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Ĺıdia Carvalho Gomes

Two-Dimensional Materials: Electronic
and Structural Properties of Defective
Graphene and Boron Nitride from First

Principles.

Tese de Doutorado

September 2014

http://www.university.com


i
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Abstract

We use first principles calculations based on the formalism of Density Functional Theory

(DFT) to investigate electronic and structural properties of graphene and boron nitride

two-dimensional materials. In the first work, we present a study of stability and elec-

tronic properties of nine different models for extended one-dimensional (1D) defects in

monolayer BN. A low-energy stoichiometric model for an armchair-direction antiphase

boundary (APB) in monolayer BN is introduced. The second work investigates four

different grain boundaries in bilayer graphene, aiming an understanding of the degree

of localization of the electronic states in the atoms that compose the line defects. In-

teresting results like magnetic instabilities and changes from metallic to semi-metallic

character of these systems are discussed. In the third work we study the low-energy

electronic transport across stacking boundaries in graphene. The electron scattering

by interfaces formed between regions of monolayer and bilayer graphene is investigated

by a continuum approach. The fourth work was developed in collaboration with the

experimental group of the National University of Singapore (NUS) which synthesized

coherent interfaces between graphene and h-BN. We use DFT calculations to investigate

the introduction of a core dislocation in the h-BN lattice as a mechanism of strain re-

lease in order to keep the continuity of the film along the interface. In the fifth work we

present a recently started study of two-dimensional semiconductors monochalcogenides,

focus on the electronic and optical properties of these materials.
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Resumo

Utilizamos cálculos de primeiros prinćıpios, baseados na teoria do funcional da den-

sidade (DFT) para investigar propriedades estruturais e eletrônicas de materiais bi-

dimensionais. No primeiro trabalho apresentamos um estudo de estabilidade e pro-

priedades eletrônicas de diferentes defeitos unidimensionais estendidos em monocamadas

de BN. Introduzimos um modelo estequiométrico de baixa energia formado na direção

armchair, e que define uma fronteira de antifase nesse material. O segundo trabalho

aborda a introdução de defeitos lineares em bi-camadas de grafeno, focando no grau de

localização dos estados eletrônicos nos átomos que formam os defeitos. Instabilidades

magnéticas e transições de metal para um semi-metal são observadas e discutidas. No

terceiro trabalho utilizamos um modelo cont́ınuo de baixas energias para estudar o es-

palhamento eletrônico em interfaces formadas entre mono e bi-camadas de grafeno. O

quarto trabalho foi desenvolvido em colaboração com o grupo experimental da Univer-

sidade Nacional de Singapura. Filmes hibridos de grafeno e BN foram sintetizados com

interfaces coerentes entre esses materiais. Utilizamos cálculos DFT para investigar a

introdução de discordâncias no BN como um mecanismo de relaxação de strain da rede,

permitindo a formação de filmes coerentes ao longo da interface. O quinto trabalho ap-

resenta resultados preliminares de semicondutores bi-dimensionais formados por átomos

do grupo dos calcogênios. Esse trabalho está em seus passos iniciais, e será focado no

estudo das propriedades estruturais, ópticas e eletrônicas desses materiais.
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supercell (d=23.0 Å). The neutral system in (a-b) does not present mag-
netic moment. (c-d) By adding an extra charge, the FL is raised by
0.03 eV and a spin polarization calculation reveals a magnetic state with
total DOS for majority and minority spins as represented black and blue
colors, respectively in (e-f). . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Band structure of bilayer graphene. Double parabolic bands are observed at low

energies with two of them (Ψ+
v and Ψ−

c ) touching at zero energies and the other

two (Ψ−
v and Ψ+

c ) showing an energy gap of 2γ (γ ≈ 0.35 eV). . . . . . . . . . 63

6.2 Example of incidence from the k- to the q-region. Electron emerging from a

state of positive energy ϕ+
a(b) with angle of incidence θk can be transmitted to

the q-region for states Ψ±
c with transmission probabilities T±

c or reflected back

to the q-region. Angles θk(= arctan(ky/kx)), and α±
c are also shown. . . . . . . 65

6.3 Interface between uncoupled layers, that obey the Dirac Hamiltonian of mono-

layer graphene, and a region of bilayer graphene for which a parabolic dispersion

is observed at low energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Scattering from k- to q-region: electrons initially in a region with linear dis-

persion (left panel), characteristic of monolayer graphene systems, go through a

region of bilayer graphene with parabolic dispersion (right panel). . . . . . . . . 66

6.5 Critical energies occurs for initial states when it is not possible to conserve the ŷ
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the ŷ component can be conserved in the q-region. For scattering from a k- to a

q-region we have kc =
γ

cos2(θk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 Reflection coefficients |ra|2, |rb|2 and R = |ra|2+|rb|2 for direct incidence (θk = 0)

from k- to q-region as a function of the energy of incidence k. . . . . . . . . . . 73

6.7 Transmission coefficients T+
c and T−

c to states of higher and lower energy in

bilayer graphene Ψ+
c and Ψ−

c , and total transmission to the q-region T = T+
c +T−

c . 73

6.8 k-to q-region: Reflection coefficients |ra|, |rb| for layers a and b and total reflection

|R| = |ra|+ |rb| as a function of the angle of incidence θk. . . . . . . . . . . . 75

6.9 k-to q-region: Transmission coefficients T∓
c for states Psi∓c and total reflection

T = T−
c + T+

c to the q-region as a function of the angle of incidence θk. . . . . . 75

6.10 For scattering from a q- to a k-region electrons at low energies go from a parabolic

to a linear dispersion regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.11 Interface between bilayer graphene and a second region of uncoupled graphene

layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.12 For electrons crossing an interface between a q- and a k-region the critical angle

kc is defined as kc = γtg2(α−
c ) for incidence from Ψ−

c . . . . . . . . . . . . . . . 77

6.13 q- to k-region: Reflection coefficients as a function of the (a) incident energy k

and (b) angle of incidence α+
c for incidence from states of higher energy Ψ+

c .

Reflection occurs just for the same state of incidence, so that R = R+
c . . . . . . 80



List of Figures xiv

6.14 q- to k-region: Transmission coefficients for incidence from Ψ+
c as a function of

the (a) incident energy k and (b-c) angle of incidence α+
c . For incidence from

Ψ+
c states, electrons are equally transmitted for both uncoupled layers and the

total transmission is T = 2×Ta(b). . . . . . . . . . . . . . . . . . . . . . . . . 80

6.15 q- to k-region: Reflection coefficients as a function of the (a) incident energy

k and (b) angle of incidence α−
c for incidence from states of lower energy Ψ−

c .

Reflection occurs just for the same state of incidence, so that R = R−
c . The

regions of total reflection (R= 1) are defined by the critical energies kc = γtg2(α−
c ). 81

6.16 q- to k-region: Transmission coefficients for incidence from Ψ−
c as a function of

the (a) incident energy k and (b-c) angle of incidence α−
c . For incidence from

Ψ−
c states, electrons are also equally transmitted for both uncoupled layers, so

that the total transmission is T = 2×Ta(b). Regions of null transmission (T = 0)

can be observed for energies k < kc = γtg2(α−
c ). . . . . . . . . . . . . . . . . . 81

6.17 Dispersion relations for q-k-q regions, that defines the barrier problem of two

semi-infinite graphene bilayers separated by a finite region of two uncoupled

monolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.18 Transmission coefficients T+
c for incidence from Ψ+

c state as a function of the

incident energy k, for the barrier widths (a) d=6 nm, (b) d=10 nm and (a)

d=13 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.19 Transmission coefficients T+
c for incidence from Ψ+

c state as a function of the

angle of incidence α+
c , for the barrier widths (a) d= 6 nm, (b) d= 10 nm and (a)

d= 13 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.20 Transmission coefficients T−
c for incidence from Ψ−

c state as a function of the

incident energy k, for the barrier widths (a) d=6 nm, (b) d=10 nm and (a)

d=13 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.21 Transmission coefficients T−
c for incidence from Ψ−

c state as a function of the

incident angle α−
c , for the barrier widths (a) d=6 nm, (b) d=10 nm and (a)

d=13 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 STM imaging of atomically-sharp G|BN heterointerface. (a) BN nucleates
on the edges of graphene on Ru(0001) by a low dosage of borazine (5L)
at 800 K. (b) A sharp G|BN interface with length < 21 nm at 800 K. (c)
Magnified view in b shows the formation of a seamless G|BN interface
at the atomic scale. (d) Magnified view of (c) shows a zigzag edge of
graphene bonded to a zigzag edge of BN at the interface. Scale bars in
a-d are 50, 2.5, 0.5 and 0.25 nm, respectively. . . . . . . . . . . . . . . . . 92

7.2 Stretching in the C-N(B) bonds at the interface between h-BN and graphene
due to the mismatching of the lattices. . . . . . . . . . . . . . . . . . . . . 93

7.3 The formation of MDs at extended G|BN interface (> 100nm). (a) Large-
scale STM image of domain-wise G|BN with extended linear sharp inter-
face at 800 K with an increased ratio of µC/µBN (in the range between
0.4-0.6); the growth of G islands (∼0.5 monolayer) followed by a dosage
of borazine of: 30 Langmuir (30 L) to cover all the remaining Ru surface.
(b) Magnified view shows the formation of MD in BN Moiré pattern close
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Chapter 1

Introduction

Two-dimensional (2D) materials have been an extensively studied classes of materials

since a single-layer graphene was obtained in a stable form by mechanical exfoliation[1].

From there, the interest in 2D crystals was promptly extended to matherials other than

graphene, such as hexagonal boron nitride (h-BN) and layered metal dichalcogenides

(LMDCs) to name a few[2–4].

The development of reliable synthesis methods of single and few-layer 2D materials

combined with their unusual and very interesting properties, directly related to their

lower dimensionality, has attracted a massive attention of the scientific and industrial

community. Much progress has been made, but it is still a challenge to obtain a total

control of the properties of any material at the nanoscale.

The synthesis process of materials in this scale results in polycristalline samples with

abundant topological defects. A great improvement in the production of defect-free

low dimensional materials has been made[5, 6], but defective samples are very com-

monly obtained. Introduction of defects strongly influence the electronic, chemical, and

mechanical properties of materials, and a deep understanding on how these properties

are altered in the presence of different defects is of essential importance to achieve the

desired control of these properties.

In this thesis we use first principles calculations based on the formalism of Density

Functional Theory (DFT) to investigate electronic and structural properties of two-

dimensional materials. Defective graphene and hexagonal boron nitride are the main

focus, while preliminary results of a work in progress are also presented, were we inves-

tigate two-dimensional monochalcogenide semiconductors.

The thesis is organized as follows:
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List of Tables 2� In the Chapter 2, we provide a brief overview of basic concepts on graphene and

boron nitride.� In the Chapter 3 we present the methodology used for the development of the

work.� In the Chapter 4, we present a study of stability and electronic properties of

nine different models for extended one-dimensional (1D) defects in monolayer BN.

A low-energy stoichiometric model for an armchair-direction antiphase boundary

(APB) in monolayer BN is introduced.� In the Chapter 5, grain boundaries in graphene bilayers are investigated, aiming

at the understanding of the degree of localization of the electronic states in the

atoms that compose the core of the line defects. Interesting results like magnetic

instabilities and changes from metallic to semi-metallic character of these systems

are discussed.� In the third work, presented in Chapter 6, we study the low-energy electronic

transport across stacking boundaries in graphene. The electron scattering by in-

terfaces formed between regions of monolayer and bilayer graphene is investigated

by a continuum approach.� In the Chapter 7, we discuss a work that was developed in collaboration with an

experimental group of the Graphene Research Centre (GRC) of the National Uni-

versity of Singapore (NUS) and with Prof. Antônio Hélio Castro Neto. Results

obtained from synthesis of coherent interfaces between graphene and h-BN moti-

vated DFT calculations to investigate the introduction of a core dislocation in the

h-BN lattice as a mechanism of strain relief, in order to keep the continuity of the

film along the interface. Electronic properties of this system are also discussed.� In the Chaper 8, preliminary results of a study of two-dimensional semiconductors

monochacogenides is presented. It focuses on the electronic and optical properties

of these materials. This work will be further developed in collaboration with the

theoretical group of the GRC/NUS.



Chapter 2

Two-Dimensional Materials: A

brief introduction to Graphene

and hexagonal-Boron Nitride.

2.1 Graphene structure and electronic dispersion.

2.1.1 Single layer graphene.

The hexagonal structure of graphene, with two carbon atoms per unit cell, can be seen as

made out of two interpenetrating triangular lattices as presented in Fig. 2.1-a. With the

value of the carbon-carbon distance a = 1.42 Å obtained experimentally[7], the lattice

vectors can be written:

a1 =
a

2
(3,

√
3), a2 =

a

2
(3,−

√
3), (2.1)

with the three nearest-neighbor vectors ~δ1, ~δ2 and ~δ3 given by:

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1,−

√
3), δ3 = −a(1, 0) (2.2)

as shown in Fig. 2.2.

In addition to the aforementioned lattice vectors a1 and a2 usually adopted to describe

the structure of graphene, we define the vector aac as shown in Fig. 2.2, which define

the lattice period along the armchair direction of graphene.

3
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Figure 2.1: (a) Honeycomb lattice of graphene formed by two interpenetrating tri-
angular lattices named A (atoms in red) and B (atoms in gray) lattices. The lattice
vectors ~a1 and ~a2 are also shown. (b) Brillouin Zone defined by the reciprocal lattice

vectors ~b1 and ~b2 and the position of the special Dirac points K and K’, around which
the electronic dispersion is linear for low energies.

Figure 2.2: The unitcell of graphene highlighted by the yellow box and the transla-
tional vector aac that defines the period along the armchair directions of the hexagonal

structure. The three nearest-neighbor vectors ~δ1, ~δ2 and ~δ3 are also shown.
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By the definition of reciprocal space vectors, bi = 2π
~aj×~ak

~ai·(~aj×~ak)
, the reciprocal vectors

for this triangular lattice are given by:

b1 =
2π

3a
(1,

√
3), b2 =

2π

3a
(1,−

√
3). (2.3)

The two-dimensional Brillouin Zone (BZ) of graphene, defined by b1 and b2, has also a

hexagonal form, but rotated by 30° in relation to the lattice in the real space, as seen

in Fig. 2.1-b.

The main electronic properties of graphene are well documented in the literature, with

a massive number of works on this topic, since it became the “material of the future”.

The tight-binding approach has been largely used to describe its electronic dispersion, as

an analytic expression for the energy bands can be obtained in a reasonable accordance

with more accurate results.

The energy bands derived from a tight-binding Hamiltonian were first derived by P. R.

Wallace [8], and have the form:

E±(k) = ±t
√

3 + f(k)− t′f(k), (2.4)

with

f(k) = 2cos
(√

3kya
)

+ 4cos

(√
3

2
kya

)

cos

(
3

2
kxa

)

. (2.5)

Here, t ≈ 2.8 eV is the nearest-neighbor hopping energy (hopping between different

sublattices), and t′, the next nearest-neighbor hopping energy.

By expanding the full band structure in Eq.2.4 around to the ~K ( ~K ′) vectors, which

define the K (K’) points in the BZ, as k = ~K + q, with |q| ≪ | ~K|, we have, for the π

bands:

E±(q) = ±~νF |q|+O [(q/K)2], (2.6)

where νF is the Fermi velocity, given by νF = 3ta/(2~) ≃ 1×106m/s. The linear energy

dispersion close to the K (K’) points, is characteristic of massless Dirac fermions.

It is this unusual two-dimensional Dirac-like behavior of electrons that makes this ma-

terial so interesting and different from others.



List of Tables 6

Figure 2.3: Electronic dispersion for the honeycomb lattice of graphene. The Dirac
points localized at the six corners of the hexagon that define the BZ show linear dis-

persion at low energies.

2.1.2 Bilayer graphene: AB’ and AA’ stackings.

The simplest realization of a multilayer graphene system is that formed by two layers

pilling up together in the known Bernal or AB’ stacking. As shown in Fig. 2.4, the

Bernal stacking is defined when different sublattices of the two graphene layers are

positioned directly above each other. So, if a sublattice A of a ‘top’ graphene layer is

positioned above the sublattice B’ of a ‘bottom’ graphene layer, where we use the prime

to distinguish the two layers, this stacking is of the AB’ type, as shown in Fig. 2.4. In

the same way, if the same sublattices from both layers are positioned directly above each

other, we have an AA’ stacking. Such definitions will be used throughout this work.

The two layers in a graphene bilayer system are weakly coupled by van der Waals

forces[7], and the measured interlayer distance is ∼ 3.4Å.

The tight-binding model developed for graphene and briefly presented here, can be

extended to stacks with a finite number of graphene layers. The first approximation for

this problem is to consider the inclusion of the hopping energy between nearest-atoms

belonging to different layers, γ. For AB’ stacking, γ is the hopping energy between the

atoms of sublattices A and B’ of the two layers.

For free electrons in a bilayer graphene with AB’ stacking, the solution of the eigenvalue

problem gives a parabolic relation between low energy states and total momentum q =
√

qx2 + qy2, as
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Figure 2.4: (a) AA’ and AB’ stackings in bilayer graphene. The AB’ stacking is
defined whit the A sub-lattice (in red) of the top layer positioned directly above the B’
sub-lattice (in gray) of the bottom layer. In a similar way, a AA’ stacking is defined

when the top A(B) sub-lattice is directly above the bottom A’(B’) sub-lattice.

Figure 2.5: Parabolic electronic dispersion for bilayer graphene in the AB’ stacking.

E(q) = ±γ ±
√

4q2 + γ2

2
(2.7)
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ht

Figure 2.6: h-BN lattice adopts the same structure as in graphene but is formed by
different atomic species: B and N. The unit cell is shown by the yellow box.

2.2 Hexagonal Boron Nitride.

Despite adopting exactly the same hexagonal structure as graphene, hexagonal boron

nitride (h-BN) shows a completely different electronic behavior, due to the asymmetry

between the two sublattices, that are now occupied by different atomic species. By con-

sidering a minimal tight-binding model for a single layer h-BN, that takes into account

the hopping t among nearest neighbor atoms and on-site energies for boron (EB) and

nitrogen (EN ) atoms, it can be shown[9] that the energy relation dispersion assumes the

form:

E(k) = E0 ±
1

2

√

E2
g + 4|φ|2 (2.8)

where it can be identified the insulating behavior of this material, with energy gap

Eg = EB −EN > 5 eV[9, 10]. We also have in Eq. 2.8 E0 = (EB +EN )/2 the energy in

the middle of the gap and

φ/t = 1 + eia(−kx/2+
√
3ky/2) + eia(kx/2+

√
3ky/2). (2.9)

In this way the Dirac cones observed in graphene do not appear in h-BN due to the

symmetry breaking induced in the lattice by the different atomic species B and N.

Instead, an insulating behavior is observed.



Chapter 3

Methodology

3.1 Density Functional Theory

In quantum mechanics, all information about a given system is contained on its wave

function, that can be obtained by solving the Schrödinger equation (SE). So, in prin-

ciple, if we know the wave function of a given system we can extract from it all other

information of interest.

In this way, the starting point to solve a quantum system is the resolution of its

Schrödinger equation, that for a generic electronic system with N electrons can be

written:

HΨ(~r1, ~r2, ..., ~rN ) = EΨ(~r1, ~r2, ..., ~rN ). (3.1)

However, resolution of such equation presents a great challenge. The exact solution of

3.1 can be obtained analytically just for the hydrogen atom (N=1); for a system with 2

electrons, it is already required the use of approximations to describe electron- electron

interactions. For a simple system with about 10 electrons (a CH4 molecule, for example),

we are already facing a huge problem, which solution is quite difficult even with more

sophisticated computational methods [11].

DFT is an alternative to solve the electronic Hamiltonian of many-body systems. The

idea is to promote the particle density ρ(~r) to the status of key variable, on which the

calculation of all other observables can be based.

The advantage of this choice is that now we are dealing with a function of just three

variables, the three spacial coordinates of ρ(~r), that is more practical than the wave

function, with 3N variables.

9
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3.1.1 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems [12] states that ρ(~r) can be used in a many-body elec-

tronic system as the key variable, of which all observables are functionals. The first

Hohenberg-Kohn theorem states that:

The external potential ν(~r), and hence the total energy, is a unique functional

of the electron density.

So, ρ(~r) would be sufficient to know Ψ(~r1, ..., ~rN ) from which we could obtain all rel-

evant informations in our problem. From this, we conclude that the wave function

Ψ(~r1, ..., ~rN ) is a functional of the density ρ(~r), and as all observables can be obtained

from Ψ(~r1, ..., ~rN ), they can also be written as functionals of ρ(~r). In special, the ground

state energy E0 can be expressed in terms of the ground-state density ρ0(~r):

E0 = minE[ρ] = 〈Ψ[ρ0]|H|Ψ[ρ0]〉. (3.2)

The energy functional presents the variational property

E[ρ0] ≤ E[ρ] (3.3)

where ρ0 is the ground-state density, and ρ is some other density. Equation (3.3) tell us

that the calculation of the energy by a different density than the ground-state density,

give us an energy higher than the ground-state energy. This important information is

known as the second Hohenberg-Kohn theorem:

The ground state energy can be obtained variationally: the density that min-

imizes the total energy is the exact ground state density.

Despite the great importance of the Hohenberg-Kohn theorems, which allow us to express

any physical observable as unique functionals of the electronic density, effectively to solve

the many-body problem requires a more practical scheme than the earlier attempts of

minimizing E as a functional of ρ directly.

The Kohn-Sham approach, presented by Kohn and Sham [13] in the form of the called

Kohn-Sham equations, is nowadays the most common and efficient way of minimizing

the DFT functional. This formulation, used in our work, will be briefly discussed in the

following.
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3.1.2 Kohn-Sham equations

In the Kohn-Sham formulation, it is possible to solve the total energy functional almost

exactly, remaining only a small part to be solved approximately.

The total energy functional of a generic system can be decomposed as:

E[ρ] = Ts[ρ] + Tc[ρ]
︸ ︷︷ ︸

Te[ρ]

+UH [ρ] + Uxc[ρ]
︸ ︷︷ ︸

Vee[ρ]

+Uext[ρ]. (3.4)

Here, Ts[ρ] is the single particle kinetic energy, that represents the kinetic energy of

a non-interacting electron system with density ρ; Tc[ρ] is the kinetic energy correlation

term, due to the electron interactions effects. The electron- electron interaction potential

Vee[ρ], is dismembered in a classical contribution, the Hartree energy UH [ρ], and in a

part of quantum nature Uxc[ρ], which includes exchange and correlation effects. The

remaining term Uext[ρ], represents the potential due to the external sources.

The explicit form of Ts[ρ], Uext[ρ] and UH [ρ] can be written:

Ts = −1

2

N∑

i=1

∫

φ∗
i (~r)∇2φi(~r)d~r (3.5)

UH [ρ] =
1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′| d~rd~r′ (3.6)

Uext[ρ] =

∫

ρ(~r)νext[ρ]d~r (3.7)

with φi the single particle orbital, and νext the external potential per particle, which

depends on the interaction of the electronic system with external sources.

Despite of the fact that the explicit form of the remaining terms is not known, the

Hohenberg-Kohn theorems ensure that they can be written as a density functional. It

is usual to join these unknown terms in one, the so-called exchange-correlation energy

Exc=Exc[ρ].

With these informations, we can rewrite Eq. 3.4 as:

E[ρ] = Ts[ρ] +
1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′| d~rd~r′ +

∫

ρ(~r)νext[ρ]d~r + Exc[ρ] (3.8)
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In order to find expressions that allow us to obtain the total energy of the system, as well

as another relevant properties, we proceed by minimizing the energy functional relative

to the electronic density ρ(~r). In their formulation, Kohn and Sham assume that the

ground state density of the original interacting system ρ0(~r) is equal to that of some

chosen non-interacting system ρso(~r) :

ρ0(~r) ≡ ρs0(~r) =
N∑

i

φ∗
i (~r)φi(~r). (3.9)

From this derivation considerations, we get the expressions:

[

−1

2
∇2 +

(

1

2

∫
ρ(~r)

|~r − ~r′|
d~r + Uext[ρ] +

δExc[ρ]

δρ

)]

φi(~r) = εiφi(~r) (3.10)

or

[

−1

2
∇2 + νeff (~r)

]

φi(~r) = εiφi(~r) (3.11)

where we consider the terms in parentheses as a unique effective potential νeff

νeff =
1

2

∫
ρ(~r)

|~r − ~r′|
d~r + νext[ρ] +

δExc[ρ]

δρ
. (3.12)

Equation 3.11 has the form of a single-particle Schröedinger equation , and the single-

particle orbitals φi(~r) provide the electronic ground state density of the non-interacting

system ρs0(~r), that is the same as the one for the interacting system ρ0(~r).

The Kohn-Sham ansatz for the density (Eq. 3.9) make it possible to replace the many-

body interacting problem by an auxiliary single-body system, which can be solved more

easily.

In Kohn-Sham formulation, DFT looks formally like a single-particle theory, thought

many-body effects are still included via the so called exchange-correlation functional.

3.2 Exchange-Correlation functional approximations

There are several different approaches used for the exchange-correlation potential, be-

ing the local density approximation (LDA) and the generalized-gradient approximation

(GGA), the most used of them.



List of Tables 13

In the LDA approximation, the real inhomogeneous system is decomposed in small cells

on which the density ρ(~r) is approximately constant. If we consider, for each cell (i.e.,

locally), the per-volume energy (ehomxc ) of a homogeneous system to be approximately

the contribution of each cell to the real inhomogeneous system, we can make these cells

infinitesimally small and sum over all cells to obtain:

Exc[ρ] ≈ ELDA
xc [ρ] =

∫

ehomxc [ρ(~r)]d3r. (3.13)

The functional ehomxc is decomposed in a contribution of the exchange and correlation

energies so that ehomxc = ehomx + ehomc . For the exchange energy, the per-volume energy is

considered as that of the homogeneous electron liquid [14, 15]. On the other hand, the

correlation part ehomc is not known exactly, and approximations for this term are based

on parametrization of results obtained from Quantum Monte Carlo (QMC) calculations

for the electron liquid[16].

Although the local approximation has proved quite successful, the real systems, such

as atoms, molecules and solids, are all inhomogeneous, that is, their density ρ(~r) varies

spatially. An improvement of the LDA approximation is to consider the spatial varia-

tion of the density in terms of the gradient ∇ρ(~r) in writing the exchange-correlation

functional Exc[ρ]. In this way, Exc[ρ] has the general form:

EGGA
xc [ρ] =

∫

f(ρ(~r),∇ρ(~r))d~r (3.14)

and have become known as the generalized-gradient approximations (GGAs)[17].

