#### UNIVERSIDADE FEDERAL DE MINAS GERAIS

#### ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ESTRUTURAS

Rafael Luiz Galvão de Oliveira

# Estudo Teórico sobre os Esforços Resistentes de Perfis Formados a Frio com Presença de Furos

Belo Horizonte

2017

# Estudo Teórico sobre os Esforços Resistentes de Perfis Formados a Frio com Presença de Furos

Dissertação apresentada ao Programa de Pósgraduação em Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do grau de "Mestre em Engenharia de Estruturas".

Orientador: Prof. Dr. Francisco Carlos Rodrigues

Co-orientador: Prof. Dr. Rodrigo Barreto Caldas

#### **Belo Horizonte**

i

## UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ESTRUTURAS

# Estudo Teórico sobre os Esforços Resistentes de Perfis Formados a Frio com Presença de Furos

#### Rafael Luiz Galvão de Oliveira

Dissertação apresentada ao Programa de Pósgraduação em Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do grau de "Mestre em Engenharia de Estruturas".

Comissão avaliadora:

Prof. Dr. Francisco Carlos Rodrigues DEES - UFMG – (Orientador)

Prof. Dr. Rodrigo Barreto Caldas DEES - UFMG – (Co-orientador)

Prof. Dr. Hermes Carvalho DEES - UFMG

Prof. Dr. Maximiliano Malite EESC/USP – Departamento de Engenharia de Estruturas

Belo Horizonte, 17 de agosto de 2017

# DEDICATÓRIA

Dedico esse trabalho à minha filha por alegrar meus dias com sua constante alegria. E ao meu pai *(in memoriam)*.

## AGRADECIMENTOS

Agradeço inicialmente a Deus pelas oportunidades de crescimento pessoal e profissional.

O apoio de minha mãe Márcia e de meu padrasto Ronaldo para a realização de vários sonhos foi importantíssimo. A vocês, que abdicaram de sonhos para que os filhos tivessem um futuro melhor, meu muito obrigado.

Agradeço à minha filha Ana Luiza por iluminar meus dias com seus sorrisos e à minha namorada Priscila.

Agradeço à minha família, em especial à minha querida irmã Amanda e ao meu padrinho Geraldo Magela. Agradeço também aos meus amigos sempre presentes, que se mostraram como uma família que Deus me permitiu escolher.

Ao Professor Dr. Francisco Carlos Rodrigues e ao Professor Dr. Rodrigo Barreto Caldas pela dedicação, suporte, paciência e pelo conhecimento fornecido ao longo do desenvolvimento deste trabalho.

Aos professores e colaboradores do Departamento de Engenharia de Estruturas da Escola de Engenharia da Universidade Federal de Minas Gerais que tanto contribuíram com minha formação. Aos amigos da Pós-Graduação, em especial ao Raphael Nonato Cabana Vieira e Lucas Figueiredo Grilo, pelo apoio ao longo da jornada.

À equipe da Caltra Projetos e Consultoria, onde iniciei meu aprendizado na área de cálculos estruturais, minha gratidão e meu reconhecimento.

### **RESUMO**

OLIVEIRA, R. L. O. *Estudo Teórico sobre os Esforços Resistentes de Perfis Formados a Frio com a Presença de Furos*. Belo Horizonte, 2017 - Dissertação de Mestrado. Programa de Pós-graduação em Engenharia de Estruturas, Escola de Engenharia, Universidade Federal de Minas Gerais.

Esta pesquisa tem como principal objetivo realizar um estudo teórico sobre os esforços resistentes de perfis formados a frio com a presença de furos. No sistema construtivo Light Steel Framing (LSF) a execução de furos nos montantes e vigas são usadas comumente, para passagem de tubulações elétricas, hidráulicas, de gás, aquecimento e afins. A execução dos furos pode causar redução da capacidade resistente dos perfis, entretanto, a norma técnica brasileira destinada ao dimensionamento de estruturas de aço constituídas por perfis formados a frio, ABNT NBR 14762:2010, aborda a presença de furos somente os capítulos que tratam de barras tracionadas e ligações parafusadas. Realizou-se ao longo do estudo uma revisão bibliográfica sobre o assunto, com intuito de determinar o comportamento dos perfis com furos, com base em normas internacionais e artigos que contemplam a existência destes. São apresentados métodos de dimensionamento de perfis com a presença de furos preconizados na norma AISI S100-16. Os resultados obtidos com este método foram comparados com os resultados dos ensaios apresentados na revisão bibliográfica. Também são apresentados gráficos para o pré-dimensionamento dos principais perfis utilizados no sistema LSF. E por fim, foi desenvolvido um aplicativo utilizando programação orientada a objetos (POO) para o dimensionamento de perfis formados a frio com e sem a presença de furos.

Palavras-chave: Perfis formados a frio; Light Steel Framing; Perfurações; Furos.

## ABSTRACT

The aim of this study is to present a theoretical study on the structural resistance of coldformed steel with holes. In Light Steel Framing (LSF) construction system, structural members are usually provided with holes to accommodate plumbing, electrical conduits and heating conduits. The presence of holes may reduce the ultimate strength of the frame. Therefore, the Brazilian Standard ABNT NBR 14762:2010 present the design rules in that case only for tensile frames and bolted connections. It was made a literature review on the subject, based on international standard and papers, in order to determinate the behavior of cold-formed steel with openings. The design rules of AISI S100-16 for frames with holes were presented. The results obtained based on AISI S100-16 were compared with the experimental results presented on literature review. It was presented the preliminary design abacus of the most common frames used on LSF. It was also developed a *software* for the design of cold-formed profiles with or without holes.

Key words: Cold-Formed Steel; Light Steel Framing; Perforations; Holes.

# SUMÁRIO

| DEDICATÓRIA     | iii                                                                     |
|-----------------|-------------------------------------------------------------------------|
| AGRADECIME      | NTOSiv                                                                  |
| RESUMO          | v                                                                       |
| ABSTRACT        | vi                                                                      |
| LISTA DE FIGU   | JRASxi                                                                  |
| LISTA DE TAB    | ELAS                                                                    |
| I ISTA DE SÍMI  |                                                                         |
|                 |                                                                         |
| LISTA DE ABR    | EVIATURAS E SIGLASxxviii                                                |
| 1. Introdução   |                                                                         |
| 1.1 Conside     | erações Gerais1                                                         |
| 1.2 Objetive    | os3                                                                     |
| 1.3 Metodo      | logia3                                                                  |
| 1.4 Justifica   | ativa4                                                                  |
| 1.4.1 Est       | udo do comportamento de perfis formados a frio com a presença de furos4 |
| 1.4.2 De        | senvolvimento do <i>software</i> 5                                      |
| 1.5 Desenve     | olvimento da dissertação6                                               |
| 2. Revisão bibl | iográfica7                                                              |
| 2.1 Normas      | brasileiras7                                                            |
| 2.1.1 Mé        | todo da Largura Efetiva7                                                |
| 2.1.2 Mé        | todo da Seção Efetiva8                                                  |
| 2.1.3 Mé        | todo da Resistência Direta9                                             |
| 2.1.4 Pre       | escrições da ABNT NBR 14762:2010 para o dimensionamento de barras9      |
| 2.1.5 Bar       | rras submetidas à força axial de tração10                               |
| 2.1.6 Bar       | rras submetidas à força axial de compressão11                           |
| 2.1.7 Bar       | rras submetidas à flexão simples13                                      |
| 2.1.8 Bar       | rras submetidas à força cortante15                                      |
| 2.1.9 Bar       | rras submetidas à força cortante e momento fletor15                     |

| 2.1.10              | Barras submetidas à flexão composta16                                                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1.11              | Outras normas brasileiras16                                                                                                                                      |
| 2.2 Eu              | urocode                                                                                                                                                          |
| 2.3 N               | orma norte americana AISI S100-1618                                                                                                                              |
| 2.3.1<br>furos c    | MLE aplicado em elementos enrijecidos uniformemente comprimidos com<br>firculares ou não circulares                                                              |
| 2.3.2               | MLE aplicado em almas de perfis Ue sujeitas a gradiente de tensões20                                                                                             |
| 2.3.3               | Força cortante resistente de cálculo para perfis Ue com furos na alma20                                                                                          |
| 2.3.4<br>furos n    | Força resistente ao enrugamento da alma ( <i>web crippling</i> ) para perfis Ue com<br>na alma                                                                   |
| 2.3.5<br>furos      | Método da Resistência Direta aplicado às barras em compressão centrada, sem 23                                                                                   |
| 2.3.6               | Método da Resistência Direta aplicado às barras em flexão, sem furos25                                                                                           |
| 2.3.7               | Método da Resistência Direta aplicado aos perfis com furos26                                                                                                     |
| 2.3.8               | Flambagem elástica de barras com furos segundo AISI S100-1627                                                                                                    |
| 2.4 Fl              | ambagem elástica de barras com furos27                                                                                                                           |
| 2.4.1               | Forças de flambagem elástica global27                                                                                                                            |
| 2.4.2               | Forças de flambagem elástica distorcional29                                                                                                                      |
| 2.4.3               | Forças de flambagem elástica local                                                                                                                               |
| 2.5 M               | tétodo da Resistência Direta aplicado em barras em compressão com furos                                                                                          |
| 2.6 M               | étodo da Resistência Direta aplicado em barras em flexão com furos37                                                                                             |
| 2.7 Ex              | xperimentos realizados em barras em compressão Ue com furos na alma                                                                                              |
| 2.8 Ex<br>Ue e furc | xperimentos realizados em <i>steel joist</i> constituídos por barras em flexão com seção<br>os na alma                                                           |
| 2.9 Co<br>crippling | omportamento de perfis com furos sujeitos ao enrugamento da alma ( <i>web</i><br>)                                                                               |
| 2.10 Fl             | ambagem elástica de perfis formados a frio com furos enrijecidos49                                                                                               |
| 2.11 A              | nálise crítica e comparativa51                                                                                                                                   |
| 2.11.1              | Comparações entre as normas estudas51                                                                                                                            |
| 2.11.2              | Comparações entre o MRD para perfis sem furos e perfis com furos53                                                                                               |
| 2.11.3<br>o dime    | Comparação entre as formulações de Uzzaman et al (2012) e AISI S100-16 para ensionamento de perfis Ue sujeitos ao enrugamento da alma ( <i>web crippling</i> )58 |
| 3. Desenv           | volvimento do <i>software</i> CFD63                                                                                                                              |

| 3  | .1           | Java e a Linguagem Orientada a Objetos                                                     | 53         |
|----|--------------|--------------------------------------------------------------------------------------------|------------|
| 3  | .2           | Estruturação básica do aplicativo                                                          | 54         |
| 3  | .3           | Funcionalidade das classes                                                                 | 57         |
|    | 3.3.         | 1 Classes do pacote Geometria                                                              | 57         |
|    | 3.3.         | 2 Classes do pacote <i>Sections</i>                                                        | 58         |
|    | 3.3.         | 3 Classes do pacote Modelo                                                                 | 74         |
|    | 3.3.4        | 4 Classes do pacote Esforço Resistente                                                     | 75         |
|    | 3.3.         | 5 Classes do pacote Verificações                                                           | 77         |
|    | 3.3.         | 6 Classes do pacote <i>Library</i>                                                         | 78         |
|    | 3.3.         | 7 Classes do pacote GIG                                                                    | 78         |
|    | 3.3.         | 8 Classes do pacote <i>App</i>                                                             | 78         |
|    | 3.3.         | 9 Classes do pacote Útil                                                                   | 78         |
| 3  | .4           | Validação do <i>software</i>                                                               | 78         |
|    | 3.4.         | 1 Barras em flexão                                                                         | 78         |
|    | 3.4.         | 2 Barras em compressão                                                                     | 31         |
| 3  | .5           | Exemplos de aplicação                                                                      | 33         |
|    | 3.5.<br>flex | 1 Exemplo 1 – Viga Ue 140x40x12x0,95 sem abertura na alma submetida à<br>ão simples        | 33         |
|    | 3.5.<br>flex | 2 Exemplo 2 – Viga Ue 140x40x12x0,95 com abertura na alma submetida à<br>ão simples        | 36         |
|    | 3.5.<br>flex | 3 Exemplo 3– Montante Ue 90x40x12x0,95 sem abertura na alma submetido à ão composta        | 39         |
|    | 3.5.<br>com  | 4 Exemplo 4 – Montante Ue 90x40x12x0,95 com abertura na alma submetido à apressão centrada | 93         |
| 4. | Con          | nportamento de barras de aço com a presença de furos9                                      | 96         |
| 4  | .1           | Estudo de barras de aço comprimidas do sistema LSF com a presença de furos9                | <i>)</i> 6 |
| 4  | .2           | Estudo de barras de aço fletidas do sistema LSF com a presença de furos10                  | )0         |
|    | 4.2.         | 1 Determinação do momento fletor resistente de cálculo10                                   | )0         |
|    | 4.2.         | 2 Verificação dos deslocamentos de perfis com a presença de furos                          | )3         |
|    | 4.2.         | 3 Determinação da força cortante resistente de cálculo10                                   | )3         |
| 4  | .3           | Gráficos de pré-dimensionamento                                                            | )6         |
|    | 4.3.         | 1 Gráficos L x N <sub>Sd</sub> – Barras submetidas à força axial de compressão10           | )6         |
|    | 4.3.         | 2 Gráficos L x q <sub>sd</sub> – Barras submetidas à flexão na maior inércia               | 6          |

| 4.3.3         | $Gráficos \ q_{Sd} \ x \ N_{Sd} - Barras \ submetidas \ a \ flexo-compressão \dots 124$ |
|---------------|-----------------------------------------------------------------------------------------|
| 5. Discuss    | ões e Conclusões148                                                                     |
| 5.1 Cor       | nsiderações Finais148                                                                   |
| 5.1.1         | Dimensionamento de perfis formados a frio com a presença de furos148                    |
| 5.1.2<br>frio | Desenvolvimento de um <i>software</i> para dimensionamento de perfis formados a 150     |
| 5.2 Rec       | comendações e Sugestões para Estudos Posteriores151                                     |
| 5.2.1         | Dimensionamento de perfis formados a frio com a presença de furos151                    |
| 5.2.2         | Futuras implementações do software CFD151                                               |
| REFERÊNC      | TAS BIBLIOGRÁFICAS                                                                      |

# LISTA DE FIGURAS

| Figura 1.1 – Estrutura de uma residência em Light Steel Framing (CBCA, 2006)1                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 1.2 – Furos para a passagem de tubulações elétricas2                                                                                                                          |
| Figura 1. 3 – Reforço para perfurações feitas em obra (Fonte: Manual CBCA – Arquitetura).3                                                                                           |
| Figura 2.1 – Abertura nos perfis do LSF (ABNT NBR 15253:2014)17                                                                                                                      |
| Figura 2.2 – Nomenclatura adotada na norma norte americana (AISI S100-16)18                                                                                                          |
| Figura 2.3 – Condições de carregamento. (a) IOF, (b) EOF (adaptada de AISI Report. RP02-<br>2)                                                                                       |
| Figura 2.4 – (a) Seção líquida, (b) Seção bruta28                                                                                                                                    |
| Figura 2.5 – Guia para modelagem da seção líquida de uma barra em compressão no CUFSM, exemplos incluem: a) Perfil Ue e b) Perfil Cr (Adaptada de Moen & Schafer, 2009)31            |
| Figura 2.6 - Curva de flambagem local elástica de uma seção líquida, onde: a) $L_h < L_{crlh}$ e b)<br>$L_h > L_{crlh}$ (Adaptada de Moen & Schafer, 2009)32                         |
| Figura 2.7 - Guia para modelagem da seção líquida de barras em flexão no CUFSM, exemplos incluem: a) Perfil Ue e b) Perfil Cr (Adaptada de Moen & Schafer, 2009)                     |
| Figura 2.8 - Curva de flambagem elástica, obtida via método das faixas finitas (Adaptada de Moen e Schafer, 2011)                                                                    |
| Figura 2.9 - Redução de força resistente da barra em compressão devido à flambagem distorcional: P <sub>ynet</sub> /P <sub>y</sub> =0,80 (Adaptada de Moen e Schafer, 2011)          |
| Figura 2.10 - Redução de força resistente da barra em compressão devido à flambagem distorcional: (a) $P_{ynet}/P_y = 0,60$ (Adaptada de Moen e Schafer, 2011)                       |
| Figura 2.11 - Modos de flambagem esperado para barras em compressão curtas: (a)<br>Flambagem Local; (b) Flambagem Distorcional (Adaptada de Moen e Schafer, 2008)                    |
| Figura 2.12 – Modos de flambagem esperado para barras em compressão de comprimento intermediário: (a) Flambagem Local; (b) Flambagem Distorcional (Adaptada de Moen e Schafer, 2008) |

| Figura 2.13 – Nomenclatura adotada no estudo (Adaptada de Moen e Schafer, 2008)40                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 2.14 - Esquema adotado nos ensaios realizados por Moen et at. (Adaptada de Moen et al, 2013)                                                                                                                                |
| Figura 2.15 – Procedimento de análise da seção líquida via método das faixas finitas (Adaptada de Moen et al., 2013)                                                                                                               |
| Figura 2.16 – Nomenclatura adotada no estudo (Moen et al., 2013)                                                                                                                                                                   |
| Figura 2.17 - Dados da seção transversal e condições de apoio. (a) ITF (b) ETF (Uzzaman et al., 2012)                                                                                                                              |
| Figura 2.18 - Representação esquemática do modelo estudado (Adaptada de Moen e Yu, 2010)                                                                                                                                           |
| Figura 2.19 - Condições de carregamento. (a) Interior One Flange Loading (IOF), (b) Interior<br>Two Flange Loading, (ITF); (c) End One Flange Loading (EOF), (d) EndTwo Flange<br>Loading, (ETF); (Adaptada de AISI Report RP02-2) |
| Figura 2.20 – Fator R <sub>c</sub> para condição EOF – AISI S100-1659                                                                                                                                                              |
| Figura 2.21 – Fator R <sub>c</sub> para condição IOF – AISI S100-1660                                                                                                                                                              |
| Figura 2.22 – Fator R <sub>p</sub> para condição ETF- Mesas livres – Uzzaman et al (2012)60                                                                                                                                        |
| Figura 2.23 – Fator R <sub>p</sub> para condição ETF- Mesas presas – Uzzaman et al (2012)61                                                                                                                                        |
| Figura 2.24 – Fator R <sub>p</sub> para condição ITF- Mesas livres – Uzzaman et al (2012)61                                                                                                                                        |
| Figura 2.25 – Fator R <sub>p</sub> para condição ITF- Mesas presas – Uzzaman et al (2012)62                                                                                                                                        |
| Figura 3.1 - Estrutura básica do aplicativo – Parte 1 de 265                                                                                                                                                                       |
| Figura 3.2 - Estrutura básica do aplicativo – Parte 2 de 266                                                                                                                                                                       |
| Figura 3.3 - Composição de seção L67                                                                                                                                                                                               |
| Figura 3.4 - Composição de seção Cr68                                                                                                                                                                                              |
| Figura 3.5 - Composição de seção cartola com mesas inclinadas                                                                                                                                                                      |
| Figura 3.6 - Composição de seção caixa69                                                                                                                                                                                           |
| Figura 3.7 - Composição de seção I composta por dois U70                                                                                                                                                                           |
| Figura 3.8 - Composição de seção I composta por dois Cr70                                                                                                                                                                          |
| Figura 3.9 - Composição de seção Ie composta por dois Ue71                                                                                                                                                                         |

| Figura 3.10 - Composição da cantoneira enrijecida - Le      | 71 |
|-------------------------------------------------------------|----|
| Figura 3.11 - Composição de seção U                         | 72 |
| Figura 3.12 - Composição de seção Ue                        | 72 |
| Figura 3.13 - Composição de seção Z                         | 73 |
| Figura 3.14 - Composição de seção Z enrijecido a 45º - Z45  | 73 |
| Figura 3.15 - Composição de seção Z enrijecida a 90º - Z90  | 74 |
| Figura 3.16 – Esquema do experimento (Moen et al, 2013)     | 79 |
| Figura 3.17 - Dados de Entrada                              |    |
| Figura 3.18 – Propriedades Geométricas da Seção Transversal | 84 |
| Figura 3.19 – Esforços críticos elásticos                   | 84 |
| Figura 3.20 - Cálculo Detalhado                             | 85 |
| Figura 3.21 - Dados de Entrada                              | 86 |
| Figura 3.22 - Propriedades Geométricas da Seção Transversal | 87 |
| Figura 3.23 – Esforços críticos elásticos                   | 87 |
| Figura 3.24 - Cálculo Detalhado de M <sub>xRd</sub>         |    |
| Figura 3.25 - Cálculo Detalhado de V <sub>yRd</sub>         |    |
| Figura 3.26 - Dados de Entrada                              |    |
| Figura 3.27 - Propriedades Geométricas da Seção Transversal | 90 |
| Figura 3.28 – Esforços críticos elásticos                   | 90 |
| Figura 3.29 - Cálculo Detalhado – N <sub>cRd</sub>          | 91 |
| Figura 3.30 - Cálculo Detalhado - M <sub>xRd</sub>          | 92 |
| Figura 3.31 - Cálculo Detalhado – V <sub>yRd</sub>          | 92 |
| Figura 3.32 - Dados de Entrada                              | 93 |
| Figura 3.33 - Propriedades Geométricas da Seção Transversal | 94 |
| Figura 3.34 – Esforços críticos elásticos                   | 94 |
| Figura 3.35 - Cálculo Detalhado                             | 95 |

| Figura 4.1 – Gráfico da força axial de compressão resistente de cálculo em função do comprimento do perfil Ue 90x40x12x0,80 com a presença de furos oblongos                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 4.2 – Redução percentual da força axial de compressão resistente de cálculo para a relação d <sub>h</sub> /h variando de 0,10 a 0,50 em função do comprimento do perfil Ue 90x40x12x0,80 com a presença de furos oblongos |
| Figura 4.3 – Variação da redução percentual em fundação da relação $d_h/h$ , para os comprimentos do perfil Ue 90x4x12x0,80 variando de 50 cm a 400 cm                                                                           |
| Figura 4.4 – Gráfico da força distribuída de cálculo que pode ser aplicada em uma barra em flexão com seção Ue 90x40x12x0,80 e a presença de furos oblongos                                                                      |
| Figura 4.5 – Comparação entre os coeficientes de redução $q_s$ para furos circulares e não circulares na alma de um perfil Ue $90x40x12x0,80$ 104                                                                                |
| Figura 4.6 – Coeficientes de redução q <sub>s</sub> para furos circulares na alma de perfis Ue 90x40x12                                                                                                                          |
| Figura 4.7 – Coeficientes de redução q <sub>s</sub> para furos circulares na alma de perfis Ue 140x40x12<br>                                                                                                                     |
| Figura 4.8 – Coeficientes de redução q <sub>s</sub> para furos circulares na alma de perfis Ue 200x40x12<br>105                                                                                                                  |
| Figura 4.9 - Barras submetidas à força axial de compressão: Perfil Ue $90x40x12x0,80$ ;<br>$K_zL_z = K_yL_y = K_xL_x / 2$                                                                                                        |
| Figura 4.10 - Barras submetidas à força axial de compressão: Perfil Ue $90x40x12x0,95$ ;<br>$K_zL_z = K_yL_y = K_xL_x / 2$                                                                                                       |
| Figura 4.11 - Barras submetidas à força axial de compressão: Perfil Ue $90x40x12x1,25$ ;<br>$K_zL_z = K_yL_y = K_xL_x / 2$                                                                                                       |
| Figura 4.12 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,80;<br>$K_zL_z = K_yL_y = K_xL_x / 2$                                                                                                         |
| Figura 4.13 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,95;<br>$K_zL_z = K_yL_y = K_xL_x / 2$                                                                                                         |
| Figura 4.14 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x1,25;<br>$K_zL_z = K_yL_y = K_xL_x / 2109$                                                                                                      |

Figura 4.15 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,80; Figura 4.16 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,95; Figura 4.17 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x1,25; Figura 4.18 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x0,80; Figura 4.19 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x0,95; Figura 4.20 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x1,25; Figura 4.21 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,80; Figura 4.22 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,95; Figura 4.23 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x1,25; Figura 4.24 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,80; Figura 4.25 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,95; Figura 4.26 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x1,25; Figura 4.27 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,80; Figura 4.28 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,95; Figura 4.29 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x1,25; 

Figura 4.30 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,80; Figura 4.31 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,95; Figura 4.32 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x1,25; Figura 4.33 - Barras submetidas à flexão simples: Perfil Ue 200x40x12x1,25; Figura 4.34 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,80; Figura 4.35 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,95; Figura 4.36 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x1,25; Figura 4.37 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,80; Figura 4.38 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,95; Figura 4.39 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x1,25; Figura 4.40 - Barras submetidas à flexão simples: Perfil Ue 200x40x12x1,25; Figura 4.41 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80;  $K_z L_z = K_y L_y = K_x L_x / 2 - \text{Sem furos}....126$ Figura 4.42 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; Figura 4.43 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; Figura 4.44 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 2 - Sem furos.$  128

Figura 4.45 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; Figura 4.46 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; Figura 4.47 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 2 - \text{Sem furos}.....129$ Figura 4.48 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; Figura 4.49 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; Figura 4.50 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80;  $K_z L_z = K_y L_y = K_x L_x / 2 - \text{Sem furos.....131}$ Figura 4.51 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; Figura 4.52 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; Figura 4.53 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95;  $K_z L_z = K_y L_y = K_x L_x / 2 - \text{Sem furos}....132$ Figura 4.54 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; Figura 4.55 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; Figura 4.56 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 2 - \text{Sem furos}....134$ Figura 4.57 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; Figura 4.58 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; Figura 4.59 - Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 2 - \text{Sem furos}....135$ 

Figura 4.60 - Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25; Figura 4.61 - Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25; Figura 4.62 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80;  $K_z L_z = K_y L_y = K_x L_x / 3 - \text{Sem furos}....137$ Figura 4.63 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; Figura 4.64 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; Figura 4.65 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; Figura 4.66 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; Figura 4.67 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; Figura 4.68 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 3 - \text{Sem furos}....140$ Figura 4.69 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; Figura 4.70-Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 3 - d_h / h = 0,50$ .....141 Figura 4.71-Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80;  $K_z L_z = K_y L_y = K_x L_x / 3 - \text{Sem furos}....141$ Figura 4.72-Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_h/h = 0,225$ .....142 Figura 4.73–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; Figura 4.74–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95;  $K_z L_z = K_y L_y = K_x L_x / 3 - \text{Sem furos}....143$ 

Figura 4.75–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95;  $K_z L_z = K_y L_y = K_x L_x / 3 - \dots 143$ Figura 4.76–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_h/h=0,45$ .....144 Figura 4.77–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 3 - \text{Sem furos}....144$ Figura 4.78–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; Figura 4.79–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; Figura 4.80–Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_z L_z = K_y L_y = K_x L_x / 3 - \text{Sem furos}....146$ Figura 4.81–Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25; Figura 4.82–Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25; 

# LISTA DE TABELAS

| Tabela 2-1 – Resumo dos dados das seções transversais e do material (Moen & Schafer, 2008)<br>41                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabela 2-2 – Força axial de flambagem elástica dos modelos e influência do furos na     flambagem elástica (Moen & Schafer, 2008)                            |
| Tabela 2-3 – Força axial de compressão resistente dos modelos (Moen & Schafer, 2008)42                                                                       |
| Tabela 2-4 – Resumo dos dados das seções transversais (Moen et al., 2013)45                                                                                  |
| Tabela 2-5 – Locação dos furos (Moen et al., 2013)46                                                                                                         |
| Tabela 2-6 – Momento fletor de flambagem local elástica dos modelos e influência do furos na flambagem elástica (Moen et al., 2013)46                        |
| Tabela 2-7 – Momento fletor de flambagem distorcional elástica dos modelos e influência do furos na flambagem elástica (Moen et al., 2013)                   |
| Tabela 2-8 – Momento fletor resistente dos modelos (Moen et al., 2013)47                                                                                     |
| Tabela 2-9 – Comparação das disposições contrutivas da ABNT NBR 15253:2013 e AISI\$100-16 para execução de furos em perfis.\$2                               |
| Tabela 2-10 - Relações h/t para os perfis usualmente adotados no sistema LSF52                                                                               |
| Tabela 2-11 - Comparação do MRD aplicado à barras em compressão apresentados pela AISI S100-16 (sem furos), AISI S100-16 (com furos) e Moen e Schafer (2011) |
| Tabela 2-12 - Comparação do MRD aplicado à barras em flexaão apresentados pela AISI\$100-16 (sem furos), AISI \$100-16 (com furos) e Moen et al (2013)       |
| Tabela 2-13 – Propriedades médias da seção transversal para furos uniformementedistribuidos, AISI \$100-16                                                   |
| Tabela 2-14 – Comparação das disposições construtivas da AISI S100-16 e Uzzaman et al (2012)                                                                 |
| Tabela 3-1 – Resistência ao escoamento do aço e dimensões das seções ensaiadas – Moen et<br>al (2013)                                                        |

| Tabela 3-2 – Cálculo do momento fletor resistente nominal pelo MRD – Moen et al (2013).80              |
|--------------------------------------------------------------------------------------------------------|
| Tabela 3-3 – Cálculo do momento fletor resistente de cálculo pelo aplicativo desenvolvido .80          |
| Tabela 3-4 – Resistência ao escoamento do aço e dimensões das seções ensaiadas – Moen e Schafer (2008) |
| Tabela 3-5 – Cálculo da força axial de compressão resistente nominal pelo MRD82                        |
| Tabela 3-6 – Cálculo da força axial de compressão resistente nominal pelo aplicativo desenvolvido      |
| Tabela 4-1 - Percentual de redução da força axial de compressão resistente para o perfil Ue            |
| 90x40x12x0,80 com furos                                                                                |
| Tabela 4-2 - Porcentagem máxima de redução da força axial de compresão resistente para                 |
| perfis usualmente adotados no sistema LSF99                                                            |
| Tabela 4-3 - Percentual de redução da força distribuida que pode ser aplicada ao perfil Ue             |
| 90x40x12x0,80 com a presença de furos oblongos102                                                      |

# LISTA DE SÍMBOLOS

#### Letras romanas maiúsculas

- A Área bruta da seção transversal da barra;
- $A_{ef}$  área efetiva da seção transversal da barra;
- $A_n$  área líquida da seção transversal da barra na região de ligação;
- $A_{no}$  área líquida da seção transversal da barra fora da região de ligação;
- $C_b$  fator de modificação para diagrama de momento fletor não uniforme;
- $C_t$  coeficiente de redução, usado no cálculo da área liquida efetiva;
- D largura nominal do enrijecedor de borda;
- *E* módulo de elasticidade do aço, adotado igual 200 000 MPa;
- G módulo de elasticidade transversal do aço, adotado igual a 77 000 Mpa;
- Ia-Momento de inércia de referência do enrijecedor de borda
- Inet- Momento de inércia da seção liquida;

I<sub>s</sub>– Momento de inércia da seção bruta do enrijecedor de borda, em torno do seu próprio eixo baricêntrico paralelo ao elemento a ser enrijecido;

 $I_x;I_y$  - Momento de inércia da seção bruta em relação aos eixos principais x e y, respectivamente;

J – constante de torção;

 $K_xL_x$  – comprimento efetivo de flambagem global em relação ao eixo x;

K<sub>y</sub>L<sub>y</sub> – comprimento efetivo de flambagem global em relação ao eixo y;

K<sub>z</sub>L<sub>z</sub> – comprimento efetivo de flambagem global em relação ao eixo z;

L – comprimento da barra; vão teórico entre apoios ou o dobro do comprimento teórico do balanço;

L<sub>h</sub> – comprimento do furo – AISI S100-16;

 $M_{d2}$  – momento fletor de flambagem distorcional elástica de referência para o dimensionamento de perfis com furos – AISI S100-16;

M<sub>dist</sub> - momento fletor de flambagem distorcional elástica;

M<sub>crd</sub> – momento fletor de flambagem distorcional elástica – AISI S100-16;

Mcre - momento fletor de flambagem global elástica - AISI S100-16

Mcrl – momento fletor de flambagem local elástica – AISI S100-16

Me – momento fletor de flambagem global elástica (FLT – Flambagem lateral com torção);

M<sub>nd</sub> – valor característico do momento fletor resistente, associado à flambagem distorcional -AISI S100-16;

M<sub>ne</sub> – valor característico do momento fletor resistente, associado à flambagem global AISI S100-16;

M<sub>nl</sub> – valor característico do momento fletor resistente, associado à flambagem local - AISI S100-16;

M<sub>Rd</sub>-momento fletor resistente de cálculo;

M<sub>Re</sub> – valor característico do momento fletor resistente, associado à flambagem global;

M<sub>Rk</sub> – valor característico do momento fletor resistente;

M<sub>Rl</sub> – valor característico do momento fletor resistente, associado à flambagem local;

M<sub>Rdist</sub> – valor característico do momento fletor resistente, associado à flambagem distorcional;

 $M_{x,Rd}$ ;  $M_{y,Rd}$  – momento fletor resistente de cálculo em relação aos eixos x e y, respectivamente;

M<sub>Sd</sub>-momento fletor solicitante de cálculo;

 $M_{x,Sd}$ ;  $M_{y,Sd}$  – momento fletor solicitante de cálculo em relação aos eixos x e y, respectivamente;

N – largura do apoio, usado no cálculo da força resistente ao enrugamento da alma (*web crippling*) – AISI S100-16;

N<sub>c,Rd</sub> – força axial de compressão resistente de cálculo;

N<sub>c,Re</sub> – valor característico da força axial de compressão resistente, associado à flambagem global;

N<sub>c,Rk</sub> – valor característico da força axial de compressão resistente;

 $N_{c,Rl}$  – valor característico da força axial de compressão resistente, associado à flambagem local;

 $N_{c,Rdist}$  – valor característico da força axial de compressão resistente, associado à flambagem distorcional;

N<sub>c,Sd</sub> – força axial de compressão solicitante de cálculo;

N<sub>dist</sub> - força axial de flambagem distorcional elástica;

Ne - força axial de flambagem global elástica;

 $N_{ex}$ ;  $N_{ey}$  – forças axiais de flambagem global elástica por flexão em relação aos eixos x e y, respectivamente;

Nez - força axial de flambagem global elástica por torção;

Nexz - força axial de flambagem global elástica por flexo-torção;

N<sub>l</sub> – força axial de flambagem local elástica;

N<sub>t,Rd</sub> – força axial de tração resistente de cálculo;

N<sub>t,Sd</sub> – força axial de tração solicitante de cálculo;

P<sub>crd</sub> – força axial de flambagem distorcional elástica – AISI S100-16;

P<sub>cre</sub> – força axial de flambagem global elástica – AISI S100-16;

P<sub>crl</sub> – força axial de flambagem local elástica – AISI S100-16;

 $P_{d2}$  – força axial de flambagem distorcional elástica de referência para o dimensionamento de perfis com furos – AISI S100-16;

 $P_{nd}$  – valor característico da força axial de compressão resistente, associado à flambagem distorcional – AISI S100-16;

 $P_{ne}$  – valor característico da força axial de compressão resistente, associado à flambagem global – AISI S100-16;

 $P_{nl}$  – valor característico da força axial de compressão resistente, associado à flambagem local – AISI S100-16;

 $R_c$  – fator de redução usado no cálculo da força resistente ao enrugamento da alma (*web crippling*) de perfis Ue com furos na alma – AISI S100-16;

 $R_p$  – fator de redução usado no cálculo da força resistente ao enrugamento da alma (*web crippling*) de perfis Ue com furos na alma – Uzzaman *et al.* (2012);

V<sub>Rd</sub> – força cortante resistente de cálculo;

V<sub>Sd</sub> – força cortante solicitante de cálculo;

W – módulo de resistência elástico da seção bruta em relação à fibra extrema que atinge o escoamento;

W<sub>c</sub> – módulo de resistência elástico da seção bruta em relação à fibra extrema comprimida;

 $W_{c,ef}$  – módulo de resistência elástico da seção efetiva em relação à fibra extrema comprimida;

 $W_{ef}$  – módulo de resistência elástico da seção efetiva em relação à fibra extrema que atinge o escoamento;

#### Letras romanas minúsculas

a – diâmetro do furo – Uzzaman et al. (2012);

