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ABSTRACT

As data acquisition has become relatively easy and inexpensive, data
sets are becoming extremely large, both in relation to the number
of variables, and on the number of instances. However, the same is
not true for “labeled” instances . Usually, the cost to obtain these
labels is very high, and for this reason, unlabeled data represent the
majority of instances, especially when compared with the amount
of labeled data. Using such data requires special care, since several
problems arise with the dimensionality increase and the lack of labels.
Reducing the size of the data is thus a primordial need. In the midst
of its outstanding features, usually we found irrelevant and redundant
variables, which can and should be eliminated. In attempt to identify
these variables, to despise the unlabeled data, implementing only
supervised strategies, is a loss of any structural information that
can be useful. Likewise, ignoring the labeled data by implementing
only unsupervised methods is also a loss of information. In this
context, the application of a semi-supervised approach is very suitable,
where one can try to take advantage of the best benefits that each
type of data has to offer. We are working on the problem of semi-
supervised feature selection by two different approaches, but it may
eventually complement each other later. The problem can be addressed
in the context of feature clustering, grouping similar variables and
discarding the irrelevant ones. On the other hand, we address the
problem through a multi-objective approach, since we have arguments
that clearly establish its multi-objective nature.

In the first approach, a similarity measure capable to take into
account both the labeled and unlabeled data, based on mutual infor-
mation, is developed as well, a criterion based on this measure for
clustering and discarding variables. Also the principle of homogeneity
between labels and data clusters is exploited and two semi-supervised
feature selection methods are developed. Finally a mutual information
estimator for a mixed set of discrete and continuous variables is devel-
oped as a secondary contribution. In the multi-objective approach, the
proposal is try to solve both the problem of feature selection and func-
tion approximation, at the same time. The proposed method includes
considering different weight vector norms for each layer of a Multi
Layer Perceptron (MLP) neural networks, the independent training of
each layer and the definition of objective functions, that are able to
eliminate irrelevant features.
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RESUME

Que l'acquisition de données est devenue relativement simple et peu
coliteux, les ensembles de données sont de plus extrémement im-
portante, tant en ce qui concerne le nombre de variables, et sur le
nombre d’instances. Cependant, ce n’est pas le cas pour les instances
étiquetées. Habituellement, le cotit d’obtention de ces labels est tres
élevé, et pour cette raison, les données non étiquetées représentent la
majorité des cas, surtout en comparaison avec la quantité de données
étiquetées. En utilisant ces données nécessite un soin particulier, car
plusieurs problémes se posent a 'augmentation de la dimensionnalité
et de 1'absence d’étiquettes. La réduction de la taille des données
est donc une nécessité primordiale. Au milieu de ses caractéristiques
exceptionnelles, le plus souvent nous avons trouvé des variables non
pertinentes et redondantes, qui peuvent et doivent étre éliminés. Pour
tenter d’identifier ces variables, a mépriser les données non étiquetées,
la mise en ceuvre des stratégies supervisées seulement, est une perte
d’information structurelle qui peut étre utile. De méme, en ignorant
les données étiquetées en mettant en ceuvre uniquement des méthodes
non supervisées est aussi une perte d’information. Dans ce contexte,
I’application d"une approche semi-supervisé est tres convenable, ot
I'on peut essayer de profiter des meilleurs avantages que chaque type
de données a a offrir. Nous travaillons sur le probleme de la sélection
de caractéristiques semi-supervisé par deux approches différentes,
mais il peut éventuellement se compléter plus tard. Le probleme peut
étre résolu dans le cadre du regroupement option, le regroupement des
variables similaires et en supprimant celles non pertinentes. D"autre
part, nous abordons le probléeme par une approche multi-objectifs,
puisque nous avons des arguments qui établissent clairement son
multi-objective de la nature.

Dans la premiere approche, une mesure de similarité capable de
prendre en compte a la fois les données marquées et non marquées,
basée sur l'information mutuelle, se développe aussi, un critere basé
sur cette mesure pour le clustering et les variables rejets. De plus, le
principe d’homogénéité entre les étiquettes et les clusters de données
est exploitée et deux semi-supervisé méthodes de sélection de car-
actéristiques sont développés. Finalement un estimateur informaton
mutuelle pour un ensemble mixte de variables discretes et continues
est congu comme une contribution secondaire. Dans ’approche multi-
objectifs, la proposition est d’essayer de résoudre a la fois le probleme
de la sélection de caractéristiques et d’approximation de fonction,
dans le méme temps. La méthode proposée tient compte des normes
différentes pour chaque couche d’un réseau MLP, I'entrainement in-
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dépendante de chaque couche et la définition des fonctions objectives,
qui sont capables d’éliminer des variables non pertinents.

RESUMO

Como a aquisi¢do de dados tem se tornado relativamente mais facil e
barata, o conjunto de dados tem adquirido dimensdes extremamente
grandes, tanto em relagdo ao ntimero de varidveis, bem como em
relacdo ao ntimero de instancias. Contudo, o mesmo ndo ocorre com
os “rétulos” de cada instancia. O custo para se obter estes rétulos é,
via de regra, muito alto, e por causa disto, dados nao rotulados sao
a grande maioria, principalmente quando comparados com a quanti-
dade de dados rotulados. A utilizagdo destes dados requer cuidados
especiais uma vez que varios problemas surgem com o aumento da
dimensionalidade e com a escassez de rétulos. Reduzir a dimensao
dos dados é entdo uma necessidade primordial. Em meio as suas
caracteristicas mais relevantes, usualmente encontramos variaveis re-
dundantes e mesmo irrelevantes, que podem e devem ser eliminadas.
Na procura destas varidveis, ao desprezar os dados ndo rotulados,
implementando-se apenas estratégias supervisionadas, abrimos mao
de informagdes estruturais que podem ser tteis. Da mesma forma,
desprezar os dados rotulados implementando-se apenas métodos ndo
supervisionados é igualmente disperdicio de informacado. Neste con-
texto, a aplicacdo de uma abordagem semi-supervisionada é bastante
apropriada, onde pode-se tentar aproveitar o que cada tipo de dado
tem de melhor a oferecer. Estamos trabalhando no problema de selegdo
de caracteristicas semi-supervisionada através de duas abordagens
distintas, mas que podem, eventualmente se complementarem mais a
frente. O problema pode ser abordado num contexto de agrupamento
de caracteristicas, agrupando varidveis semelhantes e desprezando as
irrelevantes. Por outro lado, podemos abordar o problema através de
uma metodologia multi-objetiva, uma vez que temos argumentos esta-
belecendo claramente esta sua natureza multi-objetiva. Na primeira
abordagem, uma medida de semelhanga capaz de levar em conside-
ragdo tanto os dados rotulados como os nio rotulados, baseado na
informacgdo mutua, estd sendo desenvolvida, bem como, um critério,
baseado nesta medida, para agrupamento e eliminagdo de varidveis.
Também o principio da homogeneidade entre os rétulos e os clusters
de dados é explorado e dois métodos semissupervisionados de se-
lecdo de caracteristicas sdo desenvolvidos. Finalmente um estimador
de informag¢a mutua para um conjunto misto de varidveis discretas
e continuas é desenvolvido e constitue uma contribuicao secundéria
do trabalho. Na segunda abordagem, a proposta é tentar resolver o
problema de sele¢do de caracteristicas e de aproximacao de fungdes ao
mesmo tempo. O método proposto inclue a consideragdo de normas
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diferentes para cada camada de uma rede MLP, pelo treinamento in-
dependente de cada camada e pela definicdo de fun¢des objetivo que
sejam capazes de maximizar algum indice de relevancia das variédveis.
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sample from X (is a vector composed by all features of X)

ith sample from X (is a vector composed by all features of X)
ith output variable from set Y

it" Jabel sample from Y (is a vector composed by all output variables of Y)
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cluster labels vector

relevance vector

relevance vector considering cluster label information
input data set or a random discrete variable

set of labeled data

set of unlabeled data

vector of all weigths of a multi layer perceptron
vector of weigths of the output layer

vector of weigths of the hidden layer or a discrete random variable
eigenvalues

eigenvector

entropy

differential entropy

mixed entropy

mutual information

similarity measure

permutation of S

“unsupervised” term of S

“supervised” term of S

parameter to balance influence of terms A and B of S

sum of the absolute values of weights of a feature in the hidden layer
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INTRODUCTION

Recently, due to the technological development of sensors, measure-
ment systems and information storage hardware, collecting data is
becoming easier and cheaper. Medical researches, as well as financial
analysis, data mining and imaging are some examples of applica-
tion fields that deal with, or are able to generate very large data
sets. These applications have strongly demanded the development
of methods that are capable to deal with new situations that appear
in higher dimensions. Some problems that may arise involve dealing
with redundant or irrelevant information, “curse of dimensionality”
or “concentration of the euclidean norm” [96].

The analysis of higher dimensional data sets is difficult, not only
because they are large in terms of number of observations, but also
because of the large number of variables (features) that can be gen-
erated with the new sampling engines. In fact, in most applications
that we aim at, the number of features n¢ is much higher than the
number of observed instances (n¢ >> n). This is particularly true
when considering that many usual statistical methods are developed
for n >> ns under the normality assumption, what is not realistic for
the majority of real problems. Analyzing three-dimensional data is
quite different from analyzing instances with thousands of features,
as in gene analysis applications [21]. For such higher dimensional
space there is no way of directly visualizing the data set distribution.
Moreover, for these huge number of variables it would be necessary to
have an exponential number of instances (n™f) to overcome the curse
of dimensionality problem. These are some reasons that explain the
increasing interest in feature selection problems.

Particularly in these application fields new samples are easily gener-
ated, nevertheless, labeling data can be costly and time consuming [45].
Thus, it is usual to find data sets with scarce labeled instances and a
large amount of untagged input samples, like in web-based informa-
tion retrieval applications, and in many other problems whose data
sets share the same following characteristics: high dimension, few
labeled instances and a large number of unlabeled ones.

In this framework, the general problem of Semi-Supervised Feature
Selection (SSFS) can be characterized by the selection of a minimal and
sufficient feature subset, using the labeled data set X0 = {xi,yi}?:‘ ]
and considering also the structural information implicit in the unla-
beled data X(W) = {xi}?:m +1- In other words, the principal aim of
SSES is to solve the problem using as less variables as possible [44],
considering both labeled and unlabeled sources. Undeniably, reducing
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the data dimensionality could help to get better understanding about
the problems, allowing, in some cases, even some kind of visualiza-
tion [96]. Increase in performance, reduction of computational and
measurement times, reduction of measurement costs and data storage
needs are also some of the well known advantages of reducing the
number of features.

In order to reduce the number of features of a data set, there are
three main strategies in which, more or less, all algorithms could be
classified. In the first strategy there are the so-called filter methods
whose objective is to rank the features according to some supervised
[58, 72] or unsupervised [106, 105, 62] criterion. These methods are
fast and easy to implement. In the second strategy, the algorithms are
called Wrappers and they access the accuracy of a given model in order
to find the best feature subset. The third category of methods refers
to the embedded algorithms. As Wrapper methods, embedded ones
uses the model as part of the selection process, but perform feature
selection during the training process [26, 85, 89].

In this thesis we approach the semi-supervised feature selection
problem by two different paths. Our first approach is based on the
idea of feature clustering, i.e., features that are similar should be
grouped, reducing the dimension of the problem, so that redundant
information is reduced. We start the development of this approach
from this main idea, applying it to a simple hierarchical clustering
method. We propose here a new similarity criterion that is able to
consider both labeled and unlabeled data. Also we defined a stopping
criterion for the feature clustering method, which is based on the
statistical significance of the similarity index. A criterion to identify
relevant features is also proposed taking into account the statistical
significance of some relevance measure related to the target labels and
the relevance of each feature in relation to the data distribution.

Still in this clustering approach we exploit the principle of homoge-
neity between labels and data clusters in the development of another
semi-supervised feature selection method. This principle permits the
use of cluster information to improve the estimation of feature rel-
evance in order to increase selection performance. We use Mutual
Information in a Forward-Backward search process in order to eval-
uate the relevance of each feature to the data distribution and the
existent labels, in a context of few labeled and many unlabeled in-
stances.

Our second approach is based on the principle that the feature
selection problem, as well as the learning problem are inherently
multi-objective. We argue that the semi-supervised feature selection
problem can be jointly solved with the induction of the Wrapper
model, which should be selected according to Muti-Objective learning
principles. Based on this we develop a feature selection method whose
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objective function is designed to eliminate features while solving the
learning problem.

Real problems are composed of a set of discrete and continuous
variables. During our research we seek in the literature for estimators
of mutual information able to handle with a mixed set of variables
without sucsses. Then we developed an estimator that can deal with
such kind of data, and it is also presented in this thesis as another
contribution.

This thesis is organized as follows. We begin by discussing about
the learning and feature selection paradigms in Chapter 2 trying to set
a common background of the main used strategies, and introducing
the principles of the semi-supervised approach, where we base our
work. Then we address the Feature Selection itself in Section 3, where
we try to explain the important general topics and its difference to the
feature extraction task. We make a general picture of the supervised
and unsupervised feature selection methods (Sections 3.1 and 3.2)
establishing their bases and then we describe the short state of art
of semi-supervised feature selection in Section 3.3. Then we propose
two semi-supervised feature selection methods developed during this
PhD in the feature clustering approach in Section 4, and one feature
selection method proposed in the multi-objective approach in Section
5. Finally, in Chapter 6 we present the mutual information estimator
for a mixed set of variables.

The methods proposed within the multi-objective approach, as well
as within the feature clustering one, start from very simple ideas,
and for while, they are unrelated paths. However, we believe that,
maybe, they could be merged at some point in the future. We aim to
continue developing these ideas in a efficient way and, only adding
more elaborated solutions when they are necessary.






LEARNING AND FEATURE SELECTION
PARADIGMS

The main paradigms of machine learning are Supervised Learning
(SL), Unsupervised Learning (UL) and more recently Semi-Supervised
Learning (SSL). In general, when there is a labeled data set X(t) =
{xi,yi}?‘, with ng observed instances of a given problem, composed
by the input variables vector x, and by their respective output vari-
able vector y (or the target concept variables), the SL schema could
be applied. The main objective of the Supervised schema is learn a
mapping function § = f (x|x), where « is the set of parameters of the
chosen model, in order to correct classify or predict the target value
for any new observation. If the data set is ideally sufficient to describe
the data distribution, the general function that originated the data can
be found. The general scheme to perform the Supervised Learning is
shown in Figure 2.1.

P(X) X P(YIX)
DG > O

Figure 2.1: Supervised Learning Scheme. rwp

In Figure 2.1 there is a block, named DG, representing the Data
Generator, that provides the data according to a generic marginal
distribution p(x). The data set X(¢) is sampled from DG and delivered
to the Oracle O which, for each observation in this data set, knows
the target variable y. In other words, given x, the oracle, somehow,
know the target y, so an approximation of the conditional distribution
p (ylx) is known. A Model M can be set with the data x and the target
variable y, in order to be used by an Estimator E to classify or predict
the target variable y* for a new data x*, given a set A of parameters «.
Model M can be fed with the output estimation {j in order to help in
the fine tuning of « parameters.

supervised schema
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If, for a given problem, there is no information about the target
variable, and the only available information is a data set X =
{xi}l=,, 1 composed by n,, observations of the input variables, what
can be done is try to uncover the data structure. In the Unsupervised
Learning schema the main goal is, broadly speaking, to estimate the
densities that are like to have generated the data set X(*). As shown in
Figure 2.2, the conditional probability p (ylx) isn’t known, i.e., there is
no labeling agent in the UL scheme. Considering this, the model M has
to be built with sufficient ability to extract some structural information
from X, in order to provide to the Estimator one parametric model
to estimate the probability p (x*|0) of a new data x* to belong or not
to one specific class (given a parameter set ). Roughly speaking, we
will look for clusters in this schema.

p(X)
DG

Figure 2.2: Unsupervised Learning Scheme. Rwp

The Semi-Supervised Learning, on the other hand, is considered to
be halfway between Supervised and Unsupervised Learning. For this
learning scheme, both X = {xi,yi}{” and X(W) = {xi}{‘:m 41 data
sets are available, and the objective is try to use them, in some way, to
build the model. The SSL can be performed within two different per-
spectives: in the Supervised Learning Perspective where the learning
task is executed in a supervised scheme with additional structural in-
formation inferred from X*) U X(Y); or in the Unsupervised Learning
Perspective, where the learning task is performed in an unsupervised
scheme with side constraints.

The general scheme for the SSL schema with the supervised per-
spective is shown in Figure 2.3. This scheme is basically the same
for the SL one adding some information from the unsupervised data.
The data x € X(%), for which the target variables y are known by the
labeling agent O, is drawn from DG and provided, together with the
label information, to the model Mg;. This model M differs from the
one in the pure Supervised Learning because it is able to use some
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probability density estimated by the estimator E,,. This estimator, in
turn, was tuned by the unsupervised model M,,. By the way, the M,
model works together with the data x € X(*J, whose output variable
values are not known by the Oracle, and, of course, with the data from
X, both drawn by DG from the same distribution.

7y* v : :
p(x € {X“ U x"“}|0)

Figure 2.3: Semi-Supervised Learning Scheme within the Supervised Per-
spective.RWP

Figure 2.4 shows the scheme for the SSL under an Unsupervised
Perspective. The approach for this perspective is based on the Unsu-
pervised Learning scheme, adding the labeling agent to handle with
the part of data whose target variables are known. Then, the model M
has to provide some probability density inferred from the input data
densities with support of the labeled data. In other words, the search
for natural clusters in the data has to be consistent with the labeled
data.

There are a lot of real problems where do not exist only labeled
data. For example, just to mention a very simple one, every day a lot
of web pages are created and stored in the internet and not properly
classified or indexed. So, problems like data mining in the internet
count with a huge unlabeled data set (not classified web pages). It is
important to notice that these unlabeled data sets are usually huge
when compared to the labeled data set, i.e. the number of unlabeled
instances is much bigger than the number of instances of the labeled
data set (ny >> ny).

This is, by the way, an important argument in favor of performing
SSL. As ng is too small, the labeled data set X!) have so few obser-
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p(YIX)
o]

lxi X € {x(u) U X(L)}

p(X)
DG

E<9_M

lp(xﬂe) 1y - XO

Figure 2.4: Semi-Supervised Learning Scheme within the Unsupervised Per-
spective. RWP

vations, that they are not sufficient to represent the class-condition
densities (undersampling), favoring the occurrence of problems as
biased sampling. This means that these few samples may have been
obtained by a very specific condition, so, they are biased by this con-
dition, for example, in the case of on-line polls. Individuals that have
more strong convictions are more likely to fill the poll rather than
persons with weak convictions about the subject. This fact could be
even worse if the assumption of i.i.d. of the data is not meet, then,
having more information should be interesting. In that sense, if there
are a lot of data, even unlabeled, probably it is possible to get some
useful structural information from data distribution, which could be
used in order to increase the model accuracy. In other words, as the
learning problem may not be completely specified by X(*), maybe,
prior information (or assumptions) will be needed, and, the knowl-
edge about p(x|0) should improve the estimation of p(yl|x). That is
why the Semi-supervised approach is used in the learning task.
Together with all these problems, frequently, the learning task is
faced with another important detail: in many problems, not only the
small number of labeled instances is the main problem, but also the
number of variables. Nowadays, with the advance of technologies,
like microarrays analyses in the bio-informatics field for example, the
number of variables could reach thousands, or even tens of thousands.
In theory, dealing with large number of features, especially when
it is larger than the number of instances (nf >> my), is possible,
but, in practice it couldn’t be feasible. Problems like the “curse of
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dimensionality” [96], “concentration of measure phenomenon” [96]
and overfitting have to be taken into account. Of course, as the required
size of the labeled data set, in order to assure good representation of
the data densities, is not met, two actions could be taken in order to
avoid or minimize these problems:

* label new instances: but labeling data is, in general, very costly
and time demanding. It would be nice, however, by definition,
this is not a feasible solution;

* reduce the number of variables: if we succeed in finding redun-
dant or irrelevant features we can eliminate them and reduce
the dimension of the data set.

So, feature selection seems to be a good way to deal with these
problems. In order to have a broader view of the problem that we
want to address, we will formally start defining its scope. We are
interested in dealing with databases characterized by a large number
n¢ of features, a small number n; of labeled instances and by a high
number n,, of unlabeled samples. The data set X = {X( uXx}
is defined by the union of the labeled data set X = {xi,yi}?“ and
the unlabeled data set X" = {xii=,, 1 where each instance is de-
fined as a vector x; = {xi,1,Xi2,...,Xin,} Where ny is the number
of features, and the labels or target variables are defined as a vector
Yi ={Yi,1,Y12,-..,Yin,J being n, the number of target variables. In
our case, for simplicity we will consider only one output variable
then y; will be the class label or the target value for instance x; in the
labeled data set. Finally, lets define that the data set X has n, >>n,
and ny >> ng + ny.

Performing feature selection in a data set with a small number
of labeled instances, whose number of features are huge, tends to
fail if done in a Supervised scheme. For example, the relevance of a
feature can be measured by its correlation with the target variable
and, when evaluated in a data set too small, features that seems to be
very relevant, could not be at all. On the other hand, unsupervised
methods do not take into account the labeled information, which are
few but important. As the problem may not be completely specified
by X(®) or X(*) separately, maybe, considering the X(*) data set with
some additional information from unlabeled data set X*) could help
the feature selection task.

Lets define the set F = {ﬁ,fz,...,fj}?; of all features, where

each feature f; = {f;1,fj2,...,fj, )i, * is a vector composed by the
values of feature j of all instances. The selection of a minimal feature
subset I', where I' C F, which is necessary and sufficient to induce
a model capable to explain the data generation and rightly map the
input data to the target variable, using both the labeled and unlabeled

data sets is called Semi-Supervised Feature Selection.

11

problem definition
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In the same way that was defined before for the Semi-Supervised
Learning, in this selection scheme, both X0 = {xi,yi}?"' and X4 =
{xi}{‘:ne 1 data sets are available, and the objective is try to use them,
in some way, to build the model. The Semi-Supervised Feature Selec-
tion schema (SSFS) also can be performed within the two different
perspectives: within a supervised perspective or within an unsupervised
perspective.

The general scheme for the SSFS with the supervised perspective is
shown in Figure 2.5. This scheme is basically the same shown for the
SSL one, but here, the so-called M¢s model has also the capability to
select features. Likewise in the SSL, the data x € X¥), with marginal
distribution p(x), and whose target variables Y are known by the
labeling agent O, is drawn from the Data Generator DG and provided,
as well as the label information, to the model M;¢s. This model is
able to use some information ¥ inferred from X by the unsupervised
model M,,¢s, which in turn, was tuned by a given parameter set ©.
The M,¢s model works with x € X drawn by DG without the need
of known the output variable values. A subset I" is defined by Mg+
and given to a specific learning model M in order to predict the target
variable or classify the data, for any new instance x*. The model M
may need to access the accuracy of the model M if it is a wrapper or a
embedding method.

