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Epígrafe

�I have not failed. I've just found 10,000 ways

that won't work.�

�Opportunity is missed by most people be
ause it

is dressed in overalls and looks like work.�

Thomas Edison
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Abstra
t

The 
ontribution of Nagel and S
hre
kenberg (NaS
h) model in study of tra�
 models

is remarkable. First of all it is the �rst model based on 
ellular automata, the update

rules is quite simple but one of them has a spe
ial importan
e: the randomization pro
ess.

This step introdu
es a sto
hasti
 parameter, the probability p, in the system 
apable of

reprodu
e some features quite 
ommon in real tra�
, e.g., the transition between free

�ow to jammed state. In original NaS
h model the randomization pro
ess produ
es a lot

of unusual behaviours, for instan
e we have the exaggerate de
elerations due the addition

of randomization pro
ess to the slowing down one. We propose a slight modi�
ation in

randomization step that produ
es two kinds of driver's behaviours: The sto
hasti
 and

deterministi
. The �rst one, as an original model, the drivers 
an de
eleration in the

randomization pro
ess with probability p. The se
ond one 
annot. Despite of simpli
ity,

this new model produ
es interesting results as phase transition, hystereses and absorbing

state. The plane p − ρ is divided in three di�erent regions. The �rst one represents an

absorbing state, all 
ondu
tors have deterministi
 behaviour. The se
ond one the state

whi
h both sort of behaviours 
oexists and the system never evolves to absorbing state

and the third one, in whi
h the state of a system depends on its initially 
on�guration;

some distributions 
an evolve to absorbing states and others 
annot.
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Resumo

A 
ontribuição do modelo de Nagel e S
hre
kenberg (NaS
h) no estudo dos modelos de

tráfego é notável. Ini
ialmente foi o primeiro modelo baseado em aut�matos 
elulares 
om

regras de atualização bastante simples. Uma delas tem uma importân
ia espe
ial: o pro-


esso de randomização. Essa etapa introduz um parâmetro esto
ásti
o, a probabilidade

p, no sistema 
apaz de reproduzir algumas 
ara
terísti
as bastante 
omuns no tráfego

real, por exemplo, a transição entre o �uxo livre para o estado 
ongestionado. No modelo

NaS
h original, o pro
esso de randomização produz muitos 
omportamentos in
omuns,

por exemplo, desa
elerações exageradas devido à adição do pro
esso de randomização ao

pro
esso de adaptação. Propomos uma ligeira modi�
ação no passo de randomização que

produz dois tipos de 
omportamentos do 
ondutor: O esto
ásti
o e o determinísti
o. O

primeiro, 
omo no modelo original, os motoristas podem desa
elerar no pro
esso de ran-

domização 
om probabilidade p. O segundo não está sujeito à desa
eleração nessa etapa.

Apesar da simpli
idade, este novo modelo produz resultados interessantes 
omo transição

de fase, histerese, estado absorvente. O plano p−ρ é dividido em três regioês distintas. A

primeira representa um estado absorvente, todos os 
ondutores têm 
omportamento de-

terminísti
o. A segunda, o estado em que ambos os tipos de 
omportamentos 
oexistem

e o sistema nun
a evolui para estado absorvente e a ter
eira, na qual o estado do sistema

depende da sua 
on�guração ini
ial: algumas distribuições podem evoluir para estados

absorventes e outras não.
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Chapter 1

Tra�
 Models

The ideas and te
hniques of statisti
al physi
s are being used 
urrently to study several

aspe
ts of 
omplex systems many of whi
h are di�erent from the known domain of physi
al

systems. Physi
al, 
hemi
al, earth, biologi
al and so
ial s
ien
es are examples of this

trend. Biologi
al evolution of spe
ies, formation and growth of ba
terial 
olonies, folding

of proteins, �ow of vehi
ular tra�
 and transa
tions in �nan
ial markets are just a few

examples of the extent of these appli
ations. Most of these systems are interesting not

only from the point of view of Natural S
ien
es for fundamental understanding of how

Nature works but also from the points of view of applied s
ien
es and engineering for the

potential pra
ti
al use of the results of these investigations.

For a long time physi
ists have been trying to understand the fundamental prin
iples

governing the �ow of vehi
ular tra�
 using theoreti
al approa
hes based on statisti
al

physi
s. The approa
h of a physi
ist is usually quite di�erent from that of a tra�


engineer. Physi
ists have been trying to develop a model of tra�
 by in
orporating

only the most essential elements needed to des
ribe the general features of typi
al real

tra�
 (minimal prin
iples). The theoreti
al analysis and 
omputer simulation of these

models not only provide deep insight into the properties of the model su
h as phase

transition, metastable states, absorbing phases but also help us to understanding the


omplex phenomena observed in real tra�
. Below we present a brief resume of the main

existing 
lass of tra�
 models. In tra�
 models di�erent approa
hes have been used

in order to model tra�
 �ows using methods from physi
s. There are several ways to

distinguish these theories, e.g., ma
ros
opi
 or mi
ros
opi
, deterministi
 or sto
hasti
,

dis
rete or 
ontinuous, et
. In this se
tion we present the main approa
hes used in tra�


study.

1.1 Hydrodynami
 models

The �rst ma
ros
opi
 des
ription of tra�
 model was proposed by Lighthill and

Whitham (1955). The �uid-dynami
 model has its prin
iples based on the assumption

that the number of vehi
les does not 
hange, i.e., no vehi
les are entering or leaving the

freeway. Another feature is that the tra�
 is 
onsidered as a 
ompressible �uid. The


onservation of the vehi
le number leads to the 
ontinuity equation:

∂ρ(x, t)

∂t
+

∂Q(x, t)

∂x
= 0.

In this equation, we have two fun
tions ρ(x, t) and Q(x, t), unless they are related to ea
h

other we need more information to solve it. An alternative possibility is to assume that

1



Q(x, t) is determined primarily by the lo
al density ρ(x, t) so that Q(x, t) 
an be treated

as a fun
tion of only ρ(x, t). Consequently, the number of unknown variables is redu
ed

to one as, a

ording to this assumption, the two unknowns ρ(x, t) and Q(x, t) are not

independent of ea
h other.

The Lighthill�Whitham�Ri
hards theory is based on the assumption that:

Q(x, t) = q(ρ(x, t)), (1.1)

where q(ρ) is a fun
tion of ρ. Su
h a relation is known as a fundamental diagram. An ad-

ditional hypothesis about q(ρ(x, t) is needed for solving it, in this 
ase a phenomenologi
al

relation extra
ted from empiri
al data or derived from more mi
ros
opi
 
onsiderations

should be introdu
ed. With the hypothesis in Eq. (1.1) the x-dependen
e of Q(x, t) arises
only from the x-dependen
e of ρ(x, t) at the same time Q(x, t) = ρ(x, t)v(x, t) and the

x-dependen
e of v(x, t) arises only from the x-dependen
e of ρ(x, t). In this way, using

Eq. (1.1) the equation of 
ontinuity 
an be expressed as:

∂ρ(x, t)

∂t
+

dq

dρ

∂ρ(x, t)

∂x
= 0 (1.2)

with

dq

dρ
= v(x, t) + ρ(x, t)

dv

dρ
.

The Eq. (1.2) is nonlinear be
ause, in general, dq/dρ depends on ρ. If dq/dρ were a


onstant v0, independent of ρ, Eq. (1.2) would be
ome linear and the general solution

would be of the form:

ρ(x, t) = f(x− v0t), (1.3)

where f is an arbitrary fun
tion of its argument. Su
h a solution des
ribes a density

wave motion, as an initial density pro�le would get translated by a distan
e v0t in a time

interval t without any 
hange in its shape. If we de�ne a wave as a signal that is transferred
from one part to another with a known velo
ity of propagation, then the solutions of the

form Eq. (1.3) 
an be regarded as a density wave. There are several similarities between

the density wave and the known me
hani
al waves like, e.g., a
ousti
 or elasti
 waves.

But the a
ousti
 or elasti
 waves are solutions of linearized partial di�erential equations,

whereas the Eq. (1.2) is nonlinear, and hen
e, dq/dρ is ρ-dependent. Waves of the type

des
ribed by Eq. (1.2) are 
alled kinemati
 waves to emphasize their purely kinemati


origin, in 
ontrast to the dynami
 origin of the a
ousti
 and elasti
 waves. We will present

an important use of the kinemati
 waves in the following se
tion.

1.2 Three phases theory

In the tra�
 literature there is a phenomenologi
al des
ription presented by Kerner

[1℄. In this des
ription ea
h state is represented by a point in the phase spa
e de�ned by

the �ux and density 
oordinates. Empiri
ally the �ux is measured by the ratio between

the number of vehi
les passing through a �xed dete
tor and a set time interval (minutes,

hours et
.). The density on the other hand 
orresponds to the number of vehi
les per unit

of length. The use of only a �xed dete
tor does not allow to �nd the density of dire
t

form, on
e known the �ux, the density is found by the relation:
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ρ =
q

v
with v =

1

m

m∑

i=1

vi. (1.4)

Where vi represents the velo
ity of a vehi
le i, v is the mean velo
ity and q is the �ux.
However, there are spe
ial 
ases where this formulation 
an fail. It should be noted that

the vehi
le density ρ is related to vehi
les on a freeway se
tion of a given length whereas

the vehi
le speed is measured at the lo
ation of the dete
tor only and is averaged over

the time interval ∆t. In addition, low vehi
le speeds 
an usually be measured to a lower

a

ura
y than higher vehi
le speeds. As a result, at higher vehi
le densities (lower average

vehi
le speed), the vehi
le density estimated via Eq. (1.4) 
an lead to a 
onsiderable error

in 
omparison with the real vehi
le density. For this reason, empiri
al data for higher

vehi
le densities (more than 70 vehi
les/km) are not usually 
onsidered. There are also

other 
ases why the estimation of the density via Eq. (1.4) 
an lead to a 
onsiderable error

at higher vehi
le densities. In parti
ular, this 
an o

ur when the vehi
le speed and �ux

are strongly spatially inhomogeneous. Thus, the averaging of the vehi
le speed through

Eq. (1.4) gives a temporal averaging of the speed at the dete
tor lo
ation made during

some time interval. If tra�
 �ow is spatially inhomogeneous, this temporal averaging of

the speed 
an give a very di�erent average speed in 
omparison with a spatial averaging

of the vehi
les speed made at a given instant on a freeway se
tion of a given length

1

.

Figure 1.1: Illustrative �gure representing �ux as a fun
tion of density. Note the lo
ation of the three

phases.

The states originated by the empiri
al data analysis are grouped in the q − ρ plane

into three distin
t regions: free �ow (F), syn
hronous �ow (S) and wide moving jam

(J). Free �ow is 
hara
terized by weak intera
tions between the vehi
les; the mean speed


orresponds to the limit established by the freeway. The relationship between �ux and

density is pra
ti
ally linear and the slope of the line (builded by the points in the region

F ) 
orresponds to the maximum velo
ity. Syn
hronized �ow is 
hara
terized by the

1

For a more detailed des
ription of the measurements made by the dete
tor and the restri
tions

imposed by the use of this te
hnique 
onsult Kerner [1℄ pp. 15 to 17.
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existen
e of intera
tion between the vehi
les so that the average speed is lower than

that of free �ow. The main 
hara
teristi
 of this region is the apparent absen
e of a

fun
tional relationship between �ow and density. The points are s
attered irregularly

over a large region of the q − ρ plane. The region J, in turn, is marked by su

essive

de
elerations and a

elerations (stop and go tra�
) of vehi
les when entering and exiting

the 
ongestion fronts. Generally the extension of this region is signi�
ant, but the main

di�eren
es between it and the syn
hronized �ow are the high 
on
entration of vehi
les

and the low average speed developed (negligible �ux). We 
an see these states in Fig.

1.1. Before studying the propagation of waves in these phases we have to introdu
e some

basi
 
on
epts. The distan
e between two 
onse
utive vehi
les is 1/ρ, the �time� distan
e

1/q and the average speed q/ρ. In the transitions between two states we will 
onsider, in

order to simplify the analysis, that the vehi
les are at the same speed and equally spa
ed.

The distan
e, the time interval and the vehi
les speed are de�ned a

ording to the state

in whi
h they are. The �gure 1.2 presents three possible transitions between states. Fig.

Figure 1.2: Illustrative �gure representing three state transitions. The �rst represents a transition where

the �ow is preserved. In the se
ond and third transitions the �ow de
reases and in
reases respe
tively.

1.2 shows the verti
al lines in three di�erent situations, ea
h line represents the front of

the sho
k wave

2

. When the sho
kwave propagation redu
es the vehi
les speed, we 
all

it an upstream front, when in
reases, downstream front. For simpli
ity we will 
onsider

the a

eleration (or de
eleration) of vehi
les instantaneously at the moment they are

rea
hed by su
h fronts. The �rst transition is 
hara
terized by keeping the �ux 
onstant,


onsequently the wavefront is �xed and does not move be
ause the �uxes are equal on

both sides of the front. In the se
ond transition the vehi
les depart from a state where

2

We de�ne sho
k waves as a sudden 
hange of the vehi
les velo
ity due to tra�
 
onditions. In relation

to the freeway frame, the sho
k wave 
an be at rest or in motion
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the �ux is greater to another where the �ux is smaller. In this 
ase the upstream front

should move towards the region where the �ux is higher, be
ause on the wave front frame

the input �ow must be equal to the output one. In the third transition, the downstream

front moves toward the region where the �ux is lower.

Figure 1.3: Illustrative �gure represented the propagation speed of the wave.

The meaning of the slope of the line joining the two states 
an be understood through

Fig. 1.3. In the �rst illustration, the wavefront is lo
ated on the se
ond vehi
le (from

right to left) and moves toward the third one, lo
ated on the left of the front. After the

time interval t the wavefront is on the third vehi
le 
ausing immediate slowdown from v1
to v2 and its distan
e for the se
ond vehi
le from d1 to d2. At this point the distan
es

traveled by the relative motion between [vup, v2℄ are:

(v1 + vup)t = d1 e (v2 + vup)t = d2.

Isolating t and remembering that d = 1
ρ
,

ρ1(v1 + vup) = ρ2(v2 + vup),

using q = ρv

vup =
q2 − q1
ρ1 − ρ2

.

The slope of the line joining the states represents the velo
ity of the wavefront. This

analysis 
omes from wave kinemati
 theory. The three phases theory uses these results

to study vehi
le behaviour in two distin
t regions of S phase.

The steady propagation of the downstream front in a wide moving jam has mean velo
ity

vg and 
an be represented in the �ow-density plane by a line. This line is 
alled �the line

J�. The slope of the line J is equal to the velo
ity vg of this front. The left 
oordinates of
the line J are related to the parameters of free �ow (ρmin, qout) exhibited by vehi
les that

have a

elerated from the standstill inside the jam. The right 
oordinates of the line J,

(ρmax, 0), are related to the vehi
le density inside the jam ρmax where the vehi
le speed

v is zero. These features have further been found in empiri
al studies of wide moving

jam propagation by Kerner and Rehborn. The velo
ity of the upstream fronts (1) and
(2) are de�ned by the slope of the respe
tive lines. Thus vup1 > vdown

g > vup2 and for this

reason the states lo
ated above the line J are subje
t to transition S → J while the states

lo
ated below are not. A better explanation is given by Fig. 1.4, the arrows at the right

represent the empiri
al downstream velo
ity (vdown) and the arrows at the left represent

the upstream velo
ity of the states 1 (upper arrow) and 2 (bottom arrow) respe
tively.
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Figure 1.4: Illustrative �gure represented the upstream and downstream fronts in two distin
t regions

of region S.

We 
an see that in state (1) owing to vup1 > vdown
the wave responsible for jam formation

is faster than the wave responsible for free �ow. Thus the possible state rea
hed by the

system is in the region J. But in the state (2) the jam formation is not possible, owing

to vup2 < vdown
the downstream front will rea
h the upstream one. The 
omplete study of

the three phase theory 
an be found in [1℄ as well as the transitions between the phases

and other tra�
 features.

1.3 Dynami
al models

The dynami
al model is based on the equation of motion of ea
h vehi
le. This equation

has as an assumption the fa
t that ea
h driver of a vehi
le responds to a stimulus from

other vehi
les in some spe
i�
 way. The response is expressed in terms of a

eleration,

whi
h is the only dire
t 
ontrollable quantity for a driver. Generally, the stimulus and the

sensitivity may be a fun
tion of the positions of vehi
les, their time derivatives, and so on.

This fun
tion is de
ided by supposing that the drivers of vehi
les obey postulated tra�


regulations at all times in order to avoid a

idents. In the dynami
al model we have two

kinds of stimulus: in the earliest dynami
al models the di�eren
e in the velo
ities of the

n-th and (n+1)-th vehi
les was assumed to be the stimulus for the n-th vehi
le. In other

words, it was assumed that every driver tends to move with the same speed as that of the


orresponding leading vehi
le so that

ẍn =
1

τ

[
ẋn+1(t)− ẋn(t)

]
,

where 1/τ is related with the driver's sensitivity. Other dynami
al models take into

a

ount the driver's own velo
ity and the distan
e to the vehi
le ahead. All drivers have

the 
ommon sensitivities and the length of vehi
le is negligible. We assume that ea
h
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vehi
le has legal velo
ity V 3

and that ea
h driver of a vehi
le responds to a stimulus

from the vehi
le ahead of him. The drivers 
an 
ontrol the a

eleration in su
h a way

that they 
an maintain the legal safe velo
ity a

ording to the motion of the pre
eding

vehi
le. Then the dynami
al equation of the system is obtained via:

ẍn = a
[
V (∆xn)− ẋn

]
, (1.5)

where

∆xn = xn+1 − xn,

for ea
h vehi
le number n (n = 1, 2, ..., N). N is the total number of vehi
les, a is a


onstant representing the driver's sensitivity (whi
h has been assumed to be independent

of n), and x is the 
oordinate of the nth vehi
le. The dots denote di�erentiation with

respe
t to time t. We assume here that the legal velo
ity V (∆x) of vehi
le number

n depends on the following distan
e of the pre
eding vehi
le number n + 1. When the

headway be
omes short the velo
ity must be redu
ed and be
omes small enough to prevent


rashing into the pre
eding vehi
le. On the other hand, when the headway be
omes longer

the vehi
le 
an move with higher velo
ity, although it does not ex
eed the maximum

velo
ity. Thus, V is a fun
tion having the following properties: a monotoni
ally in
reasing

fun
tion, and V (∆x) has an upper bound Vmax ≡ V (∆x → ∞) . Further, this model has

periodi
 boundary 
onditions: vehi
les move on a 
ir
uit with length L and the (N +1)th
vehi
le is identi
al to the �rst vehi
le. Depending on 
hoi
e of V and the headway ∆x,
the system 
an be stable or unstable.

In Fig. 1.5 the traje
tories of a spe
i�
 vehi
le (the 50th vehi
le) are shown in two

di�erent 
ases: the stable and unstable traje
tories. In the stable 
ase, the vehi
le moves

with 
onstant velo
ity, i.e., the distan
e in
reases linearly. On the other hand, in the

unstable 
ase we observe a vehi
le moving ba
kward (v < 0). This always happens

whenever the solution of this model is in the unstable region. As long as we take the

models of a single lane, this means a 
ollision of two su

essive vehi
les. The above

behavior indi
ates that, instead of 
ongestion, su
h tra�
 a

idents o

ur everywhere.

Then, by 
hoosing an appropriate legal velo
ity fun
tion, we 
an modify the model so

that a vehi
le never moves ba
kward. In [2℄ another fun
tion is proposed with intention

of preventing it. In addition to the models presented in this se
tion we have to take into

a

ount kineti
 models. In su
h models tra�
 is treated as a gas of intera
ting parti
les

where ea
h parti
le represents a vehi
le. The di�erent versions of the kineti
 theory of

vehi
ular tra�
 have been developed by modifying the kineti
 theory of gases. Due to

the extensive study in this kind of model, we published an arti
le entitled �Kineti
 theory

of vehi
ular tra�
�, in whi
h we present the key features in the 
hapter 4.

3

the term �legal velo
ity� was introdu
ed in [2℄, although we think that the term �safety or desirable

velo
ity� is more appropriate
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Figure 1.5: Traje
tories of a vehi
le (the 50th vehi
le) in two typi
al 
ases. The stable 
ase de�ned by

L = 200 and N = 100 (dotted line) and the unstable 
ase de�ned by L = 50 and N = 100 (solid line).

8



Chapter 2

NaS
h Model

2.1 Model

The NaS
h model(NS) was the �rst tra�
 model based on a 
ellular automaton [3℄.

The model is de�ned on a one-dimensional latti
e of length L, with periodi
 boundaries,

representing a single-lane freeway. Ea
h site of the latti
e 
an be in one of the vmax + 2
states: It may be empty, or it may be o

upied by one 
ar having an integer velo
ity

between zero and vmax. Time, spa
e, and velo
ity are dis
retized. The pro
ess starts with

an initial distribution of N vehi
les (N ≤ L). The state of system is updated at ea
h

iteration a

ording to the following steps: A

eleration, de
eleration, randomization and

displa
ement. Ea
h iteration, between two 
onse
utive times (t and t + 1) 
onsists of 4
steps a

ording to the NS update rules: (t1, t2 , t3 and t+ 1). Note that the three initial
steps do not represent vehi
le movement but only intermediate steps required for de�ning

the �nal speed just before the displa
ement step. The update rules are:

1. A

eleration

The velo
ity of ea
h vehi
le with v < vmax is in
reased by one unit. If a vehi-


le already possesses the maximum velo
ity before this step, its velo
ity remains

un
hanged.

vj(t1) = min[vj(t) + 1, vmax].

Figure 2.1: An example of a

eleration step. The �gure shows the vehi
les 
on�guration before (upper)

and after (lower) the a

eleration step. Note that the vehi
les a

elerate independent of the possibility

of displa
ing with the new velo
ity.
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2. Slowing Down

All vehi
les with vj(t1) > dj redu
e their speed to vj(t2) = dj. Here, dj is de�ned
as a number of empty 
ells between the 
ar j and j + 1. Thus

vj(t2) = min[dj(t), vj(t1)].

Figure 2.2: An example of slowing down step. The �gure shows the vehi
les 
on�guration before

(upper) and after (lower) the slowing down step. Now the vehi
les 
an adjust their velo
ities a

ording

to the distan
e (headway) in relation to the forward vehi
le.

3. Randomization

This step introdu
es sto
hasti
ity in the model; without it the model would be

deterministi
 and the stationary state rea
hed qui
kly. In this step ea
h vehi
le

redu
es its speed by one unit with probability p or maintains it with probability

1− p. Vehi
les with v = 0 are not subje
t to this step.

vj(t3) = max[vj(t2)− 1, 0], with probability p

vj(t3) = vj(t2), with probability 1− p.

Figure 2.3: An example of randomization step. The �gure shows the vehi
les 
on�guration before

(upper) and after (lower) the randomization step. This step introdu
es substantially modi�
ation in

ma
ros
opi
al tra�
 behaviour due the introdu
tion of individual behaviour (
ontrolled by parameter p).
In some 
ases drivers de
elerated (at random), in others do not.
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4. Displa
ement

This step represents the displa
ement of the vehi
les a

ording to the velo
ity pre-

viously established.

vj(t+ 1) = vj(t3).

Figure 2.4: An example of displa
ement. The �gure shows the vehi
les 
on�guration before (upper)

and after (lower) the displa
ement step. This step represents the �nal step in whi
h the vehi
les displa
e

a

ording to the velo
ity de�ned in the previous step.

The randomization step is an essential 
omponent for the reprodu
tion of the main fe-

atures presented in real tra�
, e.g., the transition between free �ow to jammed state,

start-and-stop waves, and sho
ks (due to driver overrea
tion). This step in the model 
an

be 
ompared with the unpredi
table rea
tion of the drivers in front of tra�
 
onditions

though in the NS model the probability p is independent of the tra�
 
onditions, e.g.,

the density of vehi
les on the latti
e.

In Fig. 2.5 we present the graph �ux as a fun
tion of density (also known as the funda-

mental diagram) for p = 0.1, 0.5 and 0.9. We observe the presen
e of two bran
hes; the

�rst one 
orresponds to the free �ow regime where the vehi
les almost do not intera
t

themselves due to the large distan
es between them. In this 
ondition the se
ond step in

the NS update rules pra
ti
ally does not apply. Let us set vmax = 5 and the states

|0〉 =




1
0
0
0
0
0




............ |5〉 =




0
0
0
0
0
1




,

for velo
ities (the value in the line n 
orresponds to the probability of �nding a vehi
le

with velo
ity n− 1). The sto
hasti
 matrix for a single vehi
le is:

T =




p 0 0 0 0 0
1− p p 0 0 0 0
0 1− p p 0 0 0
0 0 1− p p 0 0
0 0 0 1− p p p
0 0 0 0 1− p 1− p




.
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Let Pt be the probability distribution of velo
ities at the time t. The relation between

P(t) and P(t-1) is given by:

Pt = TPt−1.

Given the P0, Pt 
an be found via:

Pt = T tP0.

After a little algebrai
 work (for further details, see 
hapter 7), we have:

lim
t→∞

Pt =




0
0
0
0
p

1− p




.

After the vehi
le attains the stationary state, the mean velo
ity is:

v = p(vmax − 1) + (1− p)vmax ∴ v = vmax − p,

and the �ux q is

q = ρ(vmax − p). (2.1)

This analysis 
annot be used for higher densities sin
e it does not take into a

ount the

intera
tions between the vehi
les. When we 
onsider these intera
tions the problem 
an-

not be solved in this way. We will see in se
tion 2.3 a �rst analyti
 approa
h (mean-�eld

theory) to this problem. Although the equation (2.1) 
annot be used for higher densities,

it explains the slight di�eren
e between the slopes in the �rst bran
h a

ording to the

probability p. The se
ond bran
h 
orresponds to jammed state in whi
h the intera
tions

between the vehi
les are more frequent. In this regime the presen
e of start-and-stop wa-

ves and driver overrea
tion is 
ommon. The overrea
tion 
an be explained due to overlap

of two su

essive de
elerations; the �rst one due to the se
ond step in the NS update ru-

les, the vehi
les redu
e their velo
ities due the small distan
e between them. The se
ond

one is related to the randomization step, with probability p the vehi
le may redu
e, in

addition to the �rst de
eleration, its velo
ity by one more unit.

In the NS model two spe
ial values (p = 0 and p = 1) produ
e deterministi
 behaviour

in the system. In both 
ases the randomization step does not apply (in the �rst 
ase the

vehi
les never redu
e their velo
ity while in se
ond one, always redu
e). For p = 0 and

ρ ≤ ρc
1

(ρc = 1/(vmax + 1)) the system always evolves to absorbing state in whi
h all

vehi
les attain the maximum velo
ity while for ρ > ρc the system evolves to a stationary

state with v = (1 − ρ)/ρ. For p = 1 and ρ ≤ 1/3 few initial states 
an evolve to a

stationary state with v 6= 0 sin
e if a vehi
le stops it never moves again. For ρ > 1/3 the

system, in a 
ertain moment, attains the absorbing state with v = 0.

1

For the deterministi
 
ase, ρc is the 
riti
al density
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Figure 2.5: Fundamental diagram using Monte Carlo simulation for probabilities p = 0.1, 0.5, and 0.9.

2.2 S
aling behaviour

In this se
tion we will study the phase transition in the NS model. A spe
ial 
ase in

the Ns model arises when p = 0. In addition to its deterministi
 behaviour we 
an assert

that there is a 
ontinuous phase transition at the point ρc. In the following subse
tions

we dis
uss some quantities that support this assertion.

2.2.1 Singularity

In Fig. 2.6 the fundamental diagram, for p = 0, exhibits a sharp 
hange at ρc; this
singularity is 
hara
terized by a dis
ontinuity in the �rst derivative. For p 6= 0 this 
hange
is smooth, as 
an be seen in Fig. 2.5.

Figure 2.6: Fundamental diagram for p = 0.

With the intention to study in more details the 
riti
ality in this 
ase we should
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look for an appropriate order parameter to des
ribe the singularity shown in Fig. 2.6.

The natural 
andidate is the fra
tion of jammed vehi
les, e.g., vehi
les with velo
ities

smaller than vmax. Unfortunately in the deterministi
 model this fra
tion and any related

quantities depend on the initial spatial distribution. So we propose an order parameter

M de�ned by:

M = 1− q

ρvmax
.

For p = 0 and ρ > ρc,

v =
1− ρ

ρ
.

Remembering that q = ρv, we have

q = 1− ρ and vmax + 1 =
1

ρc
,

so that M is given by

M =

{
0 (ρ ≤ ρc)

1
vmax

ρ−ρc
ρρc

(ρ > ρc).

For p = 0 the graph M as a fun
tion of ρ is shown in Fig. 2.7.

Figure 2.7: Order parameter for p = 0. Note the singularity at ρ = ρc.

2.2.2 Density of nearest-neighbor pairs

The density of nearest-neighbor pairs is given by:

m =
1

L

L∑

i=1

nini+1,

with ni = 0 for an empty 
ell and ni = 1 for a 
ell o

upied by a 
ar (irrespe
tive of its

velo
ity). In the 
ase p = 0, below the 
riti
al density ρc this order parameter vanishes

sin
e every 
ar has, at least, vmax empty sites in front and propagates with v = vmax.

In Fig. 2.8 a sharp transition o

urs at ρc = 1
vmax+1

. For densities below this point m
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Figure 2.8: Figure extra
ted from Ref. [4℄, p. 1311: order parameter as a fun
tion of density for p = 0.
Below the density ρc =

1
vmax+1 m vanishes exa
tly.

vanishes exa
tly.

The Fig. 2.9 shows that the order parameter does not exhibit a sharp transition for

p > 0. Although m be
omes rather small for small densities it is always di�erent from

zero. This situation is quite similar to the behaviour of order parameter in �nite systems

and there is no phase transition for p > 0.

Figure 2.9: Figure extra
ted from Ref. [4℄, p. 1311: order parameter as a fun
tion of density for

p > 0. It does not vanish exa
tly for ρ < ρc, but 
onverges smoothly to zero even for small values of the

probability.
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2.2.3 Spatial Correlations

A key feature of 
ontinuous phase transition is a diverging 
orrelation length at 
riti-


ality and a 
orresponding algebrai
 de
ay of the 
orrelation fun
tion. Using latti
e gas

variables the density-density 
orrelation fun
tion is given by

G(r) =
1

L

L∑

i=1

nini+r − ρ2.

Considering the deterministi
 
ase (p = 0) in the vi
inity of the transition density one

observes a de
ay of the amplitude of |G(r)| for larger values of the distan
e between the

sites as shown in Fig. 2.10. Pre
isely at ρc the 
orrelation fun
tion is given by

G(r) =

{
ρc − ρ2c r = 0, vmax + 1 ... n(vmax + 1)

−ρ2c otherwise.

At the transition point the system attains the absorbing state with the only possible state:

all vehi
les have v = vmax and there are exa
tly vmax empty 
ells in front ea
h vehi
le.

Considering small, but �nite, values of p the 
orrelation fun
tion has the same stru
ture

as in the deterministi
 
ase, but the amplitude, rather than de
aying algebrai
ally, de
ays

exponentially for all values of ρ.

The de
ay of the amplitude determines the 
orrelation length for a given pair of (p, ρ),
whi
h is �nite for all densities with p > 0. The maximal value of the 
orrelation length

ξmax determines the transition density. As shown in the Fig. 4.7, the maxima value of

the 
orrelation length, as a fun
tion of p, diverges at p → 0.