- b largura do elemento, é a dimensão plana no elemento sem incluir dobras;
- b<sub>c</sub> largura do trecho comprimido de elementos sob gradiente de tensões normais;

bef – largura efetiva;

b<sub>f</sub> – largura nominal da mesa;

b<sub>w</sub> – largura nominal da alma;

c – fator usado no cálculo da força cortante resistente de perfis Ue com furos na alma – AISI
S100-16;

d – altura da seção;

def - largura efetiva do enrijecedor de borda;

d<sub>h</sub> – diâmetro do furo;

d<sub>s</sub> – largura efetiva reduzida do enrijecedor de borda;

fu - resistência à ruptura do aço na tração;

fy-resistência ao escoamento do aço;

h – largura da alma (altura da parte plana da alma);

k – coeficiente de flambagem local do elemento;

k<sub>v</sub> – coeficiente de flambagem local por cisalhamento;

n – expoente empregado no cálculo do coeficiente de flambagem local k;

 $q_s$  – fator de redução usado no cálculo da força cortante resistente de perfis Ue com furos na alma – AISI S100-16;

q<sub>sd</sub> – força uniformemente distribuída solicitante de cálculo;

r – raio de giração da seção bruta;

ro – raio de giração polar da seção bruta em relação ao centro de torção;

r<sub>x</sub> – raio de giração da seção bruta em relação ao eixo principal x;

 $r_y$  – raio de giração da seção bruta em relação ao eixo principal y;

s – distância entre centro de furos – AISI S100-16;

send – distância entre centro de furo e final da barra – AISI S100-16;

t – espessura da chapa ou do elemento;

 $t_n$  – espessura nominal da chapa, igual à soma das espessuras da chapa de aço e do revestimento metálico ( $t_n = t + t_r$ ). Para chapas de aço sem revestimento,  $t_n = t$ ;

 $t_r$  – espessura do revestimento metálico; espessura da alma reduzida para simulação da presença do furo na alma;

w – largura da alma (altura da parte plana da alma) – AISI S100-16;

x<sub>o</sub> – distância do centro de torção ao centroide, na direção do eixo x;

y<sub>o</sub> – distância do centro de torção ao centroide, na direção do eixo y;

#### Letras Gregas

 $\beta$  – coeficiente de dilatação térmica, adotado igual a 1,2 x 10<sup>-5</sup> °C<sup>-1</sup>;

 $\delta$  – deslocamento, flecha em geral;

 $\gamma$  – coeficiente de ponderação das ações ou das resistências, em geral;

 $\lambda_c$  – índice de esbeltez reduzido associado à flambagem global – AISI S100-12;

 $\lambda_d$  – índice de esbeltez reduzido associado à flambagem distorcional – AISI S100-12;

 $\lambda_{d1}$  – índice de esbeltez reduzido associado à flambagem distorcional de referência para o dimensionamento de perfis com furos – AISI S100-12;

 $\lambda_{d2}$  – índice de esbeltez reduzido associado à flambagem distorcional de referência para o dimensionamento de perfis com furos – AISI S100-12;

 $\lambda_{dist}$  – índice de esbeltez reduzido associado à flambagem distorcional;

 $\lambda_1$ – índice de esbeltez reduzido associado à flambagem local;

 $\lambda_p$  – índice de esbeltez reduzido do elemento ou da seção completa;

 $\lambda_{p0}$  – valor de referência do índice de esbeltez reduzido do elemento;

 $\lambda_0$  – índice de esbeltez reduzido associado à flambagem global;

 $\nu$  – coeficiente de Poisson do aço, adotado igual a 0,30;

 $\rho$  – massa específica do aço, adotada igual a 7 850 kg/m<sup>3</sup>;

 $\chi$  – fator de redução da força axial de compressão resistente, associado à flambagem global;

 $\chi_{\text{dist}}$  – fator de redução do esforço resistente, associado à flambagem distorcional;

 $\chi_{FLT}$  – fator de redução do momento fletor resistente, associado à flambagem lateral com torção;

 $\sigma$  – tensão normal, em geral;

 $\sigma_{cr}$  – tensão convencional de flambagem elástica da chapa;

#### xxviii

# LISTA DE ABREVIATURAS E SIGLAS

- ABNT Associação Brasileira de Normas Técnicas;
- AISI American Iron and Steel Institute;
- AS / NZS Australia Standards / New Zeland Standards;
- CFD Cold Formed Design
- CUFSM Cornell University Finite Strip Method
- DEES Departamento de Engenharia de Estruturas;
- EOF (Condição de Apoio) Exterior-one-flange;
- ETF (Condição de Apoio) Exterior-two-flange;
- IOF (Condição de Apoio) Interior-one-flange;
- ITF (Condição de Apoio) Interior-two-flange;
- OSB Oriented Strand Board;
- PFF Perfil Formado a Frio;
- POO Programação Orientada a Objetos;
- LSF *Light Steel Framing;*
- MRD Método da Resistência Direta;
- MLE Método da Largura Efetiva;
- MSE Método da Seção Efetiva;
- NBR Norma Brasileira;
- UFMG Universidade Federal de Minas Gerais;
- ZAR Zincado de Alta Resistência;

# 1

## 1. Introdução

#### 1.1 Considerações Gerais

O sistema construtivo *Light Steel Framing* (LSF) tem seu uso crescente em edificações residenciais no Brasil. Ele é composto por subsistemas estruturais trabalhando de forma conjunta, com uma concepção racional para fabricação, transporte e montagem. Os montantes são compostos por perfis U enrijecidos (Ue) equidistantes de 400 mm ou 600 mm. Neles podem ser fixadas placas que têm a função de vedar a estrutura e podem servir para a composição de paneis de contraventamento.

O sistema LSF apresenta uma série de vantagens inerentes às estruturas metálicas e pode tornar-se mais rápido e com menor custo relativo que o custo de estruturas compostas por outros perfis quando aplicado à construção de edifícios residenciais (RODRIGUES, 2006). A Figura 1.1 apresenta um exemplo da estrutura de residência construída em LSF.



Figura 1.1 – Estrutura de uma residência em Light Steel Framing (CBCA, 2006)

Os perfis formados a frio (PFF) adotados na constituição do reticulado metálico do sistema LSF usualmente recebem furos para a passagem e acomodação de tubulações elétricas, hidráulicas, de gás, etc., como os mostrados na Figura 1.2. A presença de furos em perfis é comum, inclusive para conexões com elementos construtivos e estruturais. Tais furos usualmente são feitos na alma dos perfis por punção ou com a utilização de brocas, e podem alterar a rigidez elástica e a força resistente das barras (MOEN et al, 2008). Perfurações feitas em fábrica com a finalidade de passagem e acomodação de tubulação são chamadas de "*Punch*".



Figura 1.2 – Furos para a passagem de tubulações elétricas

Quando furos são feitos na alma de perfis formados a frio, a rigidez rotacional fornecida pela alma à mesa é reduzida, de modo que força axial de flambagem distorcional elástica e momento fletor de flambagem distorcional elástica diminuem (MOEN E SCHAFER, 2009).

Apesar das alterações citadas anteriormente, a norma de "dimensionamento de estruturas de aço constituídas por perfis formados a frio", ABNT NBR 14762:2010, só contempla em seu escopo a ocorrência de furos nos capítulos de barras submetidas à força axial de tração e de ligações parafusadas. A norma norte americana *American Iron and Steel Institute* (AISI) S100 2016, apresenta recomendações e fórmulas que levam em conta a presença de furos circulares e não circulares nos perfis, que não sejam somente para a passagem de parafusos nos casos anteriormente citados.

Para perfurações feitas em obra, o Manual do Centro Brasileiro de Construções em Aço (CBCA): Arquitetura (Santiago et al. 2012), recomenda que sejam feitos reforços nestes trechos. Para tanto, deve-se adotar uma chapa que será parafusada na alma do perfil que recebeu o furo. A Figura 1. 3 apresenta um esboço do procedimento de reforço.



Figura 1. 3 – Reforço para perfurações feitas em obra (Fonte: Manual CBCA – Arquitetura)

#### **1.2 Objetivos**

O objetivo do presente estudo é investigar o comportamento e a capacidade resistente de perfis formados a frio com a presença de furos, uma vez que a execução de furos nos perfis estruturais é usual no sistema LSF e pode resultar na redução da capacidade resistente dos perfis.

#### **1.3 Metodologia**

Para desenvolvimento deste trabalho, foi realizada uma revisão bibliográfica com base em normas nacionais e estrangeiras e artigos que tratam do assunto.

Com base no resultado obtido são apresentados gráficos de pré-dimensionamento para os perfis com furos usualmente adotados no sistema LSF. Também foi desenvolvido um

aplicativo em Java para o dimensionamento de perfis formados a frio, com ou sem a existência de furos.

As seguintes etapas foram seguidas para elaboração deste trabalho:

- a) Realização de uma revisão bibliográfica para verificar os estudos teóricos e experimentais já realizados sobre o comportamento de perfis formados a frio com a existência de furos visando comparação posterior com resultados teóricos;
- b) Com base na revisão bibliográfica, análise do comportamento dos perfis formados a frio com a presença de furos, no que tange barras tracionadas, comprimidas, fletidas e sob a ação de esforço cortante, bem como os seus respectivos modos de falha;
- c) Apresentação um estudo comparativo entre as especificações de normas e artigos apresentados anteriormente;
- d) Apresentação gráficos de pré-dimensionamento para os perfis usuais do sistema LSF com a presença de furos;
- e) Apresentação dos métodos de dimensionamento constantes da NBR 14762:2010 que serão implementadas no *software*;
- f) Apresentação dos princípios básicos de programação em Java, abordando os principais conceitos de uma linguagem orientada a objetos e as características e funcionalidades do compilador Eclipse Kepler;
- g) Desenvolvimento de um aplicativo em Java para o dimensionamento de perfis formados a frio considerando esforços solicitantes axiais de tração e de compressão, momentos fletores, forças cortantes, esforços combinados com a existência de furos nos perfis.

#### **1.4 Justificativa**

#### 1.4.1 Estudo do comportamento de perfis formados a frio com a presença de furos

A utilização do sistema construtivo LSF é muito comum nos Estados Unidos, Canadá e diversos países da Europa e tem se desenvolvido nacionalmente nos últimos anos. No Brasil, as normas que tratam dos perfis formados a frio são a NBR 14762:2010, que aborda os princípios para dimensionamento; a ABNT NBR 6355:2012, que trata da padronização dos perfis e apresenta a metodologia para cálculo das propriedades das seções transversais, inspeção e aceitação dos perfis, e a ABNT NBR 15253:2014 – "Perfis de Aço Formados a

Frio, com Revestimento Metálico, para Painéis Reticulados em Edificações" padroniza os perfis a serem aplicados no método construtivo LSF.

A execução de furos na alma dos perfis é muito comum para a passagem de tubulações elétricas, hidráulicas, de gás e também para fixação de elementos estruturais, como o sistema Frame Master. A presença de furo altera o comportamento elástico do perfil e pode reduzir a força resistente do mesmo.

Entretanto, a NBR 14762:2010 não sugere o dimensionamento de perfis formados a frio com a existência de furos, com exceção dos capítulos que tratam de barras submetidas à força axial de tração e de ligações parafusadas. De modo que, para dimensionar barras em tais situações, é necessário lançar mão da norma norte americana AISI S100-16.

Desta forma, propõe-se o estudo do comportamento de barras com furos abordando os métodos propostos por normas internacionais e estudos realizados com barras em situação semelhante.

#### 1.4.2 Desenvolvimento do software

RODRIGUES (1993) ressalta o fato de que ainda existem muitos projetistas que utilizam as prescrições da projeto aplicadas nos perfis soldados e laminados, ou seja, a ABNT NBR 8800:2008 – Projeto de Estrutura de Aço e de Estrutura Mista de Aço e Concreto de Edifícios para o dimensionamento de estruturas compostas de perfis formados a frio, o que é incorreto, visto que estes apresentam comportamento muito diferenciado.

Os perfis obtidos por conformação a frio podem sofrer flambagem local em seus elementos, o que nem sempre representa um estado-limite último, e acarreta apenas em uma redução de sua rigidez. Além disso, os perfis formados a frio podem também estar sujeitos à flambagem distorcional, à flambagem global (por flexão, torção ou flexo-torção) e, geralmente, à interação entre estes modos.

Devido à dificuldade do dimensionamento de perfis formados a frio, que pode envolver processos iterativos e pouca disponibilidade de *softwares* no mercado que façam o dimensionamento com base na NBR 14762:2010, propõe-se a elaboração de um aplicativo para tal, que esteja apto ao dimensionamento com as principais seções comercialmente adotadas.

#### 1.5 Desenvolvimento da dissertação

O primeiro capítulo deste trabalho apresenta uma breve introdução do assunto abordado, onde são descritas as principais características do sistema construtivo LSF, porque geralmente são necessários a execução de furos nos perfis e suas consequências. Além disto, apresenta os objetivos e à metodologia do trabalho e suas justificativas.

O segundo capítulo deste trabalho apresenta uma revisão bibliográfica, onde são apresentadas as principais normas que tratam do dimensionamento dos perfis formados a frio, além das preconizações da AISI S100-16 para o dimensionamento de perfis com furos. Também são apresentados os principais estudos realizados em perfis formados a frio com a presença de furos, estes tratam do comportamento estrutural de barras em flexão e barras em compressão, da aplicação do método da resistência direta em perfis com furos, da força resistente ao enrugamento da alma (*web crippling*) em perfis com furos, dentre outros. Por fim, é feito uma análise crítica e comparativa das referências bibliográficas adotadas.

O terceiro capítulo trata da elaboração do *software* para dimensionamento de perfis formados a frio, conforme ABNT NBR 14762:2010. Os princípios básicos do Java e da Linguagem Orientada a Objetos são apresentados nesta seção. Além disso, é apresentado um breve resumo da estruturação básica do aplicativo CFD e das funcionalidades das classes e pacotes que o compõem. Ao final do capítulo, o aplicativo é testado e validado.

O quarto capítulo apresenta estudos sobre o comportamento de barras submetidas a compressão centrada e flexão com a presença de furos. Adicionalmente, são apresentados gráficos de pré-dimensionamento dos perfis usualmente adotados no sistema LSF com a presença de furos. São apresentados gráficos para barras submetidas à força axial de compressão, barras submetidas à flexão na maior inércia e barras submetidas à flexo-compressão.

O quinto capítulo apresenta as considerações finais para o dimensionamento de perfis formados a frio com a presença de furos. Este capítulo também apresenta recomendações e sugestões para estudos posteriores e para futuras melhorias do *software* desenvolvido.

# 2

### 2. Revisão bibliográfica

#### 2.1 Normas brasileiras

Atualmente, no Brasil, o dimensionamento de perfis formados a frio deve ser realizado com base na ABNT NBR 14762:2010. Esta norma apresenta os materiais que podem ser adotados na fabricação dos perfis, trata da segurança estrutural, dos estados-limites aplicáveis, das ações, da análise estrutural e das condições específicas para o dimensionamento de barras e ligações.

A ABNT NBR 14323:2013, por sua vez, trata do dimensionamento de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio. Esta norma foi usada no desenvolvimento do aplicativo para determinação dos coeficientes de redução para o dimensionamento de estruturas em temperaturas elevadas, visando implementação futura em tais situações.

A norma NBR 14762:2010 tem base nas principais normas internacionais que tratam do assunto, dentre as quais podemos citar a norma norte americana AISI S100-2007, a norma europeia Eurocode EN 1993-1-3:2006 e a norma australiana AS/NZS 4600:2005.

A norma NBR 14762:2010 apresenta três métodos de dimensionamento, sendo eles o Método da Largura Efetiva (MLE), o Método da Seção Efetiva (MSE) e o Método da Resistência Direta (MRD). Todos estes são apresentados ao longo da dissertação, sendo que o MLE e o MRD foram implementados no *software* CFD.

#### 2.1.1 Método da Largura Efetiva

O comportamento pós-crítico de elementos esbeltos é regido por equações diferenciais não lineares, de complexo tratamento matemático. Deve-se, portanto, lançar mão de estudos numéricos e computacionais para solução de tais problemas. Para o tratamento de chapas esbeltas perfeitas em regime pós-crítico, von Karman (1932) propôs uma redução na rigidez
da chapa, que tinha inicialmente largura "b", substituindo esta largura por uma largura efetiva "b<sub>e</sub>" menor do que "b".

Winter (1947) adaptou a formulação proposta por von Karman e chegou a bons resultados para obtenção de largura efetiva de chapas imperfeitas no estado-limite último de escoamento do material. A ABNT NBR 14762:2010 adota a formulação de Winter, que é apresentada da seguinte maneira:

$$\frac{b_{ef}}{b} = \frac{1}{\lambda p} \left( 1 - \frac{0.22}{\lambda p} \right) \le 1,00$$
2.1)

$$\lambda_p = \sqrt{\frac{\sigma}{\sigma_{cr}}} = \frac{b/t}{0.95\sqrt{\frac{kE}{\sigma}}}$$
(2.2)

$$\sigma_{cr} = k \frac{\pi^2 E}{12(1-v^2)(b/t)^2}$$
(2.3)

Sendo E o módulo de elasticidade longitudinal do aço, adotado igual a 200 000 MPa; v o coeficiente de Poisson do aço, adotado igual a 0,30;  $\sigma_{cr}$  a tensão convencional de flambagem elástica de chapa;  $\lambda_p$  o índice de esbeltez reduzido do elemento; b a largura do elemento; t a espessura do elemento, e  $\sigma$  a tensão normal aplicada à chapa.

Para  $\lambda_p \leq 0,673$ , tem-se que a largura efetiva é a própria largura do elemento; "k" é o coeficiente de flambagem local do elemento, que depende de sua condição de contorno e pode ser calculado pela Tabela 5 da ABNT NBR 14762:2010 para elementos vinculado-vinculado e pela Tabela 6 da mesma norma para elementos vinculado-livre.

Para que se obtenha as propriedades efetivas de uma seção transversal, é necessário calcular a largura efetiva de cada elemento e em seguida fazer uma composição de suas propriedades. Para o caso de um perfil U, por exemplo, submetido à compressão centrada, deve-se calcular a largura efetiva de suas mesas e a largura efetiva de sua alma separadamente. Em seguida, somar estes valores à largura dos elementos curvos, que não estão sujeitos à flambagem local, e multiplicar pela espessura da chapa, para obter então sua área efetiva.

### 2.1.2 Método da Seção Efetiva

O Método da Seção Efetiva é apresentado na ABNT NBR 14762:2010 e pode ser usado em substituição ao Método da Largura Efetiva para seções transversais genéricas. Entretanto não se aplica aos modos de falha associados à flambagem distorcional. Sua principal vantagem

perante o MLE é fornecer diretamente as propriedades efetivas da seção, tais como área efetiva ou inércia efetiva. Para o caso de barras submetidas à força axial de compressão, o cálculo da área efetiva ( $A_{ef}$ ) usado no dimensionamento pode ser feito da seguinte maneira:

$$A_{ef} = A, \qquad se \,\lambda_p \le 0,776 \tag{2.4}$$

$$A_{ef} = A \left( 1 - \frac{0.15}{\lambda_p^{0.80}} \right) \frac{1}{\lambda_p^{0.80}}, \qquad se \,\lambda_p > 0,776 \tag{2.5}$$

$$\lambda_p = \sqrt{\frac{\chi A f_y}{N_l}} \tag{2.6}$$

Sendo  $N_l$  a força axial de flambagem local elástica da barra, calculada com base na análise de estabilidade elástica ou conforme a fórmula apresenta no item 9.7.2 da ABNT NBR 14762:2010. Uma desvantagem do MSE é o fato de não identificar quais elementos do perfil estão sujeitos à flambagem local e ser limitado a algumas seções transversais.

### 2.1.3 Método da Resistência Direta

O Método da Resistência Direta é apresentado no Anexo C da ABNT NBR 14762:2010 e pode ser usado no dimensionamento de barras submetidas à compressão centrada e à flexão simples, em substituição ao Método da Largura Efetiva e ao Método da Seção Efetiva.

Para se usar o Método da Resistência Direta é necessário fazer uma análise geral da estabilidade elástica da barra, por meio de formulações ou utilizando algum *software* que se baseie na análise da teoria da estabilidade elástica, como o CUFSM, elaborado por Li e Schafer (2010a), por exemplo. O MRD fornece os valores característicos dos esforços resistentes da barra e também a inércia efetiva de seções submetidas à flexão, usada para cálculo dos deslocamentos.

### 2.1.4 Prescrições da ABNT NBR 14762:2010 para o dimensionamento de barras

Nas seções a seguir, são apresentadas as prescrições normativas na ABNT NBR 14762:2010 para o dimensionamento de perfis formados a frio. Tais prescrições foram implementadas no *software* desenvolvido para o dimensionamento de perfis sem furos.

Para o dimensionamento de perfis formados a frio com a presença de furos, será adotada a formulação presente na AISI S100-16, apresentada nas próximas seções deste trabalho.

### 2.1.5 Barras submetidas à força axial de tração

A seção 9.6 da ABNT NBR 14762:2010 apresenta as condições específicas para o dimensionamento de barras submetidas à força axial de tração. De acordo com a norma, deve ser atendida a seguinte condição:

$$N_{t,Sd} \le N_{t,Rd} \tag{2.7}$$

Onde  $N_{t,Sd}$  é a força axial de tração solicitante de cálculo e  $N_{t,Rd}$  é a força axial de tração resistente de cálculo. Esta última é obtida tomando-se o menor dos valores considerando os estados-limites últimos de escoamento da seção bruta, ruptura da seção líquida fora da ligação e ruptura da seção líquida na região da ligação.

Para o escoamento da seção bruta, tem-se a seguinte força axial de tração resistente de cálculo:

$$N_{t,Rd} = A f_y / \gamma$$
 ( $\gamma = 1,10$ ) (2.8)

Para a ruptura da seção líquida fora da região de ligação, tem-se a seguinte força axial de tração resistente de cálculo:

$$N_{t,Rd} = A_{n0} f_u / \gamma$$
 ( $\gamma = 1,35$ ) (2.9)

Para o escoamento da seção líquida na região de ligação, tem-se a seguinte força axial de tração resistente de cálculo:

$$N_{t,Rd} = C_t A_n f_u / \gamma \qquad (\gamma = 1,65) \tag{2.10}$$

Onde A é a área bruta da seção transversal da barra;  $A_{n0}$  é a área líquida da seção transversal da barra fora da região de ligação;  $A_n$  é a área líquida da seção transversal da barra na região de ligação;  $C_t$  é o coeficiente de redução da área líquida;  $f_y$  é a resistência ao escoamento do aço;  $f_u$  é a resistência à ruptura do aço na tração e  $\gamma$  é o coeficiente de ponderação de resistência.

A seção 9.6 da ABNT NBR 14762:2010 apresenta os procedimentos para obtenção dos valores de área líquida da seção transversal da barra fora da região de ligação, a área líquida da seção transversal da barra na região de ligação e o coeficiente de redução da área líquida.

A norma recomenda ainda que o índice de esbeltez das barras tracionadas não exceda 300. Para barras compostas, ou seja, aquelas constituídas por dois ou mais perfis, recomenda-se que a esbeltez de cada elemento isolado não supere 300.

### 2.1.6 Barras submetidas à força axial de compressão

A seção 9.7 da ABNT NBR 14762:2010 apresenta as condições específicas para o dimensionamento de barras submetidas à força axial de compressão. De acordo com a norma, deve ser atendida a seguinte condição:

$$N_{c,Sd} \le N_{c,Rd} \tag{2.11}$$

Onde  $N_{c,Sd}$  é a força axial de compressão solicitante de cálculo e  $N_{c,Rd}$  é a força axial de compressão resistente de cálculo. Esta é obtida tomando-se o menor dos valores considerando os estados-limites últimos de flambagem global por flexão, por torção ou flexo-torção e, separadamente, de flambagem distorcional.

A força axial de compressão resistente de cálculo para o estado-limite de flambagem global por flexão, torção ou flexo-torção é obtida por:

$$N_{c,Rd} = \chi A_{ef} f_y / \gamma$$
 ( $\gamma = 1,20$ ) (2.12)

Onde  $A_{ef}$  é a área efetiva da seção, calculada conforme o método da largura efetiva ou conforme método da seção efetiva e  $\chi$  é o fator de redução da força axial de compressão resistente, relacionado com a flambagem global.  $\chi$  é calculado por:

$$\chi = 0.658^{\lambda_0^2} \ se \ \lambda_o \le 1.5$$
(2.13)

$$\chi = \frac{0.877}{\lambda_o^2} \quad se \ \lambda_o > 1,5 \tag{2.14}$$

 $\lambda_0$  é o índice de esbeltez reduzido associado à flambagem global, calculado por:

$$\lambda_0 = \sqrt{\frac{Af_y}{N_e}} \tag{2.15}$$

Sendo  $N_e$  o menor dos valores calculado para a força axial de flambagem global elástica por flexão, torção ou flexo-torção. Para perfis duplamente simétricos  $N_e$  é dada pelo menor valor entre  $N_{ex}$ ,  $N_{ey}$  e  $N_{ez}$ . As seções 9.7.2.1, 9.7.2.2 e 9.7.2.3 da ABNT NBR 14762:2010 apresentam como estes valores podem ser obtidos para perfis duplamente simétricos ou simétricos em relação a um ponto, monossimétricos e assimétricos, respectivamente.

A força axial de compressão resistente de cálculo para o estado-limite de flambagem distorcional é obtida por:

$$N_{c,Rd} = \chi_{dist} A f_{\gamma} / \gamma \qquad (\gamma = 1, 20)$$
(2.16)

Onde A é a área bruta da seção e  $\chi_{dist}$  é o fator de redução da força axial de compressão resistente, relacionado com a flambagem distorcional. Para obtenção de  $\chi_{dist}$  é necessário calcular a força axial de flambagem distorcional elástica,  $N_{dist}$ , com base em uma análise de estabilidade elástica. Pode-se usar o *software* CUFSM para obtenção deste valor.

A norma preconiza que o índice de esbeltez das barras comprimidas não exceda 200. Para barras comprimidas compostas, o índice de esbeltez de cada perfil componente deve ser inferior:

i) à metade do índice de esbeltez máximo do conjunto, quando se usa chapas espaçadoras; e
 ii) ao índice de esbeltez máximo do conjunto, para o caso de travejamento em treliças, sendo adicionalmente menor que 140.

### 2.1.7 Barras submetidas à flexão simples

Na seção 9.8, barras submetidas à flexão simples da NBR 14762:2010 são apresentadas as condições específicas para o dimensionamento de barras fletidas. De acordo com a norma, deve ser atendida a seguinte condição:

$$M_{Sd} \le M_{Rd} \tag{2.17}$$

Onde  $M_{Sd}$  é o momento fletor solicitante de cálculo e  $M_{Rd}$  é o momento fletor resistente de cálculo. Este último é obtido tomando-se o menor dos valores considerando os estados-limites últimos de início de escoamento da seção efetiva, flambagem lateral com torção (FLT) e flambagem distorcional.

O momento fletor resistente de cálculo, para o estado-limite último de início escoamento da seção efetiva, é obtido por:

$$M_{Rd} = W_{ef} f_y / \gamma$$
 ( $\gamma = 1,10$ ) (2.18)

Onde  $W_{ef}$  é o módulo de resistência elástico da seção efetiva em relação à fibra que atinge o escoamento, calculado conforme o método da largura efetiva ou conforme método da seção efetiva.

O momento fletor resistente de cálculo, para o estado-limite último de flambagem lateral com torção, é obtido por:

$$M_{Rd} = \chi_{FLT} W_{c,ef} f_y / \gamma \qquad (\gamma = 1,10)$$

$$\tag{2.19}$$

Onde  $W_{c,ef}$  é o módulo de resistência elástico da seção efetiva em relação à fibra extrema comprimida, calculado com base no método da largura efetiva ou conforme método da seção efetiva, e  $\chi_{FLT}$  é o fator de redução do momento fletor resistente, associado à flambagem lateral com torção, calculado por:

$$\chi_{FLT} = 1,00 \quad se \,\lambda_0 \le 0,60$$
 (2.20)

$$\chi_{FLT} = 1,11(1 - 0,278\lambda_0^2) \text{ se } 0,60 < \lambda_0 < 1,336$$
(2.21)

$$\chi_{FLT} = 1/\lambda_0^2 \quad se \,\lambda_0 \ge 1,336 \tag{2.22}$$

Sendo  $\lambda_o$  o índice de esbeltez reduzido para flambagem lateral com torção, calculado por:

$$\lambda_0 = \sqrt{\frac{W_c f_y}{M_e}} \tag{2.23}$$

Onde  $M_e$  é o momento fletor de flambagem lateral com torção em regime elástico. A na seção 9.8.2.2 da ABNT NBR 14762:2010 apresenta fórmulas para cálculo de  $M_e$  para cada tipo de seção transversal.

O momento fletor resistente de cálculo para o estado-limite último de flambagem distorcional, é obtido por:

$$M_{Rd} = \chi_{dist} W f_y / \gamma \qquad (\gamma = 1, 10)$$
(2.24)

Onde *W* é o módulo de resistência elástico da seção bruta em relação à fibra externa que atinge o escoamento e  $\chi_{dist}$  é o fator de redução do momento fletor resistente, relacionado com a flambagem distorcional. Sendo  $\chi_{dist}$  calculado por:

$$\chi_{dist} = 1,00 \ se \ \lambda_{dist} \le 0,673$$
 (2.25)

$$\chi_{dist} = (1 - 0.22/\lambda_{dist})/\lambda_{dist} \quad se \ \lambda_{dist} > 0.673 \tag{2.26}$$

 $\lambda_{dist}$  é o índice de esbeltez reduzido para flambagem distorcional, calculado por:

$$\lambda_{dist} = \sqrt{\frac{W f_y}{M_{dist}}} \tag{2.27}$$

Onde  $M_{dist}$  é o momento fletor de flambagem distorcional elástica, calculado com base em uma análise de estabilidade elástica. Pode-se usar o *software* CUFSM para obtenção deste valor.

## 2.1.8 Barras submetidas à força cortante

De acordo com a ABNT NBR 14762:2010 a força cortante resistente de cálculo  $V_{Rd}$  pode ser calculada por:

$$V_{Rd} = 0.60 f_y h t / \gamma$$
 ( $\gamma = 1.10$ ), para  $\frac{h}{t} \le 1.08 \sqrt{\frac{Ek_v}{f_y}}$  (2.28)

$$V_{Rd} = 0.65t^2 \sqrt{k_v f_y E} / \gamma \qquad (\gamma = 1.10), \ para \ 1.08 \sqrt{\frac{Ek_v}{f_y}} < \frac{h}{t} \le 1.40 \sqrt{\frac{Ek_v}{f_y}}$$
(2.29)

$$V_{Rd} = (0.905 E k_v t^3 / h) / \gamma \qquad (\gamma = 1.10), \ para \ \frac{h}{t} > 1.40 \sqrt{\frac{E k_v}{f_y}}$$
(2.30)

Onde t é a espessura da alma do perfil; h é a largura da parte plana da alma; E é o módulo de elasticidade longitudinal do material e  $k_v$  é um coeficiente de flambagem local por cisalhamento.

A norma ainda recomenda que para seções com duas ou mais almas, é importante fazer uma análise separada para cada alma, com cada elemento resistindo a sua parcela de força cortante.

### 2.1.9 Barras submetidas à força cortante e momento fletor

A ABNT NBR 14762:2010 recomenda que barras sem enrijecedores transversais sujeitas à força cortante e momento fletor, devem atender a seguinte expressão de interação:

$$(M_{Sd}/M_{Rd})^2 + (V_{Sd}/V_{Rd})^2 \le 1,0$$
(2.31)

Onde  $M_{Rd}$  é o momento fletor resistente de cálculo para o estado-limite de início de escoamento da seção transversal.

A norma também recomenda uma expressão de interação para barras com enrijecedores transversais, quando  $(M_{Sd}/M_{Rd}) > 0.50$  e  $(V_{Sd}/V_{Rd}) > 0.70$ :

$$0,60(M_{Sd}/M_{Rd}) + (V_{Sd}/V_{Rd}) \le 1,3$$
(2.32)

### 2.1.10 Barras submetidas à flexão composta

A ABNT NBR 14762:2010 recomenda que barras sujeitas à flexão composta, devem atender a seguinte expressão de interação:

$$\frac{N_{Sd}}{N_{Rd}} + \frac{M_{x,Sd}}{M_{x,Rd}} + \frac{M_{y,Sd}}{M_{y,Rd}} \le 1,0$$
(2.33)

### 2.1.11 Outras normas brasileiras

A ABNT NBR 6355:2012 trata da padronização dos perfis estruturais formados a frio. Essa apresenta as séries comerciais de perfis estruturais e suas respectivas designações, a metodologia para cálculo das propriedades das seções transversais e estabelece critérios para inspeção e aceitação dos perfis.

A norma ABNT NBR 14323:2013 apresenta os procedimentos para o dimensionamento de estruturas de aço e mistas de aço e concreto em situação de incêndio. Parte do conteúdo desta norma foi adotada no *software* para determinação dos coeficientes de redução para o módulo de elasticidade do aço e da resistência ao escoamento do aço, preparando o mesmo para implementação futura do dimensionamento de estruturas de aço em situações de incêndio.

A norma ABNT NBR 15253:2014 estabelece os requisitos gerais e métodos de ensaios para os perfis de aço formados a frio, com revestimento metálico, para painéis reticulados utilizados em edificações e destinados à execução de paredes com função estrutural, estruturas de entrepisos, estruturas de telhados e de fachadas das edificações do sistema LSF.

A norma ABNT NBR 15253:2014 apresenta também a forma e as dimensões máximas das aberturas sem reforços que podem ser realizadas nas almas dos perfis do sistema LSF, desde que consideradas em cálculo, conforme apresentado na Figura 2.1. Além disso, apresenta as distâncias mínimas entre centro das aberturas, a distância mínima entre centro de aberturas e extremidade do perfil e a distância mínima entre extremidade de uma abertura e a face lateral de apoio do perfil. Ainda segundo esta norma, aberturas com outras geometrias e dimensões podem ser executadas, desde que reforçadas e consideradas no dimensionamento.



Figura 2.1 – Abertura nos perfis do LSF (ABNT NBR 15253:2014)

### 2.2 Eurocode

O *EN 1993-1-3 (2006)* é a norma europeia que trata do dimensionamento de perfis formados a frio, apresentando as condições específicas para o dimensionamento de barras. O *EN 1993-1-8 (2005)*, por sua vez, apresenta as condições especificas para o dimensionamento de ligações em estruturas de aço. Adicionalmente, o *EN 1993-1-5 (2006)* trata do comportamento de chapas apresentando metodologia para o cálculo da largura efetiva e afins.

Ambas as normas citadas consideram que os furos existentes nos perfis sejam furos padrões, ou seja, não apresentam em seu escopo formulação específica para o dimensionamento de perfis com furos de maiores diâmetros.

# 2.3 Norma norte americana AISI S100-16

A norma norte americana AISI S100-16, *North American Cold-Formed Steel Specifications*, trata do dimensionamento de perfis formados a frio e de sistemas e subsistemas constituídos com esses perfis. Esta é a norma que mais aborda o assunto de perfis formados a frio com a existência de furos. A nomenclatura adotada é apresentada na Figura 2.2.



Figura 2.2 – Nomenclatura adotada na norma norte americana (AISI S100-16)

Sendo  $L_h$  o comprimento da abertura,  $d_h$  o diâmetro da abertura; s o espaçamento entre centro de aberturas; s<sub>end</sub> o espaçamento entre a extremidade da abertura e o final da barra; w<sub>o</sub> a altura total do perfil; w a altura da parte plana da alma do perfil; b a largura da parte efetiva do elemento e c a largura do elemento entre o furo e elemento curvo.

# 2.3.1 MLE aplicado em elementos enrijecidos uniformemente comprimidos com furos circulares ou não circulares

A norma norte americana AISI S100-16, apresenta a formulação para cálculo da largura efetiva de elementos com furos. Para elementos enrijecidos uniformemente comprimidos com furos circulares, a norma norte americana recomenda (item 1.1.1 do apêndice 1) que a formulação para o cálculo da largura efetiva apresentada na seguinte equação:

$$b = w - d_h, \ se \ \lambda \le 0,673 \tag{2.34}$$

$$b = w[1 - (0,22)/\lambda - (0,8d_h)/w + (0,085d_h)/w\lambda]/\lambda, \ se \ \lambda > 0,673$$
(2.35)

Onde b é a largura efetiva do elemento, w é a largura da parte plana do elemento; t é a espessura do elemento;  $d_h$  é o diâmetro do furo e  $\lambda$  é o índice de esbeltez definido na seção 1.1 da AISI S100-16. Em todos os casos, deve-se adotar b  $\leq$  w - d<sub>h</sub>.

