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Resumo 

Esta tese aborda dois problemas de sequenciamento de máquinas paralelas não-relacionadas 

com os tempos de preparação dependentes da máquina e da sequência. Ambos os problemas 

são NP-hard. As diferenças entre esses problemas são a função objetivo adotada e os 

métodos de solução utilizados. No primeiro problema, o makespan é função objetiva e a 

decomposição Benders combinatória é o método. Este método pode ser lento para convergir. 

Portanto, três procedimentos são introduzidos para acelerar sua convergência. O primeiro 

procedimento consiste em encerrar a execução do problema mestre quando uma solução 

ótima repetida é encontrada. O segundo procedimento é baseado na técnica multicut. Por 

fim, o terceiro procedimento é baseado no procedimento warm-start. O esquema de 

decomposição Benders combinatório melhorado é comparado com uma formulação 

matemática e uma implementação convencional da decomposição de Benders. Nos 

experimentos são utilizados dois conjuntos de testes da literatura. Para o primeiro conjunto, 

o método proposto executa 21,85% em média mais rápido do que a implementação 

convencional. Para o segundo conjunto, o método proposto não conseguiu encontrar uma 

solução ótima em apenas 31 em 600 instâncias, obteve uma diferença entre os limites 

inferiores e superiores de 0,07% e teve um tempo computacional médio de 377,86 s, enquanto 

os melhores resultados dos outros métodos foram 57, 0,17 % e 573,89 s, respectivamente. No 

segundo problema o atraso total é a função objetivo. Os modelos matemáticos para este 

problema em geral usam uma constante conhecida como big-M devido às restrições 

disjuntivas. Isso produz limites inferiores muito fracos que dificultam a obtenção da solução 

ótima, mesmo para instâncias de pequeno porte. Para resolver este problema é proposta uma 

formulação matemática que não use a constante big-M. Para este fim, apresenta-se uma 

abordagem que usa tarefas fictícias em vez da constante big-M. Além disso, é proposta uma 

condição de otimização que reduz o espaço de busca da solução do problema. Os 

experimentos realizados em cinco tipos de instâncias produziram prova computacional da 

superioridade do modelo proposto em comparação com modelos baseados nas formulações 

de Wagner (1959) e Manne (1960). O modelo proposto produziu 291 soluções ótimas em 

comparação com 98 e 148 dos modelos de Wagner (1959) e Manne (1960), respectivamente, 

e foi até três ordens de magnitude mais rápido nas 300 instâncias de pequeno porte que 

foram testadas. Um algoritmo de geração de coluna também é proposto para encontrar 

soluções quase ótimas para instâncias de tamanho médio com até 50 tarefas e dez máquinas. 

Ao contrário das abordagens padrão, o modelo proposto é usado em vez de um algoritmo de 

programação dinâmica para resolver o problema de pricing. Para acelerar a convergência 

do algoritmo de geração de colunas, várias heurísticas são propostas para gerar as colunas 

iniciais e resolver o problema de pricing. A geração de colunas híbrida obteve uma diferença 

média entre os limites inferiores e superiores e tempo de execução de 2,71% e 930,48 s, 

respectivamente, em comparação com 34,78% e 2.490,37 s, respectivamente, em relação ao 

modelo proposto. Os resultados indicam que as abordagens propostas são mais eficazes em 

tempo de execução e qualidade da solução. 

Palavras-chave: sequenciamento, máquinas paralelas, decomposição de Benders, 

formulação matemática, geração de colunas, hibridização. 



vi 
 

Abstract 

This thesis addresses two unrelated parallel machines scheduling problem with sequence and 

machine dependent setup times. Both problems are NP-hard. The differences between these 

problems are the objective function adopted and the solution methods used. In the first 

problem the makespan is objective function and combinatorial Benders decomposition is 

solution method. This method can be slow to converge. Therefore, three procedures are 

introduced to accelerate its convergence. The first procedure consists of terminating the 

execution of the master problem when a repeated optimal solution is found. The second 

procedure is based on the multicut technique. The third procedure is based on the warm-start 

technique. The improved combinatorial Benders decomposition scheme is compared to a 

mathematical formulation and a standard implementation of Benders decomposition 

algorithm. In the experiments, two test sets from the literature are used. For the first set the 

proposed method performs 21.85% on average faster than the standard implementation of the 

Benders algorithm. For the second set the proposed method failed to find an optimal solution 

in only 31 in 600 instances, obtained an average gap of 0.07%, and took an average 

computational time of 377.86 s, while the best results of the other methods were 57, 0.17%, 

and 573.89 s, respectively. In the second problem the total tardiness is objective function. 

Mathematical models for this problem often use a constant known as big-M because the 

disjunctive constraints. This yields very weak lower bounds that make it difficult to obtain the 

optimal solution, even for small-size instances. To address this problem is proposed a 

mathematical formulation that does not use the big-M constant. To this end is presented an 

approach that uses dummy jobs instead of the big-M constant. Additionally, an optimality 

condition method that reduces the solution space of the problem is proposed. Experiments 

conducted on five instance types produced computational proof of the superiority of the 

proposed model compared to models based on Wagner’s (1959) and Manne’s (1960) 

formulations. The proposed model produced 291 optimal solutions compared to 98 and 148 of 

Wagner’s (1959) and Manne’s (1960) models, respectively, and it was up to three orders of 

magnitude faster in the 300 small-size instances that were tested. A column-generation 

algorithm is also proposed to find near-optimal solutions for medium-size instances with up 

to 50 jobs and 10 machines. Unlike standard approaches, the proposed model is used instead 

of a dynamic programming algorithm to solve the pricing problem. For accelerating the 

convergence of the column-generation algorithm, various heuristics are proposed to generate 

the initial columns and solve the pricing problem. The hybrid column generation obtained an 

average gap and runtime of 2.71% and 930.48 s, respectively, compared to 34.78% and 

2,490.37 s, respectively, of the proposed model. Results indicate that the proposed 

approaches are more effective in terms of both running time and solution quality. 

Keywords: scheduling, parallel machines, Benders decomposition, mathematical formulation, 

column generation, hybridization. 
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1. Introduction 

Scheduling has been a subject of a significant amount of literature in the operations research field 

since the early 1950s (Gupta and Stafford Jr., 2006). The main objective of scheduling is an 

efficient allocation of shared resources over time to activities, where jobs represent activities and 

machines represent resources. Application areas for scheduling theory are manufacturing, 

computers, transportation, services, etc. Among the scheduling problems, those with parallel 

machines are quite studied. Parallel machine scheduling problems (PMSP) address the scheduling 

of n jobs on m machines to minimize some function, which is typically a function of completion 

time or tardiness of jobs. To learn more about these kinds of problems, the survey produced by 

Mokotoff (2001) can be consulted. PMSPs are known to be NP-hard (Pinedo, 2012). 

 

1.1 Problem Definition 

The problem addressed in this thesis is a PMSP with unrelated machines (UPMSP), where a set N 

of jobs is scheduled on a set M of machines. Each job j takes processing time pij on machine i. The 

system machines are unrelated, which means that job j can have a processing time that is longer 

than job k on a specific machine, although the same cannot be true for another machine. There is a 

setup time, sijk, which corresponds to the time required between the end of job j and the beginning 

of job k on machine i. Setup times comply with the triangular inequality sijk ≤ sijl + silk. In this 

model, it is necessary to use a dummy job 0, with all its parameters equal to zero. Moreover, it is the 

first and last jobs of the sequences, where N0 is the set of jobs N plus dummy job 0. The goal of the 

problem is to determine a schedule of job assignments for the machines that minimizes the 

makespan or total tardiness. Using the three-element notation of Graham et al. (1979), this problem 

can be classified as R | sds | Cmax (or ΣTj). 

The following presented mathematical model can be used to measure both performance criteria, 

makespan or total tardiness, where variables yij is one if job j is processed in machine i (and 0, 

otherwise), xijk is one if the k is processed immediately after job j in machine i (and 0, otherwise), Cj 

denotes the completion time of job j, and Cmax is the makespan of the solution, and Tj is the 

tardiness of job j. The model itself is as follows: 
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Objective (1) minimizes the makespan or total tardiness of the solution. Constraints (2) ensure that 

each job is processed by only one machine. Constraints (3) and (4) ensure that each job has only 

one predecessor and successor, respectively. Constraints (5) ensure that a maximum of one job is 

scheduled as the first job on each machine. Constraints (6) ensure the correct order of the jobs and 

the sub-cycles elimination, that is, if xijk = 1 the completion time of job k should be greater or equal 

than the completion time of job j, and if xijk = 0, these constraints become redundant. Constraints (7) 

define the makespan or the tardiness of each job in the solution. Constraints (8) assign 0 to the 

completion time of the dummy job. Finally, constraints (9) to (11) define the non-negativity and 

integrality of the variables. 

It is difficult to find an optimal solution for the problem even for small instances. One of the 

difficulties is based on the big-M constant used in constraints (6) to calculate the completion time of 

jobs. 

In the first problem the objective function is makespan and combinatorial Benders decomposition is 

solution method. This method can be slow to converge. Therefore, three procedures are introduced 

to accelerate its convergence. The first procedure is a new method that consists of terminating the 

execution of the master problem when a repeated optimal solution is found. The second procedure 

is based on the multicut technique. The third procedure is based on the warm-start. The improved 

Benders decomposition scheme is compared to a mathematical formulation and a standard 

implementation of Benders decomposition algorithm. The results of this approach are presented in 

Appendix A. In the second problem the total tardiness is objective function and a mathematical 

formulation and a column-generation algorithm combined with heuristics are proposed to solve it. 

Mathematical models for this problem in general use a big-M constant to guarantee the disjunctive 

constraints. This yields very weak lower bounds that make it difficult to obtain the optimal solution, 
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even for small-size instances. To address this problem is proposed a mathematical formulation that 

does not use the big-M constant. To this end is presented an approach that uses dummy jobs instead 

of the big-M constant. Additionally, an optimality condition method that reduces the solution space 

of the problem is proposed. A column-generation algorithm is also proposed to find near-optimal 

solutions for medium-size instances with up to 50 jobs and 10 machines. Unlike standard 

approaches, the proposed model is used instead of a dynamic programming algorithm to solve the 

pricing problem. For accelerating the convergence of the column-generation algorithm, various 

heuristics are proposed to generate the initial columns and solve the pricing problem. The results of 

these approaches are presented in Appendix B. 

 

1.2 Related Works 

Among the works with criterion makespan the most use heuristics and metaheuristics to solve the 

UPMSP, Vallada and Ruiz (2011) use two versions of a genetic algorithm. Fleszar et al. (2012) 

develop a variable neighborhood descent search (VNDS) algorithm, which is hybridized with 

mathematical programming elements. Ying et al. (2012) propose a restricted simulated annealing 

algorithm. Arnout et al. (2014) present an ant colony algorithm with two stages. Finally, Avalos-

Rosales et al. (2015) propose three versions of a method based on multi-start and VNDS algorithms. 

To obtain an optimal solution for this problem, Tran and Beck (2012) present an algorithm based on 

a logic-based Benders decomposition and Avalos-Rosales et al. (2015) explore many mathematical 

formulations with a new linearization to calculate the makespan. 

Papers with the total tardiness criterion are showed following. Bilge et al. (2004) propose a tabu 

search where candidate list strategies, tabu classifications, tabu tenure and 

intensification/diversification strategies are investigated. Anghinolfi and Paolucci (2007) propose a 

hybrid metaheuristic that incorporates the core features of simulated annealing, tabu search and 

variable neighborhood search. Armentano and de França Filho (2007) propose a GRASP-based 

search heuristics that incorporate adaptive memory principles. Lin et al. (2011) present an iterated 

greedy heuristic. Lee et al. (2013) evaluate an algorithm based on tabu search. 

For minimizing the weighted number of tardy jobs, M’Hallah and Bulfin (2005) suggested branch 

and bound algorithms, Chen and Chen (2009) propose a hybrid metaheuristics that integrate the 

tabu search and the variable neighborhood descent approach, and Chen (2012) proposes several 

iterated hybrid metaheuristic algorithms. Chen (2009) considers the problem with an additional 

strict due date constraint for some jobs, and proposes a simulated annealing algorithm that 

incorporates the feasibility improvement method, Lin et al. (2011) propose an iterated greedy 

algorithm and a simple dispatching rule referred as primary customers and the shortest completion 

time first to generate a initial solution. Lee et al. (2013) propose a tabu search algorithm that 

incorporates various neighborhood generation methods, and it has performance compared with the 

two previous methods. 

Following are the works that combine more than one performance criterion. Chen and Powell 

(1999) address several PMSPs considering identical, uniform, and unrelated machines with two 

objectives: to minimize the total weighted completion time and to minimize the weighted number of 
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tardy jobs. Paula et al. (2007) propose an approach based on variable neighborhood search to 

minimize the makespan and the sum of weighted tardiness of each job. Rocha et al. (2008) propose 

a branch-and-bound approach to minimize the makespan and the sum of weighted tardiness of each 

job. For the UPMSP with machine and sequence-dependent setup time, not many studies have been 

done on this problem. Paula et al. (2010) propose a non-delayed relax-and-cut algorithm based on 

the Lagrangian relaxation of a time-indexed formulation to minimize the total weighted tardiness. 

For minimizing the total earliness and tardiness penalties, Nogueira et al. (2014) propose three 

different heuristics based on GRASP metaheuristic, and Zeidi and Hosseini (2015) propose a 

genetic algorithm with simulated annealing method as local search procedure to improve the quality 

of solutions. Lopes and Carvalho (2007) address the UPMSP with sequence-dependent setup times 

and availability dates for the machines and release dates for the jobs. The authors failed to identify 

any structural dominance property, but to overcome this drawback have proposed a new method to 

reduce the search space to accelerate the solving from a 2-cycle elimination version of a dynamic 

programming algorithm proposed by authors. Finally they use it in a branch-and-price algorithm to 

minimize the weighted tardiness.  

 

1.3 Objectives 

The exact methods such as branch and bound and dynamic programming techniques, while 

guarantee an optimal solution, could address only a subset of problems that are small in terms of the 

number of variables and constraints. Therefore, the majority of studies uses heuristics or 

metaheuristics to solve larger problems in less computational time. These methods have the 

disadvantage of not guaranteeing the quality of their solutions, that is, they do not present a dual 

solution that can be compared with the primal solution found in order to calculate an optimality gap. 

Then, the main objective of this thesis is to study methods that combine the advantages of the exact 

and heuristic methods to solve the UPMSP with makespan or total tardiness as performance criteria. 

The specific objectives below are also explored in Appendices A and B, respectively. 

 

Considering the makespan criterion 

- To propose heuristics to accelerate the convergence of the Benders decomposition algorithm. 

- To compare a standard implementation of a Benders decomposition algorithm (Tran and Beck, 

2012), the state-of-the-art mathematical model (Avalos-Rosales et al, 2015), and the proposed 

Benders decomposition algorithm. 

Considering the total tardiness criterion 

- To develop a mathematical model that does not use the big-M constant to linearize the precedence 

constraints. 

- To compare the proposed mathematical model with two other models from literature. 
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- To develop a hybrid column generation algorithm to overcome the deficiencies of the proposed 

mathematical model. 

 

2. Methods 

2.1 Linear Relaxation 

The tightness of the relaxed feasible region, which is reflected in the lower bound (for minimization 

problem) is an important criterion when solving the original MILP. Tighter relaxed feasible region 

reduces the search space of solutions (Lee and Grossmann, 2000). Large values for M can easily 

lead to numerical problems and weak linear relaxations (Camm, et al., 1990; Klotz and Newmann, 

2013). For example, considering two jobs j and 1, to guarantee that the constraints (6) are valid for 

all j, k   N, the big-M constant must be greater than or equal to the greatest difference between all 

completion times of jobs. If an appropriate value for the big-M is equal to 1000 and pik and sijk are 

equals to 100, simply xijk adopting a value less than or equal to 0.8 (very close to the integer value) 

in the relaxed solution the difference between Ck and Cj would be equal to 0. Therefore, linear 

relaxations of scheduling problems that use constraints with a big-M constant are so weak. That 

makes it difficult to obtain an optimal solution even for small instances. 

There are formulations for PMSPs that do not use the big-M constant to represent the precedence 

between jobs, including time-indexed models. In these models, job precedence decisions are 

represented by discrete variables under a time horizon. The linear relaxation provided of a time-

indexed formulation is very stronger than the bounds provided by the linear relaxations of many 

other MILP formulations (Dyer and Wolsey, 1990). Unfortunately, the promising computational 

results reported have all been for relatively small instances. Even for relatively small instances the 

number of constraints and the number of variables can be huge. As a result, the memory required to 

store an instance and the time required to solve just the linear relaxation may be prohibitive. This 

brings to the main weakness of time-indexed formulations: their size. (Van Den Akker et al., 2000). 

This formulation were tested in the problems addressed, but the memory failure appeared quickly 

even for very small instances, so their results are not presented. 

However, Avalos et al. (2015) propose a method to calculate the makespan of a PMSP independent 

of the big-M constant. The completion time of machine Oi, i   M, is given by the sum of the 

processing (pijk) and setup (sijk) times of all the jobs (xijk) allocated to the machine i. The makespan 

is the largest value of Oi among all machines i. The proposal from Avalos et al. (2015) represented 

by constraints (12) and (13) are showed below. Although these constraints do not eliminate the need 

of constraints (6) to guarantee precedence between jobs, the results regarding the linear relaxation 

quality, optimal solutions number and runtime obtained are much better than those presented by the 

previous models. 
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Previously Tran and Beck (2012) propose a combinatorial Benders decomposition algorithm for the 

same problem addressed by Avalos et al. (2015). The results obtained by them are also much better 

than previous models based on constant big-M. This is obtained using a combinatorial relaxation of 

constraints (12), where sub-cycles in the job sequences may exist because the constraints (6) are not 

used. But these two approaches have not been compared to each other, so it is proposed to do that. 

 

2.2 Dummy job 

An analysis was carried out on the possibility of using the model from Avalos et al. (2015) or the 

Benders decomposition method to minimize the total tardiness of PMSPs, since they had so good 

results with the minimization of makespan. But it was verified that these two methods cannot be 

applied in this case with the same efficiency, because when the criterion is makespan to minimize 

the order of the jobs in the sequence usually has little impact in the makespan value. While the 

performance criterion is the total tardiness time of jobs, different job sequences can have a 

significant effect on the value of tardiness jobs. Therefore, the constraints (12) cannot improve the 

process of obtaining the total tardiness value of the jobs. To illustrate that consider two jobs j and 1, 

with processing times equal to 10 and due times (dj) 4 and 50, respectively. The tardiness of a job j 

(Tj) is calculated as max (0, Cj - dj) and the total tardiness (TT) is a sum of the tardiness of all jobs 

of the sequence. The following are the results for the two possible solutions. 

 

Table 1 - Fictitious sequences and values of performance criteria 

Seq. Cj Cl Cmax Tj Tl TT 

j, l 10 20 20 max {0, 10 - 4}= 6 max {0, 20 - 50}= 0 6 

l, j 20 10 20 max {0, 20 - 4}= 16 max {0, 10 - 50}= 0 16 

 

Inspired by the results achieved by Avalos et al. (2015), a mathematical model for scheduling 

problems with parallel machines and performance criteria to minimize the total tardiness that does 

not use the big-M constant is developed. This was possible using Wagner's model (1959) variables 

and a dummy variable. The Wagner’s model (1959) uses positional variables xijp equal to 1 if job j 

is allocated at position p of the job sequence in machine i and 0, otherwise. The number of positions 

in a machine is equal to the number of jobs N. Since there is a chance that positions will not be 

occupied by jobs, the model uses the big-M constant to handle it. Therefore, the linear relaxations of 

this model are very weak. Constraints 14 represents in the Wagner's model (1959) as the tardiness 

of a job j is calculated. Where tip is the start time on machine i in position p, and αijp is 1 if job j is 

allocated to position p in machine i, and 0 otherwise, when the big-M constant is activated. 
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It is proposed to use a dummy variable to occupy empty positions instead of using the big-M 

constant. Of course, this new variable cannot affect the objective function value. In addition, it is 

noted that using the position number per machine equal to the job number is a waste of 

computational effort, since in practice is very unlikely that all jobs will be allocated to same 

machine. Therefore, an approach has been proposed to reduce the position number per machine. 

