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The phrase shoshin means

‘beginner’s mind’. The goal of

practice is always to keep our be-

ginner’s mind. In the beginner’s

mind, there are many possibili-

ties; in the expert’s mind there

are few.

—Shunryu Suzuki-roshi

All life demands struggle.

The very striving and hard work

that we so constantly try to

avoid is the major building block

in the person we are today.

—Pope Paul VI
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o clima de trabalho é extremamente acolhedor e aberto, e eu não tenho como agradecer o

suficiente a vocês.
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Abstract

Reconstructing a wavefront is a problem that appears in many areas of physics and

engineering, and leads to many important applications. X-ray crystallography, electron

microscopy, femtosecond laser temporal characterization, blind deconvolution of degraded

images, and tomographic imaging are examples of areas that, if not directly involving

the reconstruction of a wavefront, have benefited from the techniques developed to solve

this problem. In general, the measurement devices are able to record the intensities of

the wavefront, but not its phases; the numerical tools used to recover them thus became

known as phase retrieval algorithms.

In this work we propose the use of these algorithms to reconstruct pure quantum

states encoded into transverse spatial modes of single photons – the so-called spatial

qudits. We made significant adaptations on the algorithms found in the literature in order

to fit experimental features of this kind of encoding. The most striking of these was to

magnify Fourier-plane amplitudes in order to compensate for the small range of sampled

frequencies, leading to great improvements in the quality of the results.

To demonstrate this technique, we performed a proof-of-principle experiment with an

optical beam mimicking spatial qudits states of dimensions D = 2, 3, 4, 7 and 9. After

compensating for some experimental deviations, the recovered states presented fidelities

frequently above 99% with respect to the target state, showing that the phase retrieval

algorithms may be a useful tool for quantum state characterization.
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Resumo

A reconstrução de frentes de onda é um problema que aparece em muitas áreas da f́ısica

e da engenharia, e resulta em muitas aplicações importantes. Cristalografia de raios-x,

microscopia eletrônica, caracterização temporal de lasers de femtosegundo, deconvolução

cega de imagens degradadas e imageamento tomográfico são exemplos de áreas que, quando

não envolvendo diretamente a reconstrução de uma frente de onda, se beneficiaram das

técnicas desenvolvidas para resolver este problema. Em geral, os dispositivos de medição

são capazes de obter as intensidades da frente de onda, mas não suas fases; as ferramentas

numéricas utilizadas para recuperá-las ficaram portanto conhecidas como algoritmos de

recuperação de fase.

Neste trabalho, nós propusemos o uso desses algoritmos para reconstruir estados

quânticos puros codificados em modos espaciais transversais de fótons individuais – os

chamados qudits espaciais. Nós fizemos adaptações significativas aos algoritmos encon-

trados na literatura, de modo a adequá-los às caracteŕısticas experimentais desse tipo de

codificação. A mais eminente dessas adaptações foi magnificar as amplitudes no plano de

Fourier, de forma a compensar o pequeno intervalo de frequências medidas. Isso resultou

em uma grande melhora na qualidade dos resultados.

Para demonstrar essa técnica, nós realizamos um experimento de prova de prinćıpio com

um feixe óptico que mimetizava estados de qudits espaciais com dimensões D = 2, 3, 4, 7 e 9.

Depois de compensados certos desvios experimentais, os estados recuperados apresentaram

fidelidades frequentemente acima de 99% com relação ao estado que se desejava preparar,

mostrando que os algoritmos de recuperação de fase podem ser uma boa ferramenta para

a caracterização de estados quânticos.

v



vi



Introduction

When we study undulatory phenomena, we learn that waves have phases. But they are

not evident in our everyday life, since when we hear or see we are actually interacting with

incoherent waves, whose phase fluctuations are too big. For instance, these fluctuations

make it impossible for interference phenomena to take place: how many times has the

reader seen two people talk at the same time and the volume of their speech increase

fourfold? Or their words cancel each other, with just silence remaining? In fact, the

phases of a wave are also not easy to measure, as most detectors – and certainly all

photodetectors – only record intensities. Nevertheless these phases exist, and both their

control and measurement have been used in astonishing applications.

A wave is usually a cyclic phenomena, and the point of its cycle that the wave finds

itself is called its phase. After a wave interacts with something else – a non homogeneous

material, for example – each of its points might have evolved differently in their cycles,

since each interacted with a different part of the material. The phases that a wave carries

after such an interaction can actually tell us something about the interaction itself. How

could one infer the phase of a wave then? One strategy would be to transform the phase

information into intensity information, for example through an interference phenomenon,

which could then be readily measured. After that, one could infer back the phases, and

finally infer the characteristics of the interaction (or the material) by using some physical

model.

Here we will study another such strategy that relies on the knowledge (total or partial)

of both the wave’s and its Fourier transform’s amplitudes. In this strategy, in order to

recover the phases one has to use numerical algorithms known as phase retrieval algorithms.

There are two kinds of problems [1] that can be fit in this context. The first kind is that

of the reconstruction problems, in which the phase of the wave carries some information

one is interested in. Surface metrology is an example of such a task: imagine you have

a surface and want to check it for very slight deformations; you could impinge a plane

wave on that surface so that eventual deformations would delay or advance the wavefront.

The mirrors of the James Webb Space Telescope (JWST), planned successor of Hubble

telescope, have been checked for possible deformations that could hinder the images with

vii



viii

this technique [2], demonstrating the astonishing precision that can be reached. Not less

impressive is the use of these algorithms to align the different sections of its mirrors [3]

after it is launched (the JWST will have a very large mirror composed of 18 sections that

will be folded on top of each other during the launch, but should be unfolded after it

reaches its solar orbit for the observations [4]).

The second kind is that of the synthesis problems, in which instead of desiring to

recover phases based on intensity measurements, one wants to discover what phases should

be imposed on a wave in order to give it some desired intensity profile. This has been

used to control laser beam profiles in inertial confinement fusion [5], and to improve the

quality of images made with holograms [6], for example. Phase retrieval algorithms can

also be employed to solve this kind of problem.

In principle, every scientific area that involves coherent waves interacting with matter

could benefit from phase retrieval techniques, as has been the case of electron microscopy [7]

and x-ray crystallography [8].

In this work we propose the use of phase retrieval algorithms as a tool for characterizing

pure quantum states encoded in transverse spatial modes of photons (spatial qudits); we

do so by approaching state characterization as a phase reconstruction problem (of the

kind described above). Spatial qudits have been receiving increasing attention because

of its potential for applications in quantum information, quantum cryptography and

fundamental tests of quantum mechanics with high-dimensional states. All of these involve

the knowledge of the states at some level, for which the phase retrieval algorithms might

be one more alternative.

We have organized this dissertation in the following manner: chapter 1 discusses the

spatial qudits and how the phase retrieval problem arises when we use them; chapter

2 presents the phase retrieval algorithms themselves; chapter 3 outlines the specific

adaptations we had to make in the standard algorithms in order to adapt them to our

problem; chapter 4 introduces the experimental setup we used for preparing the spatial

qudit states and also presents the results we obtained when reconstructing them with the

algorithm; finally, chapter 5 brings the conclusions and future perspectives.



Chapter 1

Spatial qudits and the phase

retrieval problem

Quantum information and quantum computing are fields that have been receiving increas-

ing attention, both because of its technological applications and the point-of-view it offers

for approaching fundamental questions [9]. For example, some interesting applications

that have been devised are superdense coding [10], information teleport [11], quantum

cryptography [12] and quantum speed-ups of algorithms [13]; an example of the funda-

mental questions that have been studied is the attempt to understand whether quantum

mechanics can be formulated as a hidden-variable theory or not [14].

Another intriguing possibility that quantum computing offers is to use a quantum

system to simulate another, as has been pointed by R. Feynman [15]. While it may be

difficult to simulate the time evolution of a given quantum system in a classical computer,

it might be possible to make another quantum system mimic this system of interest

instead. This would be a valuable tool to understand systems too complicated to control

in practice.

In the pursue of quantum computers, several implementations using different quantum

systems have been studied. Quantum information and quantum computing protocols have

been implemented with ion traps [16], superconducting circuits [17], quantum dots [18] and

photons [19]. Photons are good candidates for these tasks since they are easily transported,

both by free-propagation and optical fibers. They also have several degrees of freedom

in which one can encode information, for instance the polarization [20], the angular

momentum [21], the temporal profile [22] and the transverse position-momentum [23], on

which we will be focusing from now on.

The transverse spatial modes have the versatility of easily allowing for high-dimensional

states to be encoded, offering advantages for applications in cryptography [24], commu-

nication [25] and Bell-like experiments [26], for example. The states codified in this

1



2 1.1. Mimicking quantum states with an electromagnetic field

manner are called spatial qudits1, and they have already been used in experiments of

quantum algorithms [27], quantum games [28], quantum contextuality [29], simulation of

decoherence [30] and generation of maximally-entangled pairs [23].

The ability to characterize states is important in all of these applications. In general,

this is done through state tomography, which involves carrying out measurements with

an informationally complete set of operators [31,32]. Because these sets comprise many

operators, this technique becomes somewhat costly, specially for higher-dimensional states.

In particular, several tomoghaphic schemes have been devised for spatial qudits [33–36].

In this chapter we will study how electromagnetic fields can behave similar to a D-level

quantum system. We will see a scheme that can be used to emulate qudit states in classical

beams as well as encode them in single photons. It will become clear that this scheme

relies on the use of phases, so next we will discuss the problem of phase information loss

that arises when we use photodetector arrays to detect the beam profile, and introduce

the main idea behind the algorithms that can solve it. Finally, we introduce the fidelity

between two states, which we will use later to quantify how good the results of the

algorithms were.

1.1 Mimicking quantum states with an electromag-

netic field

In this section we want to introduce an approach to mimic pure quantum states with a

classical electromagnetic field.

A pure state of a quantum system is described as a vector in a D-dimensional Hilbert

space H [37]. If we let {|n〉}Dn=1 be a basis of H (orthonormal, for convenience), we can

write any arbitrary state in this space as

|ψ〉 =
D∑
n=1

cn |n〉 , (1.1)

where the coefficients cn are complex numbers that must satisfy
∑D

n=1 |cn|2 = 1 for the

qudit state |ψ〉 to be normalized.

Using a scalar representation of an electromagnetic wave (which we are allowed to do,

if we assume that the polarization of the field is fixed throughout the entire space), we

can arrive at a set of fields that obey an expression similar to equation (1.1). In this sense,

it is possible to mimic these states with electromagnetic waves.

1In quantum information, qudits are the D-dimensional analogues of the two-dimensional quantum
bits (qubits).



Chapter 1. Spatial qudits and the phase retrieval problem 3

Imagine we have an opaque screen with D rectangular slits, each having a very thin

film that controls its complex transmission coefficient. That is, the film at each slit

controls both the field amplitude that is transmitted and phase that it gains, as depicted

in figure 1.1. Thus the transmission [38] function of this screen over the plane is given by

t(x, y) =
D∑
i=1

tie
iφirect

(
x− xi
X

)
rect

( y
Y

)
, (1.2)

where ti is the real transmission coefficient, φi the phase gain and xi the center of the ith

slit; also, X ans Y are widths of the slits in the x and y directions, respectively, and rect

is the rectangle function, given by

rect(η) =

1, if η ∈ [−0.5, 0.5]

0, otherwise
. (1.3)

Figure 1.1: Screen with D slits; its transmission functions is given by equation (1.2).

Now if we impinge a monochromatic plane wave of frequency ω and amplitude E0 on

this screen, propagating in the z direction, the field immediately after the screen (supposed

at z = 0) will be

Et(x, y, t) = t(x, y)E0e
−iωt (1.4)

= e−i ω t
D∑
i=1

tie
i φiE0 rect

(
x− xi
X

)
rect

( y
Y

)
=

D∑
i=1

tie
i φiEi(x, y, t). (1.5)

This field has the same form as equation (1.1), with the coefficients tie
i φi playing the roles
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of each ci, and the single-slits fields

Ei(x, y, t) = E0e
−i ω trect

(
x− xi
X

)
rect

( y
Y

)
(1.6)

playing the roles of the basis states |i〉. This shows that, by controlling the transmission

coefficients of each slit (making ti = |ci| and φi = arg ci), we can mimic an arbitrary state

|ψ〉.
Of course, equation (1.5) is an approximation. We did not use diffraction theory to

find the transmitted field, we just used the approximation that it is given by the product

of the transmission function and the incident wave. In fact, the vectorial theory of near

field diffraction can be a quite hard subject. However, if we admit that the incident

wavelength is much smaller than the dimensions of the slits, this is a good approximation.

