ESTIMATIVA DE PERDA NA PRODUÇÃO DE LEITE PELA MAMITE SUBCLÍNICA BOVINA ATRAVÉS DO "CALIFORNIA MASTITIS TEST" E CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS ALIADOS À BACTERIOSCOPIA

MÁRCIA CALDEIRA BRANT

Belo Horizonte
Minas Gerais
1992
MÁRCIA CALDEIRA BRANT

ESTIMATIVA DE PERDA NA PRODUÇÃO DE LEITE PELA MAMITE SUBCLÍNICA BOVINA ATRAVÉS DO "CALIFORNIA MASTITIS TEST" E CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS ALIADOS À BACTERIOSCOPIA

Dissertação apresentada à Escola de Veterinária da Universidade Federal de Minas Gerais, como um dos requisitos regulamentares para obtenção do Grau de Mestre em Medicina Veterinária.
Área: Medicina Veterinária Preventiva
Orientador: Prof. José Britto Figueiredo

Belo Horizonte
Minas Gerais
1992
BB21 e Brant, Márcia Caldeira, 1956-


112p. : il.


CDD 636.200 969 2
Aprovada em 21/12/1992

PROF. JOSÉ BRITTO FIGUEIREDO
Orientador

PROF. MIDEIRSON OLIVEIRA

PROF. VERA LÚCIA VIEGAS ABREU

PROF. JOSÉ GUILHERME DE FARIA

DR. JOSÉ RICARDO ALMÉIDA ANDRADE
A Carlos Alberto, meu esposo,
e a meus filhos,
Larissa e Guilherme,
pelo amor, amizade, paciência
e compreensão,
Dedico
AGRADECIMENTOS

À Escola de Veterinária da Universidade Federal de Minas Gerais e ao Departamento de Medicina Veterinária Preventiva.

À Empresa de Pesquisa Agropecuária de Minas gerais (EPAMIG) e à Empresa de Pesquisa Agropecuária (EMBRAPA), que possibilitam a liberação para a realização do curso de Mestrado.

À Coordenadoria de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), pela bolsa de estudos.

Ao professor orientador José Britto Figueiredo pelos valiosos ensinamentos, experiência, amizade e paciência demonstrados durante todo o decorrer do curso.

Aos professores Midelvirson Oliveira, Vera Lúcia Viegas Abreu e Israel José da Silva, pela amizade e colaboração durante o curso.

E, de maneira especial, ao professor de Estatística Ivan Barbosa Machado Sampaio e ao agrônomo e chefe da área de computação/EPAMIG, Toshiyuki Tanaka, pelos valiosos auxílios na avaliação e processamento dos dados.

Aos estudantes do curso de Graduação de Medicina Veterinária Alexandre de Paula Nagem e Rômulo Edgar Silveira Nascimento, hoje colegas de profissão, pelo auxílio nas viagens das coletas amostrais.

Aos colegas de curso, Andrea, Andrey e Edna, pela amizade e convivência nos momentos de alegria e tristeza.
BIOGRAFIA DO AUTOR

MÁRCIA CALDEIRA BRANT, filha de Marcos Caldeira Brant e Mary Rosário Caldeira Brant, nasceu em Bocaiúva, estado de Minas Gerais, aos seis dias do mês de setembro de 1956.

Obteve diploma de Médica-Veterinária em 1979, pela Escola de Veterinária da Universidade de Minas Gerais.

Realizou treinamento técnico de laboratório nos períodos de fevereiro a abril de 1980, no Instituto Vallée - Uberlândia - MG e, no período de maio a novembro de 1980, no Laboratório Fama, em Contagem - MG.

Em 1981 ingressou na Empresa de Pesquisa Agropecuária de Minas Gerais-EPAMIG, onde passou a integrar o corpo técnico do Departamento de Administração da Pesquisa.

Em 1989 iniciou o curso de Pós-Graduação em Medicina Veterinária, na Escola de Veterinária da Universidade Federal de Minas Gerais.
## SUMÁRIO

<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE TABELAS</td>
<td>15</td>
</tr>
<tr>
<td>LISTA DE FIGURAS</td>
<td>21</td>
</tr>
<tr>
<td>RESUMO</td>
<td>23</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>25</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
<td>27</td>
</tr>
<tr>
<td>2. REVISÃO DE LITERATURA</td>
<td>29</td>
</tr>
<tr>
<td>2.1 PERDAS ECONÔMICAS E RISCOS CAUSADOS PELA MAMITE</td>
<td>29</td>
</tr>
<tr>
<td>2.2 AVALIAÇÃO DAS PERDAS NA PRODUÇÃO DE LEITE CAUSADAS PELA MAMITE SUBCLÍNICA, ATRAVÉS DO &quot;CALIFORNIA MASTITIS TEST&quot; (CMT)</td>
<td>30</td>
</tr>
<tr>
<td>2.3 AVALIAÇÃO DAS PERDAS NA PRODUÇÃO DE LEITE CAUSADAS PELA MAMITE SUBCLÍNICA ATRAVÉS DA CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS)</td>
<td>33</td>
</tr>
<tr>
<td>2.4 AVALIAÇÃO DOS TESTES INDIKETYS, NO DIAGNÓSTICO DA MAMITE SUBCLÍNICA</td>
<td>37</td>
</tr>
<tr>
<td>3. MATERIAL E MÉTODOS</td>
<td>41</td>
</tr>
<tr>
<td>3.1 LOCAL E ÉPOCA DE EXECUÇÃO DO TRABALHO</td>
<td>41</td>
</tr>
<tr>
<td>3.2 INSTALAÇÃO</td>
<td>41</td>
</tr>
<tr>
<td>3.3 REBANHOS UTILIZADOS E AMOSTRAGEM</td>
<td>42</td>
</tr>
</tbody>
</table>
3.3.1 ALIMENTAÇÃO ................................................. 43
3.3.2 ORDENHA .................................................. 43
3.3.3 CONTROLE SANITÁRIO ................................. 43
3.4 SELEÇÃO DOS ANIMAIS .................................. 44
3.5 COLETA DO MATERIAL ...................................... 45
3.6 AVALIAÇÃO DA PRODUÇÃO DE LEITE POR TETAS AMOSTRADAS ................................................. 45
3.7 CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) E BACTÉRIOSCOPIA ............................... 46
3.8 ANÁLISE ESTATÍSTICA ..................................... 47
4 RESULTADOS ...................................................... 51
4.1 RESULTADOS OBTIDOS DOS DADOS AMOSTRAIS NA AVALIAÇÃO DA EFICIÊNCIA DO EScores LINEAR DE KIRK (1984) NA ESTIMATIVA DE PERDA DE PRODUÇÃO DE LEITE PELA MAMITE SUBCLÍNICA ................................................................. 77
4.2 AVALIAÇÃO DA SENSIBILIDADE E ESPECIFICIDADE DA CONTAGEM GLOBAL DIRETA DE CÉLULAS COMO MÉTODO DE DIAGNÓSTICO INDIRETO DA MAMITE SUBCLÍNICA ......................................................... 81
4.2.1 AVALIAÇÃO DOS TESTES CGCS e CMT PELO TESTE DO QUI-QUADRADO ........................................ 82
5 DISCUSSÃO ......................................................... 83
5.1 PREVALENCIA DA MAMITE SUBCLÍNICA (MST) NOS QUATRO REBANHOS TRabalhados ....................... 83
5.2 FREQUÊNCIA DOS PRESUNTIVOS AGENTES ETIOLÓGICOS DA MAMITE SUBCLÍNICA DETECTADOS PELO BACTÉRIOSCOPIA E PERCENTUAL DE PERDAS NA PRODUÇÃO ESTIMADA PELO "CALIFORNIA MASTITIS TEST" (CMT) ..................................................... 85
5.3 COMPORTAMENTO DA CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) NO LEITE COM A IDADE DAS VACAS AMOSTRADAS .......................... 88

5.4 COMPORTAMENTO DA CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) DO LEITE COM O PERÍODO E NÚMERO DE LACTAÇÃO, DAS VACAS AMOSTRADAS ............................................. 89

5.5 COMPORTAMENTO DA CONTAGEM GLOBAL DE CÉLULAS FRENTE AOS PRESUNTIVOS AGENTES ETIOLÓGICOS DA MAMITE E MÉDIAS DE PRODUÇÃO/TETA COM MAMITE SUBCLÍNICA .................. 94

5.6 ESTIMATIVAS DE PERDAS NA PRODUÇÃO DE LEITE PROVOCADAS PELA MAMITE SUBCLÍNICA SEGUNDO ESOCRE LINEAR DE KIRK (1984) ............................................................ 96

5.6.1 COMENTÁRIOS GERAIS ............................................. 99

5.7 AVALIAÇÃO DO TESTE CGCS EM MICROSCOPÍA DIRETA, COMO MÉTODO INDIRETO DE DIAGNÓSTICO DA MAMITE SUBCLÍNICA EM BOVINOS ........................................... 101

5.8 AVALIAÇÃO DO TESTE DO CMT COMO MÉTODO INDIRETO NO DIAGNÓSTICO DA MAMITE SUBCLÍNICA EM BOVINOS .......................................................... 102

5.9 COMPARAÇÃO ENTRE OS TESTES CGCS DIRETA E CMT, COMO MÉTODOS DE DIAGNÓSTICO DA MAMITE SUBCLÍNICA EM BOVINOS .................................................. 102

6 CONCLUSÕES ................................................................. 104

7 REFERÊNCIAS BIBLIOGRÁFICAS ........................................ 105
<table>
<thead>
<tr>
<th>TABELA</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relação do escore linear (EL) de Kirk (1984) e amplitude da contagem global de células somáticas</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>Relação do escore linear com a contagem global de células somáticas (CGCS) e perda de produção</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>Composição dos rebanhos na coleta inicial em fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI)</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Prevalência da mamite subclínica detectada através do CMT na coleta inicial em fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI)-1991</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Frequência na coleta inicial das reações positivas ao CMT, em amostras de tetas pareadas em rebanhos das fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI)-1991</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Distribuição das 300 amostras de tetas, por idade dos animais, em rebanhos das fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI)-1991</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Distribuição de 300 amostras de tetas, por períodos de lactação em rebanhos de fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI)-1991</td>
<td>57</td>
</tr>
</tbody>
</table>
TABELA 8  DISTRIBUIÇÃO DE 300 AMOSTRAS DE TETAS, POR NÚMERO DE LACTAÇÃO, EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991

TABELA 9  FREQUÊNCIA DOS AGENTES DETECTADOS PELA BACTERIOSCOPIA EM AMOSTRAS DE TETAS COM REAÇÕES NEGATIVAS AO CMT, NA COLETA INICIAL EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991

TABELA 10  FREQUÊNCIA DOS AGENTES DETECTADOS PELA BACTERIOSCOPIA EM AMOSTRAS DE TETAS COM REAÇÕES POSITIVAS AO CMT, NA COLETA INICIAL EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991

TABELA 11  COMBINAÇÃO ENTRE BACTERIOSCOPIA E CMT OBTIDA DE AMOSTRAS DE TETAS PAREADAS NA COLETA INICIAL, EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991

TABELA 12  BACTERIOSCOPIA DE 150 AMOSTRAS DE TETAS COM CMT NEGATIVO EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991

TABELA 13  BACTERIOSCOPIA DE 150 AMOSTRAS DE TETAS COM CMT POSITIVO EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CCRCO) E PITANGUI (FEPI) - 1991


TABELA 16 MÉDIAS DE CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) EM 150 AMOSTRAS DE TETAS NEGATIVAS AO CMT E MÉDIAS PONDERADAS EM TRÊS FAIXAS ETÁRIAS, EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991


TABELA 18 MÉDIAS DE CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) E PRODUÇÃO DE 113 AMOSTRAS DE TETAS PAREADAS DE
PLURÍPARAS SUBMETIDAS AO CMT, POR PERÍODO DE LACTAÇÃO E ANALISADAS PELO TESTE DE "t", EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991

TABELA 19 MÉDIAS DE CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) E PRODUÇÃO DE AMOSTRAS DE TETAS PAREADAS DE FEMEAS PRIMÍPARAS E PLURÍPARAS Por REAÇÕES DO CMT, EM REBANHOS DE FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991


TABELA 22 BACTERIOSCOPIA, VARIAÇÕES MÍNIMA, MÁXIMA E MÉDIAS DE CONTAGEM DE CÉLULAS SOMÁTICAS (CGCS) E PRODUÇÃO EM 150 AMOSTRAS DE TETAS POSITIVAS AO CMT, EM REBANHOS DE
FAZENDAS DA EPAMIG, LOCALIZADAS NOS MUNICÍPIOS DE PRUDENTE DE MORAIS (CRCO) E PITANGUI (FEPI) - 1991


TABELA 25 TOTAL DE TESTES DE CGCS E CMT AVALIADOS PELO QUI-QUADRADO
LISTA DE FIGURA

FIGURA 1 CORRELAÇÃO NEGATIVA ENTRE PRODUÇÃO DE LEITE E CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS DE FÉMEAS PRIMÍPARAS E PLURÍPARAS AVALIADAS POR REAÇÕES DO "CALIFORNIA MASTITIS TEST" (CMT) .................................................. 72
RESUMO

Este trabalho teve o objetivo de avaliar as perdas de produção de leite, provocadas pela mamite subclínica (MSC) através do escore linear de KIRK (1984), bem como a sensibilidade da contagem global direta de células somáticas (CGCS) no leite, como método indireto de diagnóstico da MSC em bovinos. Foram trabalhados quatro rebanhos de propriedade da Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG. Pertenciam às raças e foram caracterizadas de respectivamente, Holandesa preto e branco pura de cruzamento HPB-PC e Mestico Girolando (R1), Mestico Girolando (R2), Holandesa preto e branco pura de origem HPB-PO (R3) e Mestico Girolando (R4). Estavam lotados no Centro Regional de Pesquisa Centro Oeste-CRCEO (R1 e R2) e na Fazenda Experimental de Pitanguí-FEPI (R3 e R4), situados nos municípios de Prudente de Morais e Pitanguí-MG, respectivamente. De 112 vacas em lactação foram testadas 425 amostras de tetas pelo "California Mastitis Test" (CMT), que forneceram 96 amostras de tetas pareadas na coleta inicial e 150 nas demais colheitas, que totalizaram 12, ou seja, de três colheitas em cada um dos quatro rebanhos trabalhados. Nas tetas pareadas ao CMT uma não reagia e a paralela era positiva em qualquer grau de uma, duas e três cruzes ao teste. A coleta inicial forneceu a prevalência da MSC nos rebanhos trabalhados que foi de 43,21%, 32,69%, 57,14% e 33,33% no R1, R2, R3 e R4, respectivamente.

A produção foi avaliada após a pesagem por tetas amostrais pareadas e as amostras de leite submetidas aos testes de contagem global direta de células somáticas (CGCS \times 10^3) células/ml de leite e bacterioscopia. As médias da CGCS da coleta inicial foram de 135,25, 755,25, 1.473,25 e 3.640 \times 10^3 células/ml de leite para as reações de negativo +, ++
e ++++. Nas reações positivas ao CMT nesta mesma coleta, foram observados os percentuais de perdas de produção de 14,68%; 34,84% e 45,00% para +, ++ e +++, respectivamente. Na amostragem total de 150 amostras de tetas pareadas as médias da CGCS foram crescentes de 91, 690: 1.659 e 5.723 x 10³ células/ml de leite enquanto as produções foram de 1.85; 1.47; 1.39 e 1.20 kg de leite/teta de negativo +, ++ e ++++, respectivamente.

O comportamento da CGCS e produção apresentaram correlação negativa que na análise de regressão foi significante ao nível de 7% de probabilidade e pelo teste de "t", apresentou alta significância ao nível de 1% de probabilidade. O percentual de ocorrência dos cinco agentes verificados pela bacterioscopia bem como as médias de CGCS x 10³ células/ml de leite e de produção em quilos/teta foram de 73 (48,67%, 1.403 x 10³ e 0,226 kg para Staphylococcus sp: de 24 (16,00%), 2,358 x 10³ e 0,223 kg para Streptococcus sp: de 3 (2,00%, 567 x 10³ e 0,366 kg para bacilares; de 47 (31,33%, 2,355 x 10³ e 0,241 kg para infecções mistas (Staphylococcus sp + Streptococcus sp) e de 3 (2,00%), 633 x 10³ e 0,009 kg para Micrococcus sp, respectivamente. Os achados do escore linear de KIRK (1984) e as perdas de produção de leite para fêmeas primíparas e pluríparas foram inconsistentes e invalidadas pelo desconhecimento do passado sanitário das tetas trabalhadas. A CGCS direta não apresentou maior eficiência que CMT como testes indiretos de diagnóstico da MSC, pois quando avaliados pelo teste de Qui-quadrado, não apresentaram diferença significativa com X² = 0,23.
SUMMARY

This work had as score to evaluate the losses in milk due to the subclinical mastitis (SCM) trough the Kirk's (1984) linear score. The sensitivity of the direct evaluation of the somatic cells in the milk was also studied as an indirect diagnostic of the SCM in cattle. Four cattle herds of EPAMIG (Empresa Pesquisa Agropecuária de Minas Gerais) were worked out. The first herd was composed by Black White Holstein breeds, considered as pure breeds by crossing, HPB-PC, plus half-breed (Half-Caste) Girolando (R1); a second herd was formed by Half-Caste Girolando animals only (R2); the third herd was made with pure from the origin Black and White Holstein cattle (HPB.PO) (R3) and the fourth group had Half-Caste Girolando animals (R4).

The R1 and R2 herds were maintained at Prudente de Morais farm (Centro Regional de Pesquisa Centro Oeste EPAMIG) and R3 and R4 were at Pitanguá farm (Fazenda Experimental da EPAMIG).

From 112 milking cows 425 samples of milk, each one from one teat, were checked by the "California Mastitis Test" (CMT). Paired teats gave 96 samples taken during the beginning of the research and 150 samples more were later on through two milings. Each herd was milked three times (total 12). Each pair of teats, from the same udder, was made up with a negative CMT reaction and positive ones, classified as -, +, ++ and +++.

