

UNIVERSIDADE FEDERAL DE MINAS GERAIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

DESENVOLVIMENTO DE METODOLOGIA PARA DETERMINAÇÃO DIMENSIONAL DE UMA BOMBA CENTRIFUGA UTILIZANDO VELOCIDADE ESPECIFICA

(**n**_s)

Autor: Augusto Eduardo Caballero Palomino Orientador: Carlos Barreira Martinez

Belo Horizonte, 20 de fevereiro de 2017

Augusto Eduardo Caballero Palomino

DESENVOLVIMENTO DE METODOLOGIA PARA DETERMINAÇÃO DIMENSIONAL DE UMA BOMBA CENTRIFUGA UTILIZANDO VELOCIDADE ESPECIFICA (n_s)

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Engenharia Mecânica.

Área de concentração: Energia e Sustentabilidade.

Orientador: Carlos Barreira Martinez Universidade Federal de Minas Gerais - UFMG

Belo Horizonte Escola de Engenharia da UFMG 2017

UNIVERSIDADE FEDERAL DE MINAS GERAIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA Av. Antônio Carlos, 6627 - Campus Universitário 31270-901 - Belo Horizonte - MG Tel.:+55 31 3409.5145 E-mail: cpgmec@demec.ufmg.br

"DESENVOLVIMENTO DE METODOLOGIA PARA DETERMINAÇÃO DIMENSIONAL DE UMA BOMBA CENTRÍFUGA UTILIZANDO ROTAÇÃO ESPECÍFICA (NS)"

AUGUSTO EDUARDO CABALLERO PALOMINO

Dissertação submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais, como parte dos requisitos necessários à obtenção do título de "Mestre em Engenharia Mecânica", na área de concentração de "Energia e Sustentabilidade".

Dissertação aprovada no dia 20 de fevereiro de 2017.

Por:

Prof. Carlos Barreira Martinez Orientador - Dpto. de Engenharia Hidráulica e Recursos Hídricos/UFMG

Prof^a. Edna Maria de Faria Viana Dpto. de Engenharia Hidráulica e Recursos Hídricos/UFMG

Prof. Jair Nascimento Filho Departamento de Engenharia Mecânica/UFMG

Prof. Jorge Luis Zegarra Tarqui Dpto. de Engenharia Hidráulica e Recursos Hídricos/UFMG

Prof. Rafael Emílio Lopes Universidade Federal de Itajubá

Prof. Paulo Henrique Vieira Magalhães Universidade Federal de Ouro Preto

P181d	Palomino, Augusto Eduardo Caballero. Desenvolvimento de metodologia para determinação dimensional de uma bomba centrífuga utilizando velocidade específica (n _s) [manuscrito] / Augusto Eduardo Caballero Palomino 2017. 145 p., enc.: il.
	Orientador: Carlos Barreira Martinez.
	Dissertação (mestrado) Universidade Federal de Minas Gerais, Escola de Engenharia.
	Anexos: f. 119-145.
	Bibliografia: f. 117-118.
	 Engenharia mecânica - Teses. 2. Bombas centrífugas - Teses. Abastecimento de água na indústria - Teses. 4. Abastecimento de água na agricultura - Teses. 5. Abastecimento de água - Teses. Martinez, Carlos Barreira. II. Universidade Federal de Minas Gerais. Escola de Engenharia. III. Título.
	CDU: 621(043)

"Arriba, siempre arriba hasta las estrellas" Jorge Chávez.

AGRADECIMENTOS

Primeiro, agradeço a Deus por tudo e permitir chegar até aqui, dando-me vida para que com esforço, dedicação, perseverança, ânimo continue meu aprendizado.

Agradeço a minha querida família: Márcia, Eduardo e Helen, Augusto e Marieta por brindar-me apoio sem importar as dificuldades do dia a dia, carinho e amor fazendo meus dias de estudo e trabalho mais agradáveis. Às minhas lindas netinhas Maria Eduarda e Isabela, que me deram minha segunda vida, a Maria Aparecida Costa e Maria Conceição Apparecida, são todas as pessoas mais importantes e que a cada dia me incentivaram sempre para buscar o conhecimento e continuar estudando e conseguir meus sonhos.

Agradeço a minha família distante. A meus avos (In memoriam) Andrés, Bertila, Nicolas, Isabel, a meus pais (*In memoriam*) Judith e Augusto, pelo exemplo de vida e superação, carinho, amor, força de vontade, sacrifícios e estudos, a meus irmãos Alberto, Andrés, Isabel, Judith, Carmela, Nicolas e famílias pelos momentos de amor, carinho e palavras de motivação que permitiram culminar esta etapa tão importante.

Ao Professor Dr. Carlos Martinez, orientador desta dissertação, quem confiou e brindou apoio incondicional, incentivando-me com dedicação para buscar constantemente ensinamentos e soluções desafiadoras nesta Escola da UFMG.

Aos professores das disciplinas do curso: Dr. Jair, Dra. Edna, Dr. Marco Túlio, Dr. Matheus Pereira Porto, Dr. Marcos Pinotti (*in memoriam*), Dr. Ricardo Koury e Dr. Márcio Fonte Boa pela dedicação, paciência, atenção e sábios conselhos ao longo do curso. Ao professor Dr. Ramón Molina Valle pelo apoio para continuação de meus estudos e a amizade.

A Marina Cândida de Miranda Costa, quem sempre aportou seu apoio na parte administrativa.

Aos meus amigos Oscar Sandoval, Carlos Eduardo Castilla e Juan José Garcia, com ideias e soluções para superar às dificuldades que tivermos que enfrentar. Também a meus companheiros do mestrado: Ana Pilz, Mila Sampaio, Andrés Mancilla, Filipe Bastos, Eder Cesar, Afonso Ferreira, Ronaldo Simi, Welligtânia Dias que ao longo do curso sempre foram muito colaboradores dando total apoio.

Aos meus amigos Ricardo Araújo, Adriano Marques, Mozart Camisassa, João Paulo Barony e Cláudia Eliza que sempre estiveram dispostos a me ajudar para vencer as etapas do mestrado.

Meus mais sinceros agradecimentos.

RESUMO

Com o aumento da procura por energias sustentáveis, a utilização de bombas centrífugas para atendimento às necessidades de abastecimento de água no país - nas instalações de bombeamento, indústria em geral e agroindústria - vem sendo amplamente aplicada com o objetivo de melhorar as condições da população e da produtividade industrial. O Brasil é um país privilegiado, considerando-se o tamanho do território que precisa de água para gerar riqueza, nos diferentes campos antes mencionados. No entanto, existem dificuldades no manuseio deste precioso elemento, água, com regiões com déficit de água, imensas áreas secas e passando por necessidades. Por isso, as bombas centrífugas precisam ser melhoradas para funcionar com melhor rendimento e aproveitamento. A fim de simular o estudo foi desenvolvido um Algoritmo básico para dimensionamento, complementado com formulação mais atualizada de diversas referências, sendo utilizadas informações de catálogos de fabricantes para verificar a compatibilidade de informações que certificariam o processamento. Nos resultados obtidos (trabalhando nas mesmas condições), foi observado que no diâmetro de saída do rotor é bem mais consistente e com pequenas alterações. Durante o processamento ela poderia ser bem melhorada. Com relação à largura, será necessário desenvolver o processo de fundição do rotor para melhorar os resultados encontrados. Por último, os resultados obtidos demonstraram que mediante esta metodologia é possível desenvolver um Algoritmo confiável que permita estudar o comportamento e as características de novas famílias de rotores de bombas centrífugas.

Palavras-chave: Abastecimento de água residencial e industrial; Bomba centrífuga; Algoritmo de simulação para dimensionamento.

ABSTRACT

With an increased demand for sustainable energy, the use of centrifugal pumps to meet the country's water supply needs - by pumping facilities, the industry in general and agribusinesses - has been widely applied towards improving life conditions as well as industrial productivity. Brazil is a privileged country, by considering the size of the territory that needs water to generate wealth, in the different fields mentioned above. However, there are difficulties in handling this precious element, water, with regions where water is scarce, besides huge, dry and needy areas. For this reason, centrifugal pumps need to be improved to work better and with higher performance. In order to simulate the study, a basic Algorithm for sizing was developed and complemented with a more updated formulation from several references, by using information provided in manufacturers' catalogues so as to gather and match information that would certify the process. The study results (working under the same conditions) showed that in the rotor output diameter it is much more consistent and displays few alterations. Throughout the processing it could be greatly improved. With respect to width, it will be necessary to develop the rotor casting process so that better results can be reached. Last but not least, the obtained results demonstrated that through this methodology it is possible to develop a reliable Algorithm that allows studying the behavior and characteristics of new families of centrifugal pump rotors.

Key words: Domestic and industrial water supply; Centrifugal pump; Simulation algorithm for sizing.

SUMÁRIO

1.	INTI	RODUÇ	ÃO	23
	1.1	Objetiv	vos da Dissertação	28
	1.2	Estrutu	ra do Trabalho	28
2.	REV	ISÃO B	IBLIOGRÁFICA	30
	2.1	Definiç	ão da referência básica para o desenvolvimento do projeto	30
	2.2	Critério	os considerados para definir a Altura manométrica (Hman) e Vazão o	le
		recalqu	ie (Q)	30
	2.3	Determ	iinação da velocidade de entrada da bomba	32
	2.4	Correçã	ão da descarga	33
	2.5	Determ	iinação da quantidade das pás Z do rotor	33
	2.6	Ângulo	os característicos de entrada ($\alpha 1$, $\beta 1$) e saída ($\alpha 2$, $\beta 2$) do rotor	34
	2.7	Coefici	entes de velocidade	35
	2.8	Catálogos dos fabricantes das bombas40		
	2.9	Concei	tos fundamentais	40
		2.9.1	Vazão em volume Q	40
		2.9.2	Altura Manométrica Hman	40
		2.9.3	Rotação de acionamento "n"	41
		2.9.4	Velocidade especifica n _s	42
	2.10	Bomba	s centrifugas	43
		2.10.1	Classificação dos Rotores	44
		2.10.2	Triângulo de velocidades	44
		2.10.3	Determinação do Coeficiente de perdas internas Kpi	48
		2.10.4	Resumo das Grandezas utilizadas neste trabalho	52
3.	МЕТ	METODOLOGIA		
	3.1	Delimi	tação da faixa de aplicação e das grandezas características (Q, H, n);	54
	3.2	Escolha	a do banco de dados	55
	3.3	Dados	de entrada a serem obtidos do banco de dados	55
	3.4	Constru	ução do algoritmo e saída do modelo	55
	3.5	Descriq	ção do procedimento de cálculo	66

	3.6	Saídas p	para as Condições de Projeto	.78
4.	ESTU	JDO DE	CASO	.79
	4.1	Estudo	inicial das grandezas das bombas centrifugas	.79
	4.2	Amplia	ção do estudo	.81
		4.2.1	Comportamento para Hman 100 m e 3500 rpm	.81
		4.2.2	Comportamento para Hman 80 m e 3500 rpm	.85
		4.2.3	Comportamento para Hman 60 m e 3500 rpm	.89
		4.2.4	Comportamento para H 40 m e 3500 rpm	.93
		4.2.5	Comportamento para H 30 m e 3500 rpm	.96
		4.2.6	Comportamento para H 20 m e 3500 rpm	100
		4.2.7	Comportamento Consolidado da Velocidade meridiana	103
		4.2.8	Comportamento Consolidado dos Diâmetros	104
		4.2.9	Comportamento Consolidado da Largura	105
		4.2.10	Comportamento Consolidado do Coeficiente de perdas internas kpi 1	105
		4.2.11	Comparação dos resultados encontrados para os Dados de Projeto	106
		4.2.12	Considerações finais	115
5.	CON	CLUSÕ	ES E RECOMENDAÇÕES1	116
	5.1	Conclus	sões1	116
	5.2	Recome	endações para trabalhos futuros:1	116
REF	ERÊN	CIAS		117
ANE	ANEXO A			
ANE	XO B		1	121
ANE	XO C			135

LISTA DE FIGURAS

FIGURA 1.1 - H	Bomba centrífuga de uso geral	.23
FIGURA 2.1. R	ecomendação para determinação da quantidade de pás, Z e do ângulo de	
	saída β ₂	.31
FIGURA 2.2 - 0	Coeficiente da Velocidade na boca de entrada do rotor (kv'1)	.37
FIGURA 2.3 - 0	Coeficiente da Velocidade da componente meridiana na entrada do rotor	
	(kvm ₁)	.38
FIGURA 2.4 - 0	Coeficiente da Velocidade periférica de saída do rotor (ku ₂)	. 39
FIGURA 2.5 - 0	Coeficiente da Velocidade meridiana de saída do rotor" (kvm2)	. 39
FIGURA 2.6 - A	Alternativas para a linha de aspiração de uma turbo-bomba	.41
FIGURA 2.7 - 7	Friângulo de entrada meridiana da pá	.45
FIGURA 2.8 -	Diagrama das velocidades à saída da pá do rotor	.45
FIGURA 2.9 - 7	Friângulo de entrada e saída da pá	.46
FIGURA 2.10 -	Diagrama das velocidades para uma partícula líquida M	.47
FIGURA 2.11 -	Condições de escoamento na entrada do rotor	.47
FIGURA 2.12 -	Grandezas que caracterizam a forma do rotor	.48
FIGURA 2.13 -	Canal de escoamento, idealizado, formado entre duas pás consecutivas	.48
FIGURA 3.1 - S	Sequência do processo	.56
FIGURA 4.1 -	Para Hman. 100 m. Dados de Saída, para a Velocidade meridiana de	
	entrada do rotor (vm1), Velocidade Meridiana de saída do rotor (vm2),	
	para a rotação de 3500 rpm	.82
FIGURA 4.2 -	Para Hman. 100 m. Dados de Saída, para o "Diâmetro da boca de entrada	
	do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d ₂)ret, para a	
	rotação de 3500 rpm.	.82
FIGURA 4.3 -	Para Hman. 100 m. Dados de Saída, para a "Largura de saída do rotor	
	corrigida" (b2)ret, para a rotação de 3500 rpm.	.83
FIGURA 4.4 -	Para Hman. 80 m. Dados de Saída, para a Velocidade meridiana de	
	entrada do rotor (v_{m1}) , Velocidade Meridiana de saída do rotor (v_{m2}) , para	
	a rotação de 3500 rpm.	.86
FIGURA 4.5 -	Para Hman. 80 m. Dados de Saída, para o "Diâmetro da boca de entrada	
	do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d2)ret, para a	
	rotação de 3500 rpm.	.86
FIGURA 4.6 -	Para Hman. 80 m. Dados de Saída, para a "Largura de saída do rotor	
	corrigida" (b ₂)ret, para a rotação de 3500 rpm.	.87

FIGURA 4.7 -	Para Hman. 60 m. Dados de Saída, para a Velocidade meridiana de	
	entrada do rotor (v_{m1}) , Velocidade Meridiana de saída do rotor (v_{m2}) , para	
	a rotação de 3500 rpm.	90
FIGURA 4.8 -	Para Hman. 60 m. Dados de Saída, para o "Diâmetro da boca de entrada	
	do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d2)ret, para a	
	rotação de 3500 rpm.	90
FIGURA 4.9 -	Para Hman. 60 m. Dados de Saída, para a "Largura de saída do rotor	
	corrigida" (b2)ret, para a rotação de 3500 rpm.	91
FIGURA 4.10 -	-Para Hman. 40 m. Dados de Saída, para a Velocidade meridiana de	
	entrada do rotor (v_{m1}) , Velocidade Meridiana de saída do rotor (v_{m2}) , para	
	a rotação de 3500 rpm	93
FIGURA 4.11 -	- Para Hman. 40 m. Dados de Saída, para o "Diâmetro da boca de entrada	
	do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d2)ret, para a	
	rotação de 3500 rpm	93
FIGURA 4.12 -	- Para Hman. 40 m. Dados de Saída, para a "Largura de saída do rotor	
	corrigida" (b ₂)ret, para a rotação de 3500 rpm	94
FIGURA 4.13 -	- Para Hman. 30 m. Dados de Saída, para a Velocidade meridiana de	
	entrada do rotor (v_{m1}) , Velocidade Meridiana de saída do rotor (v_{m2}) , para	
	a rotação de 3500 rpm.	97
FIGURA 4.14 -	- Para Hman. 30 m. Dados de Saída, para o "Diâmetro da boca de entrada	
	do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d2)ret, para a	
	rotação de 3500 rpm.	97
FIGURA 4.15 -	- Para Hman. 30 m. Dados de Saída, para a "Largura de saída do rotor	
	corrigida" (b ₂)ret, para a rotação de 3500 rpm.	98
FIGURA 4.16 -	- Para Hman. 20 m. Dados de Saída, para a Velocidade meridiana de	
	entrada do rotor (v_{m1}) , Velocidade Meridiana de saída do rotor (v_{m2}) , para	
	a rotação de 3500 rpm.	.100
FIGURA 4.17 -	- Para Hman. 20 m. Dados de Saída, para o "Diâmetro da boca de entrada	
	do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d2)ret, para a	
	rotação de 3500 rpm	. 100
FIGURA 4.18 -	- Para Hman. 20 m. Dados de Saída, para a "Largura de saída do rotor	
	corrigida" (b2)ret, para a rotação de 3500 rpm.	.101

- FIGURA 4.19 Comportamento Consolidado da Velocidade meridiana na entrada do rotor "v_{m1}" e da Velocidade meridiana na saída do rotor "v_{m2}", em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm. 104
- FIGURA 4.20 Comportamento Consolidado do Diâmetro de entrada do rotor "d'₁" e do Diâmetro de saída do rotor corrigida "(d₂)ret", em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm......104

LISTA DE GRÁFICOS

GRÁFICO 1.1 -	Exemplo de ábacos fornecidos por fabricantes de bombas centrifugas
Gráfico 1.2 - Curva	s de desempenho de um modelo de bomba centrifuga27
GRÁFICO 2.1 -	Descontinuidade dos pontos plotados em forma "dente de serra"
GRÁFICO 2.2 -	Resultado da reordenação dos valores de plotados em forma continua, alinhada e reta
GRÁFICO 2.3 -	Gráfico (ilustrativo) do campo de emprego dos diversos tipos de rotores
GRÁFICO 3.1 -	Diagrama de Fluxo do Algoritmo. Determinação dimensional de uma bomba centrifuga utilizando velocidade especifica (n _s)62
GRÁFICO 3.2 -	Diagrama de Fluxo para Plotagem dos Gráficos de entrada e saída do rotor
GRÁFICO 3.3 -	Diagrama de Fluxo para comparação dos resultados encontrados para o Algoritmo, para Macintyre modificado, para os Dados do Projeto e para os dados dos Catálogos dos fabricantes
GRÁFICO 4.1 -	Comportamento do Diâmetro da boca de entrada do rotor "d' ₁ " e do Diâmetro de saída do rotor corrigida "(d ₂)ret" em função da Velocidade Especifica " n_s ", para a rotação de 3500 rpm80
GRÁFICO 4.2 -	Comportamento da Velocidade Meridiana de entrada do rotor " v_{m1} ", da Velocidade Meridiana de saída do rotor " v_{m2} " em função da Velocidade Especifica " n_s ", para a rotação de 3500 rpm80
GRÁFICO 4.3 -	Comportamento da Largura de saída do rotor corrigida "(b ₂)ret" em função da Velocidade Especifica "n _s ", para a rotação de 3500 rpm81

LISTA DE TABELAS

TABELA 1.1	Receitas Projetadas para Bombas Industriais
TABELA 2.1	Tabela Resumo das Velocidades na Bomba32
TABELA 2.2	Tabela Resumo da Correção da Descarga: Q'33
TABELA 2.3	Tabela Consolidada dos ângulos de entrada e saída do rotor
TABELA 2.4	Coeficiente kvm_1 , em função de n_q (é o mesmo n_q deste estudo)35
TABELA 2.5	Rotação de acionamento (n), pares de polos (p) e frequência (f) para motores síncronos
TABELA A.1	Estrutura da planilha do Algoritmo119
TABELA A.2	Estrutura da planilha de cálculo para a variação das alturas manométricas de Hman = 100; 80; 60; 40; 30; e 20 mca
TABELA A.3	Fluxograma para o processamento do Algoritmo120
TABELA B.1	Dados Principais do Projeto para n =3500 rpm121
TABELA B.2	Dados Característicos das Bombas Centrifugas KSB para n =3500 rpm, Tipo ETA
TABELA B.3	Dados Característicos das Bombas Centrifugas IMBIL para n =3500 rpm. Tipo INI
TABELA B.4	Dados Característicos das Bombas Centrifugas EH para n =3500 rpm. Tipo EHF
TABELA B.5	Dados Característicos das Bombas Centrifugas WORTHINGTON para n =3500 rpm. Tipo D-814125
TABELA B.6	Dados Característicos das Bombas Centrifugas SULZER para n =3500 rpm. Tipo AZ
TABELA B.7	Dados Característicos das Bombas Centrifugas escolhidas para n =3500 rpm

TABELA B.8	Dados Principais do Projeto para n =1750 rpm128
TABELA B.9	Dados Característicos das Bombas Centrifugas KSB para n =1750 rpm. Tipo ETA
TABELA B.10	Dados Característicos das Bombas Centrifugas IMBIL para n =1750 rpm. Tipo INI
TABELA B.11	Dados Característicos das Bombas Centrifugas EH para n =1750 rpm. Tipo EHF
TABELA B.12	Dados Característicos das Bombas Centrifugas WORTHINGTON para n =1750 rpm. Tipo D-814132
TABELA B.13	Dados Característicos das Bombas Centrifugas SULZER para n =1750 rpm. Tipo AZ
TABELA B.14	Dados Característicos das Bombas Centrifugas escolhidas para n =1750 rpm
TABELA C.1	Resultados da programação para determinação do Algoritmo135
TABELA C.2	Resultados da programação para determinação do Algoritmo (Cont.)136
TABELA C.3	Resultados da programação para determinação do Algoritmo (Cont.)137
TABELA C.4	Resultados da programação para determinação do Algoritmo (Cont.)138
TABELA C.5	Resultados da programação para determinação do Algoritmo (Cont.)139
TABELA C.6	Resultados da programação para determinação do Algoritmo (Cont.) 140
TABELA C.7	Resultados da programação para determinação do Algoritmo (Cont.)141
TABELA C.8	Resultados da programação para determinação do Algoritmo (Cont.)142
TABELA C.9	Resultados da programação para determinação do Algoritmo (Cont.)143
TABELA C.10	Resultados da programação para determinação do Algoritmo (Cont.)144
TABELA C.11	Resultados da programação para determinação do Algoritmo (Cont.)145

LISTA DE QUADROS

QUADRO 2.1	Relações recomendadas para alturas de elevação pequenas e médias	31
QUADRO 2.2	Relações recomendadas para alturas de elevação grandes:	31
QUADRO 3.1	Passos metodológicos	54
QUADRO 3.2	Quantidade de pontos tratados no estudo.	57
QUADRO 3.3	Informações complementares	58
QUADRO 4.1	Parâmetros de comparação entre o Diâmetro de saída do rotor corrigido (d ₂)ret e o Diâmetro de saída do rotor (D ₂) dos fabricantes	84
QUADRO 4.2	Parâmetros de comparação entre a Largura na saída do rotor corrigida (b ₂)ret e a Largura na saída do rotor dos fabricantes	85
QUADRO 4.3	Parâmetros de comparação entre o Diâmetro de saída do rotor corrigido (d ₂)ret e o Diâmetro de saída do rotor (D ₂) dos fabricantes	88
QUADRO 4.4	Parâmetros de comparação entre a Largura na saída do rotor corrigido (b ₂)ret e a Largura na saída do rotor dos fabricantes	89
QUADRO 4.5	Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d ₂)ret e o diâmetro de saída do rotor (D ₂) dos fabricantes	91
QUADRO 4.6	Parâmetros de comparação entre a Largura na saída do rotor corrigido (b ₂)ret e a Largura na saída do rotor do fabricante	92
QUADRO 4.7	Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d ₂)ret e o diâmetro de saída do rotor (D ₂) dos fabricantes	95
QUADRO 4.8	Parâmetros de comparação entre a Largura na saída do rotor corrigido (b ₂)ret e a Largura na saída do rotor do fabricante	96
QUADRO 4.9	Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d ₂)ret e o diâmetro de saída do rotor (D ₂) dos fabricantes	98
QUADRO 4.10	Parâmetros de comparação entre a Largura na saída do rotor corrigido (b ₂)ret e a Largura na saída do rotor do fabricante	99
QUADRO 4.11	Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d ₂)ret e o diâmetro de saída do rotor (D ₂) dos fabricantes	102

- QUADRO 4.16 Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}), o Diâmetro da boca de entrada do rotor (d'₁), Velocidade Meridiana de saída do rotor (v_{m2}), Diâmetro de saída do rotor corrigido (d₂)ret e da Largura de saída do rotor corrigida (b₂)ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D₂) e Larguras (b₂) dos fabricantes, para 3500 rpm, continuação......110

NOMENCLATURA

Siglas

ELETROBRAS	Eletrobras - Centrais Elétricas Brasileiras S.A
FAO	Agência das Nações Unidas para Agricultura e Alimentação
MG	Estado de Minas Gerais
ONG	Organização não governamental
PROCEL	Programa Nacional de Conservação de Energia Elétrica
UFMG	Universidade Federal de Minas Gerais
UFCG	Universidade Federal de Campina Grande

Letras Gregas

Unidade

α_1	Ângulo de entrada da pá	[°]
α_2	Ângulo de saída da pá	[°]
β_1	Ângulo de inclinação da pá de entrada	[°]
β_2	Ângulo de inclinação da pá de saída	[°]
η_t	Rendimento total máximo	[%]
3	Rendimento hidráulico	[%]
σ_1	Obstrução provocada pela espessura da pá na entrada do rotor	[m]
σ_2	Obstrução provocada pela espessura da pá na saída do rotor	[m]
γ1	Contração provocada pela pá na entrada do rotor	[m]
γ2	Contração provocada pela pá na saída do rotor	[m]
φ	Constante experimental da Sulzer	
ω	Velocidade angular	[rad s ⁻¹]

Letras Latinas

Letras Latinas		Unidade
А	Área, altitude	[m ² ou m]
b	Largura do rotor	[m]
b ₁	Largura da pá à entrada do rotor	[m]
b ₂	Largura da pá na saída do rotor	[m]
$(b_2)_{ret}$	Largura retificada da pá na saída do rotor	[m]
d'1	Diâmetro da boca de entrada do rotor (alguns autores utiliz	am a notação com d ₁) [m]
d ₂	Diâmetro de saída do rotor	[m]
D_2	Diâmetro de saída do rotor da bomba do fabricante	[m]
$(d_2)_{corr}$	Diâmetro de saída do rotor retificado	[m]

d_{m1}	Diâmetro médio da aresta de entrada do rotor (Diâmetro mé revolução gerada pela rotação do bordo de entrada das pás)	édio da superfície de [m]			
d _{ei}	Diâmetro do eixo	[cm]			
(d _{ei}) _{corr}	Diâmetro do eixo corrigido para o uso do rasgo de chaveta	[cm]			
d _{fls}	Diâmetro do flange de entrada/sucção da bomba	[m]			
d_{flr}	Diâmetro do flange de recalque da bomba	[m]			
d_n	Diâmetro do núcleo	[mm]			
d_0	Diâmetro de entrada na boca da bomba	[m]			
d_{tsu}	Diâmetro da tubulação de sucção	[m]			
He	Altura desejada	[m]			
H'e	Altura de elevação	[m]			
H_{man}	Altura manométrica	[m]			
g	Constante gravitacional	[m s ⁻²]			
k _{d2}	Constante empírica para determinar o diâmetro de saída do ro	tor d ₂			
kv'1	Coeficiente de velocidade na boca de entrada do rotor				
kv _{m1}	Coeficiente de velocidade da componente meridiana de entrac	la do rotor			
ku ₂	Coeficiente de velocidade periférica de saída do rotor				
kv _{m2}	Coeficiente de velocidade de saída do rotor				
kz	Coeficiente empírico para determinar a quantidade de pás do rotor				
kpi	Coeficiente de perdas internas				
Ν	Potência consumida pelo motor que aciona a bomba	[cv]			
n	Rotação da bomba	[rpm]			
n _s	Velocidade específica	[rpm]			
Q	Vazão de recalque	$[m^3 s^{-1}]$			
Q'	Vazão de recalque corrigida devido à recirculação	$[m^3 s^{-1}]$			
\mathbf{S}_1	Espessura das pás na entrada do rotor	[m]			
\mathbf{S}_2	Espessura das pás na saída do rotor	[m]			
t ₁	Passo circunferencial entre pás na entrada do rotor	[m]			
t ₂	Passo circunferencial entre pás na saída do rotor	[m]			
V	Vetor Velocidade do movimento absoluto				
\mathbf{V}_{fl}	Velocidade no flange de entrada/sucção	$[m s^{-1}]$			
V_{flso}	Velocidade no flange de entrada/sucção oscilação	$[m s^{-1}]$			
V_{flsp}	Velocidade no flange de entrada/sucção projetada	$[m s^{-1}]$			
V_{tsu}	Velocidade na tubulação de sucção	$[m s^{-1}]$			
\mathbf{V}_0	Velocidade na boca de entrada da bomba	$[m s^{-1}]$			

V '1	Velocidade média na boca de entrada do rotor	$[m s^{-1}]$
Vm1	Velocidade meridiana de entrada do rotor	$[m s^{-1}]$
V _{m2}	Velocidade meridiana de saída do rotor	[m s ⁻¹]
V_{flrp}	Velocidade no flange de recalque projetada	[m s ⁻¹]
V_{flso}	Velocidade no flange de recalque de oscilação	[m s ⁻¹]
U	Vetor Velocidade periférica ou circunferencial	
u ₁	Velocidade periférica no bordo de entrada do rotor (ou vu1)	[m s ⁻¹]
u ₂	Velocidade periférica à saída do rotor (ou vu2)	[m s ⁻¹]
(u _{2)S}	Velocidade periférica à saída do rotor, método Sulzer	[m s ⁻¹]
(u _{2)corr}	Velocidade periférica corrigida com o desvio angular dos filet	tes à saída do rotor [m s ⁻¹]
W	Vetor Velocidade relativa	
w	Módulo da Velocidade relativa	[m s ⁻¹]
W 1	Módulo da Velocidade relativa na entrada do perfil da pá	[m s ⁻¹]
W ₂	Módulo da Velocidade relativa na saída do perfil da pá	[m s ⁻¹]

Z Quantidade de pás do rotor

1. INTRODUÇÃO

A bomba centrifuga (FIG. 1.1) é um equipamento utilizado nas mais diversas áreas como, por exemplo: indústrias químicas e petroquímicas, usinas de açúcar, destilarias, indústria de papel e celulosa, mineração, pressão hidráulica, abastecimento de água para as cidades e para as indústrias, drenagem, irrigação, alimentação de caldeiras industriais, alimentícia, água industrial, água de processo, instalações prediais, ar condicionado, serviços de resfriamento, circulação de óleo térmico e de condensados, serviços públicos, etc. Entenda-se por bomba centrifuga qualquer dispositivo mecânico introduzido no escoamento que forneça energia cinética ao fluido, na forma de trabalho, fazendo com que o fluido escoe no interior de um tubo.

Manual Técnico e Curvas Características Nº 1150.0B/2

KSB ETA

FIGURA 1.1 - Bomba centrífuga de uso geral FONTE: KSB ETA.

O mercado mundial de bombas industriais movimentou em 2006 cerca de 30 bilhões de dólares (VALENTIM, 2008). As vendas de bombas industriais poderão chegar a US \$ 58,5 bilhões em 2019 de acordo com as últimas previsões em bombas de Mercado Mundial (MCILVAINE COMPANY. PUMPS WORLD MARKETS, 2016). Na TAB. 1.1 temos o resumo ilustrativo para Receitas Projetadas para Bombas Industriais em U\$ Bilhões de dólares americanos.

Descrição das bombas	Bilhão de US\$ / ano (2019)
Total	58,5
Centrífuga	41
Diafragma	4,3
Alternativa / embolo	7,4
Rotativa	5,8

TABELA 1.1 Receitas Projetadas para Bombas Industriais

FONTE: MCILVAINE COMPANY. PUMPS WORLD MARKETS, 2016

A demanda de energia é cada vez maior devido ao crescimento da população mundial e à procura por melhores padrões de vida pelas pessoas. Estudos recentes publicados pela FAO, Agência das Nações Unidas para Agricultura e Alimentação, para os próximos anos, tem uma projeção de que a população mundial enfrentará escassez de água. Por outro lado, haverá um crescimento populacional nos próximos anos, assim haverá necessidade de captar e transportar água limpa por longas distâncias até os centros consumidores.

Neste panorama de crescimento mundial de demanda de energia e, do aumento de custos nos últimos anos, o governo determinou que os ensaios de bombas são compulsórios para a avaliação de conformidade dentro do Programa Nacional de Conservação de Energia Elétrica, o PROCEL, que promove o uso eficiente de energia e o combate ao desperdício desde 1985 e atualmente está sob a coordenação do Ministério de Minas e Energia esta medida que tem forçado aos fabricantes de turbo-máquinas em melhorar a qualidade dos projetos e da fabricação para obter a etiquetagem compulsória de bombas centrífugas e cuja ampla utilização inclui desde máquinas de lavar até piscinas domésticas, entrou em vigor efetivamente em janeiro de 2012; a oferta de modelos encontrada no mercado levou o Inmetro a incluir no escopo da portaria somente as bombas e as moto-bombas monofásicas ou trifásicas com motor de até 25 cv e, a partir de julho de 2014, somente os modelos em conformidade com os requisitos aprovados poderão ser comercializados no Brasil.