Many different GGAs can be obtained, depending on the method of construction em-

ployed for obtaining f(ρ(~r),∇ρ(~r)). In physics, the most popular GGAs functionals are

that proposed by Perdew, Burke and Ernzerhof (PBE)[18]. The BLYP, which denotes

a combination of Becke’s exchange functional[19] and the correction functional of Lee,

Yang and Parr[20] are mainly used in chemistry.

Both GGA and LDA functional are very useful and have shown to produce reliable

results for a vast number of different systems with the main types of chemical bonds.

However, such functional fail for interactions of the van der Waals type (vdW)[21]. These

very week interactions are nowadays described by more specialized approaches.
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3.3 The SIESTA and Quantum Espresso codes and the

main parameters considered in the calculations.

Except for Chapter 6, where continuum approach for the Dirac Hamiltonian was used

to study interfaces between graphene layers, in all other works we employ a first prin-

ciples approach based on the Kohn-Sham density functional theory (KS-DFT), [13], as

implemented in the SIESTA [22] (Chapters 4, 5.10 and 7) and Quantum Espresso [23]

(Chapter 8) codes.

For works developed with SIESTA code, the generalized-gradient approximation (GGA)

is used for the exchange-correlation term. [18] Interactions between valence electrons

and ionic cores are described by Troullier-Martins pseudopotentials. [24] and a double-ζ

pseudoatomic basis set augmented with polarization orbitals is employed, with an energy

cutoff of 0.01 Ry. From previous work by ours and other groups, it is established that this

is a carefully-tested calculation setup for problems involving BN and carbon systems.

Careful convergence tests of all our results were performed with respect to the numerical

parameters of these methodology. Structural optimization has been performed initially

with residual forces of less than 0.04 eV/Å on each atom, and further relaxation of the

geometries has been carried out with a more stringent tolerance of 0.005 eV/Å. Values

of 200 Ry and 250 Ry for the equivalent plane-wave cutoff for the real-space integration

mesh have been used for total energy calculations and geometry relaxations.

In Chapter 8 the DFT calculations are performed using the plane-wave pseudopotential

method[25, 26] as implemented within the QUANTUM-ESPRESSO package. Norm-

conserving pseudopotentials for Sn, Ge, Se and S are generated with the APE pseu-

dopotential generator. For all calculations the wave functions are expanded in plane

waves with a kinetic energy cutoff of 70 Ry. This value has been shown enough for

energy convergence, as some earlier works[27] used for very similar systems a cutoff

of 50 Ry, that already reproduces well converged results. Structural optimization was

performed with residual forces af less than 0.01 eV/Å.



Chapter 4

Stability of edges and extended

defects on boron nitride and

graphene monolayers: the role of

chemical environment

4.1 Introduction

Many proposed applications of nanomaterials require the ability to control their elec-

tronic properties. In particular, graphene and boron nitride (BN) in the two-dimensional

(2D) monolayer form have become an important subject of research, owing to their me-

chanical strength and a rich variety of physical phenomena connected to their electronic

structure. [7] The introduction of structural defects presents an alternative for manipu-

lating the electronic and magnetic properties in these materials. [7, 28–33] In graphene

grown on Ni(111) substrates, a translational grain boundary (GB) with a core structure

consisting of topological defects (TD) in the form of non-hexagonal rings (pentagons

and octagons) has been theoretically proposed [29] and recently observed in STM ex-

periments by Lahiri et. all [30]. One of the images obtained in this experimental work is

shown in Fig. 4.1, where we can easily identify the GB formed by two pentagons followed

by one octagon.

The occurrence of magnetism for the quasi-one-dimensional electronic states introduced

by this defect has also been suggested by ab initio calculations. [31] This graphene GB

lies on the zigzag direction and arises due to the presence of two possible stackings of the

graphene monolayer with respect to the Ni(111) substrate, which leads to the possibility

15
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Figure 4.1: Scanning tunneling microscopy image of graphene on Ni(111) and the
superimposed defect model obtained in the experimental work in Ref. [30].

of domains related by a relative translation, with the GB emerging as the boundary

between two such domains. [30] In the case of monolayer BN grown on Ni(111), the same

stacking mechanism holds, [34] and the possibility of engineering smaller band gaps in

this large-band-gap material by the introduction of this zigzag-direction boundary has

been recently considered. [32]

In this work, we introduce a low-energy stoichiometric model for an armchair-direction

antiphase boundary (APB) in monolayer BN, [35] based on a structural pattern observed

experimentally in irradiated graphene in the form of finite segments of squares and oc-

tagons. [36] A very recent experimental work [37], published after we finish our work

presented in this chapter, also shows that extended one-dimensional lines formed by a se-

quence of square-octagon polygons can form in the hexagonal lattice of BN monolayers.

The origin of this defect occurs by a reconstruction process after electron bean irradia-

tion, and the obtained structure can be identified by transmission electron microscopy

and computational simulations, as shown in Fig.4.2-b and c.

Furthermore, we investigate the electronic properties and compare the stability of the

aforementioned zigzag and armchair boundaries in graphene, as well as of nine different

models for extended one-dimensional (1D) defects in monolayer BN, including five vari-

ations of the zigzag boundary with TDs in the core. The two graphene boundaries are

shown in Fig. 4.3, and the nine BN boundaries are shown in Fig. 4.4.

This work was published in The Journal of Physical Chemistry C. Reference: L. C.

Gomes, S. S. Alexandre, H. Chacham, and R. W. Nunes. J. Phys. Chem. C, 2013, 117

(22), pp 11770-11779.
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Figure 4.2: Transmission electron microscopy image for the finite segment of squares
and octagons obtained by electron bean irradiation in graphene in Ref.[36] in shown
in (a). By the same process, this defect configuration was also obtained in the form of
extended defect lines in BN [37]. In this case, TEM image is shown in (b), with the

atomic theoretical model (left panel) and corresponding simulated image in (c).

4.2 GB Models

The translational GB observed in graphene in Ref.[30] is obtained by cutting a graphene

sheet along the zigzag direction, displacing the two halves by one-third of the lattice

period in the direction perpendicular to the cut, and inserting carbon dimers with their

common bond oriented along the cut, generating a line of pentagon-pentagon-octagon

units, as shown in the right panel in Fig. 4.3. Being oriented along the zigzag direction,

this boundary is labeled Z558 in our discussion. We also examine the armchair-direction

counterpart of the Z558 in graphene. This armchair grain boundary, which we label A48,

can be obtained by cutting a graphene sheet in the armchair direction and translating

one side of the sheet with respect to the other side by half the lattice period along

the armchair direction, generating a line defect that contains squares and octagons

alternately arranged in its core, as shown in the left panel in Fig. 4.3. Small finite

segments of this core structure have already been observed in graphene as result of

reconstruction after electronic-beam irradiation. [36] Chiral GB geometries may also be

built by combining these two basic structures.

In a binary system like monolayer BN, inversion symmetry is absent and an APB is
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Figure 4.3: Structures of grain boundaries (GB) in monolayer graphene. Left - A48:
an armchair-chirality graphene GB with fourfold and eightfold rings in the defect core.
Right - Z558: a zigzag-chirality graphene GB with fivefold and eightfold rings in the

defect core. Core atoms are drawn as darker circles.

Figure 4.4: Structures of antiphase boundaries (APB) in monolayer boron nitride.
Boron, nitrogen, and carbon atoms are shown by orange, green, and grey circles, re-
spectively. Labeling is explained in the text. Top row shows stoichiometric boundaries.
Left panel - AS48: armchair chirality with a fourfold and an eightfold ring in the peri-
odic unit of the defect core; [38] middle panel - AS6: armchair chirality with a hexagon
in the core; right panel - ZS558 (a GB, not an APB): zigzag chirality with two pen-
tagons and an octagon in the core. Middle row shows nitrogen-rich boundaries. Left
panel - ZN558: zigzag chirality with two pentagons and an octagon in the core; middle
panel - ZN6: zigzag chirality with a hexagon in the core; right panel - ZCB558: zigzag
chirality with two pentagons and an octagon in the carbon-doped core. Bottom row
shows boron-rich boundaries. Left panel - ZB558: zigzag chirality with two pentagons
and an octagon in the core; middle panel - ZB6: zigzag chirality with a hexagon in the
core; right panel - ZCN558: zigzag chirality with two pentagons and an octagon in the

carbon-doped core.
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formed at the interface of two domains with opposite assignments of the B and N atoms

to the two triangular sublattices of the BN honeycomb lattice. In this material, the

geometries of the graphene Z558 and A48 translate naturally into APBs. In the present

study, we consider a total of eight APB models and one translational GB model in

BN. [32] The labeling we adopt for the line defects in BN is based on three features:

(i) the chirality of the defect, with armchair(zigzag)-oriented defects denoted by the

letter A(Z); (ii) the stoichiometry (i.e., the number of B and N atoms) of the defect

core, with stoichiometric cores indicated by the letter S, and boron(nitrogen)-rich cores

indicated by the letter B(N); (iii) the types and multiplicities of the polygons present in

the periodic unit of the defect core, with each core polygon denoted by the number of

its sides.

Hence, the two armchair-oriented stoichiometric APBs, shown in the left and middle

panels in the top row in Fig. 4.4 are labeled AS48 and AS6, respectively, while the zigzag-

oriented stoichiometric grain boundary (not an APB in this case) in the right panel is

labeled ZS558. Generally, the core of zigzag APBs containing odd-membered TDs is

either N-rich or B-rich, if one adopts the criterion of minimizing the number of homopolar

(N-N or B-B) bonds. We consider two N-rich versions of zigzag boundaries, shown in

the middle row on the left and middle panels, labeled ZN558 and ZN6, respectively,

with the B-rich ZB558 and ZB6 counterparts shown in the bottom panel. Note that

the ZN6 and ZB6 boundaries contain only hexagons in their core. [32] By replacing the

B2 and N2 dimers with substitutional C2 dimers in the cores of the ZB558 and ZN558,

we obtain the carbon-doped ZCB558 (N-rich) and ZCN558 (B-rich) boundaries shown

in the right panels of the middle and bottom rows, respectively.

To address all these models, we use supercells that are periodic in the monolayer plane.

Very large vacuum regions (∼30-40 Å) are included to impose periodic boundary condi-

tions in the perpendicular direction. We have tested convergence of the structural and

electronic properties, as well as of the energetics of the defects, by performing calcu-

lations with supercells where distances between the defects and their nearest periodic

images in the monolayer plane vary between 10 Å and 19 Å.

4.3 Energetics

4.3.1 Defective Graphene

We seek to compare the relative stability of the above 1D defects in graphene and BN.

In the case of graphene, the formation energy of the GBs per unit length EGB
f is given
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by

EGB
f =

EGB
tot (N)−Nµbulk

graph

ℓ
(4.1)

where Edef
tot (N) is the total energy of the N -atom supercell containing a GB, µbulk

graph =-

154.867 eV is the bulk chemical potential of graphene, obtained as the total energy per

atom in a pristine graphene calculation, and ℓ is the length of the supercell along the

defect direction.

Our calculated values for EZ558
f and EA48

f in graphene are included in Tab. 1. In this

material, the Z558 is more stable than the A48 by 0.25 eV/Å due to the smaller bond-

length and bond-angle distortions from the ideal bulk values (dbulk = 1.442 Å and

θbulk = 120◦ in our calculations) incurred in the pentagon-pentagon-octagon core of the

Z558, when compared with the tetragon-octagon core of the A48. Average bond lengths

and bond angles, as well as maximum and minimum values and standard deviations for

these quantities are included in Tab. 1 for the Z558 and the A48. While average values

are similar for both bond lengths and bond angles, deviations from the bulk reference

values are larger in the A48 core.

This indicates that the nature of the energy difference between the A48 and the Z558

in graphene is essentially elastic. Indeed, a Keating-model calculation with a Keating

potential fitted for diamond carbon [39] predicts the elastic energy of the A48 to be

about twice that of the Z558, in qualitative agreement with our ab initio results. A

more quantitative agreement would require fitting the Keating potential to the graphene

bonding environment.

Ef d̄ dmax dmin σd θ̄ θmax θmin σθ
Z558 0.48 1.45 1.48 1.41 0.02 120◦ 141.7◦ 104.6◦ 11.1◦

A48 0.73 1.44 1.52 1.40 0.04 120◦ 147.9◦ 90◦ 16.8◦

Table 4.1: Formation energies (Ef in eV/Å), and average, maximum, minimum, and
dispersion values for bond lengths (d in Å) and bond angles (θ) for zigzag and armchair

grain boundaries in graphene.

4.3.2 Defective BN.

In BN, the lack of inversion symmetry means that in a periodic supercell calculation

for non-stoichiometric boundaries, such as the ZN558 and its ZB558 partner [and the

(ZN6,ZB6) and (ZCB558,ZCN558) pairs as well, both boundaries are included in the

periodic cell, hence only the sum of the formation energies of the two 1D defects can

be extracted from such calculation. Formation energies of individual boundaries can be

obtained by using BN ribbons, containing a single boundary in the middle and hydrogen-

saturated edges. The ribbons are finite in the direction perpendicular to the 1D boundary



List of Tables 21

and periodic in the parallel direction. Fig. 4.5(a) shows the BN ribbons employed for the

ZN558 calculations, and Fig. 4.5(b) shows the ribbon employed in the AS48 calculations.

Similar ribbons are employed for the other line defects in Fig. 4.4, with the corresponding

defect in the middle. For all these ribbon geometries, the distance between the line

defect in the middle of the ribbon and the ribbon edges varies between 13 Å and 20 Å.

With these sets of parameters, we achieve convergence of energy differences between the

defects within ∼2 meV/Å.

Stoichiometry is determinant for the stability of the various APBs in BN, since the

chemical potentials of the B and N species will depend on the growth conditions, i.e.,

on the sources of B and N atoms in the synthesis process. In our calculations, supercells

are stoichiometric, but the formation energies of the BN ribbons depend on the ribbon

stoichiometry and is thus a function of the chemical potentials for B, N, and H. Hence,

we must adopt a procedure to extract meaningful APB formation energies from the

ribbon calculations, as follows.

Assuming that defect formation occurs in equilibrium with a bulk BN monolayer, we

impose that µB + µN = µBN , where µBN is the total energy per BN pair for a pristine

BN monolayer, and explore the APB formation energy EAPB
f as a function of µB and

µN , by considering two limiting chemical potential environments: in a B-rich scenario

a gas-phase source of B atoms is available, thus the value of µB is obtained from the

total energy of this B-rich molecular gas, and we consider BN bulk as the source of N

atoms in the synthesis process. Conversely, in the N-rich case an N-rich gas source is

employed for the calculation of µN , and BN bulk provides the chemical potential for

B atoms. In the following, we discuss the stability of the 1D defects for an interval of

chemical potentials defined by these limiting values that includes the chemical potentials

associated with other molecular sources, and also solid-state sources of B and N atoms.

Thus, we define the following limiting values for the chemical potentials: in the N-

rich limit we consider the obvious choice, the gas-phase N2 molecule as the source of

N atoms, and in the B-rich limit we consider the BH3 gas as the source of B atoms.

The latter choice is justified since reaction of ammonia (NH3) with borane (BH3) yields

ammonia-borane (H3NBH3), a molecule that is commonly used in the synthesis of BN

nanostructures. [6, 20, 40–42] Choosing µN as the independent variable, we write:

µN + µB = µBN = −350.190 eV ;

µmax
N =

EN2

tot

2
= −270.159 eV (N− rich) ; (4.2)

µmin
N = µBN − EBH3

tot +
3EH2

tot

2
= −274.177 eV (B− rich) ;
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Figure 4.5: Ribbon and triangle geometries for computation of line-defect energies
in monolayer boron nitride. (a) Ribbon with nitrogen-rich zigzag antiphase boundary
in the middle and nitrogen-terminated zigzag edges. (b) Ribbon with stoichiometric
armchair boundary in the middle and armchair edges. (c) Triangle with the same
nitrogen-terminated zigzag edges as ribbon in (a). (d) Triangle with the same stoichio-

metric armchair edges as ribbon in (b).

where Etot is the total energy of the molecule indicated, and the H2 gas is used for the

computation of µH .

In the following discussion, we show that the interval of µN values defined above includes

the chemical potentials for two other B-rich environments, the solid-state α-B crystal and

the gas-phase diborane molecule (B2H6), as well as the N-rich environments associated

with the gas-phase ammonia molecule (NH3) and the N2 crystalline phase of nitrogen.

Diborane is chosen since it reacts with ammonia to yield borazine (B3N3H6), a molecular

source that is also commonly employed in the synthesis of BN nanostructures. [34, 40]

We emphasize that the range of values for µB and µN we consider in Eq. 2 is determined

for a condition of equilibrium with the monolayer phase of BN and with gas-phase or

solid-state sources of N (in the N-rich case) or B (in the B-rich case). Since chemical

potentials from liquid sources of these atoms should fall between these limits, we believe

that our chemical potentials are representative of realistic sources of B and N in the

synthesis of BN nanostructures. These physical constraints, previously considered in

calculations of defects in bulk BN, [43] BCN monolayers, [44] BN fullerenes, [45, 46] and

BN nanocones, [47] have not been considered in a recent calculation of the energetics

of the edges of BN triangular islands. [48] As shown in the following, the determination

of physically acceptable ranges for µN and µB is crucial to determine which extended-

defect or edge structure is the most stable under N-rich, intrinsic, or B-rich conditions.

Hence, comparison of our results for edge energies with those in ref 27 is fruitless, since

no naturally available sources of B and N atoms would provide chemical potentials in

the range considered in that work.
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Given the limiting chemical potentials in Eq. 2, we define the formation energy of the

BN ribbons Erib
f , which includes the formation energies of the APB and of the edges, as

follows:

Erib
f =

Erib
tot −NBµB −NNµN −NHµH

ℓ
(4.3)

Erib
f = EAPB

f + 2Eedge
f . (4.4)

where Erib
tot is the calculated total energy of the ribbon, ℓ is the length of the ribbon along

the APB direction, NB, NN , and NH are the numbers of boron, nitrogen, and hydrogen

atoms in the ribbon, and µB , µN , and µH are the respective chemical potentials.

In order to obtain EAPB
f from Eq. 4.4 above, we follow the procedure from ref 27 and

consider BN triangles in which the three hydrogen-saturated edges are the same as

those in the corresponding ribbons, as shown in Fig. 4.5. The formation energy of an

N -atom triangle E△
f is defined similarly to Eq. 4.3, and can be decomposed into three

components: a bulk one that scales with the area of the triangle (∝N), an edge one that

scales with the edge length (∝N1/2), and a vertex component that does not scale with

the size of the triangle. Since the bulk of the triangles is composed of BN units, and BN

bulk is our reference chemical potential (c.f. Eq. 2 and 4.3), the bulk component of E△
f

vanishes by definition. It is then possible to obtain the edge energy per edge unit, by

considering triangles of different sizes, and fitting E△
f to a linear form:

E△
f = λedge

f nedge + Evtx
f ; (4.5)

where λedge
f is the edge energy per edge unit, nedge is the number of edge units in the tri-

angle, which for zigzag-edge triangles and ribbons is the number of N (B) atoms saturated

with one hydrogen in Fig. 4.5, and for armchair-edge triangles and ribbons is the number

of boat-like BN units at the edges. With these definions we have Eedge
f = λedge

f nedge.

Evtx
f is the contribution from the three vertices of the triangles.

The fittings we obtain for the energies of the triangles shown in Fig. 4.5(c), with B-rich

zigzag edges (ZB-edge), and for the triangles with N-rich zigzag edges (ZN-edge), under

the limiting B-rich and N-rich environments, are shown in the left and middle panels of

Fig. 4.6, respectively. From the slope of the curves in Fig. 4.6 we obtain the ZN-edge and

ZB-edge energies included in Tab. 4.2. In order to check the consistency of our approach,

we also compute the edge energy for triangles shown in Fig. 4.5(d) with stoichiometric

armchair edges (AS-edge), and EAS48
f from Eq. 4.4, for the ribbon containing an AS48

and armchair edges, shown in Fig. 4.5(b). The fitting of the energies of the armchair-

edge triangles is shown in the right panel in Fig. 4.6. The AS-edge is stoichiometric,
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Figure 4.6: Formation energy of BN triangles as a function of the number of edge
units. The left (middle) panel shows the energies of the triangles with boron-terminated
(nitrogen-terminated) zigzag edges [ZB-edge (ZN-edge)], under the limiting N-rich and
B-rich environments. The right panel shows the energy of the stoichiometric armchair

AS-edge.

hence its energy (0.45 eV/edge-unit) is independent of the B and N chemical potentials.

λedge
f (eV)

B-rich N-rich

BH3 B-bulk B2H6 NH3 N-bulk N2-gas

ZB-edge -0.18 0.16 0.18 0.67 1.11 1.15

ZN-edge 0.73 0.36 0.36 -0.13 -0.59 -0.63

Table 4.2: Edge energy per edge unit λedge
f from fitting of triangle energies to Eq. 5,

for the N-rich zigzag edge (ZN-edge), and the B-rich zigzag edge (ZB-edge), for different
values of N-rich and B-rich chemical potentials.

It is worth commenting on the negative slope of Ef which implies a negative value of λedge
f

for the ZN-edge, under the limiting N-rich environment. It indicates that the reaction

by which hydrogen saturates the edge is exothermic and is consistent with experimental

observations of a very high stability for N-terminated zigzag edges in BN islands. [40, 49,

50] In Tab. 4.2, we also include the values of the edge energies for different environments,

obtained from different N-rich and B-rich sources. Note that λZN−edge
f is negative under

N-rich conditions, regardless of the source of N atoms. Indeed, the strong tendency

of BN patches to display a triangular shape with ZN-edges, observed experimentally,

must be connected with this “across-the board” robust stability of the ZN-edges for

a wide range of N-rich chemical potentials. On the other hand, our calculations also

suggest that stable B-terminated zigzag edges may also form, although under a much

more restrictive control of a B-rich environment. More specifically, should the synthesis

of BN islands take place in a B-rich environment, with BH3 as the source of B atoms, the

relatively low stability of B atoms in this molecular system could lead to stabilization of

ZB-edges, as indicated by the negative slope of the energy curve for ZB-edge triangles

under a BH3-rich environment, in our calculations. Hence, stabilization of a ZB-edge,
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Figure 4.7: Formation energy Ef of grain boundaries and antiphase boundaries in
boron nitride as a function of the nitrogen chemical potential µN . The maximum and
minimum values of µN are given in the text (see Eq. 2). Vertical lines indicate the values
of µN for different molecular and solid-state sources of N-rich and B-rich environments.

although less robust than the ZN-edge case, is possible by a proper choice of a B-rich

environment.

Having obtained Eedge
f from the above procedure, we can obtain EAPB

f from Eq. 4.4. The

results for the eight APB models, as well as EZS558
f for the ZS558 GB in BN, as functions

of µN , are shown in Fig. 4.7. For the stoichiometric models EAPB
f is independent of

µN . The consistency of the procedure outlined above is attested by the fact that EAPB
f

values obtained using supercells and the H-terminated ribbons agree to within 0.6%

in all cases, as included in Tab. 4.3. Note that for the non-stoichiometric defects we

compare the sum of the energies of individual defects, obtained with the ribbons, with

the summed energies of two partner defects, obtained with the supercells.

In Fig. 4.7, the vertical lines indicate three different values of µN corresponding to B-rich

environments, and three corresponding to N-rich ones. This figure shows that, at zero

temperature, the AS48 is the most stable boundary in the intrinsic range of chemical

potentials we consider (the central portion of the interval of chemical potentials), while

the ZN6 becomes the most stable defect in the N-rich limit of µN , and the ZB6 is the

most stable in the B-rich end of the chemical potential interval. Furthermore, in the

presence of a carbon source, the ZCB558 becomes the most stable boundary in the N-rich

limit of µN .

From a thermodynamical point of view, Fig. 4.7 indicates that several different bound-

aries may coexist in the temperature range of ∼900-1500 K, where synthesis of BN and

carbon nanostructures is usually performed. [6, 34, 40] Thermal fluctuation energies at
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these temperatures are in the range of ∼120-190 meV/atom. Let us look first at the N-

rich region in Fig. 4.7, where four boundaries are close in energy: the ZCB558, the ZN6,

the ZN558, and the AS48 are within 70-80 meV/atom of each other, after we convert

the energies in Tab. 4.3 to energies per atom at the core, [38] which indicates that the

four boundaries (three in the absence of carbon sources) should coexist in thermal equi-

librium. For the B-rich region in Fig. 4.7, we have two scenarios: (i) in the B-rich limit

of the µN interval, the ZCN558 is only 44 meV/atom higher in energy than the ZB6, and

the two boundaries should coexist, provided that a source of carbon dopants is present

in the synthesis process; (ii) for an interval around the values of µN corresponding to

the α-B and B2H6 environments, the ZB6, the ZCN558, the AS48, and the ZB558 have

formation energies within 41 meV/atom of each other, indicating coexistence of the four

boundaries when either of these systems is used as a source of B atoms.

We can gain a qualitative understanding of the energetics of the BN boundaries. From

the geometries, we expect that the elastic-energy cost of the AS48 should be even higher

than that for the A48 in graphene, because in BN the bond angles at the core of the

defect depart even more strongly from the ideal bulk value of 120◦ than in graphene, as

can be seen in Figs. 4.3 (left panel) and 4.4(top-left panel). Unlike the case in graphene,

however, BN strongly prefers even-membered topological defects in order to avoid the

energetically expensive homopolar bonds, except under the limiting chemical potential

environments, where N-N or B-B bonds become more favorable. [45]

We can use a combination of two models to understand qualitatively the ordering of Ef

values in Fig. 4.7. The idea is to divide the contributions to the formation energies of

the boundaries in two components, an elastic one Eel, which we estimate by employing

a Keating potential fitted for cubic BN, [51] and a chemical energy EQ that is computed

using the bond-energy model developed in Ref. [44] to account for the energetics of CBN

sheets of various stoichiometries. In this latter model, two-atom bonds are assigned

bond-energy values, which reflect the average energy of each type of bond across the

various BCN sheets included in the fitting procedure.

The bond-energy values derived in Ref. [44] are εCC = −103.24 eV, εBN =−116.73 eV,

εCN = −141.67 eV, εBB = −50.40 eV, and εNN = −178.49 eV, for carbon-carbon,

boron-nitrogen, carbon-nitrogen, boron-boron, and nitrogen-nitrogen bonds, respec-

tively. Within the model, the values of EQ for one period of either the AS6 or the

ZS558, the sum of EQ values for one period of the ZN558 and the ZB558, as well as the

sum for one period of the ZN6 and ZB6 should all be ∼4.57 eV higher than the value

for the AS48, i.e., EAS6
Q = EZS558

Q = E
(ZN558+ZB558)
Q = E

(ZN6+ZB6)
Q = EAS48

Q +4.57 eV.