Para furos circulares, as seguintes disposições construtivas devem ser atendidas:

- a)  $0 \le d_h/w \le 0.50;$
- b)  $w/t \le 70;$
- c) Distância entre furos  $\ge 0,50$  w;
- d) Distância entre furos  $\geq 3d_{h.}$

Para o caso de elementos enrijecidos uniformemente comprimidos, com furos não circulares, deve-se considerar a alma como dois elementos não enrijecidos, de largura c, calculando sua largura efetiva separadamente e adotando-se k=0,43. Adicionalmente, as seguintes disposições construtivas devem ser atendidas:

- a) Distância entre centro de furos (s)  $\ge$  610 mm (24 in);
- b) Distância entre o furo e o final da barra ( $s_{end}$ )  $\ge$  254 mm (10 in);
- c) Profundidade do furo:  $d_h \le 63,5 \text{ mm} (2,5 \text{ in});$
- d) Comprimento do furo:  $L_h \le 114 \text{ mm} (4,5 \text{ in});$
- e) Relação  $d_h / w_o \le 0,50$ .

Para cálculo da largura efetiva do elemento  $b_d$ , em estado-limite de serviço, deve-se adotar a formulação apresentada na seção 1.1(b) da AISI S100-16, assumindo que não existe furo na alma.

Segundo o item E3.1.2 da norma AISI S100-16, caso o número de furos multiplicado pelos diâmetros dos furos e dividido pelo comprimento efetivo da barra não ultrapassar 0,015, a área efetiva pode ser determinada ignorando a existência dos furos.

### 2.3.2 MLE aplicado em almas de perfis Ue sujeitas a gradiente de tensões

As seguintes disposições devem ser atendidas:

- a) Relação  $d_h/h \leq 0,70$ ;
- b) Relação  $h/t \le 200$ ;
- c) Furos centralizados na meia altura da alma do perfil;
- d) Distância entre furos  $\geq$  457 mm (18 in);
- e) Furos não circulares com raio de borda  $\ge 2$  t;
- f) Furos não circulares com  $d_h \le 63,5 \text{ mm} (2,5 \text{ in}) \text{ e } L_h \le 114 \text{ mm} (4,5 \text{ in});$
- g) Diâmetro dos furos circulares  $\leq 152 \text{ mm} (6 \text{ in});$
- h)  $d_h > 14,3 \text{ mm} (9/16 \text{ in}).$

Para almas de perfis Ue sujeitas a gradiente de tensões, a norma AISI S100-16 recomenda, no item 1.1.3 do apêndice 1, que para a determinação da força resistente, para as relações  $d_h/h < 0.38$  deve-se adotar as formulações apresentadas na seção 1.1(a), para cálculo da largura efetiva do elemento, assumindo-se que não existe furo na alma.

Para as relações  $d_h/h \ge 0.38$ , o cálculo da largura efetiva da alma deve ser feito conforme seção 1.2.1(a), assumindo que a parte comprimida da alma consiste em um elemento não enrijecido adjacente ao furo, submetida à máxima tensão de compressão, f<sub>1</sub> neste caso.

Para cálculo da largura efetiva do elemento, em estado-limite de serviço, deve-se adotar a formulação apresentada na seção 1.1.2(a), assumindo que não existe furo na alma.

### 2.3.3 Força cortante resistente de cálculo para perfis Ue com furos na alma

O item G3 da norma AISI S100-16 recomenda que a força cortante resistente de perfis Ue com furos na alma seja calculada conforme a seção G2.3, que trata de perfis sem furos. Em seguida, deve-se aplicar o fator de redução q<sub>s</sub> sobre a força resistente, conforme apresentado na equação abaixo:

$$q_S = 1,0, \ se \ c/t \ge 54$$
 (2.36)

 $q_S = c/54t, \ se \ 5 \le c/t < 54 \tag{2.37}$ 

Onde c é um fator que varia para furos circulares e não circulares e pode ser obtido pelas seguintes equações:

$$c = h/2 - d_h/2,38, \text{ para furos circulares}$$

$$c = h/2 - d_h/2,00, \text{ para furos não circulares}$$

$$(2.38)$$

$$(2.39)$$

Adicionalmente, as disposições construtivas apresentadas anteriormente devem ser atendidas.

- a) Relação  $d_h/h \leq 0.70$ ;
- b) Relação  $h/t \le 200$ ;
- c) Furos centralizados na meia altura da alma do perfil;
- d) Distância entre furos  $\geq$  457 mm (18 in);
- e) Furos não circulares com raio de borda  $\geq 2$  t;
- f) Furos não circulares com  $d_h \le 63,5 \text{ mm} (2,5 \text{ in}) \text{ e } L_h \le 114 \text{ mm} (4,5 \text{ in});$
- g) Diâmetro dos furos circulares  $\leq 152 \text{ mm} (6 \text{ in});$
- h)  $d_h > 14,3 \text{ mm} (9/16 \text{ in}).$

# 2.3.4 Força resistente ao enrugamento da alma (*web crippling*) para perfis Ue com furos na alma

O item G6 da norma AISI S100-16 recomenda que a força resistente ao enrugamento da alma (*web crippling*) de perfis Ue com furos na alma seja calculada conforme a seção G5, que trata de perfis sem furos. Em seguida, deve-se aplicar o fator de redução R<sub>c</sub> sobre a força resistente, conforme apresentado na equação abaixo:

$$R_{c} = 1,01 - \frac{0,325d_{h}}{h} + \frac{0,083x}{h} \le 1,0, \qquad condição \ end \ one \ flange \ (EOF) \ reaction$$

(2.40)

$$R_C = 0,90 - \frac{0,047d_h}{h} + \frac{0,053x}{h} \le 1,0,$$

 $N \ge 25,4 mm = 1in$ 

condição interior one flange (I0F) reaction

 $N \ge 76,2mm = 3 in$  (2.41)

Sendo x a menor distância entre a borda do furo e a mesa, dh o diâmetro do furo, h a altura da seção transversal e N a largura do apoio. As condições ETF e ITF são apresentadas na Figura 2.3.





 (b) Condição de carregamento sobre uma mesa externa (EOF)

Figura 2.3 – Condições de carregamento. (a) IOF, (b) EOF (adaptada de AISI Report. RP02-2)

Adicionalmente, as seguintes disposições construtivas devem ser atendidas:

- a) Relação  $d_h/h \leq 0,70;$
- b) Relação  $h/t \le 200$ ;
- c) Furos centralizados à meia altura da alma do perfil;
- d) Distância entre furos  $\geq$  457 mm (18 in);
- e) Distância entre o fim do perfil e a borda do furo > altura da seção transversal;
- f) Furos não circulares com raio de borda  $\ge 2$  t;
- g) Furos não circulares com  $d_h \le 63,5 \text{ mm} (2,5 \text{ in}) \text{ e } L_h \le 114 \text{ mm} (4,5 \text{ in});$
- h) Diâmetro dos furos circulares  $\leq 152 \text{ mm} (6 \text{ in});$
- i) Diâmetro do fruo  $d_h > 14,3 \text{ mm} (9/16 \text{ in}).$

# 2.3.5 Método da Resistência Direta aplicado às barras em compressão centrada, sem furos

A norma norte americana AISI S100-16, apresenta soluções analíticas para cálculo dos esforços resistentes de seções, com e sem furos, pelo Método da Resistência Direta.

Os itens E e F apresentam as generalidades do método, especificando seções pré-qualificados, para os quais é possível aplicar o MRD.

Conforme apresentado nos itens E2 (para a flambagem global), E3.2.1 (para interação entre escoamento e flambagem global) e E4.1 (para a flambagem distorcional) da AISI S100-16, a força axial de compressão nominal de uma barra em compressão sem furos é a menor entre os três estados-limites: flambagem global da barra por flexão, torção ou flexo-torção ( $P_{ne}$ ), interação entre a flambagem local ( $P_{nl}$ ) e flambagem distorcional ( $P_{nd}$ ).

Para uma barra em compressão sem furos, a resistência axial nominal para flambagem por flexão, torção ou flexo-torção ( $P_{ne}$ ), pode ser obtida pelo produto da área bruta ( $A_g$ ) e da tensão de compressão resistente ( $F_n$ ), de modo que  $P_{ne} = A_g * F_n$ .  $F_n$  pode ser obtida conforme a equação abaixo:

$$F_n = (0.658^{\lambda_c^2})F_y, \qquad para \,\lambda_c \le 1.50 \tag{2.42}$$

$$F_n = (\frac{0.877}{\lambda_c^2}) F_y, \qquad para \, \lambda_c > 1,50$$
 (2.43)

Onde  $\lambda_c$  é o índice de esbeltez associado à flambagem global da barra, apresentado na equação 2.44, sendo F<sub>y</sub> a resistência ao escoamento do aço e F<sub>cre</sub> é a tensão de flambagem global elástica da barra.

$$\lambda_c = \sqrt{F_y/F_{cre}} \tag{2.44}$$

A força axial de flambagem elástica local (P<sub>nl</sub>) pode ser obtida pelas equações apresentadas abaixo:

$$P_{nl} = P_{ne}, \qquad para \,\lambda_l \le 0,776 \tag{2.45}$$

$$P_{nl} = \left[1 - 0.15 \left(\frac{P_{crl}}{P_{ne}}\right)^{0,4}\right] \left(\frac{P_{crl}}{P_{ne}}\right)^{0,4} P_{ne}, \qquad para \,\lambda_l > 0.776$$
(2.46)

Onde  $\lambda_l$  é o índice de esbeltez associado à flambagem local da barra, apresentado na equação 2.47 e P<sub>crl</sub> é a força de flambagem local elástica da barra. P<sub>crl</sub> pode ser obtido via análise de estabilidade elástica da barra, com o auxílio do CUFSM.

$$\lambda_l = \sqrt{P_{ne}/P_{crl}} \tag{2.47}$$

A força axial nominal para flambagem distorcional,  $P_{nd}$ , pode ser obtida pelas equações abaixo.

$$P_{nd} = P_y, \qquad para \,\lambda_d \le 0,561 \tag{2.48}$$

$$P_{nd} = \left[1 - 0.25 \left(\frac{P_{crd}}{P_{y}}\right)^{0.6}\right] \left(\frac{P_{crd}}{P_{y}}\right)^{0.6} P_{y}, \qquad para \,\lambda_{d} > 0.561$$
(2.49)

Onde  $\lambda_d$  é o índice de esbeltez associado à flambagem distorcional da barra, apresentado na equação 2.50 e P<sub>crd</sub> é a força de flambagem distorcional da barra. P<sub>crd</sub> pode ser obtido via análise de estabilidade elástica da barra, com o auxílio do CUFSM.

$$\lambda_d = \sqrt{P_y / P_{crd}} \tag{2.50}$$

A norma AISI S100-16 também apresenta uma extensão do método da resistência direta para determinação da força cortante resistente de cálculo.

### 2.3.6 Método da Resistência Direta aplicado às barras em flexão, sem furos

Conforme apresentado nos itens F2.1 (para flambagem lateral com torção), F3.2.1 (para o início do escoamento da seção transversal), e F4.1 (para flambagem distorcional) da norma AISI S100-16, o momento fletor resistente nominal de uma barra em flexão sem furos é o menor entre os três estados-limites: flambagem lateral com torção (M<sub>ne</sub>), flambagem local (M<sub>nl</sub>) e flambagem distorcional (M<sub>nd</sub>).

O momento fletor resistente nominal para a flambagem lateral com torção de uma barra em flexão (M<sub>ne</sub>) é obtido pelo produto  $M_{ne} = S_f * F_n \le M_y$ , sendo  $S_f$  o módulo elástico da seção e  $F_n$  dado pela equação abaixo:

$$F_n = F_y \qquad para \ F_{cre} \ge 2,78F_y \tag{2.51}$$

$$F_n = \frac{10}{9} F_y \left( 1 - \frac{10F_y}{36F_{cre}} \right) \qquad para \ 2,78 > F_{cre} > 0,56F_y \tag{2.52}$$

$$F_n = F_{cre} \qquad para \ F_{cre} \le 0,56F_y \tag{2.53}$$

O momento fletor resistente nominal para o início do escoamento da seção efetiva  $(M_{nl})$  é dado pela equação abaixo:

$$M_{nl} = M_{ne} \qquad para \,\lambda_l \le 0.776 \tag{2.54}$$

$$M_{nl} = \left[1 - 0.15 \left(\frac{M_{crl}}{M_{ne}}\right)^{0.4}\right] \left(\frac{M_{crl}}{M_{ne}}\right)^{0.4} M_{ne} \qquad para \,\lambda_l > 0.776 \tag{2.55}$$

O onde  $\lambda_l \acute{e}$  o índice de esbeltez dado pela equação abaixo e  $M_{crl} \acute{e}$  o momento crítico de flambagem local, que pode ser obtido via análise de estabilidade elástica da barra, com o auxílio do CUFSM.

$$\lambda_l = \sqrt{\frac{M_{ne}}{M_{crl}}} \tag{2.56}$$

O momento fletor resistente nominal para a flambagem distorcional ( $M_{nd}$ ), é dado pela equação abaixo:

$$M_{nd} = M_y, \qquad para\,\lambda_d \le 0,673 \tag{2.57}$$

$$M_{nd} = \left(1 - 0.22 \left(\frac{M_{crd}}{M_y}\right)^{0.5}\right) \left(\frac{M_{crd}}{M_y}\right)^{0.5} M_y, \quad para \,\lambda_d > 0.673$$
(2.58)

Onde  $\lambda_d$  é o índice de esbeltez associado à flambagem distorcional da barra, apresentado na equação abaixo e M<sub>crd</sub> é o momento fletor de flambagem distorcional da barra. M<sub>crd</sub> pode ser obtido via análise de estabilidade elástica da barra, com o auxílio do CUFSM.

$$\lambda_d = \sqrt{\frac{M_y}{M_{crd}}} \tag{2.59}$$

### 2.3.7 Método da Resistência Direta aplicado aos perfis com furos

Para o dimensionamento de barras em compressão com a presença de furos, a norma AISI S100-16, recomenda que  $P_{ne}$  e  $P_{nl}$  sejam calculados da mesma maneira que se calcula para perfis sem furos, tomando-se  $P_{nl} \leq P_{ynet}$  e  $P_{nd}$  seja calculado conforme seção E 4.2. Em ambos os casos, o cálculo de  $P_{cre}$ ,  $P_{crl}$  e  $P_{crd}$ , deve levar em conta a presença de furos.

Para o dimensionamento de barras em flexão com a presença de furos, a norma AISI S100-16, recomenda que  $M_{ne}$  e  $M_{nl}$  sejam calculados da mesma maneira que se calcula para barras em flexão sem furos, tomando-se  $M_{nl} \leq M_{ynet}$ . E  $M_{nd}$  seja calculado conforme seção F 4.2. Em ambos os casos, o cálculo de  $M_{cre}$ ,  $M_{crl}$  e  $M_{crd}$ , deve levar em conta a presença de furos.

Nas seções seguintes deste trabalho, as formulações adotadas neste método são mais bem discutidas e um estudo de Moen e Schafer (2009) para aproximação das forças críticas de flambagem global, local e distorcional de perfis formados a frio com a presença de furos será apresentado.

#### 2.3.8 Flambagem elástica de barras com furos segundo AISI S100-16

O apêndice 2 da AISI S100-16, trata da análise de flambagem elástica de perfis. A norma apresenta previsões gerais, soluções analíticas e numéricas e para determinação das forças de flambagem elástica. Para barras em compressão, a norma apresenta métodos para determinação da força axial de flambagem global elástica ( $P_{cre}$ ), força axial de flambagem local elástica ( $P_{crd}$ ) e força axial de flambagem distorcional elástica ( $P_{crd}$ ). Para barras em flexão, a norma apresenta metodologia para determinação do momento fletor de flambagem global elástica ( $M_{crd}$ ), momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem local elástica ( $M_{crl}$ ) e momento fletor de flambagem distorcional elástica ( $M_{crd}$ ).

Além disso, também apresenta metodologia para determinação das forças axial e momento fletor de flambagem elástica para barras em compressão e barras em flexão com furos. As formulações presentes na norma são similares às propostas por Moen e Schafer (2009) e são apresentadas no próximo capítulo.

### 2.4 Flambagem elástica de barras com furos

Moen e Schafer (2009) apresentaram um método simplificado para determinar de modo aproximado as forças críticas de flambagem global, flambagem local e flambagem distorcional de perfis formados a frio com a presença de furos. O método proposto pelos autores resulta em boas aproximações, quando os resultados são comparados com resultados obtidos via método dos elementos finitos, e são aplicáveis em seções genéricas.

O método simplificado é uma alternativa a soluções via método dos elementos finitos para a análise de flambagem elástica, uma vez que estes últimos são trabalhosos, principalmente no que tange a geração de malha na região próxima ao furo. Além disto a solução via MEF, necessita de percepção do engenheiro, visto que é necessário identificar, visualmente, os modos de flambagem que ocorrem.

### 2.4.1 Forças de flambagem elástica global

Para determinação da força axial de flambagem global elástica de perfil em compressão com furos regularmente espaçados, os autores propõem a seguinte formulação:

$$P_{cre} = \frac{\pi^2 E}{L^2} \left( I_g L_g + I_{net} L_{net} \right) / L \tag{2.60}$$

Onde os sub índices *g* e *net* representam as propriedades brutas (fora da região dos furos) e líquidas da seção (na região dos furos), respectivamente, conforme apresentado na Figura 2.4. Outra formulação proposta seria calcular  $P_{cre}$  com a inércia líquida da seção na região do furo, o que resultaria em um resultado mais conservador. Para determinação de  $P_{cre}$  de perfis que não possuam dupla simetria, pode-se consultar o item 2.3.2.1 da AISI S100-16.



Figura 2.4 – (a) Seção líquida, (b) Seção bruta

Para determinação do momento fletor de flambagem global elástica de barras em flexão com furos regularmente espaçados, Moen et al (2013) propõem a seguinte formulação:

$$M_{cre} = \frac{\pi}{k_{yL}} \sqrt{EI_{yavg} \left[ GJ_{avg} + EC_{wnet} \frac{\pi^2}{(k_t L)^2} \right]}$$
(2.61)

Na equação acima, L é o comprimento destravado da barra em flexão, k<sub>y</sub> e k<sub>t</sub> são os fatores de comprimento efetivo da barra, E é o módulo de elasticidade longitudinal, G é o módulo de elasticidade transversal, I<sub>yavg</sub> e J<sub>yavg</sub> são o momento de inércia médio e a constante de torção média da seção, calculados conforme equações abaixo:

$$I_{yavg} = \frac{I_{yg}L_g + I_{ynet}L_{net}}{L}$$
(2.62)

$$J_{yavg} = \frac{J_{yg}L_g + J_{ynet}L_{net}}{L}$$
(2.63)

Nas equações 2.61 a 2.63 os sub índices *g* e *net* se referem às propriedades brutas e líquidas da seção, respectivamente; C<sub>wnet</sub> é a constante de empenamento da seção líquida e pode ser obtida via CUFSM configurando a espessura na região do furo igual a zero.

### 2.4.2 Forças de flambagem elástica distorcional

Segundo Moen et al (2013), a força axial de compressão de flambagem elástica distorcional para perfis com furos ( $P_{crd}$ ), deve ser tomada como a menor entre  $P_{crdnh}$  e  $P_{crdh}$ , onde  $P_{crdnh}$  é a força axial de compressão de flambagem elástica distorcional ignorando os furos e  $P_{crdh}$  é a força axial de compressão de flambagem elástica distorcional considerando os furos.

$$P_{crd} = menor(P_{crdh}, P_{crdnh})$$
(2.64)

Deve-se inicialmente realizar uma análise da seção bruta via método das faixas finitas, visando identificar o comprimento de semiondas associado à flambagem distorcional, nesta análise é obtido o valor da força crítica de flambagem distorcional do perfil sem furos, P<sub>crdnh</sub>. Em seguida, deve-se realizar uma segunda análise, modificando a espessura da alma do perfil, conforme equação 2.65.

$$t_r = \left(1 - \frac{L_{hole}}{L_{crdnh}}\right)^{1/3} t \ge 0 \tag{2.65}$$

Onde  $t_r$  representa a espessura reduzida da alma,  $L_{hole}$  é comprimento do furo e  $L_{crdnh}$  é o comprimento de semiondas associado à flambagem distorcional do perfil sem furos, anteriormente obtido. O valor da força crítica de flambagem distorcional do perfil com furos,  $P_{crdh}$ , é obtido considerando o comprimento de semiondas ( $L_{crdnh}$ ) obtido na análise sem a existência dos furos.

A análise em questão considera que o comprimento de semiondas associado à flambagem distorcional não se altera quando um furo é feito na alma do perfil. O mesmo procedimento pode ser realizado para determinação do momento fletor de flambagem elástica associado à flambagem distorcional.

Segundo Moen et al (2013), para o momento fletor de flambagem elástica distorcional para perfis com furos ( $M_{crd}$ ), deve ser tomado como o menor entre  $M_{crdnh}$  e  $M_{crdh}$ , onde  $M_{crdnh}$  é o momento fletor flambagem elástica distorcional ignorando os furos e  $M_{crdh}$  é o momento fletor de flambagem elástica distorcional considerando os furos.

$$M_{crd} = menor(M_{crdh}, M_{crdnh})$$
(2.66)

Para furos não enrijecidos, usualmente  $M_{crdh}$  é menor do que  $M_{crdnh}$ , conforme resultados apresentados por Moen et Al (2013). Entretanto, estudos realizados por Grey e Moen (2011) indicam que furos enrijecidos podem apresentar momentos críticos de flambagem distorcional na região com furos,  $M_{crdh}$ , maiores que momentos críticos de flambagem distorcional na região sem furos,  $M_{crdnh}$ .

Adicionalmente a norma norte americana AISI S100-16 apresenta formulações complementares para o cálculo de  $P_{crd}$  e  $M_{crd}$  de perfis com furos.

#### 2.4.3 Forças de flambagem elástica local

Segundo Moen e Schafer (2009), para a força axial de compressão de flambagem elástica local para perfis com furos ( $P_{crl}$ ), deve ser tomada como a menor entre  $P_{crlnh}$  e  $P_{crlh}$ , onde  $P_{crlnh}$  é a força axial de compressão de flambagem elástica local ignorando o furo e  $P_{crlh}$  é a força axial de compressão de flambagem elástica considerando os furos.

$$P_{crl} = menor(P_{crlh}, P_{crlnh})$$
(2.67)

 $P_{crlh}$  pode ser calculado via método das faixas finitas na seção liquida, com o auxílio do CUFSM, restringindo as deformações à flambagem local. É necessário examinar somente as semiondas com comprimento menor que o comprimento do furo.

Durante a modelagem é fundamental evitar restringir completamente os deslocamentos dos elementos da seção transversal, uma vez que tal restrição evita deformações devidas ao efeito Poisson e artificialmente enrijece a seção transversal. Um perfil Ue com furos na alma, deve

receber restrições de translação na direção Z, conforme ilustrado na Figura 2.5. Esta apresenta um guia para modelagem da seção líquida de uma barra em compressão com furos no CUFSM.

A única condição em que um vértice deve ser restrito em ambas as direções é quando dois elementos isolados se conectam em um vértice, como caso de um perfil Ue com furo na mesa (Figura 2.5 a). Adicionalmente, quando o furo isola uma faixa não apoiada da seção, este elemento deve ser desprezado, uma vez que não contribui para rigidez, conforme apresentado na Figura 2.5 b.



Figura 2.5 – Guia para modelagem da seção líquida de uma barra em compressão no CUFSM, exemplos incluem: a) Perfil Ue e b) Perfil Cr (Adaptada de Moen & Schafer, 2009)

Uma vez feita a modelagem e configurada as corretas restrições, uma análise deve ser realizada, e uma curva de flambagem elástica será obtida, similar à apresentada na Figura 2.6. O comprimento de semionda associado à força de flambagem distorcional elástica, L<sub>crlh</sub>, é identificado no eixo das abscissas como o comprimento inerente ao menor valor da curva.

Caso o comprimento dos furos,  $L_h$ , seja maior ou igual  $L_{crlh}$ .  $P_{crlh}$  deve ser tomado como o menor valor obtido no gráfico, conforme apresentado na Figura 2.6 a. Caso o comprimento dos furos,  $L_h$ , seja menor que  $L_{crlh}$ ,  $P_{crlh}$  deve ser considerado para o comprimento de

semionda L<sub>h</sub>, conforme apresentado na Figura 2.6 b. A força axial de referência usada para cálculo de  $P_{crlnh}$  e  $P_{crlh}$  deve ser a mesma, ou seja, se o carregamento aplicado no CUFSM para cálculo de  $P_{crlnh}$  foi 1 kN, deve-se aplicar 1 kN para cálculo de  $P_{crlh}$ .



Figura 2.6 - Curva de flambagem local elástica de uma seção líquida, onde: a) L<sub>h</sub> < L<sub>crlh</sub> e b) L<sub>h</sub> > L<sub>crlh</sub> (Adaptada de Moen & Schafer, 2009)

Ainda segundo Moen e Schafer (2009), o momento fletor de flambagem elástica local para perfis com furos ( $M_{crl}$ ), deve ser tomado como o menor entre  $M_{crlnh}$  e  $M_{crlh}$ , onde  $M_{crlnh}$  é o momento fletor de flambagem elástica local desconsiderando os furos e  $M_{crlh}$  é o momento fletor de flambagem elástica local considerando os furos.

$$M_{crl} = menor(M_{crlh}, M_{crlnh})$$
(2.68)

 $M_{crlh}$  pode ser calculado via método das faixas finitas na seção líquida, com o auxílio do CUFSM, restringindo as deformações à flambagem local. Deve-se examinar somente as semiondas com comprimentos menores que o comprimento do furo.

Durante a modelagem, é necessário tomar providências semelhantes às apresentadas anteriormente. Um perfil Ue com furos na alma, deve receber restrições de translação na direção Z nos vértices comprimidos, conforme ilustrado na Figura 2.7. Esta apresenta um guia para modelagem da seção líquida de barras em flexão com furos no CUFSM.



Figura 2.7 - Guia para modelagem da seção líquida de barras em flexão no CUFSM, exemplos incluem: a) Perfil Ue e b) Perfil Cr (Adaptada de Moen & Schafer, 2009)

De maneira semelhante ao cálculo de  $P_{crl}$ , caso  $L_h$  seja maior ou igual a  $L_{crlh}$ ,  $M_{crlh}$  deve ser avaliado como o menor valor obtido no gráfico de flambagem local  $L_{crlh}$ , conforme apresentado na Figura 2.6 a. Caso  $L_h$  seja menor que  $L_{crlh}$ ,  $M_{crlh}$  deve ser considerado para o comprimento de semionda  $L_h$ , conforme apresentado na Figura 2.6 b. O momento fletor de referência usado para cálculo de  $M_{crlh}$  e  $M_{crlnh}$  deve ser o mesmo.

# 2.5 Método da Resistência Direta aplicado em barras em compressão com furos

O MRD representa um importante avanço no processo de dimensionamento de perfis formados a frio, pois fornece aos engenheiros e fabricantes ferramentas para cálculo de barras com seções transversais genéricas (Moen & Schafer, 2011).

Moen e Schafer (2011) apresentaram um estudo que estendia o processo de dimensionamento via MRD para perfis estruturais de aço formados a frio, resultando em um método aplicável a uma série de seções transversais e uma variedade de dimensões de furos e peças.

Para perfis sem furos, as forças críticas de flambagem podem ser obtidas da curva de flambagem elástica do perfil, facilmente determinada via Método das Faixas Finitas, com auxílio do *software* CUFSM, por exemplo (Schafer e Adàny, 2006). As forças críticas de flambagem elástica local (P<sub>crl</sub>) e distorcional (P<sub>crd</sub>) são os pontos mínimos locais da curva apresentada na Figura 2.8. A força crítica de flambagem global (P<sub>cre</sub>) corresponde ao ponto da curva associado ao comprimento efetivo da barra (Li e Schafer, 2010b).



Figura 2.8 - Curva de flambagem elástica, obtida via método das faixas finitas (Adaptada de Moen e Schafer, 2011)

Para uma barra em compressão com furos, as forças críticas de flambagem elástica P<sub>crl</sub>, P<sub>crd</sub> e P<sub>cre</sub> são calculadas incluindo a existência de furos e em seguida aplicadas nas formulações do MRD. Para cálculo das forças de flambagem elásticas de perfis com furos Moen e Schafer (2011) estudaram seis formulações, que foram calibradas via Método dos Elementos Finitos. No artigo em questão, os autores chegaram à conclusão da melhor formulação, sendo que esta é adotada na norma norte americana AISI S100-16 e é apresentada a seguir.

Moen e Schafer (2011) recomendam que  $P_{nl}$  seja limitada a  $P_{ynet}$ , sendo  $P_{ynet}=A_{net}*f_y$ . Os autores adicionalmente recomendam uma modificação da curva de flambagem distorcional, conforme apresentado nas equações 2.69 a 2.71 e ilustrado pela Figura 2.9.

$$P_{nd} = P_{ynet} \qquad para \,\lambda_d \le \lambda_{d1} \tag{2.69}$$

$$P_{nd} = P_{ynet} - \left(\frac{P_{ynet} - P_{d2}}{\lambda_{d2} - \lambda_{d1}}\right) (\lambda_d - \lambda_{d1}) \qquad se\lambda_{d1} < \lambda_d \le \lambda_{d2}$$
(2.70)

$$P_{nd} = \left[1 - 0.25 \left(\frac{P_{crd}}{P_y}\right)^{0.6}\right] \left(\frac{P_{crd}}{P_y}\right)^{0.6} P_y, \qquad para \,\lambda_d > \lambda_{d2}$$
(2.71)

Nas equações 2.69 a 2.71,  $\lambda_{d1} e \lambda_{d2}$  são índices de esbeltez de referência, calculados conforme equações 2.72 e 2.73, e P<sub>d2</sub> é uma força de flambagem distorcional de referência calculada conforme equação 2.74.

$$\lambda_{d1} = 0,561 \left(\frac{P_{ynet}}{P_y}\right) \tag{2.72}$$

$$\lambda_{d2} = 0,561 \left[ 14 \left( \frac{P_y}{P_{ynet}} \right)^{0,4} - 13 \right]$$
(2.73)

$$P_{d2} = \left[1 - 0.25 \left(\frac{1}{\lambda_{d2}}\right)^{1,2}\right] \left(\frac{1}{\lambda_{d2}}\right)^{1,2} P_y$$
(2.74)



Figura 2.9 - Redução de força resistente da barra em compressão devido à flambagem distorcional: Pynet/Py=0,80 (Adaptada de Moen e Schafer, 2011)



Figura 2.10 - Redução de força resistente da barra em compressão devido à flambagem distorcional: (a)  $P_{ynet}/P_y = 0,60$  (Adaptada de Moen e Schafer, 2011)

Na Figura 2.9 e Figura 2.10, a linha contínua representa os valores obtidos via método da resistência direta em perfis sem furos, a linha tracejada representa os valores obtidos via método da resistência direta em perfis com furos. Os pontos em vermelho e azul representam os valores obtidos via métodos dos elementos finitos para perfis com imperfeições iniciais locais e distorcionais com probabilidade de excedência superior a 25% e 75%, respectivamente, conforme proposto por Schafer e Pekoz (1998).

# 2.6 Método da Resistência Direta aplicado em barras em flexão com furos

Moen et al (2013) propuseram uma adaptação do MRD para o cálculo de barras em flexão com furos. O momento fletor resistente nominal de uma barra em flexão com furos é o menor entre os três estados-limites: flambagem lateral com torção ( $M_{ne}$ ), interação entre a flambagem global e local ( $M_{nl}$ ) e flambagem distorcional ( $M_{nd}$ ).

O momento fletor resistente nominal para a flambagem distorcional ( $M_{nd}$ ) incluindo a presença de furos é dado pelas equações 2.75 e 2.76:

$$M_{nd} = M_{ynet} \qquad para \,\lambda_d \le \lambda_{d1} \tag{2.75}$$

$$M_{nd} = M_{\text{ynet}} - \left(\frac{M_{\text{ynet}} - M_{d2}}{\lambda_{d2} - \lambda_{d1}}\right) (\lambda_d - \lambda_{d1}) \leq \left[1 - 0.22 \left(\frac{M_{crd}}{M_y}\right)^{0.5}\right] \left(\frac{M_{crd}}{M_y}\right)^{0.5} M_y \quad \text{para } \lambda_d > \lambda_{d1}$$

$$(2.76)$$

. .

. .

Onde  $\lambda_{d1}$  e  $\lambda_{d2}$ são os índices de esbeltez dados pelas equações 2.78 e 2.79, M<sub>crd</sub> é o momento crítico de flambagem distorcional, considerando a existência de furos no perfil e M<sub>d2</sub> é um momento de referência dado pela equação 2.80:

$$\lambda_d = \sqrt{\frac{M_y}{M_{crd}}}$$
(2.77)

$$\lambda_{d1} = 0,673 \left(\frac{M_{ynet}}{M_y}\right)^{3,0} \tag{2.78}$$

$$\lambda_{d2} = 0,673 \left[ 1,7 \left( \frac{M_y}{M_{ynet}} \right)^{2,7} - 0,7 \right]$$
(2.79)

$$M_{d2} = \left[1 - 0.22 \left(\frac{1}{\lambda_{d2}}\right)\right] \left(\frac{1}{\lambda_{d2}}\right) M_{y}$$
(2.80)

O  $M_{crd}$  deve ser calculado como o menor entre o momento crítico de flambagem distorcional na seção bruta ( $M_{crd}$ ) e o momento crítico de flambagem distorcional na região do furo ( $M_{crdh}$ ). Para cálculo de  $M_{crdh}$ , considera-se a redução da espessura da seção t para t<sub>r</sub>, de modo a simular a redução da rigidez rotacional provida pela alma para a mesa (Moen e Schafer, 2009), conforme a equação 2.81, onde L<sub>hole</sub> é o comprimento do furo e L<sub>crdnh</sub> é o comprimento de semionda de flambagem distorcional do perfil sem furo.

$$t_r = \left(1 - \frac{L_{hole}}{L_{crdh}}\right)^{1/3} t \ge 0 \tag{2.81}$$

# 2.7 Experimentos realizados em barras em compressão Ue com furos na alma

Para avaliar o comportamento de comportamento de barras em compressão com seção Ue e furos oblongos, Moen e Schafer (2008) realizaram ensaios destrutivos com 24 corpos de prova. As dimensões da seção transversal foram especificamente escolhidas para observar a relação entre flambagem local, flambagem distorcional e flambagem global, e seus respectivos mecanismos de falha.

O comprimento das barras ensaiadas foi de 610 mm (24 in) e 1219 mm (48 in), por serem os comprimentos destravados típicos de montantes no sistema LSF. Um furo oblongo estava localizado na meia altura da barra de comprimento de 610 mm e dois furos oblongos foram feitos nas barras de 1219 mm, espaçados de 610 mm. Os furos foram localizados na região onde se esperava o máximo deslocamento da flambagem distorcional (Moen e Schafer, 2008).

Os autores realizaram simulações via método dos elementos finitos, pelo *software* ABAQUS, para estimar as forças de flambagem e deformações esperadas nas barras. Os modos de flambagem esperados são apresentados nas Figura 2.11 e Figura 2.12.



Figura 2.11 - Modos de flambagem esperado para barras em compressão curtas: (a) Flambagem Local; (b) Flambagem Distorcional (Adaptada de Moen e Schafer, 2008)



Figura 2.12 – Modos de flambagem esperado para barras em compressão de comprimento intermediário: (a) Flambagem Local; (b) Flambagem Distorcional (Adaptada de Moen e Schafer, 2008)

Moen e Schafer (2008) concluíram que a presença de furos oblongos discretos na alma de perfis Ue sujeitos à força axial de compressão provoca uma pequena redução na força axial de compressão resistente do mesmo, apesar da resposta pós-estável e a ductilidade da barra terem sido alteradas. Em alguns modelos, os furos reduziram a força de flambagem local da alma, fazendo com a maior parte da força de compressão fosse transmitida pela mesa e pelo enrijecedor, induzindo o perfil a falha pelo modo distorcional.

