UNIVERSIDADE FEDERAL DE MINAS GERAIS Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

EMISSÃO DE GASES DE EFEITO ESTUFA (GEE) E IMPACTOS ATMOSFÉRICOS ADVINDOS DA PRODUÇÃO HIDROELÉTRICA: ESTUDO DE CASO DA UHE VOLTA GRANDE

Guilherme de Souza Dias Andrade

Belo Horizonte 2014

EMISSÃO DE GASES DE EFEITO ESTUFA (GEE) E IMPACTOS ATMOSFÉRICOS ADVINDOS DA PRODUÇÃO HIDROELÉTRICA: ESTUDO DE CASO DA UHE VOLTA GRANDE

Guilherme de Souza Dias Andrade

EMISSÃO DE GASES DE EFEITO ESTUFA (GEE) E IMPACTOS ATMOSFÉRICOS ADVINDOS DA PRODUÇÃO HIDROELÉTRICA: ESTUDO DE CASO DA UHE VOLTA GRANDE

Dissertação apresentada ao Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Meio Ambiente

Linha de pesquisa: Caracterização, Controle e Prevenção da Poluição

Orientador: Eduardo von Sperling

Belo Horizonte Escola de Engenharia da UFMG 2014

A553e	Andrade, Guilherme de Souza Dias. Emissão de gazes de efeito estufa (GEE) e impactos atmosféricos advindos da produção hidroelétrica [manuscrito]: estudo de caso da UHE Volta Grande / Guilherme de Souza Dias Andrade. – 2014. xii,104 f., enc.: il.
	Orientador: Eduardo von Sperling.
	Dissertação (mestrado) Universidade Federal de Minas Gerais, Escola de Engenharia.
	Anexos: f. 97-104. Inclui bibliografia.
	1. Engenharia sanitária - Teses. 2. Meio ambiente - Teses. 3. Usinas hidrelétricas - Teses. 4. Gases estufa - Teses. I. Von Sperling, Eduardo. II. Universidade Federal de Minas Gerais. Escola de Engenharia.
	CDU: 628(043)

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS Escola de Engenharia Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos Avenida Antônio Carlos, 6627 - 4º andar - 31270-901 - Belo Horizonte – BRASIL Telefax: 55 (31) 3409-1882 - posgrad@desa.ufmg.br http://www.smarh.eng.ufmg.br

FOLHA DE APROVAÇÃO

Emissão de Gases de Efeito Estufa (GEE) e impactos atmosféricos advindos da produção hidroelétrica: estudo de caso da UHE Volta Grande

GUILHERME DE SOUZA DIAS ANDRADE

Dissertação defendida e aprovada pela banca examinadora constituída pelos Senhores:

Prof. EDUARDO VON SPERLING Orientador

AUDIO LEITE DE SOUZA Pro

Prof. GILBERTO CALDEIRA BANDEIRA DE MELO

Prof. MARCOS VON SPERLING

destre

Prof. José Fernandes Bezerra Neto

Aprovada pelo Colegiado do PG SMARH

Versão Final aprovada por

Profa. Juliana Calábria de Araújo Coordenadora Prof. Eduardo von Sperling Orientador

Belo Horizonte, 05 de junho de 2014.

AGRADECIMENTOS

Primeiramente, gostaria de agradecer aos meus pais, que vêm me apoiando durante toda a minha formação acadêmica, nos últimos sete anos (incluo também o meu período de graduação). Em especial, gostaria de agradecer à minha mãe, Luiza Helena S. Dias, que mesmo em momentos de (extremo) mau-humor da minha parte, esteve presente, confiante e sempre me motivando nesta empreitada. Gostaria de agradecer também ao meu avô, Antônio Geraldo Dias, por tudo o que ele me ensinou enquanto vivo. E mesmo não estando mais entre nós, ele se fez e ainda se faz presente em cada página do presente trabalho.

Gostaria também de agradecer às minhas tias Maria Alcina e Tereza Dias, que, de uma forma ou de outra, também contribuíram de forma tão significativa durante esses últimos anos e que suportaram meus momentos de estresse. Não poderia esquecer de agradecer também a paciência que meus primos Ronaldo Júnior, Daniel Gardoni e Lara Gardoni tiveram comigo, principalmente nestes últimos dois anos em que tenho morado com alguns deles.

Em especial, gostaria também de agradecer à Mackenzie Weekes, por tolerar todos os meus momentos de loucura. Apesar da distância física que nos separa, sempre esteve presente, principalmente naqueles momentos mais "desesperadores". Não tenho palavras para descrever tudo o que ela e minha mãe fizeram por mim. Sinto em reconhecer minhas limitações, mas saibam que sem a ajuda de vocês, também não sei se teria forças para enfrentar este novo desafio.

Não poderia deixar de agradecer ao meu orientador, professor Dr. Eduardo von Sperling, além da confiança em mim depositada (o que também lhe sou imensamente grato), agradeço à competência e paciência em me orientar nos últimos 2 anos.

Aproveitando, gostaria também de agradecer aos professores Dr. Gilberto Caldeira Bandeira de Melo e Dr. Cláudio Leite de Souza, por me aceitarem como integrante do projeto no qual a presente dissertação se insere. Projeto este que, além da dissertação, possibilitou um aprimoramento em vários aspectos, tanto pessoal quanto profissional. Não me esquecendo, é claro, dos alunos Arthur Paixão e Karoline Costa, e da secretária Elaine Dayse, que moveu mundos e fundos para me auxiliar na execução das tarefas a mim incumbidas.

Gostaria de agradecer também ao professor Dr. José Fernandes e ao seu aluno de doutorado, Nelson Mello, por me auxiliarem não apenas com a parte técnica de análise dos gases, mas também pelas inúmeras conversas que muito me inspiraram e me abriram os olhos no decorrer desses anos. Aproveito para agradecer também ao professor Dr. Marcos von Sperling por ter aceito ser parte integrante da minha banca de avaliação tão em cima da hora e contribuir de forma importantíssima na elaboração desta versão final.

E os amigos? Estes, é claro, também têm aqui um lugar especial. Estejam eles próximos ou distantes (refiro-me à distância geográfica), também sempre demonstraram apoio total nesses últimos dois anos. Por serem tantos e por medo de pecar pelo esquecimento, saibam que a todos aqui me refiro. Não consigo imaginar essa trajetória sem os momentos de descontração por eles proporcionados, e a todas as besteiras que compartilhamos.

Não poderia deixar de agradecer àqueles novos amigos que conheci e me acolheram quando iniciava o programa. Dentro os vários "*personagens*" que tive o prazer de conhecer, cito: Aline Morena, Bruna Coelho (principalmente pelas sessões de terapia!), Danusa Campos, Helder Cumbi (ainda que não se encontre no Brasil), Maurício Guimarães, Mateus Matos (pelo menos aqui você não foi esquecido!!), Misael Dieimes, Thiago Nascimento e Valéria Rodrigues (matando seus leões todos os dias!). A vocês, meus sinceros agradecimentos (valeu por tudo, moçada!!!). Sem contar os demais alunos que ingressaram no programa a pouco tempo e, ainda que não tenha tido tempo de convívio como tive com os demais, também fizeram com que o meu tempo no DESA fosse muito bem aproveitado.

Concluo aqui. Porém concluo sabendo que ainda há muito a ser dito e agradecido. Estou muito aquém de tê-lo feito em sua completude. Posso pecar por não agradecer o suficiente, mas nunca incidirei no erro de não o fazer.

Mais uma vez, meus mais sinceros agradecimentos! Muito obrigado a todos!

RESUMO

O número de usinas hidroelétricas vem aumentando ao longo dos anos, visando o atendimento da demanda energética global, principalmente em países com um alto potencial para as fontes hidroelétricas. Recentemente, tem-se discutido o real impacto das UHEs no que diz respeito a emissões de gases de efeito estufa, principalmente o CO₂ e o CH₄. Apesar de estimativas indicarem que em ambientes tropicais estes fluxos sejam maiores, muitas incertezas acercam o assunto. O objetivo do presente estudo foi estimar as emissões difusivas de CO₂ e CH₄ pelo reservatório da UHE de Volta Grande (MG/SP), por meio da aplicação de equações semi-empíricas a partir das concentrações de CO₂ e CH₄ dissolvidos na interface ar-água.

Apesar de ser um reservatório tropical, observa-se que os fluxos difusivos de CO₂ e CH₄ podem ser notadamente inferiores àqueles valores estabelecidos como padrão para a região tropical. Volta Grande apresentou fluxos de CO₂ em torno de 19,09 mmol.m⁻².d⁻¹ e fluxos de CH₄ de 224,36 µmol.m⁻².d⁻¹. Apesar de os fluxos de CO₂ em Volta Grande não terem diferido dos fluxos observados em outros sistemas, a nível mundial, Volta Grande apresenta fluxos significativamente menores que os fluxos observados em ambientes amazônicos. Já para o CH4, os fluxos observados em Volta Grande são significativamente inferiores aos fluxos observados nos demais reservatórios tropicais como um todo. Este fluxo relativamente baixo observado em Volta Grande pode ser resultado de diversos fatores atuando em conjunto, como baixa carga orgânica, baixo tempo de residência e elevada idade do reservatório. No caso do CH4, esses fluxos foram ainda menores provavelmente devido à oxigenação da coluna d'água, que inviabilizaria a formação do gás na coluna d'água. Em relação ao impacto atmosférico, observase que Volta Grande, ainda que localizado em região tropical, apresenta um fluxo de carbono por energia produzida inferior àqueles observados em reservatórios amazônicos. Quando comparado com as usinas termoelétricas, observa-se que Volta Grande, em relação ao total de energia gerada, ainda é menos impactante, em termos de emissões atmosféricas.

Com base nesses resultados, conclui-se que a generalização com relação ao impacto atmosférico relativo a UHEs deve ser evitada, uma vez que este fenômeno é bastante variável, mesmo em reservatórios localizados na mesma região climática e geográfica.

iv

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ABSTRACT

The number of hydroelectric power plants has been growing, especially in countries with high hydroelectric potential, aiming to attend the global energy demand. Recently, it has been discussed the real contribution of hydropower source for the increasing atmospheric concentration of GHG, especially regarding CO₂ and CH₄. Although estimations indicate that tropical reservoirs present the highest fluxes, various uncertainties are still to be solved in order for a better understanding and perception about this assumption.

Although being a tropical reservoir, Volta Grande reservoir presented diffusive fluxes of CO₂ and CH₄ remarkably lower than what is established for tropical reservoir. The median flux for CO₂ was 19.09 mmol.m⁻².d⁻¹, and for CH₄ was 224.36 µmol.m⁻².d⁻¹. Volta Grande reservoir presented CO₂ fluxes similar to those seen in tropical, subtropical and temperate regions. However, analyzing within the same region, it was observed that Volta Grande has lower fluxes than Amazonian systems. For CH₄ emissions, it was found that Volta Grande has a lower rate than overall tropical reservoirs. The low median flux observed in Volta Grande is a result of many factors working simultaneously, such as low organic matter content, low residence time, although located in the tropical region, has an emission-energy produced ratio lower than what is seen in tropical reservoirs, due to the high ratios observed in Amazonian reservoirs. Moreover, it was seen that Volta Grande emits less carbon to the atmosphere per energy produced than its thermoelectric counterpart.

Based on these results, it is to note that generalizing tropical reservoirs as great emitters can be misleading, once GHG emissions from hydropower reservoirs vary significantly even among reservoirs located within the same climatic and geographic region.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

v

SUMÁRIO

LISTA DE FIGURAS				
LI	STA [DE TAB	ELAS XI	
1	I	NTROD	DUÇÃO1	
2	c	DBJETIN	/OS	
-		UDJETIVOS		
	2.1	OBJE	TIVO GERAL	
	2.2	OBJE	TIVOS ESPECIFICOS	
3	R	REVISÃ	O DA LITERATURA 4	
	3.1	Dem	anda energética global e emissão de GEE	
	3.2	TRAN	SPORTE E CARACTERIZAÇÃO DA MATÉRIA ORGÂNICA	
	3	8.2.1	Transporte da matéria orgânica8	
	3	8.2.2	Transformação da matéria orgânica10	
	3.3	Dinâ	MICA DA MATÉRIA ORGÂNICA E GERAÇÃO DE GEE13	
	3	8.3.1	Oxidação aeróbia	
	3	8.3.2	Fermentação15	
	3	8.3.3	Foto-oxidação	
	3	8.3.4	Fotossíntese	
	3.4	EMIS	SÃO DE GEE EM RESERVATÓRIOS	
	3	8.4.1	Vias de emissão de GEE	
	3	8.4.2	Fatores de emissão de GEE	
4	Ν	MATER	IAL E MÉTODOS	
	4.1	Área	DE ESTUDO	
	4.2	AMO	STRAGEM	
4.3 Concentração de GEE		Cond	ENTRAÇÃO DE GEE	
	4.4	EMIS	sões de GEE	
	4	1.4.1	Método de microssuperfície	
	4.5	Сом	PARAÇÃO ENTRE HIDROELÉTRICAS E TERMOELÉTRICAS	
	4.6	Parâ	METROS AMBIENTAIS	
	4.7	Anál	ISE ESTATÍSTICA	
	4	1.7.1	Estatística Descritiva	
	4	1.7.2	Análise de Variância Kruskal-Wallis	
	4	1.7.3	Interpolação de Kriger (Krigagem)	
-			vi	

5	R	ESULTA	ADOS E DISCUSSÃO	38
	5.1	Distri	BUIÇÃO ESPACIAL DAS CONCENTRAÇÕES E FLUXOS DOS GEES	38
	5	.1.1	Concentração de CO₂ e CH₄	38
	5	.1.2	Fluxos difusivos de CO ₂ e CH ₄	44
	5	.1.3	Fluxos difusivos de CO2 em sistemas em cascata	55
	5	.1.4	Fluxos difusivos de CO2 e CH4 em diferentes biomas nacionais	57
	5	.1.5	Fluxos difusivos de CO₂ e CH₄ em diferentes regiões climáticas	53
	5.2	Relaç	ÃO ENTRE AS EMISSÕES ATMOSFÉRICAS E A PRODUÇÃO ENERGÉTICA	70
	5	.2.1	Emissões atmosféricas e produção energética em um contexto brasileiro	70
	5	.2.2	Comparação entre UHEs e suas usinas termoelétricas (UTEs) equivalentes	74
6	С	ONCLU	SÕES	81
7	R	ECOME	ENDAÇÕES	82
REFERÊNCIAS				
APÊNDICE				

LISTA DE FIGURAS

Figura 1: Consumo de energia mundial. Dados históricos e projeções de 1990 a 20345
Figura 2: Consumo de energia elétrica no Brasil, discriminando os diferentes setores. Média
histórica e projetada de 2008 a 2020
Figura 3: Distribuição percentual da participação de diferentes fontes energéticas na matriz
elétrica brasileira7
Figura 4: Possíveis rotas de transporte e transformação do carbono em ambientes aquáticos
(modificado de FINLAY <i>et al.</i> 2009)
Figura 5: Estrutura química de um composto orgânico lábil: Arginina
Figura 6: Estrutura química de um composto orgânico refratário: Lignina
Figura 7: Reservatório de Volta Grande, localizado na bacia do Rio Grande, na divisa entre os
estados de Minas Gerais e São Paulo
Figura 8: Reservatório de Volta Grande com os 18 pontos amostrais assinalados
Figura 9: Variação das concentrações de CO ₂ e CH ₄ considerando todos os pontos amostrados
no reservatório de Volta Grande. Os pontos acima e abaixo representam os outliers
Figura 10: Valores medianos e desvio padrão das concentrações de CO ₂ (A) e CH ₄ (B) na
Margem Norte, Margem Sul e Eixo Central
Figura 11: Relação entre a distância do ponto amostrado e a concentração de CO ₂ (superior, n
= 18, $p = 0,43$) e CH ₄ (inferior, n = 18, $p < 0,01$)
Figura 12: Interpolação das concentrações de CO ₂ (A) e de CH ₄ (B) ao longo do reservatório
Volta Grande
Figura 13: Variação dos fluxos de CO ₂ e CH ₄ no reservatório Volta Grande. Os pontos acima e
abaixo representam outliers

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

viii

Figura 14: Fluxo difusivo de CO2 no reservatório de Volta Grande, separados de acordo com
as regiões amostradas
Figura 15: Fluxo difusivo de CH ₄ no reservatório de Volta Grande, separados de acordo com
as regiões amostradas
Figura 16: Relação entre o fluxo difusivo de CH ₄ e a distância do barramento ($p < 0,05$, n = 18)
Figura 17: Relação entre o fluxo difusivo de CO ₂ e a distância do barramento ($p < 0.05$, n = 18)
Figura 18: Interpolação dos fluxos difusivos de CO_2 (A) e CH_4 (B) ao longo do reservatório de
Volta Grande
Figura 19: Mapa de uso e cobertura do solo anterior ao enchimento do reservatório de Volta
Grande (CEMIG 2014) 54
Figura 20: Fluxos difusivos de CO2 dos reservatórios localizados no Rio Grande, à montante
do reservatório de Volta Grande. Os dados referentes aos reservatórios de Furnas, Mascarenhas
de Moraes e Luiz C. B. Carvalho foram obtidos de Roland <i>et al.</i> , 201055
Figura 21: Comparação entre os fluxos difusivos de CO ₂ em diferentes biomas nacionais. Letras
distintas nas colunas representam diferenças significativas entre as medianas $(n < 0.05)$ 58
$(p \to 0, 00) \dots \dots$
Figura 22: Comparação entre os fluxos difusivos de CH4 nos quatro biomas nacionais. Letras
diferentes representam diferenças significativas ($p < 0,05$)
Figura 23: Comparação dos fluxos difusivos de COs entre Volta Grande, sistemas troniçais
amazônicos e não-amazônicos subtronicais e temperados. Letras diferentes sobre as colunas
indicam fluxos de CO ₂ diferentes estatisticamente ($n < 0.05$).
indicalin nuxos de CO ₂ diferentes estatisticaliente ($p < 0,05$)
Figura 24: Comparação dos fluxos difusivos de CH4 entre Volta Grande, sistemas tropicais,
subtropicais e temperados Letras diferentes sobre as colunas indicam fluxos de CH4 diferentes
estatisticamente (<i>p</i> < 0,05)
ix

Figura 28: Comparação entre as emissões de GEE oriundas das UHEs e das UTEs equivalentes, para sistemas localizados no Cerrado, na floresta Atlântica e floresta Amazônica, em tC.ano⁻¹.

LISTA DE TABELAS

Tabela 4.1: Tabela descritiva do reservatório da UHE Votla Grande 27
Tabela 4.2: Fatores de conversão adotados para o cálculo da emissão de GEE e a eficiência na
produção da energia. As emissões foram comparadas em termos de carbono
Tabela 4.3: Tabela com os fluxos difusivos médios de CO2 e CH4 para os diferentes
reservatórios brasileiros e Petit Saut
Tabela 4.4: Tabela com os fluxos difusivos médios de CO2 e CH4 para os reservatórios
localizados nas regiões Subtropical e Temperada
Tabela 5.1: Valores médios, medianos, máximos, mínimos e coeficiente de variação da
concentração de CO_2 e CH_4 para os 18 pontos amostrados, separados de acordo com a posição
dos mesmos no reservatório
Tabela 5.2: Valores médios, medianos, máximos, mínimos e coeficiente de variação para CO ₂
$(mmol.m^{-2}.d^{-1})$ e de CH_4 (µmol.m ⁻² .d ⁻¹) para os 18 pontos amostrados no reservatório de Volta
Grande, separados de acordo com a região amostrada
Tabela 5.3: Caracterização dos diferentes biomas considerados no presente estudo quanto ao
percentual de cobertura vegetal e ocupação do solo
Tabela 5.4: Taxas de emissão de GEE, densidade energética e impacto atmosférico para a UHE
Volta Grande
Apêndice A: Concentrações de CO2 e CH4, valores médios, medianos, desvios-padrão,
máximos, mínimos e coeficiente de variação para os 18 pontos amostrados, apresentados de
modo consolidado
Apêndice B: Fluxos de CO2 e CH4, valores médios, medianos, máximos, mínimos, desvios-
padrão e coeficiente de variação para os 18 pontos amostrados no reservatório de Volta
Grande

xi

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

- ANEEL Agência Nacional de Energia Elétrica;
- CID Carbono Inorgânico Dissolvido;
- COD Carbono Orgânico Dissolvido;
- COP Carbono Orgânico Particulado;
- CTC Capacidade de Troca Catiônica;
- DBO Demanda Bioquímica de Oxigênio;
- GEE Gases de Efeito Estufa;
- IQA índice de Qualidade da Água;
- MO Matéria Orgânica;
- MO_L Matéria Orgânica Lábil;
- MO_R Matéria Orgânica Refratária;
- SISÁGUA Sistema de Informação de Qualidade da Água dos Reservatórios da Cemig;
- SH Substâncias Húmicas;
- THM Trihalometanos;
- UHE Usina Hidroelétrica;
- UTE Usina Termoelétrica.

1 INTRODUÇÃO

A demanda energética global tem aumentado gradativamente, a partir do século XVIII. Como fontes principais, destacam-se o carvão e o óleo e seus derivados (incluindo o petróleo). Como consequência da combustão destas matérias-primas, tem-se observado um aumento na concentração de gases, dentre esses, os gases de efeito estufa (GEE).

A emissão de gases de efeito estufa, em especial o dióxido de carbono (CO_2) e o metano (CH_4), por reservatórios de hidroelétricas tem sido bastante estudada e discutida, principalmente pelo fato de a energia proveniente de usinas hidroelétricas (UHEs) estar sendo, atualmente, considerada como energia limpa, bem como por sua contribuição na produção global de energia, em especial no Brasil. Esta classificação das usinas hidroelétricas já é bastante contestada, com comprovações de que alguns reservatórios, em regiões tropicais ou temperadas, são fontes de CO_2 e CH_4 para a atmosfera. Estudos nesta área estão evoluindo, principalmente com os avanços metodológicos para as medições de fluxos desses gases para a atmosfera.

O CO₂ e CH₄ produzidos nos reservatórios são produtos da transformação da matéria orgânica. Esta matéria orgânica pode ser proveniente do próprio ambiente (autóctone) ou pode ter origem na bacia de drenagem (alóctone), sendo carreada para dentro do reservatório por ação de rios, percolação e lixiviação da vegetação. Os mecanismos envolvidos na degradação da matéria orgânica são: (i) a oxidação aeróbia, a (ii) fermentação anaeróbia e (iii) a foto-oxidação. A ocorrência desses fenômenos está associada a qualidade da matéria orgânica (se ela é lábil ou recalcitrante), com a qualidade da água (e. g. concentração de oxigênio dissolvido, concentração de matéria orgânica, etc.) e com os padrões de circulação vertical da água no reservatório.

Após serem produzidos, esses gases têm 3 (três) rotas para serem transferidos para a atmosfera: a via difusiva, a via ebulitiva e a desgaseificação (do inglês *degassing*).

Sob este aspecto, tanto na produção desses gases, quanto na sua transferência para a atmosfera, fatores ambientais, limnológicos e hidrológicos apresentam um papel fundamental. Entretanto, muitas incertezas ainda impedem uma interpretação condizente com o verdadeiro papel dos reservatórios das UHEs para a emissão global de GEE.

1

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Adicionalmente, a relativização entre impacto atmosférico e a produção energética faz-se necessária, objetivando uma melhor compreensão do papel das UHEs no que se refere a possíveis mudanças climáticas.

Considerando o cenário nacional, onde a matriz energética se sustenta primordialmente na fonte hidroelétrica (em torno de 64% da fonte energética produzida no país) e tendo em vista os planos de expansão desta matriz para o atendimento da demanda interna, é fundamental maiores estudos dos sistemas nacionais.

É neste contexto que a presente pesquisa visa contribuir, investigando os fluxos desses GEEs por usinas hidroelétricas, associando-os a aspectos ambientais, analisando no contexto nacional e internacional. Adicionalmente às medições dos fluxos difusivos de CO₂ e CH₄, a quantidade de carbono emitida por energia produzida também foi estimada, a fim de comparar as principais tecnologias para produção energética em termos de emissão de carbono para a atmosfera, tanto no âmbito nacional quanto internacional.

2 OBJETIVOS

2.1 Objetivo geral

O objetivo geral desta pesquisa é investigar o impacto atmosférico decorrente da emissão difusiva de GEE na UHE Volta Grande, associando-o com a produção energética e localização geográfica.

2.2 Objetivos específicos

- Investigar a heterogeneidade espacial de emissão difusiva de GEE no reservatório;
- Comparar a emissão difusiva de GEE na UHE Volta Grande entre diferentes biomas nacionais;
- Comparar a emissão difusiva de GEE na UHE Volta Grande em nível nacional e internacional;
- Estimar a taxa de emissão atmosférica difusiva de carbono em relação à produção energética, na região tropical, subtropical e temperada;
- Comparar, em termos de emissão de carbono, a fonte hidroelétrica e seu equivalente em termoelétrica.

