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ABSTRACT 

 

Chemical and phase equilibrium calculations are commonly performed  by solving a constrained 

optimization problem known as Gibbs energy minimization. This problem is, in general, 

nonconvex, which implies that it is not a trivial task to solve for its global minimum, as many 

local minima may exist. The global minimum is the only solution that bears physical significance. 

Among the various techniques found in the literature that attempt to solve this problem, the 

𝛼𝐵𝐵 algorithm with interval analysis seems particularly interesting due to its generality and to 

the fact that it mathematically guarantees global optimality. However, in order to apply it 

directly to the equilibrium problem, it is necessary to circumvent somehow the fact that in its 

original formulation, lower bounds for mole numbers that are too close to zero may cause 

numerical underflow, leading the algorithm to fail. An algorithm based on the original 𝛼𝐵𝐵 is 

presented and is used to evaluate 8 benchmark equilibrium problems extracted form the 

literature. The algorithm, despite no longer being able to mathematically guarantee global 

optimality, was capable of solving all problems correctly and with relative efficiency.  
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RESUMO 

 

Cálculos de equilíbrio químico e de fases são comumente realizados através da resolução de um 

problema de otimização restrita conhecido como minimização da energia de Gibbs. O problema 

é, em geral, não-convexo, o que faz com que a busca pelo mínimo global não seja trivial, já que 

podem existir vários mínimos locais. O mínimo global é a única solução que tem significado físico. 

Dentre as várias técnicas encontradas na literatura, o algoritmo 𝛼𝐵𝐵 com análise de intervalos 

parece ser particularmente interessante devido à sua generalidade e  ao fato de que ele é capaz 

de garantir matematicamente que o mínimo encontrado será o mínimo global. Apesar disso, 

para que seja possível aplicá-lo diretamente ao problema de equilíbrio, é necessário contornar 

de alguma forma o fato de que, em sua formulação original, cotas inferiores muito próximas de 

zero podem causar underflow numérico, fazendo com que o algoritmo não seja bem-sucedido. 

Um algoritmo baseado no 𝛼𝐵𝐵 original é apresentado e usado para resolver 8 problemas-teste 

de equilíbrio extraídos da literatura. O algoritmo, apesar de não mais garantir matematicamente 

que o ótimo global é alcançado, foi capaz de corretamente resolver todos os problemas com 

relativa eficiência. 
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1 INTRODUCTION 

 

The study of chemical and phase equilibria is of paramount importance in chemical engineering, 

as it constitutes the fundamental principle on which several unit processes are based. Among 

such unit processes are fractional distillation, flash distillation, absorption, adsorption, leaching, 

precipitation and extraction. It is also the principle upon which some chemical reactors are 

designed. Chemical and phase equilibria studies also play a big role in water quality control 

(Tchobanoglous & Schroeder, 1987), water chemistry (Brezonik & Arnold, 2011) and the 

prediction and control of scaling in pipelines. It is thus clear that a solid understanding of both 

the practical and theoretical aspects of chemical equilibria is extremely important. 

From a mathematical standpoint, a chemical and phase equilibrium calculation problem can be 

formulated as a nonlinear constrained optimization problem (Floudas, 2000), whose objective 

function is the so-called total Gibbs energy of that particular system under study, and the 

variables are the mole numbers of each component in that same system. The constraints are all 

linear and account for mass balances. Solving the equilibrium problem thus corresponds to 

finding the system composition that respects mass balance constraints and minimizes the Gibbs 

energy. 

The literature reveals that several attempts have been made to effectively solve these problems. 

These attempts branch out in stochastic (or probabilistic) methods and in deterministic methods. 

Among the deterministic methods, the so-called 𝛼𝐵𝐵  method (Floudas, 2000) has received 

much attention as it is capable of deterministically solving for the global optimum of twice-

differentiable optimization problems. It also mathematically guarantees global optimality, which 

is highly desirable. 

It is very important that the global minimum be found, as other local solutions do not correspond 

to physical solutions. The objective function is highly nonlinear and, in general, nonconvex. In 

practice, that means that these calculations may be very hard to perform, as most local 

optimization solvers will be at risk of converging to local minima, which would then yield a 

solution that bears no physical meaning. This remark makes global deterministic algorithms very 

appealing, as they can provide guarantees of optimality, which stochastic algorithms can not. 

The 𝛼𝐵𝐵 algorithm is based on systematically scanning the objective function’s domain for the 

global optimum by successively splitting it into smaller subdomains. Within each subdomain, the 
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original problem (which provides an upper bound to the global minimum) and a convex 

underestimating problem (which provides a lower bound) are locally solved and its solutions are 

stored. As the iterations progress, the subdomains become smaller and the gap between the 

best upper and lower bounds tighten. When this gap is small enough, the algorithm halts, and 

the optimum point is returned. 

The underestimating functions may be either calculated (Floudas, 2000) analytically or through 

interval analysis (Moore, et al., 2009). The latter method has the advantage of being very general, 

although its underestimating functions tend to be very loose, i.e. they underestimate the original 

function far too much, which causes the algorithm to be much less efficient. In fact, the 

underestimating function may evaluate to such large negative numbers that it causes local 

solvers to fail due to numerical underflow. 

In order to address this particular issue, the original 𝛼𝐵𝐵 was modified in such a way that the 

underestimators were prevented from becoming too negative. The modified algorithm, in 

practice, correctly computes chemical equilibria faster than would be the case if the original 

𝛼𝐵𝐵 were used. The tradeoff is the fact that it no longer mathematically guarantees global 

optimality, although in practice, it performs well. 

In order to evaluate its performance, the algorithm’s performance was assessed in eight 

benchmark chemical and phase equilibrium problems (whose global optima were known), 

extracted from the work of Bonilla-Petricolet and collaborators (2011). 

The main objective of this work is to evaluate how well the adapted algorithm behaves when 

applied to equilibrium problems. More specifically, this work aims at a) checking whether the 

algorithm converges to the global optimum, b) measuring how many iterations it takes for it to 

converge and c) gaining insight into how much the underestimators calculated by the algorithm 

distance themselves from the original function. 
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2 FOUNDATIONS 

 

2.1 MATHEMATICAL DEFINITIONS 

 

2.1.1 Set theory and topology 

 

Let X be a set. If X has a finite number of elements, the symbol |𝑋| denotes the number of 

elements of X. 

Let 𝑋 ⊂ ℝ. A lower bound on 𝑋 is a real number 𝑎 such that 𝑎 ≤ 𝑥 for every 𝑥 ∈ 𝑋. Conversely, 

an upper bound on 𝑋 is a real number 𝑏 such that 𝑏 ≥ 𝑥 for every 𝑥 ∈ 𝑋. 

The infimum of a set 𝑋, denoted by inf 𝑋 is the greatest lower bound on 𝑋. The supremum of a 

set 𝑋 , denoted by sup𝑋  is the smallest upper bound on 𝑋 . Neither the infimum, nor the 

supremum of a set need to belong to it. As an example, consider the set 𝑋 = {𝑥 | 𝑥 > 2  and 𝑥 <

3}. Clearly, inf 𝑋 = 2 and sup𝑋 = 3, but 2 ∉ 𝑋 and 3 ∉ 𝑋 (Munkres, 2000). 

An open ball centered in 𝑥0  with radius 𝑅  is a subset of ℝ𝑛  defined as 𝐵(𝑥0, 𝑅) = {𝑥 | ‖𝑥 −

𝑥0‖ < 𝑅}, where ‖ . ‖ is the normal Euclidean distance. A set 𝑋 ⊂ ℝ𝑛 is said to be bounded if 

there exists an open ball 𝐵(𝑥0, 𝑅) such that 𝑋 ⊂ 𝐵(𝑥0, 𝑅). 

A set 𝑋 ⊂ ℝ𝑛 is said to be open if for every point 𝑥0 in 𝑋 there exists an open ball centered in 

𝑥0, with radius 𝑅 > 0 such that 𝐵(𝑥0, 𝑅) ⊂ 𝑋. A set 𝑋 ⊂ ℝ𝑛 is closed if its complement ℝ𝑛 − 𝑋 

is open. A set 𝑋 that is both closed and bounded is said to be compact. 

A more comprehensive treatment of the above definitions can be found in standard references 

on analysis and on topology, such as (Rudin, 1976) and (Munkres, 2000). 

 

2.1.2 Linear algebra 

 

Matrices will be denoted by uppercase letters, such as A. The set of real mxn matrices (that is, 

m rows and n columns) will be denoted by ℝ𝑚𝑥𝑛 . We may also represent a matrix by its 

elements: 𝐴 = [𝑎𝑖,𝑗]. The symbol 𝑎𝑖,𝑗 denote the element of 𝐴 in row i and column j. 
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Vectors are single-column matrices and will be denoted by lowercase bold letters, such as 𝒃. 

The set of real m-vectors (vectors with m components) will be denoted by ℝ𝑚. 

The transpose of a matrix, 𝐴𝑇 is the matrix whose columns are the rows of A. Equivalently, if 

𝐴 = [𝑎𝑖,𝑗], then 𝐴𝑇 = [𝑎𝑗,𝑖]. A matrix whose transpose is equal to itself is said to be symmetric. 

A matrix 𝐴 ∈ ℝ𝑛𝑥𝑛 is said to be positive semi-definite if it is such that, for every vector 𝒙 ∈ ℝ𝑛, 

we have 𝒙𝑻𝐴𝒙 ≥ 0. It is said to be positive definite if strict inequality holds. If the signs are 

reversed, then it is said to be negative semi-definite and negative definite, respectively. 

Given a matrix 𝐴 and a vector 𝒗, we say that 𝒗 is an eigenvector of 𝐴 if it is such that 𝐴𝒗 = 𝜆𝒗 

for some real number 𝜆. The number 𝜆 is then said to be an eigenvalue of 𝐴 associated to the 

eigenvector 𝒗 (Lax, 2007). 

 

2.1.3 Multivariable calculus 

 

Let 𝑓:ℝ𝑛 →  ℝ be a real-valued function. The gradient ∇𝑓 is an n-dimensional vector whose 

components are the partial derivatives of 𝑓  with respect to each variable: ∇𝑓 =

[
 
 
 
𝜕𝑓

𝜕𝑥1

⋮
𝜕𝑓

𝜕𝑥𝑛]
 
 
 

. The 

gradient vector always points in the direction along which the function increases the most. 

The hessian ∇2𝑓  or 𝐻[𝑓]  is an nxn matrix composed of the second derivatives of 𝑓 . More 

precisely, ∇2𝑓 = [
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
] (Luenberger & Ye, 2010). 

 

2.1.4 Convex analysis 

 

A set 𝑋 is said to be convex if for every pair of points 𝑥0, 𝑥1 ∈ 𝑋 and for every 𝜃 ∈ [0,1], the 

point 𝜃𝑥0 + (1 − 𝜃)𝑥1 also belongs to 𝑋. 

Let 𝑓:𝐷 →  ℝ be a function. We say that 𝑓 is convex if 𝐷 is a convex set and for every pair of 

points 𝑑0, 𝑑1 ∈ 𝐷 , we have that 𝑓[𝜃𝑑0 + (1 − 𝜃)𝑑1] ≤ 𝜃𝑓(𝑑0) + (1 − 𝜃)𝑓(𝑑1) . If this 

inequality holds strictly, we say that 𝑓 is strictly convex. A concave function is a function such 

that −𝑓 is convex (Boyd & Vandenberghe, 2004). 
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A function 𝑓 is convex if and only if its hessian is positive semi-definite. Alternatively, a function 

is concave if and only if its hessian is negative semi-definite (Boyd & Vandenberghe, 2004). 

A function 𝑓 is convex if and only if all of its eigenvalues are positive. 

 

2.2 CHEMICAL AND PHASE EQUILIBRIA 

 

2.2.1 Problem formulation 

 

Let 𝑆 be a closed system (no mass transfer allowed through its walls) and 𝐶 be a list of chemical 

species. The set of all elements that form the chemical species of 𝐶 will be denoted by 𝐴. We 

assume that 𝑆 is initially composed of 𝑛0,𝑖 moles of the 𝑖-th component, where 𝑖 ∈ 𝐶. Lastly, we 

also impose the system be both isothermic and isobaric. 

Once the equilibrium state is achieved, the system may display more than one phase, and each 

phase will exhibit, in general, a different composition. The set of phases in equilibrium will be 

denoted by 𝛱  and the mole number of the 𝑖 -th component present in the 𝑘 -th phase (in 

equilibrium) will be written as 𝑛𝑖,𝑘. 

The problem to which we will refer to as the chemical and phase equilibrium problem consists 

on finding 𝑛𝑖,𝑘 given the values of 𝑛0,𝑖, temperature, 𝑇, and pressure, 𝑃 (Abbott, et al., 2001). 

Classical thermodynamics provides the theoretical framework necessary to perform such 

calculations. It indicates that the equilibrium state is achieved when the total Gibbs energy (𝐺) 

of the system attains its minimum, which in turn characterizes the problem as an optimization 

problem (Bonilla-Petricolet, et al., 2011). 

Mathematically, the function to be minimized can be written as: 

 

 𝐺 = ∑ ∑𝑛𝑖,𝑘𝜇𝑖,𝑘
𝑖∈𝐶𝑘𝜖𝛱  

 
(1) 
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In this expression 𝜇𝑖,𝑘 is the chemical potential of the 𝑖-th component in the 𝑘-th phase and 𝐺 

is the system total Gibbs energy (Abbott, et al., 2001). 

As the system 𝑆 was assumed to be closed, it is necessary to find a set of values that not only 

minimizes 𝐺, but that is also such that mass conservation holds. It is possible to achieve that by 

imposing a set of constraints on the optimization problem. 

If mass conservation must hold true, then it must also be the case that the total amounts of 

atoms of each element remain constant (we assume that no nuclear processes take place). In 

order to construct these constraints, we follow the same process outlined in (Abbott, et al., 

2001). For each element 𝑒 ∈ 𝐴 we define the quantity 𝐴𝑒 as the total number of moles of atoms 

of 𝑒 present in the system. 𝐴𝑒 are constants and are functions of 𝑛0,𝑖. It is also convenient to 

define the quantity 𝑎𝑒,𝑖  to be the number of atoms of the element 𝑒  present in the  𝑖 -th 

component. 

From the initial composition of the system, the values of 𝐴𝑒 can be calculated as follows (Abbott, 

et al., 2001): 

 

 𝐴𝑒 =∑𝑎𝑒,𝑖𝑛0,𝑖
𝑖∈𝐶

 
(2) 

   

 

Once these are found, we may finally write the mass balance constraints: 

 

 𝐴𝑒 = ∑∑𝑎𝑒,𝑖𝑛𝑖,𝑘
𝑖∈𝐶𝑘∈𝛱

 
(3) 

 

 

Since negative mole numbers are physically meaningless, we must also make sure that: 

 

 𝑛𝑖,𝑘 ≥ 0 (4) 
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A key remark to be made is that all constraints are linear. A more concise notation ensues. Upon 

denoting by 𝒏 the vector composed by the variables 𝑛𝑖,𝑘, by 𝒛 the vector of the constants 𝐴𝑒 

and by 𝐻 the matrix of 𝑎𝑒,𝑖, all constraints may be rewritten as: 

 

 𝐻𝒏 = 𝒛 

𝒏 ≥ 0 (5) 

   

 

It is still necessary to establish how the chemical potentials are to be calculated. We may write 

the chemical potential for every component as: 

 𝜇𝑖,𝑘 = 𝜇𝑖,𝑘
0 + 𝑅𝑇 ln(𝑐𝑖,𝑘𝑥𝑖,𝑘) (6) 

 

Where 𝜇𝑖,𝑘
0  is the standard chemical potential of formation of the 𝑖-th component in the 𝑘-th 

phase at pressure  𝑃, 𝑥𝑖,𝑘 is its mole fraction and 𝑐𝑖,𝑘 is given by: 

 𝑐𝑖,𝑘 = 𝑃  if 𝑘 is an ideal gas mixture. 

 𝑐𝑖,𝑘 = 1  if 𝑘 is an ideal liquid solution. 

 𝑐𝑖,𝑘 = 𝛾𝑖,𝑘 if 𝑖 is a solute in a non-ideal liquid solution. 

The values represented by 𝛾𝑖,𝑘 are the activity coefficients, and they represent the nonidealities 

that exist within a system. There are several models employed to calculate 𝛾𝑖,𝑘. These will be 

described later. This notation can be easily extended to incorporate non-ideal gases – instead of 

activity coefficients, there would be, in that case, fugacity coefficients (Tester & Modell, 1997). 

Finally, by combining everything, we are left with the mathematical formulation of the chemical 

and phase equilibrium problem. In standard optimization notation (Luenberger & Ye, 2010): 

 

 min ∑ ∑𝑛𝑖,𝑘𝜇𝑖,𝑘
𝑖∈𝐶𝑘𝜖𝛱  

 

𝑠. 𝑡. 

 

𝐻𝒏 = 𝒛 

𝒏 ≥ 0 (7) 
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2.2.2 Alternative formulations 

 

Even though the aforementioned formulation is sufficient to fully characterize equilibrium 

problems, one may find useful to restate it in an equivalent formulation. Reasons for that may 

be: the will to emphasize a particular theoretical nuance of the problem; to obtain a simpler 

algebraic formulation – and potentially better numerical solution schemes; or  to obtain greater 

insight on the current problem. We now turn to some such alternative formulations. 

 

2.2.2.1 Gibbs excess energy  

 

Excess functions are defined as the amounts by which a state function (such as the Gibbs energy) 

of a solution exceeds the value it would assume in an ideal solution of the same composition 

(Denbigh, 1971). Therefore, we can mathematically express this definition for the Gibbs energy 

as: 

 𝐺𝐸(𝒏) = 𝐺(𝒏) − 𝐺𝑖𝑑(𝒏) (8) 

 

Upon comparing equations (6) and (8) and differentiating the result with respect to 𝑛𝑖,𝑘, It can 

be shown that the following relation holds (Abbott, et al., 2001): 

 

 
(
𝜕𝐺𝐸

𝜕𝑛𝑖,𝑘
)
𝑇,𝑃,𝑛𝑗

= 𝑅𝑇 ln 𝛾𝑖,𝑘 
(9) 

 

In equation (9), the values of 𝑇, 𝑃 and 𝑛𝑗, for all 𝑗 ≠ 𝑖, are kept constant.  This relation shows 

that by knowing how to calculate the activity coefficients, it is possible to infer the values of the 

excess Gibbs function and vice–versa. Therefore, it is possible to describe the total Gibbs energy 

of a system either by the method suggested in the original formulation or by means of applying 

Equation (8) alongside with the definition of 𝐺𝐸. 
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2.2.2.2 Degree of advancement of a reaction 

 

In reactive systems the number of moles of the reactants and products are interrelated. In order 

to express this interrelationship in a clean and unambiguous way, we define an extra variable 𝜉 

for each reaction. This variable is referred to as the degree of advancement (or simply, the 

advancement) of that particular reaction and it measures how much the reaction has progressed. 

It is defined in such a way that the following relation holds true (Denbigh, 1971): 

 𝑑𝑛𝑖
ν𝑖

= 𝑑𝜉 
(10) 

 

In the preceding relation ν𝑖  denotes the stoichiometric coefficient of component i, assuming 

that it is involved in the reaction (ν𝑖 ≥ 0 if i is a product and ν𝑖 ≤ 0 if i is a reactant). This 

definition suggests the following procedure for writing mass balances: for each component i 

present in the system, define 𝑛𝑖 as the total number of moles of i in the system. Mathematically: 

 

 𝑛𝑖 = ∑𝑛𝑖,𝑘
𝑘∈𝛱

 
(11) 

 

The changes in the total number of moles of a component must come from the progression of 

chemical reactions. Keeping that in mind, we may further write (Denbigh, 1971): 

 

 𝑛𝑖 = 𝑛𝑖,0 +∑ν𝑖,𝑗𝜉𝑗
𝑗∈𝑅

 
(12) 

 

Where R is the set of chemical reactions occurring in the system and ν𝑖,𝑗  denotes the 

stoichiometric coefficient of component i on reaction j. Assuming that all chemical reactions 

have been properly balanced, it is unnecessary to write the atomic mass balances represented 

in equation (3). 

It is important to notice that the number of constraints and number of variables of the 

equilibrium problem may change according to the formulation used. That means that the 

degrees of freedom of the optimization problem may change as well. As a rule of thumb, greater 
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degrees of freedom lead to bigger search spaces, thus making the optimum point harder to find. 

Let us denote by |𝑋| the number of elements in the set𝑋. In the first formulation, there would 

be |𝛱||𝐶| variables (𝑛𝑖,𝑘) and |𝐴| equality constraints, thus that formulation leads to|𝛱||𝐶| −

|𝐴| degrees of freedom. In the degree of advancement formulation there would be |𝛱||𝐶| +

|𝐶| + |𝑅| = (|𝛱| + 1)|𝐶| + |𝑅|  variables (𝑛𝑖,𝑘 , 𝑛𝑖  and 𝜉𝑖 ) and |𝐶| + |𝐶| = 2|𝐶|  constraints, 

which leads to (|𝛱| − 1)|𝐶| + |𝑅| degrees of freedom. Even though the pure analysis of degrees 

of freedom is not a good predictor of how simple it is to solve an optimization problem, it should 

be kept in mind. 

 

2.2.2.3 Reduction of dimensionality 

 

It has been proposed in the literature that, from a mathematical standpoint, the number of 

moles and mole fractions may not be the most natural choice of independent variables to the 

equilibrium problem. This is due to the fact that the Gibbs’ phase rule imposes constraints on 

these quantities and, for this reason, the numbers of moles and compositions would mask the 

problem’s dimensionality. One such approach is the one proposed by (Ung & Doherty, 1995). 

This approach arises from the observation that the Gibbs’ phase rule states that (Ung & Doherty, 

1995): 

 

 𝐹 = (𝑐 + 𝐼) − 𝑅 + 2 − 𝛱 (13) 

   

 

F denotes the degrees of freedom of a system, c is the number of reacting compounds, I is the 

number of inert compounds, R is the number of independent chemical reactions and Π is the 

number of phases. R compounds are chosen to be the reference compounds. A modified mole 

number is then defined for every other component as follows (Ung & Doherty, 1995): 

 

 𝑛�̂� = 𝑛𝑖 − 𝛎𝒊
𝑻𝑵−1𝒏𝑟𝑒𝑓       𝑖 = 1,… , 𝑐 − 𝑅 (14) 
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Here 𝒏𝑟𝑒𝑓 denotes the vector of number of moles of the reference components, 𝛎𝑖 is the vector 

of stoichiometric coefficients of component i  in each of the independent reactions, 𝑲𝒆𝒒 is a row 

vector containing the chemical equilibrium constants of the independent reactions, and N is an 

invertible matrix whose rows are the stoichiometric coefficients of the R reference components 

in the R independent reactions. The independence of the reference equations assures that N is 

invertible, as  none of its rows will be a linear combination of other (independent reactions) 

rows, and thus its determinant will be different from 0, which is enough to guarantee its 

nonsingularity. 

The transformed mole fractions can then be written as (Ung & Doherty, 1995) 

: 

 
𝑋𝑖 =

𝑛�̂�
𝑛�̂�

=
𝑥𝑖 − 𝛎𝒊

𝑻𝑵−1𝒙𝑟𝑒𝑓

1 − 𝛎𝑻𝑶𝑻
𝑻 𝑵−1𝒙𝑟𝑒𝑓

       𝑖 = 1,… , 𝑐 − 𝑅 
(15) 

 

where 

 
𝛎𝑻𝑶𝑻
𝑻 =∑ 𝛎𝒊

𝑻
𝑐−𝑅

𝑖=1
 

(16) 

   

and 𝒙𝑟𝑒𝑓 denotes the vector of mole fractions of the reference components. 

Introducing these new variables in the concept of Gibbs energy, we may define, for convenience: 

 

 
𝑔 =

𝐺

𝑛�̂�
 

(17) 

   

 

It can be shown  that the following relation holds true (Wasylkiewicz & Ung, 2000) : 

 

 
𝑔 =∑ 𝑋𝑖𝜇𝑖

𝑐−𝑅

𝑖=1
 

(18) 
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In order not to have to compute the standard Gibbs free energies of the pure components, we 

define the Gibbs energy of mixture as (Wasylkiewicz & Ung, 2000): 

 

 ∆𝑔𝑚𝑖𝑥
𝑅𝑇

=
𝑔 − 𝑔0

𝑅𝑇
=∑∑ 𝑋𝑖

𝑐−𝑅

𝑖=1
ln(𝛾𝑖,𝑘𝑥𝑖,𝑘)

𝑘𝜖𝛱

 
(19) 

   

 

One important result is that minimizing G subject to the usual mass-balance constraints is 

equivalent to minimizing ∆𝑔𝑚𝑖𝑥 under the same constraints (Bonilla-Petricolet, et al., 2011). If 

the equilibrium constants of each reaction are known, we may write an equation in terms of it 

(Bonilla-Petricolet, et al., 2011): 

 

 ∆𝑔𝑚𝑖𝑥 = ∆𝑔𝑚𝑖𝑥 −∑ln𝑲𝒆𝒒
𝑘𝜖𝛱

𝑵−1𝒏𝑟𝑒𝑓,𝑘   
(20) 

   

 

where 

 ∆𝑔𝑚𝑖𝑥 =∑∑𝑛𝑖,𝑘 ln(𝛾𝑖,𝑘𝑥𝑖,𝑘)

𝑖∈𝐶𝑘𝜖𝛱

  
(21) 

   

 

In the above equations 𝒏𝑟𝑒𝑓,𝑘  denotes the vector of number of moles of the reference 

components on phase k. 

 

2.2.3 Activity coefficient models 

 

There exist several activity coefficient models, both for electrolytic and for non-electrolytic 

solutions (Denbigh, 1971); (Abbott, et al., 2001); (Walas, 1985). The decision of which model 

should be used depends highly on the system under consideration. A few of these models are 

described below. 
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2.2.3.1 Margules activity model 

 

This model was introduced in 1895 by Max Margules and is suitable for non-electrolytic solutions. 

It is still commonly used and it is known to perform well for some systems (Walas, 1985). Despite 

its simplicity, it does possess properties that are very desirable, one of which being the fact that 

it is able to properly describe the behavior of activity coefficients under conditions of either 

extreme dilution or extreme concentration. Most modern models are not able do so. The activity 

coefficient given by the Margules model can be represented in the form (Bonilla-Petricolet, et 

al., 2011): 

 

 
ln 𝛾𝑖,𝑘 =

1

2𝑇
∑∑(𝐴𝑎,𝑖 + 𝐴𝑏,𝑖 − 𝐴𝑎,𝑏)𝑥𝑎𝑥𝑏

𝑏∈𝐶𝑎∈𝐶

 
(22) 

 

In this expression the terms 𝐴𝑖,𝑗  are parameters of the model and depend on the chemical 

components involved. 𝑇 is the system temperature. 

 

2.2.3.2 Wilson activity model 

 

The Wilson model was introduced in 1964. This model is based on the framework provided by 

statistical mechanics and it assumes that the interactions that take place between the molecules 

(or components) of a system depend mostly on their “local concentration” (Walas, 1985), or, 

more precisely, on how neighboring molecules interact. These local concentrations are 

expressed as probabilities that are based on the Boltzmann distribution. When written in its 

multicomponent form, the Wilson model is written as follows (Bonilla-Petricolet, et al., 2011): 

 

 
ln 𝛾𝑖,𝑘 = 1 − ln(∑𝑥𝑎Λ𝑖,𝑎

𝑎∈𝐶

) −∑(
𝑥𝑏Λ𝑏,𝑖

∑ 𝑥𝑎Λ𝑏,𝑎𝑎∈𝐶
)

𝑏∈𝐶

 
(23) 
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where 

 
Λ𝑎,𝑏 =

𝑉𝑏
𝑉𝑎
exp (−

𝑢𝑎,𝑏
𝑅𝑇

) 
(24) 

 

 

and the quantities 𝑉𝑎 and 𝑢𝑎,𝑏 correspond respectively to the molal volume of component a and 

to the interaction energies of components a and b. These quantities are taken as parameters to 

the model (Walas, 1985). 

The Wilson model displays suitable properties, such as the fact that it is able to describe both 

polar and nonpolar mixtures and its capability of representing multicomponent behavior despite 

the fact that it only considers binary interactions (Walas, 1985). There are, however, a few 

drawbacks. One of them is the fact that the model does not allow for liquid-liquid immiscibility 

to be implemented. Another one, which is critical for the scope of this work, is the fact that it 

introduces nonconvexities on the total Gibbs energy of the system. That, in turn, accounts for a 

greater difficulty on solving equilibrium problems involving the Wilson model (Floudas, 2000). 

