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Resumo

Este trabalho apresenta o estudo e implementação do controle cinemático de robôs baseado

em programação linear proposto recentemente por Gonçalves et al. (2016). Este método

tem como vantagem a possibilidade de se incluir restrições de igualdade e desigualdade nas

entradas de controle do sistema, além de ser computacionalmente eficiente e ter garantia

formal de estabilidade. O método foi aplicado a um robô manipulador móvel de base não

holonômica e algumas melhorias foram propostas à formulação original, como a proposta de

uma nova função positiva definida dependente da variação do erro para evitar movimentos

nas juntas quando o efetuador do robô estabiliza em um ponto diferente do ponto desejado.

Além disso, as restrições de não holonomia da base móvel são impostas como restrições de

igualdade no programa linear e, portanto, não há necessidade de se utilizar uma estrutura

de controle em cascata para realizar o controle de corpo completo. Definiu-se ainda

restrições de desigualdade para evitar tanto violações dos limites das juntas quanto colisões

com obstáculos. Para garantir um bom desempenho do controlador, a sua implementação

foi feita no Robot Operating System (ROS) utilizando-se C++. Além disso, também foi

integrado um sistema de visão baseado em sensores RGB-D para reconhecimento de

marcadores, cujo objetivo foi de melhorar a odometria da base móvel e detectar obstáculos

no espaço de trabalho. Para avaliar o desempenho do controlador, foi apresentada uma

comparação com uma estrutura de controle em cascata na qual uma malha interna é usada

para lidar com as restrições de não holonomia da base móvel, mediante uma linearização

entrada-sáıda, e uma malha mais externa é usada para lidar com os movimentos do corpo

completo usando a pseudo-inversa da matriz Jacobiana de corpo completo. Resultados de

simulação e experimentais mostram que o controle baseado na programação linear possui

baixo custo computacional, o robô consegue executar tarefas de controle de pose e posição

do efetuador sem que haja colisão com obstáculos no plano e sem que haja violação dos

limites das juntas do robô manipulador. Porém, o método baseado em programação linear,

utilizando-se o algoritmo Simplex, gera sinais de controle mais abruptos do que aqueles

gerados pelo controle em cascata baseado na pseudo-inversa da matriz Jacobiana do robô.

Palavras-chave: Programação linear, controle cinemático, otimização, não holonômico.
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Abstract

This work presents the study and implementation of the robot kinematic control strategy

based on linear programming recently proposed by Gonçalves et al. (2016). In addition

to being computationally efficient, this approach enables the inclusion of inequality and

equality constraints in the system control inputs and has formal guarantee of stability. This

method was applied to a nonholonomic mobile manipulator and some improvements were

proposed to the original formulation, such as the addition of a new positive definite function

of the error variation to avoid joint movements when the robot end effector stabilizes

at a point different from the desired one. In addition, nonholonomic constraints of the

mobile base are imposed as equality constraints in the linear program and therefore there

is no need to use a cascade control structure to perform whole body control. Inequality

constraints were also defined to avoid both violation of joint limits and collisions with

obstacles. To guarantee a good performance, the controller was implemented on the Robot

Operating System (ROS) using C++. In addition, a computer vision system based on

RGB-D sensors for marker recognition was also integrated into the experimental testbed

with the goal of improving robot localization and detecting obstacles in the workspace.

In order to evaluate the controller performance, a comparison was made with a cascade

control structure in which an inner loop is used to deal with the nonholonomic constraints

of the mobile base by using an input-output linearization and an outer loop is used to tackle

the whole-body motion by using the pseudoinverse of the whole-body Jacobian matrix.

Simulation and experimental results show that the controller based on linear programming

has low computational cost, and the robot is able to control its end effector without

colliding with obstacles in the plane and without violating its joints limits. However,

when using the Simplex algorithm the method based on linear programming generates

more abrupt control signals than those generated by the cascade controller based on the

pseudoinverse of the robot Jacobian matrix.

Keywords: Linear programming, kinematic control, optimization, nonholonomic.
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1
Introduction

Nature has been the main source of inspiration and creation of human beings (Snell-Rood,

2016). Millions of years of evolution have created extremely complex organisms adapted

to the different environments and analogously most of today’s robots have undergone an

artificial evolution to adapt to new and challenging problems as well as human needs. Some

of these robots are the humanoid robots and the mobile manipulators, which are equipped

with many (DOF) and have emerged for applications such as human-robot interaction (De

Santis et al., 2008), medical care (Taylor, 2006), education (Chin et al., 2014), military

(Carlson and Murphy, 2005), and also to assist humans in daily activities (Cha et al.,

2015).

In order to perform manipulation tasks or generate desired movements, motion control

techniques are required. When the physical forces acting on the system is the main

concern, the robot dynamic model must be computed and therefore the inertial parameters

that describe the robot dynamics should be known, but such parameters are not always

available. However, when the main concern is the position and orientation of the end

effector and the dynamics of the internal loop (i.e., the inner velocity control loop) is

sufficiently fast—which in practice happens when the robot is sufficiently rigid and operates

under relatively low velocities and accelerations—the system dynamics can be regarded as

a single integrator and thus the robot can be actuated in velocity (Siciliano and Slotine,

1991). This allows the use of kinematic control, an approach more appropriate under

aforementioned considerations. Moreover, kinematic control is not affected by uncertainties

in the inertial parameters (e.g., mass and moment of inertia) and requires simpler models,

1
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(a) (b) (c)

Figure 1.1: Recently emerged mobile manipulators: (a) Kuka youBot, (b) PR2 Robot , (c)
Justin robot.

such as the forward kinematics model (FKM) and the differential forward kinematics

model (DFKM). The former provides the relation between the joints configuration and the

end-effector pose (i.e., position and orientation), whereas the latter provides the relation

between the joints velocities and the end-effector generalized velocities by means of the

Jacobian matrix (Spong et al., 2006).

Traditionally, the kinematic control problem has been approached by using the gen-

eralized pseudoinverse of the Jacobian matrix (a solution that corresponds to the least

squares minimization problem). When a robot is redundant (i.e., it has more actuated

(DOF) than the amount required for executing a particular task) infinite solutions exist.

Therefore, it is desirable that the control system select the most appropriate control action

to achieve the desired task while simultaneously avoiding singularities, external obstacles,

or optimizing any other criterion of interest (Liégeois, 1977). It is common in redundant

systems to impose additional restrictions or tasks in order to enhance the versatility of the

robot, and usually a task-priority strategy is used to manage those multiple tasks based

on the null space of the Jacobian Matrix. When several incompatible goals are involved,

hierarchical inverse kinematics is often used (Siciliano and Slotine, 1991; Chiaverini, 1997;

Marani, 2004; Escande et al., 2010; Flacco and De Luca, 2013; Escande et al., 2014). Often,

the robot motion generation is expressed as an optimization problem (Laumond et al.,

2015) and when incompatible objectives or constraints are involved, and there is no an

analytical solution, numerical solvers can be used (Escande et al., 2010; Kanoun et al.,

2011; Escande et al., 2014; Rauscher et al., 2016). This approach has been addressed

mostly using quadratic programing, but when a large amount of constraints are imposed

the computational cost increases considerably (Nakamura et al., 2005) . This disadvantage

can be mitigated using linear programming, where recent works (Ho et al., 2005; Goncalves

et al., 2016; Quiroz-Omana and Adorno, 2016) showed low computational cost and good
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performance when this approach was used in redundant systems with additional imposed

constraints.

This work focuses on the kinematic control approach to control a nonholonomic mobile

manipulator based on the recently parsimonious control proposed by Goncalves et al.

(2016), in which the inverse kinematic formulation is based on linear programming and

the Lyapunov stability was formally proved. This approach has some important features

such as low computational cost and the possibility of including equality and inequality

constraints. The remainder of this chapter is organized as follows: Section 1.1 explains the

objectives and Contributions of this dissertation; and Section 1.2 details the structure of

this work.

1.1 Objectives and Contributions

The main objective of this work is to apply the kinematic control using linear programming

proposed by Goncalves et al. (2016) in a nonholonomic mobile manipulator. Furthermore

to exploit its features in order to enhance the performance with respect to the traditional

approach, as well verify the control strategy in the real robot. The specific objectives are:

• Implement the whole-body kinematic control using linear programming in a nonholo-

nomic mobile manipulator.

• Impose additional constraints in the linear programming formulation in order to

prevent violations of joint limits and prevent collisions with obstacles in the plane.

The traditional kinematic control approach used for comparison in the nonholonomic

mobile manipulator is based on a cascade scheme composed of an outer loop that takes

into account all DOF by using the pseudoinverse of the robot Jacobian matrix and an inner

loop that explicitly deals with the nonholonomic constraints of the mobile base by means

of an input-output linearizing controller (Salazar-Sangucho and Adorno, 2014). Although

that approach works well in practice the formal proof of the system stability is not trivial

and was not shown in (Salazar-Sangucho and Adorno, 2014).

A performance comparison between the traditional kinematic control and the linear

programming approach was presented in the 2016 XIII Latin American Robotics Sympo-

sium and IV Brazilian Robotics Symposium (LARS/SBR) (Quiroz-Omana and Adorno,

2016). Both strategies were based on a cascade control scheme in order to deal with the

nonholonomic constraint of the mobile base.

The contributions of this work can be summarized as follows:

• The nonholonomic constraint of the mobile base was taken into account as an equality

constraint in the linear programming formulation and the cascade structure used

in (Quiroz-Omana and Adorno, 2016) was removed. This avoids the necessity of
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prove the stability using such structure. Because the Lyapunov stability in the linear

programming formulation was formally proved by Goncalves et al. (2016), when the

cascade structure is not used the Lyapunov stability is guaranteed.

• A new definite positive function that depends on the error variation is proposed

in order to avoid joint movement when the robot end-effector stabilizes in a point

different from the desired one. The original formulation of Goncalves et al. (2016),

guarantees that the robot joints will stop only if the stabilization is asymptotic.

• Additional inequality constraints are imposed in the linear program to avoid violation

of the manipulator’s joints limits and to prevent collision between the mobile base

and obstacles in the plane. The application of the kinematic control based on

linear programming without cascade scheme to a nonholonomic system, such as the

nonholonomic mobile manipulator used in this work, is novel.

1.2 Structure of the Text

This thesis is organized as follows:

Chapter 2 presents some of the most important works in nonholonomic and redundant

robotic systems, including kinematic control strategies as optimization problems. Chapter

3 reviews the mathematical foundation required and recommended in order to understand

the presented methods. In addition it is established the notation used in this work.

Chapter 4 describes the modeling methodology based on dual quaternion algebra used

in order to obtain the forward and differential kinematic model of the nonholonomic

mobile manipulator. Chapter 5 describes the control strategy based on linear programming

and some improvements to the original formulation. In addition, this chapter presents

the additional imposed constraints to prevent violations of the joint limits and avoid

collision with obstacles in the plane. Chapter 6 describes the experimental platform and

the experiments performed, as well as the obtained results. Finally, Appendix A contain

the D-H parameters of the manipulator arm and the dimensions of the mobile base.



2
State of the Art

This chapter reviews some recent works related to the research on nonholonomic mobile

manipulators and is organized as follows: Section 2.1 presents a review of some kinematic

control strategies for redundant robots based on the pseudoinverse of the robot Jacobian

matrix. Section 2.2 reviews some kinematic control strategies based on linear programming.

Section 2.3 presents some works related to the kinematic control of nonholonomic mobile

manipulators.

2.1 Kinematic Control of Redundant Robots: Classic

Techniques

It is well known that the general optimization problem for motion control is difficult to

solve. In most cases, solving the general problem require very long computation time

and there is a possibility of not even finding a solution. However, for a few classes of

optimization problems there are effective algorithms that require low computational time,

as the least-squares or linear programming, both particular cases of convex optimization

that have been widely used in robotics as principle of motion in last decades (Laumond

et al., 2015).

