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quete, Rodney Rezende Saldanha, André Luiz Fernandes Cançado, Elizabeth
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da cidade de Lassance.
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Abstract

This thesis addresses the spatial and space-time cluster detection prob-

lem. Two algorithms to solve the typical problem for spatial data sets are

proposed.

A fast method for the detection and inference of point data set spatial and

space-time disease clusters is presented, the Voronoi Based Scan (VBScan).

A Voronoi diagram is built for points representing population individuals

(cases and controls). The number of Voronoi cells boundaries intercepted

by the line segment joining two cases points defines the Voronoi distance

between those points. This distance is used to approximate the density of the

heterogeneous population and build the Voronoi distance Minimum Spanning

Tree (VMST) linking the cases. The successive removal of edges from the

VMST generates sub-trees which are the potential clusters. Finally, those

clusters are evaluated through the scan statistic. Monte Carlo replications

of the original data are used to evaluate the significance of the clusters. The

ability to promptly detect space-time clusters of disease outbreaks, when the

number of individuals is large, was shown to be feasible, due to the reduced

computational load of VBScan. Numerical simulations showed that VBScan

has higher power of detection, sensitivity and positive predicted value than

the Elliptic PST. Furthermore, an application for dengue fever in a small

Brazilian city is presented.

In a second approach, the typical spatial cluster detection problem is

reformulated as a bi-objective combinatorial optimization problem. We pro-

pose an exact algorithm based on dynamic programming, Geographical Dy-

namic Scan, which empirically was able to solve instances up to large size

within a reasonable computational time. We show that the set of non-
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dominated solutions of the problem, computed efficiently, contains the so-

lution that maximizes the Kulldorff’s Spatial Scan Statistic. The method

allows arbitrary shaped clusters, which can be a collection of disconnected or

connected areas, taking into account a geometric constraint. Note that this

is not a serious disadvantage, provided that there is not a huge gap between

its component areas. We present an empirical comparison of detection and

spatial accuracy between our algorithm and the classical Kulldorff’s Circular

Scan, using the data set of Chagas disease cases in puerperal women in Minas

Gerais state, Brazil.

Keywords: spatial scan statistic, spatial cluster, space-time cluster, voronoi

diagram, minimum spanning tree, combinatorial optimization problem, dy-

namic programming.



Resumo

Esta tese aborda o problema de detecção de clusters espaciais e espaços-

temporais. Dois algoritmos para resolver o t́ıpico problema de conjuntos de

dados com processos espaciais são propostos.

Um método eficiente para a detecção e inferência de clusters de doenças

espaciais e espaços-temporais de dados pontuais é apresentado, o Voronoi

Based Scan (VBScan). Um diagrama de Voronoi é constrúıdo para os pontos

que representam indiv́ıduos da população (casos e controles). O número de

células de Voronoi interceptadas pelo segmento de linha que une de dois

pontos que representam dois casos define a distância de Voronoi entre esses

pontos. Esta distância é usada para aproximar a densidade da população

heterogênea e construir a árvore geradora mı́nima baseada na distância de

Voronoi (VMST) ligando os casos. A remoção sucessiva de arestas da VMST

gera sub-árvores que são os clusters candidatos potenciais. Finalmente, os

clusters são avaliados através da estat́ıstica scan de Kulldorff. Simulações de

Monte Carlo dos dados originais são usados para avaliar a significância dos

clusters. A capacidade de detectar rapidamente clusters de surtos da doença,

quando o número de indiv́ıduos é grande, mostrou-se viável, devido à redução

da carga computacional obtida com o VBScan. As simulações numéricas

mostraram que o VBScan tem maior poder de detecção, sensibilidade e valor

preditivo positivo do que o scan eĺıptico. Além disso, uma aplicação de casos e

controles georeferenciados de dengue em uma cidade do Brasil é apresentado.

Numa segunda abordagem, o problema t́ıpico de detecção de clusters

espaciais é reformulado como um problema bi-objetivo de otimização com-

binatória. Nós propomos um algoritmo exato baseado em programação

dinâmica, Geographical Dynamic Scan, que empiricamente foi capaz de re-
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solver os casos até de grande porte dentro de tempo computacional aceitável.

Nós mostramos que o conjunto de soluções não dominadas do problema, en-

contradas eficientemente, contém a solução que maximiza a estat́ıstica scan

de Kulldorf. O método permite clusters de formatos arbitrários, que podem

ser uma coleção de regiões desconectadas ou conectadas, tendo em conta uma

restrição geográfica. Note-se que esta não é uma séria desvantagem, desde

que não haja um grande espaçamento entre as suas áreas. Apresentamos uma

comparação emṕırica de detecção e precisão espacial entre o nosso algoritmo

e o clássico Scan circular, utilizando dados de casos de doença de Chagas em

mulheres parturientes no estado de Minas Gerais, Brasil.

Palavras-chave: estat́ıstica espacial scan, cluster espacial, cluster espaço-

temporal, diagrama de voronoi, árvore geradora mı́nima, problema de otimiza-

ção combinatória, programação dinâmica.



Resumo Estendido

Esta seção consiste em um resumo estendido sobre o trabalho desenvolvido

nesta tese. Primeiramente, este texto introduz o problema abordado, a prin-

cipal motivação para solucioná-lo e alguns dos principais métodos relaciona-

dos. Em seguida, uma breve descrição dos objetivos principais das metodolo-

gias desenvolvidas para resolver o problema. Finalmente, as conclusões são

apresentadas.

Introdução

Testes estat́ısticos de vigilância de doença no espaço e no espaço-tempo,

geralmente, procuram determinar se a incidência da doença em um sub-

conjunto definido espacial e/ou temporalmente é incomum em relação à in-

cidência na região de estudo como um todo. Assim, essa classe de métodos é

projetada para detectar clusters de doença no espaço e no tempo, e adaptar

sistemas de vigilância concebidos para a detecção de surtos. O desenvolvi-

mento de métodos de detecção de clusters espaços-temporais, naturalmente,

evoluiu a partir de métodos puramente espaciais. Podemos estratificar os

métodos em três tipos de classe de testes estat́ısticos: testes para interação

espaço-tempo, os métodos de soma cumulativa, e a estat́ıstica scan.

A estat́ıstica espacial scan de Kulldorff (Kulldorff, 1997) é atualmente o

método mais usual para encontrar clusters (aglomerados) espaciais, espaço-

temporais e temporais. Estudada em detalhe pela primeira vez por (Naus,

1965) é um método estat́ıstico com muitas aplicações potenciais, com o ob-

jetivo de detectar um excesso de eventos locais. A estat́ıstica espacial scan

supera o problema de testes múltiplos (comuns a muitos métodos locais de
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análise espacial), tomando o cluster mais provável definido pela maximização

da razão de verossimilhança. (Kulldorff & Nagarwalla, 1995) apresentam o

clássico Scan Circular, um teste que encontra o cluster mais verosśımil dentre

todas as zonas circunscritas por ćırculos de raios variados centrados em cada

região do mapa.

Em (Kulldorff, 2001), a estat́ıstica espacial scan é estendida para o espaço-

tempo, de modo que cilindros são utilizadas para o formato dos potenciais

candidatos a cluster. A base circular representa a área espacial e a altura

do cilindro representa o peŕıodo de tempo. Na análise prospectiva, cilindros

candidatos são limitados àqueles que começam a qualquer momento durante

o peŕıodo de estudo e termina no peŕıodo de tempo atual (ou seja, clusters

vivos).

O problema t́ıpico de detecção de clusters es-

paciais

No enfoque desta tese, propomos dois métodos de detecção de clusters

espaciais quando dois tipos de dados de processo espacial para um determi-

nado fenômeno de interesse estão dispońıveis. Suponha que tenhamos, por

exemplo, um mapa dividido em regiões, cada uma delas com uma população

conhecida e um número de casos observados. Assim, cada caso pode ser,

por exemplo, um indiv́ıduo infectado por uma certa doença. Neste mapa um

cluster é um aglomerado de regiões geograficamente limitadas onde o risco

de ocorrência do fenômeno de interesse é muito elevado ou muito baixo com-

parado com o risco das demais regiões, e ao mesmo tempo significativo do

ponto de vista estat́ıstico.

Para cada região definimos um centróide, que é um ponto arbitrário em

seu interior. Chamaremos de zona qualquer subconjunto geograficamente

limitado de regiões do mapa. Denotaremos por Z o conjunto de todas as

zonas. Por exemplo, uma janela circular sobre a área em estudo define uma

zona formada pelas regiões cujos centróides estão dentro da janela, veja a

Figura 1. Suponha agora que tenhamos um conjunto de dados pontuais
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Figure 1: Uma posśıvel zona obtida para uma dada janela circular.

de casos e controles, onde cada ponto no mapa representa indiv́ıduos infec-

tados (casos) e indiv́ıduos com similares caracteŕısticas mas não infectados

(controles). Uma zona é qualquer subconjunto geograficamente limitado de

indiv́ıduos do mapa. Dentre os N indiv́ıduos, n são casos e N − n são con-

troles. Para cada ćırculo de raio r > 0 centrado em cada indiv́ıduo, uma

zona é o conjunto de indiv́ıduos dentro do ćırculo. Um exemplo é visto na

Figura 2.

Seja z ∈ Z uma zona, definindo L(z) como a função de verossimilhança

sob a hipótese alternativa de que exista uma zona z∗ que é um cluster, e L0

como a verossimilhança sob a hipótese nula de que não exista um cluster, foi

mostrado em (Kulldorff, 1997) que o logaritmo da razão de verossimilhança,

K(z) = log (L(z)/L0), é dado por

K(z) =











C log

(

N

C

)

+ zC log

(

zC

zN

)

+ (C − zC) log

(

C − zC

N − zN

)

if
zC

zN
>

C − zC

N − zN

0 otherwise

(1)

assumindo que o número de casos na zona z, zC, segue uma distribuição

de Poisson com média proporcional à sua população zN. A função K é

maximizada sobre todas as zonas em Z, identificando a zona que constitui
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Figure 2: Uma posśıvel zona obtida para uma dada janela circular.

o cluster mais verosśımil. Então, temos a estat́ıstica de teste dada por T =

maxz K(z).

A busca por soluções eficientes seria feita então dentro do conjunto Z. O

fato é que seria computacionalmente inv́ıavel testar todas as zonas posśıveis.

Para contornar esse problema, os algoritmos para detecção de clusters espa-

ciais fazem uso de duas técnicas:

• Redução do conjunto das soluções canditadas Z para outro conjunto

Z ′ das zonas promissoras ou que permita uma busca exaustiva.

