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Abstract

The contribution of Nagel and Schreckenberg (NaSch) model in study of traffic models
is remarkable. First of all it is the first model based on cellular automata, the update
rules is quite simple but one of them has a special importance: the randomization process.
This step introduces a stochastic parameter, the probability p, in the system capable of
reproduce some features quite common in real traffic, e.g., the transition between free
flow to jammed state. In original NaSch model the randomization process produces a lot
of unusual behaviours, for instance we have the exaggerate decelerations due the addition
of randomization process to the slowing down one. We propose a slight modification in
randomization step that produces two kinds of driver’s behaviours: The stochastic and
deterministic. The first one, as an original model, the drivers can deceleration in the
randomization process with probability p. The second one cannot. Despite of simplicity,
this new model produces interesting results as phase transition, hystereses and absorbing
state. The plane p — p is divided in three different regions. The first one represents an
absorbing state, all conductors have deterministic behaviour. The second one the state
which both sort of behaviours coexists and the system never evolves to absorbing state
and the third one, in which the state of a system depends on its initially configuration;
some distributions can evolve to absorbing states and others cannot.
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Resumo

A contribui¢ao do modelo de Nagel e Schreckenberg (NaSch) no estudo dos modelos de
trafego é notavel. Inicialmente foi o primeiro modelo baseado em autdématos celulares com
regras de atualizagao bastante simples. Uma delas tem uma importancia especial: o pro-
cesso de randomizacao. Essa etapa introduz um parametro estocastico, a probabilidade
p, no sistema capaz de reproduzir algumas caracteristicas bastante comuns no trafego
real, por exemplo, a transi¢ao entre o fluxo livre para o estado congestionado. No modelo
NaSch original, o processo de randomizacao produz muitos comportamentos incomuns,
por exemplo, desaceleracoes exageradas devido a adicao do processo de randomizagao ao
processo de adaptacao. Propomos uma ligeira modificagao no passo de randomizacao que
produz dois tipos de comportamentos do condutor: O estocastico e o deterministico. O
primeiro, como no modelo original, os motoristas podem desacelerar no processo de ran-
domizacao com probabilidade p. O segundo nao esta sujeito a desaceleracao nessa etapa.
Apesar da simplicidade, este novo modelo produz resultados interessantes como transi¢ao
de fase, histerese, estado absorvente. O plano p— p é dividido em trés regioés distintas. A
primeira representa um estado absorvente, todos os condutores tém comportamento de-
terministico. A segunda, o estado em que ambos os tipos de comportamentos coexistem
e o sistema nunca evolui para estado absorvente e a terceira, na qual o estado do sistema
depende da sua configuracao inicial: algumas distribuicoes podem evoluir para estados
absorventes e outras nao.
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Chapter 1

Traffic Models

The ideas and techniques of statistical physics are being used currently to study several

aspects of complex systems many of which are different from the known domain of physical
systems. Physical, chemical, earth, biological and social sciences are examples of this
trend. Biological evolution of species, formation and growth of bacterial colonies, folding
of proteins, flow of vehicular traffic and transactions in financial markets are just a few
examples of the extent of these applications. Most of these systems are interesting not
only from the point of view of Natural Sciences for fundamental understanding of how
Nature works but also from the points of view of applied sciences and engineering for the
potential practical use of the results of these investigations.
For a long time physicists have been trying to understand the fundamental principles
governing the flow of vehicular traffic using theoretical approaches based on statistical
physics. The approach of a physicist is usually quite different from that of a traffic
engineer. Physicists have been trying to develop a model of traffic by incorporating
only the most essential elements needed to describe the general features of typical real
traffic (minimal principles). The theoretical analysis and computer simulation of these
models not only provide deep insight into the properties of the model such as phase
transition, metastable states, absorbing phases but also help us to understanding the
complex phenomena observed in real traffic. Below we present a brief resume of the main
existing class of traffic models. In traffic models different approaches have been used
in order to model traffic flows using methods from physics. There are several ways to
distinguish these theories, e.g., macroscopic or microscopic, deterministic or stochastic,
discrete or continuous, etc. In this section we present the main approaches used in traffic
study.

1.1 Hydrodynamic models

The first macroscopic description of traffic model was proposed by Lighthill and
Whitham (1955). The fluid-dynamic model has its principles based on the assumption
that the number of vehicles does not change, i.e., no vehicles are entering or leaving the
freeway. Another feature is that the traffic is considered as a compressible fluid. The
conservation of the vehicle number leads to the continuity equation:

Ople.t)  0Qz,1)
ot or

In this equation, we have two functions p(x,t) and Q(x,t), unless they are related to each
other we need more information to solve it. An alternative possibility is to assume that

= 0.




Q(z,t) is determined primarily by the local density p(z,t) so that Q(x,t) can be treated
as a function of only p(z,t). Consequently, the number of unknown variables is reduced
to one as, according to this assumption, the two unknowns p(z,t) and Q(z,t) are not
independent of each other.

The Lighthill-Whitham—Richards theory is based on the assumption that:

Q(l’,t) IQ(p('rvt>>7 (1'1)

where ¢(p) is a function of p. Such a relation is known as a fundamental diagram. An ad-
ditional hypothesis about ¢(p(x, t) is needed for solving it, in this case a phenomenological
relation extracted from empirical data or derived from more microscopic considerations
should be introduced. With the hypothesis in Eq. (1.1) the z-dependence of Q(x,t) arises
only from the z-dependence of p(x,t) at the same time Q(z,t) = p(x,t)v(z,t) and the
x-dependence of v(x,t) arises only from the z-dependence of p(z,t). In this way, using
Eq. (1.1) the equation of continuity can be expressed as:

Ipla,t) _ dgdp(a, 1)

= 1.2
ot dp Ox 0 (1.2)
with p p
q v
— = t t)—.
ap v(z,t) + pla, )dp

The Eq. (1.2) is nonlinear because, in general, dq/dp depends on p. If dq/dp were a
constant vg, independent of p, Eq. (1.2) would become linear and the general solution
would be of the form:

plx,t) = f(z — vot), (1.3)

where f is an arbitrary function of its argument. Such a solution describes a density
wave motion, as an initial density profile would get translated by a distance vyt in a time
interval ¢ without any change in its shape. If we define a wave as a signal that is transferred
from one part to another with a known velocity of propagation, then the solutions of the
form Eq. (1.3) can be regarded as a density wave. There are several similarities between
the density wave and the known mechanical waves like, e.g., acoustic or elastic waves.
But the acoustic or elastic waves are solutions of linearized partial differential equations,
whereas the Eq. (1.2) is nonlinear, and hence, dq/dp is p-dependent. Waves of the type
described by Eq. (1.2) are called kinematic waves to emphasize their purely kinematic
origin, in contrast to the dynamic origin of the acoustic and elastic waves. We will present
an important use of the kinematic waves in the following section.

1.2 Three phases theory

In the traffic literature there is a phenomenological description presented by Kerner
[1]. In this description each state is represented by a point in the phase space defined by
the flux and density coordinates. Empirically the flux is measured by the ratio between
the number of vehicles passing through a fixed detector and a set time interval (minutes,
hours etc.). The density on the other hand corresponds to the number of vehicles per unit
of length. The use of only a fixed detector does not allow to find the density of direct
form, once known the flux, the density is found by the relation:



¢ 1
p=z with 7 = m;vz. (1.4)

Where v; represents the velocity of a vehicle 4, T is the mean velocity and ¢ is the flux.
However, there are special cases where this formulation can fail. Tt should be noted that
the vehicle density p is related to vehicles on a freeway section of a given length whereas
the vehicle speed is measured at the location of the detector only and is averaged over
the time interval At. In addition, low vehicle speeds can usually be measured to a lower
accuracy than higher vehicle speeds. As a result, at higher vehicle densities (lower average
vehicle speed), the vehicle density estimated via Eq. (1.4) can lead to a considerable error
in comparison with the real vehicle density. For this reason, empirical data for higher
vehicle densities (more than 70 vehicles/km) are not usually considered. There are also
other cases why the estimation of the density via Eq. (1.4) can lead to a considerable error
at higher vehicle densities. In particular, this can occur when the vehicle speed and flux
are strongly spatially inhomogeneous. Thus, the averaging of the vehicle speed through
Eq. (1.4) gives a temporal averaging of the speed at the detector location made during
some time interval. If traffic flow is spatially inhomogeneous, this temporal averaging of
the speed can give a very different average speed in comparison with a spatial averaging
of the vehicles speed made at a given instant on a freeway section of a given length .

... ° L] S
q(V/h) F °® ’ ° ® 0: o* ) :
... ° ° .J
p(v/Km)

Figure 1.1: Tllustrative figure representing flux as a function of density. Note the location of the three
phases.

The states originated by the empirical data analysis are grouped in the ¢ — p plane
into three distinct regions: free flow (F), synchronous flow (S) and wide moving jam
(J). Free flow is characterized by weak interactions between the vehicles; the mean speed
corresponds to the limit established by the freeway. The relationship between flux and
density is practically linear and the slope of the line (builded by the points in the region
F) corresponds to the maximum velocity. Synchronized flow is characterized by the

'For a more detailed description of the measurements made by the detector and the restrictions
imposed by the use of this technique consult Kerner [1] pp. 15 to 17.



existence of interaction between the vehicles so that the average speed is lower than
that of free flow. The main characteristic of this region is the apparent absence of a
functional relationship between flow and density. The points are scattered irregularly
over a large region of the ¢ — p plane. The region J, in turn, is marked by successive
decelerations and accelerations (stop and go traffic) of vehicles when entering and exiting
the congestion fronts. Generally the extension of this region is significant, but the main
differences between it and the synchronized flow are the high concentration of vehicles
and the low average speed developed (negligible flux). We can see these states in Fig.
1.1. Before studying the propagation of waves in these phases we have to introduce some
basic concepts. The distance between two consecutive vehicles is 1/p, the “time” distance
1/q and the average speed ¢/p. In the transitions between two states we will consider, in
order to simplify the analysis, that the vehicles are at the same speed and equally spaced.
The distance, the time interval and the vehicles speed are defined according to the state
in which they are. The figure 1.2 presents three possible transitions between states. Fig.

A
: .
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N
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Q1 S
qz — | CrLr
P1 P2 ”
) Vdow
A D
. Pl [
P1 P2 7

Figure 1.2: Tlustrative figure representing three state transitions. The first represents a transition where
the flow is preserved. In the second and third transitions the flow decreases and increases respectively.

1.2 shows the vertical lines in three different situations, each line represents the front of
the shock wave?. When the shockwave propagation reduces the vehicles speed, we call
it an wupstream front, when increases, downstream front. For simplicity we will consider
the acceleration (or deceleration) of vehicles instantaneously at the moment they are
reached by such fronts. The first transition is characterized by keeping the flux constant,
consequently the wavefront is fixed and does not move because the fluxes are equal on
both sides of the front. In the second transition the vehicles depart from a state where

2We define shock waves as a sudden change of the vehicles velocity due to traffic conditions. In relation
to the freeway frame, the shock wave can be at rest or in motion



the flux is greater to another where the flux is smaller. In this case the upstream front
should move towards the region where the flux is higher, because on the wave front frame
the input flow must be equal to the output one. In the third transition, the downstream
front moves toward the region where the flux is lower.

d; d,
VU
Vl h VZ VZ
d, d,
VU
h Vz VZ VZ

Figure 1.3: Tllustrative figure represented the propagation speed of the wave.

The meaning of the slope of the line joining the two states can be understood through
Fig. 1.3. In the first illustration, the wavefront is located on the second vehicle (from
right to left) and moves toward the third one, located on the left of the front. After the
time interval ¢ the wavefront is on the third vehicle causing immediate slowdown from v,
to vy and its distance for the second vehicle from d; to dy. At this point the distances
traveled by the relative motion between [v,,, vs] are:

(1)1 + Uup)t = d1 [§] (’Ug + Uup)t = dQ.

Isolating ¢ and remembering that d = %,

pr(vr + UUP) = pa(va + Uup)a

using ¢ = pv
2=

P1— Pzi
The slope of the line joining the states represents the velocity of the wavefront. This
analysis comes from wave kinematic theory. The three phases theory uses these results
to study vehicle behaviour in two distinct regions of .S phase.

The steady propagation of the downstream front in a wide moving jam has mean velocity
vy and can be represented in the flow-density plane by a line. This line is called “the line
J”. The slope of the line J is equal to the velocity v, of this front. The left coordinates of
the line J are related to the parameters of free flow (pmin, @out) exhibited by vehicles that
have accelerated from the standstill inside the jam. The right coordinates of the line J,
(Pmaz, 0), are related to the vehicle density inside the jam p,,.. where the vehicle speed
v is zero. These features have further been found in empirical studies of wide moving
jam propagation by Kerner and Rehborn. The velocity of the upstream fronts (1) and
(2) are defined by the slope of the respective lines. Thus v}" > v%*" > v3” and for this
reason the states located above the line J are subject to transition S — .J while the states
located below are not. A better explanation is given by Fig. 1.4, the arrows at the right
represent the empirical downstream velocity (vgown) and the arrows at the left represent
the upstream velocity of the states 1 (upper arrow) and 2 (bottom arrow) respectively.

up
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Figure 1.4: Tllustrative figure represented the upstream and downstream fronts in two distinct regions
of region S.

We can see that in state (1) owing to v} > v%*" the wave responsible for jam formation
is faster than the wave responsible for free flow. Thus the possible state reached by the
system is in the region J. But in the state (2) the jam formation is not possible, owing
to vy? < v¥v" the downstream front will reach the upstream one. The complete study of
the three phase theory can be found in [1] as well as the transitions between the phases
and other traffic features.

1.3 Dynamical models

The dynamical model is based on the equation of motion of each vehicle. This equation
has as an assumption the fact that each driver of a vehicle responds to a stimulus from
other vehicles in some specific way. The response is expressed in terms of acceleration,
which is the only direct controllable quantity for a driver. Generally, the stimulus and the
sensitivity may be a function of the positions of vehicles, their time derivatives, and so on.
This function is decided by supposing that the drivers of vehicles obey postulated traffic
regulations at all times in order to avoid accidents. In the dynamical model we have two
kinds of stimulus: in the earliest dynamical models the difference in the velocities of the
n-th and (n+ 1)-th vehicles was assumed to be the stimulus for the n-th vehicle. In other
words, it was assumed that every driver tends to move with the same speed as that of the
corresponding leading vehicle so that

Ty = %[ftm—l (t) — x'n(t)}’

where 1/7 is related with the driver’s sensitivity. Other dynamical models take into
account the driver’s own velocity and the distance to the vehicle ahead. All drivers have
the common sensitivities and the length of vehicle is negligible. We assume that each



vehicle has legal velocity V' 3 and that each driver of a vehicle responds to a stimulus
from the vehicle ahead of him. The drivers can control the acceleration in such a way
that they can maintain the legal safe velocity according to the motion of the preceding
vehicle. Then the dynamical equation of the system is obtained via:

in = a[V(Ax,) — i), (1.5)

where
Ax, = T, — Ty,

for each vehicle number n (n = 1,2,..., N). N is the total number of vehicles, a is a
constant representing the driver’s sensitivity (which has been assumed to be independent
of n), and z is the coordinate of the nth vehicle. The dots denote differentiation with
respect to time t. We assume here that the legal velocity V(Ax) of vehicle number
n depends on the following distance of the preceding vehicle number n + 1. When the
headway becomes short the velocity must be reduced and becomes small enough to prevent
crashing into the preceding vehicle. On the other hand, when the headway becomes longer
the vehicle can move with higher velocity, although it does not exceed the maximum
velocity. Thus, V' is a function having the following properties: a monotonically increasing
function, and V' (Az) has an upper bound V,,,, = V(Ax — oo) . Further, this model has
periodic boundary conditions: vehicles move on a circuit with length L and the (N +1)th
vehicle is identical to the first vehicle. Depending on choice of V' and the headway Az,
the system can be stable or unstable.

In Fig. 1.5 the trajectories of a specific vehicle (the 50th vehicle) are shown in two
different cases: the stable and unstable trajectories. In the stable case, the vehicle moves
with constant velocity, i.e., the distance increases linearly. On the other hand, in the
unstable case we observe a vehicle moving backward (v < 0). This always happens
whenever the solution of this model is in the unstable region. As long as we take the
models of a single lane, this means a collision of two successive vehicles. The above
behavior indicates that, instead of congestion, such traffic accidents occur everywhere.
Then, by choosing an appropriate legal velocity function, we can modify the model so
that a vehicle never moves backward. In [2] another function is proposed with intention
of preventing it. In addition to the models presented in this section we have to take into
account kinetic models. In such models traffic is treated as a gas of interacting particles
where each particle represents a vehicle. The different versions of the kinetic theory of
vehicular traffic have been developed by modifying the kinetic theory of gases. Due to
the extensive study in this kind of model, we published an article entitled “Kinetic theory
of vehicular traffic”, in which we present the key features in the chapter 4.

3the term “legal velocity” was introduced in [2], although we think that the term “safety or desirable
velocity” is more appropriate
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Chapter 2

NaSch Model

2.1 Model

The NaSch model(NS) was the first traffic model based on a cellular automaton [3].
The model is defined on a one-dimensional lattice of length L, with periodic boundaries,
representing a single-lane freeway. Fach site of the lattice can be in one of the v,,4, + 2
states: It may be empty, or it may be occupied by one car having an integer velocity
between zero and v,,,,. Time, space, and velocity are discretized. The process starts with
an initial distribution of N vehicles (N < L). The state of system is updated at each
iteration according to the following steps: Acceleration, deceleration, randomization and
displacement. Each iteration, between two consecutive times (¢ and ¢ + 1) consists of 4
steps according to the NS update rules: (¢1, o, t3 and ¢t + 1). Note that the three initial
steps do not represent vehicle movement but only intermediate steps required for defining
the final speed just before the displacement step. The update rules are:

1. Acceleration
The velocity of each vehicle with v < v,,4, is increased by one unit. If a vehi-
cle already possesses the maximum velocity before this step, its velocity remains

unchanged.
vj(t1) = minfv;(t) + 1, Uimag]-
5 2 0 2 4
o] | |wwjemn] | jmw| | |jm»] |
5 3 1 3 5
| | [wwjemn] | jmws| | e |

Figure 2.1: An example of acceleration step. The figure shows the vehicles configuration before (upper)
and after (lower) the acceleration step. Note that the vehicles accelerate independent of the possibility
of displacing with the new velocity.



2. Slowing Down
All vehicles with v;(t1) > d; reduce their speed to v;(t2) = d;. Here, d; is defined
as a number of empty cells between the car j and j + 1. Thus

vj(t2) = mind;(t), v;(11)].

5 3 1 3 5
s| | |wnjemn| | || | mm]

2 0 1 2 1
| | |wnjmmn| | jmw| | |mm| |

Figure 2.2: An example of slowing down step. The figure shows the vehicles configuration before
(upper) and after (lower) the slowing down step. Now the vehicles can adjust their velocities according
to the distance (headway) in relation to the forward vehicle.

3. Randomization
This step introduces stochasticity in the model; without it the model would be
deterministic and the stationary state reached quickly. In this step each vehicle
reduces its speed by one unit with probability p or maintains it with probability
1 — p. Vehicles with v = 0 are not subject to this step.

U (tg) = vy (tQ), with probablhty 1-— p.
2 0 1 2 1
ows| | |wnjmmn] | jmm| | jm»] |
1 0 1 2 0
| | |wsjemn] | jmw| | jmm| |

Figure 2.3: An example of randomization step. The figure shows the vehicles configuration before
(upper) and after (lower) the randomization step. This step introduces substantially modification in
macroscopical traffic behaviour due the introduction of individual behaviour (controlled by parameter p).
In some cases drivers decelerated (at random), in others do not.
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4. Displacement
This step represents the displacement of the vehicles according to the velocity pre-
viously established.
’Uj(t + ].) - Uj(tg).

1 0 1 2 0
e | wpmp | e | (m» |
1 0 1 2 0
| wm [(wmp| (mp] | | |[oswm»| |

Figure 2.4: An example of displacement. The figure shows the vehicles configuration before (upper)
and after (lower) the displacement step. This step represents the final step in which the vehicles displace
according to the velocity defined in the previous step.

The randomization step is an essential component for the reproduction of the main fe-
atures presented in real traffic, e.g., the transition between free flow to jammed state,
start-and-stop waves, and shocks (due to driver overreaction). This step in the model can
be compared with the unpredictable reaction of the drivers in front of traffic conditions
though in the NS model the probability p is independent of the traffic conditions, e.g.,
the density of vehicles on the lattice.

In Fig. 2.5 we present the graph flux as a function of density (also known as the funda-
mental diagram) for p = 0.1, 0.5 and 0.9. We observe the presence of two branches; the
first one corresponds to the free flow regime where the vehicles almost do not interact
themselves due to the large distances between them. In this condition the second step in
the NS update rules practically does not apply. Let us set v,,,. = 5 and the states

=)
~
I
—o oo oo

OO OO O

for velocities (the value in the line n corresponds to the probability of finding a vehicle
with velocity n — 1). The stochastic matrix for a single vehicle is:

D 0 0 0 0 0
1—-p »p 0 0 0 0
T_ 0 l—p p 0 0 0
0 0 1l—p »p 0 0
0 0 0 1—-p »p P
0 0 0 0 1—p 1—p



Let P; be the probability distribution of velocities at the time ¢. The relation between
P(t) and P(t-1) is given by:
P, =TP ;.

Given the F,, P; can be found via:
P, =T'P,.

After a little algebraic work (for further details, see chapter 7), we have:

llmPt:

t—o00

| =8 oo oo

I—p

After the vehicle attains the stationary state, the mean velocity is:

U= p(vmam - 1) + (]- - p)vmax V = Umaz — b,

and the flux ¢ is
q= p(vmaat - p) (21)

This analysis cannot be used for higher densities since it does not take into account the
interactions between the vehicles. When we consider these interactions the problem can-
not be solved in this way. We will see in section 2.3 a first analytic approach (mean-field
theory) to this problem. Although the equation (2.1) cannot be used for higher densities,
it explains the slight difference between the slopes in the first branch according to the
probability p. The second branch corresponds to jammed state in which the interactions
between the vehicles are more frequent. In this regime the presence of start-and-stop wa-
ves and driver overreaction is common. The overreaction can be explained due to overlap
of two successive decelerations; the first one due to the second step in the NS update ru-
les, the vehicles reduce their velocities due the small distance between them. The second
one is related to the randomization step, with probability p the vehicle may reduce, in
addition to the first deceleration, its velocity by one more unit.

In the NS model two special values (p = 0 and p = 1) produce deterministic behaviour
in the system. In both cases the randomization step does not apply (in the first case the
vehicles never reduce their velocity while in second one, always reduce). For p = 0 and
p < p.t (pe = 1/(Vmae + 1)) the system always evolves to absorbing state in which all
vehicles attain the maximum velocity while for p > p. the system evolves to a stationary
state with © = (1 — p)/p. For p = 1 and p < 1/3 few initial states can evolve to a
stationary state with 7 # 0 since if a vehicle stops it never moves again. For p > 1/3 the
system, in a certain moment, attains the absorbing state with v = 0.

'For the deterministic case, p. is the critical density

12
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Figure 2.5: Fundamental diagram using Monte Carlo simulation for probabilities p = 0.1, 0.5, and 0.9.

2.2 Scaling behaviour

In this section we will study the phase transition in the NS model. A special case in
the Ns model arises when p = 0. In addition to its deterministic behaviour we can assert
that there is a continuous phase transition at the point p.. In the following subsections

we discuss some quantities that support this assertion.

2.2.1 Singularity
In Fig. 2.6 the fundamental diagram, for p = 0, exhibits a sharp change at p.; this
singularity is characterized by a discontinuity in the first derivative. For p # 0 this change

is smooth, as can be seen in Fig. 2.5.
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Figure 2.6: Fundamental diagram for p = 0.

With the intention to study in more details the criticality in this case we should
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look for an appropriate order parameter to describe the singularity shown in Fig. 2.6.
The natural candidate is the fraction of jammed vehicles, e.g., vehicles with velocities
smaller than v,,,,. Unfortunately in the deterministic model this fraction and any related
quantities depend on the initial spatial distribution. So we propose an order parameter

M defined by:
q

p Umaz

M=1-

For p =0 and p > p,

__1=p
U=—".

p
Remembering that ¢ = pv, we have

1
g=1—p and vy +1=—,
Pec

so that M is given by

1 —Pc
m% (p > pe)-

For p = 0 the graph M as a function of p is shown in Fig. 2.7.

M:{o (b < pe)
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Figure 2.7: Order parameter for p = 0. Note the singularity at p = pe.

2.2.2 Density of nearest-neighbor pairs

The density of nearest-neighbor pairs is given by:

L
1
m = z E 1 niNit1,
1=

with n; = 0 for an empty cell and n; = 1 for a cell occupied by a car (irrespective of its
velocity). In the case p = 0, below the critical density p. this order parameter vanishes
since every car has, at least, v,,,, empty sites in front and propagates with v = v,,45.
In Fig. 2.8 a sharp transition occurs at p. = ﬁ For densities below this point m

14
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Figure 2.8: Figure extracted from Ref. [4], p. 1311: order parameter as a function of density for p = 0.

Below the density p. = ﬁ m vanishes exactly.

vanishes exactly.

The Fig. 2.9 shows that the order parameter does not exhibit a sharp transition for
p > 0. Although m becomes rather small for small densities it is always different from
zero. This situation is quite similar to the behaviour of order parameter in finite systems
and there is no phase transition for p > 0.
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Figure 2.9: Figure extracted from Ref. [4], p. 1311: order parameter as a function of density for
p > 0. It does not vanish exactly for p < p., but converges smoothly to zero even for small values of the
probability.
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2.2.3 Spatial Correlations

A key feature of continuous phase transition is a diverging correlation length at criti-
cality and a corresponding algebraic decay of the correlation function. Using lattice gas
variables the density-density correlation function is given by

L
1
G(r)= 7 Z NN — P2-
i=1

Considering the deterministic case (p = 0) in the vicinity of the transition density one
observes a decay of the amplitude of |G(r)| for larger values of the distance between the
sites as shown in Fig. 2.10. Precisely at p. the correlation function is given by

2

pPe—pes T=0, Vpaz + 1 ... n(Vppae + 1)

G(r) = { ) :
—p: otherwise.

At the transition point the system attains the absorbing state with the only possible state:
all vehicles have v = v,,4, and there are exactly v,,,. empty cells in front each vehicle.
Considering small, but finite, values of p the correlation function has the same structure
as in the deterministic case, but the amplitude, rather than decaying algebraically, decays
exponentially for all values of p.

The decay of the amplitude determines the correlation length for a given pair of (p, p),
which is finite for all densities with p > 0. The maximal value of the correlation length
Emazr determines the transition density. As shown in the Fig. 4.7, the maxima value of
the correlation length, as a function of p, diverges at p — 0.