Finding the configuration of each actuator of the robot in order to achieve a particular

position and orientation of the end-effector is called inverse kinematic problem. The

nonlinear equations that govern the robot kinematics are very expensive to solve. Global

5
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optimization techniques have been used to solve such equations but are impractical for

on-line feedback control due to its high computational cost (Nakamura and Hanafusa,

1987; Laumond et al., 2015). This has been addressed by using a local optimization that

deals with the differential kinematics, which uses the relation between the joints velocities

and the end-effector velocities by means of the Jacobian matrix (Siciliano, 1990) as follows

ẋ = Jq̇, (2.1)

where ẋ ∈ Rm and q̇ ∈ Rn denote the end-effector and the joint-space velocities, respec-

tively, and J ∈ Rm×n denotes the Jacobian matrix.

2.1.1 Task-Space Augmentation

When the robot is redundant respect to a given task, that is n > m, the Jacobian matrix

is not invertible. One technique of redundancy solution is to extend the dimension of the

task space by imposing additional equality constraints on the joint variables.

 ẋ

ẋc


︸ ︷︷ ︸

ẋa

=
 J

J c


︸ ︷︷ ︸

Ja

q̇, (2.2)

where J c ∈ Rp×n, p ≤ n−m is the constraint-task Jacobian matrix that relates the

constraint-task velocity vector ẋc and the joint velocities. This approach is called the

task-space augmentation (Sciavicco and Siciliano, 1988) and the solution is given as

q̇ = Gẋa, (2.3)

where G is a suitable matrix based on the Jacobian matrix, and when p=n − m, the

problem (2.2) is called Extended Jacobian (Baillieul, 1985) and the solution is given by

q̇ = J−1
a ẋa. (2.4)

The solution (2.4) is cyclic (i.e., cyclic joint trajectories are generated when the end-

effector is required to trace a closed path) a desired behavior, which is advantageous over

pseudoinverse techniques (De Luca et al., 1992). One disadvantage is the occurrence of

algorithmic singularities that appear when the augmented Jacobian is singular whereas

the original Jacobian matrix is not. Moreover, additional singularities happens when the

constraint task conflicts with the end-effector task (Chiaverini, 1997).
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2.1.2 Pseudoinverse of the Jacobian Matrix

The inverse kinematic problem is often solved via optimization aiming to find a set of

velocities that minimizes the error (i.e., the difference between the current pose of the end-

effector and the desired pose). A solution for this problem is given by the Moore-Penrose

pseudoinverse (Siciliano and Khatib, 2016) that generates the least-norm velocities and is

given as

q̇ = J †ẋ, (2.5)

where

J † =



(
JTJ

)−1
JT m > n, rank(J) = n

J−1 m = n, rank(J) = n = m

JT
(
JJT

)−1
m < n, rank(J) = m.

In this method, however, singularity avoidance cannot be guaranteed. On the other

hand, when the robot is redundant with respect to the task infinite solutions exists and

optimization is used to select admissible velocities based on a specified criterion. In that

case some velocities produce no effect in the end-effector. This subset of velocities is

called the null space of the task and can be used to perform secondary tasks. The general

solution of equation (2.1) is given as follows

q̇ = J †ẋ+
(
I − J †J

)
q̇0, (2.6)

where
(
I − J †J

)
represents the orthogonal projection matrix into the null space of J

and q̇0 is an arbitrary joint-space velocity. This concept was used in robotic applications

by Liégeois (1977) to perform kinematic control of a redundant manipulator arm while

avoiding violations of joint limits.

2.1.3 Task-Priority Framework

When there are conflicts between the end-effector task and the constraint task, the task-

space augmentation approach leads to singularities. This problem can be tackled by the

task-priority strategy. In this approach the task is divided into subtasks and is assigned a

priority level for each one. The lower priority tasks are satisfied only in the null space of the

higher-priority task. The pseudoinverse solution is used to generate least-norm velocities.

In this way, the robot will try to perform multiple tasks and when an exact solution does

not exist, the higher priority task is fulfill at expenses of ignoring the lower-priority ones.

The generalization to any number of tasks was proposed by Nakamura et al. (1987) and

its recursive expression was proposed by Siciliano and Slotine (1991).

This strategy has been widely applied to redundant manipulators (Chiaverini et al.,
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2016) and in general to redundant systems, but it considers equality constraints only. In

order to take into account inequality constraints some works were addressed by adding

repulsive fields (Khatib, 1986) in the task priority strategy to impose for instance joint-limit

constraints (Sentis and Khatib, 2005). However, this is a restrictive method (in the sense

that the inequality constraints are transformed into equality constraints) that produces

suboptimal solutions and is likely to produce a discontinuity (Kanoun et al., 2011).

Mansard et al. (2009) proposed a smooth control law to deal with equality and inequality

constraints in the task-priority strategy. The authors used an inverse operator to smooth

the irregularity of the unilateral constraint. The control law is based on the hierarchical

set of tasks framework with inequality constraints. However, this method has a high

computational cost.

Recent works have been approached by using numerical solvers in quadratic program-

ming (QP) in order to take into account equalities and inequalities constraints, requiring a

lower computational cost (Escande et al., 2010; Kanoun et al., 2011; Escande et al., 2014).

2.2 Kinematic Control as a Linear Programming

The analytical solution of the inverse kinematic problem is not just elegant but also

very efficient. However, when inequality constraints are imposed, such solution does

not exist. In that case, the inverse kinematic problem can be expressed as mathematical

optimization (also called mathematical programing) and numerical solvers, mostly quadratic

programming, have been widely used (Escande et al., 2012; Kim and Oh, 2013; Escande

et al., 2014; Dai and Tedrake, 2016). The main advantage of the mathematical optimization

is the possibility of imposing easily inequality constraints directly in the mathematical

formulation, a feature that can be exploited in robotic systems in order to bound the

accelerations and joint velocities or avoid, for instance, violation of joint-limits and collision

with obstacles. However, when the number of (DOF) or constraints is very large, the

computational cost increases considerably. This issue can be tackled by using linear

programming, where recent works showed that it is a powerful and efficient tool to

solve highly constrained system. Furthermore, in the linear programming formulation, a

parsimonious behavior, when feasible, can be obtained when the Simplex method is used

(Goncalves et al., 2016).

Nakamura et al. (2005) proposed a method to compute the forward and inverse dynamics

of a musculoskeletal human model, a hyper-redundant model , using linear programming

and the Simplex algorithm. The proposed method was compared to convex quadratic

programing using an algorithm based on interior points. Simulation results shown that the

method based on linear programming has lower computational cost than the method based

on quadratic programming; in the particular hyper-redundant model used, the former was

about 4.77 faster than the latter.
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Ho et al. (2005) proposed an inverse kinematic formulation based on linear programming

applied to highly redundant structures. The optimization criterion is based on the minimum

sum of the absolute values of the joint velocities instead of calculating the least-square

solution (as convex quadratic programming). In this approach the control inputs suffer

from jittering. In order to mitigate it the authors proposed a new objective function that

takes into account a solution calculated in a previous step. Simulation results shown a low

computational cost of the linear programming approach and even more efficiency (when

the number of constraints is large) than the nonlinear programming approach based on

Lagrange multipliers.

Kingston et al. (2015) presented a kinematic control method for robot manipulators

using linear optimization subject to position, acceleration and velocity constraints and

robust to kinematic singularities. In this approach the acceleration of the joints are

minimized in the 1-norm sense. Experimental results shown that the proposed method

is fast enough to perform online feedback control despite being 20 times slower than the

analytical solution based on the damped pseudoinverse of the Jacobian matrix. However,

it is important highlight that the latter does not allow to define inequality constraints.

Goncalves et al. (2016) proposed the parsimonious kinematic control where the inverse

kinematic formulation was approached by using linear programming and the Simplex

algorithm. In this paradigm, it is desired to use a minimum amount of actuators to

perform a particular task. This formulation is more general than the one proposed by

Ho et al. (2005) and is more computationally efficient and easier to implement. The

Lyapunov stability was formally proved and the experimental results shown than with

the parsimonious approach the robot uses less actuators than when it uses the traditional

approach that uses the the pseudoinverse of the Jacobian matrix. However, the control

inputs generated by the former are more abrupt than those generated by the latter.

It is important highlight that in comparison with the other methods based on linear

programming, the method proposed by Goncalves et al. (2016) is the only one that has a

formal proof of stability. In addition, the linear program proposed by the authors to deal

with the inverse kinematic problem is computationally efficient. In the method proposed

by Nakamura et al. (2005) the main concern is to compute forces and tensions instead

of joint velocities. Finally, the method proposed by Kingston et al. (2015) is concerned

with computing the joint accelerations and the second-order differential kinematic model

is required.
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2.3 Kinematic Control of Nonholonomic Mobile Ma-

nipulators

Mobile manipulators are mobile platforms equipped with a conventional manipulator arm.

Often, those robot systems are redundant and allow to increase not just the dexterity of

the robot, but also the workspace of the manipulator. In general, the mobile platform is

composed of wheeled bases or walking and flying robots, although the former are by far

the most common locomotion systems in the mobile platforms. A mobile platform can

be holonomic (i.e., it is able to perform movements instantaneously in any direction) or

nonholonomic (i.e., it is not able to perform movements instantaneously in any direction

but first the orientation of the platform must be aligned before the movement) if it

has holonomic or nonholonomic constraints, respectively. Although the nonholonomic

constraints limit the instantaneous mobility of the platform it can attain any position and

orientation in the plane.

In order to perform motion control of a nonholonomic mobile manipulator, its non-

holonomic constraints must be taken into account. Often, this can be addressed including

the nonholonomic constraints into the differential kinematic description (i.e., the nonholo-

nomic constraint is modeled as an equality constraint and it is included in the extended

differential kinematic description) (Seraji, 1998; Jia et al., 2014). However, a more efficient

formulation is express explicitly in the differential kinematic description the admissible

platform velocities Gardner and Velinsky (2000); Bayle et al. (2003).

De Luca et al. (2006) presented an extension of redundancy resolution schemes originally

developed to standard manipulators and applied to a nonholonomic mobile manipulator.

The authors obtained the kinematic model of the robot considering the nonholonomic

constraints of the mobile platform. Two control strategies were implemented, namely

the Projected and Reduced Gradient optimization methods. The former is based on the

pseudoinverse of the robot Jacobian matrix and its null space projection operator. A

suitable null space vector (as secondary task) that allows to obtain admissible velocities for

the nonholonomic mobile platform is used. The latter is based on the Reduced Gradient

method (De Luca and Oriolo, 1991) where only the extra DOF are used for optimization.

A numerical comparison was performed and results shown superior performance of the

Reduced Gradient method over the Projected Gradient method.

Liu and Li (2006) proposed an extended gradient projection as redundancy resolution

method for multiple secondary tasks and applied the technique to redundant mobile

manipulators. A real-time fuzzy logic planner was implemented in order to generate

self-motions and an adaptive neural-network controller was also implemented to perform

multiple secondary tasks without affecting the primary one. The nonholonomic constraints

of the mobile platform were taken into account by a general dynamic modeling.

Zhang et al. (2012) proposed a redundancy resolution method based on online sensor
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information on the environment task and the pseudoinverse of the Jacobian matrix as

well as its null space projection operator. The differential kinematic description included

the admissible platform velocities and the nonholonomic constraint is take into account

by generating feasible velocities. Additional constraints and particular requirements are

modeled as a multi-objective optimization problem as done by De Luca et al. (2006).

Others works (Giordano et al., 2009; De Luca et al., 2010) addressed the control of

nonholonomic mobile manipulators with steering wheels. In this case, it is common that

the steering velocity inputs do not appear in the forward differential kinematic model

and, consequently, the number of effective control inputs are not used in the control laws.

The authors proposed control solutions based on the framework of input-output feedback

linearization. However, the modeling and control of such robots is often more complex. In

general the mobile platform is over-actuated ( i.e., several wheels to control the pose of

the mobile platform with two actuators per wheel to control its angular velocity and its

orientation). In such system it is required to orient precisely the wheels and a method

commonly used is based on the Instantaneous Center of Rotation (ICA) (Tin Lun Lam

et al., 2009). The idea is to define a point in the world frame, which instantaneously does

not change with respect to the robot and before to perform a movement, each wheel axis

of the robot must be aligned with respect to such point. However, this strategy leads to

singularities (Dietrich et al., 2011). Furthermore, is common that the steerable wheels

located in the robot center lead to kinematic singularities Reister and Unseren (1993);

Thuilot et al. (1996); Giordano et al. (2009). Those issues are tackled by Stoger et al.