This approach is best explained in Appendix B. 

Numerical tests show that the described methodology significantly outperforms the previous 

models. But for instances with loose due dates, the performance is lower than instances with tight 

due dates. A method based on Dantzig-Wolfe decomposition was developed to overcome, at least 

partly, the difficulties associated with the size and loose due date instances, Appendix B. The 

theoretical basis of the column generation (CG) algorithm has been provided by Dantzig and Wolfe 

(1960). The linear program is divided into two problems, which are referred to as the relaxed and 

restricted master problem and subproblem. The subproblem uses the dual information from the 

master problem to generate new columns that can potentially improve the objective function of the 

master problem. The iterative process of generating new columns using the subproblem and adding 

them to the master problem terminates when the subproblem generates new columns with non-

negative reduced costs. This approach avoids the difficulty of explicitly generating all columns of 

the problem. This approach was suggested by Gilmore and Gomory (1961) for solving cutting stock 

problems. 

 

2.3 Hybridization 

In recent years, a lot of attention has been devoted to the integration, or hybridization, of 

metaheuristics with exact methods. This approach is also called matheuristics which describes 

works of exploiting mathematical programming techniques in metaheuristic frameworks or on 

granting to mathematical programming approaches the cross-problem robustness and constrained-

CPU-time effectiveness which characterize metaheuristics. Although a relatively new concept, it 

has been gaining more and more attention over recent years and it has been applied to many 

combinatorial optimization problems (Fanjul-Peyro et al. 2017). Within scheduling, Billaut et al. 

(2015) and Fanjul-Peyro et al. (2017) use matheuristic approaches for single machine scheduling 

and parallel machine scheduling problems with the consideration of additional resources, 

respectively. 

The main motivation behind the hybridization of different algorithms is to exploit the 

complementary characteristics of different optimization strategies, that is, hybrids are believed to 

benefit from synergy. In fact, choosing an adequate combination of complementary algorithmic 

concepts can be the key for achieving top performance in solving many hard optimization problems 

(Raidl, 2015). Unfortunately, developing an effective hybrid approach is in general a difficult task 

which requires expertise from different areas of optimization. Moreover, the literature shows that it 

is nontrivial to generalize, that is, a certain hybrid might work well for specific problems, but it 

might perform poorly for others. Nevertheless, there are hybridization types that have shown to be 
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successful for many applications. They may serve as guidance for new developments. There are 

several ways to hybridize metaheuristics with exact methods as explained below (Raidl, 2015). 

Intelligent initialization is characterized by supplying a good initial solution. Classic exact 

optimization methods like branch and bound typically depend on a good initialization in order to be 

able to prune the search space effectively from the beginning. It is used in both proposed 

algorithms. 

Embedded improvement methods are all strategies that use some method to improve a solution 

obtained by another method. For example, memetic algorithm which essentially is an evolutionary 

algorithm including some local improvement technique is applied to all or part the newly created 

solution candidates of each iteration. Also classical branch and bound often relies on primal 

solution improvement procedures for finding sooner better primal solutions in order to prune larger 

parts of search space. It is also used in both algorithms. 

Multi-stage approaches are a kind of hybridization to solve problems by decomposing the whole 

optimization into multiple stages that are addressed by individual techniques in a sequential manner. 

A first stage of optimization may then be used to fix higher-level decisions while the remaining 

lower-level variables are determined in one or more successive phases where the higher-level 

variables are considered fixed. It is used only in second proposed problem. 

Large neighborhood exploring approach deals with enhancing a local search using a more efficient 

algorithm to cover large portions of the search space. Many of combinations of metaheuristics with 

MILP approaches follow this scheme when a compact MILP model is available for the problem at 

hand: part of the variables are fixed to the incumbent solution’s values and the others are kept open 

and optimized via a MILP solver. It is also used in the second algorithhm. 

Strategic guidance approach is exploit information on promising areas of the search space obtained 

by other techniques. Problem relaxations are most frequently used for such purposes. If a compact 

MILP formulation exists for the problem at hand, its linear relaxation often is an obvious choice. An 

obtained fractional solution can frequently be rounded or in some other way repaired to obtain a 

feasible integral solution in its proximity. Variables that have already integral values in the relaxed 

solution might be fixed, or fractional values may be used to bias the search. It is used on second 

problem. 

Given the expected poor performance of Benders decomposition for large problems some heuristics 

are proposed to accelerate their convergence as done by Lusby et al. (2016). These authors propose 

an iterative heuristic framework based on Benders decomposition to the shift design problem, which 

at any given time considers only a very small set of shift types, identified as a good set of shift 

types. 

Techniques described above have inspired the hybridization procedures used in the proposed 

Benders decomposition algorithm and CG. In the Benders decomposition algorithms is common the 

initialization with good solutions, called warm start (McDaniel and Devine, 1977). The 

initialization of the proposed algorithm is based on a restricted version of the original problem that 

uses linear relaxation information of the problem and a variable number reducing method. The 
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variable number reduction is based on the method called job-machine reduction, proposed by 

Fanjul-Peyro and Ruiz (2011). 

CG has been successfully applied in a number of contexts. But conventional column generation 

implies slow convergence time. Therefore, column generation has used heuristics and 

metaheuristics (HCG – Hybrid Column Generation) to accelerate the convergence process. As 

Beheshti and Hejazi (2015) that use an evolutionary algorithm to solve the subroblems of the 

vehicle routing problem. Caserta and Voß (2013) use a metaheuristic to solve the subproblems of 

multi-item multi-period capacitated lot sizing problem with setups. These methods use the PMSP 

with total tardiness as a criterion. 

 

3. Results 

It was written two articles concerned with unrelated parallel machine scheduling problem. The first 

article: “Improved Combinatorial Benders Decomposition for a Scheduling Problem with Unrelated 

Parallel Machines” covers the problem for minimization the makespan using mathematical 

programming and combinatorial Benders decomposition. First, the sub-cycle elimination constraints 

of a mixed-integer formulation of this problem are removed, creating a problem that is easier to 

solve. This problem, called the master problem, is decomposed into subproblems that consist of 

scheduling problems on each machine. The problem can then be solved by a combinatorial Benders 

decomposition. Thus, an exact approach is generated, where the master problem finds job sequences 

for machines. However, these job sequences may have sub-cycles. Therefore, for each machine, a 

subproblem checks the feasibility of the sequence and, if necessary, returns a combinatorial 

inequality, called the Benders cut, to the master problem. This method can be slow to converge. 

Therefore, three procedures are introduced to accelerate its convergence. The first procedure is a 

new method that consists in terminating the execution of the master problem when a repeated 

optimal solution is found. The second procedure is based on the multi-cut technique and consists of 

generating several Benders cuts in each iteration based on quality solutions found during the 

execution of the master problem. The third procedure is based on the warm-start technique and 

consists in performing a restricted master problem that, because it is easier than the original master 

problem, is solved in less time, generating Benders cuts more quickly. The improved Benders 

decomposition scheme is compared to a mathematical formulation and a conventional Benders 

decomposition algorithm. In the experiments, 600 instances from the literature are tested with up to 

60 jobs and 5 machines. The results show that the proposed method failed to find an optimal 

solution in only 31 instances, obtained an average gap of 0.07%, and took an average of 377.86 s to 

compute, while the best results of the other methods are 57, 0.17%, and 573.89 s, respectively. This 

article is presented in Appendix A with some changes in the published version, 3 July 2017 in 

Journal of Applied Mathematics (https://doi.org/10.1155/2017/9452762). 

The second article: “Mathematical Formulation and Hybrid Column Generation for Minimizing 

Total Tardiness in a Scheduling Problem with Unrelated Parallel Machines” is concerned to the 

problem considering total tardiness as performance criterion. Mathematical programming and 

column generation are treated. Mathematical models for this problem often use a big-M due the 

disjunctive constraints. This yields very weak lower bounds that difficult to obtain an optimal 
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solution even for small size instances. Therefore, it is proposed a new mathematical formulation 

that does not use the big-M constant. For that, was suggested an approach that uses dummy jobs 

instead of big-M constant. Experiments conducted on five types of instances show the superiority of 

the proposed model compared to models based on Wagner’s (1959) and Manne’s (1960) 

formulations that use variables based on position and precedence, respectively. Among the 

computational results the proposed model obtains 291optimal solutions against 98, and 148 of 

Wagner’s (1959) and Manne’s (1960) models, respectively, up to three orders of magnitude faster 

for 300 small size instances tested. In addition, it is proposed a column generation algorithm for 

finding near-optimal solutions for medium size instances with up to 50 jobs and 10 machines. 

Unlike standard approaches it is used the proposed model instead of a dynamic programming 

algorithm to solve the pricing problem. For accelerating the convergence of the column generation 

algorithm various heuristics are proposed to generate the initial columns and to solve the pricing 

problem. The hybrid column generation obtains average gap and runtime of 2.71% and 930.48 s, 

respectively, against 34.78% and 2,490.37 s, respectively, of the proposed model. This article is 

presented in Appendix B with some changes in the submitted version to Computers and Industrial 

Engineering Journal, 15 April 2017. 

 

4. General Conclusions and Future Research 

The Benders decomposition algorithms (ICBD - proposed method and T&B – Tran and Beck, 

2012) presented better performance than the mathematical model from Avalos-Rosales et al. (2015) 

(MIP), tested in the instances from Vallada and Ruiz (2011) used by Avalos-Rosales et al. (2015). 

The proposed ICBD method does not find 31 optimal solutions, whereas the T&B and MIP 

methods, 57 and 63 respectively. The gap and the runtime of the ICBD were 0.07% and 377.86 s, 

respectively, versus 0.28% and 706.28 s of the MIP and 0.17% and 573.89 s of the T&B, 

respectively. In addition, the ICBD method in relation to the T&B method also shows 

improvements compared to the same instances of the paper from Tran and Beck (2012). In this case, 

as the two methods find optimal solutions for all instances up to the maximum runtime of 3,600 s, 

the performance difference is in the mean runtime 53.50 s for the ICBD method, versus 65.19 s for 

T&B method. This indicates that the proposed hybridizations to improve the performance of the 

Benders decomposition algorithm presented the expected results. Follow others conclusions and 

proposed future works from the study of this problem. 

 

- The master problem of Benders decomposition algorithms for UPMSP find tight LBs. 

- The proposed procedures improve the convergence of the method, especially when the 

instances are more difficult. 

- Using the Benders-and-cut (Geoffrion and Graves, 1974) did not have the expected results. 

- The local branching strategy (Fischetti and Lodi, 2003) did not improve the performance of 

the method. 
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- Must be develop more efficient Benders cuts than only the no-good cuts. 

- Heuristics must be proposed to create good quality solutions to insert in the first iteration of 

the master problem as a way to reduce the number of solutions that will be evaluated.  

- To test the ICBD on similar problems such as vehicle routing. 

- Apply ICBD on large parallel machine scheduling problems as a heuristic, restricting the 

search space to find good quality solutions in less computational time. 

 

The proposed positional model for the UPMSP with total tardiness as the performance criterion 

presents a tighter linear relaxation than the previous mathematical models that use the big-M 

constant. For example, in the small instances and congestion level q = 5 obtains a gap of 4.40% in 

relation to the optimal solution, while the Manne model obtains 94.54%. The positional model is 

easier to find optimal solutions and in less computational time, for example, found optimal solutions 

for all small instances at the congestion level q = 5 in 2.28 s on average versus 9 optimal solutions 

found by Manne model in 3,300.28 s with average gap of 63.49%. 

The positional model does not perform as well for medium-size instances when the congestion level 

is low. For example, it obtains a mean gap of 90.22% for congestion level q = 2. Even so, the 

positional model can be used to solve the subproblems of the proposed Dantzig-Wolfe 

decomposition (Dantzig and Wolfe, 1960). In addition, the proposed column generation algorithm 

(HCG) used heuristics to generate the initial columns and solve the subproblems. The HCG, for 

example, for the congestion level q = 1 obtains a mean gap of 0.03% versus 56.77% of the 

positional model and used 99.30 s of mean runtime versus 2,306.96 s of the positional model. A 

summary of conclusions and proposed future works from the study of this problem are presented 

following. 

 

- The positional model that does not need the big-M constant for linearization of the problem 

precedence constraints has been developed. 

- The positional model is able to find good linear relaxation and final solutions compared to 

the Wagner and Manne models. 

- The positional model is not so effective for instances with loose due dates. 

- A heuristic based on the linear relaxation of the positional model is possible for tight due 

dates, that is, q = 3, 4 and 5. 

- The positional model efficiently solves the subproblems of the column generation algorithm. 

- The iterated local search (ILS) method generates good initial solutions for instances with 

loose due dates, that is, q = 1 and 2. It allows the hybrid column generation algorithm to be 

efficient with these instances. 
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- Can be developed methods to eliminate the negative effect on the performance of the 

positional model when applied in instances with loose due dates. 

- The positional model can be applied in parallel machine scheduling problems with other 

performance criteria, for example, a combination of completion time and total tardiness. 

- To test the reuse of part of the subproblem solutions as well as Desrochers and Soumis 

(1988) as a way to reduce computational time. 

- To test the positional model and HCG on other scheduling problems with the big-M constant 

in their formulation.  

- To apply the idea of dummy job to replace the big-M constant in other problems, for 

example, vehicle routing with pick-up and delivery. 
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Abstract 

This paper addresses the unrelated parallel machines scheduling problem with sequence and 

machine dependent setup times. Its goal is to minimize the makespan. The problem is solved by a 

combinatorial Benders decomposition. This method can be slow to converge. Therefore, three 

procedures are introduced to accelerate its convergence. The first procedure is a new method that 

consists of terminating the execution of the master problem when a repeated optimal solution is 

found. The second procedure is based on the multicut technique. The third procedure is based on the 

warm-start. The improved Benders decomposition scheme is compared to a mathematical 

formulation and a standard implementation of Benders decomposition algorithm. In the 

experiments, two test sets from the literature are used, with 240 and 600 instances with up to 60 

jobs and 5 machines. For the first set the proposed method performs 21.85% on average faster than 

the standard implementation of the Benders algorithm. For the second set the proposed method 

failed to find an optimal solution in only 31 in 600 instances, obtained an average gap of 0.07%, 

and took an average computational time of 377.86 s, while the best results of the other methods 

were 57, 0.17%, and 573.89 s, respectively. 

Keywords: scheduling; unrelated parallel machines; combinatorial Benders decomposition; 

acceleration techniques. 

 

1. Introduction 

This paper addresses the unrelated parallel machines scheduling problem with sequence and 

machine dependent setup times (UPMSP-SMDST). Scheduling problems with parallel machines 

have been extensively studied and applied in many manufacturing systems [1]. Because of the 

rising costs of raw materials, labor, energy, and transportation, the role of scheduling is currently 

essential for the planning of companies [2]. To learn more about these kinds of problems, the survey 

produced by Mokotoff [3] can be consulted. Most of the literature on these problems ignores the 
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setup time between jobs. However, Allahverdi and Soroush [4] presented a study that shows the 

importance of considering the setup time to produce more realistic and effective planning. 

The UPMSP-SMDST is an NP-hard problem, since a special case of this problem with a single 

machine is equivalent to the traveling salesman problem, which is NP-hard [5]. Among the few 

studies that use exact methods for the solution of this problem, Rocha et al. [6] is notable because it 

proposed a branch-and-bound approach to minimize the makespan and the sum of weighted 

tardiness of each job. Paula et al. [7] proposed a non-delayed relax-and-cut algorithm based on the 

Lagrangian relaxation of a time-indexed formulation to minimize the total weighted tardiness. Tran 

and Beck [8] presented an algorithm based on a logic-based Benders decomposition to minimize the 

makespan. Finally, Avalos-Rosales et al. [1] explored many mathematical formulations with a new 

linearization to calculate the makespan. 

Most studies use heuristics and metaheuristics to solve the UPMSP-SMDST. Among these papers, 

Paula et al. [9] proposed an approach based on variable neighborhood search to minimize the 

makespan and the sum of weighted tardiness of each job. Lin et al. [10] presented an iterated greedy 

heuristic to minimize the total tardiness. Vallada and Ruiz [11] used two versions of a genetic 

algorithm to minimize the makespan. Ying et al. [12] proposed a restricted simulated annealing 

algorithm to minimize the makespan, and Lee et al. [13] evaluated an algorithm based on the tabu 

search to minimize the total tardiness. Arnout et al. [14] presented an ant colony algorithm with two 

stages to minimize the makespan. Finally, Avalos-Rosales et al. [1] proposed three versions of a 

method based on multi-start and VNDS algorithms to minimize the makespan. 

The combinatorial Benders decomposition was chosen to solve the UPMSP-SMDST in this study 

because it has been successfully applied to several scheduling problems ([15], [16], [17], [18], [8], 

[19]. The Benders decomposition method consists in dividing the original problem into a master 

problem and an easier subproblem. In a minimization problem, the master problem solution 

provides a lower bound (LB) and the subproblem solution provides an upper bound (UB) to the 

original problem. The subproblem is used to evaluate the feasibility of the solutions provided by the 

master problem and, if necessary, generate combinatorial inequalities, called Benders cuts, which 

are added to the master problem iteratively until the optimal solution of original problem is obtained 

[20]. As the Benders cuts are added, the difference between the UB and LB decreases, and when 

UB – LB ≤ ε, where ε is some tolerance, the optimal solution has been found. This method is also 

known as the logic-based Benders decomposition. The combinatorial Benders decomposition is a 

generalization of the classic Benders decomposition because the subproblem may be any 

combinatorial problem, not necessarily a linear or nonlinear programming problem [21]. 

The contribution of this paper is the proposal of three procedures to accelerate the convergence of 

the combinatorial Benders decomposition as applied to the UPMSP-SMDST. The first procedure is 

proposed for the first time and consists of terminating the execution of the master problem when a 

repeated optimal solution is found. The second procedure is based on the multi-cut technique and 

generates several Benders cuts at each iteration based on quality solutions found during the 

execution of the master problem. The third procedure is based on the warm-start technique and 

consists of performing a restricted master problem that is easier and hence quicker to solve than the 
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original master problem, generating Benders cuts more quickly. Moreover, with specific 

adaptations, these procedures may be applied to other problems. 

The rest of the paper is organized as follows. Section 2 presents the definition and an actual 

mathematical formulation of the UPMSP-SMDST. Section 3 presents a definition of the Benders 

decomposition and reviews papers on convergence acceleration techniques for this method. It also 

describes the proposed procedures and their combination to create the method proposed in this 

paper, which is called the improved combinatorial Benders decomposition (ICBD). Section 4 

presents the results of computational experiments, which compare the best reported mathematical 

formulation, standard implementation of Benders decomposition, and ICBD. In Section 5, the 

conclusions are presented.  

 

2. Problem formulation 

In UPMSP-SMDST, a set N of jobs is scheduled on a set M of machines. Each job j takes 

processing time pij on machine i. The system machines are unrelated, which means that job j can 

have a processing time that is longer than job k on a specific machine, although the same cannot be 

true for another machine. There is a setup time, sijk, which corresponds to the time required between 

the end of job j and the beginning of job k on machine i. In this model, it is necessary to use a 

dummy job 0, with all its parameters equal to zero. Moreover, it is the first and last jobs of the 

sequences, where N0 is the set of jobs plus dummy job 0. The goal of the problem is to determine a 

schedule of job assignments for the machines that minimizes the makespan. Using the three-element 

notation of Graham et al. [22], this problem can be classified as R | sds | Cmax. 

