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This dissertation presents control strategies to solve the problem of suspended load trans-

portation by a Tilt-rotor Unmanned Air Vehicle (UAV) passing through a desired tra-

jectory. For the present study, it is important for the aircraft to maintain itself and the

load stable even in the presence of external disturbances, parametric uncertainties and

measurement errors.

In general, a precise dynamic model of a system is needed in order to design advanced

control strategies to it. Therefore, a rigorous dynamic model is derived for the Tilt-rotor

UAV with suspended load using Euler-Lagrange formulation. After obtaining the model,

it is then possible to design control laws that satisfy the desired specifications. Con-

sequently, linear and nonlinear control laws are designed.

In order to design linear control laws, the system is linearized around its operation

point. Two linear control laws are designed: one using D-stability control design and the

second using simultaneous D-stability and minimization of the H∞ norm.

As for the nonlinear control design, a three-level cascade strategy is proposed. Each

level of the cascade system executes a control law through the method of input-output

feedback linearization. Each one of these levels controls a different group of the system’s

state variables until the aircraft becomes fully stable. Two path tracking controllers are

specified for this strategy. The first considers the load only as a disturbance and does

not actuate to avoid its swinging. The second controller, on the other hand, seeks to find

a compromise between path tracking and reducing the load’s swing. At last, as proof

of concept, the nonlinear strategy is modified so that the aircraft is able to stabilize an

inverted pendulum.

For all the described control laws, it is considered that the physical measurements of

the aircraft are precisely known in all time instants. However, every physical measure

is subject to errors and uncertainties and one cannot always obtain a high sampling fre-

quency when measuring process variables. Therefore, part of this work is dedicated to the

study of uncertainties when measuring the position of the aircraft in a situation where

the controller has a higher sampling frequency than the GPS. In face of this problem,

the aircraft’s position must be estimated while no new measurements are available taking

also into the consideration the existence of disturbance inputs on the system. This whole

problem is solved by using the Kalman Filter with Unknown Inputs.
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Nessa dissertação são apresentadas estratégias de controle para solucionar o problema de

transporte de carga suspensa ao longo de uma trajetória desejada por um Véıculo Aéreo

Não Tripulado (VANT) na configuração Tilt-rotor. Para o presente estudo, é importante

que a aeronave seja capaz de manter tanto a si mesma quanto a carga transportada estável

mesmo na presença de perturbações externas, incertezas paramétricas e erros de medição.

Em geral, é importante que se tenha um modelo dinâmico preciso do sistema para

que se possa projetar estratégias de controle avançadas para o mesmo. Dessa forma, um

modelo dinâmico para o VANT Tilt-rotor com carga suspensa é rigorosamente derivado

usando a formulação de Euler-Lagrange. Com o modelo obtido, é posśıvel então projetar

leis de controle que satisfaçam as especificações desejadas. Para tanto, leis de controle

lineares e não lineares são projetadas.

Para projetar leis de controle lineares, lineariza-se o sistema em torno do seu ponto

de operação. Com o sistema linearizado, duas leis de controle são projetadas: uma por

D-estabilidade e outra que leva em consideração D-estabilidade e a normaH∞ simultanea-

mente.

Já para o projeto do sistema de controle não linear, uma estratégia em cascata é pro-

posta. Cada ńıvel do sistema em cascata executa uma lei de controle através do método de

linearização por realimentação de sáıda, sendo considerados três ńıveis. Cada um desses

ńıveis controla um grupo diferente de variáveis do sistema até que a aeronave esteja estável

por completo. Para essa estratégia, dois controladores para seguimento de trajetória são

especificados. O primeiro controlador considera a carga apenas como uma perturbação e

não atua para impedi-la de balançar, preocupando-se apenas com o seguimento de tra-

jetória. O segundo controlador, por sua vez, busca encontrar um compromisso entre seguir

a trajetória e reduzir o balanço da carga. Por fim, como prova de conceito, a estratégia

não linear é modificada de forma a fazer com que a aeronave estabilize um pêndulo inver-

tido.

Para os projetos de controle descritos, considera-se que todas as medições f́ısicas da

aeronave são precisamente conhecidas em todos instantes de tempo. Entretanto, é sabido



que toda medição f́ısica é sujeita a erros e imprecisões e nem sempre é posśıvel obter alta

frequência de amostragem ao medir alguma variável de processo. Portanto, parte desse

trabalho é destinada ao estudo de incertezas em medições de posição da aeronave em uma

situação na qual o controlador possua frequência de amostragem superior à frequência

de amostragem do GPS. Diante desse problema, deve-se estimar a posição da aeronave

enquanto não se tem novas medições levando em consideração que existem entradas de

perturbação no sistema. Esse problema é solucionado usando o Filtro de Kalman com

Entradas Desconhecidas.
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B(q) Force matrix (input coupling matrix)

Controllers Notation

d Exogenous disturbance vector

u Control effort vector

A Linear state matrix

Bu Linear input matrix

Bg Linear external input matrix

K Control matrix

V (x) Lyapunov function

γ Attenuation level of the H∞ problem

H(s) Transfer function between the input signal and the output signal z

‖H(s)‖∞ H∞-norm of the transfer function H(s)

Cz, Duz, Dwz Weighting matrices of the linear H∞ controller
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f(x) Nonlinear drift vector field

gu(x) Nonlinear steering vector field

gd(x) Nonlinear external steering vector field

h(x) Nonlinear output vector field

Df , Jacobian matrix associated to the vector field f(x)

ri Relative degree of the ith output

Φ(x) Diffeomorphism function

z Transformed state-space vector

v Transformed input vector

ϑ Internal dynamics state-space vector

qc Controllable variables vector

qu Uncontrollable variables vector

σ(p) Saturation function

State Estimation Notation

Ts GPS’s sampling time

τs Controller’s sampling time

wk Process noise

Q Process noise’s covariance matrix

vk Measurement noise

Rk Measurement noise’s covariance matrix

E [·] Expected value operation

Lk Kalman Filter’s gain matrix

ek|k−1 Forecast error

νk|k−1 Innovation

ek|k Data-assimilation error

P xx
k|k−1 Forecast error covariance

P yy
k|k−1 Innovation covariance

P xy
k|k−1 Cross covariance

P xx
k|k Data-assimilation error covariance
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1.1 Motivation

It is a moment of great development on Unmanned Aerial Vehicles (UAV) research. Many

fields of control and robotics, such as sensor fusion, computer vision, rapid prototyping,

state estimation and control methodologies improved the performance of this kind of sys-

tems. This allowed UAV’s to be produced with low cost, becoming accessible to numerous

research facilities and hobbyists all around the world.

As for the applications, there is a vast list of UAV uses: cargo delivery, surveillance,

field recognition, cave exploration, cinematographic filming, military purposes, water and

spray over plantations, 3-D mapping, search and rescue, wildlife research, among many

others. In short, UAVs are being increasingly used for diverse civil and military purposes.

Presently, the most commonly studied UAVs are helicopters, quadcopters and fixed-

wing airplanes. Usually, helicopter-like aircrafts have the advantage over the airplanes for

performing Vertical Take-off and Landing (VTOL). On the other hand, airplanes are able

to fly at higher speeds than helicopters. In order to combine the advantages of these kind

of aircrafts, present research on UAVs is looking into the direction of the Tilt-rotor UAV, a

hybrid copter-plane aircraft. The Tilt-rotor is a type of aircraft that combines the vertical

lift capacity of helicopters with the range and speeds of fixed-wing airplanes. As its name

suggests, the Tilt-rotor UAV uses tiltable rotating propellers for lift and propulsion.

When compared to Quadrotor and Helicopter UAVs, the Tilt-rotor present the follow-

ing advantages:
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• Birotor helicopters are driven by two rotors, which reduces each rotor’s size keeping

the same payload when compared to a helicopter with main propeller. In comparison

with quadcopters, Tilt-rotors are smaller and consume less energy.

• Tilt-rotors do not need mechanical coupling actuating on its propellers. This sim-

plifies the project, reduces maintenance, and, consequently, decreases the vehicle’s

cost.

• The simplicity of the mechanical design provides movement control through direct

transmission to the rotors, varying their speed and tilting them. In a standard heli-

copter, the angular velocities of the propellers are usually constant and its movement

is controlled by changing the angle of attack of the blades. This requires transmission

between the rotors as well as precision mechanical devices to change these angles.

From the control systems perspective, the construction of this kind of UAV is far

from simplifying the problem. The torques and forces necessary to control the system are

applied not only by aerodynamic effects, but also through the coupling effect that occurs

between the dynamics of the rotors and the aircraft’s body. This fact, together with the

uncertainties of the model, especially in high frequency bands, makes this system even

more complex to be controlled than a standard helicopter, specially when using classic

control techniques.

It is worth pointing out that the Tilt-rotor UAV is an underactuated mechanical

system, i.e. it possesses less inputs than degrees of freedom. This is result of a trade-off

made between electromechanical design, where it is desired to minimize the number of

actuators - causing weight reduction, lower cost, less energy consumption - of the system,

and control design, where more actuators simplify the project. Consequently, techniques

that are commonly used for fully actuated systems cannot be applied to this kind of

systems, given that most underactuated systems are not fully linearizable. Therefore, it is

common to employ nonlinear modelling and control techniques to underactuated systems

(e.g. aircrafts) so as to reach high-performance flight in specific conditions such as: hover,

take off, land, etc (Castillo et al., 2005c).

1.1.1 Historical Background

Historically (Maisel et al., 2000), the first attempt to develop a functional Tilt-rotor

started in Germany in 1942 with the Focke Achgelis FA-269 (figure 1.1). However, this

project was abandoned after a full-scale mockup was destroyed during a bombing in the

Second World War. The idea of a Tilt-rotor intrigued two american enterprising engineers;

Dr. Wynn Laurence LePage and Haviland Hull Platt (Platt-LePage Aircraft Company of

Eddystone, Pennsylvania) decided to produce the Platt-LePage XR-1A. Again, the design

was never developed, but granted a patent for the concept in July, 1950. While Platt and

Lepage were patenting their ideas, the Transcendental Aircraft Corporation initiated work

on the Model 1-G in 1947. The Model 1-G was the world’s first Tilt-rotor-like aircraft

to fly and premiered in June, 1954 (figure 1.2). However, after more than 100 successful

flights, the Model 1-G had reached partial conversions to within 10◦ of the airplane mode

but crashed on July, 1955. A Transcendental Model 2-G was subsequently developed,
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but the American Air Force withdrew funding support to the enterprise and the program

terminated in 1957.

Figure 1.1: Focke Achgelis FA-269 (Courtesy of Aviastar).

Figure 1.2: Transcendental 1-G (Courtesy of Aviastar).

Going back in time, in 1950 the United States started the Convertiplan Program

(Maisel et al., 2000). The program required someone to build an aircraft that could

maintain significant hover duration, low speed manoeuvring and agility, and higher speeds

than conventional helicopters. Three designs were selected from a design competition: the

XV-1 compound helicopter (proposed by McDonnell Aircraft Co.), the XV-2 stoppable

rotor aircraft (proposed by Sikorsky Aircraft) and the XV-3 Tilt-rotor aircraft (submitted

by the Bell Helicopter Company). The XV-2 did not survive the initial evaluation phase

and the XV-1 (figure 1.3) experienced severe oscillatory load conditions when performing

its initial tests in 1955. The XV-3 (figure 1.4) initially had some instability problems that

caused a hard landing with minor damage in 1955 and a serious crash in 1956. After a

big effort of the engineering crew, in December 1958 the XV-3 accomplished the goal of

completing a dynamically stable full conversion to the airplane mode.

The XV-3 flew throughout thirteen years of restless tests. However, the aircraft did

not reach high speeds as expected for a Tilt-rotor; it could reach only 212 km/h, a common

speed for helicopters of the time. Moreover, the aircraft had stability problems and it was

feared that it could be destroyed during flight. As a result, the Convertiplan Program

closed and gave space for the XV-15 program, which was launched in 1971 at NASA Ames

Research Center with the objective of research and development of prototype designs of

an improved Tilt-rotor aircraft. Two contracts were issued in 1972: one to Bell Helicopter
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Figure 1.3: McDonnell Aircraft Co. XV-1 compound helicopter (Courtesy of Aviastar).

Figure 1.4: Bell Helicopter Company XV-3 Tilt-rotor aircraft (Courtesy of Aviastar).

(Bell Model 301) and the other to Boeing-Vertol (Model 222). In 1973 NASA chose the

Bell Model 301 for further development and the Bell XV-15 (figure 1.5) first flew in 1977.

The XV-15 reached 456 km/h, proving its concept.

With the success of the XV-15, the United States Department of Defense started the

Joint Advanced Lift Aircraft program in 19821. The aim of the program was to develop

a military aircraft that could take off and land vertically and also carry combat troops at

speed. Bell Helicopter teamed with Boeing Vertol submitting a proposal for an enlarged

version of the Bell XV-15. In 1986, the so-called Osprey V-22 (figure 1.6) started to be

produced in full-scale. The Osprey V-22 was target of controversy on next years mainly

due to its production cost and safety incertitude. Therefore, it was only in 2000 that the

United States Marine Corps began crew training for the Osprey V-22, fielding it in 2007.

In 1998 Bell Helicopters started a joint venture with AugustaWestland, establishing

the Bell/Augusta Aerospace Company (BAAC). Their objective was to design the BA609,

a civil version of the Osprey V-22. The BA609 first flew in 2003 and its first conversion

from helicopter to airplane took place in 2005. In 2011 AugustaWestland assumed full

1Further information is provided on http://www.globalsecurity.org/military/systems/aircraft/v-22-
history.htm
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Figure 1.5: Bell Helicopter XV-15 Tilt-rotor aircraft (Courtesy of Wikipedia).

Figure 1.6: Osprey V-22 Tilt-rotor (Courtesy of Wikipedia).

ownership of the program, renaming the aircraft to AW609 (figure 1.7). AugustaWest-

land is now working with the International Civil Aviation Organization to ensure that

the regulatory framework is in place before the AW609 starts operating in commercial

marketplace in 20172.

Figure 1.8 compare the speeds of the Osprey V-22 and the AW609 with some other

helicopters 3. It can be seen that the cruise speed of Tilt-rotors exceed by far the cruise

speed of other helicopters. On the other side, Tilt-rotors are not as fast as most airplanes,

as shown on figure 1.94.

After the successful development of the Osprey V-22, Bell Helicopters started the

Eagle Eye program in 1993: the objective was to develop a small scale Vertical Takeoff

Unmanned Aerial Vehicle. In 1998 the TR911X (figure 1.10) was tested and approved in

2Further information is provided on http://www.agustawestland.com/news/agustawestland-
completes-first-customer-demonstration-aw609

3The equivalence between knots and km/h is: 1 knot = 1.852 km/h.
4Figures extracted from http://www.findthebest.com/
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Figure 1.7: Augusta Westland AW609 Tilt-rotor (Courtesy of Wikipedia).

Figure 1.8: Cruise Speeds of Various Helicopters (Courtesy of FindTheBest).

land operations, reaching 370 km/h with an endurance of approximately 6hours with a

90.7 kg payload5. The TR911X is then the first Tilt-rotor UAV ever created.

In 2010, the American’s Defense Advanced Research Projects Agency (DARPA) initi-

ated the DARPA TX program, also known as the Transformer program. In 2013, DARPA

selected the Lockheed Martin’s Aerial Reconfigurable Embedded System (ARES - figure

1.11) design concept to move forward. The ARES6 is a Tilt-rotor UAV capable of at-

taching to vehicles, providing flexible, terrain-independent transportation for logistics,

personnel transportation and tactical support missions for small ground units.

At the beggining of last decade, Tilt-rotor UAVs became subject of study in many

universities around the world, and some of them even designed small-scale prototypes for

test. The first one found in literature was developed at the Universite de Technologie de

5Further information is provided on http://www.naval-technology.com/projects/belleagleeyeuav/
6Further information is provided on http://www.lockheedmartin.com/us/products/ares.html/
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Figure 1.9: Cruise Speeds of Various Airplanes (Courtesy of FindTheBest).

Figure 1.10: Bell Eagle Eye TR911X (Courtesy of BlueSkyRotor).

Compiegne, named BIROTAN (BI-ROtors with tilting propellers in TANdem) (Kendoul

et al., 2005). Since then, many other designs appeared, namely: the Arizona State Uni-

versity’s Tilt-wing HARVee (High-Speed Autonomous Rotorcraft Vehicle) (Dickeson et

al., 2007); the T-Phoenix (Sanchez et al., 2008); the Tilt-rotor of the Korea Aerospace

Research Institute (Lee et al., 2007); the Tilt-rotor of the Nanjing University of Aero-

nautics and Astronautics - China - (Yanguo and Huanjin, 2009); the UPAT Tilt-rotor

(Papachristos et al., 2011b), among others.

Even though many universities proposed to develop and control Tilt-rotor-like air-

crafts, the literature is still very poor on experimental results. It is in this context that

the Brazilian universities Universidade Federal de Minas Gerais (UFMG) and Universid-

ade Federal de Santa Catarina (UFSC) started the ProVant project (Gonçalves et al.,

2013). The aim of the project is to develop a fully open-source small scale Tilt-rotor air-

craft capable of performing autonomous flights and waypoint navigation. In 2013 UFSC’s

ProVant team designed the Tilt-rotor 1.0, which is now on phase of assemblage (figure

1.12). In 2014 the UFMG’s ProVant team came up with the design of the Tilt-rotor 2.0

(figure 1.13), which is also being assembled.
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Figure 1.11: Lockheed-Martin’s ARES concept (Courtesy of Lockheed Martin).

Figure 1.12: ProVant Model 1.0.

1.2 State of the Art

This section presents some literature review about control of Tilt-rotor UAVs and the

problem of load transportation. To the best knowledge of the author, there are no articles

dealing with load transportation using a Tilt-rotor.

1.2.1 Tilt-rotor UAV control

Until the year of 2005, only a small quantity of research works were published assessing

control of Tilt-rotor aircrafts. Most of the previous research and published work related to

Tilt-rotors derived from issues and problems during aircraft development (Kleinhesselink,

2007).

Then, one of the first approaches to design and control a small-scale Tilt-rotor for

research purposes came with Kendoul et al. (2005). This work based on the ideas of

Gress (2002) and intended to design the BIROTAN, a Tilt-rotor where each rotor has
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Figure 1.13: ProVant Model 2.0.

two degrees of freedom, instead of only one as used on the Osprey V-22 and AW609.

However, the BIROTAN project was abandoned due to the difficulty of implementing the

two degrees of freedom on each rotor of the real aircraft. A few years later, the researchers

designed a new Tilt-rotor called T-Phoenix (Sanchez et al., 2008), with only one degree

of freedom in each rotor. They designed a control law using nonlinear control in the

vicinity of the equilibrium point and experimental results were successful on maintaining

the aircraft in hovering. In order to design the controller, a simplified dynamic model was

derived for the system.

Lee et al. (2007) explored the use of gain-scheduling to control a Tilt-rotor’s roll

and pitch by choosing a vast number of linearization points. This result is part of a

Korean initiative to develop a Tilt-rotor UAV at the Korea Airspace Research Institute -

KARI. A linear controller was designed for each of the linearization points with use of an

optimization method called ‘particle swarm optimization’. In each controller, the objective

function was to maximize gain and phase margin while allocating poles within a defined

region of the complex plane. Simulation results showed that the system follows desired

trajectories but unfortunately the authors do not provide any information regarding the

system’s model used for controller design and simulation. KARI’s Tilt-rotor UAV flew in

2013, with results being presented by Kang et al. (2013).

Dickeson et al. (2007) also proposed a gain-scheduling controller to command a Tilt-

wing aircraft. 7 However, each controller maximized disturbance rejection (H∞ control)

instead of phase and gain margins. Again, the system model used for simulation was

not provided on the paper, but it was referenced as obtained from Kinder and Whitcraft

(2000) and Mix and Seitz (2000).8

Yanguo and Huanjin (2009) propose a full control of a Tilt-rotor UAV by means

of cascade control. The inner loop controls the attitude of the aircraft using feedback

linearization, while the outer loop controls the position of the aircraft. However, the

7Tilt-wing aircrafts are similar to Tilt-rotors with the difference that Tilt-wings tilt both the rotors
and the wings, while a Tilt-rotor tilt only its rotors.

8These two papers cannot be accessed from the Periodicos CAPES - both papers were published on
the American Institute of Aeronautics and Astronautics - AIAA.
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feedback linearization was done using a numerical model obtained from tests in a wind-

tunnel, which requires identification of the aircraft’s model for each different Tilt-rotor.

Simulation results look promising, but the authors do not provide the experimental results

allegedly obtained.

The work of Dhaliwal and Ramirez-Serrano (2009) presented an approach to control a

Tilt-rotor UAV using Fuzzy Logic Control. First, a controller was designed using a trial-

and-error method, whose simulations showed that it was possible to maintain the aircraft

stable in hovering position but it could become unstable in some other configurations.

In order to solve that, the authors designed a different controller using an optimization

module that could satisfy some constraints such as stability or path tracking. Although

intuitive and effective, it is hard to guarantee stability when using approaches like Fuzzy

Logic Control.

Papachristos et al. (2011a) studies a Model Predictive Control for the attitude of a Tilt-

rotor aircraft. Simulation results showed that the controller was successful on controlling

the attitude of the aircraft, while rejecting disturbance inputs. However, the researchers

used a simplified dynamic model of the Tilt-rotor both for simulations and controller

design.

Papachristos et al. (2011b) made an adaptation from the previously mentioned work of

Sanchez et al. (2008). The model was improved so as to include coupling gyroscopic body

effects. The control design is similar but the experimental results seem to be less stable.

However, given that the mechanical and hardware architectures of both works are very

different, it is not possible to compare their controller designs solely from experimental

results.

Bhanja Chowdhury et al. (2012) derived a simplified Euler-Lagrange model for the

Tilt-rotor UAV and used it to design a Back-stepping control strategy for the aircraft.

Simulation results showed that the aircraft could stabilize and respond to step references

even when starting far from the equilibrium point.

A similar approach using Back-stepping control was done by Amiri et al. (2013), using

the model derived at Amiri et al. (2011). This work considered that the tilting propellers

have two tilting degrees of freedom.

