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Ouça: A maioria dos homens não quer nadar 

antes que o possa fazer. Não é engraçado? 

Naturalmente, não querem nadar. Nasceram 

para andar na terra e não na água. E, 

naturalmente, não querem pensar: foram 

criados para viver e não para pensar! Isto 

mesmo! E quem pensa, quem faz do 

pensamento sua principal atividade, pode 

chegar muito longe com isso, mas, sem dúvida 

estará confundindo a terra com a água e um dia 

morrerá afogado. 

Herman Hesse  
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RESUMO 

 

Moura, R. (2014). Transcodificação numérica em crianças e adultos de baixa escolaridade: o 
papel da memória de trabalho, consciência fonêmica e implicações para a 
aprendizagem da matemática. Tese de doutorado, Programa de Pós-graduação em 
Neurociências, Instituto de Ciências Biológicas da Universidade Federal de Minas 
Gerais, Belo Horizonte. 

  

 

O estabelecimento de um elo entre as notações numéricas verbal e Arábica, chamada 

transcodificação numérica (TN), constitui umas das habilidades numéricas mais 

elementares, adquiridas já nos primeiros anos de estudo. Apesar de ser considerada uma 

habilidade básica, a TN assume um papel de destaque no estudo da cognição numérica e da 

aprendizagem da matemática, uma vez que constitui um dos pilares sobre os quais serão 

desenvolvidas habilidades numéricas mais complexas, como o cálculo. O objetivo geral da 

presente tese é fazer uma investigação ampla das habilidades de TN em crianças em idade 

escolar e em adultos de baixa escolaridade, analisando os principais fatores cognitivos 

envolvidos. No estudo 1 é feita uma investigação das propriedades psicométricas de uma 

tarefa de escrita de números em crianças de 1ª à 4ª série do ensino fundamental, com ou 

sem dificuldades de aprendizagem da matemática. Apesar das baixas taxas de erros, a 

mesma se mostrou um instrumento consistente e altamente sensível para identificar 

crianças de 1ª e 2ª série que apresentam dificuldades de aprendizagem da matemática. No 

estudo 2, crianças de 1ª à 4ª realizaram tarefas de escrita e leitura de numerais Arábicos, 

além de tarefas de inteligência e memória de trabalho. Os resultados indicaram que as 

crianças com dificuldade na matemática apresentam um atraso na formação do léxico 

numérico e, ainda, uma dificuldade na aprendizagem da sintaxe do código Arábico, a qual se 

estende até a 4ª série do ensino fundamental. É importante notar que essas dificuldades 

não puderam ser explicadas por déficits na capacidade de memória de trabalho, sendo 

portanto, de caráter especialmente numérico. O estudo 3 explora o papel da consciência 

fonêmica na TN. Os resultados sugerem que a consciência fonêmica media a atuação da 
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memória de trabalho na TN. O estudo 4 explora o efeito de fatores educacionais nas 

representações não-simbólicas e simbólicas, por meio do estudo de adultos 

semianalfabetos. De acordo com os resultados, as representações não-simbólicas de 

magnitudes se desenvolvem em adultos independentemente do nível de letramento. Além 

disso, ficou claro também que, em indivíduos que fazem parte uma sociedade 

industrializada, a ampliação do léxico numérico é um processo que acontece intuitivamente, 

ao passo que a aprendizagem da sintaxe numérica demanda uma educação formal, 

específica para tal. Finalmente, o trabalho constituiu uma evidência a mais para a hipótese 

de que a transcodificação é um processo cognitivo assemântico. 

 

Palavras-chave: transcodificação numérica, aprendizagem da matemática, memória de 

trabalho.  
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GENERAL INTRODUCTION AND LITERATURE REVIEW.  
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NUMBER TRANSCODING AND NUMERICAL COGNITION: A LITERATURE REVIEW. 

 

INTRODUCTION 

The research on numerical cognition has achieved remarkable progress during the last two 

decades. Today much is known about the development, related capabilities and neural 

substrate of human representations of number. One of the central aspects on this research 

is how humans acquire and use the two symbolic systems dedicated to represent numbers: 

the visual-Arabic code, and the verbal number code. The present text will address these 

questions by conducting a literature review. In the next section, the two symbolic systems 

will be presented in detail, followed by numerical semantics, that is, the core magnitude 

information conveyed by these symbolic systems. Afterwards, the cognitive models of 

numerical cognition are going to be presented. Finally, the paper will review the theoretical 

and empirical literature about the translation between different symbolic representations, 

namely, number transcoding, focusing on the cognitive models and involved 

neuropsychological mechanisms.  

 

Symbolic codes 

The ability to use symbols to convey mental representations is one of the most remarkable 

landmarks in the evolution of human species. In the number domain, the development of 

symbolic systems to represent quantities allowed us to move far beyond approximation and 

to understand numbers with greater precision. There are two main symbolic systems 

intended to represent numerical information: the verbal-numerical and the visual-Arabic 

systems. Despite that both systems share the same goal, they work in very particular ways. 

The verbal system conveys numbers by means of phonological (oral) and verbal-written 

(orthographic) representations, while in the Arabic system numbers are represented as 

visual symbols. The next sessions will present these two systems in further detail. 

 

The Verbal system 

In every natural language there is a subsystem devoted to the expression of whole numbers 
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by words and phrases. The verbal numeral system (henceforth number word system) is 

subject to the same variability as its host-language, so that there is no world-wide dominant 

number word system for numbers. Therefore, this system varies largely between different 

languages, and in some particular cases, also within the same language (e.g. in Czech, there 

are both a unit-decade inverted and a non-inverted system, as further discussed below). 

 

The extension of the numerical lexicon is not constant across languages, and reflects the 

complexity of its counting system. In some native languages from Brazil and Australia, for 

instance, this lexicon does not go beyond 3 or 4, which are the largest numbers they count 

(Butterworth, Reeve, Reynolds, & Lloyd, 2008; Pica, Lemer, Izard, & Dehaene, 2004). Most 

modern languages, in turn, possess a complex counting system arranged in bases of power, 

which allows the counting of infinite quantities in an economic fashion. In these languages, 

the lexicon contains single words for all natural numbers up to its base number (10, in many 

cases), and for some round larger numbers, such as 20, 100 and 1000 (like twenty, hundred 

and thousand in English, and vinte, cem and mil in Portuguese). 

 

Concerning the numerical syntax, according to Hurford (1987) in most languages it is 

constituted by relationships of addition and multiplication between the lexical units. When a 

numeral has two immediate constituents its numerical value is calculated by adding the 

values of its constituents (in English: sixty-four means 60 + 4). In some cases, like 

Portuguese, this addition operation is explicitly denoted by the connector “e” (sessenta e 

quatro means 60 + 4). In the Watchandie language from Western Australia, the lexicon 

comprises only co-ote-on (one) and u-tar-ra (two) (Tylor, 1891). In the need to refer to the 

numbers three and four, an operation of addition is applied: u-tar-ra coo-te-oo for the first, 

and u-tar-ra u-tar-ra for the last. The multiplication is a more complex syntactic operation, 

as it requires a numeral system organized in powers of bases. In these cases, when a 

numeral phrase has two immediate constituents, and the second one is a noun-like numeral 

representing a base (e.g.,-ty, thousand, hundred in English; -enta, -entos, mil, milhão, in 

Portuguese), the value is calculated by multiplying their values (in English two hundred 
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means 2 x 10², and in Portuguese três mil means 3 x 10³). 

 

It is important to note that language-specific idiosyncrasies are observed in the syntax of 

many numerical systems. One of the most remarkable ones is the inversion between the 

order of units and decades in languages such as German, Dutch and Czech. The higher-

before-lower ordering of the base numbers, that generates forms such as sixty two (60 + 2) 

in English and sessenta e dois in Portuguese, would wrongly generate sechzig und zwei in 

German (sechzig = 60, und = “and”, zwei = 2). In these languages, the numeral syntax 

requires the inversion of these bases in order to generate the proper form zwei und sechzig. 

 

The Visual/Arabic system 

The origins of the visual codes go back to the same time as when humans developed 

language and basic numerical abilities, such as numeration/counting (Ifrah, 1997). The rising 

of the numerical writing systems came from the necessity to store and share the results of 

any enumeration, without resorting to any verbal-oral representations. The very first 

method for keeping this information was the use of sets of concrete objects (e.g. bones, 

sticks or stones), or by notching pieces of bones or wood, matching the number of the to-

be-counted set in a one-to-one correspondence (Dehaene, 2011; Ifrah, 1997). Despite 

providing a strategy to represent large quantities that could not be precisely grasped by 

human perceptual apparatus, this method failed when larger quantities needed to be 

represented.  

 

The development of complex symbolic systems for numbers began with the elaboration of a 

lexicon, which is a set of symbols representing a finite number of smaller and some larger 

numbers, and a syntax, which allows the representation of larger numerals by the 

combination of the lexical items. In the Roman numerical system, for example, this lexicon 

was composed by only seven symbols: I (one), V (five), X (ten), L (fifty), C (hundred), D (five 

hundred) and M (thousand). Examples of written numerical systems with larger lexicons are 

the Hindu-Arabic (10 symbols) and Greek (27 symbols).  
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As in the number word system, the most basic syntactic mechanisms that allowed the 

combination of lexical items in the Arabic notation is the additive principle. It is the basic 

syntactic mechanism of the Roman numerical system. Instead of depicting the number 7 as 

IIIIIII, in Roman notation it can be achieved by simply summing the numbers 5 (V) and 2 (II), 

making VII. Furthermore, the Roman system also possess a subtraction principle in its 

syntax, which is applied when a smaller number appears on the left side of a higher number. 

For example, the number 4, which is achieve by subtracting 1 from 5 (IV). This is certainly a 

more economical method when compared to the iconic representations, in which larger 

numbers, such as 45, would become excessively long. Nevertheless, it is still not very 

practical, as larger numbers such as 48 (XLXVIII) still needs a long sequence of 6 digits in 

order to be represented, and some inconsistencies may occur, such as a smaller number 

(e.g. XXXVII - 37) being longer than a larger number (e.g. LI - 51). Moreover, the visual 

organization of Roman code does not allow any kind of calculation. 

 

There are two main syntactic properties that allowed the development of more economic 

visual numerical systems: the place-value syntax and the establishment of a base number. 

According to the place-value principle the numerical value of a digit is given by its position in 

the number. The magnitude of the change from one position to the next is given by the 

power of a base number. In the Hindu-Arabic number system (henceforth referred to as 

Arabic number system) the base number is 10, and successive places in a number 

represents successive powers of base 10, from units (100), tens (101), hundreds (102) and so 

on. The number 291, for example, is composed by 2 hundreds (2 x 102), nine tens (9 x 101) 

and one unit (1 x 100), thus the value of a number is obtained by multiplying the digit by its 

corresponding power of base 10 (multiplicative principle). The overall magnitude of the 

number is given by the addition of each of these products (291 = [2 x 102] + [9 x 101] + [1 x 

100] = 200 + 90 + 1). As can be noted, in the visual system the operators are implicitly 

represented in the syntax, which constitutes a remarkable difference comparing to the 

Verbal code, where both operations are explicitly mentioned. 
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It is important to note that the Arabic number system was not the only one to employ the 

principles of place-value and base numbers (Ifrah, 1997). The Babylonians developed a 

numerical system whose base number was 60, and the Roman system had the base number 

10 (100 = I, 101 = X, 102 = C, etc) and the sub-base 5 (51 X 100 = V, 51 X 101 = L, 51 X 102 = D).  

 

One of the main advantages of the Arabic number system is the digit zero, an indispensable 

placeholder that indicates the absence of a given power of base in a multi digit numeral. For 

example, in the number 10 the 0 represents the absence of units (0 X 100), and in the 

number 407 it shows that there are no tens (0 X 102).  

 

The Arabic number system is the most widely spread numerical system in modern societies. 

In fact, no other symbolic system (whether numeric or not) is so widely used as the Arabic 

number system. One can surely assert that the main reason for this acceptance lies in its 

simplicity in conveying numerical information, allowed by its relatively short lexicon of 10 

elements together with its highly efficient syntax. Furthermore, one remarkable advantage 

of the Arabic number system is the simplicity with which it allows numerical operations. 

 

As stressed before, the main purpose of any symbolic number system is to transmit 

numerical quantities. Currently, one of the most intriguing questions in the field of 

numerical cognition is how the human mind understands the meaning of the numbers. In 

the next section this topic will be addressed in deeper detail. 

 

Numerical semantics: what does a number mean?  

As in every other animal species, the human mind is devoid of any evolutionary acquired, 

built-in process that allows digital or discrete representations of numbers. In fact, symbolic 

systems are a very recent invention, and therefore they could not have influenced the 

evolution of our brain in such a way that they would become a built-in process (Dehaene & 

Cohen, 2007). In turn, the human brain is naturally endowed with a rudimentary number 
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processor, that is, a biologically determined number knowledge which allows the 

representation of numbers. 

 

The research on number processing has found that this pre-verbal number knowledge is 

constituted by two basic systems for numerosity encoding: the object-tracking system 

(OTS), and the approximate number system (ANS; Piazza, 2010). The OTS represents small 

numerosities up to 4 with high accuracy, while the ANS is responsible for the representation 

of larger numerosities analogically, and therefore, with increasingly imprecision. 

 

Unfolding the psychological mechanisms with which numerical magnitudes are mentally 

encoded has been one of the main research topics in numerical cognition. A central concept 

which helped to make this issue clear is the mental number line (see Dehaene, 2011), which 

is understood as the medium on which numbers, as well as other non-numerical 

magnitudes such as time and space (Walsh, 2003), are represented.  

 

The nature and functioning of the mental number line are still under debate, and one of the 

main questions is how it codes numerical information. According to one theory (place 

coding, by Dehaene & Changeux, 1993), each numerosity is represented by a noisy 

distribution of activation on an internal continuum growing from left to right, in a way that 

any given numerical magnitude (set of n visual objects) is mentally represented by a 

Gaussian distribution. Importantly, despite the fact that the means of each distribution 

increase with numerical magnitude, their standard deviation (w) is always constant. It is 

defined that the distances between successive distributions are logarithmic spaced, so that 

smaller numerosities activate less overlapping, thus more specific, representations 

(compressive coding). The model also postulates that numerical stimuli fire specific 

populations of neurons according to their numerical magnitudes, and because of the 

logarithmically compressed nature of coding, larger neuronal populations are dedicated to 

small numerosities.  
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This model has gained considerable prestige over time due to its capability to accommodate 

the classical psychophysical postulates of Weber and Fechner (Izard & Dehaene, 2008), as 

well as some important empirical findings. The Weber’s law states that the minimal 

numerical change that can be discriminated increases in direct proportion to the magnitude 

of the numerosities (that is, it depends on the ratio between the magnitudes). Later, 

Fechner demonstrated that Weber’s law could be accounted for by postulating that external 

numerosities are internally scaled into a logarithmic internal representation of sensation. 

 

Consistent empirical findings that could be well described by this model are the distance 

and the size effects. The distance effect refers to the systematic decrease in numerosity 

discrimination performance as the distance between the magnitudes gets shorter. It has 

been consistently reported in various animal species (Gallistel & Gelman, 1992), and also in 

humans of different ages (Izard, Dehaene-Lambertz, & Dehaene, 2008). The size effect 

refers to the increasing difficulty in number processing tasks when the distance is kept 

constant, but the numerical magnitudes get larger.  

 

These effects constitute strong evidence for elucidating the nature of mental 

representations of numerical magnitudes. They indicate that animals and humans “seems to 

possess only a fuzzy representation of numbers, in which imprecision grows proportionally 

to the number being represented” (Dehaene, 2011).  

 

Cognitive models of number processing 

Different cognitive models were proposed in the last two decades aiming at conciliating 

numerical semantics and the symbolic codes and their interactions. The two main cognitive 

models of numerical processing encompassed the Arabic and number word codes, as well as 

the numerical semantics. In the following, the Abstract Code model model of McCloskey 

(1992) and the Triple Code model of Dehaene (1992, 1995) shall be described. 

 

The Abstract semantic model 
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The Abstract semantic model was proposed by McCloskey (1992), as a further elaboration of 

a previous model (McCloskey, Caramazza, & Basili, 1985). The model proposes a central 

semantic system, and subsystems dedicated to calculation as well as to Arabic and Verbal 

input (comprehension) and output (production, Figure 1). Based on the observation of 

double-dissociations in brain damaged patients, in which the processing of Arabic numerals 

was intact but the processing of verbal numerals was impaired (Anderson, Damasio, & 

Damasio, 1990; McCloskey, 1992), the pathways for Arabic and Verbal numerals processing 

are considered to be independent from each other. The Arabic and Verbal comprehension 

systems are responsible to convert the input from its original code, to a semantic abstract 

code, which is the same apart of the input’s modality. The key aspect of this model is the 

existence of a semantic representation mediating every input and output from the Arabic 

and verbal codes. The numerical representation built by the semantic system is a 

decomposition of the inputs into their powers of ten following the place-value syntax of the 

Arabic code. For example, the semantic representation for the number 379 is built as {3} 102 

{7} 101 {9} 100. This representation can either be send to the calculation subsystem, where 

arithmetic operations are performed, or to the Arabic and verbal production subsystems, 

where the semantic representation is transcoded to the expected output. 

 

 

Figure 1 – Schematic view of the abstract semantic model. 
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Later on, a variant of the abstract-semantic model was proposed by Power and Dal Martello 

(1990), whose main modification was the assumption of a verbally structured semantic 

representation. This representation is build according to primitive numerical concepts that 

are organized according to their semantic meaning. For example, the semantic 

representation of 365 is built as (C3 * C100) + ((([C10 * C6)] + C5). Cipolotti and Butterworth 

(1995) made a final development of the semantic model after the study of a patient with 

serious difficulties in number writing and reading, but with spared calculation abilities. The 

abstract semantic model could not account for this performance profile. Thus the authors 

proposed a multiroute model for numerical processing, with an independent asemantic 

route (Figure 2).  

 

 

Figure 2 – Schematic view of the dual-route model of Cipolotti and Butterworth. 
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The Triple Code model 

Progress in the understanding of numerical processing was propelled mostly by the latest 

cognitive model of numerical cognition, the Triple Code Model, developed by Stanislas 

Dehaene (Dehaene, 1992). The model postulates three numerical codes. An inherited 

abstract code, in which numerical information is represented as non-symbolic analogical 

magnitudes, that is, the core semantic meaning of a number. This code was formulated 

based on evidences that mental representations of numerical magnitudes are not exact, but 

only approximate. The other two codes involve the use of symbolic systems in order to 

convey numerical information (Figure 3). Contrary to the abstract semantic model of 

McCloskey, in the Triple code model there is no hierarchical organization between the 

different codes, that is, the semantic code does not work as a bottleneck whereby any input 

is mandatorily processed. Furthermore, in the Triple Code model the semantic value of a 

number is built under a representation independent of cultural tools (like the base 10 

syntactic organization in the abstract semantic model), which allows a better understanding 

of its phylo- and ontogenetic course. 

 

 

Figure 3 – Schematic view of the triple code model. 
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One of the most important achievements of the triple code model was the formulation of 

the neural underpinnings of the three kinds of numerical representations, by means of both 

neuropsychological (Dehaene & Cohen, 1995) and neuroimaging research (Dehaene, Piazza, 

Pinel, & Cohen, 2003). The processing of verbal numerals is implemented by perisylvian 

regions of the left hemisphere, most notably the region around the angular gyrus. 

Processing of Arabic numerals is postulated to depend bilaterally on the region of the 

fusiform gyrus, the areventrolateral border. Bilaterally situated neuronal networks around 

the horizontal portion of the intraparietal sulcus may constitute the neuronal substrate the 

ANS (Walsh, 2003). Strategic aspects of number processing depend on the dorsomedial and 

dorsolateral regions of the prefrontal cortex and related circuits. Proceduralization of 

arithmetic operations takes place via interactions between circuits comprising the before 

mentioned regions and subcortical basal ganglia structures, resulting in a specific domain of 

semantic memory, the arithmetical facts, represented in widely distributed form in several 

cortical areas, but having the angular gyrus as a kind of hub or portal of access (Zamarian, 

Ischebeck, & Delazer, 2009). 

 

NUMBER TRANSCODING 

The mastery of reading and writing numbers in different notational systems is an essential 

skill in current days. Daily activities require the communication of numerical information, 

such as registering a telephone number or performing calculations. The ability to establish a 

one-to-one correspondence between any number presented in one notational system and 

its counterpart another system is called number transcoding (Deloche & Willmes, 2000). 

 

Since the beginning of the 1980’s, when the first cognitive models for numerical cognition 

were proposed, number transcoding has been a recurrent topic of investigation. Here a 

review of the literature on number transcoding abilities will be presented, focusing on the 

assumptions underlying the most accepted cognitive models as well as their inherent 
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limitations. We will also discuss practical and theoretical implications of number transcoding 

in the context of mathematics learning difficulties. 

 

An overview on the cognitive models of number transcoding 

The first systematic investigations on number transcoding date back to the beginning of the 

1980’s, developed by the neuropsychologists Gérard Deloche and Xavier Seron (Deloche & 

Seron 1982a; Deloche & Seron 1982b; Seron & Deloche, 1983; Seron & Deloche, 1984). In 

four classical works they conducted a series of case studies on aphasic patients, highlighting 

their performance in converting between Arabic and verbal numerals. Based on the 

selective deficits presented by the patients, the authors argued in favour of a relative 

independence of the language and number domains.  

 

The independence of cognitive mechanisms within the number domain was also proposed 

in these publications. A key reporting was the dissociation between numerical lexical and 

syntactic mechanisms according to the erroneous responses observed in aphasic patients. 

Errors could be attributed to a lexical mechanism, when a lexical element in the number was 

replaced by another one, for example, when 45 was transcoded as 46, or when 12 was 

transcoded as 20. Errors in the syntactic mechanisms, which were the vast majority of 

transcoding errors, occurred when the lexical elements were misplaced in the syntactic 

frame, or when this frame was wrongly generated, for example, when 150 was transcoded 

as 1050. This sort of errors were then explained as the use of inappropriate strategies in 

converting the syntactic structure of the numerical input and output (Deloche & Seron, 

1982a, 1982b). These were the starting point for the elaboration of number transcoding as 

an algorithm-based process. 

 

Later on, different transcoding models were developed based on a wide range of evidences, 

such as case studies in adult patients (McCloskey et al., 1985), cognitive development 

(Power & Dal Martello, 1990; Seron & Fayol, 1994), and computational simulations 

(Barrouillet, Camos, Perruchet, & Seron, 2004; Verguts & Fias, 2006). Importantly, the basic 
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disagreement between the models lies in the role attributed to number semantics and 

procedural algorithms in the transcoding process, so that they can be grouped in two main 

categories: semantic and asemantic models. These models will be described in more detail 

in the next sections. 

 

Semantic models  

A number transcoding model can be derived from the broader model of numerical cognition 

of McCloskey, Caramazza and Basili (1985) and McCloskey (1992). According to this model 

of numerical processing, there are two independent mechanisms of numerical 

comprehension, one specific to Arabic inputs, and the other to verbal inputs. Likewise, two 

mechanisms of Arabic and verbal production are responsible to these specific outputs. An 

additional calculation module takes part in all numerical operations, regardless of the input 

notation. Evidences were taken from cases of double dissociation involving the 

comprehension/production mechanisms, Arabic/verbal notations, and the lexical/syntactic 

processing.  

 

The central aspect of this model is the presence of an internal semantic representation that 

mediates all the possible paths between input, output and calculation mechanisms. In this 

semantic module, all the inputs (regardless of its notation) are decomposed into an abstract 

representation that designates number’s meaning through their associated base-ten 

structure, similar to a place-value notation. For example, in the McCloskey model (1992), 

the semantic representation of the number 743 is equivalent to [7]102 + [4]101 + 3[10]0, so 

that the values of the digits 7, 4 and 3 are assigned to the hundreds, tens and units, 

respectively. Finally, transcoding procedures of the verbal or Arabic production mechanisms 

act on this semantic representation, depending on the demanded output notation. 

 

Power & Dal Martello (1990) later proposed a similar model, assuming that the semantic 

representation is constructed based on linguistics aspects of the lexical and syntactic 

organization in the number word system. For example, the semantic representation of 365 
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is built as (C3 X C100) + ([C10 X C6] + C5). After this representation is built, two different 

operations take place. The first is the overwriting (#), which reflects the sum relations in the 

Arabic code: ([C10 X C6] + C5) = 60 # 5 = 65. This component is observed, for example, when 

one incorrectly writes 1000400503 instead of 1453, reflecting a full literal transcoding the 

lexical units from the verbal code (1000 + 400 + 50 + 3). The second is the concatenation 

(&), which reflects multiplication relations: (C3 X C100) = 3 & 100 = 300. Interestingly, the 

authors assume that the model can explain erroneous transcoding by both semantic and 

asemantic perspectives, as the transcoding rules that take part in the comprehension and 

production mechanisms are well described (Power & Dal Martello, 1997). The lexical-

semantic model of Power and Dal Martello is considered the most influential semantic 

model, and was used for interpretation of erroneous transcoding in normal children (Power 

& Dal Martello, 1990, 1997; Seron & Fayol, 1994) and in neuropsychological cases (Cipolotti, 

Butterworth, & Warrington, 1994). 

 

The semantic models presented important problems and, therefore, were hardly criticized. 

Firstly, semantic models were built mainly by studying double dissociations. Nevertheless, 

similar studies using the same method did not support the hypothesis of unitary 

mechanisms for calculations (Deloche & Willmes, 2000). Secondly, it has been claimed, and 

consistently shown by empirical data, that number transcoding is better explained by a 

solely asemantic route (discussed in deeper detail below in this text). Finally, dissociations 

reported in single patients is subjected to several statistical caveats and, therefore, should 

not be used as the unique source of evidence (Deloche & Willmes, 2000). 

