Maria Lopes Corrêa

Avaliação de dois glicosímetros veterinários para uso em cães

Belo Horizonte – MG
Escola de Veterinária – UFMG
Corrêa, Maria Lopes, 1985-
Avaliação de dois glicossímetros veterinários para uso em cães / Maria Lopes Corrêa. – 2017.
74 p. : il.

Orientadora: Adriane Pimenta da Costa Val Bicalho
Coorientadora: Fabiola de Oliveira Paez Leme
Dissertação (mestrado) – Universidade Federal de Minas Gerais. Escola de Veterinária
Inclui bibliografia

CDD – 616.708 96
FOLHA DE APROVAÇÃO

MARIA LOPES CORRÊA

Dissertação submetida à banca examinadora designada pelo Colegiado do Programa de Pós-Graduação em CIÊNCIA ANIMAL, como requisito para obtenção do grau de MESTRE em CIÊNCIA ANIMAL, área de concentração MEDICINA E CIRURGIA VETERINÁRIAS.

Aprovada em 17 de Fevereiro de 2017, pela banca constituída pelos membros:

Prof. Adriane Pimenta da Costa Val Bicalho
Presidente - Orientador

Prof. Fernando Antônio Bretas Viana
Escola de Veterinária - UFMG

Prof. Alan Gomes Pöppl
Universidade Federal do Rio Grande do Sul - UFRGS
Agradecimentos

Ao longo de todo o curso de pós-graduação tive o privilégio de receber apoio e colaboração que foram fundamentais para a concretização desse trabalho. A seriedade do ambiente de trabalho na Escola de Veterinária da UFMG nos motiva a buscar o aprimoramento profissional e a contribuir com a área das ciências veterinárias. Agradeço à Instituição, à pós-graduação em Ciência Animal e à Capes/CNPq por proporcionarem esse programa de mestrado.

Imensa gratidão à minha orientadora professora Adriane pela confiança e pela oportunidade de participar de toda a experiência vivida ao longo do processo de mestrado. Agradeço ainda por estar sempre atenta e dedicada à formação profissional técnica, ética e íntegra de seus alunos.

Aos professores que compartilharam o conhecimento que foi base para este trabalho, além de ter estimulado a autocrítica e o aprimoramento da pesquisa. Agradeço principalmente aos professores de patologia clínica Fabíola e Paulo Ricardo que sempre estiveram presentes.

Aos colegas de mestrado e aos companheiros do hospital veterinário que foram parte da rotina e contribuíram para a elaboração deste trabalho. Tive o privilégio de fazer parte de uma equipe motivadora e de estar cercada por graduandos, estagiários, residentes e demais profissionais que enriqueceram a experiência do mestrado. Os companheiros foram fundamentais para execução do projeto e para minha renovação profissional. Especial agradecimento aos médicos veterinários e amigos Larissa, Guilherme, Artur, Maria Elvira, Ana Flávia e Stéphanie que estiveram sempre presentes me apoiam em todos os momentos.

À minha mãe, pai e irmão que compartilham dos meus sonhos e incondicionalmente acreditam em mim. Obrigada por “encurtarem” a distância entre Belo Horizonte e o Rio e me ajudarem a vencer cada etapa deste desafio!

Aos amigos e familiares que me dedicaram pensamentos positivos e palavras amigas que ajudaram a renovar minha motivação pessoal!

Agradeço a todos os responsáveis que permitiram que seus cães participassem das coletas de sangue.

Por fim, agradeço aos cães que participaram do experimento e a outros tantos com os quais tive a oportunidade de conhecer. Essa oportunidade de conviver e amar seres diferentes é um alimento e um exercício para aprimorar nosso respeito e dedicação ao mundo do qual somos parte.
Sumário

Resumo...10

1. Introdução..12

2. Revisão de literatura...12
 2.1. Homeostase da glicose...13
 2.2. Disglicemias..18
 2.3. Diabetes mellitus...19
 2.3.1. Controle do DMC..23
 2.4. Glicosímetros..25

3. Hipótese..31

4. Objetivo geral...31
 4.1. Objetivo específico..31

5. Material e métodos...31
 5.1. Animais..32
 5.2. Glicosímetros avaliados...32
 5.3. Critérios de inclusão dos pacientes..33
 5.4. Critérios de inclusão das amostras...33
 5.5. Coletas das amostras..34
 5.6. Métodos laboratoriais..35
 5.6.1. MLab glicose oxidase...36
 5.6.2. MLab hexoquinase..36
 5.7. Análise dos dados..36

6. Resultados..38

7. Discussão..51
 7.1. Hematócrito..51
 7.2. Concentração de proteínas plasmáticas totais e influência do jejum alimentar..............54
 7.3. Avaliação da acurácia...55
8. Conclusão...59
9. Referências bibliográficas...60
10. Anexo 1..72
11. Anexo 2..73
12. Anexo 3..74
Lista de tabelas

Tabela 1 - Estatística descritiva e intervalo de confiança da média para as variáveis estudadas40

Tabela 2 - Glicemia de cães em função dos métodos de mensuração em plasma (GT1, GT2, Hx e GOx) e da condição de jejum (sim ou não) ...41

Tabela 3 - Glicemia de cães em função dos métodos de mensuração em sangue total capilar (GT1 e GT2) e em plasma venoso (Hx e GOx) e da condição de jejum (sim ou não)42

Tabela 4 - Glicemia de cães em função dos GT em sangue total capilar e em plasma equivalente e da condição de jejum alimentar ..43

Tabela 5 - Glicemia de cães com e sem jejum em função dos GT em amostras de sangue total capilar e de plasma equivalente ...44

Tabela 6 - Erro médio acarretado por cada tipo de amostra avaliada pelos GT em comparação aos MLab ...44

Tabela 7 - Correlações entre as médias de glicemia mensuradas por cada um dos GT e MLab abordados no estudo e também das variáveis de HT e PPT ..46
Lista de figuras

Figura 1 - Equação para determinação do tamanho de amostra de variável quantitativa e contínua em uma dada fração da população de cães...32

Figura 2 - Fórmula utilizada para cálculo do intervalo de confiança da média dos grupos........36

Figura 3 - Equações para transformação da glicemia mensurada em amostra de sangue capilar em valor estimado de plasma equivalente..37

Figura 4 - Gráficos de diferença entre as comparações do método GT2 em plasma equivalente e MLab Hx e GOx..48

Figura 5 – Gráficos de diferença entre as comparações do método GT1 em plasma equivalente e MLab Hx e GOx..49

Figura 6 – Gráficos de diferença das comparações de ambos métodos de GT em sangue total capilar com os MLab de maior correlação: GT2 e GOx, e GT1 e Hx..50

Lista de quadros

Quadro 1 - Características de amostra e de ensaio para os GT1 e GT2 de acordo com informações fornecidas pelos fabricantes..34
Lista de abreviaturas

ATP – Adenosina trifosfato

DM – Diabetes mellitus

DMC – Diabetes mellitus canino

FDA – *Food and Drug Administration*

GAS – Glicemia mensurada pelo AlphaTrak 2 a partir de amostra de sangue total capilar

GAPeq – Glicemia mensurada pelo AlphaTrak 2 após a transformação em plasma equivalente

GGOxP – Glicemia mensurada pelo método laboratorial da glicose oxidase a partir de amostra plasmática

GHxP – Glicemia mensurada pelo método laboratorial da hexoquinase a partir de amostra plasmática

GIS – Glicemia mensurada pelo IPet a partir de amostra de sangue total capilar

GIPeq – Glicemia mensurada pelo IPet após transformação em plasma equivalente

GLP1 – Peptídeo semelhante ao glucagon

GLUT2 – *Glucose transporter type 2*

GOx - Glicose oxidase

GT – Glicosímetros

GT1 – AlphaTrak 2

GT2 - IPet

Hx – Hexoquinase

HG – Homeostase da glicose

ISO – *International Organization for Standardization*

MLab – Método laboratorial de referência

PPT – Proteína plasmática total

RPM – Rotações por minuto

TA – Tecido adiposo
Resumo

Os glicosímetros são ferramentas importantes para o monitoramento e triagem da glicemia de cães em ambientes clínicos e domiciliares. Seus procedimentos de teste são pouco invasivos e fornecem resultados rápidos, possibilitando a pronta instituição de medidas terapêuticas adequadas às demandas reais do paciente. Contudo, fatores inerentes aos procedimentos de teste se configuram como potenciais fontes de inacurácia nas aferições, sejam decorrentes do manuseio e sistema de funcionamento do aparelho, bem como das condições fisiopatológicas do paciente. A normativa da ISO 15197:2013 estabelece padrões para avaliação da acurácia dos glicosímetros, sugerindo limites para a variação da glicemia fornecida pelo aparelho em comparação à fornecida por métodos laboratoriais de referência. O presente estudo avaliou a acurácia de dois glicosímetros veterinários (AlphaTrak 2, GT1, e IPet, GT2) para mensuração da glicemia de 100 pacientes caninos atendidos na rotina do hospital da escola de veterinária da UFMG. A acurácia foi abordada através da comparação entre os resultados obtidos pelos glicosímetros em amostras capilares, com os obtidos em amostras venosas pelos métodos laboratoriais de hexoquinase e glicose oxidase. Avaliou-se a influência dos parâmetros hematócrito e concentração de proteínas plasmáticas totais sobre o desempenho dos glicosímetros. Não foi encontrada diferença significativa entre as médias de glicemia fornecidas pelos dois glicosímetros transformadas para plasma equivalente e ambos foram identificados como diferentes de ambos os métodos laboratoriais. A variação do hematócrito foi inversamente proporcional à glicemia mensurada pelo GT1 e, por outro lado, a concentração de proteínas plasmáticas totais variou de forma diretamente proporcional aos valores de glicemia fornecidos pelo GT2. Os glicosímetros alcançaram 99% de acurácia conforme o padrão pretendido pela normativa ISO 15197:2013.

Palavras chave: cães; glicemia; estudos de validação.
Abstract

Glucometers are important tools to monitoring and screening glycaemia in dogs both in clinic and home environment. The test procedures are almost non-invasive and lead fast results enabling prompt institution of therapeutic measures suitable to the actual patient’s clinical condition. However, there are inherent factors of test procedures which may be configured as potential sources of inaccuracy in measurements. Those factors are due to handling and operation system of glucometers, and could also be due to the actual patient’s physiopathological condition. The ISO 15197:2013 establish standards to evaluate the glucometers accuracy, suggesting limits of glycaemia measured by the device in comparison to that provided by laboratory reference methods. The present study has evaluated performance of two veterinary glucometers (AlphaTrak 2, GT1, and IPet, GT2) in measuring glycaemia of 100 patients admitted at clinical routine of UFMG’s veterinary school hospital. The accuracy was assessed with comparison between the results obtained using those glucometers in capillary samples, and glycaemia obtained in plasma samples by the laboratorial methods of hexoquinase and glucose oxidase. It was evaluated the influence of parameters of hematocrit and plasmatic proteins in the glucometers performance. No significant difference was found between the blood glucose averages provided by the two glucometers in transformed plasma equivalent values, and both were identified as different of both laboratorial methods. The haematocrit variation was inversely proportional to the glycaemia measured by GT1 and, on the hand, the variation of total plasma proteins concentration was direct proportion of glucose values provided by GT2. Both glucometers reached 99% of accuracy according to the standards intended by ISO15197:2013.

Key words: dogs; blood glucose; validation studies.
1. Introdução

Glicosímetros são aparelhos que quantificam a concentração de glicose no sangue por meio de reação eletro-enzimática. Consistem em ferramentas acessíveis devido a simplicidade da técnica de manuseio, que requer pouco treinamento, e tampouco envolve necessidade de preparo do paciente para a coleta das amostras. Desse modo, os glicosímetros tem sido amplamente empregados em diferentes situações da rotina médico veterinária, permitindo a inferência acerca da integridade metabólica do organismo a partir da avaliação do comportamento da glicemia. Contudo, nas diferentes condições médicas que requerem o uso dos aparelhos, há fatores associados à condição clínico patológica do paciente e outros intrínsecos ao próprio glicosímetro que podem interferir na execução das etapas que integram o teste, prejudicando sua sensibilidade e a acurácia dos resultados.

O objetivo deste estudo foi avaliar a acurácia de dois glicosímetros desenvolvidos para uso exclusivo médico veterinário, AlphaTrak 2 (GT1) e IPet (GT2) em comparação a dois métodos laboratoriais consagrados como parâmetros de referência, bem como avaliar quanto a ocorrência de interferência dos parâmetros hematológicos de hematocrito e proteínas plasmáticas sobre a execução dos testes, além de avaliá-los quanto ao parâmetro de acurácia sugerido pela ISO 15197:2013. A abordagem dos aparelhos foi procedida de modo a explorar seu uso ambulatorial como ferramenta de monitoramento da glicemia, dentro dos padrões pretendidos por cada fabricante.

2. Revisão de literatura

Nas diversas espécies animais, a manutenção da vida depende do adequado suprimento nutricional para ativação e manutenção do metabolismo celular. Os animais não fermentadores buscam através da alimentação as fontes de macronutrientes que, ao longo do processo de digestão, são transformados até moléculas biodisponíveis e acessíveis a utilização pelas células (Nelson e Cox, 2008). A coordenação entre vias neuroendócrinas e as resultantes ações comportamentais incita o animal a busca pelo alimento. Tal autonomia configura um importante elemento para o controle do homeostase energética, além de representar uma estratégia de sobrevivência e adaptação animal frente aos desafios de oferta de alimento no meio (Kyriazakis et al., 1999; Rosen e Spiegelman, 2006; Hewson-Hughes et al., 2011).
Sendo ordinariamente carnívoros, os cães apresentam particularidades dietéticas e metabólicas relacionadas a sua natureza caçadora. Salienta-se a boa conversão alimentar a partir de fontes lipídicas, além da capacidade de ativar reservas energéticas em condições anaeróbicas (Hill, 1998; Carbone et al., 2007; Hewson-Hughes et al., 2011; Bermingham et al., 2014). Guptill et al. (2003) sugerem que a capacidade de adaptação do metabolismo energético de cães possa ser herança dos ancestrais filogenéticos canídeos selvagens, adaptados a períodos de escassez de caça. A literatura apresenta referências sobre a capacidade de canídeos metabolizarem ácidos graxos livres, e sobre a importância das fontes lipídicas e seu alto valor calórico na nutrição de cães de caça, pastoreio e atletas (Hill, 1998; Carbone et al., 2007).

A demanda energética é variável em função da espécie animal, sua rotina alimentar, grau de atividade diária, condições climáticas, gênero, idade. Ao longo do processo de domesticação de cães e gatos, a real demanda energética foi sobreposta por hábitos inerentes à humanidade, na qual a alimentação é diretamente associada a seu significado afetivo e social (Kyriazakis et al., 1999; Arendt et al., 2014; Bermingham et al., 2014). Consequentemente, por serem submetidos a dietas inadequadas à natureza alimentar de cada espécie, o equilíbrio energético dos animais domiciliados é desafiado de modo que as adaptações fisiológicas podem não ser suficientes para manter a saúde e o bem estar (Hewson-Hughes et al., 2011; Axelsson et al., 2013). Sobretudo nos ambientes urbanos, o domiciliamento desses animais implica na redução da atividade física e consequente redução do gasto calórico diário. Configurando-se assim, mais uma variável ao balanço energético entre o que o organismo gasta e consome via alimentação (Rosen e Spiegelman, 2006).

Apesar de cães e gatos serem adaptados a obterem moléculas de energia – sob a forma de ATP- a partir de carboidratos, lipídios e proteínas, a glicose é o principal substrato energético para o metabolismo celular dos mamíferos, pois constitui a fonte preferencial para o sistema nervoso central e para eritrócitos (Hong et al., 2013). Sendo assim, as vias glicídicas - glicólise, glicogenólise, via das pentoses- são as preferenciais para o metabolismo energético (Nelson e Cox, 2008b).