• Utilização de métodos estocásticos de otimização.

Em ambas as técnicas, geralmente, os métodos só garantem uma boa

aproximação para a solução ótima global do problema. Outra restrição dos

métodos de detecção de clusters está relacionada com o formato dos clus-

ters encontrados. Muitos algoritmos não têm procedimentos adequados para
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controlar as formas dos clusters encontrados. A solução pode às vezes se es-

palhar através de diversas regiões do mapa, fazendo com que se torne dif́ıcil

a avaliação de seu significado geográfico. Outros apresentam clusters detec-

tados com formatos fixos, tipicamente circulares.

Neste sentido, propomos nesta tese dois algoritmos distintos de detecção

de clusters. Um que aborda conceitos de teoria de grafos, com o propósito de

obter um conjunto Z ′ de potenciais candidatos a cluster. O outro implementa

conceito de programação dinâmica com o objetivo final de reduzir o conjunto

das soluções candidatas ao cluster, encontrando uma solução ótima global

para o problema.

Conclusões

Este trabalho apresenta dois métodos de detecção de clusters espaci-

ais. Um primeiro método direcionado a detectar clusters espaciais e espaço-

temporais para dados de processos pontuais de casos e controles. O segundo

direcionado a ambos os tipos de dados. Os métodos discutidos são eficientes

na melhoria das medidas de avaliação utilizadas em comparação com métodos

clássicos.

Principais contribuições

• Proposição de um algoritmo de detecção de cluster espaciais e espaço-

temporais, Voronoi Based Scan, quando dispońıveis dados de processos

pontuais de casos e controle;

• Proposição de um algoritmo de cluster espaciais, Geographical Dynamic

Scan, tanto para dados de área quanto para dados pontuais de casos e

controle;

• Elaboração, disponibilização e análise de casos e controles geo-referenciados

de dengue na cidade de Lassance em Minas Gerais, em colaboração com

o Programa de Saúde da Famı́lia.
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Esboço da tese

Esta tese está organizada em 6 caṕıtulos. O caṕıtulo 1 apresenta os

conceitos gerais do método de detecção de clusters espaciais, a estat́ıstica

scan espacial, tipos de dados aplicáveis, inferência. Traz ainda uma breve

descrição do método clássico para análise prospectiva de clusters espaço-

temporais e uma breve revisão da literatura.

O caṕıtulo 2 apresenta nosso método proposto para detecção de clus-

ters espaciais e espaço-temporais quando um conjunto de dados de processos

pontuais do tipo caso-controle é avaliado. Ele utiliza conceitos de teoria de

grafos e otimização geométrica para caracterizar as soluções candidatas a

cluster. Já no caṕıtulo 3 implementamos um outro método de detecção de

clusters espaciais usando um algoritmo de programação dinâmica que encon-

tra eficientemente as soluções candidatas. Neste último, tanto um conjunto

de dados agregadoa ou pontuais podem ser avaliado.

No caṕıtulo 4 apresentamos análises numéricas que mostram o desem-

penho dos métodos aqui propostos na detecção de clusters. Estudos com

dados artificiais e dados reais encontrados na literatura foram realizados. No

caṕıtulo 5 uma aplicação de casos e controles georeferenciados de dengue na

cidade de Lassance em Minas Gerais é apresentada.

Finalmente, no caṕıtulo 6 apresentamos nossas conclusões e perspecitvas

de trabalhos futuros.
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Chapter 1

The spatial scan statistics

Spatial cluster detection methods are statistical tests which generally seek

to determine whether a phenomenon of interest in a spatially defined subset

is unusual compared to the incidence in the study region as a whole.

In this chapter we review the spatial scan statistics (Kulldorff, 1997).

The first part provides a list of the types of data often used in typical spatial

cluster detection problem.

1.1 Types of Data

1.1.1 Point Data

Locations of spatial entities (e.g., disease cases) are often represented as

a point in two-dimensional map space, see Figure 1.1, such data are called

point data, point process data, event data. Each record in this data must have

its positional information represented by that x- and y-coordinates, and may

also contain additional attributes (for example, age, gender, ...).

1.1.2 Case-Control Data

We will be interested in cluster detection and geographic surveillance

when data are in the form of point locations for cases and controls. Here,

1
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Figure 1.1: Spatial distribution of the observed cases in arbitrary data.

cases refer to individuals with a particular disease of interest, and controls

refer to individuals with similar characteristics as cases but do not have the

disease. When controls can be seen as a representative subset of population

without the disease, comparison of the spatial distribution of the cases that

of controls helps us identify spatial patterns in the cases distribution that are

beyond what is merely reflective of the spatial distribution of the population.

An example of case-control artificial data is shown in the Figure 1.2.

1.1.3 Aggregated Data

With aggregated data (or areal data), a study region is divided into a

set of non-overlapping zones (such as counties, ZIP code zones ...), and each

zone has associated attribute values such as the number of disease cases

and population. This type of data may also contain other physical and

socioeconomic attributes associated with each zone. The dataset shown in

Figure 1.3. is a typical example of aggregated data. This is perhaps the most

commonly available form of spatial data because exact locations of disease

cases are often not publicly releasable.
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Figure 1.2: Spatial distribution of the observed cases (circles) and controls
(dots) in Lancashire-UK data.

1.1.4 Space Time Data

Although less commonly available, we will also be interested in data which

have time subscripts in addition to positional information. For example, a

point dataset that represents each patient as a point on his or her residential

address with associated date of diagnosis or an aggregated dataset that con-

tains the number of cases and population for each zone over multiple years

belong to this category of data. Such data offer us opportunities to examine

not only spatial patterns in the data distribution but also spatial-temporal

patterns and temporal changes in spatial patterns. When investigating a

disease outbreak, for example, one’s objective is not merely to detect spatial

clusters of disease cases but also to identify how the size, shape, or location

of the clusters is changing over time.
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Figure 1.3: Mapping spatial variations of Chagas disease in the State of
Minas Gerais - Brazil by county during 2006: (a) disease rates map; (b)
Population at risk map.

1.2 Kulldorff’s Spatial Scan Statistic

Consider a spatial dataset with M locations, for example, a disease map

divided into M regions, with total population N and total number of cases

C. A zone z is any subset of regions of the map. The null hypothesis

states that there are no clusters in the map, and the number of cases in



SPATIAL CLUSTER INFERENCE 5

each region is Poisson distributed proportionally to its population. For each

zone z, the number of observed cases is zC and the expected number of

cases under null hypothesis is zµ = zN(C/N), where zN is the population in

the zone z. Defining L(z) as the likelihood function under the alternative

hypothesis and L0 as the likelihood function under the null hypothesis, it

can be shown (Kulldorff, 1997) that the logarithm of the likelihood ratio,

K(z) = log (L(z)/L0), for the Poisson model is given by:

K(z) =











C log

(

N

C

)

+ zC log

(

zC

zN

)

+ (C − zC) log

(

C − zC

N − zN

)

if
zC

zN
>

C − zC

N − zN

0 otherwise

(1.1)

The function K is maximized over the chosen set Z of potential zones z,

identifying the zone which constitutes the most likely cluster. Hence we have

the test statistic, given by T = maxz K(z).

Given the definition above, it follows that K(z) = K(zC, zN) is a function

of variables zC and zN. Assuming that zC and zN take positive values, it is

trivial to note that K(zC, zN) satisfies the following property:

Property 1 Let zC/zN > (C − zC)/(N − zN). The function K(zC, zN) is

strictly increasing in the variable zC and strictly decreasing in the variable

zN.

1.3 Spatial Cluster Inference

If we know the probability distribution of the spatial scan statistic under

the null hypothesis of cluster non-existence we could determine a critical

value such that the significance level (typically 5%) represents the probability

of the scan statistic assumes values greater than the critical value. Since,

in principle, that probability distribution is unknown, we use Monte Carlo

simulations (Dwass, 1957) in order to obtain an empirical distribution of the

scan statistic values under the null hypothesis. To make one Monte Carlo

simulation, first we distribute the fixed total number of cases C throughout
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the regions of the study area. The cases distribution, conditioned on the

total number of cases, is made according a multinomial distribution where

the probability of an individual become a case in any region is proportional to

its population. Then the scan statistic is calculated for the most likely cluster

given the simulated cases distribution. This procedure is repeated n times

and the obtained scan statistic values are ranked (the value corresponding

to the 95% quantile is the estimate of the critical value at a 5% significance

level). Given the scan statistic value, T , of the observed cases map, the

estimate of its p-value is
nobs

n+ 1
, where nobs is its ranking position among the

n+ 1 values (where n is the number of simulated values).

1.4 Prospective Space-Time Scan

The Prospective Space-Time Scan (Kulldorff, 2001) considers all cylin-

drical clusters in the space-time domain. All the possible circular windows

in the space domain are taken as the bases of the cylinders to be considered.

The study period is given by the time interval [Y1, Y2]. The likelihood for the

observed data set is obtained as the maximum over all cylinders in the time

interval [s, t] reaching the end of the study period, with Y1 ≤ s ≤ t = Y2.

For the random data sets generated under null hypothesis, the likelihood

is maximized over all cylinders for which Y1 ≤ s ≤ t ≤ Y2 and Ym ≤ t,

where Ym is the time instant in which the time periodic surveillance began,

in order to adjust for the multiple analysis. See (Kulldorff, 2001) for de-

tails. SaTScan software implements the Prospective Space-Time Scan for

both area and point data sets. In order to establish some comparisons for

the evaluation of the proposed method, in this paper we have implemented a

version of the Prospective Space-Time Scan for point data sets using elliptic

cylinders instead of circular zones (Kulldorff et al., 2006).
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1.5 State-of-the-art

The spatial scan statistic (Kulldorff, 1997) constitutes the main statis-

tic used for cluster detection, being employed, for instance, by the software

packages SaTScan (Kulldorff, 1999) to detect static circularly shaped disease

clusters (Kulldorff & Nagarwalla, 1995). Recently, several attempts have

been developed in order to relax the assumption of cluster circular shape.

(Sahajpal et al., 2004) used a genetic algorithm to find clusters shaped as

intersections of circles of different sizes and centers. The SaTScan approach

has been extended to the case of elliptic shaped clusters (Kulldorff et al.,

2006), in this way allowing the detection of elongated clusters. Other meth-

ods have also been proposed to detect connected clusters of irregular shape

(Duczmal & Assunção, 2004; Patil & Taillie, 2004; Tango & Takahashi, 2005;

Duczmal et al., 2006, 2008; Neill, 2008, 2010). The Static Minimum Span-

ning Tree (SMST) proposed by (Assunção et al., 2006) used a greedy algo-

rithm to aggregate regions. The Flexibly Shaped (FS) spatial scan statistic

(Tango & Takahashi, 2005) made an exhaustive search of all possible first-

order connected clusters contained within a set encompassing the nearest k

neighbors of a given region.