2.2.4 Relaxation time

An expected feature of a second order transition is the divergence of the relaxation
time at the transition point. In this work we use two distinct but related definitions of
the relaxation time. The first, used in the literature [5] is relaxation time and the second
one is called stationary time. One will see that both diverge at the transition point. The
relaxation time is defined based on the expected behaviour of the system according to the
function v oc e 4/7 :

T = /Ooo[min(v*(t), <V >)— < v(t) >]dt. (2.2)

v, t and 7 are dimensionless. v*(¢) denotes the average velocity in the acceleration phase
t — 0 for low vehicle density p — 0. Because the vehicles do not interact with each other,
v*(t) = (1 — p)t holds in this regime. So the relaxation time is obtained by summing up
the deviations of the average velocity < v, > from the values of a system with one single
vehicle that can move without interactions with other cars p — 0. One finds a maximum
of the relaxation, for the case p = 0, at the density of maximum flux. The criterion for
criticality is power-law dependence of 7 and ¢ on system size according to:

Tm(L) x L, o(L) x L.

Tm(L) is the maximum value of 7(p) in a ring of size L and (L) is the width in the middle
of the curve as a function of size L. We can see the dependence of these quantities on

16
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Figure 2.10: Figure extracted from Ref. [4], p. 1311 and 1312. (Left) Correlation function in the
vicinity of the phase transition for the deterministic limit. At p = p. the amplitude is independent of
the distance r. In the vicinity of p. the correlation function decays algebraically. (Right) Correlation
function for p > 0. The amplitude of the correlation function decays exponentially for all values of p.

systems of size L in Fig. 2.12. For the deterministic case the exponents are z = 0.53+0.04
and v =2.01 £ 0.05 [4].

As we can see in Fig. 2.13, for p # 0 neither quantities 7,,,(L) and o(L) have the same
behaviour of the determinist case. In our work we define a quantity related to the rela-
xation time which we call the stationary time. This is the time that a system starting
from a random initial distribution with v = 0 takes to attain the mean velocity of the
stationary state. In the stationary state, the mean velocity of the system at a certain
time fluctuates around its mean (taken during a meaningful interval of time), but in the
limit of big sizes this fluctuation amplitude tends to zero. So we define the stationary
time the time that the system reaches, for the first time, the expected mean velocity of
the stationary state. For an improved estimate we take the mean stationary time over a
sample of 200 independent realizations, each with a different initial condition.

For p = 0 the stationary state is well-defined and the mean velocity is:

— ) Vmaa (p < pe)
S (p> pe).

In Fig. 2.14 the stationary time clearly diverges at p.. A qualitative explanation
can help us to clarify this behaviour: at small densities, the vehicles have large spaces

(2.3)
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Figure 2.12: Figure extracted from Ref. [4], p. 1310: relaxation time versus density for different sizes
L of the lattice. These results are studied for v, = 5 and p = 0.

between them, so it requires little time to attain the maximum velocity and the system
can attain the stationary state in different ways depending on the initial distribution. For
p = ﬁ the space between the vehicles is just sufficient to accommodate all vehicles
with maximum velocity. So we have one way to fit all vehicles and depending on the
initial distribution, the system requires more time to reach the stationary state.

The behaviour for p # 0 is different. First of all the point, in which the stationary time
is maximum, is located at a smaller density than that marking the point of maximum
flux. Second the stationary time seems not to diverge with the system size. In Fig. 2.15
both features are shown. Note that the point where the stationary time is maximum does
not coincide with the point with maximum flux. Another difference in relation to the
deterministic model is the behaviour of the stationary time in the vicinity of the critical
point. For p = 0 the divergence of the stationary time at the critical point is clear but for
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Figure 2.13: Figure extracted from Ref. [4], p. 1310: relaxation time versus density for different sizes
L of the lattice. These results are studied for v, = 5 e p = 0.25.

the probabilistic case the stationary time is maximum at a certain point, but it does not
seem to diverge. Due to this, we prefer to label this point as Mst ( Maximum stationary
time) instead of labeling as critical point. The scaling analysis of the Mst with lattice size
shows that the growth of Mst is insignificant and suggests that the stationary time does
not diverge in the limit of infinite lattice sizes.

For p > 0 another indication for the absence of critical behaviour is the well established
fact that the density of maximum flux (p(¢mae)) and the transition density (p.) are diffe-
rent for p # 0. Correlations obviously favor states with higher flux (see, e.g., Fig. 2.10).
So it would be expected that the state with the strongest correlations is also the state with
the highest flux, as in the deterministic case. Therefore it would be strange if the system
exhibits a second order phase transition with diverging correlation length at p. # p(¢maz)-

2.2.5 Discussion about criticality in NS model

The addition of the probability p in NS model destroys the criticality whatever the
quantity chosen (flux, spatial correlation etc.). Analogous behavior is also found in the
Ising chain in a transverse field. The transverse field I' is the control parameter and
corresponds to the density p in the NS model whereas the temperature 1" corresponds to
the noise parameter p. Some authors [4] believe that this correspondence can be used to
predict scaling laws. Further the NS model does not have absorbing states whose existence
is essential to establish continuous transition between active and inactive states.

Some authors[4, 6] proposed different kinds of order parameters. The idea is to use
quantities related with the fraction of jammed vehicles, e.g., the fraction of standing cars,
the cars with velocity below v,,,, — 1 etc. This attempt is based on a possible transition
described by a sharp change in free flow to congested one. The problem is finding an
appropriate definition (parameter) for these regimes. For example the definition used by
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[6] is:

and

The second expression represents the density of cars on site ¢ over a time period T'; ¢ is
the relaxation time (usually o = 10L) and n;(t) is zero if the cell ¢ is empty and one if
it is occupied at time ¢. In the first expression; [;(¢) is one if at time ¢t — 1 the cell 7 is
occupied (empty) and at time ¢ it is empty (occupied); [;(t) is zero if at both times the
cell 7 is occupied or empty. This choice of parameter is created based on that a jammed
regime means that all cars are grouped in long clusters. For p = 0, like other quantities
discussed previously, M = 0 at p < p. and M # 0 at p > p,. Here i is omitted because in
stationary state none of these parameters will be position dependent. A simple analysis
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in the order parameter allows us to conclude that M; = 0 only if all vehicle that occupied
the cell ¢ at the time ¢ — 1 moves to the other cells in the next time. This means that
the vehicles never stop due the interaction between them (jammed formation), but we
know that even for small densities these interactions always occur. Finally, according to
the simple argument shown in [7]|, quantities related to the fraction of vehicles cannot be
used to identify a possible phase transition in NS model.

2.3 Mean-field theory

The exact solution of NS model is found in two special cases: For deterministic case p =
0 (already discussed) and for p > 0 with v,,,4, = 1 [8]. The other cases the exact solution is
unknown but an approximate solution via mean-field theory can help to understand some
aspects of the model. In this section we will use the method developed by Nagel et al.
in [8]. The first attempt consists in supposing the probability independence in the form
p(1,2..n) = p(1)p(2)....p(n), where p(i) denotes the probability that an event occurs at the
site i and p(1, 2, 3) denotes the probability that event n (n = 1,2, 3) occurs simultaneously
at the sites ¢, ¢ + 1 and 7 4+ 2. Instead of focusing on probabilistic evolutions of positions
and velocities of each vehicle in lattice, we focus on the probabilistic evolutions of sites.
Let the probability of a site i(: = 1,2..L) is empty at time ¢ be d(i,t) and the probability
of being occupied by a vehicle with velocity « be ¢,(i,t). In this way the normalization
condition implies:

d(i,t) +co(i,t) + c1(i, t) + co(iy t) + e3(i,t) + ..o + ¢y, (1, 1) = 1.

Let c(7,t) be the probability of site i at the time ¢ to be occupied by a vehicle, so c(i,t) =
> im0 ¢j(i,t) and the normalization condition can be written as:

d(i, t) + (i, t) = 1.

We use the same notation of sub-steps established in update rules, i.e., acceleration (¢;),
slowing down (¢), randomization (¢3) and displacement (¢ + 1). The temporal evolution
of the probabilities can be described by the following sets of equations in each of the
sub-steps.

Acceleration step

Following the acceleration substep all vehicles have v > 0, since this process does not take
into account if a vehicle can move with its updated velocity without colliding with the
car ahead. After this substep, probability of finding a vehicle with v = v,,4, is the sum
of the probabilities of velocities v,,4, and v,,q; — 1, just prior to acceleration, so:

co(i,t1) = 0,

Callyty) = ca1(i,t) (0 < @ < Vpaz),

C’Umaz (27 tl) = Cvmaz (27 t) + C’Umazfl (27 t)

Slowing down step
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The probability ¢, (i,t2) has its origin in the evolution of the following probabilities

colisty) = (i +1,t1) Y ealisty) + colisth)
B=1
calivty) =c(i+a+1,t) [[di+4.t) Y. cslit) +ealicty) [Jdli+74t)  (0< @< vpar
j=1 B=a+1 J=1
Copan (i 2) = [ i + 1)y (i 1) (2.
j=1
i itostl i o+l
o+l 1 a 0
v (a) V;m (b) v

Figure 2.16: Figure contains all possible configurations at the stage t; capable of engendering the state
v = « at the site 7 at the stage o . The values above the sites indicate the position and the values below
all possible velocities. Recall that Y |™*" = c and > ™ =1

To understanding the terms used in Eq. 2.4 we refer to the diagram in Fig. 2.16. The
first term on the right of ¢y(i,t2) and c,(i,t2) arises by considering that all vehicles with
v > a+ 1 are located at the site ¢ and, in the site i + « + 1 there is a vehicle (no matter
what speed it has). In this way the vehicles at the site ¢ will have, after the slowing down
process, velocity a. The second term arises when the vehicle located at site ¢ has a or
more empty sites in front of it, no matter if in the site + + o + 1 has a vehicle or not.
The expression for ¢, (i,t3) reflects the requirement that the vehicle already had the
maximum velocity at ¢; and has at least v,,,, empty sites in front of it.

Randomization step

The equations at the randomization step are:

CO(i7t3) - CO(i7t2) ‘|‘p01(i>t2),
Ca<i7 t3) = qca(iv t2) + PCa+t1 (27 t2) (O <a< Uma:c)7

CUmax (Z7 t3) = qcvmaac (Z’ t2)

The expression for cy(i, t3) reflects the requirement that, in the previous step, the vehicle
already had v = 0 due to slowing down process or had v = 1 and decelerated due to
randomization one. The probability ¢, (i,t3) depends on the probabilities ¢, (i, ) and
Cat1(i,t2).  With probability ¢ the vehicles with velocity « (represented by the term
¢o(i,t2)) will not reduce its speed and with probability p the vehicles with velocity o + 1
(represented by the term c,1(i,t2)) will reduce.
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Displacement step

In this step the probability c,(i,t3), defined according the three previous sub-steps, is
passed along to the cell i + a. So

il +a,t+1) =coliyts)  (0<a < Vo).

Grouping the equations, we have

colit +1) = co(i, £)]e(i + 1,8) + pd(i + 1,8)] + [e(i + 1,t) + pd(i + 1,t)c(i + 2, )] Z

calivt+1) = [] dli — @+ j,6) [aca-1(i = ayt) + |qe(i +1,8) + pd(i + 1,8) |eali — 1)

j=1
Umazx
+laci+1,0) + pd(i + 10e(i+ 20| D esli—a)|  (0<a < vpar 1),
B=a+1
Vmax—1

Copman—1(1,t + 1) H At — Vmaz + 1+ 7,t) | qCr0n—2(0 — Upaz + 1, 1) + <qc(i—i—1,t) +pd(i+1,t)>

]:

(cvmaac—l(Z Umaz + 1 t) + Cymax( Umaz + 1 t))]

VUmax

Copa (it +1) = ¢ ] di = vmaa + 4. 2)
j=1

cvmax—l(i — Umaz» t) + Coman (Z — Umazx t)] .

From ¢, (7,t+1), the probability ¢, (7, t42) can be obtained doing the same steps developed
to find ¢, (7,t 4+ 1) from c,(1,t), but for the obvious reason this procedure is impractical.
The stationary state can be obtained by other means, e.g., numerical solution. Instead
of looking for time-dependent solution, we study just the stationary states, when the
distributions ¢ and d become spatial independent

cli+a)=c(i) and d(i+a)=d(i) foralla,

so the equations are simplified to read,

Umax

co = co<c+pd) + (1 +pd>cz g,
B=1

Co = d° [qca1 + (qc—l—pd)ca + (q +pd>c Z 05] (0 < a < Vpaz — 1),
B=a+1

Coppan—1 = A= ! [qcvm(HQ + (qc + pd) (cvmar1 + cvma,>] ;

o )
C’Umaz - qd mar [c’vmazl + C’Umaz :
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Another way of expressing these equations is rewrite them as a function of ¢, p and d (for

further detail see the chapter 7). So

*(1+ pd)
‘o 1 pd2
1—pd
2
6 = qcd 1+d—+pd ’
(1 = pd®)(1 — pd?)
1+ (¢ —p)d” qd®
Ca = 1 — pdo+? dca—1 — Wca—%
1 — qdvmaac
v — dvmax_l v -2
qdvmaz

C'Umaz 1 _ qdvmax Cvmazfl'

With the intention of evaluating these approximation, we compare in Fig. 2.17 these
results with those obtained by computational simulation (Monte Carlo method).
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Figure 2.17: Comparison between the Monte Carlo method and the 1-cluster mean field theory for the

velocities vy, = 1, 3 and 5. We use p = 0.5 for all cases.

This simple mean-field result yields, compared with the Monte Carlo simulation, small
values for the flux. This fact can easily be understood since the reduction to a single car
problem ignores all spatial correlations of the vehicles. Vehicles, for instance, with high
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velocities tend to be equidistant and can therefore maintain a high velocity with a larger
probability than in the mean-field system where is so much more difficult to accelerate
and stay at high velocities over a certain time.

2.3.1 N-cluster approximation

In order to improve the simple mean-field theory of the preceding section we have
to take into account correlations between neighboring sites. We divide the lattice into
segments or clusters of length n (n = 1,2...) such that two neighboring clusters have n— 1
sites in common. The probability of finding a cluster in the stationary state (oy, ..., 0,,) will
be denoted by P,(oy,...,0,). Due to the translational invariance of the stationary state
of the system with periodic boundary conditions, one does not have to specify the actual
location of n-cluster and the first cell of the cluster will be numbered by 1. In the 1-cluster
approximation we have v,,,, + 2 possible states and in order to simplify the calculations
we apply the four update rules in the order slowing down, randomization, displacement
and acceleration instead of the order defined previously. This has the advantage that after
one update cycle one ends up with the acceleration step and therefore no car has velocity
v = 0. It follows that every site j is in one of the v,,,, + 1 states where now 0 denotes an
empty site. So we eliminate one variable d of the equation system, but we have to take
into account for the flux calculation that v = v,,,, comes as a result of the acceleration
step applied in v,,4, — 1 and v, (the last one does not accelerate). The probability of
finding a state ¢” is:

P (c(")) = Z w (c("+2”m‘””) — c(")) P (c("+2”’”“’”)) :

c(n+2vmaz)

The term ¢"t2maz) denotes the state constituted by the set of the states of 7 + 20mas
cells. The first cell is labeled by 1 — v,,,4, and the last one n + v,q,, thus ¢(?2vmaz) = (1—
Umazs --+s T+ Umaz ). This additional extension of the cluster occurs since all vehicles which
can drive into or out of the cluster ¢ = (1,...,n) within the next time step contribute to
the transition rates 1W. So we have to take into account not only the given cluster, but also
the vy,q, sites to its left (with the variables (1 — v,04, ..., 0)) and the v, sites to its right
(with the variables (n+1, ..., + Uynq;)). The transition probability W (c{n+2vmas) — ()
is given by the update rules of NS model. The probability P (c("“”max)) is given by:

VUmax

n—+2v
P (c( m‘”) H P(ci | Ciy1y s Cizno1) ¥ P (1, s C H P(Cit1s -+ Citn1 | Citn)-

i=1—Vmazx

The conditional probability on the left-hand side is

Pn<ci7 Citly -y ci+n71)
Zc Pn(C, Citly ey CiJrnfl)’

P<Ci | Cit1, ---7Ci+n71) =

and on the right-hand side is

P (c:. c: ey Cign—
P(Cis s Cian—s | Cin1) = Zn(P“(cHl’ C":Jﬂ; 16))
. iy ey Citn—2;

To clarify this method, we present in the next section the 2-cluster approximation to solve
NS model with v,,,, = 1 and p = 0.5.
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2.3.2 2-cluster approximation

For the case Ve, = 1 we have to add two cells to the cluster ¢, so:

P (0(2)) = Z w (0(4) — 0(2)) P (0(4)) .

c(4)

Figure 2.18 shows all possible configurations for ¢ and their corresponding probabilities,
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Figure 2.18: Figure showing all possible states of 4-cluster (c(*)) and their corresponding probabilities
of evolving to states ¢(2).

by using the update rules of NS model, to evolve to the clusters ¢(?). The symbol a within
the cells means that independent of the state of this cell, the final state after the NS
update rules is unchanged. So we can find the probabilities P(1,0), P(0,1), P(1,1) e
P(0,0) via:

P(1,0) = ¢P(1,0,0,a) + pP(a, 1,0, ) + gP(a, 1,1,0) + ¢°P(1,0,1,0),
P(0,1) = ¢P(a, 1,0,a) + pP(0,0,1,0) + p*P(1,0,1,0) + 1P(0,0,1,1) + pP(1,0,1,1),
P(1,1) = pP(a,1,1,0) + qpP(1,0,1,0) + 1P(a, 1,1,1) + ¢P(1,0,1,1),
P(0,0) = pP(1,0,0,a) 4+ ¢P(0,0,1,0) + gpP(1,0,1,0) + 1P(0,0,0, ),
using

P(a,b) P(c,d)
P(1,b) + P(0,b) P(c,1) + P(c,0)’

and for determining the flux we need to find only P(1,0); we have:

P(a,b,c,d) =

P(b,c)

P(1,0)

P0)=" 4 [P(LO) + P(0,0)

P(0,0)

P(0,«) P(a,1) P(0,«)
P(0,1)+P(0,0)] TP [P(1,1)+P(1,0)P( ’ )P(0,1)+P(0,0)]

P(a,1) P(1,0) , P(1,0) P(1,0)
an+PmnP“)p@m+PaJJ+ [HL@+P@® &)P@m+P@U}

o
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P(1,0) = qM

1—c

qcP(1,0)[1 — ¢ — P(1,0)] + pe(1 — ¢)P(1,0) + (1 — ¢)g[c — P(1,0)]P(1,0) + ¢>P3(1,0) — ¢(c — 1) P(1,0)

1

1 —c— P(1,0)]1 + pP(1,0) + qle — P(1,0)]P(1c’ 0, pra (C))P(l,())

P(1,0)

c

Due to the particle-hole symmetry P(1,0) = P(0,1) (in a closed ring one must have the
same number of (0,1) and (1,0) pairs, therefore occurring with the same probability).
The relations P(1,1) + P(1,0) = ¢ and P(0,0) + P(1,0) = 1 — ¢ = d are related to the
conservation of vehicles in the system. In this way P(1,0) can be found easily by:

)

e(l—c¢)

qc[l —c— P(1,0)] + pe(1 — ¢) + ¢[1 — ¢][c — P(1,0)] + ¢*P*(1,0) — ¢(c — 1) =0,
@*P?(1,0) 4 [—gc — q(1 — ¢)]P(1,0) + qc(1 — ¢) + pe(1 — ¢) + qe(1 — ¢) — ¢(1 — ¢) = 0,

*P*(1,0) —q(c+1—-¢c)P(1,0) +c(c—D)[g+p+q—1] =0,
¢*P*(1,0) — gP(1,0) + gc(c — 1) = 0,
qP?*(1,0) — P(1,0) + c(c — 1) =0,

leading to

P(1,0) = 1—\/1—4qc(1—c)'

2q

f:%[l—\/l—élqc(l—c)}.
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The flux depends only on P(1,0). So the flux is determined by the evolution of the state
(1,0) to (0,1) (according to the randomization step, it occurs with probability ¢), thus
the flux is given by:

We can see in the Fig. 2.19 that the 2-cluster approximation comes close to the Monte

Figure 2.19: Graph comparing the 1-cluster (simple mean-field method), 2-cluster and Monte Carlo
techniques for obtained the stationary flux in NS model.

Carlo simulation. In fact, going to the three- and higher-cluster approximations one finds

=0,



that the solution remains the same, indicating that this is the exact result. With this
approximation it is possible to write down a closed system of equations for the n-cluster
probabilities P, (o1, ...,0,). The number of the equations is given by (v, + 1), the total
number of possible configurations of n site variable with v,,,, + 1 possible states (without
change of the order of the update steps, one would have (v, +2)" equations). In practice
some of these equations turn out to be trivial so that the relevant number is less than
(Umaz +1)™. Due to the exponential growth with respect to n one is, especially for larger
Umaz, Testricted to only small cluster lengths n (for the realistic value of v, = 5, one
has, for the two-cluster approximation, already 36 equations).

In Ref. [9] a rather simple extension of MFT is accomplished. The key idea is a reduction
of the configuration space by removing all states which cannot by reached dynamically.
In the context of cellular automata these states are called Garden of Eden (GoE) states
or paradisical states (because they cannot be revisited). Part of the difficulties come from
the fact that one uses parallel dynamics. This introduces a non-local aspect into the pro-
blem since the whole lattice is updated at once. On the other hand, random-sequential
dynamics is much simpler to treat analytically. For v,,,, = 1, for instance, simple mean-
field theory gives already the correct steady state, i.e., there are no correlations. A simple
example for v,,,, = 1 is the configuration (e, 1,2) of two consecutive cells, where ‘o’ de-
notes an empty cell and the numbers correspond to the velocities of the cars. Cars move
from left to right. Obviously the velocity is just the number of cells the car moved in the
previous time step. Therefore, the configuration (e, 1,2) could have evolved only from a
state which has two cars in the leftmost cell. Since double occupations are not allowed
in the present model, states containing (e, 1,2) are dynamically forbidden, i.e., they are
GoE states.

We will use pMF for v,,,, = 1 and compare with simple mean-field theory (1-cluster).
The 1-cluster approximation yields the following set of equations:

co = ¢(c+ pdce), (2.5)
c1 = cd(qe + d).

By using pMF for v,,,, = 1, configurations like (0,1) and (1, 1), i.e., a moving vehi-
cle is directly followed by another car, are not allowed. This is not possible as can be
seen by looking at the possible configurations at the previous timestep. The momentary
velocity gives the number of cells that the car moved in the previous timestep. In both
configurations the first car moved one cell. Therefore, it is immediately clear that (0, 1)
is a GoE state since otherwise there would have been a doubly occupied cell before the
last timestep. The configuration (1,1) is also not possible since both cars must have oc-
cupied neighbouring cells before the last timestep too. Therefore, according to rule R2,
the second car could not move. Comparing to the simple mean-field theory, only the first
equation is modified. Note that only for ¢y the equations are different, for PMF theory
the state (c,c) is not acceptable because this configuration can be broken down into the
states (1,0), (1,1), (0,0) and (0,1). The states (1,1) and (0, 1) are not allowed, so only
(1,0) and (0, 0) are possible states and we have to replace in Eq. (2.5) ¢? by ccy. The new
set of equations is:

co = ¢(co + pdc),
c1 = cd(qe+ d).
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Due to the modification introduced in the first equation ¢y + ¢; # c. For this reason, one

has to introduce a normalization constant n = 001+ 5 into the equations:

co = ne(co + ped),
c1 = ned(qe + d).

Expanding the first equation and remembering that ¢; = ¢ — ¢y, we have:

1= /(d—¢)®+ 4pcd?

C1 5

The flux is given by ¢; and we recover the exact solution for the case v,,,, = 1 found by
a 2-cluster approximation. This result confirms the expectations mentioned above. One
can see clearly that the difference between random-sequential and parallel dynamics is the
existence of GoE states in the latter. After eliminating these GokE states, no correlations
are left in the reduced configuration space.
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Chapter 3

Other cellular automata models

We present in this section a brief discussion about other cellular automata models.
Most of these models are slight modifications on the update rules of NS model. They
are of interest because NS model is a minimal model in the sense that all the four steps
are necessary to reproduce the basic features of real traffic; however, additional rules are
needed to capture more complex situations, e.g., metastable states. Some basic rules of
the NS model should be preserved in these new approaches. For example step 1 in the
NS model reflects the general tendency of the drivers to drive as fast as possible without
exceeding the maximum speed limit. Step 2 is intended to avoid collision between the
cars. The randomization in step 3 accounts for the different behavioural patterns of the
individual drivers, especially, nondeterministic acceleration as well as overreaction while
slowing down; this is crucially important for the spontaneous formation of traffic jams.
In addition, the use of a parallel updating scheme (instead of a random-sequential one)
is crucial since it accounts for the reaction time and can lead to a chain of overreactions.
As an example, suppose that a car slows down in the randomization step. If the density
of cars is large enough this might force the following car also to brake in the deceleration
step. In addition, if p is larger than zero, it might brake even further in step 3. Eventually
this can lead to the stopping of a car, thus creating a jam. This simple mechanism of
spontaneous jam formation is rather realistic and cannot be modeled by the random-
sequential update.

In Fig. 3.1 we see the the spontaneous jam formation for p # 0 and its corresponding
backward motion (this feature is not present for p = 0).

3.1 Changing the orders of substeps in the NS model

The effect of changing the substep order in the NS model is shown in Ref. [10]. The
authors, initially, studied the following update rules:

1. Acceleration

vj(t1) = minfv;(t) + 1, Uimag]-

2. Randomization

v(ty) = max[v;(t;) — 1,0] with probability p,
vj(te) = vi(t1) with probability 1 — p.
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(a

(b)

Figure 3.1: Figure extracted of Ref. [10]. Typical space-time diagram of the NS model for (a) p = 0.25
and p=0.2, (b)p =0 and p = 0.5.

3. Deterministic deceleration

v;(ts) = mind;(t), v;(ts)].

4. Displacement

iL‘j(t + 1) = I’J(t) -+ Uj(tg).

The difference between this model and the NS model is in the anticipation of the ran-
domization step in relation to the deceleration one. The fundamental diagram with the
same simulation conditions as those of the NaSch model, is shown in Fig. 3.2. This figure
indicates that the model leads to a higher value of maximum flux 40% higher than that
obtained with the NaSch model. When compared to the NS model, this changing leads
to a better approximation with the observed data in real traffic. In fact, when a driver
finds a high vehicle density ahead, he will first delay at random and estimate whether
he should decelerate or not by observing and evaluating his anticipation velocity and the
headway between successive vehicles. If he finds his anticipation velocity will surpass the
headway, he slows down. Due to the anticipation of the randomization step, braking times
in the state of free flow will be reduced and more vehicles with the maximum velocity will
cause an increase of capacity, while the fact that vehicles cannot maintain the maximum
velocity at high density and, as well as the fluctuation of velocity leads to the spontane-
ous formation of jams and capacity drops. In contrast to the NaSch model, the modified
version allows more vehicles to maintain a higher or even maximum velocity. This model
is thus called the sensitive drive model or the SDNS model.

This model displays bistable states. They becomes clear if we start the system with two
different initial conditions. One is the homogeneous distribution with the same headway;
the other is the megajam consisting of one large compact cluster of standing vehicles.
Thus we obtain the fundamental diagram with two branches as shown in Fig. 3.3. The
results of the VDR model arise from introducing two delay probabilities dependent on
velocity instead of the constant randomization in the NS model, while the same result in
this model comes from interchanging the order of the deterministic deceleration and the
stochastic one in the steps of the evolution rules.
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Figure 3.2: Figure extracted of Ref. [10]; the fundamental diagram of SDNS and NS model for p = 0.25.