A seguir serão apresentados os resultados do estudo de Moen e Schafer. Estes serão utilizados para calibração dos resultados teóricos obtidos com o *software* implementado. A Figura 2.13 apresenta a nomenclatura usada no estudo. A Tabela 2-1 apresenta os dados das seções transversais adotadas no estudo, bem como o resultado do ensaio do aço que compõe os perfis. A Tabela 2-2 apresenta as forças axiais de flambagem global elástica, local elástica e distorcional elástica dos modelos com e sem furos, e avalia a influência dos furos nas forças de flambagem elástica. A Tabela 2-3 apresenta a força axial de compressão resistente obtida nos ensaios.



Figura 2.13 – Nomenclatura adotada no estudo (Adaptada de Moen e Schafer, 2008)

| Specimen    | $f_y$<br>(MPa) | t<br>(mm) | L<br>(mm) | H<br>(mm) | <i>B</i> <sub>1</sub> (mm) | <i>B</i> <sub>2</sub> (mm) | D <sub>1</sub><br>(mm) | D <sub>2</sub><br>(mm) | RT <sub>1</sub><br>(mm) | RT <sub>2</sub><br>(mm) | RB <sub>1</sub><br>(mm) | RB <sub>2</sub><br>(mm) | $S_1$ (deg) | S <sub>2</sub><br>(deg) | F <sub>1</sub><br>(deg) | F <sub>2</sub><br>(deg) |
|-------------|----------------|-----------|-----------|-----------|----------------------------|----------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|-------------------------|-------------------------|-------------------------|
| 362-1-24-NH | 380            | 0.98      | 612       | 92.8      | 39.4                       | 41.2                       | 10.4                   | 10.9                   | 4.8                     | 4.8                     | 4.4                     | 4.8                     | 12.8        | 8.4                     | 86.0                    | 86.8                    |
| 362-2-24-NH | 380            | 0.98      | 612       | 94.3      | 40.3                       | 40.3                       | 10.6                   | 10.7                   | 4.4                     | 5.2                     | 6.7                     | 7.1                     | 11.4        | 11.6                    | 87.6                    | 85.5                    |
| 362-3-24-NH | 380            | 0.98      | 612       | 92.0      | 42.6                       | 42.6                       | 10.8                   | 10.1                   | 4.8                     | 4.4                     | 7.1                     | 7.1                     | 9.6         | 9.4                     | 86.3                    | 85.4                    |
| 362-1-24-H  | 400            | 0.99      | 612       | 91.0      | 41.9                       | 40.5                       | 10.9                   | 11.1                   | 4.8                     | 5.2                     | 7.1                     | 7.1                     | 11.1        | 10.9                    | 87.6                    | 85.6                    |
| 362-2-24-H  | 394            | 0.97      | 612       | 92.6      | 41.3                       | 40.5                       | 11.2                   | 9.9                    | 4.8                     | 4.8                     | 7.1                     | 7.1                     | 4.4         | 10.3                    | 86.3                    | 85.2                    |
| 362-3-24-H  | 386            | 1.00      | 612       | 93.3      | 42.5                       | 43.1                       | 10.6                   | 10.8                   | 4.8                     | 4.8                     | 6.7                     | 6.7                     | 10.5        | 10.8                    | 87.7                    | 86.1                    |
| 362-1-48-NH | 412            | 1.00      | 1225      | 92.0      | 40.9                       | 40.8                       | 10.5                   | 10.8                   | 4.4                     | 4.4                     | 7.1                     | 7.1                     | 7.8         | 10.1                    | 85.0                    | 85.6                    |
| 362-2-48-NH | 409            | 1.00      | 1227      | 92.0      | 40.9                       | 40.3                       | 10.3                   | 10.7                   | 4.8                     | 4.4                     | 7.5                     | 7.1                     | 8.0         | 10.8                    | 84.2                    | 84.6                    |
| 362-3-48-NH | 407            | 0.99      | 1224      | 91.8      | 40.7                       | 40.6                       | 10.8                   | 10.2                   | 4.8                     | 4.8                     | 6.7                     | 6.7                     | 9.1         | 12.2                    | 85.3                    | 84.1                    |
| 362-1-48-H  | 404            | 1.00      | 1225      | 92.0      | 40.7                       | 40.5                       | 10.7                   | 10.5                   | 4.4                     | 4.4                     | 7.1                     | 7.1                     | 8.5         | 9.8                     | 85.6                    | 84.2                    |
| 362-2-48-H  | 412            | 0.99      | 1225      | 92.0      | 40.5                       | 40.9                       | 10.8                   | 10.2                   | 4.4                     | 4.4                     | 7.1                     | 7.1                     | 8.3         | 11.2                    | 85.6                    | 83.8                    |
| 362-3-48-H  | 402            | 1.01      | 1224      | 92.3      | 40.7                       | 40.9                       | 10.0                   | 11.0                   | 4.4                     | 4.4                     | 7.1                     | 6.4                     | 9.7         | 7.3                     | 84.1                    | 85.3                    |
| 600-1-24-NH | 405            | 1.11      | 612       | 153.3     | 40.6                       | 41.4                       | 12.4                   | 9.3                    | 4.4                     | 4.0                     | 6.4                     | 5.2                     | 1.6         | 2.1                     | 91.4                    | 93.8                    |
| 600-2-24-NH | 405            | 1.11      | 612       | 154.2     | 40.2                       | 41.0                       | 12.0                   | 9.7                    | 5.2                     | 5.2                     | 6.7                     | 6.7                     | 1.7         | 2.3                     | 91.5                    | 93.3                    |
| 600-3-24-NH | 405            | 1.11      | 612       | 153.2     | 40.7                       | 40.4                       | 9.4                    | 12.3                   | 4.0                     | 4.4                     | 6.7                     | 5.6                     | -2.2        | 3.5                     | 92.7                    | 89.7                    |
| 600-1-24-H  | 427            | 1.07      | 612       | 153.4     | 40.5                       | 40.8                       | 12.3                   | 9.1                    | 4.4                     | 4.4                     | 6.4                     | 5.6                     | 1.0         | 2.0                     | 91.2                    | 92.6                    |
| 600-2-24-H  | 403            | 1.05      | 612       | 152.7     | 40.9                       | 40.7                       | 9.4                    | 12.7                   | 4.4                     | 4.4                     | 5.2                     | 6.0                     | 1.8         | 1.1                     | 92.0                    | 89.0                    |
| 600-3-24-H  | 415            | 1.09      | 612       | 153.2     | 40.8                       | 40.0                       | 9.1                    | 12.1                   | 4.4                     | 4.4                     | 6.4                     | 5.2                     | 0.1         | 4.1                     | 90.1                    | 86.3                    |
| 600-1-48-NH | 415            | 1.10      | 1226      | 152.9     | 41.2                       | 40.9                       | 12.3                   | 9.5                    | 4.4                     | 4.4                     | 6.0                     | 5.6                     | 0.2         | 1.4                     | 90.6                    | 92.8                    |
| 600-2-48-NH | 437            | 1.10      | 1226      | 152.8     | 40.5                       | 40.7                       | 12.2                   | 9.1                    | 4.4                     | 4.4                     | 6.0                     | 6.0                     | 2.0         | 2.4                     | 89.9                    | 91.9                    |
| 600-3-48-NH | 422            | 1.10      | 1227      | 153.1     | 40.3                       | 41.3                       | 12.4                   | 8.6                    | 4.4                     | 4.4                     | 6.7                     | 5.6                     | 2.6         | 2.3                     | 90.0                    | 92.1                    |
| 600-1-48-H  | 423            | 1.09      | 1221      | 152.6     | 40.6                       | 41.3                       | 12.2                   | 9.9                    | 4.8                     | 4.0                     | 6.4                     | 5.6                     | 2.5         | 2.1                     | 90.0                    | 92.6                    |
| 600-2-48-H  | 428            | 1.09      | 1226      | 152.8     | 40.4                       | 40.8                       | 12.1                   | 9.0                    | 4.4                     | 4.4                     | 6.0                     | 6.0                     | 2.4         | 1.0                     | 88.9                    | 91.2                    |
| 600-3-48-H  | 424            | 1.10      | 1221      | 154.0     | 41.5                       | 40.3                       | 9.3                    | 12.2                   | 4.4                     | 4.4                     | 5.6                     | 6.4                     | 0.7         | 3.6                     | 92.3                    | 89.4                    |

Tabela 2-1 – Resumo dos dados das seções transversais e do material (Moen & Schafer, 2008)

Tabela 2-2 – Força axial de flambagem elástica dos modelos e influência do furos na flambagem elástica (Moen & Schafer, 2008)

| Specimen name | Elastic buckli    | ng                    |                            | Hole influence <sup>a</sup> |                                     |                                                          |                                    |
|---------------|-------------------|-----------------------|----------------------------|-----------------------------|-------------------------------------|----------------------------------------------------------|------------------------------------|
|               | $P_{\rm yg}$ (kN) | P <sub>cre</sub> (kN) | $P_{\mathrm{cr}\ell}$ (kN) | $P_{\rm crd}$ (kN)          | $P_{\rm cre}/P_{\rm cre}^{\rm noH}$ | $P_{\mathrm{cr}\ell}/P_{\mathrm{cr}\ell}^{\mathrm{noH}}$ | $P_{\rm crd}/P_{\rm crd}^{ m noH}$ |
| 362-1-24-NH   | 68.8              | 486.8                 | 21.6                       | 46.9                        |                                     |                                                          |                                    |
| 362-2-24-NH   | 69.2              | 500.2                 | 21.1                       | 45.3                        |                                     | N/A                                                      |                                    |
| 362-3-24-NH   | 69.9              | 498.9                 | 22.1                       | 47.6                        |                                     | ,                                                        |                                    |
| 362-1-24-H    | 72.7              | 530.5                 | 26.0                       | 59.9                        | 0.98                                | 1.03                                                     | 1.12                               |
| 362-2-24-H    | 69.9              | 501.6                 | 24.1                       | 55.1                        | 0.98                                | 1.02                                                     | 1.13                               |
| 362-3-24-Н    | 73.0              | 580.7                 | 25.4                       | 57.5                        | 0.99                                | 1.02                                                     | 1.12                               |
| 362-1-48-NH   | 75.3              | 135.5                 | 22.9                       | 43.0                        |                                     |                                                          |                                    |
| 362-2-48-NH   | 74.5              | 131.1                 | 23.0                       | 42.9                        |                                     | N/A                                                      |                                    |
| 362-3-48-NH   | 73.8              | 131.5                 | 22.7                       | 42.4                        |                                     |                                                          |                                    |
| 362-1-48-H    | 73.7              | 133.2                 | 23.5                       | 42.0                        | 0.94                                | 1.03                                                     | 0.98                               |
| 362-2-48-H    | 74.9              | 132.2                 | 23.2                       | 41.5                        | 0.94                                | 1.03                                                     | 0.98                               |
| 362-3-48-H    | 74.9              | 160.9                 | 25.3                       | 42.6                        | 0.95                                | 1.03                                                     | 0.98                               |
| 600-1-24-NH   | 109.7             | 1087.5                | 15.3                       | 30.1                        |                                     |                                                          |                                    |
| 600-2-24-NH   | 109.1             | 1044.9                | 15.3                       | 29.6                        |                                     | N/A                                                      |                                    |
| 600-3-24-NH   | 108.8             | 971.5                 | 15.3                       | 29.5                        |                                     |                                                          |                                    |
| 600-1-24-H    | 111.3             | 1064.6                | 14.5                       | 31.2                        | 1.01                                | 1.02                                                     | 1.09                               |
| 600-2-24-H    | 102.8             | 1060.6                | 14.3                       | 30.0                        | 1.01                                | 1.01                                                     | 1.08                               |
| 600-3-24-H    | 110.0             | 1079.2                | 15.4                       | 32.7                        | 1.02                                | 1.01                                                     | 1.08                               |
| 600-1-48-NH   | 111.8             | 274.9                 | 15.4                       | 23.0                        |                                     |                                                          |                                    |
| 600-2-48-NH   | 116.5             | 265.3                 | 15.0                       | 25.3                        |                                     | N/A                                                      |                                    |
| 600-3-48-NH   | 112.9             | 267.6                 | 15.2                       | 25.2                        |                                     | ,                                                        |                                    |
| 600-1-48-H    | 112.3             | 250.3                 | 15.1                       | 22.5                        | 0.87                                | 1.02                                                     | 1.02                               |
| 600-2-48-H    | 113.2             | 235.9                 | 15.1                       | 22.1                        | 0.87                                | 1.02                                                     | 1.02                               |
| 600-3-48-H    | 113.7             | 248.0                 | 15.3                       | 22.4                        | 0.86                                | 1.02                                                     | 1.02                               |

<sup>a</sup>For specimens with holes (H), the holes are removed and elastic buckling calculated (noH). The hole (H) and no hole (noH) finite element models are otherwise identical, isolating the influence of the holes.

| Specimen    | $P_{test}$ (kN) | $P_{test}$ statistics |                |  |  |  |  |
|-------------|-----------------|-----------------------|----------------|--|--|--|--|
|             |                 | Mean (kN)             | Std. dev. (kN) |  |  |  |  |
| 362-1-24-NH | 46.6            |                       |                |  |  |  |  |
| 362-2-24-NH | 46.7            | 46.2                  | 0.9            |  |  |  |  |
| 362-3-24-NH | 45.1            |                       |                |  |  |  |  |
| 362-1-24-H  | 44.5            |                       |                |  |  |  |  |
| 362-2-24-Н  | 46.2            | 45.0                  | 1.1            |  |  |  |  |
| 362-3-24-H  | 44.2            |                       |                |  |  |  |  |
| 362-1-48-NH | 40.4            |                       |                |  |  |  |  |
| 362-2-48-NH | 42.2            | 41.6                  | 1.0            |  |  |  |  |
| 362-3-48-NH | 42.2            |                       |                |  |  |  |  |
| 362-1-48-H  | 39.8            |                       |                |  |  |  |  |
| 362-2-48-H  | 40.8            | 40.8                  | 0.9            |  |  |  |  |
| 362-3-48-H  | 41.7            |                       |                |  |  |  |  |
| 600-1-24-NH | 53.1            |                       |                |  |  |  |  |
| 600-2-24-NH | 53.2            | 53.6                  | 0.8            |  |  |  |  |
| 600-3-24-NH | 54.4            |                       |                |  |  |  |  |
| 600-1-24-H  | 54.0            |                       |                |  |  |  |  |
| 600-2-24-H  | 51.7            | 52.7                  | 1.2            |  |  |  |  |
| 600-3-24-H  | 52.4            |                       |                |  |  |  |  |
| 600-1-48-NH | 49.6            |                       |                |  |  |  |  |
| 600-2-48-NH | 50.9            | 50.2                  | 0.6            |  |  |  |  |
| 600-3-48-NH | 50.2            |                       |                |  |  |  |  |
| 600-1-48-H  | 49.6            |                       |                |  |  |  |  |
| 600-2-48-H  | 52.0            | 50.4                  | 1.4            |  |  |  |  |
| 600-3-48-H  | 49.6            |                       |                |  |  |  |  |

Tabela 2-3 – Força axial de compressão resistente dos modelos (Moen & Schafer, 2008)

# 2.8 Experimentos realizados em *steel joist* constituídos por barras em flexão com seção Ue e furos na alma

Para avaliar experimentalmente o comportamento de *steel joist* constituídos por barras formadas a frio em flexão com furos na alma, Moen et at. (2013) realizaram ensaios em dezoito peças, sendo nove com furos e nove sem furos. Uma seção transversal comercial sujeita à distorção foi escolhida e atenção especial foi dada para a amplificação da deformação causada pela flambagem distorcional nas peças com furos. Este ensaio foi realizado em flexão de quatro pontos com controle de deslocamentos, conforme apresentado na Figura 2.14.

![](_page_71_Figure_0.jpeg)

Figura 2.14 - Esquema adotado nos ensaios realizados por Moen et at. (Adaptada de Moen et al, 2013)

Cada *steel joist* possuía três furos retangulares em sua alma, feitos com um sistema de corte de água pressurizada. Foram ensaiadas peças sem furos e peças com furos. A dimensão dos furos foi escolhida de modo a garantir que a relação entre inércia bruta da seção e inércia líquida na região dos furos fosse de 0,90 e 0,80.

Os momentos críticos de flambagem foram calculados para cada perfil, incluindo a influência dos furos, via MRD. O comportamento de uma barra em flexão com furos é apresentado na Figura 2.15, que também apresenta um procedimento para análise de estabilidade elástica da região com furo no CUFSM.

Moen et al. (2013) observaram que o momento resistente sofreu uma redução média de 19% para as peças com  $I_{net}/I_g = 0,90$  e de 34% para as peças com  $I_{net}/I_g = 0,80$ . Nestas peças foi observado flambagem distorcional na região do furo, acompanhada de flambagem local na região comprimida da alma próxima ao furo. Para alguns modelos observou-se o colapso repentino da peça na região do furo.


Figura 2.15 – Procedimento de análise da seção líquida via método das faixas finitas (Adaptada de Moen et al., 2013)

Moen et al. (2013) concluíram que a presença de furos reduz a capacidade resistente do perfil e aumentam os deslocamentos provenientes da flambagem distorcional. Também foi comprovado que o método da resistência direta é viável para cálculo dos momentos críticos de perfis Ue analisados no experimento.

A seguir serão apresentados os resultados do estudo de Moen et al. (2013). Estes serão utilizados para calibração dos resultados teóricos obtidos com o *software* implementado. A Figura 2.13 apresenta a nomenclatura usada no estudo. A Tabela 2-4 apresenta os dados das seções transversais adotadas, a Tabela 2-5 apresenta a locação e dimensão dos furos. Tabela 2-6 apresenta os momentos fletores de flambagem local elástica, enquanto a Tabela 2-7 apresenta os momentos fletores de flambagem distorcional elástica dos modelos com e sem furos, e avalia a influência dos furos nos mesmos. A Tabela 2-8 apresenta o momento fletor resistente obtido nos ensaios.



Figura 2.16 – Nomenclatura adotada no estudo (Moen et al., 2013)

| Specimen | fy<br>(MPa) | t<br>(mm) | H<br>(mm) | <i>B</i> <sub>1</sub> (mm) | <i>B</i> <sub>2</sub> (mm) | <i>D</i> <sub>1</sub> (mm) | D <sub>2</sub><br>(mm) | F <sub>1</sub><br>(degrees) | F <sub>2</sub><br>(degrees) | S <sub>1</sub><br>(degrees) | S <sub>2</sub><br>(degrees) | <i>RB</i> <sub>1</sub> (mm) | <i>RB</i> <sub>2</sub> (mm) | <i>RT</i> <sub>1</sub> (mm) | <i>RT</i> <sub>2</sub> (mm) |
|----------|-------------|-----------|-----------|----------------------------|----------------------------|----------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| NH-1.1   | 380         | 1.76      | 203.0     | 63.0                       | 63.4                       | 15.4                       | 13.9                   | 88.3                        | 89.3                        | 3.6                         | 4.1                         | 4.6                         | 4.7                         | 4.5                         | 4.1                         |
| NH-1.2   | 363         | 1.77      | 203.2     | 62.8                       | 63.4                       | 15.3                       | 14.0                   | 87.6                        | 89.9                        | 4.0                         | 3.7                         | 4.7                         | 5.5                         | 4.9                         | 4.4                         |
| NH-2.1   | 364         | 1.76      | 203.3     | 62.7                       | 63.5                       | 15.4                       | 14.2                   | 88.0                        | 89.5                        | 3.7                         | 3.6                         | 5.1                         | 4.8                         | 4.6                         | 4.5                         |
| NH-2.2   | 375         | 1.78      | 203.1     | 62.7                       | 63.5                       | 15.2                       | 14.0                   | 86.5                        | 89.3                        | 3.9                         | 4.1                         | 4.9                         | 4.7                         | 4.9                         | 4.2                         |
| NH-3.1   | 378         | 1.78      | 203.1     | 62.7                       | 63.5                       | 13.1                       | 14.2                   | 87.0                        | 89.0                        | 4.6                         | 4.8                         | 5.2                         | 4.9                         | 4.8                         | 4.7                         |
| NH-3.2   | 371         | 1.77      | 203.0     | 62.7                       | 63.4                       | 15.3                       | 14.1                   | 87.7                        | 89.0                        | 3.8                         | 3.5                         | 4.7                         | 4.9                         | 4.2                         | 3.9                         |
| H0.9-1.1 | 365         | 1.76      | 203.0     | 63.7                       | 62.6                       | 13.7                       | 15.6                   | 89.6                        | 87.6                        | 2.9                         | 3.5                         | 5.2                         | 5.3                         | 5.2                         | 5.0                         |
| H.09-1.2 | 366         | 1.77      | 203.0     | 62.7                       | 63.5                       | 15.5                       | 13.8                   | 87.7                        | 90.1                        | 3.7                         | 3.6                         | 5.3                         | 5.2                         | 4.8                         | 5.0                         |
| H.09-2.1 | 368         | 1.76      | 203.1     | 62.7                       | 63.6                       | 15.4                       | 13.9                   | 87.2                        | 89.9                        | 4.0                         | 4.2                         | 5.2                         | 4.7                         | 5.2                         | 4.4                         |
| H0.9-2.2 | 363         | 1.77      | 203.1     | 62.6                       | 63.6                       | 15.3                       | 13.9                   | 87.9                        | 89.9                        | 4.3                         | 3.3                         | 5.4                         | 4.7                         | 5.1                         | 4.8                         |
| H0.9-3.1 | 370         | 1.77      | 203.0     | 62.8                       | 63.4                       | 15.5                       | 13.8                   | 86.7                        | 89.1                        | 4.1                         | 3.7                         | 5.0                         | 5.1                         | 4.4                         | 4.9                         |
| H0.9-3.2 | 369         | 1.78      | 202.9     | 62.8                       | 63.4                       | 15.6                       | 13.6                   | 86.7                        | 89.6                        | 3.4                         | 3.8                         | 5.2                         | 5.3                         | 4.7                         | 4.3                         |
| H0.8-1.1 | 364         | 1.76      | 203.0     | 62.7                       | 63.4                       | 15.0                       | 13.7                   | 88.2                        | 89.8                        | 3.5                         | 2.8                         | 4.3                         | 5.1                         | 3.9                         | 3.8                         |
| H0.8-1.2 | 360         | 1.77      | 203.0     | 63.5                       | 62.9                       | 14.0                       | 15.2                   | 89.8                        | 87.1                        | 3.3                         | 4.3                         | 4.7                         | 5.4                         | 4.7                         | 4.5                         |
| H0.8-2.1 | 363         | 1.77      | 203.1     | 62.8                       | 63.6                       | 15.1                       | 14.0                   | 87.3                        | 89.3                        | 3.3                         | 3.5                         | 5.8                         | 5.3                         | 5.2                         | 4.9                         |
| H0.8-2.2 | 363         | 1.75      | 203.1     | 63.5                       | 62.7                       | 14.3                       | 15.3                   | 89.7                        | 87.3                        | 3.0                         | 4.0                         | 5.2                         | 5.1                         | 4.4                         | 4.7                         |
| H0.8-3.1 | 375         | 1.76      | 202.9     | 63.4                       | 62.7                       | 13.7                       | 15.4                   | 88.9                        | 87.7                        | 3.3                         | 3.4                         | 5.8                         | 5.7                         | 4.8                         | 5.2                         |
| H0.8-3.2 | 376         | 1.76      | 203.1     | 63.4                       | 62.6                       | 14.0                       | 15.2                   | 89.7                        | 87.3                        | 3.6                         | 3.6                         | 4.4                         | 5.7                         | 4.7                         | 4.4                         |

Tabela 2-4 – Resumo dos dados das seções transversais (Moen et al., 2013)

32.9

33.1

32.5

15.0

15.1

15.2

15.3

15.8

15.9

2,895

2,895

2,895

2,895

2,895

2,895

2,895

2,895

2,895

32.7

32.8

33.3

15.4

15.0

15.4

14.8

14.4

14.6

136.7

136.7

136.7

172.1

172.1

172.1

172.2

172.2

172.1

152.3

152.3

152.4

152.0

152.1

152.1

152.0

152.1

152.0

136.7

136.7

136.7

171.9

172.0

171.8

171.9

172.3

171.8

32.4

32.9

33.2

15.4

15.1

15.3

15.0

14.5

14.8

33.3

32.8

32.6

15.3

14.9

15.4

15.6

15.6

15.8

Tabela 2-5 – Locação dos furos (Moen et al., 2013)

152.3

152.3

152.3

152.0

151.9

152.0

152.0

152.0

152.0

Hole A

 $h_{\rm hole}$ 

(mm)

136.6

136.7

136.7

136.7

136.7

136.6

172.1

172.2

172.1

172.0

172.0

172.2

 $w_1$ 

(mm)

32.5

33.5

33.0

32.8

32.4

33.4

15.4

14.9

15.5

14.9

14.6

14.6

32.8

33.3

32.3

14.9

15.3

14.9

15.5

15.9

15.6

2,438

2,438

2,438

2,438

2,438

2,438

2,438

2,438

2,438

X

(mm)

1,980

1,980

1,980

1,980

1,980

1,980

1,980

1,980

1,980

1,980

1,980

1,980

Specimen

H0.9-1.1

H.09-1.2

H.09-2.1

H0.9-2.2

H0.9-3.1

H0.9-3.2

H0.8-1.1

H0.8-1.2

H0.8-2.1

H0.8-2.2

H0.8-3.1

H0.8-3.2

Lhole

(mm)

152.3

152.3

152.3

152.4

152.3

152.4

152.1

151.9

151.8

152.1

152.0

151.9

Tabela 2-6 - Momento fletor de flambagem local elástica dos modelos e influência do furos na flambagem elástica (Moen et al., 2013)

|          | Gross se<br>buc      | ction local<br>kling         | Net sec<br>buc      | tion local<br>kling         |                                  |  |
|----------|----------------------|------------------------------|---------------------|-----------------------------|----------------------------------|--|
| Specimen | $L_{cr\ell nh}$ (mm) | M <sub>crℓnh</sub><br>(kN m) | $L_{cr\ell h}$ (mm) | M <sub>crℓh</sub><br>(kN m) | <i>M<sub>crℓ</sub></i><br>(kN m) |  |
| NH-1.1   | 113                  | 15.9                         | _                   | _                           | 15.9                             |  |
| NH-1.2   | 113                  | 16.2                         |                     |                             | 16.2                             |  |
| NH-2.1   | 113                  | 16.2                         |                     |                             | 16.2                             |  |
| NH-2.2   | 113                  | 16.5                         |                     |                             | 16.5                             |  |
| NH-3.1   | 113                  | 16.1                         |                     |                             | 16.1                             |  |
| NH-3.2   | 113                  | 16.3                         |                     |                             | 16.3                             |  |
| H0.9-1.1 | 113                  | 15.5                         | 80.0                | 18.1                        | 15.5                             |  |
| H.09-1.2 | 113                  | 16.2                         | 80.0                | 18.6                        | 16.2                             |  |
| H.09-2.1 | 113                  | 16.2                         | 80.0                | 19.0                        | 16.2                             |  |
| H0.9-2.2 | 113                  | 15.7                         | 80.0                | 18.3                        | 15.7                             |  |
| H0.9-3.1 | 113                  | 16.3                         | 80.0                | 18.7                        | 16.3                             |  |
| H0.9-3.2 | 113                  | 16.2                         | 80.0                | 18.8                        | 16.2                             |  |
| H0.8-1.1 | 113                  | 16.0                         | 65.0                | 21.0                        | 16.0                             |  |
| H0.8-1.2 | 113                  | 15.8                         | 65.0                | 20.8                        | 15.8                             |  |
| H0.8-2.1 | 113                  | 16.0                         | 65.0                | 21.5                        | 16.0                             |  |
| H0.8-2.2 | 113                  | 16.1                         | 65.0                | 21.1                        | 16.1                             |  |
| H0.8-3.1 | 113                  | 16.1                         | 65.0                | 21.3                        | 16.1                             |  |
| H0.8-3.2 | 113                  | 16.0                         | 65.0                | 21.2                        | 16.0                             |  |

|          | Gross<br>disto<br>buc      | section<br>ortional<br>ckling      | disto                     | Net section<br>distortional buckling |                                   |                            |  |
|----------|----------------------------|------------------------------------|---------------------------|--------------------------------------|-----------------------------------|----------------------------|--|
| Specimen | L <sub>crdnh</sub><br>(mm) | <i>M<sub>crdnh</sub></i><br>(kN m) | L <sub>crdh</sub><br>(mm) | <i>t<sub>r</sub></i> (mm)            | <i>M<sub>crdh</sub></i><br>(kN m) | M <sub>crd</sub><br>(kN m) |  |
| NH-1.1   | 491                        | 13.3                               |                           |                                      |                                   | 13.3                       |  |
| NH-1.2   | 480                        | 13.5                               |                           |                                      |                                   | 13.5                       |  |
| NH-2.1   | 480                        | 13.5                               |                           |                                      |                                   | 13.5                       |  |
| NH-2.2   | 480                        | 13.6                               |                           |                                      |                                   | 13.6                       |  |
| NH-3.1   | 428                        | 11.9                               |                           |                                      |                                   | 11.9                       |  |
| NH-3.2   | 480                        | 13.5                               |                           |                                      |                                   | 13.5                       |  |
| H0.9-1.1 | 448                        | 11.9                               | 448                       | 1.53                                 | 10.1                              | 10.1                       |  |
| H.09-1.2 | 480                        | 13.5                               | 480                       | 1.55                                 | 11.6                              | 11.6                       |  |
| H.09-2.1 | 480                        | 13.5                               | 480                       | 1.56                                 | 11.2                              | 11.2                       |  |
| H0.9-2.2 | 480                        | 13.2                               | 480                       | 1.54                                 | 11.2                              | 11.2                       |  |
| H0.9-3.1 | 491                        | 13.5                               | 491                       | 1.56                                 | 11.7                              | 11.7                       |  |
| H0.9-3.2 | 491                        | 13.5                               | 491                       | 1.56                                 | 11.6                              | 11.6                       |  |
| H0.8-1.1 | 480                        | 13.1                               | 480                       | 1.55                                 | 11.0                              | 11.0                       |  |
| H0.8-1.2 | 458                        | 12.3                               | 458                       | 1.54                                 | 10.4                              | 10.4                       |  |
| H0.8-2.1 | 480                        | 13.1                               | 480                       | 1.55                                 | 11.2                              | 11.2                       |  |
| H0.8-2.2 | 469                        | 12.7                               | 469                       | 1.56                                 | 10.7                              | 10.7                       |  |
| H0.8-3.1 | 448                        | 12.3                               | 448                       | 1.55                                 | 10.4                              | 10.4                       |  |
| H0.8-3.2 | 458                        | 12.5                               | 458                       | 1.55                                 | 10.5                              | 10.5                       |  |

Tabela 2-7 – Momento fletor de flambagem distorcional elástica dos modelos e influência do furos na flambagem elástica (Moen et al., 2013)

Tabela 2-8 – Momento fletor resistente dos modelos (Moen et al., 2013)

|          | Yield        | moment       | Sl          | endern         | ess         |                        | Predicted          | capacity               |              | Test-to-pro              | edicted            | Test<br>pred<br>stati | t-to-<br>icted<br>stics |
|----------|--------------|--------------|-------------|----------------|-------------|------------------------|--------------------|------------------------|--------------|--------------------------|--------------------|-----------------------|-------------------------|
| Specimen | $M_y$ (kN m) | Mynet (kN m) | $\lambda_c$ | $\lambda_\ell$ | $\lambda_d$ | M <sub>ne</sub> (kN m) | $M_{n\ell}$ (kN m) | M <sub>nd</sub> (kN m) | $M_n$ (kN m) | M <sub>test</sub> (kN m) | $M_{\rm test}/M_n$ | Mean                  | COV                     |
| NH-1.1   | 13.8         | _            | 0.68        | 0.92           | 1.02        | 13.3                   | 12.0               | 10.6                   | 10.6         | 12.6                     | 1.19               |                       |                         |
| NH-2.1   | 13.5         | _            | 0.67        | 0.90           | 1.00        | 13.1                   | 11.9               | 10.5                   | 10.5         | 12.5                     | 1.19               | 1.20                  | 0.02                    |
| NH-3.2   | 13.7         |              | 0.68        | 0.90           | 1.01        | 13.3                   | 12.1               | 10.6                   | 10.6         | 13.0                     | 1.22               |                       |                         |
| H0.9-1.1 | 13.2         | 11.98        | 0.71        | 0.90           | 1.14        | 12.7                   | 11.5               | 9.4                    | 9.4          | 9.7                      | 1.03               |                       |                         |
| H0.9-2.2 | 13.2         | 11.90        | 0.71        | 0.90           | 1.08        | 12.6                   | 11.5               | 9.7                    | 9.7          | 10.5                     | 1.09               |                       |                         |
| H0.9-3.1 | 13.4         | 12.32        | 0.71        | 0.89           | 1.07        | 12.8                   | 11.8               | 9.9                    | 9.9          | 10.8                     | 1.09               |                       |                         |
| H0.8-1.2 | 13.2         | 10.67        | 0.75        | 0.89           | 1.13        | 12.4                   | 11.4               | 8.5                    | 8.5          | 8.2                      | 0.96               |                       |                         |
| H0.8-2.2 | 13.3         | 10.78        | 0.75        | 0.88           | 1.12        | 12.4                   | 11.4               | 8.6                    | 8.6          | 8.6                      | 1.00               |                       |                         |
| H0.8-3.2 | 13.8         | 11.16        | 0.77        | 0.90           | 1.15        | 12.9                   | 11.7               | 8.8                    | 8.8          | 8.6                      | 0.98               |                       |                         |

Note:  $\lambda_c = (M_v/M_{cre})^{0.5}$ ;  $\lambda_\ell = (M_{ne}/M_{cr\ell})^{0.5}$ ;  $\lambda_d = (M_v/M_{crd})^{0.5}$ ; and  $M_n = \min(M_{ne}, M_{n\ell}, M_{nd})$ ; COV = coefficient of variation

# 2.9 Comportamento de perfis com furos sujeitos ao enrugamento da alma (*web crippling*)

Uzzaman *et al.* (2012) realizaram um estudo paramétrico sobre o comportamento de perfis formados a frio com aberturas na alma, sujeitos ao enrugamento da alma (*web crippling*), sob a condição de carregamento nas duas mesas.

Os autores adotaram uma análise não linear elastoplástica via método dos elementos finitos para investigar o efeito de furos circulares na alma dos perfis sob as condições de carregamento supracitadas. A força resistente da barra dependia da relação entre o diâmetro do furo (a) e a altura da alma do perfil (h) e da relação entre o comprimento de apoio (N), como pode ser analisado na Figura 2.17.



Figura 2.17 - Dados da seção transversal e condições de apoio. (a) ITF (b) ETF (Uzzaman et al., 2012)

Os autores propuseram a aplicação de fatores de redução  $R_p$  para as duas condições de carregamentos estudadas, apresentados nas equações 2.82 a 2.85. Os valores propostos para coeficientes de redução são conservadores e compatíveis com os resultados dos experimentos práticos e teóricos realizados.

$$R_P = 1,05 - \frac{0.54a}{h} + \frac{0.01N}{h} \le 1, \qquad condiçãoITF - Mesa não conectada \qquad (2.82)$$

 $R_P = 1,01 - 0,51a/h + 0,06N/h \le 1, \ condição \ ITF - Mesa \ conectada$ (2.83)

 $R_P = 0,90 - \frac{0,60a}{h} + \frac{0,12N}{h} \le 1, \qquad condição ETF - Mesa não conectada \qquad (2.84)$ 

$$R_P = 0.95 - 0.50a/h + 0.08N/h \le 1, \ condição \ ETF - Mesa \ conectada$$
(2.85)

A condição ITF (*Interior Two Flanges*) corresponde à situação de duas mesas internas carregadas, enquanto a condição ETF (*Exterior Two Flanges*) corresponde à situação de duas mesas externas carregadas, conforme apesentado na Figura 2.17 (a) e (b), respectivamente.

