostragem foi feita a cada 3 mm
usando interpolação sinc. Finalmente, as imagens funcionais foram suavizadas com um
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kernel gaussiano com FWHM (full-width half maximum) igual a 8 mm. A ativação cere-
bral durante as condições experimentais eram estimadas usando-se a RMf relacionada a
eventos, utilizando o início de cada evento (onset time) no modelo linear (general linear
model). Os mapas paramétricos estatísticos foram gerados para cada participante em
cada condição experimental: resposta auditiva na tarefa auditiva (atenção ao estímulo),
resposta auditiva na tarefa visual (não atenção ao estímulo) e repouso. A ativação sig-
nificativa de um voxel foi determinada usando-se a estatística-t com limiar de audição
p<0,005, não corrigido. A fim de localizar as regiões cerebrais envolvidas em demandas
de atenção, a ativação nas condições de atenção e não atenção foram constrastadas dire-
tamente. Em seguida, foi usada uma medida da alteração do desempenho do participante
como um indicador de aprendizagem, usando-se a diferença entre os limiares de percepção
no início e ao final de cada sessão como regressores no modelo linear. Para se levar em con-
sideração a variabilidade entre participantes, a matriz de projetos foi ponderada, durante
a análise de segundo nível, com o ganho total de cada participante.

Processamento dos dados do EEG

Neste trabalho o método de subtração de artefatos proposto por Allen, Josephs, and
Turner (2000) foi usado para remover os ruídos dos gradientes provocados pelo chavea-
mento dos gradientes magnéticos. Esta abordagem assume que o formato do artefato é
constante ao longo do tempo e aditivo ao sinal fisiológico. Em sequência, a análise em
componentes independentes (ICA) foi usada nos trechos do EEG após remoção do período
basal (650 ms antes e 3075 ms após o início do estímulo) para remoção dos artefatos bal-
istocardiográfico, ocular e relativos ao movimento (Jung, Makeig, Humphries, Lee, and
Mckeown, 2000; Callan, Callan, Kroos, and Vatikiotis-Bateson, 2001). As componentes in-
dependentes (IC) que correspondiam a fontes de artefatos foram identificadas verificando-
se a correlação cruzada entre cada componente, o canal de eletrooculograma (EOG) e o
canal de eletrocardiograma (ECG), registrados simultaneamente com os canais neuronais.
O limiar necessário para se considerar correlação era r>0,3. Tendências anormais (drifts
lineares) foram removidas usando-se um polinômio de primeira ordem calculado por meio
de uma regressão linear ajustada à cada sessão do EEG. Os dados (no domínio das com-
ponentes) foram ajustados a uma linha reta cuja inclinação máxima aceitável era de 0,5.
Os trechos rejeitados apresentavam R2 >0,2.

O método variacional Bayesiano foi usado para restringir as soluções inversas do EEG
a regiões onde a ressonância funcional indicava intensa ativação hemodinâmica.. Para
a estimação, os dados do EEG foram divididos em janelas de 600 ms com sobreposição
de 85%. A informação a priori de cada janela temporal foi dada pela atividade de RMf
correspondendo ao estímulo apresentado durante aquele intervalo de tempo. Os hiper-
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parâmetros foram ajustados em m0=100 e γ0=100. A estimação da variância da cor-
rente foi feita usando-se as sequências temporais de todos os trechos. As atividades de
RMf individuais de cada participante para todas as condições experimentais (atenção e
não-atenção ao estímulo auditivo) foram usadas como restrição à posição das fontes de
correntes. Para a estimação da fonte de corrente, foi usado um filtro Bayesiano inverso em
três áreas de interesse que foram determinadas usando-se uma máscara com o contraste
de aprendizagem.

Resultados e discussões

Dados comportamentais

Os dados comportamentais coletados durante o experimento apresentaram uma tendên-
cia decrescente exponencial, quasi-linear nos limiares de percepção de frequência (r=0,99,
p=0,0041). A Figura 6.3(a) apresenta a média geral e o erro padrão de 11 participantes
enquanto a Figura 6.3(b) mostra o ganho entre as sessões
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Figura 2: Dados comportamentais registrados durante o experimento. (a) Média geral e erro padrão
de 11 participantes para o limiar de percepção ao final de cada sessão. (b) Média do ganho de
desempenho (em Hz) entre as sessões de 11 participantes (1a − 2a, 2a − 3a, 3a − 4a).

RMf

Os resultados da ressonância magnética para o contraste atenção ao estímulo auditivo
versus a condição de repouso mostra ativação nos córtices temporal, frontal e parietal.
Este componente frontal não é visto quando o participante não está atento ao estímulo
auditivo, mas sim ao estímulo visual. Neste caso, as ativações ocorreram nos córtices
parietal, occipital e temporal conforme resumo na Tabela 6.2. É possível observar que os
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cortices temporais esquerdo e direito estavam sempre ativados como resultado da constate
estimulação auditiva. Observa-se também que a resposta occipital é mais forte quando o
participante presta atenção ao estímulo visual. Os mapas paramétricos estatísticos para
estas condições estão apresentados na Figura 6.5 (p<0,05 FDR corrected). Verifica-se
uma ativação constante dos córtices parietais em ambas as condições, devido ao fato do
participante estar constantemente pressionando um botão.

Tabela 1: Áreas ativadas durante tarefas de atenção auditiva e visual.

Parietal Temporal Frontal Occipital
Contraste auditivo vs. repouso X X X
Contraste visual vs. repouso X X X

Além disso, pretendíamos avaliar a influência da atenção na tarefa sendo executada
e para isso foi feito um constraste direto entre as condições de atenção e não atenção.
Quando se está interessado em áreas específicas de ativação, pode-se restringir a correção
para comparações múltiplas a estes pequenos volumes de interesse. A Figura 6.7 mostra o
efeito da atenção, com atividade considerável no giro frontal esquerdo (-45,24,24; p<0,05
correção SVC), giro temporal superior esquerdo (-57,-51,6; p<0,05 correção SVC) e giro
temporal superior direito (57,-33,3; p<0,05 correção SVC). A análise SVC foi baseada em
coordenadas dadas por trabalhos encontrados na literatura sobre demandas de atenção
(Zhang, Feng, Fox, Gao, and Tan, 2004; Kiehl, Laurens, Duty, Foster, and Liddle, 2001a;
Zatorre, Mondor, and Evans, 1999).

O efeito da aprendizagem foi estudado para cada participante usando-se o ganho no
desempenho individual em cada sessão na matriz de projeto. A diferença entre os limiares
de percepção final e inicial foi usada na análise de primeiro nível, como contraste em cada
coluna da matriz de projeto. Para a análise em segundo nível, as diferenças entre partici-
pantes foram levadas em consideração usando-se o ganho de desempenho total (ganho final
após todas as sessões) como peso na matriz de projeto. Os resultados são apresentados
na Figura 6.8. A correção em pequenos volumes foi feita em volumes de interesse (VOI)
de 3x3x3mm. Foram observadas atividades na região frontal esquerda (-45,15,36; p<0,05;
correção SVC), temporal esquerda (-57,-51,24; p<0,05; correção SVC) e temporal direita
(60,-39,15; p<0,05; correção SVC). Os dados acima sugerem que a atenção pode estar
envolvida e provavelmente contribui para um melhor desempenho das atividades neurais
específicas em treinamentos de curta duração. Estudos anteriores sobre atenção auditiva
seletiva (Neelon, Williams, and Garell, 2006; Kiehl, Laurens, Duty, Foster, and Liddle,
2001a) demonstraram melhorias relacionadas a diversas tarefas auditivas, com modulações
ocorrendo a 20-50ms do início da estimulação. A fonte neural desta modulação está local-
izada na parte posterior do giro temporal superior. O achado deste tipo de resposta para
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a condição de atenção sugere a existência de uma plasticidade cortical rápida. Verifica-se
também que as ativações nas regiões frontal e temporal são consistentes com a hipótese
de envolvimento da região frontal com a predição e modulação de cima para baixo (top-
down) da atenção seletiva que dá origem à aprendizagem perceptiva auditiva. Embora
alguns estudos apresentem efeitos da atenção nos córtices auditivo primário e secundário
(Grady, van Meter, Maisog, Pietrini, Krasuski, and Rauschecker, 1997), Petkov, Kang,
Alho, Bertrand, Yund, and Loods (2004) mostraram efeitos de atenção auditiva em áreas
associativas de ordem superior quando uma modalidade é atendida e outra é ignorada.
Estes resultados são consistentes com nossos achados no córtex temporal superior. Como
a atenção é bastante dependente da tarefa sendo executada, o conhecimento exato das
condições na quais os córtices direito ou esquerdo são ativados é contraditório e necessita
de uma investigação mais profunda (Eichele, Specht, Moosmann, Jongsma, and Quiroga,
2005; Doeller, Opitz, Mecklinger, Krick, Reith, and Schröger, 2003).

EEG e RMf

Em cada região de interesse (frontal esquerda [IFG: -45,15,36], temporal esquerda
[LSTG: -57,-51,24] e temporal direita [RSTG: 60,-39,15]) dipolos de corrente foram sele-
cionados em um raio de 3 mm do pico de corrente estimado. Com o objetivo de investigar
oscilações neuronais, foi empregada uma análise tempo-frequência em cada um dos dipo-
los de corrente, o que denominamos de análise referente à tarefa (blocos com desvios
auditivos versus blocos com desvios visuais). Estudos mais recentes têm trabalhado com
diferentes respostas de estruturas neurais, que são específicas em frequência, em termos de
sincronismo e desincronismo (ERS/ERD). A quantificação dos ERS/ERD no tempo e no
espaço tem sido investigada de forma intensiva, mostrando que estas respostas estão rela-
cionadas funcionalmente ao processamento cognitivo (Basar, 2004; Basar and Schürmann,
2001; Pfurtscheller and Lopes da Silva, 1999).

As amplitudes dos picos de corrente foram promediadas não se importando com a
fase. Este procedimento realçou alterações no EEG relacionadas ao estímulo em fase (i.e.
potenciais relacionados a eventos) e fora de fase (i.e. sincronismo e desincronismo rela-
cionado a eventos) com o início do estímulo. A análise tempo-frequência nas três áreas
revelaram diferentes padrões de ativação para cada participante. A Figura 6.18 mostra
a estatística-t de 11 participantes na condição “atenção x não atenção” nas regiões IFG,
LSTG e RSTG, respectivamente. Nos testes estatísticos a hipótese nula era de média zero.
As respostas na região LSTG são mais espalhadas que em RSTG, a qual concentra-se em
10 a 20Hz (bandas alfa e beta). A resposta em IFG tem um pico em torno de 200ms, ocor-
rendo mais tardiamente que nos cortices temporais, como era esperado. Neste trabalho
também foi apresentado o método hierárquico Bayesiano proposto por Sato, Yoshioka,
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Kajiwara, Toyama, Goda, Doya, and Kawato (2004) aplicado a eletroencefalografia em
vez de magnetoencefalografia. Embora a eficiência deste método já tenha sido relatada
em um experimento visual (Yoshioka, Toyama, Kawato, Yamashita, and Nishina, 2008) e
percepção de fala (Callan, Callan, Gamez, Sato, and Kawato, 2010) usando-se MEG, esta
foi a primeira implementação com EEG. Com este procedimento incorporamos os dados
de EEG e RMf registrados simultaneamente para estimar os padrões espaço-temporais de
ativações cerebrais de uma tarefa de discriminação de frequências. O papel da atenção
pode ser observado nas respostas tardias das correntes na região IFG se comparadas ao
STG (Figura 6.18). Embora nestes cortices as respostas ocorrem antes e com valores de
amplitude mais elevados (o que pode ser visto como um processo de baixo para cima),
a resposta frontal ocorre aproximadamente 200 ms na banda beta (14-28 Hz) durante a
condição de atenção versus a condição de não atenção, o que evidencia o efeito de atenção.
Neste caso, é provável que os participantes tenham aprendido a prestar mais atenção ao
estímulo, como parte de sua experiência de aprendizagem na tarefa. Um dos resultados
mais interessantes deste trabalho vem da análise de localização das fontes, mostrando
que a plasticidade também manifesta-se como um aumento na energia das bandas beta
(14-28 Hz) e gama (30-70 Hz).

Para se verificar a aprendizagem ocorrida, testamos o coeficiente de correlação en-
tre os resultados da análise tempo-frequência (p<0,01) em cada imagem das respostas
relativas à condição atenção e os limiares de percepção do teste comportamental para
cada participante. Os resultados da análise de grupo são mostrados na Figura 6.19. A
evidência da ocorrência de uma correlação foi posteriormente investigada. O sinal foi
separado em cinco faixas de frequência: delta, teta, alfa, beta e gama (0.5-3.Hz, 4-7Hz,
8-13Hz, 14-28Hz, 30-70Hz) e a energia de cada banda foi calculada em cada trecho. Os
coeficientes de correlação apresentados na Tabela 6.6 são suficientes para sugerir uma
correlação, especialmente nas bandas gama e beta.

Tabela 2: Coeficientes de correlação entre a transformada de Fourier do sinal de EEG e os limiares de
percepção do teste comportamental, para cada participante. A energia de cada banda foi calculada
e a correlação testada com os dados comportamentais. Esta tabela apresenta os coeficientes de
correlação para p<0,05. Valores inferiores foram zerados.

Subject LIFG LSTG RSTG
delta teta alfa beta gama delta teta alfa beta gama delta teta alfa beta gama

1 0 0 0 0 -0.29 0 -0.24 0 0 0 0 0 0 -0.25 0
2 0 -0.35 -0.43 0 0.52 0 0 0 0.41 0.22 0 0 0 0.42 0.32
3 0 0.23 0 0.33 0 0 0 0.35 0.39 0 0 -0.22 0 0.35 0
4 0 0 0 0.23 0.30 0 0 0.21 0 0 0 0 -0.23 0 0
5 0 0 0 0.77 0.68 0 0 0.39 0.73 0.77 0 0 0 0.73 0.77
6 0.32 0.35 0.51 0.21 0.28 0.24 0.32 0 0 0 0.32 0.36 0.54 0.26 0.40
7 0 0 0.46 0 0.28 0 0.21 0.2 0 -0.2 0 0.21 -0.43 0 0.47
8 0 0 0 0.44 0.26 0 0 0 0 0 0 0 0 0.43 0.30
9 0 0.22 0 0.29 -0.77 0 -0.49 0 -0.65 -0.76 0 0.22 0 0.29 -0.77
10 0 0 0 0 0.25 0 0 0 0 0.22 0 0 0 0 0.26
11 0 0 -0.41 -0.38 0 0 0 -0.41 -0.38 0 -0.23 -0.30 -0.50 0 0.72
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(a) Tarefa auditiva comparada a período de repouso.

(b) Tarefa visual comparada a período de repouso.

Figura 3: Resultado da análise de efeitos aleatórios (random effects) (pFDR<0,05).
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Figura 4: Efeito da atenção (p<0,05, correção SVC). A correção SVC é feita em um pequeno volume.

Figura 5: Contraste de aprendizagem. Ativações com p<0,005.
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Figura 6: Testes estatísticos realizados na representação tempo-frequência dos picos de corrente nas
três regiões analisadas. O teste-t (p<0,05) foi feito nas imagens dos 11 participantes (10 graus de
liberdade). A análise tempo-frequência foi feita no pico de maior intensidade nas regiões a) IFG,
b) LSTG e c) RSTG. Em vermelho: estatística superior à hipótese nula de média zero. Em azul:
estatística inferior à hipótese nula de média zero. A figura mostra a condição “trechos com respostas
auditivas versus visuais” (condição de atenção versus condição de não-atenção).
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Figura 7: Correlação entre o resultado da análise tempo-frequência e os limiares de percepção do teste
comportamental. Estatítica-t da tarefa auditiva dos 11 participantes. 11 amostras foram testadas
contra a hipótese nula de média zero em cada faixa tempo-frequência. Os resultados são mostrados
para o IFG, LSTG e RSTG. No topo, o instante inicial do estímulo auditivo.
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Conclusão

Este trabalho explora a vantagem do registro simultâneo de eletroenfalografia e ressonân-
cia magnética funcional para investigar a atividade neural durante a aprendizagem percep-
tiva de curta duração. A ressonância magnética funcional tornou-se uma técnica padrão
para o mapeamento da atividade funcional. Sua alta resolução temporal permite que
áreas ativadas sejam localizadas com resolução milimétrica. Entretanto, a neurociência
cognitiva vai além da localização anatômica de estruturas neurais e os potenciais rela-
cionados a eventos podem ser bastante úteis na investigação de mecanismos cognitivos
e seus substratos neurais. A técnica permite a detecção de alterações neurais na ordem
de milisegundos. Portanto, diversos esforços têm sido feitos para integrar a informação
proveniente da RMf e do EEG e prover uma técnica alternativa de imageamento que con-
figure uma alta resolução espaço-temporal. Além disso, o registro simultâneo de EEG e
RMf implementado nesta tese, forma um setup mais realístico para a investigação de fenô-
menos cognitivos. Estes dados foram combinados em um modelo Bayesiano variacional
para localização das fontes que geraram os ERPs registrados.

A complexidade do experimento foi abordada nesta tese, sendo os artefatos trata-
dos cautelosamente. O impacto do sistema de registro eletrofisiolgico nas imagens de
ressonância foi visto especialmente na qualidade destas imagens, quando os participantes
usavam o capacete de eletrodos dentro do escaner. Apesar disso, as imagens ainda eram
adequadas para o procedimento de segmentação. Os registros de EEG também foram
fortemente afetados pelo processo de aquisição da RM. Neste caso foram usados métodos
de subtração para remoção dos artefatos de gradiente e ICA para remoção dos demais
artefatos (cardíaco, musculares, etc.).

Esta tese teve como objetivo investigar se o treinamento rápido pode evocar respostas
corticais e até que ponto isso pode acontecer. Os resultados obtidos sugerem que as pessoas
podem melhorar rapidamente seu desempenho em identificar sons desviantes embutidos
em sequências com sons padrão. Esta melhoria rápida no desenvolvimento da tarefa é
acompanhada de alteraçes plásticas no córtex sensorial assim como em áreas superiores
conforme as evidências encontradas pelas atividades realçadas das respostas sensoriais.
Além disso, a correlação entre a resposta tempo-frequência do potencial relacionado a
eventos e os resultados comportamentais dão suporte à nossa hipótese de ocorrência de
aprendizagem durante treinamento de curta duração.
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Men ought to know that from the brain, and from the
brain only, arise our pleasures, joys, laughter and jests,
as well as our sorrows, pains, griefs and tears.

Hippocrates, Fifth Century B.C

1
Introduction

The brain is capable of reorganisation. Although firmly established recently, this
concept was unthinkable 20 years ago. As new skills are learned or novel experiences
acquired, brain cells alter the way in which they respond to the outer environment to
reflect the circumstances of the changing. This is called plasticity.

There is an accumulating body of evidence indicating that neuronal functional speci-
ficity to basic sensory stimulation is mutable and subject to experience. One way to
look at this plasticity refers to perceptual learning which is an improvement in sensory
discrimination after a period of practice usually varying from days to weeks (Polley, Stein-
berg, and Merzenich, 2006; Moore, Amitay, and Hawkey, 2003; Demany, 1985; Watson,
1980). Behavioral studies show that the effects of perceptual learning can be highly spe-
cific to the trained stimulus features, suggesting that the lack of generalization is taken
as evidence that learning might be mediated by cells in sensory areas (Polley, Steinberg,
and Merzenich, 2005). Although it is well accepted that neuroplasticity occurs following
extended training, there is still much to investigate about the neural substrates underly-
ing early and rapid improvements in task performance taking place within the first hour
of training (Alain, Snyder, He, and Reinke, 2007). Hawkey, Amitay, and Moore (2004)
showed that perceptual learning can be assessed in rapid early performance rather than
procedural learning as someone might argue. van Wassenhove and Nagarajan (2007) also
show that enhanced perceptual discrimination is predicted to result in greater brain ac-
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1.1. SCIENTIFIC QUESTION

tivity in the modality specific cortex of the perceptual event as well as in frontal areas
responsible for modulating selective attention.

When discussing learning, it is important to understand whether attention based train-
ing may play an important role in irrelevant distractor suppression. Several studies have
provided evidence of its role in perceptual learning (Yotsumoto and Watanabe, 2008;
Paffen, Verstraten, and Vidnyánszky, 2008; van Wassenhove and Nagarajan, 2007) while
others have shown evidence of passive learning (Seitz and Watanabe, 2003; Watanabe,
Nanez, and Sasaki, 2001) suggesting that attention may not be necessary in learning ex-
perience. Although recent findings may seem contradictory at first sight, Seitz and Dinse
(2007) gave some insights about how these learning models can operate in parallel with
each other.

One way of looking at attentional demands during perceptual learning is through se-
lective attention. Attending to a sound selectively requires a person to listen to targets
embedded in complex auditory events. Auditory frequency discrimination has been exten-
sively explored in attention studies especially for its importance in the auditory process
underlying complex auditory tasks, such as comprehension and understanding (Petkov,
Kang, Alho, Bertrand, Yund, and Loods, 2004; Kiehl, Laurens, Duty, Foster, and Liddle,
2001b). Frequency discrimination requires the identification of a sound with a different
frequency among a sequence of “standard” tones and it is questioned whether focused
attention enhances this discrimination. Leek and Watson (1984) studied the influences
of experimental context and pattern structure on frequency discrimination. They showed
that perceptual learning improves frequency discrimination and may even overcome un-
certainty effects although high signal uncertainty can decrease performance as stated by
Green (1961). Perceptual learning has been extensively investigated in the visual sys-
tem and is stimulus specific (Schoups, Vogels, and Orban, 1995; Shiu and Pashler, 1992).
However, little is known about the mechanisms that initiate this learning, especially in
other modalities.

1.1 Scientific question

This work aims to investigate the mechanisms initiating perceptual learning in the
auditory system based on two hypothesis: (i) enhanced perceptual discrimination results
in greater brain activity in modality specific cortex to the perceptual event and (ii) frontal
regions are involved with prediction and top-down modulation of auditory selective atten-
tion that gives rise to auditory perceptual learning. The main contribution of the work
consists in using multimodal imaging to show the importance of attention in irrelevant
stimuli suppression during perceptual learning.
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1.2. STUDY DESIGN

1.2 Study design

The simultaneous recording of electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) and the correspondence between both signals on a trial by trial
analysis can be used to provide better understanding about cognitive functions of the hu-
man brain. Processing of sensory stimulus features is essential for humans to determine
their responses and actions. Therefore, it is important to understand the brain mecha-
nisms of sensory information processing. As a tool for human brain mapping of cognitive
functions, the goals of functional brain imaging are mainly to localize groups of neurons
involved in some simple cognitive tasks, such as those dealing with perceptual processes,
and identifying dynamic links between these groups in order to better understand how
signaling is performed in the brain. For this purpose, areas such as physiology, psychology
and engineering are brought together to investigate brain functioning.

EEG has long been used as a standard noninvasive technique to study brain function-
ing. It consists of electrical potentials recorded from electrodes placed over the scalp and
gives a temporal resolution on the order of miliseconds. However, its spatial resolution is
poor but other neuroimaging methods aim to overcome this lack of information. fMRI is
the most established one with a spatial resolution on the order of two milimeters. These
techniques can be used as a window of observation for the electric and hemodynamic
changes related to cognitive processes. Recording EEG and fMRI simultaneously has the
advantage of allowing the comparison of both modalities in the exact same state. As
Chapter 2 will discuss, it is of particular interest in terms of habituation, learning and
vigilance. Differences in preparation time and task experience can also affect participant’s
behavior, which can be reflected in brain activity as demonstrated by Ullsperger and von
Cramon (2001). Simultaneous fMRI/EEG protocols not only guarantee identical sensory
stimulation, perception and behavior, but provide a unique way to study the interaction
between intrinsic brain states and event-related processing (Debener, Ullsperger, Siegel,
and Engel, 2006).

