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Abstract
Protein phosphorylation and dephosphorylation play vital roles in a variety of cellular
processes, and the balance between them must be closely regulated. Disturbances in the
harmonic relationship between protein phosphorylation and dephosphorylation, through
the introduction of dominant activating missense mutations in protein kinases, are known
to be driver events of many cancer. Despite this, the identification of potential activating
mutations has proven to be a difficult task, and has been limited to evolutionary and
sequence-based comparisons with previously characterised mutations. This study aims to fill
this gap by proposing a novel machine learning method for predicting missense activating
mutations on protein kinases, named Kinact. Experimental data on 384 point mutations in
42 different protein kinases was collected from Kin-Driver, Clinvar and Ensembl databases.
The resulting data sample was then manually curated and 258 mutations were mapped
into solved 3D structures of the Protein Data Bank. Each protein was classified into one
group of the Kinase Classification and a set of in-silico analysis were performed with
sequence and structure data. The most descriptive features were then used as input for
training and testing supervised learning algorithms and predictive classification models
that rely on attributes solely from sequence level, structural level and in combination were
generated. The best performing model was observed when a combination of structural
and sequence-based features were used as evidence during the learning task, achieving a
precision of up to 90% and Area Under ROC Curve of 0.96 under 10-fold cross-validation
and precision of 81% and Area Under ROC Curve of 0.89 on blind tests. We show the
best performing model of Kinact significantly outperforms the gold-standard methods
used by clinical geneticists (p-value < 0.01), SIFT and PolyPhen-2, which achieved Area
Under ROC Curve of 0.49 and 0.63 on the training data set, respectively and 0.67 and
0.53, respectively, on the blind test. Kinact conveniently combines high-performance open
source web visualization tools to assist further research on how mutations affect protein
kinases activity. The method is freely available as a user friendly, easy to use web server
at <http://biosig.unimelb.edu.au/kinact/>

Keywords: bioinformatics. kinase. activating mutations, machine learning.
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1 Introduction

1.1 Cell Signalling and Protein Phosphorylation

1.1.1 Role of Phosphorylation in Signalling

The ability of cells to recognize and correctly respond to their microenvironment
is crucial for survival. Cell signaling is a complex communication process that controls
most basic cellular activities and actions, allowing cells to quickly respond to internal
and external stimuli (ALBERTS et al., 2014). In order to dynamically respond to cellular
signals, however, fast dynamic switches are required. Protein phosphorylation is the most
widespread type of post-translational modification, and acts as a rapid way of regulating
protein behaviour and activity across most signalling pathways. It is estimated that one-
third of the proteins in the human proteome are substrates for phosphorylation (COHEN,
2002). Phosphorylation exists in a delicate balance with dephosphorylation to orchestrate
the activity of almost all cellular processes, including signal transduction, growth, division,
differentiation, motility, organelle trafficking and membrane transport (COHEN, 1982;
HUMPHREY; JAMES; MANN, 2015).

This process is coordinated by two large protein families: kinases and phosphatases.
Protein kinases catalyze the transfer of the terminal phosphate group of Adenosine
Triphosphate (ATP) to the hydroxyl group of a Serine (S), Threonine (T), or Tyrosine
(Y) side chain of the target protein. This is counteracted by protein phosphatases, which
catalyze the reverse reaction of phosphate removal (dephosphorylation). Therefore, the
activity of any protein regulated by phosphorylation depends on the balance between the
activities of the kinases that phosphorylate it and of the phosphatases that dephosphorylate
it (ALBERTS et al., 2014).

Given the importance and range of cellular processes affected, the equilibrium
between phosphorylation and dephosphorylation is stringently regulated. Loss of control
over this regulation process, through the introduction of dominant activating mutations in
kinases, are frequent driver events in many tumor types, contributing for the development
and metastasis of many cancers (BOSE et al., 2013; GRABINER et al., 2014; TIACCI et
al., 2017), along with the development of other metabolic disorders (LAHIRY et al., 2010).

1.1.2 Protein Kinases

Phosphorylation is catalysed by a type of enzymes called Kinases, and primarily
occurs at tyrosines, serines and threonines. There are over 500 different kinases in the
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human proteome (MANNING et al., 2002), and while these can in part be differentiated
by their substrate specificities, molecular characterisations have shown that this is not nec-
essarily straightforward. Many kinases (for example the Serine-Threonine Kinases), exhibit
substrate preferences for both Serines and Threonines; and there are also triple specificity
kinase that recognize all three possible residues (MARSHALL, 1994). Furthermore, there
are also approximately 50 pseudokinases that have lost the phosphorylation activity but
are used as the building blocks for the assembly of multi-protein complexes, regulating
other cellular processes such as proliferation and apoptosis (BOUDEAU et al., 2006).

To assist with the analysis and comprehension of kinase function and evolution, as
well as to compare related protein kinases in model organisms, a standard classification
was proposed based on a set of features such as sequence similarity in the kinase domain
and domain structure outside the catalytic domain, evolutionary conservation and known
biological functions (MANNING et al., 2002). This classification clusters the kinases into
11 major groups that can be subdivided further into families and subfamilies. Table 1
presents a short description for each of the groups in the classification scheme.

1.1.3 Phosphorylation Reaction

Phosphorylation involves the transfer of a phosphate from ATP onto a particular
amino acid within a protein. ATP is a source of chemical energy for the cell (BOYER,
1998) and is formed by two main chemical units, adenosine and phosphates (Figure 1).
While the covalent bonds in the adenosine part are stable, the triphosphate is quite labile
and reactive, allowing some proteins to transfer the gamma (γ) phosphate to the end of a
specific amino acid. The three phosphates in ATP are connected by oxygens to each other
and there are also negatively charged oxygens on the side of each phosphate. This highly
negative charge density destabilizes the molecule and the electrostatic repulsion makes it
a favorable high-energy reaction. A set of conserved residues on the binding pocket region
of the kinase play key roles in the transfer of the phosphate group to a target protein.

Figure 2 summarizes the steps of the phosphorylation mechanism of B-Raf kinase.
In step 1, binding of ATP to the kinase is strengthened by the presence of Mg2+ ions in
the active site and an Asparagine in position 581 (Asn581). This induces the formation of
the transition state of the phosphoryl reaction due electrostatic interactions that stabilise
the ATP molecule in optimal orientation in the active site of the kinase (YU et al., 2011).
An Aspartic Acid in position 576 (Asp576) deprotonates the Ser/Thr residue of the target
protein. The negatively charged oxygen in the side chain of Ser/Thr of the target protein
nucleophilic attacks the gamma phosphate of ATP in step 2. A Lysine residue in position
578 (Lys578) helps to preserve the conformation of the kinase when the attack to the
gamma phosphate occurs. The magnesium complex formed in step 1 is broken down in
step 3 and the Asp576 deprotonates releasing a proton (H+). The products of the reaction
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Figure 1 – ATP molecule structure and chemical reaction.

The molecule is divided into two parts: adenosine and phosphates. The phosphates are
labeled as alpha (α), beta (β) and gamma (γ). Some enzymes are able to remove the γ
phosphate from an ATP molecule and add it to the end of specific amino acids in a process
known as phosphorylation.

(Adenosine Diphosphate, also known as ADP, phosphorylated target protein and the
kinase) are released in the last step (HANKS; HUNTER, 1995).

1.1.4 Conserved Structural Features of Kinases

Even though at the sequence level kinases are highly diverse, the core of protein
kinases adopt a common fold with two well conserved subdomains, also known as N-
terminal lobe and C-terminal lobe (Figure 3B). The N lobe is comprised of five strands
of antiparallel β sheets (β1, β2, β3, β4 and β5) and one α-helix, called C helix. The
larger C lobe is comprised of six α helices (αD, αE, αF, αG, αH and αI) and also two
short antiparallel β sheets (β7 with β8 and β6 with β9). These two lobes are connected
by a hinge region that allows the two lobes to articulate (Figure 3C). Studies suggest
that role of this hinge region is vital for the enzyme to toggle between open and closed
conformations as it goes through the catalytic cycle (JOHNSON; NOBLE; OWEN, 1996;
KORNEV et al., 2006).

The ATP binding site is situated at the interface of these lobes and conserved
residues in these two regions (Figure 3D) are essential for the phosphorylation process to
occur (HANKS; QUINN; HUNTER, 1988; GIBBS; ZOLLER, 1991). A glycine-rich loop
between β1 and β2 extends on top of ATP and then a Lysine residue in β3 binds α and β
phosphates to keep the ATP molecule in place (HUSE; KURIYAN, 2002). If a mutations
occurs in any of these regions the kinase will not be able to bind ATP and consequently it
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Figure 2 – Phosphorylation mechanism of B-Raf kinase in 4 steps.

Mg2+ íon (colored in pink) and Asn581 residue in the ATP binding site of the kinase
help stabilise the ATP molecule (colored in orange). The protein target (colored in
blue) binds to the substrate pocket of the kinase (colored in black) near Asp576 of the
kinase such that it can deprotonate the Ser/Thr side chain of the target protein. Step
2 shows the nucleophilic attack of the negatively charged Ser/Thr of the target protein
to the gamma phosphate of ATP. The magnesium complex with the three phosphates
is disassembled on the phosphoanhydride bond between beta and gamma phosphates,
and Asp576 deprotonates in step 3. Lastly, the products of the reaction (ADP molecule,
phosphorylated target protein and kinase) are released in step 4. Modified from <https:
//commons.wikimedia.org/wiki/File:B-Raf_Phosphorylation_Mechanism.png>.

https://commons.wikimedia.org/wiki/File:B-Raf_Phosphorylation_Mechanism.png
https://commons.wikimedia.org/wiki/File:B-Raf_Phosphorylation_Mechanism.png
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will lose its phosphorylation activity. An interaction between a conserved Glutamic Acid in
C helix interacts with the Lysine from β3 is also important for keeping the conformational
stability of the kinase.

On the other side of the binding pocket there is a highly conserved DFG motif
(Aspartic Acid (D), Phenylalanine (F) and Glycine (G), respectively) in the loop that
connects strands β1 and β2. This motif is the start of a large loop called activation
loop. The amino acid sequence in this loop determines whether the kinase will recognise
Tyrosines/Serines or Threonines.

Finally, a YRD motif, or HRD in many kinases (Tyrosine/Histidine (Y/H), Arginine
(R) and Aspartic Acid (D), respectively), in the catalytic loop on C lobe is another crucial
region in protein kinases due a conserved Aspartic Acid responsible for the actual transfer
of the gamma phosphate from ATP onto a substrate Serine/Threonine or Tyrosine. If a
mutation occurs in this Aspartic Acid the kinase will still bind to ATP, but it will not
actually transfer a phosphate (JOHNSON et al., 1998).

1.2 Activating Mutations in Kinases

Single-nucleotide variants (SNVs) are mutations in a single nucleotide that occur
at a specific positions in the genome. Such variations are crucial for evolution by the
introduction of diversity into genomes. This work is particularly interested in SNVs that
occur within coding sequences of genes, in other words, single point mutations that fall
in regions of the genetic code that encode proteins. These coding SNVs can be further
grouped into Synonymous and Non-synonymous mutations.

Synonymous substitutions, often called silent mutations, are those that the variation
of one base for another within a protein-coding portion of a gene does not alter the produced
amino acid. This is possible because the proteins are encoded by "triplets" of nucleotides,
called codons, that are responsible for adding a particular amino acid to the protein chain.
However, due the redundancy of the genetic code, different codons code for the same
amino acid, as summarized in Figure 4. For example, all codons starting with GG (GGA,
GGC, GGG and GGU) are translated to the amino acid Glycine, making those codons
synonyms. In this sense, a mutation that alters a nucleotide but produces a synonymous
codon is a silent mutation (CHAMARY; HURST, 2009).

Unlike Synonymous SNVs, Non-synonymous single-nucleotide variants (nsSNVs)
within the protein coding regions of the genome replaces the amino acid at specific positions
and can have two effects: a codon that codes for a different amino acid (missense mutations)
or the introduction of a stop-codon that results in a truncated protein (non-sense mutation).

As mentioned in section 1.1.1, protein kinases are involved in many complex
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Figure 3 – FGF Receptor 2 (FGFR2) kinase in complex with ATP analog molecule (PDB:
2PVF).

A) depicts the surface of the kinase and the binding site highlighted in red with the
ATP analog bound. B) highlights the two lobes that comprise the kinase core structure,
N-terminal Lobe (light gray) and C-terminal Lobe (light blue). C) shows the cartoon
representation of the same molecule with the conserved secondary structures identified
for the N lobe (β1, β2, β3, β4, β5 and C helix) and C lobe (αD, αE, αF, αG, αH, αI,
β6, β7, β8, β9). The hinge loop which connects both subdomains is colored in pink, the
loop that contains HRD motif is highlighted in cyan and the activation loop is colored in
green. D) displays a closer look at the binding site with conserved regions and important
residues highlighted. The Glycine-rich loop on top of the ATP-like molecule is colored in
light pink. The Lysine 517 responsible for binding the beta phosphate is colored in yellow.
The Glutamic Acid 534 responsible for stabilization of the binding site is colored in green.
The DFG motif necessary for transferring the phosphate to the protein is colored in purple.
The activation loop, in which the DFG motif is contained is colored in red. The HRD
motif containing an Aspartic Acid (626) residue that also plays a role in transferring the
phosphate from the ATP to the protein is colored in light blue.
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Figure 4 – Genetic code table.

The outer columns and row present the letter options for a codon. The table summarizes
all combinations and what they implicate. For example, a UAU codon will be coded as
a Tyrosine (Y), while UAA will be identified as a stop signal to translation. The table
also shows that most amino acids can be generated by more than one 3 letter sequence.
Source: "The genetic code," by OpenStax (2015).

cellular processes and because of that they need to be tightly regulated. The introduction
of dominant activating (gain of function) mutations in these proteins are associated with
disturbance of that regulation due the hyperphosphorylation of their targets, contributing
to the transformation of proto-oncogenes into oncogenes. For example, Hairy Cell Leukemia
(HCL) is a rare and slow-growing blood cancer in which the bone marrow produces too
many B cells (lymphocytes). A recent study reported that an activating mutation in the
BRAF kinase, in which a Valine in position 600 is replaced by a Glutamic Acid, plays key
role in the development of HCL and is also related to the cascade activation of three other
kinases: RAF, MEK and ERK (TIACCI et al., 2017).

The development of small-molecule kinase inhibitors has therefore been seen as
an attractive alternative to conventional (cytotoxic) chemotherapy. The goal of these
inhibitors is to reduce the activity of kinases that promote cancer development, survival or
metastasis (GHARWAN; GRONINGER, 2015). The mechanisms by which the inhibition
is performed may vary from simple ATP-competitive small-molecules, such as gefitinib
that have been used for treatment of non-small-cell lung cancer through the inhibition of
the Epidermal Growth Factor Receptor (EGFR), to more complex and flexible allosteric
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inhibitors that can bind either to the kinase domain or to sites outside the kinase domain
(ALBANAZ et al., 2017).

However, studies have shown that activating mutations have also been identified
to contribute for the development of mechanisms of resistance to treatments with these
kinase inhibitors. For instance substitutions of an Aspartic Acid in position 1067 by either
a Tyrosine, Alanine or a Valine were identified to confer resistance to PI3K inhibitors used
in the treatment of breast cancer to suppress the activated pathway of Phosphoinositide
3-kinase (PI3K) (NAKANISHI et al., 2016).

1.3 Computational Studies for Predicting Effects of Mutations
The development of databases with experimental biological data have been crucial

in the field of bioinformatics. This has allowed scientists to access a large variety of relevant
biological information from a vast range of organisms, which supported the development of
computational approaches that help to compare, understand and elucidate major challenges
in the field based on curated data (BAXEVANIS; BATEMAN, 2015).

Several computational approaches built upon different biological assumptions
and applicability for unraveling genotype-phenotype correlations have been proposed for
predicting the effects of mutations. These methods can be broadly classified into those
that explore effects of mutations based on the amino acid sequence of a protein, and those
that analyze the structural information of proteins in an attempt to elucidate mutation
mechanisms and molecular effects.

