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Epígrafe

�I have not failed. I've just found 10,000 ways

that won't work.�

�Opportunity is missed by most people beause it

is dressed in overalls and looks like work.�

Thomas Edison
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Abstrat

The ontribution of Nagel and Shrekenberg (NaSh) model in study of tra� models

is remarkable. First of all it is the �rst model based on ellular automata, the update

rules is quite simple but one of them has a speial importane: the randomization proess.

This step introdues a stohasti parameter, the probability p, in the system apable of

reprodue some features quite ommon in real tra�, e.g., the transition between free

�ow to jammed state. In original NaSh model the randomization proess produes a lot

of unusual behaviours, for instane we have the exaggerate deelerations due the addition

of randomization proess to the slowing down one. We propose a slight modi�ation in

randomization step that produes two kinds of driver's behaviours: The stohasti and

deterministi. The �rst one, as an original model, the drivers an deeleration in the

randomization proess with probability p. The seond one annot. Despite of simpliity,

this new model produes interesting results as phase transition, hystereses and absorbing

state. The plane p − ρ is divided in three di�erent regions. The �rst one represents an

absorbing state, all ondutors have deterministi behaviour. The seond one the state

whih both sort of behaviours oexists and the system never evolves to absorbing state

and the third one, in whih the state of a system depends on its initially on�guration;

some distributions an evolve to absorbing states and others annot.
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Resumo

A ontribuição do modelo de Nagel e Shrekenberg (NaSh) no estudo dos modelos de

tráfego é notável. Iniialmente foi o primeiro modelo baseado em aut�matos elulares om

regras de atualização bastante simples. Uma delas tem uma importânia espeial: o pro-

esso de randomização. Essa etapa introduz um parâmetro estoástio, a probabilidade

p, no sistema apaz de reproduzir algumas araterístias bastante omuns no tráfego

real, por exemplo, a transição entre o �uxo livre para o estado ongestionado. No modelo

NaSh original, o proesso de randomização produz muitos omportamentos inomuns,

por exemplo, desaelerações exageradas devido à adição do proesso de randomização ao

proesso de adaptação. Propomos uma ligeira modi�ação no passo de randomização que

produz dois tipos de omportamentos do ondutor: O estoástio e o determinístio. O

primeiro, omo no modelo original, os motoristas podem desaelerar no proesso de ran-

domização om probabilidade p. O segundo não está sujeito à desaeleração nessa etapa.

Apesar da simpliidade, este novo modelo produz resultados interessantes omo transição

de fase, histerese, estado absorvente. O plano p−ρ é dividido em três regioês distintas. A

primeira representa um estado absorvente, todos os ondutores têm omportamento de-

terminístio. A segunda, o estado em que ambos os tipos de omportamentos oexistem

e o sistema nuna evolui para estado absorvente e a tereira, na qual o estado do sistema

depende da sua on�guração iniial: algumas distribuições podem evoluir para estados

absorventes e outras não.
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Chapter 1

Tra� Models

The ideas and tehniques of statistial physis are being used urrently to study several

aspets of omplex systems many of whih are di�erent from the known domain of physial

systems. Physial, hemial, earth, biologial and soial sienes are examples of this

trend. Biologial evolution of speies, formation and growth of baterial olonies, folding

of proteins, �ow of vehiular tra� and transations in �nanial markets are just a few

examples of the extent of these appliations. Most of these systems are interesting not

only from the point of view of Natural Sienes for fundamental understanding of how

Nature works but also from the points of view of applied sienes and engineering for the

potential pratial use of the results of these investigations.

For a long time physiists have been trying to understand the fundamental priniples

governing the �ow of vehiular tra� using theoretial approahes based on statistial

physis. The approah of a physiist is usually quite di�erent from that of a tra�

engineer. Physiists have been trying to develop a model of tra� by inorporating

only the most essential elements needed to desribe the general features of typial real

tra� (minimal priniples). The theoretial analysis and omputer simulation of these

models not only provide deep insight into the properties of the model suh as phase

transition, metastable states, absorbing phases but also help us to understanding the

omplex phenomena observed in real tra�. Below we present a brief resume of the main

existing lass of tra� models. In tra� models di�erent approahes have been used

in order to model tra� �ows using methods from physis. There are several ways to

distinguish these theories, e.g., marosopi or mirosopi, deterministi or stohasti,

disrete or ontinuous, et. In this setion we present the main approahes used in tra�

study.

1.1 Hydrodynami models

The �rst marosopi desription of tra� model was proposed by Lighthill and

Whitham (1955). The �uid-dynami model has its priniples based on the assumption

that the number of vehiles does not hange, i.e., no vehiles are entering or leaving the

freeway. Another feature is that the tra� is onsidered as a ompressible �uid. The

onservation of the vehile number leads to the ontinuity equation:

∂ρ(x, t)

∂t
+

∂Q(x, t)

∂x
= 0.

In this equation, we have two funtions ρ(x, t) and Q(x, t), unless they are related to eah

other we need more information to solve it. An alternative possibility is to assume that

1



Q(x, t) is determined primarily by the loal density ρ(x, t) so that Q(x, t) an be treated

as a funtion of only ρ(x, t). Consequently, the number of unknown variables is redued

to one as, aording to this assumption, the two unknowns ρ(x, t) and Q(x, t) are not

independent of eah other.

The Lighthill�Whitham�Rihards theory is based on the assumption that:

Q(x, t) = q(ρ(x, t)), (1.1)

where q(ρ) is a funtion of ρ. Suh a relation is known as a fundamental diagram. An ad-

ditional hypothesis about q(ρ(x, t) is needed for solving it, in this ase a phenomenologial

relation extrated from empirial data or derived from more mirosopi onsiderations

should be introdued. With the hypothesis in Eq. (1.1) the x-dependene of Q(x, t) arises
only from the x-dependene of ρ(x, t) at the same time Q(x, t) = ρ(x, t)v(x, t) and the

x-dependene of v(x, t) arises only from the x-dependene of ρ(x, t). In this way, using

Eq. (1.1) the equation of ontinuity an be expressed as:

∂ρ(x, t)

∂t
+

dq

dρ

∂ρ(x, t)

∂x
= 0 (1.2)

with

dq

dρ
= v(x, t) + ρ(x, t)

dv

dρ
.

The Eq. (1.2) is nonlinear beause, in general, dq/dρ depends on ρ. If dq/dρ were a

onstant v0, independent of ρ, Eq. (1.2) would beome linear and the general solution

would be of the form:

ρ(x, t) = f(x− v0t), (1.3)

where f is an arbitrary funtion of its argument. Suh a solution desribes a density

wave motion, as an initial density pro�le would get translated by a distane v0t in a time

interval t without any hange in its shape. If we de�ne a wave as a signal that is transferred
from one part to another with a known veloity of propagation, then the solutions of the

form Eq. (1.3) an be regarded as a density wave. There are several similarities between

the density wave and the known mehanial waves like, e.g., aousti or elasti waves.

But the aousti or elasti waves are solutions of linearized partial di�erential equations,

whereas the Eq. (1.2) is nonlinear, and hene, dq/dρ is ρ-dependent. Waves of the type

desribed by Eq. (1.2) are alled kinemati waves to emphasize their purely kinemati

origin, in ontrast to the dynami origin of the aousti and elasti waves. We will present

an important use of the kinemati waves in the following setion.

1.2 Three phases theory

In the tra� literature there is a phenomenologial desription presented by Kerner

[1℄. In this desription eah state is represented by a point in the phase spae de�ned by

the �ux and density oordinates. Empirially the �ux is measured by the ratio between

the number of vehiles passing through a �xed detetor and a set time interval (minutes,

hours et.). The density on the other hand orresponds to the number of vehiles per unit

of length. The use of only a �xed detetor does not allow to �nd the density of diret

form, one known the �ux, the density is found by the relation:

2



ρ =
q

v
with v =

1

m

m∑

i=1

vi. (1.4)

Where vi represents the veloity of a vehile i, v is the mean veloity and q is the �ux.
However, there are speial ases where this formulation an fail. It should be noted that

the vehile density ρ is related to vehiles on a freeway setion of a given length whereas

the vehile speed is measured at the loation of the detetor only and is averaged over

the time interval ∆t. In addition, low vehile speeds an usually be measured to a lower

auray than higher vehile speeds. As a result, at higher vehile densities (lower average

vehile speed), the vehile density estimated via Eq. (1.4) an lead to a onsiderable error

in omparison with the real vehile density. For this reason, empirial data for higher

vehile densities (more than 70 vehiles/km) are not usually onsidered. There are also

other ases why the estimation of the density via Eq. (1.4) an lead to a onsiderable error

at higher vehile densities. In partiular, this an our when the vehile speed and �ux

are strongly spatially inhomogeneous. Thus, the averaging of the vehile speed through

Eq. (1.4) gives a temporal averaging of the speed at the detetor loation made during

some time interval. If tra� �ow is spatially inhomogeneous, this temporal averaging of

the speed an give a very di�erent average speed in omparison with a spatial averaging

of the vehiles speed made at a given instant on a freeway setion of a given length

1

.

Figure 1.1: Illustrative �gure representing �ux as a funtion of density. Note the loation of the three

phases.

The states originated by the empirial data analysis are grouped in the q − ρ plane

into three distint regions: free �ow (F), synhronous �ow (S) and wide moving jam

(J). Free �ow is haraterized by weak interations between the vehiles; the mean speed

orresponds to the limit established by the freeway. The relationship between �ux and

density is pratially linear and the slope of the line (builded by the points in the region

F ) orresponds to the maximum veloity. Synhronized �ow is haraterized by the

1

For a more detailed desription of the measurements made by the detetor and the restritions

imposed by the use of this tehnique onsult Kerner [1℄ pp. 15 to 17.
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existene of interation between the vehiles so that the average speed is lower than

that of free �ow. The main harateristi of this region is the apparent absene of a

funtional relationship between �ow and density. The points are sattered irregularly

over a large region of the q − ρ plane. The region J, in turn, is marked by suessive

deelerations and aelerations (stop and go tra�) of vehiles when entering and exiting

the ongestion fronts. Generally the extension of this region is signi�ant, but the main

di�erenes between it and the synhronized �ow are the high onentration of vehiles

and the low average speed developed (negligible �ux). We an see these states in Fig.

1.1. Before studying the propagation of waves in these phases we have to introdue some

basi onepts. The distane between two onseutive vehiles is 1/ρ, the �time� distane

1/q and the average speed q/ρ. In the transitions between two states we will onsider, in

order to simplify the analysis, that the vehiles are at the same speed and equally spaed.

The distane, the time interval and the vehiles speed are de�ned aording to the state

in whih they are. The �gure 1.2 presents three possible transitions between states. Fig.

Figure 1.2: Illustrative �gure representing three state transitions. The �rst represents a transition where

the �ow is preserved. In the seond and third transitions the �ow dereases and inreases respetively.

1.2 shows the vertial lines in three di�erent situations, eah line represents the front of

the shok wave

2

. When the shokwave propagation redues the vehiles speed, we all

it an upstream front, when inreases, downstream front. For simpliity we will onsider

the aeleration (or deeleration) of vehiles instantaneously at the moment they are

reahed by suh fronts. The �rst transition is haraterized by keeping the �ux onstant,

onsequently the wavefront is �xed and does not move beause the �uxes are equal on

both sides of the front. In the seond transition the vehiles depart from a state where

2

We de�ne shok waves as a sudden hange of the vehiles veloity due to tra� onditions. In relation

to the freeway frame, the shok wave an be at rest or in motion
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the �ux is greater to another where the �ux is smaller. In this ase the upstream front

should move towards the region where the �ux is higher, beause on the wave front frame

the input �ow must be equal to the output one. In the third transition, the downstream

front moves toward the region where the �ux is lower.

Figure 1.3: Illustrative �gure represented the propagation speed of the wave.

The meaning of the slope of the line joining the two states an be understood through

Fig. 1.3. In the �rst illustration, the wavefront is loated on the seond vehile (from

right to left) and moves toward the third one, loated on the left of the front. After the

time interval t the wavefront is on the third vehile ausing immediate slowdown from v1
to v2 and its distane for the seond vehile from d1 to d2. At this point the distanes

traveled by the relative motion between [vup, v2℄ are:

(v1 + vup)t = d1 e (v2 + vup)t = d2.

Isolating t and remembering that d = 1
ρ
,

ρ1(v1 + vup) = ρ2(v2 + vup),

using q = ρv

vup =
q2 − q1
ρ1 − ρ2

.

The slope of the line joining the states represents the veloity of the wavefront. This

analysis omes from wave kinemati theory. The three phases theory uses these results

to study vehile behaviour in two distint regions of S phase.

The steady propagation of the downstream front in a wide moving jam has mean veloity

vg and an be represented in the �ow-density plane by a line. This line is alled �the line

J�. The slope of the line J is equal to the veloity vg of this front. The left oordinates of
the line J are related to the parameters of free �ow (ρmin, qout) exhibited by vehiles that

have aelerated from the standstill inside the jam. The right oordinates of the line J,

(ρmax, 0), are related to the vehile density inside the jam ρmax where the vehile speed

v is zero. These features have further been found in empirial studies of wide moving

jam propagation by Kerner and Rehborn. The veloity of the upstream fronts (1) and
(2) are de�ned by the slope of the respetive lines. Thus vup1 > vdown

g > vup2 and for this

reason the states loated above the line J are subjet to transition S → J while the states

loated below are not. A better explanation is given by Fig. 1.4, the arrows at the right

represent the empirial downstream veloity (vdown) and the arrows at the left represent

the upstream veloity of the states 1 (upper arrow) and 2 (bottom arrow) respetively.
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Figure 1.4: Illustrative �gure represented the upstream and downstream fronts in two distint regions

of region S.

We an see that in state (1) owing to vup1 > vdown
the wave responsible for jam formation

is faster than the wave responsible for free �ow. Thus the possible state reahed by the

system is in the region J. But in the state (2) the jam formation is not possible, owing

to vup2 < vdown
the downstream front will reah the upstream one. The omplete study of

the three phase theory an be found in [1℄ as well as the transitions between the phases

and other tra� features.

1.3 Dynamial models

The dynamial model is based on the equation of motion of eah vehile. This equation

has as an assumption the fat that eah driver of a vehile responds to a stimulus from

other vehiles in some spei� way. The response is expressed in terms of aeleration,

whih is the only diret ontrollable quantity for a driver. Generally, the stimulus and the

sensitivity may be a funtion of the positions of vehiles, their time derivatives, and so on.

This funtion is deided by supposing that the drivers of vehiles obey postulated tra�

regulations at all times in order to avoid aidents. In the dynamial model we have two

kinds of stimulus: in the earliest dynamial models the di�erene in the veloities of the

n-th and (n+1)-th vehiles was assumed to be the stimulus for the n-th vehile. In other

words, it was assumed that every driver tends to move with the same speed as that of the

orresponding leading vehile so that

ẍn =
1

τ

[
ẋn+1(t)− ẋn(t)

]
,

where 1/τ is related with the driver's sensitivity. Other dynamial models take into

aount the driver's own veloity and the distane to the vehile ahead. All drivers have

the ommon sensitivities and the length of vehile is negligible. We assume that eah
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vehile has legal veloity V 3

and that eah driver of a vehile responds to a stimulus

from the vehile ahead of him. The drivers an ontrol the aeleration in suh a way

that they an maintain the legal safe veloity aording to the motion of the preeding

vehile. Then the dynamial equation of the system is obtained via:

ẍn = a
[
V (∆xn)− ẋn

]
, (1.5)

where

∆xn = xn+1 − xn,

for eah vehile number n (n = 1, 2, ..., N). N is the total number of vehiles, a is a

onstant representing the driver's sensitivity (whih has been assumed to be independent

of n), and x is the oordinate of the nth vehile. The dots denote di�erentiation with

respet to time t. We assume here that the legal veloity V (∆x) of vehile number

n depends on the following distane of the preeding vehile number n + 1. When the

headway beomes short the veloity must be redued and beomes small enough to prevent

rashing into the preeding vehile. On the other hand, when the headway beomes longer

the vehile an move with higher veloity, although it does not exeed the maximum

veloity. Thus, V is a funtion having the following properties: a monotonially inreasing

funtion, and V (∆x) has an upper bound Vmax ≡ V (∆x → ∞) . Further, this model has

periodi boundary onditions: vehiles move on a iruit with length L and the (N +1)th
vehile is idential to the �rst vehile. Depending on hoie of V and the headway ∆x,
the system an be stable or unstable.

In Fig. 1.5 the trajetories of a spei� vehile (the 50th vehile) are shown in two

di�erent ases: the stable and unstable trajetories. In the stable ase, the vehile moves

with onstant veloity, i.e., the distane inreases linearly. On the other hand, in the

unstable ase we observe a vehile moving bakward (v < 0). This always happens

whenever the solution of this model is in the unstable region. As long as we take the

models of a single lane, this means a ollision of two suessive vehiles. The above

behavior indiates that, instead of ongestion, suh tra� aidents our everywhere.

Then, by hoosing an appropriate legal veloity funtion, we an modify the model so

that a vehile never moves bakward. In [2℄ another funtion is proposed with intention

of preventing it. In addition to the models presented in this setion we have to take into

aount kineti models. In suh models tra� is treated as a gas of interating partiles

where eah partile represents a vehile. The di�erent versions of the kineti theory of

vehiular tra� have been developed by modifying the kineti theory of gases. Due to

the extensive study in this kind of model, we published an artile entitled �Kineti theory

of vehiular tra��, in whih we present the key features in the hapter 4.

3

the term �legal veloity� was introdued in [2℄, although we think that the term �safety or desirable

veloity� is more appropriate
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Figure 1.5: Trajetories of a vehile (the 50th vehile) in two typial ases. The stable ase de�ned by

L = 200 and N = 100 (dotted line) and the unstable ase de�ned by L = 50 and N = 100 (solid line).
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Chapter 2

NaSh Model

2.1 Model

The NaSh model(NS) was the �rst tra� model based on a ellular automaton [3℄.

The model is de�ned on a one-dimensional lattie of length L, with periodi boundaries,

representing a single-lane freeway. Eah site of the lattie an be in one of the vmax + 2
states: It may be empty, or it may be oupied by one ar having an integer veloity

between zero and vmax. Time, spae, and veloity are disretized. The proess starts with

an initial distribution of N vehiles (N ≤ L). The state of system is updated at eah

iteration aording to the following steps: Aeleration, deeleration, randomization and

displaement. Eah iteration, between two onseutive times (t and t + 1) onsists of 4
steps aording to the NS update rules: (t1, t2 , t3 and t+ 1). Note that the three initial
steps do not represent vehile movement but only intermediate steps required for de�ning

the �nal speed just before the displaement step. The update rules are:

1. Aeleration

The veloity of eah vehile with v < vmax is inreased by one unit. If a vehi-

le already possesses the maximum veloity before this step, its veloity remains

unhanged.

vj(t1) = min[vj(t) + 1, vmax].

Figure 2.1: An example of aeleration step. The �gure shows the vehiles on�guration before (upper)

and after (lower) the aeleration step. Note that the vehiles aelerate independent of the possibility

of displaing with the new veloity.
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2. Slowing Down

All vehiles with vj(t1) > dj redue their speed to vj(t2) = dj. Here, dj is de�ned
as a number of empty ells between the ar j and j + 1. Thus

vj(t2) = min[dj(t), vj(t1)].

Figure 2.2: An example of slowing down step. The �gure shows the vehiles on�guration before

(upper) and after (lower) the slowing down step. Now the vehiles an adjust their veloities aording

to the distane (headway) in relation to the forward vehile.

3. Randomization

This step introdues stohastiity in the model; without it the model would be

deterministi and the stationary state reahed quikly. In this step eah vehile

redues its speed by one unit with probability p or maintains it with probability

1− p. Vehiles with v = 0 are not subjet to this step.

vj(t3) = max[vj(t2)− 1, 0], with probability p

vj(t3) = vj(t2), with probability 1− p.

Figure 2.3: An example of randomization step. The �gure shows the vehiles on�guration before

(upper) and after (lower) the randomization step. This step introdues substantially modi�ation in

marosopial tra� behaviour due the introdution of individual behaviour (ontrolled by parameter p).
In some ases drivers deelerated (at random), in others do not.

10



4. Displaement

This step represents the displaement of the vehiles aording to the veloity pre-

viously established.

vj(t+ 1) = vj(t3).

Figure 2.4: An example of displaement. The �gure shows the vehiles on�guration before (upper)

and after (lower) the displaement step. This step represents the �nal step in whih the vehiles displae

aording to the veloity de�ned in the previous step.

The randomization step is an essential omponent for the reprodution of the main fe-

atures presented in real tra�, e.g., the transition between free �ow to jammed state,

start-and-stop waves, and shoks (due to driver overreation). This step in the model an

be ompared with the unpreditable reation of the drivers in front of tra� onditions

though in the NS model the probability p is independent of the tra� onditions, e.g.,

the density of vehiles on the lattie.

In Fig. 2.5 we present the graph �ux as a funtion of density (also known as the funda-

mental diagram) for p = 0.1, 0.5 and 0.9. We observe the presene of two branhes; the

�rst one orresponds to the free �ow regime where the vehiles almost do not interat

themselves due to the large distanes between them. In this ondition the seond step in

the NS update rules pratially does not apply. Let us set vmax = 5 and the states

|0〉 =




1
0
0
0
0
0




............ |5〉 =




0
0
0
0
0
1




,

for veloities (the value in the line n orresponds to the probability of �nding a vehile

with veloity n− 1). The stohasti matrix for a single vehile is:

T =




p 0 0 0 0 0
1− p p 0 0 0 0
0 1− p p 0 0 0
0 0 1− p p 0 0
0 0 0 1− p p p
0 0 0 0 1− p 1− p




.
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Let Pt be the probability distribution of veloities at the time t. The relation between

P(t) and P(t-1) is given by:

Pt = TPt−1.

Given the P0, Pt an be found via:

Pt = T tP0.

After a little algebrai work (for further details, see hapter 7), we have:

lim
t→∞

Pt =




0
0
0
0
p

1− p




.

After the vehile attains the stationary state, the mean veloity is:

v = p(vmax − 1) + (1− p)vmax ∴ v = vmax − p,

and the �ux q is

q = ρ(vmax − p). (2.1)

This analysis annot be used for higher densities sine it does not take into aount the

interations between the vehiles. When we onsider these interations the problem an-

not be solved in this way. We will see in setion 2.3 a �rst analyti approah (mean-�eld

theory) to this problem. Although the equation (2.1) annot be used for higher densities,

it explains the slight di�erene between the slopes in the �rst branh aording to the

probability p. The seond branh orresponds to jammed state in whih the interations

between the vehiles are more frequent. In this regime the presene of start-and-stop wa-

ves and driver overreation is ommon. The overreation an be explained due to overlap

of two suessive deelerations; the �rst one due to the seond step in the NS update ru-

les, the vehiles redue their veloities due the small distane between them. The seond

one is related to the randomization step, with probability p the vehile may redue, in

addition to the �rst deeleration, its veloity by one more unit.

In the NS model two speial values (p = 0 and p = 1) produe deterministi behaviour

in the system. In both ases the randomization step does not apply (in the �rst ase the

vehiles never redue their veloity while in seond one, always redue). For p = 0 and

ρ ≤ ρc
1

(ρc = 1/(vmax + 1)) the system always evolves to absorbing state in whih all

vehiles attain the maximum veloity while for ρ > ρc the system evolves to a stationary

state with v = (1 − ρ)/ρ. For p = 1 and ρ ≤ 1/3 few initial states an evolve to a

stationary state with v 6= 0 sine if a vehile stops it never moves again. For ρ > 1/3 the

system, in a ertain moment, attains the absorbing state with v = 0.

1

For the deterministi ase, ρc is the ritial density
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Figure 2.5: Fundamental diagram using Monte Carlo simulation for probabilities p = 0.1, 0.5, and 0.9.

2.2 Saling behaviour

In this setion we will study the phase transition in the NS model. A speial ase in

the Ns model arises when p = 0. In addition to its deterministi behaviour we an assert

that there is a ontinuous phase transition at the point ρc. In the following subsetions

we disuss some quantities that support this assertion.

2.2.1 Singularity

In Fig. 2.6 the fundamental diagram, for p = 0, exhibits a sharp hange at ρc; this
singularity is haraterized by a disontinuity in the �rst derivative. For p 6= 0 this hange
is smooth, as an be seen in Fig. 2.5.

Figure 2.6: Fundamental diagram for p = 0.

With the intention to study in more details the ritiality in this ase we should
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look for an appropriate order parameter to desribe the singularity shown in Fig. 2.6.

The natural andidate is the fration of jammed vehiles, e.g., vehiles with veloities

smaller than vmax. Unfortunately in the deterministi model this fration and any related

quantities depend on the initial spatial distribution. So we propose an order parameter

M de�ned by:

M = 1− q

ρvmax
.

For p = 0 and ρ > ρc,

v =
1− ρ

ρ
.

Remembering that q = ρv, we have

q = 1− ρ and vmax + 1 =
1

ρc
,

so that M is given by

M =

{
0 (ρ ≤ ρc)

1
vmax

ρ−ρc
ρρc

(ρ > ρc).

For p = 0 the graph M as a funtion of ρ is shown in Fig. 2.7.

Figure 2.7: Order parameter for p = 0. Note the singularity at ρ = ρc.

2.2.2 Density of nearest-neighbor pairs

The density of nearest-neighbor pairs is given by:

m =
1

L

L∑

i=1

nini+1,

with ni = 0 for an empty ell and ni = 1 for a ell oupied by a ar (irrespetive of its

veloity). In the ase p = 0, below the ritial density ρc this order parameter vanishes

sine every ar has, at least, vmax empty sites in front and propagates with v = vmax.

In Fig. 2.8 a sharp transition ours at ρc = 1
vmax+1

. For densities below this point m
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Figure 2.8: Figure extrated from Ref. [4℄, p. 1311: order parameter as a funtion of density for p = 0.
Below the density ρc =

1
vmax+1 m vanishes exatly.

vanishes exatly.

The Fig. 2.9 shows that the order parameter does not exhibit a sharp transition for

p > 0. Although m beomes rather small for small densities it is always di�erent from

zero. This situation is quite similar to the behaviour of order parameter in �nite systems

and there is no phase transition for p > 0.

Figure 2.9: Figure extrated from Ref. [4℄, p. 1311: order parameter as a funtion of density for

p > 0. It does not vanish exatly for ρ < ρc, but onverges smoothly to zero even for small values of the

probability.
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2.2.3 Spatial Correlations

A key feature of ontinuous phase transition is a diverging orrelation length at riti-

ality and a orresponding algebrai deay of the orrelation funtion. Using lattie gas

variables the density-density orrelation funtion is given by

G(r) =
1

L

L∑

i=1

nini+r − ρ2.

Considering the deterministi ase (p = 0) in the viinity of the transition density one

observes a deay of the amplitude of |G(r)| for larger values of the distane between the

sites as shown in Fig. 2.10. Preisely at ρc the orrelation funtion is given by

G(r) =

{
ρc − ρ2c r = 0, vmax + 1 ... n(vmax + 1)

−ρ2c otherwise.

At the transition point the system attains the absorbing state with the only possible state:

all vehiles have v = vmax and there are exatly vmax empty ells in front eah vehile.

Considering small, but �nite, values of p the orrelation funtion has the same struture

as in the deterministi ase, but the amplitude, rather than deaying algebraially, deays

exponentially for all values of ρ.

The deay of the amplitude determines the orrelation length for a given pair of (p, ρ),
whih is �nite for all densities with p > 0. The maximal value of the orrelation length

ξmax determines the transition density. As shown in the Fig. 4.7, the maxima value of

the orrelation length, as a funtion of p, diverges at p → 0.

2.2.4 Relaxation time

An expeted feature of a seond order transition is the divergene of the relaxation

time at the transition point. In this work we use two distint but related de�nitions of

the relaxation time. The �rst, used in the literature [5℄ is relaxation time and the seond

one is alled stationary time. One will see that both diverge at the transition point. The

relaxation time is de�ned based on the expeted behaviour of the system aording to the

funtion v ∝ e−t/τ
:

τ =

∫ ∞

0

[min(v∗(t), < v∞ >)− < v(t) >]dt. (2.2)

v, t and τ are dimensionless. v∗(t) denotes the average veloity in the aeleration phase

t → 0 for low vehile density ρ → 0. Beause the vehiles do not interat with eah other,

v∗(t) = (1 − p)t holds in this regime. So the relaxation time is obtained by summing up

the deviations of the average veloity < v∞ > from the values of a system with one single

vehile that an move without interations with other ars ρ → 0. One �nds a maximum

of the relaxation, for the ase p = 0, at the density of maximum �ux. The riterion for

ritiality is power-law dependene of τ and σ on system size aording to:

τm(L) ∝ Lz, σ(L) ∝ L
−1
ν .

