UNIVERSIDADE FEDERAL DE MINAS GERAIS

Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas

Dissertação de Mestrado

CARACTERIZAÇÃO, ESTUDOS FUNDAMENTAIS E FLOTAÇÃO DE MINÉRIO DE FERRO GOETHÍTICO

Autor: Gilberto Rodrigues da Silva Orientador: Professor Antônio Eduardo Clark Peres Julho/2014

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas

Gilberto Rodrigues da Silva

CARACTERIZAÇÃO, ESTUDOS FUNDAMENTAIS E FLOTAÇÃO DE MINÉRIO DE FERRO GOETHÍTICO

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas

> Área de concentração: Tecnologia Mineral Orientador: Professor Antônio Eduardo Clark Peres

> > Belo Horizonte Escola de Engenharia da UFMG

2014

À minha mãe, grande exemplo e inspiração.

AGRADECIMENTOS

Agradeço a Deus, por sua presença.

À minha querida mãe, pelo amor e compreensão nos momentos em que estive ausente devido aos estudos.

Ao meu orientador, Professor Antônio Eduardo Clark Peres, pelo apoio, agilidade, confiança e exemplo como professor e pesquisador.

Ao professor Paulo Brandão, pelos ensinamentos e amizade.

À Andréia, pelas oportunidades e exemplo de profissionalismo.

À minha tia Margarida, pela recepção acolhedora e carinho.

Aos amigos Viviane, Amanda, Pedro e Décio, pela amizade e apoio.

À Dodora, pela parceria no mestrado, pelos momentos de descontração e pela amizade e paciência.

À Silvia, pela ajuda na graduação e no mestrado e pelas conversas descontraídas.

Ao Rodrigo Albuquerque, pela ajuda na obtenção dos reagentes.

À Aline Fernanda, pelo apoio nos ensaios de DRX.

À Otávia Rodrigues, pela ajuda com amostras e reagentes.

Ao Itamar, pela ajuda com os ensaios de liberação.

Aos professores da UFMG, especialmente Luiz Cláudio e Roberto Galéry, por suas orientações.

Aos técnicos dos laboratórios da Engenharia de Minas (Alberto Lúcio e Isabel de Sousa) e da Engenharia Metalúrgica (Patrícia Mara e Ilda de Sousa), pela ajuda na realização dos experimentos.

À Samarco, em especial aos Engenheiros João Paulo Melo Silva e Vanderson Eney de Matos, pelo fornecimento das amostras e análises químicas.

Ao MCT/CT-Mineral/VALE/CNPq, pelo apoio financeiro.

Ao CNPq pela bolsa de estudos concedida.

Ao PROEX CAPES, CNPq e FAPEMIG pelo apoio financeiro ao PPGEM.

RESUMO

O processamento de minérios de ferro pobres e de mineralogias complexas tem se tornado uma realidade na indústria mineral. Um exemplo está nos minérios de ferro hidratados, cujos principais minerais constituintes são a hematita, a goethita, o quartzo, a gibbsita e a caulinita. A hematita martítica e a goethita geralmente apresentam contaminantes como P, Al, Si e Mn, que podem estar alojados na sua estrutura cristalina ou nos poros do mineral, além da PPC, que implica na redução do teor de Fe no concentrado final. No presente trabalho realizou-se a caracterização de um minério de ferro hidratado de baixo teor (37,38% Fe, 42,79% SiO₂ e 3,46% PPC) pelas técnicas de DRX, FRX, análise química via úmida, MOLR, MEV, EDS, medida de área superficial específica (BET) e porosimetria (BJH) por adsorção gasosa, picnometria a gás hélio, TG e DSC. Em seguida, foram realizados estudos fundamentais de microeletroforese (potencial zeta) e microflotação em tubo de Hallimond com minerais puros. Os PIEs obtidos para a hematita, goethita, gibbsita e caulinita em NaCl 10⁻³ M foram, respectivamente, 6,8; 8,2; 9,2 e 4,9. Os PIEs da hematita, da goethita e da gibbsita caíram para 4,2; 5,4 e 6,3 na presença de oleato de sódio e 4,9; 6,6 e 7,2 na presença de hidroxamato AERO 6493. Na microflotação, observou-se elevada flotabilidade para os minerais hematita, goethita e gibbsita com os dois reagentes coletores. Com oleato de sódio, identificou-se uma janela de seletividade entre hematita e goethita entre pH 5,0 e 6,0. Quartzo e caulinita apresentaram flotabilidade inferior a 15% com os dois coletores. Aumentos no tempo de condicionamento e na temperatura elevaram a flotabilidade da hematita e da goethita. As flotabilidades da gibbsita, do quartzo e da caulinita caíram com o aumento da temperatura no sistema hidroxamato AERO 6493. Os depressores amido de milho, fluorsilicato de sódio e Floatan M3 se mostraram ineficientes. Por fim, foram realizados ensaios de flotação em bancada com o minério nas frações grossa (-0,150+0,045 mm) e fina (-0,045+0,010 mm). Obteve-se, com oleato de sódio, concentrado com 44,69%Fe, 32,92% SiO₂, 2,97% PPC, 89,34% de recuperação de Fe e IS = 2,52, para a fração grossa, e 61,10% Fe, 7,91% SiO₂, 4,18 PPC, 5,09% de recuperação de Fe e IS = 1,83 para a fração fina. No sistema hidroxamato AERO 6493, alcançou-se concentrado com 46,77% Fe, 27,41% SiO₂, 5,50% PPC, 66,98% de recuperação de Fe e IS = 1,41, para a fração grossa, e 60,21% Fe, 9,31% SiO₂, 4,05% PPC, 32,23% de recuperação de Fe e IS = 1,92 na fração fina. No sistema de flotação catiônica reversa atingiu-se 63,75% Fe, 2,93% SiO2, 5,88% PPC, 74,98% de recuperação de Fe e IS = 9,86, na fração grossa, e 64,39% Fe, 2,15% SiO₂, 5,14% PPC, 81,05% de recuperação de Fe e IS = 8,15, na fração fina.

ABSTRACT

Dealing with low grade iron ores with complex mineralogy has become a day-to-day reality for the mineral industry. A good example is found in the case of hydrated iron ores, which are composed by the minerals haematite, goethite, quartz, gibbsite and kaolinite. The martitic haematite and goethite usually have contaminants such as P, Al, Si and Mn, which may be located in the crystalline structure or in the pores of the minerals, in addition to the LOI content, which lowers the iron content in the final concentrate. Aiming to understand better that type of ore, the characterization of a low grade hydrated iron ore was undertaken through XRD, XRF, chemical analysis, RLM, SEM/EDS, specific area analysis (BET) and pore size analysis (BJH) through N2 adsorption/desorption, helium pycnometry, TG and DSC. On the next step, fundamental studies were conducted with pure minerals through electrophoretic mobility measurements (zeta potential) and microflotation in Hallimond tube. The IEPs obtained in NaCL 10⁻³ M for haematite, goethite, gibbsite and kaolinite were 6.8, 8.2, 9.2 and 4.9, respectively. The IEPs of haematite, goethite and gibbsite were reduced, respectively, to 4.2, 5.4 and 6.3 in the presence of sodium oleate and to 4.9, 6.6 and 7.2 in the presence of AERO 6493 hydroxamate. In the microflotation experiments, the floatability of haematite, goethite and gibbsite were high for both collectors. It was observed selectivity between haematite and goethite in the pH range 5,0 to 6,0 with sodium oleate. Quartz and kaolinite presented floatability lower than 15% with both collectors. The conditioning time and temperature raised the floatability of haematite and goethite. The floatabilities of gibbsite, quartz and kaolinite with AERO 6493 hydroxamate were reduced for higher temperatures. Starch, sodium fluorsilicate and Floatan M3 showed poor responses as depressants. The bench scale flotation experiments were undertaken with a coarse ore sample (-0,150+0,045mm) and a fine ore sample (-0,045+0,010mm). In the sodium oleate system, it was obtained a concentrate with 44.69% Fe, 32.92% SiO₂, 2.97% LOI, 89.34% Fe recovery and SI = 2.52, for the coarse sample, and 61.10% Fe, 7.91% SiO₂, 4.18 LOI, 5.09% Fe recovery and SI = 1.83 for the fine sample. In the AERO 6493 hydroxamate system, it was achieved a concentrate with 46.77% Fe, 27.41% SiO₂, 5.50% LOI, 66.98% Fe recovery and SI = 1.41, for the coarse sample, and 60.21% Fe, 9.31% SiO₂, 4.05% LOI, 32.23% Fe recovery and SI = 1.92 for the fine sample. In the reverse cationic flotation, it was achieved 63.75% Fe, 2.93% SiO2, 5.88% LOI, 74.98% Fe recovery and SI = 9.86, for the coarse sample, and 64.39% Fe, 2.15% SiO₂, 5.14% LOI, 81.05% Fe recovery and SI = 8.15 for the fine sample.

1. INTRODUÇÃO	20
2. OBJETIVOS E RELEVÂNCIA	21
3. REVISÃO BIBLIOGRÁFICA	22
3.1 Os depósitos goethíticos: gênese e mineralogia	22
3.1.1 Os minerais principais, secundários e contaminantes no minério goethítico	23
3.1.1.1 Hematita	24
3.1.1.2 Goethita	25
3.1.1.3 Quartzo	26
3.1.1.4 Gibbsita	26
3.1.1.5 Caulinita	27
3.1.2 Implicações da presença de goethita e gibbsita em minérios de ferro goethíticos.	29
3.2 Flotação	30
3.2.1 Princípios	30
3.2.2 Reagentes	32
3.2.3 Flotação catiônica reversa de minérios de ferro	33
3.2.3.1 Amina	34
3.2.3.2 Amido	36
3.2.4 Flotação aniônica direta de minérios de ferro	37
3.2.4.1 Hidroxamato	39
3.2.4.2 Oleato de sódio	40
3.2.4.3 Fluorsilicato de sódio	41
3.2.4.4 Floatan M3	42
3.2.5 Avaliação da seletividade em sistemas de flotação	42
4. METODOLOGIA	43
4.1 Amostras	43
4.1.1 Preparação das amostras	44
4.2 Equipamentos e reagentes	45

4.2.1 Preparação dos reagentes	48
4.3 Caracterização	50
4.4 Estudo das propriedades eletrocinéticas dos minerais – Potencial Zeta	51
4.5 Microflotação	53
4.6 Flotação em bancada	56
5. RESULTADOS E DISCUSSÕES	58
5.1 Caracterização	58
5.1.1 Difratrometria de raios X	58
5.1.2 Difratometria de raios X: análise quantitativa	61
5.1.3 Espectrometria de fluorescência de raios X	62
5.1.4 Microscopia ótica de luz refletida	63
5.1.5 Microscopia eletrônica de varredura / espectrometria dispersiva em energia	66
5.1.6 Análise química via úmida	74
5.1.7 Picnometria a hélio	76
5.1.8 Área superficial específica e porosimetria por adsorção gasosa	76
5.1.9 Análises térmicas	78
5.2 Caracterização tecnológica	85
5.2.1 Análise granulométrica	85
5.2.2 Análise de liberação	87
5.3 Estudos eletrocinéticos – potencial zeta	88
5.4 Microflotação	95
5.4.1 Arraste hidrodinâmico	95
5.4.2 Ensaios com oleato de sódio	95
5.2.3 Ensaios com hidroxamato AERO 6493	105
5.5 Flotação em bancada	116
5.5.1 Fração grossa (- 0,150 + 0,045 mm)	117
5.5.1.1 Sistema oleato de sódio	117

5.5.1.2 Sistema hidroxamato AERO 6493	
5.5.1.3 Sistema amina / amido	
5.5.2 Fração fina (- 0,045 + 0,010 mm)	
5.5.2.1 Sistema oleato de sódio	
5.5.2.2 Sistema hidroxamato AERO 6493	
5.5.2.3 Sistema amina / amido	
6. SUMÁRIO DOS RESULTADOS E DISCUSSÕES	
7. CONCLUSÕES	
8. RELEVÂNCIA DOS RESULTADOS	
9. RECOMENDAÇÕES PARA TRABALHOS FUTUROS	
REFERÊNCIAS BIBLIOGRÁFICAS	
ANEXOS	

LISTA DE FIGURAS

Figura 3.1 Estrutura cristalina da hematita (BLAKE et al., 1966)	24
Figura 3.2 Estrutura cristalina da goethita (XIONG <i>et al.</i> , 2006).	25
Figura 3.3 Estrutura cristalina do quartzo (KORNEEV et al., 1978)	26
Figura 3.4 Estrutura cristalina da gibbsita (SAALFELD e WEDDE, 1974)	27
Figura 3.5 Estrutura cristalina da caulinita (SMRCOK <i>et al.</i> , 1990).	28
Figura 3.6 Estrutura da gibbsita (a) e da sílica (b), processo de montagem da estrutura ideal da caulinita (c) e estrutura final da caulinita (d) (GARDOLINSKI <i>et al.</i> , 2003)	28
Figura 3.7 Gráfico de potencial elétrico da superfície de uma partícula carregada em direção ao interior da suspensão (HUNTER, 1993).	o 31
Figura 3.8 Estrutura da amônia, aminas primária, secundária e terciária e estrutura do íon quaternário de amônio (LEAL FILHO E NEDER, 2005)	34
Figura 3.9 Principais rotas de produção das aminas e seus derivados (LEAL FILHO E NEDER, 2005).	35
Figura 3.10 Fórmula estrutural do amido (BULATOVIC, 2007).	37
Figura 3.11 Estrutura dos ácidos hidroxâmicos a partir dos quais são produzidos os hidroxamatos. R ₁ é geralmente um ligante orgânico, e R ₂ e R ₃ podem ser orgânicos ou inorgânicos (BULATOVIC, 2007)	39
Figura 3.12 Sítios obtidos pelo rompimento da estrutura do óxido de ferro (FUERSTENAU <i>et al.</i> , 1967).	յ 40
Figura 3.13 Formação de hidroxamato de ferro por quelação (FUERSTENAU et al., 1967).	.40
Figura 3.14 Fórmula estrutural do ácido oleico (VASCONCELOS COSTA, 2006)	41
Figura 3.15 Fórmula estrutural do quebracho (BULATOVIC, 2007)	42
Figura 4.1 Divisor de rifles nº 90.	44
Figura 4.2 Fluxograma de preparação da amostra de minério.	45
Figura 4.3 Gral de ágata empregado na cominuição das amostras	47
Figura 4.4 Difratômetro de raios X utilizado para a caracterização de fase nas amostras	47
Figura 4.5 Montagem do tubo de Hallimond modificado utilizado nos ensaios de microflotação.	47
Figura 4.6 Montagem para a determinação do Potencial Zeta das partículas minerais	51

Figura 4.7 Montagem para a realização dos ensaios de flotação em bancada56
Figura 5.1 Difratograma de raios X da amostra de hematita. (λKα Cu=1,54060Å)58
Figura 5.2 Difratograma de raios X da amostra de goethita. ($\lambda K\alpha Cu=1,54060$ Å)
Figura 5.3 Difratograma de raios X da amostra de quartzo. (λKα Cu=1,54060Å)59
Figura 5.4 Difratograma de raios X da amostra de gibbsita. (λKα Cu=1,54060Å)60
Figura 5.5 Difratograma de raios X da amostra de caulinita. (λKα Cu=1,54060Å)60
Figura 5.6 Difratograma de raios X da amostra cabeça, do minério. ($\lambda K\alpha Cu=1,54060$ Å)61
Figura 5.7 Curva de ajuste (em vermelho), dados experimentais (x) e erro (em azul) obtidos pelo método de Rietveld para a amostra goethita
Figura 5.8 Curva de ajuste (em vermelho), dados experimentais (x) e erro (em azul) obtidos pelo método de Rietveld para a amostra de minério cabeça
Figura 5.9 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm)64
Figura 5.10 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm)65
Figura 5.11 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm)65
Figura 5.12 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm)66
Figura 5.13 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida
Figura 5.14 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,045 +0,010 mm), partículas soltas
Figura 5.15 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida
Figura 5.16 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida70
Figura 5.17 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida71
Figura 5.18 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida72
Figura 5.19 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico em partículas soltas (- 0,150 +0,045 mm)
Figura 5.20 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico em partículas soltas (- 0,150 +0,045 mm). Flotado amina/amido (a), oleato de sódio (b) e hidroxamato (c)

Figura 5.21 Imagem de elétrons retroespalhados (IER) da amostra de minério na forma de partículas soltas . a) grosso (- 0,150 +0,045 mm) em a) e b) fino (- 0,045 + 0,010 mm)74
Figura 5.22 Análise granuloquímica do minério (-0,150+0,038 mm). Teores de Fe, SiO ₂ e PPC
Figura 5.23 Análise granuloquímica do minério (-0,150+0,038 mm). Teores de P, MnO ₂ e Al ₂ O ₃
Figura 5.24 Isotermas de adsorção e dessorção de N ₂ para a amostra de minério de ferro goethítico
Figura 5.25 Volume cumulativo de poros e derivada obtidos para a amostra de minério de ferro goethítico
Figura 5.26 Curvas termogravimétricas (TGA e DTA) para a amostra de minério grosso (- 0,150 +0,045 mm)
Figura 5.27 Calorimetria diferencial de varredura (DSC) para a amostra de minério grosso (- 0,150 +0,045 mm)
Figura 5.28 Curvas termogravimétricas (TGA e DTA) para a amostra de minério fino (- 0,045 +0,010 mm)
Figura 5.29 Calorimetria diferencial de varredura (DSC) para a amostra de minério fino (- 0,045 +0,010 mm)
Figura 5.30 Curvas termogravimétricas (TGA e DTA) para a amostra de hematita
Figura 5.31 Calorimetria diferencial de varredura (DSC) para a amostra de hematita
Figura 5.32 Curvas termogravimétricas (TGA e DTA) para a amostra de goethita
Figura 5.33 Calorimetria diferencial de varredura (DSC) para a amostra de goethita82
Figura 5.34 Curvas termogravimétricas (TGA e DTA) para a amostra de quartzo
Figura 5.35 Calorimetria diferencial de varredura (DSC) para a amostra de quartzo83
Figura 5.36 Curvas termogravimétricas (TGA e DTA) para a amostra de gibbsita
Figura 5.37 Calorimetria diferencial de varredura (DSC) para a amostra de gibbsita
Figura 5.38 Curvas termogravimétricas (TGA e DTA) para a amostra de caulinita85
Figura 5.39 Calorimetria diferencial de varredura (DSC) para a amostra de caulinita85
Figura 5.40 Análise granulométrica da amostra de minério de ferro cabeça
Figura 5.41 Análise granulométrica da amostra de minério de ferro -0,150 mm
Figura 5.42 Grau de liberação apresentado pelo minério goethítico

Figura 5.43 Partículas analisadas pelo LibMin, retidas nas faixas granulométricas 212 (a), 150 (b), 106 (c), 75 (d), 53 (e) e 38 μm (f)
Figura 5.44 Potencial zeta da hematita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais oleato de sódio 5 mg/L
Figura 5.45 Potencial zeta da goethita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais oleato de sódio 5 mg/L
Figura 5.46 Potencial zeta da gibbsita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais oleato de sódio 5 mg/L
Figura 5.47 Potencial zeta do quartzo em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais oleato de sódio 5 mg/L91
Figura 5.48 Potencial zeta da caulinita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais oleato de sódio 5 mg/L92
Figura 5.49 Potencial zeta da hematita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais hidroxamato AERO 6493 20 mg/L
Figura 5.50 Potencial zeta da goethita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais hidroxamato AERO 6493 20 mg/L
Figura 5.51 Potencial zeta da gibbsita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais hidroxamato AERO 6493 20 mg/L
Figura 5.52 Potencial zeta da quartzo em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais hidroxamato AERO 6493 20 mg/L
Figura 5.53 Potencial zeta da caulinita em NaCl 10 ⁻³ M e em NaCl 10 ⁻³ M mais hidroxamato AERO 6493 20 mg/L94
Figura 5.54 Flotabilidade dos minerais hematita, goethita, quartzo, gibbsita e caulinita em oleato de sódio 5 mg/L
Figura 5.55 Flotabilidade da hematita em diferentes concentrações de oleato de sódio97
Figura 5.56 Flotabilidade da goethita em diferentes concentrações de oleato de sódio97
Figura 5.57 Flotabilidade da gibbsita em diferentes concentrações de oleato de sódio98
Figura 5.58 Flotabilidade do quartzo em diferentes concentrações de oleato de sódio98
Figura 5.59 Flotabilidade da caulinita em diferentes concentrações de oleato de sódio99
Figura 5.60 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento em oleato de sódio 5 mg/L, em pH 5,0100
Figura 5.61 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento em oleato de sódio 5 mg/L, em pH 9,0100

Figura 5.62 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas em oleato de sódio 5 mg/L, em pH 5,0101
Figura 5.63 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas em oleato de sódio 5 mg/L, em pH 9,0102
Figura 5.64 Flotabilidade da hematita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L
Figura 5.65 Flotabilidade da goethita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L
Figura 5.66 Flotabilidade da gibbsita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L
Figura 5.67 Flotabilidade do quartzo com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L
Figura 5.68 Flotabilidade da caulinita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L
Figura 5.69 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita com o coletor hidroxamato AERO 6493 20 mg/L
Figura 5.70 Flotabilidade da hematita em diferentes concentrações de hidroxamato AERO 6493
Figura 5.71 Flotabilidade da goethita em diferentes concentrações de hidroxamato AERO 6493
Figura 5.72 Flotabilidade da gibbsita em diferentes concentrações de hidroxamato AERO 6493
Figura 5.73 Flotabilidade do quartzo em diferentes concentrações de hidroxamato AERO 6493
Figura 5.74 Flotabilidade da caulinita em diferentes concentrações de hidroxamato AERO 6493
Figura 5.75 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento com hidroxamato AERO 6493 20 mg/L em pH 4,0111
Figura 5.76 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento com hidroxamato AERO 6493 20 mg/L em pH 9,0111
Figura 5.77 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas com hidroxamato AERO 6493 20 mg/L em pH 4,0
Figura 5.78 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas com hidroxamato AERO 6493 20 mg/L em pH 9,0

Figura 5.79 Flotabilidade da hematita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L114
Figura 5.80 Flotabilidade da goethita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L114
Figura 5.81 Flotabilidade da gibbsita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L115
Figura 5.82 Flotabilidade do quartzo com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L115
Figura 5.83 Flotabilidade da caulinita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L116
Figura 5.84 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.85 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.86 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes vazões de ar no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)119
Figura 5.87 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes vazões de ar no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.88 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes velocidades de rotação no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.89 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes velocidades de rotação no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.90 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.91 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração grossa (-0,150+0,045mm)121
Figura 5.92 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes porcentagens de sólidos no sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm)
Figura 5.93 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes porcentagens de sólidos no sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm) 122

Figura 5.94 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes temperaturas do sistema de flotação com oleato de sódio. Fração grossa (-	
0,150+0,045mm)	123
Figura 5.95 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes temperaturas sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm)	do 123
Figura 5.96 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	126
Figura 5.97 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	126
Figura 5.98 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes vazões de ar no sistema hidroxamato AERO 6493. Fração grossa (- 0,150+0,045mm)	. 127
Figura 5.99 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes vazões de ar sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	no 127
Figura 5.100 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes rotações no sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm	1) . 128
Figura 5.101 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes rotações no sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	.128
Figura 5.102 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	. 129
Figura 5.103 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	.129
Figura 5.104 Teores de Fe, SiO_2 e recuperação metalúrgica do Fe no concentrado para diferentes porcentagens de sólidos com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	.130
Figura 5.105 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes porcentager de sólidos com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	ns 130
Figura 5.106 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes temperaturas no sistema de flotação com hidroxamato AERO 6493. Fração gros (-0,150+0,045mm)	sa 131
Figura 5.107 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes temperatura no sistema de flotação com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)	ıs .131

Figura 5.108 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amina Flotigam EDA. Fração grossa (-0,150+0,045mm)133
Figura 5.109 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de amina Flotigam EDA. Fração grossa (-0,150+0,045mm)
Figura 5.110 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amido de milho. Fração grossa (-0,150+0,045mm)
Figura 5.111 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de amido de milho. Fração grossa (-0,150+0,045mm)
Figura 5.112 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes vazões de ar no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.113 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes vazões de ar no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.114 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes rotações no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.115 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes rotações no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.116 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com amina. Fração grossa (-0,150+0,045mm) 137
Figura 5.117 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes tempos de condicionamento com amina. Fração grossa (-0,150+0,045mm)
Figura 5.118 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com amido. Fração grossa (-0,150+0,045mm)138
Figura 5.119 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes tempos de condicionamento com amido. Fração grossa (-0,150+0,045mm)
Figura 5.120 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes porcentagens de sólidos no sistema amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.121 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes porcentagens de sólidos no sistema amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.122 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes temperaturas no sistema amina / amido. Fração grossa (-0,150+0,045mm)
Figura 5.123 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes temperaturas no sistema amina / amido. Fração grossa (-0,150+0,045mm)

Figura 5.124 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para
diferentes dosagens de oleato de sódio. Fração fina (-0,045+0,010mm)143
Figura 5.125 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de oleato de sódio. Fração fina (-0,045+0,010mm)
Figura 5.126 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração fina (-0,045+0,010mm) 144
Figura 5.127 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração fina (-0,045+0,010mm)
Figura 5.128 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)
Figura 5.129 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)
Figura 5.130 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)
Figura 5.131 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)147
Figura 5.132 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amina. Fração fina (-0,045+0,010mm)
Figura 5.133 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de amina. Fração fina (-0,045+0,010mm)
Figura 5.134 Teores de Fe, SiO ₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amido. Fração fina (-0,045+0,010mm)
Figura 5.135 Teores de Al ₂ O ₃ , P, MnO ₂ e PPC no concentrado para diferentes dosagens de amido. Fração fina (-0,045+0,010mm)

LISTA DE TABELAS

Tabela III.1 – Classificação das aminas de acordo com o método de obtenção e tamanho de cadeia	5
Tabela IV.2 – Origem das amostras	3
Tabela IV.3 – Equipamentos empregados na realização dos experimentos4	6
Tabela IV.4 – Reagentes empregados nos testes de microflotação e flotação em bancada4	8
Tabela IV.4 – Principais condições de estudo empregadas nos testes de microflotação5	;5
Tabela IV.5 – Principais condições de estudo empregadas nos ensaios de flotação catiônica reversa de minério de ferro em testes de bancada	57
Tabela IV.6 – Principais condições de estudo empregadas nos ensaios de flotação em bancad para os coletores oleato de sódio e hidroxamato AERO 64935	a 57
Tabela V.1 – Percentual em massa, massa específica, wrp , χ^2 para a amostra goethita e cabeça	51
Tabela V.2 – Análise química semiquantitativa do minério de ferro goethítico por FRX6	53
Tabela V.3 – Microanálise química da área apresentada na figura 5.13	57
Tabela V.4 – Microanálise química geral da área apresentada na figura 5.146	58
Tabela V.5 – Microanálise química da região 1, apresentada na figura 5.146	59
Tabela V.6 – Microanálise química das regiões 1, 2, 3 e 4 apresentadas na figura 5.15	'0
Tabela V.7 – Análise química via úmida do minério de ferro goethítico	'5
Tabela V.8 – Área superficial específica, diâmetro médio de poros e volume total de poros e porosidade da amostra de minério de ferro goethítico7	'6
Tabela V.9 – Perdas de massa para as amostras de minério e minerais puros7	'8
Tabela V.10 – Número de partículas analisadas pelo LibMin por faixa granulométrica8	\$8
Tabela V.11 – PIE das amostras hematita, goethita, quartzo, gibbsita e caulinita em NaCl 10 ⁻⁷ M e em NaCl 10 ⁻³ M mais oleato de sódio ou hidroxamato AERO 6493	3 39
Tabela V.12 – Arraste hidrodinâmico dos minerais hematita, goethita, quartzo, gibbsita e caulinita9	95
Tabela V.13 – Índices de Seletividade calculados para os ensaios de flotação em bancada con oleato de sódio. Fração grossa (-0,150+0,045mm)	n 24

Tabela V.14 – Composição química do concentrado, recuperação de Fe e Índice de Seletividade (IS) para o sistema de flotação otimizado para o oleato de sódio
Tabela V.15 – Índices de Seletividade calculados para os ensaios de flotação em bancada com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)
Tabela V.16 – Composição química do concentrado, recuperação de Fe e Índice de Seletividade (IS) para o sistema de flotação otimizado para o hidroxamato AERO 6493132
Tabela V.17 – Índices de Seletividade calculados para os ensaios de flotação em bancada com a amina Flotigam EDA e o amido de milho. Fração grossa (-0,150+0,045mm)
Tabela V.18 – Composição química do concentrado, recuperação de Fe e Índice de Seletividade (IS) para o sistema de flotação otimizado para amina / amido142
Tabela V.19 – Índices de Seletividade calculados para os ensaios de flotação em bancada com oleato de sódio. Fração fina (-0,045+0,010mm)
Tabela V.20 – Índices de Seletividade calculados para os ensaios de flotação em bancada com hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)
Tabela V.21 – Índices de Seletividade calculados para os ensaios de flotação em bancada para o sistema amina / amido. Fração fina (-0,045+0,010mm)

1. INTRODUÇÃO

A indústria mineral tem passado por grandes desafios nos últimos anos, em especial a indústria do minério de ferro. Ao mesmo tempo em que a demanda mundial por *commodities* cresce, exigências socioambientais se fortalecem, a economia global se torna mais instável, o perfil das empresas muda, com a formação de grandes grupos multinacionais, e a competitividade aumenta pela execução de pesquisa e criação de tecnologias mais baratas e que oferecem maior produtividade. Contudo, apesar do crescente desenvolvimento tecnológico, os futuros cenários exigem ainda mais investimentos em pesquisas uma vez que as empresas tendem a trabalhar com minérios de decrescente qualidade, com teores de ferro cada vez menores e mineralogia cada vez mais complexa, cujos conhecimento e tecnologia disponíveis para beneficiamento ainda são limitados.

Dentre tais minérios, podem-se citar os minérios de ferro hidratados ou goethíticos, nos quais os minerais-minério são hematita e goethita, e a ganga consiste principalmente em quartzo, gibbsita e caulinita. A grande quantidade de impurezas de Al, P, Mn e Si e a própria PPC, comumente associados à goethita, muitas vezes torna impossível alcançar as especificações do concentrado final ou leva à disposição, como estéril, de materiais com teores de ferro consideráveis. Isso se dá caso a prática da blendagem não seja suficiente para adequar as características do concentrado final.

Embora o comportamento da goethita e da hematita em sistemas de flotação seja comumente esperado como semelhante, há uma lacuna de estudos que comprovem essa expectativa, sendo que os poucos estudos existentes focam apenas em propriedades fundamentais desses minerais. Fuerstenau *et al.* (1967 e 1970) investigaram a atuação de coletores aniônicos na flotabilidade dos dois minerais, buscando entender as diferenças e semelhanças em sistemas de flotação. Contudo, ainda não houve um estudo que abordasse tanto os minerais-minério (hematita e goethita), quanto os minerais de ganga (quartzo, gibbsita e caulinita), de forma a sugerir sistemas de flotação aplicáveis ao beneficiamento dos minérios de ferro hidratados. Assim, tal fato chama atenção para o desenvolvimento de novas pesquisas na área.

2. OBJETIVOS E RELEVÂNCIA

Este trabalho encontra sua relevância na escassez de estudos para avaliar as possíveis diferenças de comportamento entre os minerais hematita, goethita, quartzo, gibbsita e caulinita em novos sistemas de flotação direta para minério de ferro e na ausência de estudos de rotas alternativas de processamento por flotação para minérios de ferro hidratados, especialmente para minérios brasileiros. Associadas a esse aspecto, encontram-se as crescentes exigências de qualidade em relação aos contaminantes mais comuns a esse tipo de minério, a saber, Al, P, Mn e Si, além da própria PPC, que reduz o conteúdo metálico no concentrado final e interfere nas propriedades mecânicas durante a pelotização. O conhecimento do comportamento dos minérios de ferro hidratados em sistemas de flotação pode facilitar a satisfação dos níveis de qualidade exigidos pela indústria, além de possibilitar o desenvolvimento de novos processos de concentração para materiais até então considerados estéreis. Dessa forma, o presente estudo objetivou:

- a caracterização mineralógica, química e física de uma amostra de minério de ferro hidratado e de amostras puras de seus principais minerais constituintes – hematita, goethita, quartzo, gibbsita e caulinita;
- a investigação da carga elétrica interfacial desses minerais em sistemas aquosos com e sem a presença de reagentes, visando obter informações pertinentes à descrição dos mecanismos de adsorção de tais reagentes em sistemas de flotação;
- o estudo da flotabilidade dessas amostras minerais em ensaios de microflotação em tubo de Hallimond modificado, de forma a avaliar a influência das variáveis pH, concentração dos reagentes coletores e depressores, tempo de condicionamento e temperatura;
- a execução de ensaios de flotação em bancada para avaliar um sistema de flotação proposto para o minério, partindo-se dos resultados dos ensaios de microflotação.
 Para otimizar esse sistema, investigaram-se as variáveis concentração dos reagentes coletor e depressor, porcentagem de sólidos na polpa, tempos de condicionamento para coletor e depressor, vazão de ar, agitação mecânica e temperatura.

3. REVISÃO BIBLIOGRÁFICA

3.1 Os depósitos goethíticos: gênese e mineralogia

Os depósitos de ferro de Minas Gerais podem ser classificados em seis tipos básicos: depósitos hipogênicos de substituição, depósitos supergênicos de substituição, depósitos de enriquecimento residual, minério detrítico ou coluvial, canga e certos corpos de minério residuais. Dentre tais depósitos, os depósitos supergênicos são as principais fontes de minério de ferro goethítico, também chamado minério de ferro hidratado. Nesses depósitos, o quartzo ou outro mineral do itabirito é substituído pelo ferro trazido por soluções frias de regiões superficiais. A goethita é normalmente o mineral substituinte, podendo estar presentes também a hematita, lepidocrocita ou maghemita (DORR II, 1964 *apud* ROCHA, 1997).

Um bom exemplo de minério de ferro hidratado encontra-se na mina de Alegria, à qual é atribuído o processo de gênese por enriquecimento supergênico. Simultaneamente ao processo de lixiviação da sílica e enriquecimento em ferro e alumina, ocorreu a solubilização do ferro e redeposição deste sob a forma de goethita (α-FeOOH) nos interstícios deixados pela sílica. A goethita seria também formada pela hidratação da hematita. Tais processos, combinados ao confinamento do itabirito entre rochas impermeáveis (filitos e metabasitos), favoreceram a atuação de processos de enriquecimento supergênico diferenciados. Tais processos possibilitariam a formação de minérios com diferentes conteúdos de ferro, sílica, alumina, fósforo e água de hidratação em porções mediamente hidratadas (em níveis mais profundos do depósito), onde a hematita predomina sobre a goethita. A intensificação da hidratação do minério imediatamente sob a camada de filitos, formando camadas de goethita com volumes consideráveis, foi também observada no depósito de Alegria (BARCELOS e BÜCHI, 1986). Os principais constituintes mineralógicos do minério de Alegria podem ser basicamente divididos em hematita porosa, formada pela martitização de magnetitas primárias e constituinte mais abundante na jazida; hematita especular, menos abundante que a hematita porosa e com menor conteúdo em alumina e fósforo; goethita, presente junto à hematita porosa e podendo ser produto de martitização de magnetitas (goethita G1) ou de intemperismo (goethita G2); magnetita residual, presente em pequenas proporções; e quartzo, principal mineral de ganga. A goethita terrosa e as argilas são constituintes secundários, porém não são menos dignas de atenção, devido aos problemas associados à geração de lamas, alumina e fósforo associados (FEITOSA et al., 1993).

3.1.1 Os minerais principais, secundários e contaminantes no minério goethítico

Rocha (1997) estudou a composição mineralógica do minério de Alegria por difratometria de raios X e verificou a presença dos minerais hematita, goethita, quartzo e caulinita. A goethita foi observada como sendo a fase mais abundante ou em média proporção. A hematita e o quartzo foram observados como fases dominantes, em quantidade média ou em baixa proporção dependendo da região de amostragem. A caulinita, por sua vez, foi caracterizada apenas em frações mais finas e em baixa concentração. O perfil nítido das raias dos difratogramas mostrou que as amostras eram de alta cristalinidade, especialmente as de goethita. A execução de análises químicas mostrou serem P, Al, Ti e Mn os principais contaminantes presentes na amostra. Foi pontuado também o fato de não terem sido identificadas fases minerais referentes a tais contaminantes na maioria das amostras, o que indica a possível presença desses elementos na estrutura e/ou poros da goethita. Henriques (2012) estudou amostra de material goethítico de Alegria com foco na goethita. Os ensaios de difratometria de raios X apresentados pela autora vão ao encontro aos resultados apresentados por Rocha (1997) no que se refere à predominância de goethita e presença em menor quantidade de quartzo e hematita. Contudo, os ensaios realizados por Henriques (2012) verificaram a presença do mineral gibbsita, referente ao alumínio, o que foi comprovado por análises químicas. A caulinita não foi identificada nesses testes.

Outro exemplo de minério goethítico é encontrado no projeto Apolo, da mineradora Vale, no qual a hematita martítica é o mineral de ferro mais abundante, seguido pela goethita, magnetita e hematita de cristais compactos, respectivamente. A ganga consiste majoritariamente em quartzo livre, quartzo misto, gibbsita e caulinita. A goethita e a hematita martítica apresentam contaminantes aluminosos associados, em poros ou em interstícios microestruturais, em frações granulométricas muito finas. Já as hematitas de cristais compactos, tais como as hematitas especular, granular, lamelar e sinuosa, apresentam menores níveis de contaminação (LIPPER, 2012). Além das características mineralógicas, as características mecânicas do minério de Apolo são, também, diferenciadas. Segundo Cabral (2010), o depósito apresenta um minério de baixa resistência mecânica, com tendência à geração de finos por abrasão.

A presença de uma quantidade elevada de goethita exemplifica bem o desafio encontrado no beneficiamento do minério de Apolo, por representar uma situação até então não enfrentada pelas usinas de beneficiamento de minério de ferro.

3.1.1.1 Hematita

A hematita é um dos principais óxidos presentes na natureza, apresentando fórmula química Fe₂O₃ (69,94% de ferro e 30,06% de oxigênio). Seu nome tem origem no grego *hemos*, que significa sangue, devido à cor avermelhada de seu traço. Dentre suas principais características, podem-se citar: traço vermelho ocre, brilho metálico, cor cinza grafite, clivagem ausente, fratura subconchoidal, transparência opaca, dureza entre 5,5 e 6,5 na escala de Mohs, massa específica de 5,26 g/cm³, hábito maciço, placoide ou terroso e sistema cristalino hexagonal (KLEIN, 2001; DANA, 1974). De acordo com o tipo textural, Queiroz *et al.* (2003) classificaram as hematitas em hematita martítica, em minérios porosos, e hematita especular, lamelar, granular e sinuosa, em minérios compactos. Quanto às propriedades de superfície, o mineral apresenta ponto isoelétrico (PIE) em torno de pH 6,7, sendo as partículas carregadas positivamente para valores inferiores de pH e carregadas negativamente para valores superiores (FUERSTERNAU, 1976; CROMIERES *et al.*, 2002). Em sistemas cujo sal presente é o NaCl, Chibowski e Wisniewska (2002) encontraram valor de PIE em torno de pH 7,0.

A figura 3.1 apresenta a estrutura cristalina da hematita.

Figura 3.1 Estrutura cristalina da hematita (BLAKE et al., 1966).

3.1.1.2 Goethita

A goethita é um dos principais oxi-hidróxidos presentes na natureza, especialmente em solos, como produto de intemperismo de outros minerais portadores de ferro. Apresenta fórmula química FeO(OH) e é constituída de 62,9% de ferro, 36,0% de oxigênio e 1,0% de hidrogênio. Seu nome é uma homenagem ao escritor, poeta, pensador, e, também, mineralogista Johann Wolfgang von Goethe. Dentre suas principais características, podem-se citar: brilho adamantino a submetálico, cor marrom amarelado a marrom escuro, dureza entre 5,0 e 5,5 na escala de Mohs, massa específica de 4,27 g/cm³, clivagem perfeita, hábito acicular, maciço, fibroso, radial ou botrioidal e sistema cristalino ortorrômbico (KLEIN, 2001; DANA, 1974). De acordo com o tipo textural, Santos e Brandao (2003) classificaram a goethita em botrioidal, maciça, porosa, fibrosa, alveolar e terrosa. Quanto às propriedades de superfície, existe uma certa incerteza sobre o valor de PIE para o mineral. Alguns autores observaram o ponto isoelétrico em torno de pH 6,7 (FUERSTERNAU, 1976; CROMIERES *et al.*, 2002) e outros observaram um ponto isoelétrico em torno de pH 8,2 (KOSMULSKI, 2003; WALSH e DULTZ, 2010; HENRIQUES, 2012). A figura 3.2 ilustra a estrutura cristalina da goethita.

Figura 3.2 Estrutura cristalina da goethita (XIONG et al., 2006).

3.1.1.3 Quartzo

O quartzo é o mineral mais abundante no planeta. Na mineração, ele representa um dos principais minerais de ganga na grande maioria dos minérios. Sua fórmula química é SiO₂, sendo 46,7% de silício e 53,3% de oxigênio. A origem do nome é incerta, sendo que, de acordo com algumas teorias, tal origem estaria na palavra alemã *Quarz*. Dentre suas principais características, estão: brilho vítreo, ausência de clivagem, cores variadas, fratura conchoidal, massa específica de 2,65 g/cm³, dureza 7,0 na escala de Mohs, hábito prismático a granular, traço branco e sistema cristalino trigonal, como mostrado na figura 3.3 (KLEIN, 2001; DANA, 1974). Quanto às propriedades de superfície, Fuerstenau (1976) e Lopes (2009) observaram um ponto isoelétrico em pH próximo a 1,8.

Figura 3.3 Estrutura cristalina do quartzo (KORNEEV et al., 1978).

3.1.1.4 Gibbsita

A gibbsita é um dos principais minerais de alumínio presentes nos minérios bauxíticos. Possui fórmula química γ -Al(OH)₃, sendo constituída de 62,8 a 65,3% de Al₂O₃ e de 31,8 a 34,12% de perda ao fogo. Seu nome é uma homenagem ao colecionador americano G. Gibbs (1776-1833). Dentre suas principais características, estão: brilho vítreo e perolado, dureza entre 2,5 e 3,0 na escala de Mohs, clivagem perfeita, cor azul, verde, verde claro, cinza

ou cinza claro, massa específica entre 2,3 e 2,4 g/cm³ e sistema cristalino monoclínico (KLEIN, 2001; DANA, 1974). O ponto isoelétrico foi obtido em pH 7,4 por Tseng e Wu (2012). Em solução de NaCl, Goldberg (2010) observou PIE em pH 9,1. A figura 3.4 apresenta a estrutura cristalina do mineral.

Figura 3.4 Estrutura cristalina da gibbsita (SAALFELD e WEDDE, 1974).

3.1.1.5 Caulinita

A caulinita é um argilo-mineral formado pelo intemperismo de feldspatos, no qual o potássio é eliminado, restando um alumino-silicato hidratado. Sua fórmula química é $Al_2Si_2O_5(OH)_4$, sendo 39,5% de Al_2O_3 , 46,5% de SiO_2 e 14,0% de H_2O . Como características principais do mineral, podem-se citar o hábito micáceo, clivagem perfeita, dureza entre 2,0 e 2,5 na escala de Mohs, brilho terroso, cor branca, massa específica entre 2,6 e 2,63 g/cm³ e sistema cristalino monoclínico, como visto na figura 3.5 (KLEIN, 2001; DANA, 1974). Quanto às propriedades eletrocinéticas, a caulinita apresenta ponto isoelétrico em pH ácido: 4,6 (RODRIGUES, 2009) e 4,3 (HU *et al.*, 2003).

Figura 3.5 Estrutura cristalina da caulinita (SMRCOK et al., 1990).

A formulação da caulinita pode ser descrita como o resultado da sobreposição de 2 moles de gibbsita $(Al(OH)_3)$ sobre 2 moles de sílica, mantendo-se a estrutura dos dois compostos, como mostrado na figura 3.6.

Figura 3.6 Estrutura da gibbsita (a) e da sílica (b), processo de montagem da estrutura ideal da caulinita (c) e estrutura final da caulinita (d) (GARDOLINSKI *et al.*, 2003).