3 REVISÃO DA LITERATURA

3.1 Demanda energética global e emissão de GEE

Desde a revolução industrial, ocorrida na Inglaterra no século XVIII, desencadeou-se uma série de mudanças, no que diz respeito ao setor produtivo industrial, o que refletiu de forma direta e indireta na vida da sociedade. Como resultado do desenvolvimento de máquinas movidas a carvão ou a vapor, a necessidade por energia aumentou. Este progressivo aumento da demanda energética se mantém desde então.

Atualmente, as principais fontes de energia para suprimento da população e do setor industrial são: (i) carvão mineral e/ou vegetal, (ii) petróleo, (iii) gás mineral, (iv) nuclear, e (v) fontes renováveis. Nesta última categoria se inserem a energia solar, energia eólica, energia hidroelétrica e biocombustíveis. Dentre as fontes de energia acima citadas, o carvão mineral e o petróleo ainda são as mais usadas como resultado do elevado número de veículos automotores que ainda os utilizam. Projeções indicam que a demanda por esses tipos de energia tende a aumentar nos próximos anos (Figura 1, Figura 2) (BRASIL, 2013; IEO, 2013).

Apesar de ser essencial para o provimento de bens e serviços à população, a produção de energia não está livre de impactos ambientais. Dentre os impactos decorrentes da exploração e utilização da energia, ultimamente têm se destacado a produção e emissão dos chamados gases de efeito estufa (GEE).

Os GEEs são gases que, quando presentes na atmosfera, apresentam a capacidade de absorção de radiação infravermelha, retendo o calor que antes seria refletido para o espaço, na atmosfera. Dentre os exemplos mais abundantes na atmosfera, pode-se citar o vapor d'água, o dióxido de carbono (CO₂), o metano (CH₄), o óxido nitroso (N₂O), dentre outros. Entretanto, vale ressaltar aqui que aqueles mais comumente relacionados à produção de energia são o CO₂ e CH₄. Esses gases são produzidos tanto no ato da extração dos recursos minerais (e. g. extração de carvão ou de petróleo), quanto no transporte de combustível, sua transformação em refinarias e estoque de energia.

Figura 1: Consumo de energia mundial. Dados históricos e projeções de 1990 a 2034

Fonte: IEO, 2013

Indubitavelmente, a queima de carvão, ou qualquer outro combustível fóssil, resulta na produção e consequente liberação de GEE para a atmosfera, além de outros gases, como óxidos de nitrogênio (e. g. NO e NO₂) e óxidos de enxofre (e. g. SO₂ e SO₃). Em contrapartida, usinas hidroelétricas são, usualmente, consideradas livres de tais impactos. Contudo, tem-se evidenciado o real potencial de emissão de GEE por reservatórios de hidroelétricas (WEHRLI, 2011).

A partir da década de 90, estudos começaram a investigar as potenciais emissões a partir de reservatórios, para que se pudesse compreender o real papel das UHEs no que diz respeito à emissão de GEE para a atmosfera (FEARNSIDE, 1997; GAGNON; CHAMBERLAND, 1993; GAGNON; VATE, 1997; ROSA; SCHAEFFER, 1994).

Atualmente estudos em regiões boreais e tropicais apontam para uma verdadeira contribuição real dos reservatórios de UHE, como emissores de CH₄ e, comumente, de CO₂ (ABRIL *et al.*, 2005; BARROS *et al.*, 2011; CHANUDET *et al.*, 2011; DEMARTY; BASTIEN, 2011; KEMENES *et al.*, 2011; LU *et al.*, 2011; WEHRLI, 2011). A consideração de tais sistemas é

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

de importância ímpar. De acordo com Raymond *et al.* (2013), reservatórios podem ser responsáveis pela emissão de até 0,3 Pg C.ano⁻¹.

Entretanto, apesar de ter sido evidenciada a emissão desses gases por reservatórios de hidroelétricas, incertezas em relação a medições realizadas impedem uma compreensão mais global do efeito das UHEs no contexto de emissão de GEE para a atmosfera (LI; LU, 2012).

Figura 2: Consumo de energia elétrica no Brasil, discriminando os diferentes setores. Média histórica e projetada de 2008 a 2020.

Fonte: BRASIL, 2011

Apesar das incertezas e erros embutidos nos inventários existentes, já é possível perceber um impacto significativo das UHEs nas emissões atmosféricas. Estudos realizados por dos Santos *et al.* (2006) mostram que, em alguns casos, termoelétricas que empregam o ciclo combinado e o de gás natural como combustível, podem emitir de 1,5 a 3 vezes menos GEE que as equivalentes usinas hidroelétricas. Resultado semelhante foi observado em um reservatório em clima temperado (DEMARTY *et al.* 2009). No caso do Brasil, a necessidade de estudos como estes se faz ainda mais relevante.

A matriz energética nacional é majoritariamente suprida por fontes hidroelétricas. Atualmente há 1.104 usinas em operação, responsáveis pela produção de 86,4 mil MW (63.7% da produção

total nacional; Figura 3). Além das UHEs já em operação, o Ministério de Minas e Energia já prevê a instalação de mais 11 UHEs, com produção média de 1.370 MW, sendo que 73% destes empreendimentos serão localizados na região amazônica, até o ano de 2018 (BRASIL, 2013). A construção destas 8 (oito) usinas poderia acarretar um aumento de até 200% nas emissões de carbono para a atmosfera. Esta expansão da matriz energética, e consequentemente do número de UHEs, é decorrente do aumento da demanda interna. A demanda interna do Brasil foi estimada em 466.561 GWh para o ano de 2013, com projeções de aumento para 672.008 GWh até 2022, a uma taxa de 4,1% ao ano (BRASIL, 2013), sendo o setor comercial o responsável pelas maiores taxas médias de crescimento (cerca de 5,8%). Consequentemente, espera-se o aumento do número de reservatórios para suprir tal demanda.

Ou seja, apesar de se saber da contribuição das usinas hidroelétricas na emissão de GEE para a atmosfera, estudos mais avançados se fazem necessários para melhor compreendermos o real papel das UHEs. Como esses GEE são produzidos a partir da transformação de compostos orgânicos via processos físico-químicos e biológicos (AMADO *et al.* 2006; MILLER *et al.*, 2009), a caracterização da matéria orgânica e o entendimento das dinâmicas de transporte e transformação são fundamentais.

Figura 3: Distribuição percentual da participação de diferentes fontes energéticas na matriz elétrica brasileira

3.2 Transporte e caracterização da matéria orgânica

A matéria orgânica (MO) é a principal fonte de carbono e energia para a manutenção de toda a biota no sistema aquático. O estoque de MO compreende uma grande diversidade de compostos que vão ser transportados e transformados nos ambientes aquáticos. Em função desta ampla distinção química, a MO apresentará diferentes papéis na coluna d'água. A Figura 4 mostra as diferentes rotas que a MO pode tomar no ambiente aquático, resultando em seu estoque e os processos que envolvem a sua transformação em diferentes compartimentos, seja na biota ou no sedimento. Como resultado, a qualidade da MO, somada aos processos de transporte (e. g. sedimentação, ressuspensão, etc.), implicará em rotas e processos distintos na produção dos GEEs em reservatórios (AMADO *et al.* 2006; BIANCHINI; SANTINO, 2011; CUNHA-SANTINO; BIANCHINI, 2002; HUR, 2011; MILLER *et al.*, 2009a; MILLER *et al.*, 2009b).

Figura 4: Possíveis rotas de transporte e transformação do carbono em ambientes aquáticos (modificado de FINLAY *et al.* 2009).

3.2.1 Transporte da matéria orgânica

O transporte da MO em reservatórios é resultado de diferentes fatores, tais como aspectos de uso e ocupação do solo (DEMARTY; BASTIEN, 2011; INSAM; WETT, 2008; JOSSETTE *et al.* 1999), aspectos climatológicos da região (JOSSETTE *et al.*, 1999; TEETER; BEST, 2003;

8

PARK *et al.*, 2007), condições hidrodinâmicas dentro do reservatório (JOSSETTE *et al.*, 1999; RAN *et al.*, 2013; ROLAND *et al.*, 2010), dentre outros.

A MO apresenta diferentes rotas de entradas e saídas nos reservatórios, podendo elas ser:

- Fontes de entrada Como fontes de MO alóctone no sistema pode-se citar o aporte de rios a montante, escoamento difuso do material lixiviado na bacia de drenagem, carreamento direto de material através de escoamento superficial, ressuspensão do material sedimentado, alagamento da biomassa existente e o carreamento direto decorrente da precipitação.
- Fontes de saída Como fontes de saída da MO dos sistemas aquáticos pode-se citar a sedimentação do material em suspensão, o escoamento pelas turbinas da casa de força e vertedouros.

Ressalta-se que as fontes de saídas supracitadas referem-se ao fato de que esta matéria orgânica não estará mais disponível para ser mineralizada na coluna d'água. O que não implica em dizer que CO₂ ou CH₄ não possam ser produzidos em outros compartimentos, como no sedimento, por exemplo.

Em reservatórios de usinas hidroelétricas, outra fonte de entrada de matéria orgânica digna de nota é o solo e a vegetação alagada (BROTHERS *et al.*, 2012; GUÉRIN *et al.*, 2008; GUÉRIN *et al.*, 2005; TEODURU *et al.*, 2011). O efeito da vegetação alagada varia em função da composição da vegetação e do tempo. Consequentemente, a vegetação alagada pode influenciar na variação espacial das concentrações de CO₂ e CH₄ (TEODURU *et al.*, 2011).

Os diferentes mecanismos de entrada e saída da MO têm influência não apenas quantitativa, mas alteram de maneira significativa fenômenos de transformação da MO (INSAM; WETT, 2008), seja através da ressuspensão de fósforo e nitrogênio (DZIALOWSKI *et al.*, 2008; JAMES; BARKO, 1997; WILDMAN; HERING, 2011), seja pela elevação da turbidez e atenuação da radiação ao longo da coluna d'água (EFFER *et al.*, 2006).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

3.2.2 Transformação da matéria orgânica

Os GEEs em reservatórios são produzidos como resultado de transformações na matéria orgânica a partir de processos físico-químicos e biológicos. Por esta razão, sua caracterização tem um grande impacto em relação às emissões de GEE.

Cerca de 50 a 90% de toda a MO correspondem a substâncias húmicas (SH), seguidos por uma fração menor de substâncias não-húmicas (carboidratos, proteínas e ácidos carboxílicos) (AL-REASI *et al.*, 2013; HUR, 2011; REPETA *et al.*, 2002; THURMAN, 1985). As SHs podem ser tanto aportada para o reservatório, como produzidas dentro do próprio (MCKNIGHT *et al.*, 1994; MILLER *et al.*, 2009b). Elas apresentam um importante papel na coluna d'água, não apenas como a matéria-prima formadora de CO₂ e CH₄, mas também devido a sua capacidade de imobilização de metais (BIANCHINI; SANTINO, 2011; SPIERINGS *et al.*, 2011), pela formação de trihalometanos (THM) em sistemas de tratamento de água (AITKENHEAD-PETERSON *et al.*, 2002; GALLARD; VON GUNTEN, 2002) e pela atenuação da radiação UV na coluna d'água, afetando processos foto-oxidativos (BIANCHINI; SANTINO, 2011; EFFER *et al.*, 2006).

Quanto à sua origem, a MO pode ser classificada em autóctone e alóctone.

- MO autóctone: É a fração da matéria orgânica produzida dentro do próprio sistema, seja ela resultante da produção fotossintética ou bacteriana. Também são comumente classificadas como MO lábeis (MO_L), por serem mais facilmente degradáveis. Esta característica é reflexo do baixo peso molecular, baixa razão C:N e baixo número de grupos fenólicos ou aromáticos (AL-REASI *et al.*, 2013; HUR, 2011). Devido a suas características químicas, a MO_L é mais rapidamente mineralizada por fungos e bactérias (BIANCHINI; SANTINO, 2011; CUNHA-SANTINO; BIANCHINI, 2002).
- MO alóctone: É a fração da matéria orgânica que é transportada de um outro sistema, seja através da precipitação direta, percolação da água no solo, contribuição da água subterrânea, entre outros (AITKENHEAD-PETERSON *et al.*, 2002). Em geral, é classificada como refratária (MO_R), dada a sua baixa

10

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

degradabilidade, a qual é um reflexo da composição química e estrutural de tais moléculas. Apresentam um maior teor de grupos fenólicos e aromáticos, elevada razão C:N e atividade proteolítica (AL-REASI *et al.*, 2013; ARTINGER *et al.*, 2000). Apesar dos grupos fenólicos inibirem o ataque biológico, alguns estudos apontam que a fração alóctone da MO é a responsável pela manutenção da comunidade aquática (CUNHA-SANTINO; BIANCHINI, 2002; HIRIART-BAER *et al.*, 2013; REPETA *et al.*, 2002). 86% da composição do material alóctone pode corresponder a MO_R (BIANCHINI; SANTINO, 2011). A origem das SHs (ácidos fúlvicos e húmicos) é preponderantemente terrestre, resultados do início do processo de oxidação da matéria orgânica vegetal morta (AL-REASI *et al.*, 2013; HIRIART-BAER *et al.*, 2013; HUR, 2011; REPETA *et al.*, 2002).

Diferentemente de lagos naturais, em reservatórios a biomassa alagada consiste em uma importante fonte de matéria orgânica alóctone a ser oxidada, e sua degradabilidade depende da composição química dos tecidos vegetais (BIANCHINI; SANTINO, 2011).

Outro fator que implica na qualidade da matéria orgânica é a presença de florações algais no sistema. Isso porque a espécie dominante pode apresentar MO de matriz tipicamente refratária, com elevados teores de lignocelulose (BIANCHINI *et al.*, 2008). Além da influência da composição química proveniente da estrutura celular, conforme citado anteriormente, as florações algais podem contribuir liberando matéria orgânica mais lábil a partir da produtividade primária.

Alguns estudos indicam que a matéria orgânica alóctone é a principal fração de toda a MO (PIERSON-WHICKMANN *et al.*, 2011). Entretanto, outros estudos apontam que a contribuição da matéria orgânica autóctone tem sido subestimada (PARK *et al.*, 2007).

A configuração química e estrutural desta MO é fundamental para o entendimento dos fenômenos de transformação, pois podem alterar de maneira significativa a cinética de sua decomposição (BIANCHINI; SANTINO, 2011; MCDONALD *et al.*, 2004; TREMBLAY*et al.*, 2004). A MO_L é mais rapidamente convertida em CO₂ ainda na coluna d'água (BELLANGER *et al.*, 2004). Em contrapartida, a MO_R permanece no corpo d'água por mais tempo, podendo

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ser carreada para outro sistema a jusante ou sedimentar-se (BIANCHINI; SANTINO, 2011; BIANCHINI*et al.*, 2008; CUNHA-SANTINO *et al.*, 2008). Em regiões mais profundas e com alto tempo de residência e, além de elevar a demanda bentônica de oxigênio (BIANCHINI *et al.*, 2008), essa MO_R oxidada pode resultar em um aumento da concentração de metano no sedimento (BIANCHINI; SANTINO, 2011).

Exemplos de MO lábil e refratária são ilustrados pelas Figura 5 e Figura 6. É possível observar a diferença estrutural entre o composto lábil e o composto refratário. A simplicidade estrutural dos compostos lábeis facilita o ataque microbiológico. Em contrapartida, a lignina (apresentada na Figura 6) apresenta uma grande percentagem de grupos fenólicos, o que reduz a sua susceptibilidade ao ataque biológico.

Figura 5: Estrutura química de um composto orgânico lábil: Arginina

Figura 6: Estrutura química de um composto orgânico refratário: Lignina

3.3 Dinâmica da matéria orgânica e geração de GEE

Conforme salientado na seção anterior, a MO é de extrema importância nos ambientes aquáticos. Além de ser fonte de carbono e energia para a comunidade aquática, ela ainda tem implicações quanto a propriedades físico-químicas da água. Em última análise, essas interferências afetam os processos bioquímicos envolvidos na transformação da MO, seja ela na coluna d'água ou no sedimento.

Além dos processos de transporte da matéria orgânica, considerando suas possíveis rotas de entrada e saída, os processos de transformação da matéria orgânica são de suma importância para a compreensão dos mecanismos de produção e posterior liberação dos GEEs.

A transformação da matéria orgânica em reservatórios abrange uma diversidade de mecanismos que podem atuar de maneira sinergética ou antagônica. Essa transformação pode resultar não somente na produção de CO₂ ou CH₄. Dentre outros produtos, pode-se encontrar uma ampla gama de gases (e. g. NH₃, H₂S, etc.) e outras substâncias húmicas (AMADO *et al.*, 2006; HUR, 2011; MORAN; ZEPP, 1997). Além da mineralização da matéria orgânica, a atividade microbiana, bem como a radiação luminosa, podem resultar no surgimento de substâncias húmicas (CUNHA-SANTINO; BIANCHINI, 2002; HUR, 2011). Esta relação entre produção e mineralização, seja ela biológica ou fotoquímica, mostra-se dependente de aspectos ligados a fatores limnológicos (AMADO *et al.*, 2006).

Dentre os processos químicos e biológicos, responsáveis pela transformação da MO, pode-se citar como mecanismos de produção dos GEEs a: (i) oxidação aeróbia, (ii) oxidação anaeróbia, e (iii) foto-oxidação. Entretanto, outro importante mecanismo envolvido no balanço final, e consequentemente, no fluxo de GEE em reservatórios, é a fotossíntese.

3.3.1 Oxidação aeróbia

A oxidação aeróbia, cujo processo pode ser representado, simplificadamente, pela equação 1, consiste na mineralização da matéria orgânica na presença de oxigênio como o aceptor final de elétrons. Em geral, é um processo mais rápido, quando comparado com a oxidação anaeróbia (BIANCHINI; SANTINO, 2011).

13

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

$C_{org\hat{a}nico} + O_2 \to CO_2 + H_2O \tag{1}$

Ainda que não exclusivamente, a oxidação aeróbia se dá predominantemente por via biológica. Dentre os componentes biológicos, fungos e bactérias são os principais responsáveis pela mineralização da matéria orgânica, seja ela alóctone ou autóctone. É o principal mecanismo responsável por prover energia e carbono à biota aquática (AMADO *et al.*, 2006; AZAM *et al.*, 1983; COLE, 1999; COTNER; BIDDANDA, 2002; POMEROY; WIEBE, 1988). Em menores proporções, outros elementos, tais como NO₃⁻, Fe, SO₄²⁻ e Mn²⁺, podem estar envolvidos na oxidação da matéria orgânica (BELLANGER *et al.*, 2004).

Apesar de ser o processo mais rápido, quando comparado à oxidação anaeróbia, não é correto assumir que a oxidação aeróbia seja o principal responsável pela produção de CO₂. Estudos realizados por Amado *et al.* (2007), em ambientes húmicos, e Amado *et al.* (2006), em ambientes amazônicos, apontam que essa contribuição da oxidação aeróbia isoladamente pode variar. No período de seca, o processo de oxidação tende a ser predominante. Entretanto tal padrão não se conserva no período de chuva. Neste período, a foto-oxidação passa a ter um papel de destaque, podendo representar até 90% do potencial de mineralização do COD. Este elevado potencial de mineralização via fotólise no período das chuvas, de acordo com Amado *et al.* (2006) está relacionado com o aporte de COD terrestre. COD este que seria composto principalmente de MO_L, mais facilmente foto-oxidável.

Apesar da aparente simplicidade do processo, demonstrada na equação 1, vários fatores interferem, positiva ou negativamente, na mineralização da MO. Dentre esses fatores, destacam-se a qualidade da MO (BELLANGER *et al.*, 2004; BIANCHINI *et al.*, 2008; CUNHA-SANTINO; BIANCHINI, 2004), as características da água (CUNHA-SANTINO *et al.*, 2008) e em última análise, a interação microbiológica, responsável pela mineralização da MO (BIANCHINI; SANTINO, 2011; BIANCHINI *et al.*, 2008).

Por se tratar de um processo dinâmico, a oxidação aeróbia nem sempre tem a mesma eficácia em termos de produção de CO₂. Por exemplo, a redução da concentração de O₂ devido à mineralização da MO, se não for revertida, favorece a liberação de íons NH_4^+ uma vez que o meio se torna redutor. Paralelamente, esta alteração pode implicar em alterações na alcalinidade

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

e no pH. Como resultado, a comunidade aquática, principalmente a comunidade bacteriana, adapta-se às novas condições, alterando, positiva ou negativamente, a taxa de mineralização da matéria orgânica.

Em última análise, a interação entre os aspectos físicos, químicos e biológicos que irá determinar a taxa de oxidação aeróbia, resultando na produção e aumento de CO₂ na coluna d'água.

3.3.2 Fermentação

A fermentação consiste na oxidação parcial da MO, na ausência de oxigênio dissolvido. Como produto, além de CO₂, são gerados CH₄, além de outros gases e compostos orgânicos. Diferentemente do que ocorre na oxidação aeróbia, o único componente biológico compatível com esta rota metabólica são as bactérias (HOBSON *et al.*, 1974). Outra distinção quanto à oxidação aeróbia, a oxidação anaeróbia é mais restrita quanto ao local de ocorrência. Ela ocorre no hipolímnio ou no sedimento de lagos e reservatórios que apresentem períodos de estratificação da coluna d'água. Com a baixa circulação de água com oxigênio e uma limitação quanto à fotossíntese em ambientes profundos, as concentrações de O₂ dissolvidos tendem a reduzir significativamente, como resultado de processos oxidativos da matéria orgânica.

De modo simplificado, o processo pode ser representado pela equação 2.

$$C_{org\hat{a}nico} \rightarrow C'_{org\hat{a}nico} + CH_4 + CO_2 + NH_3 + outros gases$$
 (2)

O processo de fermentação é dividido em 2 (duas) etapas. A primeira etapa consiste na transformação do composto de alto peso molecular em compostos com pesos moleculares menores. Subsequentemente, esses compostos são mineralizados, total ou parcialmente. Como resultado, há a produção de CO₂, CH₄, NH₃, H₂S e substâncias húmicas derivadas (BIANCHINI; SANTINO, 2011; LU *et al.*, 2001; MEGONIGAL *et al.*, 2004). Paralelamente, essas substâncias produzidas pelas primeiras etapas da fermentação podem atuar positivamente, como fonte de carbono e nutrientes para a comunidade microbiana, podendo esta ser mineralizada totalmente ou ainda parcialmente (STEINBERG, 2003). Além do impacto

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

supracitado, a fermentação resulta em menos biomassa formada e é mais lenta, quando comparada com a oxidação aeróbia (BIANCHINI; SANTINO, 2011).

Por ser um processo que ocorre em meio deficiente em O₂, não são todas as substâncias que conseguem ser degradadas neste meio. A decomposição da lignina (composto refratário de difícil degradabilidade), por exemplo, ocorre principalmente em decorrência do grupo de fungos presentes, grupo este que necessita de oxigênio. Consequentemente, tem-se que a decomposição de tais substâncias não ocorre em tais condições (BIANCHINI; SANTINO, 2011).

Além da limitação quanto à biota atuante nos processos oxidativos, e por se tratar de um processo mais lento, a oxidação anaeróbia é mais relevante quando se considera a decomposição de matéria orgânica refratária, uma vez que a MO_L é rapidamente mineralizada (CUNHA-SANTINO; BIANCHINI, 2002). No caso do CH₄, ainda vale adicionar que papel de dois processos específicos: a metanogênese e a metanotrofía.

A metanogênese é um processo específico de respiração anaeróbia no qual o aceptor final de elétrons não é o oxigênio, mas sim o carbono. Em ambientes aquáticos, este processo é influenciado pela temperatura da água, quantidade e qualidade da matéria orgânica, ausência de oxigênio e a comunidade bacteriana presente.

A metanotrofia, por outro lado, é o processo no qual a comunidade bacteriana utiliza o carbono reduzido CH₄ como fonte de energia. Diferentemente da metanogênese, a metanotrofia pode ocorrer em meio aeróbio ou anaeróbio. Em ambientes anaeróbios, os receptores finais de elétrons podem ser sulfatos, nitratos, nitritos, e alguns metais (BEAL *et al.*, 2009; BOETIUS *et al.*, 2000).

3.3.3 Foto-oxidação

A foto-oxidação, também relatada como fotodegradação, é o processo físico-químico no qual a radiação ultravioleta transforma a MO, produzindo não somente CO₂, mas também outros compostos orgânicos (GRANELI *et al.* 1998; MORAN; ZEPP, 1997; XU; JIANG, 2013).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

O processo consiste na excitação de regiões das moléculas (cromóforos) que, através de uma série de reações em cadeia, geram radicais oxidantes, capazes de clivar compostos orgânicos, produzindo CO e CO₂ (FARJALLA *et al.*, 2009; MORAN; ZEPP, 1997). O processo é simplificadamente representado pela equação 3.

$$C_{org\hat{a}nico} \xrightarrow{UV} C'_{org\hat{a}nico} \rightarrow CO + CO_2 + C''_{org\hat{a}nico}$$
(3)

Dentre os diversos fatores que atuam na mineralização da MO, a foto-oxidação é principalmente influenciada pela quantidade e qualidade do composto orgânico, bem como pela quantidade de energia luminosa disponível no sistema (AMADO *et al.* 2007; BERTILSSON; TRANVIK, 2000; FARJALLA *et al.* 2009).

