Este trabalho foi realizado no Laboratório de Imunologia Celular e Molecular/Departamento de Bioquímica e Imunologia e no Laboratório de Biologia do Desenvolvimento/Departamento de Morfologia do Instituto de Ciências Biológicas da UFMG, com apoio financeiro da FAPEMIG.

"O que move o mundo não são as respostas,

mas sim as perguntas"

Agradecimentos

Agradeço a DEUS, fonte de tudo e todos, pelo Dom da vida, por poder encerrar mais esta etapa.

Aos meus pais, meus exemplos de sabedoria, dignidade, humanidade, pelo apoio incondicional em todas as etapas da minha vida.

Ao meu orientador, Professor Alfredo Goes, pelos os ensinamentos, apoio e estímulo para execução desta tese.

À minha co-orientadora, Professora Gerluza Aparecida Borges Silva, por tudo... pelo acolhimento em seu laboratório, por toda a orientação e atenção.

Ao Eduardo, pelo amor, cumplicidade e companheirismo durante esses anos difíceis!

Ao Renato Mendes, por toda a paciência, disponibilidade, auxílio e apoio; pela viabilização dos procedimentos cirúrgicos.

À Carolina Barcelos Machado e à Rafaela Chitarra Rodrigues Hell por tudo que me ensinaram.

A Estéfane Lorraine pela incansável ajuda, em todas as horas e a qualquer momento, por fazer renascer em mim a esperança nas próximas gerações.

À Silviene Novikoff, ao Alexander Pedrosa, à Paula Castanheira obrigada pelo imenso apoio, indispensável para a realização deste trabalho!

À Iraídes, pelo apoio durante todo o curso.

Aos amigos e colegas dos Laboratórios de Imunologia Celular e Molecular e de Desenvolvimento, o "*et al.*" indispensável e extremamente agradável para que este trabalho fosse realizado.

LISTA DE FIGURAS

FIGURA 1:	Estrutura química da quitosana	23
FIGURA 2:	Genotipagem dos ratos Lewis transgênicos eGFP	38
FIGURA 3:	Imagens de matrizes de quitosana-gelatina nos poços de	
	placas de cultura. Fase de secagem do biomaterial	42
FIGURA 4:	Desenho esquemático dos experimentos in vitro	49
FIGURA 5:	Imagens do preparo dos animais para o procedimento	
	cirúrgico	53
FIGURA 6:	Representação esquemática do modelo experimental e	
	implantes nos alvéolos dentários de	
	ratos	54
FIGURA 7:	Método de Análise morfométrica utilizando imagens	
	obtidas por TCCB	57
FIGURA 8:	Caracterização macroscópica da matriz 3D e	
	padronização dos fragmentos	
	implantados/transplantados	62
FIGURA 9:	Caracterização morfológica da matriz 3D por Microscopia	
	eletrônica de varredura e confocal	63
FIGURA 10:	Análise de elementos químicos da superfície da	
	quitosana-gelatina, obtida pelas análises EDS e	
	XRD	65
FIGURA 11:	Caracterização fenotípica das CTMMO	67
FIGURA 12:	Análise da Redução do MTT	69
FIGURA 13:	Análise do Ensaio da atividade de fosfatase alcalina	71
FIGURA 14:	Fotomicrografias de microscopia de luz (ML)	
	representativas de culturas 3D de CTMMO, em meio	
	MB/MO, após 1 dia de cultura	73
FIGURA 15:	Fotomicrografias representativas de MEV de culturas 3D	
	de CTMMO, em meio MB/MO, após 1dia de cultura	74
FIGURA 16:	Fotomicrografias de microscopia de luz (ML)	
	representativas de culturas 3D de CTMMO, em meio	
	MB/MO, após 3 dias de cultura	76