1.3.1 Sequence-based Methods

The two main methods used by clinical geneticists to study the effects of coding
mutations in the human genomes are SIFT (NG; HENIKOFF, 2001) and Polyphen-2
(ADZHUBEI et al., 2010). The predictions from these two methods strongly rely on
information from the sequence of a protein, such as the analysis of residue conservation
at the mutated position. Both methods present a scoring system to denote how likely a
mutation is to affect protein function.

SIFT (Sorting Intolerant From Tolerant) is an algorithm that uses multiple sequence
alignment (MSA) information to predict tolerant and deleterious substitutions for every
position of a query sequence. It compares conserved residues within the protein family
and assesses specific amino acid positions for their ability to tolerate substitution by
different classes of amino acids. It assumes that structurally and functionally important
positions should be conserved in an alignment of the protein family, whereas non-essential
residues will be under less selective pressure and should thus appear more diverse across
the alignment. For example, if a position in a MSA of a protein family has only a conserved
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Aspartic Acid, as seen in protein kinases catalytic sites described in subsection 1.1.4, it is
assumed that substitution to any other amino acid must not be tolerated and that the
Aspartic Acid is a key residue for protein function at that specific position. As a result, a
mutation to any other amino acid residue will be predicted to be deleterious to protein
function. Likewise, if a position in an alignment contains amino acids with hydrophobic
side chains, such as Tyrosine, Isoleucine and Valine, SIFT infers that this position can only
contain amino acid residues with hydrophobic side chains, and substitutions to charged or
polar residues, will be predicted to affect protein function (NG; HENIKOFF, 2003). A
web server is freely available1 and allows users to run single and batch predictions as well
as downloading the source code of SIFT for local running.

PolyPhen-2 (Polymorphism Phenotyping) is a tool for predicting the impact of an
amino acid replacement on the structure and function of a human protein. In contrast
to SIFT, which relies solely on sequence conservation, PolyPhen-2 performs functional
annotation of single nucleotide variants using annotated UniProt entries, maps mutations
in coding regions to gene transcripts, extracts protein sequence annotations and structural
attributes, and builds conservation profiles. It then estimates the probability of the missense
mutations being damaging based on a combination of all these properties using a Naïve
Bayes classifier. PolyPhen-2 is available as stand-alone software and via a web server2

(ADZHUBEI et al., 2010).

Studies assessing the predictive value of SIFT and PolyPhen-2, for the analysis of
mutations identified in genes associated with human disease, have demonstrated that the
predictive outcome of both methods have to be analyzed with caution due relatively low
specificity especially when dealing with substitutions identified in genes that harbor gain-
of-function mutations (DOSS; SETHUMADHAVAN, 2009; VALDMANIS; VERLAAN;
ROULEAU, 2009; FLANAGAN; PATCH; ELLARD, 2010). Combinations of predictive
values were also evaluated for SIFT, PolyPhen-2 and a set of other predictive models, but
no significant improvement was observed (GNAD et al., 2013).

1.3.2 Structure-based Methods

Structure-based approaches, on the other hand, use protein structural data from the
3D space of a natively folded protein and try to predicts the impact of a mutation on this
space. The Protein Data Bank (PDB) (BERMAN et al., 2000) is one of the main sources
from which such data can be easily extracted. Even though these methods are essentially
based on the same structural data, they based their assumptions through broadly different,
but sophisticated, approaches, such as statistical potential function energy calculations

1 <http://sift.bii.a-star.edu.sg/>
2 <http://genetics.bwh.harvard.edu/pph2/>

http://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
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and mining of structural patterns.

SDM (Site Directed Mutator) is a method that relies on amino acid propensities
derived from environment-specific substitution tables for homologous protein families that
serve as input for a statistical potential energy function and encompass an evolutionary
view of the constraints from the immediate residue environment. This approach exam-
ines amino acid susceptibility for the wild-type in contrast with mutant proteins in the
folded and unfolded states in order to estimate the free energy differences between them
(TOPHAM; SRINIVASAN; BLUNDELL, 1997; WORTH; PREISSNER; BLUNDELL,
2011; PANDURANGAN et al., 2017). A freely available web server for running SDM is
available3.

mCSM is a machine learning method to predict the effects of missense mutations
that relies on structural signatures. mCSM was built upon a graph-based concept (PIRES
et al., 2011) used for representing network topology by distance patterns in the study
of biological systems. For this approach, residue environments are represented as graphs
where nodes are the atoms and the edges are the physicochemical interactions established
among them. Figure 5 shows the network topology of the contact graph for the structural
environment of Aspartic Acid in position 626 (Asp626) in the active site of the kinase
FGFR2 at different cutoff values. mCSM uses such graph representations to extract
geometric and physicochemical patterns that define the chemical environment used in the
supervised learning task (PIRES; ASCHER; BLUNDELL, 2014b). Like the other methods
presented, mCSM also has a freely available web server4. Such graph-based signatures
approach has been successfully employed on variety of tasks including large-scale receptor-
based protein ligand prediction (PIRES et al., 2013), quantification of effects of mutations
on protein-small molecule affinity in genetic disease (PIRES; BLUNDELL; ASCHER,
2016), antibody-antigen affinity changes (PIRES; ASCHER, 2016) and more recently for
predicting the effects of mutations on protein-nucleic acids interactions (PIRES; ASCHER,
2017). As it is the only available method that can accommodate within a single framework
all the different measures of interaction and stability. Specific attention will be made to its
use.

DUET is an integrated approach for predicting the effects of mutations on protein
stability that takes advantage of the distinct techniques and property evaluation between
SDM and mCSM by trying to combine them in a consensus prediction (PIRES; ASCHER;
BLUNDELL, 2014a). DUET unifies the results of the separate methods in an optimized
predictor using Support Vector Machines (SVMs) trained with Sequential Minimal Opti-
mization (SHEVADE et al., 2000). It is shown that DUET improves overall accuracy of
the predictions of both methods on their own. Like the other methods presented in this

3 <http://structure.bioc.cam.ac.uk/sdm2>
4 <http://structure.bioc.cam.ac.uk/mcsm>

http://structure.bioc.cam.ac.uk/sdm2
http://structure.bioc.cam.ac.uk/mcsm
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Figure 5 – Topology of the contact graph of FGF Receptor 2 (FGFR2) kinase protein
active site structure (PDB: 2PVF).

A B

C D

A conserved Aspartic Acid in position 626 (Asp626), plays a key role in phosphorylation as
described in previous section. Different cutoff values results in different distance patterns.
The residues surrounding the Asp626 with a maximum distance of 10Å are represented
by its alpha carbon as red spheres. A) presents the structure of the kinase catalytic site
with the Asp626 highlighted in green and the residues surrounding as red spheres in a
cartoon representation. B) shows the signatures for residues with a 5Å distance. C) shows
the signatures for the residues with a 7Å. Finally, D) shows the signatures for the residues
with 9Å distance from the Asp626.

section, DUET also is freely available as a website5.

1.4 Motivation

Advances in next generation sequencing techniques are leading to the identification
of many novel mutations, including in kinases. In the absence of experimental information,
it is currently quite difficult to identify mutations that are likely to lead to the loss of
control over kinase regulation, through the introduction of dominant activating mutations.
However, it is important to recognise these variants, as they can drive the development and
metastasis of many cancers. In this sense, the understanding of the impact of mutations
upon kinase activity has significant influence on patient outcomes and treatment.

Over the last two decades, several computational approaches have been proposed
5 <http://biosig.unimelb.edu.au/duet>

http://biosig.unimelb.edu.au/duet
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for predicting the effects of mutations from sequence and structure, built upon different
biological premises and used for unraveling genotype-phenotype correlations. While the
effects of mutations that disrupt activity have been well studied, no robust computation
methods for identifying activating mutations have been proposed.

This thesis aims to fill this gap by proposing a novel machine learning method
for predicting missense activating mutations in kinases from structure, sequence and
structure-sequence perspectives.
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Table 1 – Standard Kinase Classification Scheme.

Group name Description

AGC Named after the Protein Kinase A,G and C families (PKA,
PKC, PKG), this group contains many core intracellular sig-
naling kinases which are modulated by cyclic nucleotides,
phospholipids and calcium.

CMGC Named after another set of families (CDK, MAPK, GSK3
and CLK), this group has a diversity of functions in cell
cycle control, MAPK signaling, splicing and other unknown
functions.

CAMK Best known for the Calmodulin/Calcium regulated kinases
(CAMK) in CAMK1 and CAMK2 families, this also has several
families of non-calcium regulated kinases.

CK1 A small but ancient family. Originally known as Casein Ki-
nase 1 (from a biochemically assay with a non-physiological
substrate), and now renamed to Cell Kinase 1.

STE Homologs of the yeast STE7, STE11 and STE20 genes, which
form the MAPK cascade, transducing signals from the surface
of the cell to the nucleus.

TK (Tyrosine Kinase) This group phosphorylates almost exclusively on tyrosine
residues, as opposed to most other kinases that are selective
for serine or threonine

TKL (Tyrosine Kinase-
Like)

The group most similar to tyrosine kinases, but whose activities
are generally on serine/threonine substrates.

RGC Receptor Guanylate Cyclases. This small group contains an
active guanylate cyclase domain, which generates the cGMP
second messenger, and a catalytically inactive kinase domain,
which appears to have a regulatory function.

PKL Contains a number of diverse families that share a PKL fold
and catalytic mechanism with the ePKs but do not have
substantial sequence similarity. This group also contains a
number of lipid, sugar, and other small-molecule kinases.

Atypical Diverse group of kinases and candidate kinases with no struc-
tural similarity to ePKs.

Other This group consists of several families, and some unique kinases
that are clearly ePKs but do not fit into the other ePK groups.

Kinases were clustered by sequence similarity in the kinase domain and additional infor-
mation from domains outside the catalytic domain, evolutionary conservation and known
functions were also added. All the groups are named and a short description provided.
Source: Manning et al. (2002)
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2 Aims

2.1 General Aim
To propose, implement and validate a novel machine learning model for predicting

missense activating mutations in kinases based on sequence and structural data, aiming for
a better understanding of the role of these mutations in diseases and guide the development
of improved and more personalized treatment strategies.

2.2 Specific Aims
• Data acquisition and curation of experimentally characterized missense mutations in

kinases;

• Feature engineering in order to identify the most descriptive attributes from sequence
and structure levels;

• Training and testing supervised learning algorithms with the selected features;

• Development of a user-friendly, freely available web server with the best performing
predictive model;
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3 Materials and Methods

The methodology workflow of this work is composed of four main steps, as displayed
in Figure 6, in consonance with the four specific aims described in section 2.2. First of all,
experimental well-characterised mutations were collected from publicly available databases,
as discussed in section 3.1. This data had to be carefully curated in order to filter the
mutations that satisfied strict inclusion criteria for the subsequent in-silico analyses and
model development. All the data generated from the in-silico analyses of the mutations
was then supplied as input for training machine learning algorithms. The best performing
models were selected and a web server (Kinact) was developed. Each step is described in
detail in the following sections.

3.1 Data Sets

3.1.1 Data collecting

Driver mutations are somatic mutations that result in a selective advantage for
tumor cells, and for the scope of this work they will be divided into two groups: activating
and non-activating mutations. The non-activating mutations contain mutations that
disrupt activity (inactivating) and those that have no significant biological effect (neutral
mutations). On the other hand, activating or gain-of-function mutations result in the
increased activity of the kinase, and in proto-oncogenes can lead to their activation into
oncogenes.

The data set used in this work is derived from three different databases of mutations.
These are described below as well as how the data that comprises our mutation data set
was extracted from them.

Kin-Driver database (SIMONETTI et al., 2014) is a manually curated database
of driver mutations in protein kinases with experimental evidence demonstrating their
functional role. Kin-Driver is a MySQL relational database offering structural and sequence
data cross-referenced with the database of Catalogue of Somatic Mutations in Cancer
(COSMIC) (FORBES et al., 2009) and with a set of manually curated mutations. Each
mutation in Kin-Driver is displayed with its validation status (activating, inactivating
or unknown), the mutation type (missense, insertion, deletion, nonsense, frameshift or
indel), its absolute and relative frequencies in human tumors and the PubMed reference
describing a particular mutation as activating/inactivating. The Kin-Driver database is
available as a website1.
1 <http://kin-driver.leloir.org.ar/>

http://kin-driver.leloir.org.ar/
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Figure 6 – Methodology workflow.

The Kinact methodology can be divided into four steps to help fulfill the specific aims
from section 2.2. In step 1, data was collected from databases of mutations on kinases with
experimental evidence. The resulting data was then curated to identify which mutations
had their regions mapped into solved PDB structure. Each mutation was then classified
into one of the groups of kinases, described in section 1.1.2, with Kinannote (GOLDBERG
et al., 2013). In step 2 a set of in-silico analyses were performed with sequence and
structure information providing features that were used as input for training supervised
learning algorithms in step 3. After evaluating all the algorithms from previous step, in
the last step, a web server was implemented relying on the best models identified.
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The data curated from this database results in 318 mutations across 42 different
proteins, from which 191 were mapped to known protein structures in the Protein Data
Bank.

The second database used on data collection was ClinVar (LANDRUM et al.,
2014). This is a medical genetics resource that collects assertions of the relationships
between human sequence variations and phenotypes. Submissions to ClinVar may specify
the variation, the phenotype, the interpretation of the medical importance of the variation,
the date in which the interpretation was last evaluated and the evidence supporting
that interpretation, along with information about the author of the submission. For this
database, 40 missense mutations were collected from 14 different protein kinases with
clinical testing evidence. From these, 23 mutations could be mapped to experimentally
determined structures in the PDB. Of the remaining 17 mutations, 14 had no experimentally
determined structures, and 3 were present in disordered regions of known structures,
limiting structural analyses.

Lastly, the variations resource from the Ensembl project (HUBBARD, 2002) was
also used as a source for mining data on missense variations. The Ensembl project is a joint
effort by the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger
Institute (WTSI) intending to provide an extensive resource of high-quality genomic data
such as gene annotations, multiple sequence alignments, and whole genome variation,
alongside tools for cross-species genomics analysis, at both sequence and gene levels.
The Ensembl variation resource integrates data from a set of databases, such as dbSNP
(SHERRY, 2001) and COSMIC (FORBES et al., 2009), as well as information on associated
diseases and phenotype information when available. Only SNVs classified with clinical
significance as benign or pathogenic were extracted for analysis. SNVs marked as benign
were then classified as non-activating mutations, and those marked as pathogenic were
grouped into activating mutations. This identified 44 missense mutations, and all of them
could be mapped onto experimental structures in the Protein Data Bank.

Regarding the mapping of the mutations to experimental 3D structures in the PDB,
cross-reference entries from Uniprot (BAIROCH et al., 2005) were used to try to identify
protein regions that had been structurally resolved, particularly for the kinase domain.
Two questions were considered when looking for experimental structures. First, where no
structure associated with the Uniprot accession number was identified containing the wild-
type residue at the position specified in the mutation, a new attempt was performed with
the position mapped in PDBSWS2 (MARTIN, 2005). Second, when multiple structures
mapped the wild-type residue the decision of which structure to use was based on the
resolution of the experimental structure, which is a measurement of the level of detail
available within the electron density. Lower resolution indicates better quality structures.

2 <http://www.bioinf.org.uk/pdbsws/>

http://www.bioinf.org.uk/pdbsws/
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As discussed in section 1.1.4, protein kinases may present two conformational states which
impact its activating status. For this work, no consideration regarding this conformational
state was taken into account when selecting the 3D structure to be used as input for
the in-silico analysis, even though this could have an impact in the evidence provided
to train/test the machine learning algorithms described in section 3.2.2. This remains a
perspective for further evaluation in future implementations of this methodology.

Figure 7 – Summary of number of mutations per protein within the data set.
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The top 3 proteins with the highest number of mutations are BRAF, EGFR and CHK2
with 44, 36 and 30 mutations respectively. On the other hand, EPHA5, SRC, ROCK1 are
among the proteins with only one mutation identified. Bars are colored according to the
class of mutations: a blue bar indicates the amount of non-activating mutations and a red
bar indicates the number of activating ones.