Xe {X(L)U X(u)}

P X e XU [pX)
. 10

X* Y

rck
(X1,Y) ¥(p(x). @)

X

Figure 2.5: Semi-Supervised Feature Selection Scheme within the Supervised
Perspective. RWP

Figure 2.6 shows the scheme for the SSFS under the unsupervised
perspective. Basically, the model M, ¢, given a parameter set © tries to
select features based on the data densities over all instances in X and
using the label information given by the labeling agent O for the part
of data whose target variables are known.
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P(Y[X)
@ o

X e X(L)
p(X)
DG X e {XOyU X} o
X*
rcF
) Y e XU
M (X ’Y) Mqu -
X0

Figure 2.6: Semi-Supervised Feature Selection Scheme within the Unsuper-
vised Perspective. Rwp

To classify any semi-supervised method into one of these paradigms
is not always a simple task. Nevertheless the semi-supervised methods
proposed here in this thesis are more likely to be classified into the
semi-supervised feature selection scheme within the supervised perspective.
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STATE-OF-THE-ART

Feature Selection is a topic whose importance is growing enormously
lately, especially in fields like medical research, financial analysis, data
mining and imaging, just to cite a few ones. There is a wide range
of applications in these and other fields, like EEG recordings and
gene analysis which have, among their most important objectives, the
attempt to better understand the pathologies and, obviously, find more
adequate treatments. Analysis of financial time series by the stock
market agents and the consumer behavior by credit card companies
are also applications that deal or produce huge data sets and have
been strongly demanding the utilization of tools to “select the features”
that are more relevant for their analysis.

The principal aim of feature selection is to solve a problem using
as few variables as possible [44], either for data mining, function
approximation or identification.

The fact that the means for collecting data are becoming more easy
and cheap, coupled with the very need to understand the problems
and find solutions, like in medical researches using gene expressions
of cancer tumors for example, produces incredibly large databases.
However, just collect as much data as possible does not means that
it will be more easy to solve the problems. Intuitively we are led
to think that more information is better than less information, but
having a lot of data does not mean that we have the right information.
Then, problems related to the increase of the space dimensionality,
like redundant or irrelevant information, the “curse of dimensionality”
or the “concentration of the Euclidean norm” [96] arise and have
to be considered in order to be successful when dealing with such
databases.

It is difficult to analyze these databases because they are large in
terms of the number of observations, and because of the large number
of variables. It is very different to analyze one hundred observations
of three-dimensional data, whose data can be visualized in a three
dimensional graph, from analyzing one hundred instances with thou-
sands of features, as is the case in gene analyses applications. For such
large number of variables it would be necessary near n™f instances to
overcome the curse of dimensionality problem. Especially considering
that many classical analysis tools are developed for n >> n¢ and
under the assumption that data is normally distributed, which is not
usually true in real problems. In these cases feature selection is a way
to overcome all these difficulties.

15
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Nevertheless, there is another specific characteristic of these large
databases that has to be considered. It is not so easy to collect data that
are associated to the output variables or to the target concepts, for a
given problem, because labeling data is costly and time consuming [45].
Therefore it is usual to find data sets composed with more unlabeled
data than labeled data. In the data mining domain, for example, when
someone types some words in the search engine of his browser, he
want to receive a list of “all” pages related to that subject. However,
there are thousands or even millions of web pages on the internet,
without any proper index or classification about their contents. Of
course the search mechanism, in order to return to the user the list
of web pages most related to a specific subject, can deal only with
some well indexed web pages, but this would reduce drastically the
search space. One good idea is try to get some information from
the large number of non-indexed web pages. The feature selection
performed in such way, using labeled and unlabeled data, is called
Semi-Supervised Feature Selection (SSFS) and this concept will be
better explained in Section 3.3. Like in this example, there are a lot
of problems sharing the same characteristics: high dimension, few
labeled instances and a lot of unlabeled ones. The challenge is to use
some structural information from the labeled and unlabeled instances
in order to improve the solutions.

To reduce the number of features of a data set, there are three general
strategies where, more or less, algorithms could be classified. In the
first strategy there are the so-called filter methods whose objective is
to rank the features according to some relation (or correlation)[58, 72]
between the input variables and the target concepts [106, 105, 62].
These methods are fast and easy to implement, but, filters that use a
univariate index, in general, fail in considering the relevance of a given
feature in the presence of other features [44]. In the second strategy,
the algorithms are called wrappers and they access the accuracy of a
given model in order to find the best feature subset. Technically they
are the best approach, but they usually have to perfor an exhaustive
search over all possible subsets of features which is costly and, even
for problems with relatively small dimension, unfeasible. The third
category of methods refers to the embedded algorithms. As Wrapper
methods, embedded ones uses the model as part of the selection
process, but perform feature selection during the training process [26,
85, 89].

The feature selection task can be also classified into three distinct
categories according to the type of available data. This classification
was explained in details at item 2 and here we limit ourselves to list
them with a brief resume of their characteristics:

* Supervised Feature Selection: where there are only labeled data
available, to perform the task in a supervised scheme, as detailed
at item 2;
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¢ Unsupervised Feature Selection: the data has no labels or target
variables, and the selection task has to be done in a unsupervised
scheme;

¢ Semi-Supervised Feature Selection: there are both labeled and
unlabeled data available to perform the task.

Many methods of each one of these categories can be implemented
in, at least, two basic search strategies named Forward Selection or Back-
ward Elimination. In the forward feature selection the algorithms begin
with an empty set of features and go on adding relevant variables,
given previously selected variables. This strategy has smaller capabil-
ity to finding more complementary features, compared to backward
feature selection, because it starts within a context of none selected
feature. In the other hand even the smallest nested subset is predictive.
This last characteristic is more interesting when dealing with the trade
performance for number of features. The backward elimination begins
with a set of all features and goes on eliminating irrelevant variables,
given the remaining selected variables. This method is capable of
finding complementary features, because it start its analysis with all
features, however, its performance is degraded for smallest nested
subsets [42].

FEATURE SELECTION VERSUS FEATURE EXTRACTION

The term feature extraction has a different meaning from feature selection.
They are different in the sense that the second one selects a reduced
subset from the set composed by all features, while the first one aims
to construct a second smaller set of variables, using all features from
the original set. In the literature there are a lot of methods that perform
feature extraction and some of them are very popular as Principal
Component Analysis (PCA) or ISOMAP.

The PCA [56] method transforms the data to a new coordinate
system in which the greatest variance of projected data will be the first
coordinate. The ISOMAP [88] method tries to discover the manifold
structure generating a mapping that preserves the geodesic structure.
Other methods that perform feature extraction also can be cited, as
Locally Linear Embedding (LLE) [78], Laplacian Eigenmaps [9], a
linear method called Locality Preserving Projections [50] (LPP) and
a method that tries to find the low-dimensional representation of
each data point, looking for a function that minimizes the error when
reconstructing the high-dimensional data point representation [104].

Another well known method is the supervised Linear Discriminant
Analysis one (LDA) [32], which calculates projection vectors in order
to maximize the between-class-variance and minimize the within-
class-variance of projected data points. In [2] the authors extend this
method to the semi-supervised case, the SDA (Semi-supervised Dis-
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criminant Analysis), whose objective is to find a projection, respecting
the discriminant structure inferred from labeled data, and respecting
the intrinsic geometrical structure inferred from both labeled and
unlabeled data. The labeled data is used to maximize the separabil-
ity between classes, and the unlabeled data is used to estimate the
intrinsic geometrical structure of the data.

In [103] the authors proposed the so called SSDR algorithm (Semi-
supervised Dimensionality Reduction). This method tries to preserve
in the projected low-dimensional space, the structure of original data
space (with high-dimension) and the pairwise constraints previously
defined. It exploit the must-links and cannot-links constraints together
with unlabeled data. Its motivation using unlabeled data is enhance
performance and stability when constraints are few.

Hou et. al. in [54] extend the Semi-supervised Dimension Reduction
method [103] cited before, in order to use multiple representation
forms of data, employing the domain knowledge in the form of pair-
wise constraints.

Alternatively, in [101] the authors tries to use some prior information
to improve the stability of solutions, withal, they show that in the
case of LLE and Local Tangent Space Alignment methods the prior
information only helps in limiting the freedom of translation and
scaling, and, when applying to ISOMAP method, it does not result in
any important improvement.

All these methods, somehow, tries to project the data into a new
feature space with reduced dimension, nevertheless, in this thesis we
are interested in deal with the Feature Selection task, instead of Feature
Extraction.

In the literature there are a lot of methods that perform Feature
Selection in a supervised and in a unsupervised way. In this section
we intend to present some of them, trying to explain their main ideas
and assumptions before introducing properly the state of art of the
semi-supervised feature selection. It is important not only know the
existing methods related to the semi-supervised feature selection task,
but also to search for ideas in the purely supervised and unsupervised
methods in order to get some good insights to our goal.

3.1 SUPERVISED FEATURE SELECTION

In the following lines we present some existing supervised methods
as examples of each one of the approaches mentioned before: filter,
wrapper and embedded methods, which could also be classified as
univariate or multivariate methods, or even a mixture of concepts. All
these methods are based on a supervised feature selection paradigm
which can be derived from the general scheme to perform the super-
vised learning as shown in Figure 2.1 from Section 2.
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Pearson based method

We start with one classical individual relevance index that is very
simple and well known, the Pearson correlation coefficient [71]. This
coefficient is shown by equation 3.1:

C(j) = 20 (% _72_‘)') (yi — )| :
\/Z{‘:l (x1; —%5)" X121 (Y1 — 1)

where n is the number of instances, Xj is the vector containing all
instances of the j'™ feature, Xy, is the it" instance of Xj, y is the vector
containing the target values and the bar notation means average over
the i elements of Xj.

This very simple linear method is a univariate one, because it makes
independence assumptions between features. The features are ranked
according to their coefficients, with a low computational and statistical
complexity. It has a linear computational cost with respect to the num-
ber of features and instances. Nevertheless, the fact of not considering
the effect of the iterations among features is its drawback, because
single features that do not have any relevance, can be extremely useful
when considered in the presence of others! This constitutes the main
reason that why we do not use this coefficient in the development of
our methods.

, (3.1)

Gram-Schmidt based methods

The Gram-Schmidt orthogonalization procedure [6] can be applied
in a method to select features. It is a linear multivariate and selects
variables by adding progressively variables, which correlate to the
target, in the space orthogonal to the variables already selected.

In the work of Oukhellou et. al. [69], a version of Gram-Schmidt
orthogonalization procedure is used to iteratively rank the features. In
a first step the relevance of each feature is determined measuring the
angle between itself and the model output. The feature with the lower
angle is then better ranked. In a second step the method orthogonalizes
the remaining features with respect to the first ranked one. In the
sequence, it chooses the next feature with lower angle between itself
and the model output, as done in the first step. And the procedure
goes on recursively until all features are ranked. Once all features are
ranked a threshold has to be fixed in order to determine the number
of features in the final selected subset. The Akaike Information Criterion
is used to set this threshold, however it is efficient when the number
of observations is much greater than the number of features. If it is
not the case other criterion is used. A random feature (descriptor)
is created and added to the initial feature set. The method rank all
features, including the random feature, using the orthogonalization
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method as explained before. At the end, all features ranked below the
random feature are considered irrelevant and discarded. However, it
is necessary to generate a lot of random descriptors to make a good
estimation of the cumulative distribution function of its rank.

This last criterion is applied in another work [85] in a slightly
different way. The Gram-Schmidt method is also used to rank features,
but in this case a new procedure to stop selection and to select the best
ranked features was developed. The idea is not to rank all features
and to select a threshold, but to stop the process at any point. The
criterion is also based on the cumulative distribution function of the
rank position of a random probe added to the initial feature set. It
states that since the probe is a random variable, its rank position is
also a random variable. At each step of Gram-Schmidt method the
features are orthogonalized, and then the feature with smallest angle
value related to projected output vector is selected. The cumulative
distribution value is then evaluated and if this value is smaller than
a defined risk this feature is definitely selected and the next step of
Gram-Schmidt can be performed. Otherwise the process is stopped.
This risk is defined as being the probability of the selected feature be
less significant than a random one (probe).

Recursive Feature Elimination Support Vector Machine algorithm

The Recursive Feature Elimination Support Vector Machine algorithm (RFE-
SVM) [43] is an example of a backward elimination wrapper method.
The idea is very simple: a SVM is trained and then, the feature with
smallest weight in absolute value is discarded. Then the model is
trained again without this feature and the process continues recur-
sively until the desired number of selected features is reached. Of
course, this method has a expensive computational cost that could be
a little less if more than one feature is discarded at each iteration, how-
ever, it can compromise the optimality of the result. This multivariate
method can be extended to the non-linear case too.

RELIEF based methods

Feature Selection, by definition, is the problem of selecting one small
feature subset which is “ideally, sufficient and necessary” [58] to rep-
resent the target variable (or target concept). Filter methods usually
evaluate a feature subset by a criterion function and, of course, with
an exhaustive search over all possible feature subsets, the minimum
subset can be found, but this option, mostly, is not feasible. On the
other hand, heuristics strategies cannot guarantee optimality. Instead
of searching over all feature subsets combinations, RELIEF performs a
direct search over the set of all features, assigning different weights to
each feature and then, identifying those that are statistically relevant.



3.1 SUPERVISED FEATURE SELECTION

The supervised RELIEF method was first proposed by Kira et al. [58],
and its main propose was to avoid the problem of an exhaustive search
in a Feature Selection framework, or even prescind from choosing an
heuristic strategy to this search. It is a non-linear feature ranking filter.

RELIEF is based on the maximal margin concept, so, the weight
calculated for one feature will be as high as discriminative this feature
could be. Roughly speaking, this method takes for each instance in
the training set, the nearest neighbor from the same class (Near Hit)
and the nearest neighbor from the other class (Near Miss). There-
fore the distance’ between each instance and its near hit and near
miss neighbors, for each feature, is evaluated. The Relevance value
assigned to each feature will be the sum of the difference between
these two distances over all instances. The far from each other, along
the axis defined by the considered feature, are these differences for
each instance, the more discriminative is this feature and the larger is
its weight. Finally the selected features will be those whose relevance
values are higher than a given threshold.

It is important to highlight that RELIEF only works well if the
relevance values of the relevant features are sufficiently larger than
those of the irrelevant features, and, of course, if a threshold can
be defined to split them. However, these are not the only problems
for RELIEF. As the search is performed assigning weights to each
feature instead of selecting subsets, these weights can be thought as
a space mapping, therefore, the features in the original data space
are being mapped into a new feature space that we will call induced
feature space. The problem here is that two instances that are close in
the original feature space, may not be, in the induced feature space.
Another important problem is concerning the margin definition: the
margin is calculated as an average margin and any outliers will have
a high influence over its value. Then, the I-RELIEF [86] was developed
based on RELIEF in the attempt to avoid these problems, being able
to handle with large data sets.

The main idea of I-RELIEF, to overcome these issues, is to compute
the margin in the “induced” feature space. But in this case, the weights
are not known before learning, so the solution was developed one
probabilistic model where the neighbors are treated as “latent vari-
ables”. The margin defined in terms of this probabilistic model takes
into account the probability of neighbor of an instance belonging to
the same class of another one or not. See [86] for details.

This last method (I-RELIEF), was extended to the semi-supervised
case in [62], considering the margin of the unlabeled data (large
margin principle) in the objective function of the Logistic I-Relief
method presented in [86]. This semi-supervised method is detailed in
Section 3.3.

1 in this case, was used the euclidean distance
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Optimal Brain Damage

The central idea of OBD method [26] (Optimal Brain Damage) is to
determine, in a neural network, which are the connections (weights)
to be pruned first using the saliency value. The saliency measures how
important is one parameter in relation to the output of the network,
or, in other words, which are the weights, that when deleted, less
affects the training error. Basically, one has to train a network, evaluate
the saliency values of each weight, and discard the one with the
smallest saliency value. In this work the saliency of each network
parameter is evaluated using one meaning justified formula, and not
just considering the magnitude weights as a measure of the saliency.
See [26] for more details. The procedure is recursively performed
until a stopping criterion is reached. OBD is an example of backward
elimination embedded method. It is non-linear and, as all variables
are considered together in the calculations, it is a multivariate method.

Mutual Information based methods

In [61] the authors propose a very simple supervised method to select
the important features using the mutual information as a similarity
measure. Similar features are clustered in an hierarchical way and
after the clustering step, the relevance of each cluster to the output is
evaluated within a forward procedure. The Mutual Information (MI)
evaluated between the features is used to evaluate the redundancy in
the first step and the MI between the features and the output variable
is used to evaluate their relevance in the next step. There is one slight
detail in the way that they apply the hierarchical method: here only
consecutive features could be clustered because the method was being
applied to a frequency spectral data. The clustered features are then
replaced by a mean feature. For further information please refer to
[61].

Another method based on MI to select features was developed by
Frangois et al. [35]. It uses the permutation test to set a threshold
for the mutual information between each variable to the output and
therefore select those features whose MI value is greater than this
limit. The permutation test is also used in [92, 28] to find statistically
significant relevant and redundant features by means of filters using
mutual information between regression and target variables. After
that, good candidate feature subsets are searched by a wrapper, taking
into account the regression model. This is an hybrid filter/wrapper
features selection algorithm.

Here we presented only some examples of supervised methods.
A complete review on this topic is beyond the scope of this work,
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however, a very good review on these supervised methods and feature
selection can be found in [44].

3.2 UNSUPERVISED FEATURE SELECTION

Given the nature of the problems that we want to address, and the
fact that we have to deal with a lot of unlabeled data, we decided
to give an special attention to the unsupervised feature selection
methods. Maybe, we can get some good ideas in order to develop our
method and achieve our goals. These methods have some interesting
advantages and among then we can highlight that they are unbiased
by any experimental expert, they perform well in the absence of any a
priori knowledge and reduce the overfitting risk. Nevertheless, their
main drawback is that they rely on some mathematical principles with
no guarantee that it will work for any kind of problems. These feature
selection methods are based on a unsupervised paradigm which can
be derived from the general scheme to perform the unsupervised
learning as explained in Section 2 schematized in Figure 2.2. We
found some interesting unsupervised methods in the literature and
the following paragraphs are dedicated to their presentation.

KNN based method

The first method to be presented is a KNN based one which performs
feature selection using feature similarity. In [68] the authors propose
a new metric called maximum information compression index (MICI) to
be used in the algorithm. This new metric is defined as the smallest
eigenvalue of the covariance matrix evaluated for any two random
variables

The value of MICI is zero when features are linearly dependent

indicating that these two features are very similar and can be grouped.

Basically, the algorithm selects the most compact feature set, i.e. the
cluster of neighbors of each variable which has the smallest distance
to its ktM neighbor is selected. Then, all k nearest features of the
selected cluster are discarded, and process is repeated until all features
have been selected or discarded. This method is very sensitive to the
parameter k and adjusting this value is not a simple task. Please refer
to [68] for a detailed explanation.

SVD-entropy based method

One very interesting idea is shown in [95]. In this work the authors
propose a new unsupervised criterion based on the SVD-entropy
(Singular Value Decomposition). This SVD-based entropy is different
from the one defined based on probabilities. Here the the SVD-entropy
is defined based on the distribution of the eigenvalues.

23

KNN



24

SVD-entropy

collinearity

iterative method

STATE-OF-THE-ART

This entropy varies between o and 1, meaning that the distribution
of the eigenvalues varies from very non-uniform to uniform. The
contribution CE; of the it" feature of input data set X, in the value of
the SVD-entropy Hsvp is defined as

CEi =Hsvp (X) —Hsvp (X\i) , (3-2)

using the leave-one-out comparison method, where the ith feature is
removed from the second term of Equation 3.2.

Finally, features can be ranked by their CE; values and selected by
different strategies:

* features with CE larger than the mean value plus standard
deviation has a high contribution and could be selected or;

e features with CE smaller than the mean value minus standard
deviation has a low contribution and could be discarded.

For further information please refer to [95].

An unsupervised dimensionality-reduction technique

In [64] a quite simple method is developed. The scalar product of the
unit-norm vectors of the features is used in order to check collinearity.
Features that are very collinear are discarded. The scalar product
P;; between the normalized vectors associated to features i and j is
evaluated and assumes a value in a range between o and 1. The closer
to unity P;; is, the higher the collinearity between variables i and j
is. The next step is to define a collinearity threshold to be used to
determine which features are redundant and should be removed. This
process is nonsupervised since there is no need to know about sample
category a priori. In [64] this method is used as a first step in order to
eliminate redundant features and a second feature selection method is
applied to the remaining feature subset. For further details the reader
is encouraged to read the refered work.

Iterative feature selection method

There are some methods that aim to find the features that best explain
the output or that are very correlated to it. In the absence of labels, in
other words, in the lack of the target values this kind of correlation
cannot be evaluated. However, in [102] the authors try to find the
features that best explain the data cluster structure. The idea is very
simple: one feature will be considered irrelevant to the data cluster if
this cluster is indistinguishable when projected onto this feature.
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A measure based on the variance of each cluster is defined as shown
in Equation 3.3:

k 3 2
Score —lZScore-—lZ 1—m 1= n (3.3)
1= k 1 — K S% s L= 1,1y, 3.3

j=1 =1

where k is the number of clusters, sfj is the variance of the cluster j
over the dimension 1, s? is the global variance considering all data over
the dimension 1 and n¢ is the number of features (dimension size). The
Scoreyj is the relevance measure of feature 1 with respect to the cluster
j, then, the Score; will be an average of the relevance measure of each
cluster with respect to the feature 1. If Score; is near 1, all the cluster
local variances, over feature 1, are considerably small when compared
with the global variance in this dimension. This method is sensitive
to the considered number of clusters and, trying to mitigate it, the
authors used an cluster method called Rival Penalized EM Algorithm for
the Gaussian Mixture Clustering (see [102]) that automatically defines
the final number of clusters. The ideas contained in this work inspired
the development of the semi-supervised method proposed in Section

4.2.

Multi-cluster based method

The main idea in [18] is to find a feature subset able to preserve the
data intrinsic geometrical structure, found in the original space. In
order to do that, the method developed here is based on spectral
clustering techniques. Basically, the first step of the algorithm is to
compute the graph Laplacian L, from a graph built using the data set
X. With L the following generalized eigen-problem can be solved:

LY = AD3Y, (3-4)

where D is a diagonal Matrix, the A is the eigenvalues and 9 is the
eigenvectors of the generalized eigen-problem. Each row of 9 is the
“flat” embedding for each data point, or, in other words, the “unfolded”
data. Selecting the K eigenvectors with the largest eigenvalues, a rele-
vant feature subset can be found solving the Li-regularized regression
problem (LASSO) stated in equation 3.5:

min || 9 — X" ay |2 (3-5)
ax
st [ak <y,

where ay have the combination coefficients for different features in
approximating ¥y, and vy is a parameter set using the Least Angel
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Regression (LAR)[31] that specifies the cardinality of ay. In other words,
LAR defines the number of non-zero entries, which is much more
interesting for feature selection according to 3.5. Therefore features
can be ranked by a score defined as

Scorej = m]?x lax; |, (3.6)

in order to select the top ones.

Clustering ensembles method

The process of selecting features without knowing the labels, can be
viewed as a search for the minimal feature set that, when submitted to
any clustering method, has the ability to reproduce, approximately, the
same cluster structure, if this same clustering method is applied to the
data set considering all features. This is the main idea in [53]. In this
work the clustering ensembles method is used. The authors define how
to compare clusters based on the instances shared and not by each
cluster, and define a relevance measure to select the best candidate
feature subset, based on the clusters similarity. The search for the
optimal feature subset is performed using a genetic algorithm.

Just in order to cite a few more methods, there are many other
unsupervised feature selection methods like in [97], [13] and [51]. In
the first one a forward scheme is used to select the features based on
the value of the Residual Mutual Information calculated by a fuzzy
algorithm. The main idea in the second method[13] is to find a fea-
ture subset whose PCA projection is very close to the PCA projection
considering all features. In [51] the Laplacian score is used in a filter
approach and examines the intrinsic properties of the data to evalu-
ate the features prior. A feature is good if data points that are close
enough to each other in the original space, remain close in the reduced
subspace.

