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Resumo

Modelos para análise de degradação são aplicados em sistemas com alta confiabilidade, nos
quais a ocorrência de falhas deve ser totalmente evitada, ou que a proporção de censuras é
alta, mesmo sob testes de vida acelerados. Esta caracterı́stica compromete a qualidade dos
resultados obtidos através dos métodos de análise de confiabilidade tradicionais. Nos sistemas
com tais caracterı́sticas, a informação acerca da confiabilidade é obtida e monitorada através
das chamadas medidas de desempenho, que são diretamente relacionadas com o modo de
falha do sistema. Neste trabalho é apresentado um estudo de caso do desgaste de rodas de trens
ferroviários, que é relacionado ao modo de falha do descarrilamento dos mesmos. Para estimar a
função de confiabilidade, os métodos aproximado e numérico, descritos em Meeker and Escobar
(1998), foram aplicados à base de dados em estudo, que possui unidades amostrais sob diferentes
condições de operação. Numa primeira etapa, o método aproximado foi utilizado como ferramenta
para análise dos dados, com consequente formalização do modelo não-linear de efeitos mistos
com efeitos aleatórios normalmente distribuı́dos. Em seguida, os parâmetros deste modelo foram
estimados a partir do método numérico, utilizando-se o ferramental proposto por Pinheiro and
Bates (2000), cujos resultados foram base para a determinação da função de confiabilidade das
rodas e de algumas quantidades de interesse, em função da condição operacional das mesmas.

Palavras-chave: confiabilidade, análise de degradação, modelos de efeitos mistos, des-
gaste de rodas de trem.

Abstract

Traditionally, reliability assessment of devices has been based on life tests (LT) or accelerated
life tests (ALT). However these approaches are not practical for high reliable devices which are
not likely to fail in experiments of reasonable length. For those devices, LT or ALT will end up
with a high censoring rate compromising the traditional estimation methods. An alternative
approach is to monitor the devices for a period of time and assess their reliability from the changes
in performance (degradation) observed during the experiment. In this article we present a model
to evaluate the problem of train wheels degradation, which is related to failure modes of train
derailments. We first identify the most significant working conditions affecting the wheels wear
by using a nonlinear mixed effects model (NLME) where the log-rate of wear is a linear function
of some working conditions such as side, truck and axle position. Next, we estimate the failure
time distribution by working condition analytically. Point and interval estimates of reliability
figures by working condition are also obtained. We compare the results of the analysis via
NLME to the ones obtained by an approximate degradation analysis.

Key Words: reliability; degradation tests; mixed effects models; restricted maximum
likelihood; train wheels wear.
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A Código Comentado do Modelo 28

Lista de Figuras

1 The location of the wheels: side, axles and trucks within a car and their
corresponding labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Wheels degradation profiles by working position. . . . . . . . . . . . . . 11
3 Lognormal probability plots of the pseudo failure times by working

positions (labels in parentheses). . . . . . . . . . . . . . . . . . . . . . . . 18
4 Point estimates of quantiles (0.50 and 0.90) of the failure time distributi-

ons based on pseudo failure times data (by working positions). . . . . . 19
5 Interaction plots for the pseudo failure times data. . . . . . . . . . . . . . 20
6 (a)Normal probability plot; (b) histogram of the model residuals. . . . . 22
7 Fitted time to failure distributions F(T) by working condition . . . . . . . 24



Lista de Tabelas

1 Estimated coefficients (fixed effects and standard errors) for the final
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Degradation path models and time to failure distributions for each one of the
working conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Interval and point estimates of the reliability figures by working position 24

7



Degradation data analysis for samples under unequal operating
conditions: a case study on train wheels.

Julio C. Ferreiraa, Marta A. Freitasa,∗, Enrico A. Colosimob
a Decisions Support and Reliability Lab (LADEC), Department of Industrial Engineering,

Federal University of Minas Gerais, BRAZIL
b Department of Statistics, Federal University of Minas Gerais, BRAZIL .

Abstract

Traditionally, reliability assessment of devices has been based on life tests (LT) or accelerated life tests
(ALT). However these approaches are not practical for high reliable devices which are not likely to fail
in experiments of reasonable length. For those devices, LT or ALT will end up with a high censoring rate
compromising the traditional estimation methods. An alternative approach is to monitor the devices
for a period of time and assess their reliability from the changes in performance (degradation) observed
during the experiment. In this article we present a model to evaluate the problem of train wheels
degradation, which is related to failure modes of train derailments. We first identify the most significant
working conditions affecting the wheels wear by using a nonlinear mixed effects model (NLME) where
the log-rate of wear is a linear function of some working conditions such as side, truck and axle position.
Next, we estimate the failure time distribution by working condition analytically. Point and interval
estimates of reliability figures by working condition are also obtained. We compare the results of the
analysis via NLME to the ones obtained by an approximate degradation analysis

Key Words: reliability; degradation tests; mixed effects models; restricted maximum likelihood; train wheels wear.
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1 Introduction

1.1 Background
In the manufacturing industry there is much interest in providing inference on the lifetime of prod-

ucts. Traditionally, this is addressed by estimating failure time distributions from failure data. However,
when products are highly reliable the collection of failure time data can be expensive and impracticable
because products take too long to fail. In those cases, a traditional life test will probably result in very
few or no failures, so that the traditional failure time analysis - FTA including censoring (Meeker and
Escobar (1998)) is no longer effective in assessing product reliability. An alternative approach is that of
accelerated life tests – ALT (Nelson, 1990), in which the units (products, components) are subjected to
elevated stress levels (e.g. use rate, temperature, voltage or pressure). The information gathered under
the known stressed environment is then extrapolated, through a physically reasonable statistical model,
to obtain estimates of the statistics of the underlying failure time distribution at normal use conditions.
However, even this approach may be inadequate for very high-reliability components under severe test
time constraints.

Recently, degradation tests have been shown to be a superior alternative to lifetime data in such
situations because they are more informative. Most failures arise from degradation mechanisms at work
for which there are characteristics that degrade (or grow) over time (e.g., amount of material displaced
by electro migration). If there exist product characteristics whose degradation over time can be closely
related to failure and can be accurately measured, then collecting “degradation data” can provide useful
information about product reliability. Examples are loss of tread on rubber tires and degradation of the
active ingredient of a drug because of chemical reactions with oxygen and water or microbial. In order to
conduct a degradation test, one has to prespecify a threshold level of degradation, obtain measurements
of degradation at different times, and define that failure occurs when the amount of degradation for a test
unit exceeds this level. For example, a crack grows over time, and failure is defined to occur when the
crack reaches a specified length. Another example is the luminosity of fluorescent lights (or luminous
flux) usually measured in lumens. Because it degrades over time as the fluorescent material darkens,
the fluorescent lamp industry has traditionally defined failure in terms of the amount of degradation
in the luminous flux. More specifically, the industry’s standard definition for lifetime is the time t
when a lamp’s luminous flux ω(t) falls below 60% of its luminous flux after 100 hours of use aging,
i.e., 0.6ω(100) (Tseng et al. (1995)). Such failures are referred as “soft” failures because the units are still
working, but their performance has become unacceptable. In most situations, degradation data have
some important practical advantages (Lu and Meeker (1993); Nelson (1990)), such as: 1) Degradation
data can be analyzed earlier, before a failure actually occurs and a degradation test can provide some
information about unfailed units; 2) Degradation data may yield more accurate life estimates than the
accelerated life tests with few or no failures; 3) Degradation data can provide better information of
degradation processes, which helps one to find the appropriate mechanistic model for degradation.

