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Abstract

We study the two-dimensional contact process (CP) with quenched disorder in the

form of random dilution of a fraction x. A qualitative picture of the phase diagram is

obtained through mean-field theory (MFT). Monte Carlo simulations show that the

relative shift in the critical point, [λc(x)−λc(0)]/λc(0) is in reasonable agreement with

MFT, for small values of x. As expected on the basis of the Harris criterion, the critical

exponents governing the order parameter and the survival probability take values

different from those of the pure model. We also study the critical spreading dynamics

of the diluted model. In the pure model, spreading from a single particle at the critical

point λc(0) is characterized by the critical exponents of directed percolation: in 2 + 1

dimensions, δ = 0.46, η = 0.214, and z = 1.13. Disorder causes a dramatic change in

the critical behavior of the contact process.

We also study the one-dimensional pair-contact process via time-dependent

series expansions. Numerical results provide reasonable estimates for the location of

the critical point.
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Resumo

Estudamos o processo de contato dilúıdo (DCP) bidimensional. Desordem é intro-

duzida na forma de diluição, com uma fração x de śıtios sendo removida aleatori-

amente da rede. Uma descrição qualitativa do diagrama de fases é obtida através

da teoria de campo médio na aproximação de blocos. Simulações de Monte Carlo

mostram que o deslocamento relativo do ponto cŕıtico, [λc(x) − λc(0)]/λc(0), para x

pequeno, está de acordo com os resultados obtidos por campo médio. Os expoentes

cŕıticos relacionados com o parâmetro de ordem e a probabilidade de sobrevivência do

modelo dilúıdo são diferentes dos expoentes do modelo puro, como era esperado pelo

critério de Harris. Usando simulações dependentes do tempo estudamos a evolução

do modelo a partir de uma única semente. No modelo puro, o comportamento cŕıtico

é caracterizado por leis de potência descritas pelos expoentes cŕıticos de percolação

dirigida: em 2+1 dimensões, δ = 0.46, η = 0.214, e z = 1.13. A presença de desordem

causa uma mudança drástica no comportamento cŕıtico do modelo.

Estudamos também o processo de contato de pares unidimensional utilizando

o método de expansão em séries dependente do tempo. Estimativas razoáveis para a

localização do ponto cŕıtico foram obtidas.
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Chapter 1

Introduction

Statistical mechanics has been used to describe systems in equilibrium quite success-

fully. In these systems, statistical fluctuations are due either to thermal agitation or

to impurities. In the past few decades, general theories of phase transitions and also of

critical phenomena have been developed, unifying understanding of the liquid-vapor

transition, magnetic transitions, liquid crystals, and other systems. Understanding of

critical phenomena in nonequilibrium steady states, is still developing, however. Since

the steady-state probability distribution in these systems is not known a priori, anal-

ysis of nonequilibrium systems must be based upon their dynamics. Some of these

systems have been found to exhibit a nonequilibrium phase transition, which is marked

by a boundary between an active steady state and an absorbing state. Attempts at

a better understanding of nonequilibrium phase transitions have led statistical physi-

cists to study numerous models, such as reaction-diffusion systems, driven diffusive

lattice gases and Ising models with competing dynamics.

In this work we are mainly interested in the issue of universality of critical be-

havior, which has been a prime theoretical motivation for studying critical phenomena.

In particular we investigate the effects of quenched disorder on the critical behavior of

the contact process, an interacting particle system exhibiting a continuous phase tran-

sition to a unique absorbing state. A typical interacting particle system, possessing

an absorbing state, consists of many particles evolving according to a Markov pro-

cess governed by irreversible transition rules. We also study the pair-contact process,

a model with multiple absorbing configurations, whose critical spreading dynamics

presents nonuniversal behavior.

This thesis is organized as follows. Basic concepts of critical phenomena and

an introduction to nonequilibrium phase transitions are presented in chapter 2. In
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chapter 3 we study the two-dimensional contact process under quenched disorder via

one- and two-site mean-field cluster expansions. In chapter 4 we approach the diluted

contact process through Monte Carlo simulations. In chapter 5 we study the one-

dimensional pair-contact process via time-dependent series expansions, focusing on

the evolution of the model from a state close to the absorbing state. Concluding

remarks and outlook are given in chapter 6.
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Chapter 2

Introduction to Nonequilibrium

Phase Transitions

2.1 Introduction

This chapter has the aim of introducing the reader to a particular class of nonequilib-

rium models – interacting particle systems exhibiting a continuous phase transition

to an absorbing state.

We consider the following topics. In section (2.2) we review some basic con-

cepts in critical phenomena. In section (2.3) we discuss the contact process (CP) and

related models. In section (2.4) we review scaling behavior in critical phenomena.

A brief introduction of the most useful methods applied to nonequilibrium models is

given in section (2.5). We discuss universality in section (2.6), and in section (2.7) we

give an overview on basic concepts of disordered systems.

2.2 Basic Concepts

The main objective of this section is to help the reader, especially one not familiar

with recent developments in statistical physics, to understand and perhaps enjoy this

work. For this purpose we introduce the contact process (CP) which is the simplest

model of nonequilibrium phase transitions. The CP [1, 2] is an interacting particle

system that can be seen as a model for the spread of an infection. In this context,

each site of the lattice represents an individual that may be infected or healthy. The

infection spreads through direct contact between infected and healthy individuals.

The spreading of the infection depends upon an “infection parameter” (λ). Infected
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individuals recover at unit rate, and are then susceptible to reinfection. Since an

individual must have at least one sick neighbor to become infected, the state in which

all the individuals are healthy is absorbing. An absorbing state is a configuration from

which the system cannot escape.

The persistence of the epidemic is controlled by the infection parameter. If λ is

too small, extinction of the infection at long times is certain; on the other hand, large

values of λ assure that the infection will spread indefinitely. The boundary between

persistence and extinction is marked by a critical point, which is denoted by λc. The

critical parameter λc separates the two possible steady states the system can reach at

asymptotic times, namely a disease-free or absorbing state and a surviving epidemic

or active state. It turns out that λc marks a continuous phase transition between an

absorbing state and an active state. In a continuous phase transition the stationary

density of infected individuals (ρ) rises continuously from zero as the infection pa-

rameter is increased. A quantity like ρ is referred to as an order parameter. Near the

critical point the order parameter goes to zero following a power law characterized by

a critical exponent: ρ ∼ (λ−λc)
β where β is the critical exponent associated with the

order parameter. The independence of the critical exponents on most system details

is known as universality. Models with the same set of critical exponents form a uni-

versality class. In general a universality class is determined by global features such as

dimensionality, dimension of the order parameter and range of the interactions.

Models possessing a continuous transition into a unique absorbing state gener-

ally belong to the same universality class as the directed percolation (DP), according

to the DP conjecture [3, 4, 5, 6]. The presence of conservation laws can influence the

critical behavior of a model. Also models with multiple absorbing configurations have

presented a non-DP time-dependent behavior [39, 40, 41].

2.3 Contact Process and Related Models

In this section we present a few models that exemplify the main properties of nonequi-

librium phase transitions. We start by defining the contact process as a model for

creation and annihilation of particles on a lattice, followed by directed percolation

and the Ziff-Gulari-Barshad (ZGB) surface-reaction model.

The contact process (CP) [1] is a one-component model, whose importance

resides in its simplicity. The CP can be defined as follows. Each site of a hypercubic

lattice is either vacant or occupied by a particle. Particles are created at vacant sites at

rate λn/2d, where n is the number of occupied nearest neighbors, and are annihilated

6
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Figure 2.1: Diagram showing the rules for the directed percolation with bond probability

p on the square lattice.

at unit rate, independent of the surrounding configuration. The order parameter is

the stationary particle density; it vanishes in the vacuum state, which is absorbing.

As λ is increased beyond λc, the model presents a continuous phase transition from

the vacuum to an active steady state.

Directed percolation (DP) [7] can be defined as the ordinary bond percolation

problem, in which bonds are randomly distributed on a lattice with concentration p,

with the introduction of a preferential direction to the problem. Fig. (2.1) shows the

transition rules for directed bond percolation. The top row of Fig. (2.2) represents the

initial state, which is connected by diagonal bonds to the row below. Each of these

oriented bonds is present only with probability p independent of the other bonds. A

site in this lattice is connected to the origin if and only if it is connected to a site in

the previous layer that is connected to the origin. There is a critical concentration pc,

below which the probability of an infinite “percolating” cluster is zero. Near pc the

system features the characteristic lengths ξ⊥ and ξ‖, perpendicular to and parallel to

the main direction, respectively, that diverge like

ξ⊥ ∼ (pc − p)−ν⊥ (2.1)

ξ‖ ∼ (pc − p)−ν‖ (2.2)

An interesting interpretation arises if we take the biased direction as time; the remain-

ing (d− 1)-dimensions may represent a lattice in space [8]. The latter interpretation

allows a mapping of DP onto Reggeon field theory (RFT) [9], a high energy parti-

cle physics theory, which models the scattering cross section of high energetic nuclei.

Analysis of RFT shows that it has a phase transition in the same universality class as

DP [10, 11]. The CP transition also belongs to the universality class of directed perco-

lation. In fact, the d-dimensional contact process corresponds to directed percolation

in d + 1 dimensions. This can be seen by considering a discrete-time analog of the

contact process in which all sites are updated simultaneously. A d-dimensional system

is represented by a (d + 1)-dimensional lattice whose layers record the configuration

at times t = 0, 1, 2, · · ·. A site is occupied in layer t only if one of its neighbors or the
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Figure 2.2: Typical time evolution from a single particle in dynamical directed percolation,

particles are represented by a •, lattice sites by a ◦, and the directed bonds by arrows.

The cluster is typical of those observed at large values of the spreading probability p.

site itself were occupied in layer t−1 (this avoids spontaneous creation). A site can be

vacant in layer t even if it is occupied in layer t−1 (annihilation). Directed percolation

is the simplest way of implementing this simultaneous updating. Thus “survival” of

a trial in the CP corresponds to “percolation” in DP. Although one model cannot be

mapped onto the other, the CP and DP are equivalent as far as critical behavior is

concerned.

A wide variety of catalysis models have been considered in the study of nonequi-

librium phase transitions. Perhaps the best known is the Ziff-Gulari-Barshad (ZGB)

model for the oxidation of carbon monoxide (CO) on a catalytic surface [12]. Such

reactions are of great technological importance. The model is defined on a square lat-

tice, which represents the catalytic surface. The reaction proceeds via the Langmuir-

Hinshelwood mechanism: both species must be chemisorbed. Adsorption of CO

molecules occurs at rate y on a vacant site; adsorption of O2 requires a nearest-

neighbor pair of empty sites. Adsorbed O and CO react when they are sitting at

nearest-neighbor sites, followed by the immediate desorption of the product, CO2

[13]. If by any chance, the lattice is completely covered by one of the reactants, CO

or O, we say that the lattice is poisoned. A CO-poisoned lattice has all sites occupied

by CO, which blocks O adsorption and consequently inhibits the reaction. Once the

system enters a poisoned state it remains in it indefinitely. Thus such a poisoned state
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is absorbing. Depending on y, the system can exist in one of three phases: poisoned

by O, poisoned by CO, or reactive. The model presents a first order phase transi-

tion from the CO-poisoned to the active state, and a continuous transition from the

oxygen-covered state to the active state. This latter belongs in the universality class

of directed percolation [3, 14, 15].

2.4 Scaling Behavior

The idea of scaling, which is strongly associated with continuous phase transitions,

was first introduced on a phenomenological basis by Widom [16]. He conjectured

that the equation of state is a homogeneous function of the relevant thermodynamic

variables in the vicinity of the critical point. Near the critical point, the system is

subject to strong fluctuations correlated over very large times and distances, being

characterized by a divergence of the correlation length at the critical point. Based on

this fact, Kadanoff [17] gave an intuitive picture for scaling. The scaling hypothesis

states that the divergence of the correlation length is responsible for the singular

dependence of physical quantities on the distance from the critical point. Scaling

gained a firmer basis with the advent of the renormalization group devised by Wilson

[18].

2.4.1 Steady-state Behavior

As we have already seen, a nonequilibrium phase transition occurs in the stationary

regime (between the stationary absorbing state and an active stationary state). In the

following we try to give an idea of the main aspects of steady-state critical behavior.

Critical Behavior

Near the critical point, thermodynamic response functions are dominated by

a singular contribution, associated with a diverging correlation length. The singu-

lar contribution depends (in the simplest cases) on a single variable, the correlation

length, and generalized homogeneity reflects how the correlation length depends on

the relevant thermodynamic variables. The latter, in equilibrium, are reduced tem-

perature and field, or reduced chemical potential in a fluid system.

Before we go on, we shall make a brief digression to discuss generalized homo-

geneous functions, as they are the starting point of the scaling theory. By definition,
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a function F (x) is homogeneous if it satisfies,

F (λx) = g(λ)F (x) (2.3)

for all values of the parameter λ. The function g(λ) must always be power-like,

g(λ) = λp. Analogously, for a homogeneous function of two variables we have

F (λx, λy) = λpF (x, y). (2.4)

Generalized homogeneity involves different scaling dependencies upon two (or more)

arguments, so:

F (µux, µvy) = µpF (x, y). (2.5)

By setting λ = µp we get

F (λ
u
p x, λ

v
p y) = λF (x, y) (2.6)

F (λax, λby) = λF (x, y) (2.7)

where a = u/p and b = v/p. Thus a generalized homogeneous function is characterized

by two (or more) powers, here a and b.

As critical behavior of thermodynamic variables is described by generalized

homogeneous functions we expect that such quantities as the order parameter, sus-

ceptibility, etc., follow power-laws near the critical point [16]. Hence the stationary

density near the critical point, (λ > λc), grows as

ρ• ∝ |λ− λc|β (2.8)

where β is the order parameter critical exponent. As in equilibrium critical phe-

nomena, nonequilibrium systems, undergoing a continuous phase transition, feature

a characteristic length scale, the correlation length (ξ), near the critical point. The

correlation length diverges at criticality as

ξ ∝ |λ− λc|−ν⊥ (2.9)

where ν⊥ is the correlation-length exponent. The relaxation time, τ , the time it takes

for a system to reach the steady state, also diverges at the critical point,

τ ∝ |λ− λc|−ν‖ , (2.10)

where ν‖ is the relaxation-time exponent [19].

10



Finite-size Scaling

In a finite system, the correlation length cannot become infinite, since it is

limited by the linear extent of the system, L. The singularities that characterize phase

transitions and critical points only emerge in the limit L →∞; in finite systems they

are rounded over a region roughly delimited by ξ ≥ L, where ξ is the correlation

length in the infinite-size limit. Next we show how to use this size-dependence to

locate the critical point and estimate exponents.