 

2.2.3.3 NRTL activity model 

 

The NRTL (NRTL stands for nonrandom two-liquid) model, also known as the Renon model, 

assumes that the liquids involved organize themselves in a molecular level into small clusters 

(Walas, 1985). The derivation of the equation for this model is similar to that of the Wilson model, 

the main difference being that a nonrandomness parameter is introduced. The multicomponent 

form of the NRTL model is written as (Bonilla-Petricolet, et al., 2011): 

 

 
ln 𝛾𝑖,𝑘 =

∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖𝑥𝑎𝑎∈𝐶

∑ 𝐺𝑎,𝑖𝑥𝑎𝑎∈𝐶
+∑

𝐺𝑖,𝑎𝑥𝑎
∑ 𝐺𝑖,𝑏𝑥𝑏𝑏∈𝐶

(𝜏𝑖,𝑎 −
∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎𝑥𝑏𝑏∈𝐶

∑ 𝐺𝑏,𝑎𝑥𝑏𝑏∈𝐶
)

𝑎∈𝐶

 
(25) 

   

where 

 𝐺𝑎,𝑏 = exp(−𝛼𝑎,𝑏𝜏𝑎,𝑏) (26) 
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 τ𝑖,𝑗 =
𝑢𝑖,𝑗

𝑅𝑇
 (27) 

 

and the quantities 𝛼𝑎,𝑏 and 𝑢𝑎,𝑏 correspond respectively to the nonrandomness parameter of 

components a and b and to the interaction energies of components a and b. These quantities 

are taken as parameters to the model (Walas, 1985). 

As is the case with the Wilson model, the NRTL equations introduce nonconvexities in the 

equilibrium problem, which often leads to computational and numerical difficulties. It should 

however be noted that Floudas and collaborators (2000) managed to express NRTL-equilibrium 

problems as a biconvex optimization problem (see the section on GOP), which greatly reduces 

their solution complexity. The NRTL model usually represents well binary systems and, unlike 

the Wilson model, it is capable of representing immiscible liquid-liquid mixtures (Walas, 1985). 

A practical handicap, however, that may hinder its applicability is the availability of its 

parameters (Walas, 1985). 

 

2.2.3.4 UNIQUAC activity model 

 

The UNIQUAC (universal quasichemical) model was developed by Abrams and Prausnitz in 1975. 

Its derivation is also based on the two-liquid model and on the idea of local concentrations (as 

is the case of the NRTL and Wilson models). Its most distinguishing feature is the fact that it 

depicts the excess Gibbs energy as composed of two parts (Walas, 1985), namely: 

 Differences in shape and size between the molecules (configurational or combinatorial 

contribution). 

 Energetic interactions between the molecules (residual contribution). 

The multicomponent UNIQUAC model takes the following form (Bonilla-Petricolet, et al., 2011); 

(Reid, et al., 1987): 

 ln 𝛾𝑖,𝑘 = ln 𝛾𝑖,𝑘
𝐸 + ln 𝛾𝑖,𝑘

𝑅  (28) 

 

 
ln 𝛾𝑖,𝑘

𝐸 = ln
𝜙𝑖
𝑥𝑖
+ 5𝑄𝑖 ln

𝜃𝑖
𝜙𝑖
+ 𝑙𝑖 −

𝜙𝑖
𝑥𝑖
∑𝑥𝑎𝑙𝑎
𝑎∈𝐶

 
(29) 
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ln 𝛾𝑖,𝑘

𝑅 = 𝑄𝑖 [1 − ln(∑𝜃𝑎𝜏𝑎𝑖
𝑎∈𝐶

) −∑(
𝜃𝑎𝜏𝑎𝑖

∑ 𝜃𝑏𝜏𝑏𝑖𝑏∈𝐶
)

𝑎∈𝐶

] 
(30) 

 

where 

 
𝜃𝑖 =

𝑄𝑖𝑥𝑖
∑ 𝑄𝑗𝑥𝑗𝑗∈𝐶

 
(31) 

 

 
𝜙𝑖 =

𝑅𝑢,𝑖𝑥𝑖
∑ 𝑅𝑢,𝑗𝑥𝑗𝑗∈𝐶

 
(32) 

 

 𝑙𝑖 = 5(𝑅𝑢,𝑖 −𝑄𝑖) − (𝑅𝑢,𝑖 − 1) (33) 

 

 τ𝑖,𝑗 = exp (−
𝑢𝑖,𝑗

𝑅𝑇
) (34) 

 

The quantities Ru,i, Qi and ui,j are taken as parameters to the model and they correspond to, 

respectively, the relative Van der Waals radius of component i, surface area of component i 

and the binary interaction energy between components i and j. 

The UNIQUAC model is capable of representing well the behavior of mixtures of components 

whose sizes are quite different (Walas, 1985). It is also capable of describing liquid-liquid 

equilibria, much like the NRTL model. The difficulty of obtaining parameters may be one of 

its biggest drawbacks. Not only that, but its complex algebraic structure may introduce 

severe nonconvexities on the equilibrium problem which greatly increases its computational 

and numerical difficulty. In some situations, simpler activity models can describe mixtures 

better than UNIQUAC, leading to simpler problem formulations and potentially easier 

computational solution schemes (Walas, 1985). 
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2.3 MATHEMATICAL OPTIMIZATION 

 

2.3.1 Basic definitions 

 

2.3.1.1 Optimality and feasibility 

 

The general mathematical optimization problem is stated in standard notation as follows 

(Luenberger & Ye, 2010): 

 min    𝑓(𝒙) 

𝑠. 𝑡. 

           ℎ𝑖(𝒙) = 0,         𝑖 = 1…𝑚 

           𝑔𝑖(𝒙) ≤ 0,         𝑖 = 1…𝑟 

           𝒙 ∈ 𝑆 (35) 

   

In this formulation, 𝒙 = [𝒙𝟏, … , 𝒙𝒏]
𝑻 is a vector of n variables, often called decision variables, 𝑓 

is the function to be minimized, often referred to as objective function or cost function, ℎ𝑖 are 

the equality constraints, 𝑔𝑖 are the inequality constraints and 𝑆 is a subset of an n-dimensional 

space. For the scope of this work, we will always assume that 𝑆 = ℝ𝑛 and, for that reason, we 

will abstain from restating it. Throughout this work, the terms mathematical optimization and 

mathematical programming will be used interchangeably. If no constraints are present in the 

problem, we say that it is an unconstrained optimization problem, otherwise, we call it a 

constrained optimization problem. 

The general mathematical optimization problem consists on finding a point 𝒙∗such that a) all 

constraints are satisfied, and b) 𝑓(𝒙∗) ≤ 𝑓(𝒙) for every point 𝒙 that also obeys the same set of 

constraints. This motivates the following definition: 

 

Definition: A point 𝒙 that satisfies all constraints of an optimization problem is 

said to be feasible. (1) 

 

In other words, the general mathematical optimization problem consists on finding a feasible 

point 𝒙∗ such that 𝑓(𝒙∗) ≤ 𝑓(𝒚) for every other feasible 𝒚. The set of all feasible points is called 
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the domain of the optimization problem and is represented by 𝐷 . The optimum value of a 

function can be defined more rigorously as follows: 

 

Definition: The optimal value 𝒑∗ of an optimization problem is the infimum of 𝑓 

over the set of feasible points: 𝒑∗ = inf{𝑓(𝑥) | 𝑥 ∈ 𝐷} (2) 

 

If 𝐷 ≠ ∅, we say that the problem is feasible, otherwise, it is said to be infeasible. As in (Boyd & 

Vandenberghe, 2004) we allow 𝒑∗ to take the extended values ±∞ and adopt the convention 

that, if 𝐷 = ∅, then 𝒑∗ = ∞. If there is a sequence of feasible points {𝒙𝒌} such that 𝑓(𝒙𝒌) →

−∞  as 𝑘 → ∞ , then 𝒑∗ = −∞  and we say that the problem is unbounded below (Boyd & 

Vandenberghe, 2004). 

It is sometimes necessary to check if a feasible solution exists. The problem of checking if a 

feasible solution exists (and finding it) is called the feasibility problem (Boyd & Vandenberghe, 

2004). It can be stated as: 

 find    𝒙 

𝑠. 𝑡. 

           ℎ𝑖(𝒙) = 0,         𝑖 = 1…𝑚 

           𝑔𝑖(𝒙) ≤ 0,         𝑖 = 1…𝑟 

           𝒙 ∈ 𝑆 (36) 

 

2.3.1.2 Global and local optimality 

 

In practice, many optimization problems are numerically solved by means of iterative algorithms. 

Many of these algorithms take as an input a starting point 𝒙𝟎 and, from it, generate a sequence 

of points {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌} that yield progressively better solutions. That brings up two important 

issues: 

 It is necessary to establish a stopping criterion for the algorithm, as we cannot run an 

algorithm indefinitely. In other words, we must better specify what it means for a 

solution to be good enough. 

 Some of these algorithms cannot guarantee that the solution point is such that it solves 

problem (35), i.e., that 𝑓(𝒙) ≤ 𝑓(𝒚) for every other feasible 𝒚. Despite the fact that the 
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solution point obtained may not solve the optimization problem, it is often the case that 

it is a minimum in the sense that its value is smaller than that of any of its closest 

neighbors. 

The second issue can be addressed by introducing the concept of a local minimum (Floudas, 

2000): 

 

Definition: Let 𝒙∗ ∈ 𝐷. If there exists an 휀 > 0 such that 𝑓(𝒙∗) ≤ 𝑓(𝒙) for every 

𝒙 ∈ 𝐷 for which ‖𝒙 − 𝒙∗‖ < 휀. Then 𝒙∗ is a local minimum. (3) 

 

In order for a point to be the solution of an optimization problem it is necessary that it be feasible 

and that no other feasible point evaluate to a smaller value than it. Notice that it is in general 

not true that a local minimum is also the solution to the problem, but it is true that the solution 

is a local minimum. In order to contrast the idea of local minima with the solution to the problem, 

we shall refer to the latter as the global minimum: 

Definition: Let 𝒙∗ ∈ 𝐷. If 𝑓(𝒙∗) ≤ 𝑓(𝒚) for every other 𝒚 ∈ 𝐷, then 𝒙∗ is a global 

minimum. (4) 

 

Figure 1 depicts the graph of a function displaying one local minimum (𝒙𝟏) and one global 

minimum (𝒙𝟐). 
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Figure 1- Function exhibiting one global minimum (x2) and one local minimum (x1). 

 

The first issue brings forth the definition of ε–optimality (Floudas, 2000): 

Definition: Let 𝒙∗ ∈ 𝐷  and let 휀 ≥ 0 be a predetermined tolerance. If 𝑓(𝒙∗) ≤

𝑓(𝒙) + 휀 for every 𝒙 ∈ 𝐷, then 𝒙∗ is an ε –global minimum. (5) 

 

2.3.1.3 Categories of optimization problems 

 

In the general definition of an optimization problem, no restrictions were made with respect to 

the cost function and the constraint functions. It is extremely difficult to devise a unified 

approach capable of solving the problem for every possible function and, for that reason, it is 

customary to divide the optimization problem into different categories. It turns out that it is 

possible to deterministically solve problems pertaining to some of these classes very quickly and 

accurately. Even though it might seem that, by doing so, we are restricting ourselves to only 

being able to solve a relatively small set of problems, it turns out, as will be seen later, that these 

easier problems are the building blocks for algorithms meant to solve more generic problems. 

Some of the most common categories of optimization problem are briefly explained next. 
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2.3.1.3.1 Least-squares 

 

We say that an optimization problem is a least-squares problem if it is of the form: 

 

 min    ‖𝐴𝒙 − 𝒃‖ (37) 

   

where 𝐴  is an mxn matrix – 𝐴 ∈ ℝ𝑚𝑥𝑛  – and 𝒙  and 𝒃  are mx1 vectors – 𝒙, 𝒃 ∈ ℝ𝑛 . It is 

essentially an unconstrained optimization problem, even though convex constraints can be 

easily added – see the section on convex optimization. 

Least squares problems are ubiquitous in science and engineering. They arise in applications 

such as polynomial fitting, optimal control and maximum-likelihood estimation (Boyd & 

Vandenberghe, 2004). 

The solution to a least-squares problem can be found analytically (Boyd & Vandenberghe, 2004): 

 

 𝒙∗ = (𝐴𝑇𝐴)−1𝐴𝑇𝒃 (38) 

 

The above formula, however, serves mostly to illustrate the relative ease of solving this type of 

problem. In practice, it is very costly to perform matrix inversions and multiplications and, for 

that reason, it is preferred to solve the linear system  𝐴𝑇𝐴𝒙∗ = 𝐴𝑇𝒃  for 𝒙∗. 

 

2.3.1.3.2 Linear programming 

 

Linear programs (LP) are optimization problems whose cost functions and constraints are all 

affine. They can all be expressed by the general formula: 

 

 min    𝒄𝑻 𝒙 

𝑠. 𝑡. 

           𝐴𝒙 = 0, 

          𝐵𝒙 ≤ 0 (39) 
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In the above problem 𝒙  and 𝒄  are ℝ𝑛  vectors and 𝐴  and 𝐵  are mxn and oxn matrices, 

respectively. It can be shown that all linear problems can be expressed in a simpler standard 

form (Luenberger & Ye, 2010): 

 

 min    𝒄𝑻 𝒙 

𝑠. 𝑡. 

          𝐻𝒙 = 0, 

        𝒙 ≥ 0 (40) 

   

 

In the latter formulation, inequality constraints are introduced by means of slack variables. For 

example, if we wanted to incorporate the constraint 3𝑥1 + 𝑥2 ≤ 0, one way might be to create 

a slack variable 𝑠1 (which should always be positive) and add the equality constraint 3𝑥1 + 𝑥2 +

𝑠1 = 0. If a variable, say 𝑥1, is meant to be unbounded, and not merely positive, we can either 

eliminate it by back substitution or replace it by the difference of two new positive variables, for 

example: 𝑥1 = 𝑦1 − 𝑦2 (Luenberger & Ye, 2010). 

There exist many algorithms that solve LP’s. The most popular algorithm is the Simplex method, 

created by Dantzig. In practice, this algorithm works very well and has the nice feature that the 

first part of its code – which is called Phase I – can be used to solve the feasibility problem. One 

major drawback, however, is that this algorithm is exponential on the number of variables in the 

worst-case scenario. Other more recent algorithms are the interior-point methods, which we 

will come back to later. A thorough discussion on LP’s can be found in (Vanderbei, 2007). 

 

2.3.1.3.3 Quadratic programming 

 

Quadratic programs (QP) are optimization problems whose constraints are affine and whose 

objective function is quadratic (Boyd & Vandenberghe, 2004): 
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min    

1

2
𝒙𝑻𝑃𝒙 − 𝒒𝑻𝒙 + 𝑟 

𝑠. 𝑡. 

                𝐴𝒙 = 𝑏, 

𝐶𝒙 ≤ 𝑑 

 (41) 

   

where 𝑃 is a positive semi-definite matrix. In the special case where no constraints are present, 

it can be shown (by taking the gradient of the function and equating it to zero) that minimizing 

the QP is equivalent to solving the linear system (Boyd & Vandenberghe, 2004): 

 

 𝑃𝑥∗ = 𝑞 (42) 

   

 

Least-squares can be seen a particular case of a QP. QP’s arise in applications such as portfolio 

minimization, regression and optimal control. Aside from that, it is the basis for an extremely 

common local optimization algorithm, which is Newton’s method (Boyd & Vandenberghe, 2004); 

(Luenberger & Ye, 2010). 

 

2.3.1.3.4 Convex programming 

 

A convex optimization problem takes the form (Boyd & Vandenberghe, 2004): 

 

 min    𝑓(𝒙) 

𝑠. 𝑡. 

           𝐴𝒙 = 𝒃  

           𝑔𝑖(𝒙) ≤ 0,         𝑖 = 1… 𝑟 

           𝒙 ∈ 𝐷 

 (43) 

   

where the cost function and constraints are convex functions and 𝐷 is a convex set. A formal 

definition of convexity and some of its properties are given in the Mathematical definitions 
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section. Intuitively, convex functions are those functions that are bowl-shaped with an upwards-

facing curvature, such as an exponential or a parabola with positive second derivative. 

There are efficient algorithms designed to efficiently and deterministically solve large convex 

problems. In fact, all types of problems exposed in the last sections are also convex optimization 

problems. Many algorithms that solve general optimization problems, such as the one that is 

the focus of this work, rely on solving convex sub-problems. 

 

2.3.1.4 Deterministic and stochastic optimization 

 

Depending on nature of the algorithm that is used to solve an optimization problem, we divide 

the optimization process as being either deterministic or stochastic. We perform stochastic 

optimization when either randomness is injected (Monte Carlo) in the algorithm or when noise 

is present in the measurements provided to the algorithm (Spall, 2003). If no randomness is 

present, that is, if we can exactly predict the outcome of the algorithm from its starting state we 

are performing deterministic optimization. 

Many stochastic algorithms have the distinct advantage of making very few assumptions about 

the objective function, therefore making them applicable to a very wide range of functions. 

Deterministic algorithms may run into problems if the objective function has, for instance, 

several discontinuities or if it is non-differentiable, which may limit their applicability. Stochastic 

methods may run faster (depending on the implementation and number of variables of the 

problem) or require less computational effort than many deterministic global optimization 

algorithms. 

Stochastic algorithms, however, do have a few drawbacks. Most of them need parameters to be 

specified by the user, which means that the user must properly tune them, which may be very 

laborious and possibly problem-specific. Constraints handling can also be very troublesome with 

these algorithms. Another drawback is that these methods in general do not provide any 

analytical way to check whether the global minimum has been reached. It is often the case in 

deterministic optimization – especially in well-posed convex programs – that a certificate of 

optimality can be issued to assure that the minimum has, indeed, been found. 
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2.3.2 Duality 

 

Another concept, which is fundamental in optimization (and which will show up later in the 

bibliographic review), is that of duality. Given an optimization problem, which we may call primal 

problem, we may define a dual problem as follows. Let us consider problem (44), the primal 

problem. 

 

 min    𝑓(𝒙) 

𝑠. 𝑡. 

           ℎ𝑖(𝒙) = 0,         𝑖 = 1…𝑚 

           𝑔𝑖(𝒙) ≤ 0,         𝑖 = 1…𝑟 (44) 

 

Let us then define the Lagrangian associated to it as (Boyd & Vandenberghe, 2004): 

 

 
𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) +∑𝜆𝑖ℎ𝑖(𝑥)

𝑚

𝑖=1

+∑𝜇𝑖𝑔𝑖(𝑥)

𝑟

𝑖=1

 
(45) 

 

where the values of 𝜆𝑖 and 𝜇𝑖  are the so-called Lagrange multipliers. The dual function 𝑓𝑑𝑢𝑎𝑙 is 

then defined as: 

 

 𝑓𝑑𝑢𝑎𝑙(𝜆, 𝜇) = inf
𝑥
𝐿(𝑥, 𝜆, 𝜇) (46) 

 

This function possesses several important properties, such as (Boyd & Vandenberghe, 2004): 

1. It is always concave; 

2. It underestimates the primal function (i.e. provides lower bounds). In particular, it 

provides lower bounds for the optimum value of the primal problem. 

Now we are in position to define the dual problem: 
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 max    𝑓𝑑𝑢𝑎𝑙(𝜆, 𝜇) 

𝑠. 𝑡. 

           𝜆𝑖(𝒙) ≥ 0,         𝑖 = 1…𝑚 (47) 

   

As previously stated, the dual function provides lower bounds to the primal problem. It must 

then be the case that the solution to (47) is also a lower bound. If 𝑝∗ denotes the optimum value 

for the primal problem and 𝑑∗denotes the optimum value for the dual problem, then: 

 

 𝑑∗ ≤ 𝑝∗ 

 (48) 

 

This property is often referred to as weak duality. The difference 𝑝∗ − 𝑑∗ is the duality gap. A 

stronger and more interesting property is strong duality, which corresponds to  having zero 

duality gap. In other words, strong duality holds if 𝑑∗ = 𝑝∗. Unlike weak duality, strong duality 

does not, in general, hold. There are, however, mathematical conditions that ensure strong 

duality for a given problem (Boyd & Vandenberghe, 2004). These conditions are called constraint 

qualifications. One such example is Slater’s condition: if a problem is convex and there exists a 

strictly feasible point, then strong duality holds. By strictly feasible, we mean a feasible point 

that strictly satisfies the inequalities (𝑔𝑖(𝒙) < 0 for all 𝑖). 

 

2.3.3 Conditions for optimality 

 

We already have a definition for local and global optimality. Nevertheless, we can still obtain 

further insight into what it means to be an optimum point if we assume that the objective 

function and the constraints are differentiable. This will lead to what we call the Karush-Kuhn-

Tucker (KKT) conditions for constrained problems (Boyd & Vandenberghe, 2004). 

The KKT conditions state that if 𝑥∗ is an optimum point, then there exist constants 𝜆𝑖
∗ and 𝜇𝑖

∗ 

such that: 
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∇𝑓(𝑥∗) +∑𝜆𝑖

∗∇ℎ𝑖(𝑥
∗)

𝑚

𝑖=1

+∑𝜇∗𝑖∇𝑔𝑖(𝑥
∗)

𝑟

𝑖=1

= 0 

𝑔𝑖(𝑥
∗) ≤ 0        𝑖 = 1…𝑟 

ℎ𝑖(𝑥
∗) = 0        𝑖 = 1…𝑚 

𝜇𝑖
∗ ≥ 0                𝑖 = 1…𝑟 

𝜇𝑖
∗𝑔𝑖(𝑥

∗) = 0    𝑖 = 1…𝑟 (49) 

 

If the problem is convex, then the KKT conditions are sufficient to guarantee  that the points 𝑥∗ 

and (𝜆𝑖
∗, 𝜇𝑖

∗)  are, respectively, primal and dual optimal with zero duality gap (Boyd & 

Vandenberghe, 2004). 

 

2.3.4 Interior point methods for constrained optimization 

 

Interior point methods (IPM) are a class of iterative algorithms for solving constrained 

optimization problems (Boyd & Vandenberghe, 2004). They rely on solving a sequence of 

approximate problems such that the solutions to these problems converge to the one 

corresponding to the original problem. 

Interior point methods make use of the so-called barrier functions, among which is the 

logarithmic barrier function. Logarithmic barrier functions act upon inequality constraints in 

such a way that the closer inequalities are of being violated, the greater the value returned by 

the barrier function. Mathematically, if a constrained optimization problem is of the form: 

 

 min    𝑓(𝒙) 

𝑠. 𝑡. 

           𝐴𝒙 = 𝒃,          

           𝑔𝑖(𝒙) ≤ 0,         𝑖 = 1… 𝑟 (50) 

 

We may approximate it by an equality constrained optimization problem of the form (Boyd & 

Vandenberghe, 2004): 
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min    𝑓(𝒙) +∑ −(

1

𝑡
) ln[−𝑔𝑖(𝒙)]

𝑟

𝑖=1
 

𝑠. 𝑡. 

           𝐴𝒙 = 𝒃 (51) 

 

The logarithmic barrier function is the function represented by the summation. As the 

parameter 𝑡 grows larger, the better the original problem will be approximated by Problem (51). 

The above optimization problem is often written as (Boyd & Vandenberghe, 2004): 

 

 𝑚𝑖𝑛    𝑡𝑓(𝒙) + 𝜙(𝒙)  

𝑠. 𝑡. 

           𝐴𝒙 = 𝒃 (52) 

 

Where  

 

 
𝜙(𝒙) = −∑ ln[−𝑔𝑖(𝒙)]

𝑟

𝑖=1
 

(53) 

 

The IPM initially takes a strictly feasible point 𝒙0, a positive scalar 𝑡 = 𝑡0 > 0, another scalar 

𝛽 > 1  and a prespecified tolerance 𝜖 . At each iteration, Problem (52) is solved and the 

parameter 𝑡 is updated to 𝛽𝑡. The process is repeated until 
𝑟

𝑡
< 𝜖  (Boyd & Vandenberghe, 2004). 

There exist several iterative algorithms designed to solve constrained optimization problems 

(Luenberger & Ye, 2010) such as those subproblems in the IPM. Matlab does so by attempting 

to solve the KKT system of equations by either Newton’s method or through a conjugate 

gradient method. Details of its implementation can be found in (Mathworks, 2016). 

 

2.4 INTERVAL ANALYSIS 

 

In order to obtain rigorous upper and lower bounds, one can resort to interval arithmetics, a 

branch of the field known as interval analysis (Moore, et al., 2009). This field of knowledge, 
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among other things, seeks to extend basic operations done on real numbers to the set of 

intervals. The basic operations of addition, subtraction, multiplication and division can be so 

extended as follows: 

 

 [𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] 

 

[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑐, 𝑏 − 𝑑] 

 

[𝑎, 𝑏] × [𝑐, 𝑑] = [min(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑) ,max(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)] 

 

[𝑎, 𝑏]/[𝑐, 𝑑] = [min(
𝑎

𝑐
,
𝑎

𝑑
,
𝑏

𝑐
,
𝑏

𝑑
) ,max (

𝑎

𝑐
,
𝑎

𝑑
,
𝑏

𝑐
,
𝑏

𝑑
)] (54) 

 

It is possible to extend real monotonic functions to the intervals set (Moore, et al., 2009): 

 

 𝑓([𝑎, 𝑏]) = [𝑓(𝑎), 𝑓(𝑏)] if 𝑓 is monotonically increasing

𝑓([𝑎, 𝑏]) = [𝑓(𝑏), 𝑓(𝑎)] if 𝑓 is monotonically decreasing
 

 

 (55) 

 

In particular: 

 

 exp([𝑎, 𝑏]) = [exp(𝑎), exp(𝑏)] 

 

ln([𝑎, 𝑏]) = [ln(𝑎), ln(𝑏)] (56) 

 

Integer, positive powers are also simple: 

 

 [𝑎, 𝑏]𝑟 = [𝑎𝑟 , 𝑏𝑟] if 𝑟 is odd 

 (57) 
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[𝑎, 𝑏]𝑟 = {

[𝑎𝑟, 𝑏𝑟] 𝑎, 𝑏 ≥ 0
[𝑏𝑟, 𝑎𝑟] 𝑎, 𝑏, < 0

[0,max(𝑎𝑟, 𝑏𝑟)] otherwise
if 𝑟 is even 
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3 BIBLIOGRAPHIC REVIEW 

 

Substantial effort has been made towards finding efficient and reliable techniques for solving 

the phase and chemical equilibrium problem by means of Gibbs energy minimization (Zhang, et 

al., 2011). However diverse the proposed methodologies may be, it is possible to distinguish 

common traits among them, which allows us to arrange them into broad categories. We attempt 

to do so in the following sections. 

 

3.1 GRID-BASED METHODS 

 

By grid-based methods, we are referring to methodologies that involve discretizing the cost 

function’s domain and evaluating it at these grid points. This is strongly related to the idea of 

finding a function’s convex hull and then optimizing it (which should be a simpler optimization 

problem, as the convex hull of any function is, by definition, convex) (Boyd & Vandenberghe, 

2004). 

(Greiner, 1988) observed that the chemical equilibrium problem is convex provided that all 

phases are ideal, that it, that the activity coefficients can be taken as 1. The problem is 

formulated in a similar way to that presented in the section Chemical and phase equilibria. The 

author also extends the discussion to the case where the free-energy function is non-convex (as 

it is in general the case when activity coefficients cannot be neglected). It is shown that the 

chemical equilibrium problem can be restated in terms of the free-energy convex hull as follows: 

 

 min    𝑁 conv[𝐺(𝒙)] 

𝑠. 𝑡. 

           𝑁𝐻𝒙 = 𝒛 

  𝐱 ≥ 0 

 (58) 

   

Here N denotes the total number of moles of all components in a system and x is a vector of 

global molar fractions. The function conv[𝐺(𝒙)] denotes the convex hull of 𝐺(𝒙). The author 
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does not mention in this work any specific convex programming algorithm or any method for 

efficiently obtaining the convex hull (Greiner, 1988). 

A more recent and practical work, written by  Ryll and collaborators (Ryll, et al., 2012) attempts 

to determine fluid phase diagrams through minimizing the free-energy function’s convex hull. 

They refer to this method as the convex envelope method (CEM). The authors begin by 

introducing a modified molar Gibbs energy of mixture, which is intended to reduce the 

computational effort: 

 

∆𝑔𝑚𝑖𝑥 = 𝑔 −∑𝑥𝑘𝑔𝑘
𝑝𝑢𝑟𝑒

𝑁𝐶

𝑘=1

 

 (59) 

   

  Where g is the molar Gibbs energy, 𝑔𝑘
𝑝𝑢𝑟𝑒

 is the Gibbs energy of the k-th component in pure 

form and NC is the number of components. The function’s domain is then discretized (in this 

paper, all points were evenly spaced) as finely as necessary and the function is evaluated at the 

grid points. For constructing the convex hull of the points so obtained, Matlab’s implementation 

of the very popular Quickhull algorithm was used (Barber, et al., 1996). The authors successfully 

managed to determine phase diagrams for ternary and quaternary systems represented by the 

UNIQUAC model. 