Using the BN Keating potential from Ref. [51], we compute the values of Eel for the

seven boundaries. Results for Eel, EQ, and Ef = EQ + Eel for the AS48, AS6, ZS558,
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Boundary supercell ribbon

AS48 0.44 0.44

AS6 0.82 0.82

ZS558 0.96 0.97

ZN558 + ZB558 1.29 1.29

ZN6 + ZB6 1.48 1.48

ZCB558 + ZCN558 1.53 1.52

Ribbon results for individual boundaries

Boundary B-rich (BH3) N-rich (N2-gas)

ZB558 0.38 0.89

ZN558 0.91 0.40

ZB6 0.05 1.12

ZN6 1.43 0.36

ZCN558 0.15 1.21

ZCB558 1.37 0.31

Table 4.3: Comparison of formation energy values Ef of grain boundaries and an-
tiphase boundaries in monolayer BN computed with supercells and ribbon geometries.
Supercells are stoichiometric and corresponding Ef values do not depend on chemical
potentials of B and N. Supercells for non-stoichiometric boundaries contain the pair of
partner boundaries indicated. In the top part of the Table, the sum of the Ef values ob-
tained for the two boundaries using the ribbons is given for comparison with supercell
results. Values for the individual non-stoichiometric boundaries, computed with the
ribbons, are given in the bottom part of the Table, for the limiting N-rich and B-rich

environments.

and the sum of the values for the ZN558 and ZB558, and for the ZN6 and ZB6, computed

using this scheme, are included in Tab. 4.4.

Boundary EQ(eV/Å) Eel (eV/Å) Ef (eV/Å)

AS48 0.00 1.02 1.02

AS6 1.05 0.18 1.23

ZS558 0.91 0.70 1.61

ZN558 + ZB558 0.91 1.08 1.99

ZN6 + ZB6 1.82 0.57 2.39

Table 4.4: Formation energy of grain boundaries and antiphase boundaries in mono-
layer BN from combination of elastic energy and chemical-bond energy models.

As shown in Tab. 4.4, this simplified partition of Ef appears to overestimate the elastic-

energy cost of the AS48 boundary, but it correctly predicts, at a qualitative level, the

ordering of the energies of the other six BN defects in Tab. 4.4 (the energies of the

stoichiometric boundaries must be multiplied by two, for a proper comparison). This

modeling is useful because it allows us to establish that EQ is the predominant factor

in determining the relative stability of the various boundary models in our study. Note

the very low value of Eel for the AS6 and the (ZN6,ZB6) pair, with cores consisting of

hexagons only, which is offset by the high energy cost of two “wrong” bonds per defect

unit in the core. On the other hand, the highest value of Eel is found for the AS48, being
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associated with the strong departure from the bulk bond lengths and bond angles in the

fourfold and eightfold rings at the core of this boundary. However, this is compensated

by the fact that the chemical energy cost for the AS48 is very low (EAS48
Q = 0, within

the simplified bond-energy model above).

Again, a quantitative agreement between the above modeling and the ab initio results

would require fitting both the Keating potential and the bond-energy model to bonding

environments that are more similar to those in the boundary geometries in our study.

This analysis also provides a qualitative explanation for one of the ingredients that

determines the stability of the carbon-doped ZCB558 boundary: because this structure

is obtained from the ZB558 by replacing the B2 dimer in the center of the defect core

with a C2 dimer, the elastic energy is reduced because the length of the C-C bonds is

similar to the length of the BN bulk matrix, unlike the longer B2-dimer bond. The other

ingredient is electronic, and is determined by stoichiometry (i.e., the chemical potentials)

and the fact that in low coordination bonding environments a B-B bond is generally less

favorable than a C-C bond, except in very B-rich environments.

4.4 Electronic Properties: Band Structure and Density of

States of defective graphene and h-BN.

4.4.1 Defective Graphene: A48 and Z558 boundaries.

Let us now examine the electronic structure of the graphene boundaries. The electronic

structure of the Z558 in graphene has been discussed in Ref. [31], where the appearance

of a highly-localized quasi-1D state, introduced by this boundary in the density of states

(DOS) of graphene, has been shown to lead to a magnetic instability. [The Z558 is

labeled GB(2, 0)|(2, 0) in the notation employed in Ref. [31].] Figs. 4.8(b) and (d) show

the electronic band structure and the DOS for the A48 in graphene, and the DOS for

the Z558 is shown in Fig. 4.8(c) for comparison. The Brillouin zone corresponding to all

defect supercells in this work is shown in Fig. 4.8 (a). The Γ-X and Y-L lines are parallel

to the defect direction (the x-axis of the supercell) in all cases. In order to identify the

boundary-related electronic bands, and also to examine the degree of localization of the

corresponding states on the core of the boundaries, we project the DOS onto the orbitals

centered on the core atoms in each case. The core atoms for each defect geometry are

shown by darker circles in Fig. 4.3, and we use the same definition of defect core for the

graphene and BN boundaries.

From the A48 band structure, we can see that this boundary introduces only small

electron and hole pockets near the Fermi level (FL), that show as two weak resonances
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Figure 4.8: Band structure and density of states (DOS) for the A48 and Z558 in
graphene. Black curves show the (a) Z558 and (b) A48 supercell band structure while
the blue curves show bulk bands folded onto defect supercell. (c) and (d) show total
DOS and the projected DOS (PDOS) for the core atoms for the Z558 and A48, respec-
tively. (f) The Brillouin zone corresponding to the supercell calculations in the present

study.

within ±0.2 eV from the FL in the DOS. The degree of localization of these electronic

states on the eight atoms located at the A48 core is much weaker than what is found

for the magnetic resonance in the Z558 case. [31] In the latter case, nearly 90% of the

DOS derives from the ten core atoms. This is shown by the partial DOS (PDOS) for

the core atoms as red curves in Fig. 4.8(b) and (d). In the A48 case, these resonances

are much more spread out into the bulk of the cell, and the contribution from the core

atoms is much smaller than in the Z558. The A48 also gives rise to stronger resonances

at ±1.0 eV from the FL, connected to the flat portion of the defect bands seen in the

band structure in Fig. 4.8(b)].

4.4.2 Defective h-BN: AS48, ZN558, ZB558, ZN6, ZB6, ZCB558, and

ZCN558 boundaries.

In the case of BN, we concentrate on the AS48, ZN558, ZB558, ZN6, ZB6, ZCB558,

and ZCN558 boundaries. In Fig. 4.9(a) and (b) we show the band structure and the

density of states (DOS) for a pristine bulk BN monolayer. For ease of comparison, the

bulk calculation was performed for a supercell of nearly the same dimensions as those

employed for the BN boundaries. For our discussion, the important features of the bulk

electronic structure are the size of the gap (∼4.7 eV within the GGA-DFT scheme) and

the composition of the electronic states at the band edges: the top of the valence band
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Figure 4.9: Band structure and DOS for bulk BN and the AS48 boundary. The
contribution of the core-atom orbitals to the total DOS is shown by green (N orbitals)
and red (B orbitals) PDOS curves. Defect-related bands are colored according to the
dominant orbital contribution. (a) Band structure and (b) DOS for bulk BN. (c) Band

structure and (d) DOS for the AS48 in BN.

is mainly composed of nitrogen pz orbitals while the bottom of the conduction band

derives from the boron pz orbitals.

AS48: The electronic bands and the corresponding DOS for the AS48 are shown

in Fig. 4.9(c) and (d). The AS48 introduces one set of two bands near each of the

band edges, that show little dispersion and retain the character of the corresponding

parent bulk bands. The acceptor bands near the valence-band maximum (VBM) are

composed primarily of nitrogen pz orbitals, while the donor bands near the conduction-

band minimum (CBM) consist of boron pz orbitals, with ∼40% of the DOS concentrated

on the core atoms in both cases, as shown by the core-projected PDOS curve in Fig. 4.9.

Both sets of bands are shallow (∼0.2 eV split from the corresponding band edges), and

the lack of sizeable dispersion indicates very large effective masses and low mobilities of

carriers, should doping of A48 defect bands become feasible.

The ZN558, ZB558, ZN6, ZB6, ZCB558, and ZCN558 defects display much richer elec-

tronic structures. Generally, we can see in Figs. 4.10, 4.11, and 4.12 that these bound-

aries introduce much deeper defect bands into the gap of the BN bulk, resulting in a

much larger reduction of the electronic band gap in the spatial region surrounding either

the ZN558 or the ZB558 [32] than in the case of the AS48. Moreover, the dispersions

for these bands in the direction of the defect are much larger, indicating carrier with
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potentially larger mobilities than in the AS48 states. Furthermore, the defect-related

bands for these boundaries are strongly localized on the core of the defects, and en-

hanced correlation effects (beyond the scope of this work) related to quasi 1D states are

to be expected for these electronic states.

ZN558 and ZB558: The bands and DOS curves for the ZN558 and ZB558 bound-

aries are shown in Fig. 4.10. In the band-structure plots, defect bands are colored by

their dominant atomic contribution, with the same color coding indicated in the PDOS

plots. In this case, because supercell calculations include the two boundaries, we identify

the bands associated with each defect by projecting the DOS curves onto the atoms at

the core of each defect individually. The consistency of this procedure for the present

systems can be checked by comparison with the electronic structures of the ribbons,

that contain only one of the defects. In Fig. 4.10, the electronic states for both the su-

percell and ribbons are shown for comparison, with the ZB558 states shown of the two

plots on the top and the ZN558 states on the bottom. For the ribbons, the electronic

states characteristic of the edges are indicated by an orange-curve in the PDOS plots.

An observation from the ribbon plots is that the electronic states associated with the

edges of the ribbon are either shallow or resonant with the bulk bands, and do not mix

with the defect bands in the gap, as can be observed in the PDOS plots. Thus, we can

directly verify that the electronic structure we obtain from the supercell calculation is

very consistent with a superposition of the corresponding states from the ribbons for

each boundary, in the range of energies of the defect gap states shown in Fig. 4.10. The

same is true for the (ZN6,ZB6) and (ZCB558,ZCN558) supercells, but for conciseness,

below we only show the electronic structure obtained from the supercell calculations.

ZB558: The electronic structure of the ZB558 is shown in the top panels in Fig. 4.10.

Because boron-boron bonds tend to be much longer than the other bonds in these BN

systems, the ZB558 introduces a large compressive strain in its neighborhood, and we

observe three defect bands connected with this boundary. Starting from the lower part of

the gap, we observe a shallower band with an extended van Hove singularity connected

to a large flat portion of this band, starting at the Γ point and extending up to the

k-point at ∼0.6 of the Γ-X line, after which it disperses down and mixes with the bulk

states, when reaching the X point at the edge of the one-dimensional BZ. This band

derives primarily from the orbitals of the N atoms located on the BN zigzag chains in

the core of the ZB558 (∼58% of the total DOS), with smaller contributions from the

zigzag B atoms (∼8%), and from the two atoms forming the B2 dimer at the geometric

center of the defect (∼3%).
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Figure 4.10: DOS, PDOS, and band structures along the Γ-X line (parallel to the APB
direction) for the ZB558 (top row) and ZN558 (bottom row). Supercell calculations are
shown in the left panels and ribbon calculations in the right panels. The contribution
of the core-atom orbitals to the total DOS is shown by green (N orbitals) and red (B
orbitals) PDOS curves. Defect bands in the gap are shown by green and red curves,
according to the dominant atomic-orbital contribution in each case. The DOS features
associated to the ribbon-edge states are shown by orange curves in the right panels.

The ZB558 also introduces a deeper flat band lying ∼0.5 eV above the VBM, with a

total dispersion of ∼0.2 eV. This band is very strongly localized on the B2 dimer at the

center, with ∼75% of the total DOS deriving from the orbitals of the dimer atoms, with

smaller contributions of ∼12% and ∼4% from the N and B atoms on the BN zigzag

chains in the core, respectively. The characteristic 1D van Hove singularities associated

with the minimum and maximum of this band can be observed in the DOS plot in top

right panel in Fig. 4.10.

In the upper part of the gap, the ZB558 introduces a deep dispersive band that lies ∼1.7

eV below the CBM, at the Γ point, and at the X point it reaches its maximum of ∼0.7

below the CBM, for a total dispersion of 1 eV. This band is composed mostly of orbitals

of the B atoms at the ZB558 core, with 53% of the DOS coming from the B2 dimer at

the center and 25% from the B atoms on the BN zigzag chains shouldering the B2 dimer.

A smaller contribution of 8% derives from the N core atoms on the zigzag chains.

ZN558: Electronic bands, DOS, and PDOS for the ZN558 are shown in the bottom

panels in Fig. 4.10. In the lower part of the gap this boundary introduces a band with

a maximum energy of ∼0.7 eV above the VBM, near the edge of the BZ at the X point,

that shows a dispersion of ∼1.0 eV. Its minimum is at the Γ point where it becomes

resonant and mixed with the bulk states in the VBM region. For most of the Γ-X line of

the 1D BZ this band is deep in the gap and strongly localized, with ∼88% of the DOS



List of Tables 33

Figure 4.11: DOS, PDOS, and band structure along the Γ-X line (parallel to the
APB direction) for the ZN6 and ZB6 boundaries, from a supercell calculation. Defect
bands in the gap and PDOS curves are shown by green (ZN6 states) and red (ZB6
states) curves, according to the dominant atomic-orbital contribution in each case.

concentrated on the ZN558 core atoms (∼73% on the N core atoms). In the DOS plot,

this bands shows a 1D van Hove singularity above the peak corresponding to the VBM.

In the upper part of gap, the ZN558 also introduces a band near the CBM that shows

similar characteristics to the above one, being deep in the gap near Γ and becoming

shallow and mixed with the bulk states when it reaches the edge of the BZ at the X

point. This band is very strongly localized on the B and N atoms along the zigzag chain

in the core of the ZN558, with ∼84% of the DOS concentrated on the orbitals of the

B atoms and ∼7% on the orbitals of the N atoms. The corresponding 1D van Hove

singularity is seen in the DOS plot the bottom right panel in Fig. 4.10.

ZN6, ZB6, ZCB558, and ZCN558: The electronic states of the ZN6, ZB6, ZCB558,

and ZCN558 show similar patterns. The ZN6 and ZB6 states are shown in a single plot

in Fig. 4.11. The ZN6 (ZB6) introduces a band of deep states in the gap, which is

strongly localized on the two N (B) atoms that bond to each other across the boundary,

as shown by the PDOS plots. As found in Ref. [32] introduction of such defects leads to

large reductions of the gap for the electronic states in the region of the defects. Besides

the deep band in the gap, the ZB6 also introduces a localized band that is resonant with

the bulk bands at the top of the valence bands.

For the ZCB558, and ZCN558, we show the supercell states projected onto the B, N,

and C atoms at the core of the ZCB558 (ZCN558) in the top (bottom) panel. In the

ZCB558 case, we observe the appearance of two bands that are reminiscent of those of a

one-dimensional dimerized chain of carbon atoms, with a gap of ∼2.6 eV at the Brillouin

zone edge, and dispersions of ∼1.0 eV (0.6 eV) for the lower (higher) band. The higher

band is derived equally from C and B orbitals, while the lower band is dominated by

the C orbitals, but with sizeable contributions from B and N orbitals. Both bands are
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Figure 4.12: DOS, PDOS, and band structures along the Γ-X line (parallel to the
APB direction) the ZCB558 (top row) and ZCN558 (bottom row) boundaries, from a
supercell calculation. Contributions of the core-atom orbitals to the total DOS are
shown by blue (N orbitals), green (B orbitals), and red (C orbitals) PDOS curves.
Defect bands in the gap are shown by green, red, and blue curves, according to the

dominant atomic-orbital contribution in each case.

strongly localized on the defect core, with 78% and 88% of the total DOS deriving from

the core-atom orbitals.

For the ZCN558, we identify three defect-related bands: (i) a shallow band near the top

of the bulk valence bands with 80% of its DOS concentrated of the core atoms (mostly

on the N and C atoms); (ii) a very strongly-localized band deep in the band gap, with a

dispersion of 0.75 eV, that derives 95% of its DOS from the C and B atoms a the core;

(iii) and a band near the bottom of the bulk conduction bands, localized on the B atoms

at the core.

4.5 Conclusions

In conclusion, our calculations indicate that the relative stability of antiphase boundaries

(APB) with armchair and zigzag chiralities in monolayer boron nitride (BN) is strongly

dependent on the B and N chemical potential conditions (emulating the corresponding

synthesis conditions). An interval of realistic boron and nitrogen chemical potentials

values is considered, ranging from gas-phase to solid-state sources of B and N. At zero

temperature, a stoichiometric armchair APB with a tetragon and an octagon in its core

unit, and no “wrong” (B-B or N-N) bonds, is found to be the most stable boundary in
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the intrinsic region (the central part) of the chemical-potential range considered, while

in the nitrogen-rich (boron-rich) end of the chemical potential interval, a zigzag-oriented

boundary with a core consisting of hexagons only, containing N-N (B-B) bonds across the

boundary line is found to be the most stable. Zigzag boundaries with a core structure

consisting of two pentagons and an octagon, containing N-N or B-B bonds, are also

considered, both in undoped and carbon-doped forms. Our ab initio results indicate

that at the typical range of temperatures of BN-nanostructure synthesis experiments,

several of these boundaries with zigzag chiralities should coexist with the stoichiometric

armchair one under N-rich and B-rich conditions. Such stability transition as a function

of B and N chemical potentials is shown to arise from a competition between “wrong-

bond” (homopolar B-B and N-N bonds) and elastic-energy costs at the core of the

APBs. This is contrasted with analogous cases of extended defects in graphene, where

the geometry with pentagonal and octagonal rings is the most stable.

Regarding the electronic properties of the defects, we find that in monolayer BN the

armchair APB introduces shallow flat bands near the bulk band edges which are weakly

confined to the defect core, while the B-rich, the N-rich, and the C-doped zigzag APBs

lead to the formation of electronic bands that are deep in the bulk band gap and strongly

localized on the atoms at the defect core. In the case of graphene, the armchair GB

introduces weaker resonances near the Fermi level (FL), associated to defect states that

are only partially confined to the defect core, in contrast with the strongly localized

states characteristic of the zigzag GB. [31]

Finally, we also report first principles results for the energies of nitrogen- and boron-

terminated edges of triangular-shaped islands of BN. One one hand, our results indicat-

ing a robust stability for nitrogen-terminated edges, across a wide range of values for

the chemical potentials of boron and nitrogen, are consistent with the experimentally-

observed tendency of BN islands to display nitrogen-terminated zigzag edges. On the

other hand, we predict that fine tuning the chemical potentials with a boron-rich source

where boron is in a bonding environment of relatively low stability may lead to the

formation of boron-terminated zigzag edges.



Chapter 5

Electronic Properties of Grain

Boundaries in Graphene Bilayers.

5.1 Introduction

Achieving control of the transport properties in of is one of the great challenges in

nanoscale engineering. The influence of the number of layers of this material on its

electronic properties has been a subject of intense study in the recent years. It is

well known that the electronic structure of an isolated graphene layer is characterized

by linear electronic bands near the K points of the Brillouin zone (BZ). This linear

character is lost when we introduce a second layer in the so-called Bernal or AB’ stacked

bilayer graphene (BLG): even though the gap is still null, the dispersion is no longer

linear and we observe the emergence of two additional bands in the region of the Fermi

level (FL). The BLG is also known to present a gap at the FL when an external electric

field is applied perpendicular to the layers plane [52, 53].

By going beyond the Bernal bilayer graphene, a very interesting physics is also observed

when two or more graphene layers are stacked with a relative angle between them. In

a graphite surface, for example, it is very common the occurrence of a rotation of the

top surface layers with respect to the bulk, giving rise to Moiré patterns [54–57]. The

interlayer registry, defined by the type of stacking or by the relative angle of twist, can

have a dramatic influence on the electronic properties of this material. As an example,

for BLG with a small twist angle between layers, it has been observed[54] that, contrary

to what happens in an AB’ stacked bilayer, the low energy dispersion is linear, as in a

single layer, but the Fermi velocity can be significantly reduced in comparison to the

single-layer. It is also observed that an external electric field, perpendicular to the layers,

does not open an electronic gap in this case.

36
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Figure 5.1: Electronic bands at the K point in the BZ for (a) graphene monolayer and
(b) AB’ stacked graphene bilayer: the linear character of the bands in monolayer is lost
with the introduction of the second layer, giving rise to doubled bands with parabolic

dispersion around the Fermi level.

Figure 5.2: Moire pattern formed by relative rotations between graphene layers.
For different angles of rotation θ, a characteristic physics is observed in the electronic

properties of this material.

The attempt to control the electronic properties at the nanoscale has also been consid-

ered with the introduction of defects. As discussed in Chapter 4, extended line defects

in graphene and Boron Nitride have been investigated in many different works, with

interesting results.

In a recent theoretical work[31], Simone et. al, employ ab initio calculations to address

the confinement of electronic states due to the introduction of a particular extended

line defect formed by a translational grain boundary (GB). It is shown that such defect

introduces a sharp resonance just above the FL in the density of states of graphene,

indicating a strong confinement of such states on the core of the defect.

In the same work, the introduction of different tilt GBs is also considered in graphene,

and the corresponding modifications on the electronic structure due to these defect lines

are also discussed. While the translational GB introduces strongly confined states in the

DOS, the electronic states due to tilt grain boundaries hybridize with the bulk states

and are only partially confined to the defect core.



List of Tables 38

Figure 5.3: Geometries of extended one-dimensional periodic defects in graphene,
investigated in Ref.[31]; Introduction of GB(2,0)|(2,0) gives rise to magnetic states in
graphene. Grain boundaries GB(5,0)|(3,3), GB(5,3)|(7,0) and GB(2,1)|(1,2), introduces
electronic states which hybridize with the bulk states and are only partially confined

to the defect core.

In this chapter, we review some results and extend the study in Ref. [31] by considering

a graphene bilayer with and extended line defect on one layer a top a pristine bottom

layer. By ab initio calculations, electronic properties of the resulting graphene bilayers,

are discussed.

5.2 Double-Layer Graphene: the AB’ stacking.

It is well known that graphite is made out of stacked graphene layers that are weakly

coupled by van der Walls forces. The simplest and best known use of graphite is in

a pencil, possible because when we press it on a sheet of paper, we can easily detach

the graphene layers from each other. There are many ways that graphene layers could

be stacked up in order to form graphite. However, many theoretical and experimental

works indicate that AB’ or Bernal stacking have lower energy, being predominant in the

formation of the bulk of this material[58–60].

The AB’ stacking is defined when a carbon atom of sublattice A in the top layer is

positioned directly above a carbon atom of sublattice B’ at the bottom layer. Such

configuration can be obtained if we consider two graphene layers in the so called AA’

stacking, where atoms of the same sublattice are positioned directly above each other at

the top and bottom layers, and translate one of the layers by 1/3 of the lattice parameter

aac, along an armchair direction. One alternative way to obtain the Bernal stacking, is
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by rotating one of the layers in a double layer system initially in an AA stacking, by an

angle θ = 60°.
Figure 5.4: (a) The honeycomb structure of graphene monolayer in (a) and the two
simplest stackings between two layers: The AA’ stacking, in (b), where atoms of the
same sublattice in the top and bottom layers are positioned directly above each other.
The AB’ stacking, in (c), is formed when sublattice A in the top layer is placed directly

above sublattice B’ in the bottom layer.

Despite the fact that the AB’ stacking type is the most energetically favorable in bi-

layer graphene, it is quite common the occurrence of many different stackings, caused

by rotation of one of the layers in relation to the other, giving rise to Moiré patterns.

The commensurate angles of rotation, and the consequent modifications in the elec-

tronic structure of graphene, have been discussed in a vast number of theoretical and

experimental [54, 55, 58, 61] works.

Besides the rotation of an entire graphene layer, which determines an uniform config-

uration throughout the sample, introduction of grain boundaries, in the form of linear

topological defects, can define different domains in the hexagonal graphene lattice. Each

domain is defined by a spacial orientation of the lattice vectors, which, in some cases,

are different when we pass from one to another side of the GB.

5.3 Extended line defects in graphene monolayer.

We consider here four different GB introduced in a graphene layer. Three of these defects

are of the tilt GB type, where the introduction of the one-dimensional periodic defect

induces a rotation of a portion of the layer in relation to the other. We follow the same

index notation as in [31], and denote these defects by the indices with which we write

the translation vector of the GB (TGB) with respect to the lattice vectors on each side

of the GB, as shown in Fig. 5.5. In this picture, we show in red the atoms that form the

core defect.

The tilt grain boundary shown in Fig. 5.5-b, named GB(1,2)|(2,1), has a defect-core

formed by a sequence of pentagon-heptagon pairs. This structural model is based on

that proposed by Simonis et. al [62] who observed tilt grain boundaries in graphite

from scanning tunneling microscopy (STM) (Fig. 5.6) experiments and proposed that,
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Figure 5.5: Geometries of one-dimensional periodic defects in graphene. In (a)
the translational GB named GB(2,0)|(2,0) and the tilt GBs in (b) GB(1,2)|(2,1), (c)
GB(5,0)|(3,3) and (d) GB(5,3)|(7,0). The translation vectors of the defect core TGB,
shown as a black arrow, can be written as a sum of the lattice vectors in graphene bulk,
in both sides of the grain boundary, and define the labels for the for different models

considered.

in the absence of stress, the observed GB consists of a periodic structure described

by a succession of pentagons and heptagons. In Ref. [63], this model is theoretically

investigated for GBs of three different periodicities along the boundary, each introducing

different relative tilt angles between the grains. In this work, we focus on a model that is

formed by a periodicity as shown in Fig. 5.5-(b), that introduces a tilt angle of θ = 21.8° in
the graphene layer.

In Fig. 5.5-c, we show the GB(5,0)|(3,3) defect. It is also formed by a periodic arrange-

ment of pentagons and heptagons in the hexagonal graphene lattice, but with a different

sequence and orientation. In this case, the introduction of the defect line makes the

armchair orientation of the lattice in one side to be rotated by a tilt angle θ = 30° and
assume a zigzag orientation. In the last tilt GB model considered, the GB(5,3)|(7,0),
we have θ = 21.8° and the periodic defect core is formed by hexagons, pentagons and

heptagons, as illustrated in Fig. 5.5-d.
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Figure 5.6: Optimized atomic model of the grain boundary with a linear chain of
pentagons-heptagons separated by one row of hexagons (left panel), and simulated STM
image superimposed on the atomic model (right panel). Figure taken from Ref. [62]

The translational grain boundary GB(2,0)|(2,0) differs from the others defects in the

sense that it does not introduce a rotation of the graphene lattice, which has the same

orientation on the left and right sides of the boundary. From this, θ = 0°, and the

effect of the linear defect, formed by two pentagons followed by an octagon as shown in

Fig. 5.5-a, is just to translate the lattice in one of the sides by one-third of the periodicity

of the bulk lattice in the direction perpendicular to the boundary line. This is the same

structure discussed in Chapter 4 for graphene monolayer and h-BN.