The complete data set comprising mutations collected from Kin-driver, Ensembl
and Clinvar contained 384 mutations distributed across 42 proteins, of which 258 could
be mapped onto experimental structures. Figure 7 depicts the distribution of mutations
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across the different proteins in the data set, of which BRAF, EGFR and CHK2 are the top
3 most mutated proteins with 44, 36 and 30 mutations respectively. Figure 8 summarizes
other aspects of the data set, such as its composition and the class distribution over the
full set of mutations, and broken down into those mutations who could be mapped onto
protein structures, and those with no experimental structural information.

Figure 8 – Distribution of mutations and validations status.

A) shows the distribution of mutations regarding the subsets of origin (Kin-driver, Clinvar
and Ensembl) that were used for data collection. Most of the data was obtained from
Kin-driver followed by Ensembl and Clinvar. B) depicts the distribution of validation
status (activating, non-activating) of mutations across the entire data set. C) shows the
class distribution of mutations that have their region mapped onto 3D structures. These
comprise 258 missense mutations from all the data collected. Finally, D) displays the class
distribution over the mutations that were not structurally mapped into solved structures.

The distribution of mutations by the origin of the data, shows that most mutations
in the final data set are from Kin-driver, followed by Ensembl and Clinvar, with 317, 44
and 23 mutations respectively, as shown in Figure 8A. Regarding the distribution of the
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functional effects of these mutations, there is a predominance of activating mutations over
non-activating (Figure 8B). This uneven distribution is consistent over mutations that had
experimental structures available. On the other hand, for mutations without structural
information, the difference between the two classes is not as substantial (Figures 8C and
8D). This difference indicates that there is a selection bias in those mutations chosen
for experimental validation and poses a challenge in building a predictor for unbalanced
classes (SUN; WONG; KAMEL, 2009). Such bias can be justified by the role dominant
activating mutations play on driving the development of metastasis of many cancers and
other metabolic diseases, as discussed in section 1.2.

For mutations that did not have their region mapped into PDB structures, com-
parative modeling methods for predicting the 3D structure could greatly benefit future
implementations of this study. These methods perform predictions for a given sequence
(target) based primarily on its alignment to one or more protein of known structure
(templates) (MISURA; BAKER, 2005; FISER, 2004; WEBB; SALI, 2016). This approach
would benefit this work in future implementations by increasing the number of instances
on the sample set of mutations that could be included in feature engineering analysis,
especially due the highly conserved structures discussed in section 1.1.4. In addition, it
could also increase the amount of evidence to be used for training the machine learning
algorithms.

The final data set with all mutations mapped into PDB is available at the data
section of the Kinact web server3.

3.1.2 Data preparation

After data collection, all proteins were then assigned to a kinase super-group
according to the classification described in Table 1 by Kinannote 1. This is a computer
program that identifies and classifies members of the eukaryotic protein kinase superfamily.
It uses a Hidden Markov Model (HMM) in combination with a position-specific scoring
matrix for kinase identification, and subsequently a BLAST comparison with KinBase.
Figure 9, summarizes the distribution of mutations of the dataset over the kinase groups,
and also highlights the class distributions for each group. TKL (Tyrosine Kinase-Like) is
the most predominant group of kinases across the data set with 313 mutations, followed
by CAMK (Calmodulin/Calcium regulated kinases) with 58 mutations.

The abundance of mutations belonging to the TKL group is consistent with the
fact that this is the most diverse and polymorphic group of kinases, and contains a large
number of kinases that are difficult to classify. Among all the superfamilies in this group,
two of them are involved in a set of molecular functions that can affect tumor progression,
contributing directly or indirectly to cancer: MLKL (Mixed Lineage Kinases domain-Like)
3 <http://biosig.unimelb.edu.au/kinact/data>

http://biosig.unimelb.edu.au/kinact/data
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Figure 9 – Distribution of mutations over kinase groups.
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Tyrosine Kinase-Like (TKL) kinases have the highest number of mutations followed
by Calmodulin/Calcium regulated kinases (CAMK). The Other group presents only 2
mutations. Bars are colored according to the number of mutations on each class: red
represents activating and blue non-activating mutations.

and RAF (Rapid Accelerated Fibrosarcoma). MLKL is a superfamily of pseudokinases
that are involved in necroptosis along with proteins from the RIPK (Receptor-Interacting
Protein Kinases) superfamily, also in this group. Proteins in the RAF superfamily are
known for their role in embryogenesis, cell proliferation and differentiation (MANNING
et al., 2002). When looking at the distribution of proteins, summarized in Figure 7, the
protein with the largest number of characterised mutations is the B-RAF kinase, with 44
mutations, which is a member of the RAF superfamily. Despite the fact that by itself a
mutation in B-RAF is not sufficient for cancer development, studies have reported that
around 70% of human melanomas present mutations in this kinase (DHOMEN; MARAIS,
2007).

Since the distribution of classes of mutational effects over the full data set is notably
unequal (more activating mutations than non-activating), as shown in Figure 8B, and in
order to support model selection assessment and avoid biased estimations, described in
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more details in section 3.2, the data set was divided into training and testing subsets of
mutations. This partitioning of the data is a crucial step in order to evaluate the machine
learning algorithms separately across attributes, and also to assess the impact of each
attribute in the final models, avoiding overfitting. Figure 10 summarizes the distribution
of activating and non-activating classes of mutations used as input for training as well as
a separate independent testing set, as described in section 3.2.3, for mutations with only
sequence information (Figure 10A and 10B) and also for the ones with structural mapping
in the PDB (Figure 10C and 10D).

For both sample sets of mutations, with and without structural mapping into PDB,
due the limited amount of data and for the sake of generating more robust predictive
models when training the machine learning algorithms, described in section 3.2, a greater
amount of data was reserved for the training (70%) than for the testing (30%) sets. In
addition, when separating training and testing sets the uneven proportions of each class
was preserved, about 70% of activating and 30% of non-activating mutations.

3.1.3 Attribute generation

After data collection, kinase group assignment and preparation structural and
sequence attributes that will be used as evidence in the machine learning step were
generated, as will be further described in section 3.2.

The task of predicting and understanding the effects of mutations in proteins can
be accomplished using approaches that look at different biological attributes, each with
their own assumptions and limitations, as described in section 3.1. Protein structural
and sequence features have been the two most popular categories of attributes used by
computational methods. Sequence-based features have focussed predominantly on the
analysis of sequence residue conservation throughout a protein family and also of homologs
proteins (NG; HENIKOFF, 2003). By contrast, previous studies have used a wide range
of features that rely on structural data, including type of secondary structure, solvent
accessibility and dihedral angles (CHASMAN; ADAMS, 2001; GUEROIS; NIELSEN;
SERRANO, 2002). More sophisticated approaches, such as modeling the atoms of a protein
structure as a graph and extracting distance patterns, also known as structural signatures,
have also served as input for machine learning algorithms for predicting effects of mutations
on protein stability and interactions, described on section 1.3.2. A combination of sequence
and structural information has also been proven to be valuable when predicting damaging
mutations (ADZHUBEI et al., 2010). Based on these assumptions, the attributes used in
this work were categorized into six different groups. These categories are summarized in
Table 2.
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Figure 10 – Distribution of validations status class of mutations in the data set for training
and testing sets.

Distribution of validations status class of mutations in the data set for training and testing
sets. The complete set of mutations were divided into two groups. The first comprising all
384 mutations identified during data collection, as described in section 3.1.1. The second
group contains only those mutations that had their region mapped into structures on
the PDB. Each group is split into training and testing data for the machine learning
algorithms as discussed in sections 3.2.3. A) displays the distribution of the two classes of
mutations (activating, non-activating) over the set of mutations used in training for data
without structural mapping. B) presents the distribution of the two classes of mutations
for the testing on the same type of data. C) and D) introduces the class distribution for
training and testing, respectively, for mutations that had their region mapped into 3D
structures of PDB.
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Table 2 – Description of categories of attributes generated presenting short summary of the attributes and the data and tools used for their
calculation.

Category name Attributes Rely on Tools References

Wild-type
residue environ-
ment

Type of secondary structure, solvent accessibility,
residue depth, dihedral angles, flexibility, minimum
distance to catalytic sites and relative b-factor

Structure Biopython, ENCoM, CSA Chapman e Chang (2000),
Frappier, Chartier e Na-
jmanovich (2015), Porter,
Bartlett e Thornton (2004)

Wild-type
residue interac-
tions

clash, covalent, Van der Waalsvdw clash, vdw, prox-
imal, hydrogen bond, weak hydrogen bond, halogen
bond, ionic, metal complex, aromatic, hydropho-
bic, carbonyl, polar hydrogen bonds without angles,
weak polar weak hydrogen bonds without angles

Structure Arppegio Jubb et al. (2017)

Structural signa-
tures

pattern of distance among the atoms of the struc-
ture based on graph modeling

Structure mCSM Pires, Ascher e Blundell
(2014b)

Stability change
upon mutation

Variation of Gibbs Free Energy - ∆∆G Structure SDM, mCSM and DUET Topham, Srinivasan e Blun-
dell (1997), Worth, Preiss-
ner e Blundell (2011), Pan-
durangan et al. (2017), Pires,
Ascher e Blundell (2014b)
and Pires, Ascher e Blundell
(2014a)

Probability
of damaging
protein function

Tolerated or deleterious mutations that affects pro-
tein function and also pharmacophores calculations
based on protein sequence

Sequence Polyphen and SIFT Adzhubei et al. (2010) and
Ng e Henikoff (2001)

∆Pharmacophore Pharmacophore difference based on protein se-
quence

Sequence Biopython Chapman e Chang (2000)
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3.1.3.1 Residue Environment

Wild-type residue environment attributes are a set of conformational characteristics
based on the structural data deposited into the PDB. To assist the calculation of features
associated with the amino acid residue mutated in this category, such as type of secondary
structure (α-helix, β-sheet, bend, turn, etc), relative solvent accessibility, residue depth,
dihedral angles, and also a measure of the relative value for the isotropic b-factor among
all the atoms on the wild-type residue of the mutation, the Biopython library was used.
Biopython (CHAPMAN; CHANG, 2000) is a set of open source bioinformatics tools
written in Python, an object-oriented scripting language, based on the highly successful
Bioperl project (STAJICH, 2002).

The minimum distance from the mutated residue among all residues in the catalytic
site of the molecule was calculated using the Catalytic Site Atlas (CSA) (PORTER;
BARTLETT; THORNTON, 2004). CSA is a database documenting enzyme active sites
and catalytic residues mapped to 3D structures. It defines a classification of catalytic
residues which includes only those residues thought to be directly involved in some aspects
of the of the reaction catalyzed by the enzyme. It contains 2 types of entries: original
hand-annotated entries, derived from the primary literature and homologous entries, found
by sequence comparison methods to one of the original entries. In case of no entry identified
by CSA we added a default value of 30Å meaning that the residue is far away from any
catalytic site, given that studies assessing the degree of conservation of residues close to
the catalytic site have considered a maximum range of 12Å (BARTLETT et al., 2002),
and also a study about the anatomy of enzyme have also shown that buried active site
usually present channels, which helps access the site, with typical length > 15Å (PRAVDA
et al., 2014).

Lastly, the molecule flexibility feature was added to this category of attributes and
defined as the entropy value calculated by ENCoM. This tool uses a coarse-grained normal
mode analysis method that adds a layer information on its calculation which is the nature
of amino acids for predicting the effect of a single point mutation on protein dynamics
and thermostability resulting from vibrational entropy changes (FRAPPIER; CHARTIER;
NAJMANOVICH, 2015).

3.1.3.2 Residue Interactions

The second category of features also rely on the 3D structure of the protein and
provides information on the interatomic interactions that the mutated residue establish
with other residues nearby, for instance hydrogen and covalent bonds, and hydrophobic
interactions. Such attributes are calculated with Arpeggio which is an application and also
a web server for calculating interactions within and between proteins and protein, DNA, or
small-molecule ligands, including van der Waals’, ionic, carbonyl, metal, hydrophobic, and
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halogen bond contacts, hydrogen bonds and specific atom-aromatic ring (e.g., cation-pi)
(JUBB et al., 2017).

3.1.3.3 Structural Signatures

Structural signatures based on mCSM (PIRES; ASCHER; BLUNDELL, 2014b),
described in subsection 1.3.2, were also clustered into a category of attributes. These were
thought to be in a separated group due the great amount of signatures (784) generated
for each mutation. These signatures used in this work can be divided into two major
components. First of all, the graph based atom distance patterns using a minimum cutoff
of 1Å and a maximum distance of 10Å with a step variation of 0.5Å. It also includes
atom pharmacophoric changes between the wild-type and mutant residue residue using
PMapper classification that comprises eight possible classes: hydrophobic, positive, negative,
hydrogen acceptor, hydrogen donor, aromatic, sulphur and neutral.

3.1.3.4 Stability Changes Upon Mutations

Stability changes upon mutations is the last category that relies only on 3D protein
structure data and provides information on the variation of stability on protein molecules
caused by mutations that can lead to malfunction or even result on disease based on
variation of Gibbs Free Energy (∆∆G) value. Here mCSM was also used, given the fact
that it also produces ∆∆G change predictions based on its signatures, alongside with the
outputs of SDM and DUET that were described earlier as well.

3.1.3.5 Probability of Damaging Function and Pharmacophores

Finally, aiming to add a complementary group of features to amplify the search
space of the supervised learning algorithms, described in following sections, the probability
estimations of effects of mutations on protein function of SIFT and Polyphen were included
as a different category. These are said to be complementary due the fact that they
based their calculations on sequence information of proteins. In addition, each one of the
20 amino acid residues were represented by a vector with eight pharmacophores types:
hydrophobic, positive, negative, hydrogen acceptor, hydrogen donor, aromatic, sulphur
and neutral. These are known to be a collection of steric and electrostatic features required
to ensure optimal interactions between groups of compounds and its biological target
structure, according to the International Union of Pure and Applied Chemistry (IUPAC).
For this work, wild-type and mutant residue pharmacophores are compared, and a vector
with the difference between the two is also added in this category of attributes. These
pharmacophores attributes are similar to the ones added to the graph signature of mCSM
based in the descriptions of PMapper.



3.2. Machine Learning 45

3.2 Machine Learning

3.2.1 Attribute selection

Given the high-dimensional feature space being investigated in this work, precau-
tions were necessary in order to avoid the curse of the dimensionality and also model
overfitting during supervised learning. These issues can have a negative effect not only
on model generalization but also on performance during training, which could make the
classification task unfeasible (ZAKI; MEIRA, 2014).

Principal Component Analysis (PCA) (ABDI; WILLIAMS, 2010) was performed
over the data set of mutations to reduce the number of attributes from the category of
structural signature features as an attempt to extract the most relevant and descriptive
ones to be used alongside with the attributes of the other categories. This approach was
implemented only on this category due to the great number of features in it (784). PCA is
a mathematical algorithm that reduces the dimensionality of the data while maintaining
the best variation in the data set. It does that by identifying directions, known as principal
components, in which the variation in the data is maximal. Such direction is also the one
that minimizes the mean squared error (JOLLIFFE, 2002).

An implementation of the algorithm execution is available in the Weka toolkit
(HALL et al., 2009), and was used in this work. It is possible to use attributes from all
groups detailed in Table 2 without compromising model scalability and generalization in
the supervised learning step. Table 3 summarizes the number of attributes for each class
of attributes that were used as evidence for training the supervised learning algorithms,
described in section 3.2.2, after the reduction of the number of attributes within the
structural signatures category. The total number of features is 86 in which 76 of these are
structural-based and 10 sequence-based.

Table 3 – Number of attributes used as evidence for training supervised learning for each
class of attributes after dimensionality reduction.

Category name # Attributes

Wild-type residue environment 8

Wild-type residue interactions 15

Structural signatures 50

Stability change upon mutation 3

Probability of damaging protein function 2

∆Pharmacophores 8
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3.2.2 Supervised Learning

Supervised learning is a machine learning task that aims to infer a function f(x)
from a set of labeled training data, also named training examples. The training data takes
the form of a collection of (x, y) pairs, in which x is usually represented by a vector of
features and y is the known output (or class) for a given x. The goal is to produce a
prediction in response to a query with an unknown label, based on all the information
extracted from the training step (JORDAN; MITCHELL, 2015). A variety of supervised
learning algorithms has been proposed to estimate this type of mapping and this study
will focus on four of them.

