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Abstract

This dissertation studies nonlocal/contextual correlations and its generalisa-
tion from a device independent approach, where statistical data are themselves
the object of study. For this, we explore a black box framework, in which a list
of input buttons can be pressed to provide, with some probabilities, a list of
outputs. In this formalism, we discuss general examples, analyse correlations
that arise from quantum mechanics, and present all the inequalities charac-
terise the noncontextual polytope for the n-cycle scenario. Moreover, we prove
some efficiency requirements for nonlocality in an imperfect scenario, and use
these results to propose a physical loophole free Bell test in an optical quantum
system where photodetection and homodyne measurements are performed.
Our findings contributes to the comprehension of nonlocal/contextual cor-
relations and add to efforts towards feasible proposals for loophole-free Bell
tests.



Resumo

Esta dissertagdo trabalha com correlagdes ndo-locais/contextuais e suas pos-
siveis generalizagdes em uma abordagem device independent, onde apenas
os resultados estatisticos sdo analisados. Para isso, exploramos uma “caixa
preta”, na qual diferentes botdes de entrada podem ser apertados para que
se obtenha, com dadas probabilidades, diferentes saidas. Neste formalismo,
discutimos exemplos gerais, analisamos correlagdes oriundas da mecanica
quantica, e apresentamos todas as desigualdades que caracterizam os polito-
pos ndo-contextual do cendrio n-ciclo. N6s também demonstramos algumas
cotas de eficiéncia necessdrias para se obter ndo-localidade em um cendrio
com imperfei¢des, depois usamos estes resultados para propor um teste de
Bell livre de loopholes em um sistema 6ptico onde fotodetecdo e medigdes
homodinas sdo realizadas. Nossos resultados contribuem na compreensao
de correlacbes nao-locais/contextuais e na busca de testes de Bell livre de
loopholes.
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Introduction

Can we predict the result of a flipped coin?

Our scientific belief suggests that if we know the material of the coin, how
it was tossed, and all informations about the wind. .. we could, in principle,
predict its result with certainty. But due to our ignorance on these variables,
and the complexity of the system, we are forced to describe a flipping coin
with probabilities.

As illustrated by one of Einstein’s most famous quotes [5] “Nature doesn’t
know chance, it operates on mathematical principles. As I have said so
many times, God doesn’t play dice with the world”, intrinsic probabilistic
events causes discomfort in various physicists. Einstein was worried about
the probabilities presented on the axioms of quantum mechanics, but at
that time, he (and all other physicists) were not aware of one of the most
astonishing properties of quantum mechanics, it predicts nonlocal correlations.
The definition of nonlocal correlations, first published by John Bell in 1964,
formalises the idea of physical scenarios in which results cannot, even in
principle, be predicted with certainty.

Can we decide whether randomness in physical systems is really intrinsic?
Are there real life experiments in which probabilities cannot be interpreted
as an ignorance of some “hidden variable”? What are the consequences and
limitations of this interpretation? The main motivation of this dissertation is
to explore the necessary mathematical tools to understand these questions,
and also, to answer some of them.

In chapter 1 we introduce what is known as a Bell scenario by studying col-
lections of multivariable probability distributions. We define multipartite boxes
and, using some vocabulary of convex geometry, we discuss the concepts of
non-signalisation, quantumness, and nonlocality. Exploring these definitions, we
prove the existence of quantum nonlocal boxes and discuss its consequences.
We also present some explicit examples in the CHSH scenario, the simplest
one that opens room for nonlocality.

In chapter 2 we present known examples, results, and proof techniques for
multipartite boxes. We discuss some concepts of quantum mechanics which
allows systems with nonlocal statistics. In order to gain some insights on mul-
tipartite boxes, we analyse the CHSH scenario more closely, and present some
phenomena that only take place on more complex ones. We end this chapter
by discussing one application of nonlocal boxes, cryptographic protocols in
which the only assumption necessary for its security is that non-signalling
boxes cannot exist. These proposals motivate a class of device independent

11
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protocols, which allows us to infer non-trivial properties of physical systems
just by analysing its statistical data.

In chapter 3 we explore general boxes in what is known as a contextuality
scenario, that generalises the idea of a Bell scenario to a wider collection of mul-
tivariable distributions. When dealing with general boxes, we overcome the
interpretation of different parties pressing buttons, and discuss some simple
and natural scenarios that were missed behind the multipartite assumption.
We end this chapter by presenting a new result [4]: we analyse the n-cycle
scenario and characterise its noncontextual polytope by its tight noncontextu-
ality inequalities. This is the first time that a noncontextual polytope is fully
described in a scenario with an arbitrary number of settings.

Since we presented and discussed various results on nonlocal/contextual
boxes, in chapter 4 we seek for a Bell test, physical realisation of such boxes.
We present some previous efforts and its loopholes, physical assumptions that
may not be well justified. After proving some known bounds on efficiency
requirements for attaining a loophole free Bell test, we explore them on an
ideal physical setup that exhibit nonlocal statistical data. In this setup, we
show that maximal quantum (CHSH) violation is attainable [1], and in some
cases we have a CHSH violation even using photodetectors with arbitrarily
low efficientcies [2]. We end the chapter by presenting a new proposal of an
optical implementation of Bell test involving photodetection, homodyne, and
atomic measurements [3].



Chapter 1

Correlations on N-partite boxes

God does play dice.

The main focus of this chapter is to introduce some vocabulary and basic
concepts that are explored in the rest of the text. Although all these results
and definitions are well known, we hope to clarify and organize then in a
consistent notation with the concept of multipartite boxes.

1.1 Convex geometry

In Euclidean space, a set is convex if given any two points A, B, the line AB
joining them lies entirely within that set. Intuitively, this means that the set is
connected, in the sense that you connect a segment between any two points
without leaving the set, and the set has no dents in its perimeter.

The notion of convex combination is also intimately close to the idea of
probabilities: the results of a flipped coin may be understood as a convex
combination between head and tails. Since convex geometry definitions are
inspired in our everyday geometric experiences in low dimensions’, various
theorems sound very natural.

We remark that convex geometry has applications in many branches of
science [6, 7, 8], but here we only provide a brief introduction on the necessary
concepts for studying correlations on boxes. For a more complete starting
point, we suggest the classic [9], the first chapter of [10], and the online lecture
notes [11].

Definition 1 (Convex set). A set C C IR" is convex if
pcr+(1—p)ea €C Ve, ca€C, and p € [0,1].

The dimension of a convex set is the minimal dimension of the Euclidean space RY
necessary to describe C.

*Usually, in R? or R3.

13
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Figure 1.1: Three illustrations of convex and three illustrations of non-convex
sets.

Definition 2 (Probability distribution). A distribution associated with K different
results is a function p : {i}X | — [0,1] in which

K
pi>0 and ) pi=1.
i=1

An M-variable distribution is a function p : X™_ {i,,} — [0,1] in which

Pijiy...ip >0 and Z Pirigeing = 1.

iiaing

Definition 3 (Convex combination). A convex combination of elements c; on a
convex set C with distribution p is another element ¢ € C defined by

c= ZCiPi-
1

In this dissertation we will be interested in what is called a convex body,
bounded closed convex sets with non-empty interior. In other words, convex
bodies are the sets that are bounded by (possibly, infinitely) hyperplanes,
where a hyperplane H is a (convex) set of points x that can be represented by
a linear equation with real coefficients a;, that is*

H={xeR"xa=0b} acR" beR. (1.1)

Please note that a hyperplane generalizes our notion of plane for any
dimension: the equation ax + by = 0 in R? represents a line that intercepts
the origin and has an angular coefficient —a/b, the equation z = 0 in R®
represents the standard xy plane.

Convex bodies always contain some special points called extremal points
or pure points, that cannot be written as non-trivial convex combinations of
others3. Note that pure points always lie in the boundary of the convex set,
but the boundary usually contains non-pure points as well. All non-pure
points are called mixed.

Although we need all extreme points to describe the interior of a convex
body as its convex combinations, a single point always can be written as a
convex combination of d + 1 extremal points, where d is the dimension of the
convex set. This result is known as Carathéodory theorem and its proof can
be found on wikipedia [12] or in any introductory convex geometry book.

*Here x.a stands for the canonical inner product in R".
3A convex combination is trivial if one of the probabilities p; is equal to one.
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Theorem 1 (Carathéodory). Any point of a convex body C C R" can be written
as a convex combination of d + 1 extreme points.

A supporting hyperplane of a convex set C is a hyperplane that intersect
C and is such that the all elements of C lies in one of the closed halfspaces
formed by the hyperplane.

Definition 4 (Supporting hyperplane). Let C C R" be a convex set, and H :=
{x € R"|a.x = b} be a hyperplane. H is a supporting hyperplane if H and C have
at least one element in common and the halfspace Hs := {x € R"|a.x < b} contains

C.

The convex hull of a set A € R” is the smallest convex set that contains
A. For example the convex hull of a unit sphere S"~! := {x € R"| ||x| = 1}
is a unit ball B" := {x € R"| ||x|| < 1}, the convex hull of the set of points
V:={(-1,-1),(-1,1),(1,-1),(1,1)} isasquare S := {[—1,1] x [-1,1]} .
We are now ready for the definition of convex polytope.

Definition 5 (Convex Polytope). A polytope* is a set that can be represented by
the convex hull of a finite point subset of RN,

Definition 6 (k-face). Let C be a convex set and S one of its supporting hyperplanes.
The intersection F := S N C is a face of C. A face of dimension k is called a k-face
and has some special names for some specific values of k: O-face is a vertex; 1-face is
an edge; n — 1 face is a facet.

A set is written in V-representation if its described only by its vertices. By
definition, polytopes always admits a V-representation. Our intuition suggests
that convex polytopes can be described by its facets as well, that is, its tangent
hyperplanes. This intuition is correct, and we call this halfspace description as
‘H-representation. This equivalence between these representations is ensured
by the Weyl-Minkowisky theorem, and again, a proof can be found in basic
convex geometry books.

Theorem 2 (Weyl-Minkowisky). All convex polytopes P C R" admit a unique
‘H-representation with a finite number of linear inequalities.

These two different representations have different applications, and suggest
a natural question: how can we obtain the H ())-representation by knowing
the vertex (facet) representation? This problem is known as the vertex (facet)
enumeration problem, we’ll see in section 1.6 that this problem is equivalent® to
a central problem on nonlocality.

1.2 Single boxes

We now start our study of correlations, boxes, and probabilities. Before formal
definitions, let’s understand some motivation behind it.

4Since we are only concerned in convex scenario, we may use the word polytope and convex
polytope interchangeably.
5More formally, they belong to the same complexity class.
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Imagine an experimental setup constructed in a physics lab. Alice, that
has no idea on how the experiment was constructed, knows all probabilities
to obtain a certain result. To focus on the probabilistic description, we could
imagine that the whole experimental setup is inside a black box®, in which the
only thing Alice can do is to press one of I different buttons, called inputs, to
obtain one of O different outputs.

For example, consider a black box with 1 input and 2 outputs conveniently
labelled by 0 and 1. This problem is fully described by a random variable
that may assume values 0 and 1, and the statistical data of this black box is a
probability distribution vector in R?,

r=l

By trivial generalization we see that an O output single button black box
can be described by an O-variable distribution vector in R®. Following the
same line, a black box with I different inputs and O different outputs per
input” is described by I different O-variable distributions, that can be repre-
sented as a vector R/C. This vector that completely describes the statistical
data of a given experiment will be called a single box.

Adopting the convention® Pa|a, for the probability to obtain the outcome a
after choosing the input Ay and labelling the inputs and outputs with natural
numbers, a single black box with I inputs and O outputs can be described by

PO‘AO pO‘Al,l
P14y <o Prar,
= . , ) (1.2)
Po-114y --- Po-11A;4

Remark 1 (Representation of distributions). Maybe, the clearest notation for the
probability of Alice to obtain the outcome a after choosing the input Ay would be
p(Ax = a|Ayx), but in more general scenarios this notation easily becomes cumber-
some. For the sake of compactness, we will always make the identification

p(Ax = alAy) = Pal A, (1.3)

Remark 2 (Box representations). Usually, vector space elements are represented by
column (or row) matrix, but in this text we will always represent boxes using n X m
matrices. For example, in a linear algebra text, the vector p € RO represented by
an I x O matrix in equation (1.2) would probably appear as

P:[Pomo Pijag -+ Po-1]ag Pojay -+ Polay o P1ja, PoquH]

6The term black box, borrowed from computer scientists, is used to talk about objects without
specifying its internal structure.

7We could also assume that each input has a different number of outputs, but this generaliza-
tion has minor interest.

8This is an useful compact notation for studying various different distributions. For more
details on this convention, please read remark 1.
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Please note that our matrix representation is more compact, which is useful for
high dimensional vectorial spaces. And in our context, we have the interesting prop-
erty that all columns are probability distributions, that is, single boxes are stochastic
matrices.

Definition 7 (Single-box). Let p, 4, be the probability of Alice to obtain the out-
come a after choosing the input Ayx. A single box with I inputs and O outputs
is collection of distributions that can be represented by a vector p € RIO where
elements satisfy

Pa) Ay >0Va, Ay, Zpa\Ax =1 VA,.
a

The set of all single-boxes that can be constructed with I inputs and O outputs
is called B(I,0).

It is also important to remark that a single box is just a convenient way to
express the probabilities of I different random variables that can assume O
different values.

We can easily check that B(I,0) is a convex set: convex combinations
of two boxes p and j always satisfies the positivity and the normalisation
condition:

Z(tpa\Ax + (1 - t)ﬁa\Ax) = t;(pumx) + (1 - t) Z(f]am,() =

a a
=t+1—t
=1

And by noting that a point of this convex set is pure iff it represents a box
with a deterministic probability distribution?, we see that B(I,O) is a convex

polytope.

1.3 Bipartite boxes

Imagine now Alice shares one black box experiment with Bob. That is, in
a different laboratory, Bob has access to Ip different input buttons and may
have Op different output results. Now, we also assume that Alice and Bob
only obtain their outputs after both press their input buttons™

A complete description of this bipartite scenario must specify all probabili-
ties pop|a,B, of Alice and Bob obtaining the results a and b when they press
Ay and By. This can be made by specifying the probabilities of 14 and I, two
variable distributions that can assume O,4, and Og different values. As in a

9A probability distribution is deterministic if contains only zeros and ones.

1°We also implicitly assume that the time order of pressing buttons does not affect the outputs,
that is, Alice pressing x and then Bob pressing y is the same as Bob pressing y and then Alice
pressing x. This assumption is related to the non-signalling condition, discussed on section 1.3.1.
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Rl [ [ [5]

offa] [offa] ' [offal [ofla]

Figure 1.2: A box illustrating the scenario (2,2,2), more discussed on section
1.8.

single box scenario, we represent this probabilities in a vector in R/4/8040z,

Poo|AqB, PoojA;, 1B, 4
B Po1|AyBy e Poi|A;, 1B,
p= . _ (1.4)
PoA-1,05-1|ABy -+ POs—1,05—1]A;, 1B; 1

Definition 8 (Bipartite scenario). Let 74 = {Ax}{f‘, Oy = {a}loA be the set of
inputs/outputs of Alice and Ty = {By}iB, Op = {b}?B be the set of inputs/outputs
of Bob. The 4-tuple S = (Za, O 4;Ip, Op) is a bipartite box scenario.

Since the label of inputs and outputs has no deep meaning, we also use the short-
hand notation S = (14,0 4; I, Op), and for the case where 14 = Ig and O4 = Op
we just write S = (2,1,0).

Definition 9 (Bipartite box). Let p|y, be the probability of Alice and Bob ob-
taining the outcomes a and b when they press Ay and By, respectively. A bipartite
box in the scenario S = (14,0 4; I, Op) is a collection of distributions that can be
described by a vector p € R4 (d = 14104 0p) in which elements satisfies

pab\AxBy >0Va,b, Ay, By/ Zpabmxlgy =1 A Ax,By. (1.5)
a,b

The set of all bipartite boxes that can be constructed in a specific scenario is B(S).
For the case where I = Ig and O 4 = Op we just write B(2,1,0).

As in the single box scenario, bipartite boxes are just one convenient
way to write a set of two variable probability distributions. And the set
B(I14,04;Ip,0g) is the convex hull of all bipartite deterministic boxes.

The structure of two variable distributions naturally suggest the notion
of correlation between two parts. But before exploring correlations, it is
useful to define marginal probabilities to connect the idea of two-variable with
single-variable distributions. Marginal probability formalizes what one would
call the probability of Alice to obtain a certain value a when A, and By are
pressed.
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Definition 10 (Marginal probability). The marginal probabilities p 4.5, of a two
variable distribution with coefficients papy 4, B, is

PajAy;B, "= Zpab\AxBy'
b
We also define the marginal probabilities Pb|B,;A, 85
Po|B,;Ax = Zpab\AxBy'
a

Remark 3. Maybe, the clearest notation for the probability of Alice and Bob to
obtain the outcomes a and b when they press Ay and B, would be p(Ay = a,B, =
b|Ay, By). So the marginals would be defined as

p(Ax = a|Ax,By) :=Y p(Ax =a,B, = b|Ay,By);
b

p(B, = b|Ay,By) :=Y p(Ax =a,B, = b|Ay, By).
a
But for the sake of compactness we will always make the identifications

p(Ax =4a, By = ble/ By) = pab|AXBy;
p(Ax = a|Ax; By) = Pa|Ay;B,
p(By = blAx; By) = pap,a.-

Intuitively, a two variable distribution is uncorrelated if we can describe it
only by its marginals. More formally, a two variable distribution p_ 4,5, is
completely uncorrelated if, for each fixed x,y,

Pab|AB, = Pa|A;B, Pb|B,:A, V0 b. (1.6)

It is interesting to note that deterministic two variable distributions are al-
ways uncorrelated, to prove this we just need to use the fact that deterministic
distributions only have events of probability zero or one. So randomness is a
necessary condition for correlations between two variable distributions.

In order to gain some interpretation on correlations it is interesting to
invoke a simple result from probability theory.

Theorem 3. For any fixed x,y, a two variable distribution p_|4 g, that can as-
sume O 4 different values on the first variable and Ogp different values on the second
variable can be written as

PablAcB, = ) Txy(A)Pa| aA PojByA (1.7)
p)

for some distribution 7t : Axy — [0,1] and one variable distributions p 5., P.[Byir-
Moreover, we can always chose the one variable distributions p .\ and p | ByiA
to be deterministic, and the cardinality of the set Ay is bounded by OOp + 1.
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Proof. The set of all two variable distributions that can assume O4 different
values on the first variable and Ogp different values on the second variable is a
convex polytope with O ,Op deterministic distributions as vertices. Now we
use deterministic p 4,y and p p,) to construct the vertices of the two variables
distribution polytope via the product of marginals pg 4, ByiA = PalAAPb|BA-
Since all points inside a polytope can be written as convex combinations
of its vertices, all two variable distributions can be written in the form of
Pab|AB, = LA Txy(A)Pap|a,B,1- We we guarantee the existence of a set Ayy
with cardinality O4Op + 1 by invoking Carathéodory theorem. O

The equation (1.7) allows the interpretation:

In principle, all two-variable distributions are uncorrelated and
deterministic, probabilities arise as an ignorance on A.

Due to this interpretation, A is usually referred as a hidden variable, since we
are forced to work with probabilities because we cannot have access to its
value.

Since bipartite boxes are just a collection of two variable distributions,
theorem 3 has two natural extensions for bipartite boxes.

Corollary 1. All probabilities of bipartite boxes admit the representation

PablacB, = Y Ty (A) Pa aAPojB,n (1.8)
B

for some distributions 7ty : Axy — [0,1], and one variable distributions p |4 .\ and
P.\By;)v

Corollary 2. All probabilities of bipartite boxes admit the representation

Pab|AsBy, = 2 TT(A)Pa AyiB,APbIB,: A A (1.9)
Py

for some distribution 7t : A — [0,1], and one variable distributions p| Ag;ByA and
P.|By;AxA-

Proof. To prove this corollary we just need that, since the distributions of the
vertices of the bipartite box polytope B(2,1,0) are deterministic, they can
always be written as

Pav|AyBy, = Pa|Ax;ByAPb|By;AcAr

by setting pg ., ByA and py, By;AA @S deterministic. Now, it follows by convexity
that all probabilities of bipartite boxes can be written in the form of 1.9. [

Another simple result that will be explored in next sections is that B(14,04) ®
B(Ig,Op) has the same dimension of B(I4,04; I, Op), this implies that we
can always represent a bipartite box p4p € B(2,1,0) as linear combinations
of tensor products of single boxes. The reader who is familiar with quan-
tum mechanics can now start making a parallel between bipartite boxes and
composed quantum systems.
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1.3.1 Non-signalling

Consider a two output, two input, deterministic bipartite box defined by

PoojAgBy = L P10jagB, = 1 PorjaB, =1 P11jas = 1- (1.10)

Other equivalent (and possibly, more enlightening) way to define this box is
writing™*

a=yb=x,
that is, Alice’s output is Bob’s input, and vice versa. Can we ask questions like
“What is the probability of Alice to obtain 0 while she presses Ap?”?

From marginal probabilities, we know that the probability of Alice obtain-
ing 0 while she presses Ay depends on Bob’s choice By,. If y = 0, Alice obtains
0,if y = 1, she obtains 1. So, if pg|4,:8, 7 Po|A,;B,- Alice’s probability to obtain
0 as pressing Ay, po|4,, may not have a precise meaning.

A natural question is, when can we talk about pg 4,7 Well, if Alice’s
marginal probabilities satisty poja,;8, = Po|4,;B, it is fair to define pg 4, :=
Po| Ay;By = Po|A,0B,- This condition is called non-signalling.

Definition 11 (Non-Signalling). A bipartite box is non-signalling if its probabili-
ties satisfy™>

;Pub\AxB}/ = ;Puh\AxBy/ = Pa|A, Va, Ax, By, By’

Y Pabja,B, = Y Pabla,B, = Pejp, b Ax, Ay, By (1.11)
a a

The set of all non-signalling bipartite boxes is denoted by N'S(14,04; Ip,Op),
or just NS§(2,1,0) in case I4 = Ig and O = Og.

Remark 4. Using the clear notation p(Ay = a, By = b|Ay, By) suggested in re-
mark 3 we see that the non-signalling condition allows us suppress the indexes |Ax,
|By in our notation. That is, without ambiguity, we can write

p(Ax = 61) = p(Ax = a|Ax) = p(Ax = a|Ax, B]/);
p(By =b) := p(By = c|By) =: p(By = b|Ax, By);
p(Ax = a,By =b) =: p(Ay = a,B, = b|Ay, By).

In the non-signalling scenario, we can understand Ay and By as usual random
variables. We will see in chapter 3 that the existence of the probabilities p(Ax = a)
and p(By = b) are the conditions imposed in a what we call a marginal scenario.

Informally, non-signalling is a necessary and sufficient condition for talking
about two “individual” parts'3, if Alice presses the input button Ay, she can
obtain an output a, independently of weather Bob pressed a button or not'4.

"In fact, all deterministic boxes admit this input/output representation.

>We remark that some authors refer tor non-signalling bipartite boxes as behaviours. This
term was coined in one of Tsirelson’s seminal papers [13].