3.3 SEMI-SUPERVISED FEATURE SELECTION

Despite the large number of methods related to the supervised and
unsupervised feature selection subjects, there are too few works deal-
ing with the challenge of using the unlabeled data, in addition to the
labeled one, to help with the Feature Selection task. Some of them are
wrapper-types, i.e. they access the model accuracy in order to evaluate
the quality of the feature subset and others are filter-type, which in
turn are more likely a pre-processing step, selecting features regardless
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the model choice. Each one of the following methods methods can
be classified in a semi-supervised feature selection scheme with the
supervised or unsupervised perspective as described in Section 2 and
schematized in Figures 2.3 and 2.4 respectively, however this is not
evident so far.

Forward Semi-Supervised method

Following the wrapper strategy the Forward Semi-Supervised Feature
Selection method [77] selects features accessing the accuracy of a
given model. It fits the general scheme for semi-supervised feature
selection in a supervised perspectivepointed in Section 2. Like in other
approaches, this method is based on the assumption that both labeled
and unlabeled data are drawn from the same distribution (they are
ii.d) and in the principle of margin maximization. In this work the
idea is to add one feature per time in a Supervised Sequential Forward
Feature Selection scheme. In this category of wrapper methods at each
iteration, the not yet selected features are added, one by one, to the
set of selected features I', and the accuracy of the model, trained
considering only this new feature subset is then evaluated. The feature
that better improves the model accuracy, is then permanently added
to the set of selected features I'. This process is repeated until a stop
criterion is meet.

However, at each iteration a model is trained using the labeled data
considering only the selected features. Then part of the unlabeled data
is randomly choosen, tagged by this model and added to the labeled
data to perform the feature selection process. This process is repeated
many times in order to avoid a biased distribution problem, or the
bias on the sample selection. At the end of these trials, we count the
frequency which each feature was selected in the previous process
and add, permanently, the most frequent ones to I' subset. For further
information on this method please refer to [77].

The problem here is the computational cost of this method. Even
for problems with a small number of features this exhaustive search
will be unfeasible as well as the time for training the model several
times to avoid the bias on the sample selection and access the model
accuracy.

In the “filter type” approach the existent semi-supervised meth-
ods are based on the margin maximization principle and make the
assumption that all labeled and unlabeled data are i.i.d.. The Semi-
supervised Feature Selection via Spectral Analysis [106], the Local-
ity sensitive semi-supervised feature selection method [105], the FS-
manifold method [99] and the method in [107] apply, somehow, the

27

FSSFS



28

spectral graph
theory

cluster indicator

STATE-OF-THE-ART

spectral graph theory, but they differ in how to apply it. There are
also other filter methods, sharing the same basic assumptions, that
were developed within the logistic I-RELIEF framework [62] and try
to measure each feature discrimination power.

Spectral analysis method

Zhao et al. in [106] developed a semi-supervised feature selection
algorithm based on spectral graph theory (spectral analysis), that
fits the general scheme for semi-supervised feature selection under a
unsupervised perspective like shown in Section 2. It assumes that if
patterns are in the same cluster, they are considered to belong to the
same class. The method searches for clusters, trying to maximize both
cluster separability and the consistency with labeled information at
the same time. This is done by means of cluster indicators. To better
understand this cluster indicator idea, imagine that for two features
we construct their two respective clusters indicators in different ways,
providing cluster structures as shown in Figure 3.1. If we consider
only the unlabeled data (represented by triangles in the figure), both
clusters indicators schemes define good separable cluster structures,
but, if we consider also the labeled information (represented by cir-
cles and crosses), the cluster indicator g; that generated the cluster
structure shown in Figure 3.1a will be more consistent, because all
labeled data inside the clusters are from the same class. Considering
it, probably, the feature f; that corresponds to the cluster indicator g;
is more relevant to the output than the feature f; related to the cluster
indicator of Figure 3.1b.

/
/
P
>
\

(a) Scheme A (b) Scheme B

Figure 3.1: Result of Cluster indicator

The proposition is to transform the features into the cluster indica-
tors of the normalized min-cut method [82]. It is also shown in [82]
that, a vector g, is a cluster indicator only if it is orthogonal to the
elements dm of the degree matrix defined when applying the Graph
Laplacian theory. So, if a feature vector fj is orthogonal to dm, then
it is a cluster indicator and this vector can be evaluated by the sep-
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arability that it implies to the clusters, and by its consistency with
the labeled data. However, as, generally, the feature vectors in the
data set are not orthogonal to dm, then the method transforms them
into orthogonal vectors to dm. This transformation is done using the
FC-transformation equation. Refer to [106] for details.

Once feature f; is transformed into a cluster indicator g; with the
labeled and unlabeled data set, we can evaluate how well the clusters
formed by g; are separated and whether or not they are consistent
with the labels. This is done by means of an equation whose first term
gives a measure of the separability of the clusters formed by g; and
the second term measures the consistency with class labels. At the end,
the features will be ranked according to this degree of quality of the
clusters and all features with this quantity larger than a threshold are
selected to compose the final feature subset I'. For further information
see [106].

Locality Sensitive method

A similar approach, applying the spectral graph theory is the Locality
Sensitive Semi-supervised Feature Selection method (LSDF) [105] . It
can be classified as a filter method because it evaluates a relevance
degree for each feature, despite the model that would be used for the
learning task. It is an extension of the Locality Sensitive Discriminant
Analysis method [17] to the semi-supervised case. This method follows
the semi-supervised feature selection scheme as described in Section
2, however it is not evident in which perspective it is designed.

The principal aim is to discover the intrinsic structure of data,
considering all features, and try to rank these features according
to their contribution to keep the structure found unchanged in the
low dimensional manifold. The labeled data is used to maximize the
margin between the data from different classes and the unlabeled data
is used to discover the geometrical structure of data space. The idea is
quite simple and is based on the margin maximization principle, but
it is a univariate method and it is one of its drawbacks.

Let us consider that two instances x; and x; from the data set X are
close enough to each other, so we could expect that the values of the
features for these two observations are also close to each other, i.e.
[fxi — fijl, with T < k < ny¢, is small, where fy; and fy; are respectively
the values of feature k for instances x; and x;. If we are dealing with
a supervised approach, by the margin maximization point of view,
the feature k will be considered a “good” feature if [fy; — fy;| is small
for instances belonging to the same class and large when considering
instances from different classes. Based on the Laplacian criterion
proposed to score features [51] the LSDF method will consider the
unlabeled data to infer about the geometrical structure and improve
the feature ranking process made by supervised methods. Thus, a
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feature will receive a high score if [fy; — fy;| is small for instances
belonging to the same class or that are close enough to each other, and
if [fii — fi;l is large for instances belonging to different classes.

Shortly, LSDF generates two graphs: one is called within-class graph
G and the other is the between-class graph Gy,. The first one connects
all observations that has the same label or that are close enough to
each other. The second graph connects all observations that are close
but doesn’t have the same labels. The most important features are
ranked according to their scores in such way that these two graphs
structures can be best preserved in the reduced dimension, i.e., close
data points on its original input space, remain near to each other on
the final space, and, in the same way, far data points remain far from
each other. The score of each feature r can be calculated as shown in
equation 3.7,

T
T T

(3-7)

where f; is the feature vector as defined in Section 2, and Ly and L,,
are respectively the Graph Laplacians of Gy, and G,,. Please see [105]
for more details.

FS-manifold method

The so-called FS-manifold method [99] selects an optimal feature
subset maximizing the classification margin between different classes,
while exploiting the geometry of the probability distribution that
generated data (labeled and unlabeled). This is done in a framework
of manifold regularization, where a semi-supervised Support Vector
Machine [10] can be obtained adding a manifold regularization term
|IR||? in a linear SVM formulation [93, 49] as shown in equation 3.8:

.1 2 = 0 o2
min > \W||2+C;£1+2 IR| (3.8)

s.t. yi (wai—b) >1-§1i=1,..,n,
5i P Ol1 = ]I"'/nl

where £ represent the slack variables, w is the weight vector, b is the
bias, x; is the ith input data instance, n is the number of instances, C
is a SVM parameter and p is used to balance the importance between
the two regularization terms, restricted to p > 0. Once again, this
method is based on the assumption that nearest instances share the
same class labels and in the large margin principle.

When minimizing the regularization term || R|%, by constitution, we
are emphasizing that nearest instances have to share the same label,



3.3 SEMI-SUPERVISED FEATURE SELECTION

i.e., this regularization smoothes the decision function with respect
to the data distribution. This can be seen in the regularization term
equation in 3.9:

n

IRIZ=Y" Y (Fxi) —f(x;))* Wi =RT.ZR, (3.9)

i=1j=1

where Wjy; are the weights for the edges between a pair of nodes
(xi,%;) of the adjacency graph, R = [f(x1),...,f(xn)] is the decision
function values over all data examples, and . is the graph Laplacian.
If one instance x; belongs to the neighbors of an instance x;, the weight
value for the edge between these two instances will be large and, in
order to minimize this regularization term, the algorithm has to find
one solution which minimizes the difference f(x;) —f (xj) between the
function values for the considered data points.

Considering the decision function for a linear SVM, represented
as f(xi) = wlx; — b the manifold regularization term is equal to
wl XT_ZXw, which does not depend on the bias b value.

To perform the feature selection, the regularization term is modified
adding a diagonal Matrix P = diag(p1,...pn,), with p; € {0,1}, 1 =
1,..., ¢ where n¢ is the number of features. This matrix will represent
each selected feature. Then, the manifold regularization term will be
wlPXT ZXPw.

However, solving the minimization problem, considering this mani-
fold regularization term is very hard, so the constraint that p; has to
be binary is relaxed to the continuous case. At the end, the selected fea-
tures will be those with p; value higher than a given threshold. More
details about the optimization process developed to solve this problem
can be found in [99]. This method also follows the semi-supervised
feature selection scheme as described in Section 2, however it is not
possible to classify is it has a supervised or unsupervised perspective.

Semi-supervised I-RELIEF

I-RELIEF, from Section 3.1 is designed within a semi-supervised fea-
ture selection scheme under a unsupervised perspective as described
in Section 2 (see Figure 2.4), and only works with labeled instances.
If there is no label, the distances cannot be defined [86]. Meantime,
the margin of an unlabeled sample will have the same absolute value
regardless the class that it belongs to. Therefore, the use of an symmet-
ric cost function to evaluate the margin of an unlabeled sample is the
solution proposed in [62] in order to use the unlabeled data, leading
to the optimization problem shown by Equation 3.10:

31

semi-supervised
I-RELIEF



32

STATE-OF-THE-ART

min [wl; + ochog +exp (—w'z))

szu)z
+ B Z exp , (3.10)

subject to w; > 0 and 1 < j < J, where « and 3 controls the contribu-
tion of each labeled and unlabeled data sets, w is the weight vector,
nl is the number of labeled instances, nu is the number of unlabeled
instances, z is the difference between the distance among the instance
(labeled or not) to the near and miss neighbors, and p is the kernel
width controlling the shape of the cost function. As in [62], by making
wj = vjz the equation 3.10 can be transformed into a unconstrained
optimization problem as shown in equation 3.11 which can be solved
using a gradient-descent based method:

nt
. 2 . '2_ .
min Ivlls + chlog 14 exp Zv]zl(J)
= j
2
(z0)

5 (3.11)

+ B D>

u=nfl+1

In other words, for the semi-supervised case, the sign of the margin
is not relevant. The distance will be always the same, and with the
probability of an unlabeled data belonging to the neighbors of x; of the
same class or not, it is able to evaluate this distance for the unlabeled
data, and then, determine its margin.

Label propagation based method

Another interesting approach was developed by Zhong et. al. in [107],
and the main idea is to iteratively “propagate” the labels from the
labeled dataset to the unlabeled one and perform feature selection
using the “new” labeled data. First they perform any Supervised
Feature Selection on the labeled data X%, selecting a initial feature
subset T'. After that a graph G is built using both labeled X*) and
unlabeled X(*) datasets, considering only the initial selected features,
where each node corresponds to the instances of X0 UX and the
edges are weighted by

2
x- _‘X.
Wij = exp (—H . 32 il > , (3.12)
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where A is a bandwidth hyper-parameter. Then, the labels are propa-
gated using the “Label Propagation” algorithm (see [108]).

Then, based on a confidence measure, the top unlabeled data, that
were tagged by the propagation method, can be selected, i.e., the
tagged unlabeled data with largest confidence, given by expression
3.13, are selected to be added to the labeled dataset with their prop-
agated labels, forming a new labeled dataset X\{,,. Over this new
dataset, they perform again a supervised feature selection algorithm,
construct a new graph and all the procedure is repeated for a certain
number of iterations. The confidence value is given by

| f(1)—0.5|

05 , (3.13)

conf (yi | xi) =

where f is an hamonic function (as defined in [108]) and can be viewed
as the probability of hitting a labeled node with label 1, while 1 —f
can be thought as the probability of hitting a node with label equal to
0.

At the end, the feature subset with highest average prediction confi-
dence is then selected.

One interesting detail about the confidence in Equation 3.13 is that it
has a direct relation with the normalized data margin, i.e., an increase
of the confidence means an increase of the margin and vice-versa.
This method is based on the general semi-supervised feature selection
scheme with a supervised perspective as pointed in Section 2.

Mutual Information based method

The supervised method developed in [61] and listed in Section 3.1
use mutual information as a similarity measure. All steps in [61] were
performed only considering labeled data, however, unlabeled data
could be used in the clustering step, where labels are not needed
at all. It was done in [73] where a semi-supervised feature selection
method within the feature clustering approach was developed. Here
the method cluster features using a semi-supervised metric based
on the mutual information. It uses the Ward method [98] to cluster
features according to the similarity measure between features X; and
X;j, described in equation 3.14:

S(Xi,X;) = o (H(Xi/X;) +H(X5/X))
+ o (MI(Xy,Y/X;) +MI(X;,Y/Xy)) , (3.14)

where H is the entropy, MI is the Mutual Information, X is the input
data and Y is the output variable.

The first term in equation 3.14 is also known by Mantara’s distance.
After the end of the clustering process, the representative feature of
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each cluster will be the one with the larger Mutual Information with
the output Y. This method is designed in a semi-supervised feature
selection scheme with a unsupervised perspective.

S3VM

The Semi-Supervised version of the Support Vector Machines (S3VM)
[100], was used also to perform Feature Selection and was designed
in a general semi-supervised scheme, however it is not possible to
identify its perspective (refer to Section 2 for details). The idea is to
use the S3VM with 1-norm formulation which produces a weight
matrix with a lot of zeros. The features whose weights goes to zero
are not useful and could be discarded. One of the drawbacks of this
method is that it doesn’t work very well for bigger datasets, and there
are parameters to be set. For further information please refer to [100].

Up to this moment the lack of material in the literature about the
semi-supervised feature selection topic is an important constraint, but,
at the same time, is a very big opportunity to develop new theories and
methods. This is an not well explored field and offers a real challenge
to all researchers who wish to launch themselves into this endeavor.

3.3.1 Discussion about semi-supervised methods

As far as we know, there is not any general algorithm capable of
solving any Feature Selection problem for any database, whatever is
the applied approach (unsupervised, semi-supervised or even super-
vised). Each method has advantages, drawbacks and specific technical
characteristics that have to be taken into account when applying it
to the problems. Depending on the own problem characteristics one
method will be more interesting rather than others. For example, it
will depend on the type of available data, the quantity of data (labeled
and unlabeled), the proportions between each type of data, the nature
of these data, the way how it is measured, the type of study, the
objectives, and the available resources like time, hardware, etc.
Frequently, when developing a method, toy problems or real data-
bases, whose desired solution is already known, are used in the tests,
in order to see and prove their efficacy or not. It is easy to be led to
think that one method has to be able to solve any problem and to be
better than the others. However, there will be always some kind of
data or problem that one method could not solve. So, when applying
these methods to any real problem, for which the optimal solution
is not known, there is no simple direct way to verify if the algorithm
output is optimal or not. Actually, a good conduct is to apply different
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methods to the problem and compare their results, always keeping in
mind their main characteristics.

Two very important aspects when comparing any algorithm are
the way how these methods are implemented and the computational
cost associated to each one. Hereafter we do a comparison of the
algorithms addressed in section 3.3, remarking some practical aspects
concerning their implementation and computational complexity.

The LSDF method [105] is a univariate filtering method, meaning
that features are ranked regardless of their behavior when taking into
account the iteration with other features. It is very easy to implement
it and not too much costly in terms of computational complexity. The
cost to compute both the within and between-class graphs are about
(@] (nfnz), where n¢ is the number of features and n is the number of
instances (data points). So, the total cost is also linear with the number
of features, and quadratic with the number of instances O (n¢n?). In
the same way, the univariate filter sSelect method [106] has a similar
computational complexity of O (n¢n?) and it is also very simple and
fast to implement. The Logistic Iterative Relief [62] filter method, on the
other hand, is not so easy to implement but its computational com-
plexity is not so bigger when compared to LSDF or sSelect methods.
Its computational complexity is O (Tn¢n?), where T is the considered
number of iterations to achieve the maximum margin. The FS-manifold
method [99] by the way, is a multivariate filter method that is not
so easy to be implemented and the computational complexity is the
same of a Support Vector Machine [93] adding the cost of solving
the minimization problem. The other filter method discussed in the
previous section is the IteraGraphFS [107]. Despite its easiness of
implementation, it has a high computational complexity: the initial
supervised feature selection step consumes O (n¢n?), building the
graph takes other O (n¢n?). The label propagation step is of the order
of O (n3), the confidence evaluation is O (n), the addition of the top
confident tagged unlabeled data to the labeled data consumes near
O (n¢logn¢), and, to select new features using the supervised schema
costs O (nn?). Finally, the total computational complexity of this
method is O (T (nn? +n3)).

The filter method developed in [73] is quite easy to implement and
not too costly when compared with the others: it is O ((nf — 1)n2)
in addition to the cost of the entropy and the mutual information
estimator considered, that could be high.

On the other hand, the wrapper method called Forward Semi- Super-
vised Feature Selection [77], is quite simple to implement but it has
an extremely high computational cost. Even for datasets not too
large this method could be unfeasible. However it can achieve, when
applicable, the best results. Its computational complexity is of the
order O (Tnfnz) plus the cost of the considered classifier (CL) at
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each iteration multiplied by R times to get statistical precision, i.e.
O (T O(CL)R).

3.4 MUTUAL INFORMATION AND ITS ESTIMATION

In the literature there is some feature selection methods were devel-
oped applying information theory. It uses the mutual information as a
similarity measure to eliminate redundant features or as a relevance
measure in order to eliminate irrelevant ones. A feature selection
method is developed on this Thesis using a similarity measure also
based on the mutual information as detailed in Chapter 4. Depending
on the nature of data, mutual information is evaluated using estima-
tors for the discrete or continuous case. Nevertheless real problems
are composed by a mixed set of continuous and discrete variables,
and no specific estimator is developed for this case in the literature
as far as we know. Usually people do not care about this question
which can lead to some inaccuracies that can be an issue depending
on the problem. In this section we recall basic definitions of entropy
and mutual information, that are important to the development of
our feature selection method and in order to be able to develop an
appropriate mutual information estimator for a set of mixed types of
variables in Chapter 6.

3.4.1 Mutual Information definition

The first attempt to establish a measure of information is given in the
20s through the work of Nyquist, Hartley and Fisher, but it was only
in 1948 that Shannon [81] established the most important concepts and
fundamentals that led to the current theory information. Information
theory has important contributions in many fields as in communica-
tion theory determining the maximum data compression (entropy)
and the maximum transmission rate of communication (channel capac-
ity) [24], as well as in computer science (Kolmogorov complexity) [63],
in statistical physics (thermodynamics) [33], in statistical inference
(Occam’s Razor) [12], and in probability and statistics. Concerning
data compression and transmission, quantities as entropy and mutual
information are probability distribution functions that support the
communication process.

The entropy of a random variable is a lower bound on the average
number of bits to represent this random variable [24]. As an example,
consider one discrete random variable whose distribution is uniform
over 64 different outcomes. Each outcome can be identified by a label,
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so six bit strings are enough to represent them. The entropy of a discrete
random variable X with probability mass function p(x) is defined as

Zp )logz p (x). (3.15)

The entropy defined using logarithms to base 2 measures the average
uncertainty in the random variable in bits. In other words, it will be
the number of bits, on average, to describe the random variable (to
label each possible outcome). Note that entropy only depends on
the probabilities and not on the actual values taken by the random
variable , therefore it is a functional of the distribution of X. Unless
otherwise specified, all logarithms on this thesis will be taken to base
2, so the indication 2 will be omitted in notation. Applying the entropy
definition above to the last example we have

1
Zp iJlogp (i 267410964 6 bits.

The entropy is a non-negative quantity (H (X) > 0) once probabilities
are defined between o and 1.

Likewise the entropy for a discrete random variable was defined,
the joint entropy of two discrete random variables X and Y with joint
distribution p (x,y) can be defined as

- > plxyllogpxy).

xeXyey

It is also possible to define the conditional entropy that is the en-
tropy of a random variable conditional on the knowledge of a second
random variable as

HXY) = > p)H(YIX=x)
xeX
= =) ) plxyllogp(yk)
xEXY€EY

The joint and conditional entropies relate by the Chain rule given by

H(X,Y) =H(X)+H(YX)

as can be seen in [24].

If there is some dependence between these two discrete random
variables, the uncertainty of one variable will be reduced by the knowl-
edge of the other. This reduction in uncertainty is called the mutual
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information and it is the measure of the dependence among two ran-
dom variables. The mutual information between two discrete random
variables X and Y with joint distribution p (x,y), and marginal proba-
bility mass functions p(x) and p(y), is given by

p(x,y)

)p(y) (3-16)

MI(X,Y) = H (X) — H(XIY) = %) lo
Zy y) QN

Mutual information has some interesting properties:
¢ it is symmetric in X and Y;
* it is non-negative;

e if the two variables are completely independent this quantity
will be zero in theory.

The concept of entropy for the continuous case receives the name of
differential entropy . Let now X be a continuous random variable with
probability density function f(x), therefore, the differential entropy h
of X is defined as

h(X)=— L f(x) log f(x) dx, (3.17)

where S is the support set of X where f(x) > 0. As in the discrete case,
the differential entropy only depends on the probability density of the
continuous random variable.

Extending the definition of differential entropy of a single continu-
ous random variable to a set of two continuous random variables X
and Y with joint density function f(x,y), we have the definition of the
joint differential entropy as

h(X,Y) = —Jf(x,y) log f(x,y) dx dy.

As X and Y have joint density function f(x,y), the conditional dif-
ferential entropy can be defined as

R(XY) = —Jf(x,y) log f (xly) dx dy,

and, finally, the mutual information between these two continuous
random variables is defined as

MI(X,Y) = Jf(x,y) log dedy
= h(X)—h(X]Y)
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3.4.2 Estimation

In order to evaluate the mutual information, densities of dependent
and independent variables should be estimated. In practice, evaluating
mutual information is not straightforward, since it requires a priori
knowledge of the corresponding densities. Usually, information about
densities is not fully available and a proper density estimator is needed.
There are, in the literature, specific estimators to be applied over
datasets composed by discrete variables and over datasets composed
by continuous variables.

Discrete setting

As the entropy and consequently the mutual information are clearly
functions of the data distribution and joint distribution respectively,
they can be estimated by estimating these distributions by its classic
maximum likelihood estimator [67] [55], like histograms.

Continuous setting

When the dataset is composed by continuous variables there are
several approaches that could be applied. In the following we just list
some of them giving an simple overview just in order to show their
principles. For further details please refer to their respective citations.