Currently, the best mathematical model for the UPMSP-SMDST was proposed by Avalos-Rosales 

et al. [1]. In this model, yij is 1 if job j is processed in machine i (and 0, otherwise), xijk is 1 if the job 

k is processed immediately after job j in machine i (and 0, otherwise), Cj denotes the completion 

time of job j, and Cmax is the makespan of the solution. The model itself is as follows: 
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Objective (1) minimizes the makespan of the solution. Constraints (2) ensure that each job is 

processed by only one machine. Constraints (3) and (4) ensure that each job has only one 

predecessor and successor, respectively. Constraints (5) ensure that a maximum of one job is 

scheduled as the first job on each machine. Constraints (6) are a new linearization to calculate 

makespan that is independent of V, which is a very high value constant. Although, it is worth noting 

that Tran and Beck [8] were the first to propose this constraint to strengthen the master problem. 

Constraints (7) ensure the correct order of the jobs and eliminate the formation of sub-cycles, that 

is, if xijk = 1 the completion time of job k should be greater or equal than the completion time of job 

j, and if xijk = 0, these constraints becomes redundant. Constraints (8) also define the makespan of 

the solution. Constraints (9) assign 0 to the completion time of the dummy job. Constraints (10) to 

(12) define the non-negativity and integrality of the variables. Finally, constraints (6) are 

responsible for the efficiency of this model relative to other models applied to this problem. 

 

3. Combinatorial Benders Decomposition 

The combinatorial Benders decomposition can be used to decompose the UPMSP-SMDST into a 

master problem of job allocation on machines and m scheduling subproblems on a single machine. 

The subproblems are used to evaluate the feasibility of the solutions found by the master problem 

and to generate Benders cuts if needed. A standard implementation of this method for the UPMSP-

SMDST was first proposed by Tran and Beck [8]. However, the direct application of this method 

converges slowly. Therefore, this paper proposes three procedures for accelerating its convergence. 

The main issues associated with this slow convergence are (i) the run times of the master problem 

and subproblems, and (ii) the quality of the produced cuts [23]. Many studies have been carried out 

to develop techniques to accelerate the convergence of the Benders decomposition. They can be 

classified into two main approaches. The first uses strategies to reduce the computational effort to 
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solve the master problem, and the second generates more effective cuts to eliminate infeasible or 

suboptimal solutions [24]. Because the Benders cuts generated from any solution of the master 

problem are valid, this enables the creation of many types of cuts ([25], [26], [27], [23], [24], [28], 

[29]). McDaniel and Devine [30] suggested the warm-start technique, which generates cuts using 

the solution of the master problem by relaxing the integer variables. Wheatley et al. [31] developed 

a scheme called restrict-and-decompose, which consists of relaxing the integer variables of the 

original master problem and executing it. When this problem does not generate more cuts, the 

technique returns to the original master problem. Geoffrion and Graves [32] proposed a scheme in 

which Benders cuts are generated each time a new feasible solution that is better than the current 

incumbent solution is found. This strategy avoids having to solve the master problem until the end 

in order to generate Benders cuts. It can also economize computational time. Cote and Laughton 

[33] demonstrated the benefit of using a heuristic to find good solutions to the master problem. 

Similarly, Rei et al. [26] used the local branching strategy of Fischetti and Lodi [34] to explore the 

neighborhood of each solution obtained by the master problem to detect repeated optimal solutions. 

Poojari and Beasley [35] used a genetic algorithm along with a heuristic to find feasible solutions of 

the master problem. Sherali and Lunday [24] proposed generating a set of initial cuts for the master 

problem. Huang and Zheng [36] proposed a type of feasibility cut to iteratively remove infeasible 

solutions with certain characteristics. Another strategy is to propose and introduce valid inequalities 

in the master problem before starting the method in order to eliminate infeasible solutions ([27], 

[37], [38]). Generating more than one good quality Benders cut in each iteration is known as the 

multi-cut technique [39]. Magnanti and Wong [40] defined the concept of Pareto-optimal cut for 

degenerate Benders subproblems and applied the multi-cut technique. 

The proposed acceleration procedures are aimed at reducing the execution time of the master 

problem and multi-cut generation. Methods to improve the quality and quantity of cuts generated as 

Pareto-optimal cut [40], covering cut bundle [27], maximum feasible subsystem [23], maximization 

density cut [28], among other methods cited were not used because they depend of a linear 

subproblem, and in the problem under study the subproblem is integer. The valid inequalities found 

in the literature were also not used because they are specific to the problems addressed, from an 

depth analysis we did not identify any specific or generic valid inequality for the studied problem. 

Furthermore, we tested two acceleration methods cited, the first from Geoffrion and Graves [32], 

and second the local branching strategy from Fischetti and Lodi [34]. But, they failed to have a 

better performance than the procedures that we propose. The proposed convergence acceleration 

procedures are as follows. 

3.1 Termination of the master problem execution 

In a standard Benders decomposition sometimes the optimal solution of the master problem (LB) is 

equal to the optimal solution of the previous iteration, that is, different solutions with the same 

value. Therefore, we propose a procedure that terminates the execution of the master problem early 

when a repeated optimal solution is found. Hence, when this happens, the master problem does not 

need to run to the end, saving computational time. 

Proposition 1. If, during the master problem execution, a new solution equal to the current LB is 

found, the execution of the master problem is terminated, and the LB keeps the same value. 
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Proof. The optimal solution value of the master problem cannot be  lower than the value of the 

optimal solution found in the previous iteration. That is, given the lower bound at iteration k (LBK), 

by definition the sequence of lower bounds obtained by the master problem is LB1 ≤ LB2 ≤ LB3... ≤ 

LBk. Otherwise, the previous solution would not be optimal. This occurs because there can be 

multiple optimal solutions with the same value. Therefore, in this case, the LB remains the same. 

 

3.2 Multi-cuts 

A combinatorial Benders cut (CBC) is generated when an infeasible subproblem is identified. In the 

problem in this study, this happens when the master problem finds a job sequence for machine i 

with sub-cycles. For instance, consider six jobs labeled 1 to 6. Two sub-cycles would be 0-1-3-4-0 

and 6-5-2-6. Tran and Beck [8] proposed the cut shown below. 

 

     
          

    
 

                                                       

where   
  is the completion time of the jobs in the subproblem associated with machine i at iteration 

h,   
  is the set of jobs assigned to machine i at iteration h, and θhij is an upper bound of the effect of 

job j on completion time when assigned to machine i at iteration h, calculated as               , 

    
     . That is, when job j is no longer part of the solution, the value of LB can be reduced 

up to θhij. 

By analyzing the proposed cut by Tran and Back [8] there is a failure. Given the hypothetical job 

sequence S={a, b, c, d}, if the job c was removed, the effect on LB only by the setup times is sibc + 

sicd – sibd, and if max(sikc) ≥ sibc + sicd – sibd, the cut is still valid, otherwise it is not. Therefore, we 

use a “no-good” cut that only eliminates an infeasible solution that has been found. According to 

some authors, this type of cut can be very weak [41], but it was used because a no special structure 

was found that could build stronger cuts. That is, cuts that eliminate other infeasible or suboptimal 

solutions. The only change made in relation to (13) was to replace θhij by a very high value constant. 

Tests with the version of Tran and Beck’ Benders algorithm using both cut types showed no 

difference in performance and solutions obtained. We made this change in cut because the previous 

cut is not a separation cut as claimed, but only a no-good cut. 

Experiments carried out with the standard implementation of Benders decomposition have shown 

that the master problem generated many quality solutions in addition to the optimal solution. Given 

an iteration h, we define quality solutions those that have a value S, LB ≤ S ≤ UB
h-1

. The optimal 

solution of the next iteration (h + 1) may be among these solutions, if the method has not been 

terminated in iteration h. Therefore, these solutions, including the optimal solution, are stored in a 

set called as solutions pool. For example, if the values of LB = 120 and UBh-1 = 150, and the 

solutions returned by the solver after solving the master problem are {s0 = 122, s1 = 131, s2 = 141, 

s3 = 147, s4 = 152}. The pool will be formed by the solutions s0 to s3, because they are equal and 

smaller to UBh-1. Each solution of the pool is solved by the subproblem, not just the optimal 
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solution, which is why the procedure is a multi-cut. When a job sequence of a machine in the 

solution pool is found to be infeasible, a CBC is generated, as described above. This forces the 

master problem to generate solutions other than those of the solutions pool in the next iteration. 

Thus, the multi-cut strategy reduces the number of iterations required for the convergence of the 

method, thereby reducing computational runtime. 

 

3.3 Warm-start 

A warm-start procedure for the combinatorial Benders decomposition is proposed, based on the idea 

of solving a restricted master problem. The aim is to produce good quality CBCs more quickly. 

Many authors have shown that the strong lower bounds found by the linear relaxations of time-

indexed formulations for machine scheduling problems provide useful information for guiding 

primal heuristics called list-scheduling algorithms ([42], [43], [44]). In this sense, the linear 

relaxation of the Benders decomposition master problem also provides a strong lower bound. The 

tests conducted in this study show that the gap between the linear relaxation and integer optimal 

solution of the master problem was on average 7%. In addition, Fanjul-Peyro and Ruiz [45] showed 

that, for a scheduling problem on parallel machines without setup time, size-reduction heuristics 

produce good quality solutions with little computational effort. These heuristics use some clever 

criteria to reduce the number of variables available during the run of the mathematical model. We 

join these two ideas to propose our restricted master problem. 

The restricted master problem is obtained by setting a set of variables of the master problem to zero 

as follows. First, a linear relaxation of the master problem is performed. That is, all jobs for which 

the variable yij obtained a nonzero value are inserted into the set of jobs available for machine i, 

which is denoted as   
 . In addition, the rest of the jobs are inserted into the set of jobs not available 

for machine i, denoted by   
 . Thus, the restricted master problem is executed with the variables yij 

of the jobs in   
  set to 0, that is, they cannot be chosen, while the variables yij of the jobs in   

  can 

take the value of 0 or 1. To increase the number of available jobs on each machine and 

consequently improve the quality of the solutions, the following size-reduction heuristic is used. We 

first evaluate each job in   
  and choose the one that could possibly generate the least effect on the 

completion time of machine i (Ci), which is then inserted into   
 . To calculate this effect, 

parameter     is calculated for each job k    
 . This parameter is the sum of the processing time of 

job k on machine i, the lowest setup time for jobs j subsequent to job k, and the lowest setup time 

for jobs j before job k, where j    
 , that is,                             . The job k with 

the minimum     is inserted into   
  and removed from   

 . This procedure is repeated until   
  

achieves the desired size. 

The proposed warm-start procedure consists of a Benders decomposition using the restricted master 

problem described above rather than the master problem with all available jobs (the original master 

problem). The master problem is hence solved more quickly, and thus CBC are also generated more 

quickly. The warm-start procedure is executed in two stages with different percentages of jobs in 

  
 , because they empirically showed better performance. Each stage ends after a fixed number of 

iterations or when the optimal solution of the restricted master problem is equal to the UB. We 
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make the observation that the optimal solution of the restricted master problem is not an LB of the 

original problem. 

3.4 ICBD 

The master problem is a relaxation of the mixed-integer formulation proposed by Avalos-Rosales et 

al. [1] for the UPMSP-SMDST. This relaxation removes the elimination constraints of the sub-

cycles, i.e., constraints (7), and consequently constraints (8) and (10). For this reason, the master 

problem may find job sequences with sub-cycles, which are infeasible solutions. However, this 

relaxation provides a tight LB and is significantly easier to solve than the complete problem. Thus, 

this relaxation decomposes the UPMSP-SMDST into a master problem of job allocations and m 

scheduling subproblems on a single machine, which are used to evaluate the existence of sub-

cycles. 

Given a solution of the master problem, where   
  

 is the completion time of the job sequence of 

machine i in the master problem, the next step is to determine the existence of any sub-cycles on 

each machine i by means of a subproblem. The resulting subproblem is equivalent to the traveling 

salesman problem with directed arcs, also known as asymmetric traveling salesman problem. In this 

representation, the jobs are the nodes and the distances between the nodes are the setup times 

between jobs. The completion time of the sequence is the sum of the distances between the nodes 

and the processing time of the jobs. For each iteration h of the algorithm and machine i, one 

subproblem    
  is generated and its completion time   

  is found. When   
  >   

  
, the sequence 

has a sub-cycle, so a CBC is generated and added to the master problem. The biggest   
  is the 

iteration makespan     
 . If     

  is smaller than the UB, then it becomes the new UB. This 

procedure is called subproblem evaluation, and its pseudocode is shown in Algorithm 1. 

 

Algorithm 1: Subproblem evaluation. 

 

 

 

 

 

 

 

The proposed ICBD method consists of solving the master problem (MP) using the three proposed 

procedures and the subproblems until a terminating condition is true. In each iteration h of ICBD, 

the master problem generates a solution pool of size |Pool| according to the multi-cut procedure 

outlined in Section 3.2. Algorithm 1 evaluates each one of the solutions. The ICBD algorithm is 

presented in Algorithm 2. 

1      Given a solution of the master problem; 

2          
  ← 0; 

3      for i=1 until m do 

4          
 ←solve    

 ; 

5        if   
 >  

  
 (has sub-cycle) then add CBC; 

6        if   
 >    

  then     
 ←   

 ; 

7      end-for 

8      if UB>    
  then UB ←     

 ; 
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Algorithm 2: ICBD 

 

 

 

 

 

 

 

 

* Restricted or original master problem. 

Algorithm 2 is used for both the restricted and original master problems. Thus, this algorithm is 

executed twice in sequence: once in the warm-start procedure with the restricted master problem, 

and once with the original master problem. The warm-start procedure is terminated at the 

conclusion of its two stages or when their execution time reaches the maximum time allowed. The 

original master problem is terminated when the optimality condition (UB – LB ≤ 0.0001) or total 

allowed run time is reached. It is important to note that during the warm-start procedure, the optimal 

solution of the master problem is not a valid LB of the problem because it does not have all the 

variables available. 

 

4. Computational experiments 

In order to test the mathematical formulation and Benders decomposition methods, they were 

implemented using API Concert Technology for C++ and solved using IBM ILOG CPLEX 12.5. 

Tests were performed on a Dell Inspiron notebook, equipped with an Intel Core i5-2430M 2.40 

GHz processor with 4 GB of memory and a Windows 7 operating system. The maximum runtime 

allowed for any case was 3,600 s. If the solver was not able to find the optimal solution, the best 

integer solution obtained is reported. 

The computational experiments are performed using two different instance sets. First with the 

instances used by Tran and Beck [8] and next with instances from Vallada and Ruiz [11] used by 

Avalos-Rosales et al. [1]. The test instances obtained from Tran and Beck [8] have the following 

configuration, with number of jobs N   {10, 20, 30, 40, 50, 60} and number of machines M   {2, 3, 

4, 5}. Setup times were uniformly distributed at the interval: 25–50. Processing times were 

uniformly distributed between 5 and 200. There were 10 replications for each possible combination 

of numbers of job and machine, making a total of 240 instances. According to Tran and Beck 

(2012) to obtain setup times that were sequence dependent and follow the triangular inequality, 

each job was given two different sets of coordinates on a Cartesian plane for every machine. The 

setup times are the Manhattan distances between two jobs’ coordinates. Distances between the 

1  begin 

2    h ← 0; UB ← +∞; stop ← false; 

3    while (stop = false) do 

4      h ← h + 1; 

5      solve MP*; 

6      for k=1 until |Pool| do // multi-cut 

7        evaluation of subproblems (Algorithm 1); 

8     end-for 

9     evaluate the terminating condition; 

10   end-while 

11 end 
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second set of coordinates are used to provide asymmetric setup times. The triangular inequality 

states that, for any three jobs j, l, k requiring the same resource (machine i), the inequality sijk ≤ sijl + 

pil + silk. The test instances obtained from Vallada and Ruiz (2011), N   {20, 30, 40, 50, 60} and M 

  {2, 3, 4, 5}. Setup times were uniformly distributed over three intervals: 1–49, 1–99, and 1–124. 

Processing times were uniformly distributed between 1 and 99. There were 10 replications for each 

possible combination of jobs and machines, and setup time, making a total of 600 instances. These 

latter authors did not state whether the triangular inequality of their instances is ensured. Last 

instances are available at http://soa.iti.es. 

The instances were grouped by number of jobs and machines. Therefore, each table row represents 

the average results of 10 or 30 instances tested from Beck and Tran [8] or Vallada and Ruiz [11], 

respectively. Table 1 compares the results of the Benders decomposition method of Tran and Beck 

[8] (T&B), and the proposed ICBD method using instances from Tran and Beck [8]. Columns 1 and 

2 refer to the number of jobs and machines, respectively. The remainder of the table is divided into 

three groups. The first group refers to the average percentage gap between the first iteration LB of 

MP (LB1) and the optimal solution (opt), wich is calculed as 100*(opt – LB1)/LB1. The second and 

third group show the results from T&B and ICBD methods. Columns of each group refer to the 

number of iterations (iter), number of cuts (#cut) and run time (time). 

All instances from Tran and Beck [8] were solved to optimality by the two methods in less than 

3,600 s. From Table 1 it is noted that the average number of iterations of T&B method was 1.69. A 

more detailed analysis showed that 44.2% of instances are solved with only one iteration (i.e., the 

first solution of MP is equal to optimal solution) and 45.8% of instances are solved in two 

iterations. Although, 90% of instances are solved within two iterations, and the maximum number 

of iterations was 5 wich occurred once. Therefore, with this instance set the ICBD method was 

performed using only the multi-cut procedure because other procedures only consume 

computational time and not bring any advantage. In the combinations 10x2, 10x3, 10x4, and 20x4 

the ICBD method does not reduce the number of iterations or increase the number of cuts 

generated. In other combinations there were improvements, but as the number of iterations is small 

the improvements are also small. The biggest differences in runtimes were in the instances with five 

machines, usually more difficult. Moreover, the final reduction in runtime using the ICBD method 

compared to T&B method was 21.85%. 
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Table 1 – Comparison of T&B, and ICBD methods using the instances from Tran and Beck (2012). 

% gap time # iter # cut Time # iter # cut Time

2 0.23 0.05 1.40 2.80 0.10 1.40 2.80 0.11

3 0.14 0.11 1.20 3.60 0.16 1.20 3.60 0.17

4 0.44 0.23 1.10 4.40 0.30 1.10 4.40 0.29

5 0.40 0.23 1.20 6.00 0.34 1.20 6.50 0.33

2 0.11 0.18 1.80 3.60 0.45 1.70 4.00 0.42

3 0.34 0.40 2.10 6.30 0.90 2.00 8.70 0.86

4 0.18 1.02 1.50 6.00 1.55 1.50 6.00 1.58

5 0.31 1.85 1.50 7.50 2.79 1.40 7.00 2.59

2 0.07 0.33 1.70 3.40 0.71 1.60 3.40 0.66

3 0.17 0.94 1.80 5.40 1.70 1.70 6.60 1.63

4 0.27 2.56 1.90 7.60 7.01 1.90 10.80 6.87

5 0.17 18.19 1.80 9.00 99.49 1.70 10.00 68.15

2 0.06 0.72 1.90 3.80 2.02 1.90 4.00 1.94

3 0.05 1.57 1.60 4.80 2.77 1.50 5.40 2.73

4 0.17 11.73 1.80 7.20 18.77 1.70 8.00 18.66

5 0.19 41.14 1.90 9.50 102.10 1.70 12.00 99.24

2 0.03 0.69 1.80 3.60 2.23 1.70 4.00 2.14

3 0.07 3.37 1.50 4.50 6.42 1.50 4.80 5.24

4 0.12 28.65 1.70 6.80 44.32 1.70 9.20 40.59

5 0.09 133.74 1.70 8.50 267.45 1.70 12.00 212.99

2 0.04 1.44 1.80 3.60 3.89 1.70 3.80 3.79

3 0.05 5.66 1.80 5.40 8.89 1.70 5.70 8.58

4 0.05 64.36 1.70 6.80 111.89 1.60 8.00 106.71

5 0.13 303.25 2.30 11.50 878.30 2.10 15.00 697.76

0.16 25.93 1.69 5.90 65.19 1.62 6.90 53.50Average

10

20

30

60

40

50

ICBD
n m

T&BLB

 

Table 2 shows the average percentage gap of results obtained using the first solution of MP and the 

optimal solution (or the best solution) for the instances from Vallada and Ruiz [11]. The first 

column represents the number of jobs, remainder of the table is divided into five groups, the first 

four groups show the results for four number of machines and average results for each number of 

jobs is shown in the fifth group. It is noted that the gaps are greater than those obtained using the 

instances from Tran and Beck [8], an overall average gap of 1.54% vs. 0.16%, respectively. Gaps 

increase as the number of machines also increases, but the opposite occurs when increasing the 

number of jobs. 