2.1. Homeostase da glicose

A homeostase da glicose (HG) é um processo dinâmico no qual estão envolvidos tecidos, hormônios e sinalizadores celulares que atuam de forma coordenada e sinérgica, ativando
mecanismos de armazenamento e disponibilização da glicose para suprir as demandas orgânicas (Mainardi et al., 2015). A coordenação entre os mecanismos endócrinos e neurais funciona de modo a manter constante a oferta energética apesar dos desafios fisiológicos aos quais o animal está impreterivelmente submetido, como atividade física, termogênese adaptativa, além da manutenção do metabolismo basal (Rosen e Spiegelman, 2006). Os mecanismos de regulação do metabolismo devem, sobretudo, garantir (i) otimização do aproveitamento das fontes energéticas, evitando ativação simultânea de vias antagônicas, (ii) direcionamento dos substratos para vias que atendam as demandas imediatas, (iii) redução da biossíntese de metabólitos em baixa demanda (Nelson e Cox, 2008b).

Para que a atividade celular seja mantida, processos metabólicos envolvidos no consumo e biodisponibilização dos substratos energéticos são ativados e suprimidos de maneira ininterrupta. Por conseguinte, em cada sistema do organismo animal – células, tecidos, órgãos - há mecanismos envolvidos na controle de catabolismo e anabolismo de acordo com a status energético imediato. Portanto, a homeostase energética do organismo depende da ativação seletiva de vias metabólicas em cada microsistema celular ou tecidual, que uma vez interligados por sinalizadores hormonais, peptídicos ou iônicos, promovem ajustes comportamentais relacionados a correção de fome e saciedade (Nelson e Cox, 2008b; Hewson-Hughes et al., 2011).

Nos cães, após a ingestão do alimento, a digestão intestinal corresponde a primeira etapa envolvida no processo de disponibilização da glicose a partir das fontes de carboidratos. De acordo com Axelsson et al. (2013), são necessárias etapas de digestão/absorção subsequentes para garantir a glicemia adequada a espécie, que envolvem desde a quebra enzimática de formas complexas do carboidrato no lúmen intestinal, até o transporte da glicose para o plasma. A amilase pancreática atua no intestino delgado promovendo redução dos açúcares a formas dissacarídeas – maltose e sacarose- contendo D-glicose, que, por sua vez, é passível de absorção por meio da proteína transporte na superfície dos enterócitos (Batchelor et al., 2013; Arendt et al., 2014).

Apesar da ação enzimática endógena promover a digestão do amido, a dieta fornece formas de oligo- e polissacarídeos as quais o metabolismo animal não é capaz de transformar. Contudo, o ambiente intestinal funciona como meio de simbiose entre espécies bacterianas, fúngicas, além do próprio organismo animal. Tal associação permite complementariedade metabólica entre as espécies envolvidas, garantindo maior aproveitamento de carboidratos e, portanto, maior adaptação ao alimento disponível (Shen et al., 2013; De Vadder et al., 2014).
Além de contribuir para o equilíbrio energético no âmbito da transformação dos carboidratos oriundos da dieta, a função intestinal gera metabólitos que estão envolvidos na transmissão de sinais neuroendócrinos. O peptídeo-1 semelhante ao glucagon (GLP1), secretado por enterócitos, sobretudo em resposta a hiper-glicemia, desencadeia o efeito incretina, pelo qual estimula o pâncreas endócrino a aumentar a secreção de insulina e suprimir a de glucagon; sendo sua ação resultante anorexigênica (Burcelin et al., 2007; Calanna et al., 2013). Por sua vez, os ácidos graxos de cadeia longa – acetato, propionato e butirato produzidos pela microbiota intestinal, contribuem para a regulação do metabolismo glicêmico, pois contribuem diretamente para a nutrição dos enterócitos e atuam como messageiros modulação da lipogênese e gliconeogenese hepática e intestinal, além de estimularem a secreção de GLP1 (Cani e Knauf, 2016).

Algumas moléculas produzidas durante o processo intestinal estão envolvidas em ações centrais de modulação do metabolismo energético. O hipocampo expressa receptores específicos para ligação ao GLP1, sugerindo que o efeito da incretina seja resultante de estímulo de terminações nervosas centrais e periféricas, sendo as últimas, sobretudo relacionadas à ação direta em pâncreas, íleo e cólon. Adicionalmente, o hormônio pode estar relacionado a ajustes comportamentais à condições de hiper-glicemia (Burcelin et al., 2007; Mainardi et al., 2015). De Vadder et al. (2014) sugerem que o eixo cérebro-intestinal de neurocomunicação é ainda estimulado direta e indiretamente pelos produtos do metabolismo da flora bacteriana intestinal, como o propionato e o óxido nítrico.

O fígado é um dos órgãos centrais envolvidos no complexo controle da glicemia animal. Os principais hormônios da HG são distribuídos via circulação portal, de modo que imediatamente após sua secreção pelo pâncreas, insulina e glucagon alcançam o tecido hepático. No fígado, interferem sobre o metabolismo da glicose, proteínas e lipídios de modo a manter a glicemia constante ainda que o organismo passe por situações de privação de alimento. Os hepatócitos respondem a hiper-glicemia pós-prandial internalizando-a por difusão simples através do transportador GLUT2 e ativando seu armazenamento – glicogeniênese, síntese de ácidos graxos -, além do aumento da taxa de oxidação da glicose hepática (Weickert e Pfeiffer, 2006; Kaneco, 2008).

Contudo, em condições nas quais a sinalização insulínica é ineficiente – resistência insulínica-, o equilíbrio entre anabolismo e catabolismo energético é comprometido no organismo como um todo. Ainda que algumas vias envolvidas sejam independentes da insulina, a produção de glicose
hepática através da glicogenólise e gliconeogênese são ativadas em condições de sinalização ineficaz do hormônio pancreático (Rutter, 2000). Além disso, a insulina age indiretamente sobre o fígado, ao ligar-se a receptores específicos do tecido adiposo e muscular (transporte celular facilitado pelo GLUT 4), cujos metabólitos interferem no metabolismo hepático suprimindo as vias glicogênicas – glicogenólise e gliconeogenese (Rosen e Spiegelman, 2006).

O tecido adiposo (TA) interage com a rede metabólica de controle energético enquanto tecido de reserva e armazenamento, e devido à sua contribuição endócrina. Metabólitos da glicose participam da lipogênese, além de que, indiretamente, a própria síntese de lipídios é ativada pela condição de hiperglicemia. (Rutter, 2000; Rosen e Spiegelman, 2006).

A função endócrina do TA é exercida complementarmente entre os diferentes sítios de deposição lipídica, de modo que cada região apresenta perfil secretório diferente. O TA subcutâneo de mamíferos é responsável por secretar a leptina, hormônio peptídico anorexígeno que contribui para o aumento da sensibilidade dos tecidos à insulina (Triantafyllou e Paschou, 2016). O TA secreta ainda outras adipocinas, peptídeos bioativos que participam da HG interferindo na sensibilidade insulínica tecidual, além das vias energéticas alternativas como a gliconeogenese e β oxidação (Kuryszko et al., 2016).

O pâncreas endócrino age como o principal elemento do sistema de retroalimentação para o controle da HG. Tal posição se deve ao fato de que, as células β pancreáticas são a fonte exclusiva de insulina nos organismos animais e, para tanto, funcionam como sensores altamente sensíveis às flutuações da glicemia (Kaneco, 2008; Dumortier et al., 2016). Na sequência do mecanismo intrínseco que garante a rápida difusão da glicose para o citoplasma – através do transportador GLUT2- é desencadeada uma sequência de eventos celulares que garantem o suprimento de ATP para a secreção ativa da insulina para o plasma portal (Kaneco, 2008; Engelking, 2010; Dumortier et al., 2016).

Sendo a insulina o principal hormônio anabólico, o perfil secretório dos demais hormônios e mensageiros peptídicos relacionados ao metabolismo energético variam em sua função, de modo que potencializam ou suprimem vias de controle da biodisponibilização da glicose (Kaneco, 2008). O glucagon é o antagonista direto dos efeitos insulínicos, com a qual estabelece uma relação de retroalimentação negativa. Ambos são secretados pelo pâncreas por grupos celulares distintos em padrão pulsátil alternado. Menge et al. (2011) sugerem que, apesar de tal padrão pulsátil ser constante, a secreção do glucagon seja determinada pela hiperinsulinemia,
considerando que tais hormônios desencadeiam ações metabólicas distintas – o glucagon é catabólico. A hipoglicemia também estimula a síntese de glucagon. Há ainda a sugestão de que o controle insulínico sobre as células α, secretoras de glucagon, ocorra por interação parácrina no próprio tecido pancreático (Eberhard et al., 2010).

Apesar da relevância do eixo pancreático-tecidual sobre a homeostase energética, o organismo dos mamíferos dispõe de mecanismos complementares que garantem a manutenção do sistema. A modulação do metabolismo decorre da disponibilização de moléculas com potencial energético capazes de suprir a demanda celular – aminoácidos, ácidos graxos e corpos cetônicos, e da influência de elementos parácrinos, endócrinos e neurais (Engelking, 2010; Schwartz et al., 2013). Tais mecanismos suplementares suportam a manutenção do equilíbrio energético diante de condições de disgregulicemias temporárias, sejam elas fisiológicas ou patológicas, como é o caso de pacientes humanos em fase de pré-diabetes – os quais apresentam discreta hiperglicemia assintomática (Buysschaert et al., 2015; Association, 2016). Outros autores identificaram hiperinsulinemia não proporcional a glicemia em fêmeas caninas em píomeira; no entanto, os autores não descreveram diagnóstico definitivo de diabetes mellitus, sugerindo que apesar do desequilíbrio da função pancreatic, não decorreu quadro de desensibilização insulínica permanente (Pöppl et al., 2009).

Considerando a HG como uma condição dinâmica, cujo equilíbrio é manifestado pela normoglicemia, é notável que muitas variáveis estão envolvidas na manutenção dessa constância. A literatura identifica que a coordenação de tais variáveis é dependente da insulina, bem como do sistema nervoso central (SNC). A participação fundamental do SNC tornou-se evidente a partir da identificação de vias hipoglicemiantes que ocorrem independentes da sinalização insulínica (Schwartz et al., 2013). Triantafyllou e Paschou (2016) descreveram que a leptina age centralmente sobre o hipotálamo ativando peptídeos anorexígenos e a sensação de saciedade. Simultaneamente, em tecidos periféricos, a leptina interfere diretamente sobre receptores de enterócitos reduzindo a absorção intestinal de glicose e aminoácidos, inibe a gliconeogênese hepática e colabora para a sensibilização tecidual às ações da insulina.

Afora a participação neuroendócrina do SNC na HG, Mainardi et al. (2015) elucidam sobre o estímulo da função cognitiva hipocampal procedido por insulina, leptina, GLP 1 e grelina para adequação do comportamento ao status energético – hiperglicemia ou hipoglicemia.
2.2. Disglicemias

Apesar do fino ajuste neuroendócrino para regulação da glicemia, há condições clínicas que são caracterizadas por concentrações extremas da glicose plasmática (Marca et al., 2000). De acordo com a literatura médica, acentuadas flutuações na glicemia são frequentes em pacientes de terapia intensiva e são associadas à sepse e quadros inflamatórios (Girouard et al., 2000; Hermayer et al., 2015); hipoglicemia, por exemplo, é considerada como fator de risco para comprometimentos neurológicos, sobretudo em neonatos (Wang et al., 2013).

Em medicina veterinária, a identificação de hiper-glicemia ou de hipoglicemia pode ser indicativa de estresse metabólico, além de ter valor prognóstico (Rees e Schoeman, 2008). Outro estudo associou hipoglicemia a hiperlactatemia, que, por sua vez, indicou prognóstico desfavorável para a evolução de quadros de babesiose em cães (Nel et al., 2009).

O monitoramento da glicemia é indicado para rotina de avaliação de pacientes veterinários em terapia intensiva, a fim de controlar flutuações glicêmicas relacionadas a condições de síndromes inflamatórias e sepse, e ainda das disglicemias decorrentes da terapia com drogas que interferem na HG (Russel et al., 2007). Há ainda neoplasias com atividades secretórias capazes de interferir em eixos endócrinos envolvidos no controle da glicemia, como é o caso de tumores adrenais e hipofisários associados a etiologia do hiperadrenocorticismo, além dos insulinomas (Nelson, 2010). O intervalo de glicemia na espécie canina é de 65 a 118 mg/dL (Kaneko, 2008).

A persistência de condições patológicas com padrão glicêmico atípico tende a comprometer permanentemente a HG, podendo implicar no estabelecimento de doença disglicemianta crônica (Boucher et al., 2014), nas quais há inadequação da resposta metabólica às flutuações da glicemia é proporcional ao grau de ineficiência da sinalização insulínica. O dito comprometimento da sensibilidade à insulin é associado uma condição de deficiência efetiva ou relativa, nas quais há falha da síntese/secção ou da resposta tecidual a sua presença, respectivamente (Kumar et al., 2014; Davison, 2015).

Boucher et al. (2014) relacionam eventos moleculares intracelulares decorrentes de condições inflamatórias, hiper-glicêmicas, hiperinsulinêmicas e associadas as dislipidemias, que abalam a HG por alterarem a expressão e atividade dos receptores insulínicos nas células dos tecidos alvo - hepático, adiposo e muscular. Com a redução do número de receptores funcionais, o controle da
hiperglicemia é prejudicado, estabelecendo-se a condição de resistência insulínica (Pirola et al., 2004; Boucher et al., 2014).

Os desequilíbrios metabólicos citados acima interferem ainda sobre a secreção da insulina. Tais condições desencadeiam processos patológicos que reduzem ou anulam a função secretória das células β pancreáticas. A literatura identifica que a fisiopatogenia da destruição das células β é variável de acordo com a espécie animal, sendo que, os cães parecem ter fator genético que os torna mais suscetíveis a processos imunomediados por auto anticorpos anti-insulina e anti pró-insulina (Davison et al., 2011); à interferência de mediadores inflamatórios - como interleucinas e fatores de necrose tumoral - que induzem a estresse oxidativo e apoptose (Bastard et al., 2006; Pöppl et al., 2009); à quadros de pancreatite (Davison, 2015b). Descreve-se que as ilhotas de Langerhans - porção endócrina do pâncreas – apresenta pouca capacidade regenerativa, de modo que, nos cães, a deficiência total da insulina é mais frequente do que a hipoinsulinemia (Shields et al., 2015).

2.3. Diabetes mellitus

Dentre as patologias disglicemiantes que afetam os cães, o diabetes mellitus canino (DMC) é uma endocrinopatia de alta incidência e considerada uma pandemia devido a tendência que apresenta ao aumento do número de diagnósticos. Apesar da escassez de estudos abrangentes evidenciando a prevalência da doença em medicina veterinária, relatos clínicos e levantamentos epidemiológicos focais apontam que o DM é frequente na clínica de pequenos animais (Kumar et al., 2014). Há relatos de que o DMC é acompanhado clinicamente desde a década de 1950, o que permite que em alguns países haja programas estruturados de monitoramento dos pacientes portadores da doença (Gardiner, 2006 apud Rock e Balbinec, 2010). Estudo multicêntrico realizado no Reino Unido entre os anos 2000 e 2003, estimou a prevalência do DMC em 0,32% (Catchpole et al., 2005), enquanto que nos Estados Unidos houve aumento de 19 para 64 de incidência da doença em cada 10.000 animais atendidos em clínicas especializadas, nas últimas quatro décadas (Guptill et al., 2003). Ainda não foram apresentados dados abrangentes sobre a ocorrência da doença no Brasil, apesar de relatos informais e levantamentos regionais sugerirem crescente número de casos diagnosticados principalmente nos meios urbanos (Pöppl e González, 2005).
Algumas raças caninas parecem estar mais susceptíveis ao desenvolvimento da doença. Sugere-se que a maior ocorrência de DMC em tais raças ocorra devido à resistência insulínica provocada por outras endocrinopatias às quais tais animais são predispostos geneticamente, como o hiperadrenocorticismo - a hipercortisolemia antagoniza os efeitos da insulina (Hoenig, 2002b). Catchpole et al. (2013) oferecem revisão relevante acerca deste aspecto de predisposição racial ao DMC. De acordo com estes últimos, a distribuição demográfica do DMC tende a refletir particularidades referentes aos hábitos de criação dos cães nos países onde tais estudos são executados – como predileções por determinadas raças e o próprio melhoramento genético executado sobre elas. Retomam-se os dados levantados por Pöppl e González (2005), a elevada ocorrência do DMC em poodles estaria refletindo a predileção pela criação da raça no Brasil, sobretudo durante os anos de 1990.