Para melhorar as condições de desempenho de uma bomba hidráulica, tem-se que analisar o escoamento do fluido no caminho hidráulico ou perfil hidráulico dentro da cavidade da bomba, isto envolve: entrada na bomba com suas interferências (ogiva da ponta do eixo, mudanças de direção do fluido), o rotor (interferências devido à mudança de direção do fluxo), a voluta (simples ou com pás diretrizes) e à saída da água do corpo da bomba. O comportamento do escoamento do fluido no rotor é o principal responsável pelo desempenho da operação.

Os fatores que influenciam um escoamento limpo, alinhado e com o mínimo de turbulência são:

- ✓ Geometria e dimensionamento do rotor;
- ✓ Geometria e dimensionamento da carcaça que envolve o rotor;
- ✓ O tipo de escoamento, o efeito da rotação e a curvatura, no interior do rotor e carcaça.

O desenvolvimento de um projeto, envolvendo bombas centrifugas, inicia-se com a definição dos parâmetros característicos que definem as condições que a bomba deve atender: Altura de elevação (H) que é a capacidade da bomba centrifuga de elevar a pressão do fluido bombeado, desde a entrada até a saída da bomba; Vazão de recalque (Q) que é o volume do fluido que atravessa uma certa seção do escoamento por unidade de tempo; potência consumida (N) que é a quantidade de energia necessária para o funcionamento da bomba centrifuga; e eficiência (η) que é a razão de energia necessária transferida ao liquido bombeado.

O projetista do fabricante define as características básicas da bomba, os parâmetros característicos e a especificação técnica do equipamento. Estas características compõem os catálogos dos fabricantes que são utilizados, pelo projetista de aplicação do sistema para a seleção e escolha da bomba que apresente as melhores condições de operação para atender o projeto. Por sua vez, o fabricante da bomba ao receber esta especificação técnica, verifica as condições de projeto e operação fazendo a recomendação do tipo, modelo e potência da bomba que melhor se adequam e atendem ao projeto. O responsável pelo projeto, engenheiro de aplicação, analisa e avalia a conformidade da especificação, aprovação da compra, recebimento, inspeção, instalação e montagem, comissionamento. Finalmente faz o "star-up", operação e aprovação final do equipamento no local da obra para entrega ao cliente final.

Desta forma trabalha-se com um equipamento "black box", não se conhecendo detalhes construtivos da bomba, como o rotor. Os dados disponíveis são somente os necessários para atender a seleção, montagem, operação e manutenção. Os diferentes fabricantes de bombas, apresentam catálogos com cartas de aplicação (cobertura hidráulica, gráfico de escamas) como mostrados no GRA.1.1. No eixo das abscissas é apresentada a Vazão volumétrica, Q (m³/h), e no eixo das ordenadas, a Altura de elevação H (mca). As regiões delimitadas na carta de aplicação mostram o campo de aplicação de cada modelo de bomba produzido pelo fabricante para cada rotação escolhida.

Quando da escolha do modelo da bomba, entra-se na carta de aplicação, GRA.1.1., com a Altura Manométrica, H, e Vazão, Q, do projeto. A interseção da linha vertical com a horizontal, indicara o modelo de bomba que atende as condições do projeto. Pode-se ter uma situação onde o fabricante não possui uma bomba centrifuga que atenda às necessidades de Vazão ou Altura de elevação. Neste caso, considera-se que para esta condição este equipamento não se aplica, NA.

No GRA. 1.1 a título de apresentação, são mostrados os campos característicos do catálogo de aplicação de um fabricante (KSB) para duas rotações comerciais de 3500 rpm e 1750 rpm.

Campo de Aplicação - 60 Hz

GRÁFICO 1.1 - Exemplo de ábacos fornecidos por fabricantes de bombas centrifugas. FONTE: KSB BOMBAS

Uma vez selecionado o modelo da bomba centrifuga, obtém-se no catálogo do fabricante a curva característica ou de performance específica para cada modelo como mostrada, por exemplo, no GRA. 1.2. Nesta curva característica encontramos as informações

do fabricante (KSB) tais como: diâmetro do rotor (d₂), eficiência (η), potência consumida (N), a Altura Positiva Líquida de Sucção - Net Positive Suction Head (NPSH), diâmetro do bocal da sucção e do bocal de descarga, diâmetro máximo dos sólidos, e tipo de fluido padrão: água (indicado o peso específico igual a 1kgf/ dm³).

A nomenclatura do modelo, tem que ser verificada na descrição de cada catálogo.

Gráfico 1.2 - Curvas de desempenho de um modelo de bomba centrifuga. FONTE: KSB BOMBAS

Até poucos anos atrás (1970), o desenvolvimento tecnológico, projeto e fabricação das bombas era feito fora do Brasil, as publicações técnicas eram todas impressas em outros idiomas (inglês, italiano, francês, alemão). Aos poucos, com o desenvolvimento da capacidade industrial do Brasil, a partir dos anos 70, o desenvolvimento tecnológico e projeto para fabricação continuou sendo feito fora, mas a fabricação começou a ser feita aqui no Brasil,

porem as publicações continuavam inalteradas. Esta situação fez com que as primeiras publicações em português começassem a serem feitas no Brasil. Pode-se considerar como referência os trabalhos dos professores Archibald Joseph Macintyre, Carl Pfleiderer e Hartwig Petermann, Zulcy de Souza; Djalma Francisco Carvalho; Carlos Fernandes de Medeiros Filho.

Com a popularização do computador, o material impresso passou a ser disponibilizado pelos fabricantes em meio eletrônico e via Internet. Entretanto, o nível de informações ficou mais "pobre", já que o contato com os representantes do fabricante que se davam por meio de visitas técnicas frequentes, praticamente foi abandonado se restringindo a simples consultas via Internet.

Diante deste cenário, este trabalho propõe estudar o projeto de um rotor de uma bomba centrifuga, através do desenvolvimento de uma metodologia para a determinação dimensional das características do rotor utilizando a velocidade específica (n_s), de tal forma a que a engenharia projetista da bomba agilize o dimensionamento de modo a melhorar seu desempenho operacional. A metodologia básica proposta é a definida em MACINTYRE (2013) com adaptações e recomendações práticas de outros autores.

1.1 Objetivos da Dissertação

Objetivo principal: Desenvolver uma Metodologia com base num Algoritmo computacional para dimensionar um rotor de uma bomba centrifuga utilizando-se de ábacos e equações de fácil operação de forma a reduzir o tempo de projeto

Objetivos específicos:

- Coletar e analisar dados de rotores de bombas comerciais;
- Calcular os parâmetros característicos do rotor através do Algoritmo proposto.
- Fazer uma correlação das grandezas características das bombas analisadas;
- Propor equações de cálculo a partir da altura manométrica, rotação e vazão que possibilite a determinação das dimensões dos rotores das bombas;
- Fazer um estudo de caso mostrando a factibilidade do uso dessas equações.

1.2 Estrutura do Trabalho

Esta dissertação será organizada em cinco capítulos, sendo o primeiro a introdução, o Capítulo 2 apresenta uma revisão bibliográfica sobre conceitos gerais das bombas centrífugas ao longo dos últimos 50 anos. O Capítulo 3 destina-se ao desenvolvimento da metodologia. INTRODUÇÃO 29

Neste capítulo encontra-se: a) descrição do objeto em estudo; b) a coleta dos dados dimensionais dos diferentes catálogos dos fabricantes para as condições de projeto; c) o roteiro para se obter o algoritmo computacional. A partir do cálculo teórico, obteremos: i) os diâmetros de entrada e de saída do rotor; ii) a largura do rotor; iii) as velocidades meridianas de entrada e saída do rotor; iv) a velocidade média na boca de entrada do rotor; e, v) o diâmetro da boca de entrada do rotor. No Capítulo 4 Estudo de Caso, onde detalha-se os valores obtidos com o processamento do Algoritmo, os valores dos dados coletados dos catálogos dos fabricantes, fazendo-se a comparação dos resultados. Uma vez analisados, podemos concluir a validação do Algoritmo desenvolvido. O capítulo 5 destina-se às conclusões da dissertação e recomendações para trabalhos futuros.

2. REVISÃO BIBLIOGRÁFICA

Preâmbulo:

Neste capítulo é apresentada uma revisão bibliográfica relativa aos parâmetros e variáveis abordados no desenvolvimento da pesquisa, quais sejam: i) a Altura manométrica (Hman); ii) Vazão de recalque (Q); iii) velocidade de entrada da bomba centrifuga; iv) a quantidade de pás do rotor; v) análise dos ângulos característicos de entrada ($\alpha_1 e \beta_1$) e saída ($\alpha_2 e \beta_2$) das pás do rotor; vi) tratamento dos coeficientes experimentais da: velocidade na boca de entrada rotor (kv'₁); vii) a velocidade da componente meridiana na entrada do rotor (kv_{m1}); viii) a velocidade periférica de saída rotor (ku₂) e da velocidade meridiana de saída do rotor (kv_{m2}); ix) catálogos do fabricantes.

2.1 Definição da referência básica para o desenvolvimento do projeto

Esta pesquisa se fundamenta fortemente nas recomendações para projeto de bombas centrifugas contidas no livro "Bombas e Instalações de Bombeamento", do professor Archibald Joseph Macintyre, (MACINTYRE, 2013). Optou-se por seguir essa referência uma vez que essa se constitui em um marco no estudo de turbo bombas no Brasil. Entretanto foram inseridas algumas recomendações a partir dos estudos de alguns autores Nacionais (Zulcy, 2011; Carvalho, 2010; Fernandes, 2003) e outros Internacionais (Church, 1954; Quantz, 1954; Mataix, 1975) que permitiram ajustar o modelo proposto e conseguir resultados mais coerentes que aqueles obtidos apenas com a primeira referência. Dessa forma, o modelo que inicialmente foi proposto (Modelo Macintyre) transformou-se em "Modelo Macintyre Modificado".

Esse modelo foi aplicado para situações da Altura manométrica variando de 100; 80; 60; 40; 30 e 20 m, e para a Vazão variando de 30, 40, 50 e 60 m³/h, para as rotações de 3500 e 1750 rpm, permitindo a geração de um conjunto das tabelas e gráficos nas guias da planilha Excel utilizada para o processamento. Esse material posteriormente permitiu a elaboração de ábacos e equações de cálculo a partir da Altura manométrica, rotação e Vazão para a determinação das dimensões dos rotores das bombas.

2.2 Critérios considerados para definir a Altura manométrica (Hman) e Vazão de recalque (Q)

FERNANDES (2003) classifica a Altura manométrica (Hman) e a Vazão de recalque (Q), segundo faixas de utilização. Esses critérios, serão utilizados, como referência neste trabalho.

- Pressão
 - ➢ Baixa pressão de elevação: Hman < 15 mca.</p>
 - ➢ Média pressão de elevação: 15 < Hman < 50 mca.</p>
 - Alta pressão de elevação: Hman > 50 mca
- Vazão
 - ▶ Pequena vazão: Q < 50 m^3/h
 - ▶ Média vazão: $50 < Q < 500 m^3/h$
 - Scande vazão: $Q > 500 m^3/h$.

MACINTYRE (2013, pag. 238,) recomenda a utilização de uma quantidade de pás Z e do ângulo de saída β2 em função da Altura manométrica (Hman), ver FIG. 2.1.

FIGURA 2.1. Recomendação para determinação da quantidade de pás, Z e do ângulo de saída β_2 . FONTE: AUTOR

Assim, com auxílio dos critérios definidos anteriormente fica mais segura a sua aplicação ver QUADRO 2.1 e QUADRO 2.2.

QUADRO 2.1

Relações recomendadas para alturas de elevação pequenas e médias.

$\beta_2 = 15^{\circ} a \ 20^{\circ}$	$\beta_2 = 20^{\circ} a \ 25^{\circ}$	$\beta_2 = 25^{\circ} a \ 35^{\circ}$
Z = 6 a 7 pás	Z = 7 a 8 pás	Z = 8 a 10 pás

FONTE: MACINTYRE (2013), p. 238.

QUADRO 2.2

Relações recomendadas para alturas de elevação grandes:

$\beta_2 = 22^{\circ}30^{\circ} a \ 30^{\circ}$	$\beta_2 = 30^{\circ} a 35^{\circ}$	$\beta_2 = 35^{\circ} a 45^{\circ}$
Z = 6 a 7 pás	Z = 8 a 9 pás	Z = 9 a 10 pás

FONTE: MACINTYRE (2013), p. 238.

2.3 Determinação da velocidade de entrada da bomba

CHURCH (1954, pag. 90), recomenda que a velocidade d'água na entrada da bomba para o ponto de máximo rendimento (região da posição do flange ou bocal de sucção) seja mantida entorno de 2,7 a 3,0 m/s, podendo oscilar em função das condições de sucção entre 1,2 a 5,5 m/s. No recalque, a velocidade média do líquido deve ser de 5,5 a 7,6 m/s, podendo oscilar entre 3,6 a 12,2 m/s. Esse mesmo autor recomenda (pag. 94) que a velocidade de entrada V_0 na boca do rotor, seja ligeiramente superior à velocidade na sucção variando entre 3,0 a 4,6 m/s.

Assim em função das grandezas Altura manométrica, Hman, e Vazão, Q, obtêm-se por meio da consulta nos catálogos, o diâmetro do flange ou bocal da sucção (dfl), e através dele poderemos determinar a velocidade d'água na entrada da bomba.

A velocidade d'água na da entrada da bomba (na sucção) será determinada pela formula proposta por CHURCH (1954, pag108) e pela expressão da EQ (2.1).

$\frac{4 Q}{(d_{fl})^2}$	(2.1)
π	$\frac{4 Q}{\pi (d_{fl})^2}$

A TAB. 2.1 contém as velocidades que atuam nas diferentes regiões da bomba.

TABELA 2.1

Local	Área	Diâmetro	Velocidade	Faixa recomendada p/ Velocidade (m/s)	Autor	Página da Referência
Tubulação de	Livre	d _{tsu}	V _{tsu}			
entrada na sucção						
Flange na entrada	Livre	d_{fls}	Projetada:	2,7 a 3,0		
da bomba			V_{flsp}		Church	90
			Oscilação:	1,2 a 5,5	(1954)	
			V_{flso}			
Entrada na boca da bomba	Livre	d_0	\mathbf{V}_0	2,0 a 4,0	Quantz (1954)	34; 41 e 42
				2,5 a 5,0 (para bom-	Macintyre	233
				bas instaladas acima	(2013)	
				do nível do líquido)		
				5,0 a 6,0 (para bom-		
				bas funcionando		
				"afogadas")		
Entrada na boca do	Bloqueio	d'1	V'1	2,5 a 5,0	Macintyre	234 e 279
rotor					(2013)	
				3,0 a 4,6	Church	
					(1954)	94
Início da pá:	Bloqueio	$dm_1 < d'_1$	v _{m1}	$v_{m1} = 1,15 v'_1$	Macintyre	235
entrada do rotor					(2013)	
(velocidade				$v_{m1} = 1,15V_0$	Quantz	36; 41 e 42
meridiana)					(1954)	
				$v_{m1} = (1,05 a 1,10) V_0$	Church	95
					(1954)	

Tabela Resumo das Velocidades na Bomba

Local	Área	Diâmetro	Velocidade	Faixa recomendada p/ Velocidade (m/s)	Autor	Página da Referência
Final da pá: entrada do rotor (velocidade meridiana)		d_2	V _{m2}	$v_{m2} = (0,85 \ a \ 0,90)$ v_{m1}	Macintyre (2013)	240
Núcleo da ogiva	Bloqueio	dn				
Eixo da bomba	Bloqueio	dei				
Flange de recalque da bomba	Livre	d _{flr}	Projetada: V _{flrp} Oscilação: V _{flro}	5,5 a 7,6 3,6 a 12,2	Church (1954)	90

FONTE: AUTOR

2.4 Correção da descarga

Segundo MACINTYRE (2013, pag. 233), QUANTZ (1954, pag. 34) e CHURCH, (1954, pag. 95) no dimensionamento de uma bomba centrifuga deve-se levar em consideração a recirculação da água entre o rotor e a caixa espiral e as fugas nas gaxetas. Assim deve-se adotar uma Vazão corrigida da descarga, Q', superior à Vazão do projeto, Q.

A partir das recomendações desses autores fez-se uma comparação dos valores para a correção da Vazão da descarga com fins de projeto, tal como estão apresentados na TAB. 2.2. Nesse trabalho adotou-se o valor de 5% de acréscimo de Vazão que corresponde ao valor dentro da faixa recomendada por MACINTYRE (2013) e por QUANTZ (1954).

	,	6	
Autor	Página da Referência	Faixa recomendada para a Correção da Descarga Q' (m³/h)	Equação
MACINTYRE (2013)	232; 233; 269 e 270	+ 3% a 10% de Q	1,03 Q < Q' < 1,10 Q
QUANTZ (1954)	34; 36; 41 e 42	+ 5% Q	Q' = 1,05 Q
CHURCH(1954)	95 e 109	+ 1% a 2% de Q	Q' = 1,02 Q
Adotado no estudo:		+ 5% Q	Q' = 1,05 Q

TABELA 2.2

Tabela Resumo da Correção da Descarga: Q'

FONTE: AUTOR

2.5 Determinação da quantidade das pás Z do rotor

Segundo MATAIX (1975), ZULCY (2011) e PFLEIDERER (1979), recomendam

a utilização da EQ (2.2) para avaliação das quantidades de pás Z do rotor.

$7 = l_{\rm eff} \left(d2 + dm1 \right)$	$(\beta_1 + \beta_2)$	
$Z = \kappa Z \left(\frac{d2 - dm1}{d2 - dm1} \right).$ sen	$\left(\frac{2}{2} \right)$	(2.2)

Nesta equação leva-se em consideração as seguintes recomendações para o valor do kz:

- ✓ O valor de k_z é um coeficiente empírico, que é tanto menor, quando maior for a relação: S₁/d'₁, (espessura da pá, S₁, e o diâmetro de entrada do rotor, d'₁). Se tivermos maior espessura da pá, o canal interno ficará estreitado, ficando mais obstruído.
- ✓ Valores médios razoáveis para este coeficiente são, para rotores radiais fundidos:
 k_z = 5 a 6,5; e para rotores de material usinado ou prensado: k_z = 6,5 a 8.
- ✓ Na maioria dos casos, a quantidade de pás, deve ficar na faixa de 2 até 10 pás.

Como a bomba e rotor são normalmente fundidos, adotaremos, nessa pesquisa, o valor de $k_z = 6,5$. Assim a EQ (2.3) será utilizada neste trabalho.

$7 - 6 = \left(\frac{d2 + dm1}{cm}\right)$	$\left(\beta_1 + \beta_2\right)$	(2,2)
$2 = 0.5 \left(\frac{d2 - dm1}{d2 - dm1} \right)$	$\left(\begin{array}{c} \hline 2 \end{array} \right)$	(2.3)

2.6 Ângulos característicos de entrada (α1, β1) e saída (α2, β2) do rotor

De acordo com MACINTYRE (2013), QUANTZ (1954), CHURCH (1954), MATAIX (1975), PFLEIDERER (1979), ZULCY (2011), CARVALHO (2010) o ângulo de entrada α_1 deve ser de 90° e o ângulo β_1 variando de 10° a 30°, o ângulo de saída α_2 varia entre 8° e 25° e o ângulo de saída β_2 varia entre 15° e até 90° dependendo do tipo de pá. Devido a essa grande variação fez-se um resumo dos valores desses ângulos de acordo com o apresentado pelos autores supracitados. Esse resumo está apresentado na TAB. 2.3.

Anter					
Autor	Angulo de	Angulo de entrada	Angulo de	Angulo de salda (p ₂)	
	entrada (α ₁)	(β1) (graus)	saída (α ₂)	(graus)	
	(graus)		(graus)		
Bombas centrifugas. L.	$\alpha_1 = 90^{\circ}$,	Determinado pela:	$\alpha_2 = 8^{\circ} a 15^{\circ}$,	$\beta_2 = 25^{\circ} a 50^{\circ},$	
Quantz. (1954)	pg., 16 e 36	tan β_1	pg., 35	pg., 35	
Bombas y Máquinas	$\alpha_1 = 90^{\circ}$,	$\beta_1 = 10^{\circ} a 25^{\circ},$		$\beta_2 = 15^{\circ} a 40^{\circ},$	
Soplantes. Church	pg., 95	pg., 95		pg., 99.	
(1954)					
Observações do		Determinado pela:		O valor tem que ser: $\beta_2 >$	
Church (1954).		tan β_1		β_1 , o que se faz: primeiro	
				define β_2 e depois se	
				calcula, pg. 110.	
Turbomáquinas	$\alpha_1 = 90^{\circ},$	$\beta_1 > 15^{\circ}$,	Para bombas	Em geral:	
Hidráulicas. Turbinas	pg., 408 e 409	Na faixa entre 15° a	com guias:	$\beta_2 = 20^\circ$ a 30°, o valor	
Hidráulicas-Bombas-		20°, no máximo 30°	$\alpha_2 = 6^{\circ} a 9^{\circ}$	normal considerado é:	
Ventiladores. Mataix		pg., 409	Para bombas	22°30'.	
(1975).			sem guias:	pg., 416.	
			$\alpha_2 = 14^{\circ} a 25^{\circ}$		
Observações do				O mais importante no	
Mataix (1975).				projeto é entender que: $\beta_2 <$	
				90°, pás curvadas para trás;	
				$\beta_2 = 90^\circ$, pás radiais;	
				$\beta_2 > 90^\circ$, pás curvadas para	
				frente, pg. 409.	

TABELA 2.3

REVISÃO BIBLIOGRÁFI	A35
---------------------	-----

Autor	Ângulo de	Ângulo de entrada	Ângulo de	Ângulo de saída (B_2)
	entrada (a_1)	(B_1) (graus)	saída (a)	(graus)
	(graus)	(p1) (g1 aus)	(araus)	(gi uus)
Máquinas de Fluxo. Pfleiderer (1979).	$\alpha_1 = 90^\circ,$ pg., 35; 64 e 81	Experimentos mostram que o β_1 não deve ser menor que 15°, e que para pequenas bombas, este valor deve ser	(graus)	$\beta_2 = 20^\circ a 40^\circ,$ pg., 115.
		superior a 18° pg. 81.		
Projeto de Máquinas de Fluxo. Tomo II. Bombas Hidráulicas com Rotores Radiais e Axiais. Zulcy (2011).	$\alpha_1 = 90^\circ,$ pg., 51. (corresponde ao α_4)	$\beta_1 = 15^\circ \text{ a } 28^\circ$ pg., 53. (corresponde ao β_4)		Para β_2 : $20^\circ \le \beta_2 \le 45^\circ$, pg., 54. (Corresponde ao β_5)
Bombas e Instalações de Bombeamento. Macintyre (2013).	α _{1 =} 90°, pg., 100, 117 e 235	Determinado pela tan β1		$β_2 = 15^\circ \text{ a } 35^\circ$ $β_2 = 22^\circ 30^\circ \text{ a } 45^\circ$ $β_2 = 17^\circ 30^\circ \text{ a } 30^\circ$ J. Stepanoff recomenda: $β_2 = 22^\circ 30^\circ$, pg. 106
Observações do Macintyre (2013).				Recomendação em função da Altura manométrica (Hman) e da utilização de uma quantidade de pás Z
Instalações Elevató- rias, Bombas. Carvalho (2010).	$\alpha_1 = 90^\circ,$ pg., 207	β ₁ >14°, pg., 346 e 347		Arbitrar entre: $30^{\circ} < \beta_2 < 70^{\circ}$, pg., 273.

FONTE: AUTOR

Cabe ao projetista do rotor em face de sua experiência, fazer a escolha dos ângulos de entrada e saída, fazendo as simulações para o melhor dimensionamento do rotor da bomba centrifuga.

2.7 Coeficientes de velocidade

MACINTYRE, (2013) recomenda que se utilizem coeficientes de velocidade distintos para cada valor de rotação especifica " n_s ". Esses coeficientes são: i) "Coeficiente da Velocidade na boca de entrada do rotor" (kv'_1); ii) "Coeficiente da Velocidade da componente meridiana na entrada do rotor" (kv_{m1}); iii) "Coeficiente da Velocidade periférica de saída do rotor" (ku_2); e iv) "Coeficiente da Velocidade meridiana de saída do rotor" (kv_{m2}).

A TAB 2.4 a seguir apresenta os Coeficiente kvm1 recomendados por MACINTYRE (2013).

TABELA	A 2.4
--------	-------

Coeficiente kvm1, em função de nq (é o mesmo nq deste estudo)

nq	10	10 - 20	20 - 30	30 - 40	40 - 50	50 -60
Kv _{m1}	0,11/01,2	0,125/0,14	0,155/0,175	0,175/0,195	0,195/0,205	0,12/0,225

FONTE: MACINTYRE (2013, pag. 236)

Com relação aos valores da tabela para ku₂, página 240, MACINTYRE (2013), nota-se que uma vez plotados em um gráfico esses valores apresentaram descontinuidades em forma de "dente de serra", ver GRA. 2.1. Assim caso os mesmos fossem utilizados com as equações recomendadas, gerariam resultados dispersos ou menos confiáveis (não identificáveis durante seu processamento).

GRÁFICO 2.1 - Descontinuidade dos pontos plotados em forma "dente de serra". FONTE: AUTOR

Devido a isso se fez uma reordenação destes dados, obtendo-se como resultado um gráfico com uma continuidade alinhada e reta, como mostrado no GRA. 2.2. Esse resultado apresenta-se mais crível uma vez que não contém descontinuidades e, portanto, está ideia será adotada no trabalho.

GRÁFICO 2.2 - Resultado da reordenação dos valores de plotados em forma continua, alinhada e reta. FONTE: AUTOR

Neste trabalho, os valores dos coeficientes adimensionais "k_s", foram tratados através de uma interpolação aritmética, obtendo as curvas com sua respectiva equação característica e o coeficiente de ajuste estatístico " R^2 ".

Então, para cada condição de projeto de Altura manométrica, Vazão e rotação, teremos um valor da velocidade especifica " n_s ", entrando na tabela interpolada ou da curva ajustada, teremos um valor para cada coeficiente de velocidade " k_s " mais corretamente definido. Ver as FIG. 2.2; FIG. 2.3; FIG. 2.4 e FIG.2.5.

FIGURA 2.2 - Coeficiente da Velocidade na boca de entrada do rotor (kv'1).

FONTE: AUTOR

FIGURA 2.3 - Coeficiente da Velocidade da componente meridiana na entrada do rotor (kvm1)

FONTE: AUTOR

FIGURA 2.4 - Coeficiente da Velocidade periférica de saída do rotor (ku₂).

FONTE: AUTOR

FIGURA 2.5 - Coeficiente da Velocidade meridiana de saída do rotor" (kvm2).

FONTE: AUTOR

2.8 Catálogos dos fabricantes das bombas

Para realização do trabalho, foram consultados os seguintes fabricantes nacionais de bombas centrifugas, através dos catálogos físicos e eletrônicos, via Internet: KSB, IMBIL, EH, WORTHINGTON e SULZER.

O resumo das informações dos tipos dos modelos das bombas escolhidas para cada condição do projeto, estão no Anexo B.

2.9 Conceitos fundamentais

A seguir apresenta-se alguns conceitos fundamentais que serão muito utilizados neste trabalho.

2.9.1 <u>Vazão em volume Q</u>

BRUNETTI (2008) define a Vazão em volume (Q) como o volume de fluido que atravessa uma certa seção do escoamento por unidade de tempo. As unidades usuais são: m³/s; L/s; m³/h; L/min, ou qualquer outra unidade de volume ou capacidade por unidade de tempo.

2.9.2 Altura Manométrica Hman

Antes de selecionar uma bomba é necessário saber a altura de pressão exterior que deverá ser vencida. Esta altura é denominada de "Altura Manométrica". CARVALHO (2010, pag. 5), define a "Altura manométrica de um sistema elevatório como sendo a quantidade de energia que deve ser absorvida por 1 (um) quilograma de fluido que atravessa a bomba, energia está necessária para que o mesmo vença o desnível da instalação, a diferença de pressão entre 2 (dois) reservatórios (caso exista) e a resistência natural que as tubulações e acessórios oferecem ao escoamento dos fluidos (perda de carga)".

As unidades são definidas em: metros de coluna de água (mca) ou simplesmente metros (m).

A FIG. 2.6, apresenta uma linha de aspiração de uma turbo-bomba com as duas opções de montagem, o lado A é de uma instalação típica de bomba, e o lado B, da instalação com a bomba afogada.

FIGURA 2.6 - Alternativas para a linha de aspiração de uma turbo-bomba. FONTE: MACINTYRE (2013), pag. 61.

2.9.3 <u>Rotação de acionamento "n"</u>

A rotação de acionamento é a quantidade de giros do motor de acionamento em um determinado tempo. A rotação de acionamento n para os motores elétricos síncronos é definida por CARVALHO (2010) "como a rotação a plena carga sendo função da ciclagem da rede, que é a frequência (f) em Hz, e do número de polos do motor (p)".

A unidade corresponde à definição: rotações por minuto cuja notação é: rpm. Neste trabalho, utilizaremos os motores elétricos com 3500 e 1750 rpm.

A TAB. 2.5, apresenta a disponibilidade dos motores elétricos síncronos para as bombas centrifugas com a quantidades de pares de polos e para as frequências de 60 e 50 Hz.

Pares de polos	1	2	3	4	5	6	7
Frequência							
50 Hz	3000	1500	1000	750	600	500	428
60 Hz	3600	1800	1200	900	720	600	514

 TABELA 2.5

 Rotação de acionamento (n), pares de polos (p) e frequência (f) para motores síncronos

FONTE: CARVALHO (2010), pag. 252.

A TAB. 2.6, apresenta a disponibilidade dos motores elétricos assíncronos para as bombas centrifugas com a quantidades de pares de polos e para as frequências de 60 e 50 Hz.

Para os motores elétricos assíncronos, a rotação torna-se mais baixa (de 2% a 6%), tendo em vista o fenômeno de escorregamento. A boa pratica da engenharia elétrica de aplicação recomenda a utilização deste tipo de motor de acionamento.

 TABELA 2.6

 Rotação de acionamento (n), pares de polos (p) e frequência (f) para motores assíncronos

Pares de polos	1	2	3	4	5	6	7
Frequência							
50 Hz	2800	2000	1450	960	750	590	490
60 Hz	3450	2450	1750	1150	850	690	580

FONTE: CARVALHO (2010), pag. 252.

2.9.4 <u>Velocidade especifica $n_{s.}$ </u>

Neste trabalho a Velocidade especifica será expressa pela equação: $n_s = n Q^{1/2}/H^{3/4}$ onde: "n" e "n_s" são em: rpm; Q em: m³/s; e H (ou Hman) em: m, para o ponto de máximo rendimento. É uma grandeza que caracteriza o tipo de bomba e que se define como "*a rotação na qual deverá operar a bomba para recalcar a Vazão de 1 m³/s em uma instalação com 1 metro de Altura manométrica, com o máximo rendimento*" (CARVALHO, 2010). No GRA. 2.3 ilustramos os diversos tipos de bombas existentes.

GRÁFICO 2.3 - Gráfico (ilustrativo) do campo de emprego dos diversos tipos de rotores. FONTE: MACINTYRE (2013, pag. 196).

A Velocidade específica é importante, pois permite um termo de comparação entre diversas bombas sob o ponto de vista da velocidade. Além disso, o seu valor é decisivo na determinação do formato do rotor em função do número de rotações real, da Vazão (Q) e a da Altura manométrica (H). A velocidade especifica "n_s" será tanto maior quanto maior for a Vazão (Q) e a rotação de acionamento (n) ou quanto menor for a Altura manométrica (H).

2.10 Bombas centrifugas

De acordo com CARVALHO (2010), "as turbo-bombas hidrodinâmicas são aquelas que se caracterizam pela existência de um rotor dotado de pás e em contato com o

fluido, de tal maneira, acionado por uma fonte externa de energia, a ação da força centrifuga e/ou a força de sustentação produzida pelo escoamento de fluido entorno da palheta (perfil aerodinâmico) provocam uma depressão à saída do mesmo, responsável pelo recalque.do fluido".

As bombas basicamente são constituídas por 2 (dois) órgãos fundamentais:

- Rotor: órgão móvel que energiza o fluido, criando uma depressão em seu centro para aspirá-lo e uma sobre pressão na periferia para recalca-lo. Sendo acionado através de um eixo que lhe transmite o movimento de rotação, graças à energia de uma fonte externa (motor de acionamento).
- Difusor: canal de secção crescente a quem compete coletar o fluido expelido pelo rotor e encaminhá-lo à tubulação de recalque. Por ser de secção crescente (no sentido do escoamento), ele diminui a velocidade e aumenta a pressão do fluido.