A key point for the construction of such methods for detection of ir-

regularly shaped clusters is that, as the geometrical shape receives more

degrees of freedom, some correction should be employed in order to compen-

sate the increased flexibility, so avoiding the increase of false-positive errors

(Duczmal et al., 2006, 2007). This fact has been recognized since the early

study of elliptically shaped clusters (Kulldorff et al., 2006). These correc-

tions were also treated in a multi-objective framework (Duczmal et al., 2008;

Duarte et al., 2010; Cançado et al., 2010). (Yiannakoulias et al., 2007) pro-

posed a topological penalty.

Neill’s Fast Subset Scan (Neill, 2008) presented a significant advance in

spatial methods for aggregated area maps, finding exactly the optimal ir-

regularly spatial clusters in linear computing time. The clusters found may

sometimes be disconnected, but this is not a serious disadvantage, provided

that there is not a huge gap between its areas. A way to control the pres-
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ence of those potential gaps is to limit the number of component areas of

the cluster, e.g. allowing only clusters which are subsets of a circular zone of

moderate maximum size.

Recently, methods have been proposed when point process data are avail-

able. (Conley et al., 2005) proposed a genetic algorithm to explore a config-

uration space of multiple agglomerations of ellipses in point data set maps,

implemented in the software PROCLUDE. (Wieland et al., 2007) introduced

a graph theoretical method for detecting arbitrarily shaped clusters based on

the Euclidean minimum spanning tree of cartogram transformed case loca-

tions, which is quite effective, but the cartogram construction step of this

algorithm is computationally expensive and complicated. (Demattei et al.,

2007) proposed a method based on the construction of a trajectory for multi-

ple cluster detection in point data sets. (Cucala, 2009) proposed a method for

identifying clusters in spatial point processes. It relies on a specific ordering

of events and the definition of area spacings which have the same distribu-

tion as one-dimensional spacings. (Demattei & Cucala, 2011) introduce a

spatio-temporal distance which allows the extension of the spatial cluster

detection methods (Demattei et al., 2007; Cucala, 2009) used for detecting

spatio-temporal clusters.



Chapter 2

Voronoi based scans for point

data sets

2.1 Motivation

Algorithms for the detection and inference of clusters are useful tools in

etiological studies (Lawson et al., 1999) and in the early warning of infectious

disease outbreaks (Duczmal & Buckeridge, 2006; Kulldorff et al., 2005, 2006,

2007; Neill, 2009). A spatial cluster is defined as a localized portion of the

domain containing a higher than average proportion of cases over controls,

whose appearance is unlikely under the assumption that cases are randomly

distributed in the population. Space-time clusters are defined as unexpected

concentrations of disease cases in a time series sequence of geographical maps,

and could potentially indicate an outbreak or epidemic, due to environmental

or biological causes.

The mechanism behind the enhancement of the power of cluster detection

methods when arbitrary shapes are considered can be described as:

• If the shape of the possible cluster was known a priori, the most power-

ful method of detection would be to assume such a shape, and search for

empirical clusters of that format. In this way, objects of other shapes

9
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would be disregarded, and the statistics would be evaluated only over

the legitimate cluster candidates.

• If the shape of possible clusters was not known a priori, considering a

fixed shape would lead to two kinds of errors: either the true cluster

would be included inside a greater cluster estimate of the assumed

shape, or only a portion of the true cluster which coincides with the

assumed shape would be considered. In both cases, the power of the

method would be decreased due to such errors.

• An entropy-like argument is employed at this point: the relatively rare

regular shapes that would represent a homogeneous formation of the

cluster are considered better than the more numerous flexible irregular

shapes, that represent a rather non-homogeneous cluster propagation.

• Within the multi-objective framework, there is no need to state pre-

cisely the relative weight of the different shapes. The suitable balanc-

ing of the minimization of shape flexibility and the maximization of

the likelihood ratio of the existence of the cluster can be attained by a

hypothesis test, which reveals a cluster estimate with minimal p-value.

These developments related to flexible cluster shapes have been mostly

performed for the static case only. The first motivation of this work is the

concepts from the graph theory, applied to evaluate the set of potential clus-

ters, for detecting arbitrarily shaped clusters based on the minimum spanning

tree representation.

For the space-time case, the Prospective Space-Time Scan (Kulldorff,

2001) considers all cylindrical clusters in the space-time domain as cluster

candidates. A version of Space-Time Scan has been developed too for the case

of the elliptical scan, also considering cylindrical clusters stated as projections

of the ellipses along the time dimension (Kulldorff et al., 2006). The second

main motivation of this work is the observation that, although the elliptical

spatial shape endows some flexibility to the scan procedure, allowing a high

detection power in space coordinates, the cylinder shape assumed in order

to extend such a spatial shape to time coordinates is too restrictive, leading
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to inaccuracies in space-time cluster detection. This issue has been dealt in

some references (Iyengar, 2005; Takahashi et al., 2008; Demattei & Cucala,

2011). See (Robertson & Nelson, 2010) for a review of space-time cluster

detection software.

Our proposed methodology builds different graphs for each considered

time interval. In this way, the flexibility that is necessary for dealing with

the variation of the disease spread along the time dimension is obtained in a

direct way.

2.2 Definitions and Methods

The idea of employing a Minimum Spanning Tree (MST) in order to char-

acterize clusters has been already studied by (Assunção et al., 2006), in the

context of area data sets. For dealing with point data sets, the application of

the scan statistics requires a proper definition of disease case density related

to each data point. As, clearly, a single sphere radius was not suitable for

estimating the population density in all regions, due to the heterogeneity

in the geographical distribution of population, a correction procedure was

necessary. The procedure proposed by (Wieland et al., 2007) performed a

non-linear cartogram transformation of the map, leading to a new map with

an approximately homogeneous control population distribution. It should be

noticed that this procedure is highly computing intensive.

A much simpler procedure for the estimation of disease density is pro-

posed in this work. The general idea is: a Voronoi diagram is depicted,

defining regions associated to each individual point in the map (both for

disease and non-disease cases). A new distance, called Voronoi distance, be-

tween two points, is defined as the number of Voronoi cell boundaries that

must be crossed in order to establish a path between those points. A ball of

radius R in this distance, centered in the point A, would consist of the set

of points which can be reached from A with up to R Voronoi cells crossings.

Therefore, the Voronoi distance can be used in order to define a variable

metric of the original coordinates that exactly performs the correction that

transforms a non-homogeneous population density map into a homogeneous
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one. The computation of the Voronoi distance and all associated entities can

be performed with efficient polynomial algorithms. Using the VMST, the

computation of disease clusters in a fixed time coordinate can be performed

very fast. In order to deal with space-time clusters, a simple procedure that

connects the graphs of different time instants by the common nodes is em-

ployed. The program was written in Dev C language.

2.2.1 Minimum spanning tree representation

We will use a Minimum Spanning Tree to represent a set of event data

point and determine the subsets which potentially constitute a cluster.

In order to characterize point data set clusters, the Voronoi distance is

defined. The population at risk consists ofN individuals in the space domain,

divided into n disease cases and N − n controls. Consider the set P =

{(xi, yi) : i = 1, ..., N} ⊂ R
2, indicating the geographic location of the cases

and controls. For i = 1, ..., N the Voronoi cell v(i) consists of those points

in R
2 which are closer to (xi, yi) than to any other point in P . The Voronoi

diagram is formed by the collection of cells v(i), i = 1, ..., N .

Definition 1 (Voronoi distance) Let vij be the number of Voronoi cells

intercepted by the line segment joining the points (xi, yi) and (xj, yj) (in-

cluding the cells containing the points i and j). In this work we define the

Voronoi distance between points i and j as δ(i, j) = vij − 1. When the points

i and j occupy neighboring Voronoi cells, δ(i, j) = 1.

A geometric routine is used to compute the number of intersections of

the segment linking two cases i and j with the edges of the Voronoi cells.

If that segment intercepts tangentially a Voronoi cell, a potential problem

may occur in the computation of δ(i, j). However, this problem occurs only

rarely, supposing that the point coordinates follow a random pattern.

As an attempt to identify subsets of such a set that are likely to con-

stitute a cluster, the following heuristic is employed here, (Xu et al., 2002;

Wieland et al., 2007): A nonempty subset S of D forms a candidate cluster

if the smallest distance separating the sets S and D − S is greater than the
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maximum internal distance of S, where D − S is the subset of D removing

all points of S. Formally, this can written as:

Let S = S1 ∪ S2 be any partition and ρ represent the distance between two

points of D. If S ⊆ D forms a cluster then

arg min
d∈D−S1

{min{ρ(d, s) : s ∈ S1}} ∈ S2.

Hence, the potential cluster is a connected graph with tree structure, linking

the disease cases in the space domain. Our algorithm builds a set of sub-

trees of the minimum spanning tree of the complete graph of cases, defining

a small set of potential space clusters. For example, considering the data

points of the Figure 2.1 the points of the same cluster are connected with

each other by short edges while long edges link cluster together.

Figure 2.1: An minimum spanning tree connecting all the data points, using
Euclidean distance.
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2.3 Voronoi based spatial scan

Formally, let D = {ci} be the subset representing the disease cases where

each ci = (xi, yi) indicates its geographic location. We define a weighted

complete graph G(D) = (V,E) with vertex set V = {ci : ci ∈ D} and edge

set E = {(ci, cj) : ci, cj ∈ D, i 6= j}. Each edge (ci, cj) ∈ E has weight defined

by the Voronoi distance δ(i, j).

A minimum spanning tree (MST) of a weighted complete graph G(D) can

be defined as a minimal set of edges of G(D) that connect all vertices with

minimum total distance. The Voronoi Minimum Spanning Tree (VMST) of

the weighted graph G(D) defined above is a spanning tree with the minimum

total Voronoi distance. A set of discrete values characterizes the Voronoi dis-

tance. This would cause the emergence of multiple solutions very often. This

effect is eliminated by ordering the edges with identical Voronoi distances

according to the Euclidean distance. This procedure ensures the following

lemma, which is an extension of the result proposed by (Wieland et al., 2007):

Lemma 1 Assume that the Euclidean distance between any two points be-

longing to the set P is different from any other distance between two points

of the same set. Then the set of potential clusters are in one-to-one corre-

spondence with connected components among all graphs Tw, with Tw defined

as the graph derived from VMST by deleting all edges having weight greater

than w.