A somewhat hybrid approach, combining convex hull calculations and the Newton-Raphson 

local optimization method was employed by Perevoshchikova and co-workers (Perevoshchikova, 

et al., 2012). In their work, the authors attempt to design a method for calculating the 

compositions of two-phase multicomponent alloys. More specifically, this paper deals with the 

austenite-ferrite transformation in Fe-C-Cr alloys. They point out that the Newton-Raphson (NR) 

method, despite being frequently used in commercial software and despite having good 

numerical properties such as quadratic convergence ratio, is very much dependent on the 

quality of the initial estimate for the optimum point. In fact, it may converge to a non-global 

minimum which is far from the actual solution. It is proposed that  the convex hull of the free-

energy be used as a way of obtaining a higher quality initial estimate. Once obtained, this 

estimate can be used as an input to the NR method and it becomes possible to benefit from its 

suitable numerical properties. The authors also claim that, despite having been designed to 

correctly calculate phase diagrams for two-phase alloys, their method appears to be robust 

enough to handle more complex systems (Perevoshchikova, et al., 2012). 
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The variables chosen for discretization were the mole fractions. The grid was comprised of a 

total of 𝛽𝑁𝑑 nodes, where 𝛽 ≤ 1, 𝑑 is the number of independent species and 𝑁 is the number 

of nodes along the axis of a single species. The authors also decided to only investigate part of 

the function domain, namely, the region where the carbon concentration was such that 

0 ≤ 𝑥𝐶 ≤ 0.5, as they claim that equilibria for higher values of 𝑥𝐶  are rarely observed. They also 

chose the grid to be uneven: it was finer in the Fe-rich region than in the rest of the domain. 

More precisely, the grid was defined as follows: 

 
𝑥𝐶 = (

1

𝑁 − 1
)
2

      𝑖 ∈ [0, ⌊
𝑁 − 1

√2
⌋] 

𝑥𝐶 =
1

𝑁 − 1
         𝑖 ∈ [0, 𝑁 − 1] 

 (60) 

   

Once the grid has been created, nodes belonging to non-convex regions are detected by 

computing a function referred to as the stability function (closely related to the Hessian of the 

free-energy function), denoted by 𝛹. 

 
𝛹 =∏𝑥𝑖 det [

𝜕2

𝜕𝑥𝑗𝜕𝑥𝑘
(
𝐺

𝑅𝑇
)]

𝑖>1

 

 (61) 

   

The nodes lying in non-convex regions were then used to construct the convex hull of those 

same regions. The algorithm chosen for that was a modified version of the Quickhull algorithm. 

From then on, the convex hull was refined, tie-lines were drawn and phase diagrams were 

successfully constructed. One of the so constructed phase diagrams is shown in Figure 2. This 

diagram depicts the phase diagram for an alloy composed of Fe-C-Cr (0.92 mol% C and 2.66 mol% 

Cr) at 800 °C. The regions corresponding to different phases are separated by the bold curves. 
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Figure 2 - Calculated phase diagram for a Fe-C-Cr system after tie-line search and refinement (Perevoshchikova, et al., 

2012). 

 

It must be noted that one of the major drawbacks of grid-based methods is the fact that he 

number of grid points to be evaluated (and possibly convexified) grows exponentially with the 

number of independent components, which may lead to very high running times for relatively 

complex systems. Another issue is the fact that it is necessary to choose a grid discretization that 

is fine enough to accurately describe the essential topological features of the Gibbs free-energy 

function, but also coarse enough to allow for as little computational effort as possible. It may be 

troublesome to find the ideal number of grid points if one does not possess any a priori 

knowledge of the specific problem. 

 

3.2 LINEAR PROGRAMMING-BASED METHODS 

 

Attempts have been made to somehow fit the equilibrium problem into the LP framework. That 

is only natural, as there are fast and reliable algorithms for solving this type of optimization 

problem. Many authors have contributed for the development of the LP-based methods applied 
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to Gibbs energy minimization. Some of the works that helped lay the foundations for this field 

are briefly mentioned here. Bullard and Biegler (1991) devised a method for solving systems of 

equations by means of converting them into optimization problems and further solving them by 

LP techniques. (Gopal & Biegler, 1997) later applied their method to solve simulation problems, 

such as the simulation of a flash distillation unit. 

An even earlier attempt that is worth mentioning is the one made by (Greiner, 1988), which sets 

off to solve multiphase chemical equilibria through generalized linear programming. The author 

claims that there are several advantages to this approach, among which: a) it applies to ideal 

and non-ideal phases alike; b) global convergence can be proved; c) when used in conjunction 

with a Newton-based local optimization method the overall algorithm’s accuracy and rate of 

convergence can be boosted. The method is outlined next. We must first define what is a 

generalized linear program. Let  𝐺𝑗    𝑗 = 1,… , 𝑝 denote convex subsets of ℝ𝑚+1. A point 𝒈𝑗 ∈

𝐺𝑗  can be represented as an ordered pair (𝑐𝑗 , 𝒑𝑗) ∈ ℝ × ℝ𝑚 . A generalized LP is an 

optimization problem that can be written as: 

 

 
min    ∑𝑛𝑗𝑐

𝑗

𝑝

𝑗=1

 

𝑠. 𝑡. 

           ∑𝑛𝑗𝒑
𝑗 = 𝒃

𝑝

𝑗=1

, 

        𝑛𝑗 ≥ 0 

(𝑐𝑗 , 𝒑𝑗) ∈ 𝐺𝑗 (62) 

   

 

In order to ensure that a solution exists, it is also asked that 𝑛𝑗 ≤ 𝐶, where 𝐶 is a constant. It is 

possible to show that the equilibrium problem in its most general form can be thought of as a 

generalized linear program, provided that the convex hull of the Gibbs energy is used (Greiner, 

1988). We now return to the problem of numerically computing convex hulls, which can be 

solved by methods such as those previously described. In order for us to see that the problems 

are indeed equivalent, we notice that the equilibrium problem for a system with p phases is 

determined by the molar free energies of each of its constituent phases by and stoichiometric 

coefficients matrices for each phase, here denoted by 𝑹𝑗: 
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 𝐺𝑗: 𝑄𝑗 →  ℝ 

   𝑹𝑗: 𝑄𝑗 → ℝ𝑚 (63) 

 

By 𝑄𝑗 we denote a convex and bounded subset of ℝ𝑠 (in this case, the bounded set of possible 

mole numbers), and by 𝐺𝑗 we denote the Gibbs energy corresponding to the j-th phase. The 

problem consists of: 

 

 
min    ∑𝑁𝑗conv[𝐺(𝒒𝑗)]

𝑝

𝑗=1

 

𝑠. 𝑡. 

           ∑𝑁𝑗𝑹𝑗𝒒𝑗 = 𝒃

𝑝

𝑗=1

, 

        𝑁𝑗 ≥ 0 (64) 

   

 

By comparing equations (62) and (64), it is possible to see that the Gibbs minimization problem 

can be expressed as a generalized linear program. This may be done by setting  𝒑 = 𝑹𝑗𝒒𝑗 and 

𝑐 ≥ conv[𝐺(𝒒𝑗)]. The problem domain, then becomes restricted to the following convex set 

(Greiner, 1988): 

 

 𝐺𝑗 = {(𝑐, 𝒑) ∈ ℝ𝑠(𝑗)+1| ∃ 𝒒𝑗 ∈ 𝑸𝑗  with 𝑐 ≥ conv[𝐺(𝒒𝑗)], 𝒑 = 𝑹𝑗𝒒𝑗} (65) 

   

 

This correspondence is explained in much detail in the original paper. Upon restating the 

problem with the aid of the aforementioned convex sets, an algorithm is presented and a proof 

of its convergence and correctness is given (Greiner, 1988). This algorithm is guaranteed to 

terminate in a finite number of steps and to achieve 𝜖-global optimality. This work is eminently 

theoretic and, as such, does not provide any results concerning its actual implementation 

(Greiner, 1988). 
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A more recent attempt has been made by Rossi and collaborators (Rossi, et al., 2009). In this 

approach, the mole fractions of each component are discretized over a uniform grid. The 

number of dimensions of the grid, for that reason, will be as large as the number of components 

under consideration. A very important point is that the grid is constructed in such a way that 

every grid point satisfies the property that the sum of mole fractions over all components equals 

1. Each grid point, therefore, represents a potential phase in equilibrium. It is thus expected that, 

as the grid is set to be finer, the number of potential phases grow accordingly. The authors 

exemplify their grid-generating procedure for a hypothetical 3-components system. If we let 𝑘 

represent the 𝑘-th phase and 𝑧𝑖
𝑘 the molar fraction of component 𝑖 in phase 𝑘, a viable grid is: 

 

 𝑧1
𝑘 = 1 − 𝛿(𝑝 − 1) 

𝑧2
𝑘 = 𝛿 [

𝑝(𝑝 + 1)

2
− 𝑘] 

𝑧3
𝑘 = 𝛿 [𝑘 − 1 −

𝑝(𝑝 − 1)

2
] 

𝛿 =
1

𝑁
 

𝑝 = ⌈
√8𝑘 + 1 − 1

2
⌉ 

(66) 

   

It can be shown that for every phase the equality 𝑧1
𝑘 + 𝑧2

𝑘 + 𝑧3
𝑘 = 1 holds true. Once the grid is 

properly defined, all quantities that are dependent on composition, including the chemical 

potential, become determined. The problem is therefore reduced to minimizing the total Gibbs 

energy provided that the components are distributed somehow among the potential phases. 

Since the nonlinearity of the original problem resided on the fact that that the chemical potential 

function is nonlinear – and as it is now determined – we are left with an LP. Its constraints are: 

 

 𝑛𝑖
𝑘 = 𝑧𝑖

𝑘∑𝑛𝑗
𝑘

𝑗∈𝐶

 
(67) 

   

 

The authors have applied their methodology to binary and ternary systems. Their results were 

compared both to experimental data and to computational results found in the literature. Good 

agreement was found (Rossi, et al., 2009). Figure 3 shows the equilibrium compositions found 
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through this methodology for a ternary system of water, ethanol and hexane at 1 atm. Two 

activity models were considered, namely, UNIQUAC and NRTL. 

 

 

Figure 3 - Experimental validation of the results obtained by means of the methodology proposed by Rossi and 

collaborators (Rossi, et al., 2009). 

 

The authors warn that the quality of the global minimum is very much dependent on how finely 

the grid is discretized. In addition, results indicate that this methodology may lead to 

considerably high computational running times. 

 

3.3 INTERIOR POINT METHODS 

 

These methods make use of both the primal and of the dual formulations of the optimization 

problem to solve it. A paper which was of seminal importance is the one by (Karpov, et al., 1997). 

This paper supports the use of Interior Points Methods (IPMs) in Gibbs energy minimization 

problem and introduces a set-theory notation for the components of the system of interest that 

would be adopted in more recent articles. Their work is focused in geochemical modeling, for 
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which reason it pays special attention to electrolytic solutions.  We now turn to some of the 

major insights provided by their methodology. 

The molar Gibbs energy of the system is written as (Karpov, et al., 1997): 

 

 𝐺(𝒙) =∑𝑐𝑗𝑥𝑗
𝑗∈𝐿

+ ∑ 𝑥𝑗 ln
𝑥𝑗

𝑋𝛼
𝑗∈𝑙𝛼

− ∑ 𝑥𝑗 ln
𝑥𝑗𝑤

𝑋𝛼
𝑗∈𝑆𝑤

0

 

 

𝑋𝛼 = ∑ 𝑥𝑗
𝑗∈𝐿𝛼

 
(68) 

   

 

Where 𝐿 designates the set of components chosen to be independent, 𝑙𝛼 is the set of indices of 

dependent components in phase 𝛼 and 𝑆𝑤
0 = 𝑆𝑤 − {𝑗𝑤}, where 𝑆𝑤  is the set of indices for a 

phase in which the standard states of its components follow an asymmetric reference scale 

(aqueous electrolytes) and 𝑗𝑤 is the index of water (Karpov, et al., 1997). The values taken by 𝑐𝑗 

are component-dependent: 

 

 

𝑐𝑗 =

{
  
 

  
 
𝐺𝑖
0

𝑅𝑇
+ ln 𝛾𝑖                           𝑗 ∈ 𝐿 − (𝑆𝑔 ∪ 𝑆𝑤

0)

𝐺𝑖
0

𝑅𝑇
+ ln 𝛾𝑖 + ln𝑃              𝑗 ∈ 𝑆𝑔

𝐺𝑖
0

𝑅𝑇
+ ln 𝛾𝑖 + ln 55.51      𝑗 ∈ 𝑆𝑤

0

 

(69) 

   

 

Here 𝑆𝑔  denotes the set of gaseous species. The mass balance and positivity constraints are 

written in the usual way, only taking the molar fractions as variables instead of mole numbers. 

The optimization problem may therefore be expressed as: 

 

 min    𝐺(𝒙) 

𝑠. 𝑡. 

           𝑨𝒙 = 𝒃, (70) 
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       𝒙 ≥ 0 

It follows from the previous definitions that (Karpov, et al., 1997): 

 

 

𝑣𝑗 =
𝜕𝐺

𝜕𝑥𝑗
=

{
  
 

  
 𝑐𝑗 + ln

𝑥𝑗

𝑋𝛼
                                            𝑗 ∈ 𝐿 − 𝑆𝑤

𝑐𝑗 + ln
𝑥𝑗

𝑋𝑤
− ln

𝑥𝑗𝑤
𝑋𝑤

−
𝑥𝑗𝑤
𝑋𝑤

+ 1         𝑗 ∈ 𝑆𝑤
0

𝑐𝑗𝑤 + ln
𝑥𝑗𝑤
𝑋𝑤

−
𝑋𝑤
𝑥𝑗𝑤

−
𝑥𝑗𝑤
𝑋𝑤

+ 2           𝑗 = 𝑗𝑤

 

 

𝑋𝑤 = ∑ 𝑥𝑗
𝑗∈𝑆𝑤

 
(71) 

   

 

Here, 𝑣𝑗 represents the partial derivatives of 𝐺 with respect to 𝑥𝑗, which is, by definition, the 

normalized chemical potential of species j (Karpov, et al., 1997). Now that it is possible to 

evaluate 𝑣𝑗, the KKT conditions for the problem become (Karpov, et al., 1997): 

 

 𝑨𝒙∗ = 𝒃 

(𝒙∗)𝑻(𝒗 − 𝑨𝑻𝒖) = 𝟎 

𝒗 − 𝑨𝑻𝒖 ≥ 𝟎 

𝒙∗ ≥ 𝟎 (72) 

   

 

The KKT conditions are key in this methodology. By checking whether all KKT conditions are 

satisfied for all potential components and phases in the system, it is possible to rule out local 

minima, as this verification is bound to fail at them (Karpov, et al., 1997). A slight modification 

to this formulation – one that includes upper bounds for the molar fractions – is also discussed. 

The only major change that ensues is the fact that a few extra KKT inequalities arise. 

The actual IPM algorithm used is an ellipsoid method, whose implementation is shown in 

Appendix A. 

(Kulik, 2012) have built upon the methodology just described. A complete geochemical modeling 

package  – GEM-Selektor – was developed by them in C/C++ and its numerical kernel makes use 
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of essentially the same procedure, with a few modifications. Their package has a very broad 

scope, being able to deal with to deal not only with chemical equilibria in its purest sense, but 

also with transportation problems through the finite-elements numerical method. Moreover, 

the authors integrate both these approaches in a unified framework. Figure 4, extracted from 

their article, schematically depicts the models used and their interactions (Kulik, 2012). 

 

 

Figure 4 - Interactions between the models of the GEM-Selektor package (Kulik, 2012). 

 

With respect to the numerical kernel concerning Gibbs energy minimization, their approach 

differs in a few ways from that of (Karpov, et al., 1997). The choice variables here are the number 

of moles of each component, in contrast with the latter approach, which made use of their molar 

fractions. In case no initial estimates for the number of moles of each component in equilibrium 

is provided, a feasible initial approximation (FIA) is calculated by linear programming. In this case, 

the following LP is solved via the simplex method (Vanderbei, 2007): 

 

 min    ∑ 𝑛𝑗(𝑠)
(𝑦)

𝑗∈𝐿𝑠

𝑐𝑗 

𝑠. 𝑡. 

           𝑨𝒏(𝒔)
(𝒚)
= 𝒏(𝒃), 

             𝒏(𝒔)
(𝒚)
≥ 𝟎 (73) 
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Where, adhering to the article’s notation, 𝒏(𝒔)
(𝒚)

 is the initial approximation of mole numbers 

given by the simplex solution of the LP and 𝒏(𝒃) is the input vector of total amounts of 

independent components. The values of 𝑐𝑗 are calculated exactly as before in Equation (69). 

This initial guess can be further improved through a mass balance refinement (MBR). This 

procedure is briefly described in Appendix A. 

 

3.4 GLOBAL OPTIMIZATION METHODS 

 

We now turn our attention to techniques that attempt to rigorously either ensure that the global 

minimum will be reached within a finite number of iteration (as is the case with the deterministic 

methods) or to ensure that it is expected, in a probabilistic sense, that the algorithm will 

eventually converge to the global minimum given enough iterations (which is the case for 

stochastic methods). 

 

3.4.1 Stochastic approaches 

 

A few studies have been conducted regarding the application of stochastic methods for solving 

reactive phase equilibrium problems (Bonilla-Petricolet, et al., 2011). Bonilla-Petricolet and 

collaborators (2011) studied the applicability of genetic algorithms (GA) and differential 

evolution with tabu list (DETL) to solving reactive equilibrium problems in transformed 

thermodynamic coordinates, exactly as described in the section Reduction of dimensionality. 

They ran the tests in 8 benchmark problems, which covered 4 different activity models, 

namely, Margules, NRTL, Wilson and UNIQUAC . They also compared their results to those 

obtained with simulated annealing (SA). They found that DETL displays better performance for 

this kind of problem. 

An earlier approach by Nichita and collaborators (2002) used the so-called Tunneling method 

to perform chemical equilibrium calculations for one, two and three-phase systems. The 

algorithm requires an initial estimate 𝒙0 of the equilibrium composition and consists of two 
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repeating steps (Nichita, et al., 2002). In the first step, a local constrained optimization solver is 

used to find a local solution. In the second step, which is called the Tunneling step, another 

point (located in another valley) is picked at random according to a certain probability 

distribution. The function describing this distribution is the Tunneling function. The authors 

have found this method is capable of solving problems with several local minima and claim 

that their method has shown to be faster than other global optimization methods found In the 

literature (Nichita, et al., 2002). 

More recently, Bhargava and collaborators (2013) applied the relatively new Cuckoo Search 

(CS) algorithm, which is a population-based method for solving phase equilibria (Bhargava, et 

al., 2013). They ran the algorithm in 8 different benchmark equilibrium problems and 

compared their results with other stochastic methods, namely, Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES), the Firefly Algorithm and Integrated Differential Evolution. The 

authors claim that CS may be among the best stochastic methods for equilibrium calculations 

(Bhargava, et al., 2013). 

 

3.4.2 Deterministic approaches 

 

The deterministic approaches to solving the equilibrium problem are branch-and-bound 

algorithms. Branch-and-bound algorithms rely on systematically subdividing and scanning the 

cost function’s domain until it is mathematically guaranteed that the global minimum has been 

found. One such algorithm is the so-called BB, which makes very few assumptions on the cost 

function and its constraints; namely, it demands that all the functions involved be twice-

differentiable. This allows for a very broad array of activity coefficients models to be successfully 

evaluated. However, as very few assumptions on the function are made, in general, a big part of 

the optimization domain has to be examined before one can assure that the global optimum has 

been found. Another approach, the so-called Global Optimization (GOP) algorithm, is restricted 

to functions that are biconvex (to be explained later), which therefore limits its application. An 

earlier approach, which is also worth mentioning, is the approach by McDonald and Floudas 

(1995) of writing the chemical and phase equilibrium problem for the Wilson, ASOG and UNIFAC 

activity models as a difference of convex functions (McDonald & Floudas, 1995). 
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3.4.2.1 GOP 

 

The so-called Global Optimization (GOP) algorithm for biconvex functions has been used by 

(McDonald & Floudas, 1995) for solving Gibbs energy minimization that employed the NRTL 

equation. The GOP is suitable for problems that can be written as: 

 

 

 min
𝒙,𝒚

𝑓(𝒙, 𝒚) 

𝑠. 𝑡. 

           𝒉(𝒙, 𝒚) = 𝟎, 

          𝒈(𝒙, 𝒚) ≤ 𝟎, 

𝒙 ∈ 𝑋 

𝒚 ∈ 𝑌 (74) 

   

Where: 

I. 𝑓 and 𝑔 are biconvex 

II. ℎ is affine in 𝒙 for every fixed 𝒚 and vice-versa 

III. 𝑋 and 𝑌 are nonempty, compact, convex sets such that a constraint qualification such 

as Slater’s (Boyd & Vandenberghe, 2004) is satisfied. Qualification constraints have been 

briefly discussed in the Foundations part of this work.  

For a function to be biconvex, it means that its set of input variables can be partitioned in two 

subsets 𝒙 and 𝒚 such that for a fixed 𝒙0, 𝑓(𝒙0, 𝒚) is convex in 𝒚 and for a fixed 𝒚0, 𝑓(𝒙, 𝒚0) is 

convex in 𝒙. If our problem is posed correctly, all inequality constraints will be of the form 𝒙𝐿 ≤

𝑥 ≤ 𝒙𝑈, i.e. box constraints, which constitutes a convex and compact set (provided that  

𝒙𝐿 ≠ 𝒙𝑈 ). The equality constraints (mass balances) are linear equations, hence, the set of 

equality constraints is an affine set.  

If the activity coefficients model chosen is the NRTL model, it can be shown that the Gibbs energy 

minimization problem is biconvex. This results follows from the remarkable property of the NRTL 

model that is detailed in Appendix B, along with a deeper discussion of the algorithm.  
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The authors have examined seven phase and chemical equilibria systems and compared their 

results with other results reported in the literature, having found satisfactory agreement. An 

interesting point made by the authors can be seen in Figure 5. 

 

 

Figure 5- Gibbs energy for a system composed of n-Butyl-Acetate and water: local and global minima (Floudas, 

2000) 

. 

It displays a surface plot of the Gibbs energy (all points on that surface are such that the mass 

balance constraints are satisfied) where it is possible to see a local minimum, whose value is 

quite close to that of the global minimum – a potential trap for local solvers. Also notice that the 

molar composition for these minima are quite different. This system, composed of n-Butyl-

Acetate and water, despite having this somewhat undesirable numerical property is not 

particularly uncommon, which shows that even relatively simple systems may present serious 

difficulties to local solvers. 

Even though the authors only apply the GOP algorithm to the NRTL model, it may be possible to 

extend its use to other models. 
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3.4.2.2 αBB (α-Branch-and-Bound) 

 

The algorithm with which we will mostly be concerned in this work is the αBB algorithm, 

originally proposed by (Androulakis & Maranas, 1995). The αBB is a branch and bound algorithm 

meant for constrained global optimization of twice-differentiable functions. One of its merits is 

the generality of the problems for which it is suitable, namely, problems whose cost function 

and constraints are twice-differentiable. The phase and chemical equilibrium problem happens 

to be such a problem, provided that the activity coefficients model is also twice-differentiable, 

which is generally the case. 

The algorithm solves the original problem by solving a series of convex underestimating 

functions all over the feasible region. As the underestimators are convex, they can be solved by 

means of any constrained-optimization local solver. At the same time, the original (primal) 

problem is solved locally over the feasible domain. Each of these solutions provides an upper 

bound for the global minimum. These lower and upper bounds are then used to gauge the 

quality of the minimum found, as the difference between the upper and lower bound at the 

global minimum must be zero. It can be shown that 𝜖-optimality is guaranteed for this algorithm 

(Floudas, 2000). 

In mathematical terms, the αBB algorithm is meant to solve optimization problems of the form: 

 

 min
𝑥
𝑓(𝑥) 

𝑠. 𝑡. 

      𝒈(𝒙) ≤ 𝟎 

      𝒉(𝒙) = 𝟎 

       𝑥 ∈ 𝑋 ⊆ ℝ𝑛 (75) 

   

 

Where 𝑓, 𝑔 and ℎ belong to 𝐶2 (i.e., are twice-differentiable). Notice that this algorithm accepts 

a much broader range of problems in contrast with the GOP. As the name suggests, it is a branch 

and bound algorithm, which means that during its execution there will be a branching step, at 

which the feasible domain is partitioned into two sub-problems and a bounding step, at which 

lower and upper bounds will be updated. One important aspect of the αBB is the quality of the 

underestimators used, which considerably impacts the convergence characteristics (such as the 

number of iterations required for convergence) of the problem. 
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Depending on the form of the cost function, it is possible that it can be split into terms that allow 

for rigorous, high-quality underestimators. Having that in mind that Floudas (2000) decomposes 

the cost function as a sum of simpler functions: 

 

 
𝑓(𝒙) = 𝐿𝑇(𝒙) + 𝐶𝑇(𝒙) +∑𝑏𝑖𝑥𝐵𝑖,1𝑥𝐵𝑖,2

𝑏𝑡

𝑖=1

+∑𝑡𝑖𝑥𝑇𝑖,1𝑥𝑇𝑖,2𝑥𝑇𝑖,3

𝑡𝑡

𝑖=1

+∑𝑓𝑖
𝑥𝐹𝑖,1

𝑥𝐹𝑖,2

𝑓𝑡

𝑖=1

+∑𝑓𝑡𝑖
𝑥𝐹𝑇𝑖,1𝑥𝐹𝑇𝑖,2

𝑥𝐹𝑇𝑖,3

𝑓𝑡

𝑖=1

+∑𝑈𝑇𝑖(𝑥
𝑖)

𝑢𝑡

𝑖=1

+∑𝑁𝑇𝑖(𝒙)

𝑛𝑡

𝑖=1

 
(76) 

   

 

In the above expression 𝐿𝑇(𝒙)  is the linear term, 𝐶𝑇(𝒙)  is the convex term, the sums on 

𝑥𝐵𝑖,1𝑥𝐵𝑖,2  represent the bilinear terms with coefficient 𝑏𝑖 , the sums on 𝑥𝑇𝑖,1𝑥𝑇𝑖,2𝑥𝑇𝑖,3are the 

trilinear terms with coefficient 𝑡𝑖. The remaining terms represent the fractional terms, fractional 

trilinear terms, univariate concave functions, 𝑈𝑇𝑖(𝑥
𝑖), and general nonconvex-terms, 𝑁𝑇𝑖(𝒙). 

Clearly, all non-convex terms could be embedded into the category “general non-convex terms”, 

but this decomposition allows for rigorous underestimators to be employed. As the convergence 

properties of the algorithm depend on the quality of the underestimators, the decomposition 

should be performed whenever possible. It can be shown that a valid underestimator for the 

above decomposed function is (Floudas, 2000): 

 

 

𝐿(𝒙,𝒘) = 𝐿𝑇(𝒙) + 𝐶𝑇(𝒙) +∑𝑏𝑖𝑤𝐵𝑖

𝑏𝑡

𝑖=1

+∑𝑡𝑖𝑤𝑇𝑖

𝑡𝑡

𝑖=1

+∑𝑓𝑖𝑤𝐹𝑖

𝑓𝑡

𝑖=1

+∑𝑓𝑡𝑖𝑤𝐹𝑇𝑖

𝑓𝑡

𝑖=1

+∑𝑈𝑇𝑖(𝑥
𝑖,𝐿) +

𝑈𝑇𝑖(𝑥
𝑖,𝑈) − 𝑈𝑇𝑖(𝑥

𝑖,𝐿)

𝑥𝑖,𝑈 − 𝑥𝑖,𝐿
(𝑥 − 𝑥𝑖,𝐿)

𝑢𝑡

𝑖=1

+∑[𝑁𝑇𝑖(𝒙) +∑𝛼𝑖𝑗(𝑥𝑗
𝐿 − 𝑥𝑗)(𝑥𝑗

𝑈 − 𝑥𝑗)

𝑛

𝑖=1

]

𝑛𝑡

𝑖=1

 
(77) 
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More will be said later on how to calculate the coefficients 𝛼𝑖𝑗, which give name to the method. 

The new variables, contained in the vector 𝒘 must also satisfy certain inequality constraints. 

