Análise Numérica da Flambagem do Montante de Alma devida ao Cisalhamento em Vigas de Aço Celulares

V657a

Vieira, Hugo César.

Análise numérica da flambagem do montante de alma devida ao cisalhamento em vigas de aço celulares [manuscrito] / Hugo César Vieira. – 2014. xiii, 80 f., enc.: il.

Orientador: Ricardo Hallal Fakury.

Dissertação (mestrado) Universidade Federal de Minas Gerais, Escola de Engenharia.

Anexos: f. 78-80.

Bibliografia: f. 74-77.

Engenharia de estruturas - Teses. 2. Vigas - Teses. 3. Aço - Teses.
Método dos elementos finitos - Teses. I. Fakury, Ricardo Hallal.
Universidade Federal de Minas Gerais. Escola de Engenharia.
III. Título.

CDU: 624(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ESTRUTURAS

"ANÁLISE NUMÉRICA DA FLAMBAGEM DO MONTANTE DE ALMA DEVIDA AO CISALHAMENTO EM VIGAS DE AÇO CELULARES"

Hugo César Vieira

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais, como parte dos requisitos necessários à obtenção do título de "Mestre em Engenharia de Estruturas".

Comissão Examinadora:

Prof. Dr. Ricardo Hallal Fakury DEES - UFMG - (Orientador)

Prof. Dr. Armando César Campos Lavall DEES - UFMG

Profa. Dra. Ana Lydia Reis de Castro e Silva DEES - UFMG

Prof. Dr. Gustavo de Souza Veríssimo UFV

Belo Horizonte, 23 de maio de 2014

DEDICATÓRIA

Deus, obrigado pelo dia de hoje e pelo Dom da vida.

"No demais, irmãos meus, fortalecei-vos no Senhor e na força do seu poder revesti-vos de toda a armadura de Deus, para que possais estar firmes contra as astutas ciladas do diabo. Porque não temos que lutar contra a carne e o sangue, mas, sim, contra os principados, contra as potestades, contra os príncipes das trevas deste século, contra as hostes espirituais da maldade, nos lugares celestiais. Portanto, tomai toda a armadura de Deus, para que possais resistir no dia mau e, havendo feito tudo, ficar firmes. Estai, pois, firmes, tendo cingidos os vossos lombos com a verdade, e vestida à couraça da justiça; e tomando, sobretudo o escudo da fé, com o qual podereis apagar todos os dardos inflamados do maligno. Tomai também o capacete da salvação, e a espada do Espírito, que é a palavra de Deus; Orando em todo o tempo com toda a oração e súplica no Espírito, e vigiando nisto com toda perseverança e súplica por todos os santos."

AGRADECIMENTOS

A Deus, primeiramente, por estar comigo em todos os momentos, principalmente os difíceis. Mesmo durante todas as tribulações da vida, nunca me senti sozinho.

Aos meus pais Antônio e Maria e ao meu irmão Rodrigo, pelo incentivo.

À minha Dani, pelo apoio, suporte, amor e paciência em todos os momentos. Esta vitória é nossa!

Ao meu orientador prof. Ricardo Fakury e à prof^a. Ana Lydia, pela oportunidade e confiança. Vocês foram fundamentais para o meu aprendizado. Obrigado por tudo!

À Inês, funcionária do PROPEES, por toda dedicação e empenho admiráveis.

Ao prof. Gabriel Ribeiro, fundamental na minha jornada, que instigou-me para a ampliação do conhecimento.

Ao prof. Gustavo Veríssimo por todo suporte no inicio deste trabalho.

Aos colegas de mestrado pelo companheirismo durante o curso, em especial ao Pedro Brasil, Leandro Mota, Thiago Vilela e Antônio Teixeira, meus sinceros agradecimentos.

Ao meu amigo Breno (frango) que desde a graduação esteve presente durante esta empreitada.

Aos Diretores da VLB Engenharia, Nathanael Villela, José Bernardino e José Henrique, que estimularam e incentivaram o desenvolvimento do meu conhecimento.

Aos Engenheiros Marcelo Rossi, Marcelo Botelho e Danielle Bretas, da VLB Engenharia, pela paciência, compreensão e incentivo.

Aos companheiros Maurício Marroque, Sérgio Araújo e Márcio Araújo, Engenheiros da VLB Engenharia, pela amizade e suporte.

LIST	TA DE	FIGURAS	ii
LIST	ΓA DE	TABELAS	ci
RES	UMO .	x	ii
ABS	TRAC	'Txi	ii
1	INTRO	DUÇÃO	1
1.	1	Generalidades	1
1.2	2	Parâmetros Geométricos e Simbologia	3
1.	3	Tipologias	4
1.4	4	Campos de Aplicação	5
1.:	5	Modos de Colapso	8
	1.5.1	Considerações Gerais	8
	1.5.2	Flambagem do Montante de Alma	9
	1.5.	2.1 Generalidades	9
	1.5.	2.2 Flambagem do Montante de Alma Devida à Força Cortante	9
	1.5.	2.3 Flambagem do Montante de Alma Devida à Compressão	0
	1.5.3	Formação de um Mecanismo Vierendeel1	1
	1.5.4	Flambagem Lateral com Torção1	2
	1.5.5	Formação de Rótula Plástica1	2
	1.5.6	Ruptura do montante na seção da solda1	3
1.0	6	Objetivos1	3
1.'	7	Justificativa1	3
1.	8	Metodologia1	4
2	REVIS	ÃO BIBLIOGRÁFICA1	6
2.	1	Estudos Relevantes sobre o Colapso de Vigas Alveolares1	6
2.2		Estudos Relacionados à Flambagem do Montante de Alma de Vigas Celulares.1	9
	2.2.1	Estudos Analíticos	9
	2.2.2	Estudos Experimentais e Numéricos2	0
3	Análi	ISE NUMÉRICA2	6

SUMÁRIO

AN	EXO A –	CURVAS DE FLAMBAGEM 'C' DA BS 5950-1:2000	.78
8	Refer	RÊNCIAS BIBLIOGRÁFICAS	.74
7	7.3	Sugestões para Trabalhos Futuros	.73
7	7.2	Sobre a Capacidade Resistente	.72
7	7.1	Sobre a Análise Numérica	.71
7	Consi	DERAÇÕES FINAIS	.71
6	5.2	Capacidade Resistente Proposta Aplicada a Outros Exemplos	.67
6 1	5.1 Frabalho	Capacidade Resistente Proposta Aplicada aos Resultados Numéricos Deste	.66
6	VALID	DAÇÃO DA METODOLOGIA ANALÍTICA PROPOSTA	.66
5	5.4	Capacidade Resistente Proposta	.64
5 N	5.3 Numérico	Comparação entre os Métodos Existentes na Literatura e os Resultados os deste Trabalho	.60
	5.2.2	Capacidade Resistente Segundo Lawson et al. (2002)	.59
	5.2.1	Capacidade Resistente Segundo Ward (1990)	.57
5	5.2	Métodos Analíticos Constantes da Literatura	.57
5	5.1	Resultados Numéricos Considerados	.55
5 CAPACIDADE RESISTENTE DO MONTANTE DE ALMA – PROCEDIMENTOS E PR DE CÁLCULO		CIDADE RESISTENTE DO MONTANTE DE ALMA – PROCEDIMENTOS E PROPOSIÇA	ÃO .55
4	.2	Resultados	.41
4	.1	Perfis Analisados	. 39
Со	MPORTA	AMENTO DOS PERFIS I LAMINADOS BRASILEIROS DA SÉRIE W	.39
4	3.2.3 Análi	ise Numérica de Vigas de Aço Celulares – Avaliação do	. 52
	5.2.4 2.2.5	Validação do Modelo Numérico	. 51
	3.2.3	Consideração da não Linearidade Fisica	.29
	3.2.2	Consideração da não Linearidade Geométrica	.29
	3.2.1	Análise Linearizada de Estabilidade	.29
3	3.2	Discretização e Condições de Contorno	.27
3	8.1	Considerações Iniciais	.26

LISTA DE FIGURAS

Figura 1.1 – Vigas alveolares casteladas1
Figura 1.2 – Processo de fabricação das vigas celulares (fonte: www.steelconstruction.info – acessado em 03/12/2012)
Figura 1.3 – Vigas celulares aplicadas em um ginásio poliesportivo (fonte: www.westok.co.uk – acessado em 23/12/2012)2
Figura 1.4 – Parâmetros geométricos das vigas celulares (Veríssimo <i>et al.</i> , 2010)
Figura 1.5 – Simbologia dos elementos da seção transversal de vigas celulares (Veríssimo <i>et al.</i> , 2010)
Figura 1.6 – Viga celular com eixo curvo e seção constante (Oliveira, 2012)4
Figura 1.7 – Viga celular com eixo reto e inércia variável (Oliveira, 2012)5
Figura 1.8 – Aplicação de vigas celulares curvas, Winchester (Erdal, 2011)5
Figura 1.9 – Dunfermline FC, vigas celulares com 21 m de vão (fonte: www.westok.co.uk – acessado em 02/11/2012)
Figura 1.10 – Vigas celulares aplicadas na cobertura de um supermercado (fonte: www.arcelormittal.com – acessado em 11/12/2012)
Figura 1.11 – Disposição das tubulações dentro das aberturas das vigas celulares (fonte: www.arcelormittal.com – acessado em 11/12/2012)
Figura 1.12 – Conexão com vigas secundárias7
Figura 1.13 – Aplicação de vigas celulares em sistemas de garagem, Fairhill Car Park, Ballymena (fonte: www.westok.co.uk – acessado em 23/12/2012)
Figura 1.14 – Flambagem do montante de alma devida ao cisalhamento (adaptado de Kerdal e Nethercot, 1984)9
Figura 1.15 – Forças atuantes no montante de alma10
Figura 1.16 – Flambagem do montante de alma devida à compressão (Erdal, 2011)11
Figura 1.17 – Mecanismo Vierendeel (Tsavdaridis e D'Mello, 2010)11
Figura 1.18 – Diagrama de esforços na seção crítica (Olander, 1954)12
Figura 1.19 – Flambagem lateral com torção (Erdal, 2011)12
Figura 1.20 – Ruptura da solda entre as aberturas (Tsavdaridis e D'Mello, 2011)13
Figura 1.21 – Faixas de variação de esbeltez da alma para perfis europeus e laminados brasileiros (Vieira, 2011)14

viii

Figura 2.1 – Tensões no entorno do montante de alma (Lawson <i>et al.</i> , 2002)20
Figura 2.2 – Modelos experimentais A1 e B1 após ensaios e tensões de von-Mises dos modelos numéricos (Tsavdaridis e D'Mello, 2010)23
Figura 2.3 – Flambagem do montante de alma na série NPI_CB_280 (Erdal, 2011)25
Figura 3.1 – Procedimento simplificado de resolução de um problema via MEF26
Figura 3.2 – Elementos de casca retangular de quatro nós triangular de três nós (Hibbit <i>et al.</i> , 2009)27
Figura 3.3 – Tipos de malha27
Figura 3.4 – Discretização do modelo em elementos S4R com malha não estruturada28
Figura 3.5 – Condições de contorno28
Figura 3.6 – Diagrama trilinear elastoplástico (Earl, 1999)
Figura 3.7 – Instabilidades solucionadas pelo método de Riks
Figura 3.8 – Metodologia simplificada de uma análise não linear
Figura 3.9 – Diagrama bilinear elastoplástico da alma para o modelo 4B
Figura 3.10 – Diagrama bilinear elastoplástico das mesas para o modelo 4B
Figura 3.11 – Modos de colapso dos modelos experimentais NPI_240 (Erdal, 2011)
Figura 3.12 – Modelo numérico NPI_240 (Erdal, 2011)
Figura 3.13 – Modelo numérico NPI_240 (Este trabalho)
Figura 3.14 – Curva carga versus deslocamento para os modelos NPI_240_CB
Figura 3.15 – Modo de colapso do modelo experimental 4B (Warren, 2001)
Figura 3.16 – Modelo numérico 4B (Este trabalho)36
Figura 3.17 – Curva carga versus deslocamento para os modelos 4B.
Figura 3.18 – Modo de colapso do modelo experimental B1 (Tsavdaridis e D'Mello, 2010). 37
Figura 3.19 – Modelo numérico B1 (Tsavdaridis e D'Mello, 2010)37
Figura 3.20 – Modelo numérico B1 (Este trabalho)37
Figura 3.21 – Curva carga versus deslocamento para os modelos B1
Figura 4.1 – Carregamento e condições de contorno
Figura 4.2 – Modelos A1 a A542
Figura 4.3 – Modelos A6 a A10

Figura 4.4 – Modelos A11 a A15.	.44
Figura 4.5 – Modelos B1 a B5	.45
Figura 4.6 – Modelos B6 a B10	.46
Figura 4.7 – Modelos B11 a B15	.47
Figura 4.8 – Modelos C1 a C5	.48
Figura 4.9 – Modelos C6 a C10	.49
Figura 4.10 – Modelos C11 a C15	.50
Figura 4.11 – Flambagem do montante de alma (modelo C7).	.52
Figura 4.12 – Colapso por plastificação (modelo A1).	.52
Figura 4.13 – Mecanismo Vierendeel (modelo B15).	.53
Figura 4.14 – Acoplamento da flambagem do montante de alma e do mecanismo Vierendee (modelo B14).	el . 53
Figura 4.15 – Relação entre P_{ult}/P_{cr} versus D_0/d_g .	.54
Figura 4.16 – Relação entre P_{ult}/P_{cr} versus p/D_0	.54
Figura 5.1 – Relação comparativa de V_h versus S/D_0 para $\lambda = 57,2$.55
Figura 5.2 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8$.56
Figura 5.3 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2$.56
Figura 5.4 – Variação de $V_h \operatorname{com} p/D_0 \operatorname{versus} D_0/d_g$.56
Figura 5.5– Forças aplicadas e seção crítica no montante de alma de uma viga castelada hexagonal equivalente (adaptado de Ward, 1990).	.57
Figura 5.6 – Curvas utilizadas para o dimensionamento do montante de alma (Ward, 1990).	. 58
Figura 5.7 – Comportamento do montante de alma (adaptado de Lawson et al., 2002)	.60
Figura 5.8 – Relação comparativa de V_h versus p/D_0 para $\lambda = 57,2 \text{ e } D_0/d_g = 0,57$.60
Figura 5.9 – Relação comparativa de V_h versus p/D_0 para $\lambda = 57,2$ e $D_0/d_g = 0,70$.61
Figura 5.10 – Relação comparativa de V_h versus p/D_0 para $\lambda = 57,2$ e $D_0/d_g = 0,80$.61
Figura 5.11 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8 \text{ e } D_0/d_g = 0,57$.61
Figura 5.12 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8 \text{ e } D_0/d_g = 0,70$.62
Figura 5.13 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48.8 \text{ e } D_0/d_g = 0.80$.62