2.2.4 Relaxation time

An expe
ted feature of a se
ond order transition is the divergen
e of the relaxation

time at the transition point. In this work we use two distin
t but related de�nitions of

the relaxation time. The �rst, used in the literature [5℄ is relaxation time and the se
ond

one is 
alled stationary time. One will see that both diverge at the transition point. The

relaxation time is de�ned based on the expe
ted behaviour of the system a

ording to the

fun
tion v ∝ e−t/τ
:

τ =

∫ ∞

0

[min(v∗(t), < v∞ >)− < v(t) >]dt. (2.2)

v, t and τ are dimensionless. v∗(t) denotes the average velo
ity in the a

eleration phase

t → 0 for low vehi
le density ρ → 0. Be
ause the vehi
les do not intera
t with ea
h other,

v∗(t) = (1 − p)t holds in this regime. So the relaxation time is obtained by summing up

the deviations of the average velo
ity < v∞ > from the values of a system with one single

vehi
le that 
an move without intera
tions with other 
ars ρ → 0. One �nds a maximum

of the relaxation, for the 
ase p = 0, at the density of maximum �ux. The 
riterion for


riti
ality is power-law dependen
e of τ and σ on system size a

ording to:

τm(L) ∝ Lz, σ(L) ∝ L
−1
ν .

τm(L) is the maximum value of τ(ρ) in a ring of size L and σ(L) is the width in the middle

of the 
urve as a fun
tion of size L. We 
an see the dependen
e of these quantities on
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Figure 2.10: Figure extra
ted from Ref. [4℄, p. 1311 and 1312. (Left) Correlation fun
tion in the

vi
inity of the phase transition for the deterministi
 limit. At ρ = ρc the amplitude is independent of

the distan
e r. In the vi
inity of ρc the 
orrelation fun
tion de
ays algebrai
ally. (Right) Correlation

fun
tion for p > 0. The amplitude of the 
orrelation fun
tion de
ays exponentially for all values of ρ.

systems of size L in Fig. 2.12. For the deterministi
 
ase the exponents are z = 0.53±0.04
and υ = 2.01± 0.05 [4℄.

As we 
an see in Fig. 2.13, for p 6= 0 neither quantities τm(L) and σ(L) have the same

behaviour of the determinist 
ase. In our work we de�ne a quantity related to the rela-

xation time whi
h we 
all the stationary time. This is the time that a system starting

from a random initial distribution with v = 0 takes to attain the mean velo
ity of the

stationary state. In the stationary state, the mean velo
ity of the system at a 
ertain

time �u
tuates around its mean (taken during a meaningful interval of time), but in the

limit of big sizes this �u
tuation amplitude tends to zero. So we de�ne the stationary

time the time that the system rea
hes, for the �rst time, the expe
ted mean velo
ity of

the stationary state. For an improved estimate we take the mean stationary time over a

sample of 200 independent realizations, ea
h with a di�erent initial 
ondition.

For p = 0 the stationary state is well-de�ned and the mean velo
ity is:

v =

{
vmax (ρ ≤ ρc)
1−ρ
ρ

(ρ > ρc).
(2.3)

In Fig. 2.14 the stationary time 
learly diverges at ρc. A qualitative explanation


an help us to 
larify this behaviour: at small densities, the vehi
les have large spa
es
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Figure 2.11: Figure extra
ted from Ref. [4℄, p. 1313: 
orrelation length versus density for several p
values. Note that, at the 
riti
al point ρc = 1/3, the maximal value of the 
orrelation length diverges for

p → 0.

Figure 2.12: Figure extra
ted from Ref. [4℄, p. 1310: relaxation time versus density for di�erent sizes

L of the latti
e. These results are studied for vmax = 5 and p = 0.

between them, so it requires little time to attain the maximum velo
ity and the system


an attain the stationary state in di�erent ways depending on the initial distribution. For

ρ = 1
vmax+1

the spa
e between the vehi
les is just su�
ient to a

ommodate all vehi
les

with maximum velo
ity. So we have one way to �t all vehi
les and depending on the

initial distribution, the system requires more time to rea
h the stationary state.

The behaviour for p 6= 0 is di�erent. First of all the point, in whi
h the stationary time

is maximum, is lo
ated at a smaller density than that marking the point of maximum

�ux. Se
ond the stationary time seems not to diverge with the system size. In Fig. 2.15

both features are shown. Note that the point where the stationary time is maximum does

not 
oin
ide with the point with maximum �ux. Another di�eren
e in relation to the

deterministi
 model is the behaviour of the stationary time in the vi
inity of the 
riti
al

point. For p = 0 the divergen
e of the stationary time at the 
riti
al point is 
lear but for
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Figure 2.13: Figure extra
ted from Ref. [4℄, p. 1310: relaxation time versus density for di�erent sizes

L of the latti
e. These results are studied for vmax = 5 e p = 0.25.

the probabilisti
 
ase the stationary time is maximum at a 
ertain point, but it does not

seem to diverge. Due to this, we prefer to label this point as Mst ( Maximum stationary

time) instead of labeling as 
riti
al point. The s
aling analysis of the Mst with latti
e size

shows that the growth of Mst is insigni�
ant and suggests that the stationary time does

not diverge in the limit of in�nite latti
e sizes.

For p > 0 another indi
ation for the absen
e of 
riti
al behaviour is the well established

fa
t that the density of maximum �ux (ρ(qmax)) and the transition density (ρc) are di�e-
rent for p 6= 0. Correlations obviously favor states with higher �ux (see, e.g., Fig. 2.10).

So it would be expe
ted that the state with the strongest 
orrelations is also the state with

the highest �ux, as in the deterministi
 
ase. Therefore it would be strange if the system

exhibits a se
ond order phase transition with diverging 
orrelation length at ρc 6= ρ(qmax).

2.2.5 Dis
ussion about 
riti
ality in NS model

The addition of the probability p in NS model destroys the 
riti
ality whatever the

quantity 
hosen (�ux, spatial 
orrelation et
.). Analogous behavior is also found in the

Ising 
hain in a transverse �eld. The transverse �eld Γ is the 
ontrol parameter and


orresponds to the density ρ in the NS model whereas the temperature T 
orresponds to

the noise parameter p. Some authors [4℄ believe that this 
orresponden
e 
an be used to

predi
t s
aling laws. Further the NS model does not have absorbing states whose existen
e

is essential to establish 
ontinuous transition between a
tive and ina
tive states.

Some authors[4, 6℄ proposed di�erent kinds of order parameters. The idea is to use

quantities related with the fra
tion of jammed vehi
les, e.g., the fra
tion of standing 
ars,

the 
ars with velo
ity below vmax − 1 et
. This attempt is based on a possible transition

des
ribed by a sharp 
hange in free �ow to 
ongested one. The problem is �nding an

appropriate de�nition (parameter) for these regimes. For example the de�nition used by
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Figure 2.14: Stationary time for p = 0 and sizes L = 10000 and 50000. Note that the divergen
e of

stationary time at the 
riti
al density ρc.

Figure 2.15: On the left, graph �ux versus density for p = 0.1. On the right, maximum stationary

time for di�erent latti
e sizes.

[6℄ is:

M̄i = 1− 1

2T ρ̄i

t0+T∑

t=t0+1

li(t),

and

ρ̄i =
1

T

t0+T∑

t=t0+1

ni(t).

The se
ond expression represents the density of 
ars on site i over a time period T ; t0 is
the relaxation time (usually t0 = 10L) and ni(t) is zero if the 
ell i is empty and one if

it is o

upied at time t. In the �rst expression; li(t) is one if at time t − 1 the 
ell i is
o

upied (empty) and at time t it is empty (o

upied); li(t) is zero if at both times the


ell i is o

upied or empty. This 
hoi
e of parameter is 
reated based on that a jammed

regime means that all 
ars are grouped in long 
lusters. For p = 0, like other quantities
dis
ussed previously, M̄ = 0 at ρ 6 ρc and M̄ 6= 0 at ρ > ρc. Here i is omitted be
ause in

stationary state none of these parameters will be position dependent. A simple analysis
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in the order parameter allows us to 
on
lude that M̄i = 0 only if all vehi
le that o

upied

the 
ell i at the time t − 1 moves to the other 
ells in the next time. This means that

the vehi
les never stop due the intera
tion between them (jammed formation), but we

know that even for small densities these intera
tions always o

ur. Finally, a

ording to

the simple argument shown in [7℄, quantities related to the fra
tion of vehi
les 
annot be

used to identify a possible phase transition in NS model.

2.3 Mean-�eld theory

The exa
t solution of NS model is found in two spe
ial 
ases: For deterministi
 
ase p =
0 (already dis
ussed) and for p > 0 with vmax = 1 [8℄. The other 
ases the exa
t solution is
unknown but an approximate solution via mean-�eld theory 
an help to understand some

aspe
ts of the model. In this se
tion we will use the method developed by Nagel et al.

in [8℄. The �rst attempt 
onsists in supposing the probability independen
e in the form

p(1, 2..n) = p(1)p(2)....p(n), where p(i) denotes the probability that an event o

urs at the

site i and p(1, 2, 3) denotes the probability that event n (n = 1, 2, 3) o

urs simultaneously

at the sites i, i+ 1 and i+ 2. Instead of fo
using on probabilisti
 evolutions of positions

and velo
ities of ea
h vehi
le in latti
e, we fo
us on the probabilisti
 evolutions of sites.

Let the probability of a site i(i = 1, 2..L) is empty at time t be d(i, t) and the probability

of being o

upied by a vehi
le with velo
ity α be cα(i, t). In this way the normalization


ondition implies:

d(i, t) + c0(i, t) + c1(i, t) + c2(i, t) + c3(i, t) + ....+ cvmax
(i, t) = 1.

Let c(i, t) be the probability of site i at the time t to be o

upied by a vehi
le, so c(i, t) =∑vmax
j=0 cj(i, t) and the normalization 
ondition 
an be written as:

d(i, t) + c(i, t) = 1.

We use the same notation of sub-steps established in update rules, i.e., a

eleration (t1),
slowing down (t2), randomization (t3) and displa
ement (t + 1). The temporal evolution

of the probabilities 
an be des
ribed by the following sets of equations in ea
h of the

sub-steps.

A

eleration step

Following the a

eleration substep all vehi
les have v > 0, sin
e this pro
ess does not take
into a

ount if a vehi
le 
an move with its updated velo
ity without 
olliding with the


ar ahead. After this substep, probability of �nding a vehi
le with v = vmax is the sum

of the probabilities of velo
ities vmax and vmax − 1, just prior to a

eleration, so:

c0(i, t1) = 0,

cα(i, t1) = cα−1(i, t) (0 < α < vmax),

cvmax
(i, t1) = cvmax

(i, t) + cvmax−1(i, t).

Slowing down step
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The probability cα(i, t2) has its origin in the evolution of the following probabilities

c0(i, t2) = c(i+ 1, t1)

vmax∑

β=1

cβ(i, t1) + c0(i, t1)

cα(i, t2) = c(i+ α + 1, t1)

α∏

j=1

d(i+ j, t1)

vmax∑

β=α+1

cβ(i, t1) + cα(i, t1)

α∏

j=1

d(i+ j, t1) (0 < α < vmax)

cvmax
(i, t2) =

vmax∏

j=1

d(i+ j, t1)cvmax
(i, t1). (2.4)

Figure 2.16: Figure 
ontains all possible 
on�gurations at the stage t1 
apable of engendering the state
v = α at the site i at the stage t2 . The values above the sites indi
ate the position and the values below

all possible velo
ities. Re
all that

∑vmax

1 = c and
∑vmax

0 = 1

To understanding the terms used in Eq. 2.4 we refer to the diagram in Fig. 2.16. The

�rst term on the right of c0(i, t2) and cα(i, t2) arises by 
onsidering that all vehi
les with

v ≥ α + 1 are lo
ated at the site i and, in the site i+ α + 1 there is a vehi
le (no matter

what speed it has). In this way the vehi
les at the site i will have, after the slowing down
pro
ess, velo
ity α. The se
ond term arises when the vehi
le lo
ated at site i has α or

more empty sites in front of it, no matter if in the site i + α + 1 has a vehi
le or not.

The expression for cvmax
(i, t2) re�e
ts the requirement that the vehi
le already had the

maximum velo
ity at t1 and has at least vmax empty sites in front of it.

Randomization step

The equations at the randomization step are:

c0(i, t3) = c0(i, t2) + pc1(i, t2),

cα(i, t3) = qcα(i, t2) + pcα+1(i, t2) (0 < α < vmax),

cvmax
(i, t3) = qcvmax

(i, t2).

The expression for c0(i, t3) re�e
ts the requirement that, in the previous step, the vehi
le

already had v = 0 due to slowing down pro
ess or had v = 1 and de
elerated due to

randomization one. The probability cα(i, t3) depends on the probabilities cα(i, t2) and

cα+1(i, t2). With probability q the vehi
les with velo
ity α (represented by the term

cα(i, t2)) will not redu
e its speed and with probability p the vehi
les with velo
ity α+ 1
(represented by the term cα+1(i, t2)) will redu
e.
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Displa
ement step

In this step the probability cα(i, t3), de�ned a

ording the three previous sub-steps, is

passed along to the 
ell i+ α. So

cα(i+ α, t+ 1) = cα(i, t3) (0 ≤ α ≤ vmax).

Grouping the equations, we have

c0(i, t+ 1) = c0(i, t)[c(i + 1, t) + pd(i+ 1, t)] + [c(i+ 1, t) + pd(i+ 1, t)c(i + 2, t)]

vmax∑

β=1

cβ(i, t),

cα(i, t+ 1) =
α∏

j=1

d(i− α+ j, t)

[
qcα−1(i− α, t) +

[
qc(i+ 1, t) + pd(i+ 1, t)

]
cα(i− α, t)

+
[
qc(i+ 1, t) + pd(i+ 1, t)c(i + 2, t)

] vmax∑

β=α+1

cβ(i− α, t)

]
(0 < α < vmax − 1),

cvmax−1(i, t+ 1) =

vmax−1∏

j=1

d(i − vmax + 1 + j, t)

[
qcvmax−2(i− vmax + 1, t) +

(
qc(i+ 1, t) + pd(i+ 1, t)

)

(
cvmax−1(i− vmax + 1, t) + cvmax

(i− vmax + 1, t)
)]

,

cvmax
(i, t+ 1) = q

vmax∏

j=1

d(i− vmax + j, t)

[
cvmax−1(i− vmax, t) + cvmax

(i− vmax, t)

]
.

From cα(i, t+1), the probability cα(i, t+2) 
an be obtained doing the same steps developed

to �nd cα(i, t + 1) from cα(i, t), but for the obvious reason this pro
edure is impra
ti
al.

The stationary state 
an be obtained by other means, e.g., numeri
al solution. Instead

of looking for time-dependent solution, we study just the stationary states, when the

distributions c and d be
ome spatial independent

c(i+ α) = c(i) and d(i+ α) = d(i) for all α,

so the equations are simpli�ed to read,

c0 = c0

(
c+ pd

)
+
(
1 + pd

)
c
vmax∑

β=1

cβ,

cα = dα

[
qcα−1 +

(
qc+ pd

)
cα +

(
q + pd

)
c

vmax∑

β=α+1

cβ

]
(0 < α < vmax − 1),

cvmax−1 = dvmax−1

[
qcvmax−2 +

(
qc+ pd

)(
cvmax−1 + cvmax

)]
,

cvmax
= qdvmax

[
cvmax−1 + cvmax

]
.
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Another way of expressing these equations is rewrite them as a fun
tion of c, p and d (for

further detail see the 
hapter 7). So

c0 =
c2(1 + pd)

1− pd2
,

c1 = qc2d
1 + d+ pd2

(1− pd3)(1− pd2)
,

cα =
1 + (q − p)dα

1− pdα+2
dcα−1 −

qdα

1− pdα+2
cα−2,

cvmax−1 =
1− qdvmax

1− dvmax−1(q + pd)
qdvmax−1cvmax−2,

cvmax
=

qdvmax

1− qdvmax

cvmax−1.

With the intention of evaluating these approximation, we 
ompare in Fig. 2.17 these

results with those obtained by 
omputational simulation (Monte Carlo method).

Figure 2.17: Comparison between the Monte Carlo method and the 1-
luster mean �eld theory for the

velo
ities vmax = 1, 3 and 5. We use p = 0.5 for all 
ases.

This simple mean-�eld result yields, 
ompared with the Monte Carlo simulation, small

values for the �ux. This fa
t 
an easily be understood sin
e the redu
tion to a single 
ar

problem ignores all spatial 
orrelations of the vehi
les. Vehi
les, for instan
e, with high
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velo
ities tend to be equidistant and 
an therefore maintain a high velo
ity with a larger

probability than in the mean-�eld system where is so mu
h more di�
ult to a

elerate

and stay at high velo
ities over a 
ertain time.

2.3.1 N-
luster approximation

In order to improve the simple mean-�eld theory of the pre
eding se
tion we have

to take into a

ount 
orrelations between neighboring sites. We divide the latti
e into

segments or 
lusters of length n (n = 1, 2...) su
h that two neighboring 
lusters have n−1
sites in 
ommon. The probability of �nding a 
luster in the stationary state (σ1, ..., σn) will
be denoted by Pn(σ1, ..., σn). Due to the translational invarian
e of the stationary state

of the system with periodi
 boundary 
onditions, one does not have to spe
ify the a
tual

lo
ation of n-
luster and the �rst 
ell of the 
luster will be numbered by 1. In the 1-
luster
approximation we have vmax + 2 possible states and in order to simplify the 
al
ulations

we apply the four update rules in the order slowing down, randomization, displa
ement

and a

eleration instead of the order de�ned previously. This has the advantage that after

one update 
y
le one ends up with the a

eleration step and therefore no 
ar has velo
ity

v = 0. It follows that every site j is in one of the vmax + 1 states where now 0 denotes an

empty site. So we eliminate one variable d of the equation system, but we have to take

into a

ount for the �ux 
al
ulation that v = vmax 
omes as a result of the a

eleration

step applied in vmax − 1 and vmax (the last one does not a

elerate). The probability of

�nding a state cn is:

P
(
c(n)
)
=

∑

c(n+2vmax)

W
(
c(n+2vmax) → c(n)

)
P
(
c(n+2vmax)

)
.

The term c(n+2vmax)
denotes the state 
onstituted by the set of the states of n + 2vmax


ells. The �rst 
ell is labeled by 1− vmax and the last one n+ vmax, thus c
(n+2vmax) = (1−

vmax, ..., n+ vmax). This additional extension of the 
luster o

urs sin
e all vehi
les whi
h


an drive into or out of the 
luster c(n) = (1, ..., n) within the next time step 
ontribute to

the transition ratesW . So we have to take into a

ount not only the given 
luster, but also

the vmax sites to its left (with the variables (1− vmax, ..., 0)) and the vmax sites to its right

(with the variables (n+1, ..., n+ vmax)). The transition probability W
(
c(n+2vmax) → c(n)

)

is given by the update rules of NS model. The probability P
(
c(n+2vmax)

)
is given by:

P
(
c(n+2vmax)

)
=

0∏

i=1−vmax

P (ci | ci+1, ..., ci+n−1)∗P (c1, ..., cn)∗
vmax∏

i=1

P (ci+1, ..., ci+n−1 | ci+n).

The 
onditional probability on the left-hand side is

P (ci | ci+1, ..., ci+n−1) =
Pn(ci, ci+1, ..., ci+n−1)∑
c Pn(c, ci+1, ..., ci+n−1)

,

and on the right-hand side is

P (ci, ..., ci+n−2 | ci+n−1) =
Pn(ci, ci+1, ..., ci+n−1)∑

c Pn(ci, ..., ci+n−2, c)
.

To 
larify this method, we present in the next se
tion the 2-
luster approximation to solve

NS model with vmax = 1 and p = 0.5.
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2.3.2 2-
luster approximation

For the 
ase vmax = 1 we have to add two 
ells to the 
luster c(2), so:

P
(
c(2)
)
=
∑

c(4)

W
(
c(4) → c(2)

)
P
(
c(4)
)
.

Figure 2.18 shows all possible 
on�gurations for c(4) and their 
orresponding probabilities,

Figure 2.18: Figure showing all possible states of 4-
luster (c(4)) and their 
orresponding probabilities

of evolving to states c(2).

by using the update rules of NS model, to evolve to the 
lusters c(2). The symbol α within

the 
ells means that independent of the state of this 
ell, the �nal state after the NS

update rules is un
hanged. So we 
an �nd the probabilities P (1, 0), P (0, 1), P (1, 1) e
P (0, 0) via:

P (1, 0) = qP (1, 0, 0, α) + pP (α, 1, 0, α) + qP (α, 1, 1, 0) + q2P (1, 0, 1, 0),

P (0, 1) = qP (α, 1, 0, α) + pP (0, 0, 1, 0) + p2P (1, 0, 1, 0) + 1P (0, 0, 1, 1) + pP (1, 0, 1, 1),

P (1, 1) = pP (α, 1, 1, 0) + qpP (1, 0, 1, 0) + 1P (α, 1, 1, 1) + qP (1, 0, 1, 1),

P (0, 0) = pP (1, 0, 0, α) + qP (0, 0, 1, 0) + qpP (1, 0, 1, 0) + 1P (0, 0, 0, α),

using

P (a, b, c, d) =
P (a, b)

P (1, b) + P (0, b)
P (b, c)

P (c, d)

P (c, 1) + P (c, 0)
,

and for determining the �ux we need to �nd only P (1, 0); we have:

P (1, 0) = q

[
P (1, 0)

P (1, 0) + P (0, 0)
P (0, 0)

P (0, α)

P (0, 1) + P (0, 0)

]
+ p

[
P (α, 1)

P (1, 1) + P (1, 0)
P (1, 0)

P (0, α)

P (0, 1) + P (0, 0)

]

+q

[
P (α, 1)

P (1, 1) + P (0, 1)
P (1, 1)

P (1, 0)

P (1, 0) + P (1, 1)

]
+ q2

[
P (1, 0)

P (1, 0) + P (0, 0)
P (0, 1)

P (1, 0)

P (1, 0) + P (1, 1)

]
.
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Due to the parti
le-hole symmetry P (1, 0) = P (0, 1) (in a 
losed ring one must have the

same number of (0, 1) and (1, 0) pairs, therefore o

urring with the same probability).

The relations P (1, 1) + P (1, 0) = c and P (0, 0) + P (1, 0) = 1 − c = d are related to the


onservation of vehi
les in the system. In this way P (1, 0) 
an be found easily by:

P (1, 0) = q
P (1, 0)

1− c
[1− c− P (1, 0)]1 + pP (1, 0) + q[c− P (1, 0)]

P (1, 0)

c
+ q2

P (1, 0)

1− c
P (1, 0)

P (1, 0)

c
,

qcP (1, 0)[1− c− P (1, 0)] + pc(1− c)P (1, 0) + (1− c)q[c− P (1, 0)]P (1, 0) + q2P 3(1, 0)− c(c− 1)P (1, 0)

c(1− c)
= 0,

qc[1− c− P (1, 0)] + pc(1− c) + q[1− c][c− P (1, 0)] + q2P 2(1, 0)− c(c− 1) = 0,

q2P 2(1, 0) + [−qc− q(1− c)]P (1, 0) + qc(1 − c) + pc(1− c) + qc(1− c)− c(1− c) = 0,

q2P 2(1, 0)− q(c+ 1− c)P (1, 0) + c(c− 1)[q + p+ q − 1] = 0,

q2P 2(1, 0)− qP (1, 0) + qc(c− 1) = 0,

qP 2(1, 0)− P (1, 0) + c(c− 1) = 0,

leading to

P (1, 0) =
1−

√
1− 4qc(1− c)

2q
.

The �ux depends only on P (1, 0). So the �ux is determined by the evolution of the state

(1, 0) to (0, 1) (a

ording to the randomization step, it o

urs with probability q), thus
the �ux is given by:

f =
1

2

[
1−

√
1− 4qc(1− c)

]
.

We 
an see in the Fig. 2.19 that the 2-
luster approximation 
omes 
lose to the Monte

Figure 2.19: Graph 
omparing the 1-
luster (simple mean-�eld method), 2-
luster and Monte Carlo

te
hniques for obtained the stationary �ux in NS model.

Carlo simulation. In fa
t, going to the three- and higher-
luster approximations one �nds
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that the solution remains the same, indi
ating that this is the exa
t result. With this

approximation it is possible to write down a 
losed system of equations for the n-
luster

probabilities Pn(σ1, ..., σn). The number of the equations is given by (vmax+1)n, the total
number of possible 
on�gurations of n site variable with vmax+1 possible states (without

hange of the order of the update steps, one would have (vmax+2)n equations). In pra
ti
e

some of these equations turn out to be trivial so that the relevant number is less than

(vmax + 1)n. Due to the exponential growth with respe
t to n one is, espe
ially for larger

vmax, restri
ted to only small 
luster lengths n (for the realisti
 value of vmax = 5, one
has, for the two-
luster approximation, already 36 equations).

In Ref. [9℄ a rather simple extension of MFT is a

omplished. The key idea is a redu
tion

of the 
on�guration spa
e by removing all states whi
h 
annot by rea
hed dynami
ally.

In the 
ontext of 
ellular automata these states are 
alled Garden of Eden (GoE) states

or paradisi
al states (be
ause they 
annot be revisited). Part of the di�
ulties 
ome from

the fa
t that one uses parallel dynami
s. This introdu
es a non-lo
al aspe
t into the pro-

blem sin
e the whole latti
e is updated at on
e. On the other hand, random-sequential

dynami
s is mu
h simpler to treat analyti
ally. For vmax = 1, for instan
e, simple mean-

�eld theory gives already the 
orre
t steady state, i.e., there are no 
orrelations. A simple

example for vmax = 1 is the 
on�guration (•, 1, 2) of two 
onse
utive 
ells, where `•' de-
notes an empty 
ell and the numbers 
orrespond to the velo
ities of the 
ars. Cars move

from left to right. Obviously the velo
ity is just the number of 
ells the 
ar moved in the

previous time step. Therefore, the 
on�guration (•, 1, 2) 
ould have evolved only from a

state whi
h has two 
ars in the leftmost 
ell. Sin
e double o

upations are not allowed

in the present model, states 
ontaining (•, 1, 2) are dynami
ally forbidden, i.e., they are

GoE states.

We will use pMF for vmax = 1 and 
ompare with simple mean-�eld theory (1-
luster).
The 1-
luster approximation yields the following set of equations:

c0 = c(c+ pdc), (2.5)

c1 = cd(qc+ d). (2.6)

By using pMF for vmax = 1, 
on�gurations like (0, 1) and (1, 1), i.e., a moving vehi-


le is dire
tly followed by another 
ar, are not allowed. This is not possible as 
an be

seen by looking at the possible 
on�gurations at the previous timestep. The momentary

velo
ity gives the number of 
ells that the 
ar moved in the previous timestep. In both


on�gurations the �rst 
ar moved one 
ell. Therefore, it is immediately 
lear that (0, 1)
is a GoE state sin
e otherwise there would have been a doubly o

upied 
ell before the

last timestep. The 
on�guration (1, 1) is also not possible sin
e both 
ars must have o
-


upied neighbouring 
ells before the last timestep too. Therefore, a

ording to rule R2,

the se
ond 
ar 
ould not move. Comparing to the simple mean-�eld theory, only the �rst

equation is modi�ed. Note that only for c0 the equations are di�erent, for PMF theory

the state (c, c) is not a

eptable be
ause this 
on�guration 
an be broken down into the

states (1, 0), (1, 1), (0, 0) and (0, 1). The states (1, 1) and (0, 1) are not allowed, so only

(1, 0) and (0, 0) are possible states and we have to repla
e in Eq. (2.5) c2 by cc0. The new
set of equations is:

c0 = c(c0 + pdc),

c1 = cd(qc+ d).
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Due to the modi�
ation introdu
ed in the �rst equation c0 + c1 6= c. For this reason, one
has to introdu
e a normalization 
onstant η = 1

c0+d
into the equations:

c0 = ηc(c0 + pcd),

c1 = ηcd(qc+ d).

Expanding the �rst equation and remembering that c1 = c− c0, we have:

c1 =
1−

√
(d− c)2 + 4pcd2

2
.

The �ux is given by c1 and we re
over the exa
t solution for the 
ase vmax = 1 found by

a 2-
luster approximation. This result 
on�rms the expe
tations mentioned above. One


an see 
learly that the di�eren
e between random-sequential and parallel dynami
s is the

existen
e of GoE states in the latter. After eliminating these GoE states, no 
orrelations

are left in the redu
ed 
on�guration spa
e.
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Chapter 3

Other 
ellular automata models

We present in this se
tion a brief dis
ussion about other 
ellular automata models.

Most of these models are slight modi�
ations on the update rules of NS model. They

are of interest be
ause NS model is a minimal model in the sense that all the four steps

are ne
essary to reprodu
e the basi
 features of real tra�
; however, additional rules are

needed to 
apture more 
omplex situations, e.g., metastable states. Some basi
 rules of

the NS model should be preserved in these new approa
hes. For example step 1 in the

NS model re�e
ts the general tenden
y of the drivers to drive as fast as possible without

ex
eeding the maximum speed limit. Step 2 is intended to avoid 
ollision between the


ars. The randomization in step 3 a

ounts for the di�erent behavioural patterns of the

individual drivers, espe
ially, nondeterministi
 a

eleration as well as overrea
tion while

slowing down; this is 
ru
ially important for the spontaneous formation of tra�
 jams.

In addition, the use of a parallel updating s
heme (instead of a random-sequential one)

is 
ru
ial sin
e it a

ounts for the rea
tion time and 
an lead to a 
hain of overrea
tions.

As an example, suppose that a 
ar slows down in the randomization step. If the density

of 
ars is large enough this might for
e the following 
ar also to brake in the de
eleration

step. In addition, if p is larger than zero, it might brake even further in step 3. Eventually

this 
an lead to the stopping of a 
ar, thus 
reating a jam. This simple me
hanism of

spontaneous jam formation is rather realisti
 and 
annot be modeled by the random-

sequential update.

In Fig. 3.1 we see the the spontaneous jam formation for p 6= 0 and its 
orresponding

ba
kward motion (this feature is not present for p = 0).

3.1 Changing the orders of substeps in the NS model

The e�e
t of 
hanging the substep order in the NS model is shown in Ref. [10℄. The

authors, initially, studied the following update rules:

1. A

eleration

vj(t1) = min[vj(t) + 1, vmax].

2. Randomization

vj(t2) = max[vj(t1)− 1, 0] with probability p,

vj(t2) = vj(t1) with probability 1− p.
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Figure 3.1: Figure extra
ted of Ref. [10℄. Typi
al spa
e-time diagram of the NS model for (a) p = 0.25
and ρ = 0.2, (b)p = 0 and ρ = 0.5.

3. Deterministi
 de
eleration

vj(t3) = min[dj(t), vj(t2)].

4. Displa
ement

xj(t + 1) = xj(t) + vj(t3).

The di�eren
e between this model and the NS model is in the anti
ipation of the ran-

domization step in relation to the de
eleration one. The fundamental diagram with the

same simulation 
onditions as those of the NaS
h model, is shown in Fig. 3.2. This �gure

indi
ates that the model leads to a higher value of maximum �ux 40% higher than that

obtained with the NaS
h model. When 
ompared to the NS model, this 
hanging leads

to a better approximation with the observed data in real tra�
. In fa
t, when a driver

�nds a high vehi
le density ahead, he will �rst delay at random and estimate whether

he should de
elerate or not by observing and evaluating his anti
ipation velo
ity and the

headway between su

essive vehi
les. If he �nds his anti
ipation velo
ity will surpass the

headway, he slows down. Due to the anti
ipation of the randomization step, braking times

in the state of free �ow will be redu
ed and more vehi
les with the maximum velo
ity will


ause an in
rease of 
apa
ity, while the fa
t that vehi
les 
annot maintain the maximum

velo
ity at high density and, as well as the �u
tuation of velo
ity leads to the spontane-

ous formation of jams and 
apa
ity drops. In 
ontrast to the NaS
h model, the modi�ed

version allows more vehi
les to maintain a higher or even maximum velo
ity. This model

is thus 
alled the sensitive drive model or the SDNS model.