Adicionalmente à qualidade e quantidade de matéria orgânica, a dinâmica pluvial da região também pode interferir nas taxas de foto-oxidação. Suhett *et al.* (2007) observaram que a precipitação contribuiu para um aumento superior a 3000% na taxa de foto-oxidação em um ambiente húmico. Amado *et al.* (2006) encontraram resultado semelhante em ambientes amazônicos. Este aumento na taxa de foto-oxidação associado a períodos de precipitação provavelmente deve-se à entrada de matéria orgânica alóctone ao sistema (AMADO *et al.* 2006).

Além dos efeitos direitos da foto-oxidação sobre a matéria orgânica, deve-se destacar outros aspectos significativos decorrentes do efeito da radiação luminosa na coluna d'água. A foto-oxidação pode afetar a mineralização biológica, tanto positivamente (AMADO *et al.* 2007; BIDDANDA; COTNER, 2003; MORAN; ZEPP, 1997; TRANVIK; BERTILSSON, 2001; ZEPP *et al.*, 1995), como negativamente (AMADO *et al.* 2007; FARJALLA *et al.* 2009; TRANVIK; KOKALJ, 1998).

Associados aos efeitos positivos, tem-se que a foto-oxidação cliva substâncias orgânicas de alto peso molecular, em substâncias menores, biodegradáveis (AMADO *et al.* 2007). Entretanto, a radiação também pode apresentar efeitos negativos sobre a atuação microbiológica na degradação da matéria orgânica. Amado *et al.* (2007) apontam que, na lagoa de Imboassica (RJ), a foto-oxidação contribuiu negativamente, com uma redução em 17% nas taxas de

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

degradação biológica. Essas diferenças quanto ao efeito secundário da radiação luminosa se devem à origem e qualidade da matéria orgânica. Compostos alóctones são mais reativos à radiação (AMADO *et al.* 2007; BERTILSSON; TRANVIK, 2000) quando comparados com compostos autóctones (AMADO *et al.* 2007).

3.3.4 Fotossíntese

A fotossíntese, processo representado pela equação 4, consiste na complexação do carbono inorgânico dissolvido (CID) em moléculas orgânicas mais complexas. Essas moléculas, quando não utilizadas pela comunidade algal, podem se encontrar dissolvidas na coluna d'água, na forma de COD, ou assimiladas na forma de biomassa, como COP. Paralelamente ao consumo de CID, a fotossíntese também é responsável pelo consumo de nutrientes, tais como nitrogênio e fósforo.

$$xCO_2 + xH_2O \xrightarrow{PAR} (CH_2O)_x + xO_2$$
 (4)

Dentre os organismos responsáveis pela produção primária, pode-se citar macrófitas (sejam elas emersas, submersas ou flutuantes), a comunidade perifítica (que se desenvolve aderida a objetos) e, principalmente, a comunidade fitoplanctônica.

De maneira similar à oxidação aeróbia, por se tratar de um processo bioquímico, a taxa de produção fotossintética, também retratada como produção primária, vai oscilar dependendo de diversos fatores, tais como intensidade luminosa (HADER, 2000; HIRIART-BAER; SMITH, 2005; ZEPP, 1995), disponibilidade de nutrientes (ELSER *et al.* 2007; FAITHFULL *et al.*,2011; IRIARTE *et al.* 2012), padrões de circulação da coluna d'água (DARCHAMBAEU *et al.*, 2014) e da composição da comunidade fitoplanctônica (IRIARTE *et al.* 2012; NAPOLÉON *et al.*, 2013), uma vez que grupos taxonômicos distintos apresentam taxas produtivas distintas (NAPOLÉON *et al.*, 2013).

Em ambientes tropicais, limitações na produção primária são mais relacionadas à escassez de nutrientes, uma vez que a intensidade luminosa oscila pouco ao longo do ano (CARLSSON *et al.* 2012).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

O tempo de exposição à radiação, apesar de essencial para a ativação do aparato fotossintético, pode reduzir significativamente as taxas fotossintéticas (HADER, 2000; HIRIART-BAER; SMITH, 2005), chegando a até 80% de redução (HIRIART-BAER; SMITH, 2005).

A limitação por fósforo e nitrogênio é outro fator a ser levado em consideração. Estudos conduzidos por Moisander *et al.* (2012) apontam um aumento na produção primária quando nitrogênio e fósforo são abundantes no sistema. Além do efeito direto nas taxas fotossintéticas, a limitação por nutriente pode acarretar em alterações na composição fitoplanctônica. Ainda de acordo com o estudo de Moisander *et al.* (2012), condições onde o nitrogênio é limitante favorecem organismos diazotróficos (organismos capazes de fixar o N₂ atmosférico, e. g. *Anabaena* sp., *Cylindrospermopsis raciborskii*). Além da associação mutualística, essa limitação pela escassez de nutrientes também pode ser convertida através da liberação de fósforo inorgânico após mineralização da MO por bactérias (ZHAO *et al.* 2012).

Ou seja, a concentração e, consequentemente, os fluxos de CO₂ e CH₄, são dependentes do balanço entre os mecanismos de transformação da matéria orgânica. Tais processos, físicos ou bioquímicos são determinados em função das características físicas e químicas da água, como temperatura, pH, oxigênio dissolvido, dentre outras (BIANCHINI; SANTINO, 2011; CUNHA-SANTINO; BIANCHINI, 2002; GUÉRIN *et al.*, 2008; GUÉRIN *et al.*, 2006).

Devido ao fato de esses fatores apresentarem diferentes graus de interação e de variação, as concentrações desses gases também podem apresentar uma significativa diferença quanto à sua localização geográfica (BARROS *et al.*, 2011; ST. LOUIS *et al.*, 2000), grau de trofia do sistema (HUTTUNEN *et al.*, 2003), e sazonalidade.

De acordo com Barros *et al.* (2011) e St. Louis *et al.* (2000), reservatórios localizados em regiões tropicais apresentam fluxos de CO₂ e CH₄ superiores a reservatórios localizados em regiões temperadas. Isto porque temperaturas mais elevadas afetam tanto a solubilidade dos gases na água, quanto as taxas metabólicas de oxidação da matéria orgânica.

Com relação ao grau de trofia, a relação é mais complexa. Chanudet *et al.* (2011) e Huttunen *et al.* (2003) observaram que sistemas eutróficos apresentam uma maior taxa metanogênica. Desta forma, concentrações de nutrientes mais elevadas favoreceriam a produção primária e, como

19

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG
resultado, haveria um aumento na concentração de COD no sistema. Entretanto, Bastviken *et al.* (2002) observaram que o aumento na disponibilidade de nutrientes resultou no aumento nas taxas de oxidação do metano.

Em suma, a transformação da matéria orgânica, tanto resultando na produção como resultando no consumo desses GEEs são influenciados por fatores diversos, de modo simultâneo, sinergética ou antagonicamente. Neste caso, é de se esperar que reservatórios apresentem não apenas uma variação sazonal, mas também uma variação espacial neste balanço entre o consumo e a produção de CO₂ e CH₄.

3.4 Emissão de GEE em reservatórios

3.4.1 Vias de emissão de GEE

Conforme apresentado nas sessões anteriores, a origem dos GEEs em reservatórios, diferentemente das usinas termoelétricas, é biogênica (ROSA *et al.*, 2004). As concentrações de CO_2 e CH_4 é o resultado do balanço entre os processos oxidativos e fotossintéticos. Este balanço varia em função das características físicas, químicas, biológicas e ambientais.

Outro fator importante para entender o verdadeiro papel dos reservatórios de UHE são os padrões, ou vias, de emissão. Os GEE podem ser emitidos por 3 (três) vias principais:

- Via Difusiva: Consiste no fluxo direto entre dois meios, na interface água-atmosfera. Ele é dependente da concentração do gás na coluna d'água, velocidade e direção do vento e temperatura.
- Via Ebulitiva: Consiste na formação e posterior liberação de bolhas do sedimento para a atmosfera. Ela é dependente do metabolismo bentônico, temperatura e da pressão hidrostática exercida pela coluna d'água.
- Desgaseificação: Consiste na liberação dos gases ao passar pelas turbinas, devido à redução da pressão hidrostática entre a tomada d'água e o rio a jusante. Este processo considera tanto as vias difusivas quanto as vias ebulitivas (ABRIL *et al.*, 2005; GUÉRIN *et al.*, 2006). Ressalta-se que, para a desgaseificação, além da saída

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

da casa de força, deve ser considerado um trecho a jusante no rio, uma vez que a liberação desses gases se mantém elevada até alguns metros a jusante.

Todas as vias acima descritas estão fortemente interligadas com a qualidade da água (e.g. pH, oxigênio dissolvido, concentração de nutrientes), com temperatura, vento, profundidade e tempo de residência da água (ABRIL *et al.*, 2005; JACINTHE *et al.*, 2012; ROLAND *et al.*, 2010).

É justamente nas diferentes rotas de emissão de GEEs que reside grande parte das incertezas relacionadas ao real impacto das usinas hidroelétricas nas emissões atmosféricas. Muitos estudos negligenciam uma ou mais rotas de emissão, resultando na subestimação do impacto dos reservatórios na emissão dos GEEs.

Conforme levantado por Fearnside e Pueyo (2012), a contribuição do que é emitido à jusante do reservatório pode ser, e muitas vezes o é, significativa. Kemenes *et al.* (2011) observaram que os fluxos decorrentes da desgaseificação, em Balbina, podem corresponder a até 51% das emissões totais do reservatório. Já Zhao *et al.* (2013) encontraram valores na casa de 22% no reservatório de Três Gargantas, na China.

Portanto, os valores de emissão de CO_2 e CH_4 via desgaseificação nas turbinas podem elevar consideravelmente a real contribuição dos reservatórios com relação a emissões atmosféricas. Este efeito, por sua vez, é dependente também da estrutura física do sistema (e. g. profundidade da tomada d'água).

Além da contribuição da desgaseificação, o fluxo ebulitivo pode corresponder a uma significativa fonte de GEE em reservatórios, principalmente com relação ao CH₄ (BASTVIKEN *et al.*, 2004). Devido a suas características químicas, o metano apresenta uma baixa solubilidade em água, quando comparado com o CO₂ (CASPER *et al.*, 2000). Estudos conduzidos em reservatórios e lagos corroboram essa característica, uma vez que cerca de 90% do conteúdo das bolhas correspondem a metano (ABRIL *et al.*, 2005; CASPER *et al.*, 2000). Além da baixa solubilidade, parte do metano produzido no sedimento é convertido a CO₂ na interface sedimento-água. Este percentual pode variar de 57 até 100% (BASTVIKEN *et al.*, 2002; HUTTUNEN *et al.*, 2003). Em reservatórios amazônicos, a fonte ebulitiva pode

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

representar menos de 1% da emissão total do CO₂ (ABRIL *et al.*, 2005; KEMENES *et al.*, 2011).

Esta contribuição do fluxo ebulitivo não se aplica para o CO₂. Por ser mais solúvel, o mecanismo preferencial de transferência do CO₂, seja na interface sedimento-água, seja na interface água-atmosfera é o fluxo difusivo (CASPER *et al.*, 2000).

Em síntese, há diferentes vias ou rotas para a emissão de GEEs do reservatório para a atmosfera. O peso que cada uma dessas vias tem é variável em função de características específicas ligadas tanto a parâmetros relacionados com a qualidade da água quanto com aspectos climáticos e de natureza física do empreendimento.

3.4.2 Fatores de emissão de GEE

Em ambientes aquáticos, o balanço entre a produção e o consumo do CO₂ e do CH₄ é, em geral, negativo, resultando em um acúmulo de CO₂ e CH₄ na coluna d'água e posteriormente a sua liberação para a atmosfera (COLE *et al.* 2000; COLE *et al.* 1994; ST. LOUIS *et al.* 2000). Este balanço é possível devido ao aporte de matéria orgânica alóctone proveniente da bacia de drenagem ou do rio a montante, somado à produção primária. Apesar do predomínio da heterotrofia em sistemas aquáticos, fatores específicos ao local amostral podem resultar em autotrofia e o sequestro de gás para a coluna d'água (CHANUDET *et al.* 2011; DOS SANTOS *et al.* 2006; SOARES *et al.* 2008; ZHAO *et al.* 2013). Outro aspecto relevante é a espacialidade entre e dentro do mesmo reservatório e a temporalidade na produção desses gases, podendo esta última ser uma referência tanto a mudanças anuais quanto a ciclos diários.

Os fluxos de GEE não são homogeneamente distribuídos ao longo do reservatório. Roland *et al.* (2010), estudando 5 reservatórios localizados no Cerrado, identificaram um padrão longitudinal de emissão. Regiões lacustres, próximas à barragem, apresentaram fluxo de CO₂ baixo, aumentando a medida em que se deslocava para a região riverina. Teoduru *et al.* (2011), estudando um reservatório canadense, identificaram um padrão heterogêneo de emissão, relacionado à vegetação inundada. Regiões anteriormente consideradas como fragmentos florestais apresentaram maiores fluxos de CO₂ quando comparadas com solos inférteis. Estudando o fluxo ebulitivo de CH₄, Bastviken *et al.* (2004) verificaram que até 80% dos fluxos

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

de metano ocorreram em regiões com profundidade de até 4 metros. Abril *et al.* (2005) verificaram baixos fluxos de GEE em regiões litorâneas, associados à baixa exposição da água aos ventos.

Além da heterogeneidade espacial, esses sistemas podem apresentar padrões sazonais de emissão (FINLAY *et al.* 2009). Estudando reservatórios amazônicos e de Cerrado, dos Santos *et al.* (2006) encontraram uma variação significativa entre dois períodos amostrais. Em seu estudo, o reservatório de Três Marias, localizado no bioma Cerrado apresentou uma variação, entre duas campanhas, de -138,5 a 2.373 mg.m⁻².d⁻¹ de CO₂. Ainda para Três Marias, os fluxos difusivos de CH₄ variaram de 8,4 a 55,3 mg.m⁻².d⁻¹. No bioma amazônico, Tucuruí apresentou uma variação de CO₂ de 6.516 a 10.443mg.m⁻².d⁻¹ e de 10,9 a 192,2 mg.m⁻².d⁻¹ de CH₄. Esta seria uma indicação da variação temporal nos fluxos tanto de CO₂ como de CH₄.

Os fluxos dos GEEs em reservatórios estão diretamente relacionados à concentração dos gases na coluna d'água. Quanto mais supersaturados, maiores serão as taxas de emissão. Consequentemente, todos os fatores relacionados à produção dos gases, ou seja fatores que interferem nas taxas de consumo e produção de GEE, também contribuirão para os fluxos desses gases.

Entretanto, outros fatores irão interferir nos fluxos dos gases em reservatórios (GOLDENFUM, 2012; JACINTHE *et al.* 2012; ST. LOUIS *et al.*, 2000), tais como:

- Precipitação;
- Temperatura da água;
- Tempo de residência;
- Alteração no nível da água;
- Direção e velocidade do vento;
- Profundidade da coluna d'água;
- Idade do reservatório;
- Estruturas das barragens.

A precipitação, além de estar associada ao aporte de matéria orgânica terrestre para o ambiente aquático, é responsável por um aumento na turbulência na coluna d'água, o que favoreceria a

emissão desses gases para a atmosfera. A temperatura, além de favorecer a mineralização biológica da matéria orgânica, está inversamente relacionada com a solubilidade dos gases em água.

Além de estar associado com o padrão de circulação vertical, a alteração no nível da água pode promover uma constante introdução de matéria orgânica lábil ao sistema (DEMARTY; BASTIEN, 2011). Quando o nível da água está baixo, o sedimento exposto, ou mesmo coberto com uma coluna de água rasa, favorece o desenvolvimento de vegetações de pequeno porte (e. g. gramíneas e macrófitas). Quando o nível da água se eleva, essa vegetação é novamente inundada, sendo a matéria orgânica novamente mineralizada.

A direção e a velocidade do vento, assim como a precipitação, estão relacionados com a mistura da coluna d'água. Esta mistura, ou agitação da coluna d'água, favorece o fluxo dos gases da água para a atmosfera.

A profundidade está relacionada com a pressão hidrostática da coluna d'água. Quanto maior a profundidade, maior a pressão hidrostática exercida sobre o sedimento, o que resultaria em menores taxas de emissão, em especial do metano (BASTVIKEN *et al.*, 2004). Regiões rasas, além de apresentarem uma menor pressão sobre o sedimento, são mais susceptíveis às correntes, que por sua vez favorecem a ressuspensão dos gases aprisionados no sedimento, bem como o aporte de matéria orgânica e nutrientes que haviam sedimentado.

A idade e a estrutura da barragem são fatores associados a reservatórios. A estrutura da barragem irá influenciar nos fluxos de gases a jusante da casa de força (KEMENES *et al.*, 2011). Isto porque o efeito da desgaseificação vai depender da diferença entre a concentração de GEE a montante e a jusante do barramento. Quanto maior esta diferença, maior será o fluxo a jusante, uma vez que a pressão hidrostática à jusante não será suficiente para manter os gases dissolvidos na coluna d'água. Desta forma, se a tomada d'água for superficial, espera-se que as concentrações de GEE, principalmente de CH₄, sejam menores, resultando em uma desgaseificação menor, quando comparada com tomadas d'água mais profundas, em águas ricas em CO_2 e CH₄.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

A idade está relacionada com a quantidade e qualidade da matéria orgânica presente no sistema. Reservatórios mais antigos tendem a apresentar fluxos de CO₂ inferiores a reservatórios mais novos (BARROS *et al.*,2011; GUERIN *et al.*, 2008; OMETTO *et al.*, 2013). Isto porque nos anos iniciais ao barramento, há maior disponibilidade de matéria orgânica lábil, proveniente do solo e vegetação inundados. Com o passar do tempo, a qualidade da matéria orgânica muda, prevalecendo matéria orgânica refratária, mineralizada mais lentamente.

Em síntese, os fluxos de GEEs em reservatórios se dão além do simples balanço entre a produção e consumo tanto do CO₂ quanto do CH₄. Fatores relacionados às condições atmosféricas, bem como fatores ligados à estrutura física do empreendimento e a morfologia do sistema, irão influenciar as taxas gerais de emissão, não somente influenciar em qual fluxo terá maior peso nas taxas de emissão.

4 MATERIAL E MÉTODOS

4.1 Área de estudo

Localizado na bacia do Rio Grande, o reservatório de Volta Grande fica entre os estados de São Paulo e Minas Gerais (Figura 7). Construído em 1974, o reservatório é do tipo Fio d'água, dado o baixíssimo tempo de residência que o mesmo apresenta (17 dias). Com profundidade máxima de 40m, e profundidade relativa de 0,29%, o reservatório apresenta um padrão de circulação vertical do tipo holomítico, ou seja, um padrão de mistura vertical completa. Estes e outros dados característicos do reservatório são apresentados na Tabela 4.1.

O clima da região, de acordo com a classificação de Köppen-Geiger, é do tipo Af (clima tropical úmido), com chuvas durante todo o ano. Como o reservatório é do tipo fio d'água, este não apresenta uma grande variação no nível de água durante o ano.

De acordo com cartas do IBGE (2010), o reservatório está localizado sobre solo do tipo Latossolo vermelho distrófico. Esse tipo de solo apresenta maior porosidade e é mais fácil para o manuseio agrícola. Apesar de os solos serem pobres em nutrientes, de poderem solubilizar alumínio e possuírem baixa CTC, sua baixa declividade favorece a utilização de técnicas agrícolas corretivas. Essas características do solo são fundamentais, pois elas favorecem usos do solo para a agricultura, e consequentemente esta atividade pode afetar o padrão de qualidade da água, como favorecendo o aporte de nutriente para o reservatório.

O reservatório também se encontra próximo a 3 aglomerados populacionais (Igarapava, MG; Água Comprida, MG; Miguelópolis, SP), que podem contribuir com o aporte de matéria orgânica para o reservatório. Outra característica digna de nota é que o reservatório encontrase a jusante de uma série de reservatórios em cascata, iniciando com o reservatório de Furnas, seguido pelos reservatórios de Mascarenhas de Moraes, Luiz C. B. Carvalho (Estreito) e Jaguara. Destes, Jaguara é o único que ainda não tem um estudo sobre as emissões de GEE. Estes fatores são de grande importância e podem ter um papel fundamental para o entendimento do padrão de emissão de GEE apresentado pelo reservatório.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

	UHE Volta Grande
Precipitação Anual (mm)	1.412
Área (km²)	220
Volume (m ³)	2,3 x10 ⁹
Alt. Barragem (m)	49
Vazão Turbinada (m ³ .s ⁻¹)	1.500
Tempo de residência (d)	17
Zmax (m)	48,5
Zméd (m)	10,45
Prof. Relativa (%)	0,29
Queda (m)	22,11
Área da bacia (km²)	18.784
Capacidade Instalada (MW)	380

Tabela descritiva do reservatório da UHE Volta Grande (CEMIG, 2013)

Tabela 4.1

Figura 7: Reservatório de Volta Grande, localizado na bacia do Rio Grande, na divisa entre os estados de Minas Gerais e São Paulo

4.2 Amostragem

A amostragem foi realizada em Agosto de 2013, no fim do período de seca para a região. Uma segunda amostragem, referente ao período de chuva, não pode ser realizada em função de problemas logísticos. Para os cálculos e estimativas dos fluxos de CO₂ e CH₄ foram amostrados um total de 18 pontos, sendo eles divididos entre as margens norte e sul e no eixo central do reservatório (5, 6 e 7 pontos, respectivamente). Os pontos amostrais podem ser visualizados na Figura 8. Todas as alíquotas de água foram coletadas no mesmo dia, para evitar variação diária que pode ocorrer. A amostragem foi subsuperficial (aproximadamente 0,2 metros)

Para a determinação das concentrações de CO₂ e CH₄ na coluna d'água, aproximadamente 15 mL de água foram coletados em uma seringa de 30 mL, sendo que parte desta água foi descartada, com a finalidade de eliminar qualquer bolha presente na seringa. O volume final foi mantido em 10 mL, posteriormente acondicionado em vials de borosilicato de 20 mL. Em seguida, os vials foram fechados com borracha e lacrados com lacres de alumínio. A borracha e o lacre de alumínio proporcionam uma melhor vedação, reduzindo a possibilidade de vazamento desses gases.

Os vials foram envoltos, anteriormente à amostragem, com folhas de alumínio, a fim de evitar a exposição da amostra à radiação luminosa e, por conseguinte, redução dos níveis de CO_2 e CH_4 , seja ela via produção primária ou foto-oxidação.

Após a injeção de 10 mL de água, os vials foram lacrados e mantidos em uma caixa de isopor, com bolsas térmicas, cuja finalidade era diminuir a temperatura no interior do mesmo. A temperatura elevada pode acelerar o metabolismo planctônico presente na amostra, aumentando as concentrações de CO₂ e CH₄ após a amostragem.

Essas amostras foram armazenadas em câmara fria, cuja temperatura variou entre 3 e 5 °C. As amostras foram mantidas na câmara por 1 (uma) semana, até a análise cromatográfica (Shimadzu CG2014). A concentração de CO₂ e CH₄ foi determinada no Laboratório de Limnologia do Instituto de Ciências Biológicas da UFMG (ICB/UFMG).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 8: Reservatório de Volta Grande com os 18 pontos amostrais assinalados.

4.3 Concentração de GEE

As concentrações de CO₂ e CH₄ foram determinadas através de cromatografia gasosa, equipado com detectores de condutividade térmica para CO₂ (*Thermal Conductivity Detector, TCD* em inglês) e de ionização de chama para CH₄ (*Flame Ionization Detector, FID* em inglês). As amostras foram aquecidas (a 40°C) e agitadas vigorosamente por 1 minuto pelo amostrador automático, a fim de equilibrar a fase líquida e a fase gasosa, em termos de CO₂ e CH₄. Em seguida, 1,5 ml do *headspace*, após o equilíbrio, foi injetado na coluna cromatográfica (coluna capilar de 30 metros). O tempo adotado para cada passagem foi de 20 minutos, buscando evitar a contaminação de uma amostra sobre a amostra subsequente. Antes de cada passagem a seringa do amostrador automático foi expurgada, também para evitar contaminação entre as amostras. Do resultado fornecido pelo cromatógrafo, em ppm, foi descontado o que é encontrado na atmosfera, a fim de corrigir a concentração gasosa presente anteriormente a análise cromatográfica. Para CO₂ atmosférico, foi considerada como concentração padrão 0,01 mmol.L⁻¹ (NOAA, 2013). Para CH₄, foi adotado o valor de 0,07 µmol.L⁻¹ (AGAGE, 2013). Para converter os valores da concentração dos gases dissolvidos na água obtidos, de ppm para mg.m⁻³, foi utilizada a equação 5 (UNESCO/IHA, 2010).

$$C_{GEE}(mg.m^{-3}) = \frac{C_{GEE}(ppm) \times M_{GEE} \times p}{8,3144 \times T}$$
(5)

onde: C_{GEE} é a concentração do gás, *p* é a pressão atmosférica (91,3 kPa no local de análise), M_{GEE} é a massa molar do gás (44 g.mol⁻¹ para o CO₂, e 16,04 g.mol⁻¹ para o CH₄), e T é a temperatura (em Kelvin).