τm(L) is the maximum value of τ(ρ) in a ring of size L and σ(L) is the width in the middle

of the urve as a funtion of size L. We an see the dependene of these quantities on
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Figure 2.10: Figure extrated from Ref. [4℄, p. 1311 and 1312. (Left) Correlation funtion in the

viinity of the phase transition for the deterministi limit. At ρ = ρc the amplitude is independent of

the distane r. In the viinity of ρc the orrelation funtion deays algebraially. (Right) Correlation

funtion for p > 0. The amplitude of the orrelation funtion deays exponentially for all values of ρ.

systems of size L in Fig. 2.12. For the deterministi ase the exponents are z = 0.53±0.04
and υ = 2.01± 0.05 [4℄.

As we an see in Fig. 2.13, for p 6= 0 neither quantities τm(L) and σ(L) have the same

behaviour of the determinist ase. In our work we de�ne a quantity related to the rela-

xation time whih we all the stationary time. This is the time that a system starting

from a random initial distribution with v = 0 takes to attain the mean veloity of the

stationary state. In the stationary state, the mean veloity of the system at a ertain

time �utuates around its mean (taken during a meaningful interval of time), but in the

limit of big sizes this �utuation amplitude tends to zero. So we de�ne the stationary

time the time that the system reahes, for the �rst time, the expeted mean veloity of

the stationary state. For an improved estimate we take the mean stationary time over a

sample of 200 independent realizations, eah with a di�erent initial ondition.

For p = 0 the stationary state is well-de�ned and the mean veloity is:

v =

{
vmax (ρ ≤ ρc)
1−ρ
ρ

(ρ > ρc).
(2.3)

In Fig. 2.14 the stationary time learly diverges at ρc. A qualitative explanation

an help us to larify this behaviour: at small densities, the vehiles have large spaes
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Figure 2.11: Figure extrated from Ref. [4℄, p. 1313: orrelation length versus density for several p
values. Note that, at the ritial point ρc = 1/3, the maximal value of the orrelation length diverges for

p → 0.

Figure 2.12: Figure extrated from Ref. [4℄, p. 1310: relaxation time versus density for di�erent sizes

L of the lattie. These results are studied for vmax = 5 and p = 0.

between them, so it requires little time to attain the maximum veloity and the system

an attain the stationary state in di�erent ways depending on the initial distribution. For

ρ = 1
vmax+1

the spae between the vehiles is just su�ient to aommodate all vehiles

with maximum veloity. So we have one way to �t all vehiles and depending on the

initial distribution, the system requires more time to reah the stationary state.

The behaviour for p 6= 0 is di�erent. First of all the point, in whih the stationary time

is maximum, is loated at a smaller density than that marking the point of maximum

�ux. Seond the stationary time seems not to diverge with the system size. In Fig. 2.15

both features are shown. Note that the point where the stationary time is maximum does

not oinide with the point with maximum �ux. Another di�erene in relation to the

deterministi model is the behaviour of the stationary time in the viinity of the ritial

point. For p = 0 the divergene of the stationary time at the ritial point is lear but for
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Figure 2.13: Figure extrated from Ref. [4℄, p. 1310: relaxation time versus density for di�erent sizes

L of the lattie. These results are studied for vmax = 5 e p = 0.25.

the probabilisti ase the stationary time is maximum at a ertain point, but it does not

seem to diverge. Due to this, we prefer to label this point as Mst ( Maximum stationary

time) instead of labeling as ritial point. The saling analysis of the Mst with lattie size

shows that the growth of Mst is insigni�ant and suggests that the stationary time does

not diverge in the limit of in�nite lattie sizes.

For p > 0 another indiation for the absene of ritial behaviour is the well established

fat that the density of maximum �ux (ρ(qmax)) and the transition density (ρc) are di�e-
rent for p 6= 0. Correlations obviously favor states with higher �ux (see, e.g., Fig. 2.10).

So it would be expeted that the state with the strongest orrelations is also the state with

the highest �ux, as in the deterministi ase. Therefore it would be strange if the system

exhibits a seond order phase transition with diverging orrelation length at ρc 6= ρ(qmax).

2.2.5 Disussion about ritiality in NS model

The addition of the probability p in NS model destroys the ritiality whatever the

quantity hosen (�ux, spatial orrelation et.). Analogous behavior is also found in the

Ising hain in a transverse �eld. The transverse �eld Γ is the ontrol parameter and

orresponds to the density ρ in the NS model whereas the temperature T orresponds to

the noise parameter p. Some authors [4℄ believe that this orrespondene an be used to

predit saling laws. Further the NS model does not have absorbing states whose existene

is essential to establish ontinuous transition between ative and inative states.

Some authors[4, 6℄ proposed di�erent kinds of order parameters. The idea is to use

quantities related with the fration of jammed vehiles, e.g., the fration of standing ars,

the ars with veloity below vmax − 1 et. This attempt is based on a possible transition

desribed by a sharp hange in free �ow to ongested one. The problem is �nding an

appropriate de�nition (parameter) for these regimes. For example the de�nition used by
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Figure 2.14: Stationary time for p = 0 and sizes L = 10000 and 50000. Note that the divergene of

stationary time at the ritial density ρc.

Figure 2.15: On the left, graph �ux versus density for p = 0.1. On the right, maximum stationary

time for di�erent lattie sizes.

[6℄ is:

M̄i = 1− 1

2T ρ̄i

t0+T∑

t=t0+1

li(t),

and

ρ̄i =
1

T

t0+T∑

t=t0+1

ni(t).

The seond expression represents the density of ars on site i over a time period T ; t0 is
the relaxation time (usually t0 = 10L) and ni(t) is zero if the ell i is empty and one if

it is oupied at time t. In the �rst expression; li(t) is one if at time t − 1 the ell i is
oupied (empty) and at time t it is empty (oupied); li(t) is zero if at both times the

ell i is oupied or empty. This hoie of parameter is reated based on that a jammed

regime means that all ars are grouped in long lusters. For p = 0, like other quantities
disussed previously, M̄ = 0 at ρ 6 ρc and M̄ 6= 0 at ρ > ρc. Here i is omitted beause in

stationary state none of these parameters will be position dependent. A simple analysis
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in the order parameter allows us to onlude that M̄i = 0 only if all vehile that oupied

the ell i at the time t − 1 moves to the other ells in the next time. This means that

the vehiles never stop due the interation between them (jammed formation), but we

know that even for small densities these interations always our. Finally, aording to

the simple argument shown in [7℄, quantities related to the fration of vehiles annot be

used to identify a possible phase transition in NS model.

2.3 Mean-�eld theory

The exat solution of NS model is found in two speial ases: For deterministi ase p =
0 (already disussed) and for p > 0 with vmax = 1 [8℄. The other ases the exat solution is
unknown but an approximate solution via mean-�eld theory an help to understand some

aspets of the model. In this setion we will use the method developed by Nagel et al.

in [8℄. The �rst attempt onsists in supposing the probability independene in the form

p(1, 2..n) = p(1)p(2)....p(n), where p(i) denotes the probability that an event ours at the

site i and p(1, 2, 3) denotes the probability that event n (n = 1, 2, 3) ours simultaneously

at the sites i, i+ 1 and i+ 2. Instead of fousing on probabilisti evolutions of positions

and veloities of eah vehile in lattie, we fous on the probabilisti evolutions of sites.

Let the probability of a site i(i = 1, 2..L) is empty at time t be d(i, t) and the probability

of being oupied by a vehile with veloity α be cα(i, t). In this way the normalization

ondition implies:

d(i, t) + c0(i, t) + c1(i, t) + c2(i, t) + c3(i, t) + ....+ cvmax
(i, t) = 1.

Let c(i, t) be the probability of site i at the time t to be oupied by a vehile, so c(i, t) =∑vmax
j=0 cj(i, t) and the normalization ondition an be written as:

d(i, t) + c(i, t) = 1.

We use the same notation of sub-steps established in update rules, i.e., aeleration (t1),
slowing down (t2), randomization (t3) and displaement (t + 1). The temporal evolution

of the probabilities an be desribed by the following sets of equations in eah of the

sub-steps.

Aeleration step

Following the aeleration substep all vehiles have v > 0, sine this proess does not take
into aount if a vehile an move with its updated veloity without olliding with the

ar ahead. After this substep, probability of �nding a vehile with v = vmax is the sum

of the probabilities of veloities vmax and vmax − 1, just prior to aeleration, so:

c0(i, t1) = 0,

cα(i, t1) = cα−1(i, t) (0 < α < vmax),

cvmax
(i, t1) = cvmax

(i, t) + cvmax−1(i, t).

Slowing down step

21



The probability cα(i, t2) has its origin in the evolution of the following probabilities

c0(i, t2) = c(i+ 1, t1)

vmax∑

β=1

cβ(i, t1) + c0(i, t1)

cα(i, t2) = c(i+ α + 1, t1)

α∏

j=1

d(i+ j, t1)

vmax∑

β=α+1

cβ(i, t1) + cα(i, t1)

α∏

j=1

d(i+ j, t1) (0 < α < vmax)

cvmax
(i, t2) =

vmax∏

j=1

d(i+ j, t1)cvmax
(i, t1). (2.4)

Figure 2.16: Figure ontains all possible on�gurations at the stage t1 apable of engendering the state
v = α at the site i at the stage t2 . The values above the sites indiate the position and the values below

all possible veloities. Reall that

∑vmax

1 = c and
∑vmax

0 = 1

To understanding the terms used in Eq. 2.4 we refer to the diagram in Fig. 2.16. The

�rst term on the right of c0(i, t2) and cα(i, t2) arises by onsidering that all vehiles with

v ≥ α + 1 are loated at the site i and, in the site i+ α + 1 there is a vehile (no matter

what speed it has). In this way the vehiles at the site i will have, after the slowing down
proess, veloity α. The seond term arises when the vehile loated at site i has α or

more empty sites in front of it, no matter if in the site i + α + 1 has a vehile or not.

The expression for cvmax
(i, t2) re�ets the requirement that the vehile already had the

maximum veloity at t1 and has at least vmax empty sites in front of it.

Randomization step

The equations at the randomization step are:

c0(i, t3) = c0(i, t2) + pc1(i, t2),

cα(i, t3) = qcα(i, t2) + pcα+1(i, t2) (0 < α < vmax),

cvmax
(i, t3) = qcvmax

(i, t2).

The expression for c0(i, t3) re�ets the requirement that, in the previous step, the vehile

already had v = 0 due to slowing down proess or had v = 1 and deelerated due to

randomization one. The probability cα(i, t3) depends on the probabilities cα(i, t2) and

cα+1(i, t2). With probability q the vehiles with veloity α (represented by the term

cα(i, t2)) will not redue its speed and with probability p the vehiles with veloity α+ 1
(represented by the term cα+1(i, t2)) will redue.
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Displaement step

In this step the probability cα(i, t3), de�ned aording the three previous sub-steps, is

passed along to the ell i+ α. So

cα(i+ α, t+ 1) = cα(i, t3) (0 ≤ α ≤ vmax).

Grouping the equations, we have

c0(i, t+ 1) = c0(i, t)[c(i + 1, t) + pd(i+ 1, t)] + [c(i+ 1, t) + pd(i+ 1, t)c(i + 2, t)]

vmax∑

β=1

cβ(i, t),

cα(i, t+ 1) =
α∏

j=1

d(i− α+ j, t)

[
qcα−1(i− α, t) +

[
qc(i+ 1, t) + pd(i+ 1, t)

]
cα(i− α, t)

+
[
qc(i+ 1, t) + pd(i+ 1, t)c(i + 2, t)

] vmax∑

β=α+1

cβ(i− α, t)

]
(0 < α < vmax − 1),

cvmax−1(i, t+ 1) =

vmax−1∏

j=1

d(i − vmax + 1 + j, t)

[
qcvmax−2(i− vmax + 1, t) +

(
qc(i+ 1, t) + pd(i+ 1, t)

)

(
cvmax−1(i− vmax + 1, t) + cvmax

(i− vmax + 1, t)
)]

,

cvmax
(i, t+ 1) = q

vmax∏

j=1

d(i− vmax + j, t)

[
cvmax−1(i− vmax, t) + cvmax

(i− vmax, t)

]
.

From cα(i, t+1), the probability cα(i, t+2) an be obtained doing the same steps developed

to �nd cα(i, t + 1) from cα(i, t), but for the obvious reason this proedure is impratial.

The stationary state an be obtained by other means, e.g., numerial solution. Instead

of looking for time-dependent solution, we study just the stationary states, when the

distributions c and d beome spatial independent

c(i+ α) = c(i) and d(i+ α) = d(i) for all α,

so the equations are simpli�ed to read,

c0 = c0

(
c+ pd

)
+
(
1 + pd

)
c
vmax∑

β=1

cβ,

cα = dα

[
qcα−1 +

(
qc+ pd

)
cα +

(
q + pd

)
c

vmax∑

β=α+1

cβ

]
(0 < α < vmax − 1),

cvmax−1 = dvmax−1

[
qcvmax−2 +

(
qc+ pd

)(
cvmax−1 + cvmax

)]
,

cvmax
= qdvmax

[
cvmax−1 + cvmax

]
.
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Another way of expressing these equations is rewrite them as a funtion of c, p and d (for

further detail see the hapter 7). So

c0 =
c2(1 + pd)

1− pd2
,

c1 = qc2d
1 + d+ pd2

(1− pd3)(1− pd2)
,

cα =
1 + (q − p)dα

1− pdα+2
dcα−1 −

qdα

1− pdα+2
cα−2,

cvmax−1 =
1− qdvmax

1− dvmax−1(q + pd)
qdvmax−1cvmax−2,

cvmax
=

qdvmax

1− qdvmax

cvmax−1.

With the intention of evaluating these approximation, we ompare in Fig. 2.17 these

results with those obtained by omputational simulation (Monte Carlo method).

Figure 2.17: Comparison between the Monte Carlo method and the 1-luster mean �eld theory for the

veloities vmax = 1, 3 and 5. We use p = 0.5 for all ases.

This simple mean-�eld result yields, ompared with the Monte Carlo simulation, small

values for the �ux. This fat an easily be understood sine the redution to a single ar

problem ignores all spatial orrelations of the vehiles. Vehiles, for instane, with high
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veloities tend to be equidistant and an therefore maintain a high veloity with a larger

probability than in the mean-�eld system where is so muh more di�ult to aelerate

and stay at high veloities over a ertain time.

2.3.1 N-luster approximation

In order to improve the simple mean-�eld theory of the preeding setion we have

to take into aount orrelations between neighboring sites. We divide the lattie into

segments or lusters of length n (n = 1, 2...) suh that two neighboring lusters have n−1
sites in ommon. The probability of �nding a luster in the stationary state (σ1, ..., σn) will
be denoted by Pn(σ1, ..., σn). Due to the translational invariane of the stationary state

of the system with periodi boundary onditions, one does not have to speify the atual

loation of n-luster and the �rst ell of the luster will be numbered by 1. In the 1-luster
approximation we have vmax + 2 possible states and in order to simplify the alulations

we apply the four update rules in the order slowing down, randomization, displaement

and aeleration instead of the order de�ned previously. This has the advantage that after

one update yle one ends up with the aeleration step and therefore no ar has veloity

v = 0. It follows that every site j is in one of the vmax + 1 states where now 0 denotes an

empty site. So we eliminate one variable d of the equation system, but we have to take

into aount for the �ux alulation that v = vmax omes as a result of the aeleration

step applied in vmax − 1 and vmax (the last one does not aelerate). The probability of

�nding a state cn is:

P
(
c(n)
)
=

∑

c(n+2vmax)

W
(
c(n+2vmax) → c(n)

)
P
(
c(n+2vmax)

)
.

The term c(n+2vmax)
denotes the state onstituted by the set of the states of n + 2vmax

ells. The �rst ell is labeled by 1− vmax and the last one n+ vmax, thus c
(n+2vmax) = (1−

vmax, ..., n+ vmax). This additional extension of the luster ours sine all vehiles whih

an drive into or out of the luster c(n) = (1, ..., n) within the next time step ontribute to

the transition ratesW . So we have to take into aount not only the given luster, but also

the vmax sites to its left (with the variables (1− vmax, ..., 0)) and the vmax sites to its right

(with the variables (n+1, ..., n+ vmax)). The transition probability W
(
c(n+2vmax) → c(n)

)

is given by the update rules of NS model. The probability P
(
c(n+2vmax)

)
is given by:

P
(
c(n+2vmax)

)
=

0∏

i=1−vmax

P (ci | ci+1, ..., ci+n−1)∗P (c1, ..., cn)∗
vmax∏

i=1

P (ci+1, ..., ci+n−1 | ci+n).

The onditional probability on the left-hand side is

P (ci | ci+1, ..., ci+n−1) =
Pn(ci, ci+1, ..., ci+n−1)∑
c Pn(c, ci+1, ..., ci+n−1)

,

and on the right-hand side is

P (ci, ..., ci+n−2 | ci+n−1) =
Pn(ci, ci+1, ..., ci+n−1)∑

c Pn(ci, ..., ci+n−2, c)
.

To larify this method, we present in the next setion the 2-luster approximation to solve

NS model with vmax = 1 and p = 0.5.
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2.3.2 2-luster approximation

For the ase vmax = 1 we have to add two ells to the luster c(2), so:

P
(
c(2)
)
=
∑

c(4)

W
(
c(4) → c(2)

)
P
(
c(4)
)
.

Figure 2.18 shows all possible on�gurations for c(4) and their orresponding probabilities,

Figure 2.18: Figure showing all possible states of 4-luster (c(4)) and their orresponding probabilities

of evolving to states c(2).

by using the update rules of NS model, to evolve to the lusters c(2). The symbol α within

the ells means that independent of the state of this ell, the �nal state after the NS

update rules is unhanged. So we an �nd the probabilities P (1, 0), P (0, 1), P (1, 1) e
P (0, 0) via:

P (1, 0) = qP (1, 0, 0, α) + pP (α, 1, 0, α) + qP (α, 1, 1, 0) + q2P (1, 0, 1, 0),

P (0, 1) = qP (α, 1, 0, α) + pP (0, 0, 1, 0) + p2P (1, 0, 1, 0) + 1P (0, 0, 1, 1) + pP (1, 0, 1, 1),

P (1, 1) = pP (α, 1, 1, 0) + qpP (1, 0, 1, 0) + 1P (α, 1, 1, 1) + qP (1, 0, 1, 1),

P (0, 0) = pP (1, 0, 0, α) + qP (0, 0, 1, 0) + qpP (1, 0, 1, 0) + 1P (0, 0, 0, α),

using

P (a, b, c, d) =
P (a, b)

P (1, b) + P (0, b)
P (b, c)

P (c, d)

P (c, 1) + P (c, 0)
,

and for determining the �ux we need to �nd only P (1, 0); we have:

P (1, 0) = q

[
P (1, 0)

P (1, 0) + P (0, 0)
P (0, 0)

P (0, α)

P (0, 1) + P (0, 0)

]
+ p

[
P (α, 1)

P (1, 1) + P (1, 0)
P (1, 0)

P (0, α)

P (0, 1) + P (0, 0)

]

+q

[
P (α, 1)

P (1, 1) + P (0, 1)
P (1, 1)

P (1, 0)

P (1, 0) + P (1, 1)

]
+ q2

[
P (1, 0)

P (1, 0) + P (0, 0)
P (0, 1)

P (1, 0)

P (1, 0) + P (1, 1)

]
.
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Due to the partile-hole symmetry P (1, 0) = P (0, 1) (in a losed ring one must have the

same number of (0, 1) and (1, 0) pairs, therefore ourring with the same probability).

The relations P (1, 1) + P (1, 0) = c and P (0, 0) + P (1, 0) = 1 − c = d are related to the

onservation of vehiles in the system. In this way P (1, 0) an be found easily by:

P (1, 0) = q
P (1, 0)

1− c
[1− c− P (1, 0)]1 + pP (1, 0) + q[c− P (1, 0)]

P (1, 0)

c
+ q2

P (1, 0)

1− c
P (1, 0)

P (1, 0)

c
,

qcP (1, 0)[1− c− P (1, 0)] + pc(1− c)P (1, 0) + (1− c)q[c− P (1, 0)]P (1, 0) + q2P 3(1, 0)− c(c− 1)P (1, 0)

c(1− c)
= 0,

qc[1− c− P (1, 0)] + pc(1− c) + q[1− c][c− P (1, 0)] + q2P 2(1, 0)− c(c− 1) = 0,

q2P 2(1, 0) + [−qc− q(1− c)]P (1, 0) + qc(1 − c) + pc(1− c) + qc(1− c)− c(1− c) = 0,

q2P 2(1, 0)− q(c+ 1− c)P (1, 0) + c(c− 1)[q + p+ q − 1] = 0,

q2P 2(1, 0)− qP (1, 0) + qc(c− 1) = 0,

qP 2(1, 0)− P (1, 0) + c(c− 1) = 0,

leading to

P (1, 0) =
1−

√
1− 4qc(1− c)

2q
.

The �ux depends only on P (1, 0). So the �ux is determined by the evolution of the state

(1, 0) to (0, 1) (aording to the randomization step, it ours with probability q), thus
the �ux is given by:

f =
1

2

[
1−

√
1− 4qc(1− c)

]
.

We an see in the Fig. 2.19 that the 2-luster approximation omes lose to the Monte

Figure 2.19: Graph omparing the 1-luster (simple mean-�eld method), 2-luster and Monte Carlo

tehniques for obtained the stationary �ux in NS model.

Carlo simulation. In fat, going to the three- and higher-luster approximations one �nds
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that the solution remains the same, indiating that this is the exat result. With this

approximation it is possible to write down a losed system of equations for the n-luster

probabilities Pn(σ1, ..., σn). The number of the equations is given by (vmax+1)n, the total
number of possible on�gurations of n site variable with vmax+1 possible states (without
hange of the order of the update steps, one would have (vmax+2)n equations). In pratie

some of these equations turn out to be trivial so that the relevant number is less than

(vmax + 1)n. Due to the exponential growth with respet to n one is, espeially for larger

vmax, restrited to only small luster lengths n (for the realisti value of vmax = 5, one
has, for the two-luster approximation, already 36 equations).

In Ref. [9℄ a rather simple extension of MFT is aomplished. The key idea is a redution

of the on�guration spae by removing all states whih annot by reahed dynamially.

In the ontext of ellular automata these states are alled Garden of Eden (GoE) states

or paradisial states (beause they annot be revisited). Part of the di�ulties ome from

the fat that one uses parallel dynamis. This introdues a non-loal aspet into the pro-

blem sine the whole lattie is updated at one. On the other hand, random-sequential

dynamis is muh simpler to treat analytially. For vmax = 1, for instane, simple mean-

�eld theory gives already the orret steady state, i.e., there are no orrelations. A simple

example for vmax = 1 is the on�guration (•, 1, 2) of two onseutive ells, where `•' de-
notes an empty ell and the numbers orrespond to the veloities of the ars. Cars move

from left to right. Obviously the veloity is just the number of ells the ar moved in the

previous time step. Therefore, the on�guration (•, 1, 2) ould have evolved only from a

state whih has two ars in the leftmost ell. Sine double oupations are not allowed

in the present model, states ontaining (•, 1, 2) are dynamially forbidden, i.e., they are

GoE states.

We will use pMF for vmax = 1 and ompare with simple mean-�eld theory (1-luster).
The 1-luster approximation yields the following set of equations:

c0 = c(c+ pdc), (2.5)

c1 = cd(qc+ d). (2.6)

By using pMF for vmax = 1, on�gurations like (0, 1) and (1, 1), i.e., a moving vehi-

le is diretly followed by another ar, are not allowed. This is not possible as an be

seen by looking at the possible on�gurations at the previous timestep. The momentary

veloity gives the number of ells that the ar moved in the previous timestep. In both

on�gurations the �rst ar moved one ell. Therefore, it is immediately lear that (0, 1)
is a GoE state sine otherwise there would have been a doubly oupied ell before the

last timestep. The on�guration (1, 1) is also not possible sine both ars must have o-

upied neighbouring ells before the last timestep too. Therefore, aording to rule R2,

the seond ar ould not move. Comparing to the simple mean-�eld theory, only the �rst

equation is modi�ed. Note that only for c0 the equations are di�erent, for PMF theory

the state (c, c) is not aeptable beause this on�guration an be broken down into the

states (1, 0), (1, 1), (0, 0) and (0, 1). The states (1, 1) and (0, 1) are not allowed, so only

(1, 0) and (0, 0) are possible states and we have to replae in Eq. (2.5) c2 by cc0. The new
set of equations is:

c0 = c(c0 + pdc),

c1 = cd(qc+ d).
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Due to the modi�ation introdued in the �rst equation c0 + c1 6= c. For this reason, one
has to introdue a normalization onstant η = 1

c0+d
into the equations:

c0 = ηc(c0 + pcd),

c1 = ηcd(qc+ d).

Expanding the �rst equation and remembering that c1 = c− c0, we have:

c1 =
1−

√
(d− c)2 + 4pcd2

2
.

The �ux is given by c1 and we reover the exat solution for the ase vmax = 1 found by

a 2-luster approximation. This result on�rms the expetations mentioned above. One

an see learly that the di�erene between random-sequential and parallel dynamis is the

existene of GoE states in the latter. After eliminating these GoE states, no orrelations

are left in the redued on�guration spae.

29



Chapter 3

Other ellular automata models

We present in this setion a brief disussion about other ellular automata models.

Most of these models are slight modi�ations on the update rules of NS model. They

are of interest beause NS model is a minimal model in the sense that all the four steps

are neessary to reprodue the basi features of real tra�; however, additional rules are

needed to apture more omplex situations, e.g., metastable states. Some basi rules of

the NS model should be preserved in these new approahes. For example step 1 in the

NS model re�ets the general tendeny of the drivers to drive as fast as possible without

exeeding the maximum speed limit. Step 2 is intended to avoid ollision between the

ars. The randomization in step 3 aounts for the di�erent behavioural patterns of the

individual drivers, espeially, nondeterministi aeleration as well as overreation while

slowing down; this is ruially important for the spontaneous formation of tra� jams.

In addition, the use of a parallel updating sheme (instead of a random-sequential one)

is ruial sine it aounts for the reation time and an lead to a hain of overreations.

As an example, suppose that a ar slows down in the randomization step. If the density

of ars is large enough this might fore the following ar also to brake in the deeleration

step. In addition, if p is larger than zero, it might brake even further in step 3. Eventually

this an lead to the stopping of a ar, thus reating a jam. This simple mehanism of

spontaneous jam formation is rather realisti and annot be modeled by the random-

sequential update.

In Fig. 3.1 we see the the spontaneous jam formation for p 6= 0 and its orresponding

bakward motion (this feature is not present for p = 0).

3.1 Changing the orders of substeps in the NS model

The e�et of hanging the substep order in the NS model is shown in Ref. [10℄. The

authors, initially, studied the following update rules:

1. Aeleration

vj(t1) = min[vj(t) + 1, vmax].

2. Randomization

vj(t2) = max[vj(t1)− 1, 0] with probability p,

vj(t2) = vj(t1) with probability 1− p.
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Figure 3.1: Figure extrated of Ref. [10℄. Typial spae-time diagram of the NS model for (a) p = 0.25
and ρ = 0.2, (b)p = 0 and ρ = 0.5.

3. Deterministi deeleration

vj(t3) = min[dj(t), vj(t2)].

4. Displaement

xj(t + 1) = xj(t) + vj(t3).

The di�erene between this model and the NS model is in the antiipation of the ran-

domization step in relation to the deeleration one. The fundamental diagram with the

same simulation onditions as those of the NaSh model, is shown in Fig. 3.2. This �gure

indiates that the model leads to a higher value of maximum �ux 40% higher than that

obtained with the NaSh model. When ompared to the NS model, this hanging leads

to a better approximation with the observed data in real tra�. In fat, when a driver

�nds a high vehile density ahead, he will �rst delay at random and estimate whether

he should deelerate or not by observing and evaluating his antiipation veloity and the

headway between suessive vehiles. If he �nds his antiipation veloity will surpass the

headway, he slows down. Due to the antiipation of the randomization step, braking times

in the state of free �ow will be redued and more vehiles with the maximum veloity will

ause an inrease of apaity, while the fat that vehiles annot maintain the maximum

veloity at high density and, as well as the �utuation of veloity leads to the spontane-

ous formation of jams and apaity drops. In ontrast to the NaSh model, the modi�ed

version allows more vehiles to maintain a higher or even maximum veloity. This model

is thus alled the sensitive drive model or the SDNS model.

This model displays bistable states. They beomes lear if we start the system with two

di�erent initial onditions. One is the homogeneous distribution with the same headway;

the other is the megajam onsisting of one large ompat luster of standing vehiles.

Thus we obtain the fundamental diagram with two branhes as shown in Fig. 3.3. The

results of the VDR model arise from introduing two delay probabilities dependent on

veloity instead of the onstant randomization in the NS model, while the same result in

this model omes from interhanging the order of the deterministi deeleration and the

stohasti one in the steps of the evolution rules.
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Figure 3.2: Figure extrated of Ref. [10℄; the fundamental diagram of SDNS and NS model for p = 0.25.