3In signalling boxes, we have no rights to talk about individual parts, because one side can
“manipulate” the other probabilities by exploring p,4,;5, # PajAyB., -

™In information theory [14] this means that this box cannot be used for communication. That
is, exist a protocol in which Alice and Bob can use the inputs and outputs to send messages.
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It is very important to remark that the non-signalling condition does not
forbid correlations, we can still have pgp 4.5, 7 Paja,Po| By One good example
is the perfect correlated, that in the box in tﬁe scenario where Alice and Bob
have two outputs, can be defined as™

pOO‘AxB]/ = pll‘AxBy - 1/2

We can check that all distributions of this boxes are correlated, pg) 4, B, #
Pa|A,Pp|B, » and also the non-signalling condition holds true:

PoojA.B, T Po1|AB, = Pooja.B, T Poija.B, = 1/2 \CATAY

/
Pooja.B, T P10[AB, = PooaB, T Projase, = 1/2 VX, Xy

Another important remark is that the linearity of equations'® (1.11) ensures
that N'S(14,04; I, Op) is a polytope'”.

1.3.2 Local

For those who know A, there are no
correlations.

Theorem 3 ensures the classical intuition that all correlations between
probabilities arise as a possible ignorance from an inaccessible information.
What can we say about box correlations?

Before exploring box correlations, it is important to have a good compre-
hension of distribution correlations. Suppose Eve prepares a bipartite single
input box'8, p € B(2,1,2) using the following rule: she flips a coin; if heads,
she outputs 0 for Alice and 1 for Bob; if tails she does the opposite. Assuming
that the only source of uncertainty in this experiment is Eve’s coin’s result,
and that the coin returns heads with probability'® p(h), without knowing the
result of Eve’s coin, Alice and Bob’s best description of this box is

Pab = P(h)PajanPo|Bin + P(E)Pajait Po|Bits (1.12)

or more explicitly

poo = p(h)pojanPoiss + P(£)PojaxPos: = 05

)PojanP1BH + P(E)Pojaxpsr = P(h);
)P1janPoiBk + P(E)P1asPois: = P(1);

pi1 = p(h)p1anp1isn + P(E)P1jaxP1se = O (1.13)

'>Also note that the normalisation condition that implies that py; 4, B, = P10jaB, =0

16For real numbers, a =b < a>b, and a < b.

7Intersections of a polytope with a finite number of hyperplanes is also a polytope.

8 Although single input bipartite boxes are just two-variable probability distribution, we chose
this notation for further generalization.

9And tails with probability p(t) =1 — p(h).
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These equations say that Alice and Bob cannot predict their outcome with
certainty only because they do not have access to the coin’s result. In principle,
Eve (and/or others) can describe the whole experience by py, = 1 and
P10 = 1. In fact, we will later prove that Eve can construct (and then foresee
the results with certainty) all single input bipartite boxes just by flipping coins.

What can we say about general bipartite boxes? From corollary 2 we can
write ppia,p, = LA ”xy()‘)Pule;ApblBy;Af but we need various different 7 |,
distributions that depend on Alice and Bob’s input choice. This means that in
the general case, Eve must know their inputs to construct a bipartite box. One
could ask: what class of boxes can Eve construct if she cannot have access to
Alice and Bob’s inputs Ay and B,?

Definition 12 (Locality). A bipartite box is local if all probabilities can be written
as

Pab|aB, = Y T(A)PajagAPrB,r V4, Y, (1.14)
)

for some distribution 7t : A — [0,1] and single variable distributions p4 .\ and
PBy;/\-

The set of all local bipartite boxes is L£(14,04; Ig,Op), or just £(2,1,0) in case
IA = IB and OA = OB.

This definition was first presented in John Bell’s 1964 seminal paper [15].
Bell was motivated by studying correlations that have a same common cause:
the distribution 7t over A.

It must be clear that, for local boxes, we can always define Alice’s marginal
probabilities regardless of Bob’s choice. That is, all local boxes are non-
signalling.

Theorem 4. L£(I4,04;1p,08) C NS(I4,04;Ip,Op).

Proof. Since the role of A and B, is symmetric in both definitions, we just
need to prove that if we assume equation (1.14), the marginal PalAyB, does
not depend on B,,. Explicitly:

pule;By = Zpab\AxBy
b
=) 7(A)Paja,ia PoiB,ins
bA
= Z”()\)Pa\Ax;A(ZPb\Bw\)}
A b

=Y (A pajaa-
)

O

For some very particular scenarios, locality is equivalent to non-signalling.
In these cases we say that the scenario is trivial.
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Theorem 5 ( 2°).

B(2,1,0) = £(2,1,0);
L(I4,04;1p,1) = NS(I14,04;15,1);
L(1,04;1,0p) = NS(1,04; Ig, Op).

This theorem follows as a corollary of theorem 22, to be proved on chapter
3. In fact, this theorem is even stronger. These particular scenarios are the
only ones in which non-signalling implies locality. It may be surprising to
know that there are nonlocal boxes that respect the non-signalling condition,
in section 1.8 we will illustrate this fact in the (2,2,2) scenario.

We now exhibit an equivalent definition for local boxes that explore the
vectorial character of box spaces.

Theorem 6. A bipartite box p € B(14,04; Ig,Op) is local iff it can be written as

p=Y 7t(Aph®ps (1.15)
A

where T : A — [0,1] is a distribution, p’y € B(14,04), and p} € B(Ig, Op).

Proof. To prove this theorem we just need to recognize that the components
of p are exactly

Pab|AcB, = Z”(A)Pa\Ax;/\Pb\By;A-
A
O

This simple theorem provides an interesting parallel between nonlocality
and quantum entanglement. In section 2.1 we define quantum entanglement
and present a brief discussion on this analogy.

Before ending this section, we make an important connection between
deterministic non-signalling boxes and local boxes.

Theorem 7. A bipartite box is local iff is a convex combination of bipartite non-
signalling deterministic boxes.

Proof. As proved before, all local boxes are non-signalling, so we only need
to prove that convex combinations of non-signalling deterministic boxes are
local.

Since any deterministic two variable distribution is completely uncorre-
lated, any deterministic non-signalling box has the probabilities in the form

Pab|AxByA = Pa|Ax;APb|ByA-

Now, we just check that convex combinations of these probabilities is exactly
the definition of locality,

Y 7t(A)Pabj A,y = 2 TT(A)Pajaa PojBya-
p) p)

O

2°Tt may be useful to recall that S = (N, I, O) represents a scenario with N parties, I inputs
per party, and O outputs per input, and &’ = (I4,04; Ip, Op) represents a bipartite scenario
where Alice has I, inputs and O, outputs per input, Bob has Ip inputs and Op outputs per input.
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Corollary 3. The set of local boxes is a convex polytope in which vertices are deter-
ministic non-signalling boxes.

Due to this fact, the set of all bipartite local boxes is also known as the
local polytope.

1.3.3 Quantum

How can we describe boxes that represent quantum experiments? In other
perspective, what class of boxes can Eve prepare with quantum systems? The
ones who are familiarised with quantum mechanics may say: “we just need
to prepare a certain quantum state and choose some measurement operators,
then the probabilities to obtain a certain output will be given by the quantum
measurement postulate”. And that is exactly the definition of quantum boxes,
the ones that can be constructed by measurements on quantum systems.

We will now define all quantum objects that are necessary for under-
standing quantum boxes, but nothing more than that. Readers that do not
feel comfortable with quantum mechanics are invited to read Nielsen and
Chuang’s book [16], or for introductions to quantum mechanics more focused
on nonlocality we suggest [17, 18, 19, 20].

Definition 13 (Quantum Theory). Let H, be an n-dimensional Hilbert space over
C. A quantum state is a trace 1 positive semidefinite** linear operator p : Hy, — Hy.
A set of operators M = {M'} is a quantum measurement set if all M' : H,, —
H,, are positive semidefinite operators that sumf to identity, Y; M! = 1.
The probability to obtain the result i after subjecting the state p to the quantum
measurement M is pj,p = tr pM:.

We are now able to define bipartite quantum boxes.

Definition 14 (Quantum Boxes). A bipartite box is quantum if each probability
can be written as

Pabjas, =t (0ABAT ®B))  Va,b,x,y,

for a certain quantum state pap : Hy @ Hy — Hy @ Hy and quantum measure-
ment sets Ay = {AL}, AL : Hy — Hy and By = {B}},B) : Hin — Hum.

The set of all quantum bipartite boxes is called Q(I4,0; I, Op), or just Q(2,1,0)
in case I4 = Ig and O4 = Ogp.

Please note that this definition does not specify the dimension of the
Hilbert space associated to the quantum system, that is, to understand
Q(I4,04;I5,0p) we may need to deal with infinite dimensional vector
spaces>>.

Quantum measurements on one single part® cannot alter the results on
the other one. In our text, this means that bipartite quantum boxes are
non-signalling.

2! An operator p : H, — H, is positive semidefinite if satisfies (v, pv) > 0, Vv € H,.

*?In fact, in [21] the authors suggest that some quantum boxes need measurements on infinite
dimensions to be constructed.

*3They are also called local measurements, and are represented by measurement operators that
take the form {M, ® I}.
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Theorem 8. Q(IA, OA; IB, OB) Q NS(IA, OA; IB, OB).

Proof. The proof follows from a straightforward calculation that checks that
all boxes p € Q(I4,04;Ip, Op) satisfy the conditions p,|4,p, = Paja,s,, and
PojA.B, = Pb|ALB,:

Pa|AcB, = Zpab\AxB},;
b
=Y tr(paA} ®B});
b
=tr (papA; @ () By));
b

= tr(paAy @ (I)).
O

Also, all local boxes can be simulated by quantum systems. Before proving
that fact, we would like to explicitly show that all probability distributions
can be simulated by measurements on quantum systems.

Theorem 9. All multivariable probability distributions p can be simulated by per-
forming measurements on quantum systems.

Proof. For simplicity, we will first assume that p is a single variable distribution
represented by probabilities {p;}KX ;.

Define quantum a state p : Hx — Hg and quantum measurement opera-
tors M/ : Hx — Hk

K .
p= ZpiHi/ M = H]/
i
where {IT;}X is a set of unidimensional orthogonal projectors. Now, by
straightforward calculation we can check that these operators define a valid
quantum system** and tr pM' = p;.

For multivariable distributions, we can use exactly the same technique, we
just need to enlarge our Hilbert space. O

Theorem 10. £(IA,OA,‘ IB/OB) - Q(IA,OA,‘IB,OB).

Proof. Just note that it is possible to construct a quantum state and some
measurement operators to obtain any local box probabilities. For example, we
can always use the state

pap =Y. m(A)ph ® o}
A

and measurement operators that satisfy (see theorem 9)

tr (04 AY) = Paja,n,  and tr(0BY) = pyjp, 00

A, M >0, trp=1, M =1
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to obtain

tr(0apA; ® By) =) 71(A)PajagaPo|B,n-
A

O

Although all local boxes are quantum, there are nonlocal quantum boxes.
This result is known as Bell’s theorem?> [15], and has some deep consequences
on foundations of quantum mechanics. The first immediately consequence is
the absence of generalization of theorem 7: some quantum systems cannot be
described by convex combinations of deterministic boxes.

The set Q(I14,04; I, Op) is convex [22, 23], but differently from previously
discussed box sets, it is not a polytope?®. This fact makes the structure of
quantum box sets much more complex.

Theorem 11. The set Q(I4,04; I, Op) is convex.

Proof. We need to show that if p', p? € Q(I4,04;13,03), then Ap! + (1 —
A)p? € Q(I1a,04;1p,0p).
If p!, p> € Q(I4,04;13,0p), there are quantum states p', 0> : H, @ H, —

Hy ® Hy and quantum measurements operators Agg”, B]y'b : Hy — Hy such
that

141, 1,by.

p;b\AxBy =tr (P Axa ® By )r
b

Pajas, = tr(°AY @ BYY).

Now, we define a state § : Hoy, ® Hoy — Hon ® Hap and measurement
operators A%, Bﬁ : Hopy — Hoy as
pi=A @I @I 4 (1 - A)p? R T2 @ I
AL = AV QIT + AX @ TT%
B =B @II' + B 112,
where IT!,T12 : H, — H; are orthogonal unidimensional projectors. Now

we check that the probabilities of this new quantum system are exactly the
convex combination of the older ones,

Pani 4,8, = tr(pAS ® By) =

=M (o @I @ TT[(AY" @ IT + AV @ 1) @ (B @ I + By @ T12)])

+ (1= tr (P> @I RIP)[(By 9 TT' + BY* © T1%) @ (B’ @ IT' + By’ @ I1%)])
= Mr(p' Ay @ BY") + (1 - A) tr (0*AY" © B)

= /\pl,llb|AxBy +(1- /\)sz\AxBy-

So we can always construct a quantum box that provides us the probabilities
of the convex combination Ap! + (1 — A)p?. O

*5Some times also stated in phrases like “Quantum mechanics is a nonlocal theory”, or
“Quantum mechanics cannot be described by local hidden variables”.
261n section 1.8 we will see that Q(I4,04; Ip,Op) has infinitely many extremal points.
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Please note that we explored the freedom on the vector space dimension to
prove the convexity of Q(I4,04; I, Op). In fact, if we require quantum states
to lie in a Hilbert space with a fixed dimension, the set of quantum boxes may
not be convex [24].

1.4 General properties on bipartite box sets

Before starting with multipartite boxes, we summarize some important prop-
erties of bipartite box sets. We also anticipate that these properties still hold
for the multipartite scenario.

¢ They respect the hierarchical relation
L(S) C Q(S) CNS(S) C B(S),

where, S = (I4,0,4; I, Op) is a bipartite scenario with more than one
output and input per part®’.

¢ All previous bipartite box sets are convex.

* Except from the quantum, all sets are polytopes.

1.5 Multipartite scenario

All previous concepts developed for bipartite boxes will be now generalized for
an N-partite scenario. As N grows, the number of possibilities on signalization
and nonlocality became larger. And although most generalizations are quite
natural, some difficulties may appear due to a necessarily heavy notation.
In order to help the readers to visualise multipartite boxes, we will provide
illuminating examples.

1.5.1 Multipartite boxes

In the bipartite scenario, we allowed each part to have different number of
outputs and inputs. This freedom has minor interest and may lead us into
very cumbersome notation. So, for practical reasons, we will now assume that
each part has access to I different inputs and O different outcomes per input.

Definition 15 (Multipartite scenario). Let Z,, = {in}._;, On = {04}5_; be the
set of inputsfoutputs of the party n. The 3-tuple S = (N, {Z,}N,{O0,}N) is a
multipartite box scenario.

Since the label of inputs and outputs has no deep meaning, we also use the short-
hand notation S = (N, I,0).

Definition 16 (Multipartite box). Let

p0|l = p0102...0N‘11‘12i2...Ni

27If the parties have only one input or output, the sets may be equivalent.
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be the probability of the parties 1, 2, ..., N to obtain the outcomes o1, 02, ..., ON,
after they chose (respectively) the inputs iy, iy, ..., in. An N-partite box in the
scenario (N, I,0) is a collection of distributions that can be described as a vector
p € R? (d = (IO)N) in which elements satisfy

Poi 20 Yoi, Y poi=1 Vi (1.16)
o

The set of all N-partite boxes that can be described with I inputs and O outputs
is B(N,1,0).

As in the bipartite scenario, the set B(N, I, O) is the convex hull of de-
terministic multipartite boxes, and its elements are just a convenient way of
representing IV different N-variable distributions.

The definition of marginal probabilities for N-variable distributions is
completely analogous to the two variable ones, except by the difference that
more variables allow to talk about more marginal possibilities. Let us take a
closer look at the tripartite case.

The number Por0s031;,2,,3;, TePTEsents the probability of parts 1, 2, 3 to

213
obtain the outputs 01, 02, 03, after pressing i, iy, i3. The distribution P1;,2,3;,

can provide us 6 different marginal probabilities:
Poi 123, = 2 Poy0031;,2:,3,7
0203

Po 2,714, 3, = Z Poyoy03]1;,2;,3;, 7
1713 0103 172713

Pos|3i,:15,2;, = 2 Po10031;,2:,31,7
0102

Pojoa|1;,2i, 3, *= 023: Po10y03]1,2:,3i,7
Poos)2;,3i,:11, *= ; Poy0y03/1;,2;,3,7
Poros|1;, 31,21, *= ; Po10y03]1, 2,31, -
Before moving to the general definition, we remark some possible notation

issues.

Remark 5. As inl po; = Po,oy...on/1; 2: Ny, We are going to use bold letters for
representing a list of variables.

o [ will represent parties involved, for example | = 2,3,5 represents the parties
2,3, and 5.

o [ is the complement of I, for example if | = 2,3,5, then [ = 1,4,6,...,N.
® The set Oy is the set of all possible outcomes related to the list I.

Definition 17 (Marginal probability). Given an N wvariable distribution with
coefficients p,|; and a list | we define the marginals as

Poyliyiz *= Zp"lo[|ilil_‘ (1.17)
Or
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1.5.2 Non-signalling boxes

Definition 18 (Non-Signalling). An N-partite box p € B(N, I, O) is non-signalling
if the marginal probabilities for all list of parties I do not depend on the other parties
I input choices. That is, all marginals can be written as Pollivi; = Poyliy-

The set of all non-signalling boxes with N parties, I inputs per party, and O
outputs per input is denoted by NS(N, I,0).

One interesting theorem proved in [19] states that if all marginals with
N — 1 variables are non-signalling, the whole box is NS. For example, in a
tripartite scenario, if 1 cannot signal to 2 and 3 and that 2 cannot signal to 1
and 3, we deduce

_ e
Z P010203‘l’1i2i3 - Z p010203‘l’,1i2i3 v 03,11111213
01,02 01,02

01,02

(1.18)

which is the condition that 1 and 2 cannot signal to 3.

Another important remark is that, like in bipartite scenarios, NS(N, I,O)
is a convex polytope and a multipartite box can be used for communication iff
is signalling.

1.5.3 Local boxes

Definition 19 (Locality). An N-partite box is local if all probabilities can be written
as

pﬂ‘i = Z n(/\)pol\li] ;)\p02|212;)t ttt p0N|NiN;)\ vo/ i’ (1'19)
A

for some distribution 7t : A — [0,1] and single variable distributions py, ;).
The set of all local multipartite boxes with N parties, I inputs per party, and O
outputs per input is denoted by L(N,1,0).

We also remark that £(N,I,0) is the convex hull of all non-signalling
deterministic boxes, and it is also called as local polytope. Also, the parallel
with quantum entangled states still remains: a multipartite box is nonlocal iff
it cannot be written as convex combination of tensor product of single boxes,
p =Y 7m(A)p} @ py @...p%. The proof of these theorems are completely
analogous to the ones proved for bipartite boxes.

An interesting question related to nonlocal multipartite boxes is: do we
attain different kinds of nonlocality by exploring multipartite boxes? For
example, in the tripartite case, are there nonlocal boxes that cannot be written
as nonlocal bipartite boxes? This property, referred as genuine multipartite
nonlocality may be trickier than one could imagine. For example, although
we have important results on genuine multipartite nonlocality since 1987
[25, 26, 27], a “good” definition only became public in 2011 [28].
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1.5.4 Quantum boxes

The boxes that we can construct with quantum systems follow from simple
generalization. Also all other properties presented for the bipartite scenario
still remain: quantum multipartite boxes form a convex set with infinitely
many extremal points and respect L(N,I,0) C Q(N,I,0) C NS(N,1,0).

Definition 20 (Quantum boxes). An N-partite box is quantum if each probability
can be written as

Poji = tr(p 17 @22 ® ... Ny)  Vo,i,

for a certain quantum state p : HEN — HEN and quantum measurement sets
L= {19} 10"« Hp — Hu, 20 = {27}, 272« Hp — Hu, ..o, Ne = {NQ'},
Nﬁ}j cHn — Hae

The set of all quantum N-partite boxes with I inputs per party and O outputs
per input is Q(N, I,0).

1.5.5 General properties of multipartite box sets

As stated in section 1.4, multipartite boxes also obey some general properties.
* They respect the hierarchical relation
L(S) C Q(S) c NS(S) C B(S),
where, S = (N, I,0) is a multipartite scenario with?® I,0 > 2.
¢ All previous multipartite box sets are convex.

* Except from the quantum, all sets are polytopes.

1.6 Bell inequalities and the facet enumeration problem

When satisfied they indicate that the data
may have, when not satisfied they indicate
that the data cannot have, resulted from
actual observation [29].

George Boole

Given all probabilities of a certain box, how can we decide if this box is
local, in the sense of definition (19). Geometrically, given p € B(N, I,O), how
to decide whenever p € L(N, I,0)?

The problem of deciding if a certain p lies inside a polytope is famous
in computational geometry. One way to solve it is to check if p satisfies all
halfspace inequalities. Theorem 7 guarantees that the vertices of the local
polytope are the non-signalling deterministic boxes. So, we can reduce our

281f the parties have only one input or output, the sets may be equivalent.
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question to the facet enumeration problem, that is, to find the H-representation
of a convex polytope.

There is an algorithm based on the Fourier-Motzkin elimination®® that
transforms the V-representation into the H-representation [32]. Moreover,
there is a algorithm implemented in C that performs this transformation [33],
so the problem of finding all facet inequalities is, in some sense, solved. We
said in some sense because the time computational complexity of the best
known algorithm for solving this problem is3° O(d!V?) [35], where V stands
for the vertex number and 4 is the dimension of the polytope3*.

In complexity theory, algorithms that have exponential complexity are
non-efficient3>. Readers that are not familiar with computation may take the
following rule of thumb: “Non-efficient algorithms takes a very long time to be
solved even with very good computers”. If the best known algorithm to solve
a certain problem is non-efficient, this problem is said to be computationally
hard [36].

1.6.1 The facets of the local polytope

The first ideas on exploring correlation sets as convex polytopes were proposed
by Froissart in 1981[37]. It took 12 years until someone (Boris Tsirelson)
explored these geometric aspects on nonlocality [13]. But now, almost all
papers on nonlocality use this geometric vocabulary.

Due to John Bell’s seminal paper on non-locality [15], the hyperplanes that
describe the local polytope are called Bell inequalities.

Definition 21 (Bell inequalities). The linear inequalities that are respected by all
local boxes are called Bell inequalities.

Inequalities that are equivalent to the positivity, normalisation, or non-signalling
condition (equations (1.5) and (1.11)), are said to be trivial.

Bell inequalities defining facets are called tight.

We could not end this section without commenting the very curious fact
that pioneer papers on nonlocality were published without mentioning that
Bell inequalities actually date back to 1862, due to George Boole’s works
[29, 38]. Most famous for his contributions to mathematical logic, Boole also
has some papers on probability in which he considered the question: How
can we decide if a certain set of probabilities came from a valid statistical data.
Immersed in a classical scenario, Boole could not think that a nonlocal set of
probabilities might be physically possible, and after finding his inequalities
he wrote:

29 The first register to this algorithm dates back to 1826, in a work by Fourier [30]. Without
knowing Fourier results, Motzkin rediscovered it 1936 in his thesis [31].

3°We also remark the existence of a discussion on how should we measure the complexity of
this problem [23, 34].

3'In section 1.10 we will see that the dimension of the polytope grows exponentially in the
number of parts. So the complexity of our main problem is even larger.