4.4 Emissões de GEE

Apesar de serem 3 (três) as principais rotas de emissão de CO₂ e CH₄ para a atmosfera, no reservatório de Volta Grande foi abordada apenas a via difusiva, em função do método empregado para tal finalidade. A escolha do método de microssuperfície para o estudo dos GEE deveu-se basicamente por limitações logísticas, que impediram o emprego de outros métodos que contabilizariam também a via ebulitiva. Em decorrência desta limitação da técnica e a fim

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

de minimizar os erros nas interpretações entre os sistemas aqui considerados, foram considerados apenas os fluxos difusivos a título de comparação.

4.4.1 Método de microssuperfície

O método de microssuperfície (retratado como TBL, do inglês *Thin Boundary Layer*) consiste no uso de equações semi-empíricas, baseadas na lei de Fick (MACINTYRE *et al.*, 1995). Neste conjunto de equações, as principais variáveis consideradas foram a temperatura da água, a velocidade do vento e as concentrações de CO₂ e CH₄.

O fluxo de GEE foi calculado através da equação 6. O valor encontrado é dado por mmol de CO_2 e µmol de CH_4 m⁻².d⁻¹.

$$Fluxo = K_x \times \left(C_{\acute{a}gua} - C_{sat}\right) \tag{6}$$

A concentração de saturação do gás (C_{sat}) na água foi calculada a partir do produto entre a constante de Henry ($K_{HCO2} = 3,5 \times 10^{-2}$ e $K_{HCH4} = 1,4 \times 10^{-3}$ M.atm⁻¹, nas condições da CNTP, SANDER, 1999) multiplicado pela pressão parcial do gás na atmosfera ($pCO_2 = 358,79 \text{ e } pCH_4 = 1,64 \mu atm$), conforme apresentado pela equação 7. Apesar de a constante de Henry mudar em função da temperatura, os valores corrigidos em função da temperatura de amostragem não alteraram de modo significativo os valores de fluxo observados. Por isso, optou-se em manter as condições da CNTP.

$$C_{sat} = K_H \times p \text{ Gás}$$
⁽⁷⁾

A constante K_x é o coeficiente de troca gasosa, em cm.h⁻¹. O coeficiente é calculado a partir do número de Schmidt, de acordo com a equação 8.

$$K_{\chi} = K_{600} \times \left(\frac{Sc}{600}\right)^{-\chi} \tag{8}$$

onde *x* é uma constante em função da velocidade do vento (0,66 para velocidades $\leq 3 \text{ m.s}^{-1}$, e 0,5 para velocidade superior a 3 m.s⁻¹).

O número de Schmidt, constante adimensional, foi calculado em função da temperatura. O CO₂ e o CH₄ foram calculados separadamente, de acordo com as equações 9 e 10.

$$Sc(CO_2) = 1911,1 - 118,11t + 3,4527t^2 - 0,04132t^3$$
(9)

$$Sc(CH_4) = 1897,8 - 14,28t + 3,4527t^2 - 0,03906t^3$$
⁽¹⁰⁾

onde t é a temperatura da água, em graus Celsius.

O valor de K₆₀₀ foi calculado de acordo com a equação 11 (COLE; CARACO, 1998).

$$K_{600} = 2,07 + (0,215 \times (1,22 \times U_1)^{1,7})$$
⁽¹¹⁾

onde U_l é a velocidade do vento, em m.s⁻¹, na superfície da água.

O resultado final foi multiplicado por 240, para a obtenção dos fluxos em mmol.m⁻².d⁻¹ para CO_2 e µmol.m⁻².d⁻¹ de CH₄.

4.5 Comparação entre hidroelétricas e termoelétricas

A fim de comparar o impacto das hidroelétricas em relação a emissões de GEE por energia gerada, fez-se necessário o uso de fórmulas para se estimar o quanto é produzido pelas termoelétricas. Para tal, foi levado em consideração o tipo de combustível utilizado na produção de energia, bem como a tecnologia empregada para a produção energética.

A produção energética da UHE foi calculada a partir da equação 12.

$$E_{gerada} = 0.5 \times Capacidade \,Instalada\,(MW) \times 8.760 \tag{12}$$

onde *E* é a energia gerada, em MW.ano⁻¹, 0,50 é o fator de capacidade médio, adotado para hidroelétricas nacionais (DOS SANTOS *et al.*, 2006), e 8760 é o número de horas no ano.

Para se estimar a quantidade de carbono emitido por tecnologias termoelétricas, multiplicou-se a quantidade de energia gerada pela hidroelétrica pelo fator de conversão associado aos

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

diferentes tipos de combustível, em tC.MWh⁻¹. Em seguida, esse valor foi dividido pela eficiência média de cada tecnologia.

A Tabela 4.2 apresenta os coeficientes utilizados para os cálculos e as eficiências de cada tecnologia aqui considerada.

Tabela 4.2

Fatores de conversão adotados para o cálculo da emissão de GEE e a eficiência na produção da energia. As emissões foram comparadas em termos de carbono (IPCC, 2007; NETO; TOLMASQUIM, 2001; SCHAEFFER *et al.*, 2001).

Combustível	Fator de emissão (tC/TJ)	Fator de emissão (tC/TJ) (MWh/TJ) (tC/MW		Eficiência (%)
Carvão	25,8	0,0036	0,9288	37
Óleo	Óleo 21,1		0,7596	30
Diesel	20,2	0,0036	0,7272	30
Gás Natural	15,3	0,0036	0,5508	30 ^a
	15,3	0,0036	0,5508	50 ^b

a: eficiência para aproveitamento de gás ciclo simples; b: eficiência de aproveitamento para ciclo combinado

4.6 Parâmetros Ambientais

Os parâmetros ambientais que foram considerados neste estudo são: (i) temperatura da água de cada ponto amostral e (ii) direção e velocidade do vento. Os dados meteorológicos como precipitação média e temperatura do ar foram obtidos a partir do banco de dados do Instituto Nacional de Meteorologia (INMET). A direção e velocidade dos ventos no reservatório foram obtidos pela estação meteorológica da UHE Volta Grande. A temperatura da água foi medida em cada ponto amostral. Medições horárias da velocidade do vento foram fornecidas pela própria CEMIG, a partir da estação meteorológica da UHE Volta Grande. Para minimizar os erros, o K₆₀₀, que varia em função da velocidade do vento, foi calculado para cada ponto individualmente, com base na velocidade do vento fornecida para a hora que a coleta foi realizada.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

4.7 Análise Estatística

4.7.1 Estatística Descritiva

Empregou-se a estatística descritiva para a visualização do comportamento dos dados ao longo do período estudado. Desta forma calculou-se a média, mediana, desvio padrão e a variância dos dados. Os dados foram analisados de modo consolidado e de modo compartimentalizado. O modo compartimentalizado consiste na distinção dos pontos quanto à sua localização, sendo eles classificados em Margem Norte, Margem Sul e Eixo Central, totalizando 18 pontos amostrados.

Por se tratar de dados ambientais que naturalmente apresentam uma grande flutuação nos valores, optou-se por utilizar a estatística não-paramétrica.

4.7.2 Análise de Variância Kruskal-Wallis

Para verificar se havia diferenças significativas entre as 3 (três) regiões do reservatório, bem como para comparar os fluxos de CO_2 e CH_4 entre os diferentes biomas (Cerrado, Floresta Atlântica e Floresta Amazônica) e climas (Tropical, Subtropical e Temperado), empregou-se a análise de variância não-paramétrica (Kruskal-Wallis).

Os dados referentes aos fluxos de CO₂ e CH₄ mensurados na UHE Volta Grande foram comparados com outros dados já publicados na literatura. Os fluxos médios de CO₂ e CH₄ aos quais Volta Grande foi comparado estão presentes nas Tabelas 4.3 e 4.4. Os valores medianos de Volta Grande foram comparados com os valores medianos de cada bioma (Cerrado, Floresta Atlântica e Floresta Amazônica) e de cada região climática (Tropical, Subtropical e Temperado).

Para todas as análises a serem realizadas, considerou-se como estatisticamente significativos, os resultados que apresentem um valor p < 0.05.

4.7.3 Interpolação de Kriger (Krigagem)

Para a visualização da distribuição espacial tanto das concentrações quanto dos fluxos de CO₂ e CH₄, empregou-se o método de interpolação de Kriger. Desta forma, juntamente com o mapa

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

de cota máxima do reservatório, é possível detectar possíveis regiões de *hot-spots* de emissão de GEE.

Tabela 4.3

Tabela com os fluxos difusivos médios de CO₂ e CH₄ para os diferentes reservatórios brasileiros e Petit Saut.

Reservatório	País	Bioma	Fluxo CO ₂ (mmol.m ⁻² .d ⁻¹)	Fluxo CH ₄ (µmol.m ⁻² .d ⁻¹)	Referência
Manso	Brasil	Cerrado	88,50	<u></u>	Roland et al., 2010
Furnas	Brasil	Cerrado	12,00		Roland et al., 2010
Luiz C. B. Carvalho	Brasil	Cerrado	64,00		Roland et al., 2010
Mascarenhas de Moraes	Brasil	Cerrado	38,00		Roland et al., 2010
Três Marias	Brasil	Cerrado	25,38	1985,66	dos Santos et al., 2006
Serra da Mesa	Brasil	Cerrado	90,27	1533,67	dos Santos et al., 2006
Miranda	Brasil	Cerrado	99,70	8114,09	dos Santos et al., 2006
Xingó	Brasil	Semiárido	139,47	1826,68	dos Santos et al., 2006
Funil	Brasil	Floresta Atlântica	10,50		Roland et al., 2010
Segredo	Brasil	Floresta Atlântica	61,24	436,41	dos Santos et al., 2006
Itaipu	Brasil	Floresta Atlântica	3,89	632,79	dos Santos et al., 2006
Barra Bonita	Brasil	Floresta Atlântica	90,55	1056,73	dos Santos et al., 2006
Samuel	Brasil	Amazônico	169,23	5458,23	dos Santos et al., 2006
Tucuruí	Brasil	Amazônico	192,57	6331,05	dos Santos et al., 2006
Balbina	Brasil	Amazônico	86,34	2930,17	Kemenes et al., 2007
Petit Saut	Guiana Francesa	Amazônico	83,75	4332,92	Abril et al., 2005

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Tabela 4.4

Reservatório	País	Clima	Fluxo CO ₂ (mmol.m ⁻² .d ⁻¹)	Fluxo CH4 (µmol.m ⁻² .d ⁻¹)	Referência
Três Gargantas	China	Subtropical	106	349,8	Zhao et al., 2013
Hongfeng	China	Subtropical	15		Wang et al., 2011
Baihua	China	Subtropical	23		Wang et al., 2011
Danjiangkou	China	Subtropical	9		Li e Zang, 2014
Nam Ngum	Laos	Subtropical	-16	199,5	Chanudet et al., 2011
Nam Leuk	Laos	Subtropical	3	2599,8	Chanudet et al., 2011
Eastmain 1	Canadá	Temperado	15,62	10,60	Demarty et al., 2011
Kettle	Canadá	Temperado	11,68		Demarty et al., 2009
Jenpeg	Canadá	Temperado	7,18	69,20	Demarty et al., 2009
Grand Rapid	Canadá	Temperado	14,18	36,16	Demarty et al., 2009
McArthur	Canadá	Temperado	8,34	2,49	Demarty et al., 2009
Lokka	Finlândia	Temperado	0,55	48,00	Huttunen et al., 2002
Porttipahta	Finlândia	Temperado	0,80	13,72	Huttunen et al., 2002
F. D. Roosevelt	E.U.A	Temperado	-9,88	143,39	Soumis et al., 2004
Dworshak	E.U.A	Temperado	-23,40	211,97	Soumis et al., 2004
Wallula	E.U.A	Temperado	-9,48	529,93	Soumis et al., 2004
Shasta	E.U.A	Temperado	31,02	692,02	Soumis et al., 2004
Oroville	E.U.A	Temperado	14,41	224,44	Soumis et al., 2004
New Melones	E.U.A	Temperado	-23,68	399,00	Soumis et al., 2004
Laforge 1	Canadá	Temperado	46,85	1683,29	Tremblay et al., 2005
Laforge 2	Canadá	Temperado	18,93	467,58	Tremblay et al., 2005
La Grande 3	Canadá	Temperado	38,79	504,99	Tremblay et al., 2005
La Grande 4	Canadá	Temperado	26,77	679,55	Tremblay et al., 2005
Robert- Bourassa	Canadá	Temperado	38,76	486,28	Tremblay et al., 2005

Tabela com os fluxos difusivos médios de CO₂ e CH₄ para os reservatórios localizados nas regiões Subtropical e Temperada.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

5 RESULTADOS E DISCUSSÃO

5.1 Distribuição espacial das concentrações e fluxos dos GEEs

5.1.1 Concentração de CO₂ e CH₄

As concentrações de CO₂ variaram de 0,02 a 0,05 mmol.L⁻¹, com valor mediano de 0,03 mmol.L⁻¹ (CV_{CO2} = 0,29). As concentrações de CH₄ variaram de 0,12 a 0,42 μ mol.L⁻¹, apresentando um coeficiente de variação (CV) de magnitude próxima à observada para CO₂ (CV_{CH4} = 0,33). A faixa de variação é apresentada na Figura 9. Os valores das concentrações de CO₂ e CH₄ para cada um dos pontos estão apresentadas no Apêndice A.

Figura 9: Variação das concentrações de CO₂ e CH₄ considerando todos os pontos amostrados no reservatório de Volta Grande. Os pontos acima e abaixo representam os outliers.

Analisando as concentrações de CO₂, separando-as por regiões (margem norte, sul e eixo central), observou-se que os valores médios e medianos foram muito próximos (p > 0,05). O mesmo pode ser observado para os coeficientes de variação, conforme pode ser observado na Tabela 5.1. O mesmo padrão foi observado para o CH₄.

Tabela 5.1

Valores médios, medianos, máximos, mínimos e coeficiente de variação da concentração de CO₂ e CH₄ para os 18 pontos amostrados, separados de acordo com a posição dos mesmos no reservatório.

Região		n	Média	Mediana	Desv. Pad.	Mín.	Máx.	C. Variação
Margem Norte	CO ₂	5	0,034	0,032	0,007	0,028	0,046	0,204
	CH_4	5	0,205	0,170	0,124	0,121	0,420	0,605
Eixo Central	CO ₂	7	0,031	0,028	0,011	0,016	0,050	0,365
	CH ₄	7	0,246	0,251	0,048	0,161	0,292	0,197
Margem Sul	CO ₂	6	0,029	0,029	0,010	0,016	0,039	0,340
	CH_4	6	0,231	0,247	0,057	0,144	0,288	0,245

O coeficiente de variação apresentou uma variação entre as diferentes regiões analisadas, sendo maior para os pontos da Margem Norte (CV = 0,60), quando comparado com os coeficientes para o Eixo Central e para a Margem Sul (0,19 = 0,24, respectivamente).

Amplos coeficientes de variação já eram esperados, uma vez que esses gases são produzidos majoritariamente por mecanismos biológicos (Rosa *et al.*, 2004). Conforme apresentado na seção 3.3, o balanço entre os processos de produção e de consumo do CO₂ e CH₄ vai variar significativamente, em função de características particulares de cada local. Como exemplo, Soares *et al.* (2008) encontraram uma correlação positiva entre fontes pontuais de lançamento de esgotos com valores elevados de concentração de CO₂ nos reservatórios de Furnas-MG e Funil-RJ.

Como resultado da ampla variação dos dados, não observou-se diferença significativa (p > 0,05) entre as três regiões, conforme apresentado pela Figura 10, tanto para o dióxido de carbono quanto para o metano.

Figura 10: Valores medianos e desvio padrão das concentrações de CO₂ (A) e CH₄ (B) na Margem Norte, Margem Sul e Eixo Central.

Apesar de não terem sido observadas diferenças de concentrações de CO_2 e CH_4 entre as três regiões distintas do reservatório, foi constatada uma tendência quanto à variação longitudinal. Este comportamento variou, dependendo do gás avaliado. Não foi possível observar relação entre o distanciamento da barragem com o aumento na concentração de CO_2 ($R^2 = 0.03$, p = 0.43; Figura 11). Entretanto, quando analisado o comportamento do CH₄, observou-se uma relação entre o distanciamento do barramento e a concentração do gás na água ($R^2 = 0.51$, p < 0.51, p < 0.51

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

0,01; Figura 11). A interpolação demonstrando a espacialização das concentrações de CO₂ e CH₄ pode ser observado na Figura 12.

Resultados observados por Roland *et al.* (2010), estudando 5 reservatórios encontrados no Cerrado, são similares ao padrão observado em Volta Grande. No estudo em questão, também foram observados valores crescentes de pressão parcial de CO₂ quando se desloca da barragem para a montante dos reservatórios.

Este padrão longitudinal pode estar associado às características morfológicas do próprio reservatório. Regiões riverinas de reservatórios apresentam uma hidrodinâmica mais turbulenta, o que elevaria o potencial de desprendimento do gás antes aprisionado no sedimento. Adicionalmente, nessas regiões a quantidade de carbono alóctone e de nutriente tendem a ser mais elevadas. Como resultado, os processos de conversão da matéria orgânica tendem a superar a produção primária (COLE *et al.*, 2000).

Em contrapartida, regiões lacustres podem apresentar, nas camadas superiores, menores concentrações, tanto de CO₂ quanto de CH₄. Via de regra, a região lacustre apresenta maior produção primária em função da estabilidade da coluna d'água e da maior disponibilidade luminosa. Adicionalmente, quando não há circulação vertical, a matéria orgânica que não foi previamente oxidada tende a sedimentar, alimentando os processos bentônicos. Entretanto, com a pressão hidrostática da coluna d'água, esses gases ficam presos no hipolímnio.

Um ponto a ser destacado é o fato de o padrão observado para as concentrações de CO₂ ao longo do reservatório ser diferente do padrão observado para as concentrações de CH₄. Conforme apresentado na seção 3.3, há pelo menos 3 vias de produção desses GEEs em um reservatório. São elas a oxidação aeróbia, a oxidação anaeróbia e a foto-oxidação. Cada um desses mecanismos vai apresentar um peso, a depender das condições observadas em cada reservatório, também conforme apresentada na seção 3.3.

Nota-se, portanto, que a produção de CO₂ seria preferencial em relação à formação de CH₄. Isto porque a produção massiva de CH₄, além de mais lentamente, ocorre em ambientes anaeróbios. Em ambientes aquáticos, essa produção aconteceria no sedimento em decorrência da mineralização da matéria orgânica sedimentada (BIANCHINI *et al.*, 2008). Entretanto, a formação de CO₂ ocorre tanto em ambientes aeróbios quanto em ambientes anaeróbios. Desta forma, é de se esperar que as concentrações de CH₄ nas águas subsuperficiais apresentem uma

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

variação espacial maior, estando relacionada a profundidade da coluna d'água. Ou seja, quando mais a montante, maior seriam as concentrações de CH₄ na água.

Em contrapartida, apesar de também haver a produção de CO_2 no sedimento, a relação entre a concentração do gás na água e a profundidade perde um pouco da força devido aos outros mecanismos também responsáveis pela produção adicional de CO_2 (e. g. respiração), bem como pela maior solubilidade do mesmo. Ou seja, apesar de haver a influência do sedimento na concentração de CO_2 em águas subsuperficiais, a oxidação aeróbia que ocorre ao longo do reservatório, bem como a foto-oxidação, reduziria esta relação entre sedimento e concentração de CO_2 na subsuperfície.

5.1.2 Fluxos difusivos de CO₂ e CH₄

Considerando todo o sistema, observou-se que o reservatório de Volta Grande é heterotrófico, atuando como fonte de emissões de carbono para a atmosfera. Estes resultados são condizentes com o que é relatado para a maioria dos sistemas (ABRIL *et al.*, 2005; BARROS *et al.*, 2011; COLE *et al.*, 2000; LU *et al.*, 2011; ROLAND *et al.*, 2010; ST. LOUIS *et al.*, 2000).

De modo similar ao que foi encontrado para as concentrações, os fluxos de CO₂ e CH₄ não foram homogeneamente distribuídos ao longo do reservatório. A variação dos fluxos de GEE entre os pontos amostrados é bem comum, uma vez que o fluxo dos gases está relacionado com diferentes fatores, específicos de cada local amostrado.

Os fluxos de CO₂ calculados variaram de 2,35 a 58,35 mmol.m⁻².d⁻¹. Analisando os dados consolidados, nota-se que o fluxo de CO₂ varia mais do que a concentração do mesmo gás, $(CV_{CO2} = 0,64)$. Os fluxos de CH₄ variaram de 90,32 a 649,53 µmol.m⁻².d⁻¹. De modo similar ao que foi observado para o CO₂, a variação do fluxo de CH₄ foi maior que a variação observada da sua concentração ($CV_{CH4} = 0,59$). As respectivas variações estão representadas na Figura 13.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 13: Variação dos fluxos de CO₂ e CH₄ no reservatório Volta Grande. Os pontos acima e abaixo representam outliers.

Esta maior variação dos fluxos em relação às concentrações pode ser explicada pelo número de fatores envolvidos na emissão desses gases. Conforme apresentado anteriormente, o fluxo difusivo, além de depender da concentração do gás em questão, vai depender de fatores ambientais, tais como direção e velocidade do vento, temperatura da água, entre outros (GOLDENFUM, 2012; ST. LOUIS *et al.*, 2000). Conforme observado por Roland *et al.* (2010), rajadas súbitas de vento podem forçar uma circulação vertical nas proximidades do barramento. No estudo em questão, em decorrência de uma rajada de vento por eles observada, houve uma mudança completa no padrão de emissão observada para o reservatório Manso-MT em um curto intervalo de tempo. Ou seja, os fenômenos difusivos são extremamente variáveis, tanto espacial quanto sazonalmente.

Esta amplitude de variação nos fluxos de GEE é condizente com o que já foi encontrado na literatura. Dos Santos *et al.* (2006) encontraram variações ainda superiores às aqui apresentadas, em reservatórios também localizados no bioma Cerrado. Em Miranda-MG registrou-se, em uma mesma campanha, fluxos de CO₂ variando de 0,3 a 1.390 mmol.m⁻².d⁻¹. Já no reservatório de Três Marias-MG, os valores para fluxo difusivo de CO₂ apresentaram variações de – 228 a 0,74

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

mmol.m⁻².d⁻¹. Já em Serra da Mesa-GO foram observadas variações de – 14,33 a 134 mmol.m⁻ ².d⁻¹.

Variações semelhantes foram observadas no caso do metano. Ainda de acordo com dos Santos *et al.* (2006), Miranda (MG) apresentou uma variação de 1,2 a 285,5 mmol de CH₄.m⁻².d⁻¹ e Três Marias apresentou uma variação de 0,05 a 15 mmol de CH₄.m⁻².d⁻¹. Já em Serra da Mesa as variações foram de 0,5 a 22,8 mmol CH₄.m⁻².d⁻¹. Essas amplitudes de variações variam também em função do tempo. Dos Santos *et al.* (2006) observaram ainda que a amplitude variação dos fluxos difusivos de metano oscila entre cada campanha de amostragem.

Estas variações se dão em função dos diversos mecanismos intervenientes no processo difusivo, sejam eles rajadas de vento, índices pluviométricos, aporte de matéria orgânica, concentração de nutrientes, profundidade do ponto amostrado, dentre outros. Vale ressaltar que esses fatores atuam de forma conjunta, sendo o resultado difícil de ser previsto.

Conforme realizado para as concentrações de GEE na água, as três regiões distintas do reservatório também foram analisadas separadamente. Contudo, não foi observada diferença significativa entre as 3 (três) regiões transversais do reservatório tanto para os fluxos de CO₂ quanto para os fluxos de CH₄, conforme apresentado na Figura 14 e Figura 15 (p > 0,05). A estatística descritiva de cada região é apresentada na Tabela 5.2. Os valores dos fluxos para cada ponto amostrado estão presentes no Apêndice B.

Tabela 5.2

Valores médios, medianos, máximos, mínimos e coeficiente de variação para CO₂ (mmol.m⁻².d⁻¹) e de CH₄ (µmol.m⁻².d⁻¹) para os 18 pontos amostrados no reservatório de Volta Grande, separados de acordo com a região amostrada

Região		n	Média	Mediana	Desv. Pad.	Mín.	Máx.	C. Variação
Margem Norte	CO ₂	5	23,36	17,31	16,48	12,98	52,63	0,71
	CH_4	5	233,42	109,62	235,74	105,01	649,52	1,01
Eixo Central	CO ₂	7	17,72	18,41	8,97	2,35	27,76	0,51
	CH_4	7	272,17	242,46	147,15	90,32	449,98	0,54
Margem Sul	CO ₂	6	24,34	22,09	18,70	3,18	58,34	0,77
	CH_4	6	316,70	312,17	140,54	146,75	472,58	0,44

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 14: Fluxo difusivo de CO₂ no reservatório de Volta Grande, separados de acordo com as regiões amostradas

Figura 15: Fluxo difusivo de CH₄ no reservatório de Volta Grande, separados de acordo com as regiões amostradas

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Levando em consideração que as margens são mais rasas e mais susceptíveis às ações dos ventos e das correntes, era de se esperar que os fluxos nestas regiões fossem superiores aos fluxos encontrados no eixo central do reservatório. Entretanto, esta relação não é tão simples e direta.