Multi-Layer Perceptron, also known as MLP, is a feed-forward neural network,
consisting of a number of units, called neurons, which are connected by weighted links.
The units are organized in several layers, namely an input layer, one or more hidden layers,
and an output layer. The input layer receives an external activation vector, and forwards
it via weighted connections to the units in the first hidden layer. These compute their
activations and pass them to neurons in succeeding layers. From a distal point of view,
an arbitrary input vector is propagated forward through the network, finally causing an
activation vector in the output layer (RIEDMILLER, 1994). The entire network function,
that maps the input vector onto the output vector is determined by the connection weights
of the network.

Classification via regression handles the discrete classes (nominal) of the data set
as continuous labels (probability) in a probabilistic classification manner (FRANK et al.,
1998). The classification is achieved by defining a threshold, for example a prediction with a
probability ŷ < 0.5 indicates non-activating and consequently ŷ > 0.5 results in activating
output prediction, also known as linear decision boundary. Thus, algorithms that use this
type of classification seeks for a model that generates the greatest approximate probability
function that separates the classes in the dataset. In this sense, for the scope of this work,
two algorithms were used Decision Trees M5P (KOTSIANTIS et al., 2007) and Gaussian
Process (GP) with Radial Basis Functions (RBFs) (MACKAY, 1998).

A decision tree is an algorithm that simulates trees that classify instances by sorting
them based on feature values. Each node in a decision tree represents a feature in an
instance to be classified, and each branch represents a value that the node can assume.
Instances are classified starting at the root node and sorted based on the feature values.
The basic assumption made in the decision trees is that instances with different classes
have different values in at least one of their features. One of the most useful characteristics
of such algorithm is their comprehensibility. One can easily understand why the algorithm
classifies an instance as belonging to a specific class by just looking at the generated tree
and analysing its rules (KOTSIANTIS; ZAHARAKIS; PINTELAS, 2006). In this sense,
the M5P algorithm uses model trees, which are binary decision trees with linear regression



3.2. Machine Learning 47

functions at the leaf nodes, that can represent any piecewise linear approximation to an
unknown function. It usually builds and ordinary decision tree, using splitting criterion the
maximization of the intra-subset variation of the target value and after that it prunes this
tree back by replacing subtrees with regression functions wherever this seems appropriate
(KOTSIANTIS et al., 2007).

Gaussian Process provides an alternative way of characterizing functions that does
not require committing to a particular function class, but instead to the relation that
different points on the function have to each other. It states that all uncertainty about any
input variables, or combination of variables, is characterized by Gaussian distributions.
GPs parameterize the probability in terms of a NxN covariance matrix, which is generated
based on distance functions, also known as kernel, calculated for every pair or the N
total observed points. In this work we used the RBF as kernel for the GP (RASMUSSEN;
WILLIAMS, 2006; MACKAY, 1998).

The last classification algorithm used in this work was Random Forest (RF). This
algorithm uses a combination of decision tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribution for
all trees in the “forest”. The generalization error for forests converge to a limit as the
number of trees in the forest become large (BREIMAN, 2001). It is a fast and relatively
easy to implement algorithm, produce highly accurate predictions and can handle a very
large number of input variables without overfitting, given that all the trees are built from
scratch without any previous information on the other trees in the forest and also the final
prediction is the average of all the predictions for each tree. In fact, it is considered to be
on of the most accurate general-purpose learning techniques available.

All the algorithms described previously are implemented and available through
the Waikato Environment for Knowledge Analysis, also known as Weka, Toolkit (HALL
et al., 2009) which allows researchers easy access to state-of-art techniques in machine
learning such as the ones presented so far in this work. For the scope of this work the
version 3.6 of Weka was used and for each algorithm the default parameters were preserved
during training. In this sense, this work could also benefit from further investigation over
parameter tunning for the supervised learning algorithms.

3.2.3 Cross-validation training

Evaluating classifiers induced by supervised learning algorithms is crucial for
selecting the best performing a classifier, capable of generalization also reducing chances
of overfitting from a given set and also to estimate its future prediction performance. The
estimation method used in this work is k-fold cross-validation. In k-fold cross-validation
the data set (D) is randomly split into k mutually exclusive subsets, known as folds,
D1,D2,...,Dk of approximately equal size. The classifier is trained and tested k times; each
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time t ∈ {1, 2, ..., k}, it is trained on D
Dt

and tested on Dt. The cross-validation estimate of
accuracy is the overall number of correct classifications, divided by the number of instances
in the data set.

The value of k is usually chosen to be 5 or 10. There is a special case, when k
is equal to the total number of instances in the data set, that is called leave-one-out
cross-validation, where the testing set comprises a single point and the remaining data
is used for training purposes (ZAKI; MEIRA, 2014). Figure 11, summarizes the k-fold
cross-validation with a k value of 5. Despite its almost unbiased estimates it has high
variance leading to unreliable estimates (EFRON, 1983). The results for each classifier
training phase presented in further section are based on k-fold cross-validation with k=10.

Figure 11 – k-fold cross-validation with k=5.

The data set is divided into 5 folds. The classifier is then trained and test 5 times varying
its training and test subsets. The final result is the average of all the 5 train and test.

For the scope of this work, the supervised learning algorithms were trained with the
full subset of training data, described in section 3.1.2, and the metrics to evaluate these
algorithms during their training step were generated based on 10-fold cross-validation. In
this sense, the model that is actually used for validation with the testing subset was built
using the full training set.

3.2.4 Evaluation Metrics for Classification Algorithms

For model evaluation, four metrics were used due the fact that each metric presents
its own limitations and a broader analysis of all of them together is better suited for
evaluating the models described in this work. The metrics are precision, recall, f-measure
(also known as f-score) and area under the ROC curve (AUC). These are well established
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and broadly used metrics for assessing the results of binary classification algorithms. Such
measurements are expressed based on the values of a binary contingency table, also known
as confusion matrix, where the classes are represented by convention with + (positive)
and - (negative) signs. This 2x2 matrix (actual versus predicted class) uses the raw counts
of the number of times each predicted label is associated with each real class. Figure 11,
presents an example of confusion matrix.

Figure 12 – Confusion matrix (actual x predicted).

True and False Positives (TP and FP) indicate the number of predicted positives that
were correct and incorrect, respectively. Similarly, True and False Negatives (TN and FN)
refer to correct and wrong predictions for negative class. The sum TP+FP+TN+FN is
equal to the total amount number of instances in the data set being used.

Precision denotes the proportion of Predicted Positive cases that are Actual Posi-
tives. It is defined by TP

TP+FP . On the other hand, Recall is defined as the proportion of
Predicted Positives cases that are Actual Positives over all Predicted Positives. Using the
convention described in Figure 12, it is defined as TP

TP+FN . F-measure is a combination
of Precision and Recall in a harmonic mean between them. This measure is defined by the
square of the geometric mean divided by the arithmetic mean. All of these metrics present
biases towards the predictions of positive class and ignore the performance in correctly
predicting the negative class. This is particularly true for data with classes that are not
balanced, such as the ones presented in this work (POWERS, 2011).

For a different perspective of analysis, given the bias problem with precision,recall
and f-measure, the measure of Area Under the ROC Curve (AUC or AUROC) was also used.
AUC considers the True Positive Rate (TPR), also known as sensitivity, that corresponds
to the proportion of positive data points that are correctly considered as positive; and
also the False Positive Rate (FPR) that corresponds to the proportion of negative data
that are wrongly considered as positive, regarding all negative data points. A Receiver
Operating Curve (ROC) is then plotted using TPR versus FPR and the AUC is the area
under such curve (ZAKI; MEIRA, 2014). Like precision, recall and f-measure, AUC has
its best result is 1 and the worse is 0. A random binary classifier would generate an AUC
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of 0.5.

3.3 Predictive Models (Structural, Sequence, Structural+Sequence)
Based on the classes of attributes and the supervised learning algorithms described

previously, three different predictive models were generated as an attempt to evaluate
the influence on each type of attributes on the final predictions. The first model uses
only the attributes that rely on protein sequence information and is mainly comprised
by PolyPhen-2 and SIFT predictions as well as pharmacophores calculations comprising
10 features. The second model uses only the attributes that were calculated based on
structural data, such as relative solvent accessibility, graph based signatures and wild-type
residue interactions (76 features in total). Finally, the third model was constructed based
on a combination of all attributes, relying on structure and sequence data which represent
the 86 features described in section 3.2.1. The results are present in the following section.
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4 Results and Discussions

4.1 Data Summary of Mutations Sample

The performance of a classifier is limited to the descriptive features used as evidence
during the training and testing processes. In this sense, one of the most important steps
in machine learning is identifying a set of predictive attributes to be used to train a
model. For the scope of this work, since it is dealing with binary classification (whether a
mutation is activating or non-activating), the attributes selected should help the classifier
to differentiate between the two classes. Figures 13 to 16 display the summary of attributes
distribution for each of the classes in the data set of mutations using boxplot representation.
Since the classes are not equally balanced in the data set, t-test is applied with a 95%
confidence interval for comparison (JAIN, 2015). Attributes with statistically significant
differences between the two classes are marked with a red asterisk (*).

Protein kinase transition state from active to inactive and vice-versa require that
the protein presents a minimum flexibility no matter if the kinase is activated or not.
The mechanisms by which the activating mutations affect kinases are associated with a
restriction in the transition from active to inactive, resulting in one conformational state
being favoured (WAN et al., 2004; SUTTO; GERVASIO, 2013). This transitional state is
directly affected by the molecule flexibility and here we address this with two features:
Entropy energy prediction and relative B-factor of the 3D structure.

Entropy energy predictions calculated by ENCoM show significantly differences
for the two classes of mutations. Wild-type 3D structures of proteins with evidence of
activating mutations have, in general, higher values of entropy and are consequently more
flexible than the structures with evidence of non-activating mutations (Figure 13).

On the other hand, the measure of relative B-factor indicates the relative vibrational
motion of the structure of the protein as whole. This value is calculated based on an simple
mean of the b-factor of all atoms within the PDB structure. Each atom has a b-factor
value which was experimentally measured during the process of refinement of the structure
and shows the amplitude of oscillation of each atom (WLODAWER et al., 2008). Higher
values of this feature imply more flexible structures.

Even though, both attributes describe similar characteristic of the molecule and
show significantly difference between the two classes of mutations, the results for the
relative B-factor points into a completely opposite direction when compared to entropy
energy predictions of ENCoM. This may be due to the set of extra attributes used by
ENCoM algorithms, such as the nature of the amino acids in the structure, since it also
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Figure 13 – Boxplots comparing the distribution of values on the classes activating and
non-activating for Wild-type residue environment attributes.
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A red asterisk denotes a significantly difference between mutation types (p-value < 0.05)
assessed via a t-test. In this case ENCoM entropy, relative B-factor and minimum distance
to catalytic sites calculated by CSA presented a significant difference.



4.1. Data Summary of Mutations Sample 53

uses the b-factor information within the structure of the protein in its prediction. Thus
some non-explicit relationship between b-factor and other attributes might be inversing
the relationship observed for both features in this work. Further investigation of this
relationship would benefit this work in future implementations.

Surprisingly, none of the stability changes predicted by the three methods discussed
here (mCSM, SDM and DUET) presented significant differences between classes. The
average predictions of both classes was slightly negative, indicating that the mutations
would likely lead to mild destabilisation of the protein structure. While not statistically
significant, in part due to the limited data for analyses, the activating mutations tended
to have more negative predicted changes in the Gibbs Free Energy of folding and stability,
suggesting that these mutations were more likely to lead to disruption of the local structure.
This is the opposite of what was expected given that recent studies with the EGFR kinase
have shown that activating mutations are more likely to lead to a more significant variation
on stability when compared to neutral mutations in which no apparent change was observed
(SUTTO; GERVASIO, 2013).

Regarding the distance to the catalytic site of the protein, both classes of mutations
occur close to the catalytic site on average (3Å or less), however activating mutations are
more densely distributed closer to the catalytic site, while non-activating ones values are
more condensed above the distance of 3Å. Both results are expected due the fact that some
studies (WAN et al., 2004; SUTTO; GERVASIO, 2013; BOSE et al., 2013) indicate that
mutations that somewhat alter the function of this type of protein and may also confer
resistance to kinase inhibitors occur in regions that are related or close to the catalytic
site of kinases. Such mutations can help the protein to be stabilized in its active state
conformations by making them more rigid.

For the interatomic interactions of the residue in the wild-type structure (Figure
14, only the number of weak hydrogen bonds in which the residue participates presented
a significant difference for protein structures of both classes of mutations. This type of
interaction is important for the stability of the protein during the folding process alongside
with hydrophobic and Van der Walls for example, but none of them show any explicit
difference.

Figure 15 depicts the value distributions of graph-based signature attributes gener-
ated with mCSM and selected with PCA. In this case, only the distance pattern represented
by atoms labelled as negative associated with sulphur atoms closer than 7.5Å, showed sig-
nificant difference. The distribution for both classes are centered in zero with a few outliers
that could be the reason why this specific signature presented such explicit difference.

According to Figure 16, activating mutations are more likely to be classified as
pathogenic, which is expected due the bias problem towards that class already mentioned
in previous section, given that the distribution of values is closer to 1. Regarding non-
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Figure 14 – Boxplots comparing the distribution of values on the classes activating and
non-activating for wild-type residue interactions attributes.
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A red asterisk denotes a significantly difference between mutation types (p-value < 0.05)
assessed via a t-test. In this case only the number of weak hydrogen bonds presented a
significant difference.

activating mutations, the mean is as close as the mean for the activating class, but the
values are more spread towards zero, which is also expected given that non-activating
mutations, as discussed in section 3.2.1, are in this study a combination of inactivating
and neutral mutations. In other words, some of the non-activating mutations can indeed
be pathogenic if they act as tumor suppressors for example, and some of them can also
be classified as benign by PolyPhen-2 (scores closer to 0) given that they are neutral
mutations.

Notably, SIFT did not show the same difference even though both methods rely
mainly on the same type of data. This can be explained due the extra 3 structural attributes
used by PolyPhen-2, when available, as evidence for its model. In this case both classes
presented a distribution concentrated close to zero indicating that these are mutations that
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Figure 15 – Boxplots comparing the distribution of values on the classes activating and
non-activating for structural signatures attributes.
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A red asterisk denotes a significantly difference between mutation types (p-value < 0.05)
assessed via a t-test. In this case only one of the signatures in this image presented a
significant difference. Only 10 signatures are displayed in this figure due to visual purposes.
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might affect protein function and consequently would not be tolerated. Alongside with
PolyPhen-2 and SIFT the features representing the pharmacophore difference between
the wild-type residue and the mutated residue are also summarized in Figure 16. For
this class of features the hydrogen bond donor and positive pharmacophores presented a
significant difference between mutation classes. However, for the positive pharmacophore
the distribution is very scattered and no apparent information can be inferred, and the
difference identified by the t-test might be an artifact. In the case of hydrogen bond donor,
for both classes, the values are distributed over zero with mutations in which there is a
gain or loss of less than two hydrogen bond donor for both classes. Overall, there is no
substantial difference for the other pharmacophores.

Figure 16 – Boxplots comparing the distribution of values on the classes activating and
non-activating for stability change upon mutations and also probability of
damaging protein function attributes.
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A red asterisk denotes a significantly difference between mutation types (p-value < 0.05)
assessed via a t-test. In this case PolyPhen-2 probability and 3 pharmacophores presented
a significant difference.

From the boxplots showed above, many features seem to be "useful" for classification
task, specially the ones that present significant differences statistically, but none of them
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perfectly separates the classes in the data set. This assumption indicates that multiple
features should be used as evidence for the machine learning algorithms described in
section 3.2.

Most features present no significant difference between the two classes indicating
that they do not directly correlate to the classes in the data set. However, providing
different types of data to algorithms of classification can have a positive impact in their
results due to the fact that distinct features capture more diverse types of information.
Moreover, during the process of learning, features are combined and transformed as an
attempt to identify implicit and non-trivial correlations. None of the features were removed
from the selected features before training the supervised learning algorithms, even though
some of them do not show apparent significant distinction between the two classes.