When the density is in the range ρ1 < ρ < ρ2, the �ux, in fundamental diagram, is

disontinuous. The upper branh over the �ux qjam orresponds to the homogeneous

tra� �ow, whih has larger �ow with no jam due to the redution of braking times in

the sensitive driving. This ase belongs to the free state and the �ux reahes the maximum

as ρ ≈ 0.18. The lower branh orresponds to the tra� jam; the �ux redues rapidly

beause of the inrease of the braking probability. It is evident that there is a hysteresis

loop in the fundamental diagram. From the simulated results, we an get the following

relations. In the regime of the upper branh as 0 < ρ < ρ2, the average veloity is that of

the free-�ow, vf = (1− p)vmax + p(vmax − 1) = vmax − p, therefore the �ux is:

q = ρvf = ρ(vmax − p).

In the regime of the lower branh as ρ2 < ρ, the average waiting time Tw of the �rst

vehiles at the head of the megajam is given by Tw = 1/(1− p). The �ux is

q = (1− p)(1− ρ).

From the above analysis, the number of vehiles in the state of deeleration between

0 < ρ < ρ2 dereases and the apaity of the road approahes more losely the empirial

data than that predited by the NS model due to the role of the stohasti delay prior to

deterministi deeleration. The inrease in the number of braking vehiles in ρ1 < ρ < ρ2 is
due to the role of the stohasti delay and deterministi deeleration at the same time will

frequently lead to the breakdown of �ow and so to a tra� jam. Therefore, aording to

the authors of Ref. [10℄, the exhange of the order of the stohasti delay and deterministi

deeleration has signi�ant e�et on tra� �ow. Another hange studied by these authors

onsists in hanging the update rules as follows:

1. Randomization

vj(t1) = max[vj(t)− 1, 0], with probability p,

vj(t1) = vj(t), with probability 1− p.
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Figure 3.3: Figure extrated of Ref. [10℄; the fundamental diagram via numerial simulation with

two di�erent initial onditions: uniform distribution state and inhomogeneous ongestion vmax = 5,
L = 5× 103, p = 0.5. The metastable state appears in ρ1 < ρ < ρ2.

2. Aeleration

vj(t2) = min[vj(t1) + 1, vmax]

3. Deterministi deeleration

vj(t3) = min[dj(t), vj(t2)]

4. Displaement

xj(t+ 1) = xj(t) + vj(t3)

Figure 3.4: Figure extrated by Ref. [10℄. The fundamental diagram is shown at the left and the graph

veloity versus density at the right.

The fundamental diagram is shown in the left part of Fig. 3.4, and the orresponding

veloity-density urve at the right. There are three di�erent parts; 0 < ρ < ρ1, ρ1 < ρ < ρ2
and ρ2 < ρ < 1 whih orrespond to three di�erent phases, namely, free �ow, low-speed
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�ow and jam. In this model we have an interesting situation; as the density ρ approahes

0.5, the veloity in low-speed �ow approahes unity. The veloity is:

v =





vmax ρ < ρ1,
1
2ρ

− (1−2ρ)(2p−1)
ρ

ρ1 < ρ < ρ2,
1
ρ
− 1 ρ ≥ ρ2.

Where ρ1 =
1−p

vmax+1−2p
and ρ2 =

1
2
.

The NS model is updated in sequene R1-R2-R3 (orresponding to aeleration-deeleration-

randomization), while the two models studied in Ref. [10℄ are R1-R3-R2 and R3-R1-R2.

The update rules R2-R1-R3, R2-R3-R1, and R3-R2-R1 are disarded due the possibility

of ollisions between the vehiles.

3.2 VDR model

The veloity-dependent randomization (VDR) model [11℄ adds a simple slow-to-start

rule to the NS model. Instead of using a unique deeleration probability p, these authors
inlude a veloity dependene in this parameter, so that p = p(v). For simpliity, they

study the ase:

p(v) =

{
p0 if v = 0

p if v > 0.

Sine we are interested in hysteresis phenomena, we restrit ourselves to the ase p0 ≥ p.
Note that for p0 = p the NaSh model is reovered. The parameters used are: maximum

veloity vmax = 5, braking probability p = 1
64

for moving ars, p0 = 0.75 for stopped

ars, Ref. [11℄ reports numerial simulations of periodi systems with L = 10000 lattie

sites. Fig. 3.5 shows the fundamental diagram of the VDR model. The average �ux

Figure 3.5: Figure extrated of Ref [11℄. Di�erene between fundamental diagrams of the VDR and

NS models.

j(ρ) an take two values in the density interval between ρ1 and ρ2 depending on the

initial ondition. The larger values of the average �ux are obtained using a homogeneous
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initialization of the system. The lower branh is obtained starting from a ompletely

jammed state. It is instrutive to ompare the fundamental diagram of the VDR model

with those of the orresponding NS models. For small densities ρ ≪ 1 there are no slow

ars in the VDR model sine interations between ars are extremely rare. Here the �ux

is given by j(ρ) = ρ(vmax − p), i.e., idential to the NS model with randomization p. For
large densities 1 − ρ ≪ 1 on the other hand, the �ux is given by j(ρ) = (1 − p0)(1 − ρ)
whih orresponds to the NS model with randomization p0. For densities lose to ρ = 1,
only ars with veloities v = 0 or v = 1 exist.

The mirosopi struture of the jammed states in the VDR model di�ers from those

found in the NS model. While jammed states in the NS model ontain lusters with

an exponential size-distribution, one an �nd phase separation in the VDR model. The

reason for this behaviour is the redution of the out�ow from a jam. If the out�ow from

a jam is maximal, any small jam in the free �ow regime dissolves immediately sine the

out�ow from suh a jam is larger than the global �ow. Therefore phase separation annot

our in that ase. However, if the out�ow from a jam is redued, the density in the

free �ow regime is smaller than the density of maximum �ux and ars an propagate

freely in the low density part of the lattie. Due to the redution of the density in the

free �ow regime, no spontaneous formation of jams is observed in the stationary state, if

�utuations in the free �ow regime are rare. We an see this phase separation at Fig. 3.6.

Figure 3.6: Figure extrated of Ref. [11℄. Spae-time diagram of the VDR model for ρ = 0.15;
L = 400; p = 0.01 and p0 = 0.5. The homogeneous initial state is not destroyed immediately, but after

approximately 93000 lattie updates. In the out�ow regime of the jam the density is redued ompared

to the average density.

3.3 Cruise-ontrol model

The ruise-ontrol () model is a simpli�ed version of the NS model [12℄. This sim-

pli�ation an be desribed as a �ruise ontrol limit�, sine at su�iently low density all

vehiles move deterministially at maximum allowed veloity. As in the NS model the

 model is de�ned on a one-dimensional lattie of length L, representing a single-lane
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freeway. Eah site of the lattie an be in one of the vmax + 2 states: It may be empty,

or it may be oupied by one ar having an integer veloity between zero and vmax. One

iteration onsists of the following steps, whih are eah performed simultaneously for all

vehiles. A vehile is stationary when it travels at maximum veloity vmax and has free he-

adway: d ≥ vmax. Suh a vehile just maintains its veloity. If a vehile is not stationary,

it is jammed

1

. The following rules are applied to jammed vehiles.

1. Aeleration

With probability 1/2, a vehile with d ≥ v + 1 aelerates to v + 1, otherwise it

keeps the veloity v. A vehile with d = v just maintains its veloity.

2. Slowing down and randomization

Eah vehile with d ≤ v − 1 slows down to v = d and an add further deeleration

aording to:

v = max[v − 1, 0] with probability 1/2

v = v with probability 1/2

3. Displaement

Eah vehile advanes v sites.

The randomization proess in this model an produe overreation as in the NS model, but

di�erent from this, introdues a nondeterministi aeleration. The fundamental diagram

was obtained numerially [12℄ as show in Fig. 3.7.

For a spatially in�nite system, the following results hold: for ρ < ρc jams present in

Figure 3.7: Figure extrated of Ref. [12℄. Fundamental diagram of the ruise-ontrol model. The

dotted line represents deterministi tra�, i.e., when the initial state is prepared suh that for eah ar

ngap > vmax and v = vmax. The points are measurement results starting from random initial onditions.

Eah point orresponds to one run of a losed system of length L = 30000 and an average over 2.5× 106

iterations after disarding a transient period of 5× 105 iterations.

the initial on�guration are eventually sorted out and the stationary deterministi state

is jam free with every vehile moving at maximum veloity. Thus, the �ux is a linear

funtion of density with slope vmax = 5. This behavior is observed up to a maximum

1

In this model the onept of jammed and stationary are di�erent than those used in models with

absorbing on�gurations, stationary means inative and jammed; ative.
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�ux jc(ρc). For ρ > ρc and ρ < 1
vmax+1

the system is bistable. Starting from an initial

on�guration whih has many jams, the jams in this ase are never sorted out. The steady

state is an inhomogeneous mixture of jam free regions and higher density jammed regions

(see Fig. 3.8). Clearly, these jammed regions derease the average �ux in the system.

It is possible, nevertheless, to prepare initial on�gurations that have no jams. Sine all

motion is deterministi in this state, the steady state will also have no jams and the �ux

will still be an inreasing funtion of ρ (the dotted line in Fig. 3.7). This is possible up

to densities of

ρmax =
1

vmax + 1
,

leading to a maximum �ux of

qmax =
vmax

vmax + 1
.

This learly is muh higher than the �ux q, for random initial onditions. It is in this

sense that this system is bistable. In addition to these features, the authors studied the

Figure 3.8: Figure extrated of Ref. [12℄. Dots represent vehiles whih move to the right. The

horizontal diretion is spae and the vertial diretion (down) is (inreasing) time. We an see that

starting from an initial on�guration whih has many jams, the jams never disappear.

behavior of the free regions when are perturbed. In the deterministi region, one ar

is randomly perturbed by reduing its veloity to zero. Many di�erent hoies for the

loal perturbation, however, give rise to the same large sale behavior. The perturbed

ar eventually reaelerates to maximum veloity. In the meantime, though, a following

ar may have ome too lose to the perturbed ar and have to slow down. This initiates

a hain reation�the emergent tra� jam. This de�nes the lifetime, t, of an emergent

tra� jam. Using simulation the authors determine the probability distribution of jams

as a funtion of their lifetime, t. Figure 3.9 shows that for t > 100, this distribution

follows a power law

P (t) ∼ t−δ,

with δ = 1.5± 0.01.
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Figure 3.9: Lifetime distribution P (t) for emergent jams in the out�ow region; average over more than

65000 lusters (avalanhes). The dotted line has slope

3
2 . Numerially imposed uto� at t = 106 (�gure

extrated of Ref. [12℄).

3.4 Fukui�Ishibashi Model

Fukui and Ishibashi [13℄ have introdued a simpli�ed version of the NS model. The

main di�erene to the NS model is the absene of a veloity memory

2

. All vehiles have an

intrinsi veloity vmax. In eah timestep, all drivers try to move at the maximum veloity

vmax; i.e., they aelerate to it instantaneously. The Fukui�Ishibashi (FI) model is then

de�ned by the following set of rules:

1. Aeleration

The aeleration step assures that FI model does not have veloity memory sine

the vehile aelerates to the maximum veloity or to the headway between it and

the following vehile, so

vn = min[vmax, dn(t)].

2. Randomization

Only the vehiles with v = vmax are subjeted to the randomization step aording

to

vn → vmax − 1 with probability f,

vn → vmax with probability 1− f .

3. Displaement

xn = xn + vn.

Here, xn and vn denote the position and speed, respetively, of the nth vehile and dn =
xn+1 − xn − 1, i.e., the number of empty ells in front of this ar (headway). The rules

have a simple interpretation; a vehile that has at least vmax empty sites in front will

move vmax ells with probability 1− f or vmax − 1 ells with probability f . However, just
in the ase that the headway is d < vmax at time t, then the vehile moves d sites in the

2

In eah iteration of the NS model, the veloity v and headway d have to be aounted for the update

proess.
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next step. Here the randomization step is not applied. Therefore, �utuations our only

at high speeds, whih is just the opposite of the ruise-ontrol limit.

For vmax = 1, the FI model and the NS model are idential sine that in the NS model

with vmax = 1, only the vehiles with v = 1 are subjeted to the randomization step.

For general vmax, the FI model di�ers from the NS model in two aspets: the inrease

of the vehiles speed is not neessarily gradual and the stohasti delay (deeleration

step) applies only to high-speed vehiles. Due to these modi�ations, no overreations at

braking our and therefore the FI model does not exhibit spontaneous jamming. This

type of aeleration (where there is no need to keep trak of veloities) allows to introdue

a mean-�eld tehnique that provides the exat solution. These exat solutions as well as

Monte Carlo simulations are shown in Fig 3.10.

Figure 3.10: Figure extrated of Ref. [14℄. The fundamental diagram of the FI model with the

maximum ar veloity M = 2 and for di�erent values of the degree of stohasti delay f . The solid urves

are the theoretial results. The points with di�erent symbols represent results obtained by numerial

simulations.

3.5 Wang Model

By using the ar-oriented mean�eld (COMF) was possible to ahieve an exat analy-

tial result to the FI model [14℄. However, for the NS model with vmax > 1 and stohasti

delay, no exat solution has been found up to now. The aeleration and stohasti delay

rules of the NS model lead to ompliations in the time evolution of the �ux, and hene

it is very di�ult to �nd exat analytial results. In order to understand how these rules

a�et the evolution and the orresponding asymptoti state, Wang et al [15℄ study an

intermediate model that ombines features of both models.

The model is desribed by the following update rules: Let Cn(t) be the number of

empty sites in front of the nth ar at time t, vn(t) be the number of sites that the nth

ar moves during the time t step, and M the maximum speed. The steps are:

1. Step 1

Let v
′

n(t) = min(Cn(t),M), if v
′

n(t) = Cn(t) the nth ar is �the ar that follows the

trail of the ar ahead�. This means that the nth ar may beome the neighbor of

the ar ahead if the ar in front stops.
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2. Step 2

Stohasti delay is introdued in suh a way that all the ars whih follow the trail

of their ar ahead have a probability f to move forward one site less than is allowed

by step 1, i.e., we have the following: vn(t) = v
′

n(t) − 1, with probability f , if
v

′

n(t) = Cn(t) and v
′

n(t) > 0.

3. Step 3

The nth ar moves vn(t) sites ahead.

The number of empty sites in front of the nth ar at time t+ 1 an be written as

Cn(t + 1) = Cn(t) + vn+1(t)− vn(t).

For this model, with a maximum ar veloity vmax = M and a stohasti delay probability

f , the veloity of the nth ar at time step t as a funtion of the interar spaing Cn(t)
an be written as

vn(t) =





M if c > M,

c− 1 with probability f if 0 < c ≤ M,

c with probability 1− f if 0 < c ≤ M,

0 if c = 0.

As in the FI model, this sort of aeleration allows to simplify the equations used in ar-

oriented mean �eld and produes an exat agreement between analytial and numerial

(Monte Carlo) results. These results are shown in Fig. 3.11.

Figure 3.11: The fundamental diagram with the maximum ar veloity M = 2 and for di�erent

stohasti delay probabilities f . The solid urves are theoretial results. The points with di�erent symbols

represent numerial simulations. The urves from the top down along the veloity axis orrespond to

di�erent values of f ranging from f = 0 to 1 in steps of 0.1. (Figure extrated of Ref [15℄.)

Although not stressed by the authors, this model presents an absorbing phase transi-

tion at ρc ≤ 1
M+2

independent of f . For densities below ρc the stationary state is absorbing
sine the mean distane between the vehiles is greater than M and aording to the up-

date rules the vehiles are not subjet to the randomization step. These absorbing states

are not unique sine they depend on the initial on�guration. For density ρc =
1

M+2
the

stationary state is unique and desribed by v = M and C = M + 1.
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3.6 Multilane tra�

For a realisti desription of tra� on highways many authors, as disussed before,

improve the NS model by using modi�ed update rules making them more appropriate

for real tra�. Despite these e�orts a omplete desription demands the use of multilane

lanes in tra� simulation. Beside the use of NS rules we know that the main ingredient

required for an appropriate hange of a single-lane CA model to multilane situations

is lane-hanging rules. Lane hanging rules for two-lane tra� an be symmetri or

asymmetri. For symmetri lane-hanging rules, overtaking is allowed in both lanes.

However, for asymmetri lane-hanging rules, overtaking is forbidden in one lane, e.g., in

the right lane ( this situation exists in many European ountries for example, Germany).

Generially, the deision of drivers to hange lane is based on two riteria:

1. Inentive riterion:

Drivers determine whether a lane hange improves the individual tra� situation,

e.g., to move at their desired veloity.

va > gap with va = min(v + 1, vmax).

2. Safety riterion:

The tra� situation in the target lane is heked, espeially if the available gap for

a lane hange is enough for a seurity transition (without prevent the free �ow of

the predeessor vehile loated in other lane).

gap

other

> gap,

gap

bak

≥ vmax.

Here gap is the number of free ells between the ar and its predeessor in the atual

lane; gap

other

and gap

bak

are the headway in relation to its two neighbor ars, in the

other lane, ahead and behind respetively. A lane-hange is then only performed if both

riteria are satis�ed. In general, the update in the two-lane models is divided into two

substeps: in one substep, the vehiles may hange lanes in parallel following the lane-

hanging rules and in the other substep, eah vehile may move forward e�etively as in

the single-lane NS model. Drivers must �nd some inentive in hanging the lane. Two

obvious inentives are: the situation in the other lane is more onvenient for driving,

and the need to overtake the slow vehile. We show some results about two-lane model

using symmetri lane-hanging rules, whih are more relevant for tra� in towns and on

highways, where overtaking in both lanes is allowed.

Fig. 3.12 shows the fundamental diagram of a periodi two-lane system. The simulations

reprodue well-known results, e.g., an inrease of the maximum �ux per lane ompared

to the �ux of a single-lane road. Another unexpeted result is the existene of a loal

minimum of the lane-hanging frequeny near the density of maximum �ux for small

braking probabilities p (Fig. 3.13). The behavior of the lane-hanging frequeny an be

explained if one takes into aount the number of empty ells neessary for a lane-hanging

proedure. Two prerequisites have to be ful�lled in order to initiate a lane hange. First,

the situation on the other lane must be more onvenient and seond, the safety rules

must be ful�lled. Therefore, one needs typially 2vmax + 1 empty ells on the destination

lane for a lane-hanging maneuver in the free �ow regime (Fig. 3.13). Hene, one �nds a

loal maximum of the lane-hanging frequeny near ρs =
1

2vmax+1
if the ars are ordered
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Figure 3.12: Flux per lane of the single-lane model ompared with the two-lane model for systems with

vmax = 5 and p = 0.5. (Figure extrated of Ref [16℄).

homogeneously, whih typially happens for small values of p. For larger values of p, e.g.,
p = 0.5, no loal maximum is observable. Inreasing the density for su�iently small

values of p, one �nds a pronouned minimum of the lane-hanging frequeny. This an be

understood in the limit p → 0 where, for ρ = 1
vmax+1

, the ars are perfetly ordered with a

gap of vmax sites between onseutive vehiles. Obviously, in this ase both the inentive

and the safety riteria are never ful�lled and the lanes are ompletely deoupled. For

small p the ordering mehanism is still present and therefore the number of lane hanges

is drastially redued near ρ = 1
vmax+1

.

Figure 3.13: Lane-hange frequeny in the two-lane model for di�erent braking parameters p (Figure

extrated of Ref [16℄).

The features of two-lane tra� are the same for multiple lanes (taking into aount

homogeneous systems). We now onsider di�erent types of ars whih is obviously more

relevant for pratial purposes. As a �rst step towards realisti distributions of free �ow

veloities the authors [16℄ have hosen two types of ars, e.g., slow ars with vsmax = 3
and fast ars with vfmax = 5. Simulations were arried out with 5% of slow ars, whih are
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initially positioned randomly. The fast as well as the slow ars may use both lanes, i.e.,

both ars are treated equally with respet to the lane-hanging behavior. In Fig. 3.14

the e�ets of the slow ars on the average �ux of the two-lane system is ompared with

the fundamental diagram of a single-lane road with one slow ar. Sine passing is not

allowed for a single-lane system, learly the slow ar dominates the average �ux at low

densities and platoon formation is observable. Surprisingly the two-lane system shows a

quite similar behavior, although passing is allowed and the fration of slow ars is rather

small. Although the multilane tra� models an adopt a lot of di�erent update rules, the

Figure 3.14: Comparison of the �ux per lane of the inhomogeneous model with the orresponding

homogeneous models for p = 0.4.(Figure extrated of Ref [16℄).

results in terms of statistial point of view (ritiality, phase transition et.) do not di�er

when ompared with one-line models. For this reason we do not extend this disussion;

for a detailed desription of multilane models see [17℄.
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Chapter 4

Kineti tra� theory

4.1 Introdution

In kineti theory, tra� is treated as a gas of interating partiles where eah parti-

le represents a vehile. The di�erent versions of the kineti theory of vehiular tra�

have been developed by modifying the kineti theory of gases. In the kineti theory of

gases, f(~r, ~v, t)d3rd3v denotes the number of moleules whih, at time t, have positions

lying within a volume element d3r about ~r and veloities lying within the veloity-spae

element d3v about v. The Boltzmann equation, whih desribes the time evolution of the

distribution f(~r, ~v, t), is given by:

[
∂f

∂t
+ ~v.∇r + ~a.∇v

]
f(~r, ~v, t) =

(
∂f

∂t

)

coll

, (4.1)

where the symbols ∇r and ∇v denote gradient operators with respet to ~r and ~v, respe-
tively, while ~a is the external aeleration. The term (∂f

∂t
)coll represents the rate of hange

of f , with time, whih is aused by ollisions between moleules.

In the earliest version of the kineti theory of vehiular tra�, Prigogine and Herman[18,

19, 20℄ modi�ed the kineti theory of gases embodied in the Boltzmann equation. In their

model tra� is treated as a one-dimensional gas of interating partiles (vehiles) desri-

bed by a distribution funtion f(x, v, t), suh that f(x, v, t)dxdv represents the number

of vehiles with positions between x and x + dx and veloities between v and v + dv at

time t. The distribution f is normalized so that

∫
dvf(x, v, t) = c(x, t), (4.2)

where c(x, t) is the loal density of vehiles. (Unless otherwise spei�ed, all integrals run

from −∞ to ∞. Note that f(x, v, t) is zero for v < 0.)
The time evolution of f is governed by a Boltzmann-like equation. The prinipal

di�erene with the original Boltzmann equation is the introdution of a distribution of

desired veloities, f0(x, v, t), in the relaxation term, representing drivers' preferenes.

Spei�ally, f0(x, v, t)dxdv is the number of vehiles between x and x+ dx whose drivers

have a preferred veloity between v and v + dv at time t. The presene of this funtion

in the statistial desription is a novel feature, showing that the �partiles"in this system

have intentions unlike a moleule, whih does not have a desired veloity.
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Of prinipal interest is the stationary veloity distribution, whih an be muh di�erent

from the distribution of desired veloities. We shall see that the stationary veloity

distribution hanges abruptly at a spei� density.

4.2 The Prigogine-Herman-Boltzmann equation

In one-way tra�, vehiles travel in one dimension, and Eq. (4.1) an be simpli�ed to

read[19, 20℄

∂f

∂t
+ v

∂f

∂x
=

(
∂f

∂t

)

rel

+

(
∂f

∂t

)

int

. (4.3)

where

∂f
∂t rel

aounts for the relaxation of f toward f0 in the absene of interations of

the vehiles, while

∂f
∂t int

aounts for the hanges of f arising from interations among the

vehiles. Note that the term

∂f
∂t int

on the right-hand side of Eq. (4.3) may be interpreted

as the analog of the term (∂f
∂t
)coll in the Eq. (4.1), whereas the term

∂f
∂t rel

in Eq. (4.3)

may be interpreted as the ounterpart of the term ∇v.f(~r, ~v, t) in the Eq. (4.1).

The idea behind the relaxation term is that drivers adjust their veloity to the desired

value, v0, on a time sale T , alled the relaxation time. This assumption is embodied in

the expression, (
∂f

∂t

)

rel

= −f − f0
T

. (4.4)

In a spatially uniform system, in whih f = f(v, t) and interations between drivers an

be ignored, the solution to Eq. (4.3) is

f(v, t) = f0(v) + [f(v, 0)− f0(v)]e
−t/T . (4.5)

Exponential relaxation desribes the approah of many simple systems to a steady state.

In the ontext of the kineti theory of gases, an analogous simpli�ation involves replaing

the ollision term with an expression of the form of Eq. (4.4); T beomes the ollision

time, and f0 is a loal Maxwellian distribution.[21℄ As will beome lear, Prigogine and

Herman[18℄ proposed that T depends on the onentration of vehiles on the road, and

the relaxation proess subsumes some rather ompliated interations between drivers.

In the absene of interations between the vehiles, the distribution funtion evolves to

the distribution of desired veloities aording to Eq. (4.5). A derivation of the distribution

of desired veloities from �rst priniples would require knowledge of human behavior that

is beyond our present apabilities. One might try to determine the distribution of desired

veloities empirially by studying the veloity distribution at very low onentrations, but

we are unaware of studies of this kind. Prigogine and Herman simply investigated several

simple model distributions of the desired veloities.[22℄

The interation term in Eq. (4.3) is based on the following assumptions:

1. The vehiles are point-like, that is, they do not oupy volume.

2. Vehiles remain in the same lane exept when passing another vehile.

3. In an enounter between two vehiles, one passes the other with probability P .

4. If one vehile passes another, neither vehile hanges its veloity. In an enounter

without passing, the faster vehile redues its veloity to that of the slower one

ahead of it.
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5. The slowing-down proess is instantaneous.

6. Only two-vehile interations are onsidered.

7. The vehiles are statistially independent, that is, the joint two-vehile distribution

is the produt of single vehile distributions: f(x, v, x′, v′, t) = f(x, v, t)f(x′, v′, t).

If we use these assumptions, we an write the interation term as,

(
∂f

∂t

)

int

= f(x, v, t)

∫ ∞

v

du(1− P )(u− v)f(x, u, t)

− f(x, v, t)

∫ v

−∞

du(1− P )(v − u)f(x, u, t). (4.6)

The �rst term on the right-hand-side of Eq. (4.6) orresponds to interations between

vehiles with veloities v and u > v; the latter are obliged to adopt the smaller veloity

v resulting in an inrease in the number of vehiles with veloity v. The seond term

is related to interations between vehiles with veloity v and u < v. In this ase, the

interation results in a derease in the number of vehiles with veloity v. By ombining

the two integrals, the interation term an be rewritten as,

(
∂f

∂t

)

int

= (1− P )f(x, v, t)

∫
du(u− v)f(x, u, t).

Beause, ∫
uf(x, u, t)du = c(x, t)v(x, t),

where v(x, t) denotes the loal mean veloity, and

∫
du vf(x, u, t) = c(x, t)v,

we have, (
∂f

∂t

)

int

= (1− P )c(x, t)[v(x, t)− v]f(x, v, t). (4.7)

If we insert the relaxation term, Eq. (4.4), and interation term, Eq. (4.7), into Eq. (4.3),

we obtain the Prigogine-Herman-Boltzmann equation for tra�:

∂f

∂t
+ v

∂f

∂x
= −f − f0

T
+ (1− P )c(x, t)[v(x, t)− v]f. (Prigogine-Herman-Boltzmann)

(4.8)

Equation (4.8) is a nonlinear equation beause v(x, t) is a funtion (more preisely, a

funtional) of f(x, v, t). A full de�nition of the model requires that we speify how the

passing probability and relaxation time depend on the onentration. Before examining

spei� hoies, we onsider some general aspets of the solutions.

4.3 Stationary solutions

As disussed before, the quantity f0 is a distribution funtion that haraterizes the

system in the absene of interations between the ars. Therefore, f0 is onsidered to be

46



that distribution funtion whih would be ahieved by drivers if the interations between

them were negligible. The funtion f0 an inorporate into the theory suh information

as the wishes of the drivers, response of the driver-ar system, speed limits, and the

harateristis of the road. The term (1 − P )c(x, t)[v(x, t) − v]f represents the hange

in f aused by interations in whih ars, when interating with ars ahead moving with

slower speeds, either pass these ars or assume their slower speeds.

The homogeneous time-independent solution is:

f(v) =
f0(v)

1− cT (1− P )[v − v]
. (4.9)

where by homogeneous we mean that f0 is not spatially dependent. The quantity f(v)
desribes the situation in whih there is a steady state between the slowing down of ars

aused by interation proesses and the speeding up of ars aused by passing.

4.4 Individual and olletive �ow

As indiated by Eq. (4.9), we have to distinguish between two ases

• Case A: If we onsider the ase in whih

1− Tc(1− P )v > 0.

Then the solution f in Eq. (4.9) is hanged to

f(v) =
f0(v)

1 + Tc(1− P )(v − v)
. (4.10)

This solution redues to the ideal or desired speed distribution funtion in the limit

of vanishing onentration. However, it is lear that this solution annot, in general,

be valid for arbitrarily high onentrations beause whenever

1− Tc(1− P )v < 0,

the distribution funtion may beome negative, whih is learly impossible.