Even though in this work we will only make use of the bilinear underestimators, all inequalities 

constraints will be presented for completeness. For a bilinear term 𝑥𝑦 with 𝑥 ∈ [𝑥𝐿 , 𝑥𝑈], 𝑦 ∈

[𝑦𝐿 , 𝑦𝑈] (Floudas, 2000): 

 

 

𝑤𝐵 = {
𝑥𝐿𝑦 + 𝑦𝐿𝑥 − 𝑥𝐿𝑦𝐿         if 𝑦 ≤ −

𝑦𝑈 − 𝑦𝐿

𝑥𝑈 − 𝑥𝐿
𝑥 +

𝑥𝑈𝑦𝑈 − 𝑥𝐿𝑦𝐿

𝑥𝑈 − 𝑥𝐿

𝑥𝑈𝑦 + 𝑦𝑈𝑥 − 𝑥𝑈𝑦𝑈       otherwise

 

(78) 

   

 

That is in fact the convex hull for a bilinear term. For a trilinear term, a valid underestimator can 

be achieved with the following eight inequalities (Floudas, 2000): 

 

 𝑤𝑇 ≥ 𝑥𝑦
𝐿𝑧𝐿 + 𝑥𝐿𝑦𝑧𝐿 + 𝑥𝐿𝑦𝐿𝑧 − 2𝑥𝐿𝑦𝐿𝑧𝐿 

𝑤𝑇 ≥ 𝑥𝑦
𝑈𝑧𝑈 + 𝑥𝑈𝑦𝑧𝐿 + 𝑥𝑈𝑦𝐿𝑧 − 𝑥𝑈𝑦𝐿𝑧𝐿 − 𝑥𝑈𝑦𝑈𝑧𝑈 

𝑤𝑇 ≥ 𝑥𝑦
𝐿𝑧𝐿 + 𝑥𝐿𝑦𝑧𝑈 + 𝑥𝐿𝑦𝑈𝑧 − 𝑥𝐿𝑦𝑈𝑧𝑈 − 𝑥𝐿𝑦𝐿𝑧𝐿 

𝑤𝑇 ≥ 𝑥𝑦
𝑈𝑧𝐿 + 𝑥𝑈𝑦𝑧𝑈 + 𝑥𝐿𝑦𝑈𝑧 − 𝑥𝐿𝑦𝑈𝑧𝐿 − 𝑥𝑈𝑦𝑈𝑧𝑈 

𝑤𝑇 ≥ 𝑥𝑦
𝐿𝑧𝑈 + 𝑥𝐿𝑦𝑧𝐿 + 𝑥𝑈𝑦𝐿𝑧 − 𝑥𝑈𝑦𝐿𝑧𝑈 − 𝑥𝐿𝑦𝐿𝑧𝐿 

𝑤𝑇 ≥ 𝑥𝑦
𝐿𝑧𝑈 + 𝑥𝐿𝑦𝑧𝑈 + 𝑥𝑈𝑦𝑈𝑧 − 𝑥𝐿𝑦𝐿𝑧𝑈 − 𝑥𝑈𝑦𝑈𝑧𝑈 

𝑤𝑇 ≥ 𝑥𝑦
𝑈𝑧𝐿 + 𝑥𝑈𝑦𝑧𝐿 + 𝑥𝐿𝑦𝐿𝑧 − 𝑥𝑈𝑦𝑈𝑧𝐿 − 𝑥𝐿𝑦𝐿𝑧𝐿 

𝑤𝑇 ≥ 𝑥𝑦
𝑈𝑧𝑈 + 𝑥𝑈𝑦𝑧𝑈 + 𝑥𝑈𝑦𝑈𝑧 − 2𝑥𝑈𝑦𝑈𝑧𝑈 

 (79) 
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For fractional terms, it suffices to introduce (Floudas, 2000): 

 

 

𝑤𝐹 ≥

{
 
 

 
 𝑥

𝐿

𝑦
+
𝑥

𝑦𝑈
−
𝑥𝐿

𝑦𝑈
               𝑥𝐿 ≥ 0

𝑥

𝑦𝑈
−
𝑥𝐿𝑦

𝑦𝐿𝑦𝑈
+
𝑥𝐿

𝑦𝐿
          𝑥𝐿 < 0

 

𝑤𝐹 ≥

{
 
 

 
 𝑥

𝑈

𝑦
+
𝑥

𝑦𝐿
−
𝑥𝑈

𝑦𝐿
               𝑥𝑈 ≥ 0

𝑥

𝑦𝐿
−
𝑥𝑈𝑦

𝑦𝐿𝑦𝑈
+
𝑥𝑈

𝑦𝑈
          𝑥𝑈 < 0

 

(80) 

 

Finally, for fractional trilinear terms (Floudas, 2000): 

 

 𝑤𝐹𝑇 ≥ 𝑥𝑦
𝐿/𝑧𝑈 + 𝑥𝐿𝑦/𝑧𝑈 + 𝑥𝐿𝑦𝐿/𝑧 − 2𝑥𝐿𝑦𝐿/𝑧𝑈 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝐿/𝑧𝑈 + 𝑥𝐿𝑦/𝑧𝐿 + 𝑥𝐿𝑦𝑈/𝑧 − 𝑥𝐿𝑦𝑈/𝑧𝐿 − 𝑥𝐿𝑦𝐿/𝑧𝑈 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝑈/𝑧𝐿 + 𝑥𝑈𝑦/𝑧𝑈 + 𝑥𝑈𝑦𝐿/𝑧 − 𝑥𝑈𝑦𝐿/𝑧𝑈 − 𝑥𝑈𝑦𝑈/𝑧𝐿 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝑈/𝑧𝑈 + 𝑥𝑈𝑦/𝑧𝐿 + 𝑥𝐿𝑦𝑈/𝑧 − 𝑥𝐿𝑦𝑈/𝑧𝑈 − 𝑥𝑈𝑦𝑈/𝑧𝐿 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝐿/𝑧𝑈 + 𝑥𝐿𝑦/𝑧𝐿 + 𝑥𝑈𝑦𝐿/𝑧 − 𝑥𝑈𝑦𝐿/𝑧𝐿 − 𝑥𝐿𝑦𝐿/𝑧𝑈 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝑈/𝑧𝑈 + 𝑥𝑈𝑦/𝑧𝐿 + 𝑥𝐿𝑦/𝑧 − 𝑥𝐿𝑦𝑈/𝑧𝑈 − 𝑥𝑈𝑦𝑈/𝑧𝐿 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝐿/𝑧𝑈 + 𝑥𝐿𝑦/𝑧𝐿 + 𝑥𝑈𝑦𝐿/𝑧 − 𝑥𝑈𝑦𝐿/𝑧𝐿 − 𝑥𝐿𝑦𝐿/𝑧𝑈 

𝑤𝐹𝑇 ≥ 𝑥𝑦
𝑈/𝑧𝐿 + 𝑥𝑈𝑦/𝑧𝐿 + 𝑥𝑈𝑦𝑈/𝑧 − 2𝑥𝑈𝑦𝑈/𝑧𝐿 (81) 

 

It remains to be seen how the coefficients 𝛼𝑖𝑗  are to be calculated. The idea is to take a value 

for 𝛼𝑖𝑗  that is high enough that the so-constructed convex underestimators are convex. First, we 

notice that the terms of the form: 

 

 
𝑁𝑇𝑖(𝒙) +∑𝛼𝑖𝑗(𝑥𝑗

𝐿 − 𝑥𝑗)(𝑥𝑗
𝑈 − 𝑥𝑗)

𝑛

𝑖=1

 
(82) 

   

 

are, indeed, valid underestimators for 𝑁𝑇𝑖(𝒙), provided that 𝛼𝑖𝑗 > 0 and that all 𝑥𝑗 lie within 

the upper and lower bounds. That is indeed the case, because if 𝑥𝑗 > 𝑥𝑗
𝐿, 𝑥𝑗 < 𝑥𝑗

𝑈 and 𝛼𝑖𝑗 > 0, 

it follows that: 
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𝛼𝑖𝑗(𝑥𝑗

𝐿 − 𝑥𝑗)(𝑥𝑗
𝑈 − 𝑥𝑗) < 0 ⟹∑𝛼𝑖𝑗(𝑥𝑗

𝐿 − 𝑥𝑗)(𝑥𝑗
𝑈 − 𝑥𝑗)

𝑛

𝑖=1

< 0

⟹ 𝑁𝑇𝑖(𝒙) +∑𝛼𝑖𝑗(𝑥𝑗
𝐿 − 𝑥𝑗)(𝑥𝑗

𝑈 − 𝑥𝑗)

𝑛

𝑖=1

< 𝑁𝑇𝑖(𝒙) 

 (83) 

 

Not only that, but it is clear that at the edges of the bounded domain, i.e., when 𝑥𝑗 = 𝑥𝑗
𝐿 or when 

𝑥𝑗 = 𝑥𝑗
𝑈, the underestimator exactly matches the original function. We now claim that there 

always exists a high enough value of 𝛼𝑖𝑗  such that the underestimator so formed is convex. A 

proof for this claim can be found in (Maranas, 1994). We now turn to the very useful property 

of convex functions that a function is convex if and only if its Hessian is positive semi-definite. If 

Equation (77) is rewritten in simpler terms (Floudas, 2000), 

 

 
𝐿(𝒙) = 𝑓(𝒙) +∑𝛼𝑖𝑗(𝑥𝑗

𝐿 − 𝑥𝑗)(𝑥𝑗
𝑈 − 𝑥𝑗)

𝑛

𝑖=1

 
(84) 

   

 

Upon differentiation: 

 

 

𝜕2𝐿(𝒙)

𝜕𝑥𝑖𝜕𝑥𝑗
=

{
 
 

 
 
𝜕2𝑓(𝒙)

𝜕𝑥𝑖𝜕𝑥𝑗
+ 2𝛼𝑖𝑗       if 𝑖 = 𝑗

𝜕2𝑓(𝒙)

𝜕𝑥𝑖𝜕𝑥𝑗
                    if 𝑖 ≠ 𝑗

 

(85) 

   

 

Therefore, the Hessian matrix of the underestimator (𝐻𝐿) coincides with the Hessian of the 

original function (𝐻𝑓) everywhere except in its diagonal entries, which are shifted by a value of 

2𝛼𝑖𝑗. A more succinct way of writing these relations is: 

 

 𝐻𝐿 = 𝐻𝑓 + 2∆ (86) 
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Where ∆ is the so-called diagonal shift matrix. It is a diagonal matrix such that ∆𝑖𝑖= 𝛼𝑖𝑖. If we 

wish to ensure that the underestimators are convex, one approach is to construct shift matrices 

in such a way that the resulting 𝐻𝐿 is positive semi-definite. There are many approaches to this 

(Floudas, 2000). In very simple cases it is actually possible to compute analytical values for the 

𝛼𝑖𝑖 , as is shown by Floudas (2000). However, for most situations, it is necessary that we 

somehow bound each entry of the Hessian and, through these bounds, construct a shift matrix 

that renders 𝐻𝐿  positive semi-definite for all possible cases. These bounds can be obtained 

through interval analysis (Moore, et al., 2009). 

It is customary to divide the shift matrices as being either uniform or non-uniform. Uniform shift 

matrices are such that all diagonal entries are equal, i.e. all the diagonal elements of 𝐻𝐿 are 

shifted by the same value in contrast with 𝐻𝑓. If that is not the case, the shift matrix is non-

uniform. Let us first consider the uniform methods and state the following theorem – adapted 

from (Floudas, 2000): 

 

Theorem: Let 𝐻𝑓(𝒙) be the Hessian matrix of a function whose second-order 

derivatives are continuous and 𝐿(𝒙) be defined as in Equation (77). 

Let [𝐻𝑓]  be a real, symmetric interval matrix such that𝐻𝑓(𝒙) ⊆

[𝐻𝑓] ∀𝒙 ∈ [𝒙
𝐿 , 𝒙𝑈] . If [𝐻𝐿] = [𝐻𝑓] + 2∆  is positive semi-definite, 

then 𝐿(𝒙) is convex. (1) 

 

This theorem provides us with the theoretical basis upon which the methods for estimating 𝛼𝑖𝑖  

are laid. The fact that the eigenvalues of a matrix is intimately connected with its positive semi-

definiteness can be exploited to find ways of calculating 𝛼𝑖𝑖  from the interval matrix [𝐻𝑓] 

(Floudas, 2000). 

One such technique is based on the Gershgorin’s theorem. Its standard form can be used to 

estimate (sometimes quite crudely) the location of the eigenvalues of a matrix. Its enunciation 

can be found in standard linear algebra textbooks, such as (Lax, 2007). Here we will apply an 

adaptation of Gershgorin’s theorem to interval matrices, as done in (Floudas, 2000). 
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Theorem: Let [𝐴] = [𝑎𝑖𝑗 , 𝑎𝑖𝑗]  be an interval matrix. A lower bound on its 

minimum eigenvalue is given by: 

 

 𝜆𝑚𝑖𝑛(𝐴) ≥ min
𝑖
[𝑎𝑖𝑖 − ∑ max (|𝑎𝑖𝑗| , |𝑎𝑖𝑗|)𝑗≠𝑖 ] (2) 

 

Here, 𝑎𝑖𝑗  and 𝑎𝑖𝑗  denote the infimum and supremum of the interval 𝑎𝑖𝑗 , respectively. This 

theorem gives us a (sometimes very crude) way of calculating 𝑎𝑖𝑖. If we take 𝛼 = 𝛼𝑖𝑖  ∀𝑖 and also 

set: 

 

 
𝛼 ≥ max {0,−

1

2
𝜆𝑚𝑖𝑛(𝐴)} (87) 

   

Then the lower bounding function will be convex (Maranas, 1994). Several other methods 

involving uniform shift matrices have been reported in the literature, and have been detailed in 

works such as (Floudas, 2000) and (Floudas & Paradalos, 2009). 

There are also several methods concerning non-uniform shift matrices, among which is the one 

based on the scaled Gershgorin’s theorem for interval matrices. 

 

Theorem: Let [𝐴] = [𝑎𝑖𝑗 , 𝑎𝑖𝑗] be an interval matrix and let 𝒅 > 0 be any vector 

with positive entries. Define 𝛼𝑖 as: 

 

𝛼𝑖 = max{0,−
1

2
(𝑎𝑖𝑖 −∑|𝑎|𝑖𝑗

𝑑𝑗

𝑑𝑖
𝑗≠𝑖

)} 

 

 (3) 

Where |𝑎|𝑖𝑗 = max {|𝑎𝑖𝑗| , |𝑎𝑖𝑗|}. If ∆ is a diagonal matrix whose elements are the 𝛼𝑖, then 𝐴𝐿 =

𝐴 + 2∆ is positive semi-definite (Floudas, 2000). 

The above theorem suggests a technique for finding ∆. It remains to be seen how to choose the 

vector 𝒅 (Floudas, 2000). One way to do it is to pick 𝒅 as a vector of ones (𝑑𝑖 = 1  ∀𝑖), which 

would yield an expression similar to that of Equation (87). However, all of its values will be 
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smaller when compared to the former matrix. Another choice of 𝒅 is  𝒅 = 𝒙𝑈 − 𝒙𝐿. This choice 

(which is a scaling procedure) compensates for the fact that variables with wider ranges have 

greater impact on the quality of the underestimators. 

We now possess all the tools required to construct convex underestimators for general twice-

differentiable functions. We can now turn our attention to the algorithm itself. The following 

discussion is mostly based on the works of Floudas and collaborators (Floudas & Paradalos, 

2009); (Floudas, 2000). 

A high-level description of the algorithm is presented next. The algorithm takes as input an 

arbitrary tolerance 𝜖, the function 𝑓 to be minimized, its constraints 𝒉(𝒙), 𝒈(𝒙) and bounds 

𝒙𝑈, 𝒙𝐿 on the variables. As we will be partitioning the domain and solving convex subproblems, 

it will be necessary to keep track of the solutions to these underestimating problems. Whenever 

we solve a convex underestimating problem, we find a lower bound to the global solution. We 

will denote by 𝑓𝑘 the lower bound on the objective function’s optimum value – 𝑓∗ – obtained 

by solving the 𝑘-th underestimating problem. It is also true that by attempting to solve the 

original nonconvex problem by any local solver, an upper bound on the global solution will be 

found. As before, we will denote the upper bound found by solving the 𝑖-th nonconvex problem 

by 𝑓 �̅�. The pseudocode for the algorithm is: 

 

Initialize upper and lower bounds: 𝑓∗ = 𝑓0 = −∞ and 𝑓∗̅̅ ̅ = 𝑓0̅̅ ̅ = +∞; 

Add 𝑓0 to the list of lower bounds; 

Set the tolerance 𝜖; 

While 𝑓∗̅̅ ̅ − 𝑓∗ > 𝜖 

Select the node 𝑘 with smallest lower bound 𝑓𝑘; 

Set 𝑓∗ = 𝑓𝑘; 

Select a branching variable; 

Partition the domain around the branching variable and create new nodes 

corresponding to each subdomain so created; 

Do for each new node 𝑖 

Generate a convex underestimator; 

If necessary, introduce new variables and constraints; 

Compute 𝛼 values; 
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Solve the 𝑖-th underestimating problem and find 𝑓𝑖; 

If the problem is infeasible or if 𝑓𝑖 > 𝑓∗̅̅ ̅ + 𝜖 

Fathom node; 

Else 

Add 𝑓𝑖 to the list of lower bounds; 

Find a solution 𝑓 �̅� of the original nonconvex problem; 

If 𝑓 �̅� < 𝑓∗̅̅ ̅ 

Set 𝑓∗̅̅ ̅ = 𝑓 �̅�; 

Return 𝑓∗̅̅ ̅ and variables at the corresponding node. 

 

 

From the pseudocode it is easy to see that the algorithm implies a tree structure for the nodes. 

Four our purposes, we will always assume that these trees are binary trees. Figure 6 represents 

a possible solution process of the algorithm. The full domain, represented by node  0, is split 

into two child nodes, namely nodes 1 and 2. Each of these is checked for feasibility, 

underestimated and solved as explained before. The process is repeated for both child nodes 

and so on. If a node is either infeasible or yields an upper bound that is higher than the best 

upper bound (within a tolerance), it is fathomed. Fathomed nodes are colored gray. Notice that 

once the node has been fathomed, it no longer needs to be partitioned. The process goes on 

until a node is reached where the stopping criterion is met – the node with a black stripe. The 

algorithm then terminates and returns the global minimum and the variables corresponding to 

that node. 

Many different strategies have been conceived in order to select the branching variable and 

perform the domain partitioning (Floudas, 2000). A naïve way to do it would be to simply select 

a variable at random. A more interesting approach would be to pick the branching variable to 

be the one that has the greatest corresponding variable range (i.e. the difference between its 

upper and lower bounds). The choice of branching variables is critical, as it determines which 

regions of the domain, and in which order, the algorithm will check for the solution. Poor choices 

of branching variables may lead to large number of iterations, which is particularly troublesome 

for problems with many variables. Figure 7 shows how the domain of an imaginary 2-variable 

problem will be partitioned according to the greatest variable range strategy. The gray areas 

denote which portion of the original domain is under analysis – i.e. solution of the original 

nonconvex problem and of the convex underestimating problem – at that iteration. 
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Figure 6 - Binary tree representing a possible solution process of the 𝛼BB algorithm. Adapted from (Floudas, 2000). 

 

 

Figure 7 - Variable branching for a fictitious 2-variable optimization problem. The gray areas correspond to the part 
of the domain being analyzed at the current iteration. 
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4 METHODOLOGY 

 

In this work, we have implemented an algorithm for solving chemical and phase equilibrium 

problems by means of the BB algorithm. The implementation was carried out entirely in 

Matlab® 2013a and makes extensive use of its optimization toolbox.  In order to ensure the 

algorithm’s correctness and robustness, we conducted several tests on benchmark optimization 

functions and also on benchmark equilibrium problems. The latter were extracted from Bonilla-

Petricolet and collaborators (2011). We now move on to discussing the statement of the 

chemical and phase equilibrium optimization problem, the exact formulation of these 

benchmark problems, the algorithm and its architecture, the data structures and classes defined 

therein and, lastly, we comment briefly about the unit tests conducted in the code’s 

development. 

 

4.1 BENCHMARK EQUILIBRIUM PROBLEMS 

 

Table 1, adapted from (Bonilla-Petricolet, et al., 2011), summarizes the benchmark chemical and 

phase equilibrium problems used to evaluate the code’s performance. 

 

Table 1 - Benchmark chemical and phase equilibrium problems. Table adapted from (Bonilla-Petricolet, et al., 2011). 

No. System Feed Thermodynamic models 

1 

𝐴1 + 𝐴2 ⇌ 𝐴3 + 𝐴4 

(1) Ethanol 

(2) Acetic acid 

(3) Ethyl acetate 

(4) Water 

𝒏𝑭 = [0.5, 0.5, 0, 0] 

T = 355 K 

P = 101.325 kPa 

NRTL model and ideal gas. 

𝐾𝑒𝑞,1 = 18.670951 

 

 

 

 



74 
 

2 

𝑨𝟏 + 𝑨𝟐 ⇌ 𝑨𝟑 , and 𝑨𝟒 

as an inert. 

(1) Isobutene 

(2) Methanol 

(3) Methyl tert-butyl 

ether 

(4) n-Butane 

𝒏𝑭 = [𝟎. 𝟑, 𝟎. 𝟑, 𝟎, 𝟎. 𝟒] 

T = 373.15 K 

P = 1013.25 kPa 

Wilson model and ideal gas. 

𝐥𝐧𝑲𝒆𝒒,𝟏 = −
∆𝑮𝒓𝒙𝒔

𝟎

𝑹𝑻
, T in K 

∆𝑮𝒓𝒙𝒔
𝟎

𝑹
= 

−𝟒𝟐𝟎𝟓. 𝟎𝟓 + 𝟏𝟎. 𝟎𝟗𝟖𝟐𝑻

− 𝟎. 𝟐𝟔𝟔𝟕 𝑻 𝐥𝐧𝑻 

3 

𝐴1 + 𝐴2 + 2𝐴3

⇌ +2𝐴4 

(1) 2-Methyl-1-butene 

(2) 2-Methyl-2-butene 

 (3) Methanol 

(4) Tert-amyl methyl 

ether 

𝒏𝑭 = [0.354, 0.183, 0.463, 0] 

T = 335 K 

P = 151.95 kPa 

Wilson model and ideal gas. 

𝐾𝑒𝑞,1 = 1.057. 10−4 exp
4273.5

𝑇
 

Where T is in K. 

4 

𝐴1 + 𝐴2 ⇌ 𝐴3 + 𝐴4 

(1) Acetic acid  

(2) n-Butanol  

(3) Water 

(4) n-Butyl acetate 

𝒏𝑭 = [0.3, 0.4, 0.3, 0] 

T = 298.15 K 

P = 101.325 kPa 

UNIQUAC model. 

ln𝐾𝑒𝑞,1 =
450

𝑇
+ 0.8 

Where T is in K. 

5 𝐴1 + 𝐴2 ⇌ 𝐴3 
𝒏𝑭 = [0.6, 0.4, 0] 

 

Margules solution model. 

𝐺𝐸

𝑅𝑇
= 

3.6𝑥1𝑥2 + 2.4𝑥1𝑥3 + 2.3𝑥2𝑥3 

𝐾𝑒𝑞,1 = 0.9825 

6 

𝐴1 + 𝐴2 ⇌ 𝐴3 + 𝐴4 , 

and 𝐴5 as an inert. 

(1) 2-Methyl-1-butene 

(2) 2-Methyl-2-butene 

(3) Methanol 

(4) Tert-amyl methyl 

ether 

(5) n-Pentane 

𝒏𝑭 = [0.1, 0.15, 0.7, 0, 0.05] 

T = 335 K 

P = 151.9875 kPa 

Wilson model and ideal gas. 

𝐾𝑒𝑞,1 = 1.057. 10−4 exp
4273.5

𝑇
 

Where T is in K. 

7 𝐴1 + 𝐴2 ⇌ 𝐴3 

𝒏𝑭 = [0.52, 0.48, 0] 

T = 323.15 K 

P = 101.325 kPa 

Margules solution model. 

𝐾𝑒𝑞,1 = 3.5 

8 𝐴1 + 𝐴2 ⇌ 𝐴3 + 𝐴4 

𝒏𝑭 = [0.048, 0.5, 0.452, 0] 

T = 360 K 

P = 101.325 kPa 

NRTL model. 

𝐾𝑒𝑞,1 = 4.0 
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The parameters needed for the activity coefficient models are listed in Appendix C. 

 

4.2 COST FUNCTION AND CONSTRAINTS 

 

To each problem, there corresponds an objective function (Bonilla-Petricolet, et al., 2011). Table 

2 displays the objective function corresponding to each problem. 

Table 2 - Objective functions for each benchmark equilibrium problem. 

No. Objective function Number of variables 

1, 4, 8 𝐹 = ∆𝑔 − (𝑛4,1 + 𝑛4,2) ln𝐾𝑒𝑞,1 9 

2 𝐹 = ∆𝑔 − (𝑛3,1 + 𝑛3,2) ln𝐾𝑒𝑞,1 7 

3 𝐹 = ∆𝑔 − 0.5(𝑛4,1 + 𝑛4,2) ln𝐾𝑒𝑞,1 7 

5, 7 𝐹 = ∆𝑔 − (𝑛3,1 + 𝑛3,2) ln𝐾𝑒𝑞,1 7 

6 𝐹 = ∆𝑔 − 0.5(𝑛4,1 + 𝑛4,2) ln𝐾𝑒𝑞,1 11 

 

The variable  ∆𝑔 depends on the nature of the equilibrium problem under consideration. In the 

case of vapor-liquid equilibrium (VLE) problems, namely, problems 1, 2, 3 and 6: 

 

 
∆𝑔 =∑𝑛𝑖,1 ln(𝑥𝑖,1𝛾𝑖,1)

𝑐

𝑖=1

+∑𝑛𝑖,2 ln(𝑥𝑖,2𝑃/𝑃𝑖
𝑠𝑎𝑡)

𝑐

𝑖=1

 
(88) 

 

For liquid-liquid equilibrium (LLE) problems, namely, problems 4, 5, 7 and 8: 

 

 
∆𝑔 =∑𝑛𝑖,1 ln(𝑥𝑖,1𝛾𝑖,1)

𝑐

𝑖=1

+∑𝑛𝑖,2 ln(𝑥𝑖,2𝛾𝑖,2)

𝑐

𝑖=1

 
(89) 

 

Here c is the total number of components in the system under consideration and the subscripts 

1 and 2 refer to different phases. 
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To each problem, there corresponds a set of mass-balance constraints. These are shown in Table 

3. Notice that in all problems it is required that 𝒏 ≥ 10−6, instead of 𝒏 ≥ 0. That is due to the 

fact that having 𝑛𝑖 = 0 for some species, would imply that 𝑥𝑖 = 0. This cannot be the case, 

because that would lead to the evaluation of ln 0, which is undefined. 

 

Table 3 – Mass balance constraints for each benchmark equilibrium problem. 

No. Constraints 

1 

{
 

 
𝑛1,1 + 𝑛1,2 + 𝜉 = 0.5

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.5

𝑛3,1 + 𝑛3,2 − 𝜉 = 0

𝑛4,1 + 𝑛4,2 − 𝜉 = 0

       
10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

2 

{
 

 
𝑛1,1 + 𝑛1,2 + 𝜉 = 0.3

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.3

𝑛3,1 + 𝑛3,2 − 𝜉 = 0

𝑛4,1 + 𝑛4,2 = 0.4

     
10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

3 

{
 

 
𝑛1,1 + 𝑛1,2 + 𝜉 = 0.354

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.183

𝑛3,1 + 𝑛3,2 + 2𝜉 = 0.463

𝑛4,1 + 𝑛4,2 − 2𝜉 = 0

     
10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

4 

{
 

 
𝑛1,1 + 𝑛1,2 + 𝜉 = 0.3

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.4

𝑛3,1 + 𝑛3,2 − 𝜉 = 0.3

𝑛4,1 + 𝑛4,2 − 𝜉 = 0

     
10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

5 {

𝑛1,1 + 𝑛1,2 + 𝜉 = 0.6

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.4

𝑛3,1 + 𝑛3,2 − 𝜉 = 0
     

10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

6 

{
 
 

 
 
𝑛1,1 + 𝑛1,2 + 𝜉 = 0.1

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.15

𝑛3,1 + 𝑛3,2 + 2𝜉 = 0.7

𝑛4,1 + 𝑛4,2 − 2𝜉 = 0

𝑛5,1 + 𝑛5,2 = 0.05

     
10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

7 {

𝑛1,1 + 𝑛1,2 + 𝜉 = 0.52

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.48

𝑛3,1 + 𝑛3,2 − 𝜉 = 0
     

10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 

8 

{
 

 
𝑛1,1 + 𝑛1,2 + 𝜉 = 0.048

𝑛2,1 + 𝑛2,2 + 𝜉 = 0.5

𝑛3,1 + 𝑛3,2 − 𝜉 = 0.452

𝑛4,1 + 𝑛4,2 − 𝜉 = 0

     
10−6 ≤ 𝑛𝑖,𝑗 ≤ 1.0 

10−6 ≤ 𝜉 ≤ 1.0 
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4.3 ALGORITHMS AND SOFTWARE ARCHITECTURE 

 

We now turn to the basic structure of the implemented code. Figure 8 is a simplified UML 

(Unified Modeling Language) Class Diagram. It describes the code in terms of its classes and 

structures and also shows how these elements relate to one another. In these diagrams, boxes 

represent classes (or structures).  

The name of the class appears in the first field, from top to bottom. It is followed, in the second 

field, by a list of attributes pertaining to that particular class. The notation for attributes is (+/-) 

attributeName: attributeType. When preceded by a (+) sign, an attribute is said to be public, i.e., 

it can be accessed by objects or methods external to the class. When preceded by a (–) sign, it 

is said to be private, which is to say that it can only be accessed by the very object that owns it. 