Figura 5.14 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2 \text{ e } D_0/d_g = 0,5762$
Figura 5.15 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2 \text{ e } D_0/d_g = 0,7063$
Figura 5.16 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2 \text{ e } D_0/d_g = 0,8063$
Figura 5.17 – Relação comparativa de V_h (este trabalho e Lawson <i>et al.</i> , 2002) versus $p/D_0.64$
Figura 5.18 – Relação comparativa de V_h (este trabalho e Lawson <i>et al.</i> , 2002) versus D_0/d_g .64
Figura 6.1 – Colapso por plastificação (modelo D1)
Figura 6.2 – Flambagem do montante de alma (modelo D2)69
Figura 6.3 – Acoplamento do mecanismo Vierendeel com a flambagem do montante de alma (modelo D3)
Figura 6.4 – Flambagem do montante de alma (modelo D4)69
Figura 6.5 – Flambagem do montante de alma (modelo D5)70

LISTA DE TABELAS

Tabela 3.1 – Propriedades geométricas das vigas celulares	32
Tabela 3.2 – Comparação entre cargas últimas deste trabalho e Erdal (2011)	34
Tabela 3.3 – Comparação entre cargas ultimas deste trabalho e Warren (2001)	35
Tabela 3.4 – Comparação entre cargas ultimas deste trabalho e Tsavdaridis e D'Mello (2010)). 37
Tabela 4.1 – Propriedades geométricas dos modelos numéricos	40
Tabela 4.2 – Carga crítica, carga última e modos de colapso	51
Tabela 6.1 – Comparação entre metodologia proposta e resultados numéricos	67
Tabela 6.2 – Propriedades geométricas dos modelos numéricos.	68
Tabela 6.3 – Comparação entre metodologia proposta e resultados numéricos	68

RESUMO

Atualmente, a utilização de vigas celulares tem sido cada vez mais intensa devido à sua geometria flexível e também por proporcionar, em diversas situações, um projeto mais econômico. Desse modo, para uma aplicação eficiente, o conhecimento do seu comportamento é de fundamental importância, entretanto, foi observado que poucos são os trabalhos relacionados às vigas celulares principalmente no que diz respeito aos seus modos de colapso. Nesse contexto, um dos modos de colapso mais complexos é a flambagem do montante de alma, causada por compressão ou cisalhamento. O espaçamento entre as aberturas, a esbeltez da alma e o diâmetro das aberturas são alguns dos parâmetros que interferem no fenômeno, mas o conhecimento do seu comportamento ainda é impreciso. Este trabalho tem como objetivo estudar os parâmetros e as características que governam a flambagem do montante de alma devida apenas ao cisalhamento em vigas celulares via análise não linear pelo Método dos Elementos Finitos (MEF). Em adição, tem como objetivo estudar e avaliar a validade de formulações analíticas existentes e, caso necessário, propor novos procedimentos considerando a faixa de variação de esbeltez da alma dos perfis I laminados de faces paralelas (série W) fabricados no Brasil. Para tal, o modelo numérico desenvolvido considerou as não linearidades de geometria e de material. Resultados disponíveis na literatura foram utilizados para a validação e calibração desse modelo. Foi observado que a flambagem do montante de alma devida ao cisalhamento ocorre predominantemente quando a relação entre o passo e o diâmetro das aberturas se situa entre 1,2 e 1,4. Adicionalmente, tendo em vista a boa aproximação dos resultados obtidos, a capacidade resistente proposta é baseada no método desenvolvido por Lawson et al. (2002). Entretanto, algumas diferenças foram observadas, principalmente quando a relação entre o diâmetro das aberturas e a altura total da seção transversal da viga celular (D_0/d_s) e a relação entre o passo e o diâmetro das aberturas (p/D_0) se reduzem. Além disso, observou-se que o método de Lawson et al. (2002) não consegue levar em conta corretamente vigas nas quais a distância entre as faces das aberturas é pequena. Com base nessas constatações, foram adicionados ao método de Lawson et al. (2002) fatores de ajuste que permitiram tornar seus resultados mais próximos dos resultados numéricos obtidos neste trabalho.

Palavras-chave: Vigas celulares de aço, flambagem do montante de alma, análise não linear, método dos elementos finitos.

ABSTRACT

Currently, the use of cellular beams has been intensely increasing, due to their flexible geometry and to the fact that they provide, in several situations, a more economical design. Thus, for an efficient utilization, the knowledge of their behaviour is extremely important. However, it was observed that there are few works related to cellular beams, especially with regard to their collapse modes. In this context, one of the most complex collapse modes is the web-post buckling by compression or by shear. The spacing between the openings, the web slenderness and the opening diameter are some parameters that influence the phenomenon, but the knowledge of their behaviour is still unclear. This project aims at evaluating, by nonlinear Finite Element Method (FEM) analysis, the behavior of the cellular steel beams, according to the web-post buckling due to shear. In addition, it targets on studying and examining existing analytical formulations and, if necessary, proposing new procedures, considering the range variation of the slenderness of the web rolled parallel faces I profiles (W series) manufactured in Brazil. For this, numerical models were developed, taking geometric and material nonlinearities into account. Available results in the literature were used for validation and calibration of these models. It was observed that the web-post buckling by shear occurs predominantly when the spacing and diameter of the openings ratio is between 1.2 and 1.4. Additionally, considering the good approximation of the obtained results, the resistance capacity is based on Lawson's et al. (2002) methodology. However, some differences were observed especially when the diameter of the openings and the total height of the cellular beam cross section ratio (D_0/d_g) and the step and the diameter of the openings ratio (p/D_0) are reduced. Furthermore, it was observed that Lawson's *et al.* (2002) method doesn't consider properly the beams with a small the distance between the faces of the openings. Based on these findings, two adjustment factors were added to Lawson's et al. (2002) method, so that its results could approximate the numeral results got in this work.

Keywords: Cellular steel beams, web-post buckling, nonlinear analysis, finite element method.

1

INTRODUÇÃO

1.1 Generalidades

Devido à pouca diversidade de altura dos perfis I ou H laminados fabricados na Europa por volta dos anos 1930, aliada à busca por novas soluções que minimizassem o custo de fabricação e o tempo de execução das estruturas após a Segunda Guerra Mundial, as vigas com aberturas sequencias originadas de cortes na alma, denominadas vigas alveolares, desenvolvidas pelo inglês Geoffrey Murray Boyd, surgiram como uma alternativa bastante interessante.

Inicialmente foram desenvolvidas somente vigas com aberturas hexagonais, que receberam o nome de vigas casteladas devido à semelhança das saliências com as ameias das muralhas dos castelos. A Fig. 1.1 ilustra a geometria das vigas alveolares casteladas.

Figura 1.1 – Vigas alveolares casteladas.

Atualmente, o avanço do processo de automação proporcionou, além de uma maior velocidade de fabricação, a possibilidade de criação de novos formatos de aberturas como, por exemplo, o circular, gerando as chamadas vigas celulares. A fabricação dessas vigas é feita geralmente a partir de um perfil I laminado, no qual são efetuados dois cortes longitudinais, sendo cada corte constituído por módulos contínuos formados por uma semicircunferência

seguida de um pequeno segmento reto (Fig. 1.2-a). Posteriormente as duas metades são defasadas e soldadas entre si (Fig. 1.2-b), pelos segmentos retos. O resultado é uma viga com capacidade resistente à flexão e rigidez muito superiores à do perfil laminado original com praticamente a mesma quantidade de aço. Deve-se, no entanto, destacar que, em termos proporcionais, por uma questão geométrica, o ganho de rigidez é maior que o da capacidade resistente à flexão. Por essa razão, as vigas celulares encontram sua maior eficiência quando o estado-limite de serviço relativo ao deslocamento máximo (flecha) é predominante.

a) – Corte.

Figura 1.2 – Processo de fabricação das vigas celulares (fonte: <u>www.steelconstruction.info</u> – acessado em 03/12/2012).

Conforme Oliveira (2012), devido à geometria final, comparativamente às demais vigas alveolares, as vigas celulares são menos agressivas visualmente e possibilitam uma melhor expressão arquitetônica ao ambiente, como ilustra a Fig. 1.3.

Figura 1.3 – Vigas celulares aplicadas em um ginásio poliesportivo (fonte: www.westok.co.uk – acessado em 23/12/2012).

1.2 Parâmetros Geométricos e Simbologia

A geometria e a simbologia das vigas celulares são ilustradas nas Figs 1.4 e 1.5, em que:

p é o espaçamento entre as aberturas (passo);

 D_0 é o diâmetro das aberturas;

 d_g é a altura total da seção transversal da viga celular ($k = razão de expansão = d_g/d$);

 b_w é a distância entre as faces das aberturas;

 b_f é a largura das mesas superior e inferior;

 t_f é a espessura das mesas superior e inferior;

- t_w é a espessura da alma;
- y_o é a distância do centro geométrico (G) do 'tê' ao eixo da viga;
- h_t é a altura total do 'tê'.

Figura 1.4 – Parâmetros geométricos das vigas celulares (Veríssimo et al., 2010).

Figura 1.5 – Simbologia dos elementos da seção transversal de vigas celulares (Veríssimo *et al.*, 2010).

1.3 Tipologias

De acordo com a necessidade de cada projeto, as vigas celulares podem ser fabricadas com três configurações distintas:

- ✓ vigas de eixos retos e seção constante configuração padrão podendo ser aplicada em qualquer sistema estrutural;
- ✓ vigas com eixo curvo e seção constante geralmente aplicada em sistemas de coberturas sendo que curvatura da peça pode melhorar o desempenho estrutural;
- ✓ vigas com eixo reto e inércia variável a variação de inércia mostra-se interessante em situações onde os esforços solicitantes também sofrem variações acentuadas ao longo do vão da viga (a inércia deve variar de acordo com o carregamento aplicado, garantindo economia e eficiência ao elemento estrutural).

As Fig. 1.5 e 1.6 ilustram a fabricação das vigas de eixo curvo e de inércia variável, respectivamente.

Figura 1.6 – Viga celular com eixo curvo e seção constante (Oliveira, 2012).

Figura 1.7 – Viga celular com eixo reto e inércia variável (Oliveira, 2012).

1.4 Campos de Aplicação

Com base no exposto em 1.1, as vigas celulares são especialmente adequadas para situações em que os vãos são grandes e as cargas atuantes não são muito elevadas e, adicionalmente, se deseja um aspecto estético elegante. Nessas situações, podem ser usadas com excelentes resultados em diversos tipos de construções, como galpões, supermercados, grandes lojas e determinados edifícios comerciais, assim como estádios (ver Figs. 1.8, 1.9 e 1.10).

Figura 1.8 – Aplicação de vigas celulares curvas, Winchester (Erdal, 2011).

Figura 1.9 – Dunfermline FC, vigas celulares com 21 m de vão (fonte: <u>www.westok.co.uk</u> – acessado em 02/11/2012).

Figura 1.10 – Vigas celulares aplicadas na cobertura de um supermercado (fonte: <u>www.arcelormittal.com</u> – acessado em 11/12/2012).

De modo geral, as vigas alveolares também são interessantes por facilitarem a passagem dos dutos de instalações diversas em edificações comerciais, propiciando economia de espaço vertical. Nos sistemas estruturais convencionais, algumas dessas tubulações devem necessariamente passar abaixo das vigas exigindo maior pé-direito. Entretanto, conforme ilustrado na Fig. 1.11, quando se utilizam vigas celulares, os dutos podem ser dispostos dentro das aberturas.

Figura 1.11 – Disposição das tubulações dentro das aberturas das vigas celulares (fonte: <u>www.arcelormittal.com</u> – acessado em 11/12/2012).

Adicionalmente, a possibilidade de vencimento de grandes vãos, superiores a 18 m, por exemplo, proporciona uma flexibilidade do espaço interno da edificação, facilita eventuais reformas ou ampliações, além de reduzir, no mínimo em 30% o peso total da estrutura, de acordo com os fabricantes *ArcelorMittal* e *CMC Steel Products*.

Em comparação às demais vigas alveolares, as vigas celulares apresentam uma solução mais econômica devido à sua geometria flexível, pois o diâmetro das aberturas e o espaçamento entre elas podem ser alterados. Além disso, conforme ilustrado na Fig. 1.12, a disposição das aberturas pode ser ajustada de modo que a conexão com vigas secundárias possa ocorrer no montante de alma.

Figura 1.12 – Conexão com vigas secundárias.

Em sistemas de coberturas de estacionamentos (ver Fig. 1.13), a aplicação das vigas celulares implica em uma maximização do espaço interno devido à redução do número de pilares.

Figura 1.13 – Aplicação de vigas celulares em sistemas de garagem, Fairhill Car Park, Ballymena (fonte: <u>www.westok.co.uk</u> – acessado em 23/12/2012).

1.5 Modos de Colapso

1.5.1 Considerações Gerais

Poucos foram os estudos desenvolvidos para as vigas celulares no que tange à determinação dos modos de colapso. Entretanto, de maneira similar às vigas casteladas, para as quais as pesquisas são mais abundantes, foi constatado que eles dependem principalmente da geometria do corte (altura e espaçamento das aberturas), do tipo de solicitação e das condições de vinculação da viga. Considerando que o carregamento aplicado produza momento fletor e força cortante, os modos de colapso observados são os seguintes:

- ✓ Flambagem do montante da alma;
- ✓ Formação de um mecanismo Vierendeel;
- ✓ Flambagem lateral com torção;
- ✓ Formação de rótula plástica;
- ✓ Ruptura do montante na seção da solda.

1.5.2 Flambagem do Montante de Alma

1.5.2.1 Generalidades

A flambagem do montante de alma é um dos mecanismos de colapso mais complexos existentes em vigas celulares e está associada a diversos parâmetros, incluindo o espaçamento entre as aberturas (p) e a esbeltez da alma (λ). Dependendo da variação de tais parâmetros, e do tipo de carregamento aplicado, o montante de alma pode sofrer colapso por cisalhamento ou por compressão, nesse último caso especialmente quando houver uma força localizada que o comprima.