(2015) by using a regular parametrization of the robot’s motions and by using a control

strategy based on input-output feedback linearization in terms of a path parameter.

Jia et al. (2014) presented a planning and control method to efficiently handle uncer-

tainties of the system. This paradigm assumes that the nonholonomic manipulator has

uncertainties and could suffer unexpected events because both the arm manipulator and

the mobile platform are different structures resulting in different motion dynamics and

errors. The authors approached this issue by using a cascade control structure. An inner

loop dealt with the kinematic control and is based on the work proposed by De Luca et al.

(2006) and the outer loops dealt with a planning control process based on the system’s

output measurements to handle these events and achieve the best possible performance.

Salazar-Sangucho and Adorno (2014) proposed a kinematic control strategy applied to

a nonholonomic differential mobile manipulator based on the damped pseudoinverse of the

robot Jacobian matrix. The robot was modeled based on a systematic procedure using dual

quaternion algebra proposed by Adorno (2011) and the nonholonomic constraint was not

added in the differential kinematic description. Instead, this strategy was solved by using

a cascade control scheme where the inner loop dealt with the nonholonomic constraint

by using an input-output feedback linearization and the outer loop was responsible by

the whole-body motions. Experiments on a real platform shown that the control strategy
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proposed works well in practice, although the stability of the system was not formally

proved using the cascade scheme.

Silva and Adorno (2016) proposed a whole-body pose control of a nonholonomic

mobile manipulator based on a nonlinear controller using the cascade scheme proposed by

Salazar-Sangucho and Adorno (2014). In the outer loop a nonlinear controller based on

dual-quaternion feedback linearization was proposed. Experimental results shown lower

abrupt initial movement in comparison with the classic approach proposed by Salazar-

Sangucho and Adorno (2014). However, the strategy proposed by Silva and Adorno, allows

to perform pose task only. Other tasks as position of the end-effector using this strategy

are not trivial and were not shown. In addition, this kinematic strategy works well in

practice but its stability was not formally proved.

Quiroz-Omana and Adorno (2016) presented a kinematic control strategy of a nonholo-

nomic mobile manipulator using the cascade control scheme proposed by Salazar-Sangucho

and Adorno (2014) in order to deal with the nonholonomic constraint of the mobile

platform. However, the outer loop was approached in a different way by using the recently

parsimonious kinematic control strategy proposed by Goncalves et al. (2016), where the

whole-body motions are based on linear programming and the Simplex algorithm. In this

paradigm, only a minimum number of actuators required to execute a particular task is

used. Experiments on a real platform shown that the parsimonious controller has a low

computational cost and it used less joints per iteration than the classic controller based

on the pseudoinverse of the Jacobian matrix. However, control inputs generated by the

former were more abrupt than the latter and the stability of the system was not formally

proved using the cascade scheme.

The work presented in this dissertation is based on the inverse kinematic control

using linear programming proposed by Goncalves et al. (2016) taking into account the

nonholonomic constraint of the mobile platform as an equality constraint, avoiding in this

way the need to use a cascade control scheme. Additional constraints are imposed in order

to prevent violations of joint limits and prevent collisions between the mobile base and

obstacles in the plane.

2.4 Chapter Conclusions

This chapter presented some important works related to the kinematic control of redundant

systems. Section 2.1 reviewed the classic methods widely used in redundancy solution

based mainly on the pseudoinverse of the Jacobian matrix. When it is desired to perform

additional tasks using the extra DOF available the task-space augmentation can be used.

In this strategy the end-effector task and the constraints task are stacked resulting in an

augmented kinematic problem. Nevertheless, when conflicts between the task arise, this

method leads to algorithmic singularities. In order to handle this problem, the task-priority
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strategy has been widely used. In this technique, the task is divided into subtasks according

of the order of priority and lower priority tasks are satisfied only in the null space of task

with higher priority. Section 2.2 presented some important works in kinematic control

of redundant system using linear programming. The main advantage of this approach

with respect to the classic ones is the possibility to easily include inequality constraints in

the formulation, in addition off being computationally efficient. Nakamura et al. (2005)

used the linear programing and the Simplex algorithm to compute the forward and inverse

dynamics of a hyper-redundant human-like model. In this approach was used the Jacobian

matrix to relate the joint torques and the tension of the muscles. Ho et al. (2005) used

this approach to approach the inverse kinematic problem on hyper-redundant system.

But the general formulation was proposed by Goncalves et al. (2016) where the authors

shown not just experimental results with good performance but also the formal proof

of stability. Kingston et al. (2015) proposed a kinematic control formulation based on

linear programming, where it is performed a minimization of the joint accelerations. The

experimental results shown that the method proposed by the authors works well in practice

but the stability was not proved. Finally, Section 2.3 presented some works related to the

kinematic control of nonholonomic mobile manipulators. The classic techniques to perform

kinematic control in redundant robots, which are mostly based on the pseudoinverse of

the Jacobian matrix were extended to nonholonomic mobile manipulators by De Luca

et al. (2006). This approach was used by Liu and Li (2006) and Zhang et al. (2012),

which different approaches to solve secondary task in the null space of the Jacobian matrix

were used. Jia et al. (2014) proposed a method to take into account the different motion

dynamics between the mobile base and the manipulator arm using planning control. In

absence of uncertain or unexpected events this method is equivalent to the traditional

task-level control with redundancy resolution. Salazar-Sangucho and Adorno (2014) used

the classic method based on the pseudoinverse of the Jacobian matrix and a cascade

control scheme were proposed in order to deal with the nonholonomic constraint of the

mobile base. Silva and Adorno (2016) used a nonlinear controller to perform kinematic

control and the nonholonomic constraint was tackled as done by Salazar-Sangucho and

Adorno (2014).

The control strategies based on the pseudoinverse of the Jacobian matrix allow to

impose equality constraints only. Often, the inequality constraints are addressed by

transforming those inequalities into equalities constraints. On the other hand, when the

kinematic control is formulated as mathematical programming, inequality constraints as

well as equality constraints can be imposed easily. The method proposed by Goncalves

et al. (2016) is used in this work because is computationally efficient and the Lyapunov

stability is guaranteed. Furthermore, when the Simplex method is used, the controller

tends to use a minimum amount of actuators. This parsimonious behavior could be induced

less dynamics disturbances, a useful feature in the sense that, in the kinematic control
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approach the dynamics components are not considered. Such parsimonious behavior is not

guaranteed (at least easily) using solvers based on quadratic programing.



3
Mathematical Background

This chapter reviews some concepts, foundations and operations related to quaternions

and dual quaternions. Furthermore it presents a brief exposition on linear programming.

3.1 Fundamentals of Dual Quaternion Algebra

Unit dual quaternions have proven to be a powerful mathematical tool in robotics, not

only in the representation of rigid motions, but also in robot modeling (Adorno 2011;

Selig 2005), robot design (Perez and McCarthy, 2004), and control (Pham et al., 2010;

Xiangke Wang et al., 2012; Figueredo et al., 2013; Wang and Yu, 2013; Marinho et al.,

2015; Kussaba et al., 2017). They are more compact and computationally efficient than

homogeneous transformation matrices and also do not present representational singularities

(Adorno, 2011; Adorno and Fraisse, 2016). Thanks to their strong algebraic properties,

different robots can be modeled using the same systematic procedure (e.g., single or

cooperative manipulators (Adorno et al., 2010), mobile manipulators (Adorno, 2011) and

humanoids (Oliveira and Adorno, 2015; Fonseca and Adorno, 2016), and the resultant

models can be directly used with standard kinematic controllers without the need of

any intermediate parameterization (Pham et al., 2010; Figueredo et al., 2013). Unit

dual quaternions represents rigid motions in a very compact way, by combining a unit

quaternion1 representing rotation and a pure quaternion2 representing translation.

1h ∈ H is a unit quaternion if ‖h‖ = 1.
2h ∈ H is a pure quaternion if Re (h) = 0.

15
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3.1.1 Quaternions

Quaternions are algebraic structures that can be regarded as an extension of complex

numbers introduced first by Sir William Rowan Hamilton in 1843 (1844, apud Adorno).

They are composed of a real part and three imaginary components ı̂, ̂, k̂, also called

imaginary or quaternionic units. The imaginary units have the following properties

ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. (3.1)

Definition 3.1. Given h1, h2, h3, h4 ∈ R, the quaternion h ∈ H is defined a

h , h1 + ı̂h2 + ̂h3 + k̂h4, (3.2)

where the real part is denoted by Re (h) , h1, and the imaginary part is denoted by

Im (h) , ı̂h2 + ̂h3 + k̂h4, such that h = Re (h) + Im (h).

Definition 3.2. Given h ∈ H, its conjugate is defined as

h∗ , Re (h)− Im (h) . (3.3)

Definition 3.3. Given h ∈ H, its norm is defined as

‖h‖ ,
√
h∗h =

√
hh∗. (3.4)

Definition 3.4. The vec4 : H→ R4 operator performs a one-to-one mapping. Given the

quaternion h , h1 + ı̂h2 + ̂h3 + k̂h4, this operator is defined as (Adorno, 2011)

vec4 (h) ,
[
h1 h2 h3 h4

]T
. (3.5)

Definition 3.5. Given h ∈ H, the Hamilton operators (Adorno, 2011) are defined as

+
H4 (h) ,


h1 −h2 −h3 −h4

h2 h1 −h4 h3

h3 h4 h1 −h2

h4 −h3 h2 h1

 ,
−
H4 (h) ,


h1 −h2 −h3 −h4

h2 h1 h4 −h3

h3 −h4 h1 h2

h4 h3 −h2 h1

 (3.6)

Definition 3.6. Given a,b ∈ H, the Hamilton operators satisfy the following equalities

(Adorno, 2011)

vec4 (ab) =
+
H4 (a) vec4 (b) =

−
H4 (b) vec4 (a) . (3.7)
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Definition 3.7. The conjugating matrix C4 is defined as (Adorno, 2011)

C4 ,


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.8)

Given h ∈ H, this matrix satisfies the following condition

vec4 (h∗) = C4 vec4 (h) .

3.1.2 Dual Quaternions

Dual quaternions are dual numbers where the primary and dual part are quaternions.

The dual numbers were introduced by Clifford (Adorno, 2011) and can be regarded as an

extension of quaternions.

Definition 3.8. Given two numbers dP and dD, the dual number d is defined as (Adorno,

2011)

d = dP + εdD, (3.9)

where ε is the dual unit proposed by Clifford (1873), which is nilpotent and follows the

following properties

ε2 = 0 with ε 6= 0. (3.10)

The primary part and the dual part can be extracted using the operators P (d) and

D (d), respectively. For instance, in (3.9) P (d) = dP and D (d) = dD.

Definition 3.9. The dual quaternion h ∈ H is defined as

h , hP + εhD,

where hP ,hD ∈ H.

Definition 3.10. Given the dual quaternion h = hP + εhD, its conjugate is defined as

h∗ , h∗P + εh∗D. (3.11)

Definition 3.11. Given h ∈ H, its norm is defined as

‖h‖ ,
√
h∗h =

√
hh∗.
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Definition 3.12. The vec8 : H→ R8 operator performs a one-to-one mapping. Given the

quaternion h = h1 + ı̂h2 + ̂h3 + k̂h4 + ε
(
h5 + ı̂h6 + ̂h7 + k̂h8

)
, this operator is defined as

vec8 (h) ,
[
h1 . . . h8

]T
.

The multiplication and addition operations between dual quaternions follow the same

rules of their counterparts between real numbers, but respecting the additional rules

determined by (3.1) and (3.10). It can be verified that, in general, multiplication of dual

quaternions is not commutative (i.e., given x,y ∈ H, in general xy 6= yx). However,

one can use Hamilton operators (Adorno, 2011) for manipulating algebraic expressions

containing dual quaternions such that

vec
(
xy
)

=
+
H (x) vecy =

−
H
(
y
)

vec (x) ,

where

+
H (h) ,


+
H4 (hP) 04×4
+
H4 (hD)

+
H4 (hP)

 , −
H (h) ,


−
H4 (hP) 04×4
−
H4 (hD)

−
H4 (hP)

 . (3.12)

3.2 Rigid Motions using Dual Quaternions

Definition 3.13. consider a rotation of an angle φ around a unit-norm axis n = nxı̂ +
ny ̂+ nzk̂, with respect to a fixed frame Fa and let Fb be the resultant frame after this

rotation. This rotation is represented as

rab = cos
(
φ

2

)
+ n sin

(
φ

2

)
. (3.13)

The rotation represented by (3.13) is shown in Fig. 3.1.
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Fa Fb

Figure 3.1: Representation of a rotation of an angle φ around the unit-norm axis n.