Proof: Define the order of descending weights w to the edges of VMST

untied by Euclidean distance as discussed above. Hence, the proof follows

the same way as performed in (Wieland et al., 2007), replacing the Euclidean

distance by Voronoi distance.

The set of potential clusters may be quickly found from a VMST by using

a greedy edge deletion procedure, improving and simplifying the strategy

employed by the Density-Equalizing Euclidean MST method (Wieland et al.,

2007). The procedure is: After constructing the VMST of the set of case

locations D, we iteratively remove the largest remaining edge, giving rise to

two additional cluster candidates in each iteration. For a map with n cases,

we obtain 2n− 1 cluster candidates, including n unitary clusters.
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Figure 2.2 shows the spatial distribution of 70 coordinates, with 10 ob-

served cases (circles) and 60 non-cases (dots) in an artificial data set and

the associated Voronoi minimum spanning tree. Figure 2.3 shows a simple

visualization of the greedy edge deletion procedure for the example above.

The successive steps of edge deletion are represented, with the new cluster

candidates shown in each iteration.

2

2
3

1

6

4 1

1

2

Figure 2.2: Left: spatial distribution of the 10 observed cases (circles) and
60 non-cases (dots). Right: corresponding Voronoi minimum spanning tree.

Given a case with geographic location ci = (xi, yi), consider the circle

C(ci, r) centered in the point (xi, yi), with radius r. If the local density around

the point (xi, yi) is given by s individuals per unit area, then the expected

number of individuals inside the circle C(ci, r) is computed as sπr2. When

the radius r is expressed locally in units of the Voronoi distance as R, then

the expected number of individuals inside C(ci, r) is simply πR2. Thus the

Voronoi distance definition contains the necessary information to compute

approximately the local density function of the heterogeneous population,

for a suitable choice of neighbors of each individual case.
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1 2 3 4 5

6 7 8 9 10

Figure 2.3: Visualization of the greedy edge deletion procedure, in successive
steps numbered from 1 to 10. Sub-graphs linking blue circles represent the
new cluster candidates that appear in each iteration, and sub-graphs link-
ing black circles represent cluster candidates that have already appeared in
former steps.

Proposition 1 Consider a case dataset D and its corresponding VMST,

denoted by V. Let TS be a connected subgraph of V whose nodes constitute

the set S, and denote by f(x) the local population density in x. For each case

ci ∈ S let ωi be equal to the minimum weight of the edges that are incident to

ci in V and B =
⋃

C(ci, ωi/2). The local population of S can be approximated

by

∫

B

f(x)dx =
1

4

∑

ci∈S

πω2

i .

This defines a “region of influence” of the cluster S through the compo-

sition of the regions of influence of each case, which are defined as circular

regions, with radii ωi/2 chosen as large as possible, such that there is no

interference between neighboring circles in the VMST. An example is shown

in Figure 2.4.

We further note that this definition is robust, in the following sense.

Consider two situations: first, a case dataset D spread evenly in a map

of control points, and second, a case dataset D′ with the same number of

points and overall shape as D but geographically smaller, inserted in the

same map of control points. It is easy to see that the regions of influence
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Figure 2.4: The “region of influence” of each individual case in an arbitrary
map.

of the clusters associated to D is larger than the corresponding regions of

influence associated with D′, as we could expect.

We shall use this information to estimate the number of control individ-

uals under the “region of influence” of each case individual, which in turn

will allow the use of the scan statistic and also define a corresponding cluster

finding algorithm employing a minimum spanning tree.

2.4 Voronoi based space-time scan

In order to deal with space-time clusters, a simple procedure that connects

the cases of different time instants for each time interval is employed. On

what follows, we specify a parameter τ to indicate the maximum allowed
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temporal gap within the candidate cluster.

Let PT be the set of the geographic coordinates of the N −n controls and

the nT disease cases present in the interval time window given by T = [s, t],

where s is the initial time and t the final time of the interval T . The Voronoi

diagram of PT and the corresponding Voronoi distance is defined similarly to

the former procedure, in space coordinates only. For the space-time domain,

let ti be the onset time of the disease for the i-th case, i = 1, ..., nT . Then,

establish connections linking only cases whose temporal distance is limited

by τ .

Formally, let DT = {ctii : i = 1, ..., nT} be the set of cases observed in

the interval T = [s, t], where s ≤ ti ≤ t and (xi, yi) indicates the geographic

location for the ctii case, i = 1, ..., nT . In this way, two observed cases ctii , c
tj
j ∈

DT will be connected if the temporal distance is such that |ti − tj| ≤ τ .

We define a weighted complete graph Gτ (DT ) = (V T , Eτ ) with vertex set

V T = {ctii : ctii ∈ DT} and edge set Eτ = {(ctii , c
tj
j ) : ctii , c

tj
j ∈ DT , i 6=

j, |ti − tj| ≤ τ}. The weights are the usual Voronoi distances between points

(xi, yi) and (xj, yj).

The procedure is repeated for every time interval T = [s, t] such that

Y1 ≤ s ≤ t = Y2, as seen in the Prospective Space-Time Scan section,

building a different Voronoi based MST for each time interval T .

When using the parameter value τ = 1, the produced clusters of cases

have no time gaps. Larger values of the parameter τ , otherwise, may produce

clusters with cases separated by more than one unit of time, which could be

undesirable in some circumstances. In the applications of the chapter 5, we

consider several possible values for τ .



Chapter 3

Dynamic Programming based

Scan

3.1 Motivation

In general, the greatest difficulty of methods for detection of spatial clus-

ters is to identify over all subsets of the data the subset that corresponds

to the pattern of discrepancy. The evaluation of all subsets is computa-

tionally infeasible for large dataset. Recently, several attempts have been

developed in order to outline this problem. Many heuristics have appeared

recently to compute approximate values that maximizes the logarithm of the

likelihood ratio (Duczmal et al., 2009), other methods have made to reduce

the search space (Duczmal et al., 2011; Wieland et al., 2007; Demattei et al.,

2007). Neill’s Fast Subset Scan (Neill, 2008) presented a significant advance

in spatial methods for aggregated area maps, finding exactly the optimal

irregularly spatial clusters.

In (Cancado, 2009), the spatial cluster detection problem is formulated as

the classic knapsack problem. The problem can be modeled as a bi-objective

combinatorial optimization problem. The set of non-dominated solutions of

the problem contains the solution that maximizes the logarithm of the likeli-

19
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hood ratio, K(z). In this work, a knapsack problem (unconstrained versions)

is proposed.

We propose an exact algorithm based on dynamic programming, Geo-

graphical Dynamic Scan, that empirically was able to solve instances up to

large size within a reasonable computational time. The set of non-dominated

solutions of the problem, computed efficiently, contains the solution that

maximizes the logarithm of the likelihood ratio, K(z). The method allows

arbitrary shaped clusters, which can be a collection of disconnected or con-

nected regions, taking into account a geometric constraint. Note that this is

not a serious disadvantage, provided that there is not a huge gap between its

areas. Finding exactly the optimal irregularly spatial clusters, the method

allows multiple clusters.

We present an empirical comparison of detection and spatial accuracy

between our algorithm and the classical Kulldorff’s Circular Scan, using the

data set of Chagas disease cases in puerperal women in Minas Gerais state,

Brazil.

3.2 Multi-objective optimization problem

Multi-objective optimization deals with the problem of finding optimal

solutions due to more than one objective function. A multi-objective opti-

mization problem is formally defined as:

min f(x), f(x) = (f1(x), f2(x), · · · , fm(x))

subject to: x = (x1, x2, · · · , xn) ∈ X
(3.1)

in which x ∈ X ⊆ R
n is the decision variable vector, X is the optimization

parameter domain, Y ⊆ R
m is the objective space, i.e. Y = f(X).

The goal of multi-objective optimization methods is to obtain a set of

points belonging to the optimization parameter domain of the problem, such

that they minimize, in a sense, a vector function. Let u,v ∈ R
m. We define
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the following relational operators:

u,v ∈ R
m

u ≦ v ⇐⇒ ui ≤ vi, i = 1, . . . ,m

u 6= v ⇐⇒ ∃i ∈ {1, . . . ,m} : ui 6= vi

u ≤ v ⇐⇒ u ≦ v and u 6= v

These operators enable a well-defined definition of optimality in multi-objective

optimization.

Definition 2 A feasible solution x∗ ∈ X is called optimal solution of a multi-

objective optimization problem if there is no x ∈ X such that f(x) ≤ f(x∗).

In that case f(x∗) is called optimal value of the multi-objective optimization

problem.

Given the multi-objective optimization problem (3.1), a decision vector

x dominates another decision vector x′ and f(x) dominates f(x′) if and only

if f(x) ≤ f(x′). An optimal solution is called non-dominated vector. In this

way, the non-dominated set of solutions, or the Pareto-optimal set, P , is

defined as:

P = {x∗ | ∄x ∈ X : f(x) ≤ f(x∗), x ∈ X} . (3.2)

A Pareto-optimal solution is a non-dominated vector x ∈ X. The Pareto-

optimal set of the multi-objective optimization problem is the set of all

Pareto-optimal solutions. The image of this set in the objective space is

called the Pareto front and denoted as f(P).
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Figure 3.1: Non-dominated solutions. Right: the Pareto-optimal set. Left:
the Pareto front set.

3.3 System and Method

In this section we propose an algorithm to solve the problem of detecting

clusters using dynamic programming.

Dynamic programming is a stage-wise search method suitable for opti-

mization problems whose solutions may be viewed as the result of a sequence

of decisions (Gupta et al., 2008). The most attractive property of this strat-

egy is that during the search for a solution it avoids full enumeration by

pruning early partial decision solutions that cannot possibly lead to opti-

mal solution. The dynamic programming relies on a principle of optimality.

This principle states that in an optimal sequence of decisions or choices, each

subsequence must also be optimal.

3.3.1 Mathematical Formulation

The typical detection of spatial clusters problem (1.1) across the set Z

of all possible zones, is reformulated, in the same way as done in (Cancado,

2009). The proposed method this work enumerates a subset of feasible solu-
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tions, and discards those that will not lead to optimal solutions.