1.5.2.2 Flambagem do Montante de Alma Devida à Força Cortante

A flambagem do montante da alma devida ao cisalhamento em vigas casteladas, de acordo com Kerdal e Nethercot (1984), é um tipo de instabilidade onde o montante se comporta como uma viga fletida em relação ao seu eixo de maior inércia. O montante pode sofrer flambagem por flexão combinada com torção, com o lado AB sujeito a tensões de tração e o lado CD a tensões de compressão, pois a parte comprimida tende a se deslocar para fora do plano longitudinal do perfil enquanto a parte tracionada tende a permanecer na posição inicial (ver Fig. 1.14). Para Kerdal e Nethercot (1984), esse modo de colapso ocorre geralmente em regime inelástico, após a ocorrência de plastificações significativas.

Figura 1.14 – Flambagem do montante de alma devida ao cisalhamento (adaptado de Kerdal e Nethercot, 1984).

A instabilidade do montante de alma é abordada através da consideração da força horizontal V_h localizada no centro do montante. Conforme descrito anteriormente, tal força produz um momento fletor em uma seção situada a uma distância y do eixo da viga que por sua vez produzirá uma tensão normal (ver Fig. 1.15).

Figura 1.15 – Forças atuantes no montante de alma.

Assim, para o estudo da capacidade resistente, conforme apresentado pela Eq. (1.1), o equilíbrio das forças atuantes em relação ao ponto *O* resulta em:

$$-V_{h}y_{0} + \frac{V}{2}\frac{p}{2} + \frac{V+F}{2}\frac{p}{2} = 0 \Longrightarrow V_{h} = \left(V + \frac{F}{2}\right)\frac{p}{2y_{0}}$$
(1.1)

Considerando que a parcela F/2 é pequena em relação à cortante V, a Eq. (1.1) pode ser reescrita através da Eq. (1.2):

$$V_h = V \frac{p}{2y_0} \tag{1.2}$$

Após uma série de estudos experimentais em vigas casteladas, Zaarour e Redwood (1996) concluíram que esse tipo de colapso está associado às seguintes características geométricas:

- ✓ relação entre altura da abertura (D_0) e altura total da seção (d_g);
- ✓ relação entre altura da abertura (D_0) e largura do montante de alma (b_w);
- ✓ relação entre largura do montante de alma (b_w) e espessura da alma (t_w) .

1.5.2.3 Flambagem do Montante de Alma Devida à Compressão

Conforme observado por Kerdal e Nethercot (1984), esse modo de falha ocorre preferencialmente devido a forças concentradas ou pontos de reação em que o montante se comporta como um elemento axialmente comprimido. Ademais, em contraste com a flambagem do montante de alma devida ao cisalhamento, o deslocamento lateral devido à compressão não é acompanhado de torção (ver Fig. 1.16).

Figura 1.16 – Flambagem do montante de alma devida à compressão (Erdal, 2011).

1.5.3 Formação de um Mecanismo Vierendeel

O mecanismo Vierendeel consiste na formação de rótulas plásticas nos cantos das aberturas devidas à presença de força cortante de grande magnitude na viga. Nesse caso, conforme ilustrado na Fig. 1.17, as aberturas sofrem uma distorção, deformando-se como um paralelogramo.

Figura 1.17 – Mecanismo Vierendeel (Tsavdaridis e D'Mello, 2010).

Esse mecanismo Vierendeel se manifesta porque a força cortante produz momentos adicionais – momento de Vierendeel – nos 'tês' acima e abaixo das aberturas, conforme ilustrado na Fig. 1.18.

Figura 1.18 – Diagrama de esforços na seção crítica (Olander, 1954).

1.5.4 Flambagem Lateral com Torção

Conforme observado no trabalho de Abreu (2011), o comportamento das vigas celulares à flambagem lateral com torção (FLT) é similar ao das vigas de alma cheia (ver Fig. 1.19). Entretanto, ressalta-se que as propriedades geométricas das vigas alveolares devem ser calculadas no centro das aberturas (Kerdal e Nethercot, 1984).

Figura 1.19 – Flambagem lateral com torção (Erdal, 2011).

1.5.5 Formação de Rótula Plástica

Quando o momento fletor é o esforço predominante, os 'tês' superior e inferior escoam simultaneamente por tração e compressão formando uma rótula plástica. Nesse caso, o momento resistente é o próprio momento de plastificação (M_{pl0}) correspondente à seção no centro da abertura.

1.5.6 Ruptura do montante na seção da solda

A ruptura na junção das duas metades do perfil, conforme ilustrado na Fig. 1.20, pode ocorrer se o comprimento da mesma não for suficiente para suportar as tensões de cisalhamento nessa região.

Figura 1.20 – Ruptura da solda entre as aberturas (Tsavdaridis e D'Mello, 2011).

1.6 **Objetivos**

Este trabalho tem como objetivo estudar os parâmetros e as características que governam a flambagem do montante de alma devido à força cortante em vigas celulares via análise não linear pelo Método dos Elementos Finitos (MEF). Em adição, tem como objetivo estudar e avaliar a validade das formulações analíticas existentes e, caso necessário, propor novos procedimentos considerando a faixa de variação de esbeltez da alma dos perfis I laminados de faces paralelas (série W) fabricados no Brasil.

1.7 Justificativa

A partir dos anos de 1960, principalmente na Europa e nos Estados Unidos, com o surgimento dos computadores, as operações de corte e solda foram otimizadas e o avanço tecnológico proporcionou a reutilização das vigas alveolares, além da criação de novas tipologias geométricas. No Brasil, após 2002, ano do início da laminação de perfis I da série W no país, houve um forte aumento da tendência em se buscar novas soluções construtivas que possibilitassem uma aplicação mais eficiente das estruturas de aço. Entretanto, foi observado que os perfis brasileiros extrapolam a faixa de esbeltez coberta pelos perfis europeus trabalhando em uma faixa onde o seu comportamento ainda não é totalmente conhecido (ver

Fig. 1.21). Além disso, poucos são os estudos referentes às vigas celulares, principalmente no que diz respeito aos modos de colapso.

Figura 1.21 – Faixas de variação de esbeltez da alma para perfis europeus e laminados brasileiros (Vieira, 2011).

1.8 Metodologia

Para o cumprimento dos objetivos deste trabalho, as seguintes etapas foram executadas:

- revisão bibliográfica considerando os principais estudos relacionados às vigas alveolares, com destaque para as celulares;
- revisão bibliográfica específica considerando os estudos analíticos, numéricos e experimentais relacionados à flambagem do montante de alma de vigas alveolares, com destaque para as celulares;
- desenvolvimento de um modelo numérico via MEF utilizando o programa ABAQUS (Hibbit *et al.*, 2009) para as vigas celulares considerando as não linearidades física e geométrica;
- validação do modelo numérico através de resultados analíticos, numéricos e experimentais existentes na literatura;
- avaliação do comportamento dos perfis laminados brasileiros através de um estudo paramétrico de acordo com a sua faixa de variação de esbeltez;

 desenvolvimento e validação de um procedimento analítico de cálculo da capacidade resistente de vigas celulares para o estado-limite de flambagem do montante de alma (FMA).

2

REVISÃO BIBLIOGRÁFICA

2.1 Estudos Relevantes sobre o Colapso de Vigas Alveolares

Diversos estudos foram realizados para a determinação dos modos de colapso, cargas últimas e propriedades geométricas ótimas das vigas alveolares. Entretanto, foi observado que a maioria dos trabalhos desenvolvidos está relacionada às vigas casteladas. Dentre tais estudos, os mais importantes são os trabalhos de Altfillisch *et al.* (1957), Toprac e Cooke (1959), Shelbourne (1966), Delesques (1968), Husain e Speirs (1971), Kerdal e Nethercot (1984), Lleonart (1988), Ward (1990), Harper (1994), Zaarour e Redwood (1996), Redwood e Demirdjian (1998) e Cimadevila *et al.* (2000).

Altfillisch *et al.* (1957) investigaram o comportamento estrutural e os modos de colapso das vigas casteladas nos regimes elástico e inelástico. Foram ensaiadas três vigas, todas submetidas a duas cargas concentradas dispostas simetricamente, tendo sido observada a flambagem da mesa devida à compressão. Além disso, concluíram que a expansão da altura das vigas pode acarretar um aumento de 10% a 35% do momento resistente em comparação com as vigas originais.

Toprac e Cooke (1959) investigaram a capacidade de carregamento e os modos de colapso em nove vigas casteladas. Nessa investigação, resultados experimentais foram comparados aos resultados analíticos com o objetivo de determinar a razão de expansão ótima para cada viga. Com relação aos modos de colapso, das vigas ensaiadas, duas apresentaram flambagem lateral com torção, quatro flambagem local da mesa superior e duas mecanismo Vierendeel. O resultado de um dos experimentos não foi divulgado. Em um estudo experimental, Shelbourne (1966) observou a interação entre força cortante e momento fletor no comportamento das vigas casteladas sob variadas combinações de carregamentos. Dos sete ensaios realizados, apenas dois sofreram colapso devido a mecanismos de flexão.

Delesques (1968) apresentou um modelo analítico para a determinação da força cortante crítica que causa a flambagem do montante de alma devida ao cisalhamento em vigas casteladas. Inicialmente, o autor assumiu um comportamento indefinidamente elástico para a instabilidade. Entretanto, após observar os resultados experimentais, concluiu que o mais provável era a ocorrência da flambagem em regime inelástico.

Husain e Speirs (1971) estudaram, através de um programa experimental, a ruptura da solda entre as aberturas em seis vigas casteladas simplesmente apoiadas submetidas a diversas condições de carregamento. Foi observado que a ruptura do cordão de solda é frágil e acompanhada de grande liberação de energia.

Em um programa experimental, Kerdal e Nethercot (1984) estudaram alguns modos de colapso em vigas casteladas. Dentre esses modos, estão o mecanismo Vierendeel, a flambagem do montante de alma devida à força cortante e a ruptura da solda entre as aberturas. Outros modos como a ruptura devido à formação de rótulas plásticas e a flambagem lateral com torção são similares aos fenômenos observados em vigas de alma cheia.

O primeiro artigo a se referenciar às vigas celulares foi publicado pelo arquiteto Lleonart (Lleonart, 1988). Em seu texto, além de descrever e exemplificar alguns tipos de vigas alveolares, ele afirmou, evidentemente com base na realidade da época, que as vigas com aberturas circulares apresentavam pouca aceitação na prática.

Ward (1990) estudou o comportamento do montante de alma de vigas celulares de aço e mistas de aço e concreto com perfis celulares com base em um estudo paramétrico envolvendo análise não linear via MEF. Curvas para o dimensionamento do montante de alma foram geradas a partir desses resultados.

Harper (1994) observou, por meio de um estudo analítico, que para um melhor desempenho das vigas celulares o diâmetro do alvéolo (D_0) deve variar entre 0,57 e 0,80 da altura da viga celular (d_g) e o espaçamento entre as aberturas (p) de 1,08 a 1,50 D_0 . Adicionalmente, a relação entre a altura do perfil expandido e altura do perfil original, denominada razão de expansão (d_g/d), deve variar entre 1,25 e 1,75.

Através de um programa experimental, Zaarour e Redwood (1996) examinaram a flambagem do montante de alma por cisalhamento em vigas casteladas de aço simplesmente apoiadas. Após o ensaio, esse modo de colapso foi observado em dez das quatorze vigas ensaiadas.

Também em um programa experimental, Redwood e Demirdjian (1998) estudaram a flambagem do montante de alma e investigaram os efeitos da relação momento/cisalhamento no modo de colapso de vigas casteladas. Todas as vigas ensaiadas apresentaram como modo de colapso a flambagem do montante de alma.

Cimadevila *et al.* (2000) apresentaram uma metodologia de cálculo para vigas casteladas baseada nas tensões e deformações admissíveis. Além disso, inicialmente, de uma maneira simplificada, há uma breve introdução das tipologias das vigas alveolares mais comuns, dentre elas as celulares.

Atualmente, no Brasil, a Universidade Federal de Minas Gerais (UFMG), conjuntamente com a Universidade Federal de Viçosa (UFV), vem apresentando diversos trabalhos relacionados às vigas alveolares no âmbito teórico-numérico e experimental.

Abreu (2011) avaliou o comportamento de vigas celulares simétricas com foco na flambagem lateral com torção. Considerando os resultados numéricos, foi proposta uma nova metodologia de cálculo baseada na ABNT NBR 8800:2008.

Em um estudo numérico, Vieira (2011) estudou a influência dos parâmetros geométricos e dos tipos de carregamentos sobre a flambagem do montante de alma em vigas casteladas. Para vãos longos e carregamento uniformemente distribuído, foi observado que esse modo de colapso é menos frequente dentre os outros.

Bezerra (2012) observou o comportamento de vigas casteladas simétricas segundo a flambagem lateral com torção. Considerando os resultados numéricos, também foi proposta uma nova metodologia de cálculo baseada na ABNT NBR 8800:2008.

Silveira (2011) avaliou o comportamento plástico das vigas alveolares casteladas e celulares através de um estudo teórico-numérico. Dentre outras constatações, foi observado que a força cortante exerce grande influência na capacidade última. Além disso, para as vigas celulares, a formulação proposta considerando a flambagem do montante de alma como estado limite último, foco deste trabalho, inconsistentemente, possui parâmetros relacionados às vigas casteladas. Desse modo, a sua aplicação torna-se inviável.

Ferrari (2013) desenvolveu um estudo numérico com o intuito de investigar o comportamento de vigas alveolares (casteladas e celulares) mistas de aço e concreto com base em resultados experimentais disponíveis na literatura. O modelo numérico desenvolvido mostrou-se adequado, pois os modos de colapso obtidos nas análises apresentaram boas aproximações com os valores observados na literatura, além de representar com êxito a interação parcial e total entre o aço e o concreto.

2.2 Estudos Relacionados à Flambagem do Montante de Alma de Vigas Celulares

2.2.1 Estudos Analíticos

A primeira metodologia desenvolvida para o estudo da flambagem do montante de alma em vigas celulares foi apresentada por Ward (1990). Em seu estudo, o modo de colapso é governado por um mecanismo de flexão (causado pelo desenvolvimento de rótulas plásticas) ou por flambagem. Assim, visando o desenvolvimento de curvas para o dimensionamento do montante de alma, foram realizadas diversas análises numéricas via MEF considerando comportamento elastoplástico do material. De acordo com o autor, esse tipo de colapso foi assumido como dependente dos detalhes geométricos do montante de alma. Como limitação, somente seções transversais simétricas (aberturas dispostas no centro da alma) foram abordadas.

Lawson *et al.* (2002) abordou uma nova metodologia para a análise da flambagem do montante de alma em vigas celulares e vigas celulares mistas de aço e concreto simétricas. Essa metodologia foi baseada em uma zona de compressão (*'strut' model*) calibrada através de análises via método dos elementos finitos. As tensões de compressão e tração devidas à força horizontal no meio do montante de alma, conforme ilustrado na Fig. 2.1, variam no

entorno das aberturas. Assim, a força horizontal pode ser determinada por equilíbrio das forças horizontais, ou de momentos, ou ainda por meio do ângulo entre essas tensões.