Isomorphism between slit fields and quantum states

We have seen how an electromagnetic field can be similar to a qudit. Actually, we would

like them to be so similar that any operation and any quantity defined for the quantum

states can be also implemented or calculated for the slit fields. Mathematically, what

assures this is possible is a relation called isomorphism.

Let us call the set of all possible slit fields H′. What we are claiming is that the

correspondence

h : H 7−→ H′

D∑
i=1

ci |i〉 7−→
1

E0

D∑
i=1

tie
i φiEi, (1.7)

with ti = |ci| and φi = arg(ci) is a isomorphism and thus preserves the structure of the

Hilbert space of the possible states |ψ〉, so that the space H′ of transmitted fields Et is a

faithful copy2 of H. This is to say that h satisfies the following properties:

(i) it is a bijection3;

(ii) preserves linear combinations: h(αψ1 + βψ2) = αh(ψ1) + βh(ψ2);

(iii) preserves inner products: 〈h(ψ1)|h(ψ2)〉 = 〈ψ1|ψ2〉;
2We are claiming that h is an isomorphism between the Hilbert spaces; this is not surprising: one can

check that H′, which is generated by the slit fields Ei, is indeed a Hilbert space of D dimensions, just as
H, and remember that a mapping that takes an orthonormal basis in one finite-dimensional Hilbert space
to another orthonormal basis in the other will be an isomorphism.

3An isomorphism is just a mapping that is both injective (no two elements are mapped to the same
image) and surjective (the image of the domain covers all of the codomain)
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which are all straightforward to check; for property (iii), it is useful to note that the slit

fields are orthogonal: if we let j 6= i, then

〈Ei|Ej〉 =

∫∫
R2

E∗i (x, y, t)Ej(x, y, t)dxdy

= E2
0

[∫ ∞
∞

rect

(
x− xi
X

)
rect

(
x− xj
X

)
dx

]
︸ ︷︷ ︸

0

[∫ ∞
∞

rect
( y
Y

)
rect

( y
Y

)
dy

]

= 0, (1.8)

where we have used the fact that the slits should have a separation bigger than their

widths, X > |xi − xj|, and in this case the product of the rectangle functions inside the

first integral is zero for all x.

In order to get some appreciation for these three conditions, we can think of the

possible “defects” that could arise in case our map did not satisfy them. Some defects are

depicted in figure 1.2. For property (ii), we have to keep in mind that we are trying to

simulate a quantum system through another physical system: in this second system, we

want not only to encode states, but also mimic operators on the first system.

(a) (b)

Figure 1.2: Pictorial examples of: (a) a non-1-to-1 mapping (b) a non-surjective mapping.

• If h were not injective (one-to-one), we would have different states |ψ1〉 and |ψ2〉
mapped to the same field E1; it is as if in the process of mapping, we had lost points

of the original space.

• If h were not surjective (onto), we would have fields E without correspondent states

|ψ〉; it is as if we have gained points through the process of mapping.

• If h did not preserve linear combinations, an important class of linear operators

on H would have to be mapped to non-linear operators in H′: let A be a linear

operator in H with no zero-valued eigenvectors, and let A′ be the corresponding
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operator in H′ defined by4

A′(E) = h ◦ A(ψ),

with E and ψ corresponding by E = h(ψ); if it happens that

h(αψ1 + βψ2) 6= αh(ψ1) + βh(ψ2)

for some α, β, ψ1 and ψ2, we make ψ01 and ψ02 such that Aψ0i = ψi and thus

A′(αE01 + βE02) = h ◦ A(αψ01 + βψ02)

= h(αψ1 + βψ2)

6= αh(ψ1) + βh(ψ2) = αh ◦ A(ψ01) + βh ◦ A(ψ02)

⇒ A′(αE01 + βE02) 6= αA′(E01) + βA′(E02).

• If h did not preserve inner products, some probability distributions calculated from

a state |ψ〉 would have a different value than that calculated with the corresponding

field E: let |ψm〉, |ψn〉, Em and En be such that Em = h(ψm), En = h(ψn) but

〈Em|En〉 6= 〈ψm|ψn〉 ;

we can analyse two cases to see that some distribution probability will be altered

because of this defect in h. We can look, for example, at the probability that we

have a positive result when applying on state ψβ the projective measurement onto

state ψα, which is given by P (α|β) = | 〈ψα|ψβ〉 |2, and the corresponding probability

P ′(α|β) = | 〈Eα|Eβ〉 |2.

1. If | 〈Em|En〉 | 6= | 〈ψm|ψn〉 |, then the probabilities P (m|n) = | 〈ψm|ψn〉 |2 and

P ′(m|n) = | 〈Em|En〉 |2 are clearly different.

2. If 〈Em|En〉 = eiφ 〈ψm|ψn〉 with φ not a multiple of 2π, then for the state

|+〉 =
1√

2 + 2 Re(〈ψm|ψn〉)
(|ψm〉+ |ψn〉)

we have

P (m|+) =
1

2 + 2 Re(〈ψm|ψn〉)

(
1 + | 〈ψm|ψn〉 |2 + 2 Re( 〈ψn|ψm〉 )

)
,

P ′(m|+) =
1

2 + 2 Re(〈ψm|ψn〉)

(
1 + | 〈ψm|ψn〉 |2 + 2 Re( eiφ 〈ψn|ψm〉 )

)
, (1.9)

4We will use ◦ to denote composition: h ◦A(ψ) = h(A(ψ)).
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which will also be different given that 〈ψm|ψn〉 6= 0 (the case 〈ψm|ψn〉 = 0

and 〈Em|En〉 = 0 is ruled out by the hypothesis 〈ψm|ψn〉 6= 〈Em|En〉; the case

〈ψm|ψn〉 = 0 and 〈Em|En〉 6= 0 falls in the previous item).

Therefore, it is very important for the fields of the form (1.5) to have the same

mathematical structure as the pure quantum states, otherwise one or more of the problems

mentioned above will take place.

As a final remark before we proceed to the next section, there are two simplifications

we would like to introduce in the basis of slit fields (1.6). We can treat the slits as having

infinite width in the y direction, so that they behave as one-dimensional fields. Also, since

the temporal behaviour is the same for all the slits, it can be factored out. Thus the single

slit fields can be simplified to

Ei(x) = E0rect

(
x− xi
X

)
. (1.10)

1.2 Spatial qudits

Many of the applications we mentioned in the beginning of this chapter used single photons

instead of the classical fields described above. It seems natural to think of the wavefront

of the laser beam as being proportional to the probability amplitude of a single-photon

multimode field [39]. Following this line of thought, we could represent the single-photon

field in the one-dimensional position coordinate5 as

|ψ〉 =

∫
ψ(x) |1x〉 dx, (1.11)

where ψ(x) is its normalized transverse probability amplitude, which is proportional to

the transverse spatial profile of the beam. The states |1x〉 are defined here as

|1x〉 =
1√
2π

∫
ei kx |1 k〉 dk, (1.12)

in analogy to the Fourier transform of the Dirac delta function6; the states |1 k〉 are the

single-photon, plane-wave modes.

5The existence of a position operator for photons is a tough and ongoing debate; we are not recurring
to a position operator to define the states |1x〉, but rather using the well defined plane-wave states.

6Definition 1.12, by imitating the Fourier transform of the Dirac delta, tries to capture the notion of
a localized photon state; this is another tough and ongoing debate, but it is worth noting that we are
thinking about localization in a scale that is small compared to our experimental apparatus’ dimension,
but still large compared to the photon wavelength.
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Let us imagine that this single-photon field is sent through a screen with a D-slit

transmission function

t(x) =
D∑
j=1

c̃jrect

(
x− ηja
X

)
, (1.13)

where the c̃j are the complex transmission coefficients, a is the separation between the

slits, X is their width and ηj = (j − 1) − (D − 1)/2. The field immediately after the

screen will be

|ψt〉 = C

∫
t(x)ψ(x) |1x〉 dx (1.14)

= C
D∑
j=1

c̃j

∫
ψ(x)rect

(
x− ηja
X

)
|1x〉 dx, (1.15)

where C is a normalization constant. Finally, if we assume that ψ(x) is constant across

all the slits [say ψ(x) = ψ0], we can write the state as

|ψt〉 =
D∑
j=1

cj |j〉 , (1.16)

with cj = c̃j/
√∑D

i=1 |c̃j|2 and

|j〉 =
1√
X

∫
rect

(
x− ηja
X

)
|1x〉 dx. (1.17)

The field states 1.16 only represent the part of the field that is trasmitted through the

screen, and do not account for the part that is reflected. Since this part is the one that

can be detected by a detector after the screen, we say that these states are postselected.

These are the spatial qudits [40], which are D-dimensional quantum systems on

their own right. As we have mentioned in the beginning of the chapter, they have

been increasingly used as a resource for applications involving higher-dimensional states

(cryptography, communication and fundamental tests, for example).

From what we have seen before, they are also isomorph to the slit fields (1.5), and by

extension also isomorph to any other D-level quantum system. Therefore, we can also use

them to simulate other quantum systems.

As we will see later, we used a classical beam in our experiment. However, the phase

retrieval method that we are proposing would apply equally well to sigle-photon spatial

qudits.
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1.3 Loss of phase information

It is common to attribute more weight to the intensity than to the phase profile of a field.

However, one striking example of the importance of the phase information was given by

Eliyahu Osherovich [41] in his PhD thesis (see section 1.3.4), which we will reproduce now

(but with two different characters).

Imagine we get two grayscale pictures, which can be thought of as two real fields (in

the sense of having constant, zero phase profiles) f1 and f2. We can take their Fourier

transforms7 F1 = |F1|eiφ1 and F2 = |F2|eiφ2 , exchange their phase profiles and finally take

the inverse transform of the resulting functions. This whole operation would be

f1 = F−1(|F1|eiφ1)

f2 = F−1(|F2|eiφ2)
−→

f ′1 = F−1(|F1|eiφ2)

f ′2 = F−1(|F2|eiφ1)
. (1.18)

Figure 1.3 depicts the result of this process: in the end we get exchanged pictures. This

example illustrates how the phase information is important, as we could exchange the

pictures themselves only by exchanging the phase profiles of their Fourier transforms.

Concerning the phase profiles of the slit fields, in equation (1.5) one can see that

without controlling the phase of the field inside each slit region, it is impossible to generate

all of the desired fields. Phase control is essential for this regard. Moreover, if we were

to determine which field was generated with this scheme, we would need to measure the

phase of the field in the slit regions8.

Photodetectors, however, do not record the phases of a field when it impinges on them,

they only record intensities. To overcome this difficulty, several schemes have been devised

to make the intensity at a given point dependent of the the field’s phase — for example

by interfering the field under investigation with a plane wave reference field.

There is another such scheme, that takes advantage of the fact that the amplitudes of

a Fourier transform depend on the phases of the original function. For instance, let us

take the double-slit field

Et(x) =
1√
2

rect

(
x− a/2
X

)
+
eiφ√

2
rect

(
x+ a/2

2X

)
, (1.19)

7Throughout the text, we will be denoting the Fourier transform operation by F , and Fourier-transform
pairs as the same letter with lower and upper cases; the Fourier transform F of a discrete function f can
be defined [42] as

Fk =
∑
n

fne
−i 2πkn/N

8To be more precise, we would need to measure the phases inside each slit with respect to the phase at
some arbitrary point (for example, the phase inside the leftmost slit), as there is always a global phase
that does not have physical meaning.
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(a) f1 (b) f2

(c) |f ′1| (d) |f ′2|

Figure 1.3: Illustration of the process given in equation (1.18); (a) and (b) show the
original functions f1 and f2, while (c) and (d) show the absolute values of the resulting
functions, f ′1 and f ′2, after exchanging their phase in the Fourier domain. Besides adding
some noise, the net result is to interchange the pictures, which illustrates how important
the phase information is.