• Case B: In this ase we onsider:

1− Tc(1− P )v = 0. (4.11)

Then Eq. (4.9) redues to

f(v) =
f0(v)

Tc(1− P )v
. (4.12)

The important feature to be noted here is that the homogeneous equation orresponding

to Eq. (4.12), namely,

Tc(1− P )vf(v) = 0,

admits the singular solution:

f(v) = αcδ(v),
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where α is an arbitrary onstant and δ(v) is the Dira delta funtion. Therefore, the

general solution of Eq. (4.12) is of the form

f(v) =
f0(v)

Tc(1− P )v
+ αcδ(v).

The solution given in Eq. (4.10) orresponds to what may be alled the individual �ow

pattern and is related in a simple way to the ideal or desired speed distribution funtion.

The seond solution orresponds, on the other hand, to what may be alled the olletive

�ow pattern. Indeed, as shown by Eq. (4.11), the average speed then depends only

on the onentration, the probability of passing P , and the relaxation time T (both P
and T are themselves funtions of the onentration), and is independent of the desired

speed distribution funtion and, therefore, of the wishes of the drivers. This solution

is haraterized by the ourrene of a singularity at the origin. However, the ritial

onentration at whih the individual �ow beomes olletive does depend on the desired

speed distribution. In both ases the time-independent solution may be written in the

following form:

f(v) =
f0(v)

1 + Tc(1− P )(v − v)
+ αcδ(v), (4.13)

where α is an undetermined onstant that may be identially zero. This solution has to

satisfy the following two requirements:

• Normalization. This means that:

c =

∫ ∞

0

f0(v)dv

1 + Tc(1− P )(v − v)
+ αc. (4.14)

• Average Speed. Multiplying Eq. (4.13) by v and integrating, we obtain the ondition

cv =

∫ ∞

0

f0(v)dvv

1 + Tc(1− P )(v − v)
. (4.15)

Eq. (4.15) with the aid of the normalization ondition Eq. (4.14) maybe transformed into

α(1− Tc(1− P )v) = 0.

We see, therefore, that we have two solutions. The �rst solution orresponds to α = 0
(individual �ow), whereas the seond orresponds to the ase

Tc(1− P )v = 1,

with α di�erent from zero (olletive �ow).

There is a striking analogy in the situation desribed by these equations with Bose-

Einstein ondensation [23℄. In that ase, above a ertain onentration (for a given tem-

perature) the population distribution of an ideal Bose gas splits into two parts, a regular

part and a singular one. If the onentration is further inreased beyond its ritial va-

lue, the singular part inreases relative to the regular part. However, the Bose-Einstein

ondensation ours for a quantum system in thermodynami equilibrium, whereas the

situation desribed here is loser to a nonequilibrium stationary state.
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4.5 Numerial Solutions

To simplify the notation let,

γ ≡ cT (1− P ) and λ ≡ 1− γv(f), (4.16)

remembering the normalization ondition (Eq. (4.14)) and replaing f̃0 =
f0
c
, we have:

1 =

∫ ∞

0

f̃0dv

λ+ γv
, (4.17)

for the individual �ow. As γ inreases, λ dereases, and beomes zero for γ = γc (reall
that λ annot be negative). So we an �nd γc via

∫
f̃0dv

v
= γc. (4.18)

From this point we have a transition between individual �ow to olletive one and α an

be found via

1 =

∫
f̃0dv

γv
+ α. (4.19)

Prigogine and Herman [18℄ introdued further assumptions regarding the dependene of

P and T on the onentration c, whih we shall refer to as the Prigogine-Herman model.

We expet the passing probability P to derease with c, beause drivers will �nd it more

di�ult to overtake a slower vehile if adjaent lanes are ongested. (If vehiles were

truly point partiles, there would be no suh di�ulty.) Prigogine and Herman assumed

a linear relation between P and c, suh that P = 1 for c = 0, and dereases to zero at

some maximum onentration, cmax. That is,

P = 1− η with η =
c

cmax

. (4.20)

They further proposed a onentration-dependent relaxation time,

T =
τ(1− P )

P
, (4.21)

where τ is a onstant with dimensions of time. Thus, aording to Prigogine and Herman,

the greater the value of c, the smaller the value of P , and the longer it takes a driver to

attain the desired speed. In their model, T does not represent an intrinsi limitation of

drivers (that is, a reation time) or of their vehiles (inertia), beause T → 0 as c → 0.
Inserting Eqs. (4.20) and (4.21) in Eq. (4.16), we �nd,

γ =
cmaxτη

3

1− η
. (4.22)

For numerial studies we always use the simpli�ed equation (4.17), remembering that

γ is given by Eq. (4.22) and λ by Eq. (4.16).
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4.5.1 Numerial Method

Consider the numerial solution of Eq. (4.17), yielding the value of λ suh that the

integral is unity, given the funtion f̃0(v) and γ, whih is determined by the onentration

via Eq. (4.22). Although the numerial method is simple, some are is required, beause

in some ases the integral is improper.

Among the many methods for the numerial evaluation of integrals, we hoose one that

is relatively simple yet aurate by �tting ubi polynomials through suessive groups of

four points,[24℄ whih is equivalent to the following expression,

∫ xn

x1

y(x)dx ≃ h

[
3

8
y1 +

7

6
y2 +

23

24
y3 + y4 + y5 + · · ·

+ yn−4 + yn−3 +
23

24
yn−2 +

7

6
yn−1 +

3

8
yn

]
,

where h = (xn − x1)/(n− 1), yj ≡ y(xj), and xj ≡ x1 + (j − 1)h, for j = 1, . . . , n.
Dealing with an in�nite range of integration requires greater are. We might trunate

the integral, but the error depends on the hoie of the uto�. A more appealing alter-

native is to hange variables to map the in�nite range of integration to a �nite one. For

an exponential distribution of desired veloities, illustrated in Subsetion 4.6 , we are led

to Eq. (4.26) for whih the substitution t = e−v/v0
results in an integral over the �nite

interval:

1 =

∫ 1

0

dt

λ− γv0 ln t
. (4.23)

One we have a method for evaluating the integral over veloities, we use a root-�nding

method to solve Eq. (4.26). For equations of the type used in Ref. [18℄ and the ones of

interest here, the seant or Newton-Raphson methods are appropriate [25℄. Although

both are e�ient, we will use the seant method, a reursive method used to �nd the

solution to the equation f(x) = 0 via the relation,

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
,

starting from a pair of distint initial values, x1 and x2. The idea is to follow the seant

line to its x-interept and use that as an approximation for the root. This idea is similar

to the Newton-Raphson method, whih follows the tangent line, but the seant method

does not require knowledge of the derivative.

The omputational proedure for solving Eq. (4.17) is as follows. Let g(λ, n) be the

value of the integral in Eq. (4.17) over the interval [v1, v2], given by a funtion that employs

the method of Eq. (4.23) using n integration points. The latter is hosen aording to the

desired preision, using a funtion int(λ), whih evaluates the integral using suessively

larger numbers of points, until the relative di�erene is smaller than a ertain tolerane.

4.6 Some distributions of desired veloities

As example, we present the study of two distributions of desired veloities, the �rst

orresponds to exponential distribution of desired veloities in whih was disussed in Ref.

[18℄ and the seond orresponds to Gaussian distribution of desired veloities performed

in our artile attahed.
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4.6.1 Exponential distribution of desired veloities

As an illustration, we solve the Prigogine-Herman model for an exponential distribu-

tion of desired veloities, as disussed in Ref. [18℄. Let

f0 = Θ(v)
ηcmax

v0
e−v/v0 , (4.24)

for whih the mean veloity is v0. In this ase the most probable desired veloity is zero,

and beause f0(v = 0) > 0, there is no transition. The stationary solution is

f =
cmaxηe

−v/v0

v0(λ+ γv)
, (4.25)

where λ is determined by the normalization ondition,

1 =
1

v0

∫ ∞

0

e−v/v0

λ+ γv
dv. (4.26)

The value of λ for given values of γ and v0 is obtained numerially as we have desribed.

Figure 4.1a shows the normalized �ux q/cmax as a funtion of the normalized onen-

tration η = c/cmax. Note the linear relation between �ux and onentration for small η.
In this regime the slope of eah urve depends on v0, the average desired veloity. At high

onentrations the normalized �ux is independent of v0. The mean veloity is plotted

versus η in Fig. 4.1b for several values of v0. As for the ase of the normalized �ux, all

urves exhibit the same behavior at high onentrations.

(a) (b)

Figure 4.1: (a) The normalized �ux Q ≡ q/cmax and (b) normalized mean veloity υ = v̄/v0 versus the
normalized onentration η = c/cmax for cmaxτ = 0.1 and mean desired veloity v0. At low onentrations

the mean veloity is lose to its desired value, and the normalized �ux is proportional to v0. At larger

onentrations the normalized �uxes for di�erent values of v0 approah a ommon funtion.

It is interesting to ompare the stationary veloity distribution with the orresponding

distribution of desired veloities. Figure 4.2 shows that the stationary veloity distribution

is lose to the distribution of desired veloities for a relatively low onentration (η =
0.2). At a higher onentration (η = 0.4, Fig. 4.3), the two distributions di�er, with

higher probabilities for low veloities in the stationary veloity distribution than in the

distribution of desired veloities.
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Figure 4.2: (Color online) Distribution of desired veloities (dashed lines) and stationary veloity

distribution (ontinuous lines) for exponential desired veloity distributions with v0 as indiated; η = 0.2.
In all ases, the stationary distribution exeeds the desired one at low veloities, and vie-versa.

Figure 4.3: (Color online) Distribution of the desired veloity and stationary veloity distribution as in

Fig. 4.2 for η = 0.4. At this onentration the di�erenes between the stationary and desired distributions

are more dramati than in Fig. 3.

4.6.2 Gaussian distribution of desired veloities

We now onsider a more realisti example that has reeived little attention until now

� a Gaussian-like distribution of desired veloities,

f0(v) = cA
[
e−(v−v0)2/v2a − e−v20/v

2
a

]
Θ(v) Θ(2v0 − v). (4.27)
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The parameter v0 represents the mean desired veloity, and va is a measure of the dis-

persion of the distribution. Beause of the step funtions, f0 is zero outside the interval

[0, 2v0]. The seond term in brakets ensures that f0 goes to zero ontinuously at the

endpoints of this interval. The normalization fator A is approximately (va
√
π)−1

for

v0 ≫ va.
Beause

∫
(f0/v)dv < ∞, there is a transition between individual and olletive �ow.

Aording to Eq. (4.18), the ritial point is given by

γc = A

∫ 2v0

0

dv

v

[
e−(v−v0)2/v2a − e−v20/v

2
a

]
,

whih is readily evaluated numerially. We proeed as before and alulate the stationary

veloity distribution, f(v), and the stationary mean veloity and �ux. Figure 4.4 shows

the �ux Q as a funtion of normalized onentration for several values of v0, and va = 20.
As expeted, the slope of q(η) jumps from a positive to a negative value at the transition

from individual to olletive �ow. In the latter regime, q(η) is haraterized by a single

funtion, independent of v0. The larger the value of v0, the smaller the ritial density ηc.

Figure 4.4: (Color online) The �ux Q as a funtion of the normalized onentration η in the Prigogine-

Herman model using the distribution of desired veloities of Eq. (4.27), with va = 20. The transition

points are ηc = 0.375, 0.395, 0.421, and 0.458, for for v0 = 120, 100, 80, and 60, respetively. Above the

ritial onentration, the �ux follows a master urve independent of v0.

A notable aspet of the transition is the sudden hange in the stationary distribution

at the ritial onentration at whih the distribution splits into a regular and a singular

part. In Fig. 4.5, whih ompares the stationary veloity distribution and distribution

of desired veloities for several onentrations in the individual �ow regime, we see that

the two distributions have the same area, as required by normalization. For η = 0.15
the distributions are indistinguishable; at higher onentrations small di�erenes appear.

The ritial onentration, ηc = 0.421, represents the limit for individual �ow; for η > ηc
the stationary veloity distribution is the sum of a regular part, given by f0/(γv), and
a singular part, αcδ(v), with α given by Eq. (4.19). In Fig. 4.6 we ompare the regular
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part of the stationary veloity distribution with the orresponding distribution of desired

veloities for η > ηc. The area of the regular part of the stationary veloity distribution

is smaller than that of the distribution of desired veloities. The di�erene orresponds

to the δ-funtion at the origin.

Figure 4.5: The stationary veloity distribution (solid line) and orresponding distribution of desired

veloities (dashed line), for onentrations in the individual �ow regime. The distribution of desired

veloities is given by Eq. (4.27) with v0 = 80 and va = 20. The di�erene between the stationary and

desired distributions grows with inreasing onentration.

4.7 Paveri-Fontana model

In the basi Prigogine-Boltzmann (PB) model, the hanges of vehiular speeds are

assumed to be due to two main proesses: the binary interation proess (namely, the

slowing down proess undergone by a fast ar whih enounters a slow one); and the

relaxation proess (the proess due to the hange in speed whih ours when a driver a-

elerates a vehile towards a desired speed). Employing a set of appropriate assumptions,

the original Prigogine-Boltzmann equation was proposed, for the ase where drivers do

not hange their desired speeds aording to tra� onditions. In order to aount for the

adaptive behavior of drivers, that is in order to aount for the fat that tra� onditions

do atually a�et the �programs� (desired speeds) of drivers, an adjustment term was in-

trodued on the right side of the basi Prigogine-Boltzmann equation by Paveri-Fontana.

Let g(x, v, t;ω) be the one-vehile distribution funtion for vehiles whose desired speed

is ω. Namely, let g(x, v, t;ω)dxdvdω equal the (expeted) number of vehiles, at time t,
in dx (around x) and dv (around v) with desired speed in dω (around ω). Then one �nds

that:

f(x, v, t) =

∫ ∞

0

g(x, v, t;ω)dω and f0(x, ω, t) =

∫ ∞

0

g(x, v, t;ω)dv,

where f(x, v, t) and f0(x, ω, t) are the previously de�ned one-vehile speed distribution

funtion and desired speed distribution funtion, respetively. Vehiular onentration
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Figure 4.6: Regular part of the stationary veloity distribution (solid line) and the orresponding

distribution of desired veloities (dashed line) for densities in the olletive �ow regime; parameters as in

Fig. 4.5. Note the di�erenes in amplitude between the stationary and desired distributions, assoiated

with a population of ars having veloity zero in the stationary distribution.

c(x, t) and �ux q(x, t) are de�ned by:

c(x, t) =

∫ ∞

0

∫ ∞

0

g(x, v, t;ω)dωdv and q(x, t) =

∫ ∞

0

∫ ∞

0

vg(x, v, t;ω)dωdv

the assumptions regarding the interation term are the same as those employed by PB.

so (
∂f

∂t

)

int

= f(x, v, t)

∫ ∞

v

(1− P )(u− v)g(x, u, t;ω)du

− g(x, v, t;ω)

∫ v

−∞

du(1− P )(v − u)f(x, u, t).

The improved Prigogine-Herman equation is:

[
∂

∂t
+ v

∂

∂x

]
g(x, v, t;ω) +

∂

∂v

[
ω − v0

T
g(x, v, t;ω)

]
=

f(x, v, t)

∫ ∞

v

(1− P )(u− v)g(x, u, t;ω)du

−g(x, v, t;ω)

∫ v

−∞

du(1− P )(v − u)f(x, u, t),

with

f(x, v, t) =

∫ ∞

0

g(x, v, t;ω)dω.

The term ∂/∂v[[(ω−v)/T ]g(x, v, t;ω)] is related to relaxation. Di�erent from original PB

model for eah x value, we expet that a vehile with initial veloity v0 approahes to its

desirable veloity ω aording to:

v(t) = ω − (w − v0)exp
−t/T .
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The aeleration of a vehile moving with initial speed v0 and desired speed ω is

a =
w − v0

T
.

To ompare the equation proposed here with the original PB equation, note that the

main hange depends on the introdution of g(x, v, t;ω). The ollision proess is desribed
in the same way in both treatments. The desription of the time relaxation proess is

based, in both approahes, on assumption I (existene of a unique time relaxation) and

assumption II (no hanges in driving programs): assumption III (on the exponential

approah to the desired veloity) replaes the assumption of an exponential relaxation.

The main shortoming of the Paveri-Fontana equation is the di�ulty enountered in

seeking analytial solutions when the ollisional proess annot be negleted. In this

sense, the PB equation is muh easier to manipulate. Nevertheless this ontribution has

been used extensively in reent approahes in kineti models. Wagner et al. [26℄ proposed

a tra� �ow model using the desired veloity proposed by Paveri and Fontana [27℄. By

taking into aount the nonzero length of vehiles, these authors extend the desription

of Paveri and Fontana to the high-density regime. In Ref. [28℄ a suessive slowing-

down proess is onsidered, in whih drivers reat to tra� onditions in a more autious

manner.
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Chapter 5

ANaSh Model

5.1 Introdution

The Nagel-Shrekenberg (NS) model holds a entral position in tra� modeling via

ellular automata, beause it reprodues features ommonly found in real tra�, suh as

the transition between free �ow and a jammed state, start-and-stop waves, and shoks

(due to driver overreation) [3℄. This simple model represents the e�et of �utuations

in driving behavior by inorporating a stohasti element: the spontaneous redution of

veloity with probability p.
Although the NS model has been studied extensively, the nature of the transition

between free and jammed �ow, in partiular, whether it orresponds to a ritial point,

remains ontroversial [5, 4, 7, 29℄. A proposed de�nition of the order parameter in the

NS model [30℄, and a subsequent omment [31, 32℄ are pertinent to this issue. Aording

to the authors of Ref. [31℄, results for the lifetime distribution, spatial orrelations, and

relaxation time provide evidene for a �rossover type jamming transition"from free �ow

to the jammed regime, but not for a well de�ned phase transition.

In the original NS model, at eah time step (spei�ally, in the redution substep),

a driver with nonzero veloity redues her speed with probability p. Here we propose a

simple yet ruial modi�ation, eliminating hanges in speed in this substep when the

distane to the ar ahead is greater than the urrent speed. We believe that this rule

re�ets driver behavior more faithfully than does the original redution step, in whih

drivers may deelerate for no apparent reason. While one might argue that distrations

suh as ell phones ause drivers to deelerate unneessarily, we an expet that highways

will be inreasingly populated by driverless vehiles exhibiting more rational behavior.

The modi�ed model, whih we all the Absorbing Nagel-Shrekenberg (ANS) model,

exhibits a line of absorbing-state phase transitions between free and ongested �ow in

the ρ − p plane. (Here ρ denotes the density, i.e., the number of vehiles per site.) The

modi�ation proposed here allows us to understand the nature of the phase transition in

the original model, and to identify a proper order parameter. The ANS model exhibits a

surprising reentrant phase diagram. Some time ago, Wang studied a model with the same

modi�ed redution step, and found that free �ow is absorbing for all densities ≤ 1/7,
regardless of p [15℄. This model di�ers from ours in that aeleration to the maximum

allowed speed ours in a single update, rather than in inrements.

Regarding the nature of the phase transition in the original NS model, the key insight

is that, for p = 0, it exhibits a transition between an absorbing state (free �ow) and an

ative state (ongested �ow) at density ρ = 1/(vmax+1), where vmax denotes the maximum
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speed. Free �ow is absorbing beause eah ar advanes the same distane in eah time

step, so that the on�guration simply exeutes rigid-body motion (in the o-moving frame

it is frozen). We note that for ρ < 1/(vmax + 1), many absorbing on�gurations exist;

whih one is attained by the dynamis depends on the initial ondition. Congested �ow, by

ontrast, is ative in the sense that the distanes between vehiles hange with time. Below

the ritial density, ativity (if present initially) dies out, and an absorbing on�guration

is reahed; for ρ > 1/(vmax + 2) there must be ativity, due to lak of su�ient spae

between vehiles. Setting p > 0 in the original model is equivalent to inluding a soure of

spontaneous ativity. Sine suh a soure eliminates the absorbing state [33℄, the original

NS model does not possess a phase transition for p > 0. (It should nonetheless be possible

to observe saling phenomena as p → 0.) A similar onlusion was reahed by Souza and

Vilar [29℄, who drew an analogy between the phase transition at p = 0 and a quantum

phase transition at temperature T = 0. In their analogy, p > 0 orresponds to T > 0, for
whih, sensu strito, there is again no phase transition.

5.2 Model

The NS model and its absorbing ounterpart (ANS) are de�ned on a ring of L sites,

eah of whih may be empty or oupied by a vehile with veloity v = 0, 1, ..., vmax.

(Unless otherwise noted, we use vmax = 5, as is standard in studies of the NS model.)

The dynamis, whih ours in disrete time, onserves the number N of vehiles; the

assoiated intensive ontrol parameter is ρ = N/L. Denoting the position of the i-th
vehile by xi, we de�ne the headway di = xi+1 − xi − 1 as the number of empty sites

between vehiles i and i+ 1. Eah time step onsists of four substeps, as follows:

• Eah vehile with vi < vmax inreases its veloity by one unit: vi → vi + 1

• Eah vehile with vi > di redues its veloity to vi = di.

• NS model: eah vehile redues its veloity by one unit with probability p.
ANS model: eah vehile with vi=di redues its veloity by one unit with probability
p.

• All vehiles advane their position in aord with their veloity.

In pratie, given the veloities vi and headways di, there is no need to keep trak

of positions: the �nal substep is simply di → di − vi + vi+1 for i = 1, ..., N − 1, and
dN → dN − vN + v1.

The modi�ation of the third substep leads to several notable hanges in behavior, as

re�eted in the fundamental diagram shown in Fig. 5.1, whih ontrasts the �ux-density

relation in the NS and ANS models. In the ANS model the �ux exhibits a disontinuous

�rst derivative at a ertain density ρc(p) (for any p between zero and one), while in the

NS model the �ux and other observables are smooth funtions of density for p > 0.
Thus the ANS model exhibits a phase transition for general p, whereas the NS model

has a phase transition only for p = 0 [30, 31℄. The �ux q generally takes its maximum

value at the transition. (For small p, however, maximum �ux ours at a density above

ρc = 1/(vmax + 2), approahing ρ = 1
vmax+1

for p = 0). The low-density, absorbing phase

has vi = vmax and di ≥ vmax + 1, ∀i; in this phase all drivers advane in a deterministi

manner, with the �ux given by j = ρvmax. In the ative state, by ontrast, a nonzero
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Figure 5.1: (Color online) Flux j versus density in the NS and ANS models for probabilities p = 0.1
(upper) and p = 0.5 (lower). System size L = 105; vehiles are distributed randomly at t = 0. Error bars
are smaller than symbols.

fration of vehiles have di ≤ vmax. For suh vehiles, hanges in veloity are possible,

and the on�guration is nonabsorbing. The stationary �uxes in the NS and ANS models

di�er signi�antly over a onsiderable interval of densities, espeially for high values of p.
Below the ritial density ρc, this di�erene is due the existene of an absorbing phase in

the ANS model. For densities slightly above ρc, most vehiles have veloity vi = vmax and

di = vmax + 1, although there is no absorbing state. As the density approahes unity, the

di�erenes between the �uxes in the ANS and NS models beome smaller.

Figure 5.2: (Color online) Steady-state �ux versus density in the ANS model for (a) p = 0.1, 0.3 and 0.5,
and (b) p = 0.5, 0.7 and 0.9. Note that the density of maximum �ux �rst dereases, and then inreases,

with inreasing p; the minimum ours near p ≃ 0.5. System size L = 105; vehiles are distributed

randomly at t = 0. Error bars are smaller than symbols.

For �xed deeleration probability p, the �ux j = ρv �rst grows, and then dereases as

we inrease the vehile density ρ. An intriguing feature is the dependene of the density
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at maximum �ux on the probability p: Fig. 5.2 shows that the density at maximum �ux

dereases with inreasing p until reahing a minimum near p = 0.5, and subsequently

inreases with inreasing p. This re�ets the reentrant nature of the phase diagram, as

disussed in Se. 5.3.

5.2.1 Models with Many Absorbing States

The universality of DP (direted peolation) ritial behavior for models with a unique

absorbing state is well established, models suh as the ontat proess (CP), Shlögl's �rst

model, and monomer-dimer model of Zi�, Gulari, and Barshad (ZGB) belong to the same

universality lass. The study of many other models demonstrates the robustness of DP

ritial behavior in spite of quite dramati di�erenes in the evolution rules of the various

models. Presently there is substantial evidene in favor of the hypothesis that models

with a salar order parameter exhibiting a ontinuous transition to a unique absorbing

state generially belong to the universality lass of direted perolation. For models with

more than one absorbing state there are no lear ideas about the possible universality

lasses.

A new kind of ritial behaviour at an absorbing-state phase transition was �rst de-

monstrated by Grassberger, Krause, and von der Twer in a study of a model involving the

proesses X → 3X and 2X → 0. This model is very similar to a lass of models known

as branhing annihilating walks (BAW). In the BAW a partile jumps, with probability

p, to a nearest neighbor, and if this site is oupied both partiles are annihilated. With

probability 1 − p the partile produes n o�spring whih are plaed on the neighboring

sites. If an o�spring is reated on a site whih is already oupied, it annihilates with the

oupying partile leaving an empty site. For n even these models have non-DP beha-

vior, while for n odd the behavior is ompatible with DP. Note that in both the model

proposed by Grassberger, Krause, and von der Twer and in BAW with an even number

of o�spring the number of partiles is onserved modulo 2. This onservation law might

be responsible for the non-DP behaviour. So due the importane in studying the ritial

behaviour of systems with many absorbing states, we present a brief disussion about

two models that show many absorbing states and have DP behaviour. These models are

Dimer reation model (DR) and pair ontat proess (PCP).

In a one-dimensional lattie the DR model [34℄ partiles may not oupy neighboring

sites. If sites i, i − 1, and i + 1 are vaant, we say that site i is open; adsorption

happens only at open sites. If we think of the sites as orresponding to bonds in the dual

lattie, the partiles orrespond to dimers oupying bonds in the dual lattie

1

. Suppose

a partile has just arrived at site i. If sites i − 3, i − 2, i + 2, and i + 3 are all vaant,

the partile remains. If any of the four sites is oupied, the new partile reats with

one other partile with probability 1 − p and remains with probability p. The seond

neighbors have priority in the reation: the new partile an reat with a third neighbor

only if both seond-neighbor sites are empty. The reation rules are illustrated in Fig.

5.3. We note that reations with third neighbors are essential, for without them there

is no ative steady state even for p = 0. There are many absorbing on�gurations for

the DR: any on�guration without a three-site vaany luster, i.e., devoid of open sites.

1

The lattie points of the dual lattie are de�ned by the enters of the unit ells of the lattie. A bond

in the dual lattie is plaed wherever it does not ross a bond of the lattie.
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Figure 5.3: Illustrative piture shows dimer reation rules involving a newly adsorbed partile (at the

enter of the luster) and a seond or third neighbor.

Of these absorbing states, the one with maximal partile density onsists of alternating

vaant and oupied sites; in the one with minimal density, oupied sites alternate with

pairs of vaant sites. Clearly any sequene ogogogog, where o means oupied and g an

be a one- or two-site gap, is absorbing.

In Jensen's pair ontat proess PCP [35℄, eah site of the one-dimensional lattie Z
is either vaant or oupied by a partile. Eah nearest-neighbor (NN) pair of partiles

has a rate p of mutual annihilation, and a rate 1− p of attempted reation. In a reation

event involving partiles at sites i and i+1, a partile may appear (with equal likelihood)

at site i i− 1 or at i+2, provided the hosen site is vaant. (Attempts to plae a partile

at an oupied site fail.) In an annihilation event, a NN pair of partiles is removed. The

rules are illustrated in Fig. 5.4 (a) and the possible absorbing states are shown in 5.4 (b).

In the ANS model the density ρ = 1/7 has an only absorbing on�guration omposed

by a homogeneous distribution (one vehile followed by six empty ells). For densities

ρ < 1/7, many states are absorbing sine di ≥ 6 and
∑n

i=1 di = (1−ρ)L/ρ. We show in �g

5.5 the unique absorbing on�guration for ρ = 1/7 and possible absorbing on�gurations

for ρ = 1/8 and 1/9. We disuss in the following setions the ritial exponents of ANS

model and its universality lass.

5.2.2 Speial ases: p = 0 and p = 1

For the extreme values p = 0 and p = 1 the ANS model is deterministi; these two

ases deserve omment. For ompleteness we mention the orresponding results pertaining

to the NS model given in [36℄, whih also inludes a disussion of mean �eld theories. For

p = 0, the NS and ANS models are idential. The system reahes an absorbing state,

vi = vmax, ∀i, for densities ρ ≤ 1/(vmax + 1). For higher densities we observe nonzero

ativity in the steady state. We note however that there are speial on�gurations, in

whih vi = di, ∀i, with some vi < vmax, whose evolution orresponds to a rigid rotation

of the pattern. (A simple example is vi = di = n, ∀i, with n = 1, 2, 3 or 4, and density
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Figure 5.4: Illustrative piture shows the update rules of PCP model (a). Possible absorbing on�gu-

rations (b).