Definition 3.14. The translation from Fa to frame Fb, expressed in Fa is represented by

a pure quaternion paab given by

paab = pxı̂+ py ̂+ pzk̂. (3.14)

Definition 3.15. Given rab , p
a
ab ∈ H, defined by (3.13) and (3.14), representing the

rotation and translation, respectively. The rigid transformation composed of a translation

and then a orientation is represented by the unit dual quaternion and is defined as (Adorno,

2011)

x0
1 = r0

1 + ε
1
2p

0
01r

0
1. (3.15)

Definition 3.16. Given the frames F0, F1, and F2, the unit dual quaternions x0
1 and x1

2

represent the rigid motions from F0 to F1 and F1 to F2, respectively. The transformation

from F0 to F2 is given by x0
2 = x0

1x
1
2 (Adorno, 2011), as shown in Fig. 3.2.

y0

z0

x0

z1

x1

y1

x2

y2

z2

p0
01

p1
12

r0
1

r1
2

F0

F1

F2

x0
1

x1
2

x0
2

Figure 3.2: Sequence of rigid transformations using dual quaternions.
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Definition 3.17. Given the unit dual quaternion x = r + 1
2εpr, with r = cos (φ/2) +

n sin (φ/2), n = nxı̂+ ny ̂+ nzk̂ and p = pxı̂+ py ̂+ pzk̂, the logarithm of x is defined as

(Adorno, 2012)

logx ,
nφ

2 + ε
p

2 . (3.16)

The logarithm of a unit dual quaternion is a dual quaternion with real part equal to

zero, however and not necessarily has unit norm. Note that when logx is multiplied by a

scalar, the rotation axis and the direction of the translation are not affected. Only the

magnitude of the rotation angle and the translation are affected.

Definition 3.18. Given the pure dual quaternion a (i.e, Re (a) = 0), its exponential is

expressed by Adorno (2012)

expa , P (expa) + εD (a)P (expa) , (3.17)

where

P (expa) =

cos ‖P (a)‖+ sin‖P(a)‖
‖P(a)‖ P (a) if ‖P (a)‖ 6= 0

1 otherwise.

Definition 3.19. Given λ ∈ R, the unit dual quaternion x raised by λ is given by Adorno

(2012)

x{λ} = exp (λ logx) . (3.18)

Example 3.1. Given a unit dual quaternion x = r + ε (1/2)pr, where r = cos (φ/2) +
n sin (φ/2) and p = pxı̂ + py ̂ + pzk̂ that represents the transformation from a reference

frame F0 to the frame F1, the operation of exponentiation x{1/2} is given as follows

x{
1
2} = exp

(1
2 logx

)
= exp

(
nφ

4 + ε
p

4

)

=
(

cos φ4 + n sin φ4

)
+ 1

2ε
[
p

2

(
cos φ4 + n sin φ4

)]

= (r){
1
2} + 1

2ε
(
p

2

)
(r){

1
2} ,

and provides the rigid movement that corresponds to intermediate frame between the

frames F0 and F1. The unit dual quaternion x{
1
2} represents a rigid motion given by half

rotation and half translation of x, as shown in Fig. 3.3, denoted by the red dashed square.
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F0

F1

n
p

p
2

φ
2

φ

x

x{
1
2}

Figure 3.3: Given a reference frame F0, the rigid motion from the reference frame to
the frame F1 is represented by the unit dual quaternion x. The unit dual quaternion

x{
1
2}represents the half of the translation and the half of the rotation angle of x. This

resultant frame is shown inside the red dashed square.

3.3 Fundamentals in Linear Programming

The main purpose of the optimization problem is to find the best solution with respect

to some criterion from some set of available possibilities. This is obtained maximizing or

minimizing a function called objective function, respecting a set of equality or inequality

constraints. When the objective function and the equality and inequality constraints are

linear functions, the optimization problem is called linear programming. An optimization

problem can be represented in the canonical form as follows

min
g

cTg + c

subject to Ag = b

g ≥ 0,

(3.19)

where cTg + c is the objective function, g is the vector of decision variables, and Ag = b

are the equality constraints.
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3.3.1 Basic Operations

Any model of linear program can be rewritten in the canonical form without loss of

generality by using basic operations (Vanderbei, 1998).

Remark 3.1. Given a linear program with a objective function f (g), the optimization cri-

terion can be modified. Minimizing an objective function f (g) is equivalent to maximizing

−f (g) and vice versa. This is expressed as follows

min
g

f (g) = −max
g
− f (g) ,

max
g

f (g) = −min
g
− f (g) . (3.20)

Remark 3.2. A free variable gi ∈ R, (i.e., an unconstrained variable that can assume

positive, negative, or zero values) can be expressed as the sum of two nonnegative variables

as follows

gi = g1i − g2i, (3.21)

where g1i, g2i ≥ 0.

Remark 3.3. An linear inequality can be transformed into an linear equality and vice versa

by adding a nonnegative variable called slack variable. Thus, given an inequality

x1 + x2 + . . .+ xn ≤ b, (3.22)

it can be rewritten as follows

x1 + x2 + . . .+ xn + xn+1 = b, (3.23)

where xn+1 ≥ 0 is called slack variable.

3.3.2 Example

Given the linear program,

max
x1,x2

3x1 + 2x2

subject to 2x1 + x2 ≤ 18

2x1 + 3x2 ≤ 42

x1 ≥ 0, x2 ∈ R,

(3.24)

we desired solve it by using the simplex method, which can be applied when the linear

program is expressed in the canonical form. However, this is not the case because the

problem 3.24 is subjected to inequalities constraints and the variable x2 is a free variable.
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In order to rewrite the linear program 3.24 in the canonical form, two basic operations

are required. First, it is added a slack variable z in each inequality constraint as follows

2x1 + x2 + zA = 18, (3.25)

2x1 + 3x2 + zB = 42, (3.26)

where zA and zB are nonnegative variables; that is, zA, zB ≥ 0.
The second operation is to express the free variable x2 as the sum of two nonnegative

variables as follows

x2 , x2P − x2N , (3.27)

where x2P , x2N ≥ 0.
Then, the problem 3.24 can be rewritten in the canonical form and is given as follows

max
x1,x2P ,x2N ,zA,zB

3x1 + 2x2P − 2x2N

subject to 2x1 + x2P − x2N + zA = 18

2x1 + 3x2P − 3x2N + zB = 42

x1 ≥ 0, x2P ≥ 0, x2N ≥ 0, zA ≥ 0, zB ≥ 0.

(3.28)

Some numerical solvers, such as the Matlab linprog function, requires the linear program

as a minimization problem and expressed in matrix form, whose transformation is trivial

in this case. A maximization of the linear function f is equivalent to the minimization of

−f . The problem 3.28 can be rewritten as follows,

min
g

cTg

subject to Ag = b

g ≥ 0,

(3.29)

where c ,
[
−3 −2 2 0 0

]T
, g ,

[
x1 x2P x2N zA zB

]T
,A ,

 2 1 −1 1 0
2 3 −3 0 1


and b ,

[
18 42

]T
.

The optimization problem 3.29 is expressed in the canonical form and using the matrix

form and can be solved by using Matlab as follows

g = linprog(c,A,b),

where the function linprog returns the optimal values that minimizes the objective function

while respecting the imposed constraints .
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3.4 Conclusions

This chapter reviewed some fundamental concepts, definitions and operations about

quaternions, dual quaternions and linear programming.

Section 3.1 and 3.2 presented definitions, operations and properties with quaternions

and dual quaternions, as well as the representation of rotations and translation using

quaternions, and rigid motions using dual quaternions. In addition, some concepts and

useful examples were presented in order to perform algebraic manipulations. This concepts

are used to obtain the kinematic model of the mobile manipulator in the chapter 4.

Furthermore, in the chapter 6 are used to implement the vision system and to perform

manipulation task on the real robot. Section 3.3 presented a brief introduction about

linear programming and reviewed some basic operations. This concepts are used in 5 to

express the linear program in the canonical form.



4
Forward and Differential Kinematic Model

This chapter presents a quick review of kinematic modeling using dual quaternion algebra.

The robot used in this work is composed of two subsystems: a five-DOF manipulator and

a nonholonomic mobile base. Both systems can be modeled separately and then serially

composed into a single model according to the methodology presented in Adorno (2011).

4.1 Kinematic Model of the Holonomic Mobile Base

First, the mobile base is modeled without considering the nonholonomic constraint (which

arises only in the differential kinematics) because this constraint will be imposed further

as an equality constraint in the linear program (see Section 5.3). The pose of frame F1

rigidly attached to the mobile base with respect to the fixed frame F0 is given by the dual

quaternion

x0
1 = r0

1 + ε
1
2p

0
01r

0
1, (4.1)

where p0
01 = xı̂+ ŷ is the translation from the origin of F0 to the origin of F1, expressed

in F0, and r0
1 = cos (φ/2) + k̂ sin (φ/2) is the rotation angle φ around the rotation axis k̂

(which corresponds to the z-axis). In order to take into account the base height, frame F2

is rigidly attached in the same orientation of F1 on top of the base, with a displacement

p1
12 = zck̂; that is, a constant translation zc along k̂, which corresponds to the z-axis,

expressed in F1. Hence, the pose of frame F2 with respect to frame F1 is given by the

25
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dual quaternion

x1
2 = 1 + ε

1
2p

1
12, (4.2)

This transformation is shown in the side view of Fig. 4.1.

The pose of frame F2 respect to the fixed frame F0 is given by the dual quaternion

x0
2 = x0

1x
1
2.

(x, y)

X
F0

F1Y

φ

F0

F2

F0

F2

F1

x0
1

x1
2

x0
2

Z

Z

X XY

YZ

a. Top view b. Side view c. Isometric view

z

Figure 4.1: Pose of the nonholonomic mobile base with respect to F0.

The first time-derivative of (4.1) provides the differential kinematics of the mobile

base without considering the nonholonomic constraints. Using dual quaternion algebra as

presented in Adorno (2011), ẋ0
1 is expressed as

vec ẋ0
1 =



0 0 j13

0 0 0
0 0 0
0 0 j43

0 0 0
j61 j62 j63

j71 j72 j73

0 0 0


︸ ︷︷ ︸

Jb


ẋ

ẏ

φ̇


︸ ︷︷ ︸
q̇b

(4.3)

where j13 = −j62 = j71 = −1
2 sin

(
φ
2

)
, j43 = j61 = j72 = 1

2 cos
(
φ
2

)
,

j63 = 1
4

[
−x sin

(
φ
2

)
+ y cos

(
φ
2

)]
, j73 = 1

4

[
−x cos

(
φ
2

)
− y sin

(
φ
2

)]
and J b is the analytical

Jacobian matrix of the mobile base without considering the nonholonomic constraints.
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4.2 Kinematic Model of the Manipulator Arm

The second subsystem is the five-DOF arm, which is serially coupled to the mobile base,

as shown in Fig 4.2. The dual quaternion x2
3 represents the pose of the end-effector with

respect to frame F2 and is a function of the manipulator joints. It is given by (Adorno,

2011)

x2
3 = f (qa) =

n∏
i=1

(
rθi
p
di
p
ai
rαi

)
, (4.4)

where qa is the joints vector, θi, di, ai, αi are the Denavit-Hartenberg parameters of the

i-link, rθi
= cos (θi/2) + k̂ sin (θi/2) and rαi

= cos (αi/2) + ı̂ sin (αi/2) are pure rotations

around the z-axis and x-axis, respectively, and p
di

= 1+ε (1/2) dik̂ and p
ai

= 1+ε (1/2) aiı̂
are pure translations along the z-axis and x-axis, respectively.

The time derivative of (4.4) provides the differential kinematics of the robot manipulator,

given by

vec ẋ2
3 = Jaq̇a, (4.5)

where qa =
[
θ1 · · · θ5

]T
, with θi being the i-th joint’s angle, and Ja is the analytical

Jacobian matrix that is obtained by using dual quaternion algebra (Adorno, 2011).