4.2 Model Assessment

The four supervised learning algorithms discussed in section 3.2.2 were evaluated
for each type of features with the sample set of mutations described in section 3.1. The
assessment was based on the four metrics of evaluation: precision, recall, f-measure and
AUC. The results are evaluated separately for each type of data and a final section
was dedicated to comparisons among the best performing results and also with the well
established methods: SIFT and PolyPhen-2

4.2.1 Sequence-Based

For the models resulted from training the supervised learning algorithms with
features calculated based on the sequence data available for proteins, the Random Forest
algorithm presented the best results for most of the metrics used for evaluation. The
AUC of 0.77, for instance, outperforms MLP and the algorithms that use classification via
regression, Decision Tree with M5P algorithm and Gaussian Process, which achieved AUCs
of 0.61, 0.69 and 0.64, respectively. The same is observed for precision and F-measure for
both classes. The results are summarized in Table 4.

The algorithms trained and evaluated on 10-fold cross-validation with only sequence-
based features as evidence, in general, struggle when dealing with mutations that are
instances of the class non-activating, similar behaviour from what was discussed in section
1.3.2 for SIFT and PolyPhen-2. For example a precision of only 44% for Multi-Layer
Perceptron algorithm and a Recall of 20% for classification via regression with Gaussian
Process were achieved. Feature selection did not show any apparent improvement of the
performance for this type of data, which indicates that more information is necessary for
the algorithms to improve performance.
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Table 4 – Results for all classifiers trained with sequence-based features in each one of the
mutation classes.

Classifier Precision Recall F-Measure AUC Class

MLP 0,730 0,758 0,744 0,608 Activating

MLP 0,443 0,407 0,424 0,608 Nonactivating

M5P 0,754 0,857 0,812 0,697 Activating

M5P 0,643 0,407 0,429 0,697 Nonactivating

Gaussian Process 0,679 0,833 0,748 0,636 Activating

Gaussian Process 0,367 0,196 0,256 0,636 Nonactivating

Random Forest 0,775 0,877 0,823 0,769 Activating

Random Forest 0,659 0,482 0,557 0,769 Nonactivating

Best performing model is highlighted.

Blind tests were performed to further validate the train models and assess their
generalization ability. The results, summarized in Table 5, show that Random Forest has
the best performance when classifying activating mutations. Even though, it does not have
the best score for AUC, 0.70 achieved by classification via regression with Gaussian Process,
the Random Forest algorithm presented better Recall and Precision for non-activating
mutations, being a more balanced predictor.

Table 5 – Results for all classifiers tested with sequence-based features in each one of the
classes.

Classifier Precision Recall F-Measure AUC Class

MLP 0,706 0,681 0,684 0,617 Activating

MLP 0,462 0,500 0,480 0,617 Nonactivating

M5P 0,737 0,875 0,800 0,560 Activating

M5P 0,333 0,167 0,222 0,560 Nonactivating

Gaussian Process 0,763 0,706 0,729 0,633 Activating

Gaussian Process 0,500 0,205 0,333 0,633 Nonactivating

Random Forest 0,771 0,844 0,806 0,668 Activating

Random Forest 0,444 0,333 0,381 0,668 Nonactivating

Best performing model is highlighted.

Again, the unbalanced characteristic of the data set might be the main reason for
lower scores, specially for the less frequent class (non-activating). This is also observed for
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the weighted average of F-measure for all classifiers (Figure 17). Even though, Classification
via regression using M5P and Random Forest performs slightly better than the other
classifiers on training (70% for both) and also on blind-test (51% and 50%, respectively),
all algorithms performed similarly regarding this metric.

Figure 17 – Comparison of weighted average for F-measure of all algorithms that used
only sequence-based features as evidence.

Classification via regression with M5P algorithm has the best performance in training
(left) and also on Blind-test (right), achieving a score of 70% and 51%, respectively, and it
is closely followed by Random Forest with also 70% on training and 50% on blind-test.
However, all algorithms present similar F-measure values, mostly due the poor performance
when dealing with instances of non-activating class. A red asterisks identifies the best
performing algorithm.

4.2.2 Structure-Based

The algorithms trained on 3D structural-based features performed in general better
than the ones that used only sequence-based data. The results over training are compiled
in Table 6 and show that classification via regression of Decision Trees with the M5P
algorithm presented the best results for all the four metrics for both classes. The lowest
score for this algorithm was a Recall of 72% for non-activating class, even though it confers
a significantly increase in comparison with the sequence-based predictor. With this set of
features, the least balanced predictor was the Classification via regression using Gaussian
Process that produced Recall and F-measure of only 23% and 38%, respectively.
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Table 6 – Results for all classifiers trained with training set of mutations that had their
region mapped to PDB with structure-based features.

Classifier Precision Recall F-Measure AUC Class

MLP 0,861 0,929 0,894 0,853 Activating

MLP 0,771 0,617 0,685 0,853 Nonactivating

M5P 0,899 0,987 0,941 0,895 Activating

M5P 0,956 0,717 0,819 0,895 Nonactivating

Gaussian Process 0,769 0,994 0,867 0,836 Activating

Gaussian Process 0,933 0,233 0,373 0,836 Nonactivating

Random Forest 0,876 0,968 0,920 0,868 Activating

Random Forest 0,806 0,550 0,700 0,868 Nonactivating

Results are presented for both classes of mutations. Best performing model is highlighted.

Aiming to validate the training step described in this section, the subset for blind-
test (described in subsection 3.1.2) was used for further testing the four trained models.
Table 7 presents the results for all the classification algorithms validated with the test set
using structural features. The best results are highlighted in bold.

Table 7 – Results for all classifiers validated with test set with only structure-based features.

Classifier Precision Recall F-Measure AUC Class

MLP 0,806 0,781 0,794 0,615 Activating

MLP 0,462 0,500 0,480 0,615 Nonactivating

M5P 0,810 0,875 0,836 0,704 Activating

M5P 0,667 0,417 0,541 0,704 Nonactivating

Gaussian Process 0,730 0,844 0,783 0,464 Activating

Gaussian Process 0,286 0,167 0,211 0,464 Nonactivating

Random Forest 0,769 0,893 0,826 0,619 Activating

Random Forest 0,538 0,318 0,400 0,619 Nonactivating

Results are presented for both classes of mutations in each one of the classes. Best
performing model is highlighted.

Based on the achieved AUC values, classification via regression with M5P algorithm
was the best performing model, closely followed by MLP with 0.70 and 0.61, respectively.
Random Forest is ranked only as the third best performance with lower scores for Recall
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and F-Measure for the non-activating mutations. Even though, Random Forest presented
the best AUC, the other metrics presented lower values than the other two predictors
(MLP and classification via regression with M5P) suggesting that a higher AUC in Random
Forest is very influenced by how well it performed on the instances of the Activating class.
Between MLP and Classification via regression with M5P, the metrics have a slightly
variation, but overall MLP performs better.

However, due the fact that Decision Trees with M5P performed better in training
and has comparable performance with the best results in blind-test, it remains the best
candidate for best model.

The greater amount and diversity of features for the sample set of mutations with
structural data provided to the algorithms corroborates the better performance of models
trained with this type of data. There are 4 different classes of attributes that rely on
structural data with 76 attributes against 2 different classes of attributes sequence based
with 10 attributes (Tables 2 and 3 in section 3.1.3).

Complementary analysis of the weighted average F-measure, for all algorithms
using only structural-based features as evidence, confirm M5P as the best candidate for
model generation (Figure 18). Classification via regression with M5P algorithm is the
best performing among all the others on traninng and also blind-test with 89% and 77%,
respectively. MLP also presented equivalent score on training (86%), but on blind-test the
performance drops to 62%.

4.2.3 Structural + Sequence Based

In this section the performance of the classification algorithms is evaluated when
using both types of data from the sample set of mutations, structural and sequence based
features, as evidence for training and testing. The results for the predictors using the two
sets of features on training are summarized on Table 8.

Classification via regression with M5P algorithm showed the best performance in
comparison with the remaining algorithms. The results are similar, but slightly better than
those observed when using structural data only (depicted in Table 4). When evaluating
the metrics for non-activating class, there is still a slightly worse performance than for
Activating class. However, this is expected due the characteristics of the data set of
mutations extensively described throughout this work.

Table 9 presents the results for all the classification algorithms validated with the
blind-test set described in section 3.1.3, which comprises structural and sequence data
from the mutations sample set. Best results are highlighted.

Again, classification via regression with M5P algorithm presented the best perfor-
mance (AUC:0.89) on blind-test with highest values for all metrics when handling instances
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Figure 18 – Comparison of weighted average for F-measure of all algorithms that used
only structural-based features as evidence.

Classification via regression with M5P algorithm has the best performance in training
(left) and also on Blind-test (right), achieving a score of 89% and 77%, respectively. All
algorithms presented values above 75% on training. However, the performance drop to
below 66% for MLP and classification via regression with Gaussian Process.

Table 8 – Results for all classifiers trained with the training test of mutations with struc-
tural and sequence-based features.

Classifier Precision Recall F-Measure AUC Class

MLP 0,864 0,887 0,875 0,835 Activating

MLP 0,687 0,639 0,662 0,835 Nonactivating

M5P 0,908 0,985 0,945 0,964 Activating

M5P 0,949 0,736 0,811 0,964 Nonactivating

Gaussian Process 0,769 0,994 0,867 0,836 Activating

Gaussian Process 0,933 0,233 0,373 0,836 Nonactivating

Random Forest 0,876 0,968 0,920 0,888 Activating

Random Forest 0,886 0,650 0,750 0,888 Nonactivating

Results are presented for both classes of mutations. Best performing model is highlighted.
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Table 9 – Results for all classifiers tested with structural data in each one of the classes

Classifier Precision Recall F-Measure AUC Class

MLP 0,774 0,732 0,752 0,603 Activating

MLP 0,400 0,445 0,426 0,603 Nonactivating

M5P 0,810 0,911 0,857 0,884 Activating

M5P 0,667 0,583 0,609 0,884 Nonactivating

Gaussian Process 0,720 0,964 0,824 0,504 Activating

Gaussian Process 0,333 0,145 0,100 0,504 Nonactivating

Random Forest 0,800 0,857 0,828 0,655 Activating

Random Forest 0,556 0,455 0,500 0,655 Nonactivating

Best result is highlighted

of non-activating class. Classification via regression using Gaussian Process, on the other
hand, had the worst performance with Recall of 15% and AUC of 0.50. Comparison of the
weighted average for F-measure for all classifiers corroborates for the choosing of M5P as
the best candidate for further model generation (Figure ). M5P performs better than all
the other classifiers on training and also blind test, with 91% and 77%, respectively.

4.2.4 Performance Comparisons

For comparison purposes and given that AUC is the most unbiased evaluation
metric, as discussed in section 3.2.4, the ROC curve and AUC value for the best classifier
in each type of data were analyzed. The results are shown in Figure 16. On training,
Kinact has its worst performance when using only sequence-based data (AUC: 0.77).
The performance presents a significant improvement, with a p-value < 0.01 (HANLEY;
MCNEIL, 1982), when using only structural-based data on mutations. One of the reasons
for such difference is the greater number of features used for training the algorithms
when using only sequence-based features, providing a certain heterogeneity of the input
data that contributes for better predictions as discussed in section 4.1. Nevertheless, the
best performance (AUC: 0.97) is obtained when both types of data are used as input
and it is significantly different from the performances for the predictors that used only
sequence-based or structural-based data (p-value < 0.01).

On blind-tests, similar behaviour is observed and Kinact also has its best when both
types of data are used (AUC: 0.89) followed by the version that uses only structural-based
data (AUC: 0.70) and the one that uses only sequence-based features (AUC: 0.66).
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Figure 19 – Comparison of weighted average for F-measure of all algorithms that used
both type of attributes (structural and sequence-based features) as evidence.

Classification via regression with M5P algorithm has the best performance in training
(left) and also on Blind-test (right), achieving a score of 91% and 77%, respectively. All
algorithms presented values slightly better than the F-measures observed for training and
testing with only structural-based features, except for classification via regression with
Gaussian Process that present even lower values for this metric.

4.3 Web Server - Kinact
A web server was developed based on the best models obtained for predicting the

activating missense mutations in protein kinases.

Kinact was implemented via a user-friendly web server freely available1. All resources
used for building Kinact are open source and only a few are discussed here for the sake
of simplicity. For a complete list of dependencies used to build this web server check
Appendix B or visit 2.

The server front-end was built using Bootstrap-3.3.7 3 which is one of the most
popular front-end frameworks and open source projects. Such frameworks make it easier
to create client-side design by providing predefined CSS classes, each of which indicates
the width of the column you want to create, the type of element you are using, or the
color and style you want to use. On the server side, the back-end was built in Python
1 <http://biosig.unimelb.edu.au/kinact>
2 <http://biosig.unimelb.edu.au/kinact/components>
3 <http://getbootstrap.com/>

http://biosig.unimelb.edu.au/kinact
http://biosig.unimelb.edu.au/kinact/components
http://getbootstrap.com/
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Figure 20 – ROC curves for comparison of the three versions of Kinact (sequence-based,
structure-based and sequence+structure-based).

A) shows the ROC curves for the three versions of Kinact: using only sequence-based
features (yellow), only structural-based features (green) and using both type of features
(blue) on training. The best performance is observed for the predictor that uses both types
of data (AUC: 0.97) followed by the one that uses only structural-based features (AUC:
0.90) and the one that uses only sequence-based data. B) summarizes the results on the
blind-test set of mutations. The predictors are ranked similarly, the best performance is
obtained when using both types of features (AUC: 0.89). The predictor that uses only
structural-based features (AUC: 0.70) still outperforms the one that uses only sequence-
based features (AUC: 0.67).

via the Flask framework. Python4 is a general-purpose, high-level programming language
whose philosophy emphasizes code readability. Python’s syntax allows programmers to
express concepts in fewer lines of code when compared with languages such as C and Java
(MARTELLI; RAVENSCROFT; ASCHER, 2005). Flask5 is a small framework by most
standards, small enough to be also known as a “micro-framework” based on Python. It was
designed as an extensible framework providing a solid core with the basic services, while
extensions provide the rest. Such flexibility, allows developers to have a lean stack that
has no bloat with only what is necessary for the application to work properly, in contrast
with larger frameworks, where most choices have already been made and are, usually, hard
or sometimes impossible to customize (GRINBERG, 2014). The application is hosted on a
Linux server running Apache. Figure 22 shows a screenshot of the home page of Kinact.

4 <https://www.python.org>
5 <http://flask.pocoo.org/>

https://www.python.org
http://flask.pocoo.org/
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Figure 21 – ROC curve for comparison of Kinact best predictor with SIFT and PolyPhen-2.

A) shows the ROC curves for Kinact best predictor (blue), PolyPhen-2 (red) and SIFT
(pink) on training. Kinact (AUC: 0.97) significantly outperformed both SIFT (AUC: 0.49)
and PolyPhen-2 (AUC: 0.63). B) summarizes the results on the blind-test set of mutations.
SIFT (AUC: 0.67) performs better than PolyPhen-2 (AUC:0.53), however Kinact best
predictor was again the best performing method (AUC: 0.90). Kinact version that use only
sequence-based data is shown (yellow) as well as the version that uses only structural-based
data (green) for comparison purposes.

4.3.1 Input

Kinact provides two different input options for users, as shown in Figure 23. The
“Single mutation” option allows users to predict whether a single mutation in a kinase is
Activating. The information required includes a PDB file and also the sequence in fasta
format of the protein, alongside with the mutation code specified as a string consisting
of a single letter code of the wild-type residue in the protein, its corresponding residue
number and the single letter code of the mutant residue.

Alternatively, the “Mutation list” option allows users to submit a file with a list
of mutations and chain identifiers (similar to described previously for single mutation
prediction) to be evaluated for a specific PDB file and/or sequence that are also required
as input.

Given that the best model generated by this work relies on the combination of
both types of attributes (structural and sequence based), the users are encouraged to
provide both sequence and structural information so that the prediction of Kinact uses
all features necessary for a more reliable outcome prediction. However, if only the PDB
structure or only the sequence is provided Kinact still runs the prediction with only the
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Figure 22 – Kinact home page

Available at <http://biosig.unimelb.edu.au/kinact>.

features available based on the data provided. The more data supplied to Kinact, the more
trustworthy its prediction outcome.