The herds from the first milking gave 43.21%, 36.69%, 57.14% and 33.33% prevalence for each group of animals R1, R2, R3 and R4 respectively. The productions of milk of each paired teat were weighed and those samples were checked for the total number of somatic cells by direct evaluation (CGCS x 10³ cells/ml of
milk) and by bacterioscopy. The average values for those evaluations were found to be 131.25; 755.25; 1,473.25 and 3,640 x 10^3 cells/ml, corresponding to -; +; ++ and +++ reactions. When there was positive reactions the losses in the milk production were 14.68% 34.64% and 45.00% respectively. From the 150 samples taken later on the average values for CGCS were found to be increasing as 91; 690; 1,659 and 5,723 x 10^3 cells/ml of milk corresponding to productions of 1.85; 1.47; 1.39 and 1.20 kg milk/teat. Those productions increased in accordance to the reactions -; +; ++ and +++ respectively.

The statistical analysis of the data obtained gave a negative correlation between CGCS and the milk production (P = 0.07); the "t" test for those differences gave the value P = 0.01% probability.

Bacteriological studies showed the occurrence of Staphylococcus sp in 46.67% of the total samples of milk with with 1.403 x 10^3 CGCS cells/ml corresponding to mean of milk production/teat of 0.226 kg. Streptococcus sp was found in 16% of the samples with 2.358 x 10^3 cells/ml and a mean of milk production of 0.223 kg milk bacilli occurred un 2%, with 567 x 10^3 cells/ml and a mean of milk production of 0.366 kg milk; mixed Staphylococcus sp with Streptococcus sp were found in 31.33% with 2.355 x 10^3 cells/ml and 0.241 kg/milk. Micrococcus sp occurred in 2% with 633 x 10^3 cells/ml and 0.089 kg of mean of milk production.

The Kirk's linear score tests in relation to the losses of milk production data from primiparous and pluriparous cows were not consistent ones and so valueless, perhaps due to the lack of proper informations about the anterior sanitary conditions of the teats.

Comparing the data obtained from the direct CGCS with CMT through test of x^2 no significance was found between both tests (x^2 = 0.23).
1 INTRODUÇÃO

A Mamite é reconhecida, em todo o mundo, como uma das mais dispendiosas doenças que aflagem o gado leiteiro (NATZKE, 1981), afetando uma em cada cinco vacas do rebanho mundial (GIESECK et al., 1972), ocasionando perdas consideráveis na rentabilidade da pecuária leiteira (FERREIRO et al., 1979).

Quando a mamite ocorre na sua forma subclínica, também denominada mamite latente ou inaparente os produtores podem não reconhecer o problema, já que as perdas, a curto prazo, não são tão drásticas. Afeccões mais patentes, de curta duração e de menor efeito que a mamite subclínica no rendimento do rebanho, preocupam muito mais a maioria dos criadores (BLOSSER, 1979).

A mamite subclínica (MSC) vem-se caracterizando por uma alta incidência, chegando a índices extremos de 93 a 97%, enquanto que a forma clínica representa apenas os restantes 7 e 3% Giesecke (1979) citado por OLIVEIRA (1989).

É geralmente aceita a ideia de que o maior prejuízo econômico da mamite se deve à forma subclínica, com cerca de 70% de queda de produção ao longo do período de lactação (KIRK, 1981; TIMMS & SCHULTZ, 1984).

De acordo com KIRK & BARTLETT, (1988); P.3,

As perdas restantes são devidas à mamite clínica em decorrência dos custos de tratamento, leite descartado, queda de produção, aumento de mão-de-obra, isolamentos prematuros e morte.

No Brasil, a redução da produção nos casos de MSC foi estimada pela comparação de quartos de ubre sadios com quartos infectados em 43% (FERREIRO et al 1979) e 25,40% (LANGENEGGER et al., 1981). Estes autores
utilizaram para a seleção de tais quartos, respectivamente, os testes de diagnóstico presuntivo do “Viamão Mastitis Test” (VMT) e o “California Mastitis Test” (CMT).

Ocorre, no entanto, que a perda de produção pela MSC, é às vezes, difícil de ser estimada, face à ausência do controle da produção e a inadequação do diagnóstico.


Na premissa de que um aumento significativo de células somáticas no leite possa indicar MSC bem como esta doença acarreta perdas de produção, a CGCS, com certo grau de eficiência, poderá estimar o volume destas perdas (WARD & SCHULTZ, 1972; BLOSSER, 1979; KIRK, 1984).

Este trabalho teve como objetivo avaliar a eficiência do escore linear (EL) DE KIRK (1984) na estimativa da perda de produção de leite na MSC, bem como a sensibilidade e especificidade da CGCS como método de diagnóstico indireto em vacas acometidas de MSC, em fazendas da EPAMIG localizadas nos municípios de Prudente de Morais e Pitangui, no estado de Minas Gerais.
2 REVISÃO DE LITERATURA

2.1 PERDAS ECONÔMICAS E RISCOS CAUSADOS PELA MAMITE

A redução na produção de leite, pela presença da mamite no rebanho, varia de 5 a 83,98%. Além disto, a doença provoca encurtamento do período de vida útil das vacas infectadas, causando perdas totais de 23 dólares/vaca/ano na rentabilidade do rebanho (JANSEN, 1970).

A pouca rentabilidade dos rebanhos infectados, principalmente com a mamite subclínica, interfere diretamente sobre o bem-estar do homem do campo. Há inclusivas possibilidades de veiculação à espécie humana de vários agentes infecciosos, alguns deles causadores de doenças graves como a brucelose, tuberculose, difteria, escarlatina, estafilococccias e febre aftosa. Tudo isso coloca a mamite em destacada importância social (FIGUEIREDO, 1974).

GONZALEZ et al. (1977) estimaram perda anual de 115 dólares/vaca/ano, apenas pela diminuição da produção de quartos com mamite subclínica.

Ao estimar os custos mundiais das principais doenças de animais, BAJAN (1987) verificou que a mamite ocupa o segundo lugar, com 35 milhões de dólares, custo inferior apenas à aftosa que alcançou 50 milhões de dólares.

As perdas anuais estavam em torno de 17 bilhões de dólares nos dois pólos de maior produção leiteira, Europa e Estados Unidos. No Brasil, a mamite é presumivelmente responsável pela redução de no mínimo 10% da produção diária de leite (JOSÉ, 1988).

Os reflexos econômicos das mamites podem ser
analisados por métodos indiretos, mais rápidos e menos
dispensiosos do que os diretos que implicam isolamento
dos patógenos.

2.2 AVALIAÇÃO DAS PERDAS NA PRODUÇÃO DE LEITE
CAUSADAS PELA MAMITE SUBCLÍNICA, ATRAVÈS DO
"CALIFORNIA MASTITIS TEST" (CMT)

O "California Mastitis Test" (CMT), descrito por
SCHALM & NOORLANDER (1957), é uma variação do fenômeno
observado por WHITSIDE (1939) para detectar leites
anormais. O CMT tem sido a prova de escolha em nível
de campo, para a detecção das afecções mamárias
inaparentes ou subclínicas (SCHULTZ, 1977). Quando bem
aplicado, os resultados são satisfatórios e muitas
vezes concordantes com o exame bacteriológico,
(FIGUEIREDO, 1962), LANGENEGGER et al. 1970, RINDSIG
et al. 1979 e FAGLIARI et al. 1983).

GRAY & SCHALM (1962) foram os primeiros a usar o CMT
da para detectar perdas devido à mamite subclínica, ao
trabalharem com a produção de 1.243 vacas de rebanhos
comerciais. Para isso compararam grupos CMT negativos
e positivos e obtiveram médias de 6,00; 10,00, 16,00 e
24,50% de perdas para os CMT traços, +, ++ e +++,
respectivamente.

NATZKE et al. (1965) observaram perdas de leite por
quartos do úbere nas três graduações do CMT, em
comparação com a produção de quartos negativos
opostos, em 384 amostras de quartos de 48 vacas, em
19,00; 29,00 e 67,00 kg/quarto lactente infectados,
respectivamente para reações de +, ++ e +++.

Comparando as reações do CMT de 1.258 quartos opostos
de úbere de 76 vacas das raças Holandesa, Guernsey e
Jersey, em 30 rebanhos leiteiros, FOSTER et al.
(1967), puderam associar a média de redução da
produção de leite em 19,50; 31,80 e 43,40%, por
quarto/dia, respectivamente para as reações do CMT de
+, ++ e +++. Através das reações dos testes de 6.600
quartos anteriores reagentes, esses mesmos autores
observaram os percentuais de ocorrência, por reações
do CMT de 37,60; 27,80; 10,90 e 9,60%.
respectivamente, para negativo (-), +, ++ e +++.

Concluíram que este método seria de grande utilidade
se aplicado em quartos individuais. Sugeriram um
levantamento geral do rebanho como uma medida para
proporcionar condições ao criador de estimar o impacto
econômico da MSC.

PHILPOT (1967) observou redução na produção de leite
por quartos de 178 vacas Jersey, nos percentuais de
11,40; 25,60 e 45,50%, respectivamente para as reações
do CMT de +, ++ e ++++. Seus dados mostraram, ainda,
que quartos CMT negativos compensaram, até certo
limite, o decréscimo na produção dos quartos CMT
positivos. O método de regressão múltipla foi usado
para determinar o procedimento do efeito das mamites
subclínicas, como medido pelo CMT, na produção e
composição do leite.

Em trabalho de revisão sobre perdas econômicas
resultantes da mamite, JANSEN (1970) comparou a
produção de quarto afetado com a do quarto paralelo
sadio, avaliadas pelo CMT, que variou de 9 a 43%.

FERREIRO et al. (1979) avaliaram perdas resultantes da
MSC, trabalhando com 55 pares de quartos de vacas
mesticas, pertencentes a rebanhos de vários munícipios
da microrregião de Juiz de Fora, MG. Observaram
redução média de 42,85% na capacidade potencial
leiteira, relativamente aos quartos opostos normais
que serviram de controle. A escolha destes quartos
teve como base o diagnóstico presuntivo conferido pelo
"Viamão Mastitis Test" preparado de acordo com
FERNANDES et al. (1967), assemelhado ao CMT proposto
por SCHALM & NOORLANDER (1957). Desta amostragem,
participaram somente quartos bacteriologicamente
negativos e opostos com reações de três cruzes. A
redução foi avaliada em apenas uma ordenha da qual
participaram vacas com idade e estágio de lactação
derentes. Esses autores observaram as frequências de
52,73%; 30,91%; 7,27%; 5,45% e 3,64%, respectivamente,
para os Staphylococcus sp, Streptococcus sp, bacilares,
infeções mistas (Staphylococcus sp, Streptococcus sp)
e Micrococcus sp. Nas poucas vezes em que lhes foi possível acompanhar o quadro mamítico,
verificaram que alguns evoluíram até a agalaxia, ainda na mesma lactação.

Ao avaliarem a perda de produção por quarto/dia, relacionada a agentes patogênicos, FERREIRO et al. (1979) observaram os percentuais de respectivamente de 82,21% para *Staphylococcus sp*, 39,76% para o *S. aureus* e 42,45% para *S. epidermidis*, 42,69% para os *Streptococcus sp*, 76,71% para os bacilares (Gram-negativos); 30% para as infecções mistas e 31,25% para os *Micrococcus sp*.

Analisando 70 pares de quartos opostos, LANGENEGGER et al. (1981), detectaram que os quartos com MSC, diagnosticados pelo CMT, produziram 25,40% menos leite do que os quartos normais. Pela comparação da produção de leite de 41 pares de quartos opostos, cuja reação positiva ao CMT foi confirmada pelo exame bacteriológico, os autores observaram que a redução da produção de leite variou conforme o agente etiológico. A frequência de MSC para os *Staphylococcus sp* e *Streptococcus sp* foi de 63,11% (26 quartos) e 36,59% (15 quartos), e a redução da produção foi de 27,10% e 42,40%, respectivamente.

Para esses mesmos autores tal resultado global, além de mostrar aspectos de interesse econômico, envolve também curiosa faceta relacionada com o controle da mamite por esses dois grupos de germes. Os estafilococos provocam menor redução da produção de leite mas é mais difícil controlá-los. Por outro lado os estreptococos causam grande redução da produção, porém seu controle é relativamente fácil. No decorrer da investigação foram vistos casos "paradóxicos" em que a produção dos quartos infectados era maior do que a dos quartos sadios. Segundo esses autores, "isto pode decorrer de mamite anterior tratada durante a mesma lactação ou de alteração mais grave, não infecciosa, havida em lactações anteriores" (LANGENEGGER et al., 1981, p.51).

A mamite subclínica (MSC) foi estudada em 35 vacas leiteiras de duas propriedades localizadas na periferia da cidade de Santa Maria, RS, por RIEDNER et
al. (1987), através do exame clínico, do CMT e de exames bacteriológicos. Pelo teste do CMT em 860 amostras de leite, constataram a prevalência de 44,88% de MSC, em 386 amostras que foram reagentes para traços, ++ e +++.

Gonzalez et al. (1988) utilizaram o CMT e a cultura bacteriológica em amostras compostas de leite de 23.138 vacas pertencentes a 50 rebanhos leiteiros da Califórnia, EUA. Desses animais analisados, 12.334 foram positivos ao CMT, com a prevalência da mamite alcançando 53,30% das vacas testadas. Foram isolados agentes potencialmente causadores de mamite de 5.085 (22%) vacas. Foi isolado também o Staphylococcus aureus de todos os 50 rebanhos componentes da amostragem.

A mamite subclínica, avaliada em 57 vacas pertencentes a quatro rebanhos localizados em St Croix, Ilhas da Virgínia, EUA, apresentou prevalência de 97% e sérios problemas, com 40% dos quartos dando reações de ++ e +++ e perda de produção foi estimada em 4,40 a 13,33 libras/vaca/dia, ou seja, 2,0 a 6,0 kg/vaca/dia, de acordo com AHL et al. (1989).

Utilizando o CMT para avaliar a redução da produção de leite de rebanhos pertencentes a cinco municípios do estado de Minas Gerais e um do Rio de Janeiro, Oliveira (1989) encontrou 13,78% de redução de leite por quarto para CMT +; 24,39% para ++ e 46,79% para +++ e nas vacas com mamite clínica, a redução foi de 58,23%.

2.3 Avaliação das perdas na produção de leite causadas pela mamite subclínica através da contagem global de células somáticas (CGCS)

Leucócitos polimorfonucleares (PMN) são as células de maior presença no leite de quartos mamários inflamados (Cullen, 1966). O aumento do conteúdo de células somáticas no leite é indicativo de processo inflamatório do ubíce, pois nestes casos, os leucócitos polimorfonucleares estão presentes em 15 a 95% do total de células somáticas (Giesecke, 1979).
Entretanto, este método está sujeito a alguns erros, dentre eles, devido ao fato de os campos microscópicos selecionados não serem seguramente representativos do leite total (STRAINADKA & THORNTON, 1937).

A técnica de PRESCOTT & BREED (1910) foi ligeiramente modificada por FIGUIREDO (1962), que reduziu a área de esfregamento de 1,0 para 0,5 cm² e introduziu o método de coloração de CHARLETT (1954).

Alguns pesquisadores consideram contagens acima de 250 × 10³ células/ml de leite como indicativo de anormalidade ou mesmo de infecção (MERCHAND & PACKER, 1949).

Por outro lado, PLASTRIDGE (1958) considera que o leite de quartos sadios pode conter até 500 × 10³ células/ml de leite, sendo que as contagens maiores são indicativas de infecção ou de leite anormal.

Trabalhando com 129 vacas de rebanhos do município de Betim, Minas Gerais, em sistema de retiro, FIGUIREDO (1962) apontou contagens acima de 500 × 10³ células/ml de leite como sinal de anormalidade ou de infecção da glândula.

A contagem global de células somáticas (CGCS) do leite é de particular interesse no diagnóstico de formas de mamite subclínica. Estas modalidades de mamite não exibem hipere mia, nem aumento de consistência do úbere, nem mesmo mudanças macroscópicas expressivas do leite. Entretanto, há evidências substanciais indicando que a mamite subclínica, bem como a não específica, pode estar associada à considerável redução do leite (King, 1967 e Reichmuth, 1968, citados por MEIJERING et al., 1970).

Usando modelos para examinar a parcial influência da CGCS por quarto do úbere na perda de leite, Reichmuth (1968), citado por MEIJERING et al. (1978) afirmou que a queda na produção começa a ser significativa, quando a CGCS excede a 5 × 10⁵ (500.000) células/ml. Ao comparar as perdas de produção em três classes de
CGCS, respectivamente, classe 1, \(< 5 \times 10^5 (500.000.000) \) células/ml; classe 5, \(5 \times 10^5 - 10^6 (500.000 - 5.000.000) \) células/ml e a classe 9, \(> 5 \times 10^7 (50.000.000) \) células/ml, observou redução de 9,20% na classe 5 e de 37,50% na classe 9.

Como método para assegurar a influência da mamite na produção de leite, MEIJERING et al. (1978) citam a comparação da produção do quarto saúdo com o quarto paralelo afetado. Tal método baseia-se na hipótese de que quartos saudáveis paralelos produzem igual volume de leite. No entanto, resultados variados podem ocorrer se (a) um decréscimo na produção de leite de um quarto doente for compensado por um aumento de produção do quarto paralelo saudio, ou se (b) a produção for reduzida em um dos pares de quartos, devido a mamites ocorridos em estágios anteriores da lactação ou em lactações anteriores, sem que a CGCS estivesse elevada no momento do teste. Diferentemente de PHILPOT (1967), esses autores não observaram a compensação parcial da produção pelos quartos saudios, quando da menor produção do paralelo doente. Tanto nas primiparas como nas pluriparas, observaram correlação negativa entre a CGCS e a produção.


Além disso, estações do ano têm sido citadas como fator que afeta a CGCS, sendo constatadas contagens mais baixas no inverno e maiores altas no verão (PAAPE et al. 1973; BODOH et al., 1976).


De acordo com KIRK (1984), alguns autores consideram contagens abaixo de \(1200 \times 10^3 \) células/ml, como leite normal, a de \(100 \) a \(400 \times 10^3 \) células/ml, como
indicativas de infecção em desenvolvimento e, acima
destes parâmetros, como infecção estabelecida. Tendo
como base as quedas de produção dos quartos afetados e
os teores globais de células somáticas, esse autor,
elaborou uma escala denominada escore linear (EL),
disposta em dez escores, de 0 a 9. Através destes
escores, determinados pelos intervalos de CGCS,
estimou as perdas em libras/vaca/dia. Tais perdas
começam a ocorrer no EL 3 (com 71 - 140 x 10³
células/ml), na cifra de 1,50 libra/dia, alcançando no
EL 9 (com 4.526 x 10³ células/ml) a perda de 10,50
libras/dia. A única variável considerada nesse
trabalho, com relação às fêmeas, foi quanto ao número
de lactações. O cálculo direto, como apresentado na
TAB. 2, de autoria de Shook & Saeman (1983) citados
por KIRK (1984), de perdas em libra/vaca/dia,
corresponde à pluríparas, enquanto as primíparas
perderiam a metade (50,00%) das pluríparas.