Figura 2.1 – Tensões no entorno do montante de alma (Lawson et al., 2002).

Com base no método do laço, Lawson *et al.* (2006) desenvolveram um procedimento de cálculo para a flambagem do montante de alma em vigas celulares e vigas celulares mistas de aço e concreto assimétricas.

2.2.2 Estudos Experimentais e Numéricos

Sherbourne (1966) observou a interação entre forças cisalhantes e momentos fletores no comportamento das vigas casteladas sob variadas combinações de carregamentos. Sete vigas submetidas a condições de cisalhamento constante no entorno da castelação central e momento puro foram ensaiadas. Dessas vigas, duas apresentaram flambagem do montante de alma como modo de colapso, sendo uma em zona de cisalhamento máximo (considerando dois pontos de aplicação de cargas) e outra sob efeito de cisalhamento constante no entorno da castelação central.

Halleux (1967) realizou testes destrutivos em cinco vigas casteladas simplesmente apoiadas com padrões geométricos distintos considerando a aplicação de duas cargas concentradas nos terços médios do vão. As vigas sofreram colapso devido ao mecanismo Vierendeel.

Bazile e Texier (1968) ensaiaram duas séries de vigas casteladas visando à observação do comportamento das mesmas segundo diferentes propriedades geométricas e razões de expansão. Todas as vigas foram simplesmente vinculadas e testadas considerando a atuação de oito cargas concentradas. Foi observado que três das seis vigas ensaiadas apresentaram
como modo de colapso a flambagem do montante de alma em região de cisalhamento máximo.

Em uma série de testes, Kerdal e Nethercot (1984) investigaram os modos de colapso e seus fatores condicionantes em vigas casteladas. Foi observado que a flambagem do montante de alma está associada à geometria das vigas, assim como ao tipo de carregamento e vinculação.

Duas grandes séries de ensaios destrutivos foram realizadas pela primeira vez para vigas celulares sobre supervisão do *British Steel Construction Institute* (BSCI). A primeira série foi realizada pela Universidade de Bradford em 1955 e a segunda pela Universidade de Leeds em 1988. Os resultados obtidos não foram publicados.

Devido ao surgimento de novas tipologias de vigas alveolares, Zaarour e Redwood (1996) ressaltaram a importância de novos estudos do comportamento estrutural de vigas com essas novas tipologias. Com isso, foram realizados doze ensaios em vigas casteladas *Bantam* (perfis laminados leves fabricados pela *Chaparral Steel*), com o intuito de observar a flambagem do montante de alma, juntamente com análises numéricas inelásticas via MEF. A instabilidade foi observada em dez casos. De modo geral, pode-se considerar que os modelos numéricos apresentaram resultados de deslocamentos satisfatórios. Entretanto, devido a algumas aproximações, os resultados de cargas últimas observados foram superiores aos valores experimentais. Com base nos resultados, considerando o método das diferenças finitas, foi proposto um processo gráfico como ferramenta auxiliar para a estimativa da capacidade resistente das vigas casteladas.

Redwood e Demirdjian (1998) estudaram a flambagem local da alma por cisalhamento em vigas casteladas em um ensaio com quatro perfis com seções transversais e configurações de aberturas idênticas, variando apenas o vão. O maior foco do experimento era investigar a flambagem do montante de alma e estudar a influência da interação momento-cisalhamento na instabilidade. Adicionalmente, foram desenvolvidos modelos numéricos utilizando as mesmas configurações geométricas dos modelos experimentais. Considerando a análise elástica de bifurcação via MEF, comparativamente aos modelos experimentais, foi observado que todas as cargas críticas numéricas foram inferiores aos valores experimentais. A variação média foi de 9%. Além disso, os resultados demonstraram que a utilização de uma análise elástica para a estimativa da resistência do montante de alma submetido a forças de cisalhamento elevadas é válida.

Warren (2001) avaliou a confiabilidade do método apresentado pelo *The Steel Construction Institute* (SCI) em oito vigas celulares com a proposta de melhorá-lo através de uma metodologia simples, caso necessário. Foi proposta também uma nova metodologia de análise que determina os modos de colapso (e as respectivas cargas últimas) e o estado-limite de serviço relacionado aos deslocamentos. Os resultados obtidos experimentalmente foram utilizados para validar os modelos numéricos. De acordo com os resultados experimentais, todas as vigas apresentaram como modo de colapso o mecanismo Vierendeel, exceto uma delas que sofreu flambagem do montante de alma. Adicionalmente, foi observado que em todos os modelos numéricos as cargas últimas foram em média 19% superiores aos valores experimentais. Outro ponto relevante foi a observação de que grandes deformações plásticas ocorreram antes do colapso das vigas nos modelos numéricos, enquanto nos modelos experimentais somente pequenas deformações foram observadas.

Os resultados com relação às abordagens teóricas demonstraram que a metodologia do SCI segundo Ward (1990) é extremamente conservadora prevendo uma carga média de 76% dos valores observados experimentalmente. Dos métodos propostos, o dimensionamento através de gráficos (*design charts*) mostrou-se mais preciso e de fácil utilização, além de ser aplicável a qualquer tipo de carregamento.

Como limitação, o programa computacional e o aplicativo de análise (*spreadsheet*) – derivado do programa computacional – podem ser utilizados apenas em vigas celulares simplesmente apoiadas sujeitas a cargas concentradas. Pode-se observar também que os gráficos desenvolvidos para o dimensionamento não identificam problemas associados a efeitos localizados causados pelas cargas concentradas. Adicionalmente, uma das complexidades dessa metodologia foi estabilizar um comprimento efetivo razoável para a zona de compressão devido ao complexo estado de tensões composto no entorno das aberturas.

Bake (2010) avaliou o comportamento de vigas celulares mistas de aço e concreto à temperatura ambiente e em situação de incêndio. Dentre outras observações, o autor sugere que os trabalhos futuros avaliem a capacidade resistente à flambagem do montante de alma submetido a elevadas temperaturas.

Tsavdaridis e D'Mello (2010) investigaram e compararam, através de um programa experimental e modelos desenvolvidos em elementos finitos, o comportamento de vigas alveolares com novas tipologias de aberturas quanto à flambagem do montante de alma.

Conforme ilustrado na Fig. 2.2, com relação às vigas celulares A1 e B1, os modelos numéricos apresentaram resultados muito próximos aos obtidos experimentalmente. Em ambos foram observados elevados níveis de tensões nos montantes de alma.

a) - Modelo experimental A1 e modelo numérico.

b) - Modelo experimental B1 e modelo numérico.

Comparando-se os experimentos A1 e B1 observa-se que a espessura do montante de alma afeta a capacidade das vigas celulares.

Tsavdaridis e D'Mello (2011) apresentaram técnicas para a modelagem em elementos finitos de vigas alveolares considerando a flambagem do montante de alma. Para tal, foram ensaiadas duas vigas alveolares, uma castelada e a outra celular, sendo essa última foco da análise. Similarmente aos modelos experimentais, foram desenvolvidos dois modelos em elementos finitos no programa ANSYS. O primeiro modelo, para a determinação da carga crítica de flambagem, utiliza uma solução linearizada através de autovalores (que fornecem as cargas de flambagem) e autovetores (que fornecem os modos de flambagem). Já o segundo modelo utiliza uma análise não linear incremental através de 'cargas de gatilho' (*trigger load*) que induzem a peça à instabilidade.

Os resultados apresentaram valores de cargas superestimados em decorrência do limitado número de nós (quatro) dos elementos, além da utilização da integração reduzida minimizando problemas numéricos como o efeito de bloqueio do cisalhamento (*shear*

Figura 2.2 – Modelos experimentais A1 e B1 após ensaios e tensões de von-Mises dos modelos numéricos (Tsavdaridis e D'Mello, 2010).

locking) em elementos de casca. Adicionalmente, foi observado que a análise via MEF é uma boa escolha quando a teoria de flambagem tradicional é de difícil solução. Mais importante ainda, todos os fatores que afetam a estabilidade das vigas podem ser incorporados nos modelos numéricos gerando uma boa previsão do comportamento pós-flambagem por meio da solução linearizada (autovalores) e perturbação (*trigger load*), com forças ou deslocamentos impostos aos modelos.

Ellobody (2011) propôs o desenvolvimento de um modelo tridimensional em elementos finitos considerando a não linearidade geométrica e de material e destacando a interação entre os modos de flambagem em vigas celulares. Um extensivo estudo paramétrico foi desenvolvido para investigar o comportamento das cargas últimas e dos modos de flambagem das mesmas segundo diferentes geometrias da seção transversal, vãos e esbeltezes. Diferentemente dos outros trabalhos apresentados, foi observada a consideração de tensões residuais nos modelos numéricos. Segundo o autor, pode-se utilizar a mesma distribuição de tensões recomendada para perfis I duplamente simétricos, assumindo que o processo de corte seja cuidadosamente conduzido.

Os resultados demonstraram que as vigas celulares que apresentaram como modo de colapso a flambagem distorcional da alma associada à flambagem do montante de alma apresentaram uma redução considerável da carga última. Ademais, foi observado que a utilização de aço de alta resistência contribuiu para um aumento considerável das cargas últimas nas vigas celulares menos esbeltas.

Erdal (2011) avaliou a capacidade última de vigas celulares considerando a variação das propriedades geométricas. Similarmente aos modelos experimentais, para fins de comparação, foram desenvolvidos modelos em elementos finitos considerando as não linearidades geométrica e física. Esses modelos também foram utilizados para determinar as tensões, deformações e deslocamentos nas vigas celulares, além de investigar os modos de colapso, principalmente a flambagem do montante de alma.

A flambagem do montante de alma foi observada em seis experimentos, nos quais as vigas foram apoiadas lateralmente (ver Fig. 2.3). A instabilidade foi associada à carga diretamente aplicada no montante de alma, à sua geometria e às forças horizontais internas.

Figura 2.3 – Flambagem do montante de alma na série NPI_CB_280 (Erdal, 2011).

Em comparação com os resultados experimentais, foi observado que os deslocamentos nas mesas no modelo numérico foram em torno de 10% menores que os valores obtidos experimentalmente.

3

ANÁLISE NUMÉRICA

3.1 Considerações Iniciais

Na elaboração dos modelos numéricos procurou-se representar com fidelidade a geometria e as características físicas dos materiais empregados. Posteriormente, através de um estudo de convergência e sensibilidade de malha, os modelos foram validados por meio de resultados numéricos e experimentais existentes na literatura. Após sua calibração e aferição, foi feita a avaliação do comportamento dos perfis laminados brasileiros da série W através de um estudo paramétrico de acordo com a sua faixa de variação de esbeltez.

Neste trabalho, os modelos numéricos foram desenvolvidos no programa ABAQUS (Hibbit *et al.*, 2009) versão 6.10 que apresenta como base o MEF. De maneira simplificada, o procedimento de resolução é ilustrado na Fig. 3.1. Para uma simulação mais realística, foram consideradas as não linearidades física e geométrica.

Figura 3.1 – Procedimento simplificado de resolução de um problema via MEF.

3.2 Discretização e Condições de Contorno

Devido à complexidade do comportamento do fenômeno analisado, é necessária a utilização de um elemento plano que incorpore comportamentos associados de flexão e de membrana. Nesse contexto, e sabendo-se que as espessuras das mesas e da alma são significativamente inferiores ao comprimento da viga, a utilização de elementos de casca para a representação do modelo é adequada. A Fig. 3.2 apresenta a geometria desses elementos, assim como a orientação positiva das normais.

Figura 3.2 – Elementos de casca retangular de quatro nós triangular de três nós (Hibbit *et al.*, 2009).

Todos os elementos apresentados possuem seis graus de liberdade por nó (três de translação e três de rotação). Adicionalmente, nesse caso, devido ao comportamento do montante de alma, optou-se por utilizar integração reduzida para minimizar problemas numéricos como o efeito de bloqueio do cisalhamento (*shear locking*) em elementos de casca.

Inicialmente, o modelo foi discretizado com elementos S4R (elemento retangular de quatro nós com integração reduzida) em uma malha não estruturada. Na discretização utilizada, ao contrário de uma malha estruturada, o número de elementos que rodeiam os nós dos vértices não é constante (ver Fig. 3.3).

a) – Malha estruturada.

b) – Malha não-estruturada.

Figura 3.3 – Tipos de malha.

Mesmo sabendo-se que a utilização de uma malha estruturada minimiza problemas de não convergência devido à distorção excessiva dos elementos, por simplicidade de discretização, optou-se pela utilização de uma malha não estruturada. Assim, de modo a evitar problemas numéricos, a dimensão máxima admitida dos lados dos elementos é da ordem de 1,0 cm (ver Fig. 3.4).

Figura 3.4 – Discretização do modelo em elementos S4R com malha não estruturada.

Com relação às condições de contorno, a viga, considerada simplesmente apoiada, foi submetida a uma carga concentrada aplicada sobre o enrijecedor central. Além disso, de acordo com a Fig. 3.5, de modo a prevenir a flambagem lateral com torção, a viga foi contida lateralmente nos apoios e no ponto de aplicação da carga.

Figura 3.5 – Condições de contorno.

3.2.1 Análise Linearizada de Estabilidade

A carga crítica de flambagem elástica foi estimada através de uma análise numérica pelo MEF. Os autovalores (cargas críticas) associados aos autovetores (modos de flambagem) permitiram uma avaliação do comportamento da estrutura considerando o tipo de carregamento e as condições de contorno a que essa foi submetida. De modo geral, apenas o menor autovalor é de interesse. Ademais, nesse tipo de análise as não linearidades físicas não são incorporadas ao modelo.

3.2.2 Consideração da não Linearidade Geométrica

A não linearidade geométrica foi considerada através da introdução das imperfeições geométricas iniciais no modelo. Trata-se de perturbações aplicadas no modelo elástico (geometricamente "perfeito") com o intuito de se observar o comportamento pós-flambagem da estrutura. Tais imperfeições são baseadas nos modos de flambagem (previamente determinados na análise linearizada de estabilidade) e funcionam como um 'gatilho' para iniciar a análise não linear incremental.

Para os problemas abordados neste trabalho, em concordância com Vieira (2011) e Ferrari (2013), foi utilizado aqui o valor de imperfeição igual a 1/2000 da altura total da viga celular. Entretanto, com o avanço das pesquisas, acredita-se que novos valores possam ser utilizados.