(a is the separation of the slits) which has the same amplitude in both slit regions, but

has an arbitrary phase φ in the second. According to the scalar theory of diffraction, after

propagating a long distance, the diffracted field becomes a scaled Fourier transform of the

original field [38]:

Ufar(x) =
−i
λz

∫
U(η)e−i

2π
λz
xηdη. (1.20)

where z is the propagation distance. Therefore, the far field corresponding to 1.19 will be

Efar(x) =
eiΦ(z)

iλz

√
2X cos

(
2π2a

λz
x+

φ

2

)
sinc

(
2πX

λz
x

)
, (1.21)
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where λ is the wavelength of the electromagnetic field. We are regarding the longitudinal

distance z as a fixed parameter and the phase Φ(z) as a global phase.

The amplitude profile of this field can be thought of as composed by two factors: a sinc

envelope with a cosine oscillation. The phase φ has the role of displacing the oscillation

pattern inside the envelope, as can be seen in figure 1.4

Figure 1.4: Amplitude profile of diffracted fields given in (1.21) for (a) φ = 0 and (b)
φ = 3π

4
. The phase difference φ between the slits causes the oscillatory pattern to shift

inside the envelope. This illustrates that, in general, the amplitudes of a Fourier transform
also depend on the phases of the original function; this fact is what underlies the algorithm
we will see in the next chapter.

The dependence of the Fourier amplitudes on the original function phases is not trivial.

In order to use the phase information that is somehow “buried” in the Fourier amplitudes,

we have to resort to numerical algorithms, which we will discuss in the next chapter.

1.4 Fidelity between two quantum states

Later on we will be interested in quantifying how similar two quantum states are, and we

will be using a measure called fidelity. The fidelity between two pure state |ψ〉 and |φ〉 is

defined by [9]

z(φ, ψ) = | 〈φ|ψ〉 |. (1.22)

(The fidelity can be defined in a manner that includes non-pure states, but this pure state

version will be enough for us). In inner product spaces (of which Hilbert spaces are a
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special case), the angle θuv between two unit vectors u and v is defined by

cos θuv = 〈u|v〉 , (1.23)

so that the fidelity between the two pure states |ψ〉 and |φ〉 is just the absolute value of

the cosine of their angle9.

It is easy to see that when the first state lies on the subspace generated by the second

(and thus their angle is either 0 or π), their fidelity equals one, and that when it lies on

the subspace orthogonal to the second, their fidelity equals zero. Also, in intermediate

situations the fidelity will lie between 0 and 1.

9It is also common to encounter the fidelity defined as the square of that defined in equation (1.22); if
the reader is to compare the fidelities we found in this work with those found in another, this should be
kept in mind.
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Phase retrieval algorithms

In the last chapter we have seen that the phase of a function and the amplitudes of its

Fourier transform are related, though this relation is not trivial. In this chapter, we are

going to see a few numerical algorithms that take advantage of this fact in order to solve

the phase retrieval problem. For now, we will be more concerned in explaining the general

features of the algorithms and leave the specific adaptations we made for our experimental

setup to the next chapter.

2.1 The Gerchberg-Saxton algorithm

In 1972, Gerchberg and Saxton published an iterative algorithm to solve the phase retrieval

problem in the context of electron microscopy [43]. In their experiments, an electron

beam was impinged onto a sample which then scattered it, and assessing the scattered

wavefunction of the electrons in the beam gave information about the sample object [7].

The electrons in the beam would propagate until they reach a two-dimensional detector,

which would record a signal proportional to the intensity profile |ψ(x)|2 of the electron

beam 1. By controlling the current in electromagnetic lenses and thus tuning a magnetic

field that the beam had to transpose, they could control the propagation of the electron

beam. Specifically, they could make the plane where the detector lied an object plane or

a Fourier plane, just as with optical lenses. That is, they could make the wavefunction

at the detector plane the same as immediately after the sample, when the object plane

configuration was being used, or they could make it equal its Fourier transform with the

Fourier plane configuration.

Having the measured intensity profiles |f(x)|2 and |F (u)|2 of the Fourier transform

1Even though x is a two-dimensional variable at this point, we will omit the vector notation because
our work was done with one-dimensional functions, and the algorithm can be applied in the very same
way.

13
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pair f − F at hand, one iteration of the Gerchberg-Saxton algorithm proceeds in four

steps:

Gerchberg-Saxton algorithm

(i) make an estimate φ(x) of the phases in the object domain, then

build an estimate g(x) = |f(x)|eiφ(x) of the function f ;

(ii) take the Fourier transform of the estimate g to find G(u) =

|G(u)|eiψ(u);

(iii) correct the amplitudes of the Fourier transform G, but keep its

phases: G′(u) = |F (u)|eiψ(u);

(iv) take the inverse Fourier transform of G′ to arrive at a new estimate

g′(x) = |g′(x)|eiφ′(x) of f .

By the end of step (iv), the new phase estimate of f is of course φ′(x) = arg(g′(x))).

In the first iteration, we should start the algorithm using a random phase estimate

in step (i) or an educated guess, if we have enough prior knowledge. But by the end of

an iteration, we feed the phases φ′(x) of the new estimate g′ back into step (i) and start

another iteration. Thus, step (i) imposes the object-domain amplitudes |f(x)| at g′, in

a similar fashion to what step (iii) does in the Fourier domain. The iterative process is

illustrated in figure 2.1.

g(x) = |f(x)|eiφ(x)

Initial phase estimate

G(u) = |G(u)|eiψ(u)FFT

G′(u) = |F (u)|eiψ(u)

impose |F |

g′(x) = |g′(x)|eiφ′(x)

iFFT

impose |f |

Figure 2.1: Gerchberg-Saxton iterative algorithm.

To keep track of the progress of the algorithm, it is useful to define the object-domain

normalized error:

Eo =

∑
x (|g′(x)| − |f(x)|)2∑

x |f(x)|2
. (2.1)
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This is just the squared residual of the amplitudes of the estimate function g′ at the

end of one iteration, normalized by the total object-domain intensity, and is calculated

repeatedly by the end of each iteration. Since step (i) will change the amplitudes of g′

but not its phases, the sum in the denominator is also a measure of the correction our

estimate will suffer when the next iteration begins, and thus a measure of how far we are

from the answer in the current iteration.

The iterative process is repeated until a numerical criterion is satisfied, for example,

a certain number of iterations being reached. Another common choice is to repeat the

iterations until the difference between errors in successive iterations is smaller than a

fraction of the error in the current iteration. By the end, the algorithm should reach a

good estimate of the phase of f .

2.1.1 Some intuition on the workings of the Gerchberg-Saxton

algorithm

At first, it might not be obvious why this algorithm works at all. But one has to remember

that by changing the amplitudes in either the Fourier or the object domains, we also

change both the amplitudes and phases in the other domain, since these are inter-related.

By making successive modulus impositions in steps (i) and (iii) of the algorithm, we are

actually correcting the phase estimate φ(x) until it (hopefully) converges to the actual

phase of the function f .

In figures 2.2 and 2.3, we illustrate this process with the results of the first iterations

of the algorithm when ran with the chirp function

f(x) = ei16πx2

rect(x). (2.2)

In these figures, the red full lines represent actual values of phase or modulus, while the

black or blue dots show those quantities in the current estimate of the algorithm.

The first row of figure 2.2 shows (from left to right) |g|, arg(g) and |G| obtained in

steps (i) and (ii) of the first iteration. One can see that, in spite of having the correct

object-domain amplitudes, the random phases of g give its Fourier transform a spectrum

that resembles white noise. In the second row there are (from right to left) plots of |G′|,
arg(g′) and |g′| obtained after steps (iii) and (iv) of the same iteration. It is possible to

see that by imposing the correct Fourier-domain amplitudes |F | made the object-domain

phase estimate much less random than it was initially.

The third and fourth rows in figure 2.2 show plots of the same quantities as in the

first and second rows, respectively, but for the estimates in the second iteration of the

program. We can see great improvement in |G| and |g′| with respect to the first iteration,
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Figure 2.2: Modulus and phase profiles of estimates g and g′, and modulus profile of G and
G′ for iterations 1 (first two rows) and 2 (last two rows) of the GSA; the target function
in this example is given in equation (2.2). Full lines represent the actual quantities, while
dots represent the estimates at the current iteration.
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Figure 2.3: Same quantities as in figure 2.2, but for iterations 20 (first two rows) and 130
(last two rows) of the GSA. Full lines represent the actual quantities, while dots represent
the estimates at the current iteration. One can see that, as the iterations proceed, the
estimates approach the actual chirp function (2.2) both in amplitude and phase.
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and the phase estimates now start to resemble the actual phase profile.

Figure 2.3 top two rows shows the same quantities described above, but now for

iteration 20. By now, |g′| seems quite close to the actual values of |f |. The object-domain

phases resemble the original values, but they are vertically shifted due to a global phase

of the estimate with respect to the actual phases arg(f), which is actually not a problem.

Finally, figure 2.3 bottom two rows shows these quantities once again in iteration 130.

The phase estimate is now quite close to the actual values in the region with non-zero

amplitudes (apart from the constant phase shift) and |g′| is also close to the rectangle

function.

2.1.2 Weak convergence of the Gerchberg-Saxton algorithm

One striking feature of the Gerchberg-Saxton algorithm is that the error Eo [given in

equation (2.1)] never increases after one iteration, it can only decrease or stay unchanged.

We say thereafter that the Gerchberg-Saxton algorithm is weakly convergent. For enstance,

figure 2.4 shows the value of log10(Eo) at each iteration of the previous example with the

chirp function.

Figure 2.4: Progression of log10(Eo) when the GSA was run with the chirp function
(equation (2.2) and figures 2.2 and 2.3).

We will follow the proof of weak convergence given in [44]. But first, let us establish

some useful notations.
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Preliminary definitions

The object-domain error has been defined in equation (2.1); following that definition, this

error in k-th iteration is given by

Eo,k =

∑
x (|g′k(x)| − |f(x)|)2∑

x |f(x)|2
, (2.3)

but if we remember that in this algorithm arg(g′k(x)) = arg(gk+1(x)) and that |gk+1(x)| =
|f(x)|, we can rewrite Eo,k as

Eo,k =

∑
x |g′k(x)− gk+1(x)|2∑

x |f(x)|2
. (2.4)

Similarly, we can define the Fourier-domain error at iteration k as

EF,k =

∑
u(|Gk(u)| − |F (u)|)2∑

u |F (u)|2
, (2.5)

and if we remember that arg(G′k(u)) = arg(Gk(u)) and that |G′k(u)| = |F (u)|, we can

rewrite it as

EF,k =

∑
u |Gk(u)−G′k(u)|2∑

u |F (u)|2
. (2.6)

Weak convergence

Parseval’s theorem states [42] that for any function h, its total intensity and the intensity

of its Fourier transform H are related by

∑
x

|h(x)|2 =
1

N

∑
u

|H(u)|2 (2.7)

with N the number of points x in the object-domain (and thus also in the Fourier-domain).

First we look at the alternative definition of Eo,k in equation (2.4), and use Parseval’s

theorem with h(x) = g′k(x)− gk+1(x) to arrive at

Eo,k =
1

NIf

∑
u

|G′k(u)−Gk+1(u)|2 =
1

IF

∑
u

|G′k(u)−Gk+1(u)|2,

where we have made
∑

x |f(x)|2 = If and
∑

u |F (u)|2 = IF = NIf . However, for each u

we have that, among all the numbers in the complex circle of radius |F (u)|, G′k+1(u) is the
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closest complex number to Gk+1(u), since they have the same phase. Therefore we have

1

IF

∑
u

|G′k(u)−Gk+1(u)|2 ≥ 1

IF

∑
u

|G′k+1(u)−Gk+1(u)|2

and thus

Eo,k ≥ EF,k+1. (2.8)

On the other hand, we can use Parseval’s theorem with H(u) = G′k+1(u)−Gk+1(u) to

get from equation (2.6)

EF,k+1 =
1

IF

∑
u

|G′k+1(u)−Gk+1(u)|2 =
1

If

∑
x

|g′k+1(x)− gk+1(x)|2.