This model displays bistable states. They be
omes 
lear if we start the system with two

di�erent initial 
onditions. One is the homogeneous distribution with the same headway;

the other is the megajam 
onsisting of one large 
ompa
t 
luster of standing vehi
les.

Thus we obtain the fundamental diagram with two bran
hes as shown in Fig. 3.3. The

results of the VDR model arise from introdu
ing two delay probabilities dependent on

velo
ity instead of the 
onstant randomization in the NS model, while the same result in

this model 
omes from inter
hanging the order of the deterministi
 de
eleration and the

sto
hasti
 one in the steps of the evolution rules.
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Figure 3.2: Figure extra
ted of Ref. [10℄; the fundamental diagram of SDNS and NS model for p = 0.25.

When the density is in the range ρ1 < ρ < ρ2, the �ux, in fundamental diagram, is

dis
ontinuous. The upper bran
h over the �ux qjam 
orresponds to the homogeneous

tra�
 �ow, whi
h has larger �ow with no jam due to the redu
tion of braking times in

the sensitive driving. This 
ase belongs to the free state and the �ux rea
hes the maximum

as ρ ≈ 0.18. The lower bran
h 
orresponds to the tra�
 jam; the �ux redu
es rapidly

be
ause of the in
rease of the braking probability. It is evident that there is a hysteresis

loop in the fundamental diagram. From the simulated results, we 
an get the following

relations. In the regime of the upper bran
h as 0 < ρ < ρ2, the average velo
ity is that of

the free-�ow, vf = (1− p)vmax + p(vmax − 1) = vmax − p, therefore the �ux is:

q = ρvf = ρ(vmax − p).

In the regime of the lower bran
h as ρ2 < ρ, the average waiting time Tw of the �rst

vehi
les at the head of the megajam is given by Tw = 1/(1− p). The �ux is

q = (1− p)(1− ρ).

From the above analysis, the number of vehi
les in the state of de
eleration between

0 < ρ < ρ2 de
reases and the 
apa
ity of the road approa
hes more 
losely the empiri
al

data than that predi
ted by the NS model due to the role of the sto
hasti
 delay prior to

deterministi
 de
eleration. The in
rease in the number of braking vehi
les in ρ1 < ρ < ρ2 is
due to the role of the sto
hasti
 delay and deterministi
 de
eleration at the same time will

frequently lead to the breakdown of �ow and so to a tra�
 jam. Therefore, a

ording to

the authors of Ref. [10℄, the ex
hange of the order of the sto
hasti
 delay and deterministi


de
eleration has signi�
ant e�e
t on tra�
 �ow. Another 
hange studied by these authors


onsists in 
hanging the update rules as follows:

1. Randomization

vj(t1) = max[vj(t)− 1, 0], with probability p,

vj(t1) = vj(t), with probability 1− p.
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Figure 3.3: Figure extra
ted of Ref. [10℄; the fundamental diagram via numeri
al simulation with

two di�erent initial 
onditions: uniform distribution state and inhomogeneous 
ongestion vmax = 5,
L = 5× 103, p = 0.5. The metastable state appears in ρ1 < ρ < ρ2.

2. A

eleration

vj(t2) = min[vj(t1) + 1, vmax]

3. Deterministi
 de
eleration

vj(t3) = min[dj(t), vj(t2)]

4. Displa
ement

xj(t+ 1) = xj(t) + vj(t3)

Figure 3.4: Figure extra
ted by Ref. [10℄. The fundamental diagram is shown at the left and the graph

velo
ity versus density at the right.

The fundamental diagram is shown in the left part of Fig. 3.4, and the 
orresponding

velo
ity-density 
urve at the right. There are three di�erent parts; 0 < ρ < ρ1, ρ1 < ρ < ρ2
and ρ2 < ρ < 1 whi
h 
orrespond to three di�erent phases, namely, free �ow, low-speed
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�ow and jam. In this model we have an interesting situation; as the density ρ approa
hes

0.5, the velo
ity in low-speed �ow approa
hes unity. The velo
ity is:

v =





vmax ρ < ρ1,
1
2ρ

− (1−2ρ)(2p−1)
ρ

ρ1 < ρ < ρ2,
1
ρ
− 1 ρ ≥ ρ2.

Where ρ1 =
1−p

vmax+1−2p
and ρ2 =

1
2
.

The NS model is updated in sequen
e R1-R2-R3 (
orresponding to a

eleration-de
eleration-

randomization), while the two models studied in Ref. [10℄ are R1-R3-R2 and R3-R1-R2.

The update rules R2-R1-R3, R2-R3-R1, and R3-R2-R1 are dis
arded due the possibility

of 
ollisions between the vehi
les.

3.2 VDR model

The velo
ity-dependent randomization (VDR) model [11℄ adds a simple slow-to-start

rule to the NS model. Instead of using a unique de
eleration probability p, these authors
in
lude a velo
ity dependen
e in this parameter, so that p = p(v). For simpli
ity, they

study the 
ase:

p(v) =

{
p0 if v = 0

p if v > 0.

Sin
e we are interested in hysteresis phenomena, we restri
t ourselves to the 
ase p0 ≥ p.
Note that for p0 = p the NaS
h model is re
overed. The parameters used are: maximum

velo
ity vmax = 5, braking probability p = 1
64

for moving 
ars, p0 = 0.75 for stopped


ars, Ref. [11℄ reports numeri
al simulations of periodi
 systems with L = 10000 latti
e

sites. Fig. 3.5 shows the fundamental diagram of the VDR model. The average �ux

Figure 3.5: Figure extra
ted of Ref [11℄. Di�eren
e between fundamental diagrams of the VDR and

NS models.

j(ρ) 
an take two values in the density interval between ρ1 and ρ2 depending on the

initial 
ondition. The larger values of the average �ux are obtained using a homogeneous

34



initialization of the system. The lower bran
h is obtained starting from a 
ompletely

jammed state. It is instru
tive to 
ompare the fundamental diagram of the VDR model

with those of the 
orresponding NS models. For small densities ρ ≪ 1 there are no slow


ars in the VDR model sin
e intera
tions between 
ars are extremely rare. Here the �ux

is given by j(ρ) = ρ(vmax − p), i.e., identi
al to the NS model with randomization p. For
large densities 1 − ρ ≪ 1 on the other hand, the �ux is given by j(ρ) = (1 − p0)(1 − ρ)
whi
h 
orresponds to the NS model with randomization p0. For densities 
lose to ρ = 1,
only 
ars with velo
ities v = 0 or v = 1 exist.

The mi
ros
opi
 stru
ture of the jammed states in the VDR model di�ers from those

found in the NS model. While jammed states in the NS model 
ontain 
lusters with

an exponential size-distribution, one 
an �nd phase separation in the VDR model. The

reason for this behaviour is the redu
tion of the out�ow from a jam. If the out�ow from

a jam is maximal, any small jam in the free �ow regime dissolves immediately sin
e the

out�ow from su
h a jam is larger than the global �ow. Therefore phase separation 
annot

o

ur in that 
ase. However, if the out�ow from a jam is redu
ed, the density in the

free �ow regime is smaller than the density of maximum �ux and 
ars 
an propagate

freely in the low density part of the latti
e. Due to the redu
tion of the density in the

free �ow regime, no spontaneous formation of jams is observed in the stationary state, if

�u
tuations in the free �ow regime are rare. We 
an see this phase separation at Fig. 3.6.

Figure 3.6: Figure extra
ted of Ref. [11℄. Spa
e-time diagram of the VDR model for ρ = 0.15;
L = 400; p = 0.01 and p0 = 0.5. The homogeneous initial state is not destroyed immediately, but after

approximately 93000 latti
e updates. In the out�ow regime of the jam the density is redu
ed 
ompared

to the average density.

3.3 Cruise-
ontrol model

The 
ruise-
ontrol (

) model is a simpli�ed version of the NS model [12℄. This sim-

pli�
ation 
an be des
ribed as a �
ruise 
ontrol limit�, sin
e at su�
iently low density all

vehi
les move deterministi
ally at maximum allowed velo
ity. As in the NS model the



 model is de�ned on a one-dimensional latti
e of length L, representing a single-lane
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freeway. Ea
h site of the latti
e 
an be in one of the vmax + 2 states: It may be empty,

or it may be o

upied by one 
ar having an integer velo
ity between zero and vmax. One

iteration 
onsists of the following steps, whi
h are ea
h performed simultaneously for all

vehi
les. A vehi
le is stationary when it travels at maximum velo
ity vmax and has free he-

adway: d ≥ vmax. Su
h a vehi
le just maintains its velo
ity. If a vehi
le is not stationary,

it is jammed

1

. The following rules are applied to jammed vehi
les.

1. A

eleration

With probability 1/2, a vehi
le with d ≥ v + 1 a

elerates to v + 1, otherwise it

keeps the velo
ity v. A vehi
le with d = v just maintains its velo
ity.

2. Slowing down and randomization

Ea
h vehi
le with d ≤ v − 1 slows down to v = d and 
an add further de
eleration

a

ording to:

v = max[v − 1, 0] with probability 1/2

v = v with probability 1/2

3. Displa
ement

Ea
h vehi
le advan
es v sites.

The randomization pro
ess in this model 
an produ
e overrea
tion as in the NS model, but

di�erent from this, introdu
es a nondeterministi
 a

eleration. The fundamental diagram

was obtained numeri
ally [12℄ as show in Fig. 3.7.

For a spatially in�nite system, the following results hold: for ρ < ρc jams present in

Figure 3.7: Figure extra
ted of Ref. [12℄. Fundamental diagram of the 
ruise-
ontrol model. The

dotted line represents deterministi
 tra�
, i.e., when the initial state is prepared su
h that for ea
h 
ar

ngap > vmax and v = vmax. The points are measurement results starting from random initial 
onditions.

Ea
h point 
orresponds to one run of a 
losed system of length L = 30000 and an average over 2.5× 106

iterations after dis
arding a transient period of 5× 105 iterations.

the initial 
on�guration are eventually sorted out and the stationary deterministi
 state

is jam free with every vehi
le moving at maximum velo
ity. Thus, the �ux is a linear

fun
tion of density with slope vmax = 5. This behavior is observed up to a maximum

1

In this model the 
on
ept of jammed and stationary are di�erent than those used in models with

absorbing 
on�gurations, stationary means ina
tive and jammed; a
tive.
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�ux jc(ρc). For ρ > ρc and ρ < 1
vmax+1

the system is bistable. Starting from an initial


on�guration whi
h has many jams, the jams in this 
ase are never sorted out. The steady

state is an inhomogeneous mixture of jam free regions and higher density jammed regions

(see Fig. 3.8). Clearly, these jammed regions de
rease the average �ux in the system.

It is possible, nevertheless, to prepare initial 
on�gurations that have no jams. Sin
e all

motion is deterministi
 in this state, the steady state will also have no jams and the �ux

will still be an in
reasing fun
tion of ρ (the dotted line in Fig. 3.7). This is possible up

to densities of

ρmax =
1

vmax + 1
,

leading to a maximum �ux of

qmax =
vmax

vmax + 1
.

This 
learly is mu
h higher than the �ux q, for random initial 
onditions. It is in this

sense that this system is bistable. In addition to these features, the authors studied the

Figure 3.8: Figure extra
ted of Ref. [12℄. Dots represent vehi
les whi
h move to the right. The

horizontal dire
tion is spa
e and the verti
al dire
tion (down) is (in
reasing) time. We 
an see that

starting from an initial 
on�guration whi
h has many jams, the jams never disappear.

behavior of the free regions when are perturbed. In the deterministi
 region, one 
ar

is randomly perturbed by redu
ing its velo
ity to zero. Many di�erent 
hoi
es for the

lo
al perturbation, however, give rise to the same large s
ale behavior. The perturbed


ar eventually rea

elerates to maximum velo
ity. In the meantime, though, a following


ar may have 
ome too 
lose to the perturbed 
ar and have to slow down. This initiates

a 
hain rea
tion�the emergent tra�
 jam. This de�nes the lifetime, t, of an emergent

tra�
 jam. Using simulation the authors determine the probability distribution of jams

as a fun
tion of their lifetime, t. Figure 3.9 shows that for t > 100, this distribution

follows a power law

P (t) ∼ t−δ,

with δ = 1.5± 0.01.
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Figure 3.9: Lifetime distribution P (t) for emergent jams in the out�ow region; average over more than

65000 
lusters (avalan
hes). The dotted line has slope

3
2 . Numeri
ally imposed 
uto� at t = 106 (�gure

extra
ted of Ref. [12℄).

3.4 Fukui�Ishibashi Model

Fukui and Ishibashi [13℄ have introdu
ed a simpli�ed version of the NS model. The

main di�eren
e to the NS model is the absen
e of a velo
ity memory

2

. All vehi
les have an

intrinsi
 velo
ity vmax. In ea
h timestep, all drivers try to move at the maximum velo
ity

vmax; i.e., they a

elerate to it instantaneously. The Fukui�Ishibashi (FI) model is then

de�ned by the following set of rules:

1. A

eleration

The a

eleration step assures that FI model does not have velo
ity memory sin
e

the vehi
le a

elerates to the maximum velo
ity or to the headway between it and

the following vehi
le, so

vn = min[vmax, dn(t)].

2. Randomization

Only the vehi
les with v = vmax are subje
ted to the randomization step a

ording

to

vn → vmax − 1 with probability f,

vn → vmax with probability 1− f .

3. Displa
ement

xn = xn + vn.

Here, xn and vn denote the position and speed, respe
tively, of the nth vehi
le and dn =
xn+1 − xn − 1, i.e., the number of empty 
ells in front of this 
ar (headway). The rules

have a simple interpretation; a vehi
le that has at least vmax empty sites in front will

move vmax 
ells with probability 1− f or vmax − 1 
ells with probability f . However, just
in the 
ase that the headway is d < vmax at time t, then the vehi
le moves d sites in the

2

In ea
h iteration of the NS model, the velo
ity v and headway d have to be a

ounted for the update

pro
ess.
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next step. Here the randomization step is not applied. Therefore, �u
tuations o

ur only

at high speeds, whi
h is just the opposite of the 
ruise-
ontrol limit.

For vmax = 1, the FI model and the NS model are identi
al sin
e that in the NS model

with vmax = 1, only the vehi
les with v = 1 are subje
ted to the randomization step.

For general vmax, the FI model di�ers from the NS model in two aspe
ts: the in
rease

of the vehi
les speed is not ne
essarily gradual and the sto
hasti
 delay (de
eleration

step) applies only to high-speed vehi
les. Due to these modi�
ations, no overrea
tions at

braking o

ur and therefore the FI model does not exhibit spontaneous jamming. This

type of a

eleration (where there is no need to keep tra
k of velo
ities) allows to introdu
e

a mean-�eld te
hnique that provides the exa
t solution. These exa
t solutions as well as

Monte Carlo simulations are shown in Fig 3.10.

Figure 3.10: Figure extra
ted of Ref. [14℄. The fundamental diagram of the FI model with the

maximum 
ar velo
ity M = 2 and for di�erent values of the degree of sto
hasti
 delay f . The solid 
urves

are the theoreti
al results. The points with di�erent symbols represent results obtained by numeri
al

simulations.

3.5 Wang Model

By using the 
ar-oriented mean�eld (COMF) was possible to a
hieve an exa
t analy-

ti
al result to the FI model [14℄. However, for the NS model with vmax > 1 and sto
hasti


delay, no exa
t solution has been found up to now. The a

eleration and sto
hasti
 delay

rules of the NS model lead to 
ompli
ations in the time evolution of the �ux, and hen
e

it is very di�
ult to �nd exa
t analyti
al results. In order to understand how these rules

a�e
t the evolution and the 
orresponding asymptoti
 state, Wang et al [15℄ study an

intermediate model that 
ombines features of both models.

The model is des
ribed by the following update rules: Let Cn(t) be the number of

empty sites in front of the nth 
ar at time t, vn(t) be the number of sites that the nth


ar moves during the time t step, and M the maximum speed. The steps are:

1. Step 1

Let v
′

n(t) = min(Cn(t),M), if v
′

n(t) = Cn(t) the nth 
ar is �the 
ar that follows the

trail of the 
ar ahead�. This means that the nth 
ar may be
ome the neighbor of

the 
ar ahead if the 
ar in front stops.
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2. Step 2

Sto
hasti
 delay is introdu
ed in su
h a way that all the 
ars whi
h follow the trail

of their 
ar ahead have a probability f to move forward one site less than is allowed

by step 1, i.e., we have the following: vn(t) = v
′

n(t) − 1, with probability f , if
v

′

n(t) = Cn(t) and v
′

n(t) > 0.

3. Step 3

The nth 
ar moves vn(t) sites ahead.

The number of empty sites in front of the nth 
ar at time t+ 1 
an be written as

Cn(t + 1) = Cn(t) + vn+1(t)− vn(t).

For this model, with a maximum 
ar velo
ity vmax = M and a sto
hasti
 delay probability

f , the velo
ity of the nth 
ar at time step t as a fun
tion of the inter
ar spa
ing Cn(t)

an be written as

vn(t) =





M if c > M,

c− 1 with probability f if 0 < c ≤ M,

c with probability 1− f if 0 < c ≤ M,

0 if c = 0.

As in the FI model, this sort of a

eleration allows to simplify the equations used in 
ar-

oriented mean �eld and produ
es an exa
t agreement between analyti
al and numeri
al

(Monte Carlo) results. These results are shown in Fig. 3.11.

Figure 3.11: The fundamental diagram with the maximum 
ar velo
ity M = 2 and for di�erent

sto
hasti
 delay probabilities f . The solid 
urves are theoreti
al results. The points with di�erent symbols

represent numeri
al simulations. The 
urves from the top down along the velo
ity axis 
orrespond to

di�erent values of f ranging from f = 0 to 1 in steps of 0.1. (Figure extra
ted of Ref [15℄.)

Although not stressed by the authors, this model presents an absorbing phase transi-

tion at ρc ≤ 1
M+2

independent of f . For densities below ρc the stationary state is absorbing
sin
e the mean distan
e between the vehi
les is greater than M and a

ording to the up-

date rules the vehi
les are not subje
t to the randomization step. These absorbing states

are not unique sin
e they depend on the initial 
on�guration. For density ρc =
1

M+2
the

stationary state is unique and des
ribed by v = M and C = M + 1.
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3.6 Multilane tra�


For a realisti
 des
ription of tra�
 on highways many authors, as dis
ussed before,

improve the NS model by using modi�ed update rules making them more appropriate

for real tra�
. Despite these e�orts a 
omplete des
ription demands the use of multilane

lanes in tra�
 simulation. Beside the use of NS rules we know that the main ingredient

required for an appropriate 
hange of a single-lane CA model to multilane situations

is lane-
hanging rules. Lane 
hanging rules for two-lane tra�
 
an be symmetri
 or

asymmetri
. For symmetri
 lane-
hanging rules, overtaking is allowed in both lanes.

However, for asymmetri
 lane-
hanging rules, overtaking is forbidden in one lane, e.g., in

the right lane ( this situation exists in many European 
ountries for example, Germany).

Generi
ally, the de
ision of drivers to 
hange lane is based on two 
riteria:

1. In
entive 
riterion:

Drivers determine whether a lane 
hange improves the individual tra�
 situation,

e.g., to move at their desired velo
ity.

va > gap with va = min(v + 1, vmax).

2. Safety 
riterion:

The tra�
 situation in the target lane is 
he
ked, espe
ially if the available gap for

a lane 
hange is enough for a se
urity transition (without prevent the free �ow of

the prede
essor vehi
le lo
ated in other lane).

gap

other

> gap,

gap

ba
k

≥ vmax.

Here gap is the number of free 
ells between the 
ar and its prede
essor in the a
tual

lane; gap

other

and gap

ba
k

are the headway in relation to its two neighbor 
ars, in the

other lane, ahead and behind respe
tively. A lane-
hange is then only performed if both


riteria are satis�ed. In general, the update in the two-lane models is divided into two

substeps: in one substep, the vehi
les may 
hange lanes in parallel following the lane-


hanging rules and in the other substep, ea
h vehi
le may move forward e�e
tively as in

the single-lane NS model. Drivers must �nd some in
entive in 
hanging the lane. Two

obvious in
entives are: the situation in the other lane is more 
onvenient for driving,

and the need to overtake the slow vehi
le. We show some results about two-lane model

using symmetri
 lane-
hanging rules, whi
h are more relevant for tra�
 in towns and on

highways, where overtaking in both lanes is allowed.

Fig. 3.12 shows the fundamental diagram of a periodi
 two-lane system. The simulations

reprodu
e well-known results, e.g., an in
rease of the maximum �ux per lane 
ompared

to the �ux of a single-lane road. Another unexpe
ted result is the existen
e of a lo
al

minimum of the lane-
hanging frequen
y near the density of maximum �ux for small

braking probabilities p (Fig. 3.13). The behavior of the lane-
hanging frequen
y 
an be

explained if one takes into a

ount the number of empty 
ells ne
essary for a lane-
hanging

pro
edure. Two prerequisites have to be ful�lled in order to initiate a lane 
hange. First,

the situation on the other lane must be more 
onvenient and se
ond, the safety rules

must be ful�lled. Therefore, one needs typi
ally 2vmax + 1 empty 
ells on the destination

lane for a lane-
hanging maneuver in the free �ow regime (Fig. 3.13). Hen
e, one �nds a

lo
al maximum of the lane-
hanging frequen
y near ρs =
1

2vmax+1
if the 
ars are ordered
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Figure 3.12: Flux per lane of the single-lane model 
ompared with the two-lane model for systems with

vmax = 5 and p = 0.5. (Figure extra
ted of Ref [16℄).

homogeneously, whi
h typi
ally happens for small values of p. For larger values of p, e.g.,
p = 0.5, no lo
al maximum is observable. In
reasing the density for su�
iently small

values of p, one �nds a pronoun
ed minimum of the lane-
hanging frequen
y. This 
an be

understood in the limit p → 0 where, for ρ = 1
vmax+1

, the 
ars are perfe
tly ordered with a

gap of vmax sites between 
onse
utive vehi
les. Obviously, in this 
ase both the in
entive

and the safety 
riteria are never ful�lled and the lanes are 
ompletely de
oupled. For

small p the ordering me
hanism is still present and therefore the number of lane 
hanges

is drasti
ally redu
ed near ρ = 1
vmax+1

.

Figure 3.13: Lane-
hange frequen
y in the two-lane model for di�erent braking parameters p (Figure

extra
ted of Ref [16℄).

The features of two-lane tra�
 are the same for multiple lanes (taking into a

ount

homogeneous systems). We now 
onsider di�erent types of 
ars whi
h is obviously more

relevant for pra
ti
al purposes. As a �rst step towards realisti
 distributions of free �ow

velo
ities the authors [16℄ have 
hosen two types of 
ars, e.g., slow 
ars with vsmax = 3
and fast 
ars with vfmax = 5. Simulations were 
arried out with 5% of slow 
ars, whi
h are
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initially positioned randomly. The fast as well as the slow 
ars may use both lanes, i.e.,

both 
ars are treated equally with respe
t to the lane-
hanging behavior. In Fig. 3.14

the e�e
ts of the slow 
ars on the average �ux of the two-lane system is 
ompared with

the fundamental diagram of a single-lane road with one slow 
ar. Sin
e passing is not

allowed for a single-lane system, 
learly the slow 
ar dominates the average �ux at low

densities and platoon formation is observable. Surprisingly the two-lane system shows a

quite similar behavior, although passing is allowed and the fra
tion of slow 
ars is rather

small. Although the multilane tra�
 models 
an adopt a lot of di�erent update rules, the

Figure 3.14: Comparison of the �ux per lane of the inhomogeneous model with the 
orresponding

homogeneous models for p = 0.4.(Figure extra
ted of Ref [16℄).

results in terms of statisti
al point of view (
riti
ality, phase transition et
.) do not di�er

when 
ompared with one-line models. For this reason we do not extend this dis
ussion;

for a detailed des
ription of multilane models see [17℄.
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Chapter 4

Kineti
 tra�
 theory

4.1 Introdu
tion

In kineti
 theory, tra�
 is treated as a gas of intera
ting parti
les where ea
h parti-


le represents a vehi
le. The di�erent versions of the kineti
 theory of vehi
ular tra�


have been developed by modifying the kineti
 theory of gases. In the kineti
 theory of

gases, f(~r, ~v, t)d3rd3v denotes the number of mole
ules whi
h, at time t, have positions

lying within a volume element d3r about ~r and velo
ities lying within the velo
ity-spa
e

element d3v about v. The Boltzmann equation, whi
h des
ribes the time evolution of the

distribution f(~r, ~v, t), is given by:

[
∂f

∂t
+ ~v.∇r + ~a.∇v

]
f(~r, ~v, t) =

(
∂f

∂t

)

coll

, (4.1)

where the symbols ∇r and ∇v denote gradient operators with respe
t to ~r and ~v, respe
-
tively, while ~a is the external a

eleration. The term (∂f

∂t
)coll represents the rate of 
hange

of f , with time, whi
h is 
aused by 
ollisions between mole
ules.

In the earliest version of the kineti
 theory of vehi
ular tra�
, Prigogine and Herman[18,

19, 20℄ modi�ed the kineti
 theory of gases embodied in the Boltzmann equation. In their

model tra�
 is treated as a one-dimensional gas of intera
ting parti
les (vehi
les) des
ri-

bed by a distribution fun
tion f(x, v, t), su
h that f(x, v, t)dxdv represents the number

of vehi
les with positions between x and x + dx and velo
ities between v and v + dv at

time t. The distribution f is normalized so that

∫
dvf(x, v, t) = c(x, t), (4.2)

where c(x, t) is the lo
al density of vehi
les. (Unless otherwise spe
i�ed, all integrals run

from −∞ to ∞. Note that f(x, v, t) is zero for v < 0.)
The time evolution of f is governed by a Boltzmann-like equation. The prin
ipal

di�eren
e with the original Boltzmann equation is the introdu
tion of a distribution of

desired velo
ities, f0(x, v, t), in the relaxation term, representing drivers' preferen
es.

Spe
i�
ally, f0(x, v, t)dxdv is the number of vehi
les between x and x+ dx whose drivers

have a preferred velo
ity between v and v + dv at time t. The presen
e of this fun
tion

in the statisti
al des
ription is a novel feature, showing that the �parti
les"in this system

have intentions unlike a mole
ule, whi
h does not have a desired velo
ity.
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Of prin
ipal interest is the stationary velo
ity distribution, whi
h 
an be mu
h di�erent

from the distribution of desired velo
ities. We shall see that the stationary velo
ity

distribution 
hanges abruptly at a spe
i�
 density.

4.2 The Prigogine-Herman-Boltzmann equation

In one-way tra�
, vehi
les travel in one dimension, and Eq. (4.1) 
an be simpli�ed to

read[19, 20℄

∂f

∂t
+ v

∂f

∂x
=

(
∂f

∂t

)

rel

+

(
∂f

∂t

)

int

. (4.3)

where

∂f
∂t rel

a

ounts for the relaxation of f toward f0 in the absen
e of intera
tions of

the vehi
les, while

∂f
∂t int

a

ounts for the 
hanges of f arising from intera
tions among the

vehi
les. Note that the term

∂f
∂t int

on the right-hand side of Eq. (4.3) may be interpreted

as the analog of the term (∂f
∂t
)coll in the Eq. (4.1), whereas the term

∂f
∂t rel

in Eq. (4.3)

may be interpreted as the 
ounterpart of the term ∇v.f(~r, ~v, t) in the Eq. (4.1).

The idea behind the relaxation term is that drivers adjust their velo
ity to the desired

value, v0, on a time s
ale T , 
alled the relaxation time. This assumption is embodied in

the expression, (
∂f

∂t

)

rel

= −f − f0
T

. (4.4)

In a spatially uniform system, in whi
h f = f(v, t) and intera
tions between drivers 
an

be ignored, the solution to Eq. (4.3) is

f(v, t) = f0(v) + [f(v, 0)− f0(v)]e
−t/T . (4.5)

Exponential relaxation des
ribes the approa
h of many simple systems to a steady state.

In the 
ontext of the kineti
 theory of gases, an analogous simpli�
ation involves repla
ing

the 
ollision term with an expression of the form of Eq. (4.4); T be
omes the 
ollision

time, and f0 is a lo
al Maxwellian distribution.[21℄ As will be
ome 
lear, Prigogine and

Herman[18℄ proposed that T depends on the 
on
entration of vehi
les on the road, and

the relaxation pro
ess subsumes some rather 
ompli
ated intera
tions between drivers.

In the absen
e of intera
tions between the vehi
les, the distribution fun
tion evolves to

the distribution of desired velo
ities a

ording to Eq. (4.5). A derivation of the distribution

of desired velo
ities from �rst prin
iples would require knowledge of human behavior that

is beyond our present 
apabilities. One might try to determine the distribution of desired

velo
ities empiri
ally by studying the velo
ity distribution at very low 
on
entrations, but

we are unaware of studies of this kind. Prigogine and Herman simply investigated several

simple model distributions of the desired velo
ities.[22℄

The intera
tion term in Eq. (4.3) is based on the following assumptions:

1. The vehi
les are point-like, that is, they do not o

upy volume.

2. Vehi
les remain in the same lane ex
ept when passing another vehi
le.

3. In an en
ounter between two vehi
les, one passes the other with probability P .

4. If one vehi
le passes another, neither vehi
le 
hanges its velo
ity. In an en
ounter

without passing, the faster vehi
le redu
es its velo
ity to that of the slower one

ahead of it.
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5. The slowing-down pro
ess is instantaneous.

6. Only two-vehi
le intera
tions are 
onsidered.

7. The vehi
les are statisti
ally independent, that is, the joint two-vehi
le distribution

is the produ
t of single vehi
le distributions: f(x, v, x′, v′, t) = f(x, v, t)f(x′, v′, t).

If we use these assumptions, we 
an write the intera
tion term as,

(
∂f

∂t

)

int

= f(x, v, t)

∫ ∞

v

du(1− P )(u− v)f(x, u, t)

− f(x, v, t)

∫ v

−∞

du(1− P )(v − u)f(x, u, t). (4.6)

The �rst term on the right-hand-side of Eq. (4.6) 
orresponds to intera
tions between

vehi
les with velo
ities v and u > v; the latter are obliged to adopt the smaller velo
ity

v resulting in an in
rease in the number of vehi
les with velo
ity v. The se
ond term

is related to intera
tions between vehi
les with velo
ity v and u < v. In this 
ase, the

intera
tion results in a de
rease in the number of vehi
les with velo
ity v. By 
ombining

the two integrals, the intera
tion term 
an be rewritten as,

(
∂f

∂t

)

int

= (1− P )f(x, v, t)

∫
du(u− v)f(x, u, t).

Be
ause, ∫
uf(x, u, t)du = c(x, t)v(x, t),

where v(x, t) denotes the lo
al mean velo
ity, and

∫
du vf(x, u, t) = c(x, t)v,

we have, (
∂f

∂t

)

int

= (1− P )c(x, t)[v(x, t)− v]f(x, v, t). (4.7)

If we insert the relaxation term, Eq. (4.4), and intera
tion term, Eq. (4.7), into Eq. (4.3),

we obtain the Prigogine-Herman-Boltzmann equation for tra�
:

∂f

∂t
+ v

∂f

∂x
= −f − f0

T
+ (1− P )c(x, t)[v(x, t)− v]f. (Prigogine-Herman-Boltzmann)

(4.8)

Equation (4.8) is a nonlinear equation be
ause v(x, t) is a fun
tion (more pre
isely, a

fun
tional) of f(x, v, t). A full de�nition of the model requires that we spe
ify how the

passing probability and relaxation time depend on the 
on
entration. Before examining

spe
i�
 
hoi
es, we 
onsider some general aspe
ts of the solutions.