A partir de achados na pesquisa médica sobre a elevada ocorrência de DM em determinados grupos étnicos, infere-se sobre o quanto a predisposição racial ao DMC seria definida por genes específicos de cada raça (Catchpole et al., 2013). As alterações genéticas associadas ao DMC se refletem na redução da capacidade adaptativa de algumas raças caninas às alterações da dieta decorrentes do histórico processo de domesticação. Tais alterações ocorreriam em genes que codificam enzimas, mensageiros celulares ou receptores envolvidos na digestão de carboidratos, e, portanto, influenciariam sobre a HG na espécie. Para ilustração, cita-se o caso dos Samoyedas, que apresentam elevada predisposição ao DMC associada a baixa expressão do gene que codifica a atividade da amilase pancreática (Arendt et al., 2014).

Atualmente procura-se encontrar um padrão que esclareça o quanto da heterogeneidade dos fatores predisponentes ao DMC são parte das características genéticas que individualizam cada raça canina que apresenta predisposição a doença, ou se tais raças compartilham genes de susceptibilidade (Guptill et al., 2003; Fall et al., 2007; Catchpole et al., 2013).

Diferentemente da medicina humana que identifica tipos específicos de diabetes de acordo com a biodisponibilidade da insulina (Sacks et al., 2011), não há sistema consagrado para a classificação do DMC, visto que a doença nestes animais é caracterizada por deficiência insulínica (Ahlgren et al., 2014). Considerando tal padrão insulínico nos pacientes caninos, Fleeman e Rand (2001) apontam que caso o DMC fosse classificada de acordo com a nomenclatura humana, a maior parte dos pacientes receberia a de diabetes tipo I. Contudo, atualmente sugere-se a
classificação com base na disponibilidade da insulina associada à condição clínica de insulinorresistentes e ou insulinodependentes (Nelson e Reusch, 2014).

A literatura sustenta que o DM é uma doença heterogênea com quadros clínicos variados e complexos. Por analogia, a abordagem do DMC deve incluir o esclarecimento quanto à etiologia da doença para cada paciente e correção de patologias que possam estar associadas. Cada fator predisponente contribui para a perpetuação e agravamento da doença, pois colaboram para a perda de atividade secretória β pancreática e o consequente estabelecimento da condição de hipoinsulinemia (Catchpole et al., 2013; Association, 2016).

À exceção do fator genético, as demais condições que predispõe ao DMC induzem a processos fisiopatológicos que, invariavelmente, acarretam no estabelecimento de quadros de pancreatite ou de perda da sensibilidade dos tecidos periféricos a sinalização insulínica. Fatores extrínsecos são induzidos pelo meio ao qual o paciente é parte, dentre os quais estão a exposição a drogas antagonistas da insulina (progestágenos, corticosteróides e estreptomicina) e o acometimento por doenças infecciosas/inflamatórias; e as intrínsecas que, por sua vez, correspondem as endocrinopatias – hiperadrenocorticismo, hipotireoidismo, obesidade, dislipidemia –, diabetes gestacional ou resistência insulínica do diestro, além das neoplasias com atividade secretória (Guptill et al., 2003; Rand et al., 2004; Nelson e Reusch, 2014).

A responsividade inadequada dos tecidos periféricos à glicose configurando a relativa deficiência insulínica, condição conhecida como resistência insulínica, pode ocorrer em cães que apresentem elevada concentração plasmática de hormônios extrapancreáticos antagonistas da insulina – cortisol, progesterona e GH - tanto em condições fisiológicas como nas iatrogenias (Fall et al., 2007; Davison, 2015). A hiperlúcemia permanente mantém o estímulo constante à secreção da insulina; em resposta, a fim de evitar o elevado transporte intracelular de glicose, os tecidos reduzem a expressão de receptores insulínicos - down regulation. As condições de hiperlúcemia e hipersulinemia provocam danos citotóxicos irreversíveis às células β afetando o equilíbrio da função pancreática endócrina. Sugere-se que a fase de resistência insulínica preceda o diagnóstico do DMC, de modo que quando a doença é identificada, já há total deficiência insulínica (Kumar et al., 2014).

Apesar de a perda da atividade β pancreática ser consagrada como a etiologia do DMC, o exato mecanismo do dano celular envolvido ainda não é completamente esclarecido (Davison, 2015).
Especulava-se que a patogênese da destruição das células β fosse determinada por processo imunomediado por anticorpos com consequente infiltração de células inflamatórias nas ilhotas de Langerhans (Fleeman e Rand, 2001). No entanto, Ahlgren et al. (2014) avaliaram amostras coletadas de cães com DMC espontânea e não identificaram marcadores celulares de resposta imunomediada contra células β. Estes dados foram coerentes aos encontrados por Shields et al. (2015), que, na busca por padrões histopatológicos para caracterização do patogénia pancreática do DMC, identificaram a prevalência de apoptose e redução de massa β celular.

Diante da condição de deficiência insulínica, a hiperglicemia é o achado laboratorial fundamental para a suspeita do DMC e tem-se recomendado que os pacientes em situações de risco, conforme foi anteposto, sejam abordados em plano diagnóstico criterioso. O protocolo sugerido pela American Diabetes Association (2016) está baseado em avaliações da concentração da glicose no plasma. Para a confirmação do DM é necessário a identificação de valores acima da referência, compatíveis com a hiperglicemia, em um dos critérios: glicemia de jejum (jejum igual ou superior a 8 horas), glicemia plasmática após 2 horas do teste de tolerância a glicose oral, ou hemoglobina glicada.

Na condução do diagnóstico do DMC, por sua vez, a rotina da endocrinologia veterinária não tem amplo acesso aos testes de tolerância a glicose oral tampouco da hemoglobina glicada, apesar do último ser sugerido como possível marcador precoce da doença (Bennett, 2002; Beltrame et al., 2014; Healy e Dungan, 2015). A identificação da hiperglicemia de jejum associada a glicosúria – igual ou acima 200 mg/dL - são sinais definitivos para a conclusão do diagnóstico do diabetes em cães; os demais sinais clássicos de poliúria, polidipsia, polifagia e perda de peso são consequências diretas da elevada concentração da glicose plasmática. Demais achados clínicos e laboratoriais são importantes para induzir a suspeita diagnóstica, porém não são específicos e diretamente relacionados ao distúrbio insulínico. Dados complementares devem ser levantados para avaliação do grau de injúria causado pela doença e identificação de comorbidades, como hiperadrenocorticismo, infecções do trato urinário, insuficiência renal, hipертensão arterial, catarata (Greco, 2001; Cook, 2007; Rucinsky et al., 2010).

Persistindo a ausência da sinalização insulínica, efeitos anabólicos são ativados a partir de mecanismos de disponibilização de energia através de outros substratos, as reservas glicogênicas, proteicas e lipídicas - glicogenólise, gliconeogênese e lipólise respectivamente (Rutter, 2000).
Como resultado, a despeito da polifagia, o paciente passa por perda de peso e atrofia muscular (Greco, 2001).

Em função da alteração dos mecanismos de disponibilização energética do organismo, a persistência do desequilíbrio hormonal e exacerbação de mecanismos contra regulatórios implicam no aumento da lipólise periférica e, consequentemente, na produção de corpos cetônicos - acetoacetato e beta-hidroxibutirato. A demora do encaminhamento de diagnóstico e da pronta instalação da terapia adequada, tendem a aumentar a cetonemia, configurando quadro de cetoacidose diabética, no qual há acidose metabólica e desequilíbrios hidroeletrolíticos que se manifestam através de sinais sistêmicos - apatia, vômito, anorexia, desidratação (Hume et al., 2006; Rucinsky et al., 2010).

2.3.1. Controle do DMC

Sendo o DMC caracterizada pela deficiência insulínica ou pela inadequada resposta ao hormônio, o controle da doença depende da administração de insulina exógena (Fleeman e Rand, 2001; Catchpole et al., 2005).

Rucinsky et al. (2010) recomendam que a insulinoterapia seja iniciada imediatamente após a conclusão do diagnóstico de DMC. Os autores indicam dois tipos preferenciais de insulina – de origem suína – na dose inicial de 0,25 U/kg a cada 12 horas por via subcutânea. Por ocorrerem variações individuais da resposta insulina exógena, faz-se ainda a recomendação de que, impreterivelmente, a insulina seja administrada junto após uma refeição.

No período de introdução da terapia insulínica, é fundamental manter o paciente com uma dose de insulina suficiente para prevenir a cetoacidose sem o risco de hipoglicemia; a normoglicemia (ou valores próximos a ela) é alcançada no decorrer do tratamento com os ajustes da dieta e restabelecimento da rotina de exercícios (Cook, 2007). Nas semanas do primeiro mês de controle insulínico, o acompanhamento frequente do paciente portador de DMC permite ainda o reajuste da dose da insulina com base no perfil de resposta do paciente, avaliado pela glicemia capilar, plasmática, além da glicosúria e da avaliação clínica dos sinais associados à doença (Mathes, 2002; Rucinsky et al., 2010).
No Brasil, estudo retrospectivo avaliando sobrevida e exposição a fatores de risco de cães diabéticos e encontraram sobrevida média de 27 meses após o diagnóstico da doença. Considerando que a faixa etária comumente afetada é de cães de meia idade a idosos, comorbidades relacionadas à idade avançada – insuficiência renal, cardiopatias, neoplasias - podem ser fatores que contabilizam para a diminuição da expectativa de vida dos pacientes (Pöppl et al., 2013). Outras fontes apontam ainda que, ao longo do tempo de exposição a terapia insulínica, cães podem desenvolver processo auto imune contra antígenos da insulina éxogena, contudo não há ainda precisão quanto ao tempo de risco para que tal processo seja desencadeado (Davison et al., 2011; O’Neill et al., 2012).

A ampla utilização de aparelhos portáteis de checagem rápida da glicemia para o manejo do diabetes mellitus humano (American Diabetes Association, 2016b) foi sugestiva para a adoção de tais aparelhos o monitoramento do controle glicêmico de pacientes caninos (Brito-Casillas et al., 2014). Diferentes autores apontam que a estratégia do uso dos GT para o monitoramento domiciliar de cães portadores de DMC é outra estratégia que contribui para a maior interação do tutor com o paciente, estimulando esse a assumir a responsabilidade que tem sobre o controle da doença do animal (Bennett, 2002; Mathes, 2002).

O uso dos GT na rotina do monitoramento do DMC permite o levantamento da resposta glicêmica à terapia com insulina, de modo que é possível conhecer o comportamento da glicemia e seu padrão de variação ao longo do dia. Assim, garante-se o controle aos pontos críticos do manejo insulínico, alimentar e de rotina de atividades, empregando as correções adequadas a cada caso (Catchpole et al., 2005; Wiedmeyer e DeClue, 2011).

Importante ressaltar que, apesar da autonomia e efetiva participação dos responsáveis no monitoramento das alterações associadas ao DMC, estes devem ser orientados a não realizarem ajustes na dose da insulina com base nos valores obtidos com controle domiciliar. Cabe ao veterinário responsável interpretar os dados levantados e intervir caso necessário, conforme discutem diferentes estudos (Kley et al., 2004; Cook, 2012).
2.4. Glicosímetros

Por ser a HG uma condição dinâmica influenciada por diferentes tecidos e vias metabólicas, quando o organismo é abalado por uma condição de doença, a manutenção do equilíbrio da biodisponibilização da glicose é prejudicada. Nessas condições de desafio homeostático, o monitoramento glicêmico com uso de aparelhos de checagem rápida permite pronta adoção de condutas terapêuticas decisivas para a estabilização do paciente. Desse modo, o uso dos GT é adotado em situações de rotina ambulatorial e hospitalar, nas quais as disglicemias podem representar o agravamento da condição clínica (Bluwol et al., 2007; Wahl, 2009; Hermayer et al., 2015).

A técnica para manuseamento do GT é bastante simples e requer pouca instrução e prática, o que contribui para o amplo emprego do aparelho (Kley et al., 2004). Contudo, sobre o uso dos GT em unidades de saúde, autores alertam sobre a importância do emprego de técnicas de biossegurança, pois nestas situações os aparelhos são compartilhados por muitos pacientes, e podem funcionar como fômites na transmissão de doenças infecciosas (Hellinger et al., 2011). Dentre as restrições, a agencia reguladora norte americana Food and Drug Administration (FDA) alerta que o monitoramento da glicemia de pacientes críticos pode não ser acurado o bastante, implicando em risco de vida (U.S. Food and Drug Administration, 2014). Pacientes críticos em geral têm baixa perfusão periférica e baixa pressão de oxigênio na circulação capilar, alterações que interferem no processo de análise dos GT (Clarke e Foster, 2012).

Os GT atuais são sensores eletroquímicos que mensuram a concentração de glicose em amostra de sangue total, com base em reação enzimática. Os aparelhos são sistemas constituídos por duas partes: o aparelho decodificador do sinal da glicemia e a fita teste. A fita teste contém uma enzima, estabilizada por desidratação, que reage com a glicose presente na amostra. Tal reação gera sinal elétrico detectado pelo sistema do aparelho; o sinal é proporcional à concentração da glicose na amostra (Cheng et al., 2013). Glicose oxidase (GOx), hexoquinase (Hx) e glicose desidrogenase são enzimas frequentemente aplicadas e garantem, em diferentes níveis de especificidade, a identificação da concentração da glicose na amostra. A reação da GOx com a glicose é limitada por água e pressão parcial de oxigênio, de modo que o desempenho do GT sofre interferência da oxigenação, percentual de hematócrito (HT) e grau de hidratação do paciente. Por sua vez, a Hx
e glicose desidrogenase são menos específicas para a glicose, reagindo também com manose, frutose e glicosamina (Wahl, 2009; Hermayer et al., 2015).

As fitas teste são como uma membrana em diferentes camadas através das quais a amostra de sangue total é filtrada de acordo com as propriedades físicas e bioquímicas de cada camada. Desse modo, da amostra de sangue total são separadas as frações de eritrócitos, lipídios e proteínas de alto peso molecular (Wahl, 2009; Gerber e Freeman, 2016) restando um hemoderivado semelhante ao plasma que reage com a enzima da fita teste (Shin et al., 2014; Hermayer et al., 2015).

Considerando o amplo emprego dos GT na rotina domiciliar e ambulatorial, torna-se inevitável a interferência de alguns fatores sobre execução dos testes. Em todas as situações que tais fatores possam ocorrer, eles devem ser controlados e ponderados durante a interpretação dos dados (Aleixo et al., 2006; Wahl, 2009). As fontes de inacurácia do método podem ser intrínsecas, os chamados erros analíticos, são referentes aos erros do sistema do GT, ou relativos à manipulação e interpretação de dados, chamados erros pré e pós-analíticos (Sacks et al., 2011). Mensurações glicêmicas que implicam em tais erros podem provocar decisões terapêuticas equivocadas colocando em risco a vida do paciente (Heinemann et al., 2012).