Similarly, we note that, for each x, gk+2(x) is the complex number closest to g′k+1(x)

among the numbers in the circle of radius |f(x)|, since they have the same phase. Hence

1

If

∑
x

|g′k+1(x)− gk+1(x)|2 ≥ 1

If

∑
x

|g′k+1(x)− gk+2(x)|2

and therefore

EF,k+1 ≥ Eo,k+1. (2.9)

From equations (2.8) and (2.9), we have finally that

Eo,k+1 ≤ Eo,k, (2.10)

which completes the proof.

2.1.3 Nonuniqueness and local-minima stagnation problems

On one hand, the weak convergence of the Gerchberg-Saxton algorithm establishes that

it is a rather safe algorithm, in the sense that the estimate in the end of each iteration

will not be worse than the estimate at the end of the previous iteration in terms of the

error Eo. On the other hand, it also tells us that the algorithm is somewhat similar to

gradient-descent algorithms, in the sense that it can get stagnated at a local minimum of

the error that is not the global minimum. This can happen because the algorithm cannot

“climb out” from an eventual error “well”.

Another difficulty that one has to deal with is the nonuniqueness of solutions of the

phase retrieval problem. It is known [1] that there are more that one transform-pair f −F
that conform to |f | and |F | in some situations — for example the conjugate pair f ∗ − F ∗

when |f | and |F | are centro-symetric. In addition, it has been reported in [1, 45] that
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the one-dimensional phase retrieval problem suffers more severely from non-uniqueness

than the two-dimensional problem, and that a priori information on the function can also

affect how severe the non-uniqueness will be. One way to avoid these two problems is to

run the algorithm several times with different starting phase estimates, as we will discuss

in the next chapter.

2.2 Fienup’s family of algorithms

In spite of being safe, the Gerchberg-Saxton algorithm (to which we will refer as GSA from

now on), usually converges slowly. We will turn our attention to a family of variations of

the GSA that was developed to improve its performance by J. Fienup [6]. One remark

before we begin though: Fienup devised his algorithms for a version of the phase retrieval

problem that is different from the one we are interested in. In our experiment, it is easy

to assess both the moduli |f | and |F |. Fienup was confronting a problem with less prior

information about f : Instead of |f |, what is known is only that f is real and non-negative.

Therefore, we are presenting versions of the algorithms that are adapted to our problem.

The best-performing algorithm of this family of variations, called the hybrid input-output

algorithm [44], did not have such an adaptation (in fact, it would reduce to the so-called

input-output algorithm, which we are about to see), but the interested reader is encouraged

to pursue it.

We can think of the last three operations in each iteration of the GSA (see figure

2.1 and the box above it) as a non-linear system that receives gk as input and gives g′k
as output. Although the steps (ii) and (iv) are linear, step (iii) is not. Therefore this

sequence of operations as a whole is non-linear (as sketched in figure 2.5). Because of step

(iii), g′k already has the desired modulus in the Fourier-domain; it only lacks the correct

object-domain modulus in order to be a solution. Once we have calculated g′k(x), we can

find the correction ∆gd(x) it needs in order to satisfy the object-domain constraint, that

is, we can find ∆gd so that |g′k(x) + ∆gd(x)| = |f(x)|. For example, one possibility is

∆gd(x) = −g′k(x) +
|f(x)|
|g′k(x)|

g′k(x), (2.11)

but the question then is how to change the input gk so that the output g′k receives this

desired correction.

After running some iterations of the GSA, one would expect to be somewhat close to a

solution, so the desired correction ∆gd should be small. However, when one makes a small

perturbation in the input, the corresponding perturbation in the output is approximately

proportional. In other words, the system responds almost linearly to small perturbations,
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Non-linear system

g(x) = |f(x)|eiφ(x)

Input

G(u) = |G(u)|eiψ(u)FFT

G′(u) = |F (u)|eiψ(u)

impose |F |

g′(x) = |g′(x)|eiφ′(x)

Output
iFFT

Figure 2.5: Steps (ii), (iii) and (iv) of the Gerchberg-Saxton algorithm as a non-linear
system.

so the input

gk+1(x) = gk(x) + ∆g(x) (2.12)

will give as output

g′k+1(x) = g′k(x) + α∆g(x), (2.13)

where α is the proportionality coefficient between the perturbations, which is characteristic

of the non-linear system. Therefore, by choosing ∆g(x) = α−1∆gd(x) we can induce the

desired correction in g′k.

The difficulty in this error compensation approach is that the exact value of α is hard

to assess, as it depends on the statistics of |F (u)| and on the current solution estimate

g′k [6]. This means the coefficient can change as we get closer to the solution or even

depend on the function one is trying to reconstruct. It is possible to estimate the value of

α−1 numerically as reported in [44]: one can make several runs from the same starting

phase estimate, each with a different value of β (an estimate for α−1) and all with the

same total number of iterations, and then compare the error curves to determine which β

value gave the algorithm the best error progression.

It is also possible to make an estimate of the value of β through the expected value

〈|F |/|G|〉, as shown in the appendix of [6]. Such an estimate can help in determining a

suitable testing range for β.

We made an estimate of the optimal value for β by generating several curves of Eo

against the iteration number (shown in figure 2.6), following the method we will describe

now. We ran 20 iterations of the GSA algorithm with the function of a spatial qutrit

state (more details in the next chapters), followed by 100 iterations of the output-output
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variation (which we will see very soon), and then 50 more iterations of the GSA. The first

iterations with the GSA were intended to make the estimate somewhat close to an answer.

The last were used because it has been reported [44] that Fienup’s family of variations

might increase the error Eo while actually improving the image quality; it could be the

case that one of the higher-error estimates was actually better in a visual criterium, so

that running a few GSA iterations again would place its error below the other ones. This

was not the case here, though2.

To generate the curves in figure 2.6, we ran the algorithm several times with a fixed

initial phase estimate, but each time using a different value for β. At the left figure, one

can see that too high values of β (namely β = 2, 2.5, 3 and 3.5) made the error increase

after some iterations, meaning that the algorithm was unstable with those values. On

the other hand, at the right figure, one can see that the lower values of β did not suffer

from this instability, and that β = 1.5 gave the fastest decreasing curve. We chose to use

β = 1.3 in our routine in order to have a safety margin.

Figure 2.6: Numeric method for estimating the best value for β; (Left) Eo vs. iteration
number for several values of β; (right) zoom at the beginning of non-GSA iterations. The
value β = 1.5 gave the fastest-decreasing curve without making the algorithm unstable,
and was therefore the best tested value.

With an estimate β of α−1 at hand, the first variation of the GSA would be to correct

gk by β∆gd [see equation (2.11)] when starting iteration k + 1:

2As we mentioned earlier, Fienup was treating a different version of the phase retrieval problem. The
object-domain error in his case was different than ours, and somewhat less linked to the visual quality of
the image.
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Input-output algorithm

• proceed with steps (i) to (iv) of the GSA;

• correct the estimate gk(x) by β∆gd:

gk+1(x) = gk(x) + β

(
|f(x)|
|g′k(x)|

− 1

)
g′k(x).

This is the so-called input-output algorithm, in which we compensate the input to the

next iteration based on the error of the current output.

Another variation of the GSA is the output-output algorithm, which relies on another

characteristic of the non-linear system (figure 2.5). If an output g′(x) is fed as input to

the system, the new output is again g′(x), since the third step will not make any change

in F [g′]. Therefore, we can consider every output as resulting from itself as input. Hence

we can use a perturbed input similar to (2.12),

gk+1(x) = g′k(x) + ∆g(x), (2.14)

to get the same output as in equation (2.13). Following the same reasoning as before

and making ∆g = β∆gd [see equation (2.11)], we arrive at another variation of the GSA,

called output-output algorithm:

Output-output algorithm

• proceed with steps (i) to (iv) of the GSA;

• correct the output g′k(x) by β∆gd:

gk+1(x) = g′k(x) + β

(
|f(x)|
|g′k(x)|

− 1

)
g′k(x).

It is interesting to note that the output-output algorithm is equivalent to the GSA when

we choose β = 1. Thus we can think of the GSA as a special case of the output-output

algorithm, but with a suboptimal parameter value since it converges somewhat slowly.

We can also infer that, while β = 1 might not the best value, it is probably not very

far off, since the GSA is still very reliable. Larger values of β can make this family of

variations converge faster, as they would make more significant changes to the input after

each iteration. However, excessively large values might make them unstable, as we have

seen in figure 2.6.

The best strategy reported in [44] is to alternate between the original GSA and one of
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its variations, and was the strategy we followed when treating our data.
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Chapter 3

Phase retrieval algorithms for spatial

qudits: Problem-specific adaptations

In the last chapters we have seen how the phase retrieval problem arises when we try to

determine the state of a spatial qudits, and also a few numerical algorithms that could

solve it using object- and Fourier-plane intensity measurements. Our discussion so far

was about the general working of these algorithms, but in this chapter we shall turn our

attention to the specific adaptations we had to make so they could suit our problem.

3.1 Match of frequencies by expanding object-domain

amplitude vector

In the last chapter, we saw some algorithms to reconstruct a (complex) field given its

modulus profile and that of its Fourier transform. In other words, these two profiles are

the input that the algorithm uses, and therefore are the quantities we need to measure.

In our experiment, the Fourier transform of the qudit field was obtained by means of

a lens. It can be shown that, in the Fraunhoffer diffraction regime, the field at a distance

lf after a spherical lens of focal length also equal to lf is given by [38]

Ufo(x) =
−i
λlf

∫∫
Uim(u)e

−i 2π
λlf

(ux)
du, (3.1)

with Uim being the field at a distance lf before the lens and λ the light wavelength. In

other words, the field at the output focal plane corresponds to a scaled Fourier transform

of the field at the input focal plane. In our apparatus, the field Uim was a spatial qudit

field of the form (1.5). Uim will play the role of f in the phase retrieval problem, while

Ufo will play that of F (see chapter 2).

27
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We placed a lens with its input focal plane over the plane where the qudit field Uim

was prepared, and set a camera at the output focal plane, so that it measured the Fourier

transform intensities of the qudit field (we will discuss the experimental setup in more

details in the next chapter). Each pixel of the camera measured the intensity of the field

that was entering it; therefore, our experimental measurement gave us a vector of Fourier

amplitudes, sampled at the positions

x
(n)
fo = n∆xfo, n = −

⌊
Nfo

2

⌋
, . . . ,

⌈
Nfo

2

⌉
, (3.2)

where ∆xfo is the camera pixel size and Nfo is the number of pixels in the image. Our

camera had a pixel size of ∆xfo = 5.2µm and the images had up to 1268 pixels, the size

of the camera. According to equation (3.1), the field Ufo at each position x
(n)
fo corresponds

to the Fourier transform at the spatial frequencies

p
(n)
fo =

2π

λlf
x

(n)
fo =

2π

λlf
∆xfon. (3.3)

However, the discrete Fourier transform (DFT) of a vector V (j) with N entries,

sampled at positions x(j) = j∆x, is another vector with N entries VDFT(n), given by [42]

VDFT(n) =

dN/2e∑
j=−bN/2c

V (j)ei
2π
N
jn =

dN/2e∑
j=−bN/2c

V (j)ei
2π
N∆x

nx(j)

, (3.4)

which is sampled at the spatial frequencies

p
(n)
DFT =

2π

N∆x
n, n = −

⌊
N

2

⌋
, . . . ,

⌈
N

2

⌉
. (3.5)

These frequencies p
(n)
DFT are the ones the computer will be using in its internal rep-

resentation while running the FFT and iFFT routines. But since we will be imposing

experimentally measured amplitudes during step (iii) of the GSA (see section 2.1), it is

essential that these frequencies match those corresponding to the sampling of the camera

pixels, otherwise we will be imposing Fourier amplitudes at the wrong values of frequency.