 

Asemantic models 

Asemantic models assume that the number transcoding is a procedure in which the 

numerical meaning (that is, its semantics) is not encoded. Two kinds of asemantic models 

have been developed: algorithm-based production systems and connectionist neural 

networks. 
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Algorithm-based models were first proposed by Deloche, & Seron (1987), with evidence 

from case studies. According to these models, the numerical output is generated after 

lexical and syntactic rules operate directly on the input string, with no need of an 

intermediate level of semantic coding. More recently, Barrouillet et al (2004) proposed an 

asemantic developmental model of number transcoding from the oral verbal to Arabic 

format, called A Developmental, Asemantic, and Procedural Transcoding (ADAPT) model, 

which explains transcoding performance through the acquisition of conversion rules. In the 

first step of the model, the verbal input is temporarily stored in the phonological buffer. 

Afterward, if this content in working memory matches the lexical units stored in long-term 

memory, then the digital form can be directly retrieved. When this is not possible, a parsing 

process divides this content into units that can be processed. At this, a set of procedural 

rules operate by reading the content of working memory and entering new representations 

or filling out representations, in such a way that a syntactic frame is created and filled in 

with the digital forms. The triggering of transcoding procedures is conditioned by the 

representations present in working memory. Table 1 shows an example of the functioning 

of ADAPT procedures. 

 

Table 1 
      Example of ADAPTADV Functioning 

 Step Enter Procedure Chain WMS Frame   

       Dois mil oitocentos e três (2803) 

       1 Dois P1 
 

2 No 
 2 Mil P3b 2 _ _ _ No Yes 
 3 Oito P1 2 _ _ _ 8 Yes 
 4 Centos P2d 2 8 _ _ No Yes 
 5 Três P1 2 8 _ _ 3 Yes 
 6 END P4c 2 8 _ 3 No Yes 
 7 END P4b 2 8 0 3 No No 
       stop       

Note. WMS = Working memory store. 
Adapted from "ADAPT: A developmental, asemantic, and procedural 
model for transcoding from verbal to Arabic numerals", by Barrouillet 
et al., 2004, Psychological Review, 111(2), 368-394. 
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ADAPT accounts for the development of number transcoding by means of an expansion of 

the numerical lexicon (i.e., the stock of new units in long-term memory via experience: 

single-digit numbers, teens, decade numbers, and all two-digit numbers later during 

development) and improvement of the conversion rules.  

 

The ADAPT model can be considered a classical model of information processing and, as 

such, it can be more easily operationalized in terms of cognitive-neuropsychological 

constructs. A growing body of neuropsychological literature is based on the ADAPT model 

(Camos, 2008; Pixner et al. 2011a; Pixner, Moeller, Hermanovà, Nuerk, & Kaufmann, 2011b; 

Zuber, Pixner, Moeller, & Nuerk, 2009).  

 

Dual-route models 

There were also some models considering both semantic and asemantic transcoding routes, 

aiming at conciliate new empirical findings (mainly from case studies) and the previous 

models (Cipolotti, 1995; Cipolotti & Butterworth, 1995; Cohen, Dehaene, & Verstichel, 

1994). Cipolotti and Butterworth (1995) described a neurological patient who showed a 

striking performance pattern in numerical tasks, which could not be accommodated by the 

number processing models available at that time. The patient could identify and perform 

calculations on Arabic numerals and written number words, but could not write or read 

them aloud, thus suggesting that number transcoding could also demand an asemantic 

pathway. The authors added three asemantic routes to the model of McCloskey, Caramazza 

and Bazili (1985). These routes were then responsible for the transcoding between Arabic 

and verbal, verbal and verbal written and oral modalities, and could be activated depending 

on specific task demands. 

 

Similarly, Cohen, Dehaene and Verstichel (1994) reported a patient presenting deep 

dyslexia, which also affected the processing of Arabic numerals. The patient showed 
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impaired abilities in reading aloud unfamiliar numerals, but was able to read aloud familiar 

numerals of matched complexity, and to understand the semantic content of a number. 

Interestingly, the patient committed some semantic errors with familiar words and 

numerals. For example, some important dates were mixed up, such as 1918, reported by 

him as the end of the World War I, was read as “1940”. This pattern is incompatible with 

one-route models of number transcoding, so that the authors proposed the existence of a 

“surface” route, in which language-specific rules are applied to the digit string, and a “deep” 

semantic route, that works only for familiar numerals with strong lexical/semantic entries. 

In this route, the semantic representation of the numerical input allows the retrieval of the 

adequate lexical entry. Importantly, only familiar numbers, which the authors refer to as 

“label” numbers or numbers with “encyclopedic” meaning (such as important dates, brands 

of cars, etc.) can be represented by this semantic route. 

 

Connectionist model of Arabic number reading 

Rule-based approaches for number transcoding may be criticized on at least two grounds. 

Firstly, production systems, such as the ADAPT model (Barrouillet et al., 2004) assume that 

rules originate from declarative knowledge, being explicitly taught. However, the sort of 

declarative knowledge, the way it is acquired, and the mechanisms by which it is 

transformed into rules are not specified. Secondly, assumption of all-or-nothing rules is not 

compatible with some evidences, such as the inconsistency in the application of the same 

rule by subjects. For example, the patient HY (McCloskey, Sokol, & Goodman, 1986), 

committed an error in the retrieval of a number within a lexical class, namely, writing 5 

when hearing “seven”. Nevertheless, this same error did not appear every time he heard 

the lexical input “seven”, contrary to what was expected in an all-or-nothing scenario. 

  

A neural network model simulating reading of Arabic numerals from 1 up to 999 was 

developed by Verguts and Fias (2006), simulating transcoding by means of learning 

algorithms based on the individual frequency of numbers. The model was composed of 

three layers, an Arabic input layer, a hidden layer and a phonological output layer. Direct 
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forward links connected the input and the output layers. The hidden layer indirectly 

connected the input and output layers in parallel to the direct connections. The hidden layer 

received three kinds of connections: a) forward connections from the input layer, b) 

bidirectional connections with the output layer, and c) recurrent connection of the hidden 

layer itself. Recurrent connections allowed the hidden layer to function as a kind of 

contextual layer. At each computing step, a contextual layer is able to feed the system with 

the state of activation corresponding to the immediately previous step (Elman, 1990). In this 

way, the contextual layer emulates a working memory device, allowing the implementation 

of sequences of activation. Contextual layers with recurrent connections constitute an 

important computational device in the connectionist modelling of seemingly rule-based 

behavior (Dominey, 1997). 

  

The simulation studies by Verguts and Fias (2006) demonstrate that connectionist models 

are a viable and elegant architecture to implement transcoding processes. However, lack of 

explicit differentiation between architecture, representations and processes is both an asset 

and a weakness. On the one hand, connectionist models suggest how complex cognitive 

processes emerge from the dynamics of self-organizing systems. On the other hand, 

connectionist models are difficult to operationalize in the neuropsychological research with 

patients. Predictions derived from production systems are easier to operationalize and 

interpret in neuropsychological terms. For example, the ADAPT model (Barrouillet et al., 

2004) predicts that transcoding performance depends both on working memory and 

phonemic awareness, two traditional neuropsychological constructs. 

 

What sort of semantic activation? 

A central aspect of the cognitive models that argue in favor of a semantic route for number 

transcoding still deserves more attention. Up to now, there is no consensus on the nature of 

this semantic representations. The McCloskey’s model (1992) and the lexical-semantic 

model of Power and Dal Martello (1990, 1997) defined a semantic route with a place-value 

and base-ten structure, which refers to the numerical quantity (numerosity) of numerals. 
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Moreover, it is important to note that these models defined numerical semantics appealing 

to artificial symbolic notations, for example, the Indu-Arabic system.  

 

The dual-route model of Cohen, Dehaene and Verstichel (1994) designates a semantic route 

with a different nature. In this model, the way by which a number is conveyed by the 

semantic route, during number transcoding, has no connection to its numerosity but with its 

encyclopedic meaning. In fact, they proposed the semantic content of a number by lexical 

entries stored in the long-term memory (semantic memory).  

 

After the publication of the ADAPT model, semantic and dual-route models of number 

transcoding have been left aside. Since then, only a few studies have been resorting to 

semantic routes to interpret their data and, in some cases, the definition of its nature differs 

from what was defined by semantic and dual-route models. Van Loosbroek, Dirkx, Hulstijn 

and Janssen (2009) investigated number writing abilities in children and found that children 

with poor arithmetical abilities rely on a semantic route to transcode small (up to 9) and 

large numbers (up to 99), while children with normal arithmetical abilities only use the 

semantic route for larger numbers. This interpretation was made based on the observed 

magnitude effect: children were faster when writing smaller numbers than larger ones. 

Similarly, Imbo, Bulcke, Brauwer and Fias (2014) also reported a magnitude effect on error 

rates of children with less transcoding skills. In both studies, the presence of the magnitude 

effect indicates that, in number transcoding, numerical magnitudes are retrieved from the 

mental number line and, due to its logarithmic compression, larger magnitudes are harder 

to recover (Ansari, 2008).Therefore, the nature of the semantic route in number transcoding 

would lie in the mental number line, that is, in an analogue representation of numerical 

magnitudes which follows the Weber-Fechner psychophysical law. 

 

The problem with this assumption is that it does not take into account the frequency with 

which the numbers occur in the language. As previously shown by Dehaene and Mehler 

(1992), smaller numbers, and some larger round numbers, tend to occur more often. 
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Because of it, their output form can be directly retrieved from the lexicon, bypassing any 

additional stage of algorithm application or semantic access (Barrouillet et al, 2004). 

Therefore, the magnitude effect observed in number transcoding could be a simple reflex of 

differences in number frequencies. 

 

Number transcoding and general cognitive abilities 

Working memory 

Working memory (WM) plays an important role on many aspects of numerical cognition 

(Geary, 2011). Concerning number transcoding, the only model that has clear assumptions 

about WM operation is ADAPT. According to the ADAPT model, after the phonological input 

is segmented by the parsing process, it is stored in a phonological buffer and then it is 

analyzed by the WM. When the contents of WM match the conditions for the application of 

a given procedure, this procedure is triggered. The contents in the WM consists of 

declarative knowledge in different forms: a) units isolated by the parser; b) lexical elements 

retrieved from long-term memory and; c) new representations constructed by the 

procedures already applied. After the application of the procedures, WM representations 

consist of an ordered sequence of digits or blank spaces (frames) that will be filled in 

subsequent stages. Therefore, WM is involved in the crucial stages of rule application, long-

term memory access, and in the output construction. 

 

These assumptions have been consistently endorsed by empirical evidences. Studying 

number transcoding in 7-year-old children with different profiles of verbal working memory, 

Camos (2008) found a robust association of transcoding complexity (measured by the 

quantity of conversion rules defined by the ADAPT model). Furthermore, individual 

differences in the transcoding performance were well explained by differences in working 

memory capacities. A specific role for visuospatial and central executive working memory 

processing in number transcoding could be inferred in a study by Zuber et al. (2009) with 

typically developing German-speaking children. As it is well known, German language 

requires an inversion between units and decades, which is a hindrance to learning verbal 
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numerals and Arabic-verbal transcoding, and determines more than 50% of errors 

committed by 7 year-older children. The impact of a less transparent number-word system 

(i.e., inverted) was further explored by Pixner and collaborators (2011a, 2011b) in 7-year-old 

Czech-speaking children. The Czech language provides a unique opportunity to disentangle 

the impact of the verbal system on numerical processing, as there exist two different 

number-word systems, and one of them is inverted. In his work, Pixner et al. (2011a, 2011b) 

found higher frequencies of inversion-related errors when children had to transcoding 

numbers presented in the inverted notational system, thus accompanied by higher 

demands on working memory resources. 

 

Phonemic awareness 

Phonemic awareness is a subcomponent of phonological processing which is related to the 

ability to perceive and manipulate phonemes that constitute words (Wagner & Torgesen, 

1987). It has been constantly related to reading and writing performance and disabilities 

(Vellutino, Fletcher, Snowling, & Scanlon, 2004) and recent studies also suggest that it might 

be related to arithmetic performance and number processing (Simmons & Singleton, 2008). 

Regarding number transcoding, specifically Arabic number writing, the input is verbal, hence 

one must be able to differentiate between sounds of language to correctly comprehend the 

verbal number that will be transcoded into the Arabic form. Despite this possible impact of 

phonological skills in the transcoding performance, no study has simultaneously and 

systematically investigated the relationship between these two variables. 

 

Studies on children with reading difficulties also suggest that number transcoding might be 

influenced by verbal mechanisms. Recently, Moll, Göbel, & Snowling (2014) investigated the 

neuropsychological profile of 6 to 12-year-old children with difficulties only in mathematics 

(MD), in both mathematics and reading (MD+RD) , only in reading (RD) and control groups. 

The RD group did not present deficits in the nonsymbolic aspects of mathematics, yet were 

particularly low on verbal tasks, especially number transcoding. This finding suggests that 

children with reading difficulties, who presumably present deficits in phonological 
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processing, struggle in numerical tasks that involve the verbal code, regardless of their 

unimpaired approximate number system. 

 

Development of number transcoding abilities 

The study of number transcoding is especially important in young children at the beginning 

of school life, since it allows the investigation of the steps through which the basic 

transcoding principles are acquired by analyzing the errors they commit. In fact, many 

evidences suggest that the comprehension of the place-value syntax of Arabic numbers, and 

how to match it with the spoken number words, constitutes one of the main challenges 

imposed to young children (Geary, 2000), and requires about three years of formal 

education to be fully acquired (Nöel & Turconi, 1999), despite no study has investigated it in 

detail.  

 

Because the verbal and Arabic codes have different structures, preventing a direct 

conversion from one code to the other, number transcoding is one of the first numerical 

skills that needs to be formally taught. Transcoding imposes some difficulties especially for 

children in early schooling, who are not completely familiar with the syntax of the Arabic 

notation, as evidenced by the predominance of syntactic errors over lexical ones in children 

(Camos, 2008; Power & Dal Martello, 1990; Seron, Deloche, & Noël, 1992; Seron & Fayol, 

1994; Zuber et al., 2009). Nevertheless, children seems to acquire rudimentary knowledge 

of the place-value syntax even long before they join school lectures (Barrouillet, Thevenot, 

& Fayol, 2010), probably due to implicit learning in daily life (Byrge, Smith, & Mix, 2014).  

 

The structure of the number word system may also impose further difficulties for the 

learning of number transcoding in young children. When the order of base numbers in the 

verbal system is not consistent with the Arabic notation, that is, higher-before-lower 

ordered, the relation between the verbal and the Arabic codes is not fully transparent. An 

inversion in the order of the bases 101 and 102 in the number word system is a basic feature 

of in many languages, such as Danish, Arabic, German, Dutch and partly in Czech (which 
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possess both a inverted and a non-inverted system). In these less transparent number word 

systems, children demand some extra time to master number transcoding (Pixner et al., 

2011a, 2011b; Zuber et al., 2009). As shown by Zuber and colleagues (2009), the higher 

difficulty in transcoding numbers in languages with this inversion property rests on the extra 

demand on children’s working memory resources. 

 

Power and Dal Martello (1990), analyzed the performance of normally developing children 

in the beginning of the second grade (around 7 years-old) in an Arabic number writing task. 

They found that children at this age were able to write 2-digit numbers flawlessly, but 

showed problems when writing 3- and 4-digit numbers. Most of the errors were due to 

difficulties in transcoding the more complex numbers (with internal zeros). Error analysis 

revealed that more than 85% of incorrect responses were due to mistakes on number 

syntax. In a second study (Power & Dal Martello, 1997), using an Arabic number reading 

task, the most frequent reported error was also syntactic, due to the subdivision of the 

string sequence in smaller units (for example: 365 read as three - six - five). 

  

Using a longitudinal design, Seron, Deloche and Nöel (1992) evaluated transcoding abilities 

(both Arabic number reading and writing) three times in a year in Belgian children (French 

speaking). They found a performance improvement from the second to the third measuring 

times, with an overall better performance on the number reading task. Second graders also 

had a benefit from schooling, once they showed an improvement in performance from the 

beginning to the end of the year. On the other hand, this was not the case for third graders, 

as they showed a low improvement on their mean scores due to a ceiling effect from the 

middle of the school year ahead. Similar results were also found by two other studies. 

Sullivan, Macaruso and Sokol (1996) tested children from third, fourth and seventh school 

grades. None of the children exhibit major problems with 3- and 4-digit numbers, as their 

correct answers rate was always high, and the larger majority of wrong responses (above 

90%) were classified as syntactic. 
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Finally, when investigating the performance of French second graders, Camos (2008) also 

found that these children could perfectly write Arabic numbers up to 100, and committed 

fewer errors in the 3-digit numbers (22.4%) in comparison to the 4-digit numbers (47.2%). 

 

Number transcoding and mathematics achievement 

Besides the close relation between number transcoding and mathematics achievement, 

there is only relatively few studies investigating transcoding abilities in children with math 

learning difficulties. 

 

Children with developmental mathematics learning disorders (MD) are currently defined in 

the medical nosology as persistent and severe difficulties in acquiring specific abilities 

related to math, which cannot be ascribed to secondary factors such as emotional and 

educational inadequacies, lack of general intelligence or sensorimotor impairments 

(Butterworth, 2005). They have trouble in acquiring several number processes and 

calculation abilities, including simple calculations and memorizing arithmetic facts 

(Butterworth, 2005; Mazzocco, 2007; Gross-Tsur, Manor, & Shalev, 1996) as well as other 

abilities concerning magnitudes perception and the comprehension and use of symbolic 

codes to represent numerical information (Roussele & Noël, 2007; Dehaene, 1992; Wilson & 

Dehaene, 2007). 

 

Evidences suggests that number transcoding may impose difficulties for younger children 

with mathematics difficulties, while for older ones this difficulty seems to be overcome 

(Geary, Hoard, & Hamson, 1999; Geary, Hamson, & Hoard, 2000). Nevertheless, there is still 

no conclusion about the magnitude of this difficulty, and when it stops being a problem for 

these children.  

 

Moreover, evidences are still not conclusive regarding the nature of the poor transcoding 

performance in children with mathematics difficulties. Until today, only one study assessed 

this issue in detail. In the study mentioned above, Van Loosbroek et al., (2009) used an 
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electronic device to capture reaction times in an Arabic number-writing task. They found no 

group differences in the error rates but in the reaction times, and argued that children with 

mathematics difficulties would use a less efficient, semantic rooted, for transcoding 

numbers. Nevertheless, a more detailed analysis of the errors committed by these children 

would allow a deeper analysis of the transcoding processes that could be impaired (lexicon, 

syntactic, etc.).  

 

CONCLUDING REMARKS 

In summary, the studies reviewed above confirms the importance of the symbolic systems 

in the study of numerical cognition. In this context, number transcoding abilities are of main 

interest, as taps on both verbal and Arabic representations of number, and is well described 

by cognitive models. 
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Abstract 

Number transcoding (e.g., writing 29 when hearing “twenty-nine”) is one of the most basic 

numerical abilities required in daily life and is paramount for the achievement in more 

complex numerical activities. The aim of the current study is to investigate psychometric 

properties of an Arabic number-writing task and its capacity to identify children with 

mathematics difficulties. We assessed 786 children (55% girls), with a mean age of 9y5m, 

who were further classified as children with mathematics difficulties (n = 103) or controls (n 

= 683). Although error rates were relatively low, the task presented adequate internal 

consistency values (kr20 = 0.91). ROC analyses revealed effective diagnostic accuracy in 1st 

and 2nd school grades (specificity equals to 0.67 and 0.76 respectively, and sensitivity 

equals to 0.70 and 0.88 respectively). In addition, items measuring the understanding of 

place-value syntax were the most sensitive to mathematics achievement. Given the current 

results, we propose that number transcoding tasks are a useful tool for the assessment of 

mathematics abilities in early elementary school. 
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INTRODUCTION 

Daily activities require the communication of numerical information, such as registering a 

telephone number or making mental calculations. Besides that, being able to manipulate 

numbers is one of the first steps in mathematical learning, which begins to be formally 

trained in kindergarten. Learning the Arabic notation is one of the main challenges faced by 

young children in the first years of school, especially because of its place-value syntax 

(Geary, 2000). A useful tool for investigating children’s knowledge of numerical syntax is the 

number transcoding task. This task requires the conversion of numerical symbols between 

verbal and Arabic numerical notations (Deloche & Seron, 1987). 

 

The verbal number system is composed by a lexicon that designates some numbers (e.g. 

five, eleven), the bases by which they are multiplied (e.g., “ty” in seventy; hundred), as well 

as by a syntax that organizes these lexical units to represent any possible quantity. In turn, 

the Arabic number system possesses a lexicon of only ten elements. Its basic syntactic 

principle is the place-value, according to which the actual value of a digit is given by its 

position in the number. 

 

The ADAPT model (A Developmental, Asemantic and Procedural Transcoding) by Barrouillet, 

Camos, Perruchet, and Seron (2004) accounts for this conversion from the verbal-oral to the 

Arabic form by means of representing information in phonological short-term memory, and 

by the lexical retrieval and rule application, which are driven by condition-action rules. 

When the lexical units in the verbal input match a Arabic form stored in long-term memory 

(e.g. one -> 1, fifteen -> 15), then the output is directly retrieved. Otherwise, specific rules 

are triggered, and operate recursively in the verbal string present in the input in order to 

build the correct output in the Arabic notation. The conditions that trigger a given rule can 

be either the class of the lexical primitives (unit, decade, hundreds, for example) or the 

presence of empty slots. There are eight different procedures triggered by the rules, such as 

“finding the positional value of the lexical primitive” (how many slots the frame must have), 

“filling empty slot with 0”, among others. These rules are devoted to (i) the retrieval of 
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information from long-term memory (LTM) (called P1 rules, responsible for retrieving “3” 

from its verbal form), (ii) to manage the size of digital chains (P2 and P3 rules; in “2003”, 

these rules create a frame of four slots) and (iii) to fill these slots (if there are any empty 

slots, P4 rules will fill them with 0s). 

 

Concerning the development of number transcoding in children, evidence suggests that the 

acquisition of the numerical lexicon (Wynn, 1992) and basic principles of numerical syntax 

(Barrouillet, Thevenot, & Fayol, 2010) are already acquired even before elementary school. 

During the first school years, the development of number transcoding skills is highly 

influenced by numerical length (quantity of digits) and syntactic complexity (quantity of 

transcoding rules). By the beginning of the second grade children already master the writing 

and reading of 2-digit numbers, showing major difficulties in the transcoding of 3- and 4-

digit numbers (Camos, 2008; Moura et al., 2013; Power & Dal Martello, 1990, 1997; Seron, 

Deloche, & Noël, 1992). Most of these difficulties is due to the place-value syntax of these 

larger numbers. In third and fourth graders, difficulties in number transcoding are scarce, 

and concentrated in 3- and 4-digit numbers with a more complex syntactic structure, such 

as the ones containing internal zeros (Moura et al., 2013; Sullivan, Macaruso, & Sokol, 

1996). Therefore, numerical transcoding abilities for numbers up to four digits appear to be 

fully achieved in typically developing children after three years of formal education (Nöel & 

Turconi, 1999). 

 

Only few studies have investigated the association between number transcoding and 

arithmetic achievement in school children. Examining first graders, Geary, Hoard, and 

Hamson (1999) and Geary, Hamson, and Hoard (2000) found a significant association 

between reading and writing of small numbers and formal mathematics achievement. Using 

a longitudinal approach, Moeller, Pixner, Zuber, Kaufmann, and Nuerk (2011) showed that, 

compared to working memory capacity and non-symbolic representations of numbers, the 

knowledge of place-value syntax in the end of first grade is the best predictor of 

mathematics achievement two years later. Furthermore, syntactic errors in an Arabic 
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number writing task and the decade-unit compatibility effect in a two-digit number 

comparison task (Nuerk, Weger, & Willmes, 2001) have proved to be particularly important 

to characterize and predict mathematics achievement in children (Moeller et al., 2011). 

 

Difficulties in number transcoding have also been observed in children with developmental 

dyscalculia or mathematics learning difficulties. Studies suggests that writing and reading 

Arabic numbers impose relevant obstacles to younger children with mathematics learning 

difficulties aging around 7-years-old (Geary, Hoard, & Hamson, 1999; Geary, Hamson, & 

Hoard, 2000). In turn, in older children (8- and 9-years-old) these difficulties in number 

transcoding seem to be already overcome (Landerl, Bevan, & Butterworth, 2004). This issue 

was investigated in deeper detail by Moura et al. (2013), using more complex transcoding 

tasks containing numbers with up to 4 digits, and with increasing syntactic complexity. 

Results revealed significant differences between children with mathematics difficulties and 

typical achievers, from the first to the fourth grades, in both Arabic number reading and 

writing, but with effect-sizes decreasing with grade. Importantly, in middle elementary 

grades, children with mathematics difficulties showed higher error rates in numbers with 

higher syntactic complexity. Moreover, an analysis of the erroneous responses suggested 

that, in early elementary school, children with mathematics difficulties struggle with both 

place-value syntax of Arabic numbers and with the acquisition of a numerical lexicon. In 

middle elementary school, the difficulties observed in children with mathematics difficulties 

were specific to the syntactic composition of Arabic numbers. The authors thus argued that, 

after the first school grades, children with mathematics difficulties are able to compensate 

at least part of their number transcoding deficits. 

 

In summary, the literature on number processing and mathematics difficulties indicates that 

transcoding tasks are sensitive to and have a good predictive validity for mathematics 

difficulties (Moeller et al., 2011; Moura et al., 2013). Moreover, its cognitive underpinnings 

have been well characterized by current information processing models (Barrouillet et al., 

2004; Camos, 2008; Cipolotti & Butterworth, 1995). Nevertheless, the diagnostic properties 
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of number transcoding remain largely unexplored. In view of the above, one may consider 

the usefulness of number transcoding tasks in the screening of mathematics difficulties. 

 

To our knowledge, there is no standardized task for assessing number transcoding abilities 

in school children. Even though number transcoding tasks are largely used in the 

investigation of numerical abilities in children (Geary, Hoard, & Hamson, 1999; Geary, 

Hamson, & Hoard, 2000; Landerl, Bevan, & Butterworth, 2004; Moura et al., 2013) and 

adults suffering from neurological impairments (Deloche & Seron, 1982a, 1982b; Seron & 

Deloche 1983, 1984), there are no reports on reliability, validity and item properties of such 

tasks. In general, studies using number transcoding tasks are conducted in the context of 

pure experimental neuropsychology, in which psychometric properties are presumed and 

never explicitly investigated. 