4.3 Whole-body Kinematic Model

The forward kinematics of the whole-body composed of the mobile base and the manipulator

is obtained by computing the dual quaternion x0
3 that represents the pose of the end-effector

with respect to the fixed frame F0 and is given by

x0
3 = x0

1x
1
2x

2
3. (4.6)

The time derivative of (4.6) provides the differential kinematics of the whole system and

is given by

ẋ0
3 = ẋ0

1x
1
2x

2
3 + x0

1x
1
2ẋ

2
3, (4.7)

where ẋ1
2 = 0 as x1

2 represents a constant displacement between frames F1 and F2. Using

the Hamilton operators, we rewrite (4.7) as

vec ẋ0
3 =

−
H
(
x1

3

)
vec ẋ0

1 +
+
H
(
x0

2

)
vec ẋ2

3. (4.8)

Substituting (4.3) and (4.5) in (4.8), the whole-body differential kinematics is given by

(Adorno, 2011)
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Figure 4.2: Nonholonomic mobile manipulator.

vec ẋ0
3 =

[
−
H (x1

3)J b
+
H (x0

2)Ja
]

︸ ︷︷ ︸
J

 q̇b
q̇a


︸ ︷︷ ︸

,

q̇

(4.9)

where the stacked vector q =
[
qTb qTa

]T
corresponds to the whole-body configuration

and J is the whole-body Jacobian matrix and provides the relation between the joints

velocities and the generalized velocities of the end-effector (Adorno, 2011).

4.4 Position Jacobian Matrix

In some cases it is desired to control only the end-effector position and, in those cases it is

necessary to compute the position Jacobian matrix Jp that provides the relation between

the joints velocities and the linear velocities of the end-effector as follows

vec4 ṗ
0
03 = Jpq̇. (4.10)

Now, Let x0
3 be expressed without loss of generality as

x0
3 = r0

3 + ε
1
2p

0
03r

0
3. (4.11)

where r0
3 and p0

03 are the rotation and the translation quaternion related to x0
3. The

translation p0
03 is computed from (4.11) as (Adorno et al., 2010)

p0
03 = 2D

(
x0

3

)
P
(
x0∗

3

)
. (4.12)

The time derivative of equation (4.12) is given by

ṗ0
03 = 2D

(
ẋ0

3

)
P
(
x0∗

3

)
+ 2D

(
x0

3

)
P
(
ẋ0∗

3

)
, (4.13)
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Using the Hamilton operators (4.13) is rewritten as

vec4 ṗ
0
03 = 2

−
H4

(
P
(
x0∗

3

))
vec4D

(
ẋ0

3

)
+ 2

+
H4

(
D
(
x0

3

))
vec4P

(
ẋ0∗

3

)
. (4.14)

The whole-body Jacobian matrix J computed in (4.9) can be decomposed as (Adorno

et al., 2010)

J ,

 JP(x0
3)

JD(x0
3)

 , (4.15)

such that

vec4P
(
ẋ0

3

)
= JP(x0

3)q̇, (4.16)

vec4D
(
ẋ0

3

)
= JD(x0

3)q̇. (4.17)

Substituting (4.16) and (4.17) in (4.14) the position whole-body differential kinematic

model is given by

vec4 ṗ
0
03 =

[
2
−
H4 (P (x0∗

3 ))JD(x0
3) 2

+
H4 (D (x0

3))C4JP(x0
3)
]

︸ ︷︷ ︸
Jp

q̇. (4.18)

4.5 Chapter Conclusions

This chapter presented the forward differential kinematic model for a nonholonomic mobile

manipulator based on a systematic procedure using dual quaternions. The robot is modeled

separately and then a whole-body kinematic control is computed. Section 4.1 presented

the kinematic model of the differential base, which is modeled as holonomic mobile base

because the nonholonomic constraint is take into account in the linear programming

formulation as equality constraint. Section 4.2 presented the kinematic model of the arm

manipulator. Section 4.3 presented the whole-body kinematic model of the nonholonomic

mobile manipulator. Finally, Section 4.4 reviewed the position Jacobian matrix computed

from the whole-body Jacobian matrix. The whole-body kinematic models are used in the

chapter 5 in the inverse kinematic formulation as linear programming.



5
Whole-Body Kinematic Control

This chapter discusses the kinematic control strategy applied to the nonholonomic mobile

manipulator presented in chapter 4. The chapter is organized as follows: Section 5.1

presents the kinematic control strategy as an optimization problem and its formulation

by using linear programming; in Section 5.2 the improvements to the original linear

programming formulation proposed by Goncalves et al. (2016) are explained; in Section

5.3 the nonholonomic constraint of the differential mobile base is imposed as an equality

constraint in the formulation of the linear program; Section 5.4 presents the constraints

that are imposed in order to prevent violation of the joint limits; Section 5.5 presents a

method to prevent collisions in the plane by adding an additional equality constraint in

the linear program; Section 5.6 presents the final formulation of the linear program in

order to perform control of the end-effector pose while respecting all the aforementioned

constraints. Section 5.7 discusses the parsimonious behavior presented when the solver

used in the linear program is the Simplex method.

5.1 Kinematic Control using Linear Programming

In order to control the end-effector pose by using whole-body motions (i.e., motions that

can potentially—and automatically—use all available DOF), the kinematic control strategy

traditionally has been approached by using the pseudoinverse of the Jacobian matrix.

This solution to the differential inverse kinematics problem often consists in solving an

optimization problem, in most cases quadratic ones, when there are no imposed constraints.

30
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More specifically, let e = x− xd be the error between the measured (x) and desired (xd)

dual quaternions that represent the current and desired end-effector poses, respectively. If

the desired pose is constant, the error dynamics is given by

vec8 ė = vec8 ẋ = Jq̇, (5.1)

and a desirable control input u , q̇ would be one that enforces an exponential convergence;

that is, a control input such that the closed loop dynamics is vec8 ė = −η vec8 e, with

η > 0.

The generation of such control signal can be written as the optimization problem

(Goncalves et al., 2016)

min
u
‖Ju+ η vec8 e‖2 , (5.2)

whose analytical minimal norm solution is given by

u = −J †η vec8 (x− xd) (5.3)

in absence of equality and inequality constraints. In general, all entries in the control

input u = q̇ are different from zero and hence all actuated DOF are used. An alternative

approach for generating whole-body motions is the kinematic control based on linear

programming recently proposed by Goncalves et al. (2016) for redundant systems. This

approach is computationally efficient and the stability was formally proved by the authors.

In this formulation, all actuated DOF are available to perform the whole-body motion, and

when the Simplex method (Murty, 1983) is used only the minimum amount of DOF strictly

needed to perform the task is used at each instant. In order to achieve this behavior, the

solution to the differential inverse kinematics problem consists in solving an optimization

problem as (5.2) where a convex positive definite error metric is used, namely the 1-norm,

and the problem can written as follows

min
u
‖Ju+ η vec8 e‖1 . (5.4)

This formulation can be transformed into a linear program, which can be solved with a

numerical solver. A computationally efficient formulation (Li, 1998, apud Gonçalves et al.,

2016) is given by

min
u,y

1T (2y − (Ju+ η vec8 e))

subject to Ju− y ≤ −η vec8 e

Wu ≤ w

y ≥ 0,

(5.5)

where 1T is a vector of ones of appropriate dimension and Wu ≤ w represents constraints

that may be imposed for u. In order to use a linear programming numerical solver, the
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optimization problem (5.5) must be rewritten into the canonical form of a linear program,

which is given by (3.19).

In order to do this, two changes should be made (Goncalves et al., 2016). Since

the elements of the vector g in 3.19 must be always nonnegative, the vector u must be

decomposed into two non-negative variables uP − uN , see remark 3.2, in chapter 3. In

addition, as the solution to the linear program does not ensure that u = 0 when vec8 e = 0,

Goncalves et al. (2016) imposed an additional constraint

‖u‖1 = ‖uP − uN‖1 ≤ β ‖vec8 e‖1 (5.6)

where β > 0. Therefore, when vec8 e = 0 necessarily u = 0.

From the triangle inequality,

‖uP − uN‖1 ≤ ‖uP‖1 + ‖uN‖1 = 1TuP + 1TuN ,

where the last equality holds because both uP and uN are nonnegative; thus, the constraint

1TuP + 1TuN ≤ β ‖vec8 e‖1 (5.7)

enforces (5.6). It is important to note that (5.7) guarantees that u = 0 if and only if

vec8 e = 0, hence if the end-effector stabilizes far from the desired set point the robot

configuration can still change. The solution to this problem is shown in Section 5.2.

Adding the slack variables zA, zB, zC and the constraint (5.7), the linear program

(5.5) rewritten in the canonical form (3.19) is given by (Goncalves et al., 2016)

min
g

[
−1TJ 1TJ 2 · 1T 0T 0T 0

]
g − η1T vec e

subject to


J −J −I I 0 0
W −W 0 0 I 0
1T 1T 0T 0T 0T 1

 g =


−η vec e
w

β ‖vec e‖1


g ≥ 0,

(5.8)

where g =
[
uTP uTN yT zTA zTB zC

]T
.

5.2 Improvements to the whole-body control based

on linear programming

This section presents improvements to the original whole-body control based on linear

programming introduced by Goncalves et al. (2016). First, a new constraint is proposed

in order to avoid joints movements when the robot does not stabilizes asymptotically.
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In addition, more constraints are imposed in order to avoid violation of joint limits and

collision with obstacles in the plane.

The constraint (5.7) ensures that u = 0 when the robot end-effector stabilizes asymp-

totically. However, because only Lyapunov stability is guaranteed (Goncalves et al., 2016)

for control inputs generated by (5.8), it is possible that the robot end-effector stabilizes

at some pose different from the desired one (that is, vec8 e > 0 but vec8 ė = 0) and,

consequently, it may be the case that u 6= 0 when the robot end-effector stabilizes. In

order to prevent this problem, we propose a definite positive function that depends on the

error time derivative. This way, (5.6) is modified as follows:

‖u‖1 = ‖uP − uN‖1 ≤ β ‖vec8 ė‖1 . (5.9)

Note that when the robot stabilizes at some pose different from the desired pose,

vec8 ė = 0, which implies u = 0. Both functions are shown in Fig. 5.1.

0 10 20 30 40 50 60 70 80
0

Iterations

Stabilization Point

β ‖vec8 e‖1

β ‖vec8 ė‖1

Figure 5.1: Two definite positive functions. The top figure shows a function that depends
on the error. The bottom figure shows a function that depends on the error time-derivative.

From the triangle inequality,

‖uP − uN‖1 ≤ ‖uP‖1 + ‖uN‖1 = 1TuP + 1TuN ,

where the last equality holds because both uP and uN are nonnegative; thus, the constraint

1TuP + 1TuN ,≤ β ‖vec8 ė‖1 (5.10)

enforces (5.9).
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5.3 Nonholonomic constraint of the mobile base

In Quiroz-Omana and Adorno (2016) we used a cascade scheme to control a nonholonomic

mobile manipulator, where the outer loop was responsible to generate the whole-body

motion and the inner loop dealt with the nonholonomic constraint of the mobile base by

using an input-output linearizing controller. Although Goncalves et al. (2016) proved that

the stability of any system described by first order differential kinematics (i.e., ẋ = Jq̇) is

guaranteed when the control inputs are generated by (5.8), such stability was not formally

proved for the cascade scheme used in (Quiroz-Omana and Adorno, 2016). However, the

nonholonomic constraint of the mobile base can be imposed into the linear program as an

equality constraint, therefore a cascade control scheme is not required. The nonholonomic

constraint of the differential drive mobile base is given by (Siciliano et al., 2009)

ẋ sinφ− ẏ cosφ = 0, (5.11)

where φ is the rotation angle around the z-axis, ẋ and ẏ are the velocities of the mobile

base in x and y directions of the inertial frame, respectively. Eq. (5.11) can be rewritten as

W nhuP −W nhuN = 0, (5.12)

where W nh =
[

sinφ − cosφ 0 0 0 0 0 0
]
.

5.4 Avoidance of joint limits

In real robotic systems, joints movements are mechanically limited and hence the controller

should generate control inputs considering these physical constraints, otherwise a saturation

could happen, resulting in large tracking errors or even damage to the robot. In order to

prevent this, additional constraints must be imposed.