Therefore, the frequencies (3.3) and (3.5) need to match. This will be achieved as long as

we have

N =
λlf

∆xfo∆x
=

λlf

(∆x)2 . (3.6)

Here ∆x is the sampling step size of the field Uim, but in our setup the camera used to

sample it was identical to the camera sampling the field Ufo in the Fourier-plane, and thus

we have ∆xfo = ∆x.
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Imposing this value for N meant to change the size of the vector V (j) — whose role is

played by the spatial qudit field Uim. By using λ = 691 nm, lf = 0.3 m and ∆x = 5.2µm,

one would conclude that N = 7666 pixels were needed in our image, while our camera had

only 1268, and thus we needed to extend our object-domain image1. This was achieved

by placing 3199 zeroes before and another 3199 after the vector of measured intensities

(these are called the trailing zeroes).

Since the spatial qudit fields are zero-valued outside the slit regions, this procedure did

not compromise the results, since the object-domain camera was wide enough to capture

all the slits. In oher words, completing the object-domain vector with trailing zeroes

mimics what the camera should have measured if it had more pixels.

3.2 Partial imposition of Fourier-domain amplitudes

When dealing with other variations of the phase retrieval problem, in which one has

different a priori information about f and F , the usual approach is to modify step (iii)

and the update of gk in the GSA. Instead of imposing |f | and |F | as in our case, one can

simply impose those conditions which f and F are known to satisfy.

In its original form, the GSA works with known moduli |f | and |F | across the whole

image; this rather strong condition can be grasped in the proof of the weak convergence

(section 2.1.2), which uses Parseval’s theorem and therefore presupposes that the sums

over x and u, in the calculus of the errors Eo or EF , span the whole object or Fourier

domain. This entails that |f(x)| and |F (u)| are known at every point in both domains.

Our amplitude measurements in the Fourier domain, however, yielded us only up to

1268 pixels (the reason why we are saying up to will be clear soon), while the whole

domain had 7666. We only knew the values for |F | at the central portion of the spectrum

therefore. Even though this is not the case corresponding to the original GSA, we carried

our iterations with a slight modification in step (iii): the imposition of |F | was only partial,

in the measured region. We let the values of the estimate G float freely outside that

region.

Before running our routine on experimentally measured data, we made several tests

using simulated values. In those tests, we used |F | vectors with 1268 entries, but this

limitation in the domain did not seem to be too serious, as only a small part of the

intensity in the Fourier plane fell off of the region in which |F | was known. However, our

experimental data had only 608 pixels, and the intensity falling off the measured region

1To be precise, we have extended three vectors to a length of 7666 entries: the one with the object-
domain measured amplitudes |f |, and the estimates in both domains, g and G. The first was extended
with trailing zeroes, and the other two just followed naturally to have more entries, since they are fourier
transforms of the first.
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was considerable. To overcome this difficulty with the experimental data, we had to resort

to the modification described in section 3.6.

3.3 State estimation from the algorithm results

The output of the phase retrieval algorithm was a vector g with many complex entries

(namely 7666). This vector corresponded to an optical field of the form (1.5), expected

to be piecewise constant. We built the estimated state |ψ̃g〉 corresponding to g with

the median of the amplitudes and phases inside each slit region. That is, we built the

estimated state as

|ψ̃g〉 =
1

C


Ã1e

iφ̃1

Ã2e
iφ̃2

...

ÃDe
iφ̃D

 , (3.7)

where

Ãj = median
x∈Xj

(
|g(x)|

)
, (3.8)

φ̃j = median
x∈Xj

(
arg
(
g(x)

) )
, (3.9)

Xj denotes the j-th slit region for j = 1, . . . , D and C =
√∑

j Ã
2
j is a normalization

constant.

3.4 Reinitialization and post-selection of estimates

As we have seen in section 2.1.2, the GSA is weakly convergent: an iteration of this

algorithm cannot make the error Eo increase. This characteristic makes the GSA both

safe, in the sense that it will not worsen any estimate g in terms of Eo, and vulnerable to

local minima, since it cannot climb out an error well in case it falls in.

One possibility to avoid this difficulty is to run the algorithm several times with the

same data, using a different initial phase estimate each time. One would expect that

the algorithm does not get caught in the same local minimum in all the runs, hence

one can collect several final estimates and select the one with the smaller error Eo. The

reinitialization and post-selection process is illustrated in figure 3.1, which we will explain

in better detail now.

We have chosen one D = 10 qudit state at random and ran the algorithm several
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(a)

(b)

Figure 3.1: Solutions found by our algorithm when simulating a D = 10 qudit state with
(a) no reinitializations (10000 runs) (b) 19 reinitializations per run (1000 runs); note
the reduction in the fidelity and error ranges in the second figure. Using this procedure
elliminated the spurious solutions and took the algorithm to find only the global solution,
as desired.
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times with the corresponding simulated data. First, we run the algorithm 10000 times

and just saved the estimates it arrived when the stopping criterium was met (absolute

change in the error being less than 10−8; the errors themselves were of the order of 10−3).

There was no selection of the estimates whatsoever in this first test, shown in figure 3.1(a),

as we were trying to discover how serious the problem of local minima was. After the

algorithm converged to an estimate, we calculated its fidelity z (section 1.4) with the

original state, and made a histogram of fidelities and errors. One can see that there are

several count peaks across the histogram, implying that the algorithm got stuck at several

estimates that are local minima. The estimate with Eo ≈ 10−3.5 and z ≈ 1, the error

global mimimum and fidelity maximum, was still the most probable peak, being reached

about 1400 times in the 10000 runs.

Next we repeated the process, but now selecting the best among 20 estimates (which

means to reinitialize the algorithm 19 times). In this manner we could check how well

the post-selection strategy would perform, in particular if this number of reinitializations

would be reliable. Also, we only saved 1000 estimates instead of 10000, because of the

increase in the computing time. As figure 3.1(b) shows, this strategy yielded the error

global minimum estimate very reliably, as the histogram has now only one peak. Most

importantly, the error global minimum was also the fidelity global maximum (being very

close to 1), so that this approach in fact helped the algorithm to arrive at better state

estimates.

As a final remark, we note that a histogram such as the one in figure 3.1(a) can aid

in estimating how many reinitializations are needed for the algorithm to have a given

reliability figure. If the global minimum peak has a fraction p of all the estimates (in

our case, for example, p amounted roughly to 0.14, as the peak had 1400 estimates in a

total of 10000), and if we admit that the algorithm converges independently to each local

minimum (which is plausible, since reinitializing it amounts to taking another random

phase estimate), then the probability that no estimate in Nest will fall in the global

minimum will be

P (no global min.|Nest) = (1− p)Nest , (3.10)

which is monotonically decreasing with Nest. Hence, if a reliability figure δ is desired, one

needs to select among a number of estimates such that 1− P (no global min.|Nest) > δ,

which translates to

Nest >
log(1− δ)
log(1− p)

. (3.11)
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3.5 Some results with simulated data

Before running the algorithm with our experimental data, we used simulated data to check

if it was working properly. In fact, the adaptations we described so far were developed

during this stage. Our greatest worry was that the sampled region in the Fourier domain

was too small, and the data we would have to feed the algorithm would be insufficient for

it to find good estimates.

In this stage we fed the algorithm data corresponding to perfectly rectangular slits and

their corresponding interference pattern, without including imprefections from realistic

experiental situations such as vignetting [38] from the lenses or detection noise. Another

aspect of the simulated data was its width: the simulated amplitude vectors had 1268

pixels. However, the experimental data was more limited, having only 608 pixels in the

Fourier-domain amplitude vector. We will discuss how we dealt with this in the next

section. Figure 3.2 depicts a typical result obtained with the algorithm at this stage. For

Figure 3.2: Result with simulated data for a D = 4 state: object-domain amplitudes
(upper left), Fourier-domain amplitudes (lower left) and object-domain phases (right).
Simulated data is in red dots and the final algorithm estimate is in black lines. It used a
total of about 4500 iterations in 19 reinitializations, or about 225 iteration for each one.
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this specific run, the fidelity between the state estimated by the algorithm and state that

was being simulates was

z = 0.9999999924,

which was quite high.

Another test that we made at this point was to randomly generate 1000 different

D = 10 qudit states, feed each one to the algorithm (configured to use 15 reinitializations

at the time) and record the fidelities of the estimated states with respect to the generated

states. Figure 3.3 shows two histograms of these fidelities.

The average fidelity among all the estimates was z(ave) = 0.980, while its median was

z(median) = 0.999999697. One could think that, since we were using ideal data, an average

of 0.980 fidelity was actually not a good performance. However, the difference between

these values suggests that there were some spurious, lower-fidelity results which decreased

the average, but were not representative of the whole collection of results. One can in fact

see this in the left panel of figure 3.3: There are many lower-fidelity bins with very low

count, and one high-fidelity bin which concentrated most of the results.

Therefore we ruled out the results having a fidelity of less than 0.995 and histogrammed

the remaining ones. This margin can look exaggeratedly demanding, but we still had 926

of the 1000 results in this quota. The averaged and median fidelities in these selected

results were z(ave)
filt = 0.99999962 and z(median)

filt = 0.99999972, much closer to the expected

value of 1. These results gave us confidence that the algorithm was working properly and

could recover the prepared states, so we proceeded to using experimental data.

3.6 Fourier amplitudes magnification

When we ran the algorithm with experimental data, it often converged to estimates with

phase profiles showing peaks and high standard deviation inside the slit regions, while

spatial qudit fields are constant both in phase and amplitude inside them. In addition,

the results often showed Fourier amplitudes at high frequencies quite higher than what

was expected. These two deviations are shown in the left column of figure 3.4, for which

we ran the algorithm with the qubit state 1√
2

[ 1
i ]. From what we have seen before, one

can infer that the phase deviations [shown in figure 3.4(e)] have some counterpart in the

Fourier amplitudes; indeed, by comparing the figures 3.4(a) and 3.4(c), which shows the

theoretical amplitudes, one can see that the amplitudes of the algorithm’s result do not

decay as fast as expected.

Presumably these deviations were due to the small region of measurement in the

Fourier domain, from which we had images only 608 pixels wide. Since our routine

normalized the total intensity in the object plane to unity, the total intensity in the
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Figure 3.3: Histograms of the recovered fidelities for 1000 D = 10 random states: (left)
all the 1000 results; (right) top 926 results. At this point, the algorithm was arriving at
very satisfactory results with ideal data.

Fourier plane was also limited (because of Parseval’s theorem); we inferred that the small

measurement region, and thus small region of amplitudes imposition in the Fourier plane,

made it difficult for the algorithm to move amplitudes at higher spatial frequencies back

to the low frequency region.

We found that magnifying the Fourier plane amplitudes helped the algorithm converge

to better behaved results. We increased the measured amplitudes five (for D = 2) and

tenfold (for D = 3, 4, 7, 9), and used the increased amplitudes in the phase retrieval routine.

This was a way of forcing the amplitudes back into the low-frequency region: at step (iii)

of the phase retrieval routines (section 2.1), this procedure would give the intensity in

the central region of the spectrum a higher increment, at the cost of violating the total

intensity in the Fourier domain. This violation would be compensated, however, at the

beginning of the next iteration, when making the new estimate gk+1.

The right column of figure 3.4 shows the results obtained after the magnification: (b)

shows the magnified and the retrieved Fourier amplitudes; (d) shows a zoom of these

amplitudes, revealing that the retrieved amplitudes behaved much more similarly to the

expected [shown in (c)]; (f) shows the retrieved phases in the two slit regions. In the

phase figure, there are also zooms to show their behaviour in better detail. We can see

that there was an oscillating tendency in both slits, plus a positive shift in the second,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Typical profiles of results with experimental data (red dots: measured
amplitudes, black line: converged amplitudes): amplitude profiles in Fourier domain
without (a) and with (b) magnification; (c) expected Fourier-domain amplitudes; (d) zoom
of (b), for comparison with (c); phase profiles inside slit regions without (e) and with (f)
magnification. The fourier domain magnification enabled the algorithm to arrive at much
better results when using experimental data, as can be seen in the right column.
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but both still happening at a small scale. These results illustrate the improvement that

the Fourier-amplitudes magnification brought.