Table 2 – Results of average percentage gap for the first MP solution using instances from Vallada 

and Ruiz (2011). 

%gap time %gap time %gap time %gap time %gap time

20 1.22 0.17 2.56 0.39 3.00 1.04 3.15 1.70 2.48 0.82

30 0.88 0.33 1.56 0.96 1.88 3.56 2.51 10.50 1.71 3.84

40 0.56 0.58 1.21 1.41 1.70 7.07 1.98 36.38 1.36 11.36

50 0.34 1.19 0.76 2.30 1.30 11.92 2.16 106.81 1.14 30.56

60 0.32 1.23 0.70 3.47 1.12 31.44 1.87 228.16 1.00 66.08

Average 0.66 0.70 1.36 1.71 1.80 11.01 2.33 76.71

Average
n

m = 2 m = 3 m = 4 m = 5

 
 

The parameter values used by ICBD method are shown next. The percentages of jobs in the sets   
  

in the warm-start procedure were set to 50% and 75%, for the first and second stages, respectively. 

The maximum number of iterations of each warm-start stage was eight. A calibration of these 

parameters was attempted, although in the combinations tested, none had a superior statistical 

performance, so these tests are not presented. The maximum time allowed for the execution of the 
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two warm-start stages was 1,800 s. The maximum execution time of the original master problem 

was 3,600 s minus the total execution time of the warm-start procedure. 

Table 3 compares the results of the mixed-integer programming model (MIP) of Avalos-Rosales et 

al. [1], the T&B method, and the ICBD (with three proposed procedures) method using the 

instances from Vallada and Ruiz [11]. Columns 1 and 2 refer to the number of jobs and machines, 

respectively. The remainder of the table is divided into three groups. The first group refers to the 

number of unsolved instances until optimality (#Uns.). The second group shows the average 

percentage gap (%Gap), which is calculated as 100*(UB – LB)/LB. The third group shows the 

average CPU time elapsed in seconds (Time) when solving the instances. There are three columns 

for each group and one for each method evaluated. Values in italics indicate the best result for a 

particular combination of jobs and machines. 

Comparing the three methods, ICBD obtained the best results for each one of the three performance 

criteria analyzed. It failed to solve only 31 instances, MIP failed to solve 57 instances, and T&B had 

63 unsolved instances. ICBD obtained the lowest overall average gap of 0.07%, while the T&B and 

MIP methods obtained 0.17% and 0.28%, respectively. In all instance groups, ICBD obtained an 

average gap that was lower than or equal to the other methods. The instances with 60 jobs and 5 

machines obtained the highest gaps: the MIP, T&B, and ICBD methods obtained 3.18%, 1.08%, 

and 0.68%, respectively.The average execution time of ICBD was 377.86 s, while those of the T&B 

and MIP methods were 573.89 s and 706.28 s, respectively. A decrease of 51.88% at runtime with 

ICBD method over the T&B method, higher than obtained using the instances from Tran and Beck 

[8], because the instances from Vallada and Ruiz [11] need more iterations to be solved, then the 

proposed improvement methods obtain better results. In the T&B method, 7.67% and 15.17% of the 

instances are solved with one and two iterations, respectively, much lower percentages than using 

instances from Tran and Beck [8]. The results indicate that Vallada and Ruiz instances are more 

difficult to obtain the optimal solution. Therefore, justifies the use of the three improvement 

procedures. 
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Table 3 – Comparison of the MIP, T&B, and ICBD methods based on the number of unsolved 

instances, average gap, and execution time. 

MIP T&B ICBD MIP T&B ICBD MIP T&B ICBD

20 2 0 0 0 0 0 0 0.95 0.89 1.07

3 0 0 0 0 0 0 2.52 2.14 1.87

4 0 0 0 0 0 0 8.17 9.01 4.27

5 0 0 0 0 0 0 31.12 31.05 11.65

30 2 0 0 0 0 0 0 3.48 2.79 3.06

3 0 0 0 0 0 0 17.27 34.62 10.99

4 0 1 0 0 0.01 0 145.81 233.14 83.26

5 0 0 0 0 0 0 365.14 287.38 85.61

40 2 0 0 0 0 0 0 10.85 3.41 4.93

3 0 0 0 0 0 0 66.68 30.9 16.09

4 0 0 0 0 0 0 466.00 348.09 111.52

5 2 8 2 0.15 0.67 0.05 1463.93 1446.89 743.84

50 2 0 0 0 0 0 0 40.54 5.69 9.96

3 0 1 0 0 0.01 0 257.40 280.30 103.89

4 3 4 1 0.11 0.11 0.02 1545.20 1212.69 648.19

5 18 16 11 1.87 1.22 0.53 2993.74 2542.33 2031.87

60 2 0 0 0 0 0 0 82.51 24.34 19.72

3 1 3 1 0.02 0.03 0.01 844.00 737.04 247.40

4 7 9 3 0.29 0.28 0.06 2306.63 1446.28 929.21

5 26 21 13 3.18 1.08 0.68 3473.69 2798.76 2488.82

Sum 57 63 31 Average 0.28 0.17 0.07 706.28 573.89 377.86

n m
# Uns % Gap Time

 

The average number of iterations using the original master problem is 1.87 for ICBD and 8.90 for 

T&B, and this difference is due in part to the average number of iterations performed by the warm-

start procedure, which is 6.63. Adding together the number of both iterations, the ICBD method 

uses on average 8.5 iterations. Although both methods have almost the same number of iterations, 

the iterations during the warm-start procedure consume less computational time than those of the 

original master problem, and since there are more of them in ICBD, it makes this method faster. 

The quantity of CBCs generated by the ICBD during the warm-start procedure (56.76) is higher 

than those generated during the execution of the original master problem (10.07). The ICBD 

produces on average 66.83 CBCs in both phases, much more than the T&B method, which produces 

an average of 32.40 CBCs. This is because of the multi-cut procedure. The early termination of the 

master problem occurs on average 1.89 times in all instances; however, as the number of jobs 

increases, the number of times that this procedure is executed also increases. For example, in the 

instances with 60 jobs and 3 machines, it occurs on average 4.60 times. For ICBD, the average run 

time of the warm-start procedure is 193.18 s, which is greater than the average run time of original 

master problem, which is 184.68 s. The sum of these two run times is 377.86 s, which is less than 

the average run time of the T&B method (573.89 s). These results are shown in Table 4, where 

columns 1 and 2 refer to the number of jobs and machines, respectively. The average numbers of 

iterations (#iter) and cuts (#cut) during the execution of the original master problem were measured 

for both the T&B and ICBD methods. In addition, the average numbers of master problem 

terminations (#ta), warm-start iterations (#ws iter), and CBCs generated in the warm-start procedure 

(#ws cut) were measured for ICBD. The average ICBD execution times of the warm-start procedure 

(ws time) and original master problem (original time) were also measured. 
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Table 4 – Comparison of T&B and ICBD relative to traditional and proposed convergence 

acceleration elements. 
 

# iter # cut # ta # ws iter # iter # ws cut # cut ws time normal time

20 2 3.73 7.47 0.30 4.27 1.47 12.93 4.13 0.74 0.33

3 4.53 13.60 0.60 5.20 1.40 24.10 5.60 1.13 0.75

4 5.17 20.67 0.53 5.00 1.30 36.40 6.53 2.33 1.93

5 5.37 26.83 0.47 4.80 1.13 44.67 6.33 5.22 6.44

30 2 5.40 10.80 0.53 5.17 2.07 15.47 6.53 1.89 1.18

3 9.77 29.30 1.33 6.63 1.80 40.60 8.40 4.71 6.28

4 9.77 39.07 1.57 6.43 1.63 60.40 10.40 23.96 59.3

5 7.93 39.67 0.90 5.67 1.23 62.17 7.50 50.54 35.07

40 2 4.73 9.47 0.47 4.77 2.00 14.87 6.87 3.09 1.84

3 8.50 25.50 1.63 6.47 1.43 39.50 5.70 8.34 7.75

4 12.23 48.93 1.77 7.87 1.33 76.13 7.20 65.99 45.53

5 9.17 45.83 1.97 6.97 1.47 89.83 10.50 374.79 369.05

50 2 5.07 10.13 0.90 5.17 2.30 16.67 7.53 6.56 3.4

3 14.27 42.80 3.73 7.30 3.90 48.10 22.50 20.61 83.28

4 13.10 52.40 2.90 8.93 2.00 92.40 12.13 345.19 303.00

5 11.43 57.17 3.57 8.47 1.57 130.50 14.50 1083.98 947.89

60 2 7.70 15.40 1.53 5.80 2.70 20.20 10.40 11.34 8.39

3 16.97 50.90 4.60 9.03 3.57 69.00 23.50 58.43 188.97

4 14.03 56.13 4.53 10.40 1.73 114.67 12.40 485.55 443.66

5 9.17 45.83 4.00 8.30 1.33 126.67 12.67 1309.28 1179.53

8.90 32.40 1.89 6.63 1.87 56.76 10.07 193.18 184.68

n m
T&B ICBD

Average

 

5. Conclusions 

The master problem of Benders decomposition provides a tight LB, as the optimality gap after the 

first iteration is at most 5% of the UB. Hence, the difficulty of the method is that there may be many 

solutions in the master problem that are smaller than the optimal solution of the original problem. 

Until all these solutions are found and evaluated by the subproblem, the method cannot be 

terminated with a gap of 0%. Therefore, the challenge is to find these solutions as quickly as 

possible. With that in mind, the proposed procedures seek to quickly find them. These procedures 

consist of an early termination of the master problem execution when a repeated LB is found, a 

multi-cut procedure that evaluates more than one solution at a time, and finally, a warm-start 

procedure, in which quality solutions are found more quickly. No procedure was developed to 

accelerate the subproblem solutions because they consume much less computational time than the 

master problem. 

The proposed acceleration procedures have not before been applied to the UPMSP-SMDST. 

Furthermore, they can be used with a combinatorial Benders decomposition in any other problem. 

In addition, the results show that the procedures improve the performance of the Benders 

decomposition scheme of Tran and Beck [8]. Moreover, the proposed method also performed better 

than the mixed-integer formulation of Avalos-Rosales et al. [1] relative to the three performance 

criteria analyzed. 
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The approach used by Geoffrion and Graves [32] of solving the master problem only once and 

generating a Benders cut each time a better incumbent solution is found was tested and used more 

computational time than the traditional approach. One hypothesis why this happened is that to 

implement this procedure, it is necessary to use a CPLEX callback function that disables the 

dynamic search used to improve CPLEX performance. The local branching strategy of Fischetti and 

Lodi [34] was also tested, but it consumed more computational time to find the repeated solutions 

of the proposed procedures. 

One proposal for future work is to develop a strong cut that eliminates more solutions than just the 

infeasible solutions as in the no-good cut. Another proposal is to develop a heuristic to create 

quality cuts to be inserted into the master problem before starting the Benders decomposition 

procedures themselves, as in Sherali and Lunday [24]. 
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Abstract 

This paper addresses the NP-hard unrelated parallel machine scheduling problem with sequence and 

machine-dependent setup times for minimizing total tardiness. Mathematical models for this 

problem often use a constant known as big-M on account of the disjunctive constraints. This yields 

very weak lower bounds that make it difficult to obtain the optimal solution, even for small-size 

instances. To address this problem, we propose a mathematical formulation that does not use the 

big-M constant. To this end, we present an approach that uses dummy jobs instead of the big-M 

constant. Additionally, an optimality condition method that reduces the solution space of the 

problem is proposed. Experiments conducted on five instance types produced computational proof 

of the superiority of the proposed model compared to models based on Wagner’s (1959) and 

Manne’s (1960) formulations. The proposed model produced 291 optimal solutions compared to 98 

and 148 of Wagner’s (1959) and Manne’s (1960) models, respectively, and it was up to three orders 

of magnitude faster in the 300 small-size instances that were tested. A column-generation algorithm 

is also proposed to find near-optimal solutions for medium-size instances with up to 50 jobs and ten 

machines. Unlike standard approaches, the proposed model is used instead of a dynamic 

programming algorithm to solve the pricing problem. For accelerating the convergence of the 

column-generation algorithm, various heuristics are proposed to generate the initial columns and 

solve the pricing problem. The hybrid column generation obtained an average gap and runtime of 

2.71% and 930.48 s, respectively, compared to 34.78% and 2,490.37 s, respectively, of the 

proposed model. Results indicate that the proposed approaches are more effective in terms of both 

running time and solution quality. In addition, these approaches can be used in other scheduling 

problems that use the big-M constant. 
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1. Introduction 

In today’s competitive business environment of manufacturing and services, efficient scheduling is 

one of the most critical issues (Afzalirad & Shafipour, 2015). The parallel machine scheduling 

problem (PMSP) is broadly applied in many manufacturing and service systems. It has therefore 

been a subject of continuing interest for researchers and practitioners (Mokotoff, 2001). Many types 

of PMSPs have been proposed in the literature. They can be classified into identical, uniform, and 

unrelated parallel machine categories (Cheng & Sin, 1990). Of these types, the unrelated PMSP, 

which includes the machine and sequence-dependent setup times and total tardiness as criteria, has 

received less attention than other PMSPs (Lee, Yu, & Lee, 2013). However, with the adoption by 

companies of the just-in-time philosophy, an increasing amount of research in the past two decades 

has involved tardiness (Lin, Chou, &Ying, 2007). Nevertheless, tardiness is a difficult criterion with 

which to work, even in the single-machine environment (Lin & Ying, 2007). Applications of all 

PMSP types are common in many industries, including painting, plastic, textile, glass, 

semiconductor, chemical, and paper manufacturing (Chang & Chen, 2011). 

Exact mathematical programming approaches for scheduling problems use two distinct types of 

formulations (Pessoa, Uchoa, Aragão, & Rodrigues, 2010): (1) formulations whereby the job 

sequence is represented by binary variables and completion times are denoted by continuous 

variables; and (2) time-indexed formulations, whereby the completion time of each job is 

represented by binary variables indexed over a discrete time horizon (Sousa & Wolsey, 1992). The 

formulations of type (2) are known to yield tight linear relaxations; however, they cannot be directly 

applied to many instances on account of their pseudo-polynomially large number of variables. The 

formulations of type (1) are compact in that they involve a polynomial number of variables and 

constraints. On the other hand, they yield poor linear relaxations. This is notoriously due to the big-

M constant having to linearize the disjunctive constraints (Koné, Artigues, Lopez, & Mongeau, 

2013). The formulations of type (2), on the other hand, do not use this constant. 

Avalos-Rosales, Angel-Bello, and Alvarez (2015) proposed several mixed integer formulations of 

type (1) for a PMSP to minimize the makespan. These formulations outperform the previously 

published formulations in terms of the instance size and computational time for reaching optimal 

solutions. Using these models, it is possible to solve instances up to 60 jobs and five machines that 

are six times larger than was previously solved. In addition, they enable attainment of optimal 

solutions for instances of the same size up to four orders of magnitude faster. This is only possible 

because those authors proposed a linearization method to calculate a makespan that does not use the 

big-M constant. We emphasize that these formulations still use this constant in the disjunctive 

constraints. Unfortunately, these formulations thus cannot be used when the criterion is the 

minimization of total tardiness once the new linearization applies only to computing the makespan. 

To the best of our knowledge, a formulation of type (1) for PMSPs with tardiness as a criterion that 

does not use the big-M constant does not exist. 

Inspired by the performance achieved by the formulation of Avalos-Rosales, Angel-Bello, and 

Alvarez (2015) we propose a mathematical formulation for the problem under study that does not 

use the big-M constant. To this end, we employ dummy jobs instead of the big-M constant to 

linearize the computation of the total tardiness of the jobs. We additionally propose an optimality 
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condition that reduces the solution space of the problem. Computational results showed that the 

proposed model obtained tight linear relaxations, more optimal solutions, the best feasible solutions, 

and smaller runtimes than existing models in the literature. These are the first contributions of this 

paper. 

For larger instances, the proposed model has difficulty obtaining the optimal solution, especially for 

instances with looser due dates. Therefore, an approach based on column generation (CG) 

combined with some heuristics is proposed. CG is an optimization method to solve a variety of 

combinatorial optimization problems, such as hybrid flow shop scheduling (Figielska, 2009), job 

shop scheduling (Jampani & Mason, 2010), server cluster optimization (Kramer, Petrucci, 

Subramanian, & Uchoa, 2012), roll-on/roll-off routing (Hauge, Larsen, Lusby, & Krapper, 2014), 

and vehicle scheduling (Guedes & Borenstein, 2015). The theoretical basis of the CG algorithm has 

been provided by Dantzig and Wolfe (1960). The linear program is divided into two problems, 

which are referred to as the relaxed and restricted master problem and subproblem. The subproblem 

uses the dual information from the master problem to generate new columns that can potentially 

improve the objective function of the master problem.  

The column in our work corresponds to a job sequence. The iterative process of generating new 

columns using the subproblem and adding them to the master problem terminates when the 

subproblem generates new columns with non-negative reduced costs. Usually, it starts from an 

initial set of columns. This approach avoids the difficulty of explicitly generating all columns of the 

problem. This approach was suggested by Gilmore and Gomory (1961) for solving cutting stock 

problems. Later, the integrality constraints of the master problem are introduced and solved as a 

mixed integer program. 

Usually in PMSPs addressed by CG, the subproblems have some structural dominance property that 

enables solving by a pseudo-polynomial dynamic programming algorithm in reasonable time. 

However, in the PMSP under this study, any structural dominance property is identified. Therefore, 

the proposed model is used to solve the subproblems. The quality of the hybrid CG algorithm is 

because of the efficiency of the proposed model in solving the subproblems. This quality is also 

engendered by the proposed heuristics for the initial solution and for solving the subproblems. 

These comprise the other contributions of this paper. 

The remainder of this paper is organized as follows. Section 2 reviews the solution approaches for 

PMSPs and CG applications to the scheduling problems. Section 3 presents two mathematical 

models from the literature and a new mathematical formulation is proposed. In Section 4, a new 

hybrid column generation algorithm is additionally proposed. Section 5 describes the computational 

experiments comparing the mathematical formulations from the literature, the proposed 

formulation, and the hybrid CG approaches, and the results are reported. In Section 6, the 

conclusions are presented. 

2. Literature review 

This section reviews the previous studies on applying PMSPs and CG to the above-described 

problems. Our review is restricted to PMSPs with the due date and setup times because these 

features are considered in this paper. For details on parallel machine scheduling problems, the due 
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date as a criterion, and the setup time in scheduling problems, see Li and Yang (2009), Vallada, 

Ruiz, and Minella (2008), and Allahverdi, Ng, Cheng, and Kovalyov (2008), respectively. 

Most previous studies have been conducted on identical or uniform PMSPs only with sequence-

dependent setup times (Lee, Yu, & Lee, 2013). Lee and Pinedo (1997) suggest a three-phase 

heuristic using the apparent tardiness cost with setups (ATCS) rule, a dispatching rule, and a 

simulated annealing algorithm for minimizing the sum of the weighted tardiness. For minimizing 

the total tardiness, Park, Kim, and Lee (2000) improve the dispatching rule using look-ahead 

parameters calculated by a neural network. Bilge, Kirac, Kurtulan, and Pekgun (2004) propose a 

tabu search approach, whereby the candidate list strategies, tabu classifications, tabu tenures, and 

intensification/diversification strategies are investigated. Anghinolfi and Paolucci (2007) propose a 

hybrid metaheuristic that incorporates the core features of simulated annealing, the tabu search, and 

the variable neighborhood search. Armentano and de França Filho (2007) propose GRASP(Greedy 

Randomized Adaptive Search Procedure)-based search heuristics that incorporate adaptive memory 

principles. 