Abril *et al.* (2005), estudando o reservatório de Petit Saut, na Guiana Francesa, obtiveram resultados semelhantes, onde os fluxos de CO₂ e CH₄ das margens não eram significativamente diferentes dos fluxos nas regiões pelágicas. Atribuiu-se este resultado ao fato de que a vegetação marginal do reservatório atuou como proteção para a coluna d'água contra a ação dos ventos.

Resultado diferente foi observado por Roland *et al.* (2010) para o reservatório Manso. Neste caso, comparando com o mapa batimétrico do reservatório, eles constataram uma boa correspondência entre profundidade e fluxos difusivos. Lu *et al.* (2011), entretanto, encontraram resultados inconclusivos no reservatório de Três Gargantas, China. Apesar de alguns pontos estudados apresentarem uma relação inversa entre profundidade e fluxo de CH₄, esta não se manteve para todos os pontos considerados no estudo.

No caso de Volta Grande, esta homogeneidade transversal pode estar associada tanto a aspectos relacionados a vegetação quanto a características da coluna d'água. Apesar de não ser tão proeminente como em regiões amazônicas, a vegetação pode ter atuado protegendo as margens contra a ação dos ventos, devido à proximidade entre os pontos amostrados e a região litorânea do reservatório. Outro aspecto a ser ressaltado, além da proteção contra o vento, é a temperatura da água e a concentração desses gases dissolvidos na coluna d'água, que foram semelhantes entre as três regiões aqui consideradas. Desta forma, dada a proteção da região litorânea contra a ação dos ventos, conjuntamente com condições físico-químicas semelhantes, é de se esperar fluxos semelhantes entre as três regiões transversais do reservatório.

Vale ressaltar que foi avaliado o fluxo difusivo desses gases. Essas considerações não podem ser generalizadas, principalmente quando se considera a via ebulitiva de metano. Bastviken *et al.* (2004) observaram maiores fluxos ebulitivos nas regiões das margens (regiões com profundidade de até 4 metros). Isto porque a pressão hidrostática nestas regiões era menor, facilitando o desprendimento das bolhas do sedimento para a atmosfera. Como resultado, pode

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ser que o fluxo de CH₄ varie transversalmente. Entretanto, reitera-se que os fluxos ebulitivos não foram considerados neste estudo.

Apesar de não terem sido observadas diferenças significativas dos fluxos de CO_2 e CH_4 entre as margens norte, sul e o eixo central, verificou-se que, à medida em que se deslocava do barramento em direção à montante, há um aumento dos fluxos de GEE (Figura 16; Figura 17; Figura 18).

Destaca-se que esta tendência longitudinal não foi significativa para concentração de CO_2 dissolvido (p > 0,05), conforme já foi apresentado e discutido na seção 5.1.1. Este é mais um indicativo de que, apesar de relacionado à diferença entre as concentrações na água e na atmosfera, outros fatores, que não estão diretamente relacionados às concentrações dos respectivos gases, irão influenciar os fluxos correspondentes.

Figura 16: Relação entre o fluxo difusivo de CH_4 e a distância do barramento (p < 0,05, n = 18)

Figura 17: Relação entre o fluxo difusivo de CO_2 e a distância do barramento (p < 0.05, n = 18)

Figura 18: Interpolação dos fluxos difusivos de CO₂ (A) e CH₄ (B) ao longo do reservatório de Volta Grande.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Esses resultados são compatíveis com os encontrados por Roland *et al.* (2010). Dentre os fatores que explicam este padrão, pode-se citar a regionalização longitudinal do reservatório associado a padrões hidrodinâmicos que atuam dentro do mesmo (ROLAND *et al.*, 2010).

Reservatórios são segmentados longitudinalmente em 3 (três) regiões distintas. A região mais próxima ao barramento é a região lacustre. É a região mais ampla e profunda do reservatório. Nesta região, as correntes do rio original são menores e o tempo de residência da água é maior. Como consequência dessa maior estabilidade da coluna d'água, sólidos em suspensão, nutrientes e a matéria orgânica tendem a sedimentar, criando um ambiente mais limitado em nutrientes. Paralelamente à sedimentação da matéria orgânica, há um aumento na produção primária decorrente do aumento da disponibilidade de luz para a comunidade fitoplanctônica (THORNTON *et al.*, 1990). Como resultado, espera-se menores concentrações de GEE dissolvidos e menores fluxos para a atmosfera.

Em contrapartida, a região riverina, que é a zona de confluência entre o rio e o reservatório, apresenta características bem distintas. Por serem regiões mais estreitas e rasas, com forte influência de correntes internas, as concentrações de sólidos suspensos, nutrientes e matéria orgânica são mais elevadas. Simultaneamente ao aporte de sólidos, nutrientes e matéria orgânica, há uma redução na disponibilidade luminosa, o que limita a produção primária (THORNTON *et al.*, 1990). Como resultado da limitação da produção fotossintética e da interferência hidrodinâmica mais intensa, em função do rio a montante ou de fortes ventos, regiões riverinas tendem a apresentarem maiores fluxos de GEE para a atmosfera.

Apesar de os resultados aqui obtidos terem sido condizentes com os resultados relatados por Roland *et al.* (2010), outros fatores já foram relacionados com a diferenciação espacial.

Teoduru *et al.* (2011), estudando um reservatório canadense, observaram que regiões correspondentes a fragmentos florestais antes da inundação apresentaram fluxos maiores de CO_2 e CH₄, resultados estes que também foram corroborados por Brothers *et al.* (2012).

A partir do mapa de uso e cobertura do solo anterior ao barramento e inundação da área, podemos verificar que aproximadamente 76% da área total era originalmente vegetada,

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

contribuindo com um aporte de matéria orgânica nos anos subsequentes ao fechamento da barragem, ainda que esta área não corresponda a fragmentos florestais (Figura 19).

Entretanto, não é possível chegar às mesmas conclusões observadas por Teoduru *et al.* (2011) no caso de Volta Grande. Nota-se que os mapas das Figura 12 e Figura 18 não apresentam uma correspondência direta com o mapa apresentado na Figura 19.

É de se esperar que reservatórios mais novos apresentem taxas de fluxo maiores nos anos iniciais do reservatório (BARROS *et al.*, 2011; GUÉRIN *et al.*, 2008; OMETTO *et al.*, 2013; WESSEINBER *et al.*, 2010). Isto porque, antes da inundação, há um grande estoque de matéria orgânica, tanto no solo quanto na vegetação, prontamente mineralizável (BROTHERS *et al.*, 2012; GUÉRIN *et al.*, 2008; TEODURU *et al.*, 2011). Entretanto, a influência desta matéria orgânica sobre os fluxos de GEE tende a diminuir com o tempo, uma vez que a MO_L é rapidamente mineralizada, restando uma MO mais recalcitrante, de decomposição mais lenta (CUNHA-SANTINO; BIANCHINI, 2004). Guérin *et al.* (2008) também observaram uma tendência de aumento dos fluxos de GEE nos anos iniciais. Contudo, esta tendência se inverteu após 4 anos de inundação. Cunha-Santino e Bianchini (2004), em experimentos de mineralização, também observaram que nos estágios iniciais houve um maior consumo de O₂ em função de elevadas taxas de mineralização, reduzindo em função do tempo. Devido à idade do reservatório, toda esta matéria orgânica já teria sido oxidada, resultando na ausência de relação entre as figuras 18 e 19.

Outro ponto digno de nota é o padrão de qualidade de água no reservatório. Com base em informações obtidas através do Sistema de Informação de Qualidade da Água dos Reservatórios da Cemig (SISÁGUA), tanto para regiões lênticas quanto para regiões lóticas, a água do reservatório foi classificada como boa (valores de IQA de 86,25 e 75,75, respectivamente). A fim de se deduzir a concentração de matéria orgânica passível de mineralização no sistema, considerou-se os valores da demanda bioquímica de oxigênio (DBO). No caso de Volta Grande, excluindo os dados censurados (aqueles dados abaixo do limite de detecção do método), obteve-se um valor médio de 1,56 mg.L⁻¹. Com valores baixos de DBO e de ortofosfato (em torno de $30 \ \mu g.L^{-1}$), é de se esperar que os fluxos de GEE não sejam elevados.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 19: Mapa de uso e cobertura do solo anterior ao enchimento do reservatório de Volta Grande (CEMIG, 2014)

5.1.3 Fluxos difusivos de CO₂ em sistemas em cascata

Conforme apresentado na seção 4.1, o reservatório de Volta Grande está localizado na bacia do rio Grande, a jusante de 4 (quatro) reservatórios. Destes quatro reservatórios, 3 (três) já haviam sido amostrados por Roland *et al.* (2010) Comparado o valor médio medido em Volta Grande com os valores médios medidos nos reservatórios à montante, observa-se que há uma tendência de aumento nos valores médios de fluxo de CO₂ à medida que se analisa o sistema a jusante (Figura 20). No caso em questão, foi observado um aumento de 140% entre o reservatório de

Figura 20: Fluxos difusivos de CO₂ dos reservatórios localizados no Rio Grande, à montante do reservatório de Volta Grande. Os dados referentes aos reservatórios de Furnas, Mascarenhas de Moraes e Luiz C. B. Carvalho foram obtidos de Roland *et al.*, 2010.

Furnas-MG e o reservatório de Volta Grande-MG/SP. Entretanto, apesar desta tendência, não se pode afirmar que há diferença estatística entre eles, dada a variabilidade dos dados.
O fato de os reservatórios estarem em cascata um em relação ao outro pode ser um outro fator importante para entendermos melhor os padrões de fluxos de CO₂ e CH₄. Porém este ainda é um aspecto pouco explorado.

Roland *et al.* (2010) já mencionaram esta possível contribuição do reservatório a montante sobre os fluxos observados no reservatório a jusante. Wang *et al.* (2011), estudando reservatórios em cascata na China, também destacaram o efeito do barramento nos sistemas em cascata. Este efeito pode ser visualizado através da descontinuidade das características da coluna d'água após a barragem.

Conforme apresentado na seção 3.4 existem outras vias de emissão de GEE. No caso de reservatórios em cascata, a desgaseificação pode afetar significativamente as taxas de emissão dos reservatórios localizados a jusante, uma vez que os gases que estavam dissolvidos e retidos na coluna d'água, em função da queda da pressão hidrostática, podem ser liberados, sendo contabilizados como emissões difusivas nos reservatórios a jusante. Isto a depender da proximidade dos reservatórios no sistema em cascata.

O processo de desgaseificação tem seu peso aumentado ou diminuído, em relação as emissões totais, principalmente devido à qualidade da água que passa pela turbina. Zhao *et al.* (2013) observaram que as emissões após as turbinas correspondiam a 22% da emissão total no reservatório de Três Gargantas (China). Kemenes *et al.* (2011) encontraram valores na casa de 51% no reservatório de Balbina. Essa contribuição da desgaseificação não é constante. Guérin *et al.* (2006), em outro reservatório amazônico, observaram que, após a casa de força, as emissões de metano variaram amplamente, correspondendo entre a um valor que varia de 9 a 300% dos valores obtidos à montante. Para CO₂, essa variação foi de 7 a 25%. Esta diferença na representatividade da desgaseificação é decorrente da qualidade da água a montante, associada à estrutura do barramento.

Conforme observado por Roland *et al.* (2010), regiões próximas ao barramento apresentam taxas de emissão mais baixas. Contudo, de acordo com o que foi observado por Abril *et al.* (2005), apesar de baixas concentrações de CO_2 e CH_4 na superfície, esses valores tendem a aumentar em função da profundidade. Ao passar pelas turbinas, esses gases são liberados para a atmosfera como resultado do turbilhonamento dessa água e redução da pressão hidrostática

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

56

sobre a coluna d'água (HERTWICH, 2013). Conforme apresentado na seção 3.4, quanto maior a concentração desses gases na água a montante, maior tenderá a ser o fluxo da água para a atmosfera. E essas emissões podem se estender por quilômetros após a casa de força (GUÉRIN *et al.*, 2006; KEMENES *et al.*, 2007). Ou seja, quanto maior a concentração do gás na coluna água a montante, maior será a contribuição da desgaseificação nas emissões totais.

Conforme constatado por Roland *et al.* (2010), a água que entra na casa de força apresenta elevados valores de concentração de CO₂. Esta carga afeta diretamente o reservatório a jusante (Mascarenhas de Moraes). Este, por sua vez, exerce o mesmo efeito no próximo reservatório a jusante (Luiz C. B. Carvalho).

Desta forma, por estarem em cascata, os reservatórios a jusante recebem, além da carga de matéria orgânica terrestre da sua bacia, cargas de matéria orgânica que se encontravam nas camadas inferiores da coluna d'água nos reservatórios a montante bem como os gases que estavam dissolvidos, caso a tomada d'água seja na mesma faixa de profundidade. Consequentemente os reservatórios a jusante tenderiam a emitir mais, quando comparado aos sistemas à montante.

Esta talvez seja uma provável explicação para o comportamento observado no sistema instalado no Rio Grande, onde o reservatório a jusante apresenta fluxo médio de CO₂ superior ao fluxo observado na montante. Entretanto, vale a pena ressaltar que este padrão não pode ser generalizado e extrapolado para todos os sistemas em cascata, nem para os reservatórios a jusante. Isto porque além do que foi supracitado, há o efeito de oligotrofização nesses sistemas, com a retenção de nutrientes ao longo do sistema, o que poderia contribuir negativamente para a produção e consequente emissão de CO₂ para a atmosfera.

5.1.4 Fluxos difusivos de CO₂ e CH₄ em diferentes biomas nacionais

Para uma compreensão mais ampla acerca da emissão de GEE observada em Volta Grande, compararam-se as taxas de emissão deste com taxas de emissão em outros reservatórios, localizados em diferentes biomas nacionais. Os biomas abordados para esta comparação foram: i) Cerrado, ii) floresta Atlântica e iii) floresta Amazônica.

Conforme discutido anteriormente, essa amplitude de variação no que diz respeito às taxas de emissão de GEE é comum em decorrência da interação entre os diferentes fatores intervenientes neste fluxo. É também por esta razão que não se pode descartar dados extremos.

De acordo com a Figura 21, observou-se que o reservatório de Volta Grande não difere significativamente dos reservatórios localizados no Cerrado ou na Floresta Atlântica (p > 0,05). Entretanto, reservatórios amazônicos apresentaram fluxos de CO₂ significativamente superiores aos do reservatório estudado (p < 0,05).

Figura 21: Comparação entre os fluxos difusivos de CO_2 em diferentes biomas nacionais. Letras distintas nas colunas representam diferenças significativas entre as medianas (p < 0,05).

Contudo, analisando os fluxos de metano, o reservatório de Volta Grande, localizado no Cerrado, apresentou fluxos inferiores aos fluxos observados nos biomas Cerrado e floresta Amazônica (p < 0,05; Figura 22), sendo comparáveis a fluxos encontrados em bioma de floresta Atlântica.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Barros *et al.* (2011), através de meta-análise, identificaram padrão semelhante, onde reservatórios localizados no bioma amazônico apresentaram fluxos de GEE superiores aos demais sistemas. Ambientes florestais contribuem mais com o aporte de carbono alóctone ao sistema, aumentando a sua concentração no meio aquático por meio do escoamento superficial de detrito (ABRIL *et al.*, 2005; DEMARTY; BASTIEN, 2011). Conforme a quantidade de matéria orgânica no ambiente aquático aumenta, é de se esperar que os fluxos de GEE também Figura 22: Comparação entre os fluxos difusivos de CH₄ nos quatro biomas nacionais. Letras diferentes representam diferenças significativas (p < 0.05)

aumentem. Entretanto esta não seria a única razão para este padrão encontrado.

Além do processo de mineralização biológica da MO, a via fotolítica apresenta um grande papel nesses sistemas, pela intensa incidência ao longo do ano (SUHETT *et al.*, 2007). Associado a esta alta incidência de radiação, Suhett *et al.* (2007) e Amado *et al.* (2006) observaram que em sistemas amazônicos, o aumento da foto-oxidação coincide com o período de chuvas. Esta relação se deve ao fato de que a matéria orgânica alóctone é mais susceptível à ação fotolítica da radiação UV (AMADO *et al.*, 2007; BERTILSSON; TRANVIK, 2000; FARJALLA *et al.*, 59

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

2009; MILLER *et al.* 2009a; WESSEINBER *et al.*, 2010). Além da produção direta de CO₂, a radiação UV pode favorecer o processo de mineralização biológica (AMADO *et al.*, 2007; FARJALLA *et al.*, 2009; MILLER *et al.*, 2009b).

Entretanto, esta relação entre biomas florestais e aporte de matéria orgânica não é homogênea. Conforme apresentado na Figura 21, reservatórios localizados no bioma floresta Atlântica apresentam amplas variações, com faixas de emissão média variando de 3,8 a 90,5 mmol de CO₂.m⁻².d⁻¹ e 436 a 1.056 µmol de CH₄.m⁻².d⁻¹. Esta ampla variação pode estar associada a extensa faixa do bioma em questão, que abrange reservatórios com diferentes graus de trofia, com sistemas eutróficos (e. g. Barra Bonita e Funil) e mesotróficos (e. g. Segredo), bem como diferentes usos e ocupação do solo e diferentes estados de conservação do bioma.

O uso e ocupação, associado ao grau de conservação do bioma, também devem ser levados em consideração (JOSSETTE *et al.*, 1999). Comparando os biomas florestais aqui considerados, o bioma floresta Amazônica apresenta um grau de conservação maior do que o bioma floresta Atlântica, conforme observado na Tabela 5.3 (BRASIL, 2014b).

Tabela 5.3

Caracterização dos diferentes biomas considerados no presente estudo quanto ao percentual de cobertura vegetal e ocupação do solo

Bioma	Áreas Antrópicas	Vegetação Nativa Florestal	Vegetação Não-Florestal
Floresta Amazônica	9,5 %	80,7 %	4,2 %
Floresta Atlântica	70,9 %	21,8 %	3,8 %
Cerrado	38,9 %	36,7 %	23,6 %

Como resultado da intensa ocupação do solo no bioma Floresta Atlântica, a contribuição da vegetação com aporte de carbono alóctone tende a ser menor, conforme observado por Demarty e Bastien (2011). Consequentemente, menos matéria orgânica seria mineralizada por via biológica ou por fotolítica. Ou seja, a heterogeneidade ambiental existente no bioma floresta Atlântica em decorrência do uso e ocupação do solo pode afetar de modo distinto os sistemas presentes neste bioma, resultando em uma ampla variação entre o sistema.

Outro ponto digno de nota é o tempo de residência da água no reservatório. Bianchini e Santino (2011), observaram, a partir de experimentos de mineralização, uma relação positiva entre o tempo de residência e a mineralização da MO. Cunha-Santino e Bianchini (2002) ressaltam essa importância no caso da produção de CH4, uma vez que a oxidação anaeróbia é um processo mais lento. Entretanto, ainda que exista uma relação teórica, Roland *et al.* (2010) e Barros *et al.* (2011), não encontraram uma relação direta entre o tempo de residência e o fluxo dos gases. Provavelmente, essa relação não foi observada devido aos outros fatores envolvidos no processo. Principalmente no caso de Barros *et al.* (2011), por se tratar de uma compilação de inúmeros reservatórios em locais diferentes, o peso dos demais fatores podem ter mascarado o real efeito do tempo de residência. Como o tempo de residência em Volta Grande é baixo (aproximadamente 17 dias), a produção principalmente de CH4 seria inferior, quando comparado com outros reservatórios, justamente por se tratar de um processo mais lento e que demanda condições particulares para a sua ocorrência.

Já a relação entre o grau de trofia e o fluxo de GEE em reservatórios deve ser feito com cautela. Huttunen et al. (2003) e Gonzalez-Valencia et al. (2014) observaram uma relação positiva entre o grau de trofia e a emissão de CH₄ em reservatórios subtropicais. Cunha-Santino et al. (2008) observaram uma relação semelhante, onde a limitação por nutrientes reduzia a velocidade de mineralização da matéria orgânica. Cole et al. (2000) também constataram o estimulo à mineralização em ambientes enriquecidos com nutrientes. Entretanto, a elevada concentração de nutrientes pode favorecer a metanotrofia, resultando na oxidação do CH₄ a CO₂ (BASTVIKEN et al., 2002). Como o CO₂ apresenta um potencial de aquecimento global 25 menor que o CH₄, o grau de trofia reduziria os impactos atmosféricos associados aos reservatórios. Além de favorecer a oxidação do metano, o aumento na concentração de nutrientes pode favorecer a produção primária, muitas vezes limitada justamente pela concentração baixa de nutrientes dissolvidos (DARCHAMBEAU et al., 2014; IRIARTE et al., 2012). Ou seja, a relação entre grau de trofia e fluxos de CO_2 deve ser analisada cautelosamente, considerando cada sistema separadamente. Por exemplo, no caso do reservatório de Funil-RJ, o alto grau de trofia parece favorecer a produtividade primária do sistema. Entretanto, em Barra Bonita-SP, reservatório também eutrófico, essa relação parece ser oposta, apresentando fluxos de CO₂ até 9 vezes superiores aos fluxos observados em Funil. Com base no valor médio de DBO para o reservatório Volta Grande, inferiu-se que a quantidade de matéria orgânica na

61

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

coluna d'água seria pouca. Por consequência, com uma baixa disponibilidade de substrato, menor seriam as concentrações, tanto de CO₂ quanto de CH₄.

Desta forma, condizente com o que foi constatado por Demarty e Bastien (2011), quanto maior o grau de ocupação antrópica no sistema, ou na bacia de drenagem do reservatório em questão, menor seria o aporte de matéria orgânica a este, resultando em um menor fluxo de GEE pelo reservatório. Isto é, desde que não haja contribuição dos esgotos para esses sistemas. Neste caso, comportamentos singulares podem ser detectados espacialmente, conforme observado pro Soares *et al.* (2008) e Zhao *et al.* (2013).

De modo similar ao que foi observado para os fluxos de CO₂, esperava-se observar fluxos maiores de CH₄ em ambientes amazônicos devido aos processos já discutidos anteriormente. Contudo, os fluxos de CH₄ observados em Volta Grande foram significativamente inferiores aos fluxos observados em outros reservatórios também localizados no Cerrado (p < 0.05).

Quando se comparam os fluxos difusivos de CO_2 e CH_4 , observa-se que o coeficiente de variação para os fluxos de metano é superior ao coeficiente de variação para os fluxos de CO_2 ($CV_{CH4} = 0,71$; $CV_{CO2} = 0,59$). Esta maior variação observada no caso do metano pode estar relacionada a especificidades necessárias para a sua produção. A título de ilustração, dos Santos *et al.* (2006) encontraram variação espacial nos fluxos de CH_4 na ordem de 40.000% no reservatório de Miranda-MG. No mesmo reservatório, em anos diferentes, essa variação foi de 23.000%. Resultados similares foram observados em outros reservatórios (DOS SANTOS *et al.*, 2006).

Conforme apontado por Bastviken *et al.* (2004) e Huttunen *et al.* (2003), concentrações elevadas de nutrientes podem interferir positivamente nas concentrações de CH₄ na coluna d'água e, consequentemente, no seu fluxo para a atmosfera. Com base nos dados do sistema de monitoramento do reservatório, os valores médios de ortofosfato estão abaixo de 30 μ g.L⁻¹, classificados como oligo-mesotróficos, podendo ser até inferior a 10 μ g.L⁻¹. Nestas condições, o sistema seria limitado por fósforo, o que, de acordo com Bastviken *et al.* (2004) reduziria a taxa de metanogênese no reservatório.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Outro fator que pode estar relacionado com o fluxo de CH₄ em reservatórios é o tempo de residência (ABRIL *et al.*, 2005; WESSEINBER *et al.*, 2010). Por se tratar de um processo mais lento (BIANCHINI; SANTINO, 2011), reservatórios com maiores tempos de residência apresentariam maiores fluxos. Dado a tipologia do reservatório de Volta Grande, com tempo de residência de 17 dias, fluxos difusivos de CH₄ tendem a ser menores.

O fato do reservatório de Volta Grande ser do tipo fio d'água tem, além do baixo tempo de residência, outra implicação nos fluxos de CH₄. Conforme observado por Lu *et al.* (2011), a alteração do nível de água no reservatório está positivamente relacionada às taxas de emissão de metano. Isto porque, no período de águas baixas, o solo exposto e rico em nutrientes é favorável ao desenvolvimento de vegetação, material este que volta a ser inundado no período de águas altas. Como a carga orgânica é elevada, há a rápida depleção de O₂, o que favorece a formação e emissão de CH₄ nestas regiões. Como o reservatório não apresenta grandes variações no nível da água, espera-se que os fluxos de CH₄ sejam menores.