As we are working in a finite volume, we expect that finite-size effects become

relevant near the critical point, as the infinite-size correlation length ξ ≈ L. Thus,

according to finite-size scaling hypothesis [20, 21], various quantities depend on the

system size through the ratio L/ξ, or equivalently through the variable ∆L1/ν⊥ , where

∆ ≡ |λ− λc|. For example, expressing the order parameter as a function of ∆ and L,

we have

ρ•(∆, L) ∝ L−β/ν⊥f(∆L1/ν⊥). (2.11)

We must assume that f(x) ∝ xβ for x →∞ in order to recover Eq. (2.8) in the limit

L →∞. At the critical point, ∆ = 0, we obtain

ρ•(0, L) ∝ L−β/ν⊥ . (2.12)

Log-log plots of the stationary density versus the system size can be very useful in

locating the critical point.

2.4.2 Time-dependent Behavior

We cannot talk about scaling behavior without mentioning the time-dependent anal-

ysis introduced by Grassberger and de la Torre [22]. The basic idea is to study the

spread of a population starting from a configuration close to the absorbing state, in

general a single seed at the origin. Of prime interest are P (t), the probability that

the system has not entered the absorbing state at time t, n(t), the mean number of

particles (averaged over all trials, including those that do not survive until time t),

and R2(t), the mean-square distance of particles from the origin. In the subcritical

region, λ < λc, P (t) and n(t) decay exponentially. In this regime, as annihilation is

the dominant event the population cannot spread very far, thus we expect R2(t) ∝ t.

In this regime the conditional probability of finding a particle at r at time t, given
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a single particle at the origin at t = 0, decays exponentially at long times and large

distances:

ρ(r, t) ' exp(−r/ξ) exp(−t/τ), (2.13)

where ξ and τ are the characteristic spatial extent and the characteristic lifetime, both

diverging as λ → λc. Thus a cluster emanating from a single seed has a characteristic

lifetime τ and spatial extent ξ. In the supercritical regime,(λ > λc), there is a nonzero

probability that the process continues to spread from this seed as t →∞; the active

region expands at a constant rate, so that n(t) ∝ td and R2(t) ∝ t2. The process

dies out with probability one at the critical point, but the mean lifetime diverges. In

the absence of a characteristic time scale, the asymptotic evolution of these quantities

follows power-laws,

P (t) ∝ t−δ (2.14)

n(t) ∝ tη (2.15)

R2(t) ∝ tz (2.16)

where δ, η and z are critical exponents. Thus log-log plots of P (t), n(t) and R2(t)

approach straight lines at the critical point, and show a positive or negative curvature

in the supercritical or subcritical regimes, respectively. The exponents δ, η and z are

provided by the asymptotic slopes of the critical curves. In general we have to expect

finite-time corrections to scaling of the type

P (t) ∝ t−δ(1 + at−θ + bt−δ′ + · · ·). (2.17)

Similar expressions hold for n(t) and R2(t). This implies for the local slope δ(t) the

behavior

δ(t) = δ + at−θ + bt−δ′ + · · · , (2.18)

and analogous expressions for η(t) and z(t).

2.5 Analytical Methods

In this section we give an overview of the most widely-applied methods for nonequi-

librium phase transitions in lattice models. In order to illustrate mean-field cluster

expansions [23] we apply the simplest approximation, the site-approximation, to the
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process rate ∆ρ•

• ◦ • → • • • λρ2
•(1− ρ•) 1

• ◦ ◦ → • • ◦ λ
2
ρ•(1− ρ•)2 1

◦ ◦ • → ◦ • • λ
2
ρ•(1− ρ•)2 1

• → ◦ ρ• -1

Table 2.1: Rates of change for the one-dimensional contact process in site-approximation

level. • represents a particle and ◦ a vacancy.

one-dimensional contact process. Then we present an example of the mean-field renor-

malization group which, in general, leads to better estimates of critical parameters

than the ones obtained by mean-field theories. A brief summary of the basic idea of

series expansions follows.

2.5.1 Mean-field Theory

We consider the CP as defined in section (2.3) with d = 1. Let σi = 1 represent the

state of site i when occupied by a particle, and σi = 0 when vacant. The probability

that site i is occupied at time t is represented by P (σi = 1; t) ≡ ρ•. In Table 2.1 are

summarized the rates of change for each process of the one-dimensional CP. In the first

process creation occurs at the central site at rate λ; by treating each site independently

and assuming spatial homogeneity one can write the probability for finding the cluster

in this configuration as ρ2
•(1−ρ•). Each contribution to the evolution equation is given

by the product of the rate of change and the change in the number of particles, ∆ρ•.

Thus, considering the four possible events showed in Table 2.1, the equation of motion

for ρ• is given by

dρ•
dt

= ρ•(λ− 1)− λρ2
•. (2.19)

For λ ≤ 1 the only stationary solution is the vacuum, ρ• = 0. For λ > 1 we also find

an active stationary solution, namely ρ• = 1 − λ−1. We can see that for λ > λc = 1

the active state is stable and the vacuum unstable. λc marks a critical point, at which

the stationary density changes continuously but in a singular manner. Thus ρ• is the

order parameter for this transition, assuming a nonzero value only for λ > λc. Near

the critical point the order parameter generally follows a power law,

ρ• ∝ ∆β (∆ > 0), (2.20)
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where ∆ ≡ λ− λc. Hence, in the mean-field approximation of the CP we find β = 1,

as ρ• = ∆+O(∆2) for ∆ > 0. This simple mean-field analysis predicts a qualitatively

correct phase diagram, while it provides very poor values for the critical point and

exponents. This is a direct consequence of neglecting any correlations among the

sites; in fact they are highly correlated. It is worth remarking that the mean-field

exponents are incorrect for spatial dimensions d < dc = 4, where dc is the upper

critical dimension, above which the critical exponents are mean-field like. In mean-

field theory one assumes that all neighbors of a given site behave in the same way.

Spatial homogeneity is also realized in high dimensionality. Therefore it is reasonable

to expect that mean-field theory is exact in the limit of large d. In fact, most systems

have a particular dimensionality, known as its critical dimensionality, above which

mean-field theory gives the right description of critical properties.

2.5.2 Mean-field Renormalization Group

The mean-field renormalization group (MFRG) has been successfully employed in

nonequilibrium systems [24, 25, 26]. The method can be seen as a combination of the

usual mean-field and renormalization group ideas.

As an example of a MFRG analysis we apply it to the one-dimensional contact

process. By considering a two-site cluster we study the evolution of the probability of

finding sites i and j in states σi and σj at time t, P (σi, σj; t). σ can take the values

{0, 1} indicating a vacant and an occupied site, respectively. In order to simplify the

notation we denote P (1, 1; t) ≡ ρ••, P (0, 0; t) ≡ ρ◦◦, and P (0, 1; t) + P (1, 0; t) ≡ ρ•◦.

Thus, for a two-site cluster we get:

dρ◦◦
dt

= −λxρ◦◦ + ρ•◦

dρ•◦
dt

= −1

2
ρ•◦λ(1 + x)− ρ•◦ + 2ρ•• + λxρ◦◦ (2.21)

dρ••
dt

= −2ρ•• +
1

2
λρ•◦(1 + x)

where x is the probability of any site outside the cluster being occupied. As we are

studying a continuous phase transition we may let the field x become arbitrarily small

in the vicinity of the critical point. Thus the order parameter ρ(2)
• (λ, x) (for the 2-site

cluster) can be linearized in x. In the steady state one obtains

ρ(2)
• ≡ ρ•• +

1

2
ρ•◦ = x(

λ

2
+

λ2

4
) +O(x2). (2.22)
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Applying the same reasoning to a one-site cluster, the evolution equation for P (1; t) ≡
ρ• is simply

dρ•
dt

= −ρ• + λ′(1− ρ•)x′, (2.23)

where x′ is the probability that any other site is occupied, and λ′ is the creation

parameter for the one-site cluster. Notice that if we let ρ• = x′ we recover the mean-

field site approximation of eq. (2.19). In the steady state, and expanding in x′, we

find ρ• ≈ λ′x′ +O(x′2).

The main assumption of MFRG is that the two approximate order parameters

rescale in the same manner as the two fields. Thus, on the basis of a Wilson renor-

malization group strategy [18], a mapping (λ, x) → (λ′, x′) is obtained by requiring

ρN ′
• (λ′, x′) = Ld−yρN

• (λ, x) (2.24)

x′ = Ld−yx (2.25)

to hold to leading orders in x. L is the length-rescaling factor associated with the

two clusters L = (N/N ′)1/d. The exponent (d − y) is the scaling dimension of the

order parameter. An estimate for the critical point, λc, may be found by expanding

eq. (2.24) for small x, leading to a relation λ′ = f(λ), from which λc may be determined

by locating the fixed point(s) of this transformation. Thus, assuming that ρ•(λ′, x′)

and ρ(2)
• (λ, x) scale like x′ and x, respectively, we find the recursion relation

λ′ =
λ

2
+

λ2

4
, (2.26)

which has the fixed point λc = 2. This represents a substantial improvement over the

one-site value. (Naturally, better results are achieved using even larger clusters.) For

the one-dimensional CP, series expansions [27] and simulations [22] yield λc ' 3.2978.

The method also provides estimates for the critical exponents. As an example we

compute the correlation length exponent defined through the relation, ξ ∼ (λ−λc)
−ν⊥ .

After a rescaling the new correlation length will be

ξ′ ∼ L−1ξ, (2.27)

which in terms of λ and λ′ becomes

(λ′ − λc) ∼ L1/ν⊥(λ− λc). (2.28)
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If the transformation λ′ = f(λ) is regular (Wilson’s fundamental assumption), we

may linearize it around the fixed point:

(λ′ − λc) = (λ− λc)[
∂λ′

∂λ
]λ=λc (2.29)

which together with eq. (2.28) gives

[
∂λ′

∂λ
]λ=λc ∼ L1/ν⊥ . (2.30)

In our example L = (N/N ′) = 2, and from the recursion relation we find that

[∂λ′/∂λ] = 3/2 at λc. Thus

ν⊥ =
ln 2

ln 3/2
= 1.71, (2.31)

that should be compared to ν⊥ = 1.100(5) obtained from transfer-matrix methods

[28].

2.5.3 Series Expansions

Series expansions have been of great importance in the study of nonequilibrium sys-

tems [14, 27, 29, 30], and are probably the most precise method available. Unfor-

tunately, its application to the CP and related models is limited to low dimensional

systems.

One is typically interested in finding the critical parameters of some function

F (z) that exhibits a power-law behavior in the vicinity of a critical point zc, i.e.,

F (z) ≈ A(zc − z)−α. (2.32)

If F is analytic in the neighborhood of the origin it is possible to represent it through a

Taylor series, F (z) =
∑∞

j=0 ajz
j. One begins a series analysis by determining as many

terms as possible in this expansion. Once one has the series one needs a method for

extracting the critical parameters. The method of Padé approximants [31, 32, 33,

34] provides a powerful general technique for approximating a function F (z), having

simple poles at z1, · · · , zn. One assumes that the series for F (z) is the expansion of a

ratio

F (z) ∼ PN(z)

QM(z)
≡ p0 + p1z + · · ·+ pNzN

q0 + q1z + · · ·+ qMzM
(2.33)

of two polynomials, of order N and M . This quotient is called the [N, M ] Padé

approximant. The coefficients are chosen such that they agree with the first M +N +1
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series coefficients of the expansion of F (z). The usefulness of these approximants

comes from the fact that a function like F (z) will have a logarithmic derivative of

the form d ln F (z)/dz and a simple pole at zc, which is very well represented by Padé

approximants. If the series is well behaved the critical point is associated with the

first singularity on the positive real axis. Thus zc is given by locating the pole of the

Padé approximant and the critical exponent is the corresponding residue.

2.6 Universality

Universality of critical behavior has been a central topic in the study of continuous

phase transitions. The fact that many different models can belong to the same univer-

sality class shows the irrelevance of the microscopic characteristics and, at the same

time, a strong dependence on general properties such as system dimension, dimension

of the order parameter, range of the interactions, conservation laws, etc. One of the

most important achievements in nonequilibrium phase transitions is that a wide va-

riety of models exhibiting a continuous transition into a unique absorbing state have

been shown to belong to the same universality class as directed percolation [13, 3, 4, 5].

So far we have seen that changes in the dynamics, like inclusion of diffusion,

multi-particle processes, multiple components, sequential versus parallel updating, do

not seem to alter the critical behavior of the models. Several examples confirm that

the DP universality class is very robust. The two-component ZGB model exhibits

a second-order phase transition of the DP kind [15]. Various cellular automata for

surface reactions (simultaneous-update versions of the ZGB model) have been studied

[35, 36] and found to have a critical behavior consistent with directed percolation. A

basis for universality appears in field theory, providing one can show that the contin-

uum descriptions for various models differ only by irrelevant terms. In field theory

the microscopic picture of particles on a lattice is replaced by a set of densities which

evolve via stochastic partial differential equations (Langevin equations). Janssen [4]

proposed a continuum description of the CP and allied models:

∂ρ(~x, t)

∂t
= aρ(~x, t)− bρ(~x, t)2 − cρ(~x, t)3 + . . . + D∇2ρ(~x, t) + η(~x, t), (2.34)

where ρ(~x, t) ≥ 0 is the particle density; the ellipsis represents terms of higher order

in ρ(~x, t). η(~x, t) is a gaussian noise, which respects the absorbing state ρ(~x, t) = 0,

as shown by its autocorrelation:

〈η(~x, t)η(~x′, t′)〉 ∝ ρ(~x, t)δ(~x− ~x′)δ(t− t′). (2.35)
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The noise term represents fluctuations, which are irregular and unpredictable, aris-

ing from the microscopic degrees of freedom. From eq. (2.35) we see that noise is

uncorrelated in space and time. Renormalization group analysis of the field theory

has shown that at least in the vicinity of the model’s upper critical dimension, higher

powers of ρ and its derivatives are irrelevant for the critical properties of the system

as long as b > 0. From the mean-field approximation, in which the noise is dropped,

it is clear that the transition out of the absorbing state occurs when a = 0. Eq. (2.34)

describes a generic phase transition of a noisy system with a single-component order

parameter, ρ(~x, t), into an absorbing state.

The “DP conjecture” asserts that models with a scalar order parameter pos-

sessing a continuous phase transition to a unique absorbing state belong generically

to the DP universality class [4, 5] or Reggeon field theory [9]. The situation is analo-

gous to φ4 theory describing the generic ferromagnetic transition in equilibrium Ising

models [37, 3].

Despite its robustness, exceptions to the DP conjecture have been reported

in the past years. We discuss two important examples, in which models presenting

multiple absorbing configurations or obeying conservation laws do not exhibit DP-like

critical behavior. An example of a model with multiple absorbing configurations is the

pair-contact process (PCP) [39]. In this model pairs, defined as two particles sitting at

nearest-neighbor sites, are annihilated with probability p, or else create a new particle

at a randomly chosen nearest-neighbor site, provided it is vacant. The absorbing

state is characterized by the absence of pairs, i.e., any configuration devoid of pairs

is absorbing. This model exhibits a second-order phase transition from the absorbing

state to an active steady state whose static behavior is DP-like. But surprisingly,

in time-dependent simulations (discussed in section 4.4) the spreading exponents are

continuously variable [40].