1.2.2 Load Transportation

When comparing to the literature of Tilt-rotor, there is a wider group of publications that

explore the problem of load transportation. If one is able to control the attitude of an

aircraft, then the system aircraft with load can be approximated to a crane system where

it is possible to actuate with forces on three Cartesian axes so as to regulate both position

and load swing. This subsection presents some recent works assessing both control of

crane systems and load transportation using aircrafts.

Moon et al. (2012) and Lee et al. (2013) both introduce nonlinear controllers that

stabilize overhead cranes performing the task of load transportation. The first work used

a Sliding Mode Controller which adapts along with time while estimating some unknown

parameters. The latter work, on the other hand, used a Partial Feedback Linearization
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approach so as to obtain a stable closed-loop system, supported by experimental results.

Both controllers were designed based on a detailed Euler-Lagrange model of the system.

Faust et al. (2013) used a Quadrotor UAV to transport a suspended load from one

desired point to another. In order to avoid load swing, the researchers used a machine

learning approach without making any assumption about the dynamics of the system.

Their experiment is separated in two phases: in the learning phase, the system learn the

value function approximation for a particular load. Once the value function is learned, it

is used to generate the trajectories for the aircraft to accomplish the goal while minimizing

load swing on its final position.

Dai et al. (2014) also uses a Quadrotor UAV to stabilize the swing of a suspended load.

However, in this work the nonlinear model of the whole system is considered. A load with

unknown mass is attached to the aircraft by a chain of n links with unknown masses. The

authors compare three control approaches: one using classic PD controllers, another using

PID and a third one combining PD with Retrospective Cost Adaptive Control (RCAC).

The idea of applying the RCAC was to adapt the controller while estimating the masses

of the load and the chain links. Simulation results show that RCAC+PD responded faster

than PID in the presence of mass uncertainties. Although more rigorous, the use of many

links approach might have some implementation drawbacks, given that each link’s position

should be constantly measured, instead of measuring only the position of the load.

Sreenath et al. (2013) generates trajectories to a Quadrotor UAV so that a suspended

load passes through a desired trajectory. This work proves that a Quadrotor with sus-

pended load is differentiably flat and explores this property to propose controllers for the

system that can either track the Quadrotor attitude, the load attitude or the load posi-

tion. They derive equations to control the load position and minimize its sixth derivative,

insuring minimum snap motion for the Quadrotor. Experimental results are presented

where the load follows the desired path while the aircraft minimizes its motion along with

time.

If one considers that the load is attached to the aircraft by a rigid string and its

initial position is right above the aircraft, the system becomes an inverted pendulum.

Controlling an inverted pendulum, because of its inherent instability, is more complicated

than controlling a swinging load. However, both systems are similar and so are their

control designs. Therefore, its worthwhile mentioning the work of Hehn and D’Andrea

(2011), who used a Quadrotor UAV to stabilize an inverted pendulum9.

1.3 Justification and Objectives

The present work focus on the development of control laws for the Tilt-rotor UAV with the

further requirement that it should pass through a desired trajectory carrying a suspended

load, as illustrated in figure 1.14. For the present study, it is important for the aircraft

to maintain itself and the load stable even in the presence of external disturbances, para-

metric uncertainties, unmodelled dynamics and measurement errors. Only the helicopter

9Experimental results are shown on http://www.idsc.ethz.ch/people/staff/hehn-m
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mode of the Tilt-rotor is assessed and results are presented via simulations, given that

the Tilt-rotor UAV is not yet ready for flight in the ProVant project.

Figure 1.14: ProVant Model 2.0 with Suspended Load.

Among all cited works on the previous section 10, only Sanchez et al. (2008), Papa-

christos et al. (2011b) and Kang et al. (2013) presented experimental results to the control

of a Tilt-rotor UAV. The first two achieved the goal of keeping the Tilt-rotor in hover-

ing while using nonlinear controllers designed to work in the vicinity of their equilibrium

point (hover); the third work presented results for all flight envelope, but did not provide

much information about its model or controller design. All other papers that evaluated

closed-loop control of the Tilt-rotor used a simplified—or did not provide any—system

model, which means that their simulation results might not be consistent with reality.

Therefore, in the present work, a rigorous dynamic model for the aircraft is obtained

using Euler-Lagrange formulation. The tilting angles are considered as state variables

of the system, instead of inputs. These angles, in turn, are actuated by input torques

applied by a pair of servomotors, obtaining a system affine in the inputs. The dynamic

equations for the suspended load are also introduced in the same model. Dynamic and

gyroscopic coupling between position motion, attitude motion, load swinging and tilting

angles variation are considered. Thus, one should expect more trustworthy simulation

results than previously published works.

As for the control system, linear and nonlinear control laws are designed. In order

to design linear control laws, the system is linearized around its operation point. Two

linear control laws are designed: one using D-stability control design and the second

using simultaneous D-stability and minimization of the H∞ norm. These controllers

provide stabilization of all state variables (including the load) and their performances are

evaluated and compared.

10Given that the ProVant project aims to design a Tilt-rotor with only one degree-of-freedom on its
tilting propellers, further analysis solely considers works with similar designs. The introduction of a
second degree of freedom widely simplifies the problem of controlling the Tilt-rotor UAV.
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When dealing with nonlinear control design, a three-level cascade strategy is proposed.

Each level of the cascade system executes a control law through the method of input-

output feedback linearization. The two innermost levels are responsible for controlling

attitude and altitude of the aircraft. The third level uses theory of load transportation

to stabilize the rest of the system. Two path tracking controllers are specified for this

strategy. The first considers the load only as a disturbance and does not actuate to avoid

its swinging. The second controller, on the other hand, seeks to find a compromise between

path tracking and reducing the load’s swing, based on the approach of Lee et al. (2013).

Performance is evaluated and compared for linear and nonlinear controller designs.

As proof of concept, the nonlinear strategy is slightly modified so that the aircraft is

able to stabilize an inverted pendulum.

Furthermore, the analysis of the Tilt-rotor UAV’s performance in the presence of

measurement uncertainties with low sampling frequency is studied, a common problem

when using GPS measurements. In face of this problem, the aircraft’s position must be

estimated while no new measurements are available taking also into the consideration

the existence of disturbance inputs on the system. With use of the Kalman Filter with

Unknown Inputs, it is possible to estimate the aircraft’s position with higher precision,

helping the aircraft to accomplish the task of path tracking with low tracking error.

The objectives of this work is summarized as follows:

• Model the Tilt-rotor UAV with suspended load using Euler-Lagrange formulation.

• Development of linear and nonlinear control strategies for path tracking of the Tilt-

rotor aircraft with suspended load. The control laws should be robust to input

disturbances, parametric uncertainties and unmodelled dynamics.

• Investigation of the system’s performance in presence of measurement uncertainties

with low sampling rate.

1.4 Structure of the Text

The thesis is organized as follows:

• Chapter 2 derives the equations of motion for the Tilt-rotor UAV with suspended

load using Euler-Lagrange formulation. From these equations, an state-space rep-

resentation for the system is introduced. Parameters of the Tilt-rotor UAV used in

this dissertation are presented.

• Chapter 3 deals with closed-loop linear control for the Tilt-rotor UAV with sus-

pended load. Two linear control strategies are derived in the vicinity of the aircraft’s

equilibrium point: D-stability and D-stability with minimization of the H∞ norm.

Simulation results are provided so as to show the effectiveness of each designed

strategy, comparing them.
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• Chapter 4 deals with closed-loop nonlinear control for the Tilt-rotor UAV with

suspended load. A nonlinear control strategy is developed based on a cascade scheme

with three input-output feedback linearization blocks, where each block stabilizes

a given quantity of state variables until the whole system is stable. Three control

solutions are provided: the first considers the load only as a disturbance and does not

actuate to avoid its swinging. The second solution, on the other hand, seeks to find a

compromise between path tracking and reducing the load’s swing. The third solution

is used for stabilization and path tracking of an inverted pendulum. Simulation

results are provided so as to show the effectiveness of the designed strategies, also

comparing them with the linear approaches of Chapter 3.

• Chapter 5 presents a strategy for position estimation of the aircraft in the presence

of measurement uncertainties with low sampling rate. A simplified linear model is

derived for the aircraft’s translational motion so that it can be used to estimate

the Tilt-rotor UAV’s position using the Linear Kalman Filter with Unknown Inputs

algorithm. An interesting advantage of this algorithm is that it estimates disturb-

ance inputs on the system, incorporating this information on the position estimation

itself.

• Chapter 6 summarizes the contributions and results presented in this dissertation

and suggests possible future research lines.
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2.1 Introduction

This chapter focuses on modeling the Tilt-Rotor UAV with suspended load. The equations

of motion are adapted from Donadel et al. (2014b), who uses Euler-Lagrange formulation

to obtain the differential equations of the aircraft (without the suspended load). Their

derivation is adapted so as to include the degrees of freedom of the hanging weight.

The Tilt-Rotor UAV with suspended load is a multibody system composed of four

rigid bodies (see Figure 2.1):

• Main body - composed of a carbon-fiber structure, a landing gear, a battery, and a

group of electronic devices;

• Two thrusters groups - one on each side of the aircraft (servomotors with rotors),

interconnected to the main body by actuated revolute joints;

• Suspended load - load attached to the main body via a rigid pole with negligible

mass.
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Figure 2.1: Tilt-rotor UAV.

The movements on the aircraft result from the thrusts fR and fL generated by the

rotors and from the amplitude of the rotation angles αR and αL of the servomotors. Pitch

motions can be achieved by equally varying αR and αL, given that the thrusts fR and

fL are non-zero. Lateral displacements (i.e. roll motions) can be obtained by applying a

thrust fR different from fL. Yaw movements are performed by tilting αR in the opposite

direction of αL (again, given that the thrusts fR and fL are non-zero). Vertical motion is

obtained by equally varying fR and fL, given that αR and αL angles are lower than π
2
rad.

It should be noted that the two propellers rotate in opposite directions in relation to

each other. This solution helps on reducing yaw motion caused by propellers’ drag. This

statement will be clarified when deriving the equations of motion in the next subsections.

Section 2.2 presents the generalized coordinates of the system. Section 2.3 derives

the Forward Kinematic Model for each of the UAV’s bodies with respect to the inertial

frame. Section 2.4 derives the dynamic model using Euler-Lagrange formulation. Section

2.5 presents the system’s dynamic representation on the form of nonlinear state-space

equations. Finally, section 2.7 brings a conclusion about what was presented in the whole

chapter. Further details on robotics theory can be seen in Appendix A.

2.2 Generalized Coordinates

This section defines the frames and generalized coordinates for the Tilt-Rotor UAV.

Consider the frames shown in Figure 2.2. There is a fixed inertial frame I, a moving

frame B rigidly attached to the main body, a frame C1 rigidly attached to the main body’s

center of mass, a frame C2 rigidly attached to the rotation axis of the right servomotor, a

frame C3 rigidly attached to the rotation axis of the left servomotor, and a frame C4 rigidly

attached to the center of mass of the suspended load. It is assumed that the rotation axes

of both rotors coincide with their respective center of masses.

Moreover, ξ = [xI yI zI ]T is defined as the translation between the origins of frames

I and B, and dBi = [dBxi dByi dBzi]
T is the translation between the origins of frames B and

Ci, for i = 1, 2, 3, 4. It should be noted that dB1 , dB2 and dB3 are all constants, while dB4
varies due to the degrees of freedom of the suspended load.
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Figure 2.2: Tilt-rotor UAV frames and variables definition.

In order to calculate the vector dB4 , it is used a parametrization that considers the load

as a pendulum with a massless rigid rod of length l and two degrees of freedom represented

by γ1 and γ2 (rotations around xB and yB, respectively). The Forward Kinematic Model

(FKM) of the pendulum subsystem with respect to the aircraft’s body is given by:

dB4 = Ry,γ2Rx,γ1

 0

0

−l

 = l

−cγ1sγ2sγ1
−cγ1cγ2

 , (2.1)

where cθ = cos(θ) and sθ = sin(θ).

The load’s attitude is represented with respect to frame B and its rotation matrix

is RBC4 = Ry,γ2Rx,γ1 . The main body attitude in relation with frame I is described by

η = [φ θ ψ]T (Euler angles with the roll-pitch-yaw convention)1.

The attitude of the rotors in relation to the main body (RBCi , for i = 2, 3) is also

described using Euler angles. However, it is assumed that there is no rotation around axis

zCi , and the rotation around axis xCi is constant and defined by −β for i = 2 and β for

i = 3, where β is a small angle. The angle of rotation around axis yCi , on the other hand,

is variable and is denoted by αR for the frame C2 and αL for the frame C3.

Therefore, the generalized coordinates vector q ∈ <10 is defined as follows:

1The used convention is shown on Appendix A.1.
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q =


ξ

η

α

γ

 , (2.2)

where α =
[
αR αL

]T
and γ =

[
γ1 γ2

]T
.

2.3 Kinematics

The relation of a point rigidly attached to the body frame pB with respect to the inertial

frame pI is given by:

pI = RIBp
B + ξ, (2.3)

where RIB is the rotation matrix from frame B to I. This matrix is derived using the

roll-pitch-yaw convention and is given by:

RIB =

cψcθ cψcθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 . (2.4)

Moreover, the relation between a point rigidly attached to frame Ci in relation to the

body frame B is obtained as follows:

pBi = RBCip
Ci
i + dBi , i = 1, 2, 3, 4. (2.5)

Thus, by replacing equation (2.5) into (2.3) the rigid motion with respect to I is

computed by:

pIi = RIB(RBCip
Ci
i + dBi ) + ξ, i = 1, 2, 3, 4. (2.6)

2.4 Dynamics using Euler-Lagrange Formulation

This section derives the Euler-Lagrange’s equations of motion2.

2Further details on Euler-Lagrange’s formulation can be seen in Appendix A.3
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A slight variation from the common Euler-Lagrange equations is introduced so as to

separate the external forces into known and unknown forces. This model considers that

dissipative viscous friction forces are known forces that can be experimentally obtained.

The insertion of these friction components are mathematically useful because it provides

stabilization of some elements of the system. Thus, Euler-Lagrange equations can be

written as:

M (q)q̈ +C(q, q̇)q̇ +G(q) = F (q) + Fext + Fdrag, (2.7)

where M (q) ∈ <10×10 is the inertia matrix, C(q, q̇) ∈ <10×10 is the Coriolis and cent-

rifugal forces matrix, G(q) ∈ <10 is the gravitational force vector, F (q) ∈ <10 is the

independent generalized input force vector, Fext ∈ <10 represents external disturbances

on the system and the vector Fdrag ∈ <10 is the generalized drag force vector. Assuming

that drag forces are proportional to the generalized velocity, they are given by:

Fdrag = µq̇, (2.8)

where µ ∈ <10×10 is a constant matrix. Consequently, equation (2.7) can be rewritten as

follows:

M (q)q̈ + [C(q, q̇)− µ]q̇ +G(q) = F (q) + Fext. (2.9)

2.4.1 Inertia Matrix

The inertia matrix is obtained by calculating the system’s kinetic energy and expressing

it in the form K = 1
2
q̇TM (q)q̇. Since the Tilt-Rotor UAV is considered a multibody

system, the kinetic energy of the whole system is given by the sum of the individual

kinetic energies Ki of each body (Shabana, 2013):

K =
4∑
i=1

Ki, (2.10)

where the kinetic energy of the ith body can be obtained from the volume integral:

Ki =
1

2

∫
Vi

ρi(v
I
i )T (vIi )dVi, (2.11)

and ρi is the mass density at body i. The vector vIi is the velocity of a point of body i

with respect to frame I and is given by the time derivative of equation (2.6):
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vIi = ṗIi = ṘIB(RBCip
Ci
i + dBi ) +RIB(ṘBCip

Ci
i +RBCiṗ

Ci
i + ḋBi ) + ξ̇. (2.12)

As stated before, the points pCii are rigidly attached to their respective frames, which

leads to ṗCii = 0 for i = 1, 2, 3, 4. Translations dBi for i = 1, 2, 3 are constant, resulting in

ḋB1 = ḋB2 = ḋB3 = 0. Since RBC1 is also constant (the body’s frame B is fixed with respect

to the frame of the UAV’s center of mass C1), then ṘBC1 = 03×3.

Moreover, it is now possible to use the property of skew symmetric matrices3 given

by ṘA
B(t) = RA

B(t)S(ωBBA(t)), being ωBBA(t) ∈ <3 the angular velocity of frame B with

respect to frame A represented in frame B. Thus, equation (2.12) can be rewritten for

each body in the form:

ṗI1 = RIBS(ωBBI)(R
B
C1p
C1
1 + dB1 ) + ξ̇ (2.13)

ṗIi = RIBS(ωBBI)R
B
Cip
Ci
i +RIBS(ωBBI)d

B
i +RIBR

B
CiS(ωCiCiB)pCii + ξ̇, i = 2, 3 (2.14)

ṗI4 = RIBS(ωBBI)R
B
C4p
C4
4 +RIBS(ωBBI)d

B
4 +RIBR

B
C4S(ωC4C4B)pC44 +RIBḋ

B
4 + ξ̇. (2.15)

With use of the skew symmetric matrices properties S(p)q = S(q)Tp, S(ap+ bq) =

aS(p) + bS(q) and S(Rp) = RS(p)RT , equations (2.13) – (2.15) can be rewritten as:

ṗI1 = RIBR
B
C1S(pC11 )T (RBC1)

TωBBI +RIBS(dB1 )TωBBI + ξ̇ (2.16)

ṗIi = RIBR
B
CiS(pCii )T (RBCi)

TωBBI +RIBS(dBi )TωBBI +RIBR
B
CiS(pCii )TωCiCiB + ξ̇, i = 2, 3

(2.17)

ṗI4 = RIBR
B
C4S(pC44 )T (RBC4)

TωBBI +RIBS(dB4 )TωBBI +RIBR
B
C4S(pC44 )TωC4C4B +RIBḋ

B
4 + ξ̇.

(2.18)

The product (vIi )T (vIi ) is then given by:

(vI1 )T (vI1 ) = X1 (2.19)

(vI2 )T (vI2 ) = X2 + Y2 (2.20)

(vI3 )T (vI3 ) = X3 + Y3 (2.21)

(vI4 )T (vI4 ) = X4 + Y4 + Z4. (2.22)

where Xi, Yi and Zi are given by:

3Further details on skew symmetric matrices can be seen on Appendix A.2
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Xi = ξ̇T ξ̇ + 2 ξ̇TRIBR
B
CiS(pCii )T (RBCi)

TωBBI + 2 ξ̇TRIBS(dBi )TωBBI

+ (ωBBI)
T
[
RBCiS(pCii )S(pCii )T (RBCi)

T + 2RBCiS(pCii )(RBCi)
TS(dBi )T

+ S(dBi )S(dBi )T
]
ωBBI (2.23)

Yi = 2 ξ̇TRIBR
B
CiS(pCii )TωCiCiB + (ωCiCiB)TS(pCii )S(pCii )TωCiCiB

+ (ωBBI)
T
[
2RBCiS(pCii )S(pCii )T + 2S(dBi )RBCiS(pCii )T

]
ωCiCiB (2.24)

Zi = 2 ξ̇TRIBḋ
B
i + (ωBBI)

T
[
2RBCiS(pCii )(RBCi)

T + 2S(dBi )
]
ḋBi

+ 2ωCiCiBS(pCii )RBCiḋ
B
i + (ḋBi )T ḋBi . (2.25)

Assuming that all the system’s bodies are symmetric and that each frame Ci coincides

with the center of mass of the ith body, the following holds (Shabana, 2013, p. 147):

∫
Vi

ρip
Ci
i dVi = 03×1. (2.26)

Thus, substituting equations (2.19)-(2.22) into (2.11) and taking into account property

(2.26), the kinetic energies of the system’s bodies yields to:

K1 = X ′1 (2.27)

K2 = X ′2 + Y ′2 (2.28)

K3 = X ′3 + Y ′3 (2.29)

K4 = X ′4 + Y ′4 + Z ′4. (2.30)

where X ′i, Y
′
i and Z ′i are given by:

X ′i =
1

2
miξ̇

T ξ̇ −miξ̇
TRIBS(dBi )ωBBI

+
1

2
(ωBBI)

T

[
RBCi

[ ∫
S(pCii )TS(pCii )dm

]
(RBCi)

T +miS(dBi )TS(dBi )

]
ωBBI (2.31)

Y ′i = (ωBBI)
TRBCi

[ ∫
S(pCii )TS(pCii )dm

]
ωCiCiB +

1

2
(ωCiCiB)T

[ ∫
S(pCii )TS(pCii )dm

]
ωCiCiB

(2.32)

Z ′i = (ωBBI)
TmiS(dBi )ḋBi +

1

2
(ḋBi )Tmiḋ

B
i + ξ̇TmiR

I
Bḋ
B
i , (2.33)

being mi the mass of body i. Moreover, the inertia tensor of body i with respect to frame

Ci is given by (Shabana, 2013):
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Ii =

∫
S(pCii )TS(pCii )dm =

I ixx I ixy I ixz
I iyx I iyy I iyz
I izx I izy I izz

 . (2.34)

In addition, the inertia tensor of body i for a rotation around an axis displaced by a

distance di (Steiner’s theorem for parallel axis) is given by (Shabana, 2013):

Ji = RBCiIi(R
B
Ci)

T +miS(dBi )TS(dBi ). (2.35)

Thus, substituting (2.34) and (2.35) into equations (2.31)-(2.33), X ′i, Y
′
i and Z ′i can

be simplified to the form:

X ′i =
1

2
miξ̇

T ξ̇ −miξ̇
TRIBS(dBi )ωBBI +

1

2
(ωBBI)

TJiω
B
BI (2.36)

Y ′i = (ωBBI)
TRBCiIiω

Ci
CiB +

1

2
(ωCiCiB)TIiω

Ci
CiB (2.37)

Z ′i = (ωBBI)
TmiS(dBi )ḋBi +

1

2
(ḋBi )Tmiḋ

B
i + ξ̇TmiR

I
Bḋ
B
i . (2.38)

In order to write the kinetic energy as a function of the generalized coordinates, the

following mappings are applied:

ωBBI =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

φ̇θ̇
ψ̇

 = Wηη̇, (Raffo, 2011) (2.39)

ωC2C2B = α̇R[0 1 0]T = α̇Ra, (2.40)

ωC3C3B = α̇L[0 1 0]T = α̇La, (2.41)

ωC4C4B =

γ̇1

γ̇2

0

 =

1 0

0 1

0 0

[γ̇1

γ̇2

]
= P γ̇, (2.42)

ḋB4 =

[
lsγ1sγ2 γ̇1 − lcγ1cγ2 γ̇2

lcγ1 γ̇1lsγ1cγ2 γ̇1 + lcγ1sγ2 γ̇2

]
=

lsγ1sγ2 −lcγ1cγ2lcγ1 0

lsγ1cγ2 lcγ1sγ2

[γ̇1

γ̇2

]
= Lγ̇. (2.43)

Therefore, summing the kinetic energies through equation (2.10) and representing it

in the form K = 1
2
q̇TM (q)q̇, the inertia matrix is given by:
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M (q) =


mI3×3 m12 m13 m14 m15

mT
12 W T

η JWη m23 m24 m25

mT
13 mT

23 aTI2a m34 m35

mT
14 mT

24 mT
34 aTI3a m45

mT
15 mT

25 mT
35 mT

45 m4L
TL+ PT I4P

 , (2.44)

where

m12 = −RIBHWη, m13 = 03×1, m14 = 03×1, m15 = m4R
I
BL,

m23 = W T
η R

B
C2I2a, m24 = W T

η R
B
C3I3a, m25 = W T

η R
B
C4I4a+m4W

T
η S(dB4 )P ,

m34 = 0, m35 = 01×2, m45 = 01×2. (2.45)

with m =
∑
mi, J =

∑
Ji and H = S

(∑
mid

B
i

)
.