Given a map with m regions, consider the binary variables x1, ..., xm,

where xi = 1 if the i-th region is present in the cluster and 0 otherwise. Let

ci and ni denote the number of cases and population of i-th region. Consider

the following unconstrained bi-objective combinatorial optimization problem:

min f(x) =

(

C(x) = −
m
∑

i=1

cixi, N(x) =
m
∑

i=1

nixi

)

s.t. x ∈ {0, 1}m
(3.3)

A non-dominated solution x = (xi, ..., xm) of the Problem (3.3) above,

represents a subset of regions (zone) of the map with number of cases |C(x)|

and population N(x).

The following proposition shows that is possible to find the maximum of

the function K by solving Problem (3.3), see (Cancado, 2009).

Proposition 2 The set of non-dominated solutions of Problem (3.3) con-

tains the solution that maximizes K.

Proof: Let P be the set of non-dominated solutions of Problem (3.3)

P = {x | ∄x∗ ∈ {0, 1}m : f(x∗) ≤ f(x), x ∈ {0, 1}m} ,

and x∗∗ the subset of regions of the map that maximizes the function K, with

number of cases |C(x∗∗)| and population N(x∗∗). We show that if x∗∗ /∈ P

then it leads to a contradiction. Indeed, if x∗∗ /∈ P then there exists a pair

(C(x),N(x)) such thatC(x) ≤ C(x∗∗) andN(x) ≤ N(x∗∗), with at least one

inequality being strict. Hence, as K satisfies the property 1, it follows that:

1. If C(x) < C(x∗∗) and N(x) = N(x∗∗) then

K(C(x),N(x)) = K(C(x),N(x∗∗)) > K(C(x∗∗),N(x∗∗));

2. If C(x) = C(x∗∗) and N(x) < N(x∗∗) then

K(C(x),N(x)) = K(C(x∗∗),N(x)) > K(C(x∗∗),N(x∗∗));

3. If C(x) < C(x∗∗) and N(x) < N(x∗∗) then

K(C(x),N(x)) > K(C(x∗∗),N(x)) > K(C(x∗∗),N(x∗∗));
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All cases above implies that K(C(x),N(x)) > K(C(x∗∗),N(x∗∗)). This

shows that if x∗∗ is the solution that maximizes the function K, then x∗∗ ∈

P .

3.3.2 Dynamic programming algorithm

In this section, we introduce the dynamic programming approach, which

is an adaptation of the Nemhauser-Ullman algorithm for the {0, 1} knapsack

problem (Nemhauser & Ullmann, 1969).

The algorithm that we use to solve Problem (3.3) can be regarded as a

dynamic programming algorithm. In what follows, we present the theoretical

background of the algorithm. Given a map with m regions and a random list

enumerated of the regions, a zone of the map can be represented by a vector

x ∈ {0, 1}m. Let sets Z i = {(C(x),N(x)) | xk = 0, ∀k > i, x ∈ {0, 1}m}

that represent all zones with at most i-th first regions (given a random list

enumerated of the regions), i = 0, . . . ,m. We call zi = (ziC, z
i
N) ∈ Z i a state.

The inclusion chain

{(0, 0)} = Z0 ⊆ Z1 ⊆ . . . ⊆ Zm = Z

holds by definition of the sets Z i. Note that the states in Z = Zm represent

the image of the feasible solutions of Problem (3.3), i.e. {z = (zC, zN) ∈ Z} =

{(C(x),N(x)) | x ∈ {0, 1}m}. Hence, we can naturally define the concept

of dominance between two states. We say that a state z = (zC, zN) ∈ Z

dominates a state z′ = (z′C, z
′
N) ∈ Z if (zC, zN) dominates (z′C, z

′
N).

Definition 3 A state z ∈ Z is called extension of a state zi = (ziC, z
i
N) ∈ Z i,

i < m, if z = (ziC − cj, z
i
N + nj) for some j ∈ {i + 1, . . . ,m}. If j = i + 1,

the state z is called successor of zi, denoted by s(zi).

This notion of states matches the notion of zones.

Example. Consider an arbitrary disease map with 20 locations and its

distribution of population at risk and cases according to the Figure 3.2. The

solution x1 = (0,1,1,1,0,0,0,0,1,0, ...,0), see the Figure 3.3, represent
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Figure 3.2: An arbitrary map with 20 locations and its distribution of pop-
ulation at risk and cases per location.
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x2=(0, 0, 0, 1, 1, 1, 0, 1, 1, 0, ..., 0)
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Figure 3.3: Different solutions mapped to same state z = (−42;2008) ∈ Z9.

the state z = (−42;2008) ∈ Z9. Note that the different solution given

by binary vector x2 = (0,0,0,1,1,1,0,1,1,0, ...,0) is mapped by the same
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state z = (−42;2008) ∈ Z9

By the definition of a state successor and by construction we have the

following recursion formula

Z i+1 = Z i ∪
{

s(zi) | zi ∈ Z i
}

, (3.4)

for i = 0, . . . ,m− 1.

We now state a theorem that justifies the use of dynamic programming

in order to solve the problem of maximizing K.

Theorem 1 Let i < m. If z = (zC, zN) ∈ Z i is dominated by z′ =

(z′C, z
′
N) ∈ Z i, then there is an extension of z′ that will dominate any exten-

sion of z.

Proof: Let z = (zC, zN) ∈ Z i be dominated by z′ = (z′C, z
′
N) ∈ Z i and let

the state ext(z) = (zC − cjz , zN + njz) ∈ Z denote an extension of z with

index jz ∈ {i+1, . . . ,m}. Make the extension ext(z′) of z′ defined by setting

jz′ = jz. It has to be shown that ext(z′) dominates ext(z). Because z is

dominated by z′, we get z′C ≤ zC and z′N ≤ zN where at least one inequality

is strict. By definition of ext(z′) and ext(z) the same values are added to

z′C, z
′
N and zC, zN. Therefore, z

′ dominates z implies that ext(z′) dominates

ext(z).

The basic idea of the dynamic programming algorithm we are considering

in the following is based on Theorem 1. The algorithm generates a sequence

of sets of states Z i, i = 0, . . . ,m. The set Z i+1 contains successors of the

states in Z i but not those states that are dominated since they do not lead

to non-dominated states. We rewrite recursive formula Eq. (3.4) as follows:

Z i+1 = max
{

Z i ∪
{

s(zi) | zi ∈ Z i
}}

, (3.5)

for i = 0, . . . ,m− 1, where “max” denotes component-wise maxima.

While generating sets of states, a non-dominated operator ND perform

the deletion of dominated states. Therefore, the algorithm in its final phase

generates a set of states Zm = Z, the set of non-dominated solutions of
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Problem (3.3). Since Z represents the image of the feasible solutions that

maximizes the logarithm of the likelihood ratio, the algorithm test which one

maximizes K function.

We showed that the dynamic programming algorithm allows to solve the

unconstrained maximization of the functionK for a spatial dataset. However,

note that the unconstrained maximization over subsets of the Problem (3.3)

is typically not sufficient to solve practical spatial detection problem. The

method allows arbitrary shaped cluster, which can be a collection of regions

with high likelihood that spreads randomly across the map. In the following

section, we modify the dynamic programming algorithm in order to take into

account a geometric constraint.

3.4 Geographical dynamic scan

The dynamic programming algorithm explained in the previous section is

modified in order to consider a geographical proximity constraint. Consider a

map with m regions and a fixed index k, 1 < k < m. For each region i, we

define a centroid ci, an arbitrary point in its interior, i = 1, ...,m. Let d(ci, cj)

be the Euclidean distance between any two centroids ci and cj of the map.

Then, for each region i, we define its geographical proximity Gi to be the

region i and its k−1 nearest neighbors regarding the distance to the centroid

ci. We use the dynamic programming approach to find the non-dominated

solutions of Gi for each region i. From the set of all non-dominated solutions

found for every region, we choose the one that is maximal with respect to

functionK. Algorithm 1 introduces our approach to solve the classical spatial

cluster detection problem.

Note that the geographical proximity constraint adopted is the same de-

fined in the classical Kulldorff method, circular scan, see the Figure 3.4.

However, assuming that the geographical proximity of a region i contains

k regions, while the circular scan only evaluates k of the 2k subsets, the

geographical dynamic scan guarantees the optimal solution “evaluating” ef-

ficiently the 2k subsets. Furthermore, another difference between the two

methods is that classical Kulldorff requires the resulting region to be con-
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Algorithm 1 Geographical dynamic scan algorithm

1. Let S = ∅;

2. Define neighborhood size k and centroids ci for each region i = 1, ...,m
of the map;

3. For each region i = 1, . . . ,m

(a) Let Gi be the geographical proximity for each region i = 1, ...,m;

(b) Let Sndi be the non-dominated set of Problem (3.3) using the
dynamic programming algorithm with input data Gi;

(c) S := S ∪ Sndi ;

(d) S := ND(S), where ND define a non-dominated operator.

4. s := max{K(S)};

5. Return s.

nected, while our algorithm can return a disconnected region if it satisfies

the geographical proximity constraint.
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Figure 3.4: The geographical proximity for the region with cross centroid
when neighborhood size k = 5.



Chapter 4

Results and Discussion

In this chapter we evaluate the numerical performance of Voronoi

Based Scan and Geographical Dynamic Scan algorithms proposed in this

work.

4.1 Evaluated Measures

A good detection method is that it is sensitive enough to detect a cluster

when it actually exists. We will evaluate the efficiency of the algorithms in

this thesis calculating their power.

Definition 4 (Power) The power of a statistical test measures the test’s

ability to reject the null hypothesis when it is actually false.

In other words, the power of a hypothesis test is the probability of not com-

mitting a type II error. We can estimate the power by Monte Carlo simu-

lations, running the algorithm a large number of times in artificial settings,

constructed so that there is the presence of a cluster. The maximum power

a test can have is 1, the minimum is 0. Ideally we want a test to have high

power, close to 1.

We also use the measures of sensitivity and positive predicted value (ppv)

that serve to evaluate the quality of the cluster detection process. The mea-

sures were defined differently according to the form of spatial data evaluated.

30
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For the aggregated spatial data, the sensitivity and positive predicted value

(ppv) are defined in the terms of the population size as

Sensitivity =
Pop(Detected Cluster ∩ Real Cluster)

Pop(Real Cluster)

PPV =
Pop(Detected Cluster ∩ Real Cluster)

Pop(Detected Cluster)

For case-control data spatial set, let {X1, X2, . . . , Xn} be random vari-

ables that denote the spatial coordinates of n cases observed in the data set.