GRANZOTT (1985) avaliou a MSC em 13 rebanhos
produtores de leite “B” pertencentes à bacia leiteira
do estado do Rio de Janeiro. A CGCS foi analisada
através da contagem eletrônica em leite proveniente de
quartos sadios e de quartos com MSC. Na avaliação das
médias de CGCS em três diferentes estágios de lactação
(< 1 a 3, 3 a 7 e 7 a 10 meses), esse autor observou
médias de 261.000, 311.000 e 303.000 células/ml de
leite, para os quartos normais, e de 2.325.000,
2.884.000 e 2.489.000 células/ml de leite, para os
quartos com MSC. Apenas nos quartos categorizados como
sadios, foram encontradas diferenças significativas
entre as médias de CGCS por estágio de lactação.

No entanto, ao avaliar as médias da CGCS por ml de
leite proveniente de quartos sadios, distribuídos em
três grupos etários, de (3 a 5, 5 a 8 e 8 a 10) anos,
GRANZOTTI (1985) encontrou as médias de 271.000,
296.000 e 315.000 células/ml de leite. Considerou,
ainda, a média de CGCS, aliada à espécie de bactéria
isolada, como parâmetro para análise de
patogenicidade. Sob este aspecto, os Micrococcus sp
foram os menos patogênicos, com média de 779.000
células/ml, e o Streptococcus uberis o mais
patogênico, com 6.574.000 células/ml. A não
concordância das médias da CGCS e etiologia com a literatura consultada, para o autor referenciado, teria sido em decorrência dos diferentes métodos de contagens utilizados.

Trabalhando em Michigan, EUA, no período de 1985 a 1986, BARTLETT et al. (1990) usaram a associação entre produção de leite e CGCS para estimar a perda de produção devido à mamite. Os dados-base continham 397.172 testes de leite, obtidos através do projeto de Melhoramento do Rebanho Leiteiro (DHI), de Michigan, em 504 rebanhos holandeses. O modelo usado neste estudo prognosticou perda de 1,17 kg de leite/vaca/dia.

RAVINDERPAL et al. (1990) estudaram frequência do uso e os efeitos das práticas de controle da mamite com relação à CGCS, em logaritmo de base 2, e à produção de leite. Confirmaram a esperada correlação negativa entre contagem de células somáticas e produção de leite, quando a CGCS do leite bovino individual foi melhor indicador de perdas de produção do que a CGCS, realizada em leite de tanques.

2.4 AVALIAÇÃO DOS TESTES INDIRETOS, NO DIAGNÓSTICO DA MAMITE SUBCLÍNICA


FIGUEIREDO (1962), ao trabalhar com 129 vacas de rebanhos pertencentes ao município de Betim, Minas Gerais, em sistema de retiro, registrou concordância de 85,20% entre a bacterioscopia e a bacteriologia nos casos positivos e de 83,30% nos casos negativos. Observou que a menor eficiência da bacterioscopia para espécimes negativas pode ser devida à escassez de bactérias, ou à falhas na técnica de coloração ou de microscopia.
SILVA (1977), utilizando a CGCS e bacterioscopia como critério para o diagnóstico de infecção do úbere de bovinos em Florestal-MG, obteve a correlação de 85,40% entre a bacterioscopia e a bacteriologia para os casos positivos e 85,20% para os casos negativos. A diferença de 12,60% entre as reações CMT positivas com a bacterioscopia negativa poderia ser ocasionada por injúrias mecânicas à glândula mamária. Já o percentual de 6,40%, encontrado entre a bacterioscopia positiva e CMT negativo, pode ser em decorrência da contaminação das amostras de leite durante a coleta do material por bactérias presentes no canal do teto ou circunvizinhanças, sem contudo estarem produzindo infecção mamária tipicamente categorizada como mamite. Os resultados concordantes para CMT e bacterioscopia, positivos ou negativos, sugerem estar as glândulas realmente infectadas ou não.

Ao trabalharem com o nível de $4,0 \times 10^5$ células/ml de leite e com a presença ou ausência de isolamento de patógenos, MCDERMOTT et al. (1982) obtiveram sensibilidade de 60% e especificidade de 87%, para estes métodos utilizados.

NADER FILHO et al. (1983), em pesquisa conduzida no estado de São Paulo registraram concordância de 87,50% entre a CGCS e exames bacteriológicos, confirmando a eficiência da contagem global de células somáticas do leite.

Usando o método de classificação dos quartos, quanto à presença de bactérias e CGCS, segundo as categorias definidas pela INTERNATIONAL DAIRY FEDERATION-IDF (1971), com limiar de $5,0 \times 10^5$ células/ml de leite, em rebanhos do estado do Rio de Janeiro, GRANZOTI (1985) observou sensibilidade de 80% e especificidade de 69,80%. A capacidade de predizer os quartos com bactérias e distúrbios na secreção do leite, face à infecção (preditibilidade positiva), foi de 69,30%. Já a capacidade de predizer os quartos sem distúrbios na secreção e com ausência de bactérias patogênicas (preditibilidade negativa) foi de 84,40%. Esse autor comentou que, essa capacidade de predizer os quartos
negativos transforma a contagem eletrônica de células somáticas num método de triagem para a avaliação da qualidade do leite, através dos níveis de células somáticas presentes nas amostras de rebanhos, vacas ou quartos, individualmente.

Em pesquisa desenvolvida em Florestal, MG, com 24 vacas, LINS (1988) encontrou correlação entre as provas bacterioscópicas e bacteriológicas ao exame de leite de três coletas, de 97,80%, 97,22% e 81,91% para as visitas inicial, intermediária e final, respectivamente. As práticas de CGCS e a bacterioscopia mostraram correlação positiva com o isolamento e identificação presumptiva de patógenos. Isto confirma resultados de trabalhos anteriores, que demonstraram a confiabilidade da bacterioscopia como método indireto de diagnóstico da mamite.

Usando o CMT e a cultura bacteriológica de amostras composta de leite de 23.198 vacas, pertencentes a rebanhos leiteiros da Califórnia, EUA, GONZALEZ et al (1988) observaram relativa sensibilidade e especificidade para o CMT, de 83,40% e 55,20%, respectivamente, e o valor preditivo de resultados positivos ao CMT de 34,20%.

Trabalhando com 189 fêmeas de rebanhos pertencentes à bacia leiteira de Belo Horizonte, ANDRADE (1989) obteve de 192 amostras testadas ao CMT, 121 (91,67%) positivas e 11 (8,33%) negativas. Para as reações negativas ao CMT, encontrou os percentuais de concordância de 72,79% correspondentes a oito amostras também negativas à bacterioscopia e de 54,50 relativos a seis amostras negativas à bacterioscopia. Diante dos diferentes percentuais observados nos três testes avaliados na detecção de amostras negativas, esse autor sugeriu que tal fato deva ser interpretado tendo em vista as bases dos respectivos testes, ou seja, o CMT é o método indireto de diagnóstico e os demais devem ser entendidos como diretamente relacionados à presença de bactérias no leite. Assim, na casuística estudada, está ocorrendo tolerância da glândula mamária a ponto de esta não mais reagir à presença de patógenos, o que caracteriza infecção subclínica.
Esse mesmo autor relata ainda, que as concordâncias entre os percentuais da bacteriologia e bacterioscopia aumentam, à medida que aumenta o grau de reação do CMT. Para CMT +, ++ e ++++, as diferenças entre as concordâncias da bacteriologia e bacterioscopia foram de 26,70%, 16,60% e 13,40%, respectivamente, quando as reações francamente positivas (++++) concordaram em 97,80% e 84,80%, respectivamente, com a bacteriologia e bacterioscopia. Outro dado importante observado, foi a bacteriologia que apresentou para os coliformes, percentuais de positividade menores que a bacterioscopia. Isto se explica em decorrência da grande abundância destes germes em leite enriquecido.

Numa avaliação final dos testes empregados, ANDRADE (1989) propõe que a associação de testes como o CMT, a CGCS e a bacterioscopia, principalmente quando estes dois últimos testes são realizado simultaneamente em amostras de leite enriquecidas a 37°C, por 18 a 24 horas, e executados por métodos de coloração especial, como o de Charlett, possibilitam melhor avaliação dos casos de mamite na maioria dos laboratórios regionais. Tal procedimento pode tornar mais eficiente os programas de controle e profilaxia da infecção, sem, contudo, substituir a bacteriologia como teste de critério diagnóstico definitivo da mamite.
3 MATERIAL E MÉTODOS

3.1 LOCAL E ÉPOCA DE EXECUÇÃO DO TRABALHO

As amostras de leite utilizadas na condução do experimento desta dissertação foram obtidas no Centro Regional de Pesquisa do Centro-oeste - CRCO, localizado na Fazenda Santa Rita, município de Prudente de Morais, e na Fazenda Experimental de Pitangui - FEPI, município de Pitangui, ambas pertencentes à Empresa de Pesquisa Agropecuária de Minas Gerais-EPAMIG, distantes 70 e 130 km de Belo Horizonte, respectivamente. As análises de laboratório foram conduzidas na Escola de Veterinária da UFMG, no laboratório de Controle de Mamite. O trabalho foi desenvolvido de março a agosto de 1991.

3.2 INSTALAÇÕES

Os currais eram cercados de tábuas no Estábulo Experimental (EE) do CRCO/EPAMIG e Fazenda Experimental de Pitangui - FEPI/EPAMIG, e de arame liso no Estábulo do Sistema (ES), do CRCO. Possuíam pisos de concreto com boa queda de nível, sendo que apenas no EE, de construção mais antiga, existiam algumas áreas no piso que acumulavam água. Os currais dispunham de cochos coletivos para volumosos ou suplementação alimentar. Os estábulos eram de alvenaria, cobertos com telhas de cerâmica no EE, de amianto no ES, de telhas e estrutura metálica em Pitangui. Nesta última propriedade, a contenção dos animais era feita por bretas em linhas de seis, e, nos dois outros estábulos, pelo sistema de canzil. A drenagem das salas de ordenha era satisfatória nos três establos. Os bezerros mais novos eram mantidos em bezerreiros individuais, em áreas contíguas aos establos no ES - CRCO/EPAMIG e FEPI/EPAMIG, e mais afastados do establo no EE - CRCO/EPAMIG, divididos
por arame liso. Todos os três bezerreiros, construídos
de alvenaria, dispunham de boa aeração e claridade,
com acesso a piquetes próximos.

3.3 REBANHOS UTILIZADOS E AMOSTRAGEM

Foram utilizados quatro rebanhos, sendo dois
dependentes à Fazenda Experimental de Santa Rita,
mantidos em áreas diferentes - o Estábulo Experimental
(EE) e o Estábulo do Sistema (ES). O rebanho do EE,
era composto de 38 animais, 21 em lactação (55,26%) da
raça Holandesa Preto e Branco (HPB) e Mesticas das
raças Holandesas e Gir (Girolanda), com produção média
de 9,96 kg leite/vaca/dia. No ES o rebanho compunha-se
de 52 animais, sendo 40 fêmeas em lactação (76,92%),
todas mesticas das raças Holandesas e Gir, com produção média
de 13,80 kg de leite/vaca/dia. Os outros rebanhos estavam sediados na Fazenda Experimental de
Pitangui, sendo um da raça Holandesa Preto e Branco,
puro de origem (HPB-PO), com total de 42 animais, dos
quais 36 em lactação (85,71%), com produção média de
8,28 kg leite/vaca/dia. O quarto rebanho era mestico
das raças Holandesas e Gir. Do plantel de 14 bovinos,
havia 12 fêmeas em lactação (85,71%), com produção média de
5,60 kg leite/vaca/dia. Na sequência citada, os
quatro rebanhos foram assim enumerados: rebanho 01
(R1) - HPB-PC e Mesticos do EE do CRCO, rebanho 02
(R2) Mestico do ES do CRCO, rebanho 03 (R3) - HPB-PO e
rebanho 04 (R4) Mestico, ambos lotados na FEPI.

A amostragem definida pela estatística seria de pelo
menos 30 amostras, enquadradas dentro de cada uma das
10 faixas do EL de KIRK (1984), que evoluem de 0 - 17
× 10³ células/ml de leite no escore zero até a > 4,526
× 10³ células/ml de leite no escore 9. Foram trabalhadas
74 amostras de tetas pares ao CMT para
37 vacas primíparas, e 226 para 113 pluríparas,
totalizando 300 amostras, ou seja, 150 amostras
negativas e 150 amostras positivas ao CMT, conforme
citado no item 3.4.

Esse total de 150 amostras de tetas pares ao CMT
foi obtido em 12 coletas, ou seja, em três coletas
para cada um dos quatro rebanhos trabalhados.
A primeira coleta, chamada de inicial, teve seus dados aglutinados com base na composição dos quatro rebanhos, mostrados na TAB. 3.

Objetivando levantar a prevalência inicial da MSC de acordo com o CMT, foi organizada a TAB. 4.

Nas demais coletas as amostras foram sempre pareadas, obtidas de tetas de localização análoga, seja anterior ou posterior, uma das quais negativas ao CMT (TAB. 5).

As fêmeas trabalhadas foram avaliadas por idade (TAB. 6), por períodos de lactação (TAB. 7), por número de lactação (TAB. 8) e por número de lactação por períodos de lactação (TAB. 17 E 18), conforme as fichas de controle existentes.

3.3.1 ALIMENTAÇÃO

Todos os animais eram mantidos em regime de pasto (braquiária, andropógono, bengo e guiné) com sal mineral à disposição nos cochos das pastagens.

No momento da ordenha, recebiam ração balanceada, com 22% de proteína bruta, em quantidade variável de acordo com a produção individual.

3.3.2 ORDENHA

Nos quatro rebanhos, a ordenha era manual, sem a presença de bezerros, que só amamentavam nas primeiras horas de vida para depois serem transferidos para o bezerreiro, aleitados em balde até o desmame. As ordenhas eram realizadas duas vezes ao dia, com intervalo de aproximadamente oito horas. Em nenhum dos rebanhos existia linha ou ordem de ordenha, e as vacas eram trabalhadas por diversos ordenhadores em distribuição aleatória.

3.3.3 CONTROLE SANITÁRIO

Na propriedade da Fazenda Experimental de Santa Rita, tanto no EE como no ES, era realizada normalmente a limpeza das tetas antes da ordenha, com água de
torneira depositada em balde, acrescida de hipoclorito de sódio, cuja disponibilidade de cloro era supostamente adequada, sendo frequentemente renovada. Para a secagem das tetas, eram usadas toalhas de pano, tipo fraldas de algodão. Imediatamente após a ordenha, as tetas eram imersas em solução glicero-iodada (1.000 ppm) preparada no próprio estábulo.

Na Fazenda Experimental de Pitanguí eram executados os mesmos cuidados. Anteriormente, entretanto, não era usado nenhum desinfetante nem na água que lavava as tetas e nem em solução para uso pós-ordenha.

Como não existia linha ou ordem de ordenha em nenhum dos três estábulos, os mesmos ordenhadores manuseavam tanto animais sadios como animais em tratamento.

Os animais a serem medicados, como nos casos de mamite, retenção de placenta, afecções de casco e drenagem de abscessos, permaneciam na sala de ordenha após o desaleitamento. Após a retirada dos animais, os estábulos eram bem lavados, com auxílio de mangueiras que propiciavam fortes jatos de água.

3.4 SELEÇÃO DOS ANIMAIS

Após a desinfeção das tetas, todos os animais, aparentemente sem infecção clínica, foram testados pelo "California Mastitis Test" (CMT)\(^1\), de acordo com SCHALM & NOORLANDER (1957). O teste foi executado ao pé da vaca, imediatamente antes da primeira ordenha, nos rebanhos do EE/Santa Rita e na Fazenda Experimental de Pitanguí e da segunda ordenha, no rebanho do ES/Santa Rita, após serem desprezados os dois ou três primeiros jatos de leite.

Neste trabalho, a categorização de mamite subclínica, obviamente sem sintomas, teve como base a presença de alterações físico-quinêmicas do leite, observadas pelo teste de coadura e os resultados das provas de CMT.

\(^1\) CMT FATEC
Av. Fatec, 1900 - Arujá - SP.
contagem global de células somáticas (CGCS) e bacterioscopia. Nesta seleção, não participaram da amostragem fêmeas no período colostral, de menos de oito dias pós-parto, nem em período abaixo de 15 dias após tratamentos.

Dos animais assim selecionados foram obtidas as amostras pareadas de tetas do mesmo lado direito e esquerdo, anterior ou posterior, onde uma reagia ao CMT a qualquer nível de + a +++ e a outra não reagia.

3.5 COLETA DO MATERIAL

O úbere era lavado com água de torneira, de boa procedência, colocada em baldes. A ela adicionava-se solução de hipoclorito de sódio pela utilização de 100 ml de água sanitária GLOBO(1), contendo aproximadamente 2% de cloro, o que resultou numa solução com 200 ppm de cloro, substituída com frequência.

Não foi processada a secagem do úbere com as toalhas normalmente empregadas nos estábulos. Após a lavagem, as tetas eram imersas em solução de álcool-iodado, na proporção de uma parte de tintura de iodo para nove de álcool etílico a 70° GL. Para apressar a secagem, as tetas eram ligeiramente sacudidas. A amostra de leite era colhida em volume de 10 ml por teta, com cuidados de assepsia, em frascos estéreis de vidro, tipo penicilina, com capacidade para 20 ml, permanentemente identificados e dispostos em acondicionamento especial. Estas amostras eram transferidas para o laboratório em temperatura ambiente, e levadas à estufa a 37°C, por período de 18 a 24 horas, para enriquecimento bacteriano.

3.6 AVALIAÇÃO DA PRODUÇÃO DE LEITE POR TETAS AMOSTRADAS

Após a identificação e coleta das amostras de leite dos pares de tetas selecionadas, era quantificada a produção de cada teta. Foram utilizados quatro baldes

--------

(1) Água Sanitária Super Globo de Belo Horizonte Ltda.
Rua José Maria Lacerda, 255 - Contagem - MG.
iguais, de plástico, de mesmo peso e em quatro cores diferentes, marcados de AE, AD, PE e PD, nesta ordem, para identificar os quartos anterior esquerdo, anterior direito, posterior esquerdo e posterior direito.

