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A B S T R A C T

In this work, a detailed study is made of the reflectivity spectrum
of L3 photonic crystal slab cavities. The scattering matrix method for
patterned multilayer photonic structures is implemented to study the
coupling between the scattering and bounded states in the crystal.
Some modifications are made in the original treatment of the method
in order to describe arbitrary geometrical shapes of the incident light
spot and to calculate the reflectivity in a cross-polarized scheme. The
lineshape of the fundamental mode resonance is well fitted by the
Fano formula, evidencing an electromagnetic Fano interference phe-
nomenon in the reflection process. It is found that the lineshape of
the Fano resonance can be accurately controlled and reversed by the
polarization of the incident field, and the continuum contribution in
the Fano phenomenon can be enhanced increasing the incident spot
size. Good agreement is obtained between the theoretical and experi-
mental results.

The outline of the work is as follows: Chapter one presents a gen-
eral state of the art in the photonic crystal area. Then, in chapter two,
the fundamental concepts of the solid state physics and electromag-
netism in inhomogeneous and periodic media are described. In chap-
ter three a revision is made of the standard plane wave expansion
method applied to two dimensional photonic crystals. In chapter four
the scattering matrix treatment of patterned multilayer structures is
formulated in a general form, to study the diffractive properties of
photonic structures. Chapter five presents the implementation of the
scattering matrix method to photonic crystal slabs and in chapter six
the principal results of this work are presented and discussed. Finally,
chapter seven contains the principal conclusions and perspectives.
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R E S U M O

Neste trabalho é feito um estudo detalhado do espectro de refletivi-
dade de cavidades L3 em cristais fotônicos. O método de matriz de
espalhamento aplicado a estruturas fotônicas multicamadas é imple-
mentado para estudar o acoplamento entre os estados dispersados
e confinados pelo cristal. Algumas modificações são feitas no trata-
mento inicial do método, a fim de descrever geometrias arbitrárias
do feixe de luz incidente e calcular a refletividade em um esquema
de polarização cruzada. A forma de linha da ressonância do modo
fundamental é bem ajustada pela fórmula de Fano, evidenciando um
fenômeno de interferência de Fano eletromagnético no processo de
reflexão. Verifica-se que a ressonância de Fano pode ser sintonizada
com precisão via a polarização do campo incidente. Demonstra-se
ainda que a importância relativa das contribuições da componente
contínua e da componente discreta na interferência de Fano pode tam-
bém ser controlada através da variação do tamanho do feixe incidente.
Um bom acordo é obtido entre os resultados teóricos e experimentais.

O esboço do trabalho é o seguinte: O Capítulo 1 apresenta o estado
geral da arte na área de cristais fotônicos. Em seguida, no Capítulo
2, são descritos os conceitos fundamentais da física do estado sólido
e eletromagnetismo em meios heterogêneos e periódicos. No Capí-
tulo 3 é feita uma revisão do método padrão de expansão em ondas
planas aplicado a cristais fotônicos de duas dimensões. No Capítulo
4, o tratamento de matriz de espalhamento para estruturas fotônicas
multicamadas é formulado de uma forma geral para estudar as pro-
priedades de difração de estruturas fotônicas. O Capítulo 5 apresenta
a implementação do método de matriz de espalhamento a lâminas
de cristal fotônico e no Capítulo 6, os principais resultados deste tra-
balho são apresentados e discutidos. Finalmente, o Capítulo 7 contém
as principais conclusões e perspectivas.
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Part I

P R E L I M I N A RY C O N C E P T S





1
S TAT E O F T H E A RT

The first studies in photonic structures, performed by Lord Rayleigh
in one-dimensional crystals [1], go back to the year 1887. Rayleigh
found that it is possible to obtain angular regions where the light is
partially or totally reflected when the incident angle is changed; be-
sides this, the reflection occurs only for some colors or wavelengths
which are complementaries to the set of colors transmitted. These re-
gions of high reflectivity were called, one century latter, stop bands or
photonic band gaps. Subsequent studies made in the decade of 1970

by Bykov show the effect of the photonic band gap in the spontaneous
emission rate of active samples embedded into one-dimensional crys-
tals [2]. Nevertheless, it was only in the year 1987 with the works
of Yablonovitch and John [3, 4], that the concept and the name of
“photonic crystal” were well established: photonic crystals are sys-
tems whose dielectric function is periodic in space. The main idea
proposed by Yablonovitch was to use three-dimensional crystals with
the goal of controlling the spontaneous emission rate through a suit-
able engineering of the electromagnetic density of states. At the same
time, John proposed ways to induce light localization and its control
in such systems.
The revolutionary works of Yablonovitch and John led to an explo-
sion of publications in the field which, from that moment on, have
had an exponential growth until now. The extraordinary properties
of photonic crystals and their effects on the electromagnetic flux radi-
ation make them promising systems for many applications in physics
and technology. Some of these are briefly showed and explained in
the following sections.

1.1 high-q photonic crystal cavities

The study of light interaction with matter in solid state cavity sys-
tems has become very important in the recent years due to their
potential applications in fundamental physics, solid state lasers and
quantum information. Based on cavity quantum electrodynamics (C-
QED), the key parameters responsible for the enhancement of spon-
taneous emission rates of the emitters (quantum dots for example)
are the quality factor Q and the modal volume V . This enhancement
phenomenon known as Purcell effect is determined by the fraction
Q/V . Therefore, it is important to build cavities with high Q and
low V to attain strong coupling between the emitter and the cavity

3



4 state of the art

mode. There are several types of nanocavities proposed in the liter-
ature. The main ones [5] are micropillars, microdisks and photonic
crystals. Of these, photonic crystal cavities, which are point defects
in a regular photonic crystal, are promising systems to achieve this
purpose. These cavities can have high quality factors and low modal
volumes even in the optical regimen, with the benefit that they can be
embedded in a solid state system, enabling the insertion of emitters
as quantum dots. There are many works focused in the optimiza-
tion of the fraction Q/V in photonic crystal cavities through small
perturbations of their geometrical parameters. Figure 1 shows the re-
sults obtained for the Q optimization in a photonic crystal slab cavity
maintaining the modal volume not bigger than 6% of its initial value.
The largest values of the quality factor in these calculations have an
order of magnitude of 105. These results were taken from reference
[6].The enhancement of

the spontaneous
emission of a light

source within a
cavity is determined
by the Purcell factor,

which is
proportional to the

fraction Q/V .
Therefore, the

quality factor Q and
the modal volume V

become very
important

parameters in the
cavity quantum
electrodynamics

area.

Figure 1: Scheme and results for the Q optimization of a photonic crystal
slab cavity. S1x, S2x, S3x, S1y and S2y correspond to the hole shifts.
Cavity B and C have a Q factor about twice of the value for cavity
A. Taken from reference [6].

One example of application of a photonic crystal is to determine the
refraction index of liquid solutions. The basic idea is to immerse the
crystal in the sample and the induced change in the background re-
fractive index produces a shift in the resonance frequency of the cav-
ity mode, this shift can be used to characterize the sample. Since the
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Q factor is inversely proportional to the width of the transmission
peak, the detection limit of such sensors is determined by the quality
factor of the cavity. In this way, a higher Q produces a high precision
sensor. Figure 2 shows the results obtained for the Q optimization in
a nanobeam photonic crystal cavity; there are showed the system and
the geometrical parameters (top), the behavior of Q as function of
these parameters and the refractive index (bottom-left), the transmis-
sion spectrum of the cavity sensing at different sample concentrations
and the wavelength mode as function of the refractive index and tem-
perature. These results was taken from reference [7]. The shift induced in

the resonance
frequency of a
photonic crystal
cavity by a liquid, in
which the crystal
was immersed, can
be used to determine
the refraction index
of the liquid.
Therefore, the
quality factor of the
cavity determines a
limit in the precision
of this sensing.

Figure 2: (Top) Scheme of a nanobeam photonic crystal cavity. (Bottom-left)
Results for the behavior of Q and sensitivity as functions of the
geometrical parameters and the refractive index of the crystal.
(Bottom-right) Results for the transmission spectrum of the cavity
at different sample concentrations, and its wavelength fundamen-
tal mode refractive index and temperature dependences. Taken of
the reference [7].

1.2 nonlinear photonic crystals

By combining several kinds of impurities or defects in photonic crys-
tals, such as waveguides and cavities, it is possible to control the flux
of light, and produce photonic crystal circuits or light circuits. How-
ever, the all-optical processing of light as a carrier of information can
be accomplished only through photonic structures with embedded
nonlinear materials [8]. In this way, the nonlinear photonic crystals
are essential to create devices such as optical diodes, switches, tran-
sistors and gates which will be the fundamental components of an
all-optical chip. One of the most important and basic nonlinear phe-
nomena with the capability to produce signal processing in photonic
crystals is the bistability; this consists in two states of resonant trans-
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mission for the same input signal. To achieve bistability in photonic
structures it is necessary to embed a nonlinear material, such as a
Kerr-type one which induces a electric field intensity dependence in
the refractive index. ?? shows the transmission spectrum of a waveg-
uide bend with three embedded defects made of Kerr-type nonlinear
material for two different input powers (left), and the transmission
as a function of the input power showing bistability phenomena in
the response function of the structure. These results was taken of the
reference [8]. Reference [9] is another important work in this topic.Nonlinear properties

of photonic crystal
circuits are required
to achieve all-optical

signal processing.

Figure 3: (Left) Transmission spectrum of a waveguide bend with embed-
ded Kerr-type nonlinear material for two different input powers
(solid and dashed lines). (Right) Transmitted light as function of
the input power showing bistability phenomena. In the diagram
of the structure shown in the inset, the black circles represent the
Kerr-type materials. Taken of the reference [8].

Since the first works in nonlinear photonic crystals, beginning with
Berger [10], there is great interest to obtain efficient all-optical switches
and all-optical transistors based in photonic crystals with embedded
nonlinear materials. Nozaki et al. [11] proposed and built an optical
switch which consumes sub-femtojoule energies to operate. The ba-
sic principle of operation is based in the nonlinear properties of the
cavity material used in the system. Figure 4 shows the scheme of the
photonic switch; the pump power has the function to control the reso-
nance frequency of the H0 nanocavity and determine the states “off”
and “on” of the switch: when there is an input pump power the re-
fractive index of the cavity increases, then the resonance frequency
decreases and the wavelength increases consequently. Therefore, as is
showed in the bottom-left of the Figure (dashed lines), the transmis-
sion goes to zero and the signal is not transmitted. When there is not
an input pump power, the resonance frequency of the cavity coincides
with the frequency of the input signal and therefore it is transmitted.
In the bottom-right, the intensity distribution of the fundamental H0
mode, which has a very low modal volume, is shown. An interesting
work in which an optical transistor based in the all-optical switching
is studied, is discussed in the reference [12].

With the possibility of all-optical switching it is reasonable to think in
all-optical logic gates, which will be the fundamental constituents of
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all-optical microprocessors chips. Figure 5, taken of the reference [13],
shows the schematization of an all-optical gate in a photonic crystal
slab (top-right) based on the same idea of the all-optical switching
shown in Figure 4. The two cavities shown in Figure 5 are made of
nonlinear materials. The table of the Figure 5 shows the principles of
the gates AND, NAND, OR and NOR in this all-optical system. All-optical

switching is the
basic principle of
operation of
all-optical transistor
and logic gates,
which will be the
fundamental
components of an
all-optical
microprocessor.

Figure 4: (Top) Structure of the photonic crystal switch; the input pump con-
trols the states “off” and “on” of the switch, determining a zero or
total transmission of the signal, respectively. (Bottom-left) Princi-
ple of operation of the switch. (Bottom-right) Intensity distribution
of the fundamental H0 cavity mode. Taken of the reference [11].

For the gate AND, the fundamental resonances of the two cavities are
f1 and f2 respectively, with the condition f1 = f2. The initialization is
f1 6= f0, where f0 is the frequency of the input signal. There are two
normally incident pump lights I1 and I2 associated to the logic states.
When there is only I1 the power is not sufficient to shift the resonance
of f1 to f0 (f1 6= f0), and the signal is not transmitted (logic 0). When
there is only I2 the results is also f2 6= f0 (logic 0), however, when
there are I1 and I2 the power is sufficiently high to make f1 = f0, and
the signal is totally transmitted (logic 1). The principles of the other
gates NAND, OR and NOR share the same idea.

