Scheduling in semi parallel flow shop
with a final synchronizing operation

UETG

UNIVERSIDADE FEDERAL
DE MINAS GERAIS

UNIVERSITE DE TECHNOLOGIE
TRAVEC
TROYES

Irce Fernandes Gomes Guimaraes

Supervisor: Prof. Dr. Mauricio Cardoso Souza
Professeur des Universités Farouk

Yaloui

Postgraduate program in Production Engineering,
Ecole Doctorale Sciences et Technologies
Federal University of Minas Gerais - UFMG.
University of Technology of Troyes - UTT.

This dissertation is submitted for the degree of
Doctor in Production Engineering - UFMG and Doctor in Systems

Optimization and Dependability - UTT
February 2018

"Our deepest fear is not that we are weak. Our deepest fear is that we are powerful beyond
measure. It is our light, not our darkness that most frightens us. We ask ourselves, who am |
to be brilliant, gorgeous, talented, fabulous? Actually, who are you not to be? You are a child
of God. Your playing small does not serve the world ... As we are liberated from our own

fear, our presence automatically liberates others."

Nelson Mandela

I would like to dedicate this thesis to my loving parents.

UNIVERSIDADE FEDERAL DE MINAS GERAIS
UEMG

PROGRAMA DE POS-GRADUAGAO EM ENGENHARIA DE PRODUGAO

FOLHA DE APROVACAO

Scheduling in semi parallel flow shop with a final synchronizing
operation

IRCE FERNANDES GOMES GUIMARAES

Tese submetida a Banca Examinadora designada pelo Colegiado do Programa de Pos-
Graduagio em ENGENHARIA DE PRODUCAOQ, como requisito para obten¢do do grau de
Doutor em ENGENHARIA DE PRODUCAOQ, area de concentracio PESQUISA
OPERACIONAL E ENGENHARIA DE MANUFATURA, linha de pesquisa Mod. e Algorit.
de Otimiz. para Sistemas em Redes ¢ de Prod..

Aprovada em 07 de novembro de 2017, pela banca constituida pelos membros:

M

Prof). Mauricio Cardoso de Souza - Orientador
UFMG

Prof(a). Marcone Jamilson Freitas Souza
Universidade Federal de Ouro Preto

Prof(a). Farouk Yalaoui
Université de Technologie de Troyes

P

Prof(a). Aleéxandre Ddlgui /

Ecole des Mines de Nantes ///)

Prof(a). Zaki Sari

Université de Tleméen 7 (
QY

- ;x\f-\‘ ,

Prof(a). Yassine Ouazene
Université de Technologie ﬁ ,Troy;s

Prof(a). Lionel Amadeo
Université de Technglogie de Troyes

Belo Horizonte, 7 de novembro de 2017.

UNIVERSIDADE FEDERAL DE MINAS GERAIS
UEMG
Bs

PROGRAMA DE POS-GRADUAGCAO EM ENGENHARIA DE PRODUCAO

ATA DA DEFESA DE TESE DA ALUNA
IRCE FERNANDES GOMES GUIMARAES

Realizou-se, no dia 07 de novembro de 2017, as 13:00 horas, a definir, da
Universidade Federal de Minas Gerais, a 262 defesa de tese, intitulada Scheduling
in semi parallel flow shop with a final synchronizing operation, apresentada
por IRCE FERNANDES GOMES GUIMARAES, numero de registro 2012654635,
graduada no curso de ENGENHARIA DE PRODUGAO, como requisito parcial para a
obtengdo do grau de Doutor em ENGENHARIA DE PRODUCAO, a seguinte
Comissao Examinadora: Prof(a). Mauricio Cardoso de Souza - Orientador (UFMG),
Prof(a). Marcone Jamilson Freitas Souza (Universidade Federal de Ouro Preto),
Prof(a). Farouk Yalaoui (Université de Technologie de Troyes), Prof(a). Alexandre
Dolgui (Ecole des Mines de Nantes), Prof(a). Zaki Sari (Université de Tlemcen),
Prof(a). Yassine Ouazene (Université de Technologie de Troyes), Prof(a). Lionel
Amodeo (Université de Technologie de Troyes).

A Comisséo considerou a tese:

(*) Aprovada

() Reprovada

Finalizados os trabalhos, lavrei a presente ata que, lida e aprovada, vai assinada por
mim e pelos membros da Comisséo.

Belo Horizonte, 07 de novembro de 2017.

O

Prof(a). Mauricio Cardoso de Souza (Doutor)

Prof(a). Marcone Jamilson Freitas Souza (Doutor)
Prof(a). Farouk Yalao

Prof(a). Alexandre Dolgui (Doutor)
e /Y -

Prof(a). Zaki Sari (Doutor)
LY

i (Doutor)

-
Prof(a). Yassine Ouazene (‘ADout%

[

/

Prof(a). Lionel Aqueo (Doutor)

Acknowledgements

Many people have contributed to the elaboration of this thesis. Certainly, it would be
impossible to name everyone, because the list is immense, so I am afraid of committing
injustice. I would manifest my deep gratitude for their support. Nonetheless, there are those
who I want to outstand, to thank them and to express my acknowledgement.

First and foremost, I wish to express my sincere gratitude to Professor Mauricio Cardoso
de Souza of the Federal University of Minas Gerais (UFMG) for believing in me, encouraging
and giving me this great opportunity and above all for his valuable supervision and patience
throughout my PhD study; and to Professor Farouk Yalaoui of the Université de Technologie
de Troyes (UTT) for his availability, encouraging, advices, and for welcoming me at the
LOSI Laboratory.

I would also like to thank the rapporteurs of these organizations: Pr. Alexandre DOL-
GUI, Head of Departement, Production and Computer Science Dept, Ecole des Mines de
Nantes, Pr. Zaki SARI, DSc Directeur du Laboratoire de Productique de Tlemcen (MELT)
Université Aboubekr Belkaid de Tlemcen Algérie for their attention and attentive reading of
my manuscript.

Thanks to the members of the jury who accepted and dedicated their time to the evaluation
of this thesis: Pr. Dr. Marcone, JAMILSON FREITAS SOUZA, Professor, Federal University
of OURO PRETO, Brazil, Pr. Lionel, AMODEO Head of the Engineering Degree in
Industrial Engineering, UTT and Dr. Yassine, OUAZENE Maitre de Conferences of UTT.

I am grateful to the professionals of the Federal University of Minas Gerais (UFMG), the
Troyes University of Technology (UTT) and the Federal University of Ouro Preto (UFOP)
who have contributed directly or indirectly to this study and headed me beyond the borders
of my knowledge.

I cannot forget my colleagues of the Graduate Laboratory of Production Engineering
of Federal University of Minas Gerais, of the Industrial Systems Optimization Laboratory
of Troyes University of Technology and also of the production engineering department of
UFOP.

To the Coordination of Improvement of Higher Level People (Capes) who granted me an

abroad research scholarship allowing me to work full time in this thesis.

viii

I also want to thank Gizelia Maria Machado Adeodato for revising my writings.

Finally, I thank God for my life, for guiding and lightening me in most difficult moments.
I thank a lot my mother Maria Geralda, my father Sebastido (now in memory), my siblings
Maria Teresa, Mirian, Italo, Josiano (in memory), my nephew Franklin, and all my close

friends, who have pushed and helped me to overcome my hard moments.

Abstract

This study deals with a variant of the flow shop problem motivated by a practical situation.
In this environment, there is an assembly line composed by two parallel semi- lines and
independent operation. The first semi-line has a number ¢; of machines and the second has a
number g, of machines. At the end of the two semi-lines there is a machine in charge of the
union of the semi-products from the two semi-lines, each semi-line is devoted to different
tasks, since each job requires operations in each machine of the semi-lines with different
processing time. The tasks of one semi-line do not depend on the completion of the task of
the other semi-line, so that a job is processed in parallel in each semi-line. The sequence
of jobs in each parallel semi-line must be the same, although the first task of a job in each
semi-line does not have to start at the same time. The final synchronizing operation can only
start when the operations within both semi-lines have been finished. The solution to this
problem is to determine one possible sequence of jobs that optimizes a given performance
measure. In this sense, the objective of this study is to model the flow shop problem in
the proposed production environment and to solve it with a mathematical model, heuristic
and metaheuristic, considering the makespan as performance measure. In a first approach,
a mixed integer linear programming model was defined. Due to the complexity of the
problem, it was also solved by Johnson’s rule, the NEH heuristics and by the Iterated Local
Search, Simulated Annealing and GRASP metaheuristics. Finally, an extensive computational
experiment was performed and a comparison of the proposed methods was made. The hybrid
method that used the NEH algorithm with GRASP metaheuristic presented better quality
than the other methods.

keywords: Scheduling (Management), Computer scheduling , Heuristic, Metaheuristics,

Synchronization

Extended Abstract

Introduction

Different models of production scheduling, controlling and planning are focus of scientific
studies aiming to guarantee better performance of the productive systems. In this sense, it can
be said that the production scheduling is an important activity and is considered a broad and
diversified field by many researchers. In this activity, it is necessary to observe the priorities
of the operations to be processed and to optimize the use of resources to establish the best
time to start and finish each activity. This optimization can bring gains such as a reduction
of the unproductive time, leading to a better system utilization, reliability beyond reducing
the production costs. Given the importance of this activity in many types of manufacturing
system, a variant of the flow shop problem was chosen for this study, since this is a common

problem in many industrial sectors that requires efficient methods for its resolution.

The model of flow shop scheduling in study

The model is an assembly line consisting of two parallel semi-lines and a final synchronization
operation. Each semi-line produces one of the halves of the final product that is assembled
into a single product in the final synchronization operation. The order of the halves of the final
products in each semi-line must be equal and must be followed in the final synchronization
operation as well. The first semi-line has a number g; of machines and the second semi-line
has a number ¢, of machines. There is a machine in charge of the union of the semi-products
at the end of the two semi-lines. Each job requires operations in each machine of the semi-
lines with different processing time. An operation in the machine of a semi-line does not
need to start at the same time of an operation in the machine of the other semi-line. However,
the final synchronization operation for a product can only be started when the operations of
its halves in both semi-lines are completed. Given this arrangement, it is possible to classify
this environment as a special case of flow shop. The objective of this study is to achieve
the optimal or near-optimal solution to minimize the total processing time. A mathematical

formulation model, heuristics and metaheuristics were proposed to solve the problem.

This system in a real problem

This research was motivated by a practical situation in the process of manufacturing of a
company that works in the electrical and electronic sector of protection system for residential

and commercial areas. Among the products manufactured by the company, the counters, the

xi

residential and industrial circuit breakers can be pointed out. The industry has four main
manufacturing sectors: plastic injection, stamping, welding and assembly. The processing
sequence of the company’s production items is similar for all products. The welding system
of this product was taken as the starting point for this study since this product has a great

impact in the production schedule of the company.

Objective and method

The main objective of this study was to model the flow shop schedule problem in parallel
semi-lines with a synchronization operation at the end and to solve it with a mathematical
model and algorithms such as heuristics and metaheuristics. In a first approach, a mixed
integer linear programming was used based on studies already developed for the flow shop
problem in other types of environments. Due to its complexity, the problem has been solved
by heuristics and metaheuristics. Methods using Johnson’s rule, NEH algorithm and iterated
local search (ILS), simulated annealing (SA) and GRASP metaheuristics were also used to
solve the problem.

The different methods were tested in 240 different instances. They are composed by com-
binations of number of jobs x number of machines of the semi-line 1 x number of machines of
the semi-line 2. The first 130 instances were created considering that the two semi-lines have
the same number of machines. The other 110 instances were created considering different
numbers of machines in the semi-lines. The results of the mathematical model were achieved
by using the software CPLEX 12 : 6 : 1 and the algorithms were implemented in C 4 4-. The
statistical analysis of the results was achieved by using Minitab software 17 : 2 : 1. The
absolute relative deviation (GAP) and the standard deviation (SD) of the GAPs were used to

compare the results.

Approaches
Mathematical approach

The mixed integer linear programming model was defined based on studies by Stafford [100]
and by Wagner [104]. The model required adaptations to the problem considering two
parallel semi-lines followed by the final synchronization operation. The operations in the
parallel machines were grouped and the processing time of the operation corresponding
to the set of operations of the slower group was adopted. At the end of each semi-line,

a dummy machine was included (considered as a synchronization machine in the model).

xii

These two dummy machines represent the independent processing of the last operation. The
existence of two artificially independent semi-lines allowed the determination of the highest
value of processing time between them. The model was efficient for smaller instances. It
presented difficulties to find out the optimal solutions in a viable computational time for

larger instances.

Approach using Johnson’s algorithm and the NEH heuristic

The second approach used to solve the problem considered two adaptations of Johnson’s
algorithm (Zhang and Van de Velde [109], Allahverdi et al. [7]), and three adaptations of the
NEH algorithm (Nawaz et al. [66], Guimaraes et al.[38]).

The general principle of the adaptations of Johnson’s algorithm considers the studied
system as a flow shop of two machines. The processing time in the machines of the semi-lines
was considered as the processing time in the first Johnson’s machine and the processing time
of the synchronization machine as the processing time of the second Johnson’s machine and
then Johnson’s algorithm is applied. The first adaptation of Johnson’s algorithm takes the
longest processing time of each job in all the machines of the two semi-lines for the first
Johnson’s machine and the processing time of the synchronization machine for the second
Johnson’s machine. The second adaptation of Johnson’s algorithm considers the highest
average processing time between the semi-lines for the first Johnson’s machine and the
processing time of the synchronization machine for the second Johnson’s machine.

Three adaptations were made for the NEH heuristics: the NEH,, algorithm, considering
the average processing time of the jobs between the parallel machines of the lines; the
NEHp; algorithm, considering the longest processing time of the jobs between the parallel
machines; and the NEH,, algorithm, considering each semi-line separately, including the
synchronization machine. The general principle of the adaptations was to reduce the two
semi-lines in a single line and to apply the NEH algorithm.

A comparison between the results of the mean relative deviation (GAP) and standard
deviation (SD) generated by the adaptations of the NEH and Johnson’s algorithm was made.
The results for the algorithms NEH,,, had smaller mean relative deviations for environments
with the same number of machines.

In relation to the environment with different number of machines, the NEHy,, showed
the best results. However, these results could be improved in order to reach or to be closer to
the optimal solution. Therefore, metaheuristics were used to solve the problem.

xiii

Approach using iterated local search

In this part of the study the iterated local search algorithm (/LS) was considered. The neigh-
borhood space was explored in order to improve the objective function. This algorithm was
based on studies by Ruiz and Stutzle [88] and Cavalcanti et al.[17] and it starts with the
NEH algorithms considering the separated semi-lines and Johnson’s adaptation considering
the mean of the semi-lines. This heuristic yielded better results than those presented by
the previously used methods. The method that yielded the lowest mean relative deviation

considering the optimal result was the Jonh,, method with /LS.

Approach using simulated annealing

Two initial methods of solution were considered in this algorithm. The simulated annealing
metaheuristic was an adaptation of the Hurkala and Hurkala [42] and Nearchou [67] method
and used the following parameters: initial temperature 7i = 6000, cooling factor « =0,2,0,5
and 0,95 and the final temperature = 0,0001. The algorithm generated changing in the
sequence of the jobs and provided another neighbor solution. A new changing was made
at each iteration and a new solution was generated. The generated solutions underwent an
evaluation process to verify if the objective of minimizing the makespan has been reached.
The ILS algorithm was used to refine the best solution upon reaching the maximum number
of iterations.

The tests performed with this algorithm showed better results than those presented only
with the /LS algorithm. The best mean relative deviation (GAP) for the environment with
the same number of machines was the method that used NEH,,, for the initial solution
with SA — ILS with o« = 0.95. For the environment with different numbers of machines, the
best GAP was the method starting with Johnson’s algorithm with the average time of the
semi-lines with SA and /LS with o = 0.95.

Approach using Greedy Randomized of Adaptive Search-GRASP

GRASP algorithm for the the flow shop scheduling problem in parallel semi-line with a
final synchronization operation consisted of two phases: the construction phase of the initial
solution and the local search phase or the solution improvement. The first phase consists
of constructing a feasible solution. After that, the acquired solution in the previous stage
underwent a search in the neighborhood to achieve the local minimum. The best solution
was stored as a partial result. At the end of all iterations, the best of the partial results was
adopted. Arroyo et al. ([10] and Resende and Ribeiro [83]).

xiv

The GRASP method was an adaptation of the original GRASP algorithm of the NEH,,
algorithm or John,, algorithm. In the construction phase, the restricted list was generated
by selecting o% from the candidate list. In this study, three alpha values (0.2 %;0.3 %
and 0.5 %) were evaluated. The results of each a value were the best in relation to all
the approached heuristic and metaheuristic methods. For the environment with the same
number of machines, the best average relative deviation was for the GRASP — NEH,,, with
o = 0.5 %. For the environment with different numbers of machine in each parallel semi-line,
the best average relative deviation was with the GRASP — NEH,,, with o = 0.5.

Final remarks

This research focused on the development of optimization methods to solve a variant of
the flow shop problem with parallel and a final synchronization operation. This is a com-
mon problem in many industrial sectors that requires efficient methods for its resolution.
Therefore, this study arose from a practical situation in a welding process of an industry that
manufactures products for the electrical electronic system. This study aimed to model the
flow shop problem with parallel semi-lines with a final synchronization operation at the end
of the semi-lines to solve it with a mathematical model, heuristic and metaheuristic.

In a first approach, a model of mixed integer linear programming was defined based on
studies already developed for the flow shop problem in other types of environments. The
model required adaptations for the problem considering two parallel semi-lines followed by
a final synchronization operation. The operations in the parallel machines were grouped,
and the processing time of the corresponding operation to the set of operations of the slower
group was adopted. A dummy machine, considered as synchronization machine in the
model, was included at the end of each semi-line. These two dummy machines represent the
independent processing of the last operation. The existence of two artificially independent
semi-lines allowed the determination of the highest value of the processing time between
them. The model was efficient for smaller instances, but it presented some difficulties to
find out the optimal solutions in a feasible computational time for larger instances. Due
to its complexity, the problem was also solved by heuristics and metaheuristics. Based on
computational results, it was possible to prove that the construction of methods through
heuristics and metaheuristics yielded feasible results for the studied problem. The used
algorithms showed good options to solve larger instances. The solution of the problem
through methods such as Johnson’s rule, the heuristic method as the NEH algorithm, and the
metaheuristics as the /LS, the simulated annealing and the GRASP showed the behavior of
these methods in the studied environment and the possibility of finding optimal solution. In

XV

addition, among the methods NEH,;, NEH,,, NEH,,, SA— NEH — ILS, SA — John — ILS;,
GRASP — NEH ,GRASP — Jonh, the GRASP method with 0.5% achieved the most amount
of optimal results and the lowest GAP. The lowest average GAP was 0.35% and the lowest
standard deviation was 0.15% for the environment with the same number of machines in
the semi-lines and 0.37% and 0.33% for environments with different number of machines in
each semi-line.

Further directions of research may involve more complex problems and multi-objective
functions, considering the same environment. The performance of the algorithm with
the development of other exploration techniques of the search space and the test of other
metaheuristics for this problem (genetic algorithm and Tabu Search) are subject matters to be

considered in other researches.

xXvi

Résumé

Cette étude est une variante du probleme flow shop motivée par une situation pratique.
Dans ce contexte, il y a une ligne d’assemblage composée de deux demi-ligne paralleles
avec des activités indépendantes. La premiére demi-ligne a un nombre de machines ¢g; et
le second demi-ligne a un nombre de machines ¢; . A la fin des deux demi-ligne il y a une
machine responsable par I’union des produits des deux demi-lignes. Chaque demi-ligne est
dédiée a différentes taches, en raison chaque travail nécessite des opérations dans chacune
des machines des demi-ligne avec temps de transformation différents. Les tdches d’une
demi-ligne ne dépendent pas de la réalisation d’une autre tache dans autre demi-ligne, de
sorte qu’une tache est traitée en parallele dans chaque demi-ligne. La séquence des travaux
dans chaque demi-ligne paralléle devrait étre la méme, bien qu’une tiche d’une demi-ligne
n’ait pas de besoin de commencer en méme temps a une autre demi-ligne. La derniere
operation de synchronisation ne peut pas €tre démarrée que lorsque les opérations dans les
deux demi-lignes aient ont été complétées. La solution a ce probleme est de déterminer une
séquence de travail possible pour optimiser le makespan. En ce sens, 1’objectif de cette étude
est de modéliser le probleme flow shop dans I’environnement de production propose et les
résoudre avec des algorithmes spécialisés. Une premiere approche, nous avons défini un
modelé de programmation linéaire mixte en nombres entiers et au vu des la complexité du
probleme, il a également été résolu par la regle Johnson, heuristiques NEH et la recherche
locale Meta-heuristiques Iterated, Recuit Simule et GRASP. Enfin, une importante campagne
de tests a ét€ menée et une comparaison des méthodes proposées a été réalisée. Le méthode
hybride qui utilise 1’algorithme NEH avec le GRASP a démontré sa supériorité par rapport

autres méthodes proposées.

mots-clés: Ordonnancement (Gestion), Ordonnancement (Informatique), Heuristique,

Meétaheuristiques, Synchronisation

Xvii

Resumo

Este estudo trata de uma variante do problema do flow shop motivado por uma situagdao
pratica. Neste ambiente, existe uma linha de montagem composta por duas semi-linhas
paralelas em operagdes independentes. A primeira semi-linha tem nimero ¢g; de maquinas e
a segunda tem nimero ¢, de maquinas. No final das duas semi-linhas, existe uma maquina
encarregada pela unido dos semi-produtos manufaturados pelas duas semi-linhas. Cada
semi-linha € dedicada a diferentes tarefas, uma vez que cada tarefa exige operacdes em
cada maquina das semi-linhas com diferentes tempos de processamento. As tarefas de uma
semi-linha ndo dependem da conclusdo das tarefas da outra semi-linha, de modo que uma
tarefa é processada em paralelo em cada semi-linha. A sequéncia das tarefas em cada semi-
linha paralela deve ser a mesma, embora a primeira tarefa em cada semi-linha ndo precise
iniciar a0 mesmo tempo. A operagdo de sincroniza¢ado final s6 pode ser iniciada quando as
operacdes nas semi-linhas forem concluidas. A solucdo para este problema é determinar
uma possivel sequéncia de tarefas que otimizem uma dada medida de desempenho. Nesse
sentido, o objetivo deste estudo € modelar o flow shop no ambiente de producao proposto
e resolvé-lo com algoritmos especializados. Em uma primeira abordagem, definiu-se um
modelo de programacao linear inteira mista, e em vista da complexidade do problema, ele
também foi resolvido pela regra de Johnson, heuristicas de NEH e pelas metaheuristicas
Iterated Local Search-(ILS), Simulated Annealing-(SA) e Greedy Randomized Adaptive
Search Procedure-(GRASP). Finalmente, uma extensa experimentagdo computacional foi
realizada e uma comparacao entre os métodos propostos foi feita. O método hibrido que
utilizou o algoritmo NEH com a metaheuristica GRASP apresentou qualidade superior aos
outros métodos propostos.

Palavras chave: Sequenciamento (Gestdo), Sequenciamento (Informatica), Heuristica,

Metaheuristica, Sincronizagao

Table of contents

List of figures xxiii
List of tables XXV
1 Introduction 1
1.1 General overview of production sequencing 1

1.2 Problem description 4
1.2.1 The welding process of the electrical-electronic system in study 4

1.2.2 Model description L 6

1.3 Importance and purpose of the study 8
1.3.1 Objective e e 8

1.4 Thesisstructure e e 9

2 Literature review 11
2.1 Scheduling problem o 11
2.1.1 Problem classification 11

2.1.2 Single-stage machine environment 13

2.1.3 Multi-stage machine environment 15

2.1.4 Sequencing of jobs in a flow shop production environment 17

2.1.5 Flowshopvariants 19

2.2 Methods of resolution L 22
2.2.1 A mathematical programming for the flow shop problem 22

2.2.2 Johnson’s algorithm 23

2.23 Heuristicmethods L oo 25

224 Metaheuristic 28

23 Conclusion 36

3 Optimization approaches 37

3.1 Characteristics of the studied problem 37

XX

Table of contents

3.2 Mathematical modeling L

3.3 Heuristics based on Johnson’s algorithm
3.3.1 Johnson’s algorithm considering the average processing time
3.3.2 Johnson’s algorithm considering the longest processing time

3.4 Heuristics based in NEH algorithm
3.4.1 NEH algorithm considering the average processing time
3.4.2 NEH algorithm considering the longest processing time
3.4.3 NEH algorithm considering the semi-lines separately

3.5 Resolution methods with metaheuristics
3.5.1 Representationof asolution
3.5.2 Simulated annealing
353 Localsearch
3.5.4 Greedy Randomized Adaptive Search Procedure - GRASP

3.6 Conclusion,

COMPUTATIONAL EXPERIMENTS
4.1 Generationof InStances e
4.2 Criteria used to achieve the computational experiments
4.3 Mathematical modeling results
4.4 Results by the adaptation of Johnson’s algorithm and the NEH algorithm
4.5 Metaheuristicsresults L Lo
4.5.1 Results by the iterated local search
4.5.2 Results generated by simulated annealing
4.5.3 Results generated by GRASPo
4.6 Comparisonofresults oo

47 Conclusion

Conclusion
5.1 Conclusion e

5.2 Suggestion for future studies Lo

French Resume

6.1 Introduction Générale L L

6.2 Approches de modélisation et d’optimisation
6.2.1 Formulation mathématique
6.2.2 Heuristique
6.2.3 Metaheuristique

55
55
58
59
61
63
63
66
69
71
74

77
77
78

Table of contents xxi

6.3 Résultats et méthodologie, 96
6.3.1 Mathematical modeling 97
6.3.2 NEH heuristic and Johnson’s algorithm 97
6.3.3 Recuitsimulé L oo 99
634 GRASP 101
6.4 Conclusion et perspectivest e e 104

References 107

List of figures

1.1 General welding process of circuit breakers
1.2 Theprocess graph
1.3 Systemunderstudy

2.1 Pure flow shop by Parveen and Ullah [75]
2.2 Skip flow shop (Morton and Pentico [63])
2.3 Reentrant flow shop (Rifaietal. [85])
2.4 Compound flow shop (Marichelvametal. [58])
2.5 Finite queue flow shop (Morton and Pentico [63])
2.6 Pseudo-code by Johnson’s Algorithm
2.7 Pseudo-code by NEH e
2.8 Pseudo-code of the Simulated Annealing
2.9 GRASP pseudo-code (Resende and Ribeiro [83])
2.10 GRASP pseudo-code (Resende and Ribeiro [83])
2.11 Pseudo-code of the local search phase (Resende and Ribeiro [83])

3.1 Pseudo-code by Johnson’s algorithm with average processing time
3.2 Pseudo-code by Johnson’s algorithm with the longest processing time . . .
3.3 Pseudo-code of the NEH variant considering average processing time

3.4 Pseudo-code of the NEH variant considering the highest processing time .
3.5 Pseudo-code of the NEH separately
3.6 Representationofasolution
3.7 Neighborhood structure with exchange of two processing order jobs

3.8 Pseudo-code of the Simulated Annealing with LS
39 LSPseudo-code
3.10 GRASP Pseudo-code
3.11 Construction pseudo-code

3.12 Local search pseudo-code

Xxiv

List of figures

3.13

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8

4.9

4.10

4.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Construction pseudo-code 52
Pseudo-code of the instance generation 56
Gantt’s Graphs of the sequence J3,J2,J1,J4 57
Average time for each instance set to find the makespan with the mathemati-

cal modeling (S€C.) 60
Gap and sd for NEH and Johnson’s adaptation for same and different number
ofmachine 62

Variation in the average percentage of improvement for each set of instances 64

Gap and sd for NEHy,, — ILS and John,, — ILS adaptation 65
Gap and sd for Simulated Annealing methods 68
Gap and sd for GRASP methods with the same and different number of
machines 70
Comparative graph of the best results of the resolution methods for the same

number of machine environments in the semi-lines 73
Comparative graph of the best results of the resolution methods for different

number of machines in the semi-lines 74
Optimization methodsused 75
Systeme étudi€ L 83
Recherche locale Pseudo-code 90
Pseudo-code de Recuit simuléo 92
GRASP Pseudocode 93
Constrution NEH Pseudo-code 94
construction par algorithmes de Johnson Pseudo-code 95
Gap et sd pour NEH et Johnson Adaptation 98
Gap et sd pour Simulated Annealing méthodes 100
Gap et sd pour GRASPméthode 102
Graphique comparatif des meilleurs résultats des méthodes de résolution . . 104

List of tables

1.1

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11

6.1
6.2

Dependence relationship between thejobs 6
Asampleofinstances 56
Makespan and waiting timeo 57

results for different instances with the same number of machines and for the
different number of machines 59

Gap, sd, time (s) of Johnson’s and the NEH adaptations for same number of

machines (E) 61
Gap, sd, time (s) of Johnson’s and NEH adaptations for different number of

machines (D)o 63
Gap, sd and time (s) of Johnson’s and the NEH adaptation for the same

number of machine (E) 64
Gap, sd and time (s) of Johnson’ s and the NEH adaptations for different

number of machines(D) 66
Results of Gap, sd, opt and time for Simulated Annealing methods 67
Results of gap, sd, opt and time for GRASP methods 69
SA-ILS-NEH-0.95/GRASP-NEH-0.5 71
John,, —SA —ILS —0.95/NEH,., — GRASP—0.5 72
SA-ILS-NEH-0.95/GRASP-NEH-0.5 102

John,, —SA —ILS —0.95/NEH,., — GRASP—0.5 103

XXVi List of tables

List of Abreviations

GA: Genetic Algorithm

TS: Tabu Search

GRASP: Greedy Randomized Adaptive Search Procedure

LS: Local Search

CRL: Candidate Restrict List

SA: Simulated Annealing

VND: Variable Neighborhood Descent

SPIRIT: Sequencing Problem Involving a Resolution by Integration of the Tabu search technique
HFS: Hybrid Flow Shop

VNS: Variable Neighborhood Search

NEH: Heuristic of Nawaz, Enscore and Ham

MIP: Mixed-Integer Programming

FIFO: First In First Out

NSGA: Not Dominated Genetic Algorithm

SPEA: Strength Pareto and Evolutionary Algorithm

ACO: Ant Colony Optimization

GALS: Genetic Algorithm with Local Search

DPFSP: Distributed Permutation Flow Shop Problem

ILS: Iterated Local Search

VND: Variable Neighborhood Descent

NEH,,: Heuristic NEH with the average processing time in the machines in the semi-lines
NEH,;: Heuristic NEH with the longest processing time in the machines in the semi-lines
NEH;,.,: Heuristic NEH considering the semi-lines separately

John,,: Johnson ’s Rule considering the average processing time in the semi-lines

Johny;: Johnson ’s Rule considering the longest processing time in the semi-lines

Chapter 1
Introduction

In this chapter, it will be presented an overview on planning and scheduling of the production,
the welding process of a company that works in the sector of electrical-electronic systems
that motivated this research. It will also be presented the flow shop and the system under
study. After, some characteristics of the problem, the objective, the importance and the
structure of this study will be discussed.