3.7 Final remarks

Before we proceed to the results obtained, let us make some final remarks on the configu-

ration we used with the algorithm.

We found the input-output algorithm (see section 2.2) often made the estimate diverge,

and did not work properly. After several tries, we gave up using it, and remained with the

Gerchberg-Saxton and the output-output algorithms. This was perhaps due to the different

philosophies of the algorithms: while Gerchberg-Saxton and output-output algorithms

use the current output as the new input, the input-output algorithm sees input and

output separately, with the input not necessarily being close to a solution. Perhaps the

input-output variation was thus incompatible with the other routines for our problem.

We found, through the procedure described also in section 2.2, that the best value for β

to be used with the output-output algorithm was β = 1.3.

Our routine used 20 reinitializations for each state, and in each of them it proceeded

with 50 initial GSA iterations, followed by alternating 10 output-output and 10 Gerchberg-

Saxton iterations until the absolute change in the error was of 10−8, and finally 200 more

GSA iterations before reinitializing the current estimate. It took typically about a total

of 4000 iterations for an estimate of a state to be reached, corresponding to about 30 s

in our modest-power computer (2 GHz dual core processor). The more robust computer

we have in our lab (1.4 GHz quadruple core processor) could achieve the same results in

about half the time.
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Chapter 4

Experiment and results

In this chapter we will present and discuss the results obtained for the experimental

reconstruction of spatial qudits states using our numerical routine, based in the phase

retrieval algorithms presented in chapter 2, and with the modifications discussed in chapter

3 (our source code can be found in appendix A).

First we describe the experimental setup, then we provide some remarks on the

parametrizations we used to the states and on the quantities we analyzed. Finally, we

will see the results themselves.

4.1 Experimental Setup

Figure 4.1 shows the experimental setup that we used to generate and characterize spatial

qudit states. As demonstrated in [46], it allows one to prepare arbitrary pure states of

spatial qudits [equation (1.1)] with a single phase-only spatial light modulator (SLM). We

will stay with a general overview of the setup, but the interested reader can find a more

detailed description, as well as the theory behind the preparation of states, in [46–48].

Let us divide the setup (figure 4.1) in three parts: (i) the optical path the beam went

through until the SLM, (ii) the SLM itself, and (iii) the path it went afterwards, until

reaching the two CMOS cameras.

Path until SLM

In the first part, the laser beam goes through a set of neutral density filters, a beam

expander and spatial filter, a polarizer and is then reflected by a mirror and a 50-50 beam

splitter (BS) to finally impinge on the SLM:

• the neutral density filters just absorb some light, thus allowing us to control the total

intensity of the beam that goes forth in the setup; it was important for preventing

39
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Figure 4.1: Our experimental setup; see text for details.

saturation in the images of the cameras;

• the beam expander is composed of two lenses of 10 and 40 cm focal lengths in a

confocal arrangement; it magnified the collimated beam by a factor of 4, so that we

could illuminate the SLM more uniformly;

• the spatial filter was a 50µm pinhole placed at the confocal plane of the beam

expander; it blocked higher spatial frequency components of the transverse profile

of the beam, leaving it more more gaussian-like;

• the polarizer fixed the polarization of the beam in the vertical direction (the working

polarization of the SLM);

• the mirror just bent the beam path;

• the beam splitter made the beam impinge normally on the SLM, which reflected the

beam back.

SLM

The phase-only SLM (Holoeye PLUTO) we had at our disposal was of the normal-incidence,

reflecting type. It is a thin layer of liquid crystal fixed on top of a reflective silicon matrix

that is divided in an rectangular array of many pixels (in our case, a 1920× 1080 array

of square pixels with 5.2µm sides). The silicon matrix can have electrical voltages

individually set at each pixel region, which causes the liquid crystal to expand in the

normal direction. The higher the voltage, the greater the expansion [49].
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The portion of the beam that impinges on a given pixel, going through the liquid

crystal, reflecting at the matrix and going through the liquid crystal once more, will thus

travel through an amount of material that depends on the voltage that was being applied.

As the liquid crystal has a higher refraction index than the air’s, the net result will be

that part of the beam gaining a phase that can be controlled by the voltage on the pixel!

The SLM can therefore be used to give the transverse profile of the input beam a

position-dependent phase gain. This device is operated with a computer, with the user

setting a grayscale image that adresses the desired voltage at each pixel, with higher gray

values being converted to higher voltages. An example of the phase profiles we used to

generate the spatial qudit states is shown in figure 4.2, with a blazed diffraction grating

being formed inside each slit region and a constant zero-phase being set in the background.

The part of the beam that impinged on the background was simply reflected. However,

the phase patterns in the slit regions acted as diffraction gratings, and the part of the

beam the impinged on these regions got diffracted into several orders. A spatial filter

at the focal plane of the lens after the SLM selected only the light in the +1 diffraction

order, and blocked all the other orders as well as the light that was just reflected from the

background. But to understand why this was desired, we have to look at the remaining

part of the setup.

Figure 4.2: Example of phase mask used in the qudits generation; this mask was used to
prepare the D = 4 state 1

2
[1, i, −1, −i].
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Path after SLM

After impinging on the SLM and passing through the BS once again, the beam went

through a lens and a second BS, which branched the optical path in two; the reflected

branch is spatially filtered by a slit and then ended in one of the cameras right afterwards,

while the transmitted branch was almost identical, except for having a lens between the

spatial filter and the camera:

• the lens in between the two BSs is taking a Fourier transform of the beam profile

modulated by the SLM (see discussion at the beginning of section 3.1): it was placed

with its input focal plane on the SLM, and the spatial filter was placed at its output

focal plane (there are two because of the second BS);

• the beam splitter is just making another copy of the beam that is coming from the

SLM; one half of the beam wax sent to a camera that would measure |F |2 and the

other half to a camera for |f |2;

• the slits, acting as spatial filters, were blocking all the diffraction orders that came

from the slit regions in the SLM, except for order +1; therefore the light that went

forth in the setup came only from the regions with diffraction gratings (namely, the

slit regions) in the SLM;

• the camera in the reflected path measured the intensity of the diffraction-filtered

Fourier transform of the field immediately after the SLM; that is, it measured the

Fourier-transform intensities of the D-slit field and thus provided the |F | data to be

fed into the phase retrieval algorithm);

• the lens after the spatial filter was taking another Fourier transform (input focal

plane at spatial filter, camera at output focal plane), so that the field at the camera

corresponded to the diffraction-filtered field just leaving the SLM, namely the D-slit

field;

• the camera in the transmitted path measured the object-domain intensities, which

were just the D-slit field (from which we got |f | to be fed into the algorithm).

Therefore, the images of the slit fields were formed by only allowing the light that was

diffracted at the SLM to reach the camera, and of course, using the SLM in a manner

that only light in the desired slit regions was diffracted. The light that impinged on the

background regions was simply reflected and further blocked at the spatial filter.

Two other interestings points in this setup are the manner in wich the slit phases and

amplitudes were controlled. In order to control the amplitudes, we used different grating
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formats at each slit region, as each format spreads the beam with different intensities at

the several diffraction orders. Therefore, by varying the maximum value of the gratings,

we controlled how much light was scattered into the +1 order. On the other hand, to

control the phase of each slit we needed only to sum a constant phase along the phase

region. This turns out to be equivalent to displacing vertically the grating of a slit region

with respect to the first, as one can note from figure 4.2

Figure 4.3: Upper panels : camera shots of the object (left) and Fourier (right) planes for
the D = 4 state prepared with the phasemask shown in figure 4.2. Lower panels: data
obtained from them by summing in the vertical direction, which played the role of |f |
and |F | in the algorithm, respectively.

The upper panels of figure 4.3 show typical images of the two cameras: D-slit field

(left) and its Fourier transform (right). The last step before feeding the algorithm was to

sum the images in the vertical direction, so as to obtain one-dimensional intensities. The

square roots of these one-dimensional profiles were then fed to the computer program.
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4.2 Intermediate remarks

4.2.1 State parametrization

Qubit states (D = 2)

We first ran the algorithm with qubits. Using a basis {|1〉 , |2〉}, an arbitrary pure state of

a qubit can be written as

|ψ(2)〉 = c1 |1〉+ c2 |2〉 , (4.1)

with c1 and c2 being two complex numbers satifying |c1|2 + |c2|2 = 1. We can also regard

the phase of the coefficient c1 as a global phase, which will not affect the state ψ, and

therefore remove it. Thus it is possible to write this state in a manner that satisfies these

two conditions automatically as:

|ψ(2)〉 = cos
θ

2
|1〉+ eiφ sin

θ

2
|2〉 , (4.2)

with θ ∈ [0, π] and φ ∈ [0, 2π]. Here θ and φ can be thought as the two angular spherical

coordinates, and the space of states can be viewed as the three-dimensional sphere with

unit radius, often called the Bloch sphere [9]. This was the parametrization we used when

generating qubit states in our experiment.

Qutrit states (D = 3)

For qutrits there is a similar parametrization with two angular coordinates and two phases:

|ψ(3)〉 = sin
θ1

2
cos

θ2

2
|1〉+ eiφ1 sin

θ1

2
sin

θ2

2
|2〉+ eiφ2 cos

θ1

2
|3〉 , (4.3)

with θ1, θ2 ∈ [0, π] and φ1, φ2 ∈ [0, 2π].

We did not, however, use arbitrary qutrit states. In fact, we only used the so-called

symmetric states, as the primary focus of the experiment at that time was on the generation

and discrimination of non-orthogonal symmetric states of qudits [39]. A set of N states

{|φk〉}N−1
k=0 is said to be symmetric if there exists a unitary operator Û for which [50]

|φk〉 = Û |φk−1〉 = Ûk |φ0〉 , (4.4)

|φ0〉 = Û |φN−1〉 , (4.5)

and the qutrit states we have used in our experiment had a form slightly different than
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(4.3). The phases φ1 and φ2 were not arbitrary; instead, the states were of the form

|ψ(3)
k 〉 = sin

θ1

2
cos

θ2

2
|1〉+ ωk(3) sin

θ1

2
sin

θ2

2
|1〉+ ω2k

(3) cos
θ1

2
|3〉 , (4.6)

where ω(3) = ei2π/3, as N = D = 3, and k = 0, 1, 2. These states are symmetric with

respect to the transformation Û =
∑3

j=1 ω
j−1
(3) |j〉 〈j|.

Qudit states with D ≥ 4

For dimensions D ≥ 4 we also used sets of symmetric states [equations (4.4) and (4.5)] for

the reasons stated above. The algorithm was applied to reconstruct states of the form1

|ψk(α, j0)〉 =
D∑
j=1

ω
k(j−1)
(D) cj(α, j0) |j〉 , (4.7)

for k = 0, . . . , D − 1, ω(D) = ei2π/D, and

cj(α, j0) ∝


1, if j < j0√

1− D

√
j−j0
D−j0α, if j ≥ j0

, (4.8)

for j0 = 1, . . . , D−1 and α ∈ [0, 1]. In the formula above, we are omitting the normalization

factor of cj as it is quite cumbersome, thus the proportionality instead of an equality in

equation (4.8). These states are symmetric with respect to Û =
∑D

j=1 ω
j−1
(D) |j〉 〈j|.

4.2.2 Fidelity analysis

For each generated state, we assessed the quality of the phase retrieval algorithm result

by calculating the fidelity (see section 1.4) between the reconstructed state |ψ̃g〉 and the

target state (the state which was intended to be generated) |ψT 〉:

zT = | 〈ψT |ψ̃g〉 |, (4.9)

which we will call target fidelity. Ideally, the recovered state should have a target fidelity

of 1.

1This parametrization was defined in [39] in order to represent the discrimination probabilities for
dimensions D ≥ 4 as a surface.
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4.3 Results with experimental data

4.3.1 Qubits

Figure 4.4 shows spherical projection plots of the target fidelity [equation (4.9)] and the

phase standard deviation of each slit for the spatial qubit states (D = 2). The values of θ

and φ on the projection refer to the state that was being generated, according to equation

(4.2). We used 27 values for φ and 13 for θ, all equally spaced, for a total of 351 different

states around the Bloch sphere.