From equilibrium dynamics it is no surprise that conservation laws can deter-

mine the dynamic universality class. The same has been found for nonequilibrium

critical phenomena; systems obeying certain conservation laws do not present DP-like

critical behavior. A good example of this is the branching annihilating random walk

(BAW) model [41], which involves particle hopping, annihilation upon contact and

creation of new particles at neighboring sites. At each step of the process a particle is

selected at random; it may hop to a randomly chosen neighboring site with probability

p, or with probability 1− p, create n new particles at its nearest neighbor sites. Pair-

wise annihilation occurs whenever a particle arrives at an occupied site, due either to

hopping or to branching. The vacuum is the absorbing state. For even n, the particle
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number is conserved modulo 2 (“parity conservation”) and therefore the vacuum is

accessible only if the particle number is even. Even-n BAWs exhibit non-DP critical

behavior. On the other hand, odd-n BAWs do not obey any conservation law and are

found to belong to the DP universality class [42, 43].

2.7 Disordered Systems

Real materials are seldom the idealized pure systems that we are used to dealing with

in physics. In any real physical application such as surface or interface growth or

chemical reactions on surfaces, impurities or defects are present. Magnetic crystals

invariably contain defects and nonmagnetic impurities. Liquids are likely to have

impurities dissolved in them. Thus it becomes important to understand the effect of

disorder on the properties of materials. In this section we discuss some basic aspects

of disorder, and the important result known as the Harris criterion [44].

We can distinguish two broad categories of disorder in solid systems, substi-

tutional and structural (or topological) [45]. In a substitutionally disordered system

impurities occupy the sites of a regular lattice and translational periodicity of the lat-

tice is not destroyed. This kind of disorder is found in solid alloys [46]. On the other

hand, structurally disordered systems have no regular lattice structure. Examples of

such systems are the amorphous semiconductors [47].

In substitutional disordered systems a further distinction is allowed, namely

annealed or quenched disorder [48, 49], according to the way it is distributed in the

system. In an annealed system the impurity degrees of freedom are in thermal equi-

librium with other degrees of freedom. The distribution that describes the annealed

disorder is also changing with the temperature or time interval of interest. In quenched

random systems the impurities are frozen into a nonequilibrium but random configura-

tion. Randomly distributed impurities or defects do not equilibrate in the temperature

range or time interval in which the properties of the system which are of direct interest

are changing. The only difference between the annealed and the quenched impurities

comes from the difference in the probability distribution. The annealed impurities

interact with the host system, hence their probability distribution depends strongly

on the system variables. The quenched impurities are fixed, and their probability

distribution is not affected by the system, which evolves under conditions imposed by

the quenched impurities.

It is also necessary to distinguish between site and bond disorder. Site dilution

is typically represented by uncorrelated random variables ηi that take the values 0 or
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(a) (b)

Figure 2.3: Examples of bond and site dilution; (a) one bond is removed; (b) one site is

removed.

1, with

〈ηi〉 = ps, (2.36)

where 〈〉 denotes an average over the disorder variables ηi, and ps is the site concen-

tration. In quenched site disorder the configurational averages are independent of the

thermal averages, and weighted by a product of single-site probability densities,

P (ηi) = (1− ps)δ(ηi) + psδ(ηi − 1). (2.37)

In annealed site disorder the averages of the disorder variables are carried out together

with the other variables of the system. In this case disorder variables on different sites

are not independent. In bond disordered systems, disorder variables ηij are associated

with bonds. The probability density for a disorder variable in a system with quenched

bond dilution is

P (ηij) = (1− p)δ(ηij) + pδ(ηij − 1), (2.38)

where p is the bond concentration. It is clear from Fig. (2.3) that site dilution is more

effective than bond dilution in disconnecting the lattice. Defining pb
c as the critical

bond concentration and ps
c as the critical site concentration, it is easy to see that

ps
c > pb

c.

The effect of impurities on critical phenomena has been the subject of many

studies. A lot of effort has been made towards understanding how disorder can affect

the nature of phase transitions, in particular, whether critical exponents are changed

due to disorder. An important result in this connection was made by Harris [44].

The well-known Harris criterion states that a system with quenched disorder presents

critical behavior different from that of the corresponding pure model if the exponents
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of the pure model satisfy dν⊥ ≤ 2, where d is the spatial dimensionality and ν⊥ the

correlation-length exponent. This relation can be rewritten as α > 0, where α is the

specific-heat exponent, and we made use of the hyperscaling relation 2− dν⊥ = α.

A simple and heuristic way to derive the Harris criterion is as follows [50]. One

introduces small quenched local fluctuations, of average magnitude V and zero mean,

to a pure system, that undergoes a continuous phase transition, at criticality. The

summed fluctuation in a Kadanoff block [17] of length b along each dimension will

be bd/2V . It is reasonable to hypothesize heuristically that this has the same effect

as when the summed fluctuation is equally distributed among all the sites inside

the block, namely b−d/2V per site. By performing a renormalization group (RG)

transformation [18], replacing each block by a single site of the renormalized system,

one assumes that the quenched fluctuation associated with the renormalized site is of

the same form as the original one. Thus,

V ′ = byV b−d/2V, (2.39)

where yV is the eigenvalue exponent of the pure system corresponding to the variable

which is being perturbed by the quenched fluctuations. In RG terms, we are “mea-

suring” whether disorder is a relevant variable at the critical point of the pure system.

Thus if yV − d/2 is positive the eigenvalue is relevant, meaning that the system flows

away from the pure fixed point. Otherwise the eigenvalue is irrelevant and the pure

fixed point stable. It is interesting to remark that when V is a bond strength, the ex-

ponent yV is the reciprocal of the correlation length ν⊥, and the criterion is equivalent

to the sign of the specific-heat exponent α. When V is a magnetic field, the criterion

is equivalent to the sign of the susceptibility exponent γ.
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Chapter 3

Diluted Contact Process -

Mean-field Theory

3.1 Introduction

Many-particle systems often incorporate a degree of frozen-in randomness, due to

nonuniformities in structure and composition, which can drastically alter their coop-

erative behavior. For simple systems such as the Ising model, much effort has been

devoted to exploring the effect of quenched disorder on the phase diagram, the order

of the transition, and on the critical exponents [51, 44].

In this chapter we examine the effect of quenched disorder on a nonequilibrium

system undergoing a continuous phase transition to an absorbing state. Such transi-

tions have attracted widespread attention, due to their relevance to diverse physical

processes (catalysis, transport in random media), and to issues bearing on universality.

We focus on the two-dimensional contact process (CP), a simple lattice model of an

epidemic [1]. Disorder is introduced by randomly removing sites from the lattice with

a certain probability. The pure CP presents a second-order phase transition charac-

terized by critical exponents that belong to the directed percolation (DP) universality

class. The well-known Harris criterion [44] states that disorder changes the critical

exponents of a model if the exponents of the pure system satisfy dν⊥ ≤ 2, where d is

the dimensionality and ν⊥ the correlation-length exponent. Since ν⊥ ' 0.73 for DP

in 2+1 dimensions, we expect that the diluted contact process (DCP) will present

critical behavior different from that of the pure CP.

The chapter is organized as follows. In the next section we define the diluted

model. In section (3.3) we study the DCP through mean-field cluster approximations.
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Figure 3.1: Steady-state concentration of particles as a function of the creation parameter.

For λ < λc(0) the system is in the subcritical region, and for λ > λc(0) the system is in

the supercritical region.

In section (3.4) we present our concluding remarks.

3.2 The Model

The CP, a continuous time Markov process, originally introduced by Harris [1] as an

epidemic model, can be seen as a model for creation and annihilation of particles on

a lattice. Each site of Z2 is either vacant or occupied. In order to get the Markov

property we use exponential distributions to describe the evolution of the process

[52]. Particles wait a mean time λ and then give birth at nearest neighbor vacant

sites. A particle waits a mean time of unity before dying. The order parameter

is the stationary density ρ• (the bar denotes a stationary value); it vanishes in the

vacuum state, which is absorbing. As λ is increased beyond λc(0) = 1.6488(1)1, the

model presents a continuous phase transition from the vacuum to an active steady

state [2, 7, 53]. Fig. (3.1) represents the phase diagram of the two-dimensional CP.

For λ < λc(0) any system with a finite population enters the absorbing state with

probability 1, and for λ > λc(0) there is a nonzero probability that the system survives

as t →∞. The critical behavior of the pure CP is characterized by the same critical

exponents as directed percolation (DP) [22].

1This value is obtained through simulations, refer to Ch.4
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We introduce disorder by randomly removing sites from the lattice with prob-

ability x. That is, for each (i, j) ∈ Z2 there is an independent random variable η(i, j),

taking values of 0 and 1 with probabilities x and 1 − x, respectively. If η(i, j) = 0

this site may never be occupied. Thus if exactly m neighbors of a given site have

η(i, j) = 1, the creation rate at that site is at most mλ/4. Naturally, 1 − x must

exceed the percolation threshold (pc = 0.5927), otherwise the lattice will break into

disconnected islands.

3.3 Mean–field Cluster Expansions

Mean-field theory may be considered the simplest analytical method which has been

successfully employed in the study of many-particle systems. In this section we ap-

proach the diluted model through mean-field cluster expansions. We begin this section

by indicating the general scheme for (n,m)-approximations. Then we apply the one-

site approximation to the diluted contact process and finally, we improve the results

by applying the pair-approximation.

3.3.1 (n,m)-Cluster Approximation

Cluster expansion is a natural way to improve the mean-field approach. The basic

idea consists of treating the transitions inside these clusters exactly, while the inter-

actions with sites outside a cluster is mean-field like. We follow the generalization

scheme studied by ben-Avraham and Köhler [23], the (n,m)-approximation. In this

description the parameter n indicates the cluster size and m its overlap with other

clusters.

The building blocks of the cluster method are the probabilities, ρx1x2···xj
, that

any j consecutive sites be in the states x1, x2, · · · , xj. Any lattice model can be

defined in terms of j-cluster processes. In this expansion the evolution equation for

a two-site cluster involves three-site clusters; similarly an equation for a three-site

cluster involves four-site ones; and so on. Following this reasoning we end up with an

infinite hierarchy of rate equations for increasing cluster sizes. The method consists in

cutting off this hierarchy at some order n by approximating large cluster probabilities

in terms of the n-site cluster probabilities. The simplest approximation, (n, 0), ignores

the correlations between the first n sites and the sites to their right,

ρx1x2···xnxn+1··· = ρx1x2···xnρxn+1··· (3.1)

24



The next step in this expansion is to consider an overlap of one site between adjacent

clusters. The (n, 1)-approximation,

ρx1x2···xnxn+1··· = ρx1x2···xn

ρxnxn+1···
ρxn

(3.2)

is given by the product between the probability that the n first sites be in the states

x1, x2, · · · , xn and the conditional probability of having a cluster in state xnxn+1 · · ·,
given that site n is in state xn, which is simply expressed as a ratio of probability,

according to Bayes’ rule. In general we may allow for an overlap of m sites, restricting

0 ≤ m ≤ n− 1, yielding the (n,m)-approximation,

ρx1x2···xnxn+1··· = ρx1x2···xn

ρxn−m+1xn−m+2···xnxn+1···
ρxn−m+1xn−m+2···xn

(3.3)

In order to illustrate the technique let us consider a six-cluster in the state

ABCDEF . In the (3,m)-approximations the probability of such a cluster would be

given by:

ρABCDEF = ρABCρDEF (3.4)

in the (3, 0)-approximation, without overlap;

ρABCDEF = ρABC
ρCDE

ρC

ρEF•
ρE

(3.5)

in the (3, 1)-approximation, where • indicates an unspecified site; and finally

ρABCDEF = ρABC
ρBCD

ρBC

ρCDE

ρCD

ρDEF

ρDE

(3.6)

in the (3, 2)-approximation. Notice that only the latter expression, eq. (3.6), satis-

fies translation invariance automatically. This is a characteristic of the (n, n − 1)-

approximations, which yield the most accurate results [23]. In the other approxi-

mations, m < n − 1, one should be careful to account for all possible combinations

and to preserve thereby the fundamental property of translation invariance. In the

(3, 0)-approximation, ρABCDEF could also be well represented by ρ•ABρCDEρF•• or by

ρ••AρBCDρEF•.

Implicit in this method is the assumption that the system is translationally

symmetric; cluster probabilities are independent of the position of the cluster on the

lattice. This symmetry introduces linear relations among the n-cluster probabilities.

The normalization condition, written in a general form, is given by

∑
x1,x2,···,xn

ρx1,x2···xn = 1. (3.7)
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A lattice model may impose natural constraints on the accessible states of clusters.

The ZGB model [12] for oxidation of carbon monoxide on a catalytic surface, in which

molecules of CO and O combine to form CO2, is an example where CO−O pairs are

forbidden. It is interesting to remark that this restriction is not taken into account in

the site-approximation level.

3.3.2 Site-approximation

Let σ(i,j) describe the state of the (i, j)-site, which can be • (occupied by a particle),

◦ (vacant) or ∗ (a removed site). The model is described by the evolution equation,

dρ•
dt

= −ρ• +
λ

4

∑

e=±1

[P (σ(i,j) = ◦, σ(i+e,j) = •; t) + P (σ(i,j) = ◦, σ(i,j+e) = •; t)] (3.8)

where e can take the values ±1 and indicates the nearest neighbors of (i, j)-site;

ρ• ≡ ρ•(i, j; t) ≡ P (σ(i,j) = •; t) is the probability that site (i, j) is occupied at time

t, and P (σ(i,j) = ◦, σ(i,j+e) = •; t) is the joint probability that site (i, j) is vacant and

site (i, j + e) is ocuppied at time t. To solve Eq. (3.8) we need to know the two-site

probabilities appearing on the rhs, which in turn depend on the three-site probabilities,

and so forth, leaving us with a hierarchy of equations for the n-site probabilities. The

site-approximation consists in truncating this hierarchy at n = 1, so that the two-site

probabilities are replaced by a product of two one-site probabilities. Assuming spatial

homogeneity we obtain the following evolution equation for ρ•,

dρ•
dt

= [λ(1− x)− 1]ρ• − λρ2
• (3.9)

where x is the concentration of removed sites. For λ(1 − x) ≤ 1 the only stationary

solution is ρ• = 0. For λ(1−x) > 1 we also find an active stationary solution, namely

ρ• = 1 − x − 1/λ. In spite of the simplicity of this approximation, we detect the

existence of a continuous phase transition from an active steady state (ρ• 6= 0) to an

absorbing one (ρ• = 0), at λc(x) = 1/(1− x). Setting x = 0, we naturally recover the

site-approximation result for the regular CP, λc(0) = 1.