For the unrelated PMSP with only sequence-dependent setup times, Kim, Kim, Jang, and Chen 

(2002) suggest a simulated annealing algorithm with various interchange and insertion methods for 

minimizing the total tardiness. For minimizing the weighted number of tardy jobs, M’Hallah and 

Bulfin (2005) propose branch and bound algorithms, while Chen and Chen (2009) propose hybrid 

metaheuristics that integrate the tabu search and variable neighborhood descent approach. In 

addition, Chen (2012) presents several iterated hybrid metaheuristic algorithms, while Zhu and 

Heady (2000) propose a mixed integer programming model to minimize the sum of earliness and 

tardiness penalties.  

For the unrelated PMSP with the machine and sequence-dependent setup time, few studies have 

been performed. For minimizing the total tardiness, Chen (2009) considers the problem with an 

additional strict due date constraint for some jobs. That author proposes a simulated annealing 

algorithm that incorporates the feasibility improvement method. In addition, Lin, Lu, and Ying 

(2011) propose an iterated greedy algorithm and a simple dispatching rule, which are respectively 

referred to as primary customers and the shortest completion time, to generate the initial solution. 

Lee, Yu, and Lee (2013) propose a tabu search algorithm that incorporates various neighborhood 

generation methods. It showed better performance than the two previous methods.  

Meanwhile, Rocha, Ravetti, Mateus, and Pardalos (2008) propose a branch and bound algorithm 

and a GRASP metaheuristic for minimizing the makespan added to the weighted tardiness. Paula, 

Mateus, and Ravetti (2010) propose a non-delayed relax-and-cut algorithm based on the Lagrangian 

relaxation of a time-indexed formulation to minimize the total weighted tardiness. For minimizing 

the total earliness and tardiness penalties, Nogueira et al. (2014) propose three different heuristics 

based on the GRASP metaheuristic, and Zeidi and Hosseini (2015) propose a genetic algorithm 

with a simulated annealing method as a local search procedure to improve the solution quality. 

Most previous studies that have employed CG address identical PMSPs; however, they do not 

consider the setup times. Van den Akker, Hoogeveen, and van de Velde (1999) efficiently solved 

the linear programming relaxation problem of minimizing the total weighted completion time using 

CG with identical parallel machines. Their approach is formulated as a set covering problem, and 
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the pricing problem is solved in a pseudo-polynomial time. Chen and Powell (1999a) addressed 

several PMSPs considering identical, uniform, and unrelated machines with two objectives: to 

minimize the total weighted completion time, and to minimize the weighted number of tardy jobs. 

Chen and Powell (1999b) addressed the identical PMSP with an unrestrictive large common due 

date to minimize the total weighted earliness and tardiness. Moreover, Chen and Lee (2002) 

addressed the identical parallel machine problem with a common due date window to minimize the 

total weighted earliness and tardiness. Chen and Powell (2003) addressed the multiple job family 

scheduling problem on identical parallel machines. They employed sequence-dependent or 

sequence-independent setup times to minimize the total weighted completion time of the jobs.  

The above four studies developed exact methods based on branch and bound solving at each node 

by CG, while the subproblems are solved by pseudo-polynomial dynamic programming algorithms. 

According to Lopes and de Carvalho (2007), the success of previous work was only possible 

because their versions of PMSPs have structural dominance properties (usually corresponding to 

some job-ordering restrictions) that enable reducing the subproblem solution space. Consequently, 

the solution of larger instances is made possible. Lopes and de Carvalho (2007) addressed the 

unrelated PMSP with sequence-dependent setup times and availability dates for the machine and 

release dates for the jobs. Nevertheless, the authors failed to identify any structural dominance 

property. To overcome this drawback, they proposed a method to reduce the search space to 

accelerate the solving from a two-cycle elimination version of the dynamic programming algorithm. 

Their approach is based on the procedure proposed by Houck, Picard, Queyranne, and Vemuganti 

(1980). Finally, they used it in a branch-and-price algorithm for minimizing the weighted tardiness.  

Furthermore, van den Akker, Hoogeveen, and van Kempen (2012) used a destructive strategy to 

compute a lower bound and CG to compute an upper bound on the number of machines necessary 

to feasibly accommodate all jobs of identical PMSP. Accordingly, the maximum lateness can be 

minimized, albeit subject to release dates, deadlines, and/or generalized precedence constraints. To 

the best of our knowledge, identifying the exact PMSP solution of the problem studied not yet been 

investigated. This is likely on account of the difficulty of solving the related subproblem. 

 

3. Parallel machine scheduling problem for minimizing total tardiness 

3.1 Problem description 

The scheduling problem investigated in this study considers n independent jobs, J = {1, 2, . . . , n}, 

on m unrelated parallel machines, I = {1, 2, . . . , m}. Each machine i   I is ready at time zero and 

can process all jobs. Each job j   J is processed by exactly one of the machines, has m processing 

times pij (i   I), is available in time zero, and has a due date dj. A machine and sequence-dependent 

setup time, sijl, is incurred between two different jobs, j   l. The machine setup can be started and 

completed during the idle time, as commonly assumed in the literature (Potts & Kovalyov, 2000). 

All the parameters are deterministic non-negative integers. A job sequence is a subset of J 

processed by the machine in a sequence, in which each job is non-preemptively processed only 

once. Each job in a sequence has a completion time, Cj, and tardiness is defined as Tj = max{0, Cj – 

dj}. The aim is to find the set of job sequences that processes all jobs and minimizes their total 
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tardiness. In the standard three-field notation, this problem is denoted as R/sijl, dj/ΣTj. It is NP-hard 

because it is an extension of the NP-hard 1/dj/ΣTj (Lawler, 1977). 

3.2 Wagner model 

Rocha, Ravetti, Mateus, and Pardalos (2008) adapted for the parallel machine scheduling problem 

the models based on sequence-position variables proposed by Wagner (1959) and precedence 

variables proposed by Manne (1960), both of which were originally proposed for the job shop 

problem. In the Wagner model,  ijp is one if job j is processed in machine i in the p-th position (and 

zero, otherwise),  ijlp is one if jobs j and l are processed by machine i at the p-th and (p + 1)-th 

positions, respectively, (and zero, otherwise), and tip denotes the starting time in machine i in the p-

th position. In this model, the position amount p is equal to the number of jobs. The model itself is 

the following: 

      
   

                                                                                                                                                      

            

      

      

                                                                                                                                      

     

   

                                                                                                                                     

     

   

          

   

                                                                                                       

                                                                                                        

                        

   

                

   
   

   

                                                

                                                                                                             

                                                                                                                                                      

                                                                                                                                          

                                                                                                                                   

The objective function (1) minimizes the total tardiness of the jobs. Constraints (2) ensure that each 

job is assigned to only one machine and one position. Constraints (3) ensure that no more than one 

job is assigned to each position of a machine. Constraints (4) ensure that if a job is assigned to a 

position p, p ≥ 2, another job is assigned to position p − 1 of the same machine. Constraints (5) 

determine the sequence of jobs on the machines. Constraints (6) calculate the start time of the 

positions on each machine. Constraints (7) calculate the tardiness of each job. Finally, the 

constraints (8) to (10) define the conditions of non-negativity and integrality of the variables. 
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3.3 Manne model 

In the Manne model,  ij is one if job j is processed in machine i (and zero, otherwise),  ijl is one if 

the job l is processed after (not necessarily immediately after) job j in machine i (and zero, 

otherwise), and tj denotes the starting time of job j. The model itself is the following: 

      
   

                                                                                                                                                       

            

    

   

                                                                                                                                                

                                                                            

                                                                                             

              

   

                                                                                                                    

                                                                                                                                                           

                                                                                                                                                           

                                                                                                                                                 

                                                                                                                                    

 

The objective function (11) minimizes the total tardiness of the jobs. Constraints (12) ensure that 

each job is processed by only one machine. Constraints (13) and (14) describe the precedence 

relationship between the jobs, i.e., for each pair of jobs, (l, j) or j is processed after l, or l is 

processed after j. Constraints (15) calculate the tardiness of each job. Finally, constraints (16) to 

(19) define the non-negativity and integrality of the variables. 

3.4 Positional model 

The proposed model uses the same type of positional variable proposed by Wagner (1959). Hence, 

it was given the “positional model” name. In this Wagner model, the number of positions per 

machine is equal to the number of jobs of the problem. The big-M constant is used to determine 

which of the available positions is occupied. In practice, only a portion of the positions is occupied 

by jobs. In the positional model, the positions not occupied by jobs (called “real jobs”) are now 

occupied by a job created exclusively for this purpose, called the “dummy job.” Thus, all positions 

are occupied by real or dummy jobs.  

The dummy job is represented by zero. The real jobs are allocated to only one position of a 

machine. The dummy job can be allocated to no position of a machine or to more than one. The 

dummy job does not affect the objective function value of the problem; thus, its parameters d0, pi0, 
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and si0j must have values equals to zero, and parameters sij0 have large values. Therefore, the 

dummy job is allocated in the first position, and the real jobs are allocated after the dummy job (S1 = 

{0, j1, j2, ...}).  In this case, the setup time that occurs is si0j, which is equal to zero. Consequently, it 

does not affect the value of the objective function. If the dummy job is allocated between real jobs 

(S2 = { j1,..., 0, .., j2, ...}), one of the setup times that occurs is sij0, which is a very large value. It is 

so large that it greatly increases the value of the objective function. Thus, the solution process is 

induced to place the dummy job before the real jobs and never between them. 

The first innovation of the positional model in relation to the presented models is to not use the big-

M constant to linearize the disjunctive constraints (or precedence constraints). Then, the model is 

originally linear and can therefore be quickly resolved (Chen & Powell, 1999a). The model has the 

following variables:      is one if job j is processed in machine i in the p-th position (and zero, 

otherwise), zijlp is one if jobs j and l are processed by machine i at the p-th and (p + 1)-th positions, 

respectively, (and zero, otherwise),     is the completion time in the p-th position in machine i, and 

    is tardiness in the p-th position in machine i. 

The second innovation of the positional model is to use a number of positions per machine (k) that 

is smaller than the total number of real jobs. The aim is to make the most compact model. This is 

possible because, in practice, the number of jobs allocated by the machine is smaller than the total 

number of jobs. This is because the problem has more than one machine. This restricts the search 

space, which can eliminate the optimal solution. Therefore, an optimality condition must be 

developed in this case. 

Proposition 1: The optimality condition defines that, if there is at least one dummy job allocated 

per machine in the job sequences of all machines, the optimal solution identified when k < n is 

equal to the optimal solution when k = n. 

Proof: Suppose there is an optimal solution for k = n. Let s
k
 be a set of optimal sequences for the 

PMSP with k < n, and the sequence of each machine contains a dummy job. In this case, any real 

job could be reallocated at any position or in place of a dummy job of some other sequence. If this 

new solution has a lower cost we have a contradiction, because s
k
 is an optimal solution. Therefore, 

s
k
 is really an optimal solution for k < n and also for k = n. Suppose now there is a sequence in s

k
, 

for any machine, with k real jobs and no dummy job. In this case, increasing the number of 

positions from k to k+1, there may be a real job that if reallocated to this sequence would generate a 

lower cost solution. Therefore, the optimality of s
k
 is not guaranteed for k < n, and it is necessary to 

increase the value of k until there is a dummy job for each sequence or until k = n. 

It is not known in advance how many jobs will be allocated per machine. Therefore, the number of 

positions per machine should be adequate for all the real jobs allocated, and at least one dummy job 

is allocated per machine. In this study, we used the empirical formula:          . The 

experiments indicated that the proposed formula for k always found the number of positions that 

met the optimality condition. However, if it fails, add one and one position and run the model again 

until the optimality condition be met. Then, the positional model considered p positions P = {1, 2, . 

. . , k}. The positional model is presented as follows. 
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The objective function (20) minimizes the total tardiness in all positions and, consequently, of all 

jobs. Constraints (21) ensure that each real job is processed by only one machine in one position. 

Constraints (22) ensure that all positions of all machines are occupied by only one real or dummy 

job. Constraints (23) and (24) describe the precedence relationships between jobs. That is, for each 

pair of jobs, (l, j) or j is processed immediately after l, or l is processed immediately after j. 

Constraints (25) calculate the completion time at the first position of each machine. Constraints (26) 

calculate the completion time at all positions except the first of each machine. Constraints (27) 

calculate the tardiness in the positions of each machine. Finally, constraints (28) to (31) define the 

non-negativity and integrality of the variables. 

4. Column generation approach 

4.1. Set partitioning problem formulation 

The positional model is reformulated as a set partitioning problem via Dantzig–Wolfe 

decomposition. A column is a job sequence in a machine that satisfies constraints (21) to (31). Let 
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   be the set of feasible job sequences, s, for each machine, i, and yis is the binary variable that is 

one if job sequence s is assigned for machine i (and zero, otherwise). For each job sequence     , 

there is an associated cost, fis, and ajis is one if job j is covered by sequence s in machine i (and zero, 

otherwise). The reformulation of the positional model is the following: 

            

       

                                                                                                                                       

            

         

       

                                                                                                                                  

    

    

                                                                                                                                                

                                                                                                                                                

 

The objective function (32) minimizes the sum of costs of chosen job sequences. Constraints (33) 

ensure that each job is covered by exactly one job sequence. Constraints (34) ensure that exactly 

one job sequence is assigned for each machine. Finally, constraints (35) define the binary variables. 

The problem of (32) to (35) with a restricted number of columns   
     is the restricted master 

problem (RMP). In CG, the linear relaxation of the restricted master problem (RMPLR) is solved by 

a linear programming method. Let    and    be the dual variables for (33) and (34), respectively. 

Then, the reduced cost,    , of a job sequence      is given by: 

                

   

                                                                                                                              

If there exists column s with a negative reduced cost, this column is added to the set,   
 . The RMPLR 

is solved again to update the objective and dual variable values. If there is no column with a 

negative reduced cost, the current solution is optimal for the RMPLR. The objective function value 

provides a lower bound for the original problem. 

4.2. Pricing problem 

The resulting subproblem of the reformulation of the positional model is a single machine 

scheduling problem associated with each machine,    . This problem is classified as 1 | slj | ΣTj , 

and is NP-hard (Du & Leung, 1990). In this problem, consideration of the sequence-dependent 

setup times increases the complexity (Pinedo, 2008). Furthermore, this problem is even more 

difficult when the total tardiness is the performance criterion, and it thus has been relatively less 

studied (Allahverdi & Soroush, 2008). Therefore, it is possible that no published study has 

employed CG to solve the given problem. 



44 
 

In the pricing problem, the objective function is the equation (36), and the constraints are the same 

as those of the positional model when only one machine (PMPP) is considered. The pricing problem 

is to find a job sequence or column s for each machine i to minimize the reduced cost    . 

4.3. Heuristics used in the column generation 

Three heuristics are proposed. The first is to generate a set of quality feasible initial columns. The 

second is to solve faster pricing problems, but with no guarantee of optimality. The third can either 

generate initial columns or solve the subproblem. Before describing the heuristics, it is necessary to 

define how the cost of each solution is calculated. From the heuristic solution, each job is inserted 

in the machine that obtains the lowest tardiness. 

4.3.1. Iterated local search for the initial solution 

The iterated local search (ILS) involves iteratively perturbing a local optimal solution, then 

applying a local search procedure to obtain a new local optimal solution, and, finally, using an 

acceptance criterion for deciding from which of these solutions to continue the search (Lourenço, 

Martin & Stützle, 2002). This metaheuristic was chosen because of its features, including 

simplicity, robustness, effectiveness, easy implementation, and successful implementations for 

different optimization problems, such as the traveling salesman, job shop, and flow shop (Lourenço, 

Martin & Stützle, 2002). 

The ILS algorithm is comprised of four components. They are a procedure, GenerateInitialSolution, 

which generates an initial solution s0; a procedure, Perturbation, which modifies the current 

solution s leading to some intermediate solution s´; a procedure, LocalSearch, which returns an 

improved solution s´´; and an AcceptanceCriterion, which decides to which solution the next 

perturbation is applied. The steps of the ILS algorithm are outlined as follows. 

GenerateInitialSolution: This procedure consists of generating ns random job sequences and 

choosing the best job sequence to be the initial solution, s0. 

Perturbation: Various types of perturbations were tested. The one that presents the best 

performance is a randomly selected job from a job sequence that changes its position with that of 

the next job. If the select job is in the last position, it is exchanged with the previous job. 

LocalSearch: This procedure uses the one-opt neighborhood in which each move changes a job 

with the next job. For searching, the steepest descent method is used. 

AcceptanceCriterion: This procedure uses one of the following rules: accept every new solution 

since it is up to bp% of the best solution, or accept the best solution obtained so far in the search. 

This corresponds to a strategy for the diversification and intensification of the search, respectively. 

The job sequence allocated to each machine in the final solution ILS algorithm may not be optimal.   

Therefore is used a fix-and-optimize heuristic as following: fix the jobs on each machine according 

to the final solution ILS algorithm, and execute the positional model. 

 
4.3.2. Constructive heuristic for pricing problem 
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The constructive heuristic (CH) consists of iteratively building a partial job sequence by 

assessing—through a local search of jobs that have not yet been chosen—the one that is better to be 

inserted for finding the lowest reduced cost. This heuristic is terminated when the evaluation of all 

remaining jobs does not find a partial job sequence with a negative reduced cost. The steps of this 

heuristic are outlined below. 

Step 1: Calculate the reduced cost of all possible pairs of jobs. If the pair of jobs with a lower 

reduced cost is negative, then this pair of jobs is the initial partial job sequence of Step 2. 

Otherwise, the heuristic is closed. 

Step 2: Choose the next job to be inserted in the partial job sequence. For all jobs that do not belong 

to the partial job sequence, insert it into the first position of the partial job sequence, perform a local 

search, and calculate the reduced cost. If it is negative, insert it in the master problem. Thus, 

multiple columns are inserted per iteration. Among the found partial job sequences, choose the one 

with the lowest reduced cost to be the new partial job sequence. 

Step 3: Repeat Step 2 to find at least a partial job sequence with a negative reduced cost. 

4.3.3. Linear relaxation-based heuristic for an initial solution or pricing problem 

The linear relaxation-based heuristic (LRBH) involves solving the linear relaxation of some mixed 

integer linear programming model. It uses the information of the fractional solution to fix some 

variables, and then runs the model again with active integrity constraints. This heuristic has been 

successfully applied to many different problems, such as the respective project scheduling 

(Azizoglu, Çetinkaya, & Pamir, 2015), logistic network design (Thanh, Péton, & Bostel, 2010), 

general assignment (French & Wilson, 2007), and lot-sizing (Hardin, Nemhauser, & Savelsbergh, 

2007) problems. 

We propose two heuristic algorithms based on linear relaxation of the positional model. One is used 

to generate the initial columns; the other is used to solve the pricing problem. Therefore, the first 

considers the entire problem; the second considers the single machine scheduling problem. The jobs 

that do not appear with a fractional value on a machine i in the solution of the relaxed problem of 

the positional model will not be considered in the model solution with active integrity constraints. 

The main advantage of this method is to yield feasible solutions of good quality within a limited 

computational time. The steps of this heuristics are outlined below. 

Step 1: Perform relaxed positional model. Job j, for which variables xijp obtained a zero value in all 

positions p of machine i, is considered unavailable for this machine in the next step. This is 

achieved by setting all variables, xijp, to zero for machine i. 