4.3 Stationary solutions

As dis
ussed before, the quantity f0 is a distribution fun
tion that 
hara
terizes the

system in the absen
e of intera
tions between the 
ars. Therefore, f0 is 
onsidered to be
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that distribution fun
tion whi
h would be a
hieved by drivers if the intera
tions between

them were negligible. The fun
tion f0 
an in
orporate into the theory su
h information

as the wishes of the drivers, response of the driver-
ar system, speed limits, and the


hara
teristi
s of the road. The term (1 − P )c(x, t)[v(x, t) − v]f represents the 
hange

in f 
aused by intera
tions in whi
h 
ars, when intera
ting with 
ars ahead moving with

slower speeds, either pass these 
ars or assume their slower speeds.

The homogeneous time-independent solution is:

f(v) =
f0(v)

1− cT (1− P )[v − v]
. (4.9)

where by homogeneous we mean that f0 is not spatially dependent. The quantity f(v)
des
ribes the situation in whi
h there is a steady state between the slowing down of 
ars


aused by intera
tion pro
esses and the speeding up of 
ars 
aused by passing.

4.4 Individual and 
olle
tive �ow

As indi
ated by Eq. (4.9), we have to distinguish between two 
ases

• Case A: If we 
onsider the 
ase in whi
h

1− Tc(1− P )v > 0.

Then the solution f in Eq. (4.9) is 
hanged to

f(v) =
f0(v)

1 + Tc(1− P )(v − v)
. (4.10)

This solution redu
es to the ideal or desired speed distribution fun
tion in the limit

of vanishing 
on
entration. However, it is 
lear that this solution 
annot, in general,

be valid for arbitrarily high 
on
entrations be
ause whenever

1− Tc(1− P )v < 0,

the distribution fun
tion may be
ome negative, whi
h is 
learly impossible.

• Case B: In this 
ase we 
onsider:

1− Tc(1− P )v = 0. (4.11)

Then Eq. (4.9) redu
es to

f(v) =
f0(v)

Tc(1− P )v
. (4.12)

The important feature to be noted here is that the homogeneous equation 
orresponding

to Eq. (4.12), namely,

Tc(1− P )vf(v) = 0,

admits the singular solution:

f(v) = αcδ(v),
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where α is an arbitrary 
onstant and δ(v) is the Dira
 delta fun
tion. Therefore, the

general solution of Eq. (4.12) is of the form

f(v) =
f0(v)

Tc(1− P )v
+ αcδ(v).

The solution given in Eq. (4.10) 
orresponds to what may be 
alled the individual �ow

pattern and is related in a simple way to the ideal or desired speed distribution fun
tion.

The se
ond solution 
orresponds, on the other hand, to what may be 
alled the 
olle
tive

�ow pattern. Indeed, as shown by Eq. (4.11), the average speed then depends only

on the 
on
entration, the probability of passing P , and the relaxation time T (both P
and T are themselves fun
tions of the 
on
entration), and is independent of the desired

speed distribution fun
tion and, therefore, of the wishes of the drivers. This solution

is 
hara
terized by the o

urren
e of a singularity at the origin. However, the 
riti
al


on
entration at whi
h the individual �ow be
omes 
olle
tive does depend on the desired

speed distribution. In both 
ases the time-independent solution may be written in the

following form:

f(v) =
f0(v)

1 + Tc(1− P )(v − v)
+ αcδ(v), (4.13)

where α is an undetermined 
onstant that may be identi
ally zero. This solution has to

satisfy the following two requirements:

• Normalization. This means that:

c =

∫ ∞

0

f0(v)dv

1 + Tc(1− P )(v − v)
+ αc. (4.14)

• Average Speed. Multiplying Eq. (4.13) by v and integrating, we obtain the 
ondition

cv =

∫ ∞

0

f0(v)dvv

1 + Tc(1− P )(v − v)
. (4.15)

Eq. (4.15) with the aid of the normalization 
ondition Eq. (4.14) maybe transformed into

α(1− Tc(1− P )v) = 0.

We see, therefore, that we have two solutions. The �rst solution 
orresponds to α = 0
(individual �ow), whereas the se
ond 
orresponds to the 
ase

Tc(1− P )v = 1,

with α di�erent from zero (
olle
tive �ow).

There is a striking analogy in the situation des
ribed by these equations with Bose-

Einstein 
ondensation [23℄. In that 
ase, above a 
ertain 
on
entration (for a given tem-

perature) the population distribution of an ideal Bose gas splits into two parts, a regular

part and a singular one. If the 
on
entration is further in
reased beyond its 
riti
al va-

lue, the singular part in
reases relative to the regular part. However, the Bose-Einstein


ondensation o

urs for a quantum system in thermodynami
 equilibrium, whereas the

situation des
ribed here is 
loser to a nonequilibrium stationary state.
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4.5 Numeri
al Solutions

To simplify the notation let,

γ ≡ cT (1− P ) and λ ≡ 1− γv(f), (4.16)

remembering the normalization 
ondition (Eq. (4.14)) and repla
ing f̃0 =
f0
c
, we have:

1 =

∫ ∞

0

f̃0dv

λ+ γv
, (4.17)

for the individual �ow. As γ in
reases, λ de
reases, and be
omes zero for γ = γc (re
all
that λ 
annot be negative). So we 
an �nd γc via

∫
f̃0dv

v
= γc. (4.18)

From this point we have a transition between individual �ow to 
olle
tive one and α 
an

be found via

1 =

∫
f̃0dv

γv
+ α. (4.19)

Prigogine and Herman [18℄ introdu
ed further assumptions regarding the dependen
e of

P and T on the 
on
entration c, whi
h we shall refer to as the Prigogine-Herman model.

We expe
t the passing probability P to de
rease with c, be
ause drivers will �nd it more

di�
ult to overtake a slower vehi
le if adja
ent lanes are 
ongested. (If vehi
les were

truly point parti
les, there would be no su
h di�
ulty.) Prigogine and Herman assumed

a linear relation between P and c, su
h that P = 1 for c = 0, and de
reases to zero at

some maximum 
on
entration, cmax. That is,

P = 1− η with η =
c

cmax

. (4.20)

They further proposed a 
on
entration-dependent relaxation time,

T =
τ(1− P )

P
, (4.21)

where τ is a 
onstant with dimensions of time. Thus, a

ording to Prigogine and Herman,

the greater the value of c, the smaller the value of P , and the longer it takes a driver to

attain the desired speed. In their model, T does not represent an intrinsi
 limitation of

drivers (that is, a rea
tion time) or of their vehi
les (inertia), be
ause T → 0 as c → 0.
Inserting Eqs. (4.20) and (4.21) in Eq. (4.16), we �nd,

γ =
cmaxτη

3

1− η
. (4.22)

For numeri
al studies we always use the simpli�ed equation (4.17), remembering that

γ is given by Eq. (4.22) and λ by Eq. (4.16).
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4.5.1 Numeri
al Method

Consider the numeri
al solution of Eq. (4.17), yielding the value of λ su
h that the

integral is unity, given the fun
tion f̃0(v) and γ, whi
h is determined by the 
on
entration

via Eq. (4.22). Although the numeri
al method is simple, some 
are is required, be
ause

in some 
ases the integral is improper.

Among the many methods for the numeri
al evaluation of integrals, we 
hoose one that

is relatively simple yet a

urate by �tting 
ubi
 polynomials through su

essive groups of

four points,[24℄ whi
h is equivalent to the following expression,

∫ xn

x1

y(x)dx ≃ h

[
3

8
y1 +

7

6
y2 +

23

24
y3 + y4 + y5 + · · ·

+ yn−4 + yn−3 +
23

24
yn−2 +

7

6
yn−1 +

3

8
yn

]
,

where h = (xn − x1)/(n− 1), yj ≡ y(xj), and xj ≡ x1 + (j − 1)h, for j = 1, . . . , n.
Dealing with an in�nite range of integration requires greater 
are. We might trun
ate

the integral, but the error depends on the 
hoi
e of the 
uto�. A more appealing alter-

native is to 
hange variables to map the in�nite range of integration to a �nite one. For

an exponential distribution of desired velo
ities, illustrated in Subse
tion 4.6 , we are led

to Eq. (4.26) for whi
h the substitution t = e−v/v0
results in an integral over the �nite

interval:

1 =

∫ 1

0

dt

λ− γv0 ln t
. (4.23)

On
e we have a method for evaluating the integral over velo
ities, we use a root-�nding

method to solve Eq. (4.26). For equations of the type used in Ref. [18℄ and the ones of

interest here, the se
ant or Newton-Raphson methods are appropriate [25℄. Although

both are e�
ient, we will use the se
ant method, a re
ursive method used to �nd the

solution to the equation f(x) = 0 via the relation,

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
,

starting from a pair of distin
t initial values, x1 and x2. The idea is to follow the se
ant

line to its x-inter
ept and use that as an approximation for the root. This idea is similar

to the Newton-Raphson method, whi
h follows the tangent line, but the se
ant method

does not require knowledge of the derivative.

The 
omputational pro
edure for solving Eq. (4.17) is as follows. Let g(λ, n) be the

value of the integral in Eq. (4.17) over the interval [v1, v2], given by a fun
tion that employs

the method of Eq. (4.23) using n integration points. The latter is 
hosen a

ording to the

desired pre
ision, using a fun
tion int(λ), whi
h evaluates the integral using su

essively

larger numbers of points, until the relative di�eren
e is smaller than a 
ertain toleran
e.

4.6 Some distributions of desired velo
ities

As example, we present the study of two distributions of desired velo
ities, the �rst


orresponds to exponential distribution of desired velo
ities in whi
h was dis
ussed in Ref.

[18℄ and the se
ond 
orresponds to Gaussian distribution of desired velo
ities performed

in our arti
le atta
hed.
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4.6.1 Exponential distribution of desired velo
ities

As an illustration, we solve the Prigogine-Herman model for an exponential distribu-

tion of desired velo
ities, as dis
ussed in Ref. [18℄. Let

f0 = Θ(v)
ηcmax

v0
e−v/v0 , (4.24)

for whi
h the mean velo
ity is v0. In this 
ase the most probable desired velo
ity is zero,

and be
ause f0(v = 0) > 0, there is no transition. The stationary solution is

f =
cmaxηe

−v/v0

v0(λ+ γv)
, (4.25)

where λ is determined by the normalization 
ondition,

1 =
1

v0

∫ ∞

0

e−v/v0

λ+ γv
dv. (4.26)

The value of λ for given values of γ and v0 is obtained numeri
ally as we have des
ribed.

Figure 4.1a shows the normalized �ux q/cmax as a fun
tion of the normalized 
on
en-

tration η = c/cmax. Note the linear relation between �ux and 
on
entration for small η.
In this regime the slope of ea
h 
urve depends on v0, the average desired velo
ity. At high


on
entrations the normalized �ux is independent of v0. The mean velo
ity is plotted

versus η in Fig. 4.1b for several values of v0. As for the 
ase of the normalized �ux, all


urves exhibit the same behavior at high 
on
entrations.

(a) (b)

Figure 4.1: (a) The normalized �ux Q ≡ q/cmax and (b) normalized mean velo
ity υ = v̄/v0 versus the
normalized 
on
entration η = c/cmax for cmaxτ = 0.1 and mean desired velo
ity v0. At low 
on
entrations

the mean velo
ity is 
lose to its desired value, and the normalized �ux is proportional to v0. At larger


on
entrations the normalized �uxes for di�erent values of v0 approa
h a 
ommon fun
tion.

It is interesting to 
ompare the stationary velo
ity distribution with the 
orresponding

distribution of desired velo
ities. Figure 4.2 shows that the stationary velo
ity distribution

is 
lose to the distribution of desired velo
ities for a relatively low 
on
entration (η =
0.2). At a higher 
on
entration (η = 0.4, Fig. 4.3), the two distributions di�er, with

higher probabilities for low velo
ities in the stationary velo
ity distribution than in the

distribution of desired velo
ities.
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Figure 4.2: (Color online) Distribution of desired velo
ities (dashed lines) and stationary velo
ity

distribution (
ontinuous lines) for exponential desired velo
ity distributions with v0 as indi
ated; η = 0.2.
In all 
ases, the stationary distribution ex
eeds the desired one at low velo
ities, and vi
e-versa.

Figure 4.3: (Color online) Distribution of the desired velo
ity and stationary velo
ity distribution as in

Fig. 4.2 for η = 0.4. At this 
on
entration the di�eren
es between the stationary and desired distributions

are more dramati
 than in Fig. 3.

4.6.2 Gaussian distribution of desired velo
ities

We now 
onsider a more realisti
 example that has re
eived little attention until now

� a Gaussian-like distribution of desired velo
ities,

f0(v) = cA
[
e−(v−v0)2/v2a − e−v20/v

2
a

]
Θ(v) Θ(2v0 − v). (4.27)
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The parameter v0 represents the mean desired velo
ity, and va is a measure of the dis-

persion of the distribution. Be
ause of the step fun
tions, f0 is zero outside the interval

[0, 2v0]. The se
ond term in bra
kets ensures that f0 goes to zero 
ontinuously at the

endpoints of this interval. The normalization fa
tor A is approximately (va
√
π)−1

for

v0 ≫ va.
Be
ause

∫
(f0/v)dv < ∞, there is a transition between individual and 
olle
tive �ow.

A

ording to Eq. (4.18), the 
riti
al point is given by

γc = A

∫ 2v0

0

dv

v

[
e−(v−v0)2/v2a − e−v20/v

2
a

]
,

whi
h is readily evaluated numeri
ally. We pro
eed as before and 
al
ulate the stationary

velo
ity distribution, f(v), and the stationary mean velo
ity and �ux. Figure 4.4 shows

the �ux Q as a fun
tion of normalized 
on
entration for several values of v0, and va = 20.
As expe
ted, the slope of q(η) jumps from a positive to a negative value at the transition

from individual to 
olle
tive �ow. In the latter regime, q(η) is 
hara
terized by a single

fun
tion, independent of v0. The larger the value of v0, the smaller the 
riti
al density ηc.

Figure 4.4: (Color online) The �ux Q as a fun
tion of the normalized 
on
entration η in the Prigogine-

Herman model using the distribution of desired velo
ities of Eq. (4.27), with va = 20. The transition

points are ηc = 0.375, 0.395, 0.421, and 0.458, for for v0 = 120, 100, 80, and 60, respe
tively. Above the


riti
al 
on
entration, the �ux follows a master 
urve independent of v0.

A notable aspe
t of the transition is the sudden 
hange in the stationary distribution

at the 
riti
al 
on
entration at whi
h the distribution splits into a regular and a singular

part. In Fig. 4.5, whi
h 
ompares the stationary velo
ity distribution and distribution

of desired velo
ities for several 
on
entrations in the individual �ow regime, we see that

the two distributions have the same area, as required by normalization. For η = 0.15
the distributions are indistinguishable; at higher 
on
entrations small di�eren
es appear.

The 
riti
al 
on
entration, ηc = 0.421, represents the limit for individual �ow; for η > ηc
the stationary velo
ity distribution is the sum of a regular part, given by f0/(γv), and
a singular part, αcδ(v), with α given by Eq. (4.19). In Fig. 4.6 we 
ompare the regular
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part of the stationary velo
ity distribution with the 
orresponding distribution of desired

velo
ities for η > ηc. The area of the regular part of the stationary velo
ity distribution

is smaller than that of the distribution of desired velo
ities. The di�eren
e 
orresponds

to the δ-fun
tion at the origin.

Figure 4.5: The stationary velo
ity distribution (solid line) and 
orresponding distribution of desired

velo
ities (dashed line), for 
on
entrations in the individual �ow regime. The distribution of desired

velo
ities is given by Eq. (4.27) with v0 = 80 and va = 20. The di�eren
e between the stationary and

desired distributions grows with in
reasing 
on
entration.

4.7 Paveri-Fontana model

In the basi
 Prigogine-Boltzmann (PB) model, the 
hanges of vehi
ular speeds are

assumed to be due to two main pro
esses: the binary intera
tion pro
ess (namely, the

slowing down pro
ess undergone by a fast 
ar whi
h en
ounters a slow one); and the

relaxation pro
ess (the pro
ess due to the 
hange in speed whi
h o

urs when a driver a
-


elerates a vehi
le towards a desired speed). Employing a set of appropriate assumptions,

the original Prigogine-Boltzmann equation was proposed, for the 
ase where drivers do

not 
hange their desired speeds a

ording to tra�
 
onditions. In order to a

ount for the

adaptive behavior of drivers, that is in order to a

ount for the fa
t that tra�
 
onditions

do a
tually a�e
t the �programs� (desired speeds) of drivers, an adjustment term was in-

trodu
ed on the right side of the basi
 Prigogine-Boltzmann equation by Paveri-Fontana.

Let g(x, v, t;ω) be the one-vehi
le distribution fun
tion for vehi
les whose desired speed

is ω. Namely, let g(x, v, t;ω)dxdvdω equal the (expe
ted) number of vehi
les, at time t,
in dx (around x) and dv (around v) with desired speed in dω (around ω). Then one �nds

that:

f(x, v, t) =

∫ ∞

0

g(x, v, t;ω)dω and f0(x, ω, t) =

∫ ∞

0

g(x, v, t;ω)dv,

where f(x, v, t) and f0(x, ω, t) are the previously de�ned one-vehi
le speed distribution

fun
tion and desired speed distribution fun
tion, respe
tively. Vehi
ular 
on
entration
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Figure 4.6: Regular part of the stationary velo
ity distribution (solid line) and the 
orresponding

distribution of desired velo
ities (dashed line) for densities in the 
olle
tive �ow regime; parameters as in

Fig. 4.5. Note the di�eren
es in amplitude between the stationary and desired distributions, asso
iated

with a population of 
ars having velo
ity zero in the stationary distribution.

c(x, t) and �ux q(x, t) are de�ned by:

c(x, t) =

∫ ∞

0

∫ ∞

0

g(x, v, t;ω)dωdv and q(x, t) =

∫ ∞

0

∫ ∞

0

vg(x, v, t;ω)dωdv

the assumptions regarding the intera
tion term are the same as those employed by PB.

so (
∂f

∂t

)

int

= f(x, v, t)

∫ ∞

v

(1− P )(u− v)g(x, u, t;ω)du

− g(x, v, t;ω)

∫ v

−∞

du(1− P )(v − u)f(x, u, t).

The improved Prigogine-Herman equation is:

[
∂

∂t
+ v

∂

∂x

]
g(x, v, t;ω) +

∂

∂v

[
ω − v0

T
g(x, v, t;ω)

]
=

f(x, v, t)

∫ ∞

v

(1− P )(u− v)g(x, u, t;ω)du

−g(x, v, t;ω)

∫ v

−∞

du(1− P )(v − u)f(x, u, t),

with

f(x, v, t) =

∫ ∞

0

g(x, v, t;ω)dω.

The term ∂/∂v[[(ω−v)/T ]g(x, v, t;ω)] is related to relaxation. Di�erent from original PB

model for ea
h x value, we expe
t that a vehi
le with initial velo
ity v0 approa
hes to its

desirable velo
ity ω a

ording to:

v(t) = ω − (w − v0)exp
−t/T .
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The a

eleration of a vehi
le moving with initial speed v0 and desired speed ω is

a =
w − v0

T
.

To 
ompare the equation proposed here with the original PB equation, note that the

main 
hange depends on the introdu
tion of g(x, v, t;ω). The 
ollision pro
ess is des
ribed
in the same way in both treatments. The des
ription of the time relaxation pro
ess is

based, in both approa
hes, on assumption I (existen
e of a unique time relaxation) and

assumption II (no 
hanges in driving programs): assumption III (on the exponential

approa
h to the desired velo
ity) repla
es the assumption of an exponential relaxation.

The main short
oming of the Paveri-Fontana equation is the di�
ulty en
ountered in

seeking analyti
al solutions when the 
ollisional pro
ess 
annot be negle
ted. In this

sense, the PB equation is mu
h easier to manipulate. Nevertheless this 
ontribution has

been used extensively in re
ent approa
hes in kineti
 models. Wagner et al. [26℄ proposed

a tra�
 �ow model using the desired velo
ity proposed by Paveri and Fontana [27℄. By

taking into a

ount the nonzero length of vehi
les, these authors extend the des
ription

of Paveri and Fontana to the high-density regime. In Ref. [28℄ a su

essive slowing-

down pro
ess is 
onsidered, in whi
h drivers rea
t to tra�
 
onditions in a more 
autious

manner.
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Chapter 5

ANaS
h Model

5.1 Introdu
tion

The Nagel-S
hre
kenberg (NS) model holds a 
entral position in tra�
 modeling via


ellular automata, be
ause it reprodu
es features 
ommonly found in real tra�
, su
h as

the transition between free �ow and a jammed state, start-and-stop waves, and sho
ks

(due to driver overrea
tion) [3℄. This simple model represents the e�e
t of �u
tuations

in driving behavior by in
orporating a sto
hasti
 element: the spontaneous redu
tion of

velo
ity with probability p.
Although the NS model has been studied extensively, the nature of the transition

between free and jammed �ow, in parti
ular, whether it 
orresponds to a 
riti
al point,

remains 
ontroversial [5, 4, 7, 29℄. A proposed de�nition of the order parameter in the

NS model [30℄, and a subsequent 
omment [31, 32℄ are pertinent to this issue. A

ording

to the authors of Ref. [31℄, results for the lifetime distribution, spatial 
orrelations, and

relaxation time provide eviden
e for a �
rossover type jamming transition"from free �ow

to the jammed regime, but not for a well de�ned phase transition.

In the original NS model, at ea
h time step (spe
i�
ally, in the redu
tion substep),

a driver with nonzero velo
ity redu
es her speed with probability p. Here we propose a

simple yet 
ru
ial modi�
ation, eliminating 
hanges in speed in this substep when the

distan
e to the 
ar ahead is greater than the 
urrent speed. We believe that this rule

re�e
ts driver behavior more faithfully than does the original redu
tion step, in whi
h

drivers may de
elerate for no apparent reason. While one might argue that distra
tions

su
h as 
ell phones 
ause drivers to de
elerate unne
essarily, we 
an expe
t that highways

will be in
reasingly populated by driverless vehi
les exhibiting more rational behavior.

The modi�ed model, whi
h we 
all the Absorbing Nagel-S
hre
kenberg (ANS) model,

exhibits a line of absorbing-state phase transitions between free and 
ongested �ow in

the ρ − p plane. (Here ρ denotes the density, i.e., the number of vehi
les per site.) The

modi�
ation proposed here allows us to understand the nature of the phase transition in

the original model, and to identify a proper order parameter. The ANS model exhibits a

surprising reentrant phase diagram. Some time ago, Wang studied a model with the same

modi�ed redu
tion step, and found that free �ow is absorbing for all densities ≤ 1/7,
regardless of p [15℄. This model di�ers from ours in that a

eleration to the maximum

allowed speed o

urs in a single update, rather than in in
rements.

Regarding the nature of the phase transition in the original NS model, the key insight

is that, for p = 0, it exhibits a transition between an absorbing state (free �ow) and an

a
tive state (
ongested �ow) at density ρ = 1/(vmax+1), where vmax denotes the maximum
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speed. Free �ow is absorbing be
ause ea
h 
ar advan
es the same distan
e in ea
h time

step, so that the 
on�guration simply exe
utes rigid-body motion (in the 
o-moving frame

it is frozen). We note that for ρ < 1/(vmax + 1), many absorbing 
on�gurations exist;

whi
h one is attained by the dynami
s depends on the initial 
ondition. Congested �ow, by


ontrast, is a
tive in the sense that the distan
es between vehi
les 
hange with time. Below

the 
riti
al density, a
tivity (if present initially) dies out, and an absorbing 
on�guration

is rea
hed; for ρ > 1/(vmax + 2) there must be a
tivity, due to la
k of su�
ient spa
e

between vehi
les. Setting p > 0 in the original model is equivalent to in
luding a sour
e of

spontaneous a
tivity. Sin
e su
h a sour
e eliminates the absorbing state [33℄, the original

NS model does not possess a phase transition for p > 0. (It should nonetheless be possible

to observe s
aling phenomena as p → 0.) A similar 
on
lusion was rea
hed by Souza and

Vilar [29℄, who drew an analogy between the phase transition at p = 0 and a quantum

phase transition at temperature T = 0. In their analogy, p > 0 
orresponds to T > 0, for
whi
h, sensu stri
to, there is again no phase transition.

5.2 Model

The NS model and its absorbing 
ounterpart (ANS) are de�ned on a ring of L sites,

ea
h of whi
h may be empty or o

upied by a vehi
le with velo
ity v = 0, 1, ..., vmax.

(Unless otherwise noted, we use vmax = 5, as is standard in studies of the NS model.)

The dynami
s, whi
h o

urs in dis
rete time, 
onserves the number N of vehi
les; the

asso
iated intensive 
ontrol parameter is ρ = N/L. Denoting the position of the i-th
vehi
le by xi, we de�ne the headway di = xi+1 − xi − 1 as the number of empty sites

between vehi
les i and i+ 1. Ea
h time step 
onsists of four substeps, as follows:

• Ea
h vehi
le with vi < vmax in
reases its velo
ity by one unit: vi → vi + 1

• Ea
h vehi
le with vi > di redu
es its velo
ity to vi = di.

• NS model: ea
h vehi
le redu
es its velo
ity by one unit with probability p.
ANS model: ea
h vehi
le with vi=di redu
es its velo
ity by one unit with probability
p.

• All vehi
les advan
e their position in a

ord with their velo
ity.

In pra
ti
e, given the velo
ities vi and headways di, there is no need to keep tra
k

of positions: the �nal substep is simply di → di − vi + vi+1 for i = 1, ..., N − 1, and
dN → dN − vN + v1.

The modi�
ation of the third substep leads to several notable 
hanges in behavior, as

re�e
ted in the fundamental diagram shown in Fig. 5.1, whi
h 
ontrasts the �ux-density

relation in the NS and ANS models. In the ANS model the �ux exhibits a dis
ontinuous

�rst derivative at a 
ertain density ρc(p) (for any p between zero and one), while in the

NS model the �ux and other observables are smooth fun
tions of density for p > 0.
Thus the ANS model exhibits a phase transition for general p, whereas the NS model

has a phase transition only for p = 0 [30, 31℄. The �ux q generally takes its maximum

value at the transition. (For small p, however, maximum �ux o

urs at a density above

ρc = 1/(vmax + 2), approa
hing ρ = 1
vmax+1

for p = 0). The low-density, absorbing phase

has vi = vmax and di ≥ vmax + 1, ∀i; in this phase all drivers advan
e in a deterministi


manner, with the �ux given by j = ρvmax. In the a
tive state, by 
ontrast, a nonzero
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Figure 5.1: (Color online) Flux j versus density in the NS and ANS models for probabilities p = 0.1
(upper) and p = 0.5 (lower). System size L = 105; vehi
les are distributed randomly at t = 0. Error bars
are smaller than symbols.

fra
tion of vehi
les have di ≤ vmax. For su
h vehi
les, 
hanges in velo
ity are possible,

and the 
on�guration is nonabsorbing. The stationary �uxes in the NS and ANS models

di�er signi�
antly over a 
onsiderable interval of densities, espe
ially for high values of p.
Below the 
riti
al density ρc, this di�eren
e is due the existen
e of an absorbing phase in

the ANS model. For densities slightly above ρc, most vehi
les have velo
ity vi = vmax and

di = vmax + 1, although there is no absorbing state. As the density approa
hes unity, the

di�eren
es between the �uxes in the ANS and NS models be
ome smaller.

Figure 5.2: (Color online) Steady-state �ux versus density in the ANS model for (a) p = 0.1, 0.3 and 0.5,
and (b) p = 0.5, 0.7 and 0.9. Note that the density of maximum �ux �rst de
reases, and then in
reases,

with in
reasing p; the minimum o

urs near p ≃ 0.5. System size L = 105; vehi
les are distributed

randomly at t = 0. Error bars are smaller than symbols.

For �xed de
eleration probability p, the �ux j = ρv �rst grows, and then de
reases as

we in
rease the vehi
le density ρ. An intriguing feature is the dependen
e of the density
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at maximum �ux on the probability p: Fig. 5.2 shows that the density at maximum �ux

de
reases with in
reasing p until rea
hing a minimum near p = 0.5, and subsequently

in
reases with in
reasing p. This re�e
ts the reentrant nature of the phase diagram, as

dis
ussed in Se
. 5.3.

5.2.1 Models with Many Absorbing States

The universality of DP (dire
ted pe
olation) 
riti
al behavior for models with a unique

absorbing state is well established, models su
h as the 
onta
t pro
ess (CP), S
hlögl's �rst

model, and monomer-dimer model of Zi�, Gulari, and Barshad (ZGB) belong to the same

universality 
lass. The study of many other models demonstrates the robustness of DP


riti
al behavior in spite of quite dramati
 di�eren
es in the evolution rules of the various

models. Presently there is substantial eviden
e in favor of the hypothesis that models

with a s
alar order parameter exhibiting a 
ontinuous transition to a unique absorbing

state generi
ally belong to the universality 
lass of dire
ted per
olation. For models with

more than one absorbing state there are no 
lear ideas about the possible universality


lasses.

A new kind of 
riti
al behaviour at an absorbing-state phase transition was �rst de-

monstrated by Grassberger, Krause, and von der Twer in a study of a model involving the

pro
esses X → 3X and 2X → 0. This model is very similar to a 
lass of models known

as bran
hing annihilating walks (BAW). In the BAW a parti
le jumps, with probability

p, to a nearest neighbor, and if this site is o

upied both parti
les are annihilated. With

probability 1 − p the parti
le produ
es n o�spring whi
h are pla
ed on the neighboring

sites. If an o�spring is 
reated on a site whi
h is already o

upied, it annihilates with the

o

upying parti
le leaving an empty site. For n even these models have non-DP beha-

vior, while for n odd the behavior is 
ompatible with DP. Note that in both the model

proposed by Grassberger, Krause, and von der Twer and in BAW with an even number

of o�spring the number of parti
les is 
onserved modulo 2. This 
onservation law might

be responsible for the non-DP behaviour. So due the importan
e in studying the 
riti
al

behaviour of systems with many absorbing states, we present a brief dis
ussion about

two models that show many absorbing states and have DP behaviour. These models are

Dimer rea
tion model (DR) and pair 
onta
t pro
ess (PCP).

In a one-dimensional latti
e the DR model [34℄ parti
les may not o

upy neighboring

sites. If sites i, i − 1, and i + 1 are va
ant, we say that site i is open; adsorption

happens only at open sites. If we think of the sites as 
orresponding to bonds in the dual

latti
e, the parti
les 
orrespond to dimers o

upying bonds in the dual latti
e

1

. Suppose

a parti
le has just arrived at site i. If sites i − 3, i − 2, i + 2, and i + 3 are all va
ant,

the parti
le remains. If any of the four sites is o

upied, the new parti
le rea
ts with

one other parti
le with probability 1 − p and remains with probability p. The se
ond

neighbors have priority in the rea
tion: the new parti
le 
an rea
t with a third neighbor

only if both se
ond-neighbor sites are empty. The rea
tion rules are illustrated in Fig.

5.3. We note that rea
tions with third neighbors are essential, for without them there

is no a
tive steady state even for p = 0. There are many absorbing 
on�gurations for

the DR: any 
on�guration without a three-site va
an
y 
luster, i.e., devoid of open sites.

1

The latti
e points of the dual latti
e are de�ned by the 
enters of the unit 
ells of the latti
e. A bond

in the dual latti
e is pla
ed wherever it does not 
ross a bond of the latti
e.
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Figure 5.3: Illustrative pi
ture shows dimer rea
tion rules involving a newly adsorbed parti
le (at the


enter of the 
luster) and a se
ond or third neighbor.