The theoretical work in [31], discusses the modifications induced in the electronic struc-

ture of graphene layers when these one-dimensional periodic defects are introduced. The

electronic structure of GB(1,2)|(2,1) had already been discussed in a previous theoret-

ical work[63] . The results for this model show that the electronic states due to the

defect near the Fermi level (FL), hybridizate with bulk states, as indicated by the very

dispersive bands and the projected density of states (PDOS) on the core atoms, in Fig.

5.8-a and b. The calculations also indicate that an anisotropic Dirac cone can occur on

the BZ line corresponding to the defect direction. The BZ for all models studied in this

chapter is shown in Fig. 5.7.

For a graphene layer with GB(5,3)|(7,0) defect, the distance between adjacent line de-

fects, which defines different supper-cell sizes, is shown to affect the energy gap of this

model. The presence of a small gap for one cell size, indicates that this grain boundary

introduces a strong electronic antiresonance in the system. In the limit of sufficiently

large supercells, a vanishing gap at the FL is expected, as the characteristic result for

pristine graphene layers.
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Figure 5.7: Schematic suppercell for the defective bilayer graphene (left) and the
corresponding Brillouin zone (BZ) (right). The high-symmetry lines are defined by the
special points Γ, X, L and Y. Γ-Y and X-L lines are in the same direction of the GB

for all models.

To conclude some of the main results for tilt grain boundaries obtained in Ref. [31],

we comment about the degree of hybridization of electronic states of the carbon atoms

forming the line defects and those of the graphene “bulk”. Analysis of total and partial

DOS for these models clearly indicates a high degree of hybridization between defect

and bulk electronic states for the three tilt GB models. In Fig. 5.8-b, d and f, the partial

DOS projected onto the states of the carbon atoms at the defect core, are shown in red.

The contribution of the core atoms to the total DOS near the FL ranges from 37% to

55%, which demonstrates a low degree of localization of these states onto the core atoms,

for the three tilt GB models.

The results for a graphene layer with a GB(2,0)|(2,0) contrasts in many aspects with

that summarized here for the tilt GB. A high degree of localization of defect states on the

core atoms is observed in the calculated total and partial DOS represented in Fig. 5.9.

The peak just above the FL, at ∼ 0.1 eV, shows a high concentration on the atoms of

the defect core, which contribute with ∼ 85% of the total DOS, and a contribution of

∼ 96% is obtained when the orbitals from the carbon atoms that form the two zigzag

lines closest to the core atoms is also included.

No spin polarization is induced in this case since, for this neutral system, these strongly

confined states are empty. By doping the system with introduction of extra charge, the

FL is raised by a few meV, and a ferromagnet state, lower in energy, is stabilized. The

calculated formation energy for this state it is ∼ 40 meV (per defect unit) lower than

that of the spin-unpolarized system, and a magnetic moment per defect unit of 0.52 µB

is established.
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Figure 5.8: Electronic structure of the graphene monolayers with the tilt grain bound-
aries GB(1,2)|(2,1), GB(5,0)|(3,3) and GB(5,3)|(7,0). The total DOS is represented by
the black curves, while the red curves represent the partial DOS, projected onto the

carbon atoms that form the defect core.
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Figure 5.9: (a) Electronic bands and (b) DOS of the translational grain boundary
GB(2,0)|(2,0) in the graphene monolayer. The total DOS is shown by the black curve
and the PDOS, projected onto the core atoms, by the red curve. In (a) is also included
(in blue color) the band structure of a bulk suppercel obtained by removing the two

atoms forming the dimer at the center of the defect core .

5.4 Defective Graphene Bilayers

The very different and rich physics of mono and multilayer pristine graphene encourages

us to extended this theoretical work on graphene layers with such periodic defect lines

to the investigation of the electronic states of these systems in the form of double-layer

structures. We proceed by including a pristine graphene “bottom” layer to the previous

systems, forming the structures shown in Fig. 5.10. The main goal of this study is to

identify the electronic properties of such defective graphene bilayers.

From all previous considerations, we study two basic types of extended one-dimensional

defects in graphene bilayers: (i) tilt grain boundaries, which introduce a relative orienta-

tion angle between the regions of graphene in both sides of the defective line (structures

in Fig. 5.10-b, c, and d) and (ii) a translational grain boundary, that just translates a

portion of the layer, without changing its orientation (structure in Fig. 5.10-a).

The introduction of the second layer, chosen here as a pristine graphene layer, requires

a choice of some reasonable stacking, in order to find low energy structures. To make

such choice, we first emphasize that, as we perform periodic super-cell calculations, we

have to introduce two or more defect lines in each unit cell of the defective bilayers, in

order to obtain a periodic repetition of the structures. From this, we identify regions

limited by two defect lines and their respective orientations, as show in Fig. 5.11 for the

GB(5,3)|(7,0), and in Fig. 5.12 for the translational GB(2,0)|(2,0). For each of the four

structures investigated, we choose one of these regions to have an AB’-stacking registry

with the additional second layer. As a consequence, the neighboring region is rotated

with respect to the pristine bottom layer giving rise to a Moiré pattern with the bottom

pristine layer. This pattern can be observed in the bilayers GB(5,3)|(7,0), GB(5,0)|(3,3)
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Figure 5.10: Graphene Bilayers constructed from the monolayers with grain bound-
aries investigated in Ref. [31]. A reasonable choice of initial structures is to define
an AB’ stacking in some region, which consequently lead to the formation of Moire
patterns in the region that presents a rotation due to the introduction of the GBs.

and GB(2,1)|(1,2). For the translational grain boundary GB(2,0)|(2,0), with the same



List of Tables 46

orientation of the graphene lattice in both sides of the defective line, regions with AB’

and AA’ stacking are established.

Figure 5.11: Unit cells for bilayer graphene with GB(5,3)|(7,0) defects with 336 and
422 atoms, with distance between GB d = 10.2 Å and 14.3 Å. The bottom pristine
graphene layer is represented in gray, while the atoms in green represent the top layer,
with two defect lines. The portion of the graphene lattice with armchair orientation
along the GB direction is chosen to have an AB’ stacking registry with the additional

second layer.
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Figure 5.12: Unit cells for bilayer graphene with GB(2,0)|(2,0) formed by 168 and 254
carbon atoms with distances between adjacent GB of d = 14.4 Å and 23 Å, respectively.
In this case, the introduction of three line defects is necessary to build the periodic
structure composed of two layers, as the GB translate the lattice by 1/3 of the lattice

period along the armchair direction (aAC vector defined in Chapter 2).

5.4.1 Electronic Structure

The modifications induced in the electronic properties of graphene bilayers by the in-

troduction of the GBs are now discussed. The BZ that corresponds to our super-cells

has a rectangular form, as presented in Fig. 5.7. The four high-symmetry ~k-points are

the same as those considered in Ref. [31]: Γ(0,0), X(π/ax, 0), L(π/ax, π/ay) and Y(0,

π/ay), where ax and ay (= |TGB|) in Fig. 5.5 are the modulus of the lattice vectors of

the bilayer super-cells perpendicular and parallel to the defect line, respectively. From

this definition, the lines Γ-Y and X-L are parallel to the defect line.

A general result for all models is that the introduction of the extended one-dimensional

defects disrupts the Bernal stacking of the two layers. As a consequence, the character

of AB’ stacked graphene bilayer is lost, giving rise to an electronic structure formed by

the combination of the uncoupled states of the defective and pristine sheets.

In Figs. 5.13, 5.14, 5.16, 5.9, 5.18 and 5.19 are shown the calculated electronic band

structures for the defective monolayers and bilayers. In the middle and lower panels,

results for the supercell with the two different distances between adjacent GBs are

presented. For the sake of comparison, we include the computed bands and DOS for the

defective monolayers, in the upper panel. For both monolayer and bilayer models, the

direction of the line defects in the super-cell were chosen as the ŷ direction, as shown in

Fig.5.7, in a way that the symmetry lines in the BZ are the same for both models and

can be compared directly.

GB(5,0)|(3,3): We start by discussing the GB(5,0)|(3,3) model, for which electronic

bands and DOS analysis are presented in Fig. 5.13. The super-cells sizes are defined by
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Figure 5.13: Electronic structure for monolayer (upper panel) and bilayer graphene
with supercells of two different sizes (middle and lower panels) with GB(5,0)|(3,3).
A very similar electronic dispersion is observed for the three systems, with the main

differences observed at the FL region.

distances between line defects of d = 13.2 Å and 19.4 Å for the bilayers and d =13.4

Å for the monolayer. Calculations indicate a very similar electronic dispersion when

comparing monolayer and bilayer systems, with some differences showing up at the

FL region. For the monolayer (Fig. 5.13-a), a Dirac cone is observed along the L-X

line, which is parallel to the line defect. Introduction of the bottom pristine monolayer

produces the electronic bands in Fig. 5.13-c and e. An appreciable interaction between

line defects occurs for the bilayer with the smaller supper-cell size (Fig. 5.13-c). The

main differences between this model and the one with a larger distance between the two

GB appear along the Γ-Y and L-X lines, both parallel to the line defects. The Dirac cone
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observed in the monolayer along L-X takes the form of almost flat bands crossing the

FL, but it is recovered when we increase the supper-cell size, as seen in Fig. 5.13-e. At

the Γ-Y line, we do not observe introduction of bands crossing the FL for the defective

monolayer, which appear with the inclusion of the second layer, with Dirac cones being

now observed for both sizes of the defect bilayers models.

The analysis of the total DOS and partial DOS (PDOS), shown in Figs. 5.13-b, d and f,

indicates a high degree of hybridization of the electronic states of the core atoms with

the bulk states, both for the defective monolayer and also for the two supper-cells sizes

of the bilayer models, as indicated by the rather moderate contribution of the orbitals

centered on the core atoms to the DOS peaks introduced by the defects.

From the general results we see that the null-gap semiconductor character observed for

the graphene monolayer with the GB(5,0)|(3,3) is lost when we introduce the pristine

layer. Instead, a metallic behavior is observed for the defective bilayers of both supercell

sizes due to the raising of the bands crossing the FL, which defines a finite DOS at this

energy.

GB(1,2)|(2,1): We know examine the characteristics of the system when we consider

the introduction of the GB(1,2)|(2,1) in monolayer and bilayer graphene. The calculated

electronic structures for these systems are shown in Fig. 5.14. We analyzed bilayers

with supercells of two different sizes, formed by 120 and 168 carbon atoms, for which

the distances between the line defects are d = 12.3 Å (middle panel) and 17.2 Å (lower

panel), respectively. For the monolayer, the results are for a supper-cell with d = 17.2Å.

As already commented, the electronic structure for monolayer has been discussed in

Refs.[31, 63]. It shows the generation of an anisotropic Dirac cone along the Γ-Y line

in the BZ, parallel to the line defect. This Dirac cone, has, therefore, a Fermi velocity

that depends on the direction from the Dirac point in k space.

By changing our focus to the bilayer model with GB(1,2)|(2,1), remarkable modifications

are observed in the electronic bands. An even more pronounced interaction between ad-

jacent line defects is observed for the smaller supercell, if compared to the GB(5,0)|(3,3).
As shown in Fig. 5.14-c, a very small energy gap of ∼50 meV is also observed in this

case. The bands along the X-L line present a marked curvature if compared to the

defective monolayer, where the corresponding bands presents smoother variations. The

linear character of the bands defining the anisotropic Dirac cone in the monolayer is

also lost for this model and, instead, two curved bands lifted away from the FL appear.

Because of our choice to impose an AB’ stacking with respect to the pristine bottom

layer, the bilayer containing the GB(1,2)|(2,1) lacks the mirror symmetry with respect

to the geometric center of the GB that was found to be connected to the Dirac cone
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along the Γ-Y line in the monolayer case. Hence, the gap we observe along this line in

Fig. 5.14-c is due to the mirror-symmetry breaking. The total DOS presents a sharp

peak at ∼0.25 eV above the Fermi level, as shown in Fig. 5.14-d. This peak has just a

small contribution from the states of the core atoms (∼21.6%), as shown by the PDOS

curve, projected onto the core-atom orbitals in red color, indicating a high degree of

hybridization of these states with bulk states.

Figure 5.14: Electronic structure for monolayer (top panel) and graphene bilayers
(middle and lower panels) for systems with GB(1,2)|(2,1). The distances between defect
lines are d = 17.2 Å for the defective monolayer and d = 12.3 Å and d = 17.2 Å for the

defective bilayers.

By increasing the distance between adjacent line defects, the calculated electronic bands

and DOS are shown in Figs. 5.14-e and f. The smoother variation of the bands along
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the X-L direction is recovered, if compared to the monolayer, and doubled bands along

all symmetry lines in the BZ are also observed, due to the introduction of the second

graphene layer. An interesting result is the semimetalic behavior observed for the bands

along the Γ-X line.

Figure 5.15: Electronic structure for defective bilayer graphene with GB(1,2)|(2,1)
and d = 17.2 Å. A semimetalic behavior is observed when a second pristine graphene

layer in introduced in this system.

A semimetal material is characterized by a small overlap between the bottom of the

conduction band and the top of the valence band over a small range of energies. It differs

from a typical semiconductor (or even an insulator) in the sense that a semimetal has

always non-zero conductivity. Even at zero temperatures, electrons in a semimetal can

move to the small portion of the conduction bands that are infinitesimally close in energy

to the valence states. On the other hand, a semiconductor becomes an insulator at very

low temperatures due to the presence of a finite gap between valence and conduction

bands. In this way, a semimetal has no band gap, though just a small density of states is

observed at the FL, which is in contrast also with metals, where a characteristic partially

filled conduction band introduces an appreciable density of states at the FL.

From this, the GB(1,2)|(2,1) introduced in a graphene monolayer preserves the null-

gap semiconducting behavior of pristine graphene, with the difference that in this case

the Dirac cone becomes anisotropic and is dislocated out of the K point in the BZ.

Introduction of the second layer for a sufficiently large distance between line defects

gives a semimetal character to the system. For our model, an overlap between bands of

∼30 meV is calculated, as shown in Fig. 5.15, and a small DOS peak is observed at the

FL in Fig. 5.14-f.

Regarding localization of defect states, the analysis of the total and partial DOS reveals

a very similar behavior as that of the single-layer with this periodic defect. The two

peaks above and below the FL calculated for the monolayer model also appear in the
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presence of the second layer at ∼0.26 eV and ∼ -0.6 eV. Also for this suppercell size,

states of defect core hybridize with bulk states, and contribute with just ∼38% to the

total DOS of the most pronounced peak above the FL.

GB(5,3)|(7,0): For single layer graphene with the GB(5,3)|(7,0) defect, the presence
of the small gap for the monolayer model was already discussed in Ref.[31] and com-

mented here as being a supercell size effect. In the limit of sufficiently large cells the

vanishing gap must be recovered. In this calculation, a cell with a distance between the

two GB of d = 13.1 Å was used. As for the others tilt GBs considered here, for the

GB(5,3)|(7,0) a high degree of hybridization between states from defect-core atoms and

bulk states is also observed. From the DOS and PDOS analysis of these states, shown

in Fig. 5.16-b, the maximum contribution of the core atoms (red line in PDOS analysis)

to the total density of states is of just around 55%.

The calculated band structure and the DOS for the GB(5,3)|(7,0) bilayer models, are

presented in Fig. 5.16-c and d for the supercell with d= 13.0 Å and in Fig. 5.16-e and f for

a larger supercell, for which d = 14.3 Å. As expected, inclusion of the second graphene

layer gives rise to a higher number of bands in all range of energies in the electronic

structure, but the main differences are observed around the FL, along the Γ-Y and Y-L

symmetry lines. The valence band maximum (VBM) and conduction band minimum

(CBM), now touch the FL, and even for the smaller cell size, there is no energy gap,

as observed before for monolayer with the same distance between defects. The VBM is

observed along the Γ-Y direction for the defective bilayer, instead of along the Y-L line,

as calculated for monolayer. However, the CBM preserves its general appearance, being

localized near the Y point, along the Y-L line.

By considering the larger supercell for bilayer GB(5,3)|(7,0), the main effect of increasing

the distance between line defects (from 13.0 Å to 14.3 Å, as shown in the example in

Fig. 5.11), is to modify the positions of the CBM and VBM to the L point and along

the L-X line, respectively. Also for this supercell size, states from the defect atoms are

mixed with bulk states, indicating their weak localization on the defect core.

GB(2,0)|(2,0): We discuss now the modifications induced in the electronic prop-

erties of the monolayer and bilayer graphene by the introduction of the translational

GB(2,0)|(2,0). Starting with the monolayer model, the band structure and DOS for the

translational GB(2,0)|(2,0) calculated in Ref.[31] are shown in the Fig. 5.17. The occur-

rence of two sharp resonances at ∼ ± 0.1 eV from de FL is observed as a consequence

of the flat bands that appear in the band structure along the Γ-Y and L-X lines in this

energy range. The DOS peak just above the FL differs from the tilt grain boundaries
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Figure 5.16: Electronic structure for monolayer (upper panel) and bilayer graphene
(middle and lower panels) with GB(5,3)|(7,0). For the three models, electronic states
due to the defect are mixed with bulk states indicating a high degree of hybridization

between such states.

by the degree of localization of the corresponding states on the defect core, which adds

up to for ∼96% if we consider the contribution of atomic-basis orbitals from the carbon

atoms at the first and second zigzag lines, in addition to those from the carbon dimers

at the center of the defect core. For the defect in its neutral charge state, the states that

form this peak are empty, hence no spin polarization is induced.

By doping the layer with extra charge, the FL is raised by about ∼0.07 eV, and a spin-

polarized calculation reveals a stable ferromagnetic state, with a magnetic moment of

0.52 µB and with a formation energy that is lower by ∼40 meV (per defect unit) when
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Figure 5.17: Band structure and DOS of the translational GB(2,0)|(2,0) in monolayer
graphene. In the neutral charge state, there is no occurrence of magnetism in this system
and electronic states are as shown in (a-b). By doping the system with extra charge,
a spin-polarized calculation reveals a stable magnetic state, for which electronic bands

are presented in (c-d).

compared to the unpolarized spin state. The electronic bands for this case are shown

in Fig. 5.17, where the difference between states of majority and minority spins can be

easily identified by the black and blue curves, and the contribution from the core atoms

by the red color .

Turning our attention to the defective bilayer graphene, the introduction of a bottom

pristine layer together with the defective GB(2,0)|(2,0) monolayer produces the two

supercells shown in Fig. 5.12, that were used in our calculations. For these models

the distances between the defect lines are d=14.4 Å and 23.0 Å and the supercells are

composed by 158 and 254 carbon atoms, respectively.

For the supercell of smaller distance between adjacent line defects (d = 14.4Å), band

structure calculations reveals a high localized peak at the FL in the DOS, as shown by

the black curve in Fig. 5.18-b. The contribution of states from the carbon atoms that

form the defect core (red curve) indicates a great contribution of these states to the total

DOS, which reaches ∼73%. A magnetic state with magnetic moment of 0.35 µB per

defect unit is obtained, even for the neutral system. Analysis of the calculated electronic
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Figure 5.18: Electronic bands and DOS for the bilayer graphene with distance be-
tween translational GB(2,0)|(2,0) d = 14Å. (a) Calculation with no spin polarization
shows a highly-localized peak at the FL, with a contribution of states from atoms that
form the core of ∼73%. (b) Spin polarization calculation stabilizes a magnetic state
with magnetic moment 0.12µB (per defect unit). The main differences between total
DOS of majority (black curve) and minority (blue curve) spin show up between -0.1

and 0.3 eV.

structure for majority and minority spins for this model are presented Fig. 5.18-d. The

total DOS for both spin channels, in black and blue colors, present narrow peaks that

have a large contribution from states of carbon atoms that form the GB core, as shown

by the PDOS projected onto the core atoms, in red color. For minority spin (total DOS

in blue), the two narrow peaks above the FL, at 0.06 eV and 0.2 eV, have contributions

of ∼65% from states of the core atoms. A third narrow peak appears at the Fermi level

for the majority spin states (total DOS in black). The contribution from the core atoms

to this peak is of 73%. Flat bands crossing the FL are connected with this DOS peak,

which is responsible for the occurrence of magnetism in this neutral system.

Calculations with a larger supercell, where we increase the distance between defect lines

to d = 23 Å, enable us to investigate the influence of concentration of the GBs in the

electronic structure of this system. By including four extra zigzag lines of carbon atoms,

we increase the bulk region in the supercell, as shown in Fig. 5.12. The calculated

band structure and DOS for this model are shown in Fig. 5.19. For this larger supercell

we recover the situation observed in the defective monolayer with GB(2,0)|(2,0): a
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sharp peak above the Fermi level (at 0.05 eV) is mainly formed by states from the core

atoms, which contributes with ∼74% of the total DOS in this energy value. For this

neutral charge state, there is no occurrence of magnetism. Similar to the GB(2,0)|(2,0)
monolayer, the localized nature of the states associated with this peak is indicative of

the possible occurrence of a magnetic instability. A second less pronounced peak is also

observed below the FL, at -0.16 eV. This peak is less localized on the core atoms, as

just ∼48% originate from the orbitals centered on these atoms.

By doping the system with extra charge, the Fermi level is raised by ∼0.03 eV and we

observe a stable magnetic state with magnetic moment 0.30 µB per defect unit. This

state presents a formation energy 2 meV (per defect unit) lower than the neutral system.

From analysis of DOS and PDOS for this structure, shown in Fig. 5.19-e and f, we can

see the two narrow peaks introduced at the FL region; one of then, due to states with

majority spin, is observed at ∼0.22 eV above the FL (blue curve in Fig. 5.19-f), while the

second peak is partially occupied, and can be seen to be localized exactly at the Fermi

level (black curve in Fig. 5.19-f). From PDOS projected onto the core-defect atoms,

shown by the red curve in Fig. 5.19-f, we observe that ∼70% of these localized states for

both spins come from the defective atoms.
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Figure 5.19: Electronic structure for GB(2,0)|(2,0) graphene bilayer, for the 254-
atoms supercell (d=23.0 Å). The neutral system in (a-b) does not present magnetic
moment. (c-d) By adding an extra charge, the FL is raised by 0.03 eV and a spin po-
larization calculation reveals a magnetic state with total DOS for majority and minority

spins as represented black and blue colors, respectively in (e-f).

5.4.2 Conclusions

In this work we use first principles calculations to investigate the modifications induced

in the electronic properties of bilayer graphene by introduction of three tilt grain bound-

aries, named GB(1,2)|(2,1), GB(5,0)|(3,3), and GB(5,3)|(7,0), and the translational grain

boundary GB(2,0)|(2,0).
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The theoretical work in Ref. [31] addresses the issue of the degree of hybridization

between the electronic states associated with the extended line defects with those of the

bulk of graphene. Ab initio calculations indicate that the translational GB introduces

states near the FL that are strongly confined to the core of the defect and a ferromagnetic

instability is observed. On the other hand, states introduced by the tilt GBs are just

partially confined to the defect core, and no magnetic states are observed for systems

with such defects.

Addition of a second pristine graphene layer to the systems formed by the defective

monolayers induces some interesting modifications in the electronic properties of the

defective bilayers obtained.

For the GB(5,0)|(3,3) bilayer graphene a metallic behavior is observed for two supercell

sizes, differing by the distance between two line defects. This is a different result observed

from that of the monolayer with this defect, where a null-gap semiconductor character

is observed.

The GB(1,2)|(2,1) introduced in a graphene monolayer also presents a semiconducting

behavior, which is changed to a semi-metal character when we consider the defective

bilayer with this GB with a sufficiently large distance between the GBs. For this model,

interaction between adjacent line defects is observed for the smaller supercell investi-

gated, where a small energy gap (∼50 meV) shows up in the DOS.

In the case of the third tilt GB, the GB(5,3)|(7,0), the main modifications in the elec-

tronic structure concern in a shift of the VBM and CBM to different positions in the

BZ. Furthermore, the small gap observed in the monolayer, indicative of a antiresonance

introduced in the electronic spectrum by this defect, is not observed in any of the two

supercell sizes for the defective bilayers.

Regarding the translational GB(2,0)|(2,0), the strongly confined defect states observed

in the defective monolayer persist in the bilayer systems. For the two defective-bilayer

supercell sizes investigated, magnetic states are observed due to localized states at the

one dimensional defect. For the larger supercell, such magnetic state is stabilized by

introduction of extra charge, while for the smaller model spin-polarization calculations

reveal a magnetic behavior for the neutral system induced by the interaction between

adjacent defect lines.



Chapter 6

Electronic Transmission in

Graphene: Monolayer−Bilayer

interfaces.

6.1 Introduction

Carbon based electronics has been a subject of intensive research since graphene became

one of the most promising two-dimensional materials for the new generation of electronic

devices. Since then, an intense activity in the study of the electronic properties of this

material has emerged. Much progress has been made, but it is still a challenge to obtain

a total control of the properties of any material in the nanoscale.

As already discussed in many works, it is very common that the synthesis process of

graphene results in polycristalline samples with abundant topological defects, which

strongly influence its electronic, chemical and mechanical properties[40, 64–66]. In spe-

cial, a large volume of both theoretical and experimental works addressing the effect of

one-dimensional line defects in transport properties of this material has been accumu-

lated in the last years[28, 30, 31, 67]. Going beyond the common grain boundaries (GBs)

commonly found in graphene, boundaries in general can have an important influence on

transport properties of materials in nanoscale. Electronic transport, for example, has

been investigated for different structural domain boundaries, such as grain boundaries

in polycristalline graphene[68] and sheared and tensile bilayer graphene[69, 70].

As discussed in the the previous chapter, graphene bilayers have been a subject of intense

study in the recent years, as the interlayer registry between two graphene layers, can alter

drastically its electronic properties, opening up many possibilities of different physics. It

59
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is well known today that a perpendicular electric-field can open a gap in an AB’-stacked

graphene bilayer[52, 53], which happens due to the symmetry breaking introduced by

the shift between the graphene layers. This shift can occur in many different ways and

may give rise to multiple stacking domains in a unique sample.

Many works have reported [71–73] that transitions between two different domains in

graphene bilayer, can occur by means of distortions in the graphene lattice, defining the

so called soliton boundaries. In Ref. [71], for example, San-Jose and collaborators discuss

the controversial question about the energy gap in pristine bilayer graphene: while some

experimental groups have found a metallic behavior for this material[74–76], others find

a finite gap even at zero magnetic field[77, 78]. This dichotomy has been interpreted

as an electronic instability that can be induced by many-body correlations[74], but in

Ref. [71], an alternative explanation is proposed, which is based on the formation of

solitons. Regions of tensile and strained graphene layers, induce smooth boundaries

between AB’- and BA’-stacked bilayer regions, which is shown to result in an insulating-

like behavior, rather than the metallic character observed by the hyperbolic dispersion

at low energies.