For example, in the Interval class, there is an attribute named a, which is private and takes a 

double-precision numerical value. The next field comprises the methods (or functions) 

implemented by that class. The notation is (+/-) methodName(arg_1_Type, arg_2_Type ,…): 

returnType. The (+/-) has the same meaning as before. If the method returns a value, its type is 

represented by returnType. The types of each argument of the function are represented by 

arg_1_Type, arg_2_Type, and so on.  

UML diagrams indicate relations between classes with connectors. Simple line connectors 

indicate general associations. Black diamond-shaped connectors denote composition: the class 

whose box is closest to the diamond head of the connector implements the class on its tail. 

Moreover, if an object of the former class is destroyed, all objects belonging to the latter class 

that were implemented by that same object are also destroyed. Numbers over the connectors 

and close to the classes indicate how many objects of each class are involved in that relation. An 

asterisk (*) indicates that zero or more objects may be involved. For example, the composition 

connector between Solver and PriorityQueue has two 1’s above it and close to each class. It 

should be read as: one Solver object implements one PriorityQueue object and the latter is 

destroyed when the former is. A much more thorough discussion on UML can be found in 

standard software engineering references, such as (Sommerville, 2011). 
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Figure 8 - Simplified UML class diagram for the implemented optimization routine. 

 

We can now proceed to describing each class. 

 

 

4.3.1 Solver class 

 

The Solver class is where most of the computation takes place. It is responsible for reading the 

inputs describing an optimization problem. The Parameters structure carries information such 

as: 
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Table 4 - Meaning of the attributes carried by the Parameters structure to the Solver class. 

Attribute name Meaning 

objectiveFunction Objective function 

hessian Hessian of the objective function 

xL Lower bounds vector 

xU Upper bounds vector 

A Equality constraints matrix 

B Equality constraints vector 

tol Error tolerance 

 

The Options structure allows the user to tune how the algorithm runs. The following table 

describes each of its attributes: 

 

Table 5 - Meaning of the attributes carried by the Options structure to the Solver class. 

Attribute name Meaning 

maxIter 
Maximum number of iterations before the 

algorithm halts. Default = 1000. 

underestimatorSupplied 

Boolean attribute indicating whether a 

rigorous convex underestimator has been 

supplied. If this attribute is true, the 

algorithm skips the routines corresponding to 

the calculation of  and uses the supplied 

underestimator instead. Default = False. 

rigorousUnderestimator Rigorous convex underestimator (if available) 

domainPartitioningCriterion 

A string attribute that indicates which is the 

criterion for deciding around which variable 

the domain will be split. The options are: 

 MaximumAbsolute (Default): The 

variable with the greatest distance 

between its lower and upper bounds 

is chosen. 
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 MaximumRelative: The variable with 

the greatest normalized distance 

between its lower and upper bounds 

is chosen. The normalization term is 

the initial distance between lower 

and upper bounds. 

 

Once the calculations are finished, the output data is stored in a public structure named Results. 

This structure collects a flag that informs whether the algorithm has converged or not and 

collects output data for plotting: 

 

Table 6 - Meaning of the attributes carried by the Options structure to the Solver class. 

Attribute name Meaning 

flag 

Maximum number of iterations before the 

algorithm halts. If the algorithm converges, 

flag = 1. If the maximum number of 

iterations is exceeded, flag = 0. In any other 

case, flag = -1. 

fopt 
Objective function’s optimum value found 

by the algorithm. 

xopt 
Choice variables vector corresponding to the 

optimum value. 

numIter 
Number of iterations performed by the 

algorithm. 

LBVector Vector of lower bounds at each iteration. 

UBVector Vector of upper bounds at each iteration. 

numVerticesVector 
Vector containing the total number of 

vertices at each iteration. 

 

The actual implementation of the solve method will be presented in a later section. 
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4.3.2 Interval class 

 

The Interval class implements basic interval arithmetic functionality necessary for the 𝛼’s to be 

calculated by Gershgorin’s theorem for interval matrices (in case no rigorous convex 

underestimators are provided). We achieved this result by overloading basic arithmetic 

operators and defining basic functions on Interval objects. We defined the overloaded 

operations in such a way that they mimic the corresponding definitions of interval arithmetics, 

as shown earlier in the section titled Interval analysis of this work. 

We have further overloaded the following operators to satisfy the following equalities, which 

greatly simplifies calculations. If 𝑘 is a real number (or a double precision floating-point number, 

if we think in terms of the actual implementation): 

 

 𝑘[𝑎, 𝑏] = [𝑘𝑎, 𝑘𝑏] 

 

𝑘 + [𝑎, 𝑏] = [𝑎 + 𝑘, 𝑏 + 𝑘] (90) 

 

Even though trigonometric functions are not present in any of the activity coefficient models 

considered, we also had to implement the sine and cosine functions because some of the 

benchmark functions used to test the correctness of our code (to be described later) required 

them. We do that by noticing that the sine function is monotonic in the intervals [−𝜋/2, 𝜋/2]. 

If we also notice that: a) whenever the points of the form 
𝜋

2
+ 2𝑘𝜋, the interval’s upper value is 

set to 1; and b) whenever the points of the form 
3𝜋

2
+ 2𝑘𝜋, the interval’s lower value is set to -

1, we can naturally extend the sine function for any interval. A parallel argument can be made 

for the cosine function. 

Once the interval functionality was implemented, it was possible to supply interval objects 

instead of floating numbers to the analytic Hessian matrices – see Appendix D – and, in so doing, 

obtain interval matrices. These interval matrices could then be used in conjunction with 

Gershgorin’s theorem to find the required 𝛼 values, as explained in the αBB (α-Branch-and-

Bound) section. 
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4.3.3 Vertex class 

 

The Vertex class represent the vertices in the binary tree generated during the execution of the 

BB algorithm. Each vertex represents a subdomain to be searched by the code. The following 

table summarizes and explains its attributes: 

 

Table 7 - Meaning of the attributes of Vertex class. 

Attribute name Meaning 

xL 
Vector of lower bounds on the subdomain 

corresponding to the current vertex. 

xU 
Vector of upper bounds on the subdomain 

corresponding to the current vertex. 

LB 

Lower bound found by solving the convex 

optimization subproblem at the subdomain 

corresponding to the vertex. 

UB 

Upper bound found by solving the nonconvex 

optimization subproblem at the subdomain 

corresponding to the vertex. 

 

The vertex class implements the method splitDomain, which takes a string. This string represents 

the criterion chosen for deciding about which variable the domain should be split. This string is 

provided by the Solver object, which delivers its attribute domainPartitioningCriterion as an 

input to the vertices that it creates. The methods creates two new vertices, each one 

corresponding to one section of the split domain, and returns them. 

 

4.3.4 PriorityQueue class 

 

As the name suggests, this class implements (naively) the functionality of the Priority Queue 

data structure. It is essentially a container that allows new elements to be placed in it alongside 

with a number that is its priority, and for its elements to be withdrawn from it, one at a time. 

The order in which the elements are withdrawn is dictated by the priorities of the elements: 
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element set to come out is always the one with highest (or lowest) priority. In our work, our 

priority queues set the elements with lower priorities to come out first and the elements to be 

stored are Vertex objects. 

We opted for a naïve implementation, which stores the elements in a list, verticesList. In this 

implementation, the elements are added to the list in Θ(1)  time by the method 

insertWthPriority. In order to withdraw, or pop, an element, the class performs a linear search 

on the list until it finds the vertex with lowest priority, which takes Θ(𝑛) time, where 𝑛 is the 

number of elements in the list. The method responsible for this action is pop_element. We chose 

this implementation due to its simplicity and to the fact that this list does not usually become 

too large. 

 

4.3.5 The solve method 

 

We are now in conditions to describe how the solve method, implemented by the Solver class, 

was coded. The pseudo code is presented below. 

Read the objective function, its hessian and its convex underestimator, if the latter is 

provided: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, ℎ𝑒𝑠𝑠𝑖𝑎𝑛 and 𝑐𝑜𝑛𝑣𝑒𝑥𝑈𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟. 

If a rigorous convex underestimator is provided, read the maximum permissible value 

for 𝛼: 𝑎𝑙𝑝ℎ𝑎𝑀𝑎𝑥 

Read the matrix and vector associated to the linear constraints - 𝐴 and 𝑏, respectively 

Read the specified tolerance: 𝑡𝑜𝑙 

Read the domain partitioning criterion: 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

Read the specified upper and lower bounds for the decision variables: 𝑥𝐿 and 𝑥𝑈. 

Initialize upper and lower bounds for the optimum objective function value: 𝐿𝐵 =

−∞, 𝑈𝐵 = +∞. 

Initialize iterations counter and flag: 𝑛𝑢𝑚𝐼𝑡𝑒𝑟 = 0, 𝑓𝑙𝑎𝑔 = −1 

Create a vertex 𝑣0 whose 𝑥𝐿, 𝑥𝑈, 𝐿𝐵 and 𝑈𝐵 are the ones just defined. 

Create a PriorityQueue 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒 and add 𝑣0 to it. 

While 𝑈𝐵 − 𝐿𝐵 > 𝑡𝑜𝑙 

If 𝑛𝑢𝑚𝐼𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 

Set 𝑓𝑙𝑎𝑔 = 0 

Return 
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𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑒𝑟𝑡𝑒𝑥 = 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒. 𝑝𝑜𝑝() 

𝐿𝐵 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑒𝑟𝑡𝑒𝑥. 𝐿𝐵 

[𝑣1, 𝑣2] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑒𝑟𝑡𝑒𝑥. 𝑠𝑝𝑙𝑖𝑡𝐷𝑜𝑚𝑎𝑖𝑛(𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛) 

Run a feasibility program on the region determined by 𝑣1 and the constraint 

matrices 𝐴 and 𝑏. 

If the region determined by 𝑣1  is feasible 

If a convex underestimator has been provided: 

Use it as an underestimator; 

Else 

                                           𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠1 = 𝑏𝑢𝑖𝑙𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠(𝑣1. 𝑥𝐿, 𝑥1. 𝑥𝑈) 

                                          𝑎𝑙𝑝ℎ𝑎1 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑙𝑝ℎ𝑎(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠1, ℎ𝑒𝑠𝑠𝑖𝑎𝑛) 

              If  𝑎𝑙𝑝ℎ𝑎1 > 𝑎𝑙𝑝ℎ𝑎𝑀𝑎𝑥 

                                                        𝑎𝑙𝑝ℎ𝑎1 = 𝑎𝑙𝑝ℎ𝑎𝑀𝑎𝑥                                           

Set the underestimator to 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +

𝑎𝑙𝑝ℎ𝑎1 (𝑣1. 𝑥𝐿 − 𝑥)𝑇(𝑣1. 𝑥𝑈 − 𝑥); 

Solve the convex underestimating problem with initial guess set to 

1

2
(𝑣1. 𝑥𝐿 + 𝑣1. 𝑥𝑈) ; 

Run a feasibility program on the region determined by 𝑣2 and the constraint 

matrices 𝐴 and 𝑏. 

If the region determined by 𝑣2  is feasible 

If a convex underestimator has been provided: 

Use it as an underestimator; 

Else 

                                           𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠2 = 𝑏𝑢𝑖𝑙𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠(𝑣2. 𝑥𝐿, 𝑥2. 𝑥𝑈) 

                                          𝑎𝑙𝑝ℎ𝑎2 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑙𝑝ℎ𝑎(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠2, ℎ𝑒𝑠𝑠𝑖𝑎𝑛) 

              If  𝑎𝑙𝑝ℎ𝑎2 > 𝑎𝑙𝑝ℎ𝑎𝑀𝑎𝑥 

                                                        𝑎𝑙𝑝ℎ𝑎2 = 𝑎𝑙𝑝ℎ𝑎𝑀𝑎𝑥                                           

Set the underestimator to 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +

𝑎𝑙𝑝ℎ𝑎2 (𝑣2. 𝑥𝐿 − 𝑥)𝑇(𝑣2. 𝑥𝑈 − 𝑥); 

Solve the convex underestimating problem with initial guess set to 

1

2
(𝑣2. 𝑥𝐿 + 𝑣2. 𝑥𝑈) ; 

Set 𝑓𝑙𝑎𝑔 = 1 
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4.4 TESTING 

 

During the development of the code, we followed the TDD (test-driven development) 

methodology, which means that we wrote tests before the actual code. Once the programmer 

writes a sufficient number of tests corresponding to certain desired functionality, he or she can 

then write the actual code and make sure that it meets the requirements. One of the advantages 

of following this approach is that whenever the programmer needs to refactor the code, he or 

she can easily check whether any functionality was lost in the process. We have made use of 

Matlab’s Unit Testing Framework to implement and run all tests. 

We can divide our tests in three categories, according to their goals: 

 

1. Validate the implementation of the data structures. 

2. Check the correctness and robustness of the code (benchmark functions) 

3. Check the code’s ability to solve actual equilibrium problems (benchmark equilibrium 

problems). 

 

We will not detail the tests pertaining to the first category, as they are numerous and 

straightforward. 

In order to ensure the implementation’s correctness and robustness, we ran the code through 

a series of benchmark functions, whose optimum values were known in advance, and could be 

therefore be used to gauge the behavior of the algorithm.  Table 8 displays the benchmark 

functions used, along with their definitions, constraints, global optimum values and a brief 

description of them. 

Table 8 - Test functions used to evaluate code correctness. 

Function 

(number of variables) 
Definition Constraints Optimum value Description 

Simple quadratic (1) 𝑓(𝑥) = 𝑥2 𝑥 ∈ [−1, 1] 
𝑓(𝑥∗) = 0 

𝑥∗ = 0 

Simple convex 

function 
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Edge quadratic (1) 𝑓(𝑥) = 𝑥2 𝑥 ∈ [1, 3] 
𝑓(𝑥∗) = 1 

𝑥∗ = 1 

Minimum at the 

edge of the 

domain. 

Linear-senoid (1) 𝑓(𝑥) = 𝑥 sin𝑥 𝑥 ∈ [0, 10] 
𝑓(𝑥∗) = −5.44 

𝑥∗ = 10 

Multiple local 

minima. 

Multivariate quadratic 

(2) 
𝑓(𝑥) = 𝑥1

2 + 𝑥2
2 𝑥𝑖 ∈ [−1, 1] 

𝑓(𝑥∗) = 0 

𝑥∗ = (0,0) 

Multivariate 

convex function. 

Rastrigin (2) 

𝑓(𝑥) = 

20 + 𝑥1
2 − 10 cos(2𝜋𝑥1) + 

𝑥2
2 − 10 cos(2𝜋𝑥2) 

𝑥𝑖 ∈ 

[−5.12, 5.12] 

𝑓(𝑥∗) = 0 

𝑥∗ = 0 

Several local 

minima. 

Rosenbrock function 

(2) 

𝑓(𝑥) = (1 − 𝑥1)
2 + 

100(𝑥2 − 𝑥1
2)2 

𝑥𝑖 ∈ [0, 2] 
𝑓(𝑥∗) = 0 

𝑥∗ = (1,1) 

Global minimum 

in a narrow 

valley 

Beale’s function (2) 

𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)
2

+ 

(2.25 − 𝑥1 + 𝑥1𝑥2
2)2 + 

(2.625 − 𝑥1 + 𝑥1𝑥2
3)2 

𝑥𝑖 ∈ 

[−4.5, 4.5] 

𝑓(𝑥∗) = 0 

𝑥∗ = (3,0.5) 

Sharp peaks 

around the 

minimum. 

 

Once the algorithm was able to pass all the tests displayed in Table 8, we moved on to the actual 

chemical and phase equilibrium problems discussed in the previous section. 
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5 RESULTS AND DISCUSSION 

 

In this chapter, the results obtained when running the algorithm for the benchmark equilibrium 

problems are presented. 

For each equilibrium problem, the following results were obtained and will displayed as graphs: 

 Number of iterations required for the algorithm to halt for a given tolerance (ε); 

 Moving average of the number of vertices being examined by the algorithm as a function 

of the iterations count; 

 The gap between the upper bound found at the current iteration and the best lower 

bound found thus far. 

 A box plot of the logarithm of the values of the parameter 𝛼 calculated by the algorithm. 

The graphs are shown in the figures ranging from Figure 9 to Figure 40. 

 

5.1 CONVERGENCE ANALYSIS 

 

As it would be expected, the number of iterations necessary for the algorithm to halt increases 

as the tolerance, ε, diminishes. That is because in order to attain 𝜖 -convergence for smaller and 

smaller values of 𝜖, the algorithm must further subdivide the domain into smaller subdomains. 

The convex underestimators become tighter as the subdomains become smaller, which implies 

a smaller difference between the optimal value found for the convex underestimator problem 

and the actual optimal value. As the subdivision process has been carried out for a sufficient 

number of iterations, 𝜖 -optimality can then be reached. 

It is interesting to notice that the number of iterations required by the algorithm seems to 

remain constant as 𝜖 diminishes for some cases, a fact which is very noticeable in Problem 4 

(UNIQUAC model) and in Problem 3 (Wilson model). In Problem 4, in the curve associated to 

𝛼𝑚𝑎𝑥 = 10, as log10 𝜖 transitioned from -2 to -3.5, the number of iterations hasn’t changed. 

That is because the number of iterations necessary to attain 𝜖 -optimality corresponding to 

log10 𝜖 = −2 was also sufficient to attain 𝜖 -optimality corresponding to log10 𝜖 = −3.5. The 
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same happens in Problem 3, in the curve associated to 𝛼𝑚𝑎𝑥 = 10, as log10 𝜖 transitioned from 

-1.5 to -3.5. 

Another feature of these graphs is that the curves corresponding to 𝛼𝑚𝑎𝑥 = 10
3 and 𝛼𝑚𝑎𝑥 =

104 overlapped in problems 1, 3 and 6. That happened because 𝛼𝑚𝑎𝑥 = 10
3 was high enough 

that whenever the algorithm replaced the calculated 𝛼  with 𝛼𝑚𝑎𝑥 , the same happened to 

𝛼𝑚𝑎𝑥 = 10
4. That had the effect of essentially making the algorithm perform the same search 

path along the subdomains graph. 

Upon comparing the iterations curves, it is possible to see that in problems 1 (NRTL), 2 (Wilson), 

4 (UNIQUAC) and 7 (Margules) the maximum number of iterations necessary for the algorithm 

to converge corresponds to 𝛼𝑚𝑎𝑥 = 10
4 and log10 𝜖 = −3.5. This result is not surprising, as it 

would be expected that larger values of 𝛼𝑚𝑎𝑥 would yield looser underestimators, which would 

cause the algorithm to need to run more iterations for a fixed 𝜖. Also, smaller values of 𝜖 would 

demand a more thorough partitioning and, thus, more iterations. Surprisingly, in problem 3 

(Wilson), the maximum number of iterations corresponds to 𝛼𝑚𝑎𝑥 = 10 and log10 𝜖 = −3.5. 

The explanation for this anomaly may be that, due to the topology of this particular problem, 

looser underestimators, corresponding to higher values of 𝛼𝑚𝑎𝑥, steered the algorithm towards 

the global optimum and strongly biased the search process to search in that particular region. 

In problems 5 (Margules) and 6 (Wilson), the maximum number of iterations also corresponds 

to a relatively low 𝛼𝑚𝑎𝑥, more precisely, 𝛼𝑚𝑎𝑥 = 10
2 and log10 𝜖 = −3.5.. In problem 8 (NRTL), 

it corresponds to 𝛼𝑚𝑎𝑥 = 10
3and log10 𝜖 = −3.5. The reason for these is probably the same 

stated for problem 3. Despite these differences, the maximum number of iterations always 

corresponds to log10 𝜖 = −3.5 , which shows that the tolerance 𝜖  plays a major role in 

determining its number. 

In problems 3 (Wilson), 4 (UNIQUAC), 5 (Marugles), 6 (Wilson) and 8 (NRTL), the logarithm of 

the maximum number of iterations taken for the algorithm to converge (all corresponding to 

log10 𝜖 = −3.5, but not necessarily corresponding to different values of 𝛼𝑚𝑎𝑥) ranged from 2.2 

to 2.6. Problem 1 (NRTL) took the greatest number of iterations, corresponding to a logarithm 

that was greater than 3. Problem 7 (Margules) also took a high number of iterations, 

corresponding to a logarithm of more than 2.6 and problem 2 (Wilson) was converged in the 

smallest number of iterations, corresponding to a logarithm of less than 2.2. From these data, it 

is possible to see that the overall complexity of the model alone is not necessarily an indicator 

of the maximum number of iterations to be taken by the algorithm. 
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The graphs showing the gap between upper and best lower bounds provide insight into how the 

algorithm converges to the optimum. All such graphs display similar features. It is 

straightforward to check that the curves represented therein are monotonically decreasing, that 

is, they either decrease or remain constant.  

Two factors are responsible for the drop in the gap between the upper bound and the best lower 

bound. The first one is the effect associated to subdividing the domain further and further. As 

the subdomains become smaller and smaller, the underestimating function over that subdomain 

also approaches the objective function, as can be seen from the relation 𝐿(𝒙) = 𝑓(𝒙) +

∑ 𝛼(𝑥𝑗
𝐿 − 𝑥𝑗)(𝑥𝑗

𝑈 − 𝑥𝑗)
𝑛
𝑖=1 . Small subdomains amount to smaller values of (𝑥𝑗

𝐿 − 𝑥𝑗)(𝑥𝑗
𝑈 − 𝑥𝑗) 

for every 𝑗, which leads to tighter underestimators. The second factor is associated to how close 

a given subdomain is to the global optimum. Small subdomains that contain the global optimum 

are much more likely to yield tighter lower bounds, which contributes to diminishing the gap. 

During the first iterations, the greater the maximum value of 𝛼𝑚𝑎𝑥 , the greater the gap, as 

would be expected. As the algorithm proceeds, at around 10 to 100 iterations, a sharp drop can 

be seen in all graphs. This drop reflects mostly the effect of subdividing the domain over the gap. 

From that point on, the gap diminishes at a much lower rate. That is due to the fact that, as all 

subdomains have become relatively small, the effect of subdividing further has become 

secondary when compared to the actual position of the subdomains. In this region, not only 

does the gap diminishing rate drop, but it actually becomes zero at times, which leads to the gap 

remaining constant. It then only diminishes again when a subdomain is particularly well located. 

This also explains why the relative ordering of the curves changes as the iterations progress: 

once the subdomains become small enough, the influence of 𝛼𝑚𝑎𝑥 over the quality of the lower 

bounds decreases in contrast to the positioning of the subdomain. From that point on, there is 

no straightforward way of telling which run of the algorithm will first reach the best subdomains 

first. 
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Table 9 – Number of iterations necessary for the upper bound to converge to the global minimum. 

Problem 
𝐥𝐨𝐠𝟏𝟎𝜶𝒎𝒂𝒙 

1 2 3 4 

1 8 8 8 8 

2 7 7 7 7 

3 2 2 2 2 

4 3 3 2 2 

5 1 1 1 1 

6 1 1 1 1 

7 1 1 1 1 

8 7 7 7 7 

 

It is very insightful to compare how many iterations are necessary for the upper bounds to reach 

the global optimum, as shown in Table 9, and to contrast them to the total number of iterations 

taken. Notice that it takes no more than 8 iterations for the upper bound to converge. Of course, 

it is the comparison between the upper and lower bounds that allows for the 𝛼𝐵𝐵 to be able to 

guarantee global optimality, and merely keeping  track of the upper bound would be no better 

than simply using a local solver such as Newton’s method. From a practical standpoint, however, 

it is the case that the systematic scanning of the domain, with subsequent use of local solvers, 

was enough to handle the nonconvexities of the problems under study. That also explains why 

the adapted 𝛼𝐵𝐵  algorithm under study, despite not being globally convergent, has been 

successful in reaching global optima. 

It is also interesting to confront the numbers of iterations shown in Table 9 with the activity 

models corresponding to each problem. For instance, problems 5 and 7, which are associated to 

the Margules model – which is relatively simple – required only one iteration for the upper 

bound to reach the global optimum. Contrast it with problems  1 and 8, which are associated to 

the considerably more complex NRTL model. It took them, respectively, 8 and 7 iterations for 

the upper bound to reach the global optimum, which is considerably more than it took the last 

two. Problems 2, 3 and 6, associated to the Wilson model, displayed values which are between 

those of Margules and NRTL, with the remark that it took problem 2 the same number of 

iterations as problem 1. This might be due to the fact that the local underestimators generated 

by interval analysis had lower calculated minima in the subdomains that actually contained the 

global optimum. That would have lead the algorithm to steer away from the global optimum 
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during its first iterations, which would explain the high number of iterations. Interestingly, 

problem 4, associated to the UNIQUAC model, converged in only 3  iterations for the two lowest 

values of log10 𝛼𝑚𝑎𝑥  and in 2 iterations for the two highest. That is surprising because the 

UNIQUAC model is quite complex and, intuitively, one might have expected that many iterations 

would have been necessary until the global optimum was found. However, as conjectured 

before, the calculated underestimators might have been such that the algorithm was steered 

towards the global optimum. The same factor that hindered problem 2 may have helped 

problem 4.  

It seems reasonable to point out that models that are more complex tend to be associated, 

although not always, to smaller numbers of iterations necessary for the upper bound to 

converge to the global optimum. 

The fact that the number of iterations did not change with log10 𝛼𝑚𝑎𝑥 is also noteworthy. The 

first iterations of the algorithm yield very high values of 𝛼, which means that they were mostly 

replaced by 𝛼𝑚𝑎𝑥. If that is the case, the underestimators associated to each subdomain will 

differ in magnitude, but the order in which that they are selected will be preserved. For this 

reason, the iteration values remain constant as log10 𝛼𝑚𝑎𝑥 varies. 

 

5.2 GRAPH SEARCH 

 

For clarity’s sake, instead of merely plotting the number of vertices being analyzed by the 

algorithm versus iterations count (the graphs would be far too cluttered to read), a plot of its 

moving averages was constructed. The lags (the number of consecutive values being averaged 

at each point) corresponding to these moving averages are shown in figures 10, 14, 18, 22, 26, 

30, 34 and 38. It is very interesting to notice that the number of vertices being examined remains 

relatively low, considering that the search tree could grow exponentially large. That shows that 

many vertices are being fathomed by the algorithm, as would be desired. This property is already 

present in the original 𝛼𝐵𝐵 algorithm and, as shown, has not been compromised in its current 

adaptation. 

Upon analyzing the graphs, it can be seen that, as a general rule, lower values of 𝛼𝑚𝑎𝑥 yield 

lower mean number of vertices. That is explained by the fact that lower values of 𝛼𝑚𝑎𝑥 lead to 
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tighter underestimators, which in turn leads to higher values of the best lower bounds, thus 

contributing to the fathoming of more nodes. 

In problems 1 and 8, which made use of the NRTL model, the average number of vertices reached 

values between 12 and 15, when considering 𝛼𝑚𝑎𝑥 = 10
4 ,which is higher than the 

corresponding values of the other problems. That may be because the inherent complexity of 

the model yielded not very tight underestimators, which forced the algorithm to keep several 

vertices under examination. That seems to be a plausible explanation, as the same happened to 

problem 4, corresponding to the UNIQUAC model, which is also quite complex. The average 

number of vertices rose up to values between 10 and 12 as the iterations progressed. Problems 

5 and 7, corresponding to the simpler Margules model, had an average number of vertices that 

rose up to the range between 5 and 10. Problems 2, 3 and 6, corresponding to the Wilson model 

displayed results comparable to those of the Margules model. It seems, therefore, plausible to 

state that the mean number of vertices produced by the algorithm as the iterations progress is 

associated to the complexity of the activity model: simpler models yield lower numbers of 

vertices, whereas more complex models yield higher numbers of vertices. 

It is also interesting to notice that these differences are far more well-defined for higher values 

of 𝛼𝑚𝑎𝑥 than for lower values, even though they are still observable. 

 

5.3 UNDERESTIMATORS AND CALCULATED  VALUES 

 

The box plots displaying the logarithms of the calculated  values provide important insights 

into how the algorithm behaves. In these graphs, the red crosses represent outliers. A very 

interesting property is that the values of  calculated by the algorithm can be extremely large, 

reaching values as high as 1090   as is the case of problem 4 (UNIQUAC model). Such 

unreasonably high values justify our approach, which is to limit these values to some 𝛼𝑚𝑎𝑥. In 

fact, the algorithm cannot proceed with such high values of 𝛼, as that would lead to very slow 

convergence times and low precision, due to numerical underflow / overflow. 

These values get so high because of two factors: a) the analytic evaluation of the hessians leads 

to many operations, which contributes to widen the intervals; b) as can be seen in Appendix D, 

the calculations of the second derivatives involve molar numbers raised to the 4th power in the 
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denominator. That is particularly problematic when small lower bounds for the mole numbers 

(such as, in our case, 10−6) are considered because that yields a high multiplicative factor. 