3.3.3 Pair-approximation

The next step in this analysis is the pair approximation, in which we only take into

account correlations between nearest neighbor sites. Thus we must consider a 5-site

cluster, focusing on the central site (see diagram in Fig. (3.2)). We have a total of

seven variables, namely, ρ••, the concentration of (••) pairs; ρ•◦, the concentration of
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Figure 3.2: Diagram showing a creation event for the two-dimensional contact process.

(•◦) pairs and so on; and two constants, ρ∗ ≡ x and ρ∗∗. The single site concentrations

ρ•, ρ◦ and x, are given by relations such as:

ρ• = ρ•• + ρ•◦ + ρ•∗, (3.10)

where ρ•◦ = ρ◦•, etc., by symmetry. Similar relations hold for ρ◦ and x. In addition

we have normalization,

ρ• + ρ◦ + x = 1. (3.11)

Thus we are left with 3 independent variables. The method consists in writing and

solving the evolution equations for the pair concentrations. Joint probabilities of three

or more events are expressed as products of the pair concentrations. To see how these

equations are constructed, consider the event illustrated in Fig. (3.2). Creation occurs

at the central site at rate λ/2; and the probability of finding the cluster in this sort of

configuration is 6P (σ(i,j) = ◦)[P (σ(i±1,j) = •|σ(i,j) = ◦)P (σ(i,j±1) = ◦|σ(i,j) = ◦)]2. In

terms of the pair concentration variables it becomes 6ρ2
•◦ρ

2
◦◦/ρ

3
◦. The rate of change

of ρ•• due to this process is 3λρ2
•◦ρ

2
◦◦/ρ

3
◦ times the change in the number of (••) pairs

∆N•• = 2. Perfoming the same sort of calculation for all possible five-site clusters

and summing over all processes, we obtain

dρ•
dt

= −ρ• + λρ•◦ (3.12)

dρ••
dt

= −2ρ•• + λρ•◦ +
3

2
λ

ρ2
•◦
ρ◦

(3.13)

dρ◦◦
dt

= −2ρ•◦ +
3

2
λ

ρ•◦ρ◦◦
ρ◦

(3.14)

dρ•∗
dt

= −2ρ•∗ +
3

2
λ

ρ•◦ρ◦∗
ρ◦

(3.15)

where some variables were eliminated using equations (3.10) and (3.11). After some

algebra we obtain the following equation for the stationary density,

ρ2
•(1− 3λ) + ρ•(15λ− 27λx− 8− 8x + 12λρ∗∗)
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x 0.02 0.05 0.1 0.2 0.3 0.35

MFT 0.020 0.053 0.111 0.250 0.428 0.538

Simulations 0.022 0.056 0.119 0.278 0.498 0.649

Table 3.1: The ratio [λc(x)− λc(0)]/λc(0) for critical parameters obtained through mean-

field theory and simulations.

+ 16(1− x)2 + 12λ(3x− 2x2 − ρ∗∗ + ρ∗∗x− 1) = 0. (3.16)

Solving Eq. (3.16) for ρ• and setting ρ• = 0, we get

λc(x) =
4(1− x)

3(1− 2x + ρ∗∗)
. (3.17)

By setting x = 0 we recover the pair-approximation result for the regular CP, λc(0) =

4/3. Since sites are removed independently, ρ∗∗ = x2, and Eq. (3.17) becomes

λc(x)

λc(0)
=

1

(1− x)
. (3.18)

Thus the relative shift in the critical point [λc(x) − λc(0)]/λc(0) shows the same

dependence on dilution concentration in both the site- and pair-approximations. This

suggests that Eq. (3.18) may provide a reasonable estimate. In table 3.1 the shifts

[λc(x) − λc(0)]/λc(0) are listed for different dilution concentrations. As we can see

there is fair agreement between simulation and MFT, as long as 1 − x is well above

the square-lattice site percolation threshold, pc ' 0.5927. (Simple mean-field theories

do not detect the breakdown of connectivity for 1− x < pc.)

3.4 Discussion

It is well-known that mean-field cluster expansions generally provide qualitatively cor-

rect descriptions of phase diagrams. Based on our results, cluster expansions predict

a continuous absorbing-state transition in the diluted contact process at λc(x). They

yield a critical parameter that depends on the dilution, x. In fact a similar result was

also found by Marques [25] in a mean-field renormalization group study of the effects

of dilution on the contact process and related models. (Marques considers a diluted

model slightly different from ours). We believe that the relation, λc(x) ∼ λc(0)/(1−x),

yielded by site- and pair-approximations, gives the correct picture of this dependence
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Figure 3.3: λc(x)/λc(0) versus (1 − x); the full curve represents the mean-field results,

and the 3 the simulation values.

as long as x << 1− pc. A plot of λc(x)/λc(0) versus (1−x), Fig. (3.3), for simulation

and mean-field results, support this conjecture. Dilution has the effect of increasing

the critical parameter; this increase is the way the system balances the creation inhi-

bition caused by removing sites from the lattice, consequently reducing the number

of effective neighbors. On the other hand, this technique yields poor quantitative

results for critical exponents. This is expected to happen as we neglect correlations

in systems that are highly correlated.

From Fig. (3.3) we notice that the critical parameter, λc, for the contact process

on a percolation cluster (1 − x = pc) is finite. Indeed, the critical parameter λc(x =

1 − pc) must be less than or equal to λc(x = 0) for the one-dimensional contact

process. This happens as a consequence of the strong dependence of the critical

parameter on the number of occupied neighbors. In one dimension, sites have but two

occupied neighbors, while in the backbone of an incipient percolation cluster, lots of

sites might have more than two occupied neighbors. Thus, the critical parameter of

the one-dimensional CP serves as an upper limit for the CP in the percolation cluster

(λc(x = 1− pc) ≤ 3.29771) [27].

In our MFT calculations we represented the quenched dilution condition by

not allowing the n-point probabilities for removed sites to evolve with time. It is

important to point out that this can also represent a problem in which the probability

distribution of annealed dilution does not evolve with time. We hope to improve this
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in future work.
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Chapter 4

Diluted Contact Process -

Simulations

4.1 Introduction

The present chapter is best viewed as a continuation of the previous one. Here we

study the diluted contact process via numerical methods. We obtain the critical

parameter and exponents pertinent to critical behavior through Monte Carlo simula-

tions. Numerical simulations have been shown to be very useful in the understanding

of nonequilibrium phase transitions, exact solutions are generally impossible, and very

laborious in the rare instances where they are feasible. As we will see, simulations are

not straightforward either, and require a number of tricks in order to provide accurate

results.

We start this chapter by describing the diluted contact process (DCP) in its

discrete version. In section (4.3) we consider simulations of the steady-state behav-

ior. Then we study the time-dependent properties in section (4.4). In section (4.5)

we review the nonexponential relaxation to the vacuum of the survival probability.

Concluding remarks are presented in section (4.6).

4.2 The Model

The CP is a model for creation and annihilation of particles on a lattice, in which each

site can either be occupied by a particle or vacant. Although the CP is a continuous-

time Markov process, it is possible to define a discrete-time formulation, which is

often employed in simulations [13]. The discrete and continuous-time formulations
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differ somewhat at short times, but they share the same stationary properties and

long-time dynamics. In the discrete version one step consists of first choosing a site

randomly. Then if it is occupied either of the processes may take place: annihilation

with probability 1/(1 + λ), or creation at a randomly chosen nearest neighbor (if it

is vacant), with probability λ/(1 + λ). If the site chosen initially is vacant, nothing

happens. After each step (successful or not) time is advanced by a fixed increment,

∆t. (It is conventional to set ∆t = 1/N , where N is the total number of sites, since

this implies an average of one event per site, per unit time). A great improvement in

efficiency is obtained by choosing from a list of occupied sites. This avoids the waste

of time associated with the large proportion of rejected trials, when the density of

particles is low. When the initial site is chosen from the list of all Nocc occupied sites,

the time increment should be defined as ∆t = 1/Nocc.

We introduce disorder by randomly removing a fraction x of the sites. That is,

for each (i, j) ∈ Z2 there is an independent random variable η(i, j), taking values 0 and

1 with probability x and 1− x, respectively. The DCP is simply the contact process

restricted to sites with η(i, j) = 1; sites with η(i, j) = 0 may never be occupied.

Naturally, 1−x must exceed the percolation threshold pc = 0.5927 for there to be any

possibility of an active state, since on any finite set the CP is doomed to extinction.

Each trial is generated as follows. We first initialize the lattice by randomly

removing sites accordingly to a preset dilution. Then we define an initial particle

distribution which depends on the kind of properties we intend to study. We let the

process evolve, annihilation and creation of particles take place, until a maximum

time tmax. Once this trial is complete, we start a new one by setting the same initial

particle distribution, but generating a new set of disorder. An independent realization

of disorder (the variables η(i, j)), is generated for each trial, and thus we perform an

average over disorder. As critical points are characterized by power-law divergencies

of the correlation length and the relaxation time, one has to study large systems over

long times to obtain reliable results.

4.3 Steady-state Behavior

In order to perform a steady-state analysis, we start out with the system in a state

far from the absorbing state. For the DCP we initialize the lattice with a dense

configuration, all sites occupied (ρ• = 1 − x, at t = 0). Then we allow it to evolve
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Figure 4.1: Log-log plot of the stationary density vs. (λ− λc) for x = 0.02.

according to its dynamics until, after a relaxation time τ , the steady state 1 is reached.

Once in the steady state one measures the density of particles (ρ•, where the bar

indicates a stationary value) at various time intervals up to tmax thus performing a

time average. As we have seen, the density of particles in the active state goes to zero

when λ → λc+ as

ρ• ∼ ∆β, (4.1)

where ∆ ≡ λ−λc and β is the critical exponent associated with the order parameter.

Log-log plots of the order parameter versus ∆ should provide a straight line whose

slope is the critical exponent β.

4.3.1 Simulation Results

The results for ρ• were obtained by averaging over typically 50 to 100 independent

samples. The number of time steps t and system sizes L varied from t = 1000, L = 32

far from λc to t = 6000, L = 128 to closest to λc. To evaluate ∆ we must of course

have an accurate value of λc(x); in this study we use the values given in Table 4.2. In

section (4.4) we explain the method we use to determine the critical parameters.

In Fig. (4.1) we plot ρ• ×∆ for x = 0.02, and using λc = 1.6850(3). It is clear

from this picture that the power-law behavior of eq. (4.1) is confirmed. Furthermore,

it can also be taken as a confirmation that λc = 1.6850(3) marks a critical point.

1Instead of steady state, we would rather use “quasi-steady state” as the system only attains an
active steady state in an infinite-size system.
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Figure 4.2: Log-log plot of ρ• vs. (λ− λc) for x = 0.35.

We estimate β = 0.566(7) where the figure in parenthesis indicates the estimated

uncertainty in the last digit. This result for β is in good agreement with the typical

estimates for directed percolation in (2+1) dimensions, β = 0.586(14) [54]. Following

the same procedure, we estimate β = 0.89(1) for x = 0.35, as shown in Fig. (4.2).

4.4 Time-dependent Behavior

4.4.1 Scaling Ansatz

We consider from now on asymptotic distributions of configurations starting off at

t = 0 with one particle at the origin. In the scaling regime, i.e., very close to the

critical point, at long times and in large systems, there is a unique dominant length

scale ξ and time scale τ . According to the scaling hypothesis, one expects that

properties such as the local density ρ•(x, t) or the survival probability P (t), depend

on the relevant parameters x, t and ∆, only through the scaling variables x2/tz and

∆t1/ν‖ , times some power of x2, t or ∆. The dependence on position, x, is demanded by

symmetry and the growth of the characteristic length scale ∝ tz/2 (note however that

z is not the critical exponent of dynamic critical phenomena); the time-dependence

involves the ratio t/τ , since τ ∝ ∆−ν‖ [13]. Thus, in the scaling regime, the local

particle density, averaged over all trials, surviving or not, can be written as

ρ•(x, t) ' tη−dz/2F (x2/tz, ∆t1/ν‖), (4.2)

34



and for the survival probability, the probability that the system has not reached the

absorbing state at time t, we expect

P (t) ' t−δφ(∆t1/ν‖). (4.3)

η and δ are further critical exponents, while F and φ are scaling functions. Using

Eq. (4.2), we get for the mean number of particles n(t) and the mean-square distance

of spreading R2(t),

n(t) =
∫

ddxρ•(x, t) ∝ tηf(∆t1/ν‖),

R2(t) =
1

n(t)

∫
ddxx2ρ•(x, t) ∝ tzg(∆t1/ν‖). (4.4)

From eqs.(4.3) and (4.4) it is easy to see that if the functions φ(y), f(y) and g(y) are

nonsingular at y = 0, the asymptotic behavior of P (t), n(t) and R2(t) as t → ∞, at

the critical point, determines the critical exponents δ, η and z:

P (t) ∝ t−δ,

n(t) ∝ tη,

R2(t) ∝ tz. (4.5)

The asymptotic behavior of the scaling functions for ∆t1/ν‖ → −∞ is obtained by

noting that far from the critical point correlations are short-ranged. Thus, in the

subcritical region, λ < λc, P (t) and n(t) decay exponentially, while R2(t) ∝ t, as if

particles diffused on the lattice. In the supercritical regime, λ > λc, there must be

a nonzero chance of survival, P∞ ≡ limt→∞ P (t) > 0; the active region expands into

the vacuum at a constant rate, so that n(t) ∝ td in d dimensions and R2(t) ∝ t2. Still

considering the ∆ > 0 region, we see that by setting ψ(ζ) = ζ−δν‖φ(ζ) we may rewrite

eq. (4.3) as

P (t) ∝ ∆δν‖ψ(∆t1/ν‖). (4.6)

Since P∞ is finite, limζ→∞ ψ(ζ) is finite too, and we get P∞ ∼ ∆δν‖ . It can be shown

that the ultimate survival probability and the stationary particle density have the

same critical exponent [22]. Hence as ρ• ∝ ∆β, we must have the following scaling

relation

β = δν‖. (4.7)
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Let us consider next the local density at any fixed x. In the limit t → ∞ and for

∆ > 0,

ρ•(x, t) → P∞ρ• ∝ ∆2β, (4.8)

since ρ•(x, t) in eq. (4.2) represents the density averaged over all trials. From eq. (4.2)

we see that F (0, ∆t1/ν‖) ∝ ∆2βt2β/ν‖ , for ∆t1/ν‖ large and positive. Thus we get

ρ•(x, t) = tη−dz/2∆2βt2β/ν‖ . (4.9)

In order to remove the overall t-dependence we must have

4δ + 2η = dz, (4.10)

where we used β = δν‖. This expression is known as the hyperscaling relation as it

relates the dimensionality to critical exponents. It is expected to hold for d ≤ dc.