As equações supracitadas são válidas, caso as seguintes disposições construtivas sejam atendidas:

- a) Relação  $h/t \le 156$ ;
- b) Relação N/t≤84;
- c) Relação N/h  $\leq$  0,63;
- d) Relação  $a/h \le 0.80$ ;
- e) Inclinação das mesas em relação à alma: 90 °.

#### 2.10 Flambagem elástica de perfis formados a frio com furos enrijecidos

Moen e Yu (2010) realizaram um estudo sobre a flambagem elástica de perfis formados a frio com furos enrijecidos. Os autores ressaltam que a presença de furos em componentes estruturais usualmente complica o processo de dimensionamento.

Segundo Moen e Yu (2010) em elementos com paredes finas, onde a flambagem local e as forças aplicadas estão intimamente relacionadas, os furos podem induzir modos de flambagem com o potencial de provocar o colapso repentino da peça em estado-limite último.

Moen e Yu (2010) ressaltam a limitação do método das faixas finitas para a análise de perfis com furos, uma vez que a descontinuidade provocada pelos furos não pode ser representada no modelo, de modo que é necessário fazer adaptações no mesmo ou lançar mão do método dos elementos finitos. Este último método, por sua vez, exige mais recursos computacionais; exige que o engenheiro tenha que modelar a região do furo, atentando para geração de malha neste trecho, além de avaliar os resultados, procurando pelos modos de flambagem pertinentes para cálculo manualmente.

O estudo foi feito com o *software* ABAQUS, onde foi analisado um perfil Ue 305x41,3x12,7x1,81, sujeito a flexo-compressão, com comprimento de 2500 mm e furos enrijecidos circulares espaçados de 500 mm. O diâmetro dos furos variou entre 10% e 70% da altura da seção transversal e a largura do enrijecedor de borda do furo variou mantendo a relação de 12% do diâmetro do furo. Conforme esquematizado na Figura 2.18.



Figura 2.18 - Representação esquemática do modelo estudado (Adaptada de Moen e Yu, 2010)

Moen e Yu (2010) concluíram que a presença de furos enrijecidos reduz a força de flambagem global por flexão, por torção e por flexo-torção e o momento fletor de flambagem lateral com torção de perfis formados a frio. Com maior redução para a flambagem com global por flexo-torção.

Perfis com furos enrijecidos tiveram um aumento pouco significativo na força axial de flambagem global elástica, quando comparados com perfis com furos sem enrijecedores. Entretanto, foi observado um aumento na força axial de flambagem distorcional elástica quando comparados aos perfis sem enrijecedores, à medida que o diâmetro do furo e largura do enrijecedor foram aumentados.

Um modo único de flambagem distorcional foi observado, com as semiondas formadas entre os furos e força axial de flambagem distorcional elástica similar à de um perfil sem furos. Para a flambagem local, os enrijecedores de borda previnem a flambagem local no furo, as semiondas são formadas entre os furos conforme as semiondas obtidas via método das faixas finitas.

# 2.11 Análise crítica e comparativa

Nesta seção é realizada uma análise crítica e comparativa entre as normas e estudos apresentados ao longo da revisão bibliográfica.

### 2.11.1 Comparações entre as normas estudas

Com base no exposto anteriormente, a norma brasileira ABNT NBR 14762:2010 contempla em seu escopo as condições específicas para o dimensionamento de perfis com furos somente nos capítulos inerentes ao dimensionamento de barras tracionadas e ligações parafusadas. A norma brasileira ABNT NBR 15253:2014, por sua vez, apresenta disposições construtivas e requisitos para a execução de furos em perfis estruturais sem a presença de reforços. Esta norma ainda alerta o calculista para a necessidade de se considerar a presença do furo no dimensionamento.

As normas europeias *EN 1993-1-3 (2006)*, *EN 1993-1-5 (2006)*, *EN 1993-1-8 (2005)* também não apresentam em seu escopo as condições específicas para o dimensionamento de perfis com a presença de furos em situações em que estes não sejam usados para a conexão entre perfis.

A norma norte americana AISI S100-16, por sua vez, apresenta em seu escopo a formulação completa para o dimensionamento de perfis formados a frio com a presença de furos, incluindo aqueles com função não só de passagem de parafusos. Apresenta disposições construtivas para execução de furos em perfis e como aplicar o método da largura efetiva e o método da resistência direta para o dimensionamento de perfis com furos. A Tabela 2-9 apresenta uma comparação entre as recomendações da ABNT NBR 15253:2014 e da AISI S100-16.

|                                                          |                      | AISI \$100-16      |                      |                  |                      |  |  |
|----------------------------------------------------------|----------------------|--------------------|----------------------|------------------|----------------------|--|--|
| Disposições Construtivas                                 | ABNT NBR 15.253:2014 | Barras er          | n compressão         | Barras em flexão |                      |  |  |
|                                                          |                      | Furos circulares   | Furos não circulares | Furos circulares | Furos não circulares |  |  |
| Diâmetre mávime de fure                                  | 20 mm                | 0.5.99             | 63,5 mm (2,5 in)     | 152 mm (6in)     | 63,5 mm (2,5 in)     |  |  |
| Diametro maximo do luro                                  | 38 1111              | 0,5 W              | 0,5 w <sub>o</sub>   | 0,7 w            | 0,7 w                |  |  |
| Comprimento máximo<br>do furo                            | 115 mm               | N.A.               | 114 mm (4,5 in)      | N.A.             | 114 mm (4,5 in)      |  |  |
| Espaçamento mínimo entre                                 | 600 mm               | 0,5 w              | (10  mm (24  in))    | 457 mm (18 in)   | 457 mm (19 in)       |  |  |
| centro de furos                                          | 600 mm               | 3,0 d <sub>h</sub> | 610 mm (24 m)        | 457 mm (18 m)    | 457 (110) (18 (11)   |  |  |
| Espaçamento mínimo entre borda de furo e final do perfil | 250 mm               | N.A.               | 254 mm (10 in)       | N.A.             | N.A.                 |  |  |
| Relação w/t                                              | Não se aplica        | w/t ≤ 70           | N.A.                 | w/t ≤ 200        | w/t ≤ 200            |  |  |

Tabela 2-9 – Comparação das disposições contrutivas da ABNT NBR 15253:2013 e AISI S100-16 para execução de furos em perfis.

Com base nas disposições construtivas apresentadas na Tabela 2-1, é possível concluir que para os perfis usualmente adotados no sistema *Light Steel Framing*, não se pode adotar a formulação apresentada para o dimensionamento de barras em compressão com furos circulares, onde e considerado que a alma do perfil possui k=4, uma vez que todos os perfis apresentem relação h/t maior que 70, conforme apresentado na Tabela 2-2. Para o dimensionamento destes, deve-se considerar, portanto, as almas dos perfis como sendo constituídas por dois elementos não enrijecidos (AL) adjacentes ao furo, adotando-se k=0,43.

É importante ressaltar também que barras em flexão compostas pelas seções Ue 200x40x12x0,80 e Ue 200x300x12x0,95, segundo a AISI S100-16, não podem receber furos na alma, uma vez que a relação h/t destes perfis são 257,8 e 214,8 superando o limite de 200, conforme apresentado na Tabela 2-10.

| Ue             | b <sub>w</sub> | b <sub>f</sub> | D[mm] | t [mm] | t <sub>r</sub> | t [mm] | r. [mm] | h [mm] | h/t   |
|----------------|----------------|----------------|-------|--------|----------------|--------|---------|--------|-------|
| 0              | [mm]           | [mm]           | 5 []  | •n []  | [mm]           |        |         |        | , C   |
| 90x40x12x0,80  | 90             | 40             | 12    | 0,8    | 0,036          | 0,764  | 0,8     | 86,94  | 113,8 |
| 90x40x12x0,95  | 90             | 40             | 12    | 0,95   | 0,036          | 0,914  | 0,95    | 86,34  | 94,5  |
| 90x40x12x1,25  | 90             | 40             | 12    | 1,25   | 0,036          | 1,214  | 1,25    | 85,14  | 70,1  |
| 140x40x12x0,80 | 140            | 40             | 12    | 0,8    | 0,036          | 0,764  | 0,8     | 136,94 | 179,2 |
| 140x40x12x0,95 | 140            | 40             | 12    | 0,95   | 0,036          | 0,914  | 0,95    | 136,34 | 149,2 |
| 140x40x12x1,25 | 140            | 40             | 12    | 1,25   | 0,036          | 1,214  | 1,25    | 135,14 | 111,3 |
| 200x40x12x0,80 | 200            | 40             | 12    | 0,8    | 0,036          | 0,764  | 0,8     | 196,94 | 257,8 |
| 200x40x12x0,95 | 200            | 40             | 12    | 0,95   | 0,036          | 0,914  | 0,95    | 196,34 | 214,8 |
| 200x40x12x1,25 | 200            | 40             | 12    | 1,25   | 0,036          | 1,214  | 1,25    | 195,14 | 160,7 |

Tabela 2-10 - Relações h/t para os perfis usualmente adotados no sistema LSF

#### 2.11.2 Comparações entre o MRD para perfis sem furos e perfis com furos

A norma norte americana AISI S100-16 apresenta em seu escopo o Método da Resistência Direta para o dimensionamento de perfis formados a frio, que é estendido para o dimensionamento de perfis com a presença de furos.

Moen e Schafer (2009) apresentaram uma metodologia para o cálculo das forças axiais de flambagem elástica de perfis com a presença de furos via método das faixas finitas. Um estudo realizado por Moen e Schafer (2011) propõe uma metodologia para dimensionamento de barras em compressão com a presença de furos, via método da resistência direta. Outro estudo realizado por Moen et al (2013) propõe uma metodologia para o dimensionamento de barras em flexão com a presença de furos pelo mesmo método.

Para o dimensionamento de barras submetidas à compressão com furos, a norma AISI S100-16 preconiza que  $P_{ne}$  pode ser calculada conforme seção que trata de barras em compressão sem furos. Entretanto a influência de furos deve ser considerada para cálculo de  $P_{cre}$ .

 $P_{nl}$  também pode ser calculada conforme seção que trata de barras em compressão sem furos, limitando  $P_{nl}$  a força de escoamento da seção transversal na região do furo. A influência de furos deve ser considerada para cálculo de  $P_{crl}$ .

Para o cálculo de  $P_{nd}$ , a norma apresenta uma nova formulação, que leva em conta novos intervalos para o índice de esbeltez reduzido associado à flambagem distorcional.  $P_{nd}$  também fica limitado a  $P_{ynet} = F_y^* A_{net}$ .  $P_{crd}$  deve ser calculada considerando a influência dos furos.

Para o dimensionamento de barras submetidas à flexão com a presença de furos, a norma AISI S100-16 preconiza que  $M_{ne}$  pode ser calculada conforme seção que trata de barras em flexão sem furos. Entretanto a influência de furos deve ser considerada para cálculo de  $M_{cre}$ .

 $M_{nl}$  também pode ser calculada conforme seção que trata de barras submetidas à flexão sem furos, limitando esta ao momento de escoamento da seção transversal na região do furo. A influência de furos deve ser considerada para cálculo de  $M_{crl}$ .

Para o cálculo de  $M_{nd}$ , a norma AISI S100-16 apresenta uma nova formulação, que leva em conta novos intervalos para o índice de esbeltez reduzido associado à flambagem distorcional.  $M_{nd}$  também fica limitado à  $M_{ynet} = F_y * S_{net}$ .  $M_{crd}$  deve ser calculada considerando a influência dos furos.

O método proposto por Moen et al (2013) nos estudos supracitados é semelhante à apresentada na norma americana. As formulações do estudo apresentado por Moen e Schafer

(2009) para o cálculo das forças axiais de compressão e dos momentos fletores de flambagem elástica local, distorcional e global, contabilizando a influência de furos nos perfis são semelhantes aos apresentados nos itens 2.3.2 e 2.3.4 da AISI S100-16. Esta norma apresenta formulações adicionais para condições mais específicas de dimensionamento, enquanto Moen e Schafer (2009) apresentam mais detalhadamente o procedimento a ser adotado. A Tabela 2-11 apresenta uma comparação entre os métodos para barras em flexão e a Tabela 2-12 apresentada uma comparação entre os métodos para barras em compressão.

|                      | AISI S-100 SEM FUROS                                                                                                                                                | AISI S-100 COM FUROS                                                                                                                                                                                                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | $P_{ne} = A_g F_n$                                                                                                                                                  | $P_{ne} = A_g F_n$                                                                                                                                                                                                                                                                                     |
|                      | For $\lambda_c \leq 1.5$ $F_n = \left(0.658^{\lambda_c^2}\right) F_y$                                                                                               | For $\lambda_c \le 1.5$ $F_n = \left(0.658^{\lambda_c^2}\right) F_y$                                                                                                                                                                                                                                   |
| D                    | For $\lambda_c > 1.5$ $F_n = \left(\frac{0.877}{\lambda_c^2}\right) F_y$                                                                                            | For $\lambda_c > 1.5$ $F_n = \left(\frac{0.877}{\lambda_c^2}\right) F_y$                                                                                                                                                                                                                               |
| r ne                 | $\lambda_{\rm c} = \sqrt{\frac{F_{\rm y}}{F_{\rm cre}}}$                                                                                                            | $\lambda_{\rm c} = \sqrt{\frac{{\rm F}_{\rm y}}{{\rm F}_{\rm cre}}}$                                                                                                                                                                                                                                   |
|                      | $\sigma_{ex} = \frac{\pi^2 E}{(K_x L_x / r_x)^2}$ $\sigma_{ey} = \frac{\pi^2 E}{(K_y L_y / r_y)^2}$                                                                 | $F_{cre} = \frac{\pi^2 EI_{avg}}{A_g (KL)^2}$                                                                                                                                                                                                                                                          |
|                      | $\sigma_t = \frac{1}{A_g r_o^2} \left[ GJ + \frac{\pi D c_w}{(K_t L_t)^2} \right]$                                                                                  |                                                                                                                                                                                                                                                                                                        |
|                      | For $\lambda_{\ell} \leq 0.776$ ; $P_{n\ell} = P_{ne}$                                                                                                              | For $\lambda_{\ell} \leq 0.776$ ; $P_{n\ell} = P_{ne}$                                                                                                                                                                                                                                                 |
| $\mathrm{P}_{n\ell}$ | For $\lambda_{\ell} > 0.776$ ; $P_{n\ell} = \left[1 - 0.15 \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4}\right] \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4} P_{ne}$ | $\begin{aligned} \text{For } \lambda_{\ell} > 0.776; \ \ P_{n\ell} = \left[ 1 - 0.15 \left( \frac{P_{\text{cr}\ell}}{P_{ne}} \right)^{0.4} \right] \left( \frac{P_{\text{cr}\ell}}{P_{ne}} \right)^{0.4} P_{ne} \\ P_{n\ell} \le P_{\text{ynet}} \qquad P_{\text{ynet}} = A_{net} F_{y} \end{aligned}$ |
|                      | $\lambda_{\ell} = \sqrt{P_{\rm ne}/P_{\rm cr\ell}}$                                                                                                                 | $\lambda_{\ell} = \sqrt{P_{\rm ne}/P_{\rm cr\ell}}$                                                                                                                                                                                                                                                    |
|                      | For $\lambda_d \leq 0.561$ ; $P_{nd}$ = $P_y$                                                                                                                       | For $\lambda_d \leq \lambda_{d1}$ ; $P_{nd} = P_{ynet}$                                                                                                                                                                                                                                                |
|                      | For $\lambda_d > 0.561$ ; $P_{nd} = \left[1 - 0.25 \left(\frac{P_{crd}}{P_y}\right)^{0.6}\right] \left(\frac{P_{crd}}{P_y}\right)^{0.6} P_y$                        | For $\lambda_{d1} < \lambda_d \le \lambda_{d2}$ ; $P_{nd} = P_{ynet} - \left(\frac{P_{ynet} - P_{d2}}{\lambda_{d2} - \lambda_{d1}}\right) (\lambda_d - \lambda_{d1})$                                                                                                                                  |
| P <sub>nd</sub>      | $\lambda_{\rm d} = \sqrt{P_{\rm y}/P_{\rm crd}}$                                                                                                                    | $\lambda_{d1} = 0.561 \left( \frac{P_{ynet}}{P_y} \right)$                                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                     | $\lambda_{d} = \sqrt{P_{y}/P_{crd}} \qquad \lambda_{d2} = 0.561 \left[ 14.0 \left  \frac{r_{y}}{P_{ynet}} \right  - 13.0 \right]$                                                                                                                                                                      |
|                      |                                                                                                                                                                     | $P_{d2} = \left[1 - 0.25 \left(\frac{1}{\lambda_{d2}}\right)^{1.2}\right] \left(\frac{1}{\lambda_{d2}}\right)^{1.2} P_y$                                                                                                                                                                               |

Tabela 2-11 - Comparação do MRD aplicado à barras em compressão apresentados pela AISI S100-16 (sem furos), AISI S100-16 (com furos) e Moen e Schafer (2011)

|                 | MOEN E SCHAFER (2011) SEM FUROS                                                                                                                                                                                                                                                 | MOEN E SCHAFER (2011) COM FUROS                                                                                                                                                                                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | $P_{ne} = A_g F_n$ -                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                             |
|                 | For $\lambda_c \leq 1.5$ F; for $\lambda_c \leq 1.5$ , $P_{ne} = (0.658^{\lambda_c^2})P_y$                                                                                                                                                                                      | $\label{eq:eq:constraint} \text{for } \lambda_c \leq 1.5, \qquad P_{ne} = (0.658^{\lambda_c^2}) P_y$                                                                                                                                                                                                          |
| D               | For $\lambda_c > 1.5$ F for $\lambda_c > 1.5$ , $P_{ne} = \left(\frac{0.877}{\lambda_c^2}\right) P_y$                                                                                                                                                                           | for $\lambda_c > 1.5$ , $P_{ne} = \left(\frac{0.877}{\lambda_c^2}\right)P_y$                                                                                                                                                                                                                                  |
| r <sub>ne</sub> | $\lambda_{\rm c} = \sqrt{\frac{{\rm F}_{\rm y}}{{\rm F}_{\rm cre}}} \qquad \qquad \lambda_c = (P_y/P_{cre})^{0.5}$                                                                                                                                                              | $\lambda_c = (P_y/P_{cre})^{0.5}$                                                                                                                                                                                                                                                                             |
|                 | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                           | $F_{cre} = \frac{\pi^2 EI_{avg}}{A_g(KL)^2}$                                                                                                                                                                                                                                                                  |
|                 | $\mathbf{F}_{\ell}$ for $\lambda_{\ell} \leq 0.776$ , $P_{n\ell} = P_{ne}$                                                                                                                                                                                                      | for $\lambda_{\ell} \leq 0.776$ , $P_{n\ell} = P_{ne}$                                                                                                                                                                                                                                                        |
| $P_{n\ell}$     | $ \begin{aligned} F_{t} & \\ & \text{for } \lambda_{\ell} > 0.776, \qquad P_{n\ell} = \left[1 - 0.15 \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4}\right] \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4} P_{ne} \\ & P_{\text{ynet}} = A_{\text{net}} F_{\text{y}} \end{aligned} $ | for $\lambda_{\ell} > 0.776$ , $P_{n\ell} = \left[1 - 0.15 \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4}\right] \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4} P_{ne}$                                                                                                                                           |
|                 | $\lambda_{\ell} = \sqrt{\mathbf{P}_{\mathrm{ne}}/\mathbf{P}_{\mathrm{cr}\ell}} \qquad \lambda_{\ell} = (P_{ne}/P_{cr\ell})^{0.5}$                                                                                                                                               | $\lambda_{\ell} = (P_{n\ell}/P_{cr\ell})^{0.5} \qquad \qquad P_{n\ell} \le P_{\text{ynet}}$                                                                                                                                                                                                                   |
|                 | : for $\lambda_d \leq 0.561$ , $P_{nd} = P_y$                                                                                                                                                                                                                                   | $\begin{aligned} & \text{for } \lambda_d \leq \lambda_{d1}, \qquad P_{nd} = P_{\text{ynet}} \\ & \text{for } \lambda_{d1} < \lambda_d \leq \lambda_{d2}, \qquad P_{nd} = P_{\text{ynet}} - \left(\frac{P_{\text{ynet}} - P_{d2}}{\lambda_{d2} - \lambda_{d1}}\right)(\lambda_d - \lambda_{d1}) \end{aligned}$ |
|                 | for $\lambda_d > 0.561$ , $P_{nd} = \left(1 - 0.25 \left(\frac{P_{crd}}{P_y}\right)^{0.6}\right) \left(\frac{P_{crd}}{P_y}\right)^{0.6} P_y$                                                                                                                                    | for $\lambda_d > \lambda_{d2}$ , $P_{nd} = \left(1 - 0.25 \left(\frac{P_{crd}}{P_y}\right)^{0.6}\right) \left(\frac{P_{crd}}{P_y}\right)^{0.6} P_y$ ,                                                                                                                                                         |
| Pnd             | $\lambda_{d1} = 0.561 \left( \frac{P_{ynet}}{P_y} \right)$                                                                                                                                                                                                                      | $\lambda_d = (P_y/P_{crd})^{0.5}$                                                                                                                                                                                                                                                                             |
| na              | $\lambda_{d2} = 0.561 \left[ 14.0 \left( \frac{P_y \lambda_d}{P_{ynet}} \right)^{0.14} \frac{(P_y P_{crd})^{0.5}}{2 M_{ord}^{0.5}} \right]^{0.5}$                                                                                                                               | $\lambda_{d1} = 0.561 (P_{\text{ynet}}/P_y); \ \lambda_{d2} = 0.561 [14 (P_y/P_{\text{ynet}})^{-1} - 15];$ $P_{d2} = \left(1 - 0.25 \left(\frac{1}{\lambda_{d2}}\right)^{1.2}\right) \left(\frac{1}{\lambda_{d2}}\right)^{1.2} P_y$                                                                           |
|                 | $P_{d2} = \left[1 - 0.25 \left(\frac{1}{\lambda_{d2}}\right)^{1.2}\right] \left(\frac{1}{\lambda_{d2}}\right)^{1.2} P_y$                                                                                                                                                        |                                                                                                                                                                                                                                                                                                               |

Tabela 2-11 - Comparação do MRD aplicado à barras em compressão apresentados pela AISI S100-16 (sem furos), AISI S100-16 (com furos) e Moen e Schafer (2011) - Continuação

|                 | AISI S-100 SEM FUROS                                                                                                                                                                                                                                      | AISI S-100 COM FUROS                                                                                                                                                                                                                                                                                       |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | $M_{ne} = S_f F_n \le M_y$                                                                                                                                                                                                                                | $M_{ne} = S_i F_n \le M_y$                                                                                                                                                                                                                                                                                 |
| M <sub>ne</sub> | $\begin{split} & \text{For } F_{cre} \geq 2.78F_y & F_n \ = \ F_y \\ & \text{For } 2.78F_y > F_{cre} > 0.56F_y & F_n \ = \ \frac{10}{9}F_y \bigg(1 - \frac{10F_y}{36F_{cre}}\bigg) \\ & \text{For } F_{cre} \leq 0.56F_y & F_n \ = \ F_{cre} \end{split}$ | $ \begin{array}{lll} \mbox{For } F_{cre} \geq 2.78 F_y & F_n \ \ = \ \ F_y \\ \mbox{For } 2.78 F_y \geq F_{cre} \geq 0.56 F_y & F_n \ \ = \ \ \frac{10}{9} F_y \biggl( 1 - \frac{10 F_y}{36 F_{cre}} \biggr) \\ \mbox{For } F_{cre} \leq 0.56 F_y & F_n \ \ = \ \ F_{cre} \end{array} $                    |
| $M_{n\ell}$     | For $\lambda_{\ell} \le 0.776$ $M_{n\ell} = M_{ne}$<br>For $\lambda_{\ell} > 0.776$ $M_{n\ell} = \left[1 - 0.15 \left(\frac{M_{cr\ell}}{M_{ne}}\right)^{0.4}\right] \left(\frac{M_{cr\ell}}{M_{ne}}\right)^{0.4} M_{ne}$                                  | $ \begin{array}{ll} \mbox{For } \lambda_{\ell} \leq 0.776 & M_{n\ell} = M_{ne} \\ \mbox{For } \lambda_{\ell} > 0.776 & M_{n\ell} = \left[ 1 - 0.15 \left( \frac{M_{cr\ell}}{M_{ne}} \right)^{0.4} \right] \left( \frac{M_{cr\ell}}{M_{ne}} \right)^{0.4} M_{ne} \\ & M_{n\ell} \leq M_{ynet} \end{array} $ |
|                 | $\lambda_{\ell} = \sqrt{M_{ne}/M_{cr\ell}}$                                                                                                                                                                                                               | $\lambda_{\ell} = \sqrt{M_{ne}/M_{cr\ell}}$                                                                                                                                                                                                                                                                |
| M <sub>nd</sub> | For $\lambda_d \le 0.673$ $M_{nd} = M_y$<br>For $\lambda_d > 0.673$ $M_{nd} = \left[1 - 0.22 \left(\frac{M_{crd}}{M_y}\right)^{0.5}\right] \left(\frac{M_{crd}}{M_y}\right)^{0.5} M_y$<br>$\lambda_d = \sqrt{M_y/M_{crd}}$                                | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                      |

Tabela 2-12 - Comparação do MRD aplicado à barras em flexaão apresentados pela AISI S100-16 (sem furos), AISI S100-16 (com furos) e Moen et al (2013)

|                      | MOEN ET AL (2013) SEM FUROS                                                                                                                                                                                                                                   | MOEN ET AL (2013) COM FUROS                                                                                                                                                                                                                                                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | -                                                                                                                                                                                                                                                             | $M_{cre} = \frac{\pi}{k_y L} \sqrt{EI_{avg} \left[ GI_{avg} + EC_{watcl} \frac{\pi^2}{(k_t L)^2} \right]}$                                                                                                                                                                                                          |
| Maa                  | $M_{ne} = M_{cre}$ for $M_{cre} < 0.56 M_y$                                                                                                                                                                                                                   | $M_{ne} = M_{cre}$ for $M_{cre} < 0.56M_y$                                                                                                                                                                                                                                                                          |
| ne                   | $M_{ne} = \frac{10}{9} M_y \left( 1 - \frac{10M_y}{36M_{cre}} \right)$ for $2.78M_y \ge M_{cre} \ge 0.56M_y$                                                                                                                                                  | $M_{ne} = \frac{10}{9} M_y \left( 1 - \frac{10M_y}{36M_{cre}} \right)$ for $2.78M_y \ge M_{cre} \ge 0.56M_y$                                                                                                                                                                                                        |
|                      | $M_{ne} = M_y  \text{for}  M_{cre} > 2.78M_y \tag{1}$                                                                                                                                                                                                         | $M_{ne} = M_y$ for $M_{cre} > 2.78M_y$ (1)                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                               | $M_{n\ell} = M_{ne} \le M_{\text{ynet}}$ for $\lambda_{\ell} \le 0.776$                                                                                                                                                                                                                                             |
| $\mathrm{M}_{n\ell}$ | $M_{n\ell} = M_{n\ell} \le M_{\text{ynet}}  \text{for}  \lambda_{\ell} \ge 0.776$ $M_{n\ell} = \left[1 - 0.15 \left(\frac{M_{cr\ell}}{M_{nc}}\right)^{0.4} \left(\frac{M_{cr\ell}}{M_{nc}}\right)^{0.4} M_{n\ell}  \text{for}  \lambda_{\ell} > 0.776\right]$ | $M_{n\ell} = \left[1 - 0.15 \left(\frac{M_{c\ell}}{M_{n\ell}}\right)^{0.4} \left(\frac{M_{c\ell}}{M_{n\ell}}\right)^{0.4} M_{n\ell}  \text{for}  \lambda_{\ell} > 0.776\right]$                                                                                                                                     |
|                      | $\lambda_{\ell} = \left(M_{ne}/M_{cr\ell}\right)^{0.5}$                                                                                                                                                                                                       | $\lambda_\ell = \left(M_{ne}/M_{cr\ell} ight)^{0.5}$                                                                                                                                                                                                                                                                |
|                      | For $\lambda_{cd} \leq 0.673$ $M_{nd} = M_y$                                                                                                                                                                                                                  | $M_{nd} = M_{\text{spect}}$ for $\lambda_d \leq \lambda_{d1}$                                                                                                                                                                                                                                                       |
| Mad                  | For $\lambda_d > 0.673$ $M_{nd} = \left[1 - 0.22 \left(\frac{M_{crd}}{M_y}\right)^{0.5}\right] \left(\frac{M_{crd}}{M_y}\right)^{0.5} M_y$                                                                                                                    | $\begin{split} M_{nd} &= M_{\text{ynet}} - \left(\frac{M_{\text{ynet}} - M_{d2}}{\lambda_{d2} - \lambda_{d1}}\right) (\lambda_d - \lambda_{d1}) \\ &\leq \left[1 - 0.22 \left(\frac{M_{crd}}{M_y}\right)^{0.5}\right] \left(\frac{M_{crd}}{M_y}\right)^{0.5} M_y  \text{for}  \lambda_d > \lambda_{d1} \end{split}$ |
| 1 nd                 |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                     |
|                      | $\lambda_d = \left(M_2 / M_{exd}\right)^{0.5}$                                                                                                                                                                                                                | $\begin{split} \lambda_d &= (M_y/M_{crd})^{3/3} \\ \lambda_{d1} &= 0.673 \left( M_{met}/M_y \right)^3 \\ \lambda_{d2} &= 0.673 \left[ 1.7 (M_y/M_{met})^{2/7} - 0.7 \right] \\ M_{d2} &= \left[ 1 - 0.22 (1/\lambda_{d2}) \right] (1/\lambda_{d2}) M_y \end{split}$                                                 |

Tabela 2-12 - Comparação do MRD aplicado à barras em flexaão apresentados pela AISI S100-16 (sem furos), AISI S100-16 (com furos) e Moen et al (2013) – Continuação

Tabela 2-13 – Propriedades médias da seção transversal para furos uniformemente distribuidos, AISI S100-16

|                                                                             | -                                                                                      |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Average Properties                                                          | Formulas                                                                               |
| Cross-sectional area                                                        | $A_{avg} = \frac{A_g L_g + A_{net} L_{net}}{L}$                                        |
| Moment of inertia about<br>axis of buckling                                 | $I_{avg} = \frac{I_g L_g + I_{net} L_{net}}{L}$                                        |
| Saint-Venant Torsion<br>constant                                            | $J_{avg} = \frac{J_g L_g + J_{net} L_{net}}{L}$                                        |
| Distance from centroid to<br>shear center in principal x-<br>axis direction | $x_{o,avg} = \frac{x_{o,g}L_g + x_{o,net}L_{net}}{L}$                                  |
| Distance from centroid to<br>shear center in principal y-<br>axis direction | $y_{o,avg} = \frac{y_{o,g}L_g + y_{o,net}L_{net}}{L}$                                  |
| Polar radius gyration<br>about shear center                                 | $r_{o,avg} = \sqrt{x_{o,avg}^2 + y_{o,avg}^2 + \frac{I_{x,avg} + I_{y,avg}}{A_{avg}}}$ |

# 2.11.3 Comparação entre as formulações de Uzzaman et al (2012) e AISI S100-16 para o dimensionamento de perfis Ue sujeitos ao enrugamento da alma (*web crippling*)

As formulações apresentadas na norma AISI S100-16 para a determinação da força resistente de perfis Ue sujeitos ao enrugamento da alma (*web crippling*) para os casos de reações em uma mesa, externa e internamente, conforme observados nos itens a e c da figura abaixo. Os estudos de Uzzaman et al (2012) estenderam as formulações na norma para os casos de reações em duas mesas, externa e internamente, conforme observado nos itens b e d da figura abaixo. Estas consideram ainda as condições de contorno das mesas como soltas e livres.

Ressalta-se que as formulações da AISI S100-16 são aplicáveis para furos circulares e não circulares, enquanto as formulações propostas por Uzzaman et al (2012) são aplicáveis somente para furos circulares.





 (a) Condição de carregamento sobre uma mesa interna (IOF)



 (c) Condição de carregamento sobre uma mesa externa (EOF)

 (b) Condição de carregamento sobre duas mesas internas (ITF)



 (d) Condição de carregamento sobre duas mesas externas (ETF)

Figura 2.19 - Condições de carregamento. (a) *Interior One Flange Loading* (IOF), (b) *Interior Two Flange Loading*, (ITF); (c) *End One Flange Loading* (EOF), (d) *EndTwo Flange Loading*, (ETF); (Adaptada de AISI Report RP02-2)

| Disposições Construtivas   | AISI S100-16                           | Uzzaman et al (2012)     |
|----------------------------|----------------------------------------|--------------------------|
| Relações h/t               | h/t ≤ 200                              | h/t ≤ 156                |
| Relações d <sub>h</sub> /h | d <sub>h</sub> /h ≤ 0,70               | d <sub>h</sub> /h ≤ 0,80 |
| Largura do apoio           | N ≥ 25,4 mm (EOF)<br>N ≥ 76,2 mm (IOF) | N/t ≤ 84<br>N/h ≤ 0,63   |
| Aplicável em furos:        | Circulares e<br>Não Circulares         | Circulares               |

Tabela 2-14 – Comparação das disposições construtivas da AISI S100-16 e Uzzaman et al (2012)

Para critérios comparativos, são apresentados gráficos com o cálculo dos fatores  $R_c$ , conforme AISI S100-16 e  $R_p$ , conforme Uzzaman et al (2012). Para elaboração dos ábacos, considerouse a relação  $d_h/h$  variando de 0,10 a 0,70, conforme limitado pela AISI S100-16. Considerouse também a relação x/h variando de 0,1 até 2,00.



Figura 2.20 - Fator Rc para condição EOF - AISI S100-16



Figura 2.21 – Fator Rc para condição IOF – AISI S100-16



Figura 2.22 – Fator R<sub>p</sub> para condição ETF- Mesas livres – Uzzaman et al (2012)



Figura 2.23 – Fator R<sub>p</sub> para condição ETF- Mesas presas – Uzzaman et al (2012)



Figura 2.24 – Fator R<sub>p</sub> para condição ITF- Mesas livres – Uzzaman et al (2012)



Figura 2.25 – Fator R<sub>p</sub> para condição ITF- Mesas presas – Uzzaman et al (2012)

Com base no exposto, conclui-se que o trabalho de Uzzaman et al (2012) complementa a formulação presente na AISI S100-16. Conforme apresentado nos gráficos acima, observa-se que para os casos em que as mesas estão fixas, o fator de  $R_p$  é maior, o que resulta consequentemente em uma maior força resistente ao enrugamento da alma (*web crippling*).

# 3. Desenvolvimento do software CFD

# 3.1 Java e a Linguagem Orientada a Objetos

Java é uma linguagem computacional de programação orientada a objetos (POO), desenvolvida nos anos 90 pela empresa Sun Microsystems e se tornou muito popular nos anos 2000, sobretudo no meio acadêmico. Este tipo de linguagem trabalha diferentemente das linguagens convencionais, pois toda informação é compilada para um *bytecode* e executada por uma plataforma virtual.

Segundo SANTOS (2001), programadores que trabalham com programação orientada a objetos criam e usam objetos provenientes de classes. Estas são estruturas que contém dados para representar algum modelo e executar operações com tais dados. Como por exemplo, no *software* desenvolvido, criou-se a classe  $U\_section$  que armazena os dados de uma seção transversal U. Informando a esta classe os valores da largura da alma, largura da mesa e espessura da chapa, ela é capaz de armazenar tais propriedades. No *software* cada tipo de seção transversal é representado por uma classe. Outra classe chamada *Calculator* recebe as informações provenientes das classes que representam as seções e é capaz de calcular e armazenar suas propriedades geométricas, tais como área bruta, momentos de inércia, módulo resistente elástico e afins.

Segundo SANTOS (2001), os dados de uma classe são armazenados em campos. Cada campo é composto por um tipo de dado, podendo ser um número inteiro, um *booleano*, um *float*, um *double*, ou até mesmo uma classe anteriormente já criada. Estas variáveis podem ser acessíveis ou não para outras classes.

Booleano é um tipo de dado primitivo que pode assumir os valores 0 ou 1, representando as variáveis lógicas falso ou verdadeiro, respectivamente. *Float* é um tipo de dado que representa números com ponto-flutuante em precisão simples de 32 bits. Double é um tipo de dado que representa números de ponto-flutuante em precisão dupla de 64 bits.