A identificação e quantificação dos erros envolvidos nos testes é um assunto que frequentemente tem sido abordado nas pesquisas devido a interferência negativa que podem causar à saúde e integridade dos pacientes. As condições médicas nas quais os testes são procedidos na rotina invariavelmente implicam na ocorrência erros pré-analíticos e analíticos inerentes a fatores biológicos, derivados ou não de condições patológicas (Ross e Fraser, 1993). A rotina clínica veterinária requer aparelhos de mensuração rápida da glicemia que preservem sensibilidade para monitoramento e triagem dos pacientes mesmo quando utilizados sob condições não integralmente controladas. Nessas situações não controladas, as mensurações fornecidas são passíveis de estarem sob interferência dos citados erros (Gerber e Freeman, 2016).

Os pontos críticos pré-analíticos podem ser evitados com adequada instrução sobre a coleta da amostra e manipulação do aparelho. A acessibilidade à tecnologia inerente ao GT torna a adoção do instrumento na rotina, sobretudo quando se trata de sua introdução como estratégia de monitoramento domiciliar do DMC (Mathes, 2002; Van De Maele et al., 2005). O tipo de amostra escolhida – sangue total arterial, capilar ou venoso – bem como o volume amostral necessário
devem estar de acordo com as limitações definidas pelo fabricante de cada GT (Freckmann et al., 2014; Pfützner et al., 2013). Fatores ambientais também podem alterar a execução e confiabilidade das mensurações fornecidas, dos quais cita-se a temperatura corpórea e do ambiente. Ainda há o importante controle da contaminação da amostra através da adoção de cuidados de antisepsia da superfície corpórea de coleta da amostra capilar (Mahoney et al., 2011; Nerthus et al., 2011).

Com relação aos erros analíticos, diversos estudos têm sido executados para identificar e avaliar a influência de cada variável em potencial (Dobromylskyj e Sparkes, 2010). Grau de hemólise e de lipemia, pressão parcial de oxigênio, HT, percentual de água - relativo ao grau de hidratação e ao hematócrito – são algumas das variáveis relacionadas à condição clínica do paciente que podem acarretar em dosagens glicêmicas pouco acuradas (Tonyushkina e Nichols, 2009; Hermayer et al., 2015). A divulgação das informações sobre as limitações de testes com os GT, bem como a garantia da acessibilidade e autonomia para seu uso inclusive por pessoas fora da área médica e veterinária são pontos preconizados como facilitadores e promotores de performances de qualidade dos GT (European parliament and council of the european union, 1998; Freckmann et al., 2015; Gerber e Freeman, 2016).

Ao longo de 40 anos de evolução de tais aparelhos, a tecnologia empregada nos GT permite a minimização dos erros analíticos e maior segurança e qualidade vida para os pacientes sujeitos ao uso crônico de tal estratégia de monitoramento (Clarke e Foster, 2012). Contudo, as fontes de erro analítico correspondem principalmente a fatores biológicos que apresentam um perfil de variação característico de cada espécie animal e que, portanto, são considerados durante a elaboração e programação da tecnologia empregada nos GT, ainda na fase da produção industrial. Os GT desenvolvidos para uso humano são amplamente utilizados na prática veterinária, mesmo não havendo uma padronização de tais aparelhos baseada nas variáveis biológicas, o que contribui para o incremento do erro analítico das mensurações de glicemia (Brito-Casillas et al., 2014).

De acordo com o trabalho de Domori et al. (2013), as diferenças hematológicas entre cães e humanos não interferem na precisão e acurácia dos GT, de modo que as condutas veterinárias podem ser baseadas em mensurações de glicemia fornecidas em aparelhos padronizados para a espécie humana. Contudo, o mesmo estudo identifica a interferência do HT sobre os resultados fornecidos pelos GT, mas não oferece uma conclusão clínica a respeito desta relação.
Outras referências apontam que, entretanto, caso tal extrapolação seja feita, deve ser cautelosa. Estudo do mesmo ano, atenta-se para o fato de que uma importante limitação intrínseca a metodologia de análise diz respeito a difusão que os eritrócitos da amostra fazem sobre a fita reagente para que ocorra a reação enzimática. As características morfológicas dos eritrócitos são variáveis entre as espécies domésticas e entre estas e os humanos, de modo que a difusão eritrocitária sobre a fita difere entre as espécies (Shin et al., 2014). Estudo ainda mais recente esclarece que as variações no hematócrito do paciente alteram a viscosidade do sangue e, consequentemente, influenciam sobre a leitura. Uma vez que difusão da amostra sobre a fita teste do GT seja alterada, há interferência da disponibilização da glicose amostral para reação com a enzima da fita (Hermayer et al., 2015).

Diante da crescente demanda, o mercado tem oferecido GT desenvolvidos para uso na assistência veterinária. Contudo, frente às opções oferecidas, é importante que os GT a serem escolhidos preferencialmente sejam os mais confiáveis, quanto a sua confiabilidade para coleta de informações, considerando que tal ferramenta pode ser utilizada para monitoramento de pacientes em variados graus de comprometimento do desequilíbrio metabólico e, consequentemente, de saúde geral. Torna-se necessário que acurácia dos GT seja avaliada e as mensurações glicêmicas padronizadas de acordo com método laboratorial de referência (MLab) compatíveis com a real condição in vivo (Bluwol et al., 2007; Ferreira et al., 2013; Freckmann et al., 2010).

Há duas fases de padronização dos GT, sendo uma no âmbito da programação e calibração dos aparelhos ainda na fase de produção, e aquela procedida ao longo do uso domiciliar/hospitalar. Ambos aferem para que o sistema opere apropriadamente, garantindo que os valores de glicemia mensurados variem dentro de um intervalo aceitável em relação à glicemia plasmática real, e, portanto, conferindo maior confiabilidade ao teste. Para tanto, na fase da produção, valores fornecidos pelos GT devem ser comparados aos fornecidos pelo MLab, sendo esse definido de acordo com a enzima da tira teste. Havendo concordância entre os valores médios obtidos entre ambos os procedimentos, o método de checagem rápida pode ser considerado acurado, e, portanto, confiável (Krouwer e Cembrowski, 2010; Schnell et al., 2013). Adicionalmente, a avaliação do parâmetro de precisão consiste em outro elemento da confiabilidade do método. Precisão é definida justamente pela mínima variabilidade que mensurações fornecidas pelo GT, a partir de uma única amostra, apresentam em comparação às fornecidas pelo MLab – para a mesma amostra (Farver, 1997).
O uso frequente do GT pode acarretar em danos ao sistema, seja com relação às fitas teste ou ao aparelho propriamente dito. Para confirmação acerca de seu funcionamento adequado, sugere-se que periodicamente sejam procedidas mensurações com soluções de controle. Estas presentam concentração conhecida de D-glicose que são submetidas a quantificação pelo sistema para avaliação de sua sensibilidade e acurácia. A frequência dos procedimentos particulares de calibração – no domicílio ou ambulatorial e hospitalar – devem variar de acordo com a intensidade de uso do GT e das recomendações feitas por cada fabricante. O tipo de solução controle também pode ser adequado a particularidades dos pacientes abordados (Freckmann et al., 2014; Hermayer et al., 2015). Seria o caso, em exemplo paradigmático, de quando do emprego do GT no monitoramento de pacientes portadores de DMC, cuja rotina de insulinoterapia torna-os susceptíveis a hipoglicemias agudas, seria favorável que a solução controle aferisse a sensibilidade do sistema para identificar tal condição grave (Bennett, 2002; Brito-casillas et al., 2014).

No intuito de ampliar a padronização dos GT, diferentes organizações especializadas têm apresentado diretrizes definindo padrões de variação e de avaliação de tais sistemas. Na medicina veterinária, a American Society for Veterinary Clinical Pathology (Gerber e Freeman, 2016) apresentou suas diretrizes para avaliação de GT e sua credibilidade para uso na clínica de cães e gatos, com base em estratégias de controle de qualidade e melhoria de confiabilidade tanto. Tais estratégias abordam as fontes de erro pré-analíticos, analíticos, bem como os pós-analíticos, fase na qual, enfatizam a importância de ser considerado o tipo de amostra empregado no GT quando são interpretados os resultados (Gerber e Freeman, 2016).

No ano de 2013, a International Organization for Standardization (ISO), sob a inscrição ISO 15197:2013, definiu critérios que os glicosímetros devem obedecer para garantir confiabilidade e serem liberados por órgãos como o FDA e outras agências reguladoras (Freckmann et al., 2010; Healy e Dungan, 2015). Tais critérios determinam os intervalos de variação aceitáveis para mensuração da glicemia pelos GT com base nos valores obtidos pelo MLab identificado pelo fabricante de cada aparelho, bem como definem a metodologia de análise (Brito-Casillas et al., 2014).

Os critérios apresentados pela ISO 15197:2013 estabelecem dois intervalos de variação dentro dos quais devem estar ao menos 95% dos resultados de glicemia obtidos nos GT avaliados. Tais
intervalos de variação são diferentes para cada amostra, pois são estabelecidos a partir do valor de glicemia obtido pelo MLab. Sendo assim, quando o MLab mensurar concentração de glicose inferior a 100 mg/dL, o valor da glicemia fornecido pelo GT avaliado para a mesma amostra pode variar em \(\pm 15 \) mg/dL em relação ao primeiro. Por sua vez, quando o MLab identifica glicemia de no mínimo 100 mg/dL, o GT avaliado pode fornecer valores que difiram \(\pm 15\% \) em relação ao primeiro. Além disso, a acurácia do aparelho deve ser avaliada pela grade de análises de erros proposta por Parkes et al. (2000), metodologia que categoriza os erros de mensuração em zonas de acordo com o possível impacto clínico que tais erros podem acarretar sobre a saúde de pacientes com diabetes tipo I. Ao menos 99% de dosagens glicêmicas feitas pelo GT testado devem estar nas zonas A e B, que representam menor impacto de mensurações equivocadas sobre a conduta terapêutica (Brito-Casillas et al., 2014; Thorpe, 2013).

Com base na literatura revista até o momento, essas normativas fornecem critérios adequados para a padronização dos aparelhos disponíveis no mercado veterinário. Sobretudo para a avaliação da confiabilidade clínica dos GT, tais critérios parecem constituir uma base coerente e de abrangente, uma vez que determinam a relevância que as variações entre dosagens glicêmicas feitas por cada técnica devem exercer sobre o julgamento clínico (Brito-Casillas et al., 2014; Freckmann et al., 2014).
3. Hipótese

Os glicosímetros veterinários são acurados para mensurar a glicemia a partir de amostras capilares.

4. Objetivo geral

Avaliar a acurácia das mensurações glicêmicas fornecidas por dois GT veterinários.

4.1. Objetivos específicos

- Comparar mensurações glicêmicas fornecidas por cada GT veterinário a partir de sangue capilar total com as transformadas em plasma equivalente;
- Comparar as mensurações glicêmicas fornecidas por cada GT veterinário em plasma equivalente com as fornecidas pelos métodos laboratoriais de referência da hexoquinase e da glicose oxidase em amostras de plasma;
- Avaliar a correlação entre glicemia mensurada por GT e o hematócrito;
- Avaliar a correlação entre glicemia mensurada por GT e concentração de proteínas plasmáticas totais;
- Avaliar a influência do jejum alimentar sobre a mensuração da glicemia por GT;

5. Material e métodos

O estudo foi integralmente realizado no Hospital Veterinário da Escola de Veterinária da UFMG. Coletas de amostras de sangue capilar e venoso foram procedidas nos serviços de clínica médica e de dermatologia, e as avaliações laboratoriais das amostras venosas foram processadas no Laboratório de Patologia Clínica. O período de coletas foi de maio a agosto de 2016. O Departamento de Clínica e Cirurgia Veterinárias da UFMG aprovou a execução do projeto de pesquisa, registrado pelo CEUA/UFMG no protocolo de número 383/2015 (Anexo 1).
5.1. Animais

Foram incluídos 100 pacientes caninos, após permissão dos responsáveis para adesão ao estudo e assinatura do Termo de Consentimento Livre e Esclarecido, conforme modelo do anexo 1. O número mínimo de amostras coletadas para avaliação da acurácia foi determinado por equação sugerida por Miot (2011) (fig. 1).

\[
(1) \quad n = \left(\frac{Z_{\alpha/2} \times \delta}{E} \right)^2
\]

\[
(2) \quad n = \left(\frac{1.96}{2 \times 24} \right)^2
\]

Figura 1: equação para determinação do tamanho de amostra de variável quantitativa e contínua em uma dada fração da população de cães (1): \(n \) é o tamanho da amostra, \(Z_{\alpha} \) é o grau de confiança a 5\%, \(\delta \) é o desvio padrão observado em experimento piloto e \(E \) é o erro amostral permitido. Cálculo de \(n \) de acordo com experimento piloto (2). Extraído de Miot (2011).

5.2. Glicosímetros avaliados

Os GT avaliados - AlphaTrak 2 (GT1; Abbott Laboratories, Maidenhead, Inglaterra) e IPet (GT2; Ultimed Inc., Saint Paul, Estados Unidos) - são aparelhos para uso exclusivo veterinário. A enzima presente na tira teste varia de acordo com o GT: glicose desidrogenase no GT1 e glicose oxidase no GT2. Ambos GT foram calibrados para fornecerem valores de glicemia em mg/dL em amostras de sangue total da espécie canina.

O manuseamento dos GT para os procedimentos de teste e a calibração dos GT seguiu as recomendações feitas em bula por cada fabricante. Para a verificação da calibração dos GT e suas respectivas tiras teste procederam-se avaliações semanais com as soluções controle. Adicionalmente, os aparelhos foram submetidos a calibrações conforme as situações previstas pelos manuais de instruções: o aparelho estiver sendo utilizado pela primeira vez; ao se iniciar o uso de novo frasco de tiras teste; situações nas quais os resultados obtidos não forem compatíveis com o quadro clínico do paciente.
5.3. Critérios de inclusão dos pacientes

Pacientes atendidos nos serviços de dermatologia e clínica médica de pequenos animais do Hospital Veterinário da UFMG eram convidados a participar do experimento uma vez que estivessem clinicamente saudáveis e que atendessem aos critérios:

- Pacientes caninos;
- Idade maior que 6 meses;
- Adequada perfusão capilar;
- Ausência de sinais clínicos de doença sistêmica não controlada.

Como parâmetro para a avaliação da ocorrência de desequilíbrio patológico, adotou-se a avaliação clínica para a identificação dos sinais: frequências cardíaca e respiratória, temperatura retal, grau de hidratação inferido por turgor cutâneo e brilho de mucosas, além da postura corporal apresentada à consulta (Çinar, Şenyol, Duman, 2001; Tonyushkina, Nichols, 2009).

5.4. Critérios de inclusão das amostras

De acordo com Thorpe (2013), para que o estudo avalie a acurácia pretendida pelos fabricantes dos GT, devem ser empregados critérios para exclusão de pacientes, definidos com base nas informações fornecidas pelos fabricantes. As limitações de uso previamente definidas para os GT utilizados estão sumarizadas no Quadro 1. Sendo assim, para o presente estudo foram adotados os seguintes critérios para inclusão das amostras:

- Glicemia capilar mensurada pelos dois GT e pelos dois MLab;
- Glicemia venosa mensurada pelo MLab dentro do intervalo de 20 a 600 mg/dL;
- HT superior a 20%;
- Ausência de lipemia intensa.

Portanto, todas as amostras do mesmo paciente foram excluídas do experimento caso ocorresse ao menos uma das intercorrências citadas.
Quadro 1. Características de amostra e de ensaio para os GT1 e GT2 de acordo com informações fornecidas pelos fabricantes.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>GT1</th>
<th>GT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de glicemia (mg/dL)</td>
<td>20 – 750</td>
<td>20 – 600</td>
</tr>
<tr>
<td>Hematócrito da amostra (%)</td>
<td>15 – 65</td>
<td>35 – 55</td>
</tr>
<tr>
<td>Tipo de amostra</td>
<td>Sangue total capilar ou venoso</td>
<td>Sangue total capilar</td>
</tr>
<tr>
<td>Enzima da tira teste</td>
<td>Glicose desidrogenase</td>
<td>Glicose oxidase</td>
</tr>
<tr>
<td>Método de referência para padronização laboratorial</td>
<td>Hexoquinase</td>
<td>Não definido em bula</td>
</tr>
</tbody>
</table>

5.5. Coleta das amostras

Todos os pacientes incluídos no estudo tiveram a glicemia mensurada a partir de amostras de sangue total capilar por cada um dos dois aparelhos avaliados. A cada novo paciente, realizou-se sorteio para determinação da ordem de leitura da amostra capilar pelos GT avaliados.