This work was motivated by a real practical situation concerning train wheel degradation. A small
part of the database has already been analyzed by Freitas et al. (2009). The authors presented the data
analysis of a subset of wheels submitted to the same working conditions. In this paper, a complete
analysis of this database is performed, considering the information available on the other wheels and
operational issues that might have influence on wheels wear over time. The situation under study is
described in the sequel.

1.2 Motivation: train wheel degradation data
Most railways keep in a database descriptions of maintenance actions performed on their trains. Our

partner has such a database and they provided us with a subset that contains, among other information,
the diameter measurements of the wheels, taken at 13 equally spaced inspection times: t0 = 0 km; t1 =
50,000 km; t2 = 100,000 km, . . . , t13 = 600,000 km. These measurements were taken for 14 trains. First,
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it is important to set out some definitions. In the particular case of the study, a train consists of a
locomotive (to provide power) and 3 (three) unpowered vehicles (cars) attached to it. Each car (either a
locomotive or an unpowered car) has two trucks; each truck has two axles with two wheels each (Figure
1). The wheels are labeled according to their working positions in a given car using a three-dimension
indicator vector, representing in this order: position (side) within an axle (left=0; right=1); truck position
(front=0; back=1) and axle position within a truck (outer=0; inner=1). The data used in this paper refer
to the diameter measurements of the wheels of the locomotive cars only (8 wheels for each one of the
14 locomotives). Freitas et al. (2009) used the same database but the authors have analyzed only the
degradation data of the wheels labeled [000].

Figure 1: The location of the wheels: side, axles and trucks within a car and their
corresponding labels.

The nominal diameter of a new wheel is 966 mm. When the diameter reaches 889 mm, the wheel
is replaced by a new one. Figure 2 presents the degradation profiles of the 110 wheels under study.
The points on each plot are the amount of wear (in mm) (i.e., 966 mm - [observed diameter measure
at time t]), at each inspection time (distance in Km). The event “failure” occurs when the degradation
(wear) reaches the threshold level D f = 77 mm = (966 mm − 889 mm). In this paper, only 110 of the
total 112 wheels are analyzed, since the diameter measures for two of them, both labeled [0,0,0] were not
considered reliable due to equipment problems.

There are known operational issues that might have some impact on wheels wear, such as posi-
tion, inherent part-to-part mechanical properties variability (leading to different wear rates), railway
topographic conditions, curves characteristics (side predominance, length and radius), working load
and engine power of the wheel, among others. The goal of this work is to try to answer some specific
engineering questions such as: 1) do the different working positions have (statistically) significant effect
on the wheels wear? 2) if that is the case, what is the time-to-failure distribution of wheels on different
working positions? In addition, it is important to get estimates of key reliability summary figures, such
as the MTTF (mean time to failure, or more specifically, mean distance to failure) and some quantiles of
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Figure 2: Wheels degradation profiles by working position.

the time-to-failure distribution (e.g. 0.01, 0.10 and the median, 0.50). This task will be accomplished by
modeling the wheels wear rate as a function of the wheel´s position.

1.3 Literature review on degradation modeling
The amount of literature on degradation data analysis has increased quickly in the past two decades

and many of them have targeted specific products and their degradation characteristics (e.g. Tseng et al.
(1995); Tang and Chang (1995); Yacout et al. (1996); Oliveira and Colosimo (2004); Freitas et al. (2009);
Park and Bae (2010)). Basically, both stochastic process models and general statistical path models have
been used for modeling degradation.

Stochastic degradation models can be traced back to the material fatigue study of crack developments
by Birnbaum and Saunders (1969), where the crack growth was modeled by a sum of independent
random crack extensions as a Wiener process. Battacharyya and Fries (1982) pointed out that the
product’s failure time is the first passage time of the Wiener process to a critical value, so it has an
inverse Gaussian distribution. Whitmore and Shenkelberg (1997), and Padgett (2004) used Wiener
diffusion processes with a drift to explain the degradation paths, with the advantage being that a time-
to-failure distribution is readily available, i.e. the inverse Gaussian distribution. In general a Wiener
process has found application as a degradation model in many studies due to its good properties (see for
example, Doksum (1991); Whitmore (1995) and Doksum and Normand (1995)). But in certain physical
situations, it is often the case that a degradation process should be always positive and strictly increasing.
Therefore, the gamma process (a stochastic process with independent, non-negative increments having
a gamma distribution with an identical scale parameter), has also been used by many authors for the
stochastic modeling of monotonic and gradual degradation over time in a sequence of tiny increments.

11



Examples are the works by Bagdonavicius and Nikulin (2000), Lawless and Crowder (2004) and Pan
and Balakrishanan (2011). The latter assumed that a product has two performance characteristics
whose degradation can be governed by a gamma process. The authors used a bivariate Birnbaum-
Saunders distribution and its marginal distributions to approximate the reliability function of the product
and develop inferential methods for the model parameters. All the papers listed so far considered
degradation processes consisting of one phase of behavior only. Ng (2008) focused on the estimation of
a class of degradation models where the degradation rates could possibly increase or decrease in a non-
smooth manner at a particular point in time, for example when the underlying degradation processes
changes phase. The degradation path of a given device was modeled using an independent-increments
stochastic process with a single unobserved change-point (allowed to vary randomly from device-to-
device). The problem of parameter estimation via maximum likelihood in such a situation (i.e. when the
change-points are unobserved and random) was solved via an application of the EM algorithm.

An alternative approach to degradation data modeling is to consider more general statistical degra-
dation path models. Nelson (1990) (chapter 11) reviewed the degradation literature, surveyed appli-
cations, described basic ideas on accelerated-test degradation models, and, using a specific example,
showed how to analyze a type of degradation data. Carey and Koenig (1991) studied the performance
of devices from an integrated logic family, and used a non-linear degradation path model, motivated by
the physics of diffusion of impurities through the devices. Lu and Meeker (1993) developed statistical
methods using degradation measures to estimate a time-to-failure distribution for a broad class of degra-
dation models. They considered a nonlinear mixed-effects model (NLME) and used a two-stage method
to obtain point estimates and confidence intervals of percentiles of the failure-time distribution. Lu
et al. (1997) proposed a model with random regression coefficients and standard-deviation function for
analyzing linear degradation data from semiconductors. Su et al. (1999) considered a random coefficient
degradation model with random sample size and used maximum likelihood for parameter estimation.
A data set from a semiconductor application was used to illustrate their methods. Other applications
and model developments for specific degradation tests include Wu and Tsai (2000); Crk (2000); Oliveira
and Colosimo (2004); Freitas et al. (2009); Peng and Tseng (2009). A good reference on degradation
path models is Meeker and Escobar (1998), chapters 13 and 21. The authors introduced the concepts of
degradation analysis, presented useful degradation models and discussed important topics such as the
connection between degradation models and failure time models, methods for degradation data analysis
and reliability inference based on likelihood methods.

Bayesian approaches have also been used for degradation data analysis in pharmacokinetics and
engineering applications (e.g., Wakefield et al. (1994); Gelman et al. (1996); Wakefield (1996); Robinson
and Crowder (2000); Hamada (2005); Hamada et al. (2008); Freitas et al. (2010)).

In this paper, we use the general degradation path model to analyze the wheel degradation data.
We propose a nonlinear mixed effects model (NLME) where the log-rate is a linear function of some
working conditions such as side,truck and axle positions (and interactions among them). With the
proposed model it is possible to identify the most significant working conditions affecting the wheels
wear and to obtain analytically the failure time distribution by working condition.