As operações realizadas dentro de uma classe compõem seus métodos. Estes podem receber um ou mais argumentos para realizar cálculos. A largura da alma, largura da mesa e espessura da chapa são os argumentos dos métodos que calculam as propriedades geométricas da seção transversal da classe *U\_Section*, por exemplo.

Existem outras ferramentas na POO que são apresentadas nas seções seguintes. A seção 3.2 apresenta a estrutura básica adotada no aplicativo, indicando onde as classes foram armazenadas e como elas estão relacionadas. A seção 3.3 apresenta uma pequena descrição das principais classes do programa, seus principais métodos e variáveis. A validação do *software* desenvolvido é apresentada no item 3.4. Exemplos de aplicação do *software* são apresentados em 3.5.

## 3.2 Estruturação básica do aplicativo

A linguagem Java permite que se agrupem classes que mantém alguma relação entre si em pacotes (em inglês, *packages*). Segundo SANTOS (2001), para a criação de pacotes, basta declarar a estas classes que elas pertencem a determinado pacote e criar uma organização destas classes em diretórios. No programa foram adotados nove pacotes, sendo eles: *i*) *Geometria*; *ii*) *Sections*; *iii*) *Modelo*; *iv*) *Esforço Resistente*; *v*) *Verificações; vi*) *Library*; *vii*) *GIG*, *viii*) *App;* e *ix*) Útil.

O pacote Geometria armazena as classes que representam a geometria básica da seção transversal. O pacote *Sections* armazena uma interface que implementa as classes de diversas seções transversais existentes. Existe também uma classe que faz o cálculo das propriedades geométricas do perfil que são usadas no dimensionamento.

O pacote Modelo armazena as classes relacionadas com o modelo de cálculo. Nele estão as propriedades das barras, do material, os valores das forças solicitantes de cálculo e afins. O pacote Esforço Resistente armazena as classes que fazem o cálculo dos esforços resistentes e outros cálculos usados durante o dimensionamento, tais como as forças críticas de flambagem global elástica e as propriedades efetivas das seções transversais.

O pacote Verificações contém as classes que verificam se os esforços resistentes são maiores que os esforços solicitantes; fazem a verificação composta de esforços e afins. O pacote *Library* armazena classes, onde está armazenada uma biblioteca dos principais materiais e seções transversais comerciais.

O pacote GIG é responsável pela interface gráfica do *software*. Neste estão implementadas as classes que compõem toda a interface de operação do mesmo.

O pacote Aplicativo armazena a classe Aplicativo e é responsável por executar o programa.

O pacote Útil armazena algumas classes predefinidas para acesso de teclado e outras funcionalidades afins. A estrutura básica do aplicativo está ilustrada na Figura 3.1 e na Figura 3.2.



Figura 3.1 - Estrutura básica do aplicativo - Parte 1 de 2



Figura 3.2 - Estrutura básica do aplicativo - Parte 2 de 2

# 3.3 Funcionalidade das classes

#### 3.3.1 Classes do pacote Geometria

O pacote Geometria armazena as classes que representam a geometria básica das seções transversais implementadas. Foi criada a classe *Node*, que representa os nós que compõem uma seção transversal. Cada nó possui coordenadas Cx e Cy para sua representação em um plano cartesiano, e um identificador para que o mesmo possa ser referenciado e identificado por outras classes.

Cada nó também possui um campo para armazenar tensões e quatro campos para armazenar seus graus de liberdade, sendo estes: *i*) translação na direção X; *ii*) translação na direção Y; *iii*) translação na direção Z e *iv*) rotação. Estes campos referentes aos graus de liberdade foram criados para futuras ampliações do *software*, visando torná-lo um *software* que trabalhe com o método das faixas finitas.

Foram criadas as classes *Elemento\_Plano*, *Elemento\_Curvo* e *Elemento\_Inefetivo*, unificadas por uma interface chamada *Elementos*, que representam os elementos de uma seção transversal. Cada elemento plano é definido por um nó inicial e um nó final, além de uma espessura previamente informada. O elemento curvo precisa adicionalmente de ser definido informando-se um nó de centro da curva ou o desenvolvimento da mesma.



Figura 3.3 - Composição de seção L

As classes da interface elementos calculam as propriedades geométricas de cada elemento, tais como largura, inclinação, área bruta, momentos de inércia em relação ao seu eixo local e em relação ao sistema de coordenadas global, momento de inércia à torça e constante de empenamento. Estas classes também armazenam informações dos elementos, tais como identificador, condição de contorno (AA ou AL), nó inicial, nó final, posição do centroide da seção transversal do perfil e afins. A Figura 3.3 representa a composição de uma cantoneira de abas iguais por meio de quatro nós, dois elementos planos e um elemento curvo.

#### **3.3.2** Classes do pacote *Sections*

O pacote *Sections* armazena as classes que representam as seções transversais comerciais. Cada seção é representada por uma classe, e estas são agrupadas por meio de uma interface chamada *CrossSection*. Na Figura 3.4 a Figura 3.15 são apresentadas a ordenação dos nós e elementos nas seções transversais adotadas.



Figura 3.4 - Composição de seção Cr







Figura 3.6 - Composição de seção caixa



Figura 3.7 - Composição de seção I composta por dois U



Figura 3.8 - Composição de seção I composta por dois Cr



Figura 3.9 - Composição de seção Ie composta por dois Ue







Figura 3.12 - Composição de seção Ue



Figura 3.14 - Composição de seção Z enrijecido a 45º - Z45



Figura 3.15 - Composição de seção Z enrijecida a 90° - Z90

Adicionalmente o pacote *Sections* possui a classe *Calculator*, responsável por calcular as propriedades geométricas da seção transversal. Tais propriedades são calculadas pela composição das propriedades geométricas de cada elemento. A constante de empenamento da seção transversal foi calculada numericamente conforme recomendado por Lue et al (2007). Esta classe também calcula o centroide da seção transversal e a posição do centro de cisalhamento, conforme apresentado por Lue et al (2007). A classe *Calculator* armazena todas as propriedades para consultas posteriores.

#### 3.3.3 Classes do pacote Modelo

O pacote Modelo armazena as classes relacionadas com o modelo de cálculo. Nele estão os comprimentos destravados da barra, propriedades mecânicas do material, os valores de esforços solicitantes de cálculo e afins.

A classe *Frame* armazena os dados da barra, tais como comprimentos efetivos de flambagem nas direções X, Y, Z, sendo estes, respectivamente, K<sub>x</sub>L<sub>x</sub>, K<sub>y</sub>L<sub>y</sub> e K<sub>z</sub>L<sub>z</sub>. Os dados armazenados por esta classe podem ser lidos e sobrescritos por outras classes do aplicativo. A classe Modelo também possui campos para armazenar a combinação e a estação de cálculo, para os

75

casos onde o *software* importe esforços solicitantes de um *software* comercial de análise estrutural via método dos elementos finitos, função ser implementada futuramente.

A classe *Material* armazena os dados referentes ao material que compõe o perfil. Para definir um material, deve-se informar o módulo de elasticidade longitudinal, a resistência ao escoamento do aço, a resistência à ruptura do aço na tração e seu grau. Esta classe já armazena automaticamente o coeficiente de Poisson, o coeficiente de dilatação térmica e a massa específica do aço, conforme apresentado no item 4.6 da ABNT NBR 14762:2010. Com os dados informados a classe calcula o módulo de elasticidade transversal.

Ao se informar a temperatura de dimensionamento, a classe *Material* também calcula os valores de  $k_y$ ,  $k_{sigma}$  e  $k_E$  para o dimensionamento na situação de incêndio, conforme ABNT NBR 14323:2013. Entretanto, o dimensionamento em situação de incêndio não foi implementado nesta fase.

A classe *Loads* armazena os esforços solicitantes de cálculo para informá-los às outras classes quando solicitados. Os esforços considerados são  $N_{Sd}$ ,  $M_{xSd}$ ,  $V_{xSd}$  e  $V_{ySd}$ . Os esforços deverão ser informados em kN ou kN\*cm, unidades com as quais o *software* foi implementado.

A classe *Modelo* unifica todas as classes anteriormente criadas. Para definição de uma classe modelo é necessário informá-la um objeto do tipo barra, um objeto do tipo material, um objeto do tipo conjunto de carregamentos, um objeto do tipo seção transversal e um identificador. A classe modelo, por sua vez armazenará todas as classes anteriormente citadas, e será capaz de informar seus respectivos campos quando solicitado.

#### **3.3.4** Classes do pacote Esforço Resistente

As classes do pacote Esforço Resistente são responsáveis pelo dimensionamento estrutural. Uma vez que se informe o modelo em estudo para a classe  $Get\_Euler$ , esta calcula a força axial de flambagem global elástica, tomando-a como a menor, dentre as aplicáveis para o tipo de seção: *i*) força axial de flambagem global elástica por flexão em relação ao eixo x; *ii*) força axial de flambagem global elástica por flexão em relação ao eixo y; *iii*) força axial de flambagem global elástica por torção; e *iv*) força axial de flambagem global elástica por flexotorção. Esta classe também calcula o momento fletor de flambagem global elástica para a flambagem lateral com torção.

A classe *get\_NtRd* calcula a força axial de tração resistente de cálculo, tomando-a como a menor entre os três estados-limites apresentados na norma brasileira e citados no item 2.1.5,

sendo estes: *i*) escoamento da seção bruta; *ii*) ruptura na seção líquida fora da região de ligação; e *iii*) ruptura da seção líquida na região de ligação. Para cálculo dos dois últimos estados-limites apresentados tem-se a necessidade de informar a área líquida da seção transversal da barra fora da região de ligação (em cm<sup>2</sup>), a área líquida da seção transversal da barra na região de ligação (em cm<sup>2</sup>) e o coeficiente de redução da área líquida.

A classe *get\_NcRd* calcula a força axial de compressão resistente de cálculo, tomando-a como a menor entre os dois estados-limites apresentados na norma brasileira e citados no item 2.1.6, sendo estes: *i*) flambagem global por flexão, por torção ou por flexo-torção; e *ii*) Flambagem distorcional. A classe possui um método (ou rotina) que calcula, por meio do MLE, a área efetiva da seção transversal, para cada tipo de seção implementada. Para o estado-limite de flambagem distorcional é necessário informar ao *software* a força axial de flambagem distorcional elástica, em kN, que deve ser calculada com base na análise de estabilidade elástica.

A classe *get\_MxRd* calcula o momento fletor resistente de cálculo em relação a x, tomando-o como o menor dentre os três estados-limites apresentados na norma brasileira e citados no item 2.1.7, sendo estes: *i*) início do escoamento da seção efetiva; *ii*) flambagem lateral com torção e *iii*) flambagem distorcional. A classe possui um método que calcula, por meio do MLE, o módulo de resistência elástico da seção efetiva em relação à fibra externa que atinge escoamento para cada classe. Para o estado-limite de flambagem distorcional é necessário informar ao *software* o momento fletor de flambagem distorcional elástica, em kN\*cm, que deve ser calculado com base na análise de estabilidade elástica.

As classes *get\_VxRd* e *get\_VyRd* calculam a força cortante resistente de cálculo nas direções x e y, respectivamente, conforme apresentado na ABNT NBR 14762:2010 e citados no item 2.1.8. Para tanto, considera-se perfis sem enrijecedores transversais, ou seja, adota-se  $k_v = 5,0$ .

A classe *get\_MRD* calcula os esforços característicos e resistentes de cálculo por meio do Método da Resistência Direta, apresentado em 2.1.3, para barras sujeitas à compressão centrada e barras sujeitas à flexão simples.

A classe *Esforço\_Resistente* armazena os esforços resistentes de cálculo anteriormente calculados e os informam para outras classes quando solicitados.

#### 3.3.5 Classes do pacote Verificações

As classes do pacote Verificações realizam as verificações preconizadas na ABNT NBR 14762:2010.

A classe *Ver\_Material* verifica se o material adotado no dimensionamento possui relação  $f_u/f_y$  maior do que 1,08, conforme recomendado no item 4.1.1 da norma em questão.

A classe *Ver\_Esbeltez\_Elementos* verifica as relações largura-espessura dos elementos que compõem a seção transversal adotada. Conforme preconizado no item 9.1.2 da ABNT NBR 14762:2010, tal relação não deve ultrapassar os valores estabelecidos na tabela 4 da norma em questão.

A classe *Ver\_Shear\_Lag* verifica se o fator de redução do efeito *Shear Lag* é unitário. Conforme item 9.4 da ABNT NBR 14762:2010. Caso o fator de redução não seja unitário, será emitida uma mensagem para o usuário do *software*.

A classe *Ver\_Esbeltez\_Barra* verifica o índice de esbeltez de barras tracionadas, tomado como a maior relação entre o comprimento destravado e o raio de giração correspondente. Conforme preconizado no item 9.6.3 da norma brasileira, recomenda-se que tal relação não supere 300 para barras tracionadas. Adicionalmente a classe verifica o índice de esbeltez de barras comprimidas, conforme preconizado no item 9.7.4 da ABNT NBR 14762:2010, tal relação não deve supera 200.

A classe *Ver\_Esforcos* verifica isoladamente, se cada esforço resistente de cálculo é maior que o correspondente esforços solicitante, conforme itens 9.6.1, 9.7.1 e 9.8.1 da ABNT NBR 14762:2010.

A classe *Ver\_MV\_Comb* verifica se as relações entre momentos fletores solicitantes de cálculo e momentos fletores resistentes de cálculo, e força cortante solicitante de cálculo e força cortante resistente de cálculo atendem a expressão de interação apresentada no item 9.8.4 da ABNT NBR 14762:2010.

A classe *Ver\_Flexao\_Compost*a verifica se a força normal solicitante de cálculo e os momentos fletores solicitantes de cálculo atendem a expressão de interação apresentada no item 9.9 da ABNT NBR 14762:2010.

#### 3.3.6 Classes do pacote *Library*

O pacote *Library* armazena uma pequena biblioteca que poderá ser usada durante a operação do *software*. A classe *Mat\_Lib* armazena os materiais estruturais apresentados na tabela 1 da ABNT NBR 14762:2010. A classe *Sec\_Lib*, por sua vez, armazena todas as seções comerciais especificadas na ABNT NBR 6355:2012, bem como as seções provenientes da composição destes perfis em uma seção composta, como dois perfis Ue formando um perfil caixa, por exemplo.

#### 3.3.7 Classes do pacote GIG

O pacote GIG armazena as classes responsáveis pela interface gráfica do aplicativo em questão.

# 3.3.8 Classes do pacote App

A única classe do pacote *App*, que possuí este mesmo nome, executa o programa. Esta classe é responsável por iniciar o método de preenchimento de dados do modelo, chamar os métodos que fazem os cálculos, chamar os métodos que fazem as verificações e apresentar o resultado final do dimensionamento.

# 3.3.9 Classes do pacote Útil

As classes do pacote Útil são responsáveis por funções básicas do aplicativo, tais como controle do teclado e outras funcionalidades de apoio ao *software*.

### 3.4 Validação do software

Para validação do *software* desenvolvido realizou-se um estudo comparativo entre os valores obtidos experimentalmente por Moen e Schafer (2008) para barras em compressão e por Moen et al (2013) para barras em flexão e os valores obtidos via *software*.

#### 3.4.1 Barras em flexão

Moen et al (2013) realizaram experimentos em *steel joist* constituídos por perfis Ue com furos retangulares não enrijecidos na alma dos perfis. Os autores ressaltaram que a presença de furos não enrijecidos reduzem a capacidade resistente do *steel joist* e amplificam as

deformações causada pela instabilidade distorcional. A instabilidade distorcional foi acompanhada pela flambagem da faixa não enrijecida da mesa comprimida. O arranjo dos ensaios é apresentado na Figura 3.16.



Figura 3.16 – Esquema do experimento (Moen et al, 2013)

As propriedades geométricas das seções dos perfis ensaiados são apresentadas na Tabela 3-1. Os autores calcularam os momentos fletores críticos de flambagem local ( $M_{nl}$ ), flambagem distorcional ( $M_{nd}$ ) e flambagem global ( $M_{ne}$ ) considerando a existência dos furos, tais valores foram usados para determinação do momento fletor resistente nominal ( $M_n$ ) via método da resistência direta, tais valores estão apresentados na Tabela 3-2, juntamente com os momentos fletores resistentes obtidos nos ensaios ( $M_{test}$ ).
| Madala   | fy  | t    | н     | B1   | B <sub>2</sub> | <b>D</b> <sub>1</sub> | D <sub>2</sub> |
|----------|-----|------|-------|------|----------------|-----------------------|----------------|
| wodelo   | MPa | mm   | mm    | mm   | mm             | mm                    | mm             |
| H0.9-1.1 | 365 | 1,76 | 203   | 63,7 | 62,6           | 13,7                  | 15,6           |
| H0.9-2.2 | 363 | 1,77 | 203,1 | 62,6 | 63,6           | 15,3                  | 13,9           |
| H0.9-3.1 | 370 | 1,77 | 203   | 62,8 | 63,4           | 15,5                  | 13,8           |
| H0.8-1.2 | 360 | 1,77 | 203   | 63,5 | 62,9           | 14                    | 15,2           |
| H0.8-2.2 | 363 | 1,75 | 203,1 | 63,5 | 62,7           | 14,3                  | 15,3           |
| H0.8-3.2 | 376 | 1,76 | 203,1 | 63,4 | 62,6           | 14                    | 15,2           |

Tabela 3-1 - Resistência ao escoamento do aço e dimensões das seções ensaiadas - Moen et al (2013)

Tabela 3-2 - Cálculo do momento fletor resistente nominal pelo MRD - Moen et al (2013)

|          |       | M     | M <sub>test</sub> o | btido no ensaio |          |      |                   |                                        |
|----------|-------|-------|---------------------|-----------------|----------|------|-------------------|----------------------------------------|
| Modelo   | My    | Mynet | M <sub>ne</sub>     | M <sub>nl</sub> | $M_{nd}$ | Mn   | M <sub>test</sub> | NA / NA                                |
|          | kN m  | kN m  | kN m                | kN m            | kN m     | kN m | kN m              | IVI <sub>test</sub> / IVI <sub>n</sub> |
| H0.9-1.1 | 13,20 | 11,98 | 12,70               | 11,50           | 9,40     | 9,40 | 9,70              | 1,03                                   |
| H0.9-2.2 | 13,20 | 11,90 | 12,60               | 11,50           | 9,70     | 9,70 | 10,50             | 1,08                                   |
| H0.9-3.1 | 13,40 | 12,32 | 12,80               | 11,80           | 9,90     | 9,90 | 10,80             | 1,09                                   |
| H0.8-1.2 | 13,20 | 10,67 | 12,40               | 11,40           | 8,50     | 8,50 | 8,20              | 0,96                                   |
| H0.8-2.2 | 13,30 | 10,78 | 12,40               | 11,40           | 8,60     | 8,60 | 8,60              | 1,00                                   |
| H0.8-3.2 | 13,80 | 11,16 | 12,90               | 11,70           | 8,80     | 8,80 | 8,60              | 0,98                                   |

Os momentos fletores resistentes nominais ( $M_{Rk}$ ) para as barras ensaiadas foram calculadas por meio do aplicativo desenvolvido, e são apresentados na Tabela 3-3, onde também é realizado uma comparação entre os valores obtidos.

Tabela 3-3 - Cálculo do momento fletor resistente de cálculo pelo aplicativo desenvolvido

| Madala   |                                | CFD                 |                |
|----------|--------------------------------|---------------------|----------------|
| Wodelo   | M <sub>Rk</sub> [ <u>kN</u> m] | $M_{test} / M_{Rk}$ | $M_n / M_{Rk}$ |
| H0.9-1.1 | 9,44                           | 1,03                | 1,00           |
| H0.9-2.2 | 9,48                           | 1,11                | 1,02           |
| H0.9-3.1 | 9,60                           | 1,12                | 1,03           |
| H0.8-1.2 | 8,50                           | 0,96                | 1,00           |
| H0.8-2.2 | 8,47                           | 1,02                | 1,02           |
| H0.8-3.2 | 8,71                           | 0,99                | 1,01           |

### Legenda

MRk = Valor característico do momento fletor resistente obtido via aplicativo desenvolvido

Mn = Valor característico do momento fletor resistente obtido via Método da Resistência Direta por Moen et al (2013)

Mtest = Valor obtido nos ensaios experimentais por Moen et al (2013)

Os modelos H0.8-1.2 e H0.8-3.2 apresentaram relação  $M_{test}/M_n < 1,0$ . Ressalta-se as observações de Moen et al (2013) que o modelo H0.8-3.2 sofreu colapso repentino na região do furo.

Com base na Tabela 3-3, observa-se que os momentos fletores obtidos via aplicativo são coerentes com os valores obtidos no ensaio experimental, para o modelo H0.9-2.2, observouse uma diferença percentual máxima entre os valores calculados de 12%. Observa-se também consonância entre os valores calculados via MRD por Moen et al (2013) e via aplicativo desenvolvido, onde foi observado uma diferença percentual máxima de 3%, o que é aceitável uma vez que o aplicativo trabalha com o método da largura efetiva e pode fornecer resultados ligeiramente diferentes dos obtidos via método da resistência direta.

### 3.4.2 Barras em compressão

Moen e Schafer (2008) realizaram experimentos em barras em compressão constituídas por perfis formados a frio com a presença de furos. Foram ensaiadas 24 barras em compressão, sendo que metade dos modelos possuíam furos alongados.

As propriedades geométricas das seções dos perfis ensaiados são apresentadas na Tabela 3-4. Os autores calcularam as forças críticas de flambagem local ( $P_{nl}$ ), flambagem distorcional ( $P_{nd}$ ) e flambagem global ( $P_{ne}$ ) considerando a existência dos furos, tais valores foram usados para determinação da força axial de compressão resistente nominal ( $P_n$ ) via método da resistência direta, tais valores estão apresentados na Tabela 3-5, juntamente com os momentos fletores resistentes obtidos nos ensaios ( $P_{test}$ ).

| Madala     | fy  | L    | t    | Н      | <b>B</b> 1 | B <sub>2</sub> | <b>D</b> <sub>1</sub> | D <sub>2</sub> |
|------------|-----|------|------|--------|------------|----------------|-----------------------|----------------|
| widdeld    | MPa | mm   | mm   | mm     | mm         | mm             | mm                    | mm             |
| 362-1-24-H | 400 | 612  | 0,99 | 91,00  | 41,90      | 40,50          | 10,90                 | 11,10          |
| 362-2-24-H | 394 | 612  | 0,97 | 92,60  | 41,30      | 40,50          | 11,20                 | 9,90           |
| 362-3-24-H | 386 | 612  | 1,00 | 93,30  | 42,50      | 43,10          | 10,60                 | 10,80          |
| 362-1-48-H | 404 | 1225 | 1,00 | 92,00  | 40,70      | 40,50          | 10,70                 | 10,50          |
| 362-2-48-H | 412 | 1225 | 0,99 | 92,00  | 40,50      | 40,90          | 10,80                 | 10,20          |
| 362-3-48-H | 402 | 1224 | 1,01 | 92,30  | 40,70      | 40,90          | 10,00                 | 11,00          |
| 600-1-24-H | 427 | 612  | 1,07 | 153,40 | 40,50      | 40,80          | 12,30                 | 9,10           |
| 600-2-24-H | 403 | 612  | 1,05 | 152,70 | 40,90      | 40,70          | 9,40                  | 12,70          |
| 600-3-24-H | 415 | 612  | 1,09 | 153,20 | 40,80      | 40,00          | 9,10                  | 12,10          |
| 600-1-48-H | 423 | 1221 | 1,09 | 152,60 | 40,60      | 41,30          | 9,90                  | 9,90           |
| 600-2-48-H | 428 | 1226 | 1,09 | 152,80 | 40,40      | 40,80          | 9,00                  | 9,00           |
| 600-3-48-H | 424 | 1221 | 1,10 | 154,00 | 41,50      | 40,30          | 12,20                 | 12,12          |

Tabela 3-4 - Resistência ao escoamento do aço e dimensões das seções ensaiadas - Moen e Schafer (2008)

|            | P <sub>n</sub> calculado via MRD |                   |                 |                 |                 |       |                   |            |  |  |  |
|------------|----------------------------------|-------------------|-----------------|-----------------|-----------------|-------|-------------------|------------|--|--|--|
| Madala     | Py                               | P <sub>ynet</sub> | P <sub>ne</sub> | P <sub>nl</sub> | P <sub>nd</sub> | Pn    | P <sub>test</sub> | D / D      |  |  |  |
| wodelo     | kN                               | kN                | kN              | kN              | kN              | kN    | kN                | Ptest / Pn |  |  |  |
| 362-1-24-H | 72,70                            | 57,69             | 68,65           | 41,82           | 46,47           | 41,82 | 44,50             | 1,06       |  |  |  |
| 362-2-24-H | 69,90                            | 55,30             | 65,94           | 39,66           | 44,13           | 39,66 | 46,20             | 1,16       |  |  |  |
| 362-3-24-H | 73,00                            | 58,37             | 69,26           | 41,71           | 46,62           | 41,71 | 44,20             | 1,06       |  |  |  |
| 362-1-48-H | 73,70                            | 58,31             | 58,46           | 36,37           | 43,11           | 36,37 | 39,80             | 1,09       |  |  |  |
| 362-2-48-H | 74,90                            | 59,40             | 59,09           | 36,46           | 43,59           | 36,46 | 40,80             | 1,12       |  |  |  |
| 362-3-48-H | 74,90                            | 59,51             | 61,64           | 38,63           | 43,99           | 38,63 | 41,70             | 1,08       |  |  |  |
| 600-1-24-H | 111,30                           | 93,94             | 106,53          | 44,74           | 55,09           | 44,74 | 54,00             | 1,21       |  |  |  |
| 600-2-24-H | 102,80                           | 86,76             | 98,71           | 42,42           | 51,84           | 42,42 | 51,70             | 1,22       |  |  |  |
| 600-3-24-H | 110,00                           | 92,86             | 105,41          | 45,44           | 55,95           | 45,44 | 52,40             | 1,15       |  |  |  |
| 600-1-48-H | 112,30                           | 94,83             | 93,07           | 41,71           | 46,07           | 41,71 | 49,60             | 1,19       |  |  |  |
| 600-2-48-H | 113,20                           | 95,43             | 92,60           | 41,57           | 45,45           | 41,57 | 52,00             | 1,25       |  |  |  |
| 600-3-48-H | 113,70                           | 95,98             | 93,85           | 42,13           | 46,08           | 42,13 | 49,60             | 1,18       |  |  |  |

Tabela 3-5 - Cálculo da força axial de compressão resistente nominal pelo MRD

Tabela 3-6 – Cálculo da força axial de compressão resistente nominal pelo aplicativo desenvolvido

| CFD             |             |          |  |  |  |  |  |  |  |  |
|-----------------|-------------|----------|--|--|--|--|--|--|--|--|
| P <sub>Rk</sub> | P / P.      | P / P.   |  |  |  |  |  |  |  |  |
| kN              | Ftest / FRk | Fn / FRk |  |  |  |  |  |  |  |  |
| 38,04           | 1,17        | 1,10     |  |  |  |  |  |  |  |  |
| 35,23           | 1,31        | 1,13     |  |  |  |  |  |  |  |  |
| 36,82           | 1,20        | 1,13     |  |  |  |  |  |  |  |  |
| 33,78           | 1,18        | 1,08     |  |  |  |  |  |  |  |  |
| 33,72           | 1,21        | 1,08     |  |  |  |  |  |  |  |  |
| 34,60           | 1,21        | 1,12     |  |  |  |  |  |  |  |  |
| 43,80           | 1,23        | 1,02     |  |  |  |  |  |  |  |  |
| 41,81           | 1,24        | 1,01     |  |  |  |  |  |  |  |  |
| 44,04           | 1,19        | 1,03     |  |  |  |  |  |  |  |  |
| 40,27           | 1,23        | 1,04     |  |  |  |  |  |  |  |  |
| 37,51           | 1,39        | 1,11     |  |  |  |  |  |  |  |  |
| 44,64           | 1,11        | 0,94     |  |  |  |  |  |  |  |  |

#### Legenda

PRk = Valor característico da força axial de compressão resistente obtido via aplicativo

Pn = Valor característico da força axial de compressão resistente obtido via método da resistência direta por Moen e Schafer (2008)

Ptest = Valor obtido nos ensaios realizados por Moen e Schafer (2008)

Com base na Tabela 3-3, observa-se que a força axial de compressão resistente nominal obtida via aplicativo são coerentes com os valores obtidos via MRD, onde foi observado uma diferença percentual máxima de 12%, o que pode ser considerada aceitável uma vez que o aplicativo trabalha com o método da largura efetiva e pode fornecer resultados ligeiramente diferentes do método da resistência direta. Os valores obtidos analiticamente diferem dos valores obtidos experimentalmente, chegando a 39% de diferença.

Segundo Moen e Schafer (2008), no caso das colunas com seção 362S162-33, a presença dos furos na alma reduziu a força axial de flambagem distorcional da alma, de modo que maior parte da carga foi transferida pelas mesas e enrijecedores, resultando em uma falha distorcional. Ainda segundo Moen e Schafer (2008), no caso das colunas com seção 600S162-33, a presença do furo teve uma influência diferente, provocando deformações típicas da flambagem local e induzindo os perfis a este modo de falha.

## 3.5 Exemplos de aplicação

## 3.5.1 Exemplo 1 – Viga Ue 140x40x12x0,95 sem abertura na alma submetida à flexão simples

Para exemplificação do dimensionamento de peças submetidas à flexão, tomou-se o exemplo de uma viga Ue 140x40x12x0,95, fabricada em aço ZAR230, com comprimento de 2400 mm e travamento central na direção x e em torno de z. Considerou-se que a viga esteja submetida a um momento fletor solicitante de cálculo  $M_{Sdx}$ =93,89 kN cm. A solução do problema via método da seção efetiva foi apresentada por Rodrigues e Caldas (2016).

| nu Ajuda       |                              |          |                   |              |            |            |               |           |               |  |  |
|----------------|------------------------------|----------|-------------------|--------------|------------|------------|---------------|-----------|---------------|--|--|
| C              | ados                         | la Seçã  | o Tra             | ansversa     | 1          |            |               |           |               |  |  |
| N              | ome:                         |          | Ue                | 140x40x12x   | 0.95       |            |               |           |               |  |  |
| т              | Tipo:<br>bw [cm]:<br>bf [cm] |          | Ue                | Section      |            | - 1        |               |           | 0             |  |  |
| b              |                              |          | hus femile        |              | 14         | 14.0       |               |           |               |  |  |
|                |                              |          | 4.0               | 10           |            |            | M             |           |               |  |  |
|                | lemb                         |          | 1.2               | 00           |            |            | <u>t</u>      | 8         |               |  |  |
|                | femit                        |          | 1.2               | 00           |            | - 11       |               | 0         | 0             |  |  |
| 1              | (cm):                        |          | 0.0               | 414          |            |            | _             | bf        | _             |  |  |
| dh [cm]:       |                              | 0.0      |                   |              | _          |            | -             |           |               |  |  |
| L              | h [cm]:                      |          | 0.0               |              |            |            |               |           |               |  |  |
| Dados da       | Barr                         |          | Dade              | os do        | Mat        | erial      | Es            | forços    | Críticos      |  |  |
| L fcmit: 240.0 |                              | 1        | Nome              | do Material  | ZAR        | 230        | NI            | kN]:      | 9.97          |  |  |
| (xLx (cm):     | 240.0                        |          | fy [kN/cm*]: 23.0 |              |            | Ndist[kN]: |               | 999       |               |  |  |
| (yLy [cm]:     | 120.0                        |          | fu (kN/cm*): 3    | 31.0         |            | MX         | Madistikh cm2 | 221.20    |               |  |  |
| (zLz (cm):     | 120.0                        |          | E [kN/c           | :m²]:        | 2000       | 0          | -             | modeu cui | p  214.20     |  |  |
| Esfo           | cos                          | Socilita | intes             | s Esforcos   | os Resiste |            | ntes Ver.:    |           |               |  |  |
| NSd (k         | N]:                          | -1       |                   | NRd [kN]:    | [kN]:      | 19.4515    |               | Ver.:     | OK!           |  |  |
| MxSd           | [kN cm]:                     | 93.89    |                   | MxRd [kN     | cm):       | 161.7794   |               |           | OK!           |  |  |
| VxSd [         | kN]:                         | 0.00     |                   | VxRd (kN):   |            | 8.3348     | Ver.:         | Ver.:     | OK!           |  |  |
| VySd [         | kN]:                         | 0.00     |                   | VyRd [kN]:   |            | 4.6074     |               | Ver.: 0   | OK)           |  |  |
| V+M:           |                              | 0.5804   |                   | V+R máx.:    |            | 1.00       |               | Ver.:     | OK?           |  |  |
| P-M-M          | 8                            | 0.6318   |                   | PMM máx.     |            | 1.00       |               | Ver.:     | OK!           |  |  |
|                |                              |          | _                 | Cater        | dae        |            | Der           | oriedadae | Cannaliteirea |  |  |
|                |                              |          | E                 | forces Criti | nur.       | listicos   | 10            | Verifier  | -las          |  |  |
| Esbeltez en    | X: 44.7.                     | 359      | - 23              | sorgos cito  | LUSI       | asocos     |               | venilica  | yves          |  |  |
| Esbeltez en    | NY 83.3                      | 016      | -                 | Detalhado    | o - NO     | Rd         | _             | Detaihado | - NCRd        |  |  |
|                |                              |          | -                 | Detalhado    | - 60x      | Rd         |               | Detaihado | o - myrkd     |  |  |
|                |                              |          |                   | Dotalhado    | 114        | R4         |               | Detalhado | - VvRd        |  |  |

Figura 3.17 - Dados de Entrada

| 🍰 Propriedades Geor                          | 🚣 Propriedades Geométricas |               |        |  |  |  |  |  |  |  |
|----------------------------------------------|----------------------------|---------------|--------|--|--|--|--|--|--|--|
| Menu Ajuda                                   |                            |               |        |  |  |  |  |  |  |  |
| Propriedades Geométricas - Ue 140x40x12x0,95 |                            |               |        |  |  |  |  |  |  |  |
| Ag [cm2]:                                    | 2.1752                     | m [kg/m]:     | 1.7076 |  |  |  |  |  |  |  |
| Cx [cm]:                                     | 1.0474                     | Cy [cm2]:     | 7.0000 |  |  |  |  |  |  |  |
| lx [cm4]:                                    | 62.6058                    | ly [cm4]:     | 4.5140 |  |  |  |  |  |  |  |
| lxy [cm4]:                                   | 0.0000                     | It [cm4]:     | 0.0061 |  |  |  |  |  |  |  |
| rx [cm]:                                     | 5.3648                     | ry [cm]:      | 1.4405 |  |  |  |  |  |  |  |
| Wx_sup [cm3]:                                | 9.0025                     | Wx_inf [cm3]: | 9.0025 |  |  |  |  |  |  |  |
| Wy_esq [cm3]:                                | 4.5061                     | Wy_dir [cm3]: | 1.5529 |  |  |  |  |  |  |  |
| Cw [cm6]:                                    | 179.1381                   | r0 [cm]:      | 6.1731 |  |  |  |  |  |  |  |
|                                              | Fechar                     |               |        |  |  |  |  |  |  |  |

Figura 3.18 – Propriedades Geométricas da Seção Transversal

| Nenu Ajuda   |          |                    |          |
|--------------|----------|--------------------|----------|
|              | Esforços | Criticos Elasticos |          |
| KxLx [cm]:   | 240.0000 | KyLy [cm]:         | 120.0000 |
| KzLz [cm]:   | 120.0000 | Nex [kN]:          | 214.5468 |
| Ney [kN]:    | 61.8769  | Nez [kN]:          | 65.6606  |
| Nexz [kN]:   | 61.0417  | Ne [kN]:           | 61.0417  |
| Mex [kN cm]: | 393.4808 | Mey [kN cm]:       | 0.0000   |

Figura 3.19 – Esforços críticos elásticos

| -<br>                                  | _ <b>_</b> X             |  |  |  |  |  |  |  |  |
|----------------------------------------|--------------------------|--|--|--|--|--|--|--|--|
| Cálculo deta                           | Cálculo detalhado - MxRd |  |  |  |  |  |  |  |  |
| Ínicio de Escoamenteo da Seção Efetiva |                          |  |  |  |  |  |  |  |  |
|                                        | 5: [k]/om2]: 02.0000     |  |  |  |  |  |  |  |  |
| fy [kN/cm²]:                           | 23.0000                  |  |  |  |  |  |  |  |  |
| Wef [cm <sup>3</sup> ]:                | 8.7772                   |  |  |  |  |  |  |  |  |
| MxRd1 [kNcm]:                          | 181.8319                 |  |  |  |  |  |  |  |  |
| Flambagem Lateral com Torção           |                          |  |  |  |  |  |  |  |  |
| Mex [kNcm]:                            | 393.4808                 |  |  |  |  |  |  |  |  |
| lambda_o:                              | 0.7254                   |  |  |  |  |  |  |  |  |
| Xflt:                                  | 0.9476                   |  |  |  |  |  |  |  |  |
| Wcef [cm <sup>3</sup> ]:               | 8.7772                   |  |  |  |  |  |  |  |  |
| MxRd2 [kNcm]:                          | 173.9108                 |  |  |  |  |  |  |  |  |
| Flambagem                              | Distorcional             |  |  |  |  |  |  |  |  |
| Mxdist [kNcm]:                         | 274.2300                 |  |  |  |  |  |  |  |  |
| lambda_dist:                           | 0.7254                   |  |  |  |  |  |  |  |  |
| Xdist:                                 | 0.8595                   |  |  |  |  |  |  |  |  |
| Wx [cm <sup>3</sup> ]:                 | 9.0025                   |  |  |  |  |  |  |  |  |
| MxRd3 [kNcm]:                          | 161.7794                 |  |  |  |  |  |  |  |  |
| MxRd [kNcm]:                           | 161.7794                 |  |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |  |
| Fe                                     | char                     |  |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |  |

Figura 3.20 - Cálculo Detalhado

Rodrigo e Caldas (2016) obtiveram o momento fletor resistente de cálculo  $M_{xRd} = 161,12$  kN cm. Observa-se que o *software* desenvolvido apresenta resultados similares ( $M_{xRd} = 161,78$  kN cm) ao resultado apresentado pelos autores, com uma diferença percentual de apenas 0,40 %.