 

The aim of this study is to determine reference values and psychometric properties of a 

verbal to Arabic transcoding task in Brazilian school-aged children. In the present study, we 

assessed number transcoding by means of a number dictation task, in which numbers are 

orally presented and the child should write them in their Arabic form. The task was 

previously designed in the context of a wider investigation of mathematical abilities in 

children (Haase, Júlio-Costa, Lopes-Silva, Starling-Alves, Antunes, Pinheiro-Chagas, & Wood, 

2014; Lopes-Silva, Moura, Júlio-Costa, Haase, & Wood, 2014; Moura et al, 2013). We 

reported normative parameters such as mean, range values and percentiles for 1st to 4th 

grades obtained from a large sample of school children. In addition, the diagnostic accuracy 

of the number writing task in the detection of children at risk for mathematical difficulties, 

as well as the influence of place-value syntax in children’s achievement, were investigated. 

 

METHODS 

Participants: 

The sample was constituted by children attending to first to fourth grades in both public and 

private schools in the Brazilian cities of Belo Horizonte and Mariana. Data collection took 
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place in 10 schools in Belo Horizonte (7 public), and 2 schools in Mariana (1 public). In Brazil, 

public schools are mostly attended to by children of lower to middle socioeconomic status. 

All study procedures were approved by the local university ethics committee. 

 

In total, 985 children (85% from public schools) were assessed using the following three 

tasks: Arithmetics and Single-word spelling subtests of the Brazilian School Achievement 

Test (Teste do Desempenho Escolar, TDE, Stein, 1994), and the Arabic Number-Writing Task. 

Testing was conducted in classrooms of 10 to 20 pupils. Children with mathematics 

difficulties were those with performance below the 25th percentile in the Arithmetics 

subtest and the performance above the 25th percentile in the spelling subtest. Children with 

performance above the 25th percentile in both TDE subtests were classified as controls. 

 

Instruments 

Number transcoding task 

Arabic Number-Writing Task: Children were instructed to write down the Arabic numerals 

that corresponded to the dictated numbers (one-hundred-and-fifty → “150”). The task was 

composed by 28 items with 1- to 4-digit numbers. The use of three- and four-digit numbers 

intended to avoid numbers with strong lexical entries. The three- and four-digit numbers 

were grouped into three categories according to their complexity level (low, moderate and 

high complexity numbers), which were defined based exclusively on the number of 

algorithmic transcoding rules necessary to transcode each individual item. This criterion was 

based upon the ADAPT model, which relates item complexity to the number of algorithmic 

rules necessary to transcode a number (Barrouillet et al., 2004): the more transcoding steps 

must be performed, the more difficult is an individual item. The administration of the Arabic 

Number-writing Task lasted for about five minutes in individual assessments, while in 

collective assessments this duration increased to about 10 to 15 minutes. One point was 

assigned to each correct written number. There was no interruption criteria and no time 

limits, and one point was attributed to each correct answer. 
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Table 1 

The 28 items of Arabic Number-writing Task according to complexity level. 

Item Number Complexity Rules (ADAPT) Error Rate Item-total Correlation 

1 4 null 2 0.000 - 

2 7 null 2 0.000 - 

3 1 null 2 0.003 .076 

4 11 null 2 0.003 .101 

5 40 null 2 0.010 .240 

6 16 null 3 0.003 .051 

7 30 null 2 0.005 .253 

8 73 null 3 0.034 .367 

9 13 null 2 0.006 .047 

10 68 null 3 0.031 .332 

11 80 null 2 0.005 .266 

12 25 null 3 0.000 - 

13 200 low 3 0.033 .543 

14 109 moderate 4 0.046 .619 

15 150 low 3 0.059 .717 

16 101 moderate 4 0.045 .630 

17 700 low 3 0.057 .590 

18 643 high 5 0.093 .755 

19 8000 low 3 0.107 .632 

20 190 low 3 0.080 .714 

21 1002 moderate 4 0.182 .665 

22 951 high 5 0.111 .747 

23 1015 moderate 4 0.207 .804 

24 2609 high 7 0.271 .806 

25 1300 moderate 4 0.221 .851 

26 3791 high 7 0.276 .788 

27 1060 moderate 4 0.261 .780 

28 4701 high 7 0.266 .810 

 

 

General school achievement 

School Achievement Test: The Teste de Desempenho Escolar (TDE; Stein, 1994) is the most 

widely used standardized test of school achievement in Brazil. The TDE comprises three 

subtests tapping basic educational skills: single-word reading (which was not used in the 

present study), single-word spelling to dictation and basic arithmetic operations. The word 

spelling subtest consists of 34 dictated words with increasing complexity. The examiner 

dictated a word and afterwards a sentence containing this word, and finally repeated the 

word once more. One point was assigned to each correctly written word. The arithmetic 
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subtest is composed of 3 simple oral word problems that require written responses (e.g. 

“John had nine stickers. He lost three. How many stickers does he have now?”) and 45 basic 

arithmetic calculations of increasing complexity that are presented and answered in writing 

(e.g. “1+1=?” and “(-4) x (-8)=?”. One point was assigned to each correct calculation. 

Reliability coefficients (Cronbach's α) are around 0.8 or higher. Children are instructed to 

work as much as they can, without time limits.  

 

RESULTS 

The Arabic Number-Writing Task did not impose major difficulties to the children. Overall, 

55% of all children completed the task faultlessly. When analyzing each group separately, 

57% of control children and 36% of children with mathematics difficulties did not commit 

any errors. There was a clear developmental trend in the task performance, as the rate of 

correct items increased along with grade (Table 2, Figure 1). As percentile distributions in 

Table 2 suggests, the task showed a ceiling effect for all children in the third and fourth 

grades. 

 

Reliability and internal consistency of the Arabic Number-Writing Task 

Internal consistency was assessed by means of the KR-20 formula, which estimated a value 

of 0.91, indicating a high internal consistency. Table 2 presents KR-20 values separately for 

each grade, indicating high indexes up to the 2nd grade. The high internal consistency was 

further confirmed by a split-half analysis of the whole sample (r = 0.94). 
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Table 2 

Mean scores, internal consistency and percentile ranks in Arabic Number-writing Task according to school grade and group. 

 

Mean Number transcoding scores 

1st grade 2nd grade 3rd grade 4th grade 

Control children 16.80 (3.22) 24.63 (3.11) 27.60 (.67) 27.85 (.36) 

Children with MD 12.80 (3.33) 15.92 (3.12) 26.50 (1.66) 27.34 (1.15) 

             
Reliability (KR-20) .79 .88 .46 .33 

             
Cummulative percent 

            

Total score 
Overall 
(n=55) 

Control 
(n=45) 

MD 
(n=10) 

Overall 
(n=249) 

Control 
(n=224) 

MD 
(n=25) 

Overall 
(n=225) 

Control 
(n=189) 

MD 
(n=36) 

Overall 
(n=257) 

Control 
(n=225) 

MD 
(n=32) 

8 2 
 

10 
         

9 4 
 

20 
         

10 5 
 

30 
         

11 7 
 

40 
         

12 15 9 50 1 
        

13 24 18 70 3 
 

12 
      

14 40 33 90 4 
 

32 
      

15 53 44 100 5 
 

40 
      

16 55 47 
 

6 
 

52 
      

17 64 58 
 

7 
 

60 
      

18 67 62 
 

8 
 

72 
      

19 76 71 
 

12 5 76 
      

20 87 84 
 

21 14 88 
      

21 95 94 
 

31 23 100 
      

22 100 100 
 

37 30 
       

23 
   

45 39 
 

2 
 

11 
   

24 
   

51 46 
 

2 
 

14 
   

25 
   

58 53 
 

4 
 

25 2 
 

16 

26 
   

62 58 
 

15 11 36 3 
 

22 

27 
   

73 70 
 

35 29 64 17 15 28 

28 
   

100 100 
 

100 100 100 100 100 100 

Note. numbers in brackets represents standard deviations. 
  

MD = mathematics difficulties. 
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Item analysis 

Error rates for individual items varied from 0 to 28%, being particularly small for one- and 

two-digit numbers. Among one- and two-digit numbers, the most difficult one presented an 

error rate of modest 3%. Table 1 depicts error rates for each item, and Figure 1 depicts error 

rates separately by grade and children’s group. Two-digit numbers only imposed noticeable 

difficulties for 1st graders with mathematics difficulties. Among 3- and 4-digit numbers, 

higher error rates were observed in control children attending the 1st grade only, and 

children with mathematics difficulties attending 1st and 2nd grades. Third graders with 

mathematics difficulties still showed some difficulties in transcoding the more syntactically 

complex numbers. In 4th grade, both groups showed similar and almost flawless 

performance. 

  

For the analyses of the item discriminability, item-total correlations were calculated (Table 

1). One-and two-digit numbers showed low discriminability indexes (i.e. < 0.40), which are 

in line with the very low error rates presented by these items. In turn, three-and four-digit 

numbers showed higher discriminability, varying from 0.54 to 0.85, thus suggesting that 

numbers with higher syntactical complexity are more discriminative for testing purposes. 
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Figure 1 - Error rates on individual items according to children's group and school grade. 
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Task accuracy 

Accuracy of the Arabic Number-Writing Task in discriminating children with mathematics 

difficulties was estimated with ROC analysis. Following the reference values for the area 

under the curve (AUC) established by Swets (1988), accuracy of Arabic Number-Writing Task 

in identifying children with mathematics learning difficulties is moderate in the 1st grade 

and high in the 2nd grade (AUC > 0.7; Table 3). However, in the next two grades the task did 

not show the same efficiency, achieving only a low accuracy in the 4th grade. 

 

Table 3 

ROC analysis. 

Grade AUC 
Std. 

Error 
p 

Conf. interval (95%) 

Lower Upper Cutoff Spec.* Sens.§ 

1 .791 .077 .004 .641 .941 14 .667 .700 

2 .967 .014 < .001 .940 .994 20 .762 .880 

3 .706 .053 < .001 .603 .809 27 .709 .639 

4 .582 .060 .135 .464 .699 27 .849 .281 

Global .655 .031 < .001 .593 .716 27 .575 .650 

* Specificity, § Sensitivity 

  

Influence of syntactic complexity on transcoding performance 

Previous studies showed that syntactic complexity has a strong impact on error rates in 

transcoding tasks (Camos, 2008; Moura et al., 2013). Here, we found a high correlation 

between the number of errors and the number of transcoding rules (r = 0.83 ;  p < 0.001), 

which remains stable even when controlling for the variance due to the quantity of digits (r 

= 0.59;  p < 0.001). To explore this relationship in deeper detail, a 3X2 ANOVA was run 

separately for each school grade. The analyses included error rates in the Arabic Number-

Writing task in the three levels of syntactic complexity as within-subjects factor, and group 

as between-subjects factor. Whenever the assumption of sphericity was not satisfied, the 

Greenhouse–Geisser correction was applied to evaluate the p-values. To approximate a 

normal distribution, error rates were arcsine-transformed. 

  

In the first grade, a main effect of syntactic complexity reflected an increase in error rates in 

function of the number of syntactic rules, and a main effect of group revealed higher error 
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rates for children with mathematics difficulties (Table 4). Contrasts showed significant 

differences between all three levels of syntactic complexity (low vs. moderate: F[1, 53] = 

8.37, MSE = 1.53,  p < .01; ƞ𝑝
2  = .14; moderate vs. high: F[1, 53] = 30.06, MSE = 3.85,  p < 

.001; ƞ𝑝
2  = .36). Moreover, an interaction between syntactic complexity and group was 

observed. Contrasts showed that the increase in error rates observed between low and 

moderate complexity was higher in control children (F[1, 53] = 5.58, MSE = 1.02,  p < .05; ƞ𝑝
2  

= .09). Two post-hoc tests further explained this interaction, showing that controls had 

lower error rates in low complexity numbers (t[53] = 2.86,  p < .01), but similar error rates in 

moderate complexity numbers (t[53] = 1.23, p = .24). The increase in error rates between 

numbers with moderate and high complexity was similar in the two groups (F [1, 53] = .54, 

MSE = .07, p = .464; ƞ𝑝
2  = .01). 

  

Table 4 
Repeated measures ANOVA on transcoding errors according to group, school grade and syntactic 
complexity. 

  Arabic number writing 

 
F [df] MSE ƞ𝒑

𝟐 

a) First grade 

Syntactic complexity 32.91 [2, 11] 2.71 .38*** 

Group 7.63 [1, 53] .62 .13*** 

Syntactic complexity vs. Group 32.92 [2, 11] .08 .01*** 

    b) Second grade 

Syntactic complexity 83.44 [2, 49] 6.51 .25*** 

Group 153.36 [1, 25] 12.85 .38*** 

Syntactic complexity vs. Group 3.79 [2, 49] .30 .02*** 

    c) Third grade 

Syntactic complexity 17.36 [2, 446] .45 .07*** 

Group 35.67 [1, 23] .46 .14*** 

Syntactic complexity vs. Group 3.95 [2, 446] .10 .02*** 

    d) Fourth grade 

Syntactic complexity 9.61 [2, 510] .14 .04*** 

Group 15.14 [1, 255] .06 .06*** 

Syntactic complexity vs. Group 2.30 [2, 510] .03 .009 

WM = F value, partial Eta squared and significance values controlling for working memory differences 

* p < 0.05. ** p < 0.01. *** p < 0.001 

df = degrees of freedom 
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Main effects of group and syntactic complexity were also observed in the second grade. 

Again, repeated contrasts showed significant differences in error rates between the three 

levels of complexity (low vs moderate: F[1, 247] = 72.30, MSE = 10.54,  p < .001; ƞ𝑝
2  = .23; 

moderate vs high: F[1, 247] = 22.69, MSE = 2.23,  p < .001; ƞ𝑝
2  = .08). The interaction 

between group and syntactic complexity was again significant. Repeated contrasts revealed 

that the increase in error rates from low to moderate complexity was similar in both groups 

(F[1, 247] = .76, MSE =.11, p = .384; ƞ𝑝
2  = .003). An increase in error rates from low to 

moderate complexity was higher in children with mathematics difficulties than in control 

children (F [1.247] = 4.71, MSE = .46, p < .05; ƞ𝑝
2  = .02). 

  

In the third grade, the effects of syntactic complexity, group, and the interaction between 

them were again significant. Contrasts revealed a significant increase in error rates when 

comparing numbers with low and moderate complexity (F[1, 223] = 30.91, MSE = 1.06,  p < 

.001; ƞ𝑝
2  = .12) but not when comparing numbers with moderate and high complexity (F [2, 

223] = .40, MSE = .02, p = .526, ƞ𝑝
2  = .002). Closer analysis of the significant interaction group 

vs. syntactic complexity reveals that children with mathematics difficulties showed a more 

pronounced increase in error rates from low to moderate complexity in comparison to 

control children (F [1, 223] = 9.90, MSE = .34,  p < .01, ƞ𝑝
2  = .04). Regarding the error rates 

observed when contrasting numbers with moderate and high complexity, the groups did not 

differ (F [1, 223] = .27, MSE = .02, p = .604, ƞ𝑝
2  = .001). 

  

In the fourth school grade, the two main effects group and syntactic complexity were 

significant, but not their interaction. Contrasts revealed a significant increase in the error 

rates of numbers with low and moderate complexity (F[1, 255] = 18.98, MSE = .24,  p < .001; 

ƞ𝑝
2  = .07). Nevertheless, numbers with moderate and high complexity did not differ in their 

error rates (F [1.25] = .60, MSE = .02, p = .439; ƞ𝑝
2  = .002). 

  

DISCUSSION 
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The purpose of this study was to examine the psychometric properties of a number 

transcoding task and its usefulness in screening mathematics learning difficulties in children 

in the early school years. The major findings revealed that the Arabic Number-Writing Task 

is a simple and powerful instrument for assessing children’s basic number transcoding skills 

in early elementary school and discriminates children with and without mathematics 

learning difficulties with a high degree of sensitivity and specificity. The high reliability 

estimates of the transcoding task are promising regarding diagnostics and evaluation of 

cognitive interventions in mathematics difficulties. Moreover, closer item analysis revealed 

a strong impact of the number of rules necessary to transcode a number correctly on 

general task performance. Moreover, results indicate that the number of rules per item can 

explain most of the group differences observed between children with and without 

mathematics difficulties. In the following, these results will be discussed in deeper detail. 

  

General test properties 

High internal consistency coefficients were observed in the transcoding task in first and 

second grade children. For diagnostics purposes and evaluation of the impact of specific 

educational or neuropsychological interventions, these high reliabilities revert in a high 

precision in the characterization of individual performance (Huber, 1973). More specifically, 

the reliability coefficients observed in the present study in first and second grades can be 

considered invariant according to the criteria established by Willmes (1985) and can be used 

confidently to estimate confidence intervals for individual performance. Although the Arabic 

Number-Writing Task can be considered economic in its present format, particularly 

because of its flexibility regarding group testing and short duration, one may desire to 

reduce test length, particularly because of the relatively large number of very easy one-and 

two-digit items (see further discussion on this merit below). Test reduction seems to us to 

be practically feasible since the relevant item features responsible for item difficulty are 

well determined and the pool of suitable items in the numeric interval between three- and 

four-digits is large enough. In this context, the use of the number of rules necessary to 

transcode individual items as a criterion for the establishment of different groups of items is 
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particularly important. The interaction between item complexity vs. mathematics difficulties 

observed in first to third grades illustrates this fact, since a difference in error rates between 

items with moderate and high complexity is present only in more capable children. One 

interpretation of the interaction results is that item discriminability in the transcoding task 

depends directly on the individual level of competence observed when children apply the 

conversion rules from verbal-to-Arabic formats. The present results suggest that the 

number of transcoding rules is a good criterion to distinguish the level of competence 

typical of children with and without mathematics difficulties. An adaptive version of the task 

could be constructed in which the number of rules necessary to transcode an item vary in an 

even more fine-grained scale than that employed in the present study. 

  

Characterization of typical and atypical development of transcoding abilities 

Overall, 1- and 2-digit numbers presented very low error rates in all school grades, 

regardless of children’s mathematics abilities. These results are in line with the literature, 

which indicates that even kindergartners at risk for mathematics difficulties do not have 

troubles in transcoding small numbers (Landerl, Bevan, & Butterworth, 2004; van 

Loosbroek, Dirkx, Hulstijn, & Janssen, 2009) but can instead retrieve the Arabic forms 

directly from their long-term memory. Moreover, two-digit numbers also showed very low 

error rates in all school grades and are somewhat sensitive to mathematics difficulties only 

in first graders, but not in children in higher school grades. 

  

In contrast, 3- and 4-digit numbers accounted for a large proportion of score variability, with 

high error rates being observed in the 1st grade and a steady decrease in higher grades. 

Interestingly, control children showed notable difficulties in transcoding 3- and 4-digit 

numbers until the 2nd grade, when children receive the formal instruction necessary for 

mastering the syntax of these numbers. Moreover, children with mathematics difficulties 

seem to demand a year longer than control children to master the same knowledge as 

control children. When analyzing the interactions between children’s achievement and 

syntactic complexity in the ANOVA models, one observes that control children attending to 
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the 3rd and 4th grades barely committed errors in the low complexity items. In turn, 

children with mathematical difficulties continue to present errors when they achieve the 

3rd grade, although the error rates also decrease steadily over time. A delay in the 

acquisition of more complex transcoding rules has already been observed in children with 

mathematics difficulties (Moura et al., 2013), and typically developing children with lower 

working memory capacity (Camos, 2008). The present results corroborate this delay in the 

acquisition of transcoding rules observed in children with mathematics difficulties. To which 

extent these errors are also attributable to reduced working memory capacity has to be 

investigated in future studies. 

  

The persistence of the effect of syntactic complexity in all grades constitutes strong 

evidence for the prominent role of transcoding rules in elucidating children's performance 

even in third and fourth grades. The rule knowledge as well as working memory ability have 

been identified as major mechanisms that contribute to number transcoding performance 

(Camos, 2008; Zuber, Pixner, Moeller, & Nuerk, 2009). There is evidence indicating that 

children with mathematics difficulties struggle in learning the more complex transcoding 

rules, as can be inferred from wrong frame errors (Moura et al., 2013). Wrong frame errors 

reflect the absence of knowledge of the magnitude intrinsic to each position in the digit 

sequence, that is, of place-value knowledge. Several studies have related the knowledge of 

place-value syntax with achievement in more complex numerical abilities, such as 

arithmetics (Mazzocco, Murphy, Brown, Rinne, & Herold, 2013; Moeller et al., 2011; 

Moeller, Pixner, Kaufmann, & Nuerk, 2009). Together, these pieces of evidence indicate that 

more abstract levels of numerical representation such as place-value knowledge can be 

assessed by means of the performance in transcoding task and reinforces its utility when 

trying to predict arithmetics abilities of individual children. 

  

Together, the effect of syntactic complexity and the high correlation between error rates 

and the number of transcoding rules, suggest that working memory is an important variable 

associated to number writing. Working memory capacity has been associated in the 
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transcoding research to storing the verbal string, searching in the long-term memory for 

lexical entries, parsing the previously non-acquired strings and applying the procedural rules 

(Barrouillet et al., 2004; Lochy & Sensabela, 2005). In previous research, we have also found 

this association between the number of rules and working memory, which suggests an 

implicit association between the syntactic complexity and working memory skills. Camos 

(2008) directly addressed this issue by investigating children with different verbal working 

memory abilities directly. These authors found a robust association between number of 

transcoding rules and the number writing performance as suggested by the ADAPT model. 

Moreover, Lopes-Silva, Moura, Julio-Costa, Haase and Wood (2014) showed that the 

influence of verbal working memory on number transcoding is mediated by phonemic 

awareness. According to the ADAPT model, phonological encoding is the first step in the 

number transcoding process. Further evidence suggests that visuospatial working memory 

capacity may be associated to syntactic transcoding errors related to the unit-decade 

inversion rule present in languages such as German, Dutch and Czech (Zuber, Pixner, 

Moeller, & Nuerk, 2009). These pieces of evidence indicate that the Arabic Number-writing 

task is theoretically grounded on a cognitive model with high content and construct validity. 

  

Task discriminability 

For the first time, diagnostic accuracy of Arabic Number-Writing Task was assessed by 

means of ROC analyses in the present study. Moderate and high accuracy estimates were 

observed in the first and second grades respectively, while in third and fourth grades the 

transcoding task did not show reliable indexes math difficulties. Therefore, Arabic Number-

Writing Task may then be best suitable for screening children at risk of mathematics 

difficulties in the first two school grades but not in higher grades. Difficulties with number 

transcoding might remain traceable in children with mathematics difficulties in higher 

school grades, but the Arabic Number-Writing Task in its present format is too easy to be 

able to discriminate mathematics difficulties. It is possible that an adaptation of the task 

with the inclusion of more complex 5- and 6-digit numbers would be sufficient to guarantee 

sufficient group discriminability. However, it is also possible that the cognitive profile of 
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mathematics difficulties, as measured by the Arabic Number-writing task, is not stable over 

time, so that difficulties experienced in early phases can be, eventually, overcome, and then 

new difficulties may appear (Geary, Hamson, & Hoard, 2000; Gersten, Jordan, & Flojo, 

2005). If this is the case, good discriminability regarding mathematics difficulties may be 

limited to the first two school grades. 

  

Future perspectives 

A very interesting further development would be the design of an automatic algorithm for 

item generation, which allows the construction of more individualized versions of the Arabic 

Number-writing task, which is adaptive to the level of performance of single children (e.g. 

Arendasy, Sommer, Mayr, 2012) with and without mathematics difficulties. The ADAPT 

model provides a very valuable basis to generate items in all difficulty levels. The estimates 

of item difficulty obtained from large-sample studies such as the present one establish the 

basis for such further developments. Since transcoding tasks combine both diagnostic 

sensitivity and specificity regarding mathematics achievement with a solid theoretical basis 

of the cognitive mechanisms driving individual performance, automatic item generation 

may reveal to be very valuable in the construction of adaptive and flexible instruments best 

suitable not only to characterize individual performance but also to evaluate the impact of 

interventions designed to remediate the negative impact of mathematics difficulties on 

cognition and performance. 

  

Practical implications 

The good psychometric properties of the Arabic Number-writing Task together with its 

simple administration and consistent theoretical ground make of it a useful tool for 

assessing basic numerical skills of young children in both clinical and research contexts. The 

task may provide a quick and cheap way for screening first and second graders at risk of 

mathematical difficulties both collectively, at school, and individually, in clinical settings. The 

benefits of the early identification of children with possible major difficulties in mathematics 

are incommensurable. It enables early intervention efforts, thus minimizing future 
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consequences of low numeracy, such as low incomes and less job opportunities (Bynner & 

Parsons, 1997). 
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Abstract 

Transcoding between numerical systems is one of the most basic abilities acquired by 

children during their early school years. One important topic that requires further 

exploration is how mathematics proficiency can affect number transcoding. The aim of the 

current study was to investigate transcoding abilities (i.e., reading Arabic numerals and 

writing dictation) in Brazilian children with and without mathematics difficulties, focusing on 

different school grades. We observed that children with learning difficulties in mathematics 

demonstrated lower achievement in number transcoding in both early and middle 

elementary school. In early elementary school, difficulties were observed in both the basic 

numerical lexicon and the management of numerical syntax. In middle elementary school, 
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difficulties appeared mainly in the transcoding of more complex numbers. An error analysis 

revealed that the children with mathematics difficulties struggled mainly with the 

acquisition of transcoding rules. Although we confirmed the previous evidence on the 

impact of working memory capacity on number transcoding, we found that it did not fully 

account for the observed group differences. The results are discussed in the context of a 

maturational lag in number transcoding ability in children with mathematics difficulties. 
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INTRODUCTION 

Reading and writing numbers in different formats constitutes a milestone in the 

mathematics education of a child. This ability begins to develop before formal instruction, 

but it is one of the most difficult skills that children must acquire during primary school 

(Geary, 2000). The establishment of a link between verbal and Arabic numerical codes is 

known as number transcoding and is considered a basic numerical ability (Deloche & Seron, 

1987). 