32 An algorithm is efficient if, in the worse case, its time-complexity has a polynomial depen-
dence on the problem’s input.
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When satisfied they indicate that the data may have, when not
satisfied they indicate that the data cannot have, resulted from
actual observation.

Readers who are interested on Boole’s motivation may look for Pitowsky’s
review [39]. We also remark that Pitowsky’s book on quantum logic [22] has
a similar approach to nonlocality using ideas similar to the ones proposed by
Boole.

1.7 Full-correlation sets

In this section we will develop a sufficient’> method to tell if a certain box
is nonlocal. This method consists in defining a projector map that can be
used to infer some properties of correlation boxes without specifying all its
probabilities p,;.

1.7.1 Full-correlator for bipartite dichotomic boxes

For a two variable distribution p_ |4, B, that can assume the values 0 and 1, we
define the correlator map as

<AxBy> = PoojAB, T P11|AB, — P01|AB, — P10|A.B,
= Pa=b|A:B, — Pab|A:B," (1.20)

The correlator of a distribution satisfies some interesting properties: if Alice
and Bob outputs are always the same, (A,B,) = 1; if they are always the
opposite, (AyBy) = —1; if they are completely random, (A,B,) = 0.

This notation is inspired by the fact that if we treat Ay and B, as random
variables that can assume the values 1, the correlator is formally equivalent
to the expected value of the random variable A, By,

<AxBy> "“=P+1+1|ABy T P—1-1|AB, — P—1+1|AB, — P+1—1|AB,
=Pa=b|AB, — Pa#b|ABy

The correlator map for distributions has a natural extension for dichotomic

bipartite boxes. The full-correlator box map FC : RUIO? — R applied in a
box p is a full-correlation box pr = FC(p) that lists all possible correlators.
For example, full-correlation box of

pOO|AOBO Tt pOO‘A[A,lB[B,]
p— Poi|aoBy --- PO1|A;, 1Bj, 1
P1ojAoBy --- P10|A;, 1By 1
pllleBo e pll‘A[A,lB]B,]

is just
FC(p) = [(AoBo), (AoB1), ..., (Ar,-1Br-1)]-

33But not necessary.
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It must also be clear that various different multipartite boxes may lead to the
same full-correlation one. That is, the correlation map is not a bijection.

This map is interesting because FC(p) is usually much more simple to
deal than p, and we are going to prove that if FC(p) is nonlocal, then p is
nonlocal.

Inspired by the full-correlator of two-variable dichotomic distributions, we
also define the single correlator of a distribution p 4, as

(Ax) = poja, — P14, (1.21)

In next sections, we will see that we can explore single correlator map to
simplify some proofs and notations. Please also note that if A is a random
variable that can assume values +1 and —1, we can understand the single
correlator as the expected value of A,.

1.7.2 Full-correlator for multipartite dichotomic boxes

In the general case, the correlator map is a function that attributes a number
C € [—1,1] to an N-variable distribution that can assume 2 different values.

Definition 22 (Correlator for distributions). Let p, 1021011, 26y Niyy be the prob-

abilities of a dichotomic N-variable distribution. We set the dichotomic values to be
+1 and —1 and define the N-correlator map as the expected value

<1i12i2 e NiN> = ;0102 ...ON p0102---0N‘1i12i2---Ni .

An equivalent approach is to set the dichotomic values to be 0 and 1 and define
the correlator map as

<1i12i2 e NiN> "= Por@0y@...00n=0[1;, 2, ..Niy, ~ Por@oy@...@0n=1]1;;2;,...Nj, 7
where @ stands for sum modulo 2.

Definition 23 (Full-correlator for boxes). Let p € B(N, I,2) be an N-partite box.
The full-correlation N-partite box FC(p) is the list of all IN O-variable correlators
associated to p.

We are now able to define the full-correlation version of all previous box
sets B, NS, £, Q as all full-correlation boxes that can be constructed with
them.

Definition 24. The full-correlation box set FI3(N,1,2) is the set generated by all
full-correlation boxes of B(N, I,2). That is,

pr € FB(N,1,2) if dp € B(N,1,2), such that FC(p) = pr.

We also define FN'S(N,1,2), FL(N,1,2), and FQ(N,,2) in a completely
analogous way.
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Note that the set all full-correlation multipartite boxes FB(N, I,2) is an
hypercube of dimension I N since there are no restriction on the probabilities,
its vertices are vectors with entries +=1. We will now show that is also the case
for full-correlation non-signalling boxes3+.

Theorem 12. FB(N,1,2) = FNS(N,1,2), moreover these sets are hypercubes of
dimension IN with vertices being vectors with entries +1.

Proof. Clearly, FN'S(N,I,2) C FB(N,I,2), so we just need to prove that the
vertices (£1,+1,...,+£1) are attainable with non-signalling full-correlation
boxes.

Define two N-variable dichotomic distributions p* : {—1,+1}*N — [0,1]

as
+ L |£1 4 0107 ...0N]|

Poloz...oN T 2]\] ’

which are positive by definition and sum to unity,

I B |£1+40102...0n]
Z pO]OZ...ON - Z 2N /

0102...0N 0102...0N

(|:|:1+0102 0N—1| + |i1_0102~'-01\]—1|>,

2N

0103.. 01\1 1

i1+l+i1—1 Hf”f:*l +1 -1+ |+1+1
Z .

N
0102...-0N—1 oloz...oN,l 2
2
_ (N-1) < ).
- (2 )
:1/
where Zg’ogl ON , stands for summing for all o0; such that the product [T; o; is

equal to £1.
From the above calculation we can see that all marginals of p* are uniform.
For example:

+ _ +
p0102...0N_1 - Z p0102...DN
ON

_|:t1 +0102-~'0N71‘ + |:|:1 — 0102 ...0N—1
2N 2N
2
:271\],

and

+ _ + .
pol - 2 p0102...0N’

02...0N

. |:|:1-|—0102...0N,1|+‘:l:l—0102...0N,1‘ )
o Z 2N 2N ’

34] acknowledge Glducia Murta for presenting me this nice and simple proof.
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Now note the correlators associated to the distributions p* are equal to
+1

4 |j:1+0102...01\]|
Z p0102<--0N = Z 0102 ...0N 2N ;

0102...0N 0102...0N
- 0102 ...0N ‘:l:l +0102...0N,1| . 0102 ...0N |:|:1 — 0102 .. .ON,1| .
- Z 2N N !
0102...0N—1
R e S AL = e RS Y
- Z oN - Z 2N !
0102...0N—1 0102...0N—1
==+1.

Since all marginals of pi are uniform distributions, boxes that are constructed
with distributions p* are always non-signalling.

Now note that we have a technique to generate all vertices of the hypercube
FB(N, I,2) by applying the full-correlation map into non-signalling boxes. We
just need to associate the distribution p* to the inputs in which its correlator
is35 £1.

O

We may use the full-correlation version of box sets to learn some properties
of the non-full ones. For example, we can use FC(p) to infer nonlocality or
“non-quantumness”.

Theorem 13.

FC(p) ¢ FL(N,1,2) = p ¢ L(N,I,2)
FC(p) ¢ FO(N,L,2) = p ¢ Q(N,1,2)

Proof. The counterpart of the theorem is

p€ L(N,1,2) = FC(p) € FL(N,,2);
p€ Q(N,I[,2) = FC(p) € FQ(N,,2),

which is true by definition. O
The converse of this theorem is not true, but since full-correlation sets are

much simpler than the non-full ones, this theorem is extremely useful.

1.8 CHSH: an explicit example

As theorem 5 states, the set B(2,2,2) is the simplest one in which we can find
nonlocal boxes that are not signalling. In this section we provide a concrete
example of a local polytope, nonlocal boxes, and Bell inequalities. With this
example we develop some basic techniques that can be used on more complex

35For example, if we want that the full-correlator {A,B,C.) to be +1, we just set P..|AB,C, =
+

2
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scenarios. We also point out what are the particular features of 5(2,2,2) and
what characteristics hold for more general multipartite boxes.

Due to Clauser, Horn, Shimony, and Holt’s 1969 seminal paper [40], the
scenario (2,2,2) is known as the CHSH scenario. One interesting point is that
the inequalities presented by them were the first tight Bell inequalities ever
published. Bell did use some inequalities in his 1964 seminal paper [15], he
also proved that we can construct quantum boxes that are nonlocal, but he
was only concerned with one specific kind of correlations and his inequality
did not represent a facet of the local polytope.

We warn the readers that the approach used in this section is different
from the ones used in more traditional books of quantum mechanics [41, 16].
Usually they present one CHSH inequality (see subsection 1.8.2), prove that it
is respected by all local boxes, and exhibit an example of a quantum boxes
that violates it. Here we will discuss and analyse all previously defined box
sets individually.

1.8.1 B(2,2,2)

First, we establish the convention that all box probabilities will be represented
in the form

PoolAgBy  Po0jAgB;  Po0jA;By  P00|A{B;
PoijAgBy Po1|AgB;  Po1|A;By  P01|A1B;
P10lAgBy  P10|AoB; P10|A;By  P10|A1B;
P11|AgBy P11|AoB; P11|A;By  P11]A1B;

(1.22)

In this convention, the deterministic box in which Alice and Bob always obtain
the output 0 independently of their input choice is

PooA.B, = (1.23)

S O O
S O O

1
0
0
0

S O O

Now note that the vertices of the polytope B(2,2,2) are vectors like (1.23),
matrices in which columns represents deterministic probability distributions.
So, B(2,2,2) has 4* vertices, since each column can assume one of four
different deterministic distributions.

The H-representation of B(2,2,2) is given by all normalisation and posi-
tivity inequalities:

Zpab\AxBy =1, VAy, By, Pab|a,B, = 0, Va,b, Ay, By. (1.24)
ab
Using the normalisation condition of distributions, we can prove that we

need 3 x 4 parameters to describe an element of 5(2,2,2). So, B(2,2,2) isa
convex polytope of dimension 12 with 256 vertices.
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1.8.2 £(2,2,2)

With theorem 7, it is easy to decide which vertices of 5(2,2,2) are vertices
of £(2, 2,2), we just need to check which ones satisfy the non-signalling
condition. We also recall that in the non-signalling scenario, it is always
possible to understand Ay and B, as random variables that can assume two
different values. This suggests a useful notation for the vertices of the local
polytope: the vector L, 4 p,, represents the deterministic box in which we
always have A, = a, and By = b,. More explicitly,

[6000] [0%07] 10%0] 1997
Loooo = | 9000 |- Looor = |g000| Looto= |g000!|- Loott = | 5000 |
L0000 L0000 L0000 L0000
(0000 (6900 (2000 2900
Loioo = 0011 , Loin = 0010 , Lotio = 0001 , Lo = 0000 |7
L0000 L0001 L0010 L0011
SIS age
Ligoo = |77 00|, L1oor = |{p00 | L1oto0= |g100|- L1011 = |p000 ]’
L0000 L0100 L1000 L1100
ERTT S 11 N I 1
Liioo= {7700 L1101 = {010 L1110 = |9101|- L1111 = {9000
L0000 L0101 L1010 L1111

Please note that this technique is completely general, and can be used to
generate the local vertices of all multipartite boxes.

The H-representation of £(2,2,2) is given by trivial Bell inequalities (equa-
tions (1.24)) and the so called CHSH inequalities36:

—2 < —(AoBo) + (ApB1) + (A1By) + (A1B1) < 2; (1.252)
—2 < +(AgBo) — (AgB1) + (A1By) 4+ (A1By) < 2; (1.25b)
—2 < 4+(ApBp) + (AoB1) — (A1Bo) + (A1B1) < 2; (1.25¢)
—2 < +(ApBy) + (A9B1) + (A1Bg) — (A1B1) <2, (1.25d)

that together are necessary and sufficient conditions [42, 22] for locality in the
scenario (2,2,2).

Although it may be hard to prove that these are in fact all non-trivial Bell
inequalities for this scenario, it is easy to check that all local boxes respect
them. Just recall that the vertices of the local polytope are sets of deterministic
(so, uncorrelated) distributions that satisfy the non-signalling condition. For
such boxes, we can write

(AiBj) = (Ai)(B)), (1.26)

where the correlators can assume the values +1 or —1.
Now, using equation (1.26), we see that when analysing vertices of the
local polytope, we can always write

(AoBo) + (AoB1) + (A1Bo) — (A1B1) = (Ao)((Bo) + (B1)) + (A1) ((Bo) — (B1))

and check that the right hand side can only assume the values 42 or —2, and
by convexity we see that all local boxes respect the CHSH inequalities.

3In chapter 3 we will prove that these are all facet inequalities. But remember that we can
always find all Bell inequalities by using computer algorithms [22].
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1.8.3 NS(2,2,2)

Clearly, deterministic non-signalling boxes are vertices of the non-signalling
polytope. We also know that all other deterministic boxes are not members
037 N'§(2,2,2). So, how could one find the vertices of N'S(2,2,2)?

We know the H-representation of non-signalling polytopes (non-signalling,
positivity, and normalisation inequalities), but in some cases it is interesting to
have the V-representation. For the polytope N'S(2,2,0O), Barrett et al proposed
an interesting systematic technique to find all vertices [13]. But in general, the
problem of finding vertices of the non-signalling polytope is computationally
equivalent to the one of finding Bell inequalities?® [44].

Due to Popescu and Rohrlich’s 1994 result that we can violate the CHSH
inequality up to its algebraic maximum with non-signalling boxes [45], the
nonlocal vertices of N'S (2,2,2) are known as PR-boxes. A curious fact is that
Popescu and Rohrlich (and apparently, various others) did not know that
these boxes had been previously discovered by two different researchers (also
independently) Rastall [416] and Tsirelson [47, 13] both in 1985.

The 8 PR-boxes are:

i 1 s s
PRl:[0881}PR2:2{8818]/PR3:2[0180}'PR4—2{1808]/
1110 1101 1011 0111

Ay A s 1389
PR5—2[1110}PR6:2{1101]1PR7:2[1011}PR8:2[0111]~
0001 0010 0100 1000

We can also check that the PR-boxes violate the CHSH inequalities up to 4
(—4), its algebraic maximum (minimum).

1.8.4 9Q(2,2,2)

Even for this simple scenario, it is not known how all extreme points or the
inequalities that describe quantum box sets. This problem is so hard that in
1993, Tsirelson asked [13]

“Does the set of quantum behaviours3? this admit a description by a
finite number of analytic inequalities? Or even — polynomial inequalities?”, a
question tof which we have no answer.

Although we do not have the complete description of Q(2,2,2), we have
some important partial results. For example, it is known that all quantum

37These other boxes are signalling.

B Algorithms that are used to find V-representation can also be used to find the H-
representation [44].

Instead of quantum boxes, he used the term quantum behaviours, that are exactly the same
objetcs.
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boxes must obey4° the Tsirelson bound [48], that is

—2V2 < —(AoBo) + (AoB1) + (A1Bo) + (A1By) < 2v2;
—2v/2 < +(AoBo) — (AgB1) + (A1Bo) + (A1B1) < 2V2;
—2v2 < +(AoBo) + (AoB1) — (A1Bo) + (A1B1) < 2V2;
—2v2 < +(ABo) + (AoB1) + (A1Bo) — (A1By) < 2V2. (1.27)

These inequalities are proved to be tangent halfspaces on Q(2,2,2), that is,
we can always find a state and some quantum measurements to saturate these
inequalities [48].

It is also interesting to remark that, since the PR-boxes (nonlocal ver-
tices of the non-signalling polytope) violate one CHSH inequality up to +4,
the Tsirelson bound implies that they cannot be constructed by performing
measurements on quantum systems.

In [49, 50], Navascues, Pironio, and Acin introduced an infinite hierarchy
of necessary conditions for any set of quantum boxes. Exploring the first step
of the proposed hierarchy#*, they proved that all elements of Q(2,2,2) must
satisfy

— 1t < asinDyy + asinDgy + asinDqg — asinD11 < 7, (1.28)

where asin is the inverse of the sine function and
(Ax)(By)

Y- ) (- m7)

1.9 Full-correlation approach to CHSH scenario

Day = (AcBy) —

We now explore the CHSH scenario under the full-correlation perspective. All
full-correlation boxes will be represented as column matrices:

1.9.1 FB(2,2,2)

The 16 vertices of the full-correlation general (non-signalling) CHSH scenario
are just

F40B0)(A0B1) (A1Bo) (A1By) = , (1.29)

4°In other words, these are necessary, but not sufficient conditions.
4+ Hierarchy that, in the asymptotic limit, provides inequalities that completely characterise
the quantum box sets.
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where (A;B,) € {—1,1}. The H-representation is given by the trivial inequal-
ities |<AxBy>] < 1,Vx,y. We recall that all sets FB(N, I,2) are hypercubes
with edge size equals 2 and dimension IV.

1.9.2 FL(2,2,2)

We can easily find all the vertices of local full-correlation polytope by re-
membering that vertices can be reached by the full-correlation version of
deterministic local boxes, so we necessarily have (AxB,) = (Ax)(B,), with
(Ax)(By) € {—1,1}. It is useful to define

(AoBo)
Liag) (A1) (Bo)(Br) = §A150§ ,
(A1By)

so we can obtain all local vertices by straightforward calculation:

1 1 =l -1
_ |1 _ |- _ |1 _|-1].
Liviv=| 1|, Lyqv—=| 1|/ Liv—+=| 4|/ L+—=| 1 |
L 1] = L 1] =

1] 1] =l =l
_ |1 _ |- _ |1 _|-1].
Ly +v=| 4|, Ly——= ||/ Li—+=| 1|, L——=| 1 [s
=y L 1] =y L 1]

=l =l 1] 1]
N _ |1 _ | -1 _| 1.
Lyiy= ||, Lyyv—=| (|| L= ||, Lv+—=| 1|
1] =y L 1] | -1

-17 =17 1] 1]

_ | -1 _ |1 _ |- _ |1
L77++ — | =11 L*erf — | =11 L*fer - 117 L____= 11
=y | 1] | -1 | 1]

Note that exactly the half of the vertices above are redundant. This
happens because the full-correlation boxes are invariant over the substitution
Ay +— —Ay, By — —By for all x and y. For example L____ = Ly 4,
L+__+ = L_++_, etc.

The H-representation of F£(2,2,2) is given by the trivial inequalities

-1< (ABy) <1,

and all 8 CHSH inequalities, which are already in the full-correlation form. We
remark that for this specific scenario we have the property p € £(2,2,2) <=
FC(p) € FL(2,2,2). This is not true in general, and in section 2.4 we will
see that the CHSH scenario is the only multipartite scenario in which all Bell
inequalities are in the full-correlation form.

It is also possible to check that F£(2,2,2) is a hyperoctahedron with edge
size equals v/2 in dimension 4 [51, 52, 53].

1.9.3 FQ(2,2,2)

The extremal points and the inequality representation of FQ(2,2,2) were
discovered independently by Landau (1988) [54], Tsirelson (1993) [13], and
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Masanes (2003) [55]. The extremal points are
sin(6y)
Q(61,62,05) = [ ) ]
—sin(61+6,+63)

where 01, 65,03 € R, and the inequalities that completely characterise 7 Q(2,2,2)
are
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We remark that this result, is in some sense, weaker than the CHSH
inequalities. Of course, p € Q(2,2,2) = FC(p) € FQ(2,2,2), but the
converse is not true. There are non-quantum bipartite boxes that satisfy all 8
inequalities above [55, 13].

1.10 Geometrical aspects of box sets

We now summarize some geometrical properties on sets of multipartite boxes.

dimension vertices facets
B(N,1,0) (10) — N (ON)I™) (10N
NS(N,1,O) (I°—T1+1)N—-1 2 (IO)N
Q(N,I,0) (I°-T+1)N -1 oo 00
L(N,1,0) (I°~1+1)N -1 (1IO)N ?

The dimension of these sets were calculated in [56, 19, 13]. The facets of
B(N,1,0) and NS(N, I,0) are just the positivity inequalities, and the vertices
of L(N, I,0) are the deterministic non-signalling boxes.
It is interesting to remark that the set £(N, 2,2) is the polyhedral dual of
the set NS(N, 2,2), and this duality result only holds for I = O = 2 [57].
For full-correlations box sets we have

dimension vertices facets
FB(N,L1,2) IN 21" 2IN
FQ(N,1,2) IN 0o 0o
FL(N,I1,2) IN ? ?



Chapter 2

Developing some intuition on
multipartite box sets

— Are you sure of that?
- Yes!... I think!
Roy and Maurice Moss, The IT crowd

This chapter is focused on presenting examples, results, and proof tech-
niques for multipartite boxes. We hope that after reading this chapter, a
non-specialist will gain some intuition on the structure of multipartite box
sets.

2.1  Quantum violations of Bell inequalities

In this section we point out two necessary conditions on quantum systems for
constructing nonlocal quantum boxes: quantum entanglement and quantum
measurements that can be jointly performed. We start by defining quantum
entanglement, that, as stated by one of the founding fathers of quantum
mechanics’, is one of its most particular features.

Since its extension to a multipartite scenario is simple, but with cumber-
some notation, we will just present the definition for the bipartite case.

Definition 25 (Quantum entanglement [59]). A quantum state pap @ Ha ®
Hp — Ha ® Hp is separable if it can be written in the form

pap =Y m(A)ph ® o
X

for some distribution 7t : A — [0,1] and quantum states p’y : Ha — Ha, p}
HB — HB.

Quantum states that are not separable are entangled.

*Erwin Schrodinger [58]: “I would not call [quantum entanglement] one but rather the
characteristic trait of quantum mechanics, the one that enforces its entire departure from classical
lines of thought.”

43
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We now invite the readers to note that, as explicitly shown on theorem 6,
the definition of separable states is very closely related to the definition of
local boxes: quantum states are separable if they can be written as convex
combination of product states.

In quantum information theory, entanglement is understood as a resource
that can be used for protocols like, superdense coding [60], quantum tele-
portation [61], and possibly related to the exponential speed-up of quantum
computation [62]. Now we will prove that quantum entanglement is also a
necessary condition for constructing quantum nonlocal boxes.

Theorem 14. Quantum boxes constructed by local measurements on separable states
are local.

Although this theorem holds for all multipartite scenarios, we will just
present its proof for bipartite systems. We remark that the general proof
follows from simple generalisation.

Proof. We just need to check that performing local measurements on separable
states results in probabilities that can be described by a local boxes. Explicitly:

Pabj A8, = tT0ABA% ® BY;
=Y (A te[(ph © pp) (Af ® By)];
A

=Y (A tr (04 AY) tr (03By);
A

= ZH(A)pa|Ax;/\pb|By;)\'
A

O

A natural question arises: “can all entangled states be used as a resource
for constructing nonlocal boxes?”. If the quantum state is a projector?, the
answer is positive [63], but we remark the existence of bipartite entangled
states that cannot provide nonlocal correlations [64, 65] .

Another characteristic of quantum mechanics that is usually pointed as
very particular is that many quantum measurements cannot be jointly per-
formed. This characteristic is very closely related? to the fact that the measure-
ment operators of two different quantum sets, { A%}, { B}, may not obey the
commutation relations [A?, BY | =0,Va,b. In fact, it follows from a corollary
of theorem 21 that if all quantum measurement sets of a given part obey the
relation [A%, Afc/,] = 0 with x # ¥/, its associated quantum box is local.