¢ The Shannon entropy can be estimated (and consequently the
mutual information), for instance, by substituting the density
of the random variable by an estimate evaluated from available
independent realizations, by means of kernel density estimation
[80]. However, the evaluation of the integral requires numerical
integration and it is not a simple task when f is a kernel density
estimator.

¢ Ahmad et. al. [4] proposed to estimate the entropy by

h(X) = —% D Inf(Xq)
i=1

where 1 is the number of elements of X and f is a kernel density
estimate or even a histogram density estimator [48].

¢ Friedman et. al. proposed the projection pursuit density estima-
tion method, where it extends the classical univariate density
estimation methods to higher dimensions in such way that in-
volves only univariate estimation [37].

* Another plug-in estimator is built splitting data estimate. The
samples are decomposed into two sub-samples (Xq = {Xj, .. X}
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and Xy = {Xm4+1,..,Xn}). Xq is used to construct a density
estimate f, and then, f, and Xy, are used to estimate the entropy.
fo can be evaluated by kernel density estimate [46] or even by
histogram density estimate [47].

e Entropy/mutual information also can be estimated using the
cross-validation estimate. This method is also known by leave-
one-out density estimate, where f is estimate by kernel density
estimator based on X leaving X; out [7].

¢ Estimates of entropy based on sample-spacing take into account
the spaces between values of X giving a rough idea of the proba-
bility density: the closer together the values are, the higher the
probability density. This estimate has high variance and have
issues when dimension is greater than one [87].

* Estimates also can be based on nearest neighbor distances. In
fact the entropy is estimated from the distribution of the nearest-
neighbor-distance of data points [59].

* Another way to estimate mutual information is based on a prior
discretization of the random vectors by means of recursive parti-
tioning algorithms [27].

* The one proposed by Kraskov et al. [60] is widely employed
in the literature. Despite yielding high performances for many
problems, even for scarce datasets, the Kraskov estimator is
restricted to regression problems and continuous variables.

A mutual information estimator for classification problems was
derived from the Kraskov estimator [60] and developed by Goméz et
al. [39]. It addresses classification tasks by discretizing the output vari-
able, and can also be applied to multi-class feature selection problems.
Nevertheless, like the original Kraskov estimator, this approach is also
restricted to continuous input variables. However, most real-domain
applications contain not only continuous but also discrete variables,
which are usually treated separately in current applications. When
dealing with problems composed by a mixed set of variables usualy
the continuous features are discretized. However there is a lack in the
literature of an appropriated mutual information estimator able to
handle both discrete and continuous variables togheter. In Chapter 6
we develop such estimator in order to be used in our feature selection
methods.

3.4.3 Feature selection using mutual information

Mutual information [24] has been applied to a wide range of machine
learning problems over the years [61, 73]. It is well established and
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accepted among researchers, especially for estimating uni and mul-
tivariate non-linear relations. Roughly speaking, MI can be used to
estimate the amount of information shared by two variables or groups
of variables, i.e., it is a method to measure their dependencies. MI can
also be viewed as the amount of reduction in the uncertainty of one
variable due to the knowledge of another one [24], and can be applied
to feature selection (Feature Selection (FS)) [8]. In filter methods, for
instance, it can be used as a measure of the relevance of a feature or
a group of features, avoiding the computational burden of wrapper
methods that assess the outcomes of the classification or regression
models in order to determine which features are relevant and which
are not.

3.5 REMARKS

In the literature, there are too few material about semi-supervised
feature selection. Some of the methods found, that deal with this kind
of problem, are based on graph theory ( [106],[105], [99] and [107]).
One of them is based on Information theory ([73]). The method pro-
posed in [73] is the only one that cluster features. The other methods
cluster instances in order to select features. All methods try to combine
somehow the labels and the structure information. We did not found
a similarity measure able to take into account both labeled and unla-
beled data and this is one of our objectives: to develop such similarity
measure and to develop a feature selection method based on it, as
proposed in Section 4.1.2. Also no semi-supervised multi-objective
method to select features was found in the literature, and, the method
developed and proposed in Section 5.4 is a first development to fill
this gap.
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CLUSTERING APPROACH

A common approach to feature selection Fs is to estimate the relevance
and to rank each feature according to its relation (or correlation) with
the output targets [58, 71]. This approach is intuitive and easy to
implement but it usually fails to consider the relevance of a given
feature in the presence of others[45], since most filter methods are
univariate [71, 32]. In this context, mutual information [24] arises as a
propper “relation” criterion, since it is a multivariate measure which
is widely used to evaluate relations among sets of features and output
labels.

Basically, labels and data are the available sources of information to
perform FS. Many methods [58, 61] are able to deal only with labeled
data while others only deal with unlabeled data [68, 64]. However, in
many real situations, the amount of labeled data is not sufficient to
well characterize the relations between input data and output classes.
Since labeling by human experts can be costly, it is common in many
kinds of problems to have large unlabeled data sets available and very
few labeled data. Due to the availability of the large unlabeled data
set, the question that arises in such a context is

why not to use information extracted from the unlabeled data in
order to estimate feature relevance and to induce models?

The joint use of labeled and unlabeled data to perform FS character-
izes the semi-supervised feature selection paradigm.

Therefore feature selection can be performed through a feature clus-
tering approach. Real problems could be composed by tens, hundreds
or even thousands of features, and of course, many of these features
could be redundant or even very similar to each other. Redundant
features should be clustered, and one can do that using a clustering
method. Whether the variables are relevant or not, if they are similar
they could be grouped together, and one of those features can be
chosen in order to represent the entire group. In order to identify and
group pairs of “similar” features it is necessary to define a similarity
measure. The main objective of this measure is to define if two features
are similar and therefore discard one of them. Pairs of features with
high values of similarity have to be “grouped” and those with low
values might not be clustered. To evaluate the similarity, or distance,
among features it is not necessary to know labels, once only the fea-
tures themselves and a criterion are needed. However it would be very
interesting to use the label information into the similarity criterion,
when available.
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In that sense, an index is proposed in this work in such way that,
not only the “direct similarity” between the variables are evaluated,
but also the similarity concerning the relation between each variable
and the output labels. We define the term “direct similarity” as any
kind of measure that aims to quantify how much information, for
instance, one feature carries about others. Based on this measure a
semi-supervised feature selection method is developed.

Also the principle of homogeneity between labels and data clus-
ters is exploited in order to develop another semi-supervised feature
selection method. This principle permits the use of data cluster in-
formation to improve the estimation of feature relevance in order
to increase selection performance. Mutual Information is used in a
Forward-Backward search process in order to evaluate the relevance
of each feature to the data distribution and the existent labels, in a
context of few labeled and many unlabeled instances. For both pro-
posed methods tests are performed in order to evaluate their efficacy
and results are discussed.

4.1 CLUSTERING AND SELECTING FEATURES
4.1.1  Similarity criterion S

The proposed index (S) is developed in order to consider both labeled
and unlabeled data on its calculation (semi-supervised paradigm).
Not only the “distance” between each feature needs to be small to
consider both features as redundant, but also the individual influence
of each one of these features over the output labels have to be similar.
Therefore the general semi-supervised similarity criterion S between
two random variables X; and X5 can be defined as

S(X1,Xz2) = A(Xy,X2) —AB(Xy,X2), (4.1)
AXy,X2) = O(Xy,Xz) ¥ XD ux, (4-2)
B(X1,X2) = abs(®(Xq,Y)—®(Xz,Y)) v XY, (4-3)

where X is the labeled data set, X(*) is the unlabeled data set, ®
is any correlation or similarity measure, Y is the output label vector
(for Xt only), and A is a parameter to balance the influence of each
supervised and unsupervised terms on the index. As only labeled data
is considered in the calculation of term B this is considered as the
supervised term, likewise, as labels are not necessary in the calculation
of term A this is considered as the unsupervised term.

In this work the mutual information (MI) is chosen as @ measure
function, as it is very well accepted in the academic fields and once it
is able to identify non-linear dependency between random variables.
Of course any other similarity function can be used like the Pearson
correlation or even the Relief Index for instance.
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S is not a distance in a formal point of view despite being symetric.
As defined in 4.3 this index fails in at least one necessary condition
to be considered as a distance: it is not positively defined, i.e., the
condition S > 0 cannot be sustained. Nevertheless the S index can
be used as a similarity measure, even with the difficulty to set the
A value, as discussed in section 4.1.1.1. Once we are interested in
ranking the pairs of features concerning their similarity degrees, since
the similarity value is significative (see section 4.1.1.2), even if it is a
negative number, we can rank the pairs of features.

Analyzing qualitatively and quantitatively this similarity definition
it is possible to show its relevance to the task of identifying redundant
features, keeping in mind the final goal: to perform feature selection.
The first term in S is the MI between pairs of features and gives an
idea of how much information one feature keeps from the other. In
the extreme case, where two features are identical, this quantity is
maximum. In other words, if two features are very similar, A will have
a high value, increasing the similarity index. On the other hand, if
two features are completely random to each other then, in theory, the
mutual information has to be zero, and there is no similarity at all.

The second term adds to the concept of similarity the relation of
each feature (from the pair) to the output variable. The similarity
will be decreased if each feature from the pair being analyzed has,
individually, different influence over output labels. If two features
have similar relation with the output variable, then the B term will
be very low and S will not be too much decreased. In the same way,
if one of the two variables has nothing to do with the labels and the
other is very correlated, then the difference in the B term will be high
and S will be decreased. Note that the main objective of B term is
to decrease the similarity between two features if they have different
relevance levels to the output variables,

The A term takes into account all labeled and unlabeled data once
the labels are not necessary, while the B term could only use the
labeled ones. However, in Section 4.2 a strategy to consider unlabeled
data in this term is developed.

In cases where there are too many features with different levels of
relevance, identifying pairs of variables whose similarity represents
also their importance to the output is a very interesting tool, especially
in a feature selection framework. In these problems, redundant fea-
tures must be discarded, so, if two variables are too similar, one of
them could be eliminated. Nevertheless, features that share a certain
amount of information could not necessarily have the same influence
over the output, and considering only the mutual information between
features as a criterion of similarity, could lead to discard, by chance, a
relevant feature. In this case, for example, if we consider the B term,
the two features could not be considered as redundant any more.
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4.1.1.1  Setting A

The S index can be thought of as the mutual information between two
features, penalized by the difference of their relations to the output.
Depending on the value of A the S index could be more or less affected
by the “supervised” B term. Obviously, if A = 0 then S will be only the
mutual information between the pair of features, i.e., the similarity will
take into account only the “unsupervised” term, and their similarity
will not be decreased by the difference between their relation to the
output. For the case of A = 0 we have that S > 0, at least in theory®.
The ideal A, if it exists, has to be the one whose value provides the
optimum balance between the supervised and unsupervised terms of
S.

Parameter A has large or small influence on S depending on the
degree of relevance of each variable in the considered pair of features.
Therefore three general situations can be listed:

1. If two features are unrelated to Y, in theory, each part of B, i.e.
MI(X1,Y) and MI(X2,Y), will be zero and then S = A for any
value of \;

2. If the two features have the same relevance to Y, each part of B
is greater than zero but equal leading againto B=0and S =A
for any value of A;

3. and, if these two features has different relevance values to Y,
then B > 0 and S = A —AB. So, A has a greater influence in the
level of similarity in this case.

For the two first situations listed before A has no influence over S,
however, in the third situation this parameter has an important role
as will be discussed next. Let P; be a pair of features whose MI is
given by A; and the difference between their MI with the output is
given by Bj. For a given A we will have the similarity of this pair as
S1 = A7 —ABj. In the same way let P, be another pair of features
where S; = A, — AB;. The value Sy can be greater or smaller than S,
according to these following situations:

IfA; >Aand By >B, = I A >0] (4.4)
S1 >SS VA<A,
S1<SaVA>A,
S1 =S5 for A =Ag.

If A7 > A andB1<Bz = S1>52V7\>0. (4.5)

IfA; >A>andB; =B, = S;1>S,VA>0. (4.6)

1 As estimators are used to evaluate mutual information, it’s common to achieve some

negatives values when there is no correlation between the variables
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These relations can be graphically demonstrated as shown in Figure
4.1. For the cases described in equation 4.4, as can be seen in Figures
4.1a and 4.1b 2, there is one value of A where S; = S, from which
P; and P, change their relative positions in the similarity ranking.
This happens because A can assume only positive values. On the other
hand, for the situations described by equations 4.5 and 4.6 there is no
value of A > 0 from which S; and S; can invert their relative positions
in the magnitude scale, as shown by Figures 4.1c and 4.1d.
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Figure 4.1: Importance of A to S index.

One extreme situation occurs in the case of a pair of two identical
features with the same relevance to the output. The A term will be
maximum (and equal to the entropy of the variable) and B will be
equal to zero. In this case S will be maximum and equal to A . Here
A makes no difference into the calculation of S. The other extreme is
given when two features are completely independent from each other,
but one of them is exactly equal to Y and the other is independent to
the output. In this case A is equal to zero (in theory) and B will be
maximum resulting in a minimum S index whose value is negative,
however, variations in A will change the point of minimum similarity.
The question at this moment is how to set lambda in order to have a
semi-supervised similarity measure well balanced.

Note that the situation drawn in Figure 4.1b is exactly the same situation shown in
Figure 4.1a where there is one pair of features with A and B terms smaller than their
respective terms in the other pair.
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Figure 4.2: A ranges example. Each curve shows the behavior of the S index
in function of A for each pair of features. Iy is the preponderantly
unsupervised interval, while Ig is the mainly supervised interval.
Iss is the mainly semi-supervised interval. The first inversion
of the S ranking occurs at A1,y and the last change occurs at
Ahi- The dashed line shows the chosen A for a more balanced
semi-supervised criterion.

Adopted strategy

Based on the behavior of S as a function of A it is possible to define
three main ranges of values that this parameter can assume, as shown
in Figure 4.2. There are two ranges were, despite changes in S value,
when increasing A, the similarity ranking of the feature pairs doesn’t
changes. For the range 0 < A < Ayo,, the S value is more related to the
unsupervised similarity measure (A term). Aio, is the value where
occurs the first change in the ranking order of similarities. On the
other hand, in the range Ar; < A < 400 there is no more changes
in the similarity ranking, and the index is then more affected by the
supervised B term. Ap; is the point where the last change in the
similarity ranking occurs.

It is clear that for all values of A > 0, somehow, both labeled and
unlabeled data is taken into account in the similarity measure. Nev-
ertheless, intuitively, a more balanced semi-supervised index can be
achieved inside the range Ajow < A < Ani. The idea is to set A in such
way that the S index is neither dominated by the A nor by the B terms.

Thinking S as a similarity measure given by the mutual information
between the features, penalized by their relevance to the output vari-
able, and, keeping in mind its objective, which is to perform feature
selection in a semi-supervised framework, it is interesting to have a A
that provides a more balanced semi-supervised metrics.
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All feature pairs whose B term is greater than zero will have their
similarities decreased while A increases. At certain value Ay, some of
these similarities will change their relative positions in the magnitude
scale and after another point An; the similarities will not change
positions anymore. In order to have a S index more balanced on its
semi-supervised character, the A must lay somewhere between A4,
and Ani. So, it can be defined as the half range value between these
two limits, shown by the dashed curve in Figure 4.2.

The semi-supervised interval Iss can be determined finding the
minimum and maximum values of A where occurs the first and last
changes in the S index ranking, as shown in Figure 4.2. The possible
intersection for each feature pair combination (Py) is evaluated and
after that the mean value of A in the interval between the first and the
last crossing points is considered as the chosen A. The formulation is
shown in equations 4.7, 4.8 and 4.9.

Iss = {min ()\ij) ;max (Mj)} (4-7)

wherei=1,2,...p,j =1,2,...p, 1 #j, p is the number of possible
pairs P of features, and A;; is the value where the similarity index for
pairs i and j is the same. So,

_ Aj— Ay
Ay = ﬁ (4-8)
and,
. min (}\1]) + max (}\1]) . AIOW -+ )\h.i.
Amean = 5 = 3 (4-9)

4.1.1.2  Significance of S

When evaluating the similarity between two features, using mutual in-
formation, estimators have to be used. Its estimates may well approach
the correct value of MI or not. Anyway they are still approximations
and, for that reason, if two features are completely unrelated their
mutual information will not be zero (as in theory) but something that
means zero. Based on this fact, it is imperative to know if a similarity
value is really a meaningful measure or if it is only a number meaning
zero to the estimator considered in the calculations. In the context
of the similarity index proposed here, it is important to know the
probability of an observed value of S not be only a “zero” value of the
estimator, and this can be done with a hypothesis test. By definition, a
hypothesis test evaluates the probability of a given hypothesis to be
true, therefore the following hypothesis can be formulated:
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Given two random variables X7 and X3, let S be the sim-
ilarity function between then. Let the null hypothesis be
that the variables X; and X, have no similarity. In this case,
we want to evaluate the distribution of S under the null
hypothesis of no similarity.

If X7 and X; do not have any information about each other, S is
expected to be zero in theory, whatever are the values that these
variables can assume. Nevertheless, as we are dealing with mutual
information estimators in the calculation of S, this value will not be
properly zero, but something near it and even a negative value. This
means that the instances in X; are random concerning the instances
in X, and, as they are random, any random changes in the instance
values still keep the relation between X; and X, the same: unrelated.
For different values of the instances in the variables, the result of the
estimator will be different, following some unknown distribution, but
still meaning zero mutual information, or, in the case of the similarity
index, no similarity.

As both variables X; and X are unrelated, permuting randomly
the instances in one of them, keeping unchanged the instances on the
other, will result in other unrelated pair of variables whose S should
be approximately zero. Permuting one of these variables many times it
is possible to get an approximation of the S index Cumulative Distribu-
tion Function (CDF) for the case where the two features are unrelated.
Therefore, we can use this CDF curve to evaluate the probability of a
similarity value not be only a zero estimation of a random permutation
of the vectors instances by chance, but a meaningful similarity value.

Coming back to the hypothesis formulated before, one of the fea-
tures in the pair is permuted n, times and, for each permutation, the
permuted similarity index S, for features X; and X is calculated and
stored. With these n,, values a CDF of S, is built and then a threshold
can be set in order to determine if S is significant or not. This threshold
can be set, for example, as the g5th percentile (535”‘) of the CDF of
Sp: it means that 95% of the observed S, values are smaller than this
value in the cumulative distribution curve [57]. Therefore, if S > S]?,Sth
then S can be considered as a meaningful similarity value, i.e. the null
hypothesis is true. Otherwise, the null hypothesis is not verified and
S means no similarity. This kind of test is called the permutation test

[35]
4.1.2  Feature Selection Method

The semi-supervised feature selection method developed on this work,
hereafter called Semi-Supervised Feature selection based on Clustering
(SSFC) method, is very simple and can be split into two main steps:

* eliminating redundant features;
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* eliminating irrelevant features.

In the first step the method tries to identify any redundant features.
Many problems, especially those with a large number of features,
could have similar features, regarding their own information. Taking
into account the characteristics involved in the definition of S index,
the proposed method will look for features sharing a certain amount
of information between themselves and having similar relevance to the
known output labels3. Therefore, in this step feature selection is done
by eliminating redundant features, reducing the number of variables.
Of course, the remaining features form the selected feature subset Fs.

The second step of the method is designed in order to find out and
eliminate those features that are irrelevant to the problem. This is a
very important step since there may exist redundant variables that
mean nothing to the problem. Basically, in this step, the algorithm
searches for those features whose mutual information value (R) with
the output labels means zero. This is done in the same way explained
in Section 4.1.1.2 for the S index: applying the permutation test[35] to
R (Refer Section 4.1.2.2 for details).

4.1.2.1  Eliminating redundancies

Given a data set F, the algorithm will cluster similar features in an
hierarchical procedure, like Ward’s hierarchical clustering method [98],
however, using the S index as a similarity criterion, which is based
on mutual information. A hierarchical tree of similar features is built
evaluating the similarity between each possible pair of features. The
pair of features with the highest S value is “grouped” together forming
one feature cluster. Of course there is no sense in averaging features in
order to merge the clustered features. If a pair of features is considered
similar then it is sufficient to discard one of them. The feature to be
discarded is chosen based on the mutual information between them
and the output variable Y, according to the following rule:

If MI(X3,Y) > MI(X;,Y) then X; is discarded, otherwise X; is
discarded.

where X; and Xj are features from the considered pair of features.

After one of these features is discarded, the process can continue
clustering the next pair of features whose S is the biggest one among
those remaining features in the data set. This process continues until a
stopping criterion is met. At the end the remaining features constitute
the initial selected feature subset F;.

The permutation test used to evaluate the significance of S index in
Section 4.1.1.2 is the chosen stopping criterion to halt the process of
eliminating redundant features. If the S value, for the pair of features

In Section 4.2 consider the data distribution (unlabeld data) in the calculation of
feature relevance.
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with largest similarity, is less than or equal to the statistical zero value

835“‘ defined by the permutation test, S has no significant meaning

and process ends without any further feature elimination.
Summarizing:

Stopping criterion rule: If S < 835”‘ process of elimination of
redundant variables ends.

The basic steps to eliminate redundant features are presented in the
Algorithm 1.

Algorithm 1: Basic algorithm to eliminate redundant features

-

repeat
2 for feature i = 1 to n¢ do
for feature j = 1 to n¢ do
‘ evaluate S(i,j) using equation 4.3 ;
end
end
select the pair of features (i,j) with the higher S ;
if S is significant (S > S7°'") then
discard the feature, from the selected pair, with smaller MI
with relation to the output variable ;
10 end

O 0 NN & U1 s W

11 until stopping criterion;

Note that Step 4 in Algorithm 1 is semi-supervised as it deals
with labeled and unlabeled data, while Step 9, as defined so far, is
supervised because it uses only labeled data. In Section 4.2 a way to
consider unlabeled data in the calculation of the relevance of each
feature is developed.

4.1.2.2  Eliminating irrelevant features

In this feature clustering approach the objective is to perform feature
selection saving the relevant variables, i.e. discarding the redundant
and irrelevant ones. A similarity measure is defined and used in
previous sections in order to detect and eliminate redundancy, and
now, it is necessary to define a relevance criterion in order to identify
any irrelevant features among the remaining ones.

The Mutual Information plays, again, a decisive role here. Features
sharing more information with the output vector will be saved, while
those not related to the output will be discarded. For this criterion
only the labeled data is considered so far (Refer Section 4.2 to see how
unlabeled data could be considered on this calculation).

Basically, the mutual information between each remaining feature
and the output is evaluated, and then the “statistical significance” of
each result is investigated, in a similar process as done for the S index:
permuting feature elements. Therefore the relevance index R of feature
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X; can be defined as

Ri = MI(Xy,Y). (4.10)

where Y is the label vector, i = 1,2,..., N and N is the number of
features in the considered set. If R is being evaluated in the step of
redundancy elimination N is equal to the number of features n¢ of the
original set F, and if R is being evaluated in the irrelevance elimination
step N is the number of remaining features n, in set Fs.

As the R index is evaluated using an estimator of mutual infor-
mation, once more it is necessary to verify if these results have any
meaning or if they are only a representation of zero. Each feature has
its elements permuted keeping the output vector unchanged and then,
the R index is evaluated again. This process is done n, times allowing
to build a Cumulative Distribution Function of the permuted relevance
index (Rp) for each feature, and a threshold is set to determine if R is
significant or not. This threshold is set as the 95" percentile (R3>'")
of the CDF of R;: it means that 95% of the observed R, values are
smaller than this value in the cumulative distribution curve. Therefore,
if R > Rgsm then R can be considered as a significant (nonzero) rele-
vance value, and a rule to eliminate irrelevant features can be defined
as:

IfR; < R?g”‘ then X; is discarded.