  

Verbal number codes are a structured, language-specific system (Fayol & Seron, 2005) 

acquired concomitantly with other linguistic abilities during early development (Wiese, 

2003). In contrast, Arabic notation is acquired later and requires more formal instruction 

(Geary, 2000). Because it represents quantities more economically, the Arabic code is the 

dominant numerical notation, and its acquisition constitutes one of the first major steps 

toward more complex arithmetic skills (Fayol & Seron, 2005; von Aster & Shalev, 2007). 

Transcoding abilities are predictive of later, more complex achievements in arithmetic 

(Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011). 

  

Cognitive models of number transcoding 

 Cognitive models of number transcoding can be categorized as semantic or asemantic 

according to the role they attribute to the semantic representation of the magnitude of 

numbers. Semantic models postulate that an abstract representation of quantity mediates 

the relationship between numerical comprehension and production mechanisms 

(McCloskey, 1992; McCloskey, Caramazza, & Basili, 1985). 

  

Asemantic models, in turn, assume that the numerical magnitude is not necessarily 

accessed during number transcoding and that the conversion of numerical input into output 

is an algorithm-based procedure. These types of models were first proposed by Deloche and 

Seron (1987). Barrouillet, Camos, Perruchet, and Seron (2004) proposed a developmental, 

asemantic, and procedural transcoding (ADAPT) model, which explains transcoding 
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performance through the acquisition of procedural rules and lexical representations. The 

model predicts that complex and less familiar numbers rely more heavily on working 

memory capacity and on the application of procedural rules, whereas simpler and more 

familiar numbers are directly retrieved from the lexicon. ADAPT states that the expansion of 

the numerical lexicon and the compilation of a larger set of procedural rules account for the 

development of number transcoding. 

  

The ADAPT model assigns a prominent role to working memory in numerical transcoding. 

Working memory is thought to be involved in the temporal storage of verbal information, 

lexical retrieval, and the execution of necessary manipulations. In fact, no other cognitive 

process has been so consistently associated with number transcoding performance and 

error patterns (Camos, 2008; Pixner et al., 2011b; Zuber, Pixner, Moeller, & Nuerk, 2009). 

  

In the ADAPT model, working memory overload is considered one possible source of 

transcoding errors. It assumes that when the storage capacity of working memory is 

insufficient to handle the chain of digits, the transcoding process becomes prone to errors 

even if the necessary conversion rules are available (Barrouillet et al., 2004; Camos, 2008). 

Another important source of transcoding errors is the lack of transcoding rules. In this case, 

working memory resources are not directly involved because the storage capacity is not 

overloaded. These errors occur because low working memory capacity prevented the 

acquisition of sufficient knowledge about the transcoding rules. It is known that working 

memory plays a role in learning more complex rules throughout a child’s school career 

(Camos, 2008), but this is a more indirect and long-term effect of working memory capacity 

on the development of number transcoding abilities. 

  

Both working memory overload and the lack of transcoding rules are associated with 

specific patterns of transcoding errors attributable to the intrusion of 0s after the 

multiplicands. Errors in which the number of added 0s matches the magnitude of the 

multiplicands (e.g., 300070091 rather than 3791), called additive composition errors, occur 
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when the transcoding rules have been acquired (i.e., Rule P2 prompts two empty slots and 

Rule P3 prompts three slots) but the storage capacity of the working memory has been 

overloaded. Computational simulations and group comparison studies have confirmed that 

these errors can be modulated by varying working memory resources (Barrouillet et al., 

2004; Camos, 2008). Errors in which the number of added 0s does not match the 

multiplicand (e.g., 307091 or 300700091 rather than 3791) occur because the correct rule 

has not been acquired and a simpler one is used instead (e.g., Rule P3 prompts only two or 

more than three empty slots) and the number is built under a wrong digit frame. 

  

The demand that number transcoding places on working memory capacity is strongly 

influenced by the complexity of the numerical syntax. Camos (2008) showed a consistent 

relationship among error rates, working memory capacity, and the quantity of rules in a 

study with second graders. The children with a low working memory span had higher rates 

of errors, especially syntactic errors related to the misapplication of place-coding rules. 

Importantly, the error rates increased with syntactic complexity. Moreover, Zuber and 

colleagues (2009) investigated the relationship among syntactic complexity, spatial 

processing, and executive function in first graders in the specific case of the German 

inversion rule for two-digit numbers. Pixner and colleagues (2011b) confirmed the 

association between working memory demands and syntactic errors by comparing within-

participants transcoding abilities using the two different verbal number systems in the 

Czech language. The first graders had higher general error rates using the inverted system, 

and the specific association between inversion-related syntactic errors and working memory 

using the inverted system cannot be explained by familiarity. In summary, these studies 

demonstrated that the role of working memory in numerical transcoding is related to 

syntactic complexity. 

  

Number transcoding in children 

Number transcoding is particularly difficult to learn when the structure of the Arabic or 

verbal numbering system is not clear (Deloche & Seron, 1987; Pixner, Moeller, Hermanová, 
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Nuerk, & Kaufmann, 2011a). The difficulties are more apparent in adults with brain lesions 

and in young children who are not completely familiar with the place value system of Arabic 

notation (Camos, 2008; Deloche & Seron, 1982; Geary, 2000; Power & Dal Martello, 1990, 

1997; Zuber, Pixner, Moeller, & Nuerk, 2009). In both Arabic number reading (Power & Dal 

Martello, 1997) and Arabic number writing (Power & Dal Martello, 1990), second graders 

mastered writing two-digit Arabic numbers but had difficulty in transcoding three- and four-

digit numbers. Most of the children’s difficulties with number writing and reading were 

related to numerical syntax. As shown by Seron, Deloche, and Noël (1992), transcoding 

performance improves between first and second grades, and the improvement is more 

pronounced in reading than in writing Arabic numbers. Moreover, a ceiling effect was 

observed among the third graders on both tasks; therefore, there was only a small amount 

of additional improvement. 

  

Other studies corroborate nearly perfect transcoding of one- and two-digit numbers by 

second graders (Camos, 2008) and few problems in transcoding three- and four-digit 

numbers among third and fourth graders (Sullivan, Macaruso, & Sokol, 1996). Therefore, 

numerical transcoding abilities for numbers up to four digits appear to be fully achieved in 

typically developing children after 3 years of formal education (Noël & Turconi, 1999). 

  

Number transcoding and mathematics achievement 

Mathematics learning difficulties (Mazzocco, 2007) have been associated with a deficit in 

number processing and calculation, and they have lifelong consequences for occupational 

attainment and psychosocial adaptation (Parsons & Bynner, 1997). The impact of this deficit 

on transcoding abilities has been investigated in only a few studies. 

  

Geary, Hoard, and Hamson (1999) and Geary, Hamson, and Hoard (2000) found a small but 

significant association between the mathematics achievement of first graders and their 

performance in reading and writing one- and two-digit Arabic numbers. Difficulties in 

transcoding have also been observed in children with dyscalculia (i.e., more severe and 
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persistent mathematics learning difficulties) (Landerl, Bevan, & Butterworth, 2004; 

Rousselle & Noël, 2007). 

  

Importantly, these studies concentrated on items with a low degree of syntactic complexity 

(one- and two-digit numbers in Geary et al., 1999; two- and three-digit numbers in Landerl 

et al., 2004; one- to three-digit numbers in Rousselle & Noël, 2007). Therefore, differences 

in transcoding more complex items were not explored in these previous studies. A single 

study by van Loosbroek, Dirkx, Hulstijn, and Janssen (2009) compared the performances of 

9-year-old children with and without arithmetic disabilities on a one- to four-digit Arabic 

number-writing task. These authors found significant differences between the two groups, 

even in one-digit number writing, with regard to the planning times but not the error rates. 

Although previous studies were able to detect differences in transcoding abilities between 

groups of children with different levels of mathematics achievement, none of them 

analyzed children’s performance during and after the initial schooling years in more depth. 

Furthermore, the deficit in numerical transcoding abilities found in children with differing 

levels of mathematics achievement (Geary et al., 1999; Landerl et al., 2004; van Loosbroek 

et al., 2009) has not been sufficiently explored with regard to the specific cognitive 

mechanisms that underlie these differences. 

  

Interestingly, Geary and colleagues (1999) reported working memory differences between 

children with typical achievement in mathematics and children with mathematics difficulties 

(see Landerl et al., 2004). One might expect that the group differences in transcoding ability 

could be at least partially explained by differences in working memory capacity. According 

to the ADAPT model, working memory capacity is crucial for transcoding performance, 

specifically with regard to syntactic complexity and the strength of the lexical entries of 

individual items. 

  

The current study 

The aim of the current study was to investigate two transcoding routes (oral verbal to Arabic 
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and Arabic to oral verbal) in Brazilian children with and without mathematics difficulties in 

early and middle elementary school (i.e., first/second grades and third/fourth grades, 

respectively). Because mathematics difficulties are generally associated with lower 

performance on numerical tasks (Landerl et al., 2004; Rousselle & Noël, 2007), we expected 

to observe higher error rates on both transcoding tasks among the children with 

mathematics difficulties in both early (Geary et al., 1999) and middle (van Loosbroek et al., 

2009) elementary school. Moreover, we expected the error rates to be magnified with 

increasing numerical complexity. 

  

Another aim of the current study was to determine the impact of working memory on the 

group differences on the transcoding tasks. If working memory capacity differs between 

typical achievers and children with mathematics difficulties, the numbers with higher 

syntactic complexity and weaker lexical entries would be associated with more pronounced 

group differences. Consequently, one would expect that by removing the effect of working 

memory, the differences in transcoding abilities would be reduced. 

  

To shed light on the nature of the underlying difficulties, an analysis of the transcoding 

errors was performed. First, two broader classes of lexical and syntactical errors were 

considered in accordance with the taxonomy proposed by Deloche and Seron (1982). The 

group differences can be ascribed to the children’s lexical knowledge of numbers, their 

understanding of Arabic syntax, or even both; these factors represent specific steps in the 

transcoding process defined by the ADAPT model. A higher frequency of lexical errors 

among the children with mathematics difficulties would indicate a basic deficit in the lexicon 

for numerical symbols. As previously hypothesized by some authors (Geary et al., 1999), 

children with mathematics difficulties may lack (or avoid) exposure to Arabic information, 

which is reflected in their poorly developed repertoire of numbers. 

  

A higher frequency of syntactic errors is also expected in children with mathematics 

difficulties because previous evidence indicates the influence of the comprehension of base-
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10 syntax on mathematics achievement (Moeller et al., 2011). According to the ADAPT 

model, the pattern of syntactic errors in writing dictated Arabic numbers reflects both an 

overload of working memory resources and a lack of transcoding rules (Barrouillet et al., 

2004; Camos, 2008). That is, if the group differences in number transcoding are the direct 

effect of the lower storage capacity of working memory in children with mathematics 

difficulties, then the specific syntactic errors mentioned above (additive composition) must 

be present. Otherwise, if the group differences are unrelated to the direct effects of working 

memory capacity, then one still can observe the syntactic errors that reflect the delay in the 

acquisition of transcoding rules among the children with mathematics difficulties (Camos, 

2008). 

  

METHODS 

Participants 

A total of 1007 children aged 7 to 12 years (Grades 1–6 in public and private elementary 

schools in the state of Minas Gerais, Brazil) were screened for arithmetic and spelling 

abilities (Brazilian School Achievement Test, Teste de Desempenho Escolar [TDE]; Stein, 

1994). After obtaining written informed consent from their parents or legal representatives, 

the screening test was administered in groups in school classrooms. A subsample of 266 

children agreed to complete an individual assessment that included measures of number 

transcoding, general intelligence (Raven’s Colored Matrices), working memory (Digit Span 

and Corsi Span), and other measures beyond the scope of the current study. We excluded 

from the study all of the children who performed below the 25th percentile on the spelling 

section of the TDE, the children with general intelligence below the 15th percentile, and the 

children with general intelligence above the 75th percentile (according to the manual’s 

norms). Next, the children were divided into two groups according to their performance on 

the arithmetic section of the TDE. The children who scored below the 25th percentile on the 

arithmetic subtest were classified as ‘‘children with mathematics difficulties,’’ and the 

children who scored above the 25th percentile constituted the ‘‘control’’ group. The 

children in grades above fourth grade were not included. 
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The final sample contained 109 participants (81 control children and 28 children with 

mathematics difficulties) with a mean age of 9 years 6 months (SD = 1 year 1 month). To 

investigate developmental changes, the children were also classified according to their 

grade in school. Two groups were formed: one group consisting of the younger participants 

from early elementary school (first and second graders; 29 control children and 10 children 

with mathematics difficulties) and the other group consisting of the older participants from 

middle elementary school (third and fourth graders; 52 control children and 18 children 

with mathematics difficulties). 

  

The reasons for grouping children from different grades were 2-fold. First, based on the 

findings of previous studies (e.g., Seron et al., 1992), the older children were not expected 

to struggle with transcoding numbers up to four digits but rather were expected to reach a 

nearly perfect level of accuracy. The first and second graders, on the other hand, were 

expected to have difficulty in transcoding three- and four-digit numbers (Power & Dal 

Martello, 1990, 1997). We assumed that both groups would be homogeneous with regard 

to their number transcoding abilities. Furthermore, no systematic investigations of the 

transcoding performance of older children with atypical achievement in mathematics have 

been performed. Therefore, two groups with different levels of performance were 

contrasted in the current study. 

  

Psychological assessment 

Numerical transcoding measures 

The Portuguese verbal code is similar to the English code (e.g., Wood, Nuerk, Freitas, 

Freitas, & Willmes, 2006). The lexical classes are units, decades, and particulars (from onze 

[eleven] to quinze [fifteen]). Unlike in English, 100 and 1000 are both designated by only one 

word in Portuguese (cem and mil, respectively). There is no inversion in the Portuguese 

number word system; the decades are always followed by the units, which are preceded by 

the connector e (and) (e.g., 21 is read vinte e um [twenty and one]). For three-digit 
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numbers, the hundreds place is also connected to the decades or units by the connector e 

(e.g., 321 is read trezentos e vinte e um [three hundred and twenty and one]). The 

thousands place in four-digit numbers is directly connected to the hundreds (e.g., 4321 is 

read quatro mil trezentos e vinte e um [four thousand three hundred and twenty and one]), 

but when the hundreds are absent the e makes the connection between the thousands and 

the decades or units (e.g., 4021 is read as quatro mil e vinte e um [four thousand and twenty 

and one]). 

  

Arabic Number-Reading Task. A total of 28 Arabic numbers with one to four digits were 

printed in a booklet and presented to the children one at a time. The children were 

instructed to read them aloud (see the item list in Appendix A). The three- and four-digit 

numbers were grouped into three categories according to their complexity, indexed by the 

number of transcoding rules established by the ADAPT model (the quantity of transcoding 

rules in each item is presented in Appendix A). The three- and four-digit numbers were 

chosen to avoid presenting numbers with very strong lexical entries and to maintain the 

focus on syntactic complexity. The internal consistency of the task was .92 (Kuder– 

Richardson Formula 20 for dichotomous scales). 

  

Arabic Number-Writing Task. The item set was composed of 28 numbers with up to four 

digits (see Appendix B). The children were instructed to write down the Arabic numerals 

that corresponded to the dictated numbers. As in the Arabic Number-Reading Task, the 

items were grouped according to their complexity (specified in Appendix B). The internal 

consistency of the complete task was .93 (Kuder–Richardson Formula 20). The complexity of 

the items was similar on both the Arabic Number-Reading Task and the Arabic Number-

Writing Task. 

  

General school achievement and intelligence measures 

School Achievement Test. The TDE (Oliveira-Ferreira et al., 2012; Stein, 1994) is the most 

widely used standardized test of school achievement in Brazil, and norms are available for 
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first grade through sixth grade. The test comprises three subtests that measure basic skills: 

single-word reading (which was not used during the screening phase), single-word spelling, 

and arithmetic operations. The word spelling subtest consists of 34 dictated words with 

increasing syllabic complexity. The arithmetic subtest is composed of three simple oral word 

problems that require written responses and 45 basic arithmetic calculations of increasing 

complexity that are presented and answered in writing. The reliability coefficients 

(Cronbach’s α) for the subtests were high (.94 for spelling and .93 for arithmetic; Stein, 

1994). The children were instructed to complete as many items as they could, and there 

were no time limits. The TDE may be considered the Brazilian equivalent to instruments 

available in other countries such as the Wide Range Achievement Test (Jastak & Wilkinson, 

1984). 

  

Raven’s Colored Matrices. General fluid intelligence was assessed using the age-appropriate, 

Brazilian-validated version of Raven’s Colored Matrices (Angelini, Alves, Custódio, Duarte, & 

Duarte, 1999). The analyses were based on z-scores calculated from the norms listed in the 

manual. 

  

Working memory measures 

Digit Span Task. The backward Digit Span Task was used to assess working memory, 

following the procedures of the Brazilian version of the Wechsler Intelligence Scale for 

Children-III (Figueiredo, 2002). 

  

Corsi Block Tapping Task. To assess the visuospatial component of working memory, the 

backward Corsi Block Tapping Task was used, following the procedure used by Kessels, van 

Zandvoort, Postma, Kapelle, and de Haan (2000). 

 

RESULTS 

Descriptive data 

The control group and the children with mathematics difficulties did not differ significantly 
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with regard to gender, school type (public or private), or age. The mean intelligence scores 

were also comparable across the children with mathematics difficulties and the control 

group (Table 1). 

 

Table 1 

Descriptive statistics and achievement on general neuropsychological measures for both groups. 

  Controls (n = 81)   

Children with 
mathematics difficulties 
(n = 28)   χ2 df p - 

Sex (% female) 55.6   64.3   0.65 1 0.42   

School type (% public) 11.1 
 

14.3 
 

0.2 1 0.91 
          

 
Mean sd   Mean sd   t df p d 

Age (months) 115.25 12.72   113.11 16.15   0.71 107 0.48 0.16 

Raven (z-scores) 0.36 0.61 
 

0.37 0.66 
 

-0.11 107 0.915 0.02 

TDE Arithmetics 16.44 5.81 
 

9.57 5.65 
 

5.43 107 < 0.001 1.21 

TDE Spelling 25.4 6.22 
 

18.89 10 
 

3.23 107 0.003 0.89 

Digit Span (backward) 3.27 0.84 
 

2.82 0.82 
 

2.47 107 0.015 0.54 

Corsi Span (backward) 4.17 1.03   3.86 0.97   1.41 107 0.16 0.51 

df = degrees of freedom. 

d = Cohen’s effect size. 

 

On the Arabic Number-Reading Task, 63% of the control group and 39.3% of the children 

with mathematics difficulties achieved the maximum score. On the Arabic Number-Writing 

Task, 50.6% of the control group and 42.9% of the children with mathematics difficulties did 

not commit any transcoding errors on the entire set of items (one- to four-digit numbers; 

see Appendixes A and B). Because of the small number of errors committed with one- and 

two-digit numbers, these items were dropped from further statistical analyses. 

  

Group, item, and task influences on number transcoding 

 To investigate the influence of mathematics achievement, schooling, numerical complexity, 

and the transcoding route on error rates, we ran a mixed 3x2x2 analysis of variance 

(ANOVA) for each education level separately. This design included the between-participants 

factor of group (control children or children with mathematics difficulties) and the within-

participants factors of the transcoding route (error rates for the Arabic Number-Writing 
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Task or the Arabic Number-Reading Task) and numerical complexity (error rates for each of 

the three levels of syntactic complexity). In all of the cases in which the assumption of 

sphericity was not satisfied, the Greenhouse–Geisser correction was applied. To 

approximate a normal distribution more accurately, the error rates were arcsine-

transformed. 

  

Figure 1 depicts the effects of these three factors on the error rates. Among the children in 

early elementary school, the children with mathematics difficulties exhibited a higher 

overall error rate compared with the control children, and more errors were observed on 

the Arabic Number-Writing Task (Table 2). Numerical complexity also influenced the error 

rates, as shown by the main effect of complexity. Post hoc tests revealed significant 

differences between low and moderate complexity (p < .001) and between moderate and 

high complexity (p < .001). 

 

 

Figure 1. Error rates as a function of task, numerical complexity and children’s group. Vertical bars depict 

standard error. 
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In the middle elementary school grades, the children with mathematics difficulties still 

exhibited higher error rates, particularly when transcoding more complex numbers 

(moderate and high complexity; Table 2); the group differences increased with syntactic 

complexity (Fig. 1). Post hoc tests revealed significant differences between low and 

moderate complexity (p < .001; Fig. 1) and between moderate and high complexity (p < 

.001; Fig. 1). The effect of the transcoding route was not significant in middle elementary 

school. 

 

Table 2 

Repeated measures ANOVAs and ANCOVAs on transcoding error rates according to school level. 

  Early elementary school   Middle elementary school 

  F[df] MSE η𝑝
2  

F[df] 
(WM) 

MSE 
(WM) 

η𝑝
2  

(WM)   F[df] MSE η𝑝
2  

F[df] 
(WM) 

MSE 
(WM) 

η𝑝
2  

(WM) 

Numerical 
complexity 

31.02 
[2,74] 

0.45 0.45*** 
3.53 

[2,70] 
0.05 0.09* 

  
25.19 

[2,136] 
0.08 0.27*** 

1.40 
[2,132] 

0.00 0.02 

Task 
19.11 
[1,37] 

0.22 0.34*** 
6.80 

[1,35] 
0.07 0.16* 

  
0.44 

[1,68] 
0.00 0.01 

0.79 
[1,66] 

0.00 0.01 

Group 
13.69 
[1,37] 

1.53 0.27*** 
6.44 

[1,35] 
0.61 0.15** 

  
6.89 

[1,68] 
0.05 0.09** 

6.07 
[1,66] 

0.05 0.08* 

Complexity 
vs. Group 

0.84 
[2,74] 

0.01 0.02 
0.43 

[2,70] 
0.01 0.01   

5.57 
[2,136] 

0.02 0.07** 
4.82 

[2,132] 
0.01 0.07* 

WM = F, partial Eta squared and significance values controlling for working memory differences. 
df = degrees of freedom. 
* p <  0.05.  
** p <  0.01.  
*** p < 0.001. 

 

 

In summary, the children with mathematics difficulties in first through fourth grades clearly 

struggled to write and read Arabic numbers. The overall performance on both transcoding 

tasks was influenced by the level of numerical complexity. Moreover, the group differences 

in later grades increased with numerical complexity; the differences were larger for more 

complex numbers. Next, the impact of working memory capacity on the interaction 

between children’s mathematics abilities and the item complexity was assessed. 

  



 

71 
 

Working memory analysis 

The control children had higher verbal but comparable nonverbal working memory capacity 

compared with the children with mathematics difficulties (Table 1). Consistent with previous 

reports (Barrouillet et al., 2004; Camos, 2008; Zuber et al., 2009), the error rates on the 

Arabic Number-Writing Task were moderately correlated with both the Digit Span (r = –.34, 

p < .01) and Corsi Block scores (r = –.30,  p < .01). On the Arabic Number-Reading Task, these 

correlations were slightly weaker (Digit Span: r = –.26, p < .01; Corsi Block: r = –.23, p < .01) 

but still significant. The correlation between the two working memory measures was not 

significant (r = .08, p > .05). The absence of a correlation between the different components 

of working memory has also been reported in previous studies (Anguera, Reuter-Lorenz, 

Willingham, & Seidler, 2010; Passolunghi & Siegel, 2004) and can be attributed to the effect 

of the different type of information that must be recalled in each task (verbal vs. numerical). 

  

To further explore the role of working memory in numerical transcoding, we created a 

series of stepwise regression models with the transcoding error rate as a criterion variable 

and age, intelligence, and verbal and visuospatial working memory components as 

predictors. In early elementary school, the ability to write Arabic numbers was predicted by 

the verbal component of working memory and intelligence (R² = .39, adjusted R² = .36, b’s = 

–0.45 and –0.32, respectively), whereas intelligence was the only reliable predictor for the 

score on the Arabic Number-Reading Task (R² = .23, adjusted R² = .20, b = –0.48). In middle 

elementary school, none of the regression models reached statistical significance. 

  

Lastly, both the verbal (backward Digit Span) and nonverbal (backward Corsi Block) 

components of working memory were simultaneously included as covariates in the ANOVA 

model reported in the previous section. As shown in Table 2 (column “ƞ𝑝
2” for the 

uncorrected values and column “ƞ𝑝
2  (WM)” for the values after controlling for working 

memory effects), the effect size of the factor group was reduced slightly for the early 

elementary school children but remained the same for the children in middle elementary 

school. The interaction between group and numerical complexity, which was initially 
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observed only in middle elementary school children, remained significant after removing 

the variance in working memory capacity. Importantly, the main effect of number 

complexity was substantially reduced in early elementary school children and completely 

eliminated in middle elementary school children. 

  

In summary, number transcoding performance was clearly influenced by working memory 

capacity. However, the group differences observed in number transcoding could not be fully 

explained by the differences in working memory. Interestingly, working memory capacity 

was closely related to the transcoding of numbers at different complexity levels. 

  

Error analysis 

In this section, the errors committed in the Arabic Number-Writing Task and the Arabic 

Number-Reading Task are explored separately. The lexical and syntactic errors are 

investigated first, followed by an analysis of the specific patterns of syntactic errors. 

  

Lexical errors occur when a lexical element is replaced by another one (e.g., Number 

Writing: quarenta e seis [forty-six] → 45; Number Reading: 13 → quatorze [fourteen]). A 

syntactic error is made when the lexical elements are correctly recovered but wrongly 

allocated in the numerical sequence (e.g., Number Writing: cento e trinta e dois [one 

hundred thirty-two] → 123; Number Reading: 5962 → cinco mil seiscentos e noventa e dois 

[five thousand six hundred ninety-two]) or when the overall numeric magnitude is modified 

even though the lexical units are correct (e.g., Number Writing: mil e trezentos [one 

thousand three hundred] → 1000300; Number Reading: 1900 → dezenove mil [nineteen 

thousand]). 