Moreover, due to spatiotemporal limitations of each technique taken alone, they can be
combined (as they are complementary in temporal/spatial resolution) to solve the ill-posed
problem of source localization. In this kind of problem, there are more activated sources
than actual measurements (electrodes). With data from both modalities, EEG inverse
solutions are constraint to regions where fMRI indicates large hemodynamic activation.
For this purpose a variational hierarchical Bayesian method (VBMEG) was used (Sato,
Yoshioka, Kajiwara, Toyama, Goda, Doya, and Kawato, 2004) in this thesis. This method
overcomes problems such as false positive incorporating fMRI information as a hierarchical
prior on the current variance distribution, rather than on the variance itself. In this
method, the strength of the fMRI constraint can be controlled by the hyperparameters of

4



1.2. STUDY DESIGN

the hierarchical prior (Yoshioka, Toyama, Kawato, Yamashita, and Nishina, 2008).
In contrast with the combination of independent measurements of fMRI and EEG

(or MEG) data, the simultaneous measurements of fMRI and EEG data carried out in
this work form a more realistic setup to combine high spatial resolution data with high
temporal resolution data in cognitive experiments. A major difficulty in this procedure
is the complexity of the design and the artifacts that happen in both modalities (Yan,
Mullinger, Brookes, and Bowtell, 2009; Mullinger, Debener, Coxon, and Bowtell, 2007).
The impact of the electrophysiological recording system in the MR image is seen especially
in the quality of the image when electrodes or electronic equipment are placed inside the
MR scanner. On the other hand, EEG data are highly affected by the image acquisition
process. The most prominent artifacts are caused by the alternating magnetic fields of the
MR scanner. Besides that, the quality of the EEG is affected by the ballistocardiogram
(BCG) which is an artifact predominantly caused by cardiac-related body movement.
Robust algorithms for physiological and mechanical artifacts removal have to be imple-
mented. Allen and coleagues developed a template based artifact removal method (Allen,
Josephs, and Turner, 2000; Allen, Polizzi, Krakow, Fish, and Lemieux, 1998) from which
a variation is used in this work and compared to independent component analysis (ICA)
implementations.

The thesis is organized in seven chapters. Chapter 1 contains the introduction and
purposes of this thesis. In Chapter 2 the basic theory of the techniques implemented as
well as a brief description of the cognitive processes investigated are presented. Chapter
3 describes how electroencephalography is used to investigate neuronal communication as
well as the processing done on this type of data. In Chapter 4 fMRI data pre-processing
is showed as well as the statistical parametric mapping adopted for testing whether an
activation exists in a specific area. Chapter 5 shows the methodology used in the exper-
iments, describing the design of fMRI studies and its combination with EEG recordings.
Chapter 6 presents and interprets the results obtained with the tests carried out. Finally,
Chapter 7 concludes the study pointing out the main results and giving suggestions of
research directions that still need to be investigated. At last, Appendix A describes the
hierarchical Bayesian method used in the source estimation procedure.
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2
Theoretical Background

An fMRI experiment depends on techniques and methodologies coming from different
fields of expertise, making it interdisciplinary. In this introductory chapter, the main
issues concerning the theory of magnetic resonance and functional magnetic resonance
will be discussed. The principal kinds of noise present in the environment will be briefly
introduced as well as how the resultant images are analyzed. Besides fMRI, we will address
recent views about the role of brain oscillations, recorded with electroencephalography,
specially in attention and perceptual learning.

2.1 Magnetism

The magnetic resonance imaging system includes a superconductive magnet which
provides a static magnetic field with high homogeneity inside the bore where the object
to be imaged is positioned. The magnetic properties of some nuclei are the key of this
technique: biological tissues have water as one of its constituents and most of them have
high concentrations of lipids and hydrogen nuclei in it. These nuclei have a magnetic
moment due to their spin. The magnetic field of the system makes the magnetic moment
of a small percentage of these hydrogen nuclei align with the main magnetic field vector
(Mansfield, 1988). Therefore, if a person is lying inside the magnet, each point within
his body will have a certain number of protons aligned with the main magnetic field.
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2.1. MAGNETISM

These aligned spins produce a bulk magnetization that precesses around the direction of
the magnetic field with a specific frequency (the Larmor frequency) which is dependent
on the magnitude of the magnetic field and characteristics of the nucleus being imaged
according to Equation 2.1.

ω = γB0, (2.1)

with ω units in radians per seconds and magnetic field in Tesla (1T=104gauss). γ

is a gyromagnetic constant specific to each nuclear species which for the hydrogen is
2.675x108 rad/s/T (γ− = γ/2π = 42.576 MHz/T) (Bernstein, King, and Zhou, 2004).

By applying a radiofrequency (RF) pulse with a frequency matching the precession
frequency, the orientation of the spins can be changed until their magnetic moments are
perpendicular to the main magnetic field. The process can be seen in Figure 2.1. Re-
moving the RF pulse, the nuclei relax and their magnetization return to the original
orientation (equilibrium state). This process induces a voltage in a surrounding electrical
circuit which is detected by a coil placed around the area of the object being imaged
(perpendicular to the static field). The detected signal (called Free Induction Decay -
FID) can be assigned to a specific position by making magnetic field gradients to vary the
strength of the magnetic field (and resonance frequency) from point to point. Moreover
it depends on the interaction between the spins and the environment (relaxation time)
which determines the rate that the signal decays. The strength of the signal depends on
the number of spins involved. T1 and T2 are characteristic constants defining the longi-
tudinal and transversal relaxation, respectively. T1 relaxation is the time course for the
magnetization to return to its original longitudinal orientation. T2 relaxation corresponds
to the breakdown of the transversal magnetization due to spin-spin interactions (Liang
and Lauterbur, 2000).

Two parameters are very important in determining an MRI (Magnetic Resonance
Imaging) sequence. The time of repetition (TR) is the time between two RF pulses, that
limits the relaxation of the magnetization to occur. The other parameter is the time of
echo (TE), which is the time between the application of an RF pulse and the maximum
peak of the signal induced in the coil.

Image contrasts are defined according to the T1 and T2 times of the tissues involved. A
short TR allows shorter T1 substance to recover its signal between repetitions to a much
greater extent than a longer T1 substance. The contrast in short TR and TE sequences
is based on differences in T1 and are called T1-weighted images. Increasing TE increases
the differences in the T2 decay curves between substances, increasing the T2-weighting.
Images obtained with long TR and TE are called T2-weighted.

A gradient echo sequence allows a flip angle lower than 90◦, decreasing the amount of
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2.2. FUNCTIONAL MAGNETIC RESONANCE IMAGING

Figure 2.1: Precession of the system with the Larmor frequency after the application of the static
field. The magnetization net is aligned with the main field B0 and precesses with the Larmor frequency.
A radio frequency pulse B1 is applied perpendicularly to B0, tipping the magnetization to the xy
direction.

magnetization tipped into the transverse plane. The consequence is a faster recovery of
longitudinal magnetization which allows shorter TR and scan time. This type of sequence
is used in the echo planar imaging (EPI) data acquisition strategy. This method acquires
the entire MR image rather than a single image line in the k-space (space of coding) after
the preparation phase of the pulse sequence. It requires the time to read a single image
line to be much smaller than T ∗2 (real T2 plus field inhomogeneities), thus, many lines can
be read before the exponential has decayed to half its peak value. For this purpose the
system needs to deliver strong gradient fields with fast switching. Coding is done varying
the gradient fields in x, y and z directions, which allows plane selection as well. More
information about the technique can be found in Liang and Lauterbur (2000); Stehling,
Turner, and Mansfield (1991).

2.2 Functional Magnetic Resonance Imaging

The most used imaging method to produce information related to brain function is
the BOLD (blood oxygen level dependent). In this method MR images are sensitive to
changes of the state of oxygenation of the hemoglobin (Krüger, Kastrup, and Glover, 2001;
Ogawa, Lee, Nayak, and Glynn, 1990). As this molecule has different magnetic properties
according to the concentration of oxygen it can be used as a “natural contrast”. It is a
diamagnetic substance when full of oxygen (oxyhemoglobin) and becomes paramagnetic
when the amount of oxygen is decreased (deoxyhemoglobin). During a neural activity
there is an increase of the consumption of oxygen and it would be expected an augment
of the amount of deoxyhemoglobin in the blood and a consequent decrease of the MR
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2.2. FUNCTIONAL MAGNETIC RESONANCE IMAGING

signal. However it is seen an enlarged signal and a decrease of deoxyhemoglobin. This is
due to the increase in blood flow and glucose consumption during the neural activity which
is higher than the consumption of oxygen. Glucose is being broken down by an anaerobic
process, the glycolisis, and as a result there is an increase of the amount of oxygen in the
blood nearby (Raichle, 2001). Accordingly, the proportion of deoxyhemoglobin relative
to oxyhemoglobin dictates how the MR signal will behave in a BOLD image: areas with
high concentration of oxyhemoglobin appear as a brighter signal than areas with low
concentration. The events that occur during a neuronal activity produce a complex signal
function related to the neuronal stimulus: the hemodynamic response function (HRF).
It is a complex signal not related to one specific physiological parameter but to a mix
of cerebral blood flow, volume, and cerebral metabolic rate of oxygen (Logothetis, Pauls,
Augath, Trinath, and Oeltermann, 2001). The HRF can be modeled as the four main
steps below:

1. following a stimulus there is a dip caused by a transient increase of deoxyhemoglobin
concentration;

2. it is followed by an increase of the oxy/deoxyhemoglobin ratio leading to high MR
signal;

3. if the stimulus is sustained, the signal reaches a plateau;

4. after the cessation of the stimulus, the MR signal returns to the baseline and an
undershoot might occur. This is because the regional blood volume normalizes
at a slower rate than the changes in blood flow leading to more deoxyhemoglobin
concentration.

The signal cited in item 2 is believed to be proportional to the neural activity in a
specific area. A sketch can be seen in Figure 2.2. On the other hand it is still unclear how
tight this signal is related to the neural activity, but Logothetis and Wandel (2004) and
others have shown with electrophysiology measures close correlations between the BOLD
signal and local field potentials (LFP). The latter are lower-frequency electrical measures
summed over many neurons (Logothetis, Pauls, Augath, Trinath, and Oeltermann, 2001).
In their pioneer work they measured the brain electrical activity in monkeys using fMRI
and other electrophysiological methods. The experiment consisted in monkeys sitting in
a scanner while they watched some checkerboard patterns. The authors saw an increase
in the fMRI signal on a small area (in this case the visual cortex) as a direct reflex of
the increase in neural activity. This and other studies (Schicker, Muckli, Beer, Wibral,
Singer, Goebel, and Röder, 2005) in fact suggest that BOLD may originate less in neuronal
spiking and more in low frequency potentials.
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Figure 2.2: An example of an HRF as a response for a brief stimulation.

An important change in human brain mapping happened with the combination of
the endogenous contrast mechanism (BOLD) and the rapid imaging technology available
(Ogawa, Tank, Menon, Ellermann, Kim, and Merkle, 1992; Bandettini, Wong, Hinks,
Tikofsky, and Hyde, 1992). These works showed that the changes in MRI signal intensity
within activated cortical areas could be measured by high sensitivity equipments and
the dynamics could be accompanied with signal changes occurring only seconds after the
neuronal activity onset.

The MRI experiment starts when the subject performs a task inside the scanner while
BOLD images of the brain are collected. A brain volume is a set of these images covering
the whole brain acquired during 2 to 3 seconds. At the end an image of pixel intensities
is formed and compared to a model of the BOLD response relative to the paradigm
implemented. The signal changes are statistically tested for significance and viewed as
statistical parametric images.

2.3 Paradigms

In fMRI, paradigms are strategies implemented to provoke a response to some kind of
stimulation. The brain can be viewed as a system whose impulse response is the HRF. If
the system is assumed to be linear (Boynton, Engel, Glover, and Heeger, 1996) and the
hemodynamic response to an instantaneous impulse stimulus is found, the real paradigm
can be seen as a combination of many stimuli and the hemodynamic response linearly
summed (superposition theorem illustrated in Figure 2.3).

To define a paradigm, the experimenter needs to define in advance what he expects
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Figure 2.3: A schematic of a linear system. A linear system is one that exhibits the property of
superposition: the outputs of a linear combination of input signals is the linear combination of the
output of each input isolated.

from the experiment, i.e. the behavioral predictions of cognitive tasks performed by the
subjects in the scanner based on the hypothesis under investigation. In this sense, the
paradigm is the temporal organization structure of the whole task.

2.3.1 Block Designs

Block designs can implement the subtraction strategy. The origin comes from early
PET (Positron Emission Tomography) studies where measurements were taken over peri-
ods of time up to 1 min (Amaro Jr. and Barker, 2006) using extended periods of “on” and
“off” activations. In this strategy “activity” conditions are contrasted with a “control”
condition. The images are analyzed assuming that any BOLD difference, above some
statistical level, represents the brain regions involved in a particular task. The block
paradigm is still implemented in many situations where the subject maintains a cognitive
state in response to the presentation of a sequence of stimuli within a condition (Narayan,
Kimberg, Tang, and Detre, 2005). This state is alternated with other moments (or epochs)
when a different condition (or a control condition) is presented as shown in Figure 2.4.
This paradigm is easy to implement as it does not require randomization of stimuli and
careful selection of spacing between stimulus categories. Besides, this technique has ad-
vantages such as robustness of results, increased statistical power and relatively large
BOLD signal change related to baseline (Amaro Jr. and Barker, 2006; Friston, Zarahn,
Josephs, Henson, and Dale, 1999). A scheme is shown in Figure 2.5. Block designs have
superior statistical power compared to other experimental designs. This is because the
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fundamental frequency of the boxcar can be positioned at an optimal location with respect
to the filtering properties of the hemodynamic response function and the low-frequency
noise (Aguirre, 2010).

Figure 2.4: Stimuli type A are delivered first followed by stimuli type B.

Figure 2.5: Block design: stimuli of the same condition are presented in blocks followed by a control
(baseline) condition. The BOLD response is composed of individual HRFs from each stimulus (bottom
graph). Adapted from Amaro Jr. and Barker (2006).

2.3.2 Event-Related Designs

Changing from the block design was gradual with studies exploring fMRI responses to
brief stimuli. As an example, Ozus, Liu, Chen, Iyer, Fox, and Gao (2000) showed brain
activation due to visual stimulus presentation of one second for stimulus rates varying
from 1 to 20Hz.

The main characteristic of the event-related paradigm is to allow more flexibility of the
design, modelling signal changes associated with individual trials, as opposed to blocks
of trials. Hence, it can be used to probe primary sensory and higher-level neuronal
function and also permit the linkage with electrophysiological techniques such as EEG.
Some practical effects are the randomization of the order of conditions presented (which
is very important for learning, memory and other studies) as well as the time between
stimulus presentation (Interstimulus interval - ISI). The latter is important to reduce
subject’s ability to predict the occurrence of a new stimulus (Rosen and Dale, 1998).
Whereas BOLD fMRI is insensitive to the particular high frequency alternation between
one trial and the next, it is still sensitive to the low frequency envelope of the design. With
closely spaced, randomly ordered trials, one is detecting the low frequency consequences
of the random assortment of trial types (Aguirre, 2010). A scheme is shown in Figure 2.6.

Event-related designs have been used in studies investigating the responses of infre-
quent events (McCarthy, Luby, Gore, and Goldman-Rakic, 1997), working memory (Kim,
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Matthews, and Park, 2010), attention (Luck, Woodman, and Vogel, 2000) and others.

Figure 2.6: Event related design: each stimulus is detected. The stimuli are presented on the top
and the HRFs are shown on the bottom. Adapted from Amaro Jr. and Barker (2006).

A mix of block and event-related designs is also possible. This technique is a mixture of
the characteristic block design measurement of repetitive sets of stimuli and the transient
responses detected by event-related designs. The researcher have to deal with issues
associated with poorer HRF shape estimation (Figure 2.7) although statistical power
might be increased.

Figure 2.7: Mixed design: events closely presented are combined with control conditions (top). On
the bottom HRF functions. Adapted from Amaro Jr. and Barker (2006).

2.4 Image Acquisition Techniques

The most common imaging technique is the echo planar imaging (EPI) that allows for
rapid acquisition where all the information is collected after a single pulse of RF excitation.
This technique has a high temporal resolution on the order of a few milliseconds (Stehling,
Turner, and Mansfield, 1991). The parameter that controls temporal resolution is the time
of repetition (TR) and corresponds to the time between two excitation pulses or the time
to collect one brain volume (composed of many slices). However there is a compromise
with the spatial resolution. The shorter the TR, the lesser the number of slices collected
by TR. Besides, the temporal limit is also imposed by the temporal characteristics of the
HRF (Amaro Jr. and Barker, 2006).

The spatial resolution unit in the 3D image is the voxel (volume element) that rep-
resents the minimum unit of brain tissue in an image. Ideally speaking, the smaller the
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size of the voxel the better the resolution. However, there is a trade-off with background
noise. Bigger voxel sizes (lower resolution) allow more signal to be detected as active.
Reducing voxel size lowers the signal to noise ratio of the images and consequently the
sensitivity of BOLD signal detection, but improves spatial specificity. A larger voxel in
the cortical boundary may also include the cerebrospinal fluid (CSF) resulting in less sig-
nal originating from the gray matter (Amaro Jr. and Barker, 2006). The voxel size in the
imaging acquisition can be defined based on the anatomical structure of the brain. The
cortical thickness of 2 to 4 mm (Kandel, Schwartz, and Jessell, 2000) guides the optimum
voxel size to something between 3 to 4 mm. Accordingly, it is important to keep in mind
the three main variables of image acquisition: spatial resolution, temporal resolution and
amount of brain tissue sampled. Thus, increasing the spatial resolution but maintaining
the temporal resolution will reduce the covered area (number of image slices). There
is also the option of increasing spatial resolution but keeping the coverage of the whole
brain. In this case temporal resolution needs to be decreased. Another approach to deal
with temporal resolution and time consumption is the jittering. It refers to varying the
timing of the TR relative to the stimulus presentation or just varying the interstimulus
interval (ISI) keeping TR fixed. If TR is fixed and the stimulus is presented always at
the same fixed time, then the same point in the subject’s BOLD response is going to be
sampled many times. But points in between may be missed. Varying TR or ISI allows
several other points in the response to be acquired (which offers a better characterization
of the HRF shape) at the expense of sampling each of them fewer times. Varying the ISI
is a strategy to increase the efficiency of the estimates at the expense of power reduction
(Dale, 1999; Friston, Zarahn, Josephs, Henson, and Dale, 1999) - the same point is being
sampled less times and consequently the accuracy of a given estimate is smaller. But
there are also more points to sample and more confidence about the shape of the HRF
in the condition. As already mentioned, from a behavioral point of view, an advantage
of this strategy is that it is more complicated for the subject to guess what is happening
and anticipation effects are reduced.

The last issue concerning image acquisition is the plan in which the images are ac-
quired. If adopting total coverage, the whole brain is imaged. Another option is to cover
only a specific area which is assumed to respond to the paradigm. In this case the coronal
acquisition is usually implemented. For the whole brain coverage acquisitions are parallel
to the bicommissural plan (a line connecting the upper part of the anterior commissure
to the lower part of the posterior commissure). These are axially oriented images.
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2.5 Scanner Acoustic Noise

One of the main drawbacks of fMRI acquisition is the loud acoustic noise inside the
scanner. This noise can be up to 120 dB SPL which obscures the quality of the auditory
stimulus presentation (Schmidt, Zaehle, Meyer, Geiser, Boesiger, and Jancke, 2008). One
approach is to work directly on the source of the noise, more specifically the mechanical
parts of the gradient coils (Mansfield, Haywood, and Coxon, 2001; McJury and Shellock,
2000). However, it requires hardware modifications and different paradigms of stimulation.
A simpler solution is to present stimulus during a “silent” period inserted in the paradigm
(Figure 2.8). The counterpart is the increase of the amount of time necessary for the
whole experiment.

MRI 
scanner

stimuli

Figure 2.8: A schematic of a sparse design with TR=6 s. The black bars correspond to the time of
acquisition and the arrows the stimuli delivered during “silent” periods.

2.6 Image Analysis

The last step of an fMRI study is the image analysis technique adopted. Although
it is defined by the hypothesis of the experimenter, there are some common steps usu-
ally implemented. The data are first preprocessed, which means movement correction,
realignment and smoothing to allow for intra subjects comparison. Then the HRF has to
be modeled to represent the fMRI signal evolution according to an activated area. The
last step is to test the statistical significance of the results. Cluster level analysis and
correction for multiple comparisons (Friston, Ashburner, Kiebel, and Nichols, 2006) can
also be included.

The final output is an activation map of a single subject where the areas whose sta-
tistical power is above some predefined level are presented in a color scale. This is the
“first level analysis”. There is a “second level analysis” where results are related to group
statistics. For this step it is necessary to normalize and registrate all brains to a standard
model to allow for comparisons.
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2.7 New Approach in Neuronal Signal Measurements

In the previous sections it was shown that the neuroimaging field has gained signifi-
cant results with fMRI and more specifically the endogenous BOLD contrast. Although
spatial resolution is high, its temporal resolution is poor when compared with the elec-
trophysiological techniques. EEG (or MEG) reflects large scale measures of neocortical
dynamic function and has the same timescale of the ongoing electrical signaling (Nunez
and Srinivasa, 1981). fMRI is linked to the energy consumption of the neuronal popula-
tions and records a signal on a timescale of several seconds. However, as stated before in
this chapter, many studies have shown that cognitive processes modulate hemodynamic
responses measured with BOLD contrast (Logothetis, Pauls, Augath, Trinath, and Oel-
termann, 2001; Raichle, 2001). The simultaneous recording of EEG with fMRI can be
combined to achieve high spatial and temporal resolutions of brain function.

The recording of EEG and fMRI in separate sessions is preferred by many scientists
who want to avoid the difficulties of the simultaneous recording. Even small disturbances
such as a nearby electromechanical device in EEG or metals in the MRI room may result
in severe artifacts and corrupted signal quality. Recording EEG in an MRI scanner also
involves a challenging post-processing step of signal cleaning (Debener, Mullinger, Niazy,
and Bowtell, 2008; Vanderperren, Ramautar, Novitski, Vos, Mennes, Vanrumste, Stiers,
van den Bergh, Wagemans, Lagae, Sunaert, and van Huffel, 2007; Ritter, Becker, Graefe,
and Villringer, 2006). Herrmann and Debener (2008) made an extensive review about
the integration of these techniques. According to them, the first approaches combining
electrophysiology with hemodynamic responses come from positron emission tomography
(PET) studies with EEG. In a visual attention study, Heinze, Mangun, Burchert, Hinrichs,
Scholz, Munte, Gos, Scherg, Johannes, and Hundeshagen (1994) investigated location and
timing of the earliest effects. For the spatial localization they subtracted PET images from
the two conditions (attended and unattended) and saw that the same area was activated
using a dipole localization of the ERP (Event Related Potential) component. With such
result the authors suggested that the combination of both measures yield more infor-
mation about the process under investigation. Many other studies used PET and more
often fMRI (Liu, Ding, and He, 2006; Schreckenberger, Lange-Asschenfeld, Lochmann,
Mann, Siessmeier, Buchholz, Bartenstein, and Gründer, 2004; Dale, Liu, Fischl, Buckner,
Belliveau, Lewine, and Halgren, 2000).

It is also doubtful whether the subject can reproduce tasks in the same way if the
recordings are done separately. Specially for cognitive studies, mental process is not
going to be the same and even the most basic perceptual and cognitive operations may
also show adaptation over time. In this case, session order or knowledge about the task
makes a significant difference. Small changes in the setup such as the different positions
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of the subject when inside a scanner (usually standing) or during the EEG recordings
(usually seated) can influence the measurements. Of course, this can be solved just lying
the subject down. Of more importance is the acoustical noise of MR scanning. Recordings
of EEG done in an sound-attenuated room are significantly different. To attenuate this
problem the experimenter can include an “artificial” or previously recorded background
sound. These problems don’t really impair the usage of this protocol but the experimenter
needs to be aware of the differences that he may encounter.

To work around all the mentioned problems arising from separate recordings several
studies have implemented the simultaneous approach. The first equipment for this pur-
pose was described in 1993 in Ives, Warach, Schmitt, Edelmann, and Schmoer (1993)
work using an analog cable telemetry equipment. Since then, event related potentials
(ERPs) have been extensively explored (Herrmann and Debener, 2008). They are elec-
trical fluctuations originated from the spontaneous EEG but time locked to a specific
stimulus. The components of the ERP waveforms are extracted from spontaneous EEG
by averaging the potential at each scalp location over the evoked stimuli. In this case
the spontaneous EEG is assumed to be “noise”, uncorrelated to ERP processes. However,
there are contradictions about this assumption and single trial approaches are becoming
widely used (Nunez and Silberstein, 2000). Because of the extensive work in hardware
and software it is now possible to read ERPs and single-trial event-related EEG ampli-
tudes from recordings inside an MRI scanner (Eichele, Specht, Moosmann, Jongsma, and
Quiroga, 2005; Liebenthal, Ellingson, Spanaki, Prieto, Ropella, and Binder, 2003).

An approach of EEG and fMRI integration is to apply parametric variations of a stim-
ulus and correlate the influence on ERPs with those of BOLD signal (Mayhew, Dirckx,
Niazy, Iannetti, and Wise, 2010). Liebenthal, Ellingson, Spanaki, Prieto, Ropella, and
Binder (2003) have done this in an auditory mismatch paradigm, where the ERP data
were used to identify areas in which the BOLD signal varied with the magnitude of the
negativity. The image results also gave information about the main generators of the mis-
match negativity (MMN) response. This approach is also used to constrain EEG inverse
solutions to regions where fMRI indicates activations in dipole localization problems.