Further scaling relations among critical exponents can be found in [13].

4.4.2 Simulation Results

We studied dilutions x = 0.02, 0.05, 0.1, 0.2, 0.3, and 0.35, on square lattices of 2200

sites to a side, using samples of from 104 to 2× 106 trials for each λ value of interest,

each trial extending to a maximum time of tmax ≤ 2 × 106. As is usual in this sort

of simulation, the time increment associated with an elementary event — creation or

annihilation — is ∆t = 1/N , where N is the number of particles. The largest samples

and longest runs were used at or near critical. An independent realization of disorder

(the variables η(i, j)), is generated for each trial.

In Fig. (4.3) we show log-log plots of P (t), n(t) and R2(t), as functions of t for

dilution x = 0.02. The plot illustrates these quantities at both critical and off-critical

values. For λ = 1.68 we see that n(t) and P (t) show a negative curvature, indicating

that this parameter is subcritical. In the same way, we see a positive curvature for

the supercritical value λ = 1.69. The power-law behavior as predicted by eq. (4.5)

at the critical point is found for λ = 1.685. Notice that the plot for n(t) is more

sensitive to the changes in λ, showing a more pronounced curvature for the sub and

supercritical parameters. We will see that the same is true for the local slope plots.

A more accurate determination of the critical point is afforded by analyzing the local

slopes δ(t), η(t), and z(t) which are given by

−δ(t) =
ln[P (t)/P (t/m)]

ln(m)
, (4.11)
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Figure 4.3: Log-log plots of P (t), n(t) and R2(t) versus t for x = 0.02. In each plot,

from bottom to top, we have λ = 1.68; 1.685; 1.69.

where m is a fixed integer. Analogous expressions hold for η(t) and z(t). In the

present work we compute the local slopes by using least-squares fits to the data (in a

logarithmic plot), distributed symmetrically about a given t (typically in the interval

[t/3, 3t]). We estimate the exponents by plotting the local slopes versus 1/t and

extrapolating to 1/t → 0 [8]. In Fig. (4.4) we plot the corresponding local slopes

for x = 0.02. In plots of the local slopes versus 1/t one sees that the curves for

the off-critical values of λ veer up or down, in the supercritical or subcritical regime,

respectively. We estimate the critical parameter λc for x = 0.02 by looking at the

curvature of the η(t) and δ(t) plots. Both yield the best estimate λc = 1.685(5). More

detailed results indicate that λc(x = 0.02) is in fact 1.6850(3), see Table 4.2. For the

critical exponents we get δ = 0.467(1); η = 0.216(3); and z = 1.104(2).

For dilution x = 0.02 the DCP exhibits a pure-CP behavior even at very

long times. The same is not true when considering a higher degree of disorder. In

Fig. (4.5) we plot P (t), n(t) and R2(t) as a function of t (in a logarithmic scale) for

x = 0.3 and different values of λ. For the DCP we expect the survival probability to

exhibit a power-law decay in the subcritical regime, in a phenomenon similar to the

one responsible for the Griffiths phase. In the Griffiths phase the long-time dynamics

are governed by atypical regions in which the fraction of diluted sites is low, rendering

the process locally supercritical [59]. Briefly, the argument for power-law relaxation
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1.6855(×).

38



-10

-5

0

5

10

15

0 5 10 15
ln t

ln P

ln n

ln R2

Figure 4.5: Plots of the survival probability P (t), mean number of particles n(t) and the

mean-square distance of particles from the origin R2(t) versus t, in the diluted contact

process for x = 0.3. In each plot, from bottom to top, we have λ = 2.40; λ = 2.47; and

λ = 2.50.

may be given as follows (a more complete discussion is given in the next section). The

probability of the seed landing in a favored region, of linear size L, in which the local

density of diluted sites is such that λ − λc,eff = ∆, is ∼ exp(−ALd). (λc,eff is the

critical creation rate for a system with the site density prevailing in this region.) The

lifetime of the process in such a region is proportional to ∼ exp(BLd). (The precise

forms of A and B are unknown, but it is clear that they are positive, increasing

functions of ∆ for ∆ > 0.) It follows that at long times

P (t) ∼ max∆,L exp[−(ALd + te−BL)] ∼ max∆t−A/B ∼ t−φ, (4.12)

where the last step defines a (nonuniversal) decay exponent φ. In fact, from Fig. (4.5),

we see that this is the case for λ = 2.40 which is subcritical. In order to identify the

critical curve we use the following criteria. It is known that the survival probability in

the supercritical regime approaches a nonzero value, the ultimate survival probability

P∞, at asymptotic times. Thus if P (t) attains a plateau at later times, as for λ =

2.50 in Fig. (4.5), we know that this curve is supercritical. In order to refine this

estimate, we observe that for λ > λc, n(t) must grow monotonically at long times;
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Figure 4.6: Plot of P∞ versus λ for x = 0.1.

for λ < λc it must decay. In the pure CP, for example, n(t) grows for λ ≥ λc, so λc

is the smallest λ supporting asymptotic growth. In the present case we wish to stay

clear of assumptions regarding the sign of dn(t)/dt at critical; we simply note that

growth (decay) rules out a particular λ as being subcritical (supercritical). Using these

conditions to winnow the set of possible critical values, we eventually find a narrow

range of λ for which n(t) appears steady at long times. Based on these considerations

we conclude that λc(x = 0.3) = 2.47.

Of note is the slow approach of P (t) to its limiting value, P∞, in the super-

critical regime, where we find that at long times P (t) ≈ P∞ + const. × t−y, with y

ranging from 1/2 (quite near critical) to 1 (at larger λ). In cases for which P (t) has

yet to attain its limit at tmax, we use expressions of this form to estimate P∞. Also

evident in Fig. (4.5) is the power-law behavior in the subcritical, Griffiths phase.

We also studied the ultimate survival probability as a function of ∆, for ∆ > 0.

While P∞ and ρ• are described by the same exponent in the basic CP and other simple

models, the same is not valid for models possessing multiple absorbing configurations

[55]. P∞ is rather described by P∞ ∼ ∆β′ , where β′ is the ultimate survival probability

exponent. It is therefore a good idea to check if whether the exponents β and β′ are

equal. Fig. (4.6) shows P∞ versus λ for x = 0.1; the data for other dilutions looks

similar. We determined the ultimate survival probability exponent β′ for dilutions

x = 0.05; 0.1; 0.2; 0.3 and 0.35. In Fig. (4.7) we show the log-log plots of P∞ versus ∆

for some of these dilutions. Least-squares linear fits to plots of ln P∞ versus ln(λ−λc),
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Figure 4.7: Logarithmic plot of the ultimate survival probability versus ∆ = λ−λc(x) for

dilutions x = 0.05(¦), 0.2(+), and 0.35(2), respectively.

as in Fig. (4.7), yield the estimates for β′ listed in Table 4.2. For x ≥ 0.05 the

β′ estimates cluster near unity; the mean is 0.99(3), not far from Noest’s result,

β = 1.10(5) [57]. (Our preliminary results on the stationary density yield β ' 1 for

x = 0.35.)

Having located the critical point λc(x), we turn to the spreading behavior. Log-

log plots of P (t), and R2(t) at λc, as shown in Fig. (4.8), present substantial curvature

at late times, prompting us to ask whether spreading is power-law or slower. The

local slopes of these graphs, commonly employed to extract estimates for spreading

exponents [8], here show all three exponents decreasing sharply at long times. By

contrast, the same data approach linear asymptotes when plotted, as in Fig. (4.9),

versus ln(ln t). (Logarithmic decay of the survival probability has been observed in

previous, less extensive simulations of the DCP [58].) For x ≥ 0.1 expressions of the

form P (t) ∼ (ln t)−a and R2(t) ∼ (ln t)c fit the data over a larger range of times than do

power laws. For t ≥ τP (x), P (t) is well-described by a logarithmic time-dependence;

τP decreases from about 3500, for x = 0.1, to about 60 for x = 0.35. The approach

of R2 to a logarithmic growth law typically occurs earlier, at around τP /3. For the

weakest disorder studied (x = 0.02), we observe only (pure) DP-like spreading on the

time scale of our simulations. The somewhat larger dilution of x = 0.05 presents an
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Figure 4.8: Log-log plots of the survival probability P (t), mean number of particles n(t)

and the mean-square distance of particles from the origin R2(t) versus t, in the critical

diluted contact process. ¦ : x = 0.35, λ = 2.72; dots:x = 0.2, λ = 2.108; full curve plus

points : x = 0.05, λ = 1.7408.

intermediate case, in which the mean-square spread follows R2 ∼ t1.18 for t < 400, and

R2 ∼ (ln t)c for t > 1600, but the survival probability is better described by a power

law, P ∼ t−0.53, for t < tmax = 4× 105. (Note that the exponent estimates are fairly

close to those of the pure CP.) For these small dilutions we expect a crossover to the

logarithmic forms at larger t, but have been unable to verify this, due to computational

limitations. The rapid decrease in τP with increasing dilution can be understood by

noting that for weak disorder, the process must spread over a rather large area before

randomness becomes manifest; for small x, sizable regions of the lattice look nearly

regular.

Since our results for critical spreading are best characterized by logarithmic

time-dependences, they are formally consistent with δ, η, and z all being zero. The

powers a and c in the logarithmic fits for P and R2 vary systematically, and over a

substantial range, as the dilution is varied (see Table 4.2). While we are confident

that the critical exponent η ' 0, it is possible that n(t) ∼ (ln t)b with some small

|b|. More precise determinations of λc and/or of n(t) at long times are required to

resolve this question. The only previous determination of a spreading exponent we

are aware of (for a model in this class), is Noest’s result for the spreading dimension,

d̂ = 1.61(5) for disordered DP in 2+1 dimensions [57]. In our notation, d̂ = 1 + η + δ,
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Figure 4.9: Plots of ln P (t), ln n(t) and ln R2(t) versus ln(ln t), in the critical diluted

contact process. Full curve plus points: x = 0.35, λ = 2.72;dots:x = 0.2, λ = 2.108; ¦ :

x = 0.05, λ = 1.7408.

so our simulations yield d̂ = 1 (logarithmic spreading). (We obtain the same value if

we extract the exponent directly from the data for n(t)/P (t).) It is worth noting that

our studies extend about 10 to 100 times longer in time (to at least 5×104, compared

with 4 × 103 in Ref. [57]), and employ samples two to three orders of magnitude

larger. The latter is of particular significance, since rare events appear to dominate

the critical behavior in disordered systems.

As noted above, the decay of P (t) should be governed by a power law in the

range λc(0) < λ < λc(x); examples of P , n, and R2 in this regime are shown in

Fig. (4.10). This plot confirms power-law decay, and shows that the exponents φ and

ζ governing P and n (∼ tζ) are nonuniversal in this regime, as expected [56, 58].

When x = 0.35, for example, we find φ ≈ 2.2 for λ = 2.4, and φ ≈ 0.6 for λ = 2.65;

the corresponding values of ζ are -2.0 and -0.4. In all cases studied, however, the

asymptotic growth (if any) of R2 seems slower than power-law. (Prior to reaching a

plateau, R2 exhibits logarithmic growth.) Fig. 5 includes data for x = 0.45, i.e., a site

concentration below the percolation threshold. In this regime power-law relaxation of

P (t) is expected for any λ > λc(0).
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Figure 4.10: Logarithimic plots of the survival probability P (t), mean number of particles

n(t) and the mean-square distance of particles from the origin R2(t) versus t, in the

subcritical diluted contact process (Griffiths phase). ¦ : x = 0.45, λ = 3.0; + : x =

0.35, λ = 2.65; dots: x = 0.3, λ = 2.40.

4.5 Power-law Relaxation

In this section we review the power-law relaxation arguments devised by Noest [56].

Noest studied the effect of disorder on a stochastic cellular automaton (SCA) belong-

ing to the DP universality class. In the SCA each site i of a d-dimensional lattice can

take either one of the two values si ∈ {0, 1}. The dynamics is given by the following

transition rules

P (si(t + 1) = 1) = Fi(
∑

j

cijsj(t)) (4.13)

with Fi(x = 0) = 0 and 0 < Fi(x > 0) < 1; and the 2d coupling cij > 0. The vacuum,

si = 0 ∀ i, is the unique absorbing state of the process. By setting F (x > 0) = p and

cij = 1 one recovers site directed percolation with site density p. It is important to

remark that the contact process is a continuous-time version of the SCA [2].

For d > 1 spatial disorder is introduced in the form of random dilution: each

site is either present with probability p, or absent with probability 1 − p. Below the

percolation threshold, p∗, a phase transition cannot take place. For p > p∗, the model

has an active phase for a given c∗d. Noest studied the two-dimensional SCA through

Monte Carlo simulations for site dilutions 0; 0.05; 0.1; 0.2 and 0.3 [57]. In all cases, the
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p∗ < p < 1 p = 1 (2 + 1)-DP

δ + η 0.61(5) 0.81(4) 0.674(14)a

β 1.10(5) 0.63(3) 0.586(14)b

ν⊥ 1.17(10) 0.84(5) 0.729(8)a

ν‖ 2.0(15) 1.3(1) 1.286(5)a

Table 4.1: Critical exponents obtained through Monte Carlo simulations of the disordered

SCA by Noest. The numbers in parenthesis indicate uncertainties. a Brower, Furman &

Moshe, 1978; b Grassberger, 1989.

model was found to undergo a well-defined phase transition. The critical exponents of

the disordered model were found to be quite different from the ones without disorder,

which take the usual DP values. In Table 4.1 we report Noest’s exponents for the

pure and disordered two-dimensional SCA. From Table 4.2 we see that our results for

x = 0.3 and 0.35 are incompatible with the ones obtained by Noest. It is important to

remark that our results are concentrated on the two extremes of the dilution range and

results for intermediate values may be necessary in order to draw further conclusions.

On the basis of a mechanism similar to the one responsible for the Griffiths

phase in disordered spin models [59], a nonexponential decay to the vacuum state

is expected in SCA models with quenched disorder. The basic physical mechanism

underlying this power-law decay is simply the existence of large clusters in which the

interactions are above the critical point, at which an infinite system can support an

active phase. While the number of such clusters falls off exponentially with their size,

their characteristic decay time grows exponentially. Noest derived lower and upper

bounds with asymptotic power-law decay for site-diluted SCA models in dimensions

d ≥ 1.