When the density is in the range p; < p < po, the flux, in fundamental diagram, is
discontinuous. The upper branch over the flux gj,,, corresponds to the homogeneous
traffic flow, which has larger flow with no jam due to the reduction of braking times in
the sensitive driving. This case belongs to the free state and the flux reaches the maximum
as p ~ 0.18. The lower branch corresponds to the traffic jam; the flux reduces rapidly
because of the increase of the braking probability. It is evident that there is a hysteresis
loop in the fundamental diagram. From the simulated results, we can get the following
relations. In the regime of the upper branch as 0 < p < po, the average velocity is that of
the free-flow, U7 = (1 — p)Umaz + P(Vmaz — 1) = Umaa — p, therefore the flux is:

q = p5 = p(Vmaz — D).

In the regime of the lower branch as p, < p, the average waiting time T, of the first
vehicles at the head of the megajam is given by T, = 1/(1 — p). The flux is

q=(1-p)(1—p).

From the above analysis, the number of vehicles in the state of deceleration between
0 < p < py decreases and the capacity of the road approaches more closely the empirical
data than that predicted by the NS model due to the role of the stochastic delay prior to
deterministic deceleration. The increase in the number of braking vehiclesin p; < p < pyis
due to the role of the stochastic delay and deterministic deceleration at the same time will
frequently lead to the breakdown of flow and so to a traffic jam. Therefore, according to
the authors of Ref. [10], the exchange of the order of the stochastic delay and deterministic
deceleration has significant effect on traffic low. Another change studied by these authors
consists in changing the update rules as follows:

1. Randomization

vj(t1) = max[v;(t) — 1,0], with probability p,
vj(th) = v;(t), with probability 1 — p.
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Figure 3.3:
= 5,

two different initial conditions: uniform distribution state and inhomogeneous congestion v.,qz
L =5 x 103, p = 0.5. The metastable state appears in p; < p < pa.

2. Acceleration

v;(t2) = minfv;(t1) + 1, Vmaa]

3. Deterministic deceleration

v;(ts) = minld;(t), v;(ts)]

4. Displacement
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Figure 3.4: Figure extracted by Ref. [10]. The fundamental diagram is shown at the left and the graph

velocity versus density at the right.

The fundamental diagram is shown in the left part of Fig. 3.4, and the corresponding
velocity-density curve at the right. There are three different parts; 0 < p < p1, p1 < p < po
and ps < p < 1 which correspond to three different phases, namely, free flow, low-speed
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flow and jam. In this model we have an interesting situation; as the density p approaches
0.5, the velocity in low-speed flow approaches unity. The velocity is:

Umaz 1% < P15
v = ﬁ - 7(1_20),,(212_1) p1 < p < pa2,
1
;1 p = pa.
Where P1 = Uvnai%_%) and P2 = %

The NS model is updated in sequence R1-R2-R3 (corresponding to acceleration-deceleration-
randomization), while the two models studied in Ref. [10] are R1-R3-R2 and R3-R1-R2.
The update rules R2-R1-R3, R2-R3-R1, and R3-R2-R1 are discarded due the possibility
of collisions between the vehicles.

3.2 VDR model

The velocity-dependent randomization (VDR) model [11] adds a simple slow-to-start
rule to the NS model. Instead of using a unique deceleration probability p, these authors
include a velocity dependence in this parameter, so that p = p(v). For simplicity, they

study the case:
po if v=0
p(v) = { ’

p if v >0.

Since we are interested in hysteresis phenomena, we restrict ourselves to the case py > p.
Note that for pg = p the NaSch model is recovered. The parameters used are: maximum
velocity v,.. = b, braking probability p = & for moving cars, po = 0.75 for stopped
cars, Ref. [11] reports numerical simulations of periodic systems with L = 10000 lattice
sites. Fig. 3.5 shows the fundamental diagram of the VDR model. The average flux
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Figure 3.5: Figure extracted of Ref [11]. Difference between fundamental diagrams of the VDR and
NS models.

j(p) can take two values in the density interval between p; and p, depending on the
initial condition. The larger values of the average flux are obtained using a homogeneous
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initialization of the system. The lower branch is obtained starting from a completely
jammed state. It is instructive to compare the fundamental diagram of the VDR model
with those of the corresponding NS models. For small densities p < 1 there are no slow
cars in the VDR model since interactions between cars are extremely rare. Here the flux
is given by j(p) = p(Vmaz — P), i.e., identical to the NS model with randomization p. For
large densities 1 — p < 1 on the other hand, the flux is given by j(p) = (1 — po)(1 — p)
which corresponds to the NS model with randomization py. For densities close to p = 1,
only cars with velocities v = 0 or v = 1 exist.

The microscopic structure of the jammed states in the VDR model differs from those
found in the NS model. While jammed states in the NS model contain clusters with
an exponential size-distribution, one can find phase separation in the VDR model. The
reason for this behaviour is the reduction of the outflow from a jam. If the outflow from
a jam is maximal, any small jam in the free flow regime dissolves immediately since the
outflow from such a jam is larger than the global flow. Therefore phase separation cannot
occur in that case. However, if the outflow from a jam is reduced, the density in the
free flow regime is smaller than the density of maximum flux and cars can propagate
freely in the low density part of the lattice. Due to the reduction of the density in the
free flow regime, no spontaneous formation of jams is observed in the stationary state, if
fluctuations in the free flow regime are rare. We can see this phase separation at Fig. 3.6.
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Figure 3.6: Figure extracted of Ref. [11]. Space-time diagram of the VDR model for p = 0.15;
L = 400; p = 0.01 and pg = 0.5. The homogeneous initial state is not destroyed immediately, but after
approximately 93000 lattice updates. In the outflow regime of the jam the density is reduced compared
to the average density.

3.3 Cruise-control model

The cruise-control (cc) model is a simplified version of the NS model [12]. This sim-
plification can be described as a “cruise control limit”, since at sufficiently low density all
vehicles move deterministically at maximum allowed velocity. As in the NS model the
cc model is defined on a one-dimensional lattice of length L, representing a single-lane
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freeway. Each site of the lattice can be in one of the v,,,, + 2 states: It may be empty,
or it may be occupied by one car having an integer velocity between zero and v,,4,. One
iteration consists of the following steps, which are each performed simultaneously for all
vehicles. A vehicle is stationary when it travels at maximum velocity v,,,, and has free he-
adway: d > vq.. Such a vehicle just maintains its velocity. If a vehicle is not stationary,
it is jammed '. The following rules are applied to jammed vehicles.

1. Acceleration
With probability 1/2, a vehicle with d > v + 1 accelerates to v + 1, otherwise it
keeps the velocity v. A vehicle with d = v just maintains its velocity.

2. Slowing down and randomization
Each vehicle with d < v — 1 slows down to v = d and can add further deceleration
according to:

v = max[v — 1,0] with probability 1/2
v=" with probability 1/2

3. Displacement
Each vehicle advances v sites.

The randomization process in this model can produce overreaction as in the NS model, but
different from this, introduces a nondeterministic acceleration. The fundamental diagram
was obtained numerically [12] as show in Fig. 3.7.

For a spatially infinite system, the following results hold: for p < p. jams present in
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Figure 3.7: Figure extracted of Ref. [12]. Fundamental diagram of the cruise-control model. The
dotted line represents deterministic traffic, i.e., when the initial state is prepared such that for each car
Ngap > Umaz ald U = Upqz. The points are measurement results starting from random initial conditions.
Each point corresponds to one run of a closed system of length L = 30000 and an average over 2.5 x 10°
iterations after discarding a transient period of 5 x 10° iterations.

the initial configuration are eventually sorted out and the stationary deterministic state
is jam free with every vehicle moving at maximum velocity. Thus, the flux is a linear
function of density with slope v,,,. = 5. This behavior is observed up to a maximum

'Tn this model the concept of jammed and stationary are different than those used in models with
absorbing configurations, stationary means inactive and jammed; active.
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. 1 . . . . ., .
flux je(pe). For p > p. and p < ;—— the system is bistable. Starting from an initial

configuration which has many jams, the jams in this case are never sorted out. The steady
state is an inhomogeneous mixture of jam free regions and higher density jammed regions
(see Fig. 3.8). Clearly, these jammed regions decrease the average flux in the system.
It is possible, nevertheless, to prepare initial configurations that have no jams. Since all
motion is deterministic in this state, the steady state will also have no jams and the flux
will still be an increasing function of p (the dotted line in Fig. 3.7). This is possible up
to densities of

B 1
pmax - ’Uma$ + 1’
leading to a maximum flux of
Umax
Amaz = m

This clearly is much higher than the flux ¢, for random initial conditions. It is in this
sense that this system is bistable. In addition to these features, the authors studied the

Figure 3.8: Figure extracted of Ref. [12]. Dots represent vehicles which move to the right. The
horizontal direction is space and the vertical direction (down) is (increasing) time. We can see that
starting from an initial configuration which has many jams, the jams never disappear.

behavior of the free regions when are perturbed. In the deterministic region, one car
is randomly perturbed by reducing its velocity to zero. Many different choices for the
local perturbation, however, give rise to the same large scale behavior. The perturbed
car eventually reaccelerates to maximum velocity. In the meantime, though, a following
car may have come too close to the perturbed car and have to slow down. This initiates
a chain reaction—the emergent traffic jam. This defines the lifetime, ¢, of an emergent
traffic jam. Using simulation the authors determine the probability distribution of jams
as a function of their lifetime, t. Figure 3.9 shows that for ¢ > 100, this distribution
follows a power law
P(t) ~t7°,

with 0 = 1.5 £ 0.01.
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Figure 3.9: Lifetime distribution P(t) for emergent jams in the outflow region; average over more than
65000 clusters (avalanches). The dotted line has slope % Numerically imposed cutoff at ¢t = 10° (figure
extracted of Ref. [12]).

3.4 Fukui—Ishibashi Model

Fukui and Ishibashi [13] have introduced a simplified version of the NS model. The
main difference to the NS model is the absence of a velocity memory?. All vehicles have an
intrinsic velocity v,,q.. In each timestep, all drivers try to move at the maximum velocity
Umag; 1-€., they accelerate to it instantaneously. The Fukui-Ishibashi (FI) model is then
defined by the following set of rules:

1. Acceleration
The acceleration step assures that FI model does not have velocity memory since
the vehicle accelerates to the maximum velocity or to the headway between it and
the following vehicle, so
Uy, = MiN[Upaz, dn(t)].

2. Randomization
Only the vehicles with v = v,,,, are subjected to the randomization step according
to

Up = Umae — 1 with probability f,
U — Umaz with probability 1 — f.

3. Displacement

Ty = Ty + Up.

Here, x,, and v,, denote the position and speed, respectively, of the nth vehicle and d,, =
Tpi1 — T, — 1, i.e., the number of empty cells in front of this car (headway). The rules
have a simple interpretation; a vehicle that has at least v,,,, empty sites in front will
MOVe V4, cells with probability 1 — f or v,,4. — 1 cells with probability f. However, just
in the case that the headway is d < v,,4, at time ¢, then the vehicle moves d sites in the

2Tn each iteration of the NS model, the velocity v and headway d have to be accounted for the update
process.
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next step. Here the randomization step is not applied. Therefore, fluctuations occur only
at high speeds, which is just the opposite of the cruise-control limit.

For v,,,. = 1, the FI model and the NS model are identical since that in the NS model
with v, = 1, only the vehicles with v = 1 are subjected to the randomization step.
For general v,,,,, the FI model differs from the NS model in two aspects: the increase
of the vehicles speed is not necessarily gradual and the stochastic delay (deceleration
step) applies only to high-speed vehicles. Due to these modifications, no overreactions at
braking occur and therefore the FI model does not exhibit spontaneous jamming. This
type of acceleration (where there is no need to keep track of velocities) allows to introduce
a mean-field technique that provides the exact solution. These exact solutions as well as
Monte Carlo simulations are shown in Fig 3.10.
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Figure 3.10: Figure extracted of Ref. [14]. The fundamental diagram of the FI model with the
maximum car velocity M = 2 and for different values of the degree of stochastic delay f. The solid curves
are the theoretical results. The points with different symbols represent results obtained by numerical
simulations.

3.5 Wang Model

By using the car-oriented meanfield (COMF) was possible to achieve an exact analy-
tical result to the FI model [14]. However, for the NS model with v,,,, > 1 and stochastic
delay, no exact solution has been found up to now. The acceleration and stochastic delay
rules of the NS model lead to complications in the time evolution of the flux, and hence
it is very difficult to find exact analytical results. In order to understand how these rules
affect the evolution and the corresponding asymptotic state, Wang et al [15] study an
intermediate model that combines features of both models.

The model is described by the following update rules: Let C),(¢) be the number of
empty sites in front of the nth car at time t, v,(¢) be the number of sites that the nth
car moves during the time ¢ step, and M the maximum speed. The steps are:

1. Step 1
Let v, (t) = min(C,(t), M), if v, (t) = C,(t) the nth car is “the car that follows the
trail of the car ahead”. This means that the nth car may become the neighbor of
the car ahead if the car in front stops.
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2. Step 2
Stochastic delay is introduced in such a way that all the cars which follow the trail
of their car ahead have a probability f to move forward one site less than is allowed
by step 1, i.e., we have the following: wv,(t) = v, (t) — 1, with probability f, if
v, (t) = Cy(t) and v, (t) > 0.

3. Step 3
The nth car moves v, (t) sites ahead.

The number of empty sites in front of the nth car at time ¢t 4+ 1 can be written as
Ch(t 4+ 1) = Co(t) + a1 (t) — v, ().

For this model, with a maximum car velocity v,,.,, = M and a stochastic delay probability
f, the velocity of the nth car at time step ¢ as a function of the intercar spacing C,,(t)
can be written as

M if ¢> M,

) c—1 with probability f if 0<ce< M,
vp(t) =
c with probability 1 — f if 0 <c¢< M,
0 if ¢=0.

Asin the FI model, this sort of acceleration allows to simplify the equations used in car-
oriented mean field and produces an exact agreement between analytical and numerical
(Monte Carlo) results. These results are shown in Fig. 3.11.

+f=10

average speed

vehicle density

Figure 3.11: The fundamental diagram with the maximum car velocity M = 2 and for different
stochastic delay probabilities f. The solid curves are theoretical results. The points with different symbols
represent numerical simulations. The curves from the top down along the velocity axis correspond to
different values of f ranging from f =0 to 1 in steps of 0.1. (Figure extracted of Ref [15].)

Although not stressed by the authors, this model presents an absorbing phase transi-
tion at p. < ﬁ independent of f. For densities below p. the stationary state is absorbing
since the mean distance between the vehicles is greater than M and according to the up-
date rules the vehicles are not subject to the randomization step. These absorbing states
are not unique since they depend on the initial configuration. For density p, = —= the

M+2
stationary state is unique and described by v = M and C' = M + 1.
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3.6 Multilane traffic

For a realistic description of traffic on highways many authors, as discussed before,
improve the NS model by using modified update rules making them more appropriate
for real traffic. Despite these efforts a complete description demands the use of multilane
lanes in traffic simulation. Beside the use of NS rules we know that the main ingredient
required for an appropriate change of a single-lane CA model to multilane situations
is lane-changing rules. Lane changing rules for two-lane traffic can be symmetric or
asymmetric. For symmetric lane-changing rules, overtaking is allowed in both lanes.
However, for asymmetric lane-changing rules, overtaking is forbidden in one lane, e.g., in
the right lane ( this situation exists in many European countries for example, Germany).
Generically, the decision of drivers to change lane is based on two criteria:

1. Incentive criterion:
Drivers determine whether a lane change improves the individual traffic situation,
e.g., to move at their desired velocity.

ve > gap with v, = min(v + 1, Vnas)-

2. Safety criterion:
The traffic situation in the target lane is checked, especially if the available gap for
a lane change is enough for a security transition (without prevent the free flow of
the predecessor vehicle located in other lane).

gaPgther > gap,
8aDpack = Umaz-

Here gap is the number of free cells between the car and its predecessor in the actual
lane; gapgiher and gapp, are the headway in relation to its two neighbor cars, in the
other lane, ahead and behind respectively. A lane-change is then only performed if both
criteria are satisfied. In general, the update in the two-lane models is divided into two
substeps: in one substep, the vehicles may change lanes in parallel following the lane-
changing rules and in the other substep, each vehicle may move forward effectively as in
the single-lane NS model. Drivers must find some incentive in changing the lane. Two
obvious incentives are: the situation in the other lane is more convenient for driving,
and the need to overtake the slow vehicle. We show some results about two-lane model
using symmetric lane-changing rules, which are more relevant for traffic in towns and on
highways, where overtaking in both lanes is allowed.

Fig. 3.12 shows the fundamental diagram of a periodic two-lane system. The simulations
reproduce well-known results, e.g., an increase of the maximum flux per lane compared
to the flux of a single-lane road. Another unexpected result is the existence of a local
minimum of the lane-changing frequency near the density of maximum flux for small
braking probabilities p (Fig. 3.13). The behavior of the lane-changing frequency can be
explained if one takes into account the number of empty cells necessary for a lane-changing
procedure. Two prerequisites have to be fulfilled in order to initiate a lane change. First,
the situation on the other lane must be more convenient and second, the safety rules
must be fulfilled. Therefore, one needs typically 2v,,.,, + 1 empty cells on the destination
lane for a lane-changing maneuver in the free flow regime (Fig. 3.13). Hence, one finds a
local maximum of the lane-changing frequency near p; = m if the cars are ordered
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Figure 3.12: Flux per lane of the single-lane model compared with the two-lane model for systems with
Umaz = D and p = 0.5. (Figure extracted of Ref [16]).

homogeneously, which typically happens for small values of p. For larger values of p, e.g.,
p = 0.5, no local maximum is observable. Increasing the density for sufficiently small
values of p, one finds a pronounced minimum of the lane-changing frequency. This can be
understood in the limit p — 0 where, for p = ﬁ, the cars are perfectly ordered with a
gap of v,,4, sites between consecutive vehicles. Obviously, in this case both the incentive
and the safety criteria are never fulfilled and the lanes are completely decoupled. For
small p the ordering mechanism is still present and therefore the number of lane changes
is drastically reduced near p = —21
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Figure 3.13: Lane-change frequency in the two-lane model for different braking parameters p (Figure
extracted of Ref [16]).

The features of two-lane traffic are the same for multiple lanes (taking into account
homogeneous systems). We now consider different types of cars which is obviously more
relevant for practical purposes. As a first step towards realistic distributions of free flow
velocities the authors [16] have chosen two types of cars, e.g., slow cars with v, = 3

max
and fast cars with v/ = 5. Simulations were carried out with 5% of slow cars, which are
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initially positioned randomly. The fast as well as the slow cars may use both lanes, i.e.,
both cars are treated equally with respect to the lane-changing behavior. In Fig. 3.14
the effects of the slow cars on the average flux of the two-lane system is compared with
the fundamental diagram of a single-lane road with one slow car. Since passing is not
allowed for a single-lane system, clearly the slow car dominates the average flux at low
densities and platoon formation is observable. Surprisingly the two-lane system shows a
quite similar behavior, although passing is allowed and the fraction of slow cars is rather
small. Although the multilane traffic models can adopt a lot of different update rules, the
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Figure 3.14: Comparison of the flux per lane of the inhomogeneous model with the corresponding
homogeneous models for p = 0.4.(Figure extracted of Ref [16]).

results in terms of statistical point of view (criticality, phase transition etc.) do not differ

when compared with one-line models. For this reason we do not extend this discussion;
for a detailed description of multilane models see [17].

43



Chapter 4

Kinetic traffic theory

4.1 Introduction

In kinetic theory, traffic is treated as a gas of interacting particles where each parti-
cle represents a vehicle. The different versions of the kinetic theory of vehicular traffic
have been developed by modifying the kinetic theory of gases. In the kinetic theory of
gases, [(7,0,t)d®>rd*v denotes the number of molecules which, at time t, have positions
lying within a volume element d®r about 7 and velocities lying within the velocity-space
element d3v about v. The Boltzmann equation, which describes the time evolution of the

distribution f(7,,t), is given by:
of
rut) = | = 4.1

where the symbols V, and V,, denote gradient operators with respect to 7~ and v, respec-
tively, while @ is the external acceleration. The term (%—{)wu represents the rate of change
of f, with time, which is caused by collisions between molecules.

In the earliest version of the kinetic theory of vehicular traffic, Prigogine and Herman|18,
19, 20] modified the kinetic theory of gases embodied in the Boltzmann equation. In their
model traffic is treated as a one-dimensional gas of interacting particles (vehicles) descri-
bed by a distribution function f(x,v,t), such that f(x,v,t)dzdv represents the number
of vehicles with positions between x and x + dxr and velocities between v and v + dv at
time ¢t. The distribution f is normalized so that

of . .
N +v.V, +a.V,

/dvf(a:, v, t) = c(x,t), (4.2)

where ¢(z,t) is the local density of vehicles. (Unless otherwise specified, all integrals run
from —oo to co. Note that f(z,v,t) is zero for v < 0.)

The time evolution of f is governed by a Boltzmann-like equation. The principal
difference with the original Boltzmann equation is the introduction of a distribution of
desired velocities, fo(x,v,t), in the relaxation term, representing drivers’ preferences.
Specifically, fo(z,v,t)dxdv is the number of vehicles between = and = + dx whose drivers
have a preferred velocity between v and v + dv at time t. The presence of this function
in the statistical description is a novel feature, showing that the “particles"in this system
have intentions unlike a molecule, which does not have a desired velocity.
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Of principal interest is the stationary velocity distribution, which can be much different
from the distribution of desired velocities. We shall see that the stationary velocity
distribution changes abruptly at a specific density.

4.2 The Prigogine-Herman-Boltzmann equation

In one-way traffic, vehicles travel in one dimension, and Eq. (4.1) can be simplified to

read[19, 20|
of —of [of of
o " or (a)m ’ (a)im' (43)
of

where 7 | accounts for the relaxation of f toward fo in the absence of interactions of

the vehicles, while %. accounts for the changes of f arising from interactions among the
int

vehicles. Note that the term %_{int on the right-hand side of Eq. (4.3) may be interpreted

as the analog of the term (2l).,y in the Eq. (4.1), whereas the term %rel in Eq. (4.3)
may be interpreted as the counterpart of the term V,.f(7,¢,t) in the Eq. (4.1).
The idea behind the relaxation term is that drivers adjust their velocity to the desired

value, vy, on a time scale 7', called the relaxation time. This assumption is embodied in

the expression,
N f—h
( at )rel a T . (44)

In a spatially uniform system, in which f = f(v,t) and interactions between drivers can
be ignored, the solution to Eq. (4.3) is

fu,t) = folv) + [f(v,0) = fo(v)]e . (4.5)

Exponential relaxation describes the approach of many simple systems to a steady state.
In the context of the kinetic theory of gases, an analogous simplification involves replacing
the collision term with an expression of the form of Eq. (4.4); T" becomes the collision
time, and fy is a local Maxwellian distribution.[21] As will become clear, Prigogine and
Herman|18] proposed that 7" depends on the concentration of vehicles on the road, and
the relaxation process subsumes some rather complicated interactions between drivers.

In the absence of interactions between the vehicles, the distribution function evolves to
the distribution of desired velocities according to Eq. (4.5). A derivation of the distribution
of desired velocities from first principles would require knowledge of human behavior that
is beyond our present capabilities. One might try to determine the distribution of desired
velocities empirically by studying the velocity distribution at very low concentrations, but
we are unaware of studies of this kind. Prigogine and Herman simply investigated several
simple model distributions of the desired velocities.|[22]

The interaction term in Eq. (4.3) is based on the following assumptions:

1. The vehicles are point-like, that is, they do not occupy volume.
2. Vehicles remain in the same lane except when passing another vehicle.
3. In an encounter between two vehicles, one passes the other with probability P.

4. If one vehicle passes another, neither vehicle changes its velocity. In an encounter
without passing, the faster vehicle reduces its velocity to that of the slower one
ahead of it.
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5. The slowing-down process is instantaneous.
6. Only two-vehicle interactions are considered.

7. The vehicles are statistically independent, that is, the joint two-vehicle distribution
is the product of single vehicle distributions: f(z,v, 2’ v, t) = f(x,v,t)f(2', V', t).

If we use these assumptions, we can write the interaction term as,
af o
E = f(l’,l),t) du(l—P)(u—v)f(x,u,t)
int v

— 00

The first term on the right-hand-side of Eq. (4.6) corresponds to interactions between
vehicles with velocities v and v > v; the latter are obliged to adopt the smaller velocity
v resulting in an increase in the number of vehicles with velocity v. The second term
is related to interactions between vehicles with velocity v and v < v. In this case, the
interaction results in a decrease in the number of vehicles with velocity v. By combining
the two integrals, the interaction term can be rewritten as,

Because,

/uf(:c, u, t)du = c(z,t)v(z,t),

where v(x,t) denotes the local mean velocity, and

/du vf(x,u,t) = c(x,t)v,

we have,
(g—{)im = (1= P)e(x,t)[v(x,t) — v]f(z,v,t). (4.7)

If we insert the relaxation term, Eq. (4.4), and interaction term, Eq. (4.7), into Eq. (4.3),
we obtain the Prigogine-Herman-Boltzmann equation for traffic:
of | f _ f—1f

E—i_v@x T

+ (1 = P)e(x, t)[v(x, t) — o] f. (Prigogine-Herman-Boltzmann)

(4.8)
Equation (4.8) is a nonlinear equation because o(z,t) is a function (more precisely, a
functional) of f(x,v,t). A full definition of the model requires that we specify how the
passing probability and relaxation time depend on the concentration. Before examining
specific choices, we consider some general aspects of the solutions.

4.3 Stationary solutions

As discussed before, the quantity fy is a distribution function that characterizes the
system in the absence of interactions between the cars. Therefore, f; is considered to be
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that distribution function which would be achieved by drivers if the interactions between
them were negligible. The function f, can incorporate into the theory such information
as the wishes of the drivers, response of the driver-car system, speed limits, and the
characteristics of the road. The term (1 — P)ec(x,t)[v(x,t) — v]f represents the change
in f caused by interactions in which cars, when interacting with cars ahead moving with
slower speeds, either pass these cars or assume their slower speeds.

The homogeneous time-independent solution is:

fo(v)
I == aa-pPr=u

(4.9)

where by homogeneous we mean that fy is not spatially dependent. The quantity f(v)
describes the situation in which there is a steady state between the slowing down of cars
caused by interaction processes and the speeding up of cars caused by passing.

4.4 Individual and collective flow

As indicated by Eq. (4.9), we have to distinguish between two cases

e Case A: If we consider the case in which
1 —Tc(1— P)o > 0.
Then the solution f in Eq. (4.9) is changed to

_ fo(v)
T = 7 = P) o — o)

(4.10)

This solution reduces to the ideal or desired speed distribution function in the limit
of vanishing concentration. However, it is clear that this solution cannot, in general,
be valid for arbitrarily high concentrations because whenever

1—-Te(l-P)o<O,
the distribution function may become negative, which is clearly impossible.

e Case B: In this case we consider:

1—Te(1— P)v = 0. (4.11)
Then Eq. (4.9) reduces to
Fv) = %. (4.12)

The important feature to be noted here is that the homogeneous equation corresponding
to Eq. (4.12), namely,
Te(l—P)uf(v) =0,

admits the singular solution:

fv) = acd(v),
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where « is an arbitrary constant and §(v) is the Dirac delta function. Therefore, the
general solution of Eq. (4.12) is of the form

f(v) = % + acd(v).