2.10.1 Classificação dos Rotores

De acordo com Carvalho (2010), a principal classificação das turbo-bombas leva em consideração a trajetória desenvolvida pelo fluido no rotor. Quanto a este aspecto as turbobombas classificam-se em:

Bombas radiais ou centrifugas: O fluido penetra axialmente no rotor, sendo sua trajetória bruscamente desviada para a direção radial. Empregadas para recalque de pequenas vazões e grandes alturas. Ilustrado no GRA. 2.3.

Bombas axiais: A trajetória do fluido, se desenvolve, com relação ao rotor, em direção preponderantemente axial. Empregadas para recalque de grandes vazões e pequenas alturas. Ilustrado no GRA. 2.3.

Bombas diagonais ou de fluxo misto: Constitui um caso intermediário entre as bombas radiais e axiais, sua trajetória se faz numa diagonal. Empregadas para recalque de médias vazões e médias alturas. Ilustrado no GRA. 2.3.

2.10.2 Triângulo de velocidades.

Carvalho (2010) considera que os triângulos de velocidade são elementos de capital importância no projeto de qualquer máquina de fluxo (turbina hidráulica, turbina a gás, ventiladores, compressores rotativos, etc.). Macintyre (2013) cita que o vetor velocidade " \vec{V} " do movimento absoluto resulta da composição geométrica dos vetores " \vec{U} " e " \vec{W} "

representativos das velocidades "u" – de arrastamento (chamada de velocidade periférica ou circunferencial), e "w" – relativa. Adota-se as seguintes referências: i) as letras maiúsculas são utilizadas parra os vetores; ii) as letras minúsculas para os módulos.

Sendo dada pela expressão: " \vec{V} " (velocidade do movimento) é igual à velocidade de arrastamento (ou periférica ou circunferencial) " \vec{U} ", mais a velocidade relativa " \vec{W} ".

Utilizaremos a seguinte notação para este trabalho, considerando a notação de 1 a entrada da pá, e a notação de 2 na saída da pá.

Então, " \vec{V}_1 " é a velocidade absoluta com a qual a água penetra no rotor (direção qualquer) e " \vec{V}_2 " corresponde à velocidade absoluta com a qual a água abandona o rotor.

Tais velocidades " \vec{V}_1 " e " \vec{V}_2 " poderão ser descompostas segundo duas direções: uma na direção tangente ao perfil da pá na entrada e na saída e outra na direção tangente às circunferências de entrada e saída, para ilustrar ver as FIG. 2.7 e FIG. 2.8. Teremos então:

- ➢ " \vec{W} ": componente de " \vec{V} " na direção tangente ao perfil da pá (" \vec{W} 1" na entrada e " \vec{W} 2" na saída). Sendo chamada de velocidade relativa.
- ➤ " \vec{U} ": componente de " \vec{V} " em uma direção tangente ás circunferências de entrada e saída (" \vec{U}_1 " na entrada e " \vec{U}_2 " na saída). Sendo chamada de velocidade tangencial ou de arrastamento.
- > " α ": é o ângulo formado pelo vetor velocidade absoluta " \vec{V} " com o vetor velocidade circunferencial " \vec{U} ", ficando " α_1 " na entrada da pá e " α_2 " para a saída da pá.
- ▶ "β": é o ângulo formado pelo vetor velocidade relativa "W" com o prolongamento em sentido oposto ao vetor ("-U₁"), ficando "β1" na entrada da pá, e "β2" para a saída da pá. Os ângulos "β1" e "β2" determinam as inclinações da pá na cabeça (entrada) e cauda (saída) respectivamente.

FIGURA 2.7 - Triângulo de entrada meridiana da pá. FONTE: MACINTYRE (2013), p. 236

FIGURA 2.8 - Diagrama das velocidades à saída da pá do rotor.FONTE: MACINTYRE (2013), p. 241

Ainda as velocidades "V1" e "V2" poderão ser descompostas segundo duas direções: uma na direção de "U" na entrada e na saída ("vu") e outra na direção ortogonal de "U" na entrada e na saída ("vm"), para ilustrar ver a FIG. 2.9. Teremos então:

- "vu1": normalmente chamada de velocidade periférica na entrada da pá. É a projeção de "v1" segundo a direção de "u1". Sendo definida pela expressão: "vu1"= "v1". cos "α1", se for considerado que "α1" = 90°, Cos 90° = 0, então teremos "vu1"= 0. A componente periférica "vu", aparece nas expressões da energia cedida pelo rotor ao liquido, se for considerado o ângulo de entrada "α1" = 90° o" vu1" será nulo, isto é, o fluido está entrado no rotor por tanto ainda não cedeu energia.
- "vu2": normalmente chamada de velocidade periférica na saída da pá. É a projeção de "v2" segundo a direção de "u2". Está velocidade é definida pela expressão: "vu2"= "v2". Cos "α2". O valor do ângulo de entrada "α2" se determina ou arbitra, isto é, o fluido está saindo do rotor por tanto está cedendo energia ao fluido que está saindo.
- "v_{m1}": chamada de velocidade meridiana na entrada da pá é a projeção de "v₁" segundo a direção ortogonal a u₁. Esta velocidade é definida pela expressão: "v_{m1}" = "v₁". sen "α₁", se o ângulo de entrada for α₁ = 90°, sen 90° = 1, então: "v_{m1}" = "v₁".
- "vm2": chamada de velocidade meridiana na saída da pá, é a projeção de "v2" segundo a direção ortogonal a u2. Sendo definida pela expressão: "vm2"= "v2". sen "α2". O valor α2 se determina ou arbitra.

FIGURA 2.9 - Triângulo de entrada e saída da pá. FONTE: MACINTYRE (2013, p. 99)

De acordo com MACINTYRE (2013, p. 93) a FIG. 2.10 ilustra o diagrama das velocidades para uma partícula líquida M.

FIGURA 2.10 - Diagrama das velocidades para uma partícula líquida *M*. FONTE: MACINTYRE (2013, p. 93)

Apresenta-se ainda a FIG. 2.11 que mostra as condições de escoamento na entrada do rotor e a FIG. 2.12 mostra as grandezas que caracterizam a forma do rotor, os ângulos de entrada e saída da pá, as componentes das velocidades meridianas ($v_{m1} e v_{m2}$) e da velocidade periférica ($v_{u1} e v_{u2}$) da entrada e saída da pá.

FIGURA 2.11 - Condições de escoamento na entrada do rotor. FONTE: MACINTYRE (2013, p. 232)

FIGURA 2.12 - Grandezas que caracterizam a forma do rotor. FONTE: MACINTYRE (2013, p. 270).

2.10.3 Determinação do Coeficiente de perdas internas Kpi

Para a determinação do Coeficiente de perdas internas "Kpi" que define o comportamento das perdas de carga, com a influência da Altura manométrica, rotação do motor de acionamento, do diâmetro de saída do rotor, utilizaremos a modelagem dentro do canal de escoamento entre as pás de uma bomba centrifuga.

De acordo com a teoria da Mecânica dos Fluidos e levando-se em conta que o escoamento entre as pás do rotor se comporta como se fosse dentro de um canal fechado, formado por quatro placas planas, escoamento bidimensional e incompressível.

O escoamento do fluido será considerado entre duas pás consecutivas, formando um canal na região tronco-cônica, a região da entrada está próxima do eixo de acionamento, e a saída corresponde ao diâmetro externo do rotor da bomba centrifuga, desprezaremos as curvaturas das pás. Como ilustração segue a FIG 2.13.

FIGURA 2.13 - Canal de escoamento, idealizado, formado entre duas pás consecutivas. FONTE: AUTOR.

CARVALHO (2010, pg. 43), indica a expressão para a determinação da perda de carga localizada, método direto, através da EQ (2.4)

$$\Delta h_l = \frac{k V^2}{2 g} \tag{2.4}$$

Onde:

 Δh_l : Perda de carga no acessório, em m

V: Velocidade média do escoamento, em m/s

K: Coeficiente das perdas de carga, característica do acessório, adimensional

g: Aceleração da gravidade, m/s²

Neste trabalho, consideraremos como acessório, o corpo da bomba.

Segundo CARVALHO (2010, pg. 131), cita que a natureza do regime do escoamento permaneça invariável, assim no bombeamento o escoamento é sempre turbulento.

De acordo com CARVALHO (2010, pgs. 48 e 49), considera que para a medição direta da altura manométrica em uma instalação de bombeamento, a bomba será instalada com sucção positiva (ela está montada acima do nível d'água (N.A) do reservatório de sucção).

Podemos escrever que a Altura manométrica está definida pela diferença de energia entre a saída e entrada da bomba, através da EQ (2.5).

$$H_{man} = Energia \ na \ saída \ - Energia \ na \ entrada \tag{2.5}$$

Aplicação do teorema de Bernoulli

Com auxílio do teorema de Bernoulli, CARVALHO (2010, pg. 196), modelaremos o escoamento no canal formado entre duas pás consecutivas desde a entrada até a saída da pá do rotor de uma bomba centrifuga.

As grandezas estão referidas à entrada da bomba pelo índice "e", e para à saída da bomba pelo índice "s".

Definições dos parâmetros envolvidos para montagem da formula de Bernoulli:

hr ou Hman ou H: Altura manométrica;

ze: cota de entrada da pá, dentro da bomba;

 p_{e}

 $^{\gamma}\,$: carga de pressão ou piezométrica na entrada da bomba;

ve: velocidade de entrada do fluido na pá do rotor;

2: constante numérica;

g: aceleração da gravidade, 9,81 m/s²;

zs: cota de saída da pá, dentro da bomba;

 p_s

 $^{\gamma}$: carga de pressão ou piezométrica na saída da bomba;

vs: velocidade na saída do fluido na pá do rotor;

n: rotação do acionamento;

we: Velocidade angular na entrada da pá: $W_e^{=2 \pi n/_{60}}$

ws: Velocidade angular na saída da pá: $W_s = \frac{2 \pi n}{60}$

ds: diâmetro de saída do rotor: ds = 2 rs;

rs: raio de saída do rotor: rs = ds/2;

Kpi: Coeficiente de perdas internas.

Preparação da equação de Bernoulli, pela EQ (2.6)

$$h_r + z_e + \frac{p_e}{\gamma} + \frac{v_e^2}{2g} = z_s + \frac{p_s}{\gamma} + \frac{v_s^2}{2g}$$
(2.6)

Para uma primeira aproximação consideramos que: $z_e próximo de z_s$ e que $\frac{p_e}{\gamma}$ próximo de $\frac{p_e}{\gamma}$

Substituindo, teremos a EQ (2.7):

$$h_r + \frac{v_e^2}{2g} = \frac{v_s^2}{2g} \tag{2.7}$$

Reescrevendo A EQ (2.8) verificamos que temos a variação de energia cinética entre a entrada e saída da bomba, diferente de zero.

$$h_r = \frac{v_s^2}{2g} - \frac{v_e^2}{2g}$$
(2.8)

Substituindo na EQ (2.8) as velocidades de entrada (ve) e velocidade de saída (vs) pelas Velocidade angular na entrada (we) e a Velocidade angular na saída (ws) da pá e os raios de entrada (re) e de saída (rs), teremos a EQ (2.9):

$$h_r = \frac{w_s^2 r_s^2}{2 g} - \frac{w_e^2 r_e^2}{2 g}$$
(2.9)

Em função das variações da perda de carga dentro do canal e dos efeitos hidrodinâmicos (de vazão e de velocidades), acrescentaremos uma constate "k" para auxiliar o estudo, obtendo a EQ (2.10).

$$h_r = \left(\frac{w_s^2 r_s^2}{2 g} - \frac{w_e^2 r_e^2}{2 g}\right) \,\mathbf{k} \tag{2.10}$$

Substituindo na EQ (3.55) as Velocidade angular na entrada (we) e Velocidade angular na saída (ws) da pá, em função da rotação de acionamento (n), e os raios de entrada (re) e saída (rs) pelos respectivos diâmetros de entrada (de) e de saída (ds), teremos a EQ (2.11) abaixo:

$$h_r = \left(\frac{\pi^2 n^2}{2 g 60^2}\right) \left(d_s^2 - d_e^2\right) k$$
(2.11)

Nesta EQ (3.56), substituiremos o hr pelo H, explicitando na expressão o coeficiente "k" teremos EQ (2.12):

$$k = \frac{1}{(d_s^2 - d_e^2)} \left(\frac{2 g \, 60^2}{\pi^2}\right) \frac{H}{n^2} \tag{2.12}$$

Nesta EQ (2.12) consideramos o Coeficiente "k" como o Coeficiente de perdas internas "kpi", desprezamos também a influência do diâmetro de entrada (de), por ser bastante menor que o diâmetro de saída (ds) e também porque os fabricantes não disponibilizam esta informação nos catálogos, tornando-se uma tarefa difícil de consulta, assim teremos a EQ (2.13).

$$k_{pi} = \left(\frac{2 g 60^2}{\pi^2}\right) \left(\frac{H}{d_s^2 n^2}\right) \tag{2.13}$$

Finalmente operacionalizando as constantes envolvidas, desenvolveremos o estudo com esta EQ (2.14) reagrupada em função da Altura Manométrica (H), rotação de acionamento (n) e do diâmetro de saída do rotor (ds).

$$k_{pi} = \left(\frac{2 g 60^2}{\pi^2}\right) \left(\frac{H}{d_s^2 n^2}\right)$$
(2.14)

2.10.4 <u>Resumo das Grandezas utilizadas neste trabalho</u>

Apresenta-se a seguir a lista das grandezas mais utilizadas neste estudo:

- Dados de entrada ou de projeto
 - ✓ Vazão de recalque "Q";
 - ✓ Altura manométrica Hman ou "H";
 - ✓ Rotação do motor de acionamento da bomba "n";
- Dados obtidos dos catálogos dos fabricantes
 - ✓ Diâmetro externo do rotor "D₂";
 - ✓ Largura de saída do rotor "b₂";
 - ✓ Rotação da bomba "n";
 - ✓ Rendimento da bomba "η"
 - ✓ Diâmetro do flange/bocal da sucção da bomba " d_{fl} "
- Parametros calculados
 - ✓ Velocidade especifica " n_s ";
 - ✓ Correção da Vazão de descarga "Q";
 - ✓ Estimativa do rendimento hidraúlico Vazão em (gpm) "ε";
 - ✓ Velocidade no flange de sucção da bomba "V_{fl}"
 - ✓ Potencia consumida pelo motor de acionamento da bomba "N";
 - ✓ Diâmetro do eixo "dei"
 - ✓ Diâmetro do eixo corrigido "(dei)corr"
 - ✓ Diâmetro do núcleo "dn"
 - ✓ Coeficiente da velocidade na boca de entrada do rotor "kv'₁"
 - ✓ Velocidade média na boca de entrada no rotor "v'₁";
 - ✓ Diâmetro da boca de entrada do rotor "d'₁";
 - ✓ Diâmetro médio da aresta de entrada do rotor "dm₁";
 - ✓ Coeficiente da velocidade da componente meridiana na entrada do rotor "kv_{m1}"
 - ✓ Velocidade meridiana de entrada do rotor " v_{m1} ";
 - ✓ Velocidade periferica no bordo de entrada do rotor u_1 ;
 - ✓ Ângulo de entrada da pá " β_1 "
 - ✓ Ângulo de entrada da pá " β_2 ";
 - ✓ Quantidade de pás "Z";
 - ✓ Passo circunferencial entre pás na entrada do rotor "t₁";

- ✓ Espessura da pá na entrada do rotor " S_1 ";
- ✓ Largura da pá na entrada do rotor "b₁";
- ✓ Coeficiente da velocidade periférica de saída do rotor "ku₂"
- ✓ Velocidade periferica à saida do rotor "u₂";
- ✓ Velocidade periferica à saida do rotor peo críterio Sulzer " $(u_{2)s}$ ";
- ✓ Diâmetro de saída do rotor "d₂";
- ✓ Coeficiente da velocidade da componente meridiana na saída do rotor "kv_{m2}"
- ✓ Velocidade meridiana de saída do rotor " v_{m2} ";
- ✓ Velocidade periferica corrigida com o desvio ângular dos filetes à saída do rotor "(u₂)corr".
- ✓ Diâmetro de saída do rotor corrigido "(d₂)_{ret}";
- ✓ Passo circunferencial entre pás na saída do rotor "t₂";
- ✓ Espessura da pá na saída do rotor "S₂";
- ✓ Largura da pá na saída do rotor corrigido "(b₂)ret";
- ✓ Coeficiente de perdas internas "kpi";

3. METODOLOGIA

Preâmbulo:

Apresenta-se a seguir a metodologia adotada para o planejamento e desenvolvimento do Algoritmo computacional. O objeto deste trabalho é determinar uma relação das principais características de dimensionamento de um rotor para bomba centrifuga com a sua Velocidade específica "n_s". Estas características serão definidas na entrada e na saída do rotor da bomba centrifuga. Serão expressas através das equações matemáticas em relação ao "n_s" e o valor do coeficiente de correlação linear " R^2 "= ± 1 (correlação linear perfeita). A maioria dos fabricantes não disponibilizam as informações da largura, espessura e quantidade de pás do rotor, este tipo de informação conhecida como "canal hidráulico" é considerada como "segredo industrial", já que a partir desses dados é possível iniciar a produção industrial de rotores.

Os passos metodológicos estão descritos no Quadro 3.1 a seguir.

Passos	CONSIDERAÇÕES
INICIAL (coleta de dados)	 3.1 Delimitação da faixa de aplicação e das grandezas características (Q, H, n); 3.2 Escolha do banco de dados; 3.3 Dados a serem obtidos;
INTERMEDIÁRIO (algoritmo de identificação de grandezas)	 3.4 Construção do algoritmo e saída do modelo; 3.4 3.5 Descrição dos procedimentos de cálculo; 3.5 3.6 Saídas para as condições de Projeto; 3.6 3.7 Considerações sobre as incertezas de medições; 3.7 4. Estudo de caso.
FINAL (construção de ábacos)	4.1 Estudo inicial das grandezas de uma bomba centrífuga4.2 Ampliação do estudo

QUADRO 3.1 Passos metodológicos.

FONTE: AUTOR

3.1 Delimitação da faixa de aplicação e das grandezas características (Q, H, n);

Para fins deste estudo optou-se por delimitar uma faixa de vazão que cobrisse um grande número de equipamentos utilizados. Dessa forma os estudos irão contemplar bombas com vazões que variam de 30 a 60 m³/h (8,3 a 16,7 l/s) e com alturas de elevação entre 20 e 100 m, tal como apresentado a seguir:

Vazão de recalque: na faixa de: 30; 40; 50; e 60 m^3/h .

Altura manométrica: na faixa de 20; 30; 40; 60; 80 e 100 m.

Rotação do motor elétrico da bomba: para duas condições de mercado: 3500 e 1750 rpm.

Tipo de bomba: centrifuga, com rotor simples (de um estágio).

Os dados a serem utilizados serão selecionados dos catálogos de fabricantes nacionais que atendem as condições de projeto.

3.2 Escolha do banco de dados

Devido à disponibilidade de dados, optou-se por consultar os seguintes fabricantes de bombas centrifugas do mercado nacional: KSB, IMBIL, EH, WORTHINGTON, SULZER. A pesquisa das informações necessárias foi feita em catálogos físicos e na Internet. Para isso utilizar-se-ão os ábacos de "Cobertura Hidráulica" dos catálogos dos fabricantes, e para cada condição de projeto, escolher-se-ão os tipos de bombas para cada rotação do motor elétrico.

3.3 Dados de entrada a serem obtidos do banco de dados

A partir dos ábacos de "Cobertura Hidráulica" disponíveis nos catálogos dos fabricantes, e para as condições de projeto delimitadas no item 3.1, seleciona-se o tipo de bomba para cada rotação do motor elétrico, identificando as características do rotor: diâmetro de saída do rotor, largura do rotor, diâmetro da sucção e do recalque da bomba e o rendimento. Os dados das características do rotor dos catálogos são obtidos através de leitura direta por aproximação. Cabe ressaltar que os ábacos, não apresentam escala, nem tolerâncias definidas o que reduz a precisão na obtenção dos dados. Assim tem-se, por exemplo, no caso diâmetro externo do rotor, uma variação percentual de 1,0 ou 2,0 milímetros na dimensão de 100 ou 200 milímetros, representa uma variação percentual de 1 a 2%. Entretanto no caso da leitura da largura do rotor, essa escolha no ábaco tem uma influência muito significante, por exemplo, uma variação na leitura de 1,0 ou 2,0 milímetros na largura do rotor, representa uma variação percentual de 10 a 20%.

3.4 Construção do algoritmo e saída do modelo

Nesse item far-se-á a descrição da metodologia de simulação para determinar as características principais de um rotor de bomba centrifuga em função da rotação especifica "n_s". Para isso propõe-se um Algoritmo, onde será apresentada um sequenciamento de fórmulas para a obtenção dos resultados esperados neste trabalho. O Algoritmo está apresentado baseado na FIG. 3.1. Os dados de entrada são os valores da definição do projeto: Vazão de recalque, altura manométrica, rotação e tipo da bomba. Os dados de saída são as tabelas e gráficos da Velocidade meridiana de entrada do rotor (v_{m1}), Velocidade meridiana de saída do rotor (v_{m2}), Diâmetro da

boca de entrada do rotor (d'1), Diâmetro de saída rotor corrigida (d2)ret e da Largura de saída rotor corrigida (b2)ret.

O desenvolvimento completo do Algoritmo para a condição de Altura manométrica de 100 m, variações da Vazão e rotação de 3500 rpm, está apresentado no Anexo C.

ENTRADA	PROCESSAMENTO	SAÍDA
ENTRADA	PROCESSAMENTO	SAÍDA
Condições de entrada do projeto	Simulação e determinação das características principais de um rotor de bomba centrifuga em função da Velocidade especifica "n _s "	Tabelas, gráficos, equações e coeficiente de correlação linear

FIGURA 3.1 - Sequência do processo.

FONTE: AUTOR

O Algoritmo completo para as condições de rotação de 3500 e 1750 rpm, encontram-se disponíveis em arquivo eletrônico.

3.4.1 Considerações iniciais

Os passos a serem adotados seguirão esta sequência proposta por MACINTYRE (2013) nos seguintes capítulos:

- a) Capítulo 4. Teoria Elementar a ação do Rotor das Bombas Centrifugas, pg.89 até 115;
- b) Capítulo 5. Discordância entre os Resultados Experimentais e a Teoria Elementar, pg.116 até 123;
- c) Capítulo 6. Interdependência das Grandezas Características do funcionamento de uma Turbo-bomba, pg.124 até 166;
- d) Capítulo 8. Escolha do Tipo de Turbo-bomba, pg.193 até 205;
- e) Capítulo 10. Fundamentos do Projeto das Bombas Centrífugas, pg.231 até 268;
- f) Capítulo 11. Exemplo de Projeto de Bomba Centrifuga pg.269 até 276;
- g) Capítulo 12. Rotor com Pás de dupla Curvatura, pg.277 até 279.

O modelo foi elaborado em uma planilha em Excel. Os resultados obtidos foram comparados com os dados selecionados nos catálogos dos fabricantes. O equipamento de bombeamento objeto deste trabalho foi uma Bomba Centrifuga, dotado de rotor simples, fixado na ponta do eixo e carcaça em caixa espiral de seção transversal circular, de um estágio. A faixa de aplicação e as grandezas características (Q, H, n) estão definidas no Item 3.1 apresentado

METODOLOGIA57

anteriormente. Os dados necessários para o desenvolvimento deste trabalho foram obtidos para uma rotação de 3500 rpm, fixa-se a Altura de elevação "H" e se variará a Vazão "Q" em toda a faixa predefinida. Isto será feito para todos os valores de "H" e "Q", selecionando os dados característicos para cada fabricante proposto. No caso de uma bomba com rotação de 3500 rpm, ter-se-á uma combinação de 24 pontos como pode ser observado no QUADRO 3.2. O total dos pontos tratados para o estudo será de: 24 pontos x 5 fabricantes = 120 pontos tratados no estudo para a rotação de 3500 rpm e mais 120 para a rotação de 1750 rpm

OUADRO	3.2
x	

Altura manométrica Hman (m). Mantendo-se Fixa:	Vazão de recalque Q (m^3/h) variando em:	Quantidade de pontos tratados para o estudo Resultado
Para 100	30; 40; 50 e 60	4
Para 80	30; 40; 50 e 60	4
Para 60	30; 40; 50 e 60	4
Para 40	30; 40; 50 e 60	4
Para 30	30; 40; 50 e 60	4
Para 20	30; 40; 50 e 60	4
Total de pontos tratados no estudo		24

Quantidade de pontos tratados no estudo.

FONTE: AUTOR

3.4.2 Planejamento do Processo do Desenvolvimento do Algoritmo

A seguir far-se-á uma descrição das ações a serem adotadas quando da utilização do algoritmo proposto.

- Delimitação das condições de projeto: Altura manométrica (Hman em mca), Vazão de recalque (Q em m³/h), Rotação da moto-bomba, comercial, (n em rpm).
- A fim de se atender as condições de projeto, e ter estabilidade nos resultados, será necessário simular uma combinação da variação da Altura manométrica e variação da Vazão de recalque mantendo a rotação constante.
- 3. Para estudar e avaliar o sistema, mantendo a rotação de acionamento constante, fixaremos uma determinada Altura manométrica e variaremos a Vazão em uma determinada faixa definida.
- 4. Para fins de ajuste do modelo utilizar-se-á de informações complementares obtidas nas referências bibliográficas apresentadas no QUADRO 3.3.

METODOLOGIA58

QUADRO 3.3 Informações complementares.

INFORMAÇÕES COMPLEMENTARES	REFERÊNCIAS BIBLIOGRÁFICAS			
Critérios para Altura Manométrica, Hman	Fernandes (2003).			
Critérios para Vazão de Recalque, Q	Fernandes (2003).			
Recomendação e cálculo da velocidade de entrada d'água na região	Macintyre (2013); Zulcy (2011);			
do flange na sucção, utilizando o diâmetro do bocal da sucção	Carvalho (2010); Mataix (1975);			
definido pelo fabricante da bomba centrifuga,	Quantz (1954) e Church (1954).			
Resumo dos valores dos ângulos de entrada (α_1 , β_1) e de saída (α_2 ,	Macintyre (2013); Zulcy (2011);			
β_2) do rotor	Carvalho (2010); Pfleiderer e			
	Petermann (1979); Mataix			
	(1975); Quantz (1954) e Church			
	(1954).			
Critérios para quantidades de pás, Z	Zulcy (2011); Pfleiderer e			
	Petermann (1979) e Mataix			
	(1975).			
Em função da velocidade especifica, "n _s ", e com as curvas de				
interpolação, temos os valores das constantes: Kv'_1 - Coeficiente da				
velocidade na boca de entrada do rotor; Kvm_1 - Coeficiente da	Macintyre (2013).			
velocidade da componente meridiana na entrada do rotor; Ku_2 -				
Coefficiente da velocidade periférica de saída do rotor; Kvm_2 -				
Coeficiente da velocidade meridiana de saída do rotor;				
Os dados dos catálogos para cada tipo/modelo de bomba centrifuga	KSB Bombas;			
são: diâmetro de saída do rotor (d_2), largura do rotor (b), rendimento	IMBIL;			
da bomba (η), diâmetro do bocal de sucção, diâmetro do bocal de	EH Bombas Hidráulicas Ltda;			
descarga.	Worthington do Brasil;			
	Sulzer Bombas.			

Fonte: AUTOR.

- 5. Uma vez processado o Algoritmo, teremos os resultados em tabelas, selecionaremos as características definidas anteriormente, item 3.1, consideradas como a saída de dados e procederemos a plotagem dos gráficos dos mesmos.
- 6. Para os valores recomendados em forma de tabela, far-se-á uma interpolação linear obtendose a equação matemática com o respectivo coeficiente de correlação linear " R^2 ", o qual foi atendido na faixa recomendada de <u>+</u> 1.

A partir dos resultados preparar-se-á uma planilha em Excel, para os dados do projeto inicial com a mesma sequência de equações, de maneira a confirmar os resultados encontrados.

O Algoritmo desenvolvido para este trabalho de pesquisa está representado nos seguintes gráficos: a) GRÁFICO 3.1 – Diagrama do Fluxo do Algoritmo. Determinação dimensional de uma bomba centrifuga utilizando velocidade especifica (n_s); b) GRÁFICO 3.2 – Diagrama de Fluxo para Plotagem dos Gráficos de entrada e saída do rotor; c) GRÁFICO 3.3 – Diagrama de Fluxo para comparação dos resultados encontrados para o Algoritmo, para Macintyre modificado, para os Dados do Projeto e para os dados dos Catálogos dos fabricantes.

GRÁFICO 3.1 - Diagrama de Fluxo do Algoritmo. Determinação dimensional de uma bomba centrifuga utilizando velocidade especifica (n_s)

FONTE: AUTOR.

GRÁFICO 3.2 - Diagrama de Fluxo para Plotagem dos Gráficos de entrada e saída do rotor FONTE: AUTOR.

METODOLOGIA64

GRÁFICO 3.3 - Diagrama de Fluxo para comparação dos resultados encontrados para o Algoritmo, para Macintyre modificado, para os Dados do Projeto e para os dados dos Catálogos dos fabricantes

FONTE: AUTOR.

3.4.3 Dados de entrada no modelo

Para fins de aplicação optou-se por dimensionar uma bomba com as características apresentadas no Item 3.1 impulsionando água na temperatura normal de 20°C. A seguir far-seá uma breve descrição das condições de entrada de dados utilizados.

As faixas de operação de Altura manométrica "H" são: 100; 80; 60; 40; 30 e 20 m. Para a Vazão de recalque "Q" são: 30; 40; 50 e 60 m^3 /h. Utiliza-se os critérios de FERNANDES (2003) para a definição das Vazões (Q) e Alturas de elevação (Hman), quais sejam: a) Pequena vazão: Q < 50 m^3 /h; b) Média vazão: 50 < Q < 500 m^3 /h; c) Grande vazão: Q > 500 m^3 /h; d) Baixa altura de elevação: Hman < 15 mca; e) Média altura de elevação: 15 < Hman < 50 mca; f) Alta altura de elevação: Hman > 50 mca. Os dados reais dos rotores são selecionados dos catálogos dos fabricantes nacionais de bombas centrifugas (KSB; IMBIL; EH; WORTHINGTON e SULZER).

- Diâmetro de saída do rotor, D₂;
- ➢ Largura do rotor, b₂;
- Diâmetro do bocal/flange de sucção, d_{fls};
- Diâmetro do bocal/flange de descarga ou recalque, d_{flr};
- \succ Rendimento da bomba, η

3.4.4 Resultados obtidos

Os resultados obtidos com a aplicação do Algoritmo são:

- ✓ Velocidade especifica "n_s" para cada condição de projeto de Hman e Q, na rotação constante (comercial) n:
- ✓ Velocidade média da boca de entrada do rotor, v'1;
- ✓ Diâmetro da boca de entrada do rotor, d'1;
- ✓ Diâmetro médio da aresta de entrada do rotor, dm₁;
- \checkmark Velocidade meridiana de entrada do rotor, vm₁;
- ✓ Velocidade periférica no bordo de entrada do rotor, u₁;
- ✓ Quantidade de pás Z;
- ✓ Largura do rotor, b_1
- ✓ Velocidade periférica à saída do rotor, u₂;
- ✓ Diâmetro de saída do rotor, d₂
- ✓ Velocidade meridiana de saída do rotor, vm₂;
- Velocidade periférica corrigida com o desvio angular dos filetes à saída do rotor, (u₂)corr;
- ✓ Diâmetro de saída retificado do rotor, (d₂)ret;
- ✓ Largura da pá à saída retificada, (b₂)ret. ou largura do rotor na saída;
- ✓ Coeficiente de perdas internas kpi.

Para cada uma das condições do projeto, Hman, Q e n, obtém-se dos catálogos dos Fabricantes as seguintes informações:

- ✓ Diâmetro de saída do rotor, D₂;
- ✓ Largura do rotor, b;
- ✓ Diâmetro do bocal/flange de sucção, d_{fls};
- ✓ Diâmetro do bocal/flange de descarga ou recalque, d_{flr} ;

 \triangleright Rendimento da bomba, η .

Com estas informações, fazem-se as comparações entre o diâmetro de saída obtido através da metodologia de "Macintyre modificado" com o diâmetro de saída selecionado no catálogo (D₂). Em seguida verifica-se a margem de variação entre os dois diâmetros de saída. Considera-se como consistentes aqueles resultados encontrados dentro do intervalo de \pm 5%. No caso dos resultados se encontrarem fora deste intervalo de +5%, isso pode indicar uma dispersão que deve ser investigada, pois os rotores podem potencialmente ser melhorados no que diz respeito a seu comportamento.

Faz-se o mesmo tipo de análise para a largura do rotor.

A validação dos resultados se dará quando compararmos os valores encontrados através das equações matemáticas do Algoritmo com os valores reais obtidos dos catálogos dos fabricantes.

3.5 Descrição do procedimento de cálculo

Faz-se a seguir uma descrição detalhada do procedimento de cálculo e das equações utilizadas neste trabalho.

ESTIMATIVA DA VELOCIDADE DE ENTRADA, TIPO DE ROTOR, VAZÃO CORRIGIDA E RENDIMENTO HIDRÁULICO

Em função dos dados do projeto da Vazão, Q, Altura manométrica, H, e da rotação de acionamento, n, calcula-se a Velocidade específica "ns" pela EQ (3.1) (MACINTYRE, 2013).

$$ns = n \, \frac{Q^{1/2}}{H^{3/4}} \tag{3.1}$$

Onde: "n_s" é a Velocidade específica em rpm, "n" é a rotação de acionamento em rpm, "Q" é a Vazão em m³/s, e "H" é a Altura manométrica em m.