The basic steps to eliminate irrelevant features are presented in the
Algorithm 2.

Algorithm 2: Basic algorithm to eliminate irrelevant features

1 for feature i = 1 ton, do

2 evaluate R; using equation 4.10 ;
3 for j=1ton, do

4 permute elements of Xj ;

5 evaluate Rip ;

6 end

7 | if Ris irrelevant (Ry < R?gth) then
8 ‘ discard feature X; ;

9 end

10 end

Features with R < RES th will be discarded once their relevance index
are equivalent to zero, meaning that they do not hold any information
about Y.

4.1.3 Experiments

The method developed in Section 4.1.2 is applied to different real
problems and the results are shown in this section. The tests are
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conducted in order to evaluate the influence of the A value in the
selection of features and in the accuracy of different models trained
with the selected features. The influence of the proportion of unlabeled
data is also investigated.

The tests are performed over five different real classification prob-
lems, all of them from UCI Machine Learning Repository [1]:

* SONAR: the sonar data set is composed by instances of a sonar
response. The task is to discriminate between sonar signals
bounced off a metal cylinder and those bounced off a roughly
cylindrical rock. This data set is composed of 208 instances with
60 features;

* PEN: the Pen-Based Handwritten Digits data set is composed by
digit samples from 44 different writers. For this last problem we
considered only instances of digits 6 and 9 in the experiments. It
has 16 features and 2111 instances;

* KDD: data set used in The Third International Knowledge Dis-
covery and Data Mining Tools Competition, in conjunction with
KDD-99 The Fifth International Conference on Knowledge Dis-
covery and Data Mining. This database contains a standard set
of data, which includes a wide variety of intrusions simulated
in a military network environment and normal connections. It
has 600 patterns, 41 features each.

¢ ILPD: the Indian Liver Patient Dataset. This data set contains
416 liver patient records and 167 non liver patient records. It is
composed of 10 features.

* JONO: the Johns Hopkins University lonosphere database has 34
features with 351 patterns of radar returns from the ionosphere.
Radar returns are classified into two classes: if there is a good
return it shows the evidence of some type of structure in the
ionosphere, if not their signals pass through the ionosphere.

For each problem the method is applied considering different values
of A varying from zero to some value sufficiently larger than An;
(see Section 4.1.1.1 for details),also passing through the intermediate
values of A as defined in 4.1.1.1 that better characterizes the semi-
supervised approach. The feature selection process is applyied for
different proportions of labeled and unlabeled data: 30%, 60%, 70%
and 80% of labeled data. For each A and for each proportion of labeled
data the feature selection method is repeated 30 times. Each time the
training and test sets are randomly chosen in order to avoid biased
results. At the end of the feature selection task, a LDA model and a
MLP network are trained considering only the selected features in a
10 fold cross-validation procedure in order to evaluate the accuracy
achieved on each trial and the average results are saved. The MLP
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is trained using the Levenberg-Marquardt[66] method. Algorithm 3
summarizes the basic script for tests.

Algorithm 3: Basic algorithm for the experiments of the feature
selection method based on the proposed S index.

-

// Feature Selection
for each proportion of py labeled data do

2 for each A\; do
3 for j = 1 to ng 10 cross validation folds do
4 Select training and test sets ;
// Redundancy step
5 Cluster similar features as shown in Section 4.1.2.1 ;
// Irrelevance step
6 Eliminate irrelevant features as shown in 4.1.2.2 ;
// Accuracy
Train LDA model with selected subset r(pl,M,j) ;
Evaluate LDA accuracy ;
9 Train MLP model with selected subset ', 1, )
10 Evaluate MLP accuracy ;
// Partial results
11 save partial results ;
12 end
13 end
14 end
15 average results ;
Results
Table 4.1: Final number of slected features for KDD problem.
P1 Ng A
0.1 ‘ 1 ‘ 10 ‘ 50 ‘ 100 ‘ 500 ‘ 1000 ‘ 2250 ‘ 5000 ‘ 10000
min Mg 1 10 10 10 11 11 12 12 12 12
30% | max ng 8 12 12 13 13 13 13 13 13 13
N 6.5 | 11.6 | 11.1 | 11.5 | 122 | 12.1 | 12.7 12.8 12.7 12.8
min ng 11 14 13 15 15 15 14 14 15 15
60% | max ng 11 16 16 17 17 17 17 17 16 17
g 11 | 158 | 143 | 157 | 16.2 16 15.7 | 15.7 | 15.1 15.6
min ng 12 15 13 13 12 14 14 15 16 16
70% | max ng 12 17 17 18 17 17 18 17 17 18
g 12 | 16.8 15 16.3 | 16.3 | 152 | 15.8 16.4 16.7 16.7
min ng 12 17 13 16 16 12 16 16 16 17
80% | max ng 12 17 16 17 18 18 18 17 17 17
s 12 17 15.2 | 16.4 17 15.2 | 16.9 16.6 16.6 17

57



58

CLUSTERING APPROACH

Table 4.2: Accuracies achieved by classification models trained considering
the final set of selected features for KDD problem.

Accto

A LDA MLP

P1 = 30% P1 = 60% P1 = 30% P1 = 60%

0.1 0.919 £ 0.032 | 0.972 £ 0.019 | 0.946 £ 0.023 | 0.983 &£ 0.016

1 0.998 &£ 0.006 | 0.997 £ 0.007 | 0.997 & 0.006 | 0.998 + 0.005

10 0.996 £ 0.008 | 0.982 £ 0.011 | 0.994 £ 0.013 | 0.995 &£ 0.011

50 0.993 & 0.009 | 0.984 & 0.010 | 0.997 & 0.008 | 0.997 % 0.006

100 0.995 &£ 0.008 | 0.985 £ 0.010 | 0.997 £ 0.009 | 0.996 £ 0.01

500 0.993 & 0.007 | 0.993 & 0.008 | 0.995 + 0.01 0.995 + 0.012

1000 | 0.998 4 0.006 | 0.997 &= 0.007 | 0.997 & 0.007 | 0.992 =& 0.023

2250 | 0.995 £ 0.011 | 0.997 £ 0.007 | 0.996 £ 0.009 | 0.997 £ 0.007

5000 | 0.998 £ 0.005 | 0.997 & 0.007 | 0.997 + 0.007 | 0.998 + 0.005

10000 | 0.998 £ 0.006 | 0.998 £ 0.006 | 0.995 * 0.01 0.999 * 0.003

Table 4.3: Accuracies achieved by classification models trained considering
the final set of selected features for KDD problem.

Accto

A LDA MLP

P1 = 70% P1 = 80% P1 = 70% P1 = 80%

0.1 0.983 £ 0.016 | 0.983 £ 0.016 | 0.981 &£ 0.026 | 0.981 &+ 0.014

1 0.998 &£ 0.005 | 0.997 £ 0.007 | 0.994 &+ 0.012 | 0.996 + 0.009

10 0.974 £ 0.013 | 0.980 £ 0.013 | 0.992 £ 0.012 | 0.993 = 0.009

50 0.993 & 0.008 | 0.981 &+ 0.012 | 0.994 & 0.013 | 0.996 % 0.008

100 0.991 & 0.009 | 0.988 £ 0.010 | 0.995 * 0.01 0.995 =+ 0.01

500 0.988 &+ 0.011 | 0.993 & 0.010 | 0.995 + 0.01 0.994 =+ 0.008

1000 | 0.997 & 0.007 | 0.995 &= 0.008 | 0.998 & 0.006 | 0.998 £ 0.004

2250 | 0.995 £ 0.008 | 0.995 £ 0.008 | 0.999 £ 0.004 | 0.997 £ 0.008

5000 | 0.995 £ 0.008 | 0.995 + 0.008 | 0.997 + 0.006 | 0.998 + 0.005

10000 | 0.997 £ 0.007 | 0.995 £ 0.009 | 0.997 £ 0.007 | 0.997 £ 0.007

For KDD problem our feature selection method was able to select
from 11 to 18 features in average from the initial set composed by 41
features. In [3] the authors selected 12 features for the same classes
that we considered (normal use and smurf intrusion). Also, as shown
in Tables 4.2 and 4.3, all accuracy results are very high, showing that
the selected features are relevant ones.

The more labeled information is available the more features are
selected and the larger are the classification accuracy over the test set,
for both LDA and MLP, for KDD problem. The increase of accuracy
given the increase in the number of labeled data is expected, however,
the relation between the number of labeled instances and the final
number of selected features is not straightforward or clear in our
framework. This will be data dependent. It is true that with a larger
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Table 4.4: Final number of slected features for ILPD problem.

P Mg A

0.10 ‘ 40 ‘ 90 ‘ 135 ‘ 200 ‘ 270 ‘ 500 ‘ 1000 ‘ 10000

min ng 0 1 1 1 2 1 2 1 1

30% max ng o 2 2 2 2 2 2 2 2
N [ 1.9 | 1.9 | 1.9 2 1.6 2 1.8 1.4

min ng o 2 3 3

60% | maxns | 2 | 3 | 4 4 4 4
T 0.3 28 | 35 | 32 | 3.6 | 3.1 3.7 3.5 3.7

min ng 0 1 3 2 2 3 2 3

70% | maxns | 1 | 4 | 4 | 4 | 4 | 4 3 4
M 0.4 2.1 | 3.7 | 3.3 2.6 3.3 3.7 2.6 3.4

min ng o) 0 2 2 2 2 2 2

80% | maxns | 1 3 1.3 3 3 3 3 3
s 06 | 21 | 25 29 | 29 | 27 2.8 2.1

Table 4.5: Accuracies achieved by classification models trained considering

the final set of selected features for ILPD problem.

Accto
A LDA MLP

P1 =30% P1 = 60% P11 =30% P11 = 60%
0.1 o 0.102 + 0.011 0 0.143 £ 0.01
40 0.517 £ 0.068 | 0.532 + 0.05 | 0.701 &£ 0.025 | 0.703 = 0.035
90 0.515 & 0.068 | 0.534 & 0.049 | 0.706 & 0.024 | 0.701 % 0.037
135 0.517 £ 0.068 | 0.534 £ 0.052 | 0.702 + 0.03 | 0.702 %+ 0.037
200 0.516 & 0.068 | 0.534 &= 0.048 | 0.702 & 0.027 | 0.699 £ 0.033

270 0.518 £ 0.068 | 0.534 & 0.049 | 0.708 % 0.021 0.7 & 0.041
500 0.516 & 0.068 | 0.533 &= 0.049 | 0.703 & 0.028 | 0.701 £ 0.033
1000 | 0.517 = 0.068 | 0.534 &= 0.049 | 0.705 & 0.025 | 0.695 =+ 0.041
10000 | 0.519 £ 0.068 | 0.533 £ 0.049 | 0.71 + 0.017 | 0.697 £ 0.038

number of labeled data, the calculation of feature relevances will be
more accurate. This will affect the two basic steps of the proposed

method as follows:

* in the first step, where redundancies are eliminated, the B term
will be affected changing the S index value of each pair of fea-
tures. This will change the feature similarity rank and some
feature clusters could have more or less features grouped to-
gether.

¢ in the second step irrelevant features are eliminated. To the
extent that the number of labeled data is increasing, features
that were irrelevant before may turn out to be relevant now and,

therefore, they will not be discarded anymore.
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Table 4.6: Accuracies achieved by classification models trained considering

the final set of selected features for ILPD problem.

Accto
A LDA MLP

P1 = 70% P1 = 80% P1 = 70% P1 = 80%
0.1 0.202 &£ 0.022 0.3 + 0.033 0.287 &= 0.007 | 0.428 £ 0.01
40 0.524 £ 0.054 | 0.477 £ 0.055 | 0.706 &+ 0.026 | 0.636 + 0.022

90 0.533 & 0.048 | 0.534 £ 0.057 | 0.694 % 0.04 0.7 £ 0.03
135 0.531 & 0.051 | 0.537 & 0.055 | 0.697 &+ 0.038 | 0.699 + 0.032
200 0.529 & 0.057 | 0.536 £ 0.056 | 0.706 £ 0.027 | 0.701 + 0.032
270 0.535 & 0.05 0.536 & 0.056 | 0.701 & 0.038 | 0.695 + 0.037
500 0.533 £ 0.048 | 0.534 £ 0.057 | 0.69 & 0.037 | 0.703 &£ 0.031
1000 | 0.536 + 0.055 | 0.537 & 0.055 | 0.703 + 0.029 | 0.696 *+ 0.033
10000 | 0.534 £ 0.049 | 0.535 &£ 0.056 | 0.696 &+ 0.035 0.703 £ 0.03

Table 4.7: Final number of slected features for SONAR problem.

A
P Mg
0.1 ‘ 5000 ‘ 12600 ‘ 20000 ‘ 40000 ‘ 145000 ‘ 400000
min ng o 4 4 4 4 3
30% | maxmns | 2 6 6 6 6 5 5
s 1 5-4 5-3 5 5 44 45
min ng 1 8 9 7 7 9 9
70% | max ns 4 12 13 13 13 13 14
ng 25 | 10.8 11.6 10.3 11 11.4 12.1

Table 4.8: Accuracies achieved by classification models trained considering

the final set of selected features for SONAR problem.

Accto
A LDA MLP
P1=30% p1L=70% P1=30% P1=70%
0.1 0.612 + 0.098 0.728 4+ 0.1 0.604 = 0.089 | o0.707 & o.101
5000 0.746 £ 0.111 0.769 & 0.08 | 0.702 &+ 0.107 | 0.724 & 0.093
12600 0.737 & o.107 0.78 £ 0.071 0.719 & 0.108 | 0.722 &+ 0.091
20000 0.74 £ 0.108 0.764 £ 0.076 | 0.702 £ 0.114 | 0.711 = 0.098
40000 0.735 + 0.107 | 0.771 £ 0.072 | 0.693 £+ 0.114 | 0.71 % 0.109
145000 | 0.726 4 0.0989 | 0.775 4 0.100 | 0.716 £ 0.090 | 0.703 &£ 0.090
400000 | 0.729 &+ 0.0988 | 0.787 £ 0.103 | 0.713 £ 0.096 | 0.707 £ 0.097

For the KDD problem the final number of selected features and the
accuracy of the final feature subsets on the test set are very similar
for large values of A. For example, the number of selected features
for A = 500 and for A = 5000 is around 16 for a p; = 60% (see Table
4.1). The same behavior is observed for different values of p; and
large values of A. Actually, only for A very small we have a smaller
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Table 4.9: Final number of slected features for PEN problem.

P Mg A
0.1 ‘ 50 ‘ 170 ‘ 500 ‘ 1000 ‘ 3000
min ng 1 9 10 9 10 10
30% | max ng 6 13 13 13 14 14
T 1.5 | 11.3 | 122 | 11.9 | 12.4 12.3
min ng 1 1 11 11 8 11
70% | max ng 1 13 13 13 13 13
i 1 11.4 | 12.4 | 124 | 11.1 12.4

Table 4.10: Accuracies achieved by classification models trained considering
the final set of selected features for PEN problem.

Accto

A LDA MLP

PL=30% p1 =70% PL=30% p1=70%
0.1 0.983 & 0.008 | 0.981 £ 0.008 | 0.984 £ 0.008 | 0.983 &£ 0.009

50 0.999 & 0.002 | 0.998 £ 0.002 | 0.999 £ 0.002 | 0.998 &£ 0.002

170 1 + 0.001 1 + 0.001 0.999 £ 0.002 | 0.999 &£ 0.002

500 1 + 0.001 0.999 + 0.002 | 0.999 *+ 0.002 | 0.999 * 0.002

1000 1 + 0.001 1 + 0.001 0.999 £ 0.002 | 0.999 &£ 0.002

3000 1 + 0.001 1 + 0.001 0.999 & 0.002 | 0.999 * 0.002

Table 4.11: Final number of slected features for IONO problem.

P1 Ns A

0.1 ‘ 500 ‘ 1218 ‘ 2000 ‘ 5000 ‘ 10000

min ng 1 2 4 2 2 4

30% | max ng 1 23 22 25 30 17
M 1 10.4 12 9.4 9.1 9.6

min ng 1 2 4 4 2 2

70% | max ns 2 6 12 8 10 15
g 1.1 4.6 6.9 5.6 5.4 5.5

number of selected features when compared with the results achieved
for large A. It is interesting to notice that except for the case with
30% of labeled data, the number of selected features is quite small
for A = 0.1 but the classification accuracy is not too much small. For
example, for a py of 70%, for A = 0.1 we have a feature subset with
approximately 12 features with a classification accuracy of 98% in
average for both LDA and MLP classifiers, while for A = 10000 we
have near 17 selected feature in average and 99% of accuracy (see
Tables 4.2 and 4.3 for accuracy values). Therefore we have near 33%
less features with only a reduction of 1% in the accuracy for this
problem. In average, for A = 0.1 we have 25% less features and only
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Table 4.12: Accuracies achieved by classification models trained considering
the final set of selected features for IONO problem.

Accto

A LDA MLP

P1 =30% P1 = 70% P1 =30% P1L=70%

0.1 0.572 £ 0.078 | 0.547 &£ 0.084 0.8 & 0.061 0.796 £ 0.054

500 0.848 + 0.051 0.799 £ 0.05 | 0.862 + 0.042 | 0.874 + 0.05

1218 | 0.865 + 0.045 | 0.807 &= 0.046 | 0.867 & 0.048 | 0.879 £ 0.051

2000 | 0.849 &£ 0.056 0.8 4+ 0.048 0.856 + 0.057 | 0.876 £ 0.05

5000 | 0.832 £ 0.058 | 0.807 + 0.052 | 0.859 £ 0.05 | 0.873 & 0.055

10000 | 0.852 £ 0.045 | 0.792 £ 0.055 | 0.861 £ 0.051 | 0.886 £ 0.046

Table 4.13: Crossing points.

Problem | p1 | Atow | Amean Ani
PEN |30 | 4€06 265 531
79 1 5'06 111 221

SONAR |30 | 708 | 134214 | 268428

70 8e-08 75015 150030

IONO 30 2e-06 17356 34712
70 7e-07 4680 9360

ILPD 30 9e-05 39 78
60 1€-05 21 42
70 3e-06 16 31
8o 3e-05 16 33

KDD 30 | 16e-07 2257 4515
60 2e-06 1746 3493

70 2e-06 2647 5293

8o 1e-06 4102 8204

5% of reduction in the accuracy for the KDD problem, considering all
proportions of labeled data and both classifiers. This shows that the
feature subset selected for the smallest A, in average is more efficient
considering the reduction in the number of features compared to the
reduction in the accuracy.

Our SSFC method selects in average 2 to 4 features from initial set
of 10 features in the ILPD problem, as shown in Table 4.4. Tables 4.5
and 4.6 list the accuracy achieved by a LDA classifier and a MLP. Due
to the non-linear nature of the problem MLP performed much better
when trained with the selected feature subset. These results are not so
good when compared to those obtained by Ramana in [75]. Ramana
achieved 98% of accuracy with a backpropagation algorithm using 4
features. In [75] the best selected features are:

e total bilirubin;

e direct bilirubin;
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¢ indirect bilirubin;
e albumin.

Our SSFC method selected when considering 70% of labeled data
the following features:

e total bilirubin;
e direct bilirubin;
¢ sgot alamine aminotransferase;

* sgot aspartate aminotransferase.

The last two features selected by SSFC method are classified as 5"
and 6" relevant features in [75], however, the indirect bilirubin feature
is not present in the ILPD data set available which is used in our
experiments. The data set used in [75] contains 12 features while ours
contains only 10 features. Feature albumin was initially selected by the
first step of our method, but was discarded by its lack of relevance
to the output variable. This occurs because the relevance step of the
method is univariate.

As can be seen in Table 4.4, in average, with 30% of labeled in-
stances SSFC method selects 2 features and with 60% of labeled data
the number of selected features increased to approximately 4. For
larger proportions of labeled data there is no big difference in the final
number of selected features. This is the same behavior observed for
the KDD problem: for proportions of labeled data bigger than 60%
the number of selected features does not change substantially. Never-
theless, the accuracy over the test set is not substantially affected by
the increase of the number of labeled data, even because this problem
have 583 instances with 10 dimensions with two unbalanced classes
(see Tables 4.5 and 4.6 for accuracy values) . It is important to notice
that in the experiments the labeled data are randomly chosen without
concern in keeping the class proportions balanced, just in order to
keep the problem as near to real situations as possible, once, in real
world classes could be unbalanced.

In Table 4.13 we can see that the value of Ayeqn as defined in
Section 4.1.1.1, is around 40 depending on the number of labeled data.
Table 4.4 shown that for A = 40 the number of selected features is 2 in
average for all proportions of labeled data. The selected features are
the best two mentioned before and the accuracy achieved using this
feature subset is the same than those achieve considering 4 selected
features. Setting A as defined in Section 4.1.1.1 yields a more efficient
feature subset.

For the SONAR problem the SSFC method selects between 4 and 12
features in a set of 60 original features. This problem has very few data
considering the total number of features. The curse of dimensionality
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is a real issue here. In [41] the authors achieved results with accuracy
of 81% in average, for different number of hidden neurons in a MLP
network, considering all 60 features. Table 4.8 shows the accuracy
achieved in a classification task using the feature subset selected
by sSFC method for different proportions of labeled data and for
different values of A and Table 4.7 shows the final number of selected
features in each situation. A LDA classifier reaches an accuracy of 78%
using feature subsets composed of about 10 features, chosen when
considering 70% of labeled data.

In the PEN problem the SSFC method is able to select, in average,
11 to 12 features from the original set containing 16 features and for
different proportions of labeled data, as can be seen in Table 4.9. In
all experiments and for all different values of A either LDA or MLP
classifiers achieve over 98% of accuracy in average (see Table 4.10).
In [5] the authors achieved, depending on the network configuration,
from 92% to 98% of accuracy on a test set using a MLP network and
considering all 16 features. As we achieve at least 98% of accuracy
in average, using about 10 features we can say, at least, that those 6
discarded features are irrelevant ones, and, of course, the SSFC method
is able to select the important features. It is very interesting to notice
that in the worst simulated case, where only 30% of data is labeled,
and A is equal to 0.1 (larger influence of unlabeled similarity term A of
Equation 4.3) the SSFC method selects from 1 to 6 features. In average,
in those conditions it selects 2 features and the accuracy achieved by
the two classification models are very good (98%). Once more small
value of A produces a more efficient feature subset when comparing
the reduction in the number of selected features and its respective
reduction in the level of accuracy of the classifier models.

There are some works as [83] that achieved accuracies from 90% to
92% for a classification task using a MLP trained with all 34 features of
IONO problem, in a supervised framework. The SSFC method selected
from 4 to 12 features in average as can be seen in Table 4.11, and
achieve a classification accuracy, considering these selected features,
about 89% in average (see Table 4.12). Only for the case where A = 0.1
the LDA classifier does not performed well with the selected subsets.

Making an analysis on the results we can observe that the solutions
for the different settings of parameters used in simulations show, in
general, a large overlap. Figures 4.3 to 4.9 show graphs with the aver-
age accuracy results and their ranges where the results can be found
with 95% of confidence. This overlap of the result ranges indicates
that the value of A is not affecting too much the predective power of
the selected feature subset as mentioned before. In general, for A too
small, in general, the set of selected features presented the the lowest
accuracies. We can also observe that the decrease in the number of
labeled data does not cause a reduction in the prediction power of the
selected set of variables.
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Figure 4.3: Analysis of prediction accuracy results for different parameter
configurations for KDD problem.
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Figure 4.4: Analysis of prediction accuracy results for another different pa-
rameter configurations for KDD problem.