Theorem 15. Let {A}} be a set of quantum measurements of one part of a bipartite
quantum box. If the measurement operators respect [A% , fcl/} = 0,Va,a" with
x # x' the associated quantum box is necessarily local.

*In quantum mechanics, these states are known as pure states.

3For the cases in which measurement operators are projectors, two quantum measurement
sets obey the commutation relation [A?, BY] = 0,Va, b iff they can be jointly performed. But in
general, the fact that two quantum measurements can be jointly performed does not imply that
[A?,BY] = 0,Va, b [66].
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The idea behind this theorem is the fact that if the measurement operators
of different sets commute, these measurements can be jointly performed.
And if that happens, we have a single probability distribution that takes care
of these outcomes simultaneously, so we can assign definite values for the
outputs associated to this measurements.

We remark that this theorem also holds for the multipartite scenario: if the
measurement operators of (N — 1) parties obey the commutation relation, the
associated quantum box is local.

2.2 The relabelling transformation

One very useful tool in the study of multipartite boxes is the relabelling
transformation, that was implicitly used in various papers but first formalised
in [67]. A relabelling transformation on a set of box probabilities consists in
permuting the label* of outputs and/or inputs. For example, in the scenario
(2,2,2) we have four different relabelling transformations:

* Alice performs an output relabelling: poyja,p, < P1p|a,B,
* Alice performs an input relabelling: pg 4, B, <7 Pab|AyB,
* Bob performs an output relabelling: py|4, B, < Pal|A,B,
* Bob performs an input relabelling: pay( 4,8, <> Pap|A,B,

The main motivation for this definition is the fact that a multipartite local
(nonlocal) box cannot be transformed into a nonlocal (local) one just by the
giving different names for the outputs and inputs.

This fact introduces some symmetries on the box sets B(S), NS(S), Q(S),
and L(S).

We say that two equalities, inequalities, or boxes are in the same class
if they are equivalent via relabelling transformation. For example, we can
characterise all Bell inequalities of the (2,2,2) scenario in two classes: trivial
ones, that are equivalent to

Pooj By = 0
and the CHSH ones (see section 1.8), equivalent to>

(AgBo) + (AoB1) + (A1By) — (A1By) < 2.

Also, the set of all non-signalling vertices can be described by two classes:
local ones, that are equivalent to

PoojAgBy P00jAgB; P00|A;By  P00|A;B; 1111

._ | Po1jAgBy Po1)AgB,  Po1|A1By, Poija | _ [0 0 0 0O

PL-= ~ 1o 0o 0 o]
P10jAoBy  P10|A¢B;  P10/A1By P10|A1B;

0 0 0 O

P11)AoBy  P11|4¢B,  P11]A1By  P11|A1B;

4We also remark the existence of relabel between parties, that we do not push further due to
the fact that they do not provide a different class of relabelling-equivalent boxes, inequalities, or
equalities.

>To prove that, it may be useful to note that the transformation poy 4,8, < P16/4, B, implies

in (AyBy) — —(AxBy).
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and nonlocal ones, equivalent to the PR-box

PoojAgBy  P00jAgB;  P00jA1By  P00|A1B; 1110

. |Po1jasB, Po1jAB, Po1|AB, Potjas | _ 110 0 0 1

PPR == “2l0 0 0 1
P10|AoBy  P10|AgB,  P10|A1By  P10|A1B; 2

1 11 0

P1114¢0By P11|A¢B, P11|A1By P11|A;B;
2.3 Box purification

Deterministic boxes are the ones in which every outcome can be predicted with
certainty. Such boxes admit a very simple description; we can write its outputs
as a function of the inputs without mentioning probabilities. Motivated by
the purification of quantum states [16], we will now try to understand an
N-partite box as a deterministic (N + 1)-partite one.

As an example, suppose Alice, Bob, and Eve share a deterministic box
p € B(3,2,2), in which inputs and outputs® are defined by”:

0A = IE/
0B = IE + IAIB,
0 = I4. (2.1)

If Eve presses her input I according to an uniform random distribution, Alice
and Bob’s statistics are exactly the ones obtained by a PR-box (more espeficly ,
PR;, see section 1.8.3), with an additional bonus that Eve learns Alice’s input.
Note as well that the outputs explicitly depend on others” input, fact that
implies that this is a signalling box.

2.3.1 Understanding Alice’s probabilities as Bob’s manipulation

Suppose Alice has a non-deterministic box p# € B(1,14,0,4). Can we under-
stand the probabilistic nature of p* as ignorance on Bob’s input choices on a
deterministic bipartite box? More formally, can we write

Palay = 2 T(Y)Pabja,B, - (2.2)
by

with ppia,p, € {0,1}, and 7 : Zp — [0,1] representing the probabilities of

Bob pressing By in a deterministic box pA8 € B(I4,04; 15, 0g)?

Let us analyse the case in which Alice has a box with two inputs and
two outputs, pA € B(1,2,2), and we want to understand it as a marginal of®
pAB € B(2,2;1p,1) That is, we want to write

A _ PojA¢B, Po|A;B,
= 7T ,
b ; 2 lpleBy P1)A;B,

®That take values on {0,1}.

7Here we are using addition modulo 2.

8 We recall that pAB € B(2,2;1g,1) is a box in which Alice has two inputs and two outputs
per input, Bob has two inputs and one output per input. Please note that if one part has only one
different output, we do not need to concern on the probability of obtaining it.
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for some distribution on Bob’s inputs 7 : Iy — [0, 1] and probabilities p, 4, B,

It may be clear that, if the number of Bob’s inputs #Zp = I is sufficiently
large, the answer is yes. Just take Ip as the number of vertices of B(1,2,2)
and write p4 as a convex combination of the vertices of B(1,2,2). In fact,
Carathéodory theorem guarantees that if Iz > d + 1, where d is the dimension
of B(1,2,2), it is always possible to find one pAB that purifies pA.

Please note that Bob’s outputs are not important for proving the existence
of this deterministic box, and Bob’s input choices y plays the same role of the
hidden variable A (see section 1.14).

Does this result hold for all single part boxes? Can we always understand
them as being marginals of deterministic bipartite boxes? Yes, but we warn
that this deterministic box must? be signalling, if not, we would always have

pa\Ax;By = pa\Ax and

Zn(y)pumx = Pa|A,-
Y

2.3.2 Multipartite purification

The result for box purification presented on the previous subsection also
holds for the multipartite case, and its proof is completely analogous. For
concreteness, before proving this fact, we will present some formal definitions.

Definition 26 (Purifying scenario). Let S = (N, I, O) be a multipartite scenario.
We define an (N + 1)-partite scenario where the (N + 1) part has Ip inputs and one
output per input as

Sp := (S; Ip). (2.3)

We will refer to Sp as the purifying scenario associated to S.

Definition 27 (Purifying box). Let S = (N, I,O) be an N-partite box scenario.
An (N + 1)-partite box P € B(S;Ip) purifies a p € B(S) if we can write all
probabilities of p as
Poli -= Z N(A)Po\i;)x (2.4)
A

with Pyj;,, € {0,1} for some distribution 7t : Zp — [0,1].

Theorem 16 (All boxes can be purified). Let S = (N,I,0) be a multipar-
tite box scenario and Sp = (S; Ip) its associated purifying scenario. When Ip >
dim(B(S)) + 1, any N-partite boxes p € B(S) can be purified by an (N + 1)-
partite box P € B(Sp).

Proof. Since B(S) is a convex set, we can write all its elements by con-
vex combination of its vertices (that are deterministic boxes). Then, we
invoke Carathéodory’s theorem (theorem 1) to ensure that we only need
Ip > dim(B(S)) + 1. O

We remark that the dimension these box sets as function of N, I, and O
are presented in section 1.10. And also, all purifying boxes P are signalling,
or else Pyjin = Poli-

9Except for deterministic single boxes, which are already pure.
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2.3.3 Box purification and nonlocality

Let us now illustrate one possible interpretation of box purification.
Imagine that Alice and Bob share a bipartite box p € B(2,2,2) that is
manipulated by Eve’s input choices A. Explicitly,

p=Y n(A)p",

A

where 71(1) represents the probability that Eve chooses the input A and the
respective boxes

Poo|AgBy;A  P00|AgB1;A P00|A1By;A  P00|AqByA

p/\ . | Po1jagBy;A Po1|AgBi;A PO1|A1By;A PO1|A1Bj;A
A 7

P10|AgBo;A  P10|AgBi;A P10|A1By;A P10|A1ByA

P11|AgBy;A  P11|AgBi;A P11|A1Bg;A - P11|A1By;A

which are the vertices™ of 5(2,2,2).

By theorem 16, all probabilistic boxes p can be understood as an ignorance
on Eve’s input choice. But what happens when p is nonlocal? If we recall
that a box is local if and only if it can be written as a convex combination of
deterministic non-signalling boxes, we are forced to admit that Eve must have
access to signalling bipartite boxes to manipulate Alice and Bob’s probabilities.

In some physical experiments'', we have strong reasons to believe that
signalling boxes cannot exist. The same reasoning suggests that probabilities
cannot arise from a third party manipulation.

We remark that the above interpretation is intimately related to the a priori
non-signalling loophole, discussed in section 4.1, and the security of device
independent protocols, discussed in section 2.9.

2.4 More on the (2,2,2) scenario

The art of doing mathematics is finding that
special case that contains all the germs of
generality.

David Hilbert

We now return to the (2,2,2) scenario to analyse some of its particularities,
and some characteristics that hold for all multipartite box scenarios. We warn
that focusing too much on the CHSH scenario may lead us to some misguided
intuitions, due to fact that some phenomena only take place in more complex
scenarios, but since these scenarios are very complicated, it is useful to hold
tight on a simple one and learn everything we can from it.

1°We remark that the vertices of (2,2,2) are deterministic boxes.

HSpecial relativity states that information takes a non-null time to propagate. So, if Alice and
Bob are far apart, and the process of obtaining an output after pressing an input is very fast, there
could be no signalisation.
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2.4.1 The Fine theorem

In the same paper where Arthur Fine provided all non-trivial Bell inequalities
for the CHSH scenario he also presented an alternative (but equivalent)
definition for locality [42]. We now enunciate the theorem presented in Fine’s
original paper, and in section 3.4 we prove a generalisation of it, that provides
an alternative definition for locality in all multipartite scenarios and also
establishes a direct connection between locality and the marginal problem (see
section 3.3).

Theorem 17 (Fine’s theorem). A bipartite box in the CHSH scenario p € B(2,2,2)
is local iff it is possible to construct a four-variable distribution with probabilities
Pyoarboby|AgA, BB, that can be used to recover all four distributions p. 1 AcBy via the
marginal calculations

PagbolAgBy = Zb pﬂ0ﬂ1bob1\AoA1BoB1’ Pagbi|AgB, = Zb Pﬂ0ﬂ1b0b1|AoA1BoBl;
ay,b1 a1,%0

Paybo|A1By = Zb Pﬂoﬂlbobl\AoAlBoBl’ Paiby|A1By = Zb P”0”1h0b1|AOAlBOBl'
ag,b1 ag,by

As anticipated, an extension of this theorem holds for all multipartite
scenarios: a box is local iff we can construct a “mother distribution” P that
describes all inputs-outputs simultaneously. In other words, we can assign
definite values to all outputs simultaneously iff the box is local.

2.4.2 CH inequalities

If we are concerned only with non-signalling boxes, we can use the normalisa-
tion and the non-signalling relations ((1.5) and (1.11)), to re-write the CHSH
inequalities as

—1 < pooja,B, + PoojaoB, + Pooja,By — PoojA,B; — PojAy — Pojgy < 0;
—1 < poojaeB, + PoojAeB, t Pooj4;B, — PoojaBy — Poja, — PojB, = 05
—1 < Pooja,By + PoojaB, T PoojAgBy — PoojAgB, — PojA, — Pogy <= 0
—1 < Pooja,B; + PoojA,By T P00|AgB; — Po0jAgBy — Poja, — Pojg, <0, (2.5)

that, due to Clauser and Horn, are known as CH inequalities [68].

Note that the CH inequalities only have terms involving the output 0,
a fact that can be very convenient in some situations'*. Also, there is a
useful theorem behind this representation. All non-signalling boxes can
be completely represented by probabilities’3 involving (O — 1) outputs [19,
22]. For example, boxes with two outputs can always be represented by
probabilities involving the output 0.

2Please see section 4.2.2 and theorem 25 for examples where the CH inequalities are more
convenient than the CHSH ones.

3We warn that for using this representation, we also need to consider the marginals. For
example, the CH inequalities involve the marginals p, 4, and pyp, -
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2.4.3 CHSH in quantum mechanics

Recall that a bipartite box is quantum if we can write all probabilities as
Pabl 4B, = T (At ® Bg) (see definition 14). Since all Bell inequalities are in
the form

Y. C(a,b,x,y)papjas, < K,
abxy

we can explore the linearity of the trace function, to define a Bell operator

B:= ) C(abx,y)A;® BS. (2.6)
abxy

With a Bell operator B, we can check if the quantum system with state p and
measurement sets { A%}, {B;} violates its associated Bell inequality simply by
evaluating tr pB.

Bell operators are useful for analysing nonlocality on quantum systems, for
example we can calculate the maximum quantum violation of a Bell inequality
just by finding eigenvalues of a self-adjoint operator. We now illustrate some
applications of Bell operators in the CHSH scenario.

Definition 28 (CHSH operators). Let {A?, Al} and {B?, B} },1,j € {0,1}, be
measurement operator sets on different quantum systems. A CHSH operator is de-
fined as

CHSH :=Ay®By+Ag®B1+ A1 ® By — A1 ® By,

where A; := AV — Al and B; := B? - B}.

We remark that the inequalities —2 < tr (0)CHSH) < 2 correspond to the
CHSH inequalities (1.25d), and in quantum mechanics, the quantity

<AxBy>p =tr (pAy ® By)

is known as the expected value of operator Ay ® By, for the state p.

By diagonalising CHSH operator we can find the maximum quantum vio-
lation of a Bell inequality and the states that attain it. And noting that CHSH
inequalities are symmetric via (—1) multiplication, its maximal quantum
violation is given by its norm*>

7

ICHSH| := max ‘(CHSH)
0>0,tr p=1

that can also be defined as the maximum singular value of the operator.

Theorem 18 (Tsirelson-Khalfin-Landau identity [47, 70]). The above defined
operators obey
ICHSHI? < 4+ |[Ao, Al [Bo, Bu]ll- 27)

Moreover, if all measurement operators are projectors, equality holds.

4Please note that these are self-adjoint operators. In quantum mechanics self-adjoint operators
are called quantum observables. A brief discussion on that is made on the beginning of chapter 4.

'5Readers who are not familiar with norms of linear operators are invited to the section 2.4 7
of John Watrous online lecture notes [69], that discuss operator norms and some applications on
quantum mechanics.
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For the case that measurement operators are projectors, the proof of this
theorem follows by straight forward calculation of CHSH?. For the general
case we can use an algebraic trick presented in [47].

Since ||[Ao, A1]]] < 2||AoA1| and operators A; have eigenvalues lying in
[—1,1], we can obtain the Tsirelson bounds (inequalities (1.27)) with inequality
(2.7).

Another important result that follows from inequality (2.7) is the fact that
the maximum quantum violation can be attained with quantum systems
lying in H, ® H,, which is the simplest quantum system that can present
nonlocality. This can be checked by setting Ay = By = 0, and A; = By = 0y,
where 0; is a Pauli matrix®.

We also remark that with Tsirelson-Khalfin-Landau identity it is easy to
check that if the measurement sets of one part obey the commutation relation
[A8, A?'] = 0, the associated box is necessarily local'”.

We end this section by proving that if we “force” a certain quantum
correlator to be maximum, we put some constraints on the maximal quantum
violation.

Theorem 19 (*®). Let p € Q(2,2,2) be a quantum box in which the associated
quantum state and all measurement operators are projectors. If |<AiB]->f =1, for
any given i, j, then max|(CHSH)| = 5/2.

In the proof of this theorem we will use some standard notation on
quantum mechanics. Readers that are not used to it can find some explanation
at the beginning of chapter 4.

Proof. Exploring the ideas presented in [72], we define

|Ao) := Ao @ 1[y), |Bo) := 1@ Bo|y);
|A1> = A1®11|1P>, |B1> Z:ﬂ®B1|l/J>.
So [[[A) |l = [[IB;)|| = 1 and

(Y|CHSHIip) = (Ao|Bo) + (Ao|B1) + (A1|Bo) — (A1[B1).

Now we choose (Ap|By) = 1, the proof being the same for other i,j. So
|Ao) = |Bg) and we can write the expected value of the CHSH operator as

|(@|CHSH|y)| = [1+ (Bo|B1) + (A1|Bo) — (A1|B1)|
< [14 (Bo|B1)| + [(A1](|Bo) — |B1))]
< [1+4(Bo|B1)| + [[|Bo) — [B1) |
( )

= |1+ (Bo|B1)| + v2/1 - (Bo|B1)

<5/2.

6Pauli matrices are very useful in the study of linear operators of H,, and its definition can
be found in the beginning of chapter 4.

7In fact, in [71] the authors prove that [tr pgCHSH| < 2 for all states p iff the measurements on
one part can be jointly performed. This theorem absorbs the above statement on the commutation
relation as a particular case.

8Proof obtained in collaboration with Mateus Aratjo, also presented in the appendix of [1]
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Note that (By|B1) = (Ap|B1) is real, as an expected value of a self-adjoint
operator, so we can pass from the third line to the fourth. O

We can generalize this theorem by fixing the value of |(A; ® B;)| and
optimising with respect to the other correlation terms. By using this frame-
work we can recover the above theorem, prove that if |(4; ®Bj> =0
and all quantum states and measurement operators are projectors, then
max|(CHSH)| = 3v/3/2 ~ 2.60, or prove that [(A; ® B;)| = 1/V/2 for all
i,j is a necessary condition for attaining the Tsirelson bound. The general
result is presented in figure 2.1.

22 |

28+

1 _1-05 05 1L 1
V2 V2

Figure 2.1: max|(CHSH)| as a function of any fixed expected value.

2.5 The (2,3,2) scenario

The bipartite scenario with three dichotomic measurements per party was
first studied by Froissart in 1981 [37], who completely characterised its local
polytope by tight Bell inequalities. We remark that Froissart’s results were
rediscovered by different authors in 2001, 2003, and 2004 [73, 74, 75] .

In this scenario, the facet representation of the local polytope has 4.(3.3) =

2
i = 72 CHSH inequalities, and 576 “new”
inequalities relabelling-equivalent to'?

36 positivity inequalities, 8

I33p7 = <A1> — <A2> + <Bl> + <Bz> + <A131> + <A2B1> + <A331>
+ <Ale> + <Asz> - <A3B2> + <AlB3> — <A2B3> <4. (2.8)

The I33p; inequality has some properties that differ from the CHSH ones.
First, it cannot be written in the full-correlation form, implying, that the local

*9Please note that since (X;) := pg|x, — p1)x,, We are assuming non-signalisation to write I3322
in this simple form.
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boxes of scenarios (2,1,2) with I > 3 cannot be completely characterised only
by its full-correlators.

Also, differently from the CHSH inequalities, maximal quantum violation
of I33p7 inequalities cannot be attained by quantum systems lying in Hy ® Ho,
and the results contained in [21] suggest that maximal quantum violation can
only be attained with infinite dimension vector spaces. This phenomenon will
be discussed again on subsection 2.9.1.

Also, there are quantum states that do not violate any CHSH inequality,
but violate I335,. Indicating that the problem of classifying the quantum states
that are useful for constructing nonlocal boxes may be very hard>°.

2.6 The (3,2,2) scenario

The tripartite scenario with two dichotomic measurements per party was
studied in [73, 74, 80].

In [73, 74] the authors characterise the local polytope by presenting 53856
inequalities organized in 46 different classes, and in [80] the authors analyse
the non-signalling polytope by presenting its 53856 vertices split into 46
different classes. This “coincidence” is investigated by Tobias Fritz in [57],
where he presents a simple bijection between the local and non-signalling
polytopes. Moreover, he also show that the set NS(N, 2,2) is the geometric
dual of L(N,2,2).

We now point out some curious facts about this scenario.

* Some vertices of the non-signalling polytope do not violate maximally
any Bell inequality [80].

* Some vertices of the non-signalling polytope violate maximally many
different Bell inequalities [80].

* There is one class of non-trivial Bell inequality that cannot be violated
by quantum boxes. These inequalities are related to the “Guess your
neighbour’s input” game [81, 82]

* One class of Bell inequality can be violated up to its algebraic maximum
with quantum boxes®’, but no extremal point can be reached by per-
forming measurements on quantum systems. These quantum boxes are
related to the GHZ argument [83, 84].

¢ There are inequalities that cannot be written in the full-correlation form,
implying that the local boxes of scenarios (N, 2,2) with N > 3 cannot
be completely characterised only by its full-correlators.

2°In [76], Asher Peres conjectured that a quantum state may be used for nonlocality iff it has a
negative partial transpose [77]. For the multipartite case, this conjecture was proved false [78, 79],
but the question remains open for the bipartite case.

*'We recall that, due to Tsirelson bound (inequalities (1.27)), this is not possible for CHSH
inequalities.
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2.7 Some results on the (N, I,O) scenario

Although simple scenarios are important for our comprehension, we saw in
last subsections that they may lead us to wrong conclusions. In order to put
the readers closer to the nonlocality research field, we now list some results
for more complicated scenarios.

¢ Using the results of last section, we conclude that the only non-trivial
scenario®* in which the local polytope can be completely characterised
only by full-correlation inequalities is (2,2,2).

e As we saw, in the (3,2,2) scenario, there are non-trivial Bell inequalities
that are not violated by quantum boxes. In [82], the authors show how
to find this kind of inequalities, and also that they can only appear in
scenarios with more than two parties. We also remark [85], where the
authors relate these inequalities to the local orthogonality principle, that
may be useful for studying quantum boxes.

e As in the (3,2,2) scenario, there are examples of quantum boxes that
violate non-trivial Bell inequalities up to its algebraic maximum, even
with these quantum boxes not being extremal points of the non-signalling
polytope. In [86], Addn Cabello shows that this phenomenon appear in
the bipartite scenario with three inputs per party and four outputs per
input (2,3,4), and in [87], he establishes a direct connection among these
boxes, state independent contextuality [88], and quantum pseudo telepathy
[89].

¢ In [90] the authors provide a simple technique to generate non-trivial
Bell inequalities for the (2,2, O) scenario. These inequalities are known
as CGLMP inequalities, and they were proved to be tight in [67].

¢ In [91] the authors provide a simple technique to generate non-trivial
Bell inequalities for the (2, 1,2) scenario. These inequalities are known
as Braunstein-Caves/chain inequalities, and they were proved to be not
tight in [73, 74, 75].

¢ In [51, 52] the authors present all full-correlation Bell inequalities for the
(N,2,2) scenario. They also show that the set of full-correlation local
boxes of this scenario is an hyper-octahedron, the geometric dual of the
full-correlation non-signalling box set for the same scenario.