Com o valor do "ns" calculado escolhe-se o tipo de bomba através do critério para classificar a bomba. A classificação dos rotores em função da Velocidade especifica ("n_s"), está apresentada a seguir:

- ✓ Rotor Lento $n_s < 25$ Bombas centrífugas puras, com pás cilíndricas, radiais, para pequenas e médias descargas, possuindo $d_2 > 2 d_1$, chegando a $d_2 = 2,5 d_1$;
- ✓ Rotor Normal $25 < n_s < 35$ Bombas semelhantes às anteriores, com d₂ = (1,5 a 2) d_{1:}

- ✓ Rotor Rápido- $35 < n_s < 60$ Pás de dupla curvatura, descargas médias, d₂ = (1,3 a 1,8) d₁;
- ✓ Rotor Extra-rápido ou hélico-centrífugo $60 < n_s < 120$ Pás de dupla curvatura, descargas médias e grandes, d₂ = (1,3 a 1,5) d₁;
- ✓ Rotor Helicoidal 120< n_s < 137 Para descargas grandes. d_2 = 1,2 $d_{1;}$
- ✓ Rotor Axial $n_s > 137$ Assemelha-se a hélice de propulsão. Destina-se a grandes descargas e pequenas alturas de elevação $d_2 = (0,8 \text{ a } 1,0) d_1$.

MACINTYRE, (2013) recomenda que se adotem algumas correções com relação à Vazão e algumas estimativas de rendimento em função da característica da bomba, quais sejam:

a) Correções de vazão (Q)

No dimensionamento deve-se levar em consideração o fenômeno da recirculação da água entre o rotor, na caixa caracol e as fugas nas gaxetas. Assim, é recomendável adotar-se uma descarga corrigida, Q', superior à especificada, Q. A seguir apresentam-se alguns critérios recomendados para a correção da Vazão de descarga (MACINTYRE, 2013)

- ✓ 3% para bombas com grandes descargas e baixas pressões
- ✓ 5% para bombas de descargas e pressões médias
- ✓ 10% para bombas com pequenas descargas e altas pressões

Na prática esta correção é expressa pela EQ (3.2):

$$1,03 Q < Q' < 1,10 Q \tag{3.2}$$

Onde: "Q" é a Vazão especificada em m³/s, e "Q" " é a Vazão corrigida em m³/s.

Neste trabalho, para a correção, adotaremos o valor de: 5%, indicada pela EQ (3.3) (MACINTYRE, 2013):

$$Q' = 1.05 Q$$
 (3.3)

Onde: "Q' " é a Vazão corrigida em m³/s, e "Q" é a Vazão especificada em m³/s.

b) Valores de Rendimento hidráulico (ε):

Para fins de balizamento preliminar, MACINTYRE (2013) recomenda as seguintes estimativas do rendimento hidráulico (ε):

 $\checkmark \epsilon = 0,50$ a 0,70 - Para bombas pequenas, sem grandes cuidados de fabricação, com caixa com aspecto de caracol;

- $\checkmark \epsilon = 0,70$ a 0,85 Para bombas com rotor e coletores bem projetados; fundição e usinagem bem-feitas;
- ✓ $\epsilon = 0.85 \text{ a } 0.95$ Para bombas de dimensões grandes, bem projetadas e bem fabricadas.

Pode-se fazer também a estimativa do rendimento hidráulico (ε) partindo-se da Vazão (Q), pela EQ (3.4), MACINTYRE, (2013):

$$\varepsilon = 1 - \frac{0.8}{\sqrt[4]{Q}} \tag{3.4}$$

Onde: "ε" é o rendimento hidráulico em % e "Q" é a Vazão em galões por minuto, gpm.

ESTIMATIVA DA VELOCIDADE NA BOCA DE ENTRADA DA BOMBA

A partir dos dados de projeto Altura manométrica H e Vazão de recalque ou simplesmente Vazão, Q, obteremos a estimativa da velocidade no bocal/flange da sucção da bomba (V_{fl}) por meio do equacionamento proposto por CHURCH (1954). Nesse caso para se determinar a Velocidade no bocal/flange de sucção da bomba (V_{fl}), é necessário conhecer o diâmetro do bocal/flange de entrada da bomba (d_{fls}), esta informação é obtida do catálogo do fabricante ao selecionar o tipo da bomba. O cálculo é feito pela EQ (3.5) (CHURCH, 1954):

$$V_{fl} = \frac{4Q}{\pi d_{fls}^2} \tag{3.5}$$

Onde: ' V_{fl} '' é a velocidade na região do bocal ou flange de entrada em m/s, "Q" é a Vazão em m³/s, e "d_{fls}" é o diâmetro da sucção da bomba em mm.

A Velocidade recomendada no bocal/flange de sução da bomba (V_{fls}) varia entre 1,2 até 5,5 m/s. (CHURCH, 1954). Considera-se que esse valor de velocidade seja um "Ponto de Controle".

Macintyre (2013) recomenda que a Velocidade da água, na boca de entrada da bomba (V_o) varie no intervalo entre V_o = 2,5 até 5,0 m/s, para bombas instaladas acima do nível do líquido; e V_o = de 5,0 até 6,0 m/s, para bombas funcionando afogadas. Considera-se que esse valor de velocidade seja um "Ponto de Controle".

Potência Motriz (N) é calculada a partir da adoção inicial recomendada pelo Macintyre (2013) de um rendimento total (η_t) igual a 70%. Assim pode-se utilizar a EQ (3.6), para esse cálculo (MACINTYRE, 2013).

METODOLOGIA69

$$N = \frac{1.000 \ Q \ H}{75 \ \eta_t} \tag{3.6}$$

Onde: "N" é a Potência Motriz em cv, "Q" é a Vazão em m³/s, "H" é a Altura manométrica em m, e " η_t " é o rendimento estimado total em %.

Calculo do diâmetro do eixo (dei)

Utilizando o cálculo anterior da potência motriz (N) calcula-se o diâmetro do eixo (dei) pela EQ (3.7) (MACINTYRE, 2013):

$$dei = 12 \sqrt[3]{\frac{N}{n}}$$
(3.7)

Onde: "dei" é o diâmetro do eixo em cm, "N" é a Potência Motriz em cv, e "n" é a rotação de acionamento em rpm.

Devido a presença do rasgo de chaveta de fixação do rotor e a necessidade de se atender a velocidade crítica da bomba faz-se uma correção no diâmetro do mesmo. Assim, obtêm-se o diâmetro do eixo corrigido (dei)corr. Para isso considera-se um acréscimo de 10 % devido ao rasgo de chaveta de fixação do rotor ao eixo, e 5 % a mais para atender a velocidade crítica. O diâmetro do eixo corrigido (dei)corr pode ser calculado pela EQ (3.8) (MACINTYRE, 2013):

$$(dei)corr = 1,15 (dei)$$
 (3.8)

Onde: "(dei)corr" é o diâmetro do eixo corrigido em cm, e "dei" é o diâmetro do eixo em cm.

O diâmetro do núcleo (dn) calculado através da EQ (3.9) (MACINTYRE, 2013):

(3.9)

dn = (dei)corr + (2 * (5 a 15 mm))

Onde: "dn" é o diâmetro do núcleo em mm, e "(dei)corr" é o diâmetro do eixo corrigido em cm.

GRANDEZAS. À ENTRADA DO ROTOR (Ver FIG. 2.11 e FIG. 2.12) Velocidade média (v'1) na boca de entrada do rotor

O cálculo da Velocidade média (v'₁) na boca de entrada do rotor será feito pela EQ (3.10) (MACINTYRE, 2013):

$$v'1 = kv'1\sqrt{2 g H}$$
(3.10)

Onde: "v'₁" é a Velocidade média na boca de entrada do rotor em m/s, "kv'₁" é o coeficiente da velocidade na boca de entrada do rotor, é adimensional, "g" é a aceleração da gravidade em m/s², e "H" é a Altura manométrica em m.

O coeficiente da velocidade na boca de entrada do rotor "kv'₁", para uma determinada velocidade específica " n_s ", foi obtida pela interpolação na curva ajustada (ver FIG. 2.2). O valor de "v'₁", varia de 2,5 a 5,0 m/s. (MACINTYRE, 2013). Considera-se que esse valor de velocidade seja um "Ponto de Controle".

Diâmetro da boca de entrada do rotor (d'1)

A seção circular de entrada do líquido no rotor é parcialmente obstruída pelo eixo e pelo núcleo (expansão da coroa do rotor entorno do eixo). Esta obstrução é da ordem de 10 a 15% da seção circular do diâmetro d'₁. (MACINTYRE, 2013). Calcula-se o diâmetro da boca de entrada do rotor (d'₁) pela EQ (3.11) (MACINTYRE, 2013):

$$d'1 = \sqrt{\frac{4 \, Q'}{\pi \, \nu' 1} + \, (dn)^2} \tag{3.11}$$

Onde: "d'₁" é o diâmetro da boca de entrada do rotor em mm, "Q' " é a Vazão corrigida em m³/s, "v'₁" é a Velocidade média na boca de entrada do rotor em m/s, e "dn" é o diâmetro do núcleo em mm.

Diâmetro médio da aresta de entrada das pás (dm1)

O bordo de entrada das pás nas bombas é definido pela sua característica de velocidade, isto é, se a bomba é lenta, normal ou rápida, a bomba é definida pelo " n_s ". Calculase o diâmetro médio da aresta de entrada das pás (dm₁) pelas EQ (3.12; 3.13 e 3.14) (MACINTYRE, 2013):

Para bombas lentas: $dm_1 = (1,0 \text{ a } 1,1) d'_1$	(3	5.1	12	2)	ļ
--	----	-----	----	----	---

Para bombas normais: $dm_1 = (0,90 a 0,95) d'_1$ (3.13)

Para bombas rápidas: $dm_1 = (0,80 a 0,90) d'_1$ (3.14)

Onde: " dm_1 " é o diâmetro médio da aresta de entrada das pás em mm, e " d'_1 " é o diâmetro da boca de entrada do rotor em mm.

Velocidade meridiana de entrada do rotor (vm1)

A velocidade meridiana de entrada do rotor (v_{m1}) pode ser obtida pela EQ (3.15) (MACINTYRE, 2013):

$$vm1 = kvm1\sqrt{2 g H}$$
(3.15)

Sendo: " v_{m1} " é a Velocidade meridiana de entrada do rotor em m/s, " kv_{m1} " é o coeficiente da velocidade da componente meridiana na entrada do rotor, é adimensional, "g" é a aceleração da gravidade em m/s², e "H" é a Altura manométrica em m.

Onde, o coeficiente da velocidade da componente meridiana na entrada do rotor: kv_{m1} , para uma determinada velocidade específica " n_s ", foi obtida pela interpolação na curva ajustada (ver FIG. 2.3).

Velocidade periférica no bordo de entrada do rotor (u1)

Para o ponto do bordo de entrada correspondente ao filete médio, calcula-se a velocidade periférica no bordo de entrada (u₁) pela EQ (3.16) (MACINTYRE, 2013):

$$u \mathcal{1} = \frac{\pi \, dm 1 \, n}{60} \tag{3.16}$$

Onde: "u₁" é a velocidade periférica no bordo de entrada do rotor em m/s, "dm₁" é o diâmetro médio da aresta de entrada das pás em mm, e "n" é a rotação de acionamento em rpm.

Ângulo β1 das pás à entrada do rotor (β1)

Com os valores da Velocidade periférica no bordo de entrada (u_1) e da Velocidade meridiana de entrada do rotor (v_{m1}) , determina-se o ângulo β_1 de inclinação das pás na entrada do rotor através da sua tangente pela EQ (3.17) (MACINTYRE, 2013):

$$\operatorname{TAN}\beta 1 = \frac{Vm1}{u1} \tag{3.17}$$

Onde: " β_1 " é o ângulo das pás à entrada do rotor em graus, " v_{m1} " é a velocidade meridiana de entrada do rotor em m/s, e " u_1 " é a velocidade periférica no bordo de entrada do rotor em m/s.

O valor pratico em geral deste ângulo β_1 , fica compreendido na faixa entre: 15° a 30° (ver Tabela 2.3). Considera-se que esse valor de velocidade seja um "Ponto de Controle".

Número de pás (Z)

Devido a sua influência no rendimento hidráulico da bomba, a influência no balanceamento do rotor e a interferência na vibração e desgaste dos mancais deve-se tomar um especial cuidado para a escolha do número Z de pás do rotor da bomba. Calcula-se o número de pás (Z) pela EQ (3.18) (ZULCY, 2011):

$$Z = 6,5.\left(\frac{d2+dm1}{d2-dm1}\right).sen\left(\frac{\beta_1+\beta_2}{2}\right)$$
(3.18)
Order "Z" & a número da rás da ratar da hamba "d." & a diâmetro da saída da ratar

Onde: "Z" é o número de pás do rotor da bomba, "d₂" é o diâmetro de saída do rotor (d₂) em mm, "dm₁" é o diâmetro médio da aresta de entrada das pás em mm, " β_1 " é o ângulo das pás à entrada do rotor em graus, e " β_2 " é o ângulo das pás na saída do rotor em graus.

Passo circunferencial entre pás (t1) na entrada do rotor

O passo circunferencial entre pás (t_1) na entrada do rotor será obtido pela EQ (3.19) (MACINTYRE, 2013):

$$t_1 = \frac{\pi \, dm_1}{Z} \tag{3.19}$$

Onde: " t_1 " é o passo circunferencial entre pás na entrada do rotor em mm, " dm_1 " é o diâmetro médio da aresta de entrada das pás em mm, e "Z" é o número de pás do rotor da bomba.

Considerações para a escolha da espessura da pá (S1)

A espessura das pás na entrada, dependendo do material, pode ser definido pelas EQ (3.20 e 3.21) (MACINTYRE, 2013):

S₁: 3 a 4 mm, para rotores pequenos com:
$$d_2 < 30$$
 cm (3.20)

 $S_1: 5 a 7 mm, para rotores com: d_2 de 30 a 50 cm$ (3.21)

Obstrução devida à espessura da pá à entrada (o1)

A pá sendo inclinada do ângulo (β 1), produzirá uma obstrução ao fluxo. A EQ (3.22) (MACINTYRE, 2013) permite determinar obstrução devida à espessura da pá à entrada (σ 1).

$$\sigma_1 = \frac{S1}{SEN\,\beta 1} \tag{3.22}$$

Onde: " σ_1 " Obstrução devida à espessura da pá à entrada em m, " S_1 " é a espessura da pá em mm, " β_1 " é o ângulo das pás à entrada do rotor em graus.

Coeficiente de contração (y1)

Na entrada do rotor, devida à presença da pá, e a sua espessura, haverá diminuição da passagem livre do liquido no canal da entrada do rotor, provocada pela espessura da pá sendo necessário considerar uma correção definida de coeficiente de contração. Esse coeficiente de contração (γ_1) será obtido pela EQ (3.23) (MACINTYRE, 2013):

$$\frac{1}{\gamma_1} = \frac{t_1}{t_1 - \sigma_1}$$
(3.23)

Onde: " γ_{1} " é o coeficiente de contração é adimensional, " t_1 " é o passo circunferencial entre pás em mm, " σ_1 " é a obstrução devida à espessura da pá à entrada em mm.
$Largura\ da\ pá\ (b_1)\ a\ entrada\ considerando\ a\ obstrução\ (\sigma_1)\ devida\ a\ espessura\ da\ pá\ a\ entrada$

A largura da pá (b₁) à entrada do rotor considerando a obstrução (σ_1) devida à espessura da pá à entrada será obtida pela EQ (3.24) (MACINTYRE, 2013):

$$b1 = \frac{Q'}{vm1(\pi \, dm1 \, -Z \, \sigma_1)} \tag{3.24}$$

Onde: "b₁" é a largura da pá à entrada do rotor em mm, "Q" " é a Vazão corrigida em m³/s, "v_{m1}" é a velocidade meridiana de entrada do rotor em m/s, "dm₁" é o diâmetro médio da aresta de entrada das pás em mm, "Z" é o número de pás do rotor da bomba, e " σ_1 " é a obstrução devida à espessura da pá à entrada em mm.

GRANDEZAS À SAÍDA DO ROTOR

Velocidade periférica à saída (u2)

Calcula-se a velocidade periférica à saída (u2) pela EQ (3.25) (MACINTYRE,

2013):

$$u2 = ku2\sqrt{2gH} \tag{3.25}$$

Sendo: "u₂" é a Velocidade periférica à saída do rotor em m/s, "ku₂" é o coeficiente da velocidade periférica de saída do rotor, é adimensional, "g" é a aceleração da gravidade em m/s², e "H" é a Altura manométrica em m.

O coeficiente da velocidade periférica de saída do rotor: ku₂, para uma determinada velocidade específica "n_s", foi obtida pela interpolação na curva ajustada (ver FIG. 2.4).

Velocidade periférica à saída (u2)s "critério adotado pela Sulzer"

Calcularemos a velocidade periférica à saída (u₂)s, utilizando o critério adotado pela Sulzer pela EQ (3.26) (MACINTYRE, 2013):

$$(u2)s = \varphi \sqrt{H} \tag{3.26}$$

Sendo: " $(u_2)_s$ " é a Velocidade periférica à saída do rotor, critério adotado pela Sulzer, em m/s, Φ é uma constante definida pela Sulzer, é adimensional, e "H" é a Altura manométrica em m.

Onde, Φ é uma constante definida pela Sulzer. A seguir, os valores de Φ recomendados:

$$\Phi = 4,1$$
 para bombas grandes - alta pressão com pás guias; (3.27)

METODOLOGIA74

$\Phi = 4,2$ para bombas grandes - baixa pressão;	(3.28)
Φ = 4,5 para bombas pequenas - média e alta pressões sem pás guias;	(3.29)
Φ = 4,7 para bombas pequenas - baixa pressão sem pás guias	(3.30)

MACINTYRE (2013) recomenda que para a continuidade dos cálculos, se adote a menor velocidade periférica à saída (u₂), entre as duas velocidades acima. Esta condição é considerada conservadora.

Diâmetro de saída do rotor (d2)

Uma vez conhecida a velocidade (u₂), pode-se calcular o diâmetro de saída do rotor (d₂) pela EQ (3.31) (MACINTYRE, 2013):

$$d_2 = \frac{60 \, u_2}{\pi \, n} \tag{3.31}$$

Onde: "d₂" é o diâmetro de saída do rotor em mm, "u₂" é a velocidade periférica à saída do rotor em m/s, e "n" é a rotação de acionamento em rpm.

Define-se um intervalo de \pm 5% de variação do diâmetro de saída (d₂) calculado, para verificar a faixa onde estarão compreendidos os diâmetros de saída obtidos dos catálogos dos fabricantes.

Altura de elevação ou energia cedida à pá (H'e)

O cálculo da Energia a ser cedida às pás (H'_e) é feito levando-se em conta o desvio angular dos filetes à saída do rotor. Para isso considera-se as seguintes limitações recomendadas pelo MACINTYRE (2013):

Bomba centrifugas com $n_s < 130$;

Para
$$\varepsilon = 0.87$$
;

Para ψ = de 0,8 a 1,0 para bombas com pás guias, sendo o valor menor para bombas pequenas, e;

Para ψ = de 1,1 a 1,2 para bombas pequenas sem pás guias;

Para calcular a altura desejada (He), adota-se preliminarmente $\varepsilon = 0,87$; definida pela EQ (3.32) (MACINTYRE, 2013):

$$He = \frac{H}{\varepsilon}$$
(3.32)

Sendo: "He" é a altura desejada em m, "H" é a Altura manométrica em m, e "ɛ" é o rendimento hidráulico.

Para calcular a altura de elevação (H'_e), adota-se ψ = de 1,1 a 1,2 para bombas sem pás guias; definida pela EQ (3.33) (MACINTYRE, 2013):

$$H'_e = He\left(1 + \frac{8}{3}\frac{\Phi}{Z}\right) \tag{3.33}$$

Sendo: "H'e" é a altura de elevação em m, "He" é a altura desejada em m, " ψ " é coeficiente de correção pratico, e "Z" é o número de pás do rotor da bomba.

Velocidade meridiana de saída do rotor (vm2)

Calcula-se a velocidade meridiana de saída do rotor (v_{m2}) pela EQ (3.34) (MACINTYRE, 2013):

$$vm2 = kvm2\sqrt{2 g H}$$
(3.34)

Sendo: " v_{m2} " é a Velocidade meridiana de saída do rotor em m/s, " kv_{m2} " é o coeficiente da velocidade meridiana na saída do rotor, é adimensional, "g" é a aceleração da gravidade em m/s², e "H" é a Altura manométrica em m.

O coeficiente da velocidade da componente da velocidade meridiana na saída do rotor " kv_{m2} ", para uma determinada velocidade específica " n_s ", foi obtida pela interpolação na curva ajustada (ver FIG. 2.5). MACINTYRE, (2013) cita que outros autores recomendam um equacionamento diferente para o cálculo dessa velocidade (v_{m2}). Assim far-se-á o cálculo dessa velocidade também pela EQ (3.35).

$$\mathbf{v}_{m2} = (0,85 a \, 0,90) \, \mathbf{v}_{m1} \tag{3.35}$$

Sendo: " v_{m2} " é a Velocidade meridiana de saída do rotor em m/s, e " v_{m1} " é a velocidade meridiana de entrada do rotor em m/s.

A velocidade a ser utilizada para dar continuidade ao dimensionamento será escolhida a partir da menor velocidade meridiana de saída do rotor (v_{m2}), entre as duas velocidades calculadas pelas EQ (3.34) e EQ (3.35). Esta condição é considerada conservadora.

Ângulo de saída (β2)

Na TAB. 2.3, o ângulo de saída β_2 , em função das considerações dos diferentes autores, varia em uma faixa de 15° a 30°.

Preliminarmente, adota-se, neste trabalho o ângulo de saída (β_2) em 23° pela EQ (3.36), MACINTYRE, (2013), esta escolha foi feita em função do número Z de pás:

Ângulo de saída (
$$\beta_2$$
) = 23° (3.36)

Velocidade periférica à saída (u₂) corrigida com o desvio angular dos filetes à saída do rotor (u₂)corr.

A velocidade periférica à saída do rotor (u₂), será corrigida com o desvio angular dos filetes à saída do rotor, sendo obtida através da EQ (3.37) (MACINTYRE, 2013):

$$(u_{2)corr} = \frac{v_{m2}}{2 \operatorname{TAN} \beta 2} + \sqrt{\left(\frac{v_{m2}}{2} \frac{1}{\operatorname{TAN} \beta 2}\right)^2 + gH'_e}$$
(3.37)

Sendo: "(u₂)corr" velocidade periférica à saída corrigida com o desvio angular dos filetes à saída do rotor em m/s, " v_{m2} " é a velocidade meridiana de saída do rotor em m/s, " β_2 " é o ângulo β_2 das pás na saída do rotor em graus, "g" é a aceleração da gravidade em m/s², e "H'e" é a altura de elevação em m.

Diâmetro retificado de saída do rotor (d2)ret

Com o valor de (u₂)corr, retifica-se o diâmetro (d₂), para (d₂)ret na saída do rotor, através da EQ (3.38) (MACINTYRE, 2013), levando-se em conta o desvio angular dos filetes à saída do rotor:

$$(d2)_{ret} = \frac{60 \ (u_2 \)corr}{\pi * n} \tag{3.38}$$

Onde: " (d_2) ret" é o diâmetro retificado de saída do rotor em mm, " (u_2) corr" é a velocidade periférica à saída corrigida com o desvio angular dos filetes à saída do rotor em m/s, e "n" é a rotação de acionamento em rpm.

Com as condições do projeto, e as combinações de H e Q, obtém-se frente aos catálogos dos fabricantes, o diâmetro de saída do rotor (D2). Ao analisar-se, os valores do diâmetro de saída do catálogo, verifica-se se os mesmos se encontram na faixa de intervalo dos \pm 5% de variação do diâmetro de saída (d₂)ret.

Passo circunferencial entre pás (t₂)

O passo circunferencial entre pás (t₂) pela será obtido pela EQ (3.39) (MACINTYRE, 2013):

$$t_2 = \frac{\pi (d2)ret}{Z} \tag{3.39}$$

Onde: " t_2 " é o passo circunferencial entre pás na saída do rotor em mm, " (d_2) ret" é o diâmetro retificado de saída do rotor em mm, e "Z" é o número de pás do rotor da bomba.

Considerações para a escolha da espessura da pá (S1=S2)

Considera-se por facilidade no projeto de fundição, que espessura da pá seja constante, teremos então $S_1 = S_2$.

A espessura das pás na saída, dependendo do material, será definida pelas EQ (3.40 e 3.41) (MACINTYRE, 2013):

S ₂ : 3 a 4 mm, para rotores pequenos com: $d_2 < 30$ cm	(3.40)
S ₂ : 5 a 7 mm, para rotores com: d_2 de 30 a 50 cm	(3.41)

Obstrução devida à espessura da pá na saída (o2)

Calcula-se a obstrução devida à espessura da pá na saída pela EQ (3.42) (MACINTYRE, 2013):

$$\sigma_2 = \frac{S2}{SEN\,\beta 2} \tag{3.42}$$

Onde: " σ_2 " Obstrução devida à espessura da pá na saída em m, " S_2 " é a espessura da pá em mm, e " β_2 " é o ângulo das pás na saída do rotor em graus.

Coeficiente de contração (y₂)

Calcula-se o coeficiente de contração pela EQ (3.43) (MACINTYRE, 2013):

$$\gamma_2 = \frac{t_2 - \sigma_2}{t_2}$$
(3.43)

Onde: " γ_2 " é o coeficiente de contração é adimensional, " t_2 " é o passo circunferencial entre pás na saída do rotor em mm, e " σ_2 " é a obstrução devida à espessura da pá na saída do rotor em mm.

Largura da pá à saída retificada ((b2)ret)

Calcula-se a largura da pá à saída retificada (b₂), considerando-se a obstrução (σ_2) da espessura das pás na saída pela EQ (3.44) (MACINTYRE, 2013):

$$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \gamma_2} \tag{3.44}$$

Onde: "(b₂)ret" é a largura da pá à saída retificada do rotor em mm, "Q' " é a Vazão corrigida em m³/s, "(d₂)ret" é o diâmetro retificado de saída do rotor em mm, "v_{m2}" é a velocidade meridiana de entrada do rotor em m/s, e " γ_2 " é o coeficiente de contração é adimensional.

Com as condições do projeto, e as combinações de H e Q, obtém-se frente aos catálogos dos fabricantes, a largura de saída da pá (b₂). Ao analisar-se, os valores da largura de saída da pá retificada (b₂)ret, verifica-se se os mesmos se encontram na faixa do intervalo dos \pm 5% da variação da largura de saída (b₂)ret.

Coeficiente de perdas internas kpi

Calcula-se o Coeficiente de perdas internas (kpi) pela EQ (3.45) reagrupada em função da Altura Manométrica (H), rotação de acionamento (n) e do diâmetro de saída do rotor (ds).

$$k_{pi} = 7\ 156,484\left(\frac{H}{d_s^2\ n^2}\right) \tag{3.45}$$

Onde: (H) é a Altura Manométrica, (n) é a rotação de acionamento e o diâmetro de saída do rotor (ds), neste estudo será considerado o valor do "(d2)ret" que corresponde ao diâmetro retificado de saída do rotor em mm.

3.6 Saídas para as Condições de Projeto.

Com os resultados obtidos ter-se-á um conjunto de tabelas e gráficos que representam: Velocidade especifica "n_s", Velocidade meridiana de entrada do rotor " v_{m1} ", Velocidade meridiana de saída do rotor " v_{m2} ", Diâmetro da boca de entrada do rotor " d'_1 ", Diâmetro de saída rotor corrigida "(d_2)ret", Largura de saída rotor corrigida "(b_2)ret" e também do Coeficiente de perdas internas "kpi".

Os resultados apresentam também os respectivos coeficientes de correlação linear " R^{2} " = ± 1 .

4. ESTUDO DE CASO

Apresenta-se nesse capitulo um estudo de caso para bombas centrifugas com velocidades rotacionais "n" variando entre 3500 rpm e 1750 rpm. Os resultados a serem obtidos são apresentados nas seguintes curvas:

- Velocidade Meridiana de entrada do rotor "v_{m1}", com a Velocidade especifica "n_s".
- Velocidade Meridiana de saída do rotor "v_{m2}", com a Velocidade especifica "n_s".
- Diâmetro da boca de entrada do rotor "d'1", com a Velocidade especifica "ns".
- Diâmetro de saída do rotor corrigida "(d₂)ret", com a Velocidade especifica "n_s".
- Largura de saída do rotor corrigida "(b₂)ret", com a Velocidade especifica "n_s".
- Coeficiente de perdas internas "kpi", com a Velocidade especifica "ns".
- Comparação dos resultados obtidos com as equações formatadas pelo modelo apresentado no Algoritmo, pelo desenvolvimento completo das equações de "Macintyre modificado" e com os dados do projeto.

4.1 Estudo inicial das grandezas das bombas centrifugas

Os Dados de Projeto a serem utilizados nesse estudo de caso são: i) Altura manométrica (Hman) = 100 mca, e; ii) Vazão de projeto (Q) = 36 m³/h. Em seguida, mantendose a Vazão de projeto (Q) em 36 m³/h e para uma velocidade rotacional de 3500 rpm, procedese a variação da Altura manométrica entre 20; 30; 40; 60; 80 e 100 mca. Os valores do Diâmetro da boca de entrada do rotor "d'₁" e do Diâmetro de saída do rotor corrigida "(d₂)ret" em função da Velocidade especifica "n_s", estão apresentados no GRA. 4.1.

Conforme pode ser verificado, o gráfico mostra a amplitude do comportamento da Velocidade específica "n_s", as curvas mostram sua forma e o tipo de equação matemática que as rege. Mais adiante, este gráfico ilustrativo será complementado com a sua equação matemática e com seu respectivo coeficiente de correlação linear " R^2 " = + 1.

GRÁFICO 4.1 - Comportamento do Diâmetro da boca de entrada do rotor "d'₁" e do Diâmetro de saída do rotor corrigida "(d₂)ret" em função da Velocidade Especifica "n_s", para a rotação de 3500 rpm.

Os valores da Velocidade Meridiana de entrada do rotor " v_{m1} ", e da Velocidade Meridiana de saída do rotor " v_{m2} " em função da Velocidade Especifica " n_s ", para a rotação de 3500 rpm, estão ilustrados no GRA. 4.2.

 1
 1
 1
 1
 1
 1
 1
 1

 1
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,0
 14,

No GRA. 4.3 observa-se o comportamento da Largura de saída do rotor corrigida "(b₂)ret" em função da Velocidade Especifica "n_s", para a rotação de 3500 rpm.

GRÁFICO 4.3 - Comportamento da Largura de saída do rotor corrigida "(b₂)ret" em função da Velocidade Especifica "n_s", para a rotação de 3500 rpm.

FONTE: AUTOR.

Para a bomba centrifuga com rotação de 1750 rpm, os GRÁFICOS são semelhantes, eles estão disponíveis no arquivo eletrônico.

4.2 Ampliação do estudo

Foram consideradas as velocidades rotacionais "n" de 3500 e 1750 rpm, Alturas manométricas "Hman" variando entre 20; 30; 40; 60; 80 e 100 m e Vazão "Q" de 30; 40; 50 e 60 m³/h.

4.2.1 <u>Comportamento para Hman 100 m e 3500 rpm</u>

As FIG. 4.1, 4.2 e 4.3 apresentam o resultado do cálculo da "Velocidade Meridiana de entrada do rotor" (v_{m1}); da "Velocidade Meridiana de saída do rotor" (v_{m2}); do "Diâmetro da boca de entrada do rotor" (d'_1); do "Diâmetro de saída do rotor corrigida" (d_2)ret, e da "Largura de saída do rotor corrigida" (b_2)ret, em função da "Velocidade especifica" (n_s). Os fabricantes não disponibilizam este tipo de informação por ser considerada sigilosa.

FIGURA 4.1 - Para Hman. 100 m. Dados de Saída, para a Velocidade meridiana de entrada do rotor (vm₁), Velocidade Meridiana de saída do rotor (vm₂), para a rotação de 3500 rpm.

FIGURA 4.2 - Para Hman. 100 m. Dados de Saída, para o "Diâmetro da boca de entrada do rotor" (d'1); do "Diâmetro de saída do rotor corrigida" (d₂)ret, para a rotação de 3500 rpm.

FIGURA 4.3 - Para Hman. 100 m. Dados de Saída, para a "Largura de saída do rotor corrigida" (b₂)ret, para a rotação de 3500 rpm.

Nas figuras pode-se observar, o comportamento dos parâmetros descritos para Altura manométrica de 100 m, em uma determinada faixa de " n_s ".

O QUADRO 4.1 mostra o valor calculado para o Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos fabricantes. Nesse quadro pode-se observar as diferenças reais e percentuais entre os diâmetros calculados e obtidos dos catálogos de fabricantes. Para os diâmetros de saída, a faixa de variação entre o valor calculado e os obtidos nos catálogos considerada aceitável é de ± 5 % do "(d₂)ret".