An alternative interpretation for the structure of stacking boundaries has also been

investigated in Ref. [79]. The authors demonstrate by dark-field image on TEM and

STEM complemented by theoretical results with DFT calculations and classical potential

molecular dynamics, that the stacking boundaries are not atomically sharp as suggested

by the formation of solitons and grain boundaries. Instead, they would be formed by

ripples in graphene layers, which result in smooth transitions between AB’ and BA’

stackings.

The possibility of formation of stacking boundaries by rippling of graphene layers, mo-

tivated the study of transport on this type of system, which will be discussed in this

chapter. A simplified model can be adopted if we observe that the rippled regions can

obey the physics of monolayer graphene, as the distance between stacked layers in these

regions (∼ 7 Å, according to Ref.[79] is large enough to uncouple the layers. In this way,

such layers do not interact with each other anymore, and the usual electronic proper-

ties of a bilayer graphene are not observed, but instead, a region with two independent

monolayers of graphene is established.

With these considerations, we investigate transport in graphene through boundaries

defined by transitions between regions of two coupled layers, where we consider the

physics of an AB stacking arrangement, and regions of two uncoupled layers, which

obeys the physics of monolayer graphene.
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We consider basically three situations: electrons emerging from a semi-infinite region of

uncoupled layers, that we define here as a k-region, being scattered to a semi-infinite

region of two coupled layers, that is, a region of graphene bilayer, which we call q-region

throughout this chapter. We also consider the opposite situation: emergent electrons

from a region of bilayer graphene crossing an interface with a region of two uncoupled

layers. A third case consider a barrier problem, where a region of uncoupled graphene

layers of width d is placed between two semi-infinite regions of bilayer graphene, defining

two interfaces.

6.2 Linear and Parabolic dispersion of single and double

layer graphene: a continuum approach.

Our starting point is the definition of the Hamiltonian for massless Dirac electrons in

graphene, which, around the K point in the Brillouin zone, is given by:

H = υFσ · p (6.1)

where υF = 3ta/(2~) is the Fermi velocity, with t the nearest-neighbor hopping matrix in

graphene and a the carbon-carbon bond length in this material (a = 1.42Å); σ = (σx, σy)

are the Pauli Matrices and p = −i~∇, the momentum operator.

For all different cases we are considering in this work, it is more convenient to use a

4x4 matrix Hamiltonian to describe our regions of graphene monolayers, instead of the

usual 2x2 representation. Our 4x4 Hamiltonian is built in a way that the 2x2 blocks of

the main diagonal represent the hamiltonian for each monolayer, arbitrarily defined as

layers a and b through this chapter. The 2x2 off-diagonal blocks can introduce terms of

interaction between layers. For notational convenience we use natural units (~ = 1 =

υF ), and the matrix representation for Hamiltonian 6.1 for uncoupled layers, is:

H =

(

σ · k 0

0 σ∗ · k

)

=










0 kx + iky 0 0

kx − iky 0 0 0

0 0 0 kx − iky

0 0 kx + iky 0










(6.2)

Solving for the energy eigenvalues gives ε±(k) = ±
√

k2x + k2y = ±k, with k the absolute

value of momentum eigenvalue. The corresponding eigenstates are ϕ±
a (k, r) = eik·rφ±

a (k)



List of Tables 62

and ϕ±
b (k, r) = eik·rφ±

b (k) for layers a and b, respectively, for which the spinors φ±
a (k)

and φ±
b (k) have the form:

φ±
a (k) =

1√
2










±eiθk

1

0

0










(6.3)

φ±
b (k) =

1√
2










0

0

±e−iθk

1










(6.4)

with θk=arctan(ky/kx), the propagation angle of waves in the region of uncoupled layers.

Although it is well established that electrons in graphene can be treated as massless

Dirac particles at low energies, it is important to determine the limit of this approach.

By investigation of absorption spectrum of graphene in high magnetic fields, Plochocka

et. al[80] shows that in the low energy part of the energy spectrum, electrons in graphene

are well described by a linear dispersion relation. However, for energies higher than 500

meV a deviation from the ideal behavior of Dirac particles is observed. At an energy of

1.25 eV, for example, deviation from the linearity is around 40 meV.

In order to be consistent with experimental results, we consider a range of energies where

the linearity of Dirac cones is valid, extrapolating for slight higher values.

The regions of bilayer graphene are governed by a low-energy effective bilayer hamilto-

nian. This hamiltonian describes a Bernal (or AB’) stacked honeycomb lattice, where

atoms of lattice A, in the top layer, are placed directly above the atoms of lattice B’ in

the bottom layer. The interlayer hopping energy term γ (≈0.35 eV) couples the matrices

of the previous non interacting system, and the general form of HAB′ , in an AB’BA’

basis is:

HAB =










0 qx + iqy γ 0

qx − iqy 0 0 0

γ 0 0 qx − iqy

0 0 qx + iqy 0










(6.5)
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with q=(qx,qy) the momentum operator. For free electrons in a bilayer graphene, the

solution of the eigenvalue problem for 6.5, gives the well know parabolic relation between

low energy states and total momentum q =
√

qx2 + qy2, as

ε±c (~q) =
±γ +

√

4q2 + γ2

2
(6.6)

and

ε±v (~q) =
±γ −

√

4q2 + γ2

2
(6.7)

where εc and εv stands for eigenvalues of conduction and valence bands respectively,

represented in Fig. 6.1. The associated eigenvectors Ψ±
ν (ΨA,ΨB ,ΨB′ ,ΨA′) are given by

Ψ±
c (q, r) = eiq·rω±

c (q) and Ψ±
v (q, r) = eiq·rω±

v (q), with corresponding spinors:

ω±
c (q) = N±

c (q)
|q|

qx + iqy










±ǫ±c

±(qx − iqy)

ǫ±c

qx + iqy










(6.8)

ω±
v (q) = N±

v (q)
|q|

qx + iqy










±ǫ±v

±(qx − iqy)

ǫ±v

qx + iqy










(6.9)

Figure 6.1: Band structure of bilayer graphene. Double parabolic bands are observed
at low energies with two of them (Ψ+

v and Ψ−
c ) touching at zero energies and the other

two (Ψ−
v and Ψ+

c ) showing an energy gap of 2γ (γ ≈ 0.35 eV).
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and normalization factors N±
ν (q) =

[
2
(
|q|2 + (ǫ±ν )

2
)]−1/2

, where the subscript ν stands

for the conduction (c) and valence (v) bands.

The problems presented here can be considered as the well known 2D step problem,

where we consider transmission of electronic waves through the interface between two

semi-infinite regions, governed by different Hamiltonians. We also investigate situations

similar to the barrier-type problem, where a third region is included, defining a finite

region between two interfaces with two semi-infinite regions.

To solve these kind of problems, it is very common to start from determination of

the wave-functions corresponding to the different regions, following by invoking their

continuity at the interface, to ensure the enforcement of boundary conditions. From

this procedure, transmission and reflection coefficients can be obtained. Without lack

of generality, we will assume in all cases considered here, that the incidence is always

from a state of positive energy (E+
i ). Also, we consider the interfaces lying along the

ˆy direction, and so, due to the momentum conservation, electrons will conserve the

y-component of the wavevector, and we have always ky = qy. With these considerations,

we will be dealing basically with two situations: electrons crossing an interface between

a k- and a q-region from one of the states of positive energy ϕ+
a(b) in the k−region that

can be transmitted to the two states of positive energy in graphene bilayer Ψ±
c in the

q-region and also reflect back to the uncoupled layers. For scattering from the q- to

the k-region, electrons emerging from states of positive energy Ψ±
c , can be transmitted

to states ϕ+
a and/or ϕ+

b , or reflected back to states Ψ±
c in the q-region. A schematic

example for the case of scattering from the k- to the q-region is shown in Fig.6.2.

In this work, all Hamiltonians are of first order in momentum, and only continuity of the

wave function needs to be taken into account, and not their derivatives. However, we

must be careful in computing transmission and reflection coefficients. Conservation of

probability current (J) normal to the interface will determine the scattering properties

of the system. As our interfaces are in the ŷ direction, x̂ component of the current must

be conserved. With these considerations, for k− and q−regions we must have always

Jk
x = Jq

x. (6.10)

The probability current in each medium can be calculated by taking the mean values of

the current operator, defined as equation 6.11, with its corresponding Ψi
I,II states (i =

q, k).

~J = e~σ ⇒ J i
I,IIx = e〈Ψi

I,II |σx|Ψi
I,II〉 (6.11)
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Figure 6.2: Example of incidence from the k- to the q-region. Electron emerging
from a state of positive energy ϕ+

a(b) with angle of incidence θk can be transmitted to

the q-region for states Ψ±
c with transmission probabilities T±

c or reflected back to the
q-region. Angles θk(= arctan(ky/kx)), and α±

c are also shown.

6.3 Scattering

6.3.1 Monolayer-Bilayer interface

We start by considering the incidence of an electron from a semi-infinite k-region through

an interface with a semi-infinite q-region. The two uncoupled layers in the k-region are

completely equivalent, and we can choose the incidence from layer a. Defining ra and

rb as the reflection coefficients for layers a and b, respectively, the wave-function in the

k-region can be written:

Ψk
I (k, r) = ϕ+

a (k, r) + raϕ
+
a (k, r) + rbϕ

+
b (k, r), (6.12)

By conservation of energy, electrons can be transmitted to both states of positive eigen-

values in the q-region of bilayer graphene Ψ±
c (q, r), with probabilities t+c and t−c , and

the wave function assume the form:

Ψq
II(q, r) = t+c Ψ

+
c (q, r) + t−c Ψ

−
c (q, r). (6.13)
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Figure 6.3: Interface between uncoupled layers, that obey the Dirac Hamiltonian of
monolayer graphene, and a region of bilayer graphene for which a parabolic dispersion

is observed at low energies.

Figure 6.4: Scattering from k- to q-region: electrons initially in a region with linear
dispersion (left panel), characteristic of monolayer graphene systems, go through a

region of bilayer graphene with parabolic dispersion (right panel).

Computation of coefficients ra, rb, t
+
c and t−c can be done by invoking continuity of the

wave functions at the interface of the different media. At the interface (x=0) we must

have:
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Ψk
I (k, x = 0, y) = Ψq

II(q, x = 0, y), (6.14)

and so:

ϕ+
a (kx, ky, 0, y) + raϕ

+
a (−kx, ky, 0, y) + rbϕ

+
b (−kx, ky, 0, y) = (6.15)

t+c Ψ
+
c (qx, qy, 0, y) + t−c Ψ

−
c (qx, qy, 0, y).

For the k-region, with uncoupled monolayers, Jk
x for the state Ψk

I (k, r) is:

Jk
Ix = [1− |ra|2 − |rb|2]cos(θk) (6.16)

where θk = arctan(ky/kx) is the angle of incidence of the particle with respect to the

normal to the interface, x̂ direction in our case, as shown in Fig. 6.2.

In the same way, we define the scattering angles for states Ψ+
c and Ψ−

c as α+
c and α−

c ,

and conservation of momentum give us:

ky = q+yc = q−yc (6.17)

and so:

ksin(θk) = q+c sin(α
+
c ) = q−c sin(α

−
c ). (6.18)

For the q-region, we have to be more careful in calculating the probability current. Con-

servation of energy requires ε±c = +k, and enable us to write the momenta amplitudes

q±c as a function of the incident energy +k, by doing:

ε+c =
γ +

√

4q+c
2
+ γ2

2
= k → q+c =

√

k(k − γ) (6.19)

ε−c =
−γ +

√

4q−c
2
+ γ2

2
= k → q−c =

√

k(k + γ). (6.20)
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The expression for q+c shows the existence of evanescent states in the q-region for bands

Ψ+
c when the incident energy is less than γ. For such range of energies, q+c becomes

imaginary, and electrons cannot propagate in these states.

However, incident energy greater than γ is not the only requirement to observe trans-

mission to states Ψ+
c . Scattering angles α±

c written as a function of k, (eq. 6.21 and

6.22) shows that the argument of arcsin for α−
c is always real and less than 1. However,

this is not true for α+
c . For values of k less than a critical value kc, the argument of

arcsin becomes greater than 1 and we have an imaginary angle.

α+
c = arcsin

(√

k

k − γ
sin(θk)

)

(6.21)

α−
c = arcsin

(√

k

k + γ
sin(θk)

)

(6.22)

This means that for k < kc (and not just k < γ), we must observe total reflection for

Ψ+
c states. It is easy to see that:

kc =
γ

cos2(θk)
. (6.23)

Hence, for the band of higher energies in bilayer graphene, governed by eigenvectors Ψ+
h ,

we have three regimes:

1. k < γ: total reflection and an exponential decay of the state;

2. γ < k < kc: no exponential decay but still total reflection of electrons;

3. k > kc: partial transmission and reflection.

This behavior is a consequence of conservation of ŷ component of momentum. In Fig.

6.5, a vectorial representation of momentum in k- and q-region is shown. For incidence

from the degenerate cones of uncoupled monolayers, it is just possible to conserve the

ŷ component of k (ky) when k is in the range represented by the yellow area. For

incidence with any momentum outside that interval, there is no possible q+c in q-region

which conserves ky, and so, it is not possible to observe transmission to Ψ+
c states.

Therefore, states accessible to the scattered particle depends on its incident energy (and

momentum) k, and we will deal with each specific case in the following.
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(a)

Figure 6.5: Critical energies occurs for initial states when it is not possible to conserve
the ŷ component of momentum in the scattering process. The yellow area in the blue
circle corresponds to the range of initial momentum k in the k-region for which the ŷ
component can be conserved in the q-region. For scattering from a k- to a q-region we

have kc =
γ

cos2(θk)
.

Incident energy k < γ

For electrons with incident energy k < γ, both momentum q+c and its scattering angle

α+
c are complex. For this range of energies, q+c and α+

c are purely imaginary, and so we

can define:

q+c = iQ+
c and α+

c = −iΩ+
c (6.24)

with Q+
c =

√

k(γ − k) and Ω+
c = arcsinh

(√
k

γ−ksin(θk)
)

real and positive numbers.

As the ŷ component of momentum q+yc is always real, an imaginary q+c means that

its x̂ component q+xc must be imaginary, and we can write it as q+xc = iQ+
xc. As

q+xc = q+c cos(α
+
c ), for k < γ, we can write q+xc = iQ+

c cos(−iΩ+
c ) = iQ+

c cosh(Ω
+
c ),

from which Q+
xc = Q+

c cosh(Ω
+
c ). With these definitions, eigenstate Ψ+

c for k < γ is:

Ψ+
c (q) = e−Q+

xcx+iq+ycyN+
c (q)

Q+
c

Q+
xc + q+yc










ǫ+c

i(Q+
xc − q+yc)

ǫ+c

i(Q+
xc + q+yc)










(6.25)

The probability current density can be obtained by:

Jq
x = e〈Ψq

II |σx|Ψ
q
II〉 (6.26)
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and we find:

Jq
x = e

2
√

k(k + γ)cos(Ω+
c )

γ + 2k
|t−c |2 (k < γ) (6.27)

with |t−c | the coefficient transmission for the band of lower energies in the graphene

bilayer, governed by eigenstates Ψ−
c . To obtain the total transmission coefficient T =

1− |ra|2 − |rb|2, we invoke the conservation of ~J , which requires Jk
x = Jq

x, and we have:

Tk<γ =
2
√

k(k + γ)

γ + 2k

cos(Ω+
c )

cos(θk)
|t−c |2. (6.28)

As expected, there is no contribution from states Ψ+
h to the transmission probability:

particles are transmitted just to states Ψ−
c .

Incident energy γ < k < kc

For incident particles with energy k in the range γ < k < kc, momentum q+c is no longer

complex, but the scattering angle α+
c is still complex, as the argument of arcsin in 6.21

is bigger than one. In this case, we consider:

sin(α+
c ) → sin(ξ + iβ) =

(√

k

k − γ
sin(θk)

)

. (6.29)

Eq. 6.29 can be rewritten if we expand the argument of sin(ξ + iβ) as:

sin(ξ + iβ) = sen(ξ)cosh(β) + icos(ξ)sinh(β), (6.30)

and, for sin(ξ + iβ) be real and bigger than one, we need to consider ξ = π/2, which

results:

sin(π/2 + iβ) = cosh(β) (6.31)

and we have a coherent result, as the function cosh(x) is always real and has a minimum

value of 1 for any x ∈ ℜ. By comparing equations 6.29 and 6.31 we find:

β = arcosh

(√

k

k − γ
sin(θk)

)

. (6.32)
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The x̂ component of momentum, q+xc, now takes the form:

q+xc = q+c cos(π/2 + iβ) = iq+c sinh(β) = iQ+
xc (6.33)

where now Q+
xc = q+c sinh(β).

The eigenstate Ψ+
c for γ < k < kc has the same structure as for incident energy k < γ,

but now, the spatial component is not evanescent anymore, as the momentum q+c is real.

The probability current is calculated as in Eq. 6.11, and it is found to be given by the

same expression as in the case k < γ:

Jq
x =

2
√

k(k + γ)cos(β)

γ + 2k
|t−c |2. (6.34)

and the total coefficient transmission is:

Tγ<k<kc =
2
√

k(k + γ)

γ + 2k

cos(β)

cos(θk)
|t−c |2. (6.35)

As for incident energy k < γ, also for this range of values of k, there is no transmission

to the higher-energy band states, but just reflection to the uncoupled layers a and b and

partial transmission to states Ψ−
c .

Incident energy k > kc

For particles with incident energy k > kc, all momentum and scattering angles are real

and we can compute transmission and reflection coefficients directly from HAB . By

evaluating the current probability, we obtain:

Jq
xII = 2

√
k

[√
k + γ

γ + 2k
cos(α−

c )|t−c |2 +
√
k − γ

2k − γ
cos(α+

c )|t+c |2
]

(6.36)

and the total transmission coefficient is obtained as:

Tk>kc =
2
√
k

cos(θk)

[√
k + γ

γ + 2k
cos(α−

c )|t−c |2 −
√
k − γ

γ − 2k
cos(α+

c )|t+c |2
]

(6.37)

As expected, incident particles with energy bigger than kc = γ/cos2(θk) can be scattered

for both states of positive energy in graphene bilayer. There is partial transmission for

these bands and partial reflection for states to the k-region.
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6.3.2 Transmission and Reflection coefficients

Direct Incidence We start by considering a direct incidence:

θk = α+
c = α−

c = 0 (6.38)

and our problem can be addressed as an unidimensional problem. In this case we have

cos(θk) = cos(0) = 1, kc = γ and there are just two regimes to be considered: k < γ

and k > γ. We can use the matrix representation for continuity of the wave functions

(Eq. 6.16), as:

M · ~η = ~η0 (6.39)

where:

M =










1√
2

0 N+
c ǫ+c −N−

c ǫ−c

− 1√
2

0 N+
c q+xc N−

c q−xc

0 1√
2

N+
c ǫ+c −N−

c ǫ−c

0 1√
2

N+
c q+xc N−

c q−xc










~η =










ra

rb

t+c

t−c










~η0 =










1√
2
1√
2

0

0










with solution for coefficients ra, rb, t
+
c , t

−
c :

~η = M−1 · ~η0. (6.40)

By solving (6.40), we found the expressions for reflection and transmission coefficients:

ra = −γ +
√

k(k − γ)−
√

k(k + γ)

γ
(6.41)
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rb =
2k −

√

k(k − γ)−
√

k(k + γ)

γ
(6.42)

t+c =

√

k(2k − γ)

k +
√

k(k − γ)
(6.43)

t−c =

√

k(2k + γ)

k +
√

k(k + γ)
. (6.44)

which are valid for k > γ.

For k < γ, we can make the substitution of imaginary q+c and α+
c in the wave functions,

impose the boundary conditions to find the coefficients (this is equivalent to make q+c =
√

k(k − γ) → i
√

k(γ − k) in equations 6.41-6.44).

Substitution of expressions 6.41-6.44 in Eqs. 6.28 and 6.37 gives us the transmission

amplitudes for states Ψ±
c as a function of the incident energy k, for k < γ and k > kc,

respectively. The resulting plot can be seen in Fig. 6.7. Reflection for layers a and b

can also be obtained, and are presented in Fig. 6.6.

Figure 6.6: Reflection coefficients |ra|2, |rb|2 and R = |ra|2+ |rb|2 for direct incidence
(θk = 0) from k- to q-region as a function of the energy of incidence k.

Figure 6.7: Transmission coefficients T+
c and T−

c to states of higher and lower energy
in bilayer graphene Ψ+

c and Ψ−
c , and total transmission to the q-region T = T+

c +T−
c .
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We see that for small k, the particle is mainly reflected to the same layer of incidence

(layer a). By increasing the incidence energy of electrons, we start to observe reflection to

states of layer b and also transmission to Ψ−
c states of the bilayer, followed by a decreasing

of reflection to layer a. As expected, no transmission to states Ψ+
c is observed for energy

of incidence k < γ, as can be seen in Fig. 6.7. When the incident particle has energy

bigger than the interaction energy between layers in the bilayer (γ), total reflection for

layers a and b shows a faster decrease, as can be seen by plots of coefficients R for k >

0.35 eV, in Fig. 6.6-c. These remarkable decrease in reflection for uncoupled layers is

followed by an increasing of the amplitude transmission to Ψ±
c states. For k & 0.65

eV, transmission to both states in graphene bilayer are equally possible, and reflection

for both uncoupled layers are quite small.

Oblique Incidence For oblique incidence, θk 6= 0 in k-region, and the particle prop-

agates with angles α±
c in the graphene bilayer, and we now have to consider a bi-

dimensional problem. Generalization of matrices M and η0 are then obtained for the

angle of incidence −π
2 < θk < π

2 , as:

M =










e−iθk√
2

0 N+
c ǫ+c e

−iα+
c −N−

c ǫ−c e
−iα−

c

− 1√
2

0 N+
c q+c e

−2iα+
c N−

c q−c e
−2iα−

c

0 eiθk√
2

N+
c ǫ+c e

−iα+
c −N−

c ǫ−c e
−iα−

c

0 1√
2

N+
c q+c N−

c q−c










~η0 =










eiθk√
2
1√
2

0

0










By the same process used to obtain the coefficients for direct scattering, we derive their

generalization for oblique incidence:

ra =
k2 − q+c q

−
c cos(α

+
c − α−

c )

q+c q
−
c cos(α

+
c − α−

c ) + k[k + q+c cos(α
+
c + θk) + q−c cos(α

−
c + θk)]

(6.45)

rb =
−kcos(θk)[q

+
c cos(α

+
c )− q−c cos(α

−
c )]

q+c q
−
c cos(α

+
c − α−

c ) + k[k + q+c cos(α
+
c − θk) + q−c cos(α

−
c − θk)]

(6.46)

t+c =
(1 + e−2iθk)(k + q−c e

i(α−

c +θk)

√

q+c
2
+ k2)

2[q+c q
−
c cos(α

+
c − α−

c ) + k[k + q+c cos(α
+
c − θk) + q−c cos(α

−
c − θk)]]

(6.47)
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t−c =
(1 + e−2iθk)(k + q+c e

i(α+
c +θk)

√

q−c
2
+ k2)

2[q+c q
−
c cos(α

+
c − α−

c ) + k[k + q+c cos(α
+
c − θk) + q−c cos(α

−
c − θk)]]

(6.48)

which are valid in these forms for k > kc, when there are no evanescent states.

Reflection and transmission coefficients as a function of the angle of incidence θk, can

be seen in Figs. 6.8 and 6.9. In this representation, we can define the critical angle

from 6.23 θc(k) = arcos
(√

γ
k

)

which depends on the incident energy k. Transmission

for states Ψ+
c is observed for −θc(k) < θk < θc(k), that corresponds to k > kc, as can

be seen in Fig. 6.9-b for different values of k. By increasing the incident energy from

k & γ, transmission to such states is observed also to increase, until saturating at ∼ 0.5

for k & 0.7. On the other hand, transmission to states Ψ−
c is observed for any angle

of incidence. For these states, transmission is also constant in ∼ 0.5 for intermediate

angles, but an abrupt decrease is observed as we increase θk for T−
c , that goes to null

values as θk ⇒ π/2, as should be expected.

Figure 6.8: k-to q-region: Reflection coefficients |ra|, |rb| for layers a and b and total
reflection |R| = |ra|+ |rb| as a function of the angle of incidence θk.

Figure 6.9: k-to q-region: Transmission coefficients T∓
c for states Psi∓c and total

reflection T = T−
c + T+

c to the q-region as a function of the angle of incidence θk.
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Figure 6.10: For scattering from a q- to a k-region electrons at low energies go from
a parabolic to a linear dispersion regime.

Figure 6.11: Interface between bilayer graphene and a second region of uncoupled
graphene layers.

6.3.3 Bilayer-Monolayer interface

When we consider a particle coming from the q-region and going through the interface

with a k-region, the initial state can be Ψ+
c or Ψ−

c , the two states of positive energies in

bilayer graphene. For incidence from the gapped state Ψ+
c , there will be always a state in

the k-region where it is possible to conserve the ŷ component of momentum. Therefore,

for incidence from these states, there are no critical energies (or critical angles) and we

will always observe propagating states in the k-region. On the other hand, incidence

from states of lower energy Ψ−
c , will define the critical energy kc:
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kc = γtg2(α−
c ) (6.49)

obtained by straightforward manipulation of expressions for conservation of momentum

(Eq. 6.18). Incidence from states Ψ−
c will, therefore, be totally reflected to the q-region

for k < γtg2(α−
c ). For this range of energies, the propagation angle in the k-region,

θk, will be imaginary, and by the same process used for the immaginary angle in the

scattering from the k-region to the q-region for γ < k < kc, we can make:

θk ⇒ π/2 + iβ (6.50)

with

β = arcosh

(√

k + γ

k
sin(α−

c )

)

. (6.51)

Figure 6.12: For electrons crossing an interface between a q- and a k-region the critical
angle kc is defined as kc = γtg2(α−

c ) for incidence from Ψ−
c .

Indeed, computation of probability current for k < γtg2(α−
c ) gives:

Jk
x = 0 (6.52)

showing that there is no current in the k-region, as electrons can not be transmitted to

any of the uncoupled layers when they are initially in Ψ−
c with incident energy k < kc.