Of these absorbing states, the one with maximal parti
le density 
onsists of alternating

va
ant and o

upied sites; in the one with minimal density, o

upied sites alternate with

pairs of va
ant sites. Clearly any sequen
e ogogogog, where o means o

upied and g 
an

be a one- or two-site gap, is absorbing.

In Jensen's pair 
onta
t pro
ess PCP [35℄, ea
h site of the one-dimensional latti
e Z
is either va
ant or o

upied by a parti
le. Ea
h nearest-neighbor (NN) pair of parti
les

has a rate p of mutual annihilation, and a rate 1− p of attempted 
reation. In a 
reation

event involving parti
les at sites i and i+1, a parti
le may appear (with equal likelihood)

at site i i− 1 or at i+2, provided the 
hosen site is va
ant. (Attempts to pla
e a parti
le

at an o

upied site fail.) In an annihilation event, a NN pair of parti
les is removed. The

rules are illustrated in Fig. 5.4 (a) and the possible absorbing states are shown in 5.4 (b).

In the ANS model the density ρ = 1/7 has an only absorbing 
on�guration 
omposed

by a homogeneous distribution (one vehi
le followed by six empty 
ells). For densities

ρ < 1/7, many states are absorbing sin
e di ≥ 6 and
∑n

i=1 di = (1−ρ)L/ρ. We show in �g

5.5 the unique absorbing 
on�guration for ρ = 1/7 and possible absorbing 
on�gurations

for ρ = 1/8 and 1/9. We dis
uss in the following se
tions the 
riti
al exponents of ANS

model and its universality 
lass.

5.2.2 Spe
ial 
ases: p = 0 and p = 1

For the extreme values p = 0 and p = 1 the ANS model is deterministi
; these two


ases deserve 
omment. For 
ompleteness we mention the 
orresponding results pertaining

to the NS model given in [36℄, whi
h also in
ludes a dis
ussion of mean �eld theories. For

p = 0, the NS and ANS models are identi
al. The system rea
hes an absorbing state,

vi = vmax, ∀i, for densities ρ ≤ 1/(vmax + 1). For higher densities we observe nonzero

a
tivity in the steady state. We note however that there are spe
ial 
on�gurations, in

whi
h vi = di, ∀i, with some vi < vmax, whose evolution 
orresponds to a rigid rotation

of the pattern. (A simple example is vi = di = n, ∀i, with n = 1, 2, 3 or 4, and density
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Figure 5.4: Illustrative pi
ture shows the update rules of PCP model (a). Possible absorbing 
on�gu-

rations (b).

Figure 5.5: Illustrative pi
ture shows the possible ANS absorbing 
on�gurations for densities ρ = 1/7,
1/8 and 1/9. Note that for ρ = 1/7 the absorbing 
on�guration is unique.

ρ = 1/(n+1).) Sin
e our interest here is in the model with 0 < p < 1 we do not 
omment

further on su
h 
on�gurations.

For the NS model with p = 1, from one step to the next, ea
h velo
ity vi is nonin-

reasing. (Of 
ourse vi → vi + 1 at the a

eleration substep, but this is immediately

undone in the subsequent substeps.) Thus if the evolution leads to a state in whi
h even

one vehi
le has velo
ity zero, all vehi
les eventually stop. Su
h an event is inevitable for

ρ > 1/3, sin
e in this 
ase di ≤ 1 for at least one vehi
le, whi
h is obliged to have vi = 0
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after one step. For ρ ≤ 1
3
, steady states with nonzero �ux are possible, depending on

the 
hoi
e of initial 
ondition. Su
h 
on�gurations are metastable in the sense that the

stationary state depends on the initial distribution. In the ANS model with p = 1 the

mean velo
ity in steady state is zero only for ρ ≥ 1/2. For ρ ≤ 1/(vmax +2), we �nd that

the system always rea
hes an absorbing 
on�guration with v = vmax. In the remaining

interval, 1/(vmax + 2) < ρ ≤ 1/2, we �nd v = 1− 2ρ.

Figure 5.6: Fundamental Diagram for ANS model with p = 1.

5.3 Phase diagram

5.3.1 Initial 
ondition dependen
e

In studies of tra�
, states are 
alled metastable if they 
an be obtained from some,

but not all initial 
onditions [37, 38, 11, 39, 40℄; su
h states are an essential 
omponent

of real tra�
. Sin
e the NS model is not 
apable of reprodu
ing this feature, models with

modi�ed update rules have been investigated by several authors [37, 38, 11℄. In the ANS

model, by 
ontrast, there is a region in the ρ− p plane in whi
h, depending on the initial


ondition, the system may evolve to an a
tive state or an absorbing one. Our results

are 
onsistent with the usual s
enario for absorbing-state phase transitions [33, 41, 42℄:

a
tivity in a �nite system has a �nite lifetime; in the a
tive phase, however, the mean

lifetime diverges as the system size tends to in�nity. Properties of the a
tive phase may be

inferred from simulations that probe the quasistationary regime of large but �nite systems

[44℄.

To verify the existen
e of metastable states in the ANS model, we study its evolution

starting from two very di�erent 
lasses of initial 
onditions (ICs): homogeneous and

jammed. In a homogeneous IC, the headways di are initially uniform as possible, given

the density ρ = 1/(1 + d), where d denotes the mean headway. In this 
ase the initial

velo
ity is vmax for all vehi
les. In a jammed IC, N vehi
les o

upy N 
ontiguous sites,

while the remaining N(ρ−1 − 1) sites are va
ant; in this 
ase di = 0 for i = 1, ..., N − 1,
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and only vehi
le N has a nonzero initial velo
ity (vN = vmax). Homogeneous ICs are

mu
h 
loser to an absorbing 
on�guration than are jammed ICs. We note that random

initial 
onditions lead to the same steady state as jammed ICs.

Figure 5.7: (Color online) Steady-state �ux versus density for p = 0.1 and L = 105. Homogeneous

(stars) and jammed (
ir
les) ICs lead to identi
al stationary states (panel a) ex
ept for a small interval

of densities near maximum �ux highlighted in panel b. Error bars are smaller than symbols.

Figure 5.7 shows the fundamental diagram obtained using homogeneous and jammed

ICs for p = 0.1; for this value of p the stationary state is the same, regardless of the IC,

ex
ept near ρ = 1
7
where, for the homogeneous ICs, an absorbing 
on�guration is attained,

having a greater steady-state �ux than obtained using jammed ICs. For higher probabi-

lities p, we �nd a larger interval of densities in whi
h the stationary behavior depends in

the 
hoi
e of IC. In Fig. 5.8, for p = 0.5, this interval 
orresponds to 0.118 ≤ ρ ≤ 0.143;
higher �uxes (bla
k points) are obtained using homogeneous ICs, and lower �uxes (red)

using jammed ICs. Homogeneous ICs rapidly evolve to an absorbing 
on�guration, while

jammed ICs, whi
h feature a large initial a
tivity, do not fall into an absorbing 
on�gu-

ration for the duration of the simulation (tmax = 107), for the system size (L = 105) used
here. In Fig. 5.8, the �ux obtained using jammed ICs (red stars) exhibits a dis
ontinuous

�rst derivative, signaling a 
ontinuous phase transition. The �ux for homogeneous ICs

(bla
k 
ir
les), exhibits a downward jump at ρ = 1/7. While the latter might be inter-

preted as eviden
e of a dis
ontinuous phase transition, we note that the absorbing state,

to whi
h homogenous ICs evolve for smaller densities, 
eases to exist for ρ > 1/7. Thus
ρ = 1/7 
an be seen as the terminal line of the absorbing phase. As in sandpile models,

the absorbing-state phase transition o

urs at a smaller density (in the ANS model, that

marking the dis
ontinuity in the derivative of j), at whi
h a nonabsorbing (a
tive) phase

�rst appears. For 0 < p < 1, the properties of the a
tive phase (obtained using either

jammed or random ICs) are nonsingular at ρ = 1/7.
Systemati
 investigation of the steady-state �ux obtained using homogeneous and

jammed ICs leads to the 
on
lusion that the ρ - p plane 
an be divided into three regions.

To begin, we re
all that for ρ > 1/(vmax + 2) and p > 0, the mean velo
ity v must be

smaller than vmax. Thus the a
tivity is nonzero and the 
on�guration (i.e., the set of

values vi and di) 
hanges with time. In this region, homogeneous and jammed ICs always

lead to the same steady state.

For ρ ≤ 1/(vmax + 2), absorbing 
on�gurations exist for any value of p. There is

nevertheless a region with ρ < 1/(vmax +2) in whi
h a
tivity is long-lived. In this region,
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Figure 5.8: (Color online) Steady-state �ux versus density as in Fig. 5.7, but for p = 0.5.

whi
h we 
all the a
tive phase, the steady state depends on whether the IC has little

a
tivity (homogeneous) or mu
h a
tivity (jammed). For smaller densities, all ICs evolve

to an absorbing 
on�guration; we 
all this the absorbing phase. The boundary between

the a
tive and absorbing phases, determined via the 
riterion of di�erent steady states for

homogeneous and jammed ICs, is shown in Fig. 5.9. We note that in Wang's model [15℄

there are only two regions: an absorbing phase for ρ ≤ 1/7 and an a
tive one for ρ > 1/7.
Our results are 
onsistent with the following s
enario, familiar from the study of

phase transitions to an absorbing state [33, 41, 42℄: for �nite systems, all ICs with ρ <
1/(vmax +2) and p > 0 eventually fall into an absorbing 
on�guration. Within the a
tive

phase, however, the mean lifetime of a
tivity grows exponentially with system size. The

phase boundary represents a line of 
riti
al points, on whi
h the lifetime grows as a power

law of system size. (Further details on 
riti
al behavior are dis
ussed in Se
. 5.4.) A

surprising feature of the phase boundary is that it is reentrant: for a given density in the

range 0.116 < ρ < 1/(vmax +2), the absorbing phase is observed for both small and large

p values, and the a
tive phase for intermediate values. The reason for this is dis
ussed in

Se
. III.C. We denote the upper and lower bran
hes of the phase boundary by p+(ρ) and
p−(ρ), respe
tively; they meet at ρc,< ≃ 0.116.

The phase boundary is singular at its small-p limit. As p tends to zero from positive

values, the 
riti
al density approa
hes 1/7, but for p = 0 the transition o

urs at ρ = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar to that of a sto
hasti


sandpile [45, 46℄. In the sandpile, there are no absorbing 
on�gurations for parti
le density

ρ > zc−1, where zc denotes the toppling threshold; nevertheless, the absorbing-state phase
transition at a density stri
tly smaller than this value. Similarly, in the ANS model there

are no absorbing 
on�gurations for ρ > 1/7, but the phase transition o

urs at some

smaller density, depending on the de
eleration probability p. Further parallels between

the ANS model and sto
hasti
 sandpiles are noted below.

The phase boundary shown in Fig. 5.9 represents a preliminary estimate, obtained

using the following 
riterion. Points along the lower 
riti
al line p−(ρ) 
orrespond to the

smallest p value su
h that ea
h of 200 arbitrary ICs remain a
tive during a time of 107

steps, in a system of L = 105 sites. Similarly, p+(ρ) 
orresponds to the largest p value

su
h that all 200 realizations remain a
tive. For sele
ted points, a pre
ise determination

was performed, as des
ribed in Se
. 5.4. We defer a more pre
ise mapping of the overall

phase diagram to future work.
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Figure 5.9: (Color online) Boundary between a
tive and absorbing phases in the ρ - p plane. Bla
k

points (
ir
les) joined by lines: preliminary estimates from initial-
ondition dependen
e as explained in

text. Isolated red points (stars): pre
ise estimates obtained via �nite-size s
aling as des
ribed in Se
. IV.

The open 
ir
le at ρ = 1/7, p = 0 is not part of the phase boundary: for p = 0 the transition o

urs at

ρ = 1/6. The open 
ir
le ρ = 1/7, p = 1 marks the other end of the phase boundary; we note however

that at this point, all initial 
onditions evolve to the absorbing state.

The phase transitions at p−(ρ) and p+(ρ) appear to be 
ontinuous. Figure 5.10 shows

the steady-state a
tivity (de�ned below) versus p for density ρ = 1/8. In the vi
inity of

the transition, the 
urves be
ome sharper with in
reasing system size, as expe
ted at a


ontinuous phase transition to an absorbing state.

5.3.2 Order parameter

Having identi�ed a 
ontinuous absorbing-state phase transition in the ANS model,

further analysis requires that we de�ne an appropriate order parameter or a
tivity density.

Sin
e the absorbing state is 
hara
terized by vi = vmax, ∀i, one might be in
lined to de�ne

the a
tivity density simply as ρa = vmax − v. The problem with this de�nition is that not

all 
on�gurations with vi = vmax, ∀i are absorbing: a vehi
le with di = vmax may redu
e

its speed to vmax − 1, yielding a
tivity in the �rst sense. We de�ne the a
tivity density

as:

ρa = vmax − v + pρa,2 ≡ ρa,1 + pρa,2, (5.1)

where ρa,2 denotes the fra
tion of vehi
les with vi = di = vmax. A

ording to this de�-

nition, the a
tivity density is zero if and only if the 
on�guration is absorbing, that is,

if vi = vmax, and di > vmax, ∀i. Studies of large systems near the 
riti
al point reveal

that ρa,1 >> ρa,2, so that the latter 
an be negle
ted in s
aling analyses. It is nonetheless

essential to treat 
on�gurations with ρa,2 > 0 as a
tive, even if ρa,1 = 0.
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Figure 5.10: (Color online) Steady-state a
tivity ρa versus p for vehi
le density ρ = 1/8. System sizes

(upper to lower 
urves) N = 1000, 2000 and 4000. Error bars smaller than symbols.

5.3.3 Reentran
e

In this subse
tion we dis
uss the reason for reentran
e, that is, why, for ρc,< < ρ < ρc,
the system rea
hes the absorbing state for large p as well as small p. Sin
e de
eleration

is asso
iated with generation of a
tivity (i.e., of speeds < vmax), a redu
tion in a
tivity

as p tends to unity seems 
ounterintuitive. The following intuitive argument helps to

understand why this happens. For p ≃ 0, vehi
les rarely de
elerate if they have su�
ient

headway to avoid rea
hing the position of the 
ar in front. This tends to in
rease the

headway of the 
ar behind, so that (for ρ < ρc), all headways attain values ≥ vmax + 1,
whi
h represents an absorbing 
on�guration. For p = 1, a 
ar with speed vi = di always
de
elerates, whi
h tends to in
rease its own headway. In either 
ase, p = 0 or p = 1, as
redu
ed headway (i.e., inter-vehi
le intervals with di < vmax + 1) is transferred down the

line, vehi
les may be obliged to de
elerate, until the redu
ed headway is transferred to an

interval with headway di large enough that no redu
tion in velo
ity is required. [Intervals

with di > vmax + 1, whi
h we 
all troughs, always exist for ρ < ρc = 1/(vmax + 2)℄.
When all redu
ed headways are annihilated at troughs, the system attains an absorbing


on�guration.

Call events in whi
h a vehi
le having vi = di de
elerates D events, and those in whi
h

su
h a vehi
le does not de
elerate N events. For ρ < ρc, if only D events (or only N events)

are allowed, the system attains an absorbing 
on�guration via annihilation of redu
ed

headways with troughs. Thus some alternation between D and N events is required to

maintain a
tivity, and the a
tive phase 
orresponds to intermediate values of p.
These observations are illustrated in Fig. 5.11, for a system of twenty vehi
les with

vmax = 2 and density ρ = 2/9 < ρc = 0.25. Initially, all vehi
les have vi = vmax. The

headways di initially alternate between three and four (the latter are troughs), ex
ept

for d19 = 0 and d20 = 7. In the left panel, for p = 0, the system rea
hes an absorbing
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on�guration after four time steps. Similarly, in the right panel, for p = 1, an absorbing


on�guration is rea
hed after 7 steps. For p = 0.6 (middle panel), the evolution is sto
has-

ti
. Most realizations rea
h an absorbing 
on�guration rapidly, but some remain a
tive

longer, as in the example shown here. From the distribution of D and N events, it appears

that a
tivity persists when vehi
les �rst su�er an N event, redu
ing their own headway,

and subsequently (one or two steps later) su�er a D event, redu
ing the headway of the

pre
eding vehi
le. Su
h an alternation of N and D events allows a region with redu
ed

headways to generate more a
tivity before rea
hing a trough [43℄.

Figure 5.11: Vehi
le positions relative to the �rst (lowest) vehi
le versus time t (horizontal) for t ≥ 2,
in a system with N = 20, vmax = 2 and vehi
le density ρ = 2/9 < ρc = 0.25. Initially, all vehi
les have
vi = vmax. The headways di initially alternate between three and four, ex
ept for d19 = 0 and d20 = 7.
Filled (open) 
ir
les denote D (N) events, i.e., events in whi
h a vehi
le with speed v(i) = d(i) de
elerates
(does not de
elerate). In an absorbing 
on�guration all velo
ities are equal, yielding a set of horizontal

lines with spa
ings ≥ vmax + 1. Left panel: p = 0, system ina
tive for t > 4; right panel: p = 1, system
ina
tive for t > 7; 
enter panel: example of a realization with p = 0.6 in whi
h a
tivity persists until

t = 56 (evolution for t > 30 not shown).

5.4 Criti
al behavior

5.4.1 Quasistationary simulation

Before studying the 
riti
al behavior of the ANS model we dis
uss brie�y quasistati-

onary simulations. Initially we have to de�ne the quasistationary distribution. We start


onsidering a 
ontinuous-time Markov pro
ess Xt taking values n = 0, 1, 2, ..., S, with the

state n = 0 absorbing. We use pn(t) to denote the probability that Xt = n, given some

initial state X0. The survival probability Ps(t) = Σn≥1pn(t) is the probability that the

pro
ess has not be
ome trapped in the absorbing state up to time t. We suppose that as

t → ∞, pn(t) normalized by survival probability Ps(t), attain a time-independent form.

The quasistationary distribution pn is then de�ned via

pn = limt→∞
pn(t)

Ps(t)
, (5.2)
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with p0 = 0. The QS distribution is normalized. So

∑

n>1

pn = 1. (5.3)

In a 
onventional simulation the system starts from a random 
on�guration and after a

transient time one starts to measure quantities, e.g., order parameter, until the system

attains the absorbing state. We restart the simulation many times 
hoosing di�erent

random initial 
on�gurations. The problem in using this pro
edure is time of simulation.

For many sto
hasti
 pro
ess with an absorbing state the quasistationary distributions

provide a wealth of information about their behavior. In applying �nite-size s
aling theory

to ANS model, and similar models that have an absorbing state, a slight 
ompli
ation

arises, namely that for a �nite system the only true stationary state is the absorbing

state. To solve this problem the authors [44℄ suggest a simulation s
heme for sampling

the QS distribution. In a Monte Carlo simulation one generates a set of realizations of

a sto
hasti
 pro
ess. In what follows they 
all a simulation of the original pro
ess Xt

possessing an absorbing state a 
onventional simulation. The goal is to de�ne a related

pro
ess X∗
t , whose stationary probability distribution is the quasistationary distribution

of Xt. To learn about the a
tive state from simulations of �nite systems we study the

quasistationary state, whi
h des
ribes the statisti
al properties of surviving trials following

an initial transient. When Xt enters the absorbing state, however, X∗
t instead jumps

to a nonabsorbing one, and then resumes its usual evolution (with the same transition

probabilities as Xt), until su
h time as another visit to the absorbing state is imminent.

Initial 
on�gurations are prepared by pla
ing vehi
les as uniformly as possible. A

vehi
le j is 
hosen at random and its distan
e from the vehi
le ahead is redu
ed by

dj → dj − 1, so dj−1 = dj−1 + 1. This pro
edure is performed 2N times. As the system

evolves, a list of states is 
reated based on the system's evolution. Initially these �rst

states do not represent a good 
hoi
e for quasistationary states. With the intention

of eliminating the vestiges of the initial 
on�guration, during the relaxation period the

probability of 
olle
ting them is pr1. When the system attains the relaxation period,

the probability pr1 is redu
es to pr2 and the list of 
olle
ted states is sampled with less

frequen
y. The number of states in this list is �xed (in our simulations we use 1000 states)
but as the system does not attain the absorbing state these states are renewed 
onstantly.

In our simulation we used pr1 = 20/N and pr2 = pr1/10 = 2/N .

5.4.2 Criti
al Exponents

A

ording to �nite-size s
aling theory (FSS), in the vi
inity of the 
riti
al point, in-

tensive properties depend strongly on the system size. In the ANS model, FSS implies

that the order parameter ρa depends on the system size and distan
e from the 
riti
al

point as

ρa(∆, L) ∝ L−β/υ⊥f(∆L1/υ⊥), (5.4)

where ∆ = ρ− ρc
2

. When ∆ = 0 equation (5.4) yields

ρa(ρ, L) ∝ L−β/υ⊥ , (5.5)

for ∆ < 0 (sub
riti
al regime) ρa falls o� as L−1
, while for ∆ > 0 (super
riti
al regime),

ρa approa
hes a nonzero value as L → ∞. The s
aling fun
tion

f(x) ∝ xβ
for x → ∞, (5.6)

2

in the ANS model, there is a 
riti
al line in the ρ− p plane, and ∆ is the distan
e from this line.
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allows that ρa, when L → ∞, has a power law behaviour

ρa ∝ ∆β. (5.7)

In the vi
inity of 
riti
al point, the 
orrelation length ξ and 
orrelation time τ diverge

a

ording to

ξ ∝ ∆−υ⊥
and τ ∝ ∆−υ‖ . (5.8)

So we expe
t that

τ(∆, L) ∝ Lzg(∆L1/υ⊥), (5.9)

where τ is the mean lifetime of a system and z = υ‖/υ⊥ is the dynami
 exponent. To

�nd the exponents β, υ⊥ we need to use another size s
aling fun
tion. Finite-size s
aling

implies that for ρ ≃ ρc the moment ratio m = 〈ρ2a〉/ρ2a obeys the relation:

m(∆, L) ∝ fm(∆L1/υ⊥), (5.10)

where fm is a s
aling fun
tion. This implies that

∣∣∣∣∣
∂m

∂ρ

∣∣∣∣∣
ρc

∝ L1/υ⊥ , (5.11)

moreover, the �nite-size expression (5.4) implies that

∣∣∣∣∣
∂ ln ρ

∂ρ

∣∣∣∣∣
ρc

∝ L1/υ⊥ . (5.12)

Eventually a

ording to �nite-size expression (5.9) we expe
t that

∣∣∣∣∣
∂ ln τ

∂ρ

∣∣∣∣∣
ρc

∝ L1/υ⊥ . (5.13)

5.4.3 Criti
al Exponents in the ANS model

We turn now to 
hara
terizing the phase transition along the lines p−(ρ) and p+(ρ).
Sin
e the transition is 
ontinuous, this requires that we determine the asso
iated 
riti
al

exponents, in order to identify the universality 
lass of the ANS model. The analysis

turns out to be 
ompli
ated by strong �nite-size e�e
ts: di�erent from simple systems

exhibiting an absorbing-state phase transition, su
h as the 
onta
t pro
ess, for whi
h

studies of systems with L ≤ 1000 yield good estimates for 
riti
al exponents [33℄, here we

require systems of up to 105 sites to obtain reliable results. We are nevertheless able to

report pre
ise results at several points along the phase boundary.

We use quasistationary (QS) simulations to probe the behavior at long times 
onditi-

oned on survival of a
tivity [44℄. Sin
e the de
eleration probability p is 
ontinuous while

the density ρ 
an only be varied in dis
rete steps, we keep the latter �xed and vary the

former in ea
h series of studies. As in other studies of QS behavior at absorbing-state

phase transitions, we fo
us on the �nite-size s
aling (FSS) of the a
tivity density, ρa, the
lifetime, τ , and the moment ratio m = 〈ρ2a〉/ρ2a, as fun
tions of system size, N [33, 44℄. At

a 
riti
al point, these variables are expe
ted to exhibit s
ale-free (power-law) dependen
e

on N , that is, ρa ∼ N−β/ν⊥
and τ ∼ N z

, where β is the order-parameter exponent and
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ν⊥ the exponent that governs the divergen
e of the 
orrelation length as one approa
hes

the 
riti
al point. In the a
tive phase, ρa approa
hes a nonzero 
onstant value, while τ
grows exponentially as N → ∞. In the absorbing phase, ρa ∼ 1/N while τ grows more

slowly than a power law as N → ∞. At the 
riti
al point, the moment ratio is expe
ted

to 
onverge to a nontrivial limiting value, m = m∞ +O(N−λ), with λ > 0. In the a
tive

(ina
tive) phase, m 
urves sharply downward (upward) when plotted versus 1/N . These

are the 
riteria we employ to determine the 
riti
al point, pc(ρ). The distan
e from the


riti
al point 
an be estimated from the 
urvature of log-log plots of ρa and τ versus N .

As noted in Se
. III.B, the order parameter is the sum of two 
ontributions: ρa =
ρa,1+pρa,2. In simulations, we therefore determine ρa,1 and ρa,2 separately. In the vi
inity

of the 
riti
al point we �nd ρa,1 ∼ N−0.5
and ρa,2 ∼ N−0.9

, showing that the fra
tion

ρa,2 of vehi
les with vi = di = vmax de
ays more rapidly than ρa,1 = vmax − v, so that it

makes a negligible 
ontribution to the a
tivity density for large N . We therefore adopt

ρa,1 as the order parameter for purposes of s
aling analysis. Con�gurations ρa,1 = 0 and

ρa,2 > 0 are nevertheless 
onsidered to be a
tive; only 
on�gurations with vi = vmax and

di > vmax, ∀i, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000 and 100 000 sites, 
al
ulating

averages over a set of 20 to 160 realizations. Even for the largest systems studied, the

a
tivity density rea
hes a stationary value within 106 time steps. We perform averages

over the subsequent 108 steps. As detailed in [44℄, the QS simulation method probes the

quasistationary probability distribution by restarting the evolution in a randomly 
hosen

a
tive 
on�guration whenever the absorbing state is rea
hed. A list of Nc su
h 
on�gura-

tions, sampled from the evolution, is maintained; this list is renewed by ex
hanging one

of the saved 
on�gurations with the 
urrent one at rate pr. Here we use Nc = 1000, and
pr = 20/N . During the relaxation phase, we use a value of pr that is ten times greater, to

eliminate the vestiges of the initial 
on�guration from the list. The lifetime τ is taken as

the mean time between attempts to visit an absorbing 
on�guration, in the QS regime.

Initial 
on�gurations are prepared by pla
ing vehi
les as uniformly as possible (for

example, for density ρ = 1/8, we set di = 7, ∀i), and then ex
hanging distan
es randomly.

In su
h an ex
hange a site j is 
hosen at random and the 
hanges dj → dj − 1 and

dj+1 → dj+1 + 1 are performed, respe
ting the periodi
 boundary 
ondition, dN+1 ≡ d1.
The random ex
hange is repeated Ne times (in pra
ti
e we use Ne = 2N), avoiding,

naturally, negative values of dj. Sin
e headways dj < vm are generated in this pro
ess, at

the �rst iteration of the dynami
s, velo
ities vj < vmax arise, leading to a relatively large,

statisti
ally uniform initial a
tivity density.

We performed detailed studies for densities ρ = 1/8, on both the upper and lower


riti
al lines, and for density 17/144 = 0.11805, on the lower line. Figures 5.12, 5.13 and

5.14 show, respe
tively, the dependen
e of the order parameter, lifetime and moment ratio

m on system size for density 1/8 and p values in the vi
inity of the lower 
riti
al line. In

the insets of Figs. 5.12 and 5.13 the values of ρa and τ are divided by the overall trend

to yield ρ∗a ≡ N0.5ρa and τ ∗ = τ/N . These plots make evident subtle 
urvatures hidden

in the main graphs, leading to the 
on
lusion that pc(ρ = 1/8) is very near 0.2683.

A more systemati
 analysis involves the 
urvatures of these quantities: we �t quadrati


polynomials,

ln ρa = 
onst. + a lnN + b(lnN)2, (5.14)

and similarly for ln τ , to the data for the four largest system sizes. The 
oe�
ient of

the quadrati
 term, whi
h should be zero at the 
riti
al point, is plotted versus p in
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Figure 5.12: A
tivity density versus number of vehi
les for density 1/8 and (lower to upper) p = 0.2679,
0.2681, 0.2683, 0.2685 and 0.2687. Error bars are smaller than symbols. Inset: s
aled a
tivity density

ρ∗a = N0.5ρa versus number of vehi
les.

Figure 5.13: Lifetime versus number of vehi
les for density 1/8 and (lower to upper) p = 0.2679, 0.2681,
0.2683, 0.2685 and 0.2687. Error bars are smaller than symbols. Inset: s
aled lifetime τ∗ = N−1.0τ versus

number of vehi
les.

Fig. 5.15. Linear interpolation to b = 0 yields the estimates pc = 0.26830(3) (data for

a
tivity density) and pc = 0.26829(2) (data for lifetime); we adopt pc = 0.26829(3) as our
�nal estimate. (Figures in parentheses denote statisti
al un
ertainties.) The data for m,

although more s
attered, are 
onsistent with this estimate: from Fig. 5.14 it is evident

that pc lies between 0.2681 and 0.2683.

To estimate the 
riti
al exponents β/ν⊥ and z we perform linear �ts to the data for

ln ρa and ln τ versus lnN (again restri
ted to the four largest N values), and 
onsider the
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Figure 5.14: Moment ratio m versus re
ipro
al system size for density 1/8 and (upper to lower)

p = 0.2679, 0.2681, 0.2683, 0.2685 and 0.2687.

slopes as fun
tions of p. Interpolation to pc yields the estimates: β/ν⊥ = 0.500(3) and
z = 1.006(8). A similar analysis yields mc = 1.306(6). The prin
ipal sour
e of un
ertainty
in these estimates is the un
ertainty in pc.

Figure 5.15: (Color online) Curvature of ln ρa (�lled symbols) and ln τ (open symbols) as fun
tions of

lnN , as measured by the 
oe�
ient b of the quadrati
 term in least-squares quadrati
 �ts to the data in

Figs. 5.12 and 5.13. Straight lines are least-squares linear �ts to b versus de
eleration probability p, for
vehi
le density ρ = 1/8. Inter
epts with the line b = 0 furnish estimates of pc.

Using the data for ρa, τ and m we also estimate the 
riti
al exponent ν⊥. Finite-size
s
aling implies that the derivatives |dm/dp|, d ln τ/dp and d ln ρa/dp, evaluated at the


riti
al point, all grow ∝ L1/ν⊥
. We estimate the derivatives via least-squares linear

�ts to the data on an interval that in
ludes pc. (The intervals are small enough that
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the graphs show no signi�
ant 
urvature.) Power-law dependen
e of the derivatives on

system size is veri�ed in Fig. 5.16. Linear �ts to the data for the four largest sizes, for

ln ρp, ln τ , and m yield 1/ν⊥ = 0.494(15), 0.495(15), and 0.516(29), respe
tively, leading

to the estimate ν⊥ = 2.00(5). Repeating the above analysis for simulations at vehi
le

density ρ = 17/144, we �nd p−(17/144) = 0.4096(1), β/ν⊥ = 0.503(6), z = 1.011(15),
m = 1.302(2), and ν⊥ = 2.02(2).

Figure 5.16: Derivatives of (lower to upper) m, ln ρa and ln τ with respe
t to p in the vi
inity of pc,
versus N for vehi
le density ρ = 1/8. Lines are least-squares linear �ts to the data.