Os quartos amostrais eram ordenhados e o leite pesado à parte. Os demais quartos, que não serviam à amostragem, isto é, que davam apenas reações negativas ou positivas, classificados como não pareados, eram ordenhados dentro da rotina do estábulo.

3.7 CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) E BACTERIOSCOPIA

Após o enriquecimento das amostras de leite, eram processadas simultaneamente, a contagem global de células somáticas e a bacterioscopia. A CGCS foi realizada segundo a técnica de Contagem Microscópica Direta (CMD), de PRESCOTT & BREED (1910), modificada com relação à área guia do esfregão de 1,0 para 0,5 cm², onde o leite era distribuído através de alça de platina calibrada para o volume de 0,001 ml, de acordo com as modificações de FIGUEIREDO (1962). Os esfregãos, dez em cada lâmina comum de microscopia, foram corados segundo a técnica de CHARLETT (1954), e examinados em microscópio 1, cujo fator de 2.500 000 era multiplicado pela média de células de 25 campos. O resultado equivale ao número total de células por mililitro de leite. O fator microscópico tem como base o STANDARD... (1953), com a variação introduzida por FIGUEIREDO (1962).

Pela bacterioscopia, estreptococos com mais de seis elementos em cadeia eram considerados, presumivelmente, patogênicos, isto é, *Streptococcus sp.* não pertencentes à flora normal da glândula mamária (BRYAN, 1941) enquanto os *Staphylococcus sp.* bacilares e *Micrococcus sp.* eram identificados em conformidade com suas características morfológicas.

1° - Olympus CRA, nº 283.451, ocular Bx o objetiva 100 x
nº 20.8769
3.8 ANÁLISE ESTATÍSTICA

Após a obtenção das amostras pareadas, avaliadas pelo CMT, os resultados foram comparados com os da CGCS e escore linear (EL) de KIRK (1984).

A relação entre o escore linear (EL) e a amplitude da contagem de células somáticas de KIRK (1984), bem como o escore linear relacionado à contagem global de células somáticas e perda de produção segundo Shook & Saeman (1983), citados por KIRK (1984), estão nas TAB. 1 e TAB. 2, respectivamente.

O CMT foi quantificado de "0" para negativo de "1" para uma cruz, "2" para duas cruzes e de "3" para três cruzes. As variáveis assim numéricas foram correlacionadas (coeficiente de correlação de Pearson) e testadas duas a duas.

Com relação aos agentes patogênicos obtidos pela bacterioscopia foram categorizados em classes de 01, 02, 03, 04 e 05, respectivamente para Staphylococcus sp., Streptococcus sp., bacilares, infecções mistas (Staphylococcus sp + Streptococcus sp) e Micrococcus sp. Foi estudada a distribuição de frequência de cada agente e após, esta foi comparada aos resultados do CMT, bacterioscopia, CGCS direta e categorizada pelo escore linear. Esta dispersão foi estudada em tabela de contingência e testada pelo Qui-quadrado.
### TABELA 1  Relação entre escore linear (EL) de KIRK (1984) e amplitude da contagem de células somáticas

<table>
<thead>
<tr>
<th>Escore linear</th>
<th>Faixas de contagem de células somáticas ($x10^9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 - 17</td>
</tr>
<tr>
<td>1</td>
<td>18 - 34</td>
</tr>
<tr>
<td>2</td>
<td>35 - 70</td>
</tr>
<tr>
<td>3</td>
<td>71 - 140</td>
</tr>
<tr>
<td>4</td>
<td>141 - 202</td>
</tr>
<tr>
<td>5</td>
<td>203 - 565</td>
</tr>
<tr>
<td>6</td>
<td>566 - 1.130</td>
</tr>
<tr>
<td>7</td>
<td>1.131 - 2.262</td>
</tr>
<tr>
<td>8</td>
<td>2.263 - 4.525</td>
</tr>
<tr>
<td>9</td>
<td>Acima de 4.526</td>
</tr>
</tbody>
</table>


### TABELA 2  Relação do escore linear com a contagem global de células somáticas (CGCS) e perda de produção

<table>
<thead>
<tr>
<th>Escore linear</th>
<th>CGCS $x10^3$ células/ml de leite</th>
<th>Perdas de Produção(a) (lb/dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>1,5</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>3,0</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
<td>4,5</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
<td>6,0</td>
</tr>
<tr>
<td>7</td>
<td>1.600</td>
<td>7,5</td>
</tr>
<tr>
<td>8</td>
<td>3.200</td>
<td>9,0</td>
</tr>
</tbody>
</table>

(a) - As perdas se referem a vacas na segunda e maiores lactações. A perda para fêmeas na primeira lactação é a metade desta quantia.

Nas amostras de leite, negativas e positivas ao CMT, o teste de Student (test de "t") foi usado para avaliar médias de CGCS e produção, em diferentes períodos de lactação.

Para o ajuste estatístico dos dados amostrais da CGCS, foi realizado o ajuste das contagens de células entre as amostras paredas ao CMT. A CGCS da amostra com diagnóstico negativo ao CMT (menos de 500.000 células/ml) foi zerada ("0" células/ml), e as contagens foram abatidas na amostra positiva paralela.

Na avaliação estatística da produção de leite obtida das tetas trabalhadas, após a caracterização destas pelo CMT e o respectivo ajuste da CGCS, duas outras variáveis foram analisadas, a diferença de produção (DP) e o percentual de perda (PP) onde:

\[
DP = (\text{produção (kg) teta sadias}) - (\text{produção (kg) teta doente})
\]

\[
PP = \frac{DP}{\text{produção (kg) teta sadias}}
\]

A variável percentual de perda (PP) foi utilizada para relativizar a grande desuniformidade existente na produção de leite da amostragem trabalhada.

O método da CGCS direta, bem como os resultados obtidos pelo CMT, com base no limiar de \(5.0 \times 10^5\) células/ml e a presença de bactérias, foi avaliado através de sua sensibilidade, especificidade, preditibilidade positiva e negativa de quartos infectados e a prevalência da infeção, segundo fórmula e definição de MACDERMOTT et al. (1982).

1. Sensibilidade = \(\frac{TP}{TP + FN}\) \times 100

2. Especificidade = \(\frac{TN}{TN + FP}\) \times 100
3. Preditibilidade positiva = --- 100
   \[ \frac{TP}{TP + FP} \]

4. Preditibilidade negativa = --- 100
   \[ \frac{TN}{TN + FN} \]

5. Prevalência de infecção = --- 100
   \[ \frac{TP}{TP + FP + TN + FN} \]

onde:

TP = Teste Positivo (quarto infectado limiar acima de \(5,0 \times 10^5\) células/ml)

FP = Teste Falso Positivo (quarto não infectado com limiar acima de \(5,0 \times 10^5\) células/ml)

TN = Teste Negativo (quarto não infectado e limiar abaixo de \(5,0 \times 10^5\) células/ml)

FN = Teste Falso Negativo (quarto infectado e limiar abaixo de \(5,0 \times 10^5\) células/ml)

Os resultados assim obtidos para os testes CGCS direta e CMT foram avaliados pelo Qui-Quadrado.
4 RESULTADOS

A distribuição e a composição dos quatro rebanhos trabalhados por ocasião da coleta das amostras de leite, conforme o item 3.3 de Material e Métodos, estão mostradas na TAB. 3. Estão também apresentados os nove (2,06%) casos de tetas afuncionais ("perdidas") do total de 4326 avaliadas.

Apesar de não ser objeto deste estudo a busca de tetas com mamite clínica, os dois (0,46%) únicos casos observados no R2 e R3 estão mostrados na TAB. 3.

A prevalência da MSC, detectada através do CMT nos quatro rebanhos, está na TAB. 4. Na aplicação do teste do CMT, não foi observado reação tipo tracos (TR) nos três testes executados em cada um dos quatro rebanhos avaliados.

Ainda por ocasião da coleta inicial, teve começo a obtenção de amostras pareadas, conforme o item 3.3. de Material e Métodos, que totalizaram 96 amostras pareadas de 425 quartos testados, como mostrado na TAB. 5.

Na TAB. 6 está apresentada a distribuição das 300 amostras de tetas por idade das fêmeas testadas, obtidas na amostragem global, que variou de 2 a 15 anos, quando não houve ocorrência de amostras aos 13 anos.

A distribuição e a frequência da amostragem global de tetas, nos três períodos de lactação, estão na TAB. 7.

Também foi estudada a distribuição e a frequência das 300 amostras de tetas, por número de lactação das fêmeas trabalhadas, mostradas na TAB. 8, com a maior frequência, de 74 (24,67%), para as fêmeas na primeira lactação (primíparas), e a menor, de seis (2%), para as fêmeas na sétima lactação.
Nas TABs. 9 e 10 estão discriminados os presuntivos agentes etiológicos da mamite, identificados de 01 a 05, detectados pela bacterioscopia, respectivamente, em reações negativas e positivas ao CMT, na coleta inicial. Os únicos agentes detectados pela bacterioscopia nas reações negativas ao CMT (TAB. 9) foram 03 (Bacilares) e 05 (Micrococcus sp), nos percentuais de 10,42% e 10,41%. E nas reações positivas ao CMT (TAB. 10), a bacterioscopia detectou todos os cinco agentes pesquisados, nos percentuais decrescentes de 54,17; 20,83; 18,75; 4,17 e 2,08%, respectivamente para 01 (Staphylococcus sp), 04 (Staphylococcus sp + Streptococcus sp), 02 (Streptococcus sp) 05 (Micrococcus sp) e 03 (Bacilares).

Na TAB. 11 mostra-se a combinação dos resultados obtidos pela bacterioscopia presuntiva e pelo CMT nas 96 amostras de tetas pareadas ao CMT da coleta inicial, nos quatro rebanhos trabalhados. Os percentuais de concordância de resultados negativos e positivos por rebanho foram de 75,00 e 100,00%; 69,23 e 100,00%; 86,67 e 93,33% e 100,00 e 100,00%, respectivamente para R1, R2, R3 e R4.

A frequência dos presuntivos agentes etiológicos da mamite, detectados pela bacterioscopia nas coletas sucessivas de 150 amostras de tetas negativas e positivas ao CMT, aparece, respectivamente, na TAB. 12 e 13. Os Bacilares e Micrococcus sp apresentaram as maiores ocorrências de 21,33 e 11,33% nas reações negativas ao CMT (TAB. 12) e as menores de 2% (TAB. 13) nas reações positivas ao CMT, quando a frequência relativa em ordem decrescente dos demais agentes foi de 48,67, 31,33 e 16,00% para o Staphylococcus sp, Staphylococcus sp + Streptococcus sp e Streptococcus sp, respectivamente.
### Tabela 3: Composição dos rebanhos na coleta inicial em fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Identificação (Municípios)</th>
<th>R1 (Prudente de Morais)</th>
<th>R2 (CRCO)</th>
<th>R3 (Pitangui)</th>
<th>R4 (FEPI)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Número de vacas</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>52</td>
<td>42</td>
<td>14</td>
<td>146</td>
</tr>
<tr>
<td>Lactante</td>
<td>21</td>
<td>42</td>
<td>37</td>
<td>12</td>
<td>112</td>
</tr>
<tr>
<td>Afunc. Secas</td>
<td>17</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>Recém-paridas</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Testadas</td>
<td>21</td>
<td>40</td>
<td>36</td>
<td>12</td>
<td>109</td>
</tr>
<tr>
<td>Avaliadas</td>
<td>84</td>
<td>160</td>
<td>144</td>
<td>48</td>
<td>436</td>
</tr>
</tbody>
</table>

| Afuncionais %              | 3                      | 3         | 3             | -         | 9     |
| ou                         |                        |           |               |           |       |
| Perdas %                   | 3.57                   | 1.88      | 2.08          | -         | 2.06  |

| Número de tetas            |                        |           |               |           |       |
| Mamite clínica %           | -                      | 1         | 1             | -         | 2     |
| Lactantes                  |                        |           |               |           |       |
| Mamite clínica %           | -                      | 0.63      | 0.69          | -         | 0.46  |
| Testadas                   | 81                     | 156       | 140           | 48        | 425   |
TABELA 4 Prevalência da mamite subclínica detectada através do CMT na coleta inicial em fazendas da EPAMIG, nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Identificação</th>
<th>Nº de tetas</th>
<th>CMT</th>
<th>CMT POSITIVO</th>
<th>Incidência Mamite Subclínica(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rebanhos</td>
<td>Municípios</td>
<td>Testadas</td>
<td>Negativo</td>
</tr>
<tr>
<td>R1 HPB-PC</td>
<td>Prudente de</td>
<td>Morais</td>
<td>81</td>
<td>46</td>
</tr>
<tr>
<td>R2 Mestico</td>
<td>(CRCO)</td>
<td></td>
<td>156</td>
<td>105</td>
</tr>
<tr>
<td>R3 HPB-PD</td>
<td>Pitangui</td>
<td></td>
<td>140</td>
<td>60</td>
</tr>
<tr>
<td>R4 Mestico</td>
<td>(FEPI)</td>
<td></td>
<td>48</td>
<td>32</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>425</td>
<td>243</td>
</tr>
<tr>
<td>Identificação</td>
<td>Nº de vaccas</td>
<td>Nº de tetas testadas</td>
<td>Nº de tetas testadas pareadas</td>
<td>Negativo</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>R1 Prudente de Morais</td>
<td>21 81</td>
<td>32(39,51)</td>
<td>16(50,00)</td>
<td>13(40,63)</td>
</tr>
<tr>
<td>R2 CRCO</td>
<td>40 156</td>
<td>26(16,67)</td>
<td>13(50,00)</td>
<td>7(26,92)</td>
</tr>
<tr>
<td>R3 Pitangui FEPI</td>
<td>36 140</td>
<td>30(21,43)</td>
<td>15(50,00)</td>
<td>5(16,67)</td>
</tr>
<tr>
<td>R4</td>
<td>12 48</td>
<td>8(16,67)</td>
<td>4(50,00)</td>
<td>3(37,50)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>109 425</td>
<td>96(22,59)</td>
<td>48(50,00)</td>
<td>28(27,17)</td>
</tr>
<tr>
<td>Anos</td>
<td>Número de Meses</td>
<td>Número de Tetas</td>
<td>Frequência Relativa</td>
<td>Frequência Acumulada</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>2</td>
<td>24 - 35</td>
<td>26</td>
<td>8,47</td>
<td>8,47</td>
</tr>
<tr>
<td>3</td>
<td>36 - 47</td>
<td>50</td>
<td>16,67</td>
<td>25,14</td>
</tr>
<tr>
<td>4</td>
<td>48 - 59</td>
<td>104</td>
<td>31,28</td>
<td>56,42</td>
</tr>
<tr>
<td>5</td>
<td>60 - 71</td>
<td>142</td>
<td>41,15</td>
<td>97,57</td>
</tr>
<tr>
<td>6</td>
<td>72 - 83</td>
<td>164</td>
<td>47,33</td>
<td>144,90</td>
</tr>
<tr>
<td>7</td>
<td>84 - 95</td>
<td>206</td>
<td>61,22</td>
<td>206,12</td>
</tr>
<tr>
<td>8</td>
<td>96 - 107</td>
<td>236</td>
<td>69,03</td>
<td>442,15</td>
</tr>
<tr>
<td>9</td>
<td>108 - 119</td>
<td>244</td>
<td>71,64</td>
<td>686,19</td>
</tr>
<tr>
<td>10</td>
<td>120 - 131</td>
<td>268</td>
<td>81,33</td>
<td>954,52</td>
</tr>
<tr>
<td>11</td>
<td>132 - 143</td>
<td>274</td>
<td>85,67</td>
<td>1229,19</td>
</tr>
<tr>
<td>12</td>
<td>144 - 155</td>
<td>284</td>
<td>89,33</td>
<td>1513,53</td>
</tr>
<tr>
<td>13</td>
<td>156 - 179</td>
<td>296</td>
<td>93,67</td>
<td>1810,20</td>
</tr>
<tr>
<td>14</td>
<td>180 - 191</td>
<td>300</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>


TABELA 7 - Distribuição de 300 amostras de tetas, por períodos de lactação, em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRC0) e Pitangua - (FEPI) - 1991

<table>
<thead>
<tr>
<th>Período de Lactação¹/</th>
<th>Frequência</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inicial</td>
<td>98</td>
<td></td>
<td>32,67</td>
</tr>
<tr>
<td>Intermediário</td>
<td>100</td>
<td></td>
<td>33,33</td>
</tr>
<tr>
<td>Final</td>
<td>102</td>
<td></td>
<td>34,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>300</td>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

¹/ Inicial (≤ 1 mês), Intermediário (2-8 meses), Final (> 9 meses).
<table>
<thead>
<tr>
<th>Número de Lactação</th>
<th>Número de Tetas</th>
<th>Frequência Acumulada</th>
<th>Frequência Relativa</th>
<th>Frequência Relativa Acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>74</td>
<td>24,67</td>
<td>24,67</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>132</td>
<td>19,33</td>
<td>44,00</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>184</td>
<td>17,33</td>
<td>61,33</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>244</td>
<td>20,00</td>
<td>81,33</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>258</td>
<td>4,67</td>
<td>86,00</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>266</td>
<td>2,67</td>
<td>88,67</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>272</td>
<td>2,00</td>
<td>90,67</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>284</td>
<td>4,00</td>
<td>94,67</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>300</td>
<td>5,33</td>
<td>100,00</td>
</tr>
</tbody>
</table>
TABELA 9 Frequência dos agentes detectados pela bacterioscopia em 48 amostras de tetas com reações negativas ao CMT, na coleta inicial em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCD) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Diagnóstico Presuntivo Bacterioscópico</th>
<th>Rebanhos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N- (%)</td>
<td>N- (%)</td>
<td>N- (%)</td>
<td>N- (%)</td>
<td>N- (%)</td>
<td>N- (%)</td>
</tr>
<tr>
<td>01 Staphylococcus sp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02 Streptococcus sp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>03 Bacilares</td>
<td>1 (6.25)</td>
<td>4 (30.75)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5 10.42</td>
</tr>
<tr>
<td>04 Staphylococcus sp +</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 Micrococcus sp</td>
<td>3 (10.75)</td>
<td>-</td>
<td>2 (13.33)</td>
<td>-</td>
<td>-</td>
<td>5 10.41</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4 (8.33)</td>
<td>4 (8.33)</td>
<td>2 (4.17)</td>
<td>-</td>
<td>-</td>
<td>10 20.83</td>
</tr>
</tbody>
</table>
TABELA 10 Frequência dos agentes detectados pela bacterioscopia em 48 amostras de tetas com reações positivas ao CMT, na coleta inicial em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCO) e Pitanguí (FEPI) - 1991