4.3.2 Data Preparation

As soon as the mutation is submitted by the user a set of validation steps are
executed before proceeding with the classification, such as checking if the PDB file format
is correct and whether the residue number of mutation it is actually mapped into the 3D
structure. If the input is not valid an error message is displayed to inform the user about
the problem. Figure 24 shows the error message for a submission where no PDB file was
provided.

If the data provided is valid, the attributes are calculated and then serve as input
for the prediction model. Again, at this point the attributes are calculated based on
the type of data submitted. For instance, if the user provide a PDB file and also the
fasta sequence, Kinact will generate structure and sequence-based attributes. If only the
PDB structure data is provided, only structure based attributes are calculated before the

http://biosig.unimelb.edu.au/kinact
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Figure 23 – Kinact input page

Kinact allows users to submit one single mutation for prediction (left) and also a file with
a list of mutations and chain identifiers (right) to be evaluated for a specific PDB file
and/or sequence also required as input. Users are encouraged to provide both sequence
and structural information so that the prediction of Kinact uses all types of features as
evidence in a more reliable outcome prediction, as discussed in section 4.2. Available at
<http://biosig.unimelb.edu.au/kinact/prediction>.

classification and so forth.

Due the fact that Kinact uses a considerable amount of tools for generating
attributes (mCSM, DUET, SDM, CSA, PolyPhen-2, SIFT, for example) and given the
time that takes for each of these tools to be executed can vary depending on the data
submitted, the calculations are packed into a job and moved to a queue for asynchronous
processing, freeing up the web application to respond to other requests. The jobs in the
queue are executed by a group of processes in the background called workers. Meanwhile
a web page that automatically refreshes 10 seconds verifies whether the job is already
processed so that the prediction results can be displayed. Such queue implementation is
achieved by the open source project Redis6 which is an in-memory data structure store,
used as a database, cache and message broker.
6 <https://redis.io/>

http://biosig.unimelb.edu.au/kinact/prediction
https://redis.io/
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Figure 24 – Kinact error page

Message is displayed when the validation of user data submission is not valid. In this case,
no PDB file was provided.

4.3.3 Output

The primary step, after the attribute calculation, mentioned previously, is the
assignment of the submitted molecule into one of the kinase families. This is accomplished
by the help of Kinannote, also described earlier. This step is crucial for Kinact output,
since the prediction outcome consists not only of the actual prediction based on the
machine learning model (activating or non-activating), but it also provides correlated
information with mutation data collected for all proteins in the same kinase group. If
Kinannote outputs results indicates that the molecule submitted might not be a kinase
the prediction of Kinact is still executed, but a message is displayed to inform the user.

For the “Single Mutation” option, and assuming that PDB structure and sequence
is provided, Kinact outputs the model prediction (activating or non-activating) aside with
mutation details and information on the kinase group in which the submitted molecule
was assigned by Kinannote. All the families of protein kinases comprised in the group are
also displayed. Figure 18, shows an example of such prediction summary page.

Alongside with the summary of the prediction, Kinact also provides a set of analyses
depending on the data submitted by the user. These analyses are separated by tabs in the
results page as displayed in Figure 25.

Structural analysis is performed with the help of 3Dmol.js (REGO; KOES, 2015)
which is a powerful object-oriented Javascript library that provides interactive, hardware-
accelerated three-dimensional representations of molecular data without the need to install
browser plugins or Java. By default, the molecule is represented as cartoon with the
mutated residue highlighted as stick. The residues that surround the mutated residue and
make interatomic interactions, according to Arpeggio, are also highlighted and labeled
and the interactions are colored according to their type. A legend for the binding type
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Figure 25 – Summary page of Kinact prediction

The prediction outcome is displayed in the left side. Mutations details and protein details
are showed in the center. Lastly, a image with the superposition of structures in the closes
group of kinases in which the submitted molecule was classified is displayed in the right
side.

is also provided. Furthermore a set of options for customization are provided, such as
changing color, representation and adding surface. Users can also save the image of the
viewer at any time through the “Save image” button at the bottom right corner of the
viewer. Figure 26 displays an example of the structural analysis results page.

Sequence analysis is also provided in the form of a Multiple Sequence Alignment
(MSA) with all the proteins in the same group of kinases according to Kinannote, as
demonstrated in Figure 27. Such MSA, allows the user to visualize all the activating
mutations (highlighted in with red background) present in every protein of the group with
external links for the mutation evidence. All the residues are colored by its type: Polar as
pink, Hydrophobic as light green, Charged as blue and Sulphuretted as orange. A legend
is also provided for helping users understand such representations.
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Figure 26 – Structural analysis results page

By default the molecule is displayed using the cartoon representation with the mutated
residue highlighted as stick and labeled as well as the surrounding residues that have
interactions with it according to Arpeggio. On the top of the page, a set of options allow
the user to customize the viewer and a legend is also provided for the binding types.
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Figure 27 – Sequence analysis results page

MSA with the proteins of the group in which the submitted molecule was assigned according
to Kinannote. All residues are colored by their type: Polar as pink, Hydrophobic as light
green, Charged as blue and Sulphuretted as orange. Activating mutations are highlighted
with red background and external links for the mutations evidence is provided. A legend
is shown on top of the page.
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Lastly, a combination of analysis is shown under the “Structural + Sequence” tab.
Here both structure and sequence are displayed and the whole molecule in the 3D viewer
and the MSA are colored according to their conservation in the group of kinase, from blue
(not conserved) to red (conserved). 3Dmol.js is also used alongside with the MSAViewer
(YACHDAV et al., 2016) which is a quick and easy to use visualization and analysis
Javascript component for Multiple Sequence Alignment data. Like 3Dmol.js it does not
require any specialized software to be installed. The MSAViewer is part of the BioJS
collection of components (CORPAS et al., 2014). Figure 27 exhibits the “Structural +
Sequence” tab on the results page. Protein Structure is displayed on top and MSA on the
bottom. A sequence logo is also shown on top of the MSA to assist conservation analysis.

The results page for the option “Mutation list” is presented in a tabular format
with a set of details about each mutation on the summary tab results page, such results
can be downloaded as a comma separated file (csv). Structure and sequence analysis are
performed similarly to what was described for the option “Single mutation”.
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Figure 28 – Structural + Sequence analysis results page

Protein 3D structure is shown on top and Sequence Alignment on bottom. Both 3D
structure and columns in MSA are colored according to residue conservation varying from
blue (not conserved) to red (conserved). A sequence logo diagram is also displayed on top
of the MSA to aid the identification of residues conservation on an specific position.
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5 Conclusion and Perspectives

Protein kinases catalyze phosphorylation, a key regulatory reaction across most
signalling and biological pathways. Mutations in these proteins that lead to dysregulation of
catalytic activity play important roles in many diseases, and therefore the ability to identify
these mutations in genomic sequences has significant implications to help guide patient
management and treatment. However, no robust computational method for identifying
activating mutations in protein kinases have been developed; with the standard clinically
used tools being of limited use in the identification of these mutations.

The aim of this work was to address this limitation through the development
of Kinact, a novel robust machine learning method for predicting missense activating
mutations in kinases that also provides a set of modern visualization tools to support
analyses of such mutations from both sequence and structural perspectives.

The inclusion of both sequence and structural information in the final model
outperformed the use of either alone, and the current standard clinical tools SIFT and
PolyPhen-2. Models trained on either sequence or structural attributes separately provided
plausible results, but the performance was greatly improved when the algorithms were
trained using all the attributes, specially for the identification of non-activating mutations,
making the predictions more balanced between mutation classes. Amongst potential future
steps for improvement are the inclusion of new sequence-based attributes into the method,
in particular more explicit consideration of residue conservation within the specific sub-
group of kinases, and incorporation of information of the location of known characterised
mutations within the kinase sub-group, as well as assessing the impact of different kinase
conformations (active/inactive) on predictive performance.

Despite the small amount of available data, and the biased distribution of the data
set, a set of careful validation steps were performed to ensure the predictions reliability
and robustness of the method.

In order to facilitate and streamline the routine collection, analysis and incorporation
of new data into Kinact, all scripts for parsing and attribute generation are versioned
with Git1 and hosted on Bitbucket 2. This greatly improve the ability to expand this
methodology across a broader range of databases of mutations, such as COSMIC (FORBES
et al., 2009) and ExAC (KARCZEWSKI et al., 2017) which require extra steps toward
the curation of their data.

Lastly, more sophisticated computational approaches, such as deep learning, can

1 <https://git-scm.com/>
2 <https://bitbucket.com>

https://git-scm.com/
https://bitbucket.com
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be introduced as an attempt to analyze broader perspectives of mutations in kinases.
However, more data is needed to apply such techniques and, as discussed in section 3.1.1,
comparative modeling methods for predicting the 3D structure could greatly benefit future
implementations of this study by providing a broader range of data.
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ABSTRACT
Introduction: Mutations introduce diversity into genomes, leading to selective changes and driving
evolution. These changes have contributed to the emergence of many of the current major health
concerns of the 21st century, from the development of genetic diseases and cancers to the rise and
spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is
impractical and not cost-effective, which has created interest in the development of computational tools
to understand the molecular consequences of mutations to aid and guide rational experimentation.
Areas covered: Here, the authors discuss the recent development of computational methods to
understand the effects of coding mutations to protein function and interactions, particularly in the
context of the 3D structure of the protein.
Expert opinion: While significant progress has been made in terms of innovative tools to understand
and quantify the different range of effects in which a mutation or a set of mutations can give rise to a
phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions
linking variants. This often requires a detailed understanding of the system being perturbed. However,
as part of the drug development process it can be used preemptively in a similar fashion to pharma-
cokinetics predictions, to guide development of therapeutics to help guide the design and analysis of
clinical trials, patient treatment and public health policy strategies.
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1. Introduction

Changes at the genetic level can result in drastic changes in
cellular phenotypes and behavior. These changes can lead to
disease, or provide selective advantages that promote the
development of drug resistance. In particular, non-synon-
ymous single-nucleotide polymorphisms (nsSNPs) within the
protein coding regions of the genome have been strongly
associated with occurrence and predisposition of human dis-
ease and drug resistance, sparking great interest from the
research community.

The rapid developments in high-throughput sequencing,
including dramatic drops in the cost, have created vast oppor-
tunities to understand the link between our genomes and
phenotypes. This has opened up the promises of personalized
medicines, targeted therapies, and targeted public health poli-
cies. In order to fully realize the potential of these develop-
ments, however, we still need to improve our understanding
of what are the molecular consequences of a given mutation,
and how do these lead to a given phenotype.

While considerable resources have been invested in the
experimental evaluation of genomic mutations, characterizing
mutation effects is a challenging task and impractical to sys-
tematically experimentally evaluate all possible mutations for
a given protein of interest, even more considering the range

of different mechanisms in which mutations can affect protein
function and interactions. Traditional experimental
approaches are also not efficient enough or do not achieve
scalability required to provide real time guidance into patient
treatment and public health policy. This has led to significant
interest in the development of computational approaches to
rapidly and accurately evaluate the effects of mutations.
Figure 1 summarizes how in silico mutation analysis can be
helpful in deconvoluting genotype-phenotype associations
obtained from the wealth of genomic variation generated
from sequencing efforts, including shedding light into disease
predisposition and its mechanisms in a molecular level. Such
methods can also be used to mutation prioritization for further
experimental investigation, identification, and anticipation of
resistant variants and resistance hotspots, knowledge that can
be applied in the design of drugs less prone to resistance as
well as to drive the development of public health policies and
aid in establishing more appropriate and personalized
treatments.

2. Analyzing the effects of mutations

The two most commonly used methods by clinical geneticists
to look at the effects of coding nsSNP mutations in the human
genome are SIFT [1] and Polyphen [2]. Other approaches
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include CADD [3] and MutationTaster [4]. These approaches
use the protein sequence to evaluate whether a given muta-
tion is likely to be pathogenic or not. However, they have
been limited by the lack of mechanistic information they
provide and their overestimation of mutations likely to be
pathogenic [5]. Structural approaches can complement these
analyses by providing detailed mechanistic information, but
historically have involved a trade-off between scalability and
molecular level mechanistic information, with molecular
dynamics approaches providing greater atomic detail, but
proving impractical for comprehensive analysis of a large
number of different mutations.

In the 1990s, efforts to utilize the expanding structural
information available for many proteins led to the develop-
ment of SDM [6], the first method for predicting the effects

Article highlights

● Scalable and reliable structural based computational approaches are
providing detailed insight into the molecular consequences of coding
mutations.

● These have been used to guide patient treatment strategies for renal
cell carcinoma and genetic diseases.

● Using these methods, drug resistance mutations can be identified
and predicted.

● Used in a preemptive fashion, these can help guide drug develop-
ment in the search for new therapeutics less likely to develop
resistance.

● Mutations can give rise to a phenotype through different molecular
mechanisms which can be assessed via integration of computational
methods.

This box summarizes key points contained in the article.

Figure 1. The use of in silico mutational analysis to tackle drug resistance and genetic diseases. Sequencing efforts generate a wealth of genomic variation.
Computational mutation analysis can help deconvolute genotype-phenotype associations aiding in understanding the molecular mechanism of diseases and disease
predisposition as well as in mutation prioritization for experimental validation, identification of resistant variants and resistance hot-spots, which can then fed into
drug design pipelines as well drive the development of public health policies and choice of more appropriate and personalized treatments.
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of mutations on protein folding and stability. Subsequent
efforts by other groups led to a range of methods to predict
the same effects, improving upon the accuracy but not
considering the other potential structural effects mutations
might lead to.

This was first addressed through the systematic applica-
tion of cut-off scanning matrices [7,8] to quantitatively and
scalably predict the effects of mutations on the binding
affinities to other ligands, including other proteins, nucleic
acids, small molecules, and metal ions [9–14]. Table 1 pre-
sents a summary of the main structure-based methods pro-
posed over the past years to analyze the different effects of
mutations on coding regions. While this started to allow the
deconvolution of the individual molecular changes that
might be occurring, the big question limiting their applica-
tion, especially in a clinical setting, was how do these
individual effects combine to lead to a phenotype? Recent
efforts have started to integrate these structural effects in
order to better understand phenotypes, and have been
used to look at a number of different human health pro-
blems driven by mutations in protein coding regions
[14–22].

3. Using mutation analysis to guide treatment:
toward personalized treatments

3.1. Cancers

By analyzing the molecular effects of mutations in common
renal cell carcinoma genes, including p15 and SDHA, these
have been correlated to a patient’s risk of developing renal
carcinoma. This was best demonstrated by recent studies
looking at mutations in the von Hippel–Lindau protein (VHL)
associated with the development of clear cell renal cell carci-
noma (ccRCC) [15,16,32,33]. By assessing whether a mutation
affected the stability of the protein, or disrupted interactions
to Elongin or HIF-1α, a patient could be classified into high-,

medium-, and low-risk groups that could help guide screening
strategies and provide more focused genetic counseling. The
available clinical data from over 100 patients was integrated
with a saturation mutagenesis analysis of all possible muta-
tions on VHL producing Symphony, a relational database map-
ping experimental and predicted risks of mutations to its
molecular mechanism, aiding the characterization of newly
discovered variants.

Understanding cancer genetics has been important for the
diagnosis and treatment of a range of other cancers [34,35],
with increasing interest in how the structural impacts of muta-
tions can be used to interpret sequence information. This has
led to recent efforts to map the COSMIC database onto pro-
tein structures.

3.2. Mendelian genetic diseases

Alkaptonuria (AKU), also known as ochronosis or black bone
disease, is a rare recessive inherited genetic disease and first
metabolic disorder firstly described over 100 years ago. AKU is
caused by coding mutations that disrupt structure and func-
tion of the enzyme homogentisate 1,2-dioxygenase (HGD),
related to phenylalanine and tyrosine metabolism. HGD gene
product folds to form a homo-hexamer disposed as two
stacked trimers, quaternary structure which is necessary for
enzyme function.

Two comprehensive analysis on AKU causing mutations
were carried out in an attempt to characterize the potential
molecular mechanisms on which mutations could disruption
enzyme activity [17,18].