1.4 Overview
The rest of the paper is organized as follows. In Section 2, the general degradation path model along

with the parameter estimation issues is briefly presented. The basic reference is Meeker and Escobar
(1998). In Section 3 a preliminary exploratory analysis of the wheel degradation data is described,
including the preliminary empirical approach used for model construction. In section 4, the results of
the model fitting are presented. Finally, some concluding remarks end the paper in Section 5.
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2 The general degradation path model
For each unit in a random sample of size n, it is assumed that degradation measurements are available

at prespecified times ti j(i = 1, . . . ,n; j = 1,2, . . . ,mi), where mi is the number of measurements taken on
the ith unit. Thus the general approach is to model the degradation of the individual units using the
same functional form and differences among individual units using random effects. The model is

Yi j = Di j + εi j = D(ti j;α; βi) + εi j, (1)

where:

• Yi j is the random variable representing the amount of degradation of the ith unit at a prespecified
time ti j i = 1,2, . . . ,n; j = 1,2, . . . ,mi);

• D(ti j;α; βi) as the actual degradation path of unit i at time ti j;

• α = (α1;α2; . . . ;αp)t is a p × 1 vector of fixed effects describing population characteristics (they are
modeled as common across all units);

• βi = (βi1,βi2, . . . ,βik)t is a k×1 vector or the ith unit random effects representing the individual unit´s
characteristics (variations in the manufacturing of the components, such as properties of the raw
material, component dimensions, etc.);

• εi j is the random error associated to the ith unit at time ti j.

The deterministic form of D(ti j;α; βi) might be based on empirical analysis of the degradation process
under study, but whenever possible it should be based on the physical-chemical phenomenon associated
with it. It is usually a linear or non-linear function in α and βi. The time ti j could be real-time, operating
time, or some other appropriate measures of use, like distance (in km or miles) for automobiles, trains
or number of cycles in fatigue tests.

It is generally assumed that:

1. The random errors εi j are independent and identically distributed (i.i.d.) according to a Normal
distribution with mean µ = 0 and variance σ2

ε (fixed and unknown).

2. The vectors βi = (βi1,βi2, . . . ,βik)t i = 1, . . . , n are i.i.d. as Λ(β|θ), where Λ(β|θ) is a multivariate
distribution function, which may depend on an unknown (fixed) q × 1 parameter vector θ =
(θ1, . . . , θq)t that must be estimated from the degradation data.

3. The random vectors βi are independent of the εi j deviations.

2.1 Estimation of degradation model parameters: the Maximum Like-
lihood method

In order to obtain the expression of the likelihood function using the general model (1), let us define:

• Yi = (Yi1, Yi2, . . . Yimi )
t as the mi × 1 random vector representing the degradation measures of the

ith unit and yi = (yi1, yi2, . . . yimi )
t the actual observed values;

• Y = (Y1, Y2, . . . Yn)t as the N × 1 random vector representing the full set of degradation measures
(N =

∑n
i=1 mi) and y = (y1, y2, . . . yn)t the actual full set of y-observed values.

• B = (β1, β2, . . . βn)t as the vector of order nk × 1 combining the n random effects vectors.

13



In addition, let f (yi|α, βi, θ, σ2
ε) and f (βi|θ) denote the probability density function of Yi and βi

respectively. Then, using the general model assumptions 1 to 3, the probability density functions of Y
and B are given respectively by

f (y|α, βi, θ, σ
2
ε) =

n∏
i=1

f (yi|α, βi, θ σ
2
ε) (2)

and

f (B|θ) =
n∏

i=1

f (βi|θ). (3)

Although the values of β1, . . . , βk for the individual units may be of interest in some applications
(e.g.), to predict the future degradation of a particular unit, based on a few early readings), subsequent
developments in this work concentrate on the use of degradation data to make inferences about the
population or process or predictions about future units.

In this case, the underlying model parameters are α, θ and σ2
ε and the general expression of the

likelihood function is:

L(α, θ, σ2
ε) = f (y|α, θ, σ2

ε) =

∫
ΞB

f (y,B|α, θ,σ2
ε) dB

=

∫
Ξβ1

· · ·
∫
Ξβn

f (y,B|α, θ, σ2
ε) dβ1 . . .dβn

=

∫
Ξβ1

· · ·
∫
Ξβn

{
f (y|α, B, θ, σ2

ε) f (B|θ)
}

dβ1 . . .dβn

=

∫
Ξβ1

· · ·
∫
Ξβn


 n∏

i=1

f (yi|α, βi, θ, σ
2
ε)


 n∏

i=1

f (βi|θ)


 dβ1 . . .dβn

=

∫
Ξβ1

· · ·
∫
Ξβn

 n∏
i=1

f (yi|α, βi, θ, σ
2
ε,) f (βi|θ)

 dβ1 . . .dβn

=

n∏
i=1


∫
Ξβi

f (yi|α, βi, θ, σ
2
ε,) f (βi|θ)dβi

 , (4)

where ΞB and Ξβi denote the limits of the multiple integrals in B and βi respectively.

Now, since the random errors εi j are i.i.d. according to a Normal distribution with mean zero and

variance σ2
ε (i.e., εi j

i.i.d.
∼ N(0, σ2

ε)) then conditional on α, βi, θ and σ2
ε, the random vectors Yi (i = 1, . . . , n)

are independent and Multivariate Normal distributed. In other words,

Yi|α, βi, θ, σ
2
ε

indep.
∼ Nmi (µYi ,ΣYi )

where Nmi (µYi ,ΣYi ) is a mi- Multivariate Normal distribution with mean vector and variance-covariance
matrix given respectively by

µYi = E(Yi) =
(
D(ti1, α, βi); . . . ; D(timi , α, βi)

)t and ΣYi = σ
2
εImi ; i = 1, . . . , n
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where Imi is the mi ×mi identity matrix.
In addition, conditional on βi the random variables Yi j ( j = 1, . . . , mi) are independent and Normal

distributed. More specifically,

Yi j|α, βi, θ, σ
2
ε

indep.∼ N
[
D(ti j, α, βi);σ2

ε

]
; j = 1, . . . , mi.

Therefore, the likelihood function (4) takes the form:

L(α, θ, σ2
ε) = f (y|α, θ, σ2

ε) =

n∏
i=1


∫
Ξβi

 mi∏
j=1

N(D(ti j, α, βi); σ2
ε)

 f (βi|θ)dβi


=

n∏
i=1


∫
Ξβi

 mi∏
j=1

1
σε
ϕNOR(zi j)

 f (βi|θ)dβi

 , (5)

where zi j =
[yi j−D(ti j, α, βi)]

σε
and ϕNOR is the Standard Normal probability density function.

The maximum likelihood (ML) estimate of the degradation model parameter vector (α, θ, σ2
ε)t is found

by maximizing the likelihood function (5). Each evaluation of (5) will, in general, require numerical
approximation of n integrals (the number of sample paths) of dimension k (the number of random
parameters in each path). Thus maximizing (5) with respect to α, θ, σ2

ε directly, even with today’s
computational capabilities, is extremely difficult.

A common procedure is to suppose that the parameter vector of random effects follows a k-
Multivariate Normal distribution. This situation is discussed next.