<table>
<thead>
<tr>
<th>Diagnóstico Presuntivo Bacterioscópico</th>
<th>Frequência de Positividade ao CMT por Rebanhos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>01 Staphylococcus sp</td>
<td>5</td>
</tr>
<tr>
<td>02 Streptococcus sp</td>
<td>3</td>
</tr>
<tr>
<td>03 Bacilares</td>
<td>1</td>
</tr>
<tr>
<td>04 Staphylococcus sp</td>
<td>4</td>
</tr>
<tr>
<td>Streptococcus sp</td>
<td></td>
</tr>
<tr>
<td>05 Micrococcus sp</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
</tr>
</tbody>
</table>
TABELA 11  Combinação entre bacterioscopia e CMT obtida de amostras de tetas pareadas na coleta inicial, em rebanhos de fazendas da EPAMIG localizadas nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>REBANHOS</th>
<th>MUNICÍPIOS</th>
<th>TOTAL DE AMOSTRAS DE TETAS PAREADAS</th>
<th>Reações do CMT Positivas</th>
<th>Bacterioscopia</th>
<th>Concordância</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEG. + ++ +++</td>
<td>NEG. POS.</td>
<td>NEG. POS.</td>
</tr>
<tr>
<td>R1</td>
<td>Prudente de Morais</td>
<td>32</td>
<td>16 13 3 -</td>
<td>12 16</td>
<td>75,00 100,00</td>
</tr>
<tr>
<td>R2</td>
<td>(CRCO)</td>
<td>26</td>
<td>13 7 5 1</td>
<td>9 13</td>
<td>69,23 100,00</td>
</tr>
<tr>
<td>R3</td>
<td>Pitangui</td>
<td>30</td>
<td>15 5 5 5</td>
<td>13 14</td>
<td>86,67 93,33</td>
</tr>
<tr>
<td>R4</td>
<td>(FEPI)</td>
<td>8</td>
<td>4 3 1 -</td>
<td>4 4</td>
<td>100,00 100,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>96</td>
<td>48 28 14 6</td>
<td>38 47</td>
<td>79,17 97,92</td>
</tr>
</tbody>
</table>
### TABELA 12: Bacterioscopia de 150 amostras de tetas com CMT negativo em rebanhos das fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Bacterioscopia</th>
<th>Número</th>
<th>Frequência Acumulada</th>
<th>Frequência Relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATIVA</td>
<td>90</td>
<td>90</td>
<td>60,00</td>
</tr>
<tr>
<td>POSITIVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Staphylococcus sp</td>
<td>4</td>
<td>94</td>
<td>2,67</td>
</tr>
<tr>
<td>02 Streptococcus sp</td>
<td>1</td>
<td>95</td>
<td>0,67</td>
</tr>
<tr>
<td>03 Bacilares</td>
<td>32</td>
<td>127</td>
<td>21,33</td>
</tr>
<tr>
<td>04 Staphyloccus sp. Streptococcus sp.</td>
<td>6</td>
<td>133</td>
<td>4,00</td>
</tr>
<tr>
<td>05 Micrococcus sp.</td>
<td>17</td>
<td>150</td>
<td>11,33</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td></td>
<td>100,00</td>
</tr>
<tr>
<td>Bacterioscopia</td>
<td>Número</td>
<td>Frequência</td>
<td>Frequência Acumulada</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>NEGATIVA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POSITIVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Staphylococcus sp</td>
<td>73</td>
<td>73</td>
<td>40.67</td>
</tr>
<tr>
<td>02 Streptococcus sp</td>
<td>24</td>
<td>97</td>
<td>16.00</td>
</tr>
<tr>
<td>03 Bacilares</td>
<td>3</td>
<td>100</td>
<td>2.00</td>
</tr>
<tr>
<td>04 Staphylococcus sp + Streptococcus sp</td>
<td>47</td>
<td>147</td>
<td>31.33</td>
</tr>
<tr>
<td>05 Micrococcus sp</td>
<td>3</td>
<td>150</td>
<td>2.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td>-</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Na TAB 14 estão incluídas as médias das 96 amostras de tetas pareadas na coleta inicial para as variáveis contagem global de células somáticas (CGCS) diferença de produção (DP) e percentual de perda (PP), como citado no item 3.8 de Material e Métodos. Na avaliação do comportamento destas médias, todas as três apresentaram crescimento com avanço da positividade do CMT. A CGCS e DP apresentaram correlação negativa sem significância ao nível de 5% de probabilidade.

Na amostragem de 150 amostras de tetas pareadas ao CMT (TAB 15), encontram-se as médias da CGCS x 10^3 células/ml de leite e produção (kg) de reações negativas até +++ do CMT. Nesta avaliação, as médias da CGCS x 10^3 células/ml foram crescentes com o avanço da positividade do CMT, e as médias da produção (kg) decrescentes, de 1.85 kg a 1.20 kg de reações negativas e +++ ao CMT, respectivamente. Na análise dessas variáveis nas reação de +, ++ e +++ pela análise de regressão, a produção (kg) decresceu em função do crescimento da CGCS com significância ao nível de 7% de probabilidade.

Na TAB 16 são apresentadas as médias aritméticas e ponderadas da CGCS x 10^3 células/ml de leite em três faixas etárias das fêmeas trabalhadas de 150 amostras de tetas negativas ao CMT, obtidas da amostragem total apresentada na TAB 6. Todas as duas médias da CGCS x 10^3 células/ml mostraram comportamento oscilante nas três faixas etárias avaliadas, foi observada a menor média aritmética de 16 x 10^3 células/ml na faixa etária de 8 a 10 anos, e também a maior, de 141 x 10^3 células/ml, no mesmo estrato. A média ponderada foi decrescente da faixa etária de 3 a 5 anos para 5 a 8 anos, de 97.64 para 84.77 x 10^3 células/ml, e crescente desta para a de 8 a 10 anos, de respectivamente, 84.77 para 93.38 x 10^3 células/ml.

As médias ponderadas obtidas para as variáveis CGCS x 10^3 células/ml de leite e produção (kg) por teta, de 74 amostras de fêmeas primíparas e 226 de pluríparas, distribuídas em três períodos de lactação, estão mostradas, nesta ordem, nas TABs. 17 e 18.
TABELA 14 Médias de contagem global de células somáticas (CGCS), diferença de produção (DP) e percentual de perdas (PP) de 96 amostras de tetas pareadas, categorizadas pelo CMT, da coleta inicial em rebanho de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCD) e Pitanguá (FEPI) - 1991

<table>
<thead>
<tr>
<th>CMT Leitura</th>
<th>Número</th>
<th>(%)</th>
<th>Média de CGCS ($\times 10^3$ células/ml)</th>
<th>Diferença de produção (DP) (Kg)</th>
<th>Percentual de perdas (PP) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATIVA</td>
<td>48</td>
<td>50,00</td>
<td>131,25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POSITIVA</td>
<td>40</td>
<td>50,00</td>
<td>1.956,17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>28</td>
<td>29,17</td>
<td>755,25</td>
<td>0,401</td>
<td>14,68</td>
</tr>
<tr>
<td>++</td>
<td>14</td>
<td>14,58</td>
<td>1.473,25</td>
<td>0,594</td>
<td>34,83</td>
</tr>
<tr>
<td>+++</td>
<td>6</td>
<td>6,25</td>
<td>3.640,00</td>
<td>0,910</td>
<td>45,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>96</td>
<td>100,00</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[ y = \text{Diferença de produção}, x = \text{CGCS}, n = 3, y = 0.343 + 0.000132 (x); r^2 = 0.0380 \text{ significativo ao nível de 15,90% de probabilidade onde } n = \text{CGCS(755,25; 1479,25; 3640,00).} \]
TABELA 15 Médias de contagem global de células somáticas (CGCS) e produção de 150 amostras de tetas parvadas, categorizadas pelo CMT, de coleta sucessivas em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Leitura</th>
<th>Número</th>
<th>(%)</th>
<th>Média de CGCS</th>
<th>Média de Produção</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x 10^3 células/ml</td>
<td>(Kg)</td>
</tr>
<tr>
<td>NEGATIVA</td>
<td>150</td>
<td>50.00</td>
<td>91</td>
<td>1.85</td>
</tr>
<tr>
<td>POSITIVA</td>
<td>150</td>
<td>50.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>67</td>
<td>44.66</td>
<td>690</td>
<td>1.47</td>
</tr>
<tr>
<td>++</td>
<td>61</td>
<td>40.67</td>
<td>1.659</td>
<td>1.39</td>
</tr>
<tr>
<td>+++</td>
<td>22</td>
<td>14.67</td>
<td>5.723</td>
<td>1.20</td>
</tr>
</tbody>
</table>

y = Diferença de produção; x = CGCS; n = 3; y = 149 - 0.0000516x; r^2 = 0.09880 significativo ao nível de 7% de probabilidade onde n = (690; 1.659; 5.723)
<table>
<thead>
<tr>
<th>IDADE</th>
<th>Número de tetas</th>
<th>Média de CGCS $x 10^3$ células/ml</th>
<th>Faixas etárias</th>
<th>Média Ponderada de CGCS $x 10^3$ cél/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anos</td>
<td>Meses</td>
<td></td>
<td>(anos)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24 - 35</td>
<td>13</td>
<td>76</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>36 - 47</td>
<td>12</td>
<td>133</td>
<td>3 - 5</td>
</tr>
<tr>
<td>4</td>
<td>48 - 59</td>
<td>27</td>
<td>88</td>
<td>97,64</td>
</tr>
<tr>
<td>5</td>
<td>60 - 71</td>
<td>19</td>
<td>89</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>72 - 83</td>
<td>11</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>84 - 95</td>
<td>21</td>
<td>100</td>
<td>5 - 8</td>
</tr>
<tr>
<td>8</td>
<td>96 - 107</td>
<td>15</td>
<td>86</td>
<td>84,77</td>
</tr>
<tr>
<td>9</td>
<td>108 - 119</td>
<td>4</td>
<td>125</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>120 - 131</td>
<td>12</td>
<td>141</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>132 - 143</td>
<td>3</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>144 - 155</td>
<td>5</td>
<td>40</td>
<td>8 - 10</td>
</tr>
<tr>
<td>14</td>
<td>156 - 179</td>
<td>6</td>
<td>16</td>
<td>93,38</td>
</tr>
<tr>
<td>15</td>
<td>180 - 191</td>
<td>2</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>
TABELA 17 Médias de contagem global de células somáticas (CGCS) e produção de 37 amostras de tetas pares de primíparas submetidas ao CMT, por período de lactação e analisadas pelo teste de "t", em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Período de Lactação</th>
<th>Número</th>
<th>Média CGCS x 10^3 cél/ml</th>
<th>t/GL</th>
<th>Média Produção (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CMT</td>
<td></td>
<td>CMT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negativo</td>
<td>Positivo</td>
<td>Negativo</td>
</tr>
<tr>
<td>Inicial</td>
<td>22</td>
<td>36</td>
<td>809</td>
<td>9.09**/20</td>
</tr>
<tr>
<td>Intermediário</td>
<td>18</td>
<td>156</td>
<td>2.444</td>
<td>3.26**/16</td>
</tr>
<tr>
<td>Final</td>
<td>34</td>
<td>88</td>
<td>2.271</td>
<td>3.66**/72</td>
</tr>
<tr>
<td>TOTAL</td>
<td>74</td>
<td>89</td>
<td>1.878</td>
<td>5.31**/72</td>
</tr>
</tbody>
</table>

n.s = não significativo; * significativo ao nível de 5% de probabilidade; ** altamente significativo ao nível de 1% de probabilidade.
<table>
<thead>
<tr>
<th>Período de lactação</th>
<th>Med. CCGS x 10⁶ cel/mL</th>
<th>t/QL</th>
<th>Med. Produção (Kg)</th>
<th>CMH</th>
<th>Negativo</th>
<th>Positivo</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>76</td>
<td>1.279</td>
<td>6.51**/74</td>
<td>2.11</td>
<td>1.54</td>
<td>2.94**/74</td>
<td>2.94**/74</td>
</tr>
<tr>
<td>Intermediário</td>
<td>82</td>
<td>1.600</td>
<td>6.76**/80</td>
<td>1.83</td>
<td>1.42</td>
<td>3.29**/80</td>
<td>3.29**/80</td>
</tr>
<tr>
<td>Final</td>
<td>68</td>
<td>2.779</td>
<td>5.86***/66</td>
<td>1.81</td>
<td>1.81</td>
<td>3.67**/66</td>
<td>3.67**/66</td>
</tr>
<tr>
<td>TOTAL</td>
<td>226</td>
<td>1.804</td>
<td>8.81**/224</td>
<td>1.92</td>
<td>1.45</td>
<td>4.36**/224</td>
<td>4.36**/224</td>
</tr>
</tbody>
</table>

** *Almance significativo ao nível de 1% de probabilidade.*
Essas médias foram obtidas a partir das frequências das reações negativas e positivas ao CMT e comparadas ao nível de 1% se significância pelo teste de "t".

Na TAB. 19 estão as médias de CGCS x 10^3 células/ml de leite e produção kg/teta pareadas e produção, por reação ao CMT em primíparas e pluríparas. A CGCS foi crescente com o aumento da positividade ao CMT, enquanto a produção kg/teta foi decrescente.

Na análise dessas duas variáveis nas reações de +, ++ e +++ pela equação de regressão as duas produções decresceram em função do crescimento da CGCS. Segundo as equações: produção (1) = 1,285 - 2,19 x 10^3 (CGCS) com r^2 = 0,6505 significante ao nível de 40,27% de probabilidade e produção (2) = 1,55 - 8,01 x 10^-3 (CGCS) com r^2 = 0,9841 significativo ao nível de 8% de probabilidade.

O comportamento inverso apresentado pela CGCS x 10^3 células/ml e produção kg/teta com o avanço da positividade ao CMT está melhor evidenciado na FIG. 1.

Nova avaliação do comportamento inverso da CGCS e da produção foi realizada em 150 amostras de tetas pareadas por reações negativas e positivas ao CMT, pelo teste de "t" e comparadas ao nível de 1% de significância, como mostrada na TAB. 20.

As médias e as variações (minima e maxima) na CGCS 10^3 células/ml e produção kg/teta, detectadas frente aos presuntos agentes etiológicos da mamite bacteriologicamente identificados em 150 amostras de tetas positivas ao CMT, estão indicadas na TAB. 21 e 22, respectivamente. Na amostragem (TAB. 22), as variações mínimas da produção apresentaram valores negativos para todos os cinco grupos de agentes avaliados, em decorrência de 13 amostras que aparecem na TAB 23.

Na TAB. 23 estão apresentadas as 13 amostras do total de 150 tetas pareadas, nestas as tetas negativas ao CMT e a contagem global de células somáticas menor que 500 x 10^3 células/ml, consideradas sadias.
TABELA 19  Médias de contagem global de células somáticas (CGCS) e produção de amostras de tetas pareadas de fêmeas primíparas e pluríparas, por reações do CMT, em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Leitura do CMT</th>
<th>Tetras pareadas de Primíparas</th>
<th></th>
<th>Tetras pareadas de Pluríparas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número</td>
<td>CGCS x 10^3 células/ml</td>
<td>Produção (kg)</td>
</tr>
<tr>
<td>Negativa</td>
<td>37</td>
<td>89</td>
<td>1,64</td>
</tr>
<tr>
<td>+</td>
<td>19</td>
<td>732</td>
<td>1,31</td>
</tr>
<tr>
<td>++</td>
<td>12</td>
<td>1 608</td>
<td>1,20</td>
</tr>
<tr>
<td>+++</td>
<td>6</td>
<td>6 050</td>
<td>1,16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prod. (1) = 1,285 - 0,0000219 (CGCS); r^2 = 0,6505; n = 3 (782; 1608; 6050) significativo ao nível de 40,27% de probabilidade. Prod. (2) = 1,55 - 6,01 x 10^3 (CGCS); r^2 = 0,9841; n = (659; 5 600) significativo ao nível de 8% de probabilidade.
FIGURA 1. Correlação negativa entre produção de leite e contagem global de células somáticas, de vacas primíparas e pluríparas avaliadas por reações do "California Mastitis Test" (OMI).
TABELA 20: Médias observadas para contagem global de células somáticas (CGCS) e produção em 150 amostras de tetas paresadas por reações negativa e positiva ao CNT, avaliadas pelo teste de "t", em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCO) e Pilanguí (FEPI) - 1991

<table>
<thead>
<tr>
<th>Médias das variáveis analisadas</th>
<th>Reação do CNT</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número de tetas paresadas</td>
<td>Negativa</td>
<td>Número de tetas paresadas</td>
<td>Positiva</td>
<td>T/ GL</td>
</tr>
<tr>
<td>CGCS x 10^3 células/ml</td>
<td>150</td>
<td>91</td>
<td>150</td>
<td>1.822</td>
<td>10.35**</td>
</tr>
<tr>
<td>Produção</td>
<td>150</td>
<td>1.84</td>
<td>150</td>
<td>1.39</td>
<td>5.60**</td>
</tr>
</tbody>
</table>

** - Altamente significativo ao nível de 1% de probabilidade
<table>
<thead>
<tr>
<th>Agentes detectados pela bacterioscopia</th>
<th>Frequência</th>
<th>(%)</th>
<th>Médias de CGCS e produção</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CGCS x 10^3 células/ml</td>
<td>Produção (Kg)</td>
<td></td>
</tr>
<tr>
<td>01 Staphylococcus sp</td>
<td>73</td>
<td>48,67</td>
<td>1.402,74</td>
</tr>
<tr>
<td>02 Streptococcus sp</td>
<td>24</td>
<td>16,00</td>
<td>2.358,33</td>
</tr>
<tr>
<td>03 Bacilares</td>
<td>3</td>
<td>2,00</td>
<td>566,67</td>
</tr>
<tr>
<td>04 Staphylococcus sp + Streptococcus sp</td>
<td>47</td>
<td>31,33</td>
<td>2.355,32</td>
</tr>
<tr>
<td>05 Micrococcus sp</td>
<td>3</td>
<td>2,00</td>
<td>633,33</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td>100,00</td>
<td>-</td>
</tr>
</tbody>
</table>
TABELA 22 Bacterioscopia, variações mínima, máxima e médias de contagem global de células somáticas (CGCS) e produção em 150 amostras de tetas positivas do CMT, em rebanhos de fazendas da EPAMIG, localizadas nos municípios de Prudente de Morais (CRCD) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th></th>
<th>Staphylococcus sp</th>
<th>Streptococcus sp</th>
<th>Bacilares</th>
<th>Staphylococcus sp</th>
<th>Streptococcus sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variações e Médias</td>
<td>Num.</td>
<td>73</td>
<td>24</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>300</td>
<td>300</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>CGCS x 10³</td>
<td>Máx.</td>
<td>5 900</td>
<td>14 000</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>cél/ml</td>
<td>Méd.</td>
<td>1 403</td>
<td>2 350</td>
<td>567</td>
</tr>
<tr>
<td>Variações e Médias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>-0,600</td>
<td>-0,778</td>
<td>-0,074</td>
<td>-0,300</td>
</tr>
<tr>
<td></td>
<td>Máx.</td>
<td>0,800</td>
<td>0,629</td>
<td>0,539</td>
<td>0,733</td>
</tr>
<tr>
<td></td>
<td>Produção(Kg) Méd.</td>
<td>0,266</td>
<td>0,223</td>
<td>0,366</td>
<td>0,241</td>
</tr>
</tbody>
</table>
TABELA 23: Diferença de produção (DP) e percentual de perda (PP) com valores negativos em 13 amostras de tetas CMT negativo e CGCS menor que $500 \times 10^3$ células/ml de leite de 150 amostras de tetas pareadas, em rebanhos de fazenda da EPAMIG localizadas nos municípios de Prudente de Morais (CRCD) e Pitangui (FEPI) - 1991

<table>
<thead>
<tr>
<th>Número da amostra</th>
<th>Característica do animal</th>
<th>Resultado exames</th>
<th>Produção/teta (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Idade (anos)</td>
<td>Nº de</td>
<td>Fase de</td>
</tr>
<tr>
<td>1 (10ª)</td>
<td>9</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2 (21ª)</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>3 (3ª)</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4 (82ª)</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5 (84ª)</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>6 (86ª)</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7 (94ª)</td>
<td>11</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>8 (112ª)</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9 (119ª)</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>10 (122ª)</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11 (124ª)</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>12 (126ª)</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>13 (136ª)</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
apresentaram menor produção que as tetas paralelas possivelmente doentes, face ao CMT positivo e CGCS maior que 500 x 10^3 células/ml.