2.4.2 Coriolis and Centripetal Matrix

The Coriolis and Centripetal matrix is obtained from the Inertia Matrix M (q) using

Christoffel symbols of the first kind. Thus, the (k, j)th element of the matrix C(q, q̇) is

defined as (Spong et al., 2005):

ckj =
10∑
i=1

1

2

[
∂mkj
∂qi

+ ∂mki
∂qj
− ∂mij

∂qk

]
q̇i, (2.46)

where mij is the (i, j)th element of M (q).

2.4.3 Gravity Force Vector

In a multibody system, the potential energy of the whole system is given by the sum of

the potential energies of the individual bodies Pi (Shabana, 2013):

P =
4∑
i=1

Pi, (2.47)

and

Pi =

∫
Vi

ρi(g
I)TpIi dVi, (2.48)
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is the volume integral on a body i with mass density ρi. g
I = [0 0 − gz]T is the gravity

vector with respect to the inertial frame and Vi is the volume of the body.

By substituting pIi (as given in equation (2.6)) into (2.48), one obtains:

Pi = (gI)T
∫
Vi

ρi[R
I
B(RBCip

Ci
i + dBi ) + ξ]dVi. (2.49)

Moreover, taking into account the assumption of equation (2.26), the potential energy

of the whole system is given by:

P = (gI)TRIB
(∑4

i=1mid
B
i

)
+ (gI)Tmξ, (2.50)

where mi is the mass of body i and m =
∑
mi. The vector G(q) can then be found using:

G(q) =
∂P

∂q
=


∂P
∂q1
∂P
∂q2
...
∂P
∂q10

 . (2.51)

2.4.4 Input Force Vector

The force vector F (q) shown in this work was adapted from Gonçalves et al. (2013) and

it is given by:

F (q) = [Tx Ty Tz τφ τθ τψ ταR ταL τγ1 τγ2 ]
T , (2.52)

where Ti represent translational forces along an axis i and τk represent rotational torques

actuating around an axis so as to change angle k.

The force provided by each propeller can be decomposed along frame B such as follows:

F BR =

fBRxfBRy
fBRz

 = Rx,−βRy,αR

 0

0

fR

 =

 sαR
cαRsβ
cαRcβ

 fR = rRfR (2.53)

F BL =

fBLxfBLy
fBLz

 = Rx,βRy,αL

 0

0

fL

 =

 sαL
−cαLsβ
cαLcβ

 fL = rLfL, (2.54)

where fR and fL are the right and left propeller thrusts, respectively. The translational

forces expressed in the inertial frame are given by:
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T I =

T IxT Iy
T Iz

 = RIB(F BR + F BL ) =
[
RIBrR RIBrL

] [fR
fL

]
. (2.55)

The rotational torques are obtained by adding the torque generated by the thrust

forces of the propellers to the torque caused by the drag of the propellers. The drag

torque generated by each propeller is assumed in steady-state and given by (Castillo et

al., 2005b):

τdrag =
kτ
b
f, (2.56)

where kτ and b are aerodynamic constants obtained experimentally and f is the vertical

thrust of the given propeller. Thus, the main body’s rotational torques are written as

follows:

τ I =

τφτθ
τψ

 = W T
η

(fBLz − fBRz)dy + kτ
b

(fBLx − fBRx)
(fBRx + fBLx)dz + kτ

b
(fBRy + fBLy)

(fBRx − fBLx)dy + kτ
b

(fBRz + fBLz)

 , (2.57)

where dy and dz are given by:

dz = dBz2 = dBz3, dy = |dBy2| = dBy3. (2.58)

It is possible to rewrite (2.57) in the following form:

τ I = W T
η

−cαRcβdy − kτ
b
sαR cαLcβdy + kτ

b
sαL

sαRdz + kτ
b
cαRsβ sαLdz − kτ

b
cαLsβ

sαRdy + kτ
b
cαRcβ −sαLdy − kτ

b
cαLcβ

[fR
fL

]
= W T

η

[
τR τL

] [fR
fL

]
. (2.59)

The torques ταR and ταL are direct inputs of the system. The input torques τγ1 and

τγ2 are always zero, since there is no input that actuates directly over γ1 and γ2.

Finally, the input force vector can be expressed in a decoupled form:
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F (q) =



T I

τ I

ταR
ταL
τγ1
τγ2

 =



RIBrR RIBrL 0 0

W T
η τR W T

η τL 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



fR
fL
ταR
ταL

 = B(q)Γ, (2.60)

where Γ =
[
fR fL ταR ταL

]T
is the system’s input vector. Given that the force input

vector can be decoupled in the form F (q) = B(q)Γ, this system’s state space represent-

ation is classified as affine in the inputs, as will be shown on next subsection. Equation

2.60 also evidences the fact that this system is underactuated, i.e., it has less inputs than

degrees of freedom.

2.4.5 Drag Force Vector

The drag force is assumed proportional to the generalized velocity and is given by:

Fdrag = µq̇. (2.61)

The matrix µ is considered to be a diagonal matrix, where its (i, i)th element represents

the drag coefficient associated with the ith generalized coordinate:

µ = diag(µx, µy, µz, µφ, µθ, µψ, µαR , µαL , µγ1 , µγ2). (2.62)

This work assumes that the coefficients of matrix µ can be obtained experimentally.

2.5 State-Space Representation of the System

A total of twenty state-space variables are needed to represent the system’s dynamics:

x(t) =

 x1
...

x20

 =

[
q

q̇

]
. (2.63)

ẋ = F (x,u,d) = f(x) + gu(x)u+ gd(x)d, (2.64)

where u = Γ and d = Fext. The vector f(x) is called drift vector field, gu(x) is the

steering vector field and gd(x) is the external steering vector field.

Euler-Lagrange’s dynamic equations (2.9) can be rewritten in the following form:



2.6 System Design Parameters 27

q̈ = M−1{B(q)Γ + Fext − [C(q, q̇)− µ]q̇ −G(q)}
= M−1{B(q)u+ d− [C(q, q̇)− µ]q̇ −G(q)}. (2.65)

Therefore, the nonlinear state-space representation is found to be:

ẋ =

[
q̇

q̈

]
=

[
q̇

M−1[B(q)u+ d− [C(q, q̇)− µ]q̇ −G(q)]

]
, (2.66)

from where it is possible to extract the nonlinear vector fields:

f(x) =

[
q̇

M−1[−[C(q, q̇)− µ]q̇ −G(q)]

]
, gu(x) =

[
0

M−1B(q)

]
, gd(x) =

[
0

M−1

]
.

(2.67)

2.6 System Design Parameters

Table 2.1 show the nominal parameters of the Tilt-rotor under design. The mass and

inertia moments parameters were estimated using Computer Aided Design (CAD) tools.

The parameter gz is a known natural constant, while kτ and b can be obtained experi-

mentally (Castillo et al., 2005a). The angle β and the string length l can be changed, but

their nominal values are the ones shown on the table.

As for the drag force matrix µ, nonzero friction are considered only for µγ1 and µγ2 .

The introduction of friction for these variables is useful because it makes the variables γ1

and γ2 to be stable, as will be discussed on Chapter 4. These values were chosen by trial

and error through observations from simulations and are given by µγ1 = µγ2 = 0.005 N.m
rad/s

.

Therefore, this matrix is modeled as:

µ = diag(0, 0, 0, 0, 0, 0, 0, 0, 0.005, 0.005). (2.68)

The actuators are considered to respond instantaneously, e.g., if a given thrust is

required on the propeller, it readily delivers this thrust. However, the actuators are all

modelled with saturations: the propellers can deliver thrusts in the region 0 < {fR, fL} <
17 N and the servomotors are able to apply torques −1 < {ταR , ταL} < 1 N·m. These are

the values of the instruments that will be used on the ProVant project.
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Table 2.1: System Parameters.

Parameter Value
m1 1.243 Kg

m2,m3 0.150 Kg
m4 0.050 Kg
dB1 [−6.5 · 10−4 − 7.2 · 10−3 − 4.6 · 10−2]T m
dB2 [1.7 · 10−2 − 0.27 5.1 · 10−2]T m
dB3 [1.7 · 10−2 0.27 5.1 · 10−2]T m
I1
xx 0.018891956 Kg·m2

I1
yy 0.005237518 Kg·m2

I1
zz 0.018027985 Kg·m2

I2
xx, I

3
xx 0.000077509 Kg·m2

I2
yy, I

3
yy 0.000069700 Kg·m2

I2
zz, I

3
zz 0.000076109 Kg·m2

I4
xx, I

4
yy, I

4
zz 0.000002645 Kg·m2

gz 9.81 m/s2

kτ 1.7× 10−7 N·m·s2

b 9.5× 10−6 N·s2

β 5◦

l 0.5 m

2.7 Conclusions

This chapter presented the dynamic equations of motion of the Tilt-rotor UAV with

suspended load using Euler-Lagrange formulation. The developed model considered a

system with ten degrees of freedom:

• Three translational coordinates (x, y and z);

• Three attitude coordinates (φ, θ and ψ) described by the Roll-Pitch-Yaw convention;

• Two coordinates describing the orientation of both tilting rotors (αR and αL);

• Two coordinates describing the attitude of the load with respect to the aircraft (γ1

and γ2).

Then, a state-space model affine in the inputs was derived for the system. This

representation is used in the next chapters so as to design linear and nonlinear control

laws for the Tilt-rotor UAV with suspended load.



Chapter 3

Linear Control Strategies

Sumário
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Linear Control Systems Theory . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Controllability of Linear Systems . . . . . . . . . . . . . . . . . . . 30

3.2.2 Stability of Linear Systems . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 D-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.5 Linear H∞ Controllers . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Tilt-Rotor Linear Control . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Equilibrium Point and Linear Model . . . . . . . . . . . . . . . . . 38

3.3.2 Controllability of the Tilt-rotor UAV . . . . . . . . . . . . . . . . . 39

3.3.3 D-stable Controller Design . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 D-Stable H∞ Controller Design . . . . . . . . . . . . . . . . . . . . 40

3.4 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Introduction

The aim of this chapter is to provide some solutions for the problem of linear closed-loop

control of the Tilt-rotor UAV with suspended load. The objective of the proposed control

strategies is to transport a payload using a Tilt-rotor UAV along a predefined trajectory

using a unique linear control law, which should be able to stabilize the whole system, even

when exogenous disturbances affect the system, and in presence of unmodelled dynamics

and parametric uncertainties. The controller must provide path tracking for x, y, z (pos-

ition coordinates) and ψ (yaw angle) whilst stabilizing all other generalized coordinates.

In this chapter it is assumed that all twenty states of the UAV are precisely known so

that state-feedback control strategies are designed.

The linear controller is designed in the vicinity of the aircraft’s equilibrium point

using Linear Matrix Inequalities (LMI) and two linear control laws are developed. The

first controller is based on regional pole allocation (D-Stability): a region on the complex

plane is defined and the solver finds a state-feedback control law u = Kx such that the

poles in closed-loop are all inside this region. This first solution can be satisfactory if the
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requirement is to stabilize the rotorcraft while following some trajectories. However, it

is still possible to optimize the D-Stable solution by finding some pole allocation inside

the chosen region that also minimizes some given cost function. Therefore, a second

linear controller is designed such that it keeps the pole allocation within the region of the

first controller but also maximizing disturbance rejection. The group of controllers that

satisfy the constraint of maximal disturbance rejection for the worst disturbance scenario

is known as H∞ controllers.

Section 3.2 introduces theory on closed loop control using linear state-space represent-

ations. Besides, D-stability and H∞ strategies using LMI design are also introduced in

this section. Section 3.3 presents the linearization of the Tilt-rotor around an equilibrium

point so that the linear methods can be applied. Section 3.4 shows simulation results of

both methods and compare them.

3.2 Linear Control Systems Theory

The dynamics of linear continuous multivariable systems can be represented according to

the following equation (Ogata, 2001):

ẋ(t) = Ax(t) +Bu(t), (3.1)

where x(t) ∈ <n is the state vector of the system, u(t) ∈ <m is the input vector, A ∈ <n×n
is the state matrix and B ∈ <n×m is the input matrix.

3.2.1 Controllability of Linear Systems

An important definition on linear systems is the notion of controllability: when a system

is controllable, then it is possible to steer it—by admissible inputs—from any initial value

to any final value within some finite time window. A system represented in the form of

equation (3.1) is said to be controllable if and only if (Ogata, 2001):

rank
([
B AB A2B . . . An−1B

])
= n. (3.2)

Alternatively, controllability can also be defined by using the Popov-Belevitch-Hautus

test (Hautus, 1970), which says that a system is controllable if and only if:

rank
([
λIn −A B

])
= n, ∀ λ ∈ Λ = eig(A), (3.3)

where eig(·) is the operation that returns all eigenvalues of matrix · and In is the n×n iden-

tity matrix. It is preferable to use (3.3) rather than (3.2) when the controllability matrix[
B AB A2B . . . An−1B

]
is ill-conditioned or sensitive to round-off errors.
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3.2.2 Stability of Linear Systems

The stability and natural response characteristics of a linear system can be studied by

looking at its poles. In state-space, the poles of the system are equal to the eigenvalues of

matrix A. Therefore, one can affirm that a system is stable if and only if (Ogata, 2001):

Re(λ) < 0, ∀ λ ∈ Λ = eig(A). (3.4)

Choosing a control law given by u = Kx, where K ∈ <m×n is defined as the control

matrix, then the closed-loop state-space representation becomes:

ẋ = Ax+BKx

= (A+BK)x

= Afx, (3.5)

where Af is then defined as the closed loop state matrix of the system. Thus, in order to

evaluate the stability of the closed loop system, one needs to verify if:

Re(λf ) < 0, ∀ λf ∈ Λf = eig(Af ). (3.6)

Therefore, if the system is controllable, then it is possible to find a matrix K such

that all poles of Af are stable.

Alternatively, another way of analysing the stability of a system is using Lyapunov’s

stability theory (Lyapunov, 1892). According to Lyapunov’s method, it is possible to say

that a system is asymptotically stable in the sense of Lyapunov if it possible to find a

function V (x) : <n → < such that the following constraints hold:

LYAPUNOV-1: V (x = 0) = 0;

LYAPUNOV-2: V (x) > 0, ∀ x 6= 0;

LYAPUNOV-3: V̇ (x) < 0, ∀ x 6= 0.

In linear systems, it is usual to use the candidate function V (x) = xTPx, where

P ∈ <n×n is a symmetric matrix. The conditions for satisfying the above constraints are:

• The constraint LYAPUNOV-1 is always satisfied for this chosen V (x), given that

0TP0 = 0, ∀P .

• The constraint LYAPUNOV-2 is only satisfied if xTPx > 0,∀x 6= 0. This is true

if and only if P is positive definite, or likewise:

P > 0. (3.7)
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• As for constraint LYAPUNOV-3, one needs to analyse V̇ (x):

V̇ (x) = ẋTPx+ xTP ẋ = (Ax+Bu)TPx+ xTP (Ax+Bu). (3.8)

By choosing u = 0, then it is possible to analyse the stability of the open-loop

system:

V̇ (x) = xT [ATP + PA]x < 0. (3.9)

Thus, LYAPUNOV-3 is satisfied if and only if the following inequality holds:

ATP + PA < 0. (3.10)

If, in turn, the input u = Kx is chosen, then LYAPUNOV-3 is satisfied if and only

if the following inequality holds:

AT
fP + PAf < 0. (3.11)

Therefore, in short, it is possible to state that an open loop system is stable if it is

possible to find a symmetric definite positive matrix P such that the inequality (3.10)

holds. Equally, a closed-loop system is stable if it is possible find a symmetric definite

positive matrix P such that the inequality given by (3.11) holds. However, if one cannot

find P that satisfies these constraints, nothing can be said about the stability of the

system.

3.2.3 Linear Matrix Inequalities

The inequalities shown at (3.7), (3.10) and (3.11) are LMIs, i.e. Linear Matrix Inequalities

(Boyd et al., 1994). In general, LMIs are hard to solve. Fortunately, there are some

techniques to solve these problems using optimization algorithms. Thus, there are many

toolboxes that provide solutions to this kind of problems, such as Yalmip (Löfberg, 2004),

CXV (Grant and Boyd, 2014) or LMILab (Gahinet and Nemirovskii, 1993), just to name

a few. In this work, it was adopted solutions using Yalmip with Sedumi solver (Labit and

Peaucelle, 2002).

3.2.4 D-stability

A system is defined as D-stable if all of its poles are within a defined convex region in

the complex plane (Trofino et al., 2003). A LMI region is defined as a subset D of the

complex plane C, where D is given by (Chilali and Gahinet, 1996):

D =
{
s ∈ C : L+ sM + s∗MT < 0

}
, (3.12)

where L = LT and M are matrices that define region D, s = σ+jω and s∗ is the complex

conjugate of s. The most commonly used regions are:
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Region 1 Re(s) < −α:

This region can be easily defined by the expression s+s∗ < −2α, given that s+s∗ =

σ+ jω+σ− jω = 2σ. Therefore, it is possible to rewrite this expression in the form

2α + s+ sT < 0 and then L = 2α and M = 1.

Region 2 Disk centred at (c, 0) with radius r:

This region can be defined by the expression |s− c| < r. It can be developed as:

|σ + jω − c| < r√
(σ − c)2 + ω2 < r

r2 − [(σ − c) + jω][(σ − c)− jω] > 0

r2 − (s− c)(s∗ − c) > 0

det

([
r s− c

s∗ − c r

])
> 0.

Given that the determinant of a definite positive matrix is always positive, then the

following holds: [
r s− c

s∗ − c r

]
> 0.

Changing the sign of the inequality and then applying a similarity transformation:[
1 0

0 −1

] [
−r −(s− c)

−(s∗ − c) −r

] [
1 0

0 −1

]
< 0[

−r s− c
s∗ − c −r

]
< 0[

−r −c
−c −r

]
+

[
0 1

0 0

]
s+

[
0 0

1 0

]
s∗ < 0.

Therefore:

L =

[
−r −c
−c −r

]
M =

[
0 1

0 0

]
.

Region 3 Cone defined by |Im(s)| < tan(ϕ)|Re(s)|

This region can be defined by the expression ω cos(ϕ) < −σ sin(ϕ). It is possible to
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obtain the matrices L and M by the following procedure:

σ2 sin2(ϕ) < ω2 cos2(ϕ)

σ2 sin2(ϕ) < (jω)(−jω) cos2(ϕ)

1

4
(s+ s∗)2 sin2(ϕ) <

1

2
(s− s∗)1

2
(s∗ − s) cos2(ϕ)

(s+ s∗)2 sin2(ϕ)− (s− s∗)(s∗ − s) cos2(ϕ) < 0[
(s+ s∗) sin(ϕ) (s− s∗) cos(ϕ)

(s∗ − s) cos(ϕ) (s+ s∗) sin(ϕ)

]
< 0[

sin(ϕ) cos(ϕ)

− cos(ϕ) sin(ϕ)

]
s+

[
sin(ϕ) − cos(ϕ)

cos(ϕ) sin(ϕ)

]
s∗ < 0. (3.13)

Therefore, the following holds:

L =

[
0 0

0 0

]
M =

[
sin(ϕ) cos(ϕ)

− cos(ϕ) sin(ϕ)

]
.

Region 1 is useful so that it guarantees that the system is faster than a minimum

requirement. Region 3 is important because it limits the system’s maximum percentage

overshoot. Region 2, in turn, is usually used with c = 0 and is relevant because it avoids

the poles from being allocated too far away from the origin of the plane, avoiding too

large gains in the controller.

According to Chilali and Gahinet (1996), a state matrix A is D-stable if and only if

there is a real definite positive symmetric matrix Q ∈ <n×n such that:

L⊗Q+M ⊗AQ+MT ⊗ (AQ)T < 0, (3.14)

where ⊗ is the Kronecker product operator. This product operation is defined by:

A⊗B =

a11 . . . a1k
...

. . .
...

al1 . . . alk

⊗B =

a11B . . . a1kB
...