Em síntese, a análise do fluxo difusivo de CH₄ deve ser feita com cautela. As especificidades relacionadas ao processo de metanogênese influenciam de maneira substancial no fluxo difusivo do gás em reservatórios. Vale ressaltar que diferentemente do CO₂, que apresenta até 99% do seu fluxo por via difusiva (CASPER *et al.*, 2000; KEMENES *et al.*, 2011), os fluxos de CH₄ podem ser subestimados quando considerados apenas os fluxos difusivos. A natureza esporádica do fluxo ebulitivo pode contribuir com a evasão de CH₄ do sistema. Esta esporadicidade pode resultar em um aumento dos desvios-padrão observados para os fluxos de CH₄, afetando as análises estatísticas. Adicionalmente, apesar dos valores e resultados aqui obtidos apontarem que reservatórios amazônicos emitam mais CO₂ e CH₄, vale ressaltar que outras medições se fazem necessárias, uma vez que os dados obtidos na literatura, assim como os dados medidos em Volta Grande, não abrangem a variação anual total.

5.1.5 Fluxos difusivos de CO₂ e CH₄ em diferentes regiões climáticas

Quando se pretende avaliar os impactos atmosféricos relativos a emissão de GEEs por reservatórios, faz-se necessária uma comparação entre diferentes regiões climáticas. Haja visto que os valores médios dos ambientes amazônicos são significativamente superiores aos demais sistemas, foi feita uma distinção entre reservatórios tropicais amazônicos e não-amazônicos.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Com relação as emissões de CO₂, observa-se que, apesar de reservatórios tropicais, amazônicos e não amazônicos, apresentarem fluxos de GEE superiores a sistemas temperados (p < 0,05), Volta Grande apresenta fluxos intermediários, não diferindo de outros sistemas tropicais nem de sistemas temperados (p > 0,05). A comparação pode ser visualizada na Figura 23.

Figura 23: Comparação dos fluxos difusivos de CO_2 entre Volta Grande, sistemas tropicais amazônicos e não-amazônicos, subtropicais e temperados. Letras diferentes sobre as colunas indicam fluxos de CO_2 diferentes estatisticamente (p < 0.05)

Conforme já é descrito na literatura, ambientes aquáticos lênticos tropicais, sejam eles lagos (COLE *et al.*, 1994) ou reservatórios (BARROS *et al.*, 2011; ST. LOUIS *et al.*, 2000) apresentam fluxos de CO₂ superiores quando comparados com ambientes temperados. Na Figura 23 é apresentado um comparativo considerando apenas reservatórios, dado o foco da pesquisa.

Nos 16 ambientes tropicais aqui abordados, abrangendo os principais biomas nacionais, os fluxos de CO₂ variaram de 10,5 a 192,5 mmol.m⁻².d⁻¹, com coeficiente de variação de 0,71. A ampla variabilidade é decorrente justamente do mosaico de ambientes em que esses reservatórios se localizam. Nos 18 sistemas em ambientes temperados estudados, os fluxos de CO₂ variaram de -23,68 a 46,85 mmol.m⁻².d⁻¹, com coeficiente de variação de 1,76.

Já os ambientes subtropicais evidenciaram uma variação de fluxo de $CO_2 de - 16 a 106 mmol.m^{-2}.d^{-1}$, com coeficiente de variação de 1,82. Este coeficiente de variação encontrado para sistemas localizados em regiões subtropicais é decorrente do reduzido número de reservatórios considerados (n = 6), sendo que um em particular, o reservatório de Três Gargantas, na China, é mais novo, com apenas 6 anos, emitindo 106 mmol de $CO_2.m^{-2}.d^{-1}$. Os demais reservatórios já seriam considerados maduros, com mais de 10 anos, emitindo menos CO_2 para a atmosfera.

Conforme já apresentado na literatura, vários fatores irão culminar nas maiores taxas de emissão observadas em reservatórios tropicais, principalmente nos sistemas tropicais amazônicos. Dentre eles podemos citar a idade, a temperatura, condições climáticas, vegetação, e até a profundidade.

Ambientes tropicais apresentam diversas características que favorecem uma maior taxa de mineralização e, consequente, fluxo de CO₂ para a atmosfera. Conforme já abordado anteriormente, a foto-oxidação, em ambientes tropicais, é favorecida em função dos altos índices de radiação ao longo do ano (SUHETT *et al.*, 2007). Além da mineralização direta da matéria orgânica pela radiação UV, esta pode alterar quimicamente os compostos mais refratários (BIANCHINI; SANTINO, 2011), alterando também a mineralização biológica (FARJALLA *et al.*, 2009). Com relação a foto-oxidação, é difícil determinar o real impacto nas taxas de emissão observadas em Volta Grande, haja visto que não se tem um conhecimento detalhado da natureza da matéria orgânica aportada para o mesmo.

Conforme discutido anteriormente, a idade do reservatório influencia de maneira significativa os níveis de emissão de CO₂ em reservatórios (BARROS *et al.*, 2011; GOLDENFUN, 2012; OMETTO *et al.*, 2013; WESSEINBER *et al.*, 2010). Retomando o que já foi apresentado, em reservatórios mais novos, o solo alagado apresenta uma grande quantidade de matéria orgânica a ser mineralizada nos anos iniciais, resultando em elevados fluxos de CO₂ (ABRIL *et al.*, 2005;

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

65

BROTHERS *et al.*, 2012; GUÉRIN *et al.*, 2008; TEODURU *et al.*, 2011). Como já foi apresentado e discutido, os baixos fluxos de CO₂ em Volta Grande estão relacionados, não exclusivamente, a idade do mesmo.

Outro fator que favorece um maior fluxo em ambientes tropicais é a temperatura da água. A temperatura pode atuar de duas formas distintas. Primeiramente, a solubilidade de um gás é inversamente proporcional a temperatura do meio. Deste modo, ambientes mais quentes naturalmente irão apresentar fluxos maiores, para uma dada produção de gases. Além de afetar a solubilidade dos gases, o aumento da temperatura acarreta em um aumento do metabolismo bacteriano, tanto na coluna d'água quanto no sedimento. Como consequência, com o aumento da temperatura, há um aumentando nas taxas de mineralização biológicas (COLE *et al.*, 1994; HALL; COTNER, 2007), aumentando a concentração dos gases na água e consequentemente os fluxos para a atmosfera. A temperatura ainda opera indiretamente, promovendo a circulação da coluna d'água. Compostos orgânicos e nutrientes, em tais condições, tendem a sedimentar. Entretanto, quando o padrão de circulação vertical é reestabelecido, os nutrientes e a matéria orgânica, além dos gases que estavam dissolvidos no hipolímnio, se misturam, aumentando as taxas de mineralização e, consequentemente, o fluxo de CO₂ para a atmosfera (COLE *et al.*, 2000; COLE *et al.*, 1994; ROLAND *et al.* 2010).

Em relação à diferença entre os reservatórios tropicais amazônicos para os demais, um fato a ser considerado, além do aporte de matéria orgânica e da elevada temperatura, tem-se o fato de eles serem rasos. Em reservatórios mais rasos, a radiação luminosa atinge o fundo, elevando a temperatura do sedimento. Por se tratar de um processo mesofílico (SCHULZ *et al.*, 1997), a metanogênese seria favorecida nestes sistemas.

Comparativamente, ambientes temperados, em função de condições climáticas próprias, apresentam fluxos menores. Nesses ambientes foram observados que os picos de fluxo coincidem com o início da primavera, quando ocorre o degelo dos sistemas (BASTIEN *et al.*, 2011). O degelo atuaria como a precipitação, carreando matéria orgânica que havia sido preservada no solo para dentro do sistema. Analogamente, quando congelados, a taxa de mineralização se reduz significativamente por duas razões. A primeira é que a camada de gelo impede, não apenas o fluxo difusivo por si só, mas também impede que a foto-oxidação atue

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

sobre a matéria orgânica. A segunda é que baixas temperaturas tendem a reduzir as taxas metabólicas, produzindo menos CO₂ quando comparado com ambientes tropicais. (SAND-JENSEN *et al.*, 2007).

Conforme apresentado na figura 23, entretanto, o reservatório de Volta Grande apresenta fluxos de CO₂ similares aos encontrados em ambientes tropicais e em ambientes temperados, ainda que mais próximos aos fluxos encontrados em ambientes subtropicais e temperados. Comparando com ambientes tropicais, o reservatório de Volta Grande emite menos justamente em função dos reservatórios amazônicos, conforme já foi discutido anteriormente. Contudo, Volta Grande apresentaria padrões ambientais mais favoráveis à mineralização, quando comparado com reservatórios temperados, principalmente pela ausência da camada de gelo durante o inverno e pela temperatura média anual ser superior (cerca de 23,5°C), o que acarretaria em uma maior concentração de CO₂ na água, devido ao metabolismo biológico, e, consequentemente, maiores fluxos para a atmosfera, também devido à menor solubilidade dos gases em temperaturas mais elevadas.

No caso do CH₄, quando se compara o reservatório de Volta Grande com reservatórios localizados em outras regiões climáticas, observa-se que este apresenta fluxos de CH₄ dispares (p < 0,05) aos fluxos registrados em reservatórios tropicais amazônicos (Figura 24). Adicionalmente, observa-se que reservatórios em regiões tropicais amazônicos emitem mais CH₄ via difusão do que os sistemas em clima temperado (p < 0,05), assim como foi observado para os fluxos de CO₂.

Esta maior taxa de emissão difusiva de metano observada em reservatórios em regiões tropicais já havia sido observada por St. Louis *et al.* (2000). Conforme já apresentado, a produção deste gás está associada a oxidação da matéria orgânica refratária, sob condições bem específicas, bem como outras características que estes reservatórios apresentam.

Figura 24: Comparação dos fluxos difusivos de CH₄ entre Volta Grande, sistemas tropicais, subtropicais e temperados Letras diferentes sobre as colunas indicam fluxos de CH₄ diferentes estatisticamente (p < 0.05).

De acordo com o que foi discorrido na seção 3.3, a oxidação anaeróbia, responsável pela produção do metano é estrita quanto às condições do meio onde ela ocorre, bem como quanto aos organismos capazes de realizá-la (HOBSON *et al.*, 1974). Diferentemente da matéria orgânica lábil, a matéria orgânica refratária é mais lentamente oxidada, tendendo a sedimentar (BIANCHINI *et al.*, 2008). Como resultado, a deposição da matéria orgânica resulta no aumento da demanda bioquímica de oxigênio no sedimento (BIANCHINI *et al.*, 2008; CUNHA-SANTINO *et al.*, 2008). Quando a coluna d'água se estratifica, há o rápido desenvolvimento do déficit de oxigênio, favorecendo, desta forma, a produção de metano. Fenômeno similar ocorre nos anos iniciais após o fechamento do barramento e inundação da vegetação e/ou do solo, bem como quando há variação significativa no nível da água (ABRIL *et al.*, 2005; GUÉRIN *et al.*, 2008; LU *et al.*, 2011).

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Similarmente ao efeito sobre o CO₂, o aumento da temperatura, além de reduzir a solubilidade dos gases, aumenta as taxas de mineralização no sedimento, resultando em um incremento na concentração de metano no sedimento (LU *et al.*, 2011). Outro fator digno de nota é que a circulação vertical pode elevar as taxas de emissão, em decorrência da movimentação vertical da coluna d'água, trazendo águas ricas em gases para a superfície (ROLAND *et al.*, 2010). Desta forma, considerando o fator temperatura, ambientes tropicais tenderiam, de fato, a emitir mais CH₄, conforme observado para o CO₂.

Ambientes temperados, por sua vez, apresentam uma dinâmica diferenciada. Fluxos de CH₄, assim como para o CO₂, ocorrem quando a camada superficial de gelo derrete (BASTIEN *et al.*, 2011). Durante os períodos em que o reservatório apresenta uma camada de gelo, verificase o rápido consumo de oxigênio, resultando em condições anóxicas, essenciais para a oxidação anaeróbia da matéria orgânica. Contudo, conforme observado por Nozhevnikova *et al.* (1997) e mais recentemente por Stadmark e Leonardson (2007), a produção de metano é reduzida em baixas temperaturas. Com isso, mesmo quando não há produção primária (devido à camada de gelo) e em condições anóxicas, a produção de metano é mais baixa do que quando comparada com ambientes tropicais.

Conforme discutido anteriormente quando analisados os fluxos de CO_2 , os dados referentes aos fluxos de CH_4 em reservatórios localizados em ambientes subtropicais devem ser considerados com cautela. Como o número de reservatórios considerados no presente estudo é baixo (n = 3) em estágios diferentes (2 reservatórios antigos e 1 reservatório recente), os dados podem ser bastante dispares, o que elevaria o desvio-padrão, consequentemente interferindo no teste estatístico.

Ao analisar o reservatório de Volta Grande, algumas considerações devem ser feitas. A primeira delas é com relação aos aspectos morfológicos do reservatório. Por ter uma baixa profundidade relativa (0,29), o reservatório é propenso a apresentar padrões de circulação vertical completa, ou seja, misturando toda a coluna d'água. Outro fato a ser considerado é a influência da sazonalidade (e. g. precipitação) e da regionalização nas emissões No presente estudo, como o reservatório foi amostrado no período de seca, provavelmente os fluxos de CO_2 e CH_4 foram menores devido ao baixo aporte de matéria orgânica terrestre para o ambiente aquático.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Consequentemente haveria uma menor concentração de matéria orgânica para ser oxidada. Além da contribuição da precipitação, o próprio bioma do Cerrado, por apresentar menor percentagem de cobertura vegetal acima do solo, contribuiria significativamente menos para o aporte de carbono orgânico para o reservatório, também contribuindo para menores taxas de emissão.

Em síntese, considerando os aspectos morfológicos, a qualidade da água e os aspectos geográficos do reservatório de Volta Grande, é de se esperar que, de fato, o reservatório apresente fluxos tanto de CO₂ quanto de CH₄ inferiores aos que são tipicamente descritos para reservatórios tropicais, principalmente quando se considera os reservatórios amazônicos ou reservatórios com altos índices de estado trófico.

5.2 Relação entre as emissões atmosféricas e a produção energética

A demanda energética mundial vem aumentando continuamente, a uma taxa constante ao longo dos últimos anos (IEO, 2013). Países em desenvolvimento, tais como China, Índia e Brasil, contribuem de forma significativa para este aumento. Em decorrência deste aumento na demanda, esses países também são responsáveis por um aumento significativo na produção de energia. Apesar de não haver uma previsão de aumento percentual da participação das hidroelétricas no que diz respeito a produção energética, atualmente correspondendo a cerca de 18% da produção global (IEO, 2013) e a quase 70% no âmbito nacional (BRASIL, 2013), é de se esperar um aumento significativo no número absoluto de reservatórios tanto em ambientes tropicais quanto em ambientes subtropicais (IEO, 2013).

Pautado no atual número de reservatórios, bem como naqueles ainda a serem implementados, faz-se necessário a avaliação do impacto das hidroelétricas em relação a produção energética.

5.2.1 Emissões atmosféricas e produção energética em um contexto brasileiro

O reservatório de Volta Grande é considerado grande nos padrões nacionais, com capacidade instalada de 380 MW. Entretanto, apesar de apresentar fluxos difusivos de GEE relativamente baixos, faz-se necessária a relativização destas emissões em relação a densidade energética

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

(MW.km⁻²) e ao impacto atmosférico (tC.MWh⁻¹) para uma melhor compreensão dos reais impactos atmosféricos advindos da UHE.

A UHE Volta Grande tem uma produção anual média é de 1.664.400 MWh.ano⁻¹, calculado a partir da capacidade instalada de produção. Levando em consideração a produção média anual e os fluxos difusivos de CO₂ e CH₄ observados, tem-se uma emissão de 22.004 tC.ano⁻¹ e um impacto de 0,01 tC.MWh⁻¹. Estes valores podem ser observados na Tabela 5.4.

Taxas de emissão de GEE, densidade energética e impacto atmosférico para a UHE Volta

	Grande	
Emissão Hidroelétrica (tC.ano ⁻¹)	Densidade energética (MW.km ⁻²)	Impacto atmosférico (tC.MWh ⁻¹)
22.004	1,73	0,01

Comparando os resultados observados no âmbito nacional, nota-se que Volta Grande apresenta, não apenas baixos fluxos de GEE, sejam eles em valores anuais ou por área, mas também em relação a produção energética da usina. Conforme pode ser visualizado na Figura 25, o impacto atmosférico de Volta Grande, em tC.MWh⁻¹, está abaixo da média nacional, sendo superior apenas ao impacto observado para o bioma Floresta Atlântica. Ainda que a densidade energética de Volta Grande seja maior que a média dos demais reservatórios no Cerrado, o baixo fluxo emitido por Volta Grande reduz o impacto atmosférico causado por este. Sistemas amazônicos apresentam, além de fluxos de GEEs superiores aos demais sistemas brasileiros, densidade energética consideravelmente mais baixa.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Figura 25: Emissões atmosféricas de carbono e impacto atmosférico relativizado em termos de produção energética para Volta Grande, sistemas do Cerrado, Floresta Atlântica, Floresta Amazônica e um panorama geral para ambientes tropicais. As barras representam as emissões atmosféricas e a linha representa o impacto atmosférico.

A densidade energética mediana dos sistemas amazônicos é de 0,36, inferior ao valor mediano para ambientes tropicais, de 1,37 MW.km⁻². Por consequência, reservatórios amazônicos tendem a alagar uma área maior para a produção da mesma quantidade de energia que seria gerada nos outros biomas. Esta maior área alagada possivelmente está associada à topografia da região, um dos fatores considerados para a escolha do tipo de reservatório a ser construído (EGRÉ; MILEWSKI, 2002).

Em síntese, o impacto atmosférico relativo a produção energética observada para a UHE Volta Grande é similar aos impactos observados para reservatórios no Cerrado ou na floresta Atlântica. UHEs localizadas em sistemas amazônicos apresentam um impacto atmosférico maior, quando comparado com as demais. Considerando a representatividade que as hidroelétricas amazônicas têm sobre a matriz brasileira (BRASIL, 2008), destaca-se que o impacto atmosférico, com base nos estudos de emissões de GEE atualmente disponíveis, estaria

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

superestimado. Atualmente, a fração do potencial hídrico explorado no ambiente amazônico é mínima.

Ampliando o espectro de análise, do âmbito nacional para o global, observa-se que a UHE Volta Grande apresenta uma densidade energética próxima a de sistemas localizados em ambientes subtropicais (Figura 26). Ainda com base na mesma figura, nota-se que o impacto atmosférico de Volta Grande não difere do impacto observado em outros sistemas, com a exceção dos reservatórios tropicais amazônicos.

De fato, reservatórios com baixa densidade energética são mais rasos, necessitando de uma maior área alagada para a produção energética. Conforme já foi discutido, com uma maior área alagada, maior tende a ser os fluxos de GEE, uma vez que mais matéria orgânica é alagada.

Figura 26: Emissões atmosféricas de carbono e impacto atmosférico relativizado em termos de produção energética para Volta Grande, sistemas tropicais amazônicos, tropicais nãoamazônicos, subtropicais e temperados. As barras representam a densidade energética e a linha representa o impacto atmosférico.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

73

No caso dos sistemas amazônicos, a densidade energética média é de 0,64. O valor médio para os reservatórios localizados no bioma Floresta Atlântica é de 7,65 (valor mais de 1000% superior) e no bioma Cerrado é de 4,67 (cerca de 630% superior). Ou seja, reservatórios na Amazônia alagam uma área muito maior do que reservatórios do Cerrado e da floresta Atlântica, para produzir a mesma quantidade energética. Por consequência, reservatórios amazônicos tenderiam a emitir mais carbono para a atmosfera.

Além da área e da matéria orgânica alagada, em ambientes mais rasos, pela baixa pressão hidrostática da coluna d'água sobre o sedimento, esses gases são mais facilmente liberados. Em sistemas amazônicos esse quadro é ainda mais agravado devido à influência que a temperatura tem metabolismo do sedimento, principalmente no que se refere a produção do CH₄. Outro fator que pode ser associado a este baixo desempenho é o fato de que geralmente os reservatórios na região apresentam uma baixa densidade energética.

Apesar de Volta Grande apresentar uma densidade energética menor do que a média dos demais reservatórios tropicais não-amazônicos, esta diferença não reflete em um maior impacto atmosférico. Isto porque apesar dessa menor densidade energética, a quantidade de matéria orgânica e fósforo no reservatório Volta Grande é baixa, conforme apresentado anteriormente. Consequentemente, pouco gás seria gerado e, por conseguinte, emitido para a atmosfera.

Em síntese, considerando um espectro mais amplo de análise, fatores outros que a densidade energética irão influenciar no resultado final do impacto atmosférico. Apesar de uma densidade menor que a de ambientes temperados e tropicais não amazônicos, Volta Grande impacta menos a atmosfera em função dos baixos fluxos observados. Sistemas amazônicos apresentariam um impacto maior em função das características associadas a esta baixa densidade energética.

5.2.2 Comparação entre UHEs e suas usinas termoelétricas (UTEs) equivalentes

Adicionalmente aos parâmetros apresentados e discutidos na seção 5.2.1, quando as emissões foram relativizadas em termos de produção energética pelas usinas, faz-se necessário uma comparação entre diferentes tecnologias utilizadas para a sua produção. Neste contexto, a comparação entre as tecnologias se restringirá à comparação entre as UHEs e as UTEs equivalentes, dado que a tecnologia termoelétrica é a mais empregada mundialmente (IEO,

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

2013). Para esta comparação, foram utilizadas técnicas já reportadas na literatura para a conversão das UHEs em UTEs equivalentes (dos SANTOS *et al.*, 2006). As equações de conversão estão descritas na seção 4.5. A conversão para todos os reservatórios e todas as tecnologias estão presentes nos apêndices C a G. A partir da Tabela 4.2, nota-se pelo fato de a UTE de gás natural e ciclo combinado ser a mais eficiente, esta foi a tecnologia à qual as UHEs foram comparadas e os resultados aqui serão discutidos.

No caso de Volta Grande, nota-se claramente que, no que diz respeito a emissões atmosféricas de carbono, a UHE é notadamente mais eficiente que sua UTE equivalente (Figura 27). Esta eficiência observada condiz com o baixo impacto atmosférico apresentado na Tabela 5.4 (0,01 tC.MWh⁻¹). Em relação aos demais reservatórios no Cerrado, com a exceção da UHE Serra da Mesa e UHE Manso, os demais sistemas também apresentaram uma relação favorável ao emprego das UHEs em relação as UTEs (Figura 27).

Figura 27: Comparação entre as emissões de GEE oriundas das UHEs e estimadas para as UTEs a gás natural e ciclo combinado, para sistemas localizados no Cerrado, em tC.ano⁻¹.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Vale ressaltar que mesmo aqueles sistemas que apresentaram uma melhor eficiência das UTEs, esta diferença foi muito pequena, podendo ser revertida ou agravada, a depender das condições climáticas durante a amostragem (DOS SANTOS *et al.*, 2006).

Ampliando o espectro de análise, agora comparando os diferentes biomas brasileiros, nota-se que as UHEs, tanto no Cerrado quanto na floresta Atlântica apresentam uma relação favorável do emprego das UHEs em relação a suas UTEs equivalentes (Figura 28).

Em média, UTEs no Cerrado emitiriam cerca de 310% mais carbono quando comparado com as UHEs. Este incremento aumenta para quase 970% quando observado os reservatórios localizados na floresta Atlântica. Em contrapartida, observa-se que para sistemas localizados na floresta Amazônica, o desempenho das UHEs é consideravelmente desfavorável (Figura 28). Considerando uma análise geral, as UTEs emitiriam cerca de 5 (cinco) vezes menos carbono para a atmosfera em relação a UHEs.

Figura 28: Comparação entre as emissões de GEE oriundas das UHEs e das UTEs equivalentes, para sistemas localizados no Cerrado, na floresta Atlântica e floresta Amazônica, em tC.ano⁻¹.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

O baixo desempenho apresentado pelas UHEs amazônicas em relação às UTEs equivalentes é condizente com os altos impactos atmosféricos observados para os mesmos sistemas (Figura 25).

Este resultado é de relevância ímpar no contexto nacional, uma vez que o governo brasileiro já tem projetos para a construção de 8 (oito) novas usinas na região amazônica até o ano de 2018, com capacidade de produção média de 1.900 MW (BRASIL, 2013). Considerando que a média da densidade energética se mantenha, teríamos uma taxa de emissão de 2.200.411,35 tC.ano⁻¹. Este valor seria cerca de 89% superior ao estimado para a UTE equivalente. Considerando este quadro hipotético, no intervalo de 4 (quatro) anos, ter-se-ia um aumento de 200% nas emissões, em relação ao que é emitido atualmente pelas hidroelétricas já estudadas, considerando apenas ambientes amazônicos.

É importante ressaltar que cada sistema apresenta uma relação particular, associado a características próprias de cada reservatório. Por exemplo, Tucuruí, apesar de estar localizado no bioma amazônico, apresenta uma eficiência da UHE em relação a sua UTE equivalente. Em contrapartida, o reservatório de Balbina apresenta uma relação consideravelmente mais desfavorável. Neste caso, a UTE equivalente de Balbina emitiria 90% menos carbono para a atmosfera quando comparado as emissões da UHE. E esse resultado não é exclusivo para a região amazônica. UHE Serra da Mesa e Manso, ambas localizadas no Cerrado, também apresentam uma melhor eficiência das UTEs frente às UHEs.