2.2 Maximum likelihood and the Multivariate Normal model
If the Multivariate Normal assumption is used, in other words, βi

i.i.d.∼ Nk(µβ, Σβ), i = 1, . . . , n,
then f (βi|θ) in (5)takes the form of the k-Multivariate Normal probability density function, with mean
vector (fixed and unknown) µβ and variance-covariance matrix Σβ (fixed and unknown). Consequently,
θ = (µβ, Σβ).

Because the deterministic form of the degradation path D(ti j;α; βi) can be nonlinear in the random
effects, the integral in (5) generally does not have a closed-form expression even in the Multivariate
Normal model. To make the numerical optimization of the likelihood function a tractable problem,
different approaches including approximations to the likelihood function (all under the Multivariate
Normal assumption) were proposed. Lu and Meeker (1993) proposed a two-stage estimation method for
the case where the vector of random effects β or a known reparameterization of β, follows a Multivariate
Normal distribution.

In the case of the approximation methods, some consist of taking a first-order Taylor expansion of the
degradation path function D(ti j;α; βi) around the expected value of the random effects (Sheiner and Beal
(1980), Vonesh and Carter (1992)) or around the conditional modes of the random effects (Lindstrom and
Bates (1990)). In particular, Pinheiro and Bates (1995) used Lindstrom and Bates (1990) approximation
method to obtain restricted maximum likelihood (REML) estimates (Patterson and Thompson (1971)) to
non-linear mixed effects models (NLME). Maximum likelihood estimates of variance components such
asΣβ and σ2

ε tend to underestimate these parameters. Therefore many analysts prefer the REML estimates
for these quantities. Pinheiro and Bates (2000) implemented the method proposed by Lindstrom and
Bates (1990) in the NLME function available in the software S-PLUS (TIBCO Software Inc.). This function
is now also available in the software R (GNU general public licence; www.r-project.org). Another option
is the procedure PROC NLMIXED, available in the software SAS/STAT(SAS Institute Inc.).
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2.3 Evaluation of F(t)
A specified model for D(t) and D f defines a failure time distribution. In general this distribution can

be written as a function of the degradation model parameters. Suppose that a unit fails at time t if the
degradation level reaches D f at time t. Then

F(t) = P(T ≤ t) = P[D(t,α,β) ≥ D f ], (6)

when the degradation measurements are increasing with time, or

F(t) = P(T ≤ t) = P[D(t,α,β) ≤ D f ], (7)

when the degradation measurements are decreasing with time.
For a fixed D f , the distribution of T depends on the distribution of β, which in turn, depends on the

basic path parameters. There are basically three procedures that might be used to evaluate F(t):

1. Analytical solution: in some simple cases it is possible to write down a closed-form expression for
F(t). To illustrate the procedure suppose the actual degradation path of a particular unit is given
by

D(t) = α + βt,

where α is fixed and β varies according to lognormal distribution with scale parameter exp(µβ)
and shape σβ (β ∼ logn(µβ, σε)). The failure time T occurs when D(t) = D f . Then,

D f = α + βT e T = g(β;α; D f ) =
D f − α
β
.

Therefore,

F(t) = P(T ≤ t) = P
(

D f − α
β

≤ t
)

= P
(
β ≥

D f − α
t

)
= 1 −ΦNOR

(
log(D f − α) − log(t) − µβ

σβ

)
= ΦNOR

(
log(t) − [log(D f − α) − µβ]

σβ

)
, t > 0,

where ΦNOR(·) is the Standard Normal cumulative distribution function. Consequently, if β ∼
logn(µβ, σβ) then, T has a lognormal distribution with scale parameter exp(µT) = exp(log(D f−α)−µβ)
and shape parameter σT = σβ.
In such case, one can estimate F(t) by substituting the estimates α̂, µ̂ and σ̂β and D f into the
expression of the lognormal cumulative distribution function. Other examples can be found in
Lu and Meeker (1993) and Freitas et al.(2009).

2. Numerical evaluation of F(t) by direct integration: for most practical path models, especially
when D(t) is nonlinear and β has dimension k > 1, it is necessary to evaluate the integral (6)
(or (7)). Usually it will be necessary to evaluate F(t) with numerical methods. The amount of
computational time needed to evaluate the multidimensional integral will, however, increase
exponentially with the dimension of the integral.
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3. Evaluation of F(t) using Monte Carlo simulation: Monte Carlo simulation is a particularly useful
method for evaluating F(t). The evaluation is done by using the estimates α̂, µ̂β, Σ̂β and σ̂2

ε obtained
by maximization of the likelihood (5). A large number M of random sample degradation paths
is generated from the assumed path model. For each one of them, the “failure time” t∗j (the first
crossing time) is calculated ( j = 1, . . . , M). For any desired values of t, use the proportion of paths
crossing D f by time t as an evaluation of F(t). In other words, an estimate F̂(t) of the failure time
at any t > 0 is given by

F̂(t) =

M∑
j=1

I(t∗j≤t)

M
, t > 0, (8)

where I is an indicator function (IA(x) = 1 if x ∈ A and zero otherwise) and M should be large
enough to reduce the standard deviation of the Monte Carlo error (usually, M ≥ 105).
In order to generate the M random sample degradation paths, it is necessary to generate M sim-
ulated realizations Θ∗[l] = (α∗1, . . . , α

∗
p; β∗1, . . . , β

∗
k)t

[l] (l = 1, . . . ,M),. For instance, if the Multivariate
Normal distribution assumption for the random effects is being used then those simulated real-
izations come from a Multivariate Normal distribution with mean µ̂Θ and variance-covariance
matrix Σ̂Θ. Note that α is a vector of fixed effects. Consequently, µΘ = (α1, . . . , αp ; µβ1 , . . . , µβk )

t

and ΣΘ =
[
A B
Bt Σβ

]
; where A

p×p
= Cov(α), B

p×k
= Cov(α, β), and Σβ

k×k
= Cov(β). A and B are matrices

with null elements.
A similar procedure can be used with other distributions.
Confidence intervals can be obtained using the bias-corrected Bootstrap method (Efron and Tib-
shirani (1993)).

3 Wheel degradation data revisited: exploratory data
analysis and model building

In this section we return to the practical situation presented in Section 1.2. First we describe the steps
followed for model construction, including the choice of the functional form of the degradation path
and an empirical search of the time-to-failure distribution of the wheels. Then, in section 4 we give the
results of the model fitting: the estimate of F(t) and of some other important reliability summary figures
such as the MTTF (mean time to failure or, more specifically, the mean distance to failure) and quantiles
of the time-to-failure distribution.