QUADRO 4.1

Parâmetros de comparação entre o Diâmetro de saída do rotor corrigido (d2)ret e o Diâmetro de saída do rotor

[DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	100	100	100	100
Valor do diâmetro retificado (d2)ret	$(d2)ret=\frac{60\ u_2}{\pi * n}$	(d2)ret	m	0,243	0,245	0,247	0,249
Ver faixa inferior	95%	0,95(d2)ret	mm	231	233	235	236
Ver faixa superior	105%	1,05(d2)ret	mm	255	258	259	261
Diâmetro de saída do Catálogo	KSB	D2	mm	234	240	250	242
	Diferença=Cálculo real-Dimensão catálogo		mm	9	5	-3	-3
(+	+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		4%	2%	-1%	3%
	IMBIL	D2	mm	232	238	244	252
	Diferença=Cálculo real-Dimensão catálogo		mm	11	7	3	-13
(+	+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		5%	3%	1%	-1%
	EH	D2	mm	220	225	229	232
	Diferença=Cálculo real-Dimensão catálogo		mm	23	20	18	17
(+	+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		9%	8%	7%	7%
	WORTINGTON	D2	mm	225	225	227	229
	Diferença=Cálculo real-Dimensão catálogo		mm	18	20	20	20
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio		or		7%	8%	8%	8%
	SULZER	D2	mm	225	225	230	232
	Diferença=Cálculo real-Dimensão catálogo		mm	18	20	17	7
(+	+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		7%	8%	7%	7%

FONTE: AUTOR.

A análise do QUADRO 4.1 permite comparar os valores calculados para a Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D_{2"} dos diferentes fabricantes. Observa-se que os valores encontrados nos catálogos estão muito próximos aos definidos na faixa de segurança de ± 5 % do "(d₂)ret" desta forma podemos considerar os resultados como confiáveis.

O QUADRO 4.2 mostra o valor calculado para a Largura da saída do rotor retificada "(b₂)ret", assim como os valores das Larguras de saída dos rotores dos fabricantes. Também se apresenta a diferença real entre as Larguras, e a porcentagem da diferença entre eles. Para a Largura de saída do rotor, a faixa de variação entre o valor calculado e obtidos nos catálogos considerada aceitável é de ± 5 % da "(b₂)ret".

QUADRO 4.2

Parâmetros de comparação entre a Largura na saída do rotor corrigida (b2)ret e a Largura na saída do rotor dos

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
0	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	100	100	100	100
Largura (b2) da pá à saída retificada (b2)ret	Pg. 242 e 274 do Macintyre						
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \ \gamma_2}$	(b2)ret	m	0,004	0,004	0,005	0,006
	(b2)ret	(b2)ret	mm	3,6	4,4	5,4	6,2
Ver faixa inferior	95%	0,95(b2)ret	mm	3,4	4,2	5,1	5,9
Ver faixa superior	105%	1,05(b2)ret	mm	3,7	4,7	5,6	6,6
Largura (b2) do Catálogo	KSB	b2	mm	4,0	4,0	4,0	5,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-0,4	0,4	1,4	1,2
	(+)Largura Real maior; (-)Largura do Catálogo maior			-13%	10%	26%	20%
	IMBIL	b2	mm	8,0	8,0	8,0	8,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,4	-3,6	-2,6	-1,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-125%	-80%	-49%	-28%
	EH	b2	mm	8,0	8,0	8,0	8,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,4	-3,6	-2,6	-1,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-125%	-80%	-49%	-28%
	WORTINGTON	b2	mm	10,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-6,4	-5,6	-4,6	-3,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-25%	-125%	-86%	-60%
	SULZER	b2	mm	7,0	7,0	7,0	7,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-3,4	-2,6	-1,6	-0,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-97%	-57%	-30%	-12%

fabricantes.

FONTE: AUTOR.

A análise do QUADRO 4.2 permite comparar os valores calculados para a Largura do rotor com os observados nos catálogos dos fabricantes. Os valores encontrados nos catálogos são muito maiores que os definidos na faixa de segurança de ± 5 %. Esta grande diferença será explicada posteriormente no item das considerações finais deste capítulo.

4.2.2 <u>Comportamento para Hman 80 m e 3500 rpm</u>

As FIG. 4.4, 4.5 e 4.6 apresentam o resultado do cálculo da "Velocidade Meridiana de entrada do rotor" (v_{m1}); da "Velocidade Meridiana de saída do rotor" (v_{m2}); do "Diâmetro da boca de entrada do rotor" (d'_1); do "Diâmetro de saída do rotor corrigido" (d_2)ret, e da "Largura de saída do rotor corrigida" (b_2)ret. Em função da "velocidade especifica" (n_s). Os fabricantes não disponibilizam este tipo de informação por ser considerada sigilosa.

 $\label{eq:FIGURA 4.4 - Para Hman. 80 m. Dados de Saída, para a Velocidade meridiana de entrada do rotor (v_{m1}), Velocidade Meridiana de saída do rotor (v_{m2}), para a rotação de 3500 rpm.$

FIGURA 4.5 - Para Hman. 80 m. Dados de Saída, para o "Diâmetro da boca de entrada do rotor" (d'₁); do "Diâmetro de saída do rotor corrigida" (d₂)ret, para a rotação de 3500 rpm.

FIGURA 4.6 - Para Hman. 80 m. Dados de Saída, para a "Largura de saída do rotor corrigida" (b₂)ret, para a rotação de 3500 rpm.

Nas figuras pode-se observar, o comportamento dos parâmetros descritos para Altura manométrica de 80 m, em uma determinada faixa de "n_s".

O QUADRO 4.3 mostra o valor calculado para o Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos fabricantes. Nesse quadro pode-se observar as diferenças reais e percentuais entre os diâmetros calculados e obtidos dos catálogos de fabricantes. Para os diâmetros de saída, a faixa de variação entre o valor calculado e os obtidos nos catálogos considerada aceitável é de ± 5 % do "(d₂)ret".

QUADRO 4.3

Parâmetros de comparação entre o Diâmetro de saída do rotor corrigido (d2)ret e o Diâmetro de saída do rotor

	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m³/h	30	40	50	60
Altura manometrica	H = Hman		m	80	80	80	80
Valor do diâmetro retificado (d2)ret	$(d2)ret=\frac{60\ u_2}{\pi*n}$	(d2)ret	m	0,223	0,224	0,225	0,227
Ver faixa inferior	95%	0,95(d2)ret	mm	212	213	214	216
Ver faixa superior	105%	1,05(d2)ret	mm	235	235	237	238
Diâmetro de saída do Catálogo	KSB	D2	mm	200	222	240	250
	Diferença=Cálculo real-Dimensão catálogo		mm	23	2	-15	-35
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		10%	1%	-6%	-10%
	IMBIL	D2	mm	210	218	224	232
	Diferença=Cálculo real-Dimensão catálogo		mm	13	6	1	-17
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		6%	3%	1%	-2%
	EH	D2	mm	208	208	209	208
	Diferença=Cálculo real-Dimensão catálogo		mm	15	16	16	19
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		7%	7%	7%	8%
	WORTINGTON	D2	mm	202	203	208	213
Diferença=Cálculo real-Dimensão catálogo			mm	21	21	17	14
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		10%	9%	8%	6%
	SULZER	D2	mm	210	218	222	230
	Diferença=Cálculo real-Dimensão catálogo		mm	13	6	3	-15
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		6%	3%	2%	-1 <mark>%</mark>

(D₂) dos fabricantes

FONTE: AUTOR.

A análise do QUADRO 4.3 permite comparar os valores calculados para a Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D_{2"} dos diferentes fabricantes. Observa-se que os valores encontrados estão muito próximos aos definidos na faixa de segurança de ± 5 % do "(d₂)ret" desta forma podemos considerar os resultados como confiáveis.

O QUADRO 4.4 mostra o valor calculado para a Largura da saída do rotor retificada "(b₂)ret", assim como os valores das Larguras de saída dos rotores dos diferentes fabricantes. Também se apresenta a diferença real entre as Larguras, e a porcentagem da diferença entre eles. Para a Largura de saída do rotor, a faixa de variação entre o valor calculado e obtido nos catálogos considerada aceitável é de ± 5 % da "(b₂)ret".

QUADRO 4.4

Parâmetros de comparação entre a Largura na saída do rotor corrigido (b2)ret e a Largura na saída do rotor dos

	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	80	80	80	80
Largura (b2) da pá à saída retificada (b2)ret	Pg. 242 e 274 do Macintyre						
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \ \gamma_2}$	(b2)ret	m	0,004	0,005	0,006	0,007
	(b2)ret	(b2)ret	mm	4,1	5,2	6,3	7,2
Ver faixa inferior	95%	0,95(b2)ret	mm	3,9	4,9	6,0	6,8
Ver faixa superior	105%	1,05(b2)ret	mm	4,3	5,4	6,6	7,5
Largura (b2) do Catálogo	KSB	b2	mm	8,0	4,0	4,0	4,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-3,9	1,2	2,3	3,2
	(+)Largura Real maior; (-)Largura do Catálogo maior			-96%	23%	36%	44%
	IMBIL	b2	mm	8,0	8,0	8,0	8,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-3,9	-2,8	-1,7	-0,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-96%	-54%	-27%	-12%
	EH	b2	mm	10,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-5,9	-4,8	-3,7	-2,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-145%	-93%	-59%	-40%
	WORTINGTON	b2	mm	10,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-5,9	-4,8	-3,7	-2,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			0%	-93%	-59%	-40%
	SULZER	b2	mm	11,0	11,0	11,0	11,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-6,9	-5,8	-4,7	-3,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-169%	-112%	-75%	-54%

fabricantes.

FONTE: AUTOR.

A análise do QUADRO 4.4 permite comparar os valores calculados para a Largura do rotor com os observados nos catálogos dos fabricantes. Os valores encontrados são muito maiores que os definidos na faixa de segurança de ± 5 %. Esta grande diferença será explicada posteriormente no item das considerações finais deste capítulo.

4.2.3 Comportamento para Hman 60 m e 3500 rpm

As FIG. 4.7, 4.8 e 4.9 apresentam o resultado do cálculo da "Velocidade Meridiana de entrada do rotor" (v_{m1}); da "Velocidade Meridiana de saída do rotor" (v_{m2}); do "Diâmetro da boca de entrada do rotor" (d'_1); do "Diâmetro de saída do rotor corrigido" (d_2)ret, e da "Largura de saída do rotor corrigida" (b_2)ret. Em função da "velocidade especifica" (n_s). Os fabricantes não disponibilizam este tipo de informação por ser considerada sigilosa.

 $\label{eq:FIGURA 4.7 - Para Hman. 60 m. Dados de Saída, para a Velocidade meridiana de entrada do rotor (v_{m1}), Velocidade Meridiana de saída do rotor (v_{m2}), para a rotação de 3500 rpm.$

FIGURA 4.8 - Para Hman. 60 m. Dados de Saída, para o "Diâmetro da boca de entrada do rotor" (d'₁); do "Diâmetro de saída do rotor corrigida" (d₂)ret, para a rotação de 3500 rpm.

FIGURA 4.9 - Para Hman. 60 m. Dados de Saída, para a "Largura de saída do rotor corrigida" (b₂)ret, para a rotação de 3500 rpm.

Nas figuras observamos, o comportamento dos parâmetros descritos para H 60 m, e para uma determinada faixa de " n_s ".

O QUADRO 4.5 mostra o valor calculado para o Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos fabricantes. Nesse quadro pode-se observar as diferenças reais e percentuais entre os diâmetros calculados e obtidos dos catálogos de fabricantes. Para os diâmetros de saída, a faixa de variação entre o valor calculado e os obtido nos catálogos considerada aceitável é de ± 5 % do "(d₂)ret".

Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d₂)ret e o diâmetro de saída do rotor

(D₂) dos fabricantes

	DEFINIR TIPO DE BOMBA (ns)			Condicão A	Condicão B	Condicão C	Condicão D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	60	60	60	60
Valor do diâmetro retificado (d2)ret	$(d2)ret = \frac{60 \ u_2}{\pi * n}$	(d2)ret	m	0,188	0,190	0,191	0,193
Ver faixa inferior	95%	0,95(d2)ret	mm	179	180	182	183
Ver faixa superior	105%	1,05(d2)ret	mm	198	199	201	202
Diâmetro de saída do Catálogo	KSB	D2	mm	188	200	224	240
	Diferença=Cálculo real-Dimensão catálogo		mm	0	-10	-33	-52
	(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		0%	-5%	-17%	-25%
	IMBIL	D2	mm	182	185	190	196
	Diferença=Cálculo real-Dimensão catálogo		mm	6	5	1	-8
	(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		3%	3%	1%	-2%
	EH	D2	mm	180	182	185	190
	Diferença=Cálculo real-Dimensão catálogo		mm	8	8	6	3
	(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		4%	4%	3%	1%
	WORTINGTON	D2	mm	180	188	173	178
	Diferença=Cálculo real-Dimensão catálogo		mm	8	2	18	15
	(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		4%	1%	10%	8%
	SULZER	D2	mm	180	185	200	210
	Diferença=Cálculo real-Dimensão catálogo		mm	8	5	-9	-22
	(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		4%	3%	-5%	-9%

A análise do QUADRO 4.5 permite comparar os valores calculados para a Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos diferentes fabricantes. Observa-se que os valores encontrados estão muito próximos aos definidos na faixa de segurança de ± 5 % do "(d₂)ret" desta forma podemos considerar os resultados como confiáveis.

O QUADRO 4.6 mostra o valor calculado para a Largura da saída do rotor retificada "(b_2)ret", assim como os valores das Larguras de saída dos rotores dos fabricantes. Também se apresenta a diferença real entre as Larguras, e a porcentagem da diferença entre eles. Para a Largura de saída do rotor, a faixa de variação entre o valor calculado e obtidos nos catálogos considerada aceitável é de ± 5 % da "(b_2)ret".

QUADRO 4.6

Parâmetros de comparação entre a Largura na saída do rotor corrigido (b2)ret e a Largura na saída do rotor do

	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	60	60	60	60
Largura (b2) da pá à saída retificada (b2)ret	Pg. 242 e 274 do Macintyre						
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \gamma_2}$	(b2)ret	m	0,005	0,007	0,008	0,009
	(b2)ret	(b2)ret	mm	5,5	6,9	8,2	9,3
Ver faixa inferior	95%	0,95(b2)ret	mm	5,2	6,6	7,8	8,9
Ver faixa superior	105%	1,05(b2)ret	mm	5,8	7,3	8,6	9,8
Largura (b2) do Catálogo	KSB	b2	mm	5,0	5,0	4,0	4,0
	Diferença=Cálculo real-Dimensão catálogo		mm	0,5	1,9	4,2	5,3
	(+)Largura Real maior; (-)Largura do Catálogo maior			9%	28%	51%	57%
	IMBIL	b2	mm	9,0	9,0	9,0	9,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-3,5	-2,1	-0,8	0,3
	(+)Largura Real maior; (-)Largura do Catálogo maior			-64%	-30%	-10%	4%
	EH	b2	mm	10,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,5	-3,1	-1,8	-0,7
	(+)Largura Real maior; (-)Largura do Catálogo maior			-82%	-45%	-22%	-7%
	WORTINGTON	b2	mm	8,0	8,0	8,0	8,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-2,5	-1,1	0,2	1,3
	(+)Largura Real maior; (-)Largura do Catálogo maior			20%	-16%	<mark>2%</mark>	14%
	SULZER	b2	mm	11,0	11,0	11,0	11,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-5,5	-4,1	-2,8	-1,7
	(+)Largura Real maior; (-)Largura do Catálogo maior			-100%	-59%	-34%	-18%

fabricante

FONTE: AUTOR.

A análise do QUADRO 4.6 permite comparar os valores calculados para a Largura do rotor com os observados nos catálogos dos fabricantes. Os valores encontrados são muito maiores que os definidos na faixa de segurança de ± 5 %. Esta grande diferença será explicada posteriormente no item das considerações finais deste capítulo.

4.2.4 Comportamento para H 40 m e 3500 rpm

As FIG. 4.10, 4.11 e 4.12 apresentam o resultado do cálculo da "Velocidade Meridiana de entrada do rotor" (v_{m1}); da "Velocidade Meridiana de saída do rotor" (v_{m2}); do "Diâmetro da boca de entrada do rotor" (d'_1); do "Diâmetro de saída do rotor corrigido" (d_2)ret, e da "Largura de saída do rotor corrigida" (b_2)ret. Em função da "velocidade especifica" (n_s). Os fabricantes não disponibilizam este tipo de informação por ser considerada sigilosa.

FONTE: AUTOR.

FIGURA 4.11 - Para Hman. 40 m. Dados de Saída, para o "Diâmetro da boca de entrada do rotor" (d'₁); do "Diâmetro de saída do rotor corrigida" (d₂)ret, para a rotação de 3500 rpm.

FIGURA 4.12 - Para Hman. 40 m. Dados de Saída, para a "Largura de saída do rotor corrigida" (b₂)ret, para a rotação de 3500 rpm.
FONTE: AUTOR.

Nas figuras pode-se observar, o comportamento dos parâmetros descritos para Altura manométrica de 40 m, em uma determinada faixa de "n_s".

O QUADRO 4.7 mostra o valor calculado para o Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂, dos fabricantes. Nesse quadro pode-se observar as diferenças reais e percentuais entre os diâmetros calculados e obtidos dos catálogos de fabricantes. Para os diâmetros de saída, a faixa de variação entre o valor calculado e os obtidos nos catálogos considerada aceitável é de ± 5 % do "(d₂)ret".

QUADRO 4.7

Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d2)ret e o diâmetro de saída do rotor

	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	40	40	40	40
Valor do diâmetro retificado (d2)ret	$(d2)ret = \frac{60 \ u_2}{\pi * n}$	(d2)ret	m	0,157	0,158	0,159	0,160
Ver faixa inferior	95%	0,95(d2)ret	mm	149	150	151	152
Ver faixa superior	105%	1,05(d2)ret	mm	165	166	167	168
Diâmetro de saída do Catálogo	KSB	D2	mm	145	148	150	155
	Diferença=Cálculo real-Dimensão catálogo		mm	12	10	9	0
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		7%	6%	6%	3%
	IMBIL	D2	mm	144	146	153	158
	Diferença=Cálculo real-Dimensão catálogo		mm	13	12	6	-3
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		8%	8%	4%	1%
	EH	D2	mm	148	150	153	155
	Diferença=Cálculo real-Dimensão catálogo		mm	9	8	6	0
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		6%	5%	4%	3%
	WORTINGTON	D2	mm	146	146	147	150
	Diferença=Cálculo real-Dimensão catálogo		mm	11	12	12	5
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		7%	8%	8%	6%
	SULZER	D2	mm	150	151	156	159
	Diferença=Cálculo real-Dimensão catálogo		mm	7	7	3	-4
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		4%	4%	2%	1%

(D₂) dos fabricantes

FONTE: AUTOR.

A análise do QUADRO 4.7 permite comparar os valores calculados para a Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂"dos diferentes fabricantes. Observa-se que os valores encontrados estão muito próximos aos definidos na faixa de segurança de ± 5 % do "(d₂)ret" desta forma podemos considerar os resultados como confiáveis.

O QUADRO 4.8 mostra o valor calculado para a Largura da saída do rotor retificada "(b₂)ret', assim como os valores das Larguras de saída dos rotores dos fabricantes. Também se apresenta a diferença real entre as Larguras, e a porcentagem da diferença entre eles. Para a Largura de saída do rotor, a faixa de variação entre o valor calculado e obtido nos catálogos considerada aceitável é de ± 5 % da "(b₂)ret".

	1 3 0	U					
	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q	0,0	m ³ /h	30	40	50	60
Altura manometrica	H = Hman	0,0	m	40	40	40	40
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \gamma_2}$	(b2)ret	m	0,007	0,009	0,011	0,012
	(b2)ret	(b2)ret	mm	7,4	9,2	10,8	12,4
Ver faixa inferior	95%	0,95(b2)ret	mm	7,0	8,7	10,2	11,8
Ver faixa superior	105%	1,05(b2)ret	mm	7,8	9,7	11,3	13,1
Largura (b2) do Catálogo	KSB	b2	mm	10,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-2,6	-0,8	0,8	2,4
	(+)Largura Real maior; (-)Largura do Catálogo maior			-35%	-9%	7%	20%
	IMBIL	b2	mm	12,0	12,0	12,0	12,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,6	-2,8	-1,2	0,4
	(+)Largura Real maior; (-)Largura do Catálogo maior			-62%	-30%	-11%	3%
	EH	b2	mm	12,0	12,0	12,0	12,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,6	-2,8	-1,2	0,4
	(+)Largura Real maior; (-)Largura do Catálogo maior			-62%	-30%	-11%	3%
	WORTINGTON	b2	mm	6,0	6,0	6,0	6,0
	Diferença=Cálculo real-Dimensão catálogo		mm	1,4	3,2	4,8	6,4
	(+)Largura Real maior; (-)Largura do Catálogo maior			50%	35%	44%	52%
	SULZER	b2	mm	14,0	14,0	14,0	14,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-6,6	-4,8	-3,2	-1,6
	(+)Largura Real maior; (-)Largura do Catálogo maior			-89%	-52%	-30%	-13%

QUADRO 4.8

Parâmetros de comparação entre a Largura na saída do rotor corrigido (b2)ret e a Largura na saída do rotor do fabricante

FONTE: AUTOR.

A análise do QUADRO 4.8 permite comparar os valores calculados para a Largura do rotor com os observados nos catálogos dos fabricantes. Os valores encontrados são muito maiores que os definidos na faixa de segurança de ± 5 %. Esta grande diferença será explicada posteriormente no item das considerações finais deste capítulo.

4.2.5 Comportamento para H 30 m e 3500 rpm

As FIG. 4.13, 4.14 e 4.15 apresentam o resultado do cálculo da "Velocidade Meridiana de entrada do rotor" (v_{m1}) ; da "Velocidade Meridiana de saída do rotor" (v_{m2}) ; do "Diâmetro da boca de entrada do rotor" (d'_1) ; do "Diâmetro de saída do rotor corrigido" (d_2) ret, e da "Largura de saída do rotor corrigida" (b_2) ret. Em função da "velocidade especifica" (n_s) . Os fabricantes não disponibilizam este tipo de informação por ser considerada sigilosa.

FIGURA 4.13 - Para Hman. 30 m. Dados de Saída, para a Velocidade meridiana de entrada do rotor (v_{m1}), Velocidade Meridiana de saída do rotor (v_{m2}), para a rotação de 3500 rpm.

FIGURA 4.14 - Para Hman. 30 m. Dados de Saída, para o "Diâmetro da boca de entrada do rotor" (d'₁); do "Diâmetro de saída do rotor corrigida" (d₂)ret, para a rotação de 3500 rpm.

FIGURA 4.15 - Para Hman. 30 m. Dados de Saída, para a "Largura de saída do rotor corrigida" (b₂)ret, para a rotação de 3500 rpm.

Nas figuras pode-se observar, o comportamento dos parâmetros descritos para Altura manométrica de 30 m, em uma determinada faixa de "n_s".

O QUADRO 4.9 mostra o valor calculado para o Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos fabricantes. Nesse quadro pode-se observar as diferenças reais e percentuais entre os diâmetros calculados e obtidos dos catálogos de fabricantes. Para os diâmetros de saída, a faixa de variação entre o valor calculado e os obtidos nos catálogos considerada aceitável é de ± 5 % do "(d₂)ret".

	$(D_2) dos t$	fabricantes	•				
	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	30	30	30	30
Valor do diâmetro retificado (d2)ret	$(d2)ret = \frac{60 \ u_2}{\pi * n}$	(d2)ret	m	0,138	0,139	0,140	0,141
Ver faixa inferior	95%	0,95(d2)ret	mm	131	132	133	134
Ver faixa superior	105%	1,05(d2)ret	mm	145	146	147	148
Diâmetro de saída do Catálogo	KSB	D2	mm	142	132	136	141
	Diferença=Cálculo real-Dimensão catálogo		mm	-4	7	4	-7
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		-3%	5%	3%	0%
	IMBIL	D2	mm	120	130	132	139
	Diferença=Cálculo real-Dimensão catálogo		mm	18	9	8	-5
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		13%	6%	6%	2%
	EH	D2	mm	132	135	140	141
	Diferença=Cálculo real-Dimensão catálogo		mm	6	4	0	-7
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		4%	3%	0%	0%
	WORTINGTON	D2	mm	124	124	128	130
	Diferença=Cálculo real-Dimensão catálogo		mm	14	15	12	4
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		10%	11%	9%	8%
	SULZER	D2	mm	133	137	140	148
	Diferença=Cálculo real-Dimensão catálogo		mm	5	2	0	-14
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		3%	1%	0%	-5%

QUADRO 4.9

Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d_2) ret e o diâmetro de saída do rotor (D_2) dos fabricantes

A análise do QUADRO 4.9 permite comparar os valores calculados para a Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos diferentes fabricantes. Observa-se que os valores encontrados estão muito próximos aos definidos na faixa de segurança de ± 5 % do (d₂)ret desta forma podemos considerar os resultados como confiáveis.

O QUADRO 4.10 mostra o valor calculado para a Largura da saída do rotor retificada "(b_2)ret", assim como os valores das Larguras de saída dos rotores dos diferentes fabricantes. Também se apresenta a diferença real entre as Larguras, e a porcentagem da diferença entre eles. Para a Largura de saída do rotor, a faixa de variação entre o valor calculado e obtido nos catálogos considerada aceitável é de ± 5 % da "(b_2)ret".

QUADRO 4.10 Parâmetros de comparação entre a Largura na saída do rotor corrigido (b₂)ret e a Largura na saída do rotor do

	Tabri	cante					
	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	30	30	30	30
Largura (b2) da pá à saída retificada (b2)ret	Pg. 242 e 274 do Macintyre						
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \gamma_2}$	(b2)ret	m	0,009	0,011	0,013	0,015
	(b2)ret	(b2)ret	mm	9,0	11,1	13,0	14,8
Ver faixa inferior	95%	0,95(b2)ret	mm	8,6	10,6	12,4	14,0
Ver faixa superior	105%	1,05(b2)ret	mm	9,5	11,7	13,7	15,5
Largura (b2) do Catálogo	KSB	b2	mm	6,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	3,0	1,1	3,0	4,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			34%	10%	23%	32%
	IMBIL		mm	14,0	14,0	14,0	14,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-5,0	-2,9	-1,0	0,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-55%	-26%	-7%	5%
	EH	b2	mm	12,0	12,0	12,0	12,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-3,0	-0,9	1,0	2,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-33%	-8%	8%	19%
	WORTINGTON	b2	mm	5,0	5,0	5,0	5,0
	Diferença=Cálculo real-Dimensão catálogo		mm	4,0	6,1	8,0	9,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			58%	55%	62%	66%
	SULZER	b2	mm	14,0	14,0	14,0	14,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-5,0	-2,9	-1,0	0,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-55%	-26%	-7%	5%

FONTE: AUTOR.

A análise do QUADRO 4.10 permite comparar os valores calculados para a Largura do rotor com os observados nos catálogos do fabricante. Os valores encontrados são muito maiores que os definidos na faixa de segurança de ± 5 %. Esta grande diferença será explicada posteriormente no item das considerações finais deste capítulo.

4.2.6 Comportamento para H 20 m e 3500 rpm

As FIG. 4.16, 4.17 e 4.18 apresentam o resultado do cálculo da "Velocidade Meridiana de entrada do rotor" (v_{m1}); da "Velocidade Meridiana de saída do rotor" (v_{m2}); do "Diâmetro da boca de entrada do rotor" (d'_1); do "Diâmetro de saída do rotor corrigido" (d_2)ret, e da "Largura de saída do rotor corrigida" (b_2)ret. Em função da "velocidade especifica" (n_s). Os fabricantes não disponibilizam este tipo de informação por ser considerada sigilosa.

 $\label{eq:FIGURA 4.16-Para Hman. 20 m. Dados de Saída, para a Velocidade meridiana de entrada do rotor (v_{m1}), Velocidade Meridiana de saída do rotor (v_{m2}), para a rotação de 3500 rpm.$

FIGURA 4.17 - Para Hman. 20 m. Dados de Saída, para o "Diâmetro da boca de entrada do rotor" (d'₁); do "Diâmetro de saída do rotor corrigida" (d₂)ret, para a rotação de 3500 rpm.

FIGURA 4.18 - Para Hman. 20 m. Dados de Saída, para a "Largura de saída do rotor corrigida" (b₂)ret, para a rotação de 3500 rpm.

Nas figuras pode-se observar, o comportamento dos parâmetros descritos para Altura manométrica de 20 m, em uma determinada faixa de "ns".

O QUADRO 4.11 mostra o valor calculado para o Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂" dos fabricantes. Nesse quadro pode-se observar as diferenças reais e percentuais entre os diâmetros calculados e obtidos dos catálogos de fabricantes. Para os diâmetros de saída, a faixa de variação entre o valor calculado e os obtidos nos catálogos considerada aceitável é de ± 5 % do "(d₂)ret".

	(D_2) dos fa	bricantes					
DEFINIR TIPO DE BOMBA (ns)				Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m³/h	30	40	50	60
Altura manometrica	H = Hman		m	20	20	20	20
Valor do diâmetro retificado (d2)ret	Valor do diâmetro retificado (d2)ret $(d2)ret = \frac{60 \ (u_2)corr}{\pi * n}$		m	0,113	0,115	0,116	0,118
Ver faixa inferior	95%	0,95(d2)ret	mm	107	109	110	112
Ver faixa superior	105%	1,05(d2)ret	mm	119	120	122	124
Diâmetro de saída do Catálogo	KSB	D2	mm	105	107	108	110
	Diferença=Cálculo real-Dimensão catálogo		mm	8	8	8	4
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maior				7%	7%	7%	7%
IMBIL		D2	mm	109	115	120	123
Diferença=Cálculo real-Dimensão catálogo			mm	4	0	-4	-9
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		4%	0%	-3%	-4%
	EH	D2	mm	110	115	125	140
	Diferença=Cálculo real-Dimensão catálogo		mm	3	0	-9	-26
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		3%	0%	-7%	-18%
	WORTINGTON	D2	mm	112	112	114	115
	Diferença=Cálculo real-Dimensão catálogo		mm	1	3	2	-1
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	r		1%	2%	2%	3%
	SULZER	D2	mm	121	131	142	132
	Diferença=Cálculo real-Dimensão catálogo		mm	-8	-16	-26	-18
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		-7%	-14%	-22%	-12%

QUADRO 4.11

Parâmetros de comparação entre o diâmetro de saída do rotor corrigido (d₂)ret e o diâmetro de saída do rotor (D₂) dos fabricantes

FONTE: AUTOR.

A análise do QUADRO 4.11 permite comparar os valores calculados para a Diâmetro de saída corrigido "(d₂)ret", e os valores dos Diâmetros de saída dos rotores "D₂"dos diferentes fabricantes. Observa-se que os valores encontrados estão muito próximos aos definidos na faixa de segurança de ± 5 % do "(d₂)ret" desta forma podemos considerar os resultados como confiáveis.

O QUADRO 4.12 mostra o valor calculado para a Largura da saída do rotor retificada "(b₂)ret", assim como os valores das Larguras de saída dos rotores dos diferentes fabricantes. Também se apresenta a diferença real entre as Larguras, e a porcentagem da diferença entre eles. Para a Largura de saída do rotor, a faixa de variação entre o valor calculado e obtido nos catálogos considerada aceitável é de ± 5 % da "(b₂)ret".

QUADRO	4.12
--------	------

Parâmetros de com	paração entre a	Largura na saída	do rotor corrigido ((b ₂)ret e a Largur	a na saída do rotor do
	F			(

	DEFINIR TIPO DE BOMBA (ns)			Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	20	20	20	20
Largura (b2) da pá à saída retificada (b2)ret	Pg. 242 e 274 do Macintyre						
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \gamma_2}$	(b2)ret	m	0,012	0,015	0,017	0,019
	(b2)ret	(b2)ret	mm	12,5	15,1	17,2	18,6
Ver faixa inferior	95%	0,95(b2)ret	mm	11,9	14,4	16,3	17,7
Ver faixa superior	105%	1,05(b2)ret	mm	13,1	15,9	18,0	19,5
Largura (b2) do Catálogo	igo KSB		mm	18,0	18,0	18,0	18,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-5,5	-2,9	-0,8	0,6
	(+)Largura Real maior; (-)Largura do Catálogo maior			-44%	-19%	-5%	3%
	IMBIL	b2	mm	14,0	14,0	14,0	14,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-1,5	1,1	3,2	4,6
	(+)Largura Real maior; (-)Largura do Catálogo maior			-12%	7%	18%	25%
	EH	b2	mm	11,0	11,0	11,0	11,0
	Diferença=Cálculo real-Dimensão catálogo		mm	1,5	4,1	6,2	7,6
	(+)Largura Real maior; (-)Largura do Catálogo maior			12%	27%	36%	41%
	WORTINGTON	b2	mm	5,0	5,0	5,0	5,0
	Diferença=Cálculo real-Dimensão catálogo		mm	7,5	10,1	12,2	13,6
	(+)Largura Real maior; (-)Largura do Catálogo maior			55%	67%	71%	73%
	SULZER	b2	mm	11,0	11,0	11,0	11,0
	Diferença=Cálculo real-Dimensão catálogo		mm	1,5	4,1	6,2	7,6
	(+)Largura Real maior; (-)Largura do Catálogo maior			12%	27%	36%	41%

fabricante

FONTE: AUTOR.