Mutation effects on protein monomer stability as well as
protein-protein and protein-ligand affinity were predicted with
the DUET, mCSM-PPI and mCSM-Lig web servers respectively.
Three mutation clusters emerged from this analysis, regarding
the molecular mechanism for structure and function disrup-
tion: (a) mutations that greatly affected monomer stability,

Table 1. Recent structure-based computational methods for analyzing the effects of coding mutations.

Method Web servera Publication year Referenceb

Effects of Mutations on Protein Stability and Folding
SDM http://www-cryst.bioc.cam.ac.uk/~sdm/sdm.php

http://structure.bioc.cam.ac.uk/sdm2
2011
2017

[23,24]

PoPMuSiC 2.1 http://babylone.ulb.ac.be/popmusic 2011 [25]
mCSM-Stability http://structure.bioc.cam.ac.uk/mcsm/stability 2014 [13]
DUET http://structure.bioc.cam.ac.uk/duet 2014 [12]
ENCoM http://bcb.med.usherbrooke.ca/encom.php 2015 [26]
MAESTROweb https://biwww.che.sbg.ac.at/maestro/web 2016 [27]
STRUM http://zhanglab.ccmb.med.umich.edu/STRUM/ 2016 [28]
ELASPIC http://elaspic.kimlab.org 2016 [29]

Effects of Mutations on Protein-Protein Binding Affinity
BeAtMuSiC http://babylone.ulb.ac.be/beatmusic/ 2013 [30]
mCSM-PPI http://structure.bioc.cam.ac.uk/mcsm/protein_protein 2014 [13]
mCSM-AB http://structure.bioc.cam.ac.uk/mcsm_ab 2016 [9]
MutaBind https://www.ncbi.nlm.nih.gov/projects/mutabind 2016 [31]

Effects of Mutations on Protein-Nucleic Acid Interactions
mCSM-NA http://structure.bioc.cam.ac.uk/mcsm/protein_dna

http://structure.bioc.cam.ac.uk/mcsm_na
2014
2017

[13,11]

Effect of Mutations on Protein-Small Molecule Interactions
mCSM-Lig http://structure.bioc.cam.ac.uk/mcsm_lig 2016 [14]
CSM-Lig http://structure.bioc.cam.ac.uk/csm_lig 2016 [10]

a The URLs link to the webserver to run the method. Links last accessed in April 2017.
bThe primary reference describing the method, and which should be cited if used.
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therefore preventing oligomer formation; (b) mutations
greatly reducing protein-protein affinity between the hexamer
components, also preventing proper oligomer formation and
(c) mutations with mild effects on both monomer stability and
protein-protein affinity, which together caused functional
impairment. The structural analysis of mutations in other
Mendelian diseases, for example ornithine transcarbamylase
deficiency [36], have identified that disease causing mutations
lead to altered protein stability and interactions. Mutations
with these molecular consequences occurred in roughly simi-
lar proportions to those observed in AKU.

These observations have been validated experimentally
and expanded to examine all known disease causing muta-
tions for inclusion in the HGD mutation database [37], which
could hopefully guide the development of new, more effective
and personalized drugs to treat this condition. For example,
subsequent efforts have identified molecular stabilizers that
reverse the effects of the destabilizing mutations, analogous
to the recent successes on p53. They have also been used to
classify patients in the SONIA2 clinical trial, as we know that
the molecular mechanism of a mutation can alter how
patients may respond to therapeutics [38].

Structural mutation analysis techniques have started to
play important roles in the diagnosis of rare Mendelian
genetic diseases. For example, establishing the genetic basis
of epilepsy is a fundamental step for disease prognosis and
choice of patient treatments [38]. Recently, these methods
were used to not only identify the genetic cause of a pre-
viously undiagnosed or characterized human cohesinopathy
but also characterize the molecular mechanism, subsequently
experimentally validated [39]. The potential for the structural
characterization of mutations to impact upon clinical practice
will only continue to grow with the increasing availability of
structural information, and routine use of exome sequencing
in patient care.

3.3. Screening for drug resistance in tuberculosis

The reduction of sequencing costs, and improvements in
accuracy and sensitivity, have led to interest in using high-
throughput sequencing to diagnose patients, and identify
drug resistance mutations. For infectious diseases such as
tuberculosis (TB), where the drug susceptibility screening is
time consuming and costly, genomic sequencing opens up
the possibility of being able to more rapidly identify the
correct treatment strategies for a patient, but also to guide
public health policy by following the spread of resistance.
Experimental innovations have allowed researchers to
sequence the TB genome based on a sample of the patient’s
sputum, and Public Health England is now sequencing all new
TB cases in the UK.

Many resistance mutations in TB have been well charac-
terized, but one of the limitations of these approaches is
how to interpret novel mutations identified within the gen-
ome. Due to the lack of horizontal gene transfer, TB is an
ideal pathogen to apply structural based mutational analysis
approaches. Looking at mutations in rpoB and katG, which
leads to rifampicin and isoniazid resistance, respectively,
clear structural features were identified that correlated

strongly with the resulting effectiveness of the drugs (MIC)
[40]. A number of resistance mutations have also been
observed across protein-protein interfaces, which raises the
interesting hypothesis that similar to Mendelian disease
mutations, those at interfaces might be prone to lead to
disease and resistance because they have a lower fitness
cost associated to them than those in the active site that
completely disrupt activity [36,41,42].

While previous experimental and clinical knowledge about
the effect of a given mutation in a given strain on drug
susceptibility will always provide the gold standard for pre-
dicting and identifying drug resistance, structural based
approaches complement this limited available information by
providing the power to look at novel mutations.

4. Targeting resistance mutations: toward
resistance-resistant therapies

4.1. HIV protease 1 inhibitors

HIV protease catalyzes the cleavage of the polypeptide pre-
cursors into mature enzymes and structural proteins, an essen-
tial step in the HIV-1 replication cycle. Inhibitors targeting the
HIV protease have been in clinical use since 1995 and include
darunavir, amprenavir, atazanavir, nelfinavir, indinavir, saqui-
navir, and lopinavir [43,44].

Due to the HIV’s error prone replication, resistance muta-
tions against these inhibitors have evolved rapidly and been
widely observed clinically, limiting the effectiveness of these
therapies. These include mutations in the active site (V32I,
L33F, I54M, and I84V) that through changes in hydrogen
bonding and Van der Waals interactions between the inhibi-
tors and the catalytic site amino acids, can reduce their bind-
ing affinities [45,46].

A better understanding of the effects of mutations on
inhibitor binding and their molecular mechanism giving rise
to resistance are crucial for designing novel drugs, more effec-
tively and less prone to failure. Computational structure-based
methods play an important role in tackling this challenge. The
mCSM suite was successfully used to predict the effect of the
aforementioned mutations upon the binding affinities.
Molecular dynamics simulations have also been used to eluci-
date the effects of the protease inhibitor resistance mutations
D30N, I50V, I54M, and V82A, providing interesting mechanistic
information on how these mutations alter binding affinities,
including changes in the binding conformation (I50V), confor-
mational changes (I54M) and large enthalpic changes redu-
cing binding affinity (V82A) [47]. While genomic methods have
proven unreliable for phenotypic characterization of HIV [48],
this potentially offers a means to better leverage this informa-
tion and suggests ways to guide new designs that avoid these
common hotspots.

The last HIV protease inhibitor approved, darunavir, was
designed with this in mind and is capable of inhibiting the
replication of both wild-type and multidrug-resistant strains of
HIV-1. While earlier inhibitors interacted with the side-chains
of Asp-28 and Asp-30, darunavir contained a bis-tetrahydrofur-
anylurethane functional group that made close, tight interac-
tions with the main chain of these residues, making only
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minimal interactions with the side chains [49]. This made
darunavir less sensitive to substitutions in either of these
positions. Figure 2(a) depicts an alignment between darunavir
and a non-peptidic inhibitor GRL-085 and the interactions
made by the inhibitors (Figure 2(b,c), respectively).

Many resistant strains against darunavir, however, have
emerged. These mutations often lead to a change in the
conformation of the active site residues, reducing affinity for
darunavir, but also leading to a significant fitness cost [51]. In
the effort to avoid these resistance mutations, current medic-
inal chemistry efforts have identified potent inhibitors that
differ from the currently approved protease inhibitors by the
number and proximity of contacts to the main chains of these
catalytic amino acids [49]. These compounds will be hopefully
even more effective therapeutics that are significantly less
prone to develop resistance.

4.2. Influenza neuraminidase inhibitors

Influenza neuraminidase inhibitors (NAIs) are the major specific
anti-influenza drugs used clinically, despite the emergence of
resistance [52]. Currently, the NAIs oseltamivir, zanamivir, pera-
mivir, and laninamivir (currently approved only in Japan) have
been approved to prevent and treat influenza A and B [52–55].
Many governments have stockpiled resources of these drugs in
the event of an Influenza outbreak. During the recent H1N1 and

H7N9 influenza outbreaks, significant resources were focused on
identifying and monitoring potential resistance mutations, pri-
marily through genetic screening, with sporadic oseltamivir-
resistant 2009 H1N1 virus infections identified. Thus, under-
standing the mechanisms of influenza NA drug resistance is
crucial to develop drugs that can get around mutations
and be more successful to fight the epidemics and pan-
demics [52].

A strong correlation has been observed between mutations
that affect the slow binding and dissociation of these NAIs,
and the association with resistance [56]. Resistance mutations
that have been observed to residues E119 and I222 of
Influenza A lead to high and slight resistance to oseltamivir
and zanamivir, respectively [57]. Figure 3(a,b) highlight these
resistance hotspots on the solved complex of the neuramini-
dase with oseltamivir and the interactions established on the
wild-type protein. Mutations on E119, include substitutions to
Gly, Asp, Ala, Ile, and Val, lead to the loss of a salt bridge to the
inhibitors [58], with zanamivir showing less susceptibility due
to the presence of the 4-guanidino group that maintains
typical interactions [52].

Mutations at I222 alter the hydrophobic drug-binding
pocket. While I222R leads to a reduction in oseltamivir, per-
amivir, and zanamivir effectiveness [53,59,60], the I222L muta-
tion, which is also found in Influenza B, has been reported to
not lead to significant drug resistance [52]. The other common
mutation in N2 is R292K, which leads to resistance against

Figure 2. HIV-1 protease in complex with the non-peptidic inhibitor GRL-085 and darunavir (PDB: 5COO and 4HLA, respectively). (a) Shows the two aligned
structures of HIV-1 protease in complex with GRL-085 (light gray) and darunavir (dark gray). (b) Depicts the main interactions between the key residues of the
binding site of HIV-1 protease and darunavir. (c) Shows the interactions between GRL-085 and the wild-type protease, calculated by Arpeggio [50].
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oseltamivir and peramivir and a slight reduction of zanamivir
and laninamivir effectiveness [53].

Following treatment with oseltamivir, the N1 subtype-spe-
cific substitution H274Y has also been observed, leading to
resistance to this drug and also peramivir, but not to zanamivir
and laninamivir [61,62]. The change in volume of the side
chains upon this mutation causes the carbonyl group of
E276 to be shifted into the binding site of the enzyme, dis-
turbing the hydrophobic pocket that would accommodate the
pentyloxy group of oseltamivir [62].

Therefore in efforts to overcome some of these resistance
problems, the guanidino group of zanamivir and the hydro-
phobic pentyloxy group of oseltamivir were merged [61]. The
guanidino group was capable of inhibiting the spread of
Influenza A with the hydrogen bond interactions between
the guanidino group and neuraminidase binding site crucial
for the inhibition of the enzyme and virus replication [62,63].
However, the inhibition profile of MS-257 and zanamivir was
comparable against the E119V and I222L mutant strains [52].

The sequence database compiled by the WHO containing
lists of amino acid substitutions in the neuraminidase has
been widely used to identify key mutations and regions, guid-
ing genomic analysis of resistance and proving invaluable for
testing new compounds targeting inhibition of neuraminidase
[64,65]. It has also facilitated the use of next-generation
sequencing to detect resistance markers in the NA gene and
predict the effect of drug treatment [66], which have been
complemented by the use of structural-based approaches to
identify likely resistance mutations.

4.3. Kinase drug development

4.3.1. Kinase inhibition
Abnormal regulation of kinases through occurrence of muta-
tions is responsible for many human diseases, including meta-
bolic disorders and certain types of cancer [67]. The
development of small-molecule kinase inhibitors has therefore
been seen as an attractive treatment option [68]. Unlike conven-
tional chemotherapy (cytotoxic), molecular targeted therapies
using kinase inhibitors are designed to act at specific biological
points that are essential for development of tumor cells [69].

The design of kinase inhibitors has great impact on their
efficacy and sensitivity to resistance. The first kinase inhibitors
developed targeted the ATP-binding site via competitive bind-
ing. As resistance to these inhibitors was identified, other
strategies including allosteric and covalently bound inhibitors
were used to avoid these common resistance mutations [68].

4.3.2. ATP-competitive inhibitors –first generation
ATP-competitive kinase inhibitors inhibit ATP binding in the
catalytic site of the target kinase, or bind at alternative sites to
induce conformational molecular changes that inhibit the
activity of the enzyme [69]. Imatinib was the first kinase
small-molecule inhibitor clinically approved by the US Food
and Drug Administration (FDA) for treatment of chronic mye-
loid leukemia [70]. Imatinib binds to the active site of the
target enzyme preventing other substrates from phosphoryla-
tion and consequently inhibiting kinase activity. Figure 4(a)
shows the Abelson tyrosine-protein kinase 2 (ABL2) in com-
plex with imatinib. The inhibitor only binds to the enzyme
when it is in inactive conformation. Another example of an
inhibitor with a mechanism similar to imatinib is gefitinib
which is used for treatment of non-small-cell lung cancer
through inhibition of the epidermal growth factor receptor
(EGFR).

Despite the success of imatinib, studies have shown that
patients can develop resistance and relapse after initial
response to therapy. The effect of mutations linked to imatinib
resistance were analyzed by mCSM-Lig [14], which could cor-
rectly identify resistance mutations located even quite distal
from the active site. mCSM-Lig quantitatively predicts the
effect of mutations on small molecule affinity. Resistance
mutations of competitive inhibitor, however, can exist by
shifting the preference of the protein toward the natural
ligand (ATP), not necessarily by dramatically reducing the
affinity of the protein to the drug. Interestingly, using a fold-
ratio between the predicted affinity effect on the natural
ligand and the drug, mCSM-Lig was successful in identifying
the majority of the imatinib resistance mutations.

Several mechanisms of resistance have been observed,
including mutations in the BCR-ABL kinase domain, with the
most common resistant observed the gatekeeper mutant
T315I [71]. This amino acid substitution eliminates a critical

Figure 3. Neuraminidase subtype 2 of Influenza A in complex with Oseltamivir (PDB: 4GZP). (a) Shows the main resistance hot-spot residues Glu119, Asp151 and
Ile222 shown as sticks. The two negatively charged residues interact with Oseltamivir via ionic interactions shown as dashes, as calculated by Arpeggio [50]. Arg292,
another important binding residue is also shown. (b) Shows the four aforementioned residues and the oseltamivir molecule in a surface perspective.
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oxygen molecule needed for hydrogen bonding between
imatinib and the ABL kinase, and also introduces a steric
clash preventing drug binding. The gatekeeper residue deter-
mines the relative accessibility of a hydrophobic pocket
located adjacent to the ATP-binding site, which is important
for imatinib binding given that hydrophobic interactions are
crucial for inhibitor binding affinity [68,72,73]. In fact, muta-
tions in gatekeeper residues have also been studied for other
kinases in different types of cancer, such as the Threonine 790
of EGFR in Lung cancer that mutates to a methionine (T790M)
increasing the affinity for ATP and making it difficult for the
gefitinib to compete for the binding site [74–76]. Such
mechanisms of resistance have contributed to the develop-
ment of more sophisticated generations of inhibitors with
mechanisms to overcome resistances conferred by these gate-
keeper mutations.

4.3.3. ATP-competitive inhibitors –second generation
The second generation of small-molecule kinase inhibitors
preferentially binds to regions outside the ATP-binding site,
for example, to the inactive conformation, also known as DFG-
out, of the protein kinase. The transition from the active con-
formation to DFG-out conformation exposes additional hydro-
phobic pockets adjacent to the ATP site that can be used by
the inhibitors to stabilize the kinase in its inactive conforma-
tion [77], preventing ATP binding.