Step 2: The positional model is run with the jobs fixed according to the condition and active 

integrality constraints. 
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4.4. Hybrid column generation algorithm 

The proposed CG algorithm is called the hybrid column generation (HCG) algorithm because it 

uses heuristics to generate the initial columns and solve the pricing problem. The overall steps of 

this algorithm are outlined as follows. 

Step 1 (Dantzig–Wolfe decomposition): Reformulate the original problem as a set partitioning 

problem via Dantzig–Wolfe decomposition, which is explained in Section 4.1. 

Step 2 (Construction of a feasible initial solution): Generate the initial columns by one of the two 

heuristics explained in Sections 4.3.1 and 4.3.3. 

Step 3 (Restricted master problem): Solve RMPLR to find the dual variable values. 

Step 4 (Pricing problem): At this stage, employ three different algorithms in a specific order. The 

first two are heuristics, and the third is an exact method. They are applied in the following order: 

CH, LRBHPP, and PMPP (proposed model considering a single machine). If one of the algorithms 

finds a solution with a negative reduced cost, then the associated column is added to RMPLR and 

Step 3 is repeated; otherwise, proceed to the next algorithm. All algorithms insert multiple columns 

with negative reduced costs per iteration. If the third algorithm does not find columns with negative 

reduced costs, proceed to Step 5. 

Step 5 (Evaluation of optimality): The current solution of RMPLR is a lower bound (lb) for the 

original problem. Then, RMP is solved with active integrality constraints to find an upper bound 

(ub) for the original problem. If lb is equal to ub, then the solution is optimal; otherwise, the relative 

optimality gap is calculated as 100 * (ub – lb) / lb. 

 

5. Computational experiments 

To evaluate the methods, instances generated based on Lopes and Carvalho (2007) and Rocha, 

Ravetti, Mateus, and Pardalos (2008) were used as follows. Small-size instances were generated 

using the number of jobs, n   {10, 15, 20}, and number of machines, m   {2, 3, 4}. For medium-

size instances, we used n   {20, 30, 40, 50} and m   {2, 4, 6, 8, 10}, as in Lopes and de Carvalho 

(2007), and the processing times pjl = U[10, 80] and setup times sijl = U[20, 40]. Since the setup 

times were generated randomly, they needed to be corrected to satisfy the triangular inequality. The 

triangular inequality states that, for any three jobs j, l, k requiring the same resource (machine i), the 

inequality sijk ≤ sijl + pil + silk is ensured. In order to do that the same procedure from Rocha, Ravetti, 

Mateus, and Pardalos (2008) was used. The due dates were generated following the method of 

Rocha, Ravetti, Mateus, and Pardalos (2008), dj = U[maximal processing time, 2h/q]. Parameter h is 

the makespan of identity solution (1, 2, …, n), where each job is assigned to a machine capable of 

finishing it first. Parameter q indicates the congestion level of the production system. The larger the 

q, the more congested the system will be, and the more tardy the jobs will be. Both authors used q 

varying from one to five. For each combination of n, m and q are ten instances randomly generated 

using different seeds. Then, the tests consist of 300 and 450 instances of small and medium sizes, 

respectively. 
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The mathematical models and the HCG algorithm were implemented with the C++ API for Concert 

Technology and were solved with IBM ILOG CPLEX 12.5. Tests were performed on a Dell 

Inspiron notebook, Intel Core i5-2430M 2.40-GHz processor with 4 GB of memory and the 

Windows 7 operating system. The maximum time allowed for running any algorithm was 3,600 s. If 

the solver was unable to find the optimal solution, the best integer solution found was reported. 

From the initial tests, it was verified that the system congestion level influenced the effectiveness of 

heuristics in finding good solutions for initial columns. The heuristic based on the proposed model 

did not find feasible solutions of quality when the production system was slightly congested. 

Therefore, for q = 1 and 2, the ILS algorithm was used; and for q = 3, 4 and 5, the LRBHIS approach 

was used. For the ILS algorithm, its parameters and values were the number of job sequences, ns, 

randomly generated (1,000), number of iterations (up to 1,000) or (200, when a better solution than 

all current ones was not obtained), and relative percentage deviation from the best solution, bp% 

(10%).  

The computational time limit employed by the HCG heuristic procedures was 1,800 s. The 

computational time to solve the pricing problem based on the positional model (PMPP) was limited 

to 3,600 s less than the time consumed by the previous heuristics. 

The test results comprised two groups. The first compared Wagner (W), Manne (M), and positional 

(P) models using small-size instances. The second compare the positional model and HCG method 

using medium-size instances. Tables 1 to 5 show the test results for the first group; Tables 6 to 10 

show the test results for the second group. The meaning of the table headings is the following: n 

denotes the number of jobs, m is the number of machines, and q represents the production system 

congestion level. In Tables 3 to 5 and 8 to 10, for each combination of n and m, there are three lines 

for the minimum, mean, and maximum, respectively. 

Tables 1 and 6 show the average percentage deviation between the best feasible solution (bfs) and 

the linear relaxation (lr) obtained by the method, which is calculated as 100 * (bfs − lr) / bfs. Tables 

2 and 7 show the number of instances that were unsolved in terms of optimality for each group. 

Tables 3 and 8 show the average percentage gap, which is calculated as 100 * (bfs – blb) / bfs, 

where blb is the lower bound obtained by the method. Tables 4 and 9 show the relative percentage 

deviation, which is calculated as 100*(msi – bsi) / bsi, where msi is the instance solution value 

using one of the methods, and bsi is the best known objective function value for the instance. Tables 

5 and 10 show the elapsed CPU times in seconds to solve the instances. 

Table 11 shows the performance of the components of the proposed HCG method. For each 

combination of jobs and machines, the five lines correspond to five congestion levels. The column 

sets, IS, CH, LRBHPP and PMPP, represent the average of the results for the initial solution, column 

generation by constructive heuristic, column generation by restricted positional model, and column 

generation by positional model, respectively. The average relative deviation of the initial solution 

(IS) in relation to the final solution (FS), the average number of iterations, the average generated 

columns, and the average runtime are shown in columns ΔIS-FS, Iter, Col, and Time, respectively. 

ΔIS-FS is calculated as 100*(FS – IS) / IS. 
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The test results from the first group showed that, when the system congestion level (parameter q) 

increased, the Wagner and Manne models had greater difficulty solving the instances, while the 

positional model experienced less difficulty (see Tables 1 to 5). Analyzing the instances of the 

congestion levels q = 1 and q = 2, it was observed that there are jobs with so loose due dates which 

they would not be tardy, even if they were processed last. Tests were conducted to prove this 

hypothesis. These jobs were removed and the positional model was run. The identified solution 

consumed less computational time and achieved a 0% gap. If the extracted jobs were inserted at the 

end of the job sequences, these jobs would not be tardy. This fact deserves further study in future 

work. 

The positional model did not obtain linear relaxations greater than zero in any of the tested 

instances for q = 1 because the due dates were very loose. At congestion levels q = 1 and q = 2, 32 

and 7 optimal solutions equal to zero were respectively obtained. At other congestion levels, no 

optimal solution was equal to zero. We emphasize that optimal solutions equal to zero were not 

considered in the calculations shown in Table 1 because they did not help assess the ability of the 

methods to find tight linear relaxations. In comparing the Wagner and positional models, the former 

did not obtain linear relaxations greater than zero in any instance tested. The latter obtained linear 

relaxations greater than zero starting at the congestion level q = 2. 

The positional model did not solve the problem until the optimality in nine instances. All these 

instances were of the congestion level q = 2, which had the worst linear relaxations. The congestion 

level q = 1 only obtained more optimal solutions than the congestion level q = 2 because of the 

large number of optimal solutions equal to zero. The Wagner and Manne models did not solve the 

problem until the optimality of 202 and 152 instances, respectively. 

The positional model presented a gap greater than 0%, precisely 9.29% on average, only at the 

congestion level q = 2. The only level at which it did not find the optimal solution of all instances 

was even smaller than that of the Manne model, which obtained 16.26% on average (see Table 3). 

The positional model did not obtain a better final solution than the Manne model in only two 

instances of congestion level q = 2 (see Table 4). The Wagner model obtained worse final solutions 

than the Manne and positional models, especially in the congestion level q = 2, with an average of 

42.09% worse than the best solutions found. 

The models had the same general trend when considering the runtime to solve the instances. The 

trend only changed at congestion level q = 1 because of the large number of optimal solutions equal 

to zero. For congestion level q = 1, the Manne model obtained a smaller runtime than the positional 

model at 1.15 s versus 70.67 s on average. At congestion level q = 3, the positional model was up to 

two orders of magnitude faster than the other models. For q = 4 and q = 5, it was up to three orders 

of magnitude faster (see Table 5). 

Of all the analyzed criteria, the Wagner model obtained performance well below that of the 

positional model and even in relation to the Manne model. This aspect would be investigated if 

there were other studies with similar results. Thus, the work of Lange and Werner (2015) was found 

to use models based on precedence and position variables on a parallel machine approach to 

minimize the total tardiness of a single-track train scheduling problem. In tests performed with 

instances of ten jobs or more, the model based on position variables was not able to obtain an 
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optimal solution within 2 h of runtime, whereas the model based on precedence variables obtained 

the optimal solution in 2.02 s on average. 

 

Table 1 Linear relaxation deviation (%) of instances solved by Wagner (W), Manne (M), and 

positional (P) models for small-size instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

W M P   W M P   W M P   W M P   W M P 

10 2 100.00 47.59 100.00 

 

100.00 87.08 74.03 

 

100.00 92.23 13.93 

 

100.00 92.63 5.71 

 

100.00 92.07 3.04 

10 3 100.00 35.73 100.00 

 

100.00 77.22 62.01 

 

100.00 87.70 10.90 

 

100.00 88.04 6.40 

 

100.00 86.95 3.50 

15 2 100.00 50.00 100.00 

 

100.00 82.11 96.01 

 

100.00 97.40 24.42 

 

100.00 97.96 9.25 

 

100.00 97.83 5.67 

15 3 100.00 7.41 100.00 

 

100.00 96.68 83.76 

 

100.00 98.00 19.23 

 

100.00 97.46 7.00 

 

100.00 96.85 3.69 

20 3 100.00 18.33 100.00 

 

100.00 72.25 93.79 

 

100.00 97.66 25.40 

 

100.00 98.08 10.47 

 

100.00 98.00 5.62 

20 4 100.00 31.90 100.00 

 

100.00 80.59 94.66 

 

100.00 94.43 23.66 

 

100.00 95.52 9.20 

 

100.00 95.55 4.89 

Average 100.00 31.83 100.00   100.00 82.66 84.04   100.00 94.57 19.59   100.00 94.95 8.00   100.00 94.54 4.40 

 

Table 2 Unsolved number of instances using Wagner, Manne, and positional models for small-size 

instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

W M P   W M P   W M P   W M P   W M P 

10 2 0 0 0 

 

1 0 0 

 

2 0 0 

 

2 3 0 

 

8 6 0 

10 3 0 0 0 

 

0 0 0 

 

7 1 0 

 

8 3 0 

 

8 5 0 

15 2 0 0 0 

 

9 2 0 

 

10 10 0 

 

10 10 0 

 

10 10 0 

15 3 1 0 0 

 

7 2 0 

 

10 10 0 

 

10 10 0 

 

10 10 0 

20 3 4 0 0 

 

10 4 4 

 

10 10 0 

 

10 10 0 

 

10 10 0 

20 4 5 0 0 

 

10 6 5 

 

10 10 0 

 

10 10 0 

 

10 10 0 

Total 10 0 0   37 14 9   49 41 0 
 

50 46 0 

 

    56 51 0 

 

Table 3 Gap (%) of instances solved by Wagner, Manne, and positional models for small-size 

instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

W M P 

 

W M P 

 

W M P 

 

W M P 

 

W M P 

10 2 0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

0 0 0 

 

3.41 0 0 

 

8.33 0 0 

 

6.75 7.61 0 

 

31.37 19.03 0 

0 0 0 

 

34.12 0 0 

 

69.81 0 0 

 

44.51 26.36 0 

 

59.58 43.44 0 

  
                   

10 3 0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

0 0 0 

 

0 0 0 

 

21.39 2.19 0 

 

36.15 7.03 0 

 

26.67 10.07 0 

0 0 0 

 

0 0 0 

 

46.15 21.94 0 

 

63.78 28.70 0 

 

53.98 31.61 0 

  
                   

15 2 0 0 0 

 

0 0 0 

 

94.21 57.58 0 

 

96.23 80.69 0 

 

96.66 81.49 0 

0 0 0 

 

78.69 19.21 0 

 

97.88 79.60 0 

 

98.16 87.36 0 

 

98.05 86.71 0 

0 0 0 

 

100.00 100.00 0 

 

100.00 97.76 0 

 

100.00 94.11 0 

 

99.46 94.16 0 
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15 3 0 0 0 

 

0 0 0 

 

94.79 52.42 0 

 

92.79 73.97 0 

 

92.50 67.29 0 

0.74 0 0 

 

69.16 14.72 0 

 

98.77 78.47 0 

 

98.08 86.17 0 

 

97.43 83.15 0 

7.41 0 0 

 

100.00 100.00 0 

 

100.00 99.47 0 

 

100.00 96.72 0 

 

100.00 93.26 0 

  

                   
20 3 0 0 0 

 

96.13 0 0 

 

97.08 82.37 0 

 

97.88 85.42 0 

 

96.91 86.16 0 

35.50 0 0 

 

99.15 31.59 24.52 

 

99.29 93.07 0 

 

99.39 93.90 0 

 

99.02 93.54 0 

100.00 0 0 

 

100.00 100.00 73.37 

 

100.00 100.00 0 

 

100.00 100.00 0 

 

100.00 99.27 0 

  

                   
20 4 0 0 0 

 

94.29 0 0 

 

95.74 76.19 0 

 

93.35 82.65 0 

 

92.77 82.64 0 

45.68 0 0 

 

97.58 32.07 31.20 

 

98.92 86.72 0 

 

97.27 88.95 0 

 

98.23 88.45 0 

100.00 0 0 

 

100.00 89.15 82.46 

 

100.00 92.32 0 

 

100.00 93.34 0 

 

100.00 92.48 0 

  
                   

Average 13.65 0.00 0.00   58.00 16.26 9.29   70.77 56.68 0.00   72.63 61.84 0.00   75.13 63.49 0.00 

 

The above results indicate that the positional model had the expected effect and that, unlike the 

time-indexed formulations, the positional model could be solved in a computational time (see Table 

5) as reasonable as those of the models based on the formulation of type 1 (see Section 1). The 

positional model uses positional variables, similar to the Wagner model, and obtains the best 

computational performance compared to it and the Manne model. It is thus numerically proved that 

the proposed innovations are the contributing factors of the achieved improvement. 

The results of the positional model and HCG method, when used to solve medium-size instances, 

are shown in Tables 6 to 11. The positional model presents the same trend observed during the tests 

with the small-size instances. That is, for congestion levels q = 1 and q = 2, it has more difficulty in 

obtaining optimal solutions. That it did not obtain a linear relaxation greater than zero for any 

instance (see Table 6) is proof. 

The positional model found 38 optimal solutions for the congestion level q = 1. All of these 

solutions were equal to zero because it found more optimal solutions than for congestion level q = 

2, where it found only seven optimal solutions, of which four equaled zero. Meanwhile, the HCG 

method found the optimal solution of 89 and 28 of the 90 tested instances of congestion levels q = 1 

and q = 2, respectively. This because of the good initial solutions found by the ILS method, as 

shown in the ΔIS-FS column of Table 11 for the congestion levels q = 1 and q = 2. The average 

improvement between the final and initial solutions was 0.15% and 5.81%, respectively. The lower 

is this improvement, the closer are the initial and final solutions.  

The above results demonstrate the quality of the initial solution because the final solution also had 

quality. The positional model had difficulty solving instances with loose due dates using the ILS 

method to generate the initial solutions, which proved advantageous. The quality of the initial 

solutions was also verified when the LBRHIS method was used. It was observed that the average 

improvement of the final solution in relation to the initial solution was 3.43%, 0.69%, and 0.20% 

for the congestion levels q = 3, q = 4, and q = 5, respectively. 
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Table 4 Relative deviation (%) of instances solved by Wagner, Manne, and positional models for 

small-size instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

W M P 

 

W M P 

 

W M P 

 

W M P 

 

W M P 

10 2 0 0 0 
 

0 0 0 
 

0 0 0 
 

0 0 0 
 

0 0 0 

0 0 0 
 

0 0 0 
 

0.30 0 0 
 

0 0 0 
 

0.11 0 0 

0 0 0 
 

0 0 0 
 

2.97 0 0 
 

0 0 0 
 

1.07 0 0 

  
                   

10 3 0 0 0 
 

0 0 0 
 

0 0 0 
 

0 0 0 
 

0 0 0 

0 0 0 
 

0 0 0 
 

0 0 0 
 

0.37 0 0 
 

0.14 0 0 

0 0 0 
 

0 0 0 
 

0 0 0 
 

1.90 0 0 
 

1.35 0 0 

  
                   

15 2 0 0 0 

 

0 0 0 

 

9.76 0 0 

 

7.19 0 0 

 

9.48 0 0 

0 0 0 

 

35.19 0 0 

 

20.51 0.30 0 

 

13.10 0.61 0 

 

13.08 1.31 0 

0 0 0 

 

73.33 0 0 

 

43.51 1.19 0 

 

18.62 4.32 0 

 

19.89 3.41 0 

  
                   

15 3 0 0 0 

 

0 0 0 

 

12.90 0 0 

 

4.78 0 0 

 

7.24 0 0 

0 0 0 

 

48.28 0.41 0 

 

29.20 0.61 0 

 

19.12 0.23 0 

 

16.79 1.20 0 

0 0 0 

 

100.00 4.12 0 

 

51.48 4.18 0 

 

34.71 2.19 0 

 

24.61 3.59 0 

  
                   

20 3 0 0 0 

 

59.05 0 0 

 

28.80 0 0 

 

20.40 0 0 

 

15.93 0.34 0 

23.23 0 0 

 

89.23 1.26 0.70 

 

50.41 8.15 0 

 

35.66 2.20 0 

 

26.55 3.03 0 

100.00 0 0 

 

100.00 6.17 6.98 

 

59.52 29.02 0 

 

52.26 7.32 0 

 

39.40 6.53 0 

  
                   

20 4 0 0 0 

 

59.34 0 0 

 

28.27 0 0 

 

27.25 0 0 

 

18.08 0 0 

29.84 0 0 

 

79.84 4.73 0.62 

 

48.64 4.04 0 

 

33.67 3.03 0 

 

28.00 3.01 0 

100.00 0 0 

 

97.38 19.70 6.20 

 

63.22 12.63 0 

 

42.75 8.86 0 

 

41.16 6.60 0 

                     
Average 8.85 0.00 0.00   42.09 1.07 0.22   24.84 2.18 0.00   16.99 1.01 0.00   14.11 1.42 0.00 

 

Table 5 Runtimes of instances solved by Wagner, Manne, and positional models for small-size 

instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

W M P 

 

W M P 

 

W M P 

 

W M P 

 

W M P 

10 2 0.31 0.03 0.23 

 

102.10 0.45 0.56 

 

908.75 35.32 0.27 

 

978.00 491.43 0.23 

 

2515.91 938.94 0.17 

53.26 0.28 7.21 

 

812.14 7.61 3.34 

 

2081.52 621.68 0.54 

 

2808.32 1775.67 0.40 

 

3430.80 2768.92 0.32 

367.76 1.26 49.89 

 

3600.00 44.71 23.12 

 

3600.00 2707.34 1.09 

 

3600.00 3600.00 0.67 

 

3600.00 3600.00 0.55 

  
                   

10 3 1.67 0.08 0.20 

 

139.31 1.08 0.23 

 

1746.34 130.98 0.23 

 

1852.81 365.76 0.09 

 

2741.90 707.84 0.11 

20.61 0.36 6.59 

 

569.99 14.68 0.95 

 

3307.03 803.59 0.44 

 