Let q− and q+ be the vector of lower and upper joints limits, respectively. The

constraints related to both joints limits can be written as follows

q− ≤ q ≤ q+. (5.13)

However, the kinematic control formulation as linear programming is solved at the

velocity level, hence the joints range [q−, q+] has to be converted to bounds in the joints

velocities. A simple way to do that is presented by Fan-Tien Cheng et al. (1994) and is

given by

k
(
βlq
− − q

)
≤ u ≤ k

(
βlq

+ − q
)
, (5.14)

where 0� βl ≤ 1 is selected to define a security margin for the joints limits (see Fig. 5.2),
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q

0q− βlq
− q+βlq

+

Figure 5.2: The margin considered for the joint limits q− ≤ q ≤ q+ is determined by the
security factor βl.

whereas k > 0 is used to scale the feasible region of q̇.

When constraints in joints velocities are also imposed, (5.14) can be rewritten as

max
{
q̇−, k

(
βlq
− − q

)}
≤ u ≤ min

{
q̇+, k

(
βlq

+ − q
)}
, (5.15)

where q̇− and q̇+ are the lower and upper bounds for the joints velocities, respectively. In

order to impose the constraints (5.15), two inequality constraints must be written, one

for each limit. Let η− = max {q̇−, k (βlq− − q)} and η+ = min {q̇+, k (βlq+ − q)}, then

η− ≤ u ≤ η+ can be rewritten as

− u ≤ −η−, (5.16)

u ≤ η+. (5.17)

The inequality constraints (5.16) and (5.17) are rewritten in matrix form as

WluP −WluN ≤ wl, (5.18)

where W l =
[
−I8 I8

]T
, with In denoting the identity matrix of size n, and wl =[

(−η−)T (η+)T
]T

. Note that (5.18) is defined to prevent the violation of the manipu-

lator joints limits and also to impose a limit to the velocity of the mobile base.

5.5 Collision avoidance of the mobile base

One of the main objectives in robotics is to autonomously execute tasks in the real

world (Latombe, 1991) while avoiding collisions with obstacles in the workspace. This

fundamental robotics task is usually solved by using motion planning algorithms, where

the goal is to generate collision-free paths from a start configuration to a final configuration.

However, sometimes the nominal plan can fail due to uncertainties or other unforeseen

obstacles, thus an additional low-level protection may be included as a constraint in the

linear program in order to prevent collisions and provide a reactive behavior for the robot.
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In order to define the constraint for the collision avoidance, we model obstacles as circles

in the 2D plane and we consider only collisions with the mobile base (the manipulator

can also be considered in a conservative way by enlarging the obstacles’ radiuses). Let

qxy =
[
x y

]T
be the mobile base configuration and s = (c, Robs) represent the circular

obstacle with center c =
[
xc yc

]T
and a security extended radius Robs. In order to prevent

collisions in the plane a constraint can be imposed to limit the velocities of the mobile

base as it approaches to the obstacle as follows

− d ≤ q̇b ≤ d, (5.19)

where d is a defined distance between the base and the obstacle and q̇b denotes the

velocities of the mobile base. Note that constraint (5.19) is a conservative solution because

when the robot moves toward the obstacle its speed limit decreases until zero. Although

this constraint prevent collision, the robot is not able to perform movements around the

obstacle. On the other hand, the constraint (5.19) is simple and its implementation is easy.

In order to define a less conservative constraint to prevent collisions in the plane, the

next inequality is imposed to the mobile base:

R ≤
∥∥∥qxy − c∥∥∥ , (5.20)

where
∥∥∥qxy − c∥∥∥ is the distance between the robot and the obstacle center (for convenience’s

sake, the robot radius is taken into consideration when defining the obstacle’s radius R,

that is R = Robs +Rrobot).

We define

f
(
qxy, s

)
, −

∥∥∥qxy − c∥∥∥2
+R2, (5.21)

such that f
(
qxy, s

)
≤ 0 guarantees that the robot will not collide with the obstacle, as

shown in Fig 5.3. Thus,

f
(
qxy, s

)
+ α (t) = 0, (5.22)

where α (t) is a slack variable.

The time derivative of (5.22) provides its relation at the velocity level and is given by

∂ f
(
qxy, s

)
∂qxy︸ ︷︷ ︸
Jc

q̇xy + α̇ (t) = 0, (5.23)

where we assumed that the object is stationary and

J c =
[
−2 (x− xc) −2 (y − yc)

]
.

Since the constraint (5.23) must be imposed only when necessary—that is, when the
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Rqxy qxy R

∥∥qxy − c
∥∥

c c

Rqxy

c

∥∥qxy − c
∥∥∥∥qxy − c

∥∥
f
(
qxy , s

)
< 0 f

(
qxy , s

)
= 0 f

(
qxy , s

)
> 0

Figure 5.3: Behavior of the function f
(
qxy, s

)
. In the left, the robot is outside the collision

region and f
(
qxy, s

)
< 0; in this case there is no risk of collision between the robot and

the obstacle in the plane. In the center , the robot is on the border of the collision region
and f

(
qxy, s

)
= 0; also in this case, there is no also risk of collision. Finally, in the right,

the robot is inside the collision region and f
(
qxy, s

)
> 0; in this case, there is a high risk

of collision.

robot is inside the forbidden region—we include the variable β as follows:

βJcq̇xy = −βα̇ (t) , (5.24)

where

β =

0, f
(
qxy, s

)
≤ 0

1, f
(
qxy, s

)
> 0 and h

(
qxy, qd, s

)
> 0,

(5.25)

with h
(
qxy, qd, s

)
=
∥∥∥qd − qxy∥∥∥ − ‖qd − c‖, and qd is the projection of the end-effector

position onto the xy-plane of the inertial frame F0, which provides a rough approximation

of where the center of the mobile base should be, as the manipulator is relatively small.

The geometrical interpretation of this function is shown in Fig. 5.4.

When the constraint (5.24) is enabled (i.e., β = 1), we desire that the robot moves

towards or along the border, moving away from the center of the obstacle. This behavior

can be accomplished by defining a suitable dynamics for α (t). Since α (t) = 0 implies that

qxy moves along the border of the circle around the obstacle, we enforce the dynamics

α̇ (t) = −λα (t) . (5.26)

Substituting (5.26) into (5.24) we obtain

βJ cq̇xy = βλα (t) , (5.27)

where α (t) = −f
(
qxy, s

)
.
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Robs

R

Figure 5.4: Start and final configurations of the mobile base are denoted by qi and qd,
respectively. The configuration qd is the projection of the end-effector position onto the
xy-plane of the inertial frame F0, which provides a rough approximation of where the
center of the mobile base should be, as the manipulator is relatively small.

The constraint (5.27) can be rewritten as

JobsuP − JobsuN = βλα (t) , (5.28)

where Jobs =
[
βJ c 0 0 0 0 0 0

]
.

5.6 Final formulation considering all constraints

Considering the new equality constraints (5.12) and (5.28), and the new inequality con-

straints (5.10) and (5.18), we add the corresponding slack variables zA, zB and zC to the

vector g to obtain the linear program in the final (canonical) form:

min
g

[
−1(1×8)J 1(1×8)J 2 · 1(1×8) 0(1×8) 0(1×2n) 0

]
g − η1T vec e

subject to



Jobs −Jobs 0(1×8) 0(1×8) 0(1×2n) 0
W nh −W nh 0(1×8) 0(1×8) 0(1×2n) 0
J −J −I8 I8 0(8×2n) 0(8×1)

W l −W l 0(2n×8) 0(2n×8) I(2n×2n) 0(2n×1)

1(1×n) 1(1×n) 0(1×8) 0(1×8) 0(1×2n) 1


g =



βλ (α (t))
0

−η vec e
wl

β ‖vec ė‖1


g ≥ 0,

(5.29)

where g =
[
uTP uTN yT zTA zTB zC

]T
. Furthermore, J ∈ R8×n, Jobs,W nh ∈ R1×n,

and W l ∈ R2n×n.
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5.7 Parsimonious behavior

A special feature can be obtained when the Simplex method is used: parsimonious solutions

(i.e., solutions that use the minimum number of joints). To see why, consider the canonical

form (3.19) of linear programs where g ∈ Rn, b ∈ Rm, and A ∈ Rm×n, with n > m. A set

of m linearly independent columns is selected from n columns of A, resulting in the matrix

B ∈ Rm×m. Furthermore, the vector g is split in gB and gNB with m basic variables and

n−m nonbasic variables, respectively.

Since the matrix B forms a basis and is nonsingular, the solution of the equation

BgB = b exists. Then the first m components of g are gB and the remaining components

are zero. Thus, when feasible, the Simplex algorithm provides parsimonious solutions

(Luenberger and Ye, 2016). It is important to highlight that control inputs generated by

(5.29) are Lyapunov stable (Goncalves et al., 2016) and at most

UNZ = TDOF + 1 (5.30)

entries of u will be nonzero at a given instant of time, where TDOF is the number of DOF

needed to execute the task. It is important to note that the additional nonzero entry is

due to constraint (5.10).

5.8 Stability Consideration

It is important to note that a stability condition of the linear programming formulation is

that the solution u = 0 belong to the set of feasible solutions. In that sense, all constraints

proposed in this thesis do not violate this premise of stability, except the constraint (5.27).

This is due to the fact that q̇xy = 0 if and only if α = 0, which never happens when the

constraint is activated, thus the solution u = 0 does not belong to the set of feasible

solutions. Because of this, the constraint (5.27) could destabilize the system. In that sense,

the constraint (5.19) is better than (5.27), in terms of stability guarantees, despite being

more conservative.

5.9 Chapter Conclusions

This chapter presented the kinematic control strategy applied to the nonholonomic mobile

manipulator.

Section 5.1 presented the original formulation of the kinematic control using linear

programming presented by Goncalves et al. (2016). Section 5.2 discussed the original

formulation and presented improvements in the kinematic control. Section 5.3 discussed the

nonholonomic constraint and its formulation as equality constraint in the linear program.
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Section 5.4 presented the constraints imposed in order to prevent violation of the joint

limits. Section 5.5 presented two constraints used to prevent collisions between the mobile

base and obstacles in the plane. The first solution proposed is easy to implement but

it is conservative in the sense that it prevents collisions by stopping the robot when it

approaches an obstacle. A second constraint is proposed, which could allow that the robot

borders the obstacle, when necessary. Section 5.6 presented the final formulation of the

linear program considering all constraints. Section 5.7 discussed a special feature when

the Simplex algorithm is used to solve the linear program, the parsimonious behavior.



6
Experiments and Results

The whole-body kinematic control strategy presented in this thesis was implemented both

in simulation and on a real mobile manipulator, and this chapter presents and discusses

the results. The strategy based on linear programming is compared with the traditional

strategy, which is based on the pseudoinverse of the Jacobian matrix and a cascade control

scheme in order to deal with the nonholonomic constraint, see Appendix B. This chapter is

organized as follows: Section 6.1 shows some aspects of the implementation as the robotic

platform and the vision system used. Section 6.2 presents three experiments performed.

6.1 Implementation Details

The methods proposed in this work were validated in a nonholonomic mobile manipulator,

using the following specifications

• ROS Indigo running on Ubuntu 14.04 64 bits

• A computer equipped with Intel Xeon 2.4GHz and 12Mb of cache memory with

12GB RAM

• A Microsoft Kinect Sensor

• A mobile manipulator composed of a 5-DOF AX18 arm manipulator serially cou-

pled to a differential iRoomba base using the Dynamixel1 and Turtlebot2 drivers,

1http://wiki.ros.org/dynamixel motor
2http://wiki.ros.org/Robots/TurtleBot

41
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respectively.

• The linear program was implemented by using the CPLEX studio optimization

software package3.

• The open-source library DQ Robotics4.