Upon analyzing figures 12, 16, 20, 24, 28, 32, 36 and 40, a few facts become noticeable. In 

problems 1 (NRTL), 2 (Wilson), 3 (Wilson), 6 (Wilson) and 8 (NRTL) the median of log10 𝛼 was 

lesser than 10 and the box plots had relatively narrow interquartile ranges. That shows that, as 

expected, the algorithm tends to focus on subdomains that yield higher values of lower bounds 

which generally correspond to lower values of 𝛼. Problem 4 (UNIQUAC) displayed an interesting 

behavior: its median log10 𝛼𝑚𝑎𝑥 sharply dropped as log10 𝛼 increased. That is probably due to 

the fact that as log10 𝛼𝑚𝑎𝑥 increases, the looser the underestimators will be, and, adding that 

to the fact that as the domains are subdivided, the tighter the underestimators are, it follows 

that as log10 𝛼𝑚𝑎𝑥 grows bigger, the greater the priority is given to small subdomains, which 

leads the algorithm to focus on them. That, in turn, steers the median value of log10 𝛼 towards 

lower values. Interestingly, problems 5 (Margules) and 7 (Margules) displayed relatively wide 

interquartile ranges, especially for lower values of log10 𝛼𝑚𝑎𝑥. That may be explained by an 

argument parallel to that of problem 4: as the Margules underestimators tend not to be as loose, 

the algorithm does not focus as much in small particular subdomains, and a wider spread of the 

values of log10 𝛼 is therefore observed. 

  



94 
 

5.3.1 Problem 1 

 

 
 
 
 

  
 

Figure 9 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 1. 

 

Figure 10 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 1. 

 
 
 
 

  

Figure 11 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 1. 

 

Figure 12 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 1. 
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5.3.2 Problem 2 

 

  

  
 

Figure 13 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 2. 

 

Figure 14 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 2. 

  

  

Figure 15 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 2. 

 

Figure 16 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 2. 
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5.3.3 Problem 3 

 

 
 
 
 

  
 

Figure 17 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 3. 

 

Figure 18 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 3. 

 
 
 

 

  

Figure 19 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 3. 

 

Figure 20 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 3. 
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5.3.4 Problem 4 

 

 
 
 

 

  
 

Figure 21 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 4. 

 

Figure 22 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 4. 

 
 
 
 

  

Figure 23 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 4. 

 

Figure 24 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 4. 
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5.3.5 Problem 5 

 

 

  

  
 

Figure 25 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 5. 

 

Figure 26 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 5. 

  

  

Figure 27 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 5. 

 

Figure 28 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 5. 
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5.3.6 Problem 6 

 

 

  

 
 

 

Figure 29 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 6. 

 

Figure 30 – Moving average of the number of vertices under consideration 
as the algorithm progresses for benchmark equilibrium problem 6. 

  

  

Figure 31 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 6. 

 

Figure 32 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 6. 
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5.3.7 Problem 7 

 

 

 
 
 

  
 

Figure 33 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 7. 

 

Figure 34 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 7. 

  

  

Figure 35 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 7. 

 

Figure 36 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 8. 

 



101 
 

5.3.8 Problem 8 

 

  

  
 

Figure 37 – Logarithm of the number of iterations versus logarithm of 
the error tolerance for benchmark equilibrium problem 8. 

 

Figure 38 – Moving average of the number of vertices under 
consideration as the algorithm progresses for benchmark equilibrium 

problem 8. 

 
 
 

 

  

Figure 39 - Upper bound / best lower bound gap versus number of 
iterations for benchmark equilibrium problem 8. 

 

Figure 40 – Box plot of the logarithm of all the values of 𝛼 calculated 
through interval analysis for benchmark equilibrium problem 8. 
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5.4 CALCULATED OPTIMUM VALUES 
 

Table 10 displays the optimum value found for each problem when the algorithm was run with 

different values of 𝛼𝑚𝑎𝑥 and 𝜖. It also displays the true global optimum for each problem, as 

reported in the literature (Bonilla-Petricolet et al, 2011). Notice that the algorithm manage to 

successfully compute the global optimum even for low values of both 𝛼𝑚𝑎𝑥  and relatively high 

error tolerances. Once again, this reinforces the remark that, in practice, the systematic scanning 

of the domain may be enough to surpass the nonconvexities in this kind of problem. 

Table 11 shows the calculated distribution of species between phases in equilibrium for each 

problem, the total number of moles of all components in each phase and the degree of 

advancement of the reactions involved therein. The physical interpretation of these results is 

discussed next. 

In problem 1, a vapor-liquid chemical equilibrium problem, phase 1 corresponds to the liquid 

phase whereas phase 2 corresponds to the vapor phase. It is clear that the mole fraction of ethyl 

acetate (component 3) is greater in the vapor phase than in the liquid phase. Conversely, the 

mole fraction of water (component 4) is greater in the liquid phase than in the vapor phase. That 

is consistent with the fact that ethyl acetate displays considerably weaker molecular interactions 

than those of water. For that reason, ethyl acetate tends to be dispersed in the vapor phase 

whereas water tends to accumulate in the condensed phase. The relatively low fractions of 

ethanol (component 1) and acetic acid (component 2) are due to the fact that these compounds 

react and are consumed to a considerable extent as is indicated by a relatively high equilibrium 

constant. The reaction reaches equilibrium at an advancement of 0.4236. 

In problem 2, a vapor-liquid chemical equilibrium problem, phase 1 corresponds to the liquid 

phase whereas phase 2 corresponds to the vapor phase. The mole fraction of methyl tert-butyl 

ether (component 3), often abbreviated MTBE, is greater in the liquid phase than in the vapor 

phase. Upon evaluating  and comparing the vapor pressures of MTBE and n-butane calculated 

through Antoine equation at T = 373.15 K, the values of 3.6 bar and 14.6 bar, respectively are 

obtained. The Antoine coefficients are given in Appendix C. It is possible to see that MTBE is far 

less volatile than n-butane. For that reason, n-butane tends to accumulate in the vapor phase, 

whereas MTBE accumulates in the liquid phase. The relatively low fractions of isobutene 

(component 1) and methanol (component 2) are due to the fact that these compounds react 

and are consumed to a considerable extent as is indicated by a relatively high equilibrium 

constant (𝐾𝑒𝑞 = 15.6). The reaction reaches equilibrium at an advancement of 0.2041. 
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In problem 3, a vapor-liquid chemical equilibrium problem, phase 1 corresponds to the liquid 

phase whereas phase 2 corresponds to the vapor phase. The mole fraction of tert-amyl methyl 

ether (component 4) is greater in the liquid phase than in the vapor phase. The opposite happens 

to methanol (component 3). Once again, upon evaluating  and comparing the vapor pressures 

of tert-amyl methyl ether and methanol calculated through Antoine equation at T = 373.15 K, 

the values of 0.45 bar and 0.91 bar, respectively are obtained. The Antoine coefficients are given 

in Appendix C. It is possible to see that tert-amyl methyl ether is far less volatile than methanol 

and, for that reason, methanol tends to accumulate in the vapor phase, whereas tert-amyl 

methyl ether accumulates in the liquid phase. The vapor pressures calculated for 2-methyl-1-

butene (component 1) and for 2-methyl-2-butene (component 2) are significantly higher – 2.6 

bar and 2.4 bar, respectively. The reaction reaches equilibrium at an advancement of 0.0707. 

Problem 4, represents a liquid-liquid chemical equilibrium problem, phase 1 corresponds to the 

organic phase whereas phase 2 corresponds to the aqueous phase. In phase 1 a considerable 

amount of all compounds can be found, their mole fractions ranging from 16% to 36%. That is 

not unexpected, since all components, except water, are organic and not strongly polar, which 

leads them to aggregate in the same phase. Notice, however, that a considerable amount of 

water is also present in the organic phase.  That is because water is still able, to some extent, to 

establish intermolecular interactions with the most polar parts of the other molecules, especially 

n-Butanol and n-Butyl acetate due to their particularly polar OH groups. Phase 2 contains mostly 

water and small amounts of n-Butyl acetate and n-Butanol, due to their polarity. The reaction 

reaches equilibrium at an advancement of 0.1486. 

Problem 5 describes a liquid-liquid chemical equilibrium system. The components are not 

identified in the original article. The mole fraction of components 2 and 3 are greater in phase 1 

than in phase 2, whereas the opposite happens to component 3.  The reaction reaches 

equilibrium at an advancement of 0.2745. 

In problem 6, a vapor-liquid chemical equilibrium problem, phase 1 corresponds to the liquid 

phase whereas phase 2 corresponds to the vapor phase. The mole fraction of methanol 

(component 3), is greater in the liquid phase than in the vapor phase. The opposite happens to 

n-pentane (component 5). Upon evaluating and comparing the vapor pressures of methanol and 

n-pentane calculated through Antoine equation at T = 335 K, the values of 0.91 bar and 2.28 bar, 

respectively are obtained. It is possible to see that methanol is far less volatile than n-pentane. 

For that reason, n-pentane tends to accumulate in the vapor phase, whereas methanol 

accumulates in the liquid phase. The reaction reaches equilibrium at an advancement of 0.0745. 
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Problem 7 represents a liquid-liquid chemical equilibrium system. The components are not 

identified in the original article. The mole fraction of components 1 and 2 are greater in phase 1 

than in phase 2, whereas the opposite happens to component 3.  The reaction reaches 

equilibrium at an advancement of 0.4405. 

Problem 8 represents a liquid-liquid chemical equilibrium system. The components are not 

identified in the original article. It is quite clear that component 3 is the major constituent of 

phase 1, in which phase there is very little of any other component. In phase 2, the major 

constituent is component 2, even though smaller fractions of components 3 and 4 are also 

present. Component 1 is a minor compound in both phases because the total amount of it fed 

to the system was relatively low. The reaction reaches equilibrium at an advancement of 0.0405. 
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Table 10 – Optimum values found for each equilibrium problem when the algorithm was run with different 

combinations of  𝛼𝑚𝑎𝑥 and  𝑙𝑜𝑔10 𝜖. 

Problem 𝜶𝒎𝒂𝒙 
𝐥𝐨𝐠𝟏𝟎 𝝐 Global 

optimum(*) 

-4.5 -4 -3.5 -3 -2.5 -2 

1 

10 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 

-2.05813 
100 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 

1000 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 

10000 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 -2.05812 

2 

10 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 

-1.43427 
100 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 

1000 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 

10000 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 -1.43493 

3 

10 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 

-1.22637 
100 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 

1000 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 

10000 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 -1.22637 

4 

10 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 

-1.10630 
100 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 

1000 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 

10000 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 -1.10628 

5 

10 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 

-0.14451 
100 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 

1000 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 

10000 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 -0.14451 

6 

10 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 

-0.87258 
100 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 

1000 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 

10000 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 -0.87258 

7 

10 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 

-0.65376 
100 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 

1000 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 

10000 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 -0.65376 

8 

10 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 

-0.31192 
100 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 

1000 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 

10000 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 -0.31198 

(*) extracted from (Bonilla-Petricolet et al, 2011). 
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Table 11 – Calculated component distribution between the phases in equilibrium corresponding to the global 

optimum. 

Problem Component distribution between the phases 
Total moles and 

advancement 

1 

 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.0492 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.9509 
𝜉 = 0.4236 

2 

 

 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.2224 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.5736 
𝜉 = 0.2041 
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3 

 

 
 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.0252 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.8333 
𝜉 = 0.0707 

4 

 
 

 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.1302 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.8698 
𝜉 = 0.1486 
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5 

 
 

 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.4236 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.3018 
𝜉 = 0.2745 

6 

 
 
 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.5902 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.2609 
𝜉 = 0.0745 
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7 

 
 
 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.4979 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.0616 
𝜉 = 0.4405 

8 

 
 
 

𝑛1
𝑡𝑜𝑡𝑎𝑙 = 0.5691 
𝑛2
𝑡𝑜𝑡𝑎𝑙 = 0.4308 
𝜉 = 0.0405 
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5.5 COMPARISON WITH THE RESULTS OBTAINED BY BONILLA-PETRICOLET AND 

COLLABORATORS 
 

Bonilla-Petricolet and collaborators (2011) studied the performance of three different stochastic 

optimization algorithms, namely, simulated annealing (SA), genetic algorithms (GA) and 

differential evolution with tabu list (DETL) when solving the eight benchmark problems 

presented. 

The authors have run all three algorithms in each benchmark equilibrium problem 100 times 

using random initial guesses. The benchmark problems were formulated both as constrained 

optimization problems (which is the formulation that employed in this work) and unconstrained 

optimization problems (which is the equivalent formulation described in the section titled 

Reduction of dimensionality). The success rate of the 𝑖-th problem, 𝑆𝑅𝑖 , was defined as the 

percentage of those trials that successfully reached the global optimum. For each such method, 

then, a global success rate 𝐺𝑆𝑅 was defined as the average of the success rates of all problems 

using that particular method (Bonilla-Petricolet et al., 2011).  

The authors have also considered two stopping criteria for the algorithms: a) maximum number 

of iterations divided by the maximum number of generations (SC1) and b) maximum number of 

iterations without improvement of the best function value (SC2). 

The authors then moved on to examine how 𝐺𝑆𝑅 varied as a function of both SC1 and SC2. The 

authors have also considered how well these algorithms would behave when the solution found 

was improved using a quasi-Newton local solver. 

For the constrained optimization formulation, both with and without improving the solution 

through the quasi-Newton method, none of the algorithms displayed a 𝐺𝑆𝑅 that exceeded 90% 

for any stopping criteria. It is also clear that the quasi-Newton improving step significantly 

improved 𝐺𝑆𝑅 for both criteria (Bonilla-Petricolet et al., 2011), most noticeably for SC2. 

It should be pointed out that the fact that these algorithms have failed to attain the global 

maximum at least 10% of the time is in contrast with the adapted algorithm presented in this 

work. This algorithm, being based on a global deterministic method, has reached the global 

optima of all problems in one run. 
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6 CONCLUSIONS AND SUGGESTIONS 

 

From what has been exposed, it is possible to reach the following conclusions: 

 If it is desired to employ the 𝛼𝐵𝐵 algorithm with interval analysis for solving chemical 

equilibria problems through direct Gibbs energy minimization, it is important to realize 

that the 𝛼 values so calculated may be exceedingly large, which, may cause local solvers 

to fail. This difficulty must be circumvented somehow. 

 The strategy chosen here to keep 𝛼 values from growing too large proved to be effective 

for solving the benchmark equilibrium problems under study, and the adapted 

algorithm was able to reach the global optimum. 

 The adapted algorithm, due to the fact that it does not mathematically guarantee 

perfect underestimation, can no longer guarantee global optimality. However, in 

practice, it was capable of correctly attaining the global optimum even for relatively low 

values of 𝛼𝑚𝑎𝑥 and relatively low values of 𝜖. 

 The upper bounds found by the algorithm converge to the global optimum in relatively 

few iterations, which suggests that the systematic scanning of the domain by the 

algorithm may be enough, in practice, to reliably find the global optimum. 

 This also suggests that the 𝛼𝐵𝐵 algorithm with interval analysis provides a powerful 

framework that may be used as a base for other algorithms.  

 

In light of these conclusions, the following questions may be answered in future studies: 

 

 How well does this algorithm behave when nonideal gaseous / vapor phases are 

considered? 

 

 Does the algorithm behave equally well in highly nonideal systems, such as electrolyte 

solutions? 

 

 Is it possible to extend the algorithm to effectively account for an arbitrary number of 

phases? 
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 Can the problem of having too large values of 𝛼 be circumvented in any other way 

which, preferably, preserves the mathematical guarantee of optimality? 

 

 How can the underestimating functions be made tighter? 

 

 Can the 𝛼𝐵𝐵 framework be used in conjunction with stochastic algorithms to improve 

its performance? 

 

 Is it possible to somehow randomize the algorithm to achieve a better mean 

performance? 
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8 APPENDIX A 

 

8.1 ELLIPSOID METHOD IMPLEMENTED BY KARPOV AND COLLABORATORS (1997) 
 

In this section, we describe the implementation of the IPM algorithm by Karpov and 

collaborators (1997). The actual IPM algorithm used is an ellipsoid method. It takes as input an 

initial feasible approximation 𝒙0 and a tolerance 𝜖. The algorithm finds a feasible solution ∆𝑟 at 

the r-th iteration by solving the following program: 

 

 min    ∑ 𝑣𝑗
𝑟

𝑗∈𝐿𝑠

∆𝑗 

𝑠. 𝑡. 

           𝑨∆= 𝟎, 

             ∑
∆𝑗
2

𝑞𝑗
𝑟

𝑗∈𝐿𝑠

≤ 1 
(91) 

   

 

Where 

 

𝑞𝑗
𝑟 =

{
 

 
𝑥𝑗
𝑟 − 𝑥𝑗      if only a lower bound 𝑥𝑗 is provided

𝑥�̅� − 𝑥𝑗
𝑟      if only an upper bound 𝑥�̅� is provided

min (𝑥𝑗
𝑟 − 𝑥𝑗 ;  𝑥�̅� − 𝑥𝑗

𝑟)  if both are provided

 

(92) 

  

 

𝐿𝑠 denotes the set of dependent components. With the aid of Lagrange multipliers – 𝑢𝑖
𝑟 –, the 

optimization problem (87) can be converted to solving a system of linear equations: 

 

∑𝑟𝑖𝑘
𝑟 𝑢𝑖

𝑟

𝑛

𝑖=1

= ∑ 𝑣𝑖
𝑟𝑎𝑘𝑗𝑞𝑗

𝑟

𝑗∈𝐿𝑠

        𝑖, 𝑘 ∈ 𝑁 
(93) 
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𝑟𝑖𝑘
𝑟 = ∑ 𝑎𝑘𝑗𝑎𝑖𝑗𝑞𝑗

𝑟

𝑗∈𝐿𝑠

                  𝑖, 𝑘 ∈ 𝑁 

 

 

𝑁 represents the set of indices of the independent components of the system and 𝑛 = |𝑁|. 

From that, one obtains 𝑢𝑖
𝑟. The calculation of ∆𝑟 is done s follows (Karpov, et al., 1997): 

 

∆𝑗
𝑟= 𝑞𝑗

𝑟 (∑𝑎𝑖𝑗𝑢𝑖
𝑟

𝑛

𝑖=1

− 𝑣𝑗
𝑟)         𝑖 ∈ 𝐿𝑠 

(94) 

 

In possession of the descent direction ∆𝑟 , the variable values for the next iteration can be 

computed as usual: 

 

𝒙𝑟+1 = 𝒙𝑟+1 + λ𝑟∆
𝑟 (95) 

 

The step size is represented by λ𝑟 and should be small. The stopping criterion used was Dikin’s 

criterion (Karpov, et al., 1997): 

 

𝐶𝐷 = √∑[𝑞𝑗
𝑟]
2

𝑗∈𝐿𝑠

(∑𝑎𝑖𝑗𝑢𝑖
𝑟

𝑛

𝑖=1

− 𝑣𝑗
𝑟)

2

≤ 𝜖 

(96) 

 

Where 𝜖 = 10−5. Through this approach, the authors have successfully performed Helmholtz 

energy minimization on a 4-phase, 39-component system (Karpov, et al., 1997). 

 

8.2 MASS BALANCE REFINEMENT (MBR) ROUTINE PROPOSED BY KULIK AND 

COLLABORATORS (2012) 
 

This procedure aims to minimize, within a pre-specified tolerance, the mass balance residuals 

ς
𝑖

(𝑟)
, where: 



118 
 

 

ς
𝑖

(𝑟)
= 𝑛𝑖

(𝑏)
−∑𝑎𝑖𝑗𝑛𝑗

(𝑦,𝑟)

𝑗∈𝐿

          𝑖 ∈ 𝑁 
(97) 

 

The index r denotes the iteration number, and is present in the above formula due to the fact 

that this procedure can be used multiple times, in each iteration, in order to assure that mass 

balances will not be violated within some tolerance. The authors mention that this tolerance 

generally ranges from 10−6 mol/kg to 10−8 mol/kg, except for trace components, in which case 

it might be required that it be smaller than 10−9 mol/kg. 

The step size of the main IPM is calculated as follows: 

 

λ𝑟 = argmin
0≤λ≤μ𝑟

[∑(𝑛𝑗
(𝑥,𝑟)

+ λ𝑗) 𝑣𝑗
(𝑟)

𝑗∈𝐿

] 
(98) 

  

 

Which is a one-dimensional optimization problem. The vector of number of moles being 

processed by the IPM at the r-th iteration is designated by 𝒏(𝑥,𝑟). The upper bound μ
𝑟
 must be 

such that 𝒏(𝑥,𝑟) + μ
𝑟
∆𝑟 remains within the feasible region. 

In highly non-ideal systems, the Gibbs energy function may display severe oscillations, which, if 

not treated appropriately, may compromise the convergence of the proposed IPM algorithm. 

For that reason, a so-called smoothing factor α𝛾  is introduced. The authors found that the 

amount of smoothing required would depend on the ration of the Dikin’s criterion and the 

prescribed convergence tolerance ϵ𝐷: 

 

α𝛾 = ϵ𝛿 + exp[ln(1 − ϵα) + ln 𝐶𝐷] +
ϵα − ϵ𝛿

1 +
exp(ln ϵ𝐷 − ln 𝐶𝐷)

ϵ𝛿

 

(99) 

  

 

Aside from ϵ𝐷, two other empirical constants are needed, namely ϵα and ϵ𝛿, both of them lying 

within the interval (0,1). ϵα sets the position of the α𝛾  plateau during the first iterations, when 
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𝐶𝐷 is high and severe corrections are necessary. ϵ𝛿  sets the minimum value for α𝛾 , which 

occurs when 𝐶𝐷 is small. 
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9 APPENDIX B 

 

The GOP algorithm is applicable to the NRTL model due to its following property (McDonald & 

Floudas, 1995): 

 

 

∑𝑛𝑖
𝑘 {
∑ 𝜏𝑗,𝑖𝐺𝑗,𝑖𝑛𝑗

𝑘
𝑗∈𝐶

∑ 𝐺𝑗,𝑖𝑛𝑗
𝑘

𝑗∈𝐶

}

𝑖∈𝐶

−∑𝑛𝑖
𝑘 {∑

𝐺𝑖,𝑗𝑛𝑗
𝑘

∑ 𝐺𝑖,𝑙𝑛𝑙
𝑘

𝑙∈𝐶

(
∑ 𝜏𝑙,𝑗𝐺𝑙,𝑗𝑛𝑙

𝑘
𝑙∈𝐶

∑ 𝐺𝑙,𝑗𝑛𝑙
𝑘

𝑙∈𝐶

)

𝑗∈𝐶

}

𝑖∈𝐶

= 0 

(100) 

   

 

This property is extremely important, for it allows us to rewrite the Gibbs free energy in a much 

more convenient way (McDonald & Floudas, 1995): 

 

 

𝐺(𝒏) = ∑ 𝐶𝑘

𝑘∈𝛱

+ ∑ ∑𝑛𝑖
𝑘 {∑

𝐺𝑖,𝑗𝜏𝑙,𝑗𝑛𝑗
𝑘

∑ 𝐺𝑖,𝑙𝑛𝑙
𝑘

𝑙∈𝐶𝑗∈𝐶

}

𝑖∈𝐶𝑘∈𝛱𝐿

 

(101) 

   

 

Where 𝛱𝐿are the liquid phases to which NRTL model applies and 𝐶𝑘 denotes: 

 

 
𝐶𝑘 =∑𝑛𝑖

𝑘 {
∆𝐺𝑖

𝑘,𝑓

𝑅𝑇
+ ln

𝑛𝑖
𝑘

∑ 𝑛𝑗
𝑘

𝑗∈𝐶

}

𝑖∈𝐶

 
(102) 

   

 

It has already been established that the terms 𝐶𝑘 are convex. Therefore, all non-convexities on 

the Gibbs function are due to the terms on right side of ∑ 𝐶𝑘𝑘∈𝛱  in equation (101). 

We can now define new variables (101) in such a way that the original problem is transformed 

into an equivalent biconvex problem. The new variables are: 
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𝛹𝑖
𝑘 =

𝑛𝑖
𝑘

∑ 𝐺𝑗,𝑖𝑛𝑗
𝑘

𝑗∈𝐶

   ⇔   𝛹𝑖
𝑘 {∑𝐺𝑗,𝑖𝑛𝑗

𝑘

𝑗∈𝐶

} − 𝑛𝑖
𝑘 = 0              𝑖 ∈ 𝐶,   𝑘 ∈ 𝛱𝐿 

(103) 

   

 

These definitions are then incorporated in the transformed problem as equality constraints. 

Upon examination of the new constraints it possible to check that for every fixed 𝑛𝑖
𝑘 , the 

constraint is affine in 𝛹𝑖
𝑘and vice versa. Upon partitioning the variables as: 

 

 𝜳 ← {𝛹𝑖
𝑘}           𝒏 ← {𝑛𝑖

𝑘} (104) 

   

 

The transformed optimization problem can now be stated as our primal problem: 

 

 

min
𝒏,𝜳

𝐺(𝜳, 𝒏) =∑ 𝐶𝑘

𝑘∈𝛱

+ ∑ ∑𝑛𝑖
𝑘 {∑𝐺𝑖,𝑗𝜏𝑙,𝑗𝛹𝑗

𝑘

𝑗∈𝐶

}

𝑖∈𝐶𝑘∈𝛱𝐿

 

𝑠. 𝑡. 

           𝛹𝑖
𝑘 {∑𝐺𝑗,𝑖𝑛𝑗

𝑘

𝑗∈𝐶

} − 𝑛𝑖
𝑘 = 0              𝑖 ∈ 𝐶,   𝑘 ∈ 𝛱𝐿, 

 (105) 

   

The primal problem is always feasible provided that the mole balance constraints are not 

violated (McDonald & Floudas, 1995). The mass balances were not included as constraints in the 

primal problem in order not to compromise its feasibility – in the actual algorithm, they will be 

included in the relaxed dual subproblems, which will be stated and explained later. 

As mentioned, it will be need to solve relaxed dual subproblems and it will be also necessary to 

evaluated KKT conditions. These necessities lead us to the calculation of the Lagrangian 

functions associated to the primal problem (McDonald & Floudas, 1995). For a fixed number of 

moles �̅�: 
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𝐿(𝜳, �̅�,𝛌) = ∑ 𝐶𝑘

𝑘∈𝛱

+ ∑ ∑�̅�𝑖
𝑘 {∑𝐺𝑖,𝑗𝜏𝑖,𝑗𝛹𝑗

𝑘

𝑗∈𝐶

}

𝑖∈𝐶𝑘∈𝛱𝐿

+ ∑ ∑ λ
𝛹𝑖
𝑘 {𝛹𝑖

𝑘∑𝐺𝑗,𝑖�̅�𝑗
𝑘

𝑗∈𝐶

− �̅�𝑖
𝑘}

𝑖∈𝐶𝑘∈𝛱𝐿

 

(106) 

   

 

Evaluating the KKT conditions for the primal, i.e., solving for ∇
𝛹𝑖
𝑘𝐿(𝜳, �̅�,𝛌) = 0 we obtain an 

explicit and compact formula for the Lagrange multipliers (McDonald & Floudas, 1995): 

 

 

λ𝛹𝑖𝑘 = −
∑ 𝐺𝑗,𝑖𝜏𝑗,𝑖�̅�𝑗

𝑘
𝑗∈𝐶

∑ 𝐺𝑗,𝑖𝑗∈𝐶 �̅�𝑗
𝑘

 
(107) 

   

 

The authors point out that if a phase disappears, the denominator of the last expression will be 

0. In this case, by making λ
𝛹𝑖
𝑘 = 0  ∀𝑖 will make sure that the KKT conditions will be satisfied 

despite of that. Having established the preliminary properties of the NRTL-based Gibbs energy 

minimization problem, we now move to the actual GOP algorithm. 

From a high-level perspective, the algorithm makes use of the primal problem, which upon 

evaluation or optimization always yields upper bounds for the global optimum, and of (relaxed) 

dual subproblems, which provide lower bounds. As Slater’s condition is satisfied, it follows that 

the duality gap is zero. This suggests an iterative procedure, whereby primal and dual 

subproblems are solved and the distance between the upper and lower bounds obtained 

through them be used to gauge how precise the solution turns. A very detailed explanation of 

the algorithm, including proofs and mathematical background is provided by Floudas (2000). 

We begin by noticing that problem (74) can be also written as: 
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 min
𝒚
𝑣(𝒚) 

𝑠. 𝑡. 