1.3 fano resonances and their applications

Fano interference is a universal phenomenon that occurs in many
physical systems. It is produced when an interference between a dis-
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Figure 5: (Top-left) Nonlinear response of the cavity resonance to the power
of the pump light. (Top-right) Diagram of the all-optical gates
based in a photonic crystal structure. (Bottom) Principles of all-
optical gates AND, NAND, OR, and NOR. Taken of the reference
[13].

crete state and a continuum of states takes place. Usually, in defective
photonic crystals, the discrete state is determined by the resonance of
a cavity, and the continuum of states are determined by a waveguide
or by the external environment (when there is a finite thickness of
the crystal). Fano resonances are characterized by having an asym-
metrical sharp peak which varies the response function of the sys-
tem in a range narrower than the full width of the resonance itself.
In photonic crystals this response function is typically the transmis-
sion function of the crystal. When nonlinear materials are involved,
Fano resonances have the capability of increasing significantly the
contrast between the two stable states in bistability phenomena [14].
In the reference [15] an all-optical diode with ultrahigh contrast ra-
tio induced by Fano resonances is studied. The basic idea, which is
shown in Figure 6 (top-left), is to take advantage of the asymmetry
shape of the Fano resonance to increase the transmission contrast ra-
tio defined as C(Ii) = IRL/ILR, where Ii is the incident intensity, IRL
is the transmitted intensity in the right to left direction and ILR is
the transmitted intensity in the left to right direction. This ratio is
low for Lorentzian resonances lineshapes. The solid lines represents
the linear transmissions and the dashed lines represent the nonlinear
transmissions (dash-dotted: right to left and dashed: left to right) for
the Lorentzian-shape (left) and Fano-shape (right) spectrums. In the
bottom-left of the Figure 6 is shown the structure, where C1 and C2
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are the nonlinear cavities. The intensities of the RL and LR regimes as
well as the contrast ratio are shown in the top-right, and the electric
field distributions are shown in the bottom-right. Clearly the contrast
is high between the two operating states. The asymmetric

sharp peak of Fano
resonances produces
a very high variation
in the transmission
function of the
photonic structure
in a range narrower
than the full width
of the resonance
itself.

Figure 6: (Top-left) Comparison between Lorentzian-shape and Fano-shape
spectrums for the linear (solid line) and nonlinear regimes (dash-
dotted and dashed lines): ω0 is the frequency of the linear reso-
nance, ωi is the frequency of operation, TRL and TLR are the trans-
missions for the two operating states right to left and left to right
respectively. (Bottom-left) Scheme of the photonic structure, C1
and C2 are the nonlinear cavities. (Top-right) IRL, ILR and C(Ii) as
functions of time. (Bottom-right) Electric field distributions in the
two operating states of the diode. Taken of the reference [15].

1.4 quantum well infrared photodetectors

Quantum well infrared photodetectors (QWIPs) have become very
important for infrared detection in the mid-infrared. One problem
with this type of detector is the fact that it is not sensitive to normally
incident radiation since the intra-band transitions which are respon-
sible for the detection couple only to the component of the electric
field perpendicular to the quantum wells. The usual solution for this
is to illuminate at non-zero incident angle or fabricate a diffraction
grating on top of the detector, which produces an electric field com-
ponent in the perpendicular direction [16, 17]. Nevertheless, there is
another interesting approach: insert the active region of the detec-
tor, i.e., the quantum wells, inside a photonic crystal slab optimized
for the desired detection wavelength. An extra important advantage
of this is that the absorption of the infrared radiation is enhanced
through a resonant coupling. This is possible since photonic crystal
slabs support modes with non-zero perpendicular electric field com-
ponent, which can be excited by a normal incident plane wave. Fig-
ure 7 shows the principal results of the work described in detail in
reference [18]. The top shows the system, which consists of a quan-
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tum well photodetector embedded in a photonic crystal slab. The first
order mode have its electric field highly concentrated in the center of
the structure (photodetector region). In bottom the results for the de-
tectivity, detectivity enhancement and signal enhancement are shown
with respect to the standard QWIP (illuminated at 45◦). The photonic
crystal slab quantum well infrared photodetector (PCS-QWIP) can be
20 times more efficient than the standard QWIP.Photonic crystal

slabs can be used to
enhance the

absorption in
quantum well

infrared
photodetector

through a resonant
coupling with the

crystal modes.

Figure 7: (Top) Photonic crystal slab quantum well infrared photodetector
(PCS-QWIP), the first order mode is highly concentrated in the
center of the slab, which is the QWIP region. (Bottom) Results for
the detectivity, detectivity enhancement and signal enhancement
with respect to the standard QWIP. Taken of the reference [18].

1.5 summary

In this chapter, some applications of photonic crystals have been
overviewed. Quantum well infrared photodetectors is the most pro-
missing application, due to the possibility of mass production and the
advantages gained in performance. In the following chapter, the fun-
damental concepts of the solid state physics and electromagnetism in
inhomogeneous and periodic media are described. A review of these
concepts is essential to understand the basic theory of photonic crys-
tals.



2
F U N D A M E N TA L T H E O RY

When a wave propagates in a dispersion medium, it undergoes multi-
ple scattering if the wavelength involved is comparable with the size
of the scatterers. In particular, the electrons or electron waves undergo
multiple scattering in periodic arrays of atoms or atomic crystals. Con-
structive interference between the electronic waves originates allowed
electronic states as valence and conduction bands, on the other hand,
destructive interference originates forbidden electronic states. The al-
lowed electronic energies are represented by bands and the forbid-
den ones by electronic band gaps. Analogously, the photons or elec-
tromagnetic waves undergo multiple scattering in periodic arrays of
dielectrics. A material in which there is a periodic variation of the di-
electric function, with period that is of the same order of magnitude
of the wavelength involved, is usually called a photonic crystal. In the
same manner as for an atomic crystal, in a photonic crystal construc-
tive interference originates bands or allowed states and destructive
interference originates photonic band gaps or forbidden states. In this
way, the physical origin of the photonic band gaps and the electronic
band gaps is, in essence, the same: interference phenomena produced
by multiple scattering in a medium with a periodic distribution of
scatterers. Whereas the electronic band gaps are produced in atomic
crystals, the photonic band gaps are produced in photonic crystals.
Therefore, it is expected that a large number of features that charac-
terize atomic crystals are inherited by photonic crystals, such as Bra-
vais lattices, primitive cells, Brillouin zones, energy bands, impurity
bands and Bloch states. Nevertheless, there are important differences:
the electron dynamics is governed by the scalar Schrödinger equation,
whilst the electromagnetic dynamics is governed by the fully vectorial
Maxwell equations. Another important difference is related with the
statistical nature of the electrons; since electrons are fermions the in-
teractions electron-electron are relevant in atomic crystals, in contrast
to photon-photon interactions, which at typical energies in photonic
crystals can be neglected.

Even though in photonic crystals literature the word photon is widely
used, the emergence of band gaps can be explained through a classi-
cal treatment of the Maxwell equations in materials with a periodic
refractive index. It is important to mention that the principal char-
acteristic of photonic crystals is their capability to modify the electro-
magnetic density of states, which can affect dramatically the radiative

11



12 fundamental theory

dynamics of active systems immersed in such crystals.

In this chapter a quick review is made of the fundamentals of solid
state physics and electromagnetism in inhomogeneous media, theo-
retical pillars in the study of photonic crystals.

2.1 fundamentals of solid state physics

The characterization of the electronic states in atomic crystals is ad-
dressed in the solid state physics. In this way, a mathematical and
physical understanding of the concepts underlying their methods
and interpretations is of great importance to embark the study of the
physical mechanisms that characterize the photonic states in periodic
media.

Bravais lattice

In the study of any crystalline solid it is very important the concept
of Bravais lattice; this specifies a periodic array in which the basic
units of the crystal are organized. Such basic units can be atoms,
molecules, or in general, an atomic basis with an arbitrary number
of particles. The Bravais lattice contains all the geometrical informa-
tion about the crystalline structure, without any specification of its
composition. Mathematically, a Bravais lattice is defined as all the
points of the space whose vector position R can be written as a linear
combination, with integer coefficients, of the primitive lattice vectors
a1, a2 and a3:

R = n1a1 +n2a2 +n3a3. (1)

It is said that the vectors a1, a2 and a3 generate or expand the crystal
lattice, and the vector R is called the lattice vector.

Primitive cell

That portion of volume, area or length, which fills the space under
translations of the lattice vector, without overlapping of neighboring
portions, is known as the primitive cell or primitive unit cell of the
lattice. A primitive cell contains only one lattice point, therefore, if n
is the point density and v the volume, it must fulfill nv = 1, however
this cell is not unique, and it can be constructed of several ways for
a given lattice. It is possible to construct a primitive cell, with the
symmetry properties of the lattice, choosing an arbitrary lattice point
and drawing lines from it to its first neighbors, the space enclosed by
the planes perpendicularly bisecting these lines determines such cell
which is known as the Wigner-Seitz cell.
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Reciprocal lattice and Brillouin zone

Given a arbitrary plane wave eik.r and a Bravais lattice described by
a lattice vector R, it is possible to choose a set of G vectors which
make the plane wave inherit the periodicity of the lattice. the set of
G ′s determine a lattice known as the reciprocal lattice, which is the
Bravais lattice in k or Fourier space. Mathematically, the reciprocal
lattice is defined as:

eiG·(r+R) = eiG·r. (2)

Since the reciprocal lattice is another Bravais lattice, in the same way
as in real space, the reciprocal primitive lattice vectors b1, b2 and b3
are defined as the vectors which expand such lattice, and the recipro-
cal lattice vector as a linear combination, with integer coefficients, of
the primitive vectors:

G = m1b1 +m2b2 +m3b3. (3)

The Wigner-Seitz cell of the reciprocal space is known as the first
Brillouin zone. The vectors in the real and reciprocal space are related
through the following expressions:

bi · aj = 2πδij, G ·R = 2πl, (4)

where l is an integer number.

Bloch’s theorem

Bloch’s theorem states [19]: The eigenstates ψ of the one-electron Hamil-
tonian H = − h2 ∇

2

2m +U(r), where U(r + R) = U(r) for all R is a Bravais
lattice, can be chosen to have the form of a plane wave times a function with
the periodicity of the Bravais lattice: In the theory of

ordinary differential
equations an
equivalent form of
the Bloch theorem is
called the
Lyapunov-Floquet
theorem.

Ψnk(r) = eik·runk(r). (5)

Where n is the band number, k is the wave vector and unk(r) is a
periodic function with the periodicity of the Bravais lattice: unk(r +
R) = unk(r). The eigenstate of expression (5) is called a Bloch state.
The Bloch states are subject to the boundary condition:

Ψnk(r + R) = eik·RΨnk(r). (6)

For all R in a Bravais lattice. The condition (6) is known as the Bloch
boundary condition.

Energy bands

The problem to find the eigenvalues of the time independent Schrödinger
equation for an electron in periodic potentials is the same problem to
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find the energy function E(k), which is the dispersion relation or the
energy bands of the electron in the atomic crystal. Since the reciprocal
lattice is a Bravais lattice, the dispersion relation can be parametrized
translating the function E(k) to the first Brillouin zone, subtracting
from k the appropriated reciprocal vector. The equivalents vectors
k and k + G corresponds to the same point in this zone, however
E(k) 6= E(k+G). Therefore, it is convenient to introduce a new index
n, known as the band index, to represent the values of E(k) asso-
ciated to each translation of k to the first Brillouin zone from the
another ones. Being n the band index, En(k) is the correct form to
represent the energy for one electron with a wave vector k in the first
Brillouin zone. This convention which indexes the electron energies
is known as the reduced scheme zone.

2.2 fundamentals of electromagnetism

The electromagnetic states in a photonic crystal are governed by the
wave equation in inhomogeneous media, which can be written as
an eigenvalue problem whose differential operator is Hermitian. This
fact is of great importance, since most of the quantum mechanical the-
ory of observables can be directly applied in the characterization of
the photonic crystal through a fully treatment. In this way, the theory
of photonic crystals takes advantage of the methods used in quantum
mechanics to describe the scattering dynamics of classical electromag-
netic fields in periodic media. See for example the reference [20].Since photonic

crystals are
dielectric systems,

their physical
properties are

described by the
electromagnetic

theory.