## 3.5.2 Exemplo 2 – Viga Ue 140x40x12x0,95 com abertura na alma submetida à flexão simples

Para exemplificação do dimensionamento de peças submetidas à flexão com a presença de furos, tomou-se o exemplo anterior de uma viga Ue 140x40x12x0,95, em que foi realizada um furo oblongo de 32 mm de diâmetro e 50 mm de comprimento. A viga foi fabricada em aço ZAR230, com comprimento de 2400 mm e travamento central. Considerou-se que a viga esteja submetida a um momento fletor solicitante de cálculo  $M_{Sdx} = 93,89$  kN cm.

| CFD - Cold Form | med Desi | gn      |          |                            |               |           |              | a surger    | X           |  |
|-----------------|----------|---------|----------|----------------------------|---------------|-----------|--------------|-------------|-------------|--|
| Menu Ajuda      |          |         |          |                            |               |           |              |             |             |  |
| D               | ados     | la Secã | o Tra    | ansvers                    | al            |           |              |             |             |  |
| N               | ome:     |         | Ue       | 140x40x12                  | x0,95         |           |              |             |             |  |
| п               | Tipo:    |         | Ue       | Section A                  | Section Along |           | <b></b>      |             | 0           |  |
| b               | bw [cm]: |         | hw [cm]: |                            | 1             |           |              |             |             |  |
|                 | by [cm]: |         | 4.00     | 14.0                       |               | - MA      |              |             |             |  |
|                 | bf [cm]  |         | 4.00     | 4.000                      |               |           | , t          |             |             |  |
| U               | (cm):    |         | 1.20     |                            |               | - 1       |              | Π           | 2           |  |
| t (             | t [cm]:  |         | 0.05     | 914                        |               |           | _            | bf          | _           |  |
| di              | h [cm]:  |         | 3.2      |                            |               | _         |              |             |             |  |
| u               | h [cm]:  |         | 5.0      |                            |               |           |              |             |             |  |
| Dados da        | Barr     |         | Dado     | os do                      | Mat           | erial     | E            | sforços     | Críticos    |  |
| L [cm]:         | 240.0    |         | Nome     |                            | I: ZAR        | 230       | NI[kN]:      |             | 9.97        |  |
| KxLx [cm]:      | 240.0    |         | fy [kN/  | fy [kN/cm <sup>2</sup> ]:  |               | m³]: 23.0 |              | st[kN]:     | 999         |  |
| KyLy [cm]:      | 120.0    |         | fu [kN/  | cm²]:                      | 31.0          |           | Mxdist/kN cm | dist[kN cm] | 274.23      |  |
| KzLz [cm]:      | 120.0    |         | E [kN/c  | N/cm <sup>3</sup> ]: 20000 |               |           |              |             |             |  |
| Esfor           | cos      | Socilit | antes    | Esforce                    | DS            | Resister  | ites         | Ver.:       |             |  |
| NSd [ki         | N]:      | -1      |          | NRd [kN]:                  | NRd [kN]:     | 17.1747   |              | Ver.:       | OK!         |  |
| MxSd [          | kN cm]:  | 93.89   |          | MxRd [kN                   | cm]:          | 152.0085  |              | Ver.:       | OK!         |  |
| VxSd [          | kN]:     | 0.00    |          | VxRd [kN                   | ):            | 8.3348    | Ver.         | Ver.:       | OK!         |  |
| VySd [I         | kN]:     | 0.00    |          | VyRd [kN                   |               | 4.6074    | _            | Ver.:       | OK!         |  |
| V+M:<br>D.M.M-  |          | 0.6750  | -        | V+R max                    |               | 1.00      | Ver.:        |             | OKI         |  |
| F-88-65.        |          | 0.0755  |          | P Mini Trida               | 6.s.s. '      | 1.00      |              | VCI         | UR1         |  |
|                 |          |         |          |                            |               |           |              |             |             |  |
|                 |          |         |          | Calc                       | ular          |           | Pro          | priedades ( | Seométricas |  |
|                 |          |         | Es       | forcos Crit                | icos F        | lásticos  |              | Verifica    | cões        |  |
| Esbeltez em     | X: 44.7  | 359     |          | Dotalha                    | In M          | Pd        |              | Dotalhado   | NePd        |  |
| Esbenez en      | 03.3     | 010     | -        | Detailla                   | - NI          |           | -            | Detailiduo  | - nortu     |  |
|                 |          |         | -        | Detainad                   | 0 - MX        | KO        | _            | Detainado   | - MyKa      |  |
|                 |          |         | -        | Detalhad                   | lo - Vx       | Rd        | _            | Detalhado   | - VyRd      |  |
|                 |          |         |          |                            |               |           |              |             |             |  |

Figura 3.21 - Dados de Entrada

| 🔔 Propriedades Geon                          | nétricas |               | - • ×  |  |  |  |  |  |  |
|----------------------------------------------|----------|---------------|--------|--|--|--|--|--|--|
| Menu Ajuda                                   |          |               |        |  |  |  |  |  |  |
| Propriedades Geométricas - Ue 140x40x12x0,95 |          |               |        |  |  |  |  |  |  |
| Ag [cm2]:                                    | 2.1752   | m [kg/m]:     | 1.7076 |  |  |  |  |  |  |
| Cx [cm]:                                     | 1.0474   | Cy [cm2]:     | 7.0000 |  |  |  |  |  |  |
| lx [cm4]:                                    | 62.6058  | ly [cm4]:     | 4.5140 |  |  |  |  |  |  |
| lxy [cm4]:                                   | 0.0000   | It [cm4]:     | 0.0061 |  |  |  |  |  |  |
| rx [cm]:                                     | 5.3648   | ry [cm]:      | 1.4405 |  |  |  |  |  |  |
| Wx_sup [cm3]:                                | 9.0025   | Wx_inf [cm3]: | 9.0025 |  |  |  |  |  |  |
| Wy_esq [cm3]:                                | 4.5061   | Wy_dir [cm3]: | 1.5529 |  |  |  |  |  |  |
| Cw [cm6]:                                    | 179.1381 | r0 [cm]:      | 6.1731 |  |  |  |  |  |  |
|                                              | Fechar   |               |        |  |  |  |  |  |  |

Figura 3.22 - Propriedades Geométricas da Seção Transversal

| Menu Ajuda   |          |                    |          |
|--------------|----------|--------------------|----------|
|              | Esforços | Criticos Elasticos |          |
| KxLx [cm]:   | 240.0000 | KyLy [cm]:         | 120.0000 |
| KzLz [cm]:   | 120.0000 | Nex [kN]:          | 214.5468 |
| Ney [kN]:    | 61.8769  | Nez [kN]:          | 65.6606  |
| Nexz [kN]:   | 61.0417  | Ne [kN]:           | 61.0417  |
| Mex [kN cm]: | 393.4808 | Mey [kN cm]:       | 0.0000   |

Figura 3.23 – Esforços críticos elásticos

| <u>\$</u>                              | X                        |  |  |  |  |  |  |  |
|----------------------------------------|--------------------------|--|--|--|--|--|--|--|
| Cálculo deta                           | Cálculo detalhado - MxRd |  |  |  |  |  |  |  |
| Ínicio de Escoamenteo da Secão Efetiva |                          |  |  |  |  |  |  |  |
| fv [kN/cm²]:                           | 23.0000                  |  |  |  |  |  |  |  |
| Wef [cm <sup>3</sup> ]:                | 7.6718                   |  |  |  |  |  |  |  |
| MxRd1 [kNcm]:                          | 157.7018                 |  |  |  |  |  |  |  |
| Flambagem Lateral com Torção           |                          |  |  |  |  |  |  |  |
| Mex [kNcm]:                            | 393.4808                 |  |  |  |  |  |  |  |
| lambda_o:                              | 0.7254                   |  |  |  |  |  |  |  |
| Xflt:                                  | 0.9476                   |  |  |  |  |  |  |  |
| Wcef [cm <sup>3</sup> ]:               | 7.6718                   |  |  |  |  |  |  |  |
| MxRd2 [kNcm]:                          | 152.0085                 |  |  |  |  |  |  |  |
| Flambagem                              | Distorcional             |  |  |  |  |  |  |  |
| Mxdist [kNcm]:                         | 274.2300                 |  |  |  |  |  |  |  |
| lambda_dist:                           | 0.7254                   |  |  |  |  |  |  |  |
| Xdist:                                 | 0.8595                   |  |  |  |  |  |  |  |
| Wx [cm³]:                              | 9.0025                   |  |  |  |  |  |  |  |
| MxRd3 [kNcm]:                          | 161.7794                 |  |  |  |  |  |  |  |
| MxRd [kNcm]:                           | 152.0085                 |  |  |  |  |  |  |  |
| Fe                                     | char                     |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |
|                                        |                          |  |  |  |  |  |  |  |

Figura 3.24 - Cálculo Detalhado de MxRd

| <u>\$</u>                |          |  |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|--|
| Cálculo detalhado - VyRd |          |  |  |  |  |  |  |
| h [cm]:                  | 13.6344  |  |  |  |  |  |  |
| t [cm]:                  | 0.0914   |  |  |  |  |  |  |
| kv:                      | 5.0000   |  |  |  |  |  |  |
| h/t:                     | 149.1729 |  |  |  |  |  |  |
| Limite 1:                | 71.2131  |  |  |  |  |  |  |
| Limite 2:                | 92.3133  |  |  |  |  |  |  |
| Número Almas:            | 1.0000   |  |  |  |  |  |  |
| C:                       | 5.2172   |  |  |  |  |  |  |
| qs:                      | 1.0000   |  |  |  |  |  |  |
| VRdi [kN]:               | 4.6074   |  |  |  |  |  |  |
| VRdy [kN]:               | 4.6074   |  |  |  |  |  |  |
| Fec                      | char     |  |  |  |  |  |  |

Figura 3.25 - Cálculo Detalhado de VyRd

Com base nos resultados obtidos para o perfil com furos, observou-se uma redução do momento fletor resistente de cálculo de  $M_{xRd} = 161,78$  kN cm para o perfil sem furos para  $M_{xRd} = 152,00$  kN cm.

## 3.5.3 Exemplo 3– Montante Ue 90x40x12x0,95 sem abertura na alma submetido à flexão composta

Para exemplificação do dimensionamento de peças submetidas à flexão composta, tomou-se o exemplo de um montante Ue 90x40x12x0,95, fabricado em aço ZAR230, com comprimento de 2800 mm e travamento central. Considerou-se que o montante esteja submetido à um momento fletor solicitante de cálculo  $M_{Sdx} = 42,63$  kN cm e a uma força de axial de compressão solicitante de cálculo  $N_{cSd} = 3,69$  kN. A solução do problema via método da seção efetiva foi apresentada por Rodrigues e Caldas (2016).

| u Ajuda     |           |         |          |                        |         |          |                             |             |             |
|-------------|-----------|---------|----------|------------------------|---------|----------|-----------------------------|-------------|-------------|
| 0           | ados d    | la Seci | io Tra   | nsversa                | ıl      |          |                             |             |             |
| N           | ome:      |         | Ue       | 90x40x12x0             | ,95     |          | _                           |             |             |
| т           | ipo:      |         | Ue       | Ue_Section  14.0 4.000 |         | [        |                             | 0           |             |
| b           | w [cm]:   |         | 14.0     |                        |         |          |                             |             |             |
| b           | ffcml     |         | 4.00     |                        |         | pw       | p                           |             |             |
| D [cm]:     |           | 1.20    | 1 200    |                        |         | - t      |                             |             |             |
| t (cm):     |           | 0.00    | 14       | -                      | - 1     |          | Π                           | <u>_</u>    |             |
| dh (cm):    |           | 0.0     | গ্ৰন্থ   |                        |         | -        | bf                          | -           |             |
| u           | h (cm):   |         | 0.0      |                        |         | -        |                             | -           |             |
| L           | a femi:   |         | 0.0      |                        |         |          |                             |             | 10000       |
| Dados da    | Barra     | 9       | Dado     | s do                   | Mat     | erial    | Es                          | forços      | Críticos    |
| L [cm]:     | 280.0     | 280.0 N | Nome     | Nome do Material       |         | EZAR-230 |                             | stikNi:     | 39.03       |
| (xLx [cm]:  | 280.0     |         | fy [kN/d | /cm²]:                 | 23.0    |          | Mx                          | likN cml:   | 224.10      |
| KyLy [cm]:  | 140.0     |         | fu [kN/  | cm*]:                  | 31.0    |          | Mx                          | dist[kN cm] | : 205.98    |
| (zLz [cm]:  | 140.0     |         | E [kN/c  | :m*]:                  | 2000    | 0        | -                           |             |             |
| Esfor       | rços      | Socilit | antes    | Esforço                | s       | Resister | ntes                        | Ver.:       |             |
| NSd [k      | N]:       | -3.69   |          | NRd [kN]:              | 17.56   | 17.5672  | .5672 Ver.:<br>6.5473 Ver.: | Ver.:       | OK!         |
| MxSd        | [kN cm]:  | 42.63   |          | MxRd [kN               | cm]:    | 146.5473 |                             | Ver.:       | OK!         |
| VxSd [      | kN]:      | 0.00    |          | VxRd [kN]              | -       | 8.3348   | _                           | Ver.:       | OK!         |
| VySd [      | kN]:      | 0.00    |          | VyRd [kN]              |         | 4.6074   |                             | Ver.:       | OK!         |
| V+M:        |           | 0.2909  |          | V+R máx.               |         | 1.00     | _                           | Ver.:       | OK!         |
| F-m-m       |           | 0.5005  |          | r nim hida             |         | 1.00     |                             | ver.        | UK.         |
|             |           |         |          | Calc                   | ular    |          | Pro                         | priedades ( | Geométricas |
| Esbeltez en | N: 52.1   | 919     | Es       | forços Criti           | cos El  | åsticos  |                             | Verifica    | ções        |
| Esbeltez en | n Y 97.18 | 352     |          | Detalhad               | o - Nti | Rd       |                             | Detalhado   | - NcRd      |
|             |           |         | 1        | Detalhad               | 0 - Mx  | Rd       |                             | Detalhado   | - MyRd      |
|             |           |         | 8        | Detalhad               |         | Rd       | -                           | Detalhado   | - VvRd      |

Figura 3.26 - Dados de Entrada

| 🙆 Propriedades Geor                         | 💁 Propriedades Geométricas |               |        |  |  |  |  |  |  |
|---------------------------------------------|----------------------------|---------------|--------|--|--|--|--|--|--|
| Menu Ajuda                                  |                            |               |        |  |  |  |  |  |  |
| Propriedades Geométricas - Ue 90x40x12x0,95 |                            |               |        |  |  |  |  |  |  |
| Ag [cm2]:                                   | 2.1752                     | m [kg/m]:     | 1.7076 |  |  |  |  |  |  |
| Cx [cm]:                                    | 1.0474                     | Cy [cm2]:     | 7.0000 |  |  |  |  |  |  |
| lx [cm4]:                                   | 62.6058                    | ly [cm4]:     | 4.5140 |  |  |  |  |  |  |
| lxy [cm4]:                                  | 0.0000                     | It [cm4]:     | 0.0061 |  |  |  |  |  |  |
| rx [cm]:                                    | 5.3648                     | ry [cm]:      | 1.4405 |  |  |  |  |  |  |
| Wx_sup [cm3]:                               | 9.0025                     | Wx_inf [cm3]: | 9.0025 |  |  |  |  |  |  |
| Wy_esq [cm3]:                               | 4.5061                     | Wy_dir [cm3]: | 1.5529 |  |  |  |  |  |  |
| Cw [cm6]:                                   | 179.1381                   | r0 [cm]:      | 6.1731 |  |  |  |  |  |  |
|                                             |                            | Fechar        |        |  |  |  |  |  |  |

Figura 3.27 - Propriedades Geométricas da Seção Transversal

| Nenu Ajuda   |          |                    |          |
|--------------|----------|--------------------|----------|
|              | Esforços | Criticos Elasticos |          |
| KxLx [cm]:   | 280.0000 | KyLy [cm]:         | 140.0000 |
| KzLz [cm]:   | 140.0000 | Nex [kN]:          | 157.6263 |
| Ney [kN]:    | 45.4606  | Nez [kN]:          | 48.5648  |
| Nexz [kN]:   | 45.1214  | Ne [kN]:           | 45.1214  |
| Mex [kN cm]: | 290.0583 | Mey [kN cm]:       | 0.0000   |

Figura 3.28 – Esforços críticos elásticos



Figura 3.29 - Cálculo Detalhado - NcRd

| <u>\$</u>                              | _ <b>_</b> ×                  |  |  |  |  |  |  |
|----------------------------------------|-------------------------------|--|--|--|--|--|--|
| Cálculo detalhado - MxRd               |                               |  |  |  |  |  |  |
| Ínicio de Escoamenteo da Seção Efetiva |                               |  |  |  |  |  |  |
| fy [kN/cm²]:<br>Wef [cm²]:             | 23.0000<br>8.8829<br>191.9310 |  |  |  |  |  |  |
| Flambagem Lat                          | teral com Torcão              |  |  |  |  |  |  |
| Flambagem Lateral com Torção           |                               |  |  |  |  |  |  |
| lambda o:                              | 0.8449                        |  |  |  |  |  |  |
| Xflt:                                  | 0.8897                        |  |  |  |  |  |  |
| Wcef [cm <sup>3</sup> ]:               | 8.8829                        |  |  |  |  |  |  |
| MxRd2 [kNcm]:                          | 165.2507                      |  |  |  |  |  |  |
| Flambagem                              | Distorcional                  |  |  |  |  |  |  |
| Mxdist [kNcm]:                         | 205.9800                      |  |  |  |  |  |  |
| lambda_dist:                           | 0.8449                        |  |  |  |  |  |  |
| Xdist:                                 | 0.7785                        |  |  |  |  |  |  |
| Wx [cm³]:                              | 9.0025                        |  |  |  |  |  |  |
| MxRd3 [kNcm]:                          | 146.5473                      |  |  |  |  |  |  |
| MxRd [kNcm]:                           | 146.5473                      |  |  |  |  |  |  |
| Fe                                     | char                          |  |  |  |  |  |  |
|                                        |                               |  |  |  |  |  |  |
|                                        |                               |  |  |  |  |  |  |
|                                        |                               |  |  |  |  |  |  |

Figura 3.30 - Cálculo Detalhado - MxRd

| <u>لا</u>                | ×        |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|
| Cálculo detalhado - VyRd |          |  |  |  |  |  |
| h [cm]:                  | 13.6344  |  |  |  |  |  |
| t [cm]:                  | 0.0914   |  |  |  |  |  |
| kv:                      | 5.0000   |  |  |  |  |  |
| h/t:                     | 149.1729 |  |  |  |  |  |
| Limite 1:                | 71.2131  |  |  |  |  |  |
| Limite 2:                | 92.3133  |  |  |  |  |  |
| Número Almas:            | 1.0000   |  |  |  |  |  |
| VRdi [kN]:               | 4.6074   |  |  |  |  |  |
| VRdy [kN]:               | 4.6074   |  |  |  |  |  |
| Fe                       | char     |  |  |  |  |  |

Figura 3.31 - Cálculo Detalhado - VyRd

Observa-se que os valores obtidos via aplicativo são coerentes com os valores obtidos por Rodrigues e Caldas (2016).

# 3.5.4 Exemplo 4 – Montante Ue 90x40x12x0,95 com abertura na alma submetido à compressão centrada

Para exemplificação do dimensionamento de peças submetidas à compressão com a presença de furos, tomou-se o exemplo de um montante Ue 90x40x12x0,95, fabricado em aço ZAR230, com comprimento de 2800 mm e travamento central. Considerou-se que o montante esteja submetido a uma força axial de compressão solicitante de cálculo  $N_{cSd} = 3,69$  kN. O perfil em questão possui um furo oblongo de 38 mm de diâmetro por 110 mm de comprimento. A solução do problema via método da seção efetiva foi apresentada por Rodrigues e Caldas (2016).



Figura 3.32 - Dados de Entrada

| 🛃 Propriedades Geométricas                  |         |               |        |  |  |  |  |  |  |
|---------------------------------------------|---------|---------------|--------|--|--|--|--|--|--|
| Menu Ajuda                                  |         |               |        |  |  |  |  |  |  |
| Propriedades Geométricas - Ue 90x40x12x0,95 |         |               |        |  |  |  |  |  |  |
| Ag [cm2]:                                   | 1.7182  | m [kg/m]:     | 1.3488 |  |  |  |  |  |  |
| Cx [cm]:                                    | 1.3139  | Cy [cm2]:     | 4.5000 |  |  |  |  |  |  |
| lx [cm4]:                                   | 22.3258 | ly [cm4]:     | 3.9331 |  |  |  |  |  |  |
| lxy [cm4]:                                  | 0.0000  | It [cm4]:     | 0.0048 |  |  |  |  |  |  |
| rx [cm]:                                    | 3.6046  | ry [cm]:      | 1.5130 |  |  |  |  |  |  |
| Wx_sup [cm3]:                               | 5.0122  | Wx_inf [cm3]: | 5.0122 |  |  |  |  |  |  |
| Wy_esq [cm3]:                               | 3.1014  | Wy_dir [cm3]: | 1.4896 |  |  |  |  |  |  |
| Cw [cm6]:                                   | 70.2302 | r0 [cm]:      | 5.0501 |  |  |  |  |  |  |
|                                             |         | Fechar        |        |  |  |  |  |  |  |

Figura 3.33 - Propriedades Geométricas da Seção Transversal

| ienu Ajuda   |          |                    |          |
|--------------|----------|--------------------|----------|
|              | Esforços | Criticos Elasticos |          |
| KxLx [cm]:   | 280.0000 | KyLy [cm]:         | 140.0000 |
| KzLz [cm]:   | 140.0000 | Nex [kN]:          | 56.2110  |
| Ney [kN]:    | 39.6104  | Nez [kN]:          | 29.1765  |
| Nexz [kN]:   | 22.8812  | Ne [kN]:           | 22.8812  |
| Mex [kN cm]: | 171.6798 | Mey [kN cm]:       | 0.0000   |

Figura 3.34 – Esforços críticos elásticos



Figura 3.35 - Cálculo Detalhado

Rodrigues e Caldas (2016) obtiveram a força axial de compressão resistente de cálculo  $N_{cRd} = 11,96$  kN. Observa-se que o *software* desenvolvido apresenta resultados similares ( $N_{cRd} = 11,84$  kN) ao resultado apresentado pelos autores, com uma diferença percentual de apenas 1,01 %.

## 4. Comportamento de barras de aço com a presença de furos

# 4.1 Estudo de barras de aço comprimidas do sistema LSF com a presença de furos

Na Figura 4.1 tem-se o gráfico que apresenta o comportamento do perfil Ue 90x40x12x0,80 comprimido, com furos oblongos. Este gráfico apresenta a força de compressão resistente de cálculo em função de seu comprimento (limitado a 400 cm) e considera a relação d<sub>h</sub>/h variando de 0,10 até 0,50, além de apresentar o comportamento do perfil sem furos. Para elaboração do gráfico, adotou-se aço ZAR230 e considerou-se um travamento central, de modo que  $K_yL_y = K_zL_z = K_xL_x / 2$ . A flambagem distorcional não foi considerada.



Figura 4.1 – Gráfico da força axial de compressão resistente de cálculo em função do comprimento do perfil Ue 90x40x12x0,80 com a presença de furos oblongos

As barras sujeitas à força axial de compressão, que possuem furos oblongos, apresentam redução da força axial de compressão resistente de cálculo, como pode ser observado na Figura 4.1 para o perfil Ue 90x40x12x0,80. Observou-se que para o perfil estudado, a redução percentual máxima (tomada como a maior redução da força axial de compressão resistente dividida pela força resistente do perfil sem furos) varia de 11,7% a 15,8%.

Conforme apresentado na Tabela 4-1, para uma determinada barra pode-se definir a redução percentual máxima ( $\alpha$ ) para sua força axial de compressão resistente de cálculo, em função do comprimento do perfil e da relação d<sub>h</sub>/h.

| K <sub>x</sub> L <sub>x</sub><br>[cm] | KzLz =<br>KyLy [cm] | N <sub>cRd</sub> [kN]<br>(Sem Furos) | <u>∝</u><br>d <sub>h</sub> /h = 0,10 | <u>∝</u><br>d <sub>h</sub> /h = 0,20 | <u>∝</u><br>d <sub>h</sub> /h = 0,30 | <u>∝</u><br>d <sub>h</sub> /h= 0,40 | <u>∝</u><br>d <sub>h</sub> /h= 0,50 |
|---------------------------------------|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| 20                                    | 10                  | 18,53                                | 9,7%                                 | 9,9%                                 | 10,2%                                | 10,6%                               | 11,1%                               |
| 40                                    | 20                  | 18,40                                | 9,7%                                 | 9,9%                                 | 10,2%                                | 10,6%                               | 11,1%                               |
| 60                                    | 30                  | 18,17                                | 9,7%                                 | 9,9%                                 | 10,2%                                | 10,6%                               | 11,2%                               |
| 80                                    | 40                  | 17,85                                | 9,7%                                 | 10,0%                                | 10,3%                                | 10,7%                               | 11,2%                               |
| 100                                   | 50                  | 17,45                                | 9,8%                                 | 10,0%                                | 10,3%                                | 10,7%                               | 11,2%                               |
| 120                                   | 60                  | 16,97                                | 9,8%                                 | 10,0%                                | 10,3%                                | 10,7%                               | 11,3%                               |
| 140                                   | 70                  | 16,42                                | 9,8%                                 | 10,1%                                | 10,4%                                | 10,8%                               | 11,4%                               |
| 160                                   | 80                  | 15,79                                | 9,9%                                 | 10,1%                                | 10,5%                                | 10,9%                               | 11,5%                               |
| 180                                   | 90                  | 15,08                                | 9,9%                                 | 10,2%                                | 10,5%                                | 11,0%                               | 11,7%                               |
| 200                                   | 100                 | 14,33                                | 10,0%                                | 10,3%                                | 10,6%                                | 11,1%                               | 11,8%                               |
| 220                                   | 110                 | 13,55                                | 10,1%                                | 10,4%                                | 10,8%                                | 11,3%                               | 12,0%                               |
| 240                                   | 120                 | 12,73                                | 10,2%                                | 10,5%                                | 10,9%                                | 11,4%                               | 12,2%                               |
| 260                                   | 130                 | 11,85                                | 10,3%                                | 10,6%                                | 11,1%                                | 11,7%                               | 12,5%                               |
| 280                                   | 140                 | 10,89                                | 10,5%                                | 10,9%                                | 11,4%                                | 12,0%                               | 12,9%                               |
| 300                                   | 150                 | 9,95                                 | 10,7%                                | 11,1%                                | 11,7%                                | 12,4%                               | 13,3%                               |
| 320                                   | 160                 | 9,04                                 | 11,0%                                | 11,4%                                | 12,0%                                | 12,8%                               | 13,8%                               |
| 340                                   | 170                 | 8,18                                 | 11,2%                                | 11,7%                                | 12,3%                                | 13,2%                               | 14,4%                               |
| 360                                   | 180                 | 7,44                                 | 11,4%                                | 11,9%                                | 12,6%                                | 13,6%                               | 14,9%                               |
| 380                                   | 190                 | 6,81                                 | 11,5%                                | 12,1%                                | 12,9%                                | 13,9%                               | 15,4%                               |
| 400                                   | 200                 | 6,26                                 | 11,7%                                | 12,3%                                | 13,2%                                | 14,3%                               | 15,8%                               |
|                                       | Redução n           | nédia                                | 10,3%                                | 10,6%                                | 11,1%                                | 11,7%                               | 12,5%                               |
|                                       | Redução m           | áxima                                | 11,7%                                | 12,3%                                | 13,2%                                | 14,3%                               | 15,8%                               |
|                                       | Redução m           | ínima                                | 9,71%                                | 9,92%                                | 10,21%                               | 10,58%                              | 11,11%                              |

Tabela 4-1 – Percentual de redução da força axial de compressão resistente para o perfil Ue 90x40x12x0,80 com furos

\_

\_

\_

A Figura 4.2 apresenta o gráfico com as reduções percentuais da força axial de compressão resistente do perfil Ue 90x40x12x0,80, com relação d<sub>h</sub>/h variando de 0,10 a 0,50, em função do comprimento do perfil variando de 0 até 400 cm.



Figura 4.2 – Redução percentual da força axial de compressão resistente de cálculo para a relação d<sub>b</sub>/h variando de 0,10 a 0,50 em função do comprimento do perfil Ue 90x40x12x0,80 com a presença de furos oblongos

É possível observar na Figura 4.2, que o percentual de redução  $\alpha$  aumenta com o aumento do comprimento do perfil. Observa-se também que redução percentual  $\alpha$  aumenta conforme a relação d<sub>h</sub>/h cresce.

A Figura 4.3 coloca a variação da redução percentual  $\alpha$  em função da relação d<sub>h</sub> / h, para os comprimentos do perfil variando de 50 cm até 400 cm.



Figura 4.3 – Variação da redução percentual em fundação da relação d<sub>h</sub>/h, para os comprimentos do perfil Ue 90x4x12x0,80 variando de 50 cm a 400 cm

A Tabela 4-2 estende o cálculo da redução percentual da força axial de compressão resistente para os demais perfis usualmente adotados no sistema LSF, apresentando a maior redução percentual  $\alpha$  para perfis com comprimentos de até 400 cm (com K<sub>y</sub>L<sub>y</sub> = K<sub>z</sub>L<sub>z</sub> = K<sub>x</sub>L<sub>x</sub> / 2) e relação d<sub>h</sub>/h variando de 0,1 até 0,5

| Perfil            | α<br>dh/h= 0,10 | α<br>dh/h= 0,20 | α<br>dh/h= 0,30 | α<br>dh/h= 0,40 | α<br>dh/h= 0,50 |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ue 90x40x12x0,80  | 11,68%          | 12,33%          | 13,17%          | 14,28%          | 15,83%          |
| Ue 90x40x12x0,95  | 12,00%          | 12,89%          | 14,03%          | 15,55%          | 18,16%          |
| Ue 90x40x12x1,25  | 12,01%          | 13,20%          | 14,93%          | 18,71%          | 23,38%          |
| Ue 140x40x12x0,80 | 12,04%          | 12,31%          | 12,66%          | 13,14%          | 13,53%          |
| Ue 140x40x12x0,95 | 13,06%          | 13,43%          | 13,92%          | 14,57%          | 15,10%          |
| Ue 140x40x12x1,25 | 14,44%          | 15,07%          | 15,88%          | 16,97%          | 17,87%          |
| Ue 200x40x12x0,80 | 13,00%          | 13,21%          | 13,55%          | -               | -               |
| Ue 200x40x12x0,95 | 14,20%          | 14,49%          | 14,95%          | -               | -               |
| Ue 200x40x12x1,25 | 15,95%          | 16,42%          | 17,18%          | -               | -               |

Tabela 4-2 – Porcentagem máxima de redução da força axial de compresão resistente para perfis usualmente adotados no sistema LSF

Quando furos oblongos são realizados na alma de um perfil submetido à compressão centrada, esta deixa de ser tratada como um elemento vinculado-vinculado com coeficiente de flambagem k na ordem 24, e passa a ser considerada como dois elementos vinculado-livre não enrijecidos, adjacentes ao furo, ambos com k=0,43. A largura efetiva de cada elemento deve ser calculada separadamente e resulta em um valor menor do que no elemento vinculado-vinculado-vinculado. A variação da condição de contorno da alma pode provocar redução significativa da força axial de compressão resistente do perfil, conforme pode ser constatado na Tabela 4-2.

Observou-se que a redução percentual  $\alpha$  cresce com o aumento da relação d<sub>h</sub>/h, o que é esperado, uma vez que o aumento do furo reduz a largura dos elementos adjacentes ao mesmo. Observou-se também que redução percentual  $\alpha$  cresce com o aumento do comprimento do perfil.

Os resultados da Tabela 4-2 podem ser utilizados para o projeto de barras comprimidas, com os perfis e condições analisadas, para prever a influência dos furos na capacidade resistente a compressão. Ressalta-se que a flambagem distorcional deve ser verificada.

# 4.2 Estudo de barras de aço fletidas do sistema LSF com a presença de furos

### 4.2.1 Determinação do momento fletor resistente de cálculo

Na Figura 4.4 tem-se o gráfico que apresenta o comportamento do perfil Ue 90x40x12x0,80 submetido à flexão, com furos oblongos. Este gráfico apresenta a força distribuída solicitante de cálculo que pode ser aplicada no perfil em função de seu comprimento (limitado a 200 cm).

Foi considerado a relação  $d_h/h$  variando de 0,40 até 0,70, uma vez que para relações  $d_h/h < 0,38$  a presença do furo pode ser desconsiderada no dimensionamento à flexão, conforme prescrições da AISI S100-16. Foi apresentado também o comportamento do perfil sem furos.

Para elaboração do gráfico, adotou-se aço ZAR230 e considerou-se um travamento central, de modo que  $K_yL_y = K_zL_z = K_xL_x / 2$ . A flambagem distorcional não foi considerada.

A carga distribuída solicitante de cálculo, q<sub>sd</sub>, é igual a máxima carga distribuída que pode ser aplicada na barra. Essa foi tomada como a menor entre os estados limites de:

- i) momento fletor resistente de cálculo;
- ii) força cortante resistente de cálculo e
- iii) deslocamento máximo para vigas biapoiadas.
- Conforme apresentado na equação 4.1:

$$q_{Sd} \leq \begin{cases} \frac{8M_{Rd}}{L^2} \\ \frac{2V_{Rd}}{L} \\ 1,4\left(\frac{384}{5}\right)\frac{EI_{ef}}{350L^3} \end{cases}$$

$$(4.1)$$

O momento fletor resistente de cálculo foi calculado como o menor dos estados limites de início de escoamento da seção efetiva e flambagem lateral com torção. A flambagem distorcional não foi verificada. Foi adotada a formulação apresentada na AISI S100-16 para o cálculo da largura efetiva de elementos com furos sob gradiente de tensões. O coeficiente C<sub>b</sub> foi tomado como 1,0.

A força cortante resistente de cálculo,  $V_{Rd}$ , foi obtida conforme apresentado na NBR 14762:2010, considerando a alma sem enrijecedores transversais, sendo  $k_v=5,0$ . Para o cálculo da força cortante resistente de cálculo de perfis com furos, o coeficiente de redução apresentado no AISI S100-16 foi aplicado.