      𝑣(𝒚) = min
𝒙
𝑓(𝒙, 𝒚) , 

      𝒉(𝒙, 𝒚) = 𝟎, 

      𝒈(𝒙, 𝒚) ≤ 𝟎, 

      𝒚 ∈ 𝑌 ∩ 𝑉 

𝑉 = {𝒚 | ℎ(𝒙, 𝒚) = 𝟎 , 𝑔(𝒙, 𝒚) ≤ 𝟎  for some 𝒙 ∈ 𝑋} (108) 

  

  

The problem has thus  been rewritten as the combination of an internal and an external 

optimization problem. If we fix a value of 𝒚 ∈ 𝑌 ∩ 𝑉 , namely 𝒚𝑘 , from the strong duality 

theorem (which follows from Slater’s condition), it follows that solving the internal optimization 

problem is equivalent to maximizing its dual. Mathematically (McDonald & Floudas, 1995): 

 

 

{
 
 

 
 min𝒙

𝑓(𝒙, 𝒚𝑘)

𝑠. 𝑡.
      𝒉(𝒙, 𝒚𝑘) = 𝟎

      𝒈(𝒙, 𝒚𝑘) ≤ 𝟎}
 
 

 
 

= sup
𝝁≥𝟎

𝛌

inf
𝒙
{𝑓(𝒙, 𝒚𝑘) + 𝛌𝑇𝒉(𝒙, 𝒚𝑘) + 𝝁𝑇 𝒈(𝒙, 𝒚𝑘)} 

(109) 

  

  

In other words: 

 

 𝑣(𝒚) = sup
𝝁≥𝟎

𝛌

𝑖𝑛𝑓
𝒙
{𝑓(𝒙, 𝒚𝑘) + 𝝀𝑇𝒉(𝒙, 𝒚𝑘) + 𝝁𝑇 𝒈(𝒙, 𝒚𝑘)}      ∀𝒚 ∈ 𝑌 ∩ 𝑉 

 (110) 

   

This optimization problem may be just as hard to solve as the original problem. However, we 

may relax it in order to make it simpler. For that, we drop the set constraint 𝒚 ∈ 𝑌 ∩ 𝑉 and 

instead of demanding equality in Equation (110), we relax it to an inequality: 

 

 𝑣(𝒚) ≥ 𝑖𝑛𝑓
𝒙
{𝑓(𝒙, 𝒚𝑘) + 𝝀𝑇𝒉(𝒙, 𝒚𝑘) + 𝝁𝑇 𝒈(𝒙, 𝒚𝑘)} 

(111) 
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Merging these results, we can finally write the so-called relaxed dual subproblem, which will 

provide lower bounds for the algorithm: 

 

 min
𝒚∈𝒀
𝜇𝐵

𝜇𝐵 

𝑠. 𝑡. 

      𝜇𝐵 ≥ 𝑚𝑖𝑛
𝒙
𝐿(𝒙, 𝒚,𝝀,𝝁)            ∀𝝁 > 𝟎,𝝀 (112) 

   

 

Where 𝐿(𝒙, 𝒚,𝝀,𝝁) = 𝑓(𝒙, 𝒚) + 𝝀𝑇𝒉(𝒙, 𝒚) + 𝝁𝑇 𝒈(𝒙, 𝒚) . We will refer to the optimization 

problem 𝑚𝑖𝑛
𝒙
𝐿(𝒙, 𝒚,𝝀𝑘 ,𝝁𝑘)  as the inner relaxed dual subproblem (IRD). 𝝀𝑘  and 𝝁𝑘are the 

Lagrange multipliers obtained from the k-th primal problem. As this problem can still be hard to 

solve, we will replace it with a set of simpler problems that validly underestimate it. We now 

turn to the construction of such simpler problems. In the case of the NRTL model, by fixing the 

Lagrange multipliers �̅�, and recollecting terms, the Lagrangian can be written as: 

 

 

𝐿(𝜳, 𝒏, �̅�) = ∑ 𝐶𝑘

𝑘∈𝛱

+ ∑ ∑𝛹𝑖
𝑘 {∑𝐺𝑖,𝑗𝜏𝑖,𝑗𝑛𝑗

𝑘

𝑗∈𝐶

+ λ̅
𝛹𝑖
𝑘∑𝐺𝑗,𝑖𝑛𝑗

𝑘

𝑗∈𝐶

}

𝑖∈𝐶𝑘∈𝛱𝐿

− ∑ ∑𝑛𝑖
𝑘λ̅

𝛹𝑖
𝑘

𝑖∈𝐶𝑘∈𝛱𝐿

 
(113) 

   

 

The values of λ̅
𝛹𝑖
𝑘  are calculated as shown in Equation (107). By subtracting this last expression 

from equation (106) we obtain: 

 

 

𝐿(𝜳, 𝒏, �̅�) = ∑ ∑𝛹𝑖
𝑘 {∑𝐺𝑗,𝑖 [𝜏𝑗,𝑖 + λ̅𝛹𝑖𝑘

]

𝑗∈𝐶

[𝑛𝑗
𝑘 − �̅�𝑗

𝑘]}

𝑖∈𝐶𝑘∈𝛱𝐿

+∑𝐶𝑘

𝑘∈𝛱

− ∑ ∑𝑛𝑖
𝑘λ̅

𝛹𝑖
𝑘

𝑖∈𝐶𝑘∈𝛱𝐿

 
(114) 
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It is now possible to obtain a compact expression for the gradients of the Lagrangian, the so-

called qualifying constraints, which describe the nature of the interaction of the two variable 

sets (McDonald & Floudas, 1995). 

 

 𝑔𝑖
𝑘(𝒚) = ∇

𝛹𝑖
𝑘𝐿(𝜳, 𝒏, �̅�) =∑𝐺𝑗,𝑖 [𝜏𝑗,𝑖 + λ̅𝛹𝑖𝑘

]

𝑗∈𝐶

[𝑛𝑗
𝑘 − �̅�𝑗

𝑘]       ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝛱𝐿 
(115) 

   

 

It can be seen that these constraints form hyperplanes that partition the 𝒚 variable space. Each 

𝒙 variable, 𝛹𝑖
𝑘 interacts with a summation of 𝒚 variables, 𝑛𝑗

𝑘. It turns out that we can improve 

this partitioning by making sure that each 𝒚 variable interacts with only a single 𝒙 variable. The 

set of partitioning hyperplanes will be, therefore, orthogonal. In order to achieve that, we will 

augment the set of 𝒙 variables (McDonald & Floudas, 1995):  

 

 �̂�𝑖𝑗
𝑘 = 𝛹𝑖

𝑘        ∀𝑗 ∈ 𝐶 (116) 

   

 

We have, in a way introduced redundancy into the algorithm, but the orthogonality that we will 

be able to achieve justifies it. Reevaluating the gradient of the Lagrangian with respect to this 

new set of variables, it can be shown that: 

 

 𝑔𝑖𝑗
𝑘 (𝒚) = ∇

�̂�𝑖𝑗
𝑘𝐿(𝜳, 𝒏, �̅�) = 𝐺𝑗,𝑖 [𝜏𝑗,𝑖 + λ̅�̂�𝑖𝑗

𝑘 ] [𝑛𝑗
𝑘 − �̅�𝑗

𝑘]       ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝛱𝐿 (117) 

   

 

Each of these hyperplanes divides the space in two regions – one where 𝑛𝑗
𝑘 − �̅�𝑗

𝑘 ≥ 0 and other 

where 𝑛𝑗
𝑘 − �̅�𝑗

𝑘 < 0. From that it can be shown (McDonald & Floudas, 1995) that they partition 

the space in 2𝑁𝐶𝑉  n-rectangles, where 𝑁𝐶𝑉 = |𝐶||𝛱𝐿|. In each one of those rectangles the sign 

of 𝑛𝑗
𝑘 − �̅�𝑗

𝑘 will remain constant for all phases and components. We shall denote the box bounds 
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of each rectangle by 𝐵{𝐿𝐵, 𝑈𝐵}, where 𝐿𝐵, 𝑈𝐵 are the lower and upper bounds for each variable. 

The authors have also introduced the following notation (McDonald & Floudas, 1995): 

 

 𝑠𝑖𝑘
𝐵𝑙 = +1    ⟹     𝑛𝑗

𝑘 − �̅�𝑗
𝑘 ≥ 0

𝑠𝑖𝑘
𝐵𝑙 = −1    ⟹     𝑛𝑗

𝑘 − �̅�𝑗
𝑘 < 0

}   ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝛱𝐿 
(118) 

   

 

Where each rectangle is designated by 𝐵𝑙. From the definition of�̂�𝑖𝑗
𝑘  and the lower and upper 

bounds of 𝑛𝑖
𝑘, it is possible to find corresponding bounds for �̂�𝑖𝑗

𝑘 : 

 

 
𝐿
�̂�𝑖𝑗
𝑘 =

𝐿
𝑛𝑖
𝑘

𝐵

𝐿
𝑛𝑖
𝑘

𝐵 + ∑ 𝐺𝑗𝑖𝑈𝑛𝑗
𝑘
𝐵

𝑗≠𝑖

                       𝑈
�̂�𝑖𝑗
𝑘 =

𝑈
𝑛𝑖
𝑘
𝐵

𝑈
𝑛𝑖
𝑘
𝐵 + ∑ 𝐺𝑗𝑖𝐿𝑛𝑗

𝑘
𝐵

𝑗≠𝑖

 

(119) 

   

 

The last critical step in this derivation consists on deciding whether the 𝒙 variables should take 

their lower or upper bounds at each iteration. If we collect terms it is possible to rewrite the 

Lagrangian as (McDonald & Floudas, 1995): 

 

 

𝐿(�̂�, 𝒏, �̅�) = ∑ ∑{[𝑛𝑗
𝑘 − �̅�𝑗

𝑘]∑�̂�𝑗𝑖
𝑘 [𝐺𝑖𝑗 {𝜏𝑖𝑗 + λ̅𝛹𝑖𝑘

}]

𝑗∈𝐶

}

𝑖∈𝐶𝑘∈𝛱𝐿

+∑ 𝐶𝑘

𝑘∈𝛱

− ∑ ∑𝑛𝑖
𝑘λ̅

𝛹𝑖
𝑘

𝑖∈𝐶𝑘∈𝛱𝐿

 
(120) 

   

 

In order to make a choice, it is necessary to check the sign of 𝑛𝑗
𝑘 − �̅�𝑗

𝑘 and also check the sign of 

the multiplying term𝐺𝑖𝑗 {𝜏𝑖𝑗 + λ̅𝛹𝑖𝑘
}. Much like before, we define the following variables to 

guide us in this decision process: 
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 �̅�𝑗𝑖
𝑘 = +1    if      𝐺𝑖𝑗 {𝜏𝑖𝑗 + λ̅𝛹𝑖

𝑘} ≥ 0

�̅�𝑗𝑖
𝑘 = −1    if      𝐺𝑖𝑗 {𝜏𝑖𝑗 + λ̅𝛹𝑖𝑘

} < 0
 

(121) 

   

 

The decision is then made according to the following criterion. For the current iteration 𝐾: 

 

 
(�̅�𝑗𝑖
𝑘)
𝐾
𝑠𝑖𝑘
𝐵𝑙 = +1     ⟹     ( �̂�𝑗𝑖

𝑘)
𝐵𝑙
𝐾

= 𝐿
�̂�𝑖𝑗
𝑘

(�̅�𝑗𝑖
𝑘)
𝐾
𝑠𝑖𝑘
𝐵𝑙 = −1     ⟹     ( �̂�𝑗𝑖

𝑘)
𝐵𝑙
𝐾

= 𝑈
�̂�𝑖𝑗
𝑘

 

(122) 

   

 

For all the previous iterations 𝐾𝑃: 

 

 
(�̅�𝑗𝑖
𝑘)
𝐾𝑃
[(�̅�𝑖

𝑘)
𝐾
− (�̅�𝑖

𝑘)
𝐾𝑃
] = +1     ⟹     ( �̂�𝑗𝑖

𝑘)
𝐵𝑙
𝐾𝑃

= 𝐿
�̂�𝑖𝑗
𝑘

(�̅�𝑗𝑖
𝑘)
𝐾𝑃
[(�̅�𝑖

𝑘)
𝐾
− (�̅�𝑖

𝑘)
𝐾𝑃
] = −1     ⟹     ( �̂�𝑗𝑖

𝑘)
𝐵𝑙
𝐾𝑃

= 𝑈
�̂�𝑖𝑗
𝑘

 

(123) 

 

We can finally outline the algorithm. The details of implementation can be found in the original 

article (McDonald & Floudas, 1995).  

First an initial guess is supplied and the upper and lower bounds for the mole numbers are set. 

The primal problem is then solved by any local optimization solver and its Lagrange multipliers, 

�̅�𝐾 , are stored for that iteration. The values of (�̅�𝑗𝑖
𝑘)
𝐾

 are also calculated and stored. A 

combination of qualifying constraints 𝐵𝑙 is chosen, its lower and upper bounds are calculated, as 

well as 𝑠𝑖𝑘
𝐵𝑙. We now solve the relaxed dual within these constraints: 
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 min𝜇𝐵 

𝑠. 𝑡. 

      𝜇𝐵 ≥ 𝐿𝐶 (�̂�
𝐵𝑙
𝐾
, 𝒏, �̅�

𝐾
) 

      𝜇𝐵 ≥ 𝐿 (�̂�
𝐵𝑙
𝐾𝑃
, 𝒏, �̅�

𝐾𝑃
)        ∀𝐾𝑃 

      𝐿𝐵 ≤ 𝒏 ≤ 𝑈𝐵 

      0 = 𝑨𝒏 − 𝒃 

 (124) 

 

Notice that the mass balance, which was dropped in the beginning of this derivation is now being 

enforced. 𝐿𝐶  is evaluated by using equation (120). If the optimal value is greater that the 

smallest primal solution, it should be fathomed. If not, bounds are updated and it is stored and 

another 𝐵𝑙  is chosen and the procedure is repeated. Once there are no more 𝐵𝑙  available, the 

one that yielded the smallest solution is selected to be the mole number vector for the next 

iteration. If the difference between the smallest primal solution and the greatest relaxed dual 

solution is lesser than a certain pre-specified tolerance, the algorithm halts and provides an 

answer.  
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10 APPENDIX C 

 

10.1 PARAMETERS FOR THE BENCHMARK CHEMICAL EQUILIBRIUM PROBLEMS 
  

The following data were extracted from (Bonilla-Petricolet, et al., 2011). 

10.1.1 Problem 1 

 

The saturation pressure of each component in the vapor phase are given by log10 𝑃𝑖
𝑠𝑎𝑡 = 𝐴𝑖 −

𝐵𝑖

𝑇+𝐶𝑖
, where 𝑃𝑖

𝑠𝑎𝑡 is in Pa and T is in K. The coefficients A, B and C for each component is given in 

Table 12. 

Table 12 - Saturation pressure coefficients for the components of Problem 1. 

Component(*) 
Parameters of pure component 

A B C 

1 9.95614 1440.52 -60.44 

2 9.6845 1644.05 -39.63 

3 9.22298 1238.71 -56.15 

4 10.09171 1668.21 -45.14 

(*) (1) Ethanol; (2) Acetic acid; (3) Ethyl acetate; (4) Water 

 

The NRTL model parameters are shown in Table 13. We also assumed that 𝛼𝑖𝑗 = 0.3 ∀ 𝑖, 𝑗. 

Table 13 - NRTL parameters for Problem 1. 

Component(*) 
𝜏𝑖𝑗  in the NRTL model 

1 2 3 4 

1 0 1.3941 0.6731 -0.2019 

2 -1.0182 0 0.007 -0.4735 

3 0.1652 0.5817 0 1.7002 

4 2.1715 1.6363 1.9257 0 

(*) (1) Ethanol; (2) Acetic acid; (3) Ethyl acetate; (4) Water 
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10.1.2 Problem 2 

 

The saturation pressure of each component in the vapor phase is given by log10 𝑃𝑖
𝑠𝑎𝑡 = 𝐴𝑖 −

𝐵𝑖

𝑇+𝐶𝑖
, where 𝑃𝑖

𝑠𝑎𝑡 is in mmHg and T is in °C. The coefficients A, B and C for each component are 

given in Table 14. 

Table 14 - Saturation pressure coefficients for the components of Problem 2. 

Component(*) 
Parameters of pure component 

A B C 

1 6.84132 923.201 239.99 

2 8.07372 1578.23 239.382 

3 6.87201 1116.825 224.744 

4 6.80896 935.86 238.73 

(*) (1) Isobutene; (2) Methanol; (3) MTBE; (4) Butane 

 

The Wilson’s model parameters are shown in Table 15. 

Table 15 - Wilson parameters for Problem 2. 

Component(*) 𝑉𝑖 
𝑢𝑖𝑗 in the Wilson model (cal/mol) 

1 2 3 4 

1 93.33 - 169.9953 -60.1022 - 

2 44.44 2576.8532 - 1483.2478 2283.8726 

3 118.8 271.5669 -406.3902 - - 

4 100.39 - 382.3429 - - 

(*) (1) Isobutene; (2) Methanol; (3) MTBE; (4) Butane 

 

10.1.3 Problems 3 and 6 
 

The saturation pressure of each component in the vapor phase is given by: 

ln 𝑃𝑖
𝑠𝑎𝑡 = 𝐴𝑖 +

𝐵𝑖
𝑇
+ 𝐶𝑖 ln 𝑇 + 𝐷𝑖𝑇

2,    𝑖 = 1,2,5 

ln 𝑃𝑖
𝑠𝑎𝑡 = 𝐴𝑖 +

𝐵𝑖

𝑇+𝐶𝑖
,    𝑖 = 3,4  
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where 𝑃𝑖
𝑠𝑎𝑡 is in Pa and T is in K. The coefficients A, B, C and D for each component are given in 

Table 16. 

Table 16 - Saturation pressure coefficients for the components of Problems 3 and 6. 

Component(*) 
 Parameters of pure component 

A B C D 

1 74.527 -5232.2 -8.1482 8.474E-06 

2 82.614 -5586.1 -9.4429 1.0858E-05 

3 23.5347 -3661.468 -32.77 - 

4 20.9441 -2936.223 -47.70385 - 

5 81.624 -5578.5 -9.2354 9.4522E-06 

(*) (1) 2-Methyl-1-Butene; (2) 2-Methyl-2-Butene; (3) Methanol; (4) TAME; (5) n-Pentane 

 

The Wilson’s model parameters are shown in Table 17. 

Table 17 - Wilson parameters for Problems 3 and 6. 

Component(*) 𝑉𝑖 
𝑢𝑖𝑗 in the Wilson model (J/mol) 

1 2 3 4 5 

1 0.10868 - 478.8 1376.5 -611.75 326.74 

2 0.10671 -477.94 - 968.81 -386.04 362.28 

3 0.04069 9772.3 10147 - 4826.3 11749 

4 0.13345 951.33 712.33 -177 - 1143.9 

5 0.11613 -194.18 -265.49 1946.7 -447.84 - 

(*) (1) 2-Methyl-1-Butene; (2) 2-Methyl-2-Butene; (3) Methanol; (4) TAME; (5) n-Pentane 

 

10.1.4 Problem 4 
 

The UNIQUAC model parameters are shown in Table 15. 

Table 18 - UNIQUAC parameters for Problem 4. 

Component(*) 𝑄 𝑅𝑢 
𝑢𝑖𝑗 in the UNIQUAC model (cal/mol) 

1 2 3 4 

1 2.072 2.2024 - -131.7686 -343.593 -298.4344 

2 3.052 3.4543 148.2833 - 68.0083 82.5336 
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3 1.4 0.92 527.9269 581.1471 - 394.2396 

4 4.196 4.8724 712.2349 24.6386 756.4163 - 

(*) (1) Acetic acid; (2) n-Butanol; (3) Water; (4) n-Butyl acetate 

10.1.5 Problem 7  
 

The Margules model parameters are shown in Table 19. 

Table 19 - Margules parameters for Problem 7. 

Component 
𝐴𝑖𝑗  in the Margules solution model (K) 

1 2 3 

1 0 478.6 1074.484 

2 478.6 0 626.9 

3 1074.484 626.9 0 

 

10.1.6 Problem 8 

 

The NRTL model parameters are shown in Table 20 and in Table 21. 

Table 20 - NRTL parameters uij for Problem 8. 

Component(*) 
𝑢𝑖𝑗 in the NRTL model 

1 2 3 4 

1 0 1850.2001 79.4397 -327.5173 

2 -80.4396 0 667.4489 -219.7238 

3 369.0624 3280.604 0 -484.8901 

4 256.8999 842.6079 1126.4792 0 

 

Table 21 - NRTL parameters ij for Problem 8. 

Component(*) 
𝛼𝑖𝑗  in the NRTL model 

1 2 3 4 

1 - 0.3 0.3006 0.3044 

2 0.3 - 0.2564 0.2997 

3 0.3006 0.2564 - 0.3 

4 0.3044 0.2997 0.3 - 
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11 APPENDIX D 

 

11.1 ANALYTIC GRADIENTS AND HESSIANS FOR GIBBS ENERGY. 
  

As mentioned earlier, the Gibbs free energy functions that underwent constrained optimization 

took one of the following forms (Bonilla-Petricolet, et al., 2011): 

 𝐹 = ∆𝑔 − (𝑛𝑖,1 + 𝑛𝑖,2) ln𝐾𝑒𝑞,𝑖 (125) 
 

 In the case of vapor-liquid equilibrium (VLE) problems: 

 

 
∆𝑔 =∑𝑛𝑖,1 ln(𝑥𝑖,1𝛾𝑖,1)

𝑐

𝑖=1

+∑𝑛𝑖,2 ln(𝑥𝑖,2𝑃/𝑃𝑖
𝑠𝑎𝑡)

𝑐

𝑖=1

 
(126) 

 

For liquid-liquid equilibrium (LLE) problems: 

 

 
∆𝑔 =∑𝑛𝑖,1 ln(𝑥𝑖,1𝛾𝑖,1)

𝑐

𝑖=1

+∑𝑛𝑖,2 ln(𝑥𝑖,2𝛾𝑖,2)

𝑐

𝑖=1

 
(127) 

 

Here c is the total number of components in the system under consideration and the subscripts 

1 and 2 refer to different phases. The above formulae are sums of terms which belong to one of 

the following three types: 

 

 𝐶𝑖,𝑝
1 = 𝑛𝑖,𝑝 ln 𝑥𝑖,𝑝 

𝐶𝑖,𝑝
2 = 𝑛𝑖,𝑝 ln 𝑥𝑖,𝑝𝑃/𝑃𝑖

𝑠𝑎𝑡  

𝑁𝐶𝑖,𝑝 = 𝑛𝑖,𝑝 ln 𝛾𝑖,𝑝 (128) 
 

The terms of the forms 𝐶𝑖,𝑝
1  and 𝐶𝑖,𝑝

2  are convex, whereas those that take the form 𝑁𝐶𝑖,𝑝are 

potentially nonconvex. That observation enables us to simplify the notation for our objective 

functions: 



135 
 

For VLE: 

 
𝐹 =∑(𝐶𝑖,1

1 +𝑁𝐶𝑖,1)

𝑐

𝑖=1

+∑𝐶𝑖,2
2

𝑐

𝑖=1

− (𝑛𝑖,1 + 𝑛𝑖,2) ln𝐾𝑒𝑞,𝑖 
(129) 

 

For LLE: 

 

 
𝐹 =∑(𝐶𝑖,1

1 +𝑁𝐶𝑖,1)

𝑐

𝑖=1

+∑(𝐶𝑖,2
1 +𝑁𝐶𝑖,2)

𝑐

𝑖=1

− (𝑛𝑖,1 + 𝑛𝑖,2) ln𝐾𝑒𝑞,𝑖 
(130) 

 

It is now clear that in order to calculate the first and second derivatives of the objective function, 

it suffices to evaluate the first and second derivatives of the terms 𝐶𝑖,𝑝
1 , 𝐶𝑖,𝑝

2  and 𝑁𝐶𝑖,𝑝. 

 

11.1.1 Convex terms 

 

We begin by evaluating the first derivatives of 𝐶𝑖,𝑗
1  and 𝐶𝑖,𝑗

2 . 

 

 

𝜕𝐶𝑖,𝑝
1

𝜕𝑛𝑗,𝑝
=
𝜕(𝑛𝑖,𝑝 ln 𝑥𝑖,𝑝)

𝜕𝑛𝑗,𝑝
=

{
 
 

 
 
𝑛𝑖,𝑝
𝑥𝑖,𝑝

(
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

) + ln 𝑥𝑖,𝑝 𝑖𝑓 𝑖 = 𝑗

𝑛𝑖,𝑝

𝑥𝑖,𝑝
(
𝜕𝑥𝑖,𝑝

𝜕𝑛𝑗,𝑝
) 𝑖𝑓 𝑖 ≠ 𝑗

 

(131) 
 

 

𝜕𝐶𝑖,𝑝
2

𝜕𝑛𝑗,𝑝
=

𝜕 [𝑛𝑖,𝑝 ln (
𝑥𝑖,𝑝𝑃

𝑃𝑖
𝑠𝑎𝑡 )]

𝜕𝑛𝑗,𝑝
=

{
 
 

 
 
𝑛𝑖,𝑝
𝑥𝑖,𝑝

(
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

) + ln 𝑥𝑖,𝑝 + ln
𝑃

𝑃𝑖
𝑠𝑎𝑡 𝑖𝑓 𝑖 = 𝑗

𝑛𝑖,𝑝
𝑥𝑖,𝑝

(
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

) 𝑖𝑓 𝑖 ≠ 𝑗

 

(132) 
 

It follows that the second derivatives are given by: 

 

 𝜕2𝐶𝑖,𝑝
1

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
=

𝜕2𝐶𝑖,𝑝
2

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
= 

 
(133) 
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{
  
 

  
 𝜕 (

𝑛𝑖,𝑝
𝑥𝑖,𝑝

)

𝜕𝑛𝑘,𝑝
(
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

) +
𝑛𝑖,𝑝
𝑥𝑖,𝑝

𝜕2𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

+
1

𝑥𝑖,𝑝
(
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑘,𝑝

) 𝑖𝑓 𝑖 = 𝑗

𝜕 (
𝑛𝑖,𝑝
𝑥𝑖,𝑝

)

𝜕𝑛𝑘,𝑝
(
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

) +
𝑛𝑖,𝑝
𝑥𝑖,𝑝

𝜕2𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑖𝑓 𝑖 ≠ 𝑗

 

 

Where 

 

 
𝜕 (
𝑛𝑖,𝑝
𝑥𝑖,𝑝

)

𝜕𝑛𝑘,𝑝
=

(
𝜕𝑛𝑖,𝑝
𝜕𝑛𝑘,𝑝

) 𝑥𝑖,𝑝 − (
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑘,𝑝

)𝑛𝑖,𝑝

𝑥𝑖,𝑝
2  

(134) 
 

And, of course: 

 

 
(
𝜕𝑛𝑖,𝑝

𝜕𝑛𝑘,𝑝
) = {

1 𝑖𝑓 𝑖 = 𝑘
0 𝑖𝑓 𝑖 ≠ 𝑘

 
(135) 

 

 

All derivatives evaluated so far have been left in terms of mole fractions’ derivatives. Let us now 

proceed to evaluating them. Upon defining the molar fractions as: 

 

 𝑥𝑖,𝑝 =
𝑛𝑖,𝑝

∑ 𝑛𝑙,𝑝
𝑐
𝑙=1

 
(136) 

 

It follows that: 

 

𝜕𝑥𝑖,𝑝

𝜕𝑛𝑗,𝑝
=

{
 
 

 
 
∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 − 𝑛𝑖,𝑝

(∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 )

2      if 𝑖 = 𝑗

−𝑛𝑖,𝑝

(∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 )

2          if 𝑖 ≠ 𝑗

 

(137) 
 

 𝜕2𝑥𝑖,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
= 

{
 
 
 

 
 
 [1 − (

𝜕𝑛𝑖,𝑝
𝜕𝑛𝑘,𝑝

)] (∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 )

2
− 2(∑ 𝑛𝑙,𝑝

𝑐
𝑙=1 )(∑ 𝑛𝑙,𝑝

𝑐
𝑙=1 − 𝑛𝑖,𝑝)

(∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 )

4 if 𝑖 = 𝑗

− (
𝜕𝑛𝑖,𝑝
𝜕𝑛𝑘,𝑝

) (∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 )

2
− 2(∑ 𝑛𝑙,𝑝

𝑐
𝑙=1 )(∑ 𝑛𝑙,𝑝

𝑐
𝑙=1 − 𝑛𝑖,𝑝)

(∑ 𝑛𝑙,𝑝
𝑐
𝑙=1 )

4 if 𝑖 ≠ 𝑗

 

(138) 
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By plugging the formulae described in equations 137 and 138 in equations 131, 132 and 133, we 

can calculate analytically the gradient and hessian of all convex terms. Let us move on to the 

non-convex terms. 