3.1 Empirical search with an approximate degradation analysis
Meeker and Escobar (1998) described an alternative (but only approximately correct) method of

analyzing degradation data. It will be referred to along this text as “the approximate method”. Despite
the well known potential problems and limitations of the approximate method (see Meeker and Escobar
(1998)), it is used here only as an exploratory data analysis. It should shed some light on modeling issues
such as (1) the wheel´s failure time distribution and possibly the suitable distribution for the random
effects included in the model, and (2) the significance of main effects of the working positions (side, axle
and truck) and interactions among them. There are two steps in the approximate method. The first step
consists of a separate analysis for each unit to predict the time at which the unit will reach the critical
degradation level (D f ) corresponding to failure. These times are called “pseudo failure times”. In the
second step, the n pseudo-failure times (one for each sample unit) are analyzed as a complete sample of
failure times to estimate F(t). For the wheel degradation data (profiles shown in Figure 2) it is reasonable
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Figure 3: Lognormal probability plots of the pseudo failure times by working positions
(labels in parentheses).

to consider a linear functional form (a straight line) for the degradation path. Therefore, for a given
experimental unit i, the degradation path is given by

yi j = Di

(
ti j; β0i; β1i

)
+ ϵi j = β0i + β1iti j + εi j ( j = 1, . . . ,13) (9)

and, by using ordinary least squares estimation, the pseudo failure time for the ith unit (wheel) is given
by

t̂i =
D f − β̂0i

β̂1i
(10)

where D f is the specified threshold and β̂0i and β̂1i are the individual fitted intercept and slope respectively
(recall that n= 110 wheels, 12 for the position [0,0,0] and 14 in each one of the other seven positions).
Next the pseudo failure times t̂i are analyzed as a complete sample of observed failure times. Two
families of distributions are considered, the Weibull and the lognormal (as in the work by Freitas et al.
(2009) with the labeled [000] wheels only). The Weibull distribution turned out to be inadequate for
some of the positions (probability plots are not shown here).On the other hand, the probability plots of
the lognormal distribution by working position(Figure 3), suggest that this family of distributions is a
reasonable choice since it describes well the pseudo failure times independent of the working position.
In addition, as it will be shown along this work, its close relation to the Normal distribution turned out
to be useful at the modeling step, resulting in a normally distributed random effect parameterization.
This in turn made it possible to use the NLME (nonlinear mixed effects) function developed by Pinheiro
and Bates (2000) and implemented in the software R, for the model fitting and parameter estimation.

18



Figure 4: Point estimates of quantiles (0.50 and 0.90) of the failure time distributions
based on pseudo failure times data (by working positions).

Figure 4 shows the point estimates of the 0.50 (median) and 0.90 quantiles by working position.
These two quantiles provide an idea of center and tail of the fitted lifetime distributions. For a given
axle, the side with the highest point estimates is indicated by a hachured area. There is an indication of
possible interaction between the axle position (outer or inner) and the side (right or left). For the wheels
located on the inner axles, the estimated quantiles values decrease when we move from the right to the left
side of these axles. The opposite pattern can be observed for the outer axles.

Figure 5 presents the two-factor interaction plots (in a 3×3 matrix layout) based on the mean pseudo
failure times. The plots in positions (3,1) and (1,3) both represent the interaction between the axle position
(outer or inner) and the side (right or left). In particular the plot (3,1) indicates that for the wheels located
on the inner axles (dashed line), the mean pseudo failure times decrease when we move from the right (1) to
the left (0) side of these axles. The opposite pattern can be observed for the outer axles. This pattern was
already observed in Figure (4) with some percentiles of the estimated failure time distributions based on
the pseudo failure time data.

The plots (3,2) and (2,3) also indicate a possible interaction between truck position (front or back)
and axle position (outer or inner). In particular the plot (3,2) shows, for the outer axle (black continue
line), an increase in the mean pseudo failure time when we move from the front (0) to the back truck (1).
On the other hand, in the case of the inner axles (dashed line) the truck position does not seem to have a
significant effect on the mean pseudo failure times.

Using the information provided by this exploratory data analysis it is possible to move forward and
postulate the model for the data under study.
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Figure 5: Interaction plots for the pseudo failure times data.

3.2 Model specification
From the results of the exploratory data analysis it is possible to say that:

1. The patterns of the degradation profiles (Figure 2) suggest a linear (straight line) functional form
for the degradation path for all the working positions, with positive degradation rate (slope).

2. The lognormal distribution is a good candidate for the distribution of time-to-failure distribution
of the wheels.

3. As a consequence of 1 and 2, the degradation rate (the slope) should also have a lognormal
distribution (see example in Section 2.3).

4. There is an indication of interactions between the working condition factors (in particular, side and
axle) that might be affecting the degradation rate and should be included in the model, possibly
by writing the degradation rate as a function of these factors and interactions.

Therefore, we use the following nonlinear mixed effects model for the ith sample unit (wheel):

Yi j = α0 + eηi t j + εi j (i = 1, . . . ,n; j = 1, . . . ,mi) (11)

ηi = η
(
Xt

i j , α , βi

)
= βi + Xt

i j α

where:

• n = 110 wheels, mi is the number of measurements per wheel (i = 1, . . . ,n) and mi ≤ 13;

• ηi is the log-wear rate of the ith sample unit (wheel); it is a function of the working positions and
individual unit characteristics;

• βi is the random effect associated to the ith sample unit; it represents individual unit characteristics;
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• Xi j =
[
Xi j1,Xi j2,Xi j3,

(
Xi j1 × Xi j2

)
,
(
Xi j1 × Xi j3

)
,
(
Xi j2 × Xi j3

)]t
is a 6×1 vector of covariates associated

with Yi j. The Xi jl (l = 1,2,3) are dummy variables indicating the working positions (side, truck,
and axle). Specifically Xi j1 = 1 if the ith wheel unit is positioned on the right side and zero otherwise;
Xi j2 = 1 if the ith wheel unit is positioned on the back truck and zero otherwise, and Xi j3 = 1 if
the ith wheel unit is positioned on the inner axle within the truck and zero otherwise. In addition,
Xi jl × Xi jl∗(l,l∗ = 1,2,3, l , l∗) are dummy variables indicating the three second order interactions
(side × truck, side × axle, truck × axle);

• α = (α1,α2,α3,α12,α13,α23)t is a 6 × 1 vector of fixed effects. The first three components, namely
α1,α2 and α3 represent the (population) main effects of side, truck and axle, respectively. The
other three ones are associated to the second order interactions side × truck, side × axle and truck ×
axle, respectively;

• α0 is the intercept, corresponding to the mean initial degradation level of the wheel;

• εi j is the associated random error for unit i at time (distance) t j.

Note that we use t j instead of ti j in (11) since for the data set under study, ti j = t j for all i = (1, . . . ,n).
In addition, we assume that:

• The random errors εi j are independent and identically distributed (i.i.d.), according to a Normal
distribution with mean zero and variance σ2

ε fixed and unknown.

• βi (i = 1, . . . ,n) are independent and identically distributed according to a Normal distribution

with mean µβ and variance σ2
β, ( both fixed and unknown), i.e., βi

iid
∼ N

(
µβ,σ2

β

)
.

• The random effects βi are independent of the random errors εi j.

This model parameterization has some advantages. First, the wear rate is always positive as sug-
gested by the profiles (Figure 2). Second, by using the same argument presented in Section 2.3, it is
possible to obtain the distribution of the time to failure F(t) analytically. In fact suppose that the actual
degradation path of a particular wheel is given by

D(t) = α0 + eη × t

where η = η
(
Xtα; β

)
, X is a nc × 1 vector of covariates (dummy variables associated to the working

positions and interactions, and nc is the number of covariates), α is a fixed parameter vector of order
nc×1 and βvaries from unit to unit according to a N

(
µβ,σ2

β

)
. The failure time T is achieved when D(t) = D f ,

the threshold level, or equivalently when D f = α0 + eηT. Therefore, as in Section 2.3, T = D f−α0

eη .
Now since η = Xtα + β, then η is also normally distributed with mean µη = Xtα + µβ and variance

σ2
η = σ

2
β, i.e., η ∼ N

(
Xtα + µβ; σ2

β

)
. Consequently, the degradation rate eη has a lognormal distribution,

i.e., eη ∼ logn
(
Xtα + µβ; σ2

β

)
and the time to failure T of the wheels has a lognormal distribution. More

specifically,

T ∼ logn
(
µT; σ2

T

)
with

µT = log(D f − α0) − µη = log(D f − α0) − (Xtα + µβ) and σT = ση = σβ (12)

Once the restricted maximum likelihood (REML) point estimates α̂0, α̂ and σ̂β are obtained, it is possi-
ble to estimate the failure time distribution F(t) by substituting those REML estimates into (12)(invariance
property of the REML estimators). Similarly, point estimates of the reliability figures (e.g., MTTF, quan-
tiles) can also be obtained by the invariance property of the REML estimators.
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Finally, this parameterization allows one to use the functions already implemented in softwares
such as SAS, S-Plus and R, which assume a Normal distribution for the random effects. We use for the
model fitting and parameter estimation, the function NLME developed by Pinheiro and Bates (2000) and
implemented in the software R.