Figure 5.5: Illustrative piture shows the possible ANS absorbing on�gurations for densities ρ = 1/7,
1/8 and 1/9. Note that for ρ = 1/7 the absorbing on�guration is unique.

ρ = 1/(n+1).) Sine our interest here is in the model with 0 < p < 1 we do not omment

further on suh on�gurations.

For the NS model with p = 1, from one step to the next, eah veloity vi is nonin-
reasing. (Of ourse vi → vi + 1 at the aeleration substep, but this is immediately

undone in the subsequent substeps.) Thus if the evolution leads to a state in whih even

one vehile has veloity zero, all vehiles eventually stop. Suh an event is inevitable for

ρ > 1/3, sine in this ase di ≤ 1 for at least one vehile, whih is obliged to have vi = 0
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after one step. For ρ ≤ 1
3
, steady states with nonzero �ux are possible, depending on

the hoie of initial ondition. Suh on�gurations are metastable in the sense that the

stationary state depends on the initial distribution. In the ANS model with p = 1 the

mean veloity in steady state is zero only for ρ ≥ 1/2. For ρ ≤ 1/(vmax +2), we �nd that

the system always reahes an absorbing on�guration with v = vmax. In the remaining

interval, 1/(vmax + 2) < ρ ≤ 1/2, we �nd v = 1− 2ρ.

Figure 5.6: Fundamental Diagram for ANS model with p = 1.

5.3 Phase diagram

5.3.1 Initial ondition dependene

In studies of tra�, states are alled metastable if they an be obtained from some,

but not all initial onditions [37, 38, 11, 39, 40℄; suh states are an essential omponent

of real tra�. Sine the NS model is not apable of reproduing this feature, models with

modi�ed update rules have been investigated by several authors [37, 38, 11℄. In the ANS

model, by ontrast, there is a region in the ρ− p plane in whih, depending on the initial

ondition, the system may evolve to an ative state or an absorbing one. Our results

are onsistent with the usual senario for absorbing-state phase transitions [33, 41, 42℄:

ativity in a �nite system has a �nite lifetime; in the ative phase, however, the mean

lifetime diverges as the system size tends to in�nity. Properties of the ative phase may be

inferred from simulations that probe the quasistationary regime of large but �nite systems

[44℄.

To verify the existene of metastable states in the ANS model, we study its evolution

starting from two very di�erent lasses of initial onditions (ICs): homogeneous and

jammed. In a homogeneous IC, the headways di are initially uniform as possible, given

the density ρ = 1/(1 + d), where d denotes the mean headway. In this ase the initial

veloity is vmax for all vehiles. In a jammed IC, N vehiles oupy N ontiguous sites,

while the remaining N(ρ−1 − 1) sites are vaant; in this ase di = 0 for i = 1, ..., N − 1,
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and only vehile N has a nonzero initial veloity (vN = vmax). Homogeneous ICs are

muh loser to an absorbing on�guration than are jammed ICs. We note that random

initial onditions lead to the same steady state as jammed ICs.

Figure 5.7: (Color online) Steady-state �ux versus density for p = 0.1 and L = 105. Homogeneous

(stars) and jammed (irles) ICs lead to idential stationary states (panel a) exept for a small interval

of densities near maximum �ux highlighted in panel b. Error bars are smaller than symbols.

Figure 5.7 shows the fundamental diagram obtained using homogeneous and jammed

ICs for p = 0.1; for this value of p the stationary state is the same, regardless of the IC,

exept near ρ = 1
7
where, for the homogeneous ICs, an absorbing on�guration is attained,

having a greater steady-state �ux than obtained using jammed ICs. For higher probabi-

lities p, we �nd a larger interval of densities in whih the stationary behavior depends in

the hoie of IC. In Fig. 5.8, for p = 0.5, this interval orresponds to 0.118 ≤ ρ ≤ 0.143;
higher �uxes (blak points) are obtained using homogeneous ICs, and lower �uxes (red)

using jammed ICs. Homogeneous ICs rapidly evolve to an absorbing on�guration, while

jammed ICs, whih feature a large initial ativity, do not fall into an absorbing on�gu-

ration for the duration of the simulation (tmax = 107), for the system size (L = 105) used
here. In Fig. 5.8, the �ux obtained using jammed ICs (red stars) exhibits a disontinuous

�rst derivative, signaling a ontinuous phase transition. The �ux for homogeneous ICs

(blak irles), exhibits a downward jump at ρ = 1/7. While the latter might be inter-

preted as evidene of a disontinuous phase transition, we note that the absorbing state,

to whih homogenous ICs evolve for smaller densities, eases to exist for ρ > 1/7. Thus
ρ = 1/7 an be seen as the terminal line of the absorbing phase. As in sandpile models,

the absorbing-state phase transition ours at a smaller density (in the ANS model, that

marking the disontinuity in the derivative of j), at whih a nonabsorbing (ative) phase

�rst appears. For 0 < p < 1, the properties of the ative phase (obtained using either

jammed or random ICs) are nonsingular at ρ = 1/7.
Systemati investigation of the steady-state �ux obtained using homogeneous and

jammed ICs leads to the onlusion that the ρ - p plane an be divided into three regions.

To begin, we reall that for ρ > 1/(vmax + 2) and p > 0, the mean veloity v must be

smaller than vmax. Thus the ativity is nonzero and the on�guration (i.e., the set of

values vi and di) hanges with time. In this region, homogeneous and jammed ICs always

lead to the same steady state.

For ρ ≤ 1/(vmax + 2), absorbing on�gurations exist for any value of p. There is

nevertheless a region with ρ < 1/(vmax +2) in whih ativity is long-lived. In this region,
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Figure 5.8: (Color online) Steady-state �ux versus density as in Fig. 5.7, but for p = 0.5.

whih we all the ative phase, the steady state depends on whether the IC has little

ativity (homogeneous) or muh ativity (jammed). For smaller densities, all ICs evolve

to an absorbing on�guration; we all this the absorbing phase. The boundary between

the ative and absorbing phases, determined via the riterion of di�erent steady states for

homogeneous and jammed ICs, is shown in Fig. 5.9. We note that in Wang's model [15℄

there are only two regions: an absorbing phase for ρ ≤ 1/7 and an ative one for ρ > 1/7.
Our results are onsistent with the following senario, familiar from the study of

phase transitions to an absorbing state [33, 41, 42℄: for �nite systems, all ICs with ρ <
1/(vmax +2) and p > 0 eventually fall into an absorbing on�guration. Within the ative

phase, however, the mean lifetime of ativity grows exponentially with system size. The

phase boundary represents a line of ritial points, on whih the lifetime grows as a power

law of system size. (Further details on ritial behavior are disussed in Se. 5.4.) A

surprising feature of the phase boundary is that it is reentrant: for a given density in the

range 0.116 < ρ < 1/(vmax +2), the absorbing phase is observed for both small and large

p values, and the ative phase for intermediate values. The reason for this is disussed in

Se. III.C. We denote the upper and lower branhes of the phase boundary by p+(ρ) and
p−(ρ), respetively; they meet at ρc,< ≃ 0.116.

The phase boundary is singular at its small-p limit. As p tends to zero from positive

values, the ritial density approahes 1/7, but for p = 0 the transition ours at ρ = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar to that of a stohasti

sandpile [45, 46℄. In the sandpile, there are no absorbing on�gurations for partile density

ρ > zc−1, where zc denotes the toppling threshold; nevertheless, the absorbing-state phase
transition at a density stritly smaller than this value. Similarly, in the ANS model there

are no absorbing on�gurations for ρ > 1/7, but the phase transition ours at some

smaller density, depending on the deeleration probability p. Further parallels between

the ANS model and stohasti sandpiles are noted below.

The phase boundary shown in Fig. 5.9 represents a preliminary estimate, obtained

using the following riterion. Points along the lower ritial line p−(ρ) orrespond to the

smallest p value suh that eah of 200 arbitrary ICs remain ative during a time of 107

steps, in a system of L = 105 sites. Similarly, p+(ρ) orresponds to the largest p value

suh that all 200 realizations remain ative. For seleted points, a preise determination

was performed, as desribed in Se. 5.4. We defer a more preise mapping of the overall

phase diagram to future work.
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Figure 5.9: (Color online) Boundary between ative and absorbing phases in the ρ - p plane. Blak

points (irles) joined by lines: preliminary estimates from initial-ondition dependene as explained in

text. Isolated red points (stars): preise estimates obtained via �nite-size saling as desribed in Se. IV.

The open irle at ρ = 1/7, p = 0 is not part of the phase boundary: for p = 0 the transition ours at

ρ = 1/6. The open irle ρ = 1/7, p = 1 marks the other end of the phase boundary; we note however

that at this point, all initial onditions evolve to the absorbing state.

The phase transitions at p−(ρ) and p+(ρ) appear to be ontinuous. Figure 5.10 shows

the steady-state ativity (de�ned below) versus p for density ρ = 1/8. In the viinity of

the transition, the urves beome sharper with inreasing system size, as expeted at a

ontinuous phase transition to an absorbing state.

5.3.2 Order parameter

Having identi�ed a ontinuous absorbing-state phase transition in the ANS model,

further analysis requires that we de�ne an appropriate order parameter or ativity density.

Sine the absorbing state is haraterized by vi = vmax, ∀i, one might be inlined to de�ne

the ativity density simply as ρa = vmax − v. The problem with this de�nition is that not

all on�gurations with vi = vmax, ∀i are absorbing: a vehile with di = vmax may redue

its speed to vmax − 1, yielding ativity in the �rst sense. We de�ne the ativity density

as:

ρa = vmax − v + pρa,2 ≡ ρa,1 + pρa,2, (5.1)

where ρa,2 denotes the fration of vehiles with vi = di = vmax. Aording to this de�-

nition, the ativity density is zero if and only if the on�guration is absorbing, that is,

if vi = vmax, and di > vmax, ∀i. Studies of large systems near the ritial point reveal

that ρa,1 >> ρa,2, so that the latter an be negleted in saling analyses. It is nonetheless

essential to treat on�gurations with ρa,2 > 0 as ative, even if ρa,1 = 0.
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Figure 5.10: (Color online) Steady-state ativity ρa versus p for vehile density ρ = 1/8. System sizes

(upper to lower urves) N = 1000, 2000 and 4000. Error bars smaller than symbols.

5.3.3 Reentrane

In this subsetion we disuss the reason for reentrane, that is, why, for ρc,< < ρ < ρc,
the system reahes the absorbing state for large p as well as small p. Sine deeleration

is assoiated with generation of ativity (i.e., of speeds < vmax), a redution in ativity

as p tends to unity seems ounterintuitive. The following intuitive argument helps to

understand why this happens. For p ≃ 0, vehiles rarely deelerate if they have su�ient

headway to avoid reahing the position of the ar in front. This tends to inrease the

headway of the ar behind, so that (for ρ < ρc), all headways attain values ≥ vmax + 1,
whih represents an absorbing on�guration. For p = 1, a ar with speed vi = di always
deelerates, whih tends to inrease its own headway. In either ase, p = 0 or p = 1, as
redued headway (i.e., inter-vehile intervals with di < vmax + 1) is transferred down the

line, vehiles may be obliged to deelerate, until the redued headway is transferred to an

interval with headway di large enough that no redution in veloity is required. [Intervals

with di > vmax + 1, whih we all troughs, always exist for ρ < ρc = 1/(vmax + 2)℄.
When all redued headways are annihilated at troughs, the system attains an absorbing

on�guration.

Call events in whih a vehile having vi = di deelerates D events, and those in whih

suh a vehile does not deelerate N events. For ρ < ρc, if only D events (or only N events)

are allowed, the system attains an absorbing on�guration via annihilation of redued

headways with troughs. Thus some alternation between D and N events is required to

maintain ativity, and the ative phase orresponds to intermediate values of p.
These observations are illustrated in Fig. 5.11, for a system of twenty vehiles with

vmax = 2 and density ρ = 2/9 < ρc = 0.25. Initially, all vehiles have vi = vmax. The

headways di initially alternate between three and four (the latter are troughs), exept

for d19 = 0 and d20 = 7. In the left panel, for p = 0, the system reahes an absorbing

67



on�guration after four time steps. Similarly, in the right panel, for p = 1, an absorbing

on�guration is reahed after 7 steps. For p = 0.6 (middle panel), the evolution is stohas-

ti. Most realizations reah an absorbing on�guration rapidly, but some remain ative

longer, as in the example shown here. From the distribution of D and N events, it appears

that ativity persists when vehiles �rst su�er an N event, reduing their own headway,

and subsequently (one or two steps later) su�er a D event, reduing the headway of the

preeding vehile. Suh an alternation of N and D events allows a region with redued

headways to generate more ativity before reahing a trough [43℄.

Figure 5.11: Vehile positions relative to the �rst (lowest) vehile versus time t (horizontal) for t ≥ 2,
in a system with N = 20, vmax = 2 and vehile density ρ = 2/9 < ρc = 0.25. Initially, all vehiles have
vi = vmax. The headways di initially alternate between three and four, exept for d19 = 0 and d20 = 7.
Filled (open) irles denote D (N) events, i.e., events in whih a vehile with speed v(i) = d(i) deelerates
(does not deelerate). In an absorbing on�guration all veloities are equal, yielding a set of horizontal

lines with spaings ≥ vmax + 1. Left panel: p = 0, system inative for t > 4; right panel: p = 1, system
inative for t > 7; enter panel: example of a realization with p = 0.6 in whih ativity persists until

t = 56 (evolution for t > 30 not shown).

5.4 Critial behavior

5.4.1 Quasistationary simulation

Before studying the ritial behavior of the ANS model we disuss brie�y quasistati-

onary simulations. Initially we have to de�ne the quasistationary distribution. We start

onsidering a ontinuous-time Markov proess Xt taking values n = 0, 1, 2, ..., S, with the

state n = 0 absorbing. We use pn(t) to denote the probability that Xt = n, given some

initial state X0. The survival probability Ps(t) = Σn≥1pn(t) is the probability that the

proess has not beome trapped in the absorbing state up to time t. We suppose that as

t → ∞, pn(t) normalized by survival probability Ps(t), attain a time-independent form.

The quasistationary distribution pn is then de�ned via

pn = limt→∞
pn(t)

Ps(t)
, (5.2)
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with p0 = 0. The QS distribution is normalized. So

∑

n>1

pn = 1. (5.3)

In a onventional simulation the system starts from a random on�guration and after a

transient time one starts to measure quantities, e.g., order parameter, until the system

attains the absorbing state. We restart the simulation many times hoosing di�erent

random initial on�gurations. The problem in using this proedure is time of simulation.

For many stohasti proess with an absorbing state the quasistationary distributions

provide a wealth of information about their behavior. In applying �nite-size saling theory

to ANS model, and similar models that have an absorbing state, a slight ompliation

arises, namely that for a �nite system the only true stationary state is the absorbing

state. To solve this problem the authors [44℄ suggest a simulation sheme for sampling

the QS distribution. In a Monte Carlo simulation one generates a set of realizations of

a stohasti proess. In what follows they all a simulation of the original proess Xt

possessing an absorbing state a onventional simulation. The goal is to de�ne a related

proess X∗
t , whose stationary probability distribution is the quasistationary distribution

of Xt. To learn about the ative state from simulations of �nite systems we study the

quasistationary state, whih desribes the statistial properties of surviving trials following

an initial transient. When Xt enters the absorbing state, however, X∗
t instead jumps

to a nonabsorbing one, and then resumes its usual evolution (with the same transition

probabilities as Xt), until suh time as another visit to the absorbing state is imminent.

Initial on�gurations are prepared by plaing vehiles as uniformly as possible. A

vehile j is hosen at random and its distane from the vehile ahead is redued by

dj → dj − 1, so dj−1 = dj−1 + 1. This proedure is performed 2N times. As the system

evolves, a list of states is reated based on the system's evolution. Initially these �rst

states do not represent a good hoie for quasistationary states. With the intention

of eliminating the vestiges of the initial on�guration, during the relaxation period the

probability of olleting them is pr1. When the system attains the relaxation period,

the probability pr1 is redues to pr2 and the list of olleted states is sampled with less

frequeny. The number of states in this list is �xed (in our simulations we use 1000 states)
but as the system does not attain the absorbing state these states are renewed onstantly.

In our simulation we used pr1 = 20/N and pr2 = pr1/10 = 2/N .

5.4.2 Critial Exponents

Aording to �nite-size saling theory (FSS), in the viinity of the ritial point, in-

tensive properties depend strongly on the system size. In the ANS model, FSS implies

that the order parameter ρa depends on the system size and distane from the ritial

point as

ρa(∆, L) ∝ L−β/υ⊥f(∆L1/υ⊥), (5.4)

where ∆ = ρ− ρc
2

. When ∆ = 0 equation (5.4) yields

ρa(ρ, L) ∝ L−β/υ⊥ , (5.5)

for ∆ < 0 (subritial regime) ρa falls o� as L−1
, while for ∆ > 0 (superritial regime),

ρa approahes a nonzero value as L → ∞. The saling funtion

f(x) ∝ xβ
for x → ∞, (5.6)

2

in the ANS model, there is a ritial line in the ρ− p plane, and ∆ is the distane from this line.

69



allows that ρa, when L → ∞, has a power law behaviour

ρa ∝ ∆β. (5.7)

In the viinity of ritial point, the orrelation length ξ and orrelation time τ diverge

aording to

ξ ∝ ∆−υ⊥
and τ ∝ ∆−υ‖ . (5.8)

So we expet that

τ(∆, L) ∝ Lzg(∆L1/υ⊥), (5.9)

where τ is the mean lifetime of a system and z = υ‖/υ⊥ is the dynami exponent. To

�nd the exponents β, υ⊥ we need to use another size saling funtion. Finite-size saling

implies that for ρ ≃ ρc the moment ratio m = 〈ρ2a〉/ρ2a obeys the relation:

m(∆, L) ∝ fm(∆L1/υ⊥), (5.10)

where fm is a saling funtion. This implies that

∣∣∣∣∣
∂m

∂ρ

∣∣∣∣∣
ρc

∝ L1/υ⊥ , (5.11)

moreover, the �nite-size expression (5.4) implies that

∣∣∣∣∣
∂ ln ρ

∂ρ

∣∣∣∣∣
ρc

∝ L1/υ⊥ . (5.12)

Eventually aording to �nite-size expression (5.9) we expet that

∣∣∣∣∣
∂ ln τ

∂ρ

∣∣∣∣∣
ρc

∝ L1/υ⊥ . (5.13)

5.4.3 Critial Exponents in the ANS model

We turn now to haraterizing the phase transition along the lines p−(ρ) and p+(ρ).
Sine the transition is ontinuous, this requires that we determine the assoiated ritial

exponents, in order to identify the universality lass of the ANS model. The analysis

turns out to be ompliated by strong �nite-size e�ets: di�erent from simple systems

exhibiting an absorbing-state phase transition, suh as the ontat proess, for whih

studies of systems with L ≤ 1000 yield good estimates for ritial exponents [33℄, here we

require systems of up to 105 sites to obtain reliable results. We are nevertheless able to

report preise results at several points along the phase boundary.

We use quasistationary (QS) simulations to probe the behavior at long times onditi-

oned on survival of ativity [44℄. Sine the deeleration probability p is ontinuous while

the density ρ an only be varied in disrete steps, we keep the latter �xed and vary the

former in eah series of studies. As in other studies of QS behavior at absorbing-state

phase transitions, we fous on the �nite-size saling (FSS) of the ativity density, ρa, the
lifetime, τ , and the moment ratio m = 〈ρ2a〉/ρ2a, as funtions of system size, N [33, 44℄. At

a ritial point, these variables are expeted to exhibit sale-free (power-law) dependene

on N , that is, ρa ∼ N−β/ν⊥
and τ ∼ N z

, where β is the order-parameter exponent and
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ν⊥ the exponent that governs the divergene of the orrelation length as one approahes

the ritial point. In the ative phase, ρa approahes a nonzero onstant value, while τ
grows exponentially as N → ∞. In the absorbing phase, ρa ∼ 1/N while τ grows more

slowly than a power law as N → ∞. At the ritial point, the moment ratio is expeted

to onverge to a nontrivial limiting value, m = m∞ +O(N−λ), with λ > 0. In the ative

(inative) phase, m urves sharply downward (upward) when plotted versus 1/N . These

are the riteria we employ to determine the ritial point, pc(ρ). The distane from the

ritial point an be estimated from the urvature of log-log plots of ρa and τ versus N .

As noted in Se. III.B, the order parameter is the sum of two ontributions: ρa =
ρa,1+pρa,2. In simulations, we therefore determine ρa,1 and ρa,2 separately. In the viinity

of the ritial point we �nd ρa,1 ∼ N−0.5
and ρa,2 ∼ N−0.9

, showing that the fration

ρa,2 of vehiles with vi = di = vmax deays more rapidly than ρa,1 = vmax − v, so that it

makes a negligible ontribution to the ativity density for large N . We therefore adopt

ρa,1 as the order parameter for purposes of saling analysis. Con�gurations ρa,1 = 0 and

ρa,2 > 0 are nevertheless onsidered to be ative; only on�gurations with vi = vmax and

di > vmax, ∀i, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000 and 100 000 sites, alulating

averages over a set of 20 to 160 realizations. Even for the largest systems studied, the

ativity density reahes a stationary value within 106 time steps. We perform averages

over the subsequent 108 steps. As detailed in [44℄, the QS simulation method probes the

quasistationary probability distribution by restarting the evolution in a randomly hosen

ative on�guration whenever the absorbing state is reahed. A list of Nc suh on�gura-

tions, sampled from the evolution, is maintained; this list is renewed by exhanging one

of the saved on�gurations with the urrent one at rate pr. Here we use Nc = 1000, and
pr = 20/N . During the relaxation phase, we use a value of pr that is ten times greater, to

eliminate the vestiges of the initial on�guration from the list. The lifetime τ is taken as

the mean time between attempts to visit an absorbing on�guration, in the QS regime.

Initial on�gurations are prepared by plaing vehiles as uniformly as possible (for

example, for density ρ = 1/8, we set di = 7, ∀i), and then exhanging distanes randomly.

In suh an exhange a site j is hosen at random and the hanges dj → dj − 1 and

dj+1 → dj+1 + 1 are performed, respeting the periodi boundary ondition, dN+1 ≡ d1.
The random exhange is repeated Ne times (in pratie we use Ne = 2N), avoiding,

naturally, negative values of dj. Sine headways dj < vm are generated in this proess, at

the �rst iteration of the dynamis, veloities vj < vmax arise, leading to a relatively large,

statistially uniform initial ativity density.

We performed detailed studies for densities ρ = 1/8, on both the upper and lower

ritial lines, and for density 17/144 = 0.11805, on the lower line. Figures 5.12, 5.13 and

5.14 show, respetively, the dependene of the order parameter, lifetime and moment ratio

m on system size for density 1/8 and p values in the viinity of the lower ritial line. In

the insets of Figs. 5.12 and 5.13 the values of ρa and τ are divided by the overall trend

to yield ρ∗a ≡ N0.5ρa and τ ∗ = τ/N . These plots make evident subtle urvatures hidden

in the main graphs, leading to the onlusion that pc(ρ = 1/8) is very near 0.2683.

A more systemati analysis involves the urvatures of these quantities: we �t quadrati

polynomials,

ln ρa = onst. + a lnN + b(lnN)2, (5.14)

and similarly for ln τ , to the data for the four largest system sizes. The oe�ient of

the quadrati term, whih should be zero at the ritial point, is plotted versus p in
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Figure 5.12: Ativity density versus number of vehiles for density 1/8 and (lower to upper) p = 0.2679,
0.2681, 0.2683, 0.2685 and 0.2687. Error bars are smaller than symbols. Inset: saled ativity density

ρ∗a = N0.5ρa versus number of vehiles.

Figure 5.13: Lifetime versus number of vehiles for density 1/8 and (lower to upper) p = 0.2679, 0.2681,
0.2683, 0.2685 and 0.2687. Error bars are smaller than symbols. Inset: saled lifetime τ∗ = N−1.0τ versus

number of vehiles.

Fig. 5.15. Linear interpolation to b = 0 yields the estimates pc = 0.26830(3) (data for

ativity density) and pc = 0.26829(2) (data for lifetime); we adopt pc = 0.26829(3) as our
�nal estimate. (Figures in parentheses denote statistial unertainties.) The data for m,

although more sattered, are onsistent with this estimate: from Fig. 5.14 it is evident

that pc lies between 0.2681 and 0.2683.

To estimate the ritial exponents β/ν⊥ and z we perform linear �ts to the data for

ln ρa and ln τ versus lnN (again restrited to the four largest N values), and onsider the
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Figure 5.14: Moment ratio m versus reiproal system size for density 1/8 and (upper to lower)

p = 0.2679, 0.2681, 0.2683, 0.2685 and 0.2687.

slopes as funtions of p. Interpolation to pc yields the estimates: β/ν⊥ = 0.500(3) and
z = 1.006(8). A similar analysis yields mc = 1.306(6). The prinipal soure of unertainty
in these estimates is the unertainty in pc.

Figure 5.15: (Color online) Curvature of ln ρa (�lled symbols) and ln τ (open symbols) as funtions of

lnN , as measured by the oe�ient b of the quadrati term in least-squares quadrati �ts to the data in

Figs. 5.12 and 5.13. Straight lines are least-squares linear �ts to b versus deeleration probability p, for
vehile density ρ = 1/8. Interepts with the line b = 0 furnish estimates of pc.

Using the data for ρa, τ and m we also estimate the ritial exponent ν⊥. Finite-size
saling implies that the derivatives |dm/dp|, d ln τ/dp and d ln ρa/dp, evaluated at the

ritial point, all grow ∝ L1/ν⊥
. We estimate the derivatives via least-squares linear

�ts to the data on an interval that inludes pc. (The intervals are small enough that
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the graphs show no signi�ant urvature.) Power-law dependene of the derivatives on

system size is veri�ed in Fig. 5.16. Linear �ts to the data for the four largest sizes, for

ln ρp, ln τ , and m yield 1/ν⊥ = 0.494(15), 0.495(15), and 0.516(29), respetively, leading

to the estimate ν⊥ = 2.00(5). Repeating the above analysis for simulations at vehile

density ρ = 17/144, we �nd p−(17/144) = 0.4096(1), β/ν⊥ = 0.503(6), z = 1.011(15),
m = 1.302(2), and ν⊥ = 2.02(2).

Figure 5.16: Derivatives of (lower to upper) m, ln ρa and ln τ with respet to p in the viinity of pc,
versus N for vehile density ρ = 1/8. Lines are least-squares linear �ts to the data.

Thus, for the two points studied on the lower ritial line, the results are onsistent

with a simple set of exponent values, namely, z = 1, ν⊥ = 2, and β = 1. The same set

of ritial exponents appears in a system of ativated random walkers (ARW) on a ring,

when the walkers hop in one diretion only [47℄. The ritial moment ratio for ARW is

mc = 1.298(4), quite near present estimates.

We suggest that these values haraterize a universality lass of absorbing-state phase

transitions in systems with a onserved density (of walkers in ARW, and of vehiles in

the present instane), and anisotropi movement. The ARW with symmetri hopping is

known to belong to the universality lass of onserved direted perolation [48℄, whih

also inludes onserved stohasti sandpiles [45, 46℄.

A study on the upper ritial line for vehile density ρ = 1/8 yields results that are

similar but slightly di�erent. Repeating the proedure desribed above, we �nd p+(1/8) =
0.89590(5), β/ν⊥ = 0.487(8), z = 1.021(15), ν⊥ = 1.98(6), and mc = 1.315(5). The

exponent values are su�iently near those obtained on the lower ritial line that one

might attribute the di�erenes to �nite-size e�ets. We defer to future work more detailed

analyses, to determine whether saling properties along the upper and lower ritial lines

di�er in any respet.
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Chapter 6

Summary and Open Questions

6.1 Summary

We review some tra� models studied in the literature. Start from the early models

(hydrodynami) to the three phases theory (Kerner), we summarize the key aspets of

eah model. We review the kineti theory of tra� proposed by Prigogine and Herman

in whih the Boltzmann equation is adapted to vehiular tra�.The kineti equation

and its solution is disussed, and a novel distribution of desired veloities that is more

suitable for desribing real tra� onditions is analyzed. We also study the stationary

veloity distribution at the transition between individual and olletive �ow patterns.

At this transition the distribution splits into a smoothly varying regular part, in whih

vehiles have nonzero veloities, and a singular one, orresponding to stopped vehiles.

Computational methods for obtaining the stationary veloity distribution, and the full

spae-time evolution of the vehiular distribution, are explained.