Although most studies refer to the time locked ERP, event related EEG signals that
are not phase-locked to a time-locking event are now on research focus. In this approach
time domain average can not be used and an analysis on a single trial basis needs to be
carried out as shown in Debener, Ullsperger, Siegel, and Engel (2006) and Jung, Makeig,
and Westerfield (2002).
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2.7.1 Technical Issues Concerning the Integration of EEG and

fMRI

The technical problems that arise from the integration of EEG and fMRI can be
divided in: magnetic field related effects, EEG artifacts induced by gradient switching,
radio frequency (RF) pulses and the noise caused by the magnet pump and the operating
gradient coils. Another source of noise can be explained using Faraday’s induction law.
The usage of amplifiers with long wires can induce an electric current caused by the
movement of conductors. Thus, newer amplifiers with non ferromagnetic material have
short cables connected to the electrodes cap and are placed inside the scanner as shown
in Figure 2.9.

Figure 2.9: The amplifier system placed close to the subject’s head inside the scanner (Herrmann
and Debener, 2008). The signal is transmitted via optical fiber to a recording room to avoid electro-
magnetic interference.

Artifacts in EEG recordings

The Gradient Artifact (GA) consists of strong perturbations of the EEG signal due
to time-varying magnetic field gradients. Therefore it is limited to the time required to
acquire the images (i.e. TR). Under the unrealistic assumption of no head movement,
this artifact is invariant over time. In this case an artifact template procedure can be im-
plemented for its removal (Allen, Josephs, and Turner, 2000). Some other considerations

18



2.8. SENSORY INFORMATION

can be implemented to take into account the movement of the head. This issue will be
addressed in Chapter 4.

There is another relevant kind of artifact present in the EEG recording: the Ballisto-
cardiogram Artifact (BCG). It is related to the cardiac activity and can exceed 150 µV
at 1.5 T field strength which is one to two orders of magnitude greater than most ERPs
(Garreffa, Bianciardi, Hagberg, Macaluso, Marciani, Maraviglia, Abbafati, Carni, Bruni,
and Bianchi, 2004) and scales in amplitude with the magnetic field strength. Besides, the
artifact varies within and between subjects. Temporal fluctuations of autonomic nervous
system properties such as heart beat and blood pressure can impact the BCG. Its removal
is not a simple task and is source of enumerable works (Debener, Mullinger, Niazy, and
Bowtell, 2008; Vanderperren, Ramautar, Novitski, Vos, Mennes, Vanrumste, Stiers, van
den Bergh, Wagemans, Lagae, Sunaert, and van Huffel, 2007; Ritter, Becker, Graefe, and
Villringer, 2006). However, there is a close temporal relation between the BCG and the
electrocardiogram (ECG) and because of this, ECG is recorded simultaneously to allow
for the correct, at least partial, removal of the artifact.

2.8 Sensory Information

The processing of sensory stimulus features is essential for humans in determining
their responses and actions. Thus, it is important to understand the brain mechanisms
of sensory information processing (sensory prerequisites of cognition). In turn, the tech-
niques described in the previous sections play an important role in understanding the
brain dynamics of the cognitive processes which will be discussed in the next topics.

2.8.1 Selective Attention

Attention is a central nervous system (CNS) process that enables perceptual or mo-
tor responses to be made selectively to one stimulus category or dimension in preference
to others (Kandel, Schwartz, and Jessell, 2000). Irrelevant stimuli are partially or com-
pletely rejected from perceptual experience (Basar, 2004). Selective attention enhances
the responses of neurons in many brain areas. Neurons in the frontal cortex and supe-
rior colliculus discharge more intensely when the animal attends to the stimulus (Kandel,
Schwartz, and Jessell, 2000). This kind of sensory processing is essential for planning
movement and self defense. Activation of the thalamus and cerebellum has also been
correlated to attention (Frith and Friston, 1996). Since attention refers to selective as-
pects of sensory processing, it follows that all experimental investigation of attention must
measure the responsiveness of the individual to more than one category of stimulus. The
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differential response to attended versus unattended stimuli provides the operational basis
for this analysis.

As stated before, ERPs reflect changes of ongoing EEG activity evoked by the stimulus
and are used to investigate responsiveness and cognition. Many neurophysiological studies
confirmed the effects of auditory attention through some well known components such as
N1 which peaks 100 ms after stimulus and P300 (around 300 ms after stimulus). It
is usually assumed that N1 reflects automatic stimulus processing influenced by early
attention and orientation processes (Luck, Fan, and Hillyard, 1993). P300 is thought to
reflect electric activity associated to cognitive top-down processes such as attention and
activation of immediate memory (Polich and Kok, 1995; Brandeis and Lehmann, 1986).

Auditory attention allows the rapid and precise directioning of the “acoustic mental
environment” towards sounds of interest. Attention can be bottom-up (sound based)
or top-down (voluntary or task-dependent) (Fritz, Elhilali, David, and Shamma, 2007).
Top-down attention is linked to enhanced information processing, behavioral sensitivity
and shortened response latencies, while bottom-up attention reads the acoustic scene and
selectively gates incoming “different” signals. Attention modulated auditory responses
were first demonstrated by Hubel, Henson, Rupert, and Galambos (1959) who showed
that some cat auditory cells were activated only when attention conditions were met.
Selective attention has also been extensively studied in humans either with evoked po-
tentials (Mueller, Brehmer, von Oertzen, Li, and Lindenberger, 2008) or fMRI responses
(Altmann, Henning, Döring, and Kaiser, 2008; Petkov, Kang, Alho, Bertrand, Yund, and
Loods, 2004; Grady, van Meter, Maisog, Pietrini, Krasuski, and Rauschecker, 1997). It is
known that the magnitude of attentional modulated responses changes according to task
difficulties (Fritz, Elhilali, David, and Shamma, 2007). The results are usually inferred
from the combination of task design and subject’s performance. Thus the “raw” access of
attention is difficult to measure, making comparison between studies a subjective task.

One focus of interest in attention research is how to extract auditory cues from the
real world such as in the cocktail party effect or when focusing on a single instrument in
an orchestra. The so called auditory scene analysis (ASA), the process of segregating and
grouping sounds from the mixture of sources that makes our acoustic environment, is an
essential step in auditory processing. The extraction of the signal from noise seems to be
a multi-stage process that relies on our expectations of the auditory incomings, attention
and other forms of top-down control (Alain, Snyder, He, and Reinke, 2007). The ability
to detect “deviant” sounds in a sound stream is essential in human and animal survival.
There is evidence that the brain has evolved a sophisticated novelty detection system
that includes an automatic, pre-attentive component in the processing of important infor-
mation (Molholm, Martinez, Ritter, Javitt, and Foxe, 2005; Winkler, Czigler, Sussman,
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Horvath, and Balazs, 2005). Recent investigations about the novelty detection system
include the mismatch negativity (MMN) component. Its role on the neural mechanisms
of auditory attention is still unclear, but it can also serve as a powerful tool to under-
stand perceptual deviations in certain kinds of patients as well as to investigate cortical
plasticity (Näätänen and Alho, 1995).

2.8.2 Perceptual Learning

There is an accumulating body of evidence indicating that even at the earliest stages
of sensory processing, neuronal functional specificity is mutable and subject to experience.
Long after most aspects of brain development have ceased, repeated exposures or train-
ings improve our perception of a stimulus and cause neural reorganizations in the brain
(Yotsumoto and Watanabe, 2008; Mueller, Brehmer, von Oertzen, Li, and Lindenberger,
2008). This induced improvement based on experience is called perceptual learning and
the neural changes that follow are defined as neural plasticity. It is one aspect of learning
very specific for low-level attributes of the stimulus learned (Fahle and Poggio, 2002). Per-
ceptual learning seems to modify the neuronal pathways active during processing of the
task and not to require an intermediate consolidation storage such as the hippocampus.
Memory is a consequence of learning which implies the coding, storage and retrieval of
information. Perceptual learning is certainly based on some form of information storage
but differs from memory as it is stored implicitly by changing the way the stimuli are
analyzed. Together with neural plasticity it has been studied in all sensory modalities
such as vision (Fahle, 2005; Schoups, Vogels, and Orban, 1995), auditory (Demany, 1985)
and somatosensory (Pleger, Foerster, Ragert, Dinse, Schwenkreis, Malin, Nicolas, and
Tegenthoff, 2003) although vision is, probably, the sensory system most investigated.

Recent findings show that some forms of perceptual learning are highly specific and
suggest that perceptual learning involves structural or functional changes in primary sen-
sory cortices such as V1, in the visual system. It has already been demonstrated that
perceptual tasks improve with practice and it was generally thought that improvements
in discriminative power were not attributed to changes on early levels of sensory but were
exclusively cognitive, i.e., high-level changes of visual information processing. However,
electrophysiological experiments put new information into this interpretation suggest-
ing that even the adult primary sensory cortices have more plasticity than first believed
(Buonomano and Merzenich, 1998). The lack of task generalization is taken as an evidence
that learning might be mediated by cells in early sensory areas. Recanzone, Merzenich,
Jenkins, Grajski, and Dinse (1992) were the first to demonstrate evidence of alterations of
low-level cortical processing showing that the gain in training-induced performance was
correlated with the amount of expansion of the cortical map that represented the trained
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skin area.
Given that learning occurs in developing and adult systems, an important question for

understanding perceptual learning is how does a neural system know which information
is behaviorally relevant and which is not. It has been suggested that attention based
training plays an important role in irrelevant distractor suppression. Several studies have
provided evidence of its role in perceptual learning (Yotsumoto and Watanabe, 2008;
Paffen, Verstraten, and Vidnyánszky, 2008; Mukai, Kim, Fukunaga, Japee, Marrett, and
Ungerleider, 2007; van Wassenhove and Nagarajan, 2007) while others show evidence of
passive learning (Watanabe, Nanez, and Sasaki, 2001; Seitz and Watanabe, 2003) and
are used against attentional needs in learning experiments. Although recent findings may
seem contradictory at first sight, Seitz and Dinse (2007) give some insights about how
these learning models can operate in parallel with each other.

Paradigms implementing attended versus non-attended discrimination tasks show im-
provements in visual abilities after extensive training. Schoups, Vogels, and Orban (1995)
trained subjects with a circular noise field task an showed that these subjects improved
in sensitivity to contour orientation of the trained position. They also observed a lack of
generalization of stimulus discrimination. In another study Li, Piëch, and Gilbert (2004)
saw that monkey V1 cells assumed novel functional properties when trained in a shape
discrimination task. These properties depended on the perceptual task being performed
showing the specificity. Trying to understand the role of attention in perceptual learning
Seitz and Watanabe (2005) discussed a potential link between perceptual learning and
the alerting system noting that the latter is associated with the right frontal and right
parietal regions.

Auditory perceptual learning

Perceptual learning research is dominated by studies of vision but recent studies of
auditory learning suggest that it may differ considerably from the visual modality (King
and Nelken, 2009). Karmarkar and Buonomano (2003) showed that the lack of general-
ization when task difficulty is increased in a visual experiment is not seen in an auditory
learning. In auditory perceptual learning, the trained perceptual dimension and the task
difficulty determine the efficacy, rate, and specificity of learning. For example, training
on a frequency discrimination task leads to rapid and robust learning although optimal
learning may depend on task difficulty (van Wassenhove and Nagarajan, 2007).

Many investigators of the human ability to detect small differences in frequency be-
tween sine tones have noted that this ability could improve with training. Weeks of
practice and many trials may be necessary to reach an individual asymptotic discrimi-
nation threshold (Demany, 1985). However, little is known about the process involved.
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Many studies search for this answer and Demany (1985) investigated the frequency gen-
eralization between different frequency ranges. They observed that frequencies up to
2500 Hz influenced the discrimination of a standard 200 Hz tone. According to the results
they hypothesized that frequency discrimination is mediated mainly by a temporal coding
process up to 5000 Hz and beyond this value it is mediated exclusively by a tonotopic
coding.

Substantial perceptual learning may occur in the very first trials, as evidenced by the
improvements made early in learning by participants. Moore, Amitay, and Hawkey (2003)
pointed out the need to incorporate early trials into perceptual learning experiments
rather than just ignoring them. An interesting study conducted by Atienza, Cantero, and
Dominguez-Marin (2002) showed differences in time evolution during perceptual learning
supporting the hypothesis that fast and slow neural changes underlie the acquisition of
improved performance. Differences in time course had been observed in neural and/or
behavioral modifications spanning from short time after presentation of several trials to
days (van Wassenhove and Nagarajan, 2007). The improvement of perceptual sensitivity
within the training session is assumed to occur as a result of fast neural changes while
slow behavioral improvements still take place in the period between sessions. The early
neural changes are thought to affect pre-attentive and attentive processing after training
and also some time later when there is no additional stimulation. The slower changes are
thought to be the result of the reorganization of cortical representations (Gilbert, 1994).

Although slow perceptual learning is accepted to be accompanied by enhanced stim-
ulus representation in sensory cortices, the neural substrates underlying early and rapid
improvements are still not fully understood. This research area is of great interest of
those aiming to understand how fast and slow perceptual learning interact and make a
substrate for other types of learning and memory. It seems that this fast learning is highly
dependent on attention as observed by Alain, Snyder, He, and Reinke (2007). During an
experiment about with vowels phonetically different they observed an early evoked re-
sponse around 130 ms after stimulus onset localized in the right auditory cortex and a
late evoked response approximately 340 ms in the right anterior superior temporal gyrus
and inferior frontal cortex. These results showed enhancement of ERPs amplitude while
improving in task performance. There seems to be a sharpening on auditory neurons re-
sponsiveness guided by attention happening on the early moments of learning. It is worthy
to say that fast perceptual learning can also be questioned as procedural learning as the
latter accounts for the fast improvement in performance that results from learning the
response demands of the task. Hawkey, Amitay, and Moore (2004) refuted this hypoth-
esis assessing the contributions of both types of learning to improvement in an auditory
frequency discrimination task and showing that the perceptual learning contribution was
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higher than 75% of the rapid early performance improvement.

2.9 Summary

In this chapter the basic steps of functional magnetic resonance recording were pre-
sented as well as the acquisition techniques and paradigms commonly adopted. We also
discussed the advantages of recording EEG and fMRI simultaneously, specially in the
study of cognitive processes. The chapter is concluded pointing out how these tools can
be used to help understanding the processing of sensory information.
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3
EEG Data Processing

In order to understand the advantage of the simultaneous recording of EEG and fMRI
as well as its drawbacks, this chapter will briefly discuss the source of the electric ac-
tivity recorded in the scalp and how these signals are analyzed in order to study neural
communication. Moreover, the main steps of the EEG data processing are presented.

3.1 EEG as a Measurement of the Cellular Electromag-

netic Field

In 1875, Richard Caton, a British scientist, published the first report of his experi-
ments with measurements of the electric activity of the brains of rabbits and monkeys
(Malmivuo and Plonsey, 1995). They are believed to constitute the discovery of the
electroencephalogram. In 1924, the German psychiatrist Hans Berger made the first
recording of the EEG on a human being. Since then, electroencephalography has been
an intensively used technique in clinics and research laboratories (Vullemoz, Rodionov,
Carmichael, Thornton, Guye, Lhatoo, Michel, Duncan, and Lemieux, 2010; Michel, Mur-
ray, Lantz, Gonzalez, Spinelli, and de Peralta, 2004; Miranda de Sá and Felix, 2002). It
can be considered the standard technique on neurophysiology for the diagnosis of brain
pathology such as epilepsy, sleep disorders and disorders of the central nervous system
(CNS). EEG measurements consist of registering electric potential differences between

25



3.1. EEG AS A MEASUREMENT OF THE CELLULAR ELECTROMAGNETIC FIELD

pairs of electrodes in the scalp of the individual as shown in Figure 3.1. These potentials
are the result of volumetric currents flowing from postsynaptic cortical neurons to the
scalp through a conductive medium (pia mater, arachnoid, dura mater, skull and scalp)
(Nunez and Srinivasa, 1981).

scalp

skull

dura mater

arachnoid

subarachnoid space

pia mater

axons

axons

active 
sinapses

electrode

amplifier

Figure 3.1: Scalp electrode and the tissues involved in electric conductivity.

To understand the technique itself it is important to understand how and where the
bioelectrical signals are generated. Basically, the brain is a gelatinous mass encased by
three meninges (dura mater, arachnoid and pia mater), the cerebrospinal fluid (CSF), the
skull and the scalp as shown in Figure 3.2. It is composed of the cerebellum, brainstem
and cerebrum (Figure 3.3). The outer part of the cerebrum is a cellular shell of gray
matter, the cerebral cortex. Phylogenetically it is divided in archicortex, paleocortex and
neocortex, the latter composed of pyramidal and non-pyramidal cells. Pyramidal cells
have triangular cell bodies with the apex directed toward the cortical surface. It has
been shown that the vertically oriented pyramidal cells with their long apical dendrites
placed parallel to each other are the major contributors to the signal registered in the
EEG (Nunez and Srinivasa, 1981).

The principal generators of EEG fields measured on the surface of the brain are ex-
citatory and inhibitory postsynaptic potentials of the pyramidal cells located in cortical
layers III, V and VI. Because of the attenuating properties of the skull, spatial summation
of cortical activity is critical for producing a voltage field recordable from the scalp. The
current flowing across the external resistance of the cortex sums with the loop currents
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3.1. EEG AS A MEASUREMENT OF THE CELLULAR ELECTROMAGNETIC FIELD

Figure 3.2: Crossectional view of the meninges. Adapted from the American Society of Clinical
Oncology.

Figure 3.3: The brain and its parts. The cerebrum is composed of the right and left hemispheres.
The brainstem includes the midbrain, the pons and the medulla while the cerebellum is located at the
back of the head.

of the neighboring neurons to constitute a local mean field. Viewed from outside the
cells, membrane areas where current flows in or out of the cells are called respectively
sinks and sources. Excitatory currents, involving Na+ or Ca+ ions, flow inward toward
an excitatory synapse and outward away from it. The outward current is referred to as
a passive return current. Inhibitory loop currents, involving Cl+ and K+ ions, flow in
the opposite direction (Olejniczak, 2006). In this way, a tiny dipole is set up as shown in
Figure 3.4. A dipole from a single neuron is very small and cannot be seen from distant
electrodes, but if the dipoles from many neurons summate, the resulting voltage can be
measured at the scalp. Moreover, if neurons have a similar orientation and receive the
same type of input, their dipoles will summate and may be measurable at the scalp. This
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3.1. EEG AS A MEASUREMENT OF THE CELLULAR ELECTROMAGNETIC FIELD

is most likely to occur in cortical pyramidal cells, which are aligned perpendicular to the
surface of the cortex. Because current is conducted throughout a medium until it reaches
the scalp, the voltage that will be present at any point on the surface will depend on the
position and orientation of the generator dipole and on the resistance and shape of the
various components of the head as well.

Figure 3.4: Excitatory postsynaptic potentials generated from cortical neural cell assemblies. On
the left, excitatory postsynaptic potentials are generated at the apical dendrites of a pyramidal cell
and trigger the generation of a current that flows through the brain. Conservation of electric charges
imposes that the current loop be closed with extracellular currents flowing even through more distant
parts of the conductor. On the right, cortical pyramidal cells are organized in assemblies with dendrites
normally oriented to cortical surface.

Usually, EEG is recorded according to the international standardized 10-20 electrode
position system (Sharbrough, Chatrian, Lesser, Lüders, and Picton, 1991; Klem, Lüders,
Jasper, and Elger, 1999). The reference points are the nasion (in the front) and inion
(in the back) of the head. From them the skull perimeters are divided into 10% to 20%
intervals, where the electrodes are positioned as shown in Figure 3.5. In addition to the
original 21 electrodes, intermediate 10% electrodes can also be placed.

By placing electrodes on the scalp it is possible to record the electrical activity of the
brain which can be triggered by an external stimulus or not. The spontaneous potentials
are electrical activity coming up spontaneously such as alpha rhythms and sleep states
(Stroganova, Orekhova, and Posikera, 1999; Roth, Achermann, and Borbély, 1999). Event
related potentials (ERP) are a change in the brain activity time-locked to an event. These
responses will be discussed in the next paragraphs.
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3.2. EVOKED POTENTIALS - EP

Figure 3.5: Electrodes positions according to 10-20 international system (Sharbrough, Chatrian,
Lesser, Lüders, and Picton, 1991).

3.2 Evoked Potentials - EP

The term evoked potential is a general term for evoked oscillations phase locked to a
sensory stimulus. Given a stimulus presented to a subject during EEG recording there
will be a voltage change in response to that stimulus. Since the amplitude of this signal
is extremely small (on the order of microvolts), the most common way of extracting
information is averaging a significant number of EEG epochs (or segments), each time
locked to the stimulus. EP averaging makes use of the fact that the EPs are time-locked
to the stimulus but the background EEG is not.

It is, thus, possible to quantify the response of a specific sensory pathway to one
particular stimulus type. As shown in Figure 3.6 EPs can be used to assess conductive
properties of the auditory pathway following a specific stimulation. The wave patterns
are characterized by their polarities (negative or positive) and latencies, which are the
moment of peak occurrence after stimulus presentation. In the auditory system, they are
usually recorded from the scalp when clicks, tone pips or more complex stimuli are deliv-
ered. Auditory evoked potentials (AEPs) can be divided into short latency components
(brainstem evoked responses - BAEP), medium latency components (MLAEP) and long
latency components (LLAEP) (Burkard, Eggermont, and Don, 2007). Medium latency
components can be associated to the primary cortex while later ones are generated in
brain areas related to cognitive processing: the temporal and frontal cortices (Thornton
and Sharpe, 1998). Many of the long latency waveforms are thought to reflect processes
that come from cognitive demands and are usually called event-related potentials.
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Figure 3.6: Auditory evoked potentials. In the brainstem, the response has a tight relationship with
the anatomy of the auditory pathway.

3.3 Event Related Potential - ERP

The term event related potential designates a broader class of potentials that display
time relationships to some physical or mental occurence. They are usually associated with
endogenous brain state (Bressler and Ding, 2006) which was not originally covered by the
EP definition. ERPs allow the investigation of basic functional pathways by the recording
of early ERPs or “evoked potentials” (EPs) in response to clicks or tones (auditory EP
- AEP), flashes (visual EP - VEP) or electrical stimulation (somatosensory EP - SEP).
Cognitive pathways are investigated as well by the recording of ERPs related to the
execution of attention, emotion or memory tasks (Luck, 2005).

As an example, the N100 is a negative peak at about 100 ms after stimulus onset
in which novel and deviant stimuli produce enhanced amplitudes. Another component,
the mismatch negativity (MMN), is a response that appears only if there is a mismatch
between the prediction and the real incomings of a sensory pathway. This negative peak
has been extensively investigated since it is considered to operate a pre-attentive process
on the acoustic environment (Pakarinen, Lovio, Huotilainen, Alku, Näätänen, and Kujala,
2009; Näätänen and Alho, 1995). The positive peak P300 is another well known com-
ponent appearing when a subject listens to a sequence of monotonous tones, randomly
replaced by a deviant tone (Picton, 1992).

Like evoked potentials, ERPs are usually captured by averaging response epochs time
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3.4. EVENT RELATED SPECTRAL PERTURBATION - ERSP

locked to a number of similar events. However, this procedure can average out what is
not exactly synchronized but still a consequence of the stimulation. This view has gained
large support by the evidence of a strong parallel processing in the whole brain (Basar
and Karakas, 2006; Basar and Schürmann, 2001) where phase incoherent signals can also
add to the EEG signal. Therefore, it is necessary to characterize phase incoherent event-
related brain dynamics as well, also called induced responses. The difference between
any single trial response and the average ERP can be modeled as a perturbation on the
baseline EEG or a variance in the evoked response. This approach can give new insights
into the dynamics of cortical networks (Delorme, Makeig, Fabre-Thorpe, and Sejnowski,
2002).

3.4 Event Related Spectral Perturbation - ERSP

EEG has also been described by its rhythmic activity which is divided into frequency
bands noted to have different distributions over the scalp (Nunez and Srinivasa, 1981).
They are known as delta (up to 4Hz), theta(4-7Hz), alpha(8-12Hz), beta(12-30Hz) and
gamma(30-70Hz).

In 1977, Pfurtscheller (1977) derived a term to show that cortical arousal within the
alpha band involves “desynchronization” of relatively slow and spatiotemporally coher-
ent cortical rhythms, and their replacement by faster and more spatially differentiated
activity, what was called the event related desynchronization (ERD). A more general
measure, the event related spectral perturbation (ERSP) was derived by Makeig (1993)
to measure induced dynamic changes in amplitude of the EEG spectrum as a function of
time relative to the stimulus. Recently, many cognitive studies are interested in under-
standing the event-related oscillations involved in perceptual and attentional demands.
The event-related synchronization and desynchronization (ERS/ERD) are different re-
sponses of neuronal structures in the brain that are highly frequency band specific. This
new manner of understanting brain dynamics shows that oscillations are induced because
their self-organized emergence are not evoked by only the stimulus itself but induced
through other mechanisms in conjuction such as arousal and nonlinearities. In an audi-
tory experiment, Makeig (1993) showed that some electrophysiological responses were not
fully covered by the ERP but phase incoherent responses could be seen in the ERSP.