Maxwell equations and wave equation

The electromagnetic field dynamics is described by the Maxwell equa-
tions which in MKS units, when free charges and electric currents are
absent, take the form:

∇ ·D(r, t) = 0,

∇ ·B(r, t) = 0,

∇× E(r, t) = −
∂

∂t
B(r, t),

∇×H(r, t) =
∂

∂t
D(r, t). (7)

Where E, H, D and B are the electric, magnetic, electric displacement
and magnetic induction fields respectively. The fields H and B, and
E and D are related by the known constitutive relations [21]. In the
usual treatment of photonic crystals nonmagnetic materials are con-
sidered, therefore, the magnetic permeability of the medium is the
same as for the free space, and the constitutive relation between H
and B is written as:

B(r, t) = µ0H(r, t). (8)
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The dielectric function of the medium will be assumed real, isotropic
and frequency independent. In this way, if ε0 is the dielectric constant
of vacuum and ε(r) is the relative dielectric function of the medium,
the constitutive relation between E and D is written as:

D(r, t) = ε0ε(r)E(r, t). (9)

Replacing the relations (8) and (9) in the equations (7), the Maxwell
equations take the form:

∇ · ε(r)E(r, t) = 0,

∇ ·H(r, t) = 0,

∇× E(r, t) = −µ0
∂

∂t
H(r, t),

∇×H(r, t) = ε0ε(r)
∂

∂t
E(r, t). (10)

In order to obtain the relations that govern the propagation of the
fields H and E independently, equations (10) are decoupled through
simple vector identities leading to the electromagnetic wave equa-
tions:

∇× 1

ε(r)
∇×H(r, t) = −

1

c2
∂2

∂t2
H(r, t), (11)

1

ε(r)
∇×∇× E(r, t) = −

1

c2
∂2

∂t2
E(r, t), (12)

where c, the speed of the light in vacuum, is defined as 1√
µ0ε0

. In gen-
eral, H and E are complicated functions of space and time. Since the
Maxwell equations are linear, it is possible to separate the time and
space dependence expanding the fields in a set of harmonic modes.
For one harmonic mode the fields become:

H(r, t) = H(r)e−iωt,

E(r, t) = E(r)e−iωt. (13)

This is not a great limitation because it is known by Fourier analysis
that any time dependence in the fields can be described as a suitable
combination of this kind of modes. With the expressions (13), the
wave equations reduce to:

Θ̂H(r) = ∇× 1

ε(r)
∇×H(r) =

ω2

c2
H(r), (14)

L̂EE(r) =
1

ε(r)
∇×∇× E(r) =

ω2

c2
E(r). (15)

In the literature of photonic crystals Θ̂ is called the Maxwell operator.
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Eigenvalue problems

The equations (14) and (15) establish ordinary eigenvalues problems
with differential operators Θ̂ and L̂E respectively. These problems are
implicitly dependent on each other, since the fields H and E are re-
lated through the Maxwell equations. Hence, the solution of any one
automatically determines the solution of the other. It is important to
mention that the operators Θ̂ and L̂E are linear, so that any linear com-
bination of the solutions is also a solution. The key difference between
equations (14) and (15) is that Θ̂ is an Hermitian operators, whilst
L̂E is not. Therefore, the eigenvalue problem (14) is essentially sim-
pler than the problem (15). The Hermiticity of Θ̂ evokes the known
spectral theorem of quantum mechanics, which states that the eigen-
values of an Hermitian operator are real and the eigenfunctions of
such operator form a basis for the space of states and, for different
eigenvalues, are orthogonal [22]. In this way, the following relations
are guaranteed:The analogy between

quantum mechanical
formalism and the

electromagnetic
treatment of

inhomogeneous
media, allows taking

advantage of the
theoretical methods

used in atomic
crystals to apply
them in photonic

crystals.

ω2

c2
=

(
ω2

c2

)∗
,∫

H∗i (r) ·Hj(r)d3r = N2δij. (16)

Where N is a normalization factor. In addition, it is possible to show
that for ε(r) > 0, Θ̂ is positive semidefinite, i.e., ω

2

c2
> 0. Under this

condition, the frequencies ω are always real numbers [23].

Variational principle

In analogy to quantum mechanics, the electromagnetic variational
principle establishes a connexion between the concentrations and os-
cillations of the fields (wave functions) in the medium (potential), and
the energies associated to these normalized distributions, keeping the
orthogonality between the eigenstates of the Maxwell operator. For-

mally, the variational principle assigns the minimum eigenvalue ω20
c2

,
and consequently the mode of lower frequency, to the field H0 that
minimizes the functional:

Φ[H] =

∫
H∗(r) · Θ̂H(r)d3r∫
H∗(r) ·H(r)d3r

. (17)

The functionalΦ is known as the Rayleigh-Ritz quotient. The next low
frequency mode will minimize Φ within the subspace of functions
orthogonal to H0. The variational expression (17), written in terms of
the electric field, takes the form:

Φ[E] =
∫
|∇× E(r)|2 d3r∫
ε(r) |E(r)|2 d3r

. (18)
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Expression (18) establishes that the way to minimize the functional Φ
is concentrating the electric field in regions of high dielectric dielectric
constant and minimizing the spatial oscillations [23].

Electromagnetism in periodic media

When ε(r + R) = ε(r), for any R in a Bravais lattice, the dielectric
function represents a photonic crystal or medium with periodic re-
fractive index. The concepts of primitive cell and Wigner-Seitz cell
remains unaltered in these arrays whose atomic basis is composed of
dielectric materials. The electromagnetic field description is realized
through the Bloch theorem, therefore, E and H are represented as the
product of a plane wave and a periodic function with the periodicity
of the lattice. In the same way, the dispersion relation or photonic
band diagram ωn(k) is constructed in the first Brillouin zone, which
can be reduced taking advantage of the symmetry properties of the
crystal 1. A formal treatment about group theory and symmetries in
photonic crystals is realized in the reference [24].

1 When the crystal has special symmetry properties, it is possible to reduce the set
of independent k vectors, and consequently reduce the size of the Brillouin zone,
obtaining the so called: reduced Brillouin zone.
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3
P L A N E WAV E E X PA N S I O N M E T H O D

The plane wave expansion method (PWE), or Fourier expansion, ex-
ploits the periodicity of the dielectric system to make a periodic ex-
pansion of the fields and the dielectric function in a plane wave basis.
Such expansion is introduced in equations (14) and (15) to obtain a
system of infinite algebraic equations through simple integral orthog-
onality relations. In principle, any functional basis can be used to
expand the fields in photonic crystals [25], however, the plane wave
basis is quite simple in their mathematical structure, and makes a
very good description of the crystals studied in the present work.

In this chapter a general review is made of the PWE method applied
to two-dimensional photonic patterns with infinite thickness. The
principal purpose is to give a background for the scattering matrix
treatment which is studied in Chapter 4. Studies of photonic crystals
with the PWE method can be reviewed in the references [26, 27, 28].

3.1 two-dimensional photonic crystal

A two-dimensional photonic crystal consists of a two-dimensional pe-
riodic pattern in a plane (xy plane for example), and a non-periodic or
homogeneous pattern in the other dimension. Particularly, here will
be studied crystals with general periodic patterns in the xy plane, and
a homogeneous distribution in z direction (infinite thickness). Since
there is a reflection symmetry plane at any value of z, due to the in-
finiteness and homogeneity in this direction, the wave vector of the
crystal resonances must be totally contained in the plane xy. This fact
classifies all the resonances in two distinct polarizations sets or sym-
metries: transverse electric (TE) and transverse magnetic (TM). The
former, in which the electric field is confined to the xy plane, has the
non-zero fields components Hz, Ex and Ey. The latter, in which the
magnetic field is confined to the xy plane, has the non-zero fields
components Ez, Hx and Hy.

TE case

TE modes have electric and magnetic information, consequently any
of the equations (14) or (15) can be used to find the solutions. How-
ever, the magnetic field wave equation (14) is easier to solve since only
one of the magnetic components is different from zero, so that the di-
mensionality of the magnetic problem is smaller than the electric one.

21
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Once the component Hz is found, it is possible to find Ex and Ey
through Maxwell equations (10). As it was mentioned in Section 2.2,
in periodic media Hz can be written as a Bloch state (5):The fundamental

principle of the
PWE method is to

make an expansion
of the all periodical

functions in the
crystal using a plane

wave basis.

H(r) = ẑHz(x,y) = ẑHPz (x,y)eik||·r, (19)

where k|| = x̂kx + ŷky and HPz (x,y) is a periodic function with the
periodicity of the lattice. There is no dependence in z because the
system is homogeneous in this direction. The key of the PWE method
is to expand HPz (x,y) and 1

ε(x,y) in a plane wave basis whose wave
vectors determine the reciprocal lattice (2):

HPz (x,y) =
∑
G

CGe
iG·r, (20)

1

ε(x,y)
= η(x,y) =

∑
G

ηGe
iG·r, (21)

where G = x̂Gx + ŷGy is the reciprocal lattice vector (3), and the
summation index G indicates a symmetric sum over the all reciprocal
vectors G. From expressions (20) and (19), the total magnetic field in
z takes the form:

H(r) = ẑ
∑
G

CGe
i(G+k||)·r. (22)

The expressions (21) and (22) are replaced in equation (14):

∇×
∑
G
′

ηG ′e
iG
′ ·r∇× ẑ

∑
G

CGe
i(G+k||)·r

=
(ω
c

)2
ẑ
∑
G

CGe
i(G+k||)·r. (23)

Considering the following vectorial identities:

∇× ẑf(x,y) = (x̂∂y − ŷ∂x)f(x,y),

∇× x̂f(x,y) = −ẑ∂yf(x,y),

∇× ŷf(x,y) = ẑ∂xf(x,y), (24)

the vectorial equation (23) is reduced to the following scalar equation:∑
G
′
G

ηG ′CG

[
(Gx + kx)(G

′
x +Gx + kx) + (Gy + ky) ×

(G
′
y +Gy + ky)

]
ei(G

′
+G)·r =

(ω
c

)2∑
G

CGe
iG·r. (25)

In order to obtain a system of equations in terms of the expansion co-
efficients, without any spacial dependence, the equation (25) is mul-
tiplied by the plane wave e−iG

′′ ·r and integrated in the orthogonality



3.1 two-dimensional photonic crystal 23

region of the plane wave basis RO, which is not necessarily the unit
cell 1. The integrals have the solutions:∫

RO

ei(G
′
+G−G

′′
)·rda = AROδG ′+G,G ′′ ,∫

RO

ei(G−G
′′
)·rda = AROδG,G ′′ . (26)

The Kronecker delta functions produced in the integrals (26) simplify
the equation (25), leading it to the final expression:∑

G

ηG ′−G

[
(G
′
y + ky)(Gy + ky) + (G

′
x + kx)(Gx + kx)

]
CG

=
(ω
c

)2
CG ′ , (27)

where the result G
′′
i = G

′
i +Gi obtained in (26) was used, and the

dummy index G
′′

was replaced by G
′
.

TM case

Taking into account that the only non-zero components of the TM
modes are Ez, Hx and Hy, and under the same argument exposed for
the TE modes, the solution is obtained for the Ez component through
the equation (15). In this way, the electric field can be written as a
Bloch state: Even though the E

eigenvalue equation
has only one
component in the
TM case, the
eigenvalue problem
is not Hermitian,
therefore, a slow
convergence is
expected.

E(r) = ẑ
∑
G

CGe
i(G+k||)·r. (28)

The function 1
ε(x,y) is expanded in the same way as for the previous

TE case, and the expressions (21) and (28) are replaced in equation
(15): ∑

G
′

ηG ′e
iG
′ ·r∇×∇× ẑ

∑
G

CGe
i(G+k||)·r

=
(ω
c

)2
ẑ
∑
G

CGe
i(G+k||)·r, (29)

which is reduced, using the vectorial identities (24), to the following
scalar equation:∑

G
′
G

ηG ′CG
[
(Gx + kx)

2 + (Gy + ky)
2
]
ei(G

′
+G)·r

=
(ω
c

)2∑
G

CGe
iG·r. (30)

1 For the hexagonal lattice for example, this region is a rectangle which contains two
lattice points. See Appendix A.



24 plane wave expansion method

At this point, equation (30) is multiplied by e−iG
′′ ·r, and integrated

using the results (26), to obtain the final eigenvalue problem:∑
G

ηG ′−G

[
(Gx + kx)

2 + (Gy + ky)
2
]
CG =

(ω
c

)2
CG ′ , (31)

where the dummy index G
′′

was changed to G
′
.

Note that expressions (27) and (31) are eigenvalue systems of alge-
braic equations whose eigenvalues are

(
ω
c

)2, and whose eigenvectors
are determined by the CG coefficients. The plane wave basis must be
truncated in these expressions to solve numerically the problem.

3.2 supercell approach

When an impurity or defect is introduced into the crystal, localized
modes can arise in the structure, with energies in the photonic band
gap. The rigorous description of defects is made through calculations
in finite crystals [29], nevertheless, the complexity involving this kind
of studies suggests the introduction of approximations that simplify
the problem, maintaining an accurate representation of the system.When the periodicity

of the crystal is
broken with defects,

it is possible to
restore it

considering such
defects inside a

periodic larger cell
or supercell.