The solution given in Eq. (4.10) corresponds to what may be called the individual flow
pattern and is related in a simple way to the ideal or desired speed distribution function.
The second solution corresponds, on the other hand, to what may be called the collective
flow pattern. Indeed, as shown by Eq. (4.11), the average speed then depends only
on the concentration, the probability of passing P, and the relaxation time 7' (both P
and T are themselves functions of the concentration), and is independent of the desired
speed distribution function and, therefore, of the wishes of the drivers. This solution
is characterized by the occurrence of a singularity at the origin. However, the critical
concentration at which the individual flow becomes collective does depend on the desired
speed distribution. In both cases the time-independent solution may be written in the
following form:
Jo()

J0) =570 = Py =)

where « is an undetermined constant that may be identically zero. This solution has to
satisfy the following two requirements:

+ acd(v), (4.13)

e Normalization. This means that:

Y A fo(v)dv
c—/o 1+Tc(1—P)(v—®)+ac' (4.14)

e Average Speed. Multiplying Eq. (4.13) by v and integrating, we obtain the condition

[T fo(v)dvv
W_A [+ Te(l— P)(o—7)° (4.15)

Eq. (4.15) with the aid of the normalization condition Eq. (4.14) maybe transformed into
a(l =Tc(1 — P)v) =0.

We see, therefore, that we have two solutions. The first solution corresponds to @ = 0
(individual flow), whereas the second corresponds to the case

Te(l—P)v =1,

with « different from zero (collective flow).

There is a striking analogy in the situation described by these equations with Bose-
Einstein condensation [23]. In that case, above a certain concentration (for a given tem-
perature) the population distribution of an ideal Bose gas splits into two parts, a regular
part and a singular one. If the concentration is further increased beyond its critical va-
lue, the singular part increases relative to the regular part. However, the Bose-Einstein
condensation occurs for a quantum system in thermodynamic equilibrium, whereas the
situation described here is closer to a nonequilibrium stationary state.
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4.5 Numerical Solutions

To simplify the notation let,

vy=cT(1—P)and A =1—~0(f), (4.16)
remembering the normalization condition (Eq. (4.14)) and replacing f, = f—co, we have:
1= fodv_ (4.17)
o A+

for the individual flow. As 7 increases, A decreases, and becomes zero for v = . (recall
that A cannot be negative). So we can find . via

/fod” — . (4.18)

v

From this point we have a transition between individual flow to collective one and « can
be found via

— [ T (4.19)

Prigogine and Herman [18] introduced further assumptions regarding the dependence of
P and T on the concentration ¢, which we shall refer to as the Prigogine-Herman model.
We expect the passing probability P to decrease with ¢, because drivers will find it more
difficult to overtake a slower vehicle if adjacent lanes are congested. (If vehicles were
truly point particles, there would be no such difficulty.) Prigogine and Herman assumed
a linear relation between P and ¢, such that P = 1 for ¢ = 0, and decreases to zero at
some maximum concentration, cy... That is,

P=1—nwithn= (4.20)
They further proposed a concentration-dependent relaxation time,
(1 - P)
T=—°—- 4.21
P Y ( )

where 7 is a constant with dimensions of time. Thus, according to Prigogine and Herman,
the greater the value of ¢, the smaller the value of P, and the longer it takes a driver to
attain the desired speed. In their model, 7" does not represent an intrinsic limitation of
drivers (that is, a reaction time) or of their vehicles (inertia), because T'— 0 as ¢ — 0.
Inserting Eqs. (4.20) and (4.21) in Eq. (4.16), we find,

 Cnax T
=

(4.22)

For numerical studies we always use the simplified equation (4.17), remembering that
v is given by Eq. (4.22) and X\ by Eq. (4.16).
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4.5.1 Numerical Method

Consider the numerical solution of Eq. (4.17), yielding the value of A such that the
integral is unity, given the function fy(v) and ~, which is determined by the concentration
via Eq. (4.22). Although the numerical method is simple, some care is required, because
in some cases the integral is improper.

Among the many methods for the numerical evaluation of integrals, we choose one that
is relatively simple yet accurate by fitting cubic polynomials through successive groups of
four points,[24] which is equivalent to the following expression,

Tn 3 7 23
/ y(r)de ~ h|<yi+—-vo+ —ys+ys+ys+---

8 6 24
Yt Yt s o+ o
Yn—4 Yn—3 24yn—2 6yn—1 8yn )

where h = (z, —21)/(n — 1), y; =y(zj), and z; =2, + (j — D)h, for j=1,... n.
Dealing with an infinite range of integration requires greater care. We might truncate
the integral, but the error depends on the choice of the cutoff. A more appealing alter-
native is to change variables to map the infinite range of integration to a finite one. For
an exponential distribution of desired velocities, illustrated in Subsection 4.6 , we are led
to Eq. (4.26) for which the substitution ¢ = e~¥/* results in an integral over the finite

interval: .
dt
1 :/ _ (4.23)
0 A—yvolnt

Once we have a method for evaluating the integral over velocities, we use a root-finding
method to solve Eq. (4.26). For equations of the type used in Ref. [18] and the ones of
interest here, the secant or Newton-Raphson methods are appropriate [25]. Although
both are efficient, we will use the secant method, a recursive method used to find the
solution to the equation f(z) =0 via the relation,

T _ T 1 f(Tn) = Tn f(00 1)
f@n) = f(@n)

starting from a pair of distinct initial values, z; and x5. The idea is to follow the secant
line to its z-intercept and use that as an approximation for the root. This idea is similar
to the Newton-Raphson method, which follows the tangent line, but the secant method
does not require knowledge of the derivative.

The computational procedure for solving Eq. (4.17) is as follows. Let g(\,n) be the
value of the integral in Eq. (4.17) over the interval [v;, vs], given by a function that employs
the method of Eq. (4.23) using n integration points. The latter is chosen according to the
desired precision, using a function int(\), which evaluates the integral using successively
larger numbers of points, until the relative difference is smaller than a certain tolerance.

4.6 Some distributions of desired velocities

As example, we present the study of two distributions of desired velocities, the first
corresponds to exponential distribution of desired velocities in which was discussed in Ref.
[18] and the second corresponds to Gaussian distribution of desired velocities performed
in our article attached.
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4.6.1 Exponential distribution of desired velocities

As an illustration, we solve the Prigogine-Herman model for an exponential distribu-
tion of desired velocities, as discussed in Ref. [18]. Let

fo= @(v)%e”/ v, (4.24)

for which the mean velocity is vy. In this case the most probable desired velocity is zero,
and because fo(v = 0) > 0, there is no transition. The stationary solution is

Comaxn€” 0/

= 4.25
vo(A + yv) (4.25)
where A is determined by the normalization condition,
1 oo —v/vg
1=— | S . (4.26)

vo Jo A+

The value of A for given values of v and v, is obtained numerically as we have described.

Figure 4.1a shows the normalized flux ¢/cpax as a function of the normalized concen-
tration 7 = ¢/cpax. Note the linear relation between flux and concentration for small 7.
In this regime the slope of each curve depends on vy, the average desired velocity. At high
concentrations the normalized flux is independent of vy. The mean velocity is plotted
versus 77 in Fig. 4.1b for several values of vy. As for the case of the normalized flux, all
curves exhibit the same behavior at high concentrations.

(a) (b)

Figure 4.1: (a) The normalized flux Q = ¢/cmax and (b) normalized mean velocity v = ©/vg versus the
normalized concentration 17 = ¢/¢max for ¢max™ = 0.1 and mean desired velocity vy. At low concentrations
the mean velocity is close to its desired value, and the normalized flux is proportional to vg. At larger
concentrations the normalized fluxes for different values of vy approach a common function.

It is interesting to compare the stationary velocity distribution with the corresponding
distribution of desired velocities. Figure 4.2 shows that the stationary velocity distribution
is close to the distribution of desired velocities for a relatively low concentration (n =
0.2). At a higher concentration (n = 0.4, Fig. 4.3), the two distributions differ, with
higher probabilities for low velocities in the stationary velocity distribution than in the
distribution of desired velocities.
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Figure 4.2: (Color online) Distribution of desired velocities (dashed lines) and stationary velocity
distribution (continuous lines) for exponential desired velocity distributions with vy as indicated; n = 0.2.
In all cases, the stationary distribution exceeds the desired one at low velocities, and vice-versa.
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Figure 4.3: (Color online) Distribution of the desired velocity and stationary velocity distribution as in
Fig. 4.2 for n = 0.4. At this concentration the differences between the stationary and desired distributions
are more dramatic than in Fig. 3.

4.6.2 Gaussian distribution of desired velocities

We now consider a more realistic example that has received little attention until now
— a Gaussian-like distribution of desired velocities,

fo(v) =cA [6_(”_”")2/”3 - e_”g/”g] O(v) ©(2vy — v). (4.27)
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The parameter vy represents the mean desired velocity, and v, is a measure of the dis-
persion of the distribution. Because of the step functions, fj is zero outside the interval
[0,2vg]. The second term in brackets ensures that fy goes to zero continuously at the
endpoints of this interval. The normalization factor A is approximately (v,y/7)"! for
Vg > Vq-

Because [(fo/v)dv < oo, there is a transition between individual and collective flow.
According to Eq. (4.18), the critical point is given by

2v
= A / tdv et oid]
0 v

which is readily evaluated numerically. We proceed as before and calculate the stationary
velocity distribution, f(v), and the stationary mean velocity and flux. Figure 4.4 shows
the flux () as a function of normalized concentration for several values of vy, and v, = 20.
As expected, the slope of ¢(n) jumps from a positive to a negative value at the transition
from individual to collective flow. In the latter regime, q(n) is characterized by a single
function, independent of vy. The larger the value of vy, the smaller the critical density 7.

50
...... v,=60 v =20
f ——=v,=80 v,=20
40 - / \ —— V°=100 Va=20
/ /" — - v,=120 v =20
/ % Transition points
/
30 - /
/7
e] /77 s .
20 A /////
/7
/7
/7,7
10 A ///',"
72
¢
0 - T T T I\
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: (Color online) The flux Q as a function of the normalized concentration 7 in the Prigogine-
Herman model using the distribution of desired velocities of Eq. (4.27), with v, = 20. The transition
points are 7. = 0.375, 0.395, 0.421, and 0.458, for for vg = 120, 100, 80, and 60, respectively. Above the
critical concentration, the flux follows a master curve independent of vg.

A notable aspect of the transition is the sudden change in the stationary distribution
at the critical concentration at which the distribution splits into a regular and a singular
part. In Fig. 4.5, which compares the stationary velocity distribution and distribution
of desired velocities for several concentrations in the individual flow regime, we see that
the two distributions have the same area, as required by normalization. For n = 0.15
the distributions are indistinguishable; at higher concentrations small differences appear.
The critical concentration, n. = 0.421, represents the limit for individual flow; for n > .
the stationary velocity distribution is the sum of a regular part, given by fy/(yv), and
a singular part, acd(v), with a given by Eq. (4.19). In Fig. 4.6 we compare the regular
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part of the stationary velocity distribution with the corresponding distribution of desired
velocities for n > n.. The area of the regular part of the stationary velocity distribution
is smaller than that of the distribution of desired velocities. The difference corresponds
to the d-function at the origin.

1.2
—— f, n=0.15
— f, =0.15
1.0 A "
——-f, =03
— f, n=0.3
[ Y PN 0 W CA IPPPP f,, n=0.421
— f, n=0.421
—
o
o> 0.6 1
=
0.4 -
0.2 -
0.0 T T
0 20 40 60 80 100 120 140 160

Figure 4.5: The stationary velocity distribution (solid line) and corresponding distribution of desired
velocities (dashed line), for concentrations in the individual flow regime. The distribution of desired
velocities is given by Eq. (4.27) with vy = 80 and v, = 20. The difference between the stationary and
desired distributions grows with increasing concentration.

4.7 Paveri-Fontana model

In the basic Prigogine-Boltzmann (PB) model, the changes of vehicular speeds are
assumed to be due to two main processes: the binary interaction process (namely, the
slowing down process undergone by a fast car which encounters a slow one); and the
relaxation process (the process due to the change in speed which occurs when a driver ac-
celerates a vehicle towards a desired speed). Employing a set of appropriate assumptions,
the original Prigogine-Boltzmann equation was proposed, for the case where drivers do
not change their desired speeds according to traffic conditions. In order to account for the
adaptive behavior of drivers, that is in order to account for the fact that traffic conditions
do actually affect the “programs” (desired speeds) of drivers, an adjustment term was in-
troduced on the right side of the basic Prigogine-Boltzmann equation by Paveri-Fontana.
Let g(x,v,t;w) be the one-vehicle distribution function for vehicles whose desired speed
is w. Namely, let g(z,v,t;w)drdvdw equal the (expected) number of vehicles, at time ¢,
in dr (around z) and dv (around v) with desired speed in dw (around w). Then one finds
that:

faot) = [ gotiods and fiww) = [ oot
0 0

where f(z,v,t) and fo(z,w,t) are the previously defined one-vehicle speed distribution
function and desired speed distribution function, respectively. Vehicular concentration
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Figure 4.6: Regular part of the stationary velocity distribution (solid line) and the corresponding
distribution of desired velocities (dashed line) for densities in the collective flow regime; parameters as in
Fig. 4.5. Note the differences in amplitude between the stationary and desired distributions, associated
with a population of cars having velocity zero in the stationary distribution.

¢(x,t) and flux ¢q(z,t) are defined by:

c(x,t) // (z,v,t;w)dwdv and q(z,t) = //vga:vtw)dwdv

the assumptions regarding the interaction term are the same as those employed by PB.
SO

(%’:)im = f(z,0,1) /:0(1 — P)(u — v)g(x, u, t; w)du
— gz, v, tw) / du(l — P)(v —u) f(z, u,t).

—00

The improved Prigogine-Herman equation is:

Q+ —|9(z,v,t; )+g
ot Vo |9\ EY TG,

flx,v,t) /00(1 — P)(u—v)g(x,u,t;w)du
—g(z,v,t;w) /v du(1 — P)(v —u) f(z,u,t),

—00

W — Vg

T g(x,v,t;w)] =

with -
faot) = [ glov.tiw)da.
0

The term 9/0v[[(w—v)/T]g(x,v,t;w)] is related to relaxation. Different from original PB
model for each x value, we expect that a vehicle with initial velocity vy approaches to its
desirable velocity w according to:

v(t) = w — (w — vy)exp V7T,
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The acceleration of a vehicle moving with initial speed vy and desired speed w is

w — Vg

T

a =

To compare the equation proposed here with the original PB equation, note that the
main change depends on the introduction of g(x, v, ¢;w). The collision process is described
in the same way in both treatments. The description of the time relaxation process is
based, in both approaches, on assumption I (existence of a unique time relaxation) and
assumption IT (no changes in driving programs): assumption III (on the exponential
approach to the desired velocity) replaces the assumption of an exponential relaxation.
The main shortcoming of the Paveri-Fontana equation is the difficulty encountered in
seeking analytical solutions when the collisional process cannot be neglected. In this
sense, the PB equation is much easier to manipulate. Nevertheless this contribution has
been used extensively in recent approaches in kinetic models. Wagner et al. [26] proposed
a traffic flow model using the desired velocity proposed by Paveri and Fontana [27|. By
taking into account the nonzero length of vehicles, these authors extend the description
of Paveri and Fontana to the high-density regime. In Ref. [28]| a successive slowing-
down process is considered, in which drivers react to traffic conditions in a more cautious
manner.
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Chapter 5

ANaSch Model

5.1 Introduction

The Nagel-Schreckenberg (NS) model holds a central position in traffic modeling via
cellular automata, because it reproduces features commonly found in real traffic, such as
the transition between free flow and a jammed state, start-and-stop waves, and shocks
(due to driver overreaction) [3]. This simple model represents the effect of fluctuations
in driving behavior by incorporating a stochastic element: the spontaneous reduction of
velocity with probability p.

Although the NS model has been studied extensively, the nature of the transition
between free and jammed flow, in particular, whether it corresponds to a critical point,
remains controversial [5, 4, 7, 29]. A proposed definition of the order parameter in the
NS model [30], and a subsequent comment [31, 32| are pertinent to this issue. According
to the authors of Ref. [31], results for the lifetime distribution, spatial correlations, and
relaxation time provide evidence for a “crossover type jamming transition'from free flow
to the jammed regime, but not for a well defined phase transition.

In the original NS model, at each time step (specifically, in the reduction substep),
a driver with nonzero velocity reduces her speed with probability p. Here we propose a
simple yet crucial modification, eliminating changes in speed in this substep when the
distance to the car ahead is greater than the current speed. We believe that this rule
reflects driver behavior more faithfully than does the original reduction step, in which
drivers may decelerate for no apparent reason. While one might argue that distractions
such as cell phones cause drivers to decelerate unnecessarily, we can expect that highways
will be increasingly populated by driverless vehicles exhibiting more rational behavior.
The modified model, which we call the Absorbing Nagel-Schreckenberg (ANS) model,
exhibits a line of absorbing-state phase transitions between free and congested flow in
the p — p plane. (Here p denotes the density, i.e., the number of vehicles per site.) The
modification proposed here allows us to understand the nature of the phase transition in
the original model, and to identify a proper order parameter. The ANS model exhibits a
surprising reentrant phase diagram. Some time ago, Wang studied a model with the same
modified reduction step, and found that free flow is absorbing for all densities < 1/7,
regardless of p [15]. This model differs from ours in that acceleration to the maximum
allowed speed occurs in a single update, rather than in increments.

Regarding the nature of the phase transition in the original NS model, the key insight
is that, for p = 0, it exhibits a transition between an absorbing state (free flow) and an
active state (congested flow) at density p = 1/(vmaz+1), where v,,,, denotes the maximum
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speed. Free flow is absorbing because each car advances the same distance in each time
step, so that the configuration simply executes rigid-body motion (in the co-moving frame
it is frozen). We note that for p < 1/(vmas + 1), many absorbing configurations exist;
which one is attained by the dynamics depends on the initial condition. Congested flow, by
contrast, is active in the sense that the distances between vehicles change with time. Below
the critical density, activity (if present initially) dies out, and an absorbing configuration
is reached; for p > 1/(Vpmaz + 2) there must be activity, due to lack of sufficient space
between vehicles. Setting p > 0 in the original model is equivalent to including a source of
spontaneous activity. Since such a source eliminates the absorbing state [33], the original
NS model does not possess a phase transition for p > 0. (It should nonetheless be possible
to observe scaling phenomena as p — 0.) A similar conclusion was reached by Souza and
Vilar [29], who drew an analogy between the phase transition at p = 0 and a quantum
phase transition at temperature 7" = 0. In their analogy, p > 0 corresponds to 1" > 0, for
which, sensu stricto, there is again no phase transition.

5.2 Model

The NS model and its absorbing counterpart (ANS) are defined on a ring of L sites,
each of which may be empty or occupied by a vehicle with velocity v = 0,1, ..., Vynaz.
(Unless otherwise noted, we use v,,., = 5, as is standard in studies of the NS model.)
The dynamics, which occurs in discrete time, conserves the number N of vehicles; the
associated intensive control parameter is p = N/L. Denoting the position of the i-th
vehicle by z;, we define the headway d; = x;1; — x; — 1 as the number of empty sites
between vehicles 7 and 7 + 1. Each time step consists of four substeps, as follows:

e FEach vehicle with v; < v,,4, increases its velocity by one unit: v; — v; + 1
e Each vehicle with v; > d; reduces its velocity to v; = d;.

e NS model: each vehicle reduces its velocity by one unit with probability p.
ANS model: each vehicle with v; =d; reduces its velocity by one unit with probability

p-

e All vehicles advance their position in accord with their velocity.

In practice, given the velocities v; and headways d;, there is no need to keep track
of positions: the final substep is simply d; — d; — v; + v;4q for ¢ = 1,..., N — 1, and
dN —)dN—UN—i-Ul.

The modification of the third substep leads to several notable changes in behavior, as
reflected in the fundamental diagram shown in Fig. 5.1, which contrasts the flux-density
relation in the NS and ANS models. In the ANS model the flux exhibits a discontinuous
first derivative at a certain density p.(p) (for any p between zero and one), while in the
NS model the flux and other observables are smooth functions of density for p > 0.
Thus the ANS model exhibits a phase transition for general p, whereas the NS model
has a phase transition only for p = 0 [30, 31]. The flux ¢ generally takes its maximum
value at the transition. (For small p, however, maximum flux occurs at a density above
pe = 1/(Vpmaz + 2), approaching p = Umalﬁl for p = 0). The low-density, absorbing phase
has v; = V0. and d; > V4. + 1, Vi; in this phase all drivers advance in a deterministic
manner, with the flux given by j = pv,.... In the active state, by contrast, a nonzero
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(Color online) Flux j versus density in the NS and ANS models for probabilities p = 0.1
(upper) and p = 0.5 (lower). System size L = 10°; vehicles are distributed randomly at ¢ = 0. Error bars

Figure 5.1:
are smaller than symbols.

fraction of vehicles have d; < v,,.,. For such vehicles, changes in velocity are possible,
and the configuration is nonabsorbing. The stationary fluxes in the NS and ANS models
differ significantly over a considerable interval of densities, especially for high values of p.
Below the critical density p., this difference is due the existence of an absorbing phase in

the ANS model. For densities slightly above p., most vehicles have velocity v; = v,4, and
d; = Umaz + 1, although there is no absorbing state. As the density approaches unity, the

differences between the fluxes in the ANS and NS models become smaller.
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Figure 5.2: (Color online) Steady-state flux versus density in the ANS model for (a) p = 0.1, 0.3 and 0.5,

and (b) p = 0.5, 0.7 and 0.9. Note that the density of maximum flux first decreases, and then increases,

with increasing p; the minimum occurs near p ~ 0.5. System size L = 10°; vehicles are distributed
randomly at ¢ = 0. Error bars are smaller than symbols.

For fixed deceleration probability p, the flux 7 = pv first grows, and then decreases as
we increase the vehicle density p. An intriguing feature is the dependence of the density

59



at maximum flux on the probability p: Fig. 5.2 shows that the density at maximum flux
decreases with increasing p until reaching a minimum near p = 0.5, and subsequently
increases with increasing p. This reflects the reentrant nature of the phase diagram, as
discussed in Sec. 5.3.

5.2.1 Models with Many Absorbing States

The universality of DP (directed pecolation) critical behavior for models with a unique
absorbing state is well established, models such as the contact process (CP), Schlogl’s first
model, and monomer-dimer model of Ziff, Gulari, and Barshad (ZGB) belong to the same
universality class. The study of many other models demonstrates the robustness of DP
critical behavior in spite of quite dramatic differences in the evolution rules of the various
models. Presently there is substantial evidence in favor of the hypothesis that models
with a scalar order parameter exhibiting a continuous transition to a unique absorbing
state generically belong to the universality class of directed percolation. For models with
more than one absorbing state there are no clear ideas about the possible universality
classes.

A new kind of critical behaviour at an absorbing-state phase transition was first de-
monstrated by Grassberger, Krause, and von der Twer in a study of a model involving the
processes X — 3X and 2X — 0. This model is very similar to a class of models known
as branching annihilating walks (BAW). In the BAW a particle jumps, with probability
p, to a nearest neighbor, and if this site is occupied both particles are annihilated. With
probability 1 — p the particle produces n offspring which are placed on the neighboring
sites. If an offspring is created on a site which is already occupied, it annihilates with the
occupying particle leaving an empty site. For n even these models have non-DP beha-
vior, while for n odd the behavior is compatible with DP. Note that in both the model
proposed by Grassberger, Krause, and von der Twer and in BAW with an even number
of offspring the number of particles is conserved modulo 2. This conservation law might
be responsible for the non-DP behaviour. So due the importance in studying the critical
behaviour of systems with many absorbing states, we present a brief discussion about
two models that show many absorbing states and have DP behaviour. These models are
Dimer reaction model (DR) and pair contact process (PCP).

In a one-dimensional lattice the DR model [34]| particles may not occupy neighboring
sites. If sites 4, ¢ — 1, and 7 + 1 are vacant, we say that site 7 is open; adsorption
happens only at open sites. If we think of the sites as corresponding to bonds in the dual
lattice, the particles correspond to dimers occupying bonds in the dual lattice!. Suppose
a particle has just arrived at site ¢. If sites i — 3, ¢ — 2, i + 2, and 7 + 3 are all vacant,
the particle remains. If any of the four sites is occupied, the new particle reacts with
one other particle with probability 1 — p and remains with probability p. The second
neighbors have priority in the reaction: the new particle can react with a third neighbor
only if both second-neighbor sites are empty. The reaction rules are illustrated in Fig.
5.3. We note that reactions with third neighbors are essential, for without them there
is no active steady state even for p = 0. There are many absorbing configurations for
the DR: any configuration without a three-site vacancy cluster, i.e., devoid of open sites.

! The lattice points of the dual lattice are defined by the centers of the unit cells of the lattice. A bond
in the dual lattice is placed wherever it does not cross a bond of the lattice.
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Figure 5.3: Tllustrative picture shows dimer reaction rules involving a newly adsorbed particle (at the
center of the cluster) and a second or third neighbor.

Of these absorbing states, the one with maximal particle density consists of alternating
vacant and occupied sites; in the one with minimal density, occupied sites alternate with
pairs of vacant sites. Clearly any sequence ogogogog, where o means occupied and g can
be a one- or two-site gap, is absorbing.

In Jensen’s pair contact process PCP [35], each site of the one-dimensional lattice Z
is either vacant or occupied by a particle. Each nearest-neighbor (NN) pair of particles
has a rate p of mutual annihilation, and a rate 1 — p of attempted creation. In a creation
event involving particles at sites i and i+ 1, a particle may appear (with equal likelihood)
at site i i — 1 or at i+ 2, provided the chosen site is vacant. (Attempts to place a particle
at an occupied site fail.) In an annihilation event, a NN pair of particles is removed. The
rules are illustrated in Fig. 5.4 (a) and the possible absorbing states are shown in 5.4 (b).

In the ANS model the density p = 1/7 has an only absorbing configuration composed
by a homogeneous distribution (one vehicle followed by six empty cells). For densities
p < 1/7, many states are absorbing since d; > 6 and > | d; = (1—p)L/p. We show in fig
5.5 the unique absorbing configuration for p = 1/7 and possible absorbing configurations
for p = 1/8 and 1/9. We discuss in the following sections the critical exponents of ANS
model and its universality class.

5.2.2 Special cases: p=0and p=1

For the extreme values p = 0 and p = 1 the ANS model is deterministic; these two
cases deserve comment. For completeness we mention the corresponding results pertaining
to the NS model given in [36], which also includes a discussion of mean field theories. For
p = 0, the NS and ANS models are identical. The system reaches an absorbing state,
Vi = Upmaz, Vi, for densities p < 1/(vnee + 1). For higher densities we observe nonzero
activity in the steady state. We note however that there are special configurations, in
which v; = d;, Vi, with some v; < V4., Whose evolution corresponds to a rigid rotation
of the pattern. (A simple example is v; = d; = n, Vi, with n = 1, 2, 3 or 4, and density
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Figure 5.4: Tlustrative picture shows the update rules of PCP model (a). Possible absorbing configu-
rations (b).
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Figure 5.5: Tllustrative picture shows the possible ANS absorbing configurations for densities p = 1/7,
1/8 and 1/9. Note that for p = 1/7 the absorbing configuration is unique.

p=1/(n+1).) Since our interest here is in the model with 0 < p < 1 we do not comment
further on such configurations.