. . .
...

al1B . . . alkB

 . (3.15)

Thus, the LMIs that verify whether the eigenvalues of A are D-stable are given by

(Trofino et al., 2003):

Region 1 For Re(s) < −α, then:

2αQ+AQ+QAT < 0, Q > 0. (3.16)

Region 2 For the disk centered at (c, 0) with radius r, then:[
−r −c
−c −r

]
⊗Q+

[
0 1

0 0

]
⊗AQ+

[
0 0

1 0

]
⊗ (AQ)T < 0.
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Therefore, the LMIs are:[
−rQ −cQ+AQ

−cQ+QAT −rQ

]
< 0, Q > 0. (3.17)

Region 3 For the cone defined by |Im(s)| < tan(ϕ)|Re(s)|, the LMIs are:[
sin(ϕ)(AQ+QAT ) cos(ϕ)(AQ−QAT )

cos(ϕ)(−AQ+QAT ) sin(ϕ)(AQ+QAT )

]
< 0, Q > 0. (3.18)

In order to analyse the system in closed loop, it is possible to substitute the matrix A

by A+BK on equations (3.16)-(3.18), obtaining the following LMIs for Q > 0:

2αQ+AQ+QAT +BY + Y TBT < 0, (3.19)[
−rQ −cQ+AQ+BY

−cQ+QAT + Y TBT −rQ

]
< 0, (3.20)[

sϕ(AQ+QAT +BY + Y TBT ) cϕ(AQ−QAT +BY − Y TBT )

cϕ(−AQ+QAT −BY + Y TBT ) sϕ(AQ+QAT +BY + Y TBT )

]
< 0, (3.21)

where Y = KQ. This solution is very interesting because it is able to provide two

different functionalities. First, it can verify if the system is D-stable for a given designed

controller K. On the other hand, this solution can also be inserted in the algorithm to

find both matrices Q and Y that satisfy the given constraints. As a result, one can obtain

a controller that D-stabilizes the system by using the relation K = Y Q−1.

3.2.5 Linear H∞ Controllers

When dealing with linear H∞ controllers with state feedback, the following extended

linear system is considered:

ẋ = Ax+Buu+Bwd

z = Czx+Duzu+Dwzd, (3.22)

where z is the error signal to be minimized; Cz, Dwz and Duz are constant weighting

matrices that are determined on the design of the controller. This extended system can

be illustrated by the block diagram presented in Figure 3.1, where P (s) is the generalized

process and K(s) is the controller.

The linear H∞ controller belongs to the class of optimal controllers, which exponen-

tially stabilizes the system while also minimizing the H∞ norm. In SISO systems, the

H∞ norm is defined as the maximum magnitude of its frequency response to disturbance

inputs (equation (3.23)). On the other hand, MIMO systems are described by multiple

frequency response mappings and one should use the frequency response obtained from
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P(s)

K

d z

xu

Figure 3.1: H∞ diagram block.

the singular value decomposition of the system’s transfer function matrix. Then, the H∞
norm is defined as the maximum of the highest singular value for given input frequencies,

as shown in equation (3.24).

||H(s)||∞ = max
ω
|H(jω)| (3.23)

||H(s)||∞ = sup
ω

(max
σ̄
{H(jω)}). (3.24)

The H∞ norm can also be interpreted as the highest gain in terms of energy of the

response signal for a given input and an alternative definition for the H∞ norm is obtained

from Parseval’s Theorem, which states that the energy Ez of the signal z(t) is given by

(Lathi, 2009):

Ez = ||z(t)||22 =

∫ ∞
0

|z(t)|2 dt =
1

2π

∫ ∞
0

Z(jω)∗ ·Z(jω) dω, (3.25)

where Z(jω) is the Fourier transform of z(t). Similarly, it is also possible to calculate the

energy of the input disturbance signal:

Ed = ||d(t)||22 =
1

2π

∫ ∞
0

D(jω)∗ ·D(jω) dω. (3.26)

Since Z(jω) = H(jω)D(jω), then it is possible to obtain the following:

||z(t)||22 =
1

2π

∫ ∞
0

D(jω)∗ ·H(jω)∗ ·H(jω) ·D(jω) dω

≤ 1

2π

∫ ∞
0

(σ̄{H(jω)})2D(jω)∗ ·D(jω) dω

≤ (sup
ω
σ̄{H(jω)})2 1

2π

∫ ∞
0

D(jω)∗ ·D(jω) dω. (3.27)

which yields:
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||z(t)||2 ≤ ||H(s)||∞ ||d(t)||2. (3.28)

This way, if the energy of the disturbance input is nonzero and bounded, then the H∞
norm is defined in the time domain as (Skogestad and Postlethwaite, 2005):

||H(s)||∞ = sup
Ed 6=0

||z(t)||2
||d(t)||2

. (3.29)

In other words, the H∞ norm can be described as the maximum energy amplification

for Ez due to an input with energy Ed.

The linear optimal H∞ control problem consists in computing the controller that min-

imizes

||H(s)||∞. This optimal problem hard to solve, but it is possible to find a suboptimal

solution (Raffo, 2011), where a numerical upper bound γ is found such that:

||H(s)||∞ < γ (3.30)

and it is common to search for the minimum upper bound γ through an iterative process.

This can be solved by using the LMI in (3.31) (Dullerud and Paganini, 2000). Following

this approach one can find a level attenuation γ̃ which guarantees that ||H(s)||∞ <
√
γ̃. In

order to combine this solution with the D-stable controllers, inequality (3.31) is considered

altogether with inequalities (3.19) to (3.21).

min
Q,Y

γ̃


AQ+BuY +QAT + Y TBT

u Bw QCT
z + Y TDT

uz

BT
w −γ̃Inw DT

wz

CzQ+DuzY Dwz −γ̃Inz

<0. (3.31)

3.3 Tilt-Rotor Linear Control

First, a linear state space model of the system is obtained in which the operation point

is chosen to be an equilibrium point of the UAV. Then, a pure D-stable controller is

designed by finding the matrices Q > 0 and Y that satisfy the inequalities (3.19)-(3.21).

After this, a second linear controller is designed using both D-stable and H∞ requisites,

being necessary to find Q > 0 and Y that satisfy the inequalities (3.19)-(3.21) and (3.31)

simultaneously1.

When designing the controllers, the linear state space model will be extended so as

to avoid steady state errors in closed loop in the presence of constant disturbances. An

1The approach presented in this section was submitted and accepted to be published on CBA - 2014
(Almeida et al., 2014a).
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integral action is added to the trajectory errors in x, y, z and ψ and the new state vector

x ∈ <24 is defined as follows:

x = [x1 . . . x24]T = [qT q̇T
∫

∆x
∫

∆y
∫

∆z
∫

∆ψ]T . (3.32)

3.3.1 Equilibrium Point and Linear Model

In order to linearize the system, first the equilibrium point is computed as the state space

point where all generalized coordinates’ velocities and accelerations are zero:

ẋ(t) = F (x,u,d) =

[
q̇(t)

q̈(t)

]
= 0. (3.33)

Thus, the equilibrium values of the inputs u and generalized coordinates q and q̇

which ensure hovering of the Tilt-rotor UAV are obtained by setting:

q̇ = 0 (3.34)

M−1[B(q)u+ d− [C(q, q̇)− µ]q̇ −G(q)] = 0. (3.35)

Assuming a scenario with no external disturbances (d = 0), the following relation is

obtained:

B(q)u−G(q) = 0. (3.36)

Since this system has ten equations and fourteen variables, in order to avoid an infinite

number of solutions, four variables are freely chosen and the other ten are computed from

(3.36). The state variables x, y and z do not appear on the above equations, what would

lead to an infinite number of equilibrium points. The fourth chosen variable is ψ, given

that the UAV can be found in equilibrium independently of its yaw angle. Therefore,

these four state variables are fixed as xR, yR, zR and ψR. Thus, a system defined around

an equilibrium point xR = [qR 0]T and reference forces uR = ΓR is obtained by solving

this system of nonlinear equations using the parameters shown in Table 2.1. When solving

equations 3.36, only the solution with fR > 0 and fL > 0 were regarded. The equilibrium

point was found to be at the following point:
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qR =



xR
yR
zR
φR
θR
ψR
αRR
αLR
γ1R

γ2R


=



xR
yR
zR

0.0018162

0.0348383

ψR
−0.0353406

−0.0340442

−0.0018151

−0.0348383


, uR =


fRR
fLR
ταRR
ταLR

 =


8.0100

7.6839

0

0

 . (3.37)

It can be seen that the values for φR, θR, αRR, αLR, γ1R and γ2R are not zero. In

addition, fRR 6= fLR. This happened due to the fact that the center of mass of the

tilt-rotor system is dislocated with respect to frame B.

It is then possible to obtain a linearized error model given by:

∆ẋ = A∆x+Bu∆u+Bdd, (3.38)

where ∆x = x− xr and ∆u = u− ur with

A =
∂F (x,u,d)

∂x
|u=uR
x=xR

, Bu =
∂F (x,u,d)

∂u
|u=uR
x=xR

, Bd =
∂F (x,u,d)

∂d
|u=uR
x=xR

.

3.3.2 Controllability of the Tilt-rotor UAV

By evaluating the controllability of the linearized system using the standard controllability

test (equation (3.2)), the rank of the controllability matrix was found numerically to be

equal to six instead of twenty-four, as desired. However, what really happens is that

there is some ill-conditioning on the linear matrices. In fact, there are some big numbers

together with small numbers and it is difficult to find a proper tolerance to compute

numerically the rank of the controllability matrix.

On the other hand, by applying the PBH test of (3.3), it numerically easier to show that

the system is indeed controllable. Moreover, when numerically computing the rank of the

reduced controllability matrix given by
[
B AB A2B A3B A4B A5B A6B

]
,

one finds twenty-four as result, what indicates that ill-conditioning appears when the rank

of the full controllability matrix is calculated.

3.3.3 D-stable Controller Design

The controller that D-stabilizes the Tilt-rotor UAV with suspended load is obtained by

finding matrices Q > 0 and Y that simultaneously satisfy inequalities (3.19)-(3.21). It
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was desired to obtain a system as fast as possible (σ as big as possible) with very low

percentage overshoot (ϕ << π/2), and the actuators should not saturate when performing

path track. The input parameters were then adjusted as σ = −2.4, ϕ = π/10, c = 0 and

r = 80. Figure 3.2 show the poles in open loop along with its allocation after closed loop.
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Figure 3.2: Allocation of poles via D-Stability.

3.3.4 D-Stable H∞ Controller Design

The controller that D-stabilizes the Tilt-rotor UAV with suspended load maximizing dis-

turbance rejection is obtained by finding matrices Q > 0 and Y that simultaneously

satisfy the inequalities (3.19)-(3.21) and (3.31), also minimizing γ̃. The following control-

ler matrices were adjusted heuristically, taking as starting point Bryson’s inverse-square

method (Johnson and Grimble, 1987):

Cz = diag(3, 4, 5, 2, 2, 3, 0.2, 0.2, 3, 3, 2, 2,

3, 1/3, 1/3, 3.5, 1/30, 1/30, 0.8, 0.8, 10.5, 10.5, 10, 10), (3.39)

Dwz =



010,3 010,3 010,2 010,2

I3×3 03,3 03,2 03,2

03,3 I3×3 03,2 03,2

02,3 02,3 02,2 02,2

02,3 02,3 02,2 I2×2

I3×3 03,3 03,2 03,2

01,3 b 01,2 01,2


, Duz =



010,2 010,2

0.5 ∗ 13×2 03,2

02,2 12×2

01,2 5 ∗ 11×2

02,2 5 ∗ I2×2

02,2 4 ∗ 12×2

 . (3.40)

with b = [0 0 1] and 1n×m is a matrix with n lines and m columns filled with 1′s.

As a result, a solution with ||H(s)||∞ < 34.11 was found. The pole allocation can be

seen in Figure 3.3.
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Figure 3.3: Allocation of poles via D-Stability with minimization of the H∞ norm.

3.4 Simulation and Results

The proposed control systems were simulated in Matlab Simulink 2012a with the model

parameters shown in Table 2.1 and with initial conditions starting already on the desired

reference point. In order to show robustness of the designed controllers, the UAV tracked

a predefined trajectory xRef (t), yRef (t), zRef (t) and ψRef (t) while some disturbance forces

(Fxext(t), Fyext(t) and Fzext(t)) affected the vehicle as forces applied at its geometric

center (Figure 3.4). Moreover, the simulation considered that the model’s masses mi and

inertia tensors Ii, for i = 1, 2, 3, 4, had all uncertainties ranging from −30% to 30% of

their nominal values. In addition, a linear feed-forward term was added to the control

action (Raffo et al., 2010):

uR = B+(qR){M(qR)ẍRef + [C(qR, q̇R)− µ]ẋRef +G(qR)}, (3.41)

where B+ = (BTB)−1BT is the left pseudo-inverse of matrix B. Thus, the system’s

inputs are given by the control law: u = Kx+ uR.

Figure 3.5 shows a 3D view of the trajectory followed by the aircraft. The set point

ψRef was kept constantly equal to zero. Figure 3.6 shows the tracking error of the gener-

alized coordinates x, y, z and ψ defined as: εq = qRef − q. It can be seen from this image

that the H∞ controller presented better results on tracking reference and disturbance

rejection when compared to the D-stable controller. The time evolution of the remaining

generalized coordinates are shown in figure 3.7. It is possible to see that the designed

control laws maintain all variables stabilized.

Figure 3.8 shows the system’s control inputs along with time. It is possible to verify

that the control effort computed by the H∞ controller showed to be more aggressive than

the pure D-stable controller.

Table 3.1 shows the mean square error of the trajectory of the aircraft in relation with

its set point. The H∞ controller presented 23% of the mean square error on the direction

x with respect to the D-Stable controller, 24% in the direction y, 2.1% in ψ and it was

926% worse than the D-Stable controller on the z direction. Even though z worsened this

much, the order of magnitude of its mean square error is still very small. We believe that
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Figure 3.4: System disturbances in function of time.

Table 3.1: Mean-square-error comparison between D-stable and H∞ controller.

D − stable H∞
MSEH∞

MSED−Stable

MSEx 3, 85.10−4 8, 88.10−5 0, 2306
MSEy 2, 24.10−4 5, 56.10−5 0, 2491
MSEz 4, 90.10−6 5, 03.10−5 10, 263
MSEψ 6, 03.10−2 1, 31.10−3 0, 0218

the performance along z axis worsened due to the process of obtaining the H∞ controller,

since this approach tries to minimize only the maximum of the highest singular value,

which means that other singular values may increase while minimizing the biggest one.

Table 3.2 presents the Integrated Absolute Variation of the Control signal (IAVU)

index for both controllers. This index evaluates the control effort and is given by:

IAV Ui =

∫ tf

0

∣∣dui
dt

∣∣ dt. (3.42)

It can be seen that the inputs for theH∞, as observed in Figure 3.8, are more aggressive

than the pure D-stable controller, which are smoother.

The linear controllers proved to be effective on stabilizing the Tilt-rotor UAV with

suspended load when accomplishing the task of path tracking for the given trajectory.

However, there are some drawbacks on using linear controllers. Given that the system

should always be nearby the operating point, a large deviation from this neighborhood

may destabilize the UAV. As consequence, the following occurrences showed to result on

Table 3.2: IAVU Index comparison between D-stable and H∞ controller.

D − stable H∞
IAV UfR 125, 1231 6, 4251 · 103

IAV UfL 128, 6739 4, 4195 · 103

IAV UταR 0, 1391 102, 2888
IAV UταL 0, 4368 209, 8082
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Figure 3.5: Path tracking of the aircraft for both D-stable and H∞ controllers.

destabilization of the system:

• Non-smooth trajectories or trajectories that demanded high accelerations of the

system;

• Harsher disturbances than the ones used on the simulations;

• When the system starts distant or gets distant from its reference.

Therefore, these disadvantages of linear controllers appeal for the design of nonlinear

control strategies, which is the subject of the next chapter.

3.5 Conclusions

This chapter provided solutions for the problem of closed-loop linear control of the Tilt-

rotor UAV with suspended load. Two strategies were proposed and both were able to

stabilize the system while tracking a desired reference in the presence of exogenous dis-

turbances, parametric uncertainties and unmodelled dynamics.

Basically, two linear controllers were designed using LMIs solvers: a D-stable and a

D-stable with maximal disturbance rejection (H∞ norm). Both controllers are expected
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Figure 3.6: Tracking errors for D-stable and H∞ controllers.

to work in the vicinity of the equilibrium point of the aircraft. They accomplished the

task of path tracking, but the H∞ was better on the presence of disturbances. On the

other hand, the D-stable controller presented control inputs that are smoother with time

than the inputs of the H∞ controller. However, both linear controllers were not able to

stabilize the aircraft when it deviated too much from its equilibrium point.

Next chapter will deal with this problem by exploring the development of nonlinear

controllers so as to enlarge the domain of attraction of the control system.
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Figure 3.7: Body and Load angles for D-stable and H∞ controllers.
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4.1 Introduction

The aim of this chapter is to provide some solutions for the problem of nonlinear closed-

loop control of the Tilt-rotor UAV with suspended load. The objective of the proposed

control strategies is to transport a payload using a Tilt-rotor UAV along a predefined

trajectory using a control strategy, which should be able to stabilize the whole system, even

when exogenous disturbances affect the system, and in presence of unmodelled dynamics

and parametric uncertainties. The controller must provide path tracking for x, y, z and ψ

whilst stabilizing all other generalized coordinates. In this chapter it is assumed that all

twenty states of the UAV are precisely known such that state-feedback control strategies

are designed.

Last chapter introduced some solutions for the control of the Tilt-rotor UAV using lin-

ear control theory. However, since the Tilt-rotor UAV with suspended load is a nonlinear

system, it is expected that linear controllers provide limited performance when stabilizing

the system, since they only work in the vicinity of its operation point. Therefore, in order

to enlarge the domain of attraction of the control system, a nonlinear control strategy is
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developed. This strategy is based on a cascade scheme with three input-output feedback

linearization blocks, as shown in Figure 4.1. The rightmost feedback linearization block

stabilizes the variables z, φ, αR and αL by actuating into fR, fL, ταR and ταL . The middle

block stabilizes θ and ψ by actuating into the references of αR and αL. As for the leftmost

block, it actuates on the references of φ and θ and there are two strategies on its design:

• The first one controls x and y but considers that the movement of γ1 and γ2 are

both disturbances for the system. This strategy provides good path tracking of the

aircraft, but the load strongly swings;

• The second strategy tries to control x and y at the same time that it stabilizes γ1

and γ2. This approach allows the load to swing less, but the aircraft deviates from

set point in order to avoid the load’s swing.

Finally, in order to show the robustness of the designed nonlinear strategy, some

modifications are made in the controller so that the Tilt-rotor is able to stabilize an

inverted pendulum.

Tilt-Rotor

Feedback 

Linearization

z, φ, αR, αL

fR, fL

ταR, ταL

Feedback 

Linearization

θ , ψ 

αRref

αLref

Feedback 

Linearization

x , y, γ1, γ2

θref

φref

xref

yref

zref

ψref

Figure 4.1: Nonlinear Feedback Linearization Cascade Control Strategy.

Section 4.2 introduces some important notions on nonlinear control theory, also present-

ing the Input-Output Feedback Linearization technique. Section 4.3 presents the nonlinear

cascade control strategies for the aircraft. Section 4.4 shows simulation results and their

analysis.

4.2 Nonlinear Control Theory

A nonlinear affine in the inputs system is described as follows:

{
ẋ = F (x,u,d) = f(x) + gu(x)u+ gd(x)d

y = h(x)
, (4.1)

where y ∈ <p is the output vector of the system and is function of the state space vector

x. The dynamic of ẋ was already obtained in section 2.5.

When designing a nonlinear controller, there are several methods for accomplishing

such task. As examples, Slotine and Li (1991) mention the methods of Trial and Error,
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Feedback Linearization, Robust Control, Adaptive Control and Gain-scheduling. This work

focuses only on using the method of Feedback Linearization (FL).

The FL method depends on having a precise mathematical model of the system. Its

basic idea is to transform the nonlinear system into a (full or partial) linear system so that

linear controller design techniques can be applied. A disadvantage of this approach is that

it does not guarantee robustness in the face of parameter uncertainty or disturbances.

When it is possible to apply a full FL to a system (all states’ dynamics are linearized),

then it is said that an Input-State Feedback Linearization (ISFL) is performed and the

system can be fully controlled using a single control law. If, however, one can only linearize

the outputs of the system, then it is said that an Input-Output Feedback Linearization

(IOFL) is performed and only the linearized portion is controlled, while the rest is denoted

Internal Dynamics. Extra caution must be taken when using IOFL because the designed

control law may destabilize the Internal Dynamics. Therefore, one must prove that the

internal dynamics are not unstable when using this approach (Spong et al., 2005).

Basically, the challenge of Feedback Linearization is to find a coordinate transformation

z = Φ(x) and an input transformation based on feedback v = Ψ(x,u) such that the

relation between the input (v) and the linearized variables (x for ISFL and y for IOFL)

is linear.

For the Tilt-rotor UAV it was not possible to verify conditions for ISFL1. Given that the

linearized system was proven to be controllable on section 3.3.2, it is possible to say that

the nonlinear system is at least locally controllable, but this is not a sufficient condition

for the linearization of the nonlinear system (Respondek and Tall, 2002). Moreover, even

if ISFL could be proven to be feasible for this system, it would still be necessary to

obtain a diffeomorphism that transforms the system into a linear one. In general, this is

a hard task (Hedrick and Girard, 2005), specially for systems with complicated equations

of motion like the Tilt-rotor.

Consequently, only the IOFL methodology is evaluated on the present work. Subsec-

tion 4.2.1 provides some mathematical foundations that are further used on subsection

4.2.2, which shows the methodology to obtain IOFL.

4.2.1 Preliminary Theory on Nonlinear Systems

This section provides some important mathematical foundations used in geometric control.

First, two important operations are defined: Lie Derivative and Lie Bracket. Then, the

concept of Diffeomorphism is introduced. All the theory presented in this section is found

in Slotine and Li (1991).

The Lie Derivative is defined as the derivative of a smooth scalar field h(x) in the

direction of a smooth vector field f(x), where h(x) : <n → < and f(x) : <n → <n. The

Lie Derivative results in a third scalar field and it is given by:

1The calculations to verify whether a system is Input-State Linearizable require the vector fields f(x)
and gu(x) as shown on equation (2.67). However, due to computational costs, it was not possible to
obtain M−1, precluding the computation of these vector fields.
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Lfh(x) = ∇h(x) · f(x), (4.2)

where ∇h(x) =
[
∂h(x)
∂x1

. . . ∂h(x)
∂xn

]
is the gradient of h(x).

The Lie Bracket is defined for two smooth vector fields f(x) and g(x), where f , g :

<n → <n. The Lie Bracket results in a third vector field and is given by:

[
f , g

]
= adfg = Dgf −Dfg, (4.3)

where Dg and Df are, respectively, the Jacobian matrices associated to g(x) =

g1(x)
...

gn(x)


and f(x) =

f1(x)
...

fn(x)

, and are given by:

Dg =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xn

...
. . .