66 CLUSTERING APPROACH

08 T T T T T T _I_
0.7F g ——P— - ——O = ==~ = D=~ E
I +
A z
06} /,’ §
I
© 05f I _
11
+l 04l v,,/- |
I
< 03} 0 ]
1
0.2} I ,’ |
, ——LDA30%
ol %, -0 LDA60% ||
’ 7 - © -MLP30%
—+— MLP60%
0 01 40 90 135 200 270 500 1000 10000

Figure 4.5: Analysis of prediction accuracy results for different parameter
configurations for ILPD problem.
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Figure 4.6: Analysis of prediction accuracy results for another different pa-
rameter configurations for ILPD problem.
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Figure 4.7: Analysis of prediction accuracy results for different parameter
configurations for SONAR problem.
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Figure 4.8: Analysis of prediction accuracy results for different parameter
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Figure 4.9: Analysis of prediction accuracy results for different parameter
configurations for IONO problem.

Finally it is important to notice that this method worked well for
the tested problems yielding good results, improving the results by
the use of unlabeled data. Only for the ILPD problem it got the
worse results when compared to the results from previous works,
however, the database used in this test lacks the main feature for
solving this problem. However the results are quite consitents for
different parameter settings. This method has a high computational
cost since we need to calculate the similarity index for all possible
pairs of features and especially the calculation of the significance of
this index. This involves the estimation of densities many times to get
a reliable result but is a method that can be applied especially when
you have a large number of unlabeled data.

4.2 FEATURE SELECTION METHOD BASED ON CLUSTER HOMOGE
NEITY

Some machine learning approaches include clustering methods in
order to label instances. They are based on the assumption that the
underlying distributions of the data, and their modes, can be esti-
mated from the sampled data by clustering methods. One of the basic
principles of structural data analysis is that labels are consistent with
data distributions. Accordingly, the relevance of features to labels
should also be reflected by the relevance of features to clusters.

In this section another semi-supervised feature selection strategy
based on MI is introduced. The basic principle of the method is to
replace, for unsupervised data, the label information by the cluster
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information in order to estimate the relevance of each feature or feature
subset. In Section 4.2.1 the chosen method to perform feature selection
is presented and in Section 4.2.2 the unlabeled data is introduced in
the method. The new method is applied to some problems and the
results are shown in Section 4.2.3.

4.2.1  Feature Selection method

Feature selection is usually accomplished according to a relevance
criterion and to a search strategy. The former aims to assess how
relevant a single feature subset is, while the latter aims to guide the
search towards the most relevant feature subset, since, in practice,
testing all possible subsets (exhaustive search) can be unfeasible even
for problems with few variables. Here a filter method is implemented
using MI as a relevance criterion. Roughly speaking, MI measures the
amount of information shared among two or more sets of variables [24]
capturing even nonlinear relations among them. The multivariate
properties of MI makes it an important approach to assess the relevance
of subsets of features, since it may be affected by joint behavior of
a feature in the presence of others. Equation 4.11 repeats bellow the
relevance between the input data X; and the output vector Y defined
in Section 4.1.2.2, that is used in this method.

Ri = MI(Xy,Y). (4.11)

The search technique chosen to be implemented in this method is
the forward-backward (FB) procedure [34, 39, 45]. The forward strat-
egy has smaller capability to finding more complementary features,
compared to backward selection. On the other hand even the smallest
nested subset is predictive. The backward strategy, in turn, is capa-
ble of finding complementary features, however, its performance is
degraded for smallest nested subsets [42]. So, the forward-backward
process tries to get the best of both approaches.

The Forward step

The method begins with an empty set of selected features I' = {(}}. In
the very first iteration the method evaluates the individual relevance of
each feature i from original feature set F. The feature i whose relevance
to the output variable R; is maximum (R; = max(R)) is permanently
added to I' and removed from F. R ={Ry, Ry, ..., Ry, ..., Ry, } is the vector
of all individual features relevance values and n; denotes the total
number of features in F.

After this first iteration, the method continues considering now the
new selected feature subset I' = {F;}. The n, remaining features (n, =
n¢ — 1) are temporarily added to I', one at a time, to evaluate each
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new subset {I" U Xj} relevance, with j # i. A new relevance vector R,, =
{R1,R2,..,Rj,...,Rp, } is then calculated, where R; = MI(T'UX;,Y). If
MI(T'UX;,Y) > MI(T,Y) then, feature j will be permanently added
to I' and removed from F. Note that a direct comparison between
MI(T'UX;,Y) and MI(T, Y) values is not a good idea once the selected
feature subset at each iteration has one more dimension . Therefore a
strategy can be afforded in order to allow this comparison: a random
vector Fj, generated by permuting the elements of feature F; can be
added to T obtained from last iteration. To add a random feature to
selected set I of last iteration will not change its MI with the output
vector. Therefore, if

MI(TUF;,Y) > MI(TUF;p,Y), (4.12)

then feature j can be permanently added to I" and eliminated from F.
This process is repeated until condition defined by Equation 4.12 is
not met anymore.

The Backward step

At this point, the Backward strategy is applied in order to verify if
some of the selected features can be discarded. The idea is to re-
move one feature per time from the selected feature subset I' and
check if the mutual information with the output decrease or not. If
MI(T'\ Xm,Y) = MI(T,Y), feature m can be permanently excluded
from TI'. In other words, if mutual information of I' leaving its mth
feature out does not changes or even increases feature m can be dis-
carded. The issue in doing this comparison is the same for forward
step: I'and I \ X;;, have different dimensions and could not be directly
compared. In order to compare similar numbers the same strategy
from previous step is adopted but in a slightly different way. Actually,
instead of removing feature m from I we just permute its elements
in order to create a random vector Xy, without any relation with the
output but keeping both sets in the same dimension. Therefore if

MI((T\ Xm)UXmp,Y) = MI(T,Y), (4.13)

feature m can be eliminated from I'. This step is repeated until condi-
tion defined by Equation 4.13 does not hold anymore.



4.2 FEATURE SELECTION METHOD BASED ON CLUSTER HOMOGENEITY

After these two steps features remaining into I" set constitute the
final selected feature subset. A simple pseudo-code for this Forward-
Backward process is shown by Algorithm 4.

Algorithm 4: Simple pseudo-code for the Forward-Backward pro-
CesSS.
// Forward Step
1 T'={0}; // empty set of selected features
2 F={FF,,...,Fy); // Set of original features
3 fori=1 —>nfdo
4 L Ry = MI(F;,Y); // individual feature subset relevance

5 Get feature i whose Ry = max(R), add it in " and remove from F;
6 while Forward stop criterion not match // Equation 4.12

7 do

8 forj=1—n, do

9 L Rj = MI (FUF]-,Y); // feature subset relevance

10 Get feature j whose Rj = max(R), add it in I and remove from F if
Rj > MI(T,Y)

// Backward Step
11 while Backward stop Criterion not match // Equation 4.13

1z do

13 fori=1—nsdo

14 L Ri = MI ((F\Xi) UXiP,Y); // feature subset relevance

15 Get feature j whose R; = max(R) and remove it from T if R; > MI(T,Y)

4.2.2  Using unlabeled data

Evaluating feature relevance using MI requires that data set contains
some labeled data; however, small data sets may fail in well repre-
senting the general relation between input and output variables as
shown in the illustrative example* of Figure 4.10a. In this example,
the distribution of labels is not well represented if a small data set
is sampled within the central circle as shown in Figure 4.10a. Since
labeling can be costly, it is expected that unlabeled data could pro-
vide some information about the posterior probability of labels that
could improve feature selection. The feature selection task could be
performed by searching for those features that are important not only
for labels, but also for clusters, which are expected to be consistent
with labels. The use of both labeled and unlabeled data characterizes
the semi-supervised paradigm.

Data distribution information can be useful even when there is a
reasonable amount of labeled data. As an example, consider a forward
feature selection procedure applied to a three dimensional problem,
for which features X; and X; together fully explain the labels in Y
and X3 is completely random (Fig. 4.10a shows the relevant features).
Individually none of the three features is able to explain the labels, so

This is an hypothetical example to illustrate the problem. In real problems labeled
and unlabeled data are not expected to be concentrate in different space regions.
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in the first iteration of the Forward-Backward algorithm defined in
Section 4.2.1, by chance, feature X3 could be ranked first, resulting in
a poor initial subset selection. This can happen because the very first
algorithm step is univariate and, in this hypothetic example the MI
value for each feature will be low. In such a situation the distribution
of the dataset may provide additional information about the relevance
of X7 and X5.

Features X; and X3, together, are able to discriminate the instances
into four different clusters according to the distribution of the dataset,
regardless of labels, as shown at Figure 4.10b. So, if we are able to
estimate the cluster structure that best fits data generator functions,
we can estimate the relevance of each feature subset according to
the dataset distribution. Each pattern, especially the unlabeled ones,
can be associated to a given cluster and receive a tag according to
the cluster number (Figure 4.10b). These “cluster labels” assigned to
each unlabeled data, generating the cluster label vector Y. In addition,
the number of clusters nc should be sufficiently large in order to
guarantee label homogeneity within clusters.

In general, the MI between a feature set X and its vector of labels Y
can be defined in terms of their joint and marginal probabilities as

_ p(xy)
MI(X,Y) = Xer%p (o y)log ey - (4.14)

where x is a vector composed by the values of all features for a given
pattern.

Equation 4.14 can be rewritten by splitting the data according to their
classes as shown in Equation 4.15 for a binary case, where superscripts
(1) and (—1) indicate respectively the data belonging to classes +1 and

MI(X,Y) = Z Z p(x,y)logw—i-

xeX(M yeym p(x)p(y) ( |
(x,y) 415
p(x,y)log—F—r9
XexZH) erZ(—H p(x)p(y)

Assuming that, after clustering procedures, clusters C;,i=1,2,..., k
are homogeneous and correspond to instances from the same class,
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Figure 4.10: For the two class XOR problem, in 4.10a none of the features
alone can explain the distribution of the classes, defined by
circles and crosses, and in 4.10b, even without the labels, features
1 and 2 are still able to explain data distribution.
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i.e., they were generated in such a way that {C;,C2, ..., Ci} C Y! and
{Cit1,..., Cx} € Y1, the MI can be rewritten as

MIXY) = Y Y p(x,c)log 22 L

xex(h ceCy p(x)p(c)
X%n céip el logp (x)p (c)+

(4.16)
Z Z p(x,c)logm—i-...—i-

xeX(=1 ceCipg P (X) P (C)

p(x,¢c)
2 2 pheelloo R

XEX(_I) ceCy

In such situation, MI(X, Y1) = MI(X,Y). In practice, as we are
dealing with unlabeled data, if the number of clusters is defined
sufficiently large to allow that clusters encompass mostly instances
from a single class, we have that MI(X, Y.1) = MI(X,Y). Equation 4.11
can now be rewritten as

Re = MI (x“) ux®,yu Ycl) ) (4.17)

where X(Y) and X are respectively the labeled and unlabeled data
sets, Y is the label vector and Y, is the vector of cluster labels. Equation
4.17 can be directly used in our forward-backward feature selection
filter method. In this way more information about the relevance of each
feature subset is provided taking into account the cluster information.
Therefore cluster information replaces the “label” information for
unlabeled data in order to consider them in the evaluation of the MI.

4.2.3 Experiments and results

The experiments for this feature selection method based on clus-
ter homogeneity consist in comparing the performances of feature
subsets selected according to a pure supervised approach and the
semi-supervised method proposed. A sequential forward-backward
feature selection strategy [39, 45] was implemented and applied to
some real and synthetic datasets, using a MI estimator tailored to clas-
sification problems. This estimator was developed by Goméz et al. [39]
which has high performance even in a context of scarce data. Data
was clustered with K-means algorithm [65]; the number of clusters
nc is shown in Table 4.14. The number of clusters was empirically
chosen in such way to be sufficiently large in order to guarantee label
homogeneity within clusters. This means that we vary the number of
clusters and choose the best setting based on the results.
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The final results aim at comparing the final feature subset obtained
when using only labeled data 'Y, with the one obtained using both
labeled and unlabeled data I'*“.The Linear Discriminant Analysis
Method (LDA) was used in order to classify the test set in three differ-
ent conditions: considering only T't, T** or the set F of all features. The
mean classification accuracy and standard deviation for 10 different
trials are presented in Table 4.15. LDA was chosen to perform the
classification tests due its simplicity and robustness.

Three data sets were used in the experiments. The first one (FBench)
is a synthetic data set, originally developed for benchmark regression
problems [36], whose output is a function of some of their random
input variables. Its output was discretized into two classes (1 for Y > 0
and —1 for Y < 0) in order to transform it into a classification problem.
Two other problems come from the UCI Machine Learning Repository
[1]: the sonar data set, composed by instances of a sonar response
from rocks and mines, and the Pen-Based Handwritten Digits data
set, composed by digit samples from 44 different writers. For this
last problem we considered only instances of digits 1 and 2 in the
experiments.

On each trial a very small portion of data ny was chosen as labeled
data because this method is designed for problems with few labeled
data. Another n; quantity was selected as a test set and the rest n,,
instances was considered as unlabeled data, so their labels were not
considered in the FS task. This values are shown in table 4.14. The
number of clusters was varied from 2 to 150 for FBench problem, and
from 2 to 60 for Sonar and Pen problems.

Table 4.14: Data and algorithm parameters: n is the total number of instances,
ns is the total number of features, ny is the number of labeled
instances, n,, is the number of unlabeled instances, n; is the
number of instances in the test set, n. is the number of clusters,
I is the final set of selected features considering only labeled
data and " is the final set of features considering labeled and
unlabeled data.

Problem | ng¢ n g Ny e e rt riu

FBench 10 | 10000 | 49 | 7952 | 1999 | 100 | 415 1-5-4-10-2-3

Sonar 60 208 11 147 41 40 46 46-36-20-27-30-16-43-24

Pen 16 2287 | 114 | 1717 | 456 30 4 4-15

In all experiments the obtained accuracy for the subset ' is higher
than those obtained using the features selected when using only the
labeled data. It is possible to observe in Table 4.15 that, for Fbench
and Sonar problems, there is no significant accuracy loss when using
only the features in ' instead of using all features. Only for the
Pen data set there is a loss with respect to F. However, there is an
improvement in accuracy with respect to using only the supervised
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Table 4.15: Shows the results for each test, where n; is the final number of
features of each subset.

(ns) Accuracy + o
F r( r(u
FBench | (10) 0.8502+0.0123 | (3) 0.8199+0.0127 | (6) 0.8504+0.0122

Problem

Sonar (60) 0.7117£0.6667 | (1) 0.6052+0.1343 | (8) 0.6924+0.0803

Pen (16) 0.9808-+0.0075 | (1) 0.8478+0.0251 | (2) 0.8780+0.0264

set Tt as expected, since the objective here is to show that cluster
information from unlabeled data, and consequently the proposed
method, conveys information to improve feature selection.

Regarding the computational cost we have to make clear one point.
In fact, what is being proposed and developed in this work is the idea
of using structural information in the generation of cluster labels, that
can be added to the label vector and used in any supervise feature
selection method. This allows to transform a supervised method into
a semi-supervised one. The idea is very simple and easy to implement
which then leads us to conclude that the computational cost of ap-
plying it is associated with the computational cost of the clustering
method and of the selection method chosen.
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One of the difficulties of dealing with feature selection problems is
to assess the quality of the resulting feature subset. Since in most ap-
plications the subset is applied to a classification problem, a classifier
is usually designed to verify the quality of the selected features for
that particular problem. This is usually needed because the selection
criterion methods are not able to fully represent the muti-variate na-
ture of the non-linear input-output relations, so a non-linear inductive
model is needed in order to assess the final result. Even MI adopted in
Chapter 4, despite being a non-linear correlation measure, is not able
to map the complex relations embodied in the data set. In other words,
the quality of a set of features can only be assessed by using them to
solve the target problem. Classification model induction and feature
selection are usually accomplished separately especially due to the
variability of parameters and methods. Nevertheless, Multi-Objective
learning (MOB]J) of neural networks may provide a methology for
jointly solving the two problems, as disscussed in this chapter.

It is well-known that supervised learning is inherently a multi-
objective task [38, 94], since not only fitting to the data set should be
accomplished, but also the complexity of the inductive model should
be minimized. The optimization of the two conflicting objective func-
tions imprint the multi-objective nature to the problem. The link that is
established between MOBJ learning and feature selection results from
the use of L1 norm (LASSO) as a measure of complexity. The MOB]J
solutions yielded with LASSO tend to naturally select input features
as will be shown in the sections that follow, since the magnitude of
the weights tend to be discrepant for input variables. The features
associated with small magnitudes are then discarded.

The development of the semi-supervised feature selection methods
is done through the formalization of the problem, and it can be done
by its characterization as an optimization problem with constraints,
or even by a multi-objective optimization problem. The problem may
be described as having multiple objective functions, such as the error
of labeled data set, the final number of selected features and any
function that could be quantified from the labeled and unlabeled
data sets. The margin of separation in the region of lower density
of samples is a natural choice of objective function capable to use
unlabeled data, for instance. From this perspective, in order to solve
the feature selection problem in this approach, one should solve the
optimization problem considering appropriate objective functions.
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However the main problem is exactly the definition of these functions,
especially those concerning the set of unlabeled data.

In Section 5.1 we show that the problem of feature selection is
naturally multi-objective and in Section 5.3.2 the well known LASSO
algorithm is rewritten in such way to eliminate the irrelevant features
during the training step. The LASSO is more appropriated to the task
of selecting features because the weights are more likely to be zero
as discussed in Section 5.3.1. Finaly a feature selection method is
proposed in Section 5.4 and results of its aplication on syntethic and
real problems are shown in Section 5.5.

5.1 MACHINE LEARNING MULTI-OBJECTIVE NATURE

The minimization of a loss function [94] would yield the approximate
to the real generate function of the data. The most common loss
function used in Machine Learning, especially in Supervised Learning,
is the quadratic error. Equation 5.1 defines the quadratic error function
as a loss function to evaluate the empirical risk [94]:

n

Remp == 3 (yi—f lxe,))? 1)

i=1

where y; is the target variable value of the ith observed value of X
(x1), f(xi, w) is the function implemented by the model and n is the
sample size.

In order to reduce the real risk [94] in the supervised learning
approach, both the empirical risk Remp and the model capacity have
to be minimized, once these objectives are conflicting. Minimizing the
Remp implies rising the model complexity and vice-versa. Then, the
solution for the supervised learning problem is characterized by the
optimization of these two conflicting objectives [74, 15] that must be
well balanced in the optimal solutions. The best solutions are restricted
to the Pareto Set, where none of the objectives can be decreased without
increasing the other one.

The set of all possible solutions for a given problem is defined
or limited by the number of parameters of the model, i.e., these
parameters determine the structure capacity of the model. Meanwhile,
any restriction in the solution space defines the limits of the model
capacity [15]. Figure 5.1 shows these limits. The external circle in
this schematic graphic represents the limits of a set composed by
all possible solutions that a given model, with a given number of
parameters, is able to produce. The inner circle shows the subset of
these solutions that meet any given set of restrictions in the solution
space. This inner circle represents the effective capacity while the
external circle represents the capacity of the model.



5.1 MACHINE LEARNING MULTI-OBJECTIVE NATURE
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Figure 5.1: Structure capacity x Effective capacity.rwp

It can be shown that the effective capacity can be controlled by the
square of the norm of the model parameter vector (|| w ||?) [94]. A
surface Q of the || w ||? for the case with only two parameters w; and
w> is shown in Figure 5.2. If a determined value p; of || w ||? is fixed,
then a set of possible values that the model parameters can assume, in
order to have || w ||?= w1, is determined by the intersection between
the surface of | w ||? and the plane M; defined by ;. Saying in a
different way, all the solutions with the norm value of the parameters
vector equal to 7 are the ones in the intersection (O N M. Figure 5.3
shows the set of solutions with nu; = 2 and p; = 4 projected on the
plane w1 x w;.

In order to solve the multi-objective problem, let us assume that
we are dealing with two quadratic functions that have to be both
minimized, and whose minimal points are non coincident, otherwise
minimizing one of them is sufficient to find the solution. It is possible
to see in the objective space defined by these two objective functions
(Figure 5.4), that, the solutions corresponding to the curve points
marked with triangles have no good candidate solutions, since, for all
of them, both objectives or even, at least, one objective function can be
yet minimized without increasing the other one. The solutions within
the region defined by the curve points marked with circles has good
candidate solutions, because there is no way to minimize one of the
objectives without worsening the other one. This region is called the
Pareto Front and the solutions lying on this front are optimal.

The Pareto Set is the frontier between all feasible and non feasible
solutions and an example is shown in Figure 5.5. All solutions lying
over the Pareto Front are non-optimal but feasible ones, while all
solutions lying under the Pareto Front are unfeasible. The dashed
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Figure 5.2: || w ||? surface. Planes determine set of solutions with same value
of || w ||? in the intersection with its surface. Rwp

Figure 5.3: Solutions for w; =2 and p = 4.rwp
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line in Figure 5.5 represents the set of all solutions whose parameters
vectors have the squared norm equal to 2, for example. Each circle on
the line determined by p; = 2 is a model, whose vector of parameters
w has | w ||?= w1 = 2, but with different values for the second
objective function (that in this case is the quadratic error function). It
is interesting to note that, for a given model capacity p; , all these
solutions are feasible, but only one has the minimum value of the
second objective function. This is the solution that lies in the Pareto
Front (marked with a triangle in Figure 5.5). Moving from the solution
with high error to the one with low error (in terms of the second
objective function) for a given capacity, defines a trajectory in the
objective space where the model parameters are adjusted by some
method. Therefore, controlling this trajectory [23], fixing u for different
values, is a easily way to obtain the Pareto set. Summarizing, for each
fixed value of p, the second objective is minimized in order to find the
Pareto solutions.

There will not exist a unique best solution and the algorithm will
have to choose one among all the optimal solutions from the Pareto Set,
taking into account the compromise between the objective functions
that are being considered. There are a lot of strategies to choose the
best solution in the Pareto Set in the literature.

Therefore, learning problems are inherently multi-objective. This
statement can be easily extended to the feature selection problem,
and constitutes the main reason to address this task with a Multi
OBJective (MOBJ) approach.
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Figure 5.5: Finding Pareto solutions. Dashed curve indicates the Pareto solu-
tions. RWP

5.2 INDEPENDENCE OF LAYERS IN NEURAL NETWORKS LEARNING

A Multi Layer Perceptron (MLP) is adopted in this thesis in order to
develop the Multi-objective approach. In a MLP the problem of feature
selection is solved in the hidden layer when a linearly separable
mapping is determined. The output layer is encharged of finding
the hyperplane that correctly classifies the mapped instances with
best generalization. In order to have a trained network with good
generalization we need any linearly separable mapping in the first
layer and a maximal margin hyper plane in the output layer. If the MLP
is able to classifies correctly all instances, the training process was able
to find the relevant features in the input space using them to define
a good mapping. When a MLP is trained to learn the data generation
function, the feature selection problem is solved at same time because
the mapping is done assigning larger weights to important features
and lower weights to irrelevant features. We will use this characteristic
in order to solve the feature selection task.

A classical approach to train a MLP neural network is to minimize
an objective function based on Mean Square Error (MSE) between the
desired output (labels) and the MLP output, given by

MSE :;; (Y=¥)%, (5-2)

MLP classical where n is the number of instances, Y is the network output and %
training approach  jg the desired output (the known label vector). This basic approach is
also known as ordinary least squares estimates (OLS) [76]. However
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one of the main drawbacks with OLS is the prediction accuracy: it
may achieve low bias solution, but with large variance. MLP weights
are updated in order to minimize MSE in the training step. The most
known algorithm to train a MLP is the back-propagation [79] and most
of learning methods are based on this algorithm. A review on those
training methods can be found in any good neural network book as
[16, 49, 30].