For the NS model with p = 1, from one step to the next, each velocity v; is nonin-
creasing. (Of course v; — v; + 1 at the acceleration substep, but this is immediately
undone in the subsequent substeps.) Thus if the evolution leads to a state in which even
one vehicle has velocity zero, all vehicles eventually stop. Such an event is inevitable for
p > 1/3, since in this case d; < 1 for at least one vehicle, which is obliged to have v; = 0
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after one step. For p < %, steady states with nonzero flux are possible, depending on
the choice of initial condition. Such configurations are metastable in the sense that the

stationary state depends on the initial distribution. In the ANS model with p = 1 the
mean velocity in steady state is zero only for p > 1/2. For p < 1/(Vsas + 2), we find that
the system always reaches an absorbing configuration with ¥ = v,,,4,. In the remaining

interval, 1/(Upmae +2) < p < 1/2, we find 7 =1 — 2p.
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Figure 5.6: Fundamental Diagram for ANS model with p = 1.

5.3 Phase diagram

5.3.1 Initial condition dependence

In studies of traffic, states are called metastable if they can be obtained from some,
but not all initial conditions [37, 38, 11, 39, 40]; such states are an essential component
of real traffic. Since the NS model is not capable of reproducing this feature, models with
modified update rules have been investigated by several authors [37, 38, 11|. In the ANS
model, by contrast, there is a region in the p — p plane in which, depending on the initial
condition, the system may evolve to an active state or an absorbing one. Our results
are consistent with the usual scenario for absorbing-state phase transitions [33, 41, 42|:
activity in a finite system has a finite lifetime; in the active phase, however, the mean
lifetime diverges as the system size tends to infinity. Properties of the active phase may be
inferred from simulations that probe the quasistationary regime of large but finite systems
[44].
To verify the existence of metastable states in the ANS model, we study its evolution
starting from two very different classes of initial conditions (ICs): homogeneous and
jammed. In a homogeneous IC, the headways d; are initially uniform as possible, given
the density p = 1/(1 + d), where d denotes the mean headway. In this case the initial
velocity is v,,4, for all vehicles. In a jammed IC, N vehicles occupy N contiguous sites,
while the remaining N(p~! — 1) sites are vacant; in this case d; = 0 fori = 1,..., N — 1,
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and only vehicle N has a nonzero initial velocity (vy = Upa,). Homogeneous ICs are
much closer to an absorbing configuration than are jammed ICs. We note that random
initial conditions lead to the same steady state as jammed ICs.

0.8 0.72

® 0.60 @

0.6 0.8 1.0 0.12 0.13 0.14 0.15 0.16

P P

Figure 5.7: (Color online) Steady-state flux versus density for p = 0.1 and L = 10°. Homogeneous
(stars) and jammed (circles) ICs lead to identical stationary states (panel a) except for a small interval
of densities near maximum flux highlighted in panel b. Error bars are smaller than symbols.

Figure 5.7 shows the fundamental diagram obtained using homogeneous and jammed
ICs for p = 0.1; for this value of p the stationary state is the same, regardless of the IC,
except near p = % where, for the homogeneous ICs, an absorbing configuration is attained,
having a greater steady-state flux than obtained using jammed ICs. For higher probabi-
lities p, we find a larger interval of densities in which the stationary behavior depends in
the choice of IC. In Fig. 5.8, for p = 0.5, this interval corresponds to 0.118 < p < 0.143;
higher fluxes (black points) are obtained using homogeneous ICs, and lower fluxes (red)
using jammed ICs. Homogeneous ICs rapidly evolve to an absorbing configuration, while
jammed ICs, which feature a large initial activity, do not fall into an absorbing configu-
ration for the duration of the simulation (¢,,,, = 107), for the system size (L = 10°) used
here. In Fig. 5.8, the flux obtained using jammed ICs (red stars) exhibits a discontinuous
first derivative, signaling a continuous phase transition. The flux for homogeneous ICs
(black circles), exhibits a downward jump at p = 1/7. While the latter might be inter-
preted as evidence of a discontinuous phase transition, we note that the absorbing state,
to which homogenous ICs evolve for smaller densities, ceases to exist for p > 1/7. Thus
p = 1/7 can be seen as the terminal line of the absorbing phase. As in sandpile models,
the absorbing-state phase transition occurs at a smaller density (in the ANS model, that
marking the discontinuity in the derivative of ), at which a nonabsorbing (active) phase
first appears. For 0 < p < 1, the properties of the active phase (obtained using either
jammed or random ICs) are nonsingular at p = 1/7.

Systematic investigation of the steady-state flux obtained using homogeneous and
jammed ICs leads to the conclusion that the p - p plane can be divided into three regions.
To begin, we recall that for p > 1/(vjae + 2) and p > 0, the mean velocity ¥ must be
smaller than v,,,,. Thus the activity is nonzero and the configuration (i.e., the set of
values v; and d;) changes with time. In this region, homogeneous and jammed ICs always
lead to the same steady state.

For p < 1/(Umes + 2), absorbing configurations exist for any value of p. There is
nevertheless a region with p < 1/(vne: + 2) in which activity is long-lived. In this region,
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Figure 5.8: (Color online) Steady-state flux versus density as in Fig. 5.7, but for p = 0.5.

which we call the active phase, the steady state depends on whether the IC has little
activity (homogeneous) or much activity (jammed). For smaller densities, all ICs evolve
to an absorbing configuration; we call this the absorbing phase. The boundary between
the active and absorbing phases, determined via the criterion of different steady states for
homogeneous and jammed ICs, is shown in Fig. 5.9. We note that in Wang’s model [15]
there are only two regions: an absorbing phase for p < 1/7 and an active one for p > 1/7.

Our results are consistent with the following scenario, familiar from the study of
phase transitions to an absorbing state [33, 41, 42]: for finite systems, all ICs with p <
1/(Vmae +2) and p > 0 eventually fall into an absorbing configuration. Within the active
phase, however, the mean lifetime of activity grows exponentially with system size. The
phase boundary represents a line of critical points, on which the lifetime grows as a power
law of system size. (Further details on critical behavior are discussed in Sec. 5.4.) A
surprising feature of the phase boundary is that it is reentrant: for a given density in the
range 0.116 < p < 1/(Vmaz + 2), the absorbing phase is observed for both small and large
p values, and the active phase for intermediate values. The reason for this is discussed in
Sec. ITI.C. We denote the upper and lower branches of the phase boundary by p,(p) and
p—(p), respectively; they meet at p. ~ 0.116.

The phase boundary is singular at its small-p limit. As p tends to zero from positive
values, the critical density approaches 1/7, but for p = 0 the transition occurs at p = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar to that of a stochastic
sandpile [45, 46]. In the sandpile, there are no absorbing configurations for particle density
p > z.—1, where z. denotes the toppling threshold; nevertheless, the absorbing-state phase
transition at a density strictly smaller than this value. Similarly, in the ANS model there
are no absorbing configurations for p > 1/7, but the phase transition occurs at some
smaller density, depending on the deceleration probability p. Further parallels between
the ANS model and stochastic sandpiles are noted below.

The phase boundary shown in Fig. 5.9 represents a preliminary estimate, obtained
using the following criterion. Points along the lower critical line p_(p) correspond to the
smallest p value such that each of 200 arbitrary ICs remain active during a time of 107
steps, in a system of L = 10° sites. Similarly, p, (p) corresponds to the largest p value
such that all 200 realizations remain active. For selected points, a precise determination
was performed, as described in Sec. 5.4. We defer a more precise mapping of the overall
phase diagram to future work.
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Figure 5.9: (Color online) Boundary between active and absorbing phases in the p - p plane. Black
points (circles) joined by lines: preliminary estimates from initial-condition dependence as explained in
text. Isolated red points (stars): precise estimates obtained via finite-size scaling as described in Sec. IV.
The open circle at p = 1/7, p = 0 is not part of the phase boundary: for p = 0 the transition occurs at
p = 1/6. The open circle p = 1/7, p = 1 marks the other end of the phase boundary; we note however
that at this point, all initial conditions evolve to the absorbing state.

The phase transitions at p_(p) and p,(p) appear to be continuous. Figure 5.10 shows
the steady-state activity (defined below) versus p for density p = 1/8. In the vicinity of
the transition, the curves become sharper with increasing system size, as expected at a
continuous phase transition to an absorbing state.

5.3.2 Order parameter

Having identified a continuous absorbing-state phase transition in the ANS model,
further analysis requires that we define an appropriate order parameter or activity density.
Since the absorbing state is characterized by v; = vz, V2, one might be inclined to define
the activity density simply as p, = Uyqe — . The problem with this definition is that not
all configurations with v; = v,,4., Vi are absorbing: a vehicle with d; = v,,,, may reduce
its speed to V4 — 1, yielding activity in the first sense. We define the activity density
as:

Pa = Umaz — v +ppa,2 = Pa,1 +ppa,27 (51)

where p, o denotes the fraction of vehicles with v; = d; = vye,. According to this defi-
nition, the activity density is zero if and only if the configuration is absorbing, that is,
if v; = Vae, and d; > Ve, Vi. Studies of large systems near the critical point reveal
that pg1 >> p, 2, so that the latter can be neglected in scaling analyses. It is nonetheless
essential to treat configurations with p, 2 > 0 as active, even if p,; = 0.
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Figure 5.10: (Color online) Steady-state activity p, versus p for vehicle density p = 1/8. System sizes
(upper to lower curves) N = 1000, 2000 and 4000. Error bars smaller than symbols.

5.3.3 Reentrance

In this subsection we discuss the reason for reentrance, that is, why, for p. « < p < pe,
the system reaches the absorbing state for large p as well as small p. Since deceleration
is associated with generation of activity (i.e., of speeds < vp,q:), a reduction in activity
as p tends to unity seems counterintuitive. The following intuitive argument helps to
understand why this happens. For p ~ 0, vehicles rarely decelerate if they have sufficient
headway to avoid reaching the position of the car in front. This tends to increase the
headway of the car behind, so that (for p < p,.), all headways attain values > v,4, + 1,
which represents an absorbing configuration. For p = 1, a car with speed v; = d; always
decelerates, which tends to increase its own headway. In either case, p = 0 or p = 1, as
reduced headway (i.e., inter-vehicle intervals with d; < vy, + 1) is transferred down the
line, vehicles may be obliged to decelerate, until the reduced headway is transferred to an
interval with headway d; large enough that no reduction in velocity is required. [Intervals
with d; > Ve, + 1, which we call troughs, always exist for p < p. = 1/(Vmax + 2)].
When all reduced headways are annihilated at troughs, the system attains an absorbing
configuration.

Call events in which a vehicle having v; = d; decelerates D events, and those in which
such a vehicle does not decelerate N events. For p < p,, if only D events (or only N events)
are allowed, the system attains an absorbing configuration via annihilation of reduced
headways with troughs. Thus some alternation between D and N events is required to
maintain activity, and the active phase corresponds to intermediate values of p.

These observations are illustrated in Fig. 5.11, for a system of twenty vehicles with
Umae = 2 and density p = 2/9 < p. = 0.25. Initially, all vehicles have v; = v,,4,. The
headways d; initially alternate between three and four (the latter are troughs), except
for dig = 0 and dyg = 7. In the left panel, for p = 0, the system reaches an absorbing
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configuration after four time steps. Similarly, in the right panel, for p = 1, an absorbing
configuration is reached after 7 steps. For p = 0.6 (middle panel), the evolution is stochas-
tic. Most realizations reach an absorbing configuration rapidly, but some remain active
longer, as in the example shown here. From the distribution of D and N events, it appears
that activity persists when vehicles first suffer an N event, reducing their own headway,
and subsequently (one or two steps later) suffer a D event, reducing the headway of the
preceding vehicle. Such an alternation of N and D events allows a region with reduced
headways to generate more activity before reaching a trough [43].
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Figure 5.11: Vehicle positions relative to the first (lowest) vehicle versus time ¢ (horizontal) for ¢ > 2,
in a system with N = 20, ¥4, = 2 and vehicle density p = 2/9 < p. = 0.25. Initially, all vehicles have
Vi = Umaz- LThe headways d; initially alternate between three and four, except for dig = 0 and doy = 7.
Filled (open) circles denote D (N) events, i.e., events in which a vehicle with speed v(i) = d(i) decelerates
(does not decelerate). In an absorbing configuration all velocities are equal, yielding a set of horizontal
lines with spacings > vz + 1. Left panel: p = 0, system inactive for ¢ > 4; right panel: p = 1, system
inactive for ¢t > 7; center panel: example of a realization with p = 0.6 in which activity persists until
t = 56 (evolution for ¢ > 30 not shown).

5.4 Critical behavior

5.4.1 Quasistationary simulation

Before studying the critical behavior of the ANS model we discuss briefly quasistati-
onary simulations. Initially we have to define the quasistationary distribution. We start
considering a continuous-time Markov process X; taking values n = 0,1,2, ..., S, with the
state n = 0 absorbing. We use p,(t) to denote the probability that X; = n, given some
initial state X,. The survival probability Ps(t) = ¥,>1p, () is the probability that the
process has not become trapped in the absorbing state up to time t. We suppose that as
t — 00, p,(t) normalized by survival probability Ps(t), attain a time-independent form.
The quasistationary distribution p,, is then defined via

Pn (t)
P,(t)’

(5.2)

Dn = limy_, o
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with pg = 0. The QS distribution is normalized. So

> =1 (5.3)
n>1

In a conventional simulation the system starts from a random configuration and after a
transient time one starts to measure quantities, e.g., order parameter, until the system
attains the absorbing state. We restart the simulation many times choosing different
random initial configurations. The problem in using this procedure is time of simulation.
For many stochastic process with an absorbing state the quasistationary distributions
provide a wealth of information about their behavior. In applying finite-size scaling theory
to ANS model, and similar models that have an absorbing state, a slight complication
arises, namely that for a finite system the only true stationary state is the absorbing
state. To solve this problem the authors [44] suggest a simulation scheme for sampling
the QS distribution. In a Monte Carlo simulation one generates a set of realizations of
a stochastic process. In what follows they call a simulation of the original process X,
possessing an absorbing state a conventional simulation. The goal is to define a related
process X, whose stationary probability distribution is the quasistationary distribution
of X;. To learn about the active state from simulations of finite systems we study the
quasistationary state, which describes the statistical properties of surviving trials following
an initial transient. When X, enters the absorbing state, however, X} instead jumps
to a nonabsorbing one, and then resumes its usual evolution (with the same transition
probabilities as X;), until such time as another visit to the absorbing state is imminent.
Initial configurations are prepared by placing vehicles as uniformly as possible. A
vehicle j is chosen at random and its distance from the vehicle ahead is reduced by
d; =+ d; —1,s0d;_y =d;_y +1. This procedure is performed 2N times. As the system
evolves, a list of states is created based on the system’s evolution. Initially these first
states do not represent a good choice for quasistationary states. With the intention
of eliminating the vestiges of the initial configuration, during the relaxation period the
probability of collecting them is p,;. When the system attains the relaxation period,
the probability p,; is reduces to p,» and the list of collected states is sampled with less
frequency. The number of states in this list is fixed (in our simulations we use 1000 states)
but as the system does not attain the absorbing state these states are renewed constantly.

In our simulation we used p,; = 20/N and p,s = p,1/10 = 2/N.

5.4.2 Critical Exponents

According to finite-size scaling theory (FSS), in the vicinity of the critical point, in-
tensive properties depend strongly on the system size. In the ANS model, FSS implies
that the order parameter p, depends on the system size and distance from the critical
point as

pa(A, L) oc LAV f(ALYVL), (5.4)
where A = p — p.2. When A = ( equation (5.4) yields
palp, L) o L7, (5.5)

for A < 0 (subcritical regime) p, falls off as L™!, while for A > 0 (supercritical regime),
pa approaches a nonzero value as L — oo. The scaling function

f(z) c2® for z — oo, (5.6)

2in the ANS model, there is a critical line in the p — p plane, and A is the distance from this line.
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allows that p,, when L — oo, has a power law behaviour
pa o< AP (5.7)

In the vicinity of critical point, the correlation length & and correlation time 7 diverge
according to
Eox A7 and T oc AT (5.8)

So we expect that
(A, L) oc L7g(ALY"+), (5.9)

where 7 is the mean lifetime of a system and z = vj /v, is the dynamic exponent. To
find the exponents [, v; we need to use another size scaling function. Finite-size scaling
implies that for p ~ p. the moment ratio m = (p?)/p? obeys the relation:

m(A, L) o frn (ALY, (5.10)
where f,, is a scaling function. This implies that

om

- LY/ve 5.11

Pc

moreover, the finite-size expression (5.4) implies that

dlnp

LY/ve, 5.12
ap x (5.12)

Pc

Eventually according to finite-size expression (5.9) we expect that

oc LML, (5.13)

Pe

Olnrt
dp

5.4.3 Critical Exponents in the ANS model

We turn now to characterizing the phase transition along the lines p_(p) and py(p).
Since the transition is continuous, this requires that we determine the associated critical
exponents, in order to identify the universality class of the ANS model. The analysis
turns out to be complicated by strong finite-size effects: different from simple systems
exhibiting an absorbing-state phase transition, such as the contact process, for which
studies of systems with L < 1000 yield good estimates for critical exponents [33|, here we
require systems of up to 10° sites to obtain reliable results. We are nevertheless able to
report precise results at several points along the phase boundary.

We use quasistationary (QS) simulations to probe the behavior at long times conditi-
oned on survival of activity [44]. Since the deceleration probability p is continuous while
the density p can only be varied in discrete steps, we keep the latter fixed and vary the
former in each series of studies. As in other studies of QS behavior at absorbing-state
phase transitions, we focus on the finite-size scaling (FSS) of the activity density, p,, the
lifetime, 7, and the moment ratio m = (p2)/p?, as functions of system size, N 33, 44]. At
a critical point, these variables are expected to exhibit scale-free (power-law) dependence
on N, that is, p, ~ N78/V* and 7 ~ N* where 3 is the order-parameter exponent and
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v, the exponent that governs the divergence of the correlation length as one approaches
the critical point. In the active phase, p, approaches a nonzero constant value, while 7
grows exponentially as N — oco. In the absorbing phase, p, ~ 1/N while 7 grows more
slowly than a power law as N — oco. At the critical point, the moment ratio is expected
to converge to a nontrivial limiting value, m = mq, + O(N~*), with A > 0. In the active
(inactive) phase, m curves sharply downward (upward) when plotted versus 1/N. These
are the criteria we employ to determine the critical point, p.(p). The distance from the
critical point can be estimated from the curvature of log-log plots of p, and 7 versus N.

As noted in Sec. III.B, the order parameter is the sum of two contributions: p, =
Pa1+Dpa2. In simulations, we therefore determine p,; and p, 2 separately. In the vicinity
of the critical point we find p,; ~ N7%% and p,o ~ N~%9 showing that the fraction
Pa2 of vehicles with v; = d; = vy,4, decays more rapidly than p,1 = VUmes — U, so that it
makes a negligible contribution to the activity density for large N. We therefore adopt
Pa1 as the order parameter for purposes of scaling analysis. Configurations p,; = 0 and
Pa2 > 0 are nevertheless considered to be active; only configurations with v; = v,,4, and
d; > Umaz, Vi, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000 and 100 000 sites, calculating
averages over a set of 20 to 160 realizations. Even for the largest systems studied, the
activity density reaches a stationary value within 10° time steps. We perform averages
over the subsequent 10® steps. As detailed in [44], the QS simulation method probes the
quasistationary probability distribution by restarting the evolution in a randomly chosen
active configuration whenever the absorbing state is reached. A list of N, such configura-
tions, sampled from the evolution, is maintained; this list is renewed by exchanging one
of the saved configurations with the current one at rate p,.. Here we use N, = 1000, and
p- = 20/N. During the relaxation phase, we use a value of p, that is ten times greater, to
eliminate the vestiges of the initial configuration from the list. The lifetime 7 is taken as
the mean time between attempts to visit an absorbing configuration, in the QS regime.

Initial configurations are prepared by placing vehicles as uniformly as possible (for
example, for density p = 1/8, we set d; = 7, Vi), and then exchanging distances randomly.
In such an exchange a site j is chosen at random and the changes d; — d; — 1 and
dji+1 — dji1 + 1 are performed, respecting the periodic boundary condition, dyy1 = d;.
The random exchange is repeated N, times (in practice we use N, = 2N), avoiding,
naturally, negative values of d;. Since headways d; < v,, are generated in this process, at
the first iteration of the dynamics, velocities v; < vy,4, arise, leading to a relatively large,
statistically uniform initial activity density.

We performed detailed studies for densities p = 1/8, on both the upper and lower
critical lines, and for density 17/144 = 0.11805, on the lower line. Figures 5.12, 5.13 and
5.14 show, respectively, the dependence of the order parameter, lifetime and moment ratio
m on system size for density 1/8 and p values in the vicinity of the lower critical line. In
the insets of Figs. 5.12 and 5.13 the values of p, and 7 are divided by the overall trend
to yield pf = N%p, and 7* = 7/N. These plots make evident subtle curvatures hidden
in the main graphs, leading to the conclusion that p.(p = 1/8) is very near 0.2683.

A more systematic analysis involves the curvatures of these quantities: we fit quadratic
polynomials,

In p, = const. +aln N + b(In N)?, (5.14)

and similarly for In7, to the data for the four largest system sizes. The coefficient of
the quadratic term, which should be zero at the critical point, is plotted versus p in
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Figure 5.12: Activity density versus number of vehicles for density 1/8 and (lower to upper) p = 0.2679,
0.2681, 0.2683, 0.2685 and 0.2687. Error bars are smaller than symbols. Inset: scaled activity density
pi = N%5p, versus number of vehicles.
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Figure 5.13: Lifetime versus number of vehicles for density 1/8 and (lower to upper) p = 0.2679, 0.2681,
0.2683, 0.2685 and 0.2687. Error bars are smaller than symbols. Inset: scaled lifetime 7* = N~1%7 versus
number of vehicles.

Fig. 5.15. Linear interpolation to b = 0 yields the estimates p. = 0.26830(3) (data for
activity density) and p. = 0.26829(2) (data for lifetime); we adopt p. = 0.26829(3) as our
final estimate. (Figures in parentheses denote statistical uncertainties.) The data for m,
although more scattered, are consistent with this estimate: from Fig. 5.14 it is evident
that p. lies between 0.2681 and 0.2683.

To estimate the critical exponents 5/v, and z we perform linear fits to the data for
In p, and In 7 versus In N (again restricted to the four largest N values), and consider the
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Figure 5.14: Moment ratio m versus reciprocal system size for density 1/8 and (upper to lower)
p = 0.2679, 0.2681, 0.2683, 0.2685 and 0.2687.

slopes as functions of p. Interpolation to p. yields the estimates: /v, = 0.500(3) and
z = 1.006(8). A similar analysis yields m. = 1.306(6). The principal source of uncertainty
in these estimates is the uncertainty in p..
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Figure 5.15: (Color online) Curvature of In p, (filled symbols) and In7 (open symbols) as functions of
In N, as measured by the coefficient b of the quadratic term in least-squares quadratic fits to the data in
Figs. 5.12 and 5.13. Straight lines are least-squares linear fits to b versus deceleration probability p, for
vehicle density p = 1/8. Intercepts with the line b = 0 furnish estimates of p..

Using the data for p,, 7 and m we also estimate the critical exponent v, . Finite-size
scaling implies that the derivatives |dm/dp|, dIn7/dp and dlnp,/dp, evaluated at the
critical point, all grow oc L'/¥+ . We estimate the derivatives via least-squares linear
fits to the data on an interval that includes p.. (The intervals are small enough that
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the graphs show no significant curvature.) Power-law dependence of the derivatives on
system size is verified in Fig. 5.16. Linear fits to the data for the four largest sizes, for
Inp,, In7, and m yield 1/v, = 0.494(15), 0.495(15), and 0.516(29), respectively, leading
to the estimate v, = 2.00(5). Repeating the above analysis for simulations at vehicle
density p = 17/144, we find p_(17/144) = 0.4096(1), B/v. = 0.503(6), = = 1.011(15),
m = 1.302(2), and v, = 2.02(2).

In |dx/dp|

In N

Figure 5.16: Derivatives of (lower to upper) m, Inp, and In7 with respect to p in the vicinity of p,
versus N for vehicle density p = 1/8. Lines are least-squares linear fits to the data.

Thus, for the two points studied on the lower critical line, the results are consistent
with a simple set of exponent values, namely, 2 = 1, v, = 2, and § = 1. The same set
of critical exponents appears in a system of activated random walkers (ARW) on a ring,
when the walkers hop in one direction only [47]. The critical moment ratio for ARW is
me = 1.298(4), quite near present estimates.

We suggest that these values characterize a universality class of absorbing-state phase
transitions in systems with a conserved density (of walkers in ARW, and of vehicles in
the present instance), and anisotropic movement. The ARW with symmetric hopping is
known to belong to the universality class of conserved directed percolation [48], which
also includes conserved stochastic sandpiles [45, 46].

A study on the upper critical line for vehicle density p = 1/8 yields results that are
similar but slightly different. Repeating the procedure described above, we find p, (1/8) =
0.89590(5), /v, = 0.487(8), z = 1.021(15), v, = 1.98(6), and m. = 1.315(5). The
exponent values are sufficiently near those obtained on the lower critical line that one
might attribute the differences to finite-size effects. We defer to future work more detailed
analyses, to determine whether scaling properties along the upper and lower critical lines
differ in any respect.
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Chapter 6

Summary and Open (Questions

6.1 Summary

We review some traffic models studied in the literature. Start from the early models
(hydrodynamic) to the three phases theory (Kerner), we summarize the key aspects of
each model. We review the kinetic theory of traffic proposed by Prigogine and Herman
in which the Boltzmann equation is adapted to vehicular traffic. The kinetic equation
and its solution is discussed, and a novel distribution of desired velocities that is more
suitable for describing real traffic conditions is analyzed. We also study the stationary
velocity distribution at the transition between individual and collective flow patterns.
At this transition the distribution splits into a smoothly varying regular part, in which
vehicles have nonzero velocities, and a singular one, corresponding to stopped vehicles.
Computational methods for obtaining the stationary velocity distribution, and the full
space-time evolution of the vehicular distribution, are explained.

After the kinetic models, we study the cellular automaton (CA) models in which space,
time and velocity are discretized. The most known study via CA is the NS model. Despite
of your simplicity, this model is capable of reproducing features commonly found in real
traffic, such as the transition between free flow and a jammed state, start-and-stop waves,
and shocks (due to driver overreaction). This simple model represents the effect of varia-
tions in driving behavior by incorporating a simple stochastic element: the spontaneous
reduction of velocity with probability p. Although the NS model has been studied exten-
sively, the nature of the transition between free and jammed flow, in particular, whether
it corresponds to a critical point, remains unsolved.

We consider a version of the Nagel-Schreckenberg model in which probabilistic decele-
ration is possible only for vehicles whose velocity is equal to the headway, v; = d;. In the
resulting ANS model, a free-flow configuration, v; = v,,4, and d; > vyae, Vi, is absorbing
for any value of the deceleration probability p. The phase transition in the original NS
model at deceleration probability p = 0 is identified with the absorbing-state transition in
the ANS model: the two models are identical for p = 0. In the original model, a nonzero
deceleration probability corresponds to a spontaneous source of activity which eliminates
the absorbing state, and along with it, the phase transition.