The sensitivity and positive predicted value are defined as

Sensitivity =

∑n

i=1
1(Xi ∈ Detected Cluster ∩ Real Cluster)

∑n

i=1
1(Xi ∈ Real Cluster)

PPV =

∑n

i=1
1(Xi ∈ Detected Cluster ∩ Real Cluster)
∑n

i=1
1(Xi ∈ Detected Cluster)

where 1(.) is the indicator function.

Using artificial clusters, the measures of power, sensitivity and positive

predicted value of the algorithms are estimated. In each scenario a relative

risk equal to 1.0 was set for every region (considering aggregated spatial

data) and every control (considering case-control spatial data) outside the

real cluster, and greater than 1.0 and identical otherwise. The relative risks

for each cluster are defined such that if the exact location of the real cluster

was known in advance, the power to detect it would be 0.999 (Kulldorff et al.,

2003).

4.2 Numerical Tests

The Voronoi Based Scan and the Geographical Dynamic Scan are com-

pared through numerical simulations to the elliptic scan statistic.
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4.2.1 Voronoi Based Scan

In this section we present a set of numerical results. The Voronoi Based

Scan (VBScan) was compared numerically with the elliptic version of the spa-

tial scan and prospective space-time scan (Kulldorff et al., 2006; Kulldorff,

2001), according to power of detection, sensitivity and positive predictive

value.

In the first set of simulations, we evaluated only the spatial structure of

the proposed algorithm.

A verification for purely spatial clusters

The Voronoi based method, in its purely spatial setting, is applied for

the well known data set of residential locations of larynx and lung cancer

cases of the Chorley-Ribble area in Lancashire-UK, from 1973 to 1984. The

917 lung cancer cases are used as controls for the 57 larynx cancer cases (see

http://cran.r-project.org/web/packages/splancs/splancs.pdf - pag. 55). In

Figure 4.1 the spatial distribution of the observed cases (circles) and controls

(dots) is shown on the left, and the Voronoi minimum spanning tree is shown

on the right, with the Voronoi cells in the background. The elliptic spatial

scan is also run as comparison. The p-values associated to the two scans are

computed based on 9, 999 Monte-Carlo simulations under the null hypothesis.

The most likely clusters found in both runs are identical, consisting of the five

cases (triangles) of Figure 4.1. Table 4.1 shows the likelihood values, number

of cases, p-values and running times for both scans. The set of possible

elliptic clusters forms a more restrictive space of configurations than the set

of of irregularly shaped clusters; not surprisingly, the elliptic scan p-value is

smaller than the VBScan p-value, because the five cases in the most likely

cluster fit very well inside an elongated ellipse.

An additional artificial dataset with total population at risk of 1, 000

individuals, 100 cases, was also used. The instance was simulated in the

map constructed with the spatial locations of population at risk following

an uniform point process within the square [0, 1] × [0, 1]. Different spatial

cluster geometries were evaluated. The three spatial cluster zones, as shown
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Figure 4.1: Left: Spatial distribution of the observed cases (circles) and con-
trols (dots) in Lancashire-UK and the most likely cluster (triangles). Right:
associated Voronoi minimum spanning tree.

Table 4.1: Comparisons spatial clusters detection of the cancer in Lancashire,
match values to elliptic scan and VBScan methods.

Method LLR cases p-value CPU-Time(sec.)
Elliptic Scan 14.4049 5 0.0089 896
VBScan 10.8357 5 0.0470 449.5

in Figure 4.2, aggregate spatial areas:

1. A circular shaped cluster was simulated with radius equal to 0.195.

2. A “T-2D”-shaped cluster was simulated with zone T = T1 ∪ T2 where

T1 = [0.2, 0.4]× [0.5, 0.8], T2 = [0.0, 0.6]× [0.8, 0.9].

3. An “L-2D”-shaped cluster was simulated with zone L = L1 ∪L2 where

L1 = [0.2, 0.4]× [0.5, 0.8], L2 = [0.2, 0.8]× [0.8, 0.9].

Given a cluster model, exactly the same sets of data were used for all al-

gorithms. 10, 000 Monte Carlo simulations of the null hypothesis were per-

formed, and also 10, 000 Monte Carlo replications for each one of the three

alternative hypothesis models. The three measures above, namely, detection
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Figure 4.2: Three alternative artificial spatial clusters.

power, sensitivity an PPV were computed for the most likely cluster in each

replication.

Table 4.2 shows the results. The power and PPV values are slightly

higher for the elliptic spatial scan than for the Voronoi based method but

the sensitivity is lower for the elliptic scan. In addition, the Voronoi based

method requires less computational time for point data set compared to the

elliptic scan statistic.

By Proposition 1, we attached a ball of radius ωi/2 to each case ci be-

longing to the cluster S. The value ωi was chosen as the minimum weight

of the edges that are incident to ci in the VMST. An alternative definition

may use the average (or even the median) of the weights of the edges that

are incident to ci, instead of the minimum value of the weights. We have

conducted numerical simulations suggesting that there are negligible differ-

ences of performance using these alternative definitions, compared with the
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Table 4.2: Power, positive predicted value and sensitivity comparisons for
shaped spatial clusters

Power Sensitivity PPV
shape of
cluster Elliptic VBScan Elliptic VBScan Elliptic VBScan
Circle 0.8400 0.7963 0.7257 0.8199 0.8347 0.7871
“T-2D” 0.7320 0.7067 0.5508 0.7270 0.7837 0.7398
“L-2D” 0.7206 0.6696 0.5501 0.7144 0.7740 0.6932

original definition using the minimum value of the weights, see Table 4.3.

This is a good indication that proposed definition of local population of the

cluster is stable.

Table 4.3: Power, positive predicted value and sensitivity comparisons for
alternatives values of ωi.

shaped
ωi cluster Power Sensitivity PPV

minimum Circle 0.7004 0.8260 0.7771
edge weight “T-2D” 0.5910 0.7326 0.7263

“L-2D” 0.5703 0.7248 0.6801
average Circle 0.7963 0.8196 0.7873

edge weight “T-2D” 0.7075 0.7278 0.7404
“L-2D” 0.6716 0.7152 0.6932

median Circle 0.7921 0.8149 0.7888
edge weight “T-2D” 0.6982 0.7225 0.7424

“L-2D” 0.6705 0.7112 0.6970

Analysis of the Voronoi based space-time scan

We used artificial datasets with total population at risk of 1, 000 indi-

viduals, including 100 cases and 900 controls. The instances were simulated

with a square space region [0, 1] × [0, 1] and a time interval [1, 10]. Space-

time clusters with different shapes were considered. Numerical simulations

were conducted using an artificial map constructed with the spatial locations

of the individuals of the population at risk following an uniform point pro-
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cess, and the time of occurrence of the events following a discrete uniform

distribution.

The Voronoi based method was compared to the prospective elliptic

space-time scan statistic. Three alternative models of space-time clusters

with different shapes were simulated. The three space-time cluster zones, as

shown in Figure 4.3, aggregate spatial areas in consecutive time coordinates:

1. A cylinder shaped cluster was simulated with radius of the circular base

and height equal to 0.198 and [3, 6], respectively.

2. A cone shaped cluster was simulated as a frustum of a cone. The

radius of lower and upper circular base were equal to 0.115 and 0.265,

respectively. The time window was equal to [3, 6].

3. An “L-3D”-shaped cluster was simulated with zone L = L1 ∪L2 where

L1 = [0.3, 0.7]× [0.3, 0.7]× [3, 4], L2 = [0.484, 0.7]× [0.3, 0.7]× [5, 6].

Table 4.4 presents the resulting average power, sensitivity and PPV for

10, 000 replications of each one of the three cluster models obtained with the

VBScan and Elliptic PST algorithms. For all three space-time clusters, the

power of detection of the VBScan was higher than the power of the Elliptic

PST. This also occurs for PPV and Sensitivity. The results found in the three

measures evaluated for “L-3D”-shaped cluster show the greater flexibility of

VBScan, compared with Elliptic PST method.

Table 4.4: Power, sensitivity and positive predicted value comparisons for
the three alternatives space-time clusters.

Power Sensitivity PPV

shaped
cluster Elliptic PST VBScan Elliptic PST VBScan Elliptic PST VBScan
Cylinder 0.4789 0.6510 0.5447 0.6532 0.6415 0.6738
Cone 0.3863 0.5093 0.4683 0.5947 0.5822 0.6157
“L-3D” 0.3316 0.5768 0.4530 0.6141 0.5323 0.5943
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Figure 4.3: Three alternative artificial space-time clusters.

4.2.2 Geographical dynamic scan

We now present an empirical comparison of detection and spatial accu-

racy for the Geographical Dynamic Scan algorithm proposed and the classical

Kulldorff method, circular scan, using the data set of Chagas’ disease cases

in puerperal women in Minas Gerais state, Brazil employed in Oliveira et al.

(2011). The population at risk consists of women that gave birth to ba-

bies in the period of July to September, 2006. The new-born babies were

blood tested to detect the presence of the Chagas disease antigen, with

coverage above 96%. A positive test means that the mother is infected.

These tests were conducted through the project PETN-MG (Minas Gerais

State Program of New-Born Screening) coordinated by the research group
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NUPAD-MEDICINA/UFMG from Federal University of Minas Gerais Med-

ical School http://www.nupadmedicina.ufmg.br in collaboration with Minas

Gerais State Health Secretary. The state is divided into 853 municipalities

with a total population at risk of 63,519 women. After a comprehensive

screening to eliminate false positives a total number of 803 cases were ob-

tained. The raw rates map is presented in Figure 4.4(a) and the population

at risk map in Figure 4.4(b).
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Figure 4.4: Mapping spatial variations of Chagas disease in the State of
Minas Gerais - Brazil by county during 2006: (a) disease rates map; (b)
Population at risk map.
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Verifications

In the first set of simulations, we use the data set of Chagas to show the

performance for the geographical dynamic scan. In the Figure 4.5, we report

the total run time required versus fixed neighborhood size k to analyze of

Chagas’ data set. The geographical dynamic scan method is able to solve

within a reasonable computational time with increasing neighborhood size,

while we note that the run time increases exponentially with neighborhood

size without the use of the dynamic programming method (naive search).

0 10 20 30 40 50 60 70 80 90
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

ru
nt

im
e 

of
 th

e 
al

go
rit

hm
 [l

og
 s

ca
le

 −
 s

ec
]

neighborhood size

 

 
Naive
GDScan

Figure 4.5: Run time versus neighborhood size k for the data set of Chagas,
with and without the dynamic programming method.