De modo a reduzir a ocorrência de erros pré-analíticos por manuseamento inadequado dos GT, os procedimentos de coleta e execução imediata da mensuração glicêmica foram realizados pelo mesmo pesquisador, seguindo as instruções de uso dos aparelhos, e respeitando o volume amostral requerido por cada um (Ferreira et al., 2013; Brito-Casillas et al., 2014; Pöppl et al., 2015).

As amostras capilares foram obtidas a partir da punção de vasos capilares na face interna do pavilhão auricular dos pacientes com auxílio de dispositivo lancetador AlphaTrak® (Abbott Laboratories Ltd., Maidenhead, Inglaterra) e lancetas 28 G. Previamente à punção, foi efetuada a antissepsia da superfície cutânea com álcool a 70% e certificado que a superfície estivesse devidamente seca. Uma vez coletada a amostra de sangue capilar do local puncionado, esta era imediatamente colocada em contato com a face absorvente de cada fita-teste dos GT; a ordem de leitura da amostra capilar seguia a ordem previamente definida por sorteio.

Nos casos em que o primeiro GT do sorteio não conseguia realizar a leitura da glicemia capilar, era promovida somente mais uma tentativa na mesma amostra, usando uma nova tira teste do mesmo sistema. Se o problema persistisse, era coletada nova amostra capilar de modo a evitar a glicólise.

Por sua vez, quando a falha na leitura ocorria no segundo GT, novas tentativas eram procedidas até o limite do uso de três tiras teste, evitando longo intervalo entre as duas aferições que poderia provocar uma variação muito grande entre a concentração de glicose disponível para mensuração pelo dois GT avaliados no ensaio.
Nas diferentes situações em que foram necessárias coletas de segunda amostra capilar, esta foi coletada no pavilhão do lado oposto a primeira coleta. Tal alternância visou evitar erro de representatividade da amostra capilar ocasionado por alteração da circulação periférica, escolha inadequada do vaso capilar para a coleta, profundidade epidérmica insuficiente para obter acesso capilar, interferência na disponibilidade da glicose capilar por manipulação intensa e injuria tecidual repetitiva (Sirois, 2007; Krouwer e Cembrowski, 2010; Hermayer et al., 2015).

As amostras venosas foram obtidas por punção das veias jugulares ou cefálicas dos pacientes selecionados em condições de antisepsia adequadas e com auxílio de material para coleta, seringas 5mL com agulhas 22G (BD Plastipack™, Juiz de Fora, Brasil). Para a mensuração da glicemia pelos MLab de Hexoquinase e Glicose Oxidase, 4mL da amostra foi armazenado em tubos para volume de 4mL contendo o inibidor glicolítico fluoreto de sódio (BD Vacutainer® Fluoreto/EDTA, Juiz de Fora, Brasil). As amostras coletadas para realização de exames de hemograma e análises bioquímicas e mensuração das proteínas plasmáticas foram armazenadas em microtubo para hemograma de 0,5 mL (Vacuplast, Taizhou, China) e em tubo de 4 mL para coleta de soro (BD Vacutainer®, Juiz de Fora, Brasil). As amostras foram encaminhadas para o laboratório de patologia clínica para serem processados, respectivamente, nos aparelhos semi-automáticos para hematologia CELM CC 530 (Barueri, Brasil) e Cobas-Mira Plus ™ (Roche Diagnostics, Indianapolis, Estados Unidos).

5.6. Métodos laboratoriais

Para a avaliação laboratorial, as amostras armazenadas em tubos contendo fluoreto de sódio foram centrifugadas (Centrífuga Cientec, Belo Horizonte, Brasil) com menos de uma hora da coleta, a 3.000 rpm por dez minutos, o plasma transferido para microtubo VT0150 de 0,5mL (Vatten/Biometrix, Curitiba, Brasil) com auxílio de pipeta de precisão de 250µL e armazenadas sob refrigeração até seu subsequente processamento (Meinkoth e Allison, 2007; Sirois, 2007; Allison, 2013).

5.6.1. MLab Glicose Oxidase

Para o ensaio laboratorial com o método da GOx foi utilizado o kit de Glicose (Biotécnica) que mensurou a glicemia a partir do plasma armazenado em fluoreto, fornecendo valores em mg/dL. O princípio do método enzimático colorimétrico que consiste na catalisação da oxidação da
glicose pela enzima GOx com formação de coloração proporcional à concentração da glicose na amostra. O processamento foi realizado pelo aparelho semi-automático de bioquímica Cobas-Mira Plus™ (Roche Diagnostics, Indianapolis, Estados Unidos).

5.6.2. MLab Hexoquinase

Para o ensaio laboratorial, foi utilizado o kit Glicose Hexoquinase Liquitest (Labtest, Lagoa Santa, Brasil) que determinou por padrão quantitativo (em mg/dL) a glicose a partir de amostra de plasma fluoretado. O princípio do teste consiste na catalisação da oxidação da glicose pela enzima Hx com formação de coloração proporcional à concentração da glicose na amostra. Análise feita por aparelho semi-automático de bioquímica Cobas-Mira Plus™ (Roche Diagnostics, Indianapolis, Estados Unidos).

6. Análise dos dados

A estatística descritiva e o intervalo de confiança da média (Fig. 2) de grupos (n = 98) foram calculados para as variáveis de glicemia pelo método GT1 sangue total capilar (GAS), glicemia pelo GT2 em sangue total capilar (GIS), glicemia pelo método Hx plasma (GHxP), glicemia pelo método GOx plasma (GGOxP), glicemia GT1 em plasma equivalente (GAPeq), glicemia pelo GT2 em plasma equivalente (GIPeq), hematocrito (HT) e concentração de proteínas totais (PPT).

\[IC = \bar{x} \pm (t_{\alpha} \ast) \frac{s}{\sqrt{n}} \]

Figura 2. Fórmula utilizada para cálculo do intervalo de confiança da média dos grupos, para n = 98 pacientes. Na fórmula \(\bar{x} \) = média amostral, \(t_{\alpha} \) = valor tabelado (t0,05 = 2,0), \(s \) = desvio padrão e n= número de animais. Extraído de Sampaio (2010).

O delineamento experimental foi inteiramente casualizado em parcelas subdivididas, pois o estudo abordou ao menos duas variáveis em todas as comparações propostas: as estratégias de monitoramento da glicemia (GT e MLab) e as condições de jejum (em jejum ou não). Além disso, todas as comparações foram estabelecidas entre variáveis de um mesmo paciente e diretamente relacionadas, implicando nesse modelo que considera as unidades experimentais interligadas (Sampaio, 2010). As análises estatísticas foram realizadas utilizando o software SAS (Statistical Analysis System, versão 9.0).

Duas das 100 amostras foram excluídas na análise estatística, pois diferiam muito em relação às demais. Caso fossem incluídas poderiam implicar em aumento do coeficiente de variação e do
erro experimental. Sendo assim, as 98 amostras restantes foram submetidas ao modelo de parcelas subdivididas sempre no modelo 2x4 (duas parcelas para quatro subparcelas). As condições de jejum foram sempre incluídas como parcela. Por sua vez, as estratégias de mensuração da glicemia variaram na subparcela em arranjo a garantir as seguintes comparações:

- Glicemia fornecida pelos GT em amostras de sangue total capilar com glicemia fornecida pelos GT transformadas em plasma equivalente;
- Glicemia fornecida pelos GT em amostras de sangue total capilar com glicemia fornecida pelos MLab em amostras plasmáticas;
- Glicemia fornecida pelos GT transformadas em plasma equivalente com glicemia fornecida pelos MLab.

Os valores de glicemia incluídos no estudo não tiveram distribuição normal. Sendo assim, foram eleitos testes não paramétricos para as comparações das médias de glicemia em função do jejum e da estratégia de mensuração da glicemia. Para comparação entre as estratégias de mensuração – GTs e MLab – recorreu-se ao teste de Wilcoxon, que é capaz de identificar diferença entre dados dependentes, como é o caso da glicemia mensurada de um mesmo paciente. Por sua vez, para comparação das médias em função da condição de jejum, foi utilizado o teste de Kruskal-Wallis, que avalia diferença de médias independentes. Os valores de glicemia fornecidos por cada GT foram transformados em plasma equivalente (Fig.3) para adequação das amostras a um mesmo padrão em relação aos MLab.

\begin{align*}
(1) \text{Glicemia}_{\text{plasma equivalente}} &= \text{Glicemia}_{\text{sangue total capilar}} \times 1,11 \\
(2) \text{Glicemia}_{\text{plasma equivalente}} &= \frac{\text{Glicemia}_{\text{sangue total capilar}}}{1 - (0,0024 \times \text{HT})}
\end{align*}

Figura 3. Equações para transformação da glicemia mensurada em amostra de sangue capilar em valor estimado de plasma equivalente. A escolha da equação é feita em função do HT da amostra: para amostras com HT entre 40 e 50 %, a transformação em plasma equivalente é feita com uso da equação (1); para amostras com HT fora deste intervalo, a transformação é feita com a equação (2). As variáveis de glicemia devem estar expressas em mg/dL e o HT em %. Extraído de Gerber e Freeman (2016).

O estudo das correlações considerou glicemia pelo GT1 em sangue total capilar (GAS), glicemia pelo GT2 em sangue total capilar (GIS), glicemia pelo método Hx plasmático (GHxP), glicemia pelo método GOx plasmático (GGOxP), glicemia pelo GT1 após transformação para plasma equivalente (GAPeq), glicemia pelo GT2 após transformação para plasma equivalente (GIPeq),
hematócrito (HT) e concentração de proteínas plasmáticas totais (PPT). Foram consideradas amostras de sangue capilar e venoso de cães e foram utilizados 98 animais. Para o estudo das correlações entre as variáveis de distribuição normal foi utilizada a correlação de Pearson e entre variáveis que violaram os princípios de normalidade, e destas com as demais características foi utilizada a correlação de Spearman (Sampaio, 2010).

A comparação dos resultados obtidos de cada GT com os do respectivo método laboratorial de referência foi apresentada em gráficos de diferença considerando os intervalos de aceitação de qualidade requeridos pela normativa ISO 15197:2013. Conforme sugerido por Petersen et al. (1997), para cada comparação entre GT e MLab foram calculados os respectivos coeficientes de correlação, desvios padrão e intervalos de confiança das diferenças. Para tal avaliação, foi incluído o banco de dados completo dos 100 pacientes, incluindo os pacientes cujas amostras apresentavam valores de glicemia discrepantes (Krouwer, 2002). Os gráficos foram confeccionados utilizando o aplicativo Analyse-it ® (Analyse-it Software), como ferramenta do programa Excel versão 2017.

7. Resultados

Ao longo do período de coletas, foram incluídos 104 cães, sendo quatro excluídos por não atenderem a pelo menos um dos critérios de inclusão de amostras descritos anteriormente. Com relação à saúde geral, alguns pacientes tinham diagnóstico prévio de doenças sistêmicas e estavam sob terapia de controle. Registrou-se que quatro pacientes tinham diagnóstico prévio de cardiopatias e estavam sob terapia de controle; três eram positivos para leishmaniose canina e dois deles recebiam alopurinol; cinco eram pacientes em terapia anti-neoplásica, sendo que em dois destes o protocolo incluía o uso crônico de prednisona. Além dos pacientes oncológicos, outros cinco estavam em glicocorticoterapia na ocasião das coletas, totalizando 7% de pacientes incluídos com possível hipercortisolemia iatrogênica. Em toda a população abordada, foram identificados quatro endocrinopatas, um portador de hipotireoidismo e dois portadores de DMC, sendo um desses com hiperadrenocorticismo concomitante. Na ocasião das coletas, todos os pacientes portadores de endocrinopatias já estavam sob terapia de controle para as respectivas afecções. Houve ainda, uma suspeita de insuficiência pancreática exócrina crônica em paciente cuja glicemia de jejum foi de 61,9 mg/dL e 64,85mg/dL de acordo com os MLab da Hx e da GOx, respectivamente.
Em referência ao gênero, 41 pacientes eram machos e 59 fêmeas, das quais sete (11,86% do total de fêmeas) manifestavam sinais de cio e 31 (52,54%) eram pan-histerectomizadas. As idades variaram entre sete meses e 19 anos. Ao momento das coletas capilares e venosas 42 pacientes estavam sob jejum alimentar maior do que oito horas, e um apresentou vômito cerca de 60 minutos antes de ser submetido aos procedimentos do experimento.

Dentre as 100 amostras, 27 foram coletadas de veias cefálicas e 73 de veias jugulares. A ordem dos GT para mensuração da glicemia capilar foi definida aleatoriamente por sorteio feito para cada paciente, determinando que 58 amostras fossem avaliadas primeiramente pelo GT1 e 42 amostras primeiramente pelo GT2.

Foram usadas 315 fitas teste, sendo 162 fitas do sistema GT1 e 142 fitas do sistema GT2, sendo que todas as fitas usadas em cada pertenciam ao mesmo lote de fabricação. Dentre todos os pacientes incluídos no experimento, quatorze precisaram de mais de uma fita teste em ao menos um dos GT avaliados para a mensuração da glicemia capilar. Sendo que nove desses estavam entre os 50 primeiros pacientes incluídos. Além disso, nos procedimentos de seis pacientes, ambos aparelhos precisaram de duas fitas teste para realizar a mensuração da glicemia. Em quatro desses, tal aparente perda de sensibilidade do GT coincidiu com o achado hematológico de percentual de hematócrito ≥ 50%.

Com relação às observações feitas sobre amostras de sangue venoso, hemólise foi identificada em 77% das amostras, sendo 44 delas ao menos o plasma apresentava tal alteração. Quanto à lipemia, esta foi observada em quatro amostras plasmáticas, sendo descrita com intensidade discreta em três deles e intensa em um, além de ser observada em 27 amostras de soro. A icterícia foi identificada em quatro amostras de soro.

O HT variou entre 20 e 62% nos pacientes incluídos e seu valor médio esteve dentro do intervalo de referência para a espécie canina e do intervalo considerado ideal para o funcionamento dos GT avaliados. A distribuição do HT dos pacientes recaiu sobre as seguintes faixas: 20 a 27% em 4 pacientes; 32 a 39% em 12 pacientes; 40 a 49% em 39 pacientes; 50 a 59% em 40 pacientes; 60 a 62% em 5 pacientes. A PPT média foi de 6,65 g/dL, variando de 4,4 mg/dL a 9,13 g/dL. Em 12% dos pacientes a PPT estava acima do intervalo de referência para a espécie canina, dos quais ao menos um dos GT superestimou o valor da glicemia em mais de 15 mg/dL em relação a pelo menos um dos MLab.
A média da glicemia mensurada pelos MLab em amostras plasmáticas foi menor do que as encontradas pelos GT, nas amostras de sangue total capilar e nas transformadas para plasma equivalente. O GT1 mensurou as maiores concentrações de glicemia, inclusive quando comparadas ao mesmo tipo de amostra capilar total, ou seja, quando este foi comparado ao GT2. O desvio padrão dos valores de glicemia mensurados pelos GT foi maior do que aqueles transformados para plasma equivalente e também em relação aos mensurados pelo MLab. O maior desvio padrão da média de glicemia foi observada no GT2 (DP = 38,17 mg/dL). A estatística descritiva de todas as variáveis estudadas está apresentada na Tab.1.

Tabela 1: Estatística descritiva e intervalo de confiança da média para as variáveis estudadas.