The ANS model, by contrast, exhibits a line of absorbing-state phase transitions in
the p-p plane; the phase diagram is reentrant. We present preliminary estimates for the
phase boundary and several critical exponents. The latter appear to be associated with a
universality class of absorbing-state phase transitions in systems with a conserved density
and asymmetric hopping, such as activated random walkers (ARWSs) with particle transfer
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only in one direction [47]. In this context it is worth noting that in traffic models, as well
as in sandpiles and ARW, activity is associated with a local excess of density: in sandpiles,
activity requires sites with an above-threshold number of particles; in ARW, it requires
an active particle jumping to a site occupied by an inactive one; and in the ANS model,
it requires headways d smaller than v,,,, + 1. One may hope that the connection with
stochastic sandpiles will lead to a better understanding of traffic models, and perhaps of
observed traffic patterns.

6.2 Open questions in the ANS model

6.2.1 Critical exponents

From the diagram shown in Fig. 5.9 we know that for each density there are two
probabilities p, and p_ due the reentrance, i.e., the absorbing phase is reentrant. Sur-
prisingly, when we determine the critical exponents for p,(1/8) and p_(1/8), there is a
slight difference between them. We don’t know if these differences reflect the asymptotic
behavior of the model, or should be attributed to finite-size effects. Furthermore, we need
to find the critical probabilities for other densities to estimate with precision the phase
boundary. In future studies we shall investigate the possible differences in the critical
exponents according to the density.

6.2.2 Mean-Field Theory

A key challenge in our work is to find an appropriate description of ANS model via
mean-field theory. Although the ANS model belongs to the same universality class as
the asymmetric ARW model [47], the approach used in the ARW model cannot be used
here. The main reason is the difference between the update procedure: the ARW model
uses the sequential update rules while the ANS model uses parallel updating. Although
we try to develop an approach based on the current mean field technique used in the NS
model [8], the first results show us that this approach seems don’t recognize the absorbing
states. We think that one of the reasons is the assumption that in the stationary states, the
probability distributions become spatially independent. This assumption is true when the
system does not attain the absorbing state. We can use this approach only for estimating
with better precision the fundamental diagram with v,,,, = 1 and v, = 2.

6.2.3 Other CA models with ANS rules

We can implement the randomization step of the ANS model in other models already
studied in the literature. For instance we can investigate the possible absorbing states in
an ANS version of a two-line model. We can introduce vehicles with different maximum
speeds and study the possible configurations of absorbing states. Furthermore we know,
from the other models as sandpile, contact process, activated random walkers etc, that
the simple inclusion of a different update rule can, in some cases, modify the critical
exponents and therefore the universality class.
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Chapter 7

Appendix

7.1 Matriz T!

Although we can obtain the matrix 7% writing down the initial state in the basis of
eigenvectors, the work in doing it increases according to the value of v,,,,. For this reason
we prefer to adopt the following strategy: Tf] means the probability of a vehicle starts at
the state [j — 1) and evolves to |[i — 1) at the time ¢. The analysis for each initial state is
shown below. P™" means the probability of the system starts with velocity m and evolves
to velocity n at the time ¢.

v(0)=0
PR(t) = p'
PY(t) = G) '
P2(t) = (;) ¢*p'?
PR(t) = (;) ¢*p
PY(t) = G '+ (t R 1) p (i: 1) ¢ 'p
P(t) = (t; 1) ¢p' (t B ;) ¢~ 'p+ C ) 1) ¢
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Pi(t) = o
t
P2(t) = C)w“l
t
P13(t) _ (2)q2pt—2
t _ t—1 _ t—1 _
P14(t) _ (3)q3pt 3+( A )q4pt 4<t 1)qt 1p
t—1 _ t—1\ ,_ t—1
I G N A VA e ¥
v(0) =2
P22<t) — t

PE(t) = p'

t t—1 t—1
P34 t _ 1, t—1 2, t—2 o t—1
(t) (Jqp o, )ap L )a
t—1 t—1 t—1
P34y — 20-2 t—1 t
(t) ( 1)qp MY o PR

The states corresponding to the velocities v,,,, = 4 and v,,,, = 5 are absorbing, i.e., since
the configuration starts or evolves to these states, the final state will be always |4) (with
probability p) and |5) (with probability ¢). So the matrix 7" is:

P 0 0 0 00

(Dap'™? p 0 0 00

o | Ger Qe P 0 00
()™ G (Jar'™ ' 00

) M) M) P pog

pP@) ) P PP p g
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where

t

P = Z( )

evaluating the limit

0N (4ij)q4—jpt+j—4+( )q5 Jptti=s 4yl } () gip
Pt ) Z;?:Alt_j (1) gitipt—icL

for t — o0, the two first terms of the numerator tend to zero, so

i4 '?—1 t—1\ i t—i
i (p] <t>) X (G S-

limt%oo <

pio(t a E’;LJ (til)qwrlpt i-1
using ZZ (Th=1e limo ZZ , Ti; = 0, we have that
0
0
Pt soc)=|
0
p
l—p

7.2 Mean Field Theory

Solution for ¢y

Using Zg’”“f‘ cg = ¢ — ¢g, we can find ¢y as a function of ¢, p e d;

co(1 —c—pd+ c+ pde) = (1 + pd)
co(l —pd(1 —¢)) = *(1 + pd)

co(1 = pd®) = *(1+ pd),

leading to

~ (1 +pd)
1 —pd?

Solution for ¢
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Using > 5"%" cg = ¢ —co — ci,

we can find ¢

c1 = d[qco + (qc+ pd)ey + (g + pd)c(c — co — 01)}

c1(1 = ged — pd® + ged + pdPe) = d[Co(q —qc—pde) + (g + pd)CQ]

*(1 + pd)(g — gc — pdc)

01(1—pd2(1—c)):d{c ( s

2
d
1 — nd® __ca
all = pd) (1 —pd?) |
2d
1 —pd®) =
A = )
2
d
1 — pd¥) = —=
N )
leading to

q+q(1—c)+pdg(l—c)

+ (g + pd)cz]

qu+®+mfu—p@+@@

q(1+d +pd2)] ,

1+ d+ pd?

¢ = qc’d

(1

— pd®)(1 — pd?) |

Solution for 1 < a < Uy — 1

— pd*q + pd(1 —c)

To finding a recursion relation for the other coefficients c,, we use the identity

Co —dco—y =d” [q(ca_l — Ca—2) + (qc + pd)(co — Ca—1) + (¢ + pd)c [

Co — dcoq =d* [Ca—l(q — gc —pd) — qCa—2 + (qc + pd — qc — pdC)ca]

Co — dcq_qg = d* [ca_l(q —qc—pd) — qCa—o + pd*c,
Ca(l — pd®*?) = d” [ca,l(qd — pd)] +dca_q — qd¥co_s

Ca(l = pd®*?) = deq [(q —p)d* + 1] —qd“co-2,

leading to

1+ (q—p)d”

o =

— pda+2

qd®
a—1— W{ja—l

Solution for ¢, .

Coman—1 and ¢, can be found via

Umax

e

B=a+1

Cvmaz 1 — dvmaz ! [qcvmazf2 _'_ (qc + pd) (Cvmazfl + Cvmaz)]

(v
Cvmaz = qd mar [Cvmazfl _'_ Cvmaz]
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Umax

5
b=«

|



we start, for simplicity, with ¢, :

leading to

— Umax
C'Umaac - qd [Cvmax_l + CUmam

(o _ (% J—
C'Umaac (1 - qd max) - qd maxcvmax_lcvmaac -

qdvmaac

1 — gdomas mex=l

qdvmaac

Umazx = 1 _ qdvmaz C’Umaz*l .

Solution for ¢, 1

Coman—1 Can be found developing the expressions:

leading to

C’Umaz -1

C’Umaz -1

C’Umaz -1

C'Umaac_l

C'Umaac_l

e o (14 10) )]

d’Umaac
1 _ d’l}maac—l(qc _'_pd) (1 _'_ qi):| — qdvmazflcvmame

I 1 — qdvmaac
i 1 _ qdvmaz + qd’vmaz .

1 _ dvmaac—l d — d’Umaz » B
_ (q0+p)( T )] q Comas—2
_]_ _ dvmaz _ dvmax—l d

q (qc + p ):| — qdvmazflcvmax_Q
I ]_ — qdvmaac
(1 — dvmes1(qd d
(q +qc+p ):| — qdvmax—lcvmax_z’
I ]_ — qdvmaac
1 _ qd’vmaz

Cyp = dvmes=le, .
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I. INTRODUCTION

The application of numerical and theoretical methods
developed in physics to areas traditionally viewed as belong-
ing to the social sciences has recently accelerated, with stud-
ies of economic interactions,l’2 linguistics,3 and social
networks* becoming standard fare in physics. Although this
trend might seem novel, it began, albeit slowly, some time
ago. A case in point is the use of ideas from the kinetic
theory of gases to describe vehicular traffic, pioneered by
Prigogine and Herman,””’ among others, more than sixty
years ago.

Just as the statistical mechanics of molecular systems
depends on a model of the molecules and their interactions,
the study of traffic requires that we model the behavior of
drivers. Once we have a suitable model, a system of many
interacting molecules (or drivers) can be studied at various
levels of detail: direct study (usually numerical) of a micro-
scopic model, kinetic theory, or a macroscopic (thermody-
namic or hydrodynamic) approach. An important class of
microscopic models of traffic are stochastic lattice systems
in which space, time, and vehicle velocities are all discre-
tized. A key example is the stochastic cellular automaton
introduced by Nagel and Schreckenberg.®

Kinetic theory is an intermediate level of description,
which follows the evolution of a probability distribution for
single vehicles. It offers advantages and disadvantages com-
pared to microscopic models. Among the advantages are that
there is no need to discretize space, time, or velocity, and it
requires substantially less effort to analyze than a stochastic
cellular automaton, which typically must be run repeatedly
to obtain reliable results. In some cases, analytical solutions
are possible, affording a certain insight. Thus kinetic theory
affords a rapid and approximate survey of parameter space,
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facilitating the identification of general trends. The principal
shortcoming of kinetic theory is the absence of fluctuations,
and events (such as traffic jams) that result from rare config-
urations of drivers. Therefore, it is interesting to perform
both simulations of detailed models and kinetic theories and
to compare their results.

The initial efforts in modeling vehicular traffic via kinetic
theory were made in an era of very limited computational
resources, so that large-scale simulations of stochastic cellu-
lar automata were not an option. Nevertheless, it was possi-
ble to draw interesting conclusions from kinetic theory. The
most remarkable conclusion is the conflict between the
desire of individual drivers to realize their own goals and the
interactions between vehicles that frustrate this desire. These
interactions lead to a clear distinction between individual
and collective flow regimes. At a certain concentration, the
flow patterns become independent of the desires of individ-
ual drivers, and instead represent collective behavior.

In the earliest version of the kinetic theory of vehicular
traffic, Prigogine and Herman®~’ modified the kinetic theory
of gases embodied in the Boltzmann equation. In their
model, traffic is treated as a one-dimensional gas of interact-
ing particles (vehicles) described by a distribution function
f(x,v,1), defined such that f(x, v, t) dx dv represents the num-
ber of vehicles with positions between x and x + dx and
velocities between v and v + dv at time ¢. The distribution f
is normalized so that

Jdvf(x,v,t) = c(x,1), ()

where c(x, t) is the local density of vehicles. (Unless other-
wise specified, all integrals run from —oo to co. Note that
f(x,v,1) is zero for v <0.)
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The time evolution of f is governed by a Boltzmann-like
equation. The principal difference with the original
Boltzmann equation is the introduction of a distribution of
desired velocities, fy(x, v, ), in the relaxation term, represent-
ing drivers’ preferences. Specifically, fy(x,v,7)dxdv is the
number of vehicles between x and x -+ dx, whose drivers
have a preferred velocity between v and v + dv at time ¢. The
presence of this function in the statistical description is a
novel feature, showing that the “particles” in this system
have intentions unlike a molecule, which does not have a
desired velocity.

Of principal interest is the stationary velocity distribution,
which can be much different from the distribution of desired
velocities. We shall see that the stationary velocity distribu-
tion changes abruptly at a specific density.

In Sec. II, we outline the modifications in the Boltzmann
equation introduced by Prigogine and Herman and empha-
size the features relevant to vehicular traffic. For simplicity,
we study in Sec. III only the stationary solutions. Despite
this simplicity, some notable features appear. This study is
followed in Sec. IV by a discussion of the additional assump-
tions regarding driver behavior incorporated in the
Prigogine—Herman model. In Sec. V, we devise a numerical
solution method for the stationary velocity distribution, and
apply it to two examples. Then in Sec. VI we turn to numeri-
cal integration of the full space- and time-dependent equa-
tion, propose a simple algorithm, and discuss two illustrative
examples. Section VII summarizes our results, and is fol-
lowed in Sec. IX by suggestions for further study.

II. THE PRIGOGINE-HERMAN-BOLTZMANN
EQUATION

In the kinetic theory of gases, the evolution of the distribu-
tion function f(x,v,f) is governed by the Boltzmann
equation

of (o
STV VS AV = (c%)wu' )

Here, f(x,v,t) d*xd’v is the number of molecules at time ¢
with positions in the volume d*x centered on point x, and
velocities in the volume element d*v centered on velocity v.
The terms v - V,f and a - V,f describe the redistribution of
molecules due to changes in position and velocity, the latter
resulting from an external force F.y, leading to an accelera-
tion a = Fex/m, where m is the molecular mass. (Note that
V, denotes a gradient in velocity space.) These streaming
terms derive from the motion of independent particles, and
are equivalent to a continuity equation describing conserva-
tion of the total number of molecules in the six-dimensional
space of position and velocity. The right-hand-side of Eq. (2)
describes the effect of interactions between particles and rep-
resents the change in the number of molecules with velocity
v due to collisions with other molecules at position X.

In one-way traffic, vehicles travel in one dimension, and
Eq. (2) can be simplified to read>®

o of (of of
o Vo (5)5 (5) ©)

The first term on the right-hand-side of Eq. (3) represents a
relaxation process, and the second represents the interactions
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between vehicles. The idea behind the relaxation term is that
drivers adjust their velocity to the desired value vy on a time
scale T, called the relaxation time. This assumption is
embodied in the expression

Iy  _ f—fo
<at) rel T T . (4)

In a spatially uniform system, in which f =f(v,¢) and
interactions between drivers can be ignored, the solution
to Eq. (3) is

F(0.0) = fol) + [f(2,0) = fo(v)]e ™. )

Exponential relaxation describes the approach of many simple
systems to a steady state. In the context of the kinetic theory
of gases, an analogous simplification involves replacing the
collision term with an expression of the form of Eq. (4); T
becomes the collision time, and f is a local Maxwellian distri-
bution.” As will become clear, Prigogine and Herman’ pro-
posed that T depends on the concentration of vehicles on the
road, and the relaxation process subsumes some rather com-
plicated interactions between drivers.

In the absence of interactions between the vehicles, the
distribution function evolves to the distribution of desired
velocities according to Eq. (5). A derivation of the distribu-
tion of desired velocities from first principles would require
knowledge of human behavior that is beyond our present
capabilities. One might try to determine the distribution of
desired velocities empirically by studying the velocity distri-
bution at very low concentrations, but we are unaware of
studies of this kind. Prigogine and Herman simply investi-
gated several simple model distributions of the desired
velocities.

The interaction term in Eq. (3) is based on the following
assumptions:

(1) The vehicles are point-like, that is, they do not occupy
volume.

(2) Vehicles remain in the same lane except when passing
another vehicle.

(3) In an encounter between two vehicles, one passes the
other with probability P.

(4) If one vehicle passes another, neither vehicle changes its
velocity. In an encounter without passing, the faster vehi-
cle reduces its velocity to that of the slower one ahead of
1t.

(5) The slowing-down process is instantaneous.

(6) Only two-vehicle interactions are considered.

(7) The vehicles are statistically independent; that is, the
joint two-vehicle distribution is the product of single ve-
hicle distributions: f(x, v, X', v, 1) = f(x, v, 1)f (X', V', 7).

If we use these assumptions, we can write the interaction
term as

(%) int AR LDO el =P = el o)

—f(x,0,1) JUOO du (1 — P)(v—u)f (x,u,1).
©)

The first term on the right-hand-side of Eq. (6) corresponds
to interactions between vehicles with velocities v and u > v;
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the latter are obliged to adopt the smaller velocity v resulting
in an increase in the number of vehicles with velocity v. The
second term is related to interactions between vehicles with
velocity v and u < v. In this case, the interaction results in a
decrease in the number of vehicles with velocity v. By
combining the two integrals, the interaction term can be
rewritten as

(8_f) = (1= P)f(x,0,1) Jdu (u—v)f (x,u,1). (7

ot
Because
Juf(x, u,t) du = c(x,1)o(x, 1), (8)
where v(x, ) denotes the local mean velocity, and
Jdu uf (x,u,t) = c(x, t)v, )
we have

(%)m=%1—Pk@nﬂw%g—uy@mﬁy (10)

If we insert the relaxation term, Eq. (4), and interaction term,
Eq. (10), into Eq. (3), we obtain the Prigogine—Herman—
Boltzmann equation for traffic

o Ih,

o Uax T (1— P)c(x, H[v(x, ) — vlf.

an

The above equation is a nonlinear equation because v(x, ?) is
a function (more precisely, a functional) of f(x,v,t). A full
definition of the model requires that we specify how the
passing probability and relaxation time depend on the con-
centration. Before examining specific choices, we consider
some general aspects of the solutions.

III. STATIONARY SOLUTIONS

We consider uniform, stationary solutions in which
f =f(v), ¢, and v are time-independent. This case represents
the simplest situation that we might expect to hold at long
times, far from any entrances and exits on a long, straight
highway. Due to the interactions between vehicles, the
stationary solution f{v) is not usually equal to the distribution
of desired velocities, fy(v). A spatially uniform, time-
independent solution f(v) of Eq. (11) must satisfy

_ fo(v)
UG R e (12)

The above equation is also nonlinear, because v depends on
f(v), and it has two kinds of solution corresponding to indi-
vidual and collective flow patterns.

A. Individual and collective flow

To simplify the notation, let

y=cT(1—P) and A=1-—9y0(f), (13)
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so that Eq. (12) becomes

__f
e “4)

In Egs. (13) and (14), the parameter / is specifically writ-
ten as a function of f to stress that the nonlinearity
induced by the term v is included in /; from here on, we
simply write 1.

Equation (14) implies that if 2 < 0, we can find values of
v such that 4 + yv < O for fixed y. These values are physi-
cally unacceptable because f(v) cannot be negative; only the
values / > 0 and A=0 have physical meaning. For 41 =0,
Eq. (14) reduces to

70f (v) = fo(v). (15)

An important feature is that the homogeneous equation
yuf = 0 admits the singular solution f = ac d(v), where o is
an arbitrary constant and J(v) is the Dirac delta function.
Thus, for A =0 the general solution is

=" 4 acd(v). (16)
0zl
For 4 > 0, we have Eq. (14). In either case the solution

must be consistent with the conditions established by Egs.
(1) and (8)

. f() dv
C—J}A_yv—kocc (17)
and
w:J%w. (18)
A+ Y0

Suppose that 4 > 0. The stationary velocity distribution is
given by Eq. (14) in which f; is a function and 7y is a constant
determined by the concentration, relaxation time, and the
passing probability. The only unknown is the parameter A.
We write fo(v) = ¢f(v), and obtain from Eq. (17) (with
o =0) that

fodv B
[ 19)

as the condition determining /. Once Eq. (19) is solved, the
mean velocity is given by v = (1 — 1)/y, and the flux (the
number of vehicles passing a given point per unit time) is
g = cv. We see that, given the distribution of desired veloc-
ities fp, the flux and mean velocity depend on ¢, T, and P
only though the combination ). In most cases, the integral in
Eq. (19) needs to be evaluated numerically.

Because f; = 0 for v <0, we see that the integral in Eq.
(19) is a decreasing function of y for fixed 1. As y increases,
/. must therefore decrease. If [(fy/v) dv = oo, then Eq. (19)
can always be satisfied for some /4 > 0, no matter how large
7y becomes. Divergence of the integral implies that fy > 0 for
v=0; that is, there are drivers whose preferred velocity is
zero. (Such drivers should stay off the road!) Thus, for a
plausible distribution of desired velocities, we expect
J(fo/v) dv < co. In this case, we can define a critical value
7. from the condition
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Jf odv . (20)

v

As v increases, 4 decreases and becomes zero for y =7y,.
Recall that A cannot be negative. For y > 7., 1 remains zero,
allowing the inclusion of the term o 6(v) in f. The normal-
ization condition now reads

1:Jf°d”+oc, @1

V%

showing that o, which governs the fraction of vehicles at
rest, increases continuously from zero as 7y is increased
beyond its critical value: o = (y —y.)/y for y > y,.. In this
regime, v = 1/y regardless of the form of the distribution of
desired velocities.

The appearance of a nonzero fraction of stopped vehicles
at y = 7. can be seen as a phase transition, formally analo-
gous to that of Bose—FEinstein condensation in an ideal
Bose gas.'' In Bose—Einstein condensation, the density p,
of bosons in the state of zero momentum increases as p
= p — p,. for densities above the critical density, which
depends on the particle mass and the temperature. Because
the kinetic theory of traffic deals with classical objects, this
analogy is purely formal.

One objective in the kinetic theory of traffic is to find the
stationary velocity distribution f(v), given the concentration
¢ and a traffic model (or empirical data) consisting of the dis-
tribution of desired velocities f, and the functions P(c) and
T(c). Then, given ¢ the value of y is fixed, and all that
remains is to determine A via Eq. (19). A numerical solution
method is discussed in Sec. V.

An alternative approach is to rewrite Eq. (19) in the form

Fod

where A* = 1/y. Equation (22) defines a function y(1%),
given the form of fj.

A simple P/et illuminating application of this analysis is
for the case'? f, = d(v — u), that is, all drivers have the
same desired velocity u. (Perhaps all drivers wish to go as
fast as possible, and all vehicles have a maximum speed of
u.) By using Eq. (22), we find that 2 = max[0, 1 — yu] and
y. = 1/u. For y >y, the fraction of stopped vehicles is
o =1 — 1/(yu). The mean velocity is given by

v { 1y (3> 1/u).

Thus, all drivers can move at their desired speed if y is not
too large. When 7y exceeds 7., due to increased density,
reduced passing probability, and/or longer relaxation time, a
certain fraction of the vehicles are at rest.

Although these conclusions are consistent with our general
analysis, there is something strange about this result. If all
vehicles move at the same velocity u, there is no need for
passing, and each vehicle would simply maintain its velocity.
Why would any vehicle have to stop in this situation? The
answer is that, for y >y, the distribution f(v) =f(v)
= c¢d(v —u) continues to be a stationary solution of Eq.
(11), but is unstable. To see this, suppose that at a certain
moment, a fraction ao of the vehicles are stopped. If ag
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decreases (increases) with time, then the solution f;(v) is sta-
ble (unstable). To implement the stability analysis, we per-
turb the reference solution by letting

f(,1) = clag 6(v) + (1 — ao) (v — u)], 24

with 0 < ap < 1. If we substitute Eq. (24) in Eq. (11) and
perform the integral over u, we obtain

";C[ (v) = d(v—u)] +c2(1—P)

)—
X [ago(v)+ (1 —ap) 6(v—u)]
X [—vag+ (1 —ap)(u—0)], (25)

caplo(v) —o(v—u)] =

where the dot denotes a time derivative. We equate coeffi-
cients of 6(v) and find

dozao

c(1—=P)(1 —ap)u —% . (26)

If we now let 7 = ¢/T and j = yu = 7/7.., Eq. (26) becomes

dao

T (7 — Dao — jag, 27
which is the logistic or Pearl-Verhulst equation.'® Tt is
straightforward to show that the solution is

0 et
ant) =0 (28)
1 + kao(0)le” — 1]
where e=7—1=(y—7.)/y. and x=7/(y—7.). This

result shows that for 0 < ag(0) < 1, as t — oo, ap(t) — 0 if
y < 9. and ag(t) — o = (y — y.)/7 if y > y.. Thus, the solu-
tion with all vehicles moving at the same velocity u is stable
ifand only if y <y, = 1/u.

Another example that has an analytic solution is a distribu-

tion of desired velocities uniform on the interval
[vo — Va Vo + V4]

~ O — (vg — v,)|1Ofvg +v, — v

j, Ol (v )@ | 09

20,

where ©(y) is the step function, equal to zero for y <0 and
to unity for y >0. (We assume vy > v, so that all drivers
prefer some nonzero speed.) In this case, the transition
occurs at

1 a
y =9 = —1In <M> (30)
20, Vo — Vg
and we have
.= max|[y{v, coth(yv,) — vo},0], (31
leading to
1
;+ vo — vgcoth(yva) (7 <)
b= X (32)
- V> 0e)
. (0> 1)
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Fig. 1. The (dimensionless) mean speed versus yv, for a uniform distribution
of desired velocities, Eq. (29), with v, = vy/2. Note the discontinuous deriv-
ative signaling a transition from individual to collective behavior.

In Fig. 1, the dimensionless mean speed /v is plotted ver-
sus yv, for v, = vo/2.

IV. THE PRIGOGINE-HERMAN MODEL

Prigogine and Herman’ introduced further assumptions
regarding the dependence of P and T on the concentration c,
which we shall refer to as the Prigogine—Herman model.

We expect the passing probability P to decrease with c,
because drivers will find it more difficult to overtake a
slower vehicle if adjacent lanes are congested. (Of course if
vehicles were truly point particles there would be no such
difficulty.) Prigogine and Herman assumed a linear relation
between P and c, such that P =1 for ¢ =0 and decreases to
zero at some maximum concentration Cpmax

P=1—-—n with 5=

(33)

Cmax

They further proposed a concentration-dependent relaxation
time

(1 —P)
T= P (34)
where 1 is a constant with dimensions of time. Thus, accord-
ing to Prigogine and Herman, the greater the value of ¢ the
smaller the value of P and the longer it takes a driver to
attain the desired speed. In their model, T does not represent
an intrinsic limitation of drivers (that is, a reaction time) or
of their vehicles (inertia), because 7 — 0 as ¢ — 0. By
inserting Eqs. (33) and (34) into Eq. (13), we find

_ o (35)
I—n
Note that ¢ > cpmax 1s unphysical because it implies a nega-
tive passing probability. However, there is no intrinsic mech-
anism (such as a repulsive interaction between vehicles) for
maintaining the concentration below its maximum value in
Eq. (11). Hence, in spatially nonuniform situations, the con-
centration can evolve to exceed cpmax in certain regions, even
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if, initially, ¢(x) < ¢max in the entire system. We consider
examples using the Prigogine—Herman model in Sec. V,
once a suitable numerical method is developed.

V. NUMERICAL METHOD

Consider the numerical solution of Eq. (19), yielding the
value of A such that the integral is unity, given the function
fo(v) and y, which is determined by the concentration via Eq.
(35). Although the numerical method is simple, some care is
required because in some cases the integral is improper.