Para cálculo do deslocamento máximo de L/350 para vigas com furos, o momento de inércia efetivo foi obtido conforme recomendado no item 1.1.2 da AISI S100-16. Considerou-se que  $q_{Sd}$  é 1,4 vezes a carga distribuída característica.



Figura 4.4 – Gráfico da força distribuída de cálculo que pode ser aplicada em uma barra em flexão com seção Ue 90x40x12x0,80 e a presença de furos oblongos

As barras sujeitas à flexão, que possuem furos oblongos, apresentam redução da força axial de compressão resistente de cálculo, como pode ser observado na figura 5 para o perfil Ue 90x40x12x0,80. Observou-se que para o perfil estudado, a redução percentual máxima na carga distribuída solicitante de cálculo (q<sub>Sd</sub>) que pode ser aplicada no varia de 37% a 69%, em fundação da relação d<sub>h</sub>/h.

Conforme apresentado na Tabela 4-3, para uma determinada barra pode-se definir a redução percentual máxima ( $\beta$ ) na carga distribuída de cálculo que pode ser aplicada na barra, em função do comprimento do perfil e da relação d<sub>h</sub>/h.

| K <sub>x</sub> L <sub>x</sub> | KzLz = KyLy | q <sub>sd</sub> [kN / m] | β                        | β                       | β                       | β                       |
|-------------------------------|-------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| [cm]                          | [cm]        | (Sem Furos)              | d <sub>h</sub> /h = 0,40 | d <sub>h</sub> /h= 0,50 | d <sub>h</sub> /h= 0,60 | d <sub>h</sub> /h= 0,70 |
| 20                            | 10          | 42,20                    | 37,0%                    | 48,0%                   | 57,6%                   | 68,6%                   |
| 40                            | 20          | 21,10                    | 37,0%                    | 48,0%                   | 57,6%                   | 68,6%                   |
| 60                            | 30          | 14,07                    | 37,0%                    | 48,0%                   | 57,6%                   | 68,6%                   |
| 80                            | 40          | 10,09                    | 34,2%                    | 45,6%                   | 55,7%                   | 67,1%                   |
| 100                           | 50          | 6,46                     | 17,7%                    | 32,0%                   | 44,7%                   | 58,9%                   |
| 120                           | 60          | 4,49                     | 8,9%                     | 18,4%                   | 33,6%                   | 50,7%                   |
| 140                           | 70          | 3,30                     | 8,9%                     | 9,4%                    | 22,5%                   | 42,5%                   |
| 160                           | 80          | 2,52                     | 8,9%                     | 9,4%                    | 11,5%                   | 34,3%                   |
| 180                           | 90          | 1,88                     | 4,5%                     | 5,5%                    | 6,8%                    | 21,6%                   |
| 200                           | 100         | 1,37                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 220                           | 110         | 1,03                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 240                           | 120         | 0,79                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 260                           | 130         | 0,62                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 280                           | 140         | 0,50                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 300                           | 150         | 0,41                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 320                           | 160         | 0,33                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 340                           | 170         | 0,28                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 360                           | 180         | 0,23                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 380                           | 190         | 0,20                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| 400                           | 200         | 0,17                     | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| Redução mínima                |             |                          | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| Redução média                 |             |                          | 4,5%                     | 5,5%                    | 6,8%                    | 8,8%                    |
| Redução máxima                |             |                          | 37,0%                    | 48,0%                   | 57,6%                   | 68,6%                   |

Tabela 4-3 – Percentual de redução da força distribuida que pode ser aplicada ao perfil Ue 90x40x12x0,80 com a presença de furos oblongos

Quando furos oblongos são realizados na alma de um perfil submetido à flexão, esta deixa de ser tratada como um elemento vinculado-vinculado com coeficiente de flambagem k=4, e passa a ser considerada como dois elementos vinculado-livre não enrijecidos, adjacentes ao furo. O elemento tracionado não está sujeito a flambagem local. Para o elemento comprimido deve se adotar k=0,43. As propriedades efetivas da seção, resultam em valores menores do que no elemento vinculado-vinculado. A variação da condição de contorno da alma pode provocar redução significativa do momento fletor resistente do perfil.

### 4.2.2 Verificação dos deslocamentos de perfis com a presença de furos

Conforme preconizado na norma AISI S100-16 o cálculo da largura efetiva de elementos enrijecidos com a presença de furos, adotado na verificação dos deslocamentos pode ser feito desconsiderando a existência dos furos.

Conforme observado na Figura 4.4 os valores do gráfico convergem para uma mesma carga distribuída para perfis com maiores comprimentos. Isto ocorre devido ao estado-lime predominante para barras fletidas de maiores comprimentos é o deslocamento máximo para vigas (consideradas como biapoiadas neste estudo).

### 4.2.3 Determinação da força cortante resistente de cálculo

Conforme apresentado no item 2.3.3 para a determinação da força cortante resistente de cálculo de um perfil Ue com a presença de furos na alma, deve-se inicialmente calcular a força resistente de um perfil sem furos. Em seguida aplica-se um fator de redução  $q_s$  sobre este valor.

Este fator de redução depende da altura da parte plana da alma (h), espessura da alma (t), diâmetro do furo (d<sub>h</sub>) e de um coeficiente (c) que varia para furos circulares e não circulares.



Figura 4.5 – Comparação entre os coeficientes de redução q₅ para furos circulares e não circulares na alma de um perfil Ue 90x40x12x0,80

A Figura 4.5 apresenta a comparação entre os  $q_s$  para furos circulares e não circulares na alma de um perfil Ue 90x40x12x0,80, conforme esperado a redução da força resistente é maior para furos não circulares. Adicionalmente, ressalta-se o fato de que a dimensão máxima permitida para furos circulares (diâmetro máximo de 152 mm) ser maior do que para furos não circulares (profundidade máxima de 63,5 mm).

A Figura 4.6, Figura 4.8 e Figura 4.9 apresentam os coeficientes de redução  $q_s$  para furos circulares na alma dos perfis mais frequentemente usados no sistema LSF. Ressalta-se o fato de que a norma AISI S100-16 recomenta que furos somente devem ser realizados na alma de perfis submetidos à força cortante que apresentem relação  $h/t \le 200$ , logo os perfis Ue 200x40x12x0,80 e Ue 200x40x12x0,95 não são considerados.



Figura 4.6 – Coeficientes de redução q<sub>s</sub> para furos circulares na alma de perfis Ue 90x40x12



Figura 4.7 – Coeficientes de redução q<sub>s</sub> para furos circulares na alma de perfis Ue 140x40x12



Figura 4.8 – Coeficientes de redução q<sub>s</sub> para furos circulares na alma de perfis Ue 200x40x12

A presença de furos circulares na alma de perfis Ue pode causar redução de até 72,6 % na força cortante resistente de cálculo, como observado para o perfil Ue 90x40x12x1,25, na Figura 4.6. A redução na força cortante resistente de cálculo é maior para furos não circulares, conforme observado na Figura 4.5.

## 4.3 Gráficos de pré-dimensionamento

### 4.3.1 Gráficos L x Nsd – Barras submetidas à força axial de compressão

Nesta seção são apresentados gráficos de pré-dimensionamento de barras comprimidas com a presença de furos, de maneira semelhante aos apresentados por Rodrigues e Caldas (2016) na seção 7.2.1 do Manual de *Light Steel Framing*: Engenharia do CBCA para perfis sem furos.

Os gráficos são dados pelos pares L x N<sub>Sd</sub>, sendo L o comprimento efetivo de flambagem global por flexão em relação ao eixo x. Foram desenvolvidos gráficos para os casos em que  $K_zL_z = K_yL_y = K_xL_x / 2$  e  $K_zL_z = K_yL_y = K_xL_x / 3$ . N<sub>Sd</sub> é a força axial máxima de compressão solicitante de cálculo que pode ser aplicada no perfil, sendo igual à força axial de compressão resistente do perfil.

A largura efetiva de elementos com a presença de furos usada no cálculo da força axial de compressão resistente foi obtida conforme apresentado na norma AISI S100-16, o restante do dimensionamento foi realizado conforme NBR 14762:2010. A flambagem distorcional não foi considerada. Para o pré-dimensionamento adotou-se o aço ZAR 230.

São apresentados os resultados para os perfis sem furos e para perfis com furos. Variou-se a relação  $d_h/w$  de 0,10 a 0,50 para perfis com 90mm de largura de alma. Para os perfis com 140mm e 200mm de largura de alma, a relação  $d_h/h$  ficou limitada pela dimensão máxima do furo (63,5 mm) em 0,45 e 0,30, respectivamente.

A seguir são apresentados os gráficos com as relações L x N<sub>Sd</sub> de pré-dimensionamento das barras submetidas à força axial de compressão com a presença de furos alongados, e um travamento ao longo do vão, ou seja,  $K_zL_z = K_yL_y = K_xL_x / 2$ . A flambagem distorcional não foi verificada.



Figura 4.9 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.10 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.11 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.12 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.13 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.14 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.15 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.16 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.17 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2$ 

A seguir são apresentados os gráficos com as relações L x  $N_{Sd}$  de pré-dimensionamento das barras submetidas à força axial de compressão com a presença de furos alongados, e dois travamentos ao longo do comprimento, ou seja,  $K_zL_z = K_yL_y = K_xL_x / 3$ .



Figura 4.18 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 3$ 



Figura 4.19 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 3$ 



Figura 4.20 - Barras submetidas à força axial de compressão: Perfil Ue 90x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 3$ 



Figura 4.21 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,80;  $K_zL_z$  =  $K_yL_y$  =  $K_xL_x$  / 3



Figura 4.22 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x0,95;  $K_zL_z$  =  $K_yL_y$  =  $K_xL_x$  / 3



Figura 4.23 - Barras submetidas à força axial de compressão: Perfil Ue 140x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 3$ 



Figura 4.24 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 3$ 



Figura 4.25 - Barras submetidas à força axial de compressão: Perfil Ue 200x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x/3$ 



Figura 4.26 - Barras submetidas à força axial de compressão: Perfil U<br/>e 200x40x12x1,25;  $K_z L_z$  =  $K_y L_y$  =  $K_x L_x$  / 3
## 4.3.2 Gráficos L x qsd – Barras submetidas à flexão na maior inércia

Nesta seção são apresentados gráficos de pré-dimensionamento de barras fletidas com a presença de furos, de maneira semelhante ao apresentado por Rodrigues e Caldas (2016) na seção 7.2.2 do Manual de *Light Steel Framing*: Engenharia do CBCA, considerando a presença dos furos no pré-dimensionamento.

Foram desenvolvidos gráficos para os casos em que  $K_zL_z = K_yL_y = K_xL_x / 2$  e  $K_zL_z = K_yL_y = K_xL_x / 3$ . A largura efetiva de elementos com a presença de furos usada para determinação do momento fletor resistente de cálculo foi obtida conforme apresentado na norma AISI S100-16, o restante do dimensionamento foi realizado conforme ABNT NBR 14762:2010.

A flambagem distorcional não foi considerada. Para o pré-dimensionamento adotou-se o aço ZAR 230. Considerou-se o perfil sem furos e o perfil com furos, sendo que se variou a relação  $d_h/h$  de 0,40 a 0,70. Conforme prescrições da AISI S100-16, os perfis Ue 200x40x12x0,80 e Ue 200x40x12x0,95 não devem receber furos na alma, uma vez que apresentam relação h/t maior que 200.

A carga distribuída solicitante de cálculo,  $q_{sd}$ , é igual a máxima carga distribuída que pode ser aplicada na barra. Essa foi tomada como a menor entre os estados-limites de:

i) momento fletor resistente de cálculo;

ii) força cortante resistente de cálculo e

iii) deslocamento máximo para vigas biapoiadas.

Conforme apresentado na equação 4.2:

$$q_{Sd} \leq \begin{cases} \frac{8M_{Rd}}{L^2} \\ \frac{2V_{Rd}}{L} \\ 1,4\left(\frac{384}{5}\right)\frac{EI_{ef}}{350L^3} \end{cases}$$

$$(4.2)$$

O momento fletor resistente de cálculo foi calculado como o menor dos estados-limites de início de escoamento da seção efetiva e flambagem lateral com torção. A flambagem

distorcional não foi verificada. Foi adotada a formulação apresentada na AISI S100-16 para o cálculo da largura efetiva de elementos com furos sob gradiente de tensões. O coeficiente C<sub>b</sub> foi tomado como 1.

A força cortante resistente de cálculo,  $V_{Rd}$ , foi obtida conforme apresentado na NBR 14762:2010, considerando a alma sem enrijecedores transversais, sendo  $k_v=5$ . Para o cálculo da força cortante resistente de cálculo de perfis com furo, o coeficiente de redução apresentado no AISI S100-16 foi aplicado.

Para cálculo do deslocamento máximo de L/350 para vigas com furos, o momento de inércia efetivo foi obtido conforme recomendado 1.1.2 na AISI S100-16. Considerou-se que  $q_{Sd}$  é 1,4 vezes a carga distribuída característica.

A seguir são apresentados os gráficos com as relações L x  $q_{Sd}$  de pré-dimensionamento das barras submetidas à flexão simples com a presença de furos alongados, e um travamento ao longo do vão, ou seja,  $K_zL_z = K_yL_y = K_xL_x / 2$ .



Figura 4.27 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,80; KzLz = KyLy = KxLx / 2



Figura 4.28 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,95; KzLz = KyLy = KxLx / 2



Figura 4.29 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x1,25; KzLz = KyLy = KxLx / 2



Figura 4.30 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,80; KzLz = KyLy = KxLx / 2



Figura 4.31 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2



Figura 4.32 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2$ 



Figura 4.33 - Barras submetidas à flexão simples: Perfil Ue 200x40x12x1,25; KzLz = KyLy = KxLx / 2

A seguir são apresentados os gráficos com as relações L x  $q_{Sd}$  de pré-dimensionamento das barras submetidas à flexão simples com a presença de furos alongados e dois travamentos ao longo do comprimento, ou seja,  $K_zL_z = K_yL_y = K_xL_x / 3$ .



Figura 4.34 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3



Figura 4.35 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x0,95; KzLz = KyLy = KxLx / 3



Figura 4.36 - Barras submetidas à flexão simples: Perfil Ue 90x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3



Figura 4.37 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3



Figura 4.38 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x0,95; KzLz = KyLy = KxLx / 3



Figura 4.39 - Barras submetidas à flexão simples: Perfil Ue 140x40x12x1,25; KzLz = KyLy = KxLx / 3



Figura 4.40 - Barras submetidas à flexão simples: Perfil Ue 200x40x12x1,25; KzLz = KyLy = KxLx / 3

#### 4.3.3 Gráficos q<sub>Sd</sub> x N<sub>Sd</sub> – Barras submetidas à flexo-compressão

Nesta seção são apresentados gráficos de pré-dimensionamento de barras submetidas à flexocompressão com a presença de furos, de maneira semelhante ao que apresentado por Rodrigues e Caldas (2016) na seção 7.2.3 do Manual de *Light Steel Framing*: Engenharia do CBCA, para perfis sem furos.

Foram desenvolvidos gráficos para os casos em que  $K_zL_z = K_yL_y = K_xL_x / 2$  e  $K_zL_z = K_yL_y = K_xL_x / 3$  para perfis com furos. A largura efetiva usada para determinação da força axial de compressão resistente de cálculo e do momento fletor resistente de cálculo foi obtida conforme apresentado na norma AISI S100-16.

A flambagem distorcional não foi considerada. Para o pré-dimensionamento adotou-se o aço ZAR 230.

Para os perfis Ue 90x40x12x0,80, Ue 90x40x12x0,95 e Ue 90x40x12x1,25 foram desenvolvidos gráficos para o perfil sem furos e para os casos em que  $d_h/h = 0,25$  e  $d_h/h = 0,50$ . Para os perfis Ue 140x40x12x0,80, Ue 140x40x12x0,95 e Ue 140x40x12x1,25 foram desenvolvidos gráficos para o perfil sem furos e para os casos em que  $d_h/h = 0,25$  e

 $d_h/h = 0,45$ . E para o perfil Ue 200x40x12x1,25 foram desenvolvidos gráficos para o perfil sem furos e para os casos em que  $d_h/h = 0,15$  e  $d_h/h = 0,30$ .

Conforme citado anteriormente, segundo a AISI S100-16, os perfis Ue 200x40x12x0,80 e Ue 200x40x12x0,95 sujeitos à flexo-compressão, não podem receber furos na alma, uma vez que apresentam relação h/t maior que 200.

A carga distribuída solicitante de cálculo,  $q_{sd}$ , é igual a máxima carga distribuída que pode ser aplicada na barra. Esta foi tomada como a menor entre os estados-limites de:

i) flexo compressão da barra;

ii) força cortante resistente de cálculo, e

iii) deslocamento máximo para vigas biapoiadas.

Conforme apresentado na equação 4.3:

$$q_{Sd} \leq \begin{cases} \left(\frac{8M_{Rd}}{B_1L_x^2}\right) \left(1 - \frac{N_{Sd}}{N_{Rd}}\right) \\ \frac{2V_{Rd}}{L} \\ 1,4\left(\frac{384}{5}\right) \frac{EI_{ef}}{350L^3} \end{cases}$$

$$(4.3)$$

O momento fletor resistente de cálculo foi calculado como o menor dos estados-limites de início de escoamento da seção efetiva e flambagem lateral com torção. A flambagem distorcional não foi verificada. Foi adotada a formulação apresentada na AISI S100-16 para o cálculo da largura efetiva de elementos com furos sob gradiente de tensões.

O momento fletor solicitante de cálculo,  $M_{Sd}$ , considera os efeitos de segunda ordem ao longo da barra por meio do coeficiente  $B_1 = 1 / (1-N_{Sd}/N_e)$ . A flambagem distorcional não foi considerada. O coeficiente  $C_b$  foi tomado como 1.

A força cortante resistente de cálculo,  $V_{Rd}$ , foi obtida conforme apresentado na NBR 14762:2010, considerando a alma sem enrijecedores transversais, sendo  $k_v=5$ . Para o cálculo da força cortante resistente de cálculo de perfis com furo, foram aplicados os coeficientes de redução apresentados na norma AISI S100-16.

Para cálculo do deslocamento máximo de L/350 para vigas, o momento de inércia efetivo foi obtido conforme formulação do MLE da AISI S100-16. Considerou-se que q<sub>Sd</sub> é 1,4 vezes a carga distribuída característica.

A seguir, são apresentados os gráficos com as relações  $q_{Sd} \times N_{Sd}$  de pré-dimensionamento das barras submetidas à flexo-compressão com a presença de furos alongados, e um travamento ao longo do vão, ou seja,  $K_zL_z = K_yL_y = K_xL_x / 2$ . O comprimento das barras é dado em centímetros.



Figura 4.41 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 2 - Sem$  furos



Figura 4.42 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_b/h=0,25$ 



Figura 4.43 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_h/h=0,50$ 



Figura 4.44 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2-Sem furos



Figura 4.45 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_b/h=0,25$ 



Figura 4.46 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 2 - d_b/h=0,50$ 



Figura 4.47 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; KzLz = KyLy = KxLx / 2-Sem furos



Figura 4.48 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_h/h=0,25$ 



Figura 4.49 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2 - d_b/h=0,50$ 



Figura 4.50 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 2 - Sem$  furos



Figura 4.51 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80;  $K_zL_z = K_yL_y = K_xL_x / 2 - d_h/h=0,225$ 



Figura 4.52 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_h/h=0,45$ 



Figura 4.53 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2– Sem furos



Figura 4.54 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_h/h=0,225$ 



Figura 4.55 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_h/h=0,45$ 



Figura 4.56 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2 - Sem$  furos



Figura 4.57 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2 - d_h/h=0,225$ 



Figura 4.58 - Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 2- $d_h/h=0,45$ 



Figura 4.59 - Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2 - Sem$  furos



Figura 4.60 - Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2 - d_h/h=0,15$ 



Figura 4.61 - Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 2 - d_h/h=0,30$ 

A seguir são apresentados os gráficos com as relações  $q_{Sd} \times N_{Sd}$  de pré-dimensionamento das barras submetidas à flexo-compressão com a presença de furos alongados, e dois travamentos ao longo do comprimento, ou seja,  $K_zL_z = K_yL_y = K_xL_x / 3$ . O comprimento das barras é dado em centímetros.



Figura 4.62 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3 - Sem furos



Figura 4.63 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3 -  $d_h/h=0,25$ 



Figura 4.64 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3 -  $d_h/h=0,50$ 



Figura 4.65 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– Sem furo



Figura 4.66 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_b/h=0,25$ 



Figura 4.67 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– $d_h/h=0,50$ 



Figura 4.68 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– Sem furos



Figura 4.69 - Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_b/h=0,25$ 



Figura 4.70–Barras submetidas à flexo compressão: Perfil Ue 90x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– $d_h/h=0,50$ 



Figura 4.71–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– Sem furos



Figura 4.72–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– d<sub>h</sub>/h=0,225



Figura 4.73–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,80; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– $d_h/h=0,45$ 



Figura 4.74–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– Sem furos



Figura 4.75–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95;  $K_zL_z = K_yL_y = K_xL_x / 3-d_h/h=0,225$ 



Figura 4.76–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x0,95; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– $d_h/h=0,45$ 



Figura 4.77–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– Sem furos



Figura 4.78–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_h/h=0,225$ 



Figura 4.79–Barras submetidas à flexo compressão: Perfil Ue 140x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3– $d_h/h=0,45$ 



Figura 4.80–Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25; K<sub>z</sub>L<sub>z</sub> = K<sub>y</sub>L<sub>y</sub> = K<sub>x</sub>L<sub>x</sub> / 3 – Sem furos



Figura 4.81–Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_h/h=0,15$ 



Figura 4.82–Barras submetidas à flexo compressão: Perfil Ue 200x40x12x1,25;  $K_zL_z = K_yL_y = K_xL_x / 3 - d_h/h=0,30$ 

# 5. Discussões e Conclusões

# 5.1 Considerações Finais

## 5.1.1 Dimensionamento de perfis formados a frio com a presença de furos

Conforme exposto ao longo deste trabalho, os perfis formados a frio adotados no sistema estrutural *Light Steel Framing* usualmente recebem furos para passagem e acomodação de tubulações elétricas, hidráulicas e afins.

A presença dos furos reduz as forças resistentes dos perfis e podem induzir os mesmos ao modo de falha distorcional, uma vez que a rigidez fornecida pela alma à mesa é reduzida. Entretanto, a norma brasileira que trata do dimensionamento de perfis formados a frio, a NBR 14762:2010, somente contempla em seu escopo as formulações para o dimensionamento em tal situação nos capítulos de barras submetidas à força axial de tração e de ligações parafusadas.

A ABNT NBR 15253:2014 apresenta as dimensões máximas de furos que podem ser realizadas em perfis formados a frio, além das disposições construtivas dos furos. Entretanto, ela também não apresenta o procedimento de dimensionamento. Deste modo, o engenheiro que se encontra em tal situação precisa lançar mão da norma norte americana AISI S100-16, que apresenta formulação para o cálculo da largura efetiva de elementos uniformemente comprimidos e de elementos submetidos a gradiente de tensões com a presença de furos.

A norma AISI S100-16 também apresenta métodos para o cálculo da força cortante resistente e da força resistente ao enrugamento da alma (*web crippling*) de perfis com a presença de furos. Para estes casos, deve-se calcular a força resistente considerando que não existem furos nos perfis, e em seguida aplica-se um fator de redução sobre esta força.

A AISI S100-16 apresenta ainda uma adaptação do método da resistência direta (MRD) para o dimensionamento de barras em flexão e barras em compressão com a presença de furos. A adaptação da AISI S100-16 é semelhante à proposta por Moen e Schafer (2011) e Moen et al (2013). Durante o processo de dimensionamento via MRD é necessário adotar as forças axiais de compressão e os momentos fletores de flambagem elástica local, distorcional e global calculados considerando a existência de furos nos perfis. A norma AISI S100-16 apresenta adicionalmente como obter estes valores. Moen e Schafer (2009) também apresentam este procedimento de maneira mais detalhada.

Observou-se que quando furos oblongos são realizados na alma de um perfil submetido à compressão, esta deixa de ser tratada como um elemento vinculado-vinculado com coeficiente de flambagem k=4, e passa a ser considerada como dois elementos vinculado-livre não enrijecidos adjacentes ao furo, ambos com k=0,43. A largura efetiva de cada elemento deve ser calculada separadamente e resulta em um valor menor do que no elemento vinculado-vinculado-vinculado- deve o comprimento do perfil tem influência relativamente baixa, quando comparado à modificação da condição de contorno da alma do perfil, na determinação da força axial de compressão resistente.

Ressalta-se as observações de Moen et al (2009) sobre a redução da rigidez rotacional fornecida pela alma à mesa, quando furos são feitos na alma de perfis formados a frio, de modo que força a axial de flambagem distorcional elástica e momento fletor de flambagem distorcional elástica diminuem. Ressalta-se também os estudos de Moen e Schafer (2008), onde estes concluíram que a presença de furos oblongos discretos na alma de perfis Ue sujeitos à força axial de compressão provoca uma redução na força axial de compressão resistente do mesmo, acompanhada da alteração da resposta pós-estável e a ductilidade da barra.

Quando furos oblongos são realizados na alma de um perfil submetido à flexão, esta deixa de ser tratada como um elemento vinculado-vinculado com coeficiente de flambagem k na ordem de 24, e passa a ser considerada como dois elementos vinculado-livre não enrijecidos, adjacentes ao furo. O elemento tracionado não está sujeito a flambagem local, entretanto para o elemento comprimido deve-se adotar k=0,43. As propriedades efetivas da seção resultam em valores menores do que no elemento vinculado-vinculado. A variação da condição de contorno da alma pode provocar redução significativa do momento fletor resistente do perfil.

Conforme preconizado na norma AISI S100-16 no cálculo das propriedades efetivas de perfis com furos, a presença dos mesmos pode ser desconsiderada na verificação dos deslocamentos.

A presença de furos na alma de perfis Ue pode causar redução de até 72,6 % na força cortante resistente de cálculo, como observado para o perfil Ue 90x40x12x1,25. A redução na força cortante resistente de cálculo é maior para furos não circulares.

Com base no exposto, é possível observar a importância de se levar em consideração a presença dos furos no processo de dimensionamento de perfis formados a frio. Os gráficos de pré-dimensionamento podem auxiliar os engenheiros durante o processo de cálculo estrutural. Além disso, é importante ressaltar que a flambagem distorcional ainda deve ser verificada.

#### 5.1.2 Desenvolvimento de um *software* para dimensionamento de perfis formados a frio

Ao longo deste trabalho, foi desenvolvido um *software* para dimensionamento de perfis formados a frio. O aplicativo foi programado com base na ABNT NBR 14762:2010 e para o cálculo dos perfis com a presença de furos adotou-se a norma norte americana AISI S100-16.

O *software* foi desenvolvido em Java, uma linguagem computacional de programação orientada a objetos.

No programa foram adotados nove pacotes, sendo eles: *i) Geometria; ii) Sections; iii) Modelo; iv) Esforço Resistente; v) Verificações; vi) Library; vii) GIG e viii) App; ix)* Útil. Dentro de cada um desses pacotes, existem classes responsáveis por representar as seções transversais, as barras, os materiais e por realizar os cálculos durante o processo de dimensionamento.

Ao longo do capítulo 3 desta dissertação foi apresentada a metodologia adotada para o desenvolvimento do *software*. Também foram apresentados os princípios básicos da linguagem Java e da programação orientada a objetos e a estruturação básica do aplicativo desenvolvido.

Para validação do *software* criado, foram apresentados alguns exemplos. Para validação do dimensionamento de perfis submetidos à flexão, foram realizadas no item 3.4.1 comparações entre os momentos fletores resistentes obtidos no *software*, via MRD e experimentalmente por Moen et al (2013). Para validação do dimensionamento de perfis submetidos a compressão axial, foram realizadas no item 3.4.2 comparações entre os momentos fletores resistentes obtidos no *software*, via MRD e experimentos fletores resistentes obtidos no software.

Com base nos exemplos apresentados, observou-se que o *software* forneceu resultados compatíveis com os cálculos realizados com base no método da resistência direta e com os

resultados obtidos experimentalmente. Entretanto, para que o *software* seja validado, diversos testes ainda devem ser realizados.

Portanto, diversas melhorias ainda podem ser realizadas no *software*, visando melhor adequálo ao uso acadêmico e profissional. Algumas sugestões de melhoria são apresentadas na próxima seção.

# 5.2 Recomendações e Sugestões para Estudos Posteriores

# 5.2.1 Dimensionamento de perfis formados a frio com a presença de furos

Ao longo da dissertação, observou-se que diversos estudos ainda devem ser realizados quanto ao comportamento e ao dimensionamento de perfis formados a frio com a presença de furos. Dentre estes, pode-se citar:

- a) Estudo sobre o comportamento e método de dimensionamento de perfis formado a frio com furos enrijecidos;
- b) Comportamento e método de dimensionamento de perfis formados a frio com furos em situação de incêndio;
- c) Comportamento e método de dimensionamento de perfis formados a frio com furos em mesas;
- d) Estudo sobre soluções arquitetônicas que podem ser adotadas no sistema *Light* Steel Framing visando reduzir a necessidade de execução de furos nos perfis;
- e) Estudo sobre as possíveis formas de execução de reforços para perfis nas regiões dos furos.

## 5.2.2 Futuras implementações do software CFD

Recomenda-se implementações para o aplicativo desenvolvido. Dentre elas, pode-se citar:

- a) Desenvolvimento de uma interface gráfica mais amigável com o usuário, indicando visualmente os elementos que sofrem flambagem local para cada caso estudado, tornando o *software* mais apto para uso didático;
- b) Implementação das normas AISI S100-16 e EN 1993-1-3-:2006, visando facilitar aspectos didáticos inerentes ao estudo de tais normas;
- c) Implementação das demais prescrições da norma NBR 14323:2013, visando realizar o dimensionamento de estruturas de aço constituídas de perfis formados a frio;
- d) Implementação de outras seções comerciais, tal como a seção rack;
- e) Implementação do cálculo do momento fletor resistente de cálculo para flexão na menor inércia;
- f) Validação do dimensionamento de outras seções transversais implementadas por meio de diversos testes;
- g) Elaboração de um *software* para análise de estabilidade elástica de perfis formados a frio, semelhante ao CUFSM, visando facilitar estudos de relacionados à flambagem elástica e ao método da resistência direta;
- h) Compatibilização do *software* desenvolvido com o CUFSM, de forma que ambos possam se comunicar de maneira automática, carregando para o CUFSM as informações da seção transversal em estudo, obtendo suas as forças e momentos críticas de flambagem elástica e informando as mesmas ao CFD, para completo dimensionamento.

## **REFERÊNCIAS BIBLIOGRÁFICAS**

ABAQUS Standard version 6.9-2 [Computer software]. Providence, RI, Simulia

American Iron and Steel Institute - AISI S100 2007 – North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute, 2007.

American Iron and Steel Institute - AISI S100 2016 – North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute, 2016.

Associação Brasileira de Normas Técnicas - ABNT (2012). NBR 6355:2012. *Perfis estruturais de aço - Padronização*. Rio de Janeiro, RJ, Brasil. Associação Brasileira de Normas Técnicas (ABNT).

Associação Brasileira de Normas Técnicas - ABNT (2008). NBR 8800:2008. *Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios*. Rio de Janeiro, RJ, Brasil. Associação Brasileira de Normas Técnicas (ABNT)

Associação Brasileira de Normas Técnicas - ABNT (2013). NBR 14323:2013. *Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio*. Rio de Janeiro, RJ, Brasil. Associação Brasileira de Normas Técnicas (ABNT)

Associação Brasileira de Normas Técnicas - ABNT (2010). NBR 14762:2010. *Dimensionamento de estruturas de aço constituídas por perfis formados a frio*. Rio de Janeiro, RJ, Brasil. Associação Brasileira de Normas Técnicas (ABNT) Associação Brasileira de Normas Técnicas - ABNT (2014). NBR 15253:2014. Perfis de aço formados a frio, com revestimento metálico, para painéis estruturais reticulados em edificações – Requisitos gerais. Rio de Janeiro, RJ, Brasil. Associação Brasileira de Normas Técnicas (ABNT).

Australian/New Zealand Standard AS/NZS 4600:2005, Cold-formed Steel Structures, Sydney, Australia

Lue, D. M; Liu, J. Lin, C. H. (2007). Numerical Evaluation on Warping Constants of General Cold-Formed Steel Open Sections. Steel Structures 7 (2007) 297-309

EN 1993-1-3 (2006). Eurocode 3: Design of steel structures. Part 1-3: General rules. Supplementary rules for cold-formed members and sheeting.

EN 1993-1-5 (2006) Eurocode 3: Design of steel structures – Part 1-5: Plated structural elements

EN 1993-1-8 (2005) Eurocode 3: Design of steel structures - Part 1-8: Design of joints

Grey, C. N., e Moen, C. D. (2011). "Elastic buckling simplified mothods for cold-formed steel columns and beams with edge-stiffened holes" 2011 annual stability Conf, Structural Stability Research Council, Pittsburgh.

Li, Z., & Schafer, B. W., 2010a. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM: conventional and constrained finite strip methods. Proceedings of the 20<sup>th</sup> Int, *I. Spec. Conf. on Cold-Formed Steel Structures*. St. Louis, MO. 2010

Li, Z., & Schafer, B. W., 2010b. Application of the finite strip method in cold-formed steel member design. *J. Constr. Steel Res.*,66(8-9), pp. 971-980

Moen, C. D., Schudlich, A. &Heyden, A., 2013. Experiments on Cold-Formed Steel C-Section Joists with Unstiffened Web Hole. *Journal of Structural Engineering*.139 (5) pp. 695-704.

Moen, C. D., & Schafer, B. W., 2008. Experiments on cold-formed steel columns with holes. *Thin-Walled Structures*, 46(2008), pp. 1164-1182

Moen, C. D., & Schafer, B. W., 2009.Elastic buckling of cold-formed steel columns and beams with holes. *Eng. Struct.*, 47(12), pp. 2812-2824

Moen, C. D., & Schafer, B. W., 2011. Direct Strength Method for Design of Cold-Formed Steel Columns with Holes. *J. Struct. Eng.*, 137(5), pp. 559-570

Moen, C. D., & Yu, C., 2010. Elastic Buckling of Thin-Walled Structural Components with Edge-Stiffened Holes. *51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference*, 15 April 2010, Orlando, Florida

Rodrigues, F. C. (2016), Steel Framing: Engenharia. Manual de Construção em Aço – Rio de Janeiro: Aço Brasil/CBCA, 2016.

RODRIGUES, F.C. *Estudo Teórico-Experimental de Perfis de Chapa Dobrada Submetidos a Compressão*. COPPE – UFRJ, 1993. Tese de Doutorado.

Santiago, A. K.; Freitas, A. M. S; Crasto, R. C. M. (2012), Steel Framing: Arquitetura. Manual de Construção em Aço – Rio de Janeiro: IBS/CBCA, 2012. Santos, Rafael. Introdução à Programação Orientada a Objetos. Rio de Janeiro: Elsevier, 2010. 366 p.

Schafer, B. W., & Ádàny, S., 2006. Buckling analysis of cold-formed steel members using CUFSM: Conventional and constrained finite strip methods. *18th Int. Specialty Conf. on Cold Formed Steel Structures*, Wei-Wen Yu Center for Cold-Formed Steel Structures, Missouri Univ. of Science and Technology, Rolla, MO

Schafer, B. W., & Pekoz, T., 1998. Computational modeling of cold-formed steel: Characterizing geometric imperfections and residual stresses. *J. Constr. Steel Res.*, 47 (1998) pp. 193-210.

Uzzaman, A., Lim, G. B. P., Nash, D., Rhodes, J. & Young, B., 2013. Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions – Part II: Parametric study and proposed design equations. *Thin-Walled Structures* 56 (2012) pp. 79-87.

von Kármán, T., Sechler, E.E., Donnell, L.H. (1932). "The Strength of Thin Plates In Compression". Transactions of the ASME, 54, pp. 53-57.

Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEA R CH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural Members

Winter, G. (1947), Strength of thin steel compression flanges. ASCE Trans, 1947; 112: 527-54