1.1 General overview of production sequencing

Different models of production planning and scheduling are focus of scientific studies, often
to ensure a good performance of the production system. In this sense, it can be stated that the
production schedule is one of the main activities of a production system and is considered a
very broad and diversified field by many researchers.

According to Cheng et al. [21], this activity can be generically defined as allocation of the
available resources for the jobs processing in a time horizon. It consists in developing models
to achieve the best programming solutions, in order to optimize the work flow through the
system. These models aim to eliminate the bottlenecks and to adjust the step priorities by
observing the losses and the overloads among the production centers and the occupation of
the available workforce.

For this activity, it is necessary to observe the operations priorities to be carried out in
order to establish the best time to start and finish each activity and to assess the best use of the
resources that generally look for optimizing a given measure of performance. Onwubolu [71]
presents different measures of performance to determine the best sequencing. Minimizing
the makespan, the delay of the activities, the equipment and workforce idle time, among
others are the main measures. However, such measures of performance often come into

conflicts. The comprehension and the implications of such measures are extremely important

2 Introduction

to establish the suitable criteria for the problems of sequencing. It is possible to get better
results related to the due date and the lower cycle time when there are clear and no ambiguity
goals.

Methods of the operational research aid the decision making to minimize such conflicts
in the production scheduling. According to Aarts and Lenstra [1], the production scheduling
has a broad class of problems. This research field encompasses many problems of decision
making that are implemented by using mathematical models. For the production scheduling
there are models at the literature that aim to answer how much and in which order (sequence)
that each product must be produced to minimize a given measure of performance. Although
the optimal solution for a finite problem can sometimes be found by simple enumeration,
in practice this task is often impossible, especially for big problems in that the number of
possible solutions can be extremely high. Therefore, different models of production planning
and scheduling have been developed, see Pinedo [78].

In this work, we are interested in the production scheduling in environment flow shop,
which is characterized by a flow of the jobs that are processed by several machines in series.
The jobs follow a similar technological path through the machines. According to Widmer
and Hertz [106], many heuristics have been proposed since Johnson [45] introduced the
resolution for the flow shop problem considering two and three machines. Most of the studies
founded in the literature address the classical flow shop problem with makespan criterion.
The classic problem of flow shop scheduling consists of n jobs to be processed among a set
of m machines arranged in series. The main feature of this problem is that the jobs must have
the same technological sequence of which each job has a specific processing time in each
machine Gupta and Chauhan [39]. The objective is to determine the one that optimizes a
certain performance measure among the possible sequences. The most commonly used is the
total completion time minimization (makespan). The major difficulty for this problem is to
find an optimal solution in polynomial time, since this problem is known as NP-hard (RUIZ
and MAROTO [87]).

Thus, some studies have been developed in the flow shop scheduling literature considering
exact techniques such as mathematical programming. Examples that can be pointed out are
the studies by Naderi et al. [64], who proposed a model of mixed integer linear programming
to minimize the makespan, and the total delay in a flow shop environment. Frasch et
al. [30] also presented an approach of M/P modelling for flow shop problems with a limited
number of intermediate buffers. They considered three objective functions to minimize: the
makespan, the sum of completion time and the number of strands. Ronconi and Birgin [86]
proposed a mixed integer linear programming (MIP) to minimize the number of early arrival

and the total delay of jobs through an assessment in terms of computational cost, the flow

1.1 General overview of production sequencing 3

shop problem with unlimited and zero buffer. Hnaien et al. [41] developed two models of
mixed-integer programming (M1P) to the problem of flow shop scheduling of two-machines
with unavailability constraint in the first machine in order a minimize the makespan. The
authors proposed a branch-and-bound algorithm based on a set of new lower bounds and
heuristics. Computational results showed the impact of the unavailability of the initial time
period and the difficulty to solve the problem. The branch-and-bound algorithm had better
results than the two MIP models.

Other studies also suggested exact methods for the flow shop. However, the exact methods
generally take too much time of the CPU to solve a problem with a large number of jobs due
to the computational complexity. Heuristic and metaheuristic approaches are considered in
many studies in the literature to solve larger instances. Examples of heuristics that are used
in some studies are those by Johnson [45] and Nawaz et al. [66]. These methods have the
advantage of finding viable solutions in reasonable computational time.

Johnson’s algorithm has been adopted by Allahverdi et al. [7] to minimize the makespan
in flow shop context with two-machines. The authors proposed five different algorithms.
Johnson’s algorithm was used based on the average of the lower and upper time limits
of the job processing. Computational experiments indicated that the modified Johnson’s
algorithm can be applied with success in programming environments with random and
limited processing time. Pan et al. [74] introduced the scheduling resolution problem in a
flow shop environment with zero-buffer. In this study, they analyzed the heuristics by Nawaz
et al.[66] that exploited specific characteristics of the problem such as NEH. They found
good solutions with lower computational effort.

Another example is the study by Allaoui and Artiba [8] who investigated the problem
of hybrid flow shop scheduling with two stages, comprising a single machine in the first
stage and m machines in the second stage to minimize the makespan. Fernandez-Viagas
and Framinan [29] proposed tie-breaking mechanisms with NEH heuristic to minimize total
tardiness of the permutation flow shop scheduling problem. They tested the NEH,;, heuristic
observing the optimization, the improvement and the overall performance. Other articles
present metaheuristics to solve the problem of flow shop scheduling. Santosa and Rofiq [91]
studied the problem of hybrid flow shop (HF'S) with m machines at each stage. The authors
developed a modified simulated annealing algorithm to minimize the makespan and the total
delay. Among the computational tests, the modified simulated annealing performed better
compared to the regular simulated annealing, especially in bigger problems.

Low et al. [54] proposed a robust simulated annealing heuristic for flow shop scheduling
problems with the objective of minimizing the makespan. A mechanism that recorded the

characteristics of good solutions was designed and introduced into simulated annealing to

4 Introduction

make the searching procedure more robust. The performance of the proposed algorithm
was compared with some existing searching algorithms in two benchmark problem sets.
The results showed that the algorithm achieves solutions near to optimal. Another study
was by Prabhaharan et al. [79] who researched the problem of permutation flow shop to
minimize the makespan. They presented results of the jobs sequencing with the the greedy
randomized adaptive search procedure metaheuristic (GRASP) and then the NEH algorithm.
The computational results showed that the GRASP algorithm overcame the traditional NEH
algorithm. Shahul et al. [96] dealt with the flow shop problem with m machines in order
to minimize the weighted sum of the makespan and the maximum delay. One of the used
techniques was the GRASP Bi-criteria algorithm. The proposed algorithm was evaluated
using reference problem based on Taillard [101] and compared with the results of an existing
model using Simulated Annealing. The Bi — GRASP algorithm was effective for small
problems.

Based on the studies mentioned above, this thesis presents an analysis of a variant of
flow shop problem motivated by a practical application of production sequence in a welding
line in an electrical-electronics industry. The main objective is to model the flow shop
scheduling problem in parallel semi-line with a final synchronization operation and to solve
it using mixed integer programming model, Johnson’s algorithm, the NEH heuristic and the

metaheuristics of local search, simulated annealing and Grasp.

1.2 Problem description

This research was motivated by a practical situation in a manufacturing process of a com-
pany that works at the sector of electrical-electronic system protection for residential and
commercial fields introduced by Vaz and Araki [103].

1.2.1 The welding process of the electrical-electronic system in study

The company under study is in the state of Minas Gerais, Brazil. Among its manufactured
products, it can be pointed out the meters and residential and industrial circuit breakers. The
company has four main manufacturing sectors: plastic injection, stamping, welding and

assembly.

The processing sequence of the company ’s production items is similar for all products.
Among its many products, there is a manufacturing process for residential circuit breaker.

This product was taken as an example for this study since it has a great impact on the

1.2 Problem description 5

B == =]

gk

QUTPUT L_E ?
=
i e e

@ Coritact @ Blade W Broid @ Termingl @ gl 0 ogneto O Bineinl

—

1

e =

Fig. 1.1 General welding process of circuit breakers

company’s production scheduling. It is a product of high amperage so its components can
only be welded in one of the four lines of the welding area. It must be taken into account that
the higher the amperage the longer the time of welding operation processing. The production
of this welding line is a critical factor at the circuit breaker manufacturing since the high
amperage line has an installed capacity strongly occupied by the production. It consists of
six welding machines by resistance spot welding, each performing a specific activity. It is
possible to observe two semi-lines in parallel operation, the first with two machines and the
second with three machines. The union of the semi-product arose from the two semi-lines is
made by the sixth machine. Figure 1.1 shows this processing in which the machine 1(M1)
makes the connection between the contact and the blade; the machine 2(M2) links the blade
and the braid; the machine 3(M3) joins the magneto and the bimetal; the machine 4(M4)
links the bimetal and the hook; the machine 5(M5) makes the union between the terminal
and the bimetal and the machine 6(M6) ends the processing by combining the braid and the
hook. All the manufactured circuit breaker in this company go through the same processes,
following the same sequence. Given the high competition of the high amperage products
by the welding resources, there is a need for better utilizing those resources. Therefore, it is
important to have an in-depth study of production scheduling of the items. For a first analysis
of the described environment, it was made a process design by using graph that is shown
in Figure 1.2. In this case, Ji; is the job processing 1 in the machine 1 of the semi-line
1, Ji21 1s the jobl processing on the machine 2 of the semi-line 1, and so on. In addition,

the processing order is the same for all the machines and there is a dependency relationship

Introduction

w>

0

na

£ 22

@ 12

©

122

s
%

C

&

D

ns
o>

©
()

J1sin

J2sin
@

O
>

- @

©

Fig. 1.2 The process graph

to carry out the activities. For example, J>1; can only be done after the Ji»; has finished

its processing. From the second job, it is noticed the same dependence pattern on all jobs.

Thus, the following generalizations were considered: J,; as job processing (i = 1,...,1) in

the machine m(m = 1,...,M) of the semi-line /(I = 1,2); and Jj,;,; as the processing in the

synchronous machine (sin = 1,...,5). Table 1.1 shows the dependency relationship.

Parts of the production line

Dependence Relationship

Jobl Job2 Job3
Semi-linel Jiihi---—-—- Not DHi1———=-111 J311 ——— =
Jopg—————— Jin Jni————hn J31 ————J311
Semi-line2 Jipp——————— Not Jr3p————J132 J3zp——— =32
Jigp—————— Ji32 D ————Jix2 Jagp————ha
Jisp—————— Jiao Do ————Ji J3so —— ——Dhs
Synchronization Jisin—— — —J121,J152 Josin — —J221, 4252 J3sin — —J321, 4352

Table 1.1 Dependence relationship between the jobs

1.2.2 Model description

The model is an assembly line consisted of two parallel semi-lines and a final synchronization

operation. Each semi-line produces one of the halves of the final product that is assembled

into a single product in the final synchronization operation. The order of the halves of the

1.2 Problem description 7

final products in each semi-line must be equal as well as it must be followed in the final

synchronization operation.

SEMI-
3 L LINE1

)
}
w

SEMI-

W it

3 » LINE 2 || Synchronization
Operation

Fig. 1.3 System under study

The first semi-line has a number g of machines and the second semi-line has a number g;
of machines. At the end of the two semi-lines there is a machine in charge of the union of
the semi-products from the two semi-lines. Each job requires operations in each machine
of semi-lines with different processing time. An operation at the machine of a semi-line
does not need to start at the same time of an operation at the machine of the other semi-line.
However, the final synchronization operation for a product must only be started when the
operations of their halves in both semi-lines are completed. Given this arrangement, it is
possible to classify this environment as a special flow shop case since the problem has not
been previously considered in the literature. The objective of this study is to achieve the

optimal or nearly optimal solution in order to minimize the total processing time. Figure 1.3

8 Introduction

shows a scheme of the studied environment.

1.3 Importance and purpose of the study

Determining the best production sequence within any sector of a company implies in a
considerable cost reduction. This can be confirmed in the study by Gao and Chen [31], Gao
et al. [32], Zhang and Van de Velde [109] and Shao et al. [98]. In an electrical-electronic
material company, where the products compete for the same resources and the difference of
the productivity of the machines is high, a well-defined sequence may reduce the waiting
and delaying time, as well as optimize the time used in each resource. Taillard [101] asserts
that the scheduling problem in a flow shop production environment has been the object of
research in the last 50 years for its great importance in many types of manufacturing system.
Although there are many studies on the classical flow shop problem, there are not meaningful
studies on the flow shop problem with parallel semi-lines and synchronization operation at
the end of the semi-lines yet. In this sense, the contribution of this research for this field is
the development of a mathematical model and some computational models that use heuristics
and metaheuristics for this flow shop environment. It also contributes with the analysis of
those models by means of computational tests that search for new ways of reducing loss
as well as the costs related to the environment in which it was believed that the optimized

methods could not be applied.

1.3.1 Objective

The main objective of this study was to model the flow shop scheduling problem in parallel
semi-lines with a final synchronization operation and to solve it with a mathematical model

and algorithms using heuristics and metaheuristics. It also intends to:
1. Present a mathematical optimization model for the problem mentioned;
2. Study one variant of the flow shop problem motivated by a practical situation;

3. Develop new models and methods of solution for the flow shop problem with parallel

semi-line and final synchronization operations;
4. Develop and test heuristic methods for the problem studied;

5. Develop metaheuristics in order to obtain a better quality of the solution for the

problem.

1.4 Thesis structure 9

1.4 Thesis structure
This thesis is organized in five chapters as described below.

» Chapter 1 presents an overview of the production scheduling problem, the description
of the problem, the context in which the problem is solved as well as the importance of

the study and its objectives.

» Chapter 2 presents some of the most relevant studies on the problem in the current
literature. This chapter contains a brief description of the main concepts that guide this
study. The problem of production sequencing, the environment of single machine, the
environment of multiple stage machine, the variants of the flow shop and the methods

of resolution for the flow shop problem are conceptualized.

 Chapter 3 presents methods for solving the flow shop sequencing problem with parallel
semi-lines and final synchronization operation. In this chapter, the mathematical model
to represent the problem as well as the methodologies of Johnson’s rule, the NEH
heuristics and the methods using local search /LS, Simulated Annealing and GRASP
are described in detail.

* Chapter 4 reports how the test problems were generated as well as it presents and
compares the achieved results through mathematical model and through the developed

heuristic methodologies.

* Chapter 5 concludes the study and points out some suggestions for future works on the
problem studied.

Chapter 2
Literature review

This chapter presents concepts and methodologies showed in the literature about flow shop
scheduling problem. It contains a brief description of the main concepts that guide this study.
Section 2.1 presents the problem of scheduling. In section 2.1.1, the problem classification is
described. Section 2.1.2 discusses the simple machine environment. Section 2.1.3 presents
the multiple stage machine environment. Section 2.1.4 introduces the flow shop variants and
resolution methods for the flow shop problem. Finally, the main concepts of the resolution

methods used in this study are presented in section 2.2.

2.1 Scheduling problem

The theory of scheduling in production systems deals with real problems that consist in
obtaining a sequence of the orders of production (jobs) that optimize a given performance
measure. In addition to minimizing the completion time of the production activities in
factories, it includes the service deadlines or delivery dates, the minimizing of the flow time
of the intermediate stocks and the maximizing of the use of available capacity, or even the
combination of these objectives. According to Gupta and Chauhan [39], the programming
consists of organizing the jobs for the processing of products in single machine or multiple
machines. In other words, it is the process of organizing, choosing, temporizing the use of
resources to carry out all the required activities in order to produce outputs at the desired

time.

2.1.1 Problem classification

Taillard [101] states that, in general a scheduling problem of production is seen as a problem
where n jobs {1, j2,...jj,-.., jn } are processed on m machines {m,mo,...,m;,...,m,, } that

12 Literature review

are available. The processing of a job j; on machine m; is called operation designated op;;.
For each operation op;; there is an associated processing time p;;. It consists in organizing
jobs or required activities by the processing of a product in one or several machines. The
feasible scale is the one that does not have overlapping jobs for a given time interval i.e., a
job cannot be processed at the same time interval in two machines or at the time intervals
corresponding to the same machine. A machine cannot process two jobs at the same time,
and must satisfy the constraints regarding to each particular type of problem. Based on this
definition, some assumptions are considered for this study:

Assumptions concerning the jobs

1. Each job is available for the processing from the beginning of the programming period;
2. There is no release date;
3. Each operation is independent of the other;

4. Each job (operation) has finite processing time in each machine. The processing time
includes the time of transport and setup, if any, and it is independent of the previous
and subsequent jobs;

5. Each job cannot be processed more than once in each machine;

6. Each job must have to wait next to each machine and thus generate an intermediate
stock that will be allocated by the post processing.

Assumptions concerning the machines

* Each machine is inactive before starting the programming period;

* Each machine in a phase operates independently of the other machines and thefore is

able to operate with its own maximum output rate;

* Each machine cannot process more than one job at a given time since it may eliminate.

This eliminates some machines that are designed to handle many jobs simultaneously;

* Each machine will always be available to process the jobs during the programming

period. No interruption is allowed either for breaks, maintenance or other causes.
Assumptions concerning the schedule policy

* Each job will be processed only when the machine is freed;

2.1 Scheduling problem 13

* Each job will be considered an inseparable entity although it may be composed of a

number of individual units;

* Each job will be fully processed, once started, i.e. the cancellation of the job is not

allowed (neither spliting nor preemption);

* Each job must be completed, once started in a machine. Only after carrying out
the activity in this machine, the activity in another machine is started; therefore, the
preemption is not allowed;

» Each job is processed in one machine at a time;

* Each machine has enough space to allocate the jobs that must wait the processing;
» The storage capacity will be considered unlimited;

* Each machine is not used for any other purpose during the programming period;

* Each machine processes the jobs in a similar sequence. Therefore, it will not be

possible to skip the sequence.

Pinedo [78] reports that different machine configurations are possible for single-stage
configuration (single machine, parallel machines) and for a multi-stage environment (machine
in series and machine shop). In machine shops, three classifications are made: the flow shop,

the job shop and the open shop. These environments are given below.

2.1.2 Single-stage machine environment
Single machine shop

The models of single machine consider the existence of n orders to be processed in a machine.
These models are analyzed by researchers who study different types of conditions for different
objective functions (Feldmann and Biskup [28], Agnetis et al. [4]). These objective functions
can be related to the maximum completion time (Makespan), the waiting time, the setup
time, the production time, the earliest due date, the release date of jobs, among others. These
objectives may be solved by a set of rules that provide optimal solutions in single machine
environment.

According to Pinedo [78], the single machine is any type of the machine environment. It
is a special case among the other types of machine environment. Many productive systems
are originated by models of single machines. Thus, this type of model is important to the

decomposition method of more complicated sequencing problems. A way to solve these

14 Literature review

problems is by dividing them in a certain number of smaller problems of single machine.
Studies by Gavett [34], Koulamas and Kyparisis [48], Magazine et al. [56] and Abdekhodaee
et al. [2], [3] show some methods to solve this types of problem for different objective
functions.

Parallel machine shop

The programming problem of parallel machines can be described as a set of n independent
jobs (jobs, production orders) with known processing time that must be processed in one
of the m parallel machines. In this context, the number of m machines is at least two and
the number of jobs is greater than the number of machines. In this problem, the jobs are
sequenced in order to present a distribution of jobs in the machines according to some
criterion (makespan, delays, less load in the machines).

According to Nikabadi and Naderi [68], a set of parallel machines can be considered as
a generalization of the single machine. The parallel machine programming is significant,
since many algorithms can be reduced to solve individual machine problems and, from a
practical point of view, it is important because in a real production environment most of the
workshops have more than a machine. Moreover, the techniques for parallel machines are
often used in multi-step decomposition process systems.

Cheng et al. [22] and Glass et al. [35] classify parallel machine for the type of used
machines as it follows: identical parallel machines, uniform parallel machines and unrelated

parallel machines.

* Identical Parallel Machines: production environment where there are m identical
machines. The time of processing and preparation are identical for all the jobs. There
is a unique set with time of execution of the jobs which remain independent of the

machine whose job is assigned. All the machines have the same speed.

* Uniform Parallel Machines: In this case, the programming is done in a group of parallel
machines in which each machine has different characteristics expressed in terms of
processing speeds. The processing time of a job and the preparation time of the most
modern machines are proportional to the time of the oldest machines.

* Unrelated Parallel Machines: In this case, there is no relationship between the pro-
cessing and the preparation time of different machines. The speed of the processing
depend directly on the job and the machines to be performed. (Nowicki and Smutnicki
[70], Coelho et al. [23], Maschietto et al. [59])

2.1 Scheduling problem 15

In this environment, it must be determined which orders must be allocated for each
machine as well as the processing sequence for each one. Parallel machine models are

important for some reasons:

* If a work center has some constraints for the processing (the bottleneck), then the result

of this work center determines the performance of the entire system.

* The bottleneck can be studied by analyzing a set of machines that can be in parallel or
separately. In some cases, the machines in parallel cannot be exactly identical, some
machines may be old and slow, and others may have a better maintenance and be able
to perform accurately. In this case, while some jobs can be processed in any machine,

others can be processed in only a specific subset of machines.

* When operations are performed by people (considering them as machines), then the
processing time may depend on an operation in the job or on who is processing them.
(Pinedo [78])

2.1.3 Multi-stage machine environment
Flow shop

In this type of environment, there are m machines in series. Each job has to be processed
in each of m machines. Since all the jobs have the same processing sequence in the set of
machines, that is, they follow the same route and must be processed first in the machine 1,
then in the machine 2 and so on. Each job has a specific operating time in each machine.
After its completion in one machine, the job joins the queue at the next machine. According
to Gonzalez-Neira et al. [37], initially all the jobs are assessed and each machine is restricted
to the processing of only one job at any particular time. The generalization of the flow shop
and parallel-machines environments is that in this case there are n stages. At least one stage
has two or more machines in parallel that process the same kind of operation. Thus, the
decision to be made is which parallel machines each job must be allocated to each stage. It
can be seen that when there is only one machine in all stages the problem is a standard flow
shop. The permutational flow shop is the most well known that may appear in the flow shop
environment. In this environment, the queues in front of a machine operate according to the
first in first out (FIFO) discipline. This implies that the order in which the jobs are processed
by the first machine is maintained throughout the system. See (Nowicki and Smutnicki [69],
Osman and Potts [72], Sayadi et al. [92], Wang et al.[105]). There is a single available
machine for processing at each stage. In this environment it is possible to distinguish two

16 Literature review

situations. In Figure 2.1, a pure flow-shop in which jobs must be processed in each machine
in exactly the same order is shown. However, according to Parveen and Ullah [75], a general
flow shop is somewhat different, i.e., the jobs do not need to be processed in all the machines
of the sequence. In this case, the processing time in the machine that does not have processing
will be zero.

Imput parts
Machine 1 Machine2 _
Machine 3 Machine 4
Finished product

Fig. 2.1 Pure flow shop by Parveen and Ullah [75]

Job shop

In this general configuration, there are n jobs to be processed in m machines in variable routes.
Each job has its own processing sequence in the set of machines, including the possibility
of returning to a machine more than once. Due to the lack of uniformity of the production
routes, in general the machines are grouped by similarity. See (Parveen and Ullah [75],
Binato et al. [11], Lourengo [53])

Open shop

In the open shop environment, each product is manufactured by a number of operations, but
the technological sequence is not given. Each job j has to be processed in each one of the m
machines. However, some of this processing time may be equal to zero. In this process, it
is possible to have the maximum in terms of flexibility, since the job route can be defined
according to the optimization criteria of an objective function. See (Ciro Campos et al. [16],
Schuurman and Woeginger [93] and Chen et al.[20]).

2.1 Scheduling problem 17

2.1.4 Sequencing of jobs in a flow shop production environment

This study aimed to explore the sequence of jobs in a flow shop production environment
. In this environment, the jobs must undergo multiple operations in a number of different
machines. All the jobs are processed in the same machines in the same technological sequence.
Morton and Pentico [63] discuss this type of manufacturing environment according to some
simple variations that can be called skip shop cells (skip operation), reentrant flow shop,

compound flow shop, finite queue flow shop.

* Skip shop cells -

\ Lnput parts

nput parts | Input parts | Input parts

s\

. e :F'mished Products

Fig. 2.2 Skip flow shop (Morton and Pentico [63])

It considers the existence of a single machine in each stage, some jobs may skip some
machines. There may be jobs that do not have all of the m operations. In this case,
the operation that is not required to be processed in the job receives zero value as

processing time. See Figure 2.2.

* Flow shop reentrant - In this environment, the operations for a particular job routing
is such that a job may return one or more times to any of the machines. Dugardin
et al. [27] state that the main difference with the other scheduling problems is that a
product can be processed several times in the same machine. The performance criteria
can be the makespan, the jobs of total flow time, the throughput rate, the total tardiness,
among many others. Due to the repetitive use of the same machines by the same job,
these processes can not be treated as a simple flow-shop problem. See Figure 2.3.

» Hybrid flow shop - It is a linear sequence of grouped m machines. Each group k of
m machines is a set of parallel machines. It is considered that there is more than one

18

Literature review

|-~
=2
=
=
—
=}
=
o
<
=z
oo

My Bu M Bu M3

Jobs Jobs leave

—
Jobs leave

!

Fig. 2.3 Reentrant flow shop (Rifai et al. [85])

Mo

Mo

I

U]

@
=
¢}
j==]
=
@
=
[5%Y

M3

=]
=8
(2=}
=
-t

My Bu M

Jobs

(UINENED]

1D

i

1]

machine at each stage. According to Ribas et al. [84], the hybrid flow shop scheduling
problem may be seen as a generalization of two particular types of scheduling problems:
the parallel machine scheduling (PMS) problem and the flow shop scheduling (FSS)
problem. The main decision-making in the operation of this type of configuration is to
determine the order in which the jobs are processed in the different machines of each

stage according to one or several given criteria. See Figure 2.4.

End

Start

(3]
ammd O
b

Fig. 2.4 Compound flow shop (Marichelvam et al. [58])

* Flow shop with finite queue - A flow shop with finite queue of the job in waiting
in each machine. There is a limit of stock before each intermediate machine of the

2.1 Scheduling problem 19

process. If the queue before a machine & is complete, then the machine k — 1 will have
to wait until the processing in the machine k is finished. This is called blocking. Li
and Pan [49] say that the majority of the literature makes the assumption that there are
sufficient intermediate buffers between consecutive stages. However, in real scheduling
problems, a finite intermediate buffer (limited buffer) always exists, which blocks and
delays the operation in the previous machine or the intermediate buffer. Some simple
cases of overloading machine can cause blockage to many previous jobs. A special
case is when no stock is allowed, except in the first machine. See Figure 2.5.

S 1 Ly | 2 3

OUG U

Fig. 2.5 Finite queue flow shop (Morton and Pentico [63])

2.1.5 Flow shop variants
Hybrid Flow Shop

The problem of programming in parallel machine can be described as it follows: n jobs are
processed by a system of m-stages of production. Each stage comprises one or more identical
parallel machines and has enough storage capacity to leave the job in progress (WIP's). Each
part can be processed in a machine at each stage at the most. All jobs visit the m stages in
the same order, but some parts can skip some stage if necessary (Li and Pan [49], Shahvari
and Logendran [97]).

The processing time of jobs are known and do not depend on the machines. The setup
time is independent of the sequence and is included in the processing time. No machine
can process more than one job at once and the preemption is not allowed. The jobs are
continuously transported from one stage to another (for example, by belts), and the time of
transport from one machine to another is determined by the preview stages, so that all the

20 Literature review

machines of the stage are used. Each part has a known processing time that cannot started
before.

Some methods for solving this problem are found in Ruiz and Vazques-Rodriguez [89]
who presented an analysis of more than 200 scientific articles. They dealt with hybrid flow
shop problem (HF'S) and related variants. A comprehensive and extensive review of the
sequencing flow shop with multiple machines in parallel per phase was made, classifying all
the articles according to many parameters, including the constraints, the functions and the
methodologies in order to support the researchers and professionals. This problem is found
in many real-world applications. Given its importance and complexity, the problem has been
HFS intensively studied.