Among the many methods for the numerical evaluation of
integrals, we choose one that is relatively simple yet accurate
by fitting cubic polynomials through successive groups of
four points,'* which is equivalent to the expression

3 7 23
sty t—v3t+ys+ys+---

J y(x)dx >~ h 2 ¢ 2

X1

St Yot Va2 + Ly
Yn—4 Yn-3 24)%72 6yn71 Syn )

(36)

where  h=(x, —x1)/(n—1),y; =y(x;), and
+(G—Dh,forj=1,...,n

Dealing with an infinite range of integration requires
greater care. We might truncate the integral, but the error
depends on the choice of the cutoff. A more appealing alter-
native is to change variables to map the infinite range of inte-
gration to a finite one. For an exponential distribution of
desired velocities, illustrated in Subsection V A, we are led
to Eq. (41), for which the substitution ¢t = e/t results in an
integral over a finite interval

1
1:J o (37)

04 —7yvplnt

XjE.X]

Once we have a method for evaluating the integral over
velocities, we use a root-finding method to solve Eq. (41).
For equations of the type used in Ref. 7 and the ones of inter-
est here, the secant or Newton—Raphson methods are appro-
priate.'> Although both are efficient, we will use the secant
method, a recursive method used to find the solution to the
equation f(x) = 0 via the relation

xnflf(xn) - xnf(-xnfl)
S (Xn) = f(Xn-1)

starting from a pair of distinct initial values x; and x,. The
idea is to follow the secant line to its x-intercept and use that
as an approximation for the root. This idea is similar to the
Newton—Raphson method, which follows the tangent line,
but the secant method does not require knowledge of the
derivative.

The computational procedure for solving Eq. (19) is as
follows. Let g(4,n) be the value of the integral in Eq. (19)
over the interval [vy,v;], given by a function that employs
the method of Eq. (36) using n integration points. The latter
is chosen according to the desired precision, using a func-
tion int(4), which evaluates the integral using successively
larger numbers of points until the relative difference is
smaller than a certain tolerance. Pseudocode for this proce-
dure is given by

(3%

Xpt1 =
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begin

define number of intervals n, increment

g, and precisione

a;=g(4,n)

n=n-+s

a,=g(4,n)

dowhile @ >e
a;=a,
n=n-+s
a,=g(4,n)

end do

int =a,

end

Because of the efficiency of the method described in Eq.
(36), the function int(1) quickly converges to the correct
value. We then search for the value of A yielding int (1) =1
using the secant method. To begin we need a pair of distinct
initial values, 4; and ,, with 0 < 4; < 1. We then evaluate
int(1;) and int(/,), and apply the secant method to obtain a
refined estimate for A, which brings int(1) nearer to the
desired value of unity. The process is iterated until the rela-
tive change in /4 is smaller than a specified tolerance e.
Because int(4) is strictly decreasing on the interval [0, 1], the
secant method works efficiently to locate 4. Pseudocode for
this procedure is given by

begin
define A, and /A,
dowhile |/’{2 - ;Ll|/;n2 > e
a= /"Lz
r; =int(4) -1
Y, = ll'lt(/lz) -1
12 = [ilr2 — ;uzrl]/[rz — rl]
/11 = a
end do
A. = 12
end

A. Exponential distribution of desired velocities

As an illustration, we solve the Prigogine—Herman model
for an exponential distribution of desired velocities, as dis-
cussed in Ref. 7. Let

. Cmax  _p/y,
fo = O () Tmax v/, (39)
vo

for which the mean velocity is vy. In this case, the most prob-
able desired velocity is zero, and because fo(v =0) > 0,
there is no transition. The stationary solution is

Cmaxne_u/vo

=—, 40
(i 70) o
where / is determined by the normalization condition
1> —v/vy
| = —J ¢ . 41)
vy Jo A+ YU

The value of 4 for given values of y and v, is obtained
numerically as we have described.

The top panel in Fig. 2 shows the normalized flux Q
= ¢/cmax as a function of the normalized concentration
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1 = ¢/cmax- Note the linear relation between flux and con-
centration for small #. In this regime, the slope of each curve
depends on vy, the average desired velocity. At high concen-
trations, the normalized flux is independent of vy. The (nor-
malized) mean velocity is plotted versus x in the bottom
panel of Fig. 2 for several values of v,. As for the case of the
normalized flux, all curves exhibit the same behavior at high
concentrations.

It is interesting to compare the stationary velocity
distribution with the corresponding distribution of desired
velocities. Figure 3 shows that the stationary velocity distri-
bution is close to the distribution of desired velocities for a
relatively low concentration (7 = 0.2). At a higher concen-
tration (y = 0.4, Fig. 4), the two distributions differ, with
higher probabilities for low velocities in the stationary ve-
locity distribution than in the distribution of desired
velocities.

B. Gaussian distribution of desired velocities

We now consider a more realistic example that has
received little attention until now—a Gaussian-like distribu-
tion of desired velocities
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Fig. 2. The normalized flux Q = ¢/cmax (top) and the normalized mean ve-
locity ©/vp (bottom) versus the normalized concentration 1 = ¢/¢max for
cmax® = 0.1 and mean desired velocity vy. At low concentrations, the mean
velocity is close to its desired value, and the normalized flux is proportional
to vo. At larger concentrations, the normalized fluxes for different values of
v approach a common function.
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Fig. 3. (Color online) Distribution of desired velocities (dashed) and station-
ary velocity distribution (solid) for exponential desired velocity distributions
with v as indicated; # = 0.2. In all cases, the stationary distribution exceeds
the desired one at low velocities, and vice-versa.

folv) = cA[e_(”_“‘))z/”g — ¢%/%)O(1) O(2up — ). (42)
The parameter v, represents the mean desired velocity, and
v, is a measure of the dispersion of the distribution. Because
of the step functions, fj is zero outside the interval [0, 2vy).
The second term in the square brackets ensures that f, goes
to zero continuously at the endpoints of this interval. The
normalization factor A is approximately (v,y/7) " for
vy > Uy.

Because [(fo/v)dv < oo, there is a transition between
individual and collective flow. According to Eq. (20), the
critical point is given by

2<
po=A J A ] ot
C 0 v

_ e—vﬁ/vﬁ], (43)

which is readily evaluated numerically. We proceed as
before and calculate the stationary velocity distribution f(v)
and the stationary mean velocity and flux. Figure 5 shows
the flux Q as a function of normalized concentration for sev-
eral values of vy, with v, =20. As expected, the slope of ¢ (1)

1.2
——= fi(vo=60)
floo=60)
1o ——— fivs=80)
f(UGZ 80)
08 1 === fo(vo=100)
\ —— f(vo=100)

Fig. 4. (Color online) Distribution of the desired velocity and stationary ve-
locity distribution as in Fig. 3 for # = 0.4. At this concentration, the differ-
ences between the stationary and desired distributions are more dramatic
than in Fig. 3.
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Fig. 5. (Color online) The flux Q as a function of the normalized concentra-
tion # in the Prigogine—-Herman model using the distribution of desired
velocities of Eq. (42), with v,=20. The transition points are 7. = 0.375,
0.395, 0.421, and 0.458, for vy = 120, 100, 80, and 60, respectively. Above
the critical concentration, the flux follows a master curve independent of v,.

jumps from a positive to a negative value at the transition
from individual to collective flow. In the latter regime, ¢(1)
is characterized by a single function, independent of v,. The
larger the value of v, the smaller the critical density 7.

A notable aspect of the transition is the sudden change in
the stationary distribution at the critical concentration at
which the distribution splits into a regular and a singular
part. In Fig. 6, which compares the stationary velocity distri-
bution and distribution of desired velocities for several con-
centrations in the individual flow regime, we see that the two
distributions have the same area, as required by normaliza-
tion. For n = 0.15 the distributions are indistinguishable; at
higher concentrations, small differences appear. The critical
concentration, 1, = 0.421, represents the limit for individual
flow; for n >, the stationary velocity distribution is the
sum of a regular part, given by fy/(yv), and a singular part,
ac 0(v), with o given by Eq. (21). In Fig. 7, we compare the
regular part of the stationary velocity distribution with the
corresponding distribution of desired velocities for 1 > #,.

12
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fim=03
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S
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Fig. 6. The stationary velocity distribution (solid) and corresponding distri-
bution of desired velocities (dashed), for concentrations in the individual
flow regime. The distribution of desired velocities is given by Eq. (42) with
vo = 80 and v, =20. The difference between the stationary and desired dis-
tributions grows with increasing concentration.
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Fig. 7. Regular part of the stationary velocity distribution (solid) and the cor-
responding distribution of desired velocities (dashed) for densities in the col-
lective flow regime; parameters as in Fig. 6. Note the differences in
amplitude between the stationary and desired distributions, associated with a
population of cars having velocity zero in the stationary distribution.

The area of the regular part of the stationary velocity distri-
bution is smaller than that of the distribution of desired
velocities. The difference corresponds to the J-function at
the origin.

VI. NUMERICAL INTEGRATION OF THE
PRIGOGINE-HERMAN-BOLTZMANN EQUATION

The Prigogine—Herman—Boltzmann equation, Eq. (11),
lends itself to numerical integration via straightforward dis-
cretization of the position, time, and velocity, permitting us
to explore the space and time dependence of the density and
velocity profiles. For simplicity, we adopt an explicit integra-
tion scheme. Let the length of the system be L, with periodic
boundaries. We represent the distribution function f(x, v, 1)
at a set of points

X, =nL/N, n=0,...N (44)

and velocities

U = MUpax/M, m=0,....M, (45)
where v« 1S the maximum allowed velocity, larger than any
velocity of interest in the problem under study. Similarly,
time is discretized in steps #; = jAt, where At is a time incre-
ment chosen on the basis of efficiency, accuracy, and stabil-
ity considerations. (A larger time increment reduces
computation time but leads to increased discretization errors
and possible numerical instabilities.)

Let f(n,m,j) denote the value of f at position x,,, for veloc-
ity v, and time ¢;. The integration code uses Eq. (11) to con-
struct the set of values f(n,m,j+ 1) based on the f(n,m,j),
via f(n,m,j+ 1) =f(n,m,j) +f (n,m,j)At, where the dot
denotes a time derivative. The essential element of the inte-
gration algorithm is estimating the time derivatives of f.

From Eq. (11), we see there are three contributions to
Of /0, the first of which is —v(9f /Ox). In the discretized rep-
resentation, we estimate the spatial derivative as

f\(nama/) = [f(namaj) 7](‘(” - 17m7/)] (]Z> . (46)

142 Am. J. Phys., Vol. 84, No. 2, February 2016

The spatial derivative f, at position x, is estimated using
the value of f at this point and the one just to the left.
Because vehicles move only to the right, there is little
sense in including the value of f at point x,,, as might be
done in a more symmetric integration scheme. Note that
stability requires that (Nvnax/L)At < 1; in practice we use
At < 0.01L/ (Nvmax)-

The second contribution to 9f/0¢t is the term
—[f(v) — ¢fo(v)]/T. (Here, the desired velocity distribution
fo(v) is multiplied by the local concentration c(x) because, in
numerical implementations, it is convenient to normalize
fo(v) so that its integral over velocities is unity.) This contri-
bution is readily evaluated once we have the local concentra-
tion ¢(n,j) =>_,f(n,m,j) and an expression for the
relaxation time 7. In the Prigogine—Herman model, the latter
is given by Eq. (34), or simply T = tc(n,j)/[1 — c(n,j))],
where we set ¢ax = 1. Because the term under consideration
involves a factor of 1/T, we cannot allow ¢ =0 anywhere.

The third contribution takes the discretized form
[c(n,))*[5(n,)) — vmlf (n, m,j), where we have used Eq. (33)
and introduced ©(n,j) =Y, vnf (n,m,j)/c(n,j). The follow-
ing pseudocode details the integration algorithm (se use peri-
odic boundary conditions).

begin

define system size L, maximum velocity

Vipax: Maximum time tmax,
number of positions N, number of
velocities M, time step At, relaxa-
tion parameter tau, and normalized
desired distribution of velocities

fo (m)
initialize £ (n,m)
t=0

for t <tmax
forn=0, N

nm=n-1

if (n=0) nm=N

c(n) =2, £f(n,m)

v(n) = [Zn v * £(n, m)]/c(n)
relax=[1-c(n)]/[c(n) * tau]
form=0, M

fx=[f(n,m) - £(nm,m)] *(N/L)
dfl=-v,* fx
df2=-relax* [f(n,m) - c(n ) * fo(m
df3 = [c(n)]® * [¥(n) — vy *
df (n,m) =df1 +df2 + df3
end
end
forn=0, N
form=0, M
f(n,m) =£f(n
end
end
t=t 4+ At
end

m) + At xdf (n,m)

As examples, we apply the integration code to two
cases.'® In the first, the initial distribution of vehicles is in-
homogeneous: the initial concentration is low (¢ =0.01)
except for a small region (2 < x < 3) that has ¢ =0.8. In the
low-concentration region, the initial velocity distribution is
taken as the desired one, which is essentially Gaussian,
folj) = Ae10w=16) for j =2 ... M (and zero for j outside
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this set), giving a mean desired velocity of 1.5717. In the
concentrated region, the initial velocity is 0.08 for all
vehicles. (Distance and velocity are dimensionless in this
example; the system size L=20.) Integration of Eq. (11)
allows us to follow how the concentration and mean veloc-
ity become uniform, as shown in Fig. 8.

In the second example, we seek the stationary concentration
and mean-velocity profiles in a system with a nonuniform
desired velocity distribution. Outside the region 8.5<x
<10.5,fo(j) is as in the previous example, but within this
region we take fy(j) =Ae'2%~08)" for j=2.....M. The reduc-
tion in mean desired speed by about half reflects a change in
driving conditions, such as a speed trap or narrowing of the
road. The inhomogeneous desired velocity distribution causes
a pile-up of vehicles (as well as a reduction in speed) within
the “slow” region and well beyond it, as shown in Fig. 9. In
actual road traffic, we expect the concentration to take a higher
than average value to the left of the slow region as well, as
drivers slow down in anticipation of the congestion ahead.
This feature of real traffic is absent in the Prigogine—
Herman—-Boltzmann model: drivers interact only with vehicles
at the same position and cannot adjust to road conditions ahead
of them.

VII. DISCUSSION

We have seen that the Prigogine—Herman—Boltzmann
equation describes some basic features of vehicular traffic,
and that the Prigogine—Herman model,”’ which introduces
additional hypotheses regarding driving behavior, leads to
interesting predictions such as a transition between individual
and collective flows. Nevertheless, this approach has short-
comings. Several problems with the Prigogine—Herman model
are discussed in Ref. 17. Letting the relaxation time T depend
on the concentration introduces an effective interaction

1 )
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Fig. 8. Concentration (solid) and mean velocity (dashed) profiles obtained
from the Prigogine—-Herman—Boltzmann equation via numerical integration,
for times (upper to lower) 0, 2, 4,..., 12. The mean velocity has been nor-
malized to the desired value of 1.5717. The concentration and mean velocity
gradually become uniform.
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Fig. 9. Concentration (lower curve) and mean velocity (upper curve) profiles
in the steady state, obtained from the Prigogine—Herman—Boltzmann equa-
tion via numerical integration. The mean velocity has been normalized to its
desired value (outside the slow region) of 1.5717. The mean desired velocity
in the region between the vertical dashed lines is only half its value outside.
Note how the reduction in desired velocity leads to a higher concentration in
the slow region and well beyond it.

between vehicles, in addition to the integral term, which rep-
resents binary interactions. As a result, the clear separation
between individual particle motion (streaming terms) and col-
lisions in the original Boltzmann equation becomes somewhat
muddled in the Prigogine-Herman model.

Several modifications of the Prigogine—~Herman—Boltzmann
equation' ™' and of the Prigogine—Herman model have been
proposed to study traffic more realistically and to extend the
model to higher concentrations. The Prigogine—Herman model
was modified by Paveri-Fontana'” to include the joint distri-
bution of position x, velocity v, and desired velocity «. In their
description, g(x,v,u;t)dxdvdu represents the number of
vehicles at time ¢, with position between x and x + dx, having
velocity between v and v + dv, and desired velocity between
u and u + du. In this way, the model can include the strong
correlation between drivers’ speed v and their desired speed u.
For example, in the absence of interactions, we expect
glx,v,u,t) — fo(x,u,t)o(v —u) as t — oo.

Wagner et al.”” proposed a traffic flow model using the
desired velocity proposed by Paveri-Fontana.'” By taking
into account the nonzero length of vehicles, these authors
extend the description of Paveri-Fontana to the high-density
regime. In Ref. 19, a successive slowing-down process is
considered, in which drivers react to traffic conditions in a
more cautious manner.

Despite various criticisms, the Prigogine—Herman
model remains important. One can find applications of the
model in other contexts, for instance, to network traffic.%’
Nelson and Sopasakis12 use the model to show that, under
some assumptions regarding the relaxation time and passing
probability, the stationary solution is not unique above a cer-
tain density; the existence of multiple solutions reflects the
tendency toward substantial scatter in observational data of
traffic flow at high concentrations.

Our impression is that although a passing probability
that decreases with vehicle concentration is reasonable, a
concentration-dependent relaxation time is not. The relaxation
time should rather reflect intrinsic limitations of the drivers (fi-
nite reaction times) and their vehicles (inertia), which render
instantaneous changes in speed impossible. A linear depend-
ence of passing probability on concentration may also be

17-19
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unrealistic. To move to the passing lane, drivers must find a
gap large enough to safely accommodate their vehicle. Results
from the theory of liquids suggest that this probability decays
exponentially, not linearly with concentration. We further sug-
gest that drivers adjust their desired speeds according to road
conditions, tending to reduce their desired speed as the concen-
tration increases, so as to avoid collisions. If such alterations
can be introduced within the Prigogine—Herman—Boltzmann
framework without undue complications, it may be possible to
enhance understanding of traffic dynamics while providing
more reliable predictions.

VIII. COMPARISON WITH OTHER APPROACHES

The first deterministic continuous model of traffic was a
dynamical model?! based on the equations of motion of each
vehicle, which are solved numerically. Monte Carlo simula-
tions of the Nagel-Schreckenberg cellular automaton show a
transition from free flow to jammed traffic with increasing
vehicle density.® Both of these microscopic models have a
relatively high level of detail as they describe individual
drivers’ behavior and pairwise interactions. An important
advantage of microscopic models is their ability to describe
events triggered by fluctuations. Kinetic theories do not
include fluctuations and can be interpreted as mean-field the-
ories of traffic. Thus, they share many of the advantages and
disadvantages of mean-field theories of phase transitions.

Despite the successes of the Nagel-Schreckenberg autom-
aton and other microscopic models, it is fair to say that they
rest on models of driving behavior that are no more realistic
than those used in kinetic theories. Notwithstanding the unre-
alistic assumptions regarding individual drivers, microscopic
models do capture collective behavior in the large-system
limit. Kinetic theory also captures some aspects of this
behavior. More recently, new macroscopic approaches to
traffic have been developed, including a lattice Boltzmann
model for traffic flow?* and the application of the
Chapman—Enskog and Grad methods to traffic theory.?

IX. SUGGESTIONS FOR FURTHER STUDY

The following projects involve possible improvements of
the Prigogine and Herman model. Some have been applied
by Wagner'®'” to Fontana’s model."” It is interesting to
study the modifications in the stationary speed distribution
due to changes in the collision term of the Prigogine—
Herman—Boltzmann equation.

The first modification is to incorporate the fact that
vehicles are not point-like objects but have a spatial exten-
sion /, and require an additional safety distance t,v, where 1,
is the drivers’ reaction time. These changes result in a
reduced effective road length, reminiscent of the accessible
volume in van der Waals theory. In particular, two modifica-
tions are introduced in the interaction term:

(1) The effective volume is reduced. Suppose a road of
length L contains n vehicles; the concentration ¢ = n/L.
The effective length is L — nl — 7, > " v; if we include
the vehicle length and the safety distance dy = t,v. Due
to the reduced effective length, the interaction frequency
is enhanced by

1

v(c,v) = ﬁ

{+10)’ @7
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where v is the mean velocity. Because v and P are func-
tions of ¢, we can define a modified interaction probabil-
ity o = v(c,)[1 — P(c)].

(2) In the Prigogine—Herman model, vehicles with fixed
speed v interact with vehicles with speed u at the same
position x. In the modified model, a vehicle with velocity
u at position x interacts with vehicles with velocity v at
position x + ¢ + tu, and vehicles with velocity v at x
interact with those with velocity u at x + £ + tv, so that
we have

_ JU dua(v—u)f (x,v,0)f (x + £+ vt,u,1).
(48)

The project consists in introducing these modifications in
the Prigogine—-Herman—Boltzmann equation and, using the
same distribution of desired velocities, comparing the station-
ary velocity distribution with that found using the original
Prigogine and Herman model. An interesting modification is
to include different kinds of vehicles, with different lengths
and safety distances. For each kind of vehicle, we must assign
a specific distribution function; vehicles of different kinds
interact with each other in the collision term. The stationary
distributions and the concentration marking the transition
from individual to collective flow now depend on the fractions
of vehicles belonging to each class.
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Optical Disk

If you want one piece of apparatus for the study of geometrical optics in the introductory laboratory, you need to have
an optical disk. The white or silver disk, about 30 cm in diameter, is surrounded by a rotating shade. A rectangular
hole in the shade holds a thin metal plate with a series of horizontal slots in it. A parallel beam of light from an in-
candescent light source placed outside the apparatus shines on the slits, producing a series of parallel, flat beams of
light. Alternately, a single slit can be used to produce a single beam of light, or the set of cylindrical diverging lenses
in the foreground can be used to produce diverging rays. In all situations the light source is oriented so that one edge
of the beams hits the front surface of the disk, thus letting the rays be seen clearly even in semi-darkness, and allowing
quantitative observations to be made on the reflection and refraction of the light rays. The picture shows a semicircular
refraction tank mounted in the middle of the disk. Thick and thin diverging and converging lenses can be clamped onto
the disk, and a glass disk can be used to investigate the formation of a rainbow. This example, made by Cenco, is in
the Greenslade Collection. (Notes and picture by Thomas B. Greenslade, Jr., Kenyon College)
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We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is
smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in
speed occurs with probability p, independent of the headway, as long as the current speed is greater than zero.)
In the modified model the free-flow state (with all vehicles traveling at the maximum speed, vy.y) is absorbing
for densities p smaller than a critical value p. = 1/(vm.x + 2). The phase diagram in the p-p plane is reentrant:
for densities in the range p. - < p < p., both small and large values of p favor free flow, while for intermediate
values, a nonzero fraction of vehicles have speeds <vp,. In addition to representing a more realistic description
of driving behavior, this change leads to a better understanding of the phase transition in the original model. Our
results suggest an unexpected connection between traffic models and stochastic sandpiles.

DOI: 10.1103/PhysRevE.95.022106

I. INTRODUCTION

The Nagel-Schreckenberg (NS) model holds a central
position in traffic modeling via cellular automata, because
it reproduces features commonly found in real traffic, such
as the transition between free flow and a jammed state,
start-and-stop waves, and shocks (due to driver overreaction)
[1]. This simple model represents the effect of fluctuations
in driving behavior by incorporating a stochastic element: the
spontaneous reduction of velocity with probability p.

Although the NS model has been studied extensively,
the nature of the transition between free and jammed flow,
in particular, whether it corresponds to a critical point,
remains controversial [2-5]. A proposed definition of the
order parameter in the NS model [6], and a subsequent
comment [7,8] are pertinent to this issue. According to
the authors of Ref. [7], results for the lifetime distribution,
spatial correlations, and relaxation time provide evidence for
a “crossover type jamming transition” from free flow to the
jammed regime, but not for a well-defined phase transition.
Modifications in the update rules of the NS model have been
found to result in a phase transition [9,10]. Krauss et al. [11]
proposed a generalized version of the NS model and showed
numerically that free- and congested-flow phases may coexist.
While the NS model does not exhibit metastable states, which
are important in observed traffic flow, including a slow-to-start
rule, such that acceleration of stopped or slow vehicles is
delayed compared to that of moving or faster cars, can lead
to metastability [12—14]. Takayasu and Takayasu [12] were
the first to suggest a cellular automaton (CA) model with
a slow-to-start rule. Benjamin, Johnson, and Hui introduced
a different slow-to-start rule in Ref. [13], while Barlovic
et al. suggested a velocity-dependent randomization model
[14]. Other models with metastable states are discussed in
Refs. [15,16]. A review of CA traffic models is presented in
Ref. [17].
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In the original NS model, at each time step (specifically, in
the reduction substep), a driver with nonzero velocity reduces
her speed with probability p. Here we propose a simple yet
crucial modification, eliminating changes in speed in this
substep when the distance to the car ahead is greater than
the current speed. We believe that this rule reflects driver
behavior more faithfully than does the original reduction
step, in which drivers may decelerate for no apparent reason.
While one might argue that distractions such as cell phones
cause drivers to decelerate unnecessarily, we can expect that
highways will be increasingly populated by driverless vehicles
exhibiting more rational behavior. The modified model, which
we call the absorbing Nagel-Schreckenberg (ANS) model,
exhibits a line of absorbing-state phase transitions between
free and congested flow in the p-p plane. (Here p denotes the
density, i.e., the number of vehicles per site.) The modification
proposed here allows us to understand the nature of the phase
transition in the original model, and to identify a proper order
parameter. The ANS model exhibits a surprising reentrant
phase diagram. Some time ago, Wang studied a model with
the same modified reduction step, and found that free flow
is absorbing for all densities <1/7, regardless of p [10].
This model differs from ours in that acceleration to the
maximum allowed speed occurs in a single update, rather than
in increments.

Regarding the nature of the phase transition in the original
NS model, the key insight is that, for p = 0, it exhibits a
transition between an absorbing state (free flow) and an active
state (congested flow) at density p = 1/(vmax + 1), where
Umax denotes the maximum speed. Free flow is absorbing
because each car advances the same distance in each time
step, so that the configuration simply executes rigid-body
motion (in the co-moving frame it is frozen). We note that
for p < 1/(vmax + 1), many absorbing configurations exist;
which one is attained by the dynamics depends on the initial
condition. Congested flow, by contrast, is active in the sense
that the distances between vehicles change with time. Below
the critical density, activity (if present initially) dies out, and
an absorbing configuration is reached; for p > 1/(vmax + 2)
there must be activity, due to lack of sufficient space between
vehicles. Setting p > 0 in the original model is equivalent

©2017 American Physical Society
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to including a source of spontaneous activity. Since such a
source eliminates the absorbing state [19], the original NS
model does not possess a phase transition for p > 0. (It
should nonetheless be possible to observe scaling phenomena
as p — 0.) A similar conclusion was reached by Souza and
Vilar [5], who drew an analogy between the phase transition at
p = 0 and a quantum phase transition at temperature 7 = 0.
In their analogy, p > O correspondsto 7 > 0, for which, sensu
stricto, there is again no phase transition.

The remainder of this paper is organized as follows. In the
next section we define the ANS model, pointing out how it
differs from the original NS model. In Sec. III we explain
qualitatively the nature of the phase diagram, and report
simulation results for the phase boundary. Section I'V presents
results on critical behavior, followed in Sec. V by a summary
and discussion of our findings.

II. MODEL

The NS model and its absorbing counterpart (ANS) are
defined on a ring of L sites, each of which may be empty or
occupied by a vehicle with velocity v = 0,1, . . ., vpax. (Unless
otherwise noted, we use vpm.x = 5, as is standard in studies of
the NS model.) The dynamics, which occurs in discrete time,
conserves the number N of vehicles; the associated intensive
control parameter is p = N/L. Denoting the position of the
ith vehicle by x;, we define the headway d; = x;41 — x; — 1
as the number of empty sites between vehicles i and i + 1.
Each time step consists of four substeps, as follows:

(i) Each vehicle with v; < vyax increases its velocity by
one unit: v; —> v; + 1

(i) Each vehicle with v; > d; reduces its velocity to v; =
d;.