3.2.3 Consideração da não Linearidade Física

Através da análise não linear pode-se estimar a carga máxima resistente de uma determinada estrutura sem que esta se torne instável ou entre em colapso. Para tal, além da consideração das imperfeições geométricas, também foram consideradas as não linearidades do material através do diagrama trilinear elastoplástico proposto por Earl (1999) e utilizado por diversos pesquisadores, como Castro e Silva (2006), conforme ilustrado na Fig. 3.6.

O aço estrutural considerado foi o ASTM A572-Grau 50 (usado normalmente na fabricação dos perfis laminados brasileiros da série W), que possui resistência ao escoamento f_y igual a 345 MPa e resistência à ruptura f_u igual a 450 MPa, com o módulo de elasticidade *E* suposto igual a 200.000 MPa. As deformações correspondentes ao final de cada zona foram retiradas

do diagrama real tensão versus deformação desse aço, conforme Earl (1999), de modo que ε_{st} , $\varepsilon_b \in \varepsilon_u$ (ver Fig. 3.6) são iguais a 0,01726, 0,05394 e 0,1519, respectivamente.

Figura 3.6 – Diagrama trilinear elastoplástico (Earl, 1999).

Para a determinação das deformações plásticas, devem-se utilizar três propriedades que caracterizam o comportamento do material:

- ✓ superfície de escoamento especifica o estado de tensões multiaxial correspondente ao início do escoamento. Para o aço foi considerada a função de escoamento de von Mises;
- ✓ regra de fluxo define a propagação das deformações plásticas no contínuo através da relação tensão e deformação. Utiliza como base uma superfície chamada superfície potencial;
- ✓ regra de encruamento especifica como a função de escoamento é modificada após o material ter atingido o escoamento. Neste trabalho, se tratando de um caso bidimensional, considera-se o modelo de encruamento isotrópico.

Em uma análise não linear, para cada incremento de carga, devem-se verificar quais regiões sofreram plastificação para que essas possam ter as rigidezes atualizadas, assim como toda a estrutura.

Desse modo, nesse incremento de carga, sabendo-se que as tensões calculadas se situam fora do volume limitado pela superfície de escoamento, deve-se determinar a real condição da estrutura através das três propriedades descritas.

3.2.4 Processo Incremental e Iterativo de uma Análise não Linear

A solução de um problema não linear acontece através da resolução das equações de equilíbrio não lineares. O processo é iterativo, ou seja, passo a passo. Simultaneamente à atualização da matriz de rigidez, incrementa-se o carregamento aplicado a fim de definir o novo caminho de equilíbrio do modelo. Neste estudo foi considerado o método de Riks que apresenta uma implementação do método de Newton-Raphson, cuja solução é obtida por um caminho único de equilíbrio através do comprimento do arco constante (*arc-length*) num espaço definido pelas variáveis de deslocamento (u) e de carga (P). Esse método também pode ser utilizado em casos em que a carga diminui e os deslocamentos aumentam (*snap-through*) ou a carga e os deslocamentos diminuem (*snap-back*) (ver Fig. 3.7), ao contrário do método de Newton-Raphson que para esses casos de instabilidade torna-se uma ferramenta insuficiente. Entretanto, devido ao maior número de iterações necessárias para a sua solução (pode ser considerado que o método é mais 'caro' computacionalmente), o método de Riks deve ser utilizado somente em situações onde a aplicação do método de Newton-Raphson não pode ser aplicado.

Figura 3.7 – Instabilidades solucionadas pelo método de Riks.

Após a primeira iteração, a acurácia e a eficiência da solução são verificadas através do critério de convergência que pode ser baseado em deslocamentos, cargas ou energia. Entretanto, com o intuito de assegurar uma resposta precisa e consistente, recomenda-se uma combinação dos três critérios. Em adição, ao utilizar uma análise via MEF, deve-se salientar que a utilização de elementos distorcidos compromete a convergência da análise, pois a cada

incremento de carga o erro tende a aumentar. Desse modo, a análise pode ser interrompida devido às deformações excessivas nos elementos.

De maneira simplificada, a metodologia de solução de uma análise não linear pode ser interpretada através do fluxograma ilustrado na Fig. 3.8.

Figura 3.8 – Metodologia simplificada de uma análise não linear.

3.2.5 Validação do Modelo Numérico

Para a utilização do modelo numérico desenvolvido neste trabalho, primeiramente, foi feita a sua aferição com base em resultados experimentais encontrados na literatura. Nesse contexto, foram consideradas as viga celulares NPI_240_CB, 4B e B1 ensaiadas por Erdal (2011), Warren (2001) e Tsavdaridis e D'Mello (2010), respectivamente. As dimensões são apresentadas na Tab. 3.1. Maiores detalhes sobre os programas experimentais estão disponíveis nas respectivas referências.

Tabela 3.1 – Propriedades geométricas das vigas celulares

Modelo	d_g (mm)	$D_{\rm o}$ (mm)	p (mm)	t_w (mm)	b_f (mm)	t_f (mm)	L (mm)
NPI_240_CB	355,6	251,0	344,0	8,7	106,0	13,1	2846
4B	463,2	325,0	400,0	5,8	101,6	8,0	7400
B1	449,8	315,0	378,0	7,6	152,4	10,9	1900

Considerando as propriedades físicas dos materiais empregados nos ensaios, para as vigas celulares NPI_240_CB, admitiu-se o aço com módulo de elasticidade igual a 185.000 MPa, coeficiente de Poisson igual a 0,3; resistência ao escoamento igual a 290 MPa e resistência à ruptura igual 405 MPa. Para o modelo 4B, as propriedades físicas da alma e das mesas foram representadas através dos diagramas bilineares elastoplásticos ilustrados nas Figs. 3.9 e 3.10.

Figura 3.9 – Diagrama bilinear elastoplástico da alma para o modelo 4B.

Figura 3.10 – Diagrama bilinear elastoplástico das mesas para o modelo 4B.

As propriedades físicas da viga celular B1 foram determinadas através de ensaio de tração. Assim, admitiu-se o aço com módulo de elasticidade igual a 200.000 MPa, coeficiente de Poisson igual a 0,3; resistência ao escoamento igual a 355 MPa e resistência à ruptura igual 480 MPa.

Os valores da carga última deste trabalho foram comparados aos valores obtidos experimentalmente e numericamente por Erdal (2011), Warren (2001) e Tsavdaridis e

D'Mello (2010) (ver Tabs. 3.2, 3.3 e 3.4). Foi observado que apenas o modelo reproduzido do trabalho Warren (2011) apresentou diferenças significativas. Entretanto, os próprios valores obtidos pelo autor foram divergentes. Os modelos reproduzidos dos trabalhos de Erdal (2011) e Tsavdaridis e D'Mello (2010) apresentaram boas aproximações com uma diferença máxima de 9,8%. Além disso, conforme ilustrado nas Figs. 3.11 a 3.21, além das curvas carga *versus* deslocamento, as configurações deformadas reproduzidas neste trabalho são muito próximas às obtidas pelos trabalhos originais. Assim, considerou-se válido o modelo numérico desenvolvido.

Tabela 3.2 -	- Comparação	entre cargas	últimas deste	trabalho e	Erdal (2011).
--------------	--------------	--------------	---------------	------------	---------------

Modelo	P_{ult} (kN)
Modelo experimental NPI_240_CB_3 (Erdal, 2011)	284,11
Modelo experimental NPI_240_CB_4 (Erdal, 2011)	286,12
Modelo numérico (Erdal, 2011)	280,00
Este trabalho	282,50

a) – Modelo experimental NPI_240_CB_3.
b) – Modelo experimental NPI_240_CB_4.
Figura 3.11 – Modos de colapso dos modelos experimentais NPI_240 (Erdal, 2011).

Figura 3.12 – Modelo numérico NPI_240 (Erdal, 2011).

Figura 3.13 – Modelo numérico NPI_240 (Este trabalho).

Modelo	P_{ult} (kN)
Modelo experimental 4B (Warren, 2001)	114,00
Modelo numérico (Warren, 2001)	150,00
Este trabalho	132,60

Tabela 3.3 – Comparação entre cargas ultimas deste trabalho e Warren (2001).

Figura 3.15 – Modo de colapso do modelo experimental 4B (Warren, 2001).

Figura 3.16 – Modelo numérico 4B (Este trabalho).

Figura 3.17 - Curva carga versus deslocamento para os modelos 4B.

Modelo	P_{ult} (kN)
Modelo experimental B1 (Tsavdaris e D'Mello, 2010)	255,00
Modelo numérico (Tsavdaris e D'Mello, 2010)	275,00
Este trabalho	280,10

37

Figura 3.18 - Modo de colapso do modelo experimental B1 (Tsavdaridis e D'Mello, 2010).

Figura 3.19 – Modelo numérico B1 (Tsavdaridis e D'Mello, 2010).

Figura 3.20 – Modelo numérico B1 (Este trabalho).

Figura 3.21 - Curva carga versus deslocamento para os modelos B1.

Outro ponto importante observado foi que a consideração das tensões residuais para a validação do modelo (considerando este modo de colapso) não foi relevante. Entretanto, segundo Vieira (2011) e Ellobody (2011), pode-se utilizar a mesma distribuição de tensões recomendada para perfis I duplamente simétricos. Assim, de maneira discutível, deve-se assumir que os processos de corte e soldagem são cuidadosamente conduzidos de modo a não provocarem alterações nas distribuições das tensões residuais assumidas para perfis I duplamente simétricos.

4

ANÁLISE NUMÉRICA DE VIGAS DE AÇO CELULARES – Avaliação do Comportamento dos Perfis I Laminados Brasileiros da Série W

4.1 Perfis Analisados

O comportamento das vigas de aço celulares foi analisado através de um estudo paramétrico considerando três diferentes esbeltezes de alma (razão entre a altura total da alma e a sua espessura), avaliadas a partir de perfis laminados W310x21 ($\lambda = 57,2$), W310x28 ($\lambda = 48,8$) e W310x52 ($\lambda = 38,8$) produzidos no Brasil. Esses perfis foram escolhidos por representarem aproximadamente as esbeltezes máxima, mínima e intermediária dos perfis da série W disponíveis no Brasil.

Para cada esbeltez, foram considerados três diâmetros dos aberturas (D_0) , $0.57d_g$, $0.70 d_g$ e $0.80d_g$ onde d_g é a altura total da seção transversal da viga celular. Já para cada diâmetro das aberturas, cinco espaçamento entre as aberturas (p) foram analisados, $1.08D_0$, $1.20D_0$, $1.30D_0$, $1.40D_0$ e $1.50D_0$, resultando em um total de 45 modelos. Todas as vigas foram projetadas com razão de expansão igual a 1.5. Na Tab. 4.1 estão listadas as características dos modelos numéricos utilizados.

Ensaio	Modelo	Perfil	λ	$d \pmod{d}$	d_g (mm)	$D_{\rm o}$ (mm)	p (mm)	b_w (mm)	b_{we} (mm)	L_v (mm)	L_c (mm)
1	A1			303	454,5	259,1	279,8	20,7	42,4	1183	1360
2	A2			303	454,5	259,1	310,9	51,8	106,0	1404	1615
3	A3			303	454,5	259,1	336,8	77,7	158,9	1587	1825
4	A4			303	454,5	259,1	362,7	103,6	211,9	1771	2055
5	A5			303	454,5	259,1	388,6	129,5	268,1	1961	2255
6	A6			303	454,5	318,2	343,6	25,5	52,0	1453	1670
7	A7			303	454,5	318,2	381,8	63,6	130,1	1724	1985
8	A8	W310x21	57,2	303	454,5	318,2	413,6	95,4	195,2	1949	2235
9	A9			303	454,5	318,2	445,4	127,3	260,2	2175	2525
10	A10			303	454,5	318,2	477,2	159,1	329,3	2408	2770
11	A11			303	454,5	363,6	392,7	29,1	61,1	1664	1915
12	A12			303	454,5	363,6	436,3	72,7	152,7	1978	2275
13	A13			303	454,5	363,6	472,7	109,1	229,1	2240	2575
14	A14			303	454,5	363,6	509,0	145,4	305,4	2502	2865
15	A15			303	454,5	363,6	545,4	181,8	378,7	2757	2950
1	B1			309	463,5	264,2	285,3	21,1	43,2	1207	1370
2	B2			309	463,5	264,2	317,0	52,8	108,1	1431	1625
3	B3			309	463,5	264,2	343,5	79,3	162,1	1619	1840
4	B4			309	463,5	264,2	369,9	105,7	216,1	1806	2050
5	B5			309	463,5	264,2	396,3	132,1	273,4	2000	2300
6	B6			309	463,5	324,5	350,4	26,0	53,1	1482	1675
7	B7			309	463,5	324,5	389,3	64,9	132,7	1758	1995
8	B8	W310x28	48,8	309	463,5	324,5	421,8	97,3	199,1	1988	2255
9	B9			309	463,5	324,5	454,2	129,8	265,4	2218	2530
10	B10			309	463,5	324,5	486,7	162,2	335,8	2456	2825
11	B11			309	463,5	370,8	400,5	29,7	62,3	1697	1935
12	B12			309	463,5	370.8	445,0	74,2	155,7	2017	2320
13	B13			309	463,5	370.8	482,0	111.2	233,6	2284	2635
14	B14			309	463.5	370.8	519.1	148.3	311.5	2551	2935
15	B15			309	463,5	370.8	556,2	185,4	386,2	2812	3020
1	C1			317	475.5	271.0	292.7	21.7	44.3	1238	1405
2	C2			317	475.5	271.0	325.2	54.2	110.9	1468	1660
3	C3			317	475,5	271,0	352,3	81.3	166,3	1661	1880
4	C4			317	475.5	271.0	379.4	108.4	221.7	1853	2095
5	C5			317	475.5	271.0	406.6	135.5	280.5	2052	2245
6	C6			317	475.5	332.9	359.5	26.6	54.5	1520	1725
7	C7			317	475.5	332.9	399.4	66.6	136.1	1803	2040
8	C8	W310x52	38.2	317	475.5	332.9	432.7	99.9	204.2	2039	2305
9	C9		,=	317	475.5	332.9	466.0	133.1	272.3	2275	2560
10	C10			317	475 5	332.9	499 3	166.4	344 5	2520	2745
11	C11			317	475.5	380.4	410.8	30.4	63.9	1741	1880
12	C12			317	475.5	380.4	456.5	76 1	159.8	2069	2235
12	C12			317	475 5	380.4	494 5	11/1	230 7	2009	2235
13	C13			317	475,5	380,4	474,J 532.6	152.2	239,1 310 5	2343 2617	2920
14	C_{14}			317	475,5	300,4	552,0 570 £	100.2	306 7	2017	2000
15	UI3			517	413,3	300,4	570,0	190,2	370,2	2000	2092

Tabela 4.1 – Propriedades geométricas dos modelos numéricos.