The supercell approach is one of these approximations. It consists in
restoring the periodicity of the crystal considering a bigger “prim-
itive cell”, called supercell, with the defect inside it. The complete
crystal is built replicating the supercell under translations of the lat-
tice vector in the new Bravais lattice, without overlapping between
neighboring supercells. In this manner, the description of the fields
in the defective crystals can be made through Bloch states and any
method based in this kind of states and the periodicity of the system
will be also valid for crystals with defective supercells. If there is a suf-
ficiently large distance between consecutive defects allowing one to
neglect the overlapping of their electromagnetic fields, the supercell
approach is said to be good. It is important to say that if the magni-
tude of lattice vector in the supercell is larger, the magnitude of the
reciprocal lattice vector becomes shorter in relation to those without
supercell considerations (regular lattice). This fact implies a reduction
of the Brillouin zone size, and the k vectors will suffer a higher num-
ber of translations in a reduced zone scheme. In this way, the bands
associated to the supercell are folded with respect to ones associated
to the regular primitive cell, due to the additional translations of k
needed to describe the complete system in a smaller Brillouin zone.
To clarify this, suppose a one- dimensional crystal with lattice vector
a = ax̂. From relations (4), the reciprocal lattice vector of a is b = 2π

a x̂,
and the Brillouin zone has a size of 2πa . If the size of the primitive
cell is duplicated, i.e., A = 2a, the associated lattice vector is also du-
plicated A = 2a, and, consequently, the reciprocal lattice vector of A
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will be affected by a factor of one-half, B = 1
2b. The new Brillouin

zone has a size of πa ; so that, the vectors k lying between π
a and 2π

a

becomes linearly dependent to those lying between 0 and π
a . There-

fore, in a reduced zone scheme the bands associated to k between π
a

and 2π
a are translated to the new first Brillouin zone defined between

0 and π
a , producing an apparent folding of the bands with respect to

the crystal with regular primitive cell. For more details consult refer-
ence [30].

3.3 implementation

The general features of the PWE method have been described above.
Technical details of its implementation to non-defective and defective
two-dimension photonic crystals of square and hexagonal lattices can
be consulted in the reference [31].





4
S C AT T E R I N G M AT R I X M E T H O D

The scattering matrix method (SMM) is a powerful tool to solve the
problem of the scattering by a large finite number of objects. Basi-
cally, the method studies the individual scattering by each object and
then evaluates the coupling phenomena between them. Even though
the treatment of the electromagnetic fields in the SMM is quite rigor-
ous, it is based on an intuitive physical idea: the fields scattered by
the structure are causally related with the fields incident in it. In the
photonic crystal area, the SMM has been used to solve the scattering
properties of finite two-dimensional periodic arrays of cylinders, el-
lipses and squares [29, 32, 33]. Nevertheless, such scattering objects
have an infinite length in the non-periodic direction, which is a great
limitation to study photonic crystals with finite thickness, known as
photonic crystal slabs. To overcome this difficulty Whittaker and Cul-
shaw [34] proposed a new approach: they solve the problem trans-
ferring the infiniteness in the perpendicular direction of the periodic
pattern to the extent of the pattern itself. In this way, the photonic
structure consists of a multilayer system with periodic infinite pat-
terns perpendicular to the layer growth direction. Each layer has a
finite thickness and represents a complex scattering object which cou-
ples to the other ones. Initially, the scattering matrix treatment of
this kind of systems was applied by Ko and Inkson [35] to solve the
electron tunneling in multilayer semiconductor heterostructures; the
work [34] is nothing more than the electromagnetic equivalent formu-
lation for photonic structures.

The scattering matrix treatment applied to multilayer photonic struc-
tures can be summarized as follows: the band structure is solved in
each layer to describe the states in the direction perpendicular to the
pattern as simple plane waves; these states are used to represent the
electromagnetic field in terms of forward and backward propagating
waves; the scattering matrix is calculated using this representation,
and finally, the problem is completely solved applying the boundary
conditions of the electric and magnetic fields in each interface of the
multilayer system. Once the scattering matrix is obtained, it is possi-
ble to relate the outgoing waves to the incoming ones in the structure,
which allow the calculation of diffractive properties as the reflection
and transmission.

In this chapter the main aspects of the method, which is developed
in detail in the original work of Whittaker, are presented. Some new

27
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contributions are made in the description of the incident field and the
calculation of the reflectivity.

4.1 maxwell equations in the momentum representation

If a time harmonic dependence is considered for the fields (as it was
discussed in Section 2.2), the electric field is rescaled as ωε0E → E
and the frequency is rescaled as

√
µ0ε0ω = ω/c → ω, the Maxwell

curl equations (10) take the following form:

∇×H(r||, z) = −iε(r||, z)E(r||, z),

∇× E(r||, z) = iω2H(r||, z), (32)

where the z dependence has been made completely explicit. The equa-
tion ∇ · E = 0 is automatically satisfied in the curl equation of H, and
∇ ·H = 0 is satisfied if the expansion of H is made in a zero diver-
gence basis. Since the layers of the system are composed by photonic
structures, the magnetic and electric fields in each layer can be written
as Bloch states:

H(r||, z) =
∑

G

H̃k||
(G, z)ei(k||+G)·r|| ,

E(r||, z) =
∑

G

Ẽk||
(G, z)ei(k||+G)·r|| . (33)

Note that the periodic pattern is contained in the xy plane, and the
growth direction of the structure is z. The expressions (33) are more
general than the (22) and (28) ones, since the expansion coefficients,
and consequently the fields, have a functional dependence in z. The
explicit reciprocal lattice vector G is also considered in the functional
dependence of the expansion coefficients and in the summation index,
which is different from Section 3.1 where only the magnitude of G
was written to specify the indexes; this is made with the purpose to
use a more appropriate notation in the mathematical developments
discussed below.
The fields can be represented as column vectors whose components
correspond to their Fourier coefficients in the expansions (33), and
the dielectric function as a square matrix populated by its expansion
coefficients in a plane wave basis:

h(z) =
[
H̃k||

(G1, z), H̃k||
(G2, z), · · ·

]T
,

e(z) =
[
Ẽk||

(G1, z), Ẽk||
(G2, z), · · ·

]T
,

ε̂G ′G(z) = ε̃(G
′
− G, z) =

1

ARO

∫
RO

ε(r||, z)e−i(G
′
−G)·r|| . (34)

In this way h, e and ε̂ are the momentum representation of H, E and
ε(r||, z) respectively. T denotes the transpose of the row vector, and



4.2 band structure and expansion of the in-plane fields 29

ARO represents the area where the plane wave basis is orthogonal as
was discussed in Section 3.1. The Maxwell curl equations (32), written
in this representation, take the form:

ik̂yhz(z) − h
′
y(z) = −iε̂ex(z),

h
′
x(z) − ik̂xhz(z) = −iε̂ey(z),

ik̂xhy(z) − ik̂yhx(z) = −iε̂ez(z),

ik̂yez(z) − e
′
y(z) = iω

2hx(z),

e
′
x(z) − ik̂xez(z) = iω

2hy(z),

ik̂xey(z) − ik̂yex(z) = iω
2hz(z), (35)

where k̂x and k̂y are diagonal matrices with components (k̂x)GG =

kx +Gx and (k̂y)GG = ky +Gy respectively, and the primes denote
differentiation with respect to z.

4.2 band structure and expansion of the in-plane fields

The purpose here is to solve the band structure in the periodic pattern
of each layer to obtain states whose z dependence are in the form of
plane waves. A convenient symmetric expansion of the magnetic field,
which has zero divergence, is:

H(r||, z) =
∑

G

(
φx(G)

[
x̂ −

1

q
(kx +Gx)ẑ

]
+

φy(G)

[
ŷ −

1

q
(ky +Gy)ẑ

])
ei(k||+G)·r||+iqz. (36)

The band structure
of the
two-dimensional
periodic pattern is
used to obtain states
that propagate in the
direction
perpendicular to the
pattern.

Here φx(G) and φy(G) are the expansion coefficients, and q denotes
wave number in z direction. In the momentum representation φx =

[φx(G1), φx(G2), · · · ]T and φy = [φy(G1),φy(G2), · · · ]T , therefore,
the magnetic field of the expression (36) is represented as:

h(z) = eiqz
[
φxx̂ +φyŷ −

1

q
(k̂xφx + k̂yφy)ẑ

]
. (37)

Replacing (37) in the equations (35) and multiplying by iη̂, where
η̂ε̂ = 1, the momentum representation for the electric field is ob-
tained:

e(z) =
1

q
eiqzη̂

{[
k̂yk̂xφx + (q2 + k̂yk̂y)φy

]
x̂−[

k̂xk̂yφy + (q2 + k̂xk̂x)φx
]

ŷ + q
[
k̂yφx − k̂xφy

]
ẑ
}

.
(38)
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With the field representations h(z) and e(z), equations (35) determine
two linear independent identities:

ω2φx =
[
k̂yη̂k̂y + η̂

(
q2 + k̂xk̂x

)]
φx +

[
η̂k̂xk̂y − k̂yη̂k̂x

]
φy,

ω2φy =
[
k̂xη̂k̂x + η̂

(
q2 + k̂yk̂y

)]
φy +

[
η̂k̂yk̂x − k̂xη̂k̂y

]
φx.

(39)

The two identities (39) are reduced to the following eigenvalue prob-
lem for ω:[

H(q2 +K) +K
]
φ = ω2φ, (40)

where the blocks 2× 2 K, H, K and the vector φ are defined as:

K =

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)
, H =

(
η̂ 0

0 η̂

)
,

K =

(
k̂yη̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)
, φ =

(
φx

φy

)
. (41)

The band structure of the two-dimensional photonic crystal with infi-
nite thickness (Section 3.1) can be calculated using equation (40) mak-
ing q = 0. Reorganizing the terms in equation (40), the eigenvalue
problem for q is written as:[

E
(
ω2 −K

)
−K

]
φ = q2φ, (42)

where E is a diagonal block matrix 2× 2 of ε̂, and satisfies EH = 1. It
is important to mention that the quantities q, in the eigenvalue prob-
lem (42), can be complex even if E is real.
The in-plane components of the fields, in each layer of the structure,
can be expanded in terms of forward and backward propagating
waves with wave umbers qn, and amplitudes an and bn respectively,
which are determined through the continuity conditions in each in-
terface of the structure. In the momentum representation such expan-
sion takes the form:(

hx(z)

hy(z)

)
=
∑
n

(
φxn

φyn

)(
eiqnzan + eiqn(d−z)bn

)
, (43)

The forward and
backward plane

waves are natural
solutions of the wave

equation when the
medium is

homogeneous, which
is the case of each

layer in the z
direction.

where d is the thickness of the layer. An arbitrary sign in qn is chosen
to make Im{qn} > 0 and prevent exponential growths in the z depen-
dence, which would make the method unstable. The expansion (43)
can be written is a more compact form:

h||(z) = Φ
[
f̂(z)a+ f̂(d− z)b

]
, (44)

where Φ is a matrix with columns φn, f̂(z) is a diagonal matrix
with components f̂(z)nn = eiqnz. h||(z), a and b are column vec-
tors defined as h||(z) = [hx(z),hy(z)]

T , a = (a1,a2, · · · )T and b =
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(b1,b2, · · · )T respectively. In a similar way, using the expressions (37)
and (38), the eigenvalue equation (40) and the magnetic field expan-
sion (43), the equivalent electric field expansion is obtained:(

−ey(z)

ex(z)

)
= e||(z) =

(
ω2 −K

)
Φq̂−1

[
f̂(z)a− f̂(d− z)b

]
, (45)

where q̂ is a diagonal matrix with components q̂nn = qn. The expres-
sions for magnetic (44) and electric (45) fields can be compacted in a
single matrix expression:(

e||(z)

h||(z)

)
=M

(
f̂(z)a

f̂(d− z)b

)
, (46)

where M is defined as:

M =

((
ω2 −K

)
Φq̂−1 −

(
ω2 −K

)
Φq̂−1

Φ Φ

)
. (47)

4.3 scattering matrix

The scattering matrix relates the amplitudes of the forward and back-
ward propagating waves in different layers of the structure:(

al

bl ′

)
= S(l

′
, l)

(
al ′

bl

)
=

(
S11 S12

S21 S22

)(
al ′

bl

)
. (48)

The subscript l denotes the l-th layer in the multilayer media shown
in Figure 8, where the forward and backward waves amplitudes are
shown schematically. The fact that the scattering matrix relates the
waves in different layers of the structure makes it numerically stable.
It is not the case for the transfer matrix [36], in which the waves are
related in the same layer, leading to numerical overflows for large
k + G [34]. The boundary conditions of e and h imply that e|| and
h|| must be continuous in each interface of the system, i.e., in z = d

for the layer l and z = 0 for the layer l+ 1. Using the expression (46)
these continuity relations become:

Ml

(
f̂lal

bl

)
=Ml+1

(
al+1

f̂l+1bl+1

)
. (49)

Here f̂l = f̂l(dl). The relation (49) in terms of the matrix I(l, l+ 1) =
M−1
l Ml+1, called interface matrix, takes the form:(
f̂lal

bl

)
= I(l, l+ 1)

(
al+1

f̂l+1bl+1

)
=

(
I11 I12

I21 I22

)(
al+1

f̂l+1bl+1

)
. (50)
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The scattering matrix S(l
′
, l + 1) can be calculated recursively from

S(l
′
, l) and I(l, l+ 1) defined in (48) and (50). Eliminating the a and b

dependences the block components of S(l
′
, l+ 1) are:

S11(l
′
, l+ 1) = (I11 − f̂lS12(l

′
, l)I21)−1f̂lS11(l

′
, l),

S12(l
′
, l+ 1) = (I11 − f̂lS12(l

′
, l)I21)−1(f̂lS12(l

′
, l)I22 − I12)f̂l+1,

S21(l
′
, l+ 1) = S22(l

′
, l)I21S11(l

′
, l+ 1) + S21(l

′
, l),

S22(l
′
, l+ 1) = S22(l

′
, l)I21S12(l

′
, l+ 1) + S22(l

′
, l)I22f̂l+1, (51)

Figure 8: Multilayer system. ai corresponds to the forward waves and bi
corresponds to the backward waves. Adapted from [34].

with the initial condition S(l, l) = 1. Since the matrix f̂, which contains
the evanescent behavior, is never inverted directly, the scattering ma-
trix is stable throughout the structure. Denoting as l = 0 the surface
of the system and l = N its substrate, see Figure 8, the amplitudes
a and b in each layer are defined in terms of the matrices S(0, l) and
S(l,N):The scattering

matrix determines
the causality

relation between the
waves entering in

the system, a0 and
bN, and the waves
scattered by it, b0

and aN.

al = (1− S12(0, l)S21(l,N))−1 (S11(0, l)a0 + S12(0, l)×
S22(l,N)bN) ,

bl = (1− S21(l,N)S12(0, l))−1 (S21(l,N)S11(0, l)a0+

S22(l,N)bN) . (52)

4.4 reflectivity and transmission

The calculation of the reflectivity and transmission in the structure
requires the vector coefficients b0 and aN, which represent the re-
flected and transmitted waves, respectively. With the scattering matrix
S(0,N) and the vector coefficient a0 (the incident field), it is straight-
forward to obtain b0 and aN:

b0 = S21(0,N)a0, aN = S11(0,N)a0. (53)

Note that a0, b0 and aN are abstract representations of the incident,
reflected and transmitted fields. Therefore, it is necessary to make a
translation between the momentum representation and the complex
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space field representation to calculate the diffractive properties. Equa-
tion (46) accomplishes this translation:(

e||(0)0

h||(0)0

)
Ref

=M0

(
0

f̂l(d0)b0

)
,(

e||(zt)N

h||(zt)N

)
Tra

=MN

(
f̂l(zt)aN

0

)
, (54)

where d0 and zt are the perpendicular distances from the structure
at which the reflectivity and transmission are calculated respectively,
and the vector bN is considered null since there is no field incident
from the outside at the substrate. Taking into account that e|| =

[−ey, ex]T , h|| = [hx,hy]T and the z field components are obtained
from the x and y components through Maxwell curl equations (35), it
is possible to construct the field expansion from the expressions (33)
at d0 for reflected fields and at zt for transmitted fields:

HRef(r||) =
∑

G

(
hRefx (0)Gx̂ + hRefy (0)Gŷ + hRefz (0)Gẑ

)
ei(k||+G)·r|| ,

ERef(r||) =
∑

G

(
eRefx (0)Gx̂ + eRefy (0)Gŷ + eRefz (0)Gẑ

)
ei(k||+G)·r|| ,

HTra(r||) =
∑

G

(
hTrax (zt)Gx̂ + hTray (zt)Gŷ + hTraz (zt)Gẑ

)
ei(k||+G)·r|| ,

ETra(r||) =
∑

G

(
eTrax (zt)Gx̂ + eTray (zt)Gŷ + eTraz (zt)Gẑ

)
ei(k||+G)·r|| . (55)

Here the superscripts Ref and Tra denote the reflected and trans-
mitted fields, respectively. To obtain the vector a0 from the incident
fields H and E their expansion coefficients, in the basis eiG·r|| , are in-
troduced into the corresponding components of h|| and e||, and the
translating equation (46) is used again, but now inverted:

a0 =M
−1
0,11e|| +M

−1
0,12h||. (56)

Once the fields are expressed in the complex space, it is possible to
calculate the reflectivity and transmission:

R =

∣∣∣∣ΦRefz

ΦIncz

∣∣∣∣ , T =

∣∣∣∣ΦTrazΦIncz
∣∣∣∣ . (57)

Φz is the flux of the Poynting vector in z direction across a desired
area A:

Φz =

∫
A

Sz(r||)da =
1

2ε0ωc

∫
A

Re
[
E∗||(r||)×H||(r||)

]
da. (58)
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When the integration is made in an area of orthogonality (ARO) of
the plane waves eiG·r|| , the integral (58) reduces to:The general

reflectivity and
transmission

coefficients are
calculated through

the flux of the
Poynting vector

across a desired area.

Φz =
ARO
2ε0ωc

Re
[
e
†
||
· h||
]

. (59)

The operation † denotes the transposed-conjugated. Moreover, if the
area of integration is a circle of radius r the integral (58) has the
analytical solution1:

Φz =
πr

ε0ωc

∑
G ′G

J1

(
r|G

′
− G|

)
|G ′

− G|

[
ẽ∗x(G)h̃y(G

′
) − ẽ∗y(G)h̃x(G

′
)
]

, (60)

where J1 is the Bessel function of order one. The equations (57) are
generalized expressions to calculate R and T ; when there is no pattern
in the plane xy these quantities reduce to the square modulus of the
well known Fresnel coefficients.

4.5 incident field

With the aim of making a general description of a linearly polarized
incident field, H and E can be initially written in the following form:

E = E0(cosαε̂1 + sinαε̂2)ek||·r|| ,

H = H0(− sinαε̂1 + cosαε̂2)ek||·r|| ,

k|| = k0 sin θ(cosϕx̂ + sinϕŷ), (61)

where α (polarization angle), θ (incident angle) and ϕ (polar angle)
are defined in Figure 9, E0 = ε0ωcZ

1
2 , H0 = Z− 1

2 and k0 =
√
εωc .

Z =
√
µ0
ε0ε

is the intrinsic impedance of the external medium with
dielectric constant ε. The polarization vectors are defined as:

ε̂1 = sinϕx̂ − cosϕŷ,

ε̂2 = cos θ cosϕx̂ + cos θ sinϕŷ − sin θẑ. (62)

The TE and TM polarizations (Section 3.1) correspond to the particu-
lar cases αTE = 0 and αTM = π

2 respectively.
In many situations it is necessary to provide a specific spot shape to
the incident field; this is accomplished taking advantage of the plane
wave basis that describes the system: since there is a complete basis, it
is possible, in principle, to expand any shape of the incident field. In
practical terms the dimension of the basis must have a cutoff because
only problems with finite matrices can be solved numerically in a
computer; however, if the dimension is large enough, the expansion
will describe this arbitrary-shape field with good accuracy. With this
in mind, an arbitrary-shape function P(r||), defined to have maximum

1 The identities (73) in Appendix A are used to solve this integral.
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Figure 9: Scheme of the incident field in the structure. α is the polarization
angle, θ is the incident angle, ϕ is the polar angle and the ε̂i are
the polarization vectors.

value 1 and minimum value 0, can be expanded with the same plane
wave basis used in the patterned multilayer system:

P(r||) =
∑

G

P̃(G)eiG·r|| . (63)

It is possible to take
advantage of the
plane wave basis to
describe an arbitrary
shape of the incident
field.

The procedure for providing the geometrical shape of this function
to the incident field is to multiply each component of such field by
P(r||), consequently, the incident vector coefficients in the momentum
representation become:

(
e||

h||

)
Inc

=


−ey

ex

hx

hy

 =



−Ey

[
P̃(G1), P̃(G2), · · ·

]T
Ex

[
P̃(G1), P̃(G2), · · ·

]T
Hx

[
P̃(G1), P̃(G2), · · ·

]T
Hy

[
P̃(G1), P̃(G2), · · ·

]T


. (64)

Here Ex, Ey, Hx and Hy are the field components in the expressions
(61). In this way, the problem to provide a geometrical shape to the in-
cident field is reduced to the calculation of the coefficients P̃(G). With
the vector

[
e||,h||

]T
Inc

it is straightforward to calculate a0 through the
equation (56).





Part III

R E S U LT S





5
I M P L E M E N TAT I O N O F T H E S C AT T E R I N G M AT R I X
M E T H O D

The scattering matrix method, as it was studied in Chapter 4, is a very
powerful tool to calculate the diffractive properties of patterned mul-
tilayer structures. One special kind of these structures are photonic
crystal slabs (PCS), which are two-dimensional photonic crystals with
a finite thickness in the third dimension. In PCS there are two con-
finement mechanisms for light [37]: the distributed Bragg reflection
produced by the periodic refractive index pattern, which consists in
constructive and destructive electromagnetic interference phenomena
throughout the crystal, and the index guiding produced by the high
contrast refractive index between the slab and the external medium,
which can be understood as the total internal reflection when an aver-
age refractive index for the slab is considered. PCS have become very
interesting systems in the last years because their potential applica-
tions, see Chapter 1, and easier fabrication techniques at submicron
length-scales. For these reasons, it is important to make a detailed
study of their diffractive physical properties, which can be accom-
plished through the implementation of the scattering matrix method.

In this chapter it is presented how to implement the scattering matrix
method in symmetric1 PCS with L3 cavities, which are very special
defects introduced in photonic crystals2. The particularization to L3

cavities is made with the purpose to focus in their reflectivity calcula-
tions, the principal results of this work (see Chapter 6). Nevertheless,
the development exposed here is general and can be applied to an-
other kind of defects or non-defective PCS.

5.1 implementation

The scattering matrix method is implemented to calculate the reflec-
tivity spectra of a L3 PCS cavity at normal incidence. Since there is
no substrate in the photonic crystal, it can be considered as a three
layer structure: a layer of thickness d interposed between two semi-
infinite layers. In this way, the index l, defined in Section 4.3, takes
the possible values 0, 1 and 2. Figure 10a shows a scheme of the pho-
tonic crystal in z direction. The layer l = 1 has a dielectric function

1 Symmetric photonic crystal slabs are characterized by having no substrate, therefore,
the material below the slab is the same material above it, and consequently there is
a reflection symmetry plane in the middle of the slab.

2 See Appendix B.

39
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ε(x,y) which is constant along z in the layer, and contains an hexag-
onal photonic pattern of air holes in the plane3; the layers l = 0 and
l = 2 have a dielectric constant associated to air, ε = 1; and the quan-
tities a0, b0 and a2 represent the incident, reflected and transmitted
waves respectively. A representative scheme of the reflectivity calcu-
lation in the L3 cavity is shown in Figure 10b. EInc and HInc refer to
the incident electric and magnetic fields respectively with wave vec-
tor kInc, ϕ is the polarization angle, which is the same α at normal
incidence as was defined in Figure 9. The red circle with radius rs
(bigger one) in the figure corresponds to the incident excitation spot,
and the green circle with radius ra (smaller one) corresponds to the
integration area of the reflected Poynting vector. Both, excitation and
reflected flux calculation, are made at the same distance d0 away from
the crystal, which is incorporated in the method as the thickness of a
virtual interface separating the same medium, see equation (54).The PCS can be seen

as a system of one
layer with finite

thickness interposed
between two

semi-infinite layers.

Figure 10: (a). Photonic crystal slab in the z direction: the layer l = 0, l = 1

(with thickness d) and l = 2 correspond to air, the photonic struc-
ture and air respectively; the incident field is represented by a0,
the reflected one by b0, and the transmitted one by a2. (b) Rep-
resentative scheme of the reflectivity calculation: the subscripts
Inc denote the incident quantities, ϕ is the polarization angle; rs
and ra denote the radius of the incident spot and the radius of
the Poyting flux area respectively; d0 is the distance at which the
crystal is excited and at which the reflectivity is calculated.

5.2 cross-polarized reflectivity calculations

Currently, it has become usual to measure reflectivity spectra of pho-
tonic crystals by cross-polarized spectroscopy [38], which consists in

3 See Appendix A.
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collecting the reflected radiation from the sample at orthogonal polar-
ization with respect to the incident radiation. This filters the incident
light and ensures a measurement of the sample response only. It is
possible to implement a cross-polarized calculation in the scattering
matrix formalism projecting the in-plane reflected fields in a new sys-
tem x

′
y
′

rotated counterclockwise by an angle ϕ (the same angle of
polarization), and remaining only with the cross-polarized contribu-
tion of the Poynting vector to calculate the reflected flux. Figure 11

shows the cross-polarized scheme; in the coordinate system xy the z
component of the Poynting vector is SRefz =

(
E∗xHy − E

∗
yHx

)Ref, on
the other hand, in the coordinate system x

′
y
′

the z component of the
Poynting vector, which is the same as in the system xy, can be written

as SRefz =
(
SCrossz − E∗

y
′Hx ′

)Ref
, where SCross,Ref

z =
(
E∗
x
′Hy ′

)Ref
. The cross-polarized

spectroscopy
minimizes the
background noise
and allows a
measurement of the
sample response
only.