De modo geral, ainda que as UHEs localizadas na região amazônica emitam mais carbono do que suas UTEs equivalentes, no âmbito nacional essa relação não se mantém. Conforme já mencionado anteriormente, apesar de o potencial hidro energético amazônico ser imenso, as UHEs estão concentradas nas demais regiões, principalmente no sudeste e centro-oeste, correspondendo aos biomas Cerrado e floresta Atlântica.

Ampliando-se o espectro de comparação, agora a nível mundial, nota-se que a UHEs Volta Grande apresenta uma razão UHE/UTE mais próxima à de ambientes tropicais não-amazônicos (0,09 e 0,1, respectivamente). Essa semelhança é coerente com os outros valores encontrados, haja vista que os impactos atmosféricos respectivos também são bastante semelhantes. Volta Grande apresentaria um prognóstico melhor (menor razão) em virtude da baixa emissão que foi

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

observada. Ou seja, as características observadas no reservatório (e. g. matéria orgânica, concentração dos gases, etc.) resultariam em uma menor emissão de carbono para a atmosfera, favorecendo o emprego da tecnologia hidroelétrica frente a termoelétrica.

Figura 29: Comparação entre as emissões de GEE oriundas das UHEs e estimadas para as UTEs, para sistemas localizados em diferentes regiões climáticas, em tC.ano⁻¹.

Ainda no âmbito global, observa-se que esta relação entre o que é emitido pelas UHEs e o que seria emitido pelas UTEs equivalentes é bem próximo entre as diferentes regiões climáticas, com exceção dos sistemas amazônicos. Tanto os sistemas subtropicais quanto os sistemas temperados apresentam uma relação de 0,03, menor que a do reservatório Volta Grande.

O impacto associado às UTEs equivalentes está relacionado, principalmente, a eficiência na conversão do combustível em energia. Deste modo, tem-se que quanto mais energia é produzida pela termoelétrica, maior a quantidade de combustível necessário e maior será seu impacto. No

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

78

caso das UHEs, esta relação não é tão direta. Conforme já discutido, diversos fatores, bióticos e abióticos, vão interagir entre si, resultando em uma maior ou menor emissão. Mas de modo geral, pode-se observar que ainda que não seja uma tecnologia neutra em emissão de carbono, a hidroeletricidade tem um impacto significativamente menor que as termoelétricas, em termos de emissões atmosféricas.

Uma outra maneira de comparar os impactos das UHEs frente aos impactos provenientes das UTEs é comparar a quantidade de carbono por energia produzida. No presente estudo, considera-se que o impacto das termoelétricas, de um modo geral, é de 0,14 tC.MWh⁻¹, tendo como base as taxas de emissão e a produção energética das UHEs. Considerando o impacto gerado por sistemas tropicais não-amazônicos, nota-se que as termoelétricas emitiriam, em média, 10 vezes mais carbono por MWh gerado. Apesar os reservatórios amazônicos emitiriam mais carbono que as termoelétricas (cerca de 3,5 vezes mais).

De modo geral, o maior impacto observado em reservatórios tropicais, amazônicos ou não, era de ser esperada, uma vez que nesses ambientes os fluxos difusivos de GEE são superiores aos fluxos observados em regiões subtropicais e temperadas (BARROS *et al.*, 20111; ST. LOUIS *et al.*, 2000). Entretanto, ainda que os fluxos de GEE tenham sido maiores em regiões tropicais, nota-se que quanto estas emissões são relativizadas, em termos de produção energética, sistemas tropicais não-amazônicos não apresentam uma diferença tão expressiva quando comparado com sistemas subtropicais ou temperados.

Dos Santos *et al.* (2006) também realizaram esta comparação entre as UHEs e as UTEs equivalentes. Contudo, eles consideraram não somente o fluxo difusivo de GEE, mas também o fluxo ebulitivo de CH₄ nestes reservatórios. Neste caso, restringindo a análise para ambientes tropicais e adicionando o fluxo ebulitivo, eles concluíram que cada reservatório deve ser analisado separadamente, dada a circunstâncias particulares em cada reservatório. Avaliando o que foi feito por dos Santos *et al.* (2006), observa-se que o impacto da inclusão do fluxo ebulitivo vai depender muito de cada sistema. A única alteração observada entre os dados aqui calculados e os obtidos por dos Santos *et al.* (2006) foi para a UHE Três Marias. Apesar de ela ter sido apontada como uma opção menos impactante quando comparado com a UTE equivalente, este resultado se contrasta com aquele obtido por dos Santos *et al.* (2006). Este

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

resultado se deu em decorrência da contribuição percentual da fonte ebulitiva para as emissões totais de metano. Contabilizando o fluxo ebulitivo, para Três Marias, o fluxo de metano sobe de 31,85 para 196,3 kg.km⁻².d⁻¹. Entretanto, esse efeito do fluxo ebulitivo sobre o impacto das UHEs não foi significativo para nenhum outro sistema por eles considerados.

A real contribuição da desgaseificação neste contexto também é incerto, e contribui para a subestimação dos impactos das UHEs. Sua contribuição nos fluxos totais de GEE variam em função não somente da qualidade da água do reservatório, como também da própria estrutura física da barragem (KEMENES *et al.*, 2011; ZHAO *et al.*, 2013).

Em suma, observa-se que, com a exceção dos sistemas amazônicos, UHEs são mais vantajosas em termos de emissão de carbono para a atmosfera em relação às UTEs equivalentes. Contudo, ressalta-se a possibilidade de UHEs localizadas em outros ambientes que não os amazônicos também possam emitir mais que as suas UTEs equivalentes. Esta relação entre o impacto das UHEs e UTEs está associado a especificidade de cada sistema o que, em última análise, vai variar em função das interações biológicas e ambientais que irão alterar, positiva ou negativamente, a produção e liberação dos GEEs dos reservatórios.

Ou seja, vale ressaltar que apesar desses resultados demonstrarem um aspecto positivo das UHEs em relação às UTEs, este resultado deve ser considerado com ponderação, dada a natureza variável do fenômeno, e da necessidade de investigações mais frequentes.

6 CONCLUSÕES

O objetivo geral desta pesquisa foi a investigação dos fluxos de GEE associados à UHE Volta Grande, comparando-os em termos geográficos e em produção energética. A UHE Volta Grande, localizada no Cerrado, atua como fonte de carbono para a atmosfera dado que suas águas estão supersaturadas de CO₂ e CH₄. Além disso, aspectos morfológicos parecem interferir nessas emissões. No que diz respeito aos impactos atmosféricos associados com a produção energética, nota-se que Volta Grande apresenta um impacto semelhante tanto a sistemas tropicais não amazônico, subtropicais ou temperados. Mais detalhadamente, pode-se citar que:

- A concentração e fluxo dos gases é crescente à medida que se desloca do barramento para montante;
- O fluxo difusivo de CO₂ total em Volta Grande é significativamente inferior ao fluxo observado em reservatórios amazônicos (*p* < 0,05). Contudo, no que se refere ao CH₄, Volta Grande apresenta fluxos difusivos similares apenas a reservatórios na floresta Atlântica;
- Os fluxos difusivo de CO₂ em Volta Grande, apesar de não serem estatisticamente diferentes daqueles encontrados em regiões tropicais, é mais próximo a fluxos em regiões subtropicais e temperadas;
- Considerando as emissões atmosféricas por fluxo difusivo por energia produzida, Volta Grande é similar a reservatórios localizados no Cerrado ou na Floresta Atlântica, sendo notadamente inferior a reservatórios amazônicos;
- Em nível mais global, apesar da densidade energética ser diferente entre os sistemas, Volta Grande apresenta um impacto similar ao de reservatórios localizados em ambientes subtropicais e temperados, além dos sistemas tropicais não-amazônicos;
- Com exceção de sistemas amazônicos, constata-se que UHEs são mais vantajosas que as UTEs equivalentes, em termos de emissões de carbono para a atmosfera.

Contudo, vale ressaltar que as conclusões devem ser consideradas com cautela devido a problemas de ordem metodológica nas análises comparativas. Mais estudos ainda se fazem necessários para que possam ser feitas generalizações relativas ao papel das UHEs em termos de poluição atmosférica.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

7 RECOMENDAÇÕES

- Conforme apresentado na revisão, são várias as rotas de emissão de GEE. Deste modo, ressalta-se a necessidade da medição do fluxo ebulitivo de metano, uma vez que este consiste em uma importante rota de emissão deste gás;
- Verifica-se a necessidade de se considerar as emissões à jusante da casa de força, tendo em vista que o efeito da desgaseificação pode variar consideravelmente, dependendo das características do sistema;
- Verifica-se, também, a necessidade de coletas em diferentes períodos do ano, uma vez que as variações sazonais podem resultar em cenários completamente distintos nos padrões dos fluxos de GEEs em reservatórios;
- Associado ao método da microssuperfície, recomenda-se o uso de métodos de medição direta, tais como o uso das câmaras flutuantes, para a adequação das equações semiempíricas e outros modelos à região estudada.
- Além das concentrações dos gases, recomenda-se a investigação das características físicoquímicas da água buscando uma melhor compreensão da relação entre as características físico-químicas e os fluxos de GEE.
- Recomenda-se, também, ensaios *in situ* para a determinação das taxas de oxidação e produção primária.

REFERÊNCIAS

ABRIL, G.; GUÉRIN, F.; RICHARD, S.; DELMAS, R.; GALY-LACAUX, C.; GOSSE, P. TREMBLAY, A.; VARFALVY, L.; DOS SANTOS, M. A.; MATVIENKO, B.Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana).**Global Biogeochemical Cycles**, v. 19, n. 4, 2005.

AGAGE, Advanced Global Atmospheric Gases Experiment. **National Aeronautics and Space Administration.** Disponível em: < http://agage.eas.gatech.edu/data.htm >. Acessado em: 09 de Setembro de 2013.

AITKENHEAD-PETERSON, J. A.; MCDOWELL, W. H.; NEFF, J. C. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface water. In: S. E. G. FINDLAY; R. L. SINSABAUGH Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, Burlington: Academic Press, 2002,

AL-REASI, H. A. C.; WOOD, C. M.; SMITH, D. S. Characterization of freshwater natural dissolved organic matter (DOM): Mechanistic explanations for protective effects against metal toxicity and direct effects on organisms.**Environment International**, v. 59, p. 201-207, 2013.

AMADO, A.; COTNER, J. B.; SUHETT, A. L.; ESTEVER, F. A.; BOZELLI, R. L.; FARJALLA, V. F.Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems, **Aquatic Microbial Ecology**, v. 49, p. 25-34, 2007.

AMADO, A.; FARJALLA, V. F.; ESTEVER, F. A.; BOZELLI, R. L. ROLAND, F.; ENRICH-PRAST, A.Complementary pathways of dissolved organic carbon removal pathways in clearwater Amazonian ecosystems: photochemical degradation and bacterial uptake.**Fems Microbiology Ecology**, v. 56, n. 1, p. 8-18, 2006.

APHA/AWWA/WEF.**Standard Methods for the Examination of Water and Wastewater**, 18th ed. 1992.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ARTINGER, R.; BUCKAU, G.; GEYER, S.; FRITZ, P.; WOLF, M.; KIM, J. I. Characterization of groundwater humic substances: influence of sedimentary organic carbon. **Applied Geochemistry**, v. 15, p. 97-116, 2000.

AZAM, F.; FENCHEL, T.; FIELD, J. G.; GRAY, J. S.; MEYER-REIL, L. A.; THINGSTAD, F. The ecological role of water-column microbes in the sea, **Marine Ecology**, v. 10, p. 257-263, 1983.

BARROS, N.; COLE, J. J.; TRANVIK, L. J.; PRAIRE, Y. T.; BASTVIKEN, D.; HUSZAR, V.; DEL GEORGIO, P.; ROLAND, F.Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude, **Nature Geosciences**, v. 4, n. 9, p, 593-596, 2011.

BASTVIKEN, D.; COLE, J.; PACE, M.; TRANVIK, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and global estimate. **Global Biogeochemical Cycles**, v. 18, 2004.

BASTVIKEN, D.; EJLERTSSON, J.; TRANVIK, L. Measurement of methane oxidation in lakes - A comparison of methods. **Environmental Science & Technology**, v. 36, p. 3354-3361, 2002.

BEAL, E. J.; HOUSE, C. H.; ORPHAN, V. J. Manganese- and Iron-dependent marine methane oxidation. **Science**, v. 325, p. 184-187, 2009

BELLANGER, B.; HUON, S.; STEINMANN, P.; CHABAUX, F.; VELASQUEZ, F.; VALLÈS, V.; ARN, K.; CLAUER, N.; MARIOTTI, A. Oxic-anoxic conditions in the water column of a tropical freshwater reservoir (Peña-Larga dam, NW Venezuela). Applied Geochemistry, v. 19, p. 1295-1314, 2004.

BERTILSSON, S.; TRANVIK, L. J. Photochemical transformation of dissolved organic matter in lakes. Limnology and Oceanography, v. 45, p. 753-762, 2000.

BIANCHINI, I.; CUNHA-SANTINO, M.B.; PERET, A. M. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake.**Brazilian Journal of Biology**,v. 68, p. 61-67, 2008.

84

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

BIANCHINI, I.; SANTINO, M. B. C. Model parameterization for aerobic decomposition of plant resources drowned during man-mad lakes formation.**Ecological Modelling**, v. 222, p. 1263-1271, 2011.

BIDDANDA, B.A.; COTNER, J. B. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan.**Journal of Great** Lakes Research, v. 29, n. 2, p. 228-241, 2003.

BOETIUS, A.; RAVENSCHLAG, K.; SCHUBERT, C. J.; RICKERT, D.; WIDDEL, F.; GIESEKE, A.; AMANN, R.; JORGENSEN, B. B.; WITTE, U.; PFANNKUCHE, O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. **Nature**, v. 407, p. 623-626, 2000.

BRASIL.AgênciaNacionaldeEnergiaElétrica,disponívelem:<</th>http://www.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.asp>.>.>.Acesso em:22 de mar de 2014a.>.

_____. **Ministério do Meio Ambiente.** Disponível em: <<u>http://www.mma.gov.br/biomas</u>>. Acesso em: 20 de fev. de 2014b.

_____. Plano decenal de expansão de energia, ENERGIA, M.D.M.E.Brasília: 16-311 p, 2013.

_____. Projeção da demanda de energia elétrica para os próximos 10 anos (2011-2020), ENERGIA, M.D.M.E.Rio de janeiro: Empresa de Pesquisa Energética 2011.

. **Parte II: Fontes renováveis,** Agência Nacional de Energia Elétrica, 2008. Disponível em: < http://www.aneel.gov.br/arquivos/pdf/atlas_par2_cap3.pdf >

BROTHERS, S. M.; DEL GEORGIO, P. A.; TEODORU, C. R.; PRAIRIE, Y. T. Landscape heterogeneity influences carbon dioxide production in a young boreal reservoir. **Canadian** Journal of Fisheries and Aquatic Sciences, v. 69, p. 447-456, 2012.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

CARLSSON, P.; GRANÉLI, E.; GRANÉLI, W.; RODRIGUEZ, E. C.; CARVALHO, W. F.; BRUTEMARK, A.; LINDEHOFF, E. Bacterial and phytoplankton nutrient limitation in tropical marine waters and a costal lake in Brazil. Journal of Experimental Marine Biology and Ecology, v. 418-419, p. 37-45, 2012.

CASPER, P.; MABERLY, S. C.; HALL, G. H.; FINLAY, B. J. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. **Biogeochemistry**, v. 49, p. 1-19, 2000.

CHANUDET, V.; DESCLOUX, S.; HARBY, A.; SUNDT, H.; HANSEN, B. H.; BRAKSTAD, O.; SERCA, D.; GUÉRIN, F. Gross CO₂ and CH₄ emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. **Science of the Total Environment**, v. 409, p. 5382-5391, 2011.

COLE, J.; PACE, M.; CARPENTER, S. R.; KITCHELL, J. F. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. **Limnology and Oceanography**, v. 45, n. 8, p. 1718-1730, 2000.

COLE, J. J. Aquatic Microbiology for ecosystem scientists: New and recycled paradigms in ecological microbibiology. **Ecosystems**, v.2, p.215-225, 1999.

COLE, J. J.; CARACO, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by addition of SF6.Limnology and Oceanography, v. 43, n. 4, p. 647-656, 1998.

COLE, J.; CARACO, N. F.; KLING, G. W.; KRATZ, T. K.Carbon dioxide supersaturation in the surface waters of lakes. **Science**, v. 265, p. 1568-1570, 1994.

COTNER, J. B.; BIDDANDA, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. **Ecosystems**, v. 5, p.102-121, 2002.

CUNHA-SANTINO, M. B.; GOUVÊA, S. P.; BIANCHINI, I.; VIEIRA, A. A. H. Oxygen uptake during mineralization of photosynthesized carbon from phytoplankton of the Barra Bonita Reservoir: a mesocosm study.**Brazilian Journal of Biology,** v. 68, p. 115-122, 2008.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

CUNHA-SANTINO, M. B.; BIANCHINI, I. Oxygen uptake during mineralization of humic substances from Infernão lagoon (São Paulo, Brazil).**Brazilian Journal of Biology,** v.64, p.583-590, 2004.

CUNHA-SANTINO, M. B.; BIANCHINI, I. Humic substance mineralization in a tropical oxbow lake (Sao Paulo, Brazil).**Hydrobiologia**, v. 468, n. 1-3, p. 33-43, 2002.

DARCHAMBAEU, F.; SARMENTO, H.; DESCY, J.P. Primary porduction in a tropical large lake: The role of phytoplankton composition.**Science of the Total Environment,** v. 473-474, p. 178-188, 2014.

DEMARTY, M.; BASTIEN, J.GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. **Energy Policy**, v. 39, n.7, p.4197-4206, 2011.

DEMARTY, M.; BASTIEN, J.; TREMBLAY, A.; HESSLEIN, R. H.; GILL, R. Greenhouse gas emissions from boreal reservoirs in Manitoba and Quebec, Canada, measured with automated systems. **Environmental Science & Technology,** v. 43, p. 8908-8915, 2009.

DOS SANTOS, M. A.; ROSA, L. P.; SIKAR, B.; SIKAR, E.; DOS SANTOS, E. O. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants.**Energy Policy**, v.34, n.4, p.481-488,2006.

DZIALOWSKI, A.R.; WANG, S. H.; LIM, N. C.; BEURY, J. H.; HUGGINS, D. G. Effects of sediment resuspension on nutrient concentrations and algal biomass in reservoirs of the Central Plains. Lake and Reservoir Management, v. 24, n. 4, p. 313-320, 2008.

EFFER, S. W.; MATTHEWS D. A.; KASER, J. W.; PRESTIGIACOMO, A. R.; SMITH, D. G. Runoff event impacts on a water supply reservoir: Suspended sediment loading, turbid plume behavior, and sediment deposition.**Journal of the American Water ResourcesAssociation**, v.42, n.6, p.1697-1710, 2006.

EGRÉ, D.; MILEWSKI, J. C. The diversity of hydropower porjects. **Energy Policy**, v. 30, p. 1225-1230, 2002.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

87

ELSER, J. J.; BRACKEN, M. E. S.; CLELAND, E. E.; GRUNER, D. S.; HARPOLE, W. S.; HILLEBRAND, H.; NGAI, J. T.; SEABLOOM, E. W.; SHURIN, J. B.; SMITH, J. E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. **Ecology Letters**, v. 10, p. 1135-1142, 2007.

FAITHFULL. C. L.; BERGSTROM, A. K.; VREDE, T. Effects of nutrients and physical lake characteristics on bacterial and phytoplankton production: A meta-analysis.**Limnology and Oceanography**, v. 56, n. 5, p. 1703-1713, 2011.

FARJALLA, V. F.; AMADO, A. M.; SUHETT, A. L. MEIRELLES-PEREIRA, F.DOC removal paradigms in highly humic aquatic ecosystems. **Environmental Science and Pollution Research**, v. 16, n. 5, p. 531-538, 2009.

FEARNSIDE, P. M.; PUEYO, S.Greenhouse-gas emissions from tropical dams. Nature Climate Change, v. 2, p. 382-384, 2012.

FEARNSIDE, P. M. Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil's Tucurui Dam as compared to fossil fuel alternatives.**Environmental Conservation**, v. 24, n. 1, p. 64-75, Mar 1997.

FINLAY, K.; LEAVITT, P. R.; WISSEL, B.; PRAIRIE, Y. T. Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. **Limnology and Oceanography,** v. 54, p. 2553-2564, 2009.

GAGNON, L.; VATE, J. F. Greenhouse gas emissions from hydropower: The state of research in 1996. **Energy Policy,** v. 25, n. 1, p. 7, 1997.

GAGNON, L.; CHAMBERLAND, A. Emissions from Hydroelectric Reservoirs and Comparison of Hydroelectricity, Natural-Gas and Oil.**Ambio**, v. 22, n. 8, p. 568-569, Dec 1993.

GALLARD, H.; VON GUNTEN, U. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. **Water Research**, v. 36, n. 1, p. 65-74, 2002.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

GOLDENFUM, J. A. Challanges and solutions for assessing the impact of freshwater reservoirs on natural GHG emissions. **Ecohydrology and Hidrobiology**, v. 12, n. 2, p. 115-122, 2012.

GRANÉLI, W.; LINDELL, M.; FARIA, B. M.; ESTEVES, F. A.*et al.*Photoproduction of dissolve inorganic carbon in temperate and tropical lakes - dependence on wavelength band and dissolved organic carbon concentration.**Biogeochemistry**, v. 43, n. 2, p. 175-195, 1998.

GUÉRIN, F.; ABRIL, G.; JUNET, A.; BONNET, M. P. Anaerobic decomposition of tropical soils and plant material: Implication for the CO2 and CH4 budget of the Petit Saut Reservoir. **Applied Geochemistry**, v. 23, n. 8, p. 2272-2283, 2008.

GUÉRIN, F.; ABRIL, G.; RICHARD, S. BURBAN, B.; REYNOUARD, C.; SEYLER, P. DELMAS, R. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. **Geophysical Research Letters**, v. 33, n. 21, Nov 2006.

HADER, D. P. Effects of increased solar UV-B radiation on aquatic ecosystems. Advances in Space Research, v. 26, p. 2029-2040, 2000.

HALL, E. K.; COTNER, J. B. Interactive effect of temperature and resources on carbon cycling by freshwater bacterioplankton communities. **Aquatic Microbial Ecology**, v. 49, n. 1, p. 35-45, 2007.

HERTWICH, E. G. Addressing biogenic greenhouse gas emissions from hydropower in LCA. **Environmental Science & Technology,** v. 47, p. 9604-9611, 2013.

HIRIART-BAER, V. P.; BINDING, C.; HOWELL, T. E. Dissolved organic matter quantity and quality in Lake Simcoe compared to two other large lakes in southern Ontario. **Inland Waters**, v. 3, n. 2, p. 139-152, 2013.

HIRIART-BAER, V. P.; SMITH, R. E. H. The effect of ultraviolet radiation on freshwater planktonic primary production: The role of recovery and mixing processes.**Limnology and Oceanography**, v. 50, n. 5, p. 1352-1361, 2005.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

HOBSON, P. N.; BOUSFIELD, S.; SUMMERS, R. KIRSCH, E. J. Anaerobic digestion of organic matter. Critical Reviews in Environmental Control, v. 4, p. 131-191, 1974.

HUR, J. Microbial changes in selected operated descriptors of dissolved organic matters from various sources of watershed. **Water, Air and Soil Pollution,** v.215, p. 465-476, 2011.

HUTTUNEN, J. T.; ALM, J.; LIIKANEN, A.; JUTINEN, S.; LARMOLA, T.; HAMMAR, T.; SILVOLA, J. MARTIKAINEN, P. J. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. **Chemosphere**, v. 53, p. 609-621, 2003.

IEO.International Energy Outlook 2011: U.S. Energy Information Administration 2013.

INSAM, H.; WETT, B. Control of GHG emission at the microbial community level. **Waste Management**, v. 28, n. 4, p. 699-706, 2008.

IPCC -Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development. Paris, 1997.

IRIARTE, J. L.; VARGAS, C. A.; TAPIA, F. J.; BERMÚDEZ, R.; URRUTIA, R. E.Primary production and plankton carbon biomass in a river-influenced upwelling area off Concepción, Chile.**Progress in Oceanography,** v. 92-95, p. 97-109, 2012.

JACINTHE, P. A.; FILIPPELLI, G. M. TEDESCO, L. P.; RAFTIS, R.Carbon storage and greenhouse gases emission from a fluvial reservoir in an agricultural landscape.**CATENA**, v. 94, n. 0, p. 53-63, 2012.

JAMES, W. F.; BARKO, J. W. Net and gross sedimentation in relation to the phosphorus budget of Eau Galle Reservoir, Wisconsin.**Hydrobiologia**, v. 345, p. 15-20, 1997.