 

11.1.2 Non-convex terms 

 

From the definition of the non-convex terms: 

 

 𝜕𝑁𝐶𝑖,𝑝
𝜕𝑛𝑗,𝑝

=
𝜕(𝑛𝑖,𝑝 ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
=
𝜕𝑛𝑖,𝑝
𝜕𝑛𝑗,𝑝

+ ln 𝛾𝑖,𝑝 + 𝑛𝑖,𝑝
𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
 

(139) 
 

For some activity models, it is more natural and convenient to express the derivatives as a 

function of ln 𝛾𝑖,𝑝, as opposed to expanding them. For other models, further expansion yields: 

 

 𝜕𝑁𝐶𝑖,𝑝

𝜕𝑛𝑗,𝑝
=
𝜕𝑛𝑖,𝑝

𝜕𝑛𝑗,𝑝
+ ln 𝛾𝑖,𝑝 +

𝑛𝑖,𝑝

𝛾𝑖,𝑝
(
𝜕𝛾𝑖,𝑝

𝜕𝑛𝑗,𝑝
) 

(140) 
 

Now, for the second derivatives: 

 

 𝜕2𝑁𝐶𝑖,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
=
𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑘,𝑝
+ (

𝜕𝑛𝑖,𝑝

𝜕𝑛𝑘,𝑝
)
𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
+ 𝑛𝑖,𝑝

𝜕2(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
 

(141) 
 

Expansion yields: 

 

 
𝜕2𝑁𝐶𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=
1

𝛾𝑖,𝑝

𝜕𝛾𝑖,𝑝
𝜕𝑛𝑘,𝑝

+

𝜕 (
𝑛𝑖,𝑝
𝛾𝑖,𝑝

)

𝜕𝑛𝑘,𝑝

𝜕𝛾𝑖,𝑝
𝜕𝑛𝑗,𝑝

+
𝑛𝑖,𝑝
𝛾𝑖,𝑝

𝜕2𝛾𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

 

 
Where (142) 
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𝜕 (
𝑛𝑖,𝑝
𝛾𝑖,𝑝

)

𝜕𝑛𝑘,𝑝
=

𝜕𝑛𝑖,𝑝
𝜕𝑛𝑘,𝑝

𝛾𝑖,𝑝 −
𝜕𝛾𝑖,𝑝
𝜕𝑛𝑘,𝑝

𝑛𝑖,𝑝

𝛾𝑖,𝑝
2  

The derivatives that depend on 𝛾𝑖,𝑝 depend, therefore, on the model used. We now move on to 

describe this dependency. 

11.1.2.1 Margules model 

 

We’ve already described the Margules model and, for convenience, we display it here again with 

slight modifications, in order to keep the notation consistent. 

 

 
ln 𝛾𝑖,𝑝 =

1

2𝑇
∑∑(𝐴𝑎,𝑖 + 𝐴𝑏,𝑖 − 𝐴𝑎,𝑏)𝑥𝑎,𝑝𝑥𝑏,𝑝

𝑐

𝑏=1

𝑐

𝑎=1

 
(143) 

 

The model is written in terms of the logarithm of the activity coefficient. For that reason, we will 

be concerned with finding derivatives that are expressed in terms of ln 𝛾𝑖,𝑝. 

 

 𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
=
1

2𝑇
∑∑[(𝐴𝑎,𝑖 + 𝐴𝑏,𝑖 − 𝐴𝑎,𝑏)

𝜕(𝑥𝑎,𝑝𝑥𝑏,𝑝)

𝜕𝑛𝑗,𝑝
]

𝑐

𝑏=1

𝑐

𝑎=1

 

 
Where 
 

𝜕(𝑥𝑎,𝑝𝑥𝑏,𝑝)

𝜕𝑛𝑗,𝑝
= 𝑥𝑎,𝑝

𝜕𝑥𝑏,𝑝

𝜕𝑛𝑗,𝑝
+ 𝑥𝑏,𝑝

𝜕𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝
 (144) 

 

It follows that the second derivatives are given by: 

 

 𝜕2(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
=
1

2𝑇
∑∑[(𝐴𝑎,𝑖 + 𝐴𝑏,𝑖 − 𝐴𝑎,𝑏)

𝜕2(𝑥𝑎,𝑝𝑥𝑏,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
]

𝑐

𝑏=1

𝑐

𝑎=1

 

 
Where 
 

𝜕2(𝑥𝑎,𝑝𝑥𝑏,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
= 

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑘,𝑝

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

+ 𝑥𝑎,𝑝
𝜕2𝑥𝑏,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
+
𝜕𝑥𝑏,𝑝
𝜕𝑛𝑘,𝑝

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

+ 𝑥𝑏,𝑝
𝜕2𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
 (145) 
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11.1.2.2 Wilson model 

 

As before, we begin by readapting our previous definition in order to better fit our current 

notations. 

 

 
ln 𝛾𝑖,𝑝 = 1 − ln (∑ 𝑥𝑎,𝑝Λ𝑖,𝑎

𝑐

𝑎=1
) −∑ (

𝑥𝑏,𝑝Λ𝑏,𝑖
∑ 𝑥𝑎,𝑝Λ𝑏,𝑎𝑐
𝑎=1

)
𝑐

𝑏=1
 

(146) 

   

In order to simplify the next derivations, we shall define: 

 

 
𝑋𝑖 =∑ 𝑥𝑎,𝑝Λ𝑖,𝑎

𝑐

𝑎=1
 

𝑌𝑖,𝑏 = 𝑥𝑏,𝑝Λ𝑏,𝑖  

𝑍𝑏 =∑ 𝑥𝑎,𝑝Λ𝑏,𝑎
𝑐

𝑎=1
 

 (147) 

   

Wilson model, then, becomes: 

 

 
ln 𝛾𝑖,𝑝 = 1 − ln𝑋𝑖 −∑ (

𝑌𝑖,𝑏
𝑍𝑏
)

𝑐

𝑏=1
 

(148) 

   

The first derivatives are, in terms of the newly defined variables: 

 

 
𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
= −

1

𝑋𝑖

𝜕𝑋𝑖
𝜕𝑛𝑗,𝑝

−∑

(

 

𝜕𝑌𝑖,𝑏
𝜕𝑛𝑗,𝑝

𝑍𝑏 −
𝜕𝑍𝑏
𝜕𝑛𝑗,𝑝

𝑌𝑖,𝑏

𝑍𝑏
2

)

 
𝑐

𝑏=1
 

 
 

(149) 

And the first derivatives of the new variables are: 

 

 𝜕𝑋𝑖
𝜕𝑛𝑗,𝑝

=∑
𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

Λ𝑖,𝑎
𝑐

𝑎=1
 

𝜕𝑌𝑖,𝑏
𝜕𝑛𝑗,𝑝

=
𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

Λ𝑏,𝑖 

𝜕𝑍𝑏
𝜕𝑛𝑗,𝑝

=∑
𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

Λ𝑏,𝑎
𝑐

𝑎=1
 

(150) 
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As for the second derivatives: 

 

 𝜕2(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
=
1

𝑋𝑖
2

𝜕𝑋𝑖
𝜕𝑛𝑘,𝑝

𝜕𝑋𝑖
𝜕𝑛𝑗,𝑝

−
𝜕2𝑋𝑖

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

1

𝑋𝑖
 

−∑

(

 
 

𝜕2𝑌𝑖,𝑏
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑍𝑏 +
𝜕𝑌𝑖,𝑏
𝜕𝑛𝑗,𝑝

𝜕𝑍𝑏
𝜕𝑛𝑘,𝑝

−
𝜕2𝑍𝑏

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝑌𝑖,𝑏 −

𝜕𝑌𝑖,𝑏
𝜕𝑛𝑘,𝑝

𝜕𝑍𝑏
𝜕𝑛𝑗,𝑝

𝑍𝑏
4

)

 
 𝑐

𝑏=1
 

 
 
 

(151) 

And 

 

 𝜕2𝑋𝑖
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=∑
𝜕2𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
Λ𝑖,𝑎

𝑐

𝑎=1
 

𝜕2𝑌𝑖,𝑏
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=
𝜕2𝑥𝑏,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
Λ𝑏,𝑖 

𝜕2𝑍𝑏
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=∑
𝜕2𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
Λ𝑏,𝑎

𝑐

𝑎=1
 

 (152) 

 

11.1.2.3 NRTL model 

 

We proceed exactly as before: 

 

 
ln 𝛾𝑖,𝑝 =

∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖𝑥𝑎,𝑝
𝑐
𝑎=1

∑ 𝐺𝑎,𝑖𝑥𝑎,𝑝
𝑐
𝑎=1

+∑
𝐺𝑖,𝑎𝑥𝑎,𝑝

∑ 𝐺𝑖,𝑏𝑥𝑏,𝑝
𝑐
𝑏=1

(𝜏𝑖,𝑎 −
∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎𝑥𝑏,𝑝
𝑐
𝑏=1

∑ 𝐺𝑏,𝑎𝑥𝑏,𝑝
𝑐
𝑏=1

)
𝑐

𝑎=1
 

(153) 

   

Again, we introduce new support variables: 

 

 
𝑋𝑖 =

∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖𝑥𝑎,𝑝
𝑐
𝑎=1

∑ 𝐺𝑎,𝑖𝑥𝑎,𝑝
𝑐
𝑎=1

 

𝑌𝑖,𝑎 =
𝐺𝑖,𝑎𝑥𝑎,𝑝

∑ 𝐺𝑖,𝑏𝑥𝑏,𝑝
𝑐
𝑏=1

 

𝑍𝑖,𝑎 = 𝜏𝑖,𝑎 −
∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎𝑥𝑏,𝑝
𝑐
𝑏=1

∑ 𝐺𝑏,𝑎𝑥𝑏,𝑝
𝑐
𝑏=1

 
(154) 
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The model, then, becomes: 

 

 
ln 𝛾𝑖,𝑝 = 𝑋𝑖 +∑ 𝑌𝑖,𝑎𝑍𝑖,𝑎

𝑐

𝑎=1
 

(155) 

   

First derivatives: 

 

 𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
=
𝜕𝑋𝑖
𝜕𝑛𝑗,𝑝

+∑
𝜕𝑌𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝑍𝑖,𝑎 +
𝜕𝑍𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝑌𝑖,𝑎
𝑐

𝑎=1
 

 

Where 

 

𝜕𝑋𝑖
𝜕𝑛𝑗,𝑝

= 

(∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖
𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑎=1 ) (∑ 𝐺𝑎,𝑖𝑥𝑎,𝑝

𝑐
𝑎=1 ) − (∑ 𝐺𝑎,𝑖

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑎=1 ) (∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖𝑥𝑎,𝑝

𝑐
𝑎=1 )

(∑ 𝐺𝑎,𝑖𝑥𝑎,𝑝
𝑐
𝑎=1 )

2  

 

𝜕𝑌𝑖,𝑎
𝜕𝑛𝑗,𝑝

=

𝐺𝑖,𝑎
𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

(∑ 𝐺𝑖,𝑏𝑥𝑏,𝑝
𝑐
𝑏=1 ) − (∑ 𝐺𝑖,𝑏

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑏=1 ) (𝐺𝑖,𝑎𝑥𝑎,𝑝)

(∑ 𝐺𝑖,𝑏𝑥𝑏,𝑝
𝑐
𝑏=1 )

2  

 

𝜕𝑍𝑖,𝑎
𝜕𝑛𝑗,𝑝

= 

(∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎
𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑏=1 ) (∑ 𝐺𝑏,𝑎𝑥𝑏,𝑝

𝑐
𝑏=1 ) − (∑ 𝐺𝑏,𝑎

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑏=1 ) (∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎𝑥𝑏,𝑝

𝑐
𝑏=1 )

(∑ 𝐺𝑏,𝑎𝑥𝑏,𝑝
𝑐
𝑏=1 )

2  

 (156) 

 

Second derivatives: 

 

 

 𝜕2(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
= 

(157) 
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𝜕2𝑋𝑖
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

+∑ [
𝜕2𝑌𝑖,𝑎

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝑍𝑖,𝑎 +

𝜕𝑌𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝜕𝑍𝑖,𝑎
𝜕𝑛𝑘,𝑝

+
𝜕2𝑍𝑖,𝑎

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝑌𝑖,𝑎

𝑐

𝑎=1

+
𝜕𝑍𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝜕𝑌𝑖,𝑎
𝜕𝑛𝑘,𝑝

] 

 
 

 

By further introducing new variables: 

 

 𝜕𝑋𝑖
𝜕𝑛𝑗,𝑝

=
𝑋𝐴 − 𝑋𝐵

𝑋𝐶2
 

 
 

𝜕𝑌𝑖,𝑎
𝜕𝑛𝑗,𝑝

=
𝑌𝐴 − 𝑌𝐵

𝑌𝐶2
 

 

𝜕𝑍𝑖,𝑎
𝜕𝑛𝑗,𝑝

=
𝑍𝐴 − 𝑍𝐵

𝑍𝐶2
 

 
(158) 

 

Which leads to: 

 

 
𝜕2𝑋𝑖

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
=

(
𝜕𝑋𝐴
𝜕𝑛𝑘,𝑝

−
𝜕𝑋𝐵
𝜕𝑛𝑘,𝑝

)𝑋𝐶2 − 2𝑋𝐶
𝜕𝑋𝐶
𝜕𝑛𝑘,𝑝

(𝑋𝐴 − 𝑋𝐵)

𝑋𝐶4
 

 
 

𝜕2𝑌𝑖,𝑎
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=

(
𝜕𝑌𝐴
𝜕𝑛𝑘,𝑝

−
𝜕𝑌𝐵
𝜕𝑛𝑘,𝑝

)𝑌𝐶2 − 2𝑌𝐶
𝜕𝑌𝐶
𝜕𝑛𝑘,𝑝

(𝑌𝐴 − 𝑌𝐵)

𝑌𝐶4
 

 

𝜕2𝑍𝑖,𝑎
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=

(
𝜕𝑍𝐴
𝜕𝑛𝑘,𝑝

−
𝜕𝑍𝐵
𝜕𝑛𝑘,𝑝

)𝑍𝐶2 − 2𝑍𝐶
𝜕𝑍𝐶
𝜕𝑛𝑘,𝑝

(𝑍𝐴 − 𝑍𝐵)

𝑍𝐶4
 

 
(159) 

 

Finally: 
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 𝜕𝑋𝐴

𝜕𝑛𝑘,𝑝
= (∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖

𝜕2𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑐

𝑎=1
) (∑ 𝐺𝑎,𝑖𝑥𝑎,𝑝

𝑐

𝑎=1
)

+ (∑ 𝐺𝑎,𝑖
𝜕𝑥𝑎,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑎=1
)(∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

𝑐

𝑎=1
) 

 
𝜕𝑋𝐵

𝜕𝑛𝑘,𝑝
= (∑ 𝐺𝑎,𝑖

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑎=1
) (∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖𝑥𝑎,𝑝

𝑐

𝑎=1
)

+ (∑ 𝐺𝑎,𝑖𝑥𝑎,𝑝
𝑐

𝑎=1
)(∑ 𝜏𝑎,𝑖𝐺𝑎,𝑖

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑎=1
) 

 
𝜕𝑋𝐶

𝜕𝑛𝑘,𝑝
=∑ 𝐺𝑎,𝑖

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑎=1
 

 

𝜕𝑌𝐴

𝜕𝑛𝑘,𝑝
= 𝐺𝑖,𝑎

𝜕2𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
(∑ 𝐺𝑖,𝑏𝑥𝑏,𝑝

𝑐

𝑏=1
) + 𝐺𝑖,𝑎

𝜕𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝
(∑ 𝐺𝑖,𝑏

𝜕𝑥𝑏,𝑝

𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
) 

 

𝜕𝑌𝐵

𝜕𝑛𝑘,𝑝
= (∑ 𝐺𝑖,𝑏

𝜕2𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
) (𝐺𝑖,𝑎𝑥𝑎,𝑝) + (∑ 𝐺𝑖,𝑏

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

𝑐

𝑏=1
)(𝐺𝑖,𝑎

𝜕𝑥𝑎,𝑝
𝜕𝑛𝑘,𝑝

) 

 
𝜕𝑌𝐶

𝜕𝑛𝑘,𝑝
=∑ 𝐺𝑖,𝑏

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
 

 

𝜕𝑍𝐴

𝜕𝑛𝑘,𝑝
= (∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎

𝜕2𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
)(∑ 𝐺𝑏,𝑎𝑥𝑏,𝑝

𝑐

𝑏=1
)

+ (∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎
𝜕𝑥𝑏,𝑝

𝜕𝑛𝑗,𝑝

𝑐

𝑏=1
)(∑ 𝐺𝑏,𝑎

𝜕𝑥𝑏,𝑝

𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
) 

 

𝜕𝑍𝐵

𝜕𝑛𝑘,𝑝
= (∑ 𝐺𝑏,𝑎

𝜕2𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
)(∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎𝑥𝑏,𝑝

𝑐

𝑏=1
)

+ (∑ 𝐺𝑏,𝑎
𝜕𝑥𝑏,𝑝
𝜕𝑛𝑗,𝑝

𝑐

𝑏=1
)(∑ 𝜏𝑏,𝑎𝐺𝑏,𝑎

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
) 

 
𝜕𝑍𝐶

𝜕𝑛𝑘,𝑝
=∑ 𝐺𝑏,𝑎

𝜕𝑥𝑏,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑏=1
 

 
(160) 

 

11.1.2.4 UNIQUAC model 

 

Lastly, we move on to the UNIQUAC model and proceed exactly as before. 

 

 ln 𝛾𝑖,𝑝 = ln 𝛾𝑖,𝑝
𝐸 + ln 𝛾𝑖,𝑝

𝑅  

ln 𝛾𝑖,𝑝
𝐸 = ln

𝜙𝑖,𝑝
𝑥𝑖,𝑝

+ 5𝑄𝑖 ln
𝜙𝑖,𝑝
𝑥𝑖,𝑝

+ 𝑙𝑖 −
𝜙𝑖,𝑝
𝑥𝑖,𝑝

∑𝑥𝑎,𝑝𝑙𝑎

𝑐

𝑎=1

 
(161) 
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ln 𝛾𝑖,𝑘
𝑅 = 𝑄𝑖 [1 − ln (∑𝜃𝑎𝜏𝑎𝑖

𝑐

𝑎=1

) −∑(
𝜃𝑎𝜏𝑎𝑖

∑ 𝜃𝑏𝜏𝑏𝑖
𝑐
𝑏=1

)

𝑐

𝑎=1

] 

𝜃𝑖,𝑝 =
𝑄𝑖𝑥𝑖,𝑝

∑ 𝑄𝑙𝑥𝑙,𝑝
𝑐
𝑙=1

 

𝜙𝑖,𝑝 =
𝑅𝑢,𝑖𝑥𝑖,𝑝

∑ 𝑅𝑢,𝑙𝑥𝑙,𝑝
𝑐
𝑙=1

 

 

First derivatives: 

 𝜕(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝
=
𝜕(ln 𝛾𝑖,𝑝

𝐸 )

𝜕𝑛𝑗,𝑝
+
𝜕(ln 𝛾𝑖,𝑝

𝑅 )

𝜕𝑛𝑗,𝑝
 

 

𝜕(ln 𝛾𝑖,𝑝
𝐸 )

𝜕𝑛𝑗,𝑝
=
𝑥𝑖,𝑝
𝜙𝑖,𝑝

(

 

𝜕𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝑥𝑖,𝑝 −
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝜙𝑖,𝑝

𝑥𝑖,𝑝
2

)

 (1 + 5𝑄𝑖) 

−

(

 

𝜕𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝑥𝑖,𝑝 −
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝜙𝑖,𝑝

𝑥𝑖,𝑝
2

)

 ∑𝑥𝑎,𝑝𝑙𝑎

𝑐

𝑎=1

−
𝜙𝑖,𝑝
𝑥𝑖,𝑝

∑
𝜕𝑥𝑎,𝑝
𝜕𝑛𝑗,𝑝

𝑙𝑎

𝑐

𝑎=1

 

 (162) 

 

It is again helpful to introduce support variables: 

 𝑋𝑖,𝑎 = 𝜃𝑎𝜏𝑎𝑖 

 

𝑌𝑖 =∑𝜃𝑏𝜏𝑏𝑖

𝑐

𝑏=1

 

 
𝜕𝑋𝑖,𝑎
𝜕𝑛𝑗,𝑝

=
𝜕𝜃𝑎,𝑝

𝜕𝑛𝑗,𝑝
𝜏𝑎𝑖  

 

𝜕𝑌𝑖
𝜕𝑛𝑗,𝑝

=∑
𝜕𝜃𝑏,𝑝
𝜕𝑛𝑗,𝑝

𝜏𝑏𝑖

𝑐

𝑏=1

 

 

𝜕2 𝑋𝑖,𝑎
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=
𝜕2𝜃𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝜏𝑎𝑖  

 

𝜕2𝑌𝑖
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=∑
𝜕2𝜃𝑏,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝜏𝑏𝑖

𝑐

𝑏=1

 

 
 (163) 
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Which leads to: 

 

 
𝜕(ln 𝛾𝑖,𝑝

𝑅 )

𝜕𝑛𝑗,𝑝
= 𝑄𝑖

[
 
 
 

−
1

∑ 𝜃𝑎,𝑝𝜏𝑎𝑖
𝑐
𝑎=1

∑
𝜕𝜃𝑎,𝑝

𝜕𝑛𝑗,𝑝
𝜏𝑎𝑖

𝑐

𝑎=1

−∑

𝜕𝑋𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝑌𝑖 −
𝜕𝑌𝑖
𝜕𝑛𝑗,𝑝

𝑋𝑖,𝑎

𝑌𝑖,𝑎
2

𝑐

𝑎=1
]
 
 
 

 

 (164) 
 

We also have: 

 
𝜕𝜃𝑖,𝑝
𝜕𝑛𝑗,𝑝

=

𝑄𝑖
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

(∑ 𝑄𝑙𝑥𝑙,𝑝
𝑐
𝑙=1 ) − 𝑄𝑖𝑥𝑖,𝑝 (∑ 𝑄𝑙

𝜕𝑥𝑙,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑙=1 )

(∑ 𝑄𝑙𝑥𝑙,𝑝
𝑐
𝑙=1 )

2  

 

𝜕𝜙𝑖,𝑝

𝜕𝑛𝑗,𝑝
=

𝑅𝑢,𝑖
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

(∑ 𝑅𝑢,𝑙𝑥𝑙,𝑝
𝑐
𝑙=1 ) − 𝑅𝑢,𝑖𝑥𝑖,𝑝 (∑ 𝑅𝑢,𝑙

𝜕𝑥𝑙,𝑝
𝜕𝑛𝑗,𝑝

𝑐
𝑙=1 )

(∑ 𝑅𝑢,𝑙𝑥𝑙,𝑝
𝑐
𝑙=1 )

2  
(165) 

 

The second derivatives are, then: 

 

 𝜕2(ln 𝛾𝑖,𝑝)

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
=
𝜕2(ln 𝛾𝑖,𝑝

𝐸 )

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
+
𝜕2(ln 𝛾𝑖,𝑝

𝑅 )

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
 

 
 (166) 

 

For clarity, let us introduce yet another variable: 

 

 

𝑍 =

𝜕𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝑥𝑖,𝑝 −
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝜙𝑖,𝑝

𝑥𝑖,𝑝
2  

 

𝜕𝑍

𝜕𝑛𝑘,𝑝
=

𝜕2𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑥𝑖,𝑝 +
𝜕𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝜕𝑥𝑖,𝑝
𝜕𝑛𝑘,𝑝

−
𝜕2𝑥𝑖,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝜙𝑖,𝑝 −

𝜕𝜙𝑖,𝑝
𝜕𝑛𝑘,𝑝

𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

𝑥𝑖,𝑝
4  

(167) 



146 
 

 
 
 

 

Let us also rewrite 
𝜕𝜙𝑖,𝑝

𝜕𝑛𝑗,𝑝
 as follows: 

  
𝜕𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝

=
𝐴𝑖,𝑗

𝐵2
 

 
 (168) 

We may now express the second derivatives of 𝜙𝑖,𝑝 more conveniently as: 

  

𝜕2𝜙𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=

𝜕𝐴𝑖,𝑗
𝜕𝑛𝑘,𝑝

𝐵2 − 2𝐴𝑖,𝑗𝐵
𝜕𝐵
𝜕𝑛𝑘,𝑝

𝐵4
 

 

𝜕𝐴𝑖,𝑗

𝜕𝑛𝑘,𝑝
= 𝑅𝑢,𝑖

𝜕2𝑥𝑖,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
(∑𝑅𝑢,𝑙𝑥𝑙,𝑝

𝑐

𝑙=1

) + 𝑅𝑢,𝑖
𝜕𝑥𝑖,𝑝

𝜕𝑛𝑗,𝑝
(∑𝑅𝑢,𝑙

𝜕𝑥𝑙,𝑝

𝜕𝑛𝑘,𝑝

𝑐

𝑙=1

)

− 𝑅𝑢,𝑖
𝜕𝑥𝑖,𝑝

𝜕𝑛𝑘,𝑝
(∑𝑅𝑢,𝑙

𝜕𝑥𝑙,𝑝

𝜕𝑛𝑗,𝑝

𝑐

𝑙=1

)

− 𝑅𝑢,𝑖𝑥𝑖,𝑝 (∑𝑅𝑢,𝑙
𝜕2𝑥𝑙,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑐

𝑙=1

) 

 

𝜕𝐵

𝜕𝑛𝑘,𝑝
=∑𝑅𝑢,𝑙

𝜕𝑥𝑙,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑙=1

 

 (169) 
 

The same reasoning applies to 𝜃𝑖,𝑝: 

 𝜕𝜃𝑖,𝑝
𝜕𝑛𝑗,𝑝

=
𝐶𝑖,𝑗

𝐷2
 

 

𝜕2𝜃𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

=

𝜕𝐶𝑖,𝑗
𝜕𝑛𝑘,𝑝

𝐷2 − 2𝐶𝑖,𝑗𝐷
𝜕𝐷
𝜕𝑛𝑘,𝑝

𝐷4
 

 

𝜕𝐶𝑖,𝑗

𝜕𝑛𝑘,𝑝
= 𝑄𝑖

𝜕2𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

(∑𝑄𝑙𝑥𝑙,𝑝

𝑐

𝑙=1

) + 𝑄𝑖
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑗,𝑝

(∑𝑄𝑙
𝜕𝑥𝑙,𝑝
𝜕𝑛𝑘,𝑝

𝑐

𝑙=1

)

− 𝑄𝑖
𝜕𝑥𝑖,𝑝
𝜕𝑛𝑘,𝑝

(∑𝑄𝑙
𝜕𝑥𝑙,𝑝
𝜕𝑛𝑗,𝑝

𝑐

𝑙=1

) − 𝑄𝑖𝑥𝑖,𝑝 (∑𝑄𝑙
𝜕2𝑥𝑙,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝

𝑐

𝑙=1

) 

 (170) 
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𝜕𝐷

𝜕𝑛𝑘,𝑝
=∑𝑄𝑙

𝜕𝑥𝑙,𝑝

𝜕𝑛𝑘,𝑝

𝑐

𝑙=1

 

 
 

Now: 

 𝜕2(ln 𝛾𝑖,𝑝
𝐸 )

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
= (1 + 5𝑄𝑖) (𝑍

2 +
𝑥𝑖,𝑝
𝜙𝑖,𝑝

𝜕𝑍

𝜕𝑛𝑘,𝑝
) 

−
𝜕𝑍

𝜕𝑛𝑘,𝑝
∑𝑥𝑎,𝑝𝑙𝑎

𝑐

𝑎=1

− 𝑍∑
𝜕𝑥𝑎,𝑝

𝜕𝑛𝑘,𝑝
𝑙𝑎

𝑐

𝑎=1

 

+𝑍
𝑥𝑖,𝑝

𝜙𝑖,𝑝
∑

𝜕𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝
𝑙𝑎

𝑐

𝑎=1

−
𝜙𝑖,𝑝

𝑥𝑖,𝑝
∑

𝜕2𝑥𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝑙𝑎

𝑐

𝑎=1

 

 (171) 
 

Lastly, it is possible to write the second derivatives of ln 𝛾𝑖,𝑝
𝑅  as the sum of two terms: 

 

 𝜕2(ln 𝛾𝑖,𝑝
𝑅 )

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
= 𝑇1 + 𝑇2 

 (172) 
 

Where: 

 

𝑇1 = 𝑄𝑖

{
 

 

[
 
 
 ∑

𝜕𝜃𝑎,𝑝
𝜕𝑛𝑘,𝑝

𝜏𝑎𝑖
𝑐
𝑎=1

(∑ 𝜃𝑎,𝑝𝜏𝑎𝑖
𝑐
𝑎=1 )

2

]
 
 
 

[∑
𝜕𝜃𝑎,𝑝

𝜕𝑛𝑗,𝑝
𝜏𝑎𝑖

𝑐

𝑎=1

]

+ [∑
𝜕2𝜃𝑎,𝑝

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝜏𝑎𝑖

𝑐

𝑎=1

] [−
1

∑ 𝜃𝑎,𝑝𝜏𝑎𝑖
𝑐
𝑎=1

]

}
 

 

 

 

𝑇2 = −𝑄𝑖∑

𝑌𝑖,𝑎
2 𝑇3 − 2𝑌𝑖,𝑎

𝜕𝑌𝑖,𝑎
𝜕𝑛𝑘,𝑝

(
𝜕𝑋𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝑌𝑖 −
𝜕𝑌𝑖
𝜕𝑛𝑗,𝑝

𝑋𝑖,𝑎)

𝑌𝑖,𝑎
4

𝑐

𝑎=1

 

 

𝑇3 =
𝜕2𝑋𝑖,𝑎

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝑌𝑖 +

𝜕𝑋𝑖,𝑎
𝜕𝑛𝑗,𝑝

𝜕𝑌𝑖
𝜕𝑛𝑘,𝑝

−
𝜕2𝑌𝑖

𝜕𝑛𝑗,𝑝𝜕𝑛𝑘,𝑝
𝑋𝑖,𝑎 −

𝜕𝑋𝑖,𝑎
𝜕𝑛𝑘,𝑝

𝜕𝑌𝑖
𝜕𝑛𝑗,𝑝

 

 
 (173) 

 