Quantification of ERS and ERD in time and space has been extensively investigated
showing that these responses are functionally related to cognitive processing (Basar, 2004;
Basar and Schürmann, 2001; Pfurtscheller and Lopes da Silva, 1999). It has been shown
that alpha band rhythms (7-10Hz) appear as a desynchronization (ERD) in attention,
learning and memory tasks (van Winsum, Sergeant, and Gueze, 1984). Attention-related
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3.5. NEURONAL SOURCES OF ACTIVATION

40 Hz responses were reported in humans, specially over the frontal and central areas
(Tiitinen, Sinkkonen, Reinikainen, Alho, Lavikainen, and Näätänen, 1993). In Deiber,
Pascal, Olivier, Gold, Fazio-Costa, Ibanez, and Giannakopoulos (2007), induced theta
activity was recorded in the frontal region for a detection task, but not for the passive task,
suggesting its dependency on focused attention to the stimulus. Perceptual learning has
also been manifested as enhancement in the power of induced high gamma band activity
(62-98 Hz) located in the left inferior frontal gyrus (van Wassenhove and Nagarajan,
2007).

The computation of ERD and ERS implies that the EEG power within identified
frequency bands is displayed relative to the power of the same EEG derivations recorded
during the baseline period (few seconds before the stimulus onset) (Pfurtscheller and Lopes
da Silva, 1999). The calculation is as follows: baseline spectra are calculated from the EEG
immediately preceeding each event. The epoch is divided into overlapping data windows
to create a moving average of the amplitude spectra. These spectral transforms are
normalized with respect to the mean baseline. The ERSP is created averaging normalized
response transforms of many trials.

3.5 Neuronal Sources of Activation

Llinas (1988) has shown in 1988 that neurons can act as oscillators or resonators
and the precise timing of their activity may represent information. These resonators are
thought to have functional roles such as determining the “awareness” state which defines
attentional states, timing in motor coordination and also the rhythm of thalamo-cortical
circuits. The synchronous activity of oscillating networks is now on focus again since it
can relate single-neuron activity to behavior.

Animal recording studies have stimulated research in humans proposing that synchro-
nised neural activity is the key neural mechanism mediating the brain’s ability to “bind”
different features of a perceived object together to form an integrated percept. This is
a relatively new approach to investigate high frequency responses, which are not time-
locked to stimulus onset. It extends the view gained by more traditional approach such
as those involving ERP studies of learning, memory and attentional visual information
processing as well as other higher cognitive functions. It is well known since Berger’s
study that brain oscillations govern brain state. At that time alpha waves were seen in
the EEG recordings. As alpha power was larger with eyes closed than with eyes opened,
it was thought that it reflected a relaxed state. However, a decrease in alpha power has
been linked to increasing demands of attention and task load. Theta power on the other
hand tends to increase in memory tasks (Amabile, 2008; Klimesch, 1999).
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The recent interest in neuronal network is because understanding the neuronal orga-
nization might give us an insight about how the brain develops and coordinate emotions,
perceptions, thoughts and actions coming from distributed regions across the brain (Basar,
Schürmann, Demiralp, Basar-Eroglu, and Ademoglu, 2001b). In the brain, the emergence
of a specific neuronal assembly is thought to underlie the operation of every cognitive
act. Assemblies can be seen as distributed local networks of neurons temporarily linked
by reciprocal dynamic connections (Ward, 2003; Wickens and Miller, 1997). There are
reciprocal connections within the same cortical area or between areas situated at the same
level of the network. Moreover, studies showed that there are also connections that link
different levels of the network in different brain regions to the same assembly. As an
example, synchronism was observed in a 2 mm scale between excitatory and inhibitory
interneurons (Gray, 1999). But this kind of interconnection was also observed in larger
patches of neural tissue as in columns of the primary visual cortex of cats, separated by
2-7 mm. Large scale synchronization with neural groups which are further apart in the
brain (> 1 cm) are also observed. In this case the synchronism cannot be linked to local
cytoarchitecture but to other forms of distant connections (Phillips and Singer, 1997).
Results from local field potential (LFP) recordings in humans with surgical resection
for epilepsy revealed gamma band power enhancement in oscillations showing large scale
synchronism between temporal and frontal lobes during a discrimination task (Varela,
Lachaux, Rodrigues, and Martinerie, 2001).

In cognition, Kaiser, Lennert, and Lutzenberger (2007) investigated neural oscillations
using MEG in order to understand the temporal dynamics of cortical mechanisms under-
lying auditory perceptual decision making. They observed spectral enhancement in beta
range during easy decisions while activation was higher in frontoparietal for more complex
patterns. Basar, Basar-Eroglu, and Schürmann (2001a) made an extensive survey argu-
ing that selectively distributed delta, theta, alpha and gamma oscillatory systems act as
resonant communication networks through large populations of neurons suggesting that
these processes might play an important role in functional communication specially for
integrative functions.

3.6 Source Localization: the Inverse Problem

Electroencephalography can also be used for estimating the location of the EEG gener-
ators within brain space, which is known as the inverse problem. The EEG inverse problem
is an ill-posed problem because the solution is non-unique (there are more sources than
measurement voltages). Besides, it is unstable as the solution is sensitive to small changes
in noisy data.
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There are different options to solve the inverse problem and one strategy is to calculate
an equivalent dipole (Kiebel, Daunizeau, Phillips, and Friston, 2008; Scherg and von
Cramon, 1986; Cuffin, 1985). A dipole is a mathematical abstraction that is assumed to
generate a potential on the scalp. By changing the parameters of the dipole (position and
orientation), forward solutions can be calculated in order to get a possible scalp potential
distribution. The forward solution is then compared to the original scalp potential to check
the validity of the model. In general, this strategy is applicable in situations with a small
number of active sources (e.g. epileptic spikes) (Scherg, Bast, and Berg, 1999). Another
way to accomplish the problem is through a distributed source model, using minimal
prior information about the nature of the generators apart from anatomical constraints,
which usually limit the solution space to the grey matter. For grey matter extraction,
subject-specific MRI scans can be used (Hamalainen and Ilmoniemi, 1994).

Besides specific assumptions concerning the method of solving the inverse problem,
additional assumptions have to be made related to the physical, geometrical and anatom-
ical properties of the generator, conductive media and recording electrodes. Head models
can be made of concentric spheres but, recently, more realistic head models using MRI
information have been used (Mulert, 2010).

3.7 EEG Data Processing

This section discusses the main issues regarding EEG data processing from data
recorded in an MRI environment, which is the focus of this study. As already stated,
simultaneous EEG and fMRI provide a powerful tool to study spontaneous and evoked
brain activity because of the complementary temporal and spatial resolutions the two
techniques provide. The principal problem which affect the analysis of EEG data is the
artifact removal. Artifacts can come from two main sources: gradient artifact and ballis-
tocardiogram artifact.

3.7.1 Artifacts Removal

The first class of artifacts are induced by gradient switching and radio frequency
(RF) pulses. They induce a critical electric noise that obscures all the EEG traces. These
artifacts are due to electromotive forces related to wire loops perpendicular to the direction
of the gradient field (Debener, Ullsperger, Siegel, and Engel, 2006). It has been shown that
the gradient artifacts and EEG have spectral content in the same range, hence, the former
cannot be removed by simple low-pass filtering (Allen et al., 2000; Felblinger, Slotboom,
Kreis, Jung, and Boesch, 1999). Several techniques to reduce imaging artifact have been
reported. Laudon, Webster, Frayne, and Grist (1998) made a study with ECG electrodes.
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The induced electromotive force in these electrodes was recorded and subtracted from the
ECG signal. However, it is not practical for multichannel recording (in the case of EEG
applications) and the artifact reduction is on the order of 20% what is too small for the
milivolt artifacts superposed to the microvolt EEG signals. Although some methods seem
to work well for animals or for ECG signals, the reduction is still insignificant to human
EEG (Felblinger, Slotboom, Kreis, Jung, and Boesch, 1999; Sijbers, Michiels, Verhoye,
Auderkerke, van der Linden, and van Dyck, 1999).

As investigated by Allen, Polizzi, Krakow, Fish, and Lemieux (1998), this artifact has
no substantial intervolume variability and thus can be subtracted from the recorded EEG
by using an average template. Probably the most used removal technique is the artifact
template subtraction method proposed by Allen, Josephs, and Turner (2000). In this
method, the shape of the gradient artifact is considered constant over time and additive
to the physiological signal. Thus, a template is built with the average of many artifacts
and is subtracted from the ongoing EEG signal. This method is implemented in this
thesis and because of this it will be treated here in more detail.

The amplitude of the induced gradient artifact is given as

VGAMax = (dB/dt)maxAmax (3.1)

where VGAMax is the maximum amplitude of induced gradient artifact, (dB/dt)max is the
maximum rate of change of the gradient field, and Amax is the maximum loop area.

When calculating the average artifact, the first five epochs of each session are always
included. Subsequent epochs are included only if the cross correlation function between
the epoch and the current average exceeds 0.975. The objective is to avoid espurious
signals (such as subject movement) to corrupt the template. In a periodic (or sparse)
design an epoch is defined as the time between volume scans (TR) and the average is
computed over 25 epochs. To optimize the calculation of the average artifact, a 25 -
coefficient sinc function is used to interpolate the EEG values synchronously with the
slice timing signal. After subtraction an anti-aliasing filter is applied and the signal is
downsampled to a typicall EEG sampling rate (200-250 Hz). At this stage most artifacts
are removed but some residual can be found synchronized to slice-timing signals. This
residual signal is removed using adaptive noise cancelling (ANC) as shown in Figure 3.7.
This method uses a primary input containing the corrupted signal and a reference input
containing noise correlated with the primary noise. The reference is adaptively filtered
and subtracted from the primary input to obtain the signal estimate (Widrow, Glover,
McCool, Kaunitz, Williams, Hearn, Zeidler, Dong, and Goodlin, 1975).

The second significant artifact is the ballistocardiogram (BCG), which is caused by
the cardiac electric field which propagates throughout the body and can be measured at
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Figure 3.7: Schematic of the artifact removal method proposed by Allen, Josephs, and Turner
(2000).

any location on the body surface, including the scalp (Dirlich, Vogl, Plaschke, and Strian,
1997). The problem of the cardiac field artifact in EEG averaging has been reported in
many studies (Debener, Mullinger, Niazy, and Bowtell, 2008; Vanderperren, Ramautar,
Novitski, Vos, Mennes, Vanrumste, Stiers, van den Bergh, Wagemans, Lagae, Sunaert,
and van Huffel, 2007). It is most prominent in the QRS complex and during the T
wave. This is probably the most challenging artifact and many factors contribute to its
generation. The fundamental mechanism underlying the BCG is stated by Faraday’s law
of induction, which says that any movement of an electrical conductor in a static magnetic
field results in current induction. What many authors advocate is that this motion can
have many origins. One of them is the pulsatile movement of the scalp and electrodes
motion caused by the expansion and contraction of adjacent blood vessels. Bonmassar,
Purdon, Jaaskelainen, Chiappa, Solo, Brown, and Belliveau (2002) measured this motion
from an artery and used it with an adaptive filter resulting in BCG removing. Blood
flow itself can be a source of this artifact as blood is a conductive medium and induces
electrical potentials in the presence of a magnetic field (Allen, Polizzi, Krakow, Fish, and
Lemieux, 1998).

The removal of this artifact is usually accomplished by two main approaches. The
first one is the implementation of independent component analysis (ICA). This technique
was succesfully applied for recordings at 1.5T (Mancini, Perrucci, Cugini, Ferretti, Ro-
mani, and Gratta, 2006). Debener, Mullinger, Niazy, and Bowtell (2008) reported that at
higher fields, its topographical variability is more pronounced and therefore fixed spatial
topographies are not well suited. They also showed that correlation approaches between
independent components (IC) and the electrocardiogram (ECG) channel does not perform
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well alone. The reason is that ECG has prominent features not seen in the EEG, such as
the QRS complex. Despite these observations ICA has been succesfully implemented in
many studies (Mantini, Perrucci, Cugini, Ferretti, Romani, and Gratta, 2007; Srivastava,
Crottaz-Herbette, Lau, Glover, and Menon, 2005).

A second method for BCG removal uses its temporal correlation with the pulsatile
movements of the heart - the ECG. Therefore, an ECG is usually recorded together.
Allen, Polizzi, Krakow, Fish, and Lemieux (1998) developed a method that subtracts an
average pulse artifact waveform from the referential EEG signals at the time instants
synchronized to the ECG peaks. A brief explanation of the method will be given here
and more information is found at their paper. The method uses the 10 previous seconds
of EEG and ECG signals to build an artifact template. A peak corresponding to the
QRS complex is identified in the ECG signal by detecting a turning point following an
amplitude threshold crossing. The average waveform is calculated for the period ± half
the R-R interval time locked to the ECG peaks. This template is subtracted from the
penultimate second of the 10 seconds segment and the corrected segment is shown. In
order to have a robust peak detection method, the mean value of the template is compared
to the incoming EEG signal to avoid another peak artifact to be incorporated into the
template. Besides, a cross-correlation between the ECG waveform at each peak and the
average ECG waveform is calculated. The validity of the ECG peaks can then be tested
with this procedure. To calculate the averaged waveform the algorithm searches for four
sucessive ECG peaks with a predefined R-R interval variability (to be sure it contains
a QRS complex and not an artifact). A slightly different approach proposed by Niazy,
Beckmann, Iannetti, Brady, and Smith (2005) uses optimal basis set (OBS) instead of
simple averaging to build the pulse artifact template. The pulse artifacts are aligned in
a matrix to calculate the principal components of the artifact residuals using principal
component analysis (PCA). They form a basis set which is then fitted and subtracted
from each artifact.

Ocular and movement artifacts contaminate EEG data as well. The removal of these
artifacts had been extensively explored and information can be found in He, Wilson,
Russell, and Gerschutz (2005); Haas, Frei, Osorio, and Pasik-Duncan (2003) for regression
analysis, Kierkels, Riani, Bergmans, and van Boxtel (2007) for Kalman filter approach
and Callan, Callan, Kroos, and Vatikiotis-Bateson (2001); Jung, Makeig, Humphries, Lee,
and Mckeown (2000) for ICA techniques.

3.7.2 Time-frequency Analysis

The traditional method to study and visualize events in the EEG signal is to average
epochs time-locked to the stimuli. The results are positive or negative voltage deflections
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coming out from the spontaneous activity in the EEG. The “background” signal is canceled
out, approaching zero as the number of trials increases (Burkard, Eggermont, and Don,
2007). The peaks revealed (the ERP components) reflect deviations from a period previous
to the stimulus (the baseline). Their peak amplitudes and latencies are used to measure
or index a sensory, motor or cognitive response.

The recent interest in studying event-related EEG comes from the suggestion that
neural oscillations and synchronization represent important mechanisms for interneuronal
communication between distributed brain regions (Basar, Schürmann, Demiralp, Basar-
Eroglu, and Ademoglu, 2001b). One approach to study event-related EEG oscillations is
the time-frequency analysis which involves the decomposition of single trial EEG signals
into magnitude and phase information. They can tell which frequencies have the highest
power at specific points in time and space and how their phase angles change across
time. In time-frequency decomposition, a complex number is estimated at each time
point yielding both time and frequency domain information as summarized below:

• Each trial is convolved with a Morlet wavelet transform centered on a segment of
the epoched EEG. By sliding this windowed function across the entire time series
(one point at a time), a complex number at the window’s center point is calculated
for each time point as shown in Figure 3.8.

Figure 3.8: Example of an EEG time series convolved with a Morlet function, containing real and
imaginary components.

• For each time point there will be complex numbers calculated for all trials. The
mean power for a given frequency at a particular time point is calculated squaring
and averaging the magnitude length of these complex vectors.

• The phase information is revealed after removing the magnitude information (nor-
malizing it) from the complex values. As in the mean power case, phase angles from
all trials are averaged to produce the phase locked information.

• Doing these steps for all trials, time and frequency points yield a time-frequency
matrix of total power values and a matrix with phase locked values (also known as
intertrial phase coherence - ITC ).
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Although this work focused on wavelet based decomposition (using the Morlet func-
tion) this is not the only option adopted in the analysis of brain dinamics. Short time
Fourier transform (STFT) has also been adopted in many studies and a comparison be-
tween the techniques can be found in Bruns (2004); Muthuswamy and Thakor (1998). In
fact, the STFT was tested but the results obtained with wavelet decomposition yielded
results with better resolution.

3.8 Summary

The millisecond temporal resolution of the EEG makes it well suited to the noninva-
sive study of cortical activation dynamics. Although these electrophysiological approaches
have the potential to reveal the activation sequence of cortical areas, their spatial resolu-
tion is too coarse which highlights the importance of the simultaneous acquisition. This
chapter discussed the main approaches in EEG data analysis.
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4
FMRI Data Processing

A rapid improvement has been happening in imaging technology and methodology
which has an enormous impact on how the brain is seen and its functioning interpreted.
Detailed anatomical images combined with functional images obtained with PET and
fMRI techniques help investigating issues concerning normal and abnormal brains. A
functional imaging study involves the collection of one or more functional scans of each
subject. The necessary steps to access signal changes related to brain activation will be
addressed in this chapter.

4.1 Conventions

Before starting an MRI study it is necessary to be familiar with conventions and
the terminology that describes orientation. The basic directions are right, left, anterior,
posterior, inferior and superior as shown in Figure 4.1. The nose is referred to as the
anterior end and the opposite to it is the posterior. By drawing a line connecting these
two points we define the anteroposterior axis. From left to right ear there is the left-right
axis. The top and the bottom are other extremes used as reference: the head end is the
superior end while the feet is the inferior end, forming the superior-inferior axis.

Besides orientation, there are three reference planes (also called views) used in anatomy.
The saggital plane divides the head into left and right portions (y-z plane); the coronal
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Figure 4.1: Slice orientation. R: right - L: left - S: superior - I: inferior - A: anterior - P: posterior.
On the right, an axial view of a brain image.

plane divides the head into anterior and posterior portions (x-z plane); and the axial plane
separates the superior portion from the inferior (x-y plane). Images of the three views
are shown in Figure 4.2.

Figure 4.2: Anatomical views of the brain. From left to right: sagittal, axial and coronal.

Images output from scanners are stored in the ANALYZE 1 format using radiological
convention. This means that looking at a 2D axial slice and taking a row from one ear to
the other, pixel “1” is on the right side of the image and pixel “N” on the left side. Pixel
numbers increase from right to left with zero at the center. However, SPM (statistical
parametric mapping) stores data in neurological convention. It means that x increases
from left to right, y increases from posterior to anterior and z increases from inferior
to superior. SPM uses a spatial transformation matrix to transform ANALYZE data
(*.hdr, *.img) into neurological format. It also keeps a MATLAB data file *.mat with

1ANALYZE TMis a file format for storing MRI data. The data set consists of two files:

• Header file (.hdr): Provides image dimension, identificação and some processing history informa-
tion;

• Image file (.img): uncompressed voxels whose datatype and ordering are described by the header
file.

(Mayo, 1986-1995)
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all spatial transformations. A 2D image is stored in an *.img file as a continuous data
stream (8 bits/pixel/voxel). Data is stored as M rows and N columns. They are often of
sizes 64x64, 128x128, 256x256. All images of all subjects must be oriented in the same
direction, with the origin set to the same point. This point is used by SPM to align each
fMRI image with the anatomical one.

4.2 Preprocessing

In order to associate an observed response to a particular brain structure, the data is
usually mapped onto an anatomical space. There is no convention about the preprocessing
procedure although some “classical” analysis can be carried out. Some experimenters say
that data acquired in interleaved mode should begin with slice timing correction and then
realignment. Next, coregistration of functional and anatomical images can be performed
followed by normalization and smoothing. If sequential mode is used for scanning, slice
timing can be used just before normalization and smoothing.

4.2.1 Slice Timing Correction

Functional volumes are usually formed one slice at a time but the capture of these
slices is spread out in time over the few seconds of the total volume capture (Donaldson
and Buckner, 2001). Therefore, the BOLD signal is sampled at different layers of the
brain at different time points although it would be good to have the signal for the whole
brain from the same time point.

When fitting a model to each voxel’s time series (at a later step) it is assumed that
the data of each time point was taken at the beginning of the corresponding volume’s
scan time. But, if the points were scanned at even small different times, the model fitting
may not be good. Henson, Büchel, Josephs, and Friston (1999) address this problem and
show the different images that can be acquired if a poor model is assumed. Slice timing
correction is thus used to correct the acquisition time delay between slices of a volume,
which is done shifting the data in time. This can be achieved by applying the Fourier
transform to each voxel’s time series, phase shifting the data and then applying the reverse
Fourier transformation. At the end each time series has the values that would have been
obtained if the slice had been acquired at the same time as the reference slice (Ashburner,
Chen, Flandin, Henson, Kiebel, Kilner, Litvak, Moran, Penny, Stephan, Hutton, Glauche,
Mattout, and Phillips, 2009).
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4.2.2 Image Registration

In imaging neuroscience, signal changes due to any hemodynamic response can be
much smaller than signal changes due to subject motion, particularly at tissue bound-
aries or at the edge of the brain. In this case it is necessary to eliminate systematic
variation before statistical modelling. First, the acquired images must be aligned so that
the information contained in each one may be consistently observed in physical struc-
tures or regions (Figure 4.3). Furthermore, head movement inside the scanner cannot be
completely eliminated (even with the head cage there is some motion), making motion
correction a necessary preprocessing step of the image data analysis. This is probably the
most common application of within-modality registration in functional imaging.

Figure 4.3: Registration applied to images for alignment.

Image registration (or realignment) is about determining a spatial transformation, or
mapping, that relates positions in one image to corresponding positions in one or more
other images (Maintz and Viergever, 1998). The most common algorithms for movement
correction consider the head a rigid object, which is reasonable since the skull is a rigid
body. The algorithm determines the parameters of a rigid body transformation that
optimize some criteria (e.g. sum of squared differences) for matching each image with a
reference image. The reference can be either the first image in the series or an average
over all images being coregistered. There are two classes of registration methods: the
realignment, also known as mono-modal (between images of the same modality) and the
coregistration, known as multi-modal (between different modalities like anatomical and
functional MRI).

For realignment in three dimensions (3D), six parameters are needed to define a rigid
body transformation (three translations: x,y,z and three rotations: pitch, yaw, roll) as
shown in Figure 4.4. For each point (x1, x2, x3) in the image, an orthogonal mapping is
done onto the coordinates of another space (y1, y2, y3). This can be expressed as a matrix
y = Mx:
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
y1

y2

y3

1
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1

.

where m14,m24 and m34 are translation parameters.
Considering φ, ϕ and ψ, the pitch, roll and yaw angles respectively, a rotation matrix

can be defined as the product of three orthogonal matrices each of which corresponding
to the rotation around an axis (Teixeira, 2009):

R =


1 0 0 0

0 cosφ sinφ 0

0 −sinφ cosφ 0

0 0 0 1




cosϕ 0 sinϕ 0

0 1 0 1

−sinϕ 0 cosϕ 0

0 0 0 1




cosψ sinψ 0 0

−sinψ cosψ 0 0

0 0 1 0

0 0 0 1

,

and the translation matrix as

T =


1 0 0 xt

0 1 0 yt

0 0 1 zt

0 0 0 1

.

The homogeneous transformation matrix can then be parameterized as:

M=TR

yaw

roll

pitchx

y

z
yaw

roll

yaw

pitch

pitch

roll

Figure 4.4: Transformations performed on each subject’s image for motion correction.

However, according to Friston, Williams, Horward, Frackowiak, and Turner (1996), in
fMRI time-series, much of the variance can be accounted for by the effects of movement-
related artifacts still left over after the realignment procedure: interpolation artifacts,
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nonlinear distortion due to magnetic field inhomogeneities and spin-excitatory history
effects. They showed that movement-related changes are a complex function of position
and scan to scan movement. Therefore, they suggest an autoregressive-moving average
model for the effects of previous displacements on the current signal.

4.2.3 Coregistration

For studies of a single subject, the sites of activation can be accurately localized by
superimposing them on a high resolution structural image (collected separately) of the
subject (typically a T1-weighted MRI). In this case the functional image is registered to
the structural image. The structural scan may have a different field of view, voxel size
or orientation, so that it will need to be coregistered to the functional images using an
automated matching algorithm. Again, this is a rigid body registration but, because the
structural image is acquired in a different modality to the functional images, there is no
linear relationship between the image intensities and the registration cannot be simply
performed by minimizing the residual sum of squares.