6.1.1 Vision System

A Microsoft Kinect sensor was placed at the ceiling and used in order to improve the

localization of the mobile base, to detect the desired end-effector pose, and to detect

obstacles in the workspace by using the ar track alvar package5 on a frequency of 30Hz

(see Fig. 6.1). The position and orientation of each marker is published on topics. In order

to minimize the measurements noise, the average pose of each markers is computed with

respect to the Kinect sensor frame Fc . This average is computed in the domain of unit

dual quaternions as follows (Adorno, 2012)

xk = xk−1

(
x∗k−1xk

){1/k}
, (6.1)

where xk and xk−1 denotes the current pose and the previous pose and k is the number of

samples and is selected experimentally in order to obtain a smooth and fast convergence. A

high value of k provides low noise level in measurements but slower response. A high value

of k is used in static markers as the reference frame F0, and obstacles markers denoted by

F2 and F3. On the other hand, a low number of samples is used to filter the pose of F1,

which represents the mobile base pose.

Note that 6.1 acts as a low pass filter providing a smooth reading of the markers.

3http://www-01.ibm.com/software/websphere/products/optimization/cplex-studio- community-
edition/

4http://dqrobotics.sourceforge.net/
5http://wiki.ros.org/ar track alvar
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Camera link

Figure 6.1: Frames of the vision system. The unit dual quaternions xc0, xc1, xc2 and xc3
represent the pose of the frames F0, F1, F2 and F3 respectively with respect to the fixed
frame Fc.

The frame F0 is finally used as a fixed global reference as shown in Fig. 6.2, and

unit dual quaternions x0
1, x

0
2 and x0

3 that represent the pose of frames F1, F2, and F3,

respectively, with respect to the fixed frame F0, are computed directly as follows (Adorno,

2012)

x0
i = (xc0)∗ xci , (6.2)

with i = {1, 2, 3} .
This approach has useful advantages such as the possibility of placing the markers

arbitrarily within the visual range of the camera.
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Figure 6.2: Global reference frame of the vision system. All markers are referenced with
respect to the global reference frame F0. This and the other markers, can be placed
anywhere within the the visual range of the camera.

The structure of the experimental environment is based on nodes and topics. A

vision system node publishes on a topic related to markers and the kinematic control

node suscribes to that topic. The robot drivers, which are based on the Dynamixel and

Turtlebot packages, run their respective nodes and the kinematic control node publishes

and subscribes to them in order to command the robot and read the robot sensors, as

shown in Fig. 6.3.
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Figure 6.3: Structure of the experimental environment.

6.2 Experiments

6.2.1 Control of the end-effector pose

In the first experiment, whose setup is shown in Fig 6.5, the goal was to control the

end-effector pose by using the proposed approach based on linear programming (i.e., the

control inputs were generated by (5.29). The robot had to grasp a box and put it, with

certain orientation, inside a trash bin located in a certain position. The robot and the

trash bin can be located arbitrary within the visual range of the camera. The relation

between the frames F0, F1, and F2 are known by means of the vision system (see Fig. 6.4).

The desired pose is computed as follow

x0
d = x0

2x
2
d, (6.3)

where x2
d is a constant unit dual quaternion that is known and represents the relation

between the frames F2 and Fd, as shown in Fig. 6.4.

A performance comparison with the classic continuous controller (5.3) is presented.

For both controllers η = 0.6, and for the linear program β = 15. Both parameters

were adjusted experimentally in order to obtain a fast and smooth convergence. For the

controller based on linear programming k = 1 and βl = 0.9, which are parameters used in

the constraint (5.14).

Fig. 6.6 shows the comparison between the control inputs generated by the classic

approach (PINV), given by (5.3), and the linear programming control (LP) given by

(5.29), which was implemented with the Simplex algorithm. LP generates more abrupt

control inputs, but Fig. 6.7 shows that it uses fewer actuators than the classic controller
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Figure 6.4: Description of the experiment: The box must be placed inside the a trash
bin. The relation between the frame F1 and the F2 with respect to the reference frame F0
are given by the unit dual quaternions x0

1 and x0
2, respectively. The desired pose x0

d is
computed by using a known rigid transformation between the frames F2 and Fd and is
given by x0

d = x0
2x

2
d.
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Figure 6.5: Control of the end-effector pose: snapshots from the experiment. A Microsoft
Kinect sensor located at the ceiling is used to recognize fiducial markers placed on the
robot, the obstacles, and the desired goal.
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Figure 6.6: Control of the end-effector pose: control inputs using the classic kinematic
control (PINV) and the parsimonious control using linear programming with Simplex
(LP).

in each iteration. This is expected considering the fact that, in addition to the number of

DOF required by the task, each equality constraint requires one DOF but the inequality

constraints require DOF only when they become equalities. This way, since the task

requires 6 DOF and there is one equality constraint to impose the nonholonomic constraint,

we expect that 7 DOF should be used at all times, unless the inequality constraints take

action (the equality constraint (5.28) related to obstacle avoidance is activated only when

the robot is close to the obstacle, so it behaves as an inequality constraint). Remarkably,

after the 150th iteration LP used only 6 DOF most of the time, thanks to the fact that at

this point the end-effector pose was close to the desired one, so the controller needed to

generate signals only to maintain the end-effector pose and to make small adjustments

until complete stabilization. On the other hand, the classic approach, PINV, used all DOF

all the time, as expected.

It is important to highlight that Fig. 6.7 shows the number of entries generated per

iteration by the controllers and does not show the entries really used in the experimental

test. This is because some generated entries are close to zero and they are considered zero

by the low-level drivers of the servomotors and, consequently, a lower number of entries are

used. In order to show the number of entries used in the experimental test, we introduce

the concept of practical parsimony, where values lower than a threshold Υ = 0.01, (which

correspond to the minimal command velocity accepted by the the motors) are set to zero.

Fig. 6.8 shows the number of entries used in the experimental test.
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Fig. 6.9 shows the time response of both approaches for each coefficient of the dual

quaternion error given by

e = x− xd = e1 + e2ı̂+ e3̂+ e4k̂ + ε
(
e5 + e6ı̂+ e7̂+ e8k̂

)
.

All coefficients stabilize for both controllers, but LP has a less smooth response as we

can observe mainly in the time response of coefficients e2 and e3. This is also expected

because LP is a discontinuous controller whereas PINV is a continuous one; therefore, as

the control inputs generated by the former are more abrupt than the ones generated by

the latter, we expect that the response will be less smooth for LP.

Fig. 6.10 shows the behavior of both controllers in face of joints limits applied only to

the manipulator robot. LP respected those joints limits at all times, as expected, whereas

PINV violated the limit of the 5th joint, represented by q8. It is important to highlight

that limits could also be applied to the mobile base in order to confine it into a specific

subset of the workspace.
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Figure 6.7: Control of the end-effector pose: number of nonzero entries generated using the
classic kinematic control (PINV) and the parsimonious control using linear programming
with Simplex (LP).

0 50 100 150 200 250 300 350 400 450 500
0
1
2
3
4
5
6
7
8
9

E
n
tr
ie
s
u
se

d

0 50 100 150 200 250 300 350 400 450 500
0
1
2
3
4
5
6
7
8
9

E
n
tr
ie
s
g
e
n
e
r
a
te

dPseudoinverse LP Simplex

Figure 6.8: Control of the end-effector pose: number of nonzero entries used in the
experimental test using the classic kinematic control (PINV) and the parsimonious control
using linear programming with Simplex (LP).

Table 6.1 presents the comparison with respect to four metrics between the control

inputs generated by both methods. As expected, since the classic control law minimizes

the 2-norm, it performs better in metrics that use the 2-norm (i.e., metrics 2 and 4);

conversely, the parsimonious control using linear programming minimizes the 1-norm and

hence performs better in metrics that use this norm (i.e., metrics 1 and 3).
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Figure 6.9: Control of the end-effector pose: time response of each coefficient of the dual
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Figure 6.10: Control of the end-effector pose: coefficients of the robot configuration q (see
(4.9)) using the classic kinematic control (PINV) and the parsimonious control using linear
programming with Simplex (LP). The joints limits are represented by dashed green lines.
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Table 6.1: Control effort: pseudoinverse versus linear programming.

Pose control Position Control
Metric PINV LP Simplex PINV LP Simplex

1
∫∞

0 ‖q̇ (t)‖1 dt 1.9796 1.4944 0.3907 0.3431

2
√∫∞

0 ‖q̇ (t)‖2
2 dt 0.2960 0.3267 0.0583 0.0654

3
∫∞

0 ‖q̈ (t)‖1 dt 0.0026 0.0012 0.0047 0.0021

4
√∫∞

0 ‖q̈ (t)‖2
2 dt 0.00013 0.00004 0.00084 0.00085

6.2.2 Control of the end-effector position

In order to increase the functional redundancy of the system, a second experiment was

performed where the robot had to control only the end-effector position, which requires

only three DOF. The control laws are essentially the same, with the difference that the

error is calculated between the current position p and the desired position pd, and the

corresponding task Jacobian Jp is calculated algebraically from the original Jacobian J as

shown in 4.4 (Adorno et al., 2010). The parameter η = 1 was used for both controllers

and β = 10 was used for LP. For the controller based on LP k = 1 and βl = 0.9. Fig. 6.11

shows the control inputs for both methods and again the parsimonious control inputs were

more abrupt.

Fig. 6.12 shows an important fact when using Simplex to solve the linear program:

more redundancy implies more parsimony; that is, less DOF are used. Whereas in the

classic controller all DOF were used, LP used only five DOF most of the time. Since the

main task requires 3 DOF and the nonholonomic constraint requires 1 DOF, we conclude

that other inequality constraints were activated. Fig. 6.13 shows the number of entries

used per iteration in the experimental test.

Again, Table 6.1 shows that metrics based on the 1-norm favored LP whereas the ones

based on the 2-norm favored the classic controller.

Fig. 6.14 shows the end effector translation from the initial to the desired position. It

can been observed that the robot stabilizes very close to the desired position respecting all

the constraints imposed.
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Figure 6.11: Control of the end-effector position: control inputs using the classic kinematic
control (LEFT) and the parsimonious control using linear programming with Simplex
(RIGHT).
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Figure 6.12: Control of the end-effector position: number of nonzero entries generated
using the classic kinematic control (PINV) and the parsimonious control using linear
programming with Simplex (LP).
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Figure 6.13: Control of the end-effector position: number of nonzero entries used in the
experimental test using the classic kinematic control (PINV) and the parsimonious control
using linear programming with Simplex (LP).
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Figure 6.14: Control of the end-effector position: End effector translation using the classic
kinematic control (PINV) and the parsimonious control using linear programming with
Simplex (LP). The reference is represented by the straight green line.

6.2.3 Obstacle avoidance

A third experiment was executed to show the performance of LP in the task of controlling

the end-effector pose while avoiding an obstacle, as shown in Fig. 6.16. This experiment

is the more sophisticated in the sense that more constraints are imposed. As in the

aforementioned experiments, all constraints are implemented in order to consider the

nonholonomic constraint of the mobile platform and prevent violation of the joints limits

in the arm manipulator. In addition, the constraint (5.28) is activated when the robot

approaches to an obstacle in the plane in order to prevent collisions with the mobile base.

There is no a comparison with respect to the classic method because it does not allow

to include inequality constraints. We can see in Fig. 6.17 that the robot used all DOF

throughout most part of the experiment. This was also expected because the task requires

6 DOF, the nonholonomic constraint requires 1 DOF, and the constraint for obstacle

avoidance—when activated—requires 1 DOF, which in total corresponds to 8 DOF. Other

inequalities constraints, if activated, can make the end-effector stabilize before reaching the

desired set point, but this was not the case for this particular experiment. However, note

that this method may fall into local minima. There is no guarantee of reaching the desired

set point, but at least there is guarantee of preventing collisions between the mobile base

and obstacles in the plane. In order to avoid local minima, a good alternative would be

the use of probabilistic motion planing algorithms.
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Figure 6.15: Description of the task: The robot must to grasp a box in Fe and put it
inside a trash bin located in Fd. There is an obstacle in the plane located in Fobs and the
controller must to prevent a collision between the mobile platform and the obstacle. The
pose of all frames are computed with respect to F0 by using the vision system.

Figure 6.16: Control of the end-effector pose while avoiding an obstacle: snapshots from
the experiment.
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Figure 6.17: Control of the end-effector pose while avoiding an obstacle: number of
nonzero entries using linear programming with Simplex (LP).