It is easier to analyze the slow relaxation behavior for p < p∗, where no active

phase can occur. The lower bounds derived are also applicable to p > p∗. The decay

function M(t) =
∑

n nPnMn(t) is defined as the fraction of sites with si(t) = 1 when

starting from si(0) = 1 ∀ i. Mn(t) ∼ exp(−t/Tn) is the probability that an n cluster

has not yet reached the vacuum at time t, and Pn is the probability of occurrence of

an n-cell string. To find nonexponential asymptotic lower bounds for M(t), one first

considers the relaxation of compact, approximately spherical n-site clusters. Note

that the asymptotics of M(t) are the same as those of the survival probability, P (t),

when starting from a configuration with a single seed at the origin. The long-time
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behavior of M(t) is dominated by rare compact clusters with favorable fluctuations in

the density of non-diluted sites. In a spreading simulation, there is a finite probability

of the seed landing in such a cluster, and a finite probability that the process spreads

to fill this cluster at a finite density, since the cluster is “supercritical”. The density

of non-diluted sites in this cluster is such that the critical parameter for this density is

below the parameter considered critical for the diluted system. Once these two events

occur — landing in the favorable cluster, and surviving there — the decay of P (t)

will be just like the decay of M(t). So, focusing on this specific cluster, one would

expect that at long times P (t) ∼ cM(t), where c is a constant smaller than 1 as not

all trials survive. The important point is that P (t) and M(t) have the same lifetime.

The SCA model decays to the vacuum on a time scale growing as

Tn ∼ exp(an) (4.14)

for c > c∗d, where a is a constant. The exponential growth is expected because a

locally supercritical cluster decays only through coherent fluctuations involving all its

sites. Such compact clusters occur with probability

ln Pn = −bn− b′m +O(ln n) (4.15)

where b ∼ − ln p, b′ ∼ − ln(1 − p), and m = n(d−1)/d. The three factors in Pn come

from contributions of the (dense) bulk, the (empty) outer surface and the multiplicity

of cluster shapes with the same Tn. The long-tailed relaxation of these dense clusters

gives a lower bound M ′(t) for M(t),

M ′(t) =
∑
n

nPn exp(−t/Tn) ∼
∫ ∞

0
dn n exp[−bn− t exp(−an)− b′n(d−1)/d] (4.16)

where by replacing the sum by the integral one can use the Laplace’s method to find

the large-t behavior. One finds the asymptotic forms determined by the maximum of

the square bracket occurring at n = (1/a) ln(at/b) +O[(ln t)−1/d]. This yields

ln M ′(t) ∼ − b

a
ln(

at

b
) + [

1

a
ln(

at

b
)](d−1)/d. (4.17)

The dominant contribution to M ′(t) is the power-law term with exponent −b/a.

One can also construct a power-law upper bound M ′′(t). The idea is to count

all the clusters, instead of just the compact ones, and to use the decay time of the

slowest n cluster as upper bound for the decay time of the unrestricted n clusters. For

any p < p∗, the number density of n-site clusters decreases exponentially for large n.
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x λc β′ a c

0 1.6488(1) 0.586(14) — —

0.02 1.6850(3) 0.566(7) — —

0.05 1.7409(1) 0.97(10) — 8.6(3)

0.1 1.84640(5) 0.89(4) 4.6(1) 8.1(1)

0.2 2.1080(5) 0.99(4) 3.64(14) 6.3(2)

0.3 2.470(3) 1.07(3) 3.05(15) 5.30(6)

0.35 2.719(2) 1.01(5) 2.72(5) 4.78(5)

Table 4.2: Critical parameters from simulations of the DCP. Numbers in parentheses

indicate uncertainties.

Thus ln Pn ∼ −b′′n with 0 < b′′ < b. The decay time of any n-site cluster is bounded

above by the usual Tn ∼ exp(an) of a compact cluster of the same mass. Hence,

M ′′(t) ∼
∫ ∞

0
dn n exp[−b′′n− t exp(−an)] (4.18)

leading to the power-law upper bound M ′′(t) ∼ t−b′′/a where 0 < b′′ ≤ b for all c > c∗

and p < p∗. Thus the asymptotic decay of M(t) is also a power law.

4.6 Summary

In Table 4.2 we list the critical parameters, the exponent β′ and the parameters a and c

of the logarithmic behavior we found for the diluted contact process. The data in this

table confirm that λc depends on dilution approximately as λc(x) ≈ λc(0)/(1 − x),

as predicted by our mean-field results. Dilution inhibits creation by reducing the

effective number of neighbors, thus it is natural that the critical creation rate grows

with x.

For the smallest dilution studied (x = 0.02) there is no evidence of a change in

the growth-law on simulation time scales. Hence the critical exponents for x = 0.02

are in a pretty good agreement with the exponents for x = 0 (pure CP). Based on

our results for dilutions x = 0.05; 0.1; 0.2; 0.3 and 0.35 we see that quenched disorder

has a dramatic effect on the critical behavior of the contact process. For the critical

DCP, the survival probability and the mean-square distance from the origin show

a logarithmic dependence on time. Also, the population size is characterized by a
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totally new behavior. In the pure critical CP n(t) increases monotonically with time;

η in eq. (4.5) is positive. In the critical DCP n(t) is constant at long times, η is zero.

Noest’s simulations of the one- and two-dimensional disordered stochastic cel-

lular automaton (SCA) yielded critical exponents quite different from the usual DP

exponents, suggesting a new universality class characterizing disordered directed per-

colation. A related field-theoretic study by Obukhov [60] yielded results qualitatively

consistent with the large values of the critical indices found by Noest. As argued

by Noest [56] the survival probability may have a power-law decay rather than an

exponential decay (as expected in pure systems), in a phenomenon similar to that in

Griffiths phase.

Bramson, Durrett and Schonmann studied a one-dimensional CP with disorder

in the form of a death rate randomly taking one of two values (independently) at each

site [61]. They demonstrated that this model possesses an intermediate phase in which

survival (starting, e.g., from a single particle) is possible, but the active region grows

more slowly than linearly; sub-linear growth has also been observed in simulations

[62]. (In the pure CP the radius of the active region grows ∝ t for any λ > λc.) In

two or more dimensions, Bramson et al. conjectured, there is no intermediate phase.

Our results for various dilutions support this conjecture. For example, simulations

at x = 0.1, with λ close to, but slightly above λc (to be precise, λ = 1.86 and 1.87,

corresponding to (λ− λc)/λc = 0.007 and 0.013, respectively), showed n(t) ∼ t2 (and

similarly for R2(t)), consistent with the radius of the active region growing ∼ t. Thus

a sublinear-growth phase, if it exists at all, is confined to a very narrow range of

creation rates. While our model incorporates dilution rather than a random death

rate, one would expect such an intermediate phase to be a rather general feature of

disordered contact processes, so that its apparent absence here argues for the validity

of the conjecture.

In summary, we find that quenched disorder induces a radical change in the

critical spreading of the contact process. In contrast to the well-known power laws

in the pure CP, we observe logarithmic time-dependence. Although our results are

restricted to dilutions 0.05 ≤ x ≤ 0.35, we expect a crossover to logarithmic behavior

for all 0 < x < 1 − pc, albeit at very long times for small x. While we are inclined

to suppose that the DCP is but one member of a universality class encompassing all

disordered models with a continuous transition to a unique absorbing configuration,

studies of absorbing-state transitions in other disordered models are needed to verify

the universality hypothesis.

48



Chapter 5

Series Expansions in Pair-contact

Process

5.1 Introduction

Series expansions have been successfully applied to nonequilibrium systems exhibiting

a continuous transition to an absorbing state [14, 27, 29, 30]. They have become very

efficient tools for calculating critical parameters, and also provide information about

off-critical behavior. In steady-state series expansions [14, 27] one expands about

a model whose time dependence may be solved exactly. This provides a formalism

which may then be implemented for a particular model, as represented by its evolution

operator. In time-dependent series expansions [29, 30] one derives, starting from the

master equation, a perturbative expansion for the long- and short-time behavior of

quantities such as the survival probability and the mean number of particles, when

evolving from a single seed initial state.

In this chapter we develop a time-dependent series expansion formalism and

describe its application to the one-dimensional pair-contact process (PCP) model.

The chapter is organized as follows. In the next section we introduce the model.

An operator formalism for the master equation is presented in section (5.3). In sec-

tion (5.4) we derive the time-dependent perturbation theory. An illustration of the

method is presented in section (5.5). In section (5.6) we show how to implement an

algorithm to generate the series terms. In section (5.7) we present and discuss the

results.
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5.2 The model

The pair-contact process is a simple one-component model in which pairs – two nearest

neighbor occupied sites – are annihilated with probability p, while with probability

1 − p, a new particle is created at a vacant nearest neighbor of the pair. Fig. (5.1)

illustrates the rules of the process.

• • ◦ ◦ ◦
?1

2
(1− p)

• • • ◦ ◦

• • ◦ • •
?(1− p)

• • • • •

◦ ◦ • • ◦
?p

◦ ◦ ◦ ◦ ◦

Figure 5.1: Diagram showing the rules for the one-dimensional pair-contact process. The

top represents two possible configurations of a creation event, and the bottom a pair

annihilation event.

The order parameter of the model is the concentration of pairs. The absence

of pairs characterizes the absorbing state. The PCP exhibits a continuous transition

between an active and an absorbing state as p is increased beyond pc = 0.0771 [39, 40].

The phase diagram of the model is shown in Fig. (5.2).

While the absorbing state is unique in the sense of its having a complete absence

of pairs, from the particle point of view there are many such states, which makes the

PCP a model with multiple absorbing configurations. Such models show anomalous

behavior [40, 66]. In particular, the time-dependent exponents (η, δ and z, pertinent

to spreading from an initial state close to an absorbing state [22]) of the PCP show

a dependence on the initial configuration, as it allows a vast choice of initial states.

For natural initial configurations (those generated by the dynamics of the system),

the time-dependent exponents take their usual DP values. For that matter, static

exponents such as β, ν‖ and ν⊥ also assume DP values [40].

The results discussed above were obtained through simulations. Our aim is to

get more insight into the time-dependent behavior of the PCP using series expansions.
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Figure 5.2: Steady-state concentration of pairs as a function of the pair annihilation

probability. For p < pc the system is in the supercritical region, and for p > pc the system

is in the subcritical region.

5.3 Operator Formalism

Markov processes in many-particle systems may be conveniently described via an

operator formalism. In this work we use the formalism of references [14] and [30], in

which only single occupancy of sites is allowed. A more complete description of this

formalism can be found in [63, 64, 65].

The basis states of a given site i ∈ Zd are represented by |φσi,i〉 where σi = 0, 1

stands for a vacant or occupied site, respectively. Any configuration {σi} of the system

can be written as a direct product

|{σi}〉 =
∏

i∈Zd

|φσi,i〉. (5.1)

The inner product is given by

〈{σi}|{σ′i}〉 =
∏

i∈Zd

δσi,σ′i . (5.2)

Creation and annihilation operators for site i are defined as

A†
i |φσi,i〉 = (1− σi)|φ1−σi,i〉 (5.3)

Ai|φσi,i〉 = σi|φ1−σi,i〉 (5.4)
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which obey the relation AiA
†
i +A†

iAi = 1. The state of a system at time t is represented

by

|Ψ(t)〉 =
∑

{σi}
p({σi}, t) |{σi}〉, (5.5)

where we are summing over all configurations and p({σi}, t) is the probability distri-

bution on configuration space. Only states satisfying positivity and normalization are

physically relevant. These conditions are expressed by

〈{σi}|Ψ〉 ≥ 0, ∀ {σi} (5.6)

∑

{σi}
〈{σi}|Ψ〉 = 1. (5.7)

The evolution of the probability distribution is governed by the master equa-

tion,

d|Ψ(t)〉
dt

= S|Ψ(t)〉 (5.8)

whose formal solution (given that S is time independent) is

|Ψ(t)〉 = eSt|Ψ(0)〉 (5.9)

where |Ψ(0)〉 is the initial probability distribution.

The master equation for the pair-contact process is given by

dp({σ}, t)
dt

= − ∑

{σ}′
w({σ} → {σ}′) p({σ}, t) +

∑

{σ}′
w({σ}′ → {σ})p({σ}′, t)

− ∑

{σ}′′
w({σ} → {σ}′′) p({σ}, t) +

∑

{σ}′′
w({σ}′′ → {σ})p({σ}′′, t)

(5.10)

where we have taken out the indices for simplicity, and

|{σ}′〉j = |φ1−σj ,j〉
∏

i(i 6=j)

|φσi,i〉

denotes a configuration identical to |{σ}〉 =
∏

i |φσi,i〉 except for the site j. In the

same way,

|{σ}′′〉j = |φ1−σj ,j〉|φ1−σj+1,j+1〉
∏

i(i6=j,j+1)

|φσi,i〉
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denotes a configuration identical to |{σ}〉 =
∏

i |φσi,i〉, except by the pair situated at

(j, j + 1). The master equation is constructed as follows: each term is formed by the

product of the probability of being in a particular configuration and the transition

rate of going from this configuration to another one. For example, the first term

expresses a situation in which the system is in configuration |{σ}〉 at time t and

suffers a transition to |{σ}′〉 as a particle is created at site j. As this term decreases the

probability p({σ}, t) it carries a minus sign. The other terms are obtained analogously.

By multiplying both sides of the master equation by |{σ}〉 and summing over {σ} we

get

d|Ψ(t)〉
dt

= − ∑

{σ}{σ}′
w({σ} → {σ}′)p({σ}, t)|{σ}〉

+
∑

{σ}{σ}′
w({σ}′ → {σ})p({σ}′, t)|{σ}〉

− ∑

{σ}{σ}′′
w({σ} → {σ}′′)p({σ}, t)|{σ}〉

+
∑

{σ}{σ}′′
w({σ}′′ → {σ})p({σ}′′, t)|{σ}〉.

(5.11)

As we are summing over {σ} and {σ}′ or {σ} and {σ}′′ we may interchange {σ} and

{σ}′ and {σ} and {σ}′′ in the positive rhs terms to get

d|Ψ(t)〉
dt

= − ∑

{σ}{σ}′
w({σ} → {σ}′)p({σ}, t)|{σ}〉

+
∑

{σ}{σ}′
w({σ} → {σ}′)p({σ}, t)|{σ}′〉

− ∑

{σ}{σ}′′
w({σ} → {σ}′′)p({σ}, t)|{σ}〉

+
∑

{σ}{σ}′′
w({σ} → {σ}′′)p({σ}, t)|{σ}′′〉.