3.1.2 Implicações da presença de goethita e gibbsita em minérios de ferro goethíticos

Há uma tendência de aumento da participação de itabiritos e minérios de ferro goethíticos na alimentação das plantas de processamento, especialmente no Quadrilátero Ferrífero, o que exigirá usinas de beneficiamento cada vez mais complexas em conjunto com o desenvolvimento de novos processos. Na mina da Mutuca, o fato de o minério possuir um maior conteúdo de goethita e gibbsita interferiu na organização das pilhas que serviram para a alimentação das usinas. Uma vez que a gibbsita é o mineral de ganga mais importante, a flotação catiônica reversa era dificultada, já que este mineral é também deprimido pelo amido, sendo apenas o quartzo flotado pela amina. Desse modo, uma etapa de separação magnética era necessária para separar gibbsita e hematita. Ainda no processo de flotação, a grande quantidade de lamas produzida prejudicava o processo através da geração de *slimes coating* (ARAUJO *et al.*, 2003).

No caso do minério do projeto Apolo, o melhor processo de beneficiamento ainda é estudado pela Vale. Devido às similaridades, o tratamento do minério de Apolo tem sido desenvolvido com base na experiência com o minério da mina de Brucutu, apresentando algumas peculiaridades. Os principais contaminantes são Al e P, estando presentes em poros ou na estrutura cristalina da goethita. Uma vez que o PPC ocorre na ordem de 13%, espera-se um concentrado com teores de Fe menores que os especificados para os produtos *sinter feed* e *pellet feed*. Para frações mais finas, há uma tendência de se produzir grande quantidade de lama, devido à presença elevada de goethita terrosa, caulinita e gibbsita. Isso exige um maior número de estágios de deslamagem e adição de dispersante para diminuir o *by pass* de finos e reduzir o *slimes coating* sobre o quartzo (VALE GADMF, 2009 *apud* LIPPER, 2012).

Na mina de Alegria, a presença de goethita no minério ferro é a principal responsável pelo elevado valor de PPC. Devido à hidratação, a goethita apresenta um menor conteúdo de Fe que a hematita, significando um concentrado mais pobre em conteúdo metálico. A goethita do grupo G2 ainda é uma forte responsável pelo aprisionamento de fósforo, contaminante altamente indesejável no concentrado final. Além disso, o consumo de hidróxido de sódio e floculantes é significativamente elevado pela presença de goethita no minério beneficiado (FEITOSA *et al.*, 1993).

3.2 Flotação

Flotação é a técnica que, por meio da manipulação das características de superfície das partículas, possibilita alcançar diferenciabilidade, segunda condição básica à concentração mineral de acordo com Silva (1973). A principal propriedade explorada pela técnica, e que permite alcançar tal diferenciabilidade, é o grau de hidrofobicidade das partículas, que pode ser natural ou induzido. Essa característica garante seletividade ao método, uma vez que a passagem de um fluxo de ar por uma suspensão aquosa carrega as partículas com afinidade pelo ar (hidrofóbicas), deixando aquelas que possuem afinidade pela água (hidrofílicas). Em um sistema com múltiplas espécies minerais, o uso de reagentes permite modificar a afinidade das partículas, definindo-se quais espécies serão carregadas pelas bolhas de ar (flotado) e quais permanecerão em suspensão (afundado).

3.2.1 Princípios

A atuação dos reagentes é função da distribuição dos sítios carregados presentes na superfície das partículas minerais, da configuração da interação entre esses sítios e o meio aquoso, e das interações entre íons e moléculas polares e a superfície mineral. Embora a espessura reduzida da interface sólido/líquido inviabilize a observação in situ dos fenômenos interfaciais, modelos de representação dessa interface foram desenvolvidos partindo-se do estudo de propriedades como adsorção, tensão superficial e, em especial, do potencial elétrico das partículas em suspensão. As propriedades elétricas da superfície de partículas em suspensão podem ser estudadas pelo modelo da dupla camada (DCE) (PERES e ARAUJO, 2009). Segundo tal modelo, a presença de uma superfície carregada atrai os íons de carga contrária em suspensão (contraíons) e repele os íons de mesma carga (coíons), de forma a atingir uma neutralidade elétrica. Assim, é formada uma distribuição de íons caracterizada por duas regiões: uma região onde se encontram íons adsorvidos fortemente na superfície carregada (camada de Stern) e uma região polarizada (camada difusa) que envolve essa superfície e é formada por contraíons e coíons influenciados pelo campo elétrico em torno da partícula. A concentração de contraíons decresce em direção ao seio da suspensão, onde se torna igual à concentração de coíons. Dessa forma, tem-se um potencial elétrico máximo na superfície da partícula, o qual decresce, também, em direção ao interior da suspensão (figura 3.7). A medida do potencial elétrico, comumente chamado potencial zeta, só é possível em uma região conhecida como plano de cisalhamento, onde ocorre o rompimento da interface

sólido/líquido devido ao movimento relativo entre a partícula carregada e o líquido no qual ela está imersa (HENRIQUES, 2012).

Figura 3.7 Gráfico de potencial elétrico da superfície de uma partícula carregada em direção ao interior da suspensão (HUNTER, 1993).

O potencial zeta é utilizado para se prever o comportamento de partículas em suspensão em termos de estabilidade, tendência à coagulação e interações de cunho eletrostático com reagentes catiônicos ou aniônicos (RAO, 2004). Após a fragmentação das partículas minerais (óxidos e oxi-hidróxidos), sítios carregados são formados, sobre os quais ocorre adsorção dos íons H^+ e OH^- , capazes de modificar a carga superficial da partícula. A extensão dessa adsorção depende do pH da suspensão, ou seja, da predominância de um dos íons. Logo, o potencial zeta dependerá diretamente do pH da suspensão. Devido a esse papel, os íons OH^- e H^+ são denominados íons determinadores de potencial (IDP). O potencial zeta assume valor nulo quando a carga líquida no plano de cisalhamento é nula. Nessa situação, o logaritmo negativo da atividade do IDP é chamado ponto isoelétrico (PIE). Caso os IDP sejam H^+ e OH^- , o ponto isoelétrico é definido como o pH no qual o potencial zeta é nulo. Em valores de pH acima do PIE, as partículas minerais apresentam carga superficial negativa e, para valores inferiores, verifica-se carga superficial positiva. Os conceitos de potencial zeta e

PIE são extremamente importantes, uma vez que permitem prever o estado de agregação em suspensões e a eficácia de reagentes no processo de flotação.

3.2.2 Reagentes

Na flotação, os reagentes são definidos como qualquer substância orgânica ou inorgânica cuja função é o controle das características das interfaces envolvidas no processo. De acordo com seu papel, os reagentes podem ser classificados como coletores, espumantes e modificadores. Os espumantes são compostos não iônicos pertencentes à classe dos álcoois ou dos éteres, e são responsáveis pela estabilização da espuma formada durante a flotação. Os modificadores são reagentes de funções distintas, tais como dispersão, agregação, modulação de pH e Eh, ativação de certas partículas à ação do coletor e depressão de partículas que não se deseja flotar. Coletores são reagentes empregados com a finalidade de tornar hidrofóbica a superfície das partículas minerais que se deseja flotar (PERES e ARAUJO, 2009). Complexos ionomoleculares do coletor são citados como responsáveis pelo aumento da flotabilidade em alguns sistemas de flotação, devido ao aumento do tamanho da cadeia hidrocarbônica do reagente (SOMASUNDARAN, 1976). Leja e He (1984) destacaram a atuação dos espumantes na redução da repulsão eletrostática entre bolhas e partículas carregadas com mesma carga, fato possível devido à fácil polarização do surfatante. Dessa forma, além de garantir a estabilização da espuma, esses reagentes atuariam, também, no processo de coleta. Em algumas condições de pH, os espumantes podem apresentar, também, uma ação coletora, acarretando uma queda na seletividade do sistema (GAUDIN, 1957; BALTAR e RAMOS, 1985).

Os sistemas de flotação podem ser divididos em sulfetos e não sulfetos. Segundo Leja (1982), os coletores utilizados na flotação de materiais pertencentes à primeira classe são chamados tio compostos, e aqueles utilizados para a flotação dos materiais não sulfetados são chamados compostos ionizáveis não tio. Os óxidos e silicatos são os representantes mais comuns dos compostos não sulfetados.

Segundo Peres e Araujo (2009), a flotação dessas duas classes minerais tem sido realizada com os seguintes compostos não tio:

- alquil-carboxilatos, derivados dos ácidos carboxílicos e ácidos graxos: RCOOH;
- alquil-sulfatos e sulfonatos, geralmente de sódio: R-O-SO³⁻Na⁺ e R-SO³⁻Na⁺;

- mono e di-alquil-fosfatos, derivados do ácido fosfórico RPO₄H₂;
- derivados da amônia (NH₃): aminas primárias (R-NH₂) e sais quaternários de amônio (R-N(CH₃)₃⁺Cl⁻);
- reagentes menos comuns, como sulfossuccinatos, sulfossuccinamatos, sarcosinatos e hidroxamatos (ROC-HN-ONa).

Ainda segundo Peres e Araujo (2009), esses reagentes possuem como principais propriedades:

- propensão à hidrólise ou à dissociação, governada pelo pH da solução, afetando fortemente a atividade superficial por meio da predominância da espécie iônica ou molecular;
- diminuição da tensão interfacial na interface ar/solução, quando presentes em solução diluída;
- tendência a formar micelas, no caso de homólogos de cadeia longa.

Nos oxi-minerais, os compostos ionizáveis não tio podem se adsorver por meio de atração eletrostática entre a cabeça polar do reagente e a superfície do mineral, carregada com carga oposta. Após essa etapa, hemimicelas são formadas por ligações de van der Waals entre os radicais do coletor. Outro mecanismo de concentração do reagente na superfície mineral é a adsorção química que ocorre independentemente da atração ou repulsão eletrostática e também é seguida da formação de interações de van der Waals entre os radicais do reagente (PERES e ARAUJO, 2009).

3.2.3 Flotação catiônica reversa de minérios de ferro

As primeiras pesquisas que culminaram no desenvolvimento da rota de flotação catiônica reversa de minérios de ferro ocorreram durante as décadas de 1930 e 1940, concomitantemente ao desenvolvimento das primeiras rotas de flotação aniônica, no estado de Minnesota (EUA). Na época, aminas graxas eram empregadas. Atualmente, a rota de flotação catiônica reversa é o processo mais utilizado na concentração de minérios de ferro. Éter aminas parcialmente neutralizadas (25% a 30%) com ácido acético são os reagentes coletores empregados na flotação da ganga silicática. Os óxidos de ferro são deprimidos por amidos não modificados, cuja preparação é realizada por gelatinização, geralmente com NaOH (ARAUJO *et al.*, 2009). Esse reagente também é utilizado no processo como modulador de pH, possibilitando-se ajustar o pH do sistema para a um valor de pH em torno de 10,5, ideal para a

atuação da amina tanto como coletor quanto como espumante e para a manutenção do sistema disperso.

3.2.3.1 Amina

As aminas são os coletores tradicionalmente utilizados na rota de flotação catiônica reversa de minérios de ferro, apresentando elevado poder coletor para a ganga silicática. Elas consistem em compostos orgânicos alifáticos derivados da amônia (NH₃), têm como matériasprimas principais os óleos e as gorduras, saturadas ou insaturadas, são classificadas como primárias, secundárias ou terciárias (figura 3.8) e possuem cadeia carbônica com número de átomos de carbono pares, com 8 a 22 carbonos (ROSE e ROSE, 1957). Leal Filho e Neder (2005) chamam atenção para o fato de tal definição não incluir as aminas obtidas a partir de alcoóis sintéticos e que podem apresentar número ímpar de carbonos em suas cadeias. Segundo Bulatovic (2007), o número de radicais hidrocarbônicos ligados ao nitrogênio (aminas primárias, secundárias ou terciárias) tem influência na eficiência da flotação.

Figura 3.8 Estrutura da amônia, aminas primária, secundária e terciária e estrutura do íon quaternário de amônio (LEAL FILHO E NEDER, 2005).

As principais rotas de produção das aminas começam pela cisão dos óleos e gorduras, produzindo-se ácidos graxos ou alcoóis (figura 3.9). Estes compostos são, então, matériasprimas para a produção das aminas e seus derivados nitrogenados utilizados na rota de flotação catiônica reversa dos minérios de ferro (LEAL FILHO E NEDER, 2005). Segundo Bulatovic (2007), as aminas podem ser classificadas em três grupos de acordo com o método pelo qual elas são obtidas e pelo tamanho da cadeia hidrocarbônica: aminas graxas, éteraminas e condensadas (tabela III.1). As aminas graxas são aminas alifáticas cujo grupo alquila contém entre 8 e 22 carbonos. Elas são derivadas dos ácidos graxos pela conversão destes em nitrilas e posterior hidrogenação dessas. Fazem parte deste grupo as aminas primárias, secundárias e terciárias. As diaminas são obtidas pela reação de aminas primárias com acrilonitrilas. As éter-aminas são obtidas pela reação de um álcool com acrilonitrila. Devido á presença do oxigênio na cadeia hidrocarbônica, esses compostos apresentam maior caráter hidrofílico que as aminas primárias de mesmo tamanho de cadeia. Éter-diaminas são obtidas pela reação da éter-amina com a acrilonitrila. As aminas condensadas, que são menos importantes que as éter-aminas e aminas graxas na flotação, são produto de reação de poliaminas com ácidos orgânicos. A quantidade de nitrogênio nas aminas condensadas é dependente da composição da poliamina de origem.

Figura 3.9 Principais rotas de produção das aminas e seus derivados (LEAL FILHO E NEDER, 2005).

1 abeta 111.1 -	Classificação	uas annuas v	ac acoruo	com o	metodo u	ie obienção v	uc caucia

Classificação dos aminos do acordo com o mátodo do obtenção o temenho do codojo

Tabala III 1

Grupo	Estrutura	R	Forma	
Amina graxa	-NH ₂	C ₁₂ -C ₂₄	Sólido/pasta	
Diamina graxa	H I <i>R</i> -N-C-C-C-NH ₂	C ₁₂ -C ₂₄	Sólido/pasta	
Éter-amina	R-O-C-C-NH ₂	C ₆ -C ₁₃	Líquido	
Éter-diamina	R-O-C-C-C-N-C-C-NH ₂	C ₈ -C ₁₃	Líquido	
Condensadas	H H H <i>R</i> -C-N-C-C-N-C- <i>R</i> O O	C ₁₈	Sólido/pasta	
O processo de adsorção das aminas é descrito como uma combinação entre dois mecanismos: interações eletrostáticas e interações do tipo van der Waals. Inicialmente, a atração eletrostática entre o grupo polar positivo (nitrogênio protonizado ou quartenarizado) do reagente dissociado e a carga superficial negativa dos minerais ocasiona a adsorção da amina como um contra-íon na superfície mineral. A presença de espécies moleculares da amina entre as espécies dissociadas possibilita a formação de um filme hidrofóbico na interface sólido/líquido, uma vez que as primeiras reduzem a repulsão entre as cabeças polares das espécies iônicas. Um segundo mecanismo, as interações do tipo van der Waals entre as cadeias carbônicas das aminas previamente adsorvidas promovem, por fim, um reforço do filme hidrofóbico, tornando-o mais compacto (SOMASUNDARAN e RAMACHANDRAN, 1988).

3.2.3.2 Amido

O amido (figura 3.10) é um reagente consagrado na indústria de minério de ferro devido à sua atuação como depressor na flotação reversa desse minério. Trata-se de um reagente relativamente barato, de fácil preparação e com ótimos resultados na depressão dos óxidos de ferro, e atuação mínima na depressão do quartzo. O amido consiste em uma mistura de dois polissacarídeos, amilose e amilopectina, formados por polimerização de moléculas de D-glicose através de síntese por desidratação. A amilose é insolúvel em água, enquanto a amilopectina é solúvel. O peso molecular médio do amido não modificado supera 300.000 u.m.a. (PERES e ARAUJO, 2009). De acordo com Bulatovic (2007), a razão entre os percentuais de amilose e amilopectina nunca é constante, e não é a predominância de um ou de outro polissacarídeo que determinará o desempenho do amido na flotação, mas sim as várias modificações introduzidas no processo de fabricação deste. O autor cita o grau de oxidação do amido como uma dessas modificações capazes de determinar a funcionalidade do reagente. Peres e Araujo (2009) chamam a atenção para a ação floculante do amido de milho não modificado. Este é composto por óleo, proteínas, umidade, fibras e matéria mineral, além da amilose e da amilopectina. O óleo atua inibindo a formação de espuma, sendo seu teor alvo de controle. Outra característica importante na utilização do amido está no fato de que o amido não modificado não é solúvel em água à temperatura ambiente, sendo a sua solubilização alcançada pelo uso de NaOH, em um processo chamado gelatinização, ou pelo uso de calor. Além do amido de milho, outras fontes têm sido pesquisadas no intuito de se obter melhores resultados, custos mais baixos ou menores passivos ambientais. Um bom

exemplo se encontra na mandioca, cujo amido apresenta maior viscosidade, indicativo de maior massa molecular, e teor desprezível de óleo.

Segundo Peres *et al.* (1992), a adsorção do amido sobre as partículas de hematita teria a contribuição de três fenômenos: formação de ligações de hidrogênio, interações eletrostáticas e formação de sais. Brandão (2005) chama a atenção para a adsorção do amido em maior extensão na hematita que no quartzo, sendo essa diferença quantitativa o sucesso do reagente. Além disso, o autor ressalta o papel floculante desempenhado pelo reagente junto aos óxidos e hidróxidos de ferro.

Figura 3.10 Fórmula estrutural do amido (BULATOVIC, 2007).

3.2.4 Flotação aniônica direta de minérios de ferro

As primeiras tentativas de flotação para minérios de ferro foram realizadas com reagentes coletores aniônicos, a saber, sulfonatos, ácidos graxos e hidroxamatos (HOUOT, 1983), em uma época em que ainda não se vislumbrava o processamento de minérios de baixo teor. Atualmente, com a crescente escassez dos minérios de ferro de alto teor e o reprocessamento de materiais considerados rejeitos no passado, a flotação aniônica direta tem se tornado uma possibilidade cada vez mais atraente no processamento mineral.

Segundo Somasundaran e Kulkarni (1975), a flotabilidade da hematita com oleato de potássio é sensível à variação de pH, atingindo máximo valor em torno de pH neutro. Somasundaran e Kulkarni (1977) mostraram que flotabilidade da hematita pura e a recuperação de Fe em minérios de ferro são dependentes da força iônica do meio e também da temperatura. Lopes (2009) obteve 100% de flotabilidade para hematita com oleato de sódio (50 mg/L, pH 7,0 e 4 minutos de condicionamento). O mesmo sistema garantia grande flotabilidade para o quartzo, fato que levou à experimentação do metassilicato de sódio como agente depressor, que se mostrou inadequado por deprimir melhor a hematita que o quartzo. Tais observações deixaram em aberto a possibilidade de pesquisa para outros reagentes depressores de ganga silicática na flotação aniônica direta de minérios de ferro. Andrade (2010) verificou 10% de flotabilidade para quartzo em sistema fluorsilicato de sódio (1

mg/L)/oleato de sódio (40 mg/L) em pH 9,0. O depressor Floatan M3 também foi testado, sendo obtidos 5% de flotabilidade com 10 mg/L, em pH 11,0. Nascimento (2010) observou flotabilidade acima de 80% para hematita em sistema fluorsilicato de sódio (1 mg/L)/oleato de sódio (50 mg/L) em pH 7,0. Contudo, os resultados da flotabilidade para quartzo no mesmo sistema forneceram flotabilidade de 70%, indicando que, diferentemente do resultado obtido por Andrade (2010), o fluorsilicato de sódio não é um bom depressor para o quartzo em pH inferior a 9,0. Quast (2012) estudou o efeito da presença de goethita no ângulo de contato medido em uma amostra de hematita e, diferentemente do esperado segundo sua bibliografia, obteve um ângulo de contato mais elevado com a presenca de 25% de goethita na amostra. Também, em ensaios de flotação em bancada com ácido oleico, o autor observou que a presença da goethita reduz a flotabilidade da hematita e indicou que a maior área superficial específica, a diferente química superficial e as diferenças de porosidade e trama da goethita poderiam ser responsáveis pelo comportamento. Arantes e Lima (2012) realizaram estudos comparativos de flotação em bancada para um minério de ferro de baixo teor nos sistemas de flotação catiônica reversa (amina como coletor de quartzo e amido como depressor de óxidos de ferro) e aniônica direta (oleato de sódio como coletor de óxidos de ferro e silicato de sódio como depressor da ganga silicática) sem prévia deslamagem. Nesses estudos, os autores obtiveram concentrados próximos das especificações de mercado para standard pellet feed no sistema de flotação catiônica reversa e valores distantes dessas especificações no sistema de flotação aniônica direta (%Fe = 49,37, %SiO2 = 28,71 e I.S. de Gaudin = 1,73).

Peterson *et al.* (1965) observaram uma boa flotabilidade para pirita em baixas concentrações do coletor octil hidroxamato de potássio. O fenômeno sugeriu uma forte afinidade do coletor por ferro, indicando que bons resultados também poderiam ser obtidos para outros minerais de ferro. Fuerstenau *et al.* (1967) verificaram tal suposição em ensaios de microflotação com goethita. Flotabilidade de 100% foi obtida no intervalo de pH 5,0 – 9,0 com 3×10^{-4} M de hidroxamato de potássio. Fuerstenau *et al.* (1970) estudaram a flotabilidade de hematita com os coletores oleato de sódio e hidroxamato de potássio, obtendo 100% de flotabilidade para o hidroxamato (5×10^{-4} M, 3 minutos de condicionamento e pH 9,0) e 100% de flotabilidade de 95% foi obtida por Lopes (2009) para a hematita em sistema com 60 mg/L do hidroxamato AERO 6493 em pH 7,0. Assis *et al.* (1996) estudaram a flotabilidade da hematita com hidroxamato Flotinor V3759 (Hoechst) na presença de minerais levemente solúveis. Os autores observaram uma flotabilidade superior da hematita perante os minerais

ensaios de flotação em bancada com minério fosfático, foi observada uma maior recuperação de apatita comparada à hematita. Também, foi verificada uma menor flotabilidade da hematita quando a mesma estava presente em menor proporção na mistura.

3.2.4.1 Hidroxamato

A especificidade e a seletividade em relação a íons metálicos tem, desde a década de 70, chamado a atenção para os reagentes quelantes como sendo uma possível e eficiente classe de reagentes em flotação. Tais reagentes podem ser utilizados como coletores quando formam complexos neutros, ou como depressores quando interagem com o mineral, formando um filme hidrofílico ao redor do mesmo. Devido à sua alta afinidade pelo ferro e à habilidade de formar compostos de coordenação com esse metal, os hidroxamatos têm sido vistos como uma possível rota para a flotação direta de minérios de ferro. Coletores do tipo hidroxamato são obtidos pela síntese de ácidos alquil-hidroxâmicos, que possuem pKa em torno de 9,0, e se desprotonizam pela perda dos íons H⁺ que se dissociam do átomo de oxigênio ligado ao nitrogênio (RAO, 2004; BULATOVIC, 2007). Existem três estruturas a partir das quais os hidroxamatos são sintetizados (figura 3.11), sendo que dentre elas o ácido alquil-hidroxâmico, mostrado na estrutura III, é o mais utilizado. Esse ácido pode ser obtido como produto secundário da síntese de ácidos de cadeia longa, durante a oxidação de parafinas por oxigênio (BULATOVIC, 2007). Ainda de acordo com o autor, embora uma extensa pesquisa tenha sido empreendida para a aplicação de hidroxamatos como coletores na flotação de malaquita, titanitas e pirocloro, apenas uma aplicação comercial foi alcançada com o hidroxamato russo IM50 e similares chineses. O autor aponta três fatores que limitariam uma aplicação bem sucedida para os hidroxamatos, a saber, as diferenças estruturais entre os reagentes fabricados pela Hoechst (Alemanha), Cytec (EUA), o russo IM50 e o chinês R801, o desempenho dependente do tamanho da cadeia carbônica do reagente e a sensibilidade à presença de lamas, o que exigiria um processo de deslamagem anterior à flotação.

Figura 3.11 Estrutura dos ácidos hidroxâmicos a partir dos quais são produzidos os hidroxamatos. R_1 é geralmente um ligante orgânico, e R_2 e R_3 podem ser orgânicos ou inorgânicos (BULATOVIC, 2007).

Ensaios realizados por Fuerstenau *et al.* (1967) com goethita em solução de hidroxamato de potássio mostraram máxima flotabilidade em pH básico, o que indica que a reação do tipo quelante entre coletor e mineral requer a presença do íon hidroxila na superfície das partículas, sob a forma de FeOH²⁺ ou alguma outra espécie hidrolisada (figuras 3.12 e 3.13). Em baixos valores de pH, uma boa flotabilidade não é observada devido à presença insuficiente de íons OH⁻ na superfície do mineral ou devido à hidrólise do hidroxamato em ácido hidroxâmico. Em pH 11, a queda da flotabilidade pode ser atribuída à estabilidade do hidróxido de ferro perante o hidroxamato de ferro.

Figura 3.13 Formação de hidroxamato de ferro por quelação (FUERSTENAU et al., 1967).

3.2.4.2 Oleato de sódio

Os ácidos graxos e carboxílicos e seus sais são amplamente empregados na flotação de minerais não-sulfetados, atuando como coletores e espumantes. Eles podem ser classificados em saturados ou insaturados, sendo os insaturados os mais importantes devido ao seu maior poder seletivo. Um bom exemplo desse subgrupo é o ácido oleico (figura 3.14), um dos poucos ácidos graxos de extensa cadeia carbônica que ainda pode ser saponificado e solubilizado para aplicação em flotação. Ele é produzido a partir de gordura vegetal ou óleos

vegetais e é usado, na maioria das vezes, na forma do seu sal de sódio, que é mais solúvel em água (RAO, 2004; BULATOVIC, 2007).

O mecanismo de adsorção do ácido oleico sobre a superfície da hematita é considerado como o de quimissorção, em que ocorre a formação do oleato férrico (WADSWORTH, 1951 *apud* RAO, 2004). Quast (1999) investigou a interação entre oleato e os minerais hematita e quartzo, verificando máxima adsorção e flotabilidade em valores de pH próximos do PCZ (ponto de carga zero) dos minerais. A redução da flotabilidade em pH alcalino é explicada pela alta competição entre os íons oleato e hidroxila pelos sítios superficiais.

Figura 3.14 Fórmula estrutural do ácido oleico (VASCONCELOS COSTA, 2006).

3.2.4.3 Fluorsilicato de sódio

Os silicatos de sódio são reagentes utilizados na flotação, atuando como depressores, dispersantes ou agentes controladores de íons solúveis. O fluorsilicato de sódio é aplicado com as mesmas funções dos tradicionais silicatos de sódio, sendo o mecanismo de atuação como depressor ainda pouco estudado. Sua principal aplicação encontra-se na depressão de ganga silicática. As principais reações de hidrólise do sal podem ser expressas de acordo com as equações abaixo (SONG, 2002 *apud* NASCIMENTO, 2010):

$$Na_{2}SiF_{6} \rightleftharpoons 2Na^{+} + SiF_{6}^{2}$$

$$SiF_{6}^{2} + 2H^{+} + 4H_{2}O \rightleftharpoons Si(OH)_{4} + 6HF \qquad K_{2} = 5,37 \times 10^{-27}$$

$$HF \rightleftharpoons H^{+} + F^{-} \qquad K_{3} = 7,4 \times 10^{-4}$$

$$HF + F^{-} \rightleftharpoons HF_{2}^{-} \qquad K_{4} = 4,7$$

3.2.4.4 Floatan M3

O reagente Floatan M3 consiste em um dos reagentes produzidos pela Unitan S.A.I.C.A. a partir de extratos vegetais (quebracho). Trata-se de um reagente com elevada solubilidade em água, exercendo função de depressor e dispersante de lamas e carbonatos na flotação de metais. Os quebrachos (figura 3.15), assim como o amido e a dextrina, são classificados como agentes reguladores orgânicos. Sua estrutura molecular apresenta multipolaridade ao longo da cadeia. Quando adsorve em uma partícula, seus grupos polares são expostos em direção à solução aquosa, o que torna a partícula hidrofílica. Comercialmente, os quebrachos podem ser encontrados sob três formas, de acordo com seu processo de produção: quebracho padrão, quebracho sulfetado e quebracho aminado. O primeiro é obtido pelo tratamento da madeira com água quente, ajustando-se pressão e pH; o segundo é obtido pelo tratamento com dissulfato de sódio, em água fria e pH variável; e o terceiro é produzido a partir da introdução de grupos amina no quebracho padrão, fato que lhe confere um diferente mecanismo de depressão (BULATOVIC, 2007).

Figura 3.15 Fórmula estrutural do quebracho (BULATOVIC, 2007).

3.2.5 Avaliação da seletividade em sistemas de flotação

A avaliação da seletividade de um método de concentração mineral pode ser realizada pela comparação entre recuperação do elemento ou mineral de interesse e de outro elemento ou mineral de ganga no concentrado e no rejeito. Dentre as diversas formas de se quantificar a eficiência do processo, o Índice de Seletividade (IS), proposto por Gaudin, é a mais conhecida (GAUDIN, 1939 *apud* VALADÃO *et al*, 2012).

$$IS = \sqrt{\frac{R_1 T_2}{T_1 R_2}}$$
Eq. I

A equação I também pode ser escrita como:

$$IS = \sqrt{\frac{R_1 T_2}{(100 - R_1).(100 - T_2)}}$$
Eq. II

Onde:

- R_1 = recuperação da espécie 1 no concentrado.
- R_2 = recuperação da espécie 2 no concentrado.
- T_1 = recuperação da espécie 1 no rejeito.
- T_2 = recuperação da espécie 2 no rejeito.

4. METODOLOGIA

4.1 Amostras

As amostras estudadas consistiram em cristais de elevada pureza (hematita, goethita, quartzo, gibbsita e caulinita) e um minério de ferro hidratado. Suas origens são apresentadas na tabela IV.1.

Tabela I	V.2 –	Origem	das	amostras
----------	-------	--------	-----	----------

Amostra	Gênese	Local de coleta
Hematita	Quadrilátero Ferrífero	Mina de Casa de Pedra, Congonhas - MG
Goethita	Quadrilátero Ferrífero	Lavra da Coluna, Ouro Preto - MG
Quartzo	Quadrilátero Ferrífero	Pegmatito em Turmalina – MG
Gibbsita	Quadrilátero Ferrífero	Lagoa Gambá, Ouro Preto – MG
Caulinita	Bacia do Amazonas	Vila Munguba, Almeirim – PA
Minério	Quadrilátero Ferrífero	Mina de Alegria, Mariana - MG

4.1.1 Preparação das amostras

As amostras de minerais puros obtidas eram compostas de cristais bem formados com dimensões de aproximadamente 5 cm. Inicialmente, elas foram fragmentadas com a ajuda de um martelo de mão até uma granulometria inferior a 0,5 cm. A partir desse tamanho, um gral de ágata foi utilizado para reduzir o tamanho das partículas às faixas granulométricas –150 μ m +75 μ m para os ensaios de microflotação, e –38 μ m para os ensaios de caracterização: difratometria de raios X (DRX), termogravimetria (TG), calorimetria diferencial de varredura (DSC) e potencial zeta (PZ).

A amostra de minério foi preparada e passou pelos ensaios de flotação em bancada no Laboratório de Tratamento de Minérios da UFMG. Essa preparação consistiu no ajuste da granulometria do material às faixas $-150 \mu m +45 \mu m$ (fração grossa), e $-45 \mu m +10 \mu m$ (fração fina). Para tanto, foram executadas as operações de moagem, homogeneização, quarteamento, peneiramento a úmido e deslamagem. Não foi realizada a etapa de britagem, pois a amostra de minério já foi obtida com granulometria inferior a 3,35 mm. A moagem foi conduzida em moinho de disco. A homogeneização foi realizada por pilhas cônicas e o quarteamento por divisores de rifles (figura 4.1) de várias capacidades, sendo que foram separadas amostras para as análises de caracterização. A deslamagem foi realizada em baldes de 20 L. Para tal, preparou-se 18 L da polpa contendo 2 kg do minério fração fina. Foi utilizado NaOH para elevar o pH para 10,5, de forma a promover dispersão das partículas. O sistema foi agitado, em movimentos verticais evitando-se formação de fluxos circulares. O tempo de sedimentação adotado foi de 4 minutos e o processo foi repetido cinco vezes.

Figura 4.1 Divisor de rifles nº 90.

Na etapa de caracterização, foram realizadas as análises: difratometria de raios X (DRX), análise química via úmida, espectroscopia de fluorescência de raios X (FRX), picnometria a gás hélio, microscopia ótica de luz refletida (MOLR), microscopia eletrônica de varredura (MEV), microanálise por dispersão de energia (EDS), aferição da área superficial específica e porosimetria por adsorção gasosa (BET), termogravimetria (TG) e calorimetria diferencial de varredura (DSC). A análise química foi realizada para a amostra cabeça (minério homogeneizado e amostrado nas condições em que foi recebido), por faixa granulométrica e para os produtos flotado e afundado, dos testes de flotação em bancada. O peneiramento das amostras foi realizado a úmido em peneiras série Tyler, separando as faixas de grossos e finos. O fluxograma seguido na adequação da amostra é apresentado na figura 4.2.

Figura 4.2 Fluxograma de preparação da amostra de minério.

4.2 Equipamentos e reagentes

Os equipamentos e reagentes utilizados na execução dos experimentos são listados nas tabelas IV.2 e IV.3, respectivamente.

Equipamento	Modelo	Fabricante
Martelo de mão	-	-
Gral (figura 4.3)	Ágata	-
Peneiras	Série Tyler	Bertel
Estufa	A – HT	Fanem
Agitador magnético (figura 4.5)	78HW-1	Fisatom
pHmetro	DM-22	Digimed
Tubo de Hallimond modificado (figura 4.5)	-	Hialoquímica
Cronômetro digital	-	Technos
Balança analítica	AY220	SHIMADZU
Célula de flotação (figura 4.7)	-	Denver
Divisor de rifles (figura 4.1)	Nº 90, 30 e 10	Dialmática
Picnômetro a gás hélio	Stereopycnometer	Quantachrome
Medidor de área superficial específica e distribuição de tamanho de poros	NOVA-1000	Quantachrome
Difratômetro de raios X (figura 4.4)	EMPYREAN	PANalytical
Espectrômetro de raios X	EDX-720	Shimadzu
Microscópio ótico de luz refletida e transmitida	Orthoplan Pol	Leitz/Leica
Microscópio eletrônico de varredura (MEV)	INSPECT S50	FEI
Espectrômetro dispersivo em energia (EDS)	GENESIS	EDAX
Analisador térmico simultâneo TG-DSC	STA-6000	Perkin Elmer
Zetâmetro (figura 4.6)	ZM3-D-G, 3.0+	Zeta Meter systems

Tabela IV.3 – Equipamentos empregados na realização dos experimentos

Figura 4.3 Gral de ágata empregado na cominuição das amostras.

Figura 4.4 Difratômetro de raios X utilizado para a caracterização de fase nas amostras.

Figura 4.5 Montagem do tubo de Hallimond modificado utilizado nos ensaios de microflotação.

Além dos equipamentos citados, foram empregados papel filtro quantitativo (marca Quanty, diâmetro 12,5 cm e diâmetro de poros 25 µm), controlador auxiliar de pipetagem, (Brand) e vidrarias tais como balões, béqueres, pipetas e funis.

Ensaio	Coletor	Depressor	Modulador de pH	
	Oleato de sódio (Cromoline química fina)	Fluorsilicato de sódio (Quimesp química)		
Microflotação em tubo de Hallimond e flotação em bancada	Hidroxamato AERO 6493 (Cytec)	Amido de milho (Maizena)	NaOH e HCl (Cynth)	
	Etermonoamina Flotigam EDA (Clariant)	Floatan M3 (Unitan)		

Tabela IV.4 - Reagentes empregados nos testes de microflotação e flotação em bancada

O reagente NaCl (Cynth) foi utilizado como eletrólito indiferente nos ensaios de eletroforese.

4.2.1 Preparação dos reagentes

Os reagentes utilizados como coletores e depressores na flotação foram preparados conforme descrito abaixo.

Preparação da solução de oleato de sódio 0,1% pv

- 1. preparou-se uma solução de NaOH 10% p/v;
- 2. pesaram-se 2 g de ácido oleico em um béquer de 150 mL limpo e seco;
- adicionaram-se 10 mL de água destilada e agitou-se com o auxílio do agitador magnético;
- 4. adicionaram-se 3,5 mL de solução de NaOH 10% p/v e manteve-se a agitação;
- adicionaram-se mais 10 mL de água destilada, mantendo a agitação até se obter uma solução de aspecto cristalino;
- 6. transferiu-se a solução para um balão de 2 L e aferiu-se.

Preparação da solução de amina 0,1% pv

- 1. preparou-se uma solução de HCl 5% p/v;
- 2. pesaram-se 2 g de amina em um béquer de 150 mL limpo e seco;
- adicionaram-se 5 mL de água destilada e agitou-se com o auxílio do agitador magnético;

- 4. adicionaram-se 2,03 mL de solução de HCl 5% p/v e manteve-se a agitação;
- adicionaram-se mais 10 mL de água destilada, mantendo a agitação até se obter uma solução de aspecto cristalino;
- 6. transferiu-se a solução para um balão volumétrico de 2 L e aferiu-se.

Preparação da solução de hidroxamato 0,025% p/v (optou-se por preparar uma solução-estoque menos concentrada para esse reagente devido à dificuldade de solubilização do mesmo).

- 1. pesou-se 0,5 g de AERO 6493 em um béquer de 150 mL limpo e seco;
- 2. adicionou-se água destilada ao béquer;
- 3. levou-se o béquer a um agitador magnético, onde a solução foi mantida sob agitação e aquecimento (40 °C) constantes até se obter uma mistura homogênea;
- 4. transferiu-se a solução para um balão volumétrico de 2 L e aferiu-se.

Preparação de amido gelatinizado 0,1% p/v

- 1. pesaram-se 2 g de amido em um béquer de 150 mL limpo e seco;
- adicionaram-se 4 mL de água destilada e agitou-se com bastão de vidro para que ocorra homogeneização.;
- adicionaram-se 10 mL de NaOH 5% p/v e agitou-se até que o amido gelatinizasse e formasse um líquido viscoso e transparente;
- 4. transferiu-se para um balão volumétrico de 2 L e aferiu-se.

Preparação da solução de fluorsilicato de sódio 0,01% p/v (optou-se por preparar uma solução-estoque menos concentrada para esse reagente devido à dificuldade de solubilização do mesmo)

- 1. pesou-se 0,2 g de silicato de sódio em um béquer de 150 mL limpo e seco;
- adicionou-se água destilada, mantendo-se a agitação e o aquecimento até que todo o sal seja dissolvido;
- 3. transferiu-se para um balão de 2 L e aferiu-se.

Preparação da solução de Floatan M3 0,1% p/v

- 1. pesaram-se 2 g de Floatan em um béquer de 150 mL limpo e seco;
- adicionou-se água destilada, mantendo-se a agitação até a formação de uma mistura homogênea;
- 3. transferiu-se para um balão de 2 L e aferiu-se.

4.3 Caracterização

A caracterização granulométrica da amostra de minério foi realizada por peneiramento em peneirador vibratório suspenso com peneiras série Tyler, da fração granulométrica de 0,150 mm a 0,038 mm. Para frações abaixo de 0,038 mm, foi realizada uma classificação granulométrica pelo granulômetro Cyclosizer Warman.

A determinação da densidade do minério foi realizada pelo picnômetro de gás a hélio Quantachrome.

A determinação da área superficial específica e da distribuição de poros na amostra de minério foi executada por ensaios de adsorção-dessorção de gás N₂. O método utilizado na primeira determinação foi o BET com multipontos. O equipamento NOVA-1000 Quantachrome foi utilizado para tal análise. A desgaseificação da amostra foi necessária para a remoção de contaminantes.

A identificação das fases presentes nas amostras de minerais puros e de minério foi realizada por difração de raios X (DRX) em um difratômetro PANalytical modelo Empyrean com radiação CuKα e monocromador (figura 4.4). Para a realização da análise, foi utilizado aproximadamente 1 g de amostra de granulometria –38 µm. Depois de obtido o difratograma, foram comparadas as distâncias interplanares e a intensidade dos picos experimentais com os padrões do banco de dados ICDD (*International Centre for Diffraction Data*) sugeridos pelo programa X'Pert HighScore versão 2011. Identificadas as fases presentes nas amostras, foi realizada a quantificação de fase para as amostras não monofásicas e no minério por meio do método de refinamento de estruturas cristalinas Rietveld. O programa utilizado no refinamento foi o GSAS (*General Structure Analysis System*). Os padrões CIF (*Crystallographic Information File*) empregados nos refinamentos foram retirados do banco de dados ICSD (*Inorganic Crystal Structure Database*), o qual é obtido no portal da CAPES <www.portaldapesquisa.com.br>.

A identificação de contaminantes em baixa concentração na amostra de minério foi inicialmente realizada pela espectrometria de fluorescência de raios X, no equipamento EDX-720, Shimadzu, no Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), em Belo Horizonte. Em seguida, foi realizada uma quantificação desses contaminantes pela espectrometria dispersiva em energia (EDS), com o equipamento Genesis-EDAX. Essas análises complementam os resultados da difratometria de raios X e serviram como guia para os ensaios de análise química via úmida. No caso do minério de ferro goethítico, esperava-se detectar elevada concentração de P, Al e Mn e elevada PPC.

A caracterização microestrutural foi realizada por microscopia eletrônica de varredura (MEV), no equipamento Inspect S50 FEI, e pela microscopia ótica de luz refletida (MOLR), com o microscópio para luz refletida marca Leitz/Leica, modelo Orthoplan Pol, com câmera digital Canon PowerShot S80. Foram analisadas amostras do minério grosso (-0,150 mm e +0,045 mm) e fino (-0,045 mm e +0,010 mm), que foram embutidas em resina de acrílico, lixadas e polidas em pasta de diamante e, em seguida, recobertas com película delgada de carbono (C) e, também, partículas livres na forma de pó (somente no MEV). Objetivou-se correlacionar os resultados dessas análises aos resultados de análise por EDS e por porosimetria de adsorção-dessorção gasosa.

A análise termogravimétrica foi realizada tanto para as amostras minerais quanto para a amostra de minério, utilizando o analisador térmico simultâneo TG-DSC STA-6000 Perkin Elmer. Foram empregados cadinhos de platina, fluxo de gás nitrogênio, temperatura entre 30 e 850°C e 1g da amostra em cada ensaio. Foram obtidas curvas de termogravimetria (TG e DTG) e calorimetria diferencial de varredura (DSC). A partir dessas análises, buscou-se comprovar a correlação entre a elevada PPC do minério à participação expressiva da goethita na composição do minério de ferro hidratado.

4.4 Estudo das propriedades eletrocinéticas dos minerais – Potencial Zeta

As amostras que foram estudadas pela técnica de eletroforese, para as quais foram levantadas curvas de potencial zeta, se restringiam às amostras de mineral puro. O equipamento empregado para tal foi o zetâmetro ZD3-D-G 3.0+, da Zeta Meter System (figura 4.6).

Figura 4.6 Montagem para a determinação do Potencial Zeta das partículas minerais.