A análise do QUADRO 4.12 permite comparar os valores calculados para a Largura do rotor com os observados nos catálogos do fabricante. Os valores encontrados são muito maiores que os definidos na faixa de segurança de ± 5 %. Esta grande diferença será explicada posteriormente no item das considerações finais deste capítulo.

4.2.7 Comportamento Consolidado da Velocidade meridiana

Apresenta-se a seguir a consolidação dos resultados obtidos nos itens 4.2.1 a 4.2.6 referentes as "Velocidade meridiana na entrada do rotor " (v_{m1}) e "Velocidade meridiana na saída do rotor" (v_{m2}) , em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm.

A FIG. 4.19 apresenta as curvas da função estudada com seu respectivo coeficiente de correlação linear " R^2 " = ± 1 .

 $\label{eq:FIGURA 4.19-Comportamento Consolidado da Velocidade meridiana na entrada do rotor "v_{m1}" e da Velocidade meridiana na saída do rotor "v_{m2}", em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm.$

Os valores para o coeficiente de correlação linear são muito próximos de ± 1 , o que indica que o ajuste obtido é bastante confiável.

4.2.8 Comportamento Consolidado dos Diâmetros

Apresenta-se a seguir a consolidação dos resultados obtidos nos itens 4.2.1 a 4.2.6 referentes ao "Diâmetro de entrada do rotor" (d'₁) e do "Diâmetro de saída do rotor corrigida" (d₂)ret, em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm.

A FIG. 4.20 apresenta as curvas da função estudada com seu respectivo coeficiente de correlação linear " R^2 " = ± 1 .

FIGURA 4.20 - Comportamento Consolidado do Diâmetro de entrada do rotor "d'₁" e do Diâmetro de saída do rotor corrigida "(d₂)ret", em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm.

FONTE: AUTOR.

Os valores para o coeficiente de correlação linear são muito próximos de ± 1 , o que indica que o ajuste obtido é bastante confiável.

4.2.9 Comportamento Consolidado da Largura

Apresenta-se a seguir a consolidação dos resultados obtidos nos itens 4.2.1 a 4.2.6 referentes a "Largura de saída corrigida do rotor" (b₂)ret, em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm.

Na FIG. 4.21, são apresentadas as curvas da função estudada com seu respectivo coeficiente de correlação linear " R^{2} " = ± 1 .

FONTE: AUTOR.

Os valores para o coeficiente de correlação linear são muito próximos de ± 1 , o que indica que o ajuste obtido é bastante confiável.

4.2.10 Comportamento Consolidado do Coeficiente de perdas internas kpi

Apresenta-se a seguir a consolidação dos resultados obtidos nos itens 4.2.1 a 4.2.6 referentes as "Velocidade meridiana na saída do rotor" (v_{m2}), e o Coeficiente de perdas internas "kpi", em função da Velocidade Especifica " n_s ", as rotações de 3500 e 1750 rpm.

A FIG. 4.22 apresenta as curvas da função estudada com seu respectivo coeficiente de correlação linear " R^2 " = ± 1 .

 $\label{eq:FIGURA 4.22 - Comportamento Consolidado Velocidade meridiana na saída do rotor "v_{m2}", do Coeficiente de perdas internas "kpi", em função da Velocidade Especifica "n_s", para as rotações de 3500 e 1750 rpm.$

FONTE: AUTOR.

Os valores para o coeficiente de correlação linear são muito próximos de ± 1 , o que indica que o ajuste obtido é bastante confiável.

4.2.11 Comparação dos resultados encontrados para os Dados de Projeto

Vale ressaltar que, serão apresentados através da comparação os resultados obtidos com as equações do Algoritmo, do desenvolvimento da metodologia de "Macintyre modificada", e com os Dados do Projeto, e com os Diâmetros de saída do rotor e das Larguras de saída do rotor dos catálogos dos fabricantes.

Nos QUADROS 4.13, 4.14, 4.15 e 4.16, que mostram o comportamento das equações características do estudo, com seu respectivo coeficiente de correlação linear " R^2 " = ± 1 para o modelo proposto com rotação de 3.500 rpm.

QUADRO 4.13

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 3500 rpm.

COMPARAÇÃO DOS RESULTADOS OBTIDOS COM AS EQUAÇÕES DO ALGORITMO, DO DESENVOLVIMENTO DE MACINTYRE								
	MODI	FICADO E OS	DADOS DO	PROJETO	~	· · · · · · · · · · · · · · · · · · ·		
DADOS DE ENTRADA		Simbolo	Unidades	Observações Le		Legenda cores		
l (audidat é aux un torrespondente a compol (20		°C	Graus	Considerar para		Dados de e	entrada, con	stantes
Liquido: agua na temperatura normai (20		Ľ	centigrado	pro	jeto	e referência bibliografica		
C) Vazão de recalque		0	3 //-					
Altura Manometrica		<u>ц</u>	<u>m^s/n</u>	Entrar "sempre com"				<u> </u>
Rotação da bomba		n	rnm	Lindi Se				ł
Dados de entrada do projeto			ipin					1
Altura manométrica: Hman		100	m					1
Vazão de recalque: O		36	m^3/h					
Rotação da motobomba: n		3500	rnm					1
Cálculos do algoritmo e dados dos								
catálogos								
NA ENTRADA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		100	m	100	m	100	m	
Q		30	m ³ /h	36	m ^s /h	40	m ³ /h	
ns		10,1	rpm	11,1	rpm	11,7	rpm	
$m 1 - 0.0010 m a^2 0.1540 m c + 6.0878$	0.0004	Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	,
$d/1 = 0.0022ma^2 = 0.0222ma + 71.014$	0,9691	5,6	5,3	5,5	5,4	5,4	5,4	m/s
$u = 0,0035hs^2 - 0,0355hs + 71,014$	0,8994	/1,0	61,2	/1,0	65,4	/1,1	68,0	mm
Hman		80	m	80	m	80	m	
Q		30	m ³ /h	36	m ³ /h	40	m ³ /h	
ns		11,9	rpm	13,1	rpm	13,8	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
<i>vm</i> 1 = 0,0019 <i>ns</i> ² -0,1549ns+6,9878	0,9691	5,4	4,9	5,3	5,0	5,2	5,1	m/s
$d'1 = 0,0033ns^2 - 0,0333ns + 71,014$	0,8994	71,1	61,7	71,1	66,1	71,2	68,6	mm
Hman		60	m	60	m	60	m	
Q		30	m ³ /h	36	m ³ /h	40	m ³ /h	
ns		14,8	rpm	16,2	rpm	17,1	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
<i>vm</i> 1 = 0,0019 <i>ns</i> ² -0,1549ns+6,9878	0,9691	5,1	4,5	5,0	4,5	4,9	4,6	m/s
$d'1 = 0,0033ns^2 - 0,0333ns + 71,014$	0,8994	71,2	62,7	71,3	67,2	71,4	69,8	mm
Hman		40	m	40	m	40	m	
Q		30	m^3/h	36	m^3/h	40	m^3/h	
ns		20,1	rpm	22,0	rpm	23,2	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
<i>vm</i> 1 = 0,0019 <i>ns</i> ² -0,1549ns+6,9878	0,9691	4,6	3,9	4,5	4,1	4,4	4,2	m/s
$d'1 = 0,0033ns^2 - 0,0333ns + 71,014$	0,9230	71,7	64,3	71,9	68,0	72,0	70,6	mm
Hman		30	m	30	m	30	m	
0		30	m^3/h	36	m^3/h	<u>4</u> 0	m^3/h	
ns		24.9	rpm	27 3	rpm	-+0 28.8	rpm	
113		Δlgoritmo	Macintyre	Δlgoritmo	Macintyre	Δlgoritmo	Macintyre	
$vm1 = 0.0019ns^2 - 0.1549ns + 6.9878$	0.9691	4 3	3.8	4 2	4.0	4 1	4.2	m/s
$d'1 = 0.0033ns^2 - 0.0333ns + 71.014$	0.9230	72.2	63.8	72.6	67.6	72.8	69.4	mm
.,	0,0200	, _, _	55,0	, 2,0	07,0	, _,0	55,7	

QUADRO 4.144

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 3500 rpm, continuação.

NA ENTRADA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		20	m	20	m	20	m	
Q		30	m ³ /h	36	m ³ /h	40	m ³ /h	
ns		33,8	rpm	37,0	rpm	39,0	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
<i>vm</i> 1 = 0,0019 <i>ns</i> ² -0,1549ns+6,9878	0,9691	3,9	3,6	3,9	3,7	3,8	3,8	m/s
$d'1 = 0,0033ns^2 - 0,0333ns + 71,014$	0,9230	73,7	64,2	74,3	69,1	74,7	72,0	mm
NA SAÍDA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		100	m	100	m	100	m	
Q		30	m ³ /h	36	m ³ /h	40	m ³ /h	
ns		10,1	rpm	11,1	rpm	11,7	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
<i>vm</i> 2 = 0,0015 <i>ns</i> ² -0,1089ns+4,8135	0,9909	3,9	3,5	3,8	3,6	3,7	3,7	m/s
$(d2)ret = 1198ns^{-0,631}$	0,9987	278	243	263	240	254	245	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			234		236		240	
DIÂMETRO DE SAIDA D2 - IMBIL			232		234		238	
DIÂMETRO DE SAIDA D2 - EH			220		223		225	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			225		225		225	
DIÂMETRO DE SAIDA D2 - SULZER			225		225		225	
$(b2)ret = -0.002ns^2 + 0.4884ns - 0.8174$	0,9991	3,9	3,6	4,3	4,3	4,6	4,4	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			4		4		4	
LARGURA DE SAÍDA (b2) - IMBIL			8		8		8	
LARGURA DE SAÍDA (b2) - EH			8		8		8	
LARGURA DE SAÍDA (b2) - WORTINGTON			10		10		10	
LARGURA DE SAÍDA (b2) - SULZER			7		7		7	
Hman		80	m	80	m	80	m	
Q		30	m^3/h	36	m^3/h	40	m³/h	
ns		11,9	rpm	13,1	rpm	13,8	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0015ns^2$ -0,1089ns+4,8135	0,9941	3,7	3,3	3,6	3,4	3,6	3,5	m/s
$(d2)ret = 1198ns^{-0,631}$	0,9987	250	218	236	217	229	219	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			200		220		222	
DIÂMETRO DE SAIDA D2 - IMBIL			210		213		218	
DIÂMETRO DE SAIDA D2 - EH			208		208		208	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			202		202		203	
DIÂMETRO DE SAIDA D2 - SULZER			210		214		218	
$(b2)ret = -0,002ns^2 + 0,4884ns - 0,8174$	0,9991	4,7	4,2	5,2	5,1	5,5	5,3	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			8		4		4	
LARGURA DE SAÍDA (b2) - IMBIL			8		8		8	
LARGURA DE SAÍDA (b2) - EH			10		10		10	
LARGURA DE SAÍDA (b2) - WORTINGTON			10		10		10	
LARGURA DE SAÍDA (b2) - SULZER			11		11		11	
QUADRO 4.15

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 3500 rpm, continuação.

NA SAÍDA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		60	m	60	m	60	m	
Q		30	m ³ /h	36	m ³ /h	40	m³/h	
ns		14,8	rpm	16,2	rpm	17,1	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
vm2 = 0,0015ns ² -0,1089ns+4,8135	0,9941	3,5	3,1	3,4	3,2	3,4	3,2	m/s
$(d2)ret = 1198ns^{-0,631}$	0,9987	219	188	206	190	200	190	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			188		195		200	
DIÂMETRO DE SAIDA D2 - IMBIL			182		185		185	
DIÂMETRO DE SAIDA D2 - EH			180		181		182	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			180		184		188	
DIÂMETRO DE SAIDA D2 - SULZER			180		182		185	
$(b2)ret = -0,002ns^2 + 0,4884ns - 0,8174$	0,9991	6,0	5,5	6,6	6,3	7,0	6,9	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			5		5		5	
LARGURA DE SAÍDA (b2) - IMBIL			9		9		9	
LARGURA DE SAÍDA (b2) - EH			10		10		10	
LARGURA DE SAÍDA (b2) - WORTINGTON			8		8		8	
LARGURA DE SAÍDA (b2) - SULZER			11		11		11	
Hman		40	m	40	m	40	m	
Q		30	m ³ /h	36	m ³ /h	40	m ³ /h	
ns		20,1	rpm	22,0	rpm	23,2	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0015ns^2 - 0,1089ns + 4,8135$	0,9941	3,2	2,8	3,1	2,9	3,1	3,0	m/s
$(d2)ret = 1198ns^{-0,631}$	0,9987	180	157	170	155	165	158	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			145		146		148	
DIÂMETRO DE SAIDA D2 - IMBIL			144		146		146	
DIÂMETRO DE SAIDA D2 - EH			148		149		150	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			146		146		146	
DIÂMETRO DE SAIDA D2 - SULZER			150		151		151	
$(b2)ret = -0,002ns^2 + 0,4884ns - 0,8174$	0,9991	8,2	7,4	9,0	8,8	9,4	9,2	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			10		10		10	
LARGURA DE SAÍDA (b2) - IMBIL			12		12		12	
LARGURA DE SAÍDA (b2) - EH			12		12		12	
LARGURA DE SAÍDA (b2) - WORTINGTON			6		6		6	
LARGURA DE SAÍDA (b2) - SULZER			14		14		14	

QUADRO 4.16

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 3500 rpm, continuação.

NA SAÍDA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		30	m	30	m	30	m	
Q		30	m³/h	36	m³/h	40	m ³ /h	
ns		24,9	rpm	27,3	rpm	28,8	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
vm2 = 0,0015ns ² -0,1089ns+4,8135	0,9941	3,0	2,7	3,0	2,8	2,9	2,9	m/s
$(d2)ret = 1198ns^{-0,631}$	0,9987	157	138	149	136	144	139	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			142		151		132	
DIÂMETRO DE SAIDA D2 - IMBIL			120		129		130	
DIÂMETRO DE SAIDA D2 - EH			132		134		135	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			124		130		124	
DIÂMETRO DE SAIDA D2 - SULZER			133		135		137	
$(b2)ret = -0,002ns^2 + 0,4884ns - 0,8174$	0,9991	10,1	9,0	11,0	10,9	11,6	11,1	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			6		10		10	
LARGURA DE SAÍDA (b2) - IMBIL			14		14		14	
LARGURA DE SAÍDA (b2) - EH			12		12		12	
LARGURA DE SAÍDA (b2) - WORTINGTON			5		5		5	
LARGURA DE SAÍDA (b2) - SULZER			14		14		14	
Hman		20	m	20	m	20	m	
Q		30	m³/h	36	m³/h	40	m ³ /h	
ns		33,8	rpm	37,0	rpm	39,0	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0015ns^2 - 0,1089ns + 4,8135$	0,9941	2,8	2,5	2,8	2,7	2,8	2,7	m/s
$(d2)ret = 1198ns^{-0,631}$	0,9987	130	113	123	113	119	115	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			105		106		107	
DIÂMETRO DE SAIDA D2 - IMBIL			109		112		115	
DIÂMETRO DE SAIDA D2 - EH			110		115		115	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			112		117		112	
DIÂMETRO DE SAIDA D2 - SULZER			121		126		131	
$(b2)ret = -0,002ns^2 + 0,4884ns - 0,8174$	0,9991	13,4	12,5	14,5	14,6	15,2	15,1	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			18		18		18	
LARGURA DE SAÍDA (b2) - IMBIL			14		14		14	
LARGURA DE SAÍDA (b2) - EH			11		11		11	
LARGURA DE SAÍDA (b2) - WORTINGTON			5		5		5	
LARGURA DE SAÍDA (b2) - SULZER			11		11		11	

FONTE: AUTOR.

Ao observar-se os resultados apresentados nos QUADROS 4.13, 4.14, 4.15 e 4.16, para 3500 rpm, vê-se que os diâmetros de saída do rotor obtidos pela metodologia proposta frente ao apresentado nos catálogos dos fabricantes, tem uma boa aproximação o que mostra a validação dos resultados encontrados. Entretanto, o mesmo não acontece com os valores das Larguras do rotor que apresentam valores muito diferentes.

Para o modelo proposto com rotação de 1750 rpm, e conforme pode ser verificado, nos QUADROS 4.17, 4.18, 4.19 e 4.20, o comportamento das equações características do estudo, com seu respectivo coeficiente de correlação linear " R^{2} " = ± 1 .

QUADRO 4.17

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 1750 rpm.

COMPARAÇÃO DOS RESULTADOS OBTIDOS	COM AS E	QUAÇÕES DO E OS DADO	D ALGORITMO DS DO PROJETO	, DO DESEN)	VOLVIMEN	o de maci	NTYRE MOD	IFICADO	
DADOS DE ENTRADA		Símbolo	Unidades	Obser	Observações		egenda cores	s	
Líquido: água na temperatura normal (20		°C	Graus	Considerar para		Dados de e	entrada, con	stantes	
°C)		Ľ	centigrados	pro	jeto	e referência bibliografica			
Vazão de recalque		Q	m³/h						
Altura Manometrica		н	m	Entrar "sempre com"					
Rotação da bomba		n	rpm						
Dados de entrada do projeto									
Altura manométrica: Hman		100	m						
Vazão de recalque: Q		36	m³/h						
Rotação da motobomba: n		1750	rpm						
Cálculos do algoritmo e dados dos									
catálogos									
NA ENTRADA DO ROTOR	R ²		Unidades		Unidades		Unidades	<mark>Unidades</mark>	
Hman		100	m	100	m	100	m		
Q		30	m ³ /h	36	m ³ /h	40	m ³ /h		
ns		5,1	rpm	5,5	rpm	5,8	rpm		
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre		
$vm1 = 0,0123ns^2 - 0,5032ns + 7,9695$	0,9697	5,7	5,0	5,6	5,1	5,5	5,1	m/s	
$d'1 = -0,0101ns^2 + 1,0873ns + 69,324$	0,8030	74,6	67,5	75,0	72,6	75,3	75,4	mm	
Hman		80	m	80	m	80	m		
Q		30	m³/h	36	m³/h	40	m³/h		
ns		6,0	rpm	6,5	rpm	6,9	rpm		
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre		
$vm1 = 0,0123ns^2 - 0,5032ns + 7,9695$	0,9697	5,4	4,9	5,2	4,6	5,1	5,1	m/s	
$d'1 = -0,0101ns^2 + 1,0873ns + 69,324$	0,8030	75,5	65,0	76,0	73,4	76,3	72,1	mm	
Hman		60	m	60	m	60	m		
Q		30	m³/h	36	m³/h	40	m³/h		
ns		7,4	rpm	8,1	rpm	8,6	rpm		
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre		
$vm1 = 0,0123ns^2 - 0,5032ns + 7,9695$	0,9697	4,9	4,5	4,7	4,0	4,6	4,6	m/s	
$d'1 = -0,0101ns^2 + 1,0873ns + 69,324$	0,8030	76,8	65,5	77,5	75,1	77,9	72,8	mm	
Hman		40	m	40	m	40	m		
Q		30	m³/h	36	m³/h	40	m³/h		
ns		10,0	rpm	11,0	rpm	11,6	rpm		
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre		
$vm1 = 0,0123ns^2 - 0,5032ns + 7,9695$	0,9697	4,2	3,4	3,9	3,4	3,8	3,4	m/s	
$d'1 = -0,0101ns^2 + 1,0873ns + 69,324$	0,8030	79,2	70,8	80,1	76,0	80,6	79,6	mm	

QUADRO 4.18

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 1750 rpm, continuação.

NA ENTRADA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		30	m	30	m	30	m	
Q		30	m³/h	36	m^3/h	40	m^3/h	
ns		12,5	rpm	13,7	rpm	14,4	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm1 = 0,0123ns^2 - 0,5032ns + 7,9695$	0,9697	3,6	3,0	3,4	3,1	3,3	3,1	m/s
$d'1 = -0,0101ns^2 + 1,0873ns + 69,324$	0,8030	81,3	72,3	82,3	78,1	82,9	81,3	mm
Hman		20	m	20	m	20	m	
Q		30	m^3/h	36	m^3/h	40	m ³ /h	
ns		16,9	rpm	18,5	rpm	19,5	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm1 = 0,0123ns^2 - 0,5032ns + 7,9695$	0,9697	3,0	2,7	2,9	2,7	2,8	2,7	m/s
$d'1 = -0,0101ns^2 + 1,0873ns + 69,324$	0,8030	84,8	75,4	86,0	81,0	86,7	84,6	mm
NA SAÍDA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		100	m	100	m	100	m	
Q		30	m³/h	36	m ³ /h	40	m³/h	
ns		5,1	rpm	5,5	rpm	5,8	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0089ns^2 - 0,3586ns + 5,5696$	0,9542	4,0	3,5	3,9	3,5	3,8	3,5	m/s
$(d2)ret = 1506, 2ns^{-0,643}$	0,9994	532	468	501	464	485	470	mm
DIÂMETRO DE SAÍDA REAL		%		%		%		
DIÂMETRO DE SAIDA D2 - KSB			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - IMBIL			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - EH			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - SULZER			NA		NA		NA	
$(b2)ret = -0,0082ns^2 + 0,796ns - 2,1542$	0,9914	1,7	NA	2,0	NA	2,2	NA	
Hman		80	m	80	m	80	m	
Q		30	m³/h	36	m^3/h	40	m³/h	
ns		6,0	rpm	6,5	rpm	6,9	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0089ns^2 - 0,3586ns + 5,5696$	0,9542	3,7	3,3	3,6	3,2	3,5	3,5	m/s
$(d2)ret = 1506, 2ns^{-0,643}$	0,9994	477	418	450	417	435	421	mm
DIÂMETRO DE SAÍDA REAL		%		%		%		
DIÂMETRO DE SAIDA D2 - KSB			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - IMBIL			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - EH			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - SULZER			NA		NA		NA	
$(b2)ret = -0,0082ns^2 + 0,796ns - 2,1542$	0,9914	2,3	NA	2,7	NA	2,9	2,8	

QUADRO 4.19

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 1750 rpm, continuação.

NA SAÍDA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
Hman		60	m	60	m	60	m	
Q		30	m³/h	36	m ³ /h	40	m³/h	
ns		7,4	rpm	8,1	rpm	8,6	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
vm2 = 0,0089ns ² -0,3586ns+5,5696	0,9542	3,4	3,1	3,2	2,7	3,2	3,2	m/s
$(d2)ret = 1506, 2ns^{-0,643}$	0,9994	416	365	392	362	379	365	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - IMBIL			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - EH			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - SULZER			NA		NA		NA	
$(b2)ret = -0,0082ns^2 + 0,796ns - 2,1542$	0,9914	3,3	NA	3,8	NA	4,1	NA	
Hman		40	m	40	m	40	m	
Q		30	m ³ /h	36	m ³ /h	40	m³/h	
ns		10,0	rpm	11,0	rpm	11,6	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0089ns^2$ -0,3586ns+5,5696	0,9542	2,9	2,2	2,7	2,3	2,6	2,3	m/s
$(d2)ret = 1506, 2ns^{-0,643}$	0,9994	342	295	322	294	312	297	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - IMBIL			282		285		288	
DIÂMETRO DE SAIDA D2 - EH			290		300		305	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			291		284		276	
DIÂMETRO DE SAIDA D2 - SULZER			293		293		293	
$(b2)ret = -0,0082ns^2 + 0,796ns - 2,1542$	0,9914	5,0	4,8	5,6	5,5	6,0	6,2	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			NA		NA		NA	
LARGURA DE SAÍDA (b2) - IMBIL			9		9		9	
LARGURA DE SAÍDA (b2) - EH			9		9		9	
LARGURA DE SAÍDA (b2) - WORTINGTON			13		13		13	
LARGURA DE SAÍDA (b2) - SULZER			8		8		8	
Hman		30	m	30	m	30	m	
Q		30	m³/h	36	m ³ /h	40	m³/h	
ns		12,5	rpm	13,7	rpm	14,4	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
vm2 = 0,0089ns ² -0,3586ns+5,5696	0,9542	2,5	2,1	2,3	2,1	2,3	2,2	m/s
$(d2)ret = 1506, 2ns^{-0,643}$	0,9994	297	259	281	257	271	261	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			NA		NA		NA	
DIÂMETRO DE SAIDA D2 - IMBIL		1	244		250		255	
DIÂMETRO DE SAIDA D2 - EH			250		254		258	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			240		240		241	
DIÂMETRO DE SAIDA D2 - SULZER			250		250		250	
$(b2)ret = -0,0082ns^2 + 0,796ns - 2,1542$	0,9914	6,5	5,8	7,2	7,0	7,6	7,3	

QUADRO 4.20

Parâmetros de comparação entre a Velocidade Meridiana de entrada do rotor (v_{m1}) , o Diâmetro da boca de entrada do rotor (d'_1) , Velocidade Meridiana de saída do rotor (v_{m2}) , Diâmetro de saída do rotor corrigido (d_2) ret e da Largura de saída do rotor corrigida (b_2) ret, em função da Velocidade Especifica "n_s", com os Diâmetros (D_2) e Larguras (b_2) dos fabricantes, para 1750 rpm, continuação.

NA SAÍDA DO ROTOR	R ²		Unidades		Unidades		Unidades	Unidades
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			NA		NA		NA	
LARGURA DE SAÍDA (b2) - IMBIL			12		12		12	
LARGURA DE SAÍDA (b2) - EH			12		12		12	
LARGURA DE SAÍDA (b2) - WORTINGTON			10		10		10	
LARGURA DE SAÍDA (b2) - SULZER			11		11		11	
Hman		20	m	20	m	20	m	
Q		30	m ³ /h	36	m^3/h	40	m^3/h	
ns		16,9	rpm	18,5	rpm	19,5	rpm	
		Algoritmo	Macintyre	Algoritmo	Macintyre	Algoritmo	Macintyre	
$vm2 = 0,0089ns^2 - 0,3586ns + 5,5696$	0,9542	2,1	1,9	2,0	1,9	2,0	1,9	m/s
$(d2)ret = 1506, 2ns^{-0,643}$	0,9994	245	215	231	215	223	218	mm
DIÂMETRO DE SAÍDA REAL								
DIÂMETRO DE SAIDA D2 - KSB			230		238		245	
DIÂMETRO DE SAIDA D2 - IMBIL			203		203		203	
DIÂMETRO DE SAIDA D2 - EH			206		206		207	
DIÂMETRO DE SAIDA D2 - WORTHINGTON			210		212		213	
DIÂMETRO DE SAIDA D2 - SULZER			210		210		210	
$(b2)ret = -0,0082ns^2 + 0,796ns - 2,1542$	0,9914	9,0	7,9	9,8	9,2	10,3	9,9	
LARGURA DE SAÍDA REAL								
LARGURA DE SAÍDA (b2) - KSB			5		5		5	
LARGURA DE SAÍDA (b2) - IMBIL			11		11		11	
LARGURA DE SAÍDA (b2) - EH			22		22		22	
LARGURA DE SAÍDA (b2) - WORTINGTON			10		10		10	
LARGURA DE SAÍDA (b2) - SULZER			11		11		11	

FONTE: AUTOR.

Ao observar-se os resultados apresentados nos QUADROS 4.17, 4.18, 4.19 e 4.20, para 1750 rpm, vê-se que os diâmetros de saída do rotor obtidos pela metodologia proposta frente ao apresentado nos catálogos dos fabricantes, tem uma boa aproximação o que mostra a validação dos resultados encontrados. Entretanto, o mesmo não acontece com os valores das Larguras do rotor apresentam valores muito diferentes.

Vale ressaltar também que, para a rotação de 1750 rpm, em alguns casos, não foi possível selecionar nenhuma bomba, por estar fora da região da cobertura hidráulica, estas foram identificadas com NA (Não se Aplica). Para atender esta condição de projeto, a recomendação do fabricante é de selecionar uma bomba de vários estágios, o que estaria fora do propósito deste estudo que é tratar apenas um tipo de equipamento (bomba simples), não permitindo comparações entre tipos diferentes.

4.2.12 Considerações finais

De acordo com os dados apresentados nos GRÁFICOS, FIGURAS e QUADROS, acima indicados, pôde-se perceber que a metodologia formatada neste trabalho, mostra que os valores determinados para o **Diâmetro de saída do rotor** através da metodologia e os dados retirados dos catálogos dos fabricantes são bastante próximos e consistentes validando a formulação do Algoritmo.

Para o modelo proposto com rotação de 3500 rpm, o Coeficiente de perdas internas kpi, na FIG. 4.22, apresenta o comportamento das equações características do estudo, com seu respectivo coeficiente de correlação linear " R^2 " = \pm 1, o valor encontrado no estudo R² = 0,9559, é considerado pela análise de interpretação como um valor muito bom para validar o estudo.

Para o modelo proposto com rotação de 1750 rpm, o Coeficiente de perdas internas kpi, na FIG. 4.22, apresenta o comportamento das equações características do estudo, com seu respectivo coeficiente de correlação linear " R^{2} " = \pm 1, o valor encontrado no estudo R² = 0,8048, é considerado pela análise de interpretação como um valor muito bom para validar o estudo. O valor encontrado do R² para as bombas com rotação de 1750 rpm é menor, quando comparado com os estudos para as bambas com 3500 rpm, devido a ter muitas bombas com 1750 rpm não atender as condições da simulação do estudo.

A grande diferença observada está na **Largura de saída do rotor** determinada pela metodologia e os valores dos catálogos dos fabricantes são divergentes, como os rotores são fundidos geralmente em areia, o afastamento entre as duas placas que conformam as partes laterais exteriores do rotor não conseguem, para distancias pequenas, manter um processo de fundição sem falhas, por esse motivo os fabricantes aumentam esta distância para evitar diferentes tipos de ocorrências na fundição (furos, falta de preenchimento do material, rechupes), a presença destas falhas provocariam rejeições das peças fundidas (refugos), gerando aumento nos custos, atrasos no programa de fabricação, atrasos nos prazos de entrega da bomba centrifuga para o cliente e evidentemente perdas de receita e multas por atrasos, perda da credibilidade e imagem da empresa no mercado.

Cabe destacar que os resultados encontrados utilizando a sequência das formulas da metodologia proposta, indica que o desempenho da máquina poderá ser melhorado significativamente.

5. CONCLUSÕES E RECOMENDAÇÕES

5.1 Conclusões

• A correlação das Velocidades meridianas de entrada " v_{m1} " e de saída " v_{m2} " do rotor, em função da rotação especifica " n_s " permitiu obter um conjunto de equações matemáticas com R² bastante elevado.

Da mesma forma foi possível obter uma equação matemática correlacionando os
Diâmetros de entrada "d'1" do rotor, com a Velocidade específica, "n_s". Os valores obtidos apresentam também um valor de R² bastante elevado.

• Também foi possível obter uma equação matemática correlacionando o **Diâmetro de saída corrigido "(d2)**ret" **do rotor**. Os resultados obtidos, quando confrontados com os dados dos catálogos dos fabricantes, mostram que a maioria dos valores apresentados nos catálogos estão dentro da faixa de <u>+</u> 5%. Isso significa que, os valores calculados através do modelo e os encontrados nos catálogos são muito compatíveis.

• Os resultados obtidos com o equacionamento proposto para a determinação da Largura de saída corrigida "(b₂)_{ret}" do rotor e as encontradas nos catálogos dos fabricantes são bastante diferentes. Essa diferença é atribuída a limitações físicas oriundas do processo de fundição. Entretanto este item, deve ser mais bem explorado, não se tratando do objeto deste trabalho.

• Os resultados encontrados demostraram que mediante a aplicação das equações propostas, é possível elaborar um pré-projeto de uma bomba centrifuga com relativa simplicidade a partir da Altura manométrica, da Vazão de projeto e da rotação real da bomba facilitando o balizamento dimensional, dando ao projetista do fabricante uma maior segurança na escolha do equipamento correto para o projeto

5.2 Recomendações para trabalhos futuros:

Como recomendações para trabalhos futuros, podemos listar:

 Avaliar através da metodologia proposta, para outras condições de projeto e de outras famílias de bombas centrifugas, a consistência e validação dos resultados do modelo proposto e da melhoria do rendimento da bomba.

• Desenvolver um modelo físico a ser ensaiado em laboratório de forma a se poder comprovar experimentalmente a validade das equações propostas.

REFERÊNCIAS

BRUNETTI, F. Mecânica dos Fluidos. Editora PEARSON, 2008. ISBN 978-85-7605-182-4. CDU: 620.106.

CARVALHO, D. F. Instalações Elevatórias. Bombas. Editora FUMARC - Fundação Mariana Resende Costa, 2010. CDU: 621.65.

CHURCH, A. H. Bombas y Máquinas Soplantes Centrífugas. Editorial Reverté, S.A., 1954.

COLEÇÃO SCHAUM ; SPIEGEL, M.; SCHILLER, J.; SRINIVASAN A. Probabilidade e Estatística. Editora Bookman, 2013.

DE SOUZA ZULCY. **Projeto de Máquinas de Fluxo. Tomo I. Base Teórica e Experimental.** Editora Interciência, 2011. ISBN 978-85-7193-258-6.

EH Bombas Hidráulicas Ltda, site www.ehbombas.com.br, com acesso em 15/08/2016 e 28/08/2016.