Figure 4.6 shows the trade-off between quality solution and runtime of

the algorithms. The geographical dynamic scan algorithm finds the spatial

region with the global maximum value of logarithm of the likelihood ratio

K. In Figure 4.6 bottom, we compared the different gaps between the values

of logarithm of the likelihood ratio K found running the geographical dy-

namic scan and the classical Kulldorff’s methods. Occasionally, the classical

Kulldorff’s method can find the global maximum value of logarithm of the

likelihood ratio K, in this case occurs only for the geometric constraint size

k = 10. On the other hand, Figure 4.6 top shows an increase in the runtime
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of the geographical dynamic scan method, but a computational time quite

plausible.
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Figure 4.6: Comparisons between the dynamic programming and the classical
Kulldorff methods for the data set of Chagas. Bottom: logarithm of the
likelihood ratio versus geometric constraints size k. Top: runtime versus
geometric constraints size k.

Figures 4.7 and 4.8 show the different clusters found by two methods,
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respectively for the neighborhood size 5, 20, 50, 90. Of all the clusters found

by dynamic programming scan method, shown in Figure 4.7, only one cluster

(with neighborhood size 50) appears disjointed. Figure 4.8 shows that even

for small windows size, the clusters found by the classical Kulldorff scan

overestimates the “optimal clusters” ( Figure 4.7).
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Figure 4.7: Clusters found by dynamic programming method for the data
set of Chagas, with neighborhood size 5, 20, 50, 90.
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Figure 4.8: Clusters found by classical Kulldorff method for the data set of
Chagas, with neighborhood size 5, 20, 50, 90.

Figure 4.9 shows the Pareto front set obtained by Geographical Dynamic

scan with neighborhood size 5, 20, 50, 90 for the data set of Chagas’ dis-

ease cases in puerperal women in Minas Gerais state Brazil, consists of

30, 134, 393, 503 solutions (zones) respectively. Among the solutions (zones)

of the Pareto-optimal set, we choose the one that is maximal with respect
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to function K. While the Figure 4.10 shows the graphics C(x)×N(x) of all

non-dominated solutions of Problem (3.3) using the dynamic programming

algorithm with input data Gi, where Gi is the geographical proximity for

each region i = 1, ..., 853, respectively for neighborhood size 5, 20, 50, 90.
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Figure 4.9: Pareto front set obtained by Geographical Dynamic scan, with
neighborhood size 5, 20, 50, 90.
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Figure 4.10: All non-dominated solutions considering the geographical prox-
imity for each region i = 1, ..., 853, obtained by Geographical Dynamic scan,
with neighborhood size 5, 20, 50, 90.

In addition, a second set of simulations is presented. Next, for each neigh-

borhood size (k = 10, 20, 30, 40, 50, 60) fixed, we perform 1,000 null hypoth-

esis Monte Carlo replications to the dynamic programming method. Was

computed the number of non-dominated solutions for the 1,000 replications.

Table 4.5 and the Figure 4.11 indicates which the number of non-dominated

solutions increases linearly with the geometric constraint size k.

In the next step, we evaluate the power, sensitivity and positive predictive

value of the geographical dynamic scan algorithm to evaluate the quality of

the cluster detection process.

For real data population of the data set of Chagas, three simulated irreg-

ularly shaped clusters A, B and C displayed in the Figure 4.12, were used.
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Table 4.5: Mean and standard deviation the number of non-dominated solu-
tions in each geometric constraint size k.

# of non-dominated k = 10 k = 20 k = 30 k = 40 k = 50 k = 60
solutions
mean 135.77 176.94 190.13 203.45 217.12 232.72
standard deviation 13.18 11.85 11.07 10.24 9.74 9.63
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Figure 4.11: Mean of the number of non-dominated solutions versus the
geometric constraint size k.

Table 4.6 indicates the number of regions n(z), the number of observed cases

zC and the population zN for each cluster z. Those clusters will be denoted

real clusters, in contrast to the detected clusters found by the algorithms.

For each simulation of data under these three alternative hypotheses, 1,000

cases are randomly distributed according to a Poisson model using a single

cluster; we set a relative risk equal to one for every region outside the real

cluster and greater than one and identical in each region within the cluster.
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The relative risks for each cluster are defined such that if the exact location

of the real cluster was known in advance, the power to detect it should be

0.999.

B C

A

Figure 4.12: Simulated data clusters for data set of Chagas.
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Table 4.6: Number of regions n(z), the number of observed cases zC and the
population zN for the benchmark clusters of Figure 4.12.
Cluster n(z) zC zN
A 24 226 3938
B 22 156 3566
C 12 79 1661

We perform 1,000 null hypothesis Monte Carlo replications and 1,000

Monte Carlo replications. For each three alternative hypothesis models, for

the classical Kulldorff and dynamic programming methods in each neighbor-

hood size (k = 10, 20, 30, 40, 50, 60) fixed for the two algorithms. The three

measures of power, sensitivity an PPV were computed for the most likely

cluster in each replication. The Figures 4.13, 4.14 and 4.15 presents the av-

erage power, sensitivity and PPV for the 1,000 replications of each of the

three alternative hypotheses clusters A, B and C, for the two algorithms.
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Figure 4.13: Comparison of detection metohds. Average power detection.

In terms of the evaluated measures, the geographical dynamic scan algo-

rithm definitely have a performance superior to the classical Kulldorff method

to shaped cluster C. This is a good sign, since it shows that the method can

detect clusters with irregular geometry. This natural property of the geo-
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Figure 4.14: Comparison of detection methods. Average positive predicted
value.
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Figure 4.15: Comparison of detection methods. Average sensitivity value.

graphical dynamic scan is also evidenced by the estimated values of PPV,

sensitivity and power to the shaped cluster A. While, the low value of sen-

sitivity for the shaped cluster A in the Kulldorff method, suggests that, on

average, underestimates the real cluster, detecting only the circular part of
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the cluster. The Kulldorff scan method outperforms the GDScan in terms

of power and sensitivity in the form of cluster B, but the values of PPV

methods were similar.



Chapter 5

Application: A real dataset

We describe an application to cases of dengue fever in the municipality

of Lassance in southeast Brazil. We apply the Voronoi Based Scan for the

detection of Dengue fever clusters in spatial and space-time coordinates.

5.1 Dengue Fever Clusters

Dengue fever is caused by one of four types of virus, typically transmit-

ted by the mosquito Aedes aegypti. Immunity to one strain does not confer

lifelong immunity to the other strains. Underreporting is a serious prob-

lem with dengue fever data. It is estimated that only 10% of the cases are

usually registered at hospitals or health care units (Pessanha, 2010). A pi-

lot project was set in order to obtain more reliable data, with surveillance

done at the individual level. Community health agents of the Family Health

Program (FHP), (see http://portal.saude.gov.br/portal/saude), performed

weekly visits at all residences within the municipality. This already exist-

ing program provides guidance for citizens and informs local public health

authorities about possible health problems, and is highly regarded in the

community. Due to its unique features, the FHP could in principle provide

a huge amount of information which would be useful in the surveillance of

many diseases, but data almost never is organized beyond local level. In our

pilot project, data collected by 13 community health agents in the urban

50
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zone of the municipality of Lassance were compiled by two nurses, and sent

for analysis every workweek with the assistance of the Secretary of Health

and Epidemiological Surveillance in Lassance. In addition, home location

was registered for every resident in the urban part of the city. In the period

of six months in 2010, between January 12th and June 14th, a total of 57

cases were reported from a total of 3986 individuals in the population at risk.

The spatial distribution of the observed cases of dengue fever and controls

in Lassance City is shown in Figure 5.1. We have included in Figure 5.2 the

δ(i, j) values for the edges of the Voronoi minimum spanning tree along with

the drawing of the Voronoi cells in the background (in gray).

500 m

Figure 5.1: Spatial distribution of the observed cases of dengue fever (circles)
and controls (dots) in Lassance City, southeast Brazil. North is up in the
map.

Dengue is not transmitted directly from one person to another. The virus



DENGUE FEVER CLUSTERS 52

10 10

 2

14
 1

 210

12

 2

11

11

 4

 6

 2

 6
 9

13

 1

14

 4

 7
 5 2

 2
10

 7

 3

 4 3 1

 1
 7

 6

 3
10

 4  9

 7

12

 3
 9

 3 7
 9

 5
 6

 7
 8

 9
 6

 6

11
 5

 5

12

11

Figure 5.2: Lassance City dengue fever map with assigned weight values for
the edges of the Voronoi minimum spanning tree, along with the drawing of
the Voronoi cells in the background (in gray).

is transmitted to the mosquito A. aegypti after biting an infected individual.

The mosquito can carry the virus for 10 to 14 days. In humans, the virus

remains in an incubation period that may last from 3 to 15 days. Only after

this period the symptoms can be observed. In this way, the study period was

divided into 11 intervals of 14 days, as shown in Table 5.1.

5.1.1 Spatial analysis

We relied upon ordinary topographic maps and aerial images provided by

Lassance’s City Hall, because high resolution Google Earth images were not

available (Chang et al., 2009). Those aerial images were manually matched

with the existing topographic maps. Data are plotted in the map according
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Table 5.1: Study time period subdivided. Each unit represents a period of
14 days.

Time days observed cases
1 01-12 to 01-25 03
2 01-26 to 02-08 06
3 02-09 to 02-22 02
4 02-23 to 03-08 07
5 03-09 to 03-22 05
6 03-23 to 04-05 09
7 04-06 to 04-19 04
8 04-20 to 05-03 09
9 05-04 to 05-17 09
10 05-18 to 05-31 02
11 06-01 to 06-14 01

Table 5.2: Match values for spatial clusters Dengue fever data set by using
VBScan method

Clusters LLR cases p-value
primary 17.5686 10 0.004
secondary 15.2390 09 0.016

to the exact location of each individual of the population at risk. Data are

available as supplementary files. To detect possible clusters, the VBScan

method was applied.

The two most likely clusters presented 10 and 9 cases, respectively for

the primary and secondary clusters, as shown in Figure 5.3 For the primary

cluster a p-value = 0.004 was found, see Table 5.2. Table 5.2 shows that the

secondary cluster is also statistically significant. Those p-values are com-

puted from 999 Monte Carlo simulations under the null hypothesis. Hence,

we conclude that there is evidence of a geographically significant high risk of

dengue fever in some specific regions within the urban area of Lassance City.