...
∂gn(x)
∂x1

. . . ∂gn(x)
∂xn

 , Df =


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fn(x)
∂x1

. . . ∂fn(x)
∂xn

 . (4.4)

A Diffeomorphism is determined as a smooth function Φ : <n → <n defined in a

region Ω if its inverse Φ−1 uniquely exists and is also smooth. If the region Ω is the

whole state space <n, then Φ is called a global diffeomorphism. If the Jacobian matrix

DΦ is non-singular at a point x = x0 of Ω, then Φ(x) defines a local diffeomorphism in

a subregion of Ω.

4.2.2 Input-Output Feedback Linearization

First, the notion of relative degree related to an output should be introduced. Thus, for

the nonlinear system of the form:


ẋ = f(x) + g1(x)u1 + g2(x)u2 + . . .+ gm(x)um

y =


y1

...

ym

 =


h1(x)

...

hm(x)

 , (4.5)

where x ∈ <n and y ∈ <m (it should be noted that the dimension of y is equal to the

dimension of u, which is a prerequisite to IOFL). The relative degree ri of output yi is
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defined as the number of times the output yi needs to be differentiated until an input

appears. Therefore, by differentiating yi, the following is obtained:

ẏi = Lfhi(x) + Lg1hi(x)u1 + . . .+ Lgmhi(x)um. (4.6)

If Lgjhi(x) 6= 0 for any 1 < j < m, then the relative degree of yi is 1. Otherwise, it

has to be differentiated again:

ÿi = L2
fhi(x) + Lg1Lfhi(x)u1 + . . .+ LgmLfhi(x)um. (4.7)

One should differentiate again and again until for some integer ri it follows that

LgjL
ri−1
f hi(x) 6= 0 for some 1 < j < m and x = x0 in Ω. Then, the relative degree

of output yi is ri at x0.

The relative degree of the system is given by the sum of all relative degrees:

r =
m∑
i=1

ri. (4.8)

Therefore, if r = n then one can say that the system is fully feedback linearisable. If,

otherwise, r < n, then only r states in new coordinates are controllable and the other

r − n states are denoted as the Internal Dynamics of the system. Extra caution must

be taken when using IOFL since the designed control law may destabilize the Internal

Dynamics. Therefore, one must check whether the internal dynamics are not unstable

when using this approach.

In order to perform IOFL, the following matrices are defined:

∆(x) =


Lg1Lr1−1

f h1(x) Lg2Lr1−1
f h1(x) . . . LgmLr1−1

f h1(x)

Lg1Lr2−1
f h2(x) Lg2Lr2−1

f h2(x) . . . LgmLr2−1
f h2(x)

...
...

. . .
...

Lg1Lrm−1
f hm(x) Lg2Lrm−1

f hm(x) . . . LgmLrm−1
f hm(x)

 (4.9)

b =


Lr1f h1(x)

Lr2f h2(x)
...

Lrmf hm(x)

 . (4.10)

Then, the following control law can be applied:

u = ∆−1(v − b), (4.11)
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where v ∈ <m is the new control input. It should be noted that ∆ must be a nonsingular

matrix. This way, the new state-space z ∈ <r and its derivative ż look like the following:



z1 = h1(x)

z2 = Lfh1(x)
...

zr1 = Lr1−1
f h1(x)

zr1+1 = h2(x)

zr1+2 = Lfh2(x)
...

zr1+r2 = Lr2−1
f h2(x)

...

zr1+r2+...+rm−1+1 = hm(x)

zr1+r2+...+rm−1+2 = Lfhm(x)
...

zr = Lrm−1
f hm(x)

=⇒



ż1 = z2

ż2 = z3

...

żr1 = v1

żr1+1 = zr1+2

żr1+2 = zr1+3

...

żr1+r2 = v2

...

żr1+r2+...+rm−1+1 = zr1+r2+...+rm−1+2

żr1+r2+...+rm−1+2 = zr1+r2+...+rm−1+3

...

żr = vm

. (4.12)

The complete state-space representation of the system becomes:

ζ̇ =

[
ż

ϑ̇

]
=⇒

{
ż = Az +Bv

ϑ̇ = Lfϑ(x) + Lgϑ(x)v
, (4.13)

where the equations for ϑ̇ ∈ <n−r represent the internal dynamics. The variables ϑ of the

internal dynamics are functions of x and they should be chosen such that they complete

the diffeomorphism, i.e., rank(Dζ) = n, where Dζ is the Jacobian matrix of the nonlinear

change of coordinates:

ζ =



h1(x)

h2(x)
...

hm(x)

ϑ1(x)

ϑ2(x)
...

ϑn−m(x)


(4.14)

According to Slotine and Li (1991), it is always possible find n−r functions ϑ(x) such

that:
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Lgϑk(x) = 0, ∀ 1 < k < n− r, (4.15)

what implies that the second term on equation (4.13) is equal to zero. However, it is not

always an easy task to find ϑ(x) that satisfies the constraints imposed by (4.15).

It is possible to obtain the same results of equation (4.13) without the need to use Lie

algebra. This is possible by using the Partial Feedback Linearization (PFL) formulation

(Olfati-Saber, 2001). This approach is useful when dealing with mechanical systems whose

dynamics are modelled using the Euler-Lagrange formulation, as shown in equation (2.9).

For the sake of simplicity, the following is defined: h(q, q̇) = [C(q, q̇) − µ]q̇ + G(q).

Then, considering null external disturbances, the following Euler-Lagrange representation

is obtained:

M(q)q̈ + h(q, q̇) = F (q). (4.16)

Then, separating the controlled part of the system (denoted with subscript c) from

the uncontrolled part of the system (denoted by subscript u) yields:

[
Muu(q) Muc(q)

Mcu(q) Mcc(q)

] [
q̈u
q̈c

]
+

[
hu(q, q̇)

hc(q, q̇)

]
=

[
Bu(q)

Bc(q)

]
Γ. (4.17)

It is possible to rewrite (4.17) in the form:

Muuq̈u +Mucq̈c + hu = BuΓ (4.18)

Mcuq̈u +Mccq̈c + hc = BcΓ. (4.19)

If Muu is invertible, then it is possible to rewrite equation (4.18) as q̈u = M−1
uu (BuΓ−

Mucq̈c − hu) and substituting it into (4.19) leads to:

(Mcc −McuM
−1
uuMuc)q̈c = (Bc −McuM

−1
uuBu)Γ + (McuM

−1
uu hu − hc). (4.20)

Then, by defining:

∆ = (Bc −McuM
−1
uuBu), (4.21)

and if ∆ is proven to be nonsingular, the following can also be defined:
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α = ∆−1(Mcc −McuM
−1
uuMuc) (4.22)

β = ∆−1(−McuM
−1
uu hu + hc). (4.23)

It is then possible to choose a control law as given by:

Γ = αv + β, (4.24)

with v ∈ <m being the new control input. This leads to a linear relation between the

controlled part of the system q̈c and the new input v:

q̈c = v. (4.25)

By substituting (4.24) into (4.18), it is possible to obtain the behaviour of the internal

dynamics:

q̈u = M−1
uu (Buβ − hu) + [M−1

uu (Buα−Muc)]v. (4.26)

4.3 Tilt-rotor Nonlinear Control

This section deals with the development of nonlinear control strategies for the Tilt-rotor

UAV with suspended load. As already shown in Figure 4.1, the strategy uses a three-level

cascade control techhnique based on IOFL. Subsection 4.3.1 shows the calculations for the

innermost IOFL, which controls z, φ, αR and αL, while actuating on fR, fL, ταR and ταL .

Subsection 4.3.2 takes care of the middle IOFL, which controls θ and ψ by actuating on

αRref and αLref . Subsection 4.3.3 discusses strategies to control the remaining variables

(x, y, γ1 and γ2) by actuating on φref and θref . Finally, subsection 4.3.4 suggests some

modification to what was designed on subsection 4.3.3 so that the Tilt-rotor is able to

stabilize an inverted pendulum.

4.3.1 First-level Feedback Linearization

This section presents the designed control strategy to stabilize the outputs z, φ, αR and αL
at their operation points, while actuating on the system’s inputs u =

[
fR fL ταR ταL

]T
.

This choice of outputs y = h(x) =
[
z φ αR αL

]T
may seem peculiar at a first

glance but this is the most natural choice given the system’s inputs. First of all, matrix

∆(x) of equation (4.9) has to be full rank, what forces us to use αR and αL as outputs so

that the inputs ταR and ταL are used to drive any output. As for the other two variables,
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it is interesting to choose outputs that are directly affected by the inputs fR and fL and

their combinations. Thus, the choice of z and φ as remaining outputs is natural.

Thus, using the defined inputs and outputs of the system, its nonlinear model can be

written as (assuming null external disturbances):



ẋ = f(x) + g1(x)fR + g2(x)fL + g3(x)ταR + g4(x)ταL

y =


h1(x)

h2(x)

h3(x)

h4(x)

 =


z

φ

αR

αL

 , (4.27)

where

f(x) =

 f(1)
...

f(20)

 =

[
q̇

M−1[−[C − µ]q̇ −G]

]
,

gu(x) =

 g1(1) g2(1) g3(1) g4(1)
...

...
...

...

g1(20) g2(20) g3(20) g4(20)

 =

[
010×4

M−1B

]
. (4.28)

Calculating the relative degree of output h1(x) = z, the following is obtained:

Lguh1(x) =
[
0 0 1 01×17

] [ 010×4

M−1B

]
= 0 (4.29)

LguLfh1(x) =
[
01×12 1 01×7

] [ 010×4

M−1B

]
6= 0. (4.30)

Therefore, the relative degree r1 = 2. The same result is obtained for the other three

outputs. Therefore, the system’s relative degree is r =
∑
ri = 8. The matrices ∆(x) and

b are given by:
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∆(x) =


Lg1Lfh1(x) Lg2Lfh1(x) Lg3Lfh1(x) Lg4Lfh1(x)

Lg1Lfh2(x) Lg2Lfh2(x) Lg3Lfh2(x) Lg4Lfh2(x)

Lg1Lfh3(x) Lg2Lfh3(x) Lg3Lfh3(x) Lg4Lfh3(x)

Lg1Lfh4(x) Lg2Lfh4(x) Lg3Lfh4(x) Lg4Lfh4(x)

 (4.31)

=


g1(13) g2(13) g3(13) g4(13)

g1(14) g2(14) g3(14) g4(14)

g1(17) g2(17) g3(17) g4(17)

g1(18) g2(18) g3(18) g4(18)

 (4.32)

b =


L2
fh1(x)

L2
fh2(x)

L2
fh3(x)

L2
fh4(x)

 =


f(13)

f(14)

f(17)

f(18)

 . (4.33)

In order to analyse rank(∆(x)), it was chosen to calculate it in the equilibrium point

found at section 3.3.1. Therefore, it is possible to obtain rank(∆(xR)) by calculating

first gu(xR) =

[
010×4

M−1(xR)B(xR)

]
and then evaluating the rank given by the thirteenth,

fourteenth, seventeenth and eighteenth lines of gu(xR). It was observed that indeed

rank(∆(xR)) = 4.

As a result, the new inputs v =

v1
...

v4

 are related to the system’s states as follows:

z̈ = v1, φ̈ = v2, α̈R = v3, α̈L = v4. (4.34)

The inputs v2, v3 and v4 were designed to perform a Proportional-Derivative (PD)

control, while v1 performs a Proportional-Integral-Derivative (PID) control. This choice

was made due to the fact that φ, αR and αL need only to be stabilized, while z should

track desired trajectories and reject constant disturbances. Moreover, a feed-forward term

is also included in all of them, and their behaviour are given by:

v1 = ẍ3Ref +Kdė3 +Kpe3 +KI

∫
e3 dt (4.35)

vi = ẍiRef +Kdėi +Kpei, i = 2, 3, 4. (4.36)

where ei = (xi − xiRef ) and xi is the ith state space variable. The Kd, Kp and KI

parameters were chosen so that the closed-loop poles were inside D-stable regions. One

D-stable region was tuned for each of these variables according to desired closed-loop

characteristics for them. As a result, the following associated characteristic equations

were obtained:
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z : (s+ 9.695)(s+ 6.405)(s+ 5.170) = 0

φ : (s+ 19.606)(s+ 15.692) = 0

αR, αL : (s+ 92.977)(s+ 43.012) = 0. (4.37)

As for the internal dynamics, a base completion was performed using the trivial solu-

tion:



ϑ1 = x

ϑ2 = y

ϑ3 = θ

ϑ4 = ψ

ϑ5 = γ1

ϑ6 = γ2

ϑ7 = ẋ

ϑ8 = ẏ

ϑ9 = θ̇

ϑ10 = ψ̇

ϑ11 = γ̇1

ϑ12 = γ̇2

=⇒



ϑ̇1 = Lfϑ1 + Lguϑ1u

ϑ̇2 = Lfϑ2 + Lguϑ2u

ϑ̇3 = Lfϑ3 + Lguϑ3u

ϑ̇4 = Lfϑ4 + Lguϑ4u

ϑ̇5 = Lfϑ5 + Lguϑ5u

ϑ̇6 = Lfϑ6 + Lguϑ6u

ϑ̇7 = Lfϑ7 + Lguϑ7u

ϑ̇8 = Lfϑ8 + Lguϑ8u

ϑ̇9 = Lfϑ9 + Lguϑ9u

ϑ̇10 = Lfϑ10 + Lguϑ10u

ϑ̇11 = Lfϑ11 + Lguϑ11u

ϑ̇12 = Lfϑ12 + Lguϑ12u

. (4.38)

In order to analyse the stability of the internal dynamics, it is necessary to calculate

the Lie Derivatives as shown in (4.38). However, these derivatives can only be calculated if

the nonlinear vector fields f(x) and gu(x) are known. As shown in equation (4.28), f(x)

and gu(x) are functions of M−1, what means that the nonlinear inverse of the inertia

matrix has to be calculated so as to obtain these vector fields. Due to the computational

complexity, this task was not accomplished. Alternatively, an attempt to evaluate the

behaviour of the internal dynamics using PFL (equation (4.26)) was also performed, but

it was also too expensive computationally.

An alternative solution is to try to obtain a linearized state space representation of

the whole system in closed loop, where now the inputs are zRef , φRef , αRRef and αLRef .

It is possible to numerically obtain an approximate state space linearization by using the

numerical perturbation method2 in the vicinity of the equilibrium point. This method finds

a linear representation of a nonlinear system by applying small variations in the system’s

inputs and states, so that the matrices A and B can be obtained. This procedure was

done in the neighborhood of the equilibrium point and found a characteristic equation

with two unstable and six marginally stable poles. When simulating the system, it was

possible to verify that the variables θ and θ̇ are unstable, while x, y, ψ and their derivatives

are marginally stable. The remaining variables are stable.

2This method is already implemented in Matlab and further information can be found at
http://www.mathworks.com/help/slcontrol/ug/exact-linearization-algorithm.html.
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Next subsection shows that when the variables θ and ψ are controlled by actuating on

αRref and αLref , the unstable poles disappear and the marginally stable poles are reduced

to 4.

4.3.2 Second-level Feedback Linearization

This section presents the performed strategy to stabilize the outputs θ and ψ around an

equilibrium point, while actuating on the references αRRef and αLRef .

In the previous section, it was not possible to calculate the internal dynamics of the

system. Therefore, one cannot obtain the precise model of the system that maps from the

inputs αRref and αLref to the outputs θ and ψ. Thus, in order to circumvent this problem

it was used a reduced Euler-Lagrange model for the system, neglecting some coupling

effects. The neglected dynamic couplings are then considered modelling errors on the

control design. First, it is assumed that there is no coupling between the attitude variables

and the remaining generalized coordinates. This way, the Euler-Lagrange equations can

be written for the attitude variables in the form:

[
W T

η JWη

]
η̈ +

c44 c45 c46

c54 c55 c56

c64 c65 c66

 η̇ +

g4

g5

g6

 = W T
η

[
τR τL 03×1 03×1

] 
fr
fL
ταR
ταL

 , (4.39)

where cij is the element of the coriolis and centripetal matrix located at the ith line and

jth column. The same applies gi which represent terms for the gravity vector.

Assuming that W T
η is invertible (this is true for |θ| 6= π/2), equation (4.39) can be

rewritten as:

[
JWη

]
η̈ +

c̄44 c̄45 c̄46

c̄54 c̄55 c̄56

c̄64 c̄65 c̄66

 η̇ +

ḡ4

ḡ5

ḡ6

 =
[
τR τL 03×1 03×1

] 
fr
fL
ταR
ταL

 . (4.40)

Since the roll angle φ was already controlled with the first feedback-linearization block,

its dynamics and coupling will be neglected from now on. In addition, substituting the

values of τR and τL, the following is obtained:

[
m̄55 m̄56

m̄65 m̄66

] [
θ̈

ψ̈

]
+

[
c̄55 c̄56

c̄65 c̄66

] [
θ̇

ψ̇

]
+

[
ḡ5

ḡ6

]
=

[
sαRdzfR + sαLdzfL
sαRdyfR − sαLdyfL

]
− kτ

b

[
sβ(−cαRfR + cαLfL)
cβ(−cαRfR + cαLfL)

]
.

(4.41)

It should be noticed that there are some input torques that are generated by the thrust
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forces of the propellers, while other are result from the drag effect due to the propellers’

rotation. For simplicity, the drag terms are going to be considered as known disturbances

which should be compensated by the controller. Therefore, by defining:

[
h5

h6

]
=

[
c̄55 c̄56

c̄65 c̄66

] [
θ̇

ψ̇

]
+

[
ḡ5

ḡ6

]
+
kτ
b

[
sβ(−cαRfR + cαLfL)

cβ(−cαRfR + cαLfL)

]
. (4.42)

Assuming that the dynamics of αR and αL are much faster than the dynamics of θ

and ψ, then it is possible to approximate αR = αRRef and αL = αLRef and equation (4.41)

can be written as follows:

[
m̄55 m̄56

m̄65 m̄66

] [
θ̈

ψ̈

]
+

[
h5

h6

]
=

[
dzfR dzfL
dyfR −dyfL

][
sαRRef
sαLRef

]
. (4.43)

Therefore, a new system representation is obtained with inputs sin(αRRef ) and

sin(αLRef ). As consequence, one can regulate θ and ψ by demanding references on the

angles αR and αL. In order to eliminate the sine operations in (4.43), the following

transformation is applied:

αRRef = arcsin
[

1
2fR

(
Υ1+h5
dz

+ Υ2+h6
dy

)]
(4.44)

αLRef = arcsin
[

1
2fL

(
Υ1+h5
dz
− Υ2+h6

dy

)]
. (4.45)

Substituting equations (4.44)-(4.45) into (4.43), the following is obtained:

[
m̄55 m̄56

m̄65 m̄66

] [
θ̈

ψ̈

]
=

[
Υ1

Υ2

]
. (4.46)

It should be noticed that one must be careful when using the relation given by equa-

tions (4.44)-(4.45). Given that the operation arcsin(w) is defined only for −1 < w < 1,

it is important to observe whether this operation is being calculated within the permit-

ted region. This work overcomes this problem by using the same solution proposed by

Bhanja Chowdhury et al. (2012), who uses a saturation function σ(p) as follows:

σ(p) =


1 if p > 1

p if −1 < p < 1

−1 if p < −1

 . (4.47)

Thus, the real transformation for αRRef and αLRef is given by:
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αRRef = arcsin
[
σ
(

1
2fR

(
Υ1+h5
dz

+ Υ2+h6
dy

))]
(4.48)

αLRef = arcsin
[
σ
(

1
2fL

(
Υ1+h5
dz
− Υ2+h6

dy

))]
. (4.49)

Then, the following relation for the inputs Υ1 and Υ2 is used:

[
Υ1

Υ2

]
=

[
m̄55 m̄56

m̄65 m̄66

] [
v5

v6

]
(4.50)

Υθ,ψ = Mθ,ψvθ,ψ. (4.51)

Given that Mθ,ψ is nonsingular around the equilibrium point, the following holds:

[
θ̈

ψ̈

]
=

[
v5

v6

]
. (4.52)

The input v5 was designed to perform a PD control with feed-forward, while v6 per-

forms a PID control with feed-forward. This choice was made due to the fact that θ

needs only to be stabilized, while ψ should track desired trajectories and reject sustained

disturbances. The behaviours of v5 and v6 are similar to the ones showed in equations

(4.35) (PID controller) and (4.36) (PD controller).

This section assumed that some dynamic coupling are negligible. However, this is not

true, since the whole system is coupled. Therefore, when allocating poles for θ and ψ, the

inner loops of the cascade system also change the position of their poles. Consequently,

it is important to look at the closed loop poles of the linearized system when tuning the

controllers for v5 and v6 so that the coupling does not provide undesired results.

The same controller parameters designed for the controllers of the previous section

were kept, while the parameters for θ and ψ were tuned avoiding unstable poles on the

linearized system. The tuning was performed using D-stability algorithms. The control-

lers’ parameters can be seen in Table 4.1.

In order to analyse the whole system’s stability, it was used again the numerical

perturbation method. This procedure was done in the neighborhood of the equilibrium

point and found a characteristic equation with four marginally stable poles and no unstable

poles. When simulating the system, it was possible to verify that the variables x, y, ẋ

and ẏ had marginally stable behaviours.

Therefore, this IOFL block was able to stabilize both θ and ψ. The control of x and y

is accomplished by using the third IOFL block. The stability of γ1 and γ2 are also taken

into account in the next subsection.
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Table 4.1: Controllers parameters for the two first Feedback-Linearizations.

Variable Kp KI Kd

z -145.3474 -321.0882 -21.2709
φ -307.6781 - -35.2992
θ -52.2404 - -14.9975
ψ -210.9180 -524.9711 -26.4364
αR -3999.1715 - -135.9896
αL -3999.1715 - -135.9896

4.3.3 Third-level Feedback Linearization

This section presents the strategy performed to stabilize the outputs x, y, γ1 and γ2

around an equilibrium point while actuating on the references φRef and θRef .