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>N</th>
<th>Média</th>
<th>DP</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS</td>
<td>98</td>
<td>106,61</td>
<td>29,87</td>
<td>100,70 a 112,53</td>
</tr>
<tr>
<td>GIS</td>
<td>98</td>
<td>90,81</td>
<td>38,17</td>
<td>83,25 a 98,36</td>
</tr>
<tr>
<td>GHxP</td>
<td>98</td>
<td>81,30</td>
<td>14,90</td>
<td>78,35 a 85,25</td>
</tr>
<tr>
<td>GGxP</td>
<td>98</td>
<td>79,38</td>
<td>13,51</td>
<td>76,71 a 82,05</td>
</tr>
<tr>
<td>GAxP</td>
<td>98</td>
<td>91,19</td>
<td>16,40</td>
<td>87,95 a 94,44</td>
</tr>
<tr>
<td>G1xP</td>
<td>98</td>
<td>89,01</td>
<td>14,55</td>
<td>86,13 a 91,89</td>
</tr>
<tr>
<td>PPT</td>
<td>97</td>
<td>6,65</td>
<td>0,92</td>
<td>6,46 a 6,83</td>
</tr>
</tbody>
</table>

N = número de observações; DP= desvio padrão; IC = intervalo de confiança da média de grupos. As variáveis para glicemia estão apresentadas em mg/dL; HT em %; PPT em g/dL.

A comparação entre os métodos de mensuração da glicemia em plasma equivalente e pelos MLab, e as condições de jejum (Tab. 2), foi identificada diferença significativa entre as condições de jejum pelo teste de Kruskal-Wallis para p = 0,0178. De acordo com o teste de Wilcoxon, os métodos de mensuração da glicemia em plasma equivalente pelos dois GT avaliados foram identificados como semelhantes, assim como os dois MLab, porém, foi identificado que os métodos de GT e MLab eram diferentes, para o valor de p < 0,05. O coeficiente de variação entre as médias foi de 7,43 %.
Tabela 2. Glicemia de cães em função dos métodos de mensuração em plasma (GT1, GT2, Hx e GOx) e da condição de jejum (sim ou não).

<table>
<thead>
<tr>
<th>Variável</th>
<th>Glicemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jejum</td>
<td></td>
</tr>
<tr>
<td>Não</td>
<td>86,538 a</td>
</tr>
<tr>
<td>Sim</td>
<td>83,387 b</td>
</tr>
<tr>
<td>Método</td>
<td></td>
</tr>
<tr>
<td>GT1 plasma equivalente</td>
<td>91,193 a</td>
</tr>
<tr>
<td>GT2 plasma equivalente</td>
<td>89,009 a</td>
</tr>
<tr>
<td>Hx plasma</td>
<td>81,296 b</td>
</tr>
<tr>
<td>GOx plasma</td>
<td>79,381 b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor de p</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jejum¹</td>
<td>0,0178*</td>
</tr>
<tr>
<td>Método²</td>
<td><0,05*</td>
</tr>
</tbody>
</table>

CV (%) 7,43

¹*= significativo pelo teste Kruskal-Wallis (p≥0,05); ²*= significativo pelo teste Wilcoxon (p≥0,05); CV = coeficiente de variação. As variáveis para glicemia estão apresentadas em mg/dL. Na coluna “Glicemia”, indicam médias com diferença significativa.

Para a comparação das médias de glicemia mensuradas pelos GT em sangue total capilar com as de sangue venoso foi obtido coeficiente de variação de 22,02 % (Tab. 3) e foi identificada diferença significativa para a mensuração da glicemia em função da condição de jejum ou não jejun (p < 0,0001). Por sua vez, na comparação entre a glicemia média das amostras de GT1 em sangue total capilar em comparação às médias de glicemia pelo método do GT2 em sangue total capilar e pelos MLab da Hx e do GOx foi encontrada diferença significativa para todas. No entanto, não foi identificada diferença significativa entre as médias de glicemia mensuradas por esses três últimos métodos (p < 0,05).
Tabela 3. Glicemia de cães em função dos métodos de mensuração em sangue total capilar (GT1 e GT2) e em plasma venoso (Hx e GOx) e da condição de jejum (sim ou não).

<table>
<thead>
<tr>
<th>Variável</th>
<th>Glicemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jejum</td>
<td>93,947 a</td>
</tr>
<tr>
<td>Não</td>
<td>83,375 b</td>
</tr>
<tr>
<td>Sim</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GT1 sangue total capilar</td>
<td>106,61 a</td>
</tr>
<tr>
<td>GT2 sangue total capilar</td>
<td>90,81 c</td>
</tr>
<tr>
<td>Hx plasma</td>
<td>81,29 c</td>
</tr>
<tr>
<td>GOx plasma</td>
<td>79,38 c</td>
</tr>
</tbody>
</table>

Valor de p	
Jejum¹	<0,0001*
Método²	<0,05*
CV (%)	22,02

¹ *= significativo pelo teste Kruskal-Wallis (p≥0,05); ² *= significativo pelo teste Wilcoxon (p≥0,05); CV = coeficiente de variação. As variáveis para glicemia estão apresentadas em mg/dL. Na coluna “Glicemia”, indicam médias com diferença significativa.

A comparação dos quatro métodos de mensuração da glicemia pelos GT nas amostras de sangue total capilar e quando transformadas em plasma equivalente está apresentada na Tab. 4. Foi encontrada diferença significativa (p < 0,0001) entre as médias de glicemia mensuradas sob as condições de jejum ou não. Quando as médias de glicemia mensuradas pelo GT2 em sangue total capilar foram comparadas com as mensuradas pelos GT1 e GT2 em plasma equivalente não foram encontradas diferenças significativas. Por outro lado, ambas médias apresentaram diferença significativa em comparação às fornecidas pelo GT1 em sangue total capilar (p < 0,0001).
Tabela 4. Glicemia de cães em função dos GT em sangue total capilar e em plasma equivalente e da condição de jejum alimentar.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Glicemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Jejum</td>
<td></td>
</tr>
<tr>
<td>Não</td>
<td>98,794 a</td>
</tr>
<tr>
<td>Sim</td>
<td>88,304 b</td>
</tr>
<tr>
<td>Método</td>
<td></td>
</tr>
<tr>
<td>GT1 sangue total capilar</td>
<td>106,61 a</td>
</tr>
<tr>
<td>GT2 sangue total capilar</td>
<td>90,81 b</td>
</tr>
<tr>
<td>GT1 plasma equivalente</td>
<td>91,19 b</td>
</tr>
<tr>
<td>GT2 plasma equivalente</td>
<td>89,01 b</td>
</tr>
<tr>
<td>Valor de p</td>
<td></td>
</tr>
<tr>
<td>Jejum¹</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Método²</td>
<td><0,0001*</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
</tr>
</tbody>
</table>

¹ *= significativo pelo teste Kruskal-Wallis (p≥0,05); ² *= significativo pelo teste Wilcoxon (p≥0,05); CV = coeficiente de variação. As variáveis para glicemia estão apresentadas em mg/dL. Na coluna “Glicemia”, indicam médias com diferença significativa.

A comparação das médias de glicemia mensuradas a partir dos GT nas amostras capilares totais e nas transformadas em plasma equivalente está apresentada na Tab.5. Na condição “sem jejum”, o método de GT1 em sangue total capilar teve diferença significativa em comparação aos demais métodos de GT para GT1 e GT2 (p < 0,0001). GT2 em sangue total capilar foi diferente de GT1 em sangue total capilar e de GT2 em plasma equivalente. No entanto, GT2 em sangue total capilar foi semelhante a GT1 em plasma equivalente. Por sua vez, não houve diferença significativa entre GT1 e GT2 para os valores de glicemia transformadas para plasma equivalente. Na condição de jejum, não foi identificada diferença entre os métodos de GT1 para a glicemia em sangue total capilar e em plasma equivalente (p = 0,0191). Do mesmo modo, não foi identificada diferença significativa para as duas condições de jejum (em jejum ou não) para as médias de glicemia mensuradas com o GT1 em amostras de sangue total capilar. A média de glicemia transformada em plasma equivalente foi semelhante estatisticamente à de GT2 em plasma equivalente. Por fim, a média de glicemia pelo GT2 em sangue total capilar foi diferente dos demais métodos na condição de jejum.
Tabela 5. Glicemia de cães em jejum ou não em função dos GT em amostras de sangue total capilar e de plasma equivalente.

<table>
<thead>
<tr>
<th>Método</th>
<th>Em Jejum</th>
<th>Sem Jejum</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT1 sangue total capilar</td>
<td>97,07 a</td>
<td>113,47 a</td>
</tr>
<tr>
<td>GT2 sangue total capilar</td>
<td>79,51 b</td>
<td>98,93 b</td>
</tr>
<tr>
<td>GT1 plasma equivalente</td>
<td>88,89 bc</td>
<td>92,85 bc</td>
</tr>
<tr>
<td>GT2 plasma equivalente</td>
<td>87,74 b</td>
<td>89,92 c</td>
</tr>
</tbody>
</table>

Médias seguidas por letras distintas diferem pelo teste de Kruskal-Wallis (p≤0,05). As variáveis para glicemia estão apresentadas em mg/dL. Na coluna “Glicemia”, indicam médias com diferença significativa.

A Tab.6 apresenta a variação do erro de mensuração da glicemia fornecida pelos GT em função do tipo de amostra utilizado: sangue capilar total ou plasma equivalente. Para ambos os GT a transformação dos valores de glicemia fornecida em sangue total para valores de glicemia em plasma equivalente reduziu a incidência do erro médio (*bias*) quando comparado a um dos MLab.

Tabela 6. Erro médio acarretado por cada tipo de amostra avaliada pelos GT em comparação aos MLab. Cálculo do erro extraído de Westgard (1998).

<table>
<thead>
<tr>
<th>Glicemia total capilar (mg/dL)</th>
<th>Glicemia plasma equivalente (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT1 – hexoquinase</td>
<td>106,61 – 81,3 = 25,31</td>
</tr>
<tr>
<td>GT2 – glicose oxidase</td>
<td>90,81 – 79,38 = 11,43</td>
</tr>
</tbody>
</table>

Os estudos das correlações entre as variáveis estão apresentados na Tab.7. O método do GT1 em sangue total capilar teve correlação direta significativa com o GT2 em sangue total capilar com coeficiente de correlação de 0,47, com o MLab do Hx em plasma de 0,54, com o MLab GOx em plasma de 0,62, com o método GT2 em plasma equivalente com r = 0,56 e com o próprio GT1 em plasma equivalente com r = 0,56. Para o percentual de HT, o GT1 em sangue total capilar teve correlação indireta significativa com r = – 0,49. Todas as correlações identificadas envolvendo esse método foram significativas à p ≤ 0,001. Não foi identificada correlação entre o método do GT1 em sangue capilar total e o PPT.
O método GT2 sangue total capilar teve correlação significativa com o GT1 para o mesmo tipo de amostra. Para o nível de significância máxima de 1% (p ≤ 0,01), o método foi correlacionado ao MLab da Hx em plasma com r = 0,27, ao GT1 em plasma equivalente a r = 0,26 e a PPT em r = 0,32. Para p ≤ 0,001 o método apresentou correlação positiva ao MLab GOx a 0,36 e ao GT2 em glicemia transformada para plasma equivalente com r = 0,32.

O MLab da Hx teve correlação direta com ambos os métodos de sangue total capilar, conforme descrito anteriormente. Adicionalmente, apresentou correlação positiva para p ≤ 0,001 com os métodos da GOx em r = 0,54, em r = 0,79 para o GT2 em glicemia transformada em plasma equivalente e apresentou praticamente correlação perfeita com coeficiente de correlação de 0,99 com o método do GT1 para valores transformados em plasma equivalente. O método apresentou correlação indireta com o percentual de HT a r = 0,23. Não foi identificada correlação do método com a PPT, sendo r = - 0,004.

Além das correlações já identificadas com os métodos GT1 e GT2 em sangue total capilar e com o MLab da Hx, o MLab da GOx teve correlação direta a p ≤ 0,001 com o GT1em plasma equivalente a r = 0,77 e, com a proporção de r = 0,99 apresentou elevada correlação com o método do GT2 para glicemia transformada em plasma equivalente. Do mesmo modo a proporção que o MLab Hx, o GOx teve correlação negativa com o percentual de HT, em r = 0,27 a p ≤0,01. Não foi identificada correlação com a PPT.

Os métodos em plasma equivalente tiveram correlação positiva em 0,79 para p ≤ 0,001. Não foram identificadas correlações entre HT e os métodos de GT para valores de glicemia transformados em plasma equivalente, sendo ambos em 0,11. Tampouco a coeficientes de correlação em 0,02, 0,03 e 0,11 foram identificadas correlação entre o percentual de PPT e glicemia pelos métodos de GT1 e GT2 -ambos em plasma equivalente- e HT, respectivamente.
Tabela 7. Correlações entre as médias de glicemia mensuradas por cada uma dos GT e MLab abordados no estudo e também das variáveis de HT e PPT.

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>GAS</th>
<th>GIS</th>
<th>GHxP</th>
<th>GGOxP</th>
<th>GAPeq</th>
<th>GiPeq</th>
<th>HT</th>
<th>PPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS</td>
<td>0,47***</td>
<td>0,54***</td>
<td>0,62***</td>
<td>0,49***</td>
<td>0,56***</td>
<td>-0,49***</td>
<td>-0,001</td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td>0,27**</td>
<td>0,36***</td>
<td>0,26**</td>
<td>0,33***</td>
<td>-0,14</td>
<td>0,32**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHxP</td>
<td>0,54***</td>
<td>0,99***</td>
<td>0,79***</td>
<td>-0,23*</td>
<td>0,004</td>
<td>0,009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGOxP</td>
<td>0,77***</td>
<td>0,99***</td>
<td>-0,27**</td>
<td>0,009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPeq</td>
<td>0,79***</td>
<td>-0,11</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GiPeq</td>
<td>-0,11</td>
<td>0,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td>0,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valores em coeficiente de correlação (r). Asteriscos indicam que a correlação é significativa e representam o nível de significância P≤0,05 (*), P≤0,01 (**) e P≤0,001 (**).

A comparação entre GT2 em plasma equivalente e o MLab Hx apresentaram a média de diferenças de 8,93 mg/dL, o desvio padrão de 1,658 e o intervalo de confiança de 5,6353 a 12,2185. O coeficiente de correlação entre os métodos foi de 0,89 e 91% das amostras atenderam aos limites de variação impostos pela ISO 15197:2013 (Fig. 4.1). Entre GT2 em plasma equivalente e o MLab GOx, a média das diferenças foi de 9,7029 mg/dL, o desvio padrão foi de 0,2724 e o intervalo de confiança foi de 9,1623 e 10,2434. O coeficiente de correlação entre os métodos foi de 0,99 e 99% das amostras atenderam aos limites impostos pela ISO 15197:2013 (Fig. 5.1). Para a análise das diferenças entre o método GT2 em sangue total capilar e o GOx, foi encontrada média das diferenças de 10,58mg/dL, o desvio padrão foi de 3,7011, o intervalo de confiança de 3,281 a 17,9256. O coeficiente de correlação entre esses métodos foi de 0,547 e somente 22 % das amostras atenderam aos intervalos de variação de diferenças proposto pela ISO 15197:2013 (Fig. 6.1).