Conforme ilustrado na Fig. 4.1, as vigas possuem enrijecedores nos apoios e no ponto de aplicação de carga. Adicionalmente, as vigas foram simuladas como biapoiadas e com contenções laterais de modo a evitar a flambagem lateral com torção.

Figura 4.1 - Carregamento e condições de contorno.

4.2 Resultados

Os valores de carga última para cada modelo foram determinados por meio de dois critérios: análise das tensões atuantes ou observação de deslocamentos excessivos, acima dos valores estipulados como aceitáveis.

Para cada modelo, a avaliação ocorreu através da observação do comportamento em dois gráficos. O primeiro relaciona a razão entre as cargas última e crítica (P_{ult}/P_{cr}) em função da razão entre os deslocamentos verticais/altura da viga celular (δ_V/d_g) . Já o segundo relaciona a razão entre as cargas última e crítica (P_{ult}/P_{cr}) em função da razão entre os deslocamentos horizontais/altura da viga celular (δ_h/d_g) . Dependendo do modo de colapso, a flambagem do montante de alma, por exemplo, foi avaliada a intensidade do deslocamento fora do plano (δ_h) . As Figs. 4.2 a 4.10 ilustram esses gráficos para cada índice de esbeltez e relação de D_0 .

a) - Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.2 – Modelos A1 a A5.

a) - Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.3 – Modelos A6 a A10.

a) – Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.4 – Modelos A11 a A15.

a) - Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.5 – Modelos B1 a B5.

a) - Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.6 – Modelos B6 a B10.

a) - Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica versus deslocamento horizontal e altura da viga.

Figura 4.7 – Modelos B11 a B15.

a) – Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.8 – Modelos C1 a C5.

a) - Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.9 – Modelos C6 a C10.

a) – Relação entre carga última e carga crítica versus deslocamento vertical e altura da viga.

b) – Relação entre carga última e carga crítica *versus* deslocamento horizontal e altura da viga.

Figura 4.10 – Modelos C11 a C15.

Conforme apresentado na Tab. 4.2, o modo de colapso predominante no estudo foi a flambagem do montante de alma pelo efeito da força cortante (ver Fig. 4.11).

Modelo	P_{cr} (kN)	P_{ult} (kN)	P_{ult}/P_{cr}	Modo de Colapso ¹⁾
A1	298,4	199,9	0,67	СР
A2	229,8	222,9	0,97	FMA
A3	216,4	229,4	1,06	FMA
A4	214,8	236,3	1,10	FMA
A5	220,0	239,8	1,09	FMA
A6	159,6	126,0	0,79	СР
A7	145,4	143,9	0,99	FMA
A8	153,8	158,4	1,03	FMA
A9	163,6	170,1	1,04	FMA
A10	172,8	183,2	1,06	FMA
A11	110,8	83,1	0,75	СР
A12	115,6	94,8	0,82	FMA
A13	130,4	120,0	0,92	FMA
A14	144,8	137,5	0,95	FMA
A15	161,0	144,5	0,90	MV
B1	538,1	279,8	0,52	СР
B2	395.0	316,0	0.80	FMA
B3	375.5	322,9	0.86	FMA
B4	375.6	330.6	0.88	FMA
B5	391.4	340.5	0.87	FMA
B6	275.6	173.7	0.63	СР
B7	253.2	188.6	0.75	FMA
B 8	270.4	213.6	0.79	FMA
B 9	290.8	241.4	0.83	FMA
B10	311.2	264.5	0.85	FMA
B11	174.6	99.5	0.57	СР
B12	204.9	141.4	0.69	FMA
B13	230.9	180.1	0.78	FMA
B14	258.9	204.5	0.79	MV+FMA
B15	291.6	205.9	0.71	MV
<u>C1</u>	1065.0	415.4	0.39	СР
C2	892.0	480.8	0,54	FMA
C3	830.6	502.5	0.61	FMA
C4	839.9	537.5	0.64	FMA
C5	8864	558.4	0.63	FMA
C6	611.8	293.6	0.48	СР
C7	559 3	296.4	0.53	CP
C8	600.0	336.0	0,55	FMA
C9	651 2	384.2	0,59	FMA
C10	703.9	436.4	0.62	FMA
C10	385 4	185 N	0.48	CP
C12	446 5	210.8	0.47	CP
C12	514 0	210,0	0,55	FMΔ
C13	579 4	341 9	0,59	MV±FMΔ
C14	601 S	3597	0,52	MV
015	0/1.0	557.1	0.54	141 4

Tabela 4.2 – Carga crítica, carga última e modos de colapso.

¹⁾ FMA: Flambagem do montante de alma

MV: Mecanismo Vierendeel

CP: Colapso por plastificação

Figura 4.11 – Flambagem do montante de alma (modelo C7).

De modo geral, foi observado que os modelos com os parâmetros $D_0 = 0,57d_g$ e $p = 1,08D_0$ (A1, A6, A11, B1, B6, B11, C1, C6 e C11) apresentaram colapso por plastificação (CP), conforme ilustrado na Fig. 4.12. Adicionalmente, constatou-se que os modelos A1, B1 e C1 chegaram ao colapso muito antes de atingir a carga crítica de flambagem ($P_{ult}/P_{cr} < 0,60$). Além dos parâmetros descritos, esse comportamento está diretamente relacionado à menor esbeltez do montante. O colapso por plastificação também foi observado em alguns modelos com $p = 1,20D_0$ para a esbeltez $\lambda = 38,2$ (C7 e C12).

Figura 4.12 – Colapso por plastificação (modelo A1).

Para os modelos A15, B15 e C15, conforme ilustrado na Fig. 4.13, em que $D_0 = 0,80d_g$ e $p = 1,50D_0$, o modo de colapso observado foi o mecanismo Vierendeel (MV). Por se tratar de um caso limite, em que o espaçamento entre os aberturas (p) é maior que o recomendado por Harper (1994), observa-se a formação de rótulas plásticas nos cantos das aberturas. Essa

geometria proporciona, além de tensões normais e de cisalhamento na extremidade do 'tê' (decorrentes do momento fletor e do esforço cortante, respectivamente), uma parcela adicional de tensão normal que se origina da flexão produzida pela ação da força cortante.

Figura 4.13 – Mecanismo Vierendeel (modelo B15).

Para os modelos B14 e C14, em que $D_0 = 0,80$ e $p = 1,40D_0$, foi observado um acoplamento do mecanismo Vierendeel com a flambagem do montante de alma (MV+FMA) sendo que o primeiro a ser observado foi o MV. Esses modos de colapso ocorreram somente para as esbeltezes $\lambda = 48,8$ e $\lambda = 38,2$. Os modelos com essa combinação geométrica caracterizam uma fase de transição entre os dois modos de instabilidade (ver Fig. 4.14).

Figura 4.14 – Acoplamento da flambagem do montante de alma e do mecanismo Vierendeel (modelo B14).

A relação entre as cargas última e crítica (P_{ult}/P_{cr}) e os parâmetros geométricos das vigas é apresentada nas Figs. 4.15 e 4.16. Observa-se que à medida que o índice de esbeltez aumenta,

mais a carga última (P_{ult}) se aproxima da carga crítica (P_{cr}). Para $\lambda = 57,2$ vários modelos apresentaram comportamento pós-crítico. Esse comportamento, além do índice de esbeltez, está relacionado à amplitude das imperfeições geométricas iniciais e da relação P_{ult}/P_{cr} .

Além disso, conforme esperado, quanto menor a área do montante de alma – ou seja, maior a relação D_0/d_g – menor é a capacidade resistente das vigas. Observa-se que com o aumento da relação p/D_0 , a capacidade resistente das vigas aumenta de forma diretamente proporcional (devido ao aumento da área do montante de alma).

Figura 4.15 – Relação entre P_{ult}/P_{cr} versus D_0/d_g .

Figura 4.16 – Relação entre P_{ult}/P_{cr} versus p/D_0 .

5

CAPACIDADE RESISTENTE DO MONTANTE DE ALMA – Procedimentos e Proposição de Cálculo

5.1 Resultados Numéricos Considerados

Com base nos resultados apresentados, de modo geral, foi observado que a flambagem do montante de alma ocorre predominantemente para a relação $1,2 \le p/D_0 \le 1,4$. Desse modo, a proposição da capacidade resistente do montante de alma foi desenvolvida considerando os resultados desse intervalo. Conforme ilustrado nas Figs. 5.1 a 5.4, em todas as esbeltezes analisadas, foi observado que a capacidade resistente das vigas (V_h) diminui à medida que a relação D_0/d_g aumenta. Adicionalmente, quanto menor o índice de esbeltez maior é a capacidade resistente das vigas.

Figura 5.1 – Relação comparativa de V_h versus S/D_0 para $\lambda = 57,2$.

Figura 5.2 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8$.

Figura 5.3 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2$.

Figura 5.4 – Variação de $V_h \operatorname{com} p/D_0 \operatorname{versus} D_0/d_g$.
5.2 Métodos Analíticos Constantes da Literatura

5.2.1 Capacidade Resistente Segundo Ward (1990)

Dependendo da geometria, governada pela espessura da alma t_w e da relação p/D_0 , o cisalhamento horizontal V_h pode induzir o montante de alma à flambagem ou ao colapso por flexão. Nesse contexto, conforme ilustrado na Fig. 5.5, tal cisalhamento causa um momento na seção A-A admitida como rígida.

Figura 5.5–Forças aplicadas e seção crítica no montante de alma de uma viga castelada hexagonal equivalente (adaptado de Ward, 1990).

Desse modo, visando ao desenvolvimento de curvas para o dimensionamento do montante de alma, foram realizadas diversas análises numéricas via MEF considerando comportamento elastoplástico do material. Com isso, a Eq. (5.1) para o momento resistente do montante de alma pôde ser proposta:

$$\frac{M}{M_{e}} = C_{1} \left(\frac{S}{D_{0}}\right) - C_{2} \left(\frac{S}{D_{0}}\right)^{2} - C_{3}$$
(5.1)

em que:

 M_e é o momento resistente dado por $M_e = W f_y$ onde W é o módulo elástico da seção A-A (ver Fig. 5.5);

M é o momento máximo atuante dado por $M = 0.9RV_h$ onde R é o raio da abertura;

 C_1 , C_2 e C_3 são constantes dadas por:

$$C_{1} = 5,097 + 0,1464 \left(\frac{D_{0}}{t_{w}}\right) - 0,00174 \left(\frac{D_{0}}{t_{w}}\right)^{2}$$
(5.2)

$$C_{2} = 1,441 + 0,0625 \left(\frac{D_{0}}{t_{w}}\right) - 0,000683 \left(\frac{D_{0}}{t_{w}}\right)^{2}$$
(5.3)

$$C_{3} = 3,645 + 0,0853 \left(\frac{D_{0}}{t_{w}}\right) - 0,00108 \left(\frac{D_{0}}{t_{w}}\right)^{2}$$
(5.4)

A metodologia previamente apresentada foi convertida em um gráfico (ver Fig. 5.6) que é válido para o intervalo $1,08 \le p/D_0 \le 1,5$.

Figura 5.6 – Curvas utilizadas para o dimensionamento do montante de alma (Ward, 1990).

5.2.2 Capacidade Resistente Segundo Lawson et al. (2002)

Lawson *et al.* (2002) apresentou uma abordagem empírica baseada no método do laço (*'strut' model*). De acordo com a Fig. 5.7, a ação da força de cisalhamento horizontal causa tensões de compressão e de tração no montante de alma, provocando uma flexão. Nesse contexto, o ângulo crítico para a tensão de compressão máxima no entorno da abertura encontra-se compreendido entre 25° e 40° , dependendo da largura do montante de alma. Assim, o equilíbrio horizontal adaptado para as vigas celulares simétricas é apresentado de acordo com a Eq. (5.5):

$$V_h = \sigma \cdot b_w \cdot t_w \tag{5.5}$$

em que:

 σ é a tensão de compressão na diagonal;

 b_w é o comprimento do montante de alma;

 t_w é a espessura do montante de alma.

A tensão de compressão resistente σ é obtida das curvas de flambagem 'C' da BS 5950-1:2000 (ver anexo A) – apropriada para seções com espessuras inferiores a 40 mm – considerando a esbeltez λ do montante de alma. Para tal, deve-se determinar o valor do comprimento efetivo ℓ_{eff} da diagonal comprimida (ver Fig. 5.7) que para vigas celulares foram estimados de acordo com a Eq. (5.6):

$$l_{eff} = 0.5\sqrt{b_w^2 + D_0^2} \le 0.7D_0$$
(5.6)

e a esbeltez λ do montante de alma baseada no método do laço é dada pela Eq. (5.7):

$$\lambda = \frac{l_{eff}\sqrt{12}}{t_w} \tag{5.7}$$

Figura 5.7 - Comportamento do montante de alma (adaptado de Lawson et al., 2002).

5.3 Comparação entre os Métodos Existentes na Literatura e os Resultados Numéricos deste Trabalho

As Figs. 5.8 a 5.16 ilustram gráficos dos resultados numéricos obtidos neste trabalho em comparação com os resultados dos métodos desenvolvidos por Ward (1990) e Lawson *et al.* (2002).

Figura 5.8 – Relação comparativa de V_h versus p/D_0 para $\lambda = 57,2 \text{ e } D_0/d_g = 0,57$.

Figura 5.9 – Relação comparativa de V_h versus p/D_0 para $\lambda = 57,2 \text{ e } D_0/d_g = 0,70$.

Figura 5.10 – Relação comparativa de V_h versus p/D_0 para $\lambda = 57,2$ e $D_0/d_g = 0,80$.

Figura 5.11 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8 \text{ e } D_0/d_g = 0,57$.

Figura 5.12 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8 \text{ e } D_0/d_g = 0,70$.

Figura 5.13 – Relação comparativa de V_h versus p/D_0 para $\lambda = 48,8 \text{ e } D_0/d_g = 0,80$.

Figura 5.14 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2 \text{ e } D_0/d_g = 0,57$.

Figura 5.15 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2 \text{ e } D_0/d_g = 0,70$.

Figura 5.16 – Relação comparativa de V_h versus p/D_0 para $\lambda = 38,2 \text{ e } D_0/d_g = 0,80$.

Os resultados obtidos da metodologia analítica desenvolvida por Ward (1990) foram significativamente inferiores aos valores observados neste trabalho. Essa metodologia, conservadoramente, considera as propriedades elásticas da seção.