FIGURA 17:	Fotomicrografias representativas de MEV de culturas 3D	
	de CTMMO, em meio MB/MO, após 3 dias de	
	cultura	77
FIGURA 18:	Fotomicrografias de microscopia de luz (ML)	
	representativas de culturas 3D de CTMMO, em meio	
	MB/MO, após 8 e 14 dias de cultura	79
FIGURA 19:	Fotomicrografias representativas de MEV de culturas 3D	
	de CTMMO, em meio MB/MO, após 8 e 14 dias de	
	cultura	80
FIGURA 20:	Análises de EDS nas culturas 3D de CTMMO, após de	
	três dias de cultura	81
FIGURA 21:	Fotomicrografias representativas da análise histológica in	
	vivo – 5 dias após implante do biomaterial sem células.	
	HE	83
FIGURA 22:	Fotomicrografias representativas da análise histológica in	
	vivo – 21 dias após implante do biomaterial sem células.	
	HE	85
FIGURA 23:	Fotomicrografias representativas da análise histológica in	
	vivo – 35 dias após implante do biomaterial sem células.	
	HE	87
FIGURA 24:	Análise morfométrica do reparo ósseo utilizando imagens	
	obtidas por TCCB após 5, 21 e 35 dias do implante	89
FIGURA 25:	Fotomicrografias representativas da análise histológica in	
	<i>vivo</i> – 5 dias após implante do construto	
	(biomaterial+células). HE	91
FIGURA 26:	Fotomicrografias representativas da análise histológica in	
	<i>vivo</i> – 21 dias após implante do construto	
	(biomaterial+células). HE	92
FIGURA 27:	Reação citoquímica TRAP em células gigantes	
	multinucleadas, aos 21 dias	94

FIGURA 28:	Fotomicrografias representativas da análise histológica in	
	vivo – 35 dias após implante do construto	
	(biomaterial+células). HE	97
FIGURA 29:	Controle positivo para reações imunohistoquímicas in	
	vivo	100
FIGURA 30:	Análise imunohistoquímica após 5 dias de transplante	101
FIGURA 31:	Análise imunohistoquímica após 21 dias de transplante	103
FIGURA 32:	Análise imunohistoquímica após 35 dias de transplante	105

LISTA DE TABELAS

TABELA 1:	Distribuição dos animais em grupos experimentais, para	
	análise histológica e morfométrica	39
TABELA 2:	Resultados morfométricos por TCCB: Proporção de	
	preenchimento por osso neoformado através da	
	avaliação pela escala de cinza	96

LISTA DE ABREVIATURAS, SÍMBOLOS E SIGLAS

ABI	áreas de baixa intensidade
AE	área de estudo
ΑΤΑ	área total do alvéolo
2D	bidimensional
3D	tridimensional
BCIP	bromo-cloro-indol fosfato
BMSC	bone marrow stem cell
Со	controle
СВСТ	cone beam computed tomography
СТММО	células-tronco mesenquimais de medula óssea
СТМ	células-tronco mesenquimais
СТ	células-tronco
CETEA	Comitê de Ética em Experimentação Animal
CD	cluster of differentiation, grupamento de diferenciação
CH-G	quitosana-gelatina
СО	controle negativo
DMEM	Dulbecco's Modified Eagle's Medium
DRX/XRD	difração de raios x
EDS	espectroscopia de energia dispersiva
EDTA	ethylenediaminetetraacetic acid tetrasodium salt dihydrate
eGFP	enhanced Green fluorescent protein
EM	espaço medular
Ехр	experimental
FNT	formalina neutra tamponada
HE	hematoxilina e eosina
LM	light microscopy
LP	ligamento periodontal
MB	meio de cultura basal
МС	microscopia confocal
MEC	matriz extracelular
ML	microscopia de luz
МО	meio de cultura com estímulo osteogênico

MP	membrana periodontal
МТТ	brometo de [3-94,5-dimetiltiazol-2il)-2,5-difeniltetrazolio] ou
	metiltetrazol
NBT	nitrobluetetrazol
OI	osso imaturo
ОМ	osso maduro
PBS	phosphate buffered saline, salina tamponada com fosfato
PMN	polimorfonuclear
RRRC	Rat Resource and Research Center
SEM	scanning electron microscopy
SFB	soro fetal bovino
тс	tecido conjuntivo
ТССВ	tomografia computadorizada Cone Beam
TRAP	tartrate-resistant acid phosphatase staining
XRD	x-ray diffraction
WT	wild type, tipo selvagem

SUMÁRIO

1. INTRODUÇÃO	16
2. REVISÃO DA LITERATURA	18
2.1. Engenharia de tecidos	18
2.2. Biomateriais	19
2.2.1. Quitosana e gelatina como matéria-prima de matrizes tridimensiona	ıis
para engenharia de tecidos	22
2.3. Células-tronco	26
2.4. Biologia do processo de cicatrização alveolar	29
2.5. Defeitos ósseos alveolares	31
3. OBJETIVOS	34
4. MATERIAIS E MÉTODOS	36
4.1. Animais doadores, receptores e grupos experimentais	36
4.2. Obtenção das matrizes 3D de quitosana e gelatina	40
4.2.1. Síntese das matrizes 3D de quitosana e gelatina	40
4.2.2. Caracterização das matrizes 3D de quitosana e gelatina	42
4.3. ESTUDO IN VITRO	44
4.3.1. Meios de cultura	44
4.3.1.1. Meio de cultura basal	44
4.3.1.2. Meio de cultura osteogênico	45
4.3.2. Isolamento e cultivo das CT Mesenquimais de Medula Óssea	45
4.3.3. Caracterização fenotípica das CTMMO por citometria de fluxo	46
4.3.4. Culturas 2D e 3D	48
4.3.5. Análises das culturas 2D e 3D	49
4.3.5.1. Teste de conversão de MTT	49
4.3.5.2. Avaliação da atividade de fosfatase alcalina	50