2.8 General properties of nonlocal boxes in non-signalling
scenarios

In [92] the authors analyse general properties of nonlocal boxes in a framework
where signalling boxes cannot exist. In special they prove some monogamy
conditions that can be explored to guarantee security of some cryptographic

22 A scenario is trivial if its local polytope is is equivalent to the non-signalling polytope. For
examples on trivial scenarios, please see theorems 5 and 22.
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protocols. For example, let p € N'S(3,2,2) be a non-signalling tripartite box
shared by Alice, Bob, and Eve. If the marginal box> of Alice and Bob is
a nonlocal vertex of N'§(2,1,0), the distributions between Alice and Eve
are completely uncorrelated (see equation 1.6). And for the specific scenario
where the three parties have two dichotomic inputs, (3,2,2), if Alice and Bob
marginal box is nonlocal them Alice and Eve marginal box is necessarily local.

We remark that in this same paper, the authors show that non-signalling
physical theories that can be used for nonlocality have a no-cloning theorem, in
the sense that the parties cannot make copies of an arbitrary state**. They also
analyse the connection between nonlocality and other properties like intrinsic
randomness and disturbance associated with measurements.

2.9 Device independent protocols

Since the beginning of this dissertation we have been studying properties of
physical systems by considering only its statistical data. This approach can
be used for derive device independent protocols, that are protocols in which its
conclusions do not rely on the physical structure of the system but only on its
statistics.

In 1991, Artur Ekert presented one cryptographic quantum protocol in
which security was based on nonlocality arguments. The ideas presented on
Ekert’s paper were push further on [94, 95], where the authors show that in
a scenario where signalling boxes cannot exist, nonlocality can be used for
cryptographic protocols. Since then, other non-cryptographic protocols based
on nonlocality were developed, for example, random number certification [96],
state estimation [97], entanglement measurement certification [98], and dimension
witness®> [99].

We remark that in the physical world, the only way we know to construct
nonlocal boxes is by performing measurements on quantum systems or by
parties that can communicate with each other?. But we call the attention to
the fact that, differently from other protocols based on quantum mechanics,
the security of device independent ones hold independently of quantum
theory. Fact that put the device independent protocols as one big motivator
for physical realisation of nonlocal boxes, task that is showing to be more
complicated than initially imagined [100]. For more on implementation of
nonlocal boxes, please see chapter 4.

2.9.1 Dimension witness

We say that the dimension of a quantum system is the dimension of the
smallest vector space sufficient for its description. An analogous definition

23 A marginal box is the set of probabilities of the marginal distributions.

*4We remark that the no-cloning theorem for quantum mechanics is known since 1982 [93],
but before [92], its proof was based on the linearity of the vector space that describes quantum
systems.

*5Dimension witness will be discussed on next section

26We remark that nonlocal boxes that are constructed via communication between parties
suffer from the a priori non-signalling loophole, and they cannot be used for device independent
protocols. For more on that please see section 4.1 and the discussions on theorem 16.
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exists for classical system, where the dimension is the number of variables
of distribution necessary to define its physical states. The dimension of a
physical system is sometimes associated to its complexity, and for quantum
systems it plays a very important role on some cryptographic protocols.

As we saw in section 2.5, the amount of quantum violation of a given
Bell inequality may depend on the dimension of its associated system. This
phenomenon also happens for some inequalities in other scenarios, like the
(2,2,3), where the maximum quantum violation attainable for quantum sys-
tems lying in H3 ® H3 is strictly larger for quantum systems lying in Ho ® H,
[1o1].

In [99], the authors explore these results to develop the idea of dimension
witness, an inequality that can be used to bound the minimum dimension of
a physical (quantum or not) system just by analysing it statistical data. We
remark that, in real physical experiments it may be hard to know exactly what
is the minimum dimension necessary for describing its system.

More recently, the notion of dimension witness was explored’, in a frame-
work with two black boxes: one that can produce various different states,
other that performs measurements [103]. We remark that in this new frame-
work, the authors did not explore joint measurments, leaving a big room for
improvement.

*7Ideas that were already explored in a real physical laboratory [102].



Chapter 3

General box correlations

Sometimes, generalising makes the problem
simpler.

Marcelo Terra Cunha

In chapter 1 we presented the definition of a multipartite box, which is a
convenient way to represent IV different N-variable distributions. We also
discussed three cases of interest, non-signalling, quantum, and local boxes,
and analysed some of their properties.

In this chapter we continue our studies on sets of multivariable distri-
butions, but now in a more general framework, where we overcome the
multipartite interpretation. We develop the concepts of marginal condition
and contextual boxes, that play the same role of the non-signalling condition
and nonlocal boxes. Also, in this general formalism, we will be able to dis-
cuss simple and natural scenarios that were missed behind the multipartite
assumption.

We conclude the chapter presenting the results of [4], where, we' com-
pletely characterise the set of noncontextual boxes of the n-cycle scenario by
presenting its noncontextuality inequalities. That is the first time that a family
of noncontextual polytopes is described by its facets in a scenario with an
arbitrary number of settings.

3.1 General boxes

Imagine that Alice has a black box in her laboratory which has 3 input buttons,
labelled as Iy, I, and I3. Each input has two associated outputs, 0 and 1. This
box also respects one rule: it only works when Alice presses two buttons, that
is, to receive an output Alice must choose two different inputs I i and Ij.

The input/output probabilities of this box are given by three two-variable

*Mateus Araujo, Marco Tulio Quintino, Costantino Budroni, Marcelo Terra Cunha, and Adén
Cabello.
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Figure 3.1: An illustration a 3-input dichotomic box scenario.

distributions, that can be represented as a vector p € R1Z,

Poojn, Poo|Lb;  Poo|;L
Polnn, Poilb;  PoiLL
Piojn, Piojb  Pio|nLn
Punn, Pulpn  Piinn

(3-1)

Please note that the above box scenario is very similar to the others presented
on chapter 1, but with one important difference, we did not mention various
different parties, the whole blackbox is under Alice’s control. Note however
that the non-signalling property defined for multipartite boxes has a clear
analogue. If pg.;, = poj1,;1,, We can say that the inputs I, and I3 do not
“disturb”* I;, and unambiguously define the marginal probability pg;,. Lo-
cality also has its analogue, we can ask if it is possible to find a distribution
7 : A — [0,1] and single variable distributions p 1, \, p.j1,,, P.|1;,, such that

Pablizt, = 2 WA Pajr, Pelgar - V8,0, 9. (3-2)
)

To motivate more the problem, we invite the readers to analyse the correlations
of this box

Pooin, PooiLI;  Poo|lzL 0 0 0

p= Poinn, Poinls  Poisn | _ |1/2 1/2 172 (33)
PojnL  Pojbl  Plo|LL 1/2 1/2 1/2
Pun, Pubn  Punn 0 0 0

Note that the outputs are always anticorrelated, that is, after pressing I; and I,
and checking that the button I; outputted 0, she is sure that the output of I
will be 1. Can probabilities of this be written on the form of of equation (3.2)?
That is, can we understand its probabilistic nature a result from a unknown
variable A?

Well, let us assume that the outcomes of this box could be, in principle,
deterministic. This means that we could assign a number, let us say 0, to
the output of I;. By the anticorrelation, we must assign 1 to the output I,.
Using the same argument, I3 must be 0. But this same argument would imply

>We will see in section 4.1, that this condition may be harder to be a priori justified than the
non-signalling condition. This fact may affect our interpretation of properties of general boxes.
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Figure 3.2: An illustration a 4-input dichotomic box scenario.

that I; must output 1, which is in contradiction with the assignment we first
gave to [;. This means that the box presented in equation (3.3) is contextual, a
property that is analogous to nonlocality.

In order to establish a clear connection with the previous chapters, we
now present one more example, the CHSH scenario (discussed in section
1.8) in this single party box formalism. Alice now has a black box with 4
inputs, labelled as I, I, I3, and I4. Each input can output 2 different values,
0 or 1. This box also respects some rules: to receive an output, Alice must
press two “neighbour” inputs, thatis {I1, b}, {L, I3}, {I3, 4}, or {1y, [ }. The
probabilities that completely describe this box are

Poo|1,1, Poo|LI;  Poojiz,  Poojl,L
Poin, PoinLl;  Poiiy  Poln,n
P,  Piojb;  Pion Piojn,n
Punn, Pub  Pusn PuLh-

(3-4)

We now invite our readers to recognize that, except for different notation,
the above matrix is exactly the same as (1.22) presented on section 1.8. And,
as commented before, for different motivations, we can define properties that
are analogous to non-signalling and locality.

To define a general box scenario, one needs to specify the number of inputs,
the number of outputs and also a set of rules specifying which buttons can
be pressed together. We remark that many authors refer to these rules as a
context.

Definition 29 (General scenario). Let Z = {I,}] be the set of inputs, O = {0,}{
be the set of outputs per input and R = {R]}f C 2%, be the set of rules that
define the inputs that can be pressed together. The 3-tuple S = (Z,O,R) is called a
general box scenario.

Since the label of inputs and outputs have no deep meaning, we also use the
shorthand notation S = (1,0, R) for the general box scenario with I inputs, O
outputs per input and rules R.

Definition 30 (General box). A general box in a scenario (I,0,{R;}¥) is the set
of R O-variable distributions that assign probabilities

prj|72j = Posoy...ox|IpIp... Iy

to the outcomes 0g, 0y, ..., 0x when the inputs 1,1, . .. I are pressed.
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The set of all general boxes that can be created with I inputs, O outcomes per
input, and rules R is GB(1,0, R).

It may be clear that all multipartite boxes are general boxes3 but some
general boxes cannot be understood as multipartite boxes*. So, this new
formalism allows us to talk about interesting blackboxes that do not fit the
multipartite assumption.

3.1.1 M-box

In section 1.3.1, the question “When can we talk about marginal probabilities
without specifying other inputs?” motivated the definition of non-signalling
boxes. As we have seen in the beginning of this chapter, the non-signalling
condition has a clear analogue, but since this general framework does not
rely on the different parties assumption, some authors prefer to refer to this
property as non-disturbance [104], or marginal condition> [105, 106].

Definition 31 (M-box). A general box is marginal if R is closed under the inclusion
relation and all probabilities Prj|R; are consistent via marginals. That is Ry € R

and Rj C Ry implies R; € R, also®

Ri\R;

The set of all marginal boxes that can be created with I inputs, O outcomes per
input, and rules R is M (1,0, R).

The requirement that R is closed under inclusion is made just to guarantee
that if Alice can press the inputs’{ I3, I, I}, she can also press these inputs
individually ({11}, {Iz}, {I7}), also two by two ({I1, I3}, {I5, I}, {I7, 1 }). The
marginal/non-signalling /non-disturbance condition (equation (3.5)), ensures
that when Alice presses the input {1, I3}, the probability to obtain a given
output cannot depend on {I7}.

3.1.2 Noncontextual box

We will now define the local property for the general box scenario, but again,
the world locality may not be appropriated in a single party scenario, so its
analogue is usually referred to as noncontextuality. We call the attention to the
fact that some older papers did not use the operational definition that will be
presented. Our definition follows the same line of [56, 105, 106, 107, 87]. For
some discussions on definitions of noncontextuality, we suggest [108].

3 For example, all bipartite boxes of the set B(2,I,0) are general boxes that lie
GB(I%,0, {R;}). We just need to set I; = A; 1, I;;; = B;_1, and rules R; = { Ay, B;}.

4e.g. the box represented in equation (3.1).

5The reason for this second name will become apparent on section 3.3.

The notation ZRk\R; stands for summing in all outputs corresponding to inputs that belongs
to Ry but not in R;.

“More formally, this condition states that the existence of p__j, 1, , implies that all other
possible combinations involving these inputs also exists.
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Definition 32 (Noncontextuality). A general box p € GB(I,0,{R;}) is noncon-
textual if all probabilities can be written as

pr]\R] = ZT[()\) H poi\li;/\
A

I,'GR'

for a certain distribution 7t : A — [0,1] and single variable distributions p |,
The set of all noncontextual boxes that can be constructed with I inputs, O
outcomes per input, and rules R is NC(I,0, R)

Due to this definition, various authors like to state “Nonlocality is a
particular case of contextuality”, although this phrase can make sense, we
remark the readers that a more precise statement is: “If a general box can be
transformed into a multipartite box, nonlocality is equivalent to contextuality.
If a general box cannot be transformed into a multipartite box, nonlocality is
not well defined.” We just remark that interpretations of physical realisations
of contextual boxes may be different from the nonlocal ones. This happens
because in a multipartite scenario, we may invoke some physical theories® to
guarantee an a priori non-signalling condition. We will discuss this in detail
in section 4.1.

3.1.3 Quantum general boxes

Like in the multipartite scenario (see sections 1.3.3 and 1.5.4), quantum general
boxes are defined as boxes that can be constructed via measurements on
quantum systems. This general framework has only a subtle difference, we
do not have the tensor product structure any more, so we need a different
approach to guarantee that two (or more) quantum measurements can be
jointly performed.

Identifying quantum measurements that can be jointly performed is a
fundamental problem in quantum theory, but for defining quantum boxes, we
will just use the fact that if the elements of different quantum measurement
sets commute pairwise, they can be jointly measured? [66].

Definition 33 (Quantum box). A general box p € GB(1,0,{R;}) is quantum if
all probabilities can be written as

prj|Rj =tr (p H I](g)k) Ox € rj/
IkER]'

for a certain quantum state p : H — H and quantum measurement sets {I; =
{10}O_\ YL, such that if T;, T, € R;, i # i, then they respect the commutation
relation [I?, Il.”,/] =0.

The set of all quantum boxes that can be constructed with I inputs, O outcomes
per input, and rules R is Q(I,0, R).

8Some clever physical experiments use the fact that special relativity inputs constraints on
the speed of propagation of information to guarantee that signalling boxes cannot exist.

9Readers that are interested in this problem are invited to reference [66], that analyses joint
measurements on quantum systems in a clear and modern way.
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One natural question is, does the definition of quantum general boxes
coincide with the definition of quantum multipartite boxes in the cases where
we can transform a general box into a multipartite box? For historical reasons,
this question is known as the Tsirelson problem. For finite dimensional Hilbert
spaces, the answer is yes, but a general answer is still not known® [109].

Before ending this section, we review some recent progress in the Tsirelson
problem. In [113] it is proved that Tsirelson’s problem is equivalent to a
mathematical problem called Connes” embebbing and [107] establishes a direct
connection with Kirchberg’s QWEP conjecture™. Also, in [114] the authors
propose a physical intuition on why the two definitions for quantum boxes
should be equivalent.

3.1.4 The noncontextual polytope

The general box framework is a natural extension of the multipartite frame-
work presented in chapter 1, and many proofs about general box sets are
completely analogous to the ones on multipartite box sets. For example the
general box sets also obey the hierarchic condition'?.:

NC(S) © Q(S) € M(S) € GB(S),

where S = (I,0, R) is a general box scenario Also, all these sets are convex,
and except for the quantum set, they are polytopes. Since the proofs of these
statements use techniques that are completely analogous to the ones used in
the multipartite framework, we will not present them.

Since the set of noncontextual boxes, NC(I,0,R), is a polytope, it admits
the halfspace representation, so we have noncontextuality inequalities.

Definition 34 (Noncontextuality inequality). The linear inequalities that are
respected by all noncontextual boxes are called nocontextuality inequalities. If the

1°Curiously, Tsirelson claimed (without proving) that the definition for quantum multipartite
boxes using the tensor product structure is equivalent than the one using commuting observables
in 1993 [13]. But after being required for a formal proof in 2006, Tsirelson realized that he did not
have one. In Tsirelson’s own words [109]:

My ideas about quantum Bell-type inequalities, published first in 1980, were scantily
noted in 1980-1989 (only by L.Landau, S.Summers, R.Werner and A.Grib, and only
the simplest case). Being discouraged, I published in 1993 a survey, without proofs,
and quitted. One of the claims in that survey drew attention in 2006, and I was
asked by A.Acin for the proof. To my crying shame, my would-be-proof failed
badly. Trying to provide a kind of antidote against my toxic claim, I issued in 2006
the question, whether it is true or false, to the now discontinued Braunschweig
website on open problems in quantum information theory (see archived copy [110],
see also the first 29 problems in the arXiv [111]; my one was problem 33). I was not
the first to ask this question, but probably the first to publish it [112], and now it is
called “Tsirelson’s problem” (rather than “Tsirelson’s error”).

" Actually, a positive answer to Kirchberg’s Quantum Weak Expectation Property (QWEP)
conjecture on tensor products of C*-algebras would imply a positive answer to this question for
all bipartite scenarios. And an extended version of Tsirelson’s problem is equivalent to the QWEP
conjecture.

2In fact, for almost all general scenarios, we have the strict subset relation relation. As an
example, for any scenario that is more elaborate than the ones presented in section 3.5, we have

NC(S) C Q(S) € M(S) C GB(S).
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Figure 3.3: Some illustrations of graphs, with the two on the right representing
the CHSH scenario (see section 1.8).

inequality is equivalent to the positivity, normalization, or non-signalling condition
(equation (3.5)), we call it a trivial noncontextuality inequality. If a noncontextuality
inequality represents a facet of a noncontextual polytope, it is called tight.

3.2 Full-correlation on general boxes

We will define the full-correlation map only for a special kind of general
scenarios, the ones that can be represented by graphs. A graph G = (V,E) isa
set of vertices V = {V;}_; and a set of edges E = {V}, V;}, unordered pairs
of vertices. For each graph, we can assign a general scenario by making the
identification Z = V and R = E, and this scenario will only have pairwise
rules. Since a graph does not mention the number of outputs per input, we
adopt the convention that, if not specified, all inputs are dichotomic.

In section 1.7 we have defined the full-correlator map for bipartite di-
chotomic distribution p_,j as

(L) : = Pooji;1, + P1jg1, — Poji1, — P1ojii,

and by trivial extension, we defined the full-correlation map for bipartite
boxes with two outcomes. Now, we present its version for general boxes that
can be represented by graphs.

Definition 35. Let G = (V,E) be a graph and p € GB(V,2, E) be a general box
with two outputs and pairwise rules. The full-correlation box FC(p) is the list of all
correlators associated with p.

For example, in the scenario presented in equation (3.1), if

Poojn, Poo|Lb;  Poo|LL
Poln, Poilb PolLn
Piojnn  ProjLl;  P1o|L
Puln, PuLbi  Piiin

then
FC(p) = [(hh) (LI) (Bh)].
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Like in the multipartite framework, we can also define the full-correlation
version of a given box set, and the set of all full-correlation general boxes is a
hypercube with vertices’ coordinates being +1.

3.3 The marginal problem

Instead of describing a box with a set of various distributions for specific
rules, could we use a single distribution and recover all output probabilities
as marginals? What could happen if Alice broke the rules and pressed all
input buttons simultaneously? Is it possible to construct a distribution for this
all input button situation which is consistent with the box probabilities?

Let us first focus on a specific scenario (see equation (3.1)). Given a box

Poojn1, PoolLb1;  PoollzL
Poln, PoilLb;  Polin
Piojn, Piojb;  Pio|Ln
Punn, Punn  Piinn

when is it possible to construct a “mother” distribution

[ Pooo) 1, Lo 15 |
Poot|1, b 15
Potoj1, 115

p— |Founnn
Proo|1, 115
Pio1)1, 15
P11\, 15

LP111|L L 15

such that all probabilities of p can be obtained via the marginal calculations
Poror|il, = Z Po 0p03| o157
03
Posos| a1z = ZP010203|111213;
01

Pozor|1s1 = Z Poy030311 1,157
02
More generally, given a box p € G(I,0,R), can we construct an [-variable
distribution P in which all box probabilities can be obtained by calculating
the marginal probabilities

pr]'|'R,j = 2 PO‘I ? (37)
I\R;

This problem of finding a mother distribution in which a set of distribu-
tions can be obtained as marginals is known (in mathematics) as the marginal
problem and we will see in the next section that it is completely equivalent to
the problem of deciding if a given box is noncontextual.
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Although the connection of these two problems has been made, there is
still a big gap between mathematicians and physicists. We illustrate this by
quoting Alexander Klyachko (2002) [105]:

The marginal problem has a long history, starting from works
by W. Hoefling in Germany (1940), and a bit later by Freché in
France. Springer Verlag published collected papers of Hoefling in
1994. Three conferences on the subject were held in the last decade
[115, 116, 117]. None of the participants ever mentioned Bell’s
problem, and apparently none of the physicists was aware about
these activities. This is a disturbing example of a split between
mathematics and physics.

3.4 The Fine theorem

In 1982, Arthur Fine established a direct connection between local boxes in
the CHSH scenario and the marginal problem [42]. Fine was only concerned
with the CHSH scenario, but his theorem can be extended to all general box
scenarios with minor modifications. We will now present a generalization of
Fine’s theorem, which can be also found in [56].

Theorem 20 (Arthur Fine). Let p € M(I,0,R) be a box with inputs T =
{Z, }]121, O outputs per input and rules R = {R;}R . The box probabilities admit
the representation

A

L’ER'

for some distribution 7t : A — [0,1] and distributions p |, , iff there exists a prob-
ability distribution Pz that can recover all box probabilities as marginals. That
is

prj\Rj = Z PO‘I' (39)
I\R;

Proof. The theorem will be proved in a constructive way, we will construct Pz
when 7 and p, |1\ are given, and construct all p,|s and 77 when Pz is given.

It
pr]|R] = Zn()\) H poi\li;)u
A LER;

we define

Poz = Z (M) H Po;|1;1/
A i
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and check that

Z PO‘I = Z P0102..‘01‘1112...11;
I\R; I\R;

= 2 Z H(A)Hpoiﬂ,»;/\}

A o\o;

= Z 7-[(/\) H poi\li;)\;
A R;

If we have the distribution P : Z — [0,1], we invoke the multipartite
generalisation of theorem 3 to write P as

Poz =Y t(A) [ ] Posjiar
A i
and define the marginals as

pr]|Rj = 2 7-[(/\) H poi\li;)\r
A R;

and check that

I\R;

O

So, Fine’s theorem provides an alternative definition/interpretation for
contextuality. Informally it allows us to state that a box is noncontextual iff
all possible outcome probabilities can be consistently described by a single
distribution that attributes probabilities to all inputs simultaneously.

We will now use Fine theorem as tool to prove two important theorems.

Theorem 21. Let S = (1,0, R) be a general scenario, and p € Q(S) be a quantum
box in this scenario. If all measurement operators I{ satisfy the commutation relation

[If, Ii",/] =0, Yo,0’ and i # i', the box p is necessarily noncontextual.

Proof. For any quantum state p we can define the function
Poiyesoiylir.oiy 7= TP H I
1
The normalisation relations on the measurement operators
AR
0;
guarantees the normalisation relation on the distribution

2 POil,...,Ol‘l ‘lll] = 1/
@
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Figure 3.4: An illustration of a star graph.

and the commutative relation between measurement operators guarantees the
positiveness'3 of P.

Now we just need to use the normalisation relation on the measurement
operators to check that we can recover all box probabilities via the marginal
calculation

prj\R] = Z PO‘Z'
T\R,
So, using Fine’s theorem, we see that the box p is noncontextual.

O

We will now prove that all marginal boxes on the star graph scenario
are noncontextual. A star graph is any graph that can be written as G =

(Vi i1, Vi)
Theorem 22. All marginal boxes with rules given by {1, I]-}]l=2 are noncontextual.