JOSSETTE,G.; LEPORCQ, B.; SANCHEZ, N.; PHILIPPON, X. Biogeochemical massbalances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). **Biogeochemistry**, v. 47, n. 2, p. 119-146, 1999.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

KEMENES, A.; FORSBERG, B. C.; MELACK, J. M. CO₂ emissions from a tropical hydroelectric reservoir (Balbina, Brazil).Journal of Geophysical Research, v. 116, 2011.

KEMENES, A.; FORSBERG, B. R.; MELACK, J. M. Methane release below a tropical hydroelectric dam. **Geophysical Research Letters**, v. 34, 2007.

LI, S.; LU, X. X. Unecrtainties of carbon emission from hydroelectric reservoirs.**Nat Hazards**, v. 62, p. 1343-1345, 2012.

LU, F.; YANG, L.; WANG, X. K.; DUAN, X. N.; MU, Y. J.; SONG, W. Z.; ZHENG, F.; NIU, J.; TONG, L.; ZHENG, H.; ZHOU, Y.; QIU, J.; OUYANG, Z. Preliminary report on methane emissions from the Three Gorges Reservoir in the summer drainage period.**Journal of Environmental Sciences**, v. 23, n. 12, p. 2029-2033, 2011.

LU, X. Q.; HANNA, J. V.; JOHNSON, W. D. Evidence of chemical pathways of humification: a study of aquatic humic substances heated at various temperatures. **Chemical Geology**, v. 177, p. 249-264, 2001.

MACINTYRE, S.; WANNINKHOF, R.; CHANTON, J. P. Trace gas exchange across the airwater interface in freshwater and coastal marine environments. **Freshwater and Coastal Marine Environments**, 1995.

MCDONALD, S.; BISHOP, A. G.; PRENZLER, P. D.; ROBARDS, K. Analytical chemistry of freshwater humic substances. **Analytica Chimica Acta**, v. 527, n. 2, p. 105-124, 2004.

MCKNIGHT, D. M.; ANDREWS, E. D.; SPAULDING, S. A.; AIKEN, G. R. Aquatic fulvic acids in algal-rich Antarctic ponds. Limnology and Oceanography, v. 39, p. 1972-1979, 1994.

MEGONIGAL, J. P.; HINES, M. E.; VISSCHER, P. T.; HOLLAND, H. D.; TUREKIAN, K.Anaerobic metabolism: Linkages to trace gases and aerobic processes. In: W. H. Schlesinger (Ed.).**Treatise on Geochemistry,** Oxford: Elsevier, 2004.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG
MILLER, M. P.; MCKNIGHT, D. M.; CHAPRA, S. C. Production of microbial-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. Aquatic Sciences, v. 71, p. 170-178, 2009a.

MILLER, M. P.; MCKNIGHT, D. M.; CHAPRA, S. C.; WILLIANS, M. W. A model of degradation and production of three pools of dissolved organic matter in an alpine lake.**Limnology and Oceanography**, v. 54, n. 6, p. 2213-2227, 2009b.

MOISANDER, P. H.; CHESHIRE, L. A.; BRADDY, J.; CALANDRINO, E. S.; HOFFMAN, M. PIEHLER, M. F.; PAERL, H. W.Facultative diazotrophy increases *Cylindrospermopsis raciborskii* competitiveness under fluctuating nitrogen availability.**Fems Microbial Ecology**, v. 70, n. 3, p. 800-811, 2012.

MORAN, M. A.; ZEPP, R. G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. **Limnology and Oceanography**, v. 42, n. 6, p. 1307-1316, 1997.

NAPOLÉON, C.; RAIMBAULT, V.; CLAQUIN, P. Influence of nutrient stress on the relationship between PAM measurements and carbon incorporation in four phytoplankton species. **Plos One,** v. 8, n. 6, 2013.

NETO, V.; TOLMASQUIM, M. T. Avaliação econômica da cogeração em ciclo combinado com gaseificação de biomassa e gás natural no sector sucroalcooleiro. **Revista Brasileira de Energia,** v. 2, p. 35-60, 2001.

NOAA, **National Oceanic & Atmospheric Administration.** Disponível em: http://www.esrl.noaa.gov/gmd/ccgg/trends/ Acessado em: 09 de Setembro de 2013.

NOZHEVNIKOVA, A. N.; HOLLIGER, C.; AMMANN, A.; ZEHNDER, A. J. B. Methanogenesis in sediments from deep lakes at different temperatures (2 - 70°C). Water Science and Technology, v. 36, p. 57-64, 1997.

OMETTO, J. P.; CIMBLERIS, A. C. P.; DOS SANTOS, M. A.; ROSA, L. P.; ABE, D.; TUNDISI, J. G.; STECH, J. L.; BARROS, N.; ROLAND, F. Carbon emission as a function of

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. **Energy Policy**, v. 58, p. 109-116, 2013.

PARK, J. F.; LEE, J. H.; KANG, S. Y.; KIM, S. Y. Hydroclimatic controls on dissolved organic matter (DOM) characteristics and implications for trace metal transport in Hwangryong River wathershed, Korea, during a summer monsoon period.**Hydrological Processes**, v. 21, n. 22, p. 3025-3034, 2007.

PIERSON-WHICKMANN, A. C.; GRUAU, G.; JARDE, E.; GAURY, N.; BRIENT, L.; LENGRONNE, M. CROCQ, A.; HELLE, D.; LAMBERT, T. development of a combined isotopic and mass-balance approach to determine dissolved organic carbon sources in eutrophic reservoir.**Chemosphere**, v. 83, n. 3, p. 356-366, 2011.

POMEROY, L. R.; WIEBE, W. J. Energetics of microbial food webs.**Hydrobiologia**, v.159, p. 7-18, 1988.

RAN, L. S.; LU, X. X.; SUN, H. G.; HAN, J. T.; LI, R. H.; ZHANG, J. M. Spatial and seasonal variability of organic transport in the Yellow River, China.**Journal of Hydrology,** v. 498, p. 76-88, 2013.

RAYMOND, P. A.; HARTMANN, J.; LAUERWALD, R.; SOBEK, S.; MCDONALD, C.; HOOVER, M.; BUTMAN, D.; STRIEGL, R.; MAYORGA, E.; HUMBORG, C.; KORTELAINEN, P.; DURR, H.; MEYBECK, M.; CIAIS, P.; GUTH, P. Global carbon dioxide emissions from inland waters. **Nature**, v. 503, p. 355-359, 2013.

REPETA, D. J.; QUAN, T. M.; ALUWIHARE, L. I.; ACCARDI, A. M.Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters.**Geochimica Et Cosmochimica Acta**, v. 66, n. 6, p. 955-962, 2002.

ROLAND, F.; VIDAL, L. O.; PACHECO, F. S.; BARROS, N. O.; ASSIREU, A.; OMETTO, J. P. H. B.; CIMBLERIS, A. C. P.; COLE, J. J. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. **Aquatic Sciences**, v. 72, n. 3, p. 283-293, Jun 2010.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ROSA, L. P.; DOS SANTOS, M. A.; MATVIENKO, B.; DOS SANTOS, E. O.; SIKAR, E.Greenhouse gas emissions from hydroelectric reservoirs in tropical regions. **Climatic Change**, v. 66, n. 1-2, p. 9-21, Sep 2004.

ROSA, L. P.; SCHAEFFER, R. Greenhouse-Gas Emissions from Hydroelectric Reservoirs. Ambio, v. 23, n. 2, p. 164-165, 1994.

SAND-JENSEN, K.; PEDERSEN, N. L.; SONDERGAARD, M. Bacterial metabolism in small temperate streams under contemporaray and future climates. **Freshwater Biology**, v. 52, p. 2340-2353, 2007.

SANDER, R. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry. 1999. Disponível em: http://www.mpch-mainz.mpg.de./~sander/res/henry.html. Acesso:20 de março de 2014.

SCHULZ, S.; MATSUYAMA, H.; CONRAD, R. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). **FEMS Microbiology Ecology,** v. 22, p. 207-213, 1997.

SHAEFFER, R.; SKLOS, A. S.; MARQUES, J. C. S. Brazil's electric power choices and their corresponding carbon emissions implications. **Mitigation and Adaptation Strategies for Global Change Journal,** v. 6, n. 1, p. 47-69, 2001.

SOARES, M. C. S.; MARINHO, M. M.; HUSZAR, V. L.; BRANCO, C. W. C.; AZEVEDO, S. M. F. O. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes and Reservoirs: Research and Management, v. 13, p. 257-269, 2008.

SPIERINGS, J.; WORMS, I. A. M.; MIEVILLE, P.; SLAVEYKOVA, V. I. Effect of humic substance photoalteration on lead bioavailability to freshwater microalgae.**Environmental** Science & Technology, v.45, n. 8, p.3452-3458, 2011.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

ST. LOIUS, V. L.; KELLY, C. A.; DUCHEMIN, E.; RUDD, J. W. M.; ROSENBERG, D. M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. **Bioscience**, v. 50, p. 766-775, 2000.

STADMARK, J; LEONARDSON, L. Greenhouse gas production in a pond sediment: Effects of temperature, nitrate, acetate and season. **Science of the Total Environment,** v. 387, p. 194-205, 2007.

STEINBERG, C.E. W.Ecology of humic substances in freshwater, Berlin: Springer, 2003.

SUHETT, A. L.; AMADO, A. M.; ENRICH-PRAST, A.; ESTEVES, F. A.; FARJALLA, V. F. Seasonal changes of dissolved organic carbon photo-oxidation rates in a tropical humic lagoon: The role of rainfall as a major regulator. **Canadian Journal of Fisheries and Aquatic Sciences,** v. 64, n. 9, p. 1266-1272, 2007.

TEETER, A. M.; BEST, E. P. Modeling wind-wave resuspension in a shallow reservoir: Peoria Lake, IL.Computational Fluid and Soil Mechanics, PROCEEDINGS, 2003.

TEODURU, C. R.; PRAIRE, Y. T.; DELGEORGIO, P. A. Spatial heterogeneity of surface CO₂ fluxes in a newly created Eastmain-1 reservoir in Northern Quebec, Canada. **Ecosystems**, v. 14, n. 1, p. 28-46, 2011.

THORNTON, K. W.; KIMMEL, B. L.; PAYNE, F. E. Reservoir Limnology: Ecological perspectives. John Wiley & Sons, Inc., Somerset: New Jersey, p. 246, 1990.

THURMAN, E. M.**Organic geochemistry of natural waters,**Dordretch: Kluwer Academic Publichers, 1985.

TRAVINK , L. J.; BERTILSSON, S. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. **Ecology Letters**, v. 4, p. 458-463, 2001.

TRANVIK, L. J.; KOKALJ, S.Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. **Aquatic Microbial Ecology**, v. 14, p. 301-307, 1998.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

TREMBLAY, A.; LAMBERT, M.; GAGNON, L. Do Hydroelectric reservoirs emit greenhouse gases? Environmental Management, v.33, p.S509 - S517, 2004.

UNESCO/IHA.GHG Measurement Guidelines fro Freshwater Reservoirs.IHA.London, 2010.

WANG, F.; WANG, B.; LIU, C.; WANG, Y.; GUAN, J.; LIU, X.; YU, Y. Carbon dioxide emission from surface water in cascade reservoir-river system on the Maotiao River, southwest of China. **Atmospheric Environment**, v. 45, p. 3827-3834, 2011.

WEHRLI, B.Climate science: Renewable but not carbon-free.**Nature Geoscience**, v. 4, n. 9, p. 585-586, 2011.

WILDMAN, R.A.; HERING, J.G.Potential for release of sediment phosphorus to Lake Powell (Utah and Arizona) due to sediment resuspension during low water level.Lake and Reservoir Management, v.27, n.4, p.365-375, 2011.

XU, H.; JIANG, H. UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial blooms in a eutrophic freshwater lake. **Water Research**, v.47, p. 6506-6515, 2013.

ZEPP, R. G. T.; CALLAGHAN, T.; ERICKSON, D. Effects of increased solar ultraviolet-Radiation on biogeochemical cyles, **Ambio**, v. 24, n. 3, p, 181-187, 1995.

ZHAO, Y.; WU, B. F.; ZENG, Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. **Biogeosciences**, v. 10, p. 1219-1230, 2013.

ZHAO, G.; DU, J.; JIA, Y.; LV, Y.; HAN, G.; TIAN, X. J.The importance of bacteria in promoting algal growth in eutrophic lakes with limited available phosphorus. **Ecological Engineering**, v. 42, p. 107-111, 2012.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

APÊNDICE

Apêndice A

Região	Ponto	Concentração CO₂ (mmol.L ⁻¹)	Concentração CH₄ (µmol.L ⁻¹)
	VG 001	0,033	0,17
	VG 004	0,032	0,12
Margem Norte	VG 007	0,032	0,12
	VG 010	0,028	0,19
	VG 013	0,046	0,42
	VG 003	0,016	0,14
	VG 006	0,039	0,18
Margem Sul	VG 009	0,034	0,25
Margem Sul	VG 012	0,038	0,24
	VG 015	0,023	0,29
	VG 018	0,021	0,28
	VG 026	0,016	0,24
	VG 027	0,035	0,16
	VG 028	0,027	0,24
Eixo Central	VG 029	0,030	0,29
	VG 030	0,050	0,26
	VG 031	0,027	0,29
	AD 01	0,041	0,23
Média		0,03	0,23
Mediana		0,03	0,24
Desv. Pa	d.	0,01	0,07
Máx.		0,050	0,42
Mín.		0,016	0,12
C. Variaç	ão	0,29	0,33

Concentrações de CO₂ e CH₄, valores médios, medianos, desvios-padrão, máximos, mínimos e coeficiente de variação para os 18 pontos amostrados, apresentados de modo consolidado.

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Apêndice B

Fluxos de CO ₂ e CH ₄ ,	valores médios	, medianos,	máximos,	mínimos,	desvios-padrão	е
coeficiente de variação p	oara os 18 ponto	s amostrado	s no reserv	atório de V	/olta Grande.	

Região	Pontos	Fluxo CO ₂ (mmol.m ⁻² .d ⁻¹)	Fluxo CH₄ (µmol.m ⁻² .d ⁻¹)		
	VG 001	107,29	107,29		
	VG 004	105,01	105,01		
Margem Norte	VG 007	109,62	109,62		
	VG 010	195,67	195,67		
	VG 013	649,53	649,53		
	VG 003	90,32	90,32		
	VG 006	163,19	163,19		
Margom Sul	VG 009	232,82	232,82		
wargen Su	VG 012	252,10	252,10		
	VG 015	444,63	444,63		
	VG 018	449,99	449,99		
	VG 026	211,28	211,28		
	VG 027	146,75	146,75		
	VG 028	217,55	217,55		
Eixo Central	VG 029	445,22	445,22		
	VG 030	406,80	406,80		
	VG 031	472,58	472,58		
	AD 01	231,18	231,18		
Média	a	22,16	273,97		
Mediar	าล	19,09	224,36		
Desv. Pa	ad.	14,24	162,76		
Máx.		58,35	649,53		
Min.		2,35	90,32		
C. Varia	ção	0,64	0,59		

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Apêndice C

Tabela comparativa entre as taxas de emissão de GEE (em tC.ano-1) entre fonte hidroelétrica e termoelétrica, considerando sistemas localizados no Cerrado e semiárido brasileiro.

Reservatório	Bioma	Emissão Hidroelétrica	Emissão Carvão	Emissão Óleo	Emissão Diesel	Emissão Gásª	Emissão Gás ^b	Referência
Volta Grande	Cerrado	22.004	417.809	421.426	403.451	388.091	232.855	Presente estudo
Manso	Cerrado	139.546	230.895	232.893	222.960	214.472	128.683	ROLAND et al., 2010
Furnas	Cerrado	70.535	1.475.527	1.488.299	1.424.818	1.370.576	822.345	ROLAND <i>et al.</i> , 2010
Luiz C. B. Carvalho	Cerrado	12.614	1.154.473	1.164.467	1.114.798	1.072.358	643.415	ROLAND et al., 2010
Mascarenhas de Moraes	Cerrado	41.608	523.361	527.892	505.375	486.136	291.681	ROLAND et al., 2010
Três Marias	Cerrado	184.528	435.401	439.170	420.438	404.432	242.659	dos SANTOS <i>et al.,</i> 2006
Serra da Mesa	Cerrado	796.706	1.401.860	1.413.995	1.353.683	1.302.149	781.289	dos SANTOS <i>et al.,</i> 2006
Miranda	Cerrado	35.798	428.804	432.516	414.068	398.304	238.983	dos SANTOS <i>et al.,</i> 2006
Xingó	Semiárido	40.309	3.298.495	3.327.048	3.185.136	3.063.880	1.838.328	dos SANTOS <i>et al.,</i> 2006

^a: Termoelétrica a gás natural, ciclo simples ^{b:} Termoelétrica a gás natural, ciclo combinado

Apêndice D

Tabela comparativa entre as taxas de emissão de GEE (em tC.ano⁻¹) entre fonte hidroelétrica e termoelétrica, considerando sistemas localizados em regiões florestais (Floresta Atlântica e Floresta Amazônica).

Reservatório	Bioma	Emissão Hidroelétrica	Emissão Carvão	Emissão Óleo	Emissão Diesel	Emissão Gásª	Emissão Gás ^b	Referência
Funil	Floresta Atlântica	1.241	197.910	199.623	191.108	183.833	110.300	ROLAND <i>et al.,</i> 2010
Segredo	Floresta Atlântica	23.188	1.385.368	1.397.360	1.337.757	1.286.830	772.098	dos SANTOS <i>et al.</i> , 2006
Itaipu	Floresta Atlântica	59.072	13.853.680	13.973.602	13.377.571	12.868.296	7.720.978	dos SANTOS <i>et al.</i> , 2006
Barra Bonita	Floresta Atlântica	134.741	154.699	156.039	149.383	143.696	86.218	dos SANTOS <i>et al.</i> , 2006
Samuel	Floresta Amazônica	516.177	237.492	239.547	229.330	220.599	132.360	dos SANTOS <i>et al.</i> , 2006
Tucuruí	Floresta Amazônica	2.562.996	4.661.873	4.702.228	4.501.659	4.330.284	2.598.170	dos SANTOS et al., 2006
Balbina	Floresta Amazônica	1.123.290	274.875	277.254	265.428	255.323	153.194	KEMENES; FORSBERG; MELACK, 2007
Petit Saut	Floresta Amazônica	178.996	126.442	127.536	122.096	117.448	70.469	ABRIL et al., 2005

^a: Termoelétrica a gás natural, ciclo simples

^{b:} Termoelétrica a gás natural, ciclo combinado

Apêndice E

Tabela comparativa entre as taxas de emissão de GEE (em tC.ano⁻¹) entre fonte hidroelétrica e termoelétrica, considerando sistemas em ambientes subtropicais

Reservatório	País	Emissão Hidroelétrica	Emissão Carvão	Emissão Óleo	Emissão Diesel	Emissão Gásª	Emissão Gás ^b	Referência
Três Gargantas	China	515.931	24.738.713	24.952.860	23.888.520	22.979.100	13.787.460	ZHAO <i>et al.,</i> 2013
Hongfeng	China	3.758	21.989	22.180	21.234	20.425	12.255	WANG et al., 2011
Baihua	China	1.410	24.188	24.398	23.357	22.468	13.481	WANG et al., 2011
Danjiangkou	China	41.391	989.548	998.114	955.540	919.164	551.498	LI; ZANG, 2013
Nam Ngum	Laos	-22.197	170.422	171.897	164.565	158.300	94.980	CHANUDET et al., 2011
Nam Leuk	Laos	1.304	65.969	66.540	63.702	61.277	36.766	CHANUDET et al., 2011

^a: Termoelétrica a gás natural, ciclo simples

^{b:} Termoelétrica a gás natural, ciclo combinado

Apêndice F

Tabela comparativa entre as taxas de emissão de GEE (em tC.ano⁻¹) entre fonte hidroelétrica e termoelétrica, considerando sistemas em ambientes temperados.

País	Ellissau Hidroalátrica	Emissao	Emissão	Emissão	Emissão	Emissão	Referência
Canadá	41.461	527.759	532.327	509.621	490.220	294.132	DEMARTY <i>et al.,</i> 2011
Canadá	17.239	1.341.388	1.352.999	1.295.288	1.245.977	747.586	DEMARTY et al., 2009
Canadá	824.384	141.835	143.063	136.960	131.746	79.048	DEMARTY et al., 2009
Canadá	207.463	526.659	531.218	508.560	489.199	293.519	DEMARTY et al., 2009
Canadá	3.660	60.472	60.995	58.394	56.171	33.702	DEMARTY et al., 2009
Canadá	336.669	965.359	973.716	932.183	896.695	538.017	TREMBLAY et al., 2005
Canadá	25.611	350.739	353.776	338.686	325.792	195.475	TREMBLAY et al., 2005
Canadá	451.904	2.658.587	2.681.600	2.567.219	2.469.487	1.481.692	TREMBLAY et al., 2005
Canadá	107.035	3.055.505	3.081.955	2.950.497	2.838.174	1.702.904	TREMBLAY et al., 2005
Canadá	527.349	6.174.782	6.228.233	5.962.574	5.735.583	3.441.350	TREMBLAY et al., 2005
ural, ciclo sim	nples nhinado						
	País Canadá Canadá Canadá Canadá Canadá Canadá Canadá Canadá Canadá Canadá ural, ciclo sim	PaísHidroelétricaCanadá41.461Canadá17.239Canadá824.384Canadá207.463Canadá3.660Canadá336.669Canadá25.611Canadá451.904Canadá107.035Canadá527.349ural, ciclo simplesural, ciclo combinado	País Hidroelétrica Carvão Canadá 41.461 527.759 Canadá 17.239 1.341.388 Canadá 824.384 141.835 Canadá 207.463 526.659 Canadá 3.660 60.472 Canadá 336.669 965.359 Canadá 25.611 350.739 Canadá 451.904 2.658.587 Canadá 527.349 6.174.782 ural, ciclo simples ural, ciclo combinado Ural, ciclo combinado	País Linisado Hidroelétrica Linisado Carvão Linisado Óleo Canadá 41.461 527.759 532.327 Canadá 17.239 1.341.388 1.352.999 Canadá 824.384 141.835 143.063 Canadá 207.463 526.659 531.218 Canadá 207.463 526.659 531.218 Canadá 3.660 60.472 60.995 Canadá 336.669 965.359 973.716 Canadá 25.611 350.739 353.776 Canadá 451.904 2.658.587 2.681.600 Canadá 107.035 3.055.505 3.081.955 Canadá 527.349 6.174.782 6.228.233 ural, ciclo simples ural, ciclo combinado 107.035 1074.782	País Límisado Límisado Límisado Límisado Límisado Diesel Canadá 41.461 527.759 532.327 509.621 Canadá 17.239 1.341.388 1.352.999 1.295.288 Canadá 824.384 141.835 143.063 136.960 Canadá 207.463 526.659 531.218 508.560 Canadá 3.660 60.472 60.995 58.394 Canadá 336.669 965.359 973.716 932.183 Canadá 25.611 350.739 353.776 338.686 Canadá 451.904 2.658.587 2.681.600 2.567.219 Canadá 107.035 3.055.505 3.081.955 2.950.497 Canadá 527.349 6.174.782 6.228.233 5.962.574	País Límisado Limisado <thlimisado< th=""> Limisado <thl< td=""><td>País Línisado Linisado <thlinisado< th=""> Linisado <thl< td=""></thl<></thlinisado<></td></thl<></thlimisado<>	País Línisado Linisado <thlinisado< th=""> Linisado <thl< td=""></thl<></thlinisado<>

Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG

Apêndice G

Tabela comparativa entre as taxas de emissão de GEE (em tC.ano⁻¹) entre fonte hidroelétrica e termoelétrica, considerando sistemas em ambientes temperados.

Reservatório	País	Emissão Hidroelétrica	Emissão Carvão	Emissão Óleo	Emissão Diesel	Emissão Gásª	Emissão Gás ^ь	Referência
Lokka	Finlândia	1.664	2.032.972	2.050.570	1.963.105	1.888.371	1.133.022	HUTTUNEN, 2002
Porttipahta	Finlândia	843	38.482	38.815	37.159	35.745	21.447	HUTTUNEN, 2002
F. D. Roosevelt	E.U.A	-11.783	7.486.484	7.551.289	7.229.197	6.953.986	4.172.391	SOUMIS <i>et al.</i> , 2004
Dworshak	E.U.A	-3.531	439.799	443.606	424.684	408.517	245.110	SOUMIS <i>et al.</i> , 2004
Wallula	E.U.A	-3.739	1.231.438	1.242.097	1.189.117	1.143.848	686.309	SOUMIS <i>et al.</i> , 2004
Shasta	E.U.A	12.238	691.584	697.571	667.816	642.393	385.436	SOUMIS <i>et al.</i> , 2004
Oroville	E.U.A	2.399	1.032.428	1.041.366	996.947	958.994	575.396	SOUMIS <i>et al.</i> , 2004
New Melones	E.U.A	-3.434	329.849	332.704	318.513	306.388	183.832	SOUMIS et al., 2004

^a: Termoelétrica a gás natural, ciclo simples ^{b:} Termoelétrica a gás natural, ciclo combinado