Para o método do GT1 em plasma equivalente, quando comparado ao MLab Hx (Fig. 4.2) houve a diferença média 10,89 mg/dL, desvio padrão de 0,2636, intervalo de confiança de 9,3654 e 10,4118. A correlação foi de r = 0,996 e 99 % das amostras atenderam aos limites de diferença impostos pela ISO 15197:2013. De sua comparação com o MLab GOx (Fig. 5.2) foi encontrada média de diferenças de 10,66 mg/dL, o desvio padrão foi de 1,5631 e o intervalo de confiança de 7,5629 a 13,7661. O coeficiente de correlação entre os dois métodos foi de 0,873 e somente 20 %
das amostras variaram de acordo com o proposto pela ISO 15197:2013. Entre GT1 em sangue total capilar e Hx (Fig. 6.2) as diferenças tiveram a média de 25,90 mg/dL, desvio padrão de 2,55 e intervalo de confiança de 20,82 a 30,98. O coeficiente de correlação foi de 0,727 e teve 26 % das amostras dentro dos limites de variação das diferenças propostos pela ISO 15197:2013.
Figura 4. Gráficos de diferença entre as comparações do método GT2 em plasma equivalente e MLab Hx (1) e GOx (2), todos em mg/dL. A diferença média entre os métodos está representada pelas linhas azuis e foi de 8,927 entre GT2 e Hx e de 9,702 entre GT2 e GOx. Linhas pontilhadas representam limites de ± 15 mg/dL, para valores de glicemia até 100 mg/dL e de 15% para glicemia acima de 100 mg/dL.
Figura 5. Gráficos de diferença das comparações do método GT1 em plasma equivalente e os MLab do Hx (1) e do GOx (2), todos em mg/dL. Diferença média entre os métodos está representada pelas linhas azuis e foi de 9,888 entre GT1 e Hx e de 10,664 entre GT1 e GOx. As linhas pontilhadas representam os limites de ± 15 mg/dL, para valores de glicemia até 100 mg/dL e de 15 % para glicemia acima de 100 mg/dL.
Figura 6. Gráficos de diferença das comparações de ambos métodos de GT em sangue total capilar com os MLab de maior correlação: GT2 e GOx (1) e GT1 e Hx (2), todos em mg/dL. A diferença média entre os métodos está representada pelas linhas azuis e foi de 10,582 entre GT2 e GOx e de 25,90 entre GT1 e Hx. As linhas pontilhadas representam os limites de ± 15 mg/dL, para valores de glicemia até 100 mg/dL e de 15 % para glicemia acima de 100 mg/dL.
8. Discussão

8.1. Hematócrito

A metodologia estabelecida para controle das fontes de erro analíticas relativas às condições de saúde do paciente, gerou uma divergência em relação ao critério do percentual de HT para o GT GT2. O HT mínimo aceito para inclusão de amostras neste experimento foi de 20 % que extrapolava os limites sugeridos pela bula do GT2, que preconiza intervalo de HT entre 35 e 55% para cães. Contudo, a escolha por maior variabilidade de HT foi fundamentada por observações levantadas em importantes referências da área (Pfützner et al., 2013b; Brito-Casillas et al., 2014). Sugere-se que, apesar de serem preconizadas faixas ideais de HT para os testes com GT, o uso dos aparelhos na rotina é procedido com amostras cuja variação na concentração do sangue total frequentemente pode extrapolar tais intervalos (Ramljak et al., 2013). Essa variação no percentual de HT é passível de ocorrer em pacientes portadores de DMC com glicemia não controlada, condição na qual a hiperglicemia e a glicosúria podem acarretar em desidratação, e consequentes hemoconcentração e HT superestimado (Wahl, 2009).

Dois exemplos extraídos do banco de dados do experimento foram escolhidos para observação do comportamento dos resultados obtidos pelos GT em condições de HT fora do intervalo de referência para a espécie. No primeiro exemplo, o paciente teve glicemia capilar mensurada em 45 mg/dL e 57 mg/dL, respectivamente por GT2 e GT1. Na avaliação laboratorial da glicemia da amostra plasmática da mesma paciente, foi estimado HT de 58%, e glicemia pelos MLab de 77,2 mg/dL pelo GOx, e de 78,36 mg/dL pelo Hx. Como não foram identificados outros fatores hematológicos que pudessem ser associados ao comprometimento da sensibilidade do método do GT, inferiu-se que o elevado HT da amostra possa ter influência sobre a subestimação da glicemia feita pelos GT. Vale observar que, após o ajuste dos valores de glicemia capilar para plasma equivalente, correção que considera o percentual de HT da amostra venosa, os valores fornecidos por ambos GT variou mais de 15 mg/dL em comparação aos obtidos pelas mensurações laboratoriais. Neste caso, a equivocada estimativa da condição de hipoglicemia poderia ter implicado em conduta clínica inadequada, caso o veterinário responsável se baseasse unicamente nos resultados fornecidos pelos GT.

No segundo exemplo, o HT de 26% na ocasião da coleta superestimou a mensuração da glicemia por ambos os GT: 140 mg/dL pelo GT2 e 137 mg/dL pelo GT1. Sugere-se que tenha havido
interferência do percentual de HT, pois de acordo com os MLab usados como referência a glicemia da amostra era de 86,74 mg/dL pelo GOx e 106,6 mg/dL pelo Hx.

Apesar de haver consenso na literatura de que haveria correlação inversa entre HT e glicemia (Pfützer et al., 2013b; Ramljak et al., 2013), quando foi abordado o panorama geral das médias, não foi identificada correlação significativa entre as médias de glicemia mensuradas pelo GT2 e o HT, conforme a Tab. 7. Porém, o coeficiente de correlação para método GT2 de sangue capilar total demonstrou tendência à correlação inversamente proporcional ($r = -0,14$).

Por sua vez, os resultados obtidos pelos métodos do GT GT1 apresentaram perfis distintos para cada um dos tipos de amostra. Foi identificada correlação significativa entre o HT e a amostra de sangue total capilar, onde $r = -0,49$ (Tab. 7). Nota-se que ao incorporar o percentual de HT através da transformação em plasma equivalente, o modelo estatístico de correlação não foi capaz de identificar a associação entre glicemia e o próprio HT, no qual $r = -0,11$.

A transformação em plasma equivalente é um cálculo de estimativa da glicemia plasmática a partir da glicemia capilar total fornecida pelo GT, ajustando-a ao HT (Fig. 3) (Gerber e Freeman, 2016). Sendo assim, a glicemia em plasma equivalente é uma variável dependente da variável HT, de modo que a relação entre elas deveria ser medida por um modelo de regressão linear (Sampaio, 2010). Foi possível identificar tal inadequação do modelo de correlação, pois as médias da variável plasma equivalente para ambos os GT tiveram coeficiente de correlação $r = -0,11$, indicativo de correlação não significativa em função do HT.

Avaliando o efeito da transformação em plasma equivalente sob o aspecto da diferença das médias de glicemia submetidas ou não a tal transformação, à sensibilidade de 5 % de significância do teste de Wilcoxon houve diferença significativa da média de glicemia mensurada pelo GT2 antes e depois da transformação (Tab. 4). Por outro lado, o mesmo teste considerou distintas as médias de glicemia mensuradas pelo GT1 em amostras de sangue total capilar e em plasma equivalente quando na condição de jejum (Tab. 5). O padrão que as médias de cada GT adquirem com essa transformação parece estar refletindo características da tecnologia dos próprios aparelhos, como por exemplo, relacionada à separação da amostra na fita teste, que altere a fração de sangue que entra na reação enzimática, ou pode ser determinada por programação intrínseca de correção de hematocrito que não está descrita nas bula do GT (Wahl, 2009; Shin et al., 2014; Hermayer et al., 2015).
Por outro lado, os valores de glicemia fornecidos em plasma equivalente mostraram-se mais adequados à comparação com os resultados mensurados pelos MLab a partir de amostras de plasma. Os gráficos de diferenças mostraram maior dispersão dos resultados de glicemia em sangue total capilar por ambos GT quando comparados aos resultados de glicemia após a conversão (Fig. 4, 5 e 6). Do mesmo modo, a conversão dos valores de glicemia total capilar para plasma equivalente melhorou a imprecisão global das comparações entre GT e respectivos MLab (Tab. 6). A conversão possibilita comparação de amostras semelhantes que apresentam o mesmo padrão de distribuição da glicose e, portanto, a variação da concentração de glicose mensurada seria decorrente da diferença entre os métodos (Westgard, 1998; Heinemann et al., 2012; Gerber e Freeman, 2016).

As variações do HT nas amostras de sangue total capilar parecem ser capazes de interferir no desempenho do GT nas duas fases do método: na difusão da amostra sobre a fita teste e na reação de oxidação da glicose amostral. A característica da viscosidade do sangue total é determinante para garantir que a amostra difunda pela fita teste e ocorra o contato da glicose amostral com a enzima reagente para quantificação da glicose amostral. A literatura afirma que o HT é diretamente relacionado a característica da viscosidade do sangue total (Çinar et al., 1999). Portanto, o aumento da celularidade do sangue total capilar compatível com o elevado valor de HT referido no primeiro exemplo, tende a aumentar a viscosidade da amostra e a reduzir sua capacidade de fluir sobre a tira teste. Como consequência, a quantidade de glicose que alcança a enzima para efetuar a reação pode ser proporcionalmente reduzida.

Cada uma das enzimas que compõe o método dos GT apresenta características individuais quanto às condições ideais de reação e suas decorrentes limitações. A enzima GOx do sistema GT2 é considerada como específica para glicose, no entanto, as referências apontam que a pressão de oxigênio da amostra pode interferir na reação como elemento doador de elétrons. Portanto, amostras com HT elevado podem ter a glicemia superestimada quando avaliadas por GT cujo sistema funcione a partir de reação da GOx, conforme descrito no primeiro exemplo. Adicionalmente, os sistemas com a enzima GOx tem a limitação para reagir em amostras com baixa concentração de água, o que pode ser compatível com amostras de alto HT e hemoconcentradas. Tal característica pode agravar as fontes de erro de teste relacionadas também a difusão na fita teste (Wahl, 2009; Hermayer et al., 2015).
Por sua vez, a enzima glicose desidrogenase, presente na fita teste do GT1, é menos específica para a glicose amostral em comparação a glicose oxidase de modo que pode reagir como maltose, manose e glicosamina presentes na amostra. A ocorrência da reação para medição da glicemia depende adicionalmente da presença e estabilidade de uma coenzima (Wahl, 2009).

8.2. Concentração de proteínas plasmáticas totais e influência do jejum alimentar

A concentração de proteínas no plasma (PPT) é uma variável importante sobre a manutenção da pressão oncótica e na manutenção da viscosidade e fluidez do sangue do sangue total. Assim como o HT influencia sobre a fluidez do sangue total e, consequentemente, sobre a disponibilização da glicose amostral para a reação no GT, a PPT também influencia sobre o volume de água disperso no plasma o qual contém a glicose mensurada pelos métodos de quantificação. Conforme apresentado em Tab. 7, somente o método do GT2 para sangue total capilar pode ser diretamente correlacionado a PPT à confiança de 1%. Apesar de a PPT só estar correlacionada ao método GT2 em amostra capilar, conforme apresentado na Tab. 7, não foi identificada diferença entre as médias de glicemia para os métodos no GT2.

A interferência da PPT sobre a quantificação da glicose em uma amostra é sugerida pelo fato de que o método da cromatografia de massas, considerado “padrão-ouro” para a mensuração da glicemia é procedido em amostra totalmente desproteinada. Por sua vez, os GT mensuram a glicemia em amostra capilar total que contém as proteínas totais dispersas no plasma, de modo que as duas estratégias de mensuração de glicemia diferem primordialmente em relação ao tipo de amostra que processam (Kaneco, 2008; Sacks et al., 2011).

No entanto, a extrapolação dessas interpretações para a PPT deve considerar as influências que esta variável sofre do estado nutricional e de outras condições metabólicas e endócrinas. Algumas condições patológicas referidas na anamnese dos pacientes incluídos no estudo podem provocar incremento da concentração de PPT, mesmo que o paciente estivesse em jejum alimentar, a saber: hipotireoidismo, hiperadrenocorticismo, síndromes paraneoplásicas e caquexia. (Eckersall, 2008; Gerber e Freeman, 2016). Considerando o intervalo de referência da espécie canina entre 5,4 e 7,1 g/dL (Eckersall, 2008), o exemplo de um paciente positivo para leishmaniose com hiperproteinemia (PPT = 8,19 g/dL) esteve coincidente à superestimava da glicemia por ambos GT em amostras de sangue total capilar em mais de 15 % em relação aos valores fornecidos pelos MLab. Ainda na hiperproteinemia (PPT = 9,13 g/dL) o GT1 superestimou em quase 60 % o valor
da glicemia fornecido pelo MLab Hx. Autores sugerem que a condição de catabolismo proteico observada em algumas patologias como hipotireoidismo e DM altere ainda a dinâmica circulatória e, invariavelmente, a glicose dispersa no plasma (Çinar et al., 2001; Corradini et al., 2016).

Como era previsto, na maioria dos ensaios, as comparações de médias de glicemia obtidas neste estudo, foram identificadas diferenças entre os exames procedidos na condição de jejum ou período pós-prandial (Tab. 4 e 5). Por sua vez, o GT1 não teve diferença entre as médias de glicemia para as condições de jejum ou não (Tab. 5). Contudo, como não foi imposto controle pelo modelo experimental das variáveis que podem interferir sobre concentração de sólidos no plasma, não é possível concluir sobre o grau de interferência da PPT na variação da média de glicemia em função do jejum. Mesmo nas patologias supracitadas, a hiperproteinemia pode ser concomitante a hiperglycemia, fluidoterapia coloidal, elevado percentual de HT, desidratação (Wahl, 2009).

8.3. Avaliação da acurácia

O uso primário dos GT é destinado ao monitoramento domiciliar da glicemia de pacientes portadores de DMC, o que torna implícito que a execução dos testes será realizada principalmente por leigos sob condições ambientais de teste pouco controladas (Ramljak et al., 2013). Na medida que fatores decorrentes do manuseio do aparelho e das condições de coleta de amostra capilar interferem sobre o desempenho do teste, a calibração dos aparelhos deve minimizar essas interferências, bem como compensar erros inerentes à tecnologia do aparelho e ao sistema GT-fita teste.

Neste estudo foi observada a possível interferência do pré-analítico do usuário do GT sobre a acurácia dos testes. Dentre os quatorze pacientes que requereram mais de uma fita teste para a mensuração da glicemia capilar nove estavam entre os 50 primeiros pacientes incluídos, sugerindo que a prática do usuário para o manejo dos GT possa ter prejudicado a eficiência dos testes. A normativa ISO de 2013 inclui algumas recomendações para avaliação do grau de interferência do manuseamento sobre a acurácia clínica dos aparelhos. A principal estratégia para avaliação das interferências proposta pela ISO 15197:2013 é através da análise por grade de erros de Parkes et al. (2000), que considera os erros analíticos inerentes tanto ao GT quanto ao MLab usado como referência (International Organization for Standardization, 2013; Pfützner et al., 2013b). Contudo, autores abordaram o uso domiciliar e não profissional dos GT em pequenos animais.
através de questionários (Van de Maele et al., 2005) reforçando a importância de tais avaliações sejam procedidas em medicina veterinária.

Tais fontes de erro são frequentes na rotina de uso dos GT e dificilmente são evitadas em ambientes domiciliares, como o exemplo das variações do percentual de HT. Sob essa perspectiva, normativas para padronização de GT sugerem que os estudos de avaliação do desempenho devam considerar tais interferências potenciais (European parliament and council of the european union, 1998; Schnell et al., 2013; Gerber e Freeman, 2016). Para abordagem do parâmetro de acurácia dos aparelhos, os resultados de glicemia fornecidos por eles foram comparados com dois métodos laboratoriais, Hx e GOx. A acurácia exibida por cada GT apesar dos erros analíticos intrínsecos foi quantificada através dos coeficientes de variação que definem os limites de variação dos resultados do método, de modo que torna-se possível compará-los com critérios propostos, como os da ISO 15179:2013 (Ross e Fraser, 1993).