Proof. Since p is a marginal box, the marginal p, |, is well defined, which
allows us to construct

_ Pojoo| i Pojos|li I Pojog|lily -+ Poyor| L]

P
(pol\ll )I_l

Now, it is straightforward to check that P is a valid distribution and that we
can recover the marginals via

Poyop| il Poyos|liIs Pojos| iy -+ Pojo| L]

Pojog|loy = Z -1
T 0j#0k (pol\ll)

O

Also note that this result also proves theorem 5. This presented theorem
on star graphs can also be viewed as a particular case of a more general one.
In [118], it is shown that if a general scenario can be associated to s graph
without closed loops, the noncontextuality conditions are equivalent to the
marginal conditions. This motivates us to explore cyclic graphs.

3If A,B > 0and [A,B] =0, AB > 0.
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AL

Figure 3.5: Some illustrations of cyclic graphs C,.
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Figure 3.6: An illustration of the n-cycle box.

3.5 All noncontextuality inequalities for the two outcome
n-cycle

The examples given in equation (3.1) and equation (3.4) can be generalised
to a simple scenario called the n-cycle. A box belongs to the n-cycle if it has
n inputs that outcome an output only when two neighbouring buttons are
pressed.

The n-cycle scenario can also be represented by the cyclic graph™, C, =
({Ij}7:1/ {L, I }7:1). We define the dichotomic n-cycle scenario scenario as

Cn := (n,2,Cy), and its general boxes can be represented in a vector p € R*",

Pooin,  Poojl1; -+ Poo|Lli .y -+ Poojl,;y

_ |Poipn  Poniy -+ Poigr -+ Poljln
p pr

Puoinn,  Piojns -+ P1o|L,, ccc P1o|Ln

Pulnn  Pujns -+ Pupn, - PuinLn-

In this section we present all noncontextuality inequalities for the di-
chotomic’> n-cycle scenario. This result was obtained in collaboration with
Mateus Aratijo, Marcelo Terra Cunha, Costantino Budroni and Adan Cabello.
We warn the readers that although all results presented in this section are
contained in reference [4], here we reach the results from a different approach,
using different proofs and lemmas.

*4Here, the symbol + stands for addition modulo #, so {Iy, Li4+1} = {I., I }.
'5And from now on, we will refer to the dichotomic n-cycle just as n-cycle.
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3.5.1 Previous efforts on the n-cycle

The n-cycle scenario has been investigated long before physicists developed
an interest in it. For instance, in 1862 Boole characterised the case n = 2 and
studied the case n = 3 [29, 39], that was not discussed until almost a hundred
years later [119, 120] and was only completely characterised in 1989 [22].

As stated before, the 4-cycle is completely equivalent to the CHSH sce-
nario, which was characterised by Fine in 1982. The 5-cycle was explored
by Klyachko in 2002 [105] and completely characterised by Klyachko et al in
2008 [121]. Klyachko's papers are also the first ones that use noncontextuality
inequalities in the language that is used today. They also became very famous
due to the fact that it is possible to construct 5-cycle contextual boxes using
quantum systems with 3 dimensional Hilbert space.

More recently, there has been renewed interest in this scenario: noncon-
textuality inequalities have been found for any odd n [120, 122], entropic
inequalities (which are necessary but not sufficient for noncontextuality) for
any n [107, 106], and noncontextuality inequalities for n = 6 [87].

3.5.2 Main result

The main result of this section is theorem 23, which presents all tight noncon-
textuality inequalities for the n-cycle. And due to its simple form, it is very
easy to tell if an n-cycle box is contextual or not.

Theorem 23 (M (C,) inequality characterisation). All tight non-trivial noncon-
textuality inequalities for the n-cycle are given by

n
Y vi(Iiliy1) <n—2, (3.10)
j=1

where v; € {—1,1}, such that the number of negative coefficients y; is odd.

Please note that, like in the CHSH scenario (see 1.8 and 1.9), all inequalities
are written in the full-correlation form (see equation (3.6)). In the multipartite
framework, the scenario with 2 parties and 2 dichotomic inputs per party is
the only one in which this is possible (see section 2.4.). This full-correlation
symmetry on the n-cycle is probably what allows us to find such a simple
characterisation. We recall that the problem of completely characterising the
set of noncontextuality inequalities for an arbitrary number of settings is, in
general, intractable, since deciding whether or not a given point is in the
polytope is an NP-complete problem [22].

It is also interesting to remark that until now, there had been no complete
characterisations of a local/noncontexutal polytope of a scenario with an
arbitrary number of settings. The best result we know in this sense are
the WWZB inequalities [51, 52] (see section 2.7), that characterise the full-
correlation set of the multipartite scenario with n parties, and two dichotomic
inputs per part.

6Before that, the smallest Hilbert space dimension required was 4.
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3.5.3 Proofs

In order to present a clear demonstration and to gain some intuition on why
this scenario is so simple, we divide the proof of theorem 23 in to eight
lemmas.

* Lemma 1 proves two useful representations for boxes that lie in the
marginal polytope of dichotomic scenarios.

e Lemma 2 characterises the contextual and noncontextual vertices of the
full-correlation polytope for the n-cycle scenario.

* Lemmas 3 and 4 characterise the contextual and noncontextual vertices
of the marginal polytope for the n-cycle scenario.

* Lemma 5 proves that all inequalities (3.10) represent facets of the non-
contextual polytope of the n-cycle scenario.

* Lemma 6 shows that two contextual vertices of the marginal polytope of
the n-cycle cannot be connected by edges of the marginal polytope.

* Lemma 7 presents a general characterisation for convex polytopes that
uses disjoint union of a “core” polytope and some quasi-polytopes.

¢ Lemma 8 uses lemmas 6 and 7 to show that all contextual boxes of the
marginal polytope of n-cycle scenario violate one of inequalities (3.10).

So, our main result follows directly from lemmas 5 and 8.

Lemma 1 (CH representations'” ). Boxes that lie on the marginal polytope of a
dichotomic scenario with pairwise rules, M(I,2,{1;, Iy } jx), are completely described
by probabilities poo| 1, and poyy,, or by its full and single correlators (Iil) and (I;).

Proof. To prove the CH representation for dichotomic scenarios with pairwise
rules we just need to use the normalisation and non-signalling conditions to
write all probabilities as functions of py, L and py I More explicitly,

Po|i1, = tPoj1; — Pooli1,; (3-110)
P1oj5;5 = TP — Pooli1,s (3.11b)
Punrn = 1- Poo|r;f, — Po1|1;1. — P1o|1;1

= 1+ Pooji;, = Por; = Polr,: (3.110)

To prove the correlator representation, we just need to show that it is
possible to obtain probabilities pyg;,;, and poj;, with (Iily) and (I;). By
definition (I;) := py I; = P1j1;» S0 using the normalisation condition, we have

I)+1
Pol1; = <]>2 (3.12a)

7The name CH representation is inspired by the CH inequalities. For more, please see section
2.4.2.
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Figure 3.7: One tetrahedron and one cube representing the noncontextual and
the general full-correlation 3-cycle polytope.

The definition of the full-correlator, <Ijlk> = Poojy1, T Pujyr, — Pougl, —
P10|1;1,- together with the normalisation condition can be used to write
14 (L) = 2pooji1, + 2P11|11,- With equations (3.11¢) and (3.12a) we ob-
tain

1+ (Iile) + (Ij) + (Ix)

(3.12b)
O

Lemma 2 (FC(M(C,)) vertex characterisation). The full-correlation n-cycle
polytope is an n-dimensional hypercube with vertices with correlators <I]-I]-+1> =
+1.

Moreover, there are 2"~1 noncontextual vertices, all with an even number of
negative correlators, and relabelling-equivalent to

NCr=[(Lk) =1 (LL)=1 (BL)=1 ... (IyL)=1].

There are 2"~ contextual vertices, all with an odd number of negative correlators,
and relabelling-equivalent to

Cr=[(LL)=-1 (LL)=1 (BL)=1 ... (IyL)=1].

Proof. The full-correlation polytope of the n-cycle is an n-dimensional hyper-
cube because all correlators <I]-I]-+1> can assume the values +1.

Before characterising the vertices as contextual and noncontextual, we
recall that the output relabelling transformation'®, 0 <+ 1, cannot transform a
noncontextual vertex into a contextual one™. We also point that the output

8WWe recall that for studying full-correlation boxes, it is useful to use the outputs +1 and —1
instead of 0 and 1. So we can understand the correlators as expected values.

191If it was possible, Alice could transform a noncontextual box into a contextual one just by
giving different names to her outputs.
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relabelling on the input I; will be conveniently referred as I; — —I;, since this
transformation changes the sign of the two “neighbour” correlators,

I =L = (1) = —(fili) and (L) = (G L)

We now classify the vertices in two classes, the ones that have an even
number of correlators equal to —1, relabelling-equivalent to the vertex in
which all correlators are equal to +1. The ones that have an odd number
of correlator equal to —1, relabelling-equivalent to the vertex in which all
correlators, except from (I1,) = —1, are equal to +1. We will present a
simple algorithm to prove this equivalence.

First, note that the relabelling transformation allows us to “move” minus
signs, and to cancel a pair of negative correlators. More precisely:

* If two neighbour correlators have negative values, (I;_11;) = (Iili11) =
—1, the map I; — —I; transforms both into positive (I;_11;) = (Ijlj;1) =

+1.

* If two neighbour correlators have different correlators, (I;_11;) = +1, (L1
—1, the map I; — —I; “moves” the minus correlator (I;_11;) = —1, (Il
+1.

Now, let

be a vertex of the full-correlation n-cycle polytope, for k = N until k = 2,
apply the relabelling transformation I; — —I; when (IxI;) = —1. This
algorithm works because:

o If (Il 11) = —1 and its left correlator neighbour is negative, both will
become positive;

o If (Il 11) = —1 and its left correlator neighbour is positive, the minus
sign will move;

so this algorithm transforms any vertex into one that, except from (1),
has only positive correlators, dividing them in the two relabelling-equivalent
classes discussed above.

We now recall that a vertex is noncontextual iff we can understand its
inputs I; as deterministic probability distributions. So, for noncontextual
vertices, we can write (Ijlj;1) = (I;)(Ij+1) assigning definite values to each
input. So, it follows that the vertex in which all its correlators (I j1j+1> are
equal to +1 is noncontextual because we can assign the value 1 to every input,
and (I;) = 1,V].

Now consider the vertex which has, except from (I1I;) = —1, all correlators
equal to +1. If we assume that this vertex is noncontextual, (I;,) = —1
implies ((I;) = 1,(I) = —1) or ((I;) = —1,(I) = 1). Without loss of
generality, we assume that ((I;) = 1,(L) = —1), what forces us to set
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(I3) = —1, because (I;I3) = 1. By using this argument recursively, we find
that we need (I;) = —1, an absurdity.
O

Lemma 3 (Injection between noncontextual vertices). Let pr = FC(p) be a
noncontextual vertex of the full-correlation n-cycle polytope. There are exactly two
noncontextual vertices of the marginal polytope such that its full-correlator part is
equal to pr.

Moreover, all noncontextual vertices of the marginal polytope can be described
by a full-correlator noncontextual vertex and one single correlator (I). Also, if
one noncontextual vertex p” satisfies pr = FC(p”), and (I;) po = E1, the other

associated vertex p® that satisfies pp = FC(p") has <Ik>pb =F1

Proof. Since all noncontextual vertices of the full-correlation polytope are
relabelling-equivalent to the one in which all its full-correlators are equal +1
(lemma 2), we will just show that this specific vertex corresponds to exactly
two noncontextual vertices of the marginal polytope.

We now recall that a box is a vertex of the noncontextual polytope iff we
can assign definite values to every input. So, there are only two vertices that
are consistent with all full-correlators being positive: the ones in which all
inputs are 0, and the ones in which all inputs are 1. Also invoking lemma 1,
we can represent one vertex as>’

<I]I]+1> = 1,V] and <Il> =1
and the other by
<I]'I]'+1> = 1,Vj and <11> = -1

Since there are 2" ways to assign definite outputs to all inputs simultane-
ously, we can use lemma two to guarantee that these are the only noncontex-
tual vertices of the marginal polytope.

O

Lemma 4 (Bijection between contextual vertices). A full-correlation box pr =
FC(p) is a contextual vertex of the full-correlation polytope iff the box p is a contex-
tual vertex of the marginal n-cycle polytope. Moreover, p single marginals are given
by Po,j1; = 1/2.

Proof. 1t follows from the definition that if p is a contextual vertex of the
marginal polytope, FC(p) is a contextual vertex of the full-correlation one. So
we only need to prove that if FC(p) is a vertex, then p is also a vertex.

Note that perfect (anti-)correlations demand some restrictions on the
probabilities of p, more precisely: perfect correlation, <IjIj+1> = 1, implies
that

Pooij;, T P, = 1 and poypr,, = Piojyr,, =

2°Please note that the condition of all correlators being positive implies that (I;) = (I;)Vj, k
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and perfect anticorrelation, (Ijlj;1) = —1, implies
Poi|11;44 + Projn1,, = 1, and, Pooi;1 = P11 =
For this scenario, the marginal conditions (equations (3.5)) are

Pooj1;_11; T P10j1_11; = Poo|51;q T Po1|51; v
Pi11;_y1; + Potj1;_y1; = P10, + P15z, -

With these two conditions together we have

(Iicalp) =1, (Liliy1) =1 = Pooj1; 1 1; = Pooji1;,, A Prajy g1 = Puajrr,,

(Iil) =1, ([Ij1) = -1 = Poolt;_y1; = Pot|i1;,, a4 P1ajr_y1; = Pojii;,,
(Iisl) = =1, ([ilj11) =1 = P1oj1;_11; = Pooji1;,, A Porjr_ 1, = P,
(Iical) = =1, (Jjlj3q) = =1 = Projt;_y1; = Pou|i1;,, @04 Poijr i1, = Poji,,-

Using the equations above recursively, we see that if a vertex of the full-
correlation polytope has an odd numbers of correlators equal to —1, it is true
that**

(Iiliy) =1 = Poo|r1; = P11|5L47

(i) = -1 = Po1|51i = P10|11144 -
So, each contextual vertex of the n-cycle full-correlation polytope uniquely
determines one vertex of the non-full one. Also, we just need to invoke

the normalisation condition for distributions to show that all single variable
marginals are equal to 1/2.

O
Lemma 5 (n-cycle inequalities are tight). The inequalities
n
Z')/j<1j[j+1> <n-2, (3.13)
j=1

with «vj € {—1,1}, such that the number of negative coefficients vy; is odd, represent
facets of the noncontextual polytope.

Proof. By definition, an inequality represents a facet of the polytope of dimen-
sion d if it is saturated for (at least) d vertices of this polytope**, and respected
by all its elements.

Lemma 3 tell us that noncontextual vertices of the marginal polytope
have an even number of correlators equal to —1, so they can never violate

21Since all contextual vertices are relabelling-equivalent to the one that (I; ) = —1, and all
other correlators are equal to +1 (lemma 2), we could have restricted ourselves to prove this fact
for this arrangement of correlators. In this case (b)) = —1, (bl3) =1 = poyn1, = P11|L,
the fact that all other correlators are positive implies in pyyp, 5, = p11j1y,,and (INLi) =1, (k) =
-1 = Py, = P1o|h 1, So, Polin, = P1ojh L+

220r equivalently, d elements that are affinely independent.
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inequalities (3.13), and by convexity, this non-violation also holds for the entire
noncontextual box.

Now, note that there are n ways to saturate an n-cycle inequality (3.13)
with correlators (I;I;,1) = 1. These saturations happen when, for an specific
k: (ItIxy1) = —yg, for all other indexes?3 j # k: <Ij1j+1> = 7. Since there are
two ways to obtain a list of even correlator with noncontextual vertices (lemma
3), there are 2n vertices of the marginal polytope that saturate inequalities
(3.13).

It follows from the CH representation that the dimension of the noncon-
textual polytope is 21, so inequalities (3.13) represent facets. O

Lemma 6. Let C be a contextual vertex of the marginal polytope of the n-cycle
scenario. All its neighbouring vertices are noncontextual.

Proof. First we will prove that if C1 and C2 are two different contextual vertices
of the full-correlation polytope, they cannot be connected by edges of the
full-correlation polytope. To do this, we will show that the uniform convex
combination between these vertices,

- c}+—c%l
2
is noncontextual by presenting two noncontextual vertices NC} and NC2 such
that
NC}+ NC?
PF=—">H
also holds.
Note that correlators of uniform convex combinations of two contextual
vertices can assume three different values:

° <Ij1j+1>pF =1, when <I]I]+1>C} =1and <I]1]+1>C12__ =1.
¢ <Ij1j+l>pF = —1, when <Ij1j+1>c} = —land <Ij1j+1>C12: =-1.

. <I]-I]-+1>pF = 0, when the correlators <Iflf+1>c} and <I]-I]-+1>C% have
opposite signs.

Also, note that the number of correlators (I i1 j+1>pp that are equal to zero is
even?4,

We will now show how to find the full-correlator boxes N Cll_- and N Cl%. For
the sake of concreteness, we will first consider the case in which the number
of correlators <IfIf+1>pp = —1is even. Define the full-correlators (I;; 1), c

and (Iilj11)y e by the following rule:

#Please note that since there are an odd number of negative of coefficients 7;, the choices of
correlators that saturate (3.13) have an even number of negative coefficients ;.
Define sets C' and C* by: j € C* if (Ijlj;1), = —1. In this notation, the number of
F
correlators (111 >pF equal to zero is denoted by the number of elements in C'AC?, the symmetric
difference between C! and C2. Since #C* is odd, the relation #C! +#C1 = #(C1AC?) + 2#(C' N C?)
guarantees that #(C1AC?) is even.
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* 6 (lilj1),, =1 then ([Tjs1)ye = (Tl yer = 15
o If <I]-I]-+1>pp = —1, then <I]'IJ+1>NC} = <IJIJ'+1>NC§ =-1;
o If <Ij1j+l>p1: = 0, then <IJ'IJ'+1>NC§ =1and <Iflf+1>NC§ =-1.
Since the number of correlators <If[j+l>pp equal to 0 or —1 is even, the two
vertices NC} and NC? are in fact noncontextual. And follows that
C;+C; _ NCp+NCP
2 2 '

For the case in which the number of correlators <I]-I]-+1>pF = —1is odd,

we define two full-correlator boxes, N Cll_- and N Clz_-, as:
o If <Ijl]‘+1>pF =1, then <Ij1j+l>NC% = <Ij1j+1>NC12: =1;
* If (fjlj1),, = =1 then ([ilj1) v = ([l )ye = =15
o If <Ijlj+l>p1: = 0, then , for one specific index k we set (Ifi11)yc1 = —1
and (Iclks1) yez = 1. For all other indexes j # k we set (L) yer =1
F
and <Ijlj+1>NC% =-1.
It is easy to check that the number of negative correlators of the vertices NC}
and NC? is even, and again the equivalence

Ci+C2 NC}+NC?
2 2

holds.

To obtain the proof for the marginal polytope, we just need to add a simple
trick to the previous proof technique. Again, we will show that if C! and C?
are two contextual vertices of the marginal polytope, it is always possible to
construct noncontextual boxes NC! and NC? such that

C'+C?> NC'+NC?
2 2 !
50, C! and C? cannot be neighbours.

From lemmas 1 and 4, we know that contextual vertices of the marginal
polytope have an odd number of negative full-correlators and all single-
correlators are equal to zero. So, we will show that it is always possible to
construct noncontextual boxes that have the full-correlators of a noncontextual
full-correlator vertex, but with single-correlators equal zero. In this way, we
can explore exactly the same technique we used for the full-correlation case.

Let NC'* and NC be the two noncontextual vertices of the marginal
polytope associated to the full-correlation vertex NC} (lemma 3). The uniform
convex combination

_ NC2 4 NCT®
-
has the same full-correlators of NC} and all single correlators equal zero?.

NC!:

25Just use the fact that the single correlators of NC!* and N C have opposite signs.
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Analogously, we construct the noncontextual box

2a 2b
Ne? .= NCTENCT
2
that has the same full-correlators of NC% and all single correlators equal to
zero. So by the same arguments used on the full-correlation case, we can
always find non contextual boxes NC! and NC? such that

Cl+C? NC'+NC?
2 2 '
O

Before proving lemma 7, it is useful to define the concept of neighbour
quasi-polytope of a vertex.

Definition 36 (Neighbour quasi-polytope). Let P be a convex polytope with
vertices V = {V}. The neighbour quasi-polytope*® associated to the vertex V is
defined by

V+aY;BiVi

N(V) = {WeP W= /“/.BiZO/;ﬁl:l}/ (3.14)

where Vi, are neighbour vertices*” of V.

That is, the quasi-polytope of a vertex V is the set of all convex combina-
tions that necessarily have non-null coefficient on V, and may have non-null
coefficients on its neighbours V};.

Lemma 7. Let P be a convex polytope with vertices V = {V'}, and S(V) a set of
vertices that are neighbour-free*® on P. The polytope P can be written as the disjoint
union

P = ( U N(V)) Ucono(V\ S), (3.15)

vesS
where N (V) is the neighbour quasi-polytope of V.

Proof. Since the set S(V) only contains vertices that are not connected by
edges of P, their neighbour quasi-polytopes are disjoint. Also, by definition,
if Ves§, thenconv(V\S)NN(V) =Q.

To obtain the proof, we will use induction on the cardinality of the set
S(V). For the case where the set S(V) has only a single vertex V, we need to
prove that P can be written as the disjoint union

P=P UN(V), (3.16)

26Given a polytope P and a subpolytope Q of P, we call P\ Q a quasi-polytope. As a simple
example, consider Q a facet or even a vertex of P.

*7Two vertices V and Vy are neighbour on P if they are connected by edges on P.

A set S of vertices is neighbour-free on a polytope P if no pair of vertices in S represents
edges of P.



CHAPTER 3. GENERAL BOX CORRELATIONS 78

with
P~ i=conv(V\S).
For this, we have to show that all elements R € P satisfy R € N(V) and
R¢P ,orReP and R ¢ N(V).
Every R € P can be written as convex combination of the vertex V and a
point Q € P,
R=pV+(1-p)Q.

Let VQ be the segment between V and Q,
VQ:={AV+(1-A)Q|Are[0,1]},

that by convexity, intersects a facet of the polytope P~. In exactly one point*?
Q' := AV + (1—A)Q. With the help of Q" we can separate all points R € P
in two classes:

e p> A, implies R = p'V + (1 —p')Q’ for p’ € (0,1], so R must lie in
N(V).

To prove this we can check that p'V + (1 — p")Q' = Riff p' = f:;\\/’ So
p > A’ implies p’ > 0.

e p <A, implies R = p'Q" + (1 — p")Q for p’ € [0,1], so R must lie in
P
To prove this we can check that p’Q" + (1 —p")Q =R iff p' =
p < A implies p’ > 0.

A—
17/\’,’. So

So, we proved that the lemma holds when #S = 1. Now, we assume that
the decomposition (3.15) holds for sets S of cardinality # and prove that this
implies it holds for sets of cardinality (n + 1).

Define the set S~ := S\ {V} that has all elements of S, except for one
specific vertex Ve S, so#S =#S~ + 1. To finish the induction proof we have
to show that if the disjoint union

P = ( U N(V)) Uconv(V\S7), (3.17)
VesS—
is valid, then the disjoint union
P = < U N(V)) U [conv(V\ S) UN(V)], (3.18)
vesS—

is also valid.
Now, note that since the set S is neighbour-free on the polytope P, we
have the equivalence

conv(V\ (S\ {V})) = conv(V\ S) UN(V).