Therefore, a cross-polarized calculation is accomplished if there is
considered only the contribution SCross,Ref

z in the flux integral (58).
The xy components are related to the x

′
y
′

ones through a basic coor-
dinate transformation:(

Vx ′

Vy ′

)
=

(
cosϕ sinϕ

− sinϕ cosϕ

)(
Vx

Vy

)
. (65)

The vector V represents the transformations of both the magnetic and
electric fields. In this way, it is straightforward to show that in terms
of the reflected fields in the system xy, SCross,Ref

z takes the form:

SCross,Ref
z =

(
cos2ϕE∗xHy − sin2ϕE∗yHx+

cosϕ sinϕ
(
E∗yHy − E

∗
xHx

))Ref . (66)

Figure 11: Cross-polarized implementation. The system is rotated counter-
clockwise by an angle which is the same angle of the incident
field polarization; the reflected fields are projected in this new
system.
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R E F L E C T I V I T Y C A L C U L AT I O N S I N L 3 P H O T O N I C
C RY S TA L S L A B C AV I T I E S

In photonic crystal slabs the incoming excitation induces interference
between the electromagnetic modes quasi-confined throughout the
plane of the structure (guided resonances) and the radiative field
outside [39], therefore, the reflectivity spectrum is characterized to
have asymmetrical sharp peaks which can be recognized as Fano res-
onances [40]. The asymmetry factor q in the Fano resonance, which
is a quantifier of the asymmetry degree of the lineshape, may be con-
trolled by the angle of incidence of the excitation field, which controls
the phase between the continuum and the discrete channel [41, 42, 43],
and/or the geometrical parameters which control the effective cou-
pling parameter between the two channels [44, 45]. When an optical
cavity is generated in the photonic crystal slab by the introduction of
a defect in the periodic pattern, the Fano resonance phenomenon is
produced by the interference of the radiation reflected by the cavity
( scattering by a discrete state) and the light reflected by the crystal
pattern (scattering to the continuum) [46]. Here, the asymmetry fac-
tor may be controlled, for instance, through the size of the excitation
spot [47], which can be understood as a way to increase or decrease
the contribution of the scattering to the continuum.

In the present work the polarization of the incoming light is used as
a new way to accurately control the interference between a discrete
state, the fundamental mode of the L3 photonic crystal cavity, and
a continuum of electromagnetic states, the radiation scattered by the
photonic crystal pattern. The reflectivity of the crystal is modeled
using the scattering matrix (SM) formalism presented in Chapter 4

and implemented in Chapter 5. Good agreement is obtained with
experimental results.

6.1 theoretical results

Using frequency domain simulations it is found that the photonic
crystal slab of hexagonal lattice of holes has a full TE-like band gap
when the refractive index is n = 3.5, with hole radius r = 0.29 and
slab thickness d = 0.5a. In this way, confined modes can be supported
by point defects as L3 cavities. Once such cavity is introduced in the
crystal, Finite difference time domain (FDTD) simulations show that
the frequency ν of the fundamental mode at s = 0.15a 1 is 0.26926 c/a,

1 See Appendix B.
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which corresponds to 1.28505 eV 2 or a vacuum wavelength of 965.609
nm when the lattice parameter is a = 260 nm. The purpose to make
these preliminary simulations, presented in Appendix B, is to deter-
mine the energy window where it will be expected to find the mode
resonance in the SM calculations. Figure 12 shows the convergence
of the fundamental mode energy for the SM method as a function of
the number of plane waves used to expand the field. The intensity
distribution is shown for each point in the graphic, which becomes
better defined when the number of plane waves increases. The super-
cell was chosen to have an area of 12a× 12a

√
3. From the figure, it

can be seen also that the convergence in the energy is achieved for
a number of plane waves higher than approximately 750. However,
for such a large number of waves, the contribution from other super-
cells to the reflectivity spectrum becomes significant. The size of the
supercell could be increased to prevent this but the computational
cost would increase enormously. Since the interest in this work is the
reflectivity spectrum and not so much in the exact mode energy, the
calculations that will be presented in the remainder of the chapter
were made using 441 plane waves, which determine a well defined
field distribution and a low contribution of the others supercells to
characterize the reflectivity of only one cavity.

441 plane waves
determine a well

defined field
distribution and a

low contribution of
the others supercells.

Figure 12: Convergence of the fundamental mode energy in the SM method
as function of the plane wave basis dimension. The intensity dis-
tribution of the mode is shown also for each point in the graphic.

It is important to take into account that the number of plane waves
reported in Figure 12 corresponds to the expansion of each in-plane

2 The energy  hω of one photon of frequency ω.
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field components only, making the dimensionality of the complete
problem much larger. If N is the number of plane waves, the eigen-
value problem (42) has dimensionality 2N× 2N, and the matrices M
(47), S (48) and I (50) have dimensionality of 4N× 4N.

Figure 13 shows the adopted system to make the reflectivity calcula-
tions. The dielectric function (left) defines a supercell with superlat-
tice parameter A = 12a and area 12a× 12a

√
3 (the same used in the

convergence analysis of Figure 12), which ensures a cavity isolated
enough to prevent significant field overlapping between neighbors
cavities; the intensity distribution of the fundamental mode (right)
evidences this low overlapping.

Figure 13: (Left) Dielectric function of the supercell adopted with superlat-
tice parameter A = 12a. (Right) Intensity distribution of the fun-
damental L3 cavity mode.

To calculate the reflectivity spectrum the incident field is chosen to
have a circular shape of radius rs = 2.15a with the purpose to excite
only the cavity. The P̃(G) coefficients (63) of this geometrical shape
are easily computed using the identities (73). The vertical distance at
which the crystal is excited and at which the Poynting vector flux is
calculated is fixed at d0 = 20a, representing a middle distance be-
tween the near and far field regimes. In addition to this, since there
are many supercells as plane waves in the basis, the radius rf of the
flux area must be appropriately chosen to collect radiation of only one
supercell. In the reflection process of the crystal it is expected a Fano The L3 cavity is

excited with a
circular spot at a
distance of 20a from
the crystal, with the
purpose to simulate
usual experimental
conditions.

resonance which is product of the electromagnetic interference be-
tween the radiation reflected by the cavity and the radiation reflected
by the crystal pattern; if the discrete and continuum contributions to
the interference are comparable the resonance peak is characterized to
have a sharp asymmetrical shape, moreover, if the continuum contri-
bution is dominant the resonance becomes a Lorentzian symmetrical
peak [46]. With this in mind, a symmetrical peak is expected if the
cavity mode contribution to the reflection process is low, which cor-
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responds to the cases ϕ = 0◦ (the incident field polarization matches
the dominant mode polarization) and ϕ = 90◦ (the orthogonal direc-
tion to the dominant mode polarization) in a cross-polarized scheme3.

When only one
supercell contributes

to the Fano
interference, it is

expected
symmetrical

lineshapes at 0◦ and
90◦ in the

cross-polarized
reflectivity spectrum.

Figure 14: Cross-polarized reflectivity spectrum for the cases ϕ = 0◦ and
ϕ = 90◦ at different collection radius rf. The appropriated value
of rf, at which the lineshapes becomes symmetrical, is found to
be 0.8a.

When the mode is efficiently excited at 0◦, the collection is performed
in a direction at which the emission of the cavity is low with respect
to the continuum contribution. Similarly, when the mode is not effi-
ciently excited at 90◦, the continuum is also dominant due to the or-
thogonal collection. In the theoretical model, collection is understood
as the integration of the Poynting vector (58). With these physical
ideas, whose origin comes from the Fano interference phenomenon,
it is possible to find the appropriated rf to collect radiation of only
one supercell: rf is reduced until symmetrical peaks at 0◦ and 90◦ in
the reflectivity spectrum are obtained. Figure 14 shows the results ob-
tained. The asymmetrical shapes at radius larger than 0.8a come from

3 See Figure 10, Figure 11 and Appendix B.
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the interference with another supercells, in this way, 0.8a is an appro-
priated value for rf to make the polarization-dependent reflectivity
calculations.
It is important to take into account that the appropriated value of rf
depends of the perpendicular distance d0, therefore, if such distance
is changed the analysis of Figure 14 must be made again. If a cross-
polarized scheme is not considered when rf = 0.8a, Fano interference
takes place for the 0◦ and 90◦ angles, meaning that the discrete and
continuum contributions are comparable. Figure 15 evidences this
fact, showing the reflectivity spectrum for these cases without cross-
polarized calculations.

Figure 15: Non-cross-polarized reflectivity spectrum for the cases 0◦ and 90◦

when rf = 0.8a. The discrete and continuum contributions are
comparable and a Fano interference takes place.

The polarization-dependent reflectivity spectrum is shown in Fig-
ure 16 for several values of ϕ. At ϕ = 0◦, as it was discussed above,
it is expected a symmetrical lineshape. The degree of asymmetry in-
creases with the polarization angle, until the lineshape is symmetric
but inverted at 52.7◦, meaning a Lorentzian transmission of the mode.
Above this angle the lines become asymmetrical again, albeit with re-
versed shape. Finally, the degree of asymmetry decreases, reaching
the symmetric case again at ϕ = 90◦. Figure 16 evidences that the de- The degree of

asymmetry in the
Fano resonance can
be controlled
through the
polarization angle of
the incident field.

gree of asymmetry can be controlled through the polarization angle
of the incident wave, being possible to reverse the lineshape of the
Fano resonance. This phenomenon was already reported by Driessen
et al [42] and Babic et al [43] with the difference that they used the
angle of incidence to control the lineshape of the resonance. In this
way, the polarization angle of the incident field is another important
parameter which can be explored to tune the Fano interference pro-
cess.
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The electromagnetic interference producing the characteristic sharp
peaks in Figure 16 depends on the relative contribution of the scat-
tering through the L3 fundamental mode and the scattering by the
photonic crystal pattern. This can be controlled through the polar-
ization of the incident radiation, which controls the effective phase
difference between the two scattering channels.

Figure 16: Cross-polarized polarization-dependent reflectivity spectrum for
the polarization angles 0◦, 35◦, 49◦, 52◦, 52.7◦, 53◦, 55◦, 60◦ and
90◦. The Fano lineshape is controlled and reversed by the polar-
ization angle.

Figure 17: Field distribution in the middle of the crystal at the reflectivity
maxima of Figure 16 for the cases ϕ = 0◦, 49◦, 55◦ and 90◦. There
is a change of the mode phase when the Fano lineshape is re-
versed.

Figure 17 shows the real part of the Ex and Ey components for the
cases ϕ = 0◦, 49◦, 55◦ and 90◦ at the reflectivity maxima of Figure 16.
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Considering that blue and red correspond to the minimum and max-
imum values respectively in the contourplot, there is a clear phase
change of the mode in function of the polarization angle of the inci-
dent field. The cases ϕ = 49◦ and ϕ = 55◦, which have associated
reversed lineshapes in Figure 16, evidence opposite phases in their
field distributions. Such phase change remains until the symmetric
lineshape at 90◦ is attained, generating an opposite phase between
the symmetrical cases at 0◦ and 90◦. The incident field

polarization affects
the relative phase
between the discrete
and continuum
contribution, and
consequently the
lineshape of the Fano
resonance.

Since not only the mode field contributes to the Fano interference, it
is important to examine the field outside the crystal, which contains
the continuum contribution. Figure 18 show the field distributions
Re{Ex}, Re{Ey} and Re{Ez} in the transversal planes x = 0 and y = 0

for the same 49◦ and 55◦ cases. The excitation field is incident from
bottom to top. Outside the crystal there is not a significative phase
change of the field, the relative maxima and minima remain stable
as the polarization angle is changed, producing the reversal of the
lineshape. In this way, the polarization angle of the incident wave
changes significantly only the phase of the mode, and consequently
the relative phase between the discrete and continuum contribution.

Figure 18: Field distribution in the planes x = 0 and y = 0 for the cases
ϕ = 49◦ and ϕ = 55◦. The crystal is indicated with black lines.
The phase of the continuum does not change significantly.

As it was already mentioned above, the Fano resonance takes place in
systems where it is possible to observe interference between a discrete
channel and a continuum background. The most intuitive explanation
of its physical meaning is given by the analysis of a classical analog:
two weakly coupled driven-damped classical oscillators, as depicted
in Figure 19. At a frequency close to the second normal mode of the
coupled system, in which the two oscillators move in opposite direc-



50 reflectivity calculations in l3 photonic crystal slab cavities

tions at frequency ω+ it is possible to achieve a zero value of the am-
plitude C1 of oscillator 1, since there are two effective driving forces,
out of phase, acting on this oscillator and the net effect is to cancel its
motion. Out of this special anti-resonant condition (resonant destruc-
tive interference), oscillator 1 recovers a non-zero amplitude. As a re-
sult, the amplitude function C1 presents a sharp asymmetrical peak
centered close to ω+, which is roughly the resonant frequency ω2 of
the second oscillator, for a weak coupling condition [48]. In this view,
the harmonically oscillating driving force may be considered as the
continuum channel, while the discrete channel is the oscillator mode.
The degree of asymmetry of the Fano resonance, which is quantified
by the asymmetry factor q, is determined by the coupling parameter
and the phase between the driving force and the oscillator mode 4.The characteristic

asymmetrical peak
in the Fano

resonance can be
understood as
phenomena of

resonant destructive
and resonant
constructive

interferences.