3405.38 1774.03 0.32 

 

3438.27 2632.78 0.21 

111.40 1.87 30.11 

 

1751.61 63.80 3.14 

 

3600.00 3600.00 0.86 

 

3600.00 3600.00 0.64 

 

3600.00 3600.00 0.37 

  
                   

15 2 15.77 0.16 0.34 

 

599.47 2.96 5.55 

 

3600.00 3600.00 1.84 

 

3600.00 3600.00 0.89 

 

3600.00 3600.00 0.80 

502.65 0.45 15.05 

 

3299.95 836.75 99.69 

 

3600.00 3600.00 7.81 

 

3600.00 3600.00 4.11 

 

3600.00 3600.00 1.88 

2947.96 1.05 102.46 

 

3600.00 3600.00 287.26 

 

3600.00 3600.00 13.07 

 

3600.00 3600.00 9.13 

 

3600.00 3600.00 5.01 

  
                   

15 3 2.90 0.20 0.41 

 

1279.44 3.68 1.95 

 

3600.00 3600.00 0.67 

 

3600.00 3600.00 0.53 

 

3600.00 3600.00 0.44 

460.20 0.90 4.63 

 

3220.25 1094.91 109.03 

 

3600.00 3600.00 4.13 

 

3600.00 3600.00 1.37 

 

3600.00 3600.00 0.66 
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3600.00 5.38 27.72 

 

3600.00 3600.00 536.92 

 

3600.00 3600.00 11.92 

 

3600.00 3600.00 5.96 

 

3600.00 3600.00 1.11 

  
                   

20 3 92.62 0.39 1.00 

 

3600.00 2.90 3.56 

 

3600.00 3600.00 3.90 

 

3600.00 3600.00 3.07 

 

3600.00 3600.00 2.06 

2117.63 1.94 81.08 

 

3600.00 1585.96 1911.78 

 

3600.00 3600.00 42.22 

 

3600.00 3600.00 13.92 

 

3600.00 3600.00 6.88 

3600.00 6.33 438.75 

 

3600.00 3600.00 3600.00 

 

3600.00 3600.00 101.15 

 

3600.00 3600.00 23.26 

 

3600.00 3600.00 15.52 

  
                   

20 4 334.73 0.62 1.53 

 

3600.00 33.93 53.51 

 

3600.00 3600.00 2.81 

 

3600.00 3600.00 1.76 

 

3600.00 3600.00 1.34 

2067.25 2.95 309.45 

 

3600.00 2564.47 2073.55 

 

3600.00 3600.00 26.84 

 

3600.00 3600.00 11.44 

 

3600.00 3600.00 3.74 

3600.00 7.66 2602.25 

 

3600.00 3600.00 3600.00 

 

3600.00 3600.00 50.09 

 

3600.00 3600.00 28.74 

 

3600.00 3600.00 9.02 

                     
Average 870.26 1.15 70.67   2517.05 1017.40 699.72   3298.09 2637.54 13.67   3435.62 2991.62 5.26   3544.84 3300.28 2.28 

 

 

 

Table 6 Linear relaxation deviation (%) of instances solved by the positional model for medium-

size instances. 

n m q = 1   q = 2   q = 3   q = 4   q = 5 

20 2 100.00 
 

100.00 
 

30.06 
 

11.81 
 

6.10 

30 2 100.00 
 

100.00 
 

31.03 
 

10.65 
 

5.75 

30 4 100.00 
 

100.00 
 

31.62 
 

11.32 
 

5.88 

40 4 100.00 

 

100.00 

 

44.29 

 

14.12 

 

7.19 

40 6 100.00 
 

100.00 
 

38.19 
 

12.12 
 

6.27 

40 8 100.00 
 

100.00 
 

34.15 
 

10.70 
 

5.18 

50 6 100.00 
 

100.00 
 

33.83 
 

11.79 
 

5.76 

50 8 100.00 
 

100.00 
 

38.91 
 

12.84 
 

6.07 

50 10 100.00 
 

100.00 
 

35.66 
 

11.18 
 

5.74 

           
Average 100.00   100.00   35.31   11.84   5.99 

 

 

Table 7 Unsolved number of instances using the positional model and HCG for medium-size 

instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

P HCG   P HCG   P HCG   P HCG   P HCG 

20 2 2 1 

 

5 6 

 

0 10 

 

0 10 

 

0 10 

30 2 3 0 

 

9 5 

 

10 10 

 

6 10 

 

0 10 

30 4 2 0 

 

9 8 

 

6 10 

 

2 9 

 

0 10 

40 4 5 0 

 

10 6 

 

10 10 

 

10 10 

 

6 10 

40 6 6 0 

 

10 7 

 

10 10 

 

7 10 

 

0 10 

40 8 9 0 

 

10 8 

 

10 10 

 

2 10 

 

0 9 

50 6 8 0 

 

10 8 

 

10 10 

 

10 10 

 

8 10 

50 8 7 0 

 

10 6 

 

10 10 

 

10 10 

 

6 10 

50 10 10 0 

 

10 8 

 

10 10 

 

8 10 

 

2 10 

                
Total   52 1   83 62   76 90   55 89   22 89 
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The initial solution being close to the final solution did not mean that the HCG method had quality. 

Rather, the average gap of the final solutions, 0.03%, 12.68%, 2.85%, 0.58% and 0.17% for 

congestion levels q = 1 to q = 5, respectively, demonstrated this point. It also showed that the lower 

bound obtained by the HCG method was tightened (see Table 8). In addition, the HCG method 

found the best final solutions compared to the positional model, especially in congestion levels q = 

1 and q = 2, with average deviation in relation to the best solution equal to 0% and 0.05% versus 

23.05% and 52.15% of the positional model, respectively (see Table 9). At congestion levels q = 3 

to q = 5, the difference between the methods was smaller; however, the HCG method still presented 

better final solutions. 

Meanwhile, at congestion levels q = 1 and q = 2, the instances in which the ILS method found the 

initial solution equal to zero did not have to proceed through the solution methods of the 

subproblems. This is because the runtimes of these procedures were zero. The average total runtime 

of the HCG method (Table 10) is smaller than the sum of the average runtimes of the components 

of the HCG method (Table 11). In terms of the average values presented in Table 11, only those 

instances that had to proceed through the subproblem-solving procedures were considered. 

At all congestion levels, the HCG method ran faster than the positional model (see Table 10). The 

largest difference was observed at congestion level q = 1: 99.30 s versus 2,306.96 s. This is because 

of the quality of the initial solutions generated by the ILS and LBRHIS methods, and by the heuristic 

methods to solve the subproblems. The CH method used fewer runtimes; however, it performed 

more iterations and generated more columns because dual variables remained far from the optimal 

values. The LRBHPP method used a longer runtime, performed fewer iterations, and generated 

fewer columns. The use of these two heuristics was advantageous when the exact PMPP procedure 

was used. The dual variables were closer to the optimal value and fewer iterations were needed to 

find their optimal value (see Table 11). 

Table 8 Gap of instances solved by the positional model and HCG for medium-size instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

P HCG   P HCG   P HCG   P HCG   P HCG 

20 2 0.00 0.00 

 

0.00 0.00 

 

0.00 0.16 

 

0.00 0.05 

 

0.00 0.04 

17.64 0.26 

 

37.06 1.45 

 

0.00 0.30 

 

0.00 0.15 

 

0.00 0.12 

96.58 2.61 

 

100.00 9.00 

 

0.00 0.49 

 

0.00 0.45 

 

0.00 0.57 

  
              

30 2 0.00 0.00 

 

0.00 0.00 

 

5.20 6.42 

 

0.00 0.04 

 

0.00 0.02 

30.00 0.00 

 

89.55 9.94 

 

21.86 13.12 

 

2.85 2.25 

 

0.00 0.12 

100.00 0.00 

 

100.00 54.59 

 

44.27 18.50 

 

11.02 4.34 

 

0.00 0.79 

  
              

30 4 0.00 0.00 

 

0.00 0.00 

 

0.00 0.07 

 

0.00 0.00 

 

0.00 0.04 

20.00 0.00 

 

88.24 13.01 

 

12.93 1.02 

 

0.39 0.27 

 

0.00 0.14 

100.00 0.00 

 

100.00 42.31 

 

39.88 4.03 

 

2.88 0.44 

 

0.00 0.56 

  
              

40 4 0.00 0.00 

 

80.56 0.00 

 

14.15 0.06 

 

2.91 0.03 

 

0.00 0.03 

50.00 0.00 

 

98.06 13.01 

 

35.94 4.66 

 

7.90 0.69 

 

1.82 0.22 

100.00 0.00 

 

100.00 51.50 

 

57.87 16.27 

 

14.01 4.90 

 

4.11 0.87 

  
              

40 6 0.00 0.00 

 

91.02 0.00 

 

3.56 0.08 

 

0.00 0.06 

 

0.00 0.04 
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53.33 0.00 

 

99.10 13.63 

 

24.60 1.39 

 

3.17 0.30 

 

0.00 0.19 

100.00 0.00 

 

100.00 72.34 

 

38.04 4.27 

 

6.76 0.88 

 

0.00 0.65 

  
              

40 8 0.00 0.00 

 

100.00 0.00 

 

2.98 0.11 

 

0.00 0.08 

 

0.00 0.00 

90.00 0.00 

 

100.00 6.71 

 

18.71 1.35 

 

1.06 0.32 

 

0.00 0.12 

100.00 0.00 

 

100.00 18.75 

 

41.12 3.50 

 

7.60 0.66 

 

0.00 0.46 

  
              

50 6 0.00 0.00 

 

100.00 0.00 

 

16.92 0.04 

 

1.97 0.03 

 

0.00 0.02 

80.00 0.00 

 

100.00 14.34 

 

29.25 0.80 

 

7.97 0.17 

 

1.97 0.19 

100.00 0.00 

 

100.00 32.69 

 

52.94 4.67 

 

12.05 0.57 

 

5.56 1.12 

  
              

50 8 0.00 0.00 

 

100.00 0.00 

 

21.93 0.21 

 

2.32 0.05 

 

0.00 0.04 

70.00 0.00 

 

100.00 29.76 

 

32.33 1.42 

 

7.58 0.72 

 

1.19 0.28 

100.00 0.00 

 

100.00 100.00 

 

59.81 3.56 

 

13.03 1.70 

 

3.54 0.68 

  
              

50 10 100.00 0.00 
 

100.00 0.00 
 

13.10 0.14 
 

0.00 0.03 
 

0.00 0.09 

100.00 0.00 
 

100.00 12.24 
 

26.41 1.58 
 

4.01 0.37 
 

0.37 0.18 

100.00 0.00 
 

100.00 25.32 
 

59.08 5.81 
 

12.22 1.11 
 

2.08 0.48 
  

              
Average 56.77 0.03   90.22 12.68   22.45 2.85   3.88 0.58   0.59 0.17 

 

 

Table 9 Relative deviation of instances solved by the positional model and HCG for medium-size 

instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

P HCG   P HCG   P HCG   P HCG   P HCG 

20 2 0.00 0.00 
 

0.00 0.00 
 

0.00 0.00 
 

0.00 0.00 
 

0.00 0.00 

0.00 0.00 
 

3.83 0.00 
 

0.02 0.00 
 

0.00 0.01 
 

0.01 0.00 

0.00 0.00 
 

27.50 0.00 
 

0.12 0.00 
 

0.00 0.06 
 

0.10 0.00 

  
              

30 2 0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

10.00 0.00 

 

43.76 0.00 

 

1.77 1.02 

 

0.03 0.42 

 

0.00 0.00 

100.00 0.00 

 

96.49 0.00 

 

6.89 6.46 

 

0.24 3.34 

 

0.02 0.00 

  
              

30 4 0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

5.63 0.00 

 

32.85 0.00 

 

1.46 0.00 

 

0.00 0.02 

 

0.00 0.00 

56.25 0.00 

 

66.67 0.00 

 

6.03 0.00 

 

0.00 0.08 

 

0.04 0.00 

  
              

40 4 0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

17.80 0.00 

 

61.28 0.42 

 

4.30 0.42 

 

0.53 0.15 

 

0.13 0.04 

94.49 0.00 

 

100.00 4.20 

 

9.28 3.81 

 

2.15 1.46 

 

0.80 0.35 

  
              

40 6 0.00 0.00 

 

6.75 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

26.60 0.00 

 

62.08 0.00 

 

4.15 0.09 

 

0.24 0.04 

 

0.00 0.06 

100.00 0.00 

 

90.87 0.00 

 

7.39 0.92 

 

1.18 0.37 

 

0.04 0.51 

  
              

40 8 0.00 0.00 

 

26.54 0.00 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

16.21 0.00 

 

56.69 0.00 

 

2.83 0.00 

 

0.09 0.04 

 

0.05 0.00 

88.74 0.00 

 

87.88 0.00 

 

6.83 0.00 

 

0.38 0.37 

 

0.22 0.00 
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50 6 0.00 0.00 

 

5.93 0.00 

 

2.69 0.00 

 

0.00 0.00 

 

0.00 0.00 

57.93 0.00 

 

54.55 0.00 

 

8.18 0.00 

 

1.68 0.01 

 

0.31 0.09 

100.00 0.00 

 

93.41 0.00 

 

18.31 0.00 

 

3.96 0.10 

 

2.56 0.91 

  
              

50 8 0.00 0.00 

 

51.19 0.00 

 

1.60 0.00 

 

0.08 0.00 

 

0.00 0.00 

25.83 0.00 

 

78.85 0.00 

 

9.35 0.00 

 

1.65 0.00 

 

0.02 0.03 

100.00 0.00 

 

99.69 0.00 

 

17.75 0.00 

 

3.36 0.00 

 

0.19 0.14 

  
              

50 10 0.00 0.00 

 

48.56 0.00 

 

1.36 0.00 

 

0.00 0.00 

 

0.00 0.00 

47.48 0.00 

 

75.44 0.00 

 

6.25 0.00 

 

0.54 0.02 

 

0.13 0.00 

95.53 0.00 

 

93.33 0.00 

 

16.53 0.00 

 

2.74 0.24 

 

0.31 0.00 

                
Average 23.05 0.00   52.15 0.05   4.26 0.17   0.53 0.08   0.07 0.02 

 

 

Table 10 Runtime of instances solved by the positional model and HCG for medium-size instances. 

n m 
q = 1   q = 2   q = 3   q = 4   q = 5 

P HCG   P HCG   P HCG   P HCG   P HCG 

20 2 0.94 0.47 

 

6.83 7.92 

 

25.65 231.6 

 

7.47 88.11 

 

2.89 68.89 

738.03 376.77 

 

2134.70 602.73 

 

342.37 719.31 

 

31.33 226.88 

 

14.23 129.91 

3600.00 3600.00 

 

3600.00 2741.85 

 

1044.65 1822.68 

 

65.26 330.30 

 

22.00 194.89 

  
              

30 2 15.76 3.32 

 

3340.98 176.50 

 

3600.00 3167.13 

 

188.03 2696.51 

 

81.39 1737.33 

1125.44 85.16 

 

3574.10 1740.74 

 

3600.00 3520.01 

 

2526.55 3154.82 

 

382.69 2687.22 

3600.00 242.83 

 

3600.00 3600.00 

 

3600.00 3600.00 

 

3600.00 3600.00 

 

1131.74 3129.83 

  
              

30 4 67.61 0.98 

 

2755.77 44.21 

 

715.84 254.70 

 

65.91 108.58 

 

26.94 75.25 

1098.96 8.06 

 

3515.58 1918.86 

 

2731.45 632.59 

 

1384.32 238.65 

 

70.43 124.59 

3600.00 13.63 

 

3600.00 3600.00 

 

3600.00 942.26 

 

3600.00 484.40 

 

127.70 177.29 

  
              

40 4 387.96 1.87 

 

3600.00 135.74 

 

3600.00 2330.21 

 

3600.00 1255.75 

 

438.96 690.55 

2055.61 31.16 

 

3600.00 1987.75 

 

3600.00 3138.02 

 

3600.00 1644.49 

 

2448.41 1005.55 

3600.00 150.34 

 

3600.00 3600.00 

 

3600.00 3600.00 

 

3600.00 2017.85 

 

3600.00 1492.02 

  
              

40 6 239.95 4.42 
 

3600.00 141.57 
 

3600.00 511.79 
 

244.00 367.33 
 

94.24 145.31 

2637.08 28.75 
 

3600.00 2021.51 
 

3600.00 813.54 
 

2957.90 475.75 
 

366.02 228.08 

3600.00 71.76 
 

3600.00 3600.00 
 

3600.00 1218.78 
 

3600.00 586.44 
 

1271.72 384.71 

  
              

40 8 196.09 34.74 
 

3600.00 162.01 
 

3600.00 386.18 
 

150.63 127.80 
 

43.84 70.93 

3259.61 44.15 
 

3600.00 1202.32 
 

3600.00 429.69 
 

1052.81 235.09 
 

97.66 100.34 

3600.00 67.73 
 

3600.00 3600.00 
 

3600.00 504.38 
 

3600.00 447.22 
 

197.25 122.54 

  
              

50 6 972.85 12.00 
 

3600.00 260.71 
 

3600.00 1533.36 
 

3600.00 892.98 
 

429.99 556.81 

3325.89 80.24 
 

3600.00 2698.00 
 

3600.00 2140.53 
 

3600.00 1239.13 
 

3008.76 770.80 

3600.00 282.61 
 

3600.00 3600.00 
 

3600.00 3215.01 
 

3600.00 1432.29 
 

3600.00 921.35 

  
              

50 8 215.78 9.11 
 

3600.00 342.90 
 

3600.00 714.59 
 

3600.00 549.28 
 

489.19 334.75 

2922.06 96.96 
 

3600.00 2221.26 
 

3600.00 870.90 
 

3600.00 642.89 
 

2615.01 498.12 
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3600.00 191.26 

 

3600.00 3600.00 

 

3600.00 1437.68 

 

3600.00 749.11 

 

3600.00 645.51 

  
              

50 10 3600.00 69.51 

 

3600.00 367.12 

 

3600.00 521.35 

 

890.94 279.65 

 

314.01 183.63 

3600.00 142.44 

 

3600.00 2076.51 

 

3600.00 560.36 

 

3241.00 463.30 

 

1208.79 278.33 

3600.00 223.52 

 

3600.00 3600.00 

 

3600.00 627.92 

 

3600.00 558.22 

 

3600.00 535.46 

  
              

Average 2306.96 99.30   3424.93 1829.96   3141.54 1425.00   2443.77 924.55   1134.67 646.99 

 

 

Table 11 Performances of the proposed HCG components. 

n m q 
IS 

  
CH   LRBHPP   PMPP 

ΔIS-FS Time 
  

Iter Col Time   Iter Col Time   Iter Col Time 

20 2 1 0.00 75.96 
 

5.50 34.65 0.37 
 

1.17 1.00 0.79 
 

1.50 2.17 548.99 

  
2 0.00 106.50 

 
11.78 123.67 1.26 

 
3.67 10.56 31.39 

 
6.44 38.11 740.51 

  
3 1.35 118.60 

 
21.50 135.45 1.47 

 
32.20 191.50 277.05 

 
12.90 33.60 321.42 

  
4 0.02 16.45 

 
24.70 155.61 1.95 

 
28.60 132.10 128.54 

 
9.00 15.60 79.25 

  
5 0.01 9.73 

 
23.80 249.90 1.67 

 
27.30 110.70 72.70 

 
9.40 19.10 45.12 

                 
30 2 1 0.00 147.10 

 
2.50 26.25 0.82 

 
1.00 0.00 0.15 

 
1.00 0.00 0.24 

  
2 3.58 315.47 

 
20.78 130.90 13.08 

 
1.56 4.22 658.61 

 
1.67 5.33 1141.31 

  
3 1.21 304.37 

 
42.80 269.64 16.26 

 
6.80 104.30 1578.84 

 
3.00 28.60 1595.72 

  
4 0.24 277.04 

 
39.80 334.32 15.86 

 
37.40 399.30 1569.49 

 
15.70 117.80 1290.98 

  