Now, substituting this equivalence in equation (3.17), we obtain the decompo-
sition (3.18).
O

29Exactly on the facet of P~ that, if added to N (V) would make it a polytope.
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Lemma 8. A contextual marginal box p € M(Cy) violates one of the n-cycle
inequalities (3.13).

Proof. Exploring the fact that the contextual vertices of the n-cycle marginal
polytope have an odd number of negative correlators and null single correla-
tors, we can see that a box p respects the n-cycle inequalities iff it respects®

C-p<n-2,

for all contextual vertices C.

Since the set of contextual vertices is neighbour-free on the marginal
polytope (lemma 6), we can apply lemma 7 to write the marginal polytope
as disjoint union of the noncontextual one and various contextual quasi-
polytopes. This characterisation implies that any contextual box can be

written as
N C+ OCCN

Pe= 1%

where the (noncontextual) box Cy satisfies’® C-Cy = n — 2. That is, all
contextual points can be written in a convex combination that necessarily has
one contextual vertex C, and may have coefficients on a noncontextual box Cy
that lies on the facet that “detects” C. So,

4

CC+<1—DC)ZZ/31CN1C
C-pc= Tra
n+a(n—2)
B e
2w
C1+a

which is larger than (n —2) for all « > 0.

3.5.4 Quantum violations of the n-cycle inequalities

In this subsection we discuss what can be done with quantum boxes in the
n-cycle scenario. We present the maximal violation that quantum boxes can
attain of the n-cycle inequalities, and we see that n > 4 implies the existence
of contextual quantum boxes.

Curiously, the problem of finding the maximum quantum violation of
the n-cycle inequalities was solved before the complete characterisation of the
noncontextual polytope. Although, focused on one particular scenario, Liang
et al calculated the maximal violation for all inequalities with odd n [120] (see
also [122]). And studying maximal quantum violations on Braunstein-Caves
inequalities [91], Stephanie Wehner presented a proof that is general enough
to apply to our case without modification [123].

Since the theorem is already proved in the above cited works, we will
present it without a proof. We also remark that the proofs are constructive, in

3°Here, C - p represents the canonical dot product.
3'Please note that this point Cy corresponds to the point Q" used on the proof of lemma 7.
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the sense that they present the quantum states and measurement operators
that can be used to attain maximal violations.

Theorem 24. Let pg be a quantum box on the n-cycle and Cy be a contextual vertex
of the marginal polytope. The maximal quantum value of the n-cycle inequalities is
given by

3n cos( . )
max po.Cy = {  1eos(j) or odd n, (3.19)
ncos(Z)  for even n.

It is also possible to present some states and measurements that attain
maximum quantum violation.

* For odd n, we can use the quantum state3?, p := |¢) (¢|, and the mea-
0_|70\/70 —7_1|0\/70 0
surement elements I} = ‘Ij ><Ij =1 ><Ij , ), ‘I]- > are
normalized vectors in C3,
1 cosf
lp) :== |0}, j> = |sinfcos[jrt(n —1)/n]|, (3.20)
0 sinfsin[jr(n —1)/n]
with cos? 6 = cos(7t/n) /(1 + cos(r/n)).
* For even n we can use the quantum state p := |¢) (|, and the measure-

ment elements: I]Q = ’I]Q><I]Q’ ®1, I]-l =1- I]Q, evenj; I]Q =1® ’I]-O><I]Q ,
I]-1 =1- I]Q odd j, where

0
1/V2

) == —1/v2 | (3.21)
0

IO> _ 1 [1+sin(jmr/n)
/"7 N| cos(m/n) |’

with N being a normalization factor.

3.5.5 Future directions on the n-cycle

One of the most interesting aspects of the noncontextuality inequalities of
the n-cycle is the fact that they are very simple. This could be useful to find
the efficiency requirements necessary to attain a contextual violation in a
non-perfect measurement scenario (see chapter 4).

A clear future direction is to understand what happens if we do not
assume dichotomic inputs. For example, in the O-outcome 4-cycle, we know
the CGLMP inequalities [90], that are tight, but do not characterise the whole
noncontextual polytope [67].

Also, since the presented inequalities hold for all 7, one could explore an
asymptotic scenario, where n goes to infinity. We remark [124, 125], where
the authors analyse the typical violation of quantum systems on the full-
correlation N-partite scenario (N, 2,2).

32 i) (1| is the projector associated to |¢).



Chapter 4

Physical implementation of
nonlocal/contextual boxes

No creo en las brujas, pero que las hay las hay. . .

In the previous chapters, we have studied correlations on black boxes
without worrying weather these boxes could be constructed in the real world.
We avoided some natural questions: Are there nonlocal (resp. contextual)
boxes in nature? Is it possible to construct nonlocal (contextual) boxes? Of
course, if we believe in quantum mechanics, both answer are positive. But it
would be interesting to construct a quantum nonlocal box, and guarantee its
nonlocality only by analysing its input/output statistics, more on the direction
of the device independence protocols discussed on section 2.9.

The existence of nonlocal boxes in real life has deep philosophical impli-
cations, for example, it forbids the interpretation that the results of any box
outputs could be predicted with certainty, since we would need to know all
variables that describe it. From a practical perspective, they provide perfect
cryptography protocols and random number certification (see section 2.9).

We conclude this chapter by summarising the results presented in" [1, 2, 3],
where we propose a physical implementation of a nonlocal quantum box.

Notation on quantum mechanics

In this chapter we will change our vocabulary a little bit, also, we will assume
some familiarity with quantum mechanics and its standard notation. Readers
who are not familiar with quantum mechanics can find a good introduction
in [16, 126, 127, 128]. For now we just provide a brief introduction to the
notation.

* Vectors lying in a vector space H will be denoted by |¢), “ket psi”,
and its respective dual is defined by (¢| := (|¢), .), “bra psi”. For

'Made in collaboration with Mateus Aratjo, Addn Cabello, Daniel Cavalcanti, Marcelo Terra
Cunha, Marcelo Franga, Jiti Miné¥, Valerio Scarani, and Colin Teo.
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inner product between |¢), |¢) € H, we use the shorthand “bra-ket”
notation (¢|¢) = (|), |¢)). Please also note that we can represent
linear operators with kets and bras, for example, if |¢) is a normalised
vector® |¢) (] is the projector onto the subspace spanned by ).

* Quantum states that are represented by projectors, are called pure states.
As usual in quantum mechanics we will refer to the pure state py, =

[§) (] just as [1p).

* The spectral theorem [129] states that all self-adjoint operators A : H —
‘H admit the representation A = ) ,aA" witha € Rand A* : H — H
being projectors that satisfies A* > 0 and }_, A? = I. Due to this fact, a
self adjoint operator A is know in quantum mechanics as an observable,
and the set { A%} is the measurement set associated to A.

e Pauli matrices, [130] 0; : Hp — Hp, are unitary self-adjoint operators
that are very useful in the study of quantum systems that lie in a
bidimensional vector space. They are can defined as

0z = [8) (8l —le)(el,  ox = [g) (e[ +e)(gl, oy :=ilg){e| —ile)(gl,
(4.1)
with |¢) and |e) being an orthonormal basis.

4.1 Loophole free Bell tests

Physical experiments dedicated to construct nonlocal boxes are called Bell
tests. Since 1972, quantum experimentalists have been reporting success on
Bell tests [131, 132, 133, 134, 135, 136, 137], but as pointed out in [138], the
“ultimate test of quantum mechanics” is still pending. This happens because
all these experiments suffer from the so-called loopholes, strong assumptions
that may not be well justified.

One main point is that in various statistical analysis, experimentalists
implicitly adopt the fair sampling assumption. In real life experiments, it may
happen that, in some rounds, the measurement results are not collected3, so
the experimentalists disconsider this uncollected data, and assume that what
they have is a good representation of the whole. That is the fair sampling
assumption, we will now illustrate how this assumption can fool the analysis
of an experiment.

Alice observed a Joker flipping coins. She was able to count that, he tossed
one specific coin 1000 times: 160 times she checked that heads was obtained,
40 times she checked that tails was obtained, and 800 times, for some reason,
she missed the result.

After that, the Joker invited Alice for a head or tails bet. Due to her
observation, she interfered that this is a biased coin: it outputs heads four
times more than tails. Gladly, Alice accepted the bet and asked for heads.

2As usual in quantum mechanics, in this chapter, all our vectors |¢) will be normalised.
30r maybe the data is collected, but partially (or totally) corrupted, and for that reason, it is
discarded.
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What she did not know, is that 760 of the results that she missed turned
out to output tails. And for this coin, the chances of obtaining tails after a
toss is actually four times more likely than the chances of obtaining heads.
Alice was fooled by believing that the sample that she had access was a “fair”
representation of the whole.

From a fundamental point of view there is no reason to believe that nature
maliciously disrespects fair sampling*. But this situation could be different in
a cryptographic or device independent scenario, where one may be fighting
against an active opponent who can exploit the fair sampling assumption to
manipulate the results.

Another important point for obtaining a satisfactory Bell test is the a
priori non-signalling assumption. This assumption is intricately related to the
physical realisation of nonlocal/contextual boxes, and we need it to guarantee
some interpretations on nonlocality5 and the security of device independent®
protocols. Before explaining it, we recall corollary 1 that states that all bipartite
boxes admits the representation

PablacB, = ) Ty (A)PaaaPojB,n
A

for some distributions Ty * Nxy — [0,1], and one variable distributions
P.|a,\ and P.B,A- This theorem allows one undesired interpretation: it may
happen that you have a nonlocal box, but its nonlocality arises from fact
that a third part maliciously manipulates the result with the distributions
Ttxy- Now note that to construct such distributions, this third part needs to
have access to Alice and Bob’s inputs. The a priori non-signalling consists in
forbidding that a third part can have access to Alice and Bob’s inputs. For
more on this interpretation, please see section 2.3, where we discuss how we
can understand the probabilities of (local and nonlocal) multipartite boxes as
a third party manipulation.

It happens that we cannot guarantee the a priori non-signalling only by
analysing the statistical data of a box, but the security of device independent
and cryptographic protocols relies on this assumption. One alternative to
solve this problem is to assume a physical system that forbids a third part, to
have access to all this information.

Special relativity is a well established physical theory which states that
information takes a non-null time to propagate from one place to other. So, if
we guarantee that all parties of a multipartite boxes are far apart and the time
between their input choice and their output receiving is fast enough, we can
guarantee the a priori non-signalling condition.

We remark that in some general box scenarios, we do not have the mul-
tipartite structure. Without it, we cannot invoke special relativity to ensure
that a third part cannot have access to all input choices. For this reasons, the a

4Even though, scientific ethics states that one cannot claim properties of the whole only by
analysing a fraction of the statistical data.

5Please see the discussions on theorem 16, that states that all multipartite boxes can be
purified.

6That includes cryptographic protocols.
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priori non-signalling assumption in contextuality tests may be very hard to
justify.

The a priori non-signalling condition is guaranteed in [132, 134, 137], and
fair-sampling independence in [135, 136], but these two conditions have never
been simultaneously satisfied, it seems like they walk on opposite directions.
We can ensure a priori non-signalling by exploring photonic systems”, but
they usually suffer from very inefficient measurements. Measurements on
atomic systems can be efficient, but they cannot be performed fast enough to
guarantee the a priori non-signalling condition.

It is widely believed that measurement inefficiencies on photonic system is
merely a technological problem, so one way to obtain a loophole free Bell test
is to wait for such technology and use polarisation measurements on photons
[138]. Another approach to this problem is to seek for a physical setup that
can be implemented in today’s laboratories.

4.2 Measurement (in)efficiency models

In this section we will discuss how to deal with boxes that suffer from
measurement inefficiencies. in the

4.2.1 The ideal box and the real box

In previous chapters, we dealt with boxes as a set of probability distributions.
We will continue with this approach and with the same definition for boxes,
but when looking for physical implementation of (nonlocal/contextual) boxes
it is useful to introduce the abstraction of an “ideal box”.

From a device independent perspective, the measured statistical data is
the only relevant characteristic of a certain box. But for an experimentalist in
a laboratory, the situation may be a little different. Any physical experiment
is based upon some up to date theory that given a physical setup, can predict
the probabilities of an abstract ideal box. Moreover, many times the experi-
mentalists also know how to model the sources of noise and imperfections
that prevent this ideal situation. With these informations, they are able to
predict the statistical data that outputs from the “real box”.

In this section we will explore methods that can be used to predict the
statistical data of a real box by knowing its ideal behaviour and modelling
imperfections. With it, we would like to guarantee that a certain physical setup
can provide nonlocal/contextual correlations before actually implementing
the real life experiment.

4.2.2 Missdetection

In a laboratory, Alice has a source that may emit a photon every ten seconds,
and right in front the source, she puts a photodetector, an apparatus that “clicks”
when a photon is absorbed. After some rounds, she noticed that sometimes

7Photons are useful because, assuming relativity, they are the fastest “information carriers”
in nature.
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her source emitted a photon, but for some reason the photodector did not
click.

When a detector is supposed to click but it does not, we say that it
misdetects a measurement®. Various measurement apparatus suffer from this
kind of imperfections, and the misdetection happens with probability 7, they
can be modelled by

Palick|y = 1 Pclick (4.2)
that induces

Pro-click|y = 1- Pclick|
=1-1(1 = Pro-click),

where pick and pick|, can be understood as the probability of clicking in an
ideal scenario and real scenario, respectively.

There is also a slightly different kind of misdetection. Suppose now Alice
is measuring the linear polarisation of a photon. The possible outcomes of this
measurements are vertical and horizontal, so the absence of a click is treated
as a third outcome. These class of detectors can be modelled as

PH|y *= TPH/ (4.3)
Pviy == 1pv; (4.3b)
Pro-click|y = 1- PH|y — PH|y~ (4-30)

that admits a simple generalisation for various outcomes.

It important to remark that we can explore three outcome measurements
in a two outcome scenario, we just map two different outcomes into one. For
example, we can say that if the detector does not click, we will count as a click
for the vertical polarisation®.

We can also use equation (4.2) to analyse misdetection efficiencies in
scenarios such that two or more measurement are jointly performed. For
example, if the source emits two photons that are measured by two independent
photodetectors with misdetection efficiency #1 and #,, we would write

Pclick click|y7, = H112Pclick click-

More abstractly, if Ay and By, are jointly measured using independent detectors
with misdetection efficiency 7, and 77, we can connect the real probabilities
with the ideal via™

P00| A By, = MxllyP00| ALB, (4.42)
PO1|AxByseny “= MxPo1|AB, + 1x(1 = 1y)Pooja,B,: (4-4b)
P10|AyByieny “= MyP10|4,B, + Ty (L = 71x)Pooja,B, (4-4c)
P11 A By, = L Po0|AcByineyy — POV A By, — P10|AcByipen, (4-4d)

8 Another common source of error that can be understood as the opposite of misdetection is
the darkcount. If a detector clicks when it is not supposed to with probability #p, we say that it
has a darkcount inefficiency #p.

9For the CHSH scenario, Cyril [139] proved that we do not miss nonlocality by mapping the
misdetection outcome to another one.

°Where we conveniently substitute the clicks for zeros and the absence of it by ones.
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4.2.3 Quantum inefficiencies

In a certain laboratory, Alice has a source that produces a photon in the
quantum state p and a detector that implements the measurement operator set
{M¥}. In an ideal scenario, the probability to obtain a certain output k would
be given by py |, = tr pMF, but in a real life laboratory, there can be various
agents interacting with the photon between the source and the detector, and
after such interactions, the probabilities of the results may differ from tr oM.

Various physicists have dealt with this inefficiency problem, and have
developed transformations'" @ that can be applied to the state p to obtain the
probabilities in imperfect experiments via pyygp 0 = tr (®(p)MF) [16, 140].
Here we will only focus on one of the most common imperfections on quantum
systems, the amplitude damping.

We define the amplitude damping map with factor ¢ on a quantum state

p:H—Has
@{'P(p) = ;F(f)ZPFk(t)

with Ff(t) being the adjoint of

F(t) = gk, / <’;) k(L — Bk — k) (n).

So if a quantum system suffers from an imperfection that can be modelled
with amplitude damping, its probabilities will be given by tr (PP (o) My).

Although we have introduced inefficiencies on quantum systems as a
process that affects the quantum state, we could do it from a different but
equivalent perspective. First, note that if we applied the adjoint of the am-
plitude damping map on the quantum measurement operators, we would
have the same probabilities tr (®/P (p)M*) = tr (0®4P (My)). That is, we
could say that there are no imperfections between the source and the detector,
but the measurement apparatus has an amplitude damping imperfection.
So, if inefficiencies of the detectors associated to the measurement set { M*}
are modelled by amplitude damping, we can calculate its probabilities with
{@}AD (M)}

Although these two approaches may have different interpretations, both are
equivalent, resembling the equivalence between Schrodinger and Heisenberg
pictures [126].

4.3 Efficiency requirements for the CHSH scenario

In this section we analyse the efficiency requirements on a CHSH scenario that
assumes the non-signalling conditions by proving a (slightly) more general
version of theorems presented in [141, 142, 143, 139]. This result was obtained
in collaboration with Mateus Aratjo Santos.

T Also, in quantum mechanics we are only concerned with complete positive linear maps. For
more on that we suggest [16].
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Theorem 25. Let p € N'S(2,2,2) where measurements A; and B; have misdetec-
tion efficiencies 1], and 1jg;. The box p can be nonlocal iff one of the inequalities

1Ay + A NBy + 1A 1By — 1Ay — 1By > 0;
MAgBy 1 A"TBo + 14,118, — g — 718y > 0
14,18y + 141118, + 140118y — 4y — 118y > 0
MAy 1By + 1A 1By + 1 AgTTBy — 1Ay — 1By > 0; (4-5)
holds™.
Moreover, if one of the conditions (4.5) is satisfied, it is possible to find a quan-

tum state and quantum measurements to construct a nonlocal quantum box in this
misdetection scenario.

Proof. First, we recall that for perfect measurements, all non-trivial Bell in-
equalities are given by the CHSH inequalities, that are equivalent to the CH
inequalities in the non-signalling regime (see subsection 2.4.2),

—1 < PoojagBy T Po0jAgB, T PoojA;By — PoojAB, — PojA, — Pojg, = 0
—1 < pooja,B, + PoojagB, + Pooja,B, — PoojA,By — PolA, — Pojg, < 0;
—1 < Pooja,By T PoojA;B; + PoojagB, — P00j4gB, — Poja; — Pojy < 05

—1 < pooja,B, + Pooja,B, + PoojA,B, — P0o|A,B, — PojA; — PoB, < 0

The inequalities in the CH form are convenient due to the fact that they only
have probabilities of obtaining the outcome 0, so we can use formula (4.4a) to

Write Poo| A, By, = TxMyP00|AB, -
Define the CH parameter as,

CH := 11 4g11ByP00| AgBy T M AeMB, P00| AgB, T 1AL 1By P00 A, By
1A 1B1Po0|AyBy — T1AoP0| Ay — "B Po|By-
Using the inequalities
—P0o0ja;B, <0, PoojagB, < Poja,, and  Pooja,B, < PojB,
and factoring terms we can write
CH < 11.4y11ByP00| AgBy — M40 (1 = 11B,)Pojag — MBe (1 — 1.4, )Po|By-
Defining py|x, := min (po|,, Pojp,) allows us to write
CH < (1ay11By + 1411B, + 14,118y — NAg — UBO)PO\XO
50, if (1740118 + MAg1B, + 14,1By — A, — 11B,) < 0, we have

CH < (nay11By + 114g"B, + 14,118y — g — 11By) Pojx, < O-

2Qr equivalently, in this misdetection scenario, the set of non-signalling boxes N'S§(2,2,2) is
strictly larger than the set of the local boxes £(2,2,2) iff one the inequalities 4.5 holds.
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Due to the problem symmetry, we can obtain the other three inequalities
presented in (4.5) via a simple relabelling argument. We finish the necessary
condition proof by invoking a result obtained by Cyril [139] that guaran-
tees that CH inequalities involving —1 require efficiency conditions that are
stronger than the ones involving 0.

To prove that this condition is also sufficient, consider the state

1 i -
) = m(cowmml +e?sina(|+) 4,10, +1-)a, 1+, ) )-

(4.6)
where |+) , and |£), are the £1 eigenstates of the A; and B; observables.
We now define observables Ay and By by their eigenvectors as

|£) 4, = UaylE) 4, and |E)p = Up,|E)p,,
where

cosx e Psina
e'?sine —cosw

Uu, = Up, = (

The expected value of the CH operator constructed with these observables for

p) is

sin® a . 2
(CH)y = T an?a (UAOUBO 140718y F A, 11By ~ MAg — 1By — 1 Ag]By SIN )
Since 1?;3‘& > 0, if the inequality

sina < Wi (77Ao’730 +1401B, A By — Ay — 7730)

holds true for some a, we have <CH>¢ > 0. By hypothesis, the term in

the parenthesis is positive, so we just need to guarantee that sin?a can be
arbitrarily small, a fact that follows from the continuity of sin®. O

This general theorem allows us to recover some bounds as corollaries. For
example, in [144], Ebehard found numerically that if all measurements have
misdetection efficiencies 7, it is possible to attain a quantum CHSH violation

iff § >2/3.

Corollary 4 (Ebehard bound™3). If 74, = 118, = 14, = 1B, = 1], e can attain a
CHSH violation iff

2
N> 3 (4.8)

Proof. In this case, inequalities (4.5) reduce to
372 — 21 > 0;

S 2

3This result was partially proved in [142] and completed in [139].
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In [143], the authors analyse the case when Alice can perform measure-
ments with efficiency # 4 and Bob with efficiency 775. We can now obtain their
inequality by exploring theorem 25.

Corollary 5 (Larsson-Cabello bound™#). If na, = 14, = 14 and 7, = np, =
g, we can attain a CHSH violation iff

1B
3173 -1

A >
Proof. In this case, inequalities (4.5) reduce to
314N —1Na =18 >0;

1B
3173 — 1.

na >

O

Note that if 5 = 1, this bound reduces 174 > 1/2. This situation well
approximates the case of Bell tests in which Bob performs measurements on
atoms, that can be made very efficiently [135, 136].

In [141], G. Garbarino analyses the case in which each part can perform
one measurement with missdeection efficiency #o, and other with 7;. We can
also recover his inequality with theorem 25.

Corollary 6 (Garbarino bound™®). If 74, = 18, = 10 and 14, = ng, = 11, we
can attain a CHSH iff

o > 2(1 —m1).

Proof. In this case, inequalities (4.5) reduce to

né + 250 — 2170 > 0;
10 > 2(1 — 111).

O

We call the attention to the fact that corollary 6 implies that if each part
has access to one perfect detector (73 = 1), we just need non-null efficiency
on the other detector to attain CHSH violation. This feature will be discussed
again in section 4.4, where we present a photonic scenario in which we can
attain CHSH violation with arbitrarily low photodetection efficiency.