Thus, for the two points studied on the lower 
riti
al line, the results are 
onsistent

with a simple set of exponent values, namely, z = 1, ν⊥ = 2, and β = 1. The same set

of 
riti
al exponents appears in a system of a
tivated random walkers (ARW) on a ring,

when the walkers hop in one dire
tion only [47℄. The 
riti
al moment ratio for ARW is

mc = 1.298(4), quite near present estimates.

We suggest that these values 
hara
terize a universality 
lass of absorbing-state phase

transitions in systems with a 
onserved density (of walkers in ARW, and of vehi
les in

the present instan
e), and anisotropi
 movement. The ARW with symmetri
 hopping is

known to belong to the universality 
lass of 
onserved dire
ted per
olation [48℄, whi
h

also in
ludes 
onserved sto
hasti
 sandpiles [45, 46℄.

A study on the upper 
riti
al line for vehi
le density ρ = 1/8 yields results that are

similar but slightly di�erent. Repeating the pro
edure des
ribed above, we �nd p+(1/8) =
0.89590(5), β/ν⊥ = 0.487(8), z = 1.021(15), ν⊥ = 1.98(6), and mc = 1.315(5). The

exponent values are su�
iently near those obtained on the lower 
riti
al line that one

might attribute the di�eren
es to �nite-size e�e
ts. We defer to future work more detailed

analyses, to determine whether s
aling properties along the upper and lower 
riti
al lines

di�er in any respe
t.
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Chapter 6

Summary and Open Questions

6.1 Summary

We review some tra�
 models studied in the literature. Start from the early models

(hydrodynami
) to the three phases theory (Kerner), we summarize the key aspe
ts of

ea
h model. We review the kineti
 theory of tra�
 proposed by Prigogine and Herman

in whi
h the Boltzmann equation is adapted to vehi
ular tra�
.The kineti
 equation

and its solution is dis
ussed, and a novel distribution of desired velo
ities that is more

suitable for des
ribing real tra�
 
onditions is analyzed. We also study the stationary

velo
ity distribution at the transition between individual and 
olle
tive �ow patterns.

At this transition the distribution splits into a smoothly varying regular part, in whi
h

vehi
les have nonzero velo
ities, and a singular one, 
orresponding to stopped vehi
les.

Computational methods for obtaining the stationary velo
ity distribution, and the full

spa
e-time evolution of the vehi
ular distribution, are explained.

After the kineti
 models, we study the 
ellular automaton (CA) models in whi
h spa
e,

time and velo
ity are dis
retized. The most known study via CA is the NS model. Despite

of your simpli
ity, this model is 
apable of reprodu
ing features 
ommonly found in real

tra�
, su
h as the transition between free �ow and a jammed state, start-and-stop waves,

and sho
ks (due to driver overrea
tion). This simple model represents the e�e
t of varia-

tions in driving behavior by in
orporating a simple sto
hasti
 element: the spontaneous

redu
tion of velo
ity with probability p. Although the NS model has been studied exten-

sively, the nature of the transition between free and jammed �ow, in parti
ular, whether

it 
orresponds to a 
riti
al point, remains unsolved.

We 
onsider a version of the Nagel-S
hre
kenberg model in whi
h probabilisti
 de
ele-

ration is possible only for vehi
les whose velo
ity is equal to the headway, vi = di. In the

resulting ANS model, a free-�ow 
on�guration, vi = vmax and di > vmax, ∀i, is absorbing
for any value of the de
eleration probability p. The phase transition in the original NS

model at de
eleration probability p = 0 is identi�ed with the absorbing-state transition in

the ANS model: the two models are identi
al for p = 0. In the original model, a nonzero

de
eleration probability 
orresponds to a spontaneous sour
e of a
tivity whi
h eliminates

the absorbing state, and along with it, the phase transition.

The ANS model, by 
ontrast, exhibits a line of absorbing-state phase transitions in

the ρ-p plane; the phase diagram is reentrant. We present preliminary estimates for the

phase boundary and several 
riti
al exponents. The latter appear to be asso
iated with a

universality 
lass of absorbing-state phase transitions in systems with a 
onserved density

and asymmetri
 hopping, su
h as a
tivated random walkers (ARWs) with parti
le transfer
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only in one dire
tion [47℄. In this 
ontext it is worth noting that in tra�
 models, as well

as in sandpiles and ARW, a
tivity is asso
iated with a lo
al ex
ess of density: in sandpiles,

a
tivity requires sites with an above-threshold number of parti
les; in ARW, it requires

an a
tive parti
le jumping to a site o

upied by an ina
tive one; and in the ANS model,

it requires headways d smaller than vmax + 1. One may hope that the 
onne
tion with

sto
hasti
 sandpiles will lead to a better understanding of tra�
 models, and perhaps of

observed tra�
 patterns.

6.2 Open questions in the ANS model

6.2.1 Criti
al exponents

From the diagram shown in Fig. 5.9 we know that for ea
h density there are two

probabilities p+ and p− due the reentran
e, i.e., the absorbing phase is reentrant. Sur-

prisingly, when we determine the 
riti
al exponents for p+(1/8) and p−(1/8), there is a

slight di�eren
e between them. We don't know if these di�eren
es re�e
t the asymptoti


behavior of the model, or should be attributed to �nite-size e�e
ts. Furthermore, we need

to �nd the 
riti
al probabilities for other densities to estimate with pre
ision the phase

boundary. In future studies we shall investigate the possible di�eren
es in the 
riti
al

exponents a

ording to the density.

6.2.2 Mean-Field Theory

A key 
hallenge in our work is to �nd an appropriate des
ription of ANS model via

mean-�eld theory. Although the ANS model belongs to the same universality 
lass as

the asymmetri
 ARW model [47℄, the approa
h used in the ARW model 
annot be used

here. The main reason is the di�eren
e between the update pro
edure: the ARW model

uses the sequential update rules while the ANS model uses parallel updating. Although

we try to develop an approa
h based on the 
urrent mean �eld te
hnique used in the NS

model [8℄, the �rst results show us that this approa
h seems don't re
ognize the absorbing

states. We think that one of the reasons is the assumption that in the stationary states, the

probability distributions be
ome spatially independent. This assumption is true when the

system does not attain the absorbing state. We 
an use this approa
h only for estimating

with better pre
ision the fundamental diagram with vmax = 1 and vmax = 2.

6.2.3 Other CA models with ANS rules

We 
an implement the randomization step of the ANS model in other models already

studied in the literature. For instan
e we 
an investigate the possible absorbing states in

an ANS version of a two-line model. We 
an introdu
e vehi
les with di�erent maximum

speeds and study the possible 
on�gurations of absorbing states. Furthermore we know,

from the other models as sandpile, 
onta
t pro
ess, a
tivated random walkers et
, that

the simple in
lusion of a di�erent update rule 
an, in some 
ases, modify the 
riti
al

exponents and therefore the universality 
lass.
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Chapter 7

Appendix

7.1 Matriz T t

Although we 
an obtain the matrix T t
writing down the initial state in the basis of

eigenve
tors, the work in doing it in
reases a

ording to the value of vmax. For this reason

we prefer to adopt the following strategy: T t
ij means the probability of a vehi
le starts at

the state |j − 1〉 and evolves to |i− 1〉 at the time t. The analysis for ea
h initial state is

shown below. Pmn
means the probability of the system starts with velo
ity m and evolves

to velo
ity n at the time t.

v(0) = 0

P 00(t) = pt

P 01(t) =

(
t

1

)
qpt−1

P 02(t) =

(
t

2

)
q2pt−2

P 03(t) =

(
t

3

)
q3pt−3

P 04(t) =

(
t

4

)
q4pt−4 +

(
t− 1

5

)
q5pt−5 . . .

(
t− 1

t− 1

)
qt−1p

P 05(t) =

(
t− 1

4

)
q5pt−5 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

v(0) = 1
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P 11(t) = pt

P 12(t) =

(
t

1

)
qpt−1

P 13(t) =

(
t

2

)
q2pt−2

P 14(t) =

(
t

3

)
q3pt−3 +

(
t− 1

4

)
q4pt−4 . . .

(
t− 1

t− 1

)
qt−1p

P 15(t) =

(
t− 1

3

)
q4pt−4 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

v(0) = 2

P 22(t) = pt

P 23(t) =

(
t

1

)
qpt−1

P 24(t) =

(
t

2

)
q2pt−2 +

(
t− 1

3

)
q3pt−3 . . .

(
t− 1

t− 1

)
qt−1p

P 25(t) =

(
t− 1

2

)
q3pt−3 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

v(0) = 3

P 33(t) = pt

P 34(t) =

(
t

1

)
q1pt−1 +

(
t− 1

2

)
q2pt−2 . . .

(
t− 1

t− 1

)
qt−1p

P 35(t) =

(
t− 1

1

)
q2pt−2 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

The states 
orresponding to the velo
ities vmax = 4 and vmax = 5 are absorbing, i.e., sin
e
the 
on�guration starts or evolves to these states, the �nal state will be always |4〉 (with
probability p) and |5〉 (with probability q). So the matrix T

t

is:

T t =




pt 0 0 0 0 0(
t
1

)
qpt−1 pt 0 0 0 0(

t
2

)
q2pt−2

(
t
1

)
qpt−1 pt 0 0 0(

t
3

)
q3pt−3

(
t
2

)
q2pt−2

(
t
1

)
qpt−1 pt 0 0

p04(t) p14(t) p24(t) p34(t) p q
p05(t) p15(t) p25(t) p35(t) p q




.
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where

P j4(t) =

(
t

4− j

)
q4−jpt+j−4 +

t−1∑

i=5−j

(
t− 1

i

)
qipt−i

P j5(t) =

t−1∑

i=4−j

(
t− 1

i

)
qi+1pt−i−1

evaluating the limit

limt−→∞

(
P j4(t)

P j5(t

)
=

(
t

4−j

)
q4−jpt+j−4 +

(
t−1
5−j

)
q5−jpt+j−5 +

∑t−1
i=4−j

(
t−1
i

)
qipt−i

∑t−1
i=4−j

(
t−1
i

)
qi+1pt−i−1

for t → ∞, the two �rst terms of the numerator tend to zero, so

limt→∞

(
pj4(t)

pj5(t

)
=

∑t−1
i=4−j

(
t−1
i

)
qipt−i

∑t−1
i=4−j

(
t−1
i

)
qi+1pt−i−1

=
p

q
.

using

∑6
i=1 T

t
ij = 1 e limt→∞

∑4
i=1 T

t
ij = 0, we have that

P (t → ∞) =




0
0
0
0
p

1− p




.

7.2 Mean Field Theory

Solution for c0

Using

∑vmax

β=1 cβ = c− c0, we 
an �nd c0 as a fun
tion of c, p e d;

c0(1− c− pd+ c+ pdc) = c2(1 + pd)

c0(1− pd(1− c)) = c2(1 + pd)

c0(1− pd2) = c2(1 + pd),

leading to

c0 =
c2(1 + pd)

1− pd2
.

Solution for c1
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Using

∑vmax

β=2 cβ = c− c0 − c1, we 
an �nd c1

c1 = d
[
qc0 + (qc+ pd)c1 + (q + pd)c(c− c0 − c1)

]

c1(1− qcd− pd2 + qcd+ pd2c) = d
[
c0(q − qc− pdc) + (q + pd)c2

]

c1(1− pd2(1− c)) = d

[
c2(1 + pd)(q − qc− pdc)

1− pd2
+ (q + pd)c2

]

c1(1− pd3) =
c2d

(1− pd2)

[
q + q(1− c) + pdq(1− c)− pd2q + pd(1− c)− p2d2c− p2d3

]

c1(1− pd3) =
c2d

(1− pd2)

[
q(1 + d) + pd2[1− p(c+ d)]

]

c1(1− pd3) =
c2d

(1− pd2)

[
q(1 + d+ pd2)

]
,

leading to

c1 = qc2d
1 + d+ pd2

(1− pd3)(1− pd2)
.

Solution for 1 < α < vmax − 1

To �nding a re
ursion relation for the other 
oe�
ients cα, we use the identity

cα − dcα−1 = dα

[
q(cα−1 − cα−2) + (qc+ pd)(cα − cα−1) + (q + pd)c

[
vmax∑

β=α+1

cα −
vmax∑

β=α

cα

]]

cα − dcα−1 = dα
[
cα−1(q − qc− pd)− qcα−2 + (qc+ pd− qc− pdc)cα

]

cα − dcα−1 = dα
[
cα−1(q − qc− pd)− qcα−2 + pd2cα

]

cα(1− pdα+2) = dα
[
cα−1(qd− pd)

]
+ dcα−1 − qdαcα−2

cα(1− pdα+2) = dcα−1

[
(q − p)dα + 1

]
− qdαcα−2,

leading to

cα =
1 + (q − p)dα

1− pdα+2
dcα−1 −

qdα

1− pdα+2
cα−2.

Solution for cvmax

cvmax−1 and cvmax

an be found via

cvmax−1 = dvmax−1
[
qcvmax−2 +

(
qc+ pd

)(
cvmax−1 + cvmax

)]

cvmax
= qdvmax

[
cvmax−1 + cvmax

]
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we start, for simpli
ity, with cvmax
:

cvmax
= qdvmax

[
cvmax−1 + cvmax

]

cvmax
(1− qdvmax) = qdvmaxcvmax−1cvmax

=
qdvmax

1− qdvmax

cvmax−1,

leading to

cvmax
=

qdvmax

1− qdvmax

cvmax−1 .

Solution for cvmax−1

cvmax−1 
an be found developing the expressions:

cvmax−1 = dvmax−1
[
qcvmax−2 +

(
qc+ pd

)(
cvmax−1 + cvmax

)]

cvmax−1

[
1− dvmax−1(qc+ pd)

(
1 +

qdvmax

1− qdvmax

)]
= qdvmax−1cvmax−2

cvmax−1

[
1− dvmax−1(qc+ pd)

(
1− qdvmax + qdvmax

1− qdvmax

)]
= qdvmax−1cvmax−2

cvmax−1

[
1− qdvmax − dvmax−1(qc+ pd)

1− qdvmax

]
= qdvmax−1cvmax−2

cvmax−1

[
1− dvmax−1(qd+ qc+ pd)

1− qdvmax

]
= qdvmax−1cvmax−2,

leading to

cvmax−1 =
1− qdvmax

1− dvmax−1(q + pd)
qdvmax−1cvmax−2 .
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We review the kinetic theory of traffic proposed by Prigogine and Herman in which the Boltzmann

equation is adapted to vehicular traffic. The kinetic equation and its solution are discussed, and a

novel distribution of desired velocities that is more suitable for describing real traffic conditions is

analyzed. We also study the stationary velocity distribution at the transition between individual and

collective flow patterns. At this transition, the distribution splits into a smoothly varying regular part,

in which vehicles have nonzero velocities, and a singular one, corresponding to stopped vehicles.

Computational methods for obtaining the stationary velocity distribution and the full space-time

evolution of the vehicular distribution are explained. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4935895]

I. INTRODUCTION

The application of numerical and theoretical methods
developed in physics to areas traditionally viewed as belong-
ing to the social sciences has recently accelerated, with stud-
ies of economic interactions,1,2 linguistics,3 and social
networks4 becoming standard fare in physics. Although this
trend might seem novel, it began, albeit slowly, some time
ago. A case in point is the use of ideas from the kinetic
theory of gases to describe vehicular traffic, pioneered by
Prigogine and Herman,5–7 among others, more than sixty
years ago.

Just as the statistical mechanics of molecular systems
depends on a model of the molecules and their interactions,
the study of traffic requires that we model the behavior of
drivers. Once we have a suitable model, a system of many
interacting molecules (or drivers) can be studied at various
levels of detail: direct study (usually numerical) of a micro-
scopic model, kinetic theory, or a macroscopic (thermody-
namic or hydrodynamic) approach. An important class of
microscopic models of traffic are stochastic lattice systems
in which space, time, and vehicle velocities are all discre-
tized. A key example is the stochastic cellular automaton
introduced by Nagel and Schreckenberg.8

Kinetic theory is an intermediate level of description,
which follows the evolution of a probability distribution for
single vehicles. It offers advantages and disadvantages com-
pared to microscopic models. Among the advantages are that
there is no need to discretize space, time, or velocity, and it
requires substantially less effort to analyze than a stochastic
cellular automaton, which typically must be run repeatedly
to obtain reliable results. In some cases, analytical solutions
are possible, affording a certain insight. Thus kinetic theory
affords a rapid and approximate survey of parameter space,

facilitating the identification of general trends. The principal
shortcoming of kinetic theory is the absence of fluctuations,
and events (such as traffic jams) that result from rare config-
urations of drivers. Therefore, it is interesting to perform
both simulations of detailed models and kinetic theories and
to compare their results.

The initial efforts in modeling vehicular traffic via kinetic
theory were made in an era of very limited computational
resources, so that large-scale simulations of stochastic cellu-
lar automata were not an option. Nevertheless, it was possi-
ble to draw interesting conclusions from kinetic theory. The
most remarkable conclusion is the conflict between the
desire of individual drivers to realize their own goals and the
interactions between vehicles that frustrate this desire. These
interactions lead to a clear distinction between individual
and collective flow regimes. At a certain concentration, the
flow patterns become independent of the desires of individ-
ual drivers, and instead represent collective behavior.

In the earliest version of the kinetic theory of vehicular
traffic, Prigogine and Herman5–7 modified the kinetic theory
of gases embodied in the Boltzmann equation. In their
model, traffic is treated as a one-dimensional gas of interact-
ing particles (vehicles) described by a distribution function
f ðx; v; tÞ, defined such that f ðx; v; tÞ dx dv represents the num-
ber of vehicles with positions between x and x þ dx and
velocities between v and v þ dv at time t. The distribution f
is normalized so thatð

dvf ðx; v; tÞ ¼ cðx; tÞ; (1)

where c(x, t) is the local density of vehicles. (Unless other-
wise specified, all integrals run from �1 to 1. Note that
f ðx; v; tÞ is zero for v< 0.)
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The time evolution of f is governed by a Boltzmann-like
equation. The principal difference with the original
Boltzmann equation is the introduction of a distribution of
desired velocities, f0ðx; v; tÞ, in the relaxation term, represent-
ing drivers’ preferences. Specifically, f0ðx; v; tÞ dx dv is the
number of vehicles between x and xþ dx, whose drivers
have a preferred velocity between v and v þ dv at time t. The
presence of this function in the statistical description is a
novel feature, showing that the “particles” in this system
have intentions unlike a molecule, which does not have a
desired velocity.

Of principal interest is the stationary velocity distribution,
which can be much different from the distribution of desired
velocities. We shall see that the stationary velocity distribu-
tion changes abruptly at a specific density.

In Sec. II, we outline the modifications in the Boltzmann
equation introduced by Prigogine and Herman and empha-
size the features relevant to vehicular traffic. For simplicity,
we study in Sec. III only the stationary solutions. Despite
this simplicity, some notable features appear. This study is
followed in Sec. IV by a discussion of the additional assump-
tions regarding driver behavior incorporated in the
Prigogine–Herman model. In Sec. V, we devise a numerical
solution method for the stationary velocity distribution, and
apply it to two examples. Then in Sec. VI we turn to numeri-
cal integration of the full space- and time-dependent equa-
tion, propose a simple algorithm, and discuss two illustrative
examples. Section VII summarizes our results, and is fol-
lowed in Sec. IX by suggestions for further study.

II. THE PRIGOGINE–HERMAN–BOLTZMANN

EQUATION

In the kinetic theory of gases, the evolution of the distribu-
tion function f ðx; v; tÞ is governed by the Boltzmann
equation9

@f

@t
þ v � $rf þ a � $vf ¼

@f

@t

� �
coll

: (2)

Here, f ðx; v; tÞ d3x d3v is the number of molecules at time t
with positions in the volume d3x centered on point x, and
velocities in the volume element d3v centered on velocity v.
The terms v � $rf and a � $vf describe the redistribution of
molecules due to changes in position and velocity, the latter
resulting from an external force Fext, leading to an accelera-
tion a ¼ Fext=m, where m is the molecular mass. (Note that
$v denotes a gradient in velocity space.) These streaming
terms derive from the motion of independent particles, and
are equivalent to a continuity equation describing conserva-
tion of the total number of molecules in the six-dimensional
space of position and velocity. The right-hand-side of Eq. (2)
describes the effect of interactions between particles and rep-
resents the change in the number of molecules with velocity
v due to collisions with other molecules at position x.

In one-way traffic, vehicles travel in one dimension, and
Eq. (2) can be simplified to read5,6

@f

@t
þ v

@f

@x
¼ @f

@t

� �
rel

þ @f

@t

� �
int

: (3)

The first term on the right-hand-side of Eq. (3) represents a
relaxation process, and the second represents the interactions

between vehicles. The idea behind the relaxation term is that
drivers adjust their velocity to the desired value v0 on a time
scale T, called the relaxation time. This assumption is
embodied in the expression

@f

@t

� �
rel

¼ � f � f0

T
: (4)

In a spatially uniform system, in which f ¼ f ðv; tÞ and
interactions between drivers can be ignored, the solution
to Eq. (3) is

f ðv; tÞ ¼ f0ðvÞ þ ½f ðv; 0Þ � f0ðvÞ�e�t=T : (5)

Exponential relaxation describes the approach of many simple
systems to a steady state. In the context of the kinetic theory
of gases, an analogous simplification involves replacing the
collision term with an expression of the form of Eq. (4); T
becomes the collision time, and f0 is a local Maxwellian distri-
bution.9 As will become clear, Prigogine and Herman7 pro-
posed that T depends on the concentration of vehicles on the
road, and the relaxation process subsumes some rather com-
plicated interactions between drivers.

In the absence of interactions between the vehicles, the
distribution function evolves to the distribution of desired
velocities according to Eq. (5). A derivation of the distribu-
tion of desired velocities from first principles would require
knowledge of human behavior that is beyond our present
capabilities. One might try to determine the distribution of
desired velocities empirically by studying the velocity distri-
bution at very low concentrations, but we are unaware of
studies of this kind. Prigogine and Herman simply investi-
gated several simple model distributions of the desired
velocities.10

The interaction term in Eq. (3) is based on the following
assumptions:

(1) The vehicles are point-like, that is, they do not occupy
volume.

(2) Vehicles remain in the same lane except when passing
another vehicle.

(3) In an encounter between two vehicles, one passes the
other with probability P.

(4) If one vehicle passes another, neither vehicle changes its
velocity. In an encounter without passing, the faster vehi-
cle reduces its velocity to that of the slower one ahead of
it.

(5) The slowing-down process is instantaneous.
(6) Only two-vehicle interactions are considered.
(7) The vehicles are statistically independent; that is, the

joint two-vehicle distribution is the product of single ve-
hicle distributions: f ðx; v; x0; v0; tÞ ¼ f ðx; v; tÞf ðx0; v0; tÞ.

If we use these assumptions, we can write the interaction
term as

@f

@t

� �
int

¼ f x; v; tð Þ
ð1

v
du 1� Pð Þ u� vð Þf x; u; tð Þ

� f x; v; tð Þ
ðv

�1
du 1� Pð Þ v� uð Þf x; u; tð Þ:

(6)

The first term on the right-hand-side of Eq. (6) corresponds
to interactions between vehicles with velocities v and u> v;

136 Am. J. Phys., Vol. 84, No. 2, February 2016 M. L. L. Iannini and Ronald Dickman 136



the latter are obliged to adopt the smaller velocity v resulting
in an increase in the number of vehicles with velocity v. The
second term is related to interactions between vehicles with
velocity v and u< v. In this case, the interaction results in a
decrease in the number of vehicles with velocity v. By
combining the two integrals, the interaction term can be
rewritten as

@f

@t

� �
int

¼ 1� Pð Þf x; v; tð Þ
ð

du u� vð Þf x; u; tð Þ: (7)

Becauseð
uf ðx; u; tÞ du ¼ cðx; tÞ�vðx; tÞ; (8)

where �vðx; tÞ denotes the local mean velocity, andð
du vf ðx; u; tÞ ¼ cðx; tÞv; (9)

we have

@f

@t

� �
int

¼ 1� Pð Þc x; tð Þ �v x; tð Þ � v½ �f x; v; tð Þ: (10)

If we insert the relaxation term, Eq. (4), and interaction term,
Eq. (10), into Eq. (3), we obtain the Prigogine–Herman–
Boltzmann equation for traffic

@f

@t
þ v

@f

@x
¼ � f � f0

T
þ 1� Pð Þc x; tð Þ �v x; tð Þ � v½ �f :

(11)

The above equation is a nonlinear equation because �vðx; tÞ is
a function (more precisely, a functional) of f ðx; v; tÞ. A full
definition of the model requires that we specify how the
passing probability and relaxation time depend on the con-
centration. Before examining specific choices, we consider
some general aspects of the solutions.

III. STATIONARY SOLUTIONS

We consider uniform, stationary solutions in which
f ¼ f ðvÞ, c, and �v are time-independent. This case represents
the simplest situation that we might expect to hold at long
times, far from any entrances and exits on a long, straight
highway. Due to the interactions between vehicles, the
stationary solution f(v) is not usually equal to the distribution
of desired velocities, f0ðvÞ. A spatially uniform, time-
independent solution f(v) of Eq. (11) must satisfy

f vð Þ ¼ f0 vð Þ
1� cT 1� Pð Þ �v � v½ � : (12)

The above equation is also nonlinear, because �v depends on
f(v), and it has two kinds of solution corresponding to indi-
vidual and collective flow patterns.

A. Individual and collective flow

To simplify the notation, let

c � cTð1� PÞ and k � 1� c�vðf Þ; (13)

so that Eq. (12) becomes

f ¼ f0
k fð Þ þ cv

: (14)

In Eqs. (13) and (14), the parameter k is specifically writ-
ten as a function of f to stress that the nonlinearity
induced by the term �v is included in k; from here on, we
simply write k.

Equation (14) implies that if k < 0, we can find values of
v such that kþ cv < 0 for fixed c. These values are physi-
cally unacceptable because f(v) cannot be negative; only the
values k > 0 and k¼ 0 have physical meaning. For k¼ 0,
Eq. (14) reduces to

cvf ðvÞ ¼ f0ðvÞ: (15)

An important feature is that the homogeneous equation
cvf ¼ 0 admits the singular solution f ¼ ac dðvÞ, where a is
an arbitrary constant and dðvÞ is the Dirac delta function.
Thus, for k¼ 0 the general solution is

f ¼ f0
cv
þ ac d vð Þ: (16)

For k > 0, we have Eq. (14). In either case the solution
must be consistent with the conditions established by Eqs.
(1) and (8)

c ¼
ð

f0 dv

kþ cv
þ ac (17)

and

c�v ¼
ð

vf0 dv

kþ cv
: (18)

Suppose that k > 0. The stationary velocity distribution is
given by Eq. (14) in which f0 is a function and c is a constant
determined by the concentration, relaxation time, and the
passing probability. The only unknown is the parameter k.
We write f0ðvÞ ¼ c~f 0ðvÞ, and obtain from Eq. (17) (with
a¼ 0) that

ð ~f 0 dv

kþ cv
¼ 1 (19)

as the condition determining k. Once Eq. (19) is solved, the
mean velocity is given by �v ¼ ð1� kÞ=c, and the flux (the
number of vehicles passing a given point per unit time) is
q ¼ c�v. We see that, given the distribution of desired veloc-
ities f0, the flux and mean velocity depend on c, T, and P
only though the combination c. In most cases, the integral in
Eq. (19) needs to be evaluated numerically.

Because ~f 0 ¼ 0 for v< 0, we see that the integral in Eq.
(19) is a decreasing function of c for fixed k. As c increases,
k must therefore decrease. If

Ð
ðf0=vÞ dv ¼ 1, then Eq. (19)

can always be satisfied for some k > 0, no matter how large
c becomes. Divergence of the integral implies that f0 > 0 for
v¼ 0; that is, there are drivers whose preferred velocity is
zero. (Such drivers should stay off the road!) Thus, for a
plausible distribution of desired velocities, we expectÐ
ðf0=vÞ dv <1. In this case, we can define a critical value

cc from the condition

137 Am. J. Phys., Vol. 84, No. 2, February 2016 M. L. L. Iannini and Ronald Dickman 137



ð ~f 0 dv

v
¼ cc: (20)

As c increases, k decreases and becomes zero for c ¼ cc.
Recall that k cannot be negative. For c > cc, k remains zero,
allowing the inclusion of the term / dðvÞ in f. The normal-
ization condition now reads

1 ¼
ð ~f 0 dv

cv
þ a; (21)

showing that a, which governs the fraction of vehicles at
rest, increases continuously from zero as c is increased
beyond its critical value: a ¼ ðc� ccÞ=c for c > cc. In this
regime, �v ¼ 1=c regardless of the form of the distribution of
desired velocities.

The appearance of a nonzero fraction of stopped vehicles
at c ¼ cc can be seen as a phase transition, formally analo-
gous to that of Bose–Einstein condensation in an ideal
Bose gas.11 In Bose–Einstein condensation, the density q0

of bosons in the state of zero momentum increases as q0

¼ q� qc for densities above the critical density, which
depends on the particle mass and the temperature. Because
the kinetic theory of traffic deals with classical objects, this
analogy is purely formal.

One objective in the kinetic theory of traffic is to find the
stationary velocity distribution f(v), given the concentration
c and a traffic model (or empirical data) consisting of the dis-
tribution of desired velocities f0 and the functions P(c) and
T(c). Then, given c the value of c is fixed, and all that
remains is to determine k via Eq. (19). A numerical solution
method is discussed in Sec. V.

An alternative approach is to rewrite Eq. (19) in the form

c ¼
ð ~f 0 dv

k� þ v
; (22)

where k� ¼ k=c. Equation (22) defines a function cðk�Þ,
given the form of f0.

A simple yet illuminating application of this analysis is
for the case12 ~f 0 ¼ dðv� uÞ, that is, all drivers have the
same desired velocity u. (Perhaps all drivers wish to go as
fast as possible, and all vehicles have a maximum speed of
u.) By using Eq. (22), we find that k ¼ max½0; 1� cu� and
cc ¼ 1=u. For c > cc, the fraction of stopped vehicles is
a ¼ 1� 1=ðcuÞ. The mean velocity is given by

�v ¼ u ðc < 1=uÞ
1=c ðc > 1=uÞ:

�
(23)

Thus, all drivers can move at their desired speed if c is not
too large. When c exceeds cc, due to increased density,
reduced passing probability, and/or longer relaxation time, a
certain fraction of the vehicles are at rest.

Although these conclusions are consistent with our general
analysis, there is something strange about this result. If all
vehicles move at the same velocity u, there is no need for
passing, and each vehicle would simply maintain its velocity.
Why would any vehicle have to stop in this situation? The
answer is that, for c > cc, the distribution f ðvÞ ¼ f0ðvÞ
¼ c dðv� uÞ continues to be a stationary solution of Eq.
(11), but is unstable. To see this, suppose that at a certain
moment, a fraction a0 of the vehicles are stopped. If a0

decreases (increases) with time, then the solution f0ðvÞ is sta-
ble (unstable). To implement the stability analysis, we per-
turb the reference solution by letting

f ðv; tÞ ¼ c½a0 dðvÞ þ ð1� a0Þ dðv� uÞ�; (24)

with 0 < a0 < 1. If we substitute Eq. (24) in Eq. (11) and
perform the integral over u, we obtain

c _a0½d vð Þ�d v�uð Þ�¼�a0c

T
½d vð Þ�d v�uð Þ�þc2 1�Pð Þ

�½a0 d vð Þþ 1�a0ð Þd v�uð Þ�
� ½�va0þ 1�a0ð Þ u�vð Þ�; (25)

where the dot denotes a time derivative. We equate coeffi-
cients of dðvÞ and find

_a0 ¼ a0 c 1� Pð Þ 1� a0ð Þu� 1

T

� �
: (26)

If we now let ~t ¼ t=T and ~c ¼ cu ¼ c=cc, Eq. (26) becomes

da0

d~t
¼ ~c � 1ð Þa0 � ~ca2

0; (27)

which is the logistic or Pearl-Verhulst equation.13 It is
straightforward to show that the solution is

a0 tð Þ ¼ a0 0ð Þe�~t

1þ ja0 0ð Þ e�~t � 1½ � ; (28)

where � ¼ ~c � 1 ¼ ðc� ccÞ=cc and j ¼ c=ðc� ccÞ. This
result shows that for 0 < a0ð0Þ < 1, as t!1, a0ðtÞ ! 0 if
c � cc, and a0ðtÞ ! a ¼ ðc� ccÞ=c if c > cc. Thus, the solu-
tion with all vehicles moving at the same velocity u is stable
if and only if c < cc ¼ 1=u.