4.3.5.3. Análise morfológica	52
4.4. ESTUDO IN VIVO	52
4. 4. 1. Procedimento cirúrgico para implante do biomaterial/ transplante	do
construto	.52
4.4.2. Análise morfométrica por meio de tomografia computadorizada	55
4.4.3. Análise histológica e coloração por TRAP4.4.4. Análise imunohistoquímica	58 59
4.5. Análise estatística	.60
5. RESULTADOS	.61
5.1. Caracterização das matrizes 3D de quitosana e gelatina	61
5.2. Caracterização das CTMMO	.66
5.3. Análises in vitro	68
5.3.1. Teste de conversão de MTT	68
5.3.2. Avaliação da atividade de fosfatase alcalina	.70
5.3.3. Análise morfológica	72
5.4. Análises in vivo	.82
5.4.1. Análise histológica	.82
5.4.1.1. Implante de matrizes porosas de quitosana e gelatina	82
5.4.1.2. Transplante de CTMMO em matrizes porosas de quitosana e gelatir	na
	.88
5.4.2. Análise morfométrica	.95
5.4.3. Análise imunohistoquímica	.98
6. DISCUSSÃO	105
7. CONCLUSÃO	114
8. REFERÊNCIAS BIBLIOGRÁFICAS	115
9. ANEXO	123

Resumo

A associação de células-tronco e biomateriais representa uma alternativa promissora para reconstruções ósseas. No presente estudo, avaliou-se o comportamento in vitro e in vivo de células-tronco mesenquimais de medula óssea de ratos, cultivadas em uma matriz tridimensional de quitosana e gelatina. Essa matriz foi sintetizada e caracterizada química (energia dispersiva de raios-x - EDS e difração de raios-x - XRD) e morfologicamente (microscopia de luz - ML, microscopia eletrônica de varredura - MEV e microscopia confocal). Células-tronco mesenquimais de medula óssea (CTMMO), obtidas de ratos Lewis transgênicos para eGFP (Enhanced green fluorescent protein), foram semeadas nas matrizes. Os experimentos in vitro e in vivo foram realizados com células-tronco mesenquimais marcadas endogenamente com eGFP (Enhanced green fluorescent protein), extraídas de ratos transgênicos isogênicos da linhagem Lewis-eGFP positivos (Universidade de Missouri -EUA) e ratos Lewis WT eGFP negativos foram, posteriormente, usados como receptores, para permitir o monitoramento do destino das células transplantadas in vivo, por meio da técnica imunohistoquímica. As matrizes sintetizadas foram também avaliadas in vitro quanto à biocompatibilidade (análises de conversão de MTT, atividade de fosfatase alcalina e morfológica, por meio de ML e MEV) e comparou-se o comportamento das células (colonização, adesão, "proliferação" e diferenciação osteogênica) em culturas bi e tridimensionais mantidas em meio basal (DMEM) e em meio osteogênico (DMEM acrescido de suplementos osteogênicos). Na avaliação in vivo, trinta e dois ratos machos selvagens foram usados como recipientes para o implante da matriz (n=16) ou para o transplante do construto (n=16) e empregou-se o modelo de alvéolos dentários de ratos. Sendo assim, após a exodontia dos primeiros molares superiores, as matrizes/construtos foram implantados nos alvéolos dentários esquerdos de ratos receptores, Lewis Wild Type. Os alvéolos contralaterais foram utilizados como controles. Os animais, ratos Lewis (n=16) de cada grupo experimental, foram eutanasiados 5, 21 e 35 dias após a cirurgia. O comportamento, a biodegradação e biocompatibilidade da matriz após implante foram avaliados histologicamente, por meio de microscopia de luz, nos três períodos experimentais. Os implantes dos