For propagating states in the k-region, probability currents for the q- and k-regions

assume the form:

Jq
x = 4k

[

N i
c
2
qiccos(α

i
c)(1 − |ric|2)−N j

c
2
qjccos(α

j
c)|rjc |2

]

(6.53)
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Jk
x =

[
|ta|2 + |tb|2

]
cos(θk) (6.54)

where in expression for Jq
x, i, j stands for +,− states, with i the incident state. By

continuity of Jx we have:

cos(θk)

4kN i
c
2qiccos(α

i
c)

[
|ta|2 + |tb|2

]
= 1− |ric|2 −

N j
c
2
qjc

N i
c
2qic

cos(αi
c)

cos(αj
c)
|rjc |2 (6.55)

Transmission and reflection coefficients can be evaluated by the same process considered

in the k- to q-region scattering. Solution for continuity of wave functions at the interface

(x = 0), for incidence from Ψ+
c states, gives:

r+c =
e−2iα+

c [−q+c (kcos(α
+
c − θk) + q−c cos(α

+
c + α−

c )) + k(k + q−c cos(α
−
c + θk))]

q+c [kcos(α
+
c + θk) + q−c cos(α

+
c − α−

c )) + k(k + q−c cos(α
−
c + θk))]

(6.56)

r−c =
2iei(α

−

c −α+
c )cos(α+

c )N
−
c q−c

2
[q+c sin(α

+
c )− ksin(θk)]

N+
c [q+c

2
(kcos(α+

c + θk) + q−c cos(α
+
c − α−

c )) + kq+c (k + q−c cos(α
−
c + θk))]

(6.57)

ta =

√
2ke−iθk(1 + e−2iα+

c )[keiθk + q−c cos(α
−
c )− iq+c sin(α

+
c )]

Nh[q
2
h(kcos(α

+
c + θk) + q−c cos(α

+
c − α−

c )) + kq+c (k + q−c cos(α
−
c + θk))]

(6.58)

tb =

√
2ke−iθk(1 + e−2iα+

c )[ke−iθk + q−c cos(α
−
c ) + iq+c sin(α

+
c )]

N+
c [q+c

2
h(kcos(α

+
c + θk) + q−c cos(α

+
c − α−

c )) + kq+c (k + q−c cos(α
−
c + θk))]

. (6.59)

For direct incidence, when α+
c = 0 → α−

c = θk = 0, Eqs. 6.56-6.59 take a simpler form:

r+c =
2k − γ − 2

√

k(k − γ)

γ
(6.60)

r−c = 0 (6.61)
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t+c = t−c =
2k
√

|k − γ|
√

|k − γ|+ k(k +
√

k(k − γ))
. (6.62)

For incidence from states of lower energy, Ψ−
c , a very similar result is obtained. Now,

ta, tb, r
+
c and r−c are:

r−c =
e2iα

−

c [k2 + kq+c cos(α
+
c + θk)− q−c (kcos(α

−
c − θk) + q+c cos(α

−
c + α+

c )]

q+c [kcos(α
+
c + θk) + q−c cos(α

−
c − α+

c )) + k(k + q−c cos(α
−
c + θk)]

(6.63)

r+c =
2iei(α

−

c −α+
c )cos(α−

c )N
+
c q+c

2
[q−c sin(α

−
c )− ksin(θk)]

N−
c [q−c

2
(q+c cos(α

+
c − α−

c ) + kcos(α−
c + θk)) + kq−c (k + q+c cos(α

+
c + θk))]

(6.64)

ta = −tb =

√
2ke−iθk(1 + e2iα

−

c )[keiθk + q+c cos(α
+
c )− iq−c sin(α

−
c )]

N−
c [q−c

2
(q+c cos(α

+
c − α−

c ) + kcos(α−
c + θk)) + kq−c (k + q+c cos(α

+
c + θk))]

(6.65)

and for direct incidence (α−
c = 0 → α+

c = θk = 0) 6.63-6.65 reduces to:

r−c = −2k + γ − 2
√

k(k + γ)

γ
(6.66)

r+c = 0 (6.67)

t+c = −t−c =
2k

√
k + γ√

2k + γ(k +
√

k(k + γ))
(6.68)

The general results for incidence from states Ψ+
c and Ψ−

c are very similar, with a few

differences. The first point to notice is that, due to the conservation of the ŷ component

of momentum, reflection coefficients r+c and r−c are null, when the states of incidence are

Ψ−
c and Ψ+

c , respectively. This can be checked in expressions 6.57 and 6.64, for which

the terms in numerator q±c sin(α
±
c )− ksin(θk) are identically zero.

From this result, we see that reflection in the q-k-interface to the q-region occurs just to

the same state of incidence, the other state of positive energy not being accessible, as a

requirement of momentum conservation.
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For each incident state, transmission to the k-region occurs for both uncoupled layers

equally, as should be expected. When the incidence is from the band of higher energy

Ψ+
c , a fast increase of the transmission amplitude is observed for k & γ (Fig.6.14-a),

with a saturation for Ta and Tb = 0.5, when reflection to the initial state goes to zero

(Fig. 6.13), and the electron is transmitted with the same probability for both uncoupled

layers.

Figure 6.13: q- to k-region: Reflection coefficients as a function of the (a) incident
energy k and (b) angle of incidence α+

c for incidence from states of higher energy Ψ+
c .

Reflection occurs just for the same state of incidence, so that R = R+
c .

Figure 6.14: q- to k-region: Transmission coefficients for incidence from Ψ+
c as a

function of the (a) incident energy k and (b-c) angle of incidence α+
c . For incidence

from Ψ+
c states, electrons are equally transmitted for both uncoupled layers and the

total transmission is T = 2×Ta(b).

For incidence from Ψ−
c , the state in bilayer graphene of lower energy, transmission to

the k-region depends on the critical energy kc = γtan2(α−
c ). As shown in Fig. 6.16,

different angles of incidence α−
c will define the energy value for which we start to observe

transmission to the layers in the k-region. Also for this case, transmission occurs in the

same way for both graphene layers, and a saturation at 0.5 is observed for higher energies.

We can also look at the structure of wave functions in order to interpret the results

obtained. By looking at the matrix representation of states Ψ−
c and Ψ+

c , we notice a

phase difference between the coupled layers of π and 0, respectively. The state of lower

energy is formed by an anti-symmetric combination of states of the individual layers,
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Figure 6.15: q- to k-region: Reflection coefficients as a function of the (a) incident
energy k and (b) angle of incidence α−

c for incidence from states of lower energy Ψ−
c .

Reflection occurs just for the same state of incidence, so that R = R−
c . The regions of

total reflection (R= 1) are defined by the critical energies kc = γtg2(α−
c ).

Figure 6.16: q- to k-region: Transmission coefficients for incidence from Ψ−
c as a

function of the (a) incident energy k and (b-c) angle of incidence α−
c . For incidence

from Ψ−
c states, electrons are also equally transmitted for both uncoupled layers, so

that the total transmission is T = 2×Ta(b). Regions of null transmission (T = 0) can
be observed for energies k < kc = γtg2(α−

c ).

while for state of higher energy, we have a symmetric combination of such states. When

the electron is transmitted to the k-region, it will propagate in a state with the form:

Ψk
II(k, r) = taϕ

+
a (k, r) + tbϕ

+
b (k, r). (6.69)

The transmission coefficients ta and tb obtained show that Ψk
II(k, r) assumes a symmetric

or anti-symmetric form in combining states of individual layers, depending on whether

the incident state is Ψ+
c or Ψ−

c , respectively. This can be checked by just observing that

ta and tb have the same signal when the incidence is from Ψ+
c , while for incidence from

Ψ−
c , ta = -tb, producing symmetric and antisymmetric combinations of ϕ+

a and ϕ+
b .
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6.3.4 Bilayer-Monolayer-Bilayer interfaces: the barrier problem

In the barrier problem, we consider a heterostructure formed by two semi-infinite regions

of AB’-stacked graphene bilayer (q-regions) separated by a finite region of two uncoupled

graphene monolayers (k-region). The procedure to compute transmission and reflection

coefficients is almost the same as in the previous single q-to-k interface problems. The

difference now is that we need to match the wave functions from the first q-region and

the finite k-region at the first interface at x=0 and at the second interface at x=d,

where d is width of the barrier. As in the previous case of scattering at the q-k single

interface, the incident state of electron in the graphene bilayer will define the properties

of scattering.

Figure 6.17: Dispersion relations for q-k-q regions, that defines the barrier problem
of two semi-infinite graphene bilayers separated by a finite region of two uncoupled

monolayers.

The general form of the wave functions for the three regions are now:

Ψq
I(q, r) = Ψi

c(qxc, qyc, r) + ricΨ
i
c(−qxc, qyc, r) + rjcΨ

j
c(−qxc, qyc, r) (6.70)

Ψk
II(k, r) = τaϕa(kx, ky , r) + τbϕb(kx, ky, r) + ρaϕa(−kx, ky, r) + ρbϕb(−kx, ky, r) (6.71)

Ψq
III(q, r) = ticΨ

i
c(qxc, qyc, r) + tjcΨ

j
c(qxc, qyc, r) (6.72)
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where the subscript i stands for the initial state (state of incidence) in the graphene

bilayer. We notice that in the k-region we have both transmitted waves, coming from

medium I, and also reflected waves, due to the presence of the second interface. In order

to find the expressions for transmission and reflection terms, we proceed as earlier, and

consider the continuity of the wave functions through the interfaces. At x = 0 we must

have:

Ψq
I(q, 0, y) = Ψk

II(k, 0, y), (6.73)

and at x = d:

Ψk
II(q, d, y) = Ψq

III(q, d, y). (6.74)

The respective currents for the three regions are now:

Jq
Ix = 4k

[

1− |ric|2

N i
c
2 qiccos(α

i
c)−

|rjc |2

N j
c
2 q

j
ccos(α

j
c)

]

(6.75)

Jk
IIx = (|τa|2 + |τb|2 − |ρa|2 − |ρb|2)cos(θk) (6.76)

Jq
IIIx = 4k

[

|tic|2

N i
c
2 q

i
ccos(α

i
c) +

|tjc|2

N j
c
2 q

j
ccos(α

j
c)

]

. (6.77)

From conservation of probability current:

Jq
Ix = Jk

IIx = Jq
IIIx (6.78)

and so, the relation between transmission and reflection probability amplitudes in q-

regions in media I and III can be written:

|ric|2 +
N i

c
2

N j
c
2

qjccos(α
j
c)

qiccos(α
i
c)
|rjc |2 + |tic|2 +

N i
c
2

N j
c
2

qjccos(α
j
c)

qiccos(α
i
c)
|tjc|2 = 1 (6.79)

After solving for 6.73 and 6.74, as in the single q-to-k interface case, for incidence from

both initial states, Ψ+
c and Ψ−

c , transmission to region III and reflection to region I occurs

just to the same state of incidence. The obtained expressions are quite cumbersome,
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and we just show the ones corresponding to the direct incidence (αi
c = 0). For incidence

from state of higher energy Ψ+
c , transmission and reflection coefficients are:

r+c =
γ

2k − γ + 2i
√

k(k − γ)cot(kd)
(6.80)

t+c =
2ie−id

√
k(k−γ)

√

k(k − γ)

2i
√

k(k − γ)cos(kd) + (2k − γ)sin(kd)
(6.81)

r−c = t−c = 0 (6.82)

while, for incidence from Ψ−
c , we have:

r−c = − γ

2k + γ + 2i
√

k(k + γ)cot(kd)
(6.83)

t−c =
2ie−id

√
k(k+γ)

√

k(k + γ)

2i
√

k(k + γ)cos(kd) + (2k + γ)sin(kd)
(6.84)

r+c = t+c = 0. (6.85)

From the above results, the transmission probability to the second q-region T±
c = |t±c |2,

for direct incidence (α±
c = 0) for the incident states of positive energy Ψ+

c and Ψ−
c ,

reduces to:

T+
c =

8k(k + γ)

8k2 + 8kγ + γ2 − γ2cos(2kd)
(6.86)

T−
c =

8k(k − γ)

8k2 − 8kγ + γ2 − γ2cos(2kd)
. (6.87)

Plots of the calculated T+
c and T−

c as a function of the incident energy k and incident

angle α±
c are shown in Figs. 6.18 and 6.19 for T+

c and in Figs. 6.20 and 6.21 for T−
c ,

respectively.

The oscillatory behavior generated by the self-interference of waves reflected inside the

k-region is immediately identified. By varying the barrier width d for fixed incident

energies, we see that the oscillations are affected mainly by this parameter.
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The resonant points for T+
c and T−

c for direct incidence (blue curves in the plots T±
c (k)),

can be easily obtained by ∂T±
c /∂(kd) = 0, from which, total transmission probabilities

are seen to occur for the incident energies kn given by:

2kd = 2nπ ⇒ kn =
nπ

d
, (6.88)

valid for kn > 0 for incidence from Ψ−
c states and kn > γ for incidence from Ψ+

c states.

Figure 6.18: Transmission coefficients T+
c for incidence from Ψ+

c state as a function
of the incident energy k, for the barrier widths (a) d=6 nm, (b) d=10 nm and (a)

d=13 nm.

Figure 6.19: Transmission coefficients T+
c for incidence from Ψ+

c state as a function
of the angle of incidence α+

c , for the barrier widths (a) d= 6 nm, (b) d= 10 nm and (a)
d= 13 nm.

As we have mentioned above, there is no reflection or transmission to states Ψ−
c in the

first and third q-regions when electron emerges from Ψ+
c states. As discussed in the

previous section, for transmission from q- to k-region, electron will propagate just in a

state formed by a symmetric or antisymmetric combination of states of the uncoupled

layers, depending on the initial state. This behavior is also observed in the barrier

problem. Electrons coming from Ψ+
c in the first q-region propagate in states in the

media II and III that are formed by symmetric combinations of the uncoupled layers.

Indeed, it was checked that the phase difference between layers in region II is null, as

the ratio τa+ρa
τb+ρb

is equal to one.
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The oscillatory behavior generated due to the self-interference of waves reflected inside

the k-region can be seen in Figs. 6.18 and 6.19 for incidence from Ψ+
c . In Fig. 6.18, the

transmission probability T+
c as a function of the incident energy k for different values

of α+
c is plotted for the barrier sizes d = 10, 15 and 20, in (a), (b) and (c), respectively.

For k & γ, it is observed a low transmission of electrons. However, by slightly increasing

the incident energy, transmission starts to occur, reaching the first maximum for direct

incidence for k2 = 0.62, for d = 10, k2 = 0.42 for d = 15 and k3 = 0.47 for d = 20.

As we we are using natural units, it is important to clarify that the used values for the

barriers (d = 10, 15, and 20), corresponds to 6 nm, 10 nm and 13 nm, respectively.

These values are in the range of those experimentally observed for bilayer graphene with

stacking boundaries between regions with an AB’ stacking and of uncoupled graphene

layers, due to rippling [79], where the widths of most of the observed stacking boundaries

are estimated to be ∼ 10nm.

The influence of the barrier width d in the results for T+
c can be also seen for different

incident energies as a function of α+
c . For a fixed value of k, a higher number of oscil-

lations appears as we increase d, as can be observed by comparing curves of the same

color in Figs. 6.19-(a), (b) and (c), which correspond to the same energy of incidence

k, for the different barrier sizes. This behavior can be easily checked in Eq. 6.88, where

the positions of the maxima varies inversely with d. For each value of d, the oscillatory

behavior of T+
c appears as the energy increases, more pronounced at the extremes of the

incidence angle (α+
c . ± π/2).

Figure 6.20: Transmission coefficients T−
c for incidence from Ψ−

c state as a function
of the incident energy k, for the barrier widths (a) d=6 nm, (b) d=10 nm and (a)

d=13 nm.

The calculated transmission probabilities for incidence from states of lower energy Ψ−
c

are shown in Figs. 6.20 and 6.21. No reflection or transmission to states Ψ+
c in regions I

and III are observed, and so, the total transmission is purely T−
c . For the same reasons

as the earlier cases, the structure of the wave functions, that are now antisymmetric

combinations of states of the uncoupled layers, forbids electrons to access the states of
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Figure 6.21: Transmission coefficients T−
c for incidence from Ψ−

c state as a function
of the incident angle α−

c , for the barrier widths (a) d=6 nm, (b) d=10 nm and (a)
d=13 nm.

higher energies. In this case, the phase difference between layers in region II is ( t1+r1
t2+r2

)

π.

The calculated transmission probability T−
c as a function of the incident energy k is

shown in Fig. 6.20 for (a) d =10, (b) d =15 and (c) d =20. At very low incident energy,

total transmission is observed, an opposite behavior if compared to the incidence from

states of higher energy, where we have obtained T+
c = 0 for k & γ, the minimum allowed

energy value in that case. By increasing k, a fast decreasing of transmission is obtained,

for all angles of incidence α−
c and barrier sizes d considered. After this, oscillations in

T−
c are observed, with the maximum values for direct incidence (α−

c = 0) given by 6.88.

The behavior of T−
c as a function of the incident angle α−

c is shown in Fig. 6.21 for (a)

d =10, (b) d =15 and (c) d =20. Represented in this way, it is easier to see that for

values of k from & 0.36, almost total transmission occurs for small α−
c . Increasing the

barrier size, a higher number of oscillations is observed, more pronounced at the extreme

values of α−
c where some finite transmission occurs.

6.4 Conclusions

The low-energy electronic transport across stacking boundaries in graphene is studied

in this work. The electron scattering by interfaces formed between regions of uncoupled

and coupled graphene layers is investigated by a continuum approach.

We consider scattering of electrons at interfaces defined between k and q regions, rep-

resenting regions of single and double graphene layers, respectively. This problem is

important in the context of experimentally observed evidences of stacking boundaries

formed in bilayer graphene, where regions with uncoupled layers are observed due to the

rippling in one of the layers.
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From this we investigate transport in graphene for the interfaces formed by k-to-q re-

gions, q-to-k regions and also for the barrier case q-k-q regions.

The critical energies kc = γ
cos2(θk)

for the k-q interface and kc = γtan2(α−
c ) for the

q-k-q barrier problem define the range of energies for which total reflection is observed

for both interfaces types.

For electrons emerging from a graphene bilayer region (q-k and q-k-q interfaces) we ob-

serve that reflection to the region of incidence just occurs for the same state of incidence,

with the other state of positive energy not being accessible, as a requirement of momen-

tum conservation. For the barrier problem, transmission to the second q-region (after

the second interface) also occurs just for the same state of positive energy energy of the

incident electron.



Chapter 7

Lattice Relaxation at the

Interface of Two

Two-Dimensional Crystals:

Graphene and Hexagonal

Boron-Nitride

7.1 Introduction

Still following the ideas of band gap engineering of graphene, a very recent innovation

in this direction has been the creation of hybrid structures of this material and hexago-

nal boron nitride (h-BN). Heteroepitaxial growth of these two-dimensional (2D) lateral

heterostructures has recently attracted attention because of the possibility of generating

mixed alloyed phases with tunable electronic properties[41, 81–85].

The very similar structure of graphene and h-BN, both with a honeycomb lattice with

a difference in lattice parameters of just ∼2%, provides a good option to produce such

hybrid materials, which have shown very interesting physical properties. In special, suc-

cessful experiments on continuous growth of graphene and h-BN, have demonstrated the

controlled production of coherent interfaces between these 2D materials, and modifica-

tions in the electronic properties of graphene have already been observed.

In Ref.[86], hybrid films consisting of h-BN and graphene domains, synthesized via

chemical vapor deposition (CVD), showed a small bandgap opening of ∼ 18 meV. In

other experimental work, Ci et al. demonstrated that the hybrid film with a tunable

89
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bandgap can be achieved on Cu foil by simultaneously supplying different proportions

of carbon and BN sources. In such one-step growth, the phase-separation leads to

randomly-mixed graphene and BN domains[41]. Patterned sequential growth has also

been used for the spatially controlled growth of lateral junctions between graphene and

BN, to make integrated circuitry or close-loop resonators[83, 84]. Such in-plane G|BN
hybrid film with well-defined heterointerfaces has also been theoretically predicted to

possess novel magnetic and unique thermal transport properties[48, 87–90].

The possibility of an abrupt heterojunction between BN and G has stimulated a lot of

interest owing to the prediction of an abundance of fascinating properties of such 1D

interface[48, 86, 91]. Using different microscopy techniques, the successful interfacing

of graphene and BN domains has been demonstrated on different metal surfaces, such

as Ru(0001)[92], Rh(111)[86] and Cu(100)[82]. There is a great excitement regarding

the observation of short-segments of a sharp G-BN interface preferentially linked in the

zigzag fashion. Many issues surrounding the formation of continuous and atomically-

sharp G|BN heterointerfaces remain unclear. Fault lines and cracks in hybrid films are

mainly governed by interfacial strain[93, 94]. However, there is no insight into how

strain propagates along the length of such an interface, nor on how the interfacial stress

relaxes to avoid the discontinuity of heterointerfaces. In addition, the electronic states

are coupled to the underlying metal. Electronic decoupling of the G|BN interface from

the metallic substrate is needed to reveal the intrinsic physical properties at the G|BN
boundaries.

The work presented in this chapter was developed in collaboration with the experimental

group of the Chemistry Department of the Graphene Research Centre (GRC) of the

National University of Singapore (NUS). In the experimental work, coherent interfaces

between graphene and h-BN were synthesized via CVD, and the structural and electronic

properties of the resulting structures were analyzed.

In the growth process of the graphene and h-BN islands that form the heterostructures,

the strain due to the lattice mismatch between these materials is observed to accumulate

with the increase of the length of the interface, and a breakage of the continuity of

the h-BN lattice is observed. In order to keep the continuity of the film along the

interface, the occurrence of a misfit dislocation (MD) is proposed, as a strain relief

mechanism at atomically abrupt G|BN interfaces. From scanning tunneling images

(STM) of the samples, the core dislocation, which is indicated to be formed by 5-7

rings in the hexagonal lattice of BN, is observed at ∼5 lattice constants away from the

interface, and a periodicity of these core defects is suggested to occur along the direction

parallel to the G|BN interface.
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The local electronic states of the G|BN interface was also investigated using scanning

tunneling microscopy (STS), in order to probe the interfacial electronic states on the

decoupled G|BN interface.

In this chapter we use ab initio calculations, to investigate structural and electronic

properties of heterostructures formed by graphene and h-BN. The introduction of a

MD formed by 5-7 rings in the BN lattice is considered as a strain relief mechanism,

indicated by the experimental results to be necessary to occur in order to form long and

sharp interfaces between these materials. Electronic properties are also discussed and

the results are compared with that obtained in the experiment.

This work was just published in the journal Nano Letters. Reference: Jiong Lu, Ĺıdia C.

Gomes, RicardoW. Nunes, A. H. Castro Neto, and Kian Ping Loh. DOI: 10.1021/nl501900x.

7.2 Experimental Results

Synthesis of hybrid thin films, such as h-BN and graphene, follows a common strategy

based on a two-step sequential chemical vapor deposition (CVD). For G|BN heterostruc-

tures, a first stage growth of graphene (BN) islands usually occurs. The edges of these

islands serve as nucleation sites to seed the growth of BN (G) that will cover the ex-

posed metal surface. Due to the lattice parameter difference between these materials,

a strained G-BN interface is obtained. Understanding strain relaxations of such 2D

laterally fused interface is useful in fabricating structurally stable heterointerfaces with

high degree of atomic coherence. For lattice-mismatched 2D films on 3D substrates, it

is widely accepted[95–97] that there exists a critical film width beyond which MDs are

introduced in order to release the strain and allow the growth of such structures without

breakdown.

In order to study the heterogrowth behavior of in-plane |BN heterojunctions, the experi-

ment was based in BN grown on pre-existing graphene patches on a Ru(0001) substrate.

The BN and G domains could be easily distinguished by STM imaging due to the pres-

ence of characteristic Moiré blistering of graphene and “nanomesh” patterns of BN. The

growth temperature must be carefully controlled during the experiment to suppress in-

terfacial mixing resulting from metal-catalyzed atomic substitution, making possible the

formation of a sharp G|BN interface.

By sequentially exposing as-prepared clean Ru to ethylene (C2H4) and borazine (B3H6N3),

the pseudomorphic growth of BN strips on the edge of graphene is observed (Fig. 7.1-a).

Short segments of an atomically sharp G|BN interface readily appear at the condition
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Figure 7.1: STM imaging of atomically-sharp G|BN heterointerface. (a) BN nucleates
on the edges of graphene on Ru(0001) by a low dosage of borazine (5L) at 800 K. (b)
A sharp G|BN interface with length < 21 nm at 800 K. (c) Magnified view in b shows
the formation of a seamless G|BN interface at the atomic scale. (d) Magnified view of
(c) shows a zigzag edge of graphene bonded to a zigzag edge of BN at the interface.

Scale bars in a-d are 50, 2.5, 0.5 and 0.25 nm, respectively.

(µc/µBN . 0.2), where nanoscale graphene islands are surrounded by BN strips (Fig. 7.1-

b). The majority of G|BN boundaries generated in this condition are atomically abrupt

and their lengths lie in the range of 10 nm < L < 24 nm (Fig. 7.1-a and b). The seamless

bonding between graphene and BN at the interface is revealed in the magnified STM

image, where the graphene Moiré hump (bright regions) always faces the nanomesh

“pores” (dark regions) at the boundaries (Fig. 7.1-c). As resolved by high-resolution

STM imaging (Fig. 7.1-d), graphene and BN connect in a zigzag fashion.

If we assume that the first interfacial C-N(B) bond is well-aligned (vertical to interface),

at the 24th interfacial C-N(B) bond within one Moiré unit, the N(B) atoms at the zigzag

line linked to the graphene lattice will be dislocated from ∆y =∼1.15 Å (Fig. 7.2). For

a seamless bonding between graphene and BN at the interface, BN lattice must adjust
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Figure 7.2: Stretching in the C-N(B) bonds at the interface between h-BN and
graphene due to the mismatching of the lattices.

their bonds in order to adopt values near to that of graphene, which clearly induce strain

at the interface region. Such strain must be distributed along the length of the interface

or accommodated by the interactions with the Ru substrate, otherwise a discontinuity

at the interface is expected to occur.

7.2.1 Interfacial strain relaxation

With the advent of the field of 2D material science and technology, it is important to

ask whether the 3D interfacial strain relaxation scenario also applies in 2D mismatched

heteroepitaxy, and the length scale at which a defect-free G|BN heterointerface can be

formed before dislocations or other defects set in to relieve the strain energy.

As in the case of 3D heteroepitaxy growth, we can also consider that the interfacial

strain energy due the lattice mismatching between the G and BN lattices gradually

builds up with the increase of the film “thickness”. At a critical thickness, it would

become energetically favorable to relieve the strain by having a network of MDs at the

interface, beyond which the epitaxial film is apt to return to its stable unstrained bulk

structure (Fig. 7.4a)[95, 96].

Indeed, discontinuities are frequently observed at the G|BN interfaces (Fig. 7.3-c) when

the interface length exceeds∼27 nm (∼9 Moiré lattice parameter aM ), presumably due to
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the accumulation of strain, while interface continuity can be maintained by introducing

stretched, irregular Moiré structures close to the G|BN interface (Fig. 7.3-b, d).