  

On both tasks, syntactic errors were the most frequent (87% of all errors on the Number-

Writing Task and 93% of all errors on the Number-Reading Task; Table 3). There were 

differences in the relative frequencies of errors committed by the control children and the 

children with mathematics difficulties. Importantly, these differences were more evident 
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among the early elementary school children and in the transcoding of three- and four-digit 

numbers. The error rates for one- and two-digit numbers were rather low, and neither of 

the middle elementary school groups committed errors transcoding these numbers. 

Accordingly, only three- and four-digit numbers were considered in the subsequent 

analyses. 

 

Table 3 

Error frequency as a function of school level, error category and number of digits. 

Grade Error category (quantity of digits) 

Number Writing   Number Reading 

Controls 
Children 
with MD   Controls 

Children 
with MD 

Early 
elementary 
school 

Lexical (1- and 2- digit numbers) 4 (0.14) 9 (0.9)   0 (0.0) 4 (0.4) 

Syntactical (1- and 2- digit numbers) 1 (0.03) 5 (0.5) 
 

0 (0.0) 2 (0.2) 

Lexical (3- and 4- digit numbers) 7 (0.24) 13 (1.3) 
 

4 (0.14) 0 (0.0) 

Syntactical (3- and 4- digit numbers) 124 (4.27) 53 (5.3) 
 

75 (2.59) 37 (3.7) 

       

Middle 
elementary 
school 

Lexical (1- and 2- digit numbers) 0 (0.0) 0 (0.0) 
 

0 (0.0) 0 (0.0) 

Syntactical (1- and 2- digit numbers) 0 (0.0) 0 (0.0) 
 

0 (0.0) 0 (0.0) 

Lexical (3- and 4- digit numbers) 9 (0.17) 2 (0.11) 
 

2 (0.4) 0 (0.0) 

Syntactical (3- and 4- digit numbers) 77 (1.48) 36 (2.0)   8 (0.15) 14 (0.78) 

Note. Numbers between brackets represent the mean error frequency (absolute frequency/n). 
MD = Mathematics difficulties. 

 

Error analysis for Arabic Number-Reading Task 

A 2×2 repeated-measures ANOVA was conducted separately for each school level using 

lexical and syntactic errors as the within-participants factors and group as the between-

participants factor. For both school levels, similar main effects and interactions were 

observed. Syntactic errors were more frequent (93% of all classified errors; Table 4A), as the 

main effect of error category shows. Moreover, the main effect of group and its interaction 

with the error category revealed that the group differences were restricted to syntactic 

errors. Importantly, both the main effect and the interaction remained significant even after 

removing the variance in working memory. Lastly, the correlation coefficients showed that 

syntactic errors were correlated with both the visuospatial (r = –.26, p < .01) and verbal (r = 

–.22, p < .05) components of working memory. Lexical errors, on the contrary, did not 

correlate with working memory (all p’s > .05). 
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A more detailed analysis of syntactic errors was conducted, classifying the errors into the 

following categories: wrong multiplicand (e.g., 400 read as four thousand), fragmentation of 

the numerical chain (e.g., 567 read as five and six and seven), omission of elements (e.g., 

1900 read as nine hundred), misplaced elements (e.g., 432 read as four hundred and 

twenty-one), and misplaced multiplicand (e.g., 160 read as one hundred six). A similar error 

classification system was previously used by Power and Dal Martello (1997). The selection of 

the wrong multiplicand constituted the majority of syntactic errors (62.1%), followed by 

errors in fragmentation (27.5%) and omission of an element (6.6%). The other two 

categories, misplaced multiplicands and misplaced elements, were rather infrequent (1.9% 

for both cases) and, therefore, were not included in further analyses. 

 

A 3×2 repeated-measures ANOVA (Table 4B) with error type (wrong multiplicand or 

fragmentation or omission) as the within-participants factor and group as the between-

participants factor was conducted for each school level. The analysis revealed main effects 

of error category and group among the children in early and middle elementary school. A 

significant interaction between these two factors was observed; the group differences in 

wrong multiplicand errors were significant (early elementary school: t(37) = –2.38, p = .039; 

middle elementary school: t(68) = –2.38, p = .029), but the differences in fragmentation and 

omission errors were not significant (all p’s > .05). For the two school levels, the main effect 

of group remained significant even after removing the influence of working memory in the 

analysis of covariance (ANCOVA). Moreover, working memory capacity fully accounted for 

the main effect of error category. Interestingly, the only error type that was correlated with 

working memory was fragmentation, which had a weak correlation with the visuospatial 

component of working memory (r = –.23, p < .05). 

 

The analyses of the errors committed on the Arabic Number-Reading Task revealed two 

main findings. First, in both early and middle elementary school, children with mathematics 

difficulties struggle with numerical syntax, especially with assigning the correct values to the 
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multiplicands (hundreds and thousands). Second, the achievement deficit cannot be fully 

explained by working memory capacity. The only errors that can be related to working 

memory capacity are fragmentation errors, which showed similar frequencies in both 

groups. 

  

Error analysis for Arabic Number-Writing Task 

A 2x2 repeated measures ANOVA was conducted separately for each school level using 

lexical and syntactic errors as the within-participants factors and group as the between-

participants factor. The analyses of the data from the children in early elementary school 

revealed a higher frequency of syntactic errors than lexical errors (87% vs. 12%) and a 

higher frequency of overall errors among the children with mathematics difficulties (Table 

4A). A significant interaction was also found; the frequency of errors in each category 

changed according to group. Post hoc tests revealed significant group differences in both 

lexical and syntactic errors (all p’s < .01; Fig. 2), but the effect size was larger for the 

difference in syntactic errors (Table 4A). Among the middle elementary school children, a 

very similar pattern was found, but the post hoc tests for the group versus error category 

interaction were significant for syntactic errors, t(68) = –3.638,  p < .01, and not for lexical 

errors, t(68) = –0.697, p = .48. 

 

After removing the variance in working memory from these analyses, the main effects and 

interaction reported above remained significant but decreased for both school levels (Table 

4A). Interestingly, the group differences decreased the least, whereas the effects of error 

category were more strongly affected (Table 4A). As a complement to these analyses, we 

investigated the correlations between the error types. Lexical and syntactic errors were 

significantly correlated with the verbal and visuospatial components of working memory. 

The verbal component correlated with lexical (r = –.21, p < .05) and syntactic errors (r = –

.27,  p < .01), whereas the visuospatial component correlated only with syntactic errors (r = 

–.26,  p < .01). 
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Figure 2. Relative frequency of lexical and syntactical errors according to children’s group and 

transcoding task, vertical bars depict standard error. 

 

The results presented so far suggest that during the early years of school, children with 

mathematics difficulties struggle with both lexical and syntactic properties of Arabic number 

writing, whereas children without mathematics difficulties experience difficulties only with 

syntax. In middle elementary school, a shift occurs; syntax becomes the only source of 

errors for children with mathematics difficulties, and children without mathematics 

difficulties seem to have mastered Arabic number writing. As we observed in the 

investigation of Arabic number reading, working memory capacity cannot fully account for 

the difference between the two groups. 

  

Because of their high frequency, the syntactic errors were analyzed in greater depth. These 

errors were classified into different categories to provide a deeper understanding of the 

underlying nature of syntactic errors. They were classified into three main categories: 
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intrusion of elements in the number (e.g., 700 written as 7003), omission of elements (e.g., 

1015 written as 15), and misplaced elements (e.g., 3791 written as 3719). The majority of 

the errors were attributable to the intrusion of elements in the number (65.8%), followed by 

the omission of elements (23%) and misplaced elements (11.3%). 

  

A 3×2 repeated-measures ANOVA, using error category and group as factors, was conducted 

separately for each school level (Table 4B). Among the children in early elementary school, 

significant main effects of group and error category were found; intrusion errors caused the 

highest error rates, followed by omission errors and misplacement errors (post hoc tests 

revealed all ps < .01). Lastly, there was a significant interaction between error category and 

group. The groups differed in the rates of intrusion errors, t(37) = –3.42,  p < .01, and 

omissions, t(37) = –2.69, p = .02, but not in the rate of misplacement errors, t(37) = –1.79, p 

= .11. For the children in middle elementary school, the same analysis revealed a main 

effect of group but no effect of error category and no interaction. Therefore, the 

subsequent analyses of the Arabic Number-Writing Task results considered only the children 

in early elementary school. 

 

Intrusion errors in which the digit 0 was the main intruder were further analyzed because 

they are highly informative about the children’s mastery of numerical syntax. In our sample, 

these errors represented nearly all of the errors related to the intrusion of digits (94.7%). 

Although the percentages of these errors were very similar in the two groups of children 

(95.5% in the control group and 93.0% in the group of children with mathematics 

difficulties), the relative frequency was significantly higher among the children with 

mathematics difficulties, t(37) = –2.82, p = .02. Intrusion errors were classified into three 

subcategories. The additive composition errors were used as an index for errors caused by a 

working memory overload. The errors in which the number of added 0s did not match the 

magnitude of the multiplicands, called wrong-frame errors, were used as an index for 

missing transcoding rules. Another subcategory we investigated comprised multiplicative 

composition errors (a 1 followed by two or three 0s acting as the intruder, e.g., 81000 rather 
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than 8000). Along with additive composition, multiplicative composition constitutes one 

principle of the Arabic code. 

  

The most frequent error was the wrong frame, which accounted for 68.4% of the syntactic 

errors (67.0% in the control group and 71.4% in the group of children with mathematics 

difficulties), followed by additive composition errors (29.3% overall, 29.7% in the control 

group, and 28.6% in the group of children with mathematics difficulties). Multiplicative 

composition errors were infrequent (2.3% overall, 2.2% in the control group, and 2.4% in 

the group of children with mathematics difficulties) and, therefore, were not considered 

further in the analyses. 

  

A 2x2 repeated-measures ANOVA (Table 4C) on the relative frequency of these errors 

confirmed the higher frequency of wrong-frame errors (main effect of error class) and a 

higher frequency of overall errors in the children with mathematics difficulties (main effect 

of group). Interestingly, there were group differences in wrong-frame errors, t(37) = –2.59, p 

= .028, but not in the occurrence of additive composition errors, t(37) = –1.76, p = .109, as 

the significant interaction between these factors demonstrates. 

  

After removing the variance in working memory from these analyses, the main effect of 

group and its interaction with error category remained significant. In contrast, the main 

effect of error category disappeared, confirming the assumption of the ADAPT model that 

most of the differences between additive composition and wrong-frame errors are 

attributable to the demand on working memory resources. In addition, we analyzed the 

relationship between the working memory components and the classes of syntactic errors. 

Additive composition errors were correlated only with the verbal component of working 

memory (r = –.44, p < .01), whereas wrong-frame errors did not correlate with either 

component of working memory. 
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Table 4 

Repeated measures ANOVAs and ANCOVAs on transcoding error categories according to school level and task 

  Arabic number writing   Arabic number reading 

  F [df] MSE η𝑝
2  F [df] (WM) 

MSE 
(WM) 

η𝑝
2  

(WM)   F [df] MSE η𝑝
2  F [df] (WM) 

MSE 
(WM) 

η𝑝
2  

(WM) 

a. Analysis of broader categories of lexical and syntactic errors 
Early elementary school                           

Error category 59.76 [1,37] 0.28 0.62*** 9.90 [1,35] 0.05 0.22**   26.59 [1,37] 0.21 .42*** 9.80 [1,35] 0.07 0.22** 
Group 51.91 [1,37] 0.25 0.58*** 36.68 [1,35] 0.00 0.51***   10.01 [1,37] 0.08 .21** 5.38 [1,35] 0.04 0.13* 
Error category vs. Group 14.67 [1,37] 0.07 0.28*** 8.91 [1,35] 0.04 0.20**   10.95 [1,37] 0.08 .23** 6.01 [1,35] 0.04 0.15* 

Middle elementary school                           
Error category 98.91 [1,68] 0.03 0.59*** 6.51 [1,66] 0.00 0.09*   16.34 [1,68] 0.00 0.19*** 0.31 [1,66] 0.00 0.00 
Group 28.67 [1,68] 0.01 0.30*** 25.88 [1,66] 0.01 0.28***   12.42 [1,68] 0.00 0.15** 13.06 [1,66] 0.00 0.16** 
Error category vs. Group 37.29 [1,68] 0.01 0.35*** 34.12 [1,66] 0.01 0.34***   13.31 [1,68] 0.00 0.16** 14.14 [1,66] 0.00 0.18*** 

              b. Analysis of syntactic errors 
Early elementary school 

             Error category 34.10 [2.74] 0.22 0.48*** 5.84 [2,70] 0.04 0.14* 
 

7.57 [2,74] 0.11 0.17** 1.68 [2,70] 0.02 0.05 
Group 47.93 [1,37] 0.22 0.56*** 33.17 [1,35] 0.13 0.49*** 

 
19.93 [1,37] 0.16 0.35*** 13.30 [1,35] 0.1 0.27** 

Error category vs. Group 12.20 [2.74] 0.08 0.25*** 7.61 [2,70] 0.05 0.18* 
 

4.24 [2.74] 0.06 0.10* 2.75 [2,70] 0.04 0.07 

              Middle elementary school 
             Error category 2.44 [2,136] 0.00 0.04 0.18 [2,132] 0.00 0.00 

 
15.11 [2,136] 0.00 0.18*** 0.36 [2,132] 0.00 0.00 

Group 10.52 [1,68] 0.00 0.13** 9.32 [1,66] 0.00 0.12** 
 

12.57 [1,68] 0.00 0.16** 11.89 [1,66] 0.00 0.15** 
Error category vs. Group 1.27 [2,136] 0.00 0.02 1.35 [2,132] 0.00 0.02 

 
12.01 [2,136] 0.00 0.15*** 12.39 [2,132] 0.00 0.16** 

 
c. Analysis of "0" related errors in the Arabic number writing task 
Early elementary school 

             Error category 14.76 [1,37] 0.05 0.28*** 0.53 [1,35] 0.00 0.01   - - - - - - 
Group 18.72 [1,37] 0.09 0.34*** 11.94 [1,35] 0.00 0.25**   - - - - - - 
Error category vs. Group 6.36 [1,37] 0.02 0.15* 6.54 [1,35] 0.02 0.16*   - - - - - - 

Note. WM = F value, partial Eta squared and significance values controlling for working memory differences. 
df = degrees of freedom. 
* p < 0.05.  
** p < 0.01.  
*** p < 0.001.
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Finally, the last step in the analysis of the errors on the Arabic Number-Writing Task is to 

investigate the position where the errors occurred in the number. A closer analysis of the 

wrong-frame errors revealed more errors in the thousands place of four-digit numbers (a 

total of 76 vs. 11 errors in the hundreds place of four-digit numbers and 22 errors in three-

digit numbers), with higher rates among the children with mathematics difficulties, t(37) = –

3.45, p = .006. The difference between the control children and the children with 

mathematics difficulties was attributable to the insertion of two 0s after the thousands 

place, t(37) = –2.48, p = .03, but not the insertion of four or more 0s, t(37) = –1.19, p = .26. 

In the hundreds place of four-digit numbers, no group differences were found (all ps > .05). 

In the hundreds place of three-digit numbers, the error rate was higher among the children 

with mathematics difficulties, t(37) = –2.32, p = .04, because the children inserted only one 

0, t(37) = –2.39, p = .04, but not three or more 0s, t(37) = 0.84, p = .407. Therefore, one can 

assert that the wrong-frame errors by the children with mathematics difficulties occur 

mainly because they insert fewer digits than required by the multiplicand, suggesting the 

use of less sophisticated transcoding rules dedicated to smaller numbers. 

  

In summary, the data presented show that a large portion of the errors on the Arabic 

Number-Writing Task occurred because of incorrect management of the numerical frame. In 

agreement with other studies, additive composition errors were more closely related to 

working memory resources, whereas the errors attributable to the wrong frame were 

independent of working memory. Interestingly, there were only group differences in the 

errors unrelated to working memory; therefore, these differences in number transcoding 

can be explained by the absence of more advanced transcoding rules. 

  

DISCUSSION 

The current study produced new evidence about the development of number transcoding 

abilities in children and the roles of numerical complexity, working memory, and 

mathematics proficiency. First, the children who struggled to learn mathematics faced two-

way difficulties in transcoding verbal and Arabic notations, not only during the early years of 
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elementary school (first and second grades) but also in middle elementary school (third and 

fourth grades). Second, although working memory capacity accounted for the differences in 

the transcoding of more syntactically complex items, it did not fully account for the 

difference in the performances of the children with and without mathematics learning 

difficulties. Third, and more important, the deficit in the transcoding performance observed 

in children with mathematics difficulties was primarily attributable to missing transcoding 

rules and not only to an overload of working memory. These topics and others related to 

our results are discussed in more detail in the following sections. 

  

Number transcoding and mathematics achievement 

The main aim of the current study was to examine number transcoding abilities in children 

with different mathematics achievement profiles. Our results indicated lower transcoding 

abilities in children with mathematics difficulties in both of the grade levels we assessed, 

although the error rates were lower among the children in middle elementary school 

compared with the children in early elementary school. To our knowledge, this is the first 

thorough investigation of the number transcoding abilities of groups of children in different 

grades. Similar research in the past (Geary et al., 1999, 2000; Landerl et al., 2004; Rousselle 

& Noël, 2007) investigated only a limited range of numbers without focusing on 

developmental aspects and mathematics abilities. 

  

Lexical primitives 

Numerical syntax was the main source of the children’s difficulties; syntactic errors 

accounted for approximately 90% of all the errors committed on the two transcoding tasks 

for both grade levels. The differences between the typical achievers and the children with 

mathematics difficulties, however, were not limited to syntax. In early elementary school, 

the children with mathematics difficulties exhibited problems that affected both the lexical 

and syntactic domains of Arabic number writing. For the control children, only numerical 

syntax caused transcoding errors. This result suggests that at the beginning of elementary 

school, the children with mathematics difficulties may have a poorly developed numerical 
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lexicon that improves with education. We can assume that these children might generally 

avoid or have little exposure to numerical information and, therefore, might not be as 

familiar with Arabic notation as their typical peers. A similar assumption was made by Geary 

and colleagues (1999), but the current study is the first to explicitly reveal a deficit in the 

numerical lexicon of children with mathematics difficulties. 

  

Production rules 

In agreement with Camos (2008), error rates increased with transcoding rules. This effect 

was observed in early and middle elementary school, but it differed according to the 

children’s proficiency in mathematics. In early elementary school, the effect of numerical 

complexity on error rates was balanced between the two groups, and the error rates 

increased with numerical complexity. In the higher grades, the error rates were generally 

smaller than in the lower grades. However, the control children gave an accurate 

performance regardless of numerical complexity, whereas the children with mathematics 

difficulties continued to demonstrate lower achievement in transcoding complex numbers. 

Therefore, in higher grades, the group differences increased with numerical complexity. The 

children with mathematics difficulties were able to overcome their initial difficulties with 

basic numerical syntax, but they still struggled to transcode syntactically complex numbers. 

  

Importantly, the types of syntactic errors observed differed qualitatively between the 

control children and the children with mathematics difficulties. On the Arabic Number-

Reading Task, errors attributable to the production of the wrong multiplicand (e.g., reading 

567 as five thousand sixty-seven) occurred more often among the children with 

mathematics difficulties and were the main source of the group differences on this task. This 

error does not appear to depend on the children’s working memory resources because it did 

not correlate with either component of working memory. The other frequently observed 

error, fragmentation, is a strategy that involves splitting an Arabic numeral into smaller 

parts that can be transcoded correctly. Children resort to this strategy when they have not 

properly acquired transcoding rules for larger numbers, and they break the number into 
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smaller units that they can transcode correctly. This type of error can also be caused by high 

demands on working memory given that this class of error was significantly (but weakly) 

correlated with visuospatial working memory. Interestingly, the two groups of children did 

not differ in the prevalence of this error. Therefore, we can assume that the lack of specific 

rules for reading three- and four-digit Arabic numbers is the major reason why children with 

difficulties in mathematics are less able to read Arabic numbers correctly. In the age range 

we investigated, the working memory demands imposed by the Arabic Number-Reading 

Task appeared to be relatively low. 

  

On the Arabic Number-Writing Task, two main types of syntactic errors were observed: 

additive composition and wrong-frame errors. The frequency of additive composition errors 

was similar in both groups. Based on previous studies on the nature of this error (Barrouillet 

et al., 2004; Camos, 2008), one can conclude that the lower level of success in number 

transcoding observed in children with mathematics difficulties is not attributable to an 

overload of working memory resources. 

 

The main source of errors in this task, however, concerned the incorrect management of the 

number of digits after the multiplicand parts when 0s were added incorrectly, designated 

here as wrong-frame errors. According to the ADAPT model, the source of wrong-frame 

errors lies in the incorrect application of Rules P2 and P3 (i.e., not prompting two empty 

slots after the hundreds place or three slots after the thousands place, respectively); thus, 

this error serves as an index of missing transcoding rules. Wrong-frame errors were made 

more frequently by the children with mathematics difficulties; therefore, we can attribute 

their difficulty with number transcoding to poor knowledge of the rules. 

While investigating the nature of the wrong-frame errors, we observed that in comparison 

with the control children, the children with mathematics difficulties were more likely to add 

only two digits after the thousands place in four-digit numbers (i.e., fewer digits than 

required by the multiplicand). This result suggests that these children have not yet acquired 

the rules for transcoding four-digit numbers and wrongly applied the rules dedicated to 
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three-digit numbers. A smaller difference was also observed in the hundreds place of three-

digit numbers, indicating that at least some of the children with mathematics difficulties still 

had not acquired the rules for transcoding three-digit numbers. An early understanding of 

the place-value concept indexed by transcoding tasks has been shown to predict later 

performance in addition operations in typically developing children until the third grade 

(Moeller et al., 2011). 

  

In summary, the results presented in this study indicate a maturational lag in the 

development of number transcoding abilities in children with mathematics difficulties. 

Although both groups of children followed the same developmental course with the 

establishment of a numerical lexicon as the first step, followed by an understanding of 

syntax, the developmental trajectories were clearly not synchronized in the two groups. The 

children with mathematics difficulties appear to lag behind their peers in the control group. 

For example, whereas the children in the control group may have difficulties with numerical 

syntax, the children with mathematics difficulties still exhibit problems with the basic 

numerical lexicon. In middle elementary school, the children in the control group appeared 

to have mastered the abilities necessary to transcode four-digit numbers, whereas the 

children with mathematics difficulties were still in the process of acquiring the rules for 

transcoding more syntactically complex numbers. These observations should be confirmed 

in a longitudinal study or by tracking developmental changes by inspecting children in each 

grade separately. 

  

Notably, the prominent role of the numeral 0 in the place-value system of the Arabic code 

and its impact on numerical complexity should also be discussed. It acts as a placeholder 

that indicates when a given power of ten is empty, and it may cause difficulty because no 

corresponding verbal form of the Arabic zero exists. In the current study, most of the 

syntactic errors and nearly all of the errors caused by the intrusion of a new digit involved 

the numeral zero. Some previous studies have addressed this issue. For example, zero 

imposes more difficulties when it plays a syntactic role (e.g., in the number 1503) than when 
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it has a lexical role (e.g., in the number 1500) (Granà, Lochy, Girelli, Seron, & Semenza, 

2003). Thus, the number 0, compared with the other digits, may require more time to 

understand and extra cognitive resources to be correctly employed in transcoding tasks. 

  

Working memory 

The current study provides further evidence for the impact of working memory on number 

transcoding. The central point of the current findings is that working memory capacity 

cannot fully explain the lower number transcoding performance by children with 

mathematics difficulties. We thoroughly controlled for working memory in the analyses, and 

a consistent finding was that the influence of working memory on number transcoding is 

rather selective. Our results showed that the effect of working memory is stronger for 

effects that reflect the complexity of Arabic numerals and that involve ‘‘online’’ 

manipulations of numerical units. The effects related to the knowledge of the specific 

procedures necessary for accurate manipulations, in contrast, were weakly affected by 

working memory resources. Interestingly, removing the variance in working memory had 

only a small impact on all of the group differences. Considering the source of the 

transcoding errors observed among the children with mathematics difficulties (discussed in 

the previous section), one can state that the poor rule knowledge, not low working memory 

resources, accounts for the group differences in number transcoding. 

  

With regard to the transcoding errors, the correlation coefficients revealed that nearly every 

category of syntactic errors on the Arabic Number-Writing Task, besides those related to the 

acquisition of rules, was correlated with components of working memory. Interestingly, the 

verbal component of working memory had a larger effect, and it was consistently associated 

with different aspects of transcoding (both lexical and syntactic errors). 

  

Camos (2008) and Zuber and colleagues (2009) argued that it is problematic to assess verbal 

working memory by means of the Digit Span Task because the numerical nature of this task 

may produce overestimates of the effects of verbal working memory on number reading 
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and writing. However, previous studies have investigated verbal working memory in 

children with mathematics difficulties using both digit and letter/word span tasks. In 

general, these studies report very similar performance patterns in digit and letter/word 

span tasks in both dyscalculics and controls (Koontz & Berch, 1996; Landerl et al., 2004; 

Landerl, Fussenegger, Moll, & Willburger, 2009). These findings do not support the view of 

stimulus-driven inflation of the impact of verbal working memory on transcoding. Rather, 

they suggest that the verbal working memory capacity measured is probably not 

attributable to the numerical aspects of working memory tasks. In line with these findings, 

we would expect that in the current study, at least in part, the Digit Span scores would 

relate to every transcoding error committed when transcoding more complex numbers. This 

is not what we observed; instead, the Digit Span influenced only transcoding errors 

specifically related to working memory capacity. Digit Span scores did not relate to the 

errors involving rule knowledge. Although our results cannot be seen as definite arguments 

for the validity of the Digit Span Task as a measure of verbal working memory in children 

with mathematics difficulties, they may be considered as such because no better evidence 

of the contrary has been presented so far. 

  

How can the current results be explained by the ADAPT model? 