construtos (biomaterial + CTMMO cultivadas em meio basal por 3 dias) também foram avaliados nos três períodos experimentais. Realizou-se a análise morfométrica, para quantificação do preenchimento ósseo dos alvéolos experimentais, lado esquerdo, e controles, lado direito, nos períodos de 5, 21 e 35 dias após a cirurgia, por meio de tomografia computadorizada cone beam Rastreou-se destino das células-tronco eGFP-positivas (TCCB). 0 transplantadas, por análise imunohistoquímica, com uso de anticorpos anti-GFP. Os resultados in vivo revelaram alta biocompatibilidade e lenta biodegradação da matriz. A morfometria mostrou um aumento significativo da mineralização óssea nos alvéolos transplantados após 21 e 35 dias. A imunohistoquímica revelou a contribuição de CTMMO para os reparos ósseo, epitelial e vascular. As matrizes de quitosana e gelatina apresentaram propriedades físico-químicas e biológicas adequadas para a utilização como material de preenchimento, como carreador de células-tronco e para a reconstituição de tecidos ósseos por meio da engenharia tecidual. Os resultados mostraram que a matriz de quitosana e gelatina é um biomaterial promissor para o carreamento de CTMMO e que o construto obtido (matriz de quitosana e gelatina-CTMMO) pode ser uma estratégia viável para engenharia de tecido ósseo em Odontologia.

Descritores: quitosana-gelatina, células-tronco mesenquimais de medula óssea; engenharia de tecidos, alvéolos dentários.

Abstract

The association of stem cells and biomaterials is a promising alternative for bone reconstruction. In the present study, the *in vitro* and *in vivo* behavior of the mesenchymal stem cells from rat bone marrow cultured in a chitosan and gelatin tridimensional matrix. This matrix was synthesized and characterized chemical (energy dispersive x-rays - EDS, x-ray diffraction - XRD) and morphologically (light microscopy, scanning electron microscopy and confocal microscopy). Mesenchymal stem cells from bone marrow (BMSC) obtained from Lewis rats transgenic for eGFP (enhanced green fluorescent protein) were seeded in these scaffolds. In vitro and in vivo experiments were performed with mesenchymal stem cells endogenously tagged with eGFP (enhanced green fluorescent protein) from transgenic rat inbred strain Lewis-eGFP positive (University of Missouri - USA) and Wild Type Lewis-eGFP negative rats were, subsequently, used as receptors, to allow monitoring the fate in vivo of the transplanted cells, by immunohistochemical technique. The scaffolds synthesized were also evaluated in vitro for the biocompatibility (MTT conversion, alkaline phosphatase activity and morphological analyzes by SEM and LM) and the cells behavior were compared (colonization, adhesion, "proliferation" and osteogenic differentiation) in monolayer and in tridimensional cultures maintained in basal medium, Dulbecco's modified Eagle's medium (DMEM) and in osteogenic medium (DMEM plus osteogenic supplements). In vivo, thirty-two wild male rats were used as recipients for the implantation of the scaffold (n=16) or for the transplantation of the construct (n=16) and the tooth sockets of rats model were employed. Therefore, after extraction of the first upper molars, the scaffolds/constructs were implanted in the left dental sockets of the recipient rats, Lewis Wild Type. The right dental sockets were used as controls. The animals, Lewis rats (n=16) from each experimental group were euthanized 5, 21 and 35 days after surgery. The behavior, biocompatibility and biodegradation of the matrix after implantation were evaluated histologically by light microscopy, for the three experimental periods. The constructs implants (scaffold seeded with BMSC in basal medium for three days) were also evaluated in the three experimental periods. Morphometric analysis was performed to quantify bone filling of the experimental sockets, left side, and

controls, right side, in periods of 5, 21 and 35 days after surgery by means of cone beam computed tomography (CBCT). The fate of the eGFP-positive stem cells transplanted was screened by immunohistochemistry. The *in vivo* results showed high biocompatibility and slow degradation of the matrix. Morphometric analysis showed a significant increase in bone mineralization in the sockets transplanted after 21 and 35 days. Immunohistochemistry revealed the contribution of BMSC to repair bone, epithelial and vascular tissues. The gelatin and chitosan scaffolds showed physic-chemical and biological properties suitable for use as a filling material, as a carrier for stem cells and reconstitution of the bone tissue by means of tissue engineering. The results showed that the gelatin and chitosan scaffold is a promising carrier biomaterial for BMSC and the construct (chitosan and gelatin scaffold-BMSC) represents a viable strategy for bone tissue engineering in dentistry.

Keywords: Chitosan-gelatin scaffold, bone marrow mesenchymal stem cells, tissue engineering, tooth sockets.