Li et al. [51] studied a combinatorial optimization problem with multi objectives in a
hybrid flow shop environment with parallel machines. The problem considers an environment
with independent parallel machines with identical release dates, due dates and dependent
configuration of the sequence. Preemption was considered prohibited. The objective was to
minimize two different points: the makespan and the tardiness. The contribution of this study
was to propose a new mathematical model for this particular problem and two approximate the
methods: the Non Strong genetic algorithm (NSGA — I1) and the Strength Pareto Evolutionary
Algorithm (SPEA — II). Through the experimental results it was possible to verify the
advantages of the methods by comparison with the results found in the mathematical model.
It was also observed that in all tested cases the NSGA — I1 algorithm was able to get the best
solutions.

Rashidi et al. [81] studied the hybrid flow shop with unrelated parallel machines consid-
ering the possibility of preemption and the objective of minimizing the makespan and the
maximum delay. A method that uses the principles of genetic algorithm was proposed for the
problem resolution. This algorithm divided the population into multiple subpopulation. Each
subpopulation received different weights to assist in the exploration of different regions. The
algorithm was combined with a step of local search procedure called useful redirection. The
proposed redirection procedure tries to help the algorithm to overcome the local optimum
and to continue to look for another space of solution. In this step, the algorithm tries to
achieve a better solution based on good quality chromosomes. Computational experiments

indicated that the proposed method achieved good solutions.

Flow shop reentrant

The basic characteristic of a reentrant flow shop is that a job passes through processing of

certain machines more than once. The reentrant flow shop (RF'S) means that there are n jobs

2.1 Scheduling problem 21

to be processed in m machines in the flow shop and each job must be processed in machines
in the order of {m1,m2,....mm,ml,m2,...mm,ml,m2,....mm,....ml,m2,....mm}.

Chen et al. [19] claim that these processes cannot be treated as a simple flow shop problem.
The repetitive use of the same machines by the same job means that there may be conflicts
among the jobs in some machines in different levels of the processing. Previews processing
to be done in a job by some particular machine may interfere in the other operations of this
machine in a job. The application of techniques to solve this type of flow shop problem can
be found in Jing et al. [44]. The authors studied a re-entrant flow shop scheduling problem in
two machines in order to minimize the makespan. They also suggested a number of heuristics
and then evaluated their performance through extensive computational experiments. The
algorithms were modified from the existing algorithms (weighted profile fitting heuristic for
cyclic scheduling of a line flow and Johnson’s traditional rule for two machines) and some
have recently been developed. Extensive computational experiments were made to evaluate
the heuristics performance. The experimented results showed that the heuristics performance
was meaningfully affected by the distribution of the job workloads in the machines and some
of them were excellent.

Dugardin et al. [27] studied three methods based on a genetic algorithm and a basic
exact method in order to solve the reentrant hybrid flow shop scheduling problem: the
minimization of the cycle time and the maximization of the utilization rate of the bottleneck.
The first method is based on the genetic algorithm (NSGA2), the second is based on the
Strength Pareto Evolutionary Algorithm (SPEA2) and the final one L — NSGA based on
genetic algorithm and the Lorenz dominance. The methods were compared using several

measures. The best solutions were provided by the L — NSGA.

Flow shop with limited intermediate storage

The resolution of the scheduling problem in a flow shop environment with limited interme-
diate stock has important application in the industrial system. For this case, the concern is
not only looking for an optimal scale for the flow shop problem. In this activity, it was also
observed the amount of jobs that waits in the queue, checking whether theses quantities are
in accordance with the storage capacity between the stages. When the products are physically
large (e.g., television, printer, etc.), the storage space between two successive machines may
have limited capacity, which may cause the blockage. Blocking occurs when the storage
space is completely filled and the machine upstream is not allowed to allocate this job in the
storage space.

Example of application is the study by Almeder and Hartl [9] that showed the problem

of productive process sequencing in a metallurgical company. The production process

22 Literature review

can be considered as stochastic problem of flexible flow shop with limited buffer. The
main objective was to use metaheuristic to know what the appropriate measures are for the
production schedule in order to avoid the productive process blocking. The authors chose
to use the search in the variable neighborhood for stochastic problems. The first step of the
proposed algorithm did a search in the neighborhood considering a multi objectives function.
The second step consisted of a discrete event simulator to evaluate the production plan. The
methodology used in this study allowed the company to reach better performance in the
productive system in comparison to the development of the preview production planning.

2.2 Methods of resolution

2.2.1 A mathematical programming for the flow shop problem

The mathematical programming was initially used to solve the problem of production schedu-
ling in the fifties and sixties decades. In this period, Wagner [104] proposed the mixed integer

linear programming model.

Minimize Cpgx (2.1)

subject to
Zl}:lzijzl i=1,...,l’l (22)
er-l:lzijZI jZl,...,l’l (23)

n n
Y PriZijal Y jrir T X jr1r = Yjr i PraiZij X141

j=1L...on—1j=1,....msr=1,....m—1 4
X Pmizij+ X Xjm = Cmax J =1, (2.5)
YT prizn =xu k=2,...,m (2.6)

yu=0 k=2,....m—1 (2.7)

The model deals with the problem of allocation of jobs in the production sequence
positions (see Blazewicz et al. [12]) The variables and parameters are listed below: z;;-

Binary variable takes the value 1 if job i is in the j** position of the permutation and 0

2.2 Methods of resolution 23

otherwise; x - idle time (waiting time) in the machine k before the starting of the job in the
position j in the jobs permutation; y ;- idle time (waiting time) of the job in the 7™ position
of the permutation, after finishing the processing in the k£ machine, while waiting for the
release of the machine k+ 1 ; p,; - processing time of the job i in the machine r; and

Cinax the makespan.

The set constraints 2.1 is related to the maximum time to minimize the objective
function; the constraints 2.2 and 2.3 ensure that each job occupies only one position in the
permutation sequence and that in each position of the permutation sequence be allocated
by a single job; the constraints 2.4 provide equal processing time plus waiting time for
every pair of adjacent machines in the m-machine flow shop; the constraints 2.5 determine
the makespan; the constraints 2.6 consider the idle time of the second machine and of the
following machines while waiting for the arrival of the first job; the constraints 2.7 ensure
that the first job of the permutation always passes immediately to each successive machine.

Other studies have been developed for the flow shop scheduling considering exact
techniques such as the mathematical programming. Naderi et al. [64] proposed a model
of mixed integer linear programming to minimize the makespan and total delay in a flow
shop environment. Frasch et al. [30] studied a MIP modelling approach for flow shop
problems with a limited number of intermediate buffers. The authors considered three
objective functions to minimize the makespan, the sum of completion time and the number of
strands. Ronconi and Birgin [86] proposed a mixed integer linear programming formulation
to minimize the advance and the total delay of the jobs delivery through an evaluation
in terms of computational cost for the flow shop problem with unlimited buffer and zero
buffer. Hnaien et al. [41] developed two models of mixed-integer programming (M1IP) for

the scheduling flow shop problem in two-machines in order to minimize the makespan.

2.2.2 Johnson’s algorithm

Johnson’s Algorithm [45] is suitable for problems with two machines and can be extended to
three machines, if the strategy of dividing the number of machines in two pseudo-machines
is used with processing time equal to the sum of the processing time in the current machine.

Given a set of jobs that must go through a sequence of two machines, Johnson’s algorithm
allocates the jobs from the first and from the last position of the schedule considering them in
ascending order of production time as it is shown in Figure 2.6. This algorithm is suitable for
problems with two machines and can be extended to three machines, if they are transformed
in two pseudo-machines. In this last case, the processing time of one of the machines will

be equal to the sum of the processing time of the grouped machines. The generalization of

24 Literature review

Johnson’s algorithm was proposed by Campbell et al. [15] by solving general problems of
n-jobs in m-machines, where m — 1 problems of 2-machines are solved and the sequence that

has the smallest makespan is selected.

Procedure Johnson’s Algorithm

1 Determine min{Pj};

2 If Job; with min{Pj } came from maq1:

3 S1 < Jobj;

4 If Job; with min{Pj;} came from maq2:

5 S2 < Jobj;

6 If Pj; = Pj>, may be put in either Set (S1 or $2);
7 Repeat this procedure until the lists are exhausted;
8 Sort S1 in increasing order of Py (SPT);

9 Sort $2 in decreasing order of P (LPT) ;

10 Sequence < S1+ S2.

end-Procedure Johnson’s Algorithm

Fig. 2.6 Pseudo-code by Johnson’s Algorithm

The variables Pj; is the processing time in the machine k. The basic principle of Johnson’s
algorithm is the analysis of the shorter processing time in the machines. If the shorter
processing time is in the machine 1, the corresponding job will be allocated at the beginning
of the sequence. If the shorter processing time is in the machine 2, the corresponding job
will be allocated at the end of the sequence. The job i precedes job j in a optimal sequence
that is min{a;,bj}< min {aj, bi}.

Example of application of this method is shown by Zang and Van de Velde [109]. The
authors considered the flow shop scheduling problem for 7 jobs in m machines in two stages
with parallel machine in order to minimize the makespan. The problem was divided into two
sub-problems: the first is related to the assignment of the jobs to the parallel machines. The
second is related to the scheduling of the jobs in flow shop environment using Johnson’s rule.

This rule also has been adopted by Allahverdi et al. [7] to minimize the makespan in flow
shop context with two-machines. The authors proposed five different algorithms, considering
the lower and upper time limits of the job processing. One of the used algorithms was
Johnson’s algorithm, which is based on the average of the lower and upper time limits
of the job processing. Computational experiments indicated that the modified Johnson’s
algorithm can be applied with success in programming environments with random and limited
processing time. Yang [107] considered the problem of minimizing the makespan in a hybrid

flow shop with two stages with dedicated machines in the first stage and one machine in the

2.2 Methods of resolution 25

second stage. Four heuristics based on Johnson’s algorithm and greedy-type scheduling were
proposed. In all the cases, the two-stage hybrid flow shop problem with dedicated machines
is assumed in order to minimize the makespan since there is only one machine in the second
stage. The results indicated that the heuristic based on Johnson’s algorithm provided the best
performance. A heuristic that has been widely used to solve the flow shop problem is the
NEH heuristic proposed by Nawaz et al. [66]).

2.2.3 Heuristic methods
Constructive heuristics

Many exact methods are developed to solve the flow shop problem, but there is great
difficulty to find optimal solutions within feasible computational time using these methods,
when the machine number and jobs are high. Therefore, other methods such as heuristic
and metaheuristic are used to bring new solutions to this problem. Many researchers use the
constructive heuristics because they generate good solutions with low computational effort.

The constructive methods may generate partial solutions that can be used as a starting
point to achieve better final solutions. They can be used in isolation, but they are often
combined with other more elaborate methods (exact methods, metaheuristics, methods of
local search, etc). This solution can be created by successive generations of partial sequences
to achieve a complete solution by inserting the operations. One example is the heuristic
proposed by Nawaz et al. [66].

Rad et al. [80] remark that the NEH algorithm is commonly used to solve problems of
sequencing n jobs in m machines. The sequencing outputs are represented by Gantt’s graphs
using the processing time of the machines for each job, ensuring that the delay time is taken
into consideration. These processes are repeated for different sequences until reaching a
minimum makespan, this is the shortest processing time considering all jobs. The storage
capacity between successive machines is generally considered unlimited. This really fits
to the physically small product processes (integrated circuit), which can be stored in large
amount next to the machines. Therefore, this problem is treated considering the intermediate

stock limited or unlimited.

Heuristics of Nawaz, Enscore and Ham (NEH)

NEH procedure is based on the assumption that a job with a large total processing time in all
machines must receive higher priority than those with shorter total processing time. It builds
the sequence by adding a new job to each step finding the best partial solution. The NEH
algorithm can be presented in some simple steps as shown in Figure 2.7.

26 Literature review

Procedure by NEH’s Algorithm
Sort the tasks in descending order of STP, getting the list: LC := {I1,...,IL, };
Select the first and second job of the sequence from LC;
Calculate the processing time of the two jobs by allocating them in all possible positions;
I1:=I1; a partial sequence formed by the selected job;
Remove the jobs I1(1) and I1(2) from LC;
Fori=3tondo
Select job IT(j) randomly from LCR;
Enter the job I1() in all possible positions of I1, generating i
partial sequences with i jobs;
10 IT : = Select the best generated sequence;
11 Remove the I j) from LC;
12 end-for
end-procedureNEH’s Algorithm

01O\ N B~ WiN -

o)

Fig. 2.7 Pseudo-code by NEH

This heuristic has been widely used to solve the flow shop problem. Kalczynski and
Kamburowski [46] consider this heuristic as one of the best to solve the flow shop permutation
problem. According to Samuel and Venkumar [90], this heuristic assumes that a job with
a high total processing time in all the machines should receive higher priority over those
jobs which have low total processing time. This heuristic (NEH) builds the final sequence
by adding to each step a new job, finding the best partial solution. An example is shown
by Pan et al. [74] who solved the scheduling problem in a flow shop environment with
buffer-zero, with the reducing criterion of the processing time of all jobs (makespan). The
author proposed heuristics to explore specific characteristics of the problem and to find out
good solutions with shorter computational efforts.

Simple constructive heuristics were also analyzed based on the approximation of the
study by Mccormick and Rao [60] (scheduling on the production line with the blocking to
minimize the cycle time). Computational simulations and comparisons have been built based
on the number of instance for flow shop with the blocking proposed by Taillard benchmarks.
The results showed that the performance of the constructive heuristic brought significant
results.

Another example is the study by Allaoui and Artiba [8] who investigated the hybrid
flow shop scheduling problem with two stages composed of a single machine in the first
stage and m machines in the second stage in order to minimize the makespan. Recently,
Fernandez-Viagas and Framinan [29] proposed tie-breaking mechanisms with the NEH
heuristic to solve the Fm/prmu/} T; problem.

2.2 Methods of resolution 27

Improvement heuristics

The local search method in optimization problems is the refinement of a viable starting
solution. This heuristic explores the search space in order to find the most promising regions
using neighborhood notions. Local search looks for better solution by covering the search that
moves iteratively from a nearby solution to another. According to Aarts and Lenstra [1], there
is a natural way to represent the solutions for many local search applications for scheduling
problem. In a scheduling problem, the representation of the solution is a permutation of the
integer 1,...,n for an assignment problem. It is in a list of m machines to which the n jobs
are assigned. In many cases, there is a definition of the neighborhood structure that attends
to improve the constructed solution. Among the best known refinement methods are:

* Descent/Uphill Method

Local search heuristics start from random initial solution and explore all possible
neighbors of this solution in search of better solutions. To construct the neighbors, it
is necessary to establish rules that define a certain type of movement (modification
that transforms a solution in another in neighborhood). The exchange of a solution to
another will be accepted if the neighboring solution represents an improvement in the
current value of the evaluation function. The heuristic stopping criteria will be made
when the local optimum is reached.

* Random Descent Method/Uphill

This method is a kind of descent method. In this case, any neighbor is chosen and is
only accepted if it improves the current solution. If the chosen neighbor is not better
than the current one, other neighbor is chosen and the current solution is maintained
until a better solution is generated. The procedure ends when the fixed number of
iterations with no improvement over the best solution is reached. Therefore, the final

solution will not necessarily be a local optimum.

* First Improvement Method

This is a kind of descent method that consists in interrupting the descent method in the
neighborhood when it reaches the first neighbor with better solution than the current
one. In this case, the exhaustive search for the best neighbor is avoided, which only

occurs in the worst case.

Mainieri and Ronconi [57] analyzed the problem of minimizing the total delaying in
a flexible flow shop environment. In this study, they proposed new rules of order, based

on the date of the delivery and future states of the system, which are evaluated with a set

28 Literature review

of test of 4320 problems. Other example is the study by Nagano and Moccellin [65] who
proposed a new heuristic method of two stages. In the first stage, an initial ordering of the
tasks was performed. In the second, the solution sequence with the inclusion of tasks at
the partial sequences and their improvement with a search method at the neighborhood was
built. This method aimed minimizing the processing inventory without interrupting the task

performance.

2.2.4 Metaheuristic

The metaheuristics have the ability to escape from local optimum through prior knowledge
of the information on the search space to be explored, avoiding the premature stop of the
search algorithm. Today, there are several different metaheuristics that serve as reference for
the development of search strategies. Those seen as extensions of local search algorithms
that seeks to escape from local optimum in order to proceed with the searching in another
region (tabu search, variable neighborhood search (VNS), greedy randomized adaptive search
(GRASP), simulated annealing, etc), and those based on the philosophy of learning, the
combining of the previously given solutions to identify the most promising areas of the search
space (genetic algorithms, neural networks, ant colony etc.) can be cited. Some articles that
used metaheuristic for the problem of flow shop scheduling are presented below.

Widmer and Hertz [106] presented an heuristic method to solve flow shop scheduling.
This method named SPIRIT (Scheduling Problem Involving a Resolution by Integration of
the Tabu search technique) was composed of two stages. In the first stage, the initial sequence
uses the principles of traveling salesman problem, and in the second stage is the improve-
ment of the initial solution using the heuristic by the tabu search method. The presented
heuristics were tested in a total of 500 problems, where problems with 4,5,10, 15,20 jobs
and 4,5, 10, 15,20 machines were considered. The processing time are randomly generated
and uniformly distributed over the interval (0; 10). The used distance by the insertion method
provides a good initial feasible solution. A list of all tested instances was not exhaustive.
The best solution for the initial tabu search method used in this study did not show any
meaningful results with respect to the value of makespan.

Alaykyran et al. [6] used the method of improvement for the ant colony optimization
(ACO) to solve the problems of hybrid flow shop (HFS). This algorithm was used in
many other problems. The authors have improved and adapted these methods to the HF'S
problem. The operating parameters have an important role in the quality of the solution. A
study of optimization parameters was carried out and evaluated in the HF'S problems. The
generated algorithm was tested in 63 different reference problems. The results showed that
the application of the new method ACO was effective. Today, the inspiration in the nature

2.2 Methods of resolution 29

for the solution of the problem such as the one that has brought good result and it will be
adaptable to other problems in the future. Alaykyran et al. [6] affirm that the best results can
be achieved by using hybrid or applications in parallel as well as by setting of the parameters
solving problems in these methods.

Buzzo and Moccellin [13] presented a hybrid heuristic with Simulated Annealing and Ge-
netic Algorithms to minimize the makespan. The objective was to evaluate the hybridization
efficacy. The hybrid method was compared to the original Genetic Algorithm and Simulated
Annealing methods. The method showed that hybrid models can be useful to solve this
problem.

Reeves [82] explored the potential of GA to find out the minimum makespan in a
permutation flow shop problem of n and m-jobs machines. The algorithm performance was
compared to the results acquired by the simple search technique in the neighborhood, the
Genetic Algorithm (GA) and the Simulated Annealing algorithm (SA). By testing a set of
instances for this problem, it was observed that the use of sophisticated procedures for certain
types of problem may not be worthwhile, since a simple search through the neighborhood
can get good quality solutions. The overall implication of these studies was that the SA and
GA algorithms produced results comparable to flow shop scheduling problem for most sizes
and types of problem. The GA produced better results for large problems. According to the
authors, a characteristic of the GA is its robustness with respect to the parameter values so
that the similar performance was already expected.

Gao et al. [31] considered the Distributed Permutation Flow Shop Problem (DPF SP).
They proposed a resolution method that uses a hybrid genetic algorithm with local search
(GALS) to minimize the makespan. In the resolution, the operators of GA crossover and
mutation were used at one point in order to make it suitable for the DPF SP representing
solutions where the set of partial sequences of jobs is the employed method.

In addition, a local search to exploit neighboring solutions has been developed where
three local search operations have been proposed for enhancing the VND method. The
local search method uses three proposed rules that move jobs within a plant or between two
plants. Intense experiences were made based on instances referenced by Taillard. The results
indicated that the proposed hybrid genetic algorithm can get better solutions than all the
existing algorithms for DPFSP once the relative percentage deviation and the differences in
the results were statistically significant.

Gao et al. [32] continued the previous study, considering the problem of flow shop prob-
lem Scheduling Distributed Permutation (DPF SP), but solving it by tabu search algorithm.
The contribution of this study was to treat the problem through a method of exchanging

sub-sequences of jobs between two factories that define the neighborhood structure and

30 Literature review

movements. Furthermore, the method also improves the exchange in the tabu list based on
local search method presented in a more effective method of local search hybrid genetic
algorithm that is incorporated into the tabu search algorithm. Taillard instances (extended
to the problems of distributed permutation flow shop) were used to test the algorithm. As
from experiments and comparisons with other algorithms, this study showed that for 472
known instances, the proposed tabu algorithm outperforms all existing performed algorithms,
including heuristic algorithms (i.e, NEH1, NEH?2, and VND). In addition, it was shown that
the efficiency of the tabu algorithm is better than that of the aforementioned hybrid genetic

algorithm.

Simulated annealing procedure

The simulated annealing is based on Monte-Carlo method so that it can be regarded as a
special form of iterative improvement. According to Ozdaugouglu [73], the link between
this algorithm and mathematical minimization was first observed by Pincus [76]. However,
who really proposed the optimization technique for combinatorial problems were Kirkpatrick
et al. [47].

Simulated annealing was based on the simulation of the natural process of grain growth
in the metal. In this process, metal is melted at a very high temperature, followed by a slow
gradual cooling. One of the main points of attention in this process is the phenomenon of
the grain growth that constitutes the crystalline metal net. In this phenomenon, the average
diameter of the crystalline metal net increases when the metal cooling is carried out slowly. In
this regard, Callister et al. [14] say that this phenomenon is a process whose length depends
on both time and temperature. To extent that the grains grow in size, the total area of grain
boundary decreases, providing a steady reduction in the total energy. This is the driving force
which grain growth occurs by the migration of grain boundaries. There is a dependence of the
grain size in relation to the time and the temperature. The grain growth proceeds faster as the
temperature increases. In this sense, the longest cooling process provides more stable metals
if strong structures of lower energy and fast cooling brings about a metastable structure with
higher internal energy, what makes the initial temperature and the cooling time important
data.

By observing this process, Kirkpatrick et al. [47] developed the algorithm simulated
annealing drawing an analogy with metal cooling behavior and the Metropolis algorithm
[61]. This algorithm aimed to find the global minimum of a cost function that can contain
many local minimum. The combinatorial optimization algorithm performs the process by
steps simulating the temperature levels of the metal cooling. According to the Nearchou [67]

and Aarts and Lenstra [1], a combinatorial optimization problem generally consists of a set

2.2 Methods of resolution 31

of solutions S and a cost function C(S) which determines a real number for each cost solution
C(S). Furthermore, to perform a local search, it is necessary to define the neighborhood
structure N(S) in S. N(S) determines S’ possible changes for each set of solutions that may
be proposed by S. An arbitrary S’ solution is obtained from S and continually improved from
a small local change until such a change produces a better solution. At each iteration, the
algorithm explores the neighborhood generating a finite number of candidate solutions S’
randomly of which the value of the cost function C(S’) is calculated. The evaluation of the
candidate solution is made by the difference between the value of the cost function C(S) and
the candidate cost function C(S'). S is only replaced by S’ if the cost function C(S’) does not
increase, or C(S") < C(S). But the local search algorithms can achieve minimum costs of
which they do not offer any improvement in cost and are not necessarily the global minimum.
To prevent that the algorithm gets stuck in a local minimum, the simulated annealing accepts
"upward movements" with a certain probability, i.e a candidate solution that increases the
cost function.

The way to get this probability is made by the drawing of a real value between O and 1.

If the obtained value is greater than e BT

, the worsening solution is considered, so that the
acceptance of this probability decreases with time. For this case, the A is regarded as the
difference between the cost of the candidate solution and the cost of the former solution, and
T current temperature. The temperature is decreased at each iteration by a cooling factor
o until achieves a pre-established minimum value. The classic algorithm is presented in
Figure 2.8.

In the current literature, some studies have been using this technique. Nearchou [67]
proposed a hybrid algorithm that uses simulated annealing for the classic problem of flow
shop scheduling. This study dealt with the problem using some characteristics of the genetic
algorithm. The author compared the computational results with two different mechanisms
to produce different solutions. The first population was generated using a simple random
change. The second population was generated through a recombination system based on
the previously acquired knowledge by the individuals that were generated randomly in
the population. The experiments were done in benchmark of test problems comparing the
proposed method, the genetic algorithm and two other algorithms using standard simulated
annealing. The results generated by the hybrid algorithm had low makespans with average
results below 1% of the best solution.

Mirsanei et al. [62] also considered the hybrid flow shop problem with parallel identical
machines to minimize the makespan. An algorithm that uses the simulated annealing was
developed to generate a feasible production schedule with an acceptable computational time.

The algorithm combines two movement operations to generate new solutions. The obtained

32

Literature review

Procedure Simulated Annealing

1 Select an initial temperature T <— Tp;
2 Select an initial Solution S < Sp;

3 ir<+0;

4 best; < 0;

5 Spest < Sos

6 While (it <best;y +max;y) do
7

8

itgo] < It
While (it <itge1 +itienp) do
9 it ++;
10 S" + N(S)
11 A+ cost(S') — cost(S);
12 If A <0 then:
13 S+ 8
14 itgy < it
15 If cost(S') < cost(Spest) then:
16 Shest S
17 best; < it
18 endif
19 endif
20 Else
21 Generate random number r € [0,1]
22 If (r <e 2/T)Then:
23 S« 5
24 endif
25 end
26 end
27 T+ aT
28 end
29 Return S;

end-procedure Simulated Annealing

Fig. 2.8 Pseudo-code of the Simulated Annealing

2.2 Methods of resolution 33

results were compared with those generated by the genetic algorithm and others previously
proposed. The algorithm has brought better results in relation to the algorithms previously
reported in the literature.

Senthilkumar [94] developed an algorithm with simulated annealing to minimize the
makespan in an environment with single machines and with uniform parallel machines. The
scheduling problem in single machine and in uniform parallel machine consists of # jobs that
were scheduled in m parallel machines with different speeds, so that each job has a single
operation. To solve the problem, three variations of the simulated annealing were carried
out and a statistical analyses (ANOVA) was performed to compare the solutions. The three
algorithms brought good results for the tested problems.

Sivasankaran [99] compared the simulated annealing algorithm and the GRASP (Greedy
Randomized Adaptive) algorithm to sequence jobs in m unrelated parallel machines and in
uniforms parallel machines in order to minimize the makespan. The authors presented two
different metaheuristics to the problem and compared them analyzing their solutions. In the
first step, the simulated annealing algorithm was developed and then the GRASP algorithm.
The results showed that the simulated annealing algorithm had better results than GRASP.
Seyed-Alagheband et al. [95] investigated the problem of jobs scheduling in a flow shop
pemutacional environment. To solve the problem, an algorithm with modified classical
simulated annealing was developed. The algorithm was effective in terms of solution quality
compared to other approaches available in the literature.

Hurkala and Hurkala [42] addressed the problem of programming of 7 jobs in m machines
with minimal completion time as a performance criterion. The authors developed an algorithm
with the simulated annealing to solve the problem. The main difficulty at the algorithm
performance was the temperature parameter setting for the shop flow problem since the quality
of the solutions is dependent on the choice of the cooling system, the initial temperature, the
number of iterations, and the temperature reduction rate. The authors have proposed choices
for all this parameter and for the Boltzmann factor for Metropolis scheme. Three disturbance
techniques were tested and the impact of these techniques on the solutions quality was
assessed. The computational experiments had good results and the quality of the solutions of
the algorithm simulated annealing was better compared with two different heuristics.

Lin et al. [52] studied the problem of flow shop permutation schedule in order to minimize
the total flow time. A multi-start heuristic with simulated annealing (MSA) was developed
due to the computational complexity of this problem. This heuristic uses more than an
initiation strategy at the simulated annealing (SA) to achieve near optimal solutions. A

set of computational tests was conducted in a known problem in the literature to examine

34 Literature review

the performance of the MSA algorithm. The test results with the new method were better

compared to the traditional methods using other metaheuristics.

Greedy Randomized Adaptive Search procedure (GRASP)

Procedure GRASP (Maxiter), (Seed)

1 Read input()

2 iter < 0;

3 while iter < maxiter do

4 Solution <— Construction(seed);

5 Solution < LocalSearch(Solution);

6 U pdate — Solution(Solution, Best — Solution);
7 end-while

8 return(Best-Solution)

end-procedure GRASP

Fig. 2.9 GRASP pseudo-code (Resende and Ribeiro [83])

The metaheuristic Randomized Adaptive Search Procedure (GRASP) is known as an
iterative method proposed by Resende and Ribeiro [83]. The method combines the main
characteristics of the greedy algorithms and random methods, generating solutions through
multiple restarts (pseudo-code Figure 2.9). The algorithm consists of two phases: the

Procedure Construction (seed)

1 Read input()

2 Solution < 0;

3 Evaluate the incremental cost of candidate elements;

while solution is not complete do
Build the Restrict Candidate List (RCL);
Select element s of RCL at randon;
Solution < SolutionUs;
Reeavaliation the incremental costs;
end-while
0 return(Solution)
end-procedure Construction

— O 0 3O\ L

Fig. 2.10 GRASP pseudo-code (Resende and Ribeiro [83])

construction phase of the initial solution and the local search phase or improvement solution,
returning an optimal local of the initial solution neighborhood. The construction (pseudo-

code Figure 2.10) of initial solution consists in generating a list of feasible candidate solutions

2.2 Methods of resolution 35

(LC). The elements of this list are ordered according to a random greedy adaptive function.
The best solutions make up the restricted candidates list (LRC), so that the construction
dimensioning and randomness are controlled by the real o parameter [0, 1]. The value of
a = 1 represents a solution completely random and « = 0 represents a solution entirely
greedy. When the construction of the initial solution is finished, the LRC elements are
subjected to a search method in the neighborhood to the minimum site. The best solution is
stored as a partial result. The best partial solutions, considering all iterations, is adopted as
the final result (Resende and Ribeiro [83]).