After the kineti models, we study the ellular automaton (CA) models in whih spae,

time and veloity are disretized. The most known study via CA is the NS model. Despite

of your simpliity, this model is apable of reproduing features ommonly found in real

tra�, suh as the transition between free �ow and a jammed state, start-and-stop waves,

and shoks (due to driver overreation). This simple model represents the e�et of varia-

tions in driving behavior by inorporating a simple stohasti element: the spontaneous

redution of veloity with probability p. Although the NS model has been studied exten-

sively, the nature of the transition between free and jammed �ow, in partiular, whether

it orresponds to a ritial point, remains unsolved.

We onsider a version of the Nagel-Shrekenberg model in whih probabilisti deele-

ration is possible only for vehiles whose veloity is equal to the headway, vi = di. In the

resulting ANS model, a free-�ow on�guration, vi = vmax and di > vmax, ∀i, is absorbing
for any value of the deeleration probability p. The phase transition in the original NS

model at deeleration probability p = 0 is identi�ed with the absorbing-state transition in

the ANS model: the two models are idential for p = 0. In the original model, a nonzero

deeleration probability orresponds to a spontaneous soure of ativity whih eliminates

the absorbing state, and along with it, the phase transition.

The ANS model, by ontrast, exhibits a line of absorbing-state phase transitions in

the ρ-p plane; the phase diagram is reentrant. We present preliminary estimates for the

phase boundary and several ritial exponents. The latter appear to be assoiated with a

universality lass of absorbing-state phase transitions in systems with a onserved density

and asymmetri hopping, suh as ativated random walkers (ARWs) with partile transfer
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only in one diretion [47℄. In this ontext it is worth noting that in tra� models, as well

as in sandpiles and ARW, ativity is assoiated with a loal exess of density: in sandpiles,

ativity requires sites with an above-threshold number of partiles; in ARW, it requires

an ative partile jumping to a site oupied by an inative one; and in the ANS model,

it requires headways d smaller than vmax + 1. One may hope that the onnetion with

stohasti sandpiles will lead to a better understanding of tra� models, and perhaps of

observed tra� patterns.

6.2 Open questions in the ANS model

6.2.1 Critial exponents

From the diagram shown in Fig. 5.9 we know that for eah density there are two

probabilities p+ and p− due the reentrane, i.e., the absorbing phase is reentrant. Sur-

prisingly, when we determine the ritial exponents for p+(1/8) and p−(1/8), there is a

slight di�erene between them. We don't know if these di�erenes re�et the asymptoti

behavior of the model, or should be attributed to �nite-size e�ets. Furthermore, we need

to �nd the ritial probabilities for other densities to estimate with preision the phase

boundary. In future studies we shall investigate the possible di�erenes in the ritial

exponents aording to the density.

6.2.2 Mean-Field Theory

A key hallenge in our work is to �nd an appropriate desription of ANS model via

mean-�eld theory. Although the ANS model belongs to the same universality lass as

the asymmetri ARW model [47℄, the approah used in the ARW model annot be used

here. The main reason is the di�erene between the update proedure: the ARW model

uses the sequential update rules while the ANS model uses parallel updating. Although

we try to develop an approah based on the urrent mean �eld tehnique used in the NS

model [8℄, the �rst results show us that this approah seems don't reognize the absorbing

states. We think that one of the reasons is the assumption that in the stationary states, the

probability distributions beome spatially independent. This assumption is true when the

system does not attain the absorbing state. We an use this approah only for estimating

with better preision the fundamental diagram with vmax = 1 and vmax = 2.

6.2.3 Other CA models with ANS rules

We an implement the randomization step of the ANS model in other models already

studied in the literature. For instane we an investigate the possible absorbing states in

an ANS version of a two-line model. We an introdue vehiles with di�erent maximum

speeds and study the possible on�gurations of absorbing states. Furthermore we know,

from the other models as sandpile, ontat proess, ativated random walkers et, that

the simple inlusion of a di�erent update rule an, in some ases, modify the ritial

exponents and therefore the universality lass.
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Chapter 7

Appendix

7.1 Matriz T t

Although we an obtain the matrix T t
writing down the initial state in the basis of

eigenvetors, the work in doing it inreases aording to the value of vmax. For this reason

we prefer to adopt the following strategy: T t
ij means the probability of a vehile starts at

the state |j − 1〉 and evolves to |i− 1〉 at the time t. The analysis for eah initial state is

shown below. Pmn
means the probability of the system starts with veloity m and evolves

to veloity n at the time t.

v(0) = 0

P 00(t) = pt

P 01(t) =

(
t

1

)
qpt−1

P 02(t) =

(
t

2

)
q2pt−2

P 03(t) =

(
t

3

)
q3pt−3

P 04(t) =

(
t

4

)
q4pt−4 +

(
t− 1

5

)
q5pt−5 . . .

(
t− 1

t− 1

)
qt−1p

P 05(t) =

(
t− 1

4

)
q5pt−5 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

v(0) = 1
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P 11(t) = pt

P 12(t) =

(
t

1

)
qpt−1

P 13(t) =

(
t

2

)
q2pt−2

P 14(t) =

(
t

3

)
q3pt−3 +

(
t− 1

4

)
q4pt−4 . . .

(
t− 1

t− 1

)
qt−1p

P 15(t) =

(
t− 1

3

)
q4pt−4 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

v(0) = 2

P 22(t) = pt

P 23(t) =

(
t

1

)
qpt−1

P 24(t) =

(
t

2

)
q2pt−2 +

(
t− 1

3

)
q3pt−3 . . .

(
t− 1

t− 1

)
qt−1p

P 25(t) =

(
t− 1

2

)
q3pt−3 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

v(0) = 3

P 33(t) = pt

P 34(t) =

(
t

1

)
q1pt−1 +

(
t− 1

2

)
q2pt−2 . . .

(
t− 1

t− 1

)
qt−1p

P 35(t) =

(
t− 1

1

)
q2pt−2 . . .

(
t− 1

t− 2

)
qt−1p+

(
t− 1

t− 1

)
qt

The states orresponding to the veloities vmax = 4 and vmax = 5 are absorbing, i.e., sine
the on�guration starts or evolves to these states, the �nal state will be always |4〉 (with
probability p) and |5〉 (with probability q). So the matrix T

t

is:

T t =




pt 0 0 0 0 0(
t
1

)
qpt−1 pt 0 0 0 0(

t
2

)
q2pt−2

(
t
1

)
qpt−1 pt 0 0 0(

t
3

)
q3pt−3

(
t
2

)
q2pt−2

(
t
1

)
qpt−1 pt 0 0

p04(t) p14(t) p24(t) p34(t) p q
p05(t) p15(t) p25(t) p35(t) p q




.
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where

P j4(t) =

(
t

4− j

)
q4−jpt+j−4 +

t−1∑

i=5−j

(
t− 1

i

)
qipt−i

P j5(t) =

t−1∑

i=4−j

(
t− 1

i

)
qi+1pt−i−1

evaluating the limit

limt−→∞

(
P j4(t)

P j5(t

)
=

(
t

4−j

)
q4−jpt+j−4 +

(
t−1
5−j

)
q5−jpt+j−5 +

∑t−1
i=4−j

(
t−1
i

)
qipt−i

∑t−1
i=4−j

(
t−1
i

)
qi+1pt−i−1

for t → ∞, the two �rst terms of the numerator tend to zero, so

limt→∞

(
pj4(t)

pj5(t

)
=

∑t−1
i=4−j

(
t−1
i

)
qipt−i

∑t−1
i=4−j

(
t−1
i

)
qi+1pt−i−1

=
p

q
.

using

∑6
i=1 T

t
ij = 1 e limt→∞

∑4
i=1 T

t
ij = 0, we have that

P (t → ∞) =




0
0
0
0
p

1− p




.

7.2 Mean Field Theory

Solution for c0

Using

∑vmax

β=1 cβ = c− c0, we an �nd c0 as a funtion of c, p e d;

c0(1− c− pd+ c+ pdc) = c2(1 + pd)

c0(1− pd(1− c)) = c2(1 + pd)

c0(1− pd2) = c2(1 + pd),

leading to

c0 =
c2(1 + pd)

1− pd2
.

Solution for c1
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Using

∑vmax

β=2 cβ = c− c0 − c1, we an �nd c1

c1 = d
[
qc0 + (qc+ pd)c1 + (q + pd)c(c− c0 − c1)

]

c1(1− qcd− pd2 + qcd+ pd2c) = d
[
c0(q − qc− pdc) + (q + pd)c2

]

c1(1− pd2(1− c)) = d

[
c2(1 + pd)(q − qc− pdc)

1− pd2
+ (q + pd)c2

]

c1(1− pd3) =
c2d

(1− pd2)

[
q + q(1− c) + pdq(1− c)− pd2q + pd(1− c)− p2d2c− p2d3

]

c1(1− pd3) =
c2d

(1− pd2)

[
q(1 + d) + pd2[1− p(c+ d)]

]

c1(1− pd3) =
c2d

(1− pd2)

[
q(1 + d+ pd2)

]
,

leading to

c1 = qc2d
1 + d+ pd2

(1− pd3)(1− pd2)
.

Solution for 1 < α < vmax − 1

To �nding a reursion relation for the other oe�ients cα, we use the identity

cα − dcα−1 = dα

[
q(cα−1 − cα−2) + (qc+ pd)(cα − cα−1) + (q + pd)c

[
vmax∑

β=α+1

cα −
vmax∑

β=α

cα

]]

cα − dcα−1 = dα
[
cα−1(q − qc− pd)− qcα−2 + (qc+ pd− qc− pdc)cα

]

cα − dcα−1 = dα
[
cα−1(q − qc− pd)− qcα−2 + pd2cα

]

cα(1− pdα+2) = dα
[
cα−1(qd− pd)

]
+ dcα−1 − qdαcα−2

cα(1− pdα+2) = dcα−1

[
(q − p)dα + 1

]
− qdαcα−2,

leading to

cα =
1 + (q − p)dα

1− pdα+2
dcα−1 −

qdα

1− pdα+2
cα−2.

Solution for cvmax

cvmax−1 and cvmax
an be found via

cvmax−1 = dvmax−1
[
qcvmax−2 +

(
qc+ pd

)(
cvmax−1 + cvmax

)]

cvmax
= qdvmax

[
cvmax−1 + cvmax

]

80



we start, for simpliity, with cvmax
:

cvmax
= qdvmax

[
cvmax−1 + cvmax

]

cvmax
(1− qdvmax) = qdvmaxcvmax−1cvmax

=
qdvmax

1− qdvmax

cvmax−1,

leading to

cvmax
=

qdvmax

1− qdvmax

cvmax−1 .

Solution for cvmax−1

cvmax−1 an be found developing the expressions:

cvmax−1 = dvmax−1
[
qcvmax−2 +

(
qc+ pd

)(
cvmax−1 + cvmax

)]

cvmax−1

[
1− dvmax−1(qc+ pd)

(
1 +

qdvmax

1− qdvmax

)]
= qdvmax−1cvmax−2

cvmax−1

[
1− dvmax−1(qc+ pd)

(
1− qdvmax + qdvmax

1− qdvmax

)]
= qdvmax−1cvmax−2

cvmax−1

[
1− qdvmax − dvmax−1(qc+ pd)

1− qdvmax

]
= qdvmax−1cvmax−2

cvmax−1

[
1− dvmax−1(qd+ qc+ pd)

1− qdvmax

]
= qdvmax−1cvmax−2,

leading to

cvmax−1 =
1− qdvmax

1− dvmax−1(q + pd)
qdvmax−1cvmax−2 .
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We review the kinetic theory of traffic proposed by Prigogine and Herman in which the Boltzmann

equation is adapted to vehicular traffic. The kinetic equation and its solution are discussed, and a

novel distribution of desired velocities that is more suitable for describing real traffic conditions is

analyzed. We also study the stationary velocity distribution at the transition between individual and

collective flow patterns. At this transition, the distribution splits into a smoothly varying regular part,

in which vehicles have nonzero velocities, and a singular one, corresponding to stopped vehicles.

Computational methods for obtaining the stationary velocity distribution and the full space-time

evolution of the vehicular distribution are explained. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4935895]

I. INTRODUCTION

The application of numerical and theoretical methods
developed in physics to areas traditionally viewed as belong-
ing to the social sciences has recently accelerated, with stud-
ies of economic interactions,1,2 linguistics,3 and social
networks4 becoming standard fare in physics. Although this
trend might seem novel, it began, albeit slowly, some time
ago. A case in point is the use of ideas from the kinetic
theory of gases to describe vehicular traffic, pioneered by
Prigogine and Herman,5–7 among others, more than sixty
years ago.

Just as the statistical mechanics of molecular systems
depends on a model of the molecules and their interactions,
the study of traffic requires that we model the behavior of
drivers. Once we have a suitable model, a system of many
interacting molecules (or drivers) can be studied at various
levels of detail: direct study (usually numerical) of a micro-
scopic model, kinetic theory, or a macroscopic (thermody-
namic or hydrodynamic) approach. An important class of
microscopic models of traffic are stochastic lattice systems
in which space, time, and vehicle velocities are all discre-
tized. A key example is the stochastic cellular automaton
introduced by Nagel and Schreckenberg.8

Kinetic theory is an intermediate level of description,
which follows the evolution of a probability distribution for
single vehicles. It offers advantages and disadvantages com-
pared to microscopic models. Among the advantages are that
there is no need to discretize space, time, or velocity, and it
requires substantially less effort to analyze than a stochastic
cellular automaton, which typically must be run repeatedly
to obtain reliable results. In some cases, analytical solutions
are possible, affording a certain insight. Thus kinetic theory
affords a rapid and approximate survey of parameter space,

facilitating the identification of general trends. The principal
shortcoming of kinetic theory is the absence of fluctuations,
and events (such as traffic jams) that result from rare config-
urations of drivers. Therefore, it is interesting to perform
both simulations of detailed models and kinetic theories and
to compare their results.

The initial efforts in modeling vehicular traffic via kinetic
theory were made in an era of very limited computational
resources, so that large-scale simulations of stochastic cellu-
lar automata were not an option. Nevertheless, it was possi-
ble to draw interesting conclusions from kinetic theory. The
most remarkable conclusion is the conflict between the
desire of individual drivers to realize their own goals and the
interactions between vehicles that frustrate this desire. These
interactions lead to a clear distinction between individual
and collective flow regimes. At a certain concentration, the
flow patterns become independent of the desires of individ-
ual drivers, and instead represent collective behavior.

In the earliest version of the kinetic theory of vehicular
traffic, Prigogine and Herman5–7 modified the kinetic theory
of gases embodied in the Boltzmann equation. In their
model, traffic is treated as a one-dimensional gas of interact-
ing particles (vehicles) described by a distribution function
f ðx; v; tÞ, defined such that f ðx; v; tÞ dx dv represents the num-
ber of vehicles with positions between x and x þ dx and
velocities between v and v þ dv at time t. The distribution f
is normalized so thatð

dvf ðx; v; tÞ ¼ cðx; tÞ; (1)

where c(x, t) is the local density of vehicles. (Unless other-
wise specified, all integrals run from �1 to 1. Note that
f ðx; v; tÞ is zero for v< 0.)
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The time evolution of f is governed by a Boltzmann-like
equation. The principal difference with the original
Boltzmann equation is the introduction of a distribution of
desired velocities, f0ðx; v; tÞ, in the relaxation term, represent-
ing drivers’ preferences. Specifically, f0ðx; v; tÞ dx dv is the
number of vehicles between x and xþ dx, whose drivers
have a preferred velocity between v and v þ dv at time t. The
presence of this function in the statistical description is a
novel feature, showing that the “particles” in this system
have intentions unlike a molecule, which does not have a
desired velocity.

Of principal interest is the stationary velocity distribution,
which can be much different from the distribution of desired
velocities. We shall see that the stationary velocity distribu-
tion changes abruptly at a specific density.

In Sec. II, we outline the modifications in the Boltzmann
equation introduced by Prigogine and Herman and empha-
size the features relevant to vehicular traffic. For simplicity,
we study in Sec. III only the stationary solutions. Despite
this simplicity, some notable features appear. This study is
followed in Sec. IV by a discussion of the additional assump-
tions regarding driver behavior incorporated in the
Prigogine–Herman model. In Sec. V, we devise a numerical
solution method for the stationary velocity distribution, and
apply it to two examples. Then in Sec. VI we turn to numeri-
cal integration of the full space- and time-dependent equa-
tion, propose a simple algorithm, and discuss two illustrative
examples. Section VII summarizes our results, and is fol-
lowed in Sec. IX by suggestions for further study.

II. THE PRIGOGINE–HERMAN–BOLTZMANN

EQUATION

In the kinetic theory of gases, the evolution of the distribu-
tion function f ðx; v; tÞ is governed by the Boltzmann
equation9

@f

@t
þ v � $rf þ a � $vf ¼

@f

@t

� �
coll

: (2)

Here, f ðx; v; tÞ d3x d3v is the number of molecules at time t
with positions in the volume d3x centered on point x, and
velocities in the volume element d3v centered on velocity v.
The terms v � $rf and a � $vf describe the redistribution of
molecules due to changes in position and velocity, the latter
resulting from an external force Fext, leading to an accelera-
tion a ¼ Fext=m, where m is the molecular mass. (Note that
$v denotes a gradient in velocity space.) These streaming
terms derive from the motion of independent particles, and
are equivalent to a continuity equation describing conserva-
tion of the total number of molecules in the six-dimensional
space of position and velocity. The right-hand-side of Eq. (2)
describes the effect of interactions between particles and rep-
resents the change in the number of molecules with velocity
v due to collisions with other molecules at position x.

In one-way traffic, vehicles travel in one dimension, and
Eq. (2) can be simplified to read5,6

@f

@t
þ v

@f

@x
¼ @f

@t

� �
rel

þ @f

@t

� �
int

: (3)

The first term on the right-hand-side of Eq. (3) represents a
relaxation process, and the second represents the interactions

between vehicles. The idea behind the relaxation term is that
drivers adjust their velocity to the desired value v0 on a time
scale T, called the relaxation time. This assumption is
embodied in the expression

@f

@t

� �
rel

¼ � f � f0

T
: (4)

In a spatially uniform system, in which f ¼ f ðv; tÞ and
interactions between drivers can be ignored, the solution
to Eq. (3) is

f ðv; tÞ ¼ f0ðvÞ þ ½f ðv; 0Þ � f0ðvÞ�e�t=T : (5)

Exponential relaxation describes the approach of many simple
systems to a steady state. In the context of the kinetic theory
of gases, an analogous simplification involves replacing the
collision term with an expression of the form of Eq. (4); T
becomes the collision time, and f0 is a local Maxwellian distri-
bution.9 As will become clear, Prigogine and Herman7 pro-
posed that T depends on the concentration of vehicles on the
road, and the relaxation process subsumes some rather com-
plicated interactions between drivers.

In the absence of interactions between the vehicles, the
distribution function evolves to the distribution of desired
velocities according to Eq. (5). A derivation of the distribu-
tion of desired velocities from first principles would require
knowledge of human behavior that is beyond our present
capabilities. One might try to determine the distribution of
desired velocities empirically by studying the velocity distri-
bution at very low concentrations, but we are unaware of
studies of this kind. Prigogine and Herman simply investi-
gated several simple model distributions of the desired
velocities.10

The interaction term in Eq. (3) is based on the following
assumptions:

(1) The vehicles are point-like, that is, they do not occupy
volume.

(2) Vehicles remain in the same lane except when passing
another vehicle.

(3) In an encounter between two vehicles, one passes the
other with probability P.

(4) If one vehicle passes another, neither vehicle changes its
velocity. In an encounter without passing, the faster vehi-
cle reduces its velocity to that of the slower one ahead of
it.

(5) The slowing-down process is instantaneous.
(6) Only two-vehicle interactions are considered.
(7) The vehicles are statistically independent; that is, the

joint two-vehicle distribution is the product of single ve-
hicle distributions: f ðx; v; x0; v0; tÞ ¼ f ðx; v; tÞf ðx0; v0; tÞ.

If we use these assumptions, we can write the interaction
term as

@f

@t

� �
int

¼ f x; v; tð Þ
ð1

v
du 1� Pð Þ u� vð Þf x; u; tð Þ

� f x; v; tð Þ
ðv

�1
du 1� Pð Þ v� uð Þf x; u; tð Þ:

(6)

The first term on the right-hand-side of Eq. (6) corresponds
to interactions between vehicles with velocities v and u> v;
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the latter are obliged to adopt the smaller velocity v resulting
in an increase in the number of vehicles with velocity v. The
second term is related to interactions between vehicles with
velocity v and u< v. In this case, the interaction results in a
decrease in the number of vehicles with velocity v. By
combining the two integrals, the interaction term can be
rewritten as

@f

@t

� �
int

¼ 1� Pð Þf x; v; tð Þ
ð

du u� vð Þf x; u; tð Þ: (7)

Becauseð
uf ðx; u; tÞ du ¼ cðx; tÞ�vðx; tÞ; (8)

where �vðx; tÞ denotes the local mean velocity, andð
du vf ðx; u; tÞ ¼ cðx; tÞv; (9)

we have

@f

@t

� �
int

¼ 1� Pð Þc x; tð Þ �v x; tð Þ � v½ �f x; v; tð Þ: (10)

If we insert the relaxation term, Eq. (4), and interaction term,
Eq. (10), into Eq. (3), we obtain the Prigogine–Herman–
Boltzmann equation for traffic

@f

@t
þ v

@f

@x
¼ � f � f0

T
þ 1� Pð Þc x; tð Þ �v x; tð Þ � v½ �f :

(11)

The above equation is a nonlinear equation because �vðx; tÞ is
a function (more precisely, a functional) of f ðx; v; tÞ. A full
definition of the model requires that we specify how the
passing probability and relaxation time depend on the con-
centration. Before examining specific choices, we consider
some general aspects of the solutions.

III. STATIONARY SOLUTIONS

We consider uniform, stationary solutions in which
f ¼ f ðvÞ, c, and �v are time-independent. This case represents
the simplest situation that we might expect to hold at long
times, far from any entrances and exits on a long, straight
highway. Due to the interactions between vehicles, the
stationary solution f(v) is not usually equal to the distribution
of desired velocities, f0ðvÞ. A spatially uniform, time-
independent solution f(v) of Eq. (11) must satisfy

f vð Þ ¼ f0 vð Þ
1� cT 1� Pð Þ �v � v½ � : (12)

The above equation is also nonlinear, because �v depends on
f(v), and it has two kinds of solution corresponding to indi-
vidual and collective flow patterns.

A. Individual and collective flow

To simplify the notation, let

c � cTð1� PÞ and k � 1� c�vðf Þ; (13)

so that Eq. (12) becomes

f ¼ f0
k fð Þ þ cv

: (14)

In Eqs. (13) and (14), the parameter k is specifically writ-
ten as a function of f to stress that the nonlinearity
induced by the term �v is included in k; from here on, we
simply write k.

Equation (14) implies that if k < 0, we can find values of
v such that kþ cv < 0 for fixed c. These values are physi-
cally unacceptable because f(v) cannot be negative; only the
values k > 0 and k¼ 0 have physical meaning. For k¼ 0,
Eq. (14) reduces to

cvf ðvÞ ¼ f0ðvÞ: (15)

An important feature is that the homogeneous equation
cvf ¼ 0 admits the singular solution f ¼ ac dðvÞ, where a is
an arbitrary constant and dðvÞ is the Dirac delta function.
Thus, for k¼ 0 the general solution is

f ¼ f0
cv
þ ac d vð Þ: (16)

For k > 0, we have Eq. (14). In either case the solution
must be consistent with the conditions established by Eqs.
(1) and (8)

c ¼
ð

f0 dv

kþ cv
þ ac (17)

and

c�v ¼
ð

vf0 dv

kþ cv
: (18)

Suppose that k > 0. The stationary velocity distribution is
given by Eq. (14) in which f0 is a function and c is a constant
determined by the concentration, relaxation time, and the
passing probability. The only unknown is the parameter k.
We write f0ðvÞ ¼ c~f 0ðvÞ, and obtain from Eq. (17) (with
a¼ 0) that

ð ~f 0 dv

kþ cv
¼ 1 (19)

as the condition determining k. Once Eq. (19) is solved, the
mean velocity is given by �v ¼ ð1� kÞ=c, and the flux (the
number of vehicles passing a given point per unit time) is
q ¼ c�v. We see that, given the distribution of desired veloc-
ities f0, the flux and mean velocity depend on c, T, and P
only though the combination c. In most cases, the integral in
Eq. (19) needs to be evaluated numerically.

Because ~f 0 ¼ 0 for v< 0, we see that the integral in Eq.
(19) is a decreasing function of c for fixed k. As c increases,
k must therefore decrease. If

Ð
ðf0=vÞ dv ¼ 1, then Eq. (19)

can always be satisfied for some k > 0, no matter how large
c becomes. Divergence of the integral implies that f0 > 0 for
v¼ 0; that is, there are drivers whose preferred velocity is
zero. (Such drivers should stay off the road!) Thus, for a
plausible distribution of desired velocities, we expectÐ
ðf0=vÞ dv <1. In this case, we can define a critical value

cc from the condition
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ð ~f 0 dv

v
¼ cc: (20)

As c increases, k decreases and becomes zero for c ¼ cc.
Recall that k cannot be negative. For c > cc, k remains zero,
allowing the inclusion of the term / dðvÞ in f. The normal-
ization condition now reads

1 ¼
ð ~f 0 dv

cv
þ a; (21)

showing that a, which governs the fraction of vehicles at
rest, increases continuously from zero as c is increased
beyond its critical value: a ¼ ðc� ccÞ=c for c > cc. In this
regime, �v ¼ 1=c regardless of the form of the distribution of
desired velocities.

The appearance of a nonzero fraction of stopped vehicles
at c ¼ cc can be seen as a phase transition, formally analo-
gous to that of Bose–Einstein condensation in an ideal
Bose gas.11 In Bose–Einstein condensation, the density q0

of bosons in the state of zero momentum increases as q0

¼ q� qc for densities above the critical density, which
depends on the particle mass and the temperature. Because
the kinetic theory of traffic deals with classical objects, this
analogy is purely formal.

One objective in the kinetic theory of traffic is to find the
stationary velocity distribution f(v), given the concentration
c and a traffic model (or empirical data) consisting of the dis-
tribution of desired velocities f0 and the functions P(c) and
T(c). Then, given c the value of c is fixed, and all that
remains is to determine k via Eq. (19). A numerical solution
method is discussed in Sec. V.

An alternative approach is to rewrite Eq. (19) in the form

c ¼
ð ~f 0 dv

k� þ v
; (22)

where k� ¼ k=c. Equation (22) defines a function cðk�Þ,
given the form of f0.

A simple yet illuminating application of this analysis is
for the case12 ~f 0 ¼ dðv� uÞ, that is, all drivers have the
same desired velocity u. (Perhaps all drivers wish to go as
fast as possible, and all vehicles have a maximum speed of
u.) By using Eq. (22), we find that k ¼ max½0; 1� cu� and
cc ¼ 1=u. For c > cc, the fraction of stopped vehicles is
a ¼ 1� 1=ðcuÞ. The mean velocity is given by

�v ¼ u ðc < 1=uÞ
1=c ðc > 1=uÞ:

�
(23)

Thus, all drivers can move at their desired speed if c is not
too large. When c exceeds cc, due to increased density,
reduced passing probability, and/or longer relaxation time, a
certain fraction of the vehicles are at rest.

Although these conclusions are consistent with our general
analysis, there is something strange about this result. If all
vehicles move at the same velocity u, there is no need for
passing, and each vehicle would simply maintain its velocity.
Why would any vehicle have to stop in this situation? The
answer is that, for c > cc, the distribution f ðvÞ ¼ f0ðvÞ
¼ c dðv� uÞ continues to be a stationary solution of Eq.
(11), but is unstable. To see this, suppose that at a certain
moment, a fraction a0 of the vehicles are stopped. If a0

decreases (increases) with time, then the solution f0ðvÞ is sta-
ble (unstable). To implement the stability analysis, we per-
turb the reference solution by letting

f ðv; tÞ ¼ c½a0 dðvÞ þ ð1� a0Þ dðv� uÞ�; (24)

with 0 < a0 < 1. If we substitute Eq. (24) in Eq. (11) and
perform the integral over u, we obtain

c _a0½d vð Þ�d v�uð Þ�¼�a0c

T
½d vð Þ�d v�uð Þ�þc2 1�Pð Þ

�½a0 d vð Þþ 1�a0ð Þd v�uð Þ�
� ½�va0þ 1�a0ð Þ u�vð Þ�; (25)

where the dot denotes a time derivative. We equate coeffi-
cients of dðvÞ and find

_a0 ¼ a0 c 1� Pð Þ 1� a0ð Þu� 1

T

� �
: (26)

If we now let ~t ¼ t=T and ~c ¼ cu ¼ c=cc, Eq. (26) becomes

da0

d~t
¼ ~c � 1ð Þa0 � ~ca2

0; (27)

which is the logistic or Pearl-Verhulst equation.13 It is
straightforward to show that the solution is

a0 tð Þ ¼ a0 0ð Þe�~t

1þ ja0 0ð Þ e�~t � 1½ � ; (28)

where � ¼ ~c � 1 ¼ ðc� ccÞ=cc and j ¼ c=ðc� ccÞ. This
result shows that for 0 < a0ð0Þ < 1, as t!1, a0ðtÞ ! 0 if
c � cc, and a0ðtÞ ! a ¼ ðc� ccÞ=c if c > cc. Thus, the solu-
tion with all vehicles moving at the same velocity u is stable
if and only if c < cc ¼ 1=u.