5 0.08 158.41 

 

44.40 466.20 16.82 

 

78.80 528.30 1510.68 

 

29.40 108.30 999.55 

                 
30 4 1 0.00 9.90 

 
4.80 78.72 1.21 

 
1.00 0.00 0.45 

 
1.00 0.00 0.52 

  
2 6.76 56.55 

 
28.78 589.94 3.63 

 
12.67 93.33 193.14 

 
5.89 56.33 2207.11 

  
3 1.70 247.07 

 
22.70 372.28 2.72 

 
32.80 303.50 151.36 

 
11.40 50.20 230.78 

  
4 0.12 106.65 

 
28.30 580.15 2.96 

 
31.00 227.50 84.25 

 
7.40 19.90 44.15 

  
5 0.05 29.62 

 
28.60 351.78 3.05 

 
27.50 178.30 56.75 

 
8.40 16.20 34.59 

                 
40 4 1 0.00 52.56 

 

5.40 110.70 1.75 

 

1.00 0.00 0.41 

 

1.00 0.00 0.47 

  

2 2.68 252.50 

 

26.56 435.51 8.43 

 

5.33 71.67 813.41 

 

1.67 11.11 1342.50 

  

3 6.13 313.12 

 

46.80 575.64 14.35 

 

48.20 770.80 1431.74 

 

10.20 63.00 1375.56 

  

4 1.16 311.61 

 

48.90 1002.45 15.91 

 

56.60 625.50 808.86 

 

13.20 56.90 505.49 

  

5 0.27 273.71 

 

50.30 618.69 15.62 

 

50.30 512.00 431.02 

 

13.70 44.70 282.72 

                 
40 6 1 0.00 36.75 

 

5.67 138.27 1.32 

 

1.00 0.00 1.10 

 

1.00 0.00 0.75 

  

2 5.53 186.32 

 

23.50 573.40 5.29 

 

4.50 32.20 83.42 

 

3.60 27.50 2047.42 

  

3 3.51 314.17 

 

31.70 773.48 4.58 

 

75.60 390.40 199.67 

 

10.10 55.20 294.09 

  

4 0.92 276.31 

 

28.90 705.16 4.72 

 

27.70 249.80 112.39 

 

9.20 30.60 81.21 

  

5 0.06 83.56 

 

30.20 921.10 4.57 

 

29.10 223.50 89.62 

 

7.80 21.20 49.18 

                 
40 8 1 1.38 41.62 

 

4.70 190.35 0.50 

 

1.00 0.00 0.80 

 

1.00 0.00 0.98 

  

2 12.59 169.55 

 

23.80 771.12 2.30 

 

55.40 71.00 89.62 

 

6.70 44.10 1139.39 

  

3 1.68 312.18 

 

24.30 787.32 2.42 

 

19.10 139.30 53.43 

 

9.00 30.80 61.02 

  

4 0.58 136.89 

 

19.80 801.90 1.93 

 

20.10 135.80 54.75 

 

7.80 22.40 41.00 

  

5 0.22 27.67 

 

21.50 696.60 1.88 

 

18.90 111.30 45.19 

 

5.70 9.00 25.05 
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50 6 1 0.00 87.49 

 

5.83 142.33 2.85 

 

1.00 0.00 1.12 

 

1.00 0.00 1.67 

  

2 0.00 391.37 

 

37.60 688.08 14.39 

 

5.60 90.60 982.64 

 

1.60 16.40 1512.16 

  

3 5.72 344.28 

 

54.60 1332.24 22.37 

 

38.50 638.10 678.24 

 

13.00 80.90 1089.50 

  

4 1.55 339.42 

 

49.70 1212.68 20.88 

 

43.40 532.20 491.67 

 

12.40 52.00 383.52 

  

5 0.56 304.32 

 

48.50 1183.40 19.53 

 

35.60 402.20 278.38 

 

10.60 38.20 166.17 

                 
50 8 1 0.00 96.37 

 

5.00 202.50 2.18 

 

1.00 0.00 1.67 

 

1.00 0.00 2.18 

  

2 6.95 358.07 

 

29.30 949.32 6.90 

 

11.30 92.10 206.73 

 

3.40 42.10 1802.78 

  

3 5.38 346.36 

 

34.10 1381.05 7.86 

 

28.30 383.00 225.71 

 

10.40 58.70 287.03 

  

4 1.21 339.65 

 

34.30 1389.15 7.89 

 

22.30 244.90 167.09 

 

9.10 30.40 125.68 

  

5 0.29 254.63 

 

31.80 1287.90 7.48 

 

24.40 229.20 146.16 

 

7.60 22.20 87.61 

                 
50 10 1 0.00 137.99 

 

4.10 165.64 0.90 

 

1.00 0.00 1.60 

 

1.00 0.00 1.66 

  

2 14.17 570.28 

 

21.50 1085.75 4.01 

 

9.70 43.80 91.49 

 

6.70 69.20 1606.37 

  

3 4.22 335.47 

 

25.00 1262.50 3.76 

 

20.20 201.00 110.39 

 

9.00 33.10 108.52 

  

4 0.43 280.36 

 

24.90 1005.96 4.09 

 

18.80 152.80 93.09 

 

8.00 24.60 84.65 

  

5 0.23 125.38 

 

23.70 957.48 3.62 

 

20.20 135.10 93.24 

 

6.20 14.00 54.67 

                 
Average 1 0.15 76.19 

 
4.83 121.05 1.32 

 
1.02 0.11 0.90 

 
1.06 0.24 61.94 

  
2 5.81 267.40 

 
24.84 594.19 6.59 

 
12.19 56.61 350.05 

 
4.19 34.47 1504.39 

  
3 3.43 292.85 

 
33.72 765.51 8.42 

 
33.52 346.88 522.94 

 
9.89 48.23 595.96 

  
4 0.69 231.60 

 
33.26 798.60 8.46 

 
31.77 299.99 390.01 

 
10.20 41.13 292.88 

    5 0.20 140.78   33.64 748.12 8.25   34.68 270.07 302.64   10.98 32.54 193.85 

 

6. Conclusion 

The observed improvement in the positional model relative to the Manne model, and especially to 

the Wagner model, is because of the eliminated use of the big-M constant. Consequently, the model 

is linear and easier to solve (Chen & Powell, 1999a). In addition, reduction of the number of 

positions (Proposition 1) also helps reduce the need for computational effort. 

Tight linear relaxation of the positional model enabled implementing the linear relaxation-based 

heuristics to generate the quality initial columns and more quickly solve the pricing problem. In 

solving the pricing problem, the heuristic methods (CH and LRBHPP) were effective in reducing the 

need to use the exact method (PMPP). This was proven when the exact method used fewer iterations. 

We also tested inserting only the optimal column or 12 best columns per iteration. However, the 

results were worse than those found by the proposed approach used. 

The congestion level of production system affects the problem solving. This was proved by 

observing the results of the positional model for medium-size instances: as q increased, the 

performance improved. Therefore, we developed two methods for generating the initial solution for 

the HCG method: the ILS method for levels with less congestion (q = 1 and 2), and the LRBHIS 

method for levels with greater congestion (q = 3, 4, and 5). 

The HCG method found the optimal solution of 89 among 90 instances of congestion level q = 1. 

This is because the due dates were looser, which facilitated the ILS method in finding the optimal 

solution of 89 instances. The greatest performance difference between the HCG method and 



58 
 

positional model occurred with a lower congestion level. For q = 2, the HCG method obtained the 

worst performance, and from q = 3, the performance improved when the congestion level increased 

until q = 5. Although the HCG method found fewer optimal solutions than the positional model, it 

had a smaller overall average gap than the positional model at 4.78% versus 34.78%, respectively. 

Future work will involve determining a means to eliminate the negative effect that loose due dates 

have on decreasing the efficiency of the positional model. Other future work is to develop a re-

optimization algorithm to reduce the computational cost of solving the pricing problem. This work 

would be similar to the Desrochers and Soumis (1988) proposed method, which reuses part of the 

solution of the preceding problem to reduce the cost of solving multiple times the shortest-path 

problem with the time-window problem. In addition, these approaches could be tested in other 

scheduling problems that use the big-M constant. 

 

Acknowledgements 

The authors would like to thank the National Council for Scientific and Technological Development 

(CNPq), Coordination of Personnel Improvement of Higher Education (CAPES), and Foundation 

for Research Support of the State of Minas Gerais (FAPEMIG) for their financial support. 

 

References 

Afzalirad, M., & Shafipour, M. (2015). Design of an efficient genetic algorithm for resource-

constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. 

Journal of Intelligent Manufacturing, doi:10.1007/s10845-015-1117-6. 

Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling 

problems with setup times or costs. European Journal of Operational Research, 187(3), 985–1032. 

Allahverdi, A., & Soroush, H. M. (2008). The significance of reducing setup times/setup costs. 

European Journal of Operational Research, 187(3), 978–984 (2008) 

Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness scheduling with a new 

hybrid metaheuristic approach. Computers & Operations Research, 34(11), 3471–3490. 

Armentano, V. A., & de França Filho, M. F. (2007). Minimizing total tardiness in parallel machines 

scheduling with setup times: an adaptive memory-based GRASP approach. European Journal of 

Operational Research, 183(1), 100–114. 

Avalos-Rosales, O., Angel-Bello, F., & Alvarez, A. M. (2015). Efficient metaheuristic algorithm 

and re-formulations for the unrelated parallel machine scheduling problem with sequence and 

machine-dependent setup times. The International Journal of Advanced Manufacturing Tecnology, 

76(9), 1705-1718. 

Azizoglu, M., Çetinkaya, F. C., & Pamir, S. K. (2015). LP relaxation-based solution algorithms for 

the multi-mode project scheduling with a non-renewable resource. European Journal of Industrial 

Engineering, 9(4), 450–469. 

Bilge, U., Kirac, F., Kurtulan, M., & Pekgun, P. (2004). A tabu search algorithm for parallel 

machine total tardiness problem. Computers & Operations Research, 31(3), 397–414. 



59 
 

Chang, P.-C., & Chen, S.-H. (2011). Integrating dominance properties with genetic algorithms for 

parallel machine scheduling problems with setup time. Applied Soft Computing, 11(1), 1263-1274.  

Chen, C.-L. (2012). Iterated hybrid metaheuristic algorithms for unrelated parallel machines 

problem with unequal ready times and sequence-dependent setup times. The International Journal 

of Advanced Manufacturing Tecnology, 60(5), 693–705. 

Chen, C. L., & Chen, C. L. (2009). Hybrid metaheuristics for unrelated parallel machine scheduling 

with sequence-dependent setup times. The International Journal of Advanced Manufacturing 

Tecnology, 43(1-2), 161–169. 

Chen, J. F. (2009). Scheduling on unrelated parallel machines with sequence- and machine-

dependent setup times and due-date constraints. The International Journal of Advanced 

Manufacturing Tecnology, 44(11), 1204–1212. 

Chen, Z.-L., & Lee, C.-Y. (2002). Parallel machine scheduling with a common due window. 

European Journal of Operational Research, 136(3), 512–527. 

Chen, Z. -L., & Powell, W. B. (1999a). Solving parallel machine scheduling problems by column 

generation. INFORMS Journal on Computing, 11(1), 78–94. 

Chen, Z. -L., & Powell, W. B. (1999b). A column generation based decomposition algorithm for a 

parallel machine just-in-time scheduling problem. European Journal of Operational Research, 

116(1), 220–232. 

Chen, Z. -L., & Powell, W. B. (2003). Exact algorithms for scheduling multiple families of jobs on 

parallel machines. Naval Research Logistics, 50(7), 823–840. 

Cheng, T. C. E., Sin, C. C. S. (1990). A State-of-the-Art Review of Parallel-Machine Scheduling 

Research. European Journal of Operational Research, 47(3), 271–292. 

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations 

Research, 8(1), 101–111. 

Desrochers, M., & Soumis, F. (1988). A reoptimization algorithm for the shortest path problem with 

time windows. European Journal of Operational Research, 35(2), 242–254. 

Du, J., & Leung, J. Y. T. (1990). Minimizing total tardiness on one machine is NP-hard. 

Mathematics of Operations Research, 15(3), 483–495. 

Figielska, E. (2009). A genetic algorithm and a simulated annealing algorithm combined with 

column generation technique for solving the problem of scheduling in the hybrid flowshop with 

additional resources. Computers & Industrial Engineering, 56(1), 142–151. 

French, A. P., & Wilson, J. M. (2007). An LP-based heuristic procedure for the generalized 

assignment problem with special ordered sets. Computers & Operations Research, 34(8), 2359–

2369. 

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock 

problem. Operations Research, 9(6), 849–859. 

Guedes, P. C., & Borenstein, D. (2015). Column generation based heuristic framework for the 

multiple-depotvehicle type scheduling problem. Computers & Industrial Engineering, 90, 361–370. 

Hardin, J. R., Nemhauser, G. L., & Savelsbergh, M. W. P. (2007). Analysis of bounds for a 

capacitated single-item lot-sizing problem. Computers & Operations Research, 34(6), 1721–1743. 



60 
 

Hauge, K., Larsen, J., Lusby, R. M., & Krapper, E. (2014). A hybrid column generation approach 

for an industrial waste collection routing problem. Computers & Industrial Engineering, 71, 10–20. 

Houck, J. D. J., Picard, J. C., Queyranne, M., & Vemuganti, R. R. (1980). The travelling salesman 

problem as a constrained shortest path problem: Theory and computational experience. Operations 

Research, 17, 93–109. 

Jampani, J., & Mason, S. J. (2010). A column generation heuristic for complex job shop multiple 

orders per job scheduling. Computers & Industrial Engineering, 58, 108–118. 

Kim, D.-W., Kim, K.-H., Jang, W., & Chen, F. F. (2002). Unrelated Parallel machine scheduling 

with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing, 

18(3-4), 223–231. 

Koné, O., Artigues, C., Lopez, P., & Mongeau, M. (2013). Comparison of mixed integer linear 

programming models for the resource-constrained project scheduling problem with consumption 

and production of resources. Flexible Services and Manufacturing Journal, 25(1), 25–47. 

Kramer, H. H., Petrucci, V., Subramanian, A., & Uchoa, E. (2012). A column generation approach 

for power-aware optimization of virtualized heterogeneous server clusters. Computers & Industrial 

Engineering, 63, 652–662. 

Lange, J., & Werner, F. (2015). A comparison of approaches to modeling train scheduling problems 

as job-shops with blocking constraints. Tech. Rep. Preprints 2015-18, Otto-von-Guericke-

University Magdeburg, Institute of Mathematical Optimization. 

Lawler, E. L. (1977). A “pseudopolynomial” algorithm for sequencing jobs to minimize total 

tardiness. Annals of Discrete Mathematics, 1, 331–342. 

Lee, Y. H., & Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence-dependent 

setup times. European Journal of Operational Research, 100(3), 464–474. 

Lee, J.-H., Yu, J.-M., & Lee, D.-H. (2013). A tabu search algorithm for unrelated parallel machine 

scheduling with sequence- and machine-dependent setups: minimizing total tardiness. The 

International Journal of Advanced Manufacturing Tecnology, 69(9), 2081–2089. 

Li, K., & Yang, S.-l. (2009). Non-identical parallel-machine scheduling research with minimizing 

total weighted completion times: Models, relaxations and algorithms. Applied Mathematical 

Modelling, 33(4), 2145-2158. 

Lin, S.-W., Chou, S.-Y., & Ying, K.-C. (2007). A sequential exchange approach for minimizing 

earliness-tardiness penalties of single-machine scheduling with a common due date. European 

Journal of Operational Research, 177(2), 1294-1301.  

Lin, S.-W, Lu, C. C., & Ying, K.-C. (2011). Minimization of total tardiness on unrelated parallel 

machines with sequence- and machine-dependent setup times under due date constraints. The 

International Journal of Advanced Manufacturing Tecnology, 53(1), 353–361. 

Lin, S.-W, & Ying, K.-C. (2007). Solving single machine total weighted tardiness problems with 

sequence-dependent setup times by meta-heuristics. International Journal of Advanced 

Manufacturing Technology, 34(11), 1183-1190. 

Lopes, M. J. P., & de Carvalho, J. M. V. (2007). A branch-and-price algorithm for scheduling 

parallel machines with sequence dependent setup times. European Journal of Operational 

Research, 176(3), 1508-1527. 



61 
 

Lourenço, H. R., Martin, O., & Stützle, T. (2002). Iterated local search. In Handbook of 

Metaheuristics, F. Glover and G. Kochenberger, Eds. International Series in Operations Research & 

Management Science, vol. 57. Kluwer Academic Publishers, MA, USA, 321-353. 

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2). 219-223. 

M’Hallah, R., & Bulfin, R. L. (2005). Minimizing the weighted number of tardy jobs on parallel 

processors. European Journal of Operational Research, 160(2), 471–484. 

Mokotoff, E. (2001). Parallel machine scheduling problems: a survey. Asia-Pacific Journal of 

Operational Research, 18(2), 193–242. 

Nogueira, J. P. de C. M., Arroyo, J. E. C., Villadiego, H. M. M., & Gonçalves, L. B. (2014). Hybrid 

GRASP Heuristics to Solve an Unrelated Parallel Machine Scheduling Problem with Earliness and 

Tardiness Penalties. Electronic Notes in Theoretical Computer Science, 302, 53–72. 

Park, Y., Kim, S., & Lee, Y. H. (2000). Scheduling jobs on parallel machines applying neural 

network and heuristics rules. Computers & Industrial Engineering, 38, 189–202. 

Paula, M. R., Mateus, G. R., & Ravetti, M. G. (2010). A non-delayed relax-and-cut algorithm for 

scheduling problems with parallel machines, due dates and sequence-dependent setup times. 

Computers & Operations Research, 37(5), 938–949. 

Pessoa, A., Uchoa, E., Aragão, M. P. de, & Rodrigues, R. (2010). Exact algorithm over an arc-time-

indexed formulation for parallel machine scheduling problems. Mathematical Programming 

Computation, 2(3), 259–290. 

Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems. Springer. 

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. European Journal of 

Operational Research, 120(2), 228–249. 

Rocha, P. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2008). Exact algorithms for a 

scheduling problem with unrelated parallel machines and sequence and machine-dependent setup 

times. Computers & Operations Research, 35(4), 1250–1264. 

Sousa, J. P., & Wolsey, L. A. (1992). A time indexed formulation of non-preemptive single 

machine scheduling problems. Mathematical Programming, 54(1), 353–367. 

Thanh, P. N., Péton, O., & Bostel, N. (2010). A linear relaxation-based heuristic approach for 

logistics network design. Computers & Industrial Engineering, 59, 964–975. 

Vallada, E., Ruiz, R., & Minella, G. (2008). Minimising total tardiness in the m-machine flowshop 

problem: A review and evaluation of heuristics and metaheuristics. Computers & Operations 

Research, 35(4), 1350–1373. 

van den Akker, J. M., Hoogeveen, J. A., & van de Velde, S. L. (1999). Parallel machine scheduling 

by column generation. Operations Research, 47(6), 862–872. 

van den Akker, J. M., Hoogeveen, J. A., & van Kempen, J. W. (2012). Using column generation to 

solve parallel machine scheduling with minmax objective functions. Journal of Scheduling, 15(6), 

801–810. 

Wagner, H. W. (1959). An integer linear-programming model for machine scheduling. Naval 

Research Logistic Quarterly, 6(2), 131–140. 



62 
 

Zeidi, J. R., & Hosseini, S. M. (2015). Scheduling unrelated parallel machines with sequence-

dependent setup times. The International Journal of Advanced Manufacturing Tecnology, 81(9), 

1487–1496. 

Zhu, Z., & Heady, R. B. (2000). Minimizing the sum of earliness/tardiness in multi-machine 

scheduling: a mixed integer programming approach. Computers & Industrial Engineering, 38, 297–

305. 

 

 

 