Procedure Local Search (Solution)

1 iter+0;

2 while iter < maxiter do
3 Find S* € N (Solution)withf(s") < f(Solution);
4 Set Solution<— s’;
5 iter ++;

6 end-while

7 return(Solution)
end-Local Search

Fig. 2.11 Pseudo-code of the local search phase (Resende and Ribeiro [83])

Examples can be seen in Prabhaharan et al. [79]. They investigated the flow shop
permutation problem to minimize the makespan. They presented the results of the jobs
sequencing with GRASP metaheuristic and then with the NEH algorithm. The computational
results showed that GRASP algorithm overcame the traditional NEH algorithm.

Sivasankaran et al. [99] compared the simulated annealing algorithm and the GRASP
algorithm to schedule the operation of jobs in m unrelated parallel machines and in uniforms
parallel machines in order to minimize the makespan. The simulated annealing algorithm
performed better than GRASP. Shahul et al. [96] dealt with the flow shop problem with m
machines in order to minimize the weighted sum of the makespan and the maximum delay.
One of the used techniques was the GRASP metaheuristic (GRASP Bi-criteria algorithm).
The proposed algorithm was effective for small problems.

Davoudpour and Ashrafi [25] addressed the problem of hybrid flow shop with sequence
dependent of the setup time. The authors presented a modified GRASP algorithm with an
additional reconstruction phase in order to determine the due dates and the setup time.
The GRASP algorithm was tested and compared to the simulated annealing algorithm.
The computational results showed that GRASP achieved better results than the simulated

annealing.

36 Literature review

Damodaran et al. [24] investigated the scheduling problem in a similar set of plots
arranged in parallel machines using a GRASP approach in order to minimize the makespan
considering different numbers of jobs and processing time. The performance of the proposed
GRASP algorithm was compared to some heuristics published in the literature. On average,

the GRASP algorithm overcame the compared heuristics.

2.3 Conclusion

In this chapter, the concepts of problem of production scheduling, the environment of single
machine, the environment of multiple stage machine, the variants of the flow shop and the
methods of resolution for the flow shop problem as well as definitions of exact methods
and heuristic methods were presented. This theoretical basis is fundamental for a better
understanding of subsequent chapters.

Chapter 3
Optimization approaches

This chapter presents approach methods to the flow shop scheduling problem with parallel
semi-line with a final synchronization operation. To solve this problem, a mixed integer linear
programming model is presented in section 3.2, methods considering Johnson’s algorithm in
section 3.3, heuristic methods based on NEH algorithm in section 3.4 and methods based
on Local Search, Simulated Annealing and GRASP methaheuristics and in sections 3.5,
3.5.3,3.5.2 and 3.5.4.

3.1 Characteristics of the studied problem

The flow shop problem with parallel semi-lines and a final synchronization operation can
be represented by a permutation of n jobs J = 1,2,3,....n, where J; is the k;/ job in the
processing sequence. The jobs are processed in parallel in the same technological sequence
in all the machines of the two semi-lines and the synchronization process. Each semi-line
processes one of the halves of the final product that is assembled in a single product in
the synchronization machine. The semi-linel has q1 machines Q1 =1,2,3,...¢l and the
semi-line 2 has g2 machines Q2 = 1,2,3, ..., g2 and ending with a synchronization machine

gs.
Assumptions concerning to the problem

1. Each job is available for processing from the beginning of the scheduling period;
2. There is no due date;
3. Each operation is independent of the other;

4. Each job (operation) has finite processing time in each machine;

38 Optimization approaches

5. Each job cannot be processed more than once in each machine;
6. Each machine is ready to be used before starting the scheduling period;

7. Each machine in a stage operates independently of the other machines and therefore is

able to operate with its own maximum output rate;

8. Each machine will always be available to process the jobs during the period;

9. Each job will be processed only when the machine is available;
10. Each job must be concluded, once started in a machine. The preemption is not allowed;
11. Each job is processed in one machine at a time;
12. Each machine has enough space to allocate the jobs that must wait the processing;
13. The storage capacity will be considered unlimited;
14. Each machine processes the jobs in a similar sequence;
15. Each semi-line operates independently from the other;

16. The semi-lines and the final synchronization operation process the jobs in a similar

sequence;

17. The final synchronization operation for a product can only be started when the opera-
tions of their halves in both semi-lines are concluded.

3.2 Mathematical modeling

The mathematical formulation addresses the problem considering two parallel semi-lines
followed by a sequential line. The operations in the parallel machines are grouped, and the
processing time of the corresponding operation to the operations set of the slower group
is adopted. A dummy machine (considered in the model as synchronization machine) is
included at the end of each semi-line. These two dummy machines represent the independent
processing of the last operation. The existence of two artificially independent semi-lines
will enable the determination of the higher value ¢! of the processing time between them.
The model is based on the formulations proposed by Stafford [100] and by Wagner [104].
According to the study conducted by Tseng, Stafford Jr. and Gupta [102], such kind of
formulation is the best for the permutation flow shop. Let m/ be the number of machines in

3.2 Mathematical modeling 39

semi-line [= 1,2 (before the synchronizing operation). In this model, a unique permutation
has to be chosen for two flow shop problems with m/ + 1 machines, each subject to the
additional constraint that the completion time of each job in the machines m1 + 1 and m2 + 1
is the same. The model can be generalized for an arbitrary number L of semi-lines. Thus,
assuming, for modeling purposes, [= 1,2 flow shop problems with ml + 1 machines each,
the variables and parameters are the following: z;; is a binary variable that takes the value
1 if job i is assigned to the j position of the permutation (common two both 1 = 1; 2 flow
shop problems) and 0 otherwise; xi.k is the idle time in the machine k of problem / before
the starting of the job in the j'”* position of the permutation; yé.k is the job idle time in the j**
position of the permutation, after finishing the processing in the machine k, while waiting for
the releasing of the machine k£ + 1 of problem / to become available; pga. is the processing
time of the job i in the machine k of the problem / (pm1+1i = pm2+11i); c_l]. is the completion
time in problem 1 of job j in the j** position of the permutation. The makespan is given by

the completion time of the job in the last position of the permutation.

Minimize C) (3.1)

subject to
7:1Z,'7j=1 i=1,...,n (3.2)
1z =1 j=1,....n (3.3)

n [.. .) 1 ol n / . [
Yo PriZijit Tyt e Xt = Ve T Xt Pyt % F X100 41

[=1,2;j=1,....n—1L;r=1,....m (3.4)
Y Pz =x, I=1,2k=2,....m (3.5)
fa Z?:lpr,izi,l lel,mlﬂ Lv=12 (3.6)
We=0 I=12%k=1,...,m—1 (3.7)

xll,ml+1 - (xll,ml + X0 Pmy,iZit) :ylel [=1,2 (3.8)

40 Optimization approaches

Y X Pyt Gt Ty X =C I=1,2=1,...,n (3.9)
Cj=C; 1=1,2 (3.10)

z; €{0,1} j=1,...,mi=1,....n (3.11)
Vx>0 j=1,...ml=1,2%k=1,....m+1 (3.12)
Ci>0 1=1,2;j=1,...,n. (3.13)

The objective function (3.1) minimizes the makespan. Constraints (3.2) and (3.3), ensure
that each job occupies only one position in the permutation sequence and that each position
of the permutation sequence is allocated by a single job. Constraint (3.4) ensures equal
processing time plus waiting time for every pair of adjacent machines. The existence of two
artificially independent semi-lines is considered to determine the cﬂ. and longer processing
time among the semi-lines. Constraint (3.5) computes, from the second machine on, the idle
time in each machine while waiting for the first job. Constraint (3.6) ensures that the idle
time in each machine while waiting for the first job is less than or equal to the sum of the
processing time in the previous machines. Constraint (3.7) ensures that there is no idle time
for the job assigned to the first position. Constraint (3.8) ensures that the job idle time in the
first position of the permutation, after finishing the processing in the machine ml is equal to
the idle time of the first job before the synchronization machine (ml 4 1) subtracted from the
sum of the job idle time before the last machine in the problem / with the processing time of
the first job in the last machine of the problem /. Constraint (3.9) determines the makespan
of each problem as the sum of the processing time of all jobs in the machine plus the waiting
time of the jobs in the last machine. Constraint (3.10) ensures the equality of the makespan
of the semi-lines. Constraint (3.11) takes the value 1 if the job i is in the jth permutation
position and 0 otherwise. Constraint (3.12) ensures that the waiting time in the machines of
each problem is nonnegative. Constraint (3.13) ensures that the makespan of each problem is

nonnegative.

3.3 Heuristics based on Johnson’s algorithm 41

3.3 Heuristics based on Johnson’s algorithm

Johnson’s algorithm obtains a sequence that minimizes the makespan for the flow shop
problem with two machines, Let p;; (resp. p;) being the processing time of job j in the
first (resp. second) machine. The optimal sequence begins with the jobs such that p;; < py;
sorted in non-decreasing order of processing time, i.e., the downward part of the sequence.
In this study, two adaptations of Johnson’s algorithm were developed: Johnson’s algorithm
considering the longest processing time and Johnson’s algorithm considering the average
processing time. The general principle is to consider the studied system as a flow shop with

two machines by setting the synchronization operation as the second machine.

3.3.1 Johnson’s algorithm considering the average processing time

In the adaptation denoted by Johnav, for each job j = {1,...,n}, the average processing time
Y 1Pk1+2k 1ij
ml4+m2
operation is the processing time in the second machine. Then, Johnson’s algorithm is applied

is computed with: p; = The processing time py; of the synchronization

and computed for the sequence obtained. The makespan is calculated in the whole system
with the actual processing time pi ; for each semi-line / = 1;2. The algorithm of John,, is as
it follows in the Procedure 3.1.

Procedure Johnson’s algorithm with average processing time

Zk Iij+Zm2 P2
1 Jimaq1<— W)

2 Jimaq2<— Pyj of the synchronization machine;

3 Determine min{Pj} of Jimagl and Jimaq2 ;

4 If Job; with mm{ ik} came from Jimagl:

5 Sl < Job;;

6 If Job; with min{Pj;} came from Jimagq?2:

7 S2 < Jobj;

8 If Pj; = Pj, may be put in either Set (S1 or $2);
9 Repeat thls procedure until the lists are exhausted;
10 Sort S1 in increasing order of Py (SPT);

11 Sort $2 in decreasing order of Py (LPT) ;

12 Sequence < S1+ 52;

13 Calculate the Makespan of the Sequence;
end-Procedure

Fig. 3.1 Pseudo-code by Johnson’s algorithm with average processing time

42 Optimization approaches

3.3.2 Johnson’s algorithm considering the longest processing time

The adaptation denoted by Johny; works in a similar manner, but the longest processing time
Maxj—1 2:k=1,...ml pfg ; among the machines of the semi-lines is used as the processing time of
job j in the first machine. The algorithm of Johny; is as it follows in the Procedure 3.2.

Procedure Johnson’s algorithm with longest processing time
1 Jimagl<— max{Pj} of the semi-lines;

2 Jimaq2<— Py of the synchronization machine;

3 Determine min{Pj} of Jimagl and Jimaq?2 ;

4 If Job; with min{Pj } came from Jimagq]:
5 S1 < Jobj;
6 If Job; with min{Pj.} came from Jymagq?2:
7 S2 < Jobj;

8 If P;; = Pj>, may be put in either Set (S1 or $2);
9 Repeat this procedure until the lists are exhausted;
10 Sort §1 in increasing order of Pj; (SPT);

11 Sort §2 in decreasing order of P (LPT) ;

12 Sequence < S1+ 82;

13 Calculate the Makespan of the Sequence;
end-Procedure

Fig. 3.2 Pseudo-code by Johnson’s algorithm with the longest processing time

3.4 Heuristics based in NEH algorithm

In this study, three adaptations of the NEH algorithm were developed: NEH,, - the average
processing time of jobs between correspondent parallel machines, NEH),; - the longest
processing time of the jobs among correspondent parallel machines, and NEH,,, - where
each semi-line is considered separately including the synchronization machine. The NEH,,
and the NEH),; heuristics require the same number of machines in each semi-line, i.e,
m =ml = m?2. Let f designates the final synchronization machine. The general principle is
to reduce the two semi-lines in a single line and to apply the NEH heuristic.

3.4.1 NEH algorithm considering the average processing time

In the NEH,, heuristic, for each job j = 1,...,n, it is computed (p}, + p2,)/2, where k =
1,...,m is the kth-machine in each semi-line. At this point, there is a classical permutation

flow shop with m + 1 machines where, for each job j, py; is the processing time in machine

3.4 Heuristics based in NEH algorithm 43

k=1,...,m and py; is the processing time in the last machine, and the NEH heuristic is
applied in order to obtain a sequence seq,,. Finally, the makespan incurred by the sequence
seq,y 1s computed in the whole system with the actual processing time pfc ; for each semi-line
[=1;2.

Procedure NEH,,

1 Fori=1tondo

2 s;i+0

3 Form=1to g do

4 p_im%(pilm—i_pizm)/z
5 Si < Si+ Pim

6 end-for

7 Si <= Si+ pif

8 end-for

9 Apply NEH algorithm to obtain a sequence seq.
10 Calculate the makespan of seq,, in the system.
end-procedure

Fig. 3.3 Pseudo-code of the NEH variant considering average processing time

3.4.2 NEH algorithm considering the longest processing time

This variant considers the longest processing time of the job i in each k" parallel machine

between semi-line 1 and semi-line 2. The NE Hj,; heuristic works in a similar manner. For

Procedure NEH),;

1 Fori=1tondo

2 Si < 0

3 Form=1to gdo

4 p_im — max{pllmvpzzm}
5 i < Si + Pim

6 end-for

7 Si <= Si+ pif

8 end-for

9 Apply NEH algorithm to obtain a sequence segq;.
10 Calculate the makespan of segj; in the system.
end-procedure

Fig. 3.4 Pseudo-code of the NEH variant considering the highest processing time

each job j = 1,...,n, it is computed max{p} p? }, where k = 1,...,m is the k""-machine in

44 Optimization approaches

each semi-line to obtain a sequence seqy; by the NEH heuristic for a flow shop problem with
m—+ 1 machines. Then, the makespan is computed incurred by the sequence seq,; in the whole
system with the actual processing time pi y for each semi-line / = 1;2. The algorithm of
the NEH variant considering the average processing time is shown in the Procedure NEH,,,,.
The algorithm of NEH variant considering the longest processing time is as it follows in the
Procedure NEHy,.

3.4.3 NEH algorithm considering the semi-lines separately

In the NEHj,, heuristic, each semi-line along with the synchronization machine separately
was considered. The NEH heuristic to a classical permutation flow shop problem with m/ 41
machines for each semi-line / = 1;2 is aplied, where, for each job j, pf{ ; is the processing
time in the machine k = 1,...,ml and py; is the processing time in the last machine, to obtain
a sequence seqly.,. The sequence seqlsep, | = 1;2 is adopted leading to the shortest makespan
in the whole system with the two semi-lines. The algorithm of the NEH variant considering

the semi-lines separately is as it follows in the Procedure NEHje),.

Procedure NEH;,,
1 while /ine < 3 do
2 Sort the tasks in descending order of ST P, getting the list: LC := {I1y,...,I1, };

3 Select the first and second jobs of the sequence from LC;

4 Calculate the processing time of the two jobs by allocating them in all possible positions;
5 IT:=1I1; a partial sequence formed by the selected job;

6 Remove the jobs I1(1) and I1(2) from LC;

7 Fori=3tondo

8 Select job II; randomly from LCR;

9 Enter the job I1() in all possible positions of I1, generating i partial
10 sequences with i jobs;

11 IT : = Select the best generated sequence;

12 Remove the I1 Jj) from LC;

13 end-for

14 return (seqinha)

15 return (Makjn,)

16 end-while

17 return (min{Makjinpa})

18 return (seq;iup, of min{Mak;;,p,})
end-procedure

Fig. 3.5 Pseudo-code of the NEH separately

3.5 Resolution methods with metaheuristics 45

3.5 Resolution methods with metaheuristics

Three different algorithms using metaheuristics were elaborated in this study. The initial
solution, the perturbation methods, the local search, and the modified acceptance criterion

solution were developed to each of them.

3.5.1 Representation of a solution

INITIAL SOLUTION

SOLUTION REPRESENTATION

J1

Fig. 3.6 Representation of a solution

The solution to the flow shop problem with 7 jobs will be represented by a vector Seq of
n positions, each position Seq; indicates the order of production of the i;;, job. The sequence
Seq = (3,2,1,4) is shown in Figure 3.6 as an example.

Neighborhood generation

The purpose of this process is to find neighboring solutions of a previously obtained solution.
They are constructed from position changes in the current solution to find out solutions that
are viable. This study used the simple disturbance. This movement is done by drawing two
changes of positions. Once the two change positions are obtained, the jobs that occupy these
positions are exchanged. Figure 3.7 shows an example of this movement, where the job that

occupied the first position was exchanged for the second position.

46 Optimization approaches

INITIAL SOLUTION

O20R0RS

SOLUTION REPRESENTATION

N

i1

SOLUTION WITH PERTURBATION
i1

Fig. 3.7 Neighborhood structure with exchange of two processing order jobs

Generation of the initial solution

In this study, two initial solution methods were considered. The first method generates the
initial population with algorithm NEH separately shown in the section 3.4 and the second
method generates the initial population by Johnson’s algorithm with average processing time
method shown in the section 3.3.1.

3.5.2 Simulated annealing

The heuristic Simulated Annealing was an adaptation of the method by Hurkata [42] and the
pseudo-code is described in Figure 3.8. The algorithm proceeds by generating disturbances
in the sequence of the jobs and providing another neighbor solution (S’). These changes are
made as shown in the sections 3.3.1 e 3.4.3. A new change is made at each iteration and a
new solution is generated. The generated solutions undergo an assessment process to check
if the objective of minimizing the makespan has been achieved. The makespan is calculated
and assessed. The solution (S) is updated if the acquired solution is better than the others
found until then. However, the algorithm tends to get stuck in local optima when only the
best solutions are accepted. To prevent this, the algorithm allows the acceptance of the worst
solutions. This acceptance is made by respecting a probability in relation to the temperature.
The function is calculated as shown in Jarosaw et al. [43] who chose a real number between
0 and 1 randomly. The worsening solution is accepted if this value is lower than e O/T,

where T is the temperature and 6 is the difference between the values of the accepted solution

3.5 Resolution methods with metaheuristics 47

and the previously adopted solution. The algorithm stopping criterion is determined by the
slow cooling of the initial temperature. The procedure is repeated in a number of times
per temperature. The algorithm starts a local search in the sequence that generated the best
solution when the temperature reaches the minimum point. The pseudo-code of the algorithm

used in this study is shown in 3.8:

Procedure Simulated Annealing

1 Select an initial temperature 7' <— Tp;
2 Select an initial solution S < Sp;
3 it+0;

4 pesty < 0;

5 Sbesl <~ SO;

6 While (it < best;y +max;;) do
7

8

itgo < It
While (it <itgoy +itienp) do
9 it ++;
10 "+ N(S)
11 A <+ cost(S') — cost(S);
12 If A <0 then:
13 S+ 8
14 itgo) < it
15 If cost(S') < cost(Spest) then:
16 Shest S
17 best; + it
18 end — if
19 end — if
20 Else
21 Generate random number r
22 If (r < ¢~/T)Then :
23 S« 5
24 end-if
25 end
26 end
27 T+ aT
28 end
29 Return S;

30 Apply Local Search in the best Sequence;
end-procedure Simulated Annealing

Fig. 3.8 Pseudo-code of the Simulated Annealing with LS

48 Optimization approaches

3.5.3 Local search

Procedure Local Search (s,n)

1 Seqq < best Construction sequence;
2 C(s) < best Construction makespan;
3 OK+1

4 while OK == 1 do

5 OK +— 0

6 Best <— o

7 forl i=0ton—1)do
8 for2 (j=iton)do

9 Seq' <+ Seq + exchange of the position
10 element i by position element j;
11 Calculate the cost C(seq’)

12 if (C(seq’) < Best) them

13 Best < C(seq’)

14 seqviz < seq’

15 end-if

16 end-for2

17 end-forl

18 if (Best < C(seq’)) them

19 seq < seqviz

20 Ok + 1

21 end-if

22 end-while

23 return (seq)
24 return (Best)
end-procedure

Fig. 3.9 LS Pseudo-code

In local search, the neighborhood space is explored in order to improve the objective
function. If there are opportunities for improvement, the exchange to generate the best result
is adopted. In this study, the algorithm starts with the generation of a feasible solution (Sp)
by two different methods (by the NEH algorithm considering the separated semi-lines and
by Johnson’s adaptation considering the average of the semi-lines) shown in the section
3.3.1 and 3.4.3. The local search process starts from this solution. This procedure is an
adaptation of the study by Ruiz and Sttzle [88]. It consists of taking a job from the original
position and inserting it in other positions of the sequence and calculating the objective
function of each modified sequence. The nearby solution to generate the best makespan is

selected and becomes the new current solution (S”). This process continues as long as there

3.5 Resolution methods with metaheuristics 49

is improvement in the current solution. The process is interrupted if there is a number of

iterations without improvement. The pseudo-code is in Figure 3.12.

3.5.4 Greedy Randomized Adaptive Search Procedure - GRASP

The GRASP algorithm to the problem under study consists of two phases: the construction
phase of the initial solution and the phase of local search or solution improvement. The first
phase consists of constructing a viable solution. After, the solution acquired in the previous
stage undergoes to a search in the neighborhood in order to achieve the local minimum. The
best solution is stored as a partial result. At the end of all iterations, the best of the partial
results is adopted. (Resende and Ribeiro [83]) The pseudo-code 6.4 shows the GRASP steps.

Procedure GRASP (Maxiter), (Seed)

1 Read input()

2 iter <+ 0;

3 while iter < maxiter from

4 Solution < Construction(seed);

5 Solution < LocalSearch(Solution);

6 Update-Solution (Solution,iteratit {Best — Solution});
7 end-while

8 return (Best-Solution)

9 end-procedure GRASP

Fig. 3.10 GRASP Pseudo-code

The proposed GRASP-NEH algorithm

The proposed GRASP — NEH algorithm follows all steps of the classical GRASP algorithm
presented in 6.4. The construction phase starts with an empty scale and a list of candidates
that will form the initial sequence considering the semi-line 1 and the semi-line 2 separately
with the synchronization machine. In this algorithm, the list of candidates (LC) is formed by
the jobs sequence in decreasing order of the processing time value in each semi-line /. The
Restricted List (RL) is generated from the selection of the o¢% of the candidates of the LC
sequence. Then, one of the jobs is selected randomly from the RL and the allocation of the
jobs in the final sequence is made in accordance with the NEH algorithm. GRASP — NEH
construction algorithm is shown in Figure 3.11.

The heuristic selects an element iteratively to the scale of the semi-linel and of the semi-line2

through nine basic steps:

50

Optimization approaches

Procedure Constrution-NEH (itermax, a)
Solutionl < 0;
Solution2 < 0;
Calculate)’ pr;; of the job i in the machine j in the semi-line /;
LC; < descending order of the jobs for each semi-line /;
RL; < the % of the jobs of LC1;
RL; < the 0% of the jobs LC2;
while Seqg1 and Seq?2 is not complete bf do:
Select randomly a job lists RL1,RL2;
Allocate the selected jobs in the sequences (Segl, Seq2)
10 According to the NEH heuristic;
11 Update RL; e RL,
12 end-while
13 Solutionl < makespan Seq]1;
14 Solution2 < makespan Seq?2;
15 Adopt a sequence of smaller makespan;
16 Return (best makespan);
17 Return (best sequence);
end-procedure Construction-NEH

01N LN W

O

Fig. 3.11 Construction pseudo-code

. Calculate the job processing time in each semi-line separately;
. Classify the jobs in decreasing order of the processing time;

. Select the jobs according to a certain percentage () to form the restrict list of candi-

dates (RL 1);

. Select the jobs according to a certain percentage () to form the restrict list of candi-

dates (RL 2);

. Choose an element of the restrict list (RL1) randomly to compose the sequences,

arranging them according to the principles of the NEH algorithm;

. Select an element of the restrict list (RL2) randomly to compose the sequences, arrang-

ing them according to the principles of the NEH algorithm;

. Update the restrict lists after selecting each element until all the elements are inserted;

. Calculate the makespan from the sequences generated by the semi-line 1 and the

semi-line 2;

3.5 Resolution methods with metaheuristics 51

9. The sequence to generate the lowest makespan is adopted;

After that, GRASP local search starts where the initial sequence is acquired in the previous

step. This step seeks local optimal solutions in each iteration. All possible neighbors of the

99 9

s” current solution are analyzed moving only to the neighbor that has the most favorable
makespan value considering the objective function. A list of the best local partial solutions is
formed so that the lowest partial result will be used as the final solution. The pseudo-code

for the generation of the best neighbor is shown in Figure 3.12.

Procedure Local Search (s,n)

1 Seqo < best Constrution sequence;
2 C(s) < best Constrution makespan;
3 OK+1

4 while OK == 1 do

5 OK 0

6 Best < oo

7 forl (i=0ton—1)do
8 for2 (j=iton)do

9 Seq' < Seq + exchange of the position
10 element i by position element j;

11 Calculate the cost C(seq’)

12 if (C(seq’) < Best) them

13 Best « C(seq’)

14 seqviz < seq’

15 end-if

16 end-for2

17 end-forl

18 end-while

19 return (seq)
20 return (Best)
end-procedure

Fig. 3.12 Local search pseudo-code

The GRASP algorithm with Johnson’s algorithm

The construction phase of GRASP-Johnson algorithm considers the highest processing ave-
rage time of the job i in all the machines of the semi-lines and the time of the synchronization

machine. At this stage, the algorithm applies the adaptation of Johnson’s rules shown in ??.

52

Optimization approaches

Procedure Construction (itermax, ¢)

1 Solution < 0;

2 machinel < increasing order of highest value

of Y prijl/m of the semi-line jobs;

4 machine2 < increasing order of prij sync of the jobs
5 RL; < o % jobs of the machinel;

6 RL; < o % jobs of the machine2;
7
8

W

while Seq is not complete do:
Randomly select a job of the (RL1)e(RL2);

9 seq < seq de Johnson;
10 Update RL; e RL,
11 end-while
12 Solution<— makespan seq;
13 Return(Solution);
end-procedure Construction

Fig. 3.13 Construction pseudo-code

In this sense, the highest average processing time of the jobs in the machines of the

semi-lines is used as the processing time of the jobs from Johnson’s first machine. The

job processing time of the synchronization machine is regarded as the processing time of

Johnson’s second machine. The heuristic selects an element iteratively for each scale through

the following steps:

1.

Form the list of candidates LC1 with the jobs of Johnson’s first machine in ascending
order;

. Form the list of candidate LC2 with the jobs of Johnson’s second machine in ascending

order;

Select the jobs of LC1, according to a certain percentage () to form the restrict lists
of candidates RL1;

Select the jobs of LC?2, according to a certain percentage () to form the restrict lists
of candidates RL2;

. Draw one element of the restricted list (RL1) to compose the sequence;
. Draw one element at a restricted list (RL2) to compose the sequence;

. The jobs drawn of the list RL1 will be allocated at the beginning of the sequence.

3.6 Conclusion 53

8. The jobs drawn of the list RL2 will be allocated at the end of the sequence;

9. Update the restrict lists after selecting each element until all elements are inserted.

The pseudo-code generation construction by Johnson’s algorithm is shown in 6.6. The
sequence acquired at this stage from GRASP Johnson’s algorithm is used as the initial
solution of the local search. This stage seeks local optimal solutions. In each iteration, all
possible neighbors of the s current solution are analyzed, moving only to the neighbor
that has the most favorable makespan value considering the objective function. A list of the
best local partial solutions is formed so that the lowest partial result will be used as the final

solution. The pseudo-code for generating the best neighbor is the 3.12.

3.6 Conclusion

In this chapter, methods for solving the flow shop scheduling with parallel semi-lines and
final synchronization operation are exhibited. The mathematical model for the problem as
well as the methodologies of Johnson’s rule, the NEH heuristics and the methods using
local search /LS, simulated annealing and GRASP and the pseudo-code of these methods are

shown in order to understand how the heuristic methods are applied to the problem.

Chapter 4

COMPUTATIONAL EXPERIMENTS

This chapter presents and analyzes the achieved results to solve the flow shop problem
with parallel semi-lines with final synchronization operation. Section 4.1 presents the
generation procedure of the test problems (instances) to analyze the problem. Section 4.2
shows the results for mathematical modeling. Section 4.3 presents the results achieved
for the problem by adaptation of Johnson’s rule and the NEH algorithm, and section 4.4
shows the results achieved by the metaheuristics local search, simulated annealing and
greedy randomized adaptive search procedure. Finally, a comparison of the results from the
proposed methods is done in order to determine which methods had better results for the

studied environment.