The most recent voxel-similarity measures used for inter-modal registration are based
on information theory. These measures are based on joint probability distributions of in-
tensities in the images, usually represented in the form of 2D joint histograms (Ashburner
and Friston, 2003). After realignment of T ∗2 -weighted images, structural (high resolution
T1-weighted image) and functional (low resolution T ∗2 -weighted) images are coregistered
to maximize the mutual information between these different modality data such as those
shown in Figure 4.5.

The mutual information between images f and g is given by

I(f ,g) = H(f) +H(g)−H(f ,g), (4.1)

where H(f,g) is the entropy of the joint probability distribution

H(f ,g) = −
∫ ∞
−∞

∫ ∞
−∞

p(f,g)log2p(f,g)dfdg, (4.2)

and H(f) and H(g) are the marginal entropies. The mutual information is a measure of the
dependence of one image on another, and can be considered as the distance between the
joint distribution p(f,g) and the distribution assuming complete independence (p(f)p(g)),

I(f ,g) =

∫ ∞
−∞

∫ ∞
−∞

p(f ,g)log2
p(f ,g)

p(f)p(g)
dfdg. (4.3)

When both images are coregistered, this distance is zero and the mutual information
is maximum. With such approach functional activations can be overlaid with individual’s
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anatomy or group-level functional activations with an average structural image.

Figure 4.5: Functional and anatomical images are coregistered to provide a better localization of
sites of activation. On the left, functional images of a subject are displayed. On the right, the
anatomical images.

4.2.4 Spatial Normalization

Spatial normalization is the process of warping images from different participants onto
a standard brain (also known as a template) (Frackowiak, Friston, Frith, Dolan, Price,
Zeki, Ashburner, and Penny, 2003). During an fMRI experiment, data is collected for
several subjects. However, each individual’s brain differ in orientation, size and shape
relative to others in the group. For comparisons, size and shape of all brains need to
be changed to match a standard brain. Images can also be warped from a number of
individuals into roughly the same standard space to allow signal averaging across subjects,
as shown in Figure 4.6. Since it is most probable that different people have different
strategies for performing tasks in the scanner, spatial normalization of the images is
useful for determining what is invariant or not across individuals. In this case, activation
sites can be reported according to their Euclidian coordinates within a standard space, the
Talairach stereotaxic coordinate system (Talairach and Tournoux, 1988) or the Montreal
Neurological Institute reference system (MNI) (Evans, Collins, Mills, Brown, Kelly, and
Peters, 1993).

Normalization usually begins by determining the twelve-parameter affine transforma-
tion to register the brain with the template, e.g., matching the orientation, size and shape
(x -translation, y-translation, z -translation, roll, pitch, yaw, resizing in three dimensions
and three shear deformations). These parameters are shown in Figure 4.7. The tem-
plate is of the same modality as the image, so the optimization is done by minimizing
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subject 1
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subject 3

template

 average
activation

Figure 4.6: Images of three different subjects normalized to a template.

the residual of squares. In this step, variations in position and size are corrected in the
whole image but local features usually do not precisely match. Because of that, nonlinear
deformations described by a number of smooth basis functions (discrete cosine transform)
are introduced to correct for deep differences.

The process is as follows. After realigning and coregistering the data, a mean image
of the scanned series is used to estimate some warping parameters that map it onto a
template that already conforms to some standard anatomical space (e.g. the one described
by Talairach and Tournoux (1988)). Different models can be used for estimation such as
spatial transformation matrix and discrete cosine basis functions. Putting them together
in a Bayesian framework, one needs to find the deformation parameters θ that have the
maximum posterior probability given the data y, p(θ | y), where p(θ | y)p(y) = p(y |
θ)p(θ). As a result, the deformation is found by maximizing the probability of getting
the data, given the current estimate of the deformation is true times the probability of
this estimate being true (Frackowiak, Friston, Frith, Dolan, Price, Zeki, Ashburner, and
Penny, 2003). Matching is done on a coarse scale and because of this, images are smoothed
prior to the statistical analysis in a multi-subject study to allow for superimposition of
corresponding sites of activation.

4.2.5 Smoothing

Smoothing is the operation of convolving image volumes with a Gaussian kernel of
a specified width. At first glance smoothing seems blurring the image and, therefore,

47



4.2. PREPROCESSING

Figure 4.7: Linear transfomrs used for normalization as well as for realignment and coregistration
steps. Images can be translated, zoomed, rotated and sheared to match a template.

degrading the spatial resolution. However, there is an increase of the signal to noise ratio
(SNR) due to the removal of high frequency content that usually accounts for noise.

According to Frackowiak, Friston, Frith, Dolan, Price, Zeki, Ashburner, and Penny
(2003) smoothing makes the data to have a more normal distribution and ensure the
validity of inferences based on parametric tests. Besides, when making inferences about
local effects using Gaussian random field theory, the assumption is that the error terms
are some representation of a smooth Gaussian field. For this purpose smoothness needs to
be greater than the voxel size. At last, in inter-subject averaging, smoothing is necessary
in order to project the data onto a spatial scale where it is easier to see similarities among
subjects. Thus, every data point will be multiplied by a curve in the shape of a normal
distribution defined by the full width half maximum (FWHM), as shown in Figure 4.8.
This is the width of the curve at half maximum and it is usually defined in milimeters.
The FWHM chosen for the smoothing is typically two or three times the voxel size (around
8 mm) (Friston, Ashburner, Kiebel, and Nichols, 2006). An example of this step is shown
in Figure 4.9.

48



4.3. STATISTICAL PARAMETRIC MAPPING

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FWHM

Figure 4.8: A gaussian distribution function with the FWHM highlighted.

Figure 4.9: Coarse scale images after smoothing. On the left original anatomical images. On the
right images after smoothing.

4.3 Statistical Parametric Mapping

In the previous section the preprocessing procedure necessary to prepare the data for
the statistical analysis was explained. Now the statistical parametric mapping and the
issues related to its computation and analysis are introduced.

As already explained in the introductory chapter, fMRI allows repeated measurement
of brain activity at many voxels in the brain. Each voxel represents physiological responses
of a small anatomical part of the brain (Figure 4.10). The analysis itself consists of de-
termining which brain regions are activated following some task and, thus, the differences
between two conditions need to be tested statistically since there is a lot of variability in
subject’s state as well as between subjects (Brett, Johnsrude, and Owen, 2002; Worsley,
2001). The computation and visualization of such statistical tests is known as statistical
parametric mapping.

Statistical parametric mapping concerns the construction of maps that give a value
for a certain statistic at each voxel in the brain used to test hypotheses about functional
imaging data. These maps are modeled as continuous statistical processes to test hypothe-
ses about local specific effects (Friston, Ashburner, Kiebel, and Nichols, 2006). They are
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Figure 4.10: The responses of one point of each slice in the time series is shown as a function of time.
Two conditions are evaluated indicated by the green and blue dashes on the right. After statistical
processing a brighter area can be seen as a statistical parametric map overlaid on an anatomical
volume.

image processes with voxels that are distributed according to a known probability den-
sity function, usually t-student or F distributions (T or F maps). Statistical parametric
mapping refers to the use of the general linear model (GLM) and the random field theory
(RFT) to analyze and make classical inferences about features of the statistical parametric
maps (SPM). The GLM is used to estimate parameters that explain the continuous data
whereas the RFT is used for the multiple comparison problem when one is interested in
the analysis taken in the whole volume simultaneously. It adjusts p-values for the search
volume and plays the same role for continuous data as the Bonferroni correction does for
discrete statistical tests (Friston, Ashburner, Kiebel, and Nichols, 2006). In a multiple
comparison problem, a given α value can be appropriate for each individual comparison,
but not for the whole set of comparisons. In order to avoid too many false positives, the
α value (which is usually around 0.05) has to be lowered. In the Bonferroni correction
this is done by setting the α value to each comparison equal to α/n while the value to the
entire set of n comparisons is α. More about this will be addressed in the next sections.

The null hypothesis for a particular statistical test will probably be that there is
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no change anywhere in the brain. For example, in a comparison of activation against
rest, the null hypothesis would be that there are no differences between the scans in the
activation condition and the scans in the rest condition. This null hypothesis implies
that the volume of Z scores for the comparison will be similar to an equivalent set of
numbers from a random normal distribution. The question is to decide whether some of
the Z statistics in the statistic map are larger (more positive) than it would be expected
in a similar volume of random numbers? If the number of independent observations were
known, a Bonferroni correction could be used. But this is not the case for a smoothed
image. The multiple comparison problem is thus concerned with how high one should set
the Z threshold so that he can be confident that the remaining peak Z scores are indeed
too high to be expected by chance.

4.3.1 The General Linear Model

The basic idea of statistical image analysis corresponds to model the observed physi-
ological responses into components of interest and errors and make inferences about the
interesting effects (Friston, Ashburner, Kiebel, and Nichols, 2006). The statistic can then
be seen as an estimate of the response divided by an estimate of its standard deviation
(t-statistics). The GLM includes simple t-tests on scans according to different conditions,
correlation coefficients between observed responses and boxcar stimulus functions, infer-
ences using multiple linear regression and selective averaging to estimate event-related
responses (Frackowiak, Friston, Frith, Dolan, Price, Zeki, Ashburner, and Penny, 2003).
The design matrix encodes different experimental designs according to the question of
interest. The basic idea of the model is as follows.

The first step consists of fitting a model to a single voxel’s time course. Thus, the
data of interest is a 1D vector of intensity values. A linear model is of the form:

y(t) = βx(t) + e(t); (4.4)

where y(t) is the observed data with intensity values for each time point, x(t) is the model
(for example a boxcar function) and β is the parameter estimate for x(t), i.e. the value
that x(t) must be multiplied by to fit the data. The error term accounts for the residual
error between the fitted model and the data. If there are two types of stimuli (for example
visual and auditory), the model would be

y(t) = β1x1(t) + β2x2(t) + e(t). (4.5)

In this case there are two different model waveforms corresponding to two stimulus time-
courses and two parameters (β1 and β2) to be estimated. Different model waveforms within
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a complex model are often referred to as explanatory variables. For more realistic fitting,
the stimulus function is convolved with the hemodynamic response function (Kiebel and
Friston, 2004).

The general linear model is often equated in a matrix form

Y=βX+ε.

X is known as the design matrix corresponding to the model time courses. An example is
shown in Figure 4.11. Two model time courses are displayed in two columns, for example
visual stimulation on the left and auditory on the right. In this example, the first column
will generate a high first parameter estimate in the visual cortex while the second column
will generate a low second parameter, as the fitting won’t be good for voxels in the visual
cortex. This matrix, then, contains all effects that may have an influence on the acquired
signal. Each column of the design matrix corresponds to some effect of interest built
during the experiment (Smith, 2001).

To convert a parameter estimate into a useful statistic, its value is divided by its
standard error resulting in a T value (t-statistic). If the parameter estimate is low relative
to its estimated uncertainty, the fit is not significant. Thus, T is used to access whether
or not a voxel is activated by a specific stimulation. The parameters β can be estimated
using least squares as follows:

β̂ = (XTX)−1XTY. (4.6)

The fitted data Ŷ are, therefore,
Ŷ = Xβ̂. (4.7)

After parameter estimation statistical inferences are made about the parameters by
using contrasts. For this purpose, contrasts are defined as a linear combination of pa-
rameters. For example in a model with three parameters, one can ask if there is a linear
increase by testing β1 using the combination 1β1 + 0β2 + 0β3 with the contrast vector
[100].

4.3.2 Random Field Theory

To decide whether a specific area is activated, the statistical map needs to be thresh-
olded based on a given level of significance. Consequently, a significance level (p-value)
is defined and applied to every voxel. The problem is that there are thousands of vox-
els in the image and in this case many of them are expected to be activated by chance
even with small p-values. Therefore, the question now is about the volume or family of
voxel statistics. The risk of error that the voxel values could have arisen by chance is
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Figure 4.11: Example of a design matrix using two explanatory variables. Time is on the y axis and
runs from top to bottom. Each column represents a predictor and the values are the results of the
convolution of the box car function with the hemodynamic response function.

the family-wise error rate (FWE). This is a “multiple comparison problem” and it needs
a correction to reduce the number of false positives. Typically a Bonferroni correction is
used dividing the significance level at each voxel by the number of voxels. Obviously the
resulting thresholds will be too small and thus rigorous. The FWE correction is based
on probability rules to set the threshold above which values are unlikely to have arisen
by chance. In an image with n voxels, the probability of each voxel to be greater than a
threshold is α. The probability of all the tests being less than α is (1−α)n. Consequently,
the family-wise error rate (the probability that one or more values will be greater than α
is:

P FWE = 1− (1− α)n. (4.8)

For small α, equation 4.8 simplifies to

P FWE ∼ n.α, (4.9)

and the α for a single voxel level to have the requested P FWE is

α = P FWE/n. (4.10)

As an example, if a FWE rate of 0.05 is desired, then the required threshold for
a single voxel would be 0.05/n, where n is the number of voxels in the image. The
Bonferrroni procedure gives a corrected p-value, in this case 0.05 corrected for the number
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of comparisons, while the uncorrected p-value is 0.05/n (Brett, Penny, and Kiebel, 2003).
Although Bonferroni correction can be used to calculate FWE rates in some functional

imaging analyses, it is too conservative. Most functional imaging data have some degree of
spatial correlation (correlation between neighbor voxels) and the errors from the statistical
model will tend to be correlated among neighbor voxels. Spatial correlation can come from
the way the scanner collects and reconstructs the image, the actual physiological signal
or spatial preprocessing applied to the data such as smoothing (Worsley, 2001). This
means that the number of independent observations in the data is less than the number
of voxels. The problem of using Bonferroni is that it assumes the individual probabilities
being independent and, thus, uses multiplication for the probability of combined events.
Figure 4.12 shows an example where the number of independent observations is difficult
to detect when the data is smoothed.

Figure 4.12: Example of an image smoothed with a FWHM of 10 pixels (Brett et al., 2003).

It is easy to see from Figure 4.12 that smoothing with a Gaussian kernel makes the
problem of calculating the number of independent observation more complex. In this case
Bonferroni correction can not be used and random field theory (RFT) needs to be applied.
The theory of random fields provides a way to adjust the p-value that takes into account
the fact that neighboring voxels are not independent. RFT can be used to find the height
threshold of a smooth statistical map which gives the required family-wise error rate.
The way that RFT solves this problem is by using results that give the expected Euler
characteristic (EC) for a smooth statistical map that has been thresholded. It works as
follows:

• estimate of the smoothness of the statistical map,
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• calculate the expected Euler Characteristic (EC) which is used to find the expected
number of clusters above a given threshold at different thresholds (Frackowiak, Fris-
ton, Frith, Dolan, Price, Zeki, Ashburner, and Penny, 2003),

• calculate the threshold at which we would expect 5% of equivalent statistical maps
arising under the null hypothesis of containing at least one area above threshold.

In a functional image we use the smoothing kernel (FWHM) as a measure of the
number of “independent” elements in the image. These are called resels (RESolution
ELements), first introduced by Worsley, Evans, Marrett, and Neelin (1993). A resel is a
block of pixels that is the same size of the FWHM. Hence, in a thresholded image, the EC
can be used to get the probability of having one or more blobs with Z score greater than
the critic value Zt. The expected value of the Euler characteristic is the α value. Knowing
the number of resels R and with a Z score threshold Zt, the EC can be calculated using:

E[EC] = R(4 ln 2(2π)−
3
2Zte

− 1
2
Z2

t ) (4.11)

This equation gives the probability of having one or more blobs where Z is greater
than Zt and can be used for thresholding.

4.3.3 The False Discovery Rate

There is another solution for the multiple comparison problem. Instead of controlling
the chance of any false positives, the false discovery rate (FDR) controls the expected
proportion of false positive among those voxels that show a significant result (Genovese,
Lazar, and Nichols, 2002). This is a less stringent correction than FWE while letting
some false positive detections.

Let N denote the total number of voxels being tested. Each voxel can be classified
into one of four types, depending whether or not the voxel is truly active an whether or
not it is declared active, as shown in Table 4.1.

Table 4.1: Classifications of voxels in N simultaneous tests.

Declared Active Declared Inactive Total
Truly Active Naa Nai Ta
Truly Inactive Nia Nii Ti

Total Da Di N

The FDR is given by the ratio

FDR =
Nia

Nia + Vaa
=
Nia

Da

, (4.12)
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that is, the proportion of declared active voxels which are false positives. The procedure
for the calculation consists of computing the uncorrected p-value for each voxel and order
them from the smallest to the largest. To control the FDR at level α, find the largest k so
that Pk < αk/N . This will be the corrected p-value. In this way, the resulting threshold,
corresponding to the value of Z for Pk, depends on the amount of signal in the data,
not on the number of voxels or smoothness. More information can be found in Worsley
(2001).

4.3.4 The Small Volume Correction

When the statistics are carried out for the whole brain because nothing is known
about an especific region of interest, the Euler characteristic does not depend on the
shape of the object. However, factors such as volume, surface area and diameter of the
search region influence the expected value of the EC, as they dictate how many resels
the volume will contain. When making inferences about region activations in SPMs, if
there is some hypothesis where the effect may be expected, a correction for the entire
brain is not appropriate and a p-value that has been appropriately corrected based on the
shape of the region must be used. To make inferences about regionally specific effects,
the SPM is thresholded using some height and spatial extent thresholds. The p-values
can be corrected based on the number of activated voxels comprising a particular region
(cluster level inferences) or each peak within that cluster (peak level inferences).

4.3.5 Random Effects Analysis

The last step in a statistical mapping is the random effects analysis. It is very common
to run an experiment several times with many subjects. This allows the comparison
and generalization of conclusions to the population from which the subjects were drawn
(Frackowiak, Friston, Frith, Dolan, Price, Zeki, Ashburner, and Penny, 2003). Random
effects analysis is a statistical method to combine results across sections or subjects. In
an experiment, a subject’s response will vary from trial to trial. Further, this response
will vary from subject to subject. These two sources of variability, within-subject and
between-subject must be taken into account when making inferences about the population
(Friston, Ashburner, Kiebel, and Nichols, 2006; Smith, 2001).

In statistical terminology, if one wishes to take the variability of an effect into account,
the effect must be considered as a “random effect”. Subject specific effects are estimated
in a first level analysis and the contrasts of parameter estimates are then reentered into
a GLM of a second-level SPM analysis (Penny and Holmes, 2004).

The difference relies on the fact that in the fixed effects analysis, the error variance
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is estimated on a scan-to-scan basis assuming that each scan represents an independent
observation. In this case the degrees of freedom are essentially the number of scans (Fris-
ton, Ashburner, Kiebel, and Nichols, 2006). In random effects analysis, the appropriate
error variance is based on the activation from subject to subject where the effect consti-
tutes an independent observation and the degrees of freedom fall according to the number
of subjects. Therefore, which analysis should be done actually depends on the experi-
menter’s question having in mind that although more conservative, random effects allows
the inference to be generalized to the population from which the subjects were selected.

4.4 Summary

This chapter addressed the necessary steps to assess signal changes related to brain
activation in a functional imaging study. The preprocessing constitutes an important step
of this process and was discussed here. Moreover, the statistical parametric mapping used
to make the statistical inferences about localized activation was presented.
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5
Methodology

5.1 Experiment Design

The experiment consisted of simultaneously recording EEG and fMRI of 11 subjects
(10 males) in an auditory frequency discrimination learning task. Subjects were 22 to 40
years old, with no auditory or visual complaints. Informed consent was obtained from
each subject before the experiment, in accordance to the ATR Human Subject Review
Committee. During the task, auditory and visual stimuli were delivered interleaved in an
oddball paradigm.1 The visual stimuli were used to control attention to the task. The
task consisted of detecting a deviant stimulus on a sequence of standard stimuli. Each
subject responded whether or not there was a deviant in the sequence by pressing the
right or left bottom.

5.1.1 Auditory Stimulus

Each auditory stimulus was composed of five tones (400 Hz, 600 Hz, 700 Hz, 800 Hz
and 1000 Hz) with a total duration of 150 ms (10 ms of rise and fall times). These pure
sinusoids were summed to compose a complex sound used in the experiment (Figure 5.1).
These frequencies were defined based on the frequency response of the tube phone used

1An oddball discrimination paradigm involves responding to stimuli that are dissimilar to the majority
of stimuli presented.
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to deliver the stimuli (Figure 5.2). The tube phones are MRI compatible and provides a
fairly flat signal until around 1 kHz. The deviant stimulus differed from the standard one
in the frequency of the fourth tone. Frequency deviations varied from 1Hz to 40 Hz with
steps of 1 Hz. Stimuli consisted of sequences of five sounds with random interstimulus
interval varying from 450 to 500 ms. Each sequence had at most one deviant sound in
position 2, 3, 4 or 5 as shown in Figure 5.3. Stimuli were delivered binaurally through a
plastic tube of 6.10 m attached to foam earplugs (ER-30 tube phone, Etymothic Research)
inserted into the subject’s ear. The tube introduced a constant delay of 64 ms in sound
presentation to the ears.
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Figure 5.1: Auditory stimulus used in the experiment. Complex auditory stimulus delivered to the
subject, with 150 ms length and 10 ms rise and fall times.

Figure 5.2: Frequency response of the tube phone used to deliver the stimuli (after Etymotic
Research, 2002).

150ms

475ms 450ms

standard standard standard standard

deviant

Figure 5.3: Auditory stimuli delivery. Auditory stimuli consisting of five complex sounds. The arrow
indicates the deviant stimulus in position four.
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5.1.2 Visual Stimulus

Visual stimulus followed a similar paradigm. Standard stimulus consisted of a white
rectangular horizontal bar positioned in the center of a screen (40 cm from the eyes,
viewed through a mirror). The deviant bars were also positioned in the center but rotated
clockwise on steps of 0.2 degrees until 12 degrees as shown in Figure 5.4. Stimuli were
delivered in sequences of five separated by 450 to 500 ms. As in the auditory stimulus
presentation, in each sequence of five stimuli there was only one deviant bar and it was
never in the first position.

(a) (b)

Figure 5.4: Visual stimulus used on the experiment. (a) Horizontal bar used as standard stimulus.
(b) A bar rotated clockwise (deviant stimulus).

5.1.3 Stimuli Delivery: the Staircase Method

In a sequential experiment the course is determined by the preceding stimuli and
responses, also known as an adaptive procedure. Up-down methods are examples of
adaptive techniques that have received a lot of attention in psychoacoustic experiments.
Adaptive techniques are widely used in psychoacoustics for rapid measurement of pre-
determined points in the psychometric function (Levitt, 1971). In a detection task they
provide a method of estimating the signal level L that is required for the subject to obtain
a particular proportion of correct responses Pc. In these methods the level of the signal is
determined on each trial based on the responses of the subject on previous trials. Whether
or not to change the signal level on a given trial is determined according to some previous
rules which characterize the adaptive technique. The most used rules for changing the
levels of the signal are the one-up one-down (1 step), the one-up two-down (2 steps) and
one-up three-down rules (Paffen, Verstraten, and Vidnyánszky, 2008; Kollmeier, Gilkey,
and Sieben, 1988; Levitt, 1971). In the one-up one-down method the stimulus level is
decreased (or increased) after a positive (or negative) response as shown in Figure 5.5(a).
When the stimulus level changes from decreasing to increasing or vice versa, the value at
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which that change occurs is labeled a reversal. To finish the method it is necessary to
define the maximum number of reversals allowed. The increments by which the stimulus
is changed are known as step.

The one-up two-down staircase procedure was used in the present study as a forced-
choice tracking method to track variations in auditory (or visual) detection. In this method
the stimulus level is decreased after two positive responses or increased after one negative
response in each trial, as shown in Figure 5.5(b). For positive response it means detecting
a deviant in a sequence of five sounds or five bars. The amount of reduction or increase
is determined by the step size. The end is reached after a predefined number of reversals
or number of trials. Threshold estimation is done using the arithmetic mean of reversal
values.
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(a) One-up one-down staircase procedure. The stimulus level is decreased after
one positive response (+) and increased after one negative response (O).
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(b) One-up two-down staircase procedure (two alternative forced choice). The
stimulus level is decreased after two positive responses (+) and increased after
either a negative response (O) or a positive response followed by a negative
one in the next trial.

Figure 5.5: Examples of staircase procedures.“+” represents positive response and “O” represents
negative response.

At first, the staircase was used in the behavioral test to find in which level the deviant
stimulus would start for each subject. To avoid the subject guessing which stimulus comes
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next, two staircases were implemented and run pseudo-randomly. The final level (the
level that would be used to start the main experiment) was an average of both results.
Following recommendations in Garcia-Perez (1998) the number of reversals was 15. A
variation of the standard procedure was done halving the step size at each “down” run.
This increased convergence without loosing accuracy. The starting values of frequency
deviations for the two staircases used in the behavioral test were 18 Hz and 19 Hz and
for the visual deviation it was 4 degrees for both staircases.