6.3 Computational Efficiency Test

The experimental results were performed on ROS and C++, where each kinematic control

node was set to 50Hz or 20ms per iteration, which is the maximum value supported by

the ROS library Dynamixel motors. Both approaches had similar performance as the

convergence rate was the same for both controllers and each iteration time was always less

than 20ms. In order to show the computational efficiency two tests were performed in the

same computer running Xubuntu 16.04 64bits and equipped with Intel Core i7-4712HQ

and 16Gb RAM. Each test consisted in executing the same pose control task 10000 times.

6.3.1 Test 1: Holonomic mobile manipulator case.

In this first test, the mobile manipulator was considered as a holonomic mobile manipulator.

Consequently, no cascade scheme was used in the classic controller and no additional

constraints were imposed to the controller based on linear programming.. The goal was

to control the end-effector pose. For both controllers η = 5 and for the linear program

β = 40. It was considered that a trial or simulation converged when the error norm was

less than 0.001. Fig. 6.18 shows the convergence time used in each trial when the pose task

required 46 iterations for both controllers. The average convergence time was 158.96ms

with a standard deviation σpinv = 5.23ms for the classic controller and 173.42ms with a

standard deviation σlp = 2.79ms for the controller based in linear programming.
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Figure 6.18: Convergence time in a pose task that required 46 iterations for both controllers.
In the left, it is presented the convergence time in each trial performed. In the right, it is
presented the average convergence time with the errors bar, which denote the respective
standard deviation.

6.3.2 Test 2: Nonholonomic mobile manipulator case

In this second test, the mobile manipulator was considered as a nonholonomic mobile

manipulator. It was used a cascade scheme in the controller based on the pseudoinverse

of the Jacobian matrix in order to deal with the nonholonomic constraint. In the case of

the controller based on linear programming, the nonholonomic constraint was imposed as

an equality constraint in the linear programming formulation. The goal was to control

the end-effector pose. The desired pose was different with respect to the first test. For

both controllers η = 5 and for the linear program β = 40, k = 1 and βl = 0.99. It was

considered that a trial or simulation ended when the error norm was less than 0.001.

Fig. 6.19 shows the convergence time used in each trial when the pose task required 77

iterations for both controllers, the pseudoinverse and the linear programming approach.

The average convergence time were 251.03ms with a standard deviation σpinv = 7.58ms

and 290.14ms with a standard deviation σlp = 4.30ms, respectively.
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Figure 6.19: Convergence time in a pose task that required 77 iterations for both controllers.
In the left, it is presented the convergence time in each trial performed. In the right, it is
presented the average convergence time with the errors bar, which denote the respective
standard deviation.

The time required to perform an iteration can be estimated by dividing the average

convergence time into the number of iterations. Fig. 6.20 shows the average time per

iteration for both controllers for both tests. The controller based on the pseudoinverse

of the Jacobian matrix is faster than the controller based on the linear programming.

The former needs about 3.4ms to perform an iteration and the latter needs about 3.7ms.

However, both are very efficient and fast enough to perform feedback control.
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Figure 6.20: Average time per iteration for both controllers.
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6.4 Chapter Conclusions

This chapter presented the experiments performed as well as the obtained results.

Section 6.1 detailed the specification of the experimental environment where all the

experiments were performed. In addition the vision system implemented was detailed

as well its architecture used. Section 6.2 showed the experiments performed. A first

experiment was performed where consisted in controlling the end-effector pose. We noticed

that when the linear program formulation is used the control inputs generated are more

abrupt in comparison to the traditional approach, which is based on the pseudoinverse

of the whole-body Jacobian matrix, although the former used fewer actuators. A second

experiment was performed in order to increase the functional redundancy of the robot.

The goal was to control the end-effector position and we verified a higher parsimony, less

actuators were used and the joint limits were respected when the linear programming was

applied. A third experiment was performed with an obstacle in the plane. The robot

not only prevented the collision between the robot and the obstacle, but also performed

movements around the obstacle and stabilized near the desired position.

The linear programming approach allows to include inequalities constraints easily

in the optimization formulation. This feature is advantageous because allows take into

account some physical limitations of the robot as limit joints or avoiding obstacles. The

implementation of the controllers can be performed in C++ by using a very robust

solver as CPLEX studio. This approach is very efficient and its performance is similar to

the pseudoinverse performance. Furthermore, there are several open-source solvers that

can be used in different languages programming. In addition, the vision system can be

implemented using open-source ROS packages and the library of dual quaternion algebra

DQ Robotics, both easy and ready to use.



7
Conclusion and Future Works

7.1 Conclusions

This master thesis presented a study and implementation of the robot kinematic control

applied to a nonholonomic mobile manipulator by using linear programming proposed by

Goncalves et al. (2016), which is computationally efficient, and has a guarantee formal of

stability. Furthermore some improvements to the original formulation were proposed.

The kinematic control strategy is based on an optimization problem where the 1-norm

is used, a convex positive definite error metric, in order to reduce the optimization problem

to a linear program. In this formulation, a constraint that depends on the error was

imposed by Goncalves et al. (2016) in order to avoid joint movement when the robot is

asymptotically stabilized to the desired configuration. In cases when the robot does not

stabilize asymptotically, the constraint imposed by Goncalves et al. (2016) does not avoid

joint movement. A new constraint, that depends on the time-derivative of the error is

proposed in order to solve this issue.

The nonholonomic constraint of the mobile base was imposed as an equality constraint

in the linear program formulation. This approach avoids the necessity to use a cascade

control scheme in order to deal with the nonholonomic constraint. On the other hand, the

addition of this constraint requires always 1-DOF all the time.

In order to avoid violation of the joint limits were imposed inequality constraints.

Because the linear programming formulation minimizes the joint velocities, the constraints

were imposed in the joint velocities taking into account the joints positions. The possibility

59
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of including inequality constraints is the main feature of the linear programming formulation

with respect to the classic approach. When n inequality constraints take actions the

controller requires n additional DOF.

An additional constraint was imposed in order to prevent collisions between the mobile

base and obstacles in the plan, where the obstacles were modeled as circles. First a

conservative solution was proposed to prevent collision that is simple to implement in the

linear program formulation. A second one was proposed in order to enhance the robot

behavior. The former forces the robot to stop before colliding with an obstacle and the

latter prevent collision, and in most cases, the robot could may move around the obstacle

and stabilizes in the desired configuration. This constraints to prevent collisions between

the mobile base and obstacles in the plane were imposed as a low level protection.

In order to verify the control strategy and the proposed final formulation, experiments

were performed on a real mobile manipulator. A Microsoft Kinect sensor was placed in

the ceiling in order to enhance the localization of the mobile base, to detect the desired

end-effector pose, and to detect obstacles in the workspace. The kinematic control was

implemented using C++ on ROS Indigo in order to enhance the performance. A low pass

filter using dual quaternion algebra was implemented in order to decrease the measurement

noises of the camera.

In the first experiment performed the goal was to control the end-effector pose. The

robot had to grasp a box and put it inside a trash bin and the end-effector must arrive

at the goal in a certain orientation and there were no obstacles in the plane. The results

showed that the robot stabilizes while respecting all imposed constraints. The linear

programming controller was solved with the Simplex method and generated more abrupt

control signals than the classic one, which is based on the pseudoinverse of the robot

Jacobian matrix. This was expected because the former is a discontinuous controller

whereas the latter is a continuous one. On other hand, the linear programming controller

used fewer joints, specifically between 6 and 7 DOF. This was expected, because the task

required 6-DOF and the nonholonomic constraint required 1-DOF.

A second experiment was performed in order to increase the functional redundancy

of the robot. The goal was to control the end-effector position, which requires only

3-DOF. In this experiment, the robot had to grasp a box and put it inside a trash bin,

but the orientation of the end-effector was not relevant and it was not controlled. The

results showed that the robot stabilized in the desired position, but nevertheles, the linear

programming controller generated more abrupt control signals than the classic approach

and it respected the joints limits imposed, as expected. This experiment showed an

important and expected fact: when the Simplex method is used, more redundancy implies

a smaller number of DOF used.

A third experiment was performed in order to validate the method proposed to prevent

collision between the mobile base and obstacles in the plane. In this experiment, the robot
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had to grasp a box and put it inside a trash bin and the end-effector must arrive at the

goal in a certain orientation. Also, all aforementioned constraint were used in order to

prevent violations of joints limits and take into account the nonholonomic constraint of the

mobile base. The results showed that the robot performed the specified task (i.e., control

of the end-effector pose) preventing a collision between the mobile base and a obstacle in

the plane. In this experiment the linear programming controller used, in most cases, all

joints available, as expected.

7.2 Future Works

Future works will be focused on improving the implementation as well as validating the

control strategy in hyper-redundant systems. There are some shortcomings that might be

improved:

• The Simplex method is computationally efficient and provides a parsimonious behav-

ior (i,e., a minimum amount of actuators are used to perform a particular task) in

the robot. However, it generates abrupt control inputs. These abrupt control inputs

generated could be attenuated by modifying the Simplex algorithm.

• The vision system implemented is very limited with respect to the visual area

range of the camera. A second Microsoft Kinect Sensor is required in order to

increase such area. However, because of the high computational cost of each Kinect

sensor, the frequency of acquisition should be reduced and a more sophisticated

estimator must be implemented in order to improve the performance and quality of

the measurements.

• The constraints imposed to prevent collisions were oriented to obstacles in the 2-D

plane. Additional constraints can be imposed in order to avoid collision with obstacles

in the 3-D workspace. An interesting focus is to model the robot links and 3-D

objects using Plücker lines.

• The parsimonious kinematic control strategy is oriented mainly to hyper-redundant

system. An interesting work would be to test such kinematic control in a real

humanoid robot.

• In this work did not performed a comparison between the linear programming and

nonlinear programming approaches using numerical solvers for both approaches.

This should be done in future works because additional constraints can be easily

imposed for both controllers.

• The equality constraint proposed in this work to prevent collisions between the

mobile base and obstacles in the plane violates some of the stability assumptions.
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Future works will be focused on finding inequality constraints that do not violate the

stability assumptions while enabling the robot to avoid obstacles in an efficient way.
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A
Dimensions of the Mobile Manipulator

d1
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a2
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Figure A.1: AX18 arm manipulator.

i ai αi (rad) di θi (rad)
1 0 −π

2 d1 θ1
2 a2 0 0 θ2
3 a3 −π

2 0 θ3 − π
2

4 0 −π
2 d4 θ4 − π

2
5 a5 0 0 θ5 − π

2

Table A.1: D-H parameters
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Figure A.2: Differential mobile base.



B
Whole-body kinematic control based on the

Pseudoinverse

In order to control the end-effector pose by using whole-body motions (i.e., motions

that can potentially—and automatically—use all available DOF), taking into account the

nonholonomic constraint of the mobile base, the kinematic control strategy used in this

work (for comparison with the kinematic control based on linear programming) is based

on the cascade control scheme proposed in Salazar-Sangucho (2014), where the outer loop

takes into account all DOF and the inner loop explicitly deals with the nonholonomic

constraints of the mobile base by means of an input-output linearizing controller. This

cascade scheme is shown in Fig. B.1.

The controller input u is calculated using the classic approach, it was proposed in

Adorno et al. (2010) and is given by

u = −J †η vec (x− xd) , (B.1)

where J † is the generalized Moore-Penrose pseudoinverse, η > 0 is a scalar gain and xd

and x are the desired and measured end-effector poses, respectively. The control signal u

is partitioned as

u =
[
uTb uTa

]T
,

where ub =
[
ẋ ẏ φ̇

]T
and ua = q̇a.
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Figure B.1: Whole-body kinematic control scheme.
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ẋ

ẏ
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Figure B.2: Point offset used in the control of the nonholonomic mobile base.

The vector ub generated in the outer loop is used as reference for the input-output

linearizing controller (Skaar, 2007) in the inner loop. Given a point (x1, y1), as shown in

Fig. B.2, its time derivative is given by

ẋ1 = ẋ− (d sinφ) φ̇, ẏ1 = ẏ + (d cosφ) φ̇.

Let u1 , ẋ1, u2 , ẏ1, and φ̇ = (u2 cosφ− u1 sinφ) /d, a feedback linearization is

obtained (Skaar, 2007) and the linear controller

 u1

u2

 =
 ẋ1d

ẏ1d

+
 k1 0

0 k2

 x1d − x1

y1d − y1

 ,
guarantees exponential convergence error for k1>0 and k2>0.