As médias para a CGCS do leite e percentual de perda de produção das 150 amostras de tetas paralelas ao CMT e agrupadas em três classes, respectivamente, de (500, 500 a 5 000 e > 5 000 x 10^3 células/ml de leite, correspondendo às classes 1, 5 e 9, segundo Reichmuth (1968), citado por MEIJERING et al. (1978), estão mostradas na TAB. 24. Tanto a CGCS a como o percentual de perda de produção foram crescentes da classe 5 à 9.


Como mostrado no item 1 da Introdução, o primeiro objetivo proposto nesta pesquisa, foi o de estimar a perda de produção de leite pela mamite subclínica, com base no escore linear de KIRK (1984). Para esse fim, foi realizada a associação das perdas observadas em 150 amostras de tetas paralelas ao CMT, após os devidos ajustes para a CGCS e diferença de produção em kg (1 lb = 0.454 kg) entre a teta saudável e a doente (DP) e o percentual de perda de produção (PP = DP/produção da teta saudável), como citado no item 3.8 de Material e Métodos.

Após a execução das análises nos dados amostrais, foram obtidos os seguintes resultados para as fêmeas pluriparas e primiparas, na busca das perdas citadas por KIRK (1984)

Diferença de produção (DP)

**Pluriparas**

\[
DP = 0.1982 + 0.08943 \times K = 0.1982 + 0.089 \times K \quad (1)
\]

\[r^2 = 0.03 \]

\[s = 0.4361 \]

\[n = 113\]

**Primiparas**

\[
DP = -0.2138 + 0.3921 \times K = -0.2138 + 0.4 \times K \quad (2)
\]

\[r^2 = 0.259\]
TABELA 24 Médias de contagem global de células somáticas (CGCS) e percentual de perda de produção nas 150 amostras de tetas pares ao CMT, agrupadas em três classes de CGCS, em rebanhos de fazenda da EPAMIG localizadas nos municípios de Prudente de Morais (CRCO) e Pitangui (FEPI) – 1991

<table>
<thead>
<tr>
<th>Classes de CGCS</th>
<th>CMT Negativo</th>
<th>CMT Positivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número</td>
<td>CGCS x 10³</td>
</tr>
<tr>
<td></td>
<td>cél/ml</td>
<td></td>
</tr>
<tr>
<td>Classe 1 (≤500)</td>
<td>150</td>
<td>91</td>
</tr>
<tr>
<td>Classe 5 (500 - 5000)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Classe 9 (&gt;5 000)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td>-</td>
</tr>
</tbody>
</table>

PP (%) = 17,85 + 0,0041 (CGCS), r² = 0,7950 significativo ao nível de 4,5% de probabilidade.
s = 0,2831
n = 37

K refere-se à perda prevista por KIRK (1984).

Se K, fosse por exemplo, CGCS = 600 x 10^3 células/ml que corresponde ao EL = 6, onde a perda prevista = 6,0 lb ou 2,7 kg (1 lb = 0,454 kg), seria obtido:

DP Pluríparas = 0,1982 + 0,00943 x 2,7
DP = 0,1982 + 0,2415
DP = 0,44
DP Primíparas = -0,2138 + 0,3921 x 2,7
DP = -0,2138 + 1,0587
DP = 0,84

Nesta relação DP e EL (CGCS) de KIRK (1984) para primíparas, o escóre linear teve efeito significativo sobre o valor da perda, ou seja, para cada uma unidade do escóre a produção cai 0,3921 (0,4 kg).

Isso significa que a previsão de perda obtida por KIRK (1984), referente a kg/leite/dia, precisa ser corrigida, principalmente nas primíparas que apresentaram um melhor r^2 = 25,9%

Usando-se o exemplo CGCS = 600 x 10^3 células do escóre que prevê perdas de produção de 6,0 lb (2,7 kg), tem-se:

DP = -0,2 + 0,4 K
DP = 0,4 K* - 0,2
DP = 1,08 - 0,2
DP = 0,88 kg

Nova análise foi efetuada na tentativa de relativizar a perda pelo potencial de produção tirando assim o efeito animal, quando a equação resultante para primíparas foi:

PP = - 0,0514 + 0,18954 K*

r^2 = 13,5 e s = 0,2046

ou

PP = -0,05 + 0,19 K*

K* - perda prevista pela tabela de KIRK em (kg)
\[ r^2 = 13.5\% \]

Em uma outra tentativa de análise, buscou-se relacionar a perda de produção com o próprio escor (EL), obtendo-se o seguinte resultado:

\[ PP = -0.1617 + 0.063122 \times EL \] (7)

\[ r^2 = 14.4\% \text{ e } s = 0.1972 \text{ ou quando relacionada com o logaritmo da CGCS:} \]

\[ PP = -0.2964 + 0.07745 \times \log \text{ CGCS} \] (8)

\[ r^2 = 11.1\% \]

\[ s = 0.2010 \]

\[ PP = EL - 0.3 \]

Pelos dados obtidos até agora, tornou-se conveniente estimar duas equações, uma para primíparas (LACN = 1) e outra para pluríparas (LACN > 1), na tentativa de verificar se as pluríparas perderam o dobro das perdas de produção das primíparas, como sugere KIRK (1984). Buscou-se, com isso, se possível, propor um fator de correção a partir da TAB 1, o qual seria um ajustamento para as condições de Minas Gerais. Sabe-se de antemão que será difícil a obtenção de tais resultados uma vez que KIRK (1984) trabalha com dados absolutos (produções uniformes) e, neste estudo, trabalha-se sob condições não-uniformes. Como se verifica a seguir:

Para primíparas (LACN = 1):

\[ PP = 0.18501 + 0.00000004 \times \text{CGCS} \] (9)

\[ r^2 = 11.8\% \]

\[ s = 0.2002 \]

\[ PP = -0.8314 + 0.07745 \times \log \text{ (CGCS)} \] (10)

\[ r^2 = 11.1\% \]

\[ s = 0.2010 \]

Para pluríparas (LACN > 1):

\[ PP = 0.16664 + 0.0000003 \times \text{CGCS} \] (11)

\[ r^2 = 8.5\% \]

\[ s = 0.2343 \]

\[ PP = -0.7130 + 0.06734 \times \log \text{ (CGCS)} \] (12)
\[ R^2 = 5.9\% \]
\[ s = 0.2374 \]
\[ DP = 0.1982 + 0.04056 \times k \text{ (lib)} \]  \hspace{1cm} (13)
\[ r^2 = 3.0\% \]

As variáveis trabalhadas CGCS, DP e PP apresentaram os seguintes resultados pela Estatística Descritiva:

CGCS: 100 a 14000 \times 10^3 \text{ células/ml leite}  \hspace{1cm} (14)
DP: 0.700 a 1.700 kg
PP: -78 a 80°

4.2 AVALIAÇÃO DA SENSIBILIDADE E ESPECIFICIDADE DA CONTAGEM GLOBAL DIRETA DE CÉLULAS COMO MÉTODO DE DIAGNÓSTICO INDIRETO DA MAMITE SUBCLÍNICA

Na busca do segundo objetivo proposto nos itens 1 da Introdução e 3.8 de Material e Métodos, foram observados os seguintes resultados: 90 testes negativos (TN), 65 falsos negativos (FN), nenhum teste falso positivo (FP) e 145 testes positivos (TP), do total de 300 amostras testadas.

A avaliação resultou no seguinte:

- Sensibilidade (S) = 69,05\%
- Especificidade (E) = 100,00\%
- Preditibilidade positiva = 100,00\%
- Preditibilidade negativa = 60,06\%
- Prevalência da infecção = 70,00\%

Com a mesma metodologia, foi feita a avaliação do teste do CMT, para o qual foram observados 98 testes negativos (TN), 69 testes falsos negativos (FN), nenhum teste falso positivo (FP) e 133 testes positivos (TP), do total de 300 amostras analisadas.

Por esta avaliação, o teste do CMT apresentou:

- Sensibilidade (S) = 65,84\%
- Especificidade (E) = 100,00\%
- Preditibilidade positiva = 100,00\%
- Preditibilidade negativa = 58,68\%
- Prevalência da infecção = 67,33\%
4.2.1 AVALIAÇÃO DOS TESTES CGCS E CMT PELO TESTE DO QUI-QUADRADO

Na avaliação dos testes CGCS direta e CMT como testes indiretos de diagnóstico da mamite subclínica em bovinos pelo teste do Qui-quadrado, obteve-se o valor de $X^2_{36.L} = 0.226704$ ou seja, $X^2_{36.L} = 0.23$ (TAB. 25).

No uso do teste do Qui-quadrado o $X^2$ deve apresentar valores igual ou maior que 7,82 ($X^2 \geq 7.82$) para que haja significância ao nível de 5% de probabilidade bem como, igual ou maior que 11,34 ($X^2 \geq 11.34$) para que ocorra significância ao nível de 1% de probabilidade. Assim, como o $X^2 = 0.23$, não houve diferença significativa entre os dois testes avaliados.

<table>
<thead>
<tr>
<th>TABELA 25 Total de testes de CGCS e CMT avaliados pelo Qui-quadrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testes</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>TN</td>
</tr>
<tr>
<td>FN</td>
</tr>
<tr>
<td>FP</td>
</tr>
<tr>
<td>TP</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
5 DISCUSSÃO

A pesquisa experimental foi conduzida em duas propriedades pertencentes a Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG, onde as condições gerais permitiam a condução do trabalho.

Os regulares registros dos dados valorizaram a pesquisa (TAB. 3 e itens 3.2, 3.3.1 e 3.3.3 de Material e Métodos) e aumentaram sua confiabilidade.

5.1 PREVALENCIA DA MAMITE SUBCLÍNICA (MSC) NOS QUATRO REBANHOS TRABALHADOS

A prevalência da mamite subclínica detectada na coleta inicial e avaliada pelo CMT, mostrada na TAB. 4, foi maior no R3, de 57,14%, mas inferior aos índices extremos de 93 a 97% observados por Giesecke (1979), citado por OLIVEIRA (1989), e inferior também aos 97% citados por AHL et al. (1989). Mas foi superior aquelas observadas, por RIEDNER et al., (1987) (44,88%) e GONZALEZ et al. (1988) (53,30%). Esta última prevalência está mais próxima daquela verificada no R3, conforme o descrito na TAB. 4. Apesar de o R3 ser o único rebanho puro HPB-P0, ele apresentou baixa produção média (8,29 kg/vaca/dia) apenas superior ao R4 (5,60 kg/vaca/dia). Certamente tão baixa produção sugere o grau de infeção ocorrente no rebanho, dedutível da TAB. 4, o que pode ser explicada pelo precário controle sanitário relatado no item 3.3.3 de Material e Métodos.

As demais prevalências da MSC dos outros rebanhos foram inferiores às observadas em outros estudos correlatos (Gieseck, 1979), citado por OLIVEIRA (1989), RIEDNER et al. (1987), GONZALEZ et al. (1988) e AHL et al. (1989). A detectada para R1 ficou bem próxima da constatada por RIEDNER et al. (1987), da qual também ficou próxima, mas ainda inferior a incidência média
de 42,82% observada para os quatro rebanhos e mostrada na TAB. 4.

Neste trabalho, a MSC foi investigada conforme o proposto no item 3.4, de Material e Métodos. Os critérios de avaliação, com base em metodologia diversificada ou conceitos outros sobre a categorização da infecção, são os responsáveis pelas discrepâncias das prevalências. A utilização de tetas pareadas, detalhadas no item 3.4, do Material e Métodos, elimina possíveis falhas metodológicas e dá confiabilidade aos achados.

As frequências encontradas por reações do CMT para os quatro rebanhos (TAB. 4) foram menores que aquelas obtidas por FOSTER et al. (1967) para a reação +, e maiores para as demais. O percentual de quartos com ++ e +++ de 25,88% apresentado na TAB. IV foi menor que os 40% observados por AHL et al. (1989). Também foram inferiores aquele percentual, os observados e mostrados na TAB. 4 para as reações de ++ e +++ de 16,04%, 18,59%, 37,14% e de 33,33%, respectivamente no R1, R2, R3 e R4.

As frequências por reações do CMT para os quatro rebanhos de 96 amostras de tetas pareadas conforme se vê na TAB. 5, foram às vezes muito discordantes daquelas apontadas na literatura. Todas essas diferenças podem ser devidas a reagentes, estágios de lactação e a outros fatores não assinalados de maneira equânime nas várias pesquisas estudadas.

A idade das fêmeas trabalhadas (TAB. 6), foi bastante elevada, com o percentual de 18,67% correspondendo a 56 amostras de tetas na faixa etária de maior e igual a dez anos (≥ 10 anos), apesar de a maior frequência entre 1 a 15 anos, de 54 amostras (18%), ter ocorrido na faixa etária de quatro anos de idade.

A frequência e a distribuição das tetas trabalhadas nos três períodos de lactação avaliados (TAB. 7) foram bastante uniformes, com percentuais de 32,67%, 33,33% e 34,00% para os períodos inicial, intermediário e final, respectivamente.
A TAB. 8 mostra que a distribuição e a frequência das tetas trabalhadas por número de lactações das fêmeas, foram maiores nas lactações de uma a quatro respectivamente, 24,67%, 19,83%, 17,33% e 20,00%. Além disso, o maior percentual 24,67%, ocorreu para fêmeas primíparas e o menor, 2,00% para fêmeas na sétima lactação. Um reflexo da idade avançada das fêmeas trabalhadas, como TAB. 6, pode ser evidenciado na TAB. 8, na qual são apresentadas 16 tetas, correspondentes ao percentual de 5,33, na décima lactação. Todas as três variáveis aqui apresentadas, como a idade do animal, períodos de lactação e número de lactação, (TABs. 6, 7 e 8), visaram mostrar a população trabalhada. Estas mesmas variáveis serão reavaliadas mais à frente. (TABs. 16, 17 e 18).

5.2 FREQUÊNCIA DOS PRESUNTIVOS AGENTES ETIOLÓGICOS DA MAMITE SUBCLÍNICA DETECTADOS PELA BACTERIOSCOPIA E PERCENTUAL DE PERDAS NA PRODUÇÃO ESTIMADA PELO "CALIFORNIA MASTITIS TEST" (CMT)

A frequência dos cinco grupos de agentes pesquisados, conforme o item 3.8 de Material e Métodos, é mostrada nas TABs. 9, 10 e 11. A análise envolve 96 amostras de tetas pareadas, obtidas na coleta inicial. As TABs. 12 e 13 refere-se ao total de 150 amostras de tetas pareadas, oriundas das coletas posteriores.

Os bacilares e os Micrococcus sp foram os dois únicos grupos de agentes verificados pela bacterioscopia em reações negativas ao CMT na coleta inicial (TAB. 9). Foram também aqueles agentes que apresentaram as maiores frequências, isto é, 21,33% e 11,33%, quando pela bacterioscopia detectou todos os demais agentes avaliados (TAB. 12) em reações negativas ao CMT nas coletas sucessivas.

Os percentuais de combinação dos resultados obtidos pela bacterioscopia presuntiva e pelo CMT (TAB. 11), nas 96 amostras de tetas pareadas da coleta inicial, sugerem a bacterioscopia frente ao CMT como teste de diagnóstico da MSC em bovinos. A bacterioscopia detectou menor número de reações negativas que o CMT em três (R1, R2 e R3) dos quatro rebanhos avaliados.
Assim, o excedente de amostras negativas detectada pelo CMT, de respectivamente quatro no R1, quatro no R2 e duas no R3 (TAB. 11), tratava-se de amostras provavelmente falsas negativas. No tocante às amostras positivas, os testes de bacterioscopia e CMT foram coincidentes nos rebanhos R1, R2 e R4 e com diferença de uma amostra a mais no CMT para o R3.

Quanto aos percentuais de concordância das reações negativas e positivas para os dois testes avaliados, eles foram de respectivamente, 79,17% e 97,92% para as 9% amostras dos quatro rebanhos avaliados.