FERNANDES C. Abastecimento de Água. Universidade Federal de Campina Grande - UFCG. Capina Grande. PB -2003.

FOX, R. W.; PRITCHARD, P. J.; McDONALD, A. T. Introdução à Mecânica dos Fluidos. LTC, 2010. ISBN 978-85-216-1757-0.

IMBIL. site www.imbil.com.br, com acesso em 28/08/2016.

KSB Bombas hidráulicas SA, site www.ksb.com.br. com acesso em 28/08/2016.

MACINTYRE, A. J. Bombas e Instalações de Bombeamento. 2 ed, LTC, 2013. ISBN 978-85-216-1086-1.

MATAIX, C. **Turbomáquinas Hidráulicas. Turbinas Hidráulicas - Bombas - Ventiladores.** Editora ICAI, 1975.

PFLEIDERER, C.; PETERMANN, H. **Máquinas de Fluxo** tradução da 4ª ed., Livros Tecnicos e Científicos Editora S.A., 1979. ISBN 85-216-0028-3.

PROCEL; ELETROBRÁS. **Avaliação do mercado de eficiência energética no Brasil - Ano base 2005 - Classe residencial - Relatório Brasil**. ELETROBRÁS - Centrais Elétricas Brasileiras S. A., PROCEL - Programa Nacional de Conservação de Energia Elétrica. 2007

QUANTZ, L. Bombas Centrífugas. LABOR, 1954.

SULZER, Cópia física de Bombas AZ. Rio de Janeiro. 19/10/75; 13/12/75; 20/12/75; 28/01/76 e 14/04/76.

REFERÊNCIAS...... 118

VALENTIM, C. E. **Otimi zação do Desempenho de Rotores de Bombas Hidráulicas de Fluxo a partir de critérios Classicos de Projeto - Verificações Experimentais.** 2008. Dissertação (Mestrado). Escola politécnica da Universidade de São Paulo. São Paulo. 2008.

WORTHINGTON DO BRASIL. Cópia física de Bombas D-814. Rio de Janeiro. 20/08/1995.

ZULCY DE SOUZA. **Projeto de Máquinas de Fluxo. Tomo II. Bombas Hidráulicas com Rotores Radiais e Axiais**. Editora Interciência, 2011. ISBN 978-85-7193-272-2.

ANEXO A

Neste anexo é apresentada a estrutura idealizada para criação do Algoritmo.

TABELA A.1 Estrutura da planilha do Algoritmo.

	ESTRUTURA DA PLANILHA DO ALGORITMO														
	GUIAS DA PLANILHA														
1	2	3	4	5	5	6	7	8	9	10	11	12	13	14	15
GUIA	ID	ENTIF	ICAÇÃ	0					D	ESCRI	[ÇÃO				
1 Dados do Projeto					Ма 20/	Mantendo a Vazão constante de 36 m ³ /h, e variando Hman de 20/30/40//60/80/100 mca.									
2		H 10	0 m		Cá	lculo pa	ara a co	ndições	do pro	jeto par	a Hmar	100 m	ca.		
3 H 80 m Cálculo para a condições do projeto para Hman 80 mca.															
4 H 60 m Cálculo para a condições do projeto para Hman 60 mca.															
5	5 H 40 m Cálculo para a condições do projeto para Hman 40 mca.														
6		H 30	H 30 m Cálculo para a condições do projeto para Hman 30 mca.												
7		H 20	H 20 m Cálculo para a condições do projeto para Hman 20 mca.												
8		Macin-	Iacin-Algorit Comparação dos resultados obtidos com as equações do algoritmo com o encontrados pela metodologia do Macintyre modificada e os dados do projeto.					m os)							
9		Apo	io 1		Gra equ	áficos c lações	los coef matemá	ficientes iticas e	s adime	nsionais ente de o	s de kv' correlaç	1; kv _{m1} ; ão linea	ku2 e k ar R².	v _{m2} , coi	n suas
10		Apo	io 2		Gra org	áficos i ganizaça	lustrativ ão dos c	vos dos lados p	parâme roposta	tros ku <u>:</u>	2, indica	idos pel	a referê	ncia e c	om a
11		Grát	fico		Со	mporta	mento a	lo Gráf	ico para	i esta gi	uia: d'1;	(d ₂)ret	$X n_s, cc$	m equa	ções
	($d'_1; (d_2)$	ret X n _s		ma	temátic	as e co	eficient	e de coi	rrelação	linear	R².			
12		Grá	ico		Co	mporta	mento o	lo Gráf	ico para	ı esta gı	iia: v _{m1}	v _{m2} X	n _s , com	equaçõ	es
		v _{m1} ; v _m	_{n2} X n _s		ma	temátic	cas e co	eficient	e de con	rrelação	linear	R².			
13		Grát	fico		Co	mporta	mento o	lo Gráf	ico para	i esta gi	uia: (b ₂)	ret X n _s	, com e	quações	5
		(b ₂)ret	t X ns		ma	temátic	cas e co	eficient	e de coi	rrelação	linear	R².			

FONTE: AUTOR

TABELA A.2

Estrutura da planilha de cálculo para a variação das alturas manométricas de Hman = 100; 80; 60; 40; 30; e 20 mca.

GUIA	IDENTIFICAÇÃO	DESCRIÇÃO
H 100 m	H 100 m	Cálculo para a condições do projeto para Hman 100 mca.
	Gráfico d' ₁ ; (d ₂)ret X n _s	Comportamento do Gráfico para esta guia: d' ₁ ; (d ₂)ret X n _s , com equações matemáticas e coeficiente de correlação linear R ² .
	Gráfico v _{m1} ; v _{m2} X n _s	Comportamento do Gráfico para esta guia: v_{m1} ; $v_{m2} X n_s$, com equações matemáticas e coeficiente de correlação linear R ² .
	Gráfico (b ₂)ret X n _s	Comportamento do Gráfico para esta guia: (b ₂)ret X n _s , com equações matemáticas e coeficiente de correlação linear R ² .
Variação	H 80; 60; 40; 30 e 20 m	Para estas condições de projeto se repete a rotina indicada para Hman 100 mca.

ANEXO A 120

TABELA A.3

Fluxograma para o processamento do Algoritmo.

DADOS DE ENTRADA	PROCESSO DO ALGORITMO	DADOS DE SAÍDA
Dados principais do	Conjunto de fórmulas	Parâmetros calculados de entrada e saída,
projeto		respectivas Alturas manométricas Hman.
Dados dos catálogos dos	Gráficos de Apoio	Gráficos gerados, nas respectivas guias,
fabricantes		linkadas as Alturas manométricas Hman.
Tabelas de referência	Tabelas de referência	Parâmetros agrupados dos resultados dos
		cálculos, das diferentes guias linkadas nas
		respectivas Alturas manométricas Hman.
		Gráficos consolidados das respectivas guias,
		gerados com equações matemáticas e
		coeficiente de correlação linear R ² .

ANEXO B

Neste anexo se encontram os Dados Principais do Projeto e as Características das Bombas Centrifugas escolhidas.

TABELA	B .1

Dados	Princi	nais d	lo Pr	nieto	nara	$n = 3^{2}$	500	rnm
Dauos	FILICI	pais u	10 FI	ojeto	para	II – J.	500	rpm.

DADOS DE ENTRADA	Símbolo	Unidades	(Dbservações e	Legenda core	s				
Líquido: água na temperatura normal (20 °C)	°C	Graus centigrados	Dados de entrada, constantes e da referência bibliográfica							
Vazão de recalque	Q	m ³ /h								
Altura Manométrica	Н	m		Entrar "sei	mpre com"					
Rotação da bomba	n	rpm								
				CONDIÇÕES	DO ESTUDO					
			Condição A	Condição B	Condição C	Condição D				
DADOS DE ENTRADA	Simbologia	Unidades	Dados	Dados	Dados	Dados				
Vazão de recalque	Q	m³/h	30	40	50	60				
		Ipm	500	667	833	1000				
		lps	8,33	11,11	13,89	16,67				
		m³/min	0,50	0,67	0,83	1,00				
		m^3/s	0,008	0,011	0,014	0,017				
		galões/min	138,9	185,2	231,5	277,8				
Altura manométrica	H = Hman	m	100	100	100	100				
		m	80	80	80	80				
		m	60	60	60	60				
		m	40	40	40	40				
		m	30	30	30	30				
		m	20	20	20	20				
Rotação da bomba	n	rpm	3500	3500	3500	3500				
Aceleração da gravidade	g	m/ <i>s</i> ²	9,81	9,81	9,81	9,81				

Dados	Característicos	das Bombas	Centrifugas KSB	para n $=3500$ r	pm, Tipo ETA.
			0		

EQUIPAM	ENTO				ROTAÇ	ÃO: (rpm)
BOMBA C	ENTRIFU	GA			3.	.500
FORNECE	FORNECEDOR				Revisão: 0	
KSB					Data: 2	2/08/2016
Q	Hman	Modelo	Dsr	b	η	Bsu
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)
30	20	65-12	105	18	45,0	80
40	20	65-12	107	18	54,0	80
50	20	65-12	108	18	62,5	80
60	20	65-12	110	18	69,0	80
30	30	40-16	142	6	61,0	50
40	30	50-16	132	10	71,0	65
50	30	50-16	136	10	72,5	65
60	30	50-16	141	10	71,5	65
30	40	50-16	145	10	64,0	65
40	40	50-16	148	10	71,0	65
50	40	50-16	150	10	73,5	65
60	40	50-16	155	10	74,5	65
30	60	40-20	188	5	59,0	50
40	60 00	40-20	200	5	59,0	50
50	60	40-26	224	4	44,0	50
00	00	40-20	240	4	40,0	50
30	80	40-26	200	4	56.0	50
40	80	40-26	200	4	53.0	50
50	80	40-26	240	4	51.0	50
60	80	50-20	250	8	46,0	65
				_	- , -	
30	100	40-26	234	4	52,0	50
40	100	40-26	240	4	54,0	50
50	100	40-26	250	4	53,0	50
60	100	50-26	242	5	67,0	65
Legenda		Descriçã	0			
Q		Vazão de rec	alque			
Hman		Altura Manon	nétrica			
Dsr		Diâmetro de saíd	a do rotor			
b		Largura do	rotor			
η		Rendimento da	bomba			
Bsu		Bocal de su	cção			
NA		Não se apl	ica	,		
ELABORA	DO POR	: Augusto Caballero	Palomino			
Data: 22/0	08/2016					

Dados Característicos das Bombas Centrifugas IMBIL para n =3500 rpm. Tipo INI.

EQUIPAM	ENTO				ROTAÇ	ÃO: (rpm)	
BOMBA C	ENTRIFU	IGA			3.	.500	
FORNECE	DOR				Revisão: 0		
IMBIL					Data: 2	2/08/2016	
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	40-125	109	14	60,0	65	
40	20	40-125	115	14	64,0	65	
50	20	40-125	120	14	66,0	65	
60	20	40-125	123	14	65,0	65	
30	30	40-125	120	14	61,0	65	
40	30	40-125	130	14	67,0	65	
50	30	40-125	132	14	71,0	65	
60	30	40-125	139	14	71,0	65	
30	40	40-160	144	12	62,0	65	
40	40	40-160	146	12	68,0	65	
50	40	40-160	153	12	70,0	65	
60	40	40-160	158	12	71,5	65	
30	60	40-200	182	9	55,0	65	
40	60	40-200	185	9	60,0	65	
50	60	40-200	190	9	63,0	65	
60	60	40-200	196	9	62,0	65	
30	80	40-250	210	8	50,0	65	
40	80	40-250	218	8	55,5	65	
50	80	40-250	224	8	56,0	65	
60	80	40-250	232	8	56,0	65	
30	100	40-250	232	8	48,0	65	
40	100	40-250	238	8	55,0	65	
50	100	40-250	244	8	56,0	65	
60	100	40-250	252	8	57,5	65	
Legenda		Descriçã	ão				
Q		Vazão de re	calque				
Hman		Altura Manoi	métrica				
Dsr		Diâmetro de saída do rotor					
b	Largura do rotor						
η		Rendimento da	a bomba				
Bsu		Bocal de su	ucção				
NA	Não se aplica						
ELABORA	DO POR	: Augusto Caballer	o Palomino)			
Data: 22/0	08/2016						

EQUIPAM	EQUIPAMENTO ROTAÇÃO: (rpm)						
ВОМВА С	ENTRIFUG	6A			3.500		
FORNECE	DOR				Revis	são: 0	
EH					Data: 15	Data: 15/08/2016	
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^{3}/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	40-12	110	11	65,0	65	
40	20	40-12	115	11	65,0	65	
50	20	40-12	125	11	61,0	65	
60	20	40-12	140	11	58,0	65	
30	30	50-16	132	12	55,0	80	
40	30	50-16	135	12	62,0	80	
50	30	50-16	140	12	65,0	80	
60	30	50-16	141	12	66,0	80	
30	40	50-16	148	12	55,0	80	
40	40	50-16	150	12	62,0	80	
50	40	50-16	153	12	68,0	80	
60	40	50-16	155	12	71,0	80	
30	60	40-20	180	7	55,0	65	
40	60	40-20	190	7	56,0	65	
50	60	50-20	185	10	70,0	80	
60	60	50-20	190	10	72,0	80	
30	80	50-20	208	10	50,0	80	
40	80	50-20	208	10	60,0	80	
50	80	50-20	209	10	66,0	80	
60	80	50-20	208	10	70,0	80	
30	100	40-25	240	6	56,0	65	
40	100	40-25	245	6	56,0	65	
50	100	40-25	248	6	47,0	65	
60	100	50-25	231	8	60,0	80	
Logondo		Deee	rição				
Legenda		Vezão do	riçao				
			nomótrico				
	Diá	Allula Ma					
<u> </u>	Dia						
n	Largura do rotor Pendimento da homba						
Rei	Renalmento da Domba						
NΔ	Não se anlica						
			hallero P	alomino			
Data: 15/0	8/2016						
Data. 13/0							

Dados Característicos das Bombas Centrifugas EH para n =3500 rpm. Tipo EHF.

Dados Característicos das Bombas Centrifugas WORTHINGTON para n =3500 rpm. Tipo D-814.

EQUIPAMENTO ROTAÇÃO: (rpm)						ÃO: (rpm)
BOMBA C	ENTRIFU	IGA			3.500	
FORNECE	DOR				Revisão: 0	
WORTHIN	IGTON				Data: 2	2/08/2016
Q	Hman	Modelo	Dsr	b	η	Bsu
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)
30	20	2. 1/1 x 1. 1/2 x 5	112	5	72,0	65
40	20	2. 1/2 x 2. 1/2 x 4	107	4	70,0	65
50	20	3 x 2 x 5	114	5	72,0	80
60	20	3 x 2 x 5	115	5	76,0	80
30	30	2. 1/1 x 1. 1/2 x 5	124	5	72,0	65
40	30	3 x 2 x 5	124	5	67,0	80
50	30	3 x 2 x 5	128	5	74,0	80
60	30	3 x 2 x 5	130	5	77,0	80
30	40	3 x 2 x 6	146	6	60,0	80
40	40	3 x 2 x 6	146	6	66,0	80
50	40	3 x 2 x 6	147	6	69,0	80
60	40	3 x 2 x 6	150	6	72,0	80
30	60	2. 1/2 x 1. 1/2 x 8	180	8	58,5	65
40	60	2. 1/2 x 1. 1/2 x 8	188	8	58,5	65
50	60	3 x 2 x 8	177	8	68,0	80
60	60	3 x 2 x 8	180	8	71,0	80
30	80	3 x 2 x 10	202	10	48,0	80
40	80	3 x 2 x 10	203	10	52,0	80
50	80	3 x 2 x 10	208	10	56,0	80
60	80	3 x 2 x 10	213	10	58,0	80
30	100	3 x 2 x 10	225	10	50,0	80
40	100	3 x 2 x 10	225	10	56,0	80
50	100	3 x 2 x 10	227	10	62,0	80
60	100	3 x 2 x 10	229	10	64,0	80
Legenda		Descrição	0			
Q		Vazão de rec	alque			
Hman		Altura Manom	étrica			
Dsr		Diâmetro de saída	a do rotor			
b	Largura do rotor					
η		Rendimento da	bomba			
Bsu		Bocal de su	cção			
NA		Não se apl	ica			
ELABORA	DO POR	: Augusto Caballero	Palomino)		
Data: 22/0	08/2016					

Dados Característicos das Bombas Centrifugas SULZER para n =3500 rpm. Tipo AZ.

EQUIPAMENTO ROTAÇÃO: (rpm)							
BOMBA CENTRIFUGA 3.500						.500	
FORNECE	FORNECEDOR				Revisão: 0		
SULZER					Data: 22/08/2016		
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	40-160	121	11	54,0	65	
40	20	40-160	131	11	55,0	65	
50	20	40-160	142	11	51,0	65	
60	20	40-160	155	14	64,0	65	
30	30	50-160	133	14	60,0	65	
40	30	50-160	137	14	66,0	65	
50	30	50-160	140	14	69,0	65	
60	30	50-160	148	14	69,0	65	
30	40	50-160	150	14	60,0	65	
40	40	50-160	151	14	66,0	65	
50	40	50-160	156	14	69,0	65	
60	40	50-160	159	14	71,5	65	
30	60	40-200	180	NA	59,0	65	
40	60	40-200	185	NA	61,0	65	
50	60	40-200	200	NA	59,0	65	
60	60	40-250	210	NA	62,0	50	
30	80	40-250	210	NA	58,0	50	
40	80	40-250	218	NA	62,5	50	
50	80	40-250	222	NA	63,5	50	
60	80	40-250	230	NA	63,8	50	
30	100	50-250	225	NA	41,0	80	
40	100	50-250	225	NA	48,0	80	
50	100	50-250	230	NA	55,0	80	
60	100	50-250	232	NA	58,0	80	
Legenda		Descriçã	0				
Q		Vazão de rec	alque				
Hman		Altura Manom	nétrica				
Dsr		Diâmetro de saíd	a do rotor				
b	Largura do rotor						
η		Rendimento da	bomba				
Bsu		Bocal de su	cção				
NA		Não se apl	lica				
ELABORA	DO POR	Augusto Caballero	Palomino				
Data: 22/0	8/2016						

	F	REGISTRO DOS DAD	OS DA BO	MBA CENT	RÍFUGA	
						~
EQUIPAM					ROTAÇ	AO: (rpm)
BOMBA C		IGA			3. Davi	500 eã e: 0
		n			Data: 2	Salo: 0 2/08/2016
		Madala	Der	h	Data. Z	2/00/2010 Bou
	Hman	wodelo		d (mm)	[] (0()	Bsu (man)
(m^{s}/h)	(m)		(mm)	(mm)	(%)	(mm)
	FABRICA	ANTE KSB				
36	100	40-26	236	4	52,0	50
	FABRICA	NTE IMBIL				
36	100	40-250	234	8	52,5	65
	FABRIC	ANTE EH				
36	100	40-25	240	6	52,0	80
FABR		WORTHINGTON				
36		3 x 2 x 10	225	10	54,5	80
<u>г</u> 36		50-250	225	ΝΔ	45.0	80
- 50	100	50-250	225		43,0	00
Locorde		D! - ~	•			
Legenda		Descriça				
Hman		Altura Manam	aiyu c			
Der		Diâmetro de saíd	a do rotor			
- D3 h			rotor			
n		Rendimento da	bomba			
- 'I Bsu		Bocal de su	ccão			
NA		Não se ani	ica			
ELABORA	DO POR	: Augusto Caballero	Palomino)		
Data: 22/0	08/2016					

Dados Característicos das Bombas Centrifugas escolhidas para n =3500 rpm.

DADOS DE ENTRADA	Símbolo	Unidades	C	Dbservações e	Legenda core	s	
Líquido: água na temperatura normal (20 °C)	°C	Graus centigrados	Dados de entrada, constantes e da referência bibliográfica				
Vazão de recalque	Q	m ³ /h					
Altura Manométrica	Н	m		Entrar "sei	npre com"		
Rotação da bomba	n	rpm					
				CONDIÇÕES	DO ESTUDO		
			Condição A	Condição B	Condição C	Condição D	
DADOS DE ENTRADA	Simbologia	Unidades	Dados	Dados	Dados	Dados	
Vazão de recalque	Q	m³/h	30	40	50	60	
		lpm	500	667	833	1000	
		lps	8,33	11,11	13,89	16,67	
		m ³ /min	0,50	0,67	0,83	1,00	
		m ³ /s	0,008	0,011	0,014	0,017	
		galões/min	138,9	185,2	231,5	277,8	
Altura manométrica	H = Hman	m	100	100	100	100	
		m	80	80	80	80	
		m	60	60	60	60	
		m	40	40	40	40	
		m	30	30	30	30	
		m	20	20	20	20	
Rotação da bomba	n	rpm	1750	1750	1750	1750	
Aceleração da gravidade	g	m/ <i>s</i> ²	9,81	9,81	9,81	9,81	

TABELA B.8

Dados Principais do Projeto para n =1750 rpm.

Dados	Característicos	das Bomb	oas Centrifugas	KSB para	n =1750 rpm.	Tipo ETA
			0		1	1

EQUIPAM	ENTO				ROTAÇÃO: (rpm)		
BOMBA C	ENTRIFU	IGA			1.	.750	
FORNECE	DOR				Revisão: 0		
KSB					Data: 22/08/2016		
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	50-26	230	5	63,0	65	
40	20	50-26	245	5	60,0	65	
50	20	65-26	225	8	72,0	80	
60	20	65-26	235	8	70,0	80	
30	30	NA	NA	NA	NA	NA	
40	30	NA	NA	NA	NA	NA	
50	30	NA	NA	NA	NA	NA	
60	30	NA	NA	NA	NA	NA	
30	40	NA	NA	NA	NA	NA	
40	40	NA	NA	NA	NA	NA	
50	40	NA	NA	NA	NA	NA	
60	40	NA	NA	NA	NA	NA	
30	60	NA	NA	NA	NA	NA	
40	60	NA	NA	NA	NA	NA	
50	60	NA	NA	NA	NA	NA	
60	60	NA	NA	NA	NA	NA	
30	80	NA	NA	NA	NA	NA	
40	80	NA	NA	NA	NA	NA	
50	80	NA	NA	NA	NA	NA	
60	80	NA	NA	NA	NA	NA	
20	100	ΝΑ	ΝΑ	ΝΑ	ΝΛ	ΝΔ	
<u> </u>	100	NA	NΔ	NΔ	NA		
	100	NA	NΔ	NΔ	NA	NA	
60	100	NA	NA	NA	NA	NA	
Legenda			Descri	ção			
Q		Vazão de rec	alque	2			
Hman		Altura Manom	étrica				
Dsr		Diâmetro de saída	a do rotor				
b		Largura do i	otor				
n		Rendimento da	bomba				
Bsu		Bocal de su	ccão				
NA		Não se apl	ica				
ELABORA	DO POR	: Augusto Caballero	Palomino				
Data: 22/0	8/2016	_					

EQUIPAMENTO ROTAÇÃO: (rpm)							
BOMBA C	ENTRIFU	IGA			1.750		
FORNECE	DOR				Revisão: 0		
IMBIL					Data: 22/08/2016		
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^{3}/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	65-200	203	11	64,0	100	
40	20	65-200	203	11	70,0	100	
50	20	65-200	205	11	72,0	100	
60	20	65-200	207	11	77,0	100	
30	30	50-250	244	12	57,5	80	
40	30	50-250	255	12	61,0	80	
50	30	50-315	275	9	58,0	80	
60	30	50-315	282	9	55,0	80	
30	40	50-315	282	9	53,0	80	
40	40	50-315	288	9	59,0	80	
50	40	50-315	296	9	60,5	80	
60	40	50-315	306	9	59,0	80	
30	60	NA	NA	NA	NA	NA	
40	60	NA	NA	NA	NA	NA	
50	60	NA	NA	NA	NA	NA	
60	60	80-400	348	13	54	125	
30	80	NA	NA	NA	NA	NA	
40	80	NA	NA	NA	NA	NA	
50	80	NA	NA	NA	NA	NA	
60	80	NA	NA	NA	NA	NA	
30	100	NA	NA	NA	NA	NA	
40	100	NA	NA	NA	NA	NA	
50	100	NA	NA	NA	NA	NA	
60	100	NA	NA	NA	NA	NA	
Legenda			Descr	ição			
Q		Vazão de rec	alque				
Hman		Altura Manom	nétrica				
Dsr		Diâmetro de saíd	a do rotor				
b	Largura do rotor						
η		Rendimento da	bomba				
Bsu		Bocal de su	cção				
NA	Não se aplica						
ELABORA	DO POR	: Augusto Caballero	Palomino)			
Data: 22/0	8/2016						

Dados Característicos das Bombas Centrifugas IMBIL para n =1750 rpm. Tipo INI.

EQUIPAM	EQUIPAMENTO ROTAÇÃO: (rpm)						
BOMBA C	ENTRIFUG	A			1.750		
FORNECE	DOR				Revis	Revisão: 0	
EH					Data: 22/08/2016		
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^{3}/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	80-20	205	22	47,0	125	
40	20	80-20	207	22	56,0	125	
50	20	80-20	207	22	61,0	125	
60	20	80-20	208	22	68,0	125	
30	30	65-25	250	12	52,0	100	
40	30	65-25	258	12	60,0	100	
50	30	65-25	260	12	66,0	100	
60	30	80-25	250	17	76,0	125	
30	40	50-32	290	9	55,0	80	
40	40	50-32	305	9	62,0	80	
50	40	50-32	305	9	58,0	80	
60	40	50-32	315	9	50,0	80	
30	60	NA	NA	NA	NA	NA	
40	60	80-40	340	13	44,0	125	
50	60	80-40	345	13	50,0	125	
60	60	80-40	350	13	55,0	125	
30	80	NA	NA	NA	NA	NA	
40	80	80-40	388	13	42,0	125	
50	80	80-40	388	13	48,0	125	
60	80	80-40	390	13	54,0	125	
30	100	ΝΔ	NΔ	NΔ	ΝΔ	NΔ	
40	100	NΔ		NΔ	NΔ	NΔ	
50	100	NA	NA	NA	NA	NA	
60	100	NA	NA	NA	NA	NA	
Legenda			Desc	ricão			
Q		Vazão de	recalque	3			
Hman		Altura Ma	nométrica				
Dsr	Diâmetro de saída do rotor						
b	Largura do rotor						
η	Rendimento da bomba						
Bsu		Bocal de	sucção				
NA		Não se	aplica				
ELABORA	DO POR:	Augusto Ca	ballero Pa	alomino			
Data: 22/0	8/2016						

Dados Característicos das Bombas Centrifugas EH para n =1750 rpm. Tipo EHF.

Dados Característicos das Bombas Centrifugas WORTHINGTON para n =1750 rpm. Tipo D-814.

EQUIPAM	ENTO				ROTAÇÃO: (rpm)		
BOMBA C	ENTRIFU	IGA			1.	.750	
FORNECE	DOR				Revi	isão: 0	
WORTHIN	IGTON				Data: 2	2/08/2016	
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	4 x 3 x 10	210	10	58,0	100	
40	20	4 x 3 x 10	213	10	64,0	100	
50	20	4 x 3 x 10	219	10	67,5	100	
60	20	4 x 3 x 10	229	10	68,0	100	
30	30	4 x 3 x 10	240	10	57,0	100	
40	30	4 x 3 x 10	241	10	64,0	100	
50	30	4 x 3 x 10	244	10	67,0	100	
60	30	4 x 3 x 10	246	10	68,5	100	
30	40	3 x 1. 1/2 x 13	291	13	45,0	80	
40	40	3 x 2 x 13	276	13	55,0	80	
50	40	3 x 2 x 13	283	13	59,0	80	
60	40	3 x 2 x 13	290	13	62,0	80	
30	60 00	NA	NA	NA	NA	NA	
40	60 60	NA	NA	NA		NA	
00 60	00 60						
00	00		11/4	11/4			
30	80	NA	NA	NA	NA	NA	
40	80	NA	NA	NA	NA	NA	
50	80	NA	NA	NA	NA	NA	
60	80	NA	NA	NA	NA	NA	
30	100	NA	NA	NA	NA	NA	
40	100	NA	NA	NA	NA	NA	
50	100	NA	NA	NA	NA	NA	
60	100	NA	NA	NA	NA	NA	
Legenda			Descri	ição			
Q		Vazão de rec	alque				
Hman		Altura Manon	nétrica				
Dsr	Diâmetro de saída do rotor						
b	Largura do rotor						
η	Rendimento da bomba						
Bsu	Bocal de sucção						
NA		Não se apl	ica				
ELABORA	DO POR	: Augusto Caballero	Palomino				
Data: 22/0	08/2016						

EQUIPAM	ENTO				ROTAÇ	ÃO: (rpm)	
BOMBA C	ENTRIFU	GA			1.	.750 	
	DOR				Revi	Sao: U	
SULZER			_		Data: 2	2/08/2016	
Q	Hman	Modelo	Dsr	b	η	Bsu	
(m^{3}/h)	(m)		(mm)	(mm)	(%)	(mm)	
30	20	65-250	210	NA	50,0	80	
40	20	65-250	210	NA	55,0	80	
50	20	65-250	218	NA	58,0	80	
60	20	65-250	220	NA	62,0	80	
30	30	65-250	250	NA	45,0	80	
40	30	65-250	250	NA	54,0	80	
50	30	65-250	252	NA	58,0	80	
60	30	65-250	255	NA	63,0	80	
30	40	65-315	293	NA	45,0	80	
40	40	65-315	293	NA	50,0	80	
50	40	65-315	298	NA	55,0	80	
60	40	65-315	302	NA	58,0	80	
30	60	NA	NA	NA	NA	NA	
40	60	65-400	356	NA	45,0	80	
50	60	65-400	360	NA	48,0	80	
60	60	65-400	365	NA	51,0	80	
30	80	NA	NA	NA	NA 10.5	NA	
40	08	65-400	404	NA	42,5	80	
50	80	65-400	400	NA	48,0	08	
60	80	65-400	410	NA	51,0	80	
30	100	NA	NA	NA	NA	NA	
40	100	NA	NA	NA	NA	NA	
50	100	NA	NA	NA	NA	NA	
60	100	NA	NA	NA	NA	NA	
Legenda			Descri	ção			
Q		Vazão de rec	alque				
Hman		Altura Manom	étrica				
Dsr	Diâmetro de saída do rotor						
b		Largura do i	rotor				
ŋ	Rendimento da bomba						
Bsu		Bocal de su	ccão				
NA	Não se aplica						
ELABORA	ADO POR: Augusto Caballero Palomino						
Data: 22/0	08/2016	<u> </u>					

Dados Característicos das Bombas Centrifugas SULZER para n =1750 rpm. Tipo AZ.

EQUIPAM	ENTO				ROTAÇ	ÃO: (rpm)
BOMBA C	ENTRIFU	IGA			1	.750
FORNECE	DOR				Rev	isão: 0
VER LIST		0			Data: 2	2/08/2016
Q	Hman	Modelo	Dsr	b	η	Bsu
(m^3/h)	(m)		(mm)	(mm)	(%)	(mm)
	FABRIC	ANTE KSB				
36	100	NA	NA	NA	NA	NA
	FABRICA	NTE IMBIL				
36	100	NA	NA	NA	NA	NA
	FABRIC	ANTE EH				
36	100	NA	NA	NA	NA	NA
FABR		WORTHINGTON				
36			NA	NA	NA	NA
26			ΝΔ	ΝΛ	ΝΛ	ΝΔ
	100			INA	INA	
Legenda		Descriçã	0			
Q		Vazão de rec	alque			
Hman		Altura Manon	nétrica			
Dsr		Diâmetro de saíd	a do rotor			
b		Largura do	rotor			
η Revi	ļ	Renalmento da	samoa o çoo			
NA		Não se an	ica			
ELABORA	DO POR	: Augusto Caballero	Palomino)		
Data: 22/0	08/2016					
L	-					

Dados Característicos das Bombas Centrifugas escolhidas para n =1750 rpm.

ANEXO C

Neste anexo, encontra-se a rotina na planilha Excel para o cálculo do Algoritmo proposto. Será apresentada na integra o desenvolvimento do Algoritmo, para a bomba centrifuga com 3500 rpm e Altura Manométrica de 100 m. Para as outras Alturas, o processo é semelhante. Para a rotação da bomba centrifuga de 1750 rpm, e todas as outras Alturas Manométricas, o desenvolvimento completo se encontra no arquivo eletrônico.

As equações são referenciadas ao livro Bombas e Instalações de Bombeamento (MACINTYRE, 2013) com modificações especificas introduzidas neste trabalho.