Another example that has an analytic solution is a distribu-
tion of desired velocities uniform on the interval
½v0 � va; v0 þ va�

~f 0 ¼
H v� v0 � vað Þ½ �H v0 þ va � v½ �

2va
; (29)

where HðyÞ is the step function, equal to zero for y< 0 and
to unity for y> 0. (We assume v0 > va so that all drivers
prefer some nonzero speed.) In this case, the transition
occurs at

c ¼ cc ¼
1

2va
ln

v0 þ va

v0 � va

� �
; (30)

and we have

k ¼ max½cfva cothðcvaÞ � v0g; 0�; (31)

leading to

�v ¼

1

c
þ v0 � va coth cvað Þ c < ccð Þ

1

c
c > ccð Þ:

8>>><
>>>:

(32)
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In Fig. 1, the dimensionless mean speed �v=v0 is plotted ver-
sus cva for va ¼ v0=2.

IV. THE PRIGOGINE–HERMAN MODEL

Prigogine and Herman7 introduced further assumptions
regarding the dependence of P and T on the concentration c,
which we shall refer to as the Prigogine–Herman model.

We expect the passing probability P to decrease with c,
because drivers will find it more difficult to overtake a
slower vehicle if adjacent lanes are congested. (Of course if
vehicles were truly point particles there would be no such
difficulty.) Prigogine and Herman assumed a linear relation
between P and c, such that P¼ 1 for c¼ 0 and decreases to
zero at some maximum concentration cmax

P ¼ 1� g with g ¼ c

cmax

: (33)

They further proposed a concentration-dependent relaxation
time

T ¼ s 1� Pð Þ
P

; (34)

where s is a constant with dimensions of time. Thus, accord-
ing to Prigogine and Herman, the greater the value of c the
smaller the value of P and the longer it takes a driver to
attain the desired speed. In their model, T does not represent
an intrinsic limitation of drivers (that is, a reaction time) or
of their vehicles (inertia), because T ! 0 as c! 0. By
inserting Eqs. (33) and (34) into Eq. (13), we find

c ¼ cmaxsg3

1� g
: (35)

Note that c > cmax is unphysical because it implies a nega-
tive passing probability. However, there is no intrinsic mech-
anism (such as a repulsive interaction between vehicles) for
maintaining the concentration below its maximum value in
Eq. (11). Hence, in spatially nonuniform situations, the con-
centration can evolve to exceed cmax in certain regions, even

if, initially, cðxÞ < cmax in the entire system. We consider
examples using the Prigogine–Herman model in Sec. V,
once a suitable numerical method is developed.

V. NUMERICAL METHOD

Consider the numerical solution of Eq. (19), yielding the
value of k such that the integral is unity, given the function
~f 0ðvÞ and c, which is determined by the concentration via Eq.
(35). Although the numerical method is simple, some care is
required because in some cases the integral is improper.

Among the many methods for the numerical evaluation of
integrals, we choose one that is relatively simple yet accurate
by fitting cubic polynomials through successive groups of
four points,14 which is equivalent to the expression

ðxn

x1

y xð Þdx ’ h

"
3

8
y1 þ

7

6
y2 þ

23

24
y3 þ y4 þ y5 þ � � �

þ yn�4 þ yn�3 þ
23

24
yn�2 þ

7

6
yn�1 þ

3

8
yn

#
;

(36)

where h ¼ ðxn � x1Þ=ðn� 1Þ; yj � yðxjÞ, and xj � x1

þðj� 1Þh, for j ¼ 1;…; n.
Dealing with an infinite range of integration requires

greater care. We might truncate the integral, but the error
depends on the choice of the cutoff. A more appealing alter-
native is to change variables to map the infinite range of inte-
gration to a finite one. For an exponential distribution of
desired velocities, illustrated in Subsection V A, we are led
to Eq. (41), for which the substitution t ¼ e�v=v0 results in an
integral over a finite interval

1 ¼
ð1

0

dt

k� cv0 ln t
: (37)

Once we have a method for evaluating the integral over
velocities, we use a root-finding method to solve Eq. (41).
For equations of the type used in Ref. 7 and the ones of inter-
est here, the secant or Newton–Raphson methods are appro-
priate.15 Although both are efficient, we will use the secant
method, a recursive method used to find the solution to the
equation f(x)¼ 0 via the relation

xnþ1 ¼
xn�1f xnð Þ � xnf xn�1ð Þ

f xnð Þ � f xn�1ð Þ
; (38)

starting from a pair of distinct initial values x1 and x2. The
idea is to follow the secant line to its x-intercept and use that
as an approximation for the root. This idea is similar to the
Newton–Raphson method, which follows the tangent line,
but the secant method does not require knowledge of the
derivative.

The computational procedure for solving Eq. (19) is as
follows. Let gðk; nÞ be the value of the integral in Eq. (19)
over the interval ½v1; v2�, given by a function that employs
the method of Eq. (36) using n integration points. The latter
is chosen according to the desired precision, using a func-
tion int(kÞ, which evaluates the integral using successively
larger numbers of points until the relative difference is
smaller than a certain tolerance. Pseudocode for this proce-
dure is given by

Fig. 1. The (dimensionless) mean speed versus cva for a uniform distribution

of desired velocities, Eq. (29), with va ¼ v0=2. Note the discontinuous deriv-

ative signaling a transition from individual to collective behavior.
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begin
define number of intervals n, increment
s, and precision e
a1¼g(k,n)
n¼nþs
a2¼g(k,n)
do while ja2�a1ja2

> e
a1¼a2
n¼nþs
a2¼g(k,n)

end do
int¼a2
end

Because of the efficiency of the method described in Eq.
(36), the function int(kÞ quickly converges to the correct
value. We then search for the value of k yielding int ðk)¼ 1
using the secant method. To begin we need a pair of distinct
initial values, k1 and k2, with 0 < ki � 1. We then evaluate
int(k1Þ and int(k2Þ, and apply the secant method to obtain a
refined estimate for k, which brings int(kÞ nearer to the
desired value of unity. The process is iterated until the rela-
tive change in k is smaller than a specified tolerance e.
Because intðkÞ is strictly decreasing on the interval ½0; 1�, the
secant method works efficiently to locate k. Pseudocode for
this procedure is given by

begin
define k1 and k2
do while jk2 � k1j=k2 > e
a¼ k2
r1 ¼ intðk1Þ�1
r2 ¼ intðk2Þ � 1
k2 ¼ ½k1r2 � k2r1�=½r2 � r1�
k1 ¼ a

end do
k ¼ k2
end

A. Exponential distribution of desired velocities

As an illustration, we solve the Prigogine–Herman model
for an exponential distribution of desired velocities, as dis-
cussed in Ref. 7. Let

f0 ¼ H vð Þ gcmax

v0

e�v=v0 ; (39)

for which the mean velocity is v0. In this case, the most prob-
able desired velocity is zero, and because f0ðv ¼ 0Þ > 0,
there is no transition. The stationary solution is

f ¼ cmaxge�v=v0

v0 kþ cvð Þ ; (40)

where k is determined by the normalization condition

1 ¼ 1

v0

ð1
0

e�v=v0

kþ cv
dv: (41)

The value of k for given values of c and v0 is obtained
numerically as we have described.

The top panel in Fig. 2 shows the normalized flux Q
¼ q=cmax as a function of the normalized concentration

g ¼ c=cmax. Note the linear relation between flux and con-
centration for small g. In this regime, the slope of each curve
depends on v0, the average desired velocity. At high concen-
trations, the normalized flux is independent of v0. The (nor-
malized) mean velocity is plotted versus g in the bottom
panel of Fig. 2 for several values of v0. As for the case of the
normalized flux, all curves exhibit the same behavior at high
concentrations.

It is interesting to compare the stationary velocity
distribution with the corresponding distribution of desired
velocities. Figure 3 shows that the stationary velocity distri-
bution is close to the distribution of desired velocities for a
relatively low concentration (g ¼ 0:2). At a higher concen-
tration (g ¼ 0:4, Fig. 4), the two distributions differ, with
higher probabilities for low velocities in the stationary ve-
locity distribution than in the distribution of desired
velocities.

B. Gaussian distribution of desired velocities

We now consider a more realistic example that has
received little attention until now—a Gaussian-like distribu-
tion of desired velocities

Fig. 2. The normalized flux Q � q=cmax (top) and the normalized mean ve-

locity �v=v0 (bottom) versus the normalized concentration g ¼ c=cmax for

cmaxs ¼ 0:1 and mean desired velocity v0. At low concentrations, the mean

velocity is close to its desired value, and the normalized flux is proportional

to v0. At larger concentrations, the normalized fluxes for different values of

v0 approach a common function.
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f0ðvÞ ¼ cA½e�ðv�v0Þ2=v2
a � e�v2

0
=v2

a �HðvÞHð2v0 � vÞ: (42)

The parameter v0 represents the mean desired velocity, and
va is a measure of the dispersion of the distribution. Because
of the step functions, f0 is zero outside the interval ½0; 2v0�.
The second term in the square brackets ensures that f0 goes
to zero continuously at the endpoints of this interval. The
normalization factor A is approximately ðva

ffiffiffi
p
p
Þ�1

for
v0 	 va.

Because
Ð
ðf0=vÞ dv <1, there is a transition between

individual and collective flow. According to Eq. (20), the
critical point is given by

cc ¼ A

ð2v0

0

dv

v
e� v�v0ð Þ2=v2

a � e�v2
0
=v2

a

� 	
; (43)

which is readily evaluated numerically. We proceed as
before and calculate the stationary velocity distribution f(v)
and the stationary mean velocity and flux. Figure 5 shows
the flux Q as a function of normalized concentration for sev-
eral values of v0, with va¼ 20. As expected, the slope of qðgÞ

jumps from a positive to a negative value at the transition
from individual to collective flow. In the latter regime, qðgÞ
is characterized by a single function, independent of v0. The
larger the value of v0, the smaller the critical density gc.

A notable aspect of the transition is the sudden change in
the stationary distribution at the critical concentration at
which the distribution splits into a regular and a singular
part. In Fig. 6, which compares the stationary velocity distri-
bution and distribution of desired velocities for several con-
centrations in the individual flow regime, we see that the two
distributions have the same area, as required by normaliza-
tion. For g ¼ 0:15 the distributions are indistinguishable; at
higher concentrations, small differences appear. The critical
concentration, gc ¼ 0:421, represents the limit for individual
flow; for g > gc the stationary velocity distribution is the
sum of a regular part, given by f0=ðcvÞ, and a singular part,
ac dðvÞ, with a given by Eq. (21). In Fig. 7, we compare the
regular part of the stationary velocity distribution with the
corresponding distribution of desired velocities for g > gc.

Fig. 4. (Color online) Distribution of the desired velocity and stationary ve-

locity distribution as in Fig. 3 for g ¼ 0:4. At this concentration, the differ-

ences between the stationary and desired distributions are more dramatic

than in Fig. 3.

Fig. 5. (Color online) The flux Q as a function of the normalized concentra-

tion g in the Prigogine–Herman model using the distribution of desired

velocities of Eq. (42), with va¼ 20. The transition points are gc ¼ 0:375,

0.395, 0.421, and 0.458, for v0 ¼ 120, 100, 80, and 60, respectively. Above

the critical concentration, the flux follows a master curve independent of v0.

Fig. 6. The stationary velocity distribution (solid) and corresponding distri-

bution of desired velocities (dashed), for concentrations in the individual

flow regime. The distribution of desired velocities is given by Eq. (42) with

v0 ¼ 80 and va¼ 20. The difference between the stationary and desired dis-

tributions grows with increasing concentration.

Fig. 3. (Color online) Distribution of desired velocities (dashed) and station-

ary velocity distribution (solid) for exponential desired velocity distributions

with v0 as indicated; g ¼ 0:2. In all cases, the stationary distribution exceeds

the desired one at low velocities, and vice-versa.
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The area of the regular part of the stationary velocity distri-
bution is smaller than that of the distribution of desired
velocities. The difference corresponds to the d-function at
the origin.

VI. NUMERICAL INTEGRATION OF THE

PRIGOGINE–HERMAN–BOLTZMANN EQUATION

The Prigogine–Herman–Boltzmann equation, Eq. (11),
lends itself to numerical integration via straightforward dis-
cretization of the position, time, and velocity, permitting us
to explore the space and time dependence of the density and
velocity profiles. For simplicity, we adopt an explicit integra-
tion scheme. Let the length of the system be L, with periodic
boundaries. We represent the distribution function f ðx; v; tÞ
at a set of points

xn ¼ nL=N; n ¼ 0;…;N (44)

and velocities

vm ¼ mvmax=M; m ¼ 0;…;M ; (45)

where vmax is the maximum allowed velocity, larger than any
velocity of interest in the problem under study. Similarly,
time is discretized in steps tj ¼ jDt, where Dt is a time incre-
ment chosen on the basis of efficiency, accuracy, and stabil-
ity considerations. (A larger time increment reduces
computation time but leads to increased discretization errors
and possible numerical instabilities.)

Let f ðn;m; jÞ denote the value of f at position xn, for veloc-
ity vm and time tj. The integration code uses Eq. (11) to con-
struct the set of values f ðn;m; jþ 1Þ based on the f ðn;m; jÞ,
via f ðn;m; jþ 1Þ ¼ f ðn;m; jÞ þ _f ðn;m; jÞDt, where the dot
denotes a time derivative. The essential element of the inte-
gration algorithm is estimating the time derivatives of f.

From Eq. (11), we see there are three contributions to
@f=@t, the first of which is �vð@f=@xÞ. In the discretized rep-
resentation, we estimate the spatial derivative as

fx n;m; jð Þ ’ f n;m; jð Þ � f n� 1;m; jð Þ
� 	 N

L

� �
: (46)

The spatial derivative fx at position xn is estimated using
the value of f at this point and the one just to the left.
Because vehicles move only to the right, there is little
sense in including the value of f at point xnþ1, as might be
done in a more symmetric integration scheme. Note that
stability requires that ðNvmax=LÞDt < 1; in practice we use
Dt � 0:01L=ðNvmaxÞ.

The second contribution to @f=@t is the term
�½f ðvÞ � cf0ðvÞ�=T. (Here, the desired velocity distribution
f0ðvÞ is multiplied by the local concentration c(x) because, in
numerical implementations, it is convenient to normalize
f0ðvÞ so that its integral over velocities is unity.) This contri-
bution is readily evaluated once we have the local concentra-
tion cðn; jÞ ¼

P
m f ðn;m; jÞ and an expression for the

relaxation time T. In the Prigogine–Herman model, the latter
is given by Eq. (34), or simply T ¼ scðn; jÞ=½1� cðn; jÞ�,
where we set cmax ¼ 1. Because the term under consideration
involves a factor of 1=T, we cannot allow c¼ 0 anywhere.

The third contribution takes the discretized form
½cðn; jÞ�2½�vðn; jÞ � vm�f ðn;m; jÞ, where we have used Eq. (33)
and introduced �vðn; jÞ ¼

P
mvmf ðn;m; jÞ=cðn; jÞ. The follow-

ing pseudocode details the integration algorithm (se use peri-
odic boundary conditions).

begin
define system size L, maximum velocity
vmax, maximum time tmax,

number of positions N, number of
velocities M, time step Dt, relaxa-
tion parameter tau, and normalized
desired distribution of velocities
f0(m)

initialize f(n,m)
t¼0
for t�tmax

for n¼0, N
nm¼n-1
if (n¼0) nm¼N
c(n)¼Rm f(n,m)
�vðnÞ ¼ ½Rm vm � fðn; mÞ�=cðnÞ
relax¼[1-c(n)]/[c(n) � tau]
for m¼0, M
fx¼[f(n,m) - f(nm,m)] �(N/L)
df1¼-vm � fx
df2¼-relax � [f(n,m) -c(n) � f0(m)]
df3 ¼ ½cðnÞ�2 � ½�vðnÞ � vm� � fðn; m; jÞ
df(n,m)¼df1 þ df2 þ df3

end
end
for n¼0, N
for m¼0, M
f(n,m)¼f(n,m) þ Dt � df(n,m)

end
end
t¼t þ Dt

end

As examples, we apply the integration code to two
cases.16 In the first, the initial distribution of vehicles is in-
homogeneous: the initial concentration is low (c¼ 0.01)
except for a small region (2 < x � 3) that has c¼ 0.8. In the
low-concentration region, the initial velocity distribution is
taken as the desired one, which is essentially Gaussian,
f0ðjÞ ¼ Ae�10ðvj�1:6Þ2 , for j ¼ 2;…;M (and zero for j outside

Fig. 7. Regular part of the stationary velocity distribution (solid) and the cor-

responding distribution of desired velocities (dashed) for densities in the col-

lective flow regime; parameters as in Fig. 6. Note the differences in

amplitude between the stationary and desired distributions, associated with a

population of cars having velocity zero in the stationary distribution.

142 Am. J. Phys., Vol. 84, No. 2, February 2016 M. L. L. Iannini and Ronald Dickman 142



this set), giving a mean desired velocity of 1.5717. In the
concentrated region, the initial velocity is 0.08 for all
vehicles. (Distance and velocity are dimensionless in this
example; the system size L¼ 20.) Integration of Eq. (11)
allows us to follow how the concentration and mean veloc-
ity become uniform, as shown in Fig. 8.

In the second example, we seek the stationary concentration
and mean-velocity profiles in a system with a nonuniform
desired velocity distribution. Outside the region 8:5<x
�10:5; f0ðjÞ is as in the previous example, but within this
region we take f0ðjÞ¼Ae�12ðvj�0:8Þ2 for j¼2;…;M. The reduc-
tion in mean desired speed by about half reflects a change in
driving conditions, such as a speed trap or narrowing of the
road. The inhomogeneous desired velocity distribution causes
a pile-up of vehicles (as well as a reduction in speed) within
the “slow” region and well beyond it, as shown in Fig. 9. In
actual road traffic, we expect the concentration to take a higher
than average value to the left of the slow region as well, as
drivers slow down in anticipation of the congestion ahead.
This feature of real traffic is absent in the Prigogine–
Herman–Boltzmann model: drivers interact only with vehicles
at the same position and cannot adjust to road conditions ahead
of them.

VII. DISCUSSION

We have seen that the Prigogine–Herman–Boltzmann
equation describes some basic features of vehicular traffic,
and that the Prigogine–Herman model,5–7 which introduces
additional hypotheses regarding driving behavior, leads to
interesting predictions such as a transition between individual
and collective flows. Nevertheless, this approach has short-
comings. Several problems with the Prigogine–Herman model
are discussed in Ref. 17. Letting the relaxation time T depend
on the concentration introduces an effective interaction

between vehicles, in addition to the integral term, which rep-
resents binary interactions. As a result, the clear separation
between individual particle motion (streaming terms) and col-
lisions in the original Boltzmann equation becomes somewhat
muddled in the Prigogine–Herman model.

Several modifications of the Prigogine–Herman–Boltzmann
equation17–19 and of the Prigogine–Herman model have been
proposed to study traffic more realistically and to extend the
model to higher concentrations. The Prigogine–Herman model
was modified by Paveri-Fontana17 to include the joint distri-
bution of position x, velocity v, and desired velocity u. In their
description, gðx; v; u; tÞ dx dv du represents the number of
vehicles at time t, with position between x and xþ dx, having
velocity between v and v þ dv, and desired velocity between
u and u þ du. In this way, the model can include the strong
correlation between drivers’ speed v and their desired speed u.
For example, in the absence of interactions, we expect
gðx; v; u; tÞ ! f0ðx; u; tÞdðv� uÞ as t!1.

Wagner et al.18 proposed a traffic flow model using the
desired velocity proposed by Paveri-Fontana.17 By taking
into account the nonzero length of vehicles, these authors
extend the description of Paveri-Fontana to the high-density
regime. In Ref. 19, a successive slowing-down process is
considered, in which drivers react to traffic conditions in a
more cautious manner.

Despite various criticisms,17–19 the Prigogine–Herman
model remains important. One can find applications of the
model in other contexts, for instance, to network traffic.20

Nelson and Sopasakis12 use the model to show that, under
some assumptions regarding the relaxation time and passing
probability, the stationary solution is not unique above a cer-
tain density; the existence of multiple solutions reflects the
tendency toward substantial scatter in observational data of
traffic flow at high concentrations.

Our impression is that although a passing probability
that decreases with vehicle concentration is reasonable, a
concentration-dependent relaxation time is not. The relaxation
time should rather reflect intrinsic limitations of the drivers (fi-
nite reaction times) and their vehicles (inertia), which render
instantaneous changes in speed impossible. A linear depend-
ence of passing probability on concentration may also be

Fig. 8. Concentration (solid) and mean velocity (dashed) profiles obtained

from the Prigogine–Herman–Boltzmann equation via numerical integration,

for times (upper to lower) 0, 2, 4,…, 12. The mean velocity has been nor-

malized to the desired value of 1.5717. The concentration and mean velocity

gradually become uniform.

Fig. 9. Concentration (lower curve) and mean velocity (upper curve) profiles

in the steady state, obtained from the Prigogine–Herman–Boltzmann equa-

tion via numerical integration. The mean velocity has been normalized to its

desired value (outside the slow region) of 1.5717. The mean desired velocity

in the region between the vertical dashed lines is only half its value outside.

Note how the reduction in desired velocity leads to a higher concentration in

the slow region and well beyond it.
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unrealistic. To move to the passing lane, drivers must find a
gap large enough to safely accommodate their vehicle. Results
from the theory of liquids suggest that this probability decays
exponentially, not linearly with concentration. We further sug-
gest that drivers adjust their desired speeds according to road
conditions, tending to reduce their desired speed as the concen-
tration increases, so as to avoid collisions. If such alterations
can be introduced within the Prigogine–Herman–Boltzmann
framework without undue complications, it may be possible to
enhance understanding of traffic dynamics while providing
more reliable predictions.

VIII. COMPARISON WITH OTHER APPROACHES

The first deterministic continuous model of traffic was a
dynamical model21 based on the equations of motion of each
vehicle, which are solved numerically. Monte Carlo simula-
tions of the Nagel–Schreckenberg cellular automaton show a
transition from free flow to jammed traffic with increasing
vehicle density.8 Both of these microscopic models have a
relatively high level of detail as they describe individual
drivers’ behavior and pairwise interactions. An important
advantage of microscopic models is their ability to describe
events triggered by fluctuations. Kinetic theories do not
include fluctuations and can be interpreted as mean-field the-
ories of traffic. Thus, they share many of the advantages and
disadvantages of mean-field theories of phase transitions.

Despite the successes of the Nagel–Schreckenberg autom-
aton and other microscopic models, it is fair to say that they
rest on models of driving behavior that are no more realistic
than those used in kinetic theories. Notwithstanding the unre-
alistic assumptions regarding individual drivers, microscopic
models do capture collective behavior in the large-system
limit. Kinetic theory also captures some aspects of this
behavior. More recently, new macroscopic approaches to
traffic have been developed, including a lattice Boltzmann
model for traffic flow22 and the application of the
Chapman–Enskog and Grad methods to traffic theory.23

IX. SUGGESTIONS FOR FURTHER STUDY

The following projects involve possible improvements of
the Prigogine and Herman model. Some have been applied
by Wagner18,19 to Fontana’s model.17 It is interesting to
study the modifications in the stationary speed distribution
due to changes in the collision term of the Prigogine–
Herman–Boltzmann equation.

The first modification is to incorporate the fact that
vehicles are not point-like objects but have a spatial exten-
sion ‘, and require an additional safety distance srv, where sr

is the drivers’ reaction time. These changes result in a
reduced effective road length, reminiscent of the accessible
volume in van der Waals theory. In particular, two modifica-
tions are introduced in the interaction term:

(1) The effective volume is reduced. Suppose a road of
length L contains n vehicles; the concentration c ¼ n=L.
The effective length is L� n‘� sr

Pn
i¼1 vi if we include

the vehicle length and the safety distance ds ¼ srv. Due
to the reduced effective length, the interaction frequency
is enhanced by

� c;�vð Þ ¼
1

1� c ‘þ s�vð Þ ; (47)

where �v is the mean velocity. Because � and P are func-
tions of c, we can define a modified interaction probabil-
ity r ¼ �ðc;�vÞ½1� PðcÞ�.

(2) In the Prigogine–Herman model, vehicles with fixed
speed v interact with vehicles with speed u at the same
position x. In the modified model, a vehicle with velocity
u at position x interacts with vehicles with velocity v at
position xþ ‘þ su, and vehicles with velocity v at x
interact with those with velocity u at xþ ‘þ sv, so that
we have

@f

@t

� �
int

¼
ð1

v
du r u� vð Þf xþ ‘þ us; v; tð Þf x; u; tð Þ

�
ðv

�1
du r v� uð Þf x; v; tð Þf xþ ‘þ vs; u; tð Þ:

(48)

The project consists in introducing these modifications in
the Prigogine–Herman–Boltzmann equation and, using the
same distribution of desired velocities, comparing the station-
ary velocity distribution with that found using the original
Prigogine and Herman model. An interesting modification is
to include different kinds of vehicles, with different lengths
and safety distances. For each kind of vehicle, we must assign
a specific distribution function; vehicles of different kinds
interact with each other in the collision term. The stationary
distributions and the concentration marking the transition
from individual to collective flow now depend on the fractions
of vehicles belonging to each class.
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We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is
smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in
speed occurs with probability p, independent of the headway, as long as the current speed is greater than zero.)
In the modified model the free-flow state (with all vehicles traveling at the maximum speed, vmax) is absorbing
for densities ρ smaller than a critical value ρc = 1/(vmax + 2). The phase diagram in the ρ-p plane is reentrant:
for densities in the range ρc,< < ρ < ρc, both small and large values of p favor free flow, while for intermediate
values, a nonzero fraction of vehicles have speeds <vmax. In addition to representing a more realistic description
of driving behavior, this change leads to a better understanding of the phase transition in the original model. Our
results suggest an unexpected connection between traffic models and stochastic sandpiles.

DOI: 10.1103/PhysRevE.95.022106

I. INTRODUCTION

The Nagel-Schreckenberg (NS) model holds a central
position in traffic modeling via cellular automata, because
it reproduces features commonly found in real traffic, such
as the transition between free flow and a jammed state,
start-and-stop waves, and shocks (due to driver overreaction)
[1]. This simple model represents the effect of fluctuations
in driving behavior by incorporating a stochastic element: the
spontaneous reduction of velocity with probability p.

Although the NS model has been studied extensively,
the nature of the transition between free and jammed flow,
in particular, whether it corresponds to a critical point,
remains controversial [2–5]. A proposed definition of the
order parameter in the NS model [6], and a subsequent
comment [7,8] are pertinent to this issue. According to
the authors of Ref. [7], results for the lifetime distribution,
spatial correlations, and relaxation time provide evidence for
a “crossover type jamming transition” from free flow to the
jammed regime, but not for a well-defined phase transition.
Modifications in the update rules of the NS model have been
found to result in a phase transition [9,10]. Krauss et al. [11]
proposed a generalized version of the NS model and showed
numerically that free- and congested-flow phases may coexist.
While the NS model does not exhibit metastable states, which
are important in observed traffic flow, including a slow-to-start
rule, such that acceleration of stopped or slow vehicles is
delayed compared to that of moving or faster cars, can lead
to metastability [12–14]. Takayasu and Takayasu [12] were
the first to suggest a cellular automaton (CA) model with
a slow-to-start rule. Benjamin, Johnson, and Hui introduced
a different slow-to-start rule in Ref. [13], while Barlovic
et al. suggested a velocity-dependent randomization model
[14]. Other models with metastable states are discussed in
Refs. [15,16]. A review of CA traffic models is presented in
Ref. [17].

*lobao@div.cefetmg.br
†dickman@fisica.ufmg.br

In the original NS model, at each time step (specifically, in
the reduction substep), a driver with nonzero velocity reduces
her speed with probability p. Here we propose a simple yet
crucial modification, eliminating changes in speed in this
substep when the distance to the car ahead is greater than
the current speed. We believe that this rule reflects driver
behavior more faithfully than does the original reduction
step, in which drivers may decelerate for no apparent reason.
While one might argue that distractions such as cell phones
cause drivers to decelerate unnecessarily, we can expect that
highways will be increasingly populated by driverless vehicles
exhibiting more rational behavior. The modified model, which
we call the absorbing Nagel-Schreckenberg (ANS) model,
exhibits a line of absorbing-state phase transitions between
free and congested flow in the ρ-p plane. (Here ρ denotes the
density, i.e., the number of vehicles per site.) The modification
proposed here allows us to understand the nature of the phase
transition in the original model, and to identify a proper order
parameter. The ANS model exhibits a surprising reentrant
phase diagram. Some time ago, Wang studied a model with
the same modified reduction step, and found that free flow
is absorbing for all densities �1/7, regardless of p [10].
This model differs from ours in that acceleration to the
maximum allowed speed occurs in a single update, rather than
in increments.