Figure 4.4: Results for D = 2.

In the fidelity plot (upper panel), we can see that the highest fidelities occurred close to

the poles and to the equator line. High fidelities were already expected near the poles, as

one of the slits has zero amplitude in these points and so whatever phase the other slit has

would be just a global phase. Among these states, the smallest fidelity that the algorithm

arrived at was z(min)
T = 0.980, and the average over all the states was of z(ave)

T = 0.996,

which were quite satisfactory results.

We also calculated the standard deviation of the phase inside each slit region. They
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are shown in the two lower panels of figure 4.4. One can see that they were rather small

for most states, but rose sharply near the poles (near θ = 0 in the first slit and near θ = π

in the second). When a slit has zero amplitude, the phase on it just makes no difference

in the Fourier-domain intensity pattern, so the algorithm would just be incapable of

determining it. The smallest phase standard deviation was STD(min) = 0.0003, and was of

this order of magnitude for most states.

These results are summarized in table 4.1.

Table 4.1: Results for D = 2.

D = 2

ave. min max

zT 0.996 0.980 1.000

STD1 0.1153 0.0003 1.7146

STD2 0.1095 0.0007 3.0029

No. of states 351

4.3.2 Qutrits

In figure 4.5 we have, for each qutrit state (D = 3), the plots of the target fidelity and

the greatest phase standard deviation (which we will denote by σMφ ) among the three

slits. The values of θ1 and θ2 refer to the state that was prepared, following equation (4.3).

There were 15 values for θ1, 15 for θ2 and 3 for k, totalizing 675 states. The results for

each θ1 and θ2 were all very close to one another across the different k values, thus we

will present only the average over k of each quantity. In this section we will still present

the plots of each quantity separately for each k, so as to illustrate their similarity.

In the target fidelity plot (upper row), we can see that the highest fidelities ocurred

near θ1 = 0 and θ1 = π, where states have nearly zero amplitudes in the first and second

slits. Still, the fidelities of the recovered states were quite high overall, with and average

of z(ave)
T = 0.9919. The fidelities for k = 2 were also somewhat lower than for the other

values (∼ 0.01 difference), but still compatible.

The values of σMφ were rather small for most states, rising near regions where one slit

had small amplitude once again. Its minimum value was σ
M(min)
φ = 0.07, considerably

higher than the D = 2 case, but still quite acceptable.

These k-averaged results are summarized in table 4.2.
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(a) zT

(b) σMφ

Figure 4.5: Results for D = 3.

Table 4.2: k-average results for D = 3.

D = 3

ave. min max

zT 0.9919 0.9769 0.9997

σMφ 0.42 0.07 2.62

No. of states 675

4.3.3 Qudits with D = 4, 7 and 9

For the D = 4, 7 and 9 states, the results across the different values of k [see equation 4.7]

were all similar, so we will present here the quantities averaged over the k values. Figure

4.6 show the plots of the target fidelity and σMφ for each α and j0 values (see equation

4.8), respectively for D = 4, 7 and 9. We used 20 values for α, D − 1 for j0 and D for k,
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in a total of 240, 840 and 1440 states for each of these dimensions.

The fidelity plot (left column) shows that the target fidelities were somewhat smaller

for lower values of j0, and a somewhat periodic behaviour on α. The minimum and average

values for D = 4, 7, 9 were respectively z(min)
T = 0.982, 0.978, 0.894 and z(ave)

ST = 0.994,

0.994, 0.955, showing a gradual decrease as with the dimension.

The values of σMφ (right column) were once again small for most states, increasing for

higher j0 values near regions where one slit had small amplitude once again. In fact, they

showed an unexpected tendency for D = 7 and D = 9: After peaking, they became small

again for the highest possible value of j0 and higher α values. The minimum and average

values for D = 4, 7, 9 were respectively σ
M(min)
φ = 0.006, 0.004, 0.005 and σ

M(ave)
φ = 0.075,

0.164, 0.112.

All these results are summarized in table 4.3.
Table 4.3: k-average results for D = 4, 7, 9.

D = 4 D = 7 D = 9

ave. min max ave. min max ave. min max

zT 0.994 0.982 0.999 0.994 0.978 1.000 0.955 0.894 0.990

σMφ 0.075 0.006 1.133 0.164 0.004 2.660 0.112 0.005 3.002

No. of states 240 840 1440

4.4 Discussion and final remarks

Overall, the retrieved states were very satisfactory: the average fidelities were z(ave)
T =

0.996, 0.992, 0.994, 0.994, 0.955 for D = 2, 3, 4, 7, 9, respectively.

The lower fidelities for D = 9 might have been caused by non-uniform illumination

of the SLM. Our setup expected a homogeneous illumination, but our laser beam was

gaussian, and therefore was less intense at its periphery. Of course, the beam spot was

quite wide, so that only its central portion was lighting slit regions in the SLM, so that

this imperfection was expected to be small. Still, having the outer slits of a state less

illuminated would lead to a deviation in the amplitudes of the prepared states, and the

higher the dimension (and thus the number of slits) of a state, the more serious this

deviation would be. The minimum fidelities z(min)
T show this tendency – the lowering of

the retrieved fidelities with D – more clearly.

Aside from this, we can conclude that the state generation stage was working properly.

All the results we had with the phase retrieval algorithm were directly dependent on the

data we fed it with. If the state generation was preparing states too corrupted, it would

not be possible to the algorithm to reach reasonable estimates.
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(a) zT (b) σMφ

(c) zT (d) σMφ

(e) zT (f) σMφ

Figure 4.6: k-averaged results for D = 4 (upper row)), 7 (mid row) and 9 (lower row):
zT (left column) and σMφ (right column).



Chapter 5

Conclusions and future perspectives

In this work we have studied phase retrieval algorithms and their applicability to recon-

structing pure spatial qudit states. We have built an adapted version of the algorithms

found in the literature, fitting it to this encoding scheme. This algorithms has worked well

with simulated data, reaching very accurate estimates of the target states. Finally, we

realized a proof-of-principle experiment that succesfully demonstrated the reconstruction

of over 3500 states with dimensions D = 2, 3, 4, 7 and 9, thus showing its feasibility as a

tool for reconstructing qudit states.

After the study we have presented so far, we can draw a few conclusions and outline

some future perspectives, presented below.

Phase reconstruction of the spatial qudit states was feasible.

The fidelities of the recovered states were quite satisfactory. This means that the recovered

phases were very similar to those of the target state, and thus that the phase retrieval

alogrithm arrived at accurate estimates.

The state preparation scheme was working properly.

The results of the phase retrieval routine depends entirely on the data we feed into the

algorithm. If this data is somehow corrupted (e.g., if the state generation stage is not

working properly), it is very unlikely that the routine will arrive at good results. Therefore,

we can also conclude that the state preparation scheme used in the experiment was working

properly, and only because of that was the phase retrieval able to work.

51



52

Lower recovered fidelities were probably due to non-uniform illumination of

the SLM.

One tendency in our results was that zT decreased with the dimension D of the generated

state. We believe that this was due to the gaussian profile of the beam illuminating the

SLM, while our setup was conceived expecting a uniform illumination. States with greater

D have more slits, the outermost of which were illuminated by more peripheral, less

intense regions of the beam. This presumably caused a deviation on the generated states.

Magnifying Fourier-domain amplitudes was an effective strategy to compen-

sate the small range of sampled spatial frequencies.

From what we have seen in section 3.6, the small number of pixels in the measurement of

|F | made it difficult for the algorithm to arrive at a good estimate. Magnifying the vector

of Fourier-domain amplitudes was effective in helping the algorithm reaching accurate

phase estimates, but it would be probably better still to have sampled a wider region of

spatial frequencies.

Use of two-dimensional spatial encoding schemes.

In this work we converted the two-dimensional images of the spatial qudits into one-

dimensional functions by summing in one direction; these were the functions that were fed

to the algorithm. However, the phase retrieval algorithm does not demand this conversion,

and treating two dimensional data could in fact bring benefits.

By using two dimensional images, we could use this method with spatial qudits encoded

in a two-dimensional array of squares instead of a one-dimensional array of slits. These

could make the diffractive regions in the SLM better centered, or even achieve higher

dimensions more easily. Also, this would make the method able to work with other

codification schemes, shuch as those using the orbital angular momentum [21].

Phase retrieval with fractional Fourier transforms.

Versions of the phase retrieval problem involving two planes related by the more general

fractional Frourier transform have also been considered [51]. There is always the possibility

that two different spatial qudit states have the same intensity profiles in the object and

Fourier planes, so that the phase retrieval problem has not a unique solution for that case1.

However, since these states are different, there should be a difference in their profiles at

1A dramatic example are the states forming mutually unbiased bases for spatial qudits with D ≥ 3;
there are states within the same basis (and thus orthogonal) that have exactly the same intensity patterns
in both the object and Fourier domains.
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some intermediate plane, where the propagation would correspond to a fractional Fourier

transform instead of the conventional one. Thus, it could be useful to have a fractional

version of the algorithm.
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Appendix A

Source code

In this appendix we will present the source code used for phase retrieval in our work.

There were five phase retrieval functions and one script to coordinate them; we designed

the functions in this manner because the best strategy reported in the literature [44] was

to keep interchanging a few iterations of each algorithm instead of proceeding with one of

them all the time. This code was written in the Matlab language.

Though the coordinating script was initially designed to control five different phase

retrieval, only two of them proved to work well, namely the Gerchberg-Saxton and the

output-output algorithms (see chapter 2). Therefore, we will only show these two routines

after the coordinating script.

Besides interchanging the algorithms, the coordinating function also managed the

detection of estimate stagnation (with further storing of final estimate and reinitialization

of the algorithm). There was a main function that would call this routine and later choose

the least-error estimate.

Coordinating routine

1 %Phase Retrieval Algorithm , with "jumps", and outputs to search the best

%no -jump threshold value.

% This version uses intensity measures of both the object and its

% Fourier transform!

%

6 % If the algorithm sees no significant changes in the error for n_stuck

% consecutive iterations , it adds some noise to the current phase

% (and thus "jumps" out of the current local minimum it is stuck at).

%

% Usage:

11 % [Obj_Estimate , Transf_Estimate , Eo, Ejump , g_jump] = pramix_jumps_search(Npre ,Nio

,Noo ,Nhgi ,Nhgo ,Njumps ,...

% Beta_io ,Beta_oo ,Beta_hgi ,Beta_hgo , Supp , Obj_Phases_init , Obj_Int , Transf_Int)

%

% Input list:
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% Obj_Phases_init current estimate of object phases

16 % Obj_Int object intensity values

% Transf_Int transform intensity values

% N number of jumps to be performed

% N... number of iterations of each pra

% Beta_ ... beta values for the fienup -family algorithms

21 % err_thresh threshold for the reduction in the error Eo

%

% Output list:

% Obj_Estimate estimate of the object after the N iterations

% Transf_Estimate

26 % Eo vector of errors in each iteration

% Ejump vector of errors at jumps

% g_jump matrix wiht the g’s at the jumps in its columns

% FIX: phylosophical difference of the "input" methods ...

31

function [Obj_Estimate , Transf_Estimate , Eo, Ejump , g_jump] =

pramix_jumps_search_F_part_impos(OutModuliCorr ,Npre ,Nio ,Noo ,Nhgi ,Nhgo ,Ngs ,Npost ,

Njumps ,...