Again, a reduced Euler-Lagrange model is used for the system’s controller design,

assuming that x, y, γ1 and γ2 do not affect the other variables, while the other variables

do not affect x, y, γ1 and γ2 either. Again, the neglected dynamic coupling are then

considered as modelling errors on the control design. Consequently, the Euler-Lagrange

equations can be written for these variables in the form:


m1,1 m1,2 m1,9 m1,10

m2,1 m2,2 m2,9 m2,10

m9,1 m9,2 m9,9 m9,10

m10,1 m10,2 m10,9 m10,10



ẍ

ÿ

γ̈1

γ̈2

+


c1,1 c1,2 c1,9 c1,10

c2,1 c2,2 c2,9 c2,10

c9,1 c9,2 c9,9 c9,10

c10,1 c10,2 c10,9 c10,10



ẋ

ẏ

γ̇1

γ̇2

+


g1

g2

g9

g10

 =


T Ix
T Iy
0

0

 ,
(4.53)

where mi,j is the element of the inertia matrix located at the ith line and jth column.

The same applies to cij and gi, which represent terms for the coriolis and centripetal

matrix and gravity vector, respectively. The variables T Ix and T Iy are, respectively, the

translational forces along x and y expressed in the inertial frame:

T Ix = cψcθf
B
x + (cψsθsφ − sψcφ)fBy + (sψsφ + cψsθcφ)fBz (4.54)

T Iy = sψcθf
B
x + (sψsθsφ + cψcφ)fBy + (sψsθcφ − cψsφ)fBz , (4.55)

where

fBxfBy
fBz

 = F BR + F BL , (4.56)

and F BR , F BL are defined on equations (2.53) and (2.54).

An important observation about this approach is that the actuation on the system
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should be done by changing the projection of fBz along xI and yI . In other words, the

roll (φ) and pitch (θ) angles need to be changed so as to obtain the desired projections of

fBz along xI and yI . The projections of fBx and fBy along the inertial frame are going to

be considered as known disturbances which should be compensated by the controller.

For further simplifications when needed, equation (4.53) is also conveniently denoted

as:

Mx,y,γ1,γ2 q̈x,y,γ1,γ2 +Cx,y,γ1,γ2 q̇x,y,γ1,γ2 +Gx,y,γ1,γ2 = Tx,y,γ1,γ2 . (4.57)

By inspecting equations (4.54) and (4.55), it is not trivial to obtain a nonlinear state-

space representation affine in the inputs where the inputs are given by φRef and θRef .

Therefore, some mathematical manipulation should be made so that IOFL theory can be

used. As a proposal, assume that it is possible to obtain a system representation such as

follows:


m1,1 m1,2 m1,9 m1,10

m2,1 m2,2 m2,9 m2,10

m9,1 m9,2 m9,9 m9,10

m10,1 m10,2 m10,9 m10,10



ẍ

ÿ

γ̈1

γ̈2

+


0

0

h9

h10

 =


Υ1

Υ2

0

0

 . (4.58)

Then it would be possible to use IOFL techniques to linearize this portion of the

system. In what follows, two solutions are provided so that the relation in equation (4.58)

is obtained.

Solution 1 This first solution is simple, but it requires the variable ψ to be always on

the vicinity of ψ = 0. Then, it is possible to actuate on sφ so that the UAV moves

along y and actuate on sθ so that the Tilt-rotor moves along x. Thus, defining the

following variables:


h1

h2

h9

h10

 = Cx,y,γ1,γ2 q̇x,y,γ1,γ2 +Gx,y,γ1,γ2 −


cψcθf

B
x + (cψsθsφ − sψcφ)fBy + sψsφf

B
z

sψcθf
B
x + (sψsθsφ + cψcφ)fBy + sψsθcφf

B
z

0

0

 .
(4.59)

Equation (4.53) can then be rewritten as:


m1,1 m1,2 m1,9 m1,10

m2,1 m2,2 m2,9 m2,10

m9,1 m9,2 m9,9 m9,10

m10,1 m10,2 m10,9 m10,10



ẍ

ÿ

γ̈1

γ̈2

+


h1

h2

h9

h10

 =


(cψcφf

B
z )sθ

(−cψfBz )sφ
0

0

 . (4.60)
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Therefore, by choosing:

θRef = arcsin
[
σ
(

Υ1+h1
cψcφfBz

)]
, φRef = arcsin

[
σ
(

Υ2+h2
−cψfBz

)]
, (4.61)

then it is possible to obtain the relation given in (4.58). It should be noted that

this solution is undefined when cψ = 0, cφ = 0 or fz = 0. Thus, this solution is

valid only if −π/2 < ψ < π/2 (this is satisfied if ψ is in the vicinity of ψ = 0),

−π/2 < φ < π/2 (this is usually satisfied, given that abrupt manoeuvres are not

applied on the aircraft) and if fz > 0 (this is also usually satisfied, given that the

aircraft needs to be lifted by fz).

Solution 2 This solution does not require the variable ψ to be in the vicinity of ψ = 0.

With this solution, φ and θ are adjusted for any given ψ, so that the Tilt-rotor

moves along x and y according to the desired trajectory. However, some caution

must be taken when using this solution, as discussed afterwards. First, the following

is defined:


h1

h2

h9

h10

 = Cx,y,γ1,γ2 q̇x,y,γ1,γ2 +Gx,y,γ1,γ2 −


cψcθf

B
x + (cψsθsφ − sψcφ)fBy

sψcθf
B
x + (sψsθsφ + cψcφ)fBy

0

0

 . (4.62)

Equation (4.53) can then be rewritten as:


m1,1 m1,2 m1,9 m1,10

m2,1 m2,2 m2,9 m2,10

m9,1 m9,2 m9,9 m9,10

m10,1 m10,2 m10,9 m10,10



ẍ

ÿ

γ̈1

γ̈2

+


h1

h2

h9

h10

 =


(sψsφ + cψsθcφ)fBz
(sψsθcφ − cψsφ)fBz

0

0

 . (4.63)

Therefore, in order to obtain a system representation such as the one given by

equation (4.58), then one needs to find φ and θ that satisfies the following system

of nonlinear equations:

{
sψsφ + cψsθcφ = Υ1+h1

fBz

sψsθcφ − cψsφ = Υ2+h2
fBz

=⇒

{
sψsφ + cψsθcφ = c1

sψsθcφ − cψsφ = c2

, (4.64)

where c1 and c2 are obviously defined. The solution of this system of nonlinear equa-

tions was obtained using numerical methods. This method finds multiple solutions

for the nonlinear system of equations 4.64. Each solution was analysed and the one

that fitted the most for −π/2 < φRef < π/2 and −π/2 < θRef < π/2 was chosen.

The solution is given by:
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φRef = arctan
[
a2+1
b
−
[
c
(

2a2+a4−c22−4c1a2+2c22a
2−c22a4+4c1c2a−4c1c2a3+1

b

)]]
(4.65)

θRef = arcsin
[
c
(
c1 + 2c2a− c1a

2
)]
, (4.66)

where:

a = arctan
(
ψ
2

)
, b = 2c1a− c2 + c2a

2, c =

√
1

(b+ a2 + 1)(−b+ a2 + 1)
. (4.67)

There are two issues that require caution when using this solution: first, the function

σ of equation (4.47) should be used in equation (4.66) so that it does not become

undefined. The second, and most troublesome problem, is that φ, θ ∈ < but the

variable c may assume imaginary values depending on the values within the square

root operator. In order to solve the problem when c is imaginary, two solutions are

suggested:

1. Given that in this case Re(c) = 0, then c = 0 can be assumed. Good simulation

results were obtained when using this approach. Extensive tests were performed

varying the simulated values of φ, θ and ψ, but the system did not present any

ill behaved response when using this approach.

2. When it happens that c /∈ <, the controller may switch to an alternative way

of solving the system of equations (4.64) using some optimization algorithm

instead of using the solution provided by equations (4.65).

The second solution imposes the necessity of implementing optimization algorithms

on the hardware of the UAV, what may be undesired given the computational cost

that are usually expected for these algorithms. Therefore, the first solution was used

when simulating the system.

Independently of the specific solution (Solution 1 or Solution 2 ) used, the system

representation in the form given by (4.58) is obtained, and now it is possible to apply

input-output feedback linearization using the outputs:

y(x) =

[
h1(x)

h2(x)

]
=

[
x

y

]
. (4.68)

The relative degree of both outputs is ri = 2, i = 1, 2. With this, it is possible to drive

the variables x, ẋ, y and ẏ. The dynamics of the variables γ1, γ̇1, γ2 and γ̇2 can then be

evaluated by looking at the internal dynamics.

The state-space representation obtained from equation (4.58) is:
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

ẋ

ẏ

γ̇1

γ̇2

ẍ

ÿ

γ̈1

γ̈2


=

[
ẋx,y,γ1,γ2
ẍx,y,γ1,γ2

]
=

[
ẋx,y,γ1,γ2
Fx,y,γ1,γ2

]
+

[
04×2

gx,y,γ1,γ2

] [
Υ1

Υ2

]
, (4.69)

where:

H =


0

0

h9

h10

 , Fx,y,γ1,γ2 = −M−1
x,y,γ1,γ2

H , gx,y,γ1,γ2 = M−1
x,y,γ1,γ2


1 0

0 1

0 0

0 0

 . (4.70)

Representing the matrix M−1
x,y,γ1,γ2

as:

M−1
x,y,γ1,γ2

=


M−1

11 M−1
12 M−1

13 M−1
14

M−1
21 M−1

22 M−1
23 M−1

24

M−1
31 M−1

32 M−1
33 M−1

34

M−1
41 M−1

42 M−1
43 M−1

44

 , (4.71)

then the IOFL matrices ∆(x) and b are given by:

∆(x) =

[
M−1

11 M−1
12

M−1
21 M−1

22

]
, b(x) =

[
−M−1

13 h9 −M−1
14 h10

−M−1
23 h9 −M−1

24 h10

]
. (4.72)

In order to analyse the internal dynamics a first simplification is made, which is to

substitute into Mx,y,γ1,γ2 the equilibrium values of the state variables that were controlled

in the inner IOFL blocks. That is, φ, θ ψ, αR and αL are all substituted into Mx,y,γ1,γ2

by their respective equilibrium values. The following simplified matrix is obtained:

M̄x,y,γ1,γ2 =


m̄1,1 0 0 m̄1,10

0 m̄2,2 m̄2,9 0

0 m̄9,2 m̄9,9 0

m̄10,1 0 0 m̄10,10

 =⇒ M̄−1
x,y,γ1,γ2

=


m̄10,10

den1
0 0 − m̄1,10

den1

0 m̄9,9

den2
− m̄2,9

den2
0

0 − m̄2,9

den2

m̄2,2

den2
0

− m̄1,10

den1
0 0 m̄1,1

den1

 .
(4.73)

where:
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den1 = m̄1,1m̄10,10 − m̄2
1,10, den2 = m̄2,2m̄9,9 − m̄2

2,9, (4.74)

In this case, matrices Fx,y,γ1,γ2 and gx,y,γ1,γ2 are given by:

Fx,y,γ1,γ2 =


m̄1,10

den1
h10

m̄2,9

den2
h9

− m̄2,2

den2
h9

− m̄1,1

den1
h10

 , gx,y,γ1,γ2 =


m̄10,10

den1
0

0 m̄9,9

den2

0 − m̄2,9

den2

− m̄1,10

den1
0

 . (4.75)

Therefore, choosing the following variables for the internal dynamics:

ϑ1 = γ1, ϑ2 = γ2, ϑ3 =
ẏ

m̄9,9

+
γ̇1

m̄2,9

, ϑ4 =
ẋ

m̄10,10

+
γ̇2

m̄1,10

, (4.76)

the diffeomorphism is completed and it satisfies the constraint given by equation (4.15),

which demands that Lgϑk(x) = 0, ∀ 1 < k < 4, given g =

[
04×2

gx,y,γ1,γ2

]
. Therefore, the

internal dynamics can be written as:

fϑ =


ϑ̇1

ϑ̇2

ϑ̇3

ϑ̇4

 =⇒


ϑ̇1 = Lfϑ1

ϑ̇2 = Lfϑ2

ϑ̇3 = Lfϑ3

ϑ̇4 = Lfϑ4

, (4.77)

where f =

[
ẋx,y,γ1,γ2
Fx,y,γ1,γ2

]
. By linearizing the internal dynamics in the neighborhood of the

equilibrium point, the following state matrix Aϑ is obtained:

Aϑ =
∂fϑ
∂ϑ
|ϑ=ϑEq

=


0 0 0.025 0

0 0 0 −0.025

−785 0 −80µγ1 0

0 785 0 −80µγ2

 , (4.78)

where µγ1 and µγ2 are drag coefficients as described on section 2.4.5. These coefficients

were left unsubstituted on equation (4.78) so that it is possible to see that if they are

neglected, i.e. µγ1 = µγ2 = 0 N.m/(rad/s), then the eigenvalues of Aϑ would be λϑ =

0±4.43j. On the other hand, considering µγ1 = µγ2 = 0.005 N.m/(rad/s), the eigenvalues

of γ1 and γ2 are λϑ = −0.2 ± 4.43j. This makes sense, since a pendulum may swing

forever in a frictionless environment, while it eventually stops swinging in the presence of



4.3 Tilt-rotor Nonlinear Control 67

friction.

Therefore, it is possible to conclude that, in the presence of friction, the internal

dynamics for γ is stable in the vicinity of the equilibrium point regardless of the designed

controller. It is then possible to design the controllers for this IOFL so that variables

x and y are able to perform path tracking, rejecting sustained disturbances. This is

accomplished by using PID controllers with feed-forward:

vx = ẍRef +Kdx ėx +Kpxex +KIx

∫
ex dt (4.79)

vy = ÿRef +Kdy ėy +Kpxey +KIy

∫
ey dt. (4.80)

It was assumed at the beginning of this subsection that the dynamics of x, y, γ1 and γ2

do not interact with the remaining variables’ dynamics neither on the other way around.

However, this is not true, since the whole system is coupled. Therefore, when allocating

poles for x and y, the inner loops of the cascade system also change the position of their

poles.

Therefore, the controller was designed such that all closed-loop poles are stable on

the linearized system. Again, the controllers’ parameters were tuned using D-stability

algorithms and they are presented in table 4.2.

In order to analyse the whole system’s stability, it was used again the numerical

perturbation method. This procedure was done in the neighborhood of the equilibrium

point and found the following closed-loop characteristic equation:

det(A− λI) =(s+ 96.34)(s+ 25.528)(s+ 30.01 + 105.16j)(s+ 30.01− 105.16j)

(s+ 19.87)(s+ 9.69)(s+ 11.46 + 14.33j)(s+ 11.46− 14.33j)

(s+ 6.40)(s+ 5.17)(s+ 4.75 + 0.99j)(s+ 4.75− 0.99j)

(s+ 2.92 + 0.86j)(s+ 2.92− 0.86j)(s+ 1.29 + 3.73j)(s+ 1.29− 3.73j)

(s+ 0.69 + 0.16j)(s+ 0.69− 0.16j)(s+ 0.57 + 0.23j)(s+ 0.57− 0.23j)

(s+ 0.33 + 3.93j)(s+ 0.33− 3.93j)(s+ 0.23 + 4.40j)(s+ 0.23− 4.40j).

(4.81)

Given that all the poles on the characteristic equation are on the left complex half-

plane, then it is possible to say that this system is stable on the vicinity of the equilibrium

point. However, it is not possible to say how far from the equilibrium point this system

becomes unstable. It is shown on section 4.4 that this control strategy is valid in a

wider region than the one obtained by relying on the linear control strategies presented

in Chapter 3.
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Table 4.2: Controllers parameters for the whole cascade system.

Variable Kp KI Kd

x -2.8353 -0.8820 -2.9561
y -2.8353 -0.8820 -2.9561
z -145.3474 -321.0882 -21.2709
φ -307.6781 - -35.2992
θ -119.6486 - -21.9717
ψ -69.4846 -101.4744 -15.0122
αR -3310.6447 - -125.4249
αL -3310.6447 - -125.4249

4.3.3.1 Performance Improvement of the Load’s Swing

The previous control solution accomplishes the task of path tracking for the aircraft with

suspended load, but no improvements are made to reduce the load’s swing. If it is desired

to reduce the load’s swing when following a desired path, then a different control law must

be designed. In what follows, this problem is solved by adapting the solution of Lee et

al. (2013), who used a feedback linearization approach for controlling an overhead crane.

They considered that the crane could change the distance l between the trolley and the

suspended load, but this degree of freedom will not be considered in this work.

In order to improve load stabilization, first the following change of variables are applied:

dIBC4 =

dIxdIy
dIz

 = RIB dB4 . (4.82)

The vector dIBC4 represents the distance between the aircraft’s base and the load ex-

pressed in the inertial frame. In order to reduce the load’s swing, the variables dIx and

dIy are regulated. The use of variables expressed in the inertial frame is done because

easy relations can be employed to stabilize the load. For instance, dIx can be regulated by

simply actuating on ẍ; the same applies to dIy .

Now, the reference for the load is

[
ḋIx
ḋIy

]
=

[
0

0

]
. That is, the objective is to avoid load

swing, regardless of its position with respect to the aircraft. In order to accomplish this,

equations (4.79) and (4.80) are adapted so as to add a PI controller to regulate the load’s

speed with respect to the Tilt-rotor (Lee et al., 2013):

vx = ẍRef +Kdx ėx +Kpxex +KIx

∫
ex dt+Kpdx

ḋIx +KIdx

∫
ḋIx dt (4.83)

vy = ÿRef +Kdy ėy +Kpxey +KIy

∫
ey dt+Kpdy

ḋIy +KIdy

∫
ḋIy dt. (4.84)

With this approach, it is possible to reduce the load’s swing. In contrast, the path-



4.3 Tilt-rotor Nonlinear Control 69

Table 4.3: Controllers parameters for load control.

Variable Kp KI Kd

x -4.5271 -1.8246 -3.7051
y -4.5271 -1.8246 -3.7051

ḋIx -2.4808 -1.5201 -

ḋIy -2.4808 -1.5201 -

tracking performance deteriorates when the system tries to avoid load’s motion. The

parameters for the controllers of x, y, ḋIx and ḋIy were tuned using D-stability algorithms

and are shown in Table 4.3. The other parameters remain the same as shown in Table

4.2.

4.3.4 Inverted Pendulum Control Strategy

In this section, some modifications to the previous design are suggested so that the Tilt-

rotor UAV is able to stabilize an inverted pendulum. Given that the model obtained in

the last section considered that the load is attached to the aircraft by a rigid rod, then

the same model can be used to express the dynamics of an inverted pendulum. In order

to do that, the initial values of γ are γ1(0) = π rad and γ2(0) = 0 rad.

The same linearization performed at the previous section is used. The modification

resides on equations (4.83) and (4.84). Now the controller tries to control only dIx and dIy
by using a PID controller to regulate it:

vdx = Kddx
ėdx +Kpdx

edx +KIdx

∫
edx dt (4.85)

vdy = Kddy
ėdy +Kpdy

edy +KIdy

∫
edy dt. (4.86)

where edx = dIx − dxRef and edy = dIy − dyRef . Consequently, it is then possible to regulate

the inverted pendulum above the aircraft. However, the position of the aircraft is not

regulated. This can be solved by looking at the decomposition of the gravitational force

over the pendulum as shown in figure 4.2 (this figure shows only decompositions on z− y
plane, but the same applies to z − x). It is possible to see that when dIy is non-zero, then

a component of the gravitational force W is decomposed into a tractive force between the

load and the rod, which, in turn, decomposes into Fdy , which accelerates the load on the

direction of dIy . The value of this component is given by:

Fdy = Wsαcα = m4gz
dIy
l

dIz
l

=
m4gzd

I
yd
I
z

l2
. (4.87)

The acceleration along dIy is given by:
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=       

Figure 4.2: Inverted Pendulum Projections.

d̈Iy =
gzd
I
yd
I
z

l2
. (4.88)

If, however, the acceleration ÿ = d̈Iy is applied on the aircraft, then the load remains

balanced with no variation in dIy . This means that by choosing set points dyRef , the

aircraft tries to balance it around this reference. Consequently, the aircraft accelerates

in this direction. Therefore, in order to obtain an acceleration ay for the aircraft along

direction y, then proper dyRef should be chosen so that it goes in the desired direction.

This reference is given by:

dyRef =
ayl

2

gzdz
. (4.89)

Thus, in order to regulate the aircraft in the directions x and y, their desired acceler-

ations can be obtained using a proportional controller:

ax = Kpxex, ay = Kpyey. (4.90)

In order to make this strategy work in simulations, it was necessary to increase the

length of the rigid rod. This had to be done due to the fact that inverted pendulums with

larger l have larger margin of stability, given that their frequency of oscillation decrease.

Therefore, the simulation results for the inverted pendulum that are shown on section

4.4.3 takes into account l = 2m. Table 4.4 shows the controller parameters used for the

control of the inverted pendulum.
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Table 4.4: Controllers parameters for the inverted pendulum.

Variable Kp KI Kd

x -0.0315 - -
y -0.0315 - -
z -145.3474 -321.0882 -21.2709
φ -307.6781 - -35.2992
θ -119.6486 - -21.9717
ψ -69.4846 -101.474 -15.0122
αR -3310.6447 - -125.42496
αL -3310.6447 - -125.42496
dIx -15.0041 -11.2467 -6.6966
dIy -15.0041 -11.2467 -6.6966

4.4 Simulation Results

This section shows simulation results carried out to analyse the performance of the non-

linear control strategies designed for the Tilt-rotor UAV with suspended load. First, a

comparison is made regarding the nonlinear controller for path tracking (NLPT, given

by equations (4.79) and (4.80)) with respect to the nonlinear controller that reduces the

load’s swing (NLLS, given by equation (4.83) and (4.84)). Then, the NLLS controller

is compared to the linear H∞ controller designed for the linearized system (presented

at section 3.3.4). At last, simulation results are shown for the strategy designed for the

inverted pendulum.

4.4.1 Comparison between NLPT and NLLS

A simulation was performed using both NLPT and NLLS strategies to perform a squared

trajectory, where the aircraft should displace 2.5m in 5 seconds for each of the square’s

sides. There were no disturbance inputs, the set point for height z was constant and ψ

was always oriented in the direction of the trajectory. Figure 4.3 shows the results of

the trajectories performed by observing from the top. The aircraft started on the point

x = 0, y = 0 and its initial values for γ1 and γ2 were both π/10. The NLLS reduced the

load’s swing, but its path tracking error for x and y increased, as it can be seen in Figure

4.4. The time evolution of the remaining generalized coordinates are shown in Figure 4.5;

special attention should be given to the dynamics of γ1 and γ2, which shows that their

motion presented reduced swing when using the NLLS controller. Figure 4.6 shows the

system’s control inputs.