(5.12)

The transition rate w({σ} → {σ}′′), related to the annihilation of one pair, is propor-

tional to the probability p,

w({σ} → {σ}′′) = pσiσi+1, (5.13)

where the product σiσi+1 is different from zero when sites i and i + 1 are occupied

and zero otherwise. The transition rate w({σ} → {σ}′), related to the creation of one
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particle is given by

w({σ} → {σ}′) =
1

2
(1− p)(1− σi)(σi−2σi−1 + σi+1σi+2), (5.14)

where (1−σi) assures that site i is vacant, and (σi−2σi−1 +σi+1σi+2) equals two if site

i has two nearest neighbor pairs, one if site i has only one nearest neighbor pair and

zero if none. Substituting these rates in the master equation we have,

d|Ψ(t)〉
dt

= −1

2
(1− p)

∑

{σ}

∑

i

(1− σi)(σi−2σi−1 + σi+1σi+2)(|{σ}〉 − |{σ}′〉)p({σ}, t)

− p
∑

{σ}

∑

i

σiσi+1(|{σ}〉 − |{σ}′′〉)p({σ}, t). (5.15)

Using the expressions for A and A†, eqs. (5.3) and (5.4), the master equation becomes

d|Ψ(t)〉
dt

= −p
∑

i

(A†
iAiA

†
i+1Ai+1 − AiAi+1)|Ψ(t)〉

+
1

2
(1− p)

∑

i

[(1− Ai)A
†
i ][A

†
i−1Ai−1A

†
i−2Ai−2 + A†

i+1Ai+1A
†
i+2Ai+2]|Ψ(t)〉.

(5.16)

By writing eq. (5.16) in the form of eq. (5.8) we find that the evolution operator S

for the pair-contact process takes the form

S = +
1

2
(1− p)

∑

i

[(1− Ai)A
†
i ][A

†
i−1Ai−1A

†
i−2Ai−2 + A†

i+1Ai+1A
†
i+2Ai+2]

− p
∑

i

(A†
iAiA

†
i+1Ai+1 − AiAi+1), (5.17)

which can be rewritten as,

S = λW + V (5.18)

where

W =
∑

i∈Zd

(AiAi+1 − A†
iAiA

†
i+1Ai+1), (5.19)

V =
1

2

∑

i∈Zd

(1− Ai)A
†
i (A

†
i−1Ai−1A

†
i−2Ai−2 + A†

i+1Ai+1A
†
i+2Ai+2), (5.20)
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and

λ =
p

(1− p)
, (5.21)

where a (1− p)−1 factor is absorbed into a rescaling of the time variable in eq. (5.8).

In this decomposition W only annihilates pairs and V only creates particles.

The next step is to consider the effects of the operators W and V on any

configuration. Operating with W on a configuration (C ), where (C ) contains r pairs,

it gives a sum of r configurations (C ′) (each having one of the r pairs vacated), minus

r times (C ) itself:

W (C ) =
r∑

i=1

(C ′
i )− r(C ) (5.22)

Operating with V on a configuration (C ) in which there are q vacant sites nearest

neighbors of at least one pair yields

V (C ) =
q∑

i=1

fi [(C
′′
i )− (C )], (5.23)

where fi = 1
2

or 1, if a vacant site has one or two nearest neighbor pairs, respectively.

(C ′′) corresponds to the configuration (C ) with one of the q vacant sites occupied.

Notice that both W and V annihilate the absorbing state.

5.4 Time-dependent Perturbation Theory

In this section we develop a perturbative expansion for the time-dependent probability

distribution, |Ψ(t)〉, for the one-dimensional pair-contact process. There are several

ways of expanding eq. (5.9), for example, in terms of t (short-time expansions), in

terms of λ, or in terms of µ = λ−1. The expansion in powers of t is obtained by

chosing a value for λ (the obvious choice being λc) and then truncating the series at

some order n:

|Ψ(t)〉 ≈
n∑

j=0

tj

j!
|Ψj〉, (5.24)

where |Ψj〉 = Sj|Ψ(0)〉. Considering the initial distribution |χ0〉, which attributes

unit probability to the configuration that has one pair at the origin and all other sites

vacant, we get the following recursive relation for |Ψj〉:
|Ψ0〉 = |χ0〉
|Ψj〉 = (λW + V )|Ψj−1〉; j ≥ 1. (5.25)
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As we operate with V once in each step, the state |Ψj〉 is a sum over configurations

containing up to j+2 particles. The coefficient of tj in the series for n(t) is obtained by

summing the products of the coefficient and the number of particles in each configura-

tion. The coefficients in the expansion for P (t) could be obtained simply by summing

all the coefficients of the nonabsorbing configurations in |Ψj〉. It is, however, much

simpler to calculate the extinction probability p(t), the probability of having entered

the absorbing state, which is related to P (t) through the relation P (t) = 1 − p(t).

The coefficient of tj in the expansion of p(t) is simply the coefficient of the absorbing

configurations in |Ψj〉, i.e., configurations without pairs.

In order to derive an expansion in powers of λ for the ultimate survival prob-

ability P∞, we consider the long-time behavior in the supercritical regime. In this

expansion we treat the annihilation operator W as a perturbation. The unperturbed

evolution never reaches the absorbing state, so for small λ we are clearly in the super-

critical region. We expect the critical point to be associated with the first singularity

on the positive λ axis. Considering the Laplace transform of |Ψ(t)〉,

|Ψ̃(s)〉 =
∫ ∞

0
dt e−st|Ψ(t)〉 = (s− S)−1|Ψ(0)〉, (5.26)

assuming that |Ψ̃(s)〉 can be expanded in powers of λ,

|Ψ̃(s)〉 = |Ψ̃0〉+ λ|Ψ̃1〉+ λ2|Ψ̃2〉+ · · · , (5.27)

and inserting eqs. (5.27) and (5.18) in eq. (5.26), we find

|Ψ̃0〉 = (s− V )−1|χ0〉, (5.28)

|Ψ̃n〉 = (s− V )−1W |Ψ̃n−1〉; n ≥ 1. (5.29)

The effect of (s− V )−1 on a configuration (C ) can be found using eq. (5.23) and the

identity (valid for any configuration)

(s− V )−1(C ) = s−1 (C ) + s−1 (s − V )−1V (C ), (5.30)

which together yield

(s− V )−1(C ) = (s +
q∑

i=1

fi)
−1 [(C ) + (s − V )−1

q∑

i=1

fi(C
′′
i )], (5.31)

where q is the number of vacant sites nearest neighbor of at least one pair. As V

only creates configurations having one additional particle, it is clear that applying
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(s− V )−1 to any configuration, except the absorbing ones, we generate a infinite set

of configurations. Therefore, it becomes impossible to compute |Ψ̃(s)〉 completely.

On the other hand, we can easily calculate the extinction probability p̃(s). The

coefficient of λj in the expansion of p̃(s) is the sum of the coefficient of the absorbing

configurations in |Ψ̃j〉. The ultimate survival probability P∞ is then given by P∞ =

1− lims→0 sp̃(s).

We will now consider the long-time behavior in the subcritical region. We treat

V perturbatively, instead of W , and expand |Ψ(t)〉 in terms of µ = λ−1. We rewrite

S as

S = W + µV, (5.32)

where a factor λ is absorbed into a rescaling of the time variable in eq. (5.8). The

unperturbed evolution operator eWt corresponds to an exponentially decaying chance

of survival. Thus in the infinite-time limit only the absorbing states remain, and we

are studying the subcritical regime. By taking the Laplace transform of eq. (5.9) and

assuming that |Ψ̃(s)〉 can be expanded in powers of µ, we obtain

|Ψ̃(s)〉 = |Ψ̃0〉+ µ|Ψ̃1〉+ µ2|Ψ̃2〉+ · · · , (5.33)

In analogy to eqs. (5.28) and (5.29), we have

|Ψ̃0〉 = (s−W )−1|χ0〉, (5.34)

|Ψ̃n〉 = (s−W )−1V |Ψ̃n−1〉; n ≥ 1. (5.35)

An identity equivalent to that obtained for eq. (5.30) also holds for (s−W )−1, which

together with eq. (5.22) yields,

(s−W )−1(C ) = (s + r)−1 [(C ) + (s −W )−1
r∑

i=1

(C ′
i )], (5.36)

where r is the number of pairs in configuration (C ). The coefficient of µj in the

expansion for the survival probability P̃ (0), is the sum of the coefficients of all con-

figurations, except the absorbing ones, in |Ψ̃j〉. The corresponding coefficient in the

expansion for the mean number of particles ñ(0), is the sum of the product of the

coefficient and the number of particles for each configuration.
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5.5 A few terms for the one-dimensional PCP

In this section we derive a few terms for the critical time, supercritical and subcritical

series as an illustration of the method described in the preceding sections. We denote

an occupied site by • and a vacant site by ◦. Since time-dependent analysis focuses

on the evolution of a system starting from a configuration close to the absorbing state

(a single pair at the origin), we will deal with configurations in which most of the

sites are vacant. For example, the initial configuration |χ0〉, which assigns probability

1 to the configuration with a single pair and all other sites vacant, is denoted by

(••) =
∑

i A
†
iA

†
i+1|0〉. In the same way, (• ◦ •) =

∑
i A

†
iA

†
i+2|0〉 has two occupied

sites separated by a vacancy, and so on. The translational invariance of the model is

implicit in this notation.

Supercritical Expansions

We compute the extinction probability, in the supercritical regime, for the

one- dimensional PCP to O(λ1). By applying eqs. (5.28) and (5.29) to the initial

configuration, |χ0〉 = (••), we have

|Ψ̃0〉 = (s− V )−1(••).

In this case, we have q = 2 and f1 = f2 = 1
2
, as each vacant site has only one nearest

neighbor pair. Thus,

(s− V )−1(••) = (s + 1)−1(••) + (s + 1)−1(s− V )−1(• • •) + · · · .

The generation of the subsequent terms follows the same reasoning, yielding

|Ψ̃0〉 = (s + 1)−1(••) + (s + 1)−2(• • •) + (s + 1)−3(• • ••) + · · · . (5.37)

Notice that we discard all configurations with more than 3 pairs, as they do not

contribute to the extinction probability at this order. To get |Ψ̃1〉 we first apply W

to |Ψ̃0〉,

W |Ψ̃0〉 = (s + 1)−1[(0) − (••)] + 2(s + 1)−2[(•)− (• • •)]
+ (s + 1)−3[2(••) + (• ◦ ◦•)− 3(• • ••)]. (5.38)

As we are looking for the extinction probability, and the operator (s − V )−1 only

creates particles, we do not need to go further and compute |Ψ̃1〉 completely. Note

that by applying (s − V )−1 over absorbing configurations they will be multiplied by
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a factor s−1, as q = 0 for these configurations. All other configurations carry one

or more (s +
∑

i fi)
−1 factors, corresponding to an eventual exponential decay in the

survival probability. By collecting the coefficients of the absorbing configurations in

eq. (5.38) we get the ultimate survival probability P∞, to O(λ1),

P∞ = 1− lim
s→0

sp̃(s),

P∞ = 1− 4λ + · · · . (5.39)

Subcritical Expansions

We calculate now the subcritical expansions for P̃ (0) and ñ(0) to O(µ2). In

order to simplify the notation, we will replace (s+ r)−1 by r−1, as we are interested in

the series only in the limit of s → 0. Starting from the initial configuration |χ0〉 = (••),
|Ψ̃0〉 is obtained by applying the operator (s−W )−1 on |χ0〉

|Ψ̃0〉 = (s−W )−1(••),
|Ψ̃0〉 = (••) + (0).

At this point, we can discard the absorbing configurations at |Ψ̃0〉, as they will be

annihilated by applying V . According to eq. (5.35) the other terms are generated by

operating with (s−W )−1V over |Ψ̃0〉, and so on. Thus we find

|Ψ̃1〉 = (s−W )−1[(• • •)− (••)] =
1

2
(• • •)− (••) + (•)− (0),

|Ψ̃2〉 =
1

6
(• • ••)− 3

4
(• • •) +

4

3
(••) +

1

6
(• ◦ ◦•)− 3

2
(•) +

4

3
(0).

Summing the coefficients of the nonabsorbing configurations in |Ψ̃j〉, we find

P̃ (0) = 1− 1

2
µ +

3

4
µ2 + · · · , (5.40)

and forming the sum of the product of coefficients and number of particles we find

ñ(0) = 2 +
1

2
µ +

1

12
µ2 + · · · . (5.41)

Critical Time Expansions

The expansions in powers of t are given by eq. (5.25). The terms are generated

analogously to those for supercritical and subcritical expansions. The first few terms

are as follows:

|Ψ(0)〉 = (••),
S|Ψ(0)〉 = (• • •)− (1 + λ)(••) + λ(0),

S2|Ψ(0)〉 = (• • ••)− (3λ + 2)(• • •) + (1 + λ)2(••) + 2λ(•)− λ(1 + λ)(0),
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which implies for the survival probability

P (t) = 1− λt +
λ(λ− 1)

2!
t2 + · · · , (5.42)

and for the mean number of particles

n(t) = 2 + (1− 2λ)t +
λ(2λ− 3)

2!
t2 + · · · . (5.43)

By expanding only a few terms we realize that the higher the order we compute,

the more complicated it becomes. We also notice that these terms can be easily

generated by a computer algorithm. In the next section we briefly discuss how to

implement this code.

5.6 Computer Algorithm

In this section we show how we construct an algorithm for computing the series

coefficients for the ultimate survival probability in the supercritical expansion. A

full listing of the program can be found in the Appendix. As we have seen, in the

supercritical expansion, the term |ψj〉 in the probability distribution is generated

according to the following recursive relation:

|ψj〉 = (s− V )−1W |ψj−1〉 j ≥ 1. (5.44)

Each configuration is represented by an odd binary integer, associating 0’s with va-

cancies and 1’s with particles. Due to translational invariance we can always represent

the first occupied site (counting from right to left) as the first bit (explaining why we

only consider odd numbers). Thus the configuration (• ◦ ◦ • •) corresponds to 10011,

or 19 in base ten. Let |ψj〉 = [
∑

i (i) coef[i]], where coef[i] denotes the coeffi-

cient of configuration (i); let filter[k] represent two particles sitting at k and k + 1

(filter[k] = 3 · 2k) and nfilter[k] = not(filter[k]) is the bitwise complement

of filter[k]. According to eq. (5.22) applying W to a configuration (i) containing

r pairs means to generate r new configurations (i′) each having one of the r pairs

vacated. In the code, annihilation of the pair situated at (k, k + 1) is effected by the

operation i′ = (i and nfilter[k]), where and is the bitwise logical operator “AND”.

So, for each configuration we first search for pairs (i and filter[k] = filter[k])

and then we annihilate them. Each new configuration takes the same coefficient as

the configuration (i) it was derived from. And finally we add −r times the coefficient

of the original configuration (i) to the running sum for W |ψj〉.
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Application of (s − V )−1 is slightly more complicated due to the recursive

scheme. The operation on a configuration (i) gives

(s− V )−1(i) = (s +
q∑

k=1

fk)
−1[(i) + (s− V )−1

q∑

k=1

fk(i
′)k],

which involves (i) itself again, plus q new configurations (i’), each having one addi-

tional particle, multiplied by the factor (
∑q

k=1 fk)
−1. q is the number of vacant sites

that are nearest neighbors of at least one pair, and fk equals 1/2 (1) if site k has

one or (two) nearest-neighbor pairs. Let “>>” be the bitwise right shift operator.