4.1 Generation of instances

As in most studies on production scheduling and planning (eg Li et al.[50], Ruiz and
Maroto [87]), the processing time was generated within the range of U [1 —99]. The different
instances used in this study were generated with the same principle of the method reported by
Taillard [101]. The instances were composed of processing time d;; of job i in the machine
J (I <i<n,1< j<m). The values of d;; are randomly created with a good generator of
random number. The instances were defined by an initial seed of the random generator, the
number of jobs, the number of machines, the maximum amount of time (upper limit), and
the minimum amount of time (lower limit). The algorithm by Taillard [101]) was adapted to
this problem considering the formation of a single line with the number of jobs, the machine
number of the semi-line 1, the machine number of the semi-line 2, and the synchronization
machine. The used algorithm is shown in the pseudo-code of the instance generation 4.1.
An example of instances is shown in Table 4.1. It represents an instance of a manufactu-

ring line that contains two semi-lines and one synchronization machine, so that the semi-line 1

56

COMPUTATIONAL EXPERIMENTS

Procedure Instance Generation

m <— 2147483647 ;

a <+ 16807;

b« 127773;

c < 2836;

njobs <— number of jobs;

nmachines <— number of machines(semi-linel + semi-line2 + sincronization);

01N N WIN -

=)

10
11
12
13
14
15
16
17
18

For i =1 to njobs do
For j = 1 to mmachine do
k < seed div b;
seed <— a * (seed mod b) - k * ¢ ;
If seed < 0 then:
seed + seed+m;
endif
value < seed/m;
unif < low + (value * (high - low + 1));
matrix < unif;
End-for
End-for

end-procedure

Fig. 4.1 Pseudo-code of the instance generation

Semi-linel Semi-line2 Synchronization
Jobs Maql Magq?2 Maq3 Mag4 Maq5 Mag6
Jobl 10 5 5 15 10 15
Job2 5 5 10 10 5 10
Job3 10 5 15 20 15 5
Job4 10 15 20 25 10 10

Table 4.1 A sample of instances

4.1 Generation of instances

57

has three machines and the semi-line 2 has two machines. In table 4.1, the processing time

of the jobs in each machine of the semi-lines is shown. The first column shows the jobs

that will be processed throughout the production line. The remaining columns present each

processing time of the job in a given machine of the semi-line 1 (maqg 1,maq 2,magq 3), the

semi-line 2 (maq 4,maq 5) and the synchronization machine (magq 6). For the sequence

S =J3,J2,J1,J4, the completion time of each job in each machine is shown in table 4.2 and

Gantt’s Graph is shown in Figure 4.2.

E ST 15205 30 5] 0146|0560 6017580860 %

Semi | Ml =

linel I

M3

e
e

Semi | M4 4

'lim‘z I“S j‘:ii_'

Svc | §

S~

Fig. 4.2 Gantt’s Graphs of the sequence J3,J/2,J1,J4

The Makespan = 90 (C3 = 40,C2 = 50,C1 = 70,C4 = 90). The makespan and the

waiting time of each job in the semi-line 1, in the semi line 2 and in the synchronization

machine are shown in Table 4.2.

Semi-linel Semi-line2 Synchronization
Jobs J1-J2-J3-J4 J1-J2-J3-J4 J1-J2-J3-J4
Makespan 30— 40-45-70 35-40-55-80 40-50-70-90
Waiting time of the jobs 5—10-20-10 0—5—0—0 0—0—0—0

Time that a half waits the other 5 —0-10—10 0—0—0—0

X—X—X —X

Table 4.2 Makespan and waiting time

58 COMPUTATIONAL EXPERIMENTS

4.2 Criteria used to achieve the computational experiments

The different methods to solve the flow shop problem with parallel semi-lines with a final
synchronization operation were tested among the different instances. There are 240 different
instances. They are composed by combinations of number of jobs x number of machines of
the semi-line 1 x number of machines of the semi-line 2. There are 10 different instances for
each combination. The first 130 instances were created considering that the two semi-lines
have the same number of machines. The other 110 instances were created considering
different numbers of machines in the semi-lines. For these problems, 10, 20 and 50 jobs and
3,5, 7 and 11 machines were considered. Among the 240 analyzed instances, the optimal
solution was not found in 41 instances. The presented tests were conducted using a computer
with the following settings: Intel Core TM iR3.1 GHz with 4GB of memory. The results of
the mathematical model were achieved using the software CPLEX12.6.1 and the algorithms
were implemented in C + +. The statistical analysis of the results was acquired using the
Minitab 17.2.1. software. To compare the results, the absolute relative deviation (GAP) was
used as in Ruiz and Maroto [87], which in this case is the variation between the optimal
solution and the created method solutions. The GAP will be calculated by the equation: 4.1.

GAP = Mtz 0Pl 100 (4.1)

where: Met,,; corresponds to the makespan achieved by a proposed method; and OPTy,; is
the makespan achieved with the mathematical model.

The standard deviation of mean relative deviation was also used to compare the best
methods. The standard deviation of a sample measures the degree of dispersion of the
elements around the mean. In this study, the standard deviation of the GAP is the value of the
variation of the relative deviations of a class of problems around the mean relative deviation.
The lower the value of the standard deviation the better the method applied, when comparing
one method with another. The standard deviation is calculated by the equations 4.2 and 4.3:

GAPyy = xi— # YN (GAP, — GAF;)? 4.2)

Ninst

SD =\ GAPinst (43)

where: Ninst corresponds to the instance number; AV G, to the the absolute relative
deviation to each set of instance; AV G; is the absolute relative deviation of the instance

i; and SD is the standard deviation.

4.3 Mathematical modeling results 59

The tests were conducted in two environments. In the first, the same number of machines
in each semi-line was considered and in the second, different numbers of machines in the
semi-lines were considered. A limit time of 7,200 seconds to achieve an optimal solution

was considered.

4.3 Mathematical modeling results

Two parallel semi-lines followed by a sequential line were considered for the mathematical
approach of the problem by grouping the operations into parallel machines and by adopting as
processing time a corresponding operation or set of operations of the slower group. A dummy
machine (considered in the model as synchronization machine) is included at the end of each
semi-line. These two dummy machines represent the last operation as if this last operation
was processed in two independent machines. The existence of two artificially independent
semi-lines will allow the determination of the highest value of c,11 the total processing time

(makespan) between them.

Table 4.3 results for different instances with the same number of machines and for the
different number of machines

Instances time(s) opt Instances time(s) time(s)
Equal (E) Aver. Y% Different(D) Aver. Y0
E10x03 0.26 100 DI10x03 x 05 0.12 100
E10x05 0.48 100 DI0Ox03 x 07 0.17 100
E10x07 1.94 100 DI0x03 x 11 0.94 100
E10x11 10.75 100 DI10x05 x 07 0.32 100
E20x03 0.34 100 DI0Ox05 x 11 1.43 100

E20x05 405.01 100 D20x03 x 05 4.11 100
E20x07 2289.06 100 D20x03 x 07 52.94 100

E20x11 7541.78 40 D20x03 x 11 14250.2 40
E50x03 5.76 100 D20x05 x 07 200.1 100
E50x05 4915.71 80 D20x05 x 11 18208.3 20
E50x07 13695.50 10 D50x03 x 05 153.78 100
E50x11 12746.20 0 sk Rk kskokkokok ok ok
E100%03 160.69 100 skl kokokokokok ook
Average 3213.34 79.2% Average 2988.41 87.3%

The achieved results for different instances with the same number of machines (E) and
for the different number of machines (D) is shown in Table 4.3 and in Figure 4.3. The tables
show the average computational time of the mathematical model in seconds and the achieved

60 COMPUTATIONAL EXPERIMENTS

percentage of optimal values (opt). Through the results, it was observed that for smaller

16000,00
14000,00
12000,00
10000,00
8000,00
6000,00

4000,00

2000,00

0,00

T100303
T100305
T100505
T100307
T100707
T100311
T100507
T100511
T101111
T200303
T200305
T200307
T200505
T200507
T200707
T200311
T200511
T201111
7500303
7500305
T500505
7500707
T501111
T1000303 —

Fig. 4.3 Average time for each instance set to find the makespan with the mathematical
modeling (sec.)

number of jobs and machines, the makespan was found in low computational time. On the
other hand, it was not possible to find out the optimal solution for larger instances with low
computational time. Due to this fact, other approach strategies for the problem will be used
(constructive heuristics such as the NEH algorithm and metaheuristics).

4.4 Results by the adaptation of Johnson’s algorithm and the NEH algorithm 61

4.4 Results by the adaptation of Johnson’s algorithm and
the NEH algorithm

This section presents the achieved results by the adaptations of the NEH heuristic and
Johnson’s algorithm. The proposed methods are tested among different instances with
environment of same number of machines in each semi-line, where three adaptations of
the NEH heuristic (NEH,,,, NEH},;, NEH,,),) and two adaptations of Johnson’s algorithm
(Johny;, John,,) were considered. In the second environment, different numbers of machines

in the semi-lines, NEH,,,, Johny; and John,,, were considered.

John-hi John-av NEH-hi NEH-av NEH-sep
Instances gap- sd -time gap -sd -time gap -sd- time gap -sd -time gap -sd -time
E10x03 6.97-0.06-3.90 9.28-0.04-3.90 13.2-0.03-7.20 15.2-0.04-4.30 11.4-0.10-6.70
E10x05 129-0.04-440 14.1-0.06-440 13.9-0.03-7.50 15.2-0.03-5.70 11.1 -0.05 -8.50
E10x07 16.0-0.02-520 10.0-0.05-5.20 16.0-0.02-6.10 11.0-0.05-520 9.20-0.05 -8.60
E10x 11 15.0-0.03-7.20 13.0-0.05-7.20 15.0-0.03-7.30 11.0-0.05 -6.90 10.0 -0.03 -9.80
E20x03 8.40-0.04-4.60 9.10-0.04-4.60 163-0.01-6.80 14.5-0.03-6.90 9.30-0.04-11.9
E20x05 152-0.02-550 169-0.03-550 16.9-0.03-9.10 12.3-0.06-8.20 10.9-0.03 -16.5
E20x07 11.5-0.05-8.60 17.7-0.06-8.70 12.3-0.02-9.80 16.9-0.04-9.90 11.3-0.04 -21.3
E20 x 11 17.3-0.02-11.6 149-0.04-11.6 18.6-0.06-11.9 16.9-0.05-10.4 10.6 -0.10 -36.5
E50x03 7.60-0.05-9.90 7.20-0.06-15.7 16.8-0.03-15.7 12.4-0.09-10.2 13.1-0.03 -41.6
E50x05 15.1-0.03-20.2 13.2-0.04-20.2 17.6-0.02-10.2 13.6-0.09-9.00 9.30-0.03 -44.2
E50x07 142-0.04-222 145-0.02-222 17.4-0.07-342 152-0.04-194 8.60-0.05-45.4
E50x 11 16.5-0.05-31.8 104-0.05-31.6 11.7-0.07-41.6 17.6-0.12-43.6 9.60-0.07 -67.4
E100x03 11.9-0.03-37.1 10.3-0.08-36.8 11.2-0.07-47.9 11.3-0.05-50.5 8.90-0.05-72.2
Average 13% -0.03-13.2 12% -0.02-12.6 16% -0.02-16.6 14% -0.02 -14,6 10% -0.05 -26.90

Table 4.4 Gap, sd, time (s) of Johnson’s and the NEH adaptations for same number of
machines (E)

The achieved results for different instances with the same number of machines (E is
shown in Table 4.6 and for different number of machines (D) in Table 4.7. The tables
show the average relative deviation (GAP), the standard deviation (SD) and the average
computational time in seconds (CPU) for each set of instance.

Observing the environment in which the number of machines is the same, it can be
asserted that the NEH adaptations that showed the best performance were those used the
NEH in the semi-lines separately (NEHg,,) with GAP average of 10% and standard deviation
of 0.05. The variant that showed the worst result was that which used the NEH with the
longest processing time (NEHp;) in each parallel machine with GAP average of 16% and
standard deviation of 0.02.

In relation to Johnson’s variants, it can be observed a small difference between the

deviation of Johnj; adaptation and Jonh,,. The variant with the best performance was that

62

COMPUTATIONAL EXPERIMENTS

17
15 g Variable
= 8 John-hi
5
7 — — — John-av
wy 1 0 & A NEH-hi
e —-— NEHav
13 g s NEH:sep
-
12 i
3 Mean StDev N
1] 1207 3471 13
2 1235 3224 13
104 1 1515 2,446 13
14,08 2330 13
o 0 1025 1283 13
John-hi John-av NEH-hi NEH-av NEH-sep
a- Same number of machine
21
20 —
Variable
19 NEH-sep|
o — — — John-av
John-hi
17 ;
16 g
3
15 4
14
13 Tean StDev N
13,44 2285 11
12 15,03 1,853 11
22
NEH-sep John-av John-hi 18.59 1,948 1y

b- Different number of machine

Fig. 4.4 Gap and sd for NEH and Johnson’s adaptation for same and different number of

machine

4.5 Metaheuristics results

63

NEH-sep John-av John-hi
Instances gap- sd -time gap -sd -time gap -sd- time
D10 x 03 x 05 13.3-0.10-3.40 143-0.04-290 17.2-0.06 -4.20
D10 x 03 x 07 12.0-0.09-3.60 152-0.07-3.64 17.2-0.06 -4.52
D10x 03 x 11 12.9-0.07-420 149-0.04-434 17.8-0.04-4.10
D10 x 05 x 07 124-0.05-520 15.7-0.04-5.33 16.1 -0.08 -5.30
D10x05x 11 16.0-0.08 - 4.63 17.3-0.05-4.12 19.6-0.06 -4.80
D20 x 03 x 05 14.0-0.07-4.50 15.0-0.04 -4.12 19.0-0.07 -4.10
D20 x 03 x 07 10.0-0.07-3.60 12.0-0.04-4.71 20.1-0.07 -5.80
D20 x 03 x 11 16.0 -0.06 - 5.81 14.9-0.07-5.63 21.0-0.05-5.23
D20 x 05 x 07 14.0-0.06-592 16.0-0.10-5.74 18.8-0.05 -5.88
D20 x 05 x 11 17.0-0.05-6.23 18.0-0.07-6.26 23.0-0.03-7.20
D50x03x05 10.2-0.05-11.04 12.0-0.08-11.10 19.1-0.07-11.19
Average 14% -0.07 -5.3 15% -0.06 -5.3 19% -0.06 -5.7

Table 4.5 Gap, sd, time (s) of Johnson’s and NEH adaptations for different number of
machines (D)

which considered the longest average processing time Jonh,, in all the machines of the
semi-lines for the first machine and the processing time in the synchronization machine for
the second machine.

For the environment where the number of machines is different in the semi-lines, NEH,),
performed better with 14%. Johy,; variant presented a GAP average slightly higher than
Johng, (19%). To check the statistical validity of the results, an analysis of the variance
(ANOVA) with a confidence level of 95% was taken as shown in Figure 4.4. However, these
results can be improved in order to be closer to the optimal solution. Therefore, metaheuristics

have been used to solve the problem in order to achieve optimal or near optimal results.

4.5 Metaheuristics results

4.5.1 Results by the iterated local search

The results by iterated of local search is presented considering as initial solution two of
the methods presented in section 4.4. The first method considers Johnson’s algorithm with
the average processing as an initial solution (John,,), and the second considers NEH,,
algorithm as the initial solution.

The type of neighborhood used in this method was the reinsert move, where a neighboring
sequence is basically achieved from the current sequence by removing a job from its position

and inserting it in another position. The input parameter values of the algorithms were

64

COMPUTATIONAL EXPERIMENTS

47,3

45,0

42,3 1

40,0

37,2 1

Average Percentage of Improwement

40 50 60 70 80 90 100 1io 120 130 140
Humber of iterations

Fig. 4.5 Variation in the average percentage of improvement for each set of instances

selected after some preliminary experiments as observed by Gomes Jr. et al. [36] and
Nogueira et al. [10].

Stopping criterion of the /LS algorithm is the number of iterations with lower percentage
of improvement. To define the number of iterations, some tests with this algorithm were

made. From 20 to 140 iterations with minor improvements were considered. In this initial

NEH-sep-ILS John-av-ILS
Instances gap- sd -time gap -sd -time
E10x 03 7.17 -0.04 - 4.05 4.60 - 0.02 -3.45
E10 x 05 8.97-0.02-5.40 5.78 - 0.02 -4.22
E10x 07 6.56-0.02 - 6.10 4.57-0.02-5.20
E10x 11 6.55-0.03 - 6.16 6.46 - 0.03 -5.81
E20 %< 03 7.56-0.03 - 6.12 6.46 - 0.02 -4.94
E20 x 05 7.60-0.03-7.10 6.61 - 0.03 -6.60
E20 x 07 8.10-0.03 - 7.62 8.85-0.03 -8.70
E20x 11 7.69 -0.04 - 8.69 6.59 - 0.03 -10.6
E50x 03 7.60-0.05 - 19.24 7.20-0.06 -15.7
E50 %< 05 7.69 -0.03 - 19.23 6.93-0.04 -16.3
E50x 07 8.94-0.03 - 18.22 6.53-0.03-18.2
E50x 11 5.75-0.03 - 22.80 5.07 -0.04 -19.6
E100 x 03 4.58 -0.02 -37.10 4.31-0.02-38.6
Average 6.78% -0.03 -12.52 6.15% -0.02 -12.14

Table 4.6 Gap, sd and time (s) of Johnson’s and the NEH adaptation for the same number of
machine (E)

4.5 Metaheuristics results 65

test ten instances were considered (E10X03X03, E10X11X11, E20X03X03, E20X11X11,
E50X7X7, D10X03X 11, D20X03X05, D20X05X07, D20X05X 11, D5S0X03X05) and the
average percentage of improvement for each of them. In the graph, the average percentage of
improvement is obtained by the average of the percentages of improvement obtained by the
ILS method to the initial solution. The percentage of improvement is the difference of the
percentage between the initial solution value and the solution value with the /LS method. In
the graph of Figure 4.5, it can be observed that from the point where the iteration is equal
to 90 the variation in the average percentage of improvement is low, then, the maximum
number of iterations equal to 90 was adopted.

. Variable
, / \ —— NEHsepILS
) ; \ — — — John-av-ILS|

Mean StDev N
8890 1513 11
7,040 1,180 11

NEHsepILS John-av-ILS

a- GAP and SD for Same number of Machine - ILS

0,10

Variable
——— NEHsepILS

0.09 — — — John-av-ILS

0,08

Rrequency
-

Mean StDev N
0,08890 0,01513 11
0,07040 0,01180 11
0.07 1

NEHsepILS John-av-ILS

b- GAP and SD for different n umber of Machines - ILS

Fig. 4.6 Gap and sd for NEH,,), — ILS and John,, — ILS adaptation

66 COMPUTATIONAL EXPERIMENTS

The results achieved for different instances with the same number of machines in each
semi-line are shown in Table 4.6, and for different number of machines in Table 4.7. The
tables show the average relative deviation (GAP), the standard deviation (SD) and the
average computational time in seconds (CPU) for each set of instance. The /LS methods

NEH-sep-ILS John-av-ILS
Instances gap- sd -time(s) gap -sd -time(s)
D10 x 03 x 05 11.7-0.05-3.02 7.48-0.03-3.44
D10x03x07 6.86-0.04-3.86 5.34-0.03-424
D10 x03 x 11 9.31-0.03-4.20 8.71-0.03-4.34
D10 x 05 x 07 8.3-0.03-528 4.49-0.03-5.13
D10 x05x 11 10.7-0.03-4.97 8.03-0.05-5.02
D20 x 03 x 05 8.93-0.02-544 6.80-0.02-5.19
D20x03x07 7.99-0.03-5.60 7.16-0.03-522
D20 x03 x 11 7.18-0.02 - 5.91 7.57-0.02-5.83
D20x05x07 9.75-0.05-6.12 7.06-0.04 -6.74
D20 x 05 x 11 7.55-0.02-6.73 7.23-0.04 -6.47
D50x03x05 9.33-0.03-13.27 7.52-0.03-10.52
Average 8.87% -0.03 -5.84 7.03% -0.03 -5.06

Table 4.7 Gap, sd and time (s) of Johnson’ s and the NEH adaptations for different number
of machines (D)

achieved better results than the methods NEH,,, and John,,. It is also observed that for both
environments with equal number of machines in the semi-lines and with different number of
machines in each semi-line, the method that achieved a smaller average deviation in relation
to optimal results was the one that used John,, with ILS (6,15,7.03).

4.5.2 Results generated by simulated annealing

For even better results, the simulated annealing with iterated local search method was chosen
to refine the results and build a better quality solution. This method has two types of initial
solutions as its starting point that is generated similarly to the previous methods. The first
method considers Johnson’s algorithm with the average processing time of the semi-line as
an initial solution (John,,) and the second considers the NEH,, algorithm. For this method,
the selection of the parameters is described below. The type of neighborhood that used
this method has already been presented in chapter 3 in section 3.5.1 where a neighboring
sequence is achieved basically from the current sequence by removing a task from its position
and inserting it into another position.

For this study the GAP is considered as the variation between the optimal solution or

the best solution found by the mathematical method and the solutions of the developed

4.5 Metaheuristics results 67

methods: simulated annealing with initial solutions with the NEH heuristic and Johnson’s
rule considering the same number of machines and different number of machines in each
semi-line. Table 4.8 presents the average relative deviation (GAP) for each method of the
simulated annealing with local search, average standard deviation (SD), the percentage of
optimal values (OPT) and average computational time in seconds (CPU) for environment

with same (E) and different number of machines (D). The used parameters were based in

Method a gap sd opt time

% % % sec.

E —Johng, —SA —ILS 02 507 652 184 53.17
E —Johng, —SA—ILS 0.5 458 9.89 176 50.81
E —Johng,, —SA—ILS 095 385 881 200 51.32
E—-NEH;,,—SA—ILS 02 502 506 192 51.32
E—-NEH,—SA—ILS 05 4.08 833 200 53.12
E—NEH,—SA—ILS 095 259 774 17.6 54.10
D — John,, — SA —ILS 02 561 275 184 5582
D —Johng, —SA —ILS 0.5 456 252 252 56.62
D —John,, —SA—ILS 095 345 278 19.2 50.72
D—NEH;, —SA—ILS 02 548 281 322 5222
D—NEH;, —SA—ILS 05 452 289 281 4932
D—NEH., —SA—ILS 095 396 291 282 5042

Table 4.8 Results of Gap, sd, opt and time for Simulated Annealing methods

the studies by Senthilkumar and Narayanan [94] and Salem [5] with some adjustments for
the characteristics of this problem. The parameters that yielded significant results were
those with initial temperature 77 = 6000. The cooling factor value used in the algorithm
affects the execution time and the quality desired for the solution. In this study, the cooling
factor o = 0.2,0.5 and 0.95 and the final temperature = 0.0001 were analysed. For each
scenario (semi-lines with same number of machines and with different number of machines),
Figure 4.7 presents the results of using variants of the simulated annealing method for
the problem in question. NEH,., —SA — ILS (simulated annealing starting with NEH,,),
algorithm) and John,, — SA — ILS (simulated annealing starting with John,, and ending with
local search) methods presented better results then those previously used in the same set of
instances in two environments.

For the environment with the same number of machines in the parallel semi-lines, the best
average relative deviation (GAP) was 2.59 in NEH,,, — SA — ILS method with a = 0.95.
The worst GAP was 5.07 in John,, — SA — ILS method with o = 0.2. For the environment
with different numbers of machines, the best GAP was 3.45 in Jonh,, — SA — ILS method for
o = 0.95. The worst GAP was 5.61 in John,, — SA — ILS method for o = 0.2. These results
also showed GAP improvement when compared with the results of the previous method.

68

COMPUTATIONAL EXPERIMENTS

55
5,0
4,5
4,0
35
3.0
2,5
2,0

10

Frequency

Variable
—— SA-NEH-sep-0.2
———- SA-NEH-sep-0.5
SA-NEH-sep-0.95
—-— SA-John-av-0.2
SA-John-av-0.5

Mean StDev N
5,02 0,5269 13
4,089 08672 13
2,59 0,8059 13
5,079 0,6795 13
4,585 1,030 13
3,851 0,9170 13

a- Same number of machine —SA

Frequency

Variable
——— SA-NEH-sep-0.2
— — —- SA-NEH-sep-0.5
SA-NEH-sep-0.95
—-— SA-John-av-0.2
SA-John-av-0.5
— SA-John-av-0.95

Mean StDev N
5,445 1,978 11
4487 1,632 11
3,985 1,401 11
5,985 1.450 11
4,448 1295 11
2,781 1,094 11

b-

Different number of machine -SA

Fig. 4.7 Gap and sd for Simulated Annealing methods

4.5 Metaheuristics results 69

4.5.3 Results generated by GRASP

The last proposed method was an adaptation of the original GRASP algorithm with the
principles of the NEH,,, algorithm or John,, algorithm. This method, as described in
section 3.5.4, has two phases. The first phase is the construction of the initial solution,
and the second one is the improvement of this solution (local search). In this study, the
construction phase of the initial solution first forms the candidate list (LC) with the sequence
of the jobs in descending order of the processing time, when the NEH,,, is used and in
ascending order when Johnson’ s algorithm is used. After this step, the restricted list is
formed by the draw of a% of the candidate list, which makes each initial solution different
from the other. The values of « for the algorithm were defined as ¢ = 0.2,0.3 and 0.5%
of the number of jobs in the candidate list. The sequence is formed by allocating the jobs
using the NEH;,, or Johng,. Upon finishing the initial solution construction process, GRASP
second phase starts as described in section 3.5.4. The algorithm finishes when there are 100

iterations without improvement of the solution.

Method a gap sd opt time
% % % sec.

E —Johng,, —GRP—ILS 02 091 033 320 49.82
E —John,, —GRP—ILS 03 093 037 504 4481
E —Johng,, —GRP—ILS 0.5 1.07 028 321 5823
E—NEH, —GRP—ILS 02 065 022 400 5032
E—-NEH,,, —GRP—ILS 03 053 0.17 544 4512
E—-NEH,,, —GRP—ILS 05 035 0.15 63.0 4445
D —John,, —GRP—ILS 02 088 021 321 4431
D —John,, —GRP—ILS 03 086 023 39.6 4858
D—John,, —GRP—ILS 0.5 1.08 027 421 40.12
D—NEH;,, —GRP—ILS 02 0.80 022 446 4252
D—-NEH,,, —GRP—ILS 03 053 026 488 51.32
D—NEH,,, —GRP—ILS 05 037 033 528 4942

Table 4.9 Results of gap, sd, opt and time for GRASP methods

Table 4.10 and Figure 4.8 aid at the observation of the GAP behaviors of the NEH;,), —
GRP — ILS and John,, — GRP — ILS GAP methods. Theses methods performed better than
all others previously used. It is also observed that this method achieved larger number of
optimal solution in relation to all other methods. NEH;,, — GRP — ILS method with o« = 0.5
achieved the best average GAP in the two types of environments 0.35 and 0.37 respectively
in relation to the environments with the same number of machines and different number
of machines in the semi-lines. John,, — GRP — ILS with & =0.5 method was the GRASP
variant that achieved the highest GAP for this method (1.07 and 1.08).

70

COMPUTATIONAL EXPERIMENTS

e Variable
12 ——— GRP-NEH-sep-0.2
1,0 ———— GRP-NEH-sep-0.3
0,8 % % % GRP-NEH-sep-0.5
0.6 —-—- GRP-John-av-0.2
0’4 g GRP-John-av-0.3
’ 2 ——— GRP-John-av-0.5
0,2 £ -
0.0 Mean StDev N
v > A o » A 0,8018 0,2201 11
& o < S N o 0,5382 0,2673 11
Q?z & & & & & 0,3741 0,3628 11
h o X ” ¥
=~ & Q,@’ P e 0,88 02115 11
& & & & & & 0,8651 0,2386 11
1,079 02712 11
a- Same number of machine
L4 . Variable
1,2 ——— GRP-NEH-sep-0.2
1.0 — — — - GRP-NEH-sep-0.3
0.8 % % % 3] GRP-NEH-sep-0.5
0’6 — -— GRP-Joh-av-0.2
’ %) GRP-Joh-av-0.3
L 3, GRP-Joh-av-0.5
0,2 g
0.0 = Mean StDev N
RS ~ A N - - 0,8018 0,2291 11
& & o N e & 14 0,5382 0,2673 11
S S s & ¢ &
&b &;& N R >§ >5“ 0,3741 0,3628 11
S & Q'é’ & & &3 0,88 0,2115 11
& & & € © © 0 0,8651 0,2386 11
1,079 02712 11
b- Different number of machine

Fig. 4.8 Gap and sd for GRASP methods with the same and different number of machines

4.6 Comparison of results 71

4.6 Comparison of results

The results for the flow shop problem with parallel semi-lines and synchronization machine
at the end of the semi-lines were evaluated through the average relative absolute deviation
(GAP) in relation to the optimal solution or the best solution found by the mathematical model.
In this study, linear programming methods, Johnson’s algorithm, the NEH algorithm, local
search (/LS), simulated annealing (SA), Greedy Randomized Adaptive Search Procedure
(GRASP), and the combination of these methods were used. The results and performance of
these methods were presented in this chapter. First of all, the linear programming model was
implemented and analyzed in 240 instances. The first 130 instances were constructed for
environments with same number of machines in each semi-line and the other 110 instances
were constructed for environment with different numbers of machines in the semi-lines. The

results are presented in Table 4.10.