5.1.4 Behavioral Test

Frequency discrimination ability was tested behaviorally in a sound attenuation booth
with attenuation level of 40 dBA. To deliver the sounds a notebook IBM lenovo 2.33 GHz
was used with stereo headphones Sony MDR-CD180. The sounds were delivered on
a pseudo-random sequence based on the one-up two-down double-interleaved staircase
procedure described above. Subjects had to press the keyboard (/1/ or /2/) to indicate
whether or not a deviant sound was present in the sequence. The ability to determine
small variations in clockwise rotation of a rectangular bar from horizontal position was
also tested behaviorally. The response was recorded in the same manner as in the auditory
test. In both tests no feedback was sent to the subject. The discrimination level obtained
in the behavioral test was used as a starting point for the staircase in the MRI experiment.

5.1.5 3D Scanning

After the behavioral test, the subject was placed with a 64 electrode cap as shown in
Figure 5.6. The electrodes were pin type sensors placed inside a plastic holder mounted
on the cap. All electrodes were made of pure sintered Ag/AgCl. The Ag/AgCl electrode
is very well suited in biology for current-carrying applications (Grimmes and Grottem,
2000). It is usually made of silver covered by an AgCl layer. In general, products are
considered safe in MRI if they are non-metallic (such as plastic or silicon based) or non-
ferromagnetic (not including iron, nickel or cobalt). A three dimensional (3D) digitizer
(FastScan hand-held laser scanner) was used to acquire subject’s head shape and each
electrode’s position for the source localization procedure. An example is shown in Figure
5.7. The scanning rate is approximately 50 lines/second and the line-to-line resolution is
1 mm at 50 mm/second.

5.1.6 The Setup

The experiment setup is shown in Figure 5.8. A control unit was used to send and
receive data from the scanner. Stimuli were delivered through an optic fiber to the MRI
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(a) Cap with 64 electrodes (including one ECG and one EOG) used in the experiment and
how it is fitted to the subject’s head.

(b) Electrodes montage on a 64 electrode
cap. Mastoid electrodes: TP9 and TP10.

Figure 5.6: 64-channel cap with standard layout.

Figure 5.7: Scanned face of a subject with electrodes and markers in the fronthead and ears.
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room. The EEG recording system was also connected to the amplifiers via an optic cable.

Figure 5.8: The experiment setup.

5.1.7 The Main Experiment: a Sparse Design

For the electrophysiological and functional measures the stimuli were delivered accord-
ing to the staircase procedure used in the behavioral test, although in the main experi-
ment only one staircase was used. For stimulus delivery we used Presentation Software
(www.neurobs.com), a stimulus delivery and experimental control system for neuroscience.
The stimulation protocol and hardware communication were implemented using the pre-
sentation control language (PCL). Auditory stimulation was delivered binaurally through
a plastic tube attached to foam earplugs using the commercial system ER-30 Etymotic
Research that is MRI and EEG compatible. A sparse image acquisition technique was ap-
plied to prevent contamination of the BOLD response by the acoustic noise of the scanner
and to limit the epochs of contamination of the EEG by the gradient switching during
the image acquisition. Functional MRI data were acquired using a Shimadzu Marconi’s
Magnex Eclipse 1.5T PD250 scanner. Functional data consisted of T ∗2 -weighted, gradient
echo, echo-planar imaging sequence (TE=48ms and flip angle 90 ◦). During each scan,
165 volumes were acquired over 16.5 minutes. The repetition time (TR) was 6 seconds
and the scanning time (TA) was 2 seconds. Stimulus presentation was made during the
“silent” 4 second period. Each volume was composed of 20 axially oriented contiguous
slices with 4x4x5 mm voxel dimensions and 1 mm gap between slices. fMRI data from the
first two volumes of each run were discarded to allow for magnetic saturation effects. At
the end of the experiment a T1-weighted structural scan was acquired to align functional
data across multiple scanning runs to a subject’s reference volume.
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The experiment consisted of two types of task conditions: auditory and visual. Trials
of a single condition were grouped together in blocks of 18 sequences of ten stimuli (five
auditory and five visual) lasting 120 seconds in total. Auditory and visual stimuli were
interleaved in a sequence separated by a pseudo-random interval ranging from 150 to
175 ms. Each block started with a visual instruction in the center of the screen 40 cm
far from the subject’s eye. Based on what was shown (<Picture of a ear for auditory
condition> or <Picture of an eye for visual condition>) the subject had to pay attention
to the auditory or visual stimuli. Each instruction lasted four seconds on the screen. Task
order was counterbalanced across scanning runs and subjects. Stimuli were delivered
during the four seconds of silence when there was no scanning. Before each group of
five auditory and five visual stimuli there was a baseline ranging from 650 ms to 800 ms.
After each sequence of 10 stimuli (visual and auditory) participants were asked to indicate,
by pressing a button with the right hand (after a green cross appeared on the screen),
whether or not a deviant was present in the sequences. A visual feedback (positive or
negative) was sent after each response. If no response was detected after 1500 ms, a
negative feedback was sent. There was a rest condition between each instruction and the
start of the stimuli as well as at the end of each block. Figure 5.9 shows a scheme of the
experiment. The whole experiment consisted of four runs of eight blocks each (four blocks
of auditory attention and four blocks of visual attention), resulting in 144 trials acquired
per condition per run. Each run lasted 16min30s. In the experiment, non-attention to
stimulus was maintained drawing the subject’s attention to the other modality (visual or
auditory).

It is important to say that a decision was made when designing this experiment.
The main objective was to investigate learning, and because of that it was important
to use a variable-ISI design as it seems more “random” to the subjects. With a fixed
ISI, anticipation effects can become quite substantial in subjects just before a stimulus
appears, as they catch on to the timing of the experiment. However, the trade-off is a
loose of detection power. Since each point of the HRF will be sampled fewer times there
will be less confidence in the accuracy of any given estimate. Another issue was the choice
of a sparse design to reduce the acoustic noise contamination in the cognitive state of the
subject. Nevertheless, the experiment becomes long and the last run can reflect effects of
fatigue.

5.1.8 Electroencephalography Recording

A 64-channel EEG was registered using the fMRI-compatible BrainVision recorder
system (Neurobs) in a continuous mode using the BrainCap-MR 64 electrode cap (Brain-
Products, Munich, Germany). Potentials recorded at each site were referenced to the
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Figure 5.9: Scheme of the experiment. Auditory and visual stimuli are delivered interleaved.

center of the head (Cz). Eye movements were monitored with an electrode below the left
eye. Electrocardiographic activity (ECG) was also recorded simultaneously. Electrode
resistance was kept below 5kΩ, filling the holder with gel to reduce skin conductance.
Data were sampled at 5 kHz per channel. The stimulus delivery system sent pulses to the
ERP recorder system to tag the EEG at each stimulus and response event.

The amplifier

We used a shielded, non-magnetic, battery operated amplifier which was placed inside
the scanner close to the subject’s head. The short length cables minimizes loop current
between electrode cap and amplifier. From the amplifier, the digitized signal was sent via
optic cable to the USB interface in the control room. The specifications can be seen in
Table 5.1. A 16 bits resolution is important to record signals without clipping and still
resolve activity down to 0.5 mV approximately.

66



5.2. DATA PROCESSING

Table 5.1: A single amplifier specification.

Amplifier
Number of channels per unit 32
Bandwidth (Hz) 0.016 to 250
High pass filter (Hz) 0.016
Input noise (µVpp) <1
Input impedance (MΩ) 10
A/D-C (bit) 16
A/D rate (Hz) 5000
Max. sampling frequency (Hz) 5000
Resolution (µV) 0.5
CMRR (dB) >90

5.2 Data Processing

Data processing consists of five steps. First, artifacts are removed from the EEG mea-
surements. In sequence, fMRI was preprocessed to be used in the statistical parametric
mapping. The section ends with the preparation of the data for the source localization
procedure and the estimated current peak analysis.

5.2.1 EEG Artifacts Removal

As stated by Formaggio, Storti, Avesani, Cerini, Milanese, Gasparini, Acler, Mucelli,
Fiaschi, and Manganotti (2008), a major problem in recording EEG during fMRI scanning
is the removal of artifacts that arise from interactions between the subject, EEG electrode
leads and the magnetic fields in the scanner. Movement of the leads within the static field
of the magnet induces an electromotive force in a wire loop according to Faraday’s law.
This movement is also related to heart pulse that produces a ballistocardiographic artifact
in the EEG which can be of the same order of magnitude of the brain signals. However,
the problem here is that the artifacts do not have the same duration and shape of the ECG
pulses as it usually happens when the subject is not inside a MRI scanner. Moreover, the
switching magnetic fields applied during image acquisition may induce an electromagnetic
force in the electrode leads and in a wire loop. This artifact is very large and obscures
completely the EEG. The processes to remove these artifacts are described below.

Scanner gradient artifact removal

The artifacts generated by the switching of the movable gradient fields and by the
radio frequency pulse generated in the scanner bore are expected to be time invariant
since the generation of the MR and fMRI images demands that these gradient fields are
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temporally accurate.
The Vision Analyzer algorithm (BrainProducts, Munich, Germany) incorporates an

approach proposed by Allen, Josephs, and Turner (2000). This software was chosen rather
than MATLAB-based plug-in fMRI Artifact Slice Template Removal (FASTR, Center for
Functional MRI of the Brain, Oxford, UK) because of computational costs. According to
Ritter, Becker, Graefe, and Villringer (2006) both methods lead to similar results. The
algorithm offers template drift detection (TDD) and subsequent template drift correction.
Template jitter is caused by imperfect synchronization between the EEG amplifier and
the scanner clock. TDD finds temporal shifts between the average artifact template and
the individual artifact. It adjusts the start of the scan marker such that the drift is
shorter than one sampling interval. With the use of the drift information, a predefined
number of different average-artifact templates is calculated. To each individual artifact is
assigned one template. Artifact correction is obtained by subtraction of the corresponding
template.

Although the scanner outputs a TTL signal (i.e. 5 V) at the time it starts a new slice
or volume acquisition (which is recorded by the amplifier), the markers are not always
set correctly at the same time point within the volume’s time course. So, the first step
consists of shifting the start markers so that the onset of each fMRI volume coincides with
the time point at which the EEG data point is being acquired. In order to correct for the
exact time of the onset of each artifact the volume start markers are shifted. However,
they need to be shifted in increments smaller than the 200µs intervals given by the original
5kHz sampling rate. To achieve this, the data were upsampled to 50kHz using a spline
interpolation. After this there are sufficient samples to do the markers alignment.

Most of the time the gradient does not begin at the same time of the marker the
scanner sets. In practice scanners can set the marker some time after the gradient switch
starts. Because of that, data were segmented from -25 to 20 ms around the volume the
scan markers just aligned and the time before the marker during which the data was
affected by the gradient activity was measured. In the present data, the gradient activity
started approximately 20 ms before the marker. As the real TR output from the scanner
was 6050.1 ms, the correction period became -20 to 6030.1 ms. The baseline period was
set as the entire TR to avoid different DC offsets. After scanned intervals that would
be used to build the template were selected. The first volume was included although
some authors prefer dropping the initial volumes to avoid dummy scans being used in
the calculation. Five volumes were used to build the initial correction template and the
inclusion of more volumes depended on a correlation criteria (r>0.975). This method of
template selection is in accordance with the results shown in Ritter, Becker, Graefe, and
Villringer (2006). In the final step data were downsampled to 250 Hz and lowpass filtered
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to 50Hz. Figure 5.10 shows a data set with and without gradient artifact.

Ballistocardiogram artifact removal

The data free of gradient artifact was visually inspected and highly contaminated tri-
als were eliminated. The remaining trials were segmented in blocks of 3725 ms (650 ms
of baseline period) and all epochs (trials) were concatenated before the removal of base-
line period’s mean from each epoch (trial). Subsequently, ICA was conducted over the
epoched and baseline removed data (650 ms prior to and 3075 ms after stimulus onset) in
order to extract ballistocardiogram, ocular and movement artifacts (Jung, Makeig, and
Westerfield, 2002; Callan, Callan, Kroos, and Vatikiotis-Bateson, 2001; Jung, Makeig,
Humphries, Lee, and Mckeown, 2000).

ICA was originally proposed to solve blind source separation on linear mixtures x
of sources u that are temporally independent and spatially fixed. Its first applications
date back to 1986 when Heuralt and Jutten (1986) introduced an adaptive algorithm in a
simple feedback architecture to separate unknown independent sources. The method has
wide application on speech processing systems, telecommunications and medical signal
processing. The objective of ICA is to recover independent sources given only sensor
observations that are unknown linear mixtures of the unobserved independent source
signals (Lee, Girolami, Bell, and Sejnowski, 2000). Eight years later, Comon (1994)
elaborated the concept of independent component analysis and proposed cost functions
related to the approximate minimization of mutual information between the sensors. Bell
and Sejnowski (1995) working on an information theory perspective demonstrated the
separation and deconvolution of mixed sources using their infomax learning rule.

In EEG analysis, maximizing the joint entropy of the output of a neural processor
minimizes the mutual information among the data projections. The rows of the input
matrix x are the EEG signals recorded at different electrodes, the rows of the output
matrix u=Wx are time courses of activation of the ICA components, and the columns
of the inverse matrix W−1 give the projection weights of the respective components onto
the scalp sensors. Cleaned EEG signals can be derived as x′

= (W−1)u′ , where u′ is the
matrix of activation waveforms, u, with rows representing artifact components set to zero
(Jung, Makeig, Humphries, Lee, and Mckeown, 2000). In ICA decomposition, the inde-
pendent component filters are chosen to produce the maximally temporally independent
signals available in the channel data. These are information sources in the data whose
mixtures have been recorded at the scalp channels via volume conduction. For ICA usage
the mixing process is considered passive and linear but it still obscures the functionally
distinct and independent source contributions. These information sources may represent
synchronous or partially synchronous activity within one or more cortical region (regions)
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(a) Segment of an EEG data with gradient artifact.
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(b) Segment of an EEG data after gradient artifact removal.

Figure 5.10: Segments of EEG data with gradient artifact and after artifact removal.
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and activity from non-cortical sources (e.g., potentials induced by eyeball movements or
produced by single muscle activity, line noise, etc.).

In the present work the runica decomposition was used (Makeig, Bell, J., and Se-
jnowski, 1996) which implements the logistic infomax ICA algorithm proposed by Bell
and Sejnowski (1995). This algorithm is part of the EEGLAB toolbox (Delorme and
Makeig, 2004). The learning batch size was 66, and initial learning rate was 0.0001.
This rate was gradually reduced to 4x10−8 during 95 training iterations. To determine
the independent components (IC) that correspond to sources of artifacts, cross correla-
tion analysis between each IC and EOG and ECG channels recorded simultaneously with
neuronal data was performed (a component was arbitrarily considered an artifact if the
correlation coefficient was greater than 0.3).

Other sources of artifacts

Slow baseline trends caused by the return to baseline after an artifact were rejected as
well. These abnormal trends (linear drifts) cannot be rejected by averaging. To remove
them, a first order polynomial calculated by linear regression was fitted to each section
of the EEG. The data (in the components domain) is fitted to a straight line with a
maximum acceptable slope (in our case 0.5 std.dev/epoch). In this case it corresponds to
an epoch in which the straight line fit value might be 0µV at the beginning of the trial
and 50µV at the end. The minimal fit between the EEG data and the line with minimum
slope is determined using a standard R-squared (R2) measure. Candidate epochs to be
rejected should have R2 greater than 0.2.

Another criteria was the detection of high amplitude data. As a threshold we defined
a value equal to 10 times the mean of all components. The selection of the independent
components to be removed was based on the three criteria described above and on the
visual inspection of scalp maps as shown in Figure 5.11. The scalp map shows projections
of the ICs on the electrode sites. Given the matrix x = (W−1)u which relates the recorded
EEG signals to the sources of activation, the columns of W−1 are weight vectors which
show the relation between the EEG data and the ICA component. The rows of the weight
matrix represent the EEG channels location and its columns represent the ICs. Therefore,
the value of the component can be used as an intensity value to fill the channel location
on the scalp as illustrated in Figure 5.11. A typical example of ocular activity can be seen
in component 1, while muscular artifact is highly localized as in components 58 and 59.
These IC patterns were observed for component removal. After selecting the components
relative to artifacts, they were subtracted from the EEG data.
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Figure 5.11: Topographical maps of the independent components.
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5.2.2 fMRI Data Processing

SPM is a MATLAB package designed for the analysis of brain imaging data sequences
(Ashburner, Chen, Flandin, Henson, Kiebel, Kilner, Litvak, Moran, Penny, Stephan,
Hutton, Glauche, Mattout, and Phillips, 2009). As described in Chapter 4 the first
step in a statistical parametric mapping of functional data is the preprocessing of the
data. The first two volumes of each session were discarded to avoid data with unstable
magnetization.

Preprocessing

Slice Timing Slice timing was done specifying the acquisition order (top to bottom,
continuous), TR = 6 s and TA. In the case of a sparse design,

TA = scan time− scan time
number of slices

. (5.1)

where number of slices=20 and actual scan time TA=1.90 s. Slice number 10 was chosen
as the reference slice. This is the midpoint of the 20 slices acquired per volume. Because
top and bottom images show less structures they were not selected to be the reference.

Realign and Unwarp Realign is for motion correction. It works in two stages: the
first files from each session are realigned to the first file of the first session and then
within each session, the second, third and other images are realigned to the first image.
After the whole process, the first image in a time series is used as a reference scan to
which all subsequent scans are aligned. The unwarp operation was also used to model the
residual movement related variance that can be explained by a model for susceptibility-
by-movement interactions. Susceptibility artifacts are a consequence of the disturbances
of the field caused by the presence of an object in its neighborhood. It is a property
of the material. The varying field strength will affect different materials in a different
way. These disturbances cause spatial misplacement of the RF signal. SPM assumes
that the way deformations change when the subject changes his position is known (these
are the derivatives of the deformations with respect to subject position). It means that
for a given time series and a given set of subject movements it would be possible to
predict the “shape changes” in the object and the subsequent variance in the time series.
In this case the inverse problem can also be formulated: given the observed variance
(after realignment) and known (estimated) movements, it is possible to estimate how
deformations change with subject movement. The deformation field is formulated as
small vectors at each position in space showing the direction that a particular location
has been changed. The derivative is then the rate of change of these vectors with respect
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to subject movement and is used to remove the variance caused by the susceptibility-by-
movement interaction. Realignment produces the estimated parameters: the columns are
the estimated translations in mm (“right”, “forward”, “up”) and the estimated rotations in
rad (“pitch”, “roll”, “yaw”) that are necessary to shift a volume, as shown for the subject
in Figure 5.12.
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(b) Estimated rotation in rad.

Figure 5.12: Estimated movement parameters of one subject during the first session of the experi-
ment.

Coregistration In order to see the locations of the activations in the subject’s brain,
it is necessary to coregister functional data to the high resolution structural image. This
step also improves the later stage of normalizing to a template. Thus, coregister was used
to align the mean functional volume (produced by the realignment step) specified as the
target image to the higher resolution MRI specified as the source image. Since there is
no deformation (as the images come from the same brain), coregistration is performed
finding the three translations and three rotations parameters. It maximizes the mutual
information between two images:

I(f ,g) =
∑
y∈f

∑
x∈g

p(x, y)log

(
p(x, y)

p(x)p(y)

)
, (5.2)

where p(x,y) is the joint probability of images f an g and p(x) and p(y) are the marginal
probabilities.

After alignment the two images have the same origin and axes, as in Figure 5.13.

Normalization Spatial normalization is the process of warping images from all the
individuals into the same standard space to allow signal averaging across subjects. Once
this step is completed, it is possible to refer to a given location in any single brain in-
dependently of the gyral anatomy, for example. The most used space in SPM is the
MNI-Talairach referential and is defined by a T2 template image (ideal model) as shown
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(a) Structural image. (b) Functional image.

Figure 5.13: Coregistration of anatomical and functional images. The crosshair is at the same point
in both images.

Figure 5.14: MNI Template with voxel dimensions 2x2x2 mm.

in Figure 5.14. This work used the T2.mnc anatomical image available in SPM2 package.
All the other images are normalized to this reference. The algorithm works by mini-
mizing the sum of squared differences between the images and the template. It uses an
affine transformation with 12 parameters (three translations, three rotations, three scal-
ings and three shears)(Ashburner and Friston, 1997). Images were spatially normalized
by resampling every 3 mm using sinc interpolation.

Smoothing Functional images were convolved with an isotropic Gaussian kernel of
8 mm width. Smoothing is applied to compensate for residual between-subject variability
after normalization as well as to permit application of Gaussian random field theory at
the statistics inference step.
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Model specification and parameter estimation

After preprocessing, the model for the statistical analysis was defined. First, the design
was specified through the design matrix. This matrix of explanatory variables is made up
of column vectors which predict physiological responses to different task conditions. Three
sessions were specified with 163 scans each and two conditions: auditory and visual. Onset
vectors with the onset times of each type of stimulation being studied on each condition
were specified.

• standard auditory stimulus during auditory task;

• standard auditory stimulus during visual task;

• deviant auditory stimulus during auditory task (attention condition);

• deviant auditory stimulus during visual task (non-attention condition);

• rest condition (periods of no stimulation).

An onset vector is a vector with the onset time (seconds) of each stimulus. This is
the vector to be convolved with the impulse response function. The standard stimulus
position was selected based on the position of the deviant stimulus but in random order.
In this case we assure we have the same amount of deviants and standards. The onsets
for rest periods were selected from the two rest intervals in the experiment. For the first
interval we took a random number after the instructions interval and for the second rest
period we took a random value after the block of 18 stimuli. The design matrix for this
experiment can be seen in Figure 5.15. Each column of the design matrix is the predicted
fMRI signal that a voxel would show to a particular stimulus. Each row is a moment
in time, with one row per MRI image-acquisition. Thus, reading down a column gives
the response through time to a particular stimulus. As an example, in our case, the
first column of the design matrix would be the vector “predicted signal that a standard
auditory stimulus would evoke” and the second column would be the vector “predicted
signal that a deviant auditory stimulus would evoke”. Given a design matrix X and an
fMRI signal measured from the scanner y, the estimated parameter β̂ is given by

β̂ = (XTX)−1XTy. (5.3)

The individual subject analyses, low-frequency drifts or other physiological influences
(e.g. changes in basal metabolism) were accounted for by using a high-pass filter (con-
structed by discrete cosine basis functions) in each voxel’s timecourse. The cutoff param-
eter used was 128 s. Although it might be too conservative compared to the short trial
interval, we have seen that this value is an arbitrary part of the process.
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Figure 5.15: First level design matrix showing 3 sessions of one subject. The five columns for each
session of the matrix represent the parameters estimated for the tested conditions. The last three
columns are mean values of the whole brain activity.

In order to interrogate the results, we need to define the contrasts we want to analyze.
Contrasts are conditions based on the parameter estimates of the predictor vectors created
in the design matrix. t-tests were used to look at either positive or negative differences
between parameter estimates. For example, when testing whether attention condition has
increased activity compared to non-attention condition, for one single subject we have
the representation shown in Figure 5.16. This contrast asks the question of which voxels
showed increases in the first condition relative to the second. We also need to specify the
p-value for the statistics test. Our questions were concentrated on the auditory task and
consisted of:

• Where is auditory activation located?

• Where is visual activation located?

• What voxels showed increased activation in the auditory relative to visual condition?
(testing attention)

• What voxels showed increased activation related to learning?

With these questions in mind we tested auditory and visual activations using the
respective conditions against rest. To localize brain regions involved in the attentional
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Figure 5.16: Design matrix of one subject and its weighted contrasts. Condition 3 (attention) is
tested against condition 4 (non-attention) in each session. The contrasts at each session are weighted
by the subject’s performance in this session.

demands, activations in the attended and unattended conditions were directly contrasted.
In addition, a measure of performance change indicating learning was assessed using the
difference between beginning and ending thresholds for each session as a regressor in the
design matrix.

Random Effects Analysis

In studies where it is desired to make inferences about an effect that extends to the
population from which the subjects were drawn, it is necessary to employ a statistical
model that explicitly accounts for multiple comparisons. These are called random effects
and require two stages of analysis: analysis of individual subjects (intra-subject variability
or fixed effects), as shown above, and an analysis of the group (inter-subject variability or
random effects). The contrast images created in the first stage are used as the input for a
between-subject variability analysis. To perform the t-test with multiple comparison we
select the same contrast images for each subject. These analysis were done for 11 subjects.
At last, we wanted to investigate the changes related to performance during the learning
experiment. First, a mask was done with the union of two masks: contrast image of the
auditory deviants stimuli against rest and the contrast image of the visual deviant stimuli
against rest (Figure 5.17). Then, we ran the random effects analysis with the attention
contrast (deviant auditory against deviant visual using the difference between consecutive
sessions’ threshold) under the mask created in which the design matrix was weighted with
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Figure 5.17: Mask used for the assessment of learning.

each subject’s overall gain (difference between threshold of the last and first sessions).
The results of the statistical inference appear as significant activated voxels overlaid

onto a segmented standard T1-weighted brain used for spatial normalization (MNI tem-
plate).