4 Model fitting and results
The results of the model fitting, after a complete evaluation from the full model up to the elimination

of the non-significant interactions and factors are presented in Table 1. The residual analysis indicates
no violation of the normality assumption for the random errors (Figure 6).

Figure 6: (a)Normal probability plot; (b) histogram of the model residuals.

Table 1: Estimated coefficients (fixed effects and standard errors) for the final model.
Parameter Point Estimates Std.Error p-value
α0 0.993688 0.00303564 0.000
µβ -9.491146 0.13979668 0.000

α1 (side) 0.209818 0.19413978 0.280
α3 (axle position) 0.100194 0.19418977 0.6059
α13 (side x axle) -0.490497 0.27200106 0.0716(*)

Components of Variance
σ2
ε (0.05000057)2

σ2
β (0.71282520)2

(*) Significant at 10% level

The initial degradation α0 is significantly different from zero (p < 10−4) and the estimated value
has a small standard deviation, indicating one of the two following possibilities: 1) the actual initial
diameter is not 996 mm but 1 mm smaller or, most likely, 2) there is a burn-in process occurring during
the first covered distances (between zero and 50,000 km) due to the forging effect under the operational
conditions (a very common phenomenon in high load mechanical systems). In addition, the side × axle
interaction is significant at 10% level (p = 0.0716) while the truck × axle is not significant (p=0.573). The
main effects of side and axle remain in the model even though they turned out to be non significant
(p = 0.28 and 0.6059 respectively).
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Table 2 shows the specific final degradation path models and the time to failure distributions for
each one of the four working conditions.

Finally, we estimate the time to failure distribution and the reliability figures of interest for each one
of the working conditions by substituting the estimated parameter values (Table 1) in the lognormal
parameter expressions shown in Table 2. These results are presented in Table 3.

Table 2: Degradation path models and time to failure distributions for each one of the working
conditions.

Working condition Degradation path model Time to failure distribution
[side,axle] lognormal

(
µT ,σT

)
[0,0]=[left,outer] Di j = α0 + exp

(
βi
)
t j µT = log

(
D f − α0

)
−

(
µβ

)
; σT = σβ

[0,1]=[left,inner] Di j = α0 + exp
(
βi + α3

)
t j µT = log

(
D f − α0

)
−

(
α3 + µβ

)
; σT = σβ

[1,0]=[right,outer] Di j = α0 + exp
(
βi + α1

)
t j µT = log

(
D f − α0

)
−

(
α1 + µβ

)
; σT = σβ

[1,1]=[right,inner] Di j = α0 + exp
(
βi + α1 + α3 + α13

)
t j µT = log

(
D f − α0

)
−

(
α1 + α3 + α13 + µβ

)
;

σT = σβ

4.1 Estimated reliability figures and comparison to the approximate
degradation analysis.

In this section we compare the estimates of the reliability figures (quantiles and MTTF) obtained
with the nonlinear model to the ones obtained with the approximate degradation analysis (Meeker and
Escobar (1998)). In the approximate degradation analysis the pseudo failure times are analyzed as a
complete sample of failure times. Table 3 shows the point estimates and two sided 90% confidence
intervals for those figures. For the approximate method, we use the delta method (Meeker and Escobar
(1998)), while for the nonlinear model approach we use a nonparametric bootstrap and bias-corrected
percentile confidence interval (Efron and Tibshirani (1993)). The bootstrap confidence intervals were
obtained by using the bootstrap simulation with B = 10,000. Figure 7 presents the estimated failure time
distribution (F(t)) for each one of the working positions.

Some observations from Table 3 and Figure 7 are:

1. Although the point estimates are very similar, the confidence intervals based on the nonlinear
model (and restricted maximum likelihood estimation) are wider than the ones obtained with
the approximate analysis. This result should not come as a surprise. The approximate analysis
on the pseudo failure times disregards the estimation errors by considering those data as actual
realizations.

2. The wheels assigned to the working position [side,axle]=[1,0]=[right, outer] have the worst per-
formance (independent of the truck position) while the ones assigned to the position [side,
axle]=[1,1]=[right, inner], the best. This result can be seen by comparing the point estimates
of the reliability figures presented in Table 3. The working position [1,0] has the smallest values,
no matter which figure we choose. Another way to confirm this statement is by observing the F(t)
curves shown in Figure 7. The curve located above all the others (i.e., indicating less reliability)
is the one corresponding to the position [1,0]. On the other hand, the curve corresponding to
position [1,1] is below all the others, indicating higher reliability levels.

It should be emphasized that during the stage of model fitting, the adequacy of the independence
assumption among the unit-specific random effects βi(i = 1, . . . ,n) (and, consequently, among the unit-
specific log-rates ηi(i = 1, . . . ,n)) was verified and turned out to be satisfied. Recall that each car is a cluster
of eight wheels and such layout can indeed induce a correlation structure among the random effects of
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wheels within the same car. To verify the existence of this cluster effect, a random effect associated to
the cluster train was included in the model but it was not kept in the final model due to the small value
of the standard deviation (1.4397 × 10−8).

Table 3: Interval and point estimates of the reliability figures by working position
Working condition Method Estimates (×103 Km)

[side,axle] MTTF t0.01 t0.05 t0.10 t0.50

NLME 1,306.6 196.9 314.6 408.6 1,005.5
[979.1;1,713.6]∗ [142.2;281.1] [233.3;438.0] [307.1;558.5] [769.2;1,347.2]

[0,0]=[left,outer]
Approximate 1,238.8 198.6 316,9 406,6 979.2

[1,019.3;1,458.2]∗ [149.6;263.5] [245.8;408.6] [319.3;517.8] [748.8;1,221.7]

NLME 1,186.8 171.2 258,5.6 365.8 922.1
[893.2;1,519.1] [131.6;242.2] [217.6;382.7] [284.0;489.1] [706.8;1,178.9]

[0,1]=[left,inner]
Approximate 1,125.3 180.5 288,0 369,4 889.7

[933.1;1,318.0] [136.8;238.1] [224.9;368.7] [292.2;467.0] [718.9;1,101.1]

NLME 1,056.5 157.3 254.6 329.4 819.5
[773.1;1,421.8] [116.9;222.7] [192.1;349.9] [249.7;449.6] [612.2;1,087.3]

[1,0]=[right,outer]
Approximate 1,008.6 161.7 258,0 331,0 797.2

[836.1;1,181.0] [122.6;213.3] [201.5;330.4] [261.1;418.5] [644.2;1,986.7]

NLME 1,573.5 225.1 367.3 477.4 1,207.4
[1,195,4;1,960.9] [169.4;329.7] [279.0;508.9] [367.2;664.3] [935.9;1,524.2]

[1,1]=[right,inner]
Approximate 1,476.6 236.7 377,7 484,6 1,167.2

[1,224.1;1,729.1] [179.4;312.3] [295.0;483.7] [383.4;612.7] [943.1;1,445.5]
90% confidence interval.