IP model NEH-SA-ILS NEH-GRASP

Instances opt time(s) gap(%) sd time(s) gap(%) sd time(s)
E10 x 03 10 0.3 2.01 0.72 38.9 097 0.22 27.2
E10x 05 10 0.5 2.86 0.89 38.3 0.12 0.14 34.2
E10x 07 10 1.9 329 0.77 50.2 0.12 0.13 48.5
E10x 11 10 10.7 1.04 0.76 51.3 0.26 0.13 46.3
E20 x 03 10 0.3 2.03 0.72 49.9 0.95 0.16 43.5

E20 %< 05 10 405.0
E20 x 07 10 2289.0
E20 x 11 4 75418
E50 % 03 10 5.8
E50 x 05 & 49157
E50x 07 1 13695.5
E50x 11 0 12746.2 2.59 0.75 74.2 0.13 0.14 57.4
E100x03 10 160.69 262 0.82 88.2 0.13 0.22 57.4

Table 4.10 SA-ILS-NEH-0.95 / GRASP-NEH-0.5

242 0.66 50.6
2.12 0.86 50.5
2.07 0.76 55.1
321 0.78 524
3.12 0.78 53.2
432 0.74 65.2

0.12 0.15 45.2
0.19 0.09 43.9
0.30 0.15 43.2
0.19 0.16 46.2
0.16 0.14 47.5
0.20 0.13 57.4

°
WOoOOoONW—~OoOoANARNWT

o
IO NV N T UNRY o N IO NN =1

Optimum solutions were found in 79.2% of the instances related to the same number of
machines in the semi-lines, and 87.2% of instances related to the environments with different
numbers of machines in the semi-lines. From these tests, it was possible to observe that it is
unfeasible to solve this problem by the mathematical model in larger instances. Therefore,
other alternatives were developed to find out good solutions for larger instances. For this, the
NEH heuristic and Johnson’s algorithm were applied considering two variants of Johnson’s
algorithm (Johny; and John,,) and three variants of the NEH algorithm (NEH}y;, NEH,, and
NEH.p).

The results indicated that by solving this problem through variants of the NEH heuristic

and Johnson’s algorithm it was possible to find out which of the variants presented a lower

72 COMPUTATIONAL EXPERIMENTS

relative deviation in relation to the optimal result using the GAP calculation. In this case,
they were the NEH,,, and John,, algorithms. In relation to the environment with the same
number of machines, the NEH,,, variant showed better average relative deviation (10%).
For the environment with different number of machines, John,, and the NEHy,, variants
showed the best results (14% and 15%). However, these results can be improved in order to
be near the optimal solution.

Other solutions were found by metaheuristics using the same set of 240 instances. The
methods of iterated local search presented better results than the computational results pre-
sented by Johnson’s and the NEH algorithms. The method was implemented using the
NEH;,, and John,, algorithms as the initial solution. It can be verified that for both environ-
ments with the same number of machines in the parallel semi-lines and for environments with
different numbers of machines in the parallel semi-lines, the iterated local search method with
initial solution formation by John,, performed better. For the environment with the same
number of machines, the best average relative deviation was 6.15 for John,, — ILS and the
worst average deviation was 6.78 for the NEH,, — ILS. For the environment with different
machines numbers, the deviation for John,, — ILS was 7.03 and for the NEH,, — ILS was
8.87. These results show improvements in the relative deviations in relation to the optimum
if they are compared to the results of the methods previously used. However, these results

can be improved to a better approximation to the optimal solutions.

IP model John,, — SA —ILS NEH,.,GRASP
Instances opt time(s) opt gap(%) sd time(s) opt gap(%) sd time(s)
D10x03x05 10 0.1 3 432 2.84 42.5 6 0.07 04 27.0
D10x03x07 10 0.2 4 421 1.95 46.6 6 0.65 04 334
D10x03x11 10 0.9 2 322 3.86 50.2 6 0.84 04 47.8
D10x05x07 10 0.3 3 335 321 554 5 0.69 03 45.7
D10x05x11 10 1.4 3 4.03 1.86 48.7 5 0.01 0.3 44.0
D20x03x05 10 4.1 4 3.02 2381 49.6 5 0.65 02 47.8
D20x03x07 10 52.9 3 232 284 50.7 4 0.89 0.3 43.2
D20x03 x 11 4 14250.2 1 3.11 254 52.8 0 0.09 0.3 50.7
D20 x05x07 10 200.1 0 403 3.25 48.0 3 0.12 0.2 48.1
D20 x 05 x 11 2 18208.3 0 425 3.1 50.2 0 0.01 03 51.8
D50x03x07 10 153.8 2 2.15 241 48.6 4 0.08 0.3 57.4

Table 4.11 John,, —SA —ILS —0.95/NEH;,, — GRASP — 0.5

Simulated annealing with the local search-/LS (see Table 4.11) was another used meta-
heuristic. For this method, three different cooling factors (¢ = 0.2,0.5 and 0.95) were used
for the two types of studied environments. For the environment with the same number of
machines in the parallel semi-lines, the best average relative deviation was 2.59 for the
NEH;,, — SA —ILS method with & = 0.95, the worst average relative deviation was 5.07 in

4.6 Comparison of results 73

el 18
R
12 § 164 -]

\ LA
10 % 14

Variable

—&— NEH-sep

— & - Johnav
John-av-ILS

—& — NEH-sep-SA-ILS-0.95
GRASPNEH0.5

% 12
10

R

i

i
\\
Aty o .
&£ 24a” N e e

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4.9 Comparative graph of the best results of the resolution methods for the same number
of machine environments in the semi-lines

the method John,, — SA — ILS with o« = 0.2. For the environment with different numbers
of machines, the best average relative deviation for John,, — SA — ILS method was 3.96
with & = 0.95 and for the worst average relative deviation was 5.61 for Jonhg,, —SA —ILS
method with & = 0.2. These results also show improvements in the average relative devia-
tion if they are compared to the results of the methods previously used. The GRASP method
used in this study follows the same steps of the original GRASP. In the construction phase,
the restrict list is generated by selecting & % from the candidate list. In this study, three
values of ¢ (0.2,0.3 and 0.5) were evaluated. The results of each a value were the best
in relation to all the approached heuristic and metaheuristic methods. For the environment
with the same number of machines, the best average relative deviation was 0.35 for the
NEH;,, — GRASP with oc = 0.5. For the environment with different numbers of machine
in each parallel semi-line, the best average relative deviation for the NEH,,, — GRASP was
0.37 with o = 0.5. and for the worst average relative deviation for John,, — GRASP was
1.07 with o = 0.2. Tables 4.10 and 4.11 show the comparison of the best results of the
proposed algorithm with respect to the two methods indicated for the initial solution. In
the first column of these tables, the sets of instances are displayed. In the second and third
columns, the percentage of instances that achieved the optimal values (OPT') and the average

computational time of the mathematical model in seconds (CPU) are shown. In the following

74 COMPUTATIONAL EXPERIMENTS

1 § E3 18
2
10
“ [
6 104
4 s Varisble
bl § —&— NEHsep
) 6 — & - JOHNa
0 = —a i . TohnavILS
- - & p ; 4 e N e o |[* - gomarsansoss
¢ & N 8 & 2 - X GRASPNEH0.5
o
) o & ;\@f n}@’
& p = 0
A ,.:"’ GQ.»

S T T T T T T T T T T T
<« i 2 3 4 5 6 7 8 9o 10 11

Fig. 4.10 Comparative graph of the best results of the resolution methods for different number
of machines in the semi-lines

columns, results of the SA — ILS and GRASP methods GAPs, the standard deviation SD and
the average computational time of the best are displayed.

The comparative graphs of the best results with the elaborated methods are presented in
Figures 4.9 and 4.10. In these graphs, it is possible to visualize the behavior of each method in
relation to the average relative deviation and the difference of the GAPs between the methods.
In this study, it was intended to make a first approach through heuristics and metaheuristics
to the flow shop scheduling problem with parallel semi-lines and synchronization machines
at the end considering an environment with the same number of machines in each semi-line
and another environment with different number of machines in each semi-lines. However,
other methods can be developed in order to achieve better solutions to the discussed problem.
The methods elaborated in this study are shown in Figure 4.11.

4.7 Conclusion

In this chapter, computational experiments for solving the flow shop scheduling with parallel
semi-lines and final synchronization operation were exhibited. It reported how the test
problems were generated, as well as it presented analyses and it compared the achieved
results through mathematical modeling and through the developed heuristic methodologies.

In a first approach, a mixed integer linear programming model was defined. Due to the

4.7 Conclusion 75

Resolution methods to a variant of the flow shop scheduling
problem with parallel semi-lines and a final synchronization
operation

Mixed integer linear programming

NEH Algorithms Johnson Algorithms
NEH-hi NEH-av NEH-sep** John-hi John-av ** John-sep
[)
|
I I I
Iterated Local Search Simulated Annealing GRASP**

Fig. 4.11 Optimization methods used

complexity of the problem, it was also solved by Johnson’ s rule, the NEH heuristics and by
the Iterated Local Search-/LS, Simulated Annealing-SA and GRASP metaheuristics. Finally,
an extensive computational experiment was performed and comparisons of the proposed
methods were made. The method that used the NEHj,), algorithm with GRASP metaheuristic
presented better quality than the other methods.

Chapter 5
Conclusion

In this chapter, the conclusion of the study and the potentiality of the proposed methods
to solve the variant of the flow shop scheduling problem with parallel semi-lines and a final

synchronization operation are presented. Some suggestions for future researchings are given.

5.1 Conclusion

This work focused on the development of optimization methods to solve a variant of the
flow shop scheduling problem with parallel semi-lines and a final synchronization operation.
This is a common problem in many industrial sector that requires efficient methods for its
resolution. Thus, this studied emerged from a practical situation in a welding process of an
industry that manufactures electrical-electronic system products.

This study aimed to model the flow shop scheduling problem in parallel semi-lines with
a final synchronization operation at the end of the semi-lines to solve it with heuristics
and metaheuristics. In a first approach, a mixed integer linear programming model was
defined based on studies developed for environments similar to the ones already studied.
The model required adaptations regarding to the treatment of the semi-lines separately and
a particular attention in the finalization of the semi-lines, since this is the point of junction
of the items that are produced in the two semi-lines. The model was efficient for smaller
instances, but for larger instances it presented some difficulties to find the optimal solutions
in a viable computational time. Due to the complexity of the problem, it was also solved by
heuristics and metaheuristics. From the computational results it was possible to prove that
the constructions of methods using heuristics and metaheuristics yielded viable results. The
presented algorithms, mainly the methods combination, have good options for resolutions of

larger instances.

78 Conclusion

The resolution of the problem through methods such as Johnson’s rule, heuristic me-
thods as the NEH algorithm and the metaheuristics such as /LS, simulated annealing and
GRASP show how this methods behaved in this environment and the possibility of finding
optimal result using them. In addition, among the methods, the NEH);, the NEH,,, the
NEHsep,, Johng,, Johny;, the NEH,, —ILS, Johg, —ILS, the NEH ., —SA—ILS,Johng, —
SA —ILS, the NEHy,, — GRASP, John,, — GRASP, the NEH,., — GRASP with 0.5% was
the method that achieved the most amount of optimal results and the lowest GAP in the
instances. The lowest average GAP was 0.35% for environments with the same number of
machines in the semi-lines and 0.37% for environments with different number of machines
in each semi-line. On the other hand, the highest value of the average GAP generated by the
best presented algorithm (GRASP — NEH) was 1.07%.

In relation to the used heuristic methods, the NEH),; with average GAP of 16.0 % was
the worst proposed method for environments with same number of machines in each semi-
line and for environments with different number of machines in each semi-line, Johny,;
with average GAP of 19%. Among the methods using metaheuristic, the hybrid method
NEH;,, — ILS presented the worst result with GAP of 6.78 % for environments with the same
machines in the semi-lines and GAP of 8.87% for environments with different machines
in the semi-lines. The achieved results by the simulated annealing methods applied to the
different instances of the problem presented less satisfactory results compared to the GRASP
methods. However, it was possible to visualize that as the cooling factor () increased the
results improved, that is, when the cooling factor approaches the value 1, the number of the
explored solutions in the neighborhood increases, thus leading to a large number of solutions
researched. In this sense, the simulated annealing may also be a good ally to other methods
to solve this problem, since such method has the advantage of exploiting larger quantities of
neighboring solutions with the possibility of escaping from the local optimal.

Finally, the results of the experiments indicate that the methods that used GRASP repre-
sent a good alternative to solve the problem, especially for larger instances. This fact increases
the viability of using these methods as a means of obtaining better solutions or reaching

higher rate at optimum values and application in real problems in viable computational time.

5.2 Suggestion for future studies

Further directions of researching involve more complex problems and multi-objective func-
tions, considering the same environment, since there is a new tendency to use approximate
methods to solve this class of problems. Such an approach, while not guaranteeing a good

solution to the problem, is able to provide good quality solutions in acceptable processing

5.2 Suggestion for future studies 79

time, which is perfectly considered in many real situations. Therefore, the development of
algorithm with other metaheuristics on this problem (genetic algorithm, ant colony optimiza-
tion, Particle Swarm optimization and Tabu Search, for example) can be subject matters to
be considered in other researchings.

Tuning the algorithms with packages as Irace [55] is another suggestion for improvement
of the developed algorithms.

To improve the results generated by the GRASP methods, it is suggested a study of
the use of techniques such as Path Relinking, including a constructive procedure, a post-
processing phase in which the best obtained solution would be a combination of Parh
Relinking procedure and some movements of improvement. This step would have the
purpose of obtaining improvements at the quality the solution and in the execution time. The
incorporation of new restrictions to the models are also pointed out, such as the inclusion of
the setup time and the intermediate stock between the semi-lines and the synchronization
machine with the objective of minimizing the sum of tardiness, earliness (finished goods
inventory holding), and intermediate (work-in-process) inventory holding costs.

The development of new instances to the flow shop scheduling with real situation is
another issue to be considered in future studies, since they are the first tests performed for
this variant of the flow shop scheduling and still without reference to compare the parameters

pertinent to this problem.

Chapter 6

French Resume

Ordonnancement dans un atelier de type flow shop semi-

parallel avec operation de synchronisation

gt

UNIVERSIDADE FEDERAL
DE MINAS GERAIS

v

UNIVERSITE DE TEGHNOLOGIE

TROYES

82 French Resume

Résumé

Cette étude est une variante du probleme flow shop motivée par une situation pratique.
Dans ce contexte, il y a une ligne d’assemblage composée de deux demi-ligne paralleles
avec des activités indépendantes. La premiére demi-ligne a un nombre de machines ¢g; et
le second demi-ligne a un nombre de machines ¢; . A la fin des deux demi-ligne il y a une
machine responsable par I’union des produits des deux demi-lignes. Chaque demi-ligne est
dédiée a différentes taches, en raison chaque travail nécessite des opérations dans chacune
des machines des demi-ligne avec temps de transformation différents. Les tdches d’une
demi-ligne ne dépendent pas de la réalisation d’une autre tache dans autre demi-ligne, de
sorte qu’une tache est traitée en parallele dans chaque demi-ligne. La séquence des travaux
dans chaque demi-ligne paralléle devrait étre la méme, bien qu’une tiche d’une demi-ligne
n’ait pas de besoin de commencer en méme temps a une autre demi-ligne. La derniere
operation de synchronisation ne peut pas €tre démarrée que lorsque les opérations dans les
deux demi-lignes aient ont été complétées. La solution a ce probleme est de déterminer une
séquence de travail possible pour optimiser le makespan. En ce sens, 1’objectif de cette étude
est de modéliser le probleme flow shop dans I’environnement de production propose et les
résoudre avec des algorithmes spécialisés. Une premiere approche, nous avons défini un
modelé de programmation linéaire mixte en nombres entiers et au vu des la complexité du
probleme, il a également été résolu par la regle Johnson, heuristiques NEH et la recherche
locale Meta-heuristiques Iterated, Recuit Simule et GRASP. Enfin, une importante campagne
de tests a ét€ menée et une comparaison des méthodes proposées a été réalisée. Le méthode
hybride qui utilise 1’algorithme NEH avec le GRASP a démontré sa supériorité par rapport

autres méthodes proposées.

mots-clés: Ordonnancement (Gestion), Ordonnancement (Informatique), Heuristique,

Meétaheuristiques, Synchronisation

6.1 Introduction Générale 83

6.1 Introduction Générale

L’ ordonnancement dans le systeéme de production est I’'une des principales activités et il est
considéré par certains chercheurs comme un domaine vaste et diversifié, voir, par exemple,
Pinedo [77]. Nous nous sommes intéressés a I’ordonnancement de la production dans une
variante de I’environnement flow shop de permutation.

Le probleme d’ordonnancement dans le systeme de production classique d’ateliers flow
shop de permutation se compose de n taches a traiter parmi un ensemble de m machines dis-
posées en série. Les taches doivent suivre le méme ordre technologique vers les diverses ma-
chines, et chaque tache a un temps de traitement dans chaque machine spécifique. L’ objectif
est de déterminer, parmi toutes les s€équences possibles, celui qui permet d’optimiser une

certaine mesure de performance.

Fig. 6.1 Systeme étudié

Dans cette étude, une variante du probleme d’ateliers flow shop de permutation est
analysée, motivée par une application pratique dans le secteur d’activité de soudage d’une
industrie électronique. L’ environnement d’atelier est constitué de deux demi-lignes paralleles
avec des activités indépendantes et d’une opération de synchronisation finale. Chaque demi-
ligne produit I’'une des moitiés du produit final qui est assemblé en un seul produit dans
I’opération de synchronisation finale. L’ordre des moitiés des produits finaux dans chaque
demi-ligne doit étre égal, et il doit également €tre suivi dans 1’opération de synchronisation
finale. La Figure 6.1 montre un schéma de 1’environnement étudié. Une opération dans une
machine d’une demi-ligne n’a pas besoin de démarrer au méme moment d’une opération

dans la machine de 1’autre demi-ligne.

84 French Resume

Cependant, I’opération de synchronisation finale d’un produit ne peut étre démarrée que
lorsque les opérations de ses moitiés dans les deux demi-lignes sont terminées. Compte tenu
de cet arrangement, il est possible de classer cet environnement comme un cas particulier du
flow shop de permutation. L’ objectif de cette étude est d’obtenir des solutions optimales ou
presque optimales pour minimiser le makespan. Pour trouver ces solutions, une formulation
mathématique, heuristique et métahéhuristique pour le probleme sont proposés.

Diverses approches ont été proposées pour le problemes d’ordonnancement d’ateliers
de type flow shop puisque Johnson a présenté la résolution pour le flow shop avec deux
machines. Gupta et Stafford [40] ont fait une perspective historique de la recherche dans
le probléme du flow shop et de ses variantes. L’algorithme bien connu de Johnson [45] a
trouvé en temps polynomial une séquence optimale pour un groupe de n travaux a traiter
dans m = 2 machines. Une difficulté majeure est une solution optimale lorsque le nombre de
machines est supérieur a deux, car on sait que ce probleme est fortement NP-Hard (Garey et
al. [33]). Ainsi, des études ont ét€ développés dans la littérature d’ordonnancement d’ateliers
flow shop avec techniques exactes et heuristiques.

Tseng, Stafford and Gupta [102] rapportent une analyse empirique détaillée pour évaluer
I’efficacité des formulations de programmation linéaire en nombres entiers mixte (MIP) pour
le flow shop de permutation. Nous donnons brievement quelques exemples plus récents de
I’utilisation des modeles MIP pour résoudre les problemes de flow shop dans la littérature.
Frach et al. [30] présentent également un MIP pour résoudre les problemes de flow shop
avec un nombre limité de stock intermédiaire. Naderi et al. [64] proposent un MIP pour
minimiser le makepan et le retard total dans un environnement de flow shop. Ronconi et
Bergin [86] résolvent par MIP le probleme de minimiser la anticipation totale et le retard des
taches pour le probleme flow shop avec un nombre illimité et zéro stock tampon. Hnaien
et al. [41] proposent deux modeles MIP pour le probleme de ordonnancement flow shop
de deux machines avec une contrainte d’indisponibilité dans la premiere machine afin de
minimiser le makepan. Les auteurs proposent une algorithme branche and bound basé sur
de nouvelles limites inférieures et des heuristiques qui se comportent mieux que les deux
modeles MIP.

Les heuristiques ont été proposées dans la littérature pour obtenir de bonnes solutions dans
un cofit computationnel moins élevés, voir, par exemple, Mainieri et Ronconi [57] Nawaz
et al. [66] Rad et al. [80], et Widmer Hertz [106]. L’algorithme de Johnson a été adapté par
Allahverdi et al. [1] pour minimiser le temps d’achevement total des deux machines en flow
shop avec des temps de traitement aléatoires et limitées. Pan et al. [74] a abordé le probleme
de flow shop avec stock intermédiaire égal a zéro. Dans I’étude, 1’heuristique de Nawaz

et al. [66] ont exploré des caractéristiques spécifiques du probleme pour trouver de bonnes

6.2 Approches de modélisation et d’optimisation 85

solutions avec un colit computationnel moins élevés. Allaoui et Artiba [8] ont fait une étude
pour minimiser le makespan en flow shop hybride de deux étage avec une seule machine
dans le premiere étage et m machines dans le deuxieme étage. Fernandez-Viagas et Framinan
[29] ont proposé des mécanismes efficaces le critere d’arrét a utiliser dans 1’heuristique de
Nawaz et al. [66] lorsqu’ils traitent avec le retard total.

Des approches méta-heuristiques ont également été proposées dans la littérature pour
résoudre de grandes instances dans un colit computationnel raisonnable. Le recuit simulé a
été appliqué par Low et al. [54] et par Nearchou [67] pour minimiser le makepan dans le
probleme de flow shop, et par Mirsanei et al. [62] et par Santosa et Rofiq [91] au probleme
du flow shop hybride avec les m-machines a chaque étape. Le GRASP a été appliqué par
Prabhaharan et al. [79]. Shahul Hamid Khan et al. [96] a étudié un atelier de type bicriteria
flow shop afin de minimiser la somme pondérée de 1’accroissement et la retardée maximale
par la méthode GRASP. Leur algorithme a été capable de surpasser le recuit simulé a proposé
précédemment par Chakravarthy et Rajendran [18] pour le méme probleme. D’autre part, une
importante campagne de tests menées dans 1’étude de Sivasankaran et al. [99] a montré que
’algorithme avec recuit simulé appliqué au probleme a surpassé 1’algorithme avec GRASP
pour un probleme d’ordonnancement a une seule étage.

Sur la base des études mentionnés ci-dessus, cette étude présente une premier approche,
pour un modele de programmation lineaire mixte en nombres entiers et au vu de la complexite
du probleme, il a également été resolu par la regle Johnson, heuristiques NEH et la recherche
locale Metaheuristiques, Recuit Simule et GRASP. Enfin, une importante campagne de tests
a été effectuée et une comparaison des méthodes proposées a été realisée. Approches de

modélisation et d’optimisation

6.2 Approches de modélisation et d’optimisation

Dans cette étude, certaines approches pour résoudre le probleme de ordonnancement dans
un atelier de type flow shop semi-parallel avec opération de synchronisation finale ont été
effectuées. Les méthodes proposées sont: un modele de programmation linéaire entier mixte
présenté dans la section 6.2.1, les méthodes qui ont utilisé 1’algorithme de Johnson et les
méthodes heuristiques basées sur 1’algorithme NEH dans la section 6.2.2 et les méthodes
basées sur la methaheuristics recherche locale, le recuit simulé et GRASP dans le section
6.2.3.

86 French Resume

6.2.1 Formulation mathématique

La formulation MIP sur la base des études antérieurs développés par Wagner [104] et
par Stafford [100] a été proposé. Selon 1’étude menée par Teng et al.[102] ce genre de
formulation est la meilleure pour le flow shop de permutation. Soit le nombre de machines
ml en demi-ligne [= 1;2 (avant I’opération de synchronisation). Dans notre modele, une
permutation unique doit étre choisie pour deux problemes du type flow shop avec mil + 1
machines, chacun étant soumis a la contrainte supplémentaire que les temps de fin de chaque
travail sur les machines m1 + 1 et m2 + 1 sont identiques. Le modele peut €tre généralisé
pour un nombre arbitraire de demi-lignes L.

Ainsi, en supposant que, a des fins de modélisation, / = 1,2; flow shop problemes avec
ml + 1 machines chacun, les variables et les parametres sont les suivants: z;; est une variable
binaire que prend la valeur 1 si i est attribué a la j position de la permutation (commun
aux deux problemes du flow shop L =1, 2), et O dans le cas contraire; xé.k porte sur le temps
d’inactivité de la machine k de probléme / avant que le tiche commence dans la j*"¢ position
de la permutation; yék est au temps d’attente de la tAiche en j” position de la permutation
apres avoir terminé le traitement du probleme / sur la machine k, en attendant la machine
de probleme kl + 1 devient disponible; pga. est dédié le temps de traitement de la tache i sur
le probleme [de la machine &k (pyu1+1; = pm2+1i); Ci j est le temps dans 1’achevement du
probleme / de tache dans la j""¢ position. Le makespan est donné par le temps d’acheévement

de la tache dans le derniere position de la permutation.

Minimize C} (6.1)

subject to
Z?:]Zi,jzl iZl,...,l’l (62)
Z?:ﬂi,j:l jZl,...,l’l (63)

nool ! I nool
Y1 PriZijrt TV, F Xy, =Y H i Pryy iZig X0 1

; (6.4)
[=1,2;j=1,....n—1;r=1,....my

TY phaia=xl, I=12k=2,...m (6.5)

;n:vlz?zlp;izhl < xll,ml+1 Lv=12 (6.6)

6.2 Approches de modélisation et d’optimisation 87

V=0 [=12k=1,..m—1 (6.7)

Xt = W+ T Pizit) =¥y 1=1.2 6.8)
Y Pt T, =Ch I=1,2j=1,...n (6.9)
Cj=C; 1=1,2 (6.10)

zj€{0,1} j=1,....,mi=1,...,n (6.11)
yik,xﬁ’kEO j=1,...ml=1,2%k=1,....m+1 (6.12)
ci>0 1=1,2;j=1,...,n. (6.13)

La fonction d’objectif (6.1) minimise le makepan. Les contraintes (6.2) et (6.3) attribuent
une tache a une position exacte dans la permutation. La contrainte (6.4) assure 1’égalité
du temps de traitement plus les temps d’attente pour chaque paire de machines adjacentes.
La contraint (6.5) calcule, a partir de la deuxieme machine activée, le temps d’inactivité
dans chaque machine de chaque demi line en attendant le premier tiche. La contrainte
(6.6) garantit que le temps d’inactivité sur la machine de synchronisation en attente de la
premier tache est égale a la plus grande temps de transformation totale sur chaque demi-ligne.
La contrainte (6.7) garantit qu’il n’y a pas de temps d’inactivité pour le tiche assigné a la
premiere position dans chaque machine de chaque demi-ligne, mais le premier tache peut
attendez d’étre traité sur la machine de synchronisation, ce qui est assuré par une contrainte
(6.8). Les contraintes (6.9) et (6.10) assurent la synchronisation, car le temps d’achevement
pour chaque tache dans chaque probleme flow shop est calculé dans (6.9) et imposé pour

étre égal en (6.10). Les contraintes (6.11) et (6.12) imposent le domaine des variables.

88 French Resume

6.2.2 Heuristique

Nous proposons des adaptations de la heuristique NEH par Nawaz et al. [66] et aussi des
adaptations de 1’algorithme de Johnson [45] pour obtenir des solutions réalisables pour
le probleme d’ordonnancement du type flow shop avec des lignes semi-paralleles et une
opération de synchronisation finale.

Des adaptations de la heuristique NEH

La heuristique NEH pour le flow shop classique de permutation commence en triant les n
taches en ordre décroissant de la somme des temps de traitement sur toutes les m machines .
Ensuite, un ordonnancement partiel consiste en la séquence des deux premiers taches qui
minimise le makespan. Les autres taches, a partir du troisieme, sont insérées (un a la fois)
dans la position de I’ordonnancement partiel conduisant a un makepan plus court. La position
relative entre les taches déja insérées dans 1’ordonnancement partiel ne change pas. Nous
développons trois adaptations de 1’algorithme NEH: NEH,, - le temps moyen de traitement
des taches entre les machines paralleles correspondantes, NEH),; - le temps de traitement
plus long des taches entre les machines paralleles correspondantes et NEHg,, - ou chaque
demi-ligne est considérée séparément, y compris la machine de synchronisation.

Les heuristiques NEH,, et NEHj,; nécessitent le méme nombre de machines dans chaque
demi-ligne, c’est-a-dire m = m1 = m2. Soit f désigne la machine de synchronisation finale.
Le principe général est de réduire les deux demi-lignes a une seule ligne et d’appliquer la
heuristique NEH.

Dans la heuristique NEH,,, pour chaque tiche j = 1,...,n, est calculé (p}m + p%n /2, ou
k=1,...,mest la k"-machine dans chaque demi-ligne. A cet endroit, il existe un flow shop
de permutation classique avec m + 1 machines ou, pour chaque tiche j, py; est le temps de
traitement dans la machine k = 1,...,m et py; est le temps de traitement dans la derniere
machine, et la heuristique NEH est appliquée afin d’obtenir la séquence seq,,. Enfin, le
makepan engagé par la séquence seq,, est calculé dans I’ensemble du systeme avec le temps
de traitement actuel pf{ ; pour chaque demi-line / = 1;2 .