Figure 19: Two coupled classical damped oscillators driven by an harmonic
force cos(ωt). At weak coupling ω1 w ω− and ω2 = 1.2ω1 w
ω+, where ω1 and ω2 are the resonant frequencies of the oscilla-
tors and ω− and ω+ are the resonant frequencies of the normal
modes. Oscillator 1 shows an anti-resonance phenomenon which
generates an asymmetric lineshape of its amplitude function C1
when the system is oscillating at frequencies around the second
normal mode (ω+). Adapted from reference [48].

With this classical analog in mind, it is possible to understand the
Fano phenomenon in the photonic crystal as a simple electromag-
netic interference between the two scattering channels: a discrete and
a continuum. When a reflectivity maximum occurs the two channels
interfere constructively in the reflection region, and when a reflec-
tivity minimum occurs they interfere destructively. In this way, it is

4 When the continuum contribution is dominant the magnitude |q| tends to infinity
and determines a symmetrical lineshape, or Lorentzian shape. When the continuum
contribution is comparable to the discrete one the magnitude |q| is close to 1 and
determines an asymmetrical lineshape. Finally, when q = 0 the lineshape is symmet-
rical but inverted.
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expected a phase difference between the fields at the reflectivity min-
imum and at the reflectivity maximum in the Fano lineshape. Fig-
ure 20 shows this fact: there the real and imaginary part of the in-
plane electric field components for the polarization angles ϕ = 49◦

and ϕ = 55◦ is plotted at the reflectivity minimum and maximum.
The case ϕ = 49◦ exhibits a clear change of phase between the mini-
mum and maximum in its real part for both fields components. The
imaginary part undergoes no significant changes; the real part carries
the information of the phase change. Moreover, the case ϕ = 55◦ ex-
hibits also the change of phase but now in its imaginary part, due to
the additional phase introduced by the polarized incident field, as it
was shown in Figure 17. Here the imaginary part carries the informa-
tion of the phase change in the Fano resonance.

The asymmetrical
peak in the
reflectivity spectrum
corresponds to
destructive, at the
minimum, and
constructive, at the
maximum,
electromagnetic
interference
phenomena in the
reflection region.

Figure 20: Real and imaginary parts of the in-plane electric field compo-
nents for the cases ϕ = 49◦ and ϕ = 55◦ at the reflectivity mini-
mum and maximum. For ϕ = 49◦ and ϕ = 55◦ the information
of the phase change is carried by the real and imaginary parts
respectively.

Another interesting effect that can be studied with the SM method is
the enhancement of the continuum contribution through increasing
the radius of the excitation spot. When the continuum contribution
is dominant the lineshape of the Fano resonance becomes symmetri-
cal. This phenomenon, first reported in the experimental work per-
formed by Galli et al [47], is fully reproduced by the SM method. The
results are shown in Figure 21 for the polarization angles ϕ = 55◦ and
ϕ = 60◦. The lineshapes become symmetrical when the spot radius rs
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increases until its maximum value rs = 6a 5. The other polarization
angles determine also symmetrical lineshapes when rs = 6a, produ-
cing |q| values larger than 39 after fitting the spectrum with the Fano
formula (see below).The continuum

contribution can be
enhanced increasing

the size of the
excitation spot.

Figure 21: Cross-polarized reflectivity spectrum for the cases ϕ = 55◦ and
ϕ = 60◦ at different excitation spot radius rs. The lineshapes
become symmetrical when rs is high with respect to the cavity
size.

6.2 experimental results

Polarization resolved reflectivity experiments were made by Pablo T.
Valentim and collaborators [49] to study the Fano interference phe-
nomenon on GaAs slab photonic crystal L3 cavities. The sample was
fabricated from a GaAs wafer by electron beam lithography and reac-
tive ion etching. Free standing GaAs membranes of 130 nm thickness,
patterned with a hexagonal lattice of circular air holes, were fabri-
cated with lattice parameters in the range 230 6 a 6 260 nm and fill
factors 0.25 6 r/a 6 0.33. The membranes were obtained by selective
etching of a 1 µm thick Al0.6Ga0.4As sacrificial layer. The L3 cavity
consists of a line of three missing holes at the center of the structure
with its two end holes displaced outwards by 0.15a to increase the
quality factor. The L3 cavity fundamental mode is around 940–1020

5 A higher value of rs would overlap with the neighboring supercells, which produces
undesired effects in this calculation.
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nm and its quality factor is roughly 7000.

The experimental setup for the polarization resolved reflectivity mea-
surements is shown in Figure 22. The sample is excited with white
light. A 970 nm band pass filter (BPF) in the path of the white light
restricts the range of wavelengths to an interval of 960 nm to 980 nm.
To decrease the background, the reflectivity is measured by cross-
polarized spectroscopy [38]. For this, a polarizing beam splitter (PBS)
is placed before the objective lens, allowing to excite and collect signal
from the sample in orthogonal polarizations, |V〉 and |H〉. The polar-
ization angle ϕ of the excitation light is adjusted by a half-wave plate
(HWP) placed between the PBS and the objective lens. As shown in
the figure, this angle is defined relative to the direction orthogonal to
the L3 cavity, i.e., perpendicular to the line of missing holes. A confo-
cal arrangement of two 20 mm lenses and a 100 µm diameter pinhole
placed in the collection path allows us to collect light exclusively from
a small area around the cavity.

The reflectivity is
measured by
cross-polarized
spectroscopy on
GaAs slab photonic
crystal L3 cavities.

Figure 22: Experimental setup for the polarization resolved reflectivity mea-
surements, as described in the text. The lower left inset is a scan-
ning electron microscopy (SEM) image of one of the samples,
showing the definition of the polarization angle.

Figure 23 shows a set of reflectivity spectra, each obtained for differ-
ent linear polarizations of the incoming white light. To determine the
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polarization angle ϕ relative to the photonic crystal cavity axes, the
photoluminescence emission of the fundamental mode is used as a
guide. A symmetrical reflectivity lineshape is seen at ϕ = 0◦, as it
is expected if a Fano interference phenomenon is occurring (see dis-
cussion above). When the HWP is rotated, increasing the polarization
angle, the reflectivity line changes from a symmetrical to an asym-
metrical shape, suggesting that the discrete L3 cavity mode and the
background of continuum states are indeed interfering in the way
predicted by Fano [40].

Figure 23: Representative reflectivity spectra for nine polarization angles of
the exciting light. The dots are the experimental data and the
curves are fits obtained with the Fano formula (67) as discussed
in the text. The fit parameter q for each polarization angle is indi-
cated.

The experimental
reflectivity is well
fitted by the Fano

interference formula
as expected from the

theory.

In a first simple approach, the reflectivity spectra are fitted using the
Fano formula:

R = R0 +A

(
2(E−E0)

Γ + q
)2

(
2(E−E0)

Γ

)2
+ 1

, (67)

where R, R0, A, q, Γ , E and E0 respectively stand for the peak intensity,
background off-set, the amplitude constant, the Fano asymmetry fac-
tor, line width, energy and resonance energy. The fits obtained with
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this formula are shown by the solid curves in Figure 23. The asymme-
try factors q given by the fits are stated for each polarization.
Figure 24 shows the asymmetry factor q as function of the polariza-
tion angle for the experimental (left) and theoretical (right) cases fit-
ted with equation (67). As expected from the good qualitative agree-
ment between the theoretical and experimental lineshapes shown in
Figure 16 and Figure 23 respectively, the agreement here is also quali-
tatively good, meaning that the overall dependence of the Fano inter-
ference phenomenon on the polarization is well described.

Figure 24: Asymmetry factor as a function of the polarization angle for ex-
perimental results (left) and theoretical calculations (right).

The spot size dependent experiments were made using the same
setup presented in Figure 22, the size is controlled changing the laser
focus incident on the sample. The results are shown in Figure 25 for
the spot diameters Ds ∼ 2µm and Ds ∼ 10µm. These results are in
good agreement with the theoretical ones shown in Figure 21.

The behavior of the
asymmetry q factor
and the spot-size
dependent lineshape
are qualitatively in
good agreement with
the theoretical
calculations.

Figure 25: Reflectivity spectrum when the laser is focused on the cavity with
spot diameter Ds ∼ 2µm, and defocused, with Ds ∼ 10µm.





7
C O N C L U S I O N S A N D P E R S P E C T I V E S

In the development of this work, the plane wave expansion and the
scattering matrix method were presented as two powerful tools to
investigate the electromagnetic properties of photonic crystals. The
hybrid method, introduced initially by Whittaker et al. [34] and with
the strategic modifications to describe arbitrary geometrical excita-
tion spots, showed its great generality to characterize processes in
photonic crystals involving scattering states, which is a requirement
to study an universal phenomenon such as Fano resonances. The re-
sults of this work give a clear insight about the Fano interference
process in the L3 photonic crystal slab cavity. First of all, the polar-
ization of the excitation field incident on the crystal is an important
parameter to take into account in the reflectivity calculations of this
kind of cavities, whose modes have a well defined polarization. And
second, the interference phenomenon depends on the relative contri-
bution of the scattering through the discrete state and the scattering
to the continuum. Since in the photonic crystal this phenomenon is
produced by the electromagnetic interference between these two chan-
nels, the relative contribution can be controlled through the effective
phase difference between them. Therefore, the polarization of the in-
cident radiation can be used to control the effective phase difference
between the scattering through the L3 fundamental mode and the
scattering through the photonic crystal pattern. The scattering matrix
implementation here allowed to reproduce the experimental results
reported by Galli et al. [47], in which the spot size can be used to
enhance the continuum contribution in the electromagnetic Fano in-
terference.

The implemented method can be used to study the diffractive prop-
erties in a great variety of complex photonic structures, nevertheless,
it is important to take into account the introduced approximations,
as the supercell environment, finiteness of the basis and distance at
which the reflectivity is calculated (near and far field regimes). The
next step in this work is to find efficient ways to overcome these limi-
tations and obtain a better agreement between the experimental and
theoretical results.
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Part IV

A P P E N D I X





A
F O U R I E R C O E F F I C I E N T S O F ε ( x , y )

Most of the work invested in the calculation of band diagrams for
photonic crystals is focused on finding the expansion coefficients of
ε ( x , y ) in the plane wave basis that describes the crystal. In this
appendix it is shown how to calculate these coefficients in the square
and hexagonal lattices of cylinders (or holes) for defective and non-
defective photonic crystals.

a.1 square lattice

The reciprocal lattice vector of the square lattice is:

G =
2π j

a
x̂ +

2πm

a
ŷ , (68)

where j and m are integer numbers. The expansion of the dielectric
function in terms of a plane wave basis with the periodicity of the
Bravais lattice can be written as:

ε ( x , y ) =
∑
jm

ε jm e
i 2πa (xj+ym ) . (69)

To find the ε jm coefficients of the expression (69), the function ε ( x , y )
is multiplied by e− i

2π
a (xj

′
+ym

′
) (another element of the basis) and

integrated in the orthogonality region of the basis, which in this case,
is the unit cell of the crystal (UC). Figure 26 schematizes this region.

Figure 26: Integration region of the square lattice.

The integration produces two Kronecker delta functions which make
zero all the terms different from the cases m = m

′
and n = n

′
. In

this way, ε jm takes the form:

ε jm =
1

a 2

∫
UC

ε ( x , y ) e− i
2π
a (xj+ym ) da . (70)
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The integral (70) can be divided in two contributions: one correspond-
ing to the square region, and the other one corresponding to the cir-
cular region. If ε r is the dielectric constant of the cylinders and ε s is
the dielectric constant of the slab medium, the integral can be written
as:

εjm =
1

a2

(
εs

∫
�
e−i

2π
a (xj+ym)da− (εs − εr)∫

©
e−i

2π
a (xj+ym)da

)
. (71)

The square integral is different from zero only when n = 0 andm = 0,
and it is convenient to solve the circular integral in polar coordinates:
x = r

′
cos θ, y = r

′
sin θ and da = r

′
dr
′
dθ. Thus:

εjm = εsδj0δm0−
(εs − εr)

a2

∫
©
e−i

2πr
′

a (j cosθ+m sinθ)r
′
dr
′
dθ. (72)

Using the following identities:∫2π
0

e−ir
′
(A cosθ+B sinθ)dθ = 2πJ0

(
r
′√
A2 +B2

)
,∫r

0

r
′
J0(Cr

′
)dr

′
= r

J1(Cr)

C
,

lim
C→0

J1(Cr)

C
=
r

2
, (73)

the εjm coefficients acquire the following closed form:

εjm =


εs +

π(εr−εs)r
2

a2
, j = 0 ∧ m = 0

2π(εr−εs)r
a2

J1

(
r

√
( 2πja )

2
+( 2πma )

2
)

√
( 2πja )

2
+( 2πma )

2
, j 6= 0 ∨ m 6= 0,

(74)

where Jl is the Bessel function of order l. The coefficients ηjm, associ-
ated to η(x,y) = 1

ε(x,y) , are obtained replacing εs and εr by 1
εs

and
1
εr

respectively in the expression (74).

a.2 hexagonal lattice

The reciprocal lattice vector of the hexagonal lattice is:

G =
2πj

a
x̂ +

2π

a
√
3
(2m− j)ŷ. (75)

The expansion of the dielectric function in terms of a plane wave basis
with the periodicity of the Bravais lattice is written as:

ε(x,y) =
∑
jm

εjme
i 2πa (xj+y

(2m−j)√
3

). (76)
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In the same way that it was made for the square lattice, ε(x,y) is

multiplied by the function e
−i 2πa (xj

′
+y

(2m
′
−j
′
)√

3
) and then integrated

over the orthogonality region shown in Figure 27. Note that in this
case such region does not correspond to the unit cell of the lattice.