Table 4.5 shows the mean square error of the trajectory of the aircraft in relation

with its reference. The NLPT controller presented 62% of the mean square error on the

direction x with respect to the NLLS controller and 71% in the direction y. The tracking

errors for z and ψ were similar on both controllers. Even though NLPT performed better

path tracking than NLLS, one should be careful when using it, since too much swing of

the load, specially for heavy loads, may destabilize the aircraft.

Table 4.6 compares the IAVU indexes for inputs on NLPT and NLLS. Given that
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Table 4.5: Mean-square-error comparison between NLPT and NLLS.

NLPT NLLS MSENLPT
MSENLLS

MSEx 5, 18 · 10−3 8, 32 · 10−3 0, 6230
MSEy 5, 55 · 10−3 7, 76 · 10−3 0, 7152
MSEz 2, 83 · 10−9 2, 70 · 10−9 1, 0460
MSEψ 3, 95 · 10−2 3, 94 · 10−2 1, 0013

both controllers use similar control laws, there are only some slight variations on this

index from one approach to the other.

Figure 4.3: Path tracking of the aircraft for NLPT and NLLS.

4.4.2 Comparison between NLLS and Linear H∞

Now, figures 4.7-4.10 compare the results obtained using the NLLS and H∞ controllers.

The simulation shown in these figures were performed with the same configuration as

done for the linear simulations: the UAV tracks a predefined trajectory while some dis-

turbance forces (Fxext(t), Fyext(t) and Fzext(t)) affect the vehicle on its geometric center

(same disturbances as shown in Figure 3.4). Moreover, the simulation considered that the

model’s masses mi and inertia tensors Ii, for i = 1, 2, 3, 4, had all uncertainties ranging

from −30% to 30% of their nominal values. Besides, ψRef (t) = 0 for all 0 < t < 80.
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Figure 4.4: Tracking error on NLPT and NLLS.

Table 4.6: IAVU Index comparison between NLPT and NLLS.

NLPT NLLS
IAV UfR 105, 1756 95, 1902
IAV UfL 101, 4633 91, 3149
IAV UταR 4, 9287 4, 9930
IAV UταL 5, 1383 5, 2141

Figures 4.7 and 4.8 show that the H∞ controller provided better path tracking in the

presence of disturbances. Furthermore, Figure 4.9 shows that the system had a response

more oscillatory when using NLLS than when using H∞. Figure 4.10 shows the system’s

control inputs. It is possible to verify that the inputs for the H∞ controller are more

abrupt than for the NLLS case. This can be verified by looking at table 4.7, which shows

that the IAVU index was much larger for the H∞ controller than for the NLLS.

Table 4.8 shows the mean square error of the trajectory of the aircraft in relation

with its reference. The H∞ controller presented 5.74% of the mean square error on the

direction x with respect to the NLLS controller and 3.57% in the direction y. The NLLS

controller presented 39.7% of the mean square error on the direction z with respect to the

H∞ controller and 5.88% in the direction of ψ.

According to Slotine and Li (1991), feedback linearization techniques does not guar-
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Figure 4.5: Body and Load angles on NLPT and NLLS.

antee robustness in the face of parameter uncertainties or disturbances. This, along with

all the design simplifications assumptions, might explain the worse results for path track-

ing of x and y using the nonlinear controller. However, it might be possible that, with

some careful tuning, the NLLS approach may present similar or even better results when

compared to the H∞ controller. Besides, even though the nonlinear controller does not

provide better results than the H∞ controller when tracking a defined trajectory in the

presence of disturbances, the nonlinear approach is advantageous when the system goes

far from the equilibrium point. In section 3.4 it was described some situations in which

nonlinear controllers might provide better results than linear ones. It then follows that
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Figure 4.6: Inputs of the system using NLPT and NLLS.

simulation results demonstrate that the following is true:

• The nonlinear controller is capable of making the aircraft follow non-smooth traject-

ories or trajectories that demands higher accelerations of the system. Figure 4.11

shows a simulation where the aircraft should have followed the same path as the

previous simulation, but in sixty seconds (instead of in eighty seconds). It shows

that the linear controller destabilized right away at the beginning of the simulation,

while the nonlinear controller could stabilize the aircraft through all the path;

• The nonlinear controller is able to deal with harsher disturbances than the linear

controller. This can be seen in Figure 4.12, which shows the same simulation of

Figure 4.7 but with harsher disturbances (four times higher disturbances on x and

y, and two times higher disturbances on z). It can be seen that the linear controller

could not stabilize the aircraft right when the first disturbance step was applied,

while the nonlinear controller could still track the desired reference. Even though

the H∞ controller is designed for disturbance rejection, this controller wasn’t able to

keep the aircraft stabilized because the disturbance displaced the aircraft too much

from its reference signal;

• The nonlinear controller is capable of stabilizing the aircraft even with the system’s

state variables start far from the equilibrium point. Figures 4.13 and 4.14 show the
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Table 4.7: IAVU Index comparison between NLLS and H∞.

NLLS H∞
IAV UfR 424, 2282 6, 4251 · 103

IAV UfL 388, 9417 4, 4195 · 103

IAV UταR 17, 3053 102, 2888
IAV UταL 20, 8913 209, 8082

response of the system using the controllers NLLS and H∞ where the initial general-

ized coordinates are q(0) =
[
0.5 0.5 0.5 π/4 π/4 π/4 π/4 π/4 −π/4 −π/4

]
and the set point is xRef (t) = yRef (t) = zRef (t) = ψRef (t) = 0. It is possible to see

that the nonlinear controller is able to stabilize the system with these conditions,

while the linear one cannot.

Figure 4.7: Path tracking of the aircraft for NLLS and H∞.

4.4.3 Inverted Pendulum

Figure 4.15 shows the path followed by the system while tracking a desired reference

stabilizing an inverted pendulum. The aircraft’s reference demanded tracking a straight

line where ẋref = ẏref = żref = 5 cm/s and ψref = 0. Figures 4.16-4.17 shows the
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Figure 4.8: Tracking error on NLLS and H∞.

Table 4.8: Mean-square-error comparison between NLLS and H∞.

NLLS H∞
MSEH∞
MSENLLS

MSEx 1, 54.10−3 8, 88.10−5 0.0574
MSEy 1, 56.10−3 5.56.10−5 0.0357
MSEz 2, 00.10−5 5, 03.10−5 2.5188
MSEψ 7, 67.10−5 1, 31.10−3 17.124

generalized coordinates of the aircraft. It is possible to observe that even though the

response was oscillatory, γ1 remained in the vicinity of γ1 = π rad and the position of

the aircraft also stood near its references. It is possible to in Figure 4.18 that the control

effort was quite high, as verified in Table 4.9. The IAVU index presented to be very high

for ταR and ταL , which could be a problem when using this approach on a real experiment.

Even though it was shown that the Tilt-rotor stabilized an inverted pendulum, its

results were not as good as solutions using Quad-rotor UAVs (Hehn and D’Andrea, 2011).

This happens because the Tilt-rotor is not able to actuate fast enough on its pitch angle

as Quad-rotors can. Consequently, for ψ = 0, the Tilt-rotor is able to quickly stabilize dy
(actuating on roll angle), but not so fast when stabilizing dx (actuating on pitch angle).

This can be verified in figure 4.17, where γ1 deviated ±1◦ from its equilibrium, while γ2

deviated around ±5◦.
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Figure 4.9: Body and Load angles on NLLS and H∞.

4.5 Conclusions

This chapter provided solutions for the problem of nonlinear closed-loop control of the

Tilt-rotor UAV with suspended load. The proposed strategies were able to stabilize the

whole system while tracking a desired reference in the presence of exogenous disturbances,

parametric uncertainties and unmodelled dynamics.

Two nonlinear controllers were designed to accomplish the task of path tracking:

NLPT (Nonlinear for path tracking) and NLLS (Nonlinear for reduced load swing). NLLS
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Figure 4.10: Inputs of the system using NLLS and H∞.

Table 4.9: IAVU Index for the Inverted Pendulum.

fR fR ταR ταL
IAV U 1, 0065 · 103 954, 0050 1, 2230 · 103 1, 2217 · 103

reduce the load’s swing with respect to NLPT at the cost of worsening its tracking error.

However, even though NLPT performed better path tracking than NLLS, one should be

careful when using it, since too much swing of the load, specially for heavy loads, may

destabilize the aircraft.

When compared to the H∞ controller (introduced in chapter 3), the NLLS was worse

both on path tracking and disturbance rejection for a pre-defined trajectory. However,

NLLS is able to maintain the system stable when it deviates from the equilibrium point.

NLLS was shown to be better than linear controllers when there are complex paths,

harsher disturbances or when the aircraft starts far from its reference. Besides, the control

effort obtained from NLLS (IAVU index) is around ten times smaller when compared to

the H∞ controller.

Apart from the previous controllers, one last nonlinear controller was designed enabling

the Tilt-rotor to stabilize an inverted pendulum. Conceptually, it was possible to attain

stabilization of the inverted pendulum, but one cannot expect results as good as the ones

provided by Quad-rotor UAVs due to their additional two rotors.
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Figure 4.15: Path tracking of the aircraft with inverted pendulum.
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Figure 4.16: Aircraft’s position and attitude for the inverted pendulum.
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Figure 4.17: α and γ in function of time for the inverted pendulum.
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Figure 4.18: Inputs for the inverted pendulum.
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5.1 Introduction

In the previous chapters it was assumed that all states were precisely known in all time

instants. However, this assumption may not be true when dealing with real experiments.

Usually, built-in sensors provide noisy measurements with their own sampling frequency,

which may be different from the controller’s frequency. A relevant problem in the devel-

opment of UAVs is how to manage these difficulties, which is usually circumvented by

using state estimation techniques.

This chapter focuses on the problem of state estimation for the position and speed

of the aircraft, assuming though that the remaining state space variables are known.

It assumes that the position is actually measured by a Global Positioning System (GPS)

equipment with sampling time Ts, while the controller has a sampling time τs, with τs < Ts
and assuming Ts/τs ∈ N. Therefore, the estimator must evaluate the position of the

aircraft when no new measurements are available from the GPS receiver, also taking into

account its measurement uncertainty. To further increase the challenge, the estimator

must consider that the aircraft’s motion may be affected by disturbances (e.g. wind

gusts), which are not usually measured.

On state estimation problems it is important to know all the inputs that affect a

system. Otherwise the estimates become biased due to the unknown input parameters.

In order to solve this whole problem, the technique Linear Kalman Filter with Unknown

Inputs (LKFUI) is used. Unlike classic Linear Kalman Filter (LKF) (Kalman, 1960), the

LKFUI (Darouach et al., 2003) can deal with problems involving unknown inputs. In the

present work, the formulation proposed by Teixeira et al. (2008) is used, which presents

a generalized approach to Kalman Filters called Gain-Constrained Kalman Filtering in

which both LKFUI and LKF are particular solutions.
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The remainder of this chapter is organized as follows: section 5.2 presents some tech-

nical preliminaries and notation that is used all throughout the chapter; section 5.3 deals

with the Tilt-rotor’s state space model for state estimation; section 5.4 presents the equa-

tions used on LKFUI and section 5.4 provides simulation results 1.

5.2 Technical Preliminaries and Notation

For a certain state variable x, xk denotes the value of the state at sampling instant k,

being x̂k its estimated value. yk contains the values measured at instant k, while ŷk
represents the estimation of the same variable. x̂k|k−1 denotes that x at instant k has

been predicted using measured information up to instant k − 1. The notation used for

the disturbance vector is d and the disturbance at instant k − 1 is calculated at instant

k, that is, one sampling time after it really happened.

Since this work deals with two different sampling times, x̂i,k (i = 0, 1, 2, ..., Ts/τs)

denotes the estimated states of the system i · τs seconds after the instant given at x̂k|k.

Index i represents increments in the controller’s cycles, while index k represents sampling

instants of the GPS. Every time that the predictor assimilates new measurements, x̂i=0,k

is initialized as shown below:

x̂i=0,k = x̂k|k. (5.1)

The following steps are used to obtain x̂i,k:

Initialization

It is assumed initial estimates for x̂0|0, d̂0|0 and their uncertainties.

Prediction

• Calculate x̂i|k for i = 0, 1, 2, ..., Ts/τs

• Calculate x̂k+1|k

Correction

• Calculate x̂k+1|k+1 given x̂k+1|k and the measurement yk+1

• Calculate d̂k|k+1

• Increment k and then go back to the Prediction step.

5.3 System Modelling for State Estimation

Given that the system has two different sampling times, then two state-space equations

are formulated distinguishing both sampling times. For the controller’s sampling time τs

1The approach presented in this chapter was submitted and accepted to be published on CBA - 2014
(Almeida et al., 2014b).
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it is considered a stochastic linear discrete-time dynamic system of the form:

xi,k = Axi−1,k +Bui−1,k +Gdi−1,k +wi−1,k, (5.2)

where A ∈ <n×n, B ∈ <n×p and G ∈ <n×s are known matrices in which n is the number

of states of the system, p is the number of known inputs and s is the number of unknown

inputs. It is assumed that for all i, k ≥ 1 the input ui−1,k ∈ <p is known. The process

noise wi−1,k ∈ <n is assumed to be white, Gaussian, zero-mean and mutually independent

with known diagonal covariance matrix Q. xi,k ∈ <n is the state vector, which should be

estimated. The initial state vector x0,0 ∈ <n is supposed to have Gaussian distribution

with initial estimate x̂0,0 and error covariance P xx
0,0 , E [(x0 − x̂0,0)T (x0 − x̂0,0)], where

E [·] denotes expected value.

Since the model in equation (5.2) uses sampling time τs, these equations can be used

iteratively to predict the system’s states for sampling time Ts. Thus, to predict x̂k|k−1

given x̂k−1|k−1 and all the inputs ui,k−1 and di,k−1 for i = 1, . . . , Ts/τs, this prediction can

be calculated by finding x̂i=Ts/τs,k. By defining h = Ts/τs, the prediction h samples ahead

of x̂k−1|k−1 can be calculated as shown below:

x1,k =Ax0,k +Bu0,k +Gd0,k

x2,k =Ax1,k +Bu1,k

=A(Ax0,k +Bu0,k +Gd0,k) +Bu1,k +Gd1,k

=A2x0,k +ABu0,k +AGd0,k +Bu1,k +Gd1,k

...

xh,k =Ahx0,k +
h−1∑
j=0

Ah−1−j(Buj,k +Gdj,k)

=Ahx0,k + [Ah−1B Ah−2B . . . AB B]


u0,k

u1,k
...

uh−1,k

+ [Ah−1G Ah−2G . . . AG G]


d0,k

d1,k
...

dh−1,k


=ATsx0,k +BTs~uk +GTs~gk,

whereATs = Ah,BTs = [Ah−1B . . . B],GTs = [Ah−1G . . . G], ~uk = [u0,k . . . uh−1,k]
T

and ~dk = [d0,k . . . dh−1,k]
T .

Therefore, when estimating the states at an instant k given information up to time

k − 1 the following state space equations should be used:

{
x̂k|k−1 = ATsx̂k−1|k−1 +BTs~uk−1 +GTs

~dk−1

ŷk = Cx̂k|k−1

, (5.3)

where ŷk ∈ <m is the estimated output of the system and is calculated at each time
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instant k; C ∈ <m×n is a known matrix and m is the number of outputs. On the other

hand, these same outputs are measured by the GPS receiver according to the following

equation:

yk = Cxk + vk, (5.4)

where the measurement noise vk ∈ <m is assumed to be white, Gaussian, zero-mean and

mutually independent with known diagonal covariance matrix Rk.

The equations of motion of a UAV on a coordinate system defined by the axes x, y and

z can be obtained by using Newton’s second law. It can be assumed that all known exerted

forces along an axis are grouped into a single component (for example, on the z axis the

gravity force can be grouped with the UAV vertical thrust into a single component). For

instance, on the x axis it is possible to use the expression ẍ = TIx
m

+
TIdx
m

, where T Ix is

the known translational force along the axis x expressed in the inertial frame and T Idx is

the unknown net disturbance force along the same axis and m is the body’s mass. The

expressions for the axis y and z can be easily obtained by simply exchanging x for y and

z on the aforementioned expression.

Therefore, choosing the state variables x1 = x, x2 = y, x3 = z, x4 = ẋ, x5 = ẏ and

x6 = ż, the continuous-time state-space representation for this system is then given by:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =



ẋ

ẏ

ż
TIx
m
TIy
m
TIz
m


+



0

0

0
TIdx
m
TIdy
m
TIdz
m


. (5.5)

Equation (5.5) can be approximated in the discrete-time domain with the system’s

sampling time τs as follows:



x1i+1

x2i+1

x3i+1

x4i+1

x5i+1

x6i+1

 =



x1i + τs · x4i

x2i + τs · x5i

x3i + τs · x6i

x4i

x5i

x6i

+



τ2s
2
· T
I
x

m
τ2s
2
· T
I
y

m
τ2s
2
· T
I
z

m

τs · T
I
x

m

τs ·
TIy
m

τs · T
I
z

m


+



τ2s
2
· T
I
dx

m
τ2s
2
· T
I
dy

m
τ2s
2
· T
I
dz

m

τs ·
TIdx
m

τs ·
TIdy
m

τs ·
TIdz
m


+



w1

w2

w3

w4

w5

w6

 . (5.6)

Thus, the matrices A, B, and G of equation (5.2) are function of the sampling time

τs and are given by:
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A =



1 0 0 τs 0 0

0 1 0 0 τs 0

0 0 1 0 0 τs
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 , B =



τ2s
2m

0 0

0 τ2s
2m

0

0 0 τ2s
2m

τs
m

0 0

0 τs
m

0

0 0 τs
m


, G =



τ2s
2m

0 0

0 τ2s
2m

0

0 0 τ2s
2m

τs
m

0 0

0 τs
m

0

0 0 τs
m


. (5.7)

Matrices ATs , BTs and GTs are easily obtained from (5.7) and, by assumption, C =

I6×6.

In order to use equation (5.6), the forces T Ix , T Iy and T Iz have to be known. For

the Tilt-rotor, these variables are obtained from equation (2.55) and are functions of the

aircraft’s attitude. Since attitude values are obtained by measurements, it is fair to say

that T Ix , T Iy and T Iz are not precisely known. Therefore, the uncertainties of these forces

along with uncertainties of the estimated disturbance force and modelling errors can be

expressed by the process noise vector w =
[
w1 w2 w3 w4 w5 w6

]T
.

In addition, it should be mentioned that for the LKFUI the unknown inputs are

estimated once at each instant of the GPS’s measurement and are denoted by dk−1|k.

When using equation (5.3) to estimate x̂k|k−1, the vector of unknown inputs ~dk−1 possesses

its terms equal to dk−1|k for all i = 1, . . . , h. Therefore, when calculating GTs
~dk−1 it can

be proven that for the given matrices of equation (5.7):

GTs
~dk−1 =

(∑h−1
j=0 A

jG
)
dk−1|k =



T 2
s

2m
0 0

0 T 2
s

2m
0

0 0 T 2
s

2m
Ts
m

0 0

0 Ts
m

0

0 0 Ts
m


dk−1|k. (5.8)

Therefore, it can be said that GTs
~dk−1 = ḠTsdk−1|k where the matrix ḠTs is equal to

matrix G of equation (5.7) except that τs is substituted by Ts.

Equation (5.8) is easily demonstrated for a system that moves along a single axis, but

the idea can be easily extended for the three-dimensional system. Thus, considering a

system that moves only along axis x this can be represented by a discrete state space

model with two state variables: x and ẋ. Then, matrices A and G can be adapted from

equation (5.7) with the reduced form:

Ared =

[
1 τs
0 1

]
,Gred =

[
τ2s
2m
τs
m

]
. (5.9)

It can be seen by direct calculation that:
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Aj
red =

[
1 j.τs
0 1

]
, Aj

red.Gred =

[
(2j + 1) τ

2
s

2m
τs
m

]
. (5.10)

Thus,
∑h−1

j=0 A
j
redGred can be obtained by calculating the summations

∑h−1
j=0 (2j+1) τ

2
s

2m

and
∑h−1

j=0
τs
m

separately. Therefore, noting that
∑h−1

j=0 (2j+ 1) is the sum of the first h odd

numbers:

h−1∑
j=0

(2j + 1)
τ 2
s

2m
=

τ 2
s

2m

h−1∑
j=0

(2j + 1) =
(hτs)

2

2m

h−1∑
j=0

τs
m

=
hτs
m
.

Since h = Ts/τs then hτs = Ts and
∑h−1

j=0 A
j
redGred = Ḡred, where Ḡred is equal to G

except that τs is substituted by Ts.

5.4 Kalman Filter with Unknown Inputs

Considering the model presented in Section 5.3, the LKFUI uses the three-step algorithm

shown on section 5.2. On its first step it only initializes its variables. On the second

step, it predicts the system’s states and outputs given previous measurements (equations

(5.11)-(5.12)). In the third step it assimilates new incoming data updating the states

estimation (equation (5.13)).

x̂k|k−1 = ATsx̂k−1|k−1 +BTs~uk−1 (5.11)

ŷk|k−1 = Cx̂k|k−1 (5.12)

x̂k|k = x̂k|k−1 +Lk(yk − ŷk|k−1). (5.13)

The filter gain Lk ∈ <n×m must be chosen such that it minimizes the cost function:

Jk(Lk) , E [(xk − x̂k|k)T (xk − x̂k|k)]. (5.14)

subject to the constraint:

LkEk = Fk. (5.15)

where Ek and Fk solve the problem of the LKFUI when they are given by (Teixeira et

al., 2008):
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Ek = CG Fk = G. (5.16)

The forecast error ek|k−1, the innovation νk|k−1 and the data-assimilation error ek|k
are defined as:

ek|k−1 , xk − x̂k|k−1 (5.17)

νk|k−1 , yk − ŷk|k−1 (5.18)

ek|k , xk − x̂k|k. (5.19)

Similarly, the forecast error covariance P xx
k|k−1, the innovation covariance P yy

k|k−1, the

cross covariance P xy
k|k−1 and the data-assimilation error covariance P xx

k|k are defined as:

P xx
k|k−1 , E [ek|k−1e

T
k|k−1] (5.20)

P yy
k|k−1 , E [νk|k−1ν

T
k|k−1] (5.21)

P xy
k|k−1 , E [ek|k−1ν

T
k|k−1] (5.22)

P xx
k|k , E [ek|ke

T
k|k]. (5.23)

From the filter of equations (5.11)-(5.13), the data assimilation error covariance P xx
k|k

is given by:

P xx
k|k = P xx

k|k−1 −Lk(P
xy
k|k−1)T − P xy

k|k−1L
T
k +LkP

yy
k|k−1L

T
k , (5.24)

where:

P xx
k|k−1 = ATsP

xx
k−1|k−1A

T
Ts +Q (5.25)

P yy
k|k−1 = CP xx

k|k−1C
T +Rk (5.26)

P xy
k|k−1 = P xx

k|k−1C
T . (5.27)

Therefore, using (5.19) and (5.23) into (5.14), the cost function can be expressed by:

Jk(Lk) = tr(P xx
k|k). (5.28)

For convenience, the following equations are defined:
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EL
k , (ET

kEK)−1ET
k , (5.29)

Ωk , Ek[E
T
k (P yy

k|k−1)−1Ek]
−1ET

k (P yy
k|k−1)−1, (5.30)

Ωk⊥ , Im×m −Ωk, (5.31)

Kk , P xy
k|k−1(P yy

k|k−1)−1. (5.32)

It is interesting to note that Kk is the classical Kalman gain.