Para a realização das medidas, foram preparadas suspensões aquosas com o mineral e o eletrólito indiferente (NaCl 10⁻³ M) e suspensões aquosas com o mineral, o eletrólito e os reagentes coletores oleato de sódio (5 mg/L) e hidroxamato AERO 6493 (20 mg/L). As amostras utilizadas nesses ensaios foram aquelas de granulometria inferior a 0,038 mm. O tempo de decantação dessas amostras em solução foi de aproximadamente 3 horas, de forma a se analisar partículas de diâmetro médio abaixo de 10 µm. Foram analisados 10 valores de pH, variando de 2,0 a 11,0. Os moduladores de pH foram o HCl e NaOH, sendo que esses reagentes foram utilizados em quantidades as menores possíveis, de forma a não alterar a força iônica das suspensões. Para cada valor de pH analisado, buscou-se obter um número mínimo de 32 medidas de potencial zeta, de forma a manter o significado estatístico para as medidas. Contudo, para valores de pH próximos da região do PIE dos minerais ou nos extremos da faixa de pH, não foi possível aferir tal número de medidas. Assim, objetivou-se um desvio padrão inferior a 5% para cada pH estudado. Foi devidamente realizada a limpeza da célula com água corrente e acessórios específicos de forma a eliminar contaminações de ensaios anteriores. O eletrodo de platina também foi devidamente limpo, retirando-se a camada de material oxidado gerada após cada ensaio. As suspensões foram preparadas seguindo-se os seguintes passos:

- preparar a solução de eletrólito ou eletrólito mais reagente coletor em um balão de 2L;
- 2. pesar a amostra mineral (0,025 g aproximadamente);
- colocar a amostra em aproximadamente 170 mL da solução em uma proveta de 250 mL;
- 4. ajustar o pH da suspensão;
- 5. agitar a suspensão;
- 6. cobrir a proveta com filme de PVC;
- 7. aguardar aproximadamente 3 horas;
- 8. aferir o pH;
- fazer ambiente na pipeta e na célula do zetâmetro com água deionizada e com a suspensão, respectivamente;
- 10. pipetar a suspensão da região média do volume na proveta;
- adicionar o volume pipetado na célula de eletroforese da montagem (figura 4.5), previamente limpa;
- 12. realizar as medições de potencial zeta;
- 13. aferir o pH.

O valor de pH considerado na construção dos gráficos de potencial zeta foi a média entre o valor de pH medido na suspensão antes do início dos ensaios e aquele medido após o término. No pHmetro, além dos pHs, foram medidos os valores de temperatura final e inicial da suspensão e no zetâmetro, os valores de voltagem e condutividade. Os valores de potencial zeta obtidos foram corrigidos de acordo com a temperatura média, segundo a tabela de correções do manual do zetâmetro (ZETA METER INC.).

4.5 Microflotação

Os ensaios de microflotação foram conduzidos no tubo de Hallimond modificado e com extensor (figura 4.5), com volume de suspensão igual a 320 mL. Objetivou-se estudar:

- a eficácia dos coletores oleato de sódio e hidroxamato para os minerais hematita, goethita, quartzo, gibbsita e caulinita;
- a eficácia dos depressores amido de milho, fluorsilicato de sódio e Floatan M3 para os minerais citados;
- o efeito do tempo de condicionamento dos reagentes coletores na flotabilidade dos minerais;
- o efeito da concentração dos reagentes coletores na flotabilidade;
- o efeito da temperatura na flotabilidade dos minerais.

Com base nesses objetivos, os testes foram divididos em seis fases:

- execução de testes de microflotação com a vazão de N₂ escolhida a partir da literatura (tabela IV.4), de forma a se determinar o arraste hidrodinâmico de partículas em uma suspensão sem a presença de reagentes;
- ii. levantamento da curva de flotabilidade *versus* pH em ensaios com os coletores para cada mineral;
- iii. testes com variação da concentração do coletor, de modo a obter a concentração mínima que garanta uma flotabilidade interessante do ponto de vista da recuperação e do teor;
- iv. testes com variação do tempo de condicionamento do coletor, visando-se obter o tempo necessário para se garantir máxima flotabilidade com a menor concentração de coletor possível;

- v. obtenção da flotabilidade dos minerais em sistema coletor-depressor na região de pH na qual se evidencie uma seletividade entre os minerais, observada nas fases ii, iii e iv,
- vi. ensaios variando-se a temperatura da solução do coletor, de forma a evidenciar algum efeito dessa variável no mecanismo de adsorção do reagente.

Na fase i, foi realizada a microflotação dos minerais em água destilada, em pH 7,0 e tempo de flotação de 1 minuto. O cálculo do arraste é mostrado pela equação III:

Arraste (%) =
$$\left[\frac{massa \ do \ flotado}{massa \ do \ flotado + massa \ do \ afundado}\right] * 100$$
 Eq. III

As fases ii, iii, iv e vi foram realizadas por meio da seguinte metodologia:

- 1. preparar as soluções do coletor e dos reagentes moduladores de pH (NaOH e HCl);
- 2. ajustar o pH das solução do reagente coletor;
- 3. pesar 1 g do mineral, colocando-se a massa na parte inferior do tubo de Hallimond;
- 4. acoplar o extensor e a parte superior do tubo;
- adicionar 50 mL da solução concentrada do coletor, já no pH do ensaio, na parte inferior do tubo;
- 6. condicionar por um tempo predeterminado;
- 7. montar, sobre a parte inferior do tubo, o extensor e a parte superior;
- adicionar água destilada, no pH do ensaio, de forma a completar o volume total da suspensão (320 mL) e atingir a concentração do ensaio (tabela IV.4);
- 9. ligar o gás N₂, realizando-se a flotação por 1 minuto;
- 10. ao fim do tempo de flotação, desligar a agitação e o gás;
- 11. medir o pH final do sistema;
- 12. recolher os produtos afundado e flotado;
- 13. filtrar e levar os produtos a uma estufa para secar a 50°C;
- 14. lançar, em um gráfico, o valor da média entre os valores de pH inicial e final e o valor da flotabilidade calculado pela equação IV:

Flotabilidade (%) = $\left[\frac{massa \ do \ flotado}{massa \ do \ flotado+massa \ do \ afundado}\right] * 100 - arraste$ Eq. IV

A fase v foi realizada seguindo-se a seguinte metodologia (RODRIGUES, 2012) modificada:

- preparar as soluções concentradas dos reagentes coletores e depressor de maneira que a concentração final no tubo seja a desejada;
- 2. ajustar o pH das solução dos reagentes coletor e depressor;
- 3. pesar 1 g do mineral, colocando-se a massa na parte inferior do tubo de Hallimond;
- adicionar 50 mL da solução concentrada de depressor no tubo (parte inferior+ extensor);
- 5. ligar o agitador e condicionar por um tempo predeterminado (tabela IV.4);
- acrescentar 50 mL da solução concentrada do coletor e condicionar por tempo predeterminado (tabela IV.4)
- 7. montar a parte superior do tubo sobre o extensor;
- adicionar água destilada, no pH do ensaio, de forma a completar o volume total da suspensão (320 mL);
- 9. ligar o gás N₂, realizando-se a flotação por 1 minuto;
- 10. ao fim do tempo de flotação, desligar a agitação e o gás;
- 11. medir o pH final do sistema;
- 12. recolher os produtos afundado e flotado;
- 13. filtrar e levar os produtos a uma estufa para secar a 50°C;
- lançar, no gráfico, os valores de pH médio¹ e de flotabilidade calculado pela equação IV.

Tabela IV.4 - Principais condições de estudo empregadas nos testes de microflotação

Reagente	Tempo de condicionamento (min)	Concentração (mg/L)	Vazão de N ₂ (cm ³ /min)	Temperatura (°C)
Oleato de sódio	1.4e8	1, 5 e 20		ambiente,45 e
Hidroxamato AERO 6493	-,	5, 20 e 40	50	60
Amido				ambiente
Fluorsilicato de sódio	5	10		ambiente
Floatan M3				ambiente

¹ Média entre pH inicial do coletor, depressor e o pH final do sistema.

4.6 Flotação em bancada

Os ensaios de flotação em bancada foram realizados em células Denver (figura 4.7), com cuba de 630 mL, já considerando o volume do rotor. Para se atingir as porcentagens de sólido de 20, 30, 45 e 60% foram utilizadas massas de 147,5, 241,9, 422,1 e 676,1 g, respectivamente.

Figura 4.7 Montagem para a realização dos ensaios de flotação em bancada.

As condições dos ensaios foram determinadas baseando-se nos resultados de melhor recuperação e seletividade encontrados nos testes de microflotação. Os valores ótimos de pH, temperatura, tempo de condicionamento e concentração de reagentes foram transferidos para a flotação em bancada e, a partir deles, tais variáveis foram novamente estudadas de forma a se chegar a parâmetros mais próximos daqueles a serem aplicados na indústria. Para atingir esse objetivo, foi estudada uma amostra de minério de ferro hidratado, com alto PPC. Essa amostra foi dividida em duas frações granulométricas, fração grossa (- 0,150 + 0,045 mm) e fração fina (- 0,045 + 0,010), de forma a se atingir maior seletividade nos ensaios. Previa-se que a ganga fosse constituída pelo quartzo e, possivelmente, caulinita e gibbsita e os mineraisminério pela hematita e a goethita. Para efeito comparativo, foram realizados ensaios de flotação no sistema tradicional de flotação catiônica reversa de minério de ferro, com os reagentes amina e amido. As tabelas IV.5 e IV.6 trazem as principais variáveis quanto para os sistemas com os coletores hidroxamato e oleato de sódio. Devido a limitações da amostra fração fina, o número de parâmetros investigados para a mesma se resumiu à dosagem dos

coletores e ao tempo de condicionamento, no caso do oleato de sódio e do hidroxamato AERO 6493, e às dosagens de amina e amido no caso do sistema amina / amido.

Variável	Valores							
Granulometria (µm)		-150)+45			-45+10		
Dosagem de Amina (g/t)	50	1	00	150	50	50 100 15		
Dosagem de Amido (g/t)	100	3	00	500	100	300	500	
Vazão (NL/min)	4		6	8	6			
Agitação mecânica (rpm)	800	1(000	1200		100		
pH		10),5			10,5		
Temperatura (°C)	25	4	5	60		25		
Tempo de condicionamento (min)	coletor:	l,4e8e	depresso	or: 1, 4 e 8	c	coletor:4 depressor: 4		
Percentual de sólidos (%)	20	30	45	60	20			

 Tabela IV.5 – Principais condições de estudo empregadas nos ensaios de flotação catiônica reversa de minério de ferro em testes de bancada

 Tabela IV.6 – Principais condições de estudo empregadas nos ensaios de flotação em bancada para os coletores oleato de sódio e hidroxamato AERO 6493

Variável					Valores				
Granulometria (µm)	-150+45 -45+10								
Dosagem de coletor (g/t)	100	2	200		300	100	200	300	
Vazão (NL/min)	4		6		8	6			
Agitação mecânica (rpm)	800	1	000		1200		1000		
рН		9	,0				9,0		
Temperatura (°C)	25	2	45		60		25		
Tempo de condicionamento (min)	1		4		8	1	4	8	
Percentual de sólidos (%)	20	30	45		60	20			

5. RESULTADOS E DISCUSSÕES

5.1 Caracterização

5.1.1 Difratrometria de raios X

Após a realização das análises de difratometria de raios X, comprovou-se que as amostras de quartzo, hematita, gibbsita e caulinita possuíam elevado grau de pureza. As figuras 5.1, 5.3, 5.4 e 5.5 apresentam os difratogramas das amostras, nos quais os picos de apenas um mineral podem ser observados em sua respectiva amostra. O difratograma da amostra de goethita (figura 5.2), contudo, apresentou picos de hematita, indicando a presença dessa fase em uma quantidade bem inferior à da goethita.

Figura 5.1 Difratograma de raios X da amostra de hematita. (λKα Cu=1,54060Å).

Figura 5.2 Difratograma de raios X da amostra de goethita. (λKα Cu=1,54060Å).

Figura 5.3 Difratograma de raios X da amostra de quartzo. (λKα Cu=1,54060Å).

Figura 5.4 Difratograma de raios X da amostra de gibbsita. (λ K α Cu=1,54060Å).

Figura 5.5 Difratograma de raios X da amostra de caulinita. (λKα Cu=1,54060Å).

A análise de DRX para as amostras de minério foram divididas em: cabeça (figura 5.6), - 0,150 +0,045mm e - 0,045 +0,010mm. Em todas elas, foram identificadas as fases hematita, goethita e quartzo em proporções aproximadas. Não foram identificadas outras fases contendo contaminantes como Al, Si, P e Mn.

Figura 5.6 Difratograma de raios X da amostra cabeça, do minério. (λKα Cu=1,54060Å).

5.1.2 Difratometria de raios X: análise quantitativa

A quantificação de fases baseada no método de Rietveld foi realizada para a amostra de goethita, uma vez que a difratometria de raios X não mostrou mais de uma fase para as demais amostras de minerais, e para a amostra de minério, denominada amostra cabeça. A tabela V.1 traz os percentuais de massa das fases hematita, goethita e quartzo encontradas nas amostras goethita e na amostra de minério, bem como os indicadores de qualidade do refinamento (wrp e χ^2) e a massa específica de cada fase. As figuras 5.7 e 5.8 mostram as curvas de ajuste, os dados experimentais e a diferença entre estes dados e o valor do ajuste.

Amostra	% massa			wrn	χ^2	massa	específica (g/	⁽ cm ³)
¹ mosti a	hematita	goethita	quartzo	wrp	K	hematita	goethita	quartzo
Goethita	21	79	-	0,3501	1,390	5,27	4,21	-
Cabeça	20	36	44	0,3307	1,477	5,26	4,21	2,65

Tabela V.1 – Percentual em massa, massa específica, wrp , χ^2 para a amostra goethita e cabeça

Figura 5.7 Curva de ajuste (em vermelho), dados experimentais (x) e erro (em azul) obtidos pelo método de Rietveld para a amostra goethita.

Figura 5.8 Curva de ajuste (em vermelho), dados experimentais (x) e erro (em azul) obtidos pelo método de Rietveld para a amostra de minério cabeça.

5.1.3 Espectrometria de fluorescência de raios X

A tabela V.2 traz os resultados das análises químicas semiquantitativas para as amostras de minério de ferro cabeça, finos e grossos. Observa-se que o único contaminante que constitui uma fase mineral da amostra é o Si, no quartzo. Os demais contaminantes estão presentes em pequenas concentrações, não tendo sido identificadas fases minerais para os mesmos na difratometria de raios X. Segundo Rocha (1997), Al, P, Mn e Ti encontram-se alojados na estrutura cristalina da goethita, ou mesmo em seus poros.

Amostra	Ocorrência							
	Alta	Média	Baixa	Traço				
Cabeça	O, Fe, Si	-	-	Al, P, S, Mn, Ti				
- 0,150 + 0,045 mm	O, Fe, Si	-	-	Al, P, S, Mn, Ti				
- 0,045 + 0,010 mm	O, Fe, Si	-	-	Al, P, S, Mn, Ti				

Tabela V.2 – Análise química semiquantitativa do minério de ferro goethítico por FRX.

5.1.4 Microscopia ótica de luz refletida

O estudo microestrutural da amostra de minério goethítico pela microscopia ótica de luz refletida foi conduzido com a amostra de granulometria -0,150+0,045 mm, que constituiu a fração grossa na flotação em bancada. A amostra -0,045+0,010 mm não foi estudada, uma vez que as feições microestruturais são destruídas no processo de cominuição e, assim, não seriam bem identificadas pelo método. Os resultados das análises podem ser vistos nas figuras 5.9, 5.10, 5.11 e 5.12. Na primeira, observa-se a coexistência das fases magnetita (região 3, bege clara), hematita (região 1, cinza bem claro) e goethita (região 2, cinza médio) em uma mesma partícula, indicando que o processo de oxidação da magnetita ocorreu em condições hidrotermais, responsáveis pela formação de goethita. A fase magnetita não foi identificada na análise de DRX, o que mostra que sua participação na amostra de minério está abaixo dos níveis de detecção do método. Associadas à goethita, algumas regiões de coloração marrom (4) foram observadas, podendo ser constituídas por goethita terrosa ou argilas, como a caulinita. Hematitas de diferentes morfologias e tramas foram visualizadas na amostra, tais como a hematita martítica (5), microporosa, e a hematita lamelar (1 e 6), maciça. Tal densidade de poros, característica da hematita martítica, dá à partícula uma tonalidade mais escura que a tonalidade da hematita lamelar. O quartzo (região 7, cinza escuro), se mostrou sob a forma de partículas anédricas e maciças, bem liberado das fases goethita, hematita e magnetita.

Figura 5.9 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm).

A figura 5.10 mostra o processo de martitização ocorrendo na região 1, onde a magnetita apresenta-se cortada por treliças de hematita (cinza bem claro), configurando os planos (111), a partir dos quais se inicia a oxidação à hematita. Na região 2, as treliças são visualizadas novamente, contudo, circundadas por goethita (cinza médio). A região 3 traz um grão de hematita martítica, ainda no habitus octaédrico da magnetita. Na figura 5.11, é possível identificar goethita maciça (região 2) e botrioidal (região 1), intercrescidas. A goethita botrioidal apresenta coloração mais próxima do marrom, o que indica se tratar de um material mais terroso. Goethita porosa intercrescida com hematita pode ser observada na região 3. A figura 5.12 mostra, na região 1, inclusões de hematita abaixo do plano da seção polida. Embora as partículas estejam liberadas, de forma geral, tais inclusões podem provocar tanto uma queda no teor (pela adsorção de amido nas regiões de inclusão), quanto uma queda da recuperação.

Figura 5.10 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm).

Figura 5.11 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm).

Figura 5.12 Fotomicrografia da amostra de minério goethítico (- 0,150 +0,045 mm).

5.1.5 Microscopia eletrônica de varredura / espectrometria dispersiva em energia

O estudo de morfologia, trama e composição química foi realizado em análises no MEV e EDS. Nessa etapa, foram observadas amostras do minério nas faixas – 0,150 + 0,045 mm, – 0,045 + 0,010 mm e amostras dos produtos flotados nos sistemas amina/amido, oleato de sódio e hidroxamato na granulometria – 0,150 + 0,045 mm. As amostras foram estudadas em pastilhas de resina epóxi (fenólica) e na forma de partículas soltas. As amostras de minério na fração – 0,150 + 0,045 mm foram investigadas para fins de estudos de morfologia e trama, uma vez que guardavam informações não presentes na amostra fina. A composição química do minério foi investigada para as duas faixas, visando identificar as possíveis diferenças entre finos e grossos. Por fim, as amostras de produtos da flotação foram investigadas visando identificar a presença de *slimes coating*. Para tanto, as amostras foram realizados os ensaios. As amostras foram estudadas em pastilhas de resina de acrílico e na forma de partículas soltas.

A figura 5.13 e a tabela V.3 trazem uma análise geral da amostra de minério na faixa granulométrica grossa (-0,150 + 0,045 mm). A imagem indica boa liberação do quartzo

(partículas cinza escuro) e a presença de partículas mistas de hematita (cinza bem claro), goethita (cinza médio) e quartzo. A microanálise EDS indica tratar-se de um minério relativamente pobre (44,48% de Fe) e contendo, além do Si, S e Mn como principais elementos contaminantes. Uma vez que não foram identificadas fases que contêm tais contaminantes, espera-se que os mesmos estejam presentes na estrutura cristalina das fases hematita e goethita. Para os elementos Al e P, a análise indicou valores abaixo do limite de detecção do método (Wt: 0,5 - 1,0%).

Figura 5.13 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida.

Tabela V.3 – Microanálise química da área apresentada na figura 5.13.

Elemento	Ο	Al	Si	Р	S	Mn	Fe	
Wt(%)	29,05	0,43	23,44	0,19	1,33	1,08	44,48	100,00

A figura 5.14 e as tabelas V.4 e V.5 trazem os resultados das análises para a amostra de minério fina (-0,045 + 0,010 mm). Observa-se, pela comparação das microanálises gerais, que a fração fina do minério apresenta menor conteúdo de Si e S, e maior conteúdo de Fe. Contudo, o conteúdo de Al e Mn é maior nessa faixa granulométrica. Ao analisar a região 1, que é composta por partículas mais finas, verifica-se um conteúdo de Fe ainda maior que aquele da análise geral e uma presença menor do Si. O conteúdo de Al e Mn se mostra ainda maior junto aos finos, na região 1.

Figura 5.14 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,045 +0,010 mm), partículas soltas.

Elemento	0	Al	Si	Р	S	Mn	Fe	
Wt(%)	22,50	0,90	14,59	0,14	0,02	1,21	60,64	100,00

Tabela V.4 - Microanálise química geral da área apresentada na figura 5.14.

Elemento	0	Al	Si	Р	S	Mn	Fe	
Wt(%)	23,02	1,16	7,18	0,29	0,12	1,33	66,90	100,00

Tabela V.5 – Microanálise química da região 1, apresentada na figura 5.14.

Os estudos de morfologia e trama são apresentados nas figuras 5.15, 5.16, 5.17, 5.18 e 5.19. A figura 5.15 apresenta as três fases identificadas pelo MEV e exemplifica as duas principais feições apresentadas pela hematita nas amostras do minério goethítico, a saber, a hematita lamelar (região 1) e a hematita martítica (região 2) intercrescida com goethita. A figura também apresenta uma matriz de goethita maciça na região 3 (cinza médio), envolvendo os grãos de hematita. O quartzo é apresentado na região 4 (cinza escuro). A microanálise das quatro regiões indica uma tendência da goethita de apresentar maior conteúdo de contaminantes, especialmente o Si, que a hematita. As impurezas do quartzo são provavelmente artefatos, resultantes do espalhamento do feixe de elétrons (tabela V.6).

Figura 5.15 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida.

Elemento		0	Al	Si	Р	S	Mn	Fe	
Wt(%)	1	19,48	0,20	0,09	0,10	0,05	0,66	79,42	100,00
	2	21,05	0,15	0,40	0,02	0,03	0,26	78,10	100,00
	3	25,92	0,27	1,37	0,41	0,06	0,69	71,29	100,00
	4	38,97	0,40	59,55	0,00	0,10	0,21	0,78	100,00

Tabela V.6 – Microanálise química das regiões 1, 2, 3 e 4 apresentadas na figura 5.15.

A figura 5.16 mostra uma partícula com goethitas com feições variantes. Além da goethita maciça intercrescida com hematita martítica em trama de treliça (centro), as goethitas botrioidal e terrosa são observadas nas bordas da partícula. Tais aspectos foram também identificados por Rocha (1997) para amostras de Alegria.

Figura 5.16 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida.

O processo de martitização é notável no estudo de amostras de minério goethítico da mina de Alegria, como bem caracterizado por Rocha (1997) e Henriques (2012). A figura 5.17 apresenta bem esse processo ao mostrar uma partícula de hematita martítica em formato octaédrico, habitus típico da magnetita (pseudomorfismo). A trama5 de treliça e os planos (111) podem ser identificados, sendo esses os planos preferenciais para recristalização da hematita. Há ainda magnetita relicta no grão.

Figura 5.17 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida.

A presença de poros é descrita na literatura como uma característica da hematita martítica e da goethita (ROCHA, 1997; HENRIQUES, 2012). A figura 5.18 destaca a existência de poros contendo material terroso, delimitado em vermelho, na amostra de minério goethítico. Esse material, constituído por goethita terrosa, consiste em uma fonte de lamas, que podem prejudicar o desempenho da etapa de concentração por flotação.

Figura 5.18 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico (- 0,150 +0,045 mm), secção polida.

As observações realizadas com a amostra de minério na forma de partículas soltas (figuras 5.19a e 5.19b) confirmaram a elevada rugosidade da hematita martítica frequentemente intercrescida com goethita. As partículas de quartzo, em contrapartida, apresentaram-se lisa. A goethita identificada no habitus botrioidal, nas secções polidas, é também comumente encontrada nas preparações de partículas soltas (figura 5.19b). Contudo, esse mineral é visto com menor frequência no habitus acicular, pseudomórfico dos anfibólios (figura 5.19a). As imagens geradas para as amostras coletadas após o processo de flotação são mostradas nas figuras 5.20a, 5.20b e 5.20c. Nessas, observa-se que as partículas de quartzo apresentam-se com aspectos semelhantes, pouco recobertas por partículas finas de hematita e goethita, independentemente do sistema de flotação. Uma vez que a flotação nos sistemas oleato de sódio e hidroxamato foi realizada em pH 9,0 e no sistema amina/amido em pH 10,5, esperava-se que a cobertura por finos fosse mais expressiva nos dois primeiros sistemas, nos

quais existe maior propensão a heterocoagulação segundo o potencial zeta das fases envolvidas.

Figura 5.19 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico em partículas soltas (-0,150 +0,045 mm).

a)

Figura 5.20 Imagem de elétrons retroespalhados (IER) da amostra de minério goethítico em partículas soltas (-0,150+0,045 mm). Flotado amina/amido (a), oleato de sódio (b) e hidroxamato (c).

Uma avaliação do recobrimento por finos também foi realizada para as amostras de minério fino (-0,045 + 0,010 mm) e grosso (-0,150 + 0,045 mm) através de imagens de elétrons retroespalhados (IER). Os resultados são mostrados nas figuras 5.21a e 5.21b. Observa-se um maior recobrimento das partículas de quartzo por finos de goethita e hematita no caso da amostra de minério fino (b). Tal fato pode indicar uma menor eficiência da flotação nessa faixa granulométrica, mesmo após uma deslamagem eficiente.

Figura 5.21 Imagem de elétrons retroespalhados (IER) da amostra de minério na forma de partículas soltas . a) grosso (- 0,150 +0,045 mm) em a) e b) fino (- 0,045 + 0,010 mm).

5.1.6 Análise química via úmida

O estudo da composição química do minério goethítico foi realizado para a amostra cabeça, fração grossa (- 0,150 + 0,045mm), fração fina (- 0,045 + 0,010) e para o material retido nas faixas granulométricas compreendidas nessas frações (0,106; 0,075; 0,053; 0,045 e 0,038 mm). Os resultados são apresentados na tabela V.7 e nas figuras 5.22 e 5.23. A distribuição dos teores de Fe e dos contaminantes nas amostras indica uma concentração do primeiro nas frações mais finas do minério, juntamente com os contaminantes associados à estrutura cristalina dos minerais minério. A sílica, contudo, se concentra nas frações granulométricas mais grosseiras. Tais informações são coerentes aos resultados obtidos na microanálise EDS. Comparados à análise granuloquímica do minério goethítico estudado por Lipper (2012), conclui-se que a amostra daquele trabalho era muito mais rica (63% Fe e 5% SiO₂), que as amostras do presente trabalho (50,36% Fe e 23,08% SiO₂, na fração fina). Contudo, a presente amostra apresenta conteúdos de Al₂O₃ muito menores (0,33% para a fração fina, após deslamagem) que aquela estudada pelo autor (em torno de 2,3%).

AMOSTRAS	Fe (%)	SiO2 (%)	Al2O3 (%)	MnO2 (%)	P (%)	PPC (%)
cabeça	45,40	30,27	1,06	0,11	0,11	3,40
- 0,150+0,045 mm	37,38	42,79	0,18	0,06	0,03	3,46
- 0,045+0,010 mm	50,36	23,08	0,33	0,07	0,04	4,40

Tabela V.7 – Análise química via úmida do minério de ferro goethítico.

Figura 5.22 Análise granuloquímica do minério (-0,150+0,038 mm). Teores de Fe, SiO₂ e PPC.

Figura 5.23 Análise granuloquímica do minério (-0,150+0,038 mm). Teores de P, MnO₂ e Al₂O₃.

5.1.7 Picnometria a hélio

O valor da massa específica medida pela picnometria a hélio para as amostras de minério foi de 3,69 g/cm³ para o minério grosso (-0,150+0,045mm) e de 4,21 g/cm³ para a amostra de minério fino (-0,045+0,010mm). Tais valores são coerentes uma vez que os constituintes do minério são a hematita (d=5,26 g/cm³), a goethita (d=4,27 g/cm³) e o quartzo (d=2,65 g/cm³). A maior densidade apresentada pelo minério fino é coerente com os resultados obtidos nas microanálises EDS, as quais mostram maior concentração de Fe nessa amostra.

5.1.8 Área superficial específica e porosimetria por adsorção gasosa

A amostra de minério de ferro goethítico foi estudada pelo método de adsorção/dessorção gasosa (gás nitrogênio), sendo possível obter sua área superficial específica pelo método de multipontos BET (pressão relativa entre 0,0236 e 0,2970) e sua distribuição de poros pelo modelo BJH. Como caracterizado por Henriques (2012), a goethita e a hematita martítica provenientes de Alegria são classificadas como mesoporosas, sendo então amostras ideais para o estudo pelo método BJH. A tabela V.8 mostra resultados de área superficial específica, diâmetro médio de poros e volume total de poros para o minério de ferro goethítico inferiores aos encontrados para a goethita e a hematita martítica de Alegria. Tal fato ocorre, possivelmente, em função da presença do quartzo, que corresponde a 44% da amostra, como quantificado pelo método de Rietveld. A figura 5.24 apresenta a isoterma de adsorção/dessorção do nitrogênio. Observa-se tratar de uma isoterma do tipo II (segundo a classificação BDDT), típica de materiais mesoporosos. A região entre as curvas de adsorção e dessorção, chamada histerese, pode ser classificada como tipo H3 segundo de Boer. Tal classificação indica que o minério estudado provavelmente apresenta poros com morfologia do tipo cone, pirâmide, fenda ou cunha. É importante ressaltar que o método BJH com N2 somente detecta poros com diâmetros menores que 120 nm, não sendo possível acessar informações para poros maiores.

 Tabela V.8 – Área superficial específica, diâmetro médio de poros e volume total de poros e porosidade da amostra de minério de ferro goethítico.

AMOSTRA	Área superficial	Diâmetro médio	Volume total dos	Porosidade
	específica (m²/g)	dos poros (nm)	poros (cm³/g)	(%)
Minério de ferro goethítico	1,5	9,86	0,00370	1,37

Figura 5.24 Isotermas de adsorção e dessorção de N2 para a amostra de minério de ferro goethítico.

A figura 5.25 traz a distribuição de volume de poros para a amostra de minério de ferro goethítico. É possível observar que a frequência de diâmetro de poros predominante ocorre em torno de 4 nm, assim como observado por Henriques (2012), para a amostra de goethita. Dessa forma, a amostra pode ser classificada como monomodal e mesoporosa.

Figura 5.25 Volume cumulativo de poros e derivada obtidos para a amostra de minério de ferro goethítico.

5.1.9 Análises térmicas

As amostras de minério de ferro e minerais puros foram estudadas pelos métodos de termogravimetria (TG) e calorimetria diferencial de varredura (DSC), no intervalo de temperatura entre 30 e 850°C e razão de aquecimento de 10°/min. A partir do primeiro método, foi possível construir curvas de perda de massa e a derivada dessa variação (DTG) em função da temperatura. O segundo método permitiu construir uma curva do fluxo de calor em função da temperatura, sendo que os valores negativos do fluxo indicam processos endotérmicos. Os resultados dos ensaios encontram-se na tabela V.9 e nas figuras de 5.26 a 5.39. As perdas de massa para as amostras de minério fino e grosso indicam uma concentração da goethita, principal responsável pela perda de massa, na faixa fina. As figuras 5.26, 5.27, 5.28 e 5.29 apresentam a evolução dessa perda de massa e a energia associada a esse processo.

Amostra	Perda de massa (%)
Minério: - 0,150 + 0,045mm	4,05
Minério: - 0,045 + 0,010 mm	7,80
Hematita	0,63
Goethita	9,30
Quartzo	1,49
Gibbsita	35,93
Caulinita	16,18

Tabela V.9 – Perdas de massa para as amostras de minério e minerais puros.

Figura 5.26 Curvas termogravimétricas (TGA e DTA) para a amostra de minério grosso (-0,150 +0,045 mm).

Ambas as amostras de minério iniciam a perda de massa associada à desidroxilação da goethita em temperatura próxima a 260°C, com pico da curva DTG em torno de 340°C (figura 5.26 e 5.28). O fluxo de calor associado a esse processo atinge valor máximo também em torno do 340°C.

Figura 5.28 Curvas termogravimétricas (TGA e DTA) para a amostra de minério fino (-0,045 +0,010 mm).

As figuras 5.30 e 5.31 trazem as análises térmicas para a amostra de hematita. Diferentemente da goethita, que possui grupos OH em sua estrutura cristalina, o óxido de ferro não apresenta nenhuma redução expressiva em sua massa ou fluxo de calor com o aumento da temperatura na faixa investigada.

Figura 5.30 Curvas termogravimétricas (TGA e DTA) para a amostra de hematita.

Figura 5.31 Calorimetria diferencial de varredura (DSC) para a amostra de hematita.

As figuras 5.32 e 5.33 trazem o resultado das análises térmicas para a amostra de goethita. Para o intervalo de temperatura estudado, observa-se somente a perda de massa associada ao processo de desidroxilação, que se inicia em torno de 270°C e termina em torno de 390°C, sendo o pico da DTG em torno de 376°C. Tal pico ocorre em intervalo de temperatura maior que aquele apresentado por Henriques (2012).

Figura 5.32 Curvas termogravimétricas (TGA e DTA) para a amostra de goethita.

Figura 5.33 Calorimetria diferencial de varredura (DSC) para a amostra de goethita.

A análise térmica da amostra de quartzo é mostrada nas figuras 5.34 e 5.35. As curvas TG e DTG não indicam variações expressivas na massa da amostra. A curva DSC indica um fluxo de calor endotérmico em torno de 575°C, devido à transição estrutural $\alpha \rightarrow \beta$ do quartzo (NETZSCH, 2014).

Figura 5.34 Curvas termogravimétricas (TGA e DTA) para a amostra de quartzo.

Figura 5.35 Calorimetria diferencial de varredura (DSC) para a amostra de quartzo.

A amostra de gibbsita, cujas análises térmicas são mostradas nas figuras 5.36 e 5.37, apresentou comportamento próximo do descrito na literatura (ALVES *et al.*, 2008), com picos DTG em torno de 330°C e grande perda de massa, devido à desidroxilação do mineral.

Figura 5.36 Curvas termogravimétricas (TGA e DTA) para a amostra de gibbsita.

Figura 5.37 Calorimetria diferencial de varredura (DSC) para a amostra de gibbsita.

As figuras 5.38 e 5.39 trazem as curvas de TG, DTG e DSC para a amostra de caulinita. A máxima perda de massa ocorre em temperatura de aproximadamente 540°C, valor notavelmente superior àquele encontrado por ALVES *et al* (2008).

Figura 5.38 Curvas termogravimétricas (TGA e DTA) para a amostra de caulinita.

Figura 5.39 Calorimetria diferencial de varredura (DSC) para a amostra de caulinita.

5.2 Caracterização tecnológica

5.2.1 Análise granulométrica

As figuras 5.40 e 5.41 apresentam os resultados das análises granulométricas da amostra cabeça e da amostra - 0,150 mm, respectivamente. A amostra de minério adquirida para os ensaios (amostra cabeça) apresentava grande quantidade de finos, sendo que 51,38% da amostra era constituída de material passante em 0,150 mm. Logo, foi realizado um

peneiramento da amostra cabeça e coletou-se o escalpe, que não entrou na etapa de moagem. A cominuição do minério +0,150 mm foi realizada em um esquema de circuito fechado com um moinho de disco e uma peneira de malha 0,150 mm. O material passante na peneira foi recolhido, misturado com o escalpe e homogeneizado. Em seguida, o material resultante foi amostrado e teve sua granulometria aferida (figura 5.41). Dessa análise, é possível observar que a quantidade de material na granulometria -0,045 mm era pequena (14,10%), devendo essa ainda ser deslamada.

Figura 5.40 Análise granulométrica da amostra de minério de ferro cabeça.

Figura 5.41 Análise granulométrica da amostra de minério de ferro -0,150 mm.

5.2.2 Análise de liberação

O grau de liberação para óxidos e hidróxidos de ferro na amostra de minério foi estudado para as partículas retidas nas faixas granulométrica 0,212; 0,150; 0,106; 0,075; 0,053 e 0,038 mm, retidas nas peneiras série Tyler (tabela V.10). Tal estudo se deu através da análise de imagens de elétrons retroespalhados obtidas pelo MEV em seções polidas. O programa utilizado para a análise de imagens foi o LibMin. Os resultados encontrados são apresentados nas figuras 5.42 e 5.43. As partículas em azul consistem em minerais minério de Fe (hematita e goethita) e as partículas em vermelho consistem na ganga (quartzo). Como pode ser observado nas figuras, o minério somente apresenta uma boa liberação para frações granulométricas passantes na abertura de 0,106 mm, ou seja, que são retidos na malha de 0,075 mm, indicada no gráfico (figura 5.42). Tal observação é de grande importância, uma vez que a flotação em bancada foi conduzida com partículas passantes em 0,150 mm, cujo grau de liberação mínimo corresponde a 71,21%, que foi obtido para as partículas retidas na malha de 0,106 mm. Tal fato, contudo, não compromete os ensaios de flotação em bancada por serem os mesmos de natureza comparativa, visando estudar o desempenho dos reagentes oleato de sódio, hidroxamato e amina/amido. Outro ponto que se deve destacar consiste no fato de a amostra possuir pequenos pontos vermelhos e azuis nas partículas, mesmo nas frações granulométricas menores, indicando o intercrescimento entre cristais dos minerais minérios e da ganga, como foi observado nos ensaios de microscopia ótica de luz refletida.

Figura 5.42 Grau de liberação apresentado pelo minério goethítico.

Faixa granulométrica (µm)	212	150	106	75	53	38
Número de partículas	506	664	511	471	503	501

Tabela V.10 – Número de partículas analisadas pelo LibMin por faixa granulométrica.

Figura 5.43 Partículas analisadas pelo LibMin, retidas nas faixas granulométricas 212 (a), 150 (b), 106 (c), 75 (d), 53 (e) e 38 μm (f).

5.3 Estudos eletrocinéticos - potencial zeta

O potencial zeta dos minerais hematita, goethita, quartzo, gibbsita e caulinita foram estudados pelo método da eletroforese em suspensões com o eletrólito indiferente NaCl e em suspensões com o eletrólito indiferente mais o coletor oleato de sódio ou hidroxamato AERO 6493. Os pontos isoelétricos (PIE) aferidos em suspensões apenas com os eletrólitos (tabela V.11) são coerentes com os valores encontrados na literatura. O PIE obtido para a hematita é próximo ao valor de 6,7, de Fuersternau (1976) e Cromieres (2012). O PIE encontrado para a goethita é igual àquele encontrado por Kosmulski (2003), Walsh e Dultz (2010) e Henriques (2012), no caso do NaCl. O PIE não foi encontrado para o quartzo, assim como por Rao *et al.* (2009), no limite do pH 2,0. O PIE medido para a gibbsita encontra-se próximo do valor

aferido por Goldberg (2010) e bem distante do valor obtido por Tseng e Wu (2012). A caulinita teve seu PIE medido próximo do valor determinado por Rodrigues (2000). Observase que os pontos isoelétricos obtidos para suspensões nas quais os reagentes coletores oleato de sódio e hidroxamato AERO 6493 estavam presentes são bem inferiores aos encontrados apenas com o eletrólito NaCl no caso dos minerais hematita, goethita e gibbsita.

As curvas de potencial zeta obtidas para as suspensões dos principais minerais presentes no minério de ferro goethítico em NaCl mostraram um comportamento elétrico das cargas superficiais diferenciado para cada mineral, fato interessante por ser indício de possibilidades de adsorções diferentes para um mesmo reagente (figuras 5.44 à 5.53). O elevado PIE e o potencial zeta negativo de módulo menor que o da hematita, podem indicar uma menor suscetibilidade da goethita à adsorção da amina em um sistema de flotação catiônica reversa de minério de ferro. Contudo, ao comparar as curvas com e sem reagente no caso dos minerais hematita, goethita e gibbsita, fica clara a modificação da carga superficial dos mesmos provocados pela adsorção dos coletores. No caso dos dois primeiros minerais, essa modificação da carga superficial com o uso de hidroxamato AERO 6493 e do oleato de sódio foi verificada por Lopes (2009).

Tabela V.11 – PIE das amostras hematita, goethita, quartzo, gibbsita e caulinita em NaCl 10 ⁻³	M e em NaCl 10^{-3}
M mais oleato de sódio ou hidroxamato AERO 6493.	

Eletrólito	Mineral					
indiferente	hematita	goethita	quartzo	gibbsita	caulinita	
NaCl 10 ⁻³ M	6,8	8,2	-	9,2	4,9	
NaCl 10 ⁻³ M e oleato de sódio	4,2	5,4	-	6,3	5,0	
NaCl 10 ⁻³ M e hidroxamato AERO 6493	4,9	6,6	-	7,2	5,3	

Figura 5.44 Potencial zeta da hematita em NaCl 10⁻³ M e em NaCl 10⁻³ M mais oleato de sódio 5 mg/L.

Figura 5.45 Potencial zeta da goethita em NaCl 10⁻³ M e em NaCl 10⁻³ M mais oleato de sódio 5 mg/L .

Figura 5.46 Potencial zeta da gibbsita em NaCl 10^{-3} M e em NaCl 10^{-3} M mais oleato de sódio 5 mg/L .

Figura 5.47 Potencial zeta do quartzo em NaCl 10⁻³ M e em NaCl 10⁻³ M mais oleato de sódio 5 mg/L .

Figura 5.48 Potencial zeta da caulinita em NaCl 10⁻³ M e em NaCl 10⁻³ M mais oleato de sódio 5 mg/L.

Figura 5.49 Potencial zeta da hematita em NaCl 10^{-3} M e em NaCl 10^{-3} M mais hidroxamato AERO 6493 20 mg/L .

Figura 5.50 Potencial zeta da goethita em NaCl 10^{-3} M e em NaCl 10^{-3} M mais hidroxamato AERO 6493 20 mg/L .

Figura 5.51 Potencial zeta da gibbsita em NaCl 10⁻³ M e em NaCl 10⁻³ M mais hidroxamato AERO 6493 20 mg/L .

Figura 5.52 Potencial zeta da quartzo em NaCl 10^{-3} M e em NaCl 10^{-3} M mais hidroxamato AERO 6493 20 mg/L.

Figura 5.53 Potencial zeta da caulinita em NaCl 10⁻³ M e em NaCl 10⁻³ M mais hidroxamato AERO 6493 20 mg/L .

5.4 Microflotação

5.4.1 Arraste hidrodinâmico

Os resultados dos testes de arraste hidrodinâmico são mostrados na tabela V.12. Esses valores foram considerados pequenos, sendo descontados nos ensaios de flotação com os reagentes.

Arraste (%)						
hematita	goethita	gibbsita	quartzo	caulinita		
0,73	0,80	0,71	0,49	1,07		

Tabela V.12 - Arraste hidrodinâmico dos minerais hematita, goethita, quartzo, gibbsita e caulinita

5.4.2 Ensaios com oleato de sódio

A figura 5.54 mostra o resultado dos testes de microflotação para hematita, goethita, gibbsita, quartzo e caulinita com o uso do coletor oleato de sódio 5 mg/L.

Figura 5.54 Flotabilidade dos minerais hematita, goethita, quartzo, gibbsita e caulinita em oleato de sódio 5

Tal resultado se assemelha ao obtido por Lopes (2009) quanto à baixa flotabilidade para hematita e quartzo nos extremos de pH. Para o primeiro mineral, isso pode ser explicado pela formação de dímeros de ácido oleico em baixos valores de pH (RAO, 2004) e pela competição entre os íons hidroxila e oleato pelos sítios superficiais em elevados valores de pH (QUAST, 1999). Contudo, diferentemente de Lopes (2009) e similarmente a Fuerstenau et al. (1970), foi observada flotabilidade máxima de 84% em pH próximo a 8,5 e uma região de depressão em pH próximo de 5,5. Isso sugere a ocorrência de quimissorção nas vizinhanças do pH 8,5, com formação de quelatos de oleato férrico em uma maior concentração do íon OH⁻, queda na flotabilidade na região pouco abaixo do PIE da hematita, onde os íons OH⁻ já não estão presentes, e novo aumento de flotabilidade próximo ao pH 4,0, devido a interações do tipo eletrostáticas entre o coletor e a superfície do mineral, carregada positivamente (FUERSTENAU et al, 1970). Quanto ao quartzo, observou-se flotabilidade inferior àquela encontrada por Lopes (2009) em toda a faixa de pH, para ensaios com oleato de sódio 5 mg/L. A flotabilidade máxima (15%), contudo, foi encontrada em torno de pH 8,5, mesma região de máxima flotabilidade encontrada pela autora. A baixa flotabilidade pode ser justificada pela pouca afinidade do coletor pelo mineral, tendo aquele promovido certa flotabilidade devido à sua ação espumante, a qual elevaria o arraste mecânico, e não pela formação de quelato.

A alta flotabilidade alcançada para a goethita (91%) ocorreu, também, em torno de pH 8,5 (se estendendo na faixa de pH entre 4,0 e 9,0), com pequena queda em torno do pH 6,0. Observa-se então, uma região interessante, em torno do pH 5,0, na qual existe uma seletividade entre hematita e goethita. Verifica-se, também, uma flotabilidade superior à da hematita para intervalos extremos de pH. A curva de flotabilidade da gibbsita se assemelha muito à da goethita na faixa de pH entre 4,0 e 9,0. Em pH mais básico, a primeira apresenta flotabilidade superior à da segunda, fato que se inverte em pH mais ácido. A caulinita apresentou comportamento semelhante ao do quartzo, apresentando, contudo máxima flotabilidade em pH alcalino. Esses resultados indicam a pequena afinidade do oleato em relação aos silicatos. Os elevados valores de flotabilidade encontrados para a goethita e a gibbsita, inclusive em pH levemente ácido, sugerem que a presença de OH⁻ na própria estrutura do mineral possibilita a formação de quelatos de oleato.