The current study was designed in accordance with the ADAPT model’s predictions 

regarding the role of procedural rules and working memory in number transcoding, and in 

the end the results aligned well with the model. As predicted by ADAPT, the number of 

conversion rules was a reliable index of transcoding complexity. Even considering only 

complex numbers with three or four digits, the analysis of numerical complexity showed a 

clear increase in the error rates as the number of rules increased. This finding also held for 

the Arabic Number-Reading Task, suggesting that transcoding from Arabic to verbal oral is 

also a rule-based procedure. 

  

Other advantages of ADAPT are that it accounts for both of the possibilities specified in our 

hypotheses about the sources of syntactic errors in children with mathematics difficulties 
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and that it predicts qualitative differences in errors caused by working memory overload or 

missing transcoding rules. Various analyses showed that working memory abilities could not 

account for the differences observed between the children, and the error analysis revealed 

qualitative differences only in the error classes that were not expected to be related to a 

working memory overload or deficit but rather were expected to be related to the 

acquisition of transcoding rules. Furthermore, this finding was observed only among the 

children in the beginning of elementary school. In summary, the results effectively revealed 

a delay in the crucial acquisition of transcoding rules in children with mathematics 

difficulties. 

  

Conclusion 

The current study improves our understanding of the nature of the transcoding impairments 

exhibited by children with mathematics learning difficulties whose performance on a 

standardized mathematics achievement test fell below the 25th percentile. First, an early 

pattern of difficulty in establishing an Arabic numerical lexicon was observed. Second, 

previous developmental findings regarding the association between numerical complexity 

and working memory performance were extended to children with mathematics learning 

difficulties. Third, compared with the children in the control group, the children with 

mathematics difficulties demonstrated a specific pattern of syntactic errors (specifically, 

wrong-frame errors). Wrong-frame errors occur when the rules dedicated to transcoding 

three- and four-digit numbers are applied incorrectly; they indicate that these children have 

difficulty in acquiring more complex transcoding rules in addition to working memory 

limitations. Our data suggest that children with mathematics difficulties retain less complex 

transcoding rules and require more time to qualitatively comprehend more complex rules, 

leaving them one step behind their typical peers. Therefore, compared with the children in 

the control group, the children with mathematics difficulties appear to have a 

developmental delay in mastering numerical transcoding. Although previous studies have 

described the influence of this knowledge on arithmetic achievement, to our knowledge this 

is the first study to report a clear association between place-value understanding and low 
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arithmetic performance. Thus, deficits in transcoding abilities are firmly established in the 

inventory of impairments that characterize mathematics learning difficulties and contribute 

to the variety and complexity of these difficulties. Lastly, if difficulties in learning 

transcoding are at least partially attributable to a developmental lag, then intervention 

efforts should concentrate on the early identification of children with transcoding 

difficulties. 
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Appendix A 

The twenty-eight items from the Arabic number reading task according to ADAPT category, quantity of 

transcoding rules and complexity level. 

Item 

Arabic number reading 

Number Category Rules 
Complexity 
level Missings 

Error 
(raw) 

Error Rates 
Controls* 

Error Rates Mathematic 
Difficulties group* 

1 3 U 2 - 0 0 0.00 0.00 

2 6 U 2 - 0 0 0.00 0.00 

3 8 U 2 - 0 0 0.00 0.00 

4 12 P 2 - 0 0 0.00 0.00 

5 14 P 2 - 0 1 0.00 0.04 

6 50 D 2 - 0 0 0.00 0.00 

7 20 D 2 - 0 1 0.00 0.04 

8 47 DU 2 (3) - 0 0 0.00 0.00 

9 15 P 2 - 0 2 0.00 0.07 

10 92 DU 2 (3) - 2 1 0.00 0.07 

11 80 D 2 - 2 1 0.00 0.04 

12 19 DU 2 (3) - 0 2 0.00 0.07 

13 105 HU 4 moderate 2 4 0.02 0.11 

14 800 UH 3 low 5 6 0.06 0.18 

15 160 HD 3 low 2 6 0.04 0.14 

16 2000 UM 3 low 12 13 0.10 0.25 

17 400 UH 3 low 3 4 0.02 0.11 

18 102 HU 4 moderate 2 4 0.02 0.11 

19 170 HD 3 low 2 7 0.06 0.11 

20 1004 MU 4 moderate 3 15 0.12 0.25 

21 432 UHDU 4 (5) high 4 6 0.05 0.18 

22 567 UHDU 4 (5) high 4 6 0.07 0.11 

23 1013 MP 4 moderate 4 16 0.14 0.25 

24 8304 UMUHU 7 high 8 26 0.22 0.50 

25 1070 MD 4 moderate 4 20 0.15 0.39 

26 5601 UMUHU 7 high 7 31 0.26 0.57 

27 1900 MUH 4 moderate 4 16 0.10 0.39 

28 5962 UMUHDU 6 (7) high 6 23 0.19 0.46 

Note. Description of each item according to its category (U, unit; P, particular; D, decade; H, hundred; M, 
thousand), quantity of transcoding rules (DU's specified when directly retrieved and algorithmically transcoded - 
between parentheses) and complexity level. The “Missings” column represents missing data. 

* Relative frequencies of error rates. 
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Appendix B 

The twenty-eight items from the Arabic number writing task according to ADAPT category, quantity of 

transcoding rules and complexity level. 

Item 

Arabic number writing 

Number Category Rules 
Complexity 
level Missings 

Error 
(raw) 

Error rates 
Controls* 

Error Rates Mathematic 
Difficulties group* 

1 4 U 2 - 0 0 0.00 0.00 

2 7 U 2 - 1 0 0.00 0.00 

3 1 U 2 - 1 0 0.00 0.00 

4 11 P 2 - 1 0 0.00 0.00 

5 40 D 2 - 0 3 0.00 0.11 

6 16 DU 2 (3) - 0 0 0.00 0.00 

7 30 D 2 - 0 3 0.01 0.07 

8 73 DU 2 (3) - 2 6 0.04 0.11 

9 13 P 2 - 1 0 0.00 0.00 

10 68 DU 2 (3) - 1 6 0.01 0.18 

11 80 D 2 - 1 1 0.00 0.04 

12 25 DU 2 (3) - 1 1 0.00 0.04 

13 200 UH 3 low 2 6 0.05 0.07 

14 109 HU 4 moderate 2 6 0.02 0.14 

15 150 HD 3 low 2 11 0.05 0.25 

16 101 HU 4 moderate 2 7 0.02 0.18 

17 700 UH 3 low 2 6 0.02 0.14 

18 643 UHDU 4 (5) high 5 13 0.06 0.29 

19 8000 UM 3 low 2 12 0.09 0.18 

20 190 HD 3 low 4 8 0.05 0.14 

21 1002 MU 4 moderate 2 25 0.21 0.29 

22 951 UHDU 4 (5) high 3 13 0.06 0.29 

23 1015 MP 4 moderate 2 22 0.17 0.29 

24 2609 UMUHU 7 high 4 37 0.28 0.50 

25 1300 MUH 4 moderate 4 28 0.22 0.36 

26 3791 UMUHDU 6 (7) high 7 33 0.28 0.36 

27 1060 MD 4 moderate 5 31 0.26 0.36 

28 4701 UMUHU 7 high 2 34 0.25 0.50 

Note. Description of each item according to its category (U, unit; P, particular; D, decade; H, hundred; M, 
thousand), quantity of transcoding rules (DU's specified when directly retrieved and algorithmically transcoded - 
between parentheses) and complexity level. The “Missings” column represents missing data. 

* Relative frequencies of error rates. 
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Abstract: 

Although verbal and numerical abilities have a well-established interaction, the impact of 

phonological processing on numeric abilities remains elusive. The aim of the study is to 

investigate the role of phonemic awareness in number processing and to explore its 

association to other functions such as working memory (WM) and magnitude processing. 

One hundred and seventy two children from 2nd to 4th grade were evaluated regarding 

their intelligence, number transcoding, phonemic awareness, verbal and visuospatial WM 

and number sense (nonsymbolic magnitude comparison) performance. All of the children 

had normal intelligence. Among these measurements of magnitude processing, WM and 

phonemic awareness, only the last one was retained in regression and path models 

predicting transcoding ability. Phonemic awareness mediated the influence of verbal WM 

on number transcoding. Evidence points out that phonemic awareness is responsible for a 

significant impact on number transcoding. Such association is robust and should be taken 

into account in cognitive models of both dyslexia and dyscalculia.  
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INTRODUCTION 

Mastering reading and writing numbers in their verbal and Arabic forms is an essential skill 

for daily life (Lochy and Censabella,  2005). Being able to manipulate numbers and convert 

them from one format into another is one of the first steps in children’s mathematical 

learning and starts to be formally trained in kindergarten. The ability to establish a 

relationship between the verbal and Arabic representations of number, when a conversion 

of numerical symbols from one notation to the other is necessary, is called number 

transcoding (Deloche and Seron, 1987). 

 

The verbal number system is linguistically structured and, although it may differ among 

languages, there are some common basic principles and regularities (Fayol and Seron, 

2005). It is typically composed of a lexicon of single words that designate a few quantities 

(like five, eleven, seventy and hundred) and organized by a syntax that arranges these lexical 

units in order to represent any possible quantity. The two basic syntactic principles are the 

relations of addition and multiplication. In this sense, numbers are represented as sum 

relationships (e.g.: eighty-one means eighty plus one) and product relationships (e.g.: three 

hundred means three times hundred). The number words in Portuguese are similar to the 

English number words in the sense that they are also organized in lexical classes for units, 

decades and particulars (the -teens in English) ( Wood et al.,  2006). 

 

The Arabic code is more complex and is acquired later in development ( Geary, 2000). Its 

lexicon is composed of only a small set of different symbols (digits from 0 to 9), and the 

basic syntactic principle that combines them to form all numbers is the positional value (or 

place-value). According to this principle, the digit’s value depends on its position in the 

numerical string and is given by a power of base ten. Therefore, in the case of three-digit 

numbers, the first digit (from right to left) is multiplied by 100, the second by 101, and so on. 

The number 124, for example, represents a quantity equal to 1 × 102 + 2 × 101 + 4 × 100 (or 

100 + 20 + 4). The digit 0 has a special syntactic role when it denotes the absence of a given 

power of ten, as occurs in numbers with internal zeros, for example the number 406 (4 × 102 
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+ 0 × 101 + 6 × 100). 

 

One preeminent model of number transcoding is ADAPT (A Developmental, Asemantic, and 

Procedural model for Transcoding from verbal to Arabic numerals;  Barrouillet et al.,  2004). 

According to ADAPT, the inputs are coded into a phonological sequence and the parsing 

mechanisms then subdivide this sequence into smaller units to be processed by a 

production sys-tem. This production system is related to rules devoted to the retrieval of 

Arabic forms from long-term memory (LTM) (called P1 rules), to managing the size of digit 

chains (P2 and P3 rules, which create a frame of two or three slots) and to filling these slots 

(if there are any empty slots, P4 rules will fill them with 0s). Separators, such as thousands 

and hundreds, are used to identify the number of slots; once every segment is placed in its 

digit form in the chain, it is transcribed. The model accounts for the development of 

transcoding processes through practice: experience leads to an expansion of the numerical 

lexicon and improvement of conversion rules. 

 

The ADAPT model is the only cognitive model of number transcoding which makes testable 

predictions regarding both working memory capacity and phonological/lexical 

representations and their respective roles in the typical and atypical development of 

transcoding abilities. Moreover, even though it is not explicitly stated in the original 

publication (Barrouillet et al., 2004), ADAPT clearly emphasizes the importance of 

phonological encoding in the first steps of number writing production, and this has not been 

investigated in more detail. Because both working memory and the ability to form lexical 

representations of numbers and, as we assume here, phonemic awareness are related to 

mathematical performance, ADAPT is the only transcoding model directly examined in the 

present study. 

 

Short-term memory and working memory (thereafter WM) are involved in the temporary 

storage of verbal information, lexical retrieval, and the execution of the manipulations to 

generate the Arabic output. Working memory representations are also involved in creating 
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a sequence of digits and possibly blank spaces to be filled with subsequent procedures. It 

has been consistently related to number transcoding performance and error patterns 

(Camos, 2008; Zuber et al., 2009; Pixner et al., 2011). The role of working memory in 

transcoding tasks can be outlined in the following steps: encoding the number to be 

transcoded; monitoring the application of transcoding rules and the production of the 

numeral (Lochy and Censabella, 2005). 

 

Another cognitive mechanism that may be involved in number transcoding is phonemic 

awareness. Phonemic awareness is the subcomponent of phonological processing which is 

related to the ability to perceive and manipulate the phonemes that constitute words 

(Wagner and Torgesen, 1987). According to the ADAPT model (Barrouillet et al.,  2004), the 

phonological encoding of the verbal numerals is the primary step in transcoding procedures, 

before the use of algorithm rules and retrieval from LTM. Therefore, limitations in 

phonological processing capacity may constrain the ability to transcode, particularly in the 

case of longer and more complex numbers. Phonological processing may also interact with 

the capacity of verbal working memory. The more demanding the phonological processing 

of numerical stimuli, the fewer resources would remain available in verbal working memory 

for transcoding. Although the conversion of a verbal representation to an Arabic one is 

related to phonological representations, this association has not yet been investigated in 

detail in the ADAPT model. 

 

Krajewski and Schneider (2009) found that phonological awareness facilitates the 

differentiation and manipulation of single words in the number word sequence. These 

authors built a model of early arithmetic development that postulates three different levels: 

(1) basic numerical skills, in which children are already able to discriminate between 

quantities and to recite number words, without accessing their quantitative semantic 

meaning; (2) quantity-number concept, when there is a linkage between magnitudes and 

the number words that represent them; (3) number relationships, the point at which 

children understand that the difference between two numbers is another number. 
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According to these authors, phonological awareness (measured by phoneme synthesis and 

rhyming tasks) plays an important role in the first level. The authors claim that because this 

phonological skill is related to the ability to differentiate and manipulate meaningful 

segments of language, it is also important in differentiating number words (“one,” “two,” 

“three” instead of “onetwothree”). 

 

In view of the above, the aim of this study is to investigate the role of specific cognitive 

mechanisms underlying number transcoding such as general cognitive ability, verbal and 

non-verbal short-term and working memory, magnitude representation, and phonemic 

awareness. More specifically, our main goal was to investigate the relative impact of 

phonemic aware-ness on number transcoding. Phonemic awareness is related to reading 

and spelling skills (Wagner and Torgesen, 1987; Castles and Coltheart, 2004; Hulme et al.,  

2012; Melby-Lervå et al., 2012), and recent studies have also focused on its association with 

arithmetic fact retrieval and with arithmetic word problems (Hecht et al.,  2001; Boets and 

De Smedt, 2010; De Smedt et al., 2010). Importantly, many measures of phonemic 

awareness, such as the phoneme elision task employed in the present investigation, require 

a certain availability of working memory resources. Working memory is recruited in such 

tasks when the participant must hold a word in mind while determining the phonological 

information to be deleted (De Smedt et al., 2010). Both verbal and visuospatial working 

memory play important roles in numerical transcoding according to the ADAPT model 

(Camos, 2008;  Zuber et al., 2009), but no study so far has investigated the specific 

contribution of phonemic awareness and working memory in number transcoding tasks. 

 

Two main hypotheses will be addressed in the present study: First, based on the central role 

assigned by the ADAPT model to working memory capacity (Barrouillet et al.,  2004; Camos,  

2008), one can argue that working memory contributes to number transcoding 

independently because working memory capacity is putatively implicated in the use of 

transformation rules and procedures employed during transcoding. Second, at least part of 

the influence of working memory on number transcoding should be mediated by phonemic 
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awareness. Phonemic aware-ness scores are assumed to index the quality of the underlying 

phonological representations. These representations are related to the perception and 

manipulation of sound-based processes (Simmons and Singleton, 2008); therefore, 

phonemic awareness performance would have an impact on verbal working memory and 

transcoding skills. 

 

MATERIALS AND METHODS 

The study was approved by the local research ethics committee (COEP–UFMG) and is in line 

with the Declaration of Helsinki. Children participated only after informed consent was 

obtained. Informed consent was obtained in written form from parents and orally from 

children. 

 

Sample 

A total of 487 children in grades 2–4 were invited from public schools in Belo Horizonte, 

Brazil. Of these children, 207 (42%) children agreed to take part in this study. Testing was 

conducted in the children’s own schools. The various tasks were presented in four different 

pseudo-random orders during one session that lasted approximately 1 h. 

 

We excluded five children from the sample due to low intelligence (performance on Raven’s 

Colored Progressive Matrices below one standard deviation). One child did not complete 

the entire battery and was also excluded from the analysis. Twenty-nine children were 

excluded from further analyses because either they had a poor R2 on the fitting procedure 

to calculate their internal Weber fraction on the non-symbolic comparison task (R2 < 0.2) or 

they showed an internal Weber fraction that exceeded the limit of discriminability of the 

non-symbolic magnitude comparison task (w > 0.6). The final sample comprised 172 

children (55.2% girls), with a mean age of 111.84 months (SD = 10.90), ranging from 94 to 

140 months. 

 

Instruments 
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The following instruments were used in the cognitive assessment: Raven’s Colored 

Progressive Matrices, Digit Span, Corsi Blocks, Non-symbolic magnitude comparison task, 

Phoneme Elision and Arabic number writing task. 

 

(a) Raven’s Colored Progressive Matrices: general intelligence was assessed with the age-

appropriate Brazilian validated version of Raven’s Colored Matrices (Angelini et al., 1999). 

The analyses were based on z-scores calculated from the manual’s norms.  

 

(b) Digit Span: Verbal short-term and working memory were assessed with the Brazilian 

WISC-III Digit Span subtest (Figueiredo, 2002). Performance in the forward order was 

considered a measure of verbal short-term memory, and the backward order was used to 

assess verbal working memory (Figueiredo and Nascimento, 2007). We evaluated the total 

score (correct trials x span) in both the forward and backward orders.  

 

(c) Corsi Blocks: This test is a measure of the visuospatial component of short-term and 

working memory. It consists of a set of nine blocks, which the examiner taps in a certain 

sequence. The test starts with sequences of two blocks and can reach a maximum of nine 

blocks. We used the forward and backward orders according to  Kessels et al. (2000). In the 

for-ward condition, the child is instructed to tap the blocks in the same order as the 

examiner, and in the backward condition, in the reverse order. We also evaluated the total 

scores.  

 

(d) Non-symbolic magnitude comparison task: In this task, the participants were instructed 

to compare two simultaneously presented sets of dots, indicating which one contained the 

larger number. Black dots were presented on a white circle over a black background. In each 

trial, one of the two white circles contained 32 dots (reference numerosity) and the other 

contained 20, 23, 26, 29, 35, 38, 41, or 44 dots. Each magnitude of dot sets was presented 

eight times. The task comprised 8 learning trials and 64 experimental trials. Perceptual 

variables were varied such that in half of the trials the individual dot size was held constant, 
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while in the other half, the size of the area occupied by the dots was held constant (see 

exact procedure descriptions in  Dehaene et al., 2005). Maximum stimulus presentation 

time was 4.000 ms, and the inter-trial interval was 700 ms. Before each trial, a fixation point 

appeared on the screen: a cross, printed in white, with each line 30 mm long. If the child 

judged that the right circle presented more dots, a predefined key localized in the right side 

of the keyboard should be pressed with the right hand. However, if the child judged that the 

left circle contained more dots, then a predefined key on the left side had to be pressed 

with the left hand (Costa et al., 2011). As a mea-sure of the number sense acuity, the 

internal Weber fraction (w) was calculated for each child based on the Log-Gaussian model 

of number representation (Dehaene, 2007), with the methods described by  Piazza et al. 

(2004). 

 

(e) Phoneme Elision: This is a widely accepted measure of phonemic awareness (Wagner 

and Torgesen, 1987; Castles and Coltheart,  2004; Hulme et al.,  2012; Melby-Lervå et al.,  

2012). The child hears a word and must say what the word would be if a specified phoneme 

in the word were to be deleted (e.g., “filha” without /f/ is “ilha” [in English, it would be 

similar to “cup” without /k/ is “up”). The test comprises 28 items: in 8 items, the child must 

delete a vowel, and in the other 20, a consonant. The consonants to be suppressed varied 

by place and manner of articulation. The phoneme to be suppressed could be in different 

positions within the words, which ranged from 2 to 3 syllables. The internal consistency of 

the task is 0.92 (KR-20 formula).  

 

(f) Arabic number writing task: To evaluate number transcoding, children were instructed to 

write the Arabic forms of dictated numbers. This task consists of 40 items, up to 4 dig-its (3 

one-digit numbers, 9 two-digit numbers, 10 three-digit numbers and 18 four-digit numbers). 

The one- and two-digit numbers were classified as “lexical items” (12 items), and the other 

28 items require the use of algorithm-based rules in order to be written (Barrouillet et al.,  

2004; Camos,  2008). This task has been used in a previous study with a comparable sample, 

and the consistency of this task was KR-20 = 0.96 (Moura et al.,  2013).  
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Analysis 

The differential impact of phonemic awareness and working memory on number 

transcoding was investigated in a hierarchical regression analysis with Arabic number 

writing as the dependent variable. Age and intelligence were entered first, and working 

memory and the Weber fraction in a second step, using the stepwise method. The phoneme 

elision task was entered in the model in a third step, also using the stepwise method. This 

allowed us to investigate the specific contribution of phonemic awareness to number 

transcoding performance after working memory variance was taken into account. 

 

As a complement, path analyses, including all measures of age, intelligence, working 

memory and phonemic awareness were calculated, to determine the specific contribution 

of phonemic awareness as a mediator of the effect of working memory on number 

transcoding. 

 

RESULTS 

Thirty-three percent of the children did not commit any errors in the number transcoding 

task. Ninety-three percent of the children did not commit any errors on the numbers that 

can be lexically retrieved (items 1–12). According to what is suggested by the ADAPT model, 

errors rates increased with the number of rules required for number transcoding. In the 

numbers that required 3 transcoding rules, 50% of the children com-mitted errors, in the 4-

rules, 71.6% presented some errors, in the 5-rules, 73.3% and, finally in the more complex 

items (6 and 7 rules), 84.5% of the children committed, at least, one error. 

 

Since one-third of the sample did not commit any error in the transcoding task, one may 

argue that they should be excluded from the sample to avoid biases in the estimation of the 

covariance matrix, particularly with regard to the association between transcoding 

performance and other cognitive functions. To investigate the occurrence of bias, regression 

and path analyses were performed in the full sample and in the sample without the children 



 

104 
 

with perfect score in the transcoding task. Results were numerically comparable in both 

regression and path analyses and their interpretation was exactly the same. For this reason, 

we decided to report the results obtained by analyzing the full sample. 

 

Association between cognitive variables and transcoding ability 

First, the specific impact of the different cognitive mechanisms on number transcoding was 

evaluated by means of hierarchical regression models. To approximate a normal 

distribution, error rates of the Arabic number writing task were arcsine transformed. 

Initially, we examined the general association between these measures through Pearson’s 

correlations. Inspection of Table 1 reveals that the error rates observed in the number 

transcoding task were negatively correlated to age, intelligence, working memory, and 

phonemic awareness. There was also a weak positive correlation between error rates in 

number transcoding and the Weber fraction, which may reflect the maturation level of 

more general numerical skills. Moreover, phonemic awareness was significantly correlated 

to intelligence and working memory. 

 

Table 1. Correlations between the neuropsychological measures 

  1 2 3 4 5 6 7 8 

1. Age (in months) 1 
       2. Raven -.23** 1 

      3. Digit Span-Forward .19* .19* 1 
     4. Digit Span-Backward .05 .34** .18* 1 

    5. Corsi Blocks Forward .19* .28** .15* .20** 1 
   6. Corsi Blocks 

Backward .01 .34** .14 .36** .36** 1 
  7. Weber fraction -.19* -.11 -.17* -.19* -.16* -.13 1 

 8. Phoneme elision .11 .36** .23** .36** .24** .25** -.13 1 

9. Number Transcoding -.11 -.17* -.11 -.15* -.10 -.13 .21** -.36** 

**. Correlation is significant at the 0.01 level (2-tailed) 
*. Correlation is significant at the 0.05 level (2-tailed) 
 

To investigate in more detail the specific impact of phone-mic awareness on transcoding 

abilities, a hierarchical regression model was calculated (Table 2). In this model, more 
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general determinants of cognitive development were entered first, and more specific 

predictors of transcoding ability were included later on, in a hierarchical fashion. In step 1, 

age and intelligence were included as general factors that predict school achievement, using 

the enter method. In step 2, the following cognitive measures were included: Weber 

fraction and the total scores of the forward and backward orders of Digit Span and Corsi 

Blocks. Last, in step 3, we included the phoneme elision score. The stepwise method was 

used in steps 2 and 3 to avoid redundancy and to guarantee a high degree of parsimony. 

 

The regression model reveals that after removing the effects of age and intelligence in step 

1, verbal working memory remains a significant predictor of transcoding performance in 

step 2. Nevertheless, the addition of phonemic awareness to the model in step 3 leads to 

the exclusion of verbal working memory. Phonemic awareness, along with age and 

intelligence, was a significant predictor of number transcoding and absorbed the impact of 

verbal working memory on transcoding performance. The model explains a moderate 

amount of variance (Table 2). Measures of the approximate number system, visuospatial 

short-term memory, and visuospatial working memory were not retained in the model. 

 

Table 2. Regression Analysis for Number Transcoding (errors Arcsine, adjusted r²= 0.41). 