Another example that has an analytic solution is a distribu-
tion of desired velocities uniform on the interval
½v0 � va; v0 þ va�

~f 0 ¼
H v� v0 � vað Þ½ �H v0 þ va � v½ �

2va
; (29)

where HðyÞ is the step function, equal to zero for y< 0 and
to unity for y> 0. (We assume v0 > va so that all drivers
prefer some nonzero speed.) In this case, the transition
occurs at

c ¼ cc ¼
1

2va
ln

v0 þ va

v0 � va

� �
; (30)

and we have

k ¼ max½cfva cothðcvaÞ � v0g; 0�; (31)

leading to

�v ¼

1

c
þ v0 � va coth cvað Þ c < ccð Þ

1

c
c > ccð Þ:

8>>><
>>>:

(32)
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In Fig. 1, the dimensionless mean speed �v=v0 is plotted ver-
sus cva for va ¼ v0=2.

IV. THE PRIGOGINE–HERMAN MODEL

Prigogine and Herman7 introduced further assumptions
regarding the dependence of P and T on the concentration c,
which we shall refer to as the Prigogine–Herman model.

We expect the passing probability P to decrease with c,
because drivers will find it more difficult to overtake a
slower vehicle if adjacent lanes are congested. (Of course if
vehicles were truly point particles there would be no such
difficulty.) Prigogine and Herman assumed a linear relation
between P and c, such that P¼ 1 for c¼ 0 and decreases to
zero at some maximum concentration cmax

P ¼ 1� g with g ¼ c

cmax

: (33)

They further proposed a concentration-dependent relaxation
time

T ¼ s 1� Pð Þ
P

; (34)

where s is a constant with dimensions of time. Thus, accord-
ing to Prigogine and Herman, the greater the value of c the
smaller the value of P and the longer it takes a driver to
attain the desired speed. In their model, T does not represent
an intrinsic limitation of drivers (that is, a reaction time) or
of their vehicles (inertia), because T ! 0 as c! 0. By
inserting Eqs. (33) and (34) into Eq. (13), we find

c ¼ cmaxsg3

1� g
: (35)

Note that c > cmax is unphysical because it implies a nega-
tive passing probability. However, there is no intrinsic mech-
anism (such as a repulsive interaction between vehicles) for
maintaining the concentration below its maximum value in
Eq. (11). Hence, in spatially nonuniform situations, the con-
centration can evolve to exceed cmax in certain regions, even

if, initially, cðxÞ < cmax in the entire system. We consider
examples using the Prigogine–Herman model in Sec. V,
once a suitable numerical method is developed.

V. NUMERICAL METHOD

Consider the numerical solution of Eq. (19), yielding the
value of k such that the integral is unity, given the function
~f 0ðvÞ and c, which is determined by the concentration via Eq.
(35). Although the numerical method is simple, some care is
required because in some cases the integral is improper.

Among the many methods for the numerical evaluation of
integrals, we choose one that is relatively simple yet accurate
by fitting cubic polynomials through successive groups of
four points,14 which is equivalent to the expression

ðxn

x1

y xð Þdx ’ h

"
3

8
y1 þ

7

6
y2 þ

23

24
y3 þ y4 þ y5 þ � � �

þ yn�4 þ yn�3 þ
23

24
yn�2 þ

7

6
yn�1 þ

3

8
yn

#
;

(36)

where h ¼ ðxn � x1Þ=ðn� 1Þ; yj � yðxjÞ, and xj � x1

þðj� 1Þh, for j ¼ 1;…; n.
Dealing with an infinite range of integration requires

greater care. We might truncate the integral, but the error
depends on the choice of the cutoff. A more appealing alter-
native is to change variables to map the infinite range of inte-
gration to a finite one. For an exponential distribution of
desired velocities, illustrated in Subsection V A, we are led
to Eq. (41), for which the substitution t ¼ e�v=v0 results in an
integral over a finite interval

1 ¼
ð1

0

dt

k� cv0 ln t
: (37)

Once we have a method for evaluating the integral over
velocities, we use a root-finding method to solve Eq. (41).
For equations of the type used in Ref. 7 and the ones of inter-
est here, the secant or Newton–Raphson methods are appro-
priate.15 Although both are efficient, we will use the secant
method, a recursive method used to find the solution to the
equation f(x)¼ 0 via the relation

xnþ1 ¼
xn�1f xnð Þ � xnf xn�1ð Þ

f xnð Þ � f xn�1ð Þ
; (38)

starting from a pair of distinct initial values x1 and x2. The
idea is to follow the secant line to its x-intercept and use that
as an approximation for the root. This idea is similar to the
Newton–Raphson method, which follows the tangent line,
but the secant method does not require knowledge of the
derivative.

The computational procedure for solving Eq. (19) is as
follows. Let gðk; nÞ be the value of the integral in Eq. (19)
over the interval ½v1; v2�, given by a function that employs
the method of Eq. (36) using n integration points. The latter
is chosen according to the desired precision, using a func-
tion int(kÞ, which evaluates the integral using successively
larger numbers of points until the relative difference is
smaller than a certain tolerance. Pseudocode for this proce-
dure is given by

Fig. 1. The (dimensionless) mean speed versus cva for a uniform distribution

of desired velocities, Eq. (29), with va ¼ v0=2. Note the discontinuous deriv-

ative signaling a transition from individual to collective behavior.
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begin
define number of intervals n, increment
s, and precision e
a1¼g(k,n)
n¼nþs
a2¼g(k,n)
do while ja2�a1ja2

> e
a1¼a2
n¼nþs
a2¼g(k,n)

end do
int¼a2
end

Because of the efficiency of the method described in Eq.
(36), the function int(kÞ quickly converges to the correct
value. We then search for the value of k yielding int ðk)¼ 1
using the secant method. To begin we need a pair of distinct
initial values, k1 and k2, with 0 < ki � 1. We then evaluate
int(k1Þ and int(k2Þ, and apply the secant method to obtain a
refined estimate for k, which brings int(kÞ nearer to the
desired value of unity. The process is iterated until the rela-
tive change in k is smaller than a specified tolerance e.
Because intðkÞ is strictly decreasing on the interval ½0; 1�, the
secant method works efficiently to locate k. Pseudocode for
this procedure is given by

begin
define k1 and k2
do while jk2 � k1j=k2 > e
a¼ k2
r1 ¼ intðk1Þ�1
r2 ¼ intðk2Þ � 1
k2 ¼ ½k1r2 � k2r1�=½r2 � r1�
k1 ¼ a

end do
k ¼ k2
end

A. Exponential distribution of desired velocities

As an illustration, we solve the Prigogine–Herman model
for an exponential distribution of desired velocities, as dis-
cussed in Ref. 7. Let

f0 ¼ H vð Þ gcmax

v0

e�v=v0 ; (39)

for which the mean velocity is v0. In this case, the most prob-
able desired velocity is zero, and because f0ðv ¼ 0Þ > 0,
there is no transition. The stationary solution is

f ¼ cmaxge�v=v0

v0 kþ cvð Þ ; (40)

where k is determined by the normalization condition

1 ¼ 1

v0

ð1
0

e�v=v0

kþ cv
dv: (41)

The value of k for given values of c and v0 is obtained
numerically as we have described.

The top panel in Fig. 2 shows the normalized flux Q
¼ q=cmax as a function of the normalized concentration

g ¼ c=cmax. Note the linear relation between flux and con-
centration for small g. In this regime, the slope of each curve
depends on v0, the average desired velocity. At high concen-
trations, the normalized flux is independent of v0. The (nor-
malized) mean velocity is plotted versus g in the bottom
panel of Fig. 2 for several values of v0. As for the case of the
normalized flux, all curves exhibit the same behavior at high
concentrations.

It is interesting to compare the stationary velocity
distribution with the corresponding distribution of desired
velocities. Figure 3 shows that the stationary velocity distri-
bution is close to the distribution of desired velocities for a
relatively low concentration (g ¼ 0:2). At a higher concen-
tration (g ¼ 0:4, Fig. 4), the two distributions differ, with
higher probabilities for low velocities in the stationary ve-
locity distribution than in the distribution of desired
velocities.

B. Gaussian distribution of desired velocities

We now consider a more realistic example that has
received little attention until now—a Gaussian-like distribu-
tion of desired velocities

Fig. 2. The normalized flux Q � q=cmax (top) and the normalized mean ve-

locity �v=v0 (bottom) versus the normalized concentration g ¼ c=cmax for

cmaxs ¼ 0:1 and mean desired velocity v0. At low concentrations, the mean

velocity is close to its desired value, and the normalized flux is proportional

to v0. At larger concentrations, the normalized fluxes for different values of

v0 approach a common function.
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f0ðvÞ ¼ cA½e�ðv�v0Þ2=v2
a � e�v2

0
=v2

a �HðvÞHð2v0 � vÞ: (42)

The parameter v0 represents the mean desired velocity, and
va is a measure of the dispersion of the distribution. Because
of the step functions, f0 is zero outside the interval ½0; 2v0�.
The second term in the square brackets ensures that f0 goes
to zero continuously at the endpoints of this interval. The
normalization factor A is approximately ðva

ffiffiffi
p
p
Þ�1

for
v0 	 va.

Because
Ð
ðf0=vÞ dv <1, there is a transition between

individual and collective flow. According to Eq. (20), the
critical point is given by

cc ¼ A

ð2v0

0

dv

v
e� v�v0ð Þ2=v2

a � e�v2
0
=v2

a

� 	
; (43)

which is readily evaluated numerically. We proceed as
before and calculate the stationary velocity distribution f(v)
and the stationary mean velocity and flux. Figure 5 shows
the flux Q as a function of normalized concentration for sev-
eral values of v0, with va¼ 20. As expected, the slope of qðgÞ

jumps from a positive to a negative value at the transition
from individual to collective flow. In the latter regime, qðgÞ
is characterized by a single function, independent of v0. The
larger the value of v0, the smaller the critical density gc.

A notable aspect of the transition is the sudden change in
the stationary distribution at the critical concentration at
which the distribution splits into a regular and a singular
part. In Fig. 6, which compares the stationary velocity distri-
bution and distribution of desired velocities for several con-
centrations in the individual flow regime, we see that the two
distributions have the same area, as required by normaliza-
tion. For g ¼ 0:15 the distributions are indistinguishable; at
higher concentrations, small differences appear. The critical
concentration, gc ¼ 0:421, represents the limit for individual
flow; for g > gc the stationary velocity distribution is the
sum of a regular part, given by f0=ðcvÞ, and a singular part,
ac dðvÞ, with a given by Eq. (21). In Fig. 7, we compare the
regular part of the stationary velocity distribution with the
corresponding distribution of desired velocities for g > gc.

Fig. 4. (Color online) Distribution of the desired velocity and stationary ve-

locity distribution as in Fig. 3 for g ¼ 0:4. At this concentration, the differ-

ences between the stationary and desired distributions are more dramatic

than in Fig. 3.

Fig. 5. (Color online) The flux Q as a function of the normalized concentra-

tion g in the Prigogine–Herman model using the distribution of desired

velocities of Eq. (42), with va¼ 20. The transition points are gc ¼ 0:375,

0.395, 0.421, and 0.458, for v0 ¼ 120, 100, 80, and 60, respectively. Above

the critical concentration, the flux follows a master curve independent of v0.

Fig. 6. The stationary velocity distribution (solid) and corresponding distri-

bution of desired velocities (dashed), for concentrations in the individual

flow regime. The distribution of desired velocities is given by Eq. (42) with

v0 ¼ 80 and va¼ 20. The difference between the stationary and desired dis-

tributions grows with increasing concentration.

Fig. 3. (Color online) Distribution of desired velocities (dashed) and station-

ary velocity distribution (solid) for exponential desired velocity distributions

with v0 as indicated; g ¼ 0:2. In all cases, the stationary distribution exceeds

the desired one at low velocities, and vice-versa.
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The area of the regular part of the stationary velocity distri-
bution is smaller than that of the distribution of desired
velocities. The difference corresponds to the d-function at
the origin.

VI. NUMERICAL INTEGRATION OF THE

PRIGOGINE–HERMAN–BOLTZMANN EQUATION

The Prigogine–Herman–Boltzmann equation, Eq. (11),
lends itself to numerical integration via straightforward dis-
cretization of the position, time, and velocity, permitting us
to explore the space and time dependence of the density and
velocity profiles. For simplicity, we adopt an explicit integra-
tion scheme. Let the length of the system be L, with periodic
boundaries. We represent the distribution function f ðx; v; tÞ
at a set of points

xn ¼ nL=N; n ¼ 0;…;N (44)

and velocities

vm ¼ mvmax=M; m ¼ 0;…;M ; (45)

where vmax is the maximum allowed velocity, larger than any
velocity of interest in the problem under study. Similarly,
time is discretized in steps tj ¼ jDt, where Dt is a time incre-
ment chosen on the basis of efficiency, accuracy, and stabil-
ity considerations. (A larger time increment reduces
computation time but leads to increased discretization errors
and possible numerical instabilities.)

Let f ðn;m; jÞ denote the value of f at position xn, for veloc-
ity vm and time tj. The integration code uses Eq. (11) to con-
struct the set of values f ðn;m; jþ 1Þ based on the f ðn;m; jÞ,
via f ðn;m; jþ 1Þ ¼ f ðn;m; jÞ þ _f ðn;m; jÞDt, where the dot
denotes a time derivative. The essential element of the inte-
gration algorithm is estimating the time derivatives of f.

From Eq. (11), we see there are three contributions to
@f=@t, the first of which is �vð@f=@xÞ. In the discretized rep-
resentation, we estimate the spatial derivative as

fx n;m; jð Þ ’ f n;m; jð Þ � f n� 1;m; jð Þ
� 	 N

L

� �
: (46)

The spatial derivative fx at position xn is estimated using
the value of f at this point and the one just to the left.
Because vehicles move only to the right, there is little
sense in including the value of f at point xnþ1, as might be
done in a more symmetric integration scheme. Note that
stability requires that ðNvmax=LÞDt < 1; in practice we use
Dt � 0:01L=ðNvmaxÞ.

The second contribution to @f=@t is the term
�½f ðvÞ � cf0ðvÞ�=T. (Here, the desired velocity distribution
f0ðvÞ is multiplied by the local concentration c(x) because, in
numerical implementations, it is convenient to normalize
f0ðvÞ so that its integral over velocities is unity.) This contri-
bution is readily evaluated once we have the local concentra-
tion cðn; jÞ ¼

P
m f ðn;m; jÞ and an expression for the

relaxation time T. In the Prigogine–Herman model, the latter
is given by Eq. (34), or simply T ¼ scðn; jÞ=½1� cðn; jÞ�,
where we set cmax ¼ 1. Because the term under consideration
involves a factor of 1=T, we cannot allow c¼ 0 anywhere.

The third contribution takes the discretized form
½cðn; jÞ�2½�vðn; jÞ � vm�f ðn;m; jÞ, where we have used Eq. (33)
and introduced �vðn; jÞ ¼

P
mvmf ðn;m; jÞ=cðn; jÞ. The follow-

ing pseudocode details the integration algorithm (se use peri-
odic boundary conditions).

begin
define system size L, maximum velocity
vmax, maximum time tmax,

number of positions N, number of
velocities M, time step Dt, relaxa-
tion parameter tau, and normalized
desired distribution of velocities
f0(m)

initialize f(n,m)
t¼0
for t�tmax

for n¼0, N
nm¼n-1
if (n¼0) nm¼N
c(n)¼Rm f(n,m)
�vðnÞ ¼ ½Rm vm � fðn; mÞ�=cðnÞ
relax¼[1-c(n)]/[c(n) � tau]
for m¼0, M
fx¼[f(n,m) - f(nm,m)] �(N/L)
df1¼-vm � fx
df2¼-relax � [f(n,m) -c(n) � f0(m)]
df3 ¼ ½cðnÞ�2 � ½�vðnÞ � vm� � fðn; m; jÞ
df(n,m)¼df1 þ df2 þ df3

end
end
for n¼0, N
for m¼0, M
f(n,m)¼f(n,m) þ Dt � df(n,m)

end
end
t¼t þ Dt

end

As examples, we apply the integration code to two
cases.16 In the first, the initial distribution of vehicles is in-
homogeneous: the initial concentration is low (c¼ 0.01)
except for a small region (2 < x � 3) that has c¼ 0.8. In the
low-concentration region, the initial velocity distribution is
taken as the desired one, which is essentially Gaussian,
f0ðjÞ ¼ Ae�10ðvj�1:6Þ2 , for j ¼ 2;…;M (and zero for j outside

Fig. 7. Regular part of the stationary velocity distribution (solid) and the cor-

responding distribution of desired velocities (dashed) for densities in the col-

lective flow regime; parameters as in Fig. 6. Note the differences in

amplitude between the stationary and desired distributions, associated with a

population of cars having velocity zero in the stationary distribution.
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this set), giving a mean desired velocity of 1.5717. In the
concentrated region, the initial velocity is 0.08 for all
vehicles. (Distance and velocity are dimensionless in this
example; the system size L¼ 20.) Integration of Eq. (11)
allows us to follow how the concentration and mean veloc-
ity become uniform, as shown in Fig. 8.

In the second example, we seek the stationary concentration
and mean-velocity profiles in a system with a nonuniform
desired velocity distribution. Outside the region 8:5<x
�10:5; f0ðjÞ is as in the previous example, but within this
region we take f0ðjÞ¼Ae�12ðvj�0:8Þ2 for j¼2;…;M. The reduc-
tion in mean desired speed by about half reflects a change in
driving conditions, such as a speed trap or narrowing of the
road. The inhomogeneous desired velocity distribution causes
a pile-up of vehicles (as well as a reduction in speed) within
the “slow” region and well beyond it, as shown in Fig. 9. In
actual road traffic, we expect the concentration to take a higher
than average value to the left of the slow region as well, as
drivers slow down in anticipation of the congestion ahead.
This feature of real traffic is absent in the Prigogine–
Herman–Boltzmann model: drivers interact only with vehicles
at the same position and cannot adjust to road conditions ahead
of them.

VII. DISCUSSION

We have seen that the Prigogine–Herman–Boltzmann
equation describes some basic features of vehicular traffic,
and that the Prigogine–Herman model,5–7 which introduces
additional hypotheses regarding driving behavior, leads to
interesting predictions such as a transition between individual
and collective flows. Nevertheless, this approach has short-
comings. Several problems with the Prigogine–Herman model
are discussed in Ref. 17. Letting the relaxation time T depend
on the concentration introduces an effective interaction

between vehicles, in addition to the integral term, which rep-
resents binary interactions. As a result, the clear separation
between individual particle motion (streaming terms) and col-
lisions in the original Boltzmann equation becomes somewhat
muddled in the Prigogine–Herman model.

Several modifications of the Prigogine–Herman–Boltzmann
equation17–19 and of the Prigogine–Herman model have been
proposed to study traffic more realistically and to extend the
model to higher concentrations. The Prigogine–Herman model
was modified by Paveri-Fontana17 to include the joint distri-
bution of position x, velocity v, and desired velocity u. In their
description, gðx; v; u; tÞ dx dv du represents the number of
vehicles at time t, with position between x and xþ dx, having
velocity between v and v þ dv, and desired velocity between
u and u þ du. In this way, the model can include the strong
correlation between drivers’ speed v and their desired speed u.
For example, in the absence of interactions, we expect
gðx; v; u; tÞ ! f0ðx; u; tÞdðv� uÞ as t!1.

Wagner et al.18 proposed a traffic flow model using the
desired velocity proposed by Paveri-Fontana.17 By taking
into account the nonzero length of vehicles, these authors
extend the description of Paveri-Fontana to the high-density
regime. In Ref. 19, a successive slowing-down process is
considered, in which drivers react to traffic conditions in a
more cautious manner.

Despite various criticisms,17–19 the Prigogine–Herman
model remains important. One can find applications of the
model in other contexts, for instance, to network traffic.20

Nelson and Sopasakis12 use the model to show that, under
some assumptions regarding the relaxation time and passing
probability, the stationary solution is not unique above a cer-
tain density; the existence of multiple solutions reflects the
tendency toward substantial scatter in observational data of
traffic flow at high concentrations.

Our impression is that although a passing probability
that decreases with vehicle concentration is reasonable, a
concentration-dependent relaxation time is not. The relaxation
time should rather reflect intrinsic limitations of the drivers (fi-
nite reaction times) and their vehicles (inertia), which render
instantaneous changes in speed impossible. A linear depend-
ence of passing probability on concentration may also be

Fig. 8. Concentration (solid) and mean velocity (dashed) profiles obtained

from the Prigogine–Herman–Boltzmann equation via numerical integration,

for times (upper to lower) 0, 2, 4,…, 12. The mean velocity has been nor-

malized to the desired value of 1.5717. The concentration and mean velocity

gradually become uniform.

Fig. 9. Concentration (lower curve) and mean velocity (upper curve) profiles

in the steady state, obtained from the Prigogine–Herman–Boltzmann equa-

tion via numerical integration. The mean velocity has been normalized to its

desired value (outside the slow region) of 1.5717. The mean desired velocity

in the region between the vertical dashed lines is only half its value outside.

Note how the reduction in desired velocity leads to a higher concentration in

the slow region and well beyond it.

143 Am. J. Phys., Vol. 84, No. 2, February 2016 M. L. L. Iannini and Ronald Dickman 143



unrealistic. To move to the passing lane, drivers must find a
gap large enough to safely accommodate their vehicle. Results
from the theory of liquids suggest that this probability decays
exponentially, not linearly with concentration. We further sug-
gest that drivers adjust their desired speeds according to road
conditions, tending to reduce their desired speed as the concen-
tration increases, so as to avoid collisions. If such alterations
can be introduced within the Prigogine–Herman–Boltzmann
framework without undue complications, it may be possible to
enhance understanding of traffic dynamics while providing
more reliable predictions.

VIII. COMPARISON WITH OTHER APPROACHES

The first deterministic continuous model of traffic was a
dynamical model21 based on the equations of motion of each
vehicle, which are solved numerically. Monte Carlo simula-
tions of the Nagel–Schreckenberg cellular automaton show a
transition from free flow to jammed traffic with increasing
vehicle density.8 Both of these microscopic models have a
relatively high level of detail as they describe individual
drivers’ behavior and pairwise interactions. An important
advantage of microscopic models is their ability to describe
events triggered by fluctuations. Kinetic theories do not
include fluctuations and can be interpreted as mean-field the-
ories of traffic. Thus, they share many of the advantages and
disadvantages of mean-field theories of phase transitions.

Despite the successes of the Nagel–Schreckenberg autom-
aton and other microscopic models, it is fair to say that they
rest on models of driving behavior that are no more realistic
than those used in kinetic theories. Notwithstanding the unre-
alistic assumptions regarding individual drivers, microscopic
models do capture collective behavior in the large-system
limit. Kinetic theory also captures some aspects of this
behavior. More recently, new macroscopic approaches to
traffic have been developed, including a lattice Boltzmann
model for traffic flow22 and the application of the
Chapman–Enskog and Grad methods to traffic theory.23

IX. SUGGESTIONS FOR FURTHER STUDY

The following projects involve possible improvements of
the Prigogine and Herman model. Some have been applied
by Wagner18,19 to Fontana’s model.17 It is interesting to
study the modifications in the stationary speed distribution
due to changes in the collision term of the Prigogine–
Herman–Boltzmann equation.

The first modification is to incorporate the fact that
vehicles are not point-like objects but have a spatial exten-
sion ‘, and require an additional safety distance srv, where sr

is the drivers’ reaction time. These changes result in a
reduced effective road length, reminiscent of the accessible
volume in van der Waals theory. In particular, two modifica-
tions are introduced in the interaction term:

(1) The effective volume is reduced. Suppose a road of
length L contains n vehicles; the concentration c ¼ n=L.
The effective length is L� n‘� sr

Pn
i¼1 vi if we include

the vehicle length and the safety distance ds ¼ srv. Due
to the reduced effective length, the interaction frequency
is enhanced by

� c;�vð Þ ¼
1

1� c ‘þ s�vð Þ ; (47)

where �v is the mean velocity. Because � and P are func-
tions of c, we can define a modified interaction probabil-
ity r ¼ �ðc;�vÞ½1� PðcÞ�.

(2) In the Prigogine–Herman model, vehicles with fixed
speed v interact with vehicles with speed u at the same
position x. In the modified model, a vehicle with velocity
u at position x interacts with vehicles with velocity v at
position xþ ‘þ su, and vehicles with velocity v at x
interact with those with velocity u at xþ ‘þ sv, so that
we have

@f

@t

� �
int

¼
ð1

v
du r u� vð Þf xþ ‘þ us; v; tð Þf x; u; tð Þ

�
ðv

�1
du r v� uð Þf x; v; tð Þf xþ ‘þ vs; u; tð Þ:

(48)

The project consists in introducing these modifications in
the Prigogine–Herman–Boltzmann equation and, using the
same distribution of desired velocities, comparing the station-
ary velocity distribution with that found using the original
Prigogine and Herman model. An interesting modification is
to include different kinds of vehicles, with different lengths
and safety distances. For each kind of vehicle, we must assign
a specific distribution function; vehicles of different kinds
interact with each other in the collision term. The stationary
distributions and the concentration marking the transition
from individual to collective flow now depend on the fractions
of vehicles belonging to each class.

ACKNOWLEDGMENTS

This work was supported by CNPq and CAPES, Brazil.

a)Electronic mail: lobao@div.cefetmg.br
b)Electronic mail: dickman@fisica.ufmg.br
1M. Patriarca and A. Chakraborti, “Kinetic exchange models: From molec-

ular physics to social science,” Am. J. Phys. 81, 618–623 (2013).
2V. M. Yakovenko and J. Barkley Rosser, Jr., “Colloquium: Statistical

mechanics of money, wealth, and income,” Rev. Mod. Phys. 81,

1703–1726 (2009).
3R. Reisenauer, K. Smith, and R. A. Blythe, “Stochastic dynamics of lexi-

con learning in an uncertain and nonuniform world,” Phys. Rev. Lett. 110,

258701-1–4 (2013).
4C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social

dynamics,” Rev. Mod. Phys. 81, 591–646 (2009).
5I. Prigogine and F. C. Andrews, “A Boltzmann-like approach for traffic

flow,” Oper. Res. 8, 789–797 (1960).
6I. Prigogine, R. C. Herman, and R. L. Anderson, “On the statistical distri-

bution function theory of traffic flow,” Oper. Res. 10, 180–196 (1962).
7I. Prigogine and R. C. Herman, Kinetic Theory of Vehicular Traffic
(Elsevier, New York, 1971).

8K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway

traffic,” J. Phys. I (France) 2, 2221–2229 (1992).
9R. L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic
Descriptions (Springer-Verlag, New York, 2003).

10See Ref. 7, pp. 42–51 for further details.
11M. Plischke and B. Bergersen, Equilibrium Statistical Physics (World

Scientific, Singapore, 1994).
12P. Nelson and Sopasakis, “The Prigogine-Herman kinetic model predicts

widely scattered traffic flow data at high concentrations,” Trans. Res. B

32, 589–604 (1998).
13M. Kot, Elements of Mathematical Ecology (Cambridge U.P., Cambridge,

2001).
14W. H. Press, S. A. Teukolsky, W. T. Velterling, and B. P. Flannery, Numerical

Recipies in Fortran (Cambridge U.P., New York, 1993). See p. 128.
15See Ref. 14, pp. 347, 355.

144 Am. J. Phys., Vol. 84, No. 2, February 2016 M. L. L. Iannini and Ronald Dickman 144

mailto:lobao@div.cefetmg.br
mailto:dickman@fisica.ufmg.br
http://dx.doi.org/10.1119/1.4807852
http://dx.doi.org/10.1103/RevModPhys.81.1703
http://dx.doi.org/10.1103/PhysRevLett.110.258701
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1287/opre.8.6.789
http://dx.doi.org/10.1287/opre.10.2.180
http://dx.doi.org/10.1051/jp1:1992277
http://dx.doi.org/10.1016/S0191-2615(98)00020-4


16In these studies we use vmax ¼ 2:0; N ¼ 10L, M ¼ 50, s ¼ 5:0, and

Dt ¼ 0:008L=ðNvmaxÞ.
17S. L. Paveri-Fontana, “On Boltzmann-like treatments for traffic flow: A

critical review of the basic model and an alternative proposal for dilute

traffic analysis,” Trans. Res. 9, 225–235 (1975).
18C. Wagner, C. Hoffmann, R. Sollacher, J. Wagenhuber, and B.

Schurmann, “Second-order continuum traffic flow model,” Phys. Rev. E

54, 5073–5085 (1996).
19C. Wagner, “Successive deceleration in Boltzmann-like traffic equations,”

Phys. Rev. E 55, 6969–6978 (1997).

20I. Antoniou, V. V. Ivanov, and Yu. L. Kalinovsky, “Kinetic model of net-

work traffic,” Physica A 308, 533–544 (2002).
21M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,

“Dynamical model of traffic congestion and numerical simulation,” Phys.

Rev. E 51, 1035–1042 (1995).
22J. Meng, Y. Qian, X. Li, and S. Dai, “Lattice Boltzmann model for traffic

flow,” Phys. Rev. E 77, 36108-1–9 (2008).
23W. Marques, Jr. and A. R. M�endes, “On the kinetic theory of vehicular

traffic flow: Chapman-Enskog expansion versus Grad’s moment method,”

Physica A 392, 3430–3440 (2013).

145 Am. J. Phys., Vol. 84, No. 2, February 2016 M. L. L. Iannini and Ronald Dickman 145

http://dx.doi.org/10.1016/0041-1647(75)90063-5
http://dx.doi.org/10.1103/PhysRevE.54.5073
http://dx.doi.org/10.1103/PhysRevE.55.6969
http://dx.doi.org/10.1016/S0378-4371(02)00585-X
http://dx.doi.org/10.1103/PhysRevE.51.1035
http://dx.doi.org/10.1103/PhysRevE.51.1035
http://dx.doi.org/10.1103/PhysRevE.77.036108
http://dx.doi.org/10.1016/j.physa.2013.03.052


PHYSICAL REVIEW E 95, 022106 (2017)

Traffic model with an absorbing-state phase transition

M. L. L. Iannini* and Ronald Dickman†

Departamento de Fı́sica and National Institute of Science and Technology for Complex Systems, ICEx,
Universidade Federal de Minas Gerais, C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil

(Received 14 November 2016; published 6 February 2017)

We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is
smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in
speed occurs with probability p, independent of the headway, as long as the current speed is greater than zero.)
In the modified model the free-flow state (with all vehicles traveling at the maximum speed, vmax) is absorbing
for densities ρ smaller than a critical value ρc = 1/(vmax + 2). The phase diagram in the ρ-p plane is reentrant:
for densities in the range ρc,< < ρ < ρc, both small and large values of p favor free flow, while for intermediate
values, a nonzero fraction of vehicles have speeds <vmax. In addition to representing a more realistic description
of driving behavior, this change leads to a better understanding of the phase transition in the original model. Our
results suggest an unexpected connection between traffic models and stochastic sandpiles.