Depois de obtida a curva de flotabilidade completa dos quatro minerais em oleato de sódio 5 mg/L, escolheu-se uma faixa de pH que evidenciasse uma possível aplicação do reagente, para se estudar o efeito da concentração do mesmo sobre a flotabilidade. A faixa

escolhida foi aquela situada entre os pHs 4,0 e 10,0. Os resultados são mostrados nas figuras 5.55, 5.56, 5.57, 5.58 e 5.59.

Figura 5.55 Flotabilidade da hematita em diferentes concentrações de oleato de sódio.

Figura 5.56 Flotabilidade da goethita em diferentes concentrações de oleato de sódio.

Figura 5.57 Flotabilidade da gibbsita em diferentes concentrações de oleato de sódio.

Figura 5.58 Flotabilidade do quartzo em diferentes concentrações de oleato de sódio.

Figura 5.59 Flotabilidade da caulinita em diferentes concentrações de oleato de sódio.

Os gráficos mostram uma maior suscetibilidade dos minerais hematita, goethita e gibbsita à variação da concentração do oleato de sódio, sobretudo para o primeiro e para o último. O fato de a solução de oleato 1 mg/L levar a uma flotabilidade próxima de 70% para a goethita sugere ser possível alcançar uma seletividade com um gasto de reagentes muito pequeno. Para o quartzo e a caulinita, uma concentração maior ou menor do reagente não levou a uma variação significativa da flotabilidade, o que confirma a pouca afinidade do reagente pelos silicatos.

O tempo de condicionamento dos minerais com o reagente oleato de sódio 5 mg/L também foi estudado para os pHs 5,0 e 9,0. Os resultados encontram-se nas figuras 5.60 5.61.

Figura 5.60 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento em oleato de sódio 5 mg/L, em pH 5,0.

Figura 5.61 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento em oleato de sódio 5 mg/L, em pH 9,0.

Observa-se, de acordo com as figuras 5.60 e 5.61, que a flotabilidade aumenta com o aumento do tempo de condicionamento para os minerais hematita, goethita e quartzo. No caso

da hematita, verifica-se uma grande influência do tempo de flotação na flotabilidade do mineral tanto em pH ácido quanto básico. Em pH 5,0, a flotabilidade aumenta de valores em torno de 4% com 1 minuto de condicionamento para valores em torno de 63% para 8 minutos de condicionamento. Em pH 9,0, é possível sair de uma flotabilidade em torno de 72% com 1 minuto de condicionamento para valores em torno de 96% com 8 minutos de condicionamento. Esse comportamento foi observado por Fuerstenau *et al.* (1970). A goethita já apresenta, em ambas as faixas de pH, elevada flotabilidade com apenas 1 minuto de condicionamento. A gibbsita, por sua vez, apresenta máxima flotabilidade em condicionamento de 4 minutos, em pH 5,0 e tendência de flotabilidade crescente com o aumento do tempo de condicionamento em pH 9,0. A caulinita apresenta máxima flotabilidade com condicionamento de 4 minutos em ambas os valores de pH estudados.

Outra variável estudada nos ensaios de flotabilidade foi a temperatura, cuja investigação se deu nos pHs 5,0 e 9,0. Os resultados encontram-se nas figuras 5.62 e 5.63. Os minerais hematita e goethita apresentaram aumento da flotabilidade com o aumento da temperatura em ambos os pHs. No caso da hematita, contudo, esse aumento se deu em quase 4 vezes em pH 5,0. Para temperaturas elevadas, não foram observados aumentos tão acentuados. O quartzo e a caulinita apresentaram grande redução da flotabilidade com aumento da temperatura, chegando atingir valores próximos de 2%. A gibbsita apresentou redução da flotabilidade com aumento da temperatura, em pH 5,0, e aumento em pH 9,0.

Figura 5.62 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas em oleato de sódio 5 mg/L, em pH 5,0.

Figura 5.63 Flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas em oleato de sódio 5 mg/L, em pH 9,0.

Ainda para o coletor oleato de sódio, foi realizada uma quinta análise, que consistiu no estudo da eficácia dos reagentes amido, fluorsilicato de sódio e Floatan M3 como depressores. Para esses ensaios, também foram escolhidos o valores de pH 5,0 e 9,0 e a concentração de 10 mg/L do depressor para a condução dos testes. A concentração do reagente coletor foi mantida 5 mg/L para efeito de comparação com os resultados obtidos sem a adição de depressores. As figuras 5.64, 5.65, 5.66, 5.67 e 5.68 ilustram os resultados obtidos.

Figura 5.64 Flotabilidade da hematita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Figura 5.65 Flotabilidade da goethita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Flotan M3 10 mg/L.

Figura 5.66 Flotabilidade da gibbsita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Flotan M3 10 mg/L.

Figura 5.67 Flotabilidade do quartzo com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Flotatan M3 10 mg/L.

Figura 5.68 Flotabilidade da caulinita com coletor oleato de sódio 5 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Os reagentes amido, fluorsilicato e Floatan apresentaram, todos, alguma ação depressora para os cinco minerais estudados. Dentre eles, o amido se mostrou o reagente de maior poder depressor para todos os minerais, seguido do Floatan e fluorsilicato, respectivamente. No caso da gibbsita, todos os reagentes demonstraram poder depressor similar e grande eficiência. Para o fluorsilicato, constata-se uma ação diferenciada entre os minerais. Enquanto sua ação como depressor é elevada para a gibbsita, nota-se um comportamento não tão eficiente para a goethita e, até mesmo, uma atuação como ativador no caso da hematita e do quartzo, para pH em torno de 5,0. Em termos de seletividade, nenhum dos reagentes testados apresentou alguma ação interessante para o conjunto de minerais estudados.

5.2.3 Ensaios com hidroxamato AERO 6493

A figura 5.69 ilustra o resultado dos ensaios de flotabilidade para os minerais hematita, goethita, gibbsita, quartzo e caulinita com o coletor hidroxamato AERO 6493 20 mg/L.

Figura 5.69 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita com o coletor hidroxamato AERO 6493 20 mg/L.

De acordo com a figura 5.69, é possível notar que a concentração de 20 mg/L de hidroxamato não garantiu elevada flotabilidade para nenhum dos minerais, sendo o valor máximo de 46% para a gibbsita. Nos extremos de pH, essa flotabilidade cai para valores mínimos para todos os minerais, exceto para a caulinita. Outra observação está na assimetria das curvas de flotabilidade, especialmente entre a curva da hematita e as dos demais minerais. Enquanto a hematita apresenta máxima flotabilidade em pH 9,0 (40%), a goethita apresenta máxima flotabilidade em pH 4,0 (31%), a gibbsita em pHs 4,0 e 7,0 (46%), o quartzo em pH 6,0 (18%) e a caulinita em pH 10,0 (5 %). Essa configuração das curvas permite cogitar um processo de flotação direta da hematita em pH 9,0.

A região de flotabilidade máxima encontrada para a hematita é coerente com o resultado obtido por Fuerstenau *et al.* (1970). Segundo os autores, a maior flotabilidade ocorre devido à maior concentração do íon hidroxila na superfície do mineral sob a forma de $FeOH^{2+}$, ou de alguma outra espécie hidrolisada, de forma a possibilitar a formação do quelato hidroxamato de ferro (figuras 3.12 e 3.13). Os baixos valores de flotabilidade obtidos para a faixa de pH ácida são justificados pela presença insuficiente de íons OH^- na superfície do mineral ou pela hidrólise do hidroxamato em ácido hidroxâmico. Em pH 11, a queda da flotabilidade pode ser atribuída à estabilidade do hidróxido de ferro perante o hidroxamato de ferro.

Diferentemente da hematita, a goethita e a gibbsita apresentam flotabilidade máxima em pH ácido (pH 4,0), existindo um segundo pico de elevada flotabilidade para ambos os minerais em pH próximo de 7,0. Embora esse resultado seja díspar daquele divulgado por Fuerstenau *et al.* (1967), no qual os autores encontram máxima flotabilidade próximo ao pH 9,0 para a goethita, o resultado apresentado na figura 5.61 guarda semelhança com o resultado encontrado nos ensaios de flotabilidade com oleato de sódio. Em ambas as curvas, a flotabilidade dos minerais apresenta comportamentos parecidos, em especial quando se comparam os pontos de maior flotabilidade. Uma vez que as partículas de hematita, goethita e gibbsita apresentam carga superficial positiva em pH 4,0 (FUERSTERNAU *et al.*, 1976; CROMIERES *et al.*, 2002; CHIBOWSKI e WISNIEWSKA, 2002; KOSMULSKI, 2003; WALSH e DULTZ, 2010, HENRIQUES, 2012; TSENG e WU, 2012 e GOLDBERG, 2010) e a hematita mostrou flotabilidade mínima nessa faixa de pH, conclui-se que a interação entre o coletor e as partículas de goethita e gibbsita se deu por quimissorção. Tal fato chama mais uma vez a atenção para a presença de OH⁻ na estrutura destes minerais, possibilitando a formação de quelato com o hidroxamato, mesmo em pH ácido.

A máxima flotabilidade para o quartzo na faixa de pH 6,0 é coerente com os resultados encontrados por Lopes (2009), que mostraram uma elevada flotabilidade para o quartzo na faixa de pH entre 6,0 e 10,0. Um ponto a ser considerado está no fato de a autora ter obtido flotabilidade acima de 80% para o mineral em pH 6,0 utilizando hidroxamato 10 mg/L. De forma geral, seus resultados demonstraram uma maior ação coletora do hidroxamato para as partículas de quartzo do que para as partículas de hematita.

Após os ensaios de flotabilidade com hidroxamato 20 mg/L, escolheu-se a faixa de pH entre 4,0 e 10,0 para estudo do efeito da concentração sobre a flotabilidade dos minerais hematita, goethita, gibbsita, quartzo e caulinita. Essa faixa de pH foi escolhida por representar uma possibilidade de flotação direta da hematita. Os resultados são apresentados nas figuras 5.70, 5.71, 5.72, 5.73 e 5.74.

Figura 5.70 Flotabilidade da hematita em diferentes concentrações de hidroxamato AERO 6493.

Figura 5.71 Flotabilidade da goethita em diferentes concentrações de hidroxamato AERO 6493.

Figura 5.72 Flotabilidade da gibbsita em diferentes concentrações de hidroxamato AERO 6493.

Figura 5.73 Flotabilidade do quartzo em diferentes concentrações de hidroxamato AERO 6493.

Figura 5.74 Flotabilidade da caulinita em diferentes concentrações de hidroxamato AERO 6493.

Assim como nos ensaios de concentração para o oleato, as curvas das figuras anteriores evidenciam uma maior susceptibilidade da hematita, da goethita e da gibbsita à variação da concentração de hidroxamato. O aumento da concentração do reagente para 40 mg/L permitiu alcançar flotabilidade próxima a 90% para a hematita e 84% para a goethita. Contudo, a gibbsita também alcançou flotabilidade de 93%. Para os ensaios com hidroxamato 5 mg/L, obteve-se baixa flotabilidade (inferior a 10%) para todos os minerais, em especial para a hematita. Dentre as amostras, quartzo e a caulinita apresentaram menor variação da flotabilidade entre os ensaios com soluções 20 mg/L e 40 mg/L do coletor, reforçando a observação de que o reagente possui pouca afinidade pelo primeiro mineral. Esse resultado é bem diferente daquele encontrado por Lopes (2009), uma vez que a autora encontrou flotabilidade próxima a 70% para o quartzo com hidroxamato 10 mg/L em pH 9,0.

O estudo do efeito do tempo de condicionamento foi realizado para os cinco minerais, utilizando-se hidroxamato 20 mg/L em pH 4,0 e 9,0. Os resultados encontram-se nas figuras 5.75 e 5,76.

Figura 5.75 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento com hidroxamato AERO 6493 20 mg/L em pH 4,0.

Figura 5.76 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes tempos de condicionamento com hidroxamato AERO 6493 20 mg/L em pH 9,0.

O aumento do tempo de condicionamento dos minerais com o reagente hidroxamato AERO 6493 em pH 4,0 levou a pequenas modificações na flotabilidade dos mesmos. Como pode ser observado na figura 5.75, as flotabilidades da caulinita e do quartzo se mantiveram praticamente inalteradas e as flotabilidades da hematita e da goethita aumentaram ligeiramente. A gibbsita, contudo, teve máxima flotabilidade em tempo de condicionamento igual a 4 minutos.

A curva da figura 5.76 evidenciou um distanciamento entre a flotabilidade da hematita e dos demais minerais com o aumento do tempo de condicionamento. Assim como nos resultados obtidos no estudo do tempo de condicionamento da hematita com oleato de sódio, observa-se uma dependência da flotabilidade com relação ao tempo de condicionamento do mineral com hidroxamato. Esse comportamento se opõe aos resultados encontrados por Lopes (2009), os quais indicam uma diminuição da flotabilidade com o aumento do tempo de condicionamento da hematita com hidroxamato AERO 6493. Segundo os ensaios de tempo de condicionamento da hematita em hidroxamato empreendidos por Fuerstenau *et al.* (1970), maiores tempos de condicionamento levam a maiores percentuais flotados de hematita.

O estudo da influência da temperatura na flotabilidade dos minerais hematita, goethita, quartzo, gibbsita e caulinita encontra-se nas figuras 5.77 e 5.78. Tais resultados indicam uma forte tendência de redução da flotabilidade com o aumento da temperatura do sistema de flotação no caso dos minerais gibbsita, quartzo e caulinita, em ambos os pHs estudados. A hematita e a goethita apresentam comportamento oposto, tendo sua flotabilidade aumentada em sistemas de maior temperatura, assim como previsto por Fuersternau *et al.* (1970) para a faixa de pH entre 4,0 e 10,0. Em pH 9,0, contudo, esses dois minerais apresentam máxima flotabilidade em temperaturas próximas de 43°C, havendo um decréscimo da eficiência do processo em temperaturas maiores que 50°C.

Figura 5.77 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas com hidroxamato AERO 6493 20 mg/L em pH 4,0.

Figura 5.78 Flotabilidade da hematita, goethita, gibbsita, quartzo e caulinita para diferentes temperaturas com hidroxamato AERO 6493 20 mg/L em pH 9,0.

Outro estudo para o hidroxamato consiste na análise da eficácia dos reagentes amido, fluorsilicato de sódio e Floatan M3 como depressores. Para esses ensaios, foram escolhidos dois valores de pH (4,0 e 9,0) e a concentração 10 mg/L para a condução dos testes. A

concentração do reagente coletor foi fixada em 20 mg/L para termos de comparação com os ensaios sem depressor. As figuras 5.79, 5.80, 5.81, 5.82 e 5.83 ilustram os resultados obtidos.

Figura 5.79 Flotabilidade da hematita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Figura 5.80 Flotabilidade da goethita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Figura 5.81 Flotabilidade da gibbsita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Figura 5.82 Flotabilidade do quartzo com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Figura 5.83 Flotabilidade da caulinita com coletor hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato de sódio e Floatan M3 10 mg/L.

Os depressores analisados exibiram comportamento semelhante na depressão dos cinco minerais estudados, conforme mostrado nas figuras 5.79 a 5.83 acima. Para os valores de pH nos quais o hidroxamato garantia uma maior flotabilidade, tanto o amido, quanto o fluorsilicato e o Floatan M3 reduziram a flotabilidade para um valor próximo de 10%. Isso ocorreu para pHs 4,0 e 9,0 no caso da gibbsita, pH 4,0 no caso da goethita e pH 9,0 no caso da hematita. A flotabilidade do quartzo sofreu pequena influência na presença dos depressores, o que pode ser mais bem visualizado em pH 9,0. A caulinita teve sua flotabilidade aumentada em pH 4,0, para todos os depressores e pequena variações em pH 9,0.

5.5 Flotação em bancada

Os ensaios de flotação em célula ou flotação em bancada foram realizados com a amostra de minério de ferro goethítico com granulometria entre 0,045 e 0,150 mm (fração grossa) e entre 0,010 e 0,045 mm (fração fina). As amostras foram submetidas a ensaios em três sistemas de reagentes diferentes: sistema oleato de sódio, sistema hidroxamato e sistema amina / amido. Somente no último foi feito o uso do reagente depressor, o amido, uma vez

que os depressores estudados em ensaios de microflotação para a flotação direta não se mostraram promissores. Para todos os sistemas citados, as amostras de minério na fração grossa foram investigadas quanto às variáveis dosagem do coletor, vazão de ar, velocidade de rotação do rotor, tempo de condicionamento com o reagente coletor, porcentagem de sólidos e temperatura. No sistema amina / amido, ainda foram estudadas as influências da dosagem do depressor e do tempo de condicionamento com o depressor. Para a fração fina, devido à limitação da quantidade de amostra, foram estudadas as dosagens e tempo de condicionamento, no caso dos coletores oleato de sódio e hidroxamato AERO 6493, e as dosagens de amina e amido no sistema de flotação catiônica reversa. As tabelas IV.5 e IV.6 apresentam os valores investigados para cada variável. Uma vez investigados esses parâmetros, utilizou-se o Índice de Seletividade (IS) para determinar os melhores valores assumidos pelos mesmos, de forma aperfeiçoar o sistema. Em seguida foram realizados novos ensaios com os valores ótimos para cada parâmetro. Os resultados de tais investigações são apresentados no texto que se segue.

5.5.1 Fração grossa (- 0,150 + 0,045 mm)

5.5.1.1 Sistema oleato de sódio

Nos ensaios no sistema de flotação aniônica direta com o coletor oleato de sódio, o ensaio adotado como padrão (que apresenta os parâmetros empregados quando uma ou outra variável foi examinada) foi realizado com 200 g/t do coletor, vazão de ar de 6 NL/min, agitação mecânica de 1000 rpm, 4 minutos de condicionamento com o coletor, 20% de sólidos e temperatura ambiente (23,5°C).

O sistema de flotação com o coletor oleato de sódio teve a influência da dosagem desse reagente estudada inicialmente. Os resultados são apresentados nas figuras 5.84 e 5.85. Observou-se uma elevada recuperação metálica de Fe (89%) ainda com uma dosagem de 100 g/t do reagente. O aumento da dosagem para 200 g/t e 300 g/t proporcionou o aumento dessa recuperação para valores próximos de 98%. Em termos de teor do elemento de interesse (Fe) o oleato de sódio apresentou desempenho pouco promissor para o minério de ferro hidratado. O teor de Fe esteve próximo ao teor de SiO₂ em todas as dosagens estudadas, chegando a ser menor que o último em ensaios com dosagem 300 g/t. Dentre os contaminantes, os teores de MnO₂ e P se mostraram indiferentes à variação da dosagem do coletor, o teor de Al₂O₃ sofreu leve aumento com o aumento da dosagem e o PPC sofreu redução, sendo esse último comportamento coerente com a maior participação SiO₂ no

concentrado. Tais resultados se mostram interessantes quando comparados aos de Lopes (2009), uma vez que dosagens 6 vezes menores de oleato de sódio proporcionaram recuperação metalúrgica de Fe superior à encontrada pela autora. Contudo, os teores de SiO_2 obtidos pela autora foram quase 3 vezes menores que os apresentados na figura 5.84.

Figura 5.84 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de oleato de sódio. Fração grossa (-0,150+0,045mm)

Figura 5.85 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de oleato de sódio. Fração grossa (-0,150+0,045mm)

A influência da vazão de ar nos ensaios de flotação em bancada com o oleato de sódio é apresentada nas figuras 5.86 e 5.87. Verifica-se, de acordo com as figuras, uma suscetibilidade muito pequena dos teores e recuperação metalúrgica, investigados perante o aumento da vazão de ar no sistema com o reagente coletor oleato de sódio.

Figura 5.86 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes vazões de ar no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)

Figura 5.87 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes vazões de ar no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)

O resultado do estudo da influência da agitação mecânica do sistema (velocidade de rotação do rotor) para o sistema oleato de sódio é mostrado nas figuras 5.88 e 5.89. Uma maior agitação levou a uma elevada recuperação metalúrgica de Fe, contudo reduzindo

levemente o teor desse elemento metálico para valores inferiores a 40%. O teor de SiO_2 , em contrapartida, foi elevado para valores acima de 40%. Os teores de Al_2O_3 , P e MnO_2 apresentaram pequena redução em rotação 1200 rpm e o PPC diminuiu a partir de 1000 rpm.

Figura 5.88 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes velocidades de rotação no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)

Figura 5.89 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes velocidades de rotação no sistema oleato de sódio. Fração grossa (-0,150+0,045mm)

O estudo da influência do tempo de condicionamento com o coletor oleato de sódio na composição química do concentrado indicou um pequeno aumento da recuperação metálica de Fe com o aumento desse tempo. Os teores de Fe e SiO_2 se mantiveram praticamente

constantes (figura 5.90). Observou-se um teor mínimo de Al_2O_3 para 4 minutos de condicionamento. Os teores dos demais contaminantes e PPC se mantiveram praticamente constantes (figura 5.91).

Figura 5.90 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração grossa (-0,150+0,045mm)

Figura 5.91 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração grossa (-0,150+0,045mm)

As figuras 5.92 e 5.893 mostram a influência da porcentagem de sólidos no sistema de flotação com oleato de sódio nos teores e recuperação analisados. Maiores porcentagens de

sólidos propiciaram o aumento da recuperação e teor de Fe e redução do teor de SiO₂. Quanto aos contaminantes Al₂O₃, P, MnO₂ e PPC, também observou-se aumento dos mesmos em maiores porcentagens de sólidos.

Figura 5.92 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes porcentagens de sólidos no sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm)

Figura 5.93 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes porcentagens de sólidos no sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm)

A composição do concentrado de minério goethítico também foi investigada para sistemas com diferentes temperaturas. Os resultados, exibidos nas figuras 5.94 e 5.95,

mostraram pequena variação da recuperação de Fe e teores de SiO_2 e Fe. Quanto aos contaminantes e PPC, observaram-se teores maiores em maiores temperaturas.

Figura 5.94 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes temperaturas do sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm)

Figura 5.95 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes temperaturas do sistema de flotação com oleato de sódio. Fração grossa (-0,150+0,045mm)

A partir dos teores de Fe e SiO₂ no concentrado e no rejeito, aplicou-se a equação II para a determinação do Índice de Seletividade (IS) dos ensaios realizados com o oleato de sódio. Assim, foi possível identificar os valores que levam a uma maior seletividade, para cada variável estudada. Os resultados, que encontram-se na tabela V.13, são próximos daqueles obtidos por Arantes e Lima (2012) na flotação de minério de ferro pobre com oleato de sódio, inclusive quanto aos teores de Fe e SiO₂. Em uma análise simplificada, na qual as

variáveis estudadas são independentes, e considerando os valores de IS calculados, conclui-se que o sistema mais eficiente deve operar com 100 g/t do coletor, vazão de ar de 6 NL/min, agitação de 800 rpm, tempo de condicionamento de 1 minuto, 60% de sólidos e temperatura de 58,6°C. A partir desses parâmetros, foi realizado um novo ensaio cujos resultados encontram-se na tabela V.14. Os teores, a recuperação de Fe e o IS indicam que os parâmetros utilizados tornaram o processo mais eficiente, embora não apresentem a seletividade requerida em um circuito industrial. Os teores de Fe e SiO2 obtidos são similares àqueles alcançados por Arantes e Lima (2012), sendo o IS um pouco superior ao obtido pelos autores (2,52 perante 1,73). Deve-se atentar que a alimentação da flotação de Arantes e Lima (2012) apresentava 40,1% Fe e 42,2% SiO₂, ou seja, tratava-se de um minério um pouco mais rico que a amostra investigada no presente trabalho. Lopes (2009) estudou a flotação direta de um minério de ferro pobre (35% Fe, 48% SiO₂ e 0,61% PPC) com oleato de sódio, obtendo um concentrado com composição química promissora (58,1% Fe e 14,4% SiO₂). Logo, a presença da goethita e seu PPC caracteriza-se como um possível fator responsável pelo baixa eficiência do sistema de flotação com oleato de sódio para o minério de ferro hidratado.

	IS	
Ensaio padrão	-	1,34
Decompose de colotor (π/t)	100	1,85
Dosagem do coletor (g/t)	300	1,13
Vazão do or (NI /min)	4	1,17
v azao de ar (INL/min)	8	1,34
Agitação masônico (mm)	800	1,79
Agitação mecânica (rpm)	1200	1,52
Tempo de condicionamento com o coletor (min)	1	1,54
	8	1,44
	30	1,65
Porcentagem de sólidos (%)	45	1,83
	60	2,66

Tabela V.13 – Índices de Seletividade calculados para os ensaios de flotação em bancada com oleato de sódio. Fração grossa (-0,150+0,045mm)

Temperatura (°C)	45,3	1,40
	58,6	1,62

 Tabela V.14 – Composição química do concentrado, recuperação de Fe e Índice de Seletividade (IS) para o sistema de flotação otimizado para o oleato de sódio.

Fe	SiO ₂	Al ₂ O ₃	Р	MnO ₂	PPC	R _{Fe}	IS
44,69	32,92	0,10	0,02	0,04	2,97	89,34	2,52

5.5.1.2 Sistema hidroxamato AERO 6493

O maior objetivo dos ensaios com os reagentes coletores foi estudar a influência das diferentes variáveis do processo de flotação. Para isso, um ensaio padrão com o hidroxamato AERO 6493 foi realizado com 300 g/t do coletor, vazão de ar de 6 NL/min, agitação mecânica de 1000 rpm, 4 minutos de condicionamento com o coletor, 20% de sólidos e temperatura de 22,5°C. Assim, cinco parâmetros eram fixados de acordo com o ensaio padrão enquanto um sexto parâmetro era variado.

Os resultados dos ensaios com diferentes dosagens do reagente hidroxamato AERO 6493 são mostrados nas figuras 5.96 e 5.97. Como pode ser observado, as dosagens empregadas levaram a uma máxima recuperação metálica de 57% de Fe, indicando que dosagens maiores devem ser ensaiadas. Os teores de Al_2O_3 e PPC mostraram tendência de redução com o aumento da dosagem, o teor de MnO_2 mostrou tendência de aumento e o teor de P se manteve praticamente indiferente.

Figura 5.96 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Figura 5.97 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

A vazão de ar mostrou grande influência na recuperação de Fe (figura 5.98), permitindo alcançar recuperação de 75% em vazão de 4 NL/min, que decresceu com o aumento da vazão. O melhor desempenho em termos de teor de Fe e SiO2 se dá em 6 NL/min. Quanto aos contaminantes, o teor de Al_2O_3 tende a diminuir em maiores vazões e os teores de P e MnO₂ são máximos em 6 NL/min. O PPC também tende a cair com o aumento da vazão (figura 5.99).

Figura 5.98 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes vazões de ar no sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Figura 5.99 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes vazões de ar no sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

A influência da agitação mecânica (velocidade de rotação do rotor) no sistema hidroxamato AERO 6493 também foi investigada. Os resultados encontram-se nas figuras 5.100 e 5.101. De acordo com as mesmas, observa-se que o aumento da rotação levou a um aumento da recuperação de Fe e redução do teor dos contaminantes Al₂O₃, MnO₂ e do PPC. Contudo, observou-se, também, a redução do teor de Fe e aumento do teor de SiO₂.

Figura 5.100 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes rotações no sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Figura 5.101 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes rotações no sistema hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

O estudo da influência do tempo de condicionamento com o coletor hidroxamato AERO 6493 na composição química do concentrado indica uma redução da recuperação metálica de Fe com o aumento desse tempo. O máximo teor de Fe e mínimo de SiO_2 foi encontrado em condicionamento de 4 minutos (figura 102). Observou-se, também, uma redução dos teores dos contaminantes e PPC para 8 minutos de condicionamento, exceto para o caso do P, que se manteve estável (figura 103).

Figura 5.102 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Figura 5.103 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Os resultados do estudo da influência da porcentagem de sólidos no concentrado da flotação com hidroxamato são mostrados nas figuras 5.104 e 5.105. A máxima recuperação de Fe foi obtida com 45% de sólidos, sendo que o aumento dessa variável levou ao aumento da recuperação e teor de Fe e redução do teor de SiO₂. Também, em 45% de sólidos, obteve-se os menores teores de Al₂O₃ e MnO₂. O teor de P se manteve constante e o PPC aumentou seguindo o aumento do teor de Fe, o que indica a participação da goethita como mineral minério de Fe no concentrado.

Figura 5.104 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes porcentagens de sólidos com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Figura 5.105 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes porcentagens de sólidos com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

O aumento da temperatura levou a um ganho de recuperação de Fe de 90% em torno de 50°C. Contudo, verificou-se também uma redução do teor de Fe e aumento do teor de SiO_2 (figura 5.106). Os teores dos contaminantes e de PPC apresentaram tendência de queda com o aumento da temperatura, exceto pelo Al_2O_3 , cujo máximo teor se deu em 49,4°C (figura 5.107).

Figura 5.106 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes temperaturas no sistema de flotação com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

Figura 5.107 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes temperaturas no sistema de flotação com hidroxamato AERO 6493. Fração grossa (-0,150+0,045mm)

O Índice de Seletividade (IS) foi calculado a partir dos teores de Fe e SiO₂ no concentrado e no rejeito dos ensaios de flotação realizados com o coletor hidroxamato AERO 6493. Para tal, a equação II foi empregada. Em seguida, identificaram-se os valores que levam a uma maior seletividade, para cada variável estudada. Os resultados encontram-se na tabela V.15. Em uma análise simplificada, na qual as variáveis estudadas são independentes, e considerando os valores de IS calculados, conclui-se que o sistema mais eficiente deve operar com 200 g/t do coletor, vazão de ar de 6 NL/min, agitação de 800 rpm, tempo de condicionamento de 1 minuto, 60% de sólidos e temperatura de 22,5°C. Esses parâmetros

foram aplicados em um novo ensaio cujo resultado encontra-se na tabela V.16. É possível observar que, embora tais resultados sejam ainda aquém daqueles requeridos pela indústria, a configuração empregada levou a uma melhora das especificações do concentrado. Os resultados obtidos são bem inferiores àqueles alcançados por Lopes (2009). A autora alcançou 61,5% Fe e 9,8% SiO₂. Tal comparação indica uma redução da eficiência da flotação aniônica direta com o hidroxamato AERO 6493 devido à presença da goethita e seu elevado PPC.

		IS
Ensaio padrão	-	1,32
Decomposed a colotory (p/t)	100	1,29
Dosagem do coletor (g/t)	200	1,48
	4	1,06
v azao de ar (INL/min)	8	1,02
Agitação mecânica (rpm)	800	1,37
	1200	1,25
	1	1,35
Tempo de condicionamento com o coletor (min)	8	1,22
	30	1,12
Porcentagem de sólidos (%)	45	1,49
	60	1,83
Torren organization (9C)	49,4	0,79
Temperatura (°C)	60,5	0,75

Tabela V.15 – Índices de Seletividade calculados para os ensaios de flotação em bancada com hidroxamatoAERO 6493. Fração grossa (-0,150+0,045mm)

Tabela V.16 – Composição química do concentrado, recuperação de Fe e Índice de Seletividade (IS) para o sistema de flotação otimizado para o hidroxamato AERO 6493.

Fe	SiO ₂	Al ₂ O ₃	Р	MnO ₂	PPC	R _{Fe}	IS
46,77	27,41	0,11	0,02	0,04	5,50	66,98	1,41

5.5.1.3 Sistema amina / amido

Os ensaios de flotação catiônica reversa foram realizados com o coletor amina Flotigam EDA e depressor amido de milho, que foi gelatinizado com NaOH. Os parâmetros estudados foram: dosagem do coletor, dosagem do depressor, vazão de ar, agitação mecânica, tempo de condicionamento do coletor, tempo de condicionamento do depressor, porcentagem de sólidos e temperatura. Para estudar as 8 variáveis propostas, foi adotado um ensaio padrão, realizado com 100 g/t do coletor, 300 g/t do depressor, vazão de ar de 6 NL/min, agitação mecânica de 1000 rpm, 4 minutos de condicionamento com o coletor, 4 minutos de condicionamento com o depressor, 20% de sólidos e a 21,2°C. A partir desse padrão, foi possível fixar 7 parâmetros quando um oitavo era investigado.

As figuras 5.108 e 5.109 apresentam a influência da dosagem do coletor na composição do concentrado (afundado) do sistema de flotação amina / amido. Como pode ser observado, teor de Fe de 60% foi obtido com 100 g/t de amina. Nessa dosagem, também alcançou-se recuperação de Fe em torno de 90% e teor de SiO₂ de 7%. A figura 5.61 indica um aumento do teor de todos os contaminantes traço e do PPC com o aumento da dosagem de amina, fato que é coerente com o aumento do teor de Fe uma vez que tais contaminantes estão associados com os minerais minérios de Fe goethita e hematita.

Figura 5.108 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amina Flotigam EDA. Fração grossa (-0,150+0,045mm)

Figura 5.109 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de amina Flotigam EDA. Fração grossa (-0,150+0,045mm)

O estudo da influência da dosagem de amido nas características do concentrado mostrou um aumento da recuperação de Fe e teor de SiO_2 e redução do teor de Fe, como já esperado (figura 5.110). Os teores dos contaminantes Al_2O_3 , P e MnO_2 se mantiveram praticamente constantes perante a variação da dosagem do amido. O PPC apresentou-se mínimo em 300 g/t do depressor (figura 5.111).

Figura 5.110 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amido de milho. Fração grossa (-0,150+0,045mm)

Figura 5.111 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de amido de milho. Fração grossa (-0,150+0,045mm)

O aumento da vazão de ar no sistema de flotação amina / amido levou a um aumento do teor de Fe e redução do teor de SiO_2 . A recuperação metálica de Fe mostrou pior desempenho em 6 NL/min (figura 5.112). De forma geral, o teor de contaminantes e PPC aumentaram com a vazão de ar (figura 5.113).

Figura 5.112 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes vazões de ar no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)

Figura 5.113 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes vazões de ar no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)

O aumento agitação mecânica (rotação) levou ao aumento da recuperação de Fe. Contudo, houve também um aumento do teor de SiO_2 e redução do teor de Fe, como efeito do arraste mecânico provocado no sistema (figura 5.114). Os teores dos contaminantes e teor de PPC também se reduziram, o que é coerente devido à maior presença de SiO_2 no concentrado, reduzindo a porcentagem, em massa, dos contaminantes (figura 5.115).

Figura 5.114 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes rotações no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)

Figura 5.115 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes rotações no sistema de flotação amina / amido. Fração grossa (-0,150+0,045mm)

A figura 5.116 indica que a recuperação de Fe no sistema amina / amido pode ser aumentada, atingindo-se até 93% para tempos de condicionamento de 8 minutos com o coletor. Contudo, observa-se a queda do teor de Fe e aumento do teor de SiO₂. De forma geral, os teores de contaminantes e PPC diminuem com maiores tempos de condicionamento com a amina (figura 5.117).

Figura 5.116 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com amina. Fração grossa (-0,150+0,045mm)

Figura 5.117 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes tempos de condicionamento com amina. Fração grossa (-0,150+0,045mm)

Os ensaios com diferentes tempos de condicionamento com amido indicaram pouca influência dessa variável sobre a recuperação de Fe e teores de Fe, SiO_2 e P (figuras 5.118 e 5.119). O condicionamento com amido por 4 minutos levou ao menor teor de PPC e ao maior teor de Al₂O₃ e MnO₂.

Figura 5.118 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com amido. Fração grossa (-0,150+0,045mm)

Figura 5.119 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes tempos de condicionamento com amido. Fração grossa (-0,150+0,045mm)

Os ensaios de flotação no sistema amina / amido em diferentes porcentagens de sólidos indicaram a tendência de redução da recuperação de Fe para maiores porcentagens de sólidos. Os teores de Fe e SiO₂ se mantiveram praticamente constantes, apresentando máximo e mínimo, respectivamente, para 45% (figura 5.120). Quanto aos contaminantes traço, observa-se um aumento do teor de MnO₂ e uma redução do teor de Al₂O₃ para maiores porcentagens de sólidos. O teor de P se manteve praticamente constante. O PPC apresentou teores máximos em 30% e 45% de sólidos (figura 5.121).

Figura 5.120 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes porcentagens de sólidos no sistema amina / amido. Fração grossa (-0,150+0,045mm)

Figura 5.121 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes porcentagens de sólidos no sistema amina / amido. Fração grossa (-0,150+0,045mm)

O aumento da temperatura do sistema de flotação amina / amido levou a um aumento da recuperação de Fe para valores em torno de 99%. Contudo, a maior temperatura ocasionou a queda do teor de Fe de 60% para 38% e o aumento do teor de SiO₂ de 7% para 42% (figura 5.122). Todos os contaminantes traço tiveram seus teores reduzidos com o aumento da temperatura (figura 5.123). Isso é coerente uma vez que o teor de SiO₂ aumentou em temperaturas mais elevadas, reduzindo a participação dos minerais de Fe, com os quais tais contaminantes encontram-se associados. O PPC também reduziu-se seguindo a mesma lógica.

Figura 5.122 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes temperaturas no sistema amina / amido. Fração grossa (-0,150+0,045mm)

Figura 5.123 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes temperaturas no sistema amina / amido. Fração grossa (-0,150+0,045mm)

O Índice de Seletividade (IS) foi calculado a partir dos teores de Fe e SiO_2 no concentrado e no rejeito dos ensaios de flotação realizados com o coletor amina Flotigam EDA e o depressor amido de milho. A equação II foi empregada. Em seguida, identificaramse os valores que levam a uma maior seletividade, para cada variável estudada. Os resultados encontram-se na tabela V.17. A partir dos valores de IS calculados e fazendo-se uma análise simplificada, na qual as variáveis estudadas são independentes, conclui-se que o sistema mais eficiente deve operar com 150 g/t do coletor, 100 g/t do depressor, vazão de ar de 8 NL/min, agitação de 800 rpm, tempo de condicionamento com o coletor de 1 minuto, tempo de condicionamento com o depressor de 1 minuto, 45% de sólidos e temperatura de 21,2°C. Um novo ensaio, que considera tais parâmetros, foi conduzido e os resultados encontram-se na tabela V.18. Observa-se que os resultados são melhores que aqueles realizados anteriormente, sendo próximos daqueles exigidos na prática industrial. Tais resultados apresentam valores de IS superiores àqueles encontrados por Arantes e Lima (2012), que encontraram IS máximo igual a 5,44. O teor de SiO₂ é inferior (2,93% perante 7,01%), porém com teor de Fe um pouco menor (63,75% perante 64,8%), devido ao PPC (5,88%). Comparando os resultados alcançados no presente trabalho com aqueles obtidos por Lipper (2012), que investigou minério goethítico do projeto Apolo, verifica-se que o autor obteve resultados superiores (68,01% Fe, 0,60% SiO2 e IS = 51,0). Deve ser observado que a alimentação correspondente a tais resultados consistia de um minério mais rico.

		IS
Ensaio padrão	-	8,45
Decessor de emire (a/t)	50	3,75
Dosagem de amina (g/t)	150	8,75
Decessor de arride (g/t)	100	8,82
Dosagem de amido (g/t)	500	7,61
Vazão do or (NI /min)	4	7,41
v azao de ar (INL/mm)	8	9,66
	800	9,32
Agitação mecanica (rpm)	1200	5,62
	1	8,94
Tempo de condicionamento com a amina (mm)	8	6,72
Tampa da condicionamento com o amido (min)	1	8,23
Tempo de condicionamento com o anndo (mm)	8	7,52
	30	8,65
Porcentagem de sólidos (%)	45	8,89
	60	6,41
Tomporature (°C)	45,2	2,29
Temperatura (°C)	57,3	1,90

Tabela V.17 – Índices de Seletividade calculados para os ensaios de flotação em bancada com a amina FlotigamEDA e o amido de milho. Fração grossa (-0,150+0,045mm)

 Tabela V.18 – Composição química do concentrado, recuperação de Fe e Índice de Seletividade (IS) para o sistema de flotação otimizado para amina / amido.

Fe	SiO ₂	Al ₂ O ₃	Р	MnO ₂	PPC	R _{Fe}	IS
63,75	2,93	0,26	0,06	0,12	5,88	74,98	9,86

5.5.2 Fração fina (-0,045 + 0,010 mm)

5.5.2.1 Sistema oleato de sódio

A amostra fração fina do minério de ferro, devido às limitações de quantidade, foi investigada quanto à dosagem de coletor e tempo de condicionamento com o mesmo. Para estudar tais parâmetros, foi adotado um ensaio padrão, realizado com 200 g/t do coletor, vazão de ar de 6 NL/min, agitação mecânica de 800 rpm, 4 minutos de condicionamento com o coletor, 20% de sólidos e temperatura ambiente (23,4°C). A partir desse padrão, foi possível fixar 5 parâmetros quando um sexto era investigado.

Os ensaios com a amostra de minério na fração granulométrica fina foram inicialmente executados em diferentes dosagens do coletor oleato de sódio (figura 5.124). Observa-se, para todas as dosagens ensaiadas, teores de Fe e SiO₂ próximos daqueles praticados na indústria. Contudo, a dosagem é insuficiente para se atingir uma recuperação requerida nas plantas de beneficiamento para o minério de ferro. Como os teores de Fe e SiO₂ não se reduziram com o aumento da dosagem, esse parâmetro deve ser investigado para valores maiores, a fim de elevar a recuperação de Fe. Os teores de P e PPC se mantiveram constantes com o aumento da dosagem, o teor de Al₂O₃ apresentou tendência de aumento para maiores dosagens e o MnO₂ apresentou mínimo teor em 200 g/t do coletor (figura 5.125).

Figura 5.124 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de oleato de sódio. Fração fina (-0,045+0,010mm)

Figura 5.125 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de oleato de sódio. Fração fina (-0,045+0,010mm)

Os ensaios de flotação com diferentes tempos de condicionamento mostraram que essa variável influenciou muito pouco o teor de Fe, que se manteve praticamente constante em todos os ensaios. A recuperação, contudo, foi mínima em 4 minutos de condicionamento e máxima em 8 minutos (figura 5.126). Os teores de PPC e Al_2O_3 diminuíram, para maiores dosagens, enquanto os teores de P e MnO_2 se mantiveram constantes (figura 5.127).

Figura 5.126 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração fina (-0,045+0,010mm)

Figura 5.127 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes tempos de condicionamento com oleato de sódio. Fração fina (-0,045+0,010mm)

O Índice de Seletividade (IS) foi calculado a partir dos teores de Fe e SiO_2 no concentrado e no rejeito dos ensaios de flotação realizados com o coletor oleato de sódio. A equação II foi empregada. Os resultados encontram-se na tabela V.19. A partir dos valores de IS calculados e fazendo-se uma análise simplificada, na qual as variáveis estudadas são independentes, conclui-se que o sistema mais eficiente deve operar com 300 g/t do coletor e tempo de condicionamento com o coletor de 4 minutos.

Tabela V.19 – Índices de Seletividade calculados para os ensaios de flotação em bancada com oleato de sódio.Fração fina (-0,045+0,010mm)

		IS
Ensaio padrão	-	1,83
Desegon de celetor (g/t)	100	1,75
Dosagem de coletor (g/t)	300	1,93
	1	1,54
Tempo de condicionamento (min)	8	1,81

5.5.2.2 Sistema hidroxamato AERO 6493

A amostra fração fina do minério de ferro, devido às limitações de quantidade, foi investigada quanto à dosagem de coletor e tempo de condicionamento com o mesmo. Para estudar tais parâmetros, foi adotado um ensaio padrão, realizado com 300 g/t do coletor,

vazão de ar de 6 NL/min, agitação mecânica de 800 rpm, 4 minutos de condicionamento com o coletor, 20% de sólidos e temperatura ambiente (23,4°C). A partir desse padrão, foi possível fixar 5 parâmetros quando um sexto era investigado.

Os resultados dos ensaios com o coletor hidroxamato AERO 6493, mostrados nas figuras 5.124 e 5.125, indicam que a dosagem de 100 g/t do reagente é pequena para alcançar uma recuperação próxima da prática industrial. Contudo, para dosagens maiores do reagente, observa-se um aumento do teor de SiO₂ e redução do teor de Fe. Os teores dos contaminantes Al_2O_3 , P e MnO₂ e PPC diminuíram com o aumento da dosagem de hidroxamato.