As referências consultadas não indicam bacterioscopia positiva em reações negativas ao CMT. O método de enriquecimento das amostras por incubação prévia e melhoria dos testes tintoriais, explicam claramente esse fato.

A maior frequência e o maior percentual de ocorrência verificados em reações positivas ao CMT para Staphylococcus sp nas coletas iniciais (TAB. 10) e nas sucessivas (TAB. 13) estão de acordo com os resultados obtidos por FERREIRO et al. (1979), LANGENNEGER et al. (1981), FAGLIARI et al. (1983), GRANZOTI (1985) e OLIVEIRA (1989).

O segundo maior percentual obtido, nas duas amostragens foi para infecções mistas. Isto difere do observado por FERREIRO et al. (1979) onde os bacilares estavam neste plano. Outro resultado que também diferiu de FERREIRO et al. (1979) foi a maior ocorrência observada para Micrococcus sp em relação aos bacilares (TAB. 10) e de igualmente 2% para cada um destes agentes (TAB. 13), enquanto esses autores observaram o contrário, isto é, 76,71% para bacilares e 10,27% para Micrococcus sp, respectivamente.

GRANZOTI (1985) isolou apenas o Micrococcus sp com 5,88% de ocorrência. Tal resultado é inferior ao das amostras negativas ao CMT da coleta inicial (TAB. 9) e ao observado nas mesmas reações das coletas sucessivas (TAB. 12). É, porém superior ao observado nas coletas inicial e sucessivas em amostras positivas das TABs 10 e 13, respectivamente. Por outro lado, OLIVEIRA
(1989) cita apenas os bacilos com 55,56% de ocorrência, resultado inferior aos 10,42% e 21,33% observados em reações negativas ao CMT na coleta inicial (TAB. 9) e nas sucessivas (TAB.12) e superior aos 2,08% e 2,00% observados em amostras positivas ao CMT das TABs. X e XIII, respectivamente.

Tais fatos de discordância estão ligados diretamente ao tipo de manejo que pode estimular o aparecimento de mamites, ditas ambientais, produzidas por esses germes.

As perdas na produção, acompanhadas de aumento da positividade do CMT e na coleta inicial de 14,68%; 37,03% e 45,00% (TAB 14), para reações de +, ++ e +++ . Estes índices foram superiores àqueles citados por GRAY & SCHALM (1962) que são de 10,00%; 16,00% e 24,50%.

Comparando os percentuais de perdas de produção por reações do CMT deste estudo com aqueles referenciados por FOSTER et al. (1967), PHILPOT (1967) e OLIVEIRA (1989), verifica-se que os percentuais aqui observados na coleta inicial (TAB. 14) diferiram daqueles obtidos pelos autores citados acima. A excessão fica por conta da perda observada para a reação +++ a qual foi quase coincidente com os 45,50% citados por FOSTER et al. (1967), resultado aproximado daqueles conseguidos pelos demais autores citados.

Tais discordâncias para os percentuais de perda de produção entre os resultados deste estudo e daqueles da literatura consultada podem ser produtos de diferenças de manejo, estágios ascendentes ou decrescentes da lactação e mesmo do volume de produção e condições sanitárias dos rebanhos avaliados.

Além disso, a razão da única coincidência de resultados, bem como a maior aproximação para a reação +++ cruzes com os obtidos por FOSTER et al. (1967), PHILPOT (1967) e OLIVEIRA (1989), pode ser explicada pela maior sensibilidade que apresenta o CMT neste grau de reação. Isto encontra suporte nas observações de ANDRADE (1989) que avaliou o CMT com a bacterioscopia e a bacteriologia.
O comportamento das demais variáveis apresentadas na TABs. 14 e 15, de médias para a contagem global de células somáticas e DP (diferença de produção entre tetas saudáveis e doentes) e as médias CGCS e produção (kg), confirmaram as observações de CULLEN, (1966) e Giesecke (1979) citado por OLIVEIRA (1989) quanto a CGCS que aumenta com a elevação da positividade do CMT e concordantes com os resultados observados por MEIJERING et al. (1978) quanto à correlação negativa entre o CGCS e produção de leite.

Pelos dados da TAB.14, pode-se inferir que a CGCS apresentou médias de 131,25 x 10^3 células/ml de leite em reações negativas ao CMT e de 1.956,17 x 10^3 células/ml de leite em reações positivas, com as respectivas médias de 755,25, 1.473,25 e 3.650,00 x 10^3 células/ml de leite para as reações de +, ++ e ++++. Por outro lado a DP, que é dependente da produção da teta afetada pela MSC, foi crescente de 0,401 para 0,594 até 0,810 kg de leite nas respectivas reações. Isto significa que a teta afetada apresentou perda crescente de produção com a elevação da positividade, fornecendo assim valores crescentes para a DP. Tal correlação negativa não apresentou porém, significância ao nível de 5% de probabilidade ao teste de regressão. O comportamento das médias das variáveis CGCS e a produção (kg) por reações do CMT, mostrados na TAB. 15, evidenciaram a correlação negativa entre estas duas variáveis. A CGCS foi crescente de 91,690, 1.659 e 5.723 x 10^3 células/ml, enquanto a produção decresceu de 1,85 para 1,47, 1,39 e 1,20 kg, respectivamente, para as reações de negativo para +, ++ e +++ do CMT. A análise deste comportamento pela análise de regressão (TAB 15) apresentou comportamento significativo ao nível de 7% de probabilidade.

5.3 COMPORTEAMIENTO DA CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) DO LEITE COM A IDADE DAS VACAS AMOSTRADAS

As vacas trabalhadas, por idade em anos e meses (TAB. 6), foram avaliadas pela média da CGCS, apenas em
amostras negativas ao CMT, em três faixas de 3 a 5, 5 a 8 e 8 a 10 anos ou mais, mostradas na TAB. 16. Na análise do comportamento da média da CGCS, pode ser observado que houve algum crescimento desta variável, apesar de bastante heterogêneo e oscilante, com o avanço da idade.

A metodologia utilizada nesta pesquisa com o pareamento das tetas amostrais pelo CMT, não permitiu comparar os resultados com aqueles citados por NATZKE et al. (1972) e SALSBERG et al. (1984). Segundo esses autores a CGCS é maior em animais mais velhos, devido ao aumento da prevalência da infecção. Para esta informação, seria preciso dispor do comportamento da CGCS aliado apenas à idade das fêmeas, sem a utilização do CMT. No entanto, das médias da CGCS da TAB. 16, foram obtidas médias ponderadas nos três grupos de faixas etárias, que apresentaram comportamento decrescente do grupo um para o dois e crescente deste para o grupo três, cuja média ainda foi inferior à do primeiro, ou seja, o de menor faixa etária.

Ressalta-se, porém, que as médias da CGCS mostradas na TAB. 16 foram inferiores àquelas observadas nas mesmas faixas etárias, em quartos sadios, por GRANZOTI (1985), de 271.000, 296.000 e 315.000 células/ml. Tal diferença pode ter sido em decorrência da triagem inicial realizada pelo CMT e da utilização de métodos diferentes de contagem de células somáticas, ou seja, contagem microscópica direta (neste trabalho) e contagem eletrônica (no daquele pesquisador).

5.4 COMPORTAMENTO DA CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS (CGCS) DO LEITE COM O PERÍODO E NUMERO DE LACTAÇÃO, DAS VACAS AMOSTRADAS

Das amostragens apresentadas nas TAB. 7 e 8, referentes à distribuição dos animais trabalhados por período e número de lactação, foram avaliados o comportamento das variáveis CGCS e a produção (kg) para vacas primíparas (TAB. 17) e pluríparas (TAB. 18), por reações negativas e positivas ao CMT.
Da avaliação das médias da CGCS (TAB. 17) pode-se inferir que estas foram crescentes com o avanço do período de lactação, do inicial para o intermediário e decrescente deste para o período final, tanto nas reações negativas como positivas ao CMT. Este comportamento da CGCS diferiu daquele citado por SYRTAD et al. (1979), de que a CGCS apresenta aumento, geralmente ininterrupto, com a progressão da lactação, devido ao progressivo aumento na prevalência da infecção durante a lactação. Pelo mesmo motivo exposto no item 5.3 e descrito na TAB. 16, onde se avaliou o efeito da idade e a CGCS, as amostras pereadas ao CMT não permitiram verificar a amostragem total.

A avaliação das médias da CGCS das primíparas, nas reações negativas ao CMT, nos três períodos de lactação avaliados na TAB. 17, revelou valores mais baixos que as médias observadas por GRANZOTTI (1985) para glândulas aparentemente normais nos três períodos de lactação, ou seja: (1 a 3, 3 a 7 e 7 a 10 meses), respectivamente 261 x 10^5, 311 x 10^5 e 303 x 10^5 células/ml de leite. A discordância entre as médias observadas pode ser devida a não-participação de fêmeas no período colostral, conforme citado no item 3.4 de Material e Métodos, da diferença entre os estratos dos períodos de lactação avaliados ou até mesmo das diferentes técnicas dos métodos de contagens utilizados.

Já as médias observadas para as reações positivas ao CMT, por períodos de lactação, aproximaram mais daquelas obtidas por GRANZOTTI (1985) em amostras de quartos com MSC, respectivamente, 2.325.000, 2.884.000 e 2.489.000 células/ml de leite, com exceção da fase inicial de 809 x 10^3 células/ml de leite, que foi inferior àquela do referido autor.

As médias ponderadas para a CGCS do leite ao nível de 1% de significância, pelo teste de "t" (TAB. 17) mostraram comportamentos altamente significativos (**) nos três períodos de lactação das primíparas, o que está de acordo com o observado por SYRTAD et al. (1979).
Na avaliação das médias de produção por teta foram encontrados os seguintes dados: maior produção em animais negativos ao CMT associada a menores médias de CGCS (TAB. 17). Para os animais positivos ao CMT, foi registrado o inverso, isto é, produção menor e maior média de CGCS. Estes resultados são similares aos obtidos por MEIJERING et al. (1978), BARTLETT et al. (1990) e RAVINDERPAL et al. (1990), ao observarem correlação negativa entre a CGCS e produção de leite (TAB. 17).

Quanto à análise da média de produção para primíparas (TAB. 17) pelo teste de "t", esta não apresentou diferença significativa (n.s.) nos períodos inicial e intermediário, apresentando significância (*) no período final da lactação, ao nível de 5% de probabilidade.

As médias de produção crescentes observadas para as primíparas (TAB. 17), tanto nas reações negativas como nas positivas ao CMT, do período inicial para o intermediário da lactação, podem ser explicadas pela coincidência deste último período (2-6 meses) com o pico da lactação. Acrescenta-se a isso o fato de ter ocorrido pequena influência da MSC na atual lactação e ausência de lactações anteriores.

Por outro lado, na análise das médias do total de 74 amostras (TAB. 17) por reações negativas e positivas ao CMT, a CGCS cresceu de 89 a 1.878 \times 10^3 células/ml de leite, e a produção decresceu de 1,64 para 1,25 kg de leite. Este comportamento foi altamente significativo, ao nível de 1% de probabilidade pelo teste de "t".

As médias da CGCS e do leite para pluríparas (TAB. 18) apresentaram crescimento constante com o avanço dos períodos de lactação, tanto nas reações negativas como positivas ao CMT. Este comportamento está de acordo com as citações de SYRTAD et al. (1979), segundo as quais o aumento da CGCS é geralmente ininterrupto com a progressão da lactação. O progressivo aumento na prevalência da infecção durante a lactação é outra razão para o gradual crescimento da CGCS.
Como comentado sobre a influência da idade (item 3.5), bem como sobre a influência do período de lactação na CGCS, quando as primíparas foram avaliadas (item 3.4), o pareamento inicial pelo CMT apenas permitiu avaliar o efeito da lactação sobre a CGCS. Pode-se concluir que, no campo, é possível que esse efeito possivelmente coincidido com o aumento da prevalência da infeção quando das reações positivas.

Nas reações negativas ao CMT, as médias observadas para a CGCS foram inferiores àquelas verificadas por GRANZOTI (1985) nos três períodos de lactação para quartos normais, de 261 x 10³, 311 x 10³ e 303 x 10³ células/ml.

Para as reações positivas ao CMT, as médias ficaram abaixo das observadas por esse mesmo autor em amostras de quartos com MSC, nos períodos inicial e intermediário, respectivamente de 2.353.000/1.270 x 10³ e de 2.884.000/1.480 x 10³, e foram superiores no período final (2.489.000/2.779 x 10³ células/ml de leite). Estas diferenças podem ser explicadas pela metodologia diferenciada de contagens de células empregadas por GRANZOTI (1985), que usou a contagem eletrônica, e por esta pesquisa, que utilizou a contagem microscópica.

Pela análise das médias ponderadas da CGCS do leite, ao nível de 1% de probabilidade pelo teste de "t", também mostrada na TAB. 18 foi encontrada alta significância (***), para os três períodos de lactação. Este resultado é concordante com a situação verificada por SYRTAD et al. (1979), de que vacas em estágios de lactação avançados têm aumento da CGCS.

A análise do comportamento da produção entre amostras negativas e positivas ao CMT, com o paralelo aumento da CGCS, como já observado para primíparas (TAB. 17) e para as pluríparas com excessão do período final da lactação onde ambas as produções foram igualmente de 1,81 kg/teta (TAB. 18), está de acordo com a de MEIJERING et al. (1978), BARTLETT et al. (1990) e RAVINDERPAL et al. (1990). Ou seja, houve correlação negativa entre produção de leite e CGCS.
O comportamento das médias de produção para as pluríparas apresentou alta significância (**), ao teste de "t", ao nível de 1% de probabilidade, e médias decrescentes nos dois períodos de lactação, dos três avaliados entre amostras negativas e positivas ao CMT (TAB. 18).

Além disso, na produção de pluríparas (TAB. 18), foram obtidos resultados que evidenciaram o prejuízo provocado pela ocorrência da MSC na produção, quando, nem mesmo no período intermediário, coincidente com o pico da lactação, ocorreu aumento de produção como se observou para as primíparas.

Quanto aos resultados das coletas das amostras de leite que foram realizadas nos meses de março e abril, outono no Hemisfério Sul, já no início do período de seca, e pela ordenha da manhã (5:00 - 7:00) no E.E. do CRCO e na FEPI e na ordenha da tarde (13:00 - 17:00) no E.S. do CRCO. Não foi possível estabelecer comparações com os resultados de PAAPE et al. (1973) de BODHO et al. (1976), relativas à influência das estações do ano sobre contagens de células somáticas no leite, uma vez que eles se referem a contagens mais baixas no inverno e mais altas no verão. Nem com os dados de CULLEN (1967), SMITH & SHULTZE (1967) e SYRTAD & RON (1978), que mencionam contagens mais elevadas ao anoitecer do que pela manhã.

Na avaliação do comportamento das médias para a CGCS e produção tanto para as primíparas e pluríparas, reunidas por reações do CMT 9TAB. 19 e FIG. 1) ficou evidenciada a correlação negativa entre as duas variáveis. Estas após analisadas pelo teste de regressão apresentaram significância não aceitável ao nível de 40.27% mas aceitável ao nível de 8% de probabilidade para primíparas e pluríparas, respectivamente.

Conforme pode ser visto na TAB. 20, para 150 amostras de tetas paresadas por reações negativas ao CMT avaliadas pelo teste "t", a CGCS e a produção apresentaram correlação negativa, altamente significativa (***) ao nível de 1% de probabilidade.
Assim, a correlação negativa entre CGCS e produção foi evidenciada em todas as amostragens citadas (TAB. 19, FIG. 1 e TAB. 20), concordantes com as citações de MEIJERING et al. (1978), BARTLETT et al. (1990) e RAVINDERPAL et al. (1990).

5.5 COMPORTAMENTO DA CONTAGEM GLOBAL DE CÉLULAS SOMÁTICAS FRENTE A PRESUNTIVOS AGENTES ETIOLOGICOS DA MAMITE E ESTIMATIVA MÉDIA DE PRODUÇÃO/TETA COM MAMITE SUBCLÍNICA

Os dados da TAB. 21 estão concordantes com aqueles observados por LAGENEGGER et al. (1981) e GRANZOTTI (1985), referentes à contagens mais altas para infecções devidas aos Streptococcus sp e Streptococcus uberis.

A segunda maior média de CGCS foi a das infeções mistas (Staphylococcus sp + Streptococcus sp), a qual se aproxima daquela observada para o Streptococcus sp, respectivamente, 2.355 e 2.358 x 10^5 células/ml de leite. A tercera, quarta e quinta médias de CGCS aparecem para o Staphylococcus sp, Micrococcus sp e bacilares.

Por outro lado, a menor média de contagem global de células somáticas constatada para os bacilares diferiu dos resultados de GRANZOTTI (1985). Para esse pesquisador, a menor média correspondeu a 779.000, para os Micrococcus sp. Neste estudo, essas infeções atingiram apenas a quarta e penúltima contagem média (633 x 10^3 células/ml de leite). Tais diferenças podem ser decorrentes da não-inclusão dos bacilares nos agentes avaliados por GRANZOTTI (1985), bem como pela diferença dos métodos de CGCS empregados pelas duas pesquisas, como já se referiu.

A existência de valores negativos para a variação mínima da produção (kg) TAB. 22 decorreu de 13 amostras de tetas das 150 pareadas negativas ao CMT (TAB. 23).

Na avaliação da média de produção/teta frente aos agentes pesquisados (TAB 21), constatou-se a maior
nos bacilares (0,366 kg), seguidos pelas infecções mistas (0,241 kg), e depois pelos Staphylococcus sp (0,226 kg) cujo índice foi aproximado daquele observado para os Streptococcus sp (0,223 kg), a menor produção coube aos Micrococcus sp (0,089 kg).

GRANZOTI (1985) utiliza médias de CGCS e bacteriologia para classificar agentes pesquisados, em mais e menos patogênicos. Assim os Streptococcus iberis, com média de 6.574.000 e os Micrococcus sp, com 779.000 células/ml de leite, são mais e menos patogênicos, respectivamente. Se a mesma metodologia fosse empregada nesta pesquisa, o agente mais patogênico seria o Streptococcus sp, com 2.358 x 10^3 e o menos patogênico, os bacilares, com 567 x 10^3 células/ml de leite. Assim sendo, os resultados das pesquisas seriam concordantes quanto aos agentes mais patogênicos, Streptococcus iberis e Streptococcus sp, e difeririam quanto à menor patogenicidade Micrococcus sp versus bacilares.