5.2.3 MRI Data Preparation for Spatial Localization

The source localization theory is detailed in Appendix A. The first step of the source
localization procedure implemented in VBMEG (variational Bayesian MEG source esti-
mation) was the coregistration between the MRI data (anatomical T1 image) and the
EEG data. Cortical surface extraction, mesh generation and coregistration of electrode
locations with scalp surface are the main steps of head modeling and will be detailed in
this section.

Cortical surface extraction

Each subject’s individual cortical surface was reconstructed from structural MRI data
using Freesurfer, an open source software from the Martinos Center for Biomedical Imag-
ing designed for the study of cortical and subcortical anatomy (Dale, Fischl, and Sereno,
1999). The input of the segmentation step was a 3D saggital T1-weighted MR image.
A polygon cerebral cortex model of the boundary between white and gray matter was
constructed for each subject as well as the pial surface. These surfaces were used later
to constrain the solutions to the inverse EEG problem. First, intensity variations due
to magnetic field inhomogeneities were corrected and a normalized intensity image from
a high resolution anatomical T1-weighted was created. In a skull-stripping procedure,
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extra cerebral voxels were removed and the resultant image was segmented based on the
geometric structure of the gray and white matters. The skull was stripped using a de-
formable template model. Voxels were then classified as white matter or not based on
intensity and neighbor constraints. For the segmentation process, it is very important
that the anatomical image have a good quality as shown in Figure 5.18. In sequence, the
cerebral hemispheres were separated and disconnected from subcortical structures. These
are called cutting planes as detailed in Dale, Fischl, and Sereno (1999). The resulting
volume was covered with a triangular tessellation and deformed to produce a smooth rep-
resentation of the gray/white boundary and the pial surface. A pial surface segmentation
in shown in Figure 5.19.

(a) Bad quality image with artifacts due to motion. (b) New image of the same subject, without mo-
tion.

Figure 5.18: Bad and good quality images. On the top of the head in (a) there are problems in the
boundary.

Skull extraction and mesh generation

Although a spherical head model had been used in many reconstruction models to
solve the EEG inverse problem (Spinelli, Andino, Lantz, Seeck, and Michel, 2000; Pascual-
Marqui, 1999), recent methods are based on realistic models of the skull, scalp and brain
that are suitable for electroencephalography source modeling. Modeling of the compart-
ments in the head uses the boundary element method (BEM). Triangular meshes for the
BEM were derived from the MR images using automatic segmentation techniques. The
complete 3D model was obtained using a triangle net with approximately 95000 surface
triangles (depending on the shape of the head) with side length of 1 mm. An example of
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Figure 5.19: Pial segmentation.

a final model of the skull is shown in Figure 5.20.

Figure 5.20: Skin, scalp and skull (from the outermost to the innermost) extracted from a human
T1-weighted MRI image.

For all subjects, the skull was extracted starting from a seed point in the middle of
the brain. Threshold intensity values ranged from 80 to 160 (0 is black and 255 is white)
and the maximum distance between pixels was 250 mm. After the BEM process was
completed, morphology operations such as dilation and erosion were performed. Erosion
was done with a 3 mm structure element and dilation with an 8 mm kernel. In BEM
geometry setup, skull thickness was 3.5 mm and the minimum distance between the
cortex and skull was 3 mm.

Coregistration of electrodes location and scalp surface

The electrode coordinates, measured by the digitizer, were mapped to the 3D volume
coordinates. The landmarks (right and left preauricular and nasion) of the digitizing
step were used as reference points. The fitting was done by finding the best translation
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and rotation parameters that minimize the total distance between the sensors and scalp
surface. A good fitting was reached with a quadratic error not greater than 2 mm and a
mean distance between points of approximately 0.7 mm.

5.2.4 VBMEG Data

The steps described in the previous session are crucial to the source localization pro-
cedure. All the models: cortical surface, head and fMRI data were incorporated into the
VBMEG algorithm. The cortical data, skull data and EEG data were coregistered and
incorporated in the lead field matrix to the variational Bayesian estimation. The fMRI
data were used to estimate the area of active dipoles.

Three shell head surface for the EEG model

The goal of EEG modeling is the relationship between a primary current source dis-
tribution and the data at the sensor array. The linearity of the model can be expressed as
the inner product of a vector lead field and the primary current. The method employed
follows Mosher, Leahy, and Lewis (1999) in which the lead field is partitioned into the
product of a sensor matrix, a kernel matrix and the moment of the dipole. The sensor
matrix models sensor orientation. The kernel matrices are functions of the sensor, source
locations and the head geometry. The most used head models assume that it is made up
of a set of concentric spheres, each with homogeneous and isotropic conductivity. More-
over, this method can be improved by using more realistic head shapes extracted from
anatomical images. This approach was carried out in the present work, still assuming
each region with constant conductivity. The conductivity ratios from the innermost to
the outermost regions are 1.0, 0.0125, and 1.0 for CSF, skull and scalp, respectively. The
cerebrospinal fluid of the cortical surface extracted from Curry software (Neuroscan Labs)
was imported into VBMEG. The scalp surface was built from the intersection between
the scanned face and dilated CSF. The third element of the head model, the outer skull
surface was made by expanding the scalp surface using a spring model and subsequent
erosion. An example is shown in figures 5.21 and 5.22.

Activity map

When running an fMRI analysis, the statistical maps of the desired contrast (their
values and coordinate space) are stored in the MATLAB workspace. These thresholded
statistical values were backprojected onto each subject’s original space (without normal-
ization) in order to be used in VBMEG and incorporate fMRI information in EEG current
source estimation (Figure 5.23). The normalization procedure for the anatomical image
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Figure 5.21: 3 shell head model for inverse method solutions.

Figure 5.22: Scalp surface superimposed to the subject’s face.

described in Chapter 4 finds the transformation that maps the actual anatomy (and
anything coregistered to it) into the MNI template brain space. The output is, thus,
a normalized anatomy file, and a MATLAB data file containing the transformation pa-
rameters. These parameters are then used to backproject from the normalized to each
subject’s space.

In sequence, the activation results of the fMRI analysis were stored in two structures:
an area file, which has the areas of activation, and an activation file, with the values of
the statistics. The fMRI data in the VBMEG structure is based on vertex indexes of the
cortical surface and the results of the SPM analysis, defining the active dipole indexes.
They are written as a new area file and the strengths are written in the activation file
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Figure 5.23: fMRI data projected onto the subject’s individual surface.

as the Gaussian-average of the intensity values of the fMRI voxels in the neighborhood
(the maximum distance for averaging was 6 mm). Three regions of interest (ROI) were
selected according to the SPM results of the learning condition investigation: left frontal,
left temporal and right temporal as shown in Figure 5.24. These areas were created using
a mask with the “learning” contrast and extended voxels equal to 50 to clear out areas of
no interest.

The lead field matrix

With information of dipole location from the brain model (cortex vertex indexes)
and the position of the EEG sensors on the scalp, the EEG potentials for the multilayer
model were calculated. First, EEG positions were mapped to the outermost surface of
the 3 shell head surface, calculating the nearest vertex to an EEG sensor. The distance
from the EEG sensor to the head vertex was used to interpolate the head potential to
the sensor position. The lead field matrix is, therefore, a transform matrix to map the
surface potential to the EEG data.

The current variance estimation was done using the time sequence of all trials. Each
individual’s activity of all conditions was used as a constraint (Figure 5.25). EEG data
is shown in Figure 5.26. The parameters of the estimation model were:

• variance magnification(m0): 100

• number of dipoles: 30000

• confidence parameter (γ0): 100

• time range for observation noise estimation: -648 to -4 ms (baseline period)

• time window: -648 to 3076 ms

84



5.2. DATA PROCESSING

(a) Frontal ROI. (b) Left temporal ROI.

(c) Right temporal ROI.

Figure 5.24: ROI projected onto the subject’s cortex.

Figure 5.25: Regions used as a constrain in the current variance estimation.

The active current area was found based on the estimated current variance. The last
step was the reconstruction of the current in a specified area using the Bayesian inverse
filter (Sato, Yoshioka, Kajiwara, Toyama, Goda, Doya, and Kawato, 2004).
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Figure 5.26: EEG data of 408 trials. Pre-stimulus data are shaded.

5.2.5 Current Peak Analysis

Current peak was selected for each area of interest: frontal, right temporal and left
temporal. In each area, peak currents were chosen from a sphere of 6 mm in diameter.
The current with greatest temporal mean value was selected for analysis. Current values
were separated based on three conditions: auditory attended, auditory unattended (visual
attended) and auditory standard.

Time frequency analysis was performed for each peak current and each subject at
each trial. The signal was divided into windows and a wavelet transform performed on
each window. The Morlet wavelet length starts at 3 cycles and increases by a factor of
0.5. By doing so, we explore the scaling characteristic of the wavelet by changing its
width. As stated by Shyu and Sun (2002) the bigger the number of cycles the better
the frequency resolution. Besides, as the Morlet wavelet transform is defined in the
complex domain, the power spectrum can be interpreted in a similar manner as the Fourier
spectrum. It is worth saying that a short time Fourier transform was also performed
on the data but the resolution was too poor. We then have an estimate of the mean
event-related spectral perturbation (ERSP) changes across event-related trials with mean
baseline spectral activity subtracted. At last, a t-test was performed in the 11 ERSP
images (Figure 5.27a). The analysis was done at each time-frequency bin to check if the
mean distribution of 11 bins (from the distribution of 11 subjects) is different from zero.
As a result there is an “image” of p values from the analysis of 11 subjects. The final
result is obtained after masking out values greater than 0.05 (p>0.05).

Testing correlation between spectral results and detection threshold

In order to study the learning effect we checked whether there was a correlation be-
tween the threshold values reported by the subjects during the experiment and the signal
registered. For each subject, at each time-frequency bin, the correlation between the
power values of this bin over the trials and the threshold curve (frequency threshold over
trials) were computed (Figure 5.27b). The correlation coefficient between two random
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Figure 5.27: Schematic of time-frequency images of 11 subjects. a) 11 power values are taken from
the same bin position and tested whether or not the distribution of 11 bins is different from zero.
b) the correlation between frequency threshold values and power spectral analysis for each bin across
trials is taken resulting in an image of correlation values.

variables is described by

ρXY =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
, (5.4)

and calculated for a finite data set as

ρXY =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(5.5)

The result is an image of correlation values for each subject. Statistical t-tests verified
the significance of the results over the 11 subjects and bins with significance values greater
than 0.005 (p>0.005) were masked out.

5.3 Summary

This chapter presented the methodology carried out in the setup of the experiment
as well as in the analysis of the fMRI and EEG data. The decisions about the sparse
experiment design were also pointed out, explaining the compromise between the goal
of the experiment (investigation of learning) and efficiency of the estimates. The results
obtained are the topic of the next chapter.
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6
Results and Discussion

This chapter presents some of the results obtained with the method described in
the previous chapter. In the first section, the behavioral data are presented followed
by the statistical analysis carried out in the fMRI data. In addition, the results of the
artifact removal procedure in the EEG data are presented as well as the comparison of
the performance of two ballistocardiogram artifact removal methods. The objective is to
gain more insight about the particularities of each method. The chapter is finished with
the source localization results. The results are very suggestive of the need of attention in
rapid training performance improvement.

6.1 Behavioral Data

As explained in Section 5.1.4, the performance before and after training was recordered
with the subject in a sound booth. Although the experiment was run in a different
environment, these data can be used as a reference for the measurements carried out in
the MRI scanner. The results are summarized in Table 6.1.

During the experiment, correct and incorrect responses were tracked and the results
of four subjects are shown in Figure 6.1. Although the graphics show a performance
improvement during the experiment, which suggests characteristics of learning, Figure
6.2 shows that some subjects did not improve during the three sessions. Four out of
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Table 6.1: Performance before and after training.

subject Auditory task Visual Task
pre training pos training pre training pos training
(Hertz) (Hertz) (Degrees) (Degrees)

1 12 4 4 3
2 19 8 5 8
3 9 8 5 4
4 21 16 5 3
5 5 6 9 9
6 12 5 5 3
7 6 6 10 9
8 8 6 6 5
9 11 5 4 4
10 5 7 8 9
11 18 9 8 6

eleven subjects had this type of behavior.
The results of all subjects can be seen in Figure 6.3(a) with an exponential, quasi-

linear and decreasing tendency in perceptual auditory frequency discrimination thresholds
(r=0.9, p=0.004). Figure 6.3(a) shows the grand mean and the standard error of 11
subjects whereas Figure 6.3(b) shows the gain between sessions. These data give us
evidence of learning behavior during the perceptual task.
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Figure 6.1: Correct and incorrect responses of four subjects. during the experiment for each session.
Horizontal axis: sessions. Vertical axis: frequency of occurence.

Figure 6.2: Correct and incorrect responses with no improvement during sessions. Horizontal axis:
sessions. Vertical axis: frequency of occurence.
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Figure 6.3: Behavioral data during the experiment. (a) Grand mean and standard error of 11 subjects
for threshold detection at the end of each session. (b) Mean performance gain (in Hz) between sessions
for 11 subjects (1st − 2nd, 2nd − 3rd, 3rd − 4th).
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6.2 fMRI Data

Following the procedure described in Section 5.2.2, the first results show the statistical
parametric maps for the auditory or visual conditions relative to rest period. Figure
6.4 shows the response of the group of 11 subjects when attending to deviants in the
auditory task. There is an important issue if choosing a significance level of 0.05 as in
Figure 6.4(a). Because the volume image have a dimension of 64x64x20, we would expect
0.05x81920=4096 voxels to exceed a 5% threshold by chance. This means that a large
number of voxels would be declared active when they are, indeed, inactive (type I error).
This is a result of the multiplicity problem, i.e., many individual voxel hypothesis being
tested. One solution that can be adopted is to decrease the significance level, e.g. 0.001
as shown in Figure 6.4(b). However, as we have an anatomically open hypothesis (no
effect anywhere in a specific volume), a correction for multiple dependent comparisons is
necessary. In this case we should consider other types of error rates which account for the
multiplicity problem. The family-wise error rate (FWE) is the probability of at least one
false positive on any voxel in the image. This is a very stringent controling method with
weak power, as explained in Section 4.3.2 and shown in Figure 6.5(a). Because of that,
we used the false discovery rate (FDR) method in which we allow some false positives in
the image but relate them to the number of total positive findings (Figure 6.5(b)).

For the auditory attended relative to rest condition, the functional imaging data re-
vealed activation in the temporal, frontal and parietal cortices (Figure 6.5(b)). This
frontal component is not seen when the subject is not paying attention to the auditory
stimuli, which is the case of the visual attended task (Figure 6.6). In this condition, the
right and left temporal cortices are also activated as auditory stimuli is still being deliv-
ered, but we can see that the occipital response is stronger than in the auditory attended
situation (compare figures 6.5(b) and 6.6). In addition, parietal cortices are activated in
both conditions as the subject is constantly pressing a response button. These responses
are summarized in Table 6.2. These figures show us preliminary results of the stimulation
being performed. Moreover, direct contrast between the auditory attended responses rel-
ative to the auditory unattended responses was conducted since one of the aims of this
study is the investigation of attention specific to auditory task as general attention is
controlled for by the visual task. When we are interested in specific areas of expected
activation we can restrict the correction for multiple comparisons to these small volumes
of interest as the whole image correction is too conservative. Considerable activity can be
seen in left inferior frontal gyrus (-45,24,24; p<0.05 SVC corrected), left superior tempo-
ral gyrus (-57,-51,6; p<0.05 SVC corrected) and right superior temporal gyrus (57,-33,3;
p<0.05 SVC corrected). In Figure 6.7 the correction was done in a sphere of radius 3 mm
centered on each of the voxels located in the coordinates above. The SVC analyses are
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based on coordinates given in previous studies of attentional demands: Zhang, Feng, Fox,
Gao, and Tan (2004) for the IFG, Kiehl et al. (2001b) for the LSTG and Zatorre et al.
(1999) for the RSTG.

Table 6.2: Activated areas during auditory and visual attended tasks.

Parietal Temporal Frontal Occipital
Auditory vs. rest X X X
Visual vs. rest X X X

Table 6.3 shows statistical results of the small volume correction in the attentional
condition. In the cluster level inference (on the left), given a voxel threshold u, we can
compute the likelihood of getting a cluster containing at least n voxels.

Table 6.3: Statistical results of the small volume correction in the attentional condition. Search
volume corresponds to 7 voxels of 3x3x3 mm with an FWHM of 11x11x11 mm. Number of resels=0.1
(1 resel=51.56 voxels). Activations are significant at voxel level but not at cluster level.

cluster voxel Talairach coordinates
x,y,z(mm)

(pcorr) (Ke) (puncorr) (FWEcorr) (FDRcorr) (T) (puncorr)

0.115 6 0.727 0.092 0.053 2.24 0.023 -45 24 21
0.113 7 0.687 0.005 0.002 4.42 0.001 -57 -51 6
0.113 7 0.687 0.003 0.002 4.59 0.0005 57 -33 3

Since we were interested in assessing learning performance during the experiment, we
used each subject specific performance gain over each session in the design matrix. The
difference between final and initial thresholds was used, in the first level analysis, as a
contrast in each column of the design matrix. For the second level analysis, intersubject
performance differences were accounted for using the overall performance gain (simple
regression) as weights on the design matrix. The results are shown in Figure 6.8 for
p<0.005. In sequence, small volume correction was performed for each region of interest
(frontal and temporal) with a volume of interest (VOI) of 3x3x3mm. FMRI activity
was observed in left frontal (-45,15,36; p<0.05; SVC corrected), left temporal (-57,-51,24;
p<0.05; SVC corrected) and right temporal (60,-39,15; p<0.05; SVC corrected). Table
6.4 shows statistical results of the small volume correction in the learning condition.

The above data suggest that attention can be involved and maybe contribute to rapid
improvements in specific brain activity during short periods of training. Attentional
modulations in sensory modality, in this case auditory, were obtained based on audi-
tory frequency attention trials. Earlier studies of auditory selective attention (Neelon,
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Table 6.4: Statistical results of the small volume correction in the learning condition. Search
volume corresponds to 7 voxels of 3x3x3 mm with a FWHM of 13x11x12 mm. Number of resels=0.1
(1 resel=66.17 voxels). Activations are significant at voxel and cluster levels.

cluster voxel Talairach coordinates
x,y,z(mm)

(pcorr) (Ke) (puncorr) (FWEcorr) (FDRcorr) (T) (puncorr)

0.021 1 0.730 0.004 0.004 3.47 0.004 -45 15 39
0.012 5 0.398 0.0002 0.002 7.65 0.0002 -57 -51 24
0.013 4 0.452 0.0002 0.0002 6.70 0.0004 60 -39 15

Williams, and Garell, 2006; Kiehl, Laurens, Duty, Foster, and Liddle, 2001a) have shown
attention-related enhancements of several auditory evoked electromagnetic signals with
early modulation at 20-50ms after stimulus onset. The neural source of this early modu-
lated component has been localized in the posterior part of the superior temporal gyrus.
The finding of increased responses to attended auditory stimuli suggests the existence
of rapid cortical plasticity. Research has shown that minutes of classical conditioning
are sufficient to induce changes of neural responses and receptive field properties in au-
ditory cortices (Alain, Snyder, He, and Reinke, 2007). Moreover, in an experiment of
deafferentation of the adult auditory cortex, Pantev, Wollbrink, Roberts, Engelien, and
Ütkenhöner (1999) showed that reorganization of cortical representations can occur within
time periods of a few hours.

With approximately 80 minutes of training, an improvement in auditory frequency
perception could be observed with the decrease of the subject’s threshold. The finding
of task related increased activity in frontal and temporal areas is consistent with the
hypothesis that the frontal area is involved with prediction and top-down modulation
of auditory selective attention that gives rise to auditory perceptual learning. Although
some studies report attentional effects in primary and secondary auditory cortical regions
(Grady, van Meter, Maisog, Pietrini, Krasuski, and Rauschecker, 1997), Petkov, Kang,
Alho, Bertrand, Yund, and Loods (2004) have reported enhanced effects of auditory at-
tention in higher auditory association areas when one modality is attended and the other
is ignored. This is consistent with our current results in the superior temporal cortices.
Since attentional effects are very dependent on the task, the exact knowledge about in
which conditions the left or right temporal cortices are being activated is still contra-
dictory and deserves further investigation. Eichele, Specht, Moosmann, Jongsma, and
Quiroga (2005) and Doeller, Opitz, Mecklinger, Krick, Reith, and Schröger (2003) show
evidences of this strong asymmetry in responses with a right-hemisphere specialization. In
a preattentive auditory deviance processing task, Doeller, Opitz, Mecklinger, Krick, Re-
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ith, and Schröger (2003) observed bilateral IFG activation for large compared to medium
pitch deviants (50,24,6 [right], -54,26,8 [left]). Although most IFG activities during atten-
tional and perceptive tasks are reported in right hemisphere, left hemisphere activity has
also been observed as in van Wassenhove and Nagarajan (2007). Zhang, Feng, Fox, Gao,
and Tan (2004) investigated that LIFG also serves as a general mechanism for selective
attention (MNI: -44,15,20; -46,13,21; -42,13,20) as observed in a memory task. The left
inferior frontal cortex and the superior temporal lobe (Altmann, Henning, Döring, and
Kaiser, 2008) were activated when subjects were presented to different relative to common
sound patterns (MNI: -47,3,24). The IFG (-60,4,25), among other areas, has also been
elicited in an auditory task for the comparison of target versus novel stimuli (Kiehl, Lau-
rens, Duty, Foster, and Liddle, 2001a). These results suggest that the IFG may play an
important role for perception. Superior temporal gyrus activity has been reported during
attentional and perceptual tasks as well. Pugh, Shaywitz, Shaywitz, Fulbright, Byrd,
Skudlarski, Shankweiler, Katz, Constable, Fletcher, Lacadie, Marchione, and Gore (1996)
reported a main effect of the attention condition in a binaural versus dichotic experiment.
This effect was observed in STG (brodmann 22) bilaterally. Right STG (60,-30,11; 58,-
33,11) activity was also observed for high and low frequency attended conditions (Zatorre,
Mondor, and Evans, 1999). These areas, although reported for long period training, are
consistent with the results for the rapid training applied in this study.

Additionally, in the fMRI analysis, the enhancement of the responses to the presenta-
tion of the auditory deviant stimulus was correlated with behavioral improvements used
as weights in the contrasts design. With this procedure we could assess the areas involved
in learning as the behavioral data was used as regressors in the data estimation. Worth
noting is the fact that these regions intersect with the ones found in attention results,
suggesting a role of attention in perceptual learning. The observed auditory perceptual
learning was accompanied by auditory cortical plasticity manifested as an enhancement of
early bilateral auditory peak currents. These findings are consistent with our hypothesis
that activity enhancement should occur in learning experiments even in rapid training
procedures. An interesting result is that the enhancement of the energy of the responses
to the presentation of the deviant stimuli was in accordance with behavioral improve-
ments, providing additional evidence that the observed plasticity is specific to perceptual
learning.

It is important to say that the same procedure was adopted to the visual data, however
the results are still not conclusive.
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(a) p<0.05. Height threshold T=1.81.

(b) p<0.001. Height threshold T=4.14.

Figure 6.4: Auditory responses uncorrected. Single t-test performed on each voxel individually. In
(a), because of the higher significance level, more voxels are shown active but this also implies in a
higher type I error.
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(a) pFWE<0.05. Height threshold T=9.80

(b) pFDR<0.05. Height threshold T=2.49.

Figure 6.5: Auditory responses corrected for multiple comparisons. FWE and FDR corrections.
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Figure 6.6: Visual attended task responses corrected for multiple comparisons. pFDR<0.05. Height
Threshold 2.66.

Figure 6.7: Attentional effect (p<0.05, SVC corrected). Using SVC, the correction is done in a small
volume.

Figure 6.8: Learning contrasts weighted by overall gain of each subject. Activations with p<0.005.
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6.3 EEG Data

Figure 6.9 shows a segment of the 64 channel data recorded and the stimuli presented
to the subject. As explained in Section 5.1.4, EEG data was preprocessed in which trials
were visually inspected and removed if the data were highly corrupted by artifacts. The
percentage of trials removed is summarized in Table 6.5.