DOI: 10.1103/PhysRevE.95.022106

I. INTRODUCTION

The Nagel-Schreckenberg (NS) model holds a central
position in traffic modeling via cellular automata, because
it reproduces features commonly found in real traffic, such
as the transition between free flow and a jammed state,
start-and-stop waves, and shocks (due to driver overreaction)
[1]. This simple model represents the effect of fluctuations
in driving behavior by incorporating a stochastic element: the
spontaneous reduction of velocity with probability p.

Although the NS model has been studied extensively,
the nature of the transition between free and jammed flow,
in particular, whether it corresponds to a critical point,
remains controversial [2–5]. A proposed definition of the
order parameter in the NS model [6], and a subsequent
comment [7,8] are pertinent to this issue. According to
the authors of Ref. [7], results for the lifetime distribution,
spatial correlations, and relaxation time provide evidence for
a “crossover type jamming transition” from free flow to the
jammed regime, but not for a well-defined phase transition.
Modifications in the update rules of the NS model have been
found to result in a phase transition [9,10]. Krauss et al. [11]
proposed a generalized version of the NS model and showed
numerically that free- and congested-flow phases may coexist.
While the NS model does not exhibit metastable states, which
are important in observed traffic flow, including a slow-to-start
rule, such that acceleration of stopped or slow vehicles is
delayed compared to that of moving or faster cars, can lead
to metastability [12–14]. Takayasu and Takayasu [12] were
the first to suggest a cellular automaton (CA) model with
a slow-to-start rule. Benjamin, Johnson, and Hui introduced
a different slow-to-start rule in Ref. [13], while Barlovic
et al. suggested a velocity-dependent randomization model
[14]. Other models with metastable states are discussed in
Refs. [15,16]. A review of CA traffic models is presented in
Ref. [17].

*lobao@div.cefetmg.br
†dickman@fisica.ufmg.br

In the original NS model, at each time step (specifically, in
the reduction substep), a driver with nonzero velocity reduces
her speed with probability p. Here we propose a simple yet
crucial modification, eliminating changes in speed in this
substep when the distance to the car ahead is greater than
the current speed. We believe that this rule reflects driver
behavior more faithfully than does the original reduction
step, in which drivers may decelerate for no apparent reason.
While one might argue that distractions such as cell phones
cause drivers to decelerate unnecessarily, we can expect that
highways will be increasingly populated by driverless vehicles
exhibiting more rational behavior. The modified model, which
we call the absorbing Nagel-Schreckenberg (ANS) model,
exhibits a line of absorbing-state phase transitions between
free and congested flow in the ρ-p plane. (Here ρ denotes the
density, i.e., the number of vehicles per site.) The modification
proposed here allows us to understand the nature of the phase
transition in the original model, and to identify a proper order
parameter. The ANS model exhibits a surprising reentrant
phase diagram. Some time ago, Wang studied a model with
the same modified reduction step, and found that free flow
is absorbing for all densities �1/7, regardless of p [10].
This model differs from ours in that acceleration to the
maximum allowed speed occurs in a single update, rather than
in increments.

Regarding the nature of the phase transition in the original
NS model, the key insight is that, for p = 0, it exhibits a
transition between an absorbing state (free flow) and an active
state (congested flow) at density ρ = 1/(vmax + 1), where
vmax denotes the maximum speed. Free flow is absorbing
because each car advances the same distance in each time
step, so that the configuration simply executes rigid-body
motion (in the co-moving frame it is frozen). We note that
for ρ < 1/(vmax + 1), many absorbing configurations exist;
which one is attained by the dynamics depends on the initial
condition. Congested flow, by contrast, is active in the sense
that the distances between vehicles change with time. Below
the critical density, activity (if present initially) dies out, and
an absorbing configuration is reached; for ρ > 1/(vmax + 2)
there must be activity, due to lack of sufficient space between
vehicles. Setting p > 0 in the original model is equivalent
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to including a source of spontaneous activity. Since such a
source eliminates the absorbing state [19], the original NS
model does not possess a phase transition for p > 0. (It
should nonetheless be possible to observe scaling phenomena
as p → 0.) A similar conclusion was reached by Souza and
Vilar [5], who drew an analogy between the phase transition at
p = 0 and a quantum phase transition at temperature T = 0.
In their analogy, p > 0 corresponds to T > 0, for which, sensu
stricto, there is again no phase transition.

The remainder of this paper is organized as follows. In the
next section we define the ANS model, pointing out how it
differs from the original NS model. In Sec. III we explain
qualitatively the nature of the phase diagram, and report
simulation results for the phase boundary. Section IV presents
results on critical behavior, followed in Sec. V by a summary
and discussion of our findings.

II. MODEL

The NS model and its absorbing counterpart (ANS) are
defined on a ring of L sites, each of which may be empty or
occupied by a vehicle with velocity v = 0,1, . . . ,vmax. (Unless
otherwise noted, we use vmax = 5, as is standard in studies of
the NS model.) The dynamics, which occurs in discrete time,
conserves the number N of vehicles; the associated intensive
control parameter is ρ = N/L. Denoting the position of the
ith vehicle by xi , we define the headway di = xi+1 − xi − 1
as the number of empty sites between vehicles i and i + 1.
Each time step consists of four substeps, as follows:

(i) Each vehicle with vi < vmax increases its velocity by
one unit: vi → vi + 1

(ii) Each vehicle with vi > di reduces its velocity to vi =
di .

(iii) NS model: each vehicle reduces its velocity by one
unit with probability p.

(iv) ANS model: each vehicle with vi =di reduces its
velocity by one unit with probability p.

(v) All vehicles advance their position in accord with their
velocity.

In practice, given the velocities vi and headways di , there is
no need to keep track of positions: the final substep is simply
di → di − vi + vi+1 for i = 1, . . . ,N − 1, and dN → dN −
vN + v1.

The modification of the third substep leads to several
notable changes in behavior, as reflected in the fundamental
diagram shown in Fig. 1, which contrasts the flux-density
relation in the NS and ANS models. In the ANS model the
flux exhibits a discontinuous first derivative at a certain density
ρc(p) (for any p between zero and one), while in the NS model
the flux and other observables are smooth functions of density
for p > 0. Thus the ANS model exhibits a phase transition for
general p, whereas the NS model has a phase transition only
for p = 0 [6,7]. The flux q generally takes its maximum value
at the transition. (For small p, however, maximum flux occurs
at a density above ρc = 1/(vmax + 2), approaching ρ = 1

vmax+1
for p = 0.) The low-density absorbing phase has vi = vmax

and di � vmax + 1, ∀i; in this phase all drivers advance in a
deterministic manner, with the flux given by j = ρvmax. In the
active state, by contrast, a nonzero fraction of vehicles have

FIG. 1. Flux j versus density in the NS and ANS models for
probabilities p = 0.1 (upper) and p = 0.5 (lower). System size L =
105; vehicles are distributed randomly at t = 0. Error bars are smaller
than symbols.

di � vmax. For such vehicles, changes in velocity are possible,
and the configuration is nonabsorbing. The stationary fluxes in
the NS and ANS models differ significantly over a considerable
interval of densities, especially for high values of p. Below the
critical density ρc, this difference is due the existence of an
absorbing phase in the ANS model. For densities slightly above
ρc, most vehicles have velocity vi = vmax and di = vmax + 1,
although there is no absorbing state. As the density approaches
unity, the differences between the fluxes in the ANS and NS
models become smaller.

For fixed deceleration probability p, the flux j = ρv first
grows, and then decreases as we increase the vehicle density
ρ. An intriguing feature is the dependence of the density at
maximum flux on the probability p: Fig. 2 shows that the
density at maximum flux decreases with increasing p until
reaching a minimum near p = 0.5, and subsequently increases
with increasing p. This reflects the reentrant nature of the phase
diagram, as discussed in Sec. III.

A. Special cases: p = 0 and p = 1

For the extreme values p = 0 and p = 1 the ANS model is
deterministic; these two cases deserve comment. For complete-
ness we mention the corresponding results pertaining to the NS
model given in Ref. [18], which also includes a discussion of
mean field theories. For p = 0, the NS and ANS models are
identical. The system reaches an absorbing state, vi = vmax,
∀i, for densities ρ � 1/(vmax + 1). For higher densities we
observe nonzero activity in the steady state. We note however
that there are special configurations, in which vi = di , ∀i,
with some vi < vmax, whose evolution corresponds to a rigid
rotation of the pattern. [A simple example is vi = di = n,
∀i, with n = 1, 2, 3, or 4, and density ρ = 1/(n + 1).] Since
our interest here is in the model with 0 < p < 1 we do not
comment further on such configurations.

For the NS model with p = 1, from one step to the next,
each velocity vi is nonincreasing. (Of course vi → vi + 1 at
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(a)

(b)

FIG. 2. Steady-state flux versus density in the ANS model for
(a) p = 0.1, 0.3, and 0.5, and (b) p = 0.5, 0.7, and 0.9. Note that
the density of maximum flux first decreases, and then increases, with
increasing p; the minimum occurs near p � 0.5. System size L =
105; vehicles are distributed randomly at t = 0. Error bars are smaller
than symbols.

the acceleration substep, but this is immediately undone in
the subsequent substeps.) Thus if the evolution leads to a
state in which even one vehicle has velocity zero, all vehicles
eventually stop. Such an event is inevitable for ρ > 1/3, since
in this case di � 1 for at least one vehicle, which is obliged
to have vi = 0 after one step. For ρ � 1

3 , steady states with
nonzero flux are possible, depending on the choice of initial
condition. Such configurations are metastable in the sense that
the stationary state depends on the initial distribution. In the
ANS model with p = 1 the mean velocity in steady state is
zero only for ρ � 1/2. For ρ � 1/(vmax + 2), we find that
the system always reaches an absorbing configuration with
v = vmax. In the remaining interval, 1/(vmax + 2) < ρ � 1/2,
we find v = 1 − 2ρ.

III. PHASE DIAGRAM

A. Initial condition dependence

In studies of traffic, states are called metastable if they can
be obtained from some, but not all initial conditions [12–16];
such states are an essential component of real traffic. Since
the NS model is not capable of reproducing this feature,
models with modified update rules have been investigated
by several authors [12–14]. In the ANS model, by contrast,
there is a region in the ρ-p plane in which, depending on
the initial condition, the system may evolve to an active state
or an absorbing one. Our results are consistent with the usual
scenario for absorbing-state phase transitions [19–21]: activity
in a finite system has a finite lifetime; in the active phase,
however, the mean lifetime diverges as the system size tends
to infinity. Properties of the active phase may be inferred from
simulations that probe the quasistationary regime of large but
finite systems [24].

To verify the existence of metastable states in the ANS
model, we study its evolution starting from two very different
classes of initial conditions (ICs): homogeneous and jammed.
In a homogeneous IC, the headways di are initially are uniform
as possible, given the density ρ = 1/(1 + d), where d denotes
the mean headway. In this case the initial velocity is vmax for
all vehicles. In a jammed IC, N vehicles occupy N contiguous
sites, while the remaining N (ρ−1 − 1) sites are vacant; in this
case di = 0 for i = 1, . . . ,N − 1, and only vehicle N has a
nonzero initial velocity (vN = vmax). Homogeneous ICs are
much closer to an absorbing configuration than are jammed
ICs. We note that random initial conditions lead to the same
steady state as jammed ICs.

Figure 3 shows the fundamental diagram obtained using
homogeneous and jammed ICs for p = 0.1; for this value of
p the stationary state is the same, regardless of the IC, except
near ρ = 1

7 where, for the homogeneous ICs, an absorbing
configuration is attained, having a greater steady-state flux
than obtained using jammed ICs. For higher probabilities p,
we find a larger interval of densities in which the stationary
behavior depends in the choice of IC. In Fig. 4, for p = 0.5,
this interval corresponds to 0.118 � ρ � 0.143; higher fluxes
(black points) are obtained using homogeneous ICs, and lower
fluxes (red) using jammed ICs. Homogeneous ICs rapidly
evolve to an absorbing configuration, while jammed ICs, which
feature a large initial activity, do not fall into an absorbing
configuration for the duration of the simulation (tmax = 107),
for the system size (L = 105) used here. In Fig. 4, the flux
obtained using jammed ICs (red stars) exhibits a discontinuous
first derivative, signaling a continuous phase transition. The
flux for homogeneous ICs (black circles), exhibits a downward
jump at ρ = 1/7. While the latter might be interpreted as
evidence of a discontinuous phase transition, we note that the
absorbing state, to which homogenous ICs evolve for smaller
densities, ceases to exist for ρ > 1/7. Thus ρ = 1/7 can be
seen as the terminal line of the absorbing phase. As in sandpile
models, the absorbing-state phase transition occurs at a smaller
density (in the ANS model, that marking the discontinuity in
the derivative of j ), at which a nonabsorbing (active) phase
first appears. For 0 < p < 1, the properties of the active phase
(obtained using either jammed or random ICs) are nonsingular
at ρ = 1/7.
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(a)

(b)

FIG. 3. Steady-state flux versus density for p = 0.1 and L =
105. Homogeneous (stars) and jammed (circles) ICs lead to identical
stationary states [panel (a)] except for a small interval of densities
near maximum flux highlighted in panel (b). Error bars are smaller
than symbols.

Systematic investigation of the steady-state flux obtained
using homogeneous and jammed ICs leads to the conclusion
that the ρ-p plane can be divided into three regions. To begin,
we recall that for ρ > 1/(vmax + 2) and p > 0, the mean
velocity v must be smaller than vmax. Thus the activity is
nonzero and the configuration (i.e., the set of values vi and di)
changes with time. In this region, homogeneous and jammed
ICs always lead to the same steady state.

For ρ � 1/(vmax + 2), absorbing configurations exist for
any value of p. There is nevertheless a region with ρ <

1/(vmax + 2) in which activity is long-lived. In this region,
which we call the active phase, the steady state depends on
whether the IC has little activity (homogeneous) or much
activity (jammed). For smaller densities, all ICs evolve to an
absorbing configuration; we call this the absorbing phase. The
boundary between the active and absorbing phases, determined
via the criterion of different steady states for homogeneous

(a)

(b)

FIG. 4. Steady-state flux versus density as in Fig. 3, but for
p = 0.5.

and jammed ICs, is shown in Fig. 5. We note that in Wang’s
model [10] there are only two regions: an absorbing phase for
ρ � 1/7 and an active one for ρ > 1/7.

Our results are consistent with the following scenario,
familiar from the study of phase transitions to an absorbing
state [19–21]: for finite systems, all ICs with ρ < 1/(vmax + 2)
and p > 0 eventually fall into an absorbing configuration.
Within the active phase, however, the mean lifetime of activity
grows exponentially with system size. The phase boundary
represents a line of critical points, on which the lifetime grows
as a power law of system size. (Further details on critical
behavior are discussed in Sec. IV.) A surprising feature of
the phase boundary is that it is reentrant: for a given density
in the range 0.116 < ρ < 1/(vmax + 2), the absorbing phase
is observed for both small and large p values, and the active
phase for intermediate values. The reason for this is discussed
in Sec. III C. We denote the upper and lower branches of the
phase boundary by p+(ρ) and p−(ρ), respectively; they meet
at ρc,< � 0.116.
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FIG. 5. Boundary between active and absorbing phases in the ρ-p
plane. Black points joined by lines: preliminary estimates from initial-
condition dependence as explained in text. Isolated red points: precise
estimates obtained via finite-size scaling as described in Sec. IV. The
open circle at ρ = 1/7, p = 0 is not part of the phase boundary: for
p = 0 the transition occurs at ρ = 1/6. The open circle ρ = 1/7,
p = 1 marks the other end of the phase boundary; we note however
that at this point, all initial conditions evolve to the absorbing state.

The phase boundary is singular at its small-p limit. As
p tends to zero from positive values, the critical density
approaches 1/7, but for p = 0 the transition occurs at ρ = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar
to that of a stochastic sandpile [22,23]. In the sandpile, there are
no absorbing configurations for particle density ρ > zc − 1,
where zc denotes the toppling threshold; nevertheless, the
absorbing-state phase transition at a density strictly smaller
than this value. Similarly, in the ANS model there are no
absorbing configurations for ρ > 1/7, but the phase transition
occurs at some smaller density, depending on the deceleration
probability p. Further parallels between the ANS model and
stochastic sandpiles are noted below.

The phase boundary shown in Fig. 5 represents a prelim-
inary estimate, obtained using the following criterion. Points
along the lower critical line p−(ρ) correspond to the smallest p
value such that each of 200 arbitrary ICs remain active during a
time of 107 steps, in a system of L = 105 sites. Similarly, p+(ρ)
corresponds to the largest p value such that all 200 realizations
remain active. For selected points, a precise determination was
performed, as described in Sec. IV. We defer a more precise
mapping of the overall phase diagram to future work.

The phase transitions at p−(ρ) and p+(ρ) appear to be
continuous. Figure 6 shows the steady-state activity (defined
below) versus p for density ρ = 1/8. In the vicinity of the
transition, the curves become sharper with increasing system
size, as expected at a continuous phase transition to an
absorbing state.

B. Order parameter

Having identified a continuous absorbing-state phase transi-
tion in the ANS model, further analysis requires that we define
an appropriate order parameter or activity density. Since the

FIG. 6. Steady-state activity ρa versus p for vehicle density ρ =
1/8. System sizes (upper to lower curves) N = 1000, 2000, and 4000.
Error bars smaller than symbols.

absorbing state is characterized by vi = vmax,∀i, one might be
inclined to define the activity density simply as ρa = vmax − v.
The problem with this definition is that not all configurations
with vi = vmax,∀i are absorbing: a vehicle with di = vmax may
reduce its speed to vmax − 1, yielding activity in the first sense.
Since such a reduction occurs with probability p, it seems
reasonable to define the activity density as

ρa = vmax − v + pρa,2 ≡ ρa,1 + pρa,2, (1)

where ρa,2 denotes the fraction of vehicles with vi = di =
vmax. According to this definition, the activity density is
zero if and only if the configuration is absorbing, that is, if
vi = vmax and di > vmax, ∀i. Studies of large systems near the
critical point reveal that ρa,1 � ρa,2, so that the latter can be
neglected in scaling analyses. It is nonetheless essential to treat
configurations with ρa,2 > 0 as active, even if ρa,1 = 0.

C. Reentrance

In this subsection we discuss the reason for reentrance, that
is, why, for ρc,< < ρ < ρc, the system reaches the absorbing
state for large p as well as small p. Since deceleration is
associated with generation of activity (i.e., of speeds <vmax), a
reduction in activity as p tends to unity seems counterintuitive.
The following intuitive argument helps to understand why
this happens. For p � 0, vehicles rarely decelerate if they
have sufficient headway to avoid reaching the position of
the car in front. This tends to increase the headway of the
car behind, so that (for ρ < ρc), all headways attain values
�vmax + 1, which represents an absorbing configuration. For
p = 1, a car with speed vi = di always decelerates, which
tends to increase its own headway. In either case, p = 0 or
p = 1, as reduced headway (i.e., inter-vehicle intervals with
di < vmax + 1) is transferred down the line, vehicles may be
obliged to decelerate, until the reduced headway is transferred
to an interval with headway di large enough that no reduction
in velocity is required. [Intervals with di > vmax + 1, which we
call troughs, always exist for ρ < ρc = 1/(vmax + 2)]. When
all reduced headways are annihilated at troughs, the system
attains an absorbing configuration.
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FIG. 7. Vehicle positions relative to the first (lowest) vehicle
versus time t (horizontal) for t � 2, in a system with N = 20, vmax =
2, and vehicle density ρ = 2/9 < ρc = 0.25. Initially, all vehicles
have vi = vmax. The headways di initially alternate between three
and four, except for d19 = 0 and d20 = 7. Filled (open) circles denote
D (N ) events, i.e., events in which a vehicle with speed v(i) = d(i)
decelerates (does not decelerate). In an absorbing configuration all
velocities are equal, yielding a set of horizontal lines with spacings
�vmax + 1. Left panel: p = 0, system inactive for t > 4; right
panel: p = 1, system inactive for t > 7; center panel: example of
a realization with p = 0.6 in which activity persists until t = 56
(evolution for t > 30 not shown).

Call events in which a vehicle having vi = di decelerates D
events, and those in which such a vehicle does not decelerate
N events. For ρ < ρc, if only D events (or only N events)
are allowed, the system attains an absorbing configuration via
annihilation of reduced headways with troughs. Thus some
alternation between D and N events is required to maintain
activity, and the active phase corresponds to intermediate
values of p.

These observations are illustrated in Fig. 7, for a system of
twenty vehicles with vmax = 2 and density ρ = 2/9 < ρc =
0.25. Initially, all vehicles have vi = vmax. The headways
di initially alternate between three and four (the latter are
troughs), except for d19 = 0 and d20 = 7. In the left panel,
for p = 0, the system reaches an absorbing configuration after
four time steps. Similarly, in the right panel, for p = 1, an ab-
sorbing configuration is reached after seven steps. For p = 0.6
(middle panel), the evolution is stochastic. Most realizations
reach an absorbing configuration rapidly, but some remain ac-
tive longer, as in the example shown here. From the distribution
of D and N events, it appears that activity persists when vehi-
cles first suffer an N event, reducing their own headway, and
subsequently (one or two steps later) suffer a D event, reducing
the headway of the preceding vehicle. Such an alternation of
N and D events allows a region with reduced headways to
generate more activity before reaching a trough [25].

IV. CRITICAL BEHAVIOR

We turn now to characterizing the phase transition along the
lines p−(ρ) and p+(ρ). Since the transition is continuous, this
requires that we determine the associated critical exponents,
in order to identify the universality class of the ANS model.
The analysis turns out to be complicated by strong finite-
size effects: different from simple systems exhibiting an

absorbing-state phase transition, such as the contact process,
for which studies of systems with L � 1000 yield good
estimates for critical exponents [19], here we require systems
of up to 105 sites to obtain reliable results. We are nevertheless
able to report precise results at several points along the phase
boundary.

We use quasistationary (QS) simulations to probe the
behavior at long times conditioned on survival of activity [24].
Since the deceleration probability p is continuous while the
density ρ can only be varied in discrete steps, we keep the
latter fixed and vary the former in each series of studies.
As in other studies of QS behavior at absorbing-state phase
transitions, we focus on the finite-size scaling (FSS) of the
activity density, ρa , the lifetime, τ , and the moment ratio
m = 〈ρ2

a〉/ρ2
a , as functions of system size, N [19,24]. At a

critical point, these variables are expected to exhibit scale-free
(power-law) dependence on N , that is, ρa ∼ N−β/ν⊥ and
τ ∼ Nz, where β is the order-parameter exponent and ν⊥
the exponent that governs the divergence of the correlation
length as one approaches the critical point. In the active
phase, ρa approaches a nonzero constant value, while τ grows
exponentially as N → ∞. In the absorbing phase, ρa ∼ 1/N

while τ grows more slowly than a power law as N → ∞. At
the critical point, the moment ratio is expected to converge to
a nontrivial limiting value, m = m∞ + O(N−λ), with λ > 0.
In the active (inactive) phase, m curves sharply downward
(upward) when plotted versus 1/N . These are the criteria we
employ to determine the critical point, pc(ρ). The distance
from the critical point can be estimated from the curvature of
log-log plots of ρa and τ versus N .

As noted in Sec. III B, the order parameter is the sum
of two contributions: ρa = ρa,1 + pρa,2. In simulations, we
therefore determine ρa,1 and ρa,2 separately. In the vicinity
of the critical point we find ρa,1 ∼ N−0.5 and ρa,2 ∼ N−0.9,
showing that the fraction ρa,2 of vehicles with vi = di = vmax

decays more rapidly than ρa,1 = vmax − v, so that it makes
a negligible contribution to the activity density for large N .
We therefore adopt ρa,1 as the order parameter for purposes
of scaling analysis. Configurations ρa,1 = 0 and ρa,2 > 0 are
nevertheless considered to be active; only configurations with
vi = vmax and di > vmax, ∀i, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000,
and 100 000 sites, calculating averages over a set of 20 to
160 realizations. Even for the largest systems studied, the
activity density reaches a stationary value within 106 time
steps. We perform averages over the subsequent 108 steps.
As detailed in Ref. [24], the QS simulation method probes
the quasistationary probability distribution by restarting the
evolution in a randomly chosen active configuration whenever
the absorbing state is reached. A list of Nc such configurations,
sampled from the evolution, is maintained; this list is renewed
by exchanging one of the saved configurations with the current
one at rate pr . Here we use Nc = 1000, and pr = 20/N .
During the relaxation phase, we use a value of pr that is
ten times greater, to eliminate the vestiges of the initial
configuration from the list. The lifetime τ is taken as the mean
time between attempts to visit an absorbing configuration, in
the QS regime.

Initial configurations are prepared by placing vehicles as
uniformly as possible (for example, for density ρ = 1/8, we
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FIG. 8. Activity density versus number of vehicles for density
1/8 and (lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and
0.2687. Error bars are smaller than symbols. Inset: scaled activity
density ρ∗

a = N 0.5ρa versus number of vehicles.

set di = 7, ∀i), and then exchanging distances randomly. In
such an exchange a site j is chosen at random and the
changes dj → dj − 1 and dj+1 → dj+1 + 1 are performed,
respecting the periodic boundary condition, dN+1 ≡ d1. The
random exchange is repeated Ne times (in practice we use
Ne = 2N ), avoiding, naturally, negative values of dj . Since
headways dj < vm are generated in this process, at the first
iteration of the dynamics, velocities vj < vmax arise, leading
to a relatively large, statistically uniform initial activity density.

We performed detailed studies for densities ρ = 1/8, on
both the upper and lower critical lines, and for density
17/144 = 0.11805, on the lower line. Figures 8–10 show,
respectively, the dependence of the order parameter, lifetime
and moment ratio m on system size for density 1/8 and p

values in the vicinity of the lower critical line. In the insets of
Figs. 8 and 9 the values of ρa and τ are divided by the overall
trend to yield ρ∗

a ≡ N0.5ρa and τ ∗ = τ/N . These plots make

FIG. 9. Lifetime versus number of vehicles for density 1/8 and
(lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and 0.2687.
Error bars are smaller than symbols. Inset: scaled lifetime τ ∗ =
N−1.0τ versus number of vehicles.

FIG. 10. Moment ratio m versus reciprocal system size for
density 1/8 and (upper to lower) p = 0.2679, 0.2681, 0.2683, 0.2685,
and 0.2687.

evident subtle curvatures hidden in the main graphs, leading
to the conclusion that pc(ρ = 1/8) is very near 0.2683.

A more systematic analysis involves the curvatures of these
quantities: we fit quadratic polynomials,

ln ρa = const + a ln N + b(ln N )2, (2)

and similarly for ln τ , to the data for the four largest system
sizes. The coefficient of the quadratic term, which should be
zero at the critical point, is plotted versus p in Fig. 11. Linear
interpolation to b = 0 yields the estimates pc = 0.26830(3)
(data for activity density) and pc = 0.26829(2) (data for
lifetime); we adopt pc = 0.26829(3) as our final estimate.
(Figures in parentheses denote statistical uncertainties.) The
data for m, although more scattered, are consistent with this
estimate: from Fig. 10 it is evident that pc lies between 0.2681
and 0.2683.

FIG. 11. Curvature of ln ρa (filled symbols) and ln τ (open
symbols) as functions of ln N , as measured by the coefficient b of the
quadratic term in least-squares quadratic fits to the data in Figs. 8 and
9. Straight lines are least-squares linear fits to b versus deceleration
probability p, for vehicle density ρ = 1/8. Intercepts with the line
b = 0 furnish estimates of pc.
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FIG. 12. Derivatives of (lower to upper) m, ln ρa and ln τ with
respect to p in the vicinity of pc, versus N for vehicle density ρ = 1/8.
Lines are least-squares linear fits to the data.

To estimate the critical exponents β/ν⊥ and z we perform
linear fits to the data for ln ρa and ln τ versus ln N (again
restricted to the four largest N values), and consider the slopes
as functions of p. Interpolation to pc yields the estimates:
β/ν⊥ = 0.500(3) and z = 1.006(8). A similar analysis yields
mc = 1.306(6). The principal source of uncertainty in these
estimates is the uncertainty in pc.

Using the data for ρa , τ , and m we also estimate the
critical exponent ν⊥. Finite-size scaling implies that the
derivatives |dm/dp|, d ln τ/dp, and d ln ρa/dp, evaluated at
the critical point, all grow ∝L1/ν⊥ . We estimate the derivatives
via least-squares linear fits to the data on an interval that
includes pc. (The intervals are small enough that the graphs
show no significant curvature.) Power-law dependence of the
derivatives on system size is verified in Fig. 12. Linear fits to
the data for the four largest sizes, for ln ρp, ln τ , and m yield
1/ν⊥ = 0.494(15), 0.495(15), and 0.516(29), respectively,
leading to the estimate ν⊥ = 2.00(5). Repeating the above
analysis for simulations at vehicle density ρ = 17/144, we find
p−(17/144) = 0.4096(1), β/ν⊥ = 0.503(6), z = 1.011(15),
m = 1.302(2), and ν⊥ = 2.02(2).

Thus, for the two points studied on the lower critical
line, the results are consistent with a simple set of exponent
values, namely, z = 1, ν⊥ = 2, and β = 1. The same set of
critical exponents appears in a system of activated random
walkers (ARW) on a ring, when the walkers hop in one
direction only [26]. The critical moment ratio for ARW is
mc = 1.298(4), quite near present estimates. We suggest that
these values characterize a universality class of absorbing-state
phase transitions in systems with a conserved density (of

walkers in ARW, and of vehicles in the present instance), and
anisotropic movement. The ARW with symmetric hopping is
known to belong to the universality class of conserved directed
percolation [27], which also includes conserved stochastic
sandpiles [22,23].

A study on the upper critical line for vehicle density
ρ = 1/8 yields results that are similar but slightly different.
Repeating the procedure described above, we find p+(1/8) =
0.89590(5), β/ν⊥ = 0.487(8), z = 1.021(15), ν⊥ = 1.98(6),
and mc = 1.315(5). The exponent values are sufficiently near
those obtained on the lower critical line that one might
attribute the differences to finite-size effects. We defer to future
work more detailed analyses, to determine whether scaling
properties along the upper and lower critical lines differ in any
respect.

V. SUMMARY

We consider a version of the Nagel-Schreckenberg model in
which probabilistic deceleration is possible only for vehicles
whose velocity is equal to the headway, vi = di . In the
resulting ANS model, a free-flow configuration, vi = vmax and
di > vmax, ∀i, is absorbing for any value of the deceleration
probability p. The phase transition in the original NS model at
deceleration probability p = 0 is identified with the absorbing-
state transition in the ANS model: the two models are identical
for p = 0. In the original model, a nonzero deceleration
probability corresponds to a spontaneous source of activity
which eliminates the absorbing state, and along with it, the
phase transition.

The ANS model, by contrast, exhibits a line of absorbing-
state phase transitions in the ρ-p plane; the phase diagram
is reentrant. We present preliminary estimates for the phase
boundary and several critical exponents. The latter appear to
be associated with a universality class of absorbing-state phase
transitions in systems with a conserved density and asymmetric
hopping, such as activated random walkers (ARWs) with
particle transfer only in one direction [26]. In this context
it is worth noting that in traffic models, as well as in sandpiles
and ARW, activity is associated with a local excess of density:
in sandpiles, activity requires sites with an above-threshold
number of particles; in ARW, it requires an active particle
jumping to a site occupied by an inactive one; and in the ANS
model, it requires headways d smaller than vmax + 1. One
may hope that the connection with stochastic sandpiles will
lead to a better understanding of traffic models, and perhaps
of observed traffic patterns.
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