Na TAB. 23 estão as 13 amostras do total de 150 pareadas negativas ao CMT. Nestas a tetra sadi apresentou menor produção que a paralela doente, que apresentava MSC por um dos cinco grupos de microorganismos avaliados. Apenas o Streptococcus sp não foi detectado, e em quatro amostras não foi detectado nenhum agente.

Essas 13 amostras apresentaram valores negativos para as variáveis diferença de produção (DP) e percentual de perda (PP), comentados anteriormente, na TAB. 22. Estes dados foram concordantes com os de LANGENNEGGER et al. (1981), que caracterizaram tal ocorrência de "casos paroxísmis", com maior produção nos quartos infectados do que nos paralelos sadios. Explicaram tal fato como sendo decorrência de mancha anterior tratada durante a mesma lactação ou de alteração mais grave, não infectiosa, havida em lactações anteriores. Na avaliação das 13 amostras da TAB. 23, apenas duas (15,38%) ocorreram nas primiparas, ou seja, na primeira lactação à época do teste. As outras 11 amostras (84,62%), obtidas de pluríparas, foram distribuídas em outras lactações. Durante a condução
deste experimento, não se obteve informação alguma em
nenhum dos quatro rebanhos trabalhados que pudesse ser
enquadrada na categorização utilizada por LANGELEDGER
et al. (1981) de "alteração mais grave não infecciosa
ocorrida em lactações anteriores", como lesões ou
acidentes traumáticos casos de mamites anteriores,
convenientemente tratadas na época da ocorrência.
Assim, pelos dados fornecidos por essas 13 amostras,
parece correto afirmar que os prejuízos causados com
perda de produção em tetas sadias sejam devidos
provavelmente a mamites anteriores, no caso das
pluríparas, e de mamites ocorridas durante a atual
lactação, como nas duas amostras de primíparas.

Na Tabela 24 encontram-se as médias observadas para a
CGCS e o percentual de perda de produção das 150
amostras de tetas paredas ao CHI, agrupadas em três
classes de CGCS, e divididas segundo Reichmuth (1968),
citado por MEIJERING et al. (1978). As médias da CGCS
foram crescentes das classes 1 para 5 e desta para a
9, acusando médias de percentual de perda de produção
de, respectivamente, 21,60% e 49,40%. Os percentuais
nas classes 5 e 9 de (21,60% e 49,40%) foram bastante
superiores aos relatados por Reichmuth (1968), citado
por MEIJERING et al. (1978), nas mesmas classes, que
foram de, respectivamente, 9,20% e 37,50%. Esses
resultados confirmam a hipótese de prejuízos causados
pela mamite subclínica ocorrida anteriormente, os
quais podem ser acrescidos àqueles prejuízos
detecados durante a pesquisa. A análise do
comportamento das variáveis percentuais de perda de
produção e a CGCS pela equação de regressão mostra
significatividade ao nível de 4,5% de probabilidade
(tab. 24).

5.6 ESTIMATIVAS DE PERDAS NA PRODUÇÃO DE LEITE PROVO-
CADAS PELA MAMITE SUBCLÍNICA, SEGUNDO ESCORE

Como mostrado no item 3.8 de Material e Métodos,
procureu-se associar as perdas de produção, de acordo
com a proposta de KIRK (1984). (TAB 1 e 2). As
tentativas realizadas nas 13 equações e na estatística
descritiva dos dados na equação 14, mostrados no item
4.1 de resultados, sugerem os comentários a seguir:
Diferença de produção (DP) para pluríparas e primíparas:

a) Pluríparas
   
   \[ DP = 0,44 \text{ kg} \]
   \[ r^2 = 0,03\% \]

É difícil justificar com bases irrefutáveis as perdas. Há muitos fatores que podem estar influenciando-as, e há erros introduzidos na obtenção dos dados. Por exemplo, a DP é calculada sobre a produção da teta sadia, sem que se saiba a real história sanitária desta teta. No passado ela pode ter sido discretamente afetada pela mamite. Isto reflete, sem dúvida, na capacidade secretora. Assim, tal teta, considerada sadia, pode hoje ter menor produção do que no passado.

b) Primíparas
   
   \[ DP = 0,84 \text{ kg} \]
   \[ r^2 = 25,9\% \]

A equação para primíparas apresentou maior poder explicativo, sendo \( r^2 = 26\% \). Isso reforça a hipótese de que houve provavelmente erro na avaliação de perda de produção nas pluríparas, pelo pouco conhecimento do passado sanitário da teta. Nas primíparas, é muito raro mamite adquirida durante a gestação, que é normalmente única, agora eventuais abortos. Assim, para as primíparas, cada infecção avaliada pelo aumento da contagem de células causa o impacto proporcional à elevação da CGCS. Na avaliação do DP e EL para primíparas, o escore linear (EL) de KIRK (1984) tem efeito significativo sobre o valor da perda, ou seja, para cada uma unidade que avança no escore, a produção cai \( 0,3921 \times 0,40 \text{ kg} \).

Todos os modelos estudados foram obtidos com base na produção unitária da teta. É preciso considerar que o número de tetas afetadas gerará diferentes quedas de produção. Este aspecto não foi mencionado por KIRK (1984), mas pode ser assumido que a perda de produção diária seja total (quatro tetas/dia).
Neste trabalho, a teta sadia é a base do cálculo de perda e, portanto, isto deve ser considerado quando se compara os resultados com os de KIRK (1984). As primíparas certamente produzem menos que as pluríparas, mas parecem ter menos perdas em valores absolutos e mais em valores percentuais do que as pluríparas.

Um estudo percentual passou a ser interessante, pois os erros envolvidos na estimativa de DP, nas pluríparas, não permitiram verificar se elas perdem realmente duas vezes mais que as primíparas, como sugere a referência de KIRK (1984).

Além disso, com base na previsão de perdas como está em KIRK (1984), para as condições deste experimento os dados obtidos pelas análises de regressão e correlação para a DP(1) e DP(2), pluríparas e primíparas, respectivamente, não forneceram as esperadas perdas de produção das primíparas que seriam em torno de metade das perdas das pluríparas. Os resultados acusaram quase o oposto, ou seja, DP pluríparas = 0,44 kg(3) e DP primíparas = 0,84 kg(4).

Embora a equação DP = -0,2 + 0,4 k(2), r² = 25,9% tivesse melhor r², o ideal seria relativizar a perda pelo potencial de produção, tirando assim o efeito animal.

Entretanto, esperava-se que a DP percentual apresentasse maior r², o que não aconteceu, pois o r² observado para a equação PP foi de apenas 13,5%, na equação (6).

Mesmo assim, embora com r² menor, essa equação DP é mais realística e demonstra que a tabela da referência de KIRK (1984), para previsão de perdas de produção para primíparas, é fracamente relacionada com a perda percentual real, segundo o modelo utilizado na equação (6), ou seja, para cada kg de perda prevista por KIRK (1984), 0,1% da produção efetiva decrescerá.

Após essa discussão, as conclusões podem assim ser sintetizadas.
1) Os resultados obtidos reforçam a ideia de que o percentual de perda de produção, comparando-se a teta sadia com a doente, é a melhor maneira de equilibrar o problema.

2) Pelos estudos já feitos até agora com as equações de (1) a (6), não foi confirmada a associação dos escores de KIRK (1984) com as perdas observadas. Além disso, são, também inconsistentes os resultados obtidos com relação aos agrupamentos por número de lactação (primíparas e pluríparas) e, mesmo, a perda real em quilograma.

3) Pelos outros resultados obtidos através das equações (7) a (13), onde r² continuou baixo, mais aqueles apresentados pela Estatística Descrita (14), pode ser afirmado que:

- Houve uma grande variação de CGCS, o que foi desejável. O aparecimento de variações negativas entre as DP e PP (13 valores) mostra a fragilidade desta prova, quando o conhecimento da história sanitária da teta referência, a sadia, não foi disponível e/ou confiável.

- Não é possível eliminar os dados negativos pois existem aqueles positivos, cujas tetas referenciais poderiam estar, também, afetadas.

- Não houve diferença entre as ordens estudadas (primíparas x pluríparas), não obstante as críticas nas amostras. Os valores de r² foram baixos, mas os erros tiveram magnitudes equivalentes.

5.6.1 COMENTÁRIOS GERAIS

A variabilidade dos dados encontrados foi muito grande, provavelmente em decorrência do desconhecimento da história sanitária das tetas, e assim, as perdas não estão bem estimadas como o desejado. Houve ocorrência de produções negativas por tetas sadas, ou seja, produções inferiores às doentes, em 13 amostras das 150 analisadas pareadas ao CMT. Não se descartaram esses dados de produção.
negativa, porque várias das produções positivas também estiveram doentes e, portanto, não se saberia quais delas deveriam ser desprezadas. Por sua vez, a produção dos animais trabalhados, que é muito heterogênea, pode ser controlada com a relativização, isto é, na caracterização do percentual de perda em relação à teta sadia.

Neste estudo de perda percentual em função da CGCS, curiosamente, foram obtidas equações de regressão semelhantes para primíparas e pluríparas. A amostra para primíparas (n = 37), em menor tamanho, poderia até estar comprometendo a estimativa dos parâmetros, mas não para pluríparas quando a amostra era maior (n = 113).

Constatou-se que a estimativa do erro (S) foi a mesma, mas os respectivos valores de $r^2$ foram semelhantes, e baixos.

Para toda essa variação, é preciso dispor de conhecimento pleno da história das tetas, para se obter uma produção uniforme e poder trabalhar com um grupo de primíparas (LACN = 1) e pluríparas (LACN > 1), este homogêneo, para propiciar a operação de relativização.

O intervalo dos escores observados para a CGCS foi grande. Procurou-se um fator de correlação para corrigir a tabela proposta por KIRK (1984) TAB 1, quando aplicada às condições brasileiras, isso também não foi possível, porque a equação (4) apresentava valor preditivo muito baixo ($r^2$ reduzido), ($r^2 = 13.5\%$).

Assim, pelos estudos realizados e associação dos escores de KIRK (1984), juntamente com as perdas de produção (TABs 1 e 2), não se confirmou e foram inconsistentes e invalidados os resultados obtidos em relação aos grupos de vacas por número de lactação e, mesmo, a perda real em quilograma.
AVALIAÇÃO DO TESTE CGCS EM MICROSCOPIA DIRETA, COMO MÉTODO INDIRETO DE DIAGNÓSTICO DA MAMITE SUBCLÍNICA EM BOVINOS

Conforme item 4.2 e TAB. 25 de Resultados, o emprego da CGCS direta nas 300 amostras de leite com o limiar de 5,0 x 10^5 células/ml, verificou-se que a sensibilidade de 69,05% observada neste teste foi praticamente igual aos 69,00% encontrados por MCDERMOTT et al. (1982), no uso da mesma metodologia, porém, com o limiar mais baixo de 4,0 x 10^5 células/ml. A sensibilidade de 69,05% aqui observada para a CGCS foi inferior aos 80,00% observados por GRANZOTTI (1985), ao mesmo nível de 500 000 células/ml, aliadas à presença e ausência de bactérias.

A especificidade de 100% foi superior aos 87% e aos 69,80% observados, respectivamente, por MCDERMOTT et al. (1982) e por GRANZOTTI (1985).

A capacidade de prever quartos com distúrbios na secreção e com presença de bactérias, isto é, a preditibilidade positiva de 100%, foi superior aos 99,30% observados por GRANZOTTI (1985). Também foi diferente e inferior a capacidade de predizer os quartos sem distúrbios na secreção e com ausência de bactérias, isto é, a preditibilidade negativa de 68,09%, frente aos 84,40% observados por GRANZOTTI (1985).

Essas diferenças podem ter sido decorrentes do limite base inferior de células somáticas utilizado na pesquisa de MCDERMOTT et al. (1982) e pelo método de contagem eletrônica utilizado por GRANZOTTI (1985), e da contagem microscópica direta usada nesta pesquisa.

Diante dos resultados observados, a CGCS direta como método indireto de diagnóstico da MSC, em bovinos, foi mais eficiente na detecção dos positivos (100,00%), porém, de menor eficiência na detecção dos negativos (69,00%). E, para um controle eficaz da mamite, é preciso dispor, também, antes de tudo, da eficiente detecção dos negativos. Assim, para maior eficiência no diagnóstico da MSC, é preciso de um teste padrão a
bacteriologia, usualmente definitivo, conforme comentado por ANDRADE (1989), o qual não foi utilizado neste levantamento.

5.8 AVALIAÇÃO DO TESTE DO CMT COMO MÉTODO INDIRETO NO DIAGNÓSTICO DA MAMITE SUBCLÍNICA EM BOVINOS

Pela avaliação utilizada e mostrada no item 4.2 e TAB 25 de Resultados, o CMT apresentou sensibilidade de 65,84%, especificidade de 100,00%, preditibilidade positiva de 100,00%, negativa de 58,68% e prevalência da infecção de 67,33%

Sensibilidade e a especificidade foram menores aos 83,40% e 55,20% observados por GONZALES et al. (1988). A diferença pode ter decorrido do teste da bacteriologia utilizada por eles e não usada nesta avaliação. A preditibilidade positiva de 100% foi muito superior aos 34,20% observados por GONZALES et al. (1988).

Da mesma forma como se comportou a CGCS direta, também o CMT apresentou alta especificidade de 100% e preditibilidade negativa de apenas 58,68%. E, como comentado no item 5.7 para maior eficiência no diagnóstico da MSC, torna-se necessário o teste da bacteriologia, usualmente definitivo, conforme proposto de ANDRADE (1989), e que não foi utilizado nesta pesquisa.

5.9 COMPARAÇÃO ENTRE OS TESTES CGCS DIRETA E CMT, COMO MÉTODOS DE DIAGNÓSTICO DA MAMITE SUBCLÍNICA EM BOVINOS

Comparando-se os dados da CGCS direta e os do CMT no item 4.2 e na TAB 25 de Resultados, o primeiro teste sugeriu melhor eficiência por ter apresentado menor número de testes negativos (de 90 para 98) e falsos negativos (de 65 para 69), e maior número de testespositivos (de 145 para 123), na avaliação das 300 amostras testadas, respectivamente. Pela CGCS e CMT a diferença de 12 amostras positivas (145 - 133 = 12) detectadas a mais pela CGCS decorreu das oito e quatro amostras detectadas e mais pelo CMT para testes
negativos e falsos negativos. Mas como reagiu para a CGCS que tem praticamente o mesmo princípio do CMT (número de leucócitos), parece mais propício para estes resultados observados o citado por ANDRADE (1989). de que já estaria ocorrendo tolerância da glândula mamária a ponto de não mais reagir à presença do patógeno ao CMT, que já seria uma característica de infecção subclínica ou crônica.

Entretanto, o que ficou bem caracterizado foi a semelhança da alta ocorrência de resultados falsos negativos, de 65 e 69, respectivamente para a CGCS e CMT, deprecando os dois testes.

Na avaliação dos dois testes pelo Qui-quadrado (TAB 25), com a obtenção de $X^2 = 0.23$, comprovou-se que não houve diferença significativa entre eles. Apesar da primeira impressão de melhor eficiência da CGCS direta, este teste não foi mais eficiente que o CMT pela metodologia e avaliação empregadas.

Embora não tenha havido diferença significativa entre os dois testes pela análise do Qui-quadrado, a CGCS fornece na sua execução simultânea com a bacterioscópia, os presumíveis agentes etiológicos presentes nos plantéis avaliados, orienta na direção do tratamento e é excelente método de controle da eficiência dos tratamentos. Assim, a CGCS é superior ao CMT como método de diagnóstico da mamite subclínica bovina.

Entretanto, a facilidade de execução, o custo e a boa eficiência do teste continuam valorizando o CMT em nível de campo.
6 CONCLUSÕES

A amostragem de tatas padeadas, aliada ao conhecimento
sanitário delas, constitui método adequado e confiável
na avaliação da perda de produção.

Foi elevada a prevalência média da MSC nos quatro
rebanhos avaliados.

A MSC causou redução na produção de leite atingindo
crescente percentuais de perdas concordantes com
reações do CMT de +, ++ e +++.

O comportamento das variáveis produção de leite e
contagem global de células somáticas apresentaram
correlação negativa para primíparas e pluríparas em
reações positivas do CMT.

A média da contagem global de células somáticas foi
sempre mais elevada nas reações positivas que nas
negativas ao CMT, nos três períodos de lactação
avaliados para primíparas e pluríparas.

A contagem global de células somáticas acusou
percentuais de perdas na produção de leite, pela MSC.

A associação do escore linear de KIRK (1984) com as
perdas de produção de leite para primíparas e
pluríparas foi inconsistente e invalidada devido ao
desconhecimento do passado sanitário das tatas.

A contagem global de células somáticas direta não
apresentou maior eficiência que o CMT como testes
indiretos de diagnóstico da MSC.
7 REFERÊNCIAS BIBLIOGRÁFICAS


CHARLETT, S. M. An improved staining method for the
direct microscopical counting of bacteria in milk.
Dairy Ind. v. 19, n. 8, p. 652-653, 1954.

CULLEN, G. A. Cells in milk. Vet. Bull. v. 36, n. 6,

CULLEN, G. A. Short term variation in the count of
cows milk. Vet. Rec. v. 80, n. 22, p. 649-653,
1967.

DOHOO, I. R., MEEK, A. H., MARTINS, W. Somatic cell
counts in bovine milk: relationship to production

FAGLIARI, J. J., LUCAS, A., FERREIRA NETO, J. M.
Mastites bovina. Comparação entre os resultados
obtidos pelo "California Mastitis Test" e o exame

FARIA, J. E. Isolamento de microorganismo-
potencialmente patógenos de leite, pele e meatos
galactóforos externos de tetas de bovinos e de
mãos de ordenadores. Belo Horizonte. Escola de
Veterinária da UFMG, 1981. 55p. Tese (Mestrado em
Medicina Veterinária).

FERNANDES, J. C. T.; LOUZADA, C. A. R.; SILVA, M.
Viamão Mastite Teste (nota prévia) in: Sociedade
de Veterinária do Rio Grande do Sul. REUNIÃO

FERREIRO, L. SOUZA, E. P. L. DE. NOVY, E. F. Influência
de mastite bovino subclínica na produção de leite

FIGUEIREDO, J. B. A comparison of the California
Mastitis Test with the other commonly employed
diagnostic tests. Lansing: College Veterinary
Tese (Master Science).


TYLER, J.W., THURMOND, M.C., LASSLO, L. Relationship between test day measures of somatic cell count and milk production in California dairy.