A neural network can be used to learn classification or regression
functions of a given data set. Throughout this work a two layers
Multi-Layer Perceptron neural network (MLP) within a classification
framework will be considered. Each one of these two layers have
distinct functions:

e the first layer, or hidden layer, is encharged to map patterns from
input space to a higher dimensional feature space;

¢ the second layer, or the output layer, has the function of generat-
ing a separation hyperplane in order to classify those mapped
patterns.

If the output layer is designed with one neuron with linear activation
function, the hidden layer has to generate a linearly separable mapping
in order to allow a correct classification. The methods proposed in this
chapter are based on the following assumption:

Any linearly separable mapping from input space to fea-
ture space in a two layers MLP neural network is sufficient
in order to find a very good solution with good generaliza-
tion.

This assumption is grounded in the theorem of separability of Cover
[25] and in the surface separation capacity corollary resultant from this
theorem.

Cover’s theorem is formulated as:

A complex problem of pattern classification, designed nonlin-
early into a high dimensional space, is more likely to be linearly
separable than in a low dimensional space [25].

Patterns that are nonlinearly separable in the input space of a MLP
network are more likely to be linearly separable in the feature space if
mapping is done with a nonlinear function to a dimension sufficiently
greater. Cover also shows in [25] the following result from its theorem:

The expected maximum number of random patterns which are
linearly separable in a space of dimension d is equal to 2d.

This result suggests that a natural definition for the separation
capacity of a family of decision surfaces with d degrees of freedom
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is 2d [25]. Therefore, if data can be correctly linearly separated in the
feature space, it means that the first layer found a good mapping and
many linear hyperplanes can be designed in order to classify correctly
the instances solving the learning problem. However there is only one
hyperplane equidistant to classes. This solution is known as maximal
margin hyperplane and it provides the model with best generalization.

A maximal margin solution has minimal weight norm as shown
in [49]. So if we want a solution with maximal margin that correctly
classifies the training patterns we do need to minimize the norm of the
weights while minimizing the MSE. This claims for a Multi Objective
approach (MOBJ), and there are also many algorithms to train this
network as the one proposed by Costa in [22] and the Support Vector
Machines [93]. However we do not have to train both layers at the
same time or in the same way. Based on the assumption that any
linearly separable mapping can lead to a good generalization solution,
once such mapping is provided, a maximal margin solution can be
easily found.

Therefore, MLP layers can be trained individually, where the training
of first layer has the objective to find a linearly separable mapping of
input data, and the training of output layer has the objective of finding
the maximal margin hyperplane.

Norm influence test

In a classical MOBJ training algorithm both error and weight vector
norm have to be minimized and the following optimization problem
can be defined:

- .
min 5> (Y=9)"+a )|l , (53)

where « is a weight parameter.

The weight vector w, originally, is composed by all weights from
hidden and output layers, so its norm is minimized at same time in
both layers [49, 93]. However, this norm do not need to be minimized
always in that way. Controlling the weights of one layer does not
influence the norm of the weights in the other layer and we want to
use this “property” to design a feature selection method. Therefore,
minimizing the norm of the weights only in the output layer, does not
controls the norm of weights in the hidden layer and vice-versa. Some
empirical tests are made in order to see what happens to the norm of
the weights vector when only the output layer is controlled.

For the well known two moons toy problem, 50 paretos with 21
solutions each were generated by the classical approach, minimizing
MSE and controlling the norm of all weights of entire network, i.e.
w = {Z; W}, where W is the vector of weights of the output layer and
Z is the vector of weights from hidden layer neurons.
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Dominated solutions were eliminated and Figure 5.6 shows the
relation between the norm of weight vectors from hidden and output
layers.
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Figure 5.6: Relation between the weight vector norm from the hidden layer
and from the output layer, when training a MLP controlling the
norm of the weight vector from both layers.

Another 50 paretos with 21 solutions each were also generated,
minimizing MSE and controlling only the norm W in the output layer
and the relation between the norm of weight vectors from hidden and
output layers is shown in Figure 5.7.
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Figure 5.7: Relation between the norm of weight vector from the hidden layer
and from the output layer, when training a MLP controlling only
the norm of the weight vector from output layer.

As can be seen in Figure 5.7 the norm of weight vector of the
hidden layer is not controlled when only the output weight vector
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norm is controlled, which is a empirical confirmation that layers can
be trained independently. This same principle is considered in [19]
where the authors introduce a learning method based on sensitivity
analysis, for a two-layer feedforward neural networks using a linear
training algorithm for each one of the two layers. First the outputs
from the hidden layer are set randomly plus a small error. Then it
finds the weights solving individually a system of linear equations
and evaluates the sum of the squared error of each layer individually.

5.3 LASSO

Minimizing the residual squared error is a way to obtain the ordinary
least squares estimates (OLS), however prediction accuracy and inter-
pretation are two main issues when dealing with OLS. OLS provides
low bias and large variance, and, their estimates include all input fea-
tures with different weight values, once it gives nonzero estimates to
all coefficients[109], complicating feature selection task. Nevertheless
if a problem has a lot of variables, it should be interesting to select a
small subset of features whose relevance is strong.

Prediction accuracy can be improved shrinking or even setting some
weights to zero. This action will prejudice the bias, nevertheless, this
will reduce the variance, improving the overall prediction accuracy.
One way to control the amount of shrinkage that is applied to the
estimates is to add a restriction to the minimization problem, limiting
the sum of absolute values of weights, as shown in the following
definition [90]:

2
P P
@ (lasso) = arg n}li’n y —ZX)'(U]' —H\Z ;] . (5.4)
=1 =1

where w is the vector of weights of the neural network, X is the input
data, p is the number of neurons and A is a parameter.

If w* is the “full squares estimates” and t* = ) |w*| then setting
t < t* will cause shrinkage of the solutions towards zero. Equation
5.4 is the definition of least absolute shrinkage and selection operator or
LASSO.

As shown in [22], the LASSO operator applied to a multi layer per-
ceptron neural networks may reduce or eliminate some weights and
consequently some network inputs on the final solution. This char-
acteristic may be very useful to feature selection. In a LASSO MOBJ
approach the MLP network is trained minimizing the mean squared
error, subject to the sum of the absolute weights being less than a
constant t:
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w

min = %Z (Y— \?)2 (5-5)

subject to : Z lwil < t.

1
Nevertheless, LASSO has also its own drawbacks :

¢ It has been shown that the L1 approach is able to discover the
“right” sparse representation of the model, but only under certain
conditions [29].

* The lasso shrinkage produces biased estimates for the large
coefficients, and thus it could be suboptimal in terms of risk
estimation.

e The optimal A, in Equation 5.4 for prediction gives inconsis-
tent variable selection results. In fact, many noise features are
included in the predictive model[109].

5.3.1 Better understanding LASSO - example

Let us examine a synthetic classification problem composed by two
Gaussian classes as shown in Figure 5.8.

Figure 5.8: Two classes Gaussian problem

For this two-dimensional problem a hyperplane that correctly clas-
sifies the training patterns might be a line defined by

h=w'X (5.6)
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where w is the weight vector of the neural network also shown in
Figure 5.8.

This kind of problem can be easily solved by a single perceptron,
i.e., by a single layer neural network. In this case, w = {wj, w;} where
each weight is applied to one input feature.

The MSE surface in function of weight values is shown in Figure
5.9, and Figure 5.10 shows the MSE contour in function of the weight
values.
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Figure 5.9: MSE surface for the Two Classes Gaussian problem
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Figure 5.10: MSE contour for the Two Classes Gaussian problem

If we want to find a solution minimizing Equation 5.6, the con-
straints will define search areas in the weight space like shown in
Figure 5.11.
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Figure 5.11: LASSO constraint contour for [W| = 150

Therefore, to minimize Equation 5.6 means to minimize MSE inside
the region defined by the constraint ||[W/| < t, whose t in this example
is equal to 150. Figure 5.12 shows this region.
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Figure 5.12: Error Surface with LASSO constraint contour

To find the solution with minimum MSE and with minimal weight
norm an optimization method has to be applied, as the ellipsoidal
method [11] for instance.

Inspired by the definition of LASSO a simple idea arose in the attempt
to speed up the optimization step to select features. As can be seen in
Figure 5.12, note that the constraint contour has corners. The solution
at one corner has one of its weights equal to zero on this example.
There will be as many other opportunities to have weights equal to
zero as larger than two the number of weights is.

If we assume one of these weights equal to zero is possible to “walk”
along these corners simplifying the optimization step. This strategy
may have some utility when training, for example, the hidden layer of
the MLP. Of course, the MSE on these corners may not be the smaller
ones, however we just need a linearly separable mapping in the hidden
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layer in order to achieve a maximal margin solution in the output
layer, to solve the learning problem (see Section 5.2). If we are able to
find a linearly separable mapping then, at same time, weights in the
hidden layer select the best features.

Considering a n-dimensional problem, “walking” directly over the
LASSO constraints corners is still possible. We only have to make
all weights but one equal to zero, for a fixed norm, in order to find
deterministically one corner. Doing that we also can determine directly
the error at this point. Nevertheless there are, at least, two problems
with this strategy:

¢ the problem will be treated as univariate. This is the same as
evaluate any univariate relevance index between the features
and the output;

¢ depending on the number of features and neurons we will have
too many corners to evaluate, forcing the implementation of
some heuristics.

Based on this idea of exploring corners of LASSO constraints to
optimize MLP parameters we rewrite LASSO formulation, in Section
5.3.2, in order to better achieve the goals of solve learning and feature
selection problems at same time.

5.3.2  Re-Writing LASSO formulation

Considering the objective of performing feature selection, there is
another issue in the way how LASSO is defined in Equation 5.4:

LASSO has more chances to produce null weights, but not
necessarily all in the same feature.

We are interested in selecting features while solving the learning
problem. Therefore we prefer that all weights related to the irrelevant
features go to zero in the hidden layer, where the selection problem
is solved, and we need to minimize the norm of the weights in the
output layer to find the maximal margin hyperplane. Actually we
need to write LASSO formulation not in order to force any weight of
the hidden layer go to zero, but in order to make all weights (from
hidden layer) related to any irrelevant feature go to zero. However,
instead of directly prune these weights as done in the Optimal Cell
Damage method [20], we want minimize the objective funtcion subject
to some constraints. Considering the independent training of layers
we can rewrite the basic MOBJ optimization Equation 5.3 as

] o
min 5 3 (Y=V)"+a) Wl +B Y IZll; , (5:7)
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where W is the vector of weights of output layer, Z is the vector of
weights of the hidden layer and o« and 3 are weight parameters.

The LASSO condition in the hidden layer is given adding the reg-
ularization term ) |Z|. This regularization term can be rewritten as
> 1ZI = Y |Z41+ Y |Zol+ ...+ 3 |Zn,|, where n¢ is the number of
features and ) |Zi| is the sum of absolute values of all weights Z
assigned to the feature i, in the hidden layer. The new optimization
problem can be defined as:

min % Z (Y- V)z (5.8)

subjected to :Z 1Z1] + Z |Zo]+ ...+ Z |Zn, | < t,
D Wl <t

where t and t, are the desired norm bounds.

To perform feature selection while solving the learning problem, it
is very interesting that weights assigned to irrelevant features vanish.
In other words, if feature i is irrelevant we want that }_[Z;| = 0.
Therefore the optimization problem can now be written as

subjected to :Z IZ] < t,
Y 1z =0vi=12.,mn
D Wl <t

where n,, is the number of irrelevant features and )_|Z;| = |zi1| +
lzia] + ... + ‘zip , with p equal to the number of hidden neurons.

The way how the optimization problem is defined in 5.9 forces all
weights from hidden layer that are assigned to irrelevant features to
go to zero. Obviously we do not know a priori which are the irrelevant
features and we cannot apply this equality constraint to all features,
so the method has to decide which features apply it to.

During the training, features whose hidden layer weights are grow-
ing could be more important to the learning process than features
whose weights values are smaller. As we want to select relevant fea-
tures, the method can be set in order to apply the equality restrictions
only on those features with small weights values, i.e., over the features
whose sum of the absolute values of their hidden weights are small.
To summarizing, during the optimization, those features whose sum
of absolute values of their weights in the hidden layer (G) are larger,
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will have their equality constraints released, while those with smaller
sum of their weights will have their equality constraints held.

One way to implement this idea and to decide on which features
to apply the equality constraints, is to identify possible outliers in the
range of G values, i.e, in the range of the sum of weight absolute values
assigned to each feature. This can be done in two slightly different
ways:

¢ emphasizing the elimination of irrelevant features or;
* emphasizing the selection of relevant features.

In the first case, those features whose G value is too low compared
to the values of all features, will have their equality restriction applied.
On the other hand, in the second case, those features whose G value
is much larger than the others will have their equality constraints
released. In order to define which are the outliers among the values
of G, there are in the literature some tools as box plot, Dixon’s test,
Grubbs’s test, z-score and others. A review on these methods can be
found in [52].

Therefore, the steps considered in the proposed algorithm, which
will be detailed in Section 5.4 are:

e input features are normalized with zero mean and unity vari-
ance;

* Gi; =) |zi| is evaluated for each feature at each iteration;
* feature i whose Gj is an outlier will have the equality restriction

activated according to the adopted emphasis, at each iteration.

5.4 MOBJ FEATURE SELECTION METHOD

Our LASSO multi-objective algorithm (LMFS) is designed to select the
important features while solving the learning problem. It is imple-
mented to train a multi-layer perceptron network composed by two
layers where the selection problem is solved in the first layer and the
learning problem is solved by both layers. The algorithm has four
different objective functions:

* the mean squared error of the network;
¢ the L1-norm of the weights in the hidden layer;
e the L,-norm of the weights in the output layer;

¢ the sum of absolute values of weights assigned to the irrelevant
features in the hidden layer.
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The optimization problem is defined by Equation 5.9 in Section 5.3.2
and repeated here for convenience:

min % ; (Y- \7)2 (5.10)

subjected to :Z W], <tz

Y lzi<t,

Y 1z =0vi=12.,mn

The ellipsoidal algorithm [11] is used to solve the optimization prob-
lem and the equality constraints are initially applied to all features
and released only for those features whose G increases. The main
algorithm for the proposed method is shown in Algorithm 5.

Algorithm 5: LMFS algorithm.

1+ I'={0}; // empty set of selected features
2 F={Fy,F2,...,Fn,}; // Set of original features

// Preparation
3 Normalize features;

// Ellipsoidal method
4 while Objective function minimum not found // Equation 5.10
5 do
6 Run some initial iteration of optimization method without applying the
equality constraints;

7 for j = 1 to number of features remaining in F do
8 Evaluate Gj =3 |Zj ;// sum of absolute values of all weights
in the hidden layer of feature j
9 Identify outliers values of G;
10 Apply equality constraints to all features and release these constraints for

those features j whose Gj is an outlier with large value;

11 Select features whose weights in hidden layer are not zero (or that are not very
small) and assign it to T

5.5 EXPERIMENTS

The multi-objective method developed in Section 5.4 is applied to
different synthetic and real problems and the results are shown in this
section. The tests are conducted in order to evaluate the efficiency of
the objective functions defined in Equation 5.10, in selecting features
while solving the learning problem.

The tests are performed on four real problems from UCI Machine
Learning Repository [1] and two synthetic problems, as described in
the following:

* SONAR: the sonar data set is composed by instances of a sonar
response. The task is to discriminate between sonar signals
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bounced off a metal cylinder and those bounced off a roughly
cylindrical rock. This data set is composed by 208 instances with
60 features;

* PEN: the Pen-Based Handwritten Digits data set is composed by
digit samples from 44 different writers. For this last problem we
considered only instances of digits 6 and 9 in the experiments. It
has 16 features and 2111 instances;

¢ ILPD: the Indian Liver Patient Dataset. This data set contains
416 liver patient records and 167 non liver patient records. It is
composed by 10 features.

¢ JONO: the Johns Hopkins University Ionosphere database has 34
features with 351 patterns of radar returns from the ionosphere.
Radar returns are classified into two classes: if there is a good
return it shows the evidence of some type of structure in the
ionosphere, if not their signals pass through the ionosphere.

* XOR: is a synthetic data set build with a exclusive-OR function.
This problem has two important features (two dimensional prob-
lem), three random features and two more features that are equal
to the first two plus a random noise. This data set is composed
by 2.000 patterns.

* PCIRC: is a synthetic problem composed by two different classes
with a distribution as shown in Figure 5.13. The first two features
are the most relevant ones while the last two are a copy of these
relevant features plus a random noise. There are also six more
random features that are completely irrelevant. The problem has
2.277 patterns.

For each problem the feature selection method is repeated 10 times
in a cross validation scheme. Each time the training and test sets are
randomly chosen in order to avoid biased results. For each trial the
selected features are assigned to the I' feature subset that is used to
train a MLP network. Features are selected according to their G values.
The accuracy of this trained MLP is evaluated on the test set, and the
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Figure 5.13: Two first features from PCIRC problem.

average results are shown in Section 5.5.1. Algorithm 6 shows the
main steps of the experiments for each problem.

Algorithm 6: MOB]J experiments algorithm.

// Preparation
1+ Normalize features;
= Split data into 10 folds;

3 for each fold do
Solve optimization problem 5.10; // Using ellipsoidal method

ES

5 Select features whose weights in hidden layer are not very small assigning
them to T

6 Train a MLP using I subset;

7 Evaluate network accuracy over the test set;

8 Summarize results;

5.5.1 Results

For the PCIRC problem, the parameter t of the optimization problem
defined by Equation 5.10, is set to 3.5, and the chosen number of

neuronis in the hidden layer is set to 5 according to previous tests.

The tests to set these parameters are conducted with a classical MOB]J
training method (see references in Section 5.2): a MLP is trained with
several values of neurons and for several norm bound values. The
parameters from the best trained network (considering the accuracy on
a test set) are selected. This procedure is done for all other problems
too.

Figure 5.14 shows the average sum of absolute values of weights G
in the hidden layer assigned to each feature i of PCIRC problem. Note
that features 1 and 2 as well as features 9 and 10 receive the larger
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weights. It is natural that features 9 and 10 receive also large weights
once feature 9 is equal to feature 1 plus a random noise, and feature
10 is equal to feature 2 plus a random noise. Analyzing the average
values of final G values of each feature, features 1, 2, 9 and 10 are
selected and assigned to the final selected feature subset T".

feature 1

Figure 5.14: Average of the sum of absolute values of weights in the hidden
layer of feature i for PCIRC problem. This is a synthetic problem
where features 1 and 2 are the good ones and features 9 and 10
are redundant with the first two features.

The second synthetic problem evaluated is the XOR problem de-
scribed before. The MLP network is set with 5 neurons in the hidden
layer and with the optimization parameter t = 4. Figure 5.15 shows
graphically the average value of G of each feature over 10 training
trials. As expected, features 1,2, 6 and 7 received the larger G values
in average. Features 6 and 7 are identical to features 1 and 2, and
therefore they are selected together with features 1 and 2 after the
analysis of results.

For the IONO problem, 23 features, in average, did not have the
restriction of equality applied to its weights in the hidden layer, and
are selected to compose the final I" subset as can be seen in Figure
5.16. These 23 features are used to train the MLP network and a LDA
model 10 times, using a cross validation framework, and their average
accuracies on the test sets are shown in Table 5.1. The same test is
performed considering only the 10 best features from T, i.e. the 10
features with larger G value. Results are also listed in Table 5.1

The LMFS method is applied to other three problems: SONAR, ILPD
and PEN problems. For each one of them the neural network is set with
10 hidden neurons. The parameter t from the optimization problem
is set as 1 for the PEN problem, as 3.5 for the ILPD problem, and as
1.5 for the SONAR problem. The average classification accuracy on
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features i

Figure 5.15: Average of the sum of absolute values of weights in the hidden
layer of feature i for XOR problem. This is a synthetic problem
where features 1 and 2 are the good ones and features 9 and 10
are redundant with the first two features.
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features 1

Figure 5.16: Average of the sum of absolute values of weights in the hidden
layer of feature i for IONO problem.
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Table 5.1: Average classification accuracies from models trained with subset
I' (with different number n of selected features) selected by LMFS
method from IONO problem. n¢ is the original number of features.

Accto
LDA MLP
23 | 0.8632 + 0.0298 | 0.846 + 0.0692

ns | Mg

34
10 | 0.8005 & 0.0361 | 08630 £ 0.0425

the test set in a 10-fold cross validation test is shown in Table 5.2. This
table also shows the number of selected features after analyzing the
final G values.

Table 5.2: Average classification accuracies from models trained with subset
I selected by LMFS method from problems SONAR, PEN and ILPD.
Ny is the original number of features.

Accto
LDA MLP
SONAR | 60 | 11 0.79 &+ 0.08 0.77 £ 0.07
ILPD 10| 5 0.61 £ 0.02 0.70 £ 0.03

Problem | n¢ | ng

PEN 16 | 11 | 0.9995 *£ 0.001 | 0.9996 *+ 0.001

It is interesting to emphasize that the LMFS method, developed
in this thesis, selected the correct relevant features of all synthetic
problems. Of course, as we know which are the relevant feature on
these toy problems we do not have to check their accuracies on a test
set. For the real problems used here Table 5.2 list the average results.
Nevertheless the features selected by the LMFS method, for the SONAR
problem, achieved 87% of correct classifications for a LDA model and
84% for a MLP model, many times, depending on the training set.

All results are also comparable with the results obtained by the SSFC
method developed in Section 4.1.2 and with the results of previous
works, where these data sets were used in a classification task. In [83]
the authors achieved accuracies from 90% to 92% for a classification
task using a MLP for the IONO problem, but using all 34 features.
Our MOB] method archives 86% of accuracy with a MLP model trained
with the 10 first selected features, and 84% when considering the first
23 features. In [5] the authors achieved, depending on the network
configuration, from 92% to 98% of accuracy over a test set using all
16 features for the PEN problem. We achieve better performances
training a MLP and a LDA model using less features selected by the
LMFS method: 99% for both LDA and MLP models in average. In
[41] the authors achieved results with accuracy of 81% in average, for
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different number of hidden neurons but considering all 6o features for
the SONAR problem. Our MOBJ] method selects a feature subset of 11
features whose classification accuracy reached 79% in average when
training a LDA model.

In fact, which was developed in this thesis is an objective function
to be minimized by an optimization method. The method chosen
here was the ellipsoid one, and therefore the computational cost of
this fetaure selection method is conditioned by the choice of the
optimization method. The only additional cost added to the cost of the
optimization method is the cost of deciding which features the equality
restriction has to be applied. However this additional computational
cost is much lower than the cost of the optimization method.
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Mutual information (MI) [24] has been applied to a wide range of
machine learning problems [61, 73]. It is a well established approach,
especially for estimating uni- and multi-variate non-linear relations,
being also applied in the context of feature selection (FS) [8].

In order to evaluate mutual information, densities of dependent
and independent variables should be estimated. In practice, evalu-
ating mutual information is not straightforward, since it requires a
priori knowledge of the corresponding densities. Usually, information
about densities is not fully available and a proper density estimator is
needed.

A mutual information estimator for classification problems, derived
from the Kraskov estimator [60], was developed by Goméz et al. [39].
It addresses classification tasks by discretizing the output variable,
and can also be applied to multi-class feature selection problems.
Nevertheless, like the original Kraskov estimator, this approach is also
restricted to continuous input variables. However, most real-domain
applications contain not only continuous but also discrete variables,
which are usually treated separately in current applications.