Table 6.5: Percentage of trials removed before analysis of the data.

subject Percentage of removal (%)
1 5
2 5
3 0.5
4 3
5 10
6 2
7 0.5
8 0
9 3.5
10 2
11 1.5

In the first part of the analysis, ICA was used for the removal of cardiac, ocular and
muscular artifacts. We used a histogram to check the correlations between the ECG
channel of each subject and 62 independent components. A result is shown in Figure 6.10
for two subjects. Subject 2 does not show any component significantly correlated to the
ECG data as we can see from the small correlation values which are very close to each
other. Subject 1 suggests two components separate from the others which were further
analyzed looking at the components and ECG time courses as in Figure 6.11. Six out of
eleven subjects showed at least one component with correlation coefficient with the ECG
channel greater than 0.2. We observed that ICs with values greater than 0.2 showed time
courses similar to Figure 6.11(a) and 6.11(b) and were considered for rejection. This is in
contrast with cases such as the one shown in Figure 6.11(c).

The EOG channel was compared to the ICs as well and nine subjects showed at least
one channel with correlation greater than 0.3. Besides the correlation metrics, all the
components were inspected in the components map before they were selected for rejection.
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Figure 6.9: View of all 64 recorded channels and the experiment events: stimuli (S1,S2,S3,S4),
subjects response (S16 or S15) and the scan start marker. ECG channel is the last channel on the
graph (channel 64).
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(b) Subject 2

Figure 6.10: Histograms of the correlations between the ECG channel of each subject and the 62
independent components. Subject 2 does not show any component significantly correlated to the
ECG data.
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Figure 6.11: Independent components and cardiac channel. In (a) and (b) there is a peak in the IC
following each strong peak in the cardiac data. In (c), no visible relation is seen between the IC and
the cardiac channel. 101
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6.4 EEG Data: more on Ballistocardiogram Artifact

Removal

Although ICA was adopted for the BCG artifact removal in the first part of this
work, we wanted to investigate the template method as well and compare it with the ICA
method. The comparison is subjective in the sense that there is no “clean” data to compare
since the recorded channel is originally corrupted by the artifact. Noteworthy to say that
the ECG channel is also distorted when the subject is inside the MRI scanner as seen in
Figure 6.12. However, as shown in Figure 6.13, the BCG artifact is very characteristic,
appearing after a QRS peak and is spread across all channels. Figure 6.14 shows the
results of both methods applied to the channel F2 of one subject. A reduction of the
artifact can be seen when the template method was used. Figure 6.15 shows the same
segment of Figure 6.12 but with the removal of the artifact using the template method.
The “cleaned” data was further decomposed into independent components (ICA) and
compared to the ECG and EOG channels. No component was found to be correlated to
the ECG channel. This suggests that artifacts related to this cardiac motion were in fact
removed using the template method.
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Figure 6.12: Segment of an ECG data recorded inside the MRI scanner. Horizontal axis: time in
seconds. Vertical axis: signal amplitude in µV . On the bottom, the ECG channel and above one
channel corrupted by the BCG artifact.

One advantage of the template method is that it does not make any assumption about
the estacionarity of the data. However, a precise Q detection is necessary in order to select
the segments used as reference for the template (Figure 6.16(a)). We observed that, in
few cases, the peak was detected erroneously as in Figure 6.16(b), most probably due to
the variability between two peaks and the shape variability as well. In the segment shown
the variability between subsequente peaks spanned from 702.5 ms to 726.8 ms.
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Figure 6.13: View of the 64 recorded channels with the BCG artifact highlighted by a rectangle.
ECG channel is the last channel in the graph.
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(a) Result of ICA and the template methods applied to channel F2.
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(b) Zoom of the segment.

Figure 6.14: A comparative of ICA artifact removal and the template artifact removal methods. The
results of both methods are displayed for one channel as well as the original recorded data and the
ECG channel. The elipse highlights the BCG artifact.
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Figure 6.15: BCG artifact removed using the template method, applied to the same data shown in
Figure 6.12. Horizontal axis: time in seconds. Vertical axis: signal amplitude in µV .
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(a) Q wave detection. The beginning of each Q wave is marked with the arrows.
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Figure 6.16: Detection of the Q wave at each QRS complex. The detected “events” are pointed with
an arrow. The others are the stimuli. In (b), a misplaced detection.

6.5 EEG and fMRI - Variational Bayesian Method Re-

sults

The results shown in this section are one of the most important goals of this work:
the usage of combined EEG and fMRI in the assessment of auditory attention responses.
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Three masks were defined from the statistical parametric map results: left frontal (IFG:
-45,15,36), left temporal (LSTG: -57,-51,24) and right temporal (RSTG: 60,-39,15), and
peak dipoles were taken within a 3 mm radius from the estimated current peak. The
peak dipole with the highest temporal mean was selected for analysis. Subsequently, time
frequency analysis was carried out on each of these current dipole in what we call the
task related analysis (blocks of auditory deviant relative to blocks of visual deviant) to
investigate neuronal oscillation. The amplitudes were averaged regardless of phase. This
procedure enhanced stimulus-related EEG changes both phase-locked (i.e. event-related
potentials) and non-phase-locked (i.e. event-related synchronization and desynchroniza-
tion) to stimulus onset. Time-frequency analysis over the peak currents of these three
areas reveals different pattern of activation. Figure 6.17 shows the statistical results for
regions IFG, LSTG and RSTG, respectively.

The t-statistics of all 11 subjects were performed in three conditions: attention, non-
attention and the difference between them. Data were tested against null hypothesis
of zero mean. The LSTG shows significant response (p<0.01) around 100ms in the at-
tentional condition. This response spans from 25 to 32Hz. Later responses also appear
around 300-400ms. We see that, although the attentional effect is not observed at the
frontal and right temporal areas for p<0.01, a response can be viewed for p<0.05. A
zoomed view of the attention versus non-attention condition is seen in Figure 6.18 for all
3 regions. It can be seen that the responses in LSTG span a wider range compared to
the RSTG response, which is more localized in frequency (10 to 20Hz, the alpha and beta
ranges). The IFG response peaks at around 200ms, which is later than the response of
the temporal cortices as it has been expected.

In order to account for learning assessment, we checked the correlation coefficient
between time-frequency results (p<0.01) in each bin of the attentional responses and the
threshold values from the behavioral test for each subject.

The results of the group analysis are given in Figure 6.19 (p<0.01). The suggestion
of correlation shown in this figure was further investigated. Signal was separated in five
frequency ranges: delta, theta, alpha, beta and gamma. The energy of each range was
computed at each trial: 0.5-3.5Hz, 4-7Hz, 8-13Hz, 14-28Hz, 30-70Hz, respectively. The
correlation coefficients (Table 6.6 ) are sufficient to suggest an evidence of correlation,
especially in the gamma and beta bands. It should be noticed that Figure 6.19 shows a
clear relation between ERP time-frequency response and results from behavioral tests.

We also showed the hierarchical Bayesian method proposed by Sato, Yoshioka, Kaji-
wara, Toyama, Goda, Doya, and Kawato (2004) applied to EEG rather than MEG data.
Although the efficacy of the method was successfully reported for a visual experiment
(Yoshioka, Toyama, Kawato, Yamashita, and Nishina, 2008) and speech perception ex-
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Table 6.6: Correlation coefficient between Fourier transformed EEG signal and behavioral detection
threshold values for each subject. Energy value for each band was computed and correlation between
behavioral data was checked. This table shows only correlation coefficients for p<0.05. The others
are set to zero.

Subject LIFG LSTG RSTG
delta theta alpha beta gamma delta theta alpha beta gamma delta theta alpha beta gamma

1 0 0 0 0 -0.29 0 -0.24 0 0 0 0 0 0 -0.25 0
2 0 -0.35 -0.43 0 0.52 0 0 0 0.41 0.22 0 0 0 0.42 0.32
3 0 0.23 0 0.33 0 0 0 0.35 0.39 0 0 -0.22 0 0.35 0
4 0 0 0 0.23 0.30 0 0 0.21 0 0 0 0 -0.23 0 0
5 0 0 0 0.77 0.68 0 0 0.39 0.73 0.77 0 0 0 0.73 0.77
6 0.32 0.35 0.51 0.21 0.28 0.24 0.32 0 0 0 0.32 0.36 0.54 0.26 0.40
7 0 0 0.46 0 0.28 0 0.21 0.2 0 -0.2 0 0.21 -0.43 0 0.47
8 0 0 0 0.44 0.26 0 0 0 0 0 0 0 0 0.43 0.30
9 0 0.22 0 0.29 -0.77 0 -0.49 0 -0.65 -0.76 0 0.22 0 0.29 -0.77
10 0 0 0 0 0.25 0 0 0 0 0.22 0 0 0 0 0.26
11 0 0 -0.41 -0.38 0 0 0 -0.41 -0.38 0 -0.23 -0.30 -0.50 0 0.72

periment (Callan, Callan, Gamez, Sato, and Kawato, 2010) using MEG data, this is the
first implementation using EEG data. With this procedure we incorporated the simulta-
neously recorded fMRI and EEG data to estimate the spatiotemporal patterns of brain
activities of an auditory discrimination task. Looking at the attentional effects (audi-
tory versus visual results), the modulation role of attention can also be seen in the later
responses of IFG peak currents compared to earlier cortical areas (STG) (Figure 6.18).
Although the auditory cortices show earlier and stronger responses (what can be seen as
a bottom-up process), the response in frontal area around 200ms in beta range (14-28Hz)
during the auditory attention versus non-attention condition is also evidence of an atten-
tional effect (p<0.05). In this case, subjects may have learned to pay more attention to
the stimuli as part of their learning experience on the trained task.

One of the most interesting findings in our work comes from the source localization
analyses showing that plasticity also manifests as an increase in the power of beta (14-
28Hz) and gamma (30-70Hz) bands. These results are supported by the attentional load
shown in Figure 6.17. Our results also suggest that passive listening is not enough to
produce enhanced activity even in auditory cortex as shown in Figure 6.17 for the visual
deviant trials in all three ROIs.

Finally, the gamma oscillations found in the correlation between behavioral thresholds
and the energy of the current peak values for each trial suggest that plasticity is also
manifested as an increase in the power of induced gamma band activity in IFG and
RSTG. The results in Figure 6.19 reflect learning effects during the whole experiment and
are a very promising finding concerning the role of the recent recognized importance of
these neuronal oscillations in cognitive systems.
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(a) IFG

(b) LSTG

(c) RSTG

Figure 6.17: Statistic tests carried out on the time-frequency representation of peak currents in the
3 ROIs analyzed. t-test (p<0.01) over time-frequency bins (46x200) of 11 subjects (10 degrees of
freedom). Time frequency analysis was done over the highest peak current in a) IFG, b) LSTG and
c) RSTG. In red: bins whose statistics are greater than the null hypothesis of zero mean. In blue:
bins whose statistics are smaller than the null hypothesis of zero mean. Three conditions were tested:
Auditory deviant trials (top), Visual deviant trials (middle) and Auditory vs. Visual trials (attended
versus non-attended condition) on the bottom.
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(c) RSTG

Figure 6.18: A zoomed view of the auditory attended versus non-attended condition (p<0.05) during
the first 300ms. a) IFG. b) LSTG. c) RSTG.
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Figure 6.19: Correlation between time-frequency analysis and threshold values from behavioral test.
T-statistics of 11 subjects in auditory deviant task. At each time-frequency bin 11 samples were tested
against the null hypothesis of zero mean (p<0.01 uncorrected). Results are shown for IFG, LSTG
and RSTG. On the top, onset time of the auditory stimuli.
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6.6 Summary

In this chapter, the main results obtained from the experiments were presented and
analyzed. They are evidences of the importance of attention in rapid training. However
more experiments need to be carried out in order to obtain a real comprehension of the
mechanisms of perceptual learning.
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Stones in the road? I save every single
one, one day I’ll build a castle.

Fernando Pessoa

7
Conclusion

The study of the brain functioning has gained a lot of attention especially after the em-
ployment of functional neuroimaging techniques. Functional magnetic resonance imaging
using endogenous blood-oxygenation-level-dependent (BOLD) contrast has been estab-
lished as a standard technique for mapping human brain function. Its high spatial res-
olution allows activated brain areas to be localized with milimeter resolution. However,
there is much more to cognitive neuroscience than functional neuroanatomy, and event
related potentials can be very useful in elucidating cognitive mechanisms and their neural
substrates. Because of their high temporal resolution, at milisecond scale, the technique
is capable of detecting rapid changes of neurophysiologic processes. Therefore, efforts
have been made to integrate information of fMRI with EEG to provide an alternative
high-resolution spatiotemporal imaging technique. The combination of both modalities
is of particular interest in cognitive studies. Although technically difficult, it allows the
comparison of both modalities in the same brain state, which is important when investi-
gating learning. Hence, the simultaneous measurements of fMRI and EEG data carried
out in this work formed a more realistic setup to combine high spatial resolution data
with high temporal resolution data in cognitive experiments.

The complexity of the design was addressed in this thesis in which the artifacts that
happened in both modalities were treated carefully. The impact of the electrophysiological
recording system in the MR image was seen especially in the quality of the image when
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electrodes were placed inside the scanner. In spite of that, the images were still adequate
for the segmentation procedure.

On the other hand, EEG data were also strongly affected by the fMRI image acqui-
sition process. We successfully removed the gradient artifact using a template matching
algorithm. In this case, the shape of the artifacts was considered constant over time,
which is acceptable, since there is no substantial inter-volume variability. A more difficult
source of artifact is the cardiac contamination. This artifact is hard to be eliminated as
it varies considerably between channels and subjects. We first adopted ICA for ballisto-
cardiogram artifact removal. The identification of the components representing artifacts
is a topic being widely discussed because the correction depends on the removal of a set
of components. An identification strategy is necessary and, in this study, visual inspec-
tion and correlations with reference signals were adopted. Although not the focus of this
study, we are aware that the choice of correct parameters of the ICA algorithm influences
the quality of the removal. There is no standard BCG artifact correction procedure and
we also employed a method based on average artifact subtraction with optimal basis set
for comparison. The artifact subtraction method resulted in better removal of the BCG.

The multimodal neuroimage has a special role in the estimation of the neural sources
of the scalp potentials recorded from sensors in the scalp, what is known as the inverse
problem. First, the derivation of the scalp potentials from brain current sources, the for-
ward problem, requires the modeling of the head volume conductor. The inverse solution
depends on the accuracy of the forward model with the conduction properties and shape
of the head. Many studies use the sphere model which consists of spherical compartments
representing the layers of the head. In this work, realistic head models were constructed
using the T1 images of the subjects, since they have high contrast and are adequate for the
segmentation of the 3 head compartments. This model was incorporated in the boundary
element method to solve the forward method. For the inverse problem, the MRI image
gave information about the position and orientation of the cortical dipoles, while fMRI
was used to provide topographical information about active dipoles. In the variational
Bayesian method implemented in this thesis, the variance of the current source at each
source location was considered an unknown parameter and was estimated from the ob-
served EEG data. The fMRI information was imposed as prior information on the variance
distribution, being a soft constraint on the variance. The estimated current sources were
used to investigate the change in brain activity during perceptual learning.

The current study explored the advantage of simultaneous recording to investigate
brain activity during rapid perceptual learning. The question under debate is whether or
not rapid training can evoke responses in cortical areas and at which extent. The results
obtained suggest that listeners can improve quickly at identifying deviant from standard
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sound. Rapid improvement in task performance is accompanied by plastic changes in
sensory cortex as well as superior areas as evidenced by enhanced activity of sensory
responses. Moreover, the correlation between ERP time-frequency response and results
from behavioral tests gives support to our hypothesis of learning during short period of
training.

In order to make a good usage of the extensive data collected for this study, future work
should focus on the analysis and correction of the distortion of ERPs due to overlap from
adjacent responses. This problem arises when short interstimulus intervals are employed
in the experiment.

Moreover, it would be interesting to investigate the interaction between the visual
and auditory modalities. Although we followed the same paradigm used in the auditory
modality, some aspects of the visual stimulation were not investigated before the design
of the experiment, such as the specificity of the stimulus. It has been shown in the human
visual system that perceptual learning is very specific to simple stimulus attributes and
paradigms. Because of that an specific study of this modality is necessary in order to
obtain conclusive results.

Finally, the results obtained in this thesis cannot be taken as sufficient to affirm the
need of attention in all learning processes, as studies have shown the existence of passive
learning in which the mere exposure to stimuli can trigger changes in the neural pathway.
Nevertheless, especially in short duration training, attention works, at least, as a facilitator
in complex learning processes.
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A
Variational Bayesian Estimation for the

Inverse Problem

Electroencephalography (EEG) measurements can be used to show the sequence of
activation of distinct cortical areas during brain functions as well as to estimate the time
course of each source within the activation network. However, the spatial resolving power
of EEG (and MEG) does not, in general, match that of fMRI. Resolution is limited
by the relatively small number of spatial measurements, about a hundred, and by the
electromagnetic inverse problem. Resolution similar to that of the fMRI method can
be achieved only by placing restrictive models on the sources of EEG signals. In this
context, given a set of EEG signals from an array of sensors, the inverse problem consists
of estimating the properties of the current sources that produced these signals (Baillet,
Mosher, and Leahy, 2001).

Before describing the inverse problem, the forward solution will be briefly addressed.
The physics of MEG and EEG generation can be described by the quasi-static approxi-
mation of Maxwell’s equations. The current flow J(r′) at location r′ can be related to the
magnetic field B(r) at location r through the Biot-Savart law

B(r) =
µ0

4π

∫
J(r′)

r− r′

‖r− r′‖3
dv′, (A.1)

where µ0 is the permitivity of free space. The total current density in the head volume
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can be separated in a primary current flow Jp(r′) related to the original neural activity,
and a volume (or passive) current flow Jv(r′) that results from the effect of the electric
field in the volume on extracellular charge carriers:

J(r′) = Jp(r′) + Jv(r′) = Jp(r′) + σ(r′)E(r′)

= Jp(r′)− σ(r′)∇V(r′), (A.2)

σ(r′) is the conductivity value of the head tissues and the electric field E(r′) is the negative
gradient of the electric potential V(r′). Assuming the head a set of regions each with a
constant isotropic conductivity σi, i=1,2,3, representing the brain, skull and scalp, the
Biot-Savart law can be rewritten as a sum of contributions from the primary and volume
currents:

B(r) = B0(r) +
µ0

4π

∑
ij

(σi − σj)

∫
Sij

V(r′)
r− r′

‖r− r′‖3
dS ′ij, (A.3)

where B0 is the magnetic field due to the primary current. The second term is formed
by the sum of surface integrals over the brain-skull, skull-scalp and scalp-air boundaries.
It represents the volume current contribution to the magnetic field. From Equation A.3,
the magnetic field can be calculated if the primary current distribution and the potential
V(r′) on all surfaces are known. It is now possible to calculate the potential

(σi + σj)V(r) = 2σ0V0(r)− 1

2π

∑
ij

(σi − σj)
∫
Sij

V(r′)
r− r′

‖r− r′‖3
dS ′ij, (A.4)

V0 is the potential at r due to the primary current distribution. Equations A.3 and A.4
specify the integral solutions for the forward problem. Specifying a primary current dis-
tribution JP(r′), the primary potential and the primary magnetic field can be calculated:

V0(r) =
1

4πσ0

∫
Jp(r′)

r− r′

‖r− r′‖3
dr′,

B0(r) =
µ0

4π

∫
Jp(r′)

r− r′

‖r− r′‖3
dr′. (A.5)

The equations above describe the forward model solutions for heads with conductivity
values that can be modeled as a set of concentric homogeneous and isotropic spheres. How-
ever, although real heads are anisotropic, inhomogeneous and not spherical, the spherical
models can show good results as shown for MEG signals (Kiebel, Daunizeau, Phillips, and
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Friston, 2008; Baillet and Garnero, 1997). More accurate solutions can be achieved with
high-resolution brain images. Equations A.3 and A.4 can be solved extracting surface
boundaries for brain, skull and scalp from these images.

The boundary element method (BEM) can be used to calculate the forward fields
(Fuchs, Wagner, and Kastner, 2001), although still assuming isotropy within each region
of the head. It also needs the conductivity of head which assumes typical values for the
conductivity of the brain, skull and skin. The skull is 40 to 90 times more resistive than
the brain and scalp (Baillet, Mosher, and Leahy, 2001; Geddes and Baker, 1967).

A.1 The Inverse Problem

The two approaches used to estimate the EEG and MEG sources are the parametric
and imaging methods. Parametric methods assume that the sources can be approximated
by a few equivalent current dipoles represented as point sources Jp(r′) = qδ(r′ − rq),
where δ(r) is the Dirac delta function, with moment q ≡

∫
Jp(r′)dr′. More on parametric

methods can be found in Mosher, Lewis, and Leahy (1992); de Munck, van Dijk, and
Spekreijse (1988). In the imaging methods, a current dipole is assigned to each of many
tens of thousands of tessellation elements on the cortical surface with the dipole orientation
normal to the local surface. Given the limited number of sensors available, the problem
is ill-posed and requires the use of regularization or Bayesian techniques (Sato, Yoshioka,
Kajiwara, Toyama, Goda, Doya, and Kawato, 2004; Wang, Williamson, and Kaufman,
1992).

Imaging approaches to the inverse problem consist of estimating the amplitudes of a
dense set of dipoles distributed at fixed locations within the head volume, which resumes
to a linear problem of parameter estimation. Moreover, dipoles are distributed over a grid
built on the cortical surface that has been extracted from an anatomical MRI volume.

A.1.1 The Hierarchical Bayesian Method

The hierarchical Bayesian method used in this work was proposed by Sato, Yoshioka,
Kajiwara, Toyama, Goda, Doya, and Kawato (2004). In their original proposition, MEG
data was used. The present work constitutes the first results with EEG data. This method
introduces a hierarchical prior that incorporates both structural and functional MRI data.
The variance of the source current at each source location is considered an unknown
parameter and is estimated from the observed EEG data and prior information by using
the variational Bayesian (VB) method (Kiebel, Daunizeau, Phillips, and Friston, 2008).
The fMRI information can be imposed as prior information on the variance distribution
rather than the variance itself, giving a soft constraint on the variance. There is also a

116



A.1. THE INVERSE PROBLEM

spatial smoothness constraint in which the neural activity within a few milimeters radius
tends to be similar due to neural connections. This constraint can be implemented as a
hierarchical prior and, in this case, the estimation is no longer linear. Because of this, the
variational bayesian method is used.

A Normal prior for the current is assumed as in

P0(J1:T | α) ∝ exp

[
−1

2

T∑
t=1

J′(t).A.J(t)

]
, (A.6)

where J1:T ≡ {J(t) | t = 1 : T} is the primary current source, and A is the diagonal
matrix with diagonal elements α ≡ {αn | n = 1 : N}. The current inverse variance
parameter α is estimated by an hierarchical prior:

P0(α) =
N∏
n=1

Γ(αn | ᾱ0n, γ0nα), (A.7)

Γ(α | ᾱ, γ) ≡ α−1(αγ/ᾱ)γΓ(γ)−1e−αγ/ᾱ.

where Γ(α | ᾱ, γ) is the Gamma distribution with mean ᾱ and γ degrees of freedom.
In the case of the Normal prior, the value of the inverse variance parameter αn is given
as prior information. In the hierarchical prior, the inverse variance parameter αn is
considered a random variable. Thus, there is a nonzero probability for any value of the
inverse variance parameter αn, and the prior probability distribution for αn is given by the
Gamma distribution in Equation A.8. The hyperparameters γ0nα control the spread of the
distribution and represent the confidence of the hierarchical prior. The hyperparameter
ᾱ0n represents the mean value of αn in the hierarchical prior. For example, if the prior
mean α0n is small, the prior probability P0(αn = αs) that αn takes a small value αs (large
variance), increases. Therefore, the prior information on the current variance is imposed
as a soft constraint in the variance estimation. The fMRI information is applied as the
prior mean variance ᾱ−1

0n weighted with the confidence parameter γ0nα.
The smoothness constraint can be imposed in the covariance matrix enforcing high

correlations between neighboring current activities:

P0(J1:T | α, λ) ∝ exp

[
−1

2

T∑
t=1

J′(t).
−1∑
α

.J(t)

]
, (A.8)

where the current covariance matriz
∑−1

α is given by

−1∑
α

= A−1 + W.Λ−1.W′. (A.9)
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A and Λ are the diagonal matrices with the diagonal elements α= {αn | n = 1 : N}
and λ= {λn | n = 1 : N}, respectively. The spatial profile of the correlation function is
characterized by the Gaussian smoothing filter W.

The variational Bayesian method is thus used to calculate the posterior distribution
according to the observed EEG data as well as the fMRI information. The description
of the algorithm and performance of the method for simulated and realistic data can be
found in Yoshioka, Toyama, Kawato, Yamashita, and Nishina (2008); Sato, Yoshioka,
Kajiwara, Toyama, Goda, Doya, and Kawato (2004).
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