Dasatinib is a multitargeted tyrosine kinase inhibitor that
targets oncogenic pathways and is a more potent inhibitor

than imatinib that binds only when the ABL enzyme is in its
inactive conformation. Dasatinib is also effective against sev-
eral imatinib-resistant ABL mutations that occur in regions that
are in contact with imatinib or mutations involved in stabiliza-
tion of specific inactive imatinib-bound conformation of the
enzyme. However, the T315I gatekeeper mutation is also resis-
tant to dasatinib due crucial hydrogen bond with the T315
side chain [78]. Figure 4(b) shows ABL1 in complex with
dasatinib. The main residues involved in the binding of the
drug are highlighted, including T315.

4.3.4. Allosteric inhibitors – third generation
These inhibitors regulate the kinase activity in an allosteric
manner, exhibiting a higher degree of selectivity due the
exploitation of binding sites and regulatory mechanisms that
are specific to a particular kinase [68]. Figure 4(c) shows the
allosteric inhibitor CI-1040 binding MEK1 immediately adja-
cent to the ATP binding site.

This class of inhibitors can bind either to the kinase domain
(or close to the ATP binding site) or to sites outside the kinase
domain. These range of options for inhibiting the catalytic
activity of kinases represent clear advantages over the ATP-
competitive inhibitors [79,80]. However, the lack of methods
to identify such inactive conformations or binding modes in
kinases to drive the development of this type of inhibitor still
remains a challenge [81]. Inhibitors that disrupt formation of
the higher order oligomers, which play an important role in
achieving high signal-to-noise throughout the signal

Figure 4. Four generations of kinase inhibitors. (a) Shows ABL2 in complex with first generation kinase inhibitor Imatinib (PDB: 3GVU). Imatinib binds to the active
site of the enzyme preventing other substrates from phosphorylation only when the ABL2 is in inactive conformation. (b) Shows ABL1 in complex with second
generation inhibitor Dasatinib (PDB: 2GQG). Dasatinib is a multitargeted tyrosine kinase inhibitor more potent than Imatinib due to its capability of binding to the
enzyme in inactive imatinib-bound conformation, also effective against several imatinib-resistant mutations, except for T315I gatekeeper mutation as a result of a
crucial hydrogen bond with T315 (underlined) for the stabilization of the complex. (c) Shows MEK1 in complex with CI-1040 allosteric kinase inhibitor adjacent to the
ATP binding site of the enzyme (PDB: 1S9J). The third generation of kinase inhibitors can bind either to the kinase domain or to other sites giving them clear
advantage over ATP-competitive in first and second generation. (d) Shows EGFR mutant T790M/L858R in complex with fourth generation kinase inhibitor Neratinib
(PDB: 3W2Q). Unlike first and second generation inhibitors, this fourth generation inhibitor binds covalently to the kinase active site, blocking ATP binding.
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transduction process, have also proven to be effective kinase
inhibitors that avoid the common ATP resistance mutations
[82–84].

ABL001, also known as Asciminib, is a potent and selective
third generation kinase inhibitor with activity against chronic
myeloid leukemia and Philadelphia chromosome-positive (Ph
+) acute lymphoblastic leukemia. ABL001 binds to the myris-
toyl pocket of ABL1 kinase leading to a formation of an
inactive kinase conformation [85]. Recent studies have shown
that treatment with ABL001 combined with ATP-competitive
inhibitors can help prevent resistance in chronic myeloid leu-
kemia [86,87].

4.3.5. Covalent inhibitors – fourth generation
Recent studies [88,89] described a fourth class of kinase inhi-
bitors that are capable of forming covalent bonds to the
kinase active site, most frequently by reacting with a nucleo-
philic cysteine residue. Unlike first- and second-generation
inhibitors, the fourth generation blocks the binding of ATP
irreversibly preventing the kinase from being activated.
Figure 4(d) shows the fourth-generation inhibitor Neratinib
(HKI-272) in complex with EGFR kinase T790M mutant, making
a covalent bond to Cysteine 797.

4.3.6. Tackling kinase inhibitor resistance
Much of the effort to target and avoid resistance against
common kinase inhibitors has focused on the development
of inhibitors with different modes of action. This has in part
been driven by the lack of selectivity of the early inhibitors
that targeted the ATP-binding site – which is highly conserved
among many proteins. Structural methods such as mCSM-lig
and molecular dynamics approaches have been able to cor-
rectly identify and predict likely resistance mutations, which
could also potentially facilitate the design of new inhibitors
avoiding these resistance hotspots, similar to the efforts in
antiviral inhibitor design. However, more practically, as
sequencing of cancers is becoming more routine, these meth-
ods offer the opportunity to help guide the selection of the
most effective therapeutics- facilitating the widespread imple-
mentation of personalized medicine.

The advent of fast and precise computational methods to
predict effect of mutations can be leveraged to assist and
guide the development of new drugs. Since resistance can
emerge from different molecular mechanisms, current predic-
tors can be integrated in novel drug resistance identification
methods that can then be used in large-scale screening to
identify better protein targets, identify and avoid potential
resistance hotspots as well as optimize ligand affinity and
selectivity, driving the experimental design of better, more
potent and efficacious drugs.

5. Expert opinion

While significant progress has been made in terms of innova-
tive tools to understand and quantify the different range of
effects in which a mutation or a set of mutations can give rise
to a phenotype, a great gap still exists when integrating these
predictions and drawing causality conclusions linking variants,
compounded by the need for detailed information regarding

the system/protein. The availability of scalable, effective com-
putational methods to assess mutation effects creates new
opportunities of development of such integrated approaches
and decipher complex genomic background patterns, shed-
ding light into their role in the emergence of a given pheno-
type and molecular mechanisms of action. This capability can
then be used to systematically study, for instance, how drug
resistance emerges on specific drug targets, aiding the drug
development process. Initial efforts on that matter have
focused on preparing predictors and databases for specific
diseases and proteins; however, greater effort needs to be
invested in making these predictors user friendly, integrated,
and accessible to geneticists. This is particularly important
considering that most structural information is a snapshot of
a protein conformation, but how mutations affect the equili-
brium between different states can play a very important role
in disease and drug resistance [90]. A complementary and
important effort refers to the collection and curation of experi-
mental data regarding mutation effects linked to phenotype in
comprehensive databases. This information forms the evi-
dence set necessary for the proposal of novel computational
methods as well as the improvement of current approaches.
Initiatives like the Platinum database [91], the first curated
online database linking effects of mutations on protein-
small-molecule affinity for complexes with known structures,
are fundamental.

Despite this limitation, these methodologies have already
provided invaluable insights into many diseases. Current
genomic analyses are dependent upon preexisting informa-
tion; either extensive genomic or biochemical analyses. This
limits the insight and information that can be drawn regarding
novel mutations. As these structural methods become more
widely used, they will complement traditional analyses meth-
ods to provide much greater power from genomic analysis.

In the shorter term, the ability of these methods to predict
likely resistance mutations before they arise offers enormous
potential throughout the drug development process. Peter
Coleman first suggested that the design of inhibitors that
resemble transition state analogs should be more resilient to
the development of resistance. Out of this, Zanamivir was
developed, the first successful structure guided drug develop-
ment, but as we have seen over the intervening years resis-
tance against Relenza has been widely reported, although it
has been less prone to resistance than Oseltamivir.

During the development of a recent class of Mycobacterium
tuberculosis IMPDH inhibitors, structural-guided mutational
prediction was used to identify likely resistance mutations,
defined in this case as point mutations that disrupted inhibitor
binding, but did not affect NAD binding, protein solubility or
formation of the active tetramer. One mutation in particular,
Y487C, was highlighted, and subsequently confirmed to be
one of the few mutations to arise during resistance screening
[92]. Subsequent drug development attempts avoided this
resistance hotspot and were active against the Y487C mutant
[93]. This also enables the analysis of multiple mutations, some
of which have been characterized to facilitate the develop-
ment of resistance. In many cases, these seem to increase
protein stability or natural ligand binding, which can be
decreased due to the primary resistance mutation.
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While current medicinal chemistry efforts are currently nor-
mally retroactive – we observe which mutations arise in the
lab or clinic and then design new generations of inhibitors to
target or avoid them – the power of computational mutational
analysis enables us to preemptively identify likely resistance
hotspots, and to take this information under consideration
when optimizing candidate molecules. In a similar fashion to
how experimental structures [94–98] and pharmacokinetic
predictors are now widely used to guide medicinal chemistry
efforts [99], playing a role in dramatically reducing failure rates
of clinical trials due to these problems. The use of in silico
mutational analysis in the development of new therapeutics
will hopefully avoid likely resistance mutations. While the
evolutionary forces and the constant selective battle makes
the development of resistance somewhat inevitable, this will
hopefully aid in the development of the next generation of
therapeutics that are more resistant to the development of
resistance.
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Introduction

Methodology

kamp: a structure-based computational approach for predicting 
activating mutations in kinases

Carlos H. M. Rodrigues1,2, David B. Ascher1,3,4, Douglas E. V. Pires¹

Goals

Results

Figure 2. ROC curves showing the performance of kamp compared against the well established methods SIFT 
(Ng, P.C. and Henikoff,S. 2003) and PolyPhen (Adzhubei, I.A. et al., 2010), for the complete training set (on the 
left hand side) and the blind test (on the right hand side).

❖ kamp, for the first successfully predicts activating mutations on kinases. 
❖ Very effective in identifying activating mutations (91% precision) as well as 

non-activating mutations (93%). 
❖ Outperforms well established sequence-based predictors.
❖ It is implemented as a user-friendly web server availble online at 

http://biosign.cpqrr.fiocruz.br/kamp.
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❖Computational analysis of structural data on mutations in kinases:

➢ Understanding the role of these mutations in diseases and guide the 

development of improved and more personalized treatment strategies;

❖New in silico method to predict activating mutations in kinases:
➢ No robust computational methods for identifying activating mutations have 

been proposed yet.
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❖ Kinases phosphorylate more than 30% of all cellular proteins, modulating their 
activities and interactions (Cohen, 2001).

❖ Disregulation of catalytic activity of kinases, through the introduction of 
dominant activating mutations:

➢ Metastasis of  many cancers, which has driven the widespread design and 
use of kinase inhibitors;

❖ We present kamp, a novel machine learning method for predicting missense 
activating mutations in kinases from a structural perspective;

Classifier Precision Recall AUC F-measure Class

LAC 0,760 0,987 0,904 0,859 Activating

LAC 0,857 0,200 0,904 0,324 Nonactivating

MLP 0,867 0,929 0,839 0,897 Activating

MLP 0,776 0,633 0,839 0,697 Nonactivating
Regression (M5P) 0,910 0,981 0,922 0,944 Activating
Regression (M5P) 0,938 0,750 0,922 0,833 Nonactivating

Random Forest 0,893 0,981 0,942 0,935 Activating

Random Forest 0,933 0,700 0,942 0,8 Nonactivating

Table 1.  Prediction performance for different classification algorithms per mutation class.

Figure 1. kamp workflow. Experimental data on kinase missense mutations from databases available in the literature 
were collected, and those were mapped to structures in the PDB. These were used to calculate a set of structural 
features, including changes in stability, interactions established by wildtype residue and residue environment attributes. 
To choose the most discriminative attributes a filtering step is performed via feature selection using Principal 
Component Analysis and Information Gain. The final set of attributes were used for supervised learning to select the 
best performing model, capable of identifying activating mutations in kinases..

Figure 3. Web server interfaces. 
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➢Over 70 million people have been infected with HIV-1 in the last 50 years.

➢The virus can infect the human immune system by binding of glycoprotein120

(gp120) with their natural ligand CD4 on surface of host cells.

➢The human immune response is based on the recognition of gp120 by broadly

neutralizing antibodies (NAbs).

➢Treatments have been developed based on antibody therapy against gp 120.

➢Rapid virus evolution has limited these treatments:

 evasion mechanisms include mutations that decrease dramatically the binding

affinity and neutralization sensitivity of NAbs;

 these mutations also effect the viral fitness.

Accuracy: 0.805 AUC: 0.811 Precision: 0.895 Recall: 0.819

Introduction

Methodology

Computational Study and Inference of Mutations Affecting Viral Fitness and 

Escape from Immune System in the HIV-1 Envelope Glycoprotein

Goals

Conclusions and Future Directions

➢ Integration of the effects of mutations on antigen stability, antigen-antibody

affinity and mutations structural features, were used to develop a predictive model

for escape mutations.

 These models achieved correlations of up to r = 0.74 and accuracy of 80.5%

➢ Extrapolation of the trained predictive model allowed identification of hot spots

for escape mutations which can be used in further analysis

➢Future efforts will involve considering the effect of these mutations on viral

fitness, as well as taking into account other structural effects for model refinement.

➢These can then be used in the design of novel antibodies therapies

Predictive Models using 

Machine Learning5

Predicted 

Phenotype

A - gp120 (chain G) in complex with CD4 (chain G), and residues shown in blue. B –

Contact interface presenting interactions between Asp 245 (chain G – gp120), Tyr 91(light

chain (L)) and Trp 100B (heavy chain (H)) of VRC01. C – Plots presenting the best

predictive models found for complexes gp120-VRC01/CD4 and experimental data. Data in

logarithmic scale.

gp120 in complex with 

VRC01/CD4/B12 (NAbs)
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Homology 
Modeling

•Location of Mutations;

•Property Distribution:

•RSA

•Interactions

•Distance to Interface

•Secondary Structure

Structural Features

•Stability1,2

•Protein-protein affinity2

•In ΔΔG Kcal/mol
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C

➢Elucidate the molecular mechanism of escape mutations and their effects

on antigen/antibody complex:

Computationally analyzing mutations in the gp120 structure in complex with

VRC01/CD4/b123 antibodies.

➢New in silico methods to explain:

 How mutations lead to evasion of the immune system?

 And predict:

 Binding affinity, Neutralization sensitivity.

Amanda T. S. Albanaz¹,², Carlos H. M. Rodrigues1,2, David B. Ascher1,4, Douglas E. V. Pires¹

Challenge Predict and anticipate escape 

mutations

Identify hot spots for 

antibody design
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Supported by 
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D – Heatmap of escape mutations calculated with trained model for gp120 (chain G) in

complex with VRC01 (chain L and H),. Hot spots are shown in red.

D

Predicting CD4 escape mutations in gp120 via binary classification

Hot spots of escape mutations

Predicting effects of mutations in gp120 via regression tree

 Over the years in silico methods have been helping decipher the effects of

mutations in diseases, and elucidating their molecular mechanism.

 These can be used to assemble a platform for studying and predicting escape

mutations.
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Table 10 – Components used for building Kinact web server.

Component Version External link

Bootstrap 3.3.7 <http://getbootstrap.com>

Font Awesome 4.6.3 <http://fontawesome.io/>

Datatables 1.9.4 <http://www.datatables.net>

Selectize 0.12.4 <https://github.com/selectize/selectize.js>

Wallop 2.4.1 <http://pedroduarte.me/wallop>

SweetAlert 4.1.9 <https://limonte.github.io/sweetalert2/>

Perfect Scrollbar 0.6.16 <https://github.com/noraesae/perfect-scrollbar>

3Dmol.js 1.0.1 <http://3dmol.csb.pitt.edu>

MSAViewer 1.0 <http://msa.biojs.net/>

BaguetteBox 1.8.0 <https://github.com/feimosi/baguetteBox.js>

Flask 0.11.1 <http://flask.pocoo.org/>

Redis 2.10.5 <https://redis.io/>

PostgreSQL 9.3 <https://www.postgresql.org/>

http://getbootstrap.com
http://fontawesome.io/
http://www.datatables.net
https://github.com/selectize/selectize.js
http://pedroduarte.me/wallop
https://limonte.github.io/sweetalert2/
https://github.com/noraesae/perfect-scrollbar
http://3dmol.csb.pitt.edu
http://msa.biojs.net/
https://github.com/feimosi/baguetteBox.js
http://flask.pocoo.org/
https://redis.io/
https://www.postgresql.org/
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