Figure 7: Fitted time to failure distributions F(T) by working condition
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5 Conclusion and final comments
In this paper we introduce a model to analyze the degradation data of train wheels with linear

trend (over time) degradation profiles. Before considering the practical results of the data analysis it is
worth stepping back and appreciate some of the main features of the proposed model. Some include the
following:

1. the model is linear in time with positive degradation rate (in agreement with the observed wheels
degradation profiles);

2. by modeling the unit-specific log-rates (ηi, i = 1, . . . ,n) as linear functions of covariates (working
positions) and unit-specific normally distributed random effect (βi; i = 1, . . . ,n), it is possible to
investigate possible effects of working conditions (side,axle and truck position) on the failure time
distribution;

3. in addition, since the unit-specific log-rates are linear functions of normally distributed random
effects, it is possible to use functions developed for Normal random effects which are already
implemented in a number of softwares such as S-Plus, SAS and R. Here we used the NLME
function available in R.

4. finally but not less important, even with the inclusion of the covariates in the log-rate equation, it
is still possible to obtain the failure time distributions by working positions analytically which in
turn reduces dramatically the computational effort.

Now, as far as the practical results are concerned, we can say that:

1. the approximate method and the nonlinear mixed effects model (with restricted maximum like-
lihood estimation) provided quite similar point estimates for the key figures although the latter
presented wider and more reliable confidence intervals;

2. we were able to identify working positions where the wheels are subject to higher levels of stress
and whose difference in wear rate affected substantially the time to failure distributions;

3. the results presented in this paper can be used to support decisions in main areas, for instance:

• Maintenance: the determination of different maintenance follow up procedures (such as
frequency of inspections) for different wheel positions and

• Research and Development: the design of reliability tests with new materials assigned to
the different working conditions (from the mildest condition [1,1] up to the stressful one
[1,0]).
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A Código Comentado do Modelo
####Procedimento para ajuste do modelo de degradação de

# todas as rodas de trem

#### Elaborado por Julio Cesar Ferreira

# Nao esquecer de acertar o diretorio de execucao e o nome do

# arquivo de dados

### Verificar tambem a forma funcional do modelo - se com ou

# sem intercepto

setwd("D:/Julio/Meus Documentos/Mestrado/Dissertação/Testes computacionais")

#Lendo as medidas de Desgaste do arquivo .txt, organizando e

# exibindo os dados...

dados<-read.table(’dados_ma_empilhados_mod_2_semrodas_7_13_MA11.txt’,

head=T,sep=";",dec=",")

attach(dados)

LADO <- as.factor(LADO)

POS_TRUCK <- as.factor(POS_TRUCK)

POS_EIXO <- as.factor(POS_EIXO)

ID_RODA <-as.factor(ID_RODA)

TREM <-as.factor(TREM)

dados

#### Abrindo as bibliotecas de interesse

library(nlme)

library(lattice)

####DETERMINACAO DA FORMA FUNCIONAL E AJUSTE DO MODELO #####

equacaodesgaste <- function(beta1,beta2,tempo) beta1+exp(beta2)*tempo

## Ajustando o modelo...

modelo<-nlme(DESGASTE ˜ equacaodesgaste(beta1,beta2,DISTANCIA),

data=dados,fixed = list(beta1˜1,beta2˜LADO*POS_EIXO),random =

beta2˜1|ID_RODA,start=c(1,-2,1,1,1),method="REML")

### Exibindo os resultados do modelo

summary(modelo)

### Agora, serão estimadas as distribuições do tempo de falha

#para as diversas posições de roda

# 1a rotina: estimacao pontual de F(t)

# Deve-se ajustar o parametro "N.bt" (numero de amostras bootstrap)

# df é a degradação limitrofe = 77mm
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######## Declaração de funções úteis:

# calcular.percentis: retorna um vetor com os tempos quantis,

#dados os percentis de interesse

## Será usada no bootstrap

calcular.percentis <- function(vetor.tempos,vetor.percentis){

vetor.distribuicao<-c(rep(0,length(vetor.percentis)))

for (z in 1:length(vetor.distribuicao))

vetor.distribuicao[z]<-quantile(vetor.tempos,vetor.percentis[z])

return(vetor.distribuicao)

}

## calcular.quantis: calcula percentis de interesse,

# dados os quantis de interesse

calcular.quantis<-function(vetor.tempos,vetor.quantis){

resultado<-c(rep(0,length(vetor.quantis)))

for(z in 1:length(vetor.quantis))

resultado[z]<-length(vetor.tempos[vetor.tempos<=vetor.quantis[z]])/

length(vetor.tempos)

return(resultado)

}

#### Parametros da Simulação

df=77 #Limiar de desgaste

N.bt=10000

# Selecionar um numero PAR bootstrap para

# obter percentis corretos

vetor.posicoes = matrix(c(0,0,1,1,0,1,0,1),nrow=4)

rownames(vetor.posicoes) = c("esq/ext","esq/int","dir/ext","dir/int")

# é o vetor que armazena as posicoes de uso (lado, eixo)

media.mc = matrix(0,length(vetor.posicoes[,1]),3)

rownames(media.mc) = rownames(media.mc,do.NULL=FALSE,prefix="Posicao.")

colnames(media.mc)<-c("\%IC_inf","Muˆ","\%IC_sup")

#vetor que irá armazenar a média e seus limites de 90\% de confiança

percentis.ft<-c(seq(0.01,0.99,0.01),.999)

#Vetor com os percentis de F(t) para geração do grafico

ft<-c(rep(0,length(vetor.posicoes[,1])*length(percentis.ft)*3))

dim(ft)<-c(length(percentis.ft),3,length(vetor.posicoes[,1]))

dimnames(ft)<-list(NULL,c("\%IC_inf","F(t)","\%IC_sup"),

c("pos1","pos2","pos3","pos4"))

# Matriz que armazena a estimação de F(t) pontual e intervalar

ft.bt<-c(rep(0,length(percentis.ft)*N.bt*length(vetor.posicoes[,1])))
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dim(ft.bt)<-c(length(percentis.ft),N.bt,length(vetor.posicoes[,1]))

#matriz que armazena as distribuicoes empiricas dos

#tempos de falha no bootstrap

medias.bt<-matrix(0,length(vetor.posicoes[,1]),N.bt)

rownames(medias.bt) = rownames(medias.bt,do.NULL=FALSE,prefix="Posicao.")