Figura 5.128 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)

Figura 5.129 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)

Os ensaios em diferentes tempos de condicionamento com o coletor hidroxamato AERO 6493 indicam que essa variável apresenta grande influência na eficiência do processo. Enquanto os tempos de 1 e 8 minutos de condicionamento levaram a teores próximos de 60% de Fe e 10% de SiO₂, o tempo de 4 minutos elevou o teor de SiO₂ a 30%. A recuperação de Fe foi máxima em 4 minutos de condicionamento (figura 5.130). Verificou-se, também, aumento dos teores de Al₂O₃ e PPC com o aumento da dosagem e queda do teor de MnO₂. O teor de P praticamente não apresentou alterações.

Figura 5.131 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes tempos de condicionamento com hidroxamato AERO 6493. Fração fina (-0,045+0,010mm)

O Índice de Seletividade (IS) foi calculado a partir dos teores de Fe e SiO_2 no concentrado e no rejeito dos ensaios de flotação realizados com o coletor hidroxamato AERO 6493. A equação II foi empregada. Os resultados encontram-se na tabela V.20. A partir dos valores de IS calculados e fazendo-se uma análise simplificada, na qual as variáveis estudadas são independentes, conclui-se que o sistema mais eficiente deve operar com 100 g/t do coletor e tempo de condicionamento com o coletor de 1 minuto.

		IS
Ensaio padrão	-	1,07
Decompose de colotor (π/t)	100	1,64
Dosagem de coletor (g/t)	200	1,50
	1	1,92
Tempo de condicionamento (min)	8	1,74

Tabela V.20 – Índices de Seletividade calculados para os ensaios de flotação em bancada com hidroxamatoAERO 6493. Fração fina (-0,045+0,010mm)

5.5.2.3 Sistema amina / amido

A amostra fração fina do minério de ferro, devido às limitações de quantidade, foi investigada quanto à dosagem de amina e dosagem de amido. Para estudar essas duas variáveis propostas, foi adotado um ensaio padrão, realizado com 150 g/t do coletor, 300 g/t do depressor, vazão de ar de 6 NL/min, agitação mecânica de 1000 rpm, 4 minutos de condicionamento com o coletor, 4 minutos de condicionamento com o depressor, 20 % de sólidos e temperatura ambiente (23,4°C). A partir desse padrão, foi possível fixar 7 parâmetros quando um oitavo era investigado.

Verifica-se, pela figura 5.132, que o aumento da dosagem de amina permitiu alcançar teores muito interessantes para uma aplicação industrial: 64,39% de Fe e 2,15 de SiO₂. É importante notar a queda na recuperação de Fe que, embora ainda seja elevada, caiu de 94,89% para 81,05% com dosagens de 50 e 150 g/t de amina, respectivamente. Quanto aos contaminantes, os teores de P e MnO₂ se mantiveram praticamente constantes com a variação da dosagem de amina, embora o teor de Al₂O₃ tenha reduzido. O PPC apresentou um aumento

para dosagens maiores do coletor, indicando uma maior participação do goethita no concentrado.

Figura 5.132 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amina. Fração fina (-0,045+0,010mm)

Figura 5.133 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de amina. Fração fina (-0,045+0,010mm)

O aumento da dosagem de amido levou a um aumento da recuperação de Fe para 87,87%, com pequena queda no teor de Fe para 63,07% e aumento do teor de SiO₂ para 4,29%. Os teores de MnO₂, P e PPC apresentaram pequena variação com a dosagem de amido. O teor de Al₂O₃ é mínimo em 300 g/t do depressor.

Figura 5.134 Teores de Fe, SiO₂ e recuperação metalúrgica do Fe no concentrado para diferentes dosagens de amido. Fração fina (-0,045+0,010mm)

Figura 5.135 Teores de Al₂O₃, P, MnO₂ e PPC no concentrado para diferentes dosagens de amido. Fração fina (-0,045+0,010mm)

O Índice de Seletividade (IS) foi calculado a partir dos teores de Fe e SiO₂ no concentrado e no rejeito dos ensaios de flotação realizados com o coletor amina Flotigam EDA e depressor amido de milho. A equação II foi empregada. Os resultados encontram-se na tabela V.21. A partir dos valores de IS calculados e fazendo-se uma análise simplificada, na qual as variáveis estudadas são independentes, conclui-se que o sistema mais eficiente deve operar com 150 g/t do coletor e 300 g/t do depressor. Os melhores resultados (2,15% SiO₂, 64,39% Fe e IS = 8,15) são inferiores àqueles apresentados por Lipper (2012) para amostras de granulometria inferior a 0,045 mm, que obteve 0,62% SiO₂, 67,21% Fe e IS=14,6. Deve-

se, contudo, observar o baixo fator de enriquecimento obtido pelo autor (1,02), indicando uma alimentação com elevado teor de Fe.

		IS
Ensaio padrão	-	8,15
Decomposition (a/t)	50	5,27
Dosagem de amina (g/t)	100	7,31
	100	7,98
Dosagem de amido (g/t)	500	6,79

Tabela V.21 – Índices de Seletividade calculados para os ensaios de flotação em bancada para o sistema amina / amido. Fração fina (-0,045+0,010mm)

6. SUMÁRIO DOS RESULTADOS E DISCUSSÕES

Caracterização mineralógica, química e física

Os ensaios de difratometria mostraram que as amostras de minerais apresentavam elevada pureza, com exceção da goethita, que geralmente encontra-se associada à hematita. A amostra de minério apresentou as fases hematita, goethita e quartzo, com predominância da última. A quantificação por difração de raios X baseada no método de Rietveld indicou uma composição de 20% de hematita, 36% de goethita e 44% de quartzo.

As análises de espectrometria de raios X indicaram a presença de Fe, Si e O como elementos de alta ocorrência e Al, Mn, P, S e Ti como elementos traço nas amostras de minério goethítico cabeça, fração grossa e fração fina.

A microscopia ótica de luz refletida mostrou a presença de magnetita intercrescida com hematita martítica e goethita na amostra de minério goethítico. Logo, conclui-se que a magnetita estava presente na amostra em uma proporção insuficiente para ser detectada pela DRX. Ainda verificou-se a presença da hematita martítica e lamelar e da goethita botrioidal e maciça. A hematita martítica e a goethita botrioidal apresentaram-se muito porosas. Também foram notadas inclusões de hematita nas partículas de quartzo.

A microscopia eletrônica de varredura e a espectrometria dispersiva em energia indicaram um teor maior de Fe na amostra de minério fração fina que na amostra fração grossa. Os teores dos contaminantes Al e Mn são maiores na fração fina e o teor de S é maior na fração grossa, indicando que os dois primeiros elementos encontram-se associados à hematita e goethita e o terceiro encontra-se associado ao quartzo. Os grãos de hematita e goethita apresentaram, frequentemente, poros preenchidos com material terroso, fonte de lamas. Quanto à trama das partículas, a hematita se apresentou na maioria dos casos como hematita martítica, com trama de treliça e habitus octaédricro, indicando pseudomorfismo segundo a magnetita. A goethita foi identificada no habitus botrioidal e, mais raramente, no habitus acicular. As partículas de quartzo do minério flotado nos sistemas oleato de sódio, hidroxamato AERO 6493 e amina/amido apresentaram muito pouco recobrimento por finos de hematita e goethita.

A análise química via úmida determinou 37,38% de Fe, 42,79% de SiO₂ e 3,46% de PPC na amostra de minério fração grossa e 50,36% de Fe, 23,08% de SiO₂ e 4,40% de PPC na

fração fina. Na análise granuloquímica, observou-se o crescimento dos teores de PPC, Al₂O₃, MnO₂ e P para as frações granulométricas mais finas.

A picnometria a hélio determinou a densidade da amostra de minério fração grossa (3,69 g/cm³) e para a fração fina (4,21 g/cm³).

O estudo da área superficial e porosimetria da amostra de minério goethítico identificou que a amostra é mesoporosa, de baixa área superficial específica $(1,5 \text{ m}^2/\text{g})$ e possui baixa porosidade (1,37%), fato que é coerente com a predominância de quartzo na amostra de minério (44%).

Na faixa de temperatura estudada pelas análises térmicas, observaram-se perdas de massa das amostras hematita, gibbsita e caulinita coerentes com aquelas citadas na literatura. A goethita apresentou perda de massa em temperatura mais elevada do que citado na literatura. A amostra de minério apresentou perda de massa no intervalo de temperatura correspondente à perda de massa da goethita. A amostra de quartzo apresentou transição estrutural $\alpha \rightarrow \beta$ em 575°C e uma perda de massa não esperada de acordo com a literatura.

Caracterização tecnológica

A amostra de minério cabeça apresentou escalpe de 51,38% passante em 0,150mm, que foi retirado e não entrou na etapa de moagem. O produto da moagem e o escalpe foram blendados e, após homogeneização e amostragem, tiveram sua granulometria aferida, apresentando 100% passante em 0,150mm e 14,10% passante em 0,045mm.

O grau de liberação obtido para a amostra de minério de ferro goethítico foi de 71,21% para as partículas retidas em 0,106mm, ou seja, a menor liberação apresentada pela amostra fração grossa. Já a partir de 0,075mm, obteve-se liberação de 88,56%.

Estudos fundamentais

As amostras de mineral puro apresentaram comportamento eletrocinético coerente com os dados pesquisados na literatura. Em NaCl 10⁻³ M, os minerais hematita, goethita, gibbsita e caulinita apresentaram PIE igual a 6,8; 8,2; 9,2 e 4,9, respectivamente. Verificou-se grande redução do PIE dos minerais hematita, goethita e gibbsita e modificação no formato das curvas de potencial zeta nos ensaios com os oleato de sódio e hidroxamato AERO 6493, indicando a adsorção desses reagentes aniônicos na superfície de tais minerais. As curvas de

potencial zeta do quartzo e da caulinita não apresentaram modificações significantes na presença dos reagentes.

Nos ensaios com oleato de sódio 5 mg/L, o quartzo apresentou baixa flotabilidade ao longo de toda a faixa de pH, atingindo flotabilidade máxima de 15% em pH 9,0. A hematita apresentou elevada flotabilidade entre os pHs 8,0 e 9,0, atingindo máximo valor de 85%, e baixa flotabilidade entre os pHs 5,0 e 6,0 – aproximadamente 18%. A goethita apresenta elevada flotabilidade em pHs 4,0 e 9,0, com máximo de 91%. A gibbsita apresentou uma curva de flotabilidade muito semelhante à da goethita, porém com elevada flotabilidade entre os pHs 4,0 e 11, atingindo 91% em pH 6,95. A caulinita apresentou baixa flotabilidade em toda a faixa de pH, atingindo máxima flotabilidade de 12% em pH 11,0.

Nos ensaios com hidroxamato AERO 6493 20 mg/L, o quartzo apresentou baixa flotabilidade tanto em pH ácido quanto básico, atingindo flotabilidade máxima de 19% em pH 6,0. A hematita exibiu flotabilidade mediana, atingindo valor máximo de 40% em pH 9,0. Em pH 11,0 e pH menor que 4,0, o mineral exibiu flotabilidade menor que 5%. A goethita também apresentou flotabilidade mediana, sendo a flotabilidade máxima de 31% atingida em pH 4,0. A gibbsita apresentou os maiores valores de flotabilidade dentre os cinco minerais, sendo os valores máximos atingidos 46% em pH 7,0 e 45% em pH 4,0. A caulinita apresentou baixa flotabilidade ao longo de toda a faixa de pH, sendo o valor máximo 5,4% em pH 11,07.

Quanto aos ensaios de concentração para o oleato de sódio, observou-se um grande aumento da flotabilidade com a variação da concentração do coletor de 1 mg/L para 20 mg/l no caso da hematita e a gibbsita. Para o quartzo e a caulinita, a flotabilidade obtida foi muito próxima para as três concentrações analisadas. No caso da goethita, elevada flotabilidade foi exibida mesmo na concentração de 1 mg/L do coletor. A variação da concentração de hidroxamato AERO 6493 promoveu aumento da flotabilidade para a hematita, a goethita, a gibbsita e o quartzo, porém em maior extensão para hematita e gibbsita, seguidas da goethita e do quartzo. A caulinita apresentou variação muito pequena da flotabilidade .

O aumento do tempo de condicionamento com o coletor oleato de sódio promoveu uma ampliação na flotabilidade da hematita, goethita, gibbsita e quartzo nos pHs 5,0 e 9,0. A hematita apresentou máxima variação da flotabilidade. A caulinita apresentou-se indiferente à variação do tempo de condicionamento. Com o hidroxamato AERO 6493,em pH 9,0, verificou-se um aumento na flotabilidade da hematita, redução na flotabilidade da gibbsita e pouca ou nenhuma influência no percentual flotado da goethita, do quartzo e da caulinita. Em pH 5,0 obteve-se redução da flotabilidade da gibbsita, aumento pequeno da flotabilidade da hematita e da goethita e comportamento indiferente da caulinita e do quartzo.

A hematita e a goethita mostraram maior flotabilidade em maiores temperaturas em pH 5,0 e 9,0. Em maiores temperaturas, a gibbsita teve sua flotabilidade aumentada em pH 9,0 e diminuída em pH 5,0. A flotabilidade do quartzo e da caulinita reduziu drasticamente com o aumento da temperatura, atingindo valores próximos de 1,0% em temperatura maior que 55°C. Nos ensaios com hidroxamato AERO 6493, a flotabilidade da gibbsita, da caulinita e do quartzo reduziram com o aumento da temperatura nos pHs 4,0 e 9,0. As flotabilidades da hematita e da goethita aumentaram com a temperatura nos dois pHs. Contudo, em pH 9,0 a flotabilidade dos minerais foi máxima em torno de 45°C, decrescendo em temperatura próxima de 55°C.

O estudo do uso de reagentes depressores evidenciou que o amido apresenta um grande poder de depressão para todos os minerais tanto com o oleato quanto com o hidroxamato. O fluorsilicato apresentou um poder de depressão um pouco menor que o do amido no sistema com o oleato, maior capacidade em deprimir os minerais em pH 4,0 e menor em pH 9,0. O Floatan M3 apresentou uma capacidade insatisfatória de depressão das amostras minerais nos testes com oleato. Nos ensaios com hidroxamato, o reagente apresentou, contudo, desempenho semelhante ao dos demais reagentes.

Flotação de bancada

Para o minério fração grossa, o concentrado obtido para os ensaios otimizados de flotação aniônica reversa com oleato de sódio apresentou 44,69%Fe, 32,92% SiO₂, 2,97% PPC, 89,34% de recuperação de Fe e IS = 2,52. Na fração fina, o melhor concentrado, considerando o IS, apresentou 61,10% Fe, 7,91% SiO₂, 4,18 PPC, 5,09% de recuperação de Fe e IS = 1,83. As variáveis que mais influenciaram nos teores de Fe e SiO₂ e na recuperação de Fe foram dosagem do coletor e agitação mecânica.

No sistema hidroxamato AERO 6493, o concentração da flotação aniônica direta otimizada para a fração grossa do minério goethítico apresentou 46,77% Fe, 27,41% SiO₂, 5,50% PPC, 66,98% de recuperação de Fe e IS = 1,41. Para a fração fina, o melhor concentrado apresentou 60,21% Fe, 9,31% SiO₂, 4,05% PPC, 32,23% de recuperação de Fe e IS = 1,92. Todos os parâmetros estudados exerceram grande influência nos teores de Fe e SiO₂ e na recuperação de Fe no concentrado.

No sistema de flotação catiônica reversa, o concentrado otimizado para a fração grossa mostrou 63,75% Fe, 2,93% SiO2, 5,88% PPC, 74,98% de recuperação de Fe e IS = 9,86. No caso da fração fina, foi obtido concentrado com 64,39% Fe, 2,15% SiO₂, 5,14% PPC, 81,05% de recuperação de Fe e IS = 8,15. As variáveis que mais influenciaram nos teores de Fe e SiO2 e na recuperação de Fe foram as dosagens do coletor e do depressor, a vazão de ar, a agitação mecânica, o tempo de condicionamento da amina e a temperatura.

7. CONCLUSÕES

Caracterização

- ✓ Minério : 20 % hematita, 36% goethita e 44% quartzo
- ✓ Minério pobre:

fração grossa: 37,38% de Fe e 3,46% de PPC

fração fina : 50,36% de Fe e 4,40% de PPC

- ✓ Si, Al, Mn e P presentes nos poros ou estrutura cristalina da hematita e da goethita
- ✓ Baixa área superficial específica $(1,5 \text{ m}^2/\text{g})$ e baixa porosidade (1,37%)
- ✓ Boa liberação a partir de 75µm (88,56%)

Potencial zeta:

- ✓ PIE: hematita, goethita, gibbsita e caulinita e igual a 6,8; 8,2; 9,2 e 4,9, respectivamente
- Modificação do potencial zeta das hematita, goethita e gibbsita com oleato de sódio e hidroxamato AERO 6493

Microflotação em tubo de Hallimond:

- ✓ Oleato de sódio: seletividade entre os minerais minério de Fe e a ganga silicática
- \checkmark Oleato de sódio: seletividade entre hematita e goethita entre pHs 5,0 e 6,0
- ✓ Oleato de sódio: influência da temperatura e do tempo de condicionamento
- ✓ Oleato de sódio: ineficiência dos reagentes depressores fluorsilicato de sódio, Floatan M3 e amido de milho
- ✓ Hidroxamato AERO 6493: seletividade entre os minerais minério de Fe e a ganga
- ✓ Hidroxamato AERO 6493 : grande influência da temperatura
- ✓ Hidroxamato AERO 6493 : ineficiência dos reagentes depressores fluorsilicato de sódio, Floatan M3 e amido de milho

Flotação em bancada:

- ✓ Oleato de sódio: baixa seletividade alcançada, com máximo IS = 2,52 na fração grossa e IS=1,83 na fração fina
- Oleato de sódio: maior influência da dosagem do coletor e agitação mecânica na eficiência do processo

- ✓ Hidroxamato AERO 6493 : baixa seletividade, com máximo IS=1,41 na fração grossa e IS = 1,92 na fração fina
- ✓ Hidroxamato AERO 6493: influência de todas as variáveis estudadas na eficiência do processo
- ✓ Etermonoamina / amido: sistema mais seletivo:

63,75% Fe e 2,93% SiO₂ e IS = 9,86 na fração grossa

64,39% Fe e 2,15% SiO₂ e IS = 8,15 na fração fina

 Etermonoamina / amido: maior influência das variáveis dosagem do coletor e do depressor, vazão de ar, agitação mecânica, tempo de condicionamento da amina e temperatura na eficiência do processo

8. RELEVÂNCIA DOS RESULTADOS

Os resultados apresentados neste trabalho contribuíram para um maior entendimento das propriedades fundamentais dos principais minerais presentes nos minérios goethíticos, a saber, hematita, goethita, quartzo, gibbsita e caulinita. Eles também evidenciaram comportamentos diferentes apresentados por esses minerais em sistemas de flotação aniônica direta, promovendo indícios de possíveis rotas de flotação. Embora os resultados dos ensaios de flotação em bancada não tenham apresentado a eficiência necessária para obter concentrados próximos das especificações industriais (no caso dos coletores aniônicos), tais resultados formam uma base de dados e abrem novos caminhos a serem seguidos por aqueles que executarem novas pesquisas de flotação direta para minérios de ferro goethíticos de baixo teor. Uma vez que os recursos minerais são bens findáveis e a taxa de consumo dos mesmos cresce a cada ano, o processamento de minérios como esses, de mineralogia complexa, se torna uma realidade na indústria mineral.

9. RECOMENDAÇÕES PARA TRABALHOS FUTUROS

- I. Realizar os estudos fundamentais apresentados neste trabalho também para o mineral magnetita.
- II. Investigar o potencial zeta dos minerais hematita, goethita, quartzo, gibbsita, caulinita e magnetita em suspensões com diferentes forças iônicas e para outros eletrólitos indiferentes.
- III. Estudar outros reagentes coletores na flotação aniônica direta como, por exemplo, os reagentes da família dos sulfonatos.
- IV. Estudar o efeito da variação da concentração dos depressores amido, fluorsilicato de sódio e Floatan M3 na depressão dos minerais estudados.
- V. Estudar outros reagentes depressores, tais como o metassilicato de sódio, visando à flotação aniônica direta.
- VI. Estudar o efeito da variação do tempo de condicionamento dos depressores.
- VII. Realizar ensaios de espectrometria no infravermelho (FTIR ou DRIFTS), de forma a identificar as espécies formadas pela adsorção dos reagentes oleato de sódio e hidroxamato AERO 6493.
- VIII. Realizar ensaios de flotação em bancada para minérios goethíticos em sistemas com diferentes valores de força iônica.

REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE, E. M. *Estudo de depressores na flotação de finos de minério de manganês com oleato de sódio*. 2010. 125p. Dissertação (Mestrado em Engenharia Mineral) – Universidade Federal de Ouro Preto. Ouro Preto, 2010.

ALVES, M. E.; MASCARENHAS, Y. P.; VAZ, Carlos Manoel Pedro. Comparação de procedimentos de quantificação de caulinita e gibbsita na fração argila desferrificada de Latossolos. *Rev. Bras. Ciênc. Solo*, Viçosa, v. 32, n. 2, 2008.

ARANTES, R. S.; LIMA, R. M. F. Comparative Studies of Inverse and direct flotation of a Brazilian low grade iron ore. In: XXIII International Mineral Processing Symposium, 2012, Bodrum. Proceedings of XXXIIth International Mineral Processing Symposium. Bodum: Department of Mining Engineering, Eskischir Osmaganzi University, v. 1, 2012, p. 291-295.

ARAUJO, A. C. PERES, A. E. C.; VIANA, P. R. M.; OLIVEIRA, J. F. Flotação de minérios de ferro. In: CHAVES, A.P. (Org.). *Teoria e prática do tratamento de minérios:* A flotação no Brasil. São Paulo: Signus, 2009, v. 4, 2ª edição, 484p.

ARAUJO, A. C.; AMARANTE, S. C.; SOUZA, C. C.; SILVA, R. R. R. Ore mineralogy and its relevance for selection of concentration methods in processing of Brazilian iron ores. *Mineral Processing and Extractive Metallurgy*, London, v.112, is. 1, p. 54-63, 2003.

ASSIS, S. M.; MONTENEGRO, L. C. M.; PERES, A. E. C. Utilisation of Hydroxamates in Minerals Froth Flotation. *Minerals Engineering*, Great Britain, v.9, n. 1, p.103–114, 1996.

BALTAR, C. A. M.; RAMOS, L. T. S. Efeito coletor de reagentes espumantes em diferentes superfícies minerais. In: II Congreso Latinoamericano de Flotación, 19-23 de Agosto, 1985, Universidad de Concepción-Chile,. *Anais do II Congreso Latinoamericano de Flotación*. Concepción: Facultad de Ingeniería, Departamento Ingeniería Metalúrgica v. 2, 1985, 13p.

BARCELOS, J. P.; BÜCHI, J. Mina de ferro de Alegria, MG. In: *Principais depósitos minerais do Brasil; ferro e metais da indústria do aço*. Brasília: Departamento Nacional da Produção Mineral, v. 2, 1986, cap. V, p. 77-85.

BLAKE, R. L.; HESSEVICK, R. E.; ZOLTAI, T.; FINGER, L.W. Refinement of the hematite structure. *American Mineralogist*, v. 51, p. 123-129, 1966.

BRANDÃO, P. R. G. A seletividade na flotação reversa de minérios de ferro: adsorção de reagentes. Anais do XXI Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, Natal, RN, 20-24 novembro 2005, v. 1, p. 22-33.

BULATOVIC, S. M. *Handbook of Flotation Reagents:* Chemistry, Theory and Practice. 1 ed. Amsterdam: Elsevier, v. 1, 2007, p. 13-14, 69-70.

CABRAL, A. S. *Rotas de processo para minérios goethíticos*. 2010. 132p. Dissertação (Mestrado em Engenharia Metalúrgica e de Minas) – Universidade Federal de Minas Gerais. Belo Horizonte, 2010.

CHIBOWSKI, S.; WISNIEWSKA, M. Study of electrokinetic properties and structure of adsorbed layers of polyacrylic acid and polyacrylamide at Fe₂O₃ – polymer solution interface. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, Amsterdam, v. 208, p.131-145, 2002.

CROMIERES, L.; MOULIN, V.; FOUREST, B.; GIFFAUT, E. Physico-chemical characterization of the colloidal hematite/water interface: experimentation and modeling. *Colloids and surfaces A: Physicochem and Engineering Aspects*, Amsterdam, v. 202, is. 1, 2002, p. 101-115.

DANA, J. D. *Manual de Mineralogia*. 1 ed. Rio de Janeiro: Livros Técnicos e Científicos Editora S. A., 1974, 642p.

DORR II, J. V. N. Ocorrências e classificação de minérios de ferro no Quadrilátero Ferrífero. In: SEMANA DE ESTUDOS SOBRE PADRONIZAÇÃO DOS MINÉRIOS, 1964.

FEITOSA, V. M. N.; SILVA, J. P.; RABELO, P. J. B.; COELHO, L. H. Estudos de caracterização mineralógica e suas implicações no processo na mina de Alegria. In: SIMPÓSIO DE GEOLOGIA DE MINAS GERAIS, 7º, 1993, Belo Horizonte. *Anais do workshop geologia estrutural dos minérios de ferro*. Belo Horizonte: FAPEMIG, 1993, p. 369-373.

FUERSTENAU, M. C. *Flotation*. A. M. Gaudin Memorial Volume, AIME 232, 1976, p. 24-28.

FUERSTENAU, M. C., MILLER, J. D.; GUTIERREZ, G. Selective flotation of iron oxide. *AIME Transactions*, Englewood, v. 238, p. 200-203, 1967. FUERSTENAU, M. C.; HARPER, R. W.; and MILLER, J. D. Hydroxamate vs. Fatty Acid Flotation of Iron Oxide. *AIME Transactions*, Englewood, v. 247, p. 69-73, 1970.

GAUDIN, A. M. Principles of mineral dressing. New York: McGraw-Hill, 1939.

GAUDIN, A. M. Flotation. 2 ed. New York: McGraw-Hill Book Co., 1957, 573p.

GOLDBERG, S. R. Competitive adsorption of molybdenum in the presence of phosphorus or sulfur on gibbsite. *Soil Science*, v. 175, p.105-110, 2010.

GARDOLINSKI, J. E.; MARTINS, H. P. F.; WYPYCH, F. Comportamento térmico da caulinita hidratada. *Química Nova*, v. 26, n. 1, p. 30-35, 2003.

HENRIQUES, A. B. *Caracterização e estudo das propriedades eletrocinéticas dos minerais de ferro: hematita, goethita e magnetita.* 2012. 223p. Tese (Doutorado em Engenharia Metalúrgica e de Minas) – Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte. 2012.

HOUOT, R. Beneficiation of iron ore by flotation-review of industrial and potential applications. *International Journal of Mineral Processing*, Amsterdam, v. 10, is. 3, p. 183-204, 1983.

HU, Y., JIANG, H., WANG, D. Electrokinetic behavior and flotation of kaolinite in CTAB solution. *Minerals Engineering*, v.16, is 11, p. 1221-1223, 2003.

HUNTER, R. J., Introduction to modern colloid science, Oxford University Press,

Oxford, NY, 1993.

KLEIN, C. The Manual of Mineral Science. New York: John Wiley & Sons, 2001, 646 p.

KORNEEV, A. E.; BELOKONEVA, E. L.; KOLONTSOVA, E. V.; SIMONOV, M. A. Crystal structure of neutron-irradiated alpha-quartz. *Kristallografiya*, Moscou, v. 23, p. 412-413, 1978.

KOSMULSKI, M. A literature survey of differences between the reported isoelectric points and their discussion. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, Amsterdam, v. 208, p.113-118, 2003.

LEJA, J. Surface Chemistry of Froth Flotation. New York: Plenum Press, 1982, 758p.

LEJA, J.; HE, B. Q. The role of flotation frothers in the particle-bubble attachment process. Principles of Mineral Flotation. In: Principles of Minerals Flotation. Edited by M.H. Jones and J.T. Woodcock. Parckville: Aus IMM, n. 40, 1984, p.73-89.

LIPPER, G. C. *Rota de processo para separação de minérios hidratados (goethíticos) na concentração de minério de ferro*. 2012. 158p. Dissertação (Mestrado em Engenharia Metalúrgica e de Minas) – Universidade Federal de Minas Gerais. Belo Horizonte, 2012.

LOPES, G. M. L. *Flotação direta de minério de ferro*. 2009. 176p. Dissertação (Mestrado em Engenharia Mineral) – Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto. 2009.

NASCIMENTO, D. R. *Flotação aniônica de minério de ferro*. 2010. 115p. Dissertação (Mestrado em Engenharia Mineral) – Universidade Federal de Ouro Preto. Ouro Preto, 2010.

NEDER, E. E.; LEAL FILHO, L. S. Uso de aminas graxas e seus derivados na flotação de minérios brasileiros. In: XXI Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, 2005, Natal. *Anais do XXI Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa*. Natal: UFRN-CEFET/RN, 2005, v. 1, p. 395-404.

NETZSCH. Areia de gesso e de quartzo – transições de fase. Disponível em: <u>http://www.netzsch-thermal-analysis.com/pt/materiais-aplicacoes/ceramicos-vidros/areia-de-gesso-e-de-quartzo-transicoes-de-fase.html.</u> Acesso em: 20 de junho de 2014.

PERES, A. E. C.; ARAUJO, A. C. A flotação como operação unitária no tratamento de minérios. In: CHAVES, A.P. (Org.). *Teoria e prática do tratamento de minérios:* A flotação no Brasil. São Paulo: Signus, 2009, v. 4, 2ª edição, 484p.

PERES, A. E. C.; ARAUJO, A. C.; PINTO, C. L. L. The effect of starch, amylase, amylopectin and glucose monomer and their effect on flotation of hematite and quartz. *Minerals Engineering*. Amsterdam, v. 16, p. 1117-1122, 1992.

PETERSON, H. D.; FUERSTENAU, M. C.; RICKARD, R. S.; MILLER, J. D. Chrysocolla Flotation by the Formation of Insoluble Surface Chelates. *AIME Transactions*. Englewood, v. 232, 389 p., 1965.

QUAST, K. Effect of 25% goethite on hydrophobicity and oleate flotation of hematite. *International journal of mining and mineral processing*, Nova Delhi, v. 1, n. 2, p. 31-37, 2012.

QUAST, K. B. Flotation of hematite using oleate as collectors. *The AusIMM Proceedings*, Carlton South, 1999, v. 304, is. 1, p. 15-22.

QUEIROZ, L. A.; FERREIRA, A. D.; PADOVEZI, A. D.; CÂNDIDO, M. H. Z. Análise mineralógica aplicada ao desenvolvimento de processos e produtos de minérios de ferro. In: III SEMINÁRIO DE LABORATÓRIOS DA CVRD. 2003.

RAO, F.; SONG, S.; LOPEZ-VALDIVIESO, A. Electrokinetic studies of minerals in aqueous solutions through electroacoustic measurement. *Surface Review and Letters*.16 (1), p. 65-71, 2009.

RAO, S. R. *Surface chemistry of Froth Flotation*. 2 ed. New York: Kluewer/Plenum, 2004, 744p.

ROCHA, J. M. P. *Caracterização de Minérios Goethíticos-limoníticos da Mina de Alegria*.
1997. 253p. Dissertação (Mestrado em Engenharia Metalúrgica e de Minas) – Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte. 2001.

RODRIGUES, O. M. S. *Estudos de flotação de caulinita*. 2009. 96 p. Dissertação (Mestrado em Engenharia Metalúrgica e de Minas) – Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2009.

RODRIGUES, O. S. *Flotação de caulinita em minérios de ferro e bauxítico*. 2012. 171p. Tese (Doutorado em Engenharia Metalúrgica e de Minas) – Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2012.

ROSE, A.; ROSE, E. *The condensed chemical dictionary*. 5.ed. New York: Reinhold Publishing Company, 1957, 1200p.

SAALFELD, H.; WEDDE, M. Refinement of the crystal structure of gibbsite, Al(OH)₃. *Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie*, v. 139, p. 129-135, 1974.

SANTOS, L. D; BRANDAO, P. R. G. Morphological varieties of goethite in iron ores from Minas Gerais, Brazil. *Minerals Engineering*, Falmouth, Publ. Elsevier Science Ltd., Oxford, Inglaterra, v. 16, n. 11, s. 1, p. 1285 – 1289, 2003.

SILVA, A. T. Tratamento de minérios. Belo Horizonte, 1973. UFMG.

SMRCOK, L.; GYEPESOVA, D.; CHMIELOVA, M. New X-ray Rietveld refinement of kaolinite from Keokuk. *Crystal Research and Technology*, Iowa, v. 25, p. 105-110, 1990.

SOMASUNDARAN, P; KULKARNI, R. D. Kinetics of Oleate Adsorption at the Liquid/Air Interface and its Role in Hematite Flotation. *Advances in Interfacial Phenomena of Particulate/Solution/Gas Systems*, AIChE Symposium, v. 71, n. 150, 1975, p. 124-133.

SOMASUNDARAN, P; KULKARNI, R. D. Effects of reagentizing temperature and ionic strength and their interactions in Hematite Flotation. *AIME Transactions*, Englewood, v. 262, p. 120-125, 1977.

SOMASUNDARAN, P. The role of ionomolecular surfactant complexes in flotation. *International Journal of Mineral Processing*, Amsterdam, v. 3, p. 35-40, 1976.

SOMASUNDARAN, P; RAMACHANDRAN, R. Surfactants in flotation. In: *Surfactants in chemicals*, New York: Marcel Dekker, v.28, 1988, p.195-235.

SONG, S.; VALDIVIESO, A. L.; LU, S.; OUYANG, J. Selective Dispersion in a Diaspore-Rutile Suspension by Sodium Fluorosilicate. *Powder Technology*. Elsevier Science B.V. v. 123. México, p. 178-184, 2002.

TSENG, W. J.; WU, P.S. Effect of sodium dodecyl sulfate on stability of gibbsite platelet stabilized emulsion foams. *Ceramics International*, Amsterdam, v. 38, p. 2711-2718, 2012.

VALADÃO, G. E. S.; MONTENEGRO, L. C. M.; GALERY, R. Balanço de materiais. In: VALADÃO, G. E. S.; ARAUJO, A. C. (Org.). *Introdução ao tratamento de minérios*. Belo Horizonte: Editora UFMG, 2012, 1ª reimpressão, 234p.

VALE, GADMF. Documento interno da Vale: Relatório Final de FEL3 do Projeto Apolo. 2009.

VASCONCELOS COSTA, A. G.; BRESSAN, J.; SABARENSE, C. M. Ácidos Graxos Trans: Alimentos e Efeitos na Saúde. *ALAN*, Caracas, v. 56, n. 1, 2006.

WADSWORTH, M. E. Acid and Base adsorption on solids from aqueous solutions of strong *electrolytes*. 1951. 302p. Ph.D thesis, Department of Metallurgical Engineering, University of Utah.1951.

WALSH, J.; DULTZ, S. Effects of pH, Ca⁻ and SO⁴⁻concentration on surface charge and colloidal stability of goethite and hematite - consequences for the adsorption of anionic organic substances. *Clay Minerals*. Alexandria, v. 45, p. 1-13, 2010.

XIONG, Y. H.; LU, R.; DOWNS, R.T.; COSTIN, G. Goethite, alpha – FeO(OH), from single-crystal data. Acta Crystallographica Section E, *Structure Reports Online*, v. 62, p. 250-252, 2006.

ZETA METER INC. Zeta Potential: A Complete Course in 5 minutes. Staunton: Zeta-Meter, Inc., 1997, 8p.

ANEXOS

hematita, NaCl 10-3 M								
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
1,93	31,62	26,6	16	75	5760,0	5900,0		
2,93	30,50	26,6	25	100	514,0	597,0		
4,06	24,79	26,4	34	100	139,0	175,6		
5,23	19,24	26,1	33	100	126,7	143,5		
6,10	14,99	26,2	10	100	124,5	174,0		
7,34	-13,16	26,1	14	100	128,2	176,1		
8,05	-19,07	26,2	32	100	128,4	131,2		
9,00	-29,30	26,2	35	100	126,8	145,4		
10,12	-33,29	26,7	34	100	144,0	149,0		
11,27	-36,72	26,8	25	100	391,0	372,0		

Dados dos ensaios de microeletroforese (potencial zeta)

goethita, NaCl 10-3 M							
рН	ΡZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)	
2,31	34,89	28,1	22	75	2300,0	2360,0	
3,26	35,25	28,1	30	100	368,0	359,0	
4,23	39,31	28,0	35	100	158,6	163,6	
5,37	40,29	27,9	38	100	135,0	138,9	
6,16	34,80	28,1	40	100	129,5	143,5	
7,27	23,39	26,8	36	100	126,4	133,5	
8,76	-12,63	26,6	15	100	128,2	134,7	
9,28	-19,00	26,8	10	100	131,7	132,5	
9,87	-22,35	27,6	34	100	142,3	137,0	
10,81	-29,41	27,7	28	100	258,0	243,0	
11,72	-34,49	27,8	26	75	1039,0	1043,0	

	quartzo, NaCl 10-3 M							
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
1,49	-9,94	26,2	12	75	7220,0	7340,0		
2,81	-30,33	25,6	26	100	439,0	614,0		
3,60	-40,14	26,9	36	100	177,1	172,1		
4,23	-41,54	26,9	35	100	137,7	166,0		
5,23	-43,41	25,8	34	100	126,1	156,1		
6,09	-46,25	26,8	36	100	125,2	148,4		
6,75	-46,43	26,7	38	100	120,4	123,0		
7,79	-48,86	26,7	40	100	130,3	130,4		
8,91	-49,32	26,7	39	100	141,3	148,7		
9,73	-50,08	26,5	36	100	181,6	181,2		
10,90	-51,37	26,8	32	100	285,0	294,0		

11,46 -57,32 26,8 26	75	1815,0	1851,0
----------------------	----	--------	--------

gibbsita, NaCl 10-3 M								
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
2,20	32,78	27,2	22	75	2960,0	3050,0		
2,99	40,20	27,5	33	100	663,0	740,0		
3,96	46,32	27,2	36	100	159,8	191,2		
4,65	47,56	26,1	38	100	128,8	131,5		
6,20	39,02	27,2	39	100	127,1	134,3		
7,73	28,25	27,1	37	100	129,4	140,1		
8,23	16,30	26,9	35	100	128,5	150,5		
9,60	-5,71	27,2	9	100	141,5	139,7		
10,19	-10,50	27,4	21	100	194,2	196,6		
11,15	-16,37	27,4	27	100	723,0	734,0		

	caulinita, NaCl 10-3 M							
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
2,82	13,87	23,6	26	100	779,0	753,0		
3,70	14,18	23,6	34	100	210,0	212,0		
4,49	11,89	23,6	26	100	142,4	153,4		
5,58	6,62	23,6	12	100	122,3	129,8		
6,48	-10,02	23,6	10	100	119,8	125,8		
7,57	-10,71	23,5	24	100	118,5	122,1		
8,51	-12,34	23,6	33	100	121,6	125,5		
9,74	-17,36	23,8	38	100	133,0	132,2		
10,47	-21,27	23,8	37	100	182,2	178,9		
11,48	-27,06	23,9	24	100	931,0	930,0		

	hematita, NaCl 10-3 M e oleato de sódio 5 mg/L							
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
2,15	28,87	27,5	15	75	6421,0	6542,0		
3,02	25,82	27,2	23	100	614,0	754,0		
3,69	20,31	27,1	20	100	145,0	204,7		
4,71	-17,90	27,0	16	100	133,6	143,5		
5,49	-22,71	27,2	35	100	130,5	147,9		
6,38	-20,14	27,1	36	100	130,0	154,2		
7,02	-22,82	27,2	34	100	146,5	167,0		
8,10	-32,94	27,1	32	100	156,0	180,3		
9,08	-35,89	27,2	35	100	204,0	220,5		
9,92	-38,59	27,0	35	100	280,0	290,2		
10,49	-42,30	27,3	36	100	309,0	330,0		
11,31	-49,46	27,4	28	100	475,9	491,4		

	goethita, NaCl 10-3 M e oleato de sódio 5 mg/L							
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
2,29	24,26	28,0	20	75	2436,1	2756,2		
2,93	23,90	27,8	33	100	271,7	359,0		
3,75	19,05	27,7	35	100	166,0	174,1		
4,21	15,69	27,7	25	100	137,4	139,1		
5,01	9,60	27,9	14	100	133,5	144,2		
6,09	-14,10	27,8	16	100	132,9	139,1		
6,77	-22,65	27,8	36	100	140,0	143,1		
7,71	-28,26	27,7	38	100	151,6	160,9		
8,94	-31,20	27,6	35	100	180,6	194,5		
9,72	-32,68	27,7	34	100	258,0	269,8		
10,66	-35,32	27,8	28	100	408,8	426,8		
11,64	-45,22	27,9	21	75	1044,2	1071,2		

	quartzo, NaCl 10-3 M e oleato de sódio 5 mg/L							
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)		
1,69	-13,26	26,3	10	75	8214,3	8541,3		
2,51	-29,21	26,0	28	100	645,2	670,8		
3,78	-36,26	26,1	36	100	250,3	268,0		
4,23	-38,33	25,9	34	100	142,6	169,0		
5,55	-40,66	26,0	35	100	133,2	169,3		
6,19	-42,12	26,0	38	100	130,5	157,0		
6,99	-44,60	26,0	40	100	131,5	158,2		
7,86	-43,95	26,1	40	100	133,5	163,9		
8,55	-42,66	26,0	40	100	145,6	164,0		
9,16	-43,64	26,1	41	100	186,7	199,2		
10,25	-53,86	26,1	33	100	310,7	330,2		
11,31	-55,05	26,4	24	75	2104,4	2150,4		

		gibbsita	a, NaCl 10-3 M e	e oleato d	e sódio 5 mg/L	
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)
2,01	27,56	27,6	20	75	3102,0	3209,9
2,77	25,85	27,5	30	100	721,1	824,6
3,60	24,32	27,4	36	100	159,8	204,6
4,65	17,60	27,5	37	100	134,0	144,8
5,83	8,64	27,3	10	100	130,2	135,6
6,71	-10,00	27,4	13	100	129,9	134,1
7,90	-17,65	27,4	32	100	130,4	137,9
8,66	-18,46	27,4	35	100	151,3	168,2
9,25	-21,00	27,5	35	100	158,6	174,1
10,43	-25,32	27,5	34	100	205,0	221,9
11,07	-28,06	27,6	29	75	844,7	938,4

		caulinit	a, NaCl 10-3 M e	e oleato d	e sódio 5 mg/L	
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)
2,15	15,30	23,4	20	75	804,6	875,5
2,80	13,33	23,2	33	100	273,0	292,3
3,59	12,97	23,3	34	100	151,0	158,4
4,39	10,65	23,2	8	100	131,2	136,2
5,55	-7,32	23,2	9	100	125,3	128,4
6,75	-11,65	23,2	20	100	124,1	126,6
7,82	-16,00	23,3	35	100	129,8	134,6
8,67	-18,04	23,2	36	100	138,0	138,2
9,41	-26,32	23,2	37	100	152,9	161,0
10,60	-29,15	23,3	36	100	256,0	272,0
11,37	-30,71	23,4	20	75	1002,7	1093,3

	hema	itita, Na	Cl 10-3 M e hidr	oxamato	AERO 6493 20	mg/L	
рН	PZ	T (°C)	N (medidas)	V (mV) CEI (µS/cm)		CEF(µS/cm)	
2,04	34,02	26,7	14	75	5776,0	5951,3	
3,20	27,08	26,7	28	100	525,0	602,3	
3,78	20,37	26,5	32	100	142,5	179,4	
4,61	10,85	26,5	15	100	133,5	166,0	
5,34	-14,17	26,4	12	100	131,3	152,1	
6,60	-19,14	26,5	31	100	132,5	150,3	
7,17	-22,82	26,6	33	100	133,6	145,6	
8,21	-29,66	26,6	38	100	134,5	145,8	
9,42	-32,85	26,6	36	100	139,1	152,4	
9,95	-38,18	26,5	35	100	145,9	158,6	
10,72	-39,28	26,5	36	100	168,6	180,0	
11,45	-41,60	26,6	21	100	425,8	438,6	

	goetl	hita, Na	Cl 10-3 M e hidr	oxamato	AERO 6493 20 r	mg/L	
рН	PZ	T (°C)	N (medidas)	V (mV) CEI (µS/cm)		CEF(µS/cm)	
2,15	27,66	28,0	20	75	2403,0	2495,6	
3,08	23,90	27,9	29	100	375,0	394,5	
3,82	21,82	28,0	36	100	164,3	172,2	
4,31	19,64	27,9	36	100	138,1	145,1	
5,13	13,69	28,0	38	100	133,4	142,3	
6,19	8,90	27,9	12	100	130,4	140,3	
6,89	-8,65	27,9	10	100	131,6	141,0	
7,51	-23,20	27,8	33	100	133,4	145,6	
8,68	-27,33	27,9	34	100	140,5	152,3	
9,60	-30,25	27,9	34	100	152,3	167,1	
10,62	-33,39	27,8	28	100	274,6	288,4	
11,21	-38,09	28,0	24	75	1123,1	1201,3	

	quar	tzo, Na	Cl 10-3 M e hidro	oxamato /	AERO 6493 20 r	ng/L	
рН	PZ	T (°C)	N (medidas)	V (mV) CEI (µS/cm)		CEF(µS/cm)	
1,75	-12,26	26,0	13	75	7513,0	7605,3	
2,81	-26,65	25,8	30	100	504,2	654,6	
3,69	-34,26	25,8	36	100	189,6	199,6	
4,53	-40,32	25,7	36	100	148,6	167,5	
5,35	-42,25	25,8	35	100	133,5	159,5	
6,43	-46,15	25,8	37	100	131,5	147,2	
7,52	-48,55	25,7	36	100	136,6	140,6	
8,40	-48,02	25,7	39	100	138,5	140,2	
8,99	-48,87	25,7	40	100	149,6	165,3	
9,73	-51,95	25,8	40	100	235,1	268,9	
10,51	-56,25	25,7	33	100	324,4	360,0	
11,29	-58,55	25,9	25	75	1979,3	2103,7	

	gibbs	sita, Na	Cl 10-3 M e hidro	oxamato /	AERO 6493 20 r	ng/L
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)
2,07	30,20	27,2	20	75	3058,8	3146,2
2,87	35,82	27,1	34	100	701,9	795,6
3,72	30,31	27,1	35	100	168,4	209,4
4,51	25,90	27,0	34	100	133,5	144,6
5,69	18,74	27,1	36	100	131,4	141,6
6,87	9,10	27,0	10	100	130,5	140,2
7,48	-10,07	27,0	9	100	131,5	143,2
8,90	-20,41	27,0	26	100	149,1	160,5
9,75	-19,05	27,1	35	100	156,5	167,3
10,68	-20,36	27,0	36	100	196,3	210,1
11,32	-22,02	27,2	29	100	891,6	979,9

	cauli	nita, Na	Cl 10-3 M e hidr	oxamato	AERO 6493 20 r	mg/L
рН	PZ	T (°C)	N (medidas)	V (mV)	CEI (µS/cm)	CEF(µS/cm)
2,22	15,30	23,7	21	100	845,3	904,1
2,83	15,62	23,6	33	100	232,2	240,1
3,61	13,66	23,6	34	100	156,2	159,6
4,72	8,65	23,6	10	100	132,7	134,8
5,82	-7,32	23,5	8	100	130,2	131,8
6,90	-9,17	23,5	26	100	128,5	130,3
7,80	-12,17	23,5	36	100	129,6	130,4
8,35	-16,47	23,7	38	100	138,9	142,5
9,40	-20,13	23,6	37	100	148,6	154,0
10,80	-27,68	23,6	35	100	193,6	199,8
11,50	-28,55	23,9	27	100	1115,4	1125,4