Apesar de algumas diferenças significativas, principalmente para a relação $D_0/d_g = 0,57$, os resultados obtidos da metodologia analítica desenvolvida por Lawson *et al.* (2002) foram próximos aos valores observados deste trabalho. Adicionalmente, na maioria dos casos, foi observado que as curvas obtidas deste trabalho são superiores aos valores analíticos.

De modo geral, constatou-se que o cisalhamento horizontal diminui à medida que D_0/d_g aumenta.

Tendo em vista a boa aproximação dos resultados obtidos, a capacidade resistente proposta baseou-se na metodologia desenvolvida por Lawson *et al.* (2002). Entretanto, algumas diferenças foram observadas, principalmente para as relações $D_0/d_g = 0,57$ e $p/D_0 = 1,2$; conforme ilustrado nas Figs. 5.17 e 5.18.

Figura 5.17 – Relação comparativa de V_h (este trabalho e Lawson *et al.*, 2002) versus p/D_0 .

Figura 5.18 – Relação comparativa de V_h (este trabalho e Lawson *et al.*, 2002) versus D_0/d_g .

Observa-se que à medida que D_0/d_g e p/D_0 aumentam, a diferença entre os valores obtidos deste trabalho comparativamente à metodologia de Lawson *et al.* (2002) diminuem. Pode-se

concluir que comprimentos pequenos do montante (b_w) não são representados corretamente pela formulação.

Desse modo, de acordo com a Eq. (5.8), a força cortante resistente na direção horizontal é:

$$V_h = C_1 \cdot C_2 \cdot \sigma \cdot b_w \cdot t_w \tag{5.8}$$

em que:

 $C_1 e C_2$ são fatores de ajuste com base nos resultados numéricos deste trabalho dados por:

✓ para $1,20 \le p/D_0 \le 1,25$ e $0,57 \le D_0 / d_g \le 0,65$

$$C_1 = -2,0267 \left(\frac{p}{D_0}\right) + 3,7082 \tag{5.9}$$

$$C_2 = -1,559 \left(\frac{D_0}{d_g}\right) + 2,1648 \tag{5.10}$$

- ✓ para $1,20 \le p/D_0 \le 1,25$ e $0,65 < D_0/d_g \le 0,75$ adotar a Eq. (5.9) para a determinação de C_1 e $C_2 = 1$;
- ✓ para $1,20 \le p/D_0 \le 1,25$ e $0,75 < D_0 / d_g \le 0,8$ adotar $C_1 = C_2 = 1$;
- ✓ para $1,25 < p/D_0 ≤ 1,40$ e $0,57 ≤ D_0 / d_g ≤ 0,80$ adotar $C_2 = 1$ e

$$C_1 = -0.8157 \left(\frac{p}{D_0}\right) + 2.1372 \tag{5.11}$$

 σ é a tensão de compressão na diagonal (conforme apresentada no item 5.2.2);

- b_w é o comprimento do montante de alma;
- t_w é a espessura do montante de alma.

6 VALIDAÇÃO DA METODOLOGIA ANALÍTICA PROPOSTA

6.1 Capacidade Resistente Proposta Aplicada aos Resultados Numéricos Deste Trabalho

Como primeiro exemplo, deseja-se avaliar os resultados da metodologia analítica proposta comparativamente aos resultados dos modelos numéricos desenvolvidos neste trabalho. Conforme apresentado na Tab. 6.1, pode-se concluir que na maioria nos casos abordados a aproximação foi satisfatória com uma relação $V_{h \text{ ult}}/V_{h \text{ proposta}}$ máxima de 16%. Entretanto, para os modelos C7 a C9; C12 e C13, todos com esbeltez $\lambda = 38,2$, a metodologia proposta apresentou valores superiores a 10% quando comparados aos resultados numéricos. Ressaltase que alguns desses modelos apresentaram colapso por plastificação.

Modelo	P_{cr} (kN)	P_{ult} (kN)	P_{ult}/P_{cr}	$V_{h \text{ ult}}$ (kN)	$V_{h \text{ proposta}}$ (kN)	V_h ult/ V_h proposta
A2	229,8	222,9	0,97	85,6	85,2	1,00
A3	216,4	229,4	1,06	95,4	82,4	1,16
A4	214,8	236,3	1,10	105,8	96,8	1,09
A7	145,4	143,9	0,99	64,7	59,6	1,09
A8	153,8	158,4	1,03	77,2	72,3	1,07
A9	163,6	170,1	1,04	89,3	85,3	1,05
A12	115,6	94,8	0,82	47,3	42,3	1,12
A13	130,4	120,0	0,92	64,9	65,0	1,00
A14	144,8	137,5	0,95	80,1	77,1	1,04
B2	395,0	316,0	0,80	120,6	123,4	0,98
B3	375,5	322,9	0,86	133,5	118,8	1,12
B4	375,6	330,6	0,88	147,2	142,0	1,04
B7	253,2	188,6	0,75	84,6	91,4	0,93
B8	270,4	213,6	0,79	103,8	110,0	0,94
B9	290,8	241,4	0,83	126,4	128,6	0,98
B12	204,9	141,4	0,69	70,6	65,4	1,08
B13	230,9	180,1	0,78	97,5	102,1	0,96
B14	258,9	204,5	0,79	119,2	118,7	1,00
C2	892,0	480,8	0,54	178,4	190,2	0,94
C3	830,6	502,5	0,61	202,0	187,0	1,08
C4	839,9	537,5	0,64	232,7	226,3	1,03
C7	559,3	296,4	0,53	131,4	156,2	0,84
C8	600,0	336,0	0,56	161,4	192,4	0,84
C9	651,2	384,2	0,59	198,8	229,6	0,87
C12	446,5	210,8	0,47	105,2	118,0	0,89
C13	514,0	282,7	0,55	152,9	185,8	0,82
C14	579,4	341,9	0,59	199,1	218,7	0,91

Tabela 6.1 – Comparação entre metodologia proposta e resultados numéricos.

6.2 Capacidade Resistente Proposta Aplicada a Outros Exemplos

Neste item, deseja-se avaliar o comportamento da metodologia analítica proposta através da consideração de diferentes perfis I da série W. Nesse contexto, foram desenvolvidos modelos a partir dos perfis W360x72 ($\lambda = 37,2$), W410x67 ($\lambda = 43,2$), W530x82 ($\lambda = 52,7$), W460x82 ($\lambda = 43,3$) e W200x31,3 ($\lambda = 29,7$). A Tab. 6.2 apresenta as propriedades geométricas dos modelos. Adicionalmente, ressalta-se que todos os modelos foram desenvolvidos de acordo com as premissas apresentadas no Capítulo 3.

Modelo	Perfil	λ	$d \pmod{d}$	d_g (mm)	$D_{\rm o}$ (mm)	$p \pmod{p}$	b_w (mm)	b_{we} (mm)	L_v (mm)	L_c (mm)
D1	W360x72	37,2	350	525,0	299,25	359,1	59,9	122,4	1621	1834
D2	W410x67	43,2	410	615,0	430,5	559,7	129,2	264,1	2638	2981
D3	W530x82	52,7	528	792,0	633,6	887,0	253,4	532,2	4359	4664
D4	W460x82	43,3	460	690,0	483,0	627,9	144,9	296,3	2959	3345
D5	W200x31,3	29,7	210	315,0	220,5	286,7	66,2	135,3	1351	1527

Tabela 6.2 – Propriedades geométricas dos modelos numéricos.

Considerando os resultados ilustrados nas Figs. 6.1 a 6.5 e Tab. 6.3, das quatro análises realizadas, somente o modelo D3 apresentou relação $V_{h \text{ ult}}/V_{h \text{ proposta}}$ significativa (1,24). Contudo, o acoplamento do mecanismo Vierendeel associado à flambagem do montante de alma provocou a divergência do resultado (Fig.6.3). Para os demais modelos, foi observada uma boa aproximação, com uma divergência máxima de 9%.

Tabela 6.3 - Comparação entre metodologia proposta e resultados numéricos.

Modelo	P_{cr} (kN)	P_{ult} (kN)	P_{ult}/P_{cr}	$V_{h \text{ ult}}$ (kN)	$V_{h \text{ proposta}}$ (kN)	$V_{h \text{ ult}}/V_{h \text{ proposta}}$
D1	1138,2	621,5	0,55	226,3	207,0	1,09
D2	690,9	455,3	0,66	216,4	205,6	1,05
D3	605,9	516,2	0,85	297,7	239,6	1,24
D4	866,7	572,0	0,66	272,1	259,5	1,05
D5	538,89	219,3	0,41	104,1	112,6	0,92

Figura 6.1 – Colapso por plastificação (modelo D1).

Figura 6.2 – Flambagem do montante de alma (modelo D2).

Figura 6.3 – Acoplamento do mecanismo Vierendeel com a flambagem do montante de alma (modelo D3).

Figura 6.4 – Flambagem do montante de alma (modelo D4).

Figura 6.5 – Flambagem do montante de alma (modelo D5).

Com base nos resultados apresentados, pode-se concluir que a metodologia apresentada foi satisfatória.

7 Considerações finais

-

7.1 Sobre a Análise Numérica

Neste trabalho, após o desenvolvimento e aferição dos modelos numéricos, utilizando-se o programa ABAQUS (Hibbit *et al.*, 2009), o comportamento do montante de alma das vigas celulares foi observado e discutido. Nesses modelos, foram consideradas as não linearidades geométrica e de material.

As vigas celulares utilizadas para o desenvolvimento dos modelos foram originadas a partir dos perfis laminados W310x21, W310x28 e W310x52 fabricados no Brasil. Essas vigas, submetidas a uma carga concentrada no meio do vão, foram consideradas biapoiadas, além de possuírem contenções laterais de modo a evitar a flambagem lateral. Nesse contexto, através de um estudo paramétrico, 45 modelos numéricos foram desenvolvidos considerando os limites pré-determinados por Harper (1994) em que $1,08 \le p/D_0 \le 1,5$ e $0,57 \le D_0/d_d \le 0,80$.

Com base nos resultados, foi observado que os modelos com os parâmetros $D_0 = 0,57d_g$ e $p = 1,08D_0$ (A1, A6, A11, B1, B6, B11, C1, C6 e C11) apresentaram colapso por plastificação (CP). Adicionalmente, constatou-se que os modelos A1, B1 e C1 chegaram ao colapso muito antes de atingir a carga crítica de flambagem ($P_{ult}/P_{cr} < 0,60$). Além dos parâmetros descritos, esse comportamento está diretamente relacionado à menor esbeltez do montante. O colapso por plastificação também foi observado em alguns modelos com $p = 1,20D_0$ para a esbeltez $\lambda = 38,2$ (C7 e C12).

Para os modelos A15, B15 e C15, em que $D_0 = 0,80d_g$ e $p = 1,50D_0$, o modo de colapso observado foi o mecanismo Vierendeel (MV). Por se tratar de um caso limite, em que o espaçamento entre os aberturas (p) é maior que o recomendado por Harper (1994), observa-se a formação de rótulas plásticas nos cantos das aberturas. Essa geometria proporciona, além de tensões normais e de cisalhamento na extremidade do 'tê' (decorrentes do momento fletor e do esforço cortante, respectivamente), uma parcela adicional de tensão normal que se origina da flexão produzida pela ação da força cortante.

Para os modelos B14 e C14, em que $D_0 = 0,80$ e $p = 1,40D_0$, foi observado um acoplamento do mecanismo Vierendeel com a flambagem do montante de alma (MV+FMA) sendo que o primeiro a ser observado foi o MV. Esses modos de colapso ocorreram somente para as esbeltezes $\lambda = 48,8$ e $\lambda = 38,2$. Os modelos com essa combinação geométrica caracterizam uma fase de transição entre os dois modos de instabilidade.

7.2 Sobre a Capacidade Resistente

Os valores do limite em que ocorre instabilidade no montante de alma foram comparados com as formulações existentes na literatura. Os resultados obtidos da metodologia analítica desenvolvida por Ward (1990) foram significativamente inferiores aos valores observados neste trabalho. Uma explicação seria que tal metodologia, conservadoramente, considera as propriedades elásticas da seção. Apesar de algumas diferenças significativas, principalmente para a relação $D_0/d_g = 0,57$, os resultados obtidos da metodologia analítica desenvolvida por Lawson *et al.* (2002) ficaram próximos dos valores alcançados neste trabalho. Adicionalmente, na maioria dos casos, foi observado que as curvas obtidas neste trabalho são superiores aos valores analíticos.

Tendo em vista a boa aproximação dos resultados obtidos, a capacidade resistente proposta baseou-se na metodologia desenvolvida por Lawson *et al.* (2002). Entretanto, conforme descrito, algumas diferenças foram observadas, principalmente para as relações $D_0/d_g = 0,57$ e $p/D_0 = 1,2$. À medida que D_0/d_g e p/D_0 aumentam, a diferença entre os valores obtidos deste trabalho comparativamente à metodologia de Lawson *et al.* (2002) diminuem. Pode-se concluir que comprimentos pequenos do montante (b_w) não são representados corretamente pela formulação. Nesse contexto, para uma melhor aproximação, com base nos resultados

numéricos deste trabalho, foram adicionados à formulação de Lawson *et al.* (2002) dois fatores de ajuste.

Logo, para o dimensionamento de vigas celulares oriundas de perfis laminados brasileiros, considerando a flambagem do montante de alma, recomenda-se a utilização da formulação proposta neste trabalho.

7.3 Sugestões para Trabalhos Futuros

Considerando a flambagem do montante de alma devida à força cortante, objetivo de estudo deste trabalho, algumas investigações podem ser sugeridas, conforme descrito abaixo:

- ✓ consideração e verificação da influência das tensões residuais na modelagem (considerando as perturbações provocadas pelo corte e soldagem dos perfis);
- ✓ influência do valor da imperfeição geométrica na modelagem;
- ✓ desenvolvimento de um programa experimental considerando os perfis analisados;
- v avaliação numérica do comportamento dos perfis segundo acoplamento dos modos de colapso;
- ✓ estudo comparativo entre vigas celulares e casteladas nos âmbitos numérico e analítico;
- ✓ avaliação e investigação da flambagem do montante de alma em vigas celulares com a alma expandida.

8

REFERÊNCIAS BIBLIOGRÁFICAS

ABNT NBR 8800:2008, Projeto de Estruturas de Aço e de Estruturas Mistas de Aço e Concreto de Edifícios, *Associação Brasileira de Normas Técnicas*, 2008.

ABREU, L. M. P. Determinação do momento fletor resistente à flambegem lateral com torção de vigas de aço celulares, Dissertação de Mestrado, *Programa de Pós-graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais*, Belo Horizonte, 2011.