Regarding the nature of the phase transition in the original
NS model, the key insight is that, for p = 0, it exhibits a
transition between an absorbing state (free flow) and an active
state (congested flow) at density ρ = 1/(vmax + 1), where
vmax denotes the maximum speed. Free flow is absorbing
because each car advances the same distance in each time
step, so that the configuration simply executes rigid-body
motion (in the co-moving frame it is frozen). We note that
for ρ < 1/(vmax + 1), many absorbing configurations exist;
which one is attained by the dynamics depends on the initial
condition. Congested flow, by contrast, is active in the sense
that the distances between vehicles change with time. Below
the critical density, activity (if present initially) dies out, and
an absorbing configuration is reached; for ρ > 1/(vmax + 2)
there must be activity, due to lack of sufficient space between
vehicles. Setting p > 0 in the original model is equivalent
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to including a source of spontaneous activity. Since such a
source eliminates the absorbing state [19], the original NS
model does not possess a phase transition for p > 0. (It
should nonetheless be possible to observe scaling phenomena
as p → 0.) A similar conclusion was reached by Souza and
Vilar [5], who drew an analogy between the phase transition at
p = 0 and a quantum phase transition at temperature T = 0.
In their analogy, p > 0 corresponds to T > 0, for which, sensu
stricto, there is again no phase transition.

The remainder of this paper is organized as follows. In the
next section we define the ANS model, pointing out how it
differs from the original NS model. In Sec. III we explain
qualitatively the nature of the phase diagram, and report
simulation results for the phase boundary. Section IV presents
results on critical behavior, followed in Sec. V by a summary
and discussion of our findings.

II. MODEL

The NS model and its absorbing counterpart (ANS) are
defined on a ring of L sites, each of which may be empty or
occupied by a vehicle with velocity v = 0,1, . . . ,vmax. (Unless
otherwise noted, we use vmax = 5, as is standard in studies of
the NS model.) The dynamics, which occurs in discrete time,
conserves the number N of vehicles; the associated intensive
control parameter is ρ = N/L. Denoting the position of the
ith vehicle by xi , we define the headway di = xi+1 − xi − 1
as the number of empty sites between vehicles i and i + 1.
Each time step consists of four substeps, as follows:

(i) Each vehicle with vi < vmax increases its velocity by
one unit: vi → vi + 1

(ii) Each vehicle with vi > di reduces its velocity to vi =
di .

(iii) NS model: each vehicle reduces its velocity by one
unit with probability p.

(iv) ANS model: each vehicle with vi =di reduces its
velocity by one unit with probability p.

(v) All vehicles advance their position in accord with their
velocity.

In practice, given the velocities vi and headways di , there is
no need to keep track of positions: the final substep is simply
di → di − vi + vi+1 for i = 1, . . . ,N − 1, and dN → dN −
vN + v1.

The modification of the third substep leads to several
notable changes in behavior, as reflected in the fundamental
diagram shown in Fig. 1, which contrasts the flux-density
relation in the NS and ANS models. In the ANS model the
flux exhibits a discontinuous first derivative at a certain density
ρc(p) (for any p between zero and one), while in the NS model
the flux and other observables are smooth functions of density
for p > 0. Thus the ANS model exhibits a phase transition for
general p, whereas the NS model has a phase transition only
for p = 0 [6,7]. The flux q generally takes its maximum value
at the transition. (For small p, however, maximum flux occurs
at a density above ρc = 1/(vmax + 2), approaching ρ = 1

vmax+1
for p = 0.) The low-density absorbing phase has vi = vmax

and di � vmax + 1, ∀i; in this phase all drivers advance in a
deterministic manner, with the flux given by j = ρvmax. In the
active state, by contrast, a nonzero fraction of vehicles have

FIG. 1. Flux j versus density in the NS and ANS models for
probabilities p = 0.1 (upper) and p = 0.5 (lower). System size L =
105; vehicles are distributed randomly at t = 0. Error bars are smaller
than symbols.

di � vmax. For such vehicles, changes in velocity are possible,
and the configuration is nonabsorbing. The stationary fluxes in
the NS and ANS models differ significantly over a considerable
interval of densities, especially for high values of p. Below the
critical density ρc, this difference is due the existence of an
absorbing phase in the ANS model. For densities slightly above
ρc, most vehicles have velocity vi = vmax and di = vmax + 1,
although there is no absorbing state. As the density approaches
unity, the differences between the fluxes in the ANS and NS
models become smaller.

For fixed deceleration probability p, the flux j = ρv first
grows, and then decreases as we increase the vehicle density
ρ. An intriguing feature is the dependence of the density at
maximum flux on the probability p: Fig. 2 shows that the
density at maximum flux decreases with increasing p until
reaching a minimum near p = 0.5, and subsequently increases
with increasing p. This reflects the reentrant nature of the phase
diagram, as discussed in Sec. III.

A. Special cases: p = 0 and p = 1

For the extreme values p = 0 and p = 1 the ANS model is
deterministic; these two cases deserve comment. For complete-
ness we mention the corresponding results pertaining to the NS
model given in Ref. [18], which also includes a discussion of
mean field theories. For p = 0, the NS and ANS models are
identical. The system reaches an absorbing state, vi = vmax,
∀i, for densities ρ � 1/(vmax + 1). For higher densities we
observe nonzero activity in the steady state. We note however
that there are special configurations, in which vi = di , ∀i,
with some vi < vmax, whose evolution corresponds to a rigid
rotation of the pattern. [A simple example is vi = di = n,
∀i, with n = 1, 2, 3, or 4, and density ρ = 1/(n + 1).] Since
our interest here is in the model with 0 < p < 1 we do not
comment further on such configurations.

For the NS model with p = 1, from one step to the next,
each velocity vi is nonincreasing. (Of course vi → vi + 1 at
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(a)

(b)

FIG. 2. Steady-state flux versus density in the ANS model for
(a) p = 0.1, 0.3, and 0.5, and (b) p = 0.5, 0.7, and 0.9. Note that
the density of maximum flux first decreases, and then increases, with
increasing p; the minimum occurs near p � 0.5. System size L =
105; vehicles are distributed randomly at t = 0. Error bars are smaller
than symbols.

the acceleration substep, but this is immediately undone in
the subsequent substeps.) Thus if the evolution leads to a
state in which even one vehicle has velocity zero, all vehicles
eventually stop. Such an event is inevitable for ρ > 1/3, since
in this case di � 1 for at least one vehicle, which is obliged
to have vi = 0 after one step. For ρ � 1

3 , steady states with
nonzero flux are possible, depending on the choice of initial
condition. Such configurations are metastable in the sense that
the stationary state depends on the initial distribution. In the
ANS model with p = 1 the mean velocity in steady state is
zero only for ρ � 1/2. For ρ � 1/(vmax + 2), we find that
the system always reaches an absorbing configuration with
v = vmax. In the remaining interval, 1/(vmax + 2) < ρ � 1/2,
we find v = 1 − 2ρ.

III. PHASE DIAGRAM

A. Initial condition dependence

In studies of traffic, states are called metastable if they can
be obtained from some, but not all initial conditions [12–16];
such states are an essential component of real traffic. Since
the NS model is not capable of reproducing this feature,
models with modified update rules have been investigated
by several authors [12–14]. In the ANS model, by contrast,
there is a region in the ρ-p plane in which, depending on
the initial condition, the system may evolve to an active state
or an absorbing one. Our results are consistent with the usual
scenario for absorbing-state phase transitions [19–21]: activity
in a finite system has a finite lifetime; in the active phase,
however, the mean lifetime diverges as the system size tends
to infinity. Properties of the active phase may be inferred from
simulations that probe the quasistationary regime of large but
finite systems [24].

To verify the existence of metastable states in the ANS
model, we study its evolution starting from two very different
classes of initial conditions (ICs): homogeneous and jammed.
In a homogeneous IC, the headways di are initially are uniform
as possible, given the density ρ = 1/(1 + d), where d denotes
the mean headway. In this case the initial velocity is vmax for
all vehicles. In a jammed IC, N vehicles occupy N contiguous
sites, while the remaining N (ρ−1 − 1) sites are vacant; in this
case di = 0 for i = 1, . . . ,N − 1, and only vehicle N has a
nonzero initial velocity (vN = vmax). Homogeneous ICs are
much closer to an absorbing configuration than are jammed
ICs. We note that random initial conditions lead to the same
steady state as jammed ICs.

Figure 3 shows the fundamental diagram obtained using
homogeneous and jammed ICs for p = 0.1; for this value of
p the stationary state is the same, regardless of the IC, except
near ρ = 1

7 where, for the homogeneous ICs, an absorbing
configuration is attained, having a greater steady-state flux
than obtained using jammed ICs. For higher probabilities p,
we find a larger interval of densities in which the stationary
behavior depends in the choice of IC. In Fig. 4, for p = 0.5,
this interval corresponds to 0.118 � ρ � 0.143; higher fluxes
(black points) are obtained using homogeneous ICs, and lower
fluxes (red) using jammed ICs. Homogeneous ICs rapidly
evolve to an absorbing configuration, while jammed ICs, which
feature a large initial activity, do not fall into an absorbing
configuration for the duration of the simulation (tmax = 107),
for the system size (L = 105) used here. In Fig. 4, the flux
obtained using jammed ICs (red stars) exhibits a discontinuous
first derivative, signaling a continuous phase transition. The
flux for homogeneous ICs (black circles), exhibits a downward
jump at ρ = 1/7. While the latter might be interpreted as
evidence of a discontinuous phase transition, we note that the
absorbing state, to which homogenous ICs evolve for smaller
densities, ceases to exist for ρ > 1/7. Thus ρ = 1/7 can be
seen as the terminal line of the absorbing phase. As in sandpile
models, the absorbing-state phase transition occurs at a smaller
density (in the ANS model, that marking the discontinuity in
the derivative of j ), at which a nonabsorbing (active) phase
first appears. For 0 < p < 1, the properties of the active phase
(obtained using either jammed or random ICs) are nonsingular
at ρ = 1/7.
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(a)

(b)

FIG. 3. Steady-state flux versus density for p = 0.1 and L =
105. Homogeneous (stars) and jammed (circles) ICs lead to identical
stationary states [panel (a)] except for a small interval of densities
near maximum flux highlighted in panel (b). Error bars are smaller
than symbols.

Systematic investigation of the steady-state flux obtained
using homogeneous and jammed ICs leads to the conclusion
that the ρ-p plane can be divided into three regions. To begin,
we recall that for ρ > 1/(vmax + 2) and p > 0, the mean
velocity v must be smaller than vmax. Thus the activity is
nonzero and the configuration (i.e., the set of values vi and di)
changes with time. In this region, homogeneous and jammed
ICs always lead to the same steady state.

For ρ � 1/(vmax + 2), absorbing configurations exist for
any value of p. There is nevertheless a region with ρ <

1/(vmax + 2) in which activity is long-lived. In this region,
which we call the active phase, the steady state depends on
whether the IC has little activity (homogeneous) or much
activity (jammed). For smaller densities, all ICs evolve to an
absorbing configuration; we call this the absorbing phase. The
boundary between the active and absorbing phases, determined
via the criterion of different steady states for homogeneous

(a)

(b)

FIG. 4. Steady-state flux versus density as in Fig. 3, but for
p = 0.5.

and jammed ICs, is shown in Fig. 5. We note that in Wang’s
model [10] there are only two regions: an absorbing phase for
ρ � 1/7 and an active one for ρ > 1/7.

Our results are consistent with the following scenario,
familiar from the study of phase transitions to an absorbing
state [19–21]: for finite systems, all ICs with ρ < 1/(vmax + 2)
and p > 0 eventually fall into an absorbing configuration.
Within the active phase, however, the mean lifetime of activity
grows exponentially with system size. The phase boundary
represents a line of critical points, on which the lifetime grows
as a power law of system size. (Further details on critical
behavior are discussed in Sec. IV.) A surprising feature of
the phase boundary is that it is reentrant: for a given density
in the range 0.116 < ρ < 1/(vmax + 2), the absorbing phase
is observed for both small and large p values, and the active
phase for intermediate values. The reason for this is discussed
in Sec. III C. We denote the upper and lower branches of the
phase boundary by p+(ρ) and p−(ρ), respectively; they meet
at ρc,< � 0.116.

022106-4



TRAFFIC MODEL WITH AN ABSORBING-STATE PHASE . . . PHYSICAL REVIEW E 95, 022106 (2017)

FIG. 5. Boundary between active and absorbing phases in the ρ-p
plane. Black points joined by lines: preliminary estimates from initial-
condition dependence as explained in text. Isolated red points: precise
estimates obtained via finite-size scaling as described in Sec. IV. The
open circle at ρ = 1/7, p = 0 is not part of the phase boundary: for
p = 0 the transition occurs at ρ = 1/6. The open circle ρ = 1/7,
p = 1 marks the other end of the phase boundary; we note however
that at this point, all initial conditions evolve to the absorbing state.

The phase boundary is singular at its small-p limit. As
p tends to zero from positive values, the critical density
approaches 1/7, but for p = 0 the transition occurs at ρ = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar
to that of a stochastic sandpile [22,23]. In the sandpile, there are
no absorbing configurations for particle density ρ > zc − 1,
where zc denotes the toppling threshold; nevertheless, the
absorbing-state phase transition at a density strictly smaller
than this value. Similarly, in the ANS model there are no
absorbing configurations for ρ > 1/7, but the phase transition
occurs at some smaller density, depending on the deceleration
probability p. Further parallels between the ANS model and
stochastic sandpiles are noted below.

The phase boundary shown in Fig. 5 represents a prelim-
inary estimate, obtained using the following criterion. Points
along the lower critical line p−(ρ) correspond to the smallest p
value such that each of 200 arbitrary ICs remain active during a
time of 107 steps, in a system of L = 105 sites. Similarly, p+(ρ)
corresponds to the largest p value such that all 200 realizations
remain active. For selected points, a precise determination was
performed, as described in Sec. IV. We defer a more precise
mapping of the overall phase diagram to future work.

The phase transitions at p−(ρ) and p+(ρ) appear to be
continuous. Figure 6 shows the steady-state activity (defined
below) versus p for density ρ = 1/8. In the vicinity of the
transition, the curves become sharper with increasing system
size, as expected at a continuous phase transition to an
absorbing state.

B. Order parameter

Having identified a continuous absorbing-state phase transi-
tion in the ANS model, further analysis requires that we define
an appropriate order parameter or activity density. Since the

FIG. 6. Steady-state activity ρa versus p for vehicle density ρ =
1/8. System sizes (upper to lower curves) N = 1000, 2000, and 4000.
Error bars smaller than symbols.

absorbing state is characterized by vi = vmax,∀i, one might be
inclined to define the activity density simply as ρa = vmax − v.
The problem with this definition is that not all configurations
with vi = vmax,∀i are absorbing: a vehicle with di = vmax may
reduce its speed to vmax − 1, yielding activity in the first sense.
Since such a reduction occurs with probability p, it seems
reasonable to define the activity density as

ρa = vmax − v + pρa,2 ≡ ρa,1 + pρa,2, (1)

where ρa,2 denotes the fraction of vehicles with vi = di =
vmax. According to this definition, the activity density is
zero if and only if the configuration is absorbing, that is, if
vi = vmax and di > vmax, ∀i. Studies of large systems near the
critical point reveal that ρa,1 � ρa,2, so that the latter can be
neglected in scaling analyses. It is nonetheless essential to treat
configurations with ρa,2 > 0 as active, even if ρa,1 = 0.

C. Reentrance

In this subsection we discuss the reason for reentrance, that
is, why, for ρc,< < ρ < ρc, the system reaches the absorbing
state for large p as well as small p. Since deceleration is
associated with generation of activity (i.e., of speeds <vmax), a
reduction in activity as p tends to unity seems counterintuitive.
The following intuitive argument helps to understand why
this happens. For p � 0, vehicles rarely decelerate if they
have sufficient headway to avoid reaching the position of
the car in front. This tends to increase the headway of the
car behind, so that (for ρ < ρc), all headways attain values
�vmax + 1, which represents an absorbing configuration. For
p = 1, a car with speed vi = di always decelerates, which
tends to increase its own headway. In either case, p = 0 or
p = 1, as reduced headway (i.e., inter-vehicle intervals with
di < vmax + 1) is transferred down the line, vehicles may be
obliged to decelerate, until the reduced headway is transferred
to an interval with headway di large enough that no reduction
in velocity is required. [Intervals with di > vmax + 1, which we
call troughs, always exist for ρ < ρc = 1/(vmax + 2)]. When
all reduced headways are annihilated at troughs, the system
attains an absorbing configuration.
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FIG. 7. Vehicle positions relative to the first (lowest) vehicle
versus time t (horizontal) for t � 2, in a system with N = 20, vmax =
2, and vehicle density ρ = 2/9 < ρc = 0.25. Initially, all vehicles
have vi = vmax. The headways di initially alternate between three
and four, except for d19 = 0 and d20 = 7. Filled (open) circles denote
D (N ) events, i.e., events in which a vehicle with speed v(i) = d(i)
decelerates (does not decelerate). In an absorbing configuration all
velocities are equal, yielding a set of horizontal lines with spacings
�vmax + 1. Left panel: p = 0, system inactive for t > 4; right
panel: p = 1, system inactive for t > 7; center panel: example of
a realization with p = 0.6 in which activity persists until t = 56
(evolution for t > 30 not shown).

Call events in which a vehicle having vi = di decelerates D
events, and those in which such a vehicle does not decelerate
N events. For ρ < ρc, if only D events (or only N events)
are allowed, the system attains an absorbing configuration via
annihilation of reduced headways with troughs. Thus some
alternation between D and N events is required to maintain
activity, and the active phase corresponds to intermediate
values of p.

These observations are illustrated in Fig. 7, for a system of
twenty vehicles with vmax = 2 and density ρ = 2/9 < ρc =
0.25. Initially, all vehicles have vi = vmax. The headways
di initially alternate between three and four (the latter are
troughs), except for d19 = 0 and d20 = 7. In the left panel,
for p = 0, the system reaches an absorbing configuration after
four time steps. Similarly, in the right panel, for p = 1, an ab-
sorbing configuration is reached after seven steps. For p = 0.6
(middle panel), the evolution is stochastic. Most realizations
reach an absorbing configuration rapidly, but some remain ac-
tive longer, as in the example shown here. From the distribution
of D and N events, it appears that activity persists when vehi-
cles first suffer an N event, reducing their own headway, and
subsequently (one or two steps later) suffer a D event, reducing
the headway of the preceding vehicle. Such an alternation of
N and D events allows a region with reduced headways to
generate more activity before reaching a trough [25].

IV. CRITICAL BEHAVIOR

We turn now to characterizing the phase transition along the
lines p−(ρ) and p+(ρ). Since the transition is continuous, this
requires that we determine the associated critical exponents,
in order to identify the universality class of the ANS model.
The analysis turns out to be complicated by strong finite-
size effects: different from simple systems exhibiting an

absorbing-state phase transition, such as the contact process,
for which studies of systems with L � 1000 yield good
estimates for critical exponents [19], here we require systems
of up to 105 sites to obtain reliable results. We are nevertheless
able to report precise results at several points along the phase
boundary.

We use quasistationary (QS) simulations to probe the
behavior at long times conditioned on survival of activity [24].
Since the deceleration probability p is continuous while the
density ρ can only be varied in discrete steps, we keep the
latter fixed and vary the former in each series of studies.
As in other studies of QS behavior at absorbing-state phase
transitions, we focus on the finite-size scaling (FSS) of the
activity density, ρa , the lifetime, τ , and the moment ratio
m = 〈ρ2

a〉/ρ2
a , as functions of system size, N [19,24]. At a

critical point, these variables are expected to exhibit scale-free
(power-law) dependence on N , that is, ρa ∼ N−β/ν⊥ and
τ ∼ Nz, where β is the order-parameter exponent and ν⊥
the exponent that governs the divergence of the correlation
length as one approaches the critical point. In the active
phase, ρa approaches a nonzero constant value, while τ grows
exponentially as N → ∞. In the absorbing phase, ρa ∼ 1/N

while τ grows more slowly than a power law as N → ∞. At
the critical point, the moment ratio is expected to converge to
a nontrivial limiting value, m = m∞ + O(N−λ), with λ > 0.
In the active (inactive) phase, m curves sharply downward
(upward) when plotted versus 1/N . These are the criteria we
employ to determine the critical point, pc(ρ). The distance
from the critical point can be estimated from the curvature of
log-log plots of ρa and τ versus N .

As noted in Sec. III B, the order parameter is the sum
of two contributions: ρa = ρa,1 + pρa,2. In simulations, we
therefore determine ρa,1 and ρa,2 separately. In the vicinity
of the critical point we find ρa,1 ∼ N−0.5 and ρa,2 ∼ N−0.9,
showing that the fraction ρa,2 of vehicles with vi = di = vmax

decays more rapidly than ρa,1 = vmax − v, so that it makes
a negligible contribution to the activity density for large N .
We therefore adopt ρa,1 as the order parameter for purposes
of scaling analysis. Configurations ρa,1 = 0 and ρa,2 > 0 are
nevertheless considered to be active; only configurations with
vi = vmax and di > vmax, ∀i, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000,
and 100 000 sites, calculating averages over a set of 20 to
160 realizations. Even for the largest systems studied, the
activity density reaches a stationary value within 106 time
steps. We perform averages over the subsequent 108 steps.
As detailed in Ref. [24], the QS simulation method probes
the quasistationary probability distribution by restarting the
evolution in a randomly chosen active configuration whenever
the absorbing state is reached. A list of Nc such configurations,
sampled from the evolution, is maintained; this list is renewed
by exchanging one of the saved configurations with the current
one at rate pr . Here we use Nc = 1000, and pr = 20/N .
During the relaxation phase, we use a value of pr that is
ten times greater, to eliminate the vestiges of the initial
configuration from the list. The lifetime τ is taken as the mean
time between attempts to visit an absorbing configuration, in
the QS regime.

Initial configurations are prepared by placing vehicles as
uniformly as possible (for example, for density ρ = 1/8, we
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FIG. 8. Activity density versus number of vehicles for density
1/8 and (lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and
0.2687. Error bars are smaller than symbols. Inset: scaled activity
density ρ∗

a = N 0.5ρa versus number of vehicles.

set di = 7, ∀i), and then exchanging distances randomly. In
such an exchange a site j is chosen at random and the
changes dj → dj − 1 and dj+1 → dj+1 + 1 are performed,
respecting the periodic boundary condition, dN+1 ≡ d1. The
random exchange is repeated Ne times (in practice we use
Ne = 2N ), avoiding, naturally, negative values of dj . Since
headways dj < vm are generated in this process, at the first
iteration of the dynamics, velocities vj < vmax arise, leading
to a relatively large, statistically uniform initial activity density.

We performed detailed studies for densities ρ = 1/8, on
both the upper and lower critical lines, and for density
17/144 = 0.11805, on the lower line. Figures 8–10 show,
respectively, the dependence of the order parameter, lifetime
and moment ratio m on system size for density 1/8 and p

values in the vicinity of the lower critical line. In the insets of
Figs. 8 and 9 the values of ρa and τ are divided by the overall
trend to yield ρ∗

a ≡ N0.5ρa and τ ∗ = τ/N . These plots make

FIG. 9. Lifetime versus number of vehicles for density 1/8 and
(lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and 0.2687.
Error bars are smaller than symbols. Inset: scaled lifetime τ ∗ =
N−1.0τ versus number of vehicles.

FIG. 10. Moment ratio m versus reciprocal system size for
density 1/8 and (upper to lower) p = 0.2679, 0.2681, 0.2683, 0.2685,
and 0.2687.

evident subtle curvatures hidden in the main graphs, leading
to the conclusion that pc(ρ = 1/8) is very near 0.2683.

A more systematic analysis involves the curvatures of these
quantities: we fit quadratic polynomials,

ln ρa = const + a ln N + b(ln N )2, (2)

and similarly for ln τ , to the data for the four largest system
sizes. The coefficient of the quadratic term, which should be
zero at the critical point, is plotted versus p in Fig. 11. Linear
interpolation to b = 0 yields the estimates pc = 0.26830(3)
(data for activity density) and pc = 0.26829(2) (data for
lifetime); we adopt pc = 0.26829(3) as our final estimate.
(Figures in parentheses denote statistical uncertainties.) The
data for m, although more scattered, are consistent with this
estimate: from Fig. 10 it is evident that pc lies between 0.2681
and 0.2683.

FIG. 11. Curvature of ln ρa (filled symbols) and ln τ (open
symbols) as functions of ln N , as measured by the coefficient b of the
quadratic term in least-squares quadratic fits to the data in Figs. 8 and
9. Straight lines are least-squares linear fits to b versus deceleration
probability p, for vehicle density ρ = 1/8. Intercepts with the line
b = 0 furnish estimates of pc.
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FIG. 12. Derivatives of (lower to upper) m, ln ρa and ln τ with
respect to p in the vicinity of pc, versus N for vehicle density ρ = 1/8.
Lines are least-squares linear fits to the data.

To estimate the critical exponents β/ν⊥ and z we perform
linear fits to the data for ln ρa and ln τ versus ln N (again
restricted to the four largest N values), and consider the slopes
as functions of p. Interpolation to pc yields the estimates:
β/ν⊥ = 0.500(3) and z = 1.006(8). A similar analysis yields
mc = 1.306(6). The principal source of uncertainty in these
estimates is the uncertainty in pc.

Using the data for ρa , τ , and m we also estimate the
critical exponent ν⊥. Finite-size scaling implies that the
derivatives |dm/dp|, d ln τ/dp, and d ln ρa/dp, evaluated at
the critical point, all grow ∝L1/ν⊥ . We estimate the derivatives
via least-squares linear fits to the data on an interval that
includes pc. (The intervals are small enough that the graphs
show no significant curvature.) Power-law dependence of the
derivatives on system size is verified in Fig. 12. Linear fits to
the data for the four largest sizes, for ln ρp, ln τ , and m yield
1/ν⊥ = 0.494(15), 0.495(15), and 0.516(29), respectively,
leading to the estimate ν⊥ = 2.00(5). Repeating the above
analysis for simulations at vehicle density ρ = 17/144, we find
p−(17/144) = 0.4096(1), β/ν⊥ = 0.503(6), z = 1.011(15),
m = 1.302(2), and ν⊥ = 2.02(2).

Thus, for the two points studied on the lower critical
line, the results are consistent with a simple set of exponent
values, namely, z = 1, ν⊥ = 2, and β = 1. The same set of
critical exponents appears in a system of activated random
walkers (ARW) on a ring, when the walkers hop in one
direction only [26]. The critical moment ratio for ARW is
mc = 1.298(4), quite near present estimates. We suggest that
these values characterize a universality class of absorbing-state
phase transitions in systems with a conserved density (of

walkers in ARW, and of vehicles in the present instance), and
anisotropic movement. The ARW with symmetric hopping is
known to belong to the universality class of conserved directed
percolation [27], which also includes conserved stochastic
sandpiles [22,23].

A study on the upper critical line for vehicle density
ρ = 1/8 yields results that are similar but slightly different.
Repeating the procedure described above, we find p+(1/8) =
0.89590(5), β/ν⊥ = 0.487(8), z = 1.021(15), ν⊥ = 1.98(6),
and mc = 1.315(5). The exponent values are sufficiently near
those obtained on the lower critical line that one might
attribute the differences to finite-size effects. We defer to future
work more detailed analyses, to determine whether scaling
properties along the upper and lower critical lines differ in any
respect.

V. SUMMARY

We consider a version of the Nagel-Schreckenberg model in
which probabilistic deceleration is possible only for vehicles
whose velocity is equal to the headway, vi = di . In the
resulting ANS model, a free-flow configuration, vi = vmax and
di > vmax, ∀i, is absorbing for any value of the deceleration
probability p. The phase transition in the original NS model at
deceleration probability p = 0 is identified with the absorbing-
state transition in the ANS model: the two models are identical
for p = 0. In the original model, a nonzero deceleration
probability corresponds to a spontaneous source of activity
which eliminates the absorbing state, and along with it, the
phase transition.

The ANS model, by contrast, exhibits a line of absorbing-
state phase transitions in the ρ-p plane; the phase diagram
is reentrant. We present preliminary estimates for the phase
boundary and several critical exponents. The latter appear to
be associated with a universality class of absorbing-state phase
transitions in systems with a conserved density and asymmetric
hopping, such as activated random walkers (ARWs) with
particle transfer only in one direction [26]. In this context
it is worth noting that in traffic models, as well as in sandpiles
and ARW, activity is associated with a local excess of density:
in sandpiles, activity requires sites with an above-threshold
number of particles; in ARW, it requires an active particle
jumping to a site occupied by an inactive one; and in the ANS
model, it requires headways d smaller than vmax + 1. One
may hope that the connection with stochastic sandpiles will
lead to a better understanding of traffic models, and perhaps
of observed traffic patterns.
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