La heuristique NEHj,; fonctionne de la méme maniere. Pour chaque tache j =1,...,n,
nous calculons py; = max{ p,i i p,% j}, ol k= 1,...,mest la k""-machine dans chaque demi-line,
pour obtenir par la heuristique NEH une séquence seqy; pour un probleme du type flow shop
avec m+ 1 machines. Nous calculons ensuite le makepan encouru par la séquence seqj; dans
I’ensemble du systeme avec les temps de traitement courants pf{ j pour chaque demi-ligne
[=1;2.

6.2 Approches de modélisation et d’optimisation 89

Pour chaque tache j = 1,...,n, nous calculons max{p} p? }, ouk=1,... mestlak"-
machine dans chaque demi-line, pour obtenir par la heuristique NEH une séquence seqy; pour
un probleme du type flow shop avec m + 1 machines. Nous calculons ensuite le makepan
encouru par la séquence seq,; dans I’ensemble du systéme avec les temps de traitement
courants pf(j pour chaque demi-ligne [= 1;2.

Dans la heuristique NEH,,, nous considérons chaque demi-ligne avec la machine de
synchronisation séparément. Nous appliquons, pour chaque demi-ligne [= 1;2, 1a heuristique
NEH aun probleme classique du type flow shop de permutationp avec ml + 1 machines ou,
pour chaque tache j, p,lc jest le temps de traitement sur la machine k = 1,...,ml et py;. Nous
avons adopté la séquence seq’, p» | = 1,2, ce qui conduit a plus bas valeur du makespan dans

I’ensemble du systeme avec les deux demi-lignes.

Des adaptations de algorithme de Johnson

L’algorithme de Johnson obtient une séquence qui minimise le makepan pour le probleme du
type flow shop avec deux machines, Soit p;; (resp. p2;) le temps de traitement de la tche j
dans la premiere machine (resp. seconde). La sequence optimale commence par les taches de
sorte que p1; < py; a tri€ dans un ordre de temps de traitement non décroissant, ¢’est-a-dire
la partie ascendante de la séquence. Dans cette étude, deux adaptations de 1’algorithme
Johnson ’s ont été développées: algorithme de Johnson, compte tenu du temps de traitement
le plus long et de 1’algorithme de Johnson, compte tenu du temps de traitement moyen. Le
principe général est de considérer le systeme étudié comme un flow shop avec deux machines
en configurant 1’opération de synchronisation comme deuxieme machine.

Dans 1’adaptation dénoté par John,,, pour chaque tiche j = {1,...,n}, le temps de
Zznzllpl}j_"zzzlpkzj
ml+m?2
I’opération de synchronisation est le temps de traitement dans la deuxieme machine. Ensuite,

traitement moyen est calculé avec: p; = . Le temps de traitement py; de
I’algorithme de Johnson est appliqué et calculé pour la s€équence obtenue. Le makepan est
calculé dans I’ensemble du systeme avec le temps de traitement actuelle pf{ j pour chaque
demi-ligne [= 1;2.

L’adaptation dénoté par Jonhy,; est développé d’une maniere similaire, mais le temps de
traitement le plus long max;—10;k = {1,...,;ml} p} j parmi les machines des demi-lignes, on

utilise comme temps de traitement de la tAche j sur la premire machine.

90 French Resume

6.2.3 Metaheuristique

Trois algorithmes différents avec des métaheuristiques ont été appliqués dans cette étude. La
solution initiale, les méthodes de perturbation, la recherche locale et le critere d’acceptation

ont été développées pour chacune d’elles.

Recherche locale

Procedure Local Search (s,n)

1 Seqq < best Construction sequence;
2 C(s) < best Construction makespan;
3 OK<+1

4 while OK == 1 do

5 OK + 0

6 Best + o

7 forl (i=0ton—1)do
8 for2 (j =iton)do

9 Seq' <+ Seq + exchange of the position
10 element i by position element j;
11 Calculate the cost C(seq’)

12 if (C(seq’) < Best) them

13 Best < C(seq’)

14 seqviz < seq’

15 end-if

16 end-for2

17 end-forl

18 if (Best < C(seq’)) them

19 seq < seqviz

20 Ok + 1

21 end-if

22 end-while

23 return (seq)
24 return (Best)
end-procedure

Fig. 6.2 Recherche locale Pseudo-code

Dans la recherche locale (LS), I’espace de recherche est exploré afin d’améliorer la
fonction objective. S’il y a des possibilités d’amélioration, I’échange pour générer le meilleur
résultat est adopté. Dans cette étude, 1’algorithme commence par la génération d’une solution

réalisable (Sp) générée par deux méthodes différentes (par I’algorithme NEH en considérant

6.2 Approches de modélisation et d’optimisation 91

les demi-lignes séparées et par I’adaptation de Johnson en considérant le temps de traitement
moyen des demi-lines). Le processus de recherche local part de cette solution. Cette
procédure est une adaptation de 1’étude par Ruiz and Stiitzle [88] et Dong et al. [26] ce qui
consiste a prendre une tache a partir d’une position d’origine et a I’insérer dans les autres
positions de la séquence et a calculer la fonction objective de chaque séquence modifiée.
La solution voisine qui génere le meilleur makepan est sélectionnée et devient la nouvelle
solution actuelle (S’). Ce processus se poursuit jusqu’a I’amélioration de la solution actuelle.
Le processus est interrompu s’il existe un certain nombre d’itérations sans amélioration. Le

pseudocode est indiquée sur le Figure 6.2.

Recuit simulé

Le recuit simulé était une adaptation de la méthode par Hurkata [42] et pseudo-code de
la méthode est décrite dans le Figure 6.3. Dans cet algorithme, deux méthodes de solu-
tion initiales ont été considérées. La premiere méthode génere la population initiale avec
I’algorithme NEH séparément et la deuxieme méthode génere la population initiale par
I’algorithme de Johnson avec la méthode du temps de traitement moyen. L’algorithme
produit des perturbations dans la s€équence des taches et fournit une autre solution voisine
(8"). Une nouvelle modification est faite dans chaque itération et une nouvelle solution est
générée. Les solutions générées sont soumises a un processus d’évaluation afin de vérifier
si ’objectif de minimiser le makepan a été atteint. Le makespan est calculé et évalué. La
solution (S) est mise a jour si la solution est meilleure que les autres solutions obtenues
jusque la. Cependant, 1’algorithme tend a se coincer dans un optimal local. Par conséquent,
seules les meilleures solutions sont acceptées. Pour éviter cela, 1’algorithme permet des
solutions d’aggravation. Cela se fait en respectant une probabilité d’allocation par rapport a
la température. La fonction est calculée comme indiqué dans Jarostaw et al. [43] qui cherche
a faire un random et permet de choisir une valeur entre O et 1. Sinon, elle n’est acceptée
qu’avec une probabilité égale a e 2T OuT estla température et A est la différence entre la
solution et la solution précédemment adoptée. Le critere d’arrét de 1’algorithme est déterminé
par le refroidissement lent de la température initiale. La procédure est répétée plusieurs fois
par température. L’algorithme commence la recherche locale dans la séquence qui a généré

la meilleure solution lors de la température.

Greedy Randomized Adaptive Search Procedure - GRASP

L’algorithme GRASP pour ce probleme se compose de deux phases: la phase de construction

de la solution initiale et la phase de recherche locale ou 1’amélioration de la solution. La

92

French Resume

Procedure Simulated Annealing

1 Select an initial temperature 7' <— Tp;
2 Select an initial solution S < Sp;

3

4 best; < 0;

S Spest < So;

6 While (it < best;y +max;y) do

7 itgo < It

8 While (it <itgoy +itienp) do
9 it ++;

10 '+ N(S)

11 A+ cost(S') — cost(S);

12 If A <0 then:

13 S+ 8

14 itgo) < it

15 If cost(S') < cost(Spest) then:
16 Spest < S

17 besty it

18 end — if

19 end — if

20 Else

21 Generate random number r
22 If (r < ¢~/T)Then :

23 S« 5

24 end-if

25 end

26 end

27 T+ aT

28 end

29 Return S;

30 Apply Local Search in the best Sequence;
end-procedure Simulated Annealing

Fig. 6.3 Pseudo-code de Recuit simulé

6.2 Approches de modélisation et d’optimisation 93

premiere phase consiste a construire une solution réalisable. Apres cette phase, la solution
acquise au stade précédent subit une recherche locale pour atteindre le minimum local. La
meilleure solution est stockée en résultat partiel. A la fin de toutes les itérations, le meilleur
des résultats partiels est adopté. (Arroyo e Pereira [108] and Resende and Ribeiro [83]) Le
pseudo-code 6.4 montre les étapes du GRASP.

Procedure GRASP (Maxiter), (Seed)
1 Read input()

2 iter < 0;

3 while iter < maxiter do

4 Solution < Construction(seed);

5 LocalSearch(Solution);

6 Update-Solution (Solution, Best-Solution);
7 end-while

8 return (Best-Solution)

9 end-procedure GRASP

Fig. 6.4 GRASP Pseudocode

I’algorithme GRASP-NEH

L’algorithme GRASP — NE H proposé suit toutes les étapes de 1’algorithme GRASP classique.
La phase de construction commence par une échelle vide et la liste des candidats qui
formeront la séquence initiale, compte tenu de la demi-ligne 1 et de la semi-ligne 2 séparément
avec la machine de synchronisation. Dans cet algorithme, la liste des candidats (CL) est
formée par la séquence des taches en ordre décroissant de la valeur du temps de traitement
dans chaque demi-ligne parallele /. La liste des candidats restreints (RCL) est générée a
partir de la sélection de @% des candidats de la séquence CL. Ensuite, I'une des taches sont
sélectionnés ramdomly a partir de RCL et I’allocation des taches dans la séquence finale est
effectuée selon I’algorithme NEH. L' algorithme de construction GRASP — NEH est présenté
dans la Figure 6.5.

Ensuite, I’étape d’exploration locale GRASP commence a rechercher des solutions op-
timales, de sorte que la séquence initiale est acquise a 1’étape précédente. Dans chaque
itération, tous les voisins possibles de la solution actuelle S sont analysés en se déplacant
uniquement vers le voisin qui a la valeur la plus favorable de makespan compte tenu de la
fonction objective. La liste des meilleures solutions partielles locales est formée et le résultat

partiel de la valeur plus bas du makespan sera utilis€ comme solution finale.

94

French Resume

Procedure Construction-NEH (itermax, o0)

0NN DNk W=

Ne)

10
11
12
13
14
15
16
17
18
19

Solutionl < 0;
Solution2 < 0;
Calculate Y’ pr;; of the job i in the machine j in the semi-line /;
CL; < descending order of the jobs for each semi-line /;
RCL; < the o% of the jobs of LC1;
RCL, < the a% of the jobs LC2;
while Segl and Seq?2 is not complete do:
Select randomly a job list RCL1;
Select randomly a job list RCL2;
Allocate the jobs in Seql according to the NEH heuristic;
Allocate the jobs in Seq2 according to the NEH heuristic;
Update RCL,
Update RCL;
end-while
Solutionl < makespan Seql;
Solution2 < makespan Seq?2;
Adopt a sequence of smaller makespan;
Return (best makespan);
Return (best sequence);

end-procedure Constrution-NEH

Fig. 6.5 Constrution NEH Pseudo-code

6.2 Approches de modélisation et d’optimisation 95

I’algorithme GRASP-JOHN

La phase de construction de 1’algorithme GRASP-Johnson considere le temps de traitement
moyen le plus élevé de la tiche dans toutes les machines des demi-lignes et le temps
de traitement de la machine de synchronisation. A ce stade, I’algorithme s’applique
I’adaptation des regles de Johnson. Dans ce sens, le temps de traitement moyen le plus
élevé des taches dans les machines des demi-lignes est utilisé comme temps de traitement
des taches de la premiere machine de Johnson. Le temps de traitement de la tiche dans la
machine de synchronisation est considéré comme le temps de traitement de la deuxieme
machine de Johnson. L’heuristique sélectionne un élément itérativement pour chaque échelle
en fonction de ce qui suit:

Procedure Constrution Johnson(itermax, o)

1 Solution < 0,

2 machinel < increasing order of highest

3 value of ¥ prijl/m of the semi-lines jobs;
4 machine2 < increasing order of prij

5 of the job in the synchronization machine;
4 RCL; < o % machine 1 jobs;

5 RCL; < o % machine 2 jobs;

6 while Seq is not complete do:

7 Randomly select a job of the (RCL1);

8 Randomly select a job of the (RCL2);

9 seq < seq de Johnson;

10 Update RCL,

11 Update RCL;

12 end-while

13 Solution<— makespan seq;

14 Return(Solution);

end-procedure Construction Johnson

Fig. 6.6 construction par algorithmes de Johnson Pseudo-code

La construction de génération de pseudo-code par les algorithmes de Johnson est montrée
dans la Figure 6.6. La séquence générée dans cette étape de 1’algorithme GRASP Johnson
est utilisée comme solution initiale de la recherche locale. Tous les voisins possibles de
la solution s actuelle sont analysés a chaque itération qui se déplace vers le voisin qui a
la valeur la plus favorable de makespan en fonction de la fonction objective. La liste des

meilleures solutions partielles locales est formée de sorte que le résultat partiel partiel soit

96 French Resume

utilisé comme solution finale. Le pseudo-code pour générer le meilleur voisin est présenté
dans la Figure 6.2.

6.3 Résultats et méthodologie

Les différentes méthodes pour résoudre le probleme de flow shop avec des lignes finales
paralleles avec une opération de synchronisation finale ont été testées parmi les différentes
instances. Il y a 240 cas différents. Ils sont composés de combinaisons de nombre de taches
x nombre de machines de la demi-ligne 1 X nombre de machines de la demi-ligne 2. Les
différentes instances utilisées dans cette étude ont été générées avec le méme principe de
la méthode rapportée par Taillard [101]. L’algorithme de Taillard [101]) a été adapté a ce
probléme en tenant compte de la formation d’une seule ligne avec le nombre de taches, le
nombre de machine de la semi-ligne 1, le nombre de machine de la semi-ligne 2 et la machine
de synchronisation.

Il y a 10 différents ensembles des données pour chaque combinaison. Les premieres 130
combinaisons ont été crées étant donné que les deux demi-lignes ont le méme nombre de
machines. Les autres 110 combinaisons ont été crées compte tenu de différents nombres
de machines dans les demi-lignes. Pour ces problemes, des nombres de 10, 20, 50 et 100
taches et des nombres de 3, 5, 7 et 11 machines ont été pris en compte. Parmi les 240 cas, la
solution optimale n’a pas été trouvée dans les 41 d’entre eux. Les tests actuels ont été menés
a I’aide d’un ordinateur avec les parametres suivants: Intel C emph Core TM iR 3.1 GHz
avec 4 Go de mémoire. Les résultats du modele mathématique ont été obtenus en utilisant le
logiciel emph CPLEX 12.6.1 et les algorithmes ont été implémentés en C + 4. L’analyse
statistique des résultats a été obtenue en utilisant le Minitab 17.2.1. software. Pour comparer
les résultats, 1’écart relatif absolu (GAP) a été utilis€é comme as in Ruiz and Maroto [87], qui
dans ce cas est la variation entre la solution optimale et les solutions de méthode créées. Le
GAP sera calculé par I’équation: 6.14.

GAP = I%TQI;’M* 100 (6.14)

Ou: Mety,; Correspond au makepan réalisé par une méthode proposée; et OPTy,; au makepan
réalisé avec le modele mathématique.

L’écart type de I’écart relatif moyen a également été utilisé pour comparer les meilleures
méthodes. L’écart-type d’un échantillon mesure le degré de dispersion des éléments autour
de la moyenne. Dans cette étude, I’écart-type de la GAP est la valeur de la variation des

écarts relatifs d’une classe de problemes autour de 1’écart relatif moyen. Plus la valeur de

6.3 Résultats et méthodologie 97

I’écart-type est faible, meilleure est la méthode utilisée lors de la comparaison d’une méthode

avec I’autre. L’écart type est calculé par les équations 6.15 and 6.16:

GAPypg = wi— + YN (GAP, — GAF;)? (6.15)

Ninst

SD = /GAP;5 (6.16)

Ou: Ninst correspond au numéro d’instance; AV Gy, a I’écart relatif absolu pour chaque
ensemble d’instances; AV G; a I’écart relatif absolu de I’instance i; et SD 1’écart type.

Les tests ont été effectués dans deux environnements. Dans le premier, on a considéré
le méme nombre de machines dans chaque demi-ligne et, dans le deuxieéme, on a considéré
différents nombres de machines dans les demi-lignes. Un temps limite de 7.200 secondes

pour obtenir une solution optimale a été considéré.

6.3.1 Mathematical modeling

Deux lignes paralleles suivies d’une ligne séquentielle ont été considérées pour 1’approche
mathématique du probleme, en regroupant les opérations en machines paralleles et en adop-
tant en tant que temps de traitement d’une opération correspondante ou d’un ensemble
d’opérations du groupe plus lent. L’existence de deux semi-lignes artificiellement indépen-
dantes permettra de déterminer la valeur la plus élevée de ¢! le temps de traitement total
(makespan) entre eux. Ces machines fictives représentent lorsque les deux opérations in-
dépendantes traitent la derniere opération.

A travers les résultats, on a observé que pour un petit nombre de tiches et de machines,
le makespan a été trouvé en temps de calcul faible. D’autre part, il n’a pas été possible de
trouver la solution optimale pour les instances plus vastes avec faible temps de calcul. En
raison de ce fait, d’autres stratégies d’approche pour le probleme seront utilisées (heuristiques

constructives telles que 1’algorithme NEH et les métaheuristiques).

6.3.2 NEH heuristic and Johnson’s algorithm

Les méthodes proposées sont testées sur différentes instances avec un méme nombre de
machines dans chaque semi-ligne, ou trois adaptations de 1’algorithme de NEH.

Les méthodes proposées ont été testées pour différentes instances avec un méme nombre
de machines dans chaque semi-ligne, ou trois adaptations heuristiques (NEH,,, NEHj,,

NEH,,,) et deux adaptations de I’algorithme Johnson (Johny,;, John,,) ont ét€ considerés.

98

French Resume

174
4 9
1 Variable
15 8 — John-hi
s
7 — — — Johnav
144 p NEH-hi
r —-— NEH-av
13 g s NEH sep|
3
g
124 ﬁ:" 4
1 Mean StDev N
114 12,97 3471 13
2 12. 3224 13
104 1 1515 2,446 13
14,08 2,330 13
o L] 10.25 1283 13
John-hi John-av NEH-hi NEH-av NEH-sep
a- Same number of machine
21
20 2 Variable
19 ——— NEHsep)
0 a — — — Johnav
John-hi
17
g3
16 g
15 £ 2
14
13 1 Tean StDev
13.44
12 2 15.03 1.853 17
8 22 18,99 1.948 11

NEII-sep John-av John-hi

b- Different number of machine

Fig. 6.7 Gap et sd pour NEH et Johnson Adaptation

6.3 Résultats et méthodologie 99

Dans le deuxieme environnement, différents nombres de machines dans les demi-lignes,
NEHg,,, Johny; and John,, ont €té€ considerés.

Les résultats obtenus pour différentes instances avec le méme nombre de machines
(E) sont présentés dans la Figure 6.7. Lorsque I’environnement dans lequel le nombre de
machines est le méme, on peut affirmer que les adaptations de NEH ont montré que la
meilleure performance €tait celle qui a utilis€ ’analyse des demi-lignes séparément (NEHje,)
avec un GAP e moyen de 10 % et écart type de 0.05. La variante qui a montré le pire résultat
a été celle qui a analysé le temps de traitement le plus long (NEHj,;) dans chaque machine
parallele avec GAP moyen de 16 % et écart type de 0.02.

En ce qui concerne les variantes de Johnson, on peut observer une petite différence entre
I’écart de I’adaptation Johny; et Jonh,,. La variante avec la meilleure performance était celle
qui considérait le temps de traitement moyen le plus long Jonh,, dans toutes les machines
des semi-lignes pour la premiere machine et le temps de traitement dans la machine de
synchronisation pour la deuxieme machine.

Pour I’environnement ou le nombre de machines est différent dans les demi-lignes,
NEH;,, a mieux performé avec 14%. La variante Johny,; a présenté une GAP moyen légere-
ment supérieure a John,, (19%). Pour vérifier la validité statistique des résultats, une analyse
de la variance (ANOVA) avec un niveau de confiance de 95% a été prise comme indiqué dans
la Figure 6.7.

Cependant, ces résultats peuvent étre améliorés afin d’étre plus proches de la solution
optimale. Par conséquent, les métaheuristiques ont été utilisées pour résoudre le probleme

afin d’obtenir des résultats optimaux ou proche de I’optimum.

6.3.3 Recuit simulé

Pour des résultats encore meilleurs, le recuit simulé avec une méthode de recherche locale
itérée a été choisi pour affiner les résultats et créer une solution de meilleure qualité.

Cette méthode comporte deux types de solutions initiales comme point de départ qui
est généré de manicre similaire aux méthodes antérieures. La premiere méthode considere
I’algorithme de Johnson avec le temps de traitement moyen de la semi-ligne comme solution
initiale (Johng,) et le deuxieme considere 1’algorithme NEH,,,. Pour cette méthode, la
sélection des parametres utilisés dans la méthode est décrite ci-dessous. Le type de recherche
locale utilisé pour cette méthode était la simple perturbation, oli une séquence voisine est
obtenue essentiellement a partir de la séquence actuelle en supprimant une tiche de sa
position et en I’insérant dans une autre position.

Pour cette étude, le GAP est considéré comme la variation entre la solution optimale ou

la meilleure solution trouvée par la méthode mathématique, et les solutions trouvées par:

100

French Resume

=L L Variable
S:0 } SA-NEH-sep-0.2
4S5 8 — — — - SA NEH-sep-0.5
4.0 SA-NEH-sep-0.95
3.5 . —-— SA-John-av-0.2
= g o SA John-av-0.5
2.5 E Mean StDev N
2.0 4 5,02 0.5269 13
’ 4,089 0,8672 13
D
& 2 2,59 0.8059 13
‘js?ﬁ' ‘fs?ﬁ' 5,079 0,6795 13
> b 4,585 1,030 13
» "3 g =
= © ¢ 3,851 09170 13
a- Same number of machine —SA
Variable

L - T |
—s—

Mean
5,445
4,487
3,085
5,985
4,448
2,781

N W
)
Frequency

StDev
1,978
1,632
1,401
1,450
1,295
1,004

SA-NEIL-sep-0.2
SA-NEH-scp-0.5
SA-NEH-scp-0.95
— - — SA-John-av-0.2
SA John-av-0.5
SA-John-av-0.95

~
11
11
11
11
11
11

b- Different number of machine -SA

Fig. 6.8 Gap et sd pour Simulated Annealing méthodes

6.3 Résultats et méthodologie 101

recuit simul€ avec des solutions initiales avec la heuristique NEHj,, et I’algorithme John,,
compte tenu du méme nombre de machines et de différents numbres de machine dans chaque
demi-ligne.

Les parametres utilisés ont été basés dans les études de Senthilkumar et Narayanan
[94] et Salem [5] avec quelques ajustements pour les caractéristiques de ce probleme. Les
parametres qui ont donné des résultats significatifs étaient ceux avec une température initiale
de 77 = 6000. La valeur du facteur de refroidissement utilisée dans 1’algorithme affecte le
temps d’exécution et la qualité souhaitée pour la solution. Dans cette étude ont été analysés
le facteur de refroidissement oo = 0,2,0,5 et 0,95 et la température finale = 0,0001. Analyse
de la variance (ANOVA) avec un niveau de signification de 0, 05.

Pour chaque scénario (semi-lignes avec le méme nombre de machines et avec différents
nombres de machines), la Figure 6.8 présente les résultats d’utilisation de variantes de
la méthode de recuit simulé€e pour le probleme en question. NEH., —SA — ILS (recuit
simul€ a partir de NEH,,, algorithme et Jonh,, —SA — ILS (recuit simul€ a partir de Johng,
et se terminant par une recherche locale itérée) ont présenté de meilleurs résultats que
ceux précédemment utilisés dans les mémes instances définies dans deux environnements.
Pour I’environnement avec le méme nombre de machines dans les demi-lignes paralleles,
la meilleure différence relative moyenne (GAP) était de 2,59 pour NEH,,, — SA — ILS
avec a = 0,95 . Le pire GAP était de 5,07 en méthode John,, — SA — ILS avec o¢ = 0, 2.
Pour I’environnement avec différents nombres de machines, le meilleur GAP était 3.45
en Jonhg, — SA — ILS méthode pour o = 0.95. Le pire GAP était de 5,61 en méthode
Johng, —SA — ILS pour o = 0,2. Ces résultats ont également montré une amélioration du

GAP par rapport aux résultats de la méthode antérieure.

6.3.4 GRASP

La derniere méthode proposée était une adaptation de 1’algorithme GRASP original avec les
principes de I’algorithme NEH,), ou John,,. La premiere phase est la construction de la
solution initiale et la deuxieme phase est I’amélioration de cette solution (recherche locale).

Dans cette étude, la phase de construction de la solution initiale établit d’abord la liste
des candidats (LC) avec la séquence des taches par ordre décroissant du temps de traitement,
lorsque NEH,,, est utilisé et par ordre croissant lorsque I’algorithme de Johnson est utilisé.
Apres cette étape, la liste restreinte est formée par le tirage de a% de la liste des candidats,
ce qui rend chaque solution initiale différente de I’autre. Les valeurs de o pour 1’algorithme
ont été définies comme o = 0,2,0,3 et 0,5% du nombre de taches dans la liste des candidats.

La séquence est formée par I’attribution des tiches en utilisant NEH,), ou Johny,. A la fin

102

French Resume

C‘%

— — — — GRP-NEH-sep-0.3

-—- GRP-John-av-0.2

Variable
GRP-NEH-sep-0.2

GRP-NEH-sep-0.5

0.8018 0,2291 11
0,5382 0,2673 11
0,3741 0,3628 11

0.88 0.2115 11
0,8651 0,2386 11
1.079 0.2712 11

1,4
1.2
1.0
0.8
0,6
0.4
0.2
0,0

©0.5382 02673 11
©0,2741 0,3628 11

& o 22 1
Fig. 6.9 Gap et sd pour GRASP méthode
IP model SA-ILS GRASP
Instances opt time(s) opt gap(%) sd time(s) opt gap(%) sd time(s)
E10 x 03 10 0.3 3 2.01 0.72 38.9 6 0.97 0.22 27.2
E10x 05 10 0.5 4 2.86 0.89 38.3 6 0.12 0.14 342
E10x 07 10 1.9 4 329 0.77 50.2 6 0.12 0.13 48.5
E10x 11 10 10.7 2 1.04 0.76 51.3 4 0.26 0.13 46.3
E20 x 03 10 0.3 4 2.03 0.72 49.9 6 0.95 0.16 43.5
E20 x 05 10 405.0 0 242 0.66 50.6 5 0.12 0.15 45.2
E20x 07 10 2289.0 0 2,12 0.86 50.5 5 0.19 0.09 43.9
E20x 11 4 75418 1 2.07 0.76 55.1 4 0.30 0.15 43.2
E50 %03 10 5.8 3 321 0.78 52.4 5 0.19 0.16 46.2
E50 % 05 8 49157 2 3.12 0.78 53.2 4 0.16 0.14 47.5
E50 x 07 1 13695.5 0 432 0.74 65.2 0 0.20 0.13 574
E50x 11 0 12746.2 0 2.59 0.75 74.2 0 0.13 0.14 574
E100x03 10 160.69 3 2.62 0.82 88.2 4 0.13 0.22 57.4

Table 6.1 SA-ILS-NEH-0.95 / GRASP-NEH-0.5

du processus de construction de la solution initiale, la deuxieme phase de GRASP commence.

L’algorithme se termine quand il y a 100 itérations sans aucune amélioration de la solution.

Figure 6.9 aide a I’observation des comportements du GAP des méthodes NEH,, —
GRP — ILS et Johng, — GRP — ILS. Ces méthodes ont été meilleures que toutes les autres
utilisées précédemment. Il est également observé que cette méthode a atteint un grand nombre

de solutions optimales par rapport a toutes les autres méthodes. NEH;,, — GRP — ILS avec o

6.3 Résultats et méthodologie 103

IP model John,, — SA —ILS NEH,.,GRASP
Instances opt time(s) gap(%) sd time(s) gap(%) sd time(s)
D10x03x05 10 0.1 432 2.84 42.5 0.07 04 27.0
D10x03x07 10 0.2 421 1.95 46.6 0.65 04 334
D10x03 x 11 10 0.9 322 3.86 50.2 0.84 04 47.8
D10x05x07 10 0.3 3.35 321 554 0.69 0.3 45.7
D10x05x11 10 1.4 403 1.86 48.7 0.01 03 44.0
D20x03x05 10 4.1 3.02 2381 49.6 0.65 02 47.8

D20x03x07 10 52.9
D20x 03 x 11 4 14250.2
D20 x05x07 10 200.1
D20x 05 x 11 2 18208.3 425 3.1 50.2 001 03 51.8
D50x03x07 10 153.8 215 241 48.6 0.08 03 57.4

Table 6.2 John,, —SA —ILS — 0.95/NEH;,, — GRASP — 0.5

232 284 50.7
3.11 254 52.8
4.03 3.25 48.0

0.89 03 43.2
0.09 03 50.7
0.12 0.2 48.1

o
NOO—WhwWwhswE

o
POoOWOoOAULLL T

= 0.5 a obtenu la meilleure GAP moyenne dans les deux types d’environnement 0.35 et 0.37
respectivement par rapport aux environnements avec le méme nombre de machines et nombre
différentes de machines dans les demi-lignes. John,, — GRP — ILS avec o = 0.5 méthode
était la variante GRASP qui a atteint le GAP le plus élevé pour cette méthode (1.07 et 1.08).
Les Tables 6.1 et 6.2 affichent la comparaison des meilleurs résultats de 1’algorithme proposé
par rapport aux deux méthodes indiquées pour la solution initiale. Dans la premiere colonne
de ces tableaux, les ensembles d’instances sont affichés.