Beta_io ,Beta_oo ,Beta_hgi ,Beta_hgo , Obj_Phases_init , Obj_Amp , Transf_Amp , err_thresh ,

nslits , slits_rise , slits_fall)

%ERROR CHECKS

36

i f (~ i s rea l (Obj_Phases_init))

error(’Phase vector should have only real components (phases)!!’)

end

i f ( length(slits_rise)~= nslits || length(slits_fall)~= nslits)

41 error(’Number of slits rises/falls different than number of slits!’)

end

%INITIALIZATIONS

g = Obj_Amp .*exp(1i*Obj_Phases_init);

46 Eo = [];

Ejump = [];

g_jump = [];

Supp = [];

for r=1:1: nslits

51 Supp = [Supp slits_rise(r):1: slits_fall(r)];

end

%JUMP PARAMETERS

n_stuck = 40; %number of "stuck iterations" that will trigger the jump

56 noise_level = 1*2*pi; %noise level to add the phase ("jump amplitude ")

%PHASE RETRIEVAL ALGORITHMS

%to be repeated until N jumps have occurred

61

i_stuck = 0; % stuck iterations counter

r = 0; % jump counter

i_pra = 1; % counter to mark which PRA should be used at the current iteration

Eo = [];

66 %g = X;
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[g, G, eo] = gerch_sax_F_part_impos(OutModuliCorr , Npre , angle(g), Obj_Amp ,

Transf_Amp);

Eo = [Eo eo];

71 i f (Njumps ==0)

while(i_stuck <n_stuck)

i f (i_pra <Nio)

[g, G, eo] = input_output_F_part_impos(OutModuliCorr , 1, Beta_io , angle(

g), Obj_Amp , Transf_Amp);

Eo = [Eo eo];

76 e l s e i f (i_pra <Nio+Noo)

[g, G, eo] = output_output_F_part_impos(OutModuliCorr , 1, Beta_oo , angle

(g), Obj_Amp , Transf_Amp);

Eo = [Eo eo];

e l s e i f (i_pra <Nio+Noo+Nhgi)

[g, G, eo] = hgi_F_part_impos(OutModuliCorr , 1, Beta_hgi , Supp , angle(g)

, Obj_Amp , Transf_Amp);

81 Eo = [Eo eo];

e l s e i f (i_pra <Nio+Noo+Nhgi+Nhgo)

[g, G, eo] = hgo_F_part_impos(OutModuliCorr , 1, Beta_hgo , Supp , angle(g)

, Obj_Amp , Transf_Amp);

Eo = [Eo eo];

e l s e i f (i_pra <Nio+Noo+Nhgi+Nhgo+Ngs)

86 [g, G, eo] = gerch_sax_F_part_impos(OutModuliCorr , 1, angle(g), Obj_Amp ,

Transf_Amp);

Eo = [Eo eo];

end

i_pra = i_pra +1;

i f (i_pra==Ngs+Nio+Noo+Nhgi+Nhgo)

91 i_pra = 1;

end

% Check if error was stuck in this iteration

i f ( length(Eo)>2 && Eo(end-1)-Eo(end)<err_thresh )

96 i_stuck = i_stuck +1;

end

end

[g, G, eo] = gerch_sax_F_part_impos(OutModuliCorr , Npost , angle(g), Obj_Amp ,

Transf_Amp);

101 Eo = [Eo eo];

Ejump = [Ejump Eo(end)];

g_jump = [g_jump g’];

r = r+1;

end

106

while(r<Njumps)

% Phase Retrieval Algorithms mix

i f (i_pra <Nio)

[g, G, eo] = input_output_F_part_impos(OutModuliCorr , 1, Beta_io , angle(g),

Obj_Amp , Transf_Amp);

111 Eo = [Eo eo];

e l s e i f (i_pra <Nio+Noo)

[g, G, eo] = output_output_F_part_impos(OutModuliCorr , 1, Beta_oo , angle(g),

Obj_Amp , Transf_Amp);

Eo = [Eo eo];
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e l s e i f (i_pra <Nio+Noo+Nhgi)

116 [g, G, eo] = hgi_F_part_impos(OutModuliCorr , 1, Beta_hgi , Supp , angle(g),

Obj_Amp , Transf_Amp);

Eo = [Eo eo];

e l s e i f (i_pra <Nio+Noo+Nhgi+Nhgo)

[g, G, eo] = hgo_F_part_impos(OutModuliCorr , 1, Beta_hgo , Supp , angle(g),

Obj_Amp , Transf_Amp);

Eo = [Eo eo];

121 e l s e i f (i_pra <Nio+Noo+Nhgi+Nhgo+Ngs)

[g, G, eo] = gerch_sax_F_part_impos(OutModuliCorr , 1, angle(g), Obj_Amp ,

Transf_Amp);

Eo = [Eo eo];

end

i_pra = i_pra +1;

126 i f (i_pra==Ngs+Nio+Noo+Nhgi+Nhgo)

i_pra = 1;

end

% Check if error was stuck in this iteration

131 i f ( length(Eo)>2 && Eo(end-1)-Eo(end)<err_thresh )

i_stuck = i_stuck +1;

end

% Make jump if n_stuck stuck iterations have been achieved

136 i f ( i_stuck == n_stuck )

[g, G, eo] = gerch_sax_F_part_impos(OutModuliCorr , Npost , angle(g), Obj_Amp ,

Transf_Amp);

Eo = [Eo eo];

Ejump = [Ejump Eo(end)];

g_jump = [g_jump g’];

141

i f (r~=Njumps -1)

%making new phase guess

% phi = angle(g) + noise_level*rand(1,length(g)); %this was completely

random ...

phi = zeros(1, length(g));

146 for q=1:1: nslits

phi(slits_rise(q):slits_fall(q)) = noise_level*rand; %this is

constant within each slit

end

g = Obj_Amp .*exp(1i*phi);

151 [g, G, eo] = gerch_sax_F_part_impos(OutModuliCorr , Npre , angle(g),

Obj_Amp , Transf_Amp);

Eo = [Eo eo];

end

i_stuck = 0;

i_pra = 1;

156 r = r+1;

%display( [’Jumped: r=’ num2str(r)] )

end

end

161 Obj_Estimate = g;

Transf_Estimate = G;
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%endfunction

Gerchberg-Saxton routine

1 %Gerchberg -Saxton Phase Retrieval Algorithm

%(actually , a fixed number of iterations of)

% This version uses intensity measures of both the object and its

% Fourier transform!

%

6 % Usage:

% [Obj_Estimate , Transf_Estimates , Eo] = gerch_sax_data(N_gs , Obj_Phases_init ,

Obj_Amp , Transf_Amp , w)

%

% Input list:

% Obj_Phases_init current estimate of object phases

11 % Obj_Amp object amplitude values

% Transf_Amp transform amplitude values

% N_gs number of iterations

%

% Output list:

16 % Obj_Estimate estimate of the object after the N iterations

% Transf_Estimate estimate of the transform after the N iterations

% E0 vector of errors in each iteration

%THIS IS THE MATLAB VERSION

21

%FIX

%-return transform phases?

%-make error checks

26 function [Obj_Estimate , Transf_Estimate , Eo] = gerch_sax_F_part_impos(OutModuliCorr ,

N_gs , Obj_Phases_init , Obj_Amp , Transf_Amp)

%% ERROR CHECKS

%(maybe later ...)

31 % Initializations

X = Obj_Amp .*exp(1i*Obj_Phases_init);

Eo = [];

Nfft = s ize (Obj_Amp ,2);

n = s ize (Transf_Amp ,2);

36

i f (N_gs ==0)

Obj_Estimate = X;

Transf_Estimate = f f t (X);

return

41 end

%% GERCHBERG_SAXTON ALGORITHM

46 % Remember X and F will have different lengths

% Calculations for "outside" region modulus correction
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I_F = sum(Transf_Amp .^2);

Nfft = length(Obj_Amp);

51 i f ( Nfft >I_F )

c = sqrt(Nfft - I_F);

else

c = 0;

end

56

for r = 1:1: N_gs

%disp(r)

F = f f t (X);

G = F;

61 %F = fftshift(fftshift(fft(fftshift(X))));

%F(w:w+n-1) = Transf_Int .*exp(1i*angle(F(w:w+n-1)));

F(1: ce i l (n/2)) = Transf_Amp (1: ce i l (n/2)).*exp(1i*angle(F(1: ce i l (n/2))));

F(end- f loor (n/2):end) = Transf_Amp(end- f loor (n/2):end).*exp(1i*angle(F(end- f loor

(n/2):end)));

i f (OutModuliCorr == 1 && c>0)

66 F( ce i l (n/2) +1:end- f loor (n/2) -1) = c*F( ce i l (n/2) +1:end- f loor (n/2) -1)/sqrt(sum

( abs( F( ce i l (n/2) +1:end- f loor (n/2) -1) ).^2 ));

end

g = i f f t (F);

%g = ifftshift(ifft(ifftshift(ifftshift(F))));

X = Obj_Amp .*exp(1i*angle(g));

71

Eo = [Eo , sum( (abs(g)-Obj_Amp).^2 )/sum( abs(Obj_Amp).^2 )];

end

% Obj_Estimate = g;

76 % Transf_Estimate = G;

Obj_Estimate = X;

Transf_Estimate = f f t (X);

81 %endfunction

Output-output routine

%Fienup INput -Output Phase Retrieval Algorithm

%(actually , a fixed number of iterations of)

% This version uses intensity measures of both the object and its

4 % Fourier transform!

%

% Usage:

% [Obj_Estimate , Transf_Estimate , Eo] = output_output(N, Beta , Obj_Phases_init ,

Obj_Int , Transf_Int)

%

9 % Input list:

% Obj_Phases_init current estimate of object phases

% Obj_Int object intensity values

% Transf_Int transform intensity values

% N number of iterations

14 %

% Output list:
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% Obj_Estimate estimate of the object after the N iterations

% Transf_Estimate estimate of the transform after the N iterations

% E0 vector of errors in each iteration

19

%THIS IS THE MATLAB VERSION

%FIX

%-return transform phases?

24 %-make error checks

function [Obj_Estimate , Transf_Estimate , Eo] = output_output_F_part_impos(OutModuliCorr ,

N, Beta , Obj_Phases_init , Obj_Amp , Transf_Amp)

%ERROR CHECKS (... maybe later)

29

% Calculations for "outside" region modulus correction

I_F = sum(Transf_Amp .^2);

Nfft = length(Obj_Amp);

i f ( Nfft >I_F )

34 c = sqrt(Nfft - I_F);

else

c = 0;

end

39 %J. R. FIENUP ALGORITHM

Eo = [];

X = Obj_Amp .*exp(1i*Obj_Phases_init);

Nfft = s ize (Obj_Amp ,2);

n = s ize (Transf_Amp ,2);

44

i f (N==0)

Obj_Estimate = X;

Transf_Estimate = f f t (X);

return

49 end

for r = 1:1:N

F = f f t (X);

G = F;

54 %G(w:w+n-1) = Transf_Int .*exp(1i*angle(G(w:w+n-1)));

G(1: ce i l (n/2)) = Transf_Amp (1: ce i l (n/2)).*exp(1i*angle(G(1: ce i l (n/2))));

G(end- f loor (n/2):end) = Transf_Amp(end- f loor (n/2):end).*exp(1i*angle(G(end- f loor

(n/2):end)));

i f (OutModuliCorr == 1 && c>0)

G( ce i l (n/2) +1:end- f loor (n/2) -1) = c*G( ce i l (n/2) +1:end- f loor (n/2) -1)/sqrt(sum

( abs( G( ce i l (n/2) +1:end- f loor (n/2) -1) ).^2 ));

59 end

g = i f f t (G);

Delta_g = ( 1 - Obj_Amp ./abs(g) ).*g;

X = g - Beta*Delta_g;

64 Eo = [Eo , sum( (abs(g)-Obj_Amp).^2 )/sum( abs(Obj_Amp).^2 )];

end

% Obj_Estimate = g;

% Transf_Estimate = F;



62

69 Obj_Estimate = X;

Transf_Estimate = f f t (X);

%endfunction
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S Pádua. Quantum contextuality in a Young-type interference experiment.

Physical Review A 89 052106 (2014).

[30] B Marques, A A Matoso, W M Pimenta, A J Gutiérrez-Esparza, M F Santos, and
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surement of spatial qubits. Journal of Physics B 41 185501(2008).

[34] G Taguchi, T Dougakiuchi, N Yoshimoto, K Kasai, M Iinuma, H F Hofmann, and

Y Kadoya. Measurement and control of spatial qubits generated by passing

photons through double slits. Physical Review A 78 012307 (2008).

[35] W M Pimenta, B Marques, M A D Carvalho, M R Barros, J G Fonseca, J Ferraz,
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