The gain Lk that minimizes (5.28) and satisfies (5.15) is given by:

Lk = KkΩk⊥ + FkE
L
k Ωk. (5.33)

The data-assimilation error covariance is then given by the Riccati equation:

P xx
k|k = P xx

k|k−1 − P
xy
k|k−1(P yy

k|k−1)−1(P xy
k|k−1)T + (FkE

L
k Ωk)P

yy
k|k−1(FkE

L
k Ωk)

T

+[P xy
k|k−1(P yy

k|k−1)−1Ωk]P
yy
k|k−1[P xy

k|k−1(P yy
k|k−1)−1Ωk]

T − (∆1,k + ∆T
1,k),(5.34)

where:

∆1,k , P
xy
k|k−1(P yy

k|k−1)−1ΩkP
yy
k|k−1Ω

T
k (FkE

L
k )T . (5.35)

The estimation of the disturbance d̂k−1|k can be obtained as follows:

d̂k−1|k = (GT
k−1Gk−1)−1GT

k−1Lk(yk − ŷk|k−1). (5.36)

Therefore, the states of the aircraft can be estimated using the controller’s sampling

frequency τs. The estimate x̂i,k is initialized (i = 0) as shown on equation (5.1) and for

i = 1, 2, ..., Ts/τs, it is given by:

x̂i,k = Ax̂i−1,k +Bui−1,k +Gd̂k−1|k. (5.37)

It is important to notice that the control input used is ui−1,k, which represents the

last input value applied to the system on the previous controller cycle.

5.5 Simulation Results and Analysis

This section shows simulation results carried out to analyse the performance of the de-

signed controllers when subject to position measurement uncertainties. The simulated
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system has the GPS receiver with sampling rate equal to Ts = 0.1s2 and the controller’s

sampling rate is equal to τs = 0.01s. The simulation tool used a fixed-step simulation

with period τs and the GPS measures passes through a zero-order-hold with period Ts.

Furthermore, it is assumed GPS measurements with Gaussian accuracy of 3σ = ±1.5m

for position measurements and a speed sensor with accuracy of 3σ = ±0.1m/s, where σ is

the standard deviation. The translational forces T Ix , T Iy and T Iz are estimated using the

Tilt-rotor’s model and the applied control input, and Gaussian noise with 3σ = ±1N is

added to their values. The matrix Q was tuned empirically using iterative trial-and-error

method and its value is given by:

Q = diag(1× 10−3, 1× 10−3, 1× 10−3, 2× 10−3, 2× 10−3, 2× 10−3). (5.38)

The system was simulated using the same strategy as the Nonlinear Controller for

Reduced Load Swing (NLLS), except that the parameters for the controllers of x, y and z

were modified to the ones shown in table 5.1. These modifications were necessary because

the previous chapter assumed noiseless measurements, while now the measurements are

noisy and the state estimation is not a smooth curve. Then, in order to maintain the

system stable, the translational controllers were tuned more conservatively.

The external disturbance profile is shown in Figure 5.1. The system had to track the

same path as the one used in previous simulations (the only difference is the disturbance).

Figure 5.2 shows that the aircraft did not follow the reference as good as it followed in

the previous chapters. In order to explain this worsening, Figure 5.3 shows the position

estimation error for the ten first seconds of the simulation. It can be seen that although

the LKFUI was able to converge the position estimation, its estimation error is bounded

to be ±38cm with 99.8% of confidence or, likewise, the estimation error is bounded to be

±25.3cm with 95% of confidence.

Therefore, it is possible to note in Figure 5.4 that the tracking error is mostly bounded

between ±30cm. The curve Set Point Error shows how the set point deviated from its

desired value as consequence of the uncertain position estimation. The time evolution of

the remaining generalized coordinates are shown in Figure 5.5 and the system’s inputs

are shown in Figure 5.6.

Figure 5.7 shows the disturbance estimation. It can be seen that the LKFUI algorithm

was capable of following the tendency of the disturbance, while estimating with reasonable

variance.

At last, Table 5.2 shows the mean-square-error of the variables for the LKFUI simula-

tion. Even though these values cannot be literally compared to the MSEs of D-stability,

H∞ or NLLS (the simulation was not equal, given that the disturbances profiles were

different), it can be seen that its magnitude is higher than what was seen in Tables 3.1

and 4.8.

2This value is equivalent to the specifications of the Novatel OEMStar GPS receiver operating on the
DGPS mode used at the ProVant project.
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Table 5.1: Translational controllers parameters for use with LKFUI.

Variable Kp KI Kd

x -2.9256 -0.9479 -2.9782
y -2.9256 -0.9479 -2.9782
y -2.9256 -0.9479 -2.9782
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Figure 5.1: System disturbances for the LKFUI simulation.

5.6 Conclusion

This chapter dealt with the problem of position state estimation in the presence of disturb-

ances, and with noisy measurements with lower sampling frequency than the controller.

In order to solve this problem, it was used the Linear Kalman Filter with Unknown Inputs

(LKFUI).

The state space model that was used for the LKFUI algorithm simplifies the dynamics

of the tilt-rotor by deriving its equations from Newton’s second law. This way, there is no

need to use a nonlinear state estimation algorithm. However, an interesting future work

would be to implement an Unscented Kalman Filter with Unknown Inputs (Teixeira et

al., 2008) so as to use the Tilt-rotor’s nonlinear equations for estimation and compare the

results.

Simulation results were presented where the LKFUI algorithm was able to estimate the

disturbances and use its information along with the aircraft translational forces so as to

estimate the system’s position while the GPS receiver does not provide new measurements.

At the moment that the GPS receiver provides a new measurement, a correction step is

taken to merge the information from the measurement along with the previous estimation.

Consequently, the LKFUI was able to reduce estimation error variability from ±1.5m

(GPS receiver’s measurement error) to approximately ±0.38m.

Table 5.2: Mean-square-error of the LKFUI simulation.

MSEx MSEy MSEz MSEψ
9, 03.10−3 9, 59.10−3 1, 95.10−2 7, 83.10−5
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Figure 5.2: Path tracking of the aircraft for the LKFUI simulation.
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Figure 5.3: Position estimation error in function of time for the LKFUI simulation.
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Figure 5.4: Tracking error for the LKFUI simulation.
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Figure 5.5: Body and Load angles for the LKFUI simulation.
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This dissertation presented control strategies to solve the problem of suspended load

transportation by a Tilt-rotor Unmanned Aerial Vehicle passing through a desired tra-

jectory. These strategies were developed taking into account the presence of external

disturbances, parametric uncertainties and measurement errors. The controllers provided

path tracking for x, y, z and ψ whilst stabilizing all other generalized coordinates.

In order to design advanced control laws, an accurate dynamic model of the system

is needed. Therefore, a rigorous dynamic model for the Tilt-rotor UAV with suspended

load was derived using Euler-Lagrange formulation. This model considers the system as

composed of four bodies, resulting in a highly coupled nonlinear dynamic model. The

developed model considered a system with ten degrees of freedom:

• Three translational coordinates (x, y and z);

• Three attitude coordinates (φ, θ and ψ) described by the Roll-Pitch-Yaw convention;

• Two coordinates describing the orientation of the two tilting rotors (αR and αL);

• Two coordinates describing the position of the load with respect to the aircraft (γ1

and γ2).

Then, a state-space model affine in the inputs was derived to the system. This repres-

entation is used in the posterior chapters to design linear and nonlinear control laws for

the Tilt-rotor UAV with suspended load.

The problem of designing linear controllers for the Tilt-rotor UAV with suspended load

in the vicinity of its equilibrium point was initially studied. Two linear controllers were

designed with use of LMIs solvers: a D-stable and a D-stable with disturbance rejection

(H∞). Both accomplished the task of path tracking but theH∞ controller presented better

performance on path tracking in presence of external disturbances. However, neither of

them were able to stabilize the aircraft when it deviated too much from its equilibrium

point.

Given that linear controllers present the drawback of working only in the vicinity

of their equilibrium points, nonlinear control strategies for the system were developed

to overcome that. These strategies relied on a cascade scheme with three input-output
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feedback linearization blocks. Each one of these levels controls a different group of the

system’s state variables until the aircraft becomes fully stable:

1. The innermost level stabilizes the variables z, φ, αR and αL by actuating in fR, fL,

ταR and ταL ;

2. The second level stabilizes θ and ψ by actuating in the references of αR and αL.

With this and the first level, the attitude of the aircraft is fully stabilized;

3. The third level stabilizes x and y by actuating on the references of φ and θ.

Two path tracking controllers were specified for the strategy described above. The

first one, the Nonlinear Controller for Path Tracking (NLPT), considers the load only as

a disturbance and follows path references without actuating to avoid the load’s swing.

The second controller, the Nonlinear Controller for Reduced Load Swing (NLLS), seeks

to find a compromise between path tracking and reducing the load’s swing. Simulation

results showed that NLLS widely reduced the load’s swing with respect to NLPT at the

cost of worsening its tracking error. However, even though NLPT performed better path

tracking than NLLS, one should be careful when using it, since high swing of the load,

specially for heavy loads, may destabilize the aircraft.

Simulation results comparing NLLS to the linear H∞ controller were also carried out.

As result, the NLLS was worse both on path tracking and disturbance rejection. This

might be explained by the design simplification assumptions and the fact that the feedback

linearization techniques does not guarantee robustness in the face of parameter uncertain-

ties or disturbances. However, it might be possible that, with some careful tuning for the

NLLS controller, it may present improved performance when compared to the results of

the H∞ approach. On the other hand, NLLS is able to maintain the system stable when

it deviates from the equilibrium point, while it may destabilize if using the H∞ control-

ler. NLLS was shown to be better than linear controllers when there are complex paths,

harsher disturbances or when the aircraft gets far from its reference.

As proof of concept, modifications on the previous approaches were introduced so that

the Tilt-rotor is able to stabilize an inverted pendulum. Conceptually, it was possible to

attain stabilization of the inverted pendulum, but one cannot expect results as good as

the ones provided by Quad-rotor UAVs, due to their additional two rotors.

The control strategies presented in chapters 3 and 4 assume that all states of the

Tilt-rotor UAV with suspended load are precisely known. However, this assumption

may not be true when dealing with real experiments. Usually, built-in sensors provide

noisy measurements with their own sampling frequency, which may be different from

the controller’s frequency. Problems like these are common in UAV applications, where

the aircraft’s position is measured using a GPS with these characteristics. This kind of

problem may be circumvented by using state estimators.

Consequently, a situation where the aircraft’s position is measured using a GPS equip-

ment with sampling time Ts, while the controller has a sampling time τs, with τs < Ts
is analysed. In this case, it is important to estimate the system’s states while no new
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measurements are available from the GPS, also taking into account its measurement un-

certainty. To further increase the challenge, the estimator must consider that the aircraft’s

motion may be affected by disturbances (e.g. wind gusts), which are not usually meas-

ured. This was solved using the technique of Linear Kalman Filter with Unknown Inputs

(LKFUI).

The state space model that was used for the LKFUI algorithm simplifies the dynamics

of the Tilt-rotor by deriving its equations from Newton’s second law. This way, there is

no need to use a nonlinear state estimation algorithm. Simulation results were presented

where the LKFUI algorithm was able to estimate the disturbances and use its information

along with the aircraft translational forces so as to estimate the system’s position while the

GPS does not provide new measurements. At the moment that the GPS provides a new

measure, a correction step is taken to merge the informations of the measurement along

with the previous estimation. Consequently, the LKFUI was able to reduce estimation

errors from some value higher than ±1.5m (GPS’s measurement error) to approximately

±0.38m with 99.8% of confidence. Simulation results showed that, within most of the

time, the aircraft’s tracking error for position bounded between ±0.30m away from the

reference along the three cartesian axes.

6.1 Future Works

This section presents some possible directions of future researches as continuation of the

present work.

• Implementation of the proposed control strategies. As commented in Chapter 1, a

Tilt-rotor UAV is being developed by the ProVant project. Therefore, the next step

is to implement the designed control strategies on the real aircraft.

• Reduce attitude control of the Tilt-rotor UAV from two IOFL blocks into a single

IOFL block. This approach is being developed, in which the authors noticed that

if some dynamic coupling are neglected on the system’s model, then it would be

possible to apply dynamic extension by integrating two times the inputs fR and

fL. This way it would be possible to stabilize z, φ, θ, ψ, αR and αL using a single

Input-Output Feedback Linearization control loop.

• Study methodologies that provide path tracking for the load’s motion. The present

work only tried to avoid the load from swinging, but in some cases it may be inter-

esting to perform path tracking of the load.

• Mathematically analyse the nonlinear design for the controller. This work presented

some simplifications that were applied when designing the nonlinear control strategy.

However, the validity range of such simplifications within the space state were not

mathematically studied. Therefore, an important work might be the evaluation of

this issue.

• Evaluate nonlinear state estimation methodologies. For the sake of simplification,

the present work used a simplified model of the system to estimate its position
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along with time. However, an interesting future work would be to implement a

nonlinear state estimation technique, such as the Unscented Kalman Filter with

Unknown Inputs (Teixeira et al., 2008) and compare the results. It is likely that the

estimations might provide better results but it might be computationally expensive,

given that it would have to calculate forty sigma points using the nonlinear model

of the system, instead of only one calculation used on the linear model.

• Model the system using Newton-Euler formulation. The present work used Euler-

Lagrange formulation when deriving the equations of motion for the Tilt-rotor UAV.

A problem that emerged was the inversion of the inertia matrix M(q). If the

Newton-Euler formulation is used, different methods can be used in order to obtain

the state-space representation without the need for matrix inversion.

• Further exploit linear strategies by using gain-scheduling approach. An interesting

suggestion of future work might be the use of gain-scheduling such as proposed by

Lee et al. (2007) and Dickeson et al. (2007). This way, a group of interpolated linear

controllers may stabilize the aircraft in different operation points, instead of a single

one.

• Study adaptive control methodologies for dealing with unknown masses. This disser-

tation considered the load’s mass to be known with bounded uncertainty of 30%.

However, it can also use an adaptive approach where no assumptions are made about

the mass of the suspended load. An adaptive controller may be designed so as to

change the system’s actuation while estimating the load’s mass.
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Appendix A

Theory on Robotics

A.1 Rotation Matrices

A point “p” in a three-dimensional space can be represented in relation with a coordinate

frame “a” using three parameters. These parameters represent the projections of the

vector which goes from the origin oa to point p. From now on the notation pa ∈ <3 is

adopted to denote that the point p is a three-dimensional vector represented in respect

with frame a (Spong et al., 2005).

In order to represent this same point pa with respect to a different frame b, whose origin

ob is at the same place of oa , but rotated with respect to frame a, the transformation of

a frame to another can be given by:

pb = Rb
a p

a, (A.1)

whereRb
a is a rotation matrix, which carries information on the projections of frame a into

b. Three-dimensional rotation matrices belongs to a group called Special Orthogonal

of dimension three, or simply SO(3). A rotation matrix R ∈ SO(3) holds some very

important properties, as shown below:

1. RT = R−1 ∈ SO(3);

2. The columns (and also the rows) of R are mutually orthogonal;

3. Each column (and also each row) of R is a unit vector;

4. det(R) = 1.

Properties 2 and 4 have an importance of telling us that there is always an inverse

R−1 of a rotation matrix and that its inverse is also a rotation matrix. The property 1

goes even further stating how easy it is to obtain the inverse of this matrix. Moreover,

these properties altogether are very useful when deriving many concepts in robotics.

Therefore, given (A.1) and property 1 it is possible to say that:

pa = (Rb
a)
−1 pb = (Rb

a)
T pb = Ra

b p
b. (A.2)
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Some convenient rotation matrices in robotics are the ones for rotations around the

axes x, y and z. For example, the rotation of θ degrees around the axis x of a frame can

be denoted as Rx,θ and given by:

Rx,θ =

1 0 0

0 cθ −sθ
0 sθ cθ

 , (A.3)

where cθ and sθ are, respectively, shorter representations for cos(θ) and sin(θ).

Similarly, rotation matrices Ry,θ and Rz,θ are given by:

Rz,θ =

cθ −sθ 0

sθ cθ 0

0 0 1

 , Ry,θ =

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 . (A.4)

Given a coordinate system a, which is rotated once according to Rb
a obtaining a new

axis b and then coordinate system b is rotated according to Rc
b in order to obtain axis c,

it is possible to obtain a single rotation matrix that transforms from a to c given by the

following relation:

Rc
a = Rc

bR
b
a. (A.5)

The relation shown on (A.5) is known as the composition law for rotational transform-

ations. It states that consecutive rotations can be represented by a single rotation matrix

whose terms are equal to the successive multiplication of the individual rotation matrices.

An intuitive property that can be proven using (A.5) is that two consecutive rotations

around a same arbitrary axis results in a single rotation around this axis, but with the

rotation angles added up. For example, a rotation Rz,θ followed by a rotation Rz,φ is

given by Rz,θRz,φ = Rz,θ+φ.

Another important concept in robotics is that, given an initial frame a, it is always

possible to rotate it in order to obtain any final frame b only by combining at most three

consecutive rotations around the axes x, y and z. There are 12 possible combinations of

rotations of this kind that can result on the same final rotated frame b:

X − Y − Z, X − Z − Y, X − Y −X, X − Z −X, Z − Y −X, Z −X − Y,
Z − Y − Z, Z −X − Z, Y −X − Z, Y − Z −X, Y −X − Y, Y − Z − Y.

(A.6)

A combination shown at (A.6) that is very commonly used in aeronautical research is

the Z−Y −X, also known as the Roll-Pitch-Yaw convention. The resulting transformation
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matrix is given by:

R = Rz,ψRy,θRx,φ

=

cψ −sψ 0

sψ cψ 0

0 0 1

  cθ 0 sθ
0 1 0

−sθ 0 cθ

 1 0 0

0 cφ −sφ
0 sφ cφ


=

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 . (A.7)

A.2 Skew Symmetric Matrices

This section presents skew symmetric matrices and its properties. This group of matrices

holds some properties that are very useful when deriving the equations of motion of the

Tilt-Rotor UAV (Spong et al., 2005).

An n× n matrix S is said to be skew symmetric if and only if:

ST + S = 0n×n. (A.8)

This means that, for i, j = 1, 2, ..., n, the following is true:

sij + sji = 0, (A.9)

where sij is the term situated at the ith row and jth column of S.

It is then easy to see that:

sij = 0 , if i = j (A.10)

sij = −sji, if i 6= j. (A.11)

Focusing only on 3× 3 skew symmetric matrices, S has the form:

S =

 0 −s3 s2

s3 0 −s1

−s2 s1 0

 . (A.12)

As definition, the skew symmetric matrix related to a three-dimensional vector p =[
px py pz

]T
is denoted as S(p) and given by:
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S(p) =

 0 −pz py
pz 0 −px
−py px 0

 . (A.13)

Thus, given this preceding definition, the following properties hold:

1. For any three-dimensional vectors p and q and scalars a and b:

S(ap+ bq) = aS(p) + bS(q). (A.14)

2. For any three-dimensional vectors p and q:

S(p)q = S(q)Tp = p× q. (A.15)

where p× q denotes the vector cross product.

3. For R ∈ SO(3) and p ∈ <3:

RS(p)RT = S(Rp). (A.16)

4. For any p, q ∈ <3:

pTS(q)p = 0. (A.17)

5. For a rotation matrix that is function of time RA
B(t) ∈ SO(3):

ṘA
B(t) = RA

B(t)S(ωBBA(t)). (A.18)

where ωBBA(t) ∈ <3 is the angular velocity of frame B with respect to frame A

represented in frame B.

A.3 Euler-Lagrange Equations

The Euler-Lagrange equations are used in order to obtain the dynamic equations of motion

of a system. Defining q ∈ <n, q =
[
q1 q2 . . . qn

]T
as the vector containing the

system’s n generalized coordinates, the equations of motion of a dynamic system can be

described by:

M(q)q̈ +C(q, q̇)q̇ +G(q) = F (q) + Fext. (A.19)

where M (q) ∈ <n×n is called the inertia matrix, C(q, q̇) ∈ <n×n is the Coriolis and

centrifugal forces matrix, G(q) ∈ <n is the gravitational force vector, F (q) ∈ <n is the

independent input force vector and Fext ∈ <n represents external disturbances on the

system.
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The inertia matrix M(q) can be obtained by calculating the system’s kinetic energy

and expressing it in the form:

K =
1

2
q̇TM(q)q̇. (A.20)

The Coriolis and centrifugal forces matrix can be obtained from the inertia matrix

M (q) using Christoffel symbols of first kind. This way, the (k, j)th element of the matrix

C(q, q̇) is defined as:

ckj =
n∑
i=1

1

2

[
∂mkj
∂qi

+ ∂mki
∂qj
− ∂mij

∂qk

]
q̇i, (A.21)

where mkj is the (k, j)th element of M(q).

The gravitational force vector G(q) is calculated as follows:

G(q) =
∂P

∂q
. (A.22)

where P is the potential energy of the system.

The form of the independent input force vector F (q) is shaped depending on how the

inputs of the studied system actuate over the generalized coordinates. The same applies

on the external disturbances force vector Fext.
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