Employing the elliptic scan, also with 999 Monte Carlo simulations, the

most likely cluster found has only 3 cases, contained within the primary

cluster found by VBScan, as marked in Figure 5.3 (p-value= 0.054). The

run time for 999 Monte Carlo replications for the Dengue fever cluster was

about 187 seconds for the VBScan and 764 seconds for the elliptic scan. This
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interesting result arises due to the peculiar features of this problem:

• The population does not follow a random-like spatial distribution; in-

stead, the individuals are roughly aligned according the housing geom-

etry of the streets.

• The neighborhood structure induced by the Euclidean metric, which

is used by elliptic scan, becomes very different from the neighborhood

structure induced by the Voronoi distance.

Specifically, the population densities, which are considered in the compu-

tation of both the scan statistics, are distinct, because the Voronoi distance is

calculated along the edges that link the case points, while the density in the

Figure 5.3: Purely spatial primary (squares) and secondary (triangles)
dengue fever clusters found by the VBScan, and the primary cluster (within
the ellipse) found by the Elliptic Scan.
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elliptic scan considers all individuals inside the ellipses. Clearly, this pattern

of population spread causes the elliptic scan to consider a greater number of

non-infected control cases inside a potential cluster than the VBScan, reduc-

ing the power of the Elliptic Scan. It can be noticed, in the primary cluster

found by VBScan, that a path used by this algorithm to link a set of cases

may avoid the directions in which a large number of non-infected individuals

are located. This is due to the definition of Voronoi distance, which exactly

assigns larger distances to such paths. The clusters, therefore, may include

larger edges (in terms of Euclidean metric) which cross less crowded regions

– these are the smaller edges in Voronoi distance – causing the opposite effect

in the VBScan detection power.

The primary cluster (indicated by square points in Figure 5.3) has two

edges crossing city blocks diagonally, both with assigned value δ(i, j) = 7, as

can be seen in Figure 5.2. The longest (in terms of Euclidean distance) edge

that links the two northwestern cases crosses a moderately high populated

region, as measured by the Voronoi distance, is not an artifact. Although

the interior part of the block crossed by this edge has no control individuals,

there are many individuals living in its borders, implying that there are

several Voronoi cells (bounded by gray lines in the background) inside the

block, which in turn makes the diagonally crossing edge intercept several

cells in its path. This is a fine example of how the Voronoi distance measures

adequately the population density, as a composition of the individual cells

(regions of influence) intercepted by the edge’s path.

5.1.2 Detecting space-time clusters

The prospective space-time geographical surveillance system proposed

here was applied for the detection of dengue fever space-time clusters over

the same data set. The time window has a range of [1, 11], in which each

unit represents a period of 14 days, as set out in Table 5.1. The results

are given in Table 5.3, whose first column indicates the temporal restriction

for the construction phase of the minimum spanning tree, influencing the

significance of the cluster detection.
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Table 5.3: Match values for space-time clusters Dengue fever data set ana-
lyzing the periods 1-11, by using VBScan method.

temporal length cases onset time of the LLR p-value
edge τ disease for the cases

1 06 {7,8} 17.3207 0.003
2 07 {5,7,8} 15.0091 0.008
4 06 {7,8} 15.3053 0.019
6 10 {1,2,4,6,8,9} 15.7764 0.024
8 10 {1,2,4,6,8,9} 15.7764 0.024

Table 5.3 shows that all clusters that were found are statistically signif-

icant for the time period [01-12 to 06-14]. Again, 999 Monte Carlo simu-

lations were generated under null hypothesis. The two space-time clusters

with smaller p-values are part of the secondary spatial cluster, as shown in

Figure 5.4 and the values indicated by lines 1 and 2 respectively in Table 5.3.

The cluster that was found as the primary cluster in the purely spatial

analysis does not appear as a cluster in the space-time analysis. In the first

situation, the cases were spread along the time axis. On the other hand,

only a few cases were included in the same cluster, when time is considered.

This pattern suggests that, instead of a single space-time cluster of dengue

fever, there was a series of several independent re-infections of individuals

within the space region of that cluster. This interpretation is consistent with

an environmental information: that region belongs to the central part of the

municipality, where several public service facilities are located. This means

that such a region receives a flow of people from all other regions, which is

consistent with the hypothesis of several re-incidences of dengue fever cases

in that region in events which are not directly dependent.

On the other hand, the cluster that was found as the secondary cluster

in the purely spatial analysis appears as the single detected cluster in the

space-time analysis. In this cluster, most of the cases occurred within a

small temporal window. Located in a poorer part of the municipality, at

the border of the urban area, this region has several environmental factors

favoring a large concentration of mosquito larvae, such as deficient sewage

installations and garbage collection, accumulated water puddles, and the
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Figure 5.4: Space-time clusters of the dengue fever dataset, with temporal
constraint parameter values τ = 1(crosses) and τ = 2(squares), matching the
values shown in lines 1 and 2 of Table 5.3, respectively.

presence of many vacant lots and houses. Furthermore, the timing of the

cluster coincides with the rainiest weeks of 2010. These data are consistent

with the hypothesis of a single event epidemics outbreak, with a direct causal

correlation between the several cases.



Chapter 6

Conclusions

This thesis addresses the spatial and space-time cluster detection

problem. Two algorithms to solve two typical problem for spatial data sets

are proposed.

6.1 Summary

We developed and tested a novel algorithm for the detection and inference

of space-time clusters for data sets, the Voronoi Based Scan (VBScan). The

concept of Minimum Spanning Tree (MST) is adapted with the novel Voronoi

distance, which is used to compute the set of potential clusters. This set is

then evaluated using the spatial scan statistic, producing the most likely

cluster of cases.

The class of problems considered here assumes a point data set to repre-

sent the location of individuals in a population, classified either as controls

or disease cases, within a limited domain in space-time. The cluster is mod-

eled in space coordinates as a connected graph with tree structure, joining

a subset of the disease cases, and in space-time coordinates as a sequence of

such trees with space projections that have non-null intersection. A distance

measure, named Voronoi distance, is proposed here in order to define a mean-

ingful distance for the construction of a minimum spanning tree (MST) that

represents the more likely connections between individuals, in a given graph.

58
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This structure allows the direct application of the scan statistics, with the

calculation of the likelihood ratio of the estimated cluster.

The Voronoi distance between any two points may also be interpreted

as an approximation to the line integral of the population density function

over the segment joining those two points. For this reason, the VMST is the

natural extension of the Euclidean MST, taking into account the heterogene-

ity of the population density. On the other hand, the Euclidean distance is

an approximation to the corresponding line integral only when the map is

cartogram transformed, in such a way that the population density becomes

homogeneous. The Voronoi distance concept is employed once again in our

method, after the collection of potential clusters is extracted from the VMST:

it is used to estimate the number of control individuals under the region of

influence of each one of the case individuals. This allows the definition of

the population associated to each potential cluster, which may be evaluated

through the spatial scan statistic.

The results of numerical simulations show that the proposed algorithm,

space-time VBScan, has higher power of detection, positive predictive value,

sensitivity and computational speed than the space-time Elliptic Scan. The

flexibility verified of VBScan allows an enhanced ability to deal with the

variation of the disease spread along the time dimension.

An application was presented for Dengue fever incidence, with data avail-

able at individual level, in the municipality of Lassance, Brazil.

VBScan also includes topological information from the point neighbor-

hood structure, in addition to the usual geometric information. For this

reason, it is more robust than purely geometric methods such as the elliptic

scan. Those advantages were illustrated in a real setting for dengue fever

space-time clusters, where the population spreads along a grid of straight

lines according to the street mapping. It is worthy to notice that this kind

of geometry of population distribution appears very often in urban environ-

ments. In those cases, the employment of VBScan should be recommended.

In the examples that we have analyzed, we observed that the Voronoi

distance is very reliable to approximate the population heterogeneity, even

for some unusual population distribution patterns, like a city block with zero
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individuals living in its interior and many individuals living on its borders.

The ability for the early detection of space-time clusters of disease out-

breaks, when the number of points in the dataset is large, was shown to be

feasible, due to the reduced computational load of the proposed methodology

compared with classical methods. The proposed methodology is shown to

present an enhanced power for the detection of space-time disease clusters.

The second proposed algorithm, Geographical Dynamic Scan, was proved

to be an efficient method to solve practical spatial cluster detection problem.

In particular, we made use of the of the property of the logarithm of the

likelihood ratio K and restate the classical spatial cluster detection problem

as a bi-objective combinatorial optimization problem, in the same way as

done in (Cancado, 2009). In addition, we established a correspondence be-

tween the set of non-dominated solutions of the bi-objective combinatorial

optimization problem and the solution that maximizes K. We demonstrate

that the dynamic programming algorithm used to solve the problem enable

efficient unconstrained maximization of the function K for spatial dataset.

The detected clusters may sometimes be disconnected, but this is not a

serious disadvantage, provided that there is not a huge gap between its areas.

A way to control the presence of those potential gaps is to limit the number

of component areas of the cluster, e.g., allowing only clusters which are sub-

sets of a circular zone of moderate maximum size. Even when considering

geographic diffusion processes, disconnected clusters may be detected due to

the stochastic nature of the process, e.g., when the number of disease cases

is small. In this sense, disconnected clusters may be allowed. Disconnected

clusters also occur in other cluster detection methods, as in the elliptic scan,

when the ellipse is very elongated (Kulldorff et al., 2006).

6.2 Publications

In the following we present the list of the publications related to the theme

which were generated based on the results that we have obtained during this

thesis development:
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Magalhães, F. C. O.; Bodevan, E. C. Voronoi distance based prospec-

tive space-time scans for point data sets: a dengue fever cluster anal-

ysis in a southeast Brazilian town. International Journal of Health

Geographics, 2011, 10:29.

• Duczmal, L. H.; Moreira, G. J. P.; Burgarelli, D.; Takahashi, R. H. C.;
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6.3 Future Work

Following the investigations described in this thesis, a number of projects

could be taken up. Some of them are:
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• Derive a spatial cluster detection method for areal data, using the con-

cept applied in the VBScan method.

• One potential limitation of our analysis is the spatial mobility of in-

dividuals from their residences to workplace, which could impair the

geographic delineation of the detected clusters. In a future work we

will address this issue, using tools such as the work-flow scan statistic

(Duczmal & Buckeridge, 2006).

• Because we make use of an already existing team of community health

agents, originally employed for health monitoring in general, Dengue

fever surveillance is very cost effective in our setting, and we can focus

our effort on mapping, data collection, data integrity issues and analy-

sis. In a future work, we will use additional zoonosis and environmental

data, and apply covariate analysis. This will allow better monitoring

and forecasting of outbreaks.
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