Predictor beta Partial t sig r² change 

Intercept 
 

10.14 <.001 

 Age (months) -0.404 -6.487 <.001 
0.305 

Raven -0.225 -3.282 0.001 

Digit Span-Backward -0.089 -1.358 0.176 excluded 

Weber fraction 0.095 1.545 0.124 excluded 

Digit Span-Forward -0.056 -0.885 0.378 excluded 

Corsi Blocks-Backward -0.035 -0.529 0.598 excluded 

Corsi Blocks-Forward -0.003 -0.051 0.959 excluded 

Phoneme elision -0.337 -5.038 <.001 0.088 
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The reason to employ a hierarchical regression model in this analysis is to demonstrate the 

validity of the present experimental setup. By entering the measures of working memory in 

the regression model first we are able to replicate previous studies and thereby show that 

our measures of working memory were well-chosen and are associated to transcoding 

abilities. After completing this step of validation of well-established results, we continue the 

investigation showing that phonemic awareness absorbs the impact of measures of working 

memory on transcoding capacity. We have also calculated a regression model allowing the 

effect of phonemic awareness to vary simultaneously to measures of working memory, that 

is, with no hierarchical distinction between these variables. Results were largely comparable 

with those reported previously: only phonemic awareness is retained in the model along 

with intelligence and age (R2 = 0.64; adjusted R2 = 0.40; b = −0.02). 

 

Describing the roles of phonemic awareness and verbal memory in Arabic number 

transcoding 

As shown in the previous section, the influence of the verbal working memory on number 

transcoding is shared with phonemic awareness. Therefore, as a complement to the 

previous findings, path analyses including both working memory and phonemic awareness, 

as well as Weber fraction, were calculated in order to investigate the interplay of these 

variables in number transcoding. 

 

To determine the strength of the effect of phonemic awareness on number transcoding, a 

sequence of models was calculated and compared. Chi-square and the approximate fit 

indexes root mean square residual (RMR), goodness of fit index (GFI), adjusted goodness of 

fit index (AGFI), comparative fit index (CFI) and root mean square error of approximation 

(RMSEA) were used to evaluate model quality. A non-significant chi-square indicates no 

significant discrepancy between model and data. The RMR measures the ratio of residuals in 

comparison to the covariances expressed by the models. Values smaller than 0.10 are 

considered adequate. GFI, AGFI, and CFI evaluate the degree of misspecification present in 

the model. Usually, the best accept-able values are greater than 0.90. Finally, the Root 
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Mean Square Error of Approximation, or RMSEA, considers the model complexity when 

evaluating the model fit. The RMSEA is considered acceptable when it is lower than 0.05. 

The Chi-square difference between models was employed to compare models with 

increasing numbers of free parameters. Models were calculated in the software AMOS v.19 

using the maximum likelihood estimation function. 

 

To control for the influence of developmental and intellectual levels on the path models, we 

calculated the unstandardized residuals of the independent variables (short-term and 

working memory, Weber fraction and phonemic awareness), in which the portion of 

variance due to age (in months) and/or intelligence was removed. These adjusted values of 

working memory, magnitude processing and phonemic awareness were entered as the 

exogenous variables in the path analyses. All the covariances between the exogenous 

variables were set as free (Figure 1). 

 

Those variables with negative standardized values indicate that higher scores in these 

predictors lead to lower error rates in the number transcoding task. The only exception is 

the Weber Fraction path, in which higher values indicate poorer magnitude representation 

acuity and, hence, more errors in number transcoding. 

 

Fit statistics of path models are shown in  Table 3. The first and most complex model (ALL 

PATHS) included the two measures of short-term and working memory (forward and 

backward versions of Digit Span and Corsi Blocks), as well as Weber fraction and an 

additional Phoneme Elision mediation path between both the forward and backward 

versions of the Digit Span and the number writing tasks. This model presented adequate fit 

indexes but is not parsimonious. Models with fewer parameters to be estimated were 

designed and were compared to the ALL PATHS model and to one another. 

 

First, the NO VISUOSPATIAL model removed the paths from visuospatial memory to 

transcoding. Accordingly, the NO ANS model also suppressed the path from the Weber 
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fraction to transcoding. In one further step, two models were calculated. In the first 

(MEDIATION PATH), the contribution of verbal working memory to transcoding is partially 

mediated by phone-mic awareness. Finally, to determine the relevance of phonemic 

awareness for transcoding, in the last model, the path from Phoneme elision to Number 

transcoding was removed, while the direct paths from verbal working memory to 

transcoding were retained (NO MEDIATION). If the exclusion of any of these paths leads to a 

statistically significant decrease in model fit, one may conclude that the specific parameters 

removed from the more parsimonious version of the path model contribute substantially to 

model fit. 

 

Inspection of  Table 3 reveals that all models including the Phoneme Elision-mediation path 

reached satisfactory fit levels. Nevertheless, all models presented large residuals, as 

indicated by the RMR, which suggests that the variables included in the models were not 

sufficient to fully explain the variance in the number writing task. However, non-significant 

Chi-squares and the other fit measures associated with these models were largely 

acceptable. 

 

Overall, the model that presented the worst fit indices was the one that excluded the 

Phoneme Elision-mediation path and assumed that Digit Span has a direct influence on 

number transcoding (NO MEDIATION). Model comparisons corroborate these results 

because the model NO MEDIATION presented statistically poorer fit than all other models. 

Its chi-square was statistically significant, and the model did not present any adequate fix 

indexes (Table 3). This finding suggests that phonemic aware-ness is a relevant predictor of 

transcoding performance, with substantial specific contribution. Moreover, comparisons 

among all other models only produced non-significant chi-square differences. Given the 

statistical equivalence of these models, one may select the model MEDIATION PATH, in 

which the effect of working memory on transcoding performance is partially mediated by 

phonemic awareness, as the most parsimonious description of the present data. 

Importantly, the association between verbal working memory and phonemic awareness is 
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stronger than that between verbal short-term memory and phonemic awareness. 

Regression values of the model MEDIATION PATH are depicted in Figure 1. 

 

 

 

Figure 1 – Path-analysis model describing the effects of working memory, Weber fraction and phonemic 

awareness in a number transcoding task 

Note. Paths marked with * are significant at the level 0.05 and with ** are significant at the level 0.001. 

 

DISCUSSION 

The present study investigated the impact of phonological skills on a number transcoding 

task, and it is, to our knowledge, the first to simultaneously evaluate the relative impact of 

short-term and working memory, number sense and phonemic awareness on number 

transcoding. Our results revealed two main findings. First, we confirmed previous evidence 

of a verbal working memory effect on number transcoding, and, more importantly, we 

provided evidence of a relationship between number transcoding and phonemic awareness. 

Our second main finding is that the well-established relationship between verbal working 

memory capacity and number transcoding is mediated by phonemic awareness abilities. In 

the following sections, these topics will be discussed in more detail. 
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The impact of verbal and visuospatial working memory on Arabic number writing 

The performance of children in the number writing task was far from being flawless. They 

present many errors on the more complex two-, three-, and four-digit items, which require 

more than three transcoding rules, according to ADAPT. These findings are in accordance to 

what has been reported in the literature regarding transcoding skills of school aged children 

(Moura et al.,  2013) and have been interpreted as a product of working memory processes 

in number transcoding (Camos, 2008). However, little is effectively known about the 

selective impact of different components of working memory on number transcoding. To 

our knowledge, this was the first study to analyze this problem in greater depth. Although a 

specific role of the central executive function in transcoding has been suggested (Camos,  

2008), the present study is the first to explore the impact of phonological and visuospatial 

working memory in a number writing task and distinguish them from the central executive. 

We provide evidence regarding the specific role of phonological working memory and, more 

precisely, of the quality of underlying phonological representations, by means of the 

phonemic aware-ness performance. 

 

Working memory plays an important role in the algorithmic-based procedures of number 

transcoding (Camos, 2008; Pixner et al.,  2011). Essentially, it is believed to be involved in 

the maintenance of verbal units from the verbal numbers and in managing the new digit 

chain. In our study, we found that better verbal working memory capacity was associated 

with higher number transcoding performance. Interestingly, the same does not apply to the 

visuospatial components of short-term and working memory, as none of them revealed an 

association with transcoding performance in correlation, regression or path analyses. In a 

previous study by Zuber et al. (2009), the visuospatial working memory component was 

associated with the management of Arabic code syntax. Nevertheless, it is important to 

note here that the sample used in this other study was composed of German-speaking first 

graders, and the German number word system is different from the Portuguese system. In 

German, the order of the units and decades in the verbal numerals is inverted in 

comparison to the Arabic ones. One possibility, therefore, is that transcoding numbers in 
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Portuguese demands less visuospatial working memory capacity than in languages with this 

inversion. Linguistic comparison research remains necessary to confirm this hypothesis. 

 

Raghubar et al. (2010) reviewed evidence indicating that the influence of the 

subcomponents of working memory on arithmetic performance might vary according to 

age. The visuospatial component is recruited in earlier phases of development, while 

children are still learning basic mathematical concepts, whereas the phonological loop is 

more relevant after these skills have already been mastered. Although Raghubar et al. 

(2010) did not specifically discuss number transcoding, this study reviews evidence 

regarding the complex and dynamic nature of the relationship between working memory 

and math achievement. Consistent with these results, no effect of visuospatial working 

memory on number transcoding was observed in second- to fourth-grade children in the 

present study. 

 

The relationship between verbal working memory and phonemic awareness 

The first step of writing Arabic numbers from dictation proposed by the ADAPT model 

(Barrouillet et al.,  2004) is the phonological encoding of the auditory input, which consists 

of verbal numerals. Nevertheless, the procedures involved in this phonological encoding are 

still not completely specified. Here we showed that, in addition to working memory 

capacity, phonemic awareness also plays an important role in number transcoding. Our 

results showed that even when considering the influence of working memory and basic 

numerical skills on number transcoding, the predictive value of phonemic awareness 

abilities was substantial. This suggests that phonemic awareness is an important facilitator 

of the phonological encoding required in the initial steps of number transcoding. 

 

Another aim of the present study was to clarify the influence of phonemic awareness on 

number transcoding. We aimed to investigate whether there is a direct influence of verbal 

working memory on number transcoding or if this association would be mediated by 

phonemic awareness. Our results presented evidence showing that phonemic awareness 
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mediates the influence of verbal working memory in number transcoding, even after 

controlling for the effects of age and intelligence. In the path analyses, the removal of the 

Phoneme Elision-mediation path had a deleterious effect on model fit, which suggests that 

this parameter contributes crucially to improve the model fit. 

 

This finding is consistent with the ADAPT model, which postulates that the first step in 

number transcoding would be the encoding of the verbal string into its phonological form 

(Barrouillet et al.,  2004). This encoding phase would be followed by parsing procedures that 

segment these strings into smaller units. Smaller units are then sequentially processed 

through a production system in which verbal working memory is required for transcoding 

algorithms. It is possible to hypothesize that phonemic awareness would be the main 

cognitive precursor engaged in the phonological encoding phase that pre-cedes further 

verbal working memory involvement in number transcoding. 

 

A plausible explanation for the association between phone-mic awareness and the influence 

of verbal working memory in number transcoding is the “weak phonological representation 

hypothesis” ( Simmons and Singleton, 2008). According to this model, phonological 

processing deficits would impair the quality of phonological representations and thus affect 

aspects of numerical cognition that involve the manipulation of a verbal code. 

 

The performance in verbal working memory and phonemic awareness depend on the same 

underlying and latent phonological representations (Hecht et al., 2001; Alloway et al.,  2005;  

Durand et al., 2005). In our study, it was also possible to observe this association through 

the positive correlation between verbal working memory and phonemic awareness.  

Baddeley et al. (1975) had already suggested that, given that verbal short-term memory is a 

speech-based system, its capacity should be measured in more basic speech units, such as 

phonemes.  Oakhill and Kyle (2000) also found that phonemic awareness (operationalized 

by means of phoneme elision and phoneme segmentation tasks) had a strong association 

with word and sentence span. 
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Evidence indicates that the influences of phonemic aware-ness and verbal working memory 

on literacy acquisition are both shared and unique (Mann and Liberman, 1984; Alloway et 

al.,  2005). Factor analytical studies indicate that different types of phonological awareness 

tasks are loaded onto a single latent construct (Schatschneider et al., 1999). Tasks vary, 

however, in the additional cognitive demands they impose, regarding, for instance, working 

memory and other general cognitive components. According to this type of reasoning, 

different phonemic awareness tasks assess a common phonological processing construct 

plus additional varying components that change according to task demands. A task such as 

phoneme elision would consist then of at least two components, one tapping the 

phonological latent construct and the other one depending on working memory demands. 

Previous studies (Oakhill and Kyle, 2000; Alloway et al., 2005) have investigated the 

influence of verbal working memory on phonemic awareness performance. This question, 

however, is rather complex and our results emphasize the importance of also investigating 

the other direction of this relationship. This is especially relevant regarding the interplay 

between verbal working memory, phonemic awareness and number transcoding skills. 

 

Another dimension adding complexity to the relationship between phonemic awareness 

and verbal working memory is the child’s individual level of development, which may be 

characterized as the degree of automatization in phonological processing. Before the child 

acquires expertise with phonemic awareness, a task such as phoneme elision may impose 

heavy demands on the central executive. As the child progressively acquires experience with 

phonological processing, this task can be solved in a more automatic way, freeing working 

memory resources for other tasks relevant for more advanced operations. If, however, the 

child does not acquire abilities of accurately and automatically processing the phonemic 

units, precious working memory resources will be less available for numerical transcoding. 

Accurate and automatic phonemic processing liberates sparse processing resources 

necessary to solve more complex tasks. 
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Disclosing a complex relationship among working memory, phonemic awareness and 

transcoding has important consequences for math achievement in general and for its 

disorders. School achievement in reading and/or mathematics depends on a complex 

interaction between general and specific cognitive factors. As the child acquires expertise in 

specific domains, such as phonemic and/or quantitative representations, processing 

resources are liberated to work in increasingly more complex activities. The accurate and 

automatic nature of more basic sound and quantitative representations may thus influence 

the whole process of school learning, explaining variances both in achievement and in 

working memory. Johnson (2012) recently proposed that the occurrence of learning 

disabilities depends on such an interaction between specific and general cognitive factors. If 

a specific impairment, say in phonological or number processing, can be compensated by 

central executive resources, there is a smaller probability that the individual develops a 

learning disability. Otherwise, if executive processing resources are not sufficient to 

compensate or automatize basic cognitive processes, difficulties persist. This hypothesis has 

been explored in another report, investigating two cases of math learning difficulties (Haase 

et al., in press, this issue). In one case, math learning difficulties were associated with a lack 

of automatization and in the other case with impaired executive working memory 

resources. 

 

There have been few studies that directly addressed the relationship between verbal 

memory and phonemic awareness during the performance of arithmetic tasks.  Leather and 

Henry (1994) claim that both constructs share a certain amount of variance with arithmetic 

performance because phonemic manipulation demands arithmetical processes (for 

instance, phoneme elision tasks require, literally, the subtraction of a sound) and also 

involve working memory for the mental retention and management of verbal information. 

Phoneme elision tasks require both storage and processing of phoneme units because 

children usually hold the word in mind while deleting one sound and producing the new 

word with what is left ( Oakhill and Kyle, 2000).  Hecht et al.  (2001) longitudinally 

investigated the role of phonological aware-ness in arithmetic development of children from 
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different age ranges and found that from the 3rd to 4th grades, as well as from the 4th to 

5th grades, this was the only subcomponent of phonological processing that explained the 

growth of performance in a standardized arithmetic task. According to the authors, the 

same memory resources engaged in arithmetic problem solving are also recruited in 

phonological awareness tasks. 

 

Our findings are in accordance to what was reported by  Michalczyk et al. (2013). The 

authors also found that the simultaneous inclusion of verbal and visuospatial working 

memory, the central executive as well as phonological awareness in a regression model 

showed that only phonological awareness—none of the working memory subcapacities—

had a direct impact on basic quantity-number competencies. In this study, they investigated 

the performance of children aged 5 and 6 in a number sequence task, in which children had 

to recite the number word sequence forwards up to 31 and backwards from 5. Afterwards 

they had to name 3 subsequent and 3 preceding number words. Even though they did not 

use a transcoding task, one can infer from this result that phonological awareness might 

mediate the relation between verbal working memory and number words knowledge. 

Nevertheless, as mentioned above, our study was the first one to provide evidence 

regarding the mediation of the effect of verbal working memory on number transcoding by 

phonemic awareness. 

 

Final remarks 

Mathematics encompasses a range of several different competences, such as numerical 

estimation, word problems, fact retrieval and number transcoding. Standardized arithmetic 

tasks usually assess these different abilities simultaneously and do not tap their specificities. 

It is important to investigate the distinct cognitive mechanisms that are associated with 

each of these mathematical skills. In our study, we concluded that phonemic awareness and 

verbal memory are directly connected to number transcoding, being important pathways 

between the verbal input and the transcription of the Arabic output. 
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The acuity of number sense, as measured by the Weber Fraction, did not influence number 

writing, suggesting that the assessment of numerical magnitude is not a necessary step in 

number transcoding. The acuity of number sense has been considered an important 

predictor of arithmetic performance (Halberda et al.,  2008), but its relationship to number 

transcoding is less explored. 

 

Although we did not explicitly assess children with learning disabilities, our results provide 

additional support to the hypothesis that phonemic awareness might be a cognitive 

mechanism that underlies both dyslexia and dyscalculia. Epidemiological studies describe 

high comorbidity rates between reading and mathematical difficulties: approximately 40% 

of dyslexics also have arithmetical difficulties (Lewis et al., 1994), and the prevalence of 

dyslexia and dyscalculia is similar, approximately 4–7% (Dirks et al.,  2008; Landerl and Moll, 

2010). The finding that phone-mic awareness is related to number transcoding is useful in 

the comprehension of mathematical difficulties presented by dyslexic children (Haase et al.,  

in press, this issue). We suggest that this should also be assessed in neuropsychological 

evaluations as well as in clinical interventions for children with learning disabilities. 
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CHAPTER 3 

SYMBOLIC AND NONSYMBOLIC REPRESENTATIONS OF NUMBER IN ADULTS.  
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Abstract: 

In the present study we investigated the influence of educational factors on symbolic and 

nonsymbolic representations of number by means of a number transcoding and magnitude 

comparison task. In view of that, we assessed a sample of semi-illiterate adults and two 

control samples of literate adults and school age children. Results revealed that education 

interferes in symbolic representations of number, mainly in the syntactic mechanisms of the 

Arabic code, but not on nonsymbolic representations, indexed here by the Weber fraction.  
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INTRODUCTION 

Research on the development of numerical abilities has gained considerable attention over 

the last decades. Significant advances have been observed in the knowledge regarding the 

different cognitive functions and brain structures involved in the development of the large 

variety of basic numerical abilities (Dehaene & Cohen, 1995; Dehaene, Piazza, Pinel, & 

Cohen, 2003). It is assumed that the basic numerical skills are grounded on both ancient 

evolutionary and culturally acquired mechanisms. It is thought that the processing of 

nonsymbolic numerical magnitudes (sets of concrete items) is subserved by analogous brain 

circuitry in both animals and humans (Nieder & Dehaene, 2009). It is also argued that these 

nonsymbolic representations constitute the starting point for the development of the more 

recent culturally-acquired mechanisms, such as the symbolic systems, arithmetics, among 

others (Piazza, 2010). 

 

Despite the importance attributed to the development of numerical processing 

mechanisms, little is known about the acquisition of basic numerical abilities in individuals 

with no or little access to education. Some evidence suggests that illiterates and semi-

illiterates participants are able to perform basic numerical processing tasks, such as two-

digit number comparison (Wood, Nuerk, Freitas, Freitas, & Willmes, 2006) and even some 

basic calculations (Deloche, Souza, Willadino-Braga, & Dellatolas, 1999). Nevertheless, little 

is known about the nature of these representations on individuals with low literacy. 

 

In the present study, we investigated the influence of educational factors on symbolic and 

nonsymbolic processing of numbers. To address the impact of literacy on nonsymbolic 

representations, we acquired psychophysical measures of Approximate Number System 

(ANS) acuity in adult individuals with very low literacy, and in literate adults. One model 

suggests that the ANS is an inherited pre-verbal system that represents numbers in an 

approximate and logarithmically compressed fashion, according to the classical 

psychophysical laws of Weber and Fechner (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). 

Not only the basic numerical abilities, but the whole symbolic numerical thinking, are 
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thought to be grounded on the ANS. Previous studies in indigenous populations with a very 

reduced lexicon of verbal numbers suggest that the more one is educated in a language with 

an expanded numerical lexicon, the higher is the accuracy levels observed in ANS measures 

(Pica, Lemer, Izard, & Dehaene, 2004; Piazza, Pica, Izard, Spelke, & Dehaene, 2013). 

Therefore, the education, or more specifically, the access to a complex symbolic system for 

numbers, would have a feedback effect on nonsymbolic representations, refining its 

accuracy and thus, allowing more precise numerosity estimations and discrimination.  

Conflict results were reported by Butterworth, Reeve, Reynolds and Lloyd (2008), who 

investigated basic numerical skills in children speakers of two Australian languages with 

restricted numerical lexicon. They reported that language does not influence the acquisition 

of numerical concepts, such as counting. Nevertheless, results are not directly comparable, 

since the focus was on different aspects of numerical representations. 

 

Zebian and Ansari (2012) investigated illiterate adults and showed that educational factors 

may have an influence only in the symbolic representations of number. Nevertheless, they 

investigated symbolic and nonsymbolic processing by means of simple comparison tasks, 

using only very small magnitudes, what could have masked possible effects on nonsymbolic 

representations. Therefore, this is not a resolved issue, and the effect of education on 

nonsymbolic representations reported in previous studies may have been confounded by 

cultural variables and by task characteristics. In this sense, we hypothesized that if ANS 

acuity is influenced by educational factors, individuals with higher literacy should present 

more refined ANS accuracy. By studying adults with low literacy levels, we can 

simultaneously control the effects of age, education and culture (access to a complex 

number-word system) on the acuity of the ANS. 

 

Concerning symbolic representations of numbers, one important aspect of numerical 

processing that still deserves attention is what illiterates know about transcoding between 

different symbolic numerical notations and about the underlying lexical and syntactic 

mechanisms of the verbal and Arabic (place-value) number system. To our knowledge there 
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is no previous investigation if this topic. In the present study, we addressed this issue by 

investigating the performance of illiterates with up to 4 years of formal education in a 

number of transcoding tasks. 

 

In order to address the impact of literacy on symbolic representations, we investigated the 

understanding of the Arabic (place-value) notation in adults with low literacy by means of a 

number transcoding task. Here, the use of such a task is of major relevance since, in 

contrast to nonsymbolic or single-digit comparison tasks, it constitutes a purely culturally 

transmitted skill acquired by means of deliberate learning and teaching.  

 

To investigate symbolic numerical representations, we will compare number transcoding 

performance of adults with low literacy with that of children attending from 1st to 4th 

grades of elementary school. These children were assessed in the context of another study 

of numerical abilities of children with and without mathematics difficulties (Moura et al., 

2013; Moura et al., submitted). 

 

We expect that education may interfere in number transcoding in several ways. First, the 

acquisition of reading and writing skills has a reciprocal relationship with the improvement 

of phonemic awareness (Castles & Coltheart, 2004). According to the ADAPT model 

(Barrouillet, Camos, Perruchet, & Seron, 2004) and to empirical data, phonemic awareness 

also plays a decisive role in number writing, acting as a mediator of the influence of working 

memory on number transcoding (Lopes-Silva, Moura, Julio-Costa, Haase, & Wood, 2014). 

Despite some evidences suggest that rudimentary aspects of the Arabic number syntax can 

be acquired by children even before formal teaching (Barrouillet, Thevenot, & Fayol, 2010), 

here we expect that number transcoding will impose significant difficulties for semi-illiterate 

adults, specially due to the comprehension of syntactic mechanisms. 

 

Second, it can also be argued that the positive effect of education on nonsymbolic 

numerical representations may have an effect on number transcoding performance. 
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According to semantic models of number transcoding, the conversion between numerical 

input and output is mediated by a semantic representation of numerical magnitude 

(McCloskey, Caramazza, & Basili, 1985; McCloskey, 1992). In view of that, we will investigate 

the influence of ANS acuity on number transcoding. In case ANS has an effect on number 

transcoding performance, we can hypothesise that there is, indeed, a semantic mediation 

between numerical inputs and outputs. If this influence is not present in our data, we can 

assert that quantitative numerical semantics, as measured by ANS acuity, has no influence 

in number transcoding. 

 

Additionally, we will investigate the effect of general cognitive abilities on number 

transcoding performance. As argued by the ADAPT model (Barrouillet et al., 2004), and 

consistently confirmed by empirical findings (Camos, 2008; Moura et al., 2013; Zuber, 

Pixner, Moeller, & Nuerk, 2009), working memory capacity plays a decisive role in number 

transcoding and, thus, will be addressed here. We also acquired measures of intelligence, 

since it is a powerful predictor of academic success and thus, can be an important confound 

variable in the study of individuals with very low educational levels (Strenze, 2007).  

 

METHODS 

Participants 

Three groups of participants were assessed in the present study. The semi-illiterate group 

(SIL) consisted of 26 participants (19 female) with ages ranging from 27 to 55 years (mean = 

45.9 years, sd = 7.9 years). AIl participants were born in Brazil, and were recruited in the first 

grade of alphabetization courses for adults in the city of Belo Horizonte. These courses 

occur in the late afternoon, and are coordinated by the city administration, focusing on the 

training of basic reading and writing skills. In order to take part in this study, participants 

from these courses needed to be between 18 and 55 years-old, and have no more than 4 

years of formal schooling. Despite the very low level of schooling, all semi-illiterates were 

socially functional and engaged in formal jobs, as shown in the Table 1. The average literacy 

(AL) group was composed of adults (n = 10) with ages ranging from 22 to 54 years (mean = 
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39.6 years, sd = 12.3 years), and who become literate at the regular ages. To avoid 

comparing subjects with very discrepant socioeconomic backgrounds, participants of the AL 

group were recruited in educational courses for adults who stopped studying before 

concluding high school at the expected ages. 

 

Table 1 
    Socio-demographic characteristics of the semi-illiterate sample. 