We propose a new estimator, based on the original Kraskov method,
that is able to deal not only with continuous but also with discrete
variables in order to perform Feature Selection.

As will be discussed later, the entropy of a n-bit quantization of
a continuous random variable X is approximately the differential
entropy of X plus n [24]. This indicates that the entropy of a discrete
random variable is not comparable to the entropy of a continuous
one and consequently the corresponding mutual information will
not be the same too. It is noticeable the lack of a proper method
to estimate MI for a set of continuous and discrete variables in the
literature, and the use of an estimator that works only with one of
them in problems composed by both types of variables could lead to
inaccurate estimations and poor feature selection results as shown in
Section 6.3.4.

We begin by discussing the statistical principles of this central
question, which motivates the work, and by stating the differences
between differential and discrete entropies. Next, a mutual information
estimator for classification problems, that is able to deal with discrete
and continuous variables together, is developed following the steps
described in [39]. Next, it is shown with experiments that the new
estimator method could improve feature selection results when used
in problems composed by a mixed set of variables.
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6.1 MIXED ENTROPY AND MUTUAL INFORMATION

Standard approaches for MI estimation include dynamic allocation
of histograms’ bins [8], recursive partitioning of the input domain
[27] and kernel density estimators [84]. The Kraskov estimator [60]
adopted in this work is also based on partitioning-and-counting in
the input space. The density at a given point is obtained according to
the distance from this point to the nearest neighbors, what makes the
estimator robust to scarce datasets.

In order to deal with distortions that may appear in density estima-
tions of mixed sets of variables, a strategy adopted in the literature is
to discretize the continuous variables and then to apply the MI estima-
tor [70]. However, this approach is likely to result in poor estimations
due to discretization or due to continuous approximations of discrete
variables. Therefore, in order to deal with this particular problem,
which is frequent in most real applications, a method that is capable
to handle both types of variables should be developed.

In order to emphasize the discrepancy in approximation highlighted
in the previous section, let us consider a continuous random variable
Z with a continuous probability density function f(z). Consider now
that the space of Z is discretized into fixed intervals A, where each
interval 1 is defined as [iA, (i + 1)A[. For each interval i, as a direct
consequence of the mean value theorem, it is possible to find a value z;
for which

(i+1)A
f(zi)A = J f(z)dz . (6.1)
iA
A discrete random variable Z2 can be defined over a countable
number of values z;, being one per interval i of Z. In this case the
probability p; associated to z; can be written on the basis of the pdf
of Z as

Pi = f(Zi)A . (62)

Cover [24] shows that the discrete entropy of the quantized variable
Z* is given by

H(z?) = =) pilogps 6.3)
= —) Af(z;) logf(zi) — logA (6.4)

if ) f(z)A=[f(z)=1.
It can be shown [24] that the first term in Equation 6.4 tends to the
integral of —f(z) log f(z) as A — 0, if f(z)log f(z) is Riemann integrable.
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This implies that the entropy of the discrete random variable Z# and
the differential entropy of the continuous random variable Z relate as

H(Z%) +logA — h(f) =h(Z) asA —0; (6.5)

See theorem 8.3.1 in [24].

It is easy to estimate entropies for discrete variables (by counts) and
for continuous variables (for example, by using Kraskov estimator
[60]). However, most real-world multivariate data include both contin-
uous and discrete variables together. One way of estimating entropies
on such multivariate data would be firstly to discretize the contin-
uous variables and secondly to use a discrete estimator by counts.
Nevertheless, Equation 6.5 shows that the entropies of the original
continuous variables and their discretized versions do not match. A
specific estimator for mixed variables is therefore necessary.

6.1.1  Entropy of a mixed set of variables

Given two discrete random variables X and Z , the joint entropy
H (X, Z) can be defined as in Equation 6.6 by the Chain rule:

H(X,Z)=H(X)+H(Z[X) . (6.6)

By definition [24], the conditional entropy H (Z | X) is defined as

H(ZIX) = ) pJH(ZIX=x)
xeX

= —ZZp(x,z)logp(Z|X) p (6.7)

xeXzeZ

where p (x) is the probability of x, p (x,z) is the joint probability of x
and z, and p (z | x) is the probability of z once x is given.

If both variables are continuous then, by the Chain rule again, the
differential joint entropy h becomes

h(X,Z) =h(X)+h(Z|X) (6.8)

and, likewise, by definition, the equation above can be rewritten as

h(Z|X) = —JJf(x,z)log f(z]|x)dxdz

_ Jf(x)h(zlx—x)dx, (6.9)
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where f(x) is the probability mass function of x, f(x,z) is the joint
probability mass function x and z and f (z | x) is the probability mass
function of z given x.

Considering X as discrete and Z as continuous, by analogy with
Equations 6.6 and 6.8, the resulting mixed entropy H (Z, X) may be
defined as

H(ZX)=H(X)+h(Z|X) . (6.10)

It is interesting to notice that in Equation 6.10 the entropy is the sum
of two different quantities: the differential entropy of a continuous
variable and the discrete entropy of a discrete one. Since the random
variable X is discrete the conditional differential entropy in Equation
6.10 is given by

h(Z|X)=) p(X h(Z|X=x) . (6.11)
xeX

Then, the mixed entropy of a discrete random variable X and a
continuous one Z becomes

H(Z,X)=H(X)+ ) p(X=x)h(Z|X=x)
xeX
Zp J f(Z|X=x)logf(Z|X=x)dz
xeX

(6.12)

where S is the support set of the random variable Z.

6.1.2  Mutual Information between a mixed set of variables and a discrete
one

Let us now consider V as a random variable set composed by a discrete
random variable X and by a continuous random variable Z, such as
V ={X U Z}. Consider also another discrete random variable Y.

The Mutual Information between V and Y can be defined, in terms
of the mixed entropy, as:

MI(V,Y) = fH(V)— (V1Y)

- )= p(Y=y)H(ZX|Y=y). (613)
yey
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Equation 6.13 can be rewritten as:

ML(V,Y)=H(X)+ Y p(X=x)h(Z|X=x)—) p(Y=1y)
xeX yey
(H(x|Yzy)+Zp(x:x|vzy)h(2|xzx,vzy)>
xeX
(6.14)

From Equation 6.14 the Mixed Mutual Information Estimator will
be obtained in the next section.

6.2 MIXED MUTUAL INFORMATION ESTIMATOR

An estimator of the Mixed Mutual Information can be developed by
replacing the differential entropy quantities in Equation 6.14 by the
Kozachenko-Leonenko entropy estimator

N
h(Z) == (k) +1 (N) + log Cd—i-% Zlog e (n, k) (6.15)

n=1

as presented in [39], where k is the number of nearest neighbors
that should be set by the user, N is the number of patterns, d is the
dimension of Z, Cg4 is the volume of the d-dimensional unitary sphere,
P (-) is the digamma function and ¢ (n, k) is twice the distance from
zn to its k'™ neighbor.

Then, after some algebraic manipulations the following expression
is obtained.

MI(V,Y) = — N " 1o g(";;)

+;ﬁw(m»+;“§i§wge(z/k)
—Zml <—il og <mi>> (6.16)
—;n;flz:ilb(ml)
_;“]:flzziniZlogs i k

where m; is the number of elements of X for which the elements in Y
are equal to yi, m, is the number of elements of X that are equal to
xr, and my is the number of elements of X for which the elements in
X are equal to x; and the elements in Y are equal to y;
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Equation 6.16 was derived for the case of a one-dimensional variable
X and a one-dimensional variable Z. This expression can be gener-
alized for the case where V = {X, Z}, with X = {Xj,...,X;,} being a
set of n discrete random variables, Z = {Z;,...,Z} being a set of t
continuous random variables and Y a discrete random variable:

n
MI(V,Y)=H(X1)+ Y p(Xi,...,Xg1) H(Xg [ Xg_1,...,X1)
g=2

~ Y p(Y=yHX [Y=y)l-) p(Y=y)

yey yey

n
> p(Xi,ee Xgo1 1 Y=1y) H (Xg | Xg_1,...,X1,Y =1)
g=2

+Y pX=xh(Z|X=x)=Y p(Y=y)

xeX yey
D P(X=x|Y=yh(Z[X=xY=y). (6.17)
xeX|Y=y

The definition of Equation 6.17 as the Mutual Information Estimator
for a set of continuous and discrete variables depends on the definition
of the mixed entropy JH. This mixed entropy definition allows the
computation of different quantities as discrete entropy and differential
entropy in the same framework. This is the key point of this new MI
Estimator: the ability to sum, in a proper way, discrete and differential
entropies.

6.3 EXPERIMENTS
6.3.1 Feature Selection methodology

Selecting features by their individual relevance may lead to a subopti-
mal feature subset. As mentioned in [45] some features, considered
irrelevant to the output when evaluated individually, could become
relevant when evaluated in the presence of other features. However,
in practice, testing all possible feature subsets by exhaustive search
can be unfeasible depending on the dimension of the input space.
Therefore, it is important to use a search strategy in order to overcome
this issue: a forward-backward sequential supervised feature selection
algorithm [39, 45] is implemented.
The forward-backward procedure adopted here is the following:

e firstly the forward step is applied. During this step the selected
feature subset I' starts empty; at each iteration one feature is
added. In the first iteration the MI between each individual
feature from the full set F and the output labels Y is evaluated.
The feature F; from F with the highest MI with Y is added to
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' and excluded from F. In the next iteration each one of the
remaining features F; in F is temporarily added to I' (giving Ij);
the MI between I} and Y is evaluated. Feature F; that, together
with the previously selected subset, has the highest MI with
the output labels is selected and permanently added to I' (and
excluded from F). If MI of Tj is greater than T', given the stopping
criterion detailed next, then the procedure continues to the next
iteration, otherwise the forward procedure is stopped.

¢ secondly the backward step is applied starting with the final
selected feature subset I' from the previous step. At each iteration
each selected feature F; is individually and temporarily excluded
from T (giving Tj) and the MI between I and Y is evaluated. The
set I with the highest MI value is selected and, if T is more
relevant than I" given a stopping criterion detailed below, then
F; is definitively excluded from T, otherwise the procedure is
stopped.

Other forward-backward schemes could be adopted as well. For
example, a backward step is sometimes performed at each iteration of
the forward loop. Another possibility is to start from the full set and
to apply backward steps; the advantage is that links between features
are taken into account from the beginning of the procedure, the price
to pay being the need for estimating high-dimensional entropies and
mutual information.

6.3.2 Stopping criterion

Considering F; one feature from the initial set F and I' the actual
selected feature subset, with F; ¢ T, the forward step used in the
feature selection process tries to answer the following question: “is
' UF; more relevant than I'"”? Since I' has one dimension less than
I"'UF;, the MI(I"UF;,Y) value can not be compared to the MI(T,Y)
value. In order to answer the question the permutation test idea
[35, 40] is applied as follows: from the set I' U F;, the feature F; has its
elements randomly permuted forming another set I' UFY, where F}
is the permuted version of feature F;. This permutation generates a
random variable with the same distribution as F;, but that does not
have any relation with the output Y (the corresponding values of Y
are not permuted). Actually, adding a random variable to set I', in
theory, does not improve or prejudice the mutual information between
I and Y, but it increases the dimension of the I' set in order to make it
comparable to I' U F;. Therefore, if MI(TUF;,Y) > MI(T"'U Ff,Y) then
' UF; is more relevant than I'. Therefore F; can be added to I" and the
process continues. Otherwise the forward process is halted and no
more features are added to T".
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The same principle is applied in the backward step, however in
a slightly different way. As before, it is not possible to compare the
result of MI(T,Y) with the result of MI(I"\ F;, Y) in order to verify if
there is an increase of relevance when feature F; is removed from T,
because the sets have different dimensions. Permuting the feature F;
in T" transforms this feature in a random variable with no relation with
Y, thus, a set without the influence of F; but with the same dimension
of I' is generated. Now it is possible to answer if I' \ F; is more relevant
than . If MI(T,Y) < MI((I"'\ F{) UFP), F; can be definitively removed
from I" and the process continues, otherwise the backward process is
halted.

6.3.3 Problems

The tests are applied to seven real datasets problems, and to a synthetic
one, as described next:

* DCbench dataset which is specifically designed for testing the
MMI estimator, since the relation between input features and
the output variable is known and controlled. This dataset is
composed by four discrete and six continuous features, that are
sampled from different distributions. The DCbench dataset has
10.000 samples. The output results from a combination of three
continuous features (X7, X2 and X3) and two discrete ones (X7
and X3g), in the following way:

Y =sign (tanh (X;) +sin (X2) + X7 + Xg +X3) . (6.18)

* Boston Housing dataset [1] is composed by 506 samples with 13
features (3 discrete and 10 continuous). Originally the output of
this problem is the house prices, which is a continuous variable,
however, here it is transformed into a classification problem by
splitting the output into two classes: prices larger or smaller than
a given threshold as in [91].

¢ Page Blocks Classification dataset [1], which is composed by
5473 samples with 10 features, being 6 discrete and 4 continuous.

* Spambase dataset (Spam) [1], a dataset of e-mails spams with
4601 samples composed by 55 continuous features and 2 discrete
ones.

* Multi-feature digit dataset (Mfeat) [1] consists of features of
handwritten numerals (“0” to “9”) extracted from a collection of
Dutch utility maps. It has 2000 samples (200 per class) with 190

continuous features and 459 discrete features.
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e Steel Plates Faults Data Set (Steel) [1] is classified into 7 differ-
ent types and has 1941 samples with 13 continuous features and
20 discrete ones.

¢ Indian Liver Patient Dataset (ILPD) [1] is composed by 579 liver
patient records with 5 continuous features and 5 discrete ones.

e KDD Cup 1999 Data [1] from the Third International Knowledge
Discovery and Data Mining Tools Competition. It has 15 continuous
features and 26 discrete ones with 4.898.431 samples; 600 pat-
terns were randomly sampled from the original dataset for the
tests.

6.3.4 Results

Results are summarized in Table 6.1. '« is the feature subset selected
using the mixed MI estimator considering all discrete and continuous
features in the initial set, and g4 is the set of selected features ob-
tained when using a discrete MI estimator and considering all features
as discrete (continuous features are discretized). I'y is the selected
feature subset considering only discrete variables and a discrete M1
estimator, and T is the set of selected features when considering only
the continuous features and an exclusive continuous MI estimator. All
these selected subsets are used to train a LDA classification model in
a 10 fold cross-validation framework. Acc is the mean accuracy over
and o is its standard deviation.

For the dcBench problem all relevant features are known. As ex-
pected, all these relevant features are correctly selected when using
the MMI estimator

Table 6.1: Mean accuracy for LDA over final selected feature subset of each

experiment.
Problem LDA accuracy (Acc % 0)
Mmix Taa FaUTe
dcBench 0.9267+0.0082 | 0.8584+0.0111 0.92634-0.0080
Page Block | 0.9011+0.0281 | 0.7955+0.0139 0.873040.0247
Boston 0.8440£0.0518 | 0.8459+0.0635 0.8341£0.0510
Spam 0.6740£0.0219 | 0.6727 £ 0.0206 | 0.6727+0.0206
MPFeat 0.9661£0.0246 | 0.9445+0.0102 0.8072£0.0253
Steel 0.536540.0311 | 0.5322£0.0449 0.5776£0.0283
ILPD 0.548240.0478 | 0.5310£0.0348 0.5855+0.0443
KDD 0.9933£0.0111 | 0.9617£0.0249 | 0.9967 £ 0.0072

It can be observed from the results of Table 6.1 that:

* the average performance of the final set of selected features using
the proposed estimator I'miy is, in half of the cases, significantly
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better than the one achieved by the subset of selected variables
discretizing all continuous variables and using estimator 'qq
based on histograms (and in the worst case is not significantly
different from the latter);

considering continuous variables as continuous resulted in a
gain of classifier performance for dcBench, Page Blocks, Mfeat,
ILPD and KDD datasets;

it can be observed that the performance achieved by I'nix is
better when compared with I'q U T, for datasets like Page Block,
MFeat and Boston;

for dcBench, Spam and KDD the same average rates of accuracy
is obtained while for Steel and ILPD datasets Iy iy performed
lower than I'q U T;

it is also interesting to observe that the final feature subsets
I'q UT¢ result, in most cases, to higher performance when com-
pared to the performance of I'qq sets. This supports our argu-
ments that it is worth avoiding the discretization of continuous
variables. In addition, performances obtained with I'y UT, are
comparable in average to performances obtained with I'yiy; in
the few cases where performances obtained with I'q UT. are
higher (ex: Steel and ILPD), it comes from the fact that the
I'q UT. procedure results in a higher number of selected features,
because interactions between continuous and discrete variables
are not taken into account in the 'y U T, case.



CONCLUSIONS

This work presented new methods for feature selection that are capable
to consider sources of information from labeled as well as unlabeled
data. In this semi-supervised feature selection framework we devel-
oped our research according to two distinct approaches. The first one
is based on the idea of eliminating redundant features by clustering
them and on the clustering homogeneity principle: near instances
are more likely to be of the same class, and therefore share the same
labels.

In the feature clustering approach, the sSFC method developed in
Section 4.1.2 is based on a new similarity measure proposed in Section
4.1.1. This method is considered as a semi-supervised method because
labeled and unlabeled data are taken into account in the similarity
measure. According to the results in Section 4.1.3 the method achieves
very good results, being comparable with results of past works over
the same data sets. It performs well even for small number of labeled
data.

The similarity measure has contributions of labeled and unlabeled
data and a parameter balances these contributions. We performed
the method for different values of this parameter in order to see its
importance and to check if the way to set it, proposed in Section
4.1.1.1, is a good way. Actually the values of this balance parameter
do not affect the simulations too much. In average the mean value
of it, proposed as a more balanced choice to provide a more semi-
supervised similarity measure, performs quite well as the other values
on these problems. Therefore, as the proposed value for the balance
parameter also allowed good performances of the selected feature
subset, it is better to consider this rather than any other value, keeping
a good balance between the “supervised” and “unsupervised” terms
in the similarity measure proposed.

There are some points that deserve some discussion and further
development in future works. In the feature selection method devel-
oped based on the proposed similarity measure (SSFC method), the
relevance step needs to be improved. The way how it is implemented
only perform a univariate filter, analyzing individually the relevance
of each feature. It must be interesting to develop or to use some multi-
variate measure because features that are irrelevant alone, may be very
relevant when considered together with other features. This seems to
be the case in the ILPD problem analyzed in Section 4.1.3, and such
change can improve the method performance.
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The other point in the same method that deserves some attention is
the stopping criterion used in the redundancy step. The implemented
idea is to stop the clustering process only when the similarity mea-
sure has no more significance. The results show that this criterion
performed very well, however we believe that it can be improved. The
fact that the similarity value is not a “zero” of the estimator does not
necessarily means that it is big enough in order to be consider two
features as similar. Therefore a new way to set a threshold has to be
developed.

Still in the feature clustering approach, in Section 4.2 another feature
selection method based on the principle of homogeneity between labels
and data clusters is proposed. According to this principle the label
distribution is consistent and coherent with the distribution of data.
In that sense, estimation of data clusters can provide some hints about
the posterior label distribution. Therefore, features that are relevant
to labels are also relevant to data distribution and, consequently to
clusters. The results show that information retrieved from clusters can
improve the estimation of feature relevance and of feature selection
tasks, specially when the number of labeled data is too small and the
unlabeled data is numerous.

This principle may be applied also to the SSFC method proposed in
Section 4.1.2, in order to provide more “labeled” data to the supervised
term of the proposed similarity measure.

In the multi-objective approach, in Section 5.4 the proposed LMFS
method is based on the fact that layers in a MLP are independent. While
the hidden layer maps the input space to a higher dimensional one in
order to provide a higher chance to make classes linearly separable,
the output layer provides the separation hyperplane. Based on this
principle we proposed a new way to train MLPs, which is based in
the minimization of the mean squared error, the euclidean norm of
weights of the output layer and the Li-norm of weights of hidden
layer neurons. In order to obtain a linearly separable mapping to solve
the learning problem, the weights are updated so that the magnitude
of those weights assigned to relevant features are increased and the
magnitude of those assigned to irrelevant features are decreased. The
use of LASSO operator in a optimization problem provides a higher
probability to have null weights. We rewrite the LASSO formulation
in order to force the weights associated to irrelevant variables to
be minimized. The results show that this method works very well,
yielding results that are comparable to those found in the literature. It
is worth noting that LASSO operator has some drawbacks, as listed in
Section 5.3, and these issues can limit the use of this formulation in
some problems.

The LMFS method is a supervised method and we are still studying
a way to consider the unlabeled data on its framework. The principle
of homogeneity between labels and data clusters discussed in Section
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4.2 may be used here in order to provide more “labeled” data from
unlabeled data set, and then, turn this method into a semi-supervised
one.

For the MOBJ experiments we chose the ellipsoidal method to solve
the optimization problem, and particularly we had some problems
with the implementation of this algorithm. Other implementations of
the ellipsoidal method or other methods can be used too in order to
improve the selection results.

Finally the idea of the independence of layers in a MLP explored on
Section 5.2 provides a new way to train these kind of neural network.
The layers are trained independently with different objective functions.
Training a neural network considering different norms for each layer
makes it possible to work with 1-norm in the hidden layer, what is
more consistent with the selection task.

It is worth noting that all these methods are designed to work with a
small number of labeled instances (except the selection method based
on multi-objective approach that is still just supervised). This detail
makes comparison with results from other feature selection methods
very difficult, even impossible to be done. The best solution to do this
comparison would be to implement each one of the methods found
in the literature and then perform simulations under the same test
conditions applied the methods we have developed, but this could not
be done.

Our final conclusion is that all three methods can, and should be
used as feature selection methods. Among the three methods, the
tirst one, based on the clustering approach, despite running well over
the experiments, has the highest computational cost and can produce
better results if some improvement are done. If the stopping criterion
of the relevance elimination step is improved we are confident that the
results will be even better. The same is true for the criterion used in
second step which irrelevant features are removed. Up to this moment
it is univariate.

From the three methods of feature selection developed here, The
ideia behind the method based on cluster homogeneity is the most
simplest and promising one. With a very low computational cost this
idea can probably be implemented in most existent supervised meth-
ods of feature selection. In turn, the selection method developed based
on the MOB]J approach is the one of the three which can be further
developed so far. Its objective function still needs to be developed to
address the data that are not labeled but it already shows great results
as a supervised method.
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CONTRIBUTIONS

We worked in two different approaches in order to develop and pro-
pose new semi-supervised features selection methods. We can high-
light the following direct and indirect contributions:

developement of a similarity measure that take into account even
the labeled and unlabeled data;

developement of a new semi-supervised feature select method
based on the proposed similarity measure;

developement of a second semi-supervised feature selection
method based on the principle of homogeneity between labels
and data clusters;

developement of a new feature selection method in the MOB]J
approach that is also a new way to train a MLP, where the
different layers are trained independently with different objective
functions;

as an indirect contribution, developement of a Mutual Informa-
tion estimator able to consider both discrete and continuous
variables in the same data set.

FUTURE WORK

As a suggestion of future work we can highlight:

the implementation of a better ellipsoidal algorithm in the LMFS
method;

the use of other optimization methods in the LMFS method;

the elimination of the Li-norm constraint from the training of
the hidden layer, once for the feature selection task the equality
Li-norm constraint is the most important.

introduce the principle of homogeneity between labels and data
clusters in the LMFS method turning it into a semi-supervised
method;

search for other ways and objective functions in order to consider
unlabeled data in the multi-objective approach;

use the same principle of homogeneity between labels and data
clusters in the SSFC method;
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“Just keep swimming!

(Finding Nemo)
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