As shown in Fig. 7.3-a, an extended G|BN interface can be grown by increasing the

coverage of preexisting graphene islands and subsequently filling the entire exposed Ru

region by the regrowth of BN. The resulting 1D G|BN interface has a length scale of

100-200 nm. Close examination reveals that a heart-shaped irregular structure in the

BN nanomesh is generated at every few Moiré units (∼9 aM ). The heart-shaped Moiré

structure is introduced where two nanomesh pores overlap and intersect at an angle of

60 (indicated in Fig. 7.3-b). In line with recent theoretical predictions, this irregularity

is presumably due to the formation of edge dislocations, which were proposed to consist

of heptagon-pentagon pairs[98, 99]. Such a heptagon-pentagon dislocation, as shown in

Fig. 7.4-b, can be viewed as a result of inserting a semi-infinite strip of atoms along the

armchair direction in the h-BN lattice. Its Burgers vector is oriented along the zigzag

direction.

Similar to the strain-relaxation in 3D mismatched heterojunctions, the occurrence of

interfacial strain may introduce MDs in the 2D heterogrowth of BN on graphene. To

address this issue, the strain profile at the interface was extracted from the atomically

resolved STM imaging of bond distances. It is observed that the graphene lattice is not

perturbed during the growth of BN, and the strain propagates mainly in the BN side

of the interface. Another observation is that misfit dislocations in BN, which are made

of non-hexagonal rings, always appear at ∼5 lattice constants away from the interface

(∼ 1.08 nm).

To understand how the strain propagates with the width of the BN strip, a width-

dependent strain profile was obtained by measuring the average strain of each BN zigzag

line parallel to the G|BN interface (starting from the interface: first line to sixth line

as indicated in the inset in Fig. 7.4-c). As shown in Fig. 7.4-c, which describes the

strain profile along the perpendicular direction from the interface, the strain in BN

rapidly builds up in the first three atomic rows and reaches a maximum value of 5.9%

at the sixth row. Since the lattice constant of BN is larger than that of graphene (edge

substrate), the BN lattice is compressed at the interface. At a critical width of ∼5-6 lines

(equal to ∼1.08-1.29 nm), the accumulated strain reaches a maximum. The occurrence

of maximum strain agrees with the location where the MDs are usually found, which is

typically at a distance of 1.08 nm from the interface (Fig. 7.3-e and 7.4-b). As reflected

in the strain profile analysis, the strain is relieved at regions where MDs occur: the

measured strain decays within the first three rows (from the MD position), and returns

to its bulk value at the fourth row.
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Figure 7.3: The formation of MDs at extended G|BN interface (> 100nm). (a) Large-
scale STM image of domain-wise G|BN with extended linear sharp interface at 800 K
with an increased ratio of µC/µBN (in the range between 0.4-0.6); the growth of G
islands (∼0.5 monolayer) followed by a dosage of borazine of: 30 Langmuir (30 L) to
cover all the remaining Ru surface. (b) Magnified view shows the formation of MD in
BN Moiré pattern close to interface zones. (c) Interface discontinuity occurs when the
length of 1D interface extends above ∼24 nm. (d) MD sets in to relieve interface strain
and keep the continuity of G|BN boundary. (e) High-resolution imaging of MD reveals
the structure of the dislocation core. Scale bars in (a-e) are 100, 10, 5, 5 and 1 nm

respectively.

7.3 Ab initio calculations

To gain further understanding on the effect of the introduction of the MD in the h-BN

lattice to form the G|BN interface with graphene, strain profiles of these heterostructures

were obtained from structure optimization in DFT.

The atomic configuration of the linking edge of graphene and h-BN, has been reported

as formed by B-C bonds[86, 94] However, many factors in the synthesis process can

influence the interface composition. Most of the works with this kind of hybrid material

consider the growth of graphene islands first, followed by injection of some BN source.
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Figure 7.4: Strain profile of BN at G|BN interface with and without MD. (a), Il-
lustrates the formation of MDs in layered heteroepitaxial growth of thin film above a
critical thickness (tc). (b), For the graphene edge templated heterogrowth of BN, a
misfit dislocation forms above the critical width (wc) to relieve strain. (c) Left: atomic
resolved coherent lattice at the G|BN interface for strain analysis. Right: Experimental
values of strain propagation parallel to the interface before (in red) and after (in blue)

introducing MD.

Changing the BN source, or doing the inverse process, where h-BN islands are first

growth, followed by graphene, at various temperatures and pressures, could favor the

formation of interfaces formed by C-N bonds or even by a mixing of C-B and C-N bonds.

In other words, kinetic factors in the synthesis process are of essential importance to

define the interface composition, and both possibilities can be considered as possible to

occur.

With these considerations, we investigate models with both C-B and C-N interfaces, as

shown in Fig. 7.5. To simulate these systems, calculations with graphene-BN ribbons

are done. The ribbons are periodic along the direction of the interface and finite in

the perpendicular direction. By the same reasons discussed in Chapter 4, considering

ribbons to model this problem is necessary due to the lack of inversion symmetry in the

BN lattice. If we want to investigate the interfaces individually, we have to use ribbons



List of Tables 97

Figure 7.5: Interfaces between h-BN and graphene formed by (a) C-B and (b) C-N
bonds. Nitrogen and boron atoms in h-BN are respresented in blue and green colors,
while carbon atoms are shown in gray. The core MDs in the h-BN lattice formed by

the pentagon-heptagon pair for each of these interfaces are also shown.

which contain the desired interface, otherwise, employing periodic boundary conditions

in the direction perpendicular to the interface would require to include two types of

G|BN interfaces in the same calculation.

For all models, the 5-7 pair is placed at the zigzag line at ∼1.08 nm from the G|BN
interface, which corresponds to ∼5 lattice parameters of h-BN. This value was choosen

in the range observed in the experiment (∼1.05-1.29 nm).

As the experimental results indicates, the structure of the pre-grown graphene island

is not affected by the pos synthesized h-BN lattice, so that it can be considered as

a “rigid substract”. We take advantage of this fact to build ribbons with a smaller

number of carbon atoms to simulate the graphene side of the interface, in order to save

computational time. For this, we use 5 zigzag lines of carbon atoms, corresponding to a

width of ∼8.5Å, to simulate the graphene side for all models and constrain the positions

of the C atoms of the two zigzag lines at the edge of the ribbon to their nominal bulk-

monolayer values, as highlighted by the blue box in Fig. 7.6 for a C-N interface, such

that we can simulate the effect of the ‘bulk’ of graphene. The carbon atoms that forms

the three zigzag lines nearest to the interface are allowed to relax.

Addressing the issue of the strain in the bonds near the interface is a bit tricky, because of

the long-range nature of these distortions. However, by doing calculations with ribbons
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Figure 7.6: Example of a super-cell with C-N interface. In order to simulate the
graphene substrate, the two zigzag lines of carbon atoms at the edge of graphene side
(in light blue box), are fixed during the optimization of the structure. The distance
d of the 5-7 ring (in light green) from the interface (in light yellow) is chosen as that

observed in the experiment, of ∼ 5 lattice parameter.

of increasing lateral sizes (i. e., in the direction perpendicular to the interface) we have a

consistent picture of the behavior of the strain in these model structures. For this, three

models for C-N interfaces were used, which differ just by the lateral size of the ribbons.

As the total number of zigzag lines of carbon atoms is fixed in the optimization process,

the widths of the ribbons are defined by the size of the h-BN side. The narrowest ribbon

is formed by a total of 18 zigzag lines of atoms, where nBN = 13 is the number of BN

zigzag lines (∼ 26Å). Two wider ribbons with nBN = 17 and nBN = 19, corresponding

to widths of ∼ 34 Å and 39 Å, respectively, were also used.

For the sake of comparison, we use models for interfaces without the inclusion of the

MD. In this case, ribbons of two different lateral sizes were considered, with nBN = 11

and 15.

7.3.1 Strain calculations for G|BN interfaces with and without misfit

dislocation

After careful optimization of the structures, the average strain for each zigzag BN line

parallel to the G-BN interface, was calculated according to:

〈s〉 = 1

Nb

Nb∑

i=1

|di − d0|
d0

(7.1)
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where, Nb is the total number of B-N bonds in the zigzag line, di is a given bond length

between boron and nitrogen atoms, and d0 is the bulk reference value obtained from

a bulk calculation. From our DFT simulations, d0 = 1.452Å, which matches very well

with the experimental value in the literature of ∼1.45 Å Fig. 7.7 shows the calculated

average strain in the BN side for nanoribbons of different sizes, with and without MD.

The data points presented in the plot refer to each zigzag BN line located after the

position of the MD, in the region that can be considered as the ‘bulk’ part of the BN

lattice, as shown in the lower panel in Fig. 7.7.

Figure 7.7: (a), Average strain profile for interfaces with (in blue color) and without
(in red color) MD for different lateral sizes of the nanoribbons. Ribbons with 11 and 15
lines of zigzag BN lines (nBN ) where used for the models without MD, while ribbons
with nBN = 13, 17 and 19 were used for the interfaces where we have included the MD.
(b), A nanoribbon with MD, showing the numbering scheme for the zigzag BN lines

[the horizontal axis in (a)] for which the average strain were computed.

For interfaces formed without the MD, the calculated 〈s〉 for the two nanoribbons sizes

used are indicated by open red circles for nBN =11, and by full red circles for the wider

model, with nBN =15. The calculated values indicate that the average strain slight

increases as we increase the number of zigzag BN lines for ribbons of both sizes, assuming

a value around of 0.43%, indicating a homogeneously strained film. For approximately

the last 3 points, an increasing in the average strain is observed due to edge effects.
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For all models with the MD, the inclusion of the 5-7 pair causes a decreasing of 〈s〉 in

the h-BN lattice. Results for models composed by C-N interfaces are represent in blue

color for the three different ribbon sizes, with nBN = 13 (open blue triangles), 17 (open

blue squares), and 19 (filled blue triangles) zigzag BN lines. The average strain abruptly

decreases for the first three BN lines from the MD into the h-BN ‘bulk’. Starting by

the fourth BN line, the strain is observed to decrease saturating at ∼0.12%, except for

the last 2-3 points, where an increasing in strain is observed due to edge effects. This

value is a well converged result for 〈s〉 for the bulk region in h-BN. This can be observed

from the data points corresponding to lines 6-9 for the ribbon of intermediated size (for

which nBN = 17) and further confirmed by the widest ribbon (nBN = 19), which shows

an almost flat region formed by points corresponding to lines 6-12. These results can

be certainly extended for systems of larger regions of BN bulk. The regions affected by

edge effects can be easily identified and excluded from the analysis of the average strain.

We can check that the atomic configuration of the interface considered in this work (C-N

and C-B) does not affect the strain profile of the h-BN lattice by performing calculations

for C-B interfaces. In Fig. 7.8, we show results for both interfaces, with and without

the MD. We use the ribbons with lateral sizes corresponding to nBN =17 zigzag BN

lines, and exclude the last three points due to the edge effects, which do not affect the

converged values of 〈s〉 for the others BN lines. There is a very small deviation between

values of both interfaces models (less than 0.07%) and, in the context of the strain-

release mechanism these results indicate that both atomic configurations of the zigzag

linked G|BN boundary (C-B and C-N), and consequently, the atomic configuration of

the 5-7 rings, are equally possible to be observed in G|BN lateral heterostructures.

It must be pointed out that for 2D BN layers grown on Ru, the lattice mismatch be-

tween the substrate and the overlayer generates an averaged strain of 2.2%. The strain

at the G|BN heterointerfaces is certainly modulated by the underlying metal surface.

To eliminate the influence of the metal, the delamination of the hybrid film using O2

intercalation was provided in the experimental work. The hybrid film was decoupled

after annealing, as can be observed from the remarkably reduced corrugation in G and

BN (inset of Fig. 7.13-b). The maximum strain of BN at decoupled boundaries is slightly

reduced (from 5.9% to 4.0%) due to the exclusion of strong substrate interactions but

the strain still accumulates as we move away from the interface. From these results,

could be concluded that although the metal substrate introduces additional strain at

the G|BN interface, it does not change the general trend of strain dependence with the

distance from the interface, and the simulations, which do not take substrate effects into

account, are apt to describe the experimental results.
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Figure 7.8: Average strain profile for C-B (in green color) and C-N (in blue color)
zigzag linked interfaces compared to that of defect free interface (in red color). Both
atomic configurations of the zigzag linked G|BN boundary (C-B and C-N) with the MD

are equally efficient in relief the strain in the BN lattice.

The mechanism of strain release can be explained by the natural occurrence of buckling

in the h-BN lattice, induced by the heptagon-pentagon pair. This simple core dislocation

structure, formed by five and seven membered rings in a hexagonal lattice, has already

been extensively studied in carbon based structures such as carbon nanotubes[100] and

graphene[67, 101, 102] in the context of structural deformations.

One isolated 5-7 pair is formed by the insertion of a semi-infinite strip of atoms along

the armchair direction in the hexagonal lattice as shown in the right panel in Fig. 7.9.

However, when combined with another 5-7 pair, it originates the known Stone-Wales

(SW) defect, that can be generated by an in-plane rotation of two atoms in the lattice

with respect to the midpoint of the bond. Defined in this way, a SW defect does not

introduce ‘extra’ atoms, as the modification is local and consists of just transformation

of four hexagons into two heptagons and two pentagons, as shown in the left panel in

Fig. 7.9.

Both these dislocation cores are known to induce buckling in planar sp2 bonded struc-

tures, which is shown by theoretical results to be more energetically favorable to occur

than for the structure to remain flat. As discussed in Ref. [103], theoretical results indi-

cate that the bond between the rotated atoms in a SW defect in graphene is compressed

by about 7% if compared to the pristine hexagonal lattice. Since in-plane motion of

carbon atoms in graphene is stiffer than out of plane motion, the alternative to expand

this compressed bond is, for the involved atoms, to displace in the direction perpendic-

ular to the plane of the flat layer. This movement of the atoms affects the neighboring

bonds, which are also pulled out of the plane in an attempt to adopt bond lengths as
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similar as possible to the planar sp2-bonded network. This explanation is shown to be

general and also valid for other planar structures with honeycomb lattices, in special

for h-BN [99, 103]. For exactly the same reasons, isolated heptagon-pentagon pairs also

induce buckling in planar sp2 bonded structures as a consequence of the strain in the

compressed bonds that occur between atoms in the odd-coordinated rings, as shown in

the right panel in Fig. 7.9.

Figure 7.9: Stone-Wales (left) and isolated pentagon-heptagon pair (right) introduced
in a hexagonal lattice. Both defects induce buckling in the planar sp2 bonded structure

as a mechanism of strain relief due to the compressed bonds.

With these considerations, we propose the idea of introducing 5-7 rings in the hexagonal

lattice of h-BN as a mechanism of strain relief: the initially planar structure comes

out of the plane, enabling the bonds to adjust their lengths to the bulk values, due

to this additional spatial degree of freedom. Accordingly, 〈s〉 is reduced, avoiding the

breakdown of the h-BN lattice. Initial and optimized structures for the C-N model can

be seen in Fig. 7.10. This optimized structure is very similar to that obtained for a C-B

interface, where the introduction of the MD also induces the buckling of the BN lattice.

It is interesting to notice that, commonly, MDs occur in heterostructures as a mecha-

nism to ‘correct’ the mismatch between the materials by introducing additional lines (in

2D structures) or planes of atoms (in 3D materials) in the lattice with smaller lattice

parameter, in order to correct the difference with the larger lattice of the second material

and relieve the accumulated strain. So, at first we could expect that additional lines

of atoms would be introduced in graphene, not in h-BN, which has the larger lattice.

However our results indicates that in the growth process, it is more efficient for the h-BN

to come out of the plane to release the strain, which can be achieved by the introduction

of the 5-7 ring with the orientation that we have considered.

In Fig. 7.11, hight profiles for two valleys in the BN lattice are shown with and without

the MD, extracted from the experiment. The width of a valley of the Moiré Pattern

without the MD is ∼1.75 nm, while for a valley with a dislocation core, it is ∼4 nm.

From this difference, it seems that the effect of the introduction of the defect is to merge

two valleys. The profile of the BN lattice in these regions (valleys with and without the



List of Tables 103

Figure 7.10: Initial supercell with MD and the optimized structure: the pentagon-
heptagon pair induces the buckling of the heterostructure, and a reduction of the strain

is observed.

core defect) shows that the MD may cause a slight buckling of the BN lattice. While

the absolute value of the vertical displacement of atoms due to buckling is not accurate,

since STM only gives apparent heights, the qualitative behavior agrees with what we

obtained with the introduction of the 5-7 ring in our calculations.
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Figure 7.11: High profiles in valleys with and without the dislocation core in BN-
lattice.

7.4 Energetics

Total energy of the optimized structures were used to understand the energetics of the

interfaces. Stoichiometry of the defect-core will be determinant to identify the stability

of the interfaces, as the chemical potentials of boron and nitrogen depend on the sources

of these atoms in the growth process. In our calculations, the h-BN lattice with the

misfit dislocation is not stoichiometric, as the inclusion of the odd-coordinated heptagon-

pentagon pair introduces an extra B or N atom, depending on the interface type. In

order to compare the relative stability of the 1D interfaces between graphene and h -

BN, the formation energies Eint
f for both interfaces (C-B and C-N) were calculated for

different environments, from:

E
C−N(B)
f =

Erib
tot −NNµN −NBµB −NCµC −NHµH − nedge

B(N)λ
edge
B(N) − nedge

C λedge
C

l
(7.2)

where Erib
tot is the total energy of the ribbons obtained from the DFT calculations, l is

the length of the supercell along the interface direction, NB, NN , NC , and NH are the
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numbers of boron, nitrogen, carbon, and hydrogen atoms in the ribbon, with respective

chemical potentials µB, µN , µC , and µH . We also have nedge
C and nedge

B(N) as the number

of edge units in the supercell, which is formed by C-H pairs in the graphene side and by

B-H (N-H) pairs for C-N (C-B) interfaces, in the BN lattice side. The terms λedge
B(N) and

λedge
C are the edge energy per edge units nedge

B(N) and nedge
C . Results for supercells with

MD at two different distances from the interface d1 = 0.65 nm and d2 = 1.08 nm are

also considered.

If we assume that the growth process for the formation of the interface occurs in equi-

librium with a ‘bulk’ BN monolayer, we impose the constraint µBN = µB + µN [39].

From our calculations, µBN is assumed as the total energy per BN pair for a pristine

h-BN monolayer. By considering two chemical potential environments (an B-rich and

an N-rich), we consider different sources of boron and nitrogen atoms to define limiting

values for the chemical potentials. The extreme N-rich case is defined by the gas-phase

of the N2 molecule as the nitrogen source. For the opposite limit, we choose the BH3 gas

as the boron source for the B-rich scenario. For intermediate chemical potentials, the

gas-phase of diborane molecule B2H6 and the bulk α-B crystal were used as B sources,

while other two values for µN were obtained from the gas-phase of the ammonia molecule

NH3 and the N2 crystalline phase of this atom.

The same interval for the limiting values of the chemical potentials for boron and ni-

trogen were considered in the theoretical work in Chapter 4 and Ref.[104], where a

detailed discussion about these limits as a physically acceptable range for µB and µN

was presented.

The formation energy of the interfaces defined in Eq. 7.2 is defined such that the contri-

bution of the edges in both graphene and h-BN sides is discounted. This can be done by

considering the formation energy per edge unit (that is, per C-H pair at the graphene

edge and per B(N)-H pair at the h-BN edge) given by λedge
B(N) and λedge

C) , which were

also obtained from Chapter 4 and Ref.[104] for the same values of chemical potentials

considered here.

The results for E
C−N(B)
f for the two interface type models with MDs, as a function of

the chemical potential of nitrogen µN , are shown in Tab. 7.1 and also in Fig. 7.12.

Analysis of the calculated formation energies according to Eq. 7.2 reveals that both C-N

and C-B interfaces can be energetically favorable, depending, besides all the kinetics

involved in the synthesis process, on the boron and nitrogen chemical potentials.

As expected, the C-B and C-N interfaces are more energetically favorable under B-rich

and N-rich environments, respectively. For the N-rich region both interface types can

coexist for synthesis with values of µN around that of the ammonia molecule.
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C-B + C-N (supercell) 0.59

B-rich N-rich

BH3 B-bulk B2H6 NH3 N-bulk N2-gas

C-B - Defect free -0.01 0.14 0.14 0.33 0.52 0.54
C-N - Defect free 0.62 0.48 0.48 0.28 0.10 0.09
C-B + C-N 0.61 0.62 0.62 0.61 0.62 0.63

C-B with MD at d1 0.57 0.67 0.68 0.82 0.95 0.96
C-B with MD at d2 0.50 0.59 0.61 0.75 0.86 0.87

C-N with MD at d1 1.01 0.91 0.91 0.77 0.64 0.63
C-N with MD at d2 0.95 0.84 0.85 0.71 0.58 0.57

Table 7.1: Formation energy per unit length (eV/Å) for C-B and C-N interfaces with
and without the MD for different values of N-rich and B-rich chemical potentials. Cal-
culations of individual interfaces were obtained using ribbons. Results for two positions
for the 5-7 ring from the interface (d1 = 0.65 nm and d2 = 1.08 nm) are also included.

Figure 7.12

Regarding the distance of the MD to the interface, we calculated E
C−N(B)
f for structures

considering the inclusion of the defect core at 3 and 5 lattice units from the interface,

which gives us the distances (according to the Fig. 7.6) d1 = 0.65 nm and d2 = 1.08 nm,

respectively. The choice of the 5-7 ring nearest to the interface than the experimentally

observed value of 1.08 nm can give us insight on a favorable position for the defect

core from an energetic point of view. Indeed, we observe that the formation energy

of the system is increased when we consider the distance d1 = 0.65 nm for both C-B

and C-N configurations and for the different chemical environments. The differences are

∼ 0.8 eV/Å for the C-B interface and ∼ 0.6 eV/Å for the C-N interface.

The lower values obtained for the interfaces without the MD (shown by the red curves)

are expected. Due to the limitation on the system size imposed by computational
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limitation involved in treating the system using an ab initio approach, the supercells

used in the calculations are usually much smaller than the real systems. This precludes

us from simulating a G|BN lateral heterostructure large enough for the cost to introduce

the MD to be lower than that of a defect-free interface. In this way our results are, in

fact, on a length scale where the system can form seamless interfaces between graphene

and h-BN without the breakdown of the h-BN lattice.

For large enough systems, it is expected that E
C−N(B)
f will assume higher values for the

defect-free case, due to the strain accumulation, and a system with the MD should be

energetically more favorable.

7.5 Electronic Properties

7.5.1 Interfacial electronic states probed by STS

Zigzag type G|BN heterointerfaces have been predicted to possess interesting properties

such as half-metallicity, antiferromagnetism and other transport properties[87, 91, 105–

107]. The ability to resolve the zigzag type coherent G|BN interface allows the investi-

gation of its local electronic states using scanning tunneling spectroscopy (STS).

For freestanding graphene, localized states at zigzag edges produce flat bands and sharp

density of states (DOS) at the Fermi Level (EF )[108, 109]. However, such zigzag states

are quenched when graphene is attached to Ru, because the orbital hybridization be-

tween carbon and Ru depletes the DOS near EF . Upon the bonding of the graphene

edge to BN, such localized edge states remain absent due to the coupling with the metal,

as evident from the STS study as shown in Fig. 7.13-c.

In contrast, a great enhancement of the differential conductance (dI/dV) is observed at

the decoupled G|BN interface (Fig. 7.13-e), which results in the appearance of distinct

bright spots (due to enhanced local DOS) when imaged by STM (Fig. 7.13-b and d). In

contrast, such bright spots are absent in as-grown G|BN interfaces as well as in interfaces

where only BN or G is decoupled (Fig. 7.13-c). The STS collected at the decoupled BN

sites (C point marked in the inset of Fig. 7.13-d) is relatively featureless with a low

tunneling conductance owing to its insulating nature, while the decoupled graphene

close to the interface displays p-doping as reflected by the presence of a dip at ∼0.15 eV

(Dirac point) in the STS curve (collected at A point in the inset of Fig. 7.13-d)[110].

At a zigzag-type G|BN interface, the bonding between the atoms at the interface gives

rise to a high-energy antibonding orbital, which shifts the conduction band right above

EF . In addition, the strong mixing of π orbitals between the C and N (or B) atoms at
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Figure 7.13: Probing the intrinsic electronic states at the G|BN interface after O2

intercalation. (a) Large-scale STM image to show the co-existence of decoupled G|BN
interface and coupled interface. (b) The presence of interface states generates bright
spots at the interface of G|BN after decoupling. Inset: height profile along the direction
perpendicular to the interface of G|BN, before and after decoupling. (c) No bright spots
are observed at the boundary between decoupled BN and coupled graphene. (d) STS
spectra collected along the line perpendicular to the G|BN interface. (e) STS spectra
collected along the line perpendicular to the G|BN interface as marked in d. Scale bars

in a-d are 20, 2, 2 and 0.5 nm respectively.

the interface also increases the DOS around EF , leading to an increase of the tunneling

conductance (Fig. 7.13-d). A feature peaked at ∼80 meV above EF is present in the

dI/dV spectrum collected at the bright spots (point B in Fig. 7.13-d).

7.5.2 Interfacial electronic states - Ab initio calculations.

In order to provide further insight into these experimental observations, we carried out

ab initio calculations of the electronic structure of G|BN heterolayers with coherent

interfaces with a periodic array (17.5 Å) of 5-7 dislocation cores located at a distance
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of 1.15 nm away from the interface. We employ the same methodology as in the strain-

profile calculations.

The calculated electronic density of states (DOS) for both monolayer models, with N-

C and B-C coherent interfaces, are shown in Fig. 7.14. An analysis of the degree of

localization of these electronic states on different atoms can be done by the partial DOS

(PDOS) projected onto such atoms.

We start by examining the PDOS summed over the interface atoms. The added contri-

butions of the orbitals of the B, N, and C atoms on the two zigzag lines at the interface

is represented by the red curve, while the individual contributions are shown by the

green (C), blue (N), and orange (B) curves. The total DOS, represented by the black

curve, shows two sharp peaks around the Fermi level (FL) for both interface types.

For the C-N interface, the first peak, at the FL, is only partially localized on the interface

atoms, with ∼40% of the total DOS deriving from these atoms. A different scenario is

observed for the second peak, located at ∼0.1 eV above FL: the PDOS curves show that

this peak is associated with states that are strongly localized at the interface, with a

contribution of ∼90% from the orbitals of the interface atoms. The individual PDOS

curves for each species of interface atoms show that the B atoms at the interface have a

negligible contribution, and that the localized peak is essentially due to 1D states along

the interface derived from the interfacial C-N bonds.

For the C-B interface model, similar results are observed, when compared to the C-N

interface. Two sharp peaks are present around the FL, the one at ∼0.03 eV above the FL

is only partially localized on the states of the interface atoms, also with a contribution of

just ∼40% to the total DOS. A strong contribution from the interface states of ∼90% is

now observe for the DOS peak below the FL, at ∼ -0.15 eV, with the smaller contribution

given now by the nitrogen atoms.