CAI	CULO DE UMA BOMBA TIPO RADIAL (CENTRIFUGA)	REFERENCIA LIV	VRO DE MA	CINTYRE (PG	. 269) MODIF	ICADO	
DADOS DE ENTRADA	Símbolo	Unidades	Obser	rvações		Legenda cor	es
Líquido: água na		Graus	Conside	arar para	Dados do on	utrada constr	antos o
temperatura normal	°C	Graus	conside	vieto	referência h	ibliografica	antes e
(20 °C)		centigraduos	pic	jeto	referencia b	ibilografica	
Vazão de recalque	Q	m^3/h			Dados com i	nferencia ou	correção
Altura Manometrica	Н	m	Entrar "se	mpre com"	Dados com f	aixa de aceit	ação
Rotação da bomba	n	rpm		r	Ponto de Co	ntrole	
					~		
MO					CONDIÇOE	S DO ESTUDO)
				Condição A	Condição B	Condição C	Condição D
DADOS DE ENTRADA	Simbologia		m ³ /h	Dados	Dados	Dados	Dados
Vazao de recalque	Q		111-711	500	40	50	60
-			Ipm	500	11 11	12 00	1000
			m^3/min	0,55	11,11	13,89	1 00
			m^3/s	0,50	0,07	0,65	1,00
			galões/min	128 0	195.2	221 5	277.8
	Critério para Vazão d	e recalque, em	(m3/h)	130,5	103,2	231,3	277,0
	Pequena: $50 < 0$ m3/b						
Critério para Vazão (O)	Média: $50 < 0 < 500 m3/h$						
m ³ /h	Grande: Q > 500 m3/h						
Escolber Criterio	Em relação à Vazão de recalque Q			Pequena	Pequena	Pequena	Média
	Critério para Altura Manométrica (Hman) par	a recalque, em	metros de	coluna d'águ	ua (mca)	····	
Critério para Altura	Baixa pressão ou elevação - 15 < Hman mca						
Manométrica (Hman)	Média pressão ou elevação -						
para recalque, em	Hman: 15 < Hman < 50 mca						
metros de coluna d'água (mca)	Alta pressão ou elevação - Hman: > 50 mca						
Altura manometrica	H = Hman		m	100	100	100	100
Escolher Criterio	Em relação à H = Hman			Alta	Alta	Alta	Alta
Rotação da bomba	n		rpm	3500	3500	3500	3500
Aceleração da gravidade	g		m/ <i>s</i> ²	9.81	9.81	9 81	9.81
gravidade	DADOS DA BOMBA ESCOLHID	A DO CATÁLOGO	D - FABRICAN	TES	5,61	5,61	5,01
	FABRICANTE KSB						
Diâmetro externo do rotor	Obtido no catálogo do fabricante	d2	mm	234	240	250	242
Largura do rotor	Obtido no catálogo do fabricante	b2	mm	4	4	4	5
Rendimento da bomba	Obtido no catálogo do fabricante	η	%	52,0%	54,0%	53,0%	67,0%
Diâmetro da sucção da bomba (dfl)	Obtido no catálogo do fabricante	dfl	mm	50	50	50	65

TABELA C.1

Resultados da programação para determinação do Algoritmo.

TABELA C.2

Resultados da programação para determinação do Algoritmo (Cont.).

	DADOS DA BOMBA ESCOLHID/	A DO CATÁLOGO	<mark>) - FABRICAN</mark>	ITES			
	FABRICANTE IMBIL						
Diâmetro externo do rotor	Obtido no catálogo do fabricante	d2	mm	232	238	244	252
Largura do rotor	Obtido no catálogo do fabricante	b2	mm	8	8	8	8
Rendimento da bomba	Obtido no catálogo do fabricante	η	%	48,0%	55,0%	56,0%	57,5%
Diâmetro da sucção da bomba (dfl)	Obtido no catálogo do fabricante	dfl	mm	65	65	65	65
	FABRICANTE EH						
Diâmetro externo do rotor	Obtido no catálogo do fabricante	d2	mm	220	225	229	232
Largura do rotor	Obtido no catálogo do fabricante	b2	mm	8	8	8	8
Rendimento da bomba	Obtido no catálogo do fabricante	η	%	56,0%	56,0%	47,0%	60,0%
Diâmetro da sucção da bomba (dfl)	Obtido no catálogo do fabricante	dfl	mm	65	65	65	80
	FABRICANTE WORTHINGTON						
Diâmetro externo do rotor	Obtido no catálogo do fabricante	d2	mm	225	225	227	229
Largura do rotor	Obtido no catálogo do fabricante	b2	mm	10	10	10	
Rendimento da bomba	Obtido no catálogo do fabricante	η	%	50,0%	56,0%	62,0%	64,0%
Diâmetro da sucção da bomba (dfl)	Obtido no catálogo do fabricante	dfl	mm	80	80	80	80
	FABRICANTE SULZER						 I
Diâmetro externo do rotor	Obtido no catálogo do fabricante	d2	mm	225	225	230	232
Largura do rotor	Obtido no catálogo do fabricante	b2	mm	NA	NA	NA	NA
Rendimento da bomba	Obtido no catálogo do fabricante	η	%	41,0%	48,0%	55,0%	58,0%
Diâmetro da sucção da bomba (dfl)	Obtido no catálogo do fabricante	dfl	mm	80	80	80	80
Velocidade de saída do rotor (Vsr)	FABRICANTE KSB	Vsr	m/s	2,8	3,7	4,4	4,4
	FABRICANTE IMBIL	Vsr	m/s	1,4	1,9	2,3	2,6
	FABRICANTE EH	Vsr	m/s	1,5	2,0	2,4	2,9
	FABRICANTE WORTHINGTON	Vsr	m/s	1,2	1,6	1,9	2,3
	FABRICANTE SULZER	Vsr	m/s	NA	NA	NA	NA
Escolha do tipo do rotor	Fig. 8,2; pgs. 195, 196; 231; 232; 269 do Macintyre						
Velocidade especifica: ns (rpm), em Q (m3/s) e H(m)	$ns = n \frac{Q^{1/2}}{H^{3/4}}$	ns	rpm	10,10	11,67	13,04	14,29

TABELA C.3

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
Com o ns calculado se escolhe o tipo de bomba	Na Fig. 8.2, pg 195 e 196, o tipo de bomba centrifuga radial pura						
Criterio para classificar as turbomáquinas	Lentas - ns < 25 - Bombas centrífugas puras, com pás cilindricas, radiais, para pequenas e médias descargas, possuindo d2 > 2 d1, chegando a d2 = 2,5 d1 Normais - 25 < ns < 35 - Bombas semelhantes às anteriores, com d2 = 1,5 a 2 d1 Rápidas - 35 < ns < 60 - Pás de dupla curvatura, descargas médias, d2 = 1,3 a 1,8 d1 Extra-rápidas ou hélico-centrífugas - 60 < ns < 120 - Pás de dupla curvatura, descargas média e grandes, d2 = 1,3 a 1,5 d1 Helicoidais - 120 < ns < 137 - Para descargas grandes. d2 = 1,2 d1 Axiais - ns > 137 - Asemelham-se a hélice de propulsão. destinan-se a grandes descargas e pequenas alturas de elevação d2 = 1 d1 a d2 = 0,8 d1			Lenta	Lenta	Lenta	Lenta
Correção da descarga (Q')	Pg. 232; 233; 269 e 270 do Macintyre						
Este aumento adotado, costuma ser:	3% para bombas com grandes descargas e baixas pressões 5% para bombas de descargas e pressões médias 10% para bombas com pequenas descargas e altas pressões						
Na pratica adotaremos entre: 1,03Q < Q' < 1,10Q	5%	Q'	m ³ /s	0,009	0,012	0,015	0,018
Estimativa do rendimento hidráulico (ε). Para balisamento preliminar	ε= 0,50 a 0,70 - Para bombas pequenas, sem grandes cuidados de fabricação, com caixa com aspecto de caracol						
Pg. 233 e 270 do Macintyre	ɛ= 0,70 a 0,85 - Para bombas com rotor e coletor						
	ε= 0,85 a 0,95 - Para bombas de dimensões grandes, bem projetadas e bem fabricadas						
Estimativa do rendimento hidráulico (ε). Q em (galões por minuto)	$\varepsilon = 1 - \frac{0.8}{\sqrt[4]{Q}}$	ε		0,77	0,78	0,79	0,80

Resultados da programação para determinação do Algoritmo (Cont.).

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
Boca de entrada da bomba							
Velocidad no flange de sucção da bomba (Vfl)	Referência: A. H. Church (pgs. 90), Vfl: de 1,2 ate 5,5 m/s	Vfl	m/s				
Diâmetro do flange de entrada da bomba (dfl)	Obtido no catálogo do fabricante	dfl	m				
	KSB	dfl	m	0,050	0,050	0,050	0,065
Velocidade no flange de sucção da bomba (Vfl)	$V_{fl} = \frac{4 Q}{\pi d_{fl}^2}$	Vfl	m/s	4,24	5,66	7,07	5,02
	IMBIL	dfl	m	0,065	0,065	0,065	0,065
Velocidade no flange de sucção da bomba (Vfl)	$V_{fl} = \frac{4 Q}{\pi d_{fl}^2}$	Vfl	m/s	2,51	3,35	4,19	5,02
	EH	dfl	m	0,065	0,065	0,065	0,080
Velocidade no flange de sucção da bomba (Vfl)	$v_{fl} = \frac{4 Q}{\pi d_{fl}^2}$	Vfl	m/s	2,51	3,35	4,19	3,32
	WORTHINGTON	dfl	m	0,080	0,080	0,080	0,080
Velocidade no flange de sucção da bomba (Vfl)	$V_{fl} = \frac{4 Q}{\pi d_{fl}^2}$	Vfl	m/s	1,66	2,21	2,76	3,32
	SULZER	dfl	m	0,080	0,080	0,080	0,080
Velocidade no flange de sucção da bomba (Vfl)	$V_{fl} = \frac{4 Q}{\pi d_{fl}^2}$	Vfl	m/s	1,66	2,21	2,76	3,32
	Média da velocidad no flange: Vfl	Vfl	m/s	2,52	3,36	4,19	4,00
PONTO DE CONTROLE. Velocidade no flange de sucção (Vfl)	Avaliação na faixa de 1,2 ate 5,5 m/s			ок	ок	ок	ок
Velocidade recomendada da água, na boca de entrada da bomba	Pg. 233 do Macintyre						
Referência: M. Khetagurov	Vo = 2,5 a 5,0 m/s - para bombas instaladas acima do nivel do líquido Vo = 5,0 a 6,0 m/s - para bombas funcionando afogadas						
Potencia motriz (N)	Pg. 69, 197, 233 e 270 do Macintyre						
Rendimento total de projeto, estimado preliminarmente (η)	70%			0,70	0,70	0,70	0,70
Potencia consumida pelo motor que aciona a bomba (N). Sendo o peso específico d'água: 1.000 kgf/m ³ , H em (m) e Q em (m ³ /s)	$N = \frac{1.000 \ Q \ H}{75 \ \eta_t}$	N	сv	15,9	21,2	26,5	31,7
Diâmetro do eixo (dei)	Pg. 234 e 270 do Macintyre						
O fator 12 corresponde a um ângulo de torção permissível de: 0,25 a 2,5°, para N em (cv) e n em (rpm)	$dei = 12 \sqrt[3]{\frac{N}{n}}$	dei	cm	1,99	2,19	2,36	2,50
Aumentar (dei)corr, para o rasgo para a chaveta de fixação do rotor ao eixo, 10% e atender velocidade crítica 5%	15%	(dei)corr	cm	2,28	2,51	2,71	2,88

TABELA C.4 Resultados da programação para determinação do Algoritmo (Cont.).

TABELA C.5

Resultados	da	programação	para	determinação	do	Algoritmo	(Cont.).

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
Diâmetro do núcleo (dn)	Pg. 234 e 270 do Macintyre						
Recomendação da DIN 270. Diâmetro do núcleo (dn) de fixação do rotor ao eixo: dn = (dei)corr + (2 * (5 a 15 mm))	7,0	dn	mm	36,84	39,14	41,08	42,78
GRANDEZAS À ENTRADA DO ROTOR							
Velocidade Média (v'1) na boca de entrada do rotor	Pg. 234 e 271 do Macintyre						
Coeficiente da velocidade na boca de entrada do rotor kv'1, para bombas com ns	Referência: Com o ns da bomba, ver na pg 234 do Macintyre, para obter o kv'1						
	kv'1 = 0,090 a 0,10 para ns < 10 kv'1 = 0,11 a 0,13 para 10 < ns < 20 kv'1 = 0,13 a 0,16 para 20 < ns < 30 kv'1 = 0,17 a 0,18 para 30 < ns < 40		CONSULTA	R A CURVA DE	APOIO 1 PAR	A CADA "ns	
	No nosso caso: ns	ns	rpm	10,1	11,7	13,0	14,3
	Coeficiente da velocidade na boca de entrada do rotor kv'1	kv'1	Acertar	0,110	0,113	0,116	0,118
Velocidade Média (v'1) na boca de entrada do rotor, g em (m/s²) e H em (m)	$v'1 = kv'1\sqrt{2 g H}$	v'1	m/s	4,9	5,0	5,1	5,2
PONTO DE CONTROLE. Velocidade Média (v'1) na boca de entrada do rotor, valores recomendados, pg. 279	de 2,5 ate 5,0 m/s			Ok	Ok	Ok	Ok
Diâmetro da boca de entrada do rotor (d'1)	Pg. 234; 235 e 271 do Macintyre						
Considerando: Q' (m3/s); v'1 (m/s); dn (mm)	$d'1 = \sqrt{\frac{4 Q'}{\pi v'1} + (dn)^2}$	d'1	m	0,061	0,068	0,074	0,079
Diâmetro da boca de entrada do rotor (d'1)	d'1	d'1	cm	6,12	6,80	7,39	7,92
Arredondando d'1	Para valor prático de usinagem	d'1	mm	63	70	78	84
Diâmetro médio da aresta de entrada do rotor (dm1)	Pg. 235 e 271 do Macintyre						
DEFINIR TIPO DE BOMBA (ns)	Com o ns, nas pgs 196 e 235, definir o tipo da bomba: lenta, normal ou rápida						
	No nosso caso: ns	ns	rpm	10,1	11,7	13,0	14,3
Critério recomendado, pg 196	Tipo de bomba			Lenta	Lenta	Lenta	Lenta
Pg. 235 e 271 do Macintyre	Valores práticos para a constante de dm1						
Bomba lenta: dm1 = (1 a 1,10) d'1	De 1,0 a 1,1						
Bomba normais: dm1 = (0,90 a 0,95) d'1	De 0,9 a 0,95						
Bomba rápidas: dm1 = (0,80 a 0,90) d'1	De 0,80 a 0,90						
Para nosso caso	Usar a constante para calculo do "dm1"			1,0	1,0	1,0	1,0
	dm1	dm1	m	0,063	0,070	0,078	0,084
	dm1	dm1	cm	6,30	7,00	7,80	8,40

TABELA C.6

Resultados da programação para determinação do Algoritmo (Cont.).

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
Velocidade Meridiana							
de entrada do rotor	Pg. 236 e 271 do Macintyre						
(vm1)							
Coeficiente da							
velocidade da	Poforôncia: Vor na ng 236 do Macintavro, com ng						
componente meridiana	nara obter o kym1 (esta tabela leva em						
na entrada do rotor							
kvm1, para bombas	consideração a espessura da paj						
com ns							
	ns = 10 ; para Kvm1 = 0,11 a 0,12						
	ns = 10 a 20; para Kvm1 = 0,125 a 0,14						
	ns = 20 a 30; para Kvm1 = 0,145 a 0,175		CONSULTA			A CADA "ne	
	ns = 30 a 40; para Kvm1 = 0,175a 0,195		CONSOLIA	IN A CONVA DI			
	ns = 40 a 50; para Kvm1 = 0,195 a 0,205						
	ns = 50 a 60; para Kvm1 = 0,21 a 0,225				-		
	No nosso caso: ns	ns	rpm	10,1	11,7	13,0	14,3
	Coeficiente da velocidade da componente	kvm1	Acertar	0,120	0,122	0,126	0,128
de entrada de retor -	$vm1 = kvm1\sqrt{2 g H}$		mla	E 37	E 40	E E0	E 67
am (m/s ²) a H am (m)	¥	VIIIT	11/5	5,32	5,40	5,58	5,07
em (m/s ⁻) e H em (m)							
Velocidade periférica							
no bordo de entrada	Pg. 236 e 271 do Macintyre						
(u1)	. <u>B. 199 c 1, 1 do maomyre</u>						
Velocidade periferica	$n = \frac{\pi dm 1. n}{n}$,		40.00	44.00	45.00
no bordo de entrada	60	u1	m/s	11,55	12,83	14,29	15,39
(u1), dm1 (m); n (rpm)							
Ângulo (β1) das pás à	Pg 237 e 272 do Macintyre						
entrada do rotor							
Tangente do ângulo de	TAN $\beta 1 = \frac{Vm1}{2}$	Tanß1		0.46	0.42	0.39	0.37
entrada (β1)	r u1			3,13	-,	-,	-,
Ângulo (β1) de							
inclinação das pás na	β1	β1	graus	24,72	22,84	21,33	20,22
entrada							
PONTO DE CONTROLE.							
Este ängulo (β1), em	β1 = de 15° e 30°			ОК	ОК	ОК	ОК
geral, fica	· ·						
compreendido entre							
Valores da IAN $\beta 1$	TAN 15°			0,26	0,26	0,26	0,26
Valores da TAN $\beta 1$	tan 30°			0,50	0,50	0,50	0,50
Seno do ângulo de	SEN $\beta 1$	Sen _{β1}		0,418	0,388	0,364	0,346
entrada (β1)	, ,			· ·			
Determinação da quantidade de pás Z	Referência do Carlo Malavasi, Macinture ng. 227						
Para alturas de							
elevação pequenas e	β2 = 15° a 20°, para 7 = 6 a 7 pás			Fscolher	Fscolher	Escolher	
médias e para	$B2 = 20^{\circ} a 25^{\circ}$, para Z = 7 a 8 pás			(kd2) entre	(kd2) entre	(kd2)	Escolher (kd2)
(d2/dm1)=1,4 a 2,0;	$B2 = 25^{\circ} a 35^{\circ}$, para 7 = 8 a 10 pás			1.4/2 0	1,4/2 0	entre:	entre: 1,4/2,0
este ângulo (β2), fica				_, ., _, .	_, ., _,•	1,4/2,0	
compreendido entre							
Para alturas de						Feedbar	
elevação grandes e	β2 = 22°30' a 30° ; para Z = 6 a 7 pás			Escolher	Escolher	Escoiner	
para (02/dm1)=1,8 a	β2 = 30° a 35° ; para Z = 8 a 9 pás			(kd2) entre:	(kd2) entre:	(KCZ)	escoiner (Ka2)
2,5; este angulo (µ2),	β2 = 35° a 45° , para Z = 9 a 10 pás			1,8/2,5	1,8/2,5	entre:	entre: 1,8/2,5
fica compreendido						1,8/2,5	
entre							
Consideraremos esta							
altura de elevação	Alta	н	m	100	100	100	100

TABELA C.7

Resultados da programação para determinação do Algoritmo (Cont.).

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
O ângulo (β2), em geral, fica compreendido entre	β2 = de 15° a 45°						
Adotaremos para o Ângulo de (β2)	Preliminarmente escolhemos	β2	graus	23,00	23,00	23,00	23,00
PONTO DE CONTROLE. Para altura de elevação, usar a constante (kd2) para dm1	Somente para determinar a quantidade de pás			2,30	2,30	2,30	2,30
d2	$d_2 = kd2 \cdot d_{m1}$	d2	m	0,14	0,16	0,18	0,19
Quantidade de pás.	Referência: Projeto de Máquinas de fluxo. Tomo II. Zulcy de Souza. Pg 31.						
	$Z = 6.5. \left(\frac{d2 + dm1}{d2 - dm1}\right). sen\left(\frac{\beta_1 + \beta_2}{2}\right)$	z		7	6	6	6
PONTO DE CONTROLE - Escolha da quantidade das pás	Na maioria dos casos este número de pás deve ficar na faixa: 2 < Z < 10	z	Acertar	7	6	6	6
Passo circunferencial entre pás (t1) na entrada do rotor	Pg. 239 e 272 do Macintyre						
	$t_1 = \frac{\pi dm1}{Z}$	t1	m	0,030	0,034	0,039	0,043
	t1 - calculado	t1	mm	30	34	39	43
Consideraremos a espessura das pás S1 (mm)	Pg. 239 e 272 do Macintyre						
	S1 = 3 a 4 mm para rotores pequenos (d2<30 cm) S1 = 5 a 7 mm para rotores de (d2 de 30 a 50 cm)	S1	mm				
PONTO DE CONTROLE PARA: d2	d2	d2	cm	24	24	24	24
Adotaremos para este caso S1:	4,0	S1	mm	4,0	4,0	4,0	4,0
Obstrução provocada pela pá	Pg. 239 e 272						
Obstrução provocada pela pá (σ1), com S1 (m)	$\sigma_1 = \frac{S1}{SEN \beta_1}$	σ1	m	0,010	0,010	0,011	0,012
Inverso do coeficiente de contração (1/γ1)	$\frac{1}{\gamma_1} = \frac{t_1}{t_1 - \sigma_1}$	(1/γ1)		1,48	1,43	1,39	1,36
Largura (b1) da pá à entrada	Pg. 272 do Macintyre						
	$b1 = \frac{Q'}{vm1(\pi dm1 -Z \sigma_1)}$	b1	m	0,012	0,014	0,015	0,016
	b1	b1	mm	12	14	15	16

TABELA C.8

Resultados da programação para determinação do Algoritmo (Cont.).

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
GRANDEZAS À SAÍDA							
DO POTOP							
DO KOTOK							
Velocidade periférica à							
saída do rotor (u2)	Pg. 240 e 273 do Macintyre						
salua uo lotol (uz)							
Coeficiente da							
	Com as de bombe com a 240 mars ebter e la 2						
velocidade periferica	Com hs da bomba, ver ha pg 240 para obter o kuz						
de saida do rotor ku2,	na tabela						
para bombas com ns							
	ns < 10 : para Ku2 = 0.98						
	$n_{\rm s} = 20$; para Ku2 = 1.0 a 1.02						
	113 - 20, para kuz - 1,0 a 1,02						
	ns = 30; para Ku2 = 1,02 a 1,03		CONSULTA	R A CURVA DE	APOIO 1 PAR	A CADA "ns'	•
	ns = 40; para Ku2 = 1,05						
	ns = 50; para Ku2 = 1,1						
	ns = 60; para Ku2 = 1,2						
	No nosso caso: ns	ns	rnm	10 1	11 7	13.0	14 3
	Cooficiente da valecidade poriforica de caída de	115		10,1	11,7	13,0	14,5
	Coenciente da verocidade periferica de saída do	ku2	Acertar	0,980	0,984	0,986	0,988
	rotor ku2						
Velocidade periférica à							
saída do rotor (u2) g	$u2 = ku2\sqrt{2}gH$	112	m/s	43 41	43 59	43 67	43.76
$a_{1}(a_{2}(a_{2})) = 11 a_{2}(a_{2})$		uz.	1173	43,41	43,33	-3,07	43,70
em (m/s ⁻) e H em (m)							
Velocidade periférica à							
saida (u2) pelo criterio	Pg. 240 e 273 do Macintyre						
Suizer (u2)s							
	4,1 para bombas grandes - alta pressão com pás						
	guias						
	4,2 para bombas grandes - baixa pressão						
(0	4 5 para hombas pequenas - média e altas						
Ψ							
	pressoes sem pas guias						
	4,7 para bombas pequenas - baixa pressão sem pás						
	guias						
φ para nosso caso, usar	4,5	φ		4,5	4,5	4,5	4,5
Valasidada nasifisian b							
velocidade periferica a	$(u_2)_s = \omega \sqrt{H}$	(112)0		45.00	45.00	45.00	45.00
Sultar (u2) pelo criterio	(a=)0	(uz)s	m/s	45,00	45,00	45,00	45,00
Suizer (uz)s, rrein (in)							
					l		
Diâmetro de saída (d2)	Pg. 240 e 273 do Macintyre			ESCOL	HEMOS A ME	NOR VELOCI	DADE u2
	3 1 1 1 1 1 1 1						
				42.44	42.50	40.07	42.75
Para nosso caso, usar	Velocidade u2	u2	m/s	43,41	43,59	43,67	43,76
	$, 60 u_2$			0 227	0.000	0.000	0.000
	$d_2 = \frac{\pi n}{\pi n}$	d2	m	0,237	0,238	0,238	0,239
Ver faixa inferior	95%	0,95d2	mm	225	226	226	227
Ver faixa superior	105%	1,05d2	mm	249	250	250	251
Diâmetro de saída do		_			_		_
catálogo	KSB	D2	mm	234	240	250	242
	Diferenca=Cálculo real-Dimensão catálogo	l	mm	2	_2	-12	-3
	Diâmetro Real major: / Diâmetro de Catélora	or.		10/	10/	E0/	10/
(prometro Real maior, (-)Diametro do Catalogo Maio			1%	-1%	-5%	-1%
	IIVIBIL	D2	mm	232	238	244	252
	Diferença=Cálculo real-Dimensão catálogo		mm	5	0	-6	-13
(•)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		2%	0%	-2%	-6%
	EH	D2	mm	220	225	229	232
	Diferença=Cálculo real-Dimensão catálogo		mm	17	13	9	7
1.	+)Diâmetro Beal major: (-)Diâmetro do Catálogo majo	or.		7%	5%	4%	3%
(225	270	17/0 227	270
		02	mm	225	225	221	229
	Diterença=Cálculo real-Dimensão catálogo		mm	12	13	11	10
(-	-)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		5%	5%	5%	4%
	SULZER	D2	mm	225	225	230	232
	Diferenca=Cálculo real-Dimensão catálogo		mm	12	13	8	7
1.	+)Diâmetro Beal major: (-)Diâmetro do Catálogo majo	or.		5%	5%	3%	3%
	, pranietro nearmaior, i pranietro uo catalogo Ilidi	21		J/0	J/0	3/0	3/0

TABELA C.9

Resultados da programação para determinação do Algoritmo (Cont.).

DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo			
Energia a ser cedida pelas pás (H'e), levando-se em conta o desvio ângular dos filetes de saída do rotor	Pg. 118, 119, 240, 241 e 273 do Macintyre									
Adotaremos neste modelo:	Pg. 240, 241 do Macintyre									
Adotaremos neste caso:	ϕ = 0,8 a 1,0 para bombas com pás guias. ϕ = 1,1 a 1,2 para bombas sem pás guias.									
Adotaremos : φ	1,1	ф	Acertar	1,1	1,1	1,1	1,1			
ε	0,87	ε		0,87	0,87	0,87	0,87			
Altura desejada: He, onde H em (m)	$He = \frac{H}{\varepsilon}$	Не	m	114,94	114,94	114,94	114,94			
Altura de elevação, para bombas com ns < 130	$H'_e = He\left(1 + \frac{8}{3} \frac{\Phi}{z}\right)$	H'e	m	165,46	167,41	169,11	170,43			
DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo			
Velocidade meridiana de saída do rotor (vm2)	Pg. 240 e 273 do Macintyre									
Coeficiente da velocidade meridiana de saída kvm2, para bombas com ns	Com ns da bomba, ver na pg 240 para obter o kvm2									
	ns = 10 ; para Kvm2 = 0,08 a 0,09 ns = 20; para Kvm2 = 0,10 a 0,12 ns = 30; para Kvm2 = 0,12 a 0,14 ns = 40; para Kvm2 = 0,146 a 0,165 ns = 50; para Kvm2 = 0,165 a 0,18 ns = 60; para Kvm2 = 0,18 a 0,20	CONSULTAR A CURVA DE APOIO 1 PARA CADA "ns"								
	No nosso caso: ns	ns		10,1	11,7	13,0	14,3			
	Coeficiente da velocidade meridiana de saída kvm2	kvm2	Acertar	0,080	0,084	0,086	0,088			
Velocidade Meridiana à saída do rotor (vm2), g em (m/s²) e H em (m)	$vm2 = kvm2 \sqrt{2 g H}$	vm2	m/s	3,54	3,72	3,81	3,90			
Alguns autores adotam	Pg. 240 do Macintyre									
	vm2 = (0,85 a 0,90) vm1; usar a média 0,875	vm2	m/s	4,65	4,73	4,88	4,96			
	Escolhemos a menor velocidade de vm2	vm2	m/s	3,54	3,72	3,81	3,90			
Ângulo de saída (β2)	Pg. 273 do Macintyre									
	β2 foi arbitrado, ao ser escolhido o número de Z da pás	(β2)	graus	23,00	23,00	23,00	23,00			
Tangente do ângulo de saída (β2)	tan β2	Tan (β2)		0,424	0,424	0,424	0,424			
Seno do ângulo de saída (β2)	sen β2	Sen (β2)		0,391	0,391	0,391	0,391			
Velocidade periférica (u2) corrigida com o desvio ângular dos filetes à saída do rotor (u2)corr	Pg. 241 e 274 do Macintyre									

TABELA C.10

DESCRIÇÃO		Cimhologia	Unidadaa	Cálaula	Cálaula	Cálaula	Cálaula
DESCRIÇÃO	Formula e/ou recomendações	Simpologia	Unidades	Calculo		Calculo	Calculo
DEFINIR TIPO DE BOMBA (ns)				Condição A	Condição B	Condição C	Condição D
Vazao de recalque	ų		m ³ /h	30	40	50	60
Altura manometrica	H = Hman		m	100	100	100	100
Valor do diâmetro retificado (d2)ret	$(d2)ret = \frac{60 \ u_2}{\pi \ *n}$	(d2)ret	m	0,243	0,245	0,247	0,249
Ver faixa inferior	95%	0,95(d2)ret	mm	231	233	235	236
Ver faixa superior	105%	1,05(d2)ret	mm	255	258	259	261
Diâmetro de saída do Catálogo	KSB	D2	mm	234	240	250	242
	Diferença=Cálculo real-Dimensão catálogo		mm	9	5	-3	-3
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		4%	2%	-1%	3%
	IMBIL	D2	mm	232	238	244	252
	Diferença=Cálculo real-Dimensão catálogo		mm	11	7	3	-13
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio		or		5%	3%	1%	-1%
	EH	D2	mm	220	225	229	232
	Diferença=Cálculo real-Dimensão catálogo		mm	23	20	18	17
(+	Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		9%	8%	7%	7%
	WORTINGTON	D2	mm	225	225	227	229
	Diferença=Cálculo real-Dimensão catálogo		mm	18	20	20	20
(+)Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		7%	8%	8%	8%
	SULZER	D2	mm	225	225	230	232
	Diferença=Cálculo real-Dimensão catálogo		mm	18	20	17	7
(+	Diâmetro Real maior; (-)Diâmetro do Catálogo maio	or		7%	8%	7%	7%
CÁLCULO TEORICO							
Largura das pás à saída do rotor (b2)	Pg. 241 e 274 do Macintyre						
Passo circunferencial entre pás (t2)	Pg. 241 e 274 do Macintyre						
	$t_2 = \frac{\pi (d2)ret}{Z}$	t2	m	0,115	0,120	0,125	0,129
	t2	t2	mm	114,52	120,13	124,88	128,67
Consideraremos a espessura das pás S2 (mm)	4,00	S2	mm	4,00	4,00	4,00	4,00
Obstrução provocada pela pá (σ2), com S2 (m)	$\sigma_2 = \frac{S2}{SEN \beta 2}$	(σ2)	m	0,010	0,010	0,010	0,010
Coeficiente de contração (y2)	Pg. 242 e 274 do Macintyre						
	$\gamma_2 = \frac{t_2 - \sigma_2}{t_2}$			0,911	0,915	0,918	0,920

Resultados da programação para determinação do Algoritmo (Cont.).
ANEXO C 145

Resultados da programação para determinação do Algoritmo (Cont.).

DEFINIR TIPO DE BOMBA (ns)				Condição A	Condição B	Condição C	Condição D
Vazão de recalque	Q		m^3/h	30	40	50	60
Altura manometrica	H = Hman		m	100	100	100	100
Largura (b2) da pá à saída retificada (b2)ret	Pg. 242 e 274 do Macintyre						
	$(b2)ret = \frac{Q'}{\pi (d2)ret \ vm2 \gamma_2}$	(b2)ret	m	0,004	0,004	0,005	0,006
	(b2)ret	(b2)ret	mm	3,6	4,4	5,4	6,2
Ver faixa inferior	95%	0,95(b2)ret	mm	3,4	4,2	5,1	5,9
Ver faixa superior	105%	1,05(b2)ret	mm	3,7	4,7	5,6	6,6
Largura (b2) do Catálogo	KSB	b2	mm	4,0	4,0	4,0	5,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-0,4	0,4	1,4	1,2
	(+)Largura Real maior; (-)Largura do Catálogo maior			-13%	10%	26%	20%
	IMBIL	b2	mm	8,0	8,0	8,0	8,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,4	-3,6	-2,6	-1,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-125%	-80%	-49%	-28%
	EH	b2	mm	8,0	8,0	8,0	8,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-4,4	-3,6	-2,6	-1,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-125%	-80%	-49%	-28%
	WORTINGTON	b2	mm	10,0	10,0	10,0	10,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-6,4	-5,6	-4,6	-3,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-25%	-125%	-86%	-60%
	SULZER	b2	mm	7,0	7,0	7,0	7,0
	Diferença=Cálculo real-Dimensão catálogo		mm	-3,4	-2,6	-1,6	-0,8
	(+)Largura Real maior; (-)Largura do Catálogo maior			-97%	-57%	-30%	-12%
DESCRIÇÃO	Formula e/ou recomendações	Simbologia	Unidades	Cálculo	Cálculo	Cálculo	Cálculo
Determinação do Coeficiente de perdas internas "kpi"	kpi = $\frac{7156,484 H}{n^2 (d_2)ret^2}$	kpi		0,99	0,97	0,96	0,95

FONTE: AUTOR.