Dans la deuxieme et la troisieme colonnes, le pourcentage d’occurrences que les valeurs
optimales (OPT) ont été réalisées et le temps de calcul moyen du modele mathématique en
secondes (CPU). Dans les colonnes suivantes, les GAP acquis, I’écart-type SD et le temps
de calcul moyen de la meilleure méthode de recuit /LS et de la meilleure méthode GRASP
sont affichés.

Les graphiques comparatifs des meilleurs résultats avec les méthodes élaborées sont
présentés dans la Figure 6.10. Les graphiques aident a 1’observation des comportements
GAP de la méthode NEH,), Johg,, SA—NEH — ILS avec a = 0,95, et pour le méthode
SA —Jonh — ILS avec alpha = 0,95%, GRASPygn et GRASP;,;, . Le degré de dispersion
des valeurs GAP par rapport a la valeur moyenne (écart type) a également été analysé pour
les méthodes qui ont obtenu les meilleurs résultats dans chaque catégorie. Dans la deuxieme
et la troisieme colonnes, le pourcentage d’occurrences que les valeurs optimales (OPT) ont
été réalisées et le temps de calcul moyen du modele mathématique en secondes (CPU).
Dans les colonnes suivantes, les GAP acquis, I’écart-type sd et le temps de calcul moyen de

la meilleure méthode de recuit /LS et de la meilleure méthode GRASP sont affichés.

104 French Resume

14

Variable

—e— NEH-sep

— = — John-av
NEH-sep-SA-TLS-0.95

—a& — GRASPNEHO.5

oN & o

\J/
L '
by N

™ /
LS
ah g e e ae

§ 12 3 4 5 6 7 8 9 10 11 12 13

a-Same number of machines

5 Variable
i E 16 {x, s —u| | XEHsep
12 . A P — =~ JOHNav
10 14, = . John-av-SA-ILS-0.95

12 —4 — GRASPNEH0.5

. —y
e S S

12 3 4 5 6 7 8 9 1011

b-Different number of machines

Fig. 6.10 Graphique comparatif des meilleurs résultats des méthodes de résolution

6.4 Conclusion et perspectives

Ce travail a porté sur le développement de méthodes d’optimisation pour résoudre une
variante du probleme d’ordonnancement atelier de type flow shop semi-parallel avec et une
opération de synchronisation finale. Il s’agit d’un probleme commun de nombreux secteurs
industriels qui requiert des méthodes efficaces pour sa résolution, ce qui a été étudié a partir
d’une situation pratique dans un processus de soudage d’une industrie qui fabrique des
produits de systemes électro-électriques.

Cette étude visait a modéliser le probleme méthode dans un atelier de type flow shop semi-
parallel avec operation de synchronisation finale a la fin des demi-lignes pour la résoudre
avec des heuristiques et des métaheuristiques. Dans une premicre approche, un modele de
programmation linéaire mixte a été défini sur la base d’études déja développées pour des
environnements semblables a ceux €tudiés. Le modele nécessitait des adaptations concernant
le traitement des demi-lignes séparément et une attention particuliere dans la finalisation des
demi-lignes car c’est le point de jonction des éléments produits dans les deux demi-lignes.
Le modele était efficace pour les petites instances, mais pour de plus grandes instances, il

présente certaines difficultés pour trouver les solutions optimales dans un temps viable.

6.4 Conclusion et perspectives 105

En raison de la complexité du probleme, il a également été résolu par des heuristiques
et des métaheuristiques. A partir des résultats d’une importante campagne de tests, il a été
possible de prouver que les constructions de méthodes par heuristiques et métaheuristiques
ont donné des résultats réalisables au probleme étudié. Les algorithmes présentés, y compris
des combinaisons et des hybridations entre elles, ont de bonnes options pour les résolutions
d’instances plus vastes. Les algorithmes présentés ont donné de bonnes options pour les
résolutions d’instances plus vastes.

La résolution du probleme a I’aide de méthodes telles que la regle de Johnson, les
méthodes heuristiques comme algorithme NEH et les métaheuristiques telles que /LS, le
recuit simulé et GRASP montrent comment ces méthodes se sont comportées dans cet
environnement et le possibilité de trouver un résultat optimal en les utilisant. De plus, parmi
les méthodes NEH),;, NEH,,,, NEH.),,Johng,,John;, NEH., —ILS,Johy, —ILS, NEH,, —
SA —ILS,Johng, — SA — ILS,NEH,., — GRASP, John,, — GRASP. Le NEH,., — GRASP
avec 0,5% était la méthode qui a atteint le plus grand nombre des résultats optimaux et le
plus bas GAP dans les instances.

Le GAP moyen le plus bas a été de 0,35% pour les environnements avec le méme nombre
de machines dans les demi-lignes et de 0,37% pour les environnements avec un nombre
différent de machines dans chaque demi-ligne. D’autre part, la valeur la plus élevée de la
moyenne GAP générée par I’algorithme présenté le mieux (GRASP — NEH) était de 1.07%.

En ce qui concerne les méthodes heuristiques utilisées NEH),; avec GAP moyen de
16,0 % était la pire méthode proposée pour les environnements avec le méme nombre de
machines dans chaque semi-ligne et pour les environnements avec différents nombres de
machines dans chaque demi-ligne John;; moyen GAP de 19%. Parmi la méthode utilisant la
métaheuristique, la méthode hybride NEH sep — ILS a présenté le pire résultat avec GAP de
6,78 % pour les environnements avec les mémes machines dans les demi-lignes et GAP de
8,87% pour les environnements avec différentes machines dans les demi-lignes. Les résultats
obtenus par les méthodes de recuit simulé appliquées aux différents instances du probleme
ont présenté des résultats moins satisfaisants par rapport aux méthodes GRASP.

Cependant, il a été possible de visualiser lorsque le facteur de refroidissement (o)
augmente, les résultats s’améliorent. C’est-a-dire lorsque le facteur de refroidissement
s’approche de la valeur de 1, le nombre de solutions explorées dans le voisinage augmente,
conduisant ainsi a un grand nombre de solutions recherchées. Dans ce sens, le recuit simulé
peut également €tre un bon allié a d’autres méthodes pour résoudre ce probleme, puisque
cette méthode présente I’avantage d’exploiter de grandes quantités de solutions voisines avec

la possibilité d’échapper a I’emplacement optimal.

106 French Resume

Enfin, les résultats des expériences indiquent que les méthodes GRASP représentent une
bonne alternative pour résoudre le probleme, en particulier pour les instances plus grande.
Cela augmente la viabilité de son utilisation comme moyen d’obtenir de meilleures solutions
ou un taux d’atteinte plus élevé aux valeurs optimales et a I’application dans des problémes
réels en temps viable.

References

[1] E.H. Aarts and J.K. Lenstra. Local search in combinatorial optimization. Princeton
University Press, 2003.

[2] A.H Abdekhodaee and A. Wirth. Scheduling parallel machines with a single server:
some solvable cases and heuristics. Computers & Operations Research, 29(3):295—
315, 2002.

[3] A.H. Abdekhodaee, A. Wirth, and H.S. Gan. Equal processing and equal setup time

cases of scheduling parallel machines with a single server. Computers & Operations
Research, 31(11):1867—-1889, 2004.

[4] A. Agnetis, A. Alfieri, and G. Nicosia. A heuristic approach to batching and scheduling
a single machine to minimize setup costs. Computers & Industrial Engineering,
46(4):793-802, 2004.

[5] A. Al-Salem. A heuristic to minimize makespan in proportional parallel flow shops.
International Journal of Computing & Information Sciences, 2(2):98, 2004.

[6] K. Alaykyran, O. Engin, and A. Doyen. Using ant colony optimization to solve hybrid
flow shop scheduling problems. The international journal of advanced manufacturing
technology, 35(5-6):541-550, 2007.

[7]1 A. Allahverdi and H. Aydilek. Heuristics for the two-machine flowshop scheduling
problem to minimise makespan with bounded processing times. International Journal
of Production Research, 48(21):6367-6385, 2010.

[8] H. Allaoui and A. Artiba. Scheduling two-stage hybrid flow shop with availability
constraints. Computers & Operations Research, 33(5):1399-1419, 2006.

[9] C. Almeder and R. F. Hartl. A metaheuristic optimization approach for a real-world
stochastic flexible flow shop problem with limited buffer. International Journal of
Production Economics, 145(1):88-95, 2013.

[10] J. E. C. Arroyo, R. dos Santos Ottoni, and A. de Paiva Oliveira. Multi-objective
variable neighborhood search algorithms for a single machine scheduling problem

with distinct due windows. Electronic Notes in Theoretical Computer Science, 281:5—
19, 2011.

[11] S. Binato, W. J. Hery, D. M. Loewenstern, and M.G.C. Resende. A grasp for job shop
scheduling. In Essays and surveys in metaheuristics, pages 59-79. Springer, 2002.

108

References

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Handbook on
scheduling: from theory to applications. Springer, 2007.

W. Buzzo and J. V. Moccellin. Production scheduling in flow shop systems using a
hybrid heuristic genetic-simulated annealing algorithm. Gestdo & Produgdo, 7(3):364—
377, 2000.

W. D. Callister, D. G. Rethwisch, et al. Materials science and engineering: an
introduction, volume 7. Wiley New York, 2007.

H. G. Campbell, R.A. Dudek, and M.L. Smith. A heuristic algorithm for the n job, m
machine sequencing problem. Management Science, 16(10):B—630, 1970.

G. Campos C., F. Dugardin, F. Yalaoui, and R. Kelly. Open shop scheduling problem
with a multi-skills resource constraint: a genetic algorithm and an ant colony optimi-
sation approach. International Journal of Production Research, 54(16):4854—4881,
2016.

C. E. M. C. Cavalcanti, M. J. F. Souza, F. S.H. Souza, and V. S. Coelho. A heuristic
methodology based on grasp, vnd and vns for the solution of the sizing problem in 1.p.
networks. 2004.

Karunakaran Chakravarthy and Chandrasekharan Rajendran. A heuristic for schedul-
ing in a flowshop with the bicriteria of makespan and maximum tardiness minimization.
Production Planning & Control, 10(7):707-714, 1999.

J. Chen, J. C. Pan, and C. Lin. A hybrid genetic algorithm for the re-entrant flow-shop
scheduling problem. Expert Systems with Applications, 34(1):570-577, 2008.

Y. Chen, A. Zhang, G. Chen, and J. Dong. Approximation algorithms for parallel
open shop scheduling. Information Processing Letters, 113(7):220-224, 2013.

J. Cheng, Y. Karuno, and H. Kise. A shifting bottleneck approach for a parallel-
machine flowshop scheduling problem. Journal of the Operations Research Society of
Japan-Keiei Kagaku, 44(2):140-156, 2001.

TC E. Cheng, J.ND Gupta, and G. Wang. A review of flowshop scheduling research
with setup times. Production and Operations Management, 9(3):262-282, 2000.

I. M. Coelho, M. N. Haddad, L. S. Ochi, M. J. F. Souza, and R. Farias. A hybrid
cpu-gpu local search heuristic for the unrelated parallel machine scheduling problem.
In Applications for Multi-Core Architectures (WAMCA), 2012 Third Workshop on,
pages 19-23. IEEE, 2012.

P. Damodaran, M. C Vélez-Gallego, and J. Maya. A grasp approach for makespan min-
imization on parallel batch processing machines. Journal of Intelligent Manufacturing,
22(5):767-7717, 2011.

H. Davoudpour and M. Ashrafi. Solving multi-objective sdst flexible flow shop using
grasp algorithm. The International Journal of Advanced Manufacturing Technology,
44(7-8):737-747, 2009.

References 109

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Xingye Dong, Houkuan Huang, and Ping Chen. An iterated local search algorithm
for the permutation flowshop problem with total flowtime criterion. Computers &
Operations Research, 36(5):1664—1669, 2009.

F. Dugardin, F. Yalaoui, and L. Amodeo. New multi-objective method to solve
reentrant hybrid flow shop scheduling problem. European Journal of Operational
Research, 203(1):22-31, 2010.

M. Feldmann and D. Biskup. Single-machine scheduling for minimizing earliness and
tardiness penalties by meta-heuristic approaches. Computers & Industrial Engineering,
44(2):307-323, 2003.

V. Fernandez-Viagas and J.M. Framinan. NEH-based heuristics for the permutation
flowshop scheduling problem to minimise total tardiness. Computers & Operations
Research, 60:27-36, 2015.

J. V. Frasch, S. O. Krumke, and S. Westphal. Mip formulations for flowshop scheduling
with limited buffers. In Theory and Practice of Algorithms in (Computer) Systems,
pages 127-138. Springer, 2011.

J. Gao and R. Chen. A hybrid genetic algorithm for the distributed permutation
flowshop scheduling problem. International Journal of Computational Intelligence
Systems, 4(4):497-508, 2011.

J. Gao, R. Chen, and W. Deng. An efficient tabu search algorithm for the distributed

permutation flowshop scheduling problem. [International Journal of Production
Research, 51(3):641-651, 2013.

Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and
jobshop scheduling. Mathematics of operations research, 1(2):117-129, 1976.

J. W. Gavett. Three heuristic rules for sequencing jobs to a single production facility.
Management Science, 11(8):156-166, 1965.

C.A. Glass, C.N. Potts, and P. Shade. Unrelated parallel machine scheduling using
local search. Mathematical and Computer Modelling, 20(2):41-52, 1994.

A.C. Gomes Jr.,, C.R.V. Carvalho, P.L.A. Munhoz, and M.J.F. Souza. A hybrid
heuristic method to solve the problem of sequencing in a machine with penalties for
anticipation and delay of the production. Anais do XXXIX Simpdsio Brasileiro de
Pesquisa Operacional-XXXIX SBPO, Fortaleza, Brazil, pages 1649—1660, 2007.

E Gonzélez-Neira,] Montoya-Torres, and D Barrera. Flow-shop scheduling prob-
lem under uncertainties: Review and trends. International Journal of Industrial
Engineering Computations, 8(4):399—-426, 2017.

LE.G. Guimaraes, Y. Ouazene, M. C. de Souza, and F. Yalaoui. Semi-parallel flow

shop with a final synchronization operation scheduling problem. IFAC-PapersOnlLine,
49(12):1032-1037, 2016.

110

References

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. Gupta and S. Chauhan. A heuristic algorithm for scheduling in a flow shop
environment to minimize makespan. International Journal of Industrial Engineering
Computations, 6(2):173-184, 2015.

JND Gupta and E.F. Stafford. Flowshop scheduling research after five decades.
European Journal of Operational Research, 169(3):699-711, 2006.

F. Hnaien, F. Yalaoui, and A. Mhadhbi. Makespan minimization on a two-machine
flowshop with an availability constraint on the first machine. International Journal of
Production Economics, 164:95-104, 2015.

J. Hurkata and A. Hurkata. Effective design of the simulated annealing algorithm for
the flowshop problem with minimum makespan criterion. Journal of Telecommunica-
tions and Information Technology, pages 92-98, 2012.

P. Jarostaw, S. Czestaw, and Z. Dominik. Optimizing bicriteria flow shop scheduling
problem by simulated annealing algorithm. Procedia Computer Science, 18:936-945,
2013.

C. Jing, G. Tang, and X. Qian. Heuristic algorithms for two machine re-entrant flow
shop. Theoretical Computer Science, 400(1):137-143, 2008.

S. M. Johnson. Optimal two-and three-stage production schedules with setup times
included. Naval research logistics quarterly, 1(1):61-68, 1954.

P. J. Kalczynski and J. Kamburowski. An improved NEH heuristic to minimize
makespan in permutation flow shops. Computers & Operations Research, 35(9):3001—
3008, 2008.

S. Kirkpatrick, C .D. Gelatt, M. P. Vecchi, et al. Optimization by simulated annealing.
science, 220(4598):671-680, 1983.

C. Koulamas and G. J. Kyparisis. Single-machine and two-machine flowshop schedul-
ing with general learning functions. European Journal of Operational Research,
178(2):402-407, 2007.

J. Li and Q. Pan. Solving the large-scale hybrid flow shop scheduling problem with
limited buffers by a hybrid artificial bee colony algorithm. Information Sciences,
316:487-502, 2015.

K.P. Li, V.K. Ganesan, and A.I. Sivakumar*. Synchronized scheduling of assem-
bly and multi-destination air-transportation in a consumer electronics supply chain.
International Journal of Production Research, 43(13):2671-2685, 2005.

X. Li, L. Amodeo, F. Yalaoui, and H. Chehade. A multiobjective optimization
approach to solve a parallel machines scheduling problem. Advances in Artificial
Intelligence, vol.2010:10.1155/2010/943050, 2010.

S. Lin, C. Huang, C. Lu, and K. Ying. Minimizing total flow time in permutation
flowshop environment. International Journal of Innovative Computing, Information
and Control, 8(10A):6599-6612, 2012.

References 111

[53] H. R. Lourengo, O. C. Martin, and T. Stiitzle. Iterated local search. In Handbook of
metaheuristics, pages 320-353. Springer, 2003.

[54] C. Low, J. Yeh, and K. Huang. A robust simulated annealing heuristic for flow
shop scheduling problems. The International Journal of Advanced Manufacturing
Technology, 23(9-10):762-767, 2004.

[55] M. Loépez-Ibéiez, J. Dubois-Lacoste, L. P. C4ceres, M. Birattari, and T. Stiitzle. The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3(Supplement C):43 — 58, 2016.

[56] M. Magazine, J. Francois, and N. Hall. Generalized preemption models for single-
machine dynamic scheduling problems. IIE transactions, 29(5):359-372, 1997.

[57] G.B. Mainieri and D. P. Ronconi. New heuristics for total tardiness minimization in a
flexible flowshop. Optimization Letters, pages 1-20, 2013.

[58] M. K. Marichelvam, T. Prabaharan, and X. S. Yang. A discrete firefly algorithm
for the multi-objective hybrid flowshop scheduling problems. IEEE transactions on
evolutionary computation, 18(2):301-305, 2014.

[59] G. N. Maschietto, Y. Ouazene, F. Yalaoui, M. C. de Souza, and M. G. Ravetti.
Two formulations for non-interference parallel machine scheduling problems. IFAC-
PapersOnlLine, 48(3):272-276, 2015.

[60] S. T. McCormick and U. S. Rao. Some complexity results in cyclic scheduling.
Mathematical and Computer Modelling, 20(2):107-122, 1994.

[61] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6):1087-1092, 1953.

[62] H.S. Mirsanei, M. Zandieh, M. J. Moayed, and M.R. Khabbazi. A simulated annealing
algorithm approach to hybrid flow shop scheduling with sequence-dependent setup
times. Journal of Intelligent Manufacturing, 22(6):965-978, 2011.

[63] T.E. Morton and D.W. Pentico. Heuristic scheduling systems. John Wiley Sons, 1993.

[64] B. Naderi, M. Aminnayeri, M. Piri, and M.H. Ha’iri Yazdi. Multi-objective no-wait
flowshop scheduling problems: models and algorithms. International Journal of
Production Research, 50(10):2592-2608, 2012.

[65] M.S. Nagano and J.V. Moccellin. Reducing mean flow time in permutation flow shop.
Journal of the Operational Research Society, 59(7):939-945, 2008.

[66] M. Nawaz, E. E. Enscore, and 1. Ham. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11(1):91-95, 1983.

[67] Andreas C Nearchou. Flow-shop sequencing using hybrid simulated annealing. Jour-
nal of Intelligent manufacturing, 15(3):317-328, 2004.

112 References

[68] M. Nikabadi and R. Naderi. A hybrid algorithm for unrelated parallel machines
scheduling. International Journal of Industrial Engineering Computations, 7(4):681—
702, 2016.

[69] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the permutation
flow-shop problem. European Journal of Operational Research, 91(1):160-175, 1996.

[70] E. Nowicki and C. Smutnicki. The flow shop with parallel machines: A tabu search
approach. European Journal of Operational Research, 106(2):226-253, 1998.

[71] G. C. Onwubolu. Emerging optimization techniques in production planning and
control, volume 84. World Scientific, 2002.

[72] 1.H. Osman and C.N. Potts. Simulated annealing for permutation flow-shop scheduling.
Omega, 17(6):551-557, 1989.

[73] G. Ozdagoglu. A simulated annealing application on plowshop sequencing problem:
A comparative case study. Atatiirk Universitesi Iktisadi ve Idari Bilimler Dergisi,
22(2), 2008.

[74] Q-K. Pan, L. Wang, L. Gao, and W.D. Li. An effective hybrid discrete differential evo-
lution algorithm for the flow shop scheduling with intermediate buffers. Information
Sciences, 181(3):668-685, 2011.

[75] S. Parveen and H. Ullah. Review on job-shop and flow-shop scheduling using. Journal
of Mechanical Engineering, 41(2):130-146, 2011.

[76] M. Pincus. Letter to the editor—a monte carlo method for the approximate solution of
certain types of constrained optimization problems. Operations Research, 18(6):1225—
1228, 1970.

[77] M. Pinedo. Planning and scheduling in manufacturing and services. Springer, 2005.
[78] M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2008.

[79] G. Prabhaharan, B. S. H. Khan, and L. Rakesh. Implementation of grasp in flow
shop scheduling. The International Journal of Advanced Manufacturing Technology,
30(11-12):1126-1131, 2006.

[80] S.F. Rad, R. Ruiz, and N. Boroojerdian. New high performing heuristics for minimiz-
ing makespan in permutation flowshops. Omega, 37(2):331-345, 20009.

[81] E.Rashidi, M. Jahandar, and M. Zandieh. An improved hybrid multi-objective parallel
genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines.
The International Journal of Advanced Manufacturing Technology, 49(9-12):1129—
1139, 2010.

[82] C. R. Reeves. Genetic algorithms for the operations researcher. Informs Journal on
Computing, 9(3):231-250, 1997.

[83] M. G.C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In Handbook of metaheuristics, pages
283-319. Springer, 2010.

References 113

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

I. Ribas, R. Leisten, and J. M. Framifian. Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure perspective.
Computers & Operations Research, 37(8):1439-1454, 2010.

A. P Rifai, H. Nguyen, and S. Z. Md. Dawal. Multi-objective adaptive large neighbor-
hood search for distributed reentrant permutation flow shop scheduling. Applied Soft
Computing, 40:42-57, 2016.

D. P. Ronconi and E. G. Birgin. Mixed-integer programming models for flowshop
scheduling problems minimizing the total earliness and tardiness. In Just-in-Time
systems, pages 91-105. Springer, 2012.

R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research, 165(2):479—-494,
2005.

R. Ruiz and T. Stiitzle. An iterated greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. European
Journal of Operational Research, 187(3):1143—-1159, 2008.

R. Ruiz and J. A. Vazquez-Rodriguez. The hybrid flow shop scheduling problem.
European Journal of Operational Research, 205(1):1-18, 2010.

R. K. Samuel and P. Venkumar. Some novel methods for flow shop scheduling.
International Journal of Engineering Science and Technology, 3(12):8395-8403,
2011.

B. Santosa and A. Rofigq. The development of simulated annealing algorithm for
hybrid flow shop scheduling problem to minimize makespan and total tardiness. In

International Conference on Industrial Engineering and Operations Management,
pages 1348-1355, 2014.

M. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab. A discrete firefly meta-heuristic
with local search for makespan minimization in permutation flow shop scheduling
problems. International Journal of Industrial Engineering Computations, 1(1):1-10,
2010.

P. Schuurman and G. J. Woeginger. Preemptive scheduling with job-dependent
setup times. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 759-767. Society for Industrial and Applied Mathematics, 1999.

Panneerselvam Senthilkumar, Sockalingam Narayanan, et al. Simulated annealing
algorithm to minimize makespanin single machine scheduling problem withuniform
parallel machines. Intelligent Information Management, 3(01):22, 2011.

S. A. Seyed-Alagheband, H. Davoudpour, S. H. Doulabi, and M. Khatibi. Using
a modified simulated annealing algorithm to minimize makespan in a permutation
flow-shop scheduling problem with job deterioration. In Proceedings of the world
congress on engineering and computer science, volume 2, pages 20-22, 2009.

114 References

[96] B. Shahul H. K., G. Prabhaharan, and P. Asokan. A grasp algorithm for m-machine
flowshop scheduling problem with bicriteria of makespan and maximum tardiness.
International Journal of Computer Mathematics, 84(12):1731-1741, 2007.

[97] O. Shahvari and R. Logendran. Hybrid flow shop batching and scheduling with a
bi-criteria objective. International Journal of Production Economics, 179:239-258,
2016.

[98] X. Shao, B. Wang, Y. Rao, L. Gao, and C. Xu. Metaheuristic approaches to sequencing
mixed-model fabrication/assembly systems with two objectives. The International
Journal of Advanced Manufacturing Technology, 48(9-12):1159-1171, 2010.

[99] P. Sivasankaran, T. Sornakumar, and R. Panneerselvam. Design and comparison of
simulated annealing algorithm and grasp to minimize makespan in single machine
scheduling with unrelated parallel machines. 2010.

[100] E.F. Stafford. On the development of a mixed-integer linear programming model for
the flowshop sequencing problem. Journal of the Operational Research Society, pages
1163-1174, 1988.

[101] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Opera-
tional Research, 64(2):278-285, 1993.

[102] E.T. Tseng, E. F. Stafford Jr., and J.N.D Gupta. An empirical analysis of integer

programming formulations for the permutation flowshop. Omega, 32(4):285-293,
2004.

[103] C. R. Vaz and L. A. Araki. Sequenciamento da produ¢do em linhas paralelas nao-
idénticas. 2007.

[104] H. M. Wagner. An integer linear-programming model for machine scheduling. Naval
Research Logistics Quarterly, 6(2):131-140, 1959.

[105] L. Wang, Q. Pan, and M. F. Tasgetiren. A hybrid harmony search algorithm for
the blocking permutation flow shop scheduling problem. Computers & Industrial
Engineering, 61(1):76-83, 2011.

[106] M. Widmer and A. Hertz. A new heuristic method for the flow shop sequencing
problem. European Journal of Operational Research, 41(2):186—193, 1989.

[107] J. Yang. A two-stage hybrid flow shop with dedicated machines at the first stage.
Computers & Operations Research, 40(12):2836-2843, 2013.

[108] Mehmet Mutlu Yenisey and Betul Yagmahan. Multi-objective permutation flow shop
scheduling problem: Literature review, classification and current trends. Omega,
45:119-135, 2014.

[109] X.Zhang and S. van de Velde. Approximation algorithms for the parallel flow shop
problem. European Journal of Operational Research, 216(3):544-552, 2012.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 General overview of production sequencing
	1.2 Problem description
	1.2.1 The welding process of the electrical-electronic system in study
	1.2.2 Model description

	1.3 Importance and purpose of the study
	1.3.1 Objective

	1.4 Thesis structure

	2 Literature review
	2.1 Scheduling problem
	2.1.1 Problem classification
	2.1.2 Single-stage machine environment
	2.1.3 Multi-stage machine environment
	2.1.4 Sequencing of jobs in a flow shop production environment
	2.1.5 Flow shop variants

	2.2 Methods of resolution
	2.2.1 A mathematical programming for the flow shop problem
	2.2.2 Johnson's algorithm
	2.2.3 Heuristic methods
	2.2.4 Metaheuristic

	2.3 Conclusion

	3 Optimization approaches
	3.1 Characteristics of the studied problem
	3.2 Mathematical modeling
	3.3 Heuristics based on Johnson's algorithm
	3.3.1 Johnson's algorithm considering the average processing time
	3.3.2 Johnson's algorithm considering the longest processing time

	3.4 Heuristics based in NEH algorithm
	3.4.1 NEH algorithm considering the average processing time
	3.4.2 NEH algorithm considering the longest processing time
	3.4.3 NEH algorithm considering the semi-lines separately

	3.5 Resolution methods with metaheuristics
	3.5.1 Representation of a solution
	3.5.2 Simulated annealing
	3.5.3 Local search
	3.5.4 Greedy Randomized Adaptive Search Procedure - GRASP

	3.6 Conclusion

	4 COMPUTATIONAL EXPERIMENTS
	4.1 Generation of instances
	4.2 Criteria used to achieve the computational experiments
	4.3 Mathematical modeling results
	4.4 Results by the adaptation of Johnson's algorithm and the NEH algorithm
	4.5 Metaheuristics results
	4.5.1 Results by the iterated local search
	4.5.2 Results generated by simulated annealing
	4.5.3 Results generated by GRASP

	4.6 Comparison of results
	4.7 Conclusion

	5 Conclusion
	5.1 Conclusion
	5.2 Suggestion for future studies

	6 French Resume
	6.1 Introduction Générale
	6.2 Approches de modélisation et d’optimisation
	6.2.1 Formulation mathématique
	6.2.2 Heuristique
	6.2.3 Metaheuristique

	6.3 Résultats et méthodologie
	6.3.1 Mathematical modeling
	6.3.2 NEH heuristic and Johnson's algorithm
	6.3.3 Recuit simulé
	6.3.4 GRASP

	6.4 Conclusion et perspectives

	References