Dados dos ensaios de microflotação em tubo de Hallimond

Sistema: oleato de sódio

Dados principais

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Hematita	oleato de	5	Flotado	1,0905	0,0475	2 27	2 /1	0 9962
Hematica	sódio	5	Afundado	1,9806	0,935	2,21	2,41	0,5502
Homotito	oleato de	E	Flotado	1,1636	0,1272	2 11	2 71	0.0062
петнаціа	sódio	J	Afundado	1,9209	0,8591	5,11	5,21	0,9903
Homotito	oleato de	E	Flotado	1,9208	0,4166	4.05	4.40	0.0040
пешаціа	sódio	5	Afundado	2,0721	0,5659	4,05	4,40	0,9949
Homotito	oleato de	F	Flotado	1,2615	0,1917	4.60	Г 11	0.0046
пешаціа	sódio	5	Afundado	1,8716	0,828	4,09	5,11	0,9940
Homotito	oleato de	F	Flotado	1,15	0,1469	6.01	6.00	0.0071
пешаціа	sódio	5	Afundado	1,9009	0,8497	0,01	0,98	0,9971
Homotito	oleato de	F	Flotado	1,7604	0,7024	7.00	6 92	0.0091
пешаціа	sódio	5	Afundado	1,3674	0,302	7,00	0,65	0,9961
Homotito	oleato de	F	Flotado	1,7712	0,7287	9.65	7 05	0.0069
пешаціа	sódio	5	Afundado	1,3198	0,2574	0,05	7,65	0,9908
Homotito	oleato de	F	Flotado	1,9327	0,8555	0.12	0.01	0.0071
петтаціа	sódio	Э	Afundado	1,2137	0,1489	9,13	8,21	0,9971
Homotito	oleato de	F	Flotado	1,5268	0,4624	10.14	0.02	0.0061
nematila	sódio	5	Afundado	1,5572	0,5104	10,14	3,33	0,9901
Homotito	oleato de	E	Flotado	1,1402	0,0873	11.07	11 00	0.005
nematila	sódio	5	Afundado	1,9732	0,9178	11,07	11,08	0,995

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Goothita	Goethita oleato de	5	Flotado	1,364	0,324	2 27	7 22	0.0046
Guetinita	sódio	5	Afundado	1,6929	0,6602	2,27	2,35	0,9940
olea	oleato de	5 -	Flotado	1,5512	0,5282	2 11	2 17	0.0062
Goetinita	sódio		Afundado	1,5172	0,4612	5,11	5,17	0,9962
Coathita	oleato de	F	Flotado	2,2745	0,7857	4.05	1 12	0 0092
Goetinita	sódio	5	Afundado	1,7338	0,1973	4,05	4,42	0,9982
Goothita	oleato de	E	Flotado	1,8987	0,8467	4.60	E 02	0 0002
Goethita	sódio	5	Afundado	1,2243	0,176	4,09	3,02	0,9992
Coothita	oleato de	F	Flotado	1,7831	0,7309	6.01	6 60	0.000
Guetinita	sódio	5	Afundado	1,3316	0,2676	0,01	0,09	0,996

Coathita	oleato de		Flotado	1,9702	0,9027	7.00	C 01	0 9944
Goethita	sódio	5	Afundado	1,1756	0,1058	7,00	0,81	0,9944
Goothita	oleato de	E	Flotado	1,951	0,9109	9 6E	7 72	0 0077
Guetinita	sódio	5	Afundado	1,1252	0,0769	8,05	1,12	0,9977
Coathita	oleato de	F	Flotado	1,8449	0,7866	0.12	0 10	0 0092
Goethita	sódio	5	Afundado	1,30273	0,22583	9,15	0,40	0,9962
Goothita	oleato de	E	Flotado	1,3777	0,3367	10 14	0.00	0.0011
Guetinita	sódio	5	Afundado	1,7011	0,6351	10,14	9,90	0,9911
Coathita	oleato de	F	Flotado	1,4054	0,3539	11 07	11 OF	0 002
Goethita	sódio	5	Afundado	1,6988	0,6553	11,07	11,05	0,992

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Quartzo	oleato de	5	Flotado	1,1274	0,0707	2 27	2 36	0 997
Quartzo	sódio	3	Afundado	1,9677	0,9224	2,27	2,30	0,337
Quartzo	oleato de	F	Flotado	1,1093	0,0749	2 1 1	2 1 7	0.0057
Quartzo	sódio	J	Afundado	1,9996	0,9203	3,11	3,17	0,9937
Quartzo	oleato de	F	Flotado	1,5681	0,047	4.05	4 20	0 00 00
Quartzo	sódio	5	Afundado	2,4872	0,9457	4,05	4,59	0,9969
Quartzo	oleato de	Б	Flotado	1,1421	0,0666	1 60	5.08	0.005/
Quartzo	sódio		Afundado	2,0141	0,9591	4,09	3,08	0,9934
Ouertee oleato	oleato de	F	Flotado	1,0935	1,1065	6.02	E 00	1 0067
Quartzo	sódio	5	Afundado	2,0235	2,0641	0,03	5,55	1,0007
Quartzo	oleato de	E	Flotado	1,1186	0,0737	7 00	6 70	0 0092
Quartzo	sódio	5	Afundado	1,9771	0,9458	7,00	0,79	0,9965
Quartzo	oleato de	E	Flotado	1,1916	0,1154	0 C E	8 02	0.0052
Quartzo	sódio	5	Afundado	1,954	0,889	8,05	8,05	0,9955
Quartzo	oleato de	F	Flotado	1,1874	0,1575	0.12	0 20	0.0052
Quartzo	sódio	J	Afundado	1,9019	0,855	9,13	8,20	0,9933
Quartzo de sódio	oleato de	F	Flotado	1,1063	0,0826	10.14	0.91	0.0062
	sódio	Э	Afundado	1,9328	0,9032	10,14	9,01	0,9902
Quartza	oleato de	E	Flotado	1,1636	0,1262	11.07	11 00	1 0004
Quart20	sódio	Э	Afundado	1,9696	0,9032	11,07	11,08	1,0094

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Gibbsita	oleato de	5 -	Flotado	1,2246	0,1555	2,27	2,42	0.0060
	sódio		Afundado	1,8563	0,8295			0,5909
Gibbsita	oleato de	F	Flotado	1,3617	0,3236	3,11	3,16	0.002
	sódio	5	Afundado	1,7325	0,663			0,993

Gibboita	oleato de	5	Flotado	2,2727	0,7752	4.05	1 1 2	0 0022
Gibbsita	sódio		Afundado	1,709	0,2006	4,05	4,42	0,9952
Gibboita	oleato de	E	Flotado	1,9036	0,8566	1.60	E 06	0.0068
GIDDSILA	sódio	C	Afundado	1,2267	0,1621	4,09	3,00	0,9908
Gibboita	oleato de	E	Flotado	1,7974	0,7594	6.01	6.64	0.007
Gibbsita	sódio	5	Afundado	1,263	0,2317	0,01	0,04	0,997
Cibboita	oleato de	5 -	Flotado	1,9893	0,9284	7.00	6.00	0 00 00
Gibbsita	sódio		Afundado	1,1352	0,0829	7,00	0,90	0,9969
Cibboita	oleato de	5	Flotado	1,9093	0,8468	9.65	7,96	0 0077
GIDDSILA	sódio		Afundado	1,2046	0,1432	0,05		0,9977
Cibboita	oleato de	_	Flotado	1,8897	0,8353	0.12	0 0 0	0.0072
GIDDSILA	sódio	Э	Afundado	1,2449	0,1743	9,13	8,83	0,9973
Cibboita	oleato de	F	Flotado	1,7716	0,7362	10.14	0.07	0.0004
GIDDSITA	sódio 5	Э	Afundado	1,3267	0,2342	10,14	9,97	0,9994
Cibboita	oleato de	leato de	Flotado	1,7484	0,6781	11.07	11.00	0.0050
GIDDSILA	sódio	5	Afundado	1,3619	0,3307	11,07	11,09	0,9958

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Caulinita	oleato de	5	Flotado	2,1628	0,052	7 28	2 5 2	0.0026
Caulinita	sódio	J	Afundado	3,0747	0,9081	2,30	2,52	0,9920
Caulinita	oleato de	5	Flotado	2,1855	0,0469	2 05	3 03	0 0064
Cauiinita	sódio	5	Afundado	3,074	0,9142	2,95	3,03	0,9904
Caulinita	oleato de	F	Flotado	2,283	0,0379	1 02	1 1 2	0 0022
Cauiinita	sódio	J	Afundado	3,0738	0,9071	4,05	4,15	0,9922
Caulinita	Caulinita oleato de sódio	E	Flotado	2,2775	0,0443	4.06	6.02	0.0021
Cauimita		5	Afundado	3,079	0,9098	4,90	0,05	0,9951
Caulinita	oleato de	5	Flotado	2,2824	0,0462	5.02	5 07	0 0010
Cauiinita	sódio		Afundado	3,0769	0,885	5,55	5,57	0,9919
Caulinita	oleato de	5	Flotado	2,1619	0,0028	6.05	6 08	0.0861
Cauiinita	sódio		Afundado	3,0694	0,9429	0,95	0,98	0,9801
Caulinita	oleato de	5	Flotado	2,1389	0,0012	8 72	8 00	0 002
Cauimita	sódio	J	Afundado	3,0921	0,9574	0,25	8,00	0,992
Caulinita	oleato de	5	Flotado	2,1878	0,0189	0.25	8 30	0 0821
Cauiinita	sódio	5	Afundado	3,0667	0,9302	9,23	8,30	0,9821
Caulinita	oleato de	F	Flotado	2,2554	0,0901	10.12	10 11	0.0826
Cauinita	sódio	J	Afundado	2,978	0,8436	10,12	10,11	0,9830
Cauliaita	oleato de sódio	ito de 💡	Flotado	2,2281	0,0778	11 15	11 11	0.0025
Cauimita		J	Afundado	2,949	0,8109	11,13	11,11	0,5055

Oleato de sódio

Parâmetro estudado: concentração do coletor

	hematita, oleato de sódio 1 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Hematita	oleato de	1	Flotado	1,4277	0,0115	4 00	3 67	1 0052				
nematita	sódio	1	Afundado	2,3886	0,9519	4,00	3,07	1,0052				
Homotita	oleato de	1	Flotado	1,4818	0,0582	5 10	4 OF	1 0002				
пешаціа	sódio	dio 1	Afundado	2,3835	0,9586	5,10	4,95	1,0005				
Homotito	oleato de sódio	1	Flotado	1,5097	0,0765	6 10	5 7/	0.0021				
петлаціа		1	Afundado	2,348	0,938	6,10	5,74	0,9921				
Homotito	oleato de	oleato de 1 sódio	Flotado	1,5503	0,1504	7 00	6.91	0,9981				
петлаціа	sódio		Afundado	2,2524	0,8462	7,00	0,81					
llomatita	oleato de	1	Flotado	1,4277	0,0115	0.10	7 00	0.0025				
нетаціа	sódio	T	Afundado	2,3886	0,9519	8,10	7,80	0,9935				
llomatita	oleato de	1	Flotado	1,4818	0,0582	0.01	7.00	1 0004				
Hematita	sódio	T	Afundado	2,3835	0,9586	8,91	7,69	1,0004				
Hematita olea	oleato de sódio	leato de	Flotado	1,5097	0,0765	10 12	0.04					
		sódio	sódio	sódio	sódio	sódio	Ţ	Afundado	2,348	0,938	10,12	9,94

	goethita, oleato de sódio 1 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Goothita	oleato de	1	Flotado	1,5761	0,1702	A 1A	2 76	0 9921				
Guetinita	sódio	T	Afundado	2,2245	0,7973	4,14	5,70	0,9921				
Coathita	oleato de	1	Flotado	2,1747	0,7234	E 12	4 OF	0 0005				
Goetinita	sódio	T	Afundado	1,7446	0,3282	5,15	4,95	0,9905				
Coathita	oleato de	1	Flotado	1,9968	0,5788	6.02	г op	1.0056				
Goethita	sódio	L	Afundado	1,8548	0,4467	0,02	3,82	1,0050				
Coathita	oleato de	1	Flotado	2,218	0,8014	7.05	7.01	0,9987				
Goethita	sódio		Afundado	1,626	0,2183	7,05	7,01					
Caathita	oleato de	1	Flotado	1,5761	0,1702	0.22	0.10	0.0005				
Goethita	sódio	T	Afundado	2,2245	0,7973	8,33	8,12	0,9965				
Caathita	oleato de	1	Flotado	2,1747	0,7234	0.01	0.00	0.0001				
Goethita	sódio	1	Afundado	1,7446	0,3282	8,91	8,60	0,9991				
Carlett	oleato de		Flotado	1,9968	0,5788	10.10	9,85	1 0004				
Guethita	sódio	L	Afundado	1,8548	0,4467	10,19		1,0004				

			quartzo, olea	ato de sódio 1 m	g/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Quartzo	oleato de	leato de 1	Flotado	1,4597	0,0281	4.05	3 65	1,0054
Quartzo	sódio	Ĩ	Afundado	2,3579	0,9381	7,05	3,05	
Quartzo	oleato de	1	Flotado	1,45	0,0677	F 10	1 90	0.0064
Quartzo	sódio	L	Afundado	2,3397	0,9528	3,10	4,90	0,9904
Quartza	oleato de	1	Flotado	1,4838	0,0701	6 70	6.00	1 00 4 7
Quartzo	sódio	, 1	Afundado	2,3721	0,9476	0,70	0,00	1,0047
Quartzo	oleato de	leato de sódio 1	Flotado	1,4423	0,0571	7 00	6 66	1,0057
Quartzo	sódio		Afundado	2,4109	0,9666	7,00	0,00	
Quartzo	oleato de	1	Flotado	1,4597	0,0281	0 10	7 62	0 0001
Quartzo	sódio	T	Afundado	2,3579	0,9381	8,10	7,02	0,9991
Quartza	oleato de	1	Flotado	1,45	0,0677	0.20	0.10	1 00 4 1
Quartzo	sódio	1	Afundado	2,3397	0,9528	9,20	9,10	1,0041
	oleato de		Flotado	1,4838	0,0701	10.00	9,68	0.0002
Quartzo	sódio	Ţ	Afundado	2,3721	0,9476	10,08		0,9903

	gibbsita, oleato de sódio 1 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Gibbsita	oleato de	1	Flotado	1,4809	0,144239	4 20	3 74	1 0012				
Gibbblita	sódio	-	Afundado	2,2621	0,8446	4,20	5,74	1,0012				
Gibboita	oleato de	1	Flotado	1,5764	0,1823	F 00	F 00	1 0005				
Gibbsita	sódio	T	Afundado	2,2486	0,8364	3,09	3,00	1,0005				
	oleato de	1	Flotado	1,5931	0,1636	6.02	F 01	0.0092				
GIDDSILa	sódio		Afundado	2,2618	0,8555	0,03	5,51	0,9983				
Cibboita	oleato de	1	Flotado	1,7129	0,3217	7.00	6.90	0 0000				
Gibbsita	sódio	T	Afundado	2,142	0,7024	7,00	0,80	0,9909				
Cibboita	oleato de	1	Flotado	1,5764	0,1823	0 10	7 0 2	0 0022				
GIDDSILa	sódio	T	Afundado	2,2486	0,8364	8,10	7,92	0,9932				
Cibboito	oleato de	1	Flotado	1,5931	0,1636	0.14	0.00	1				
Gibbsita	sódio	1	Afundado	2,2618	0,8555	9,14	9,00	L				
	oleato de	1	Flotado	1,7129	0,3217	10 10	0.66	1 0024				
GIDDSIL	sódio	L L	Afundado	2,142	0,7024	10,10	9,00	1,0034				

	caulinita, oleato de sódio 1 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Caulinita	oleato de	1	Flotado	2,1687	0,0153	4 26	3 96	0.9922				
Caumita	sódio	T	Afundado	3,0879	0,9462	7,20	3,50	0,3322				
Caulinita	oleato de	1	Flotado	2,1392	0,0141	E 16	1 70	0.0021				
Cauimita	sódio	T	Afundado	3,115	0,9404	5,10	4,70	0,9951				
Coulinito	oleato de sódio	oleato de	1	Flotado	2,1276	0,0114	Г 10	4.09	0.0010			
Caulinita		L	Afundado	3,0978	0,9404	5,18	4,98	0,9919				
Coulinito	oleato de	eato de 1 sódio	Flotado	2,1507	0,0148	7 1 5	C 72	0,9861				
Caulinita	sódio		Afundado	3,1101	0,9387	7,15	6,73					
Coulinito	oleato de		Flotado	2,1687	0,0153	0.70	7.02	0.002				
Cauimita	sódio	T	Afundado	3,0879	0,9462	0,20	7,92	0,992				
Coulinite	oleato de	1	Flotado	2,1392	0,0141	0.00	0.75	0.0020				
Caulinita	sódio	T	Afundado	3,115	0,9404	8,89	8,75	0,9836				
Caulinita	oleato de	to de	Flotado	2,1276	0,0114	10.11	0.00	0.0020				
Cauimita	sódio	Ţ	Afundado	3,0978	0,9404	10,11	9,89	0,9830				

			hematita, ole	ato de sódio 5 m	ng/L				
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)	
Hematita	oleato de	5	Flotado	1,9208	0,4166	4.05	1 10	0,9949	
Hematica	sódio	5	Afundado	2,0721	0,5659	4,05	4,40		
Homotita	oleato de	F	Flotado 1,20	1,2615	0,1917	4.60	E 11	0.0046	
пешаціа	sódio	sódio	Afundado	1,8716	0,828	4,09	5,11	0,9940	
Homotito	oleato de sódio	oleato de	ito de	Flotado	1,15	0,1469	6.01	6.00	0.0071
петлаціа		5	Afundado	1,9009	0,8497	0,01	0,98	0,9971	
Homotito	oleato de	leato de	Flotado	1,7604	0,7024	7.00	6.02	0,9981	
пешаціа	sódio	5	Afundado	1,3674	0,302	7,00	0,05		
Homotito	oleato de	F	Flotado	1,7712	0,7287	9.65	7 05	0.0069	
нетаціа	sódio	5	Afundado	1,3198	0,2574	8,65	7,85	0,9968	
llomatita	oleato de	F	Flotado	1,9327	0,8555	0.12	0.21	0.0071	
Hematita	sódio	5	Afundado	1,2137	0,1489	9,13	8,21	0,9971	
Homotito	oleato de	Г	Flotado	1,5268	0,4624	10.14	0.02	0.0004	
петпаціца	sódio	Э	Afundado	1,5572	0,5104	10,14	9,93	0,9961	

			goethita, ole	ato de sódio 5 m	ng/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Goethita	oleato de	5	Flotado	2,2745	0,7857	4.05	4 4 2	0.9982
Goetinta	sódio	J	Afundado	1,7338	0,1973	4,00	7,72	0,5502
Goothita	oleato de	E	Flotado	1,8987	0,8467	1.60	5.02	0 0002
Guetinita	sódio	0	Afundado	1,2243	0,176	4,09	3,02	0,9992
Goothita 0	oleato de	F	Flotado	1,7831	0,7309	6.01	6.60	0.009
Goethita	sódio	io	Afundado	1,3316	0,2676	0,01	0,09	0,998
Coathita	oleato de	ato de 5 ódio 5	Flotado	1,9702	0,9027	7 00	C 91	0,9944
Goethita	sódio		Afundado	1,1756	0,1058	7,00	0,81	
Coathita	oleato de	F	Flotado	1,951	0,9109	9.65	7 72	0.0077
Goethita	sódio	5	Afundado	1,1252	0,0769	8,05	1,12	0,9977
Coathita	oleato de	F	Flotado	1,8449	0,7866	0.12	0.40	0.0000
Goethita	sódio	5	Afundado	1,30273	0,22583	9,13	8,48	0,9982
Coathita	oleato de	Г	Flotado	1,3777	0,3367	10.1.1	9,90	0.0014
Goethita	sódio	5	Afundado	1,7011	0,6351	10,14		0,9911

			quartzo, olea	ato de sódio 5 m	g/L								
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)					
Quartzo	oleato de	5	Flotado	1,5681	0,047	4.05	1 30	0 0080					
Quartzo	sódio	5	Afundado	2,4872	0,9457	4,05	4,55	0,5505					
Quartzo	oleato de	E	Flotado	1,1421	0,0666	4.60	5 08	0.0054					
Quartzo	sódio	sódio	Afundado	2,0141	0,9591	4,09	3,08	0,9934					
Quartzo	oleato de	F	Flotado	1,0935	1,1065	6.02	E 00	1 0067					
Quartzo	sódio	5	Afundado	2,0235	2,0641	0,03	5,99	1,0007					
Quartza	oleato de	to de	Flotado	1,1186	0,0737	7.00	6 70	0,9983					
Quartzo	sódio	5	Afundado	1,9771	0,9458	7,00	0,79						
Quartzo	oleato de	Г	Flotado	1,1916	0,1154	9.65	0.02	0.0053					
Quartzo	sódio	5	Afundado	1,954	0,889	8,05	8,03	0,9953					
Ouertre	oleato de	F	Flotado	1,1874	0,1575	0.12	0.20	0.0052					
Quartzo	sódio	5	Afundado	1,9019	0,855	9,13	8,20	0,9953					
Ouertre	oleato de	F	Flotado	1,1063	0,0826	10.14	0.01	0.0000					
Quartzo	sódio	5	Afundado	1,9328	0,9032	10,14	9,81	0,9962					
			gibbsita, ole	ato de sódio 5 m	ng/L								
-----------	-----------	------------------------	----------------------	----------------------------------	----------------------	---------------	-------------	------------------------------------	--------	--------	------	------	--------
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)					
Gibbsita	oleato de	5	Flotado	2,2727	0,7752	4.05	1 12	0 9932					
CIDDSIL	sódio	5	Afundado	1,709	0,2006	4,05	4,42	0,5552					
Gibboita	oleato de	E	Flotado	1,9036	0,8566	1.60	5.06	0.0068					
Gibbsita	sódio	5	Afundado	1,2267	0,1621	4,09	3,00	0,9908					
Cibboita	oleato de	5 -	Flotado	1,7974	0,7594	6.01	6.64	0.007					
GIDDSILA	sódio	5	Afundado	1,263	0,2317	0,01	0,04	0,997					
Cibboito	oleato de	F	Flotado	1,9893	0,9284	7.00	6.00	0.0090					
GIDDSILa	sódio	sódio	sódio	sódio	sódio	sódio	5	Afundado	1,1352	0,0829	7,00	6,90	0,9989
Cibboito	oleato de	F	Flotado	1,9093	0,8468	о. с г	7.00	0.0077					
GIDDSILa	sódio	5	Afundado	1,2046	0,1432	8,65	7,96	0,9977					
Cilebrite	oleato de	F	Flotado	1,8897	0,8353	0.12	0.02	0.0070					
Gibbsita	sódio	5	Afundado	1,2449	0,1743	9,13	8,83	0,9973					
Gibbsita	oleato de	F	Flotado	1,7716	0,7362	10.14	0.07	0.0004					
	sódio	5	Afundado	1,3267	0,2342	10,14	9,97	0,9994					

			caulinita, olea	ato de sódio 5 m	g/L					
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)		
Caulinita	oleato de	Б	Flotado	2,283	0,0379	1 02	/ 12	0 0022		
Cauimita	sódio	5	Afundado	3,0738	0,9071	4,03	4,13	0,9922		
Caulinita	oleato de	E	Flotado	2,2775	0,0443	4.06	6.02	0.0021		
Caulifild	sódio	5	Afundado	3,079	0,9098	4,90	0,05	0,9951		
Caulinita	Caulinita	oleato de	F	Flotado	2,2824	0,0462	F 02	F 07	0.0010	
Cauimita	sódio	5	Afundado	3,0769	0,885	5,93	5,97	0,9919		
Coulinito	oleato de	_	Flotado	2,1619	0,0028	6.05	6.00	0.0961		
Cauimita	sódio	sódio	sódio	5	Afundado	3,0694	0,9429	0,95	0,98	0,9801
Coulinito	oleato de	F	Flotado	2,1389	0,0012	0 7 2	8.00	0.002		
Cauimita	sódio	Э	Afundado	3,0921	0,9574	8,23	8,00	0,992		
Coulinite	oleato de	F	Flotado	2,1878	0,0189	0.25	0.20	0.0001		
Caulinita	sódio	5	Afundado	3,0667	0,9302	9,25	8,30	0,9821		
Caulinita	oleato de	г	Flotado	2,2554	0,0901	10.12	10.11	0.0920		
	sódio	sódio	5	Afundado	2,978	0,8436	10,12	10,11	0,9830	

			hematita, olea	ato de sódio 20 r	ng/L				
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)	
Hematita	oleato de	20	Flotado	2,3711	0,9322	4 17	3 87	1 0052	
	sódio	20	Afundado	1,4666	0,0341	7,17	3,07	1,0052	
Homatita	oleato de	20	Flotado	2,0272	0,6416	E 24	4.06	1 0002	
пентаціа	sódio	20	Afundado	1,7439	0,3171	3,34	4,90	1,0005	
	Hematita	oleato de	20	Flotado	1,976	0,5727	6 10	F 00	0.0021
петлаціа	sódio	20	Afundado	1,7987	0,3952	0,19	5,99	0,9921	
llomotito	oleato de	20	Flotado	2,3191	0,8885	7.50	7 1 4	0.0001	
нетаціа	sódio	20	Afundado	1,4619	0,0673	7,50	7,14	0,9981	
llomotito	oleato de	20	Flotado	2,3711	0,9322	0.22	7.00	0.0025	
нетаціа	sódio	20	Afundado	1,4666	0,0341	8,22	7,80	0,9935	
llomotito	oleato de	20	Flotado	2,0272	0,6416	0.02	0.00	1 0004	
Hematita	sódio	20	Afundado	1,7439	0,3171	9,03	8,89	1,0004	
Hematita	oleato de	20	Flotado	1,976	0,5727	10.21	0.00	1.05.4	
	sódio	20	Afundado	1,7987	0,3952	10,21	9,99	1,054	

			goethita, olea	ato de sódio 20 r	ng/L				
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)	
Goethita	oleato de	20	Flotado	2,3673	0,9459	/ 13	3 83	0 9921	
Goctinita	sódio	20	Afundado	1,428	0,0187	7,15	5,05	0,5521	
Goothita	oleato de	20	Flotado	3,0056	0,8228	E 20	4.01	0.0005	
Goethita	sódio	20	Afundado	2,3024	0,1129	5,29	4,91	0,9905	
0	Goethita	oleato de	20	Flotado	2,2552	0,8323	6 17	F 07	1.0056
Goethita	sódio	20	Afundado	1,5392	0,1249	0,17	5,97	1,0050	
Coathita	oleato de	20	Flotado	2,2947	0,885	7 1 2	6 71	0.0097	
Guernita	sódio	20	Afundado	1,4822	0,0801	7,15	0,71	0,9987	
Coathita	oleato de	20	Flotado	2,3673	0,9459	7 62	7 77	0.0065	
Goethita	sódio	20	Afundado	1,428	0,0187	7,03	7,27	0,9905	
Caathita	oleato de	20	Flotado	3,0056	0,8228	0.00	0.00	0.0001	
Goethita	sódio	20	Afundado	2,3024	0,1129	8,83	8,09	0,9991	
Goethita C	oleato de	20	Flotado	2,2552	0,8323	0.06	0.74	1 0004	
	sódio	20	Afundado	1,5392	0,1249	9,90	9,74	1,0004	

			quartzo, olea	to de sódio 20 m	ng/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Quartzo	oleato de	20	Flotado	1,5276	0,1143	1 15	3 85	1 0054
Quartzo	sódio	20	Afundado	2,2751	0,8525	7,13	3,05	1,0054
Quartzo	oleato de	20	Flotado	1,4995	0,0844	E 21	4.02	0.0064
Quartzo	sódio	20	Afundado	2,3001	0,8851	3,31	4,95	0,9904
Quartza	oleato de	^{de} 20 -	Flotado	1,4497	0,0529	6 10	F 00	1 00 4 7
Quartzo	sódio		Afundado	2,3354	0,9238	0,10	5,90	1,0047
Quartzo	oleato de	20	Flotado	1,5391	0,0977	7.69	7.20	1 0057
Quartzo	sódio	20	Afundado	2,2678	0,8727	7,08	7,20	1,0057
Quartza	oleato de	20	Flotado	1,5276	0,1143	0.22	7.06	0.0001
Quartzo	sódio	20	Afundado	2,2751	0,8525	8,32	7,90	0,9991
Ouertre	oleato de	20	Flotado	1,4995	0,0844	0.00	0.04	1 00 4 1
Quartzo	sódio	20	Afundado	2,3001	0,8851	9,08	8,94	1,0041
Quartzo C	oleato de	20	Flotado	1,4497	0,0529	10.10	0.07	0.0002
	sódio	20	Afundado	2,3354	0,9238	10,19	9,97	0,9903

			gibbsita, olea	nto de sódio 20 n	ng/L			
Amostra	ra Reagente Concentraçã (mg/L)		Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Gibbsita	oleato de	20	Flotado	2,2747	0,8585	4 20	3 90	1 0012
Gibbblita	sódio	20	Afundado	1,5351	0,1031	4,20	3,50	1,0012
Gibboita	oleato de	20	Flotado	2,3169	0,8974	E 2E	4.07	1 0005
Gibbsita	sódio	20	Afundado	1,4877	0,0659	3,33	4,97	1,0005
Cibboito 0	oleato de	20 —	Flotado	2,2232	0,8275	6 12	F 02	0.0092
GIDDSILA	sódio		Afundado	1,5731	0,1411	0,12	5,92	0,9983
Cibboita	oleato de	20	Flotado	2,2883	0,8699	7 62	7 21	0.0000
GIDDSILA	sódio	20	Afundado	1,4831	0,0951	7,03	7,21	0,9909
Cibboita	oleato de	20	Flotado	2,2747	0,8585	7.06	7.60	0 0022
Gibbsita	sódio	20	Afundado	1,5351	0,1031	7,90	7,00	0,9952
Cibboito	oleato de	20	Flotado	2,3169	0,8974	0.20	0.14	1
Gibbsita	sódio	20	Afundado	1,4877	0,0659	9,28	9,14	L
Gibbsita	oleato de	20	Flotado	2,2232	0,8275	10.25	10.02	1 0024
	sódio	20	Afundado	1,5731	0,1411	10,25	10,03	1,0034

			caulinita, olea	to de sódio 20 n	ng/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)								
Caulinita	oleato de	20	Flotado	2,1687	0,0153	1 22	3 0 2	0 0022								
Cauimita	sódio	20	Afundado	3,0879	0,9462	4,22	3,92	0,9922								
Caulinita	oleato de	20	Flotado	2,1392	0,0141	1 76	2 00	0 0021								
Caulifild	sódio	20	Afundado	3,115	0,9404	4,20	5,00	0,9951								
	Caulinita	oleato de	20	Flotado	2,1276	0,0114	E 02	E 72	0.0010							
Cauimita	sódio	20	Afundado	3,0978	0,9404	5,95	5,75	0,9919								
Coulinito	oleato de	20	Flotado	2,1507	0,0148	6.90	6 47	0.0961								
Cauimita	sódio	sódio	sódio	sódio	sódio	sódio	sódio	sódio	sódio	20	Afundado	3,1101	0,9387	0,89	0,47	0,9801
Coulinito	oleato de	20	Flotado	2,1687	0,0153	0 10	7 74	0.002								
Cauimita	sódio	20	Afundado	3,0879	0,9462	8,10	7,74	0,992								
Coulinito	oleato de	20	Flotado	2,1392	0,0141	0.10	0.04	0.0000								
Caulinita	sódio	20	Afundado	3,115	0,9404	9,18	9,04	0,9830								
Caulinita	oleato de	20	Flotado	2,1276	0,0114	10.25	10.02	0.0020								
	sódio	20	Afundado	3,0978	0,9404	10,25	10,03	0,9836								

Oleato de sódio

Parâmetro estudado: reagentes depressores

	hem	atita, oleato d	e sódio 5 mg/L e	e depressore	es amido, fluc	orsilicato e	Floatan		
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Hematita	oleato de	-	-	Flotado	1,9327	0,8555	9.13	8.21	0.9971
	sódio			Afundado	1,2137	0,1489	0)=0	0)==	0,007 -
Homatita	oleato de			Flotado	1,2615	0,1917	1.60	5 11	0.0046
пешаціа	sódio	-	-	Afundado	1,8716	0,828	4,09	3,11	0,9940
Homotito	oleato de	amida	10	Flotado	2,4633	0,1324	0.12	0 70	
нетатіта	sódio	annuu	10	Afundado	3,157	0,8421	9,12	0,79	0,9938
Homatita	oleato de	amido	10	Flotado	2,3166	-0,0051	4 90	E 16	0 0002
пешаціа	sódio	annuu	10	Afundado	3,3207	0,9837	4,69	3,10	0,9992
Homatita	oleato de	fluorcilicato	10	Flotado	2,9022	0,5954	0.06	7 02	0 0906
пешаціа	sódio	nuorsincato	10	Afundado	2,6958	0,3649	9,00	7,05	0,9890
Homatita	oleato de	fluorsilicato	10	Flotado	2,5638	0,2267	1 02	E 21	0 0020
пешаціа	sódio	nuorsincato	10	Afundado	3,0696	0,7902	4,65	3,51	0,9859
Homatita	oleato de	Floatan	10	Flotado	2,4754	0,2114	0.19	8 30	0 0806
Hematita	sódio	Tioatan	10	Afundado	3,0641	0,7169	9,10	8,39	0,9890
Hematita	oleato de	Floatan	10	Flotado	2,3367	0,0158	3 171 5		0 0850
nematila	sódio	FIUdidil	10	Afundado	3,2147	0,912	4,74	5,00	0,000

	goet	thita, oleato d	le sódio 5 mg/L	e depressore	s amido, flu	orsilicato e	e Floatar	ו	
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Goethita	oleato de	-	-	Flotado	1,8449	0,7866	9,13	8,48	0,9982
	sódio			Afundado	1,30273	0,22583	-, -	-, -	-,
Goethita	oleato de	_	_	Flotado	1,8987	0,8467	1 69	5 02	0 9992
Goetinta	sódio	_	_	Afundado	1,2243	0,176	4,05	5,02	0,3332
Goothita	oleato de	amida	10	Flotado	2,4443	0,094	0.12	0 1 1	0.0057
Goethita	sódio	annuo	10	Afundado	3,1944	0,8872	9,12	0,44	0,9937
Coothita	oleato de	amida	10	Flotado	2,3322	0,0045	4.90	F 21	0.0069
Goethita	sódio	amuuu	10	Afundado	3,2679	0,9759	4,89	5,21	0,9968
Coothita	oleato de	fluorcilicato	10	Flotado	2,8075	0,4645	0.06	0 / E	0.0091
Guetinita	sódio	nuorsincato	10	Afundado	2,8352	0,5049	9,00	0,45	0,9961
Coothita	oleato de	fluorcilicato	10	Flotado	2,5638	0,2267	1 00	E 21	0 0020
Goethita	sódio	nuorsincato	10	Afundado	3,0696	0,7902	4,65	5,51	0,9659
Coothita	oleato de	Floaton	10	Flotado	2,414	0,1012	0.19	0 / 1	0.0940
Goethita	sódio	FIOALAII	10	Afundado	3,1214	0,8292	9,18	8,41	0,9840
Coothita	oleato de	Floatan	10	Flotado	2,3545	0,0541	1 71	E 00	1 0000
Guellila	sódio	FIUdldII	10	Afundado	3,1988	0,8892	4,74	5,09	1,0000

	quartzo, oleato de sódio 5 mg/L e depressores amido, fluorsilicato e Floatan											
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)			
Quartzo	oleato de	-	-	Flotado	1,1874	0,1575	9.13	8.20	0.9953			
Q	sódio			Afundado	1,9019	0,855	0)=0	0,20	0,0000			
Quartzo	oleato de			Flotado	1,1421	0,0666	4.60	E 00	0.0054			
Quartzo	sódio	-	-	Afundado	2,0141	0,9591	4,09	3,08	0,9934			
Quartzo	oleato de	amido	10	Flotado	2,3519	0,0531	0.12	8 07	0.0059			
Quartzo	sódio	annuo	10	Afundado	3,2917	0,9245	9,12	0,97	0,9958			
Quartzo	oleato de	amido	10	Flotado	2,3446	0,0589	1 90	E 16	0 0077			
Quartzo	sódio	annuo	10	Afundado	3,2091	0,9199	4,69	5,40	0,9977			
Quartzo	oleato de	fluorsilicato	10	Flotado	2,3652	0,0775	0.06	0 72	0 0000			
Quartzo	sódio	nuorsincato	10	Afundado	3,2124	0,8885	9,00	0,75	0,9909			
Quartzo	oleato de	fluorcilicato	10	Flotado	2,4262	0,0946	1 00	E 22	0.0040			
Quartzo	sódio	nuorsincato	10	Afundado	3,1719	0,9123	4,05	5,25	0,9949			
Quartzo	oleato de	Floatan	10	Flotado	2,346	0,0506	0.10	0 75	0.0954			
Quartzo	sódio	FIOAtan	10	Afundado	3,2349	0,8899	9,10	0,75	0,9634			
Quartzo	oleato de	Elector	10	Flotado	2,3468	0,0525	4 74	E 00	0.0010			
Quartzo	sódio F	FIUdldII	10	Afundado	3,1788	0,8839	4,74	5,09	0,9910			

	gibb	osita, oleato d	e sódio 5 mg/L e	e depressore	s amido, flu	orsilicato e	Floatan		
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Gibbsita	oleato de	-	-	Flotado	1,8897	0,8353	9.13	8.83	0.9973
	sódio			Afundado	1,2449	0,1743	-, -	-,	-,
Gibbsita	oleato de	_	_	Flotado	1,9036	0,8566	1 69	5.06	0 0068
Cibbsita	sódio	_	_	Afundado	1,2267	0,1621	4,05	5,00	0,5508
Gibboita	oleato de	amido	10	Flotado	2,3798	0,0963	0.12	o דס	0.0050
GIDDSITA	sódio	annuu	10	Afundado	3,2448	0,8771	9,12	0,72	0,9930
Cibboita	oleato de	amida	10	Flotado	2,3097	0,0307	4 90	E 20	0.0070
Gibbsita	sódio	annuu	10	Afundado	3,3226	0,9435	4,69	5,20	0,9970
Cibboita	oleato de	fluorcilicato	10	Flotado	2,7476	0,3457	0.06	0 60	0 0070
Gibbsita	sódio	nuorsincato	10	Afundado	2,9239	0,6179	9,00	0,00	0,9970
Cibboita	oleato de	fluorcilicato	10	Flotado	2,3467	0,0604	1 0 2	E 10	0.0026
Gibbsita	sódio	nuorsincato	10	Afundado	3,2243	0,9207	4,65	5,42	0,9850
Cibboito	oleato de	Floaton	10	Flotado	2,4033	0,0878	0.19	0.26	0 9442
GIDDSILA	sódio	FIOALAII	10	Afundado	3,0081	0,6992	9,18	8,30	0,8442
Cibboito	oleato de	Floatan	10	Flotado	2,3199	0,0476	1 71	E 1E	1 0227
GIDDSIL	sódio	FIUALAI	10	Afundado	3,2695	0,9182	4,74	5,15	1,0227

caulinita, oleato de sódio 5 mg/L e depressores amido, fluorsilicato e Floatan											
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)		
Caulinita	oleato de	-	-	Flotado	2,1878	0,0189	9.25	8.30	0.9821		
•••••	sódio			Afundado	3,0667	0,9302	0,20	0,00	0,0011		
Caulinita	oleato de			Flotado	2,2775	0,0443	4.06	6.02	0.0021		
Cauimita	sódio	-	-	Afundado	3,079	0,9098	4,96	0,03	0,9931		
Caulinita	oleato de	amido	10	Flotado	2,3446	0,0189	Q /15	Q 75	0 007/		
Caulinita	sódio	annuu	10	Afundado	3,2091	0,9302	0,45	0,25	0,9974		
Caulinita	oleato de	amido	10	Flotado	2,3652	0,0443	5.05	5 20	1 00/15		
Cauimita	sódio	annuu	10	Afundado	3,2124	0,9098	3,03	3,50	1,0043		
Caulinita	oleato de	fluorsilicato	10	Flotado	2,4262	0,0189	0 7E	0 15	0.0060		
Cauimita	sódio	nuorsincato	10	Afundado	3,1719	0,9302	0,75	0,43	0,9909		
Caulinita	oleato de	fluorsilicato	10	Flotado	2,346	0,0443	E 17	E 20	0.0001		
Cauiiiiita	sódio	Inderstillato	10	Afundado	3,2349	0,9098	5,17	5,29	0,9991		
Caulinita	oleato de	Elector	10	Flotado	2,3468	0,0189	o 17	0 72	1 0950		
Cauimita	sódio	FIUdidii	10	Afundado	3,1788	0,9302	0,47	0,25	1,0650		
Caulinita	oleato de	Eloatan	10 Flot	Flotado	2,3446	0,0443	1 08	5 26	0.005/		
Caulinita	sódio	10	Afundado	3,2091	0,9098	4,90	3,30	0,5954			