O princípio da comparação dos métodos recai sobre a consideração de que para que um método seja consagrado como referência, ele deverá ter sua cadeia de reações conhecida e controlada. Há autores que sugerem que o MLab de eleição para padronização de cada GT deveria utilizar a mesma enzima presente na fita teste do sistema (Freckmann et al., 2015). Por outro lado, as normativas ISO 15197:2013 e a UE 98/79 indicam que a escolha do MLab deve ser definida pelo próprio fabricante, contando que esse tenha sua cadeia de reações rastreada. A metodologia adotada neste experimento incluiu a comparação dos resultados obtidos pelos GT com dois MLab consagrados e amplamente utilizados em estudos de avaliação de métodos de testagem rápida.

A observação da distribuição dos resultados de comparações, apresentados nos gráficos de diferenças evidenciam que cada um dos GT mostrou melhor ajuste e, portanto, menor variação em relação a determinado MLab. Os resultados do GT1 tiveram menor dispersão para os resultados de sua comparação com o MLab da Hx (Fig. 5). Tal evidência coincide com os dados informados pela bula do aparelho e divulgados por estudo procedido pelo próprio fabricante, os quais afirmam que o método da Hx foi usado para padronização do GT1 (Cozzi e Cedergren, 2012). Por sua vez, os resultados do GT2 demonstraram maior equivalência entre os MLab da GOx, conforme pode ser observado nas dispersões da Fig. 4. Neste caso, a enzima GOx é a mesma usada pelo GT2 e MLab, o que permite melhor padronização do GT em função da referência estabelecida. Não foi identificada diferença significativa entre as médias de GT1 em plasma
equivalente e MLab da Hx, tampouco entre as de GT2 em plasma equivalente e GOx, para \(p \geq 5\% \) (Tab. 2).

As diferenças identificadas quanto às decisões sobre as equivalências entre GT e MLab podem ser ocasionadas pelos objetivos que cada abordagem estatística determina e expressa. Ambas abordagens permitiram a avaliação das diferenças entre as respostas obtidas para a glicemia para o mesmo indivíduo. Contudo, o teste para comparação entre as médias de glicemia fornecida por cada método avaliada cada variável com base na amplitude das diferenças entre as respostas. Este teste não a avalia a distribuição das diferenças dentro de um limite predefinido de respostas favoráveis. Assim, a decisão sobre equivalência dos métodos é definida por um parâmetro variável em função do tamanho da amostra do estudo (Sampaio, 2010).

Sob o modelo dos gráficos de diferença, a decisão sobre a aceitação da diferença entre a glicemia mensurada pelos dois métodos tem como critério fundamental a dispersão dessa diferença em relação a glicemia mensurada pelo MLab, sendo ambas avaliadas quanto a seus valores absolutos. Neste caso, o julgamento da aceitação da validade do método do GT é baseada em metodologia com consagrada acurácia para mensuração do mesmo analito (Petersen et al., 1997). O método eleito como referência tem de ser adequado quanto ao tipo de amostra, à equivalência das reações enzimáticas e ao controle das condições ambientais para certificação de sua acurácia e sensibilidade (Petersen et al., 1997; Westgard, 1998).

No entanto, nos ensaios em que o GT foi comparado com o MLab adequado não foi observada equivalência constante entre os métodos em todas as comparações quando a abordagem foi feita pelos valores de glicemia em sangue total capilar. O teste de comparação de médias identificou equivalência entre as médias de glicemia mensuradas pelo GT2 em sangue capilar total e pelo MLab GOx. Contudo, quando os mesmos foram comparados no gráfico das diferenças, somente 2 % das amostras atingiram a identidade, representada no gráfico pela linha horizontal central onde a diferença entre os métodos é nula. Outros 20 % das amostras alcançaram o intervalo de variação de diferenças pretendido pela ISO 15197:2013. Quanto à comparação entre o método GT1 e o MLab Hx, pelo teste de Wilcoxon foi identificada diferença significativa eles e, pelo gráfico das diferenças a dispersão foi consoante, estando mais de 70 % das amostras distribuídas além dos limites de variação sugeridos pela normativa supracitada. Somente 4 amostras alcançaram equivalência entre os métodos.
A acurácia reduzida exibida pelos GT quando avaliados em sangue capilar total, tem como ponto crítico a comparação de valores de glicemia mensurados a partir de amostras diferentes (Thorpe, 2013). Apesar de cada GT ter tido a glicemia comparada a do MLab mais adequado, cada um desses métodos foi abordado a partir de um tipo de amostra, os GT pelo sangue total capilar e o MLab pelo plasma venoso. Como a distribuição da glicose difere entre tais amostras devido a concentração água e solutos, a comparação entre essas duas abordagens não considera duas condições hematimétricas equivalentes. A configuração da diferença da glicemia entre sangue capilar e venoso é ainda mais pronunciada no período pós-prandial, quando o sangue capilar pode alcançar concentração de glicose até 25% maior que o venoso (Tonyushkina e Nichols, 2009), conforme foi apresentado na Tab. 4.

Para a abordagem da normativa da ISO 15197:2013, o modelo dos gráficos das diferenças permitiu a imposição dos critérios de variação das diferenças entre a glicemia mensurada pelo GT e a mensurada pelo MLab. A normativa postula que tal diferença pode variar ± 15mg/dL em amostras cujo MLab tenha mensurado até 100 mg/dL, e em ± 15% em amostras cujo MLab tenha mensurado glicemia acima de 100mg/dL. A apresentação visual - as linhas horizontais pontilhadas - permite o julgamento para aceitação do GT avaliado caso seus resultados recaiam sobre os específicos limites de variação. De acordo com a ISO 15197:2013, o GT atende ao critério de acurácia caso 95% dos resultados forem distribuídos entre os limites definidos, ou seja, o GT será acurado na medida em que tenha identidade com o MLab.

No entanto, a concentração da glicose no sangue total é outra variável capaz de alterar a viscosidade da amostra, pode interferir na disponibilidade da glicose para reação na fita teste e, consequentemente, comprometer a acurácia do sistema (Çinar et al., 2001). Portanto, o desempenho do GT pode ser distinto em função da magnitude da glicemia. Posto assim, os limites impostos pela ISO 15197:2013 variam de valores absolutos a percentuais em função da glicemia mensurada pelo MLab.

A padronização da acurácia dos GT pelos gráficos de diferença fornece avaliação qualitativa da performance do aparelho incorporando os erros que podem interferir no método. Contudo, como não se procede a identificação e mensuração de tais erros para cada um dos métodos comparados, a imprecisão de cada um deles se reflete na média das diferenças. Na comparação dos GT em plasma e equivalente e MLab, foram encontradas as médias de diferença de: 9,88 mg/dL entre Hx e GT1; 10,66 entre G0x e GT1; 9,7 mg/dL entre G0x e GT2; e de 8,92 mg/dL entre Hx e GT2.
Com relação aos desvios padrões das diferenças, citado pela literatura como sendo o fator que estima o erro inerente aos métodos, foram menores nas comparações nas quais se identificou maior identidade entre GT e MLab (Petersen et al., 1997).

Finalmente, as mesmas comparações que identificaram identidade entre GT e MLab foram aquelas cujos GT tiveram ≥ 99 % de amostras dentro do intervalo de acurácia pretendido pela ISO:15197:2013, a saber, GT1 e GT2, sendo ambos para plasma equivalente. Tais métodos foram avaliados ao longo dessa discussão quanto ao controle para algumas das variáveis que tendem a interferir na sensibilidade dos testes. Quando avaliados sob condições adequadas de amostra, percentual de HT e método de referência para comparação dos resultados, ambos GT conseguiram manifestar desempenho de qualidade satisfatório de acordo com padrões internacionais.

9. Conclusão

Dentro das condições experimentais impostas ao longo da execução desta pesquisa clínica, conclui-se:

- Quando o GT1 foi avaliado na condição de período pós-prandial (“sem jejum”), houve diferença entre a glicemia mensurada em sangue total capilar e em relação a transformada em plasma equivalente. Por outro lado, quando avaliado na condição de jejum, o GT1 não apresenta diferença entre essas duas estratégias. Por sua vez, a glicemia fornecida pelo GT2 foi diferente em função da amostra (sangue total ou plasma equivalente), independente da condição de jejum.
- Os dois GT avaliados não tiveram diferença significativa para os valores de glicemia transformados em plasma equivalente, independentemente da condição de jejum.
- Os dois GT avaliados tiveram diferença significativa em relação aos MLab, quando as comparações foram estabelecidas entre glicemia em plasma equivalente e em plasma, respectivamente.
- Quanto maior o valor de HT, o GT1 tendência a subestimar a glicemia capilar.
- A glicemia mensurada pelo GT2 teve correlação direta com a concentração de proteínas plasmáticas totais.
- No âmbito de um estudo clínico, ambos os glicosímetros avaliados apresentaram desempenho acurado para mensurar a glicemia de cães de acordo com os limites de variação propostos pela normativa ISO 15197:2013.
10. Referências bibliográficas

BASTARD, J. P.; MAACHI, M.; LAGATHU, C. et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw, v. 17, n. 1, p. 4–12, 2006.

BENNETT, N. Monitoring techniques for DM in the dog and the cat. Clinical techniques in

CHENG, W. J.; LIN, C. W.; WU, T. G. *et al.* Calibration of glucose oxidase-based test strips for capillary blood measurement with oxygen saturated venous blood samples. *Clinica Chimica*

COOK, A. The latest management recommendations for cats and dogs with nonketotic diabetes mellitus. Veterinary Medicine, 2007.

DOBROMYLSKYJ, M. J.; SPARKES, A H. Assessing portable blood glucose meters for

MEINKOTH, J. H.; ALLISON, R. W. Sample collection and handling: getting accurate results.

SCHWARTZ, M. W.; SEELEY, R. J.; TSCHÖP, M. H. *et al.* Cooperation between brain and

WANG, L.; SIEVENPIPER, J. L.; DE SOUZA, R. J. *et al.* Hematocrit correction does not

11. Anexo 1. Documento de aprovação do projeto pelo CEUA/UFMG

CERTIFICADO

CERTIFICATE
We hereby certify that the Protocol nº, 383 / 2015, related to the Project entitled “Validation three veterinary glucometers for dogs according to ISO 15197. 2013”, under the supervision of Adriane da Costa Val Costa Val, is in agreement with the Ethical Principles in Animal Experimentation, adopted by the Ethics Committee in Animal Experimentation (CEUA/UFMG), and was approved in 24/11/2015. This certificate expires in 24/11/2020.

Cleuza Maria de Faria Rezende
Coordenador(a) da CEUA/UFMG
Belo Horizonte, 24/11/2015.

Atenciosamente,

Sistema CEUA/UFMG
https://www.ufmg.br/bioetica/cetea/ceua/

Universidade Federal de Minas Gerais
Avenida Antônio Carlos, 6627 – Campus Pampulha
Unidade Administrativa II – 2º Andar, Sala 205
31270-401 – Belo Horizonte, MG – Brasil
Tel.: (31) 3499-4516 – Fax: (31) 3499-4592
www.ufmg.br/bioetica/cetea - cetea@prpq.ufmg.br
Anexo 2. Termo de consentimento livre e esclarecido para inclusão de pacientes no experimento

Termo de Consentimento Livre e Esclarecido

Você está sendo convidado para participar da pesquisa: Avaliação de dois glicosímetros veterinários para uso em cães.

Muitas doenças que acometem os cães alteram a concentração de glicose no sangue destes animais podendo desencadear quadros clínicos graves que requerem assistência veterinária adequada. Os glicosímetros são aparelhos de checagem rápida da glicemia que facilitam a identificação de tais alterações por realizarem um teste rápido, pouco invasivo e que requer pouco volume de sangue. Portanto, estes aparelhos devem fornecer dados precisos; para tanto é necessário que estudos realizem a validação destes medidores em condições brasileiras.

Você foi selecionado, por ser responsável por cão em condição clínica adequada a coleta de amostras e sua participação não é obrigatória. A qualquer momento você pode desistir de participar e retirar seu consentimento. Sua recusa não trará nenhum prejuízo em sua relação com o pesquisador ou com a instituição.

Sua participação nesta pesquisa consistirá em permitir a colheita de 5 ml de sangue do animal e de pequena amostra de sangue da cartilagem da orelha. Você não terá nenhuma despesa com o desenvolvimento do projeto.

Os benefícios relacionados com a participação dos animais são:
- Testar glicosímetros veterinários, validando-os para o uso em cães;
- O animal receberá exames de sangue: hemograma e perfil bioquímico;

Os resultados dos exames de sangue serão encaminhados para endereço eletrônico do responsável pelo animal e sua interpretação ficará a cargo do médico veterinário que acompanha clinicamente o paciente. As informações obtidas através dessa pesquisa serão confidenciais e asseguramos o sigilo sobre sua participação.

Os riscos relacionados com a participação do animal serão discreta dor nos locais de colheita de material, após o procedimento. Qualquer alteração observada no animal ou dúvidas relacionadas ao projeto, por favor, entre em contato com o pesquisador responsável. Não existem métodos alternativos para tal experimentação.

Você receberá uma cópia deste termo onde consta o telefone e o endereço institucional do pesquisador principal e do CEUA, podendo tirar suas dúvidas sobre o projeto e sua participação, agora ou a qualquer momento.

Adriane Pimenta da Costa Val Bicalho
Escola de Veterinária da UFMG – (31) 3409-2247/9105 6073
Av. Antônio Carlos, 6627 – Pampulha 31270-901 - BELO HORIZONTE – MG

Declaro que entendi os objetivos, riscos e benefícios de minha participação na pesquisa e concordo em participar.
Concordo na utilização das fotos do animal na apresentação da pesquisa e possíveis publicações.

Responsável pelo paciente canino

Comissão de Ética no Uso de Animais - Universidade Federal de Minas Gerais - Avenida Antônio Carlos, 6627 – Campus Pampulha - Unidade Administrativa II – 2º Andar, Sala 2005, 31270-901 – Belo Horizonte, MG – Brasil.

Telefone: (31) 3499-4516 – Fax: (31) 3499-4592 www.ufmg.br/bioetica/cetea - cetea@prpq.ufmg.br
Projeto: Validação de dois glicosímetros veterinários para uso em cães

Ficha clínica

<table>
<thead>
<tr>
<th>Paciente:</th>
<th>Ficha UFMG:</th>
<th>Nºexp.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade:</td>
<td>Fêmea</td>
<td>Castrado:</td>
</tr>
<tr>
<td></td>
<td>Macho</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsável:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exame físico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postura:</td>
</tr>
<tr>
<td>Estação</td>
</tr>
<tr>
<td>Sentado</td>
</tr>
<tr>
<td>Decúbito</td>
</tr>
<tr>
<td>Condição corporal:</td>
</tr>
<tr>
<td>Caquético</td>
</tr>
<tr>
<td>Magro</td>
</tr>
<tr>
<td>Ideal</td>
</tr>
<tr>
<td>Sobrepeso</td>
</tr>
<tr>
<td>Obeso</td>
</tr>
<tr>
<td>Turgor:</td>
</tr>
<tr>
<td>TPC:</td>
</tr>
<tr>
<td>Linfonodos:</td>
</tr>
<tr>
<td>Mucosas:</td>
</tr>
<tr>
<td>Hipocoradas</td>
</tr>
<tr>
<td>Normocoradas</td>
</tr>
<tr>
<td>Hiperêmicas</td>
</tr>
<tr>
<td>Cianóticas</td>
</tr>
<tr>
<td>Ictéricas</td>
</tr>
<tr>
<td>Cardíaca:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Respiratório:</td>
</tr>
</tbody>
</table>

| Horário última refeição: |
| |

| Medicações utilizadas atualmente: |
| |

| Glicemia Capilar - Ordem GT: |
| Alpha Trak: |
| Ipet: |
| Qdade Fitas: |
| Qdade Fitas: |

| Glicemia Venosa Plasma (amostra fluoretada) |
| Alpha Trak: |
| Ipet: |
| Qdade Fitas: |
| Qdade Fitas: |

| Patologia Clínica |
| Hematócrito: |
| PPT: |

| Observações: |
| |

| Glicemia Venosa (amostra fluoretada) |
| Hex: |
| GOx: |