4.4 A photonic proposal with quadrature measurements and
photodetection

In this section we propose a photonic Bell test that, under some assumptions,
can attain CHSH violation even with arbitrarily low photodetection efficiency.
This proposal is obtained by exploring a scenario presented by Cavalcanti et

*4This result was partially proved in [143] and completed in [139].
'5This result was partially proved on [141].
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al in [145] (see also [146, 147]) that combines photodetection and homodyne
measurements on photonic quantum systems. The results presented in this
section summarise the ones contained in [1, 2, 3].

In [1], we'® develop an analytical approach to the scheme presented in
[145], and with it, we show that it is possible to attain maximal quantum
CHSH violation with the presented measurement operators. Also we analyse
various states and their efficiency requirements to attain a loophole free Bell
test in the scheme discussed.

In [2] we'7 prove that, assuming perfect transmittance, it is possible to
attain CHSH violation even with arbitrarily low photodetection efficiency.
Unfortunately, we also find some evidence that states with that property
may not be viable for experimental implementation. We conclude that paper
suggesting some possible directions for feasible implementations.

Still looking for loophole free Bell tests, in [3] we'® propose an experi-
mental setup to produce a class of quantum states that, in the photodetec-
tion/homodyne measurement scenario, can attain CHSH violation even with
efficiency requirements that seem reasonable with current technology.

We hope that our findings can guide future research towards feasible
proposals within the present Bell scenario.

4.4.1 Fock space

The photonic systems that we are going to explore on next subsections are
described by an infinite dimensional vector space. We will write our quantum
states and measurement operators using the Fock space representation. Here
we will not worry about the physical motivation for that description , but
adopt a practical approach: we define the set {|n) }°, as an orthonormal basis
for Heo and allow the (informal) interpretation that |n) represents a quantum
state of n photons.

4.4.2 Photodetection measurements

Photodetection is one of the most fundamental measurements on a photonic
system. The intuition behind it is very simple, we have a detector that does not
click for the vacuum state |0), and clicks with certainty for states orthogonal
to it. For convenience'?, we assign the values —1 and +1 to a click and the
absence of it, respectively.

In Fock basis, the ideal photodetection observable is represented by

D :=|0)(0] — inxn, (4-9)

6Marco Tulio Quintino, Mateus Aratjo, Daniel Cavalcanti, Marcelo Franca Santos, and
Marcelo Terra Cunha.

7Mateus Aratjo, Marco Tulio Quintino, Daniel Cavalcanti, Marcelo Franca Santos, Adan
Cabello, and Marcelo Terra Cunha.

18Colin Teo, Mateus Aratijo, Marco Tulio Quintino, Jiff Minédf, Daniel Cavalcanti, Valerio
Scarani, Marcelo Terra Cunha, and Marcelo Franga Santos.

19The motivation for this label is discussed on section 2.4.
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and its measurement operators are
[o0]
DT =10)(0], D™=} |n){n|
n=1

4.4.3 Quadrature measurements

Another very important class of measurements in quantum optics is given by
the quadrature observables [140]. For us, they are interesting because they may
be efficiently implemented in a process called homodyne measurement [148].
If we recall that photonic systems are very good to close the locality loophole,
homodyne measurements naturally arise as a good technique for loophole free
Bell tests. Some schemes using homodyne measurements have been proposed,
however, earlier results relying only on homodyne measurements required
unfeasible setup and states [149, 150, 151, 152, 153] or displayed very small
violations [154, 155], suggesting that homodyning may not render the defini-
tive Bell test. In next subsections we will explore homodyne measurements
from a different perspective, with it we would like to reinforce the idea that
homodyne measurements may lead us to loophole free Bell tests.
The X quadrature observable can be defined as:

X:= /]Rx\x>(x| dx,

where |x) is defined in analogy with the quantum harmonic oscillator, and
its inner product with an element of Fock basis is (x|n) = ¢,(x), with
¢n(x) being the Hermite function® of order n [156]. We can represent the X
quadrature observable in Fock basis,

X =¥ [ oix)g;(x)xli il d.
if

One possible complication of quadrature measurements is that they can
output an infinite number of outcomes, any x € R. But this issue can be
solved with a binning process**. The most general binning is: we output the
value +1 if the X measurement returns x € AT, where A7 is a subset of the
real numbers. We output the value —1if x € A~ =R\ A™.

With the projectors

+aFy
Q(4%) = [ ) (xldx,
we define the dichotomised version of the X observable as

Q(AT):==Q"(AT)—Q (AT)

*°We remark the fact that the image of all Hermite functions is the set of real numbers RR.

*'Binning [157] is a classical data processing technique to assign one certain value to various
different outputs. For example, one natural binning consists in assigning the value +1 to all
outcomes that are larger than zero and —1 to all outcomes smaller than zero. We remark that,
given its classical description, one cannot use the binning process to transform local statistical
data into nonlocal one.
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so our dichotomised quadrature measurement operators are
QH AN =% [ ewlitl, @) =X [ eelil
Y )

We now call the attention to the fact that the X operator is unbounded
[158]. And as we will see in subsection 4.4.9, unbounded operators may bring
some unexpected physical issues.

4.4.4 A convenient subspace

Since*? Q? = I, the subspace generated by {|0),Q|0)} is invariant under Q.
This allows us to write

Ql0) = cos6]0) +sinb|E), (4.10)
with ) e
wwwimgﬂywmmmm (4.11)

being a normalised vector orthogonal to |0) and?3

cosO(AT) := Z/A+ @o(x)?dx — 1. (4.12)

Moreover, in this subspace, the operators D and Q have a very useful repre-
sentation.

Lemma 9. D and Q can be written as
D = TIDII + (1 — IT)D(1 — I1)
Q =TIQIT + (1 - THQ(1 —11),
where 11 is the projector onto the subspace spanned by {|0), Q|0) }.

Proof. Note that {|0), Q|0)} is an invariant subspace of both operators D and
Q, as
Q(«[0) + pQI0)) = aQl0) + B|0)

and

D(«[0) + pQI0)) = aD|0) + FDQI0)
= «[0) + B(2/0)(0] = 1)Ql0)
= «[0) + B(2|0)(0]Q[0) — Q[0))
= (& —26(0]Q0))[0) + BQI0).
Since both D and Q are self-adjoint, it follows that the pre-image of {|0), Q|0) }

is also within {|0), Q|0)}, so the orthogonal decomposition is valid for both
operators. O

22The dichotomised X quadrature observable is always a function of the binning set A*, but
if the binning has minor importance, we will just write Q.

23Please note that one binning set A™ defines 6, but the same 6 can be attained with various
different binnings.
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It is important to note that |E) is an eigenvector of D. With this notation,
the restriction of Q and D to this subspace, in the orthonormal basis {|0), |Z)},
takes the form

Qg :=TIQIT =cos 0 o, + sinf oy,
Dp :=IIDII =0.

4.4.5 CHSH scenario with photodetection and X quadrature
measurements

In [145] , Cavalcanti et al. explore a Bell test scheme that combines photode-
tection and homodyne measurements and show that it is possible to attain
_ 102)+]20)

a CHSH violation of 2.25 with the state |¢) = A Also their scheme

can tolerate some inefficiencies: photodetection 7 = 0.71, or transmission
t = 0.84 (for discussion of photonic inefficiencies, please read subsection
4.2.2), efficiency requirements that are comparable to the ones obtained for
polarisation Bell test schemes [142]. After presenting some other examples
they left open the maximal amount of violation for other states.

For this scenario, it is useful to define the CHSH operator

CHSHp(A"):==D®D+D®Q(A")+D®D - Q(A") ® Q(A™),

and with an analytical approach, we explicitly calculate the maximum CHSH
violation as a function of the binning choice A", and also provide quantum
states that attain it.

Theorem 26. The maximal violation of CHSHp(A™) as a function of the binning

choice is given by
|ICHSH||p(AT) =24/1+sin?(AT).

Moreover, it is always possible to find a quantum state |) that attains such
violation by diagonalizing the 4 X 4 matrix that represents CHSHp restricted to the
subspace spanned by {|0), Q|0)}*?2

Proof. Invoking the Tsirelson-Khalfin-Landau identity (equation (2.7)), we see
that
2 2
ICHSH|[p = 4+ [|[Q, DI|I"

Using lemma 9 one can check that [Q, D] = [IIQIL, IDII], where IT : Hoo —
5 is the orthogonal projector onto the subspace spanned by {|0), Q|0) }. With
it we can explicitly calculate the commutator

[Q, D] = cos 8 [0z, 0] + sin @ [0y, 0%]
=0 —sin6 2ioy,
and use the fact that ||oy, || = 1 to finish the proof. O

In the next subsections, we analyse this scenario under measurement
imperfections.
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4.4.6 An imperfect measurement scenario

A photodetector has efficiency 7 if the probability of outputting +1 for the
state 1) is** 1 — (1 — )", that is, the complement of the probability that the
apparatus misdetects all photons. This is equivalent to saying that we applied
an amplitude damping map with factor # on the photodetection measurement
operators [140] (see section 4.2.3). For analysing imperfect photodetectors we
define

D =

. (1= =n)")|n)(nl, (4.132)

[7e

n=1

Dy = [0)(0] + ;(1 —1)"[n)(n], (4.13b)

that induces the observable D; := D} — D; . Please note that if we restrict
ourselves to states lying in the subspace spanned by {|0), |Z) }, photodetection
measurements can be described by

+ . /=Dt
D, = (€|}

:> E)(8], D, :=1-Df,

so, for all quantum states that lie in the subspace spanned by {|0), |E)} we
have p_q D, = E‘DU+ ‘E> P41 p- This identity motivates us to define the
overall photodetection efficiency

H:[0,1] = [0,1], H(y):= <:

+i=
Di %)

and with it, we can make a clear analogy with the efficiency model presented
on equation (4.4a).

Another source of errors is the transmittance t which affects both mea-
surements: photodetection and homodyning and it is also modelled by the
amplitude damping map [140, 16]. For the photodetection, the effects of
transmittance are equivalent to photodetection efficiency*>, so we define

D, = Ht)|E)(@|, Dy, = 1Dy,
that can be used to calculate probabilities for states that lie in span({|0), |E) }).

Unfortunately, quadrature measurements with transmittance ¢t do not
admit such a simple representation, so we represent them by?2°

=Y FKEQ'R, Q =) FQFE
k k
with

F = n;(\/@\/t”k(l — t)k|n — k) (n|.

24 Adopting the convention that 00 = 1.
25We also assume that the sources of errors are uncorrelated.
26Gee subsection 4.2.3.
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4.4.7 Violation for all non-null # photodetection efficiency

Now we can analyse a more realistic quantum Bell test by using the operator
CHSHpyt(A™) := Dyt ® Dyt + Dyt ® Qe(A™) + Dy @ Dyt — Qe(AT) @ Qe (AT).

Note that if t = 1, corollary 6 states that we can verity quantum nonlocality
with arbitrarily low photodetection efficiency. Furthermore, by projecting
Qt, Dyt as before, we can attain the required violation with states lying in
span({|0),|E)}®2). Moreover, the demonstration of theorem 25 informs us
that the state

|Py) = {cosg\++>+sing(|+f>+|*+>)},

i

1+sin? §

with |£) being the normalised eigenvectors of Qg, attains
4cos? § sin* §
(CHSHyp)p, =2+ HA0N) =L
which is larger than 2 for every # > 0 and nontrivial choice of 6.

Also, the critical transmittance?®” of these states is ~ 0.92, and is reached
in the limit § — 0. We have also maximized (CHSH,1p) and found that the
binning choice that reaches the largest violation obeys cos g =(H5-1)/2.

Also, since in the subspace span({|0), |Z)}), the operator CHSH,;pg is
just a 4 x 4 matrix, and we can find the eigenvector |Pgz) that provides us
the smaller requirements on efficiency?®. The minimum requirements on
efficiency for the states |Py) and |Pg) are presented on figure 4.1.

Before ending this subsection, we remark that in [1] we analyse the be-
haviour of (CHSHpy(A™)) for various different classes of states, we also
present some specific examples and considered dark counts inefficiencies.

4.4.8 An atom-photon scenario

Now we are going to analyse scenarios in which Alice performs measurements

on atomic observables, described by Pauli matrices, and Bob measures Q or

D. This scheme was explored in ref. [159], and it is interesting because

measurement efficiencies on atomic systems can be very high [135, 136], so

we can tolerate larger inefficiencies on photonic measurements (see lemma 5).
Define the CHSH operator

CHSHpyt ==V (7) @ Dyt + V(7) @ Qt + V(=) @ Dyt = V(=7) ® Q1,

*’Here, critical transmittance is the minimal transmittance required for attaining a CHSH
violation.

28Please note that |Pz) is an eigenvector of the restricted operator CH SHytpr, not of CHSHyp.
In a non-perfect measurement scenario, we do not guarantee that the quantum states that attain
maximal violation lie inside span{|0),|Z)}%?, that is, these are not the minimum efficiency
requirements for this setup.

2»9Dark counts can be seen as the opposite of the photodetection efficiency, instead of mis-
detecting a photon with probability #, the apparatus misdetect the vacuum with probability

D-
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Figure 4.1: Contour lines for (CHSHpy;) = 2, considering the efficiency 7
of the photodetectors and the transmittance t between the source and the
photodetectors.

where3°
V() :=cosvy 0z + siny oy.

In order to obtain an analytical result, we now restrict ourselves to the sub-
space spanned by {[g),|s)} ® {|0),|Z)}, where |g) and |s) are two atomic
levels, eigenstates of the o, observable. Also, we assume ideal transmit-
tance (t = 1) and, for simplicity, we only consider binnings A™ such that
S 4+ @o(x)*dx = 1/2, where Qg = 0y.

In this case, the Bell operator CHSH 4, is represented by a 4 x 4 matrix
with eigenvector

|Az) o [(1—H)cosy + \/sinz'y—f— (1 — H)?2 cos? 'y} |g0) +siny[sE),

that attains

(CHSH4) 4, = 2H cosy + 2\/sir12 v+ (1—H)%cos? 7, (4.14)

which is larger than 2 if # > 0 and y € (0, g) That is, we have a violation of
a Bell inequality with arbitrarily low photodetection efficiency for all choices of
non-commuting atomic observables.

We also compute numerically the efficiency requirements for (CHSH ;) An

2, result presented on figure 4.2.

3% Since we have a two level quantum system and will use two self-adjoint operators with
eigenvalues +1, they can be written M = |0,) (0| — |14} (1| and N = |0,,)(0| — |11) (Ln]-
For noncommuting M and N, there is only one ¢ € (0, %) defining 2 cos %\a) = 10p) + |0n),
2sin 7|b) := |0s) — |0,). In this convenient basis, we can write V() = |a)(a| + |b)(b| so that
M =V(vy) and N = V(—7), and one can interpret 2 as the angle between the two observables.
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4.4.9 Looking for feasible states

Although the state |Ag) could be useful for loophole free Bell tests, we
do not know any experimental setup to produce it. Moreover, we have
strong evidence that the states |Z(A™1)) may not be practical for physical
implementations. For the binning A* = [0, 00|, we can analytically solve the
integrals to write

= ool)) = 3 (_1)11(2”)!
([0, ])>f2nzzo\/mznn!

that asymptotically, assumes the form

12n+1),

23/4 ) (_1)n

Z(3) (Zﬁ— 1) n=0 (2n + 1)%

2([0, 00])) ~ 2n+1),

that can be used to check that we have a divergence on the expected value of
the photon-number observable N := Y, n|n)(n|,

ZIN|E) = 1
(N)|2(j0,00))) = (EIN|E) =o ; NG — oo.

Physically, this divergence also implies that to produce this state one would
need an infinite amount of energy. We also have numerical evidence that this
photon-number divergence occurs for all binning choices A™, indicating that
states lying in the subspace span{|0), |Z)}®? are not feasible.

In order to find a feasible Bell test, it is physically sound to replace |Z)
with a more familiar state. A good candidate is the so-called odd cat state

[160], whose production has been explored experimentally [161],

) +1-0)

V2y/1+ e—2lal?

with |a) being the coherent state [162].

|cat) :=

With the cat state, we can define [163]
| Acat) = cosv|g0) + sinvlecat),

that does not attain violation for all non-null photodetection efficiencies but
still provides good numbers: for example, in a perfect measurement scenario,
it attains3* (CHSH ;) A, = 2:60. The efficiency requirement for |Act) is
shown in figure 4.2.

Another idea is to replace |E) for the coherent state |«) to define

|Ay) = cosv|g0) + sinv]en),

3y a2 2207, v ~ 0.59, v ~ 0.74, and AT ~ [—0.55,0.55].
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Figure 4.2: Contour line on which (CHSH4) = 2, considering the efficiency
1 of the photodetectors and the transmittance ¢ between the source and the
photodetectors. For | Ac,t) violations can be obtained above critical efficiency
0.066, for which a ~ 2.29i, and above critical transmittance ~ 0.52, reached
for & ~ 2.87i. For |Az) the critical efficiency is zero, while the critical trans-
mittance is ~ 0.55.

that, in a perfect measurement setup, attains®> (CHSH A11>% = 2.32. More-
over, it is possible to attain a CHSH violation even for33 # = 0.15, or transmit-
tance34 t = 0.55. Also, for a detection efficiency of # = 0.8 and a transmission
of t = 0.8 we find?» <CHSHA,7t>Aa = 2.07. In figure 4.3, we present the
efficiency requirements for |A,). For comparison, we have also included the
curve yt = 2/3 that results from the Eberhard bound [144, 142], which is the
required efficiency and transmission to perform a loophole-free experiment
with photon polarisation, and the curve from the best experimental proposal
to date involving an atom and a photonic mode [159].

4.4.10 An experimental proposal

Although some papers reported feasibility of the states | Acat) and |Ay) MT:
aguardando nome dos trabalhos, pedi para o franca: micromaser do Haroche
, we do not know how to adapt the their physical state preparation to our
measurement scheme. Seeking for a viable Bell test, in [3] we propose a
physical setup to construct a state p,, which is equivalent to |A,) in some
regimes. Assuming the numbers found in recent papers [164, 165], ps does
not attain the same good results as | Ay ), but still provides reasonable CHSH

32y 2 2.10i, v ~ 0.55, v ~ 0.77, and AT ~ [—0.53,0.53].
By a2 3.351, v ~ 0.14, v ~ 0.16, and AT ~ [—0.34,0.34].
34 & 3.38i, v ~ 0.03, v ~ 0.33, and A" &~ [—0.44,0.44].
35 a2 2331, v ~ 0.34, v ~ 0.66, and AT ~ [—0.53,0.53].
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Figure 4.3: Contour line for (CHSH) agt = 2. The green line (bottom)
corresponds to the ideal state of our proposal. The parameters «,y, v were
optimized for each point. For comparison, we include the curve 5t = 2/3
(red, on top) that results from the Eberhard bound [144, 142], and the curve
from the best experimental proposal to date [159] (blue, dashed).

violation with low requirements on transmittance t and and photodetection
efficiency 7.

Since methods to construct quantum states and current technology on
experimental optics are not on the scope of this dissertation, we just present
the form of state p, (equation (4.15)) and some contour lines (figure 4.4) for
(CHSH A’7t>pm for the cases our state can be produced by adapting the scheme
presented in [164, 165]. For more details, please see [3].

The scheme proposed construct the state3

Pa = V|Ag) (Au| + (1= V)0, (4.15)
where
|Ay) = cosv|s0) + sinv|ga);

o = cos? v[s0) (s0| + sin® v|ga) (gu|;

Kp 2 |0‘|2
V=exp|— (2 .
expl — (2 -+ sl ) 3o

The parameters rgg, tgs stand for reflectance and transmittance of a beam
splitter used in the process of generating the state, x; and x. stand for the
decay rate of the mirrors of a cavity with an atom in the dispersive regime.
We remark that it is possible to construct beam splitters with any reflectance
and transmittance that respects |rps|® + |tps|*> < 1, and cavities with decay
rates satisfying x;, /x, = 1/20 have been reported on [164].

3That can be understood as a convex combination of the ideal state with its “depolarised”
version.
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Figure 4.4: Contour lines of <CHSHA,7t>p’ as a function of 7 and t. We

keep |a| = 2 fixed and optimize the measurements and state parameters
v, v for each point. The experimental parameters used are x,/x. = 1/20
and |rgg|* = 0.01. The critical line for |A,) (dotted line) is included for
comparison.

4.4.11 Possible future directions

One clear future direction is to look for laboratories that can implement the
physical system proposed. And also to look for restrictions and limitations of
some specific laboratories to optimise our scenario for their setups.

It is also natural to look for scenarios in which the photonic part explores
homodyning measurements on the dichotomised version of different quadra-
tures [140]. If we could attain reasonable CHSH violation only with homodyne
measurements we would not need to worry about photodetection efficiencies
anymore.

Another direction would be to improve our results by adapting our scheme
to Bell scenarios with more parties and inputs. We remark that references [166,
167] show examples of Bell scenarios that are less demanding on efficiencies
than the CHSH, and [168] explores dichotomised homodyne measurements
in a multipartite scenario.



Conclusions and perspectives

In this dissertation we developed a black box framework that can be used to
infer properties of physical experiments just by analysing its statistical data.
We introduced the concepts of signalisation, locality, and noncontextuality,
discussing their interpretations, proving theorems, and presenting examples.
In particular a box is nonlocal/contextual if its probabilities cannot be under-
stood as ignorance on hidden variables which correlate its subsystems.

After presenting various known results on multipartite boxes, we devel-
oped a more general concept of black boxes, that allows us to study any set of
probability distributions. In this general box formalism, we explored some
results on convex geometry to analyse the n-cycle scenario, obtaining (for the
first time) a simple halfspace characterisation for a class of infinitely many
noncontextual polytopes.

We discussed the meaning of the physical realisation of nonlocal and
contextual boxes, and why performing these experiments is so hard in real
laboratories. In order to understand the difficulties of constructing nonlocal
boxes in a imperfect scenario, we proved some efficiency requirements to
attain a loophole free Bell test. These efficiency bounds motivated us to
look for physical setups that combine very efficient measurements with not
so efficient ones. Pairing homodyne measurements (that can be made very
efficient) with photodection (usually, not very efficient) we presented an
optical setup that can attain CHSH violation even for detectors with arbitrarily
low photodetection efficiency. But we concluded that the quantum states that
attain such numbers may not be physically viable.

Still in the same homodyne/photodetection scheme, we presented states
that can be constructed by adapting some state of the art physical setups.
These states do not attain the same impressive results as the (possibly) non-
feasible ones, but still provide nonlocal statistics even with efficiency require-
ments that seem reasonable with current technology.

Although various questions were answered, we finish this text with some
open ones. What more can we learn from that simple characterisation of the
noncontextual polytope for the n-cycle? Are there other box scenarios in which
the local/noncontextual polytope admits a simple facet characterisation? Can
we obtain the efficiency requirements for loophole free Bell tests in more gen-
eral scenarios from an analytical approach? Is the quantum implementation
of nonlocal boxes presented in this dissertation practical for real experiments?
Can we propose other physical setups in which its requirements for loophole
free Bell tests are within current technology?

101
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We hope that the ideas presented in this text contribute to the study
of correlations between physical systems and motivate other researchers to

answer some of our questions.

Czas — moj najwigkszy wrdég, mdj
najlepszy przyjaciel

Czas — nie uzywa stow, ale zawsze
odnajdzie

Na Krawedzi — Closterkeller
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