#Vetor que irá armazenar as medias do tempo de falha

#por posicao de cada iteracao bootstrap

percentis.interesse <-c(0.01,0.05,0.1,0.5)

#vetor com os percentis de interesse - para construção

#da tabela de resultados

percentis.interesse.bt<-c(rep(0,N.bt*4*length(vetor.posicoes[,1])))

dim(percentis.interesse.bt)<-c(N.bt,4,length(vetor.posicoes[,1]))

dimnames(percentis.interesse.bt)<-list(NULL,c("1\%","5\%","10\%","50\%"),

c("pos1","pos2","pos3","pos4"))

### Matriz que armazena os percentis de interesse a

# cada iteração bootstrap

# Gerando um vetor com os valores de f(t) e a média,

# para gerar gráfico e tabela de resultado

for (k in 1:length(vetor.posicoes[,1]))

{

ft[,2,k]<-qlnorm(percentis.ft,(log(df-modelo$coefficients$fixed[1])-

(modelo$coefficients$fixed[2]+modelo$coefficients$fixed[3]*

vetor.posicoes[k,1]+modelo$coefficients$fixed[4]*

vetor.posicoes[k,2]+modelo$coefficients$fixed[5]*

vetor.posicoes[k,1]*vetor.posicoes[k,2])),sd(ranef(modelo)))

media.mc[k,2]<-exp(log(df-modelo$coefficients$fixed[1])-

(modelo$coefficients$fixed[2]+modelo$coefficients$fixed[3]*

vetor.posicoes[k,1]+modelo$coefficients$fixed[4]*vetor.posicoes[k,2]+

modelo$coefficients$fixed[5]*vetor.posicoes[k,1]*vetor.posicoes[k,2])

+0.5*(sd(ranef(modelo))ˆ2))

}

# Fim da geraçao da estimação de F(t) baseada no Modelo

# com os dados originais

# Agora faremos a geraçao das distribuicoes F*(t)

# Bootstrap, para construcao do intervalo de confianca das

# quantidades de interese

# O modelo2 será baseado na reamostragem dos perfis

#######Algoritmo Bootstrap Não-Parametrico ############

for(j in 1:N.bt)

{

dados.bt<-dados[dados$ID_RODA==0]

##"dados.bt" inicialmente recebe "dados" LIMPO
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##Amostrando dos perfis originais com reposição

rodas.sorteio<-sample(unique(dados$ID_RODA),replace=TRUE)

for(i in 1:length(rodas.sorteio))

{

dados.bt.aux<-dados[dados$ID_RODA==rodas.sorteio[i],]

dados.bt.aux$ID_RODA<-

rep(i,length(dados[dados$ID_RODA==rodas.sorteio[i],1]))

dados.bt<-rbind(dados.bt,dados.bt.aux)

}

### Fim da geração das amostras bootstrap, agora

# faremos o ajuste do modelo NLME bootstrap

modelo2<-nlme(DESGASTE ˜equacaodesgaste(beta1,beta2,DISTANCIA),

data=dados.bt,fixed = list(beta1˜1,beta2˜LADO*POS_EIXO),random =

beta2˜1|ID_RODA,start=c(1,-2,1,1,1),method="REML")

#Agora vamos estimar e armazenar a F*(t)

# da j-esima iteracao bootstrap

for(k in 1:length(vetor.posicoes[,1]))

{

ft.bt[,j,k]<-plnorm(ft[,2,k],(log(df-modelo2$coefficients$fixed[1])-

(modelo2$coefficients$fixed[2]+modelo2$coefficients$fixed[3]*

vetor.posicoes[k,1]+modelo2$coefficients$fixed[4]*vetor.posicoes[k,2]+

modelo2$coefficients$fixed[5]*vetor.posicoes[k,1]*vetor.posicoes[k,2]))

,sd(ranef(modelo2)))

medias.bt[k,j]<-exp(log(df-modelo2$coefficients$fixed[1])-

(modelo2$coefficients$fixed[2]+modelo2$coefficients$fixed[3]*

vetor.posicoes[k,1]+modelo2$coefficients$fixed[4]*vetor.posicoes[k,2]+

modelo2$coefficients$fixed[5]*vetor.posicoes[k,1]*vetor.posicoes[k,2])

+0.5*(sd(ranef(modelo2))ˆ2))

percentis.interesse.bt[j,,k]<-qlnorm(percentis.interesse,

(log(df-modelo2$coefficients$fixed[1])-(modelo2$coefficients$fixed[2]+

modelo2$coefficients$fixed[3]*vetor.posicoes[k,1]+

modelo2$coefficients$fixed[4]*vetor.posicoes[k,2]+

modelo2$coefficients$fixed[5]*vetor.posicoes[k,1]*

vetor.posicoes[k,2])),sd(ranef(modelo2)))

}

}

#### Fim da Simulação Bootstrap

## Agora, iremos calcular os intervalos de confianca

# bootstrap para as quantidades de interesse

##Cálculo dos percentis de interesse

# (quantis 1\%, 5\%, 10\%, 50\%)
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ic.percentis.interesse<-c(rep(0,2*length(percentis.interesse)*

length(vetor.posicoes[,1])))

dim(ic.percentis.interesse)<-c(2,length(percentis.interesse),

length(vetor.posicoes[,1]))

dimnames(ic.percentis.interesse)<-list(c("2,5\%","97,5\%"),

c("1\%","5\%","10\%","50\%"),c("pos1","pos2","pos3","pos4"))

for(k in 1:length(vetor.posicoes[,1]))

{

for(j in 1:length(percentis.interesse))

{

l<-ceiling(N.bt*0.05)

u<-floor(N.bt*.95)

ic.percentis.interesse[1,j,k]<-sort(percentis.interesse.bt[,j,k])[l]

ic.percentis.interesse[2,j,k]<-sort(percentis.interesse.bt[,j,k])[u]

}

}

### Calculando o intervalo de confiança para a media

for(k in 1:length(vetor.posicoes[,1]))

{

l<-ceiling(N.bt*0.05)

u<-floor(N.bt*.95)

media.mc[k,1]<-sort(medias.bt[k,])[l]

media.mc[k,3]<-sort(medias.bt[k,])[u]

}

### Calculando os intervalos de confianca bootstrap para F(t)

for(k in 1:length(vetor.posicoes[,1]))

for(j in 1:length(percentis.ft))

{

l<-ceiling(N.bt*pnorm(2*qnorm((length(ft.bt[j,,k][ft.bt[j,,k]<=

percentis.ft[j]])/N.bt),0,1)+qnorm(.05,0,1),0,1))

u<-N.bt*pnorm(2*qnorm(1-(length(ft.bt[j,,k][ft.bt[j,,k]<=

percentis.ft[j]])/N.bt),0,1)+qnorm(.95,0,1),0,1)

ft[j,1,k]<-sort(ft.bt[j,,k])[l]

ft[j,3,k]<-sort(ft.bt[j,,k])[u]

}

###Plotando as estimativas das distribuições das quatro posições

windows()

plot(ft[,2,1],percentis.ft,type="n",xlim=c(0,6000000),ylim=c(0,1),

xlab="Distancia",ylab="P(T<t)",main="Distribuições do tempo de

falha por posição")

for (j in 1:length(vetor.posicoes[,1]))
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{

lines(ft[,2,j],percentis.ft,type="l",lwd=(j-2),lty=j+6)

legend(legend=paste("Lado",vetor.posicoes[j,1],"Eixo",

vetor.posicoes[j,2]),x=3000000,y=j/20,bty="n",lwd=j-2,

lty=j+6,cex=0.8)

}

##Plotando as distribuições do tempo de falha por posição

#IC de 90\% para F(t)

for(k in 1:length(vetor.posicoes[,1]))

{

windows()

plot(ft[,2,k],percentis.ft,type="n",xlim=c(0,6000000),

ylim=c(0,1),xlab="Distancia",ylab="P(T<t/X)",main=paste

("Distribuicao F(t/X)-IC 90\%",vetor.posicoes[k,1],

vetor.posicoes[k,2]))lines(ft[,2,k],percentis.ft,type="l",lty=1)

lines(ft[,2,k],ft[,1,k],type="l",lty=2)

lines(ft[,2,k],ft[,3,k],type="l",lty=2)

}

# Gravando os resultados em arquivo

write.csv(ft,"ft.csv")

write.csv(ic.percentis.interesse,"ic.percentis.interesse.csv")

write.csv(media.mc,"medias.csv")
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