(iii)) NS model: each vehicle reduces its velocity by one
unit with probability p.

(iv) ANS model: each vehicle with v; =d; reduces its
velocity by one unit with probability p.

(v) All vehicles advance their position in accord with their
velocity.

In practice, given the velocities v; and headways d;, there is
no need to keep track of positions: the final substep is simply
di—>di—vi+viy fori=1,...,N—1, and dy — dy —
vy + vg.

The modification of the third substep leads to several
notable changes in behavior, as reflected in the fundamental
diagram shown in Fig. 1, which contrasts the flux-density
relation in the NS and ANS models. In the ANS model the
flux exhibits a discontinuous first derivative at a certain density
oc(p) (for any p between zero and one), while in the NS model
the flux and other observables are smooth functions of density
for p > 0. Thus the ANS model exhibits a phase transition for
general p, whereas the NS model has a phase transition only
for p = 0[6,7]. The flux g generally takes its maximum value
at the transition. (For small p, however, maximum flux occurs
at a density above p, = 1/(vmax + 2), approaching p = Uma)l( I
for p = 0.) The low-density absorbing phase has v; = vp,x
and d; > vmax + 1, Vi in this phase all drivers advance in a
deterministic manner, with the flux given by j = pvpax. In the
active state, by contrast, a nonzero fraction of vehicles have

PHYSICAL REVIEW E 95, 022106 (2017)

0.8
P e ANS p=0.1
ol * NS p=0.1
0.6 1 { *e = ANSp=0.5
s 2 . ¢ NSp=05
-041 ¢ - .
[3 . 'y
. " °
g *e, . .. ®
0.2 1 * * * [ [}
. e e
¢ o = L ]
AR | s ©
MR
0.0 ¢ : , , :
0.0 0.2 0.4 0.6 0.8 1.0
p

FIG. 1. Flux j versus density in the NS and ANS models for
probabilities p = 0.1 (upper) and p = 0.5 (lower). System size L =
10°; vehicles are distributed randomly at ¢ = 0. Error bars are smaller
than symbols.

d; < vmax. For such vehicles, changes in velocity are possible,
and the configuration is nonabsorbing. The stationary fluxes in
the NS and ANS models differ significantly over a considerable
interval of densities, especially for high values of p. Below the
critical density p., this difference is due the existence of an
absorbing phase in the ANS model. For densities slightly above
Oc, most vehicles have velocity v; = vax and d; = vpax + 1,
although there is no absorbing state. As the density approaches
unity, the differences between the fluxes in the ANS and NS
models become smaller.

For fixed deceleration probability p, the flux j = pv first
grows, and then decreases as we increase the vehicle density
p. An intriguing feature is the dependence of the density at
maximum flux on the probability p: Fig. 2 shows that the
density at maximum flux decreases with increasing p until
reaching a minimum near p = 0.5, and subsequently increases
with increasing p. This reflects the reentrant nature of the phase
diagram, as discussed in Sec. III.

A. Special cases: p=0and p =1

For the extreme values p = 0 and p = 1 the ANS model is
deterministic; these two cases deserve comment. For complete-
ness we mention the corresponding results pertaining to the NS
model given in Ref. [18], which also includes a discussion of
mean field theories. For p = 0, the NS and ANS models are
identical. The system reaches an absorbing state, v; = Umax,
Vi, for densities p < 1/(vmax + 1). For higher densities we
observe nonzero activity in the steady state. We note however
that there are special configurations, in which v; = d;, Vi,
with some v; < vmax, Whose evolution corresponds to a rigid
rotation of the pattern. [A simple example is v; =d; = n,
Vi, withn =1, 2, 3, or 4, and density p = 1/(n + 1).] Since
our interest here is in the model with 0 < p < 1 we do not
comment further on such configurations.

For the NS model with p = 1, from one step to the next,
each velocity v; is nonincreasing. (Of course v; — v; + 1 at
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III. PHASE DIAGRAM
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A. Initial condition dependence

p=0.1
p=0.3 In studies of traffic, states are called metastable if they can
p=0.5 be obtained from some, but not all initial conditions [12—16];
. such states are an essential component of real traffic. Since
. © the NS model is not capable of reproducing this feature,
. models with modified update rules have been investigated

by several authors [12—14]. In the ANS model, by contrast,

there is a region in the p-p plane in which, depending on
the initial condition, the system may evolve to an active state
° or an absorbing one. Our results are consistent with the usual
| scenario for absorbing-state phase transitions [19-21]: activity
! in a finite system has a finite lifetime; in the active phase,

> =u

>
> m O

0.4 0.6 0.8 1.0 however, the mean lifetime diverges as the system size tends
o to infinity. Properties of the active phase may be inferred from
) simulations that probe the quasistationary regime of large but

(a) finite systems [24].
To verify the existence of metastable states in the ANS
model, we study its evolution starting from two very different
classes of initial conditions (ICs): homogeneous and jammed.
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p=0.5 In a homogeneous IC, the headways d; are initially are uniform
p=0.7 as possible, given the density p = 1/(1 + d), where d denotes
p=0.9 the mean headway. In this case the initial velocity is vy for
all vehicles. In a jammed IC, N vehicles occupy N contiguous
sites, while the remaining N (p~' — 1) sites are vacant; in this
case d; =0fori=1,...,N — 1, and only vehicle N has a
A . nonzero initial velocity (vy = vmax). Homogeneous ICs are
" A much closer to an absorbing configuration than are jammed
. e a ICs. We note that random initial conditions lead to the same
steady state as jammed ICs.
Figure 3 shows the fundamental diagram obtained using
° . homogeneous and jammed ICs for p = 0.1; for this value of
- p the stationary state is the same, regardless of the IC, except

n
e »

0.0 5.

0.0

FIG. 2. Steady-state flux versus density in the ANS model for
(@) p=0.1, 0.3, and 0.5, and (b) p = 0.5, 0.7, and 0.9. Note that

0.2

near p = % where, for the homogeneous ICs, an absorbing
P configuration is attained, having a greater steady-state flux
(b) than obtained using jammed ICs. For higher probabilities p,

we find a larger interval of densities in which the stationary
behavior depends in the choice of IC. In Fig. 4, for p = 0.5,
this interval corresponds to 0.118 < p < 0.143; higher fluxes
(black points) are obtained using homogeneous ICs, and lower

the density of maximum flux first decreases, and then increases, with
fluxes (red) using jammed ICs. Homogeneous ICs rapidly

increasing p; the minimum occurs near p =~ 0.5. System size L =

evolve to an absorbing configuration, while jammed ICs, which

10°; vehicles are distributed randomly at # = 0. Error bars are smaller
feature a large initial activity, do not fall into an absorbing

than symbols.

configuration for the duration of the simulation (f,,x = 107),
for the system size (L = 10°) used here. In Fig. 4, the flux
obtained using jammed ICs (red stars) exhibits a discontinuous

the acceleration substep, but this is immediately undone in

the subsequent substeps.) Thus if the evolution leads to a first derivative, signaling a continuous phase transition. The

state in which even one vehicle has velocity zero, all vehicles ~ flux for homogeneous ICs (black circles), exhibits a downward
jump at p = 1/7. While the latter might be interpreted as

eventually stop. Such an event is inevitable for p > 1/3, since
in this case d; < 1 for at least one vehicle, which is obliged
to have v; = 0 after one step. For p < %, steady states with
nonzero flux are possible, depending on the choice of initial

evidence of a discontinuous phase transition, we note that the
absorbing state, to which homogenous ICs evolve for smaller
densities, ceases to exist for p > 1/7. Thus p = 1/7 can be
seen as the terminal line of the absorbing phase. As in sandpile

condition. Such configurations are metastable in the sense that . g
the stationary state depends on the initial distribution. In the ~ models, the absorbing-state phase transition occurs at a smaller
density (in the ANS model, that marking the discontinuity in

ANS model with p = 1 the mean velocity in steady state is

the derivative of j), at which a nonabsorbing (active) phase

zero only for p > 1/2. For p < 1/(vmax + 2), we find that
first appears. For 0 < p < 1, the properties of the active phase

the system always reaches an absorbing configuration with

(obtained using either jammed or random ICs) are nonsingular

U = Umyy. In the remaining interval, 1/(vpax +2) < p < 1/2,
we findv=1-2p. atp =1/7.
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FIG. 3. Steady-state flux versus density for p = 0.1 and L =
10°. Homogeneous (stars) and jammed (circles) ICs lead to identical
stationary states [panel (a)] except for a small interval of densities
near maximum flux highlighted in panel (b). Error bars are smaller
than symbols.

Systematic investigation of the steady-state flux obtained
using homogeneous and jammed ICs leads to the conclusion
that the p-p plane can be divided into three regions. To begin,
we recall that for p > 1/(vmax +2) and p > 0, the mean
velocity v must be smaller than vp,,. Thus the activity is
nonzero and the configuration (i.e., the set of values v; and d;)
changes with time. In this region, homogeneous and jammed
ICs always lead to the same steady state.

For p < 1/(vmax + 2), absorbing configurations exist for
any value of p. There is nevertheless a region with p <
1/(vmax + 2) in which activity is long-lived. In this region,
which we call the active phase, the steady state depends on
whether the IC has little activity (homogeneous) or much
activity (jammed). For smaller densities, all ICs evolve to an
absorbing configuration; we call this the absorbing phase. The
boundary between the active and absorbing phases, determined
via the criterion of different steady states for homogeneous

PHYSICAL REVIEW E 95, 022106 (2017)
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FIG. 4. Steady-state flux versus density as in Fig. 3, but for
p=0.5.

and jammed ICs, is shown in Fig. 5. We note that in Wang’s
model [10] there are only two regions: an absorbing phase for
o < 1/7 and an active one for p > 1/7.

Our results are consistent with the following scenario,
familiar from the study of phase transitions to an absorbing
state [19-21]: for finite systems, all ICs with p < 1/(vymax + 2)
and p > 0 eventually fall into an absorbing configuration.
Within the active phase, however, the mean lifetime of activity
grows exponentially with system size. The phase boundary
represents a line of critical points, on which the lifetime grows
as a power law of system size. (Further details on critical
behavior are discussed in Sec. IV.) A surprising feature of
the phase boundary is that it is reentrant: for a given density
in the range 0.116 < p < 1/(vmax + 2), the absorbing phase
is observed for both small and large p values, and the active
phase for intermediate values. The reason for this is discussed
in Sec. III C. We denote the upper and lower branches of the
phase boundary by p;(p) and p_(p), respectively; they meet
at p. - >~ 0.116.

022106-4



TRAFFIC MODEL WITH AN ABSORBING-STATE PHASE ...

1.0 lo}

°
0.8
0.6

o

044 @

°
0.2

b
0.0 T T T T T O
0.120 0.125 0.130 0.135 0.140
P

FIG. 5. Boundary between active and absorbing phases in the p-p
plane. Black points joined by lines: preliminary estimates from initial-
condition dependence as explained in text. Isolated red points: precise
estimates obtained via finite-size scaling as described in Sec. IV. The
open circle at p = 1/7, p = 0 is not part of the phase boundary: for
p = 0 the transition occurs at p = 1/6. The open circle p = 1/7,
p = 1 marks the other end of the phase boundary; we note however
that at this point, all initial conditions evolve to the absorbing state.

The phase boundary is singular at its small-p limit. As
p tends to zero from positive values, the critical density
approaches 1/7, but for p = 0 the transition occurs at p = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar
to that of a stochastic sandpile [22,23]. In the sandpile, there are
no absorbing configurations for particle density p > z, — 1,
where z. denotes the toppling threshold; nevertheless, the
absorbing-state phase transition at a density strictly smaller
than this value. Similarly, in the ANS model there are no
absorbing configurations for p > 1/7, but the phase transition
occurs at some smaller density, depending on the deceleration
probability p. Further parallels between the ANS model and
stochastic sandpiles are noted below.

The phase boundary shown in Fig. 5 represents a prelim-
inary estimate, obtained using the following criterion. Points
along the lower critical line p_(p) correspond to the smallest p
value such that each of 200 arbitrary ICs remain active during a
time of 107 steps, in asystem of L = 107 sites. Similarly, p, (p)
corresponds to the largest p value such that all 200 realizations
remain active. For selected points, a precise determination was
performed, as described in Sec. IV. We defer a more precise
mapping of the overall phase diagram to future work.

The phase transitions at p_(p) and p.(p) appear to be
continuous. Figure 6 shows the steady-state activity (defined
below) versus p for density p = 1/8. In the vicinity of the
transition, the curves become sharper with increasing system
size, as expected at a continuous phase transition to an
absorbing state.

B. Order parameter

Having identified a continuous absorbing-state phase transi-
tion in the ANS model, further analysis requires that we define
an appropriate order parameter or activity density. Since the

PHYSICAL REVIEW E 95, 022106 (2017)
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FIG. 6. Steady-state activity p, versus p for vehicle density p =
1/8. System sizes (upper to lower curves) N = 1000, 2000, and 4000.
Error bars smaller than symbols.

absorbing state is characterized by v; = vpax, Vi, one might be
inclined to define the activity density simply as p, = Vmax — V.
The problem with this definition is that not all configurations
with v; = vy, Vi are absorbing: a vehicle with d; = vy, may
reduce its speed to vyax — 1, yielding activity in the first sense.
Since such a reduction occurs with probability p, it seems
reasonable to define the activity density as

Pa = Umax — U + PPa2 = Pa,1 + PPa2, (1)

where p,» denotes the fraction of vehicles with v; =d; =
Umax- According to this definition, the activity density is
zero if and only if the configuration is absorbing, that is, if
Vi = Umax and d; > vnax, Vi. Studies of large systems near the
critical point reveal that p, 1 3> 0,2, so that the latter can be
neglected in scaling analyses. It is nonetheless essential to treat
configurations with p, , > 0 as active, even if p, | = 0.

C. Reentrance

In this subsection we discuss the reason for reentrance, that
is, why, for p. - < p < p, the system reaches the absorbing
state for large p as well as small p. Since deceleration is
associated with generation of activity (i.e., of speeds <vpmax), a
reduction in activity as p tends to unity seems counterintuitive.
The following intuitive argument helps to understand why
this happens. For p =~ 0, vehicles rarely decelerate if they
have sufficient headway to avoid reaching the position of
the car in front. This tends to increase the headway of the
car behind, so that (for p < p.), all headways attain values
>Vmax + 1, which represents an absorbing configuration. For
p =1, a car with speed v; = d; always decelerates, which
tends to increase its own headway. In either case, p = 0 or
p = 1, as reduced headway (i.e., inter-vehicle intervals with
d; < Umax + 1) is transferred down the line, vehicles may be
obliged to decelerate, until the reduced headway is transferred
to an interval with headway d; large enough that no reduction
in velocity is required. [Intervals with d; > vyax + 1, which we
call troughs, always exist for p < p, = 1/(Vmax + 2)]. When
all reduced headways are annihilated at troughs, the system
attains an absorbing configuration.
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FIG. 7. Vehicle positions relative to the first (lowest) vehicle
versus time ¢ (horizontal) for ¢ > 2, in a system with N = 20, vpax =
2, and vehicle density p =2/9 < p, = 0.25. Initially, all vehicles
have v; = V.. The headways d; initially alternate between three
and four, except for djy = 0 and dyy = 7. Filled (open) circles denote
D (N) events, i.e., events in which a vehicle with speed v(i) = d(i)
decelerates (does not decelerate). In an absorbing configuration all
velocities are equal, yielding a set of horizontal lines with spacings
ZUmax + 1. Left panel: p =0, system inactive for ¢ > 4; right
panel: p = 1, system inactive for ¢ > 7; center panel: example of
a realization with p = 0.6 in which activity persists until ¢ = 56
(evolution for ¢t > 30 not shown).

Call events in which a vehicle having v; = d; decelerates D
events, and those in which such a vehicle does not decelerate
N events. For p < p., if only D events (or only N events)
are allowed, the system attains an absorbing configuration via
annihilation of reduced headways with troughs. Thus some
alternation between D and N events is required to maintain
activity, and the active phase corresponds to intermediate
values of p.

These observations are illustrated in Fig. 7, for a system of
twenty vehicles with vpn,x = 2 and density p =2/9 < p. =
0.25. Initially, all vehicles have v; = vmax. The headways
d; initially alternate between three and four (the latter are
troughs), except for djg = 0 and dyy = 7. In the left panel,
for p = 0, the system reaches an absorbing configuration after
four time steps. Similarly, in the right panel, for p = 1, an ab-
sorbing configuration is reached after seven steps. For p = 0.6
(middle panel), the evolution is stochastic. Most realizations
reach an absorbing configuration rapidly, but some remain ac-
tive longer, as in the example shown here. From the distribution
of D and N events, it appears that activity persists when vehi-
cles first suffer an N event, reducing their own headway, and
subsequently (one or two steps later) suffer a D event, reducing
the headway of the preceding vehicle. Such an alternation of
N and D events allows a region with reduced headways to
generate more activity before reaching a trough [25].

IV. CRITICAL BEHAVIOR

We turn now to characterizing the phase transition along the
lines p_(p) and p(p). Since the transition is continuous, this
requires that we determine the associated critical exponents,
in order to identify the universality class of the ANS model.
The analysis turns out to be complicated by strong finite-
size effects: different from simple systems exhibiting an
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absorbing-state phase transition, such as the contact process,
for which studies of systems with L < 1000 yield good
estimates for critical exponents [19], here we require systems
of up to 107 sites to obtain reliable results. We are nevertheless
able to report precise results at several points along the phase
boundary.

We use quasistationary (QS) simulations to probe the
behavior at long times conditioned on survival of activity [24].
Since the deceleration probability p is continuous while the
density p can only be varied in discrete steps, we keep the
latter fixed and vary the former in each series of studies.
As in other studies of QS behavior at absorbing-state phase
transitions, we focus on the finite-size scaling (FSS) of the
activity density, p,, the lifetime, t, and the moment ratio
m = (p?)/p2, as functions of system size, N [19,24]. At a
critical point, these variables are expected to exhibit scale-free
(power-law) dependence on N, that is, p, ~ N~#/"+ and
T ~ N?, where B is the order-parameter exponent and v
the exponent that governs the divergence of the correlation
length as one approaches the critical point. In the active
phase, p, approaches a nonzero constant value, while T grows
exponentially as N — oo. In the absorbing phase, p, ~ 1/N
while T grows more slowly than a power law as N — oo. At
the critical point, the moment ratio is expected to converge to
a nontrivial limiting value, m = my, + O(N ), with A > 0.
In the active (inactive) phase, m curves sharply downward
(upward) when plotted versus 1/N. These are the criteria we
employ to determine the critical point, p.(p). The distance
from the critical point can be estimated from the curvature of
log-log plots of p, and T versus N.

As noted in Sec. III B, the order parameter is the sum
of two contributions: p, = p,.1 + ppPas2- In simulations, we
therefore determine p,; and p,, separately. In the vicinity
of the critical point we find p,; ~ N7% and p,, ~ N7,
showing that the fraction p, » of vehicles with v; = d; = Vmax
decays more rapidly than p, 1 = Umax — v, SO that it makes
a negligible contribution to the activity density for large N.
We therefore adopt p, | as the order parameter for purposes
of scaling analysis. Configurations p,; = 0 and p,» > 0 are
nevertheless considered to be active; only configurations with
Vi = Umax and d; > vmax, Vi, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000,
and 100000 sites, calculating averages over a set of 20 to
160 realizations. Even for the largest systems studied, the
activity density reaches a stationary value within 10° time
steps. We perform averages over the subsequent 10% steps.
As detailed in Ref. [24], the QS simulation method probes
the quasistationary probability distribution by restarting the
evolution in a randomly chosen active configuration whenever
the absorbing state is reached. A list of N, such configurations,
sampled from the evolution, is maintained; this list is renewed
by exchanging one of the saved configurations with the current
one at rate p,. Here we use N, = 1000, and p, = 20/N.
During the relaxation phase, we use a value of p, that is
ten times greater, to eliminate the vestiges of the initial
configuration from the list. The lifetime 7 is taken as the mean
time between attempts to visit an absorbing configuration, in
the QS regime.

Initial configurations are prepared by placing vehicles as
uniformly as possible (for example, for density p = 1/8, we

022106-6



TRAFFIC MODEL WITH AN ABSORBING-STATE PHASE ...

b 7T

4.4+

In P,

-4.8

52}

-5.6 .
8 9 10 11

In N

N

FIG. 8. Activity density versus number of vehicles for density
1/8 and (lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and
0.2687. Error bars are smaller than symbols. Inset: scaled activity
density p; = N°3p, versus number of vehicles.

set d; =7, Vi), and then exchanging distances randomly. In
such an exchange a site j is chosen at random and the
changes d; — dj — 1 and dj | — dj;; + 1 are performed,
respecting the periodic boundary condition, dyy; = d;. The
random exchange is repeated N, times (in practice we use
N, = 2N), avoiding, naturally, negative values of d;. Since
headways d; < v,, are generated in this process, at the first
iteration of the dynamics, velocities v; < v, arise, leading
to arelatively large, statistically uniform initial activity density.

We performed detailed studies for densities p = 1/8, on
both the upper and lower critical lines, and for density
17/144 = 0.11805, on the lower line. Figures 8-10 show,
respectively, the dependence of the order parameter, lifetime
and moment ratio m on system size for density 1/8 and p
values in the vicinity of the lower critical line. In the insets of
Figs. 8 and 9 the values of p, and t are divided by the overall
trend to yield p} = N%°p, and * = 7/N. These plots make

v—,—
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FIG. 9. Lifetime versus number of vehicles for density 1/8 and
(lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and 0.2687.
Error bars are smaller than symbols. Inset: scaled lifetime 7* =
N~'097 versus number of vehicles.
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FIG. 10. Moment ratio m versus reciprocal system size for
density 1/8 and (upper to lower) p = 0.2679,0.2681,0.2683, 0.2685,
and 0.2687.

evident subtle curvatures hidden in the main graphs, leading
to the conclusion that p.(p = 1/8) is very near 0.2683.

A more systematic analysis involves the curvatures of these
quantities: we fit quadratic polynomials,

Inp, = const +aln N + b(In N)?, )

and similarly for In 7, to the data for the four largest system
sizes. The coefficient of the quadratic term, which should be
zero at the critical point, is plotted versus p in Fig. 11. Linear
interpolation to b = 0 yields the estimates p. = 0.26830(3)
(data for activity density) and p. = 0.26829(2) (data for
lifetime); we adopt p. = 0.26829(3) as our final estimate.
(Figures in parentheses denote statistical uncertainties.) The
data for m, although more scattered, are consistent with this
estimate: from Fig. 10 it is evident that p, lies between 0.2681
and 0.2683.

T T T T T
0.02 4
0.01 1

Q L
0.00
-0.01 1
-0.02 T S
0.2679 0.2681 0.2683 0.2685 0.2687
p

FIG. 11. Curvature of Inp, (filled symbols) and Int (open
symbols) as functions of In N, as measured by the coefficient b of the
quadratic term in least-squares quadratic fits to the data in Figs. 8 and
9. Straight lines are least-squares linear fits to b versus deceleration
probability p, for vehicle density p = 1/8. Intercepts with the line
b = 0 furnish estimates of p..

022106-7



M. L. L. IANNINI AND RONALD DICKMAN

In |dx/dp|

In N

FIG. 12. Derivatives of (lower to upper) m, In p, and Int with
respectto p in the vicinity of p,, versus N for vehicle density p = 1/8.
Lines are least-squares linear fits to the data.

To estimate the critical exponents 8/v; and z we perform
linear fits to the data for In p, and Int versus In N (again
restricted to the four largest N values), and consider the slopes
as functions of p. Interpolation to p. yields the estimates:
B/v1 =0.500(3) and z = 1.006(8). A similar analysis yields
m. = 1.306(6). The principal source of uncertainty in these
estimates is the uncertainty in p.

Using the data for p,, T, and m we also estimate the
critical exponent v,. Finite-size scaling implies that the
derivatives |dm/dp|, dInt/dp, and d In p,/dp, evaluated at
the critical point, all grow ocL!/"+. We estimate the derivatives
via least-squares linear fits to the data on an interval that
includes p.. (The intervals are small enough that the graphs
show no significant curvature.) Power-law dependence of the
derivatives on system size is verified in Fig. 12. Linear fits to
the data for the four largest sizes, for In p,,, In7, and m yield
1/vy; = 0.494(15), 0.495(15), and 0.516(29), respectively,
leading to the estimate v; = 2.00(5). Repeating the above
analysis for simulations at vehicle density p = 17/144, we find
p-(17/144) = 0.4096(1), B/vy = 0.503(6), z = 1.011(15),
m = 1.302(2), and v; = 2.02(2).

Thus, for the two points studied on the lower critical
line, the results are consistent with a simple set of exponent
values, namely, z = 1, v, =2, and 8 = 1. The same set of
critical exponents appears in a system of activated random
walkers (ARW) on a ring, when the walkers hop in one
direction only [26]. The critical moment ratio for ARW is
m. = 1.298(4), quite near present estimates. We suggest that
these values characterize a universality class of absorbing-state
phase transitions in systems with a conserved density (of
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walkers in ARW, and of vehicles in the present instance), and
anisotropic movement. The ARW with symmetric hopping is
known to belong to the universality class of conserved directed
percolation [27], which also includes conserved stochastic
sandpiles [22,23].

A study on the upper critical line for vehicle density
p = 1/8 yields results that are similar but slightly different.
Repeating the procedure described above, we find p(1/8) =
0.89590(5), B/vL = 0.487(8), z = 1.021(15), v, = 1.98(6),
and m. = 1.315(5). The exponent values are sufficiently near
those obtained on the lower critical line that one might
attribute the differences to finite-size effects. We defer to future
work more detailed analyses, to determine whether scaling
properties along the upper and lower critical lines differ in any
respect.

V. SUMMARY

We consider a version of the Nagel-Schreckenberg model in
which probabilistic deceleration is possible only for vehicles
whose velocity is equal to the headway, v; =d;. In the
resulting ANS model, a free-flow configuration, v; = v and
d; > Umax, Vi, is absorbing for any value of the deceleration
probability p. The phase transition in the original NS model at
deceleration probability p = Ois identified with the absorbing-
state transition in the ANS model: the two models are identical
for p =0. In the original model, a nonzero deceleration
probability corresponds to a spontaneous source of activity
which eliminates the absorbing state, and along with it, the
phase transition.

The ANS model, by contrast, exhibits a line of absorbing-
state phase transitions in the p-p plane; the phase diagram
is reentrant. We present preliminary estimates for the phase
boundary and several critical exponents. The latter appear to
be associated with a universality class of absorbing-state phase
transitions in systems with a conserved density and asymmetric
hopping, such as activated random walkers (ARWSs) with
particle transfer only in one direction [26]. In this context
it is worth noting that in traffic models, as well as in sandpiles
and ARW, activity is associated with a local excess of density:
in sandpiles, activity requires sites with an above-threshold
number of particles; in ARW, it requires an active particle
jumping to a site occupied by an inactive one; and in the ANS
model, it requires headways d smaller than vp,x + 1. One
may hope that the connection with stochastic sandpiles will
lead to a better understanding of traffic models, and perhaps
of observed traffic patterns.
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