Oleato de sódio

Parâmetro estudado: temperatura

			hema	tita, oleato d	le sódio	5 mg/L			
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Hematita	oleato de	Flotado	1,2615	0,1917	1 69	5 11	29 /	29 /	0 9946
Tiematita	sódio	Afundado	1,8716	0,828	4,05	3,11	23,4	23,4	0,5540
Homotito	oleato de	Flotado	2,9427	0,7663	E 01	E 07	46.1	20.1	0.0915
пешаціа	sódio	Afundado	2,3557	0,1796	5,01	5,07	40,1	50,1	0,9815
Homotito	oleato de	Flotado	2,9517	0,7819	E OE	E 11	62.0	10 0	0.0074
пеніаціа	sódio	Afundado	2,3699	0,2075	5,05	5,11	03,9	40,8	0,9974

			goet	hita, oleato	de sódi	o 5 mg/L			
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Goethita	oleato de	Flotado	1,8987	0,8467	1 60	5.02	20.1	20.2	0 0007
Guetinita	sódio	Afundado	1,2243	0,176	4,09	3,02	29,1	29,2	0,9992
Coothita	oleato de	Flotado	3,0359	0,8655	E OE	F 1	47.1	27.0	0 0020
Goetinta	sódio	Afundado	2,277	0,0877	5,05	5,1	47,1	57,0	0,9850
Coathita	oleato de	Flotado	3,0927	0,9177				40.1	0.0025
Guethita	sódio	Afundado	2,1972	0,0532	5,05	5,05	03,4	49,1	0,9925

			quart	zo, oleato de	e sódio	5 mg/L			
Amostra	Reagente	Flotado/ Afundado	ado/ adado filtro (g) Massa amostra + filtro (g) (g) hadado (g) hadado		pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)	
Quartzo	oleato de	Flotado	1,1421	0,0666	4.60	E 00	29 E	28 G	0.0054
Quartzo	sódio	Afundado	2,0141	0,9591	4,09	3,08	28,5	28,0	0,9934
Quartzo	oleato de	Flotado	2,1365	0,003	E OG	E 10	16.6	201	0.0910
Quartzo	sódio	Afundado	3,1293	0,9466	5,00	5,19	40,0	50,1	0,9810
Quartza	oleato de	Flotado	2,1654	0,0053	F 02	F 04	CA C	40.0	0.0010
Quartzo	sódio	Afundado	3,1162	0,9612	5,02	5,04	04,0	40,8	0,9910

			gibb	sita, oleato	de sódi	o 5 mg/L			
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Gibbsita	oleato de	Flotado	1,9036	0,8566	1 69	5.06	29.7	29.8	0 9968
Cibbsita	sódio	Afundado	1,2267	0,1621	4,05	5,00	25,7	25,8	0,5508
Cibboita	oleato de	Flotado	2,6711	0,509	E 02	E 12	16.6	27.1	0 0006
Gibbsita	sódio	Afundado	2,6116	0,4407	5,02	5,15	40,0	57,1	0,9660
Cibboito	oleato de	Flotado	2,6576	0,4836	4.04	F 04	66.1	49 C	
GIDDSILA	sódio	Afundado	2,6354	0,4907	4,94	5,04	00,1	46,0	0,9885

	caulinita, oleato de sódio 5 mg/L													
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)					
Caulinita	oleato de	Flotado	2,2775	0,0443	4.06	6.02	20.2	20.2	0 0021					
Caulinita	sódio	Afundado	3,079	0,9098	4,90	6,03	29,2	29,5	0,9951					
Caulinita	oleato de	Flotado	2,155	0,0074	E OE	E 17	47.2	27.0	0 00 10					
Cauimita	sódio	Afundado	3,119	0,9488	5,05	5,17	47,5	57,0	0,9646					
Coulinito	oleato de	Flotado	2,1793	0,0084	F 02	F 01	C A F	49 C	0.0005					
Cauimita	sódio	Afundado	3,0721	0,9527	5,02	5,01	04,5	48,0	0,9905					

			hemat	ita, oleato d	le sódio	5 mg/	L		
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Homatita	oleato de	Flotado	1,9327	0,8555	0.12	0 21	20.2	20.2	0.0071
пешаціа	sódio	Afundado	1,2137	0,1489	9,15	0,21	29,3	29,2	0,9971
Uomotito	oleato de	Flotado	3,1239	0,9744	0.00	0.0	40.0	26.1	0.0006
петтаціа	sódio	Afundado	2,2323	0,0474	8,90	9,0	48,2	30,1	0,9880
Homatita	oleato de	Flotado	3,1294	0,9523	0 60	0.06	65.2	45.0	0.0945
nematita	sódio	Afundado	2,1914	0,001	0,09	9,00	03,3	45,9	0,9845

			goethi	ta, oleato d	e sódio	5 mg/	L		
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Goothita	oleato de	Flotado	1,8449	0,7866	0.12	0 10	20	20.1	0 00 9 2
Guethita	sódio	Afundado	1,30273	0,22583	9,13	0,40	29	29,1	0,9962
Goethita oleato de Flotado 3,1328 0,972 8,98 8,92 48,5 37,4 0,985									

	sódio	Afundado	2,2563	0,0461					
Coothita	oleato de	Flotado	3,1457	0,9554	0 70	0.0			0.0069
Goethita	sódio	Afundado	2,1835	0,0097	0,70	9,0	6,50	45,4	0,9908

			quartz	o, oleato de	e sódio	5 mg/l	<u> </u>		
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Quartzo	oleato de	Flotado	1,1874	0,1575	0.12	Q)	28.6	787	0 0052
Quartzo	sódio	Afundado	1,9019	0,855	9,13	0,2	28,0	20,7	0,9905
Quartza	oleato de	Flotado	2,2346	0,0632	0 70	0 70	40.2	7 7 7	1 0067
Quartzo	sódio	Afundado	3,167	0,9779	8,73	8,72	49,3	57,7	1,0067
Quartza	oleato de	Flotado	2,1998	0,0267	0 6 4	0.05	65.2		0.0004
Quartzo	sódio	Afundado	3,1145	0,9332	8,64	9,05	05,2	45,0	0,9884

	gibbsita, oleato 5 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g) 0.8353		pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Gibboita	oleato de	Flotado	1,8897	0,8353	0.12	0 00	20.9	20.6	0 0072				
Gibbsita	sódio	Afundado	1,2449	0,1743	9,15	0,05	29,0	29,0	0,9975				
Cibboita	oleato de	Flotado	3,105	0,9485	0 7E	0.2	48.0	26.2	1 0021				
Gibbsita	sódio	Afundado	2,2728	0,0885	0,75	0,5	40,9	50,5	1,0051				
Cibboito	oleato de	Flotado	3,119	0,9551	0 5 2	0.66		45.2	1 0001				
GIDDSILA	sódio	Afundado	2,2135	0,0217	8,52	8,00	6,50	45,3	1,0081				

			caulin	ita, oleato d	le sódio	5 mg/l	_		
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Caulinita	oleato de	Flotado	2,1878	0,0189	0.25	00	20.1	20	0 0 0 2 1
Cauimita	sódio	Afundado	3,0667	0,9302	9,25	0,5	29,1	29	0,9021
Caulinita	oleato de Flotado		2,2563	0,0187	9.01	0 72	19.6	201	0.0045
Cauimita	sódio	Afundado	3,1328	0,972	0,91	0,72	40,0	56,4	0,9943
Caulinita	oleato de	Flotado	2,1835	0,9554	0.01	0 OF		44.9	1 0041
Cauimita	sódio	Afundado	3,1457	0,0097	9,01	0,95	03,7	44,8	1,0041

Oleato de sódio

	hematita, oleato de sódio 5 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)					
Hematita	oleato de	Flotado	2,43	0,0611	1 97	5 1 9	1	0 00/2					
Hematica	sódio	Afundado	3,2658	0,9118	4,07	5,10	T	0,3342					
llomatita	oleato de	Flotado	1,2615	0,1917	4.60	Г 11	4	0.0046					
пешаціа	sódio	Afundado	1,8716	0,828	4,09	5,11	4	0,9940					
Homatita	oleato de	Flotado	2,9331	0,6256	4.01	E 2E	0	0.0026					
Hematita	sódio	Afundado	2,6649	0,3695	4,91	5,55	0	0,9920					

Parâmetro investigado: tempo de condicionamento

	goethita, oleato de sódio 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)				
Coathita	oleato de	Flotado	3,0003	0,7117	1 97	5 20	1	0 0001				
Guetinita	sódio	Afundado	2,5891	0,2551	4,07	5,25	Ĩ	0,9901				
Coothita	oleato de	Flotado	1,8987	0,8467	1 60	E 02	4	0 0002				
Goethita	sódio	Afundado	1,2243	0,176	4,69	5,02	4	0,9992				
Goethita	oleato de	Flotado	3,1527	0,8481	4,91	5,25	0	0.0040				
	sódio	Afundado	2,4537	0,1264			8	0,9842				

	quartzo, oleato de sódio 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)				
Quartza	oleato de	Flotado	2,396	0,0389	1 07	E 2	1	0 0002				
Quartzo	sódio	Afundado	3,2993	0,9422	4,07	3,2	Ŧ	0,9995				
Quartzo	oleato de	Flotado	1,1421	0,0666	1.60		Δ	0.0054				
Quartzo	sódio	Afundado	2,0141	0,9591	4,69	5,08	4	0,9954				
Quartzo	oleato de	Flotado	2,3669	0,0913	1 01	E 2	0	0.0060				
	sódio	Afundado	3,2187	0,9007	4,91	5,3	ŏ	0,9969				

	gibbsita, oleato 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)				
Cibboita	oleato de	Flotado	2,9465	0,5661	1 97	5 1 9	1	0 0862				
Gibbsita	sódio	Afundado	2,7065	0,3993	4,07	5,10	Ŧ	0,5002				
Cibboita	oleato de	Flotado	1,9036	0,8566	4.60	E OG	Λ	0 0069				
Gibbsita	sódio	Afundado	1,2267	0,1621	4,69	5,06	4	0,9908				
Gibbsita	oleato de	Flotado	3,0817	0,7435	1 01	E 22	0	0.0015				
	sódio	Afundado	2,5287	0,2376	4,91	5,23	ŏ	0,9915				

	caulinita, oleato de sódio 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	assa ostra (g) pH pH final condicionament (min)		Tempo de condicionamento (min)	Massa amostra inicial (g)				
Caulinita	oleato de	Flotado	2,114	-0,0058	E 04	E 72	1	inicial (g) 0,9896				
Cauimita	sódio	Afundado	3,1089	0,9489	3,04	5,25	Ŧ	0,9890				
Caulinita	oleato de	Flotado	2,2775	0,0443	4.06	E 02	Δ	0.0021				
Cauimita	sódio	Afundado	3,079	0,9098	4,96	5,05	4	0,9931				
Caulinita	oleato de	Flotado	2,1387	0,0013	0013		0	0.0045				
	sódio	Afundado	3,1116	0,9414	5,04	5,24	6	0,9845				

	hematita, oleato de sódio 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)				
Homotita	oleato de	Flotado	2,43	0,0611	0 17	Q 01	1	0.0042				
петнаціа	sódio	Afundado	3,2658	0,9118	9,17	0,91	I	0,9942				
Uamatita	oleato de	Flotado	1,9327	0,8555	0.12	0 71	Δ	0.0071				
петтаціа	sódio	Afundado	1,2137	0,1489	9,13	8,21	4	0,9971				
Hematita	oleato de	Flotado	2,9331	0,6256	0.11	0 67	o	0.0026				
	sódio	Afundado	2,6649	0,3695	9,11	8,67	ð	0,9926				

	goethita, oleato de sódio 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)				
Goethita	oleato de	Flotado	3,0003	0,7117	0 1 7	Q Q5	1	0 0001				
Goethita	sódio	Afundado	2,5891	0,2551	9,17	8,85	T	0,9901				
Goethita	oleato de	Flotado	1,8449	0,7866	9,13	8,48	4	0,9982				

	sódio	Afundado	1,30273	0,22583				
Goethita	oleato de	Flotado	3,1527	0,8481	0 1 1	0 71	o	0 0942
	sódio	Afundado	2,4537	0,1264	9,11	8,71	ŏ	0,9642

	quartzo, oleato de sódio 5 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)					
Quartzo	oleato de	Flotado	2,396	0,0389	0 17	8 07	1	0 0003					
Quartzo	sódio	Afundado	3,2993	0,9422	9,17	0,57	1	0,9993					
Quartza	oleato de	Flotado	1,1874	0,1575	0.12	0.7	4	0.0053					
Quartzo	sódio	Afundado	1,9019	0,855	9,13	8,2	4	0,9953					
Quartzo	oleato de	Flotado	2,3669	0,0913	0.11	0.67	0	0.0060					
	sódio	Afundado	3,2187	0,9007	9,11	8,67	8	0,9969					

	gibbsita, oleato 5 mg/L										
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)			
Cibboita	oleato de	Flotado	2,9465	0,5661	0.17	0 70	1	0.0962			
CIDDSILA	sódio	Afundado	2,7065	0,3993	9,17	8,78	Ţ	0,9802			
Cibboita	oleato de	Flotado	1,8897	0,8353	0.12	0 00	Л	0 0072			
Gibbsita	sódio	Afundado	1,2449	0,1743	9,13	8,83	4	0,9975			
Gibbsita	oleato de	Flotado	3,0817	0,7435	0.11	0 77	0	0.0015			
	sódio	Afundado	2,5287	0,2376	9,11 8	8,72	0	0,9915			

	caulinita, oleato de sódio 5 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)				
Caulinita	oleato de	Flotado	2,1941	0,0214	0.1/	Q /15	1	0 0 0 7 0				
Cauimita	sódio	Afundado	3,0451	0,9412	9,14	0,43	Ţ	0,9079				
Caulinita	oleato de	Flotado	2,1878	0,0189	0.25	0.2	Л	0.0921				
Cauiiiiita	sódio	Afundado	3,0667	0,9302	9,25	0,5	4	0,9821				
Caulinita	oleato de	Flotado	2,2014	0,0198	0.24	0 71	0	0 0092				
	sódio	Afundado	3,0421	0,9365	9,24	8,71	ŏ	0,9982				

Dados principais

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Hematita	hidroxamato	20	Flotado	2,3051	2,3051	2.35	2.46	0.9683
licinatica	AERO 6493		Afundado	3,2245	3,2245	2,00	2,10	0,0000
Hematita	hidroxamato	20	Flotado	2,3718	0,0331	2 90	3 11	0 9961
Hematica	AERO 6493	20	Afundado	3,2507	0,985	2,50	5,11	0,5501
Homotito	hidroxamato	20	Flotado	2,3486	2,3486	207	2.06	0.0745
пешаціа	AERO 6493	20	Afundado	3,198	3,198	3,82	5,90	0,9743
Homotita	hidroxamato	20	Flotado	2,5189	0,2004	1 96	E 11	0 0000
петлаціа	AERO 6493	20	Afundado	3,1062	0,8023	4,00	5,11	0,9609
Homotito	hidroxamato	20	Flotado	2,5246	2,5246	5.62	F 07	
петтаціа	AERO 6493	20	Afundado	2,9441	2,9441	5,62	5,67	0,9597
Homotito	hidroxamato	20	Flotado	2,6235	0,2994	6 79	7.02	0 0000
петтаціа	AERO 6493	20	Afundado	3,0922	0,7439	0,78	7,02	0,9882
llomatita	hidroxamato	20	Flotado	2,5611	2,5611	0.20	C 00	0.0025
петтаціа	AERO 6493	20	Afundado	2,9975	2,9975	8,28	0,90	0,9835
llomatita	hidroxamato	20	Flotado	2,6357	2,6357	0.22	0 77	0.0720
петтаціа	AERO 6493	20	Afundado	3,0616	3,0616	9,33	8,77	0,9738
llomatita	hidroxamato	20	Flotado	2,62	2,62	10.10	0.72	0.0017
Hematita	AERO 6493	20	Afundado	3,0076	3,0076	10,10	9,73	0,9817
llomotito	hidroxamato	20	Flotado	2,3508	2,3508	11.05	11.02	amostra inicial (g) 0,9683 0,9961 0,9745 0,9809 0,9597 0,9882 0,9835 0,9835 0,9738 0,9817 0,9825
Hematita	AERO 6493	20	Afundado	3,282	3,282	11,05	11,02	0,9825

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)						
Goothita	hidroxamato	20	Flotado	2,3787	2,3787	2.25	2 10	0 0795						
Guetinita	AERO 6493	20	Afundado	3,1743	3,1743	2,55	2,49	0,9765						
Goothita	hidroxamato	20	Flotado	2,4548	0,1222	2 00	2 1 1	0.0012						
Goethita	AERO 6493	20	Afundado	3,1869	0,8817	2,90	5,11	0,9813						
Coothita	hidroxamato	20	Flotado	2,6376	2,6376	202	1 1 2	0 0741						
Goethita	AERO 6493	20	Afundado	2,9693	2,9693	3,02	4,12	0,9741						
Coathita	hidroxamato	20	Flotado	2,5938	0,2811	4.96	F 00	0.0000						
Goethita	AERO 6493	20	Afundado	3,0383	0,7311	4,80	5,09	0,9808						
Coathita	hidroxamato	20	Flotado	2,4809	2,4809	Г <u>с</u> 2	F 00	0.0706						
Goethita	AERO 6493	20	Afundado	3,1001	3,1001	5,62	5,66	0,9706						
Coathita	hidroxamato	20	Flotado	2,5541	0,226	6 70	6 5 6	amostra inicial (g) 0,9785 0,9813 0,9741 0,9868 0,9706 0,9872						
Goethita	AERO 6493	AERO 6493	AERO 6493	AERO 6493	AERO 6493	AERO 6493	AERO 6493	20	Afundado	3,125	0,8183	0,78	0,50	0,9872

Goethita	hidroxamato	20	Flotado	2,5013	2,5013	0 70	7 00	0.0716
Guetinita	AERO 6493	20	Afundado	3,0783	3,0783	0,20	7,08	0,9710
Coathita	hidroxamato	20	Flotado	2,4306	2,4306	0.22	0 76	0.0014
Goethita	AERO 6493	20	Afundado	3,2982	3,2982	9,55	0,70	0,9914
Coathita	hidroxamato	20	Flotado	2,3908	2,3908	10.10	0.76	
Goethita	AERO 6493	20	Afundado	3,2204	3,2204	10,10	9,70	0,9805
Coathita	hidroxamato	20	Flotado	2,3183	2,3183	11 OF	10.00	0.0062
Goethita	AERO 6493	20	Afundado	3,3225	3,3225	11,05	10,99	0,9905

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Quartzo	hidroxamato	20	Flotado	2,4254	2,4254	2,35	2,49	0,9822
	AERO 6493		Afundado	3,1338	3,1338			
Quartzo	hidroxamato	20	Flotado	2,4803	0,1607	2 00	2.04	0 0770
Quartzo	AERO 6493	20	Afundado	3,1367	0,8269	2,50	5,04	0,5775
Quartza	hidroxamato	20	Flotado	2,3857	2,3857	2 0 2	4.00	0.0661
Quartzo	AERO 6493	20	Afundado	3,0736	3,0736	3,82	4,09	0,9001
0.01	hidroxamato	20	Flotado	2,5562	0,1832	4.90	F 00	0.0044
Quartzo	AERO 6493	20	Afundado	3,1437	0,8204	4,80	5,09	0,9844
Questro	hidroxamato	20	Flotado	2,4648	2,4648	гсэ	F 70	0.0047
Quartzo	AERO 6493	20	Afundado	3,1013	3,1013	5,62	5,79	0,9647
Quartza	hidroxamato	20	Flotado	2,5198	0,192	6 79	6 72	0 0772
Quartzo	AERO 6493	20	Afundado	3,1935	0,8405	0,78	0,75	0,9772
Quartza	hidroxamato	20	Flotado	2,4912	2,4912	0.70	6.02	0.0740
Quartzo	AERO 6493	20	Afundado	3,149	3,149	0,20	0,95	0,9749
Quartza	hidroxamato	20	Flotado	2,4792	2,4792	0.22	0.67	0.0960
Quartzo	AERO 6493	20	Afundado	3,222	3,222	9,33	8,07	0,9860
Quartzo	hidroxamato	20	Flotado	2,4139	2,4139	10.10	0.70	0.0040
	AERO 6493	20	Afundado	3,2511	3,2511	10,10	9,79	0,9646
Quartzo	hidroxamato	20	Flotado	2,4162	2,4162	11.05	11 02	0.0010
	AERO 6493	20	Afundado	3,2176	3,2176	11,05	11,02	0,9812

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Gibbsita hidr	hidroxamato	20	Flotado	2,4351	2,4351	2 35	2 50	0 9618
Cibbsita	AERO 6493	20	Afundado	3,0494	3,0494	2,35	2,30	0,5010
Gibbsita	hidroxamato	20	Flotado	2,4912	0,1684	2 00	2 08	0 0025
Cibbsita	AERO 6493	20	Afundado	3,1698	0,8431	2,50	3,00	0,9925
Gibbsita	hidroxamato	20	Flotado	2,7382	2,7382	202	1 1 1	0.0975
	AERO 6493	20	Afundado	2,8089	2,8089	5,82	4,11	0,9875

Gibboita	hidroxamato	20	Flotado	2,7591	0,4499	1 96	E 11	0 0011
Gibbsita	AERO 6493	20	Afundado	2,8668	0,5523	4,60	3,11	0,9011
Gibboita	hidroxamato	20	Flotado	2,7187	2,7187	5.62	F 00	0.0046
Gibbsita	AERO 6493	20	Afundado	2,858	2,858	3,02	3,90	0,9940
Cibboita	hidroxamato	20	Flotado	2,7842	0,477	6 70	6 96	0 0010
Gibbsita	AERO 6493	20	Afundado	2,8764	0,5596	0,70	0,00	0,9616
Cibboita	hidroxamato	20	Flotado	2,5891	2,5891	8.28	6.90	0.00/1
Gibbsita	AERO 6493	20	Afundado	3,0109	3,0109	0,20	0,60	0,9941
Cibboita	hidroxamato	20	Flotado	2,6456	2,6456	0.22	0.01	0.0720
GIDDSILA	AERO 6493	20	Afundado	3,0289	3 <i>,</i> 0289	9,55	8,91	0,9739
Cibboito	hidroxamato	20	Flotado	2,5687	2,5687	10.10	0.70	0.0010
GIDDSILA	AERO 6493	20	Afundado	3,1051	3,1051	10,10	9,78	0,9810
Gibbsita ^ł	hidroxamato	20	Flotado	2,4905	2,4905	11 OF	11 01	0.0967
	AERO 6493	20	Afundado	3,2472	3,2472	11,05	11,01	0,9807

Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Caulinita	hidroxamato	20	Flotado	2,1132	0,0018	5,95	6,02	0,9911
	AERO 6493		Afundado	3,0996	0,9417			
Caulinita	hidroxamato	20	Flotado	2,1091	0,003	1 06	E 26	0.0050
Cauinita	AERO 6493	20	Afundado	3,1091	0,9546	4,90	5,20	0,9939
Caulinita	hidroxamato	20	Flotado	2,128	0,006	4.00	1 20	0 0000
Caulinita	AERO 6493	20	Afundado	3,1028	0,9484	4,09	4,20	0,9696
Caulinita	hidroxamato	20	Flotado	2,1088	0,0071	2 01	2 21	0.0012
Caulinita	AERO 6493	20	Afundado	3,0663	0,9392	5,01	5,21	0,9912
Caulinita	hidroxamato	20	Flotado	2,1135	0,01	2 20	2 12	0 0007
Cauimita	AERO 6493	20	Afundado	3,0814	0,9382	2,29	2,45	0,9907
Caulinita	hidroxamato	20	Flotado	2,1696	0,0019	7 2 2	7 1 0	0.0946
Cauimita	AERO 6493	20	Afundado	3,0271	0,8999	7,52	7,10	0,9840
Caulinita	hidroxamato	20	Flotado	2,1596	0,0036	0 1 5	7 40	0 0800
Cauimita	AERO 6493	20	Afundado	3,0465	0,9043	0,13	7,40	0,9809
Caulinita	hidroxamato	20	Flotado	2,1704	0,0119	0.21	0.06	0 0011
Cauimita	AERO 6493	20	Afundado	3,0279	0,8852	9,51	9,00	0,9811
Caulinita	hidroxamato	20	Flotado	2,1565	0,0169	10.16	0.00	0.0014
	AERO 6493	20	Afundado	3,0107	0,8734	10,10	5,50	0,9014
Caulinita	hidroxamato	20	Flotado	2,1732	0,0002	10.05	10.91	0.0816
	AERO 6493	20	Afundado	2,9976	0,8738	10,93	10,01	0,9010

Parâmetro estudado: concentração do reagente coletor

		hematita, ł	nidroxamato	AERO 6493 5	mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Hematita	hidroxamato	5	Flotado	2,3711	0,0322	4.25	3.95	1.0052
	AERO 6493		Afundado	3,4666	0,9341	.,=0	0,00	_)000_
Homotita	hidroxamato	F	Flotado	2,312	0,0253	E 10	4 72	1 0002
Hematita A	AERO 6493	5	Afundado	3,2944	0,9838	5,10	4,72	1,0005
Homatita	hidroxamato	E	Flotado	2,3206	0,0334	6 1 1	5,91 0,9921	
пеннаціа	AERO 6493	5	Afundado	3,2967	0,9479	0,11	5,91	0,9921
Homatita	hidroxamato	E	Flotado	2,3018	0,0188	7 20	6.07	1,0003 0,9921 0,9981
пешаціа	AERO 6493	5	Afundado	3,2972	0,9689	7,39	0,97	0,9961
Homotita	hidroxamato	F	Flotado	2,312	0,0253	0 20	6 66	0.0953
пеннанна	AERO 6493	5	Afundado	3,2944	0,9838	0,30	0,00	0,9852
Uomotito	hidroxamato	F	Flotado	2,3206	0,0334	0.20	0 [1	0.0622
Hematita	AERO 6493	5	Afundado	3,2967	0,9479	9,29	8,51	0,9622
Hematita	hidroxamato	5	Flotado	2,3018	0,0188	10.12	0.07	0.0627
	AERO 6493	5	Afundado	3,2972	0,9689	10,15	5,97	0,9027

	goethita, hidroxamato AERO 6493 5 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Goethita	hidroxamato	5	Flotado	2,4013	0,0495	1 10	3 80	0 9975				
Goethita	AERO 6493	5	Afundado	3,2328	0,9336	4,10	5,60	0,5575				
Coothita	hidroxamato	F	Flotado	2,4239	0,0601	E 01	162	0 0002				
Goethita	AERO 6493	5	Afundado	3,2323	0,9385	5,01	4,05	0,9965				
a	hidroxamato	F	Flotado	2,4013	0,0495	6.22	6,12	0.0051				
Goethita	AERO 6493	5	Afundado	3,2328	0,9336	0,32	0,12	0,9951				
Coathita	hidroxamato	F	Flotado	2,4329	0,0366	7 25	6 92	0.0069				
Goethita	AERO 6493	5	Afundado	3,2358	0,9512	7,25	0,83	0,9968				
Coathita	hidroxamato	F	Flotado	2,4239	0,0601	0.20	C 27	0.0025				
Goethita	AERO 6493	5	Afundado	3,2323	0,9385	8,38	6,37	0,9935				
Casthita	hidroxamato	-	Flotado	2,4013	0,0495	0.20	0.45	0.0070				
Goethita	AERO 6493	5	Afundado	3,2328	0,9336	9,29	8,45	0,9976				
Goethita	hidroxamato	Г	Flotado	2,4329	0,0366	10.12	0.00	0.0094				
	AERO 6493	Э	Afundado	3,2358	0,9512	10,13	9,88	0,9984				

		quartzo, h	idroxamato	AERO 6493 5	mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Quartzo	hidroxamato	5	Flotado	2,3685	0,0785	4 31	4 01	0 9998
Quartzo	AERO 6493	5	Afundado	3,2703	0,9362	4,51	4,01	0,5550
Quartzo	hidroxamato	E	Flotado	2,3311	0,0603	5 15	4 77	0.0064
Quartzo	AERO 6493	5	Afundado	3,2217	0,9071	5,15	4,77	0,9904
Quartzo	hidroxamato	E	Flotado	2,292	0,059	6.24	6,14	0.0045
Quartzo	AERO 6493	5	Afundado	3,2448	0,946	0,54	0,14	0,9945
Quartzo	hidroxamato	F	Flotado	1,5391	0,0977	7 1 1	6 60	1 0953
Quartzo	AERO 6493	5	Afundado	2,2678	0,8727	7,11	0,09	1,0652
Quartzo	hidroxamato	F	Flotado	2,3685	0,0785	0 20	6 9F	0 0002
Quartzo	AERO 6493	5	Afundado	3,2703	0,9362	0,50	0,05	0,9902
Quartza	hidroxamato	F	Flotado	2,3311	0,0603	0.20	0 / 1	0.0970
Quartzo	AERO 6493	5 -	Afundado	3,2217	0,9071	9,29	8,41	0,9879
Quartzo	hidroxamato	F	Flotado	2,292	0,059	10.12	10.00	1 00 45
	AERO 6493	Э	Afundado	3,2448	0,946	10,13	10,09	1,0045

		gibbsita, hi	droxamato A	ERO 6493 5	mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Gibbsita	hidroxamato	5	Flotado	2,4108	0,0614	1 03	3 73	1 0006
Gibbblita	AERO 6493	5	Afundado	3,2364	0,9396	4,05	5,75	1,0000
Cibboita	hidroxamato	F	Flotado	2,4276	0,0619	4.05	1 5 7	0.0056
Gibbsita	AERO 6493	5	Afundado	3,2509	0,9511	4,95	4,57	0,9950
	hidroxamato	F	Flotado	2,4108	0,0614	C 10	5,99	0.0001
GIDDSILA	AERO 6493	5	Afundado	3,2364	0,9396	0,19	5,99	0,9981
Cibboita	hidroxamato	Г	Flotado	2,4056	0,0496	7.02	6.61	0.0009
GIDDSILA	AERO 6493	5	Afundado	3,2503	0,943	7,03	0,01	0,9908
Cibboita	hidroxamato	F	Flotado	2,4276	0,0619	0.20	C 11	0.0004
GIDDSILA	AERO 6493	5	Afundado	3,2509	0,9511	0,50	0,41	0,9994
Gibbsita	hidroxamato	F	Flotado	2,4108	0,0614	0.20	0.04	1 00 4 2
	AERO 6493	5 -	Afundado	3,2364	0,9396	9,29	8,64	1,0042
Gibbsita	hidroxamato	F	Flotado	2,4056	0,0496	10.12	10.12	0.0005
	AERO 6493	5	Afundado	3,2503	0,943	10,13	10,12	0,9865

		caulinita, h	idroxamato	AERO 6493 5	mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Caulinita	hidroxamato	5	Flotado	2,1687	0,0153	4.06	3.76	0.9922
Guainita	AERO 6493	5	Afundado	3,0879	0,9462	.,	3,70	0,0022
Caulinita	hidroxamato	E	Flotado	2,1392	0,0141	1 09	1 60	0 0021
Cauiiiiita	AERO 6493	5	Afundado	3,115	0,9404	4,90	4,00	0,9951
Coulinito	hidroxamato	F	Flotado	2,1276	0,0114	F 07	F 77	0,9919
Cauimita	AERO 6493	5	Afundado	3,0978	0,9404	5,97	5,77	0,9919
Coulinito	hidroxamato	Г	Flotado	2,1507	0,0148	7 45	7.02	0.0961
Cauimita	AERO 6493	5	Afundado	3,1101	0,9387	7,45	7,03	0,9801
Coulinito	hidroxamato	F	Flotado	2,1327	0,0137	0.25	7 46	0.0946
Cauimita	AERO 6493	5	Afundado	3,0248	0,849	8,35	7,40	0,9840
Coulinite	hidroxamato	F	Flotado	2,1661	0,0053	0.02	0.22	0.0000
Caulinita	AERO 6493	5 -	Afundado	3,027	0,8381	9,03	8,23	0,9823
Caulinita	hidroxamato	Г	Flotado	2,1255	0,0088	10.12	0.90	0.0021
	AERO 6493	Э	Afundado	3,0328	0,8603	10,12	9,80	0,9921

	hematita, hidroxamato AERO 6493 20 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Hematita	hidroxamato	20	Flotado	2,3486	2,3486	3.82	3.96	0.9745				
	AERO 6493		Afundado	3,198	3,198	0,01	0,00	0,07.10				
Hematita	hidroxamato	20	Flotado	2,5189	0,2004	1 86	5 11	0 9809				
Hematica	AERO 6493	20	Afundado	3,1062	0,8023	4,80	5,11	0,9809				
Homatita	hidroxamato	20	Flotado	2,5246	2,5246	5.62	5 87	0,9809 0,9597				
петнаціа	AERO 6493	20	Afundado	2,9441	2,9441	3,02	3,67	0,9397				
Homatita	hidroxamato	20	Flotado	2,6235	0,2994	6 78	7 02	0 0883				
петнаціа	AERO 6493	20	Afundado	3,0922	0,7439	0,78	7,02	0,9882				
Homotito	hidroxamato	20	Flotado	2,5611	2,5611	0 70	6.00	0.0025				
петнаціа	AERO 6493	20	Afundado	2,9975	2,9975	0,20	0,90	0,9855				
Homatita	hidroxamato	20	Flotado	2,6357	2,6357	0.22	0 77	0 0729				
Hematita	AERO 6493	20	Afundado	3,0616	3,0616	- 9,33	0,77	0,9758				
Hematita	hidroxamato	20	Flotado	2,62	2,62	10.10	0.72	0.0917				
	AERO 6493	20	Afundado	3,0076	3,0076	10,10	9,73	0,9817				

		goethita, hi	droxamato A	ERO 6493 20) mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Goethita	hidroxamato	20	Flotado	2,6376	2,6376	3.82	4.12	0.9741
	AERO 6493		Afundado	2,9693	2,9693	0,01	.,==	0,07.1
Goethita	hidroxamato	20	Flotado	2,5938	0,2811	1 86	5 00	0 0868
Guetinita	AERO 6493	20	Afundado	3,0383	0,7311	4,00	3,09	0,9606
Coothita	hidroxamato	20	Flotado	2,4809	2,4809	E GO	E 00	0,9706
Goethita	AERO 6493	20	Afundado	3,1001	3,1001	5,02	5,00	0,9700
Coathita	hidroxamato	20	Flotado	2,5541	0,226	6 70	6 5 6	0.0972
Goethita	AERO 6493	20	Afundado	3,125	0,8183	0,78	0,50	0,9872
Coathita	hidroxamato	20	Flotado	2,5013	2,5013	0.00	7.00	0.0716
Goethita	AERO 6493	20	Afundado	3,0783	3,0783	0,20	7,08	0,9710
Coathita	hidroxamato	20	Flotado	2,4306	2,4306	0.22	0.76	0.0014
Goethita	AERO 6493	20	Afundado	3,2982	3,2982	- 9,33	8,76	0,9914
Coathita	hidroxamato	20	Flotado	2,3908	2,3908	10.10	0.76	0.0905
Goetnita	AERO 6493	20	Afundado	3,2204	3,2204	10,10	9,70	0,9805

	quartzo, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)					
Quartzo	hidroxamato	20	Flotado	2,3857	2,3857	3.87	4 09	0 9661					
Quartzo	AERO 6493	20	Afundado	3,0736	3,0736	5,02	ч,05	0,5001					
Quartzo	hidroxamato	20	Flotado	2,5562	0,1832	1 96	E 00	0 0944					
Quartzo	AERO 6493	20	Afundado	3,1437	0,8204	4,60	3,09	0,9644					
h	rtzo hidroxamato AERO 6493	20	Flotado	2,4648	2,4648	E 60	E 70	0.0647					
Quartzo		20	Afundado	3,1013	3,1013	5,02	5,79	0,9047					
Quartza	hidroxamato	20	Flotado	2,5198	0,192	6 79	6 72	0 0772					
Quartzo	AERO 6493	20	Afundado	3,1935	0,8405	0,78	0,73	0,9772					
Quartza	hidroxamato	20	Flotado	2,4912	2,4912	0 20	6.02	0.0740					
Quartzo	AERO 6493	20	Afundado	3,149	3,149	8,28	0,93	0,9749					
Quartes	hidroxamato	20	Flotado	2,4792	2,4792	0.22	0.07	0.0000					
Quartzo	AERO 6493	20	Afundado	3,222	3,222	9,33	8,07	0,9860					
Quartzo	hidroxamato 20	Flotado	2,4139	2,4139	10.10	0.70	0.0040						
	AERO 6493	20	Afundado	3,2511	3,2511	10,10	9,79	0,9848					

		gibbsita, hio	droxamato A	ERO 6493 20) mg/L				
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)	
Gibbsita	hidroxamato	20	Flotado	2,7382	2,7382	3 82	A 11	0 9875	
Gibbblita	AERO 6493	20	Afundado	2,8089	2,8089	3,02	7,11	0,5075	
Gibboita	hidroxamato	20	Flotado	2,7591	0,4499	1 96	E 11	0.0011	
Gibbsita	AERO 6493	20	Afundado	2,8668	0,5523	4,60	5,11	0,9011	
Cibboita	hidroxamato	bbsita	20	Flotado	2,7187	2,7187	F 62	E 00	0.0046
Gibbsita	AERO 6493	20	Afundado	2,858	2,858	5,62	5,90	0,9940	
Cibboito	hidroxamato	20	Flotado	2,7842	0,477	6 70	C 0C	0.0010	
GIDDSILa	AERO 6493	20	Afundado	2,8764	0,5596	6,78	6,86	0,9818	
Cibboito	hidroxamato	20	Flotado	2,5891	2,5891	0.20	6 90	0.0041	
GIDDSILA	AERO 6493	20	Afundado	3,0109	3,0109	0,20	0,80	0,9941	
Cibboito	hidroxamato	20	Flotado	2,6456	2,6456	0.22	0.01	0.0720	
Gibbsita	AERO 6493	20	Afundado	3,0289	3,0289	9,33	8,91	0,9739	
Gibbsita	hidroxamato	Flotado	2,5687	2,5687	10.10	0.70	0.0010		
	AERO 6493	20	Afundado	3,1051	3,1051	10,10	9,78	0,9810	

	caulinita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,128 3,1028	0,006 0,9484	4,09	4,20	0,9898					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,1088 3,0663	0,0071 0,9392	3,01	3,21	0,9912					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,1135 3,0814	0,01 0,9382	2,29	2,43	0,9907					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,1696 3,0271	0,0019 0,8999	7,32	7,18	0,9846					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,1596 3,0465	0,0036 0,9043	8,15	7,40	0,9809					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,1704 3,0279	0,0119 0,8852	9,31	9,06	0,9811					
Caulinita	hidroxamato AERO 6493	20	Flotado Afundado	2,1565 3,0107	0,0169 0,8734	10,16	9,98	0,9814					

		hematita,	hidroxamato	AERO 6493 4	0 mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Hematita	hidroxamato	40	Flotado	2,8554	0,5324	4.06	3.76	0.9968
Tiematica	AERO 6493	10	Afundado	2,8335	0,4605	1,00	3,70	0,000
Homotito	hidroxamato	40	Flotado	3,2237	0,8778	E 04	166	1 0002
incinatita	AERO 6493	40	Afundado	2,4062	0,1087	3,04	4,00	1,0005
	hidroxamato AERO 6493	40	Flotado	3,206	0,9098	6 51	6.21	0.0045
петлаціа		40	Afundado	2,4489	0,1309	0,51	0,31	0,9945
llomotito	hidroxamato	40	Flotado	2,8554	0,5324	7 20	6 97	0.0001
нетаціа	AERO 6493		Afundado	2,8335	0,4605	7,29	6,87	0,9981
Homotito	hidroxamato	40	Flotado	3,2237	0,8778	0.75	7 20	0.0074
петлаціа	AERO 6493	40	Afundado	2,4062	0,1087	8,75	7,29	0,9974
llomotito	hidroxamato	40	Flotado	3,206	0,9098	0.10	0.50	0.0020
Hematita	AERO 6493	40	Afundado	2,4489	0,1309	9,19	8,50	0,9936
Hematita	hidroxamato	hidroxamato	Flotado	2,8554	0,5324	10.00	0.00	0.0659
	AERO 6493	40	Afundado	2,8335	0,4605	10,08	9,99	0,9658

	goethita, hidroxamato AERO 6493 40 mg/L											
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)				
Goethita	hidroxamato	40	Flotado	2,6188	0,3249	4.05	3.75	1.0000				
	AERO 6493		Afundado	2,9518	0,6734	.,	0,10	_)0000				
Goethita	hidroxamato	40	Flotado	2,9884	0,6032	5 22	1 91	0 005/				
Guethita	AERO 6493	40	Afundado	2,7455	0,3935	3,22	4,04	0,9934				
Coethita hidroxamato	hidroxamato	40 -	Flotado	3,094	0,6919	6.09	E 00	0.0051				
Guethita	AERO 6493		Afundado	2,6677	0,3434	0,08	3,00	0,9931				
Goothita	hidroxamato	40	Flotado	2,6188	0,3249	7 2 2	6 90	0.0057				
Guethita	AERO 6493	40	Afundado	2,9518	0,6734	7,52	0,90	0,9937				
Coathita	hidroxamato	40	Flotado	2,9884	0,6032	0 7E	7 20	0.0024				
Goethita	AERO 6493	40	Afundado	2,7455	0,3935	0,75	7,50	0,9954				
Coathita	hidroxamato	40	Flotado	3,094	0,6919	0.10	0 10	0.0751				
Goethita	AERO 6493	40	Afundado	2,6677	0,3434	9,19	8,48	0,9751				
Goethita	hidroxamato	40	Flotado	2,6188	0,3249	10.09	10.02	0.0068				
	AERO 6493	40	Afundado	2,9518	0,6734	10,08	10,03	0,9908				

		quartzo, ł	nidroxamato	AERO 6493 40) mg/L				
Amostra	Reagente	eagente Concentração Flotado/ Massa amostra + filtro (g)		Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)	
Quartzo	hidroxamato	40	Flotado	2,4638	0,1308	4.11	3.81	1.0034	
Q	AERO 6493		Afundado	2,9171	0,5031	.,==	0,01	_)0001	
Quartzo	hidroxamato	40	Flotado	2,7974	0,3816	5.07	4.60	0.0051	
Quartzo	AERO 6493	40	Afundado	2,935	0,5972	5,07	4,09	0,9951	
0	hidroxamato AERO 6493	tzo hidroxamato 40	40	Flotado	2,6516	0,3257	C 20	C 10	0.0001
Quartzo		40	Afundado	2,9786	0,681	0,38	6,18	0,9981	
Quartza	hidroxamato	10	Flotado	2,5519	0,2599	7 5 4	7 1 2	0.0027	
Quartzo	AERO 6493	40	Afundado	3,0524	0,7233	7,54	7,12	0,9927	
Quartza	hidroxamato	40	Flotado	2,7974	0,3816	0.75	7.04	0.0012	
Quartzo	AERO 6493	40	Afundado	2,935	0,5972	8,75	7,94	0,9913	
Quartes	hidroxamato	40	Flotado	2,6516	0,3257	0.10	0.50	0.0072	
Quartzo	AERO 6493	40	Afundado	2,9786	0,681	9,19	8,50	0,9972	
Quartzo	hidroxamato	droxamato 40	Flotado	2,5519	0,2599	10.02	10.00	1 0020	
	AERO 6493	40	Afundado	3,0524	0,7233	10,08	10,00	1,0036	

		gibbsita, hi	droxamato A	ERO 6493 40 I	mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Gibbsita	hidroxamato	40	Flotado	2,9171	0,5031	3 91	3 61	0 99/5
Gibbblita	AERO 6493	40	Afundado	2,7543	0,4948	3,51	3,01	0,5545
Cibboita	hidroxamato	40	Flotado	3,104	0,8247	E 21	1 02	0.0010
Gibbsita	AERO 6493	40	Afundado	2,5179	0,1606	5,21	4,05	0,9919
Cibboito	ta hidroxamato 40 AERO 6493	40	Flotado	3,2497	0,8907		6.25	0.0053
GIDDSILa		40	Afundado	2,4638	0,1308	0,55	0,35	0,9952
Cibboita	hidroxamato	40	Flotado	2,9171	0,5031	7 / 1	6.00	0 0029
GIDDSILA	AERO 6493	40	Afundado	2,7543	0,4948	7,41	0,99	0,9938
Cibboita	hidroxamato	40	Flotado	3,104	0,8247	0.75	7 50	0.0050
GIDDSILa	AERO 6493	40	Afundado	2,5179	0,1606	8,75	7,58	0,9959
Cibboito	hidroxamato	10	Flotado	3,2497	0,8907	0.10	0.52	1 00 4 2
Gibbsita	AERO 6493	40	Afundado	2,4638	0,1308	9,19	8,52	1,0042
Gibbsita	hidroxamato	hidroxamato	Flotado	2,9171	0,5031	10.00	10.02	0.0965
	AERO 6493	40	Afundado	2,7543	0,4948	10,08	10,02	0,9805

		caulinita, ł	nidroxamato	AERO 6493 40	mg/L			
Amostra	Reagente	Concentração (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Caulinita	hidroxamato	40	Flotado	2,4013	0,0495	3 93	3 63	1 0008
Cuumita	AERO 6493	10	Afundado	3,2328	0,9336	3,33	3,03	1,0000
Caulinita	hidroxamato	40	Flotado	2,4239	0,0601	5 10	/ Q1	0 0021
Cauminta	AERO 6493	40	Afundado	3,2323	0,9385	3,19	4,01	0,9951
Coulinite	hidroxamato AERO 6493	40	Flotado	2,4013	0,0495	6.20	6.00	1 00/15
Cauiiiiita		40	Afundado	3,2328	0,9336	0,29	0,09	1,0045
Caulinita	hidroxamato	40	Flotado	2,4329	0,0366	7 29	6.96	0.0961
Cauimita	AERO 6493	40	Afundado	3,2358	0,9512	7,28	0,80	0,9801
Caulinita	hidroxamato	40	Flotado	2,4239	0,0601	0 0 1	0 17	0.0054
Cauiiiiita	AERO 6493	40	Afundado	3,2323	0,9385	0,04	0,42	0,9954
Caulinita	hidroxamato	40	Flotado	2,4013	0,0495	0.04	0 17	0 00 20
Caulinita	AERO 6493	40	Afundado	3,2328	0,9336	8,84	8,42	0,9928
Coulinite	hidroxamato	40	Flotado	2,4329	0,0366	10.17	0.75	0 00 22
Cauimita	AERO 6493	40	Afundado	3,2358	0,9512	10,17	9,75	0,9923