Figure 27: Integration region of the hexagonal lattice.

The coefficient is expressed as:

εjm =
1

a2
√
3

∫
RO

ε(x,y)e−i
2π
a (xj+y

(2m−j)√
3

)
da. (77)

The integral is divided in two contributions, one corresponding to the
rectangular region and the other one corresponding to the circular
region:

εjm = εsδj0δm0 − 2
(εs − εr)

a2
√
3
×∫

©
e
−i 2πr

′

a (j cosθ+ (2m−j)√
3

sinθ)
r
′
dr
′
dθ. (78)

There is a factor of two in the circular integral since the total area
contains two circles. Using the identities (73) the εjm coefficients take
the closed form:

εjm =


εs +

2π(εr−εs)r
2

a2
√
3

, j = 0 ∧ m = 0

4π(εr−εs)r

a2
√
3

J1

(
r

√
( 2πja )

2
+
(
2π(2m−j)

a
√
3

)2)
√
( 2πja )

2
+
(
2π(2m−j)

a
√
3

)2 , j 6= 0 ∨ m 6= 0.
(79)

The coefficients ηjm associated to η(x,y) are obtained replacing εs
and εr by 1

εs
and 1

εr
respectively in the expression (79).

a.3 superposition of dielectric functions : defective su-
percells

The simplest way to model defective supercells is through the super-
position of dielectric functions, one of these associated to the regular
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non-defective crystal with lattice parameter a, and the other ones as-
sociated to the same crystal albeit with larger lattice parameter A (the
superlattice parameter) which will determine the supercell defects. It
is important to take into account that the superlattice vectors must be
integer multiples of the regular lattice vectors (associated to the crys-
tal with lattice parameter a). The basic case corresponds to the defect
L1 or H1 (one cylinder or hole missing) whose dielectric function can
be written as:

εL1(x,y) = ε(x,y) + ε1(x,y). (80)

Here, ε(x,y) and ε1(x,y) are the dielectric functions of the regular
crystal with lattice parameters a and A = la respectively, where l is
an integer number. In the particular case of the square lattice εL1(x,y)
is expanded as:

εL1(x,y) =
∑
jm

εjme
i 2πa (xj+ym) +

∑
jm

ε1jme
i 2πla (xj+ym). (81)

Since the defective system has the periodicity of the supercell, the
expression (81) is multiplied by a plane wave e−i

2π
la (xj

′
+ym

′
) with

period A, and integrated over the orthogonality region of the basis,
which is the supercell in this case:

(al)2εL1
j
′
m
′ =

∫
AS

εL1(x,y)e−i
2π
la (xj

′
+ym

′
)da

=
∑
jm

εjm

∫
AS

ei
2π
a (x(j− j

′

l )+y(m−m
′

l ))da+

∑
jm

ε1jm

∫
AS

ei
2π
la (x(j−j

′
)+y(m−m

′
))da. (82)

Solving the integrals of (82) it is obtained:

(al)2εL1
j
′
m
′ = (al)2

∑
jm

εjmδj ′ ,jlδm ′ ,ml+

(al)2
∑
jm

ε1jmδj ′ ,jδm ′ ,m. (83)

Therefore, the closed expression for the expansion coefficients of the
L1 defect is:

εL1jm = ε j
l ,ml

+ ε1j,m. (84)

If jl or m
l are not integers ε j

l ,ml
vanishes. The expression (84) also

applies to the hexagonal lattice. To ensure that εL1jm will reproduce
the L1 defect, the quantities εs, εr, ε1s and ε1r must be conveniently
chosen in the expression (74) and (79):

εs = ε
S
s , εr = ε

S
r ,

ε1s = 0, ε1r = εs − εr. (85)
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εSr and εSs will correspond to the dielectric functions of the cylinder
and the slab medium in the supercell respectively. The choices (85)
ensure that when the dielectric functions are superposed the central
cylinder vanishes without affecting the surrounding cylinders. In the
same way, the L2 (two horizontal aligned missing holes) and L3 (three
horizontal aligned missing holes) defects can be created through su-
perpositions. The results for their respective coefficients are:

εL2jm =
(
ε j
l ,ml

+ ε1j,m + ε1j,me
i 2πjl

)
e−i

πj
la , (86)

εL3jm = ε j
l ,ml

+ ε1j,m + 2ε1j,m cos
2πj

l
. (87)

Because in the L2 defect one of the cylinders vanishes at x = a, the
displacement of ε1(x,y) generates a factor of ei

2πj
l in the coefficient,

furthermore, to center the defect in the supercell εL2(x,y) is displaced
0.5a, producing a global factor of e−i

πj
la in the coefficient εL2jm. The co-

sine term in the L3 coefficient is the product of the simplification of
two phases in x = −a and x = a.

The L3 defect with an outward displacement of the two lateral cylin-
ders is produced eliminating the lateral cylinders of the regular L3

defect (87), and then creating the two cylinders displaced. If the new
centers of the displaced cylinders are located at x = −(2+ s)a and
x = (2+ s)a, the Fourier coefficients take the form:

εL3−shiftjm = ε j
l ,ml

+ ε1j,m + 2ε1j,m cos
2πj

l
+ 2ε1j,m cos

4πj

l
+

2ε2j,m cos
2πj(2+ s)

l
. (88)

ε2j,m are the coefficients of a superlattice with the same geometrical
properties of the lattice generated by ε1j,m, however with respective
dielectric constants ε2r = εr − εs and ε2s = 0.

The coefficients associated to the waveguides have no restriction over
the j index, since the supercell has the same period of the regular
crystal, with lattice parameter a, in the x direction:

ε
g
jm = εj,ml + εSgj,m, (89)

where εSgj,m has the following closed form for the square lattice:

ε
Sg
jm =


ε
Sg
s +

π(εSgr −εSgs )r2

la2
, j = 0 ∧ m = 0

2π(εSgr −εSgs )r
la2

J1

(
r

√
( 2πja )

2
+( 2πmla )

2
)

√
( 2πja )

2
+( 2πmla )

2
, j 6= 0 ∨ m 6= 0.

(90)
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And the following closed form for the hexagonal lattice:

ε
Sg
jm =


ε
Sg
s +

2π(εSgr −εSgs )r2

la2
√
3

, j = 0 ∧ m = 0

4π(εSgr −εSgs )r

la2
√
3

J1

(
r

√
( 2πja )

2
+
(
2π(2m−jl)

la
√
3

)2)
√
( 2πja )

2
+
(
2π(2m−jl)

la
√
3

)2 , j 6= 0 ∨ m 6= 0.

(91)

For both waveguides, square and hexagonal, the respective dielectric
constants of the superlattice are εSgs = 0 and εSgr = εs − εr.

Remember that the coefficients ηjm associated to η(x,y) are obtained
replacing εs and εr by 1

εs
and 1

εr
respectively, in the basic expressions

(74) and (79).



B
T H E L 3 C AV I T Y

The realization of nano cavities with high quality factor Q and small
modal volume V has become very important since the ratios Q/V ,
Q/
√
V and Q2/V characterize a wide range of phenomena in areas

as nonlinear optics and cavity quantum electrodynamics (QED)1. Be-
sides that, ultra small cavities enable large-scale integration in a sin-
gle optical chip. Photonic crystals cavities are optimal candidates to
fulfill these requirements; their light confinement mechanism, which
consists in an extension of the Bragg reflection to two and three di-
mensions, is very efficient, allowing to reach very high Q and small
V values. And multiple photonic crystal devices can be implemented
in the same dielectric wafer, allowing large-scale integration.

The L3 nano cavity was the first photonic crystal cavity with experi-
mental quality factors in the order of 45.000 and small modal volume
(about 7.0× 10−14 cm) [50]. It has been the subject of intense research
for applications in control of ultrafast laser pulses [51], low-threshold
lasing [6], cavity QED and single photon sources [52, 53]. The L3 cav-
ity studied in this work consists of three missing horizontal holes in a
two dimensional photonic crystal slab of a hexagonal lattice of holes.
Figure 28 shows the L3 cavity where a is the lattice parameter. An
additional outward displacement of the end lateral holes s is made to
smooth the field in the cavity edges, producing a decrease of radia-
tion losses and consequently an increase of the quality factor [50, 54].

Figure 28: L3 cavity with lattice parameter a and an outward displacement
s of the end lateral holes.

1 See Chapter 1.
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The mode structure of the L3 cavity with s = 0.15a is shown in Fig-
ure 29, there is plotted the time averaged electric field energy density
distribution E ·D superposed with the dielectric function of the crys-
tal. The cavity supports six modes in the TE-like polarization sym-
metry2 of the photonic crystal, which has a full TE-like band gap for
refractive indexes n > 1.6 [54]. The frequencies ν, in units of c/a, are
written above each mode. As it is expected, the fundamental mode
has a strong field intensity in the center of the cavity, and usually,
this is the most important state for practical applications. The calcula-
tions were made using a supercell of 12a× 12a× 4awith the free soft-
ware package MPB, which computes the fully vectorial eigenmodes
of Maxwell equations with periodic boundary conditions by precon-
ditioned conjugate-gradient minimization of the block Rayleigh quo-
tient in a plane wave basis [55]. The crystal parameters in the calcu-
lation were: hole radius r = 0.29a, slab thickness d = 0.5a, refractive
index n = 3.5 and the spatial grid resolution was chosen to be 10
pixels by unit of a.

Figure 29: Time averaged electric field energy density E ·D of the six L3

cavity modes. The frequency ν, written in units of c/a, is shown
above of each mode.

To study the fundamental L3 cavity mode polarization, finite differ-
ence time domain (FDTD) simulations were made using the package
MEEP [56] in a finite photonic crystal, Figure 30 shows the results
obtained for the same cavity parameters of Figure 29. The mode has
non-zero Ex and Ey components, which means that there is no pure
polarizations in x or y directions, nevertheless, the y component is
dominant as it can be seen in the vector field diagram of Figure 30. It

2 TE-like polarization is the extension of the TE case, studied in Chapter 3, to symmet-
ric photonic crystal slabs. See reference [23].
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is important to take into account this fact, because even though the
most efficient way to excite the mode is through the y component,
it is possible to excite it through the x component also3. The FDTD
calculations were made on a crystal of size 16a× 6

√
3a, located in-

side a computational cell with a perfectly matched layer (PML) in the
boundaries [57, 58]. The spacial grid resolution was chosen to be 20
pixels by lattice parameter and the time resolution is automatically
fixed by the Courant condition [59]. This resolution produces a fre-
quency value ν for the fundamental mode of 0.26926 c/a, which is
located in the convergence region. The references [34, 60] can be con-
sulted to obtain more details about the polarizations of the L3 cavity
modes.

Figure 30: FDTD results for the energy and field distributions of the funda-
mental L3 cavity mode. (Top-left) Time averaged electric field en-
ergy density E ·D. (Top-right) In-plane electric field E||. (Bottom-
left) x component distribution of the electric field Ex. (Bottom-
right) y component distribution of the electric field Ey. Blue cor-
responds to minimum values and red to maximum values.

Figure 31 shows the behavior of the quality factor and the frequency
in terms of the outward hole shift s for the fundamental mode. The
FDTD simulations show that the quality factor attain a maximum
value of 5 × 104 at s = 0.2a, which agrees with the literature [54],
and the frequency mode undergoes a maximum change of 0.85% at
s = 0.225a.

3 See Chapter 6.
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Figure 31: Q and frequency behavior in terms of the outward hole displace-
ment s. The FDTD simulations were made with the same crystal
parameters adopted in this appendix.

The software packages used to make the calculations of this appendix,
can be freely downloaded in the following web sites:

http://ab-initio.mit.edu/mpb

http://ab-initio.mit.edu/meep

http://ab-initio.mit.edu/mpb
http://ab-initio.mit.edu/meep
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