The operations right = (i and filter[k-2]) >> (k-2) and left = (i and fil-

ter[k+1]) >> k, where (i >> k-2) shifts the value of (i) right by (k−2) positions,

filling vacated bits with zero, are tests for counting the number of neighboring pairs

of site k. If right= 3 it means that site k has one pair on the right, similarly, if

left= 6 site k has one pair on the left. If site k is vacant, or (i and 2k) = 0, the

new configuration is (i’)= i or 2k, where or is the bitwise logical operator “OR”.

Noting that any new configuration (i’) > (i), we iterate the operation of (s − V )−1

over the newly generated configurations by storing them with configurations that are

still to come and by treating them in ascending order.

5.7 Results and Analysis

Supercritical Expansion

n coefficients

0 1.0

1 -4.0

2 -18.5

3 -137.375

4 -981.191162

5 -8716.618095

6 -78563.635407

Table 5.1: Coefficients of λn in the supercritical expansion for the ultimate survival prob-

ability P∞.
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The coefficients of the supercritical series we derived for the ultimate survival

probability are listed in Table 5.1. We are only able to generate terms to 6th order

in λ. This is a consequence of limited memory: configurations with up to (3n + 1)

particles contribute to the extinction probability at n-th order, requiring storage and

analysis of about 23n integers. This gets more complicated when coupled with the

iterative nature of the operator (s− V )−1. Numerous attempts to optimize the code

were made, unfortunately none of them successful.

We analyze the supercritical series for P∞ using the Padé approximants (dis-

cussed in chapter 2). In section (4.4) we found that P∞ ∝ (λ−λc)
β. Thus by forming

the Padé approximants for the (d/dλ) ln P∞ series, we obtain estimates for λc, which

is associated with the first positive pole in the real axis. From our analysis we esti-

mate λc = 0.08285; 0.08255 and 0.08334 using the approximants [3,3], [3,2] and [2,3],

respectively. We see that these values are in reasonable agreement with the simulation

value λs
c = 0.0835 [40]. Given the small number of terms, we could not expect much

closer agreement. For the exponent β, given by the residue of the Padé approximant

at this pole, we did not obtain any useful estimate.

Subcritical Expansions

In the subcritical regime we derived series for the ultimate survival probability

and the mean number of particles in terms of µ = λ−1 to O(µ16). The coefficients of

these series are listed in Table 5.2.

For the subcritical series we are able to compute a few more terms, as we only

have to keep configurations with n + 3 particles at most, for each order n.

In section (4.4) we saw that the survival probability can be written as

P (t) ∼ t−δφ(∆t1/ν‖). (5.45)

In the subcritical regime, far from the critical point, it is expected that the survival

probability decays exponentially, as the correlations are of short range. This can be

the case only if

φ(y) ∼ (−y)δν‖ exp[−b(−y)ν‖ ] for y → −∞ (5.46)

where b is a constant. Substituting the above relation in the equation for P (t) we find

P (t) ∝ (−∆)δν‖ exp[−b(−∆)ν‖t]. (5.47)
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n P̃ (0) ñ(0)

0 1.0 2.0

1 -0.5 0.5

2 0.75 -0.0833332

3 -1.04167 0.236111

4 1.47639 -0.407871

5 -2.10222 0.697969

6 3.00454 -1.17181

7 -4.31084 1.94812

8 6.2118 -3.21551

9 -8.99266 5.27555

10 13.0808 -8.61069

11 -19.1188 13.993

12 28.0753 -22.6583

13 -41.4156 36.5826

14 61.3616 -58.9276

15 -91.2924 94.7496

16 136.361 -152.135

Table 5.2: Coefficients of µn in the subcritical expansions for the survival probability P̃ (0)

and ñ(0).

The Laplace transform of this relation yields

P̃ (s) =
∫ ∞

0
P (t)e−stdt ∝ (−∆)δν‖

s + b(−∆)ν‖
. (5.48)

By allowing s → 0 and making use of the relation β = δν‖, we find that

P̃ (0) ∝ (−∆)β−ν‖ . (5.49)

Analogously, we expect that the mean number of particles decays exponentially in the

subcritical regime. A procedure similar to the one used to get P̃ (0) yields

ñ(0) ∝ (−∆)−ν‖(1+η). (5.50)

By regarding the expressions for P̃ (0) and for ñ(0), and forming the Padé approx-

imants for (d/dµ) ln P̃ (0) and (d/dµ) ln ñ(0) we find the following estimates for µc:
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[8, 8] = 12.96092 and [8, 8] = 10.6425, respectively. These values should be compared

to the simulation value µs
c = 11.9702.
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Figure 5.3: Plot in the complex-µ plane of the poles of the following Padé approximants:

[8,8] 3; [8,7] +; [7,8] 2; and [7,7] ×; for (d/dµ) ln P̃ (0).

Although we have generated a significantly larger number of terms for the

subcritical expansions, compared to the supercritical case, we notice that the estimates

for µc are quite poor. In fact, the alternating sign of the coefficients is a clue that

the dominant singularity might lie on the negative real axis. The off-diagonal Padé

approximants yield even worse estimates. In Fig. (5.3) we plot a few of the typical

sets of poles. This plot confirms that the dominant singularity lies on the negative

real axis, and that several poles lie nearer the origin than the physical singularity.

The latter circumstance renders extraction of useful estimates very difficult.

Critical Time Expansions

From section (5.5), we see that the series for P (t) and n(t) in powers of t are

given by

P (t, λ) = 1− λt + · · · ,
n(t, λ) = 2 + (1− 2λ)t + · · · .

As the asymptotic evolution of the survival probability and the mean number of

particles in the critical process are governed by power laws: P (t; λc) ∝ t−δ, n(t; λc) ∝

64



tη, our goal is to study these series for λ = λc and try to obtain estimates for the

exponents δ and η. In Table 5.3 we show the coefficients for the power-t series of P (t)

and n(t) calculated at λs
c = 0.0835.

n P (t) n(t)

0 1.0 2.0

1 -8.354101E-02 8.329180E-01

2 -3.828096E-02 -1.183324E-01

3 3.240256E-02 -3.649198E-03

4 -1.042570E-02 8.151837E-03

5 1.245138E-03 -2.403629E-03

6 3.366557E-04 4.046221E-04

7 -2.030486E-04 -3.847422E-05

8 5.147464E-05 -2.286139E-06

9 -7.647985E-06 2.537779E-06

10 4.932625E-07 -8.720479E-07

11 5.824816E-08 2.071887E-07

12 -1.688591E-08 -3.647137E-08

13 1.826442E-09 1.498052E-08

14 3.396279E-08 -2.434431E-08

15 -8.479775E-08 -5.103685E-09

16 1.367656E-07 8.715569E-08

17 -1.508317E-06 2.156652E-06

Table 5.3: Series coefficients for the survival probability P (t) and the mean number of

particles n(t).

Following the method applied in [30], we transform these series using

F [f(t)] = t
d ln f(t)

dt
(5.51)

where f(t) is the Taylor series expansion of some quantity about t = 0. If f(t) ∼ Atα,

its transform remains finite in the limit t → ∞, as F (t) → α, and also provides

information about the exponents.

We study the long-time behavior of F [P (t)] and F [n(t)] via the diagonal Padé

approximants, as the off-diagonal approximants have trivial t → ∞ limits. Unfortu-

nately, this series does not provide any reasonable estimates of the exponents δ and
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η. For example, the estimates yielded by the [8,8] and [7,7] approximants for the

exponent δ are: 4.591 and 6.051. From simulations we know that δs = 0.250(5) [40].

The irregular patterns of the signs and magnitudes of the terms in these expansions

are indicative of poorly-behaved series.

It is important to remark that all actual calculations are done with s = 0.
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Chapter 6

Conclusions and Outlook

We studied the diluted contact process through mean-field cluster expansions. Our

results identify a continuous absorbing-state transition located at the critical value

of the creation parameter λc(x), which depends on the dilution x. The dependence

of the critical parameter on the dilution is approximately described by the relation

λc(x) ≈ λc(0)/(1 − x), as long as x << 1 − pc. In agreement with purely heuristic

arguments we thus verify that the reduction of effective neighbors caused by dilution

is compensated by an increase in the critical creation parameter.

Our numerical simulations for dilutions x ≥ 0.05 indicate that the critical

behavior of the diluted contact process is markedly different from that of the pure

contact process, as expected on the basis of the Harris criterion [44]. We found

that, unlike the pure case in which all three quantities behave as power-laws, the

survival probability and the mean-square spreading of particles exhibit a logarithmic

asymptotic dependence on time and the population size goes to a constant. These

results show how the presence of disorder impairs the ability of the critical process to

survive and expand [67].

We also applied time-dependent series expansions to the pair-contact process

in the critical and off-critical regimes. Despite the limited number of terms available,

the supercritical expansions yielded a reasonable location of the critical point. On

the other hand, the subcritical expansions yield poorer results despite the availability

of more terms. This is because the dominant negative singularity is closer to the

origin than the physical singularity is, preventing us from getting good estimates of

the critical parameter. Our next step regarding the subcritical and also the critical

time series is to find an appropriate transformation in order to remove the dominant

singularity from the vicinity of the origin. Finally there is also the possibility of
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generating more terms for these series. Such an approach involves no conceptual

difficulties, but can only be pursued with the use of more efficient machines.
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Appendix

Program to calculate supercritical expansion of the ultimate

survival probability for the one-dimensional pair-contact process.

(Programming language: C)

# include <stdio.h>

# include <math.h>

C Definition of constants

# define N 6

# define Nm (3*N+1)

# define q 524288

FILE *fp;

C Global variables

double coef[q];

long int v[Nm],filter[Nm],nfilter[Nm];

int bits[q];

C Subroutine for the operation (s− V )−1

void create() {
long int k,a,b,d,e,f,i,j,lm,test,LP,RP;

double sum,ncoef[q],aux[q],aux1;

extern double coef[q];

extern long int v[Nm];

char stop;

C Initialization of local variables

ncoef[0] = 0;

for(j=1;j<q;j+=2) ncoef[j] = 0;

C Loop for each configuration k

for(k=1;k<q;k+=2)

if (coef[k]!=0) {
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sum = 0.0;

aux1 = coef[k]/2;

aux[0] = 0.0;

for(j=1;j<q;j+=2) aux[j] = 0.0;

C Locating the leftmost occupied site

lm = bits[k];

C Applying (s− V )−1 to the first and the last sites

if (lm==Nm) {
if ((k & 3) == 3) sum = sum + 0.5;

a = 3 * v[Nm-2];

if ((k & a) == a) sum = sum + 0.5; }
if (lm<Nm) {
a = k << 1;

LP = 6;

RP = 7 * v[lm-2];

b = (a & LP) >> 1;

if (b==3) {
aux[a+1] = aux[a+1] + aux1;

sum = sum + 0.5; }
b = (k & RP) >> (lm-2);

if (b==3) {
f = k | v[lm];

aux[f] = aux[f] + aux1;

sum = sum + 0.5; }
}
C Applying (s− V )−1 to the other sites

lm−−;

for(j=1;j<lm;j++) {
a = k & v[j];

C Testing if site j is vacant

if (a==0) {
LP = 3 * v[j+1];

if (j!=1) RP = 3 * v[j-2];

d = (k & LP) >> (j+1);

if (j!=1) e = (k & RP) >> (j-2); else e = 0;

C Counting the number of neighboring pairs of site j
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if (d==3 && e==3) {
sum = sum + 1.;

f = k | v[j];

aux[f] = aux[f] + coef[k];

}
else if (d==3 || e==3) {
sum = sum + 0.5;

f = k | v[j];

aux[f] = aux[f] + aux1; }
}}
if (sum==0.0) sum = 1.0;

for(j=k+2;j<q;j+=2) coef[j] = coef[j] + aux[j]/sum;

ncoef[k] = ncoef[k] + coef[k]/sum;

}
ncoef[0] = coef[0];

for(j=1;j<q;j+=2) coef[j] = ncoef[j];

}
C Subroutine for the operation W

void annihilate() {
long int k,m,temp,j,npair;

char stop;

double ncoef[q];

extern double coef[q];

extern long int v[Nm],filter[Nm],nfilter[Nm];

C Initialization of local variables

ncoef[0] = 0;

for(j=1;j<q;j+=2) ncoef[j] = 0;

C Loop for each configuration k

for(k=3;k<q;k+=2)

if (coef[k]!=0) {
npair = 0;

j = 0;

stop = 0;

C Counting the number of pairs of each configuration

while(stop==0) {
if (filter[j]>k) stop = 1;
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if (k>=filter[j]) {
m = (k & filter[j]) >> j;

if (m==3) {
npair = npair + 1;

Annihilating one pair at configuration k

temp = k & (nfilter[j]);

if (j==0 && temp!=0) while((temp%2)==0) temp = temp >> 1;

ncoef[temp] = ncoef[temp] + coef[k]; }
}
j++;

}
ncoef[k] = ncoef[k] - npair * coef[k];

}
coef[0] = ncoef[0];

for(j=1;j<q;j+=2) coef[j] = ncoef[j];

}
Main Program

main() {
extern double coef[];

extern long int v[Nm],filter[Nm], nfilter[Nm];

extern int bits[q];

long int z,j,i,npair,k,m;

double psi;

char stop;

fp = fopen(”super.data”,”w”);

Setting the initial state |χ0〉
for(i=0;i<q;i++) coef[i] = 0;

coef[3] = 1.0;

for(i=0;i<Nm;i++) {
v[i] = pow(2,i);

filter[i] = 3 * v[i];

nfilter[i] = filter[i]; }
Storing the number of bits of each configuration

bits[0] = 1;

bits[1] = 1;

j = 2;

72



for(i=3;i<q;i+=2) {
if (i<pow(2,j)) bits[i] = j;

if (i>pow(2,j)) {
j++;

bits[i] = j;

}}
Generating |ψ(0)〉
create();

Generating the other |ψ(j)〉 to N-th order

for(z=1;z<=N;z++) {
if (z==N) annihilate();

else {
annihilate();

create(); }
psi = 0;

Identifying the absorbing configurations

for(k=0;k<q;k++)

if (coef[k]!=0) {
npair = 0;

j = 0;

stop = 0;

while(stop==0) {
if (filter[j]>k) stop = 1;

if (k>=filter[j]) {
m = (k & filter[j]) >> j;

if (m==3) npair = npair + 1; }
if (npair>=1) stop = 1;

j++;

}
The coefficients of the absorbing configurations are stored at PSI

if (npair==0) psi = psi - coef[k];

}
fprintf(fp,“% d % f n”,z,psi);

}}
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New York, 1975).

[34] I. Jensen, Computer Simulations and Analytical Studies of Non-

equilibrium Phase Transitions in Interacting Particle Systems with Ab-

sorbing States (Ph.-D. Thesis, Århus, Denmark, 1992).
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