ALTFILLISCH, M. D.; COOKE, B. R.; TOPRAC, A. A. An investigation of welded openweb expanded beams, Welding Research Supplement, pp. 77-88, Vol. 22, 1957.

BAKE, S. Cellular beams at ambient and elevated temperatures, Tese de Doutorado, *School of Mechanical, Aerospace and Civil Engineering, MACE, The University of Manchester*, Manchester, 2010.

BAZILE, A. e TEXIER, J. Tests on castellated beams, *Constr. Métallique*, Paris, France, Vol. 3, pp.12-25, 1968.

BEZERRA, E. M. Determinação do momento fletor resistente à flambegem lateral com torção de vigas de aço casteladas, Dissertação de Mestrado, *Programa de Pós-graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais*, Belo Horizonte, 2012.

BS5950. The structural use of steel in buildings Part 1: Code of practice for design. In: Rolled and welded sections. *British Standards Institution (BSI)*, 2000.

CASTRO e SILVA, A. L. R. Análise numérica não linearda flabagem local de perfis de aço estrutural submetidos à compressão uniaxial, Tese de Doutorado, *Programa de Pós-graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais*, Belo Horizonte, 2006.

CIMADEVILA, F. J. E.; GUTIÉRREZ, E. M.; RODRÍGUEZ, J. A. V. Vigas alveoladas. Vol. 3. Madri: A Coruña: Biblioteca Técnica Universitária; 2000.

DELESQUES, R. Stabilité des montants des poutres ajourées, *Construction Métallique*, pp. 26-33, Vol. 3, 1968.

DOUGUERTY, B. K. Castellated Beams: A state of the art report, *South African Institute of Civil Engineers Journal*, pp.12-20, 1993.

EARLS, C. J. Effects of material property stratification and residual stresses on single angle flexural ductility, *Journal of Constructional Steel Research*, Vol. 51, p. 147-75, 1999.

ELLOBODY, E. Nonlinear analysis of cellular steel beams under combined buckling modes, *Thin-Walled Structures*, 2011.

ERDAL, F. e SAKA, M. P. Ultimate load carrying capacity of optimally designed steel cellular beams, *Journal of Constructional Steel Research*, 2012.

ERDAL, F. Ultimate load capacity of optimally designed cellular beams, Tese de Doutorado, *Engineering Sciences Department, Middle East Technical University*, Turquia, 2011.

FERRARI, G. A. Simulação numérica do comportamento estrutural de vigas alveolares mistas de aço e concreto, Dissertação de Mestrado, *Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnológicas, UFV*, Viçosa, 2013.

HALLEUX, P. Limit analysis of castellated steel beams. *Acier-Stahl-Steel*, pp. 133-144, 1967.

HARPER, C.S. Design in steel 4: Castellated & Cellular Beams, *British Steel Publications*, 1994.

HIBBITT, KARLSSON and SORENSEN. ABAQUS/Standard – User's manual, Vol. I, II e III, *Hibbitt, Karlsson & Sorensen*, Inc, EUA, 2009.

HUSAIN, M. U. e SPEIRS, W. G. Failure of castellated beams due to rupture of welded joints, *Acier-Stahl-Steer*, Nº 1, 1971.

KERDAL, D. e NETHECORT, D. A. Failure modes for castellated beams. *Journal of Construction Steel Research*. Vol. 4. p. 295-315, 1984.

LAWSON, R. M., M, N. G. e D., O. Design of FABSEC Beams in Non-Composite and Composite Applications (including Fire), *The Steel Construction Institute*, Vol. 269, 2002.

LAWSON, R. M.; LIM, J.; HICKS, S. J.; e SIMMS, W. I. Design of composite asymmetric cellular beams and beams with large web openings, *Journal of Constructional Steel Research*, 2006.

LLEONART, J. M. Geometria de los perfiles alveolares, *Informes de La Construción*, v. 40, 1988, p. 51-64.

OLANDER, H.C. A method of calculating stresses in rigid frames corners. *Journal of ASCE*, 1954.

OLIVEIRA, L. B. Procedimentos para definição das características geométricas de vigas alveolares de aço para sistemas de piso e de cobertura, Dissertação de Mestrado, *Programa de Pós-graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais*, Belo Horizonte, 2012.

REDWOOD, R., DEMIRDJIAN, S. Castellated beam web buckling in shear. *Journal of Structural Engineering*, ASCE 124(10):1202–7, 1998.

SHERBOURNE, A. N. Plastic behavior of castellated beams. *Institute of Welding*, N° C2, Londres, 1966.

SILVEIRA, E. G. Estudo de vigas alveolares com ênfase nos modos de colapso com formação de rótulas plásticas, Dissertação de Mestrado, *Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnológicas, UFV*, Viçosa, 2011.

SURTEES, J. LIU, Z. Report of loading tests on cellform beams. *Research report, University* of Leeds, 1995.

TOPRAC, A; COOKE B.R. An experimental investigation of open-web beams. *Welding* research council bulletin series, N° 47, 1959.

TSAVDARIDIS, K.D.; D'MELLO, C. Hawes M. Experimental study of ultra shallow floor beams with perforated steel sections. *Research report, National Specialist Contractors' Council*, NSCC2009, p. 312–9, 2009.

TSAVDARIDIS, K.D.; D'MELLO, C. Finite Element Investigation on Web-Post Buckling of Perforated Steel Beams with Various Web Opening Shapes subjected under different shearmoment interaction, *6th European Conference on Steel and Composite Structures*, 2011.

TSAVDARIDIS, K.D.; D'MELLO, C. Web buckling study of the behaviour and strength of perforated steel beams with various novel web opening shapes, *Journal of Constructional Steel Research*, 2010.

VERÍSSIMO, G. S.; PAES, J. L. R.; FAKURY, R. H.; RODRIGUES, F. C. Estudo de vigas de aço alveolares fabricadas a partir de perfis laminados brasileiros. Relatório de Pesquisa. Registro FAPEMIG: TEC-APQ-01429-08. Registro UFV: 30157258412, 2010.

VIEIRA, W. B. Simulação numérica do comportamento estrutural de vigas casteladas de aço com ênfase na flambagem do montante de alma, Dissertação de Mestrado, *Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnológicas, UFV*, Viçosa, 2011.

WARD, J. K. Design of Composite and Non-Composite Cellular Beams, *The Steel Construction Institute*, 1^a edição, 1990.

WARREN, J. Ultimate load and deflection behaviour of cellular beams, Dissertação de Mestrado, *School of Civil Engineering, University of Natal*, Durban, 2001.

WESTOK. <<u>www.westok.co.uk</u>> acessado em 02/11/2012.

ZAAROUR W, REDWOOD R. Web post buckling in thin webbed castellated beams. *Journal of Structural Engineering*, ASCE 122 (8): 860–6, 1996.

ANEXO A – CURVAS DE FLAMBAGEM 'C' DA BS 5950-1:2000

Neste anexo, apresentam-se as curvas de flambagem 'C' da BS 5950-1:2000 para a determinação da tensão de compressão σ (apresentada como p_c na referência descrita) resistente do montante de alma em vigas celulares segundo Lawson *et al.* (2002).

5) Values of p_c (N/mm ²) with $\lambda < 110$ for strut curve c																
λ					Ste	eel grad	le and d	lesign s	trength	р _у (N/n	nm²)					
			S 275					S 355			S 460					
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460	
15	235	245	255	265	275	315	325	335	345	355	398	408	427	436	455	
20	233	242	252	261	271	308	317	326	336	345	387	396	414	424	442	
25	226	235	245	254	263	299	308	317	326	335	375	384	402	410	428	
30	220	228	237	246	255	289	298	307	315	324	363	371	388	396	413	
35	213	221	230	238	247	280	288	296	305	313	349	357	374	382	397	
	2.4.9.0.251 (20)	data second	17-00-01-0			1000 - 000 - 000			and a start of	the second of						
40	206	214	222	230	238	270	278	285	293	301	335	343	358	365	380	
42	203	211	219	227	235	266	273	281	288	296	329	337	351	358	373	
44	200	208	216	224	231	261	269	276	284	291	323	330	344	351	365	
46	197	205	213	220	228	257	264	271	279	286	317	324	337	344	357	
48	195	202	209	217	224	253	260	267	274	280	311	317	330	337	349	
50	100	100	000	010	000	040	055	906	996	0.55	00.4	01.0	000	000	0.47	
50	192	199	206	213	220	248	255	262	268	275	304	310	323	329	341	
52	189	196	203	210	217	244	250	257	263	270	297	303	315	321	333	
54	100	193	199	206	213	239	245	252	258	264	291	296	308	313	324	
90 50	103	109	196	202	209	234	240	246	292	298	284	289	300	305	319	
90	179	100	192	199	205	229	299	241	247	292	211	202	292	291	906	
20	150	100	100	105	201	0.05	200	000				074	224	000	20.2	
60	176	183	189	195	201	225	230	236	241	247	270	274	284	289	298	
62	173	179	185	191	197	220	225	230	236	241	262	267	276	280	289	
64	107	176	182	188	193	215	220	225	230	235	255	260	268	272	280	
00	107	1/0	175	104	109	210	210	220	224	229	240	202	200	204	271 969	
00	104	105	175	180	100	205	210	214	219	220	241	240	202	200	202	
70	101	100	1771	170	101	800	904	900	010	017	094	000	044	040	954	
70	101	100	1/1	170	101	200	204	209	213	217	234	200	244	240	204	
74	157	150	164	160	179	190	199	203	207	211	221	201	207	240	240	
76	154	159	164	165	169	190	194	190	196	200	220	220	229	202	200	
78	148	159	157	161	165	180	184	187	191	194	207	210	215	917	999	
10	110	102	101	101	100	100	101	101	151	151	201	210	210	211	222	
80	145	140	159	157	161	176	170	199	195	199	901	90.9	909	910	915	
89	149	145	150	157	157	171	173	177	180	183	195	197	200	210	215	
84	139	140	146	154	154	167	169	179	175	178	189	191	195	197	201	
86	135	139	143	146	150	162	165	168	170	173	183	185	189	190	194	
88	132	136	139	143	146	158	160	163	165	168	177	179	183	184	187	
		100														
90	129	133	136	139	142	153	156	158	161	163	172	173	177	178	181	
92	126	130	133	136	139	149	152	154	156	158	166	168	171	173	175	
94	124	127	130	133	135	145	147	149	151	153	161	163	166	167	170	
96	121	124	127	129	132	141	143	145	147	149	156	158	160	162	164	
98	118	121	123	126	129	137	139	141	143	145	151	153	155	157	159	
						-1710.510	1									
100	115	118	120	123	125	134	135	137	139	140	147	148	151	152	154	
102	113	115	118	120	122	130	132	133	135	136	143	144	146	147	149	
104	110	112	115	117	119	126	128	130	131	133	138	139	142	142	144	
106	107	110	112	114	116	123	125	126	127	129	134	135	137	138	140	
108	105	107	109	111	113	120	121	123	124	125	130	131	133	134	136	

Figura A.1 – Tensão de compressão resistente (p_c) para 15 $\leq \lambda \leq 108$.

6) Values of p_c (N/mm ²) with $\lambda \ge 110$ for strut curve c																
λ					St	eel grac	le and d	lesign s	trength	p _y (N/n	nm²)					
			S 275			S 355					S 460					
	235	245	255	265	275	315	325	335	345	355	400	410	430	440	460	
110	102	104	106	108	110	116	118	119	120	122	126	127	129	130	132	
112	100	102	104	106	107	113	115	116	117	118	123	124	125	126	128	
114	98	100	101	103	105	110	112	113	114	115	119	120	122	123	124	
116	95	97	99	101	102	108	109	110	111	112	116	117	118	119	120	
118	93	95	97	98	100	105	106	107	108	109	113	114	115	116	117	
120	91	93	94	96	97	102	103	104	105	106	110	110	112	112	113	
122	89	90	92	93	95	99	100	101	102	103	107	107	109	109	110	
124	87	88	90	91	92	97	98	99	100	100	104	104	106	106	107	
126	85	86	88	89	90	94	95	96	97	98	101	102	103	103	104	
128	83	84	86	87	88	92	93	94	95	95	98	99	100	100	101	
130	81	82	84	85	86	90	91	91	92	93	96	96	97	98	99	
135	77	78	79	80	81	84	85	86	87	87	90	90	91	92	92	
140	72	74	75	76	76	79	80	81	81	82	84	85	85	86	87	
145	69	70	71	71	72	75	76	76	77	77	79	80	80	81	81	
150	65	66	67	68	68	71	71	72	72	73	75	75	76	76	76	
155	62	63	63	64	65	67	67	68	68	69	70	71	71	72	72	
160	59	59	60	61	61	63	64	64	65	65	66	67	67	67	68	
165	56	56	57	58	58	60	60	61	61	61	63	63	64	64	64	
170	53	54	54	55	55	57	57	58	58	58	60	60	60	60	61	
175	51	51	52	52	53	54	54	55	55	55	56	57	57	57	58	
180	48	49	49	50	50	51	52	52	52	53	54	54	54	54	55	
185	46	46	47	47	48	49	49	50	50	50	51	51	52	52	52	
190	44	44	45	45	45	47	47	47	47	48	49	49	49	49	49	
195	42	42	43	43	43	45	45	45	45	45	46	46	47	47	47	
200	40	41	41	41	42	43	43	43	43	43	44	44	45	45	45	
210	37	37	38	38	38	39	39	39	40	40	40	40	41	41	41	
220	34	34	35	35	35	36	36	36	36	36	37	37	37	37	38	
230	31	32	32	32	32	33	33	33	33	34	34	34	34	34	35	
240	29	29	30	30	30	30	31	31	31	31	31	31	32	32	32	
250	27	27	27	28	28	28	28	28	29	29	29	29	29	29	29	
260	25	25	26	26	26	26	26	26	27	27	27	27	27	27	27	
270	23	24	24	24	24	24	25	25	25	25	25	25	25	25	25	
280	22	22	22	22	22	23	23	23	23	23	23	24	24	24	24	
290	21	21	21	21	21	21	21	22	22	22	22	22	22	22	22	
300	19	19	20	20	20	20	20	20	20	20	21	21	21	21	21	
310	18	18	18	19	19	19	19	19	19	19	19	19	19	19	20	
320	17	17	17	17	18	18	18	18	18	18	18	18	18	18	18	
330	16	16	16	16	17	17	17	17	17	17	17	17	17	17	17	
340	15	15	15	16	16	16	16	16	16	16	16	16	16	16	16	
350	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	

Figura A.2 – Tensão de compressão resistente (p_c) para $350 \le \lambda \le 110$.