In Fig. 7.13-e, we can see a peak at 0.08 eV above EF in the dI/dV spectrum collected

at the point B (Fig.7.13-d), which represents the interface states of G|BN. Even though

just one peak is observed in the experimental results, we see that this peak is broad, with

a width of ∼0.4 eV, and probably represents the overlap of the two peaks observed in the

DFT calculation that could not be distinguished from each other due to the resolution

of the experiment.

In Fig. 7.15 it is shown a representative isosurface of states obtained from the calculation

of the local density of states (LDOS) in the energy range of 0.05 to 0.15 eV for the C-N

interface, and -0.2 to 0.06 for C-B interface, which comprises the sharp localized peak in

the DOS due to the interface atoms for both interface types. In each case, the states in

the corresponding range of energies are strongly concentrated at the interface, specifically
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Figure 7.14: Calculated electronic properties of G|BN heterostructures with linked
C - N (higher panel) and C - B (lower panel) zigzag interfaces. Total density of states
(DOS) and partial DOS (PDOS) analysis shows the introduction of interface states
near the FL at ∼ 0.08 eV for C-N and ∼ -0.15 eV for C-B interfaces. States due to the
5-7 pair introduce a sharp peak at 0.8 eV and -0.63 eV, for C-N and C-B, respectively.

on the C-N and C-B bonds for the different interfaces, with negligible contribution from

other atoms. Even the second line of carbon atoms in the graphene side, and the boron

or nitrogen atoms (depending on the interface type) bonded to the interface atoms in

the BN lattice, do not contribute to the charge density, again demonstrating the high
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degree of localization of the states due to the hybridization of the C and N (or C and

B) orbitals.

Figure 7.15: Local density of states (LDOS) for G|BN heterostructures with C-N
(left) and C-B (right) bonds at the interface. For each interface the LDOS is plotted
for states in the energy range corresponding to the peaks in the DOS with major
contribution from the atoms of the interface (0.05 to 0.15 eV for the C-N interface and

-0.2 to 0.06 eV for the C-B interface).

Another important point is the contribution of the MD core atoms to the DOS. The

projected DOS (PDOS) onto the orbitals of the boron and nitrogen atoms that form

the 5-7 rings indicate the introduction of a sharp peak at ∼ 0.8 eV for the structure

with a C-N interface, as shown by the blue dashed line in Fig. 7.14 (upper panel). This

result is consistent with the observation of bright spots at the bias voltage of 1V for the

decoupled layers in the experimental work, which could be an indication of the formation

of this interface configuration in the experiment.

For the model with the C-B interface, a similar peak due to the heptagon-pentagon pair

is observed below the FL level, at ∼ -0.63 eV (blue dashed line in the lower panel in

Fig. 7.14). The high localization of the states from the MD atoms clearly show that

they do not introduce states at the FL in both interface types. These results strongly

suggest that scattering of the interfacial states by the MD core should be negligible, and

the dislocations should not have a detrimental effect on the 1D electronic transport at

the interface.

It is also important to comment about the edge states introduced in the electronic

structure analysis. As we are dealing with nanoribbons to address our problem, it is

important to check if such edges states can affect our results, as they are just an artificial

element introduced into the problem to make the calculations feasible. In Fig. 7.14, the

total density of states excluding the states due to the edge atoms is presented. A more

complete analysis of such states can be done, in order support the assumption that they

do not affect the main results.
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In Fig. 7.16, the total DOS including edge states is presented in cyan color for both C-N

and C-B interfaces. By a PDOS analysis of the edge states, we can see that they are

strongly localized on the edge atoms and do not contribute to the localized peak due to

the interface states.

The strong localization of the edge states means that the edge atoms do not contribute to

the localized peak due to the interface states. The states due to the C-H-saturated edge,

represented by the sharp peak in green color, is at the FL (0 eV) and do not hybridize

with the interface or with the MD states. States due to the N-H and B-H-saturated

edges, shown in yellow, are observed far from the FL (at ∼ -1.3eV and ∼ 1.5 eV, for

N-H and B-H edges, respectively), and clearly do not contribute to the physics of the

interface. These results confirms that the interface states are not affected by the edge

states, which can be easily eliminated from the analysis of the DOS.

7.6 Conclusions and Perspectives

In conclusion, we use DFT calculations to characterize structural and electronic proper-

ties of atomically sharp G|BN heterointerfaces. As reported by the experimental group

with which we collaborate to develop this work, long and sharp G|BN interfaces can

only be formed in the presence of some strain relief mechanism, due to the mismatch

between the graphene and boron nitride lattices.

Our calculations indicate a reduction of the strain in the h-BN lattice when MDs formed

by 5-7 rings are introduced in the hexagonal lattice of BN. This result can be explained

by the natural occurrence of buckling in the h-BN, induced by the core dislocation. The

atoms in the initially planar structure come out of the plane enabling the bonds to adjust

their lengths to the bulk values, due to this additional degree of freedom. Consequently,

the strain 〈s〉 is reduced, avoiding the breakdown of the h-BN lattice.

The electronic properties of the interfaces are also discussed. The experimental results

indicate that the electronic states associated with the formation of the coherent G|BN
boundaries are characterized by a strong 1D confinement at the interface region, and an

enhancement of the DOS near the FL is observed. Indeed, our first principles calculations

indicate the formation of highly-localized states formed mainly by orbitals from the

atoms at the interface, with energies near the FL. Among the two types of boundaries

investigated, formed by linked C-N and C-B zigzag interfaces, the C-N interface presents

a highly-localized peak which agrees with experimental results for the collected dI/dV

spectrum, being an indicative that the interfaces in the experiments should be composed

of bonds between C and N atoms.
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Figure 7.16: Calculated electronic properties of G-BN heterostructures with linked
C-N (higher panel) and C-B (lower panel) zigzag interfaces including the edge states
of both graphene and h-BN lattice. Edge states (in green and yellow) are strongly

localized at the edges and can be discerned from the interface states.
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Finally, this work will be extended by calculations including the Ru substrate, in order to

obtain a better quantitative agreement with experimental results. Magnetic properties

of the C-N and C-B interfaces will also be considered.



Chapter 8

Beyond Graphene: Electronic and

Structural Properties of Bulk and

Few-layers Semiconductors

Monochalcogenides.

8.1 Introduction

As discussed in the previous chaperts, the special properties of two-dimensional mate-

rials, in special graphene and hexagonal BN, have attracted significant attention of the

research community in the last years. A great part of the special properties of materi-

als in this lower-dimensional world have been already explored, both theoretically and

experimentally, and it is clear that manipulation and control of materials properties in

such size scale is an arduous task. Great advances have already been achieved, but

industrial-scale applications remain a challenge. The search for well controlled methods

to tune the graphene band gap is one of the main topics in the study of this material.

Introduction of defects [111], application of strain [69, 112], doping [113, 114], construc-

tion of heterostructures [112] are just a few examples of the many attempts that have

shown promising results in this direction.

In this scenario, black phosphorus (BP) is part of the group of materials attracting

attention in two-dimensional materials research. Discovered in 1914 by Bridgman [115],

who measured some properties like density (2.69 gm/cm3), compressibility [116] and

electrical resistivity as a function of pressure over the range of temperatures of ∼ 273 K

115
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to 348 K [115, 117], BP is the thermodynamically stable form of phosphorus (P) at room

temperature and pressure [118, 119].

Black phosphorus adopts an orthorhombic structure with eight atoms per unit cell and

its lattice parameters have been determined in experimental and theoretical [119–121]

works. The P atoms are arranged in puckered layers, and inside a single layer each atom

is covalently bonded to three neighbors. The bulk is formed by these layers stacked

together by van der Waals forces.

BP shares with graphene properties like high mobility and a van der Waals monoatomic

crystal character [120]. The presence of a direct band gap makes black phosphorus a

new promise of a two-dimensional gapped material. Many works have predicted the

band gap of BP to increase with decreasing the number of layers. For the bulk, a gap

of 0.3 eV has been observed [119, 122–125], while a value of 2 eV is predicted [121] for

monolayer BP, which is also termed ‘phosphorene’.

The hexagonal structure of phosphorene, which makes it conceptually similar to graphene

in defining some of its interesting properties, opens up the question of whether other

materials with such structure can also be considered as potentially important, as part

of the two-dimensional group of materials for the future applications in nanoelectronic

devices.

The monochalcogenides GeS, GeSe, SnS and SnSe form structures that can be considered

derivatives of the orthorhombic black phosphorus [126]. At determined pressure and

temperature, each of these compounds can adopt an orthorhombic crystal structure

with space group Pnma-D16
2h (α phase) (for BP the space group is D18

2h [127]).

The α phase of SnS has been investigated as an absorber material for production of

thin film photovoltaic (PV) cells, a technology of increasing importance in the demand

for energy conversion. Although PV cells based on CdTe and CuInGaSe2 compounds

have also shown promising results due to their high efficiencies [128–130], many factors

make their usage difficult such as the high cost and toxicity of Cd [27, 130, 131]. From

this, SnS, which is made of abundant and nontoxic elements, has attracted attention as

an alternative absorber material for thin PV cells. In addition, the layered structure of

α-SnS, combined with its semiconductor behavior with an optical band gap of ∼ 1.3 eV,

in the range of the optimal values for solar cells (1.1 to 1.5 eV), makes SnS an attractive

alternative in this group of promising materials for PV application.

The optoelectronic properties are of essential importance in the construction of this

type of nanodevice, and so many theoretical works have been done in an attempt to

determine electronic and optical properties of SnS for its bulk form as well for few-layer

and single-layer structures, which remain still poorly explored.
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In this chaper, we present preliminary results of a study of two-dimensional semicon-

ductors monochacogenides. This work is still in progress and focuses on the electronic

and optical properties of these materials. It will be further developed in collaboration

with the theoretical group of the GRC/NUS.

We use first-principles calculations to investigate electronic and structural properties of

the four aforementioned metal monochalcogenides MX, with M=(Sn, Ge) and X=(S, Se),

forming the following group of compounds: SnS, SnSe, GeS and GeSe. We investigate

single-layer, double-layer and bulk structures for each of these materials, in an initial

attempt to determine their structural stability in the α-phase, as well as to obtain in-

formation about basic important electronic properties, such as band gap characteristics.

Preliminary results are presented and discussed.

8.2 Structural and Electronic Properties

Figure 8.1: Structural model for the orthorhombic cell of the α-phase. We show the
unitcells for single and double layers, which are repeated along the x̂ direction. A zoom
in the structure shows one atomic species and its three first neighbors of the second

atomic species that compounds the system.
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8.2.1 Crystal Structure of the α phase.

The α phase is defined by an orthorhombic structure with eight atoms per unit cell.

For the materials considered here, we have four atoms of each species. These atoms are

arranged in two puckered layers and each atomic species is covalently bonded to three

neighbors of the other atomic species, as shown by the enlarged picture in Fig.8.1.

At high temperatures (> 800 K), SnS and SnSe adopt a more symmetric structure (β

phase) with space group Cmcm-D17
2h [132, 133]. In this phase, the unit cell is also formed

by double puckered layers[126], but now each atom is bonded to four atoms of the second

atomic species. A phase transformation from α to β phase has been also theoretically

predicted for SnS at high pressures[133]. In our initial calculations, we consider just the

α phase of the four different compounds. The β phase will also be investigated in the

next steps of this work. Optimization calculations were performed for single and double

layers and also for the bulk, in order to investigate the stability of these systems.

Figure 8.2: (a) Unitcell and (b) the repeated structure of the bulk in the α phase.
The respective BZ is shown in (c) with the special points Γ, Y, T, Z, localized at the
b∗-c∗, plane, corresponding to the plane of the puckered layers in the reals space. The

orthorhombic lattice is shown in (d)
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The orthorhombic unit cell of the α phase, contains 8 atoms, being 4 of each atomic

species for bilayer and bulk models. For the monolayer, 4 atoms (2 of each atomic

species) compose the unit cell. By following Ref.[132–134], layers are chosen to sit on

the y-z plane, and so, interlayer forces are in the x-direction. Considering the axes of

the primitive orthorhombic unit cell a0, b0 and c0, the atomic positions in the crystal

vector units are: ±(x,14 ,z;
1
2 +x,14 ,

1
2 −z). For SnS at 295 K[132, 135] we have: a0=11.20

Å, b0=3.99 Å, and c0=4.33 Å with atomic coordinates x(Sn)=z(Sn)=0.12, x(S)=0.85

and z(S)=0.48.

For monolayer and bilayer models, vacuum regions of 8 and 9 Å, respectively, were used

between adjacent images in direction perpendicular to the layers for each structure.

Convergence tests with greater vacumm regions were done, and the values used are

enough to avoid interaction between neighboring images.

Single-Layer Double-Layer Bulk

b c b c a b c

GeS 3.68 4.40 3.67 4.42 10.81 3.68 4.40
GeSe 3.99 4.26 3.97 4.31 11.31 3.91 4.45
SnS 4.07 4.24 4.05 4.28 11.37 4.02 4.35
SnSe 4.30 4.36 4.25 4.42 11.81 4.22 4.47

Table 8.1: Optimized lattice vectors for α phase of SnS, SnSe, Ges, GeSe.

Starting with the SnS compound, optimization of the bulk structure gives the equilibrium

unit cell lattice vectors in good agreement with experimental results in Ref. [126, 132,

136] (a= 11.20 Å, b=3.98Å and c=4.33Å) and also with calculated values from others

theoretical works [130, 131, 133]. Our calculated vectors for bulk of SnSe, are also very

close to that obtained in a previous experimental work [137] of a=11.50 Å, b=4.15 Å,

and c=4.44.

By comparing the calculated values for SnS and SnSe and also for GeS and GeSe, shown

in Tab.8.1, we observe that the most compact structure is that of GeS, which presents

the smallest lattice vectors for single-layer, double-layers and also for bulk, while SnSe

presents the largest lattice parameters for all models.

The optimized bond lengths are shown in Tab. 8.2. The different types of interatomic

distances, represented in Fig. 8.3, are given as in Ref. [126], where the refinement of

atomic distances was done by X-ray diffraction. Our values agree very well for most of

the bonds considered, the major deviations observed are for C1, C2 and E, defined as

the interlayer bonds.
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Figure 8.3: Different types of interatomic distances for the α phase of SnS, SnSe,
GeS, GeSe. The small circles (M) stands for Sn and Ge, while the large circles (X)

stands for Se and S atomic species. Figure taken from Ref. [126].

A(1)-A(2) Type SnS SnSe GeS GeSe

A1–A2 A1 in 2.69 (2.66) 2.84 (2.79) 2.47 (2.44) 2.62 (2.57)
A1–A2 B in 2.65 (2.63) 2.78 (2.74) 2.46 (2.45) 2.59 (2.56)
A1–A2 A2 in 3.30 (3.29) 3.35 (3.34) 3.33 (3.28) 3.37 (3.32)
A1–A2 C1 ex 3.44 (3.39) 3.55 (3.47) 3.37 (3.28) 3.47 (3.37)
A1–A2 C2 ex 4.16 (4.09) 4.24 (4.10) 4.06 (3.92) 4.17 (3.94)
A1–A1 D2 in 4.36 (4.33) 4.47 (4.44) 4.40 (4.30) 4.45 (4.39)
A1–A1 D3 in 4.17 (4.15) 4.31 (4.29) 3.92 (3.89) 4.03 (4.03)
A1–A1 E ex 3.57 (3.49) 3.70 (3.55) 3.50 (3.33) 3.69 (3.39)
A2–A2 D2 in 4.36 (4.33) 4.47 (4.44) 4.40 (4.30) 4.45 (4.39)
A2–A2 D3 in 3.75 (3.71) 3.96 (3.88) 3.55 (3.51) 3.78 (3.67)
A2–A2 E ex 3.95 (3.90) 4.02 (3.94) 3.78 (3.64) 3.84 (3.71)

Table 8.2: Ab initio interatomic distances according to Fig. 8.3. A1 stands for atomic
species Sn and Ge while A2 represents S and Se. With the interatomic distances type we
denote in and ex as the distances valid for intra and inter puckered layers, respectively.

The experimental values obtained in Ref. [126] are shown in parenthesis.

8.2.2 Electronic Properties of single-layer, double-layer and bulk mod-

els.

The calculated electronic band structures are presented in this section. For the simple

orthorhombic lattice adopted by these systems, the brillouin zone (BZ) is defined as in

Fig. 8.2-c, where the high symmetry points Γ-Y-T-Z-Γ are defined to sit in the plane

x=0. A general trend is observed for all compounds, where the energy gap Eg decreases

as we increase the number of layers, a result that agrees with previous works that also

investigate SnS electronic structures by first principles [130], and it seems to extends for

the others IV-VI compounds considered in this chapter.
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Except for single and double-layers GeSe, bulk GeS and single-layer SnSe, which shows

direct band gaps, indirect gaps are observed for all the other materials. The calculated

values for Eg are summarized in Tab. 8.3 and discussed in the following.

Monolayer Bilayer Bulk

ET (eV) Gap (eV) ET (eV) Gap (eV) ET (eV) Gap (eV)

SnS -749.17 1.40 -1498.53 1.13 -1498.73 0.83
SnSe -706.72 1.01 * -1412.63 0.79 -1413.62 0.55
GeS -771.99 1.69 -1544.12 1.55 -1544.26 1.24 *
GeSe -729.50 1.14 * -1459.08 1.02 * -1459.17 0.59

Table 8.3: Total energies (ET ) and gap energies(Eg) for monolayer, bilayer and bulk
of SnS, SnSe, GeS, GeSe. The star (*) indicates the direct band gaps.

SnS: Starting with SnS, Fig. 8.4 shows the electronic structure for the single-layer,

double-layer and bulk, calculated along the high symmetry lines Z-Γ-Y-T-Z of the Bril-

louin zone (BZ). For all models, indirect energy gaps are obtained, with the valence

band maximum (VBM) and conduction band minimum (CBM), located along the Z-Γ

and Γ-Y lines, respectively. For better visualization, these points will be highlighted by

the green and red small circles for the results of all compounds, discussed in this section.

The calculated values for Eg of 1.40, 1.13 and 0.82 eV are lower than those obtained in

Ref. [130] using the GWmethod [138, 139] for the band structure calculation, which gives

Eg = 2.57, 1.57 and 1.07 eV for single-layer, double-layer and bulk SnS, respectively.

This difference was expected, because the GW approximation to the electronic self-

energy has shown reliable results of electronic and optical properties for a wide range of

materials [125, 140], opposite to the known underestimation of electronic gaps observed

for GGA/DFT methods. Despite these differences in the calculated energy gaps, we

notice that the shape of the bands is preserved, and the positions of VBM and CBM are

obtained along the same directions in the BZ.

With these considerations, our calculations, although not as accurate as demanded for

the study of the optical properties of these systems, already show some coherent results

for the α phase of SnS, a behavior that we believe to extend to the other compounds, due

to their similar chemical characteristics. Furthermore, the present preliminary results

will be used in addition to those obtained in the next steps of this work with more accu-

rate methods, as a mean of comparison to investigate the main characteristics affected

by the different approaches.

For all compounds in our calculations, other k-points show energy eigenvalues very close

to the conduction band maximum (CBM) and valence band minimum (VBM). Due to

this small difference in energy, such points can be considered as “competing” points, for

which energy gaps defining direct transitions must also be considered.
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Figure 8.4: Electronic band structures for single-layer, double-layer and bulk for α
phase of SnS. Indirect band gaps are calculated for all models, and direct band gaps
higher in energy by a few meV define the possible direct transitions 1 and 2. The red

and green points mark positions of CBM and VBM respectively.
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Continuing the analysis of electronic structure of α-SnS, in addition to the indirect

band gap observed for the single-layer, two direct gaps higher in energy by 0.17 eV

(represented by transition 1 in Fig. 8.4-a), and 0.20 eV (transition 2) are also identified

along Z-Γ and Γ-Y lines, respectively.

For double-layer and bulk models, the same trend is observed, and two direct gaps along

the same high symmetry lines as in the single-layer are observed. For the double-layer,

the two points closest in energy to the CBM and VBM, are higher and lower in energy by

0.23 eV (transition 1 in Fig. 8.4-b) and 0.27 eV (transition 2 in Fig. 8.4-b), respectively.

For the bulk, the direct gaps differs in energy by 0.11 eV and 0.45 eV, as seen for

transitions 1 and 2 in Fig. 8.4-c, respectively.

SnSe: For single-layer SnSe, the CB has two degenerate minima along the Z-Γ and

Γ-Y lines, and a direct gap of 1.12 eV is calculated with the VBM along Z-Γ. A second

maxima at 0.12 eV below the VBM is obtained in the Γ-Y direction, for which an

additional direct transition is obtained.

By adding one more layer to form the double-layer model, some modifications are ob-

served. The CBM is now in the Γ-Y direction, and the material is characterized by an

indirect gap of 0.79 eV, with the VBM still located on the Z-Γ direction. These CBM

and VBM also define direct transitions higher in energy if compared to the indirect

one, by 0.18 eV and 0.25 eV, respectively. For the bulk model, a well defined CBM is

observed in the Γ-Y direction, and an indirect gap of 0.55 eV is defined with the VBM

in the Z-Γ direction. In this case, the second point nearest in energy to the VBM, lower

in energy by 0.17 eV, is located along the Γ-Y direction, and defines a direct gap of

0.72 eV. In the same way, a k-point along Z-Γ is very close in energy to the CBM and

defines a direct gap of 0.85 eV.

Single-layer Double-layer Bulk

Transition 1 2 1 2 1 2

SnS 1.47 1.60 1.36 1.40 0.93 1.27
SnSe 1.12 1.55 0.98 1.05 0.85 0.72
GeS 1.91 1.98 1.63 - - -
GeSe 1.68 - - - 0.85 0.93

Table 8.4: Direct transitions energies observed from band structure calculations for
all compounds, indicated by blue arrows in Figs. 8.4, 8.5, 8.6 and 8.7. These transitions

are higher in energy by a few eV than the energy gaps.

GeS: Electronic structure calculations indicate that an indirect gap of 1.67 eV is

obtained for the single-layer model, which is defined by the CMB and VBM along the

Γ-Y and Z-Γ lines, respectively. There are indications of occurrence of direct transitions
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Figure 8.5: Electronic band structures for single-layer, double-layer and bulk for
α phase of SnSe. A direct gap is predicted for single-layer, while indirect gaps are
calculated for double-layer and bulk. The red and green points mark positions of CBM

and VBM respectively.

at the Γ point, and near the Z point, along the Z-Γ line, as represented by transitions 1

and 2 in Fig. 8.6-a.
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Figure 8.6: Electronic band structures for single-layer, double-layer and bulk for α
phase of GeS. Indirect gaps are predicted for single-layer and double-layer, while a
direct gap is calculated for the bulk. The red and green points mark positions of CBM

and VBM respectively.
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In double-layer GeS, the gap is indirect and lower in energy by 0.12 eV than that of

single-layer. The CBM is calculated to remain along Γ-Y, while the VBM is observed at

the Γ point. A second minimum of the CB is calculated at the Γ point, higher in energy

by 0.08 eV, with a direct gap of 1.63 eV.

For the bulk, two degenerate k-points define the VBM, the first one near to Z point,

along the Z-Γ line, and the second one at the Γ point, defining a direct gap of 1.24 eV.

GeSe: For the single-layer of GeSe, our calculations produce a direct gap Eg=1.14 eV

along the Z-Γ line. A second direct gap is also indicated to occur near the Y point, as

represented by transition 1 in Fig.8.7-a. This latter gap is higher in energy by 0.54 eV.

For the double-layer structure, a direct gap of 1.07 eV is calculated in the Z-Γ direction,

near the Z point.

Similar to the single- and double-layer models for GeSe, the electronic structure for the

bulk also shows the VBM in the Z-Γ direction. The calculated indirect energy gap is 0.6

eV, and the CMB is also in the Z-Γ direction, but closer to the Γ point. Two possible

direct gaps one on the Z-Γ line and another at the Γ point are also suggested by our

first calculations. These are higher in energy by ∼0.33 and 0.25 eV than the indirect

gap, respectively.



List of Tables 127

Figure 8.7: Electronic band structures for single-layer, double-layer and bulk for α
phase of GeSe. A direct gap is observed for single-layer and double-layer systems, while
an indirect gap is calculated for the bulk. The red and green points mark positions of

CBM and VBM respectively.
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8.3 Conclusion and Final Comments

The preliminary results presented in this chapter discuss the electronic properties of

the α phase of single and double layers and also the bulk of metal monochalcogenides

forming the group of compounds: SnS, SnSe, GeS, GeSe.

A clear dependence of the gap energy Eg on the number of layers of these semiconductors

is observed, where Eg decreases as we increase the number of layers. By comparing our

calculated results with those of the more accurate GW approach for the SnS compound

investigated in a previous theoretical work, we see that despite the underestimated

gaps calculated by our DFT-GGA approximation, the shape of the electronic bands are

preserved, as well the positions of the VBM and CBM. This can give us a first qualitative

insight on the electronic and optical properties of these materials.

In the next steps of this work we will investigate the optical properties of the systems by

calculation of important properties such as the dielectric function ǫ(ω) and conductivity

σ(ω), that describe most of the macroscopic optical properties of solids. Structural

properties will also be studied in more details, where Van der Waals forces will be

considered in our calculations.
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Thermal conductivity of bn-c nanostructures. Phys. Rev. B, 86:

115410, Sep 2012. doi: 10.1103/PhysRevB.86.115410. URL

http://link.aps.org/doi/10.1103/PhysRevB.86.115410.

[90] Yungang Zhou, Zhiguo Wang, Ping Yang, and Fei Gao. Novel electronic and

magnetic properties of graphene nanoflakes in a boron nitride layer. The Journal

of Physical Chemistry C, 116(13):7581–7586, 2012. doi: 10.1021/jp300593q. URL

http://dx.doi.org/10.1021/jp300593q.

[91] Zhizhou Yu, M. L. Hu, C. X. Zhang, C. Y. He, L. Z. Sun, and Jianxin Zhong.

Transport properties of hybrid zigzag graphene and boron nitride nanoribbons.

The Journal of Physical Chemistry C, 115(21):10836–10841, 2011. doi: 10.1021/

jp200870t. URL http://dx.doi.org/10.1021/jp200870t.

[92] P. Sutter, R. Cortes, J. Lahiri, and E. Sutter. Interface formation in monolayer

graphene-boron nitride heterostructures. Nano Letters, 12(9):4869–4874, 2012.

doi: 10.1021/nl302398m. URL http://dx.doi.org/10.1021/nl302398m. PMID:

22871166.

[93] Shijun Zhao and Jianming Xue. Mechanical properties of hybrid graphene

and hexagonal boron nitride sheets as revealed by molecular dynamic simu-

lations. Journal of Physics D: Applied Physics, 46(13):135303, 2013. URL

http://stacks.iop.org/0022-3727/46/i=13/a=135303.
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