Participant Gender Age (years) Profession Life-long education 

V.C.S female 38 Housewife 3 

G.D.S female 48 Cook 3 

E.S.V. female 27 Housewife 1 

D.A.B male 39 Door-keeper 4 

Z.F.S female 54 Housemaid 3 

A.G.S. female 47 Housemaid 4 

E.R.S. female 35 Hairdresser 4 

E.A.F. female 36 Housemaid 3 

L.M.C. female 51 Housemaid 2 

J.H.D. male 37 Door-keeper 4 

M.A. female 50 Housemaid 4 

A.M.L. male 54 Door-keeper 3 

M.N.S.N female 49 Housemaid 1 

L.C.B.M. female 55 Housemaid 4 

V.M.S. female 59 Housemaid 4 

L.D.A. female 54 Housemaid 3 

N.M.P. female 48 Caregiver 4 

R.D.G. male 37 Construction worker 1 

M.I.F. female 51 Housemaid 3 

M.A.A. female 48 Caregiver 4 

A.J.A. male 40 Construction worker 4 

J.E.P.S. male 49 Door-keeper 2 

M.F.C.S. female 55 Housemaid 3 

D.A.S. male 43 Construction worker 1 

M.A.P.N. female 47 Caregiver 2 

M.L.G.S. female 48 Housemaid 2 

 

Furthermore, in order to classify in more detail the level of competence the SIL group had in 

the Arabic number writing task, we used a data-set of 985 Brazilian children of a previous 

study of ours (Moura, Lopes-Silva, Vieira, Paiva, Prado, Wood & Haase, submitted), which 
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comprised children attending from 1st to 4th grades of elementary school. These children 

were recruited in both public and private schools in the cities of Belo Horizonte and 

Mariana, and were collectively assessed with measures of school achievement and with a 

number transcoding task. The option to include school children in this study is to have 

enough variability in transcoding scores, as number writing and reading tasks are far too 

easy for control adults. Moreover, the data from school children allow us to classify in 

deeper detail the level of transcoding difficulties in adults with low education. 

 

Procedure 

Participants were assessed in quiet rooms in the schools during one session of 

approximately one and a half hour. The various tasks were presented in pseudo-random 

orders. The study was approved by the local research ethics committee (COEP–UFMG). The 

experimenter explained the research purposes orally in front of a witness and participation 

occurred only after informed consent was obtained. 

 

Intelligence assessment 

Wechsler Adult Intelligence Scale 

Since low literacy may have a negative impact on IQ measures (Ramsden, Richardson, Josse, 

Shakeshaft, Seghier, & Price, 2013), we used the Brazilian version of the Wechsler Adult 

Intelligence Scale (WAIS-III; Nascimento, 2000) to ensure that intelligence levels in our 

sample are inside the normal range. Due to time constraints in data collection, we opted to 

use a shorter form of the test, with the Vocabulary and Block Design subtests, which are 

commonly used to estimate verbal and performance IQ’s. There is no validation of shorter 

forms of the WAIS-III for Brazilian samples, and thus we will restrain our analysis to the 

scaled scores. 

 

Working memory assessment 

Digit Span Task 
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The backward Digit Span task was used to assess the verbal component of working memory, 

following the procedures of the Brazilian version of the Wechsler Adult Intelligence Scale 

(Nascimento, 2000). 

 

Corsi Block Tapping Task 

The backward order of the Corsi Block task was administered as a measure of the 

visuospatial component of working memory (Kessels, van Zandvoort, Postma, Kapelle & de 

Haan, 2000) 

 

Literacy assessment 

Word and Pseudoword reading task 

Participants read a list of 40 real words selected according to their regularity, length, 

frequency and lexicality, and 20 pseudowords developed for assessing reading skills of 

students until the seventh year of schooling (SaIles, Piccolo, Zamo, & Toazza, 2014). Half of 

the real word list was composed by regular words, and the other half by irregular words, all 

matched by length and frequency.  

 

Numerical skills assessment 

Nonsymbolic comparison task 

In this task participants were instructed to compare two sets of dots indicating the larger 

one the fastest they could. The paradigm was designed following the same parameters used 

by Piazza et al. (2013), using the software Presentation® (Neurobehavioral Systems, Albany, 

CA, http://www.neurobs.com), in conventional laptops. Stimuli consisted of black dots 

displayed in separated white circles on each side of the screen. In each of the 160 trials, one 

of the two arrays contained either 16 or 32 dots. This array (hereafter n1) is defined as the 

reference number to which the other array must be compared. The other array (hereafter 

n2) contained 10, 12, 14, 15, 17, 18, 19 or 22 dots when n1 was 16, and 20, 24, 28, 30, 34, 

36, 38 or 44 dots when n1 was 32. In such a way, the ratio between the larger and the 

smaller arrays was kept the same (0.625, 0.750, 0.813, 0.875, 0.938, 0.941, 0.889, 0.842, 

http://www.neurobs.com/
http://www.neurobs.com/
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0.800 and 0.727) regardless of n1’s magnitude. Stimuli remained on-screen for a maximum 

of 5000ms, or until participants gave their response. All responses were captured by 

pressing the leftmost or the rightmost buttons of the keyboard, depending on the side of 

the array identified by the participant as “larger”. Response sides were contrabalanced so 

that in half of the trials the larger set was on the left side of the screen. Each testing trial 

was preceded by a fixation mark with fixed duration of 1000ms, and followed by an inter-

trial interval of fixed 500ms. 

 

 

Figure 1 – Nonsymbolic comparison task. 

 

The internal Weber fraction (hereafter w) was used as an index of ANS acuity. It was 

calculated for each participant based on Dehaene’s log-Gaussian model (Dehaene, 2007) by 

fitting the psychometrics curves for both n2 references with a single sigmoid function of the 

log n1/n2 ratio, using the methods described by Piazza et al. (2004) and Piazza et al. (2013). 

In a nutshell, w is a measure derived from error rates in each n1/n2 ratio, being calculated 

individually for each participant using the formula 1, where erfc(x) is the complementary 
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error function. W is a measure of the internal variability (also referred as “noise” or 

standard deviation) in the internal representation of numerosity, so that larger values 

indicates a less precise representation.  

 

1

2
erfc (

𝑛1 − 𝑛2

√2𝑤√𝑛1
2 + 𝑛2

2
) 

Formula 1 – Complementary error function for the calculation of w scores. 

 

Arabic number writing task 

The Arabic Number Writing Task is an expanded version of a previous task used to assess 

basic numerical abilities in children (Haase, Júlio-Costa, Lopes-Silva, Starling-Alves, Antunes, 

Pinheiro-Chagas, & Wood, 2014; Lopes-Silva, Moura, Júlio-Costa, Haase, & Wood, 2014; 

Moura, Wood, Pinheiro-Chagas, Lonnemann, Krinzinger, Willmes, & Haase, 2013). In this 

version, a total of 81 one- to four-digit numbers were dictated in a fixed order. The item set 

comprised 2 one-digit numbers, 6 two-digit numbers, 19 three-digit numbers and 54 four-

digit numbers. We used the number of rules required for transcoding as an index of 

numerical complexity. According to the ADAPT model, the numbers presented in this task 

required from 2 to 7 different rules in order to be correctly transcoded. To avoid errors due 

to the forgetting of the verbal dictated forms, numbers were repeated one more time in 

case a participant asked for it. 

 

RESULTS 

Intelligence 

We used the arithmetical mean of the scaled scores in the Vocabulary and Block Design 

subtests as an index of general intelligence. As expected, individuals from the SIL group 

showed lower intelligence levels, with a mean value of 7.2 (sd = 0.787) against a mean of 

10.6 (sd = 2.29) of the AL group (t[10.04] = 4.56, p < 0.001). The lowest value observed in 

the two samples was 6, what corresponds to 1.3 standard deviations below the mean 

(according to the manual’s norms). Therefore, we assumed that, despite the lower 
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intelligence, all participants of the SIL group have normal intelligence. The average of the 

scaled scores was entered as covariate in further analyses. 

 

Word and Pseudoword reading task 

As expected, accuracy in the word and pseudoword reading task was significantly lower 

(t[25.41] = 9.17, p < 0.001) for the participants of the SIL group (mean 48.7%, range: 0% - 

95%) than for the participants of the AL group (mean 96.8%, range: 91% - 100%). According 

to the task’s norms, 12 participants of the SL group showed a performance below the 50th 

percentile of children who did not complete the first year of education, therefore, 

confirming almost complete illiteracy in these participants. Other 12 participants of this 

group showed a performance below the 50th percentile of children in the 2nd year of 

education, and one participant showed a performance compatible with the 50th percentile 

of the 3rd school year.  

 

Nonsymbolic comparison task 

Data of the nonsymbolic comparison task were trimmed for each participant in order to 

exclude trials with reaction times exceeding 3 standard deviations from individual means. 

Following this criteria, less than 1% of total trials (n = 21) had to be excluded from the 

analyses. Additionally, less than 1% of the trials (n = 21) had to be excluded because of non-

responses. Mean accuracy rate was high for both SIL (82% of hits, ranging from 72% to 94%) 

and AL groups (81% of hits, ranging from 71% to 90%). As shown in Figure 1, “larger” 

responses of AL and SIL groups at each n2 value obeyed the Weber-Fechner law, that is, 

showed sigmoidal distributions when plotted in a linear scale (Figure 2a), and sigmoidal 

distributions with identical slopes when plotted in a log scale (Figure 2b).  
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Figure 2 – Results of the nonsymbolic comparison task. 

 

In accordance with the Weber’s law, we observed a clear improvement in performance as 

the ratio between n1 and n2 increased (that is, occurrence of ‘larger’ responses decreased 

steadily as n1 got smaller than n2, and increased as it got larger than n2). Moreover, the 

fitting values (R squared) of both groups were high (SIL: mean = 0.96, range: 0.86 - 0.99; AL: 

mean = 0.95, range: 0.91 - 0.99), suggesting a high agreement between the psychophysical 

model and the behavioral data. One participant from the SIL group was excluded from the 

study because the regression fit was not satisfactory. Importantly, w values were similar in 

the two groups investigated here, with average values of 0.19 for SIL participants and 0.20 

for AL participants. An independent-samples t-test confirmed the equality of these values 

(t[15.3] = 0.49; p = 0.634).  

 

As depicted in Figure 3, large individual differences were evident in nonsymbolic 

representations of both SIL and AL groups, with w values of all participants ranging from 

0.07 to 0.34 (0.07 to 0.30 in the SIL group, and 0.11 to 0.34 in the AL group). An 

investigation of w distributions in the two samples, by means of Kolmogorov-Smirnov tests, 

confirmed that w values are normally distributed (AL: D = 0.181, p = 0.47; SIL: D = 0.135, p = 

0.28). 
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Figure 3 – Distribution of w values over the AL and SIL groups. 

 

Due to the high variability in the reading capacity within the SIL group, we ran a linear 

regression with w as the dependent variable and reading accuracy as the independent 

variable, including only SIL individuals. The model (F = 3.28, p = 0.08) showed that reading 

skills (our index of literacy) has no significant influence on w scores (Figure 4). 

 

 

Figure 4 – Regression model of w values and reading achievement. 
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Arabic number writing task 

As expected, performance in the Arabic number writing task was remarkably different 

between the two adult groups. AL participants completed the task almost flawlessly, with an 

average error rate of modest 1%. Therefore, this group will not be included in further 

analysis. In turn, the SIL group showed in average 51% of wrong answers, varying from 2% 

to 83%. 

 

Performance of SIL participants was highly influenced by the syntactic complexity of the 

numerals. Error rates increased from 5% in numbers that require only 2 different rules in 

order to be transcoded, to 67% in numbers requiring 7 different rules (Figure 5). An ANOVA 

was performed comparing the error rates in each complexity level (number of rules). 

Working memory measures were entered as covariates in order to rule out the possibility 

that the increase in error rates with syntactic complexity was attributable, solely, to an 

increase in the demand on working memory resources in the more difficult items.  

 

 

Figure 5 – Number transcoding performance according to the quantity of transcoding rules. 

 

Results disclosed a main effect of syntactic complexity, as error rates increased significantly 

with the quantity of transcoding rules required (F[5] = 9.26, MSE 0.67; p < 0.001, ƞ𝑝
2  = 0.30). 
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Furthermore, this effect could not be attributable to differences on the demand of working 

memory resources, as syntactic complexity did not interact neither with digit span (F[5] = 

2.70, MSE = 0.19, p = 0.07, ƞ𝑝
2  = 0.11) nor with Corsi span (F[5] = 1.65, MSE = 0.11, p = 0.20, 

ƞ𝑝
2  = 0.07). Nevertheless, digit span showed a significant effect on general error rates in the 

Arabic number writing task (F[5] = 6.23, MSE = 0.28, p < 0.001, eta = 0.22), as predicted by 

most transcoding models. 

 

Repeated contrasts were run in view to disentangle the main effect of syntactic complexity. 

Significant differences between numbers requiring 2 and 3 (F = 8.97, p < 0.01), and between 

numbers requiring 3 and 4 transcoding rules (F = 10.18, p < 0.01) were found. In turn, no 

significant differences were found between numbers that require 5, 6 or 7 transcoding 

rules.  

 

Due to the low error rates observed in the AL group, further analysis will be conducted 

taking the sample of school-aged children as a comparison. Furthermore, with this 

procedure we will be able to classify the performance of SIL participants in the Arabic 

number writing task according to years of education. The sample of children performed a 

similar but shorter version of Arabic number writing task. Therefore, to make their results 

comparable, we grouped items in three levels of syntactic complexity: low complexity (less 

than 4 transcoding rules), moderate complexity (4 transcoding rules) and high complexity 

level (more than 4 transcoding rules). Results of both samples are depicted in Figure 6. 
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Figure 6 – Performance of school children and SIL group in the Arabic Number Writing Task, according to 

syntactic complexity. 

 

A visual inspection of the Figure 6 suggests that the achievement of SIL participants in the 

Arabic number writing task is, in general, comparable to that observed in 1st and 2nd 

graders. To better characterize it, a 3x5 ANOVA was performed with syntactic complexity as 

within-subjects, and group as between-subjects factors. Results revealed a strong main 

effect of syntactic complexity (F[2, 1612] = 299.04, MSE = 5.01, p < 0.001, ƞ𝑝
2  = 0.27). 

Repeated contrasts showed significant differences between all three levels of complexity (all 

p’s < 0.001). Also, a significant main effect of group was observed (F[1, 806] = 309.11, MSE = 

7.57, p < 0.001, ƞ𝑝
2  = 0.60) and a significant interaction between these factors (F[8, 1216] = 

69.66, MSE = 32.38, p < 0.001, ƞ𝑝
2  = 0.26). Paired comparisons with Bonferroni correction 

showed that in all levels of syntactic complexity the only groups with similar performance 

were the children from 3rd and 4th grades (all p’s > 0.05). Therefore, analyses in the next 

sections will not include these children. 
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Error Analysis 

Next, an investigation of the erroneous responses was performed. Firstly, errors were 

classified in two broad categories of lexical and syntactic errors. Lexical errors occur when a 

lexical element in the number was substituted by another one (1500 written as 1300), while 

syntactic errors occurred when the lexical elements were misplaced in the syntactic frame 

(135 written as 153), or when this frame was wrongly generated (145 written as 100405).  

 

The vast majority of erroneous responses (95%) were classified as syntactic, in accordance 

to what has already been reported for children and neurological cases (Deloche & Seron, 

1982a, 1982b). This pattern was similar to what was observed in our group of children up to 

the 2nd grade (Figure 7). A 2x2 ANOVA was run on error rates with group as between 

subjects factor, and error class as within subjects factor. Results revealed a main effect of 

error class, with higher occurrence of syntactic over lexical errors (F[1, 326] = 291.63, MSE = 

32.38, p < 0.001, ƞ𝑝
2  = 0.47), and a main effect of group, as error rates were, in general, 

higher for the SL group (F[2, 326] = 10.55, MSE = 0.89, p < 0.01, ƞ𝑝
2  = 0.06). Interestingly, a 

significant interaction between the two factors was also observed (F[2, 326] = 8.71, MSE = 

0.97, p < 0.001, ƞ𝑝
2  = 0.05).  

 

 

Figure 7 – Frequency of lexical and syntactic errors in school children and SIL group. 
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A deeper analysis of the syntactic errors was also performed in view of unfolding the source 

of these difficulties. According to the ADAPT model (Barrouillet et al., 2004), errors in which 

the number of added 0s matches the magnitude of the multiplicands (e.g., 300070091 

rather than 3791), called additive composition errors, occur when the transcoding rules 

have been acquired (i.e., Rule P2 prompts two empty slots and Rule P3 prompts three slots) 

but the storage capacity of the working memory has been overloaded. Computational 

simulations and group comparison studies have confirmed that these errors can be 

modulated by varying working memory resources (Barrouillet et al., 2004; Camos, 2008). 

Errors in which the number of added 0s did not match the multiplicand (e.g., 307091 or 

300700091 rather than 3791) occur because the correct rule has not been acquired and a 

simpler one is used instead (e.g., Rule P3 prompts only two or more than three empty slots) 

and the number is built under a wrong digit frame. Frequencies of these errors are depicted 

in Figure 8. 

 

A 2X2 repeated measures ANOVA was performed on error rates, with error class (additive 

composition and wrong frame) as within-subjects factor, and group as between subjects 

factor. Results disclosed a main effect of group (F[2, 326] = 22.50, MSE = 1.75, p < 0.001, ƞ𝑝
2  

= 0.12), as participants of the SIL group showed overall higher error rates, and a main effect 

of error class (F[1, 326] = 21.10, MSE = 1.75 p < 0.001, ƞ𝑝
2  = 0.06), due to higher frequencies 

of wrong frame errors. Nevertheless, the interaction between the two factors was not 

significant (F[2, 247] = 2.05, MSE = 0.17, p = 0.06, ƞ𝑝
2  = 0.01), thus suggesting that the 

pattern of higher frequency of wrong frame over additive composition errors was similar in 

both groups. 
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Figure 8 – Frequency of additive composition and wrong frame errors in school children and SIL group. 

 

Finally, in view of investigating the contributions of specific cognitive factors on number 

transcoding, we ran a series of stepwise regression models using data from SIL participants 

only. All the models included as independent variables the verbal and visuospatial working 

memory components, the Vocabulary and Block Design subtests of the WAIS-III, w, and the 

score on the reading task. As dependent variables, we tested overall error rates on the 

Arabic Number Writing task, and the rates of lexical, syntactic, additive composition and 

wrong frame errors. Only two models yielded significant results. First, the overall error rate 

in the task was significantly predicted by the Digit Span task only (F = 7.37, p = 0.01, 

adjusted R² = 0.21). Secondly, wrong frame errors were significantly predicted by Digit Span 

and Corsi Span measures (F = 6.30, p < 0.01, adjusted R² = 0.31). 

 

DISCUSSION 

In the present study, we investigated the influence of education/literacy on nonsymbolic 

and symbolic representations of numbers. Two groups of adult participants, with similar 

socioeconomic status and intellectual skills, but presenting outstanding differences in 

literacy, were compared. Additionally, a sample of young children was also investigated. Our 
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results revealed that, in one hand, semi-illiterate individuals fail in acquiring a complete 

knowledge of the syntax of Arabic numerals, but in the other hand, acuity of the ANS 

showed to be comparable to that of literate individuals. These results have several 

implications, which will be further discussed in the next sections. 

 

ANS acuity 

Concerning the relation between education and nonsymbolic representations, our data 

support the hypothesis that education and literacy have no significant effect on ANS acuity. 

We assessed the accuracy of literate and semi-illiterate individuals in discriminating a series 

of numerosities and quantified their precision at the individual level, adjusting classical 

psychophysical functions. We found that ANS acuity is normally distributed in both literate 

and semi-illiterate samples. This finding is in accordance to the study of Halberda, Mazzocco 

and Feigenson (2008), so that large individual differences in nonsymbolic abilities are 

observed in the population. Moreover, we extrapolated it by showing that ANS acuity is 

comparable in both samples investigated here, thus leading us to conclude that education, 

as measured by literacy, does not influence on nonsymbolic representations of number.  

 

Number transcoding 

Concerning the influence of education on number transcoding, in this study we addressed 

two main topics. First, we investigated the performance of semi-illiterates in a number 

transcoding task. According to our data, semi-illiterates showed severe difficulties in writing 

3- and 4-digit numbers, in a performance comparable to that of children attending to 1st 

and 2nd grades. An analysis of erroneous responses revealed the nature of these difficulties. 

In general, the large majority of errors committed by semi-illiterate individuals was due to 

syntactic mechanisms, and only a few errors could be attributed to lexical mechanisms, a 

pattern similar to what is commonly observed in young children (Camos, 2008; Moura et al., 

2013; Zuber et al., 2009).  
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Interestingly, our analysis also showed that the ratio between syntactic and lexical mistakes 

is significantly higher in semi-illiterate adults, who committed more syntactic errors and less 

lexical errors than school children. Regarding the very low occurrence of lexical mistakes, we 

can infer that semi-illiterate adults can benefit from daily experience and expand their 

numerical lexicon. The nature of syntactic errors reflected what was already observed in 

young children, that is, were mainly due to the lack of necessary transcoding rules. 

Therefore, contrary to the development of a numerical lexicon, we can infer that formal 

teaching has a pivotal role in improving the knowledge of the numerical syntax. 

 

Second, our results can also help to clarify the discussion about the semantic route in 

number transcoding. Since the elaboration of the McCloskey’s semantic model (1992; 

McCloskey, Caramazza, & Basili, 1985) there is a debate how many routes are there and the 

nature of the number transcoding routes (Cipolotti, 1995; Van Loosbroek, Dirkx, Hulstijn, & 

Janssen, 2009). Recently, some authors have argued in favor of the existence of a semantic 

route, in which numbers are transcoded by accessing their quantitative numerical 

magnitudes (Imbo, Bulcke, Brawer, & Fias, 2014; Van Loosbroek, Dirkx, Hulstijn, & Janssen, 

2009). Here we showed that an intact representation of numerical magnitudes has no 

influence on number transcoding performance. Therefore, we conclude that a semantic 

route, at least in terms of an access to approximate magnitudes as represented in the 

mental number line, cannot account for number transcoding performance. 

 

Education and the numerical representations 

In general, our data shows that education has an influence only on numerical 

representations that require the use of symbolic systems. It is important to note, however, 

that comparisons with previous research must be made carefully. The hypothesis of an 

education-driven enhancement of nonsymbolic representations (ANS acuity) has been put 

forward based on data of individuals raised in isolated cultures, whose number word system 

possess a very limited lexicon for numbers (Piazza et al., 2013). Contrary to these indigenous 

populations, semi-illiterate individuals are immersed in an industrialized and numerate 
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society, with normal access to a complex number word system. As shown here, semi-

illiterates do not have important difficulties in the acquisition of a complete numerical 

lexicon but with the numerical syntax of larger numbers (3- and 4-digit numbers). In turn, 

such indigenous populations still lack a complete numerical lexicon. 

 

Together with the study of Piazza et al. (2013), who showed that the learning of Portuguese 

number words by indigenous individuals enhances the ANS acuity, we can argue that 

literacy is a sufficient condition for the improvement of nonsymbolic representations of 

number, while the access to a number word system with an expanded numerical lexicon is a 

necessary condition. Therefore, future studies must try to disentangle the relation between 

the improvement of ANS acuity and the acquisition of a numerical lexicon in children. 

 

Conclusion 

In conclusion, the present study provides evidence that literacy influences symbolic 

representations of numbers in the sense that it is indispensable for the comprehension of 

the numerical syntax. Nonsymbolic representations and the acquisition of the numerical 

lexicon, in turn, may be more influenced by culture and the access to a number word system 

with expanded lexicon.  
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CHAPTER 4 

Concluding remarks. 
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GENERAL CONCLUSION 

The present thesis addressed three broad questions about number transcoding abilities: 

how can it be used as a tool for neuropsychological assessment, how it is influenced by the 

level of arithmetics abilities, and how is it related to other cognitive functions, such as 

working memory and phonological processing. 

 

In study 1 the basic psychometric properties of an Arabic number writing task were 

investigated. We showed that, besides being simple and rather fast to administer, the task is 

a powerful tool for screening mathematics difficulties in young children (early elementary 

school, more specifically).  

 

In study 2 Arabic number writing and reading skills of children with different profiles of 

mathematics achievement were assessed. Although we confirmed previous studies on the 

pivotal role of working memory skills in number transcoding, we showed that working 

memory capacity cannot fully account the difficulties exhibited by children with 

mathematics difficulties in writing and reading Arabic numerals. Importantly, we showed a 

clear developmental lag in the acquisition of a basic numerical lexicon and in mastering the 

place-value syntax was observed in children with mathematics difficulties. 

 

In study 3 the influence of phonological abilities on number transcoding was investigated. 

Even though these abilities occupy a relevant place in the ADAPT model, no study so far had 

investigated the influence of such ability in children’s performance. We found that 

phonemic awareness significantly affected children’s performance on number transcoding. 

Furthermore, we showed that phonemic awareness acts as a mediator of the influence of 

verbal working memory in number transcoding. 

 

The last study investigated symbolic and nonsymbolic representations of numbers in adults 

with low literacy by means of number transcoding and magnitude comparison tasks. We 

found that, like children attending to first and second grades, semi-illiterate adults still 
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struggles to transcode 3- and 4-digit numbers, mainly due to the lack of transcoding rules. 

Interestingly, the numerical lexicon showed to be acquired despite of the low education. In 

turn, nonsymbolic representations, indexed by the ANS accuracy, were similar to that 

observed in literate adults, thus suggesting that education does not affect the development 

of this representation. 

 

Together, the four studies provide several contributions to the literature of numerical 

cognition. We described in detail the development of number transcoding abilities in school 

children and we showed, for the first time, how it is related to mathematics achievement. 

Besides theoretical implications, this finding has a more immediate practical application, 

once it can be used in the educational context as both screening and remediation of 

mathematics difficulties. It was also shown that, besides being a rather easy task to learn, 

number transcoding difficulties may persist until adulthood if not properly addressed. 

 

Other important contribution of the studies concerns the theoretical models of number 

transcoding. Here we confirmed and extended previous findings supporting number 

transcoding as an asemantic, rule-based process. The pivotal role of working memory in 

number transcoding was confirmed and, in the context of mathematics difficulties, was 

specified. Furthermore, the effect of phonological abilities in number transcoding was 

studied for the first time. 