Parâmetro estudado: reagentes depressores

	hematita,	hidroxamato AEI	RO 6493 20 mg/l	L e depressor	es amido, flu	orsilicato e	e Floatar	า	
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)
Hematita	hidroxamato	_	_	Flotado	2,6357	2,6357	9 33	8 77	0 9738
Hematica	AERO 6493	_	_	Afundado	3,0616	3,0616	5,55	0,77	0,5758
Homatita	hidroxamato			Flotado	2,3486	2,3486	207	2.06	0.0745
пешаціа	AERO 6493	-	-	Afundado	3,198	3,198	3,02	5,90	0,9743
Homotito	hidroxamato	amida	10	Flotado	2,3345	0,0165	0.225	0 71	0.0676
AERO 64	AERO 6493	amido	10	Afundado	3,3242	0,9733	9,235	8,71	0,9070
llomotito	hidroxamato	o roci di o	10	Flotado	2,3345	0,0226	2.005	4 21	0.0020
нетаціа	AERO 6493	amido	10	Afundado	3,3056	0,9717	3,885	4,21	0,9638
11	hidroxamato	fluencilizate	10	Flotado	2,4459	0,056	0.21	0.75	0.0042
Hematita	AERO 6493	fluorsilicato	10	Afundado	3,1975	0,8869	9,21	8,75	0,9642
11	hidroxamato	fluencilizate	10	Flotado	2,3263	0,0229	2.01	4.24	0.000
нетаціа	AERO 6493	nuorsilicato	10	Afundado	3,3473	0,9207	3,91	4,34	0,966
llomotito	hidroxamato	Fleeter	10	Flotado	2,4701	0,1254	0.12	0 42	0.0027
нетаціа	AERO 6493	Floatan	10	Afundado	3,115	0,8093	9,13	8,43	0,9637
	hidroxamato	Fleeten	10	Flotado	2,3416	0,0121	2.02	4 1 2	0.0027
Hematita	AERO 6493	Fioatan	10	Afundado	3,2752	0,9226	3,93	4,12	0,9627

	goethita, hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato e Floatan											
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)			
Goethita	hidroxamato AERO 6493	-	-	Flotado Afundado	2,4306 3,2982	2,4306 3,2982	9,33	8,76	0,9914			
Goethita	hidroxamato AERO 6493	-	-	Flotado Afundado	2,6376 2,9693	2,6376 2,9693	3,82	4,12	0,9741			
Goethita	hidroxamato AERO 6493	amido	10	Flotado Afundado	2,4329 3,2873	0,042 0,9454	9,235	8,89	0,9691			
Goethita	hidroxamato AERO 6493	amido	10	Flotado Afundado	2,4589 3,2323	0,1122 0,8794	3,885	4,16	0,963			
Goethita	hidroxamato AERO 6493	fluorsilicato	10	Flotado Afundado	2,3498 3,2463	0,0447 0,903	9,21	8,35	0,9635			
Goethita	hidroxamato AERO 6493	fluorsilicato	10	Flotado Afundado	2,4683 3,173	0,0958 0,8519	3,91	4,22	0,9666			
Goethita	hidroxamato AERO 6493	Floatan	10	Flotado Afundado	2,4311 3,2395	0,0902 0,8506	9,13	8,3	0,9659			
Goethita	hidroxamato AERO 6493	Floatan	10	Flotado Afundado	2,3842 3,1338	0,0537 0,8879	3,93	4,09	0,9626			

	quartzo, hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato e Floatan											
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)			
Quartzo	hidroxamato	_		Flotado	2,4792	2,4792	0 33	8 67	0 986			
Quartzo	AERO 6493	_	_	Afundado	3,222	3,222	9,33	8,07	0,980			
Quartzo	hidroxamato			Flotado	2,3857	2,3857	207	1 00	0.0661			
Qualtzo	AERO 6493	-	-	Afundado	3,0736	3,0736	3,02	4,09	0,9001			
Quartzo	hidroxamato	amido	10	Flotado	2,4634	0,0717	0.225	0 00	0.0640			
Quartzo	AERO 6493	annuu	10	Afundado	3,2391	0,9001	9,233	0,05	0,9049			
Quartzo	hidroxamato	amido	10	Flotado	2,4442	0,1062	2 005	1 1 2	0.0667			
Qualtzo	AERO 6493	annuu	10	Afundado	3,1961	0,8784	3,863	4,15	0,9007			
Quartzo	hidroxamato	fluorsilicato	10	Flotado	2,3561	0,0511	0.21	0 67	0 0677			
Quartzo	AERO 6493	nuorsilicato	10	Afundado	3,2647	0,8852	9,21	0,07	0,9077			
Quartza	hidroxamato	fluorcilicato	10	Flotado	2,4627	0,0962	2.01	4 24	0.0627			
Quartzo	AERO 6493	nuorsilicato	10	Afundado	3,1942	0,84	5,91	4,24	0,9027			
Quartzo	hidroxamato	Floatan	10	Flotado	2,396	0,0626	0.12	0 /	0.0601			
Quartzo	AERO 6493	FIUdidii	10	Afundado	3,292	0,8754	9,15	0,4	0,9091			
Quartza	hidroxamato	Floatan	10	Flotado	2,3956	0,116	2 02	4 00	0.0656			
Quartzo	AERO 6493	FIUdldII	10	Afundado	3,1561	0,8157	5,95	4,09	0,9050			

	gibbsita, hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato e Floatan											
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)			
Gibbsita	hidroxamato	-	-	Flotado	2,6456	2,6456	9,33	8,91	0,9739			
Gibbsita	hidroxamato AERO 6493	-	-	Flotado Afundado	2,7382 2,8089	2,7382 2,8089	3,82	4,11	0,9875			
Gibbsita	hidroxamato AERO 6493	amido	10	Flotado Afundado	2,3546 3,2608	0,0678 0,9079	9,235	8,7	0,9627			
Gibbsita	hidroxamato AERO 6493	amido	10	Flotado Afundado	2,4755 3,1681	0,0976 0,8855	3,885	4,17	0,9627			
Gibbsita	hidroxamato AERO 6493	fluorsilicato	10	Flotado Afundado	2,4509 3,2309	0,0669 0,8681	9,21	8,81	0,9633			
Gibbsita	hidroxamato AERO 6493	fluorsilicato	10	Flotado Afundado	2,4325 3,2561	0,0593 0,8828	3,91	4,56	0,9658			
Gibbsita	hidroxamato AERO 6493	Floatan	10	Flotado Afundado	2,4234 3,1937	0,0695 0,8625	9,13	8,54	0,9668			
Gibbsita	hidroxamato AERO 6493	Floatan	10	Flotado Afundado	2,4478 3,0765	0,102 0,8289	3,93	4,1	0,9607			

caulinita, hidroxamato AERO 6493 20 mg/L e depressores amido, fluorsilicato e Floatan												
Amostra	Reagente coletor	Reagente depressor	Concentração depressor (mg/L)	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Massa amostra inicial (g)			
Caulinita	hidroxamato	_	-	Flotado	2,1704	0,0119	9 3 1	9.06	0 9811			
Caulinita	AERO 6493			Afundado	3,0279	0,8852	5,51	5,00	0,5011			
Coulinito	hidroxamato			Flotado	2,128	0,006	4 00	4.2	0 0000			
Cauimita	AERO 6493	-	-	Afundado	3,1028	0,9484	4,09	4,2	0,9696			
Caulinita	hidroxamato	amido	10	Flotado	2,1418	0,0119	0.165	0 66	0.0055			
Cauimita	AERO 6493	annuu	10	Afundado	3,0727	0,887	9,105	8,00	0,9955			
Coulinito	hidroxamato	amida	10	Flotado	2,1221	0,0106	2 005	4.01	0.0977			
Cauimita	AERO 6493	amuuu	10	Afundado	3,0644	0,88	3,985	4,01	0,9877			
Coulinito	hidroxamato	fluorcilicato	10	Flotado	2,1365	0,0096	0.44	0.22	0.0005			
Cauimita	AERO 6493	nuorsincato	10	Afundado	3,0497	0,8683	9,44	9,23	0,9905			
Coulinito	hidroxamato	fluorcilicato	10	Flotado	2,1448	0,0023	2.00	2 07	1 0002			
Cauimita	AERO 6493	nuorsincato	10	Afundado	3,0758	0,8838	3,99	3,87	1,0093			
Caulinita	hidroxamato	Floatan	10	Flotado	2,1538	0,0116	0 115	9 5 6	0.0975			
Cauimita	AERO 6493	FIUdidii	10	Afundado	3,0134	0,8211	9,115	0,50	0,9675			
Caulinita	hidroxamato	Floatan	10	Flotado	2,1431	0,011	2.065	4.01	1 0062			
Cauimita	AERO 6493	FIUdidii	10	Afundado	3,0545	0,8662	3,905	4,01	1,0003			

Parâmetro estudado: temperatura

	hematita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Hematita	hidroxamato	Flotado	2,3486	2,3486	3.82	3.96	28.4	28.6	0.9745				
Treffiction	AERO 6493	Afundado	3,198	3,198	3,82	3,30	20,1	20,0	0,0710				
Homatita	hidroxamato	Flotado	3,112	0,948	2 70	4.05	47.2	37.6	0 0086				
Hematica	AERO 6493	Afundado	2,1849	0,0528	3,75	4,05	47,2	57,0	0,9980				
Homotito	hidroxamato	Flotado	2,7079	0,5243	2 01	4.02	64.2	45.0	0 0000				
пеніаціа	AERO 6493	Afundado	2,5759	0,3989	5,84	4,03	04,3	45,0	0,9988				

	goethita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Goethita	hidroxamato	Flotado	2,6376	2,6376	2 97	1 1 2	28.0	78.7	0 07/1				
Guetinita	AERO 6493	Afundado	2,9693	2,9693	3,02	4,12	20,9	20,7	0,9741				
Coothita	hidroxamato	Flotado	2,8812	0,7112	2 0 2	1 16	10.2	27.9	0.0853				
Guetinita	AERO 6493	Afundado	2,4521	0,2847	3,92	4,10	40,2	57,0	0,9633				
Coothita	hidroxamato	Flotado	2,6154	0,442	2.06	4 OF	67.6	10	0.0007				
Goethita	AERO 6493	Afundado	2,6622	0,4772	5,90	4,05	07,0	48	0,9887				

	quartzo, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Quartzo	hidroxamato	Flotado	2,3857	2,3857	3 87	1 09	29.2	28.9	0 9661				
Quartzo	AERO 6493	Afundado	3,0736	3,0736	5,02	4,05	23,2	20,5	0,5001				
Quartzo	hidroxamato	Flotado	2,24	0,0316	2 0/	<i>I</i> 1	49.0	28 5	1 0028				
Quartzo	AERO 6493	Afundado	3,1794	0,9759	3,94	4,1	49,0	56,5	1,0028				
Quartzo	hidroxamato	Flotado	2,1562	-0,0252	2 0E	4.07	67.0	46.7	1 0016				
Quartzo	AERO 6493	Afundado	3,1238	0,9469	3,65	4,07	07,0	40,7	1,0010				

			gibbsita, hid	roxamato A	AERO 649	93 20 m	ig/L		
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)
Gibbsita	hidroxamato	Flotado	2,7382	2,7382	2 9 2	1 11	28.0	28.0	0 0875
Cibbsita	AERO 6493	Afundado	2,8089	2,8089	3,02	4,11	28,5	28,9	0,9875
Cibboita	hidroxamato	Flotado	2,298	0,1166	2 07	1 10	10.2	26.0	0 000
Gibbsita	AERO 6493	Afundado	3,0665	0,8779	5,67	4,10	40,5	50,9	0,969
Cibboito	hidroxamato	Flotado	2,1963	0,0257	4.01	1 71	67.9		1 0012
GIDDSILA	AERO 6493	Afundado	3,1091	0,9052	4,01	4,21	07,8	44,5	1,0012

	caulinita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Caulinita	hidroxamato	Flotado	2,128	0,02	1.00	4.2	29.6	7 9 7	0 0000				
Cauimita	AERO 6493	Afundado	3,1028	0,9484	4,09	4,2	28,0	20,7	0,9090				
Caulinita	hidroxamato	Flotado	2,109	0,017	2 00	1 17	40.2	29 F	0 0094				
Cauimita	AERO 6493	Afundado	3,1112	0,9454	5,90	4,17	49,5	28,5	0,9964				
Caulinita	hidroxamato	Flotado	2,09	0,013	1 OF	1 1 2	67.1	47.0	1 0005				
Cauilfilla	AERO 6493	Afundado	3,1145	0,9521	4,05	4,12	07,1	47,9	1,0005				

	hematita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Homatita	hidroxamato	Flotado	2,6357	2,6357	0 22	Q 77	28.0	787	0 0728				
Tiematita	AERO 6493	Afundado	3,0616	3,0616	9,33	0,77	28,9	20,7	0,9738				
Homotito	hidroxamato	Flotado	3,112	0,948	0.1	0.02	47.2	27.6	0.0096				
петлаціа	AERO 6493	Afundado	2,1849	0,0528	9,1	8,95	47,2	37,0	0,9980				
Homotito	hidroxamato	Flotado	2,7079	0,5243	0 77	0.14	64.2	45.0	0.0000				
петтаціа	AERO 6493	Afundado	2,5759	0,3989	٥,//	9,14	04,3	45,9	0,9988				

	goethita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Goothita	hidroxamato	Flotado	2,4306	2,4306	0.22	0 76	28.6	20 0	0.0014				
Guetinita	AERO 6493	Afundado	3,2982	3,2982	9,33	8,70	28,0	20,0	0,9914				
Goethita	hidroxamato	Flotado	2,8812	0,7112	9,03	9,21	48,2	37,8	0,9853				

	AERO 6493	Afundado	2,4521	0,2847					
Coothita	hidroxamato	Flotado	2,6154	0,442	0.06	0.06	67.6	10 1	0 0007
Guethita	AERO 6493	Afundado	2,6622	0,4772	0,90	9,00	07,0	40,1	0,9887

	quartzo, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Quartzo	hidroxamato	Flotado	2,4792	2,4792	0 33	8 67	29.1	28.9	0 986				
Quartzo	AERO 6493	Afundado	3,222	3,222	5,55	0,07	23,1	20,5	0,500				
Quartzo	hidroxamato	Flotado	2,24	0,0316	0.04	0.07	40.2	20 E	1 00 29				
Quartzo	AERO 6493	Afundado	3,1794	0,9759	0,94	9,07	49,5	56,5	1,0028				
Quartza	hidroxamato	Flotado	2,1562	0,0252	0.04	0.01		46.7	1 0016				
Quartzo	AERO 6493	Afundado	3,1238	0,9469	0,84	9,01	2,00	40,7	1,0010				

	gibbsita, hidroxamato AERO 6493 20 mg/L											
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)			
Gibboita	hidroxamato	Flotado	2,6456	2,6456	0.22	Q 01	797	28.6	0 0720			
Cibbsita	AERO 6493	Afundado	3,0289	3,0289	9,33	0,91	28,7	28,0	0,9739			
Cibboita	hidroxamato	Flotado	2,298	0,1166	0.06	0 00	40.0	26.0	0 0 0 0 0			
Gibbsita	AERO 6493	Afundado	3,0665	0,8779	0,00	0,00	46,5	50,9	0,989			
Cibboita	hidroxamato	Flotado	2,1963	0,0257	0 00	0.02	67.9	44 E	1 0012			
GIDDSILA	AERO 6493	Afundado	3,1091	0,9052	0,85	9,03	07,8	44,5	1,0012			

	caulinita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Temperatura inicial (°C)	Temperatura final (°C)	Massa amostra inicial (g)				
Caulinita	hidroxamato	Flotado	2,1704	0,0119	0.21	0.06	28 5	78.2	0 0811				
Cauiinta	AERO 6493	Afundado	3,0279	0,8852	5,51	5,00	28,5	20,5	0,5011				
Caulinita	hidroxamato	Flotado	2,1622	0,01455	0.22	0 05	40.2	26.0	0.0047				
Cauimita	AERO 6493	Afundado	3,0542	0,9149	9,22	0,03	49,2	50,9	0,9947				
Caulinita	hidroxamato	Flotado	2,1433	0,012899	0 10	0 02	66.7	40 E	0.0011				
Cauimita	AERO 6493	Afundado	3,0847	0,935475	9,19	0,95	00,7	49,5	0,9911				

	hematita, hidroxamato AERO 6493 20 mg/L													
Amostra	Reagente	Flotado/ Afundado	Massa o Massa filtro (g) Massa amostra (g) Massa pH pH final final Condicionamento (min)		Massa amostra inicial (g)									
Hematita	hidroxamato	Flotado	2,5915	0,2316	4,01 4,23 1 0,9	1 72	1	0 0716						
пешаціа	AERO 6493	Afundado	3,0272	0,7213		0,9710								
Llomatita	hidroxamato	Flotado	2,3486	2,3486	2.02	2.00	4	0.0745						
пешаціа	AERO 6493	Afundado	3,198	3,198	3,02	5,90	4	0,9745						
Hematita	hidroxamato	Flotado	2,7463	0,4373	2.05	4.06	0	0.0674						
	AERO 6493	Afundado	2,9578	0,5377	3,85	4,06	ð	0,9674						

Parâmetro estudado: tempo de condicionamento com o reagente coletor

	goethita, hidroxamato AERO 6493 20 mg/L													
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)						
Goethita	hidroxamato	Flotado	2,5252	0,1581	2 05	4 07	1	0.0901						
Goetinita	AERO 6493	Afundado	3,1147	0,8146	5,65	4,07	T	0,9601						
Coathita	hidroxamato	Flotado	2,6376	2,6376	2 0 2	4.10	Δ	0.0741						
Goetinita	AERO 6493 Afundad		2,9693	2,9693	3,02	4,12	4	0,9741						
Goethita	hidroxamato	Flotado	2,3854	0,151	2 0 2	1 25	o	0.0645						
Guetinita	AERO 6493	Afundado	3,1265	0,8203	5,92	4,23	0	0,9645						

	quartzo, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)					
Quartzo I	hidroxamato	Flotado	2,4395	0,0887	1 00	1 15	1	0.0675					
Quartzo	AERO 6493	Afundado	3,1704	0,8673	4,00	4,13	,15 1 0,	0,9075					
Quartzo	hidroxamato	Flotado	2,3857	2,3857	202	4.00	Λ	0.0661					
Quartzo	AERO 6493	Afundado	3,0736	3,0736	3,82 4,09 4		0,9001						
Quartzo	hidroxamato	Flotado	2,3975	0,1031	2 70	2 00	0	0.0901					
Quartzo	AERO 6493	Afundado	3,2469	0,8779	3,78	3,99	8	0,9801					

	gibbsita, hidroxamato AERO 6493 20 mg/L													
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)						
Gibbsita	hidroxamato	Flotado	2,6064	0,2823	2 9 7	2 05	1	0 00 7 2						
Gibbsita	AERO 6493	Afundado	2,9663	0,7026	3,82	3,95	Ŧ	0,9923						
Cibboita	hidroxamato	Flotado	2,7382	2,7382	2 0 2	1 1 1	Λ	0.0975						
Gibbsita	AERO 6493	Afundado	2,8089	2,8089	3,02	4,11	4	0,9875						
Cibboita	hidroxamato	Flotado	2,556	0,2267	2.07	4.02	0	0 0 7 9 9						
Gibbsita	AERO 6493	Afundado	3,0859	0,7525	3,87	4,03	ð	0,9788						

	caulinita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g) (g)		pH inicial	pH final final Tempo de condicionamento (min)		Massa amostra inicial (g)					
Caulinita	hidroxamato	Flotado	2,1357	0,0202	1 02	1 21	1	0 0077					
Cauimita	AERO 6493	Afundado	3,0824	0,8986	4,05	4,21	T	0,9977					
Caulinita	hidroxamato	Flotado	2,128	0,006	4 00	4,2	4	0 0000					
Cauimita	AERO 6493	Afundado	3,1028	0,9484	4,09			0,9898					
Caulinita	hidroxamato	Flotado	2,1426	0,0016	2 00	4,07	0	0 0002					
	AERO 6493	Afundado	3,0607	0,8662	5,89		0	0,9893					

		hemat	tita, hidroxa	mato AERO	6493 20) mg/L		
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)
Hematita	hidroxamato	Flotado	2,5915	0,2316	0.27	0 75	1	0.0716
пешаціа	AERO 6493	Afundado	3,0272	0,7213	9,57	0,75	T	0,9710
Homotita	hidroxamato	oxamato Flotado		2,6357	0.22	0 77	4	0 0729
петтаціа	AERO 6493	Afundado	3,0616	3,0616	9,33	8,77	4	0,9738
Homatita	hidroxamato	Flotado	2,7463	0,4373	0.22	0 50	o	0.0674
пеніаціа	AERO 6493	Afundado	2,9578	0,5377	9,32	0,59	0	0,9074

	goethita, hidroxamato AERO 6493 20 mg/L												
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)					
Goethita	hidroxamato	Flotado	2,5252	0,1581	0.27	Q Q1	1	0 0201					
Goetinita	AERO 6493	Afundado	3,1147	0,8146	9,37	0,01	T	0,9801					
Goethita	hidroxamato	Flotado	2,4306	2,4306	9,33	8,76	4	0,9914					

	AERO 6493	Afundado	3,2982	3,2982				
Goethita	hidroxamato	Flotado	2,3854	0,151	0.22	0 77	0	0.0645
	AERO 6493	Afundado	3,1265	0,8203	9,32	8,27	8	0,9045

	quartzo, hidroxamato AERO 6493 20 mg/L													
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g) pH pH final final (min) Tempo de condicionamento (min)		Massa amostra inicial (g)								
Quartzo	hidroxamato	Flotado	2,4395	0,0887	0.27	0 1/	1	0 9675						
Quartzo	AERO 6493	Afundado	3,1704	0,8673	9,37	5,14	Ĩ	0,9075						
Quartza	hidroxamato	Flotado	2,4792	2,4792	0.22	0 67	Δ	0.0960						
Quartzo	AERO 6493	Afundado	3,222	3,222	9,33	8,07	4	0,9860						
Quartza	hidroxamato	Flotado	2,3975	0,1031	0.22	0.00	0	0.0201						
Quartzo	AERO 6493	Afundado	3,2469	0,8779	9,32	8,66	ð	0,9801						

	gibbsita, hidroxamato AERO 6493 20 mg/L													
Amostra	Reagente	Flotado/ Afundado	Massa amostra + filtro (g)	Massa amostra (g)	pH inicial	pH final	Tempo de condicionamento (min)	Massa amostra inicial (g)						
Gibbsita	hidroxamato	Flotado	2,6064	0,2823	0.27	Q Q/	1	0 0022						
Gibbsita	AERO 6493	Afundado	ado 2,6064 0,2823 9,37 8,84 1 dado 2,9663 0,7026 9,37 8,84 1	T	0,9923									
Cibboita	hidroxamato	Flotado	2,6456	2,6456	0.22	0.01	Δ	0 0720						
Gibbsita	AERO 6493	Afundado	3,0289	3,0289	9,55	0,91	4	0,9759						
Cibboita	hidroxamato	Flotado	2,556	0,2267	9,32	8,56	0	0 0700						
Gibbsita	AERO 6493	Afundado	3,0859	0,7525			0	0,9766						

		caulin	nita, hidroxar	nato AERO 6	493 20 ı	ng/L		
Amostra	Reagente	ReagenteFlotado/ AfundadoMassa amostra + filtro (g)Massa amostra (g)pH pH finicialTempo de condicionament (min)		Tempo de condicionamento (min)	Massa amostra inicial (g)			
Caulinita	hidroxamato	Flotado	2,182	0,0129	0.12	0 07	1	0.0025
Cauiiiiita	AERO 6493	Afundado	3,0359	0,8957	9,12	0,07	T	0,9923
Caulinita	hidroxamato	Flotado	2,1704	0,0119	0.21	0.06	Δ	0.0011
Cauimita	AERO 6493	Afundado	3,0279	0,8852	9,51	9,00	4	0,9811
Caulinita	hidroxamato	Flotado	2,1754	0,013479	0.07	0.01	0	1 0000
Cauillila	AERO 6493	Afundado	3,0457	0,9014	9,07	9,01	8	1,0009

Dados dos ensaios de flotação em célula de bancada

Minério fração grossa (-0,150+0,045 mm)

ensaios realizados com o minério de ferro goethítico, fração -0,150+0,045 mm																														
Amostra	sistem de flotaçã	ia ío	Varia estud	ável Jada	pH inicial	pH final	Produto	Massa (g)	Fe	SiO2	AI2O3	Ρ	РРС	MnO2																
OLS 1			_	100	0.12	0 02	Flotado	118,5	41,09	37,07	0,19	0,033	3,85	0,07																
OLS 2			g/t)	100	9,13	9,02	Afundado	28,16	21,43	66,42	0,27	0,022	2,55	0,07																
OLS 3			, Е	200	0.08	<u> 9</u> 07	Flotado	141,66	37,85	41,98	0,20	0,032	3,56	0,07																
OLS 4			age	200	9,08	0,97	Afundado	4,74	28,12	56,41	0,49	0,022	2,79	0,06																
OLS 5			dos	300	0 17	8 83	Flotado	144,91	36,91	43,36	0,20	0,029	3,53	0,07																
OLS 6				300	5,17	0,05	Afundado	1,78	32,51	48,62	0,82	0,029	2,95	0,13																
OLS 7			(Л	0.06	8 03	Flotado	144,6	37,53	42,46	0,21	0,032	3,53	0,07																
OLS 8			zão mir	4	9,00	0,93	Afundado	2,15	32,34	50,19	0,64	0,031	2,78	0,08																
OLS 9			va: NL/	Q	0.2	8 86	Flotado	143,95	37,73	42,16	0,21	0,032	3,54	0,07																
OLS 10)	0	9,2	8,80	Afundado	2,87	28,02	56,58	0,50	0,03	2,71	0,08																
OLS 11	.0		•	<u>000</u>	0.06	0 70	Flotado	103,34	42,66	34,42	0,19	0,039	4,23	0,08																
OLS 12	ý		ação m)	800	9,00	0,70	Afundado	45,33	24,14	62,61	0,21	0,023	2,55	0,06																
OLS 13	S		rota (rp	1200	0 1 1	Q Q /	Flotado	141,69	37,52	42,39	0,18	0,038	3,63	0,07																
OLS 14	e A		_	1200	9,11	0,04	Afundado	4,62	24,01	62,45	0,50	0,029	2,59	0,07																
OLS 15			n)	1	0.12	0 07	Flotado	136,44	38,18	41,44	0,23	0,036	3,59	0,07																
OLS 16	at c		npo d d.(mi		9,13	0,02	Afundado	10,23	24,2	62,51	0,36	0,026	2,4	0,07																
OLS 17	e o		emp ond.(o	0.04	0 01	Flotado	142,45	37,38	42,65	0,22	0,037	3,53	0,07																
OLS 27	0	ole ter con	0	9,04	0,04	Afundado	4,04	25,42	60,41	0,63	0,029	2,48	0,07																	
OLS 18				S	S	20	0.11	0 01	Flotado	233,52	37,25	42,84	0,22	0,034	3,54	0,07														
OLS 19			los	30	30	9,11	0,04	Afundado	4,91	21,25	66,17	0,83	0,027	2,49	0,07															
OLS 20			ólidos	ólidos	ólidos	sólido	sólido	sólido	sólid	e sólid	e sólic	e sólid	sólid	sólid	sólide	sólide	sólid	sólido	sólido	15	0.04	0 70	Flotado	404,8	37,88	41,88	0,22	0,035	3,59	0,07
OLS 21			de s	45	9,04	0,70	Afundado	15,1	18,91	70,22	0,52	0,023	2,11	0,06																
OLS 22			%	60	0.12	0 76	Flotado	639,1	38,26	41,27	0,22	0,038	3,64	0,08																
OLS 28				00	9,12	8,70	Afundado	27,7	10,84	82,84	0,34	0,01	1,27	0,03																
OLS 23			ura	15 3	9.02	8 86	Flotado	143,6	37,18	42,95	0,22	0,04	3,51	0,07																
OLS 24			erat C)	45,5	5,02	8,80	Afundado	3,3	26,08	59,43	0,63	0,03	2,51	0,07																
OLS 25			np∈ (°	586	0.08	Q 7Q	Flotado	142,6	37,29	42,72	0,23	0,039	3,57	0,08																
OLS 26			ter	56,0	9,08	0,70	Afundado	3,5	21,82	65,96	0,59	0,025	2,14	0,06																
HDX 1				100	0.1	0 07	Flotado	13,59	44,28	32,48	0,26	0,038	3,81	0,06																
HDX 2		\mathbf{n}	g/t)	100	9,1	0,07	Afundado	132,14	36,24	44,35	0,22	0,033	3,46	0,08																
HDX 3	ai ai	וֹת) E	200	0.01	Q Q 0	Flotado	40,39	45,96	30,02	0,22	0,039	3,89	0,07																
HDX 4	xama 0 649 ^{dosagem}	200	5,01	0,00	Afundado	105,58	33,71	48,04	0,24	0,034	3,37	0,08																		
HDX 5		300	0.01	ຽວາ	Flotado	74,16	41,59	36,49	0,22	0,037	3,67	0,07																		
HDX 6	0	й К		300	5,01	0,02	Afundado	71,64	32,46	49,86	0,24	0,032	3,34	0,08																
HDX 7	l d l	┙	ão I)	800	0.07	Q Q1	Flotado	58,6	43,19	33,99	0,22	0,038	3,88	0,07																
HDX 8) Pi	4	taç: rpm	000	5,07	0,01	Afundado	87,4	33,02	49,13	0,24	0,032	3,27	0,08																
HDX 9			i)	1200	9,14	8,80	Flotado	102,15	39,34	39,92	0,19	0,035	3,51	0,06																

HDX 10						Afundado	43,94	31,9	50,27	0,33	0,036	3,61	0,1
HDX 11		Ira			0.00	Flotado	134,23	36,43	43,97	0,28	0,033	3,52	0,07
HDX 12		ratu C)	49,4	9,15	8,89	Afundado	11,97	43,49	32,67	0,52	0,044	4,4	0,132
HDX 13		D°)	co =			Flotado	130,2	35,79	45,11	0,23	0,033	3,36	0,06
HDX 14		ten	60,5	9,08	8,82	Afundado	16,01	44,31	31,48	0,43	0,045	4,51	0,13
HDX 15	ão tempo de	a c				Flotado	107,89	39,03	40,16	0,22	0,036	3,67	0,07
HDX 16		o d	1	9,1	8,78	Afundado	37,94	31,75	50,95	0,30	0,035	3,2	0,08
HDX 17		mp.	_			Flotado	82,79	39,77	39,33	0,20	0,034	3,5	0,03
HDX 18		te Co	8	9,11	8,82	Afundado	62,73	33,06	48,99	0,23	0,031	3,41	0,03
HDX 19						Flotado	108,29	37,39	42,91	0,17	0,03	3,37	0,02
HDX 20		ão ninj	4	9,2	8,86	Afundado	37,26	35,4	45,27	0,26	0,028	3,77	0,02
HDX 21		vaz VL/r	_			Flotado	73,4	37,32	43,17	0,17	0,027	3,22	0,02
HDX 22		2	8	9,07	8,78	Afundado	72,46	36,33	44,10	0,24	0,03	3,61	0,04
HDX 23						Flotado	139,92	38,7	40,86	0,21	0,035	3,49	0,03
HDX 24		sc	30	9,2	8,86	Afundado	99,56	34,98	46,14	0,23	0,029	3,54	0,01
HDX 25		ólid	45	0.02	0.05	Flotado	276,6	41,45	36,70	0,19	0,033	3,76	0,01
HDX 26		le s	45	9,03	8,85	Afundado	142,4	28,54	55,98	0,20	0,023	2,95	0,01
HDX 27		%	60	0.40		Flotado	348	46,28	29,37	0,21	0,033	4,17	0,01
HDX 28			60	9,12	8,84	Afundado	321	27,3	58,02	0,18	0,021	2,71	0,01
AMN 1	de milho	ла		40.7	40.00	Flotado	19,79	7,24	88,69	0,10	0,01	0,8	0,04
AMN 2		mi	50	10,7	10,32	Afundado	Indado 126,38 41,6 36,19 (0,23	0,041	3,98	0,03		
AMN 3		de a (t)	100	10.02	10.40	Flotado	otado 65,06 9,48 85,32 0,15 (0,01	0,94	0,01			
AMN 4		dosagem (g/	100	10,62	10,40	Afundado	81,4	60,65	7,64	0,33	0,056	5,07	0,12
AMN 5			150	10,58	40.20	Flotado	72,52	13,02	79,85	0,15	0,009	1,35	0,01
AMN 6					10,38	Afundado	74,03	62,2	4,98	0,34	0,058	5,93	0,13
AMN 7		de (t)	100	10,51	10.20	Flotado	73,74	13,67	79,03	0,11	0,009	1,29	0,01
AMN 8		dosagem amido (g/	100		10,26	Afundado	72,27	62,55	4,65	0,33	0,06	5,69	0,12
AMN 9	q		500	10,63	10,22	Flotado	63,69	9,59	85,16	0,09	0,004	1,02	0,01
AMN 10	jic					Afundado	82,62	59,53	9,13	0,32	0,057	5,49	0,12
AMN 11	μ	<u> </u>	л	10.00	10,33	Flotado	27,24	7,35	88,29	0,35	0,007	0,83	0,01
AMN 12	/ 9	.ão min	4	10,08		Afundado	118,51	57,35	12,54	0,29	0,042	4,24	0,09
AMN 13	</td <td>vaz NL/I</td> <td>0</td> <td>10.69</td> <td>10.21</td> <td>Flotado</td> <td>40,17</td> <td>8,19</td> <td>87,24</td> <td>0,19</td> <td>0,006</td> <td>0,84</td> <td>0,01</td>	vaz NL/I	0	10.69	10.21	Flotado	40,17	8,19	87,24	0,19	0,006	0,84	0,01
AMN 14	D	=	0	10,00	10,51	Afundado	undado 106,5 60,24	60,24	6,87	0,34	0,045	5,18	0,13
AMN 15	ш		<u>000</u>	10 65	10.20	Flotado	67,54	10,11	84,35	0,13	0,009	1,04	0,01
AMN 16	E	lçãc m)	800	10,05	10,20	Afundado	79,21	61,46	5,91	0,33	0,059	5,64	0,12
AMN 17	р В	rota (rp	1200	10 50	10.20	Flotado	49,64	7,73	87,91	0,15	0,008	0,86	0,01
AMN 18	ti	-	1200	10,58	10,28	Afundado	96,82	52,86	19,03	0,28	0,048	4,91	0,1
AMN 19		in)	1	10 57	10.21	Flotado	67,3	10,48	83,83	0,12	0,007	1,04	0,01
AMN 20	nina F			10,37	10,51	Afundado	79,09	61,33	6,14	0,33	0,057	5,6	0,12
AMN 21		mp. Jina	0	10.64	10.40	Flotado	52,34	6,99	89,14	0,12	0,009	0,72	0,01
AMN 22		te Ar	0	10,04	10,40	Afundado	93,93	55,13	15,57	0,30	0,055	5,07	0,11
AMN 23	ar	in)	1	10.61	10 27	Flotado	63,51	9,37	85,55	0,11	0,008	0,92	0,01
AMN 24		.cor		10,01	10,57	Afundado	82,78	59,99	8,09	0,31	0,056	5,59	0,11
AMN 25		mp. 1idc	Q	10 51	10 16	Flotado	61,85	8,7	86,58	0,12	0,01	0,83	0,01
AMN 26		te An	×	10,31	10,40	Afundado	84,49	58,61	10,31	0,30	0,049	5,47	0,01

AMN 27		de sólidos	20	10.65	10,42	Flotado	110,8	9,92	84,66	0,08	0,008	1,05	0,01
AMN 28			50	10,05		Afundado	130,22	60,7	6,93	0,30	0,055	5,74	0,12
AMN 29			15	10,65	10,24	Flotado	198,2	10,6	83,49	0,09	0,011	1,22	0,02
AMN 30			45			Afundado	222,08	61,28	6,11	0,30	0,057	5,72	0,13
AMN 31		%	60	10,68	10,21	Flotado	314,27	12,56	80,54	0,10	0,012	1,36	0,02
AMN 32						Afundado	356,73	59,25	9,25	0,29	0,055	5,48	0,14
AMN 33		ura	45.0	10,66	10,32	Flotado	4,34	13,43	78,63	0,25	0,019	1,85	0,03
AMN 34		temperatu (°C)	45,2			Afundado	142,19	38,07	42,38	0,20	0,035	2,83	0,08
AMN 35			tempe (°) 22'3	7,3 10,69	10,49	Flotado	3,59	17,99	71,33	0,36	0,026	2,49	0,04
AMN 36						Afundado	143,38	38,07	41,63	0,19	0,034	3,6	0,07

Minério fração fina (-0,045+0,010 mm) e ensaios de otimização do minério grosso

ensaios realizados com o minério de ferro goethítico, fração -0,045+0,010 mm													
Amostra	Sistema de flotação	Varia estud	ável lada	pH inicial	pH final	Produto	Massa (g)	Fe	SiO2	AI2O3	Ρ	РРС	MnO2
Amostra 1	-	e n)	1	0.01	0 00	Flotado	17,25	58,23	11,58	0,34	0,042	4,63	0,07
Amostra 2		empo d nd. (mi	T	9,01	8,80	Afundado	128,74	50,01	23,72	0,33	0,043	4,22	0,10
Amostra 3			0	0.00	0 00	Flotado	20,37	60,15	9,12	0,30	0,042	4,39	0,07
Amostra 4	dio	co te	õ	9,09	0,00	Afundado	125,28	49,44	24,50	0,33	0,040	4,26	0,10
Amostra 5	e só		100	0.10	0 07	Flotado	2,33	60,28	9,08	0,32	0,042	4,19	0,09
Amostra 6	b de	/t)	100	9,10	0,07	Afundado	144,1	49,69	23,03	0,44	0,050	5,24	0,09
Amostra 7	eato	л (g	200	9,19	8,89	Flotado	6,37	61,10	7,91	0,33	0,042	4,18	0,07
Amostra 8	ole	gen	200			Afundado	142,9	50,82	22,04	0,35	0,044	4,74	0,09
Amostra 9		osa				Flotado	21,3	60,48	8,82	0,33	0,041	4,16	0,10
Amostra 10		q	300	9,17	8,90	Afundado	125,55	48,08	26,15	0,34	0,044	4,56	0,08
Amostra 11		tempo de cond. (min)	1	9,15	8,84	Flotado	39,7	60,21	9,31	0,32	0,042	4,05	0,11
Amostra 12			T			Afundado	106,4	47,24	27,03	0,34	0,043	4,89	0,07
Amostra 13	6		0	0.02	8,89	Flotado	39,5	58,60	10,75	0,34	0,045	4,91	0,08
Amostra 14	KO 64		0	9,05		Afundado	105	48,10	26,72	0,31	0,039	3,98	0,10
Amostra 15	O AEF		100	9,12	8,83	Flotado	12,2	58,36	10,08	0,47	0,052	5,75	0,09
Amostra 16	kamat	(t)				Afundado	134,1	50,37	23,42	0,32	0,040	4,01	0,10
Amostra 17	hidrox	em (g/				Flotado	24,9	56,85	12,54	0,47	0,049	5,46	0,09
Amostra 18		dosag	200	9,10	8,82	Afundado	121	49,61	24,67	0,29	0,039	3,90	0,09
Amostra 19			300	9.07	8,88	Flotado	68,1	44,82	30,51	0,32	0,047	4,86	0,08
Amostra						Afundado	78,4	43,33	33,65	0,32	0,040	3,86	0,10

I	20													
	Amostra 21	nostra 21 nostra 22 nostra 23 nostra 24		50	10.02	10,27	Flotado	25,4	14,98	76,53	0,23	0,015	1,72	0,03
	Amostra 22		a (g/t)	50	10,03		Afundado	120,5	58,62	10,80	0,33	0,043	4,80	0,11
	Amostra 23		dosagem de amin.	400	10.62	10,38	Flotado	40,7	20,20	68,59	0,28	0,018	2,11	0,04
	Amostra 24			100	10,62		Afundado	104,2	63,27	4,02	0,33	0,048	5,12	0,11
	Amostra 25	A / an		150	10 59	10.33	Flotado	52,8	26,54	58,87	0,34	0,023	2,70	0,05
	Amostra 26	am ED		150	10,55	10,55	Afundado	93,1	64,39	2,15	0,30	0,049	5,14	0,11
	Amostra 27	a amina Flotiga	amido (g/t)	100	10,55	10.27	Flotado	48	23,72	63,37	0,25	0,019	2,34	0,04
	Amostra 28			100		10)27	Afundado	98,5	64,18	2,69	0,32	0,050	5,23	0,11
	Amostra 29		gem de	500	10,51	10,38	Flotado	42,2	21,33	66,80	0,28	0,019	2,29	0,04
	Amostra 30		dosag	500			Afundado	103,4	63,07	4,29	0,32	0,047	5,15	0,11
	Amostra 31	Ensaios otimizados		idos	10.60	10.20	Flotado	235,9	16,62	74,28	0,10	0,015	1,75	0,03
	Amostra 32	Amostra com ami	nina/am	nido	10,05	10,35	Afundado	184,3	63,75	2,93	0,26	0,059	5,88	0,12
	Amostra 33	Ensaios otimizados para a fração grossa com hidroxamato			9,07	8,82	Flotado	37,4	46,77	27,41	0,11	0,021	5,50	0,04
Amostra 34 Amostra 35 Amostra 36	Amostra 34						Afundado	627,7	37,14	43,21	0,09	0,017	3,50	0,04
	Amostra 35	Ensaios nara a fr	nsaios otimizados			8 20	Flotado	503,9	44,69	32,92	0,10	0,022	2,97	0,04
	oleato de sódio		5,05	0,00	Afundado	166,6	16,12	